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Technology  plays  a  crucial  role  in  various  aspects  of  peace  and  security.  This book  series  explores  the  intersection  of  computer  science  with  peace  and  security 

studies.  With  a  focus  on  cyber  security  and  privacy,  human-computer  interaction 

as  well  as  peace  and  conflict  studies,  it  addresses  topics  such  as  peace  informatics 

and  technical  peace  research  (cyber  war,  peace,  arms  control,  and  dual  use),  crisis 

informatics  and  information  warfare  (social  media  and  collaborative  technolo-

gies  in  conflict  and  crisis  situations,  misinformation  and  opinion  manipulation), 

as  well  as  usable  safety,  security,  and  privacy  (resilient  digital  infrastructures, 

security  and  privacy  enhancing  technologies). 

Technologie  spielt  eine  entscheidende  Rolle  in  verschiedenen  Aspekten  von 

Frieden  und  Sicherheit.  Diese  Buchreihe  befasst  sich  mit  Fragen  an  der 

Schnittstelle  der  Informatik  mit  der  Friedens- und  Sicherheitsforschung.  Mit 

einem  Fokus  auf  Cybersicherheit  und  Privatheit,  Mensch-Computer-Interaktion 

sowie  Friedens- und  Konfliktforschung  werden  Themen  wie  Friedensinformatik 

und  technische  Friedensforschung  (Cyberkrieg,  Frieden,  Rüstungskontrolle  und 

Dual-Use),  Kriseninformatik  und  Informationskrieg  (soziale  Medien  und  kol-

laborative  Technologien  in  Konflikt- und  Krisensituationen,  Desinformation  und 

Meinungsmanipulation)  sowie  nutzbare  Sicherheit  und  Privatheit  (resiliente  dig-

itale  Infrastrukturen,  Technologien  zur  Verbesserung  der  Sicherheit  und  des 

Datenschutzes)  behandelt. 
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Foreword 

Professionals  in  cybersecurity  are  overwhelmed  by  the  rapidly  increasing  vol-

ume  of  publicly  available  data  on  cyber  threats,  complicating  threat  analysis  for 

response  teams.  Initially,  clustering  techniques  are  explored  to  manage  this  data 

by  grouping  it  into  broad  categories.  Still,  these  methods  need  to  be  revised  to 

provide  the  detailed  analysis  needed  for  precise  threat  identification  and  mitiga-

tion.  This  shortcoming  highlights  the  necessity  for  more  advanced  approaches. 

Supervised  machine  learning  offers  a  potential  solution  for  predicting  data  rele-

vance.  Still,  the  dynamic  nature  of  cyber  threats  limits  the  effectiveness  of  static 

classifiers,  and  training  new  classifiers  for  each  incident  is  too  labor-intensive  and 

data-intensive. 

This  dissertation  proposes  a  comprehensive  solution  utilizing  low-data  regime 

methods  across  different  stages  of  the  machine  learning  pipeline  to  enable  effec-

tive  training  with  minimal  supervised  data.  Key  strategies  include:  (1)  Data 

Acquisition:  Implementing  an  active  learning  strategy  to  optimize  data  labeling 

and  enhance  learning  efficiency  quickly.  (2)  Preprocessing:  Developing  data  aug-

mentation  techniques  to  increase  the  diversity  and  volume  of  collected  data.  (3) 

Model  Selection:  Identifying  an  effective  multi-level  transfer  learning  strategy  to 

leverage  prior  knowledge.  And  (4)  Prediction:  Enhancing  model  resilience  and 

correcting  errors  through  adversarial  training. 

These  methods  allow  for  training  deep  learning  models  for  new  cybersecurity 

incidents  with  minimal  labeled  data.  Empirical  evaluations  show  that  using  these 

methods  in  BERT-like  models  significantly  improves  performance  over  existing 

low-data  regime  techniques.  While  the  primary  focus  is  on  cybersecurity,  these 

methods  are  also  applicable  to  other  fields  such  as  crisis  informatics,  business, 
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Foreword

and  credibility  assessment.  The  research  emphasizes  the  growing  importance  of 

foundation  models  like  GPT-4  and  Llama  3  and  the  enduring  relevance  of  the 

proposed  techniques  and  thus  makes  an  important  contribution. 

The  studies  included  in  this  PhD  thesis  have  been  published  as  eight  papers.  In 

total,  Markus  has  been  involved  in  16  scientific  publications.  His  first  publication 

began  during  the  first  semester  of  the  PEASEC  chair’s  existence  in  2017  when 

Markus  (a  bachelor’s  student  at  that  time)  attended  a  seminar  with  us.  Later, 

he  did  his  bachelor’s  and  master’s  theses  in  different  areas,  but  luckily  within 

our  group,  and  then  successfully  continued  for  a  PhD.  Besides  his  research,  he 

regularly  provided  us  with  tutorials  and  practical  tips  from  the  fast-developing 

area  of  deep  learning,  his  area  of  expertise;  he  has  actively  been  involved  in 

our  software  development  courses  and  further  third-party  acquisition.  At  the  time 

of  submitting  his  thesis  he  has  already  achieved  scientific  impact  (about  850 

citations),  which  is,  in  my  opinion,  excellent  for  a  dissertation. 

Markus  Bayer  has  proven  that  he  is  capable  of  independent  scientific  work. 

Thus,  in  September  2024,  his  dissertation  was  accepted  by  the  Department  of 

Computer  Science  at  the  Technical  University  of  Darmstadt  for  the  degree  of  Dr. 

rer.  nat.  as  the  ninth  PhD  thesis  in  our  research  group  PEASEC.  I  would  like 

to  see  a  further  focus  on  topics  of  such  high  importance.  Markus,  thank  you  for 

your  contribution  and  for  allowing  me  to  accompany  you  on  your  way  to  your 

PhD.  I  wish  you  all  the  best  and  every  success  for  the  future. 

Prof.  Dr.  Dr.  Christian  Reuter 

Professor  for  Science  and  Technology 

for  Peace  and  Security  (PEASEC) 

and  Dean  of  the  Department 

of  Computer  Science  at 

Technical  University  of  Darmstadt 

Darmstadt,  Germany
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Abstract 

In  the  field  of  cybersecurity,  professionals  face  significant  information  over-

load  as  publicly  disseminated  data  on  cyber  threats  increases  at  an  alarming 

rate.  This  overload  complicates  the  task  of  analyzing  cyber  threat  information, 

thereby  posing  a  significant  challenge  for  computer  emergency  response  teams 

and  other  professionals.  To  address  this  challenge,  we  initially  explore  the  utility 

of  clustering  techniques  to  manage  the  voluminous  data  by  extracting  coarse-

grained  groups.  However,  while  clustering  helps  in  understanding  broad  threat 

categories,  it  falls  short  in  providing  the  fine-grained  analysis  necessary  for  pre-

cise  threat  identification  and  mitigation.  This  limitation  underscores  the  need 

for  more  sophisticated,  fine-grained  analysis  techniques.  Although  supervised 

machine  learning  is  a  viable  solution  for  predicting  precise  data  relevance  and 

addressing  this  overload,  the  highly  variable  nature  of  cyber  threats  impedes  the 

effectiveness  of  static  classifiers  for  new  incidents.  Additionally,  training  new 

classifiers  for  each  incident  situation  is  too  labor-intensive,  requiring  extensive 

expert-labeled  data.  This  is  especially  pronounced  in  the  field  of  deep  learning, 

where  the  use  of  large  datasets  is  essential  for  achieving  unbiased  generalization. 

This  dissertation  presents  a  comprehensive  solution  by  proposing  and  evalu-

ating  low-data  regime  methods  across  different  stages  of  the  supervised  machine 

learning  process  to  enable  effective  training  with  minimal  labeled  data:  (1)  Data 

Acquisition:  We  introduce  an  active  learning  strategy  based  on  foundation  mod-

els,  such  as  GPT-4,  to  optimize  data  labeling  and  maximize  learning  efficacy.  (2) 

Preprocessing:  We  employ  and  sensibly  constrain  GPT-2  and  GPT-3  to  function  as 

data  augmentation  techniques,  thereby  improving  the  performance  of  pre-trained 

models  by  increasing  diversity  and  volume  of  the  collected  data.  (3)  Model

ix
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Selection:  We  train  a  cybersecurity  language  model  and  pinpoint  an  effective 

multi-level  transfer  learning  strategy,  ensuring  prior  knowledge  is  leveraged.  (4) 

Prediction:  We  develop  a  novel  adversarial  example  generation  method,  grounded 

in  explainable  AI,  to  enhance  model  resilience  and  correct  erroneous  predictions. 

These  methods  allow  deep  learning  models  to  be  trained  for  each  new  cyberse-

curity  incident  with  a  minimal  number  of  labeled  instances.  Empirical  evaluations 

demonstrate  that  these  methods,  when  applied  to  BERT-like  models,  significantly 

outperform  state-of-the-art  low-data  regime  techniques,  enabling  effective  and 

specialized  collection  of  information  in  cyber  threat  situations.  While  the  pri-

mary  focus  of  this  work  is  on  enhancing  cybersecurity  information  collection, 

the  methods  developed  are  broadly  applicable  across  various  domains,  including 

those  touched  upon  in  this  work,  such  as  crisis  informatics,  business,  and  cred-

ibility  assessment.  This  research  also  emphasizes  the  emergence  of  foundation 

models  such  as  GPT-4  and  Llama  3  and  underscores  the  sustained  importance  of 

the  proposed  methods. 
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Introduction 

1

Deep  learning,  a  cornerstone  of  modern  computational  solutions,  is  revolutionizing 

fields  ranging  from  decision-making  [251]  and  data  analysis  [286]  to  data  categorization  [234].  Cybersecurity,  in  particular,  is  one  area  that  benefits  from  the  capabilities  of  natural  language  processing  (NLP)  with  deep  learning.  Integrating  it  into 

cybersecurity  practices  has  become  progressively  essential  in  detecting,  prevent-

ing,  and  mitigating  sophisticated  cyber  threats  and  vulnerabilities  prevalent  today 

[273, 501].  As  cyberattacks  become  increasingly  intricate,  pervasive,  and  dynamic, traditional  rule-based  or  signature-based  detection  methods  are  proving  insufficient 

[206, 500].  Deep  learning,  in  contrast,  shines  with  its  capacity  for  automatic  feature extraction,  enabling  substantial  performance  gains  [167]. Yet,  access  to  vast  computing  resources  and  extensive  data  is  imperative  for  deep  learning  to  exhibit  its  full potential;  however,  extensive  data  is  limited  in  low-data  regimes. 

In  this  thesis,  a   low-data  regime   in  machine  learning  refers  to  scenarios  specific to  textual  data  where  only  a  limited  amount  of  labeled  data  is  available  for 

training  models,  irrespective  of  the  volume  of  unlabeled  or  unsupervised  data. 

1.1

Motivation 

Deep  learning,  despite  its  transformative  impact  on  problems  with  abundant  train-

ing  data,  has  limited  success  in  low-data  regimes,  thus  constraining  its  applica-

bility  for  emerging,  niche,  or  label-intensive  tasks  [341].  This  dissertation  demonstrates  that  clustering  can  provide  insights  even  without  explicit  supervised  training. 
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1 Introduction

However,  this  yields  broad  results  without  providing  the  fine-grained  information 

often  necessary.  Recent  advances  have  strived  to  reduce  deep  learning’s  reliance 

on  large  datasets  [ 47, 212, 431]  and  promoted  meta-learning,  which  involves  the development  of  learning  strategies  that  enable  new  tasks  to  be  learned  more  quickly 

and  efficiently  based  on  past  experiences  [452].  There  is  a  growing  need  to  consolidate  these  advances  and  push  the  frontier,  enhancing  deep  learning’s  efficacy  in 

low-data  regimes,  especially  for  cybersecurity.  This  dissertation  navigates  the  chal-

lenges  of  deep  learning,  in  particular  BERT-like  transformer  models  in  low-data 

regimes  within  the  four  main  phases  of  the  supervised  machine  learning  process— 

Acquisition,  Preprocessing,  Model  Selection,  and  Prediction—adapted  and  simpli-

fied  from  the  frameworks  proposed  by  Osisanwo  et  al.  [317]  and  Verma  et  al. [454] 

(see  Fig. 1.1). 

Fig.  1.1  Cornerstones  of  the  supervised  machine  learning  process  from  data  acquisition  to prediction  in  the  real  world,  enriched  by  the  main  topics  of  this  thesis  (four  points  below) Acquisition  Phase:  The  first  phase  of  the  machine  learning  process  involves  obtaining  labeled  data  from  which  a  model  can  be  trained.  Active  learning  is  a  promising 

concept  for  reducing  the  number  of  labels  for  effective  classification  [198].  To  complement  the  labeling  process,  it  prioritizes  specific  instances  over  random  sampling 

[393].  For  instance,  uncertainty  sampling  uses  rapidly  trained  machine  learning models  to  pinpoint  instances  with  uncertain  predictions  [242],  forming  the  decision boundary  much  faster  and,  by  that,  reducing  labeling  effort.  However,  current  methods  are  unable  to  apply  this  to  pre-trained  transformer  models  because  a  mismatch 

between  the  active  learning  model  and  the  final  model  architecture  can  lead  to  poor 

results  [387, 397, 529]. In  scenarios  without  this  mismatch,  they  remain  impractical due  to  long  training  times  [517].  Furthermore,  active  learning  strategies  are  not  well-studied  for  low-data  regimes,  as  they  often  face  a  cold-start  problem.  This  refers 

to  their  inability  to  select  meaningful  instances  without  sufficient  labeled  data  [ 68]. 

We  investigate  the  potential  of  instruction-tuned  language  models,  such  as  GPT-4 

[315],  as  an  active  learning  component  in  addressing  the  challenges  above. 

1.1 Motivation

5

Preprocessing  Phase:  Once  the  labeled  data  has  been  collected,  it  can  optionally 

be  preprocessed,  for  example,  with  data  augmentation  strategies.  Originating  from 

computer  vision,  data  augmentation  refers  to  the  artificial  creation  of  new  training 

instances,  often  from,  but  not  limited  to,  existing  data.  By  artificially  enhancing  the diversity  of  training  data,  these  methods  help  to  mitigate  overfitting  and  data  scarcity, enabling  more  effective  model  training  even  in  low-data  regimes  [151]. However, this  poses  a  significant  challenge  in  the  textual  domain  due  to  the  intricacies  of 

natural  language  transformations  [209, 481]. Nonetheless,  with  the  surge  in  research potential  and  sophisticated  transformation  techniques,  the  field  has  rapidly  grown. 

Therefore,  the  field  needs  a  holistic  overview  of  textual  data  augmentation  methods 

for  classification,  especially  concerning  pre-trained  models.  The  advent  of  transfer 

learning  has  made  models  invariant  to  simple  transformations  and,  by  that,  has 

rendered  many  augmentation  techniques  obsolete  [ 29, 265], such  as  synonym-based 

[187, 214, 275], embedding-based  [250, 365, 473],  or  simple  noise-inducing  [ 33, 99, 

481]  methods.  This  underscores  the  need  for  more  sophisticated  methods  that  can enrich  contemporary  models.  While  large  language  models  are  almost  ideal  in  this 

case,  given  their  ability  to  generate  instances  with  novel  linguistic  patterns,  at  the 

time  of  this  work,  state-of-the-art  approaches  do  not  constrain  them  in  a  meaningful 

way  [467]  or  are  only  designed  for  single-sentence  instances  [ 18]. 

Model  Selection:  Once  the  training  data  has  been  compiled,  it  is  important  to  choose a  suitable  model.  The  well-known  technique  of  transfer  learning  is  particularly  effective  in  scenarios  with  little  data,  showing  significant  performance  improvements  in 

many  tasks  [ 89, 339].  The  underlying  rationale  is  to  pre-train  models  on  abundant data  and  subsequently  fine-tune  them  for  specific  tasks  where  data  is  sparse  [346].  In this  way,  the  model  is  already  meaningfully  initialized  in  the  text  domain,  possibly 

modeling  natural  language  better,  leading  to  a  beneficial  state  for  the  actual  task. 

In  particular,  the  field  of  cybersecurity  would  benefit  significantly  from  a  domain-

adapted  pre-trained  model,  as  is  the  case  in  other  fields  such  as  biomedicine  [238], 

law  [ 59]  and  crisis  informatics  [229]. While  CyBERT  [347]  constitutes  a  first  model baseline,  a  substantially  longer  training  of  such  a  model  with  much  more  cybersecurity  data  would  enhance  existing  systems  and  offer  a  basis  for  further  research 

in  this  sector,  ultimately  leading  to  better  cybersecurity  tools.  This  can  be  sensibly 

combined  with  few-shot  learning  techniques,  i.e.,  specific  architecture  selections  or 

techniques  to  enable  generalization  from  a  small  number  of  examples.  Based  on  this, 

the  dissertation  explores  the  viability  of  a  multi-level  transfer  learning  technique  for low-data  regimes  and  further  few-shot  learning  to  enable  specialized  cyber  threat 

information  collection.  While  works  from  Riebe  et  al. [363]  and  Sceller  et  al. [381]
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extract  coarse-grained  cybersecurity  information,  security  professionals  demand  a 

more  fine-grained  technique  that  is  flexibly  adaptable  to  differing  needs. 

Prediction  Phase:  While  deep  learning  systems  demonstrate  strong  classifica-

tion  capabilities  in  the  final  task,  they  are  vulnerable  to  small  input  manipulations 

(“adversarial  attacks/examples”)  [ 17, 99], especially  pronounced  when  trained  in low-data  regimes  [130]. In  recent  research,  works  like  BERT-Attack  [247],  BAE 

[124],  Textfooler  [184], or  SMART  [181]  have  tried  to  solve  this  problem  with  adversarial  training,  i.e.  utilizing  adversarial  examples  for  model  re-training.  However, 

this  often  proves  ineffective  due  to  insufficient  or  very  specific  robustness  impacts 

and  evaluation  methods  that  fail  to  capture  anticipated  bias  reductions  [126, 466]. 

Therefore,  we  tackle  the  question  how  to  create  adversarial  examples  that  achieve 

a  significant  learning  impact  with  adversarial  training  and  how  to  assess  this  in  a 

meaningful  way. 

At  its  core,  this  thesis  seeks  to  amalgamate  the  methods  discussed  above  into 

a  cohesive  framework  tailored  for  cybersecurity  professionals  and  computer  emer-

gency  response  teams  (CERTs).  CERTs  are  specialized  teams  responsible  for  both 

preventive  and  reactive  measures  related  to  computer  security  [ 49, 483].  One  of their  key  activities  involves  collecting,  analyzing,  and  disseminating  information 

about  emerging  or  existing  cyber  threats  [196]—a  process  known  as  cyber  threat intelligence  (CTI)  [279].  Given  the  constant  influx  in  potentially  relevant  information  content  and  the  varying  quality  and  credibility  of  information,  executing  the 

collection  of  CTI  data  is  becoming  increasingly  challenging  [246, 424]. CERTs report  that  they  often  do  not  have  automated  tools  to  manage  and  collect  information  from  the  various  sources  [196],  leading  to  potential  oversights  in  information and,  ultimately,  wrong  decisions  being  made.  The  application  of  machine  learning 

in  the  form  of  relevance  classification  could  be  the  key  component  to  stem  infor-

mation  overload,  as  other  fields  dealing  with  information  overload,  such  as  crisis 

informatics,  also  show  [198]. However,  the  cybersecurity  domain  faces  the  problem  of  high  dynamics  and  individual  relevance  definitions,  so  classifiers  need  to 

generalize  to  new  situations  [ 85].  Meaning  that  it  is  almost  infeasible  to  have  only one  classifier  for  the  detection  of  relevant  content,  as  new  cyber  situations  often 

differ  greatly  from  previous  ones  [ 22],  e.g.,  in  terms  of  individual  requirements,  the names  of  specific  cyber  threats,  different  attack  methods,  and  affected  products  and 

functions.  To  make  matters  worse,  these  situations  are  time-sensitive,  and  cyberse-

curity  teams  are  not  able  to  label  thousands  of  posts  and  articles  every  time  a  new 

incident  is  about  to  happen,  resulting  in  a  low-data  regime  for  every  new  situation. 

Therefore,  there  is  an  emerging  need  for  a  machine  learning  framework  that  can 

address  these  challenges. 

1.2 Aims and Research Question
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1.2

Aims  and  Research  Question 

This  thesis  aims  to  develop  a  comprehensive  deep  learning  framework  tailored 

to  BERT-like  transformer  models  for  textual  low-data  regimes,  with  the  goal  of 

optimizing  classifier  performance  in  cybersecurity,  specifically  for  the  relevance 

classification  of  CTI  information  for  CERTs  and  professionals. 

The  principal  research  question  guiding  this  thesis  is: 

Main  Research  Question 

How  can  the  performance  of  deep  learning  classifiers  for  cyber  threat 

intelligence  texts  be  improved  in  low-data  regimes? 

To  address  this  central  question,  the  thesis  will  investigate  several  sub-questions 

corresponding  to  each  step  of  the  supervised  machine  learning  process: 

Data  Acquisition:  Active  Learning 

How  can  active  learning  in  low-data  regimes  be  enhanced  by  instruction-

tuned  large  language  models,  enabling  the  resulting  pre-trained  models  to  gain 

high  classification  performance  with  reduced  annotation  effort? 

This  segment  proposes  a  novel  strategy  in  active  learning  to  lessen  the  manual 

effort  in  data  labeling  without  compromising  the  classification  performance  of  the 

resulting  models.  For  this,  instruction-tuned  large  language  models,  like  GPT-4,  are 

incorporated  into  the  process. 

. | Chapter  7 

Preprocessing:  Data  Augmentation 

How  can  the  advanced  generative  capabilities  of  large  language  mod-

els  be  leveraged  and  constrained  for  textual  data  augmentation  to  enhance 

classification  performance,  particularly  in  low-data  regimes? 

This  part  overviews  current  data  augmentation  techniques  in  the  textual  data  context. 

Based  on  this,  sophisticated  techniques  based  on  large  language  models  such  as 

GPT-2  and  GPT-3  are  developed  to  increase  classification  performance  in  low-data 

regimes. 

. | Chapter  8, Chapter  9,  Chapter  12
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Model  Selection:  Transfer  Learning 

How  can  transfer  learning  methods  be  developed  and  applied  to  mitigate 

the  dependency  on  extensive  data  requirements  in  deep  learning  applications? 

This  part  investigates  the  implementation  and  optimization  of  multi-level  and 

domain-dependent  transfer  learning  techniques  to  achieve  higher  classification  per-

formance  with  a  focus  on  low-data  regimes. 

. | Chapter  10,  Chapter  11,  Chapter  12 

Prediction:  Adversarial  Training 

How  can  textual  adversarial  examples  be  effectively  formulated  and 

evaluated  in  adversarial  training  to  achieve  significant  learning  effects? 

This  segment  focuses  on  generating  textual  adversarial  examples  to  reinforce  model 

resilience,  which  is  especially  important  for  models  trained  in  low-data  regimes 

[130].  It  emphasizes  misclassified  examples,  which  can  lead  to  stronger  learning effects  and  higher  performance  if  corrected.  In  addition,  an  evaluation  method  is 

designed  which  assesses  the  robustness  improvements  more  effectively  than  current 

methods. 

. | Chapter  13 

In  addition  to  demonstrating  how  each  method  enhances  its  respective  field  of 

research  and  quantitatively  assessing  the  resultant  performance  gains,  we  engage  in 

a  critical  discourse  on  the  relevance  of  these  methods,  particularly  considering  the 

advent  of  foundation  models  that  appear  to  mitigate  numerous  challenges  associated 

with  low-data  scenarios.  In  this  synopsis,  we  use  the  term  ‘foundation  models’  to 

refer  to  large,  pre-trained  models  such  as  GPT-3  [ 48] and  Llama [446], which  are capable  of  generating  high-quality  text  and  performing  a  wide  range  of  tasks  across 

various  domains.  This  categorization  helps  to  distinguish  them  from  models  like 

BERT  [ 89] and  GPT-2 [340],  which,  while  also  large  language  models  pre-trained on  extensive  datasets,  are  primarily  optimized  for  understanding  and  processing 

language  with  a  focus  on  specific  tasks  such  as  classification  or  entity  recognition, 

rather  than  general-purpose  task-solving.  As  we  explore  the  broader  implications  of 

these  advances,  it  becomes  imperative  to  assess  whether  the  methods  developed  for 

low-data  regimes  hold  their  ground  or  even  complement  these  powerful  foundation 

models:

1.3 Content and Structure of the Thesis
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How  do  the  techniques  developed  for  enhancing  deep  learning  in  low-

data  regimes  maintain  their  relevance  in  the  era  of  foundation  models? 

. | Chapter  4 

By  addressing  all  research  questions,  this  thesis  aims  not  only  to  advance  the  scien-

tific  understanding  and  practical  applications  of  deep  learning  for  CTI  information 

classification  but  also  offers  valuable  insights  and  methods  that  can  be  generalized 

to  other  domains  grappling  with  challenges  in  low-data  scenarios. 

1.3

Content  and  Structure  of  the  Thesis 

The  remainder  of  this  synopsis  is  structured  as  follows.  Chapter  2  presents  the research  design  of  this  dissertation  and  provides  a  brief  overview  of  the  research 

field  and  projects  in  which  this  dissertation  is  placed  in,  as  well  as  the  research 

methodology.  Chapter  3  summarises  the  main  findings  of  the  studies  of  this  dissertation.  In  Chap. 4, the  relevance  of  the  proposed  methods  in  the  context  of  foundation models  is  discussed  and  empirically  assessed.  The  synopsis  concludes  with  Chap. 5, 

in  which  the  implications  of  this  work  are  derived,  the  answers  to  the  research 

questions  are  presented,  and  the  limitations  and  future  work  of  the  dissertation  are 

discussed. 

Part  II  of  this  dissertation  is  then  structured  as  follows.  The  general  theme  and 

research  questions  of  this  thesis  are  motivated  in  Chap. 6  where  a  framework  for clustering  instances  to  reduce  information  overload  is  shown.  While  the  method 

works  as  intended,  the  real  world  application  requires  a  specialized  system  that  is 

able  to  retrieve  more  fine-grained  and  specialized  information.  The  following  studies 

address  this  requirement  and  are  oriented  towards  the  machine  learning  process  in 

Fig. 1.1.  The  first  work  is  placed  within  the  data  acquisition  phase  and  explores  how to  implement  a  supporting  active  learning  component  based  on  foundation  models 

(Chap. 7). Then  data  augmentation  is  introduced  in  the  preprocessing  phase,  where at  first  a  survey  of  augmentation  approaches  for  text  classification  is  given  (Chap. 8), 

and  then  a  novel  data  augmentation  method  is  developed  (Chap. 9).  In  the  model selection  phase,  a  classifier  is  transfer  learned  to  perform  credibility  classification 

(Chap. 10).  Furthermore,  a  state-of-the-art  cybersecurity  language  model  is  trained (Chap. 11),  which  is  then  used  in  the  following  few-shot  learning  approach  for identifying  fine-grained  information  about  cybersecurity  threats  (Chap. 12).  Finally, in  the  prediction  phase,  a  novel  technique  for  creating  adversarial  examples  with 

explainable  AI  is  demonstrated,  which  helps  to  mitigate  the  incorrect  behavior  of 

the  models  used  (Chap. 13). 
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Chapter  6  (Information  Overload  in  Crisis  Management)  shows  the  principal problem  of  information  overload  in  public  data.  To  propose  a  fast  solution  for  getting a  comprehensive  perspective  on  the  various  topics  discussed  in  user-generated  data, 

several  clustering  schemes  are  proposed  and  evaluated.  Special  emphasis  is  placed 

on  embedding  methods  and  the  different  languages  that  are  communicated.  This 

chapter  has  been  published  in  the   European  Conference  on  Information  Systems 

[ 30]. 

Contributions  and  Highlights 

•  A  clustering  system  for  reducing  information  overload  in  social  media 

streams 

•  Comparison  of  embedding  models  across  two  languages  and  the  proposal 

of  a  novel  embedding  evaluation  task 

•  Proposal  of  a  method  for  automatic  cluster  labeling 

Author  Statement 

This  paper  constitutes  a  joint  work  of  Markus  Bayer,  Marc-André  Kaufhold,  and 

Christian  Reuter.  As  corresponding  and  leading  author,  Markus  Bayer  led  the  over-

all  research  design,  management,  and  writing  process  of  the  paper.  The  authors 
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by  Marc-André  Kaufhold.  The  research  methodology,  implementation  and  exper-
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Markus  Bayer,  whereas  the  implications  and  contributions  were  written  equally  by 
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Christian  Reuter:  Writing—Review  &  Editing,  Resources,  Supervision,  Funding 

acquisition. 

Chapter  7  (ActiveLLM:  Large  Language  Model-based  Active  Learning  for Textual  Few-Shot  Scenarios)  demonstrates  a  novel  active  learning  method  for 

BERT  classifiers.  By  using  foundation  models  as  active  learning  components  that 

do  not  need  to  be  trained,  the  method  overcomes  the  long  latency  and  cold-start 

problems  of  active  learning  strategies.  In  low-data  regimes  the  method  significantly 

outperforms  other  active  learning  strategies  and  state-of-the-art  few-shot  learning 

methods.  This  chapter  has  been  published  in  the   Transactions  of  the  Association  for Computational  Linguistics  [ 32]. 

Contributions  and  Highlights 

•  A  novel  active  learning  method  based  on  foundation  models  like  GPT-4 

and  Llama  3 

•  Overcoming  the  cold-start  and  model-mismatch  problem  of  active  learning 

strategies 

•  Comprehensive  evaluations  with  various  foundation  models,  other  active 

learning  methods,  and  few-shot  learning 

Author  Statement 

This  paper  constitutes  a  joint  work  of  Markus  Bayer,  Justin  Lutz  and  Christian 

Reuter.  As  corresponding  and  leading  author,  Markus  Bayer  performed  the  overall 

research  design,  management,  and  writing  of  the  paper.  Markus  Bayer  conceptu-

alized  and  conducted  the  literature  review,  research  methodology,  implementation, 

experimentation,  and  interpretation.  Justin  Lutz  assisted  Markus  Bayer  in  revis-

ing  the  paper  and  data  presentation.  Christian  Reuter  was  the  general  advisor  of 

this  work  and  contributed  with  continuous  feedback  during  all  phases  of  the  paper 

writing  process. 

CRediT  author  statement: 

This  paper  constitutes  Markus  Bayer:  Conceptualization,  Methodology,  Software, 

Formal  analysis,  Investigation,  Data  Curation,  Writing—Original  Draft,  Writing— 

Review  &  Editing,  Visualization,  Project  administration,  Funding  acquisition. Justin 

Lutz:  Validation,  Visualization,  Writing—Review  &  Editing. Christian  Reuter: 

Resources,  Supervision,  Funding  acquisition. 
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Chapter  8  (A  Survey  on  Data  Augmentation  for  Text  Classification)  gives  an overview  of  data  augmentation  methods  that  can  be  used  for  text  classification.  The 

basics  of  data  augmentation,  as  well  as  its  goals  and  applications,  are  explained. 

While  the  augmentation  methods  are  described  in  detail,  the  state  of  the  art  is 

clearly  shown,  and  further  research  perspectives,  especially  in  the  light  of  generative 

language  models,  are  identified.  This  chapter  has  been  published  in  the   Computing 

 Surveys  Journal  [ 29]. 

Contributions  and  Highlights 

•  Overview  of  goals  and  applications  of  data  augmentation 

•  Comprehensive  survey  on  data  augmentation  in  text  classification 

•  Data-structure-driven  taxonomy  and  method-oriented  categorization 

•  State-of-the-art  review  with  comparisons  and  in-depth  details  of  the  meth-

ods 

•  Identification  of  future  research  perspectives 

Author  Statement 

This  paper  constitutes  a  joint  work  of  Markus  Bayer,  Marc-André  Kaufhold,  and 

Christian  Reuter.  As  corresponding  and  leading  author,  Markus  Bayer  led  the  over-

all  research  design,  management,  and  writing  process  of  the  paper.  The  research 

methodology  was  conceptualized  and  conducted  by  Markus  Bayer,  with  review  and 

support  from  Marc-André  Kaufhold.  The  analysis  and  interpretation  of  the  paper 

was  performed  by  Markus  Bayer.  Marc-André  Kaufhold  assisted  Markus  Bayer  in 
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Chapter  9  (Text  Generation  Approach  for  Data  Augmentation)  shows  a  novel data  augmentation  method  for  natural  text.  The  developed  synthetic  data  generation
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method  achieves  large  performance  improvements  over  the  baseline  and  a  common 

data  augmentation  method  by  combining  the  large  language  model  GPT-2  with  a 

specialized  label  conditioning  technique  and  a  filtering  mechanism  with  the  human 

in  the  loop.  The  study  of  this  chapter  has  been  published  in  the   International  Journal of  Machine  Learning  and  Cybernetics  [ 28]. 

Contributions  and  Highlights 

•  Novel  data  augmentation  method  based  on  GPT-2 

•  Overcoming  the  challenge  of  data  augmentation  to  benefit  pre-trained 

models  by  creating  unseen  training  data  relevant  to  the  task 

•  Comprehensive  evaluations  with  domain-specific  and  low-data  regime 

insights 
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Chapter  10  (Design  and  Evaluation  of  Deep  Learning  Models  for  Real-Time Credibility  Assessment  in  Twitter)  contains  a  study  regarding  transfer  learning  of the  BERT  model  for  assessing  credibility  of  Twitter  posts  in  real-time.  The  study 

includes  a  data  collection  process  and  a  comparison  of  several  frameworks  suitable 

for  the  credibility  classification  task.  The  pretrained  language  model  BERT  achieves 

the  best  results  as  it  already  contains  knowledge  which  is  essential  for  credibility 

classification.  This  chapter  has  been  published  in  the   International  Conference  on 

 Artificial  Neural  Networks  [194]. 

Contributions  and  Highlights 

•  Analysis  of  transfer  learning  for  credibility  classification 

•  A  novel  unified  credibility  dataset 

•  Insights  into  real-time  credibility  classification 
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Chapter  11  (CySecBERT:  A  Domain-Adapted  Language  Model  for  the  Cybersecurity  Domain)  presents  a  novel  cybersecurity  language  model.  This  work  con-

tains  a  sensibly  chosen  cybersecurity  dataset  consisting  of  blogs,  arXiv-paper,  Twit-

ter  posts,  and  vulnerability  database  entries.  The  pretrained  language  model  BERT 

is  domain-adapted  on  this  dataset.  While  we  show  that  the  novel  model  outperforms 

the  state  of  the  art  in  various  cybersecurity  tasks,  we  also  place  particular  emphasis on  preventing  catastrophic  forgetting.  This  chapter  has  been  published  in  the   ACM 

 Transactions  on  Privacy  and  Security  [ 31]. 

Contributions  and  Highlights 

•  A  state-of-the-art  cybersecurity  language  model  based  on  BERT 

•  A  large  cybersecurity  dataset  consisting  of  blogs,  arXiv-paper,  Twitter 

posts,  and  vulnerability  database  entries 

•  Experiments  for  hyperparameter  tuning  in  the  light  of  catastrophic  forget-

ting 

•  State-of-the-art  comparisons  for  15  different  tasks 
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Chapter  12  (Multi-Level  Fine-Tuning,  Data  Augmentation,  and  Few-Shot Learning  for  Specialized  Cyber  Threat  Intelligence)  proposes  a  novel  pipeline 

for  fine-grained  and  potentially  individualized  collection  of  cybersecurity  informa-

tion.  The  pipeline  consists  of  a  novel  transfer  learning  technique  based  on  multi-level fine-tuning,  a  new  GPT-3  data  augmentation  technique,  and  state-of-the-art  few-shot 

learning  adapted  for  cybersecurity.  Furthermore,  this  study  presents  a  specialized 

CTI  dataset  annotated  by  three  experts.  The  framework,  enabling  the  rapid  training 

of  new,  high-performance  classifiers,  achieves  state-of-the-art  results  for  solving 

this  task.  This  chapter  has  been  published  in   Computers  &  Security  [ 27]. 

Contributions  and  Highlights 

•  Novel  pipeline  combining  transfer  learning,  data  augmentation,  and  few-

shot  learning 

•  New  transfer  learning  technique  based  on  multi-level  fine-tuning 

•  Novel  data  augmentation  technique  based  on  GPT-3 

•  New  specialized  CTI  dataset  annotated  by  three  experts  and  based  on  the 
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Chapter  13  (XAI-Attack:  XAI  for  Adversarial  Example  Creation)  introduces  a novel  adversarial  example  creation  method  that  identifies  indicators  of  wrong  predictions.  For  this,  explainable  AI  methods  are  incorporated  into  adversarial  example 

research.  Furthermore,  the  study  highlights  the  need  for  more  accurate  robustness 

evaluations  and  proposes  a  novel  out-of-distribution  evaluation  for  this  purpose. 
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•  A  novel  method  for  creating  adversarial  examples  based  on  identifying 

indicators  of  wrong  predictions 

•  Proposal  to  utilize  XAI  methods  as  importance  functions  for  adversarial 
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This  chapter  presents  the  research  design  of  the  dissertation.  First,  the  research  field of  deep  learning  in  NLP  and  CTI  is  introduced.  In  the  following  sections,  the  context in  which  the  research  is  conducted  is  shown,  and  the  general  research  approach  and 

its  methodology  are  presented. 

2.1

Research  Field  and  Foundations 

This  work  aims  to  contribute  to  the  research  field  of  machine  learning,  more  specif-

ically  deep  learning  in  NLP,  by  exploring,  developing,  and  evaluating  techniques 

that  are  beneficial  for  textual  low-data  regimes.  Furthermore,  this  aim  is  being  real-

ized  in  the  field  of  cybersecurity,  specifically  in  CTI  research.  In  combination,  deep 

learning  methods  are  employed  to  condense  vast  amounts  of  cybersecurity  data  into 

relevant  content. 

The  field  of  deep  learning  focuses  on  the  development  and  adaptation  of  deep 

neural  networks  to  achieve  various  goals,  such  as  performance  improvements  [463], 

robustness  [405],  explainability  [361],  privacy  [ 41],  novel  application  contexts 

[219],  and  many  more.  In  addition  to  novel  architectures,  different  techniques  are being  developed  within  the  deep  learning  process,  such  as  optimization  techniques, 

learning  strategies,  labeling  techniques,  or  data  manipulations  [ 94, 318].  To  assess whether  the  previously  defined  goal  is  achieved,  the  typical  evaluation  is  empirical  testing.  Commonly,  a  comparison  of  the  model  with  and  without  the  technique 

(i.e.,  baseline)  or  against  a  model  with  another  related  technique  (e.g.,  with  the 

state  of  the  art)  is  performed.  For  BERT-like  models,  this  is  typically  done  with 

extrinsic  tasks,  where  a  classifier  is  trained  on  the  latent  representation  output  of  the encoder-only  model.  However,  if  the  model  itself,  and  not  just  the  practical  application,  is  of  interest,  it  may  be  useful  also  to  evaluate  intrinsically,  describing  that 
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the  representations  are  being  evaluated,  for  example,  in  word  similarity  tasks.  The 

evaluation  metrics  vary  according  to  the  goal  defined  previously.  When  aiming  to 

improve  performance  or  reduce  variance,  metrics  such  as  accuracy  or  the  F1  score 

are  often  used.  Accuracy  refers  to  the  proportion  of  true  results  among  the  total 

number  of  cases  examined,  making  it  a  straightforward  measure  for  evaluating  the 

correctness  of  a  model’s  predictions.  On  the  other  hand,  the  F1  score  is  a  metric  that considers  both  precision  (the  proportion  of  true  positive  results  among  all  positive 

predictions)  and  recall  (the  proportion  of  true  positive  results  among  all  actual  pos-

itives),  providing  a  balance  between  the  model’s  ability  to  correctly  label  positives 

without  incorrectly  labeling  negatives.  This  is  particularly  helpful  in  situations  with 

imbalanced  class  distributions  [364]. Time  improvement  is  trivially  measured  by  the model’s  training  and/or  testing  time,  although  which  is  more  informative  depends 

on  the  context.  A  work  that  wants  to  increase  the  speed  of  the  training  process  must specify  the  training  time,  and  a  work  that  wants  to  increase  the  speed  of  classification  in  the  application  context  (inference)  must  specify  the  speed  of  evaluation 

of  the  test  examples  or  new  instances.  If  a  research  paper  aims  to  emphasize  or 

address  privacy,  explainability,  or  adversarial  examples,  it  may  be  more  design-

orientated,  ultimately  demonstrating  results  through  examples  or  implementations. 

However,  to  measure,  for  example,  adversarial  robustness,  a  model  may  be  tested 

with  different  adversarial  combinations.  Many  works  in  deep  learning  also  contain 

ablation  studies,  which  are  a  systematic  approach  to  understanding  the  contribu-

tion  of  each  component  or  configuration  of  a  technique  by  removing  parts  of  it. 

Besides  contributing  the  code  or  resulting  models,  works  in  machine  learning  can 

also  include  the  creation  and  publication  of  datasets.  This  is  of  particular  benefit 

to  the  research  community,  as  training  data  is  most  important  for  machine  learning 

models  [ 25]. Like  the  list  of  research  objectives,  the  list  of  research  methods  for validating,  verifying  or  reproducing  the  objectives  is  also  extensive. 

While  the  deep  learning  research  in  this  thesis  can  be  used  for  other  text  classifi-

cation  problems,  it  is  mainly  applied  for  information  collection  in  CTI  and  cyberse-

curity.  Cybersecurity  research  also  has  a  wide  range  of  directions  that  include,  for 

example,  cryptography,  network  security,  software  and  hardware  security,  data  ana-

lytics,  malware  analysis,  privacy  technologies,  and  AI  and  IOT  security.  Studies  on 

CTI  are  related  to  data  analytics  and  software/hardware  security  but  can  also  branch 

out  in  other  directions.  A  great  research  cluster  in  this  area  uses  machine  learning 

models  to  reduce  the  amount  of  data  from  open  sources,  such  as  social  media  [363, 

381]. These  models  are  used,  for  example,  to  extract  specific  or  the  most  important information.  In  CTI  research,  it  is  also  common  to  analyze  datasets  and  databases, 

for  example,  to  assess  the  quality  of  information  [219], to  gain  insights  from  the  past
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[368]  or  to  identify  trends  [486].  As  previously  stated,  this  thesis  is  concerned  with the  extraction  of  specific  CTI  information  in  order  to  alleviate  information  overload. 

2.2

Research  Context 

This  dissertation  is  a  central  part  of  the  CYWARN  project  and  is  part  of  the  dedicated project  within  the  Lichtenberg  High  Performance  Computer,  which  enables  the  necessary  computing  resources.  Furthermore,  this  work  contributed  to  the  CYLENCE 

project  and  the  research  areas  of  ATHENE. 

CYWARN  (13N15407)  is  a  research  project  funded  by  the  German  Federal 

Ministry  of  Education  and  Research  (BMBF).  Its  aim  is  to  support  CERTs  with 

new  strategies  and  technologies  for  gathering,  analyzing  and  communicating  the 

cyber  situation.  A  demonstrator  is  created  that  enables  the  automated  collection 

of  cybersecurity  sources  as  well  as  data  evaluation  with  credibility  analysis  and 

information  prioritization.  I  have  been  fully  involved  in  the  CYWARN  project  since 

it  started  in  October  2020. 

The  follow-up  project  CYLENCE  (13N16636),  also  funded  by  the  BMBF,  aims 

to  develop  strategies  and  mechanisms  against  cyberbullying  and  hate  speech.  The 

findings  of  this  dissertation  make  a  significant  contribution  to  the  advancement  of 

detection  methods  for  this  project,  which  are  also  integrated  into  a  demonstrator  for 

further  analysis  by  investigation  and  prosecution  authorities.  I  have  been  involved 

in  the  CYLENCE  project  since  it  started  in  August  2023. 

The  Lichtenberg  High  Performance  Computer  Darmstadt  has  been  active  since 

2012  and  provides  computing  resources  to  German  universities  and  public  research 

institutions.  The  high-performance  computer  is  in  its  second  expansion  stage  (Licht-

enberg  II),  which  offers  various  NVIDIA  accelerators  for  machine  learning.  As  part 

of  the  CYWARN  project  and  specifically  for  this  dissertation,  a  four-year  project 

enabled  the  use  of  these  computer  resources  since  January  2021.  I  am  the  project 

manager  and  main  user. 

The  National  Research  Center  for  Applied  Cybersecurity  ATHENE  is  funded  by 

the  BMBF  and  the  Hessian  Ministry  of  Higher  Education,  Research,  Science  and 

the  Arts,  with  the  participation  of  the  Technical  University  of  Darmstadt,  Fraun-

hofer  SIT,  Fraunhofer  IGD  and  Darmstadt  University  of  Applied  Sciences.  It  is  a 

cooperation  model  of  university  and  non-university  research  that  promotes  security 

solutions  for  the  economy,  society,  and  the  state.  ATHENE  is  a  cybersecurity  and 

privacy  research  centre  with  the  aim  of  improving  cybersecurity  and  data  protection. 

I  have  been  involved  with  ATHENE  and  the  research  areas  Secure  Urban  Infras-

tructures  (SecUrban)  and  User-centered  Security  and  Privacy  (UCSP)  since  2021
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and  2022,  respectively.  My  contributions  are  mainly  directed  at  the  User-Centered 

Technology  Design  for  Cyber  Situational  Awareness  (CYAWARE)  project,  in  which 

I  design  usable  security  technologies  enhancing  the  cyber  situational  awareness  of 

CERTs,  businesses,  industry,  government,  and  society.  I  am  the  project  representa-

tive  of  CYAWARE  since  its  beginning  in  January  2023. 

2.3

Research  Methodology 

This  dissertation  encompasses  a  wide  array  of  studies,  each  contributing  to  different 

phases  of  the  machine  learning  process,  from  data  acquisition  and  preprocessing  to 

model  selection  and  prediction.  The  research  methodology  of  this  dissertation  con-

sists  of  literature  reviews  to  identify  research  gaps,  followed  by  the  design  and 

development  of  tailored  techniques  and  empirical  evaluations.  The  specifics  of  the 

methodology  are  delineated  in  the  following  paragraphs  in  chronological  order  cor-

responding  to  the  chapters  of  Part  II  and  the  supervised  machine  learning  process, 

as  illustrated  in  Fig. 2.1. Table  2.1  provides  a  synthesized  overview  of  the  research methodology. 

Fig.  2.1  Chronological  paper  constellation  embedded  in  the  machine  learning  process
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Table  2.1  Overview  of  the  research  methodology  in  the  various  chapters  of  the  dissertation Background  &  Review

Technique

Evaluation 

6

1.  Techniques  to  mitigate 

NLP  pipeline  with 

Internal  clustering  metrics 

information  overload  in 

different  embedding 

and  clustering  time 

crises 

schemes  for  clustering 

2.  Clustering,  embedding 

social  media  posts 

models,  and  grouping 

possibilities  in  crises 

7

Active  learning  for 

Active  learning  with 

Classification  performance 

transformer  models 

foundation  models 

8

Data  augmentation  for  text  1.  Extensive  literature 

Comprehensive  results 

classification 

survey 

comparison  and 

2.  Data-structure- driven 

state-of-the- art  synthesis 

taxonomy  and 

method-oriented 

categorization 

3.  In-depth  description  of 

methods 

4.  Identification  of  future 

research  potentials 

9

Data  augmentation  for 

Novel  data  augmentation 

Classification  performance 

NLP 

method  for  long  and  short 

and  generated  data  quality 

text  data 

10

Machine  learning 

Fine-tuning  BERT  for 

Classification  performance 

approaches  for  assessing 

novel  application  context 

and  classification  time 

credibility 

11

BERT  models  adapted  for 

Novel  cybersecurity 

Classification  performance 

different  domains 

domain-adapted  BERT 

of  domain-dependent 

language  model 

extrinsic  and  intrinsic,  and 

general  tasks 

12

1.  Transfer  learning 

1.  Novel  transfer  learning 

Classification  performance 

2.  Data  augmentation  for 

method 

and  generated  data  quality 

text  classification 

2.  Novel  data 

3.  Few-shot  learning 

augmentation  method 

4.  CTI 

for  text  classification 

3.  State-of-the-art  few-shot 

learning 

13

Textual  adversarial 

1.  Adversarial  example 

1.  Robustness  against 

examples 

generator 

attacks 

2.  Robustness  evaluation 

2.  Human  evaluation 

setting 

3.  Classification 

performance 

4.  Transferability  to  other 

models
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2.3.1

Motivation 

The  research  of  this  dissertation  begins  with  an  examination  of  information  overload 

in  social  media  using  the  example  of  crisis  situations.  First,  a  literature  review  is 

conducted  on  techniques  to  combat  information  overload  and  on  different  ways  of 

grouping  posts  in  crisis  situations.  Based  on  the  information  overload  problem  and 

the  challenge  of  developing  a  system  that  does  not  depend  on  the  emergency  work-

ers’  effort,  an  NLP  pipeline  is  proposed  for  clustering  the  data  without  requiring 

labeled  input.  Empirical  evaluations  are  then  used  to  determine  the  best  embeddings 

and  fastest  methods  for  crisis  datasets  in  German  and  English.  These  evaluations  are 

based  on  internal  evaluation  metrics  that  do  not  require  ground  truth  labels,  which 

we  preferred  over  external  evaluations  because  of  the  different  grouping  possibilities 

identified  in  the  literature  review.  The  study  also  proposes  a  technique  for  automat-

ically  assigning  labels  to  the  clusters  to  quickly  identify  the  information  contained 

within  a  particular  cluster.  The  details  of  this  study  are  presented  in  Chap. 6. This study  has  a  motivational  value  for  the  whole  dissertation  as  the  extracted  clusters  are too  coarse-grained  to  gather  specific  information,  which  is  particularly  pronounced 

in  relation  to  CTI. 

2.3.2

Data  Acquisition 

As  previously  demonstrated  in  the  Introduction  (see  Fig. 1.1),  acquiring  labeled data  is  the  initial  step  in  the  supervised  machine  learning  process.  The  following 

study  is  the  first  in  a  series  of  techniques  designed  to  help  reduce  the  amount  of 

labeled  data  needed  for  fine-grained  classification  of  CTI  information.  It  proposes 

to  extend  the  labeling  process  with  an  active  learning  component.  Initially,  the 

study  reviews  active  learning  methods  for  transformer  models.  In  light  of  the  mixed 

results  observed  in  model-mismatch  scenarios  and  the  otherwise  impractical  long 

waiting  times,  as  well  as  the  general  cold-start  problem,  the  active  learning  method 

ActiveLLM  is  developed,  which  utilizes  the  zero-shot  capabilities  of  foundation 

models.  This  method  is  then  evaluated  on  low-data  regime  variants  of  standard 

NLP  tasks  and  the  specialized  CTI  dataset  of  Chap. 12  in  terms  of  classification performance  using  a  BERT  classifier  as  the  final  model.  Initial  experiments  are 

aimed  at  identifying  the  most  appropriate  prompt  design  for  the  foundation  model. 

This  is  followed  by  a  comparison  of  different  foundation  models  and  a  comparison  of 

ActiveLLM  with  random  sampling,  other  active  learning  methods,  and  state-of-the-

art  few-shot  learning.  In  the  final  experiments,  ActiveLLM  is  used  to  overcome  the

[image: Image 6]
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cold-start  problem  of  other  active  learning  strategies.  The  specifics  of  this  method, 

including  the  literature  review  and  evaluation,  are  described  in  Chap. 7. 

2.3.3

Preprocessing 

Regarding  deep  learning  in  NLP,  the  subsequent  preprocessing  phase  of  the  machine 

learning  process  is  typically  limited  to  tokenization.  Yet,  in  low-data  regimes,  data 

augmentation  can  considerably  expand  and  even  enhance  the  data  from  the  previous 

stage.  The  first  of  the  two  data  augmentation  works  is  an  extensive  literature  review 

on  data  augmentation  for  text  classification,  addressing  the  need  for  an  overview 

of  the  diverse  research  directions  and  potential  future  prospects  (see  Chap. 8).  It follows  a  method-oriented  categorization  and  proposes  a  data-structure-driven  taxonomy  (see  Fig. 2.2). As  well  as  explaining  and  comparing  the  data  augmentation techniques  in  detail,  it  also  contextualizes  them  and  compares  their  results,  leading  to  a  synthesis  of  the  state  of  the  art  and  reflections  on  the  future  potential  of this  research.  The  findings  of  this  survey  are  particularly  important  for  the  next 

study,  in  which  a  new  method  of  data  augmentation  is  proposed  (highlighted  in 

Fig. 2.2).  The  developed  method  focuses  on  the  use  of  larger  language  models,  as  the Fig.  2.2  Taxonomy  of  textual  data  augmentation  methods  from  Chap. 8.  Highlighting  the generative  methods  of  the  document  level,  in  which  the  study  of  the  Chap. 9  is  categorized
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literature  review  identified  that  they  allow  more  sophisticated  text  transformations 

with  novel  linguistic  patterns.  The  method  is  also  designed  to  meet  the  challenge  of 

transforming  long  texts,  which  is  particularly  rare  in  the  research  field  but  prevalent in  various  domains,  such  as  in  CTI,  exemplified  by  cybersecurity  blogs  or  websites. 

The  performance  is  evaluated  using  11  different  datasets,  including  sentiment  analy-

sis,  news  classification,  and  crisis  informatics,  against  a  baseline  and  state-of-the-art method.  In  addition,  the  study  includes  ablation  studies  to  verify  that  all  parts  of  the method  contribute  to  the  final  improvement,  as  well  as  experiments  with  different 

amounts  of  augmentation  data.  We  also  review  the  generated  data  from  a  qualitative 

perspective.  The  details  of  the  method,  all  evaluation  results,  and  the  data  inspection are  presented  in  Chap. 9. 

2.3.4

Model  Selection 

Choosing  an  appropriate  model  and  approach  to  transfer  knowledge  is  vital  when 

dealing  with  low-data  regimes.  The  next  three  papers  explore  the  different  aspects 

of  transfer  learning. 

Since  the  credibility  of  posts  and  news  is  also  important  for  CTI,  the  first  study 

uses  transfer  learning  to  develop  a  deep  learning  credibility  classifier.  The  work 

abstracts  from  the  concept  of  cybersecurity  due  to  the  absence  of  any  pertinent  data 

and  focuses  instead  on  the  broader  subject  of  credibility  in  social  media,  where 

there  are  some  openly  available  datasets.  The  study  covers  an  overview  of  existing 

machine  learning  approaches  for  assessing  the  credibility  of  Twitter  posts.  A  new 

large  dataset  is  then  created  by  selecting  smaller  existing  datasets,  unifying  the 

instances,  and  merging  them.  As  models  for  credibility  assessment  need  to  cover 

a  wide  range  of  topics  while  accounting  for  the  nuances  of  natural  language,  this 

paper  explores  the  concept  of  transfer  learning  of  the  pre-trained  model  BERT.  In  the 

evaluation,  this  transfer  learning  is  compared  to  conventional  deep  learning  methods 

with  regard  to  classification  performance  and  real-time  suitability.  The  details  of  this study  are  presented  in  Chap. 10. 

While  this  constitutes  a  first  step  for  credibility  assessment  in  cybersecurity, 

there  is  still  a  need  for  domain-specific  data.  This  demand  can  be  improved  by  the 

developments  of  the  next  paper,  which  deals  with  the  creation  of  a  language  model 

specifically  for  the  field  of  cybersecurity  (see  Chap. 11). The  rationale  for  constructing  such  a  model  is  to  gain  an  understanding  of  the  field  and  minimize  the  need 

for  extensive  data  for  adaptation  processes,  i.  e.  fine-tuning.  In  the  study,  the  model is  trained  to  form  a  base  model  for  cybersecurity-specific  texts  by  further  training 

the  already  pre-trained  model  BERT.  The  design  principle  is  to  replicate  and  iterate
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over  related  works  to  produce  the  most  valuable  and  novel  model  possible  for  the 

cybersecurity  domain.  The  body  of  research  is  extended  with  design  considerations 

and  experiments  on  catastrophic  forgetting,  a  phenomenon  describing  that  a  further 

trained  model  forgets  its  previous  knowledge.  The  resulting  CySecBERT  model 

is  compared  with  state-of-the-art  models  and  methods  using  various  extrinsic  and 

intrinsic  cybersecurity  tasks,  including  word  similarity  testing,  clustering,  classifi-

cation,  and  sequence  tagging.  Additional  experiments  are  used  to  ensure  that  the 

final  model  is  still  capable  of  performing  well  in  general  tasks. 

In  the  last  paper  of  the  model  selection  phase,  several  new  low-data  regime  meth-

ods  are  proposed.  These  techniques  are  used  to  gather  specialized  CTI  information 

with  very  little  data,  as  current  methods  can  only  collect  coarse-grained  information, 

lacking  the  flexibility  to  adapt  to  different  needs.  The  study  begins  with  a  brief  literature  review  on  transfer  learning,  data  augmentation,  few-shot  learning,  and  CTI.  A 

pipeline  is  then  proposed,  consisting  of  a  combination  of  a  new  transfer  learning  con-

cept  with  multi-level  fine-tuning,  a  new  iteration  of  the  data  augmentation  technique 

in  Chap. 9,  and  state-of-the-art  few-shot  learning.  The  study  also  addresses  a  major issue  in  cybersecurity  research,  namely  the  lack  of  up-to-date  datasets  for  particular 

areas  of  concern  [380],  by  publishing  a  labeled  dataset  in  which  specialized  CTI information  is  captured.  The  evaluation  compares  the  classification  performance  of 

the  newly  proposed  pipeline  with  a  baseline,  a  state-of-the-art  few-shot  method, 

and  a  best-case  scenario  involving  more  than  50  times  the  amount  of  data.  The 

evaluation  also  includes  ablation  studies  on  the  different  parts  of  the  entire  pipeline and  an  inspection  of  the  augmented  data.  The  details  of  this  study  are  presented  in 

Chap. 12. 

2.3.5

Prediction 

Our  last  research  is  positioned  within  the  prediction  phase  of  the  machine  learning 

process.  At  this  point,  when  a  model  is  fully  trained,  several  deep  learning  stud-

ies  have  pinpointed  a  robustness  issue  for  out-of-distribution  instances  [ 99, 124, 

126]. Specifically,  minor,  intentionally  altered  data  instances,  termed  adversarial examples  or  adversarial  attacks,  can  cause  the  model  to  make  incorrect  predictions. 

Therefore,  the  last  study  deals  with  the  re-training  of  classifiers  to  improve  robust-

ness  and,  ultimately,  classification  performance.  This  paper  includes  a  literature 

review  of  adversarial  example  generation  and  adversarial  training  methods  in  NLP. 

Current  methods  often  suffer  from  only  small  or  very  specific  robustness  gains, 

partly  due  to  ineffective  evaluation  methods.  Therefore,  our  method,  XAI-Attack, 

is  designed  to  combine  explainable  AI  and  adversarial  example  generation  to  find
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incorrectly  learned  patterns  in  wrong-classified  examples.  Furthermore,  a  novel 

out-of-distribution  evaluation  setting  is  proposed  to  better  assess  the  robustness  of 

models  trained  with  adversarial  training.  In  this  setting,  XAI-Attack  is  evaluated 

against  a  baseline  and  several  state-of-the-art  methods  on  the  adversarial  GLUE 

benchmark  by  Wang  et  al. [466]. In  addition,  the  adversarial  generation  method is  also  evaluated  within  the  standard  adversarial  training  experiment  on  the  normal 

GLUE  benchmark.  The  generated  adversarial  examples  are  inspected  for  quality  and 

validated  through  a  human  evaluation  process  in  which  two  annotators  label  nor-

mal  and  adversarial  data  to  find  inconsistencies.  The  final  experiment  investigates 

whether  the  adversarial  examples  for  one  model  are  transferable  to  other  models. 

The  details  of  this  study  are  presented  in  Chap. 13. 
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The  findings  of  this  work  are  diverse,  with  some  pertaining  to  the  application  context of  this  dissertation,  CTI,  and  others  to  machine  learning  research.  We  demonstrate 

the  viability  and  effectiveness  of  these  findings  through  rigorous  experimentation 

and  analysis.  Our  findings  not  only  shed  light  on  the  nuances  of  these  domains  but 

also  provide  actionable  insights  and  methods  that  can  be  applied  to  enhance  the 

performance  and  robustness  of  machine  learning  models. 

3.1

Motivation:  Clustering 

As  discussed  in  the  previous  chapter  (see  Chap. 2)  and  illustrated  in  Fig. 2.1, this dissertation  initially  addresses  the  topic  of  clustering  to  combat  information  overload.  Chapter  6  reveals  that  crisis  informatics  follows  the  direction  of  general  NLP 

research  with  the  increasing  use  of  embedding  methods  such  as  Word2Vec  [283]. 

However,  by  the  time  of  this  study,  most  relevance  detection  systems  are  based  on 

supervised  classifiers  [ 3, 142, 171],  which,  parallel  to  CTI  situations,  do  not  capture the  dynamics  of  crisis  situations  and  are  often  too  costly  and  time-consuming  if 

trained  for  each  new  incident.  Therefore,  we  introduce  a  clustering  process  com-

prising  NLP  preprocessing,  embedding  creation,  and  clustering  algorithms.  This 

process  aims  to  mitigate  social  media  information  overload  during  crises.  We  place 

particular  emphasis  on  embeddings,  given  the  significance  of  the  resulting  latent 

representations  to  the  clusters  formed.  We  assess  ten  different  embedding  models. 

These  include  crisis  [ 8,  9, 169]  Twitter  [128]  domain-dependent  Word2Vec  models,  the  state-of-the-art  sentence  encoding  model  Sentence-BERT  [356], and  the language-specific  FastText  model  [ 38, 186], all tested on both an English and  a German  dataset.  The  clustering  results  unambiguously  demonstrate  that  selecting  the 

appropriate  embedding  strategy  is  important  for  meaningful  clustering.  Our  novel 
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conclusions  contrast  with  prior  studies  on  domain-dependent  crisis  embedding  mod-

els  [204, 245], which,  in  their  solely  extrinsic  (downstream)  evaluations,  indicate that  these  models  surpass  other  pre-trained  embeddings.  Indeed,  domain-specific 

models  prove  advantageous  when  they  are  perfectly  aligned  with  a  given  domain. 

However,  if  there  is  a  language  shift  to  German,  we  find  that  a  language-centric 

model  is  more  appropriate  (see  Table  3.1).  Our  work  not  only  reveals  novel  insights into  the  crisis  domain,  but  also  proposes  an  intrinsic  embedding  evaluation  method. 

This  method  involves  comparing  clustering  outcomes  directly  from  the  embeddings, 

offering  considerable  value  to  NLP  research.  Finally,  in  this  study,  we  recommend  an 

automatic  labeling  technique  that  constructs  template  tweets  that  mirror  humanitar-

ian  categories.  This  allows  clusters  to  be  assigned  and  labeled  accordingly,  providing 

direct  insight  into  the  clusters. 

Table  3.1  Summarized  and  simplified  clustering  results  of  embedding  models  on  an  English and  a  German  crisis  dataset.  52M  and  364M  indicate  the  number  of  instances  in  millions  on which  the  model  was  trained.  For  more  details,  see  Sect. 6.4  of  Chap. 6 

Rank

English

German 

1. 

Crisis  Word2Vec  40M  [169]

FastText  [ 38] 

2. 

Crisis  Word2Vec  364M  [ 8]

GloVe  [330] 

3. 

FastText  [ 38]

Crisis  Word2Vec  364M  [ 8] 

Although  this  study  does  not  directly  address  the  CTI  problem  space,  it  shares 

many  parallels  with  the  crisis  domain.  Therefore,  implications  for  both  domains  can 

be  derived.  A  cyber  threat  incident  can  be  viewed  as  a  crisis  situation  with  equally 

high  dynamics  regarding  past  incidents.  For  example,  different  crisis  scenarios, 

actors,  and  locations  are  equivalent  to  different  threat  scenarios,  actors,  and  affected products,  functions,  and  paths.  Furthermore,  crisis  informatics  deals  with  gaining 

situational  awareness  in  social  media  by  finding  relevant  information  depending  on 

different  requirements.  This  is  equal  to  the  specialized  CTI  problem.  The  CTI  clus-

tering  work  by  Kuehn  et  al. [220]  and  further  practical  results  from  the  CYWARN 

project  indicate  that  clustering  can  be  equally  useful  for  cybersecurity  events.  How-

ever,  these  results  also  highlight  the  necessity  for  more  specialized  and  individ-

ualized  information  collection  for  CERTs  and  professionals.  Therefore,  a  rapidly 

adaptable  supervised  machine  learning  framework  is  essential,  motivating  the  fol-

lowing  chapters  of  this  dissertation. 

[image: Image 8]
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3.2

Data  Acquisition:  Active  Learning 

In  Chap. 7, we  design  the  active  learning  component  ActiveLLM  that  effectively selects  instances  for  labeling  using  foundation  models.  Since  foundation  models  do 

not  require  training  data  to  make  informed  selections,  our  method  overcomes  the 

cold-start  problem,  making  it  particularly  suitable  for  low-data  regimes.  In  our  low-

data  regime  experiments  with  BERT  classifiers  as  final  models,  we  first  determine 

the  optimal  prompt  configuration  and  then  compare  the  performance  of  various 

foundation  models  for  actively  selecting  instances,  including  GPT-4  [315],  GPT-4o, Llama  3  [264], and  Mistral  Large  [ 6].  While  ActiveLLM  with  different  foundation models  performs  significantly  better  than  random  sampling  in  most  cases,  the  most 

consistent  results  are  obtained  with  GPT-4,  even  reaching  improvements  of  up  to  17 

percentage  points  in  accuracy.  The  subsequent  experiments  show  that  ActiveLLM 

not  only  significantly  outperforms  random  sampling  and  other  active  learning  strate-

gies  in  low-data  regimes,  but  is  also  superior  to  the  state-of-the-art  few-shot  learning techniques  ADAPET  and  PERFECT  [271] (see Fig.  3.1).  In  the  final  experiment,  we demonstrate  that  our  method  can  be  combined  with  other  active  learning  strategies 

to  mitigate  their  cold-start  problems.  ActiveLLM  can  be  applied  directly  through 

various  chat  interfaces,  receiving  feedback  within  seconds.  This  makes  it  much  more 

practical  than  previous  active  learning  strategies,  which  require  several  minutes  of 

waiting  even  for  efficient  methods  [517]. Finally,  our  experiments  indicate  that  using Fig.  3.1  Accuracy  comparison  of  ActiveLLM,  the  few-shot  method  PERFECT,  and  common active  learning  strategies:  Least  Confidence  (LC),  BALD,  and  Embedding  KMeans  (EKM). 

Evaluated  on  a  few-shot  scenario  (32  training  instances)  of  the  AGNews  dataset  (with  BERT 

classifier).  For  more  details  on  this  experiment,  see  Sect. 7.4  of  Chap. 7
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much  larger  models  for  the  active  learning  process  decouples  the  dependency  of  the 

active  learning  and  successor  model  (model-mismatch  problem). 

3.3

Preprocessing:  Data  Augmentation 

As  the  use  of  data  augmentation  for  text  data  continues  to  grow,  there  is  a  need  for a  consolidated  overview  in  the  research  field.  In  Chap. 8, we  address  this  gap  by examining  over  100  data  augmentation  techniques,  categorizing  them  into  12  distinct 

groups  (see  Fig. 2.2).  Additionally,  we  contextualize  these  methods  by  contrasting their  design  and  performance.  In  doing  so,  we  distill  the  most  promising  strategies 

for  varied  applications,  thereby  projecting  future  research  trajectories.  In  addition  to 

recognizing  the  demand  for  improved  evaluation  metrics,  better  comprehension  of 

when  and  why  augmentations  are  effective,  and  enhanced  usability,  a  key  discovery 

is  the  need  for  advanced  techniques  capable  of  introducing  novel  textual  content.  As 

also  reported  by  Longpre,  Wang,  and  DuBois  [265], this  is  essential  for  improving the  performance  of  pre-trained  transformer  models.  Advances  in  NLP,  particularly 

transfer  learning,  have  rendered  many  simple  data  augmentation  methods  obsolete, 

as  the  pre-trained  models  inherently  account  for  these  data  transformations.  There-

fore,  we  pinpoint  future  research  avenues.  Among  these,  the  integration  of  large 

language  models  seems  especially  promising,  given  their  potential  to  incorporate 

their  vast  pre-trained  knowledge.  Stemming  from  this  insight,  Chap. 9  proposes a  data  augmentation  technique  using  the  language  model  GPT-2.  This  study  has 

an  emphasis  on  short  as  well  as  long  texts,  as  prior  data  augmentation  with  GPT-

2 [  18]  was  only  able  to  augment  single-sentence  instances.  The  method  consists of  sensibly  fine-tuning  and  prompting  the  GPT-2  model,  coupled  with  document 

embedding  filtering  based  on  Sentence-BERT  [356]  for  removing  faulty  augmentations.  We  enhance  the  diversity  of  the  filtering  process  by  incorporating  minimal 

human  supervision  to  select  a  threshold  above  which  augmentations  are  discarded. 

We  evaluate  our  method  on  11  different  tasks  with  the  pre-trained  ULMFit  model 

[156].  The  results  show  significant  accuracy  improvements  of  up  to  3.56  and  15.53 

percentage  points  in  the  real  world  and  constructed  low-data  regimes.  The  ablation 

studies  indicate  that  each  part  of  the  method  contributes  to  the  final  improvement 

and  that  more  augmentation  is  better.  However,  we  also  notice  that  the  method  can 

degrade  performance  when  the  task  is  too  broadly  defined,  where  GPT-2  is  not  able 

to  infer  the  right  context.  The  results  on  the  constructed  low-data  regimes  of  the 

SST-2  task  (100,  300,  500,  and  700  instances)  compared  with  the  baseline  and  the 

data  augmentation  method  EDA  [481] are  shown in Fig. 3.2.  A  revised  version  of this  approach  with  GPT-3  is  incorporated  into  the  framework  of  Chap. 12, where
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it  is  applied  to  a  CTI  few-shot  task  with  only  32  training  instances.  Due  to  the 

much  larger  size  and  context  window  of  GPT-3,  no  fine-tuning  is  required,  and  the 

training  data  is  incorporated  directly  into  the  prompt.  The  evaluation  of  this  study 

indicates  that  this  data  augmentation  approach  improves  classification  performance 

even  when  combined  with  sophisticated  few-shot  techniques  and  when  compared 

to  popular  data  augmentation  methods,  such  as  EDA  and  round-trip  translation. 

Further  findings  of  this  study  are  illustrated  in  the  model  selection  stage,  which  is 

the  subsequent  step  in  the  supervised  machine  learning  process. 

Fig.  3.2  Accuracy  of  the  GPT-2  data  augmentation  method,  EDA  [481]  and  no  augmentation (baseline)  on  different  subsets  of  SST-2  with  the  ULMFit  model.  The  number  of  instances  of each  subset  is  shown  on  the  x-axis.  The  plot  shows  the  best  results  from  five  runs  each.  For more  details  on  this  experiment,  see  Sect. 9.4  of  Chap. 9 

3.4

Model  Selection:  Transfer  Learning 

In  our  preliminary  study  on  model  selection  and  transfer  learning  (refer  to  Chap. 10), 

we  evaluate  the  pre-trained  BERT  model  for  credibility  assessment.  As  explained 

earlier,  due  to  the  absence  of  cybersecurity-specific  credibility  data,  we  focus  on 

the  general  concept  of  credibility  assessment  and  develop  a  credibility  dataset  by 

amalgamating  existing  works.  The  full  dataset  combines  five  Twitter  credibility
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datasets,  resulting  in  5,225  instances  with  2,619  credible  instances.  Our  evaluations 

on  this  dataset  demonstrate  the  dominance  of  the  pre-trained  transformer  model  over 

conventional  multi-layer  perceptrons  and  recurrent  neural  networks  in  terms  of  clas-

sification  accuracy.  However,  in  terms  of  real-time  applicability,  BERT  models  are 

orders  of  magnitude  slower,  while  recurrent  neural  networks  offer  the  best  compro-

mise.  Still,  it  can  be  concluded  that  the  BERT  model  classifications  are  sufficiently 

fast  for  a  multitude  of  applications,  and  this  will  improve  further  as  computational 

technologies  advance.  Consequently,  this  thesis  focuses  on  transformer  models. 

The  performance  of  BERT  in  a  specific  domain  can  even  be  improved  by  further 

training  on  domain-specific  data,  as  demonstrated  by  BioBERT  [238]  for  biomedical  data  or  SciBERT  [ 34]  for  scientific  data.  As  of  the  time  of  this  study,  there  is no  cybersecurity-aligned  BERT  model,  with  the  exception  of  the  very  lightweight 

CyBERT  model  trained  by  Ranade  et  al. [347]. In  Chap. 11  we  introduce  the  thoroughly  trained  CySecBERT  model.  In  this  chapter,  we  contribute  an  open  cyber-

security  dataset  consisting  of  4.3  million  documents  from  different  papers,  NVD 

data,  Twitter  posts,  and  blog  entries.  Based  on  this  data,  we  domain-adapt  the  BERT 

model  through  further  pre-training.  The  resulting  CySecBERT  model  is  trained 

diligently  to  prevent  catastrophic  forgetting,  ensuring  the  model’s  initial  knowledge 

remains  intact.  By  evaluating  seven  fully  trained  models  with  different  learning 

rates,  epochs,  and  dataset  sizes,  we  conclude  that  additional  training  should  avoid 

extreme  updates,  e.g.,  with  excessively  high  learning  rates.  Conversely,  it  should 

also  not  be  too  minimalistic,  e.g.,  with  a  too-small  dataset  or  too  few  epochs  com-

pared  to  the  original  BERT  training  process.  The  results  of  two  intrinsic  evaluation 

tasks  (word  similarity  and  clustering)  demonstrate  that  CySecBERT  enhances  the 

representation  space  of  domain-specific  words  in  comparison  to  the  BERT  base-

line  and  CyBERT  by  Ranade  et  al. [347].  Moreover,  in  the  extrinsic  cybersecurity evaluation  of  five  downstream  tasks,  including  classification  and  sequence  tagging, 

our  model  once  again  demonstrates  superior  performance  compared  to  both.  The 

summarized  results  are  shown  in  Table  3.2. 

The  CySecBERT  model  is  also  integral  to  Chap. 12, which  explores  this  dissertation’s  application  objective  of  collecting  specialized  and  individualized  CTI 

information  for  cybersecurity.  Our  first  contribution  in  this  realm  is  a  unique  dataset that  encompasses  Twitter  posts  related  to  the  2021  Microsoft  Exchange  Server  data 

breach.  This  dataset  is  binary-labeled  by  three  cybersecurity  experts  based  on  its  rel-

evance  to  CTI.  It  comprises  a  full-shot  training  and  development  set  (with  1800/600 

instances),  a  few-shot  training  and  development  set  (32/32  instances),  and  a  test-

ing  set  (with  601  instances).  To  address  the  challenge  posed  by  this  dataset,  we 

present  an  innovative  framework  based  on  GPT-3  data  augmentation,  multi-level 

fine-tuning,  and  cybersecurity-adapted  few-shot  learning.  As  detailed  above,  the

[image: Image 10]
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Table  3.2  Summarized  results  of  the  CySecBERT  experiments.  Extrinsic  tasks:  Full-shot CTI  dataset  from  Chap. 12  (F1),  CySecAlert  dataset  by  Riebe  et  al. [363]  (F1),  and  software versions  (SV),  software  names  (SN),  and  attack  complexities  (AC)  of  NVD  descriptions  from the  OVANA  dataset  [219]  (F1).  Intrinsic  tasks:  Cybersecurity  word  similarity  task  (F1)  and Log4j  clustering  task  (silhouette  score).  For  more  details  on  these  experiments,  see  Sect. 11.4 

of  Chap. 11 

Name

CTI


CySecAlert

SV

SN

AC

Word 

Clu. 

Sim. 

BERT

0.8599

0.8779

0.9247

0.8837

0.3323

0.4382

0.130 

CyBERT  [347]

0.8766

0.8647

0.9298

0.8834

0.3336

0.4861

0.113 

CySecBERT

0.8869

0.8883

0.9302

0.8871

0.3472

0.6382

0.172 

data  augmentation  technique  is  a  further  development  of  the  GPT-2  technique  from 

Chap. 9. It  employs  the  considerably  larger  GPT-3  model,  without  fine-tuning  but distinct  prompting  and  the  embedding  filtering  method.  As  a  pioneering  effort,  we 

introduce  the  concept  of  multi-level  fine-tuning.  Here,  we  train  a  neural  network 

progressively  towards  the  specific  task  (as  depicted  in  Fig. 3.3).  Training  BERT  can be  viewed  as  the  initial  phase  where  the  model  acquires  basic  language  knowledge. 

Fig.  3.3  Multi-level  fine-tuning  process  that  shows  the  model  becoming  more  specialized  as it  is  guided  to  the  actual  task
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Subsequent  training  on  cybersecurity  data  produces  CySecBERT,  which  enables 

the  model  to  recognize  cybersecurity-specific  terms  and  phrases.  Following  this,  we 

utilize  the  dataset  from  Riebe  et  al.  [363]  to  acquaint  the  model  with  cybersecurity-relevant  Twitter  posts.  Afterward,  we  further  train  the  model  using  the  final  few-shot 

dataset.  The  preceding  training  sessions  play  a  pivotal  role  at  this  stage,  allowing  for effective  classification  even  with  very  few  instances.  As  the  final  step  in  this  framework,  we  adapt  the  few-shot  learning  strategy  ADAPET  to  cater  to  specialized  CTI 

tasks.  Using  the  few-shot  set  from  the  aforementioned  dataset,  we  outperform  the 

current  state-of-the-art  ADAPET  strategy  by  approximately  13  percentage  points 

in  accuracy  (see  Table  3.3). Ablation  studies  on  our  method  pipeline  indicate  that each  component  of  the  framework  impacts  the  overall  result,  with  the  most  notable 

enhancements  achieved  through  multi-level  fine-tuning. 

Table  3.3  Shortened  evaluation  results  of  the  methods  of  Chap. 12. Comparing  BERT  with 1800  instances  (best  case),  BERT  with  32  instances  (baseline),  BERT  with  32  instances  and ADAPET  (state-of-the-art  few-shot  learning),  and  CySecBERT  with  32  instances  and  the 

methods  of  Chap. 12. The  values  in  brackets  show  the  standard  deviation.  For  more  details on  this  experiment,  see  Sect. 12.4  of  Chap. 12 

Method

Train  Size

Model

Accuracy 

Best  Case

1800

BERT

85.36  (0.07) 

Baseline

32

BERT

49.65  (1.90) 

ADAPET

32

BERT

65.89  (1.35) 

Chap. 12

32

CySecBERT

79.13  (0.56) 

3.5

Prediction:  Adversarial  Training 

To  address  robustness  issues  of  trained  models  for  out-of-distribution  instances  in 

the  form  of  adversarial  examples  or  even  attacks,  we  introduce  XAI-Attack  (see 

Fig. 3.4)  in  Chap. 13.  The  method  generates  adversarial  examples  for  BERT-like models  that  can  be  utilized  to  re-train  the  model,  making  it  more  resistant  to  such 

manipulations  (adversarial  training).  In  contrast  to  current  methods,  we  analyze 

incorrect  predictions  from  which  incorrect  behavior,  such  as  spurious  correlations 

or  shortcut  rules  [126],  can  be  derived.  This  is  implemented  by  extracting  words that  are  most  responsible  for  the  incorrect  predictions.  To  this  end,  we  propose 

to  use  explainable  AI  methods  as  importance  functions,  which  not  only  allows 

for  more  sophisticated  importance  scores  than  previous  methods,  but  also  enables

[image: Image 11]
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applicability  in  a  full  black-box  setting,  i.e.,  no  model  internals  or  soft  labels  are required  for  generation.  Validated  by  human  evaluation,  our  method  generates  adversarial  examples  that  maintain  a  high  label-preserving  quality.  This  can  also  be 

observed  in  the  examples  presented  in  Table  3.4.  Moreover,  we  conceptualize  a novel  adversarial  training  experiment  to  address  a  prevalent  issue  in  current  adversarial  training.  Through  standard  adversarial  training  experiments  on  the  original 

datasets,  we  observe  that  test  sets  often  share  biases  with  training  and  development 

Fig.  3.4  Overview  of  XAI-Attack:  1.  Incorrect  predictions  are  analyzed  by  explainable  AI to  extract  adversarial  words  with  their  potential  label  changes.  2.  The  adversarial  words  are optionally  filtered.  3.  The  remaining  adversarial  words  are  inserted  into  correct  predictions, from  which  the  resulting  incorrect  instances  are  adversarial  examples 

Table  3.4  XAI-Attack  adversarial  examples  from  different  datasets  (inserted  adversarial words  shown  in  blue)
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sets  for  a  given  task.  This  overlap  may  result  in  an  adversarially  trained  model, 

stripped  of  this  bias,  receiving  a  diminished  test  score.  Hence,  in  our  suggested 

evaluation  setting,  we  employ  the  adversarial  GLUE  dataset  [466]  to  gauge  the model’s  performance,  serving  as  a  proxy  for  its  robustness.  Our  results  demonstrate 

that  our  proposed  adversarial  example  method  enhances  robustness  by  up  to  23 

percentage  points  in  accuracy  for  adversarial  tasks.  Additionally,  we  show  that  the 

adversarial  examples  crafted  for  one  transformer  model  (distilBERT)  can  often  be 

applied  to  other  transformer  models,  such  as  BERT  and  RoBERTa. 

[image: Image 12]
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As  presented  in  the  preceding  chapter,  the  methods  developed  in  this  dissertation 

significantly  enhance  text  classification  in  low-data  regimes.  However,  as  founda-

tion  models  such  as  GPT-4  or  Llama  exhibit  strong  few- or  zero-shot  capabilities,  it 

is  necessary  to  examine  how  they  compare  to  the  methods  developed  in  this  disserta-

tion.  This  chapter  initially  identifies  the  strengths  and  limitations  of  these  foundation models  in  the  context  of  the  low-data  regime  methods  of  this  dissertation.  It  then 

considers  the  potential  benefits  of  applying  low-data  regime  methods  to  foundation 

models.  The  last  part  assesses  their  empirical  relevance  by  performing  experiments 

on  the  CTI  dataset  of  Chap. 12  with  the  dissertation’s  full  pipeline  and  the  foundation models  GPT-3.5  and  GPT-4. 

4.1

The  Advent  of  Foundation  Models 

One  significant  discovery  from  the  development  of  foundation  models  is  that  many 

challenges  in  deep  learning  research  can  be  overcome  with  increased  data  and  com-

puting  capacity,  aligning  with  “The  Bitter  Lesson”  described  by  Sutton  [429].  The bitter  lesson  states  that  general-purpose  methods  that  scale  effectively  with  increased 

computation  will  eventually  outperform  those  that  rely  on  human  knowledge  and 

manually  encoded  discoveries.  Sutton  [429]  advocates  for  approaches  that  utilize computational  power  to  enable  systems  to  learn  and  discover  independently.  As 

some  methods  of  this  dissertation  arguably  fall  under  what  Sutton  [429]  describes as  manually  encoded  discoveries,  we  believe  that  the  proposed  pipeline  in  its  current 

state  will  eventually  be  outperformed  by  foundation  models  in  terms  of  performance. 

However,  this  does  not  diminish  the  relevance  of  these  methods,  as  performance  is 

only  one  of  many  critical  factors  in  application-specific  scenarios.  In  addition,  part 
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of  the  continued  relevance  can  be  attributed  to  the  rapid  adoption  of  emerging  foun-

dation  models  within  the  developed  methods,  as  seen  in  Chaps. 7, 9  and  12,  without relying  on  them  excessively.  In  the  following,  we  will  discuss  when  these  foundation 

models  are  good  substitutes  and  when  the  framework  used  in  this  dissertation  should 

be  preferred.  In  detail,  this  section  aims  to  discuss  the  weaknesses  and  advantages 

of  foundation  models,  the  utility  of  our  approaches  for  future  studies,  and  their 

potential  benefits. 

A  comprehensive  history  of  foundation  models  is  beyond  the  scope  of  this  thesis, 

so  we  will  directly  discuss  the  strengths  and  weaknesses  of  them.  The  reader  is 

referred  to  the  survey  of  Zhao  et  al. [532]  for  a  detailed  survey. 

4.1.1

Strengths 

The  debate  among  leading  figures  about  whether  foundation  models  possess  true 

reasoning  capabilities  or  merely  act  as  sophisticated  statistical  word  predictors— 

mockingly  termed  “stochastic  parrots” [ 35]—is  well-known  (see  the  quotes  below). 

This  dissertation,  however,  focuses  on  the  undeniable  successes  of  foundation  mod-

els,  which  render  many  advanced  machine  learning  methods  and  research  objectives 

obsolete,  significantly  impacting  the  content  of  this  work.  The  following  points  high-

light  the  strengths  of  the  foundation  models  compared  to  the  methods  developed  in 

this  dissertation. 

 “[..] Emily Bender and Timnit Gebru have called these systems “stochastic parrots,” 

 which in my view is a little unkind—to parrots– but also vividly captures something 

 real: a lot of what we are seeing now is a kind of unreliable mimicry” [..] 

—  Gary  Marcus,  What  was  60  Minutes  thinking,  in  that  interview  with  Geoff 

Hinton? 1

 “[..] I agree with @geoffreyhinton that LLM have *some* level of understanding and 

 that it is misleading to say they are ‘just statistics.’" [..] 

—  Yann  LeCun 2

 Performance:  First  and  foremost,  current  foundation  models  achieve  state-of-the-art results  across  a  broad  spectrum  of  tasks,  often  without  the  need  for  any  few-shot 

examples,  in  contrast  to  the  pipeline  of  this  dissertation.  In  fact,  it  is  challenging 1  https://garymarcus.substack.com/p/what-was-60-minutes-thinking-in-that 

2  https://x.com/ylecun/status/1667947166764023808 
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to  identify  text-based  tasks  where  these  models  do  not  perform  competently  (an 

example  will  be  discussed  later).  For  instance,  foundation  models  have  surpassed 

human  performance  in  several  areas:

• Medical:  GPT-4  exceeds  the  passing  score  of  the  United  States  Medical  Licensing 

Examination  by  over  20  points  [308].—GPT-4  also  has  the  potential  to  outperform  specialists  in  ophthalmology  [ 21]. 

• Law:  GPT-4  achieves  a  score  within  the  top  10%  of  examinees  on  a  simulated 

bar  exam  [315]. 

• Code:  Based  on  the  Gemini  foundation  model,  AlphaCode  2  ranks  between  the 

‘Expert’  and  ‘Candidate  Master’  categories  on  Codeforces  and  performs  better 

than  85%  of  participants  [236]. 

• Business:  GPT-4  handles  two-thirds  of  Klarna’s  customer  service  chats,  doing 

the  work  of  about  700  full-time  employees  with  the  same  level  of  customer 

satisfaction 3. 

As  previously  stated,  since  the  performance  of  foundation  models  seems  to  be 

improving,  we  expect  that  if  they  have  not  yet  surpassed  the  pipeline  discussed  in 

this  dissertation,  they  will  do  so  in  the  future. 

 Ease of use:  Abstracting  from  the  years  of  research  that  went  into  this  dissertation (as  certainly,  more  research  went  into  GPT),  the  pipeline  developed  still  necessi-tate  a  multifaceted  combination  of  machine  learning  disciplines  and  considerable 

expertise.  For  specialized  CTI  classification,  only  the  labeling  of  data  is  required, 

as  our  framework  can  handle  the  rest.  This  effort  is  approximately  equivalent  to  that 

required  to  use  GPT  for  this  task.  However,  for  other  cybersecurity  tasks,  while  the 

overarching  methods  of  the  dissertation  remain  relevant,  certain  adjustments  are  nec-

essary:  The  data  augmentation  approaches  require  prompt  redesign,  and  for  transfer 

learning,  a  new  general  dataset  might  be  required  along  with  a  redesigned  few-

shot  learning  template.  In  contrast,  applying  GPT  involves  merely  prompt  redesign. 

This  distinction  becomes  even  more  pronounced  in  domains  where  the  CySecBERT 

model  is  inapplicable,  necessitating  the  development  of  a  new  BERT-like  model  for 

those  domains.  In  addition,  the  accessibility  of  most  foundation  models  through  API 

services  offered  by  hosting  companies  abstracts  hardware  requirements,  resolves 

many  deployment  issues,  and  facilitates  model  interchangeability. 

3  https://www.klarna.com/international/press/klarna-ai-assistant-handles-two-thirds-of-

customer-service-chats-in-its-first-month/ 
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 Progress:  The  community  surrounding  foundation  models  is  extensive  and  highly 

active,  fostering  a  plethora  of  models,  research,  development  environments 4, fine-tuning  methods  (e.g.,  LoRA  [158],  QLoRA  [ 88]), prompt  engineering  techniques 

[ 64],  quantization  strategies  [497], and  more.  The  current  demand  and  pace  of foundation  model  research  suggest  that  progress  is  unlikely  to  decelerate  in  the  near 

future.  Conversely,  smaller  and  BERT-like  models  receive  less  attention  from  the 

community,  resulting  in  fewer  innovations. 

 Explainability:  Because  of  the  general  generative  capabilities  of  foundation  mod-

els,  they  can  be  asked  to  provide  explanations  or  uncertainty  estimates  for  their 

decisions  [329].  Although  ongoing  research  continues  to  investigate  the  reliability of  self-explanations  provided  by  these  models,  such  capabilities  represent  a  significant  advancement  toward  enhancing  trust  in  foundation  models  [470]. The  classifiers developed  in  this  dissertation,  however,  are  limited  to  predicting  classes  and  providing  unreliable  confidence  scores  [136].  Although  explainable  AI  methods  such as  LIME  [361]  or  SHAP  [267]  can  be  used,  these  also  have  various  limitations, particularly  with  regard  to  their  informative  value  [294]. 

4.1.2

Weaknesses 

In  this  section,  we  aim  to  outline  the  limitations  associated  with  the  use  of  founda-

tion  models.  Our  primary  focus  is  on  very  large  language  models  with  at  least  50 

billion  parameters.  Smaller  foundation  models  like  Llama  3  (7  billion)  [264] and Phi-3  (3  billion)  [ 1]  showcase  impressive  capabilities  and  do  not  exhibit  some  of the  weaknesses  detailed  below.  Nonetheless,  their  performance  currently  falls  short, 

when  considering  that  at  the  time  of  writing,  models  of  this  small  size  perform  worse than  GPT-3.5,  which  will  be  shown  later  in  Sect. 4.3  to  be  inferior  to  the  methods of  this  dissertation. 

 Dependency:  A  major  drawback  of  these  models  is  their  inefficiency.  For  instance, the  GPT-3  model,  which  has  175  billion  parameters,  requires  approximately  350  GB 

of  memory  [ 47], making  it  only  feasible  for  very  large  corporations  and  institutions to  manage  its  storage  requirements.  Storing  a  model  like  GPT-3  on  personal  clusters 

or  in  the  cloud  is  impractical  for  the  tasks  described  in  this  dissertation,  leading  to a  reliance  on  companies  that  offer  these  models  via  an  API.  This  reliance  introduces  challenges  such  as  opacity  in  the  processing  pipeline,  potential  unavailability, 

4  https://github.com/ggerganov/llama.cpp 
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and  lack  of  flexibility.  Furthermore,  API  usage  incurs  significant  continuing  costs, 

unlike  the  deployment  of  a  BERT  model,  which  requires  a  higher  initial  investment 

for  the  GPU  but  then  comparably  lower  continuous  operating  expenses  (power, 

cooling,  maintenance).  For  tasks  such  as  collecting  relevant  CTI  information,  many 

predictions  need  to  be  made  over  a  long  period  of  time,  which  is  currently  more 

cost-efficient  when  not  relying  on  an  API. 

 Sustainability:  The  cost  efficiency  also  translates  into  lower  energy  consumption 

and  carbon  emissions  for  BERT-like  models.  Although  estimates  vary  with  newer 

hardware,  the  training  of  BERT-like  models  is  responsible  for  approximately  650  kg 

of  CO2  emissions  [422], while  GPT-3’s  training  emitted  around  550,000  kg  of  CO2 

[328].  While  this  only  addresses  the  training  of  those  models,  it  is  also  reflected  in deployment.  As  said  before,  GPT-3  needs  about  350  GB  of  storage  space,  whereas 

the  models  utilized  for  inference  in  this  dissertation  consume  merely  4–12  GB  of 

memory.  All  numbers  should  viewed  as  estimates  that  vary  based  on  numerous 

factors,  including  the  specific  methods  used  for  calculation,  the  source  of  energy, 

and  the  efficiency  of  the  infrastructure.  However,  even  with  better  hardware  and 

parallelization  through  API  scheduling,  CO2  emissions  are  likely  to  be  higher  in 

the  foreseeable  future. 

 Privacy:  Utilizing  an  API  also  introduces  data  protection  concerns  since  external providers  handle  the  data  processing.  Many  scenarios  may  prohibit  the  sending  of 

data  to  external  servers.  For  instance,  if  CERTs  wish  to  use  closed-source  data,  pro-

cessing  it  on  external  servers  may  pose  significant  issues.  While  this  dissertation’s 

methods  sometimes  utilize  foundation  models  via  an  API  for  training  purposes  (not 

for  inference),  only  a  minimal  amount  of  data  is  transmitted,  resulting  in  fewer  data 

protection  concerns,  costs,  and  CO2  emissions. 

 Ethical concerns:  The  general  reliance  on  non-transparent  companies  for  founda-

tion  models  raises  several  oligopolistic  and  ethical  issues.  If  the  development  and 

deployment  of  foundation  models  are  confined  to  a  few  companies  that  are  capable 

of  sustaining  the  necessary  computational  power,  this  could  create  a  reinforcing 

cycle  where  only  these  companies  can  afford  to  invest  in  even  larger  models.  Such 

a  scenario  could  enable  these  entities  to  act  as  gatekeepers,  controlling  access  and 

usage  of  their  products.  While  this  is  a  general  market  problem,  it  is  exacerbated  for AI  systems,  which  have  the  potential  to  significantly  impact  information  dissemination,  decision-making,  and  automation  in  society.  Without  proper  regulation,  these 

companies  could  potentially  encode  biases,  censor  content,  or  suppress  dissenting 

opinions,  as  has  already  been  observed  with  some  of  the  current  models  [450]. 
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 Hallucinations:  A  significant  issue  with  current  large  language  models  is  their  tendency  to  generate  plausible  yet  false  information,  a  phenomenon  known  as  “hallu-

cination,”  i.e.,  text  that  is  not  accurate,  relevant,  or  grounded  in  reality  [528].  Ultimately,  it  may  be  difficult  for  the  user  to  determine  whether  the  result  is  accurate 

or  a  hallucination.  This  issue  could  undermine  trust  in  these  models  and  potentially 

impede  progress.  However,  this  limitation  is  less  problematic  within  the  scope  of 

this  dissertation,  as  the  model’s  primary  function  is  to  predict  a  class  rather  than 

generate  content.  It  can  be  a  problem,  for  example,  when  the  foundation  model  is 

asked  to  explain  its  answer. 

 Limited Dynamic Program Synthesis:  Foundation  models  can  memorize  and  retrieve 

vast  amounts  of  reasoning  patterns,  also  called  program  templates,  which  can  be 

seen  as  instruction  manuals  that  the  model  follows  to  solve  tasks.  François  Chol-

let  illustrates  this  with  the  example  of  the  Caesar  cipher,  a  complex  algorithm  that 

many  foundation  models  can  confidently  apply  to  any  text  using  common  shift  keys 

like  3  or  5  [ 73].  These  models  have  memorized  the  program  template  from  various examples  on  the  Internet.  However,  Chollet  explains  that  when  using  an  uncommon,  arbitrary  key  like  9,  the  models  fail  because  they  lack  a  generalized  program 

and  cannot  dynamically  synthesize  it  [ 73].  This  limitation  is  also  why,  despite  their extensive  knowledge,  foundation  models  struggle  with  tasks  requiring  calculations 

[382]  or  reasoning  with  abstractions.  A  good  example  is  the  Abstraction  and  Reasoning  Corpus  (ARC)  [ 72],  where  the  current  best  algorithms  can  solve  only  31% 

of  the  problems,  compared  to  humans,  who  can  solve  about  80%  [228].  The  limited dynamic  program  synthesis  may  apply  to  the  specialized  CTI  task  in  this  dissertation,  where  an  individual  definition  for  relevant  cybersecurity  content  can  be  seen  as 

a  novel  key  in  the  Caesar  cipher  example.  However,  we  also  believe  that  foundation 

models  large  enough  to  have  memorized  an  abstract  program  template  for  cyber-

security  relevancy  classification  should  be  able  to  master  this  task  when  provided 

with  a  precise  description  of  the  definition.  This  rationale  could  also  explain  the 

difference  between  the  GPT-3.5  and  GPT-4  models  in  the  CTI  task  of  the  empirical 

comparisons  in  Sect. 4.3, assuming  that  the  data  was  not  leaked  to  GPT-4. 

 Benchmark Contamination:  The  suitability  of  current  dataset  benchmarks  to  assess 

the  actual  capabilities  of  foundation  models  is  questionable,  as  numerous  studies 

have  reported  [ 87, 261, 536].  As  also  hypothesized  for  the  following  evaluation  of GPT-4  in  Sect. 4.3,  the  confidentiality  of  test  sets  in  common  benchmarks  cannot be  guaranteed  as  they  might  be  part  of  the  training  data.  Therefore,  testing  and 

comparing  those  models  is  very  challenging.  This  issue  partly  stems  from  the  non-

disclosure  of  the  research  behind  large  models  like  GPT-4  and  their  training  datasets. 
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As  stated  earlier,  some  weaknesses,  such  as  privacy  and  ethical  concerns,  may 

soon  be  addressed  as  smaller  models  like  Llama  and  Alpaca  demonstrate  high  per-

formance  and  present  the  opportunity  to  run  on  local  hardware[446].  However, these  models  still  require  substantial  computational  resources.  They  are  at  least  ten 

times  larger  than  the  BERT-base  model,  with  the  smallest  foundation  models  hav-

ing  about  one  billion  parameters.  For  results  comparable  to  GPT-3.5,  models  are 

currently  at  least  60  times  the  size  of  BERT;  the  smallest  model  currently  achieving 

this  is  Starling-LM-7B-beta,  as  indicated  by  the  LMSYS  Chatbot  Arena  Leader-

board 5. Notably,  these  smaller  yet  capable  models  are  often  trained  on  high-quality data,  sometimes  generated  by  larger  foundation  models  [299, 433]. This  approach to  data  augmentation  has  already  been  identified  as  a  promising  research  direction 

in  Chap. 8  and  even  explored  with  GPT-2  in  Chap. 9  and  with  GPT-3  in  Chap. 12, 

highlighting  that  the  dissertation’s  methods  might  even  be  relevant  for  training  foun-

dation  models. 

4.2

Low-Data  Regime  Methods  for  Foundation  Models 

The  previously  mentioned  strengths  and  weaknesses  of  foundation  models  demon-

strate  that  their  suitability  as  an  alternative  to  the  methods  presented  in  this  dissertation  depends  on  the  specific  circumstances  of  the  task.  Nonetheless,  the  methods 

presented  in  this  dissertation  could  also  play  a  significant  role  in  the  training  procedures  of  foundation  models.  The  remarkable  success  of  current  foundation  models 

largely  relies  on  reinforcement  learning  from  human  feedback  (RLHF),  a  strategy 

that  incorporates  techniques  to  fine-tune  language  models  based  on  human  prefer-

ences,  corrections,  and  feedback,  necessitating  human-labeled  data  [319].  Therefore,  the  argument  that  labeling  is  labor-intensive  and  potentially  inefficient  applies 

to  foundation  models  as  well.  Moreover,  research  on  foundation  models  suggests 

that  advancements  require  more  high-quality  data  [ 53, 532]. 

For  instance,  the  ActiveLLM  method  could  guide  the  labeling  process  for  RLHF 

towards  more  diverse  topics  and  crucial  training  instances.  After  data  collection,  it 

can  be  further  enhanced  using  the  augmentation  strategies  developed  in  this  work. 

The  use  of  other  foundation  models  to  enrich  training  data,  as  demonstrated  by 

the  foundation  models  Alpaca  [433] or Orca [299], aligns  with  the  approaches  discussed  in  Chaps. 8  and  9.  It  can  also  be  used  to  reduce  bias  and  align  foundation models  with  human  expectations  [478]. Additionally,  transfer  learning  methods and  few-shot  learning,  as  recommended  in  Chap. 11  and  12,  remain  invaluable  for 5  https://chat.lmsys.org  (accessed  on  the  19.06.2024) 
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optimizing  foundation  model  performance  in  specific  domains  underrepresented  in 

their  training  data.  A  foundation  model  that  is  tailored  to  a  specific  domain,  in  a 

similar  way  to  CySecBERT,  or  even  multiple  layers  of  fine-tuning,  may  result  in 

enhanced  performance  in  those  domains.  Finally,  the  significance  of  adversarial 

examples  has  arguably  increased  with  the  advent  of  foundation  models,  which  can 

be  easily  misled,  circumventing  the  safety  measures  implemented  by  researchers. 

While  the  method  of  Chap. 13  remains  relevant,  the  feasibility  of  generating  adversarial  examples  in  the  same  manner  for  foundation  models  needs  further  investiga-

tion. 

4.3

Empirical  Relevance  of  the  Designed  Approaches 

To  analyze  the  empirical  relevance  of  the  designed  approaches  in  the  context  of 

foundation  models,  such  as  GPT-3.5  [ 47], we  conduct  further  experimentation  with the  CTI  dataset  proposed  in  Chap. 12,  which  best  represents  the  application  goal  of this  dissertation.  This  dataset  models  the  task  of  CERT  teams  collecting  relevant  and 

specialized  CTI  during  cybersecurity  incidents—a  task  that  is  inherently  a  few-shot 

learning  problem,  as  professionals  do  not  have  the  time  to  compile  massive  datasets 

during  incidents  that  meet  their  relevancy  criteria. 

4.3.1

Experimentation  Settings 

This  evaluation  uses  version  2  of  the  CTI  dataset 6, which  also  contains  32  instances for  few-shot  learning,  1,800  instances  for  the  normal  training  set,  600  instances  for 

the  development  set,  and  601  instances  for  the  test  set,  all  with  an  approximately 

equal  binary  class  distribution.  First,  the  settings  of  Chap. 12  are  replicated,  by conducting  a  full-shot  experiment  with  BERT-base,  as  well  as  few-shot  experiments 

with  BERT-base,  ADAPET,  and  the  multi-level  fine-tuning,  data  augmentation,  and 

few-shot  learning  procedures  from  Chap. 12. The  experiments  are  then  expanded to  include  the  active  learning  method  ActiveLLM  from  Chap. 7, and  finally,  the adversarial  training  method  from  Chap. 13, thus  encompassing  the  full  pipeline.  In this  experiment  context,  the  adversarial  training  method  requires  some  additional 

hold-out  data.  We  randomly  select  32  instances  from  the  development  set  of  the 

dataset  and  use  them  to  generate  adversarial  examples  (the  use  of  additional  data  is 

marked  in  the  results). 

6  Published  here:  https://github.com/PEASEC/msexchange-server-cti-dataset 
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To  determine  the  empirical  relevance  of  the  dissertation  methods,  they  are  com-

pared  with  the  GPT-3.5-turbo  and  GPT-4  language  models.  To  do  this,  the  GPT 

language  models  must  be  given  a  classification  prompt  from  which  the  classifica-

tion  predictions  can  be  obtained.  The  prompt  template  starts  with  a  role  allocation 

and  a  description  of  the  task:  “In the following, you act as a labeler who must binary 

 label whether the instances are relevant to Cyber Threat Intelligence and to cyber-

 security  experts  during  a  cyber  threat  event  (1=relevant,  0=irrelevant).  You  will 

 receive  the  following  annotated  instances  for  reference. ”  The  few-shot  instances 

are  then  concatenated  in  the  format   instance  –>1/0.  The  prompt  concludes  with 

“Please annotate the following Tweet only with 1 (= relevant) or 0 (= irrelevant):” 

followed  by  the  instance  to  be  predicted.  In  all  our  experiments,  we  test  GPT-3.5-

turbo  with  and  without  (zero-shot)  chain  of  thought  (CoT)  prompting,  a  technique  to 

enhance  the  output  capabilities  of  instruction-tuned  language  models  by  instructing 

the  model  to  answer  step  by  step  [213]. For  this,  the  prompt  ends  with  “Please annotate the following Tweet by first explaining your thought process and then annotating 

 it with 1 (= relevant) or 0 (= irrelevant). The output format should be Explanation: 

 [your explanation] Label: 1 or 0”  followed  by  the  instance  to  be  predicted.  We  also attempt  to  perform  non-zero-shot  CoT  [ 74, 479, 530], i.e.  we  include  explanations with  each  presented  few-shot  example.  In  order  to  avoid  the  need  for  a  human  in 

the  loop  to  create  these  label  explanations,  ChatGPT  is  used  to  generate  them. 

In  our  goal  to  recreate  the  most  realistic  scenario,  we  hypothesize  that  cyber-

security  professionals  encountering  a  new  incident  might  have  to  create  labeling 

guidelines  for  defining  relevance.  Currently  these  labeling  guidelines  are  just  dis-

carded  as  it  is  not  trivially  possible  to  incorporate  them  directly  into  encoder  transformer  models  like  BERT.  However,  for  decoder  transformer  models  with  sufficient 

context  size  capabilities,  these  guidelines  can  be  incorporated  into  the  prompt.  For 

the  experiments,  we  must  point  out  that  the  labeling  guidelines  of  the  CTI  dataset 

(provided  in  Appendix  A.4  of  the  Electronic  Supplementary  Material)  also  contain 

some  data  examples  to  describe  and  illustrate  certain  labeling  decisions  (which  is 

marked  in  the  results).  In  our  final  evaluation  run,  we  employ  the  optimal  GPT-

3.5  setting  (few-shot  examples,  guidelines,  and  no  CoT)  with  the  most  advanced 

foundation  model  at  the  time,  GPT-4  [315]. 

The  script  and  output  of  the  GPT  experiments  are  freely  available 7. 

7  The  experiments  were  conducted  on  the  11.07.2023—https://github.com/PEASEC/GPT-

CTI-Evaluation 
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4.3.2

Results  and  Interpretation 

The  results  of  this  experiment  are  presented  in  Table  4.1. The  full-shot  experiment with  1800  training  instances  demonstrates  the  potential  classification  performance 

of  a  BERT  classifier.  When  applying  the  same  classifier  model  BERT-base  to  the 

few-shot  experiment  with  32  instances,  we  observe  a  drop  of  more  than  37  percent-

age  points  in  accuracy.  Even  the  state-of-the-art  few-shot  learning  method  ADAPET 

[431]  fails  to  achieve  high  performance,  with  66.22%  accuracy.  The  approach  in Chap. 12  with  multi-level  fine-tuning,  GPT-3  data  augmentation,  and  few-shot  learning  significantly  improves  baseline  (+27.28  percentage  points)  and  state-of-the-art 

(+12.81  percentage  points)  results.  The  incorporation  of  the  active  learning  method 

ActiveLLM  from  Chap. 7  results  in  an  additional  slight  improvement  in  accuracy, with  a  score  of  79.30%.  The  final  phase  of  this  dissertation’s  framework  is  the 

integration  of  XAI-Attack  described  in  Chap. 13,  which  brings  together  the  entire pipeline.  Adversarial  training  with  XAI-Attack  reduces  performance  by  1.76  percentage  points  in  accuracy,  which  is  to  be  expected  as  the  method  corrects  shortcut 

learnings  and  spurious  correlations  visible  in  training  as  well  as  development,  and 

test  sets.  Therefore,  in  Chap. 13  we  propose  an  out-of-distribution  evaluation  setting to  better  measure  robustness.  Nevertheless,  an  accuracy  score  of  77.54%  for  the  full 

pipeline  is  still  significantly  better  than  ADAPET  (+11.32  percentage  points).  Since 

XAI-Attack  requires  additional  data  for  comparative  analysis,  it  has  been  separated 

from  the  experiments  of  the  true  low-data  regime. 

When  GPT-3.5  is  used  in  the  true  low-data  regime  with  few-shot  instances,  it  also 

improves  over  the  baseline  and  state  of  the  art  (ADAPET),  but  is  still  significantly 

inferior  to  our  approach  (–13.41  percentage  points).  We  also  include  GPT-3.5  with-

out  the  few-shot  learning  instances,  but  with  the  labeling  guidelines  (also  considered 

a  low-data  regime  experiment).  Interestingly,  while  this  is  still  significantly  worse 

than  our  method,  it  is  an  improvement  over  just  using  the  few-shot  instances  in  the 

prompt.  The  reason  for  this  may  be  that  it  is  easier  to  understand  a  particular  concept of  relevance  through  a  comprehensive  description  of  its  differences,  rather  than  relying  solely  on  examples  from  which  to  derive  the  aforementioned  distinctions.  Even 

when  incorporating  both  the  few-shot  examples  and  the  guidelines  into  the  prompt 

for  GPT-3.5,  the  performance  is  still  lower  than  that  of  our  proposed  framework. 

This  shows  that  despite  providing  more  information  and  some  prompt  engineering, 

GPT-3.5  still  cannot  match  the  performance  of  our  method.  This  may  be  due  to 

the  specialized  task  setting  that  the  MSExchange  dataset  presents,  containing  very 

specific  cybersecurity  terms  that  a  language  model  like  CySecBERT,  integral  to  our 

approach,  might  better  recognize.  Moreover,  as  explained  in  Sect. 4.1.2,  foundation models  have  the  ability  to  memorize  and  fetch  vast  amounts  of  program  templates, 
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but  cannot  synthesize  new  ones  on-the-fly  (limited  dynamic  program  synthesis)  [ 73]. 

A  model  like  GPT-3.5  might  not  have  memorized  an  abstract  program  template  for 

cybersecurity  relevance  classification.  Therefore,  it  confuses  this  specific  task  with 

program  templates  of  certain  cybersecurity  information  relevance  definitions  it  has 

encountered  in  the  training  data,  leading  to  incorrect  decisions  for  a  novel  definition. 

Table  4.1  Few-shot  experiments  of  the  methods  of  this  dissertation  compared  to  GPT-3.5-turbo  and  GPT-4  in  different  configurations.  The  performance  of  the  BERT  models  are  measured  as  the  average  accuracy  of  5  runs 8. Different  constellations  of  full  training  (Full  Tr.), presented  few-shot  examples  (FS),  presented  labeling  guidelines  (GL),  and  chain-of-thought prompting  (CoT)  are  marked.  ✓ +  indicates  that  non-zero-shot  CoT  with  explanations  from 

ChatGPT  is  used.  Abbreviations:  Few-shot  learning  (FSL),  data  augmentation  (DA),  and 

multi-level  fine-tuning  (MLF) 

Full  Tr.  FS

GL

CoT

Acc. 

 Full-Shot 

BERT-base

✓

✗

✗

✗

89.02 

 Low  Data  Regime 

BERT-base

✗

✓

✗

✗

51.75 

←   .  FSL  (ADAPET)

✗

✓

✗

✗

66.22 

←   .  DA,  MLF,  &  FSL  (Chap. 12)

✗

✓

✗

✗

79.03 

←   .  ActiveLLM,  DA,  MLF,  &  FSL

✗

✓

✗

✗

79.30 

GPT-3.5-turbo

✗

✓

✗

✗

65.89 

GPT-3.5-turbo

✗

✓

✗

✓

61.90 

GPT-3.5-turbo

✗

✗

✓

✗

69.71 

GPT-3.5-turbo

✗

✗

✓

✓

65.22 

 Additional  Human  Data 

BERT-base 

←   .  ActiveLLM,  DA,  MLF,  FSL,  & 

✗

✓

✗

✗

77.54 

XAI-Attack 

GPT-3.5-turbo

✗

✓

✓

✗

75.70 

GPT-3.5-turbo

✗

✓

✓

✓

63.73 

GPT-3.5-turbo

✗

✓

✓

✓ +

70.05 

GPT-4

✗

✓

✓

✗

90.18 

8  These  results  differ  slightly  from  those  in  Chap. 12  as  we  used  version  2  of  the  dataset. 
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Although  CoT  prompting  is  touted  as  a  major  improvement  for  instruction-tuned 

language  models  [480, 531],  it  did  not  enhance  performance  in  this  experiment.  In our  entire  evaluation,  despite  varying  temperatures  and  testing  zero-shot  and  normal 

CoT,  we  observed  poorer  results  with  it.  This  may  be  attributed  to  the  integration  of the  CoT  component  in  the  prompt,  as  studies  indicate  that  the  phrasing  of  prompts 

can  significantly  affect  performance  [471].  In  general,  while  prompt  engineering may  offer  some  improvement,  it  is  unlikely  to  bridge  the  substantial  performance 

gap  to  our  method. 

In  our  last  experiment  setting,  we  test  GPT-4  to  gauge  the  potential  of  these  large 

foundation  models  (including  few-shot  examples  and  guidelines),  as  this  model 

possesses  considerably  more  knowledge,  including  more  specific  terms  and  con-

cepts.  With  an  accuracy  of  90.18%,  GPT-4  even  surpasses  the  BERT-base  full-shot 

classifier  trained  with  1800  instances.  Although  we  have  to  take  into  account  the 

additional  information  provided  by  the  guidelines  in  this  setting  (compared  to  the 

true  few-shot  learning  task),  the  high  performance  is  still  surprising.  This  is  such 

an  improvement  that  we  have  to  consider  the  possibility  that  the  published  dataset 

might  have  been  in  the  training  data  of  GPT-4.  Unfortunately,  the  training  data  for 

GPT-4  has  not  been  made  public.  Therefore,  it  is  impossible  to  ascertain  if  the  MS 

Exchange  CTI  dataset  was  used  in  the  model’s  training,  which  could  account  for 

the  high  values. 

In  conclusion,  our  approach  with  active  learning,  data  augmentation,  multi-level 

fine-tuning,  few-shot  learning,  and  adversarial  training  is  still  relevant  performance-

wise.  The  use  of  GPT-3.5  may  be  very  powerful  for  general  few-shot  learning 

techniques,  but  is  significantly  worse  than  our  method  even  with  more  task-related 

information.  While  GPT-4’s  results  exceed  those  of  our  method,  it  is  uncertain 

whether  the  MSExchange  dataset  was  included  in  the  model’s  training  data. 

[image: Image 13]
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This  dissertation  explores  deep  learning  in  textual  low-data  regimes  within  the  con-

text  of  gathering  specialized  and  individualized  CTI  information.  CERTs  are  often 

overwhelmed  by  the  vast  amount  of  potentially  relevant  open  data  during  cyberse-

curity  incidents.  While  clustering  alone  is  insufficient  for  extracting  fine-grained, 

individualized  information,  supervised  machine  learning  is  similarly  limited  by  the 

requirement  of  substantial  training  data  and  the  highly  dynamic  nature  of  these  sit-

uations.  Aiming  to  enhance  the  supervised  machine  learning  process—including 

data  acquisition,  preprocessing,  model  selection,  and  prediction—this  dissertation 

proposes  several  state-of-the-art  methods  to  address  emerging  cyber  threats  by  effec-

tively  training  new  highly  specialized  deep  learning  classifiers  with  minimal  data. 

The  following  sections  synthesize  the  research  findings  by  answering  the  research 

questions,  present  the  theoretical  and  practical  contributions  derived  from  the  disser-

tation,  propose  limitations  and  future  work,  and  finally,  present  ethical  and  societal 

considerations. 

5.1

Synthesis  of  Research  Findings 

To  our  knowledge,  this  dissertation  is  the  first  to  extensively  explore  deep  learn-

ing  in  low-data  regimes  specifically  for  cybersecurity  research.  It  introduces  state-

of-the-art  techniques  in  active  learning,  data  augmentation,  transfer  learning,  and 

adversarial  training,  presenting  a  novel  framework  that  integrates  these  concepts  to 

overcome  the  limitations  of  low-data  scenarios.  Despite  the  widespread  research 

in  machine  learning  for  cybersecurity,  only  a  limited  number  of  studies  tackle 

the  dynamic  nature  and  constant  domain  shifts  encountered  in  textual  data.  The 

prevailing  literature  on  cybersecurity  often  focuses  on  network  data  for  intrusion 

©  The  Author(s),  under  exclusive  license  to  Springer  Fachmedien  Wiesbaden  GmbH, 
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detection  methods  [309, 537], are  not  fully  aligned  with  the  latest  advancements  in deep  learning  research  [ 96, 121, 189, 506],  and/or  generally  address  only  aspects  of managing  low  data,  such  as  through  data  augmentation  [248, 354]. Notably,  there are  few  recent  works  that  use  deep  learning  for  information  gathering  in  the  CTI 

domain  [215, 222, 436]  but  to  our  knowledge,  none  explore  textual  low-data  regimes in  conjunction  with  current  deep  learning  techniques  for  this. 

This  work  is  motivated  by  the  use  of  unsupervised  clustering  techniques,  which 

can  segregate  data  into  coarse-grained  groups.  Within  the  field  of  crisis  informatics, 

the  work  of  Chap. 6,  along  with  Alam,  Ofli,  and  Imran  [ 10],  is  pioneering  in  its approach  to  clustering  based  on  textual  information,  as  opposed  to  spatial  or  temporal  dimensions  [266, 333, 376]. In  contrast  to  the  work  of  Alam,  Ofli,  and  Imran[ 10], 

our  technique  features  more  consistent  design  choices  and  rigorous  evaluations  using 

state-of-the-art  embedding  techniques  on  English  and  German  datasets.  Given  the 

general  inadequacy  of  coarse-grained  cluster  information  for  many  CTI  applica-

tions  and  the  extensive  training  data  requirements  of  supervised  classifiers,  which 

are  constrained  by  the  dynamics  of  CTI  situations,  this  dissertation  is  guided  by  the 

following  research  questions  concerning  low-data  regimes. 

How  can  active  learning  in  low-data  regimes  be  enhanced  by  instruction-

tuned  large  language  models,  enabling  the  resulting  pre-trained  models  to  gain 

high  classification  performance  with  reduced  annotation  effort? 

This  research  question  arises  from  the  challenges  of  model-mismatch  and  cold-start 

issues  in  active  learning  for  pre-trained  models.  Research  has  shown  that  a  mismatch 

between  the  active  learning  model  and  the  final  model  often  results  in  equal  or  worse performance  [387, 397, 529].  However,  using  pre-trained  models,  such  as  BERT, for  both  active  learning  and  the  final  model  is  often  impractical  due  to  the  long 

waiting  times  during  annotation,  even  when  considering  efficient  variants  [517]. 

ActiveLLM  of  Chap. 7  addresses  this  challenge  by  utilizing  foundation  models, which,  due  to  their  zero-shot  capabilities,  do  not  require  training  during  the  process 

and  can  provide  feedback  within  seconds,  as  only  a  small  amount  of  unlabeled 

data  needs  to  be  used.  Furthermore,  most  active  learning  strategies  cannot  work 

effectively  with  insufficient  data  because  they  face  the  cold-start  problem  [ 68]. The works  of  Ein-Dor  et  al.[100]  and  Grießhaber,  Maucher,  and  Vu  [134]  explore  active learning  with  less  data,  but  ActiveLLM  is  the  first  to  address  active  learning  for  true few-shot  scenarios  with  pre-trained  models.  Leveraging  the  zero-shot  capabilities  of 

foundation  models  overcomes  the  cold-start  problem  and  can  also  be  used  to  mitigate 

the  cold-start  problem  in  other  active  learning  strategies.  Our  active  learning  method
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even  outperforms  the  state-of-the-art  few-shot  learning  methods  PERFECT  [271] 

and  ADAPET  [431].  In  addition,  as  shown  in  the  evaluations  of  the  full  pipeline  of this  dissertation  (Sect. 4.3),  ActiveLLM  can  further  improve  results  when  used  in combination  with  multi-level  fine-tuning,  GPT-3  data  augmentation,  and  ADAPET 

[431]  few-shot  learning. 

Therefore,  designing  active  learning  with  foundation  models  overcomes  the  chal-

lenges  of  current  research  methods  and  enables  high  classification  performance  in 

low-data  regimes,  even  when  combined  with  methods  derived  from  subsequent 

research  questions. 

How  can  the  advanced  generative  capabilities  of  large  language  mod-

els  be  leveraged  and  constrained  for  textual  data  augmentation  to  enhance 

classification  performance,  particularly  in  low-data  regimes? 

Contrary  to  other  studies  from  a  similar  timeframe  [113, 402]  that  also  identified the  research  gap  of  a  missing  overview  of  the  various  textual  data  augmentation 

methods,  our  work  of  Chap. 8  provides  a  comprehensive  overview  of  data  augmentation  methods  for  text  classification.  We  offer  the  first  holistic  taxonomy  of 

text  data  augmentation  and  an  in-depth  description  of  the  approaches,  setting  these 

methods  in  direct  comparison  to  establish  the  current  state  of  the  art  and  suggest 

future  research  directions.  A  major  insight  is  that  pre-trained  language  models  have 

rendered  many  simple  data  augmentation  strategies  obsolete,  as  these  models  are 

inherently  invariant  to  those  transformations.  This  enabled  us  to  develop  our  own 

data  augmentation  strategy  in  Chap. 9  that  leverages  the  GPT-2  model.  Due  to  its generative  capabilities  and  considerable  size,  it  allows  for  a  sophisticated  data  augmentation  method  that  produces  novel  linguistic  patterns  necessary  for  augmenting 

pre-trained  models.  The  two  related  works  at  the  time  of  this  study  using  this  model, are  only  applicable  to  single-sentence  instances  [ 18], or  do  not  constrain  the  model sufficiently  to  ensure  label  preservation  [467]. In  contrast,  we  develop  the  data augmentation  method  to  be  able  to  augment  long  textual  instances  and  constrain 

it  with  a  human-in-the-loop  embedding  filtering  method.  The  method  significantly 

improves  classification  quality  over  the  baseline  and  state-of-the-art  data  augmenta-

tion  in  various  domains,  including  low-data  regimes.  An  adaptation  of  this  method 

is  proposed  in  Chap. 12,  where  the  GPT-2  model  is  replaced  by  the  much  larger GPT-3  model  and  the  training  instances  are  incorporated  directly  into  the  prompt. 

This  is  similar  to  the  GPT-3  data  augmentation  method  by  Yoo  et  al. [512] but  also includes  the  embedding  filtering  method  of  Chap. 9.  In  the  CTI  few-shot  learning
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task  with  only  32  training  instances,  this  allows  classification  performance  improve-

ments  even  when  sophisticated  few-shot  techniques  are  applied.  It  also  outperforms 

the  popular  round-trip  translation  and  EDA  [481]  data  augmentation  strategies. 

Thus,  by  harnessing  the  generative  capabilities  of  large  language  models  like 

GPT-2  or  GPT-3  and  meaningfully  constraining  them  with  document  embeddings, 

significant  improvements  in  various  domains  and  low-data  regimes  are  achieved. 

While  this  study  already  applies  the  concept  of  transfer  learning,  the  following 

studies  are  proposed  to  further  advance  it. 

How  can  transfer  learning  methods  be  developed  and  applied  to  mitigate 

the  dependency  on  extensive  data  requirements  in  deep  learning  applications? 

The  first  study  addressing  this  research  question  (Chap. 10)  follows  the  general  trend of  deep  learning  in  NLP  by  exploring  BERT  models  in  the  context  of  social  media 

credibility  assessment.  Due  to  the  lack  of  cybersecurity-specific  datasets  available  at 

the  time  of  this  study,  we  abstract  the  task  to  the  broader  concept  of  general  credibility assessment  in  social  media.  Although  some  works  have  considered  the  use  of  deep 

learning  [260, 371, 490], to  the  best  of  our  knowledge,  we  were  among  the  first  to apply  transfer  learning  with  a  BERT  model  for  this  task.  Our  study  demonstrates 

that  BERT  models  significantly  outperform  recurrent  neural  networks  and  multilayer 

perceptrons  in  this  task,  although  they  are  less  time-efficient  for  predicting  instances. 

Nevertheless,  BERT  is  sufficiently  efficient,  justifying  the  dissertation’s  focus  on 

these  models. 

The  advancements  of  pre-trained  models  in  NLP  also  highlight  that  domain-

adapted  pre-trained  models  can  bring  notable  improvements  in  relevant  domains 

[ 34, 238], resulting  in  even  lower  data  requirements.  Recognizing  the  absence  of a  refined  base  model  for  cybersecurity,  apart  from  the  lightweight,  cybersecurity-aligned  CyBERT  [347],  we  introduce  a  thoroughly  trained  BERT  model  for  cybersecurity  in  Chap. 11. In  contrast  to  CyBERT  [347],  our  CySecBERT  model  is trained  substantially  longer  and  utilizes  a  much  larger  corpus  (CyBERT:  17,000 

documents  and  one  epoch  versus  our  CySecBERT:  4,300,000  documents  and  30 

epochs).  The  results  of  both  extrinsic  and  intrinsic  evaluations  clearly  illustrate  that CySecBERT  improves  the  performance  of  downstream  tasks  such  as  classification 

and  sequence  tagging,  and  refines  the  representation  space  for  cybersecurity-related 

terms.  Additionally,  this  study  extends  research  by  being  the  first  to  control  for  catastrophic  forgetting  in  domain-adaptive  pre-training.  Following  general  advice  from 

related  works  [ 89, 426],  the  full  training  of  seven  CySecBERT  models  indicates  that
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avoiding  overly  aggressive  updates  and  overly  minimalistic  training  results  in  less 

catastrophic  forgetting,  ultimately  leading  to  a  better  model  for  cybersecurity.  With 

our  study  and  the  openly  accessible  model  and  dataset,  we  are  paving  the  way  for 

improved  cybersecurity  transfer  learning,  enhancing  both  research  and  application. 

This  is  directly  exemplified  in  the  study  of  Chap. 12, where  the  data  requirements  of  this  research  question  are  central.  In  this  study,  the  results  of  the  transfer learning  phase,  including  CySecBERT,  and  an  updated  version  of  the  data  augmentation  strategy  from  Chap. 9  are  incorporated  into  multi-level  fine-tuning  with  a few-shot  learning  technique.  This  study  is  the  first  to  address  the  collection  of  specialized/individualized  CTI  information  during  cybersecurity  incidents,  in  contrast 

to  the  coarse-grained  cybersecurity  information  collection  from  Riebe  et  al. [363] 

or  Sceller  et  al.  [381].  Recognizing  the  importance  of  collecting  very  specific  CTI information  based  on  the  individual  needs  of  professionals,  we  also  publish  an  annotated  dataset  to  encourage  research.  For  the  data  augmentation  method,  as  described 

above,  we  use  the  GPT-3  model  instead  of  the  GPT-2  data  augmentation  method  in 

Chap. 9.  The  biggest  improvement,  however,  is  achieved  with  the  novel  multi-level fine-tuning  technique  which,  to  our  knowledge,  has  not  been  studied  before.  Combined  with  the  cybersecurity-adapted  few-shot  learning  ADAPET  [431]  method, the  results  with  32  training  instances  demonstrate  a  substantial  improvement  over 

the  baseline  and  the  state-of-the-art,  even  approaching  the  full  training  results  with 

1800  training  instances. 

Enhancing  the  transfer  learning  procedure  from  BERT  models  with  a  domain-

adapted  cybersecurity  model  and  multi-level  fine-tuning  significantly  reduces  data 

requirements,  making  these  models  highly  capable  of  extracting  information  in  CTI 

situations.  However,  models  trained  with  less  data  are  especially  brittle  and  can  be 

easily  fooled  [130], which  motivates  the  next  research  question. 

How  can  textual  adversarial  examples  be  effectively  formulated  and 

evaluated  in  adversarial  training  to  achieve  significant  learning  effects? 

This  research  question  addresses  the  gap  in  state-of-the-art  adversarial  example 

generation  and  training  methods,  which  often  achieve  only  very  specific  robustness 

gains  due  to  their  less  generalizable  design  and  ineffective  evaluation  methods  [126, 

466]. With  XAI-Attack  in  Chap. 13  we  pioneer  a  method  that  creates  adversarial examples  based  on  patterns  of  incorrectly  classified  instances,  thereby  increasing 

the  general  learning  effect  when  used  in  adversarial  training.  To  identify  these  pat-

terns,  we  employ  explainable  AI  methods,  which  also  facilitate  more  sophisticated 

importance  scores  with  a  broader  function  space  and  fewer  constraints  on  the  model
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than  the  simple  importance  functions  currently  used  (e.g.,  in  [247], [124], [184]). 

As  our  study  also  shows,  that  common  datasets  contain  biases  in  the  training  set 

that  echo  in  the  development  and  testing  sets,  we  design  a  novel  out-of-distribution 

evaluation  setting  based  on  the  adversarial  GLUE  dataset  [466].  Evaluations  of XAI-Attack  in  this  and  other  settings  confirm  that  it  achieves  significant  learning 

effects,  outperforming  state-of-the-art  adversarial  example  generation  and  training 

methods  (BAE  [124], BERT-Attack  [247],  SMART  [181])  and  showing  baseline improvements  of  up  to  23  percentage  points  in  accuracy. 

Hence,  adversarial  examples  based  on  incorrect  classifier  patterns  can  achieve 

generalization  and,  thus,  considerable  learning  effects.  A  novel  out-of-distribution 

evaluation  setting  based  on  the  adversarial  GLUE  dataset  [466]  can  effectively capture  this. 

While  this  research  question  is  the  last  to  directly  address  the  developed  methods 

of  this  dissertation,  it  remains  to  be  questioned  whether  these  methods  will  retain 

their  relevance  in  light  of  foundation  models. 

How  do  the  techniques  developed  for  enhancing  deep  learning  in  low-

data  regimes  maintain  their  relevance  in  the  era  of  foundation  models? 

To  empirically  answer  this  research  question,  we  compare  the  methods  of  this  disser-

tation  against  foundation  models  on  the  CTI  dataset  in  Sect. 4.3. While  the  few-shot results  of  this  experiment  show  that  the  low-data  regime  methods  are  significantly 

better  than  the  GPT-3.5  model,  GPT-4  even  surpasses  the  accuracy  performance  of 

a  BERT  model  with  the  full  training  set  of  1800  instances.  However,  due  to  the 

exceptional  accuracy,  it  can  be  speculated  that  GPT-4  may  have  seen  the  testing  set 

data  with  all  labels  beforehand,  as  the  whole  dataset  is  openly  available  on  GitHub. 

Even  if  we  assume  that  the  GPT-4  results  are  valid,  this  dissertation  discusses  dif-

ferent  weaknesses  of  these  large  foundation  models  that  favor  smaller  models  with 

specific  methods  like  those  in  this  dissertation.  These  include  dependency  on  large 

companies  providing  these  models,  along  with  ethical  and  privacy  concerns,  high 

costs  (for  resources  or  APIs),  and  ecological  aspects.  On  the  other  hand,  foundation 

models  are  very  easy  to  use  and  may  even  be  able  to  explain  their  decisions.  While 

there  are  many  aspects  that  highlight  the  relevance  of  the  methods  in  this  dissertation for  now  and  the  foreseeable  future,  the  extreme  progress  on  foundation  models  and 

the  hardware  suggests  that  they,  as  well  as  most  current  machine  learning  research, 

will  eventually  fall  under  the  bitter  lesson  of  AI. 
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 “The  biggest  lesson  that  can  be  read  from  70  years  of  AI  research  is  that  general methods  that  leverage  computation  are  ultimately  the  most  effective,  and  by  a  large margin.”  [..] 

—Rich  Sutton,  The  Bitter  Lesson 

Nevertheless,  cybersecurity  research  is  important  today  and  cannot  be  postponed 

to  the  future.  In  addition,  methods  such  as  data  augmentation  for  synthetic  data, 

active  learning  for  RLHF,  transfer  learning  methods  for  fine-tuning,  and  adversarial 

training  for  making  large  models  robust  may  still  be  needed,  seen  less  as  competition 

against  and  more  as  an  improvement  for  foundation  models. 

Finally,  the  main  research  question  of  this  dissertation  can  be  answered: 

Main  Research  Question 

How  can  the  performance  of  deep  learning  classifiers  for  cyber  threat 

intelligence  texts  be  improved  in  low-data  regimes? 

By  providing  a  component  for  each  phase  in  the  supervised  machine  learning  pro-

cess,  introduced  at  the  beginning  of  this  dissertation,  the  quality  of  textual  cyberse-

curity  classifiers  can  indeed  be  significantly  improved.  The  active  learning  proce-

dure,  ActiveLLM,  aims  to  assist  the  data  acquisition  process  by  sensibly  selecting 

instances  with  a  high  learning  impact,  even  in  few-shot  scenarios.  After  the  data  is 

labeled,  it  can  be  preprocessed  using  a  data  augmentation  strategy  based  on  GPT-

2  or  GPT-3,  while  being  constrained  by  an  embedding  filtering  method.  Then,  in 

the  model  selection  phase,  the  multi-level  fine-tuning  procedure,  incorporating  the 

novel  CySecBERT  model,  fosters  better  adaptation  in  few-shot  scenarios,  as  the 

model  has  a  superior  general  understanding  of  the  topic.  Finally,  since  learned  mod-

els,  especially  those  from  few-shot  scenarios,  tend  to  exhibit  vulnerabilities  in  the 

form  of  adversarial  examples,  XAI-Attack  can  be  used  to  increase  robustness. 

The  full  framework  is  tested  on  the  CTI  dataset  in  Sect. 4.3,  where  the  potential  of  this  work  can  be  grasped.  Besides  XAI-Attack,  every  method  contributes  to 

increasing  the  score,  with  a  baseline  improvement  of  up  to  27.55  percentage  points 

in  accuracy.  We  show  that  the  methods  of  the  framework  surpass  state-of-the-art 

few-shot  learning  methods,  such  as  ADAPET,  PERFECT,  and  even  the  foundation 

model  GPT-3.5.  A  decrease  in  performance  from  the  adversarial  training  method 

was  expected,  as  we  show  in  the  corresponding  chapter  (Chap. 13)  that  XAI-Attack can  identify  and  mitigate  biases  in  the  training  data  that  are  also  apparent  in  the 

testing  data.  Even  with  this  decrease,  it  can  be  concluded  that  the  framework  sig-

nificantly  improves  classifier  quality  for  cybersecurity  texts.  Beyond  addressing
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the  primary  research  question,  this  dissertation  demonstrates  that  the  developed 

methods  address  broader  machine  learning  challenges,  underscoring  their  universal 

applicability  across  various  domains. 

5.2

Theoretical  and  Practical  Contributions 

Each  study  in  this  dissertation  has  its  own  theoretical  and  practical  contributions,  as shown in Table  5.1,  details  of  which  can  be  found  in  the  respective  chapters.  When examining  this  dissertation  from  a  broader  perspective,  the  following  contributions 

can  be  derived. 

Table  5.1  Contributions  of  the  chapters  in  Part  II.  The  types  of  contributions  are  differentiated into  artifacts  (A),  datasets  (D),  theoretical  contributions  (T),  and  empirical  contributions  (E) Topic

Cha. 

Contribution

Type 

Motivation

6

A  system  for  reducing  information  overload  in  social 

A 

media  streams 

Comparison  of  embedding  models  and  advice  on  the 

E 

implementation  of  them 

Proposal  of  an  intrinsic  embedding  evaluation  task

T 

Active 

7

Innovative  active  learning  method  with  foundation 

A 

Learning 

models 

Proposal  to  overcome  cold-start  and  model- mismatch 

T 

problems 

Data  Aug-

8

Method-driven  textual  data  augmentation  taxonomy

T 

mentation 

Holistic  state-of-the-art  comparison  of  data 

E 

augmentation  in  text  classification 

Identification  of  future  research  perspectives  of  textual 

T 

data  augmentation 

9

Novel  long  and  short  text  data  augmentation  method 

A 

based  on  the  GPT-2  language  model 

Textual  data  augmentation  that  proves  beneficial  for 

E 

pre-trained  models 

Insights  into  the  application  of  data  augmentation  for 

E 

low-data  regimes 

12

Novel  data  augmentation  method  based  on  the  GPT-3 

A 

language  model 

New  insights  on  data  augmentation  with  strong  few-shot  E 

learning 

(Continued)

5.2

Theoretical and Practical Contributions

59

Table  5.1  (Continued) 

Topic

Cha. 

Contribution

Type 

Transfer 

10

Insights  into  the  real-time  capability  of  pre- trained 

E 

Learning 

models  for  credibility  assessment 

Novel  credibility  dataset

D 

11

Novel,  state-of-the-art  language  model  for  the 

A 

cybersecurity  domain 

Encountering  catastrophic  forgetting  with  learning  rate, 

E 

dataset  size  and  number  of  epochs 

A  cybersecurity  dataset  containing  relevant  cybersecurity  D 

sources  for  the  language  model  training  process 

12

New  few-shot  learning  technique  based  on  multi-level 

A 

fine-tuning 

A  specialized  CTI  few-shot  dataset  for  further  research 

D 

purposes 

Adversarial 

13

Black-box  adversarial  example  generation  method  by 

A 

Training 

incorporating  explainable  AI  and  focusing  on 

misclassified  examples 

Novel  out-of-distribution  evaluation  setting  for  better 

T 

assessment  of  robustness 

Novel  insights  of  learned  biases  of  transformer  models 

E 

and  how  to  mitigate  them 

5.2.1

Deep  Learning 

As  practical  contributions,  this  dissertation  introduces  sophisticated  artifacts  and 

recommendations  amalgamated  into  a  framework  for  creating  performant  deep 

learning  models,  particularly  suitable  for  textual  low-data  regimes.  These  methods, 

along  with  the  application  code  and  trained  models,  are  made  publicly  available. 

They  can  be  used  both  in  combination  and  isolation,  offering  versatile  solutions 

for  various  problems.  For  instance,  a  classifier  can  be  trained  solely  with  XAI-

Attack  or  through  ActiveLLM  without  employing  other  methods.  Notably,  the  data 

augmentation  methods,  CySecBERT,  ActiveLLM,  and  XAI-Attack  are  applicable 

beyond  low-data  contexts.  Furthermore,  in  the  studies  of  Chaps. 6, 9, and  10, we evaluate  or  discuss  the  time  consumption  and  resources  required,  ensuring  practical  applicability  of  these  approaches.  This  dissertation  also  empirically  demon-

strates  that  all  methods  significantly  improve  the  performance  of  pre-trained  models 

such  as  BERT,  ensuring  the  benefit  for  practical  scenarios.  Further  evaluations  and
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discussions  in  light  of  foundation  models  show  that  the  developed  methods  are  still 

advantageous  in  many  respects  and  may  also  be  useful  in  training  or  in  combination 

with  foundation  models.  In  general,  with  the  developed  methods  and  recommen-

dations,  practitioners  can  overcome  the  need  for  much  labor-intensive  labeling  and 

create  performant  and  robust  classifiers. 

Part  of  the  theoretical  contributions  includes  strategies  and  recommendations 

for  improving  deep  learning  in  textual  low-data  scenarios  at  various  points  in  the 

design  process.  They  advance  the  field  by  addressing  unmet  challenges  and  devel-

oping  methods  that  advance  the  state  of  the  art,  accompanied  by  comprehensive 

evaluations  and  analyses.  Beginning  with  research  overviews  in  different  chapters, 

we  analyze  the  current  state  of  the  art,  identify  promising  directions,  and  highlight 

sensible  research  gaps.  Our  approaches  are  designed  to  fill  these  gaps,  enhancing  the 

field  across  various  metrics  while  also  analyzing  shortcomings  and  limitations  that 

pave  the  way  for  future  research.  However,  as  already  mentioned,  these  methods  not 

only  deal  with  low-data  regimes  but  also  improve  the  state  of  the  art  in  their  respective  disciplines.  In  addition  to  sharing  our  code  and  models,  we  release  datasets 

and  evaluation  techniques  essential  for  furthering  research  in  these  areas,  thereby 

empowering  academic  progress.  In  studies  like  Chap. 8  and  Chap. 13, we  critically discuss  current  evaluation  methods  and  propose  novel  settings  and  perspectives  to 

overcome  shortcomings.  Finally,  each  proposed  system  is  thoroughly  interpreted 

and  discussed  to  derive  implications  for  current  research  and  to  highlight  potential 

limitations. 

5.2.2

Cyber  Threat  Intelligence 

Our  main  practical  contribution  in  the  area  of  CTI  is  the  deep  learning  framework 

that  enables  specialized  and  individualized  information  gathering  despite  the  highly 

dynamic  nature  of  the  field.  This  dissertation  first  identifies  the  challenges  faced  by practitioners  that  hinder  the  application  of  deep  learning  in  the  field  of  CTI.  These 

challenges  are  then  addressed  by  providing  the  code  and  resources  necessary  to 

rapidly  develop  high-performance  classifiers  with  every  new  cyber  threat  incident. 

Among  these  resources,  the  cybersecurity  community  can  particularly  benefit  from 

the  rigorously  trained  CySecBERT  model.  Experts  can  use  our  resources  directly  or 

adapt  them,  e.g.,  by  fine-tuning  the  CySecBERT  model  for  specific  tasks  or  by  using 

the  framework  of  Chap. 12  to  train  an  individualized  CTI  classifier  with  little  data. 

The  methods  we  develop  are  tested  on  data  from  the  CTI  and  general  cybersecu-

rity  domains  to  ensure  domain-oriented  applicability.  Furthermore,  we  demonstrate 

that  while  foundation  models  such  as  GPT-3.5  are  capable  of  performing  well  for
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collecting  specialized  CTI  information,  there  are  several  reasons  to  prefer  the  meth-

ods  of  this  dissertation.  However,  our  studies  also  identify  limitations  and  future 

work  that  needs  to  be  done  so  that  practitioners  can  best  benefit  from  the  developed 

methods. 

The  proposed  methods  are  poised  to  advance  the  field  of  machine  learning  and 

indirectly  impact  cybersecurity  research  and  foster  adaptation  processes  in  research 

by  proposing  theoretical  contributions.  This  dissertation  reveals  a  misalignment 

between  current  CTI  research  and  practical  needs  despite  the  existence  of  sophisti-

cated  deep  learning  strategies.  We  emphasize  the  need  for  models  that  can  identify 

fine-grained  cybersecurity  information  tailored  to  specific  needs,  rather  than  making 

general  predictions.  By  integrating  cybersecurity  with  deep  learning  research,  we 

offer  models  and  strategies,  such  as  the  CySecBERT  model  and  GPT-3  prompting 

guidelines,  for  straightforward  insights  and  adaptations.  Furthermore,  we  publish 

datasets,  such  as  the  cybersecurity  corpus  used  to  train  CySecBERT  or  the  annotated 

MSExchange  dataset  from  Chap. 12,  to  facilitate  improved  cybersecurity  research based  on  our  findings  and  to  align  CTI  research  with  the  latest  advances  in  machine 

learning. 

5.3

Limitations  and  Future  Work 

The  broader  limitations  of  this  dissertation  are  delineated  across  the  main  domains: 

deep  learning,  cybersecurity,  and  interdisciplinary  research. 

5.3.1

Deep  Learning 

In  our  study,  we  intentionally  refrained  from  defining  a  specific  threshold  for  what 

constitutes  a  low-data  regime,  as  this  can  vary  significantly  across  different  tasks. 

Since  it  is  not  possible  to  determine  what  constitutes  “enough”  data  for  a  deep  learning  model—given  its  dependence  on  problem  complexity,  data  quality,  and  other 

factors—it  is  also  not  feasible  to  establish  a  clear  boundary  for  the  amount  of  data 

that  qualifies  as  a  low-data  regime.  Binary  classification  few-shot  scenario  evalua-

tions  are  often  conducted  with  32  training  data  instances  [431, 449].  However,  we believe  it  is  more  reasonable  to  assess  each  task  on  its  own  merits.  Still,  for  the  active learning  and  data  augmentation  steps,  it  is  valuable  to  inspect  when  performance 

saturates  or  even  degrades,  as  they  can  generate  infinitely  many  instances.  Although 

we  conducted  these  evaluations  in  the  active  learning  and  data  augmentation  stud-

ies,  more  comprehensive  assessments  with  different  datasets  would  be  insightful  for
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practical  applications.  Further  studies  on  this  topic  could  provide  insights  into  how 

much  synthetic  data  can  be  generated  without  saturation,  as  well  as  how  much  real 

data  is  needed  for  the  methods  to  work  effectively  without  substantial  distribution 

shifts. 

Another  limitation  is  that  this  dissertation  does  not  focus  on  the  computational 

or  time  resources  required,  nor  on  the  environmental  impact  of  the  methods.  Prac-

tically,  it  is  necessary  to  determine,  for  example,  whether  to  employ  the  data  aug-

mentation  process  with  GPT-3  or  if  GPT-2  might  suffice.  Similarly,  the  multi-level 

fine-tuning  process  consumes  significant  computing  resources,  and  from  a  financial 

perspective,  labeling  more  data  might  be  more  cost-effective  in  scenarios  where  the 

different  levels  of  the  fine-tuning  process  cannot  be  reused.  Additionally,  while  the 

active  learning  method  is  an  efficient  way  to  achieve  good  performance  in  terms  of 

labeling  costs,  from  an  environmental  standpoint,  direct  labeling  might  be  prefer-

able  to  using  a  foundation  model  in  the  active  learning  method.  Furthermore,  only 

a  small  part  of  our  study  addresses  the  time  resources  required  for  deploying  the 

developed  methods.  While  the  studies  on  clustering  with  embedding  models  (Chap. 

6)  and  credibility  assessment  with  BERT  (Chap. 10)  have  dedicated  metrics  for  the evaluation  of  time,  the  studies  on  the  GPT-2  data  augmentation  method  (Chap. 9) and  ActiveLLM  (Chap. 7)  only  briefly  discuss  time  constraints.  For  instance,  XAI-Attack  (Chap. 13)  can  require  substantial  time  resources  depending  on  the  hold-out data,  which  was  not  considered  in  the  respective  chapter.  Waiting  for  a  method,  and 

ultimately  for  the  resulting  model,  can  have  serious  consequences  when  deployed 

in  time-critical  environments  like  cybersecurity  incidents.  Generally,  we  encourage 

further  studies  on  the  practicality  of  the  developed  approaches  in  terms  of  compu-

tational  and  time  resources,  as  well  as  environmental  impact. 

5.3.2

Cybersecurity 

While  this  dissertation  focuses  on  the  practical  requirements  and  challenges  of  cyber-

security  professionals  and  CERTs,  it  does  not  report  on  the  interaction  with  those 

professionals.  The  methods  are  currently  only  designed  to  improve  classification 

performance  metrics,  not  to  enhance  usability  or  user  experience.  This,  however, 

is  a  very  important  aspect.  While  the  methods  presented  in  this  dissertation  might 

save  on  labeling  costs,  they  might  be  too  complicated  for  non-deep  learning  experts 

to  execute,  potentially  leading  to  higher  deployment  costs.  Furthermore,  when  aim-

ing  to  train  a  new  classifier  with  each  new  incident,  the  methods  might  need  to  be 

extended  with  a  labeling  interface  and  then  automatically  executed.  Additionally, 

while  not  necessary,  some  methods  might  require  parameter  tuning  to  achieve  the

5.3

Limitations and Future Work

63

expected  results,  which  also  incurs  the  cost  of  expert  knowledge.  Therefore,  we 

look  forward  to  studies  that  explore  and  enhance  the  human  interaction  between 

the  methods  proposed  in  this  dissertation  and  cybersecurity  professionals,  such  as 

CERTs. 

While  we  aim  to  establish  the  task  of  collecting  specialized  and  individualized 

CTI  information  within  the  general  field  of  cybersecurity,  for  instance,  with  the 

annotated  dataset,  there  are  some  challenges  that  come  with  this  novelty.  We  have 

laid  the  foundation  for  the  continual  training  of  CTI  classifiers  with  every  new 

incident,  but  we  could  only  test  our  framework  with  one  dataset  and  based  on  our 

constraints,  such  as  social  media  data.  Therefore,  our  view  on  additional  situations 

is  limited.  Similarly,  as  the  field  has  not  been  thoroughly  explored  and  we  only  have contact  with  certain  CERT  teams,  the  overarching  challenges  are  only  partly  visible 

for  now.  While  we  believe  that  the  topic  of  CTI  will  continue  to  grow,  we  hope  that more  studies  will  follow  to  explore  the  specialized  and  individualized  collection  of 

CTI  information. 

5.3.3

Interdisciplinary  Research 

Given  the  interdisciplinary  nature  of  this  dissertation,  it  was  not  possible  to  cover 

every  facet  of  each  field  comprehensively.  For  instance,  within  the  realm  of  cyber-

security,  our  research  focused  on  information  gathering  in  CTI  without  looking  at 

network  or  closed-source  data.  In  the  field  of  deep  learning,  our  attention  was  pri-

marily  on  classification  of  textual  data  and  transformer  models,  excluding  other  task 

settings  and  architectures. 

The  interdisciplinary  approach  of  this  dissertation  also  reveals  itself  on  a  smaller 

scale.  For  example,  a  thesis  solely  dedicated  to  adversarial  training  might  offer  a 

more  in-depth  discussion  on  the  robustness  of  such  training,  contain  more  rigorous 

analyses  of  the  generated  data,  and  evaluate  additional  out-of-distribution  tasks. 

Therefore,  we  recognize  the  value  of  research  that  is  fully  immersed  in  its  discipline, as  it  is  as  crucial  as  interdisciplinary  work. 

Furthermore,  the  interdisciplinarity  of  this  dissertation  comes  at  the  cost  of  gen-

eral  applicability  in  other  domains.  While  many  deep  learning  methods,  like  Activ-

eLLM,  XAI-Attack,  and  the  GPT-2  data  augmentation  method,  are  evaluated  for 

various  domains,  methods  like  multi-level  fine-tuning  and  insights  into  catastrophic 

forgetting  in  CySecBERT  are  only  evaluated  in  the  application  domain.  Therefore, 

it  remains  to  be  shown  whether  these  studies  also  apply  to  other  domains. 

64

5

Conclusion

5.4

Ethical  and  Societal  Considerations 

In  our  work,  ethics  has  been  a  primary  concern,  and  we  have  continuously  reevalu-

ated  our  methods  to  ensure  responsible  behavior.  However,  research  on  topics  such 

as  CTI  information  gathering  and  adversarial  examples  inherently  involves  risks  of 

misuse.  For  instance,  a  system  capable  of  identifying  specialized  CTI  information 

can  be  used  to  gather  insights  on  how  to  exploit  vulnerabilities  or  deploy  attacks 

on  vulnerable  machines.  Similarly,  our  adversarial  example  generator,  XAI-Attack, 

designed  to  enhance  the  robustness  of  models,  can  also  be  misused  to  attack  deployed 

deep  learning  classifiers.  Additionally,  research  on  deep  learning  classifiers  in  low-

data  regimes  can  enable  malicious  actors  to  train  models  for  unethical  purposes  with 

relative  ease. 

We  also  acknowledge  that  we  have  not  explicitly  focused  on  analyzing  social 

biases  that  may  result  from  or  be  inherent  in  our  methods.  For  example,  if  the 

CySecBERT  model  is  used  for  classification  or  GPT  models  are  employed  as  data 

augmentation  methods,  the  results  could  exhibit  biases.  While  this  might  not  sig-

nificantly  impact  most  applications,  in  some  cases,  such  biases  could  lead  to  severe 

consequences,  including  discrimination. 

As  authors,  we  wish  to  express  our  concerns  regarding  the  potential  misuse  of  our 

work.  Nevertheless,  we  advocate  for  an  open-source  mentality,  recognizing  the  sig-

nificant  benefits  these  technologies  can  offer.  We  emphasize  that  the  responsibility 

for  ethical  use  lies  with  the  users  of  these  methods,  in  line  with  ongoing  discussions within  the  open-source  community. 
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Abstract 

Past  studies  in  the  domains  of  information  systems  have  analyzed  the  potential 

and  barriers  of  social  media  in  emergencies.  While  information  disseminated  in 

social  media  can  lead  to  valuable  insights,  emergency  services  and  researchers 

face  the  challenge  of  information  overload  as  data  quickly  exceeds  the  manage-

able  amount.  We  propose  an  embedding-based  clustering  approach  and  a  method 

for  the  automated  labeling  of  clusters.  Given  that  the  clustering  quality  is  highly 

dependent  on  embeddings,  we  evaluate  19  embedding  models  with  respect  to 

time,  internal  cluster  quality,  and  language  invariance.  The  results  show  that  it 

may  be  sensible  to  use  embedding  models  that  were  already  trained  on  other  cri-

sis  datasets.  However,  one  must  ensure  that  the  training  data  generalizes  enough 

so  that  the  clustering  can  adapt  to  new  situations.  Confirming  this,  we  found 

out  that  some  embedding  models  were  not  able  to  perform  as  well  on  a  German 

dataset  as  on  an  English  dataset. 
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Material 

Experimental 

Code:

https://github.com/PEASEC/Evaluation-of-Embedding-

Models-for-Clustering-Social-Media-Posts-in-Emergencies 

6.1

Introduction 

In  the  past  20  years,  social  media  was  not  only  used  in  everyday  life  but  also  dur-

ing  almost  every  major  natural  and  man-made  crisis,  including  the  2001  Septem-

ber  11  attacks,  2012  Hurricane  Sandy,  2013  European  floods,  or  the  COVID-19 

pandemic,  to  gather  and  spread  disaster-related  information  [289, 322, 357].  This user-generated  content  comprises  multimedia  files  (e.g.,  audio,  photo,  video)  and 

textual  information  (e.g.,  situational  updates,  public  mood,  specific  information) 

that  has  the  potential  to  increase  situational  awareness  and  improve  crisis  response 

for  crisis  volunteers,  emergency  personnel,  and  other  involved  persons  [161, 313]. 

However,  emergency  services  face  issues  of  information  quality  and  overload  under 

the  time-critical  constraints  of  large-scale  emergencies,  which  requires  an  efficient 

and  effective  way  to  structure  the  incoming  volumes  of  social  big  data  [167, 312]. 

To  address  this  challenge,  many  algorithms,  frameworks,  methods,  and  tools  arose 

from  the  research  areas  of  machine  learning  [ 10, 167], information  systems  [101, 

116], social  media  analytics  [108, 420], and  crisis  informatics  [143, 321]. 

To  tackle  information  overload,  researchers  came  up  with  supervised  machine 

learning  classifiers  to  estimate  the  relevance  of  postings  to  the  situation  [ 2, 142] or to  categorize  the  postings  into  groups  of  different  information  types  [ 54, 171, 304]. 

Despite  the  value  of  such  supervised  approaches,  the  gathering  and  labeling  of  case-

specific  training  data  are  costly  and  highly  time-consuming,  which  is  particularly 

problematic  in  disaster  situations  [198]. Little  research,  however,  has  focused  on unsupervised  techniques  such  as  clustering,  which  utilize  similarity  measures  to 

identify  patterns  in  the  data  to  form  groups  and  do  not  need  any  training  based 

on  labeled  data  [503]. To  find  similarities  between  social  media  messages,  it  is necessary  to  convert  them  into  vectors,  which  ideally  share  a  similar  contextual 

meaning.  The  contextual  conversion  can  be  produced  by  embedding  models,  such 

as  the  Word2vec  model  [283]. 

In  our  literature  review,  we  identified  a  variety  of  potentials  for  research.  First, 

researchers  have  brought  up  both  general  and  domain-dependent  embedding  models 

[ 10, 128].  However,  there  is  a  lack  of  knowledge  on  which  ones  perform  better  in emergencies.  Furthermore,  current  clustering  approaches  are  primarily  learned  on
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English  data  [244]. This  calls  for  a  cross-language  evaluation  of  different  embedding  models.  Since  disasters  are  often  characterized  by  time-critical  constraints, 

performant  clustering  algorithms  and  embedding  models  are  required  to  allow  an 

almost  real-time  application.  To  further  increase  the  interpretability  and  value  of 

the  built  clusters  in  a  disaster  situation,  a  short  description  or  a  label  for  each  would be  desirable  [ 10].  In  summary,  the  goal  of  this  work  is  to  establish  an  efficient  and effective  methodology  for  clustering  social  media  posts  in  disaster  situations  so  that 

emergency  personnel  and  other  actors  can  gain  a  quick  overview  of  the  gathered 

data.  The  main  aspect  is  to  evaluate  different  state-of-the-art  word  and  document 

embedding  methods  with  respect  to  clustering  and  disaster  situations.  Thus,  we  seek 

to  answer  the  following  research  questions:   To  what  degree  are  domain-dependent 

 embeddings  helpful  for  clustering  the  dynamic  data  in  emergencies  (RQ1)?  Which 

 embeddings  are  more  invariant  with  respect  to  the  language  of  the  data  (RQ2)? 

 Which  embedding  methods  are  suitable  for  the  time-critical  analysis  of  Twitter  data 

 in  emergency  situations  (RQ3)? 

In  order  to  answer  these  questions,  the  paper  is  structured  as  follows:  First, 

we  present  related  work  on  the  foundations  and  techniques  regarding  information 

overload  and  clustering  before  outlining  the  research  gap  (Sect. 6.2).  Based  on  these foundations,  we  present  the  method  and  implementation  of  embedding  models  and 

the  clustering  approach  (Sect. 6.3). Thereafter,  we  describe  the  selected  datasets, evaluation  criteria,  and  results  of  the  evaluation  (Sect. 6.4). In  summary,  we  evaluate 19  methods  for  creating  the  document  embeddings  on  two  different  datasets  and  use 

k-means  for  clustering,  from  which  the  produced  groups  are  evaluated  with  internal 

evaluation  methods.  Furthermore,  we  discuss  the  prospect  of  automatically  labeling 

the  clusters  (Sect. 6.5).  The  paper  finishes  with  a  discussion  of  the  results  and implications,  the  conclusion,  and  an  outlook  (Sect. 6.6). 

6.2

Related  Work 

In  information  systems,  social  media  analytics  is  defined  as  “the  process  of  social 

media  data  collection,  analysis,  and  interpretation  in  terms  of  actors,  entities,  and 

relations”  [419]. It  aims  to  combine,  extend,  and  adapt  methods  and  tools  for  the analysis  of  social  media  data  [108, 420]. When  applied  to  the  domain  of  crisis  informatics,  it  is  often  combined  with  interfaces  for  real-time  analytics  and  machine 

learning  algorithms  [167, 314].  This  section  presents  techniques  to  mitigate  information  overload  in  crises  and  proposes  clustering  as  a  solution  to  reduce  the  amount 

of  data  presented  to  emergency  personnel. 
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6.2.1

Foundations  and  Techniques  to  Mitigate  Information 

Overload  in  Crises 

When  tens  of  thousands  of  social  media  messages  are  generated  during  large-scale 

emergencies  [358], authorities  have  to  deal  with  the  issue  of  information  or  social media  overload  [233].  Amongst  others,  the  concept  is  examined  in  management information  systems  and  can  be  caused  by  personal  factors,  information  characteristics,  task  and  process  parameters,  organizational  design,  or  information  technology 

[102].  With  regard  to  characteristics  and  technology,  information  overload  is  often defined  as  “[too  much]  information  presented  at  a  rate  too  fast  for  a  person  to  process”  [152]  and  implies  the  danger  of  getting  lost  in  data  that  may  be  irrelevant  to the  current  task  at  hand  and  of  data  being  processed  and  presented  in  an  inappropriate  way  [200].  In  past  crisis  informatics  research,  several  prototypes  and  techniques were  explored  to  mitigate  information  overload  in  large-scale  emergencies,  whereof 

some  are  outlined  in  Table  6.1. The  first  intuitive  step  to  find  relevant  (or  to  filter  out irrelevant)  information  is  the  use  of  search  engines  that  facilitate  simple  keyword-Table  6.1  Overview  of  different  techniques  deployed  to  mitigate  information  overload  in crises,  disasters,  or  emergencies 

Technique

Description 

Search 

Formulation  of  simple  keyword  search  or  complex  Boolean  search  query 

engine 

engine,  including  operators  such  as  “AND”,  “OR”,  and  “NOT”,  which  are 

embedded  into  web  interfaces  or  provided  by  search  APIs  [167]. 

Metadata 

Filtering  of  information  by  metadata,  such  as  language,  location,  social 

filtering 

media  platform,  or  time,  which  is  often  combined  with  search  functionality 

[197]. 

Interactive 

Use  of  interactive  visualizations,  such  as  charts,  maps,  timelines,  or  word 

visualiza-

clouds,  to  reduce  the  displayed  data  to  a  specific  subset  by  a  specific 

tions 

gesture  [314]. 

Message 

Use  of  supervised  machine  learning  models  to  classify  information  as 

classification 

relevant  or  irrelevant  for  a  specific  emergency  [142]  or  to  categorize  them into  humanitarian  information  types  [ 10]. 

Message 

Categorization  of  text  documents  into  similar  groups  using  similarity 

clustering 

metrics  and  unsupervised  machine  learning  techniques,  which  do  not 

require  labeled  data  for  training  [107]. 

Information 

Automatic  and  real-time  algorithms  that  use  extraction  or  abstraction 

summariza-

techniques  to  provide  a  general  information  summary  of  a  disaster  event 

tion 

[373]. 
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based  or  complex  Boolean  search  queries.  While  these  are  often  embedded  in  social 

media  platforms  such  as  Facebook  or  Twitter  directly,  developers  can  use  platform 

search  APIs  to  integrate  their  results  into  supportive  third-party  applications  [167]. 

In  such  applications,  search  engines  are  often  combined  with  additional  function-

ality  allowing  the  filtering  of  information  by  metadata,  such  as  language,  location, 

social  media  platform,  or  time  [197]. While  this  functionality  is  often  provided  by specific  forms,  interactive  visualizations,  such  as  charts,  maps,  timelines,  or  word 

clouds,  can  be  used  to  reduce  the  displayed  data  by  a  specific  gesture  [314]. For instance,  if  a  pie  chart  displays  the  numbers  of  positive,  neutral,  and  negative  sentiment  messages,  a  click  on  the  positive  “wedge”  could  trigger  attached  list  or  map 

views  that  only  show  messages  with  positive  sentiment. 

While  search  engines  and  metadata  filtering  can  be  useful  measures  for  reducing 

information  overload,  too  restrictive  search  queries  can  lead  to  the  problem  that 

emergency  services  may  miss  out  on  relevant  information.  This  is  especially  true 

for  location-based  filtering  since  only  a  small  amount  of  social  data  posts  contain 

geocoordinates.  Here,  machine  learning  algorithms  can  help  to  find  relevant  infor-

mation  after  data  is  collected.  For  instance,  message  classification  techniques  often 

apply  supervised  machine  learning  to  binarily  classify  social  media  posts  as  relevant 

or  irrelevant  for  a  specific  emergency  [142]  or  to  categorize  them  into  humanitarian information  types,  such  as  affected  individuals,  infrastructure  and  utilities,  donations 

and  volunteering,  caution  and  advice,  sympathy  and  support,  other  useful  informa-

tion,  or  not  applicable  [ 10].  However,  these  techniques  are  often  tailored  to  specific emergencies,  thus  not  being  generally  applicable,  and  rely  on  the  time-intensive 

labeling  of  data  and  model  training.  This  stands  in  contrast  to  unsupervised  message 

clustering  techniques  that  categorize  text  documents  into  similar  groups  using  simi-

larity  metrics  and  unsupervised  machine  learning  techniques;  hence,  labeled  data  for 

training  is  not  required  [107]. Considering  the  human  capacity  of  information  processing,  Miller  [284]  suggests  “organizing  or  grouping  the  input  into  familiar  units or  chunks”  to  overcome  such  limitations.  In  accordance,  further  research  suggests 

that  ‘chunking’  social  media  messages  by  specific  tools  positively  influences  emer-

gency  managers’  intention  to  use  social  media  during  emergencies  [349]. However, clusters  might  not  be  self-explanatory  and  require  a  useful  summary  of  cluster  content  or  at  least  describing  labels  [135].  On  the  one  hand,  information  summarization approaches  might  be  used  for  the  automatic  and  real-time  extraction  or  abstraction 

of  a  dataset  or  subset  to  provide  an  information  summary  [373]. On  the  other  hand, the  automatic  labeling  procedure  outlined  in  Sect. 6.5  can  be  relevant  for  obtaining a  concise  overview  of  the  cluster  contents. 
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6.2.2

Clustering,  Embeddings,  and  their  Application  in  Crisis 

Informatics 

Clustering  is  performed  by  unsupervised  machine  learning  methods,  which  can  be 

applied  when  no  class  is  to  be  predicted  [107].  Thus,  the  data  should  rather  be grouped  into  natural  clusters  [487].  These  groups  are  most  frequently  found  with some  kind  of  similarity  measure  for  comparing  the  data.  In  contrast  to  supervised 

machine  learning  techniques,  labeled  data  is  not  required,  which  makes  it  an  inter-

esting  field  of  study.  Authors  like  Imran  et  al. [167]  already  pointed  out  that  the considerable  amount  of  labeled  data  constitutes  a  challenge  in  disaster  situations. 

There  are  many  algorithms  suited  for  clustering  data,  such  as  k-means  [146] and mean-shift  clustering  [ 69].  Further  existing  work  looked  at  clustering  techniques  in general  [503], reviewed  techniques  in  contrast  to  k-means  [175], and  with  respect  to Twitter  data  [ 13].  However,  k-means  is  a  widely  used  algorithm  that  is  also  applied in  crisis  informatics  [ 10]  because  it  is  simple  and  computationally  efficient  [175]. 

Since  clustering  methods  rely  on  numerical  data  as  input,  it  is  important  to  find  a 

good  numerical  representation  of  the  textual  nature  of  a  tweet.  More  precisely,  it 

would  be  necessary  to  map  the  Twitter  posts  into  a  latent  space  that  has  an  inherent structure  based  on  contextual  similarity.  This  means  that  similar  posts  get  a  similar 

number  vector,  and  different  posts  are  distant  in  this  continuous  space. 

This  challenge  can  be  addressed  with  embedding  models.  The  goal  of  represent-

ing  text  as  numerical  vectors  with  meaning  can  be  abstracted  as  the  goal  to  represent words  as  numerical  vectors  with  meaning.  This  dates  back  to  the  1960s  and  is  based 

on  the  distributional  hypothesis  (Harris,  1954),  which  can  be  interpreted  as  “a  word 

is  characterized  by  the  company  it  keeps”  (Firth,  1957).  With  the  Word2vec  model 

from  Mikolov  et  al.  [283], word  embeddings  became  one  of  the  biggest  trends in  Natural  Language  Processing  (NLP)  research  until  the  present.  Mikolov  et  al. 

[283]  proposed  a  shallow  neural  network  for  building  the  embeddings,  reaching state-of-the-art  performance  in  various  NLP  tasks.  As  a  next  step,  the  words  of  a 

sentence  or  document  can  be  further  processed  to  get  a  single  sentence  or  document 

embedding,  respectively.  More  or  less  based  on  the  Word2vec  model,  various  word 

and  document  embedding  approaches  have  been  proposed  in  recent  years.  Many 

embedding  models  are  self-supervised,  meaning  that  they  create  their  own  training 

labels  without  any  human  annotator  [257].  To  model  the  distributional  hypothesis, they  need  a  large  dataset  for  training.  If  a  model  has  never  seen  a  certain  word  (also called  out-of-vocabulary  word),  it  is  hard  to  map  it  to  a  meaningful  vector.  Training 

a  new  model  for  every  new  disaster  situation  and  other  fields  of  use  is  not  feasible; therefore,  people  often  rely  on  pre-trained  embeddings.  A  model  like  GloVe  [330] 

that  has  been  trained  on  large  common  crawls,  Wikipedia  pages,  and  Twitter  data
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has  vocabulary  sizes  varying  from  400,000  to  2.2  million  unique  words.  It  seems 

worthwhile  to  examine  if  it  would  be  more  beneficial  to  train  the  embedding  models 

using  general  or  domain-related  data,  such  as  other  past  crisis  datasets. 

One  of  the  main  purposes  of  clustering  is  to  gain  insights  from  the  underlying 

structure  by  discovering  natural  groupings  [175]. These  groupings  can  reach  from being  very  obvious  to  being  latent,  depending  on  the  data  and  the  observer.  With 

regard  to  crisis  informatics,  a  brief  overview  of  the  different  categorization  or  grouping  possibilities  for  social  media  posts  is  shown  in  Table  6.2. Most  existing  work categorizes  posts  as  either  relevant  or  not  relevant  for  a  specific  emergency,  while 

some  try  to  map  predefined  humanitarian  categories.  The  different  groupings  show 

that  supervised  classifiers  cannot  cover  all  different  possibilities,  so  an  unsupervised 

clustering  method  might  be  helpful.  Emergency  situations  are  highly  dynamic,  so 

it  is  obvious  that  the  goal  is  to  not  predefine  the  groups.  Clusters  from  a  clustering algorithm  can  and  should  be  highly  different,  given  new  disaster  situations. 

Table  6.2  Overview  of  different  grouping  possibilities  proposed  in  various  papers 

Paper

Grouping  possibilities 

[ 10]

“damage”,  “personal  opinion”,  “caution  and  advice”,  “not  relevant” 

[ 10]

“after  effect”,  “personal  opinion”,  “updates”,  “other  useful  information”, 

“not  relevant” 

[168]

“personal  only”,  “informative  (direct)”,  “informative  (indirect)”, 

“informative  (direct  or  indirect)”,  “other” 

[168]

“caution  and  advice”,  “casualties  and  damage”,  “donations  of  money, 

goods  or  services”,  “people  missing,  found  or  seen”,  “information  source”, 

“other” 

[457]

“off-topic”,  “on-topic  and  relevant  to  situational  awareness”,  “on-topic  and 

not  relevant  to  situational  awareness” 

[457]

“off-topic”,  “on-topic  and  not  relevant  to  situational  awareness”,  “social 

environment”,  “built  environment”,  “physical  environment” 

[457]

“off-topic”,  “on-topic  and  not  relevant  to  situational  awareness”,  +  32 

information  types 

[ 2], [142], 

“relevant/informative”,  “not  relevant/informative” 

[198], [244], 

[304], [416], 

[455] 
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6.2.3

Research  Objectives 

The  review  identified  a  variety  of  measures  to  reduce  information  overload  (Table 

6.1),  highlighting  that  chunking  or  clustering  information  positively  influences emergency  managers’  intention  to  use  social  media  during  emergencies  [102, 349]. 

Apart  from  the  emphasis  on  crisis  situations,  the  evaluation  performed  in  this  paper 

can  be  seen  as  an  intrinsic  evaluation  method  for  embedding-based  clustering.  Intrin-

sic  evaluations  are  performed  within  the  word  vectors  themselves,  especially  where 

no  classifier  is  trained  on  them  [ 26, 385].  One  of  the  most  popular  evaluation  methods  in  this  sector  is  the  word  similarity  task,  where  the  cosine  similarity  of  word 

embeddings  is  compared  to  human  judgments  [111].  Extrinsic  evaluations,  on  the other  hand,  apply  the  embeddings  on  a  downstream  NLP  task,  for  example,  sentiment  analysis  or  POS  tagging  [303]. The  contextually  most  related  work  to  ours is  conducted  by  Alam,  Ofli,  and  Imran  [ 10]. They  propose  a  system  for  clustering social  media  data  in  crisis  situations  using  an  embedding  approach.  The  authors  train 

a  new  Word2vec  model  on  a  crisis  dataset.  These  contextual  embeddings  are  then 

averaged  to  get  a  document  vector.  Afterward,  the  authors  perform  PCA  to  reduce 

the  computational  cost,  which  they  unfortunately  do  not  specify  in  numbers.  On 

the  lower  dimensional  data,  they  also  perform  k-means  with  an  adaptive  k-search 

approach.  The  resulting  clusters  are  analyzed  and  labeled  manually  by  humans.  In 

contrast  to  their  work,  we  consider  different  approaches  and  take  a  deeper  look 

into  the  assessment  of  them.  Our  goal  is  to  evaluate  and  answer  specific  research 

questions  concerning  the  embedding  creation  since  this  is  the  most  important  step 

for  clustering  the  posts. 

Clustering  in  disaster  situations  is  often  found  in  relation  to  the  temporal  or 

spatial  dimension  [266, 333, 376]. In  connection  with  textual  data,  state-of-the-art literature  is,  aside  from  Alam,  Ofli,  and  Imran  [ 10],  lacking  in  this  field.  Yin  et al. [511]  cluster  event-specific  topics  in  emergencies  but  still  use  TF-IDF  vectors instead  of  embeddings,  which  are,  in  most  cases,  proven  to  be  superior.  Abstracting 

the  work  from  the  crisis  context,  Dai,  Bikdash,  and  Meyer  [ 84]  propose  a  clustering method  in  the  area  of  public  health  surveillance.  Their  goal  is  not  to  find  different groups  but  to  model  a  classifier  that  binarily  decides  if  a  post  is  related  or  unrelated to  the  health  topic.  The  authors  use  the  Word2vec  model  to  create  embeddings 

but  do  not  consider  other  possible  models.  Our  work  can  be  compared  to  Li  et  al. 

[244],  where  the  authors  conduct  a  large  evaluation  of  different  word  and  document embedding  approaches  for  classification  tasks  in  crisis  situations.  In  a  similar  work, 

Khatua,  Khatua,  and  Cambria  [204]  compare  word  embeddings  in  the  context  of virus  outbreaks.  The  difference  between  the  work  of  both  and  ours  lies  in  the  task 

setting  and  evaluation  method.  Their  goal  is  to  classify  posts  in  a  supervised  way  that

[image: Image 15]
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leads  to  an  extrinsic  evaluation  method  for  assessing  the  embeddings,  whereas  we 

work  in  an  unsupervised  setting  for  clustering  and  propose  an  intrinsic  evaluation 

method  for  embeddings.  Similar  to  their  work,  we  apply  embeddings  learned  from 

previous  disasters  to  examine  if  they  lead  to  a  better  separation  of  the  data  (RQ1). 

Beyond  that,  we  put  a  special  emphasis  on  language-invariance  and  time-criticality 

based on RQ2  and RQ3. 

6.3

Architecture  and  Embedding  Models 

Our  process  of  clustering  social  media  posts  is  shown  in  Fig. 6.1. The  unstructured text  is  processed  in  an  NLP  pipeline,  which  tokenizes  the  tweets  according  to  the 

tokenizer  used  for  the  embedding  model.  This  is  necessary  as  different  embedding 

models  use  different  tokenization  techniques.  In  the  next  step,  an  embedding  creation 

approach  is  applied.  These  approaches  comprise  two  differing  groups  of  models. 

The  sentence  (or  document)  embedding  models  are  directly  building  vectors  for 

the  whole  tweet,  while  the  word  embedding  models  just  create  word  vectors  for 

every  word  in  the  tweet.  If  a  sentence  embedding  model  is  chosen,  the  vectors  are 

immediately  fed  into  the  clustering  algorithm.  If  we  take  a  word  embedding  model, 

the  word  embeddings  of  a  tweet  are  averaged  (Avg),  or  the  minima  and  maxima 

(MinMax)  vectors  are  concatenated.  We  chose  k-means  [146]  as  the  clustering algorithm.  K-means  is  dependent  on  the  hyperparameter  k,  which  specifies  how 

many  clusters  should  be  formed. 

Fig.  6.1  The  clustering  process,  beginning  with  an  NLP-pipeline  for  tokenization,  over  the embedding  creation,  to  the  clustering  algorithm 

6.3.1

Software  and  Hardware  Architectures 

As  a  software  basis  for  the  clustering  algorithm  and  evaluation  metrics  (see  Sect. 6.3 

and  Sect. 6.5),  we  chose  scikit-learn.  The  implementation  of  the  embedding  models  depends  on  the  individual  instructions  given  by  the  authors  or  relevant  libraries 

of  the  models.  The  same  applies  to  the  tokenization  steps  that  are  required  for
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preprocessing  the  data  according  to  the  models.  The  system  used  for  the  implemen-

tation  and  evaluation  has  an  Intel  Xeon  processor  with  a  single  core  at  2.3  GHz.  A 

Nvidia  Tesla  K80  with  12  gigabytes  of  RAM  is  used  for  computing  matrix-based 

calculations  of  several  representation  models.  Furthermore,  25  gigabytes  of  RAM 

are  available  for  storing  the  representations  efficiently. 

6.3.2

Used  Embedding  Models  for  Comparison 

Many  embedding  approaches  have  been  developed  since  the  proposal  of  Word2vec. 

For  a  suitable  selection  of  approaches,  we  considered  the  work  of  Li  et  al. [244] 

and  new  emerging  trends  such  as  the  state-of-the-art  embedding  model  BERT  by 

Devlin  et  al.  [ 89]. The  models  used  here  are  listed  below  with  a  brief  description, while  detailed  descriptions  can  be  found  in  the  original  papers. 

• Word2vec  (W2V)—word  embeddings  [283]. This  model  is  one  of  the  first  that used  shallow  neural  networks  to  create  word  embeddings.  Due  to  its  popularity, 

many  different  datasets  were  used  by  various  authors  to  train  the  network.  We 

are  using  three  pre-trained  models: 

–  Twitter  Word2vec  model:  Trained  with  400  million  tweets  [128]. 

–  Crisis  Twitter  Word2vec  model:  Trained  with  52  million  crisis-related  tweets 

[170]. 

–  Crisis  Twitter  Word2vec  model:  Trained  with  364  million  crisis-related 

tweets  [ 8, 9]. 

• GloVe—word  embeddings  [330]. This  model  combines  the  idea  of  Word2vec with  word  occurrence  statistics.  The  Twitter  model  pretrained  on  2  billion  tweets 

is  used. 

• FastText—word  embeddings  [ 38, 186].  The  main  difference  of  this  Word2vec extension  is  that  it  splits  the  words  into  n-grams,  which  has  the  advantage  of 

getting  good  vectors  for  rare  and  out-of-vocabulary  words.  Another  advantage 

is  that  FastText  is  already  pre-trained  in  157  languages,  which  is  especially 

important  in  disaster  situations. 

• InferSent—sentence  embeddings  [ 79].  This  model  is,  in  contrast  to  the  previous models,  trained  on  a  supervised  task.  The  authors  are  using  a  bidirectional  LSTM, 

followed  by  a  comparison  layer  and  fully  connected  layers,  to  solve  the  SNLI 

task  [ 42]. We  are  using  the  GloVe  and  FastText  pretrained  variants. 
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• Universal  Sentence  Encoder  (USE)—sentence  embeddings  [484].  This  model extends  the  approach  of  InferSent  to  two  more  tasks  (question  answering  and 

translation)  with  different  architectures.  We  use  the  base  and  large  pretrained 

model. 

• Sent2Vec—sentence  embeddings  [320].  The  goal  of  Sent2Vec  is  to  assign  each word  a  word  embedding  so  that  the  average  of  all  of  them  in  the  document 

constitutes  a  good  vector.  We  are  using  the  Twitter-learned  embeddings. 

• Sentence-BERT  (SBERT)—sentence  embeddings  [356, 513].  Bidirectional Encoder  Representations  from  Transformers  (BERT)  [ 89]  is  considered  to  be the  state  of  the  art  in  the  embedding  creation  task.  The  word  embeddings  are  created  in  a  contextualized  manner,  i.e.,  that  not  only  the  word  itself  is  considered 

but  also  the  context  in  which  the  word  appears.  Since  finding  the  most  similar 

sentence  in  10,000  sentences  requires  about  65  hours  [356],  we  take  advantage of  the  BERT  extension  from  Reimers  and  Gurevych  [356],  who  state  to  solve this  in  5  seconds,  while  maintaining  the  accuracy  of  BERT.  We  evaluate  the  base 

and  large  model. 

6.4

Evaluation  of  Embedding  Models 

6.4.1

Datasets  and  Measurements 

In  order  to  answer  our  research  questions,  we  decided  to  use  a  German  and  an 

English  flooding  dataset  for  evaluation.  First,  the  German  data  is  based  on  the  2013 

European  Floods,  which  had  a  severe  impact  on  Germany  [199]  and  contains  about 4,000  posts  related  to  the  flooding.  Second,  the  English  set  was  crawled  during 

the  2013  Colorado  floods  and  contains  about  1,000  posts  [313]. Both  sets  were chosen  because  they  refer  to  a  similar  scenario,  are  different  in  language,  and  also 

contain  labels.  Labeled  data  can  be  helpful  for  further  work  concerning  an  external 

evaluation.  Furthermore,  it  is  important  that  both  sets  are  gathered  during  a  flooding 

scenario  in  different  languages,  which  is  required  to  answer  RQ2. 

Evaluating  clusters  is  a  difficult  task  because  the  formation  of  the  clusters  is 

ambiguous.  We  decided  against  an  external  evaluation.  The  external  evaluation 

assesses  the  clustering  performance  with  an  existing  ground  truth.  By  having  such 

a  ground  truth,  the  benefits  of  clustering  would  be  missed.  Especially  in  the  disaster setting,  it  can  be  difficult  since  several  different  groupings  can  be  formed,  as  we 

have  seen  in  Sect. 6.2. Instead,  we  chose  an  internal  evaluation,  where  the  clusters themselves  are  analyzed  by  the  means  of  a  measurement.  This  approach  comes  with 

the  problem  that  the  clustering  algorithm  can  be  optimized  on  this  measurement.  But
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since  we  are  only  using  k-means,  this  concern  is  reduced.  As  measurement  criteria, 

we  use  the  Silhouette  Coefficient  [370],  Calinski-Harabasz  Index  [ 52],  and  Davies-Bouldin  Index  [ 86]. The  Silhouette  Coefficient  measures  how  fitting  an  object  is to  its  cluster  compared  to  the  other  clusters.  The  measure  ranges  from -1  to  1;  a 

higher  score  is  better.  The  Calinski-Harabasz  Index  measures  the  ratio  of  the  sum 

of  between-cluster  distances  and  of  inter-cluster  distances.  Again,  a  higher  score 

relates  to  better  clustering  performance.  The  Davies-Bouldin  Index,  on  the  other 

hand,  indicates  better  clustering  performance  with  a  lower  score,  which  is  achieved 

when  the  groups  are  farther  apart  and  less  dispersed. 

6.4.2

Results  for  the  English  and  German  Datasets 

The  results  of  the  clustering  task  for  the  English  and  the  German  datasets  are  shown 

in  Table  6.3  and  Table  6.4.  The  three  best  scores  for  each  evaluation  metric  are highlighted.  We  choose  k  based  on  Sect. 6.2.2, where  already  several  grouping possibilities  are  listed.  To  have  some  kind  of  adaptive  evaluation,  we  test  each 

model  with  a  k  ranging  from  4  to  10.  The  majority  of  algorithms  performed  best 

when  using  a  k  of  5.  The  evaluation  results  shown  in  the  tables  are  related  to  a 

k-means  clustering  with  a  k  of  5,  representing  5  clusters. 

For  the  English  task,  both  Word2vec  models  based  on  a  crisis  dataset  with  the 

average  sentence  embeddings  performed  the  best  when  inspecting  the  Silhouette 

Score  (Crisis  Word2vec  1:  0.7)  and  the  Davies  Bouldin  Score  (Crisis  Word2vec 

2:  0.22).  The  Calinski  Harabasz  Score  of  both  is  also  particularly  good,  taking 

second  and  third  place  behind  the  English  FastText  model  (254.256).  Regarding 

Table  6.3  Evaluation  of  the  English  clustering  task;  the  three  best  scores  per  metric  (bold) and  models  with  none  (red),  one  (yellow),  or  multiple  (green)  high  scores  are  marked
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Table  6.4  Evaluation  of  the  German  clustering  task;  the  three  best  scores  per  metric  (bold) and  models  with  none  (red),  one  (yellow),  or  multiple  (green)  high  scores  are  marked 

the  overall  clustering  quality,  it  is  also  assumable  that  the  FastText  model  performs 

good,  even  if  the  models  that  were  learned  on  the  crisis  dataset  seem  to  be  better 

suited.  Most  of  the  other  embedding  techniques  reach  less  promising  results.  Both 

variants  of  Universal  Sentence  Encoders  (USE)  are  consistently  the  worst  at  creating 

embeddings  that  are  good  for  forming  clusters  with  the  k-means  method.  In  turn,  they 

are  the  fastest  algorithms  with  regard  to  the  embedding  creation  time.  Comparing 

the  crisis  Word2vec  models  in  relation  to  this  evaluation  metric,  the  first  is  more 

than  two  times  faster  than  the  second,  resulting  from  the  fact  that  it  was  trained  on a  smaller  dataset.  The  FastText  model  is  about  110  and  40  seconds  slower  than  the 

two  better-performing  models.  In  terms  of  cluster  creation  time,  only  InferSent  is 

significantly  deviating,  but  this  can  be  considered  negligible  with  about  5  seconds. 

Inspecting  the  results  of  the  German  dataset,  the  FastText  model  again  achieves 

the  highest  Calinski  Harabasz  Score.  In  contrast  to  the  first  task,  both  disaster-related embedding  models  are  not  as  good  with  regard  to  the  Silhouette  Score  and  the 

Davies  Bouldin  Score.  GloVe  has  the  best  Silhouette  Score  (0.276)  and  Word2vec, 

which  is  based  on  a  general  Twitter  dataset,  has  the  best  Davies  Bouldin  Score 

(1.149).  Inspecting  the  three  best  scores  of  each  quality  evaluation  metric,  it  seems 

that  the  FastText  model  followed  by  the  GloVe  embeddings  is  best  suited  for  the 

clustering  task  in  German.  As  in  the  previous  task,  Universal  Sentence  Encoders  are 

the  fastest  methods  but  come  with  a  low  clustering  quality  in  comparison  to  most 

other  embedding  methods;  only  SBERT  produces  lower  results.  As  observed  in  the 

previous  task,  the  cluster  creation  time  of  all  algorithms  except  InferSent  is  similar. 

Yet,  the  creation  time  of  up  to  22  seconds  can  no  longer  be  considered  as  negligible. 

It  should  be  noted  that  the  absolute  results  for  the  two  different  tasks  cannot 

be  compared  with  one  another  because  the  specific  scores  are  not  comparable  for 

different  datasets.  For  the  English  task,  the  two  Word2vec  models,  which  were
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learned  with  crisis  data,  performed  best.  The  clustering  of  the  German  dataset,  on 

the  other  hand,  showed  that  the  domain-dependent  models  were  not  able  to  maintain 

these  results.  This  is  most  likely  due  to  a  loss  in  generalizability  since  the  training was  primarily  performed  with  English  crisis  data.  It  can  be  observed  that  the  model 

that  was  trained  with  more  data  (Crisis  Word2vec  2)  also  seems  to  be  somewhat 

better  when  inspecting  the  language  shift.  This  is  especially  important  because 

messages  in  crisis  situations  are  often  communicated  in  different  languages  apart 

from  English.  To  this  criterion,  the  FastText  model  might  generalize  best  since  it  is 

available  in  157  different  languages.  The  model  itself  performed  well  on  the  first 

task,  taking  third  place  behind  the  domain-dependent  models  with  regard  to  the 

clustering  quality,  and  best  on  the  second  task.  It  is  interesting  to  see  that  in  the  case of  the  Word2vec  model,  average  embeddings  seem  to  perform  much  better  than  the 

concatenation  of  the  minimal  and  maximum  word  embedding,  whereas,  in  the  case 

of  the  FastText  model,  it  is  vice  versa.  This  indicates  that  these  specific  embeddings learned  by  the  FastText  model  are  more  meaningful  and  unique  with  regard  to 

the  whole  tweet.  Universal  Sentence  Encoders  have  by  far  the  fastest  embedding 

creation  processes  for  both  tasks.  These  speed  advances  are  accompanied  by  poor 

cluster  quality  results.  The  well-performing  Word2vec  and  FastText  models  require 

between  50  to  170  seconds,  which  might  be  fast  enough  for  many  applications.  If 

a  faster  model  is  needed,  it  may  be  sensible  to  reduce  the  dataset  on  which,  for 

example,  the  Word2vec  model  is  trained.  However,  such  a  reduction  in  the  data 

leads  to  a  reduction  in  the  generalizability  for  new  data. 

6.5

Towards  Automatic  Cluster-Labeling 

Mitigating  information  overload  in  emergencies  is  a  complex  problem.  While  it 

is  required  to  improve  the  performance  (i.e.  to  allow  a  near  real-time  application) 

and  quality  of  clustering,  emergency  managers  must  be  able  to  make  sense  of  the 

generated  clusters  to  facilitate  the  practical  value  of  clustering  in  emergencies  [420]. 

Descriptions  or  explanations  of  computed  clusters  can  be  achieved  in  several  ways, 

such  as  information  summaries,  labels,  or  word  clouds  (see  Sect. 6.2.2).  Therefore, we  derived  criteria  that  are  necessary  for  effective  techniques  to  describe  and  explain clusters  in  emergency  situations  in  a  human-friendly  way,  which  are  enlisted  in  Table 

6.5.  The  criteria  are  based  on  the  problem  of  information  overload,  the  conditions  in emergency  situations,  and  the  human  view  of  explanations,  that  are  put  into  context 

with  parts  of  our  literature  review. 
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Table  6.5  Criteria  for  human-friendly  cluster  explanations  in  emergency  situations 

Criteria

Description 

Concise

Information  explanations  of  the  membership  of  tweets  to  a  cluster 

need  to  be  concise  in  the  same  way  humans  tend  to  prefer  selected 

causation  explanations  over  a  complete  list  [294]. 

Covering

A  good  representation  of  the  cluster  content  should  be 

comprehensive  for  the  tweets  in  it.  Otherwise,  valuable  information 

could  be  overlooked,  which  could  cost  lives  in  emergency  situations 

[142]. 

Non-

The  explanation  of  one  cluster  should  be  unique,  as  it  can  be 

redundant/unique 

extracted  from  the  cluster  description  process  by  Siroker  and  Miller 

[407]. 

Non-laborious

Information  explanations  should  at  best  be  formed  automatically. 

Manual  actions  require  time,  which  is  limited  in  disaster  situations 

[198]. 

Invariant

The  explanations  should  be  invariant  to  domain  shifts,  since 

emergency  situations  are  highly  dynamic  [244]. 

Truthful

The  explanations  of  the  clusters  should  be  truthful.  Truthfulness  is 

important  for  human-friendly  explanations  but  as  stated  by  Molnar 

[294]  not  as  important  as  having  concise  explanations. 

A  simple  approach  to  extracting  an  explanation  is  to  show  the  user  the  tweet 

that  is  closest  to  the  centroid  of  each  cluster.  However,  this  may  not  cover  the 

other  tweets  in  the  cluster.  Another  approach  would  be  to  show  the  user  several 

samples  of  posts  in  the  cluster,  leading  to  a  higher  coverage  but,  in  turn,  to  a  lower conciseness.  An  approach  with  very  concise  explanations  of  the  clusters  is  present 

in  the  work  of  Alam,  Ofli,  and  Imran  [ 10], where  emergency  personnel  have  to label  the  different  groups  after  the  clustering  process.  These  labels  are  short  titles 

for  the  content  present  in  the  clusters,  comparable  to  the  grouping  names  in  Table 

6.2.  However,  this  approach  contradicts  the  non-laborious  criterion.  Since  disaster situations  have  to  be  handled  in  a  real-time  manner  by  emergency  personnel,  we 

want  to  propose  a  suggestion  to  automate  this  process.  The  idea  is  to  utilize  the 

latent  space  of  the  embedding  vectors,  which  is  already  created  when  the  posts  are 

clustered.  For  each  group,  we  try  to  construct  posts  that  are  as  generic  as  possible 

but  representative  of  the  group  as  well  (invariant  and  covering).  These  posts  are 

mapped  into  the  embedding  space  by  using  the  same  embedding  method  we  used 

when  performing  the  clustering.  Then,  the  artificial  posts  are  vectors  with  the  same 

dimensions  as  the  vectors  of  the  real  posts.  In  this  way,  we  can  assign  them  to  the
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most  fitting  clusters.  In  turn,  this  leaves  us  with  the  opportunity  to  provide  the  fitting cluster  with  the  label  we  already  know  from  the  corresponding  self-created  tweet 

(truthful  criterion).  For  the  demonstration  of  the  approach,  we  created  constructs  of 

posts  for  the  groups  identified  by  Imran  et  al. [168]. To  ensure  that  the  posts  fulfill the  criteria  to  be  relevant  to  the  disaster  and  plausible  to  the  group,  we  inspected  the dataset  used  by  Imran  et  al. [168]. We  extracted  the  posts  for  each  group,  removed the  stop  words,  and  calculated  the  word  frequencies.  From  the  list  of  words  and 

their  frequencies,  we  deleted  all  posts  that  were  too  specific  to  the  crisis.  Based  on the  remaining  ones  we  identified  the  words  that  were  common  in  the  tweets  and 

sensible  for  the  group  to  examine  the  posts  containing  them.  This  way,  we  created 

the  generic  posts  that  are  shown  in  Table  6.6. 

Table  6.6  Generic  posts  for  different  humanitarian  categories 

Group  names

Generic  posts 

Caution  and  advice

·  [disaster_name]  +  “  warning—Stay  safe—take 

precautions” 

Casualties  and  damage

·  “Buildings  are  damaged  and  destroyed.  #”  + 

[disaster_name] 

·  “Several  people  were  injured  #”  +  [disaster_name] 

·  “Several  people  were  killed  #”  +  [disaster_name] 

Donations

·  “You  can  make  a  donation  to  the  “  +  [disaster_name]  +  “ 

relief” 

·  “Please  provide  goods,  support  or  other  donations  for 

victims  of  #”  +  [disaster_name] 

People  missing,  found,  or 

·  “Several  people  are  missing  or  unaccounted  #”  + 

seen 

[disaster_name] 

·  “Please  help  find  this  person—contact  us  for  any  pointers 

#”  +  [disaster_name] 

·  “Several  people  have  been  located  and  are  alive  #”  + 

[disaster_name] 

Information  Source

·  “Photos  of  “  +  [disaster_name]  + 

“http://t.co/random#report#documenting” 

·  “News:  A  video  of  the  “  +  [disaster_name]  “ 

For  example,  a  generic  tweet  for  “Casualties  and  damage”  can  contain  important 

terms  like  “buildings,”  “damaged,”  and  “destroyed,”  which  are  very  often  stated  in 

damage-related  posts.  This  construct  is  ended  by  a  hashtag  concatenated  with  the
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disaster-related  keyword  that  was  chosen  by  the  user  or  by  the  disaster  name  if  an 

event  detection  system  has  been  executed  beforehand  (invariant  to  other  situations). 

This  specific  information  is  important  because  otherwise,  this  tweet  could  have  never 

been  part  of  the  original  dataset.  These  constructed  posts  are  particularly  beneficial 

since  they  contain  all  the  necessary  information,  and  no  human  effort  is  needed  by 

the  time  they  are  used. 

Eventually,  it  is  possible  that  one  cluster  has  more  than  one  label  (multi-labeling), 

giving  an  overview  of  several  topics  that  could  be  contained  in  it.  In  this  way,  we  can have  much  more  labels  and  self-constructed  posts  than  groups  for  many  different 

cases.  In  the  end,  we  contradict  the  uniqueness  criterion  by  accepting  different 

clusters  to  have  the  same  label.  If  clusters  have  no  label,  the  cluster  and  the  posts  in it  are  called  “not  identifiable”  or  “other”. 

6.6

Discussion  and  Conclusion 

In  this  paper,  we  examined  techniques  for  clustering  social  media  posts  in  emer-

gencies  based  on  their  textual  content  as  a  means  to  reduce  information  overload. 

More  specifically,  we  evaluated  19  different  embedding  methods  that  are  suitable 

for  building  clusters  of  similar  postings.  The  answers  to  the  research  questions  that 

were  proposed  in  the  beginning  are  based  on  the  evaluation  in  Sect. 6.4. 

To  what  degree  are  domain-dependent  embeddings  helpful  for  clustering 

the  dynamic  data  in  emergencies  (RQ1)? To  answer  this  question,  we  evaluated 

two  Word2vec  models  that  were  trained  with  domain-dependent  crisis  data  and 

compared  them  to  models  that  were  trained  without  any  specific  context.  Regarding 

the  English  task,  the  domain-dependent  models  are,  in  fact,  superior  in  two  of  three 

clustering  scores.  However,  by  inspecting  the  German  task,  the  domain-independent 

but  language-specific  model  FastText  is  achieving  higher  scores.  The  two  crisis 

Word2vec  models  are  still  performing  reasonably  well  on  the  German  task,  but  it 

is  noticeable  that  they  are  not  able  to  generalise  so  satisfactorily  with  regard  to 

the  language  shift  since  the  training  data  primarily  consisted  of  English  data.  This 

concerns  the  second  research  question,  which  asks  for  the  best  language-invariant 

models. 

Which  embeddings  are  more  invariant  with  respect  to  the  language  of  the 

data  (RQ2)? It  can  be  observed  in  both  tables  that  FastText  with  MinMax  sentence embeddings  is  a  particularly  good  choice  when  dealing  with  the  problems  at  hand, 

even  reaching  the  best  scores  for  the  German  task.  Pre-trained  FastText  models 

are  available  in  157  different  languages,  which  makes  them,  apart  from  their  good 

score,  a  sensible  option  for  this  case.  As  stated  before,  the  other  models,  like  the
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pretrained  Word2vec  or  SBERT  variants,  produce  inferior  results  on  the  German 

dataset  since  they  were  trained  on  English  data  and  have  never  seen  most  of  the 

German  words  before.  This  means  that  they  are  not  able  to  infer  any  meaningful 

vectors  for  non-English  words,  resulting  in  a  worse  clustering  performance  than  a 

model  that  was  trained  with  data  from  different  languages. 

Which  embedding  methods  are  suitable  for  the  time-critical  analysis  of  Twit-

ter  data  in  emergency  situations  (RQ3)? The  third  research  question  unites  the 

other  research  questions  and  combines  them  with  the  time-criticality  of  disaster 

situations.  To  address  this,  we  separately  measured  the  embedding  and  cluster  cre-

ation  time  in  the  evaluation.  The  embeddings  created  by  InferSent  set  aside,  clus-

ter  creation  time  seems  to  be  almost  invariant  with  respect  to  the  other  models. 

Inspecting  the  embedding  creation  times,  USE  was  by  far  the  fastest  method  for 

clustering  the  data,  taking  less  than  two  seconds.  However,  since  this  method  does 

not  perform  well,  we  advise  taking  a  disaster-pretrained  Word2vec  model  when 

dealing  with  English  data  and  FastText  when  dealing  with  other  languages.  While 

the  Word2vec-based  models  seem  to  be  a  bit  faster,  both  can  take  up  to  three  minutes in  our  evaluation. 

6.6.1

Practical  and  Theoretical  Implications 

In  this  paper,  we  provide  an  overview  and  comparison  of  embedding  models  across 

two  languages  and  propose  an  intrinsic  embedding  evaluation  task  (C1),  give  advice 

on  the  implementation  of  clustering  and  embedding  approaches  (C2),  derive  criteria 

for  cluster  explanations  and  propose  a  method  for  automatic  post-labeling  (C3),  con-

tribute  with  findings  on  the  applicability  of  general  and  domain-dependent  embed-

ding  models  (C4),  and  propose  a  system  for  reducing  information  overload  in  social 

media  streams  (C5). 

Comparison  of  embedding  models  across  two  languages  and  the  proposal 

of  an  intrinsic  embedding  evaluation  task  (C1). The  paper  provides  a  compre-

hensive  overview  and  comparison  of  the  performance  and  quality  of  19  embed-

ding  methods  for  clustering.  By  comparing  datasets  from  two  languages,  it  outlines 

language-specific  conditions  for  the  performance  and  quality  of  embedding  mod-

els.  While  most  existing  approaches  in  crisis  informatics  examined  clustering  based 

on  the  temporal  or  spatial  dimension  [266, 333, 376], this  work  contributes  to  the implementation  and  comparison  of  text-based  clustering  approaches.  With  this  evaluation,  we  propose  a  generally  new  intrinsic  evaluation  task  that  gives  insights  into 

the  embeddings  and  is  easily  adaptable  for  other  domains. 
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Advice  on  the  implementation  of  clustering  and  embedding  approaches 

(C2). The  evaluation  of  the  proposed  clustering  method  shows  that  the  results  are highly  dependent  on  the  input  data,  i.e.,  the  embedding  representations.  This  can 

be  seen  as  an  advantage  of  the  proposed  system  as  other  works  in  this  field  do  not 

evaluate  multiple  models  or  neglect  a  comparison  of  domain  dependence  and  gener-

alization  capabilities  of  their  systems  [ 78, 83, 84]. However,  these  methods  consider other  important  factors  that  are  further  described  in  the  next  section.  While  existing 

work  on  embedding  models  focused  on  an  extrinsic  evaluation  method  on  classifica-

tion  tasks  [204, 244],  our  intrinsic  evaluation  on  the  clustering  task  revealed  further advice  for  the  implementation  of  embedding  models.  In  our  evaluation,  disaster 

pretrained  embeddings  performed  well  but  were  not  able  to  generalize  to  languages 

other  than  that  of  the  pretrained  data.  When  dealing  with  other  languages,  it  is  sen-

sible  to  either  use  a  model  being  trained  for  this  case  (FastText)  or  retrain  the  model with  additional  language  data.  In  our  tests,  we  evaluated  the  Sentence-BERT  model 

by  Reimers  and  Gurevych  [356],  which  failed  to  produce  satisfactory  results. 

Derivation  of  criteria  for  cluster  explanations  and  the  proposal  of  a  method 

for  automatic  cluster  labeling  in  emergency  situations  (C3). In  6.5,  we  derived criteria  for  human-friendly  cluster  explanations  in  emergency  situations.  Furthermore,  in  contrast  to  a  manual  labeling  process  [135],  we  proposed  a  method  for automatically  labeling  the  clusters.  This  method  relies  on  self-constructed  tweets 

that  could  reflect  humanitarian  categories  [168],  are  as  general  as  possible  with respect  to  the  event,  and  are  as  fitting  as  possible  to  the  group  at  the  same  time. 

These  posts  are  then  mapped  into  the  embedding  space,  where  they  are  assigned  to 

the  best-matching  clusters. 

Applicability  of  general  and  domain-dependent  embedding  models  (C4). 

Domain-dependent  embeddings  are  helpful  for  clustering  if  the  domain  is  fitting.  If 

the  domain  is  not  fitting  (for  example,  due  to  a  language  shift),  a  highly  general  model would  be  better  suited.  This  stands  in  contrast  to  the  findings  of  Khatua,  Khatua, 

and  Cambria  [204],  who,  in  their  extrinsic  evaluation,  come  to  the  conclusion  that domain-dependent  embeddings  mostly  outperform  generic  pre-trained  embeddings. 

It  is  similar  to  the  result  of  Li  et  al. [244], who  observed  that  their  crisis-specific embeddings  are  more  suitable  for  specific  crisis  tasks.  We  can  deduce  that  depending 

on  the  unsupervised  task,  it  is  important  to  consider  different  embedding  models. 

Concluding  from  a  different  path  of  reasoning  by  testing  language  invariance,  we 

can  also  say  that  the  currently  existing  crisis-specific  embeddings  are  not  able  to 

generalize  as  well  to  other  situations.  This  fact  leads  to  further  research  opportunities in  which  an  embedding  training  dataset  consisting  of  various  disaster  situations  and 

different  languages  could  be  created. 
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A  system  for  reducing  information  overload  in  social  media  streams  (C5). 

The  proposed  system  (Fig. 6.1),  in  combination  with  the  insights  from  the  evaluation and  the  automatic  cluster-labeling  procedure,  is  suitable  for  reducing  the  overload 

of  user-generated  content  in  social  media  by  finding  meaningful  and  representative 

clusters.  Crisis  and  emergency  personnel  can  utilize  this  implementation  to  gain  an 

overview  of  the  online  discourse  and  pick  the  right  set  of  posts  for  their  specific 

response  activities  [197]. In  addition  to  this  area  of  application,  the  system  is  also beneficial  for  all  purposes  that  require  compressed  information  on  social  media, 

such  as  brand  management  in  the  field  of  business  analytics.  Similarly,  the  clus-

tering  system  can  be  beneficially  employed  in  the  cybersecurity  domain  to  foster 

the  process  of  detecting  security  events.  Furthermore,  our  findings  can  enrich  the 

clustering  scheme  by  Alves  et  al. [ 16]  or  similar  works  in  this  domain. 

6.6.2

Limitations  and  Outlook 

For  future  work,  it  would  be  interesting  to  see  if  newer  embedding  models  based  on 

a  large  corpus  of  different  disaster  situations,  such  as  CrisisLexT26  [313],  would be  beneficial  to  the  proposed  problem.  However,  as  these  are  only  available  in  a 

limited  number  of  languages,  it  might  be  sensible  to  create  a  novel  dataset  containing different  disaster  situations  combined  with  general  Twitter  data  that  may  contain 

more  languages.  In  this  way,  the  new  advances  of  the  state-of-the-art  embedding 

models  can  be  combined  with  domain  dependence,  which  works  well  according  to 

our  evaluation.  Furthermore,  the  inclusion  of  a  wider  range  of  Twitter  data  leads 

to  a  higher  generalizability  for  other  languages.  It  would  also  be  interesting  to 

create  more  multilanguage  evaluations  since  we  only  evaluated  German  and  English 

datasets.  Especially  evaluations  for  low-resource  languages  might  lead  to  further 

insights  that  are  important  for  dealing  with  information  overload  in  crisis  situations. 

While  this  evaluation  focuses  on  Twitter  messages,  which  are  inherently  limited  to 

280  characters,  the  evaluation  of  larger  texts  from  social  media  such  as  Facebook 

might  lead  to  different  results. 

The  general  clustering  framework  can  be  enriched  with  insights  from  different 

works  that  emphasise  other  factors  of  analysis.  For  example,  a  combination  of  the 

incremental  clustering  approach  proposed  by  Comito,  Forestiero,  and  Pizzuti  [ 78] 

should  be  beneficial  when  considering  the  data  as  incoming  streams.  Moreover, 

testing  different  clustering  algorithms,  as  done  by  Curiskis  et  al. [ 83],  might  even increase  the  performance.  Concerning  the  prospect  of  automatically  post-labeling 

the  clusters,  it  would  be  helpful  to  build  as  many  generic  posts  as  possible.  In  our work,  this  method  can  only  be  seen  as  a  prospect,  requiring  further  evaluations  and
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modifications  to  prove  the  concept.  A  possible  way  would  be  to  measure  the  label-

ing  quality  externally  with  ground  truth  data.  However,  as  emphazised  earlier,  this 

can  lead  to  wrong  conclusions.  It  could  be  combined  with  qualitative  user  research 

with  emergency  managers,  for  instance,  using  interviews  or  scenario-based  walk-

throughs,  to  evaluate  the  efficiency—in  terms  of  mitigating  information  overload— 

and  usability  of  the  clustering  prototype.  Finally,  this  paper  focused  on  textual  con-

tent  and  did  not  analyse  information  overload  based  on  multimedia  files.  Existing 

studies  highlight  the  application  of  image  filtering  techniques  for  deduplication  and 

relevance  assessment  in  crises  [ 10]  or  unsupervised  image  segmentation  for  damage assessment  [227],  which  could  be  used  to  complement  text-based  methods  against information  overload. 
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Scenarios 

Abstract 

Active  learning  is  designed  to  minimize  annotation  efforts  by  prioritizing 

instances  that  most  enhance  learning.  However,  many  active  learning  strategies 

struggle  with  a  ‘cold-start’  problem,  needing  substantial  initial  data  to  be  effec-

tive.  This  limitation  reduces  their  utility  in  the  increasingly  relevant  few-shot 

scenarios,  where  the  instance  selection  has  a  substantial  impact.  To  address  this, 

we  introduce  ActiveLLM,  a  novel  active  learning  approach  that  leverages  Large 

Language  Models  such  as  GPT-4,  o1,  Llama  3,  or  Mistral  Large  for  selecting 

instances.  We  demonstrate  that  ActiveLLM  significantly  enhances  the  classifi-

cation  performance  of  BERT  classifiers  in  few-shot  scenarios,  outperforming 

traditional  active  learning  methods  as  well  as  improving  the  few-shot  learn-

ing  methods  ADAPET,  PERFECT,  and  SetFit.  Additionally,  ActiveLLM  can  be 

extended  to  non-few-shot  scenarios,  allowing  for  iterative  selections.  In  this  way, 

ActiveLLM  can  even  help  other  active  learning  strategies  to  overcome  their  cold-

start  problem.  Our  results  suggest  that  ActiveLLM  offers  a  promising  solution 

for  improving  model  performance  across  various  learning  setups. 
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7.1

Introduction 

The  selection  of  training  examples  significantly  impacts  the  performance  of  models. 

Even  Large  Language  Models  (LLMs),  such  as  GPT-3,  show  high  variances  based 

on  training  example  selection  [527]. This  dependency  is  even  more  pronounced  in smaller  models  such  as  BERT  [527], which  are  sometimes  preferred  for  their  cost  and resource  efficiency  as  well  as  data  protection  benefits  over  APIs.  In  order  to  combine the  advantages  of  both  the  lightness  of  BERT-like  models  and  the  capabilities  of 

LLMs,  we  explore  the  classical  concept  of  Active  Learning  (AL)  for  BERT-like 

models,  extended  by  LLMs  such  as  GPT-4  [315]. 

AL  encompasses  strategies  integrated  into  the  labeling  process  to  select  instances 

with  a  high  learning  impact  [529]. Typically,  a  model  is  trained  iteratively  during the  annotation  process  to  query  instances  for  labeling  by  the  annotators  (oracle). 

While  AL  can  yield  significant  learning  improvements  with  mid-sized  datasets,  it 

often  encounters  a  ‘cold-start’  problem  [ 68], rendering  it  unsuitable  for  low-data regimes.  The  cold-start  problem  occurs  in  many  AL  methods  because  they  lack 

sufficient  data  at  the  start  of  data  labeling  to  accurately  measure  informativeness 

and  select  informative  samples.  For  example,  the  uncertainty  strategy  selects  the 

most  uncertain  instances  based  on  an  iteratively  learned  classifier  during  annotation. 

However,  the  classifier  cannot  make  accurate  uncertainty  guesses  without  enough 

data. 

Furthermore,  as  most  AL  strategies  require  a  model  to  be  trained  iteratively, 

the  use  of  pre-trained  models  such  as  BERT  can  result  in  very  high  delay  times 

during  annotation,  making  the  process  unusable  in  real-world  annotation  scenarios. 

In  so-called  ‘model-mismatch  scenarios’,  where  the  instance  selection  model  (query

1  Minor  typographical  errors  in  the  original  publication  have  been  corrected  for  this  dissertation. 
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model)  differs  from  the  model  used  for  the  final  application  (successor  model),  AL 

yields  limited  gains  [529]. 

To  address  these  challenges  of  few-shot  and  model-mismatch  scenarios,  we  pro-

pose  ActiveLLM,  an  AL  method  leveraging  LLMs  (see  Fig. 7.1).  ActiveLLM  can select  instances  with  high  learning  impact  even  without  initial  supervised  data  and 

requires  no  training  during  the  annotation  process.  This  method  serves  both  as  a 

standalone  AL  approach  and  as  a  solution  to  the  cold-start  problem  in  other  AL 

strategies.  Therefore,  our  contributions  are  as  follows: 

(C1)  Novel  AL  Method:  We  introduce  a  novel  AL  strategy  using  LLMs  such 

as  GPT-4,  tailored  for  few-shot  learning  to  overcome  the  cold-start  problem. 

(C2)  Efficient  and  Scalable  Methodology:  Our  approach  decouples  the  query 

process  from  the  successor  model  dependency,  enhancing  scalability  and  estab-

lishing  a  high  degree  of  practicality  compared  to  conventional  AL  strategies. 

(C3)  Rigorous  Evaluation:  We  conduct  comprehensive  evaluations  to  demon-

strate  that  ActiveLLM  is  not  constrained  to  a  specific  LLM.  It  exhibits  superior 

Fig.  7.1  Depiction  of  ActiveLLM
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performance  compared  to  other  AL  and  few-shot  learning  methods  and  can  be 

utilized  alongside  these  methods  to  achieve  beneficial  outcomes. 

The  code  for  this  study  is  freely  available 2. 

7.2

Related  Work 

7.2.1

Active  Learning 

The  rationale  behind  AL  is  that  a  system  selectively  chooses  instances  to  be  labeled, 

thereby  reducing  the  labeling  effort  [393].  In  this  context,  annotators  serve  as  oracles, responding  to  queries  from  the  AL  system  regarding  specific  instances.  This  system 

utilizes  a  query  strategy  that  often  hinges  on  measures  of  uncertainty  or  diversity. 

Traditionally,  the  querying  is  performed  by  the  machine  learning  model  itself,  which 

undergoes  iterative  training  during  the  labeling  process.  For  instance,  the  model 

might  request  labels  for  instances  where  its  uncertainty  is  highest,  using  approaches 

such  as  Least  Confidence  (LC)  [ 76],  Margin  of  Confidence  [443],  or  Prediction Entropy  (PE)  [394].  It  is  then  retrained  with  the  newly  annotated  data. 

In  addition  to  uncertainty-based  methods,  diversity-based  approaches  also  play 

a  critical  role  in  AL.  These  methods  aim  to  select  instances  that  are  diverse  to  ensure the  labeled  dataset  covers  a  wide  range  of  feature  space.  For  example,  techniques 

like  Embedding  KMeans  (EKM)  [386, 517]  leverage  the  model’s  ability  to  embed instances  into  a  latent  space.  By  applying  clustering  algorithms  such  as  KMeans  in 

this  space,  the  system  can  identify  and  select  the  most  diverse  examples,  thereby 

enriching  the  training  set  with  varied  and  representative  data  points. 

7.2.1.1  Active  Learning  with  Transformer  Models 

While  AL  methods  have  demonstrated  their  utility  across  various  traditional  machine 

learning  models,  their  application  to  transformer  models  remains  challenging.  The 

study  by  Ein-Dor  et  al.  [100], among  the  first  to  explore  AL  with  pre-trained  transformer  models  such  as  BERT,  shows  that  AL  can  enhance  the  performance  of  BERT 

classifiers,  particularly  in  low-data  scenarios  and  when  the  initial  dataset  is  rich  in relevant  class  instances.  However,  most  of  the  other  works  indicate  mixed  results. 

For  example,  Jacobs  et  al. [174]  combine  uncertainty  and  diversity-based  methods, utilizing  SentenceBERT  embeddings  to  refine  the  instance  selection  process.  Their 

findings  indicate  that  while  AL  reduces  labeling  effort,  its  effectiveness  with  BERT

2  https://github.com/PEASEC/ActiveLLM/ 
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models  is  mixed,  and  the  improvements  are  modest  compared  to  older  NLP  mod-

els.  Studies  by  Grießhaber,  Maucher,  and  Vu  [134],  Houlsby  et  al.  [154],  Schröder, Niekler,  and  Potthast  [387],  Seo  et  al.  [392],  and  Yuan,  Lin,  and  Boyd-Graber  [517], 

contribute  to  a  similar  mixed  picture  of  AL  methods  for  transformer  models.  In  Table 

7.1,  we  present  an  overview  of  works  utilizing  AL  for  transformer  models,  categorizing  them  by  query  strategies,  tested  models,  and  model  matching/mismatching 

scenarios. 

Table  7.1  Overview  of  different  works  applying  AL  to  transformer  models.  “Model” 

describes  the  successor  model  trained  from  the  active  learning  process.  “Matching”  indicates if  the  successor  model  matches  the  query  model 

Reference

Query  Strategies

Model

Matching

Comparison  To 

Random 

[100]

LC,  Perceptron 

BERT

✓

Improvements  in 

Ensemble,  EGL, 

imbalenced 

Core-Set,  D-AL 

low-data  scenarios 

[174]

VR,  PE,  BALD, 

BERT

✓

Mixed  results 

Diversity  Heuristics 

[517]

ALPS,  PE, 

BERT

✓

Mixed  results 

BERT-KM  BADGE 

[387]

PE,  Breaking  Ties, 

BERT 

✓

Small 

LC,  C-AL 

distilRoBERTa 

improvements  in 

later  iterations 

[392]

BATL,  LC,  ALPS, 

DISTRE,  BERT 

✓

Mostly 

PE,  BALD,  D-AL, 

SCIBERT 

improvements 

Core-Set,  BADGE 

[134]

BALD

BERT  base

✓

Mixed  results 

[397]

MNLP,  VR,  BALD

BERT  base, 

✓

Significant 

DistilBERT  base, 

improvements 

ELECTRA  base 

[397]

MNLP,  VR,  BALD

BERT,  DistilBERT, 

✗

Significant 

ELECTRA 

improvements  when 

mismatch  is  of  the 

form:  distilled 

transformer  (query) 

and  normal 

transformer 

(successor) 

(Continued)
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Table  7.1  (Continued) 

Reference

Query  Strategies

Model

Matching

Comparison  To 

Random 

[448]

LC,  MNLP, 

(Distil-)BERT, 

✗

Significant 

Mahalanobis 

(Distil-)RoBERTa, 

improvements  when 

Distance 

(Distil-)ELECTRA, 

successor  model 

XL-Net 

(from  distilled 

mismatch  setting)  is 

used  for 

pseudo-labeling  an 

independent  model 

[306]

MNLP,  BERT-KM, 

XLM-RoBERTa, 

✗

Significant 

BADGE,  ALPS 

miniLM 

improvements  when 

successor  model 

(from  distilled 

mismatch  setting)  is 

included  in  query 

process  by  giving 

delayed  feedback  to 

the  distilled  model 

Research  Gap:  The  most  significant  gap  in  AL  research  is  the  use  of  LLMs,  such as  GPT-4,  to  improve  AL  with  BERT-like  transformer  models,  which,  to  our  knowledge,  has  not  been  explored  previously. 

7.2.1.2  Model-Mismatch  Scenarios 

As  transformer  models  often  require  substantial  computational  resources  and  time 

[447],  the  training  runtimes  for  those  can  be  prohibitively  long  during  labeling, making  them  impractical  for  real-world  applications  of  AL.  Schröder,  Niekler,  and 

Potthast  [387]  noted  that  the  incremental  training  of  these  models  can  be  so  time-consuming,  that  it  can  negate  the  cost  savings  from  reduced  labeling  effort.  There-

fore,  the  scope  of  AL  has  been  extended  to  include  scenarios  where  the  querying 

model  may  differ  from  the  final  (successor)  model—a  phenomenon  known  as  model 

mismatch—or  situations  where  no  model  is  used  for  querying. 

But  again  many  studies  [ 24, 387, 397]  report  that  a  model  mismatch  between  the query  and  successor  model  often  leads  to  unsatisfactory  results  [529].  While  efforts by  Shelmanov  et  al. [397]  and  Nguyen  et  al. [306]  attempt  to  address  this  by  using smaller,  similar  models  for  querying,  there  remains  a  dependency  on  the  model  type. 
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Similarly,  Tsvigun  et  al.  [448]  offer  a  promising  approach  for  decoupling  the  query and  successor  models,  although  a  distilled  version  is  still  required  in  the  process. 

Research  Gap:  In  contrast  to  the  use  of  smaller,  resource-efficient  models  for  querying,  we  propose  leveraging  much  larger  language  models.  This  approach  may  seem 

counterintuitive  at  first  due  to  concerns  about  long  runtimes,  but  as  these  models 

are  capable  of  zero-shot  learning,  no  training  is  required  [400]. Furthermore,  these models  can  be  accessed  in  real-time  through  several  free  chat  interfaces,  requiring 

no  machine  learning  expertise,  making  them  ideal  for  practical  applications. 

7.2.1.3  Cold-Start  Problem 

While  AL  can  significantly  streamline  the  learning  process  by  reducing  labeling 

efforts,  most  strategies  encounter  a  cold-start  problem.  In  the  absence  of  sufficient 

initial  labeled  data  (label  seed),  the  AL  system  may  struggle  to  make  informed 

predictions  about  uncertainty  or  diversity  [517].  This  presents  a  major  challenge  for low-data  regimes,  particularly  in  few-shot  scenarios  with  very  few  available  data 

instances.  Yuan,  Lin,  and  Boyd-Graber  [517]  propose  ALPS,  which  is  one  of  the only  works  that  directly  addresses  the  cold-start  problem  in  AL  with  transformer 

models.  ALPS  leverages  BERT’s  pre-existing  masked  language  modeling  objective 

along  with  clustering  to  select  instances.  The  authors  hypothesize  that  this  strategy 

provides  more  reliable  confidence  scores  in  the  initial  stages  of  model  training  than 

a  classifier  head.  However,  the  results  are  mixed  which  is  also  later  confirmed  by 

Nguyen  et  al.  [306]. 

Research  Gap:  The  cold-start  problem  is  a  major  challenge  in  AL  research,  espe-

cially  for  few-shot  scenarios.  This  work  aims  to  overcome  this  challenge  by  propos-

ing  an  AL  strategy  that  needs  no  initial  labeled  data,  enabling  improvements  even 

at  the  very  beginning  of  the  AL  process.  This  allows  the  method  to  also  be  used  to 

address  the  cold-start  problem  of  other  AL  methods  by  providing  them  with  initial 

data. 

7.2.2

Few-Shot  Learning 

Few-shot  learning  refers  to  methods  for  scenarios  where  models  need  to  learn  from 

a  limited  number  of  training  instances.  These  scenarios  have  become  increasingly 

important  due  to  their  importance  in  real-world  problems  [516]  and  the  increasing capabilities  of  deep  learning  models.  While  LLMs  such  as  GPT-3  inherently  have 

robust  few-shot  or  zero-shot  capabilities,  our  focus  is  on  enhancing  few-shot  learning
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in  smaller  models  such  as  BERT.  With  specific  few-shot  learning  methods  like 

ADAPET  [431]  these  smaller  language  models  can  attain  similar  or  even  better few-shot  performance  than  GPT-3. 

One  approach  to  this  is  to  formulate  tasks  as  cloze-style  tests,  where  certain 

words  in  a  text  instance  are  missing  and  the  language  model  is  employed  to  fill 

in  the  blanks.  This  way,  no  classifier  needs  to  be  trained  on  top  of  the  language 

model,  leading  to  a  more  effective  utilization  of  the  language  models  [123].  Such an  approach  is  exemplified  by  the  ADAPET  method  [431], as  well  as  in  the  works of  Gao,  Fisch,  and  Chen  [123], Schick  and  Schütze,  [383], and  Zhang  et  al.  [522]. 

PERFECT,  introduced  by  Mahabadi  et  al. [272], eliminates  the  need  to  manually formulate  such  cloze  tasks  by  incorporating  task-specific  adapters  and  specialized 

label  embeddings.  Similarly,  in  SetFit  by  Tunstall  et  al. [449], no  cloze  tasks  are required,  as  a  sentence  transformer  [356]  is  fine-tuned  on  the  available  training  data. 

The  instances  are  then  encoded  with  the  resulting  model  and  a  regular  classification 

head  is  trained  on  them. 

While  not  few-shot  methods  per  se,  transfer  learning  and  data  augmentation  are 

often  employed  to  address  few-shot  scenarios.  Transfer  learning  allows  models  to 

leverage  knowledge  from  related  domains  [372],  providing  a  strong  foundation  in few-shot  scenarios.  Data  augmentation,  particularly  using  LLMs  [ 92, 465, 502],  has been  used  to  generate  high-quality  synthetic  data  in  low-data  regimes  [534]. Similarly,  in  this  study  we  investigate  whether  AL  can  be  useful  for  few-shot  learning, 

especially  by  overcoming  the  cold-start  problem. 

Research  Gap:  In  general,  LLMs  dominate  the  machine  learning  field,  in  particular in  few-shot  learning,  but  there  are  numerous  reasons  why  researchers  and  practitioners  still  rely  on  smaller  BERT-like  models,  especially  for  inference,  where  concerns 

such  as  memory  limitations,  API  costs,  and  privacy  often  preclude  the  use  of  LLMs 

[ 40, 378, 469].  To  the  best  of  our  knowledge,  our  approach  is  the  first  to  leverage  the capabilities  of  LLMs  to  support  instance  selection  for  training  smaller  BERT-like 

models.  In  doing  so,  we  combine  the  flexibility  and  efficiency  of  smaller  models 

with  the  strategic  guidance  of  LLMs. 

While  Ein-Dor  et  al. [100]  and  Grießhaber,  Maucher,  and  Vu  [134]  also  assess the  performance  of  AL  with  BERT  in  low-resource  scenarios,  their  datasets  are  still 

considerably  larger  than  those  in  few-shot  scenarios.  However,  in  scenarios  with 

very  few  instances,  example  selection  has  the  greatest  impact.  In  this  work,  we  aim 

to  improve  state-of-the-art  few-shot  learning  methods  with  our  AL  approach. 
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7.3

Method 

ActiveLLM  is  a  pool-based  sampling  method  that  operates  in  batch  mode,  meaning 

that  it  selects  a  subset  from  a  pool  of  unlabeled  data  for  querying  an  oracle.  It 

employs  instruction-tuned  LLMs  as  query  models,  while  allowing  the  choice  of  a 

successor  model  to  be  independent  of  these  models.  A  demonstration  of  the  process 

is  given  in  Fig. 7.1,  where  the  LLM  is  instructed  to  select  instances,  which  are  then labeled  and  used  to  train  a  BERT-like  model,  allowing  any  such  model  to  be  trained. 

The  design  of  the  prompts  is  critical  for  achieving  optimal  results  with  instruction-

tuned  LLMs.  To  this  end,  we  have  crafted  detailed  prompts  in  various  configurations 

to  determine  their  effectiveness  in  this  context.  We  differentiate  between  two  modes 

of  ActiveLLM.  The  first  addresses  few-shot  scenarios,  where  ActiveLLM  is  exe-

cuted  only  once  on  the  dataset.  The  second  is  suitable  for  general  scenarios  involving iterative  querying,  which  also  incorporates  feedback  from  previous  iterations. 

7.3.1

Few-Shot  Learning  Mode 

The  prompts  are  constructed  so  that  the  language  model  receives  a  description 

of  AL,  including  exact  details  of  its  tasks,  while  also  keeping  the  context  length 

small,  as  this  is  a  limiting  factor  for  current  models  [255]. Given  a  specific  task, ActiveLLM  creates  a  prompt  consisting  of  AL  role  allocation,  instructions  on  the 

selection  process,  a  description  of  how  to  format  the  output,  followed  by  a  batch  of 

unlabeled  instances. 

An  excerpt  of  the  prompt  design  is  illustrated  in  Fig. 7.2. The  parameters  displayed  on  the  right  indicate  certain  text  phrase  constellations  which  can  be  included, 

excluded,  or  adjusted: 

 Guidelines:   This  includes  a  phrase  indicating  that  the  model  is  given  not  only  a  set of  instances  but  also  guidelines  for  the  task. 

 Instances:   This  parameter  determines  how  many  instances  the  model  should  label. 

We  test  different  values  in  Section  7.4.2.3. 

 Advice:   Initial  experiments  showed  that  the  LLMs  often  respond  with  explaining 

general  strategies  for  choosing  instances  in  an  AL  manner.  Hence,  we  included  the 

parameter  ‘advice,’  which  incorporates  these  strategies. 

[image: Image 18]
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Fig.  7.2  Prompt  design  of  ActiveLLM  in  few-shot  learning  mode 

 No  CoT/CoT/Explanation:   One  of  the  most  common  and  beneficial  prompt  engi-

neering  strategies  is  the  use  of  Chain  of  Thought  (CoT)  prompting  [480]. We  experiment  with  no  CoT,  ‘normal’  CoT  (“think  step  by  step”),  and  the  task  to  explain  the 

thoughts  on  each  instance. 

Finally,  a  batch  of  unlabeled  instances  is  appended  to  the  prompt.  We  hypothesize 

that,  contrary  to  common  AL  strategies,  large  batches  or  even  all  instances  do  not 

need  to  be  evaluated  by  the  query  model  to  find  instances  with  high  learning  impact. 


We  test  different  values  of  this  parameter  in  Sect. 7.4.2.2. 

7.3.2

Iterated  Querying  Mode 

In  the  second  variant,  we  design  ActiveLLM  similar  to  other  AL  strategies,  allowing 

the  LLM  to  query  new  instances  repeatedly.  For  this,  it  is  sensible  to  include  data 

that  was  selected  in  previous  iterations.  As  the  prompt  should  not  become  too  large, 

we  consider  three  additional  parameters  (see  Appendix  A.11  and  Figure  A.2  of  the 

Electronic  Supplementary  Material  for  the  full  prompt): 

 No  Recap:   Indicating  the  baseline,  where  no  instances  from  previous  queries  are recalled. 

 Recap:   The  instances  from  previous  queries  are  directly  included  in  the  prompt. 

 Index  Recap:   To  reduce  the  context  size,  the  indices  of  the  instances  from  previous queries  are  included  in  the  prompt. 

7.4

Experiments

99

For  the  latter  two  scenarios,  we  included  instructions  in  the  prompt  to  indicate 

that  instances  from  previous  iterations  are  incorporated.  In  both  cases,  we  did  not 

include  the  annotated  labels,  as  our  experiments  showed  that  they  were  generally 

disregarded  by  the  language  models.  An  example  of  a  specific  prompt  and  LLM 

answer  is  given  in  Appendix  Figure  A.3  of  the  Electronic  Supplementary  Material. 

7.4

Experiments 

7.4.1

Description 

Our  experimentation  perspective  with  ActiveLLM  focuses  on  addressing  the  fol-

lowing  questions: 

1.  How  should  the  prompt  be  designed?  (Sect. 7.4.2) 

2.  Can  the  chosen  prompt  be  applied  to  other  models  and  datasets?  (Sect. 7.4.3) 3.  How  does  ActiveLLM  compare  to  other  AL  strategies?  (Sect. 7.4.4) 

4.  Can  ActiveLLM  improve  state-of-the-art  few-shot  learning  methods?  (Sect. 

7.4.5) 

5.  How  does  the  method  perform  in  non-few-shot-scenarios?  (Sect. 7.4.6.1) 

6.  Is  ActiveLLM  capable  of  overcoming  the  cold-start  problem  in  other  AL  strate-

gies?  (Sect. 7.4.6.2) 

As  is  common  in  research,  our  experiments  simulate  the  AL  cycle.  To  do  this,  we 

take  a  subset  of  the  training  set  (labels  removed)  for  the  respective  task  and  allow 

the  LLM  to  select  a  certain  number  of  instances  based  on  the  prompt  given  in  Sect. 

7.3.  These  instances  are  then  assigned  the  true  labels  as  if  they  had  been  annotated by  a  perfect  annotator.  For  comparison,  the  baseline  method  uses  random  sampling, 

where  the  first  instances  from  a  shuffled  dataset  are  selected. 

7.4.1.1  Datasets 

For  the  initial  prompt  engineering  experiments,  we  are  interested  in  a  less  common 

dataset,  as  a  LLM  might  be  less  biased  by  data  leakage.  We  chose  the  Specialized 

CTI  dataset  [ 27],  where  Twitter  posts  are  classified  according  to  their  relevance  to specific  CTI  events  (further  details  in  Appendix  A.1.2  of  the  Electronic  Supplementary  Material).  In  the  general  applicability  tests,  we  used  the  best-performing  prompt 

from  the  prompt  engineering  phase  on  the  commonly-used  GLUE  benchmark,  sam-

pling  32  instances  for  each  task  to  create  a  few-shot  scenario.  For  comparison  with 

the  few-shot  method  SetFit,  we  utilize  the  AGNews  dataset  [525], consisting  of  32
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instances,  for  which  an  adaptation  is  available.  The  SST-2  dataset  [409],  previously used  in  the  general  applicability  section,  is  also  employed  in  the  final  experiments. 

To  measure  the  performance  we  use  the  test  sets  for  CTI  and  AGNews,  and  on  the 

validation  sets  for  GLUE.  Unless  otherwise  specified  (see  Sects. 7.4.2.3  and  7.4.6), 

we  select  32  instances  per  task,  either  via  AL  or  random  sampling  for  the  baseline, 

which  represents  a  common  few-shot  learning  setting  [272, 384, 431]. 

7.4.1.2  Models  and  Hyperparameters 

In  our  experiments,  we  primarily  employed  GPT-4  [315]  as  the  query  model  for ActiveLLM,  as  it  achieved  top  results  at  the  time  the  main  experiments  were  conducted.  However,  in  Sect. 7.4.3  we  also  experiment  with  other  LLMs:  o1  [316], 

GPT-4o,  GPT-3.5  [ 48],  Llama  3  70B,  Gemini-Ultra  1.0  [ 20], Mistral  Large,  and Mixtral  8x7B  [180]  (ActiveLLM  is  renamed  according  to  the  used  LLM—e.g. 

GPT-4:  ActiveGPT4).  To  underscore  the  practicality  of  our  method,  we  utilize  chat 

versions  of  the  LLMs  to  simulate  realistic  interactions  within  chat  environments 

(further  details  in  Appendix  A.1.3  of  the  Electronic  Supplementary  Material). 

As  a  successor  model  for  the  selected  instances  of  ActiveLLM,  we  chose  BERT 

[ 89]  and  RoBERTa  [262]. While  foundational  works  such  as  from  Devlin  et  al. 

[ 89]  typically  train  BERT-like  models  for  only  3–5  epochs,  other  studies  [123, 296] 

suggest  that  higher  epoch  counts  are  necessary  for  stable  and  optimal  performance  in 

low-data  regimes.  Consequently,  we  have  opted  for  25  epochs  for  our  experiments. 

Otherwise,  we  adhere  to  the  default  Huggingface  transformer  parameters,  with  a 

learning  rate  of  1e-3,  a  weight  decay  of  0.01,  and  a  dropout  probability  of  0.1. 

For  comparison,  we  include  in  each  experiment  a  random  sampling  baseline 

where  the  first  instances  from  a  shuffled  dataset  are  selected.  In  addition,  we  compare ActiveLLM  with  the  most  commonly  used  AL  strategies  for  transformers  identified 

in  our  literature  overview  (see  Table  7.1):  LC,  BALD,  EKM,  and  PE.  The  strategies are  implemented  in  a  model-matching  scenario  (i.e.,  training  the  same  query  and 

successor  model),  can  query  the  entire  dataset  of  each  task,  and  select  5  instances 

until  the  selection  of  32  is  reached.  ActiveLLM,  on  the  other  hand,  is  implemented 

in  a  model-mismatch  scenario,  can  only  query  a  subset  of  the  full  training  set,  and 

selects  the  32  instances  in  one  query  (unless  otherwise  specified).  To  implement 

the  common  AL  strategies,  we  use  the  small-text  library  [386], which  provides  a unified  framework  for  pool-based  AL  with  support  for  transformer-based  models. 
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7.4.2

Prompt  Engineering  Experiments 

 –  How  should  the  prompt  be  designed? 

To  answer  the  first  question,  we  experiment  with  different  configurations  of  Activ-

eLLM,  such  as  whether  to  include  AL  strategy  advices  or  guidelines,  as  shown  in 

Fig. 7.2.  We  then  evaluate  the  effects  of  varying  batch  sizes  for  the  unlabeled  data used  in  the  prompts.  Finally,  we  compare  different  selection  sizes,  i.e.  the  number 

of  instances  the  LLM  should  select.  While  we  want  to  find  the  most  appropriate 

prompt,  our  goal  is  not  to  engineer  every  detail  of  it,  which  is  left  open  for  future work  and  practitioners. 

7.4.2.1  Configuration  Results 

Table  7.2  presents  the  results  of  various  prompt  configurations.  For  these,  we  use  a batch  of  300  presented  unlabeled  instances.  Prompt  configurations  A  and  B  differ  in 

whether  the  advice  on  how  to  select  the  instances  is  already  included  in  the  prompt. 

We  observed  that  GPT-4  tends  to  reiterate  the  advice  even  when  it  is  provided  in 

the  prompt.  Furthermore,  the  results  suggest  that  it  is  preferable  not  to  include  the 

advice  in  the  prompt,  likely  due  to  the  increased  context  size  when  the  advice  is 

repeated  in  both  the  prompt  and  the  response. 

Table  7.2  Prompt  engineering  results  of  the  baseline  and  ActiveGPT4  on  the  CTI  dataset sampling  32  instances.  The  results  are  averaged  over  25  runs  (5  random  dataset  and  5  random model  initializations).  A  (advice),  G  (guidelines),  C  (no  advice,  but  guidelines),  1  (no  CoT), 2  (CoT:  step-by-step),  3  (CoT+:  explain  each  instance) 

A

CoT

G

F1  (SD) 

Baseline

–

–

–

0.6781  (0.029) 

Prompt  A1

✓

✗

✗

0.6522  (0.100) 

Prompt  A2

✓

✓

✗

0.6951  (0.102) 

Prompt  A3

✓

✓+

✗

0.6876  (0.108) 

Prompt  B1

✗

✗

✗

0.7135  (0.060) 

Prompt  B2

✗

✓

✗

0.7214  (0.053) 

Prompt  B3

✗

✓+

✗

0.6271  (0.139) 

Prompt  C2

✗

✓

✓

0.7329  (0.053)

[image: Image 19]
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We  also  test  the  three  CoT  variants:  A1  and  B1,  where  there  is  no  CoT;  A2  and 

B2,  which  use  the  standard  CoT  approach  (“think  step  by  step”);  and  A3  and  B3, 

which  instruct  to  include  explanations  for  each  instance.  The  common  “think  step 

by  step”  instruction  yielded  the  best  results.  This  might  be  because  this  approach 

allows  GPT  more  reasoning  in  structured  steps,  while  not  increasing  the  context 

size  too  much. 

Finally,  we  experimented  with  including  labeling  guidelines  in  the  prompt.  As 

anticipated,  this  prompt  configuration  produced  the  best  results,  likely  because 

it  enabled  the  model  to  better  differentiate  between  instances.  Although  labeling 

guidelines  are  often  created  prior  to  the  labeling  process,  they  are  rarely  included  in the  dataset  for  common  tasks.  While  the  guidelines  are  available  for  the  CTI  task, 

its  inclusion  in  the  prompt  should  be  seen  as  an  exploration  of  what  can  be  achieved rather  than  the  default  case  for  ActiveLLM.  Therefore,  in  future  evaluations,  we 

will  utilize  ActiveGPT4  with  prompt  B2,  i.e.,  no  guidelines  or  additional  advice  on 

AL,  only  employing  the  simple  “think  step  by  step”  CoT  prompting. 

7.4.2.2  Presented  Batch  Size  Results 

In  the  subsequent  experiment,  we  explore  varying  batch  sizes  of  unlabeled  instances 

presented  to  ActiveGPT4.  Fig. 7.3  displays  the  results  for  50,  100,  200,  300,  and 400  examples.  There  is  a  noticeable  trade-off  between  the  context  length  and  the 

number  of  presented  examples.  While  a  larger  pool  of  examples  generally  allows 

Fig.  7.3  Varying  size  of  the  batch  of  unlabeled  instances  from  which  ActiveGPT4  can  select 32  instances.  All  results  are  averaged  over  5  runs  on  the  CTI  dataset  (F1)

[image: Image 20]

7.4

Experiments

103

for  a  more  diverse  set,  an  increase  in  context  length  tends  to  degrade  the  model’s 

performance.  It  can  be  observed  that  the  optimal  prompt  with  300  examples,  as  used 

in  the  previous  section,  could  be  significantly  enhanced  by  reducing  the  size  to  200. 

Consequently,  for  the  primary  experiments  in  Sect. 7.4.3, we  limited  the  number of  instances  presented  to  the  model  to  200,  contingent  on  the  model’s  capacity  to 

handle  such  a  context  size. 

7.4.2.3  Selection  Size  Results 

In  our  final  experiment  on  prompt  engineering,  we  investigate  the  impact  of  the  selec-

tion  size—how  many  instances  the  model  should  choose—on  the  outcomes.  Many 

research  works  [272, 384, 431]  typically  use  32  examples  for  few-shot  scenarios.  We evaluate  whether  smaller  or  larger  sizes  might  be  more  effective  for  ActiveGPT4. 

Figure  7.4  illustrates  varying  selection  sizes  for  the  CTI  dataset.  Selecting  32  examples  per  query  appears  to  be  a  sensible  choice.  Notably,  performance  declines  with 

up  to  90  examples,  suggesting  that  the  model  may  struggle  to  process  such  a  large 

number  of  examples  effectively.  However,  performance  increases  beyond  this  point, 

as  expected,  because  a  larger  training  set  is  inherently  beneficial. 

Fig.  7.4  Varying  selection  size  of  examples  to  be  selected  by  ActiveGPT4.  All  results  (F1) are  averaged  over  5  runs  on  the  CTI  dataset 

As  part  of  the  following  experiments,  we  also  tested  the  selection  size  on  the 

SST-2  dataset.  The  results  are  equivalent  and  can  be  found  in  Appendix  Figure  A.1 

of  the  Electronic  Supplementary  Material. 
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7.4.3

General  Applicability 

 –  Can  the  chosen  prompt  be  applied  to  other  models  and  datasets? 

In  this  section,  we  aim  to  assess  how  ActiveLLM  equipped  with  various  LLMs 

and  the  prompt  configuration  B2  from  Sect. 7.4.2.1  performs  on  the  more  common datasets  of  the  GLUE  benchmark. 

The  results  of  this  experiment  are  given  in  Table  7.3.  ActiveGPT4,  ActiveGPT4o, Activeo1  and  ActiveMistralLarge  are  given  200  unlabeled  instances  as  identified  in 

the  batch  size  experiments  (Sect. 7.4.2.2). Llama  3,  GPT-3.5,  Gemini-Ultra  and  Mixtral  can  not  process  such  extensive  prompts  and  are  therefore  given  100  instances. 

All  LLMs  show  that  they  are  very  good  query  models  for  ActiveLLM,  outperform-

ing  the  baseline  in  most  cases.  However,  we  recommend  using  ActiveLLM  with 

GPT-4  or  GPT-3.5,  as  they  consistently  improve  results  across  all  tasks.  An  inter-

esting  finding  is  that  Mistral  Large  with  200  examples  performed  worse  than  its 

100  example  counterpart  in  five  out  of  eight  tasks.  The  tasks  where  Mistral  Large 

performs  better  with  200  instances  are  those  with  generally  shorter  text  length,  sug-

gesting  that  choosing  a  batch  size  based  on  token  length  may  be  better  than  a  static batch  size.  This  would  also  explain  the  variation  in  improvements  across  tasks  and 

models,  as  some  tasks  involve  many  more  tokens  per  instance,  and  some  models 

perform  better  with  larger  prompts.  In  addition,  the  differences  between  the  models 

may  be  due  to  the  fact  that  the  prompt  design  phase  was  carried  out  using  GPT-

4.  Other  models  may  work  better  and  give  more  consistent  results  with  a  prompt 

design  specifically  for  them.  The  most  significant  improvements  can  be  observed 

with  ActiveMistralLarge  (200)  and  ActiveGPT4  on  WNLI  and  SST-2,  respectively, 

achieving  improvements  of  17.19  and  17.11  percentage  points  over  the  baseline. 

Overall,  ActiveLLM,  utilizing  GPT-4  and  GPT-3.5,  proves  to  be  a  robust 

approach  for  enhancing  performance  in  few-shot  scenarios  across  all  tasks.  While 

it  may  even  produce  better  results  with  other  LLMs,  the  improvements  may  be 

inconsistent  and  should  be  compared  to  a  baseline. 

To  verify  that  our  results  are  not  specific  to  BERT,  we  repeated  the  experiments 

from  Table  7.3  using  RoBERTa.  The  results,  shown  in  Appendix  Table  A.3  of the  Electronic  Supplementary  Material,  confirm  that  ActiveLLM  also  improves 

performance  on  a  different  BERT-based  architecture.  As  with  BERT,  GPT-4  and 

GPT-3.5  give  more  consistent  results  than  LLaMA,  Mistral/Mixtral,  and  Gemini-

Ultra. 
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Table  7.3  BERT-base  few-shot  results  (32  instances)  of  ActiveLLM  with  different  LLMs and  of  other  AL  strategies  (LC,  BALD,  EKM,  and  PE)  on  GLUE  tasks.  ‘Active  200/100’ 

describes  the  size  of  the  batch  of  unlabeled  instances.  All  results  are  averaged  over  5  runs (accuracy).  Standard  deviations  are  given  in  Appendix  Table  A.2.  of  the  Electronic  Supplementary  Material. 

**No  result  available  after  48  hours  of  execution. 

QNLI

QQP

RTE

SST2

WNLI

MNLI-

MRPC

COLA 

(m/mm) 

Baseline

55.11

63.67

50.83

56.03

35.77

34.92/35.01

67.55

63.89 

200

GPT-4

58.94.↑

63.99.↑

53.57.↑

73.14.↑

40.28.↑

35.45/35.14.↑

68.33.↑

64.70. ↑

GPT-4o

62.76.↑

63.65.↓

48.88.↓

66.31.↑

41.13.↑

32.23/32.80.↓

69.75.↑

65.41. ↑

o1

62.10.↑

64.00.↑

54.01.↑

59.08.↑

39.43.↑

33.52/33.94.↓

63.87.↓

69.91. ↑

Mistral  Large

60.23.↑

65.26.↑

55.60.↑

60.64.↑

52.96.↑

36.59/35.92.↑

67.06.↓

67.44. ↑

100

Llama  3  70B

56.57.↑

65.82.↑

52.27.↑

65.71.↑

40.28.↑

37.19/36.68.↑

66.86.↓

68.15. ↑

Mistral  Large

60.68.↑

64.82.↑

49.48.↓

66.86.↑

46.48.↑

37.41/36.58.↑

69.07.↑

67.56. ↑

GPT-3.5

55.11

65.88.↑

55.09.↑

61.15.↑

51.55.↑

37.44/37.62.↑

67.70.↑

68.63. ↑

Gemini-Ultra

57.60.↑

61.18.↓

54.58.↑

49.08.↓

43.10.↑

35.74/35.77.↑

69.95.↑

69.22. ↑

Mixtral  8x7B

61.13.↑

65.27.↑

50.97.↑

68.00.↑

41.41.↑

33.62/33.75.↓

68.14.↑

66.96. ↑

AL

LC

56.76.↑

58.65.↓

54.44.↑

56.86.↑

42.82.↑

36.48/36.18.↑

66.96.↓

69.26. ↑

BALD

59.91.↑

n.a.*

52.13.↑

69.17.↑

44.79.↑

36.14/36.34.↑

68.53.↑

64.24. ↑

EKM

52.44.↓

59.62.↓

47.65.↓

69.77.↑

46.49.↑

32.87/32.75.↓

61.08.↓

66.60. ↑

PE

53.75.↓

58.65.↓

54.44.↑

56.86.↑

42.82.↑

37.11/37.20.↑

66.96.↓

69.26. ↑

7.4.4

Comparison 

 –  How  does  ActiveLLM  compare  to  other  AL  strategies? 

We  are  interested  to  see  how  ActiveLLM  performs  against  other  AL  methods.  In 

Table  7.3  we  also  included  the  results  for  the  most  used  AL  strategies  with  transformers  identified  in  our  literature  overview  (see  Table  7.1):  LC,  BALD,  EKM, and  PE.  While  these  methods  are  implemented  with  the  best  preconditions  with  a 

model-matching  scenario  and  access  to  the  whole  dataset  of  each  task,  they  are  often 

not  able  to  improve  over  the  baseline  and  in  every  case  worse  than  an  LLM-variant 

of  ActiveLLM.  This  outcome  is  expected,  as  these  active  learning  strategies  face 

a  cold-start  problem.  Therefore,  in  Sect. 7.4.6.2  we  test  whether  ActiveLLM  can be  used  to  overcome  the  cold-start  problem  of  these  techniques.  Furthermore,  the 

practical  use  of  these  methods  is  limited,  as  the  selection  of  examples  to  be  labeled required  at  least  several  minutes  and,  in  the  case  of  larger  datasets,  several  hours 

(see  Table  7.4). For  instance,  with  BALD  on  the  QQP  dataset,  the  approach  did  not yield  any  result  even  after  48  hours  of  execution.  In  contrast,  ActiveLLM  eliminates 

the  need  for  model  training  during  the  active  learning  process  and  only  considers  a
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small  subset  of  the  unlabeled  data,  enabling  query  times  of  just  a  few  seconds  while 

still  achieving  higher  improvements. 

Table  7.4  Runtime  of  the  AL  strategies  (LC,  BALD,  EKM,  and  PE)  on  the  GLUE  tasks  from Table  7.3. The  runtime  (in  minutes)  refers  to  the  total  time  required  to  select  32  instances  over 6  AL  iterations. 

**No  result  available  after  48  hours  of  execution 

QNLI

QQP

RTE

SST2

WNLI

MNLI

MRPC

COLA 

Average  265.26

279.11

11.01

170.34

5.17

627.12  12.31

25.29 

AL

LC

81.58

271.40

6.39

53.11

3.55

297.00

5.50

11.07 

BALD

812.26

n.a*

22.34

520.11

8.37

1610.23  30.54

68.26 

EKM

85.16

289.39

7.23

53.53

4.40

306.43

6.08

10.02 

PE

82.02

276.54

6.47

53.01

4.37

293.24

5.58

10.22 

Standard  deviations  for  the  results  of  Table  7.3  are  given  in  the  Appendix  Table A.2  of  the  Electronic  Supplementary  Material.  While  the  values  vary  across  tasks  and 

models,  the  overall  trend  indicates  that  ActiveLLM  does  not  amplify  performance 

instability,  and  in  many  cases,  can  reduce  it  substantially. 

7.4.5

ActiveLLM  and  Few-Shot  Learning 

 –  Can  ActiveLLM  improve  state-of-the-art  few-shot  learning  methods? 

While  showing  significant  improvements  in  few-shot  scenarios  compared  to  random 

sampling  and  other  active  learning  strategies,  one  might  ask  why  not  directly  use 

few-shot  learning  methods.  Therefore,  we  evaluate  the  performance  of  ActiveGPT4 

both  individually  and  in  combination  with  the  state-of-the-art  few-shot  learning 

methods  ADAPET,  PERFECT,  and  SetFit.  For  each  method,  we  have  to  use  a 

different  dataset  for  which  an  implementation  is  available:  ADAPET  with  CTI, 

PERFECT  with  SST-2 3, and  SetFit  with  AgNews. 

The  results  of  this  experiment  are  shown  in  Fig. 7.5.  ActiveGPT4  significantly outperforms  the  few-shot  learning  methods  ADAPET  and  PERFECT  (+  17.64%  + 

24.29%).  While  not  outperforming  SetFit  on  its  own,  ActiveLLM,  when  combined 

with  each  few-shot  learning  method,  significantly  improves  all  of  these  methods. 

3  The  original  implementation  only  supports  RoBERTa-Large. 
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7.4

Experiments

107

This  shows  that  few-shot  learning  methods  can  be  improved  through  the  selection 

of  instances,  and  in  some  cases,  this  selection  is  even  more  important  than  the  use 

of  few-shot  learning  methods. 

Fig.  7.5  Comparison  of  ActiveGPT4,  both  independently  and  in  combination  with  few-shot methods,  across  different  tasks  (32  instances).  The  methods  include  ADAPET  (evaluated  using BERT-base  on  CTI  with  F1),  PERFECT  (using  RoBERTa-Large  on  SST2  with  accuracy),  and 

SetFit  (using  BERT-base  on  AGNews  with  accuracy) 

7.4.6

Non-Few-Shot-Scenarios 

In  our  last  experiments,  we  investigate  how  ActiveLLM  performs  in  non-few-shot 

scenarios  and  if  it  can  be  used  to  overcome  the  cold-start  problem  of  other  AL 

strategies.  For  this  purpose,  we  select  a  sample  size  of  25  examples  per  AL  iteration and  evaluate  the  process  up  to  300  examples. 

7.4.6.1  Iterated  Querying 

 –  How  does  the  method  perform  in  non-few-shot-scenarios? 

Figure  7.6  indicates  that  ActiveGPT4  is  particularly  beneficial  in  few-shot  scenarios up  to  about  100  instances.  Beyond  this  point,  it  performs  comparably  to  random

[image: Image 22]
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sampling.  Furthermore,  the  figure  highlights  the  importance  of  recalling  instances 

that  have  already  been  selected,  as  the  no-recap  mode  performs  the  worst.  Providing 

the  model  with  the  indices  of  these  instances  appears  to  be  the  most  efficient  method, as  it  does  not  overly  complicate  or  enlarge  the  prompt. 

Fig.  7.6  Iterated  querying  on  the  SST-2  dataset  with  different  strategies  of  recalling  already labeled  instances.  All  results  are  averaged  over  5  runs  (accuracy) 

These  results  motivate  the  subsequent  experiment  to  investigate  whether  Activ-

eLLM  could  be  a  viable  solution  to  overcome  the  cold-start  problem  of  learning 

strategies. 

7.4.6.2  Overcoming  the  Cold-Start  Problem 

 –  Is  ActiveLLM  capable  of  overcoming  the  cold-start  problem  in  other  AL  strategies? 

As  outlined  in  Sect. 7.1,  a  pervasive  issue  in  AL  research  is  the  initial  poor  performance,  which  leads  to  random  or  worse  selections.  However,  as  deep  learning 

models  increasingly  excel  in  low-data  regimes,  the  quality  of  initial  data  becomes 

progressively  crucial.  Observing  that  ActiveLLM  masters  few-shot  scenarios,  we 

used  the  first  50  examples  selected  by  ActiveGPT4  (index  recap  mode)  as  the  starting 

point  for  PE,  LC,  BALD,  and  EKM. 
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Once  again,  a  selection  size  of  25  was  used,  and  the  experiments  continued  until 

reaching  a  total  of  300  examples.  The  results  in  Fig. 7.7  show  that  ActiveLLM  alone outperforms  all  other  methods  within  the  first  50  examples.  Using  these  examples  as 

a  starting  point  for  LC  and  PE  outperforms  cold-start  strategies,  with  performance 

plateauing  at  around  125  instances.  For  EKM  and  BALD,  this  effect  cannot  be 

reproduced,  as  the  cold-start  problem  is  not  as  severe  with  50  examples  as  it  is  for LC  and  PE.  Nonetheless,  the  experiment  demonstrates  that,  in  cases  of  a  cold-start 

problem,  ActiveLLM  is  an  effective  method  for  addressing  it. 

Fig.  7.7  Comparison  of  BALD,  EKM,  LC,  and  PE  with  and  without  selected  instances  by ActiveGPT4  as  seed  label  set  on  SST-2.  All  results  are  averaged  over  5  runs  (accuracy) 7.5

Discussion  &  Conclusion 

Utilizing  instruction-tuned  LLMs  presents  several  advantages  for  AL  with  BERT-

like  transformers.  Since  these  LLMs  exhibit  substantial  zero-shot  capabilities,  they 

overcome  the  cold-start  problem.  This  is  crucial  for  low-data  regimes  and  few-

shot  scenarios,  which  are  becoming  increasingly  important  [516]. Realized  in  the
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ActiveLLM  method,  we  show  that  this  procedure  indeed  excels  in  few-shot  sce-

narios,  outperforming  the  baseline  and  common  AL  strategies  for  transformers. 

Furthermore,  in  our  experiments,  ActiveLLM  significantly  outperforms  state-of-

the-art  few-shot  learning  methods,  ADAPET  and  PERFECT,  while  also  enhancing 

the  performance  of  SetFit,  ADAPET,  and  PERFECT  when  used  in  combination.  We 

also  demonstrate  a  variant  of  ActiveLLM  with  iterative  querying,  which  is  applica-

ble  to  non-few-shot  scenarios  and  incorporates  feedback  from  previous  iterations. 

In  a  combined  setting,  we  show  that  ActiveLLM  overcomes  the  cold-start  problem 

inherent  in  conventional  AL  strategies. 

Moreover,  ActiveLLM  is  particularly  suitable  for  practical  scenarios  as  it  effec-

tively  eliminates  the  dependency  between  the  query  and  the  successor  model.  In  our 

experiments,  the  AL  methods  LC,  BALD,  EKM,  and  PE  required  several  hours  to 

complete  (see  Table  7.4), whereas  even  the  more  efficient  AL  methods  commonly discussed  in  the  literature  typically  require  several  minutes  per  querying  iteration 

[517].  While  some  of  the  LLMs  used  in  ActiveLLM  require  significantly  more resources,  our  approach  eliminates  the  need  for  model  training  during  the  AL  selection  process,  as  required  by  many  other  AL  methods.  Additionally,  only  a  small 

portion  of  the  unlabeled  data  is  considered,  still  resulting  in  significant  improve-

ments  while  requiring  just  a  few  seconds  for  querying.  Furthermore,  the  current 

cost-free  availability  of  these  LLMs  through  chat  interfaces  eliminates  the  need 

for  extensive  resources  or  financial  investment.  If  cost-free  availability  persists,  it 

democratizes  AL,  making  it  accessible  to  a  wider  audience  rather  than  limiting  it  to 

hypothetical  scenarios  that  assume  unlimited  time,  resources,  or  funding. 

7.5.1

LLM-based  Active  Learning  Strategies 

The  question  remains  as  to  how  LLMs  choose  instances.  While  they  clearly  explain 

their  approach,  including  avoiding  redundancy,  selecting  diverse  instances,  and  con-

sidering  ambiguities  (see  Figure  A.3),  it  is  nearly  impossible  to  assess  whether  the 

models  truly  perform  as  claimed.  However,  LLMs  are  known  for  their  ability  to 

identify  topics  and  patterns  in  texts,  which  suggests  that  diversity-based  sampling, 

a  common  approach  in  other  procedures,  is  a  valid  method.  Due  to  this  property, 

they  can  also  identify  differences  between  instances,  enabling  them  to  recognize 

unique,  representative,  frequent,  or  highly  information-dense  examples.  Similarly, 

we  expect  these  models  to  perform  well  on  the  tasks  themselves,  which  is  why  they 

could  be  relatively  proficient  at  selecting  a  balanced  set  of  all  classes.  However,  these models  cannot  inspect  their  own  internals,  which  means  they  are  not  performing 

uncertainty  sampling  based  on  these  internals.  Related  to  uncertainty,  LLMs  might
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be  very  well  suited  for  identifying  difficult  or  ambiguous  examples.  Occasionally, 

the  models  mention  that  they  try  to  filter  out  any  instances  that  are  anomalies  that 

would  teach  the  successor  model  incorrect  patterns.  In  iterated  querying  mode,  the 

language  models  often  directly  mention  strategies  regarding  the  feedback,  explain-

ing  that  for  selecting  the  instances,  they  incorporate  past  instances  and  try  to  avoid redundancy,  but  also  track  very  ambiguous  instances  from  which  more  data  might 

be  needed  in  the  successor  training. 

7.5.2

Limitations  and  Future  Work 

While  LLMs  such  as  GPT-4  offer  greater  capabilities,  they  often  require  substantial 

computational  resources,  incur  high  API  costs,  and  raise  concerns  regarding  data 

privacy  and  control  [ 40, 378, 447, 469].  In  contrast,  BERT-like  models  remain an  important  choice  for  many  practical  applications  due  to  their  efficiency,  open 

availability,  and  competitive  performance  when  fine-tuned  on  domain-specific  tasks. 

Although  ActiveLLM  leverages  LLMs,  their  use  is  limited  to  the  labeling  phase 

and  is  not  required  after  training.  As  such,  the  resulting  BERT-like  classifier  can 

be  deployed  without  relying  on  external  APIs  or  continued  access  to  proprietary 

LLMs.  Nonetheless,  it  is  important  to  acknowledge  that  the  integration  of  LLMs 

during  training  may  still  pose  privacy  challenges  with  regard  to  the  data  exposed  to 

them.  Our  approach  therefore  offers  a  trade-off:  it  combines  the  strengths  of  LLMs 

for  data-efficient  training  while  preserving  the  lightweight  and  self-contained  nature 

of  traditional  transformer  classifiers  at  inference  time.  It  might  also  be  of  interest 

to  use  the  LLM  directly  as  an  oracle  in  our  framework,  i.e.,  to  have  it  label  the 

selected  instances  directly.  However,  as  this  study  focuses  on  the  selection  of  training examples,  we  chose  not  to  introduce  additional  potential  points  of  failure.  Instead, 

we  refer  readers  to  the  work  of  Walshe  et  al. [460],  and  Wang  et  al. [475],  who explore  the  use  of  LLMs  in  the  annotation  process.  We  also  look  forward  to  applying 

ActiveLLM  to  LLMs  themselves.  As  reported  by  Zhang,  Feng,  and  Tan  [527], the selection  of  training  examples  for  in-context  learning  can  have  a  significant  impact 

on  LLM  performance,  making  ActiveLLM  a  promising  method  in  this  context  as 

well. 

While  the  experiments  confirm  the  strong  performance  of  ActiveLLM’s  general 

design,  we  look  forward  to  further  exploring  fine-grained  LLM  pipeline  and  prompt 

optimization  techniques,  including  modular  and  programmable  approaches  [203]. 

In  particular,  the  context  size  is  critical  for  ActiveLLM.  If  the  prompts  get  too 

large,  the  LLMs  tend  to  forget  the  task  or  are  not  able  to  reason  over  the  various 

instances.  Although  some  models  were  reported  to  be  able  to  handle  long  context
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inputs,  we  found  that  they  were  not  able  to  reason  over  long  contexts.  This  is  in 

line  with  the  findings  of  Hsieh  et  al.  [157]  who  argue  that  simple  retrieval-based tests,  like  the  common  needle-in-a-haystack  test,  are  not  suitable  for  testing  long 

context  understanding.  In  our  results,  we  noticed  differences  for  tasks  with  longer 

instances  on  average.  We  also  hypothesize  that  the  length  may  be  the  reason  why 

LLMs  sometimes  omit  certain  instructions  or  information,  such  as  the  provided 

labels  in  our  tests  of  the  iterated  querying  mode.  We  are  interested  in  considering 

not  only  the  instances  as  a  length  restriction  but  also  the  token  count  in  future 

work.  Furthermore,  in  our  experiments  we  wanted  to  show  that  the  general  prompt 

optimized  in  Sect. 7.4.2  is  applicable  to  other  models  and  datasets.  Another  approach would  be  to  consider  the  prompt  as  adaptive  and  tune  it  for  each  model  on  the 

respective  development  set.  While  this  introduces  a  new  hyperparameter,  we  expect 

it  to  improve  performance  in  most  cases.  Furthermore,  optimizing  the  prompt  for 

GPT-4  may  also  explain  why  certain  types  of  LLMs  perform  worse. 

A  common  problem  in  the  field  of  LLMs  is  that  many  established  and  open 

benchmarks  have  leaked  into  the  training  data.  This  could  bias  the  results  of  our 

work,  as  a  model  may  already  be  familiar  with  the  dataset.  While  we  cannot  com-

pletely  avoid  this  phenomenon,  we  have  tried  to  use  a  less  known  dataset  for  prompt 

engineering,  as  well  as  smaller  and  older  models,  which  are  less  susceptible  to  data 

leakage. 

When  we  describe  ActiveLLM  as  much  more  efficient  and  less  resource-intensive 

for  practitioners  than  other  AL  methods,  we  assume  the  availability  of  cost-free  chat 

interfaces  or  low-cost  APIs.  Certainly,  the  LLMs  that  ActiveLLM  relies  on  consume 

considerable  resources,  even  if  they  are  only  used  for  a  very  short  time  during  sample selection  for  labeling.  In  terms  of  practicality,  our  experiments  also  focus  on  the  use of  the  chat  versions  of  the  LLMs.  However,  directly  using  the  models,  e.g.,  with 

the  APIs,  might  yield  different  results.  While  this  might  only  play  an  insignificant 

difference  for  Llama  or  Mixtral,  some  chat  interfaces,  like  those  from  OpenAI  or 

Google,  hide  parameters,  preceding  prompts,  and  exact  version  declarations.  We 

see  our  results  as  a  baseline  that  might  be  improved  with  different  parameters  or 

without  a  preceding  prompt  in  the  future. 
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Abstract 

Data  augmentation,  the  artificial  creation  of  training  data  for  machine  learning 

by  transformations,  is  a  widely  studied  research  field  across  machine  learning 

disciplines.  While  it  is  useful  for  increasing  a  model’s  generalization  capabilities, 

it  can  also  address  many  other  challenges  and  problems,  from  overcoming  a 

limited  amount  of  training  data,  to  regularizing  the  objective,  to  limiting  the 

amount  data  used  to  protect  privacy.  Based  on  a  precise  description  of  the  goals 

and  applications  of  data  augmentation  and  a  taxonomy  for  existing  works,  this 

survey  is  concerned  with  data  augmentation  methods  for  textual  classification 

and  aims  to  provide  a  concise  and  comprehensive  overview  for  researchers  and 

practitioners.  Derived  from  the  taxonomy,  we  divide  more  than  100  methods  into 

12  different  groupings  and  give  state-of-the-art  references  expounding  which 

methods  are  highly  promising  by  relating  them  to  each  other.  Finally,  research 

perspectives  that  may  constitute  a  building  block  for  future  work  are  provided. 
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8.1

Introduction 

An  increase  in  training  data  does  not  necessarily  result  in  a  solution  for  the  learning problem.  Nevertheless,  the  quantity  of  data  remains  decisive  for  the  quality  of  a 

supervised  classifier.  Originating  from  the  field  of  computer  vision,  many  different 

methods  exist  to  artificially  create  such  data,  which  are  referred  to  as  data  aug-

mentation.  For  images,  transformations  such  as  rotations  or  changes  of  the  RGB 

channel  are  useful,  as  the  resulting  model  should  be  invariant  for  these.  Similar  to 

computer  vision,  speech  recognition  uses  procedures  that  change  sound  or  speed. 

In  contrast,  research  on  data  augmentation  in  Natural  Language  Processing  (NLP) 

faces  the  difficult  task  of  establishing  such  universal  rules  for  textual  data  transformations  which,  when  executed  automatically,  maintain  labeling  quality  [209, 481]. 

Research  in  this  area  was,  therefore,  much  more  limited  before  2019,  despite  exist-

ing  extensive  areas  of  application  [188].  Nowadays,  this  challenge  remains  but  is being  addressed  by  many  scientists  from  different  research  fields  as  more  possibilities  and  complex  mechanisms  open  up.  Within  these  fields,  researchers  strive 

to  meet  various  goals,  e.g.,  generating  more  data  for  low-data  regimes,  balancing 

imbalanced  dataset  classes,  or  securing  against  adversarial  examples.  Thus,  tex-

tual  data  augmentation  comes  in  many  contrasting  forms  that  will  be  grouped  and 

explained  in  this  survey.  We  will  provide  an  in-depth  analysis  and  also  relate  the 

methods  to  the  state-of-the-art,  as  they  now  face  another  challenge  due  to  the  advent 

of  transfer  learning.  For  example,  Longpre,  Wang,  and  DuBois  [265]  demonstrate that  many  data  augmentation  methods  cannot  achieve  gains  when  using  large  pretrained  language  models,  as  they  are  already  invariant  to  various  transformations. 

They  hypothesize  that  data  augmentation  methods  can  only  be  beneficial  if  they 

create  new  linguistic  patterns  that  have  not  been  seen  before.  Keeping  this  in  mind, 

the  survey  is  closed  with  a  meta-perspective  on  the  methods.  This  survey  is  there-

fore  intended  to  contribute  to  data  augmentation  and  general  text  classification  by 

highlighting  the  following  aspects: 

•  Goals  and  applications  (C1).  We  highlight  the  goals  and  applications  of  data 

augmentation  that  we  derive  from  the  comprehensive  review.  These  have  only 

been  presented  to  a  limited  and  incomplete  extent  in  previous  research  papers. 

•  Comprehensive  survey  on  data  augmentation  in  text  classification  (C2).  Our 

survey  provides  a  holistic  overview  of  the  data  augmentation  field  in  text  clas-

sification.  While  methods  for  other  NLP  disciplines  are  mentioned,  the  listing 

is  not  complete,  nor  are  the  methods  set  in  relation  to  each  other  as  the  text 

classification  data  augmentation  methods  are. 
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•  Data-structure-driven  taxonomy  and  method-oriented  categorization  (C3).  The 

text  classification  data  augmentation  methods  are  clustered  according  to  a  data-

structure-based,  high-level  taxonomy  and  then  subdivided  into  more  fine-grained 

method  groups.  This  is  also  present  in  the  surveys  from  Shorten  and  Khoshgoftaar 

[401] and  Wen et al.  [482]  and  is  adapted  for  the  text  classification  domain. 

•  Method-driven  overview  and  in-depth  details  (C4).  The  textual  data  augmen-

tation  methods  are  explained  clearly  and  concisely  while  including  necessary 

details  for  delimitation  and  comparison.  Contrasting  to  other  works,  our  exten-

sive  study  contains  12  groups  with  more  than  100  different  approaches. 

•  State-of-the-art  review  (C5):  Within  the  literature  survey,  we  examine  the  latest 

state-of-the-art  considerations,  for  example,  the  limited  benefit  of  textual  data 

augmentation  methods  with  large  pre-trained  models  that  are  often  neglected  in 

current  works. 

•  Relating  methods  (C6).  Throughout  this  survey,  the  methods  are  set  in  relation 

to  conception  and  performance  comparisons  while  taking  the  underlying  models 

and  application  contexts  into  account. 

•  Future  research  perspectives  (C7).  We  identify  future  research  opportunities  that 

are  either  necessary  for  a  state-of-the-art  comparison  or  sensible  to  look  into 

because  of  current  challenges  and  promising  directions  for  textual  data  augmen-

tation. 

The  survey  paper  is  structured  as  follows:  The  paper  introduces  the  foundations  of 

data  augmentation  in  Sect. 8.2. This  section  is  then  broadened  by  considering  the goals  and  applications.  Sect. 8.3  is  subdivided  into  the  various  data  augmentation groups  and  contains  the  explanations,  as  well  as  tabular  overviews  of  the  methods. 

In  Sect. 8.4, an  analysis  of  the  data  augmentation  methods  from  a  more  global perspective  is  given  and  various  future  research  directions  are  discussed.  Sect. 8.5 

outlines  the  limitations  of  data  augmentation  and  provides  a  conclusion  for  this 

survey. 

8.2

Background:  Foundations,  Goals,  and  Applications  of 

Data  Augmentation 

In  many  machine  learning  scenarios,  not  enough  data  is  available  to  train  a  high-

quality  classifier.  To  address  this  problem,  data  augmentation  can  be  used.  It  arti-

ficially  enlarges  the  amount  of  available  training  data  by  means  of  transformations 

[434].  In  the  well-known  LeNet  by  LeCun  et  al. [237],  early  versions  of  data  augmentation  have  already  been  observed.  The  notion  of  data  augmentation  comprises
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various  research  in  different  sub-areas  of  machine  learning.  Many  scientific  works 

merely  relate  data  augmentation  to  deep  learning,  yet  it  is  frequently  applied  in  the 

entire  context  of  machine  learning.  Therefore,  this  paper  adopts  the  notion  of  data 

augmentation  as  a  broad  concept,  encompassing  any  method  that  enables  the  trans-

formation  of  training  data.  However,  following  common  understanding  in  research, 

semi-supervised  learning  is  not  regarded  as  a  form  of  data  augmentation  and  is  only 

thematized  if  sensible  in  this  survey. 

An  important  term  relating  to  data  augmentation  is  label  preservation,  which 

describes  transformations  of  training  data  that  preserve  class  information  [ 81]. For example,  in  sentiment  analysis,  an  entity  replacement  within  a  sentence  is  often 

sufficient  for  label  preservation,  but  randomly  adding  words  may  alter  the  sentiment 

(e.g.,  an  additional  “not”  could  invert  the  meaning  of  a  sentence).  In  many  research 

works,  label  preservation  is  adapted  to  also  cover  transformations  changing  the  class 

information,  if  the  label  is  adjusted  correctly.  Additionally,  many  transformations 

do  not  maintain  the  correct  class  in  every  case  but  with  a  high  probability.  Shorten 

and  Khoshgoftaar  [401]  define  this  probability  as  the  safety  of  a  data  augmentation method.  When  this  uncertainty  is  known,  it  could  be  directly  integrated  in  the  label. 

Otherwise,  methods  like  label  smoothing  [300]  can  model  a  general  uncertainty. 

The  goals  of  data  augmentation  are  manifold  and  encompass  different  aspects.  As 

mentioned  above,  training  data  is  essential  for  the  quality  of  a  supervised  machine 

learning  process.  Banko  and  Brill  [ 25]  show  that  only  the  creation  of  additional data  can  improve  the  quality  of  a  solution  in  the  confusion  set  disambiguation  problem,  while  the  choice  of  the  classifier  does  not  lead  to  a  significant  change.  The 

model  selection  and  development  will  remain  a  crucial  aspect  of  machine  learning. 

Yet,  scholars  suggest  that  in  some  situations,  the  choice  for  higher  investments  in 

algorithm-choice  and -development  instead  of  corpus-development  should  be  care-

fully  considered  [ 25]. Closely  connected  to  this  is  the  big  data  wall  problem,  which Coulombe  [ 81]  mentions  in  his  work  on  data  augmentation.  It  describes  that  big  companies  benefit  from  the  special  advantage  of  having  access  to  a  large  amount  of  training  data.  Consequently,  the  already  large  GAFAM-Companies  (Google/Alphabet, 

Amazon,  Facebook/Meta,  Apple,  and  Microsoft)  expand  their  predominance  over 

smaller  businesses  due  to  their  data  superiority.  An  ideal  data  augmentation  method 

could  approach  these  points  and  decrease  the  dependency  of  training  data  even 

though  full  elimination  is  not  likely. 

Additionally,  creating  training  data  for  various  classification  problems  is  accom-

panied  by  high  labeling  costs.  In  many  instances,  assessment  and  labeling  by  experts 

are  necessary  to  prevent  incorrect  training  examples.  These  aspects  can,  for  example, 

be  especially  stressed  concerning  the  field  of  crisis  informatics  [ 30, 321].  Creating relevant  classifiers  for  emergency  services  and  responders  is  only  possible  during
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crises  and  requires  resources  and  time  from  personnel  needed  elsewhere  to,  e.g., 

act  as  first  responders,  therefore  in  the  worst-case  costing  lives  [198].  Similarly, training  data  for  medical  image  processing  is  very  valuable.  Due  to  the  rareness  of 

certain  diseases,  the  privacy  of  patients,  and  the  requirement  of  medical  experts, 

it  is  particularly  challenging  to  provide  medical  datasets  [401].  In  a  related  sense, many  domains,  such  as  cybersecurity,  have  a  time-critical  factor  that  requires  training  data  to  be  collected  as  quickly  as  possible  so  that,  in  terms  of  the  cybersecurity domain  example,  threats  can  be  responded  to  quickly  [193, 195]. With  regard  to such  classification  problems,  data  augmentation  could  help  minimize  the  required 

amount  of  data  needed  to  be  labeled  and  to  solve  interlinked  problems. 

Data  augmentation  is  particularly  significant  for  the  field  of  deep  learning.  Work 

such  as  that  by  Minaee  et  al.  [288]  has  already  extensively  investigated  the  quality of  deep  learning  algorithms  in  text  classification,  but  there  are  many  application 

scenarios  where  there  is  not  enough  data  to  produce  high  quality  classifiers.  For 

example,  Srivastava  et  al.  [417]  have  also  demonstrated  that  deep  neural  networks in  general  are  particularly  powerful  but  encompass  a  tendency  to  overfit;  faced  with 

unseen  instances,  they  might  generalize  badly.  This  observation  can  be  illustrated 

with  help  of  the  bias  variance  dilemma.  On  the  one  hand,  deep  learning  algorithms 

are,  due  to  their  deep  and  non-linear  layers,  very  strong  models  with  a  lower  bias-

error.  On  the  other  hand,  they  show  a  high  variance  for  different  subsets  of  training data  [127].  This  problem  can  be  solved  by  arranging  the  algorithm  to  prefer  simple solutions  or  by  providing  a  bigger  amount  of  training  data.  The  first  option  is  aimed at  methods  of  regularization,  such  as  dropout  or  the  addition  of  a  L2  norm  via  the 

model’s  parameters  in  the  loss-function.  The  second  option  is  frequently  realized  by 

means  of  data  augmentation  and  could,  in  this  context,  also  be  considered  as  a  type  of regularization.  According  to  Hernández-García  and  König  [151], data  augmentation is  a  preferred  regularization  method,  as  it  achieves  generalization  without  degrading 

the  models’  representational  capacity  and  without  re-tuning  other  hyperparameters. 

While  other  methods  reduce  the  bias  error,  data  augmentation’s  objective  is  to  keep 

it  constant  and  is  used  to  solve  the  problem  at  the  root  [401].  Nonetheless,  data  augmentation  still  depends  on  the  underlying  classification  problem  and  can  therefore 

not  be  effectively  applied  in  all  circumstances. 

In  the  context  of  deep  learning  models,  so  called  adversarial  examples/attacks 

are  generated  more  and  more  frequently.  These  small  changes  in  the  input  data, 

which  are  almost  unrecognizable  to  humans,  mislead  the  algorithms  to  make  wrong 

predictions  [ 99].  Table  8.1  shows  two  different  genuine  examples  in  which  the smallest  changes  in  the  texts  alter  the  classification  prediction.  Alzantot  et  al. [ 17] 

further  present  an  algorithm  that  generates  semantically  and  syntactically  similar 

instances  of  training  data,  successfully  outwitting  sentiment  analysis  and  entailment
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models.  With  the  help  of  adversarial  training,  these  automatic  adversarial  example 

generators  can  be  used  as  data  augmentation  methods,  as  done,  for  example,  in 

[488],  [434], [406], or  [442],  in  order  for  models  to  be  less  susceptible  to  such  easy alterations. 

Table  8.1  Examples  for  Adversarial  Attacks  adapted  from  Ebrahimi  et  al.  [ 99] 

Original  text

Altered  text 

South  Africa’s  historic  Soweto  township 

South  Africa’s  historic  Soweto  township 

marks  its  100 th  birthday  on  Tuesday  in  a 

marks  its  100 th  birthday  on  Tuesday  in  a 

mood  of  optimism. 

mooP  of  optimism. 

57%  World

95%  Sci/Tech 

Chancellor  Gordon  Brown  has  sought  to 

Chancellor  Gordon  Brown  has  sought  to 

quell  speculation  over  who  should  run  the 

quell  speculation  over  who  should  run  the 

Labour  Party  and  turned  the  attack  on  the 

Labour  Party  and  turned  the  attack  on  the 

opposition  Conservatives. 

oBposition  Conservatives. 

75%  World

94%  Business 

If  the  amount  of  data  is  taken  into  consideration,  it  stands  out  that  certain  classi-

fication  problems  are  often  heavily  unbalanced,  for  instance,  only  a  small  amount  is 

relevant  (positive)  while  the  irrelevant  (negative)  data  is  prevalent  [172]. For  example,  in  an  entire  corpus  for  topic  classification  or  crisis  identification,  only  few  data actually  relate  to  the  topics  or  the  crisis  in  question.  Zhong  et  al. [535] term a dataset as  unbalanced,  if  the  distribution  of  classes  within  it  is  not  approximately  equally 

balanced.  Data  augmentation  may  help  to  enhance  the  amount  of  data  for  a  certain 

class  in  order  for  balanced  class  distributions  to  be  present  and  thus  for  a  classifier to  be  able  to  be  modelled  more  robustly  [120, 539]. 

Data  augmentation  can  also  be  helpful  in  sensitive  domains.  Dealing  with  con-

fidential  or  privacy-related  data,  one  can  decrease  the  usage  of  real-world  data  by 

crafting  artificial  data.  It  is  even  possible  to  only  train  the  algorithm  on  the  newly created  data,  in  order  to  prevent  drawing  any  conclusions  on  non-artificial  training 

data  from  a  deployed  model.  For  example,  Carlini  et  al.  [ 55]  have  demonstrated a  method  for  extracting  training  data  from  large  language  models  that  could  contain  private  information.  For  training  such  a  privacy  ensuring  model,  special  data 

augmentation  techniques  that  are  able  to  anonymize  the  data  have  to  be  used. 

Data  augmentation  exists  in  different  types  and  areas  of  application.  A  taxonomy 

of  the  types  in  the  textual  domain  can  be  seen  in  Fig. 8.1.  The  augmentation  methods  can  be  divided  into  the  transformation  of  raw  data  (data  space)  and  processed

[image: Image 25]
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representations  of  data  (feature  space)  [401]. These  representations  are  transformed types  of  data,  for  example,  activation  vectors  of  a  neuronal  network,  the  encoding  of 

an  Encoder  Decoder  Network,  or  LSTM  hidden  states,  respectively  embeddings  of 

data.  Abstracting  from  the  textual  realm,  in  many  cases,  data  augmentation  depends 

on  the  underlying  problem  (text  classification,  image  recognition,  etc.);  and  is  there-

fore  applied  in  different  ways  in  different  areas.  Procedures  generic  enough  to  be 

used  across  different  areas  are  for  the  most  part  limited  to  the  feature  space. 

Fig.  8.1  Taxonomy  and  grouping  for  different  data  augmentation  methods 

The  most  substantial  research  on  data  augmentation  exists  in  the  field  of  computer 

vision.  This  is  due  to  the  intuitive  construction  of  simple  label  preserving  transformations.  Data  augmentation  methods  in  computer  vision  are,  among  other,  geometric 

transformations  [406, 434], neural  style  transfers  [ 82, 177, 343],  interpolation  of images  [144],  random  partial  deletions  [499],  and  generative  adversarial  network (GAN)  data  generation  [ 99].  Sophisticated  techniques  can  additively  improve  the accuracy  baseline  for  different  problems  by  around  10  to  15  percent  [499].  Another area  of  application  for  data  augmentation  is  speech  processing.  Researchers  have 

successfully  used  acoustic  transformations  of  the  input  data.  Ko  et  al. [208] have achieved  up  to  4.3  points  better  accuracy  values  by  modifying  speed.  Furthermore, 

interfering  with  vocal  tract  length  [499]  or  adding  noise  [144]  may  also  enhance the  quality  of  classifiers.  The  application  of  data  augmentation  in  the  textual  realm 

is  considered  a  difficult  task,  since  textual  transformations  preserving  the  label  are
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difficult  to  define  [209, 481].  Nevertheless,  several  simple  and  sophisticated  methods have  been  developed  in  this  and  adjacent  research  areas. 

8.3

Textual  Data  Augmentation  Methods 

In  the  following,  different  data  augmentation  methods  for  textual  data  are  summa-

rized,  explained,  and  subdivided  in  different  groupings.  Mainly  methods  focusing 

on  the  application  of  text  classification  are  included,  although  augmentation  meth-

ods  for  other  tasks  in  the  textual  realm  are  also  mentioned  if  they  fit  into  the  group. 

In  this  survey,  text  classification  is  considered  a  problem  of  the  field  of  NLP,  where units  such  as  sentences,  paragraphs,  or  documents  are  categorized  into  class  labels 

[288].  For  example,  generative  or  sequence-tagging  tasks,  where  either  text  has to  be  generated  or  the  words  of  the  units  have  to  be  tagged  individually,  are  not 

regarded  as  tasks  in  this  sense.  This  means  that  augmentation  methods  for  tasks 

such  as  topic  classification,  sentiment  analysis,  or  spam  identification  are  focused, 

described,  and  analyzed  in  detail.  Other  tasks,  on  the  other  hand,  like  generative 

question  answering,  part  of  speech  tagging,  or  machine  translation  are  only  men-

tioned  in  a  non-comprehensive  way.  Therefore,  in  the  context  of  text  classification, 

our  paper  provides  a  comprehensive  overview  containing  the  necessary  details  for 

researchers  and  practitioners.  For  a  more  general  perspective  on  NLP  augmenta-

tions  (including  sequence-tagging,  parsing,  text  generation,  etc.),  we  recommend 

the  reader  to  have  a  look  at  the  work  of  Feng  et  al. [113], which  is  not  as  detailed  in text  classification  as  our  work  but  presents  a  broader  task  view.  In  contrast  to  this task-driven  view  by  Feng  et  al.  [113], we  are  taking  a  method-oriented  perspective while  conducting  a  data-structure-driven,  high-level  categorization  (see  Fig. 8.1). 

Contrary  to  other  surveys  in  the  field  of  data  augmentation,  we  focus  on  setting  the 

augmentation  methods  into  context  by  comparing  the  conception  and  performance, 

with  regard  to  the  underlying  models  and  application  context.  In  this  way,  the  listed 

augmentation  groups  contain  an  explanation  with  details  on  the  differences  within 

the  group  and  a  comprehensive  overview  of  how  the  methods  differ  and  which  results 

they  produce.  This  allows  the  reader  to  gain  insights  into  which  data  augmentation 

technique  might  be  most  promising  for  the  own  use-case  and  what  specifics  need  to 

be  considered,  while  it  is  also  possible  to  follow  the  data-structure  based  taxonomy. 

In  the  end,  we  discuss  important  future  research  directions  by  setting  all  methods 

into  context,  which  can  help  accelerate  developments  in  this  field. 

In  the  next  section,  data  augmentation  methods  relevant  in  textual  contexts  are 

summarized  and  grouped.  Generally,  the  methods  are  described  in  a  sensible  order 

for  the  specific  group.  In  groups  with  many  similar  approaches,  we  summarize  the
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most  important  information  in  tabular  form.  We  also  extract  information  regarding 

improvements.  The  improvement  indications  are  intended  to  give  a  quick  overview 

of  how  well  a  method  may  perform  but  are  not  in-depth  informative  or  compa-

rable  on  their  own.  For  a  more  detailed  perspective,  the  models  and  datasets  are 

also  displayed.  This  should  provide  a  more  holistic  perspective,  although  in-depth 

information  has  to  be  extracted  from  the  respective  papers  themselves. 

8.3.1

Data  Space 

8.3.1.1  Character  Level 

 Noise Induction 

The  addition  of  noise  to  the  input  data  is  one  of  the  data  augmentation  methods  with the  smallest  alterations,  especially  when  applied  on  a  character  level.  As  explained 

in  more  detail  further  on,  the  induction  of  noise  can  also  be  used  at  the  word  level as  well  as  in  the  feature  space. 

In  this  context,  the  basic  idea  of  the  method  of  Belinkov  and  Bisk  [ 33] is to add  artificial  and  natural  noise  to  the  training  data  so  that,  in  their  case,  neural 

machine  translation  (NMT)  models  are  less  susceptible  to  adversarial  examples. 

As  artificial  noise,  Belinkov  and  Bisk  [ 33]  describe  operations  like  the  random switching  of  single  letters  (“cheese”  → “cehese”),  the  randomization  of  the  mid  part 

of  a  word  (“cheese”  → “ceehse”),  the  complete  randomization  of  a  word  (“cheese” 

→ “eseehc”),  and  the  replacement  of  one  letter  with  a  neighboring  letter  on  the 

keyboard  (“cheeae”).  Similarly,  Feng  et  al. [113]  randomly  delete,  swap,  and  insert characters  of  texts  (the  prompt  portion)  that  are  used  for  fine-tuning  text  generators. 

For  this,  they  moreover  ignore  the  first  and  last  character  of  a  word.  To  measure 

the  suitability  for  text  generators,  they  intrinsically  measure  the  diversity,  fluency, 

semantic  context  preservation,  and  sentiment  consistency.  The  applied  method  is 

better  than  the  baseline  in  every  respect.  These  augmentations  are  also  usable  in 

the  text  classification  domain.  Ebrahimi  et  al. [ 99]  used  an  existing  model,  trained with  the  initial  dataset,  to  generate  adversarial  examples.  They  use  the  direct  input 

data  to  flip  a  letter  if  the  change  increases  the  loss  of  the  existing  model.  If  a  new model  is  trained  with  the  additional  data  once  again,  the  error  rate  is  improved 

and  the  success  of  adversarial  attacks  is  significantly  mitigated.  Furthermore,  they 

compare  their  approach  with  the  adversarial  method  from  the  previously  mentioned 

work  of  Belinkov  and  Bisk  [ 33]  and  the  feature  space  method  from  Miyato,  Dai,  and Goodfellow  [292]  (see  Sect. 8.3.2.1).  Based  on  a  CharCNN-LSTM  on  the  AG  News dataset,  they  achieve  the  best  improvement  in  accuracy  by  obtaining  an  additional 

0.62%.  While  the  method  of  Miyato,  Dai,  and  Goodfellow  [292]  improved  the  score
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by  only  0.24  points,  it  is  interesting  to  see  that  the  method  of  Belinkov  and  Bisk  [ 33] 

even  decreased  the  accuracy  by  0.33  points.  Coulombe  [ 81]  describes  the  induction of  weak  textual  manipulations  through  the  aforementioned  change,  deletion,  and 

addition  of  letters  in  words  and,  in  addition,  the  alteration  of  upper  and  lower  case and  the  modification  of  punctuation.  The  highest  absolute  accuracy  improvement 

by  2.5%  can  be  seen  in  comparison  to  the  best  functioning  baseline.  However,  the 

evaluation  was  performed  with  basic  architectures  and  no  embeddings,  wherefore 

further  studies  are  needed  to  validate  the  usefulness  in  a  current  setting. 

Natural  noise,  as  defined  by  Belinkov  and  Bisk  [ 33],  covers  spelling  mistakes  that are  common  in  the  respective  language,  using  spelling  mistake  databases.  Each  word 

associated  with  a  common  mistake  is  replaced  with  the  misspelled  word,  and  if  there 

is  more  than  one,  the  mistake  is  randomly  sampled.  Belinkov  and  Bisk  [ 33]  receive varying  BLEU  scores  with  their  artificial  and  natural  noise  methods;  most  noise 

operations  made  the  model  more  robust  against  attacks  with  similar  operations. 

Most  importantly,  natural  noise  almost  consistently  worsens  a  translation  model 

regarding  the  baseline.  Analogous  to  the  natural  noise  defined  by  Belinkov  and  Bisk 

[ 33],  Coulombe  [ 81]  also  adds  common  spelling  mistakes  in  the  textual  data  and achieves  good  improvements  when  added  to  classifiers.  The  best  baseline  (XGBoost) 

was  improved  by  an  additional  1.5%.  With  such  transformations,  learners  are  better 

able  to  deal  with  spelling  mistakes  in  prospective  texts,  even  if  mistakes  are  not 

present  in  the  original  training  dataset.  This  variant  of  data  augmentation  can  for 

example  be  of  interest  when  dealing  with  texts  originating  from  social  networks. 

 Rule-based Transformations 

Coulombe  [ 81]  implements  rule-based  transformations  through  the  use  of  regular expressions.  According  to  him,  such  rules  are  not  easy  to  establish,  since  many 

surface-level  transformations  require  deeper  changes  to  preserve  the  grammar,  and 

other  transformations  depend  on  the  language.  Valid  transformations  are,  amongst 

others,  the  insertion  of  spelling  mistakes,  data  alterations,  entity  names,  and  abbre-

viations.  Coulombe  concretely  implements  the  transformation  of  verbal  short  forms 

to  their  long  forms  and  vice  versa  (“I  am”  ↔ “I’m”).  In  the  English  language,  this 

is  semantically  invariant  if  ambiguities  are  preserved  [ 81].  With  this  form  of  data augmentation  Coulombe  achieves  very  good  results  [ 81]. The  best  baseline  model (XGBoost)  additionally  gained  0.5%  in  terms  of  accuracy. 

8.3.1.2  Word  Level 

 Noise Induction 

Noise  induction  can  also  be  applied  on  the  word  level.  For  example,  the  method  of 

Xie  et  al.  [499]  encompasses  two  noise  patterns.  With  “unigram  noising”,  words
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in  the  input  data  are  replaced  by  another  word  with  a  certain  probability.  By  the 

method  of  “blank  noising”,  words  get  replaced  with  “_”.  By  the  adoption  of  both 

patterns,  the  authors  achieved  improved  results  in  their  experiments. 

Li,  Cohn,  and  Baldwin  [250]  are  using  syntactic  and  semantic  methods  as  well as  word  dropout  for  the  generation  of  noise.  Syntactic  noise  is  realized  via  the 

shortening  of  sentences  and  methods  such  as  the  alteration  of  adjectives  or  the  rela-

tivization  of  modifiers,  while  semantic  noise  is  generated  by  the  lexical  substitution 

of  word  synonyms  (8.3.1.2). In  contrast  to  these  two  methods,  word  dropout  is  more clearly  comparable  to  noise.  Random  input  neurons  or  rather  words  get  masked  out 

during  the  training  of  the  network.  According  to  the  authors,  their  proposed  meth-

ods  achieve  an  improvement.  Especially  a  combination  of  all  methods  promises  an 

improvement  of  up  to  1.7  points  in  terms  of  accuracy. 

Two  of  the  four  sub-methods  of  the  Easy  Data  Augmentation  (EDA)  method  by 

Wei  and  Zou  [481], i.e.,  random  swap  and  deletion,  should  also  be  mentioned  as methods  of  noise  induction.  In  experiments,  a  combination  of  both  sub-methods  led 

to  improved  performance  of  the  used  classifier.  EDA  is  very  popular  in  the  research 

field  and  is  used  as  a  method  for  comparisons  in  the  works  of  Qiu  et  al. [336], Huong and  Hoang  [162],  Anaby-Tavor  et  al.  [ 18]  ,  Kumar,  Choudhary,  and  Cho  [223], Bayer et  al. [ 28],  Feng  et  al. [112], Luu,  Nguyen,  and  Nguyen  [268],  and  Kashefi  and  Hwa 

[190].  Wei  and  Zou  [481]  report  that  for  a  small  dataset  these  two  sub-methods  gain higher  improvements  than  the  other  two  sub-methods  that  are  based  on  synonym 

replacement  and  insertion  (see  Sect. 8.3.1.2).  Nevertheless,  Qiu  et  al. [336],  Anaby-Tavor  et  al.  [ 18], Bayer  et  al. [ 28],  and  Luu,  Nguyen,  and  Nguyen  [268]  also  report some  cases  in  which  EDA  as  a  whole  data  augmentation  method  decreases  the 

classification  score.  This  result  can  be  expected,  as  the  methods  random  swap  and 

deletion  are  not  label  preserving,  for  example,  for  sentiment  classification:  “I  did 

not  like  the  movie,  but  the  popcorn  was  good”  → random_swap→ “I  did  like  the 

movie,  but  the  popcorn  was  not  good”.  While  Wu  et  al.  [493]  also  use  random  swap and  random  deletion,  they  propose  random  span  deletion,  where  consecutive  words 

are  deleted.  This  technique  would  lead  to  a  worse  label  preservation,  but  it  is  only 

used  for  language  modelling  with  contrastive  learning  (see  Sect. 8.3.4). 

The  training  instances  of  one  batch  must  have  the  same  length  when  being  fed 

into  a  neural  network.  For  this  purpose,  the  sequences  are  often  zero-padded  on  one 

side.  Rizos,  Hemker,  and  Schuller  [365]  propose  a  specific  noise  induction  method to  augment  the  training  data  by  shifting  the  instances  within  the  confines  of  their 

padding  so  that  the  padding  is  not  solely  on  one  side.  Evaluated  by  means  of  a 

hate  speech  detection  dataset,  the  authors  show  that  this  method  achieves  additive 

performance  gains  of  more  than  5.8%  (Macro-F1).  Sun  and  He  [428]  also  translate the  instances  by  adding  meaningless  words  either  at  the  beginning  or  at  the  end. 

Unfortunately,  they  do  not  evaluate  the  impact  of  this  method  in  isolation. 
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Xie  et  al.  [498]  propose  a  TF-IDF  based  replacement  method  in  which  they  are replacing  uninformative  words  of  an  instance  with  other  uninformative  words.  As  the 

authors  are  combining  this  technique  with  round  trip  translation  (see  Sect. 8.3.1.4) and  unsupervised  data  augmentation,  it  is  not  clear  to  which  degree  it  benefits  the 

task.  Similarly,  Choi  et  al. [ 71]  replace  casual  features/words  that  are  a  determining factor  for  the  label.  In  the  contrastive  learning  scheme,  they  mask  these  words  to 

generate  counterfactual  examples  as  well  as  other  non-casual  words  to  generate 

normal  augmentations.  More  details  and  results  of  this  procedure  can  be  found  in 

Sect. 8.3.4. 

More  noise  data  augmentation  methods  related  to  other  tasks  can  be  found  in  the 

works  of  Cheng,  Jiang,  and  Macherey  [ 70],  Li,  Cohn,  and  Baldwin  [250], Wang  et al. [476], Andreas  [ 19], Guo,  Kim,  and  Rush  [137], Kashefi  and  Hwa  [190],  Sun and  He  [428], and  Kurata,  Xiang,  and  Zhou  [226]. 

 Synonym Replacement 

This  very  popular  form  of  data  augmentation  describes  the  paraphrasing  transfor-

mation  of  text  instances  by  replacing  certain  words  with  synonyms.  One  of  the  first 

applications  of  this  substitution  in  the  field  of  data  augmentation  was  introduced  by 

Kolomiyets,  Bethard,  and  Moens  [214].  They  substituted  temporal  expressions  with potential  synonyms  from  WordNet  [285]. As  the  authors  argue,  the  replacement  of one  original  token  in  a  sentence  will  mostly  preserve  the  semantics.  Based  on  the 

time  expression  recognition  task,  the  authors  propose  replacing  the  headword,  since 

temporal  trigger  words  are  usually  found  there.  While  this  application,  however, 

showed  no  substantial  improvements,  the  authors  also  proposed  a  language  model 

replacement  method  that  was  more  suited  for  the  task  at  hand  (see  Sect. 8.3.1.2). 

In  later  years,  many  researchers  experimented  with  word  replacements  based 

on  thesauri.  The  works  of  Li,  Cohn,  and  Baldwin  [250],  Mosolova,  Fomin,  and Bondarenko  [297], Wang  et  al.[474],  and  many  more  partially  or  primarily  execute  synonym  substitution  in  this  way.  Differences  between  the  studies  concern  the 

specific  words  that  are  substituted,  the  synonyms  that  come  into  question,  and  the 

utilization  of  different  databases.  For  example,  Zhang,  Zhao,  and  LeCun  [526] and Marivate  and  Sefara  [275]  choose  the  synonyms  for  substitution  on  basis  of  the  geometric  distribution  by  which  the  insertion  of  a  rather  distant  synonym  becomes  less 

probable.  Furthermore,  several  approaches  exclude  stop  words  or  words  with  certain 

POS-tags  from  the  set  of  words  considered  for  replacement.  Interesting  is  also  the 

second  sub-method  of  EDA  by  Wei  and  Zou  [481], where  synonyms  are  not  replacing  specific  words,  but  are  randomly  inserted  into  the  instance.  The  replacement 

method,  synonym  selection,  database,  and  improvements  of  the  various  approaches 

are  listed  in  Table  8.2. 
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Also  to  be  emphasized  is  the  more  sophisticated  integration  into  the  learning  pro-

cess,  as  described  by  Jungiewicz  and  Smywinski-Pohl  [187].  The  authors  replace words  with  synonyms  only  if  the  replacement  with  the  chosen  synonym  maximizes  the  loss  of  the  current  state  of  the  classifier  model.  Apart  from  this,  there  are approaches  that  adapt  the  general  idea  of  thesauri-based  replacements  to  perform 

augmentation  on  specific  tasks,  for  example,  in  Kashefi  and  Hwa  [190]  and  Feng  et al. [112]. 

 Embedding Replacement 

Comparable  to  synonym  substitution,  embedding  replacement  methods  search  for 

words  that  fit  as  good  as  possible  into  the  textual  context  and  additionally  do  not  alter the  basic  substance  of  the  text.  To  achieve  this,  the  words  of  the  instances  are  translated  into  a  latent  representation  space,  where  words  of  similar  contexts  are  closer 

together.  Accordingly,  these  latent  spaces  are  based  on  the  distributional  hypothesis 

of  distributional  semantics  [115, 145], which  is  currently  mostly  implemented  in  the form  of  embedding  models.  The  selection  of  words  that  correspond  to  this  hypothesis  and  are,  thus,  near  in  the  representation  space,  implies  that  the  newly  created 

instances  maintain  a  grammatical  coherence,  as  displayed  in  Fig. 8.2.  Besides  this advantage,  Rizos,  Hemker,  and  Schuller  [365]  argue  that  the  “method  encourages the  downstream  task  to  place  lower  emphasis  on  associating  single  words  with  a 

label  and  instead  place  higher  emphasis  on  capturing  similar  sequential  patterns.” 

Benefits  of  this  data  augmentation  technique  in  comparison  to  the  synonym  substi-

tution  method  are  that  techniques  based  on  the  distributional  hypothesis  are  more 

comprehensive  and  the  context  of  texts  is  considered.  This  means  that  substitutions 

are  not  limited  by  a  database,  like  WordNet,  and  that  grammatically  more  correct 

sentences  can  be  generated  [ 23]. Furthermore,  the  general  form  of  this  approach can  be  beneficial  for  languages  which  have  no  access  to  a  large  thesauri  but  a  lot  of general  text  resources,  on  the  basis  of  which  the  self-supervised  embedding  models 

can  be  easily  trained  [ 81]. 

Wang  and  Yang  [473]  use  this  kind  of  augmentation  to  better  classify  annoying tweets.  They  utilize  k-nearest-neighbor  to  identify  the  most  suitable  embeddings  as 

a  substitution  of  the  training  data  words.  Compared  to  the  baseline,  they  achieve  an 

additive  improvement  of  up  to  2.4  points  in  the  F1-Score  with  logistic  regression. 

Marivate  and  Sefara  [275],  Rizos,  Hemker,  and  Schuller  [365],  Huong  and  Hoang 

[162],  and  others  utilize  the  embedding  replacement  in  very  similar  ways.  The greatest  differences  in  terms  of  the  method  exist  in  the  selection  of  words  to  be 

replaced  (e.g.,  POS-tag  based)  and  the  selection  of  the  replacing  words  based  on 

the  embeddings.  An  overview  of  the  differences  can  be  found  in  Table  8.3. 

[image: Image 26]
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Fig.  8.2  Example  of  a  sentence  with  predicted  words  that  can  be  used  to  replace  a  word  in the  sentence  [209] 

A  major  factor  for  poor  results  is  that  the  embedding  replacement  does  not  nec-

essarily  guarantee  the  preservation  of  the  contextual  meaning  of  the  instances.  This, 

in  turn,  could  lead  to  distortions  of  the  label;  e.g.,  “the  movie  was  fantastic”  and 

“the  movie  was  horrible”  are  valid  transformations  but  the  sentiment  is  the  opposite. 

A  way  to  address  this  issue  is  the  use  of  the  counter-fitting  method  of  Mrksic  et  al. 

[298]  for  synonym  embedding  substitution,  as  carried  out  by  Li,  Cohn,  and  Baldwin 

[250].  Counter-fitting  is  an  approach  that  depicts  word  embeddings  on  the  basis  of  a target  function  in  a  way  that  similarities  between  synonyms  are  rewarded  and  similarities  between  antonyms  are  sanctioned  [298]. Li,  Cohn,  and  Baldwin  [250] extend this  approach  by  selecting  the  most  fitting  words  with  a  higher  possibility  for  the 

replacement.  This  is  done  by  leveraging  a  language  model  that  can  give  an  indication 

on  how  well  a  given  word  fits  into  a  sequence.  However,  the  authors  achieve  rather 

mixed  results  with  this  method.  The  counter-fitting  method  offers  considerably  less
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replacement  possibilities,  since  embeddings  have  to  be  trained  on  the  downstream 

task,  leading  to  a  smaller  coverage  of  their  corpora  words.  Alzantot  et  al. [ 17]  use  this method  in  combination  with  a  language  model  filtering  in  their  adversarial  example  generator.  They  extend  the  approach  by  only  incorporating  the  words  that  are 

maximizing  the  target  label  prediction  probability  (label  preservation)  of  an  already 

trained  classifier.  The  authors  report  no  improvements  in  terms  of  the  task  testing 

set,  but  they  show  that  the  model  is  safer  regarding  adversarial  attacks.  Embedding 

replacement  methods  are  moreover  used  in  specific  task-dependent  ways,  such  as 

by  Kashefi  and  Hwa  [190]. 

 Replacement by Language Models 

Language  models  represent  language  by  predicting  subsequent  or  missing  words  on 

the  basis  of  the  previous  or  surrounding  context  (classical  and  respectively  masked 

language  modelling).  In  this  way,  the  models  can,  for  example,  be  used  to  filter 

unfitting  words,  as  already  discussed  in  Sect. 8.3.1.2  in  relation  to  the  work  of Alzantot  et  al.  [ 17]. The  authors  generate  similar  words  with  GloVe  embeddings  and the  counter-fitting  method  and  utilize  a  language  model  to  choose  only  words  with  a 

high  probability  of  fit.  In  contrast  to  embedding  replacements  by  word  embeddings 

that  take  into  account  a  global  context,  language  models  enable  a  more  localized 

replacement  [275].  Utilizing  the  subsequent  word  prediction,  language  models  can also  be  used  as  the  main  augmentation  method.  Kobayashi  [209] is,  for example, using  an  LSTM  language  model  to  identify  substitution  words.  However,  language 

models  do  not  only  substitute  words  with  similar  meaning,  but  also  with  words  that 

fit  the  context  in  principle  [209].  This  trait  is  encompassed  with  a  greater  risk  of label  distortion.  To  prevent  the  attachment  of  wrong  labels  to  the  new  training  data 

due  to  changed  semantics,  Kobayashi  [209]  modifies  the  language  model  so  that it  allows  the  integration  of  the  label  in  the  model  for  the  word  prediction  (label-conditional  language  model).  Inspired  by  this  approach,  Wu  et  al. [491]  alter  the architecture  of  the  language  model  BERT  [ 89]  in  a  way  that  it  is  label  conditional  (cBERT).  In  an  evaluation  with  different  tasks  the  authors  showed  that  in  comparison 

to  Kobayashi  [209]  and  other  approaches  they  were  able  to  considerably  increase the  performance  of  a  classifier  (see  Table  8.4). However,  the  c-BERT  approach  also has  the  disadvantage  that  the  language  model  is  fixed  when  applied,  and  in  the  case 

of  low-data  regimes,  the  augmentation  might  no  longer  be  label  preserving  [160]. 

For  this  reason,  Hu  et  al. [160]  include  the  c-BERT  method  in  a  reinforcement learning  scheme,  which  learns  the  task  in  a  normal  supervised  fashion  but  is  also 

able  to  simultaneously  fine-tune  the  c-BERT  LM.  With  this  adaption,  the  authors
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Table  8.4  Evaluation  results  of  the  state-of-the-art  language  substitution  method  c-BERT 

Pub. 

Method

Dataset

Improvements(Accuracy) 

[491]

c-BERT

+ 0.8(CNN)/+1.3(RNN)

SST-5 

+0.2(CNN)/+0.5(RNN)

SST-2 

+0.5(CNN)/+0.4(RNN)

Subj 

+0.5(CNN)/+0.7(RNN)

MPQA 

+0.8(CNN)/+0.6(RNN)

RT 

+0.8(CNN)/+0.2(RNN)

TREC 

[337]

c-BERT  with  consistency  training

MLNI-m

+0.4(RoBERTa-Base) 

[ 18]

c-BERT

ATIS

−1.9(BERT)/−0.8(SVM)/−5.8(LSTM) 

TREC

+1.1(BERT)/+1.1(SVM)/+6.5(LSTM) 

WVA

+0.2(BERT)/+0.5(SVM)/+2.4(LSTM) 

[ 18]

c-BERT

ATIS

−1.9(BERT)/−0.8(SVM)/−5.8(LSTM) 

TREC

+1.1(BERT)/+1.1(SVM)/+6.5(LSTM) 

WVA

+0.2(BERT)/+0.5(SVM)/+2.4(LSTM) 

[160]

c-BERT  integrated  in 

SST−5(42)

+1.17(BERT)/+2.19(normal  c-BERT) 

reinforcement  learning  scheme 

IMDB(45)

+1.97(BERT)/+1.97(normal  c-BERT) 

TREC(45)

+0.73(BERT)/+0.87(normal  c-BERT) 

[183]

c-BERT  and  embedding 

MNLI-m

+2.3(TinyBERT) 

substitution  for  multiple-pieces 

words 

MLNI-mm

+1.9(TinyBERT) 

MRPC

+3.4(TinyBERT) 

CoLA

+21.0(TinyBERT) 

significantly  outperform  the  original  c-BERT  approach  in  a  low-data  regime  setting. 

The  results  can  be  found  in  Table  8.4  together  with  the  results  of  Anaby-Tavor  et al. [ 18],  who  evaluated  c-BERT  as  comparison,  and  Qu  et  al. [337], who  employed the  c-BERT  model  with  supervised  consistency  training  (see  8.3.4)  on  the  MLNI-m task. 

Jiao  et  al. [183]  apply  the  already  improved  method  by  Wu  et  al. [491] and further  adjust  it  in  their  work  on  TinyBERT.  In  doing  so,  the  scholars  reflect  on 

the  fact  that  the  quality  of  the  data  generated  with  BERT  is  poor  if  many  multiple-

pieces  words  are  included.  To  mitigate  this  problem,  they  propose  to  perform  a 

embedding  substitution  on  the  base  of  GloVe  embeddings  [330]  for  such  words. 

Further  language  model  augmentations  for  different  tasks  are  proposed  by  Gao  et 

al. [122], Ratner  et  al. [352],  Fadaee,  Bisazza,  and  Monz  [106], and  Kashefi  and Hwa  [190]. 
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8.3.1.3  Phrase  and  Sentence  Level 

 Structured-base Transformation 

Structure-based  approaches  of  data  augmentation  may  utilize  certain  features  or 

components  of  a  structure  to  generate  modified  texts.  Such  structures  can  be  based 

on  grammatical  formalities,  for  example,  dependency  and  constituent  grammars 

or  POS-tags.  Such  approaches  are  therefore  more  limited  to  certain  languages  or 

tasks.  Sahin  and  Steedman  [375]  are,  for  example,  concerned  with  the  augmentation  of  datasets  from  low  resource  languages  for  POS-tagging.  By  the  method  of 

“cropping”,  sentences  are  shortened  by  putting  the  focus  on  subjects  and  objects. 

With  the  “rotation”  technique,  flexible  fragments  are  moved.  The  authors  state  that 

this  method  is  dependent  on  certain  grammatical  sentence  structures  in  different 

languages  and  probably  only  generates  noise  in  the  English  language.  Both  meth-

ods  are  well  suited  for  a  multitude  of  low  resource  languages.  They  are  also  tested 

by  Vania  et  al. [451]  for  the  augmentation  of  training  data  for  dependency  parsers for  low-resource  data.  Feng,  Li,  and  Hoey  [114]  propose  a  method  for  changing the  semantics  of  a  text  while  trying  to  preserve  the  fluency  and  sentiment.  Given  a 

set  of  phrases  (replacement  entities)  to  every  instance,  the  so-called  Semantic  Text 

Exchange  method  first  identifies  phrases  in  the  original  text  that  can  be  replaced  by 

a  replacement  entity  based  on  the  constituents.  Then  phrases  similar  to  the  iden-

tified  phrases  are  replaced  by  a  masked  token.  Subsequently,  this  is  filled  by  an 

attention-based  language  model  so  that  the  similar  words  better  suit  the  replace-

ment  entity.  Feng  et  al. [112]  adapt  this  approach  by  automatically  selecting  the  150 

of  the  200  most  frequent  nouns  from  the  Semantic  Text  Exchange  training  set  as 

replacement  entity  candidates  and  splitting  their  Yelp  Review  dataset  into  windows, 

as  the  method  is  only  suitable  for  short  texts.  In  an  analysis  with  this  dataset  Feng et  al.  [112]  reported  that  the  Semantic  Text  Exchange  method  decreases  fluency, diversity,  and  semantic  content  preservation. 

An  important  work  was  proposed  by  Min  et  al. [287]  who  show  that  inversion (swapping  the  subject  and  object  part)  and  passivation  result  in  a  higher  generalization  capability  in  natural  language  inference.  In  fact,  considering  their  work  in 

comparison  with  preliminary  work  [129, 278, 437]  suggests  that  BERT  is  able  to extract  the  relevant  syntactic  information  from  the  instances  but  is  unable  to  use 

this  information  in  the  task,  as  there  are  too  few  examples  in  the  MNLI  dataset 

demonstrating  the  necessity  of  syntax.  Here,  even  a  limited  utilization  of  Min  et  al. 

[287]  data  augmentation  methods  already  helps  to  mitigate  this  problem. 

 Interpolation 

In  numerical  analysis,  interpolation  is  a  procedure  to  construct  new  data  points  from 

existing  points  [418].  While  the  formal  interpolation  versions  are  found  in  the  feature space  section,  a  sensible  definition  of  interpolation  in  the  data  space  of  text  is  difficult
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to  construct.  However,  the  substructure  substitution  (SUB2)  method  by  Shi,  Livescu, 

and  Gimpel  [399]  is  considered  as  such  in  this  context  due  to  its  resemblance  to  the feature  space  methods.  SUB2  substitutes  substructures  (dependents,  constituents, 

or  POS-tag  sequences)  of  the  training  examples  if  they  have  the  same  tagged  label 

(for  example,  “a  [DT]  cake  [NN]”  in  an  instance  can  be  replaced  with  “a  [DT] 

dog  [NN]”  of  another  instance).  The  variant  adapted  for  classification  views  all  text 

spans  of  an  instance  as  structures  and  is  constrained  by  replacement  rules  that  can 

be  combined  or  completely  left  out.  The  replacement  rules  are  only  replacing  (1) 

same  lengths  spans,  (2)  phrases  with  phrases,  (3)  phrases  of  the  same  constituency 

label,  and  (4)  spans  that  come  from  instances  with  the  same  class  label.  The  authors 

show  that  their  methods  outperform  the  baseline  when  applied  to  low  resource  tasks. 

Their  classification  variant  nearly  doubles  the  accuracy  on  a  subsample  of  the  SST-2 

and  AG  News  datasets.  Furthermore,  they  achieve  better  results  than  the  language 

model  augmentation  c-BERT  (Sect. 8.3.1.2). Similarly,  Kim  et  al. [205]  propose  a data  augmentation  method  based  on  lexicalized  probabilistic  context-free  grammars 

that  extracts  grammar  trees  from  an  input  sentence  and  combines/substitutes  them 

internally  with  trees  from  other  instances  of  the  same  class.  Words  are  replaced  with 

other  words  having  the  same  POS-tag  from  the  other  sentences  of  the  same  class 

and  WordNet  synonyms.  In  this  way,  they  can  achieve  a  considerable  performance 

improvement  when  applied  in  a  few-shot,  semi-supervised  learning  environment. 

8.3.1.4  Document  Level 

 Round-trip Translation 

Round-trip  translation 2 is  an  approach  to  produce  paraphrases  with  the  help  of  translation  models.  A  word,  phrase,  sentence,  or  document  is  translated  into  another  lan-

guage  (forward  translation)  and  afterwards  translated  back  into  the  source  language 

(back  translation)  [ 7].  The  rationale  behind  this  is  that  translations  of  texts  are  often variable  due  to  the  complexity  of  natural  language  [ 81], which  leads  to  various  possibilities  in  the  choice  of  terms  or  sentence  structure.  The  process  is  depicted  in  Fig. 

8.3. 

The  approach  is  promising  because  of  its  good  inherent  label  preserving  and 

highly  valuable  paraphrasing  capabilities.  By  the  translation  of  text,  the  content  is 

preserved  and  only  stylistic  features  based  on  the  traits  of  the  author  are  excluded 

or  altered  [338]. Some  translation  systems  can  propose  several  translation  options; this  is  hinted  in  Fig. 8.3  (“k 2  paraphrases”).  Yu  et  al. [514],  Aroyehun  and  Gelbukh 2  Even  though  Coulombe  [ 81], Yu  et  al.  [514], Xie  et  al.  [498], Ollagnier  and  Williams 

[311], and  others  use  the  term  backtranslation  for  their  data  augmentation  works  as  well, these  approaches  are  assigned  to  the  round-trip  translation  approaches  because  they  execute forward  and  back  translation. 

[image: Image 27]
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Fig.  8.3  Round-trip  translation  process  [514] 

[ 23],  Coulombe  [ 81], Kruspe  et  al.  [218],  and  others  use  this  technique  to  generate artificial  training  data.  Their  works  differ  with  regard  to  the  used  language  and 

the  subsequently  applied  filtering  methods.  These  filtering  methods  are  important, 

as  the  process  of  the  twofold  translation  may  be  faulty  [ 23]. Furthermore,  Xie  et al.  [498]  as  well  as  Chen,  Yang,  and  Yang  [ 67]  change  the  normal  beam  search generation  strategy  to  random  sampling  with  a  temperature  parameter  to  ensure 

a  greater  diversity.  Details  on  the  different  round-trip  translation  applications  are 

presented  in  Table  8.5. 

 Generative Methods 

Generative  methods  are  becoming  increasingly  interesting  in  recent  data  augmen-

tation  research.  As  the  capabilities  of  language  generation  increased  significantly, 

the  current  models  are  able  to  create  very  diverse  texts  and  can  thus  incorporate  new information.  Here,  Qiu  et  al. [336]  introduce  a  variational  autoencoder  (VAE)  based on  a  method  that  is  used  for  text  generation  in  their  system.  VAEs  are  probabilistic  neural  network  structures  that  consist  of  an  encoder  network,  which  transforms 

input  data  into  a  latent  representation,  and  of  a  decoder-network,  which  transforms 

the  latent  representations  back.  The  authors  differentiate  between  unconditional  and 

conditional  VAEs.  With  unconditional  VAEs,  separate  text  generation  models  are 

trained  for  all  classes,  whereas  with  conditional  VAEs  (CVAEs),  label  information 

is  fed  into  the  model  as  an  additional  input.  Furthermore,  they  distinguish  between 

sampling  from  the  prior  distribution,  which  leads  to  greatly  diverse  instances,  and 

the  posterior  distribution,  which  produces  text  that  is  semantically  closer  to  the  training  data.  With  the  unconditional  VAE  and  sampling  from  the  prior  distribution,  they
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achieve  the  highest  improvements  of  up  to  2  F1-points  (see  Table  8.6). Malandrakis et  al. [274]  make  similar  efforts  by  evaluating  VAEs  for  augmentation.  While  their objective  is  more  narrowed,  as  they  are  interested  in  natural  language  understanding 

with  limited  resources,  they  analyze  a  broader  variety  of  VAE  augmentation  variants. 

They  also  propose  augmentation  by  CVEAs  and  unconditional  VAEs  with  sampling 

from  the  posterior  or  prior  distribution.  Furthermore,  they  test  two  different  learning 

objectives,  where  in  the  first  the  VAEs  are  used  to  reconstruct  the  input  and  in  the second  the  VAEs  take  an  instance  of  a  particular  class  and  try  to  construct  another 

instance  from  that  class.  They  also  experiment  with  the  addition  of  a  discriminator 

network  to  the  VAE  that  predicts  the  respective  class  from  which  an  output  appears  to be.  In  intrinsic  and  extrinsic  evaluations,  the  CVAEs  with  the  reconstruction  task  are 

best  performing.  The  discriminator  variant  achieves  poor  results,  which  stem  from 

the  little  amount  of  available  training  data  for  the  many  different  classes.  Contrary 

to  the  improvements  of  Qiu  et  al.  [336], the  CVAEs  outperform  the  VAE  generation. 

An  excerpt  of  the  extrinsic  evaluation  is  given  in  Table  8.6. However, it must be considered  that  the  task  at  hand  is  very  specific.  VEAs  are  also  a  main  component 

of  the  NeuralEditor  proposed  by  Guu  et  al. [141]  that  generates  new  texts  based  on edition  vectors.  For  the  training  of  the  generative  model,  they  take  pairs  of  instances x’  and  x  in  the  training  data  that  are  lexically  similar,  encode  the  differences  of  them and  noise  into  an  edition  vector  z,  and  try  to  generate  x  based  on  x’  and  z.  It  should be  noted  that  the  lexical  similarity  is  just  a  rough  approximation  of  semantic  similarity.  This  represents  a  potential  source  of  error,  as,  e.g.,  instances  could  be  negated which  in  turn  weakens  the  label  preservation  capabilities.  However,  this  suffices 

the  purposes  of  the  authors,  as  they  only  use  the  method  for  language  modeling. 

Specifically,  in  this  domain,  they  report  improvements  in  terms  of  generation  quality 

and  perplexity.  Raille,  Djambazovska,  and  Musat  [345]  propose  Edit-transformer, which  is  an  adaptation  of  the  NeuralEditor  with  the  additional  ability  to  function 

cross-domain,  so  that  the  learned  edits  of  a  large  dataset  can  be  transferred  to  a 

smaller  dataset.  Besides  the  improvements  in  speed  and  language  modeling,  they 

also  apply  their  method  on  three  different  classification  tasks.  The  results  are  shown 

in  Table  8.6.  Rizos,  Hemker,  and  Schuller  [365]  create  an  RNN  that,  depending  on a  specific  class,  learns  language  modelling  to  generate  training  data  thereafter.  The 

class  specific  RNN  for  augmentation  is  primed  with  a  random  start  word  from  the 

class  specific  training  data.  However,  the  authors  state  that  this  method  produces 

the  poorest  results  compared  to  embedding  substitution  and  noise  generation.  In  a 

similar  sense,  Ollagnier  and  Williams  [311]  perform  text  generation  using  a  language  model  (LSTM-CNN).  In  contrast,  they  split  each  document  in  a  minibatch 

into  sentences,  then  generate  new  sentences  for  30%  of  them  and  utilize  30%  of  the 

beginning  of  a  given  sentence  as  prompt. 

144

8

A Survey on Data Augmentation for Text Classification

(Continued)

1) F

v. 

(F1) 

(Acc.) 

(Macro 

0.04 

2.02 

0.13 

1.55 

0.06 

1.88 

4.0 

0.5 

5.9 

1.7 

5.6 

0.6 

8.00 

0.06 

7.42 

0.0 

Impro

+

+

−

+

−

+

+

−

+

+

+

+

+

+

+

+

(EN) 

(EN) 

(EN) 

ataset 

ataset 

ataset 

D

D

D

Entertainment 

Entertainment 

Entertainment 

shot)

e 

e 

e 

shot)

w 

gory 

gory 

gory 

v

v

v

(fe

Li

Li

Li

w 

(fe

Cate

Cate

Cate

+

+

+

(Zh)

(Zh)

(Zh)

ws 

ws 

ws 

vie

vie 

vie

vie 

vie

vie 

Dataset

ICS 

Ne

ICS 

Ne

ICS 

Ne

Mo

Mo

Mo

Mo

Mo

Mo

SNIPS 

SNIPS

FBDialog 

FBDialog

and 

as 

BiLSTM, 

XGBoost 

extRCNN, 

of 

T

with 

classifier 

el 

ext 

v

T

extCNN, 

astT

approaches 

Model

Ensemble 

T

F

top-le

BiLSTM

BER

generation 

xt 

sampling

sampling

te

sampling

sampling

of 

w 

prior 

posterior 

prior 

posterior 

ervie

+

+

+

+

Ov

E

AE 

AE 

E

AE 

AE 

AE

.6 

Method

VA

CV

CV

VA

CV

CV

CV

8

] 

] 

] 

le 

. 

b

Ta

Pub

[336

[274

[224

8.3

Textual Data Augmentation Methods

145

(Continued)

v. 

(Acc.) 

(F1) 

(Micro-F1) 

(F1) 

(Acc.) 

1.71 

1.62 

0.87 

0.84 

1.12 

0.41 

8.2 

7.4 

3.1 

1.06 

0.9 

0.8 

1.6 

0.21 

0.77 

2.25 

Impro

+

+

+

−

+

+

-1.8 

+

−

+

+

+

+

+

−

+

+

(1%)

(4%)

ws 

ws 

ie

ie

ev

ev

R

R

(20%)

(100%)

(20%)

(100%)

task

-2 

-2 

’s n

Dataset

Subj 

Subj 

SST

SST

Amazon 

Amazon 

HON

RSN-1

RSN-2

CodiEsp-P

Ta

Amazon-5000

Amazon-30000

Emotion-15000

NEWS-15000

++e

embeddings

GloV+

pretrained 

pretrained 

+

LSTM 

+

pretrained 

+

+

Model

CNN

CNN

CNN

CNN

LSTM

LSTM

CNN

CNN-LSTM

LSTM 

embeddings 

CNN 

LSCNN 

embeddings 

CNN

ith w

start 

and 

sentence 

priming 

RNN 

random 

learning) 

-based 

LM 

ith w

sentence 

(GAN, 

M 

a 

L

priming 

of 

(Continued) 

rd 

ransformer

o

.6 

Method

T

editor 

RNN 

w

CNN-LSTM 

30% 

seqGAN

CS-GAN 

reinforcement 

8

] 

] 

] 

] 

] 

le 

. 

b

Ta

Pub

[345

[365

[311

[428

[249

146

8

A Survey on Data Augmentation for Text Classification

(Continued)

results e v

v. 

(Acc.) 

(Acc.) 

(Acc.) 

comparati

2.0 

0.5 

7.3 

0.8 

1.8 

22.4 

0 

4.0 

1.4 

0.61 

0.45 

1.63 

Impro

No 

+

+

−

+

∼

∼+

∼+

+

+

+

+

+

Feed 

Information 

S

)

)

W

rolls

(5

(5)

(5)

(5

(20)

(50)

(100)

(5)

(5)

E

IS 

A 

IS 

IS 

IS 

IS 

A 

-N

-2

T

T

T

Dataset

Alerting 

Prioritization 

AT

TREC 

WV

AT

A

A

A

TREC 

WV

AG

CyberT

SST

+

e 

classification 

GloV

e v +

T

T

T

T

gression/biLSTM/Bi-

Model

Logistic 

re

attenti

ELMo 

BER

BER

BER

CNN

BER

and 

and 

instances 

generation 

rarer 

ltering 

ltering 

eneration 

fi

fi

for 

filtering 

g

(Continued) 

-2 

-2 

AE

.6 

Method

GPT

without 

CV

GPT

classifier 

DistilGPT2 

classifier 

8

] 

le 

. 

]

]

b

]

Ta

Pub

[467

[ 18

[ 18

[ 4

8.3

Textual Data Augmentation Methods

147

(Continued)

(Acc.) 

(Acc.) 

v. 

(F1) 

(F1) 

(F1) 

(F1) 

(F1) 

(F1) 

(F1) 

(F1) 

(F1) 

(F1) 

(micro-F1) 

(F1) 

15.53 

0.19 

4.84 

3.42 

1.42 

0.25 

0.44 

2.44 

2.05 

3.81 

0.44 

0.55 

0.57 

1.3 

4.3 

1.2 

1.4 

1.0 

2.3 

Impro

+

−

+

+

+

+

+

+

+

+

–2.54 

+

+

+

+

+

+

+

+

+

(20%)

(40%)

(20%)

(40%)

(20%)

(40%)

e

Change

cquisitions

xplosions

A

E

nalysis 

nalysis 

etection 

etection 

A

A

& 

al

D

D

(100)

(700)

Bombings

lassification 

lassification 

f

Earthquak

exas 

ork

ers 

T

Y

C

C

-2 

-2 

g

y 

y 

ildfire

est 

w 

fense 

fense 

Dataset

SST

SST

Layof

Management 

Mer

Flood

W

Boston 

Bohol 

W

Dublin

Ne

MediaEv

CLS-FR

Of

Of

Sentiment 

Sentiment 

Iron

Iron

a

T

T

Model

ULMFit

RoBER

FlauBER

XLNet

class 

prompting, 

prompting, 

for 

filtering 

ltering fi

reinforcement 

conditional 

special 

conditional 

special 

a 

eneration. g

ith 

ith 

ith 

component 

w

w

w

(Continued) 

-2 

embedding 

-2 

classifier 

-2 

.6 

Method

GPT

fine-tuning, 

and 

GPT

fine-tuning, 

and 

GPT

learning 

conditional 

8

] 

le 

. 

]

]

b

Ta

Pub

[ 28

[ 75

[256

148

8

A Survey on Data Augmentation for Text Classification

6.5 

2.9 

2.4 

−

1.2 

−

8.9 

−

3.8 

5.7, 

3.0

17.5 

17.1, 

3.2, 

+

17.3, 

1.8, 

13.4, 

19.3, 

14.6, 

v. 

+

−

13.6, 

7.9, 

15.6, 

11.0, 

1.3, 

12.9, 

6.2, 

20.9, 

23.7, 

Impro

+

+

+

+

+

+

+

+

full) 

.0%)

.0%)

1

1.0%)

.0%)

1

%, 

.0%)

1

.0%)

1

1

.0%)

1

.3%, 

1

0.3%, 

0

0.3%, 

0.3%, 

0.3%, 

0.3%, 

0.3%, 

0.3%, 

(0.1%, 

(0.1%, 

(0.1%, 

(0.1%, 

(0.1%, 

(0.1%, 

(0.1%, 

(0.1%, 

20 

-2 

-2 

T

Dataset

COLA 

TREC6 

CR 

SUBJ 

MPQA 

R

SST

SST

ge)

(base)

(lar

T 

T 

Model

BER

BER

rompt-based p and 

ith w

(Continued) 

-3 

.6 

Method

GPT

generation 

pseudo-labeling 

8

] 

le 

. 

b

Ta

Pub

[512

8.3

Textual Data Augmentation Methods

149

Sun  and  He  [428]  use  the  seqGAN  architecture  [515]  to  generate  artificial  data on  basis  of  a  GAN.  Comparable  to  computer  vision,  seqGAN  consists  of  a  generator 

network  creating  texts  and  a  discriminator  network  examining  the  authenticity  of 

the  generated  texts  next  to  the  real  instances.  As  the  discriminator  network  can  only 

prove  the  authenticity  after  a  sequence  of  words  and  thus  gives  delayed  feedback 

to  the  generator,  the  generator  network  is  trained  as  a  reinforcement  learning  agent. 

Utilizing  the  method  as  a  data  augmentation  technique,  the  authors  only  receive 

minor  improvements  of  classification  quality.  Partially  inspired  by  SeqGAN,  Li  et 

al.  [249]  propose  CS-GAN,  which  consists  of  a  GAN,  RNN,  and  reinforcement learning  component  for  sentence  generation.  The  model  receives  the  information 

about  the  label  as  a  prior  for  the  generator,  which  is  implemented  by  the  RNN  and 

RL  components,  which  is  then  required  by  the  discriminator  to  generate  meaningful 

sentences.  Subsequently,  a  classifier  forces  the  output  of  sentences  to  fit  the  label. 

The  results  are  listed  in  Table  8.6.  Wang  and  Lillis  [467], Anaby-Tavor  et  al.  [ 18], 

Abonizio  and  Junior  [ 4],  Bayer  et  al. [ 28], Claveau,  Chaffin,  and  Kijak  [ 75],  and  Liu et  al.  [256]  use  the  GPT-2  model  by  Radford  et  al. [340],  which  achieves  very  good results  in  text  generation,  to  create  new  complete  instances.  Concerning  the  adoption 

of  the  method,  Wang  and  Lillis  [467]  only  describe  that  they  use  rare  instances  as dependent  examples  for  the  generation.  Anaby-Tavor  et  al. [ 18],  on  the  other  hand, develop  a  method  that  increases  the  safety  with  regard  to  label  preservation.  In  a 

first  step,  they  further  train  the  GPT-2  model  with  training  data  of  a  certain  task 

(fine-tuning).  In  the  process,  they  concatenate  the  respective  label  to  every  instance 

in  order  to  facilitate  the  generation  of  new  data  for  the  respective  class.  Finally, 

a  classifier  determines  which  generated  instances  can  actually  be  assigned  to  the 

class  stated.  The  authors  manage  to  achieve  significant  improvements  in  the  classi-

fication  of  sentences.  They  show  that  their  method  outperforms  conditional  VAEs 

(unfortunately  no  sampling  technique  is  described)  and  even  EDA  (Sect. 8.3.1.1) and c-BERT  (Sect. 8.3.1.2)  when  applied  to  a  severe  low-data  regime.  The  results  of  their LAMBADA  approach  and  CVEA  implementation  are  given  in  Table  8.6.  Abonizio and  Junior  [ 4]  try  to  improve  this  approach  by  concatenating  three  random  samples as  a  prompt  for  the  generation.  Furthermore,  they  are  using  DistilGPT2  by  Sanh 

et  al. [379],  which  is  substantially  faster  and  smaller.  As  can  be  seen  in  Table  8.6, 

the  method  consistently  outperforms  the  baseline.  While  LAMBADA  and  PREDA-

TOR  are  only  applicable  to  short  texts  as  instances,  Bayer  et  al.  [ 28]  design  a  GPT-2 

based  approach  to  augment  short  as  well  as  long  text  tasks.  In  this  way,  very  high 

label  preservation  and  diversity  is  to  be  achieved  by  fine-tuning  the  language  model 

on  the  class  specific  data,  generating  data  prompted  with  specialized  training  data 

tokens,  and  a  filtering  method  based  on  document  embeddings.  They  can  achieve 

high  improvements  for  constructed  and  real-world  low-data  regimes.  However,  they
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also  discuss  limitations  of  their  method  and  useful  applications  in  terms  of  specific 

datasets  and  tasks.  The  results  can  also  be  seen  in  Table  8.6.  Similarly,  Claveau, Chaffin,  and  Kijak  [ 75]  fine-tune  the  GPT-2  model  using  the  class-specific  data  and input  a  random  word  from  the  original  texts  for  generation.  Afterwards  a  classifier 

is  applied  to  filter  the  generated  data  instances.  They  evaluate  their  approach  using 

English  and  French  datasets  (see  Table  8.6).  Liu  et  al. [256]  use  a  reinforcement learning  component  after  the  softmax  prediction  of  the  GPT-2  model  to  predict  the 

tokens  depending  on  the  class  for  which  the  instance  is  to  be  generated.  The  authors 

tested  their  method  with  various  model  architectures.  It  consistently  improved  all  of 

them  in  all  tasks,  especially  the  larger  pre-trained  models,  like  BERT  and  XLNet. 

The  results  for  XLNet  are  shown  in  Table  8.6.  Yoo  et  al. [512]  are  among  the  first authors  using  the  much  larger  GPT-3  model  by  Brown  et  al. [ 47]  for  data  augmentation,  which  has  considerably  better  generation  capabilities.  Such  large  language 

models  are  expensive  and  hard  to  be  fine-tuned  on  the  training  data,  which  is  why 

their  augmentation  method  GPT3Mix  selects  some  examples  from  the  dataset  and 

incorporates  them  with  the  label  into  sensible  prompts  for  the  model  to  be  con-

ditioned  on.  The  newly  created  instances  are  then  extracted  from  the  generated 

text  and  a  pseudo-label  probability  is  calculated  with  the  GPT  model.  As  shown  in 

Table  8.6, the  method  achieves  outstanding  performance  increases  on  scarce  and one  full  dataset.  The  authors  further  demonstrate  that  their  method  is  superior  to 

other  augmentation  methods,  such  as  EDA  [481], round-trip-translation  and  Tmix 

[ 67],  and  that  the  performance  increases  if  larger  models  for  the  classification  are used.  Nevertheless,  given  the  size  of  the  GPT-3  network  and  the  correspondingly 

large  training  dataset,  it  might  even  be  able  to  replicate  some  of  the  training  (or  even test)  instances  that  were  left  out  in  the  creation  of  a  scarce  dataset. 

In  the  generative  method,  proposed  by  Lee  et  al.  [239], a  first  step  is  to  subdivide the  data  into  slices  (informed  by  or  based  on  the  labels).  Then,  a  generative  model 

is  trained  on  these  slices  to  predict  an  instance  in  the  slice  based  on  a  subsample 

of  instances  in  that  slice.  This  model  is  subsequently  used  to  generate  new  data  for 

underrepresented  slices  by  priming  it  with  instances  from  it.  This  way,  the  authors 

gain  several  improvements  in  text  classification,  intent  classification,  and  relation 

extraction  tasks  with  state-of-the-art  results  for  the  latter  two.  Furthermore,  Ding  et 

al. [ 91] and  Chang et al. [  60]  propose  methods  using  generative  models  for  tasks other  than  text  classification. 
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8.3.2

Feature  Space 

Data  augmentation  in  the  feature  space  is  concerned  with  the  transformation  of  the 

feature  representations  of  the  input. 

8.3.2.1  Noise  Induction 

As  in  the  data  space,  noise  can  also  be  introduced  in  several  variants  in  the  feature space.  For  example,  Kumar  et  al. [224]  employ  four  such  techniques  for  the  ultimate goal  of  intent  classification.  One  of  those  methods  applies  random  multiplicative 

and  additive  noise  to  the  feature  representations,  as  shown  in  [226].  However,  in contrast,  they  are  not  transforming  the  created  representations  back  into  the  data 

space.  Another  method  called  Linear  Delta  calculates  the  difference  between  two 

instances  and  adds  it  to  a  third  (all  from  the  same  class).  The  third  method,  which 

interpolates  instances,  is  further  elaborated  in  Sect. 8.3.2.4  (see  Table  8.8). For their  fourth  method,  the  authors  are  adapting  the  Delta-Encoder  by  Schwartz  et 

al. [389]  for  textual  data.  There,  an  autoencoder  model  learns  the  deltas  between instance  pairs  of  the  same  class,  which  is  then  utilized  to  generate  instances  of  a 

new  unseen  class.  In  a  normal  testing  setting,  the  methods  only  slightly  improve  the 

classification  results,  while  in  a  few-shot  setting  all  methods  are  highly  beneficial. 

Several  feature  space  data  augmentation  methods  stem  from  the  adversarial  training 

research  field.  As  explained  in  the  background  section,  the  models  are  trained  with 

adversarial  examples,  i.e.,  little  perturbed  training  data  instances  that  would  change 

the  prediction  or  maximize  the  loss.  This  can  be  formally  written  as  follows  [538]: 

[

]

. min E ( z ,  y )∼D

max L  ( fθ (x + δ ),  y )

(8.1) 

θ

||δ||≤∈

where  θ are  the  model  parameters  and  δ describes  the  perturbation  noise  added  to 

the  original  instances  (within  a  norm  ball).  Further,  D  is  the  data  distribution,  y 

the  label,  and  L  a  loss  function.  The  training  of  the  network  (outer  minimization) 

can  still  be  solved  by  stochastic  gradient  descent  (SGD),  while  the  search  for  the 

right  perturbations  (i.e.,  inner  maximization)  is  non-concave  [538]. As  described  by Zhu  et  al.  [538], projected  gradient  descent  (PGD)  [ 77, 131]  can  be  used  to  solve this.  Unfortunately,  several  convergence  steps  (K)  to  get  a  good  result  make  it  computationally  expensive  [538].  Shafahi  et  al. [395] and  Zhang et al.  [520]  propose two  methods  that  calculate  the  gradient  with  respect  to  the  input  (for  PGD)  on  the 

same  backward  pass  as  the  gradient  calculations  regarding  the  network  parameters 

during  a  training  step.  This  mitigates  additional  calculation  overhead  of  PGD.  In 

detail,  Free  adversarial  training  (FreeAT)  by  Shafahi  et  al. [395]  trains  the  same
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batch  of  training  examples  K  times  so  that  several  adversarial  updates  can  be  per-

formed.  You  Only  Propagate  Once  (YOPO)  by  Zhang  et  al. [520]  accumulates  the gradients  with  respect  to  the  parameters  from  the  K  steps  and  updates  the  parameters  accordingly.  Zhu  et  al. [538]  also  propose  a  method  called  Free  Large-Batch (FreeLB),  which  is  similar  to  YOPO,  as  it  also  accumulates  the  parameter  gradients.  On  several  tasks,  this  method  consistently  exceeds  the  results  of  the  baseline 

and  the  other  two  methods.  The  results  of  the  GLUE  dataset  are  given  in  Table 

8.7.  Miyato,  Dai,  and  Goodfellow  [292]  and  Miyato  et  al.  [293]  change  the  normal adversarial  training  rule  so  that  no  label  information  is  needed  and  call  it  virtual 

adversarial  training.  Without  going  into  exact  details,  virtual  adversarial  training 

regularizes  the  standard  training  loss  with  a  KL  divergence  loss  of  the  distribution 

of  the  predictions  with  and  without  perturbations,  where  the  perturbations  are  cho-

sen  to  maximize  the  KL  divergence.  While  the  virtual  adversarial  training  method 

is  suitable  for  semi-supervised  learning,  we  are  particularly  interested  in  the  super-

vised  setting.  Their  method  improves  the  supervised  DBpedia  topic  classification 

task  baseline  classifier  by  0.11  points  of  accuracy,  leading  to  a  +0.03  increase  in 

accuracy  in  comparison  to  the  conventional  adversarial  training  method.  Jiang  et  al. 

[181]  propose  the  adversarial  method  SMART,  which  relies  on  the  virtual  adversarial  training  regularization.  They  introduce  the  utilization  of  the  Bregman  proximal 

point  optimization  with  momentum  to  solve  the  virtual  adversarial  training  loss, 

which  prevents  the  model  from  aggressive  updates  [292]. The  authors  show  in  their experiments  that  the  method  significantly  improves  the  baseline  and  is  also  able  to 

achieve  better  results  than  the  other  methods  discussed  in  this  paragraph  (for  an 

overview,  see  Table  8.7).  Furthermore,  they  demonstrate  robustness  enhancement and  domain  adaption  capabilities  in  several  evaluation  applications. 

Wang,  Gong,  and  Liu  [468] and  Liu et al.  [258]  developed  methods  for  enhancing the  pre-training  of  language  models  with  adversarial  training.  Wang,  Gong,  and  Liu 

[468]  simply  generate  adversarial  examples  on  the  output  embeddings  in  the  softmax function  of  the  language  models.  Thereby  they  manage  to  reduce  the  perplexity  of  the 

AWD-LSTM  and  QRNN  models  on  different  datasets,  which  leads,  for  example,  to 

a  reduction  of  2.29  points  with  respect  to  the  Penn  Treebank  dataset  with  the  AWD-

LSTM  model.  However,  it  is  not  clear  how  the  training  of  bigger  pre-trained  language 

models  like  BERT  and  RoBERTa  would  have  been  influenced  by  this  method.  This 

is  addressed  in  the  work  of  Liu  et  al. [258]  with  their  method  called  Adversarial Training  for  Large  Neural  Language  Models  (ALUM),  which  introduces  noise  to  the 

input  embeddings.  The  authors  build  their  system  based  on  the  virtual  adversarial 

training  by  Miyato,  Dai,  and  Goodfellow  [292], as  they  noticed  that  it  is  superior to  conventional  adversarial  training  for  self-supervision.  Furthermore,  they  found 

out  that  they  can  omit  the  Bregman  proximate  point  method  and  the  adversarial
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training  proposed  by  Jiang  et  al.  [181]  and  Shafahi  et  al. [395]  when  they  are  using curriculum  learning,  where  the  model  is  first  trained  with  the  standard  objective 

and  then  with  virtual  adversarial  training.  They  report  promising  generalization 

and  robustness  improvements  with  the  largest  transformer  models.  For  example, 

RoBERTa  models  can  be  improved  with  the  ALUM  continual  pretraining  by  +0.7 

on  the  MNLI  task,  while  standard  continual  pretraining  does  not  introduce  further 

gains.  The  results  on  the  GLUE  dataset  are  given  in  Table  8.7.  The  authors  also tested  the  robustness  of  the  models  with  three  different  adversarial  datasets,  where 

ALUM  achieves  significant  improvements  in  all  tasks.  In  another  evaluation  setting 

they  combine  adversarial  pretraining  with  adversarial  fine-tuning.  ALUM  improves 

all  evaluation  scores  of  the  standard  pretrained  models.  This  model  reaches  the  best 

performances  and  significantly  outperforms  the  other  models  in  all  tested  tasks,  e.g., 

with  an  increased  accuracy  of  + 0.4  more  than  without  tuning  the  SNLI  dataset. 

The  improvement  on  the  MNLI  task  is  given  in  Table  8.7. 

With  regard  to  the  generative  adversarial  training  methods  of  the  feature  space,  it 

is  also  of  interest  to  investigate  how  the  newly  created  examples  can  be  transformed 

into  the  data  space  to  enable  their  inspection.  This  is  done  in  the  works  of  Liu 

et  al.  [254]  and  Wan,  Wan,  and  Wang  [462].  Wan,  Wan,  and  Wang  [462]  attempt to  improve  the  classification  behavior  of  a  grammatical  error  correction  system  by 

training  with  adversarial  examples.  Such  an  example,  extracted  from  the  application 

of  loss-increasing  noise  in  the  hidden  representation  of  a  transformer  encoder,  is 

mapped  to  the  data  space  by  a  transformer  encoder  that  was  trained  autoregressively. 

Then  they  use  a  similarity  discriminator  based  on  the  model  to  filter  instances  that 

are  not  similar  to  their  initial  counterparts.  Liu  et  al.  [254]  also  use  a  transformer autoencoder  architecture  to  generate  data  space  instances.  In  contrast  to  the  work 

of  Wan,  Wan,  and  Wang  [462],  they  generate  the  noisy  instances  from  the  input embeddings,  subsequently  filter  instances  based  on  unigram  word  overlap,  and  try  to 

improve  machine  question  generation  and  question  answering  tasks.  Both  methods 

significantly  improve  the  baselines  and  other  methods. 

Given  the  constraint  that  adversarial  training  can  be  computationally  expensive, 

Shen  et  al. [398]  propose  three  simple  and  efficient  data  augmentation  methods  of  the feature  space  (see  Fig. 8.4).  Token  cutoff  sets  the  entire  embedding  of  a  single  word to  0,  while  the  feature  cutoff  sets  one  embedding  dimension  of  each  word  in  the  input to  0.  The  third  method,  span  cutoff,  employs  token  cutoff  across  a  coherent  span 

of  words.  With  each  method,  several  different,  slightly  modified  instances  can  be 

created,  which  the  authors  see  as  different  perspectives/views  that  can  be  integrated 

in  a  multi-view  learning  fashion  through  consistency  training.  This  means  that  the 

model  should  predict  similar  outputs  across  different  views  (details  can  be  found 

in  Sect. 8.3.4).  The  authors  evaluate  their  model  on  the  GLUE  task  and  compare  it

[image: Image 28]
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with  adversarial  training  algorithms  as  well  as  round-trip  translation.  In  three  out 

of  eight  tasks,  an  improvement  over  all  other  methods  is  achieved  (see  Table  8.7). 

They  extend  the  cutoff  strategies  to  work  with  language  generation,  and  thereby 

significantly  outperform  the  baseline  as  well  as  the  adversarial  training  method  of 

Wang,  Gong,  and  Liu  [468]. 

Fig.  8.4  Visualization  of  the  different  cutoff  methods  [398] 

Table  8.7  Comparison  of  different  noise  inducing  methods  on  the  GLUE  task 

Model

SST-2 

STS-B 

MLNI-

QQP  Acc  RTE  Acc

QNLI 

MRPC 

CoLA 

Acc 

P/S  Corr 

m/mm-

Acc 

F1 

Mcc 

Acc 
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RoBERTa-L

96.4

92.4

90.2

92.2

86.6

94.7

90.9

68.0 

Adversarial 

PGD

96.4

92.4

90.5

92.5

87.4

94.9

90.9

69.7 

Training 

FreeAT

96.1

92.4

90.0

92.5

86.7

94.7

90.7

68.8 

FreeLB

96.7

92.7

90.6

92.6

88.1

95.0

91.4

71.1 

ALUM∗

96.6

92.1

90.9

92.2

87.3

95.1

91.1

68.2 

ALUM

−

−

91.4

−

−

−

−

− 

SMART

96.9

92.8

91.1

92.4

92.0


95.6

92.1

70.6 

Cutoff∗∗
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96.9

92.5

91.0

92.3

90.6

95.3

93.2

70.0 

Feature

97.1

92.4
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92.4

90.9

95.2

93.4

71.1 

Span

96.9
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95.3
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71.5 

∗ only  adversarial  pre-training

∗∗ supervised  consistency  training
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8.3.2.2  Interpolation  Methods 

For  textual  data,  interpolation  methods  are  mostly  limited  to  the  feature  space  since 

there  is  no  intuitive  way  for  combining  two  different  text  instances.  Nevertheless, 

the  application  in  the  feature  space  seems  reasonable,  as  the  interpolation  of  hidden 

states  of  two  sentences  creates  a  new  one  containing  the  meaning  of  both  original 

sentences  [ 43, 67]. Besides  this,  from  a  learning-based  perspective,  interpolation methods  have  a  high  value  for  machine  learning  models.  Possible  explanations 

for  the  success  of  interpolation  methods  may  stem  from  the  balancing  of  classes, 

the  smoothening  of  the  decision  border  (regularization)  [ 63],  and  the  improvement of  the  representations  [456].  For  example,  the  Synthetic  Minority  Over-sampling Technique  (SMOTE)  approach  in  its  original  context  was  developed  for  the  purpose 

of  oversampling  the  minority  class,  which,  as  described  in  the  background  section, 

inherently  leads  to  better  classification  performances.  In  fact,  a  balancing  of  a  class can  easily  be  achieved  by  simply  copying  the  minority  class.  However,  Chawla  et  al. 

[ 63]  show  that  simple  oversampling  leads  to  more  specific  decision  boundaries  than applying  SMOTE  in  the  balancing  of  classes.  Interpolation  methods  can  smoothen 

the  boundary,  as  shown  in  Fig. 8.5. Smoothened  and  more  general  decision  borders signify  that  an  algorithm  can  generalize  better  and,  in  relation  to  training  data, 

is  accompanied  by  less  overfitting.  In  this  context,  when  applying  interpolation 

methods  to  representations  of  the  input  data,  Verma  et  al.  [456]  empirically  and theoretically  prove  that  representations  are  flattened  with  regard  to  the  number  of 

directions  with  significant  variance.  This  is  desirable  since  data  representations 

capture  less  space,  meaning  that  a  classifier  is  more  uncertain  for  randomly  sampled 

representations  and  a  form  of  compression  is  achieved  which  leads  to  generalization 

[390, 441, 456]. 

Fig.  8.5  Illustration  of  the  interpolation  method  SMOTE
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8.3.2.3  SMOTE  Interpolation 

SMOTE  is  an  interpolation  method  of  feature  space  representations  of  input  data. 

With  SMOTE,  various  neighbors  close  to  a  specific  instance  are  searched  within  the 

feature  space  in  order  to  be  interpolated  with  the  following  formula: 

.  ˜

 x =  x i + dist (x i , x j )

where   (x i ,   y i ) is  the  source  instance  and   (x j ,   y i ) is  a  close  neighbor  with  the  same class  label.  dist(a,b)  is  a  distance  measure  and  λ  ∈ [0 ,  1].  Unlike  mixup,  only instances  of  the  same  class  get  interpolated.  The  rationale  behind  the  calculation 

of  neighbors  with  the  same  class  labels  is  that  the  interpolations  tend  to  be  class 

preserving,  leading  to  a  higher  safety  of  the  technique.  However,  this  leads  to  a 

limited  novelty  and  diversity  of  the  created  instances. 

SMOTE  is  rudimentary  illustrated  in  Fig. 8.5. In  the  illustration,  a  binary  classification  problem  is  shown,  in  which  a  learning  algorithm  has  learned  the  specific 

decision  border.  To  achieve  a  balanced  class  distribution,  a  new  instance  is  added  to 

the  blue  class  by  utilizing  SMOTE.  This  addition  achieves,  apart  from  a  balancing 

of  the  dataset,  an  adjustment  of  the  decision  boundary.  The  new  boundary  is  less 

specific  and  thus  contributes  to  more  general  decisions.  SMOTE  in  combination 

with  textual  data  augmentation  is  applied,  for  instance,  in  the  work  of  Wang  and 

Lillis  [467].  Unfortunately,  the  authors  do  not  describe  how  and  at  which  point  of the  network  the  method  is  applied. 

8.3.2.4  Mixup  Interpolation 

Mixup  by  Zhang  et  al.  [521]  is  an  interpolation  method  similar  to  SMOTE.  In the  simplest  adoption,  the  convex  interpolation  is  implemented  with  the  following 

formulas: 

. ˜

 x =  λx i +  ( 1 −  λ)x j, whereas  x i , x j are input vectors (8.2) 

. ˜

 y =  λy i +  ( 1 −  λ)y j, whereas  y i , y j are one-hot-coded labels (8.3) 

 (x i ,   y i ) and   (x j ,   y j ) are  sampled  from  the  training  data  and   λ is  either  fixed  in  [0 ,  1] 

or   λ ∼ Beta (α,   α), for   α ∈  ( 0 ,  ∞ ). 

Mixup  is  a  general  technique  that  can  be  applied  to  all  kinds  of  equal  dimen-

sional  data.  However,  text  cannot  trivially  be  represented  in  equal  dimensions  [427]. 

As  a  very  general  method,  Verma  et  al.  [456]  propose  the  idea  of  applying  mixup within  a  randomly  selected  hidden  layer  of  a  neural  network.  Despite  the  fact  that 

the  authors  only  perform  the  tests  on  image  datasets,  this  approach  paves  the  way 

for  the  application  of  mixup  in  many  textual  related  tasks.  The  results  are  very 

promising,  and  for  textual  evaluations  we  advise  the  reader  to  look  at  the  meth-
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ods  described  below  (Table  8.8),  which  oftentimes  can  be  seen  as  specializations of  the  approach  by  Verma  et  al.  [456]  for  textual  data. [275]  state  that  they  use mixup  on  representations  of  bag  of  word  models,  TF-IDF  models,  word  embeddings,  and  language  models.  Unfortunately,  the  authors  do  not  explicitly  describe 

how  the  interpolation  is  performed.  This  raises  questions  about  how  to  interpo-

late  instances  of  different  sizes,  when,  for  example,  word  embedding  vectors  are 

used.  Marivate  and  Sefara  [275]  report  about  0.2,  0.4,  and  0  points  gain  for  the AG  News,  Sentiment  140,  and  Hate  Speech  detection  task.  In  contrast,  Qu  et  al. 

[337]  describe  the  internal  implementation  of  their  interpolation.  For  the  interpolation,  they  draw  two  instances  from  a  mini-batch  and  linearly  combine  their  input 

embedding  matrices  in  the  way  described  above.  They  improve  the  baseline  on  the 

MNLI-m  task  by  an  additional  0.6%  in  terms  of  accuracy.  Guo,  Mao,  and  Zhang 

[138]  propose  two  variants,  wordMixup  and  senMixup,  where  the  interpolation  is applied  in  the  word  embedding  space  and  on  the  final  hidden  layer  of  the  neural 

network  before  it  is  passed  to  a  softmax  layer.  For  wordMixup  the  sequences  have 

to  be  zero  padded  so  that  the  dimensions  are  the  same.  For  senMixup  this  is  not 

necessary,  as  the  hidden  embeddings  generated  are  of  the  same  length  each.  The 

improvement  results  of  both  methods  with  regard  to  the  CNN  model  with  pretrained 

GloVe  embeddings  (trainable),  which  is  the  best  baseline,  is  presented  in  Table  8.8. 

Guo,  Mao,  and  Zhang  [138]  further  advances  the  wordMixup  approach  by  using  a nonlinear  interpolation  policy.  The  policy  is  constructed  to  mix  each  dimension  of 

the  individual  word  embeddings  in  a  given  sentence  separately.  Furthermore,  the 

labels  are  also  interpolated  nonlinearly,  while  they  are  learned  adaptively  based  on 

the  mixed  embeddings.  This  way,  a  much  larger  variety  of  generated  examples  can 

be  created.  While  this  procedure  outperforms  the  other  two  variants  in  most  tasks, 

it  can  also  have  a  negative  effect  on  the  classification  quality,  as  shown  in  Table 

8.8.  Similar  to  the  senMixup  method,  Sun  et  al.  [427]  apply  mixup  to  the  output  of transformer  models.  Furthermore,  they  only  activate  mixup  in  the  last  half  of  the 

training  epochs  to  learn  good  representations  first.  The  improvements  on  the  GLUE 

benchmark  are  listed  in  Table  8.8.  In  a  very  similar  way,  Chen,  Yang,  and  Yang  [ 67] 

propose  TMix,  which  is  also  able  to  interpolate  the  hidden  representations  of  an 

encoder.  Indeed,  TMix  is  able  to  interpolate  at  every  layer  of  the  encoder,  similar 

to  Verma  et  al. [456].  Based  on  the  work  of  Jawahar,  Sagot,  and  Seddah  [178],  who analyzed  the  types  of  information  learned  in  different  layers  of  BERT,  the  authors 

narrowed  down  their  approach  and  opted  for  7,  9,  and  12  as  interpolation  layers  as 

they  contain  the  syntactic  and  semantic  information.  The  improvements  of  TMix 

are  also  shown  in  Table  8.8. 
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Similarly,  Chen  et  al. [ 66]  propose  an  interpolation  augmentation  method  in which  the  hidden  layer  representations  of  two  samples  are  interpolated.  However, 

they  noticed  that  this  method  is  not  suitable  for  sequence  tagging  tasks.  For  this  reason,  they  propose  Intra- and  Inter-LADA.  Intra-LADA  aims  to  reduce  noise  from 

interpolating  unrelated  sentences  by  only  interpolating  an  instance  with  a  randomly 

reordered  version  of  itself.  This  way,  they  can  increase  the  performance  in  every 

tested  task  (see  Table  8.8). However,  Chen  et  al.  [ 66]  also  hypothesize  that  their  Intra-LADA  algorithm  is  limited  in  producing  diverse  examples.  This  limitation  leads  to 

Inter-LADA,  which  sets  a  trade-off  between  noise  and  regularization  by  interpo-

lating  instances  that  are  close  together.  The  closeness  is  estimated  through  kNN 

based  on  sentence-BERT  [356]  embeddings  and  extended  by  occasional  sampling of  two  completely  random  instances.  As  it  can  be  seen  in  Table  8.8, Inter-LADA oftentimes  performs  better  than  Intra-LADA.  The  combination  of  both  can  further 

improve  the  results. 

8.3.3

Combination  of  Augmentation  Methods 

In  augmentation  research,  a  common  technique  is  to  combine  several  data  aug-

mentation  methods  to  achieve  more  diversified  instances  [150]. Here,  combination can  mean  either  the  application  of  multiple  separate  or  stacked  methods.  For  the 

first  kind,  Sun  and  He  [428]  propose  word-level  and  phrase-level  methods  that  they apply  separately.  While  the  results  of  the  word-level  and  phrase-level  methods  differ  insignificantly,  the  combination  of  both  groups  of  methods  produced  very  good 

results.  Similarly,  Li,  Cohn,  and  Baldwin  [250]  combined  their  proposed  methods, which  led  to  better  results  for  the  in-domain  evaluations.  In  the  work  of  Bonthu  et  al. 

[ 39]  round-trip  translation,  random  swap,  random  deletion,  and  random  synonym insertion  are  separately  combined,  which  leads  to  the  best  improvement  of  a  LSMT 

classifier.  Furthermore,  in  contrastive  learning,  it  makes  sense  to  use  more  than  one 

data  augmentation  strategy  since  the  goal  is  to  learn  meaningful  representations  that 

can  be  fostered  by  many  different  views.  For  example,  Yan  et  al. [505]  and  Wu  et  al. 

[493]  use  several  simple  methods  of  data  augmentation  for  the  contrastive  learning objective.  Details  on  contrastive  learning  and  the  results  of  the  works  can  be  found 

in  the  next  section.  The  method  of  stacking  data  augmentation  techniques,  on  the 

other  hand,  is  not  always  feasible.  It  is,  for  example,  in  most  cases  not  possible  to first  apply  a  feature  space  method  and  then  a  data  space  method.  Qu  et  al. [337] 

test  stacking  with  round-trip  translation,  cutoff,  and  adversarial  examples.  Round-

trip  translation  and  the  training  with  adversarial  examples  produce  the  best  results. 

Marivate  and  Sefara  [275]  stack  round-trip  translation,  synonym  and  embedding
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replacement  with  mixup.  In  two  out  of  three  evaluation  settings,  this  procedure 

reduces  the  minimal  error. 

For  the  combination  of  augmentation  methods,  the  meta-learning  augmentation 

approach  by  Ratner  et  al.  [352]  is  also  of  interest.  It  describes  the  utilization  of a  neural  network  to  learn  data  augmentation  transformations  [401].  Specifically, Ratner  et  al.  [352]  use  a  GAN  to  generate  sensible  sequences  of  transformations that  were  defined  beforehand.  This  approach  is  usable  for  image  as  well  as  text 

datasets  and  the  authors  show  that  it  can  achieve  a  significant  improvement  when 

applied  to  a  relation  extraction  task  with  augmentations  based  on  language  model 

replacements. 

8.3.4

Training  Strategies 

While  semi-supervision  is  not  considered  as  data  augmentation  in  this  work,  it  can 

still  be  sensibly  combined  through  consistency  training.  In  its  origin,  consistency 

training  is  used  to  make  predictions  of  classifiers  invariant  to  noise  [498]. This  can be  enforced  by  minimizing  the  divergences  between  the  output  distributions  of  real 

and  noised  instances.  Additionally,  as  only  output  distributions  are  included  in  the 

process,  this  consistency  can  be  trained  with  unlabeled  data.  Several  authors  analyze 

how  consistency  training  behaves  when  data  augmentation  methods  are  used  for 

noise.  This  process  can  be  illustrated  by  taking  an  instance  whose  label  is  unknown, 

applying  a  label-preserving  data  augmentation  method,  and  then  learning  the  model 

to  predict  the  same  label  for  both  instances.  In  this  way,  the  model  can  learn  the 

invariances  and  is  able  to  generalize  better.  Xie  et  al. [498]  show  that  they  achieve very  good  results  by  employing  consistency  training  with  round-trip  translation  and 

a  TF-IDF-based  replacement  method,  with  an  absolute  improvement  of  22.79%  in 

accuracy  on  an  artificially  created  low-data  regime  based  on  the  Amazon-2  dataset 

with  BERT  base.  They  are  also  able  to  outperform  the  state  of  the  art  in  the  IMDb 

dataset  with  only  20  supervised  instances.  Chen,  Yang,  and  Yang  [ 67] even extend this  approach  within  their  MixText  (TMix)  system.  First,  they  generate  new  instances 

with  round-trip  translation.  Then,  they  guess  the  label  of  the  original  and  augmented 

instances  by  taking  a  weighted  average  of  the  predictions  of  all  of  them.  In  the 

training,  they  randomly  sample  two  instances  and  mix  them  together  with  TMix. 

If  one  of  the  two  instances  is  from  the  original  data,  they  are  using  the  normal 

supervised  loss,  but  if  both  instances  are  from  the  unlabeled  or  augmented  data, 

they  use  the  consistency  loss,  like  Xie  et  al. [498]. Consistency  training  can  also be  applied  in  a  supervised  fashion  as  an  additional  term  in  the  training  objective 

to  enforce  identical  predictions.  This  is,  for  example,  used  in  the  cutoff  method  by
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Shen  et  al.  [398].  They  show  in  their  ablation  studies  that  this  consistency  term improves  the  accuracy  results  additively  by  0.15%. 

Qu  et  al.  [337]  combine  supervised  consistency  training  with  contrastive  learning. 

The  contrastive  learning  scheme  should  bring  the  original  and  augmented  instances 

closer  together  and  the  other  instances  further  apart  in  the  representation  space. 

Contrastive  learning  can  be  applied  in  the  pretraining  phase  of  a  language  model 

so  that  meaningful  representations  are  learned  directly.  Wu  et  al. [493]  show  that training  a  language  model  from  scratch  with  this  objective  can  lead  to  increased 

performances  for  downstream  tasks.  As  augmentation  methods  the  authors  use  word 

deletion,  span  deletion,  random  reordering  and  synonym  substitution,  as  well  as 

combinations  in  sets  of  two.  The  evaluation  of  several  tasks  shows  that  there  is  no 

clear  best  augmentation  method.  Fang  and  Xie  [109] and  Yan et al.  [505]  show  that contrastive  learning  can  also  result  in  better  sentence  representations  when  using  an 

already  pretrained  model  and  further  training  the  masked  language  modeling  task 

with  contrastive  learning.  While  the  work  of  Fang  and  Xie  [109]  uses  round-trip translation,  Yan  et  al. [505]  experiment  with  adversarial  training,  token  mixing, cutoff  and  dropout.  Qu  et  al. [337]  and  Choi  et  al.  [ 71]  even  include  contrastive learning  into  the  supervised  setting.  As  augmentation  strategies,  Qu  et  al.  [337] use adversarial  training  combined  with  round-trip  translation  and  Choi  et  al.  [ 71] use counterfactuals  based  on  language  model  substitution.  Combined  with  consistency 

training,  Qu  et  al. [337]  achieve  even  further  improvements.  A  comparing  overview can  be  found  in  Table  8.9. 

Other  training  strategies  in  which  the  order  of  how  the  training  examples  are 

presented  to  the  learning  algorithm  is  altered  are  for  example  employed  by  Liu  et 

al. [258],  Yang  et  al. [508], and  Claveau,  Chaffin,  and  Kijak  [ 75]. Liu  et  al. [258] 

adopt  a  curriculum  learning  approach,  where  the  algorithm  first  learns  less  difficult 

instances.  Transferred  to  the  data  augmentation  topic,  the  model  is  first  trained  with 

the  original  data  and  then  with  the  augmented  data.  Yang  et  al.  [508]  reverse  this  step and  first  train  the  model  with  the  augmented  data  and  then  with  the  original  data. 

This  way,  the  model  can  correct  unfavorable  behavior  that  it  learned  through  noisy 

augmented  data.  They  also  tried  an  importance-weight  loss  in  which  the  weights  of 

the  synthetic  instances  are  lower  but  find  that  the  other  training  method  performs 

better. 
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8.3.5

Filtering  Mechanisms 

Mechanisms  that  filter  the  generated  instances  are  especially  important  for  meth-

ods  that  are  not  perfectly  label-preserving.  A  simple  mechanism  is,  for  example, 

employed  by  Liu  et  al. [254],  who  remove  generated  instances  based  on  the  overlap of  unigram  words  with  their  original  equivalents.  Similarly,  other  metrics  could  also 

be  used,  e.g.,  Levenshtein  distance,  Jaccard  similarity  coefficient,  or  Hamming  dis-

tance.  Wan,  Wan,  and  Wang  [462]  use  a  similarity  discriminator,  initially  proposed by  Parikh  et  al. [327], which  also  measures  the  similarity  of  two  sentences. 

The  generative  methods  by  Anaby-Tavor  et  al.  [ 18], Abonizio  and  Junior  [ 4], 

and  Claveau,  Chaffin,  and  Kijak  [ 75]  filter  instances  based  on  a  classifier  that  was trained  on  the  class  data.  This  significantly  reduces  the  diversity  of  samples,  and  the classifier  cannot  really  be  improved  as  it  is  already  familiar  with  these  instances. 

Bayer  et  al. [ 28]  improve  this  by  using  embeddings  to  measure  the  quality  of  the generated  instances  with  regard  to  the  class  and  more  importantly  by  incorporating 

the  human  expert  in  the  loop  who  needs  to  determine  the  correct  threshold.  How-

ever,  Yang  et  al.  [508]  consider  another  filtering  mechanism  in  their  work  which does  not  require  human  assistance  and  is  very  sophisticated  due  to  the  inclusion 

of  two  perspectives.  Generally,  Yang  et  al.  [508]  propose  a  generative  method  that is  suitable  for  increasing  the  dataset  size  for  question  answering  tasks.  While  they 

propose  to  utilize  language  models  for  fine-tuning  and  generation  of  questions  and 

answers,  their  filtering  methods  can  be  adapted  for  other  data  augmentation  meth-

ods  as  well.  A  first  filtering  mechanism  determines  whether  a  generated  instance  is 

detrimental  by  measuring  whether  the  validation  loss  increases  when  including  the 

artificial  instance.  As  this  would  require  retraining  the  model  with  each  generated 

example,  the  authors  propose  to  use  influence  functions  [210, 366]  to  approximate the  validation  loss  change.  Furthermore,  they  first  train  on  the  augmented  instances 

and  then  on  the  original  training  data  so  that  the  model  can  adjust  itself  when  unfavorable  noise  is  included  in  the  augmented  instances.  The  other  filtering  mechanism 

tries  to  favor  diversity  by  selecting  examples  that  maximize  the  number  of  unique 

unigrams. 

8.4

Discussion:  A  Research  Agenda  For  Textual  Data 

Augmentation 

In  the  previous  section,  different  data  augmentation  methods  were  grouped, 

explained,  compared  in  terms  of  performance  and  put  into  context  with  each  other. 

One  has  to  keep  in  mind  that  the  results  reported  by  the  authors  of  the  approaches
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linked  in  this  survey  paper  are  restricted  in  their  expressiveness  and  only  show  one 

perspective.  Many  results  are  limited  to  special  kinds  of  models  and  datasets.  Based 

on  our  findings,  we  identified  an  agenda  for  future  research  on  data  augmentation 

as  follows: 

8.4.1

Researching  the  Merits  of  Data  Augmentation  in  the 

Light  of  Large  Pre-trained  Language  Models 

Generally,  it  is  not  possible  to  determine  which  augmentation  method  works  best  for 

a  given  dataset,  nor  predict  which  research  direction  will  be  the  most  appealing  in 

the  future.  Nevertheless,  some  patterns  in  current  approaches  hint  to  the  directions 

research  can  follow  in  order  to  overcome  current  obstacles  and  challenges.  One 

of  the  most  significant  challenges,  as  formulated  by  Long-pre,  Wang,  and  DuBois 

[265],  concerns  the  usage  of  large  pre-trained  language  models,  which  makes  the utilization  of  several  data  augmentation  methods  obsolete.  Large  pre-trained  models 

are  currently  state  of  the  art,  nevertheless,  we  advise  taking  further  advancements 

and  findings  in  the  research  landscape  into  account,  as  for  example  deep  belief  net-

works  [ 62], capsule  networks  [533], or  task-specialized  networks  e.g.  for  sentiment analysis  [176, 270]. Experiments  with  BERT  or  other  bigger  language  models  are therefore  of  particular  interest.  Similarly,  several  studies  [ 18, 28, 160, 254, 256, 512] 

have  shown  that  methods  only  slightly  transforming  instances  with  random  behav-

ior,  such  as  with  synonym  replacement  (Sect. 8.3.1.2), EDA  (synonym  replacement, random  swap,  deletion,  and  insertion  in  one)  (Sect. 8.3.1.2),  or  by  inserting  spelling errors  (Sect. 8.3.1.1), tend  to  be  less  beneficial  in  this  setting  than  more  elaborate ones.  Particularly  adversarial  training  (Sect. 8.3.2.1),  cutoff  (Sect. 8.3.2.1), interpolation  (Sect. 8.3.1.3  and  8.3.2.2),  and  some  generative  methods  (Sect. 8.3.1.4) have shown  significant  improvements  with  large  pre-trained  language  models.  While 

replacement  methods  based  on  embeddings  (Sect. 8.3.1.2)  and  especially  language models  (c-BERT)  (Sect. 8.3.1.2)  can  also  gain  improvements  in  combination  with those  pre-trained  models,  several  studies  [ 18, 256, 275, 337]  have  shown  that  the previously  mentioned  methods  can,  in  most  cases,  achieve  improved  results. 

The  described  performance  differences  become  apparent  when  approaching  the 

challenge  highlighted  by  Longpre,  Wang,  and  DuBois  [265]  from  an  intuitive  perspective.  Large  language  models  map  data  to  a  latent  space  with  representations 

nearly  invariant  to  some  transformations.  For  example,  synonym  replacement  meth-

ods  only  replace  words  that  are  by  definition  very  close  in  the  representation  space, 

leading  to  instances  that  are  almost  identical  [297].  As  Longpre,  Wang,  and  DuBois 

[265]  hypothesize,  data  augmentation  methods  can  only  be  helpful,  if  they  are  able
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to  introduce  new  linguistic  patterns.  In  such  instances,  using  the  mentioned  methods 

and  generative  methods,  in  particular,  might  be  sensible,  as  they  are  based  on  other 

large  language  models  that  can  introduce  a  high  novelty.  However,  the  challenge 

proposed  by  Longpre,  Wang,  and  DuBois  [265]  does  not  have  to  be  universally true.  For  example,  the  SUB2  method  by  Shi,  Livescu,  and  Gimpel  [399]  only  interpolates  phrases  from  the  training  data  and  thus  does  not  include  unseen  linguistic 

patterns  but  achieves  high  gains  with  a  pre-trained  model.  Another  interesting  aspect 

concerns  the  experiments  conducted  by  Yoo  et  al.  [512]  with  which  they  demonstrate  that  their  GPT-3-based  generative  augmentation  method  actually  improves  as 

the  size  of  the  pre-trained  classifier  increases.  The  authors  hypothesize  that  larger 

classifiers  have  more  capacity  to  better  incorporate  the  GPT3Mix  samples. 

8.4.2

Improving  Existing  Data  Augmentation  Approaches 

In  general,  most  promising  data  augmentation  methods  have  limits  and  challenges 

that  may  be  overcome  with  further  research. Generative  models  or  their  output 

needs  to  be  conditional  on  the  specific  class.  Otherwise,  the  created  instances  might 

not  preserve  the  label.  This  conditioning  is  oftentimes  reached  by  training  a  model, 

which  in  turn  requires  enough  data  to  be  consistent.  Bayer  et  al.  [ 28] have shown that  the  conditional  model  can  best  replicate  the  data  class,  if  the  problem  definition  and  task  data  is  relatively  narrow.  Tasks  with  a  broad  variety  of  topics  in  the data  seem  less  suitable.  This  problem  might  be  mitigated  by  adopting  new  conditioning  methods.  Currently,  most  approaches  are  extended  by  filter  mechanisms. 

Existing  mechanisms,  as  detailed  in  Sect. 8.3.5,  have  some  drawbacks  which  might be  reduced  in  the  future.  Another  obstacle  concerns  generative  models  themselves, 

which  can  require  many  resources  and  time  to  create  new  instances  [ 28].  Therefore, lightweight  alternatives  need  to  be  tested  in  this  setting,  thus  potentially  preventing 

a  high  dependency  on  resources,  which  is  referred  to  by  Bayer  et  al.  [ 28]  as  the  high resource  wall  problem.  Similarly,  methods  like  round-trip  translation  are  limited 

by  the  underlying  model.  For  example,  Marivate  and  Sefara  [275]  hypothesize  that round-trip  translation  might  not  be  appropriate  for  social  media  data,  where  translation  errors  increase.  This  problem  will  be  addressed  in  the  future,  as  machine 

translation  models  improve  their  translation  capabilities  for  such  difficult  instances. 

For  adversarial  examples,  Liu  et  al.  [258],  hypothesize  that  good  generalizability  performance  stems  from  the  perturbation  of  the  embedding  space,  rather  than  the 

input  space.  However,  data  space  adversarial  training  methods  should  not  be  disre-

garded  too  quickly,  as  Ebrahimi  et  al.  [ 99]  show  that  their  data  space  method  achieves better  results  than  the  virtual  adversarial  training  by  Miyato,  Dai,  and  Goodfellow
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[292].  A  general  challenge  for  adversarial  training  is  that  it  can  disturb  the  true  label space  in  the  training  data.  For  example,  adversarial  example  generators  often  rely  on 

the  belief  that  close  input  data  points  tend  to  have  the  same  labels  [538]. Concerning the  data  space  methods,  this  is  often  not  true  for  natural  language  tasks,  where  few 

words  or  even  characters  determine  the  class  affiliation  (e.g.,  sentiment  classifica-

tion:  “I  can’t  believe  I  like  the  movie”  → small_transformation→ “I  can’  believe  I 

like  the  movie”).  Whether  this  applies  to  the  adversarial  example  generators  in  the 

feature  space  needs  to  be  evaluated.  If  so,  research  needs  to  find  a  way  to  exclude 

cases  where  small  transformations  disturb  labels  and  at  best  include  cases  where 

stronger  transformations  still  preserve  the  labels.  For  this  purpose,  inspecting  feature 

space  methods  would  be  helpful.  However,  such  an  inspection  is  difficult  to  conduct 

due  to  their  high-dimensional  numerical  representation.  The  same  applies  to  the  fea-

ture  space’s  interpolation  methods,  where  a  back  transformation  to  the  data  space is  not  trivial.  Though,  certain  approaches,  such  as  those  from  Liu  et  al. [254] and Wan,  Wan,  and  Wang  [462],  use  techniques  such  as  encoder-decoder  architectures capable  of  transforming  the  newly  created  instances  to  the  data  space.  An  inspection  of  interpolated  instances  could  lead  to  interesting  insights.  This  opens  another 

research  direction  where  the  interpolation  of  instances  in  the  data  space  could 

be  further  investigated.  A  method  that  initially  implements  this  behavior  is  SUB2 

(Sect. 8.3.1.3), which  interpolates  instances  of  the  data  space  through  sub-phrase substitutions.  This,  however,  does  not  result  in  a  high  diversity,  which  is  particularly  interesting.  In  this  regard,  further  analysis  of  the  GPT-3  language  model  by 

[ 47]  could  be  valuable,  as  it  shows  very  interesting  interpolation  capabilities  in  the data  space. 

However,  even  avoidably  inferior  methods  can  achieve  better  results  if  they  are 

integrated  sensibly.  The  work  of  Jungiewicz  and  Smywinski-Pohl  [187]  can  serve  as an  example.  They  perform  synonym  substitution  only  if  it  increases  the  loss  of  the 

model.  This  demonstrates  that  some  data  augmentation  techniques  proposed  in  the 

different  groups  are  advanced,  sometimes  adopting  existing  methods  and  refining 

them. 

We  highlight  some  advanced  works  of  the  different  groups  in  Table  8.10  to  show which  research  directions  can  be  considered  in  the  future.  It  must  be  emphasized  that 

these  methods  are  not  necessarily  the  best  in  their  groups.  The  selection  is  made  by 

the  author  team  on  the  basis  of  the  information  gathered  while  writing  this  survey. 
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Table  8.10  Collection  of  some  of  the  most  advanced  data  augmentation  techniques  for  text classification 

Group

Work

Method  description

Improvement 

Data 

Character  Level 

[ 99]

Flip  a  letter  if  it 

+0.62  Acc.  (LSTM) 

Space 

Noise 

maximizes  the  loss 

Synonym 

[187]

Only  replace  words 

+1.2  Acc.  (Kim 

Replacement 

with  a  synonym  if  it 

CNN) 

maximizes  the  loss 

Embedding 

[ 17]

Choosing 

−0.6  –  +1.9  Acc. 

Replacement 

embeddings  based  on  (CNN) 

the  counter-fitting 

method 

[250]

Counter-fitting, 

Safer  model  (LSTM) 

language  model 

selection,  and 

maximizing  the 

prediction 

probability 

Language  Model 

[160]

c-BERT  integrated  in  +0.73  –  +1.97  Acc. 

Replacement 

reinforcement 

(BERT) 

learning  scheme 

[183]

c-BERT  and 

+1.9  –  +21.0  Acc. 

embedding 

(TinyBERT) 

substitution 

forcompound  words 

Phrase  Level 

[399]

Substitutes 

+20.6  –  +46.2  Acc. 

Interpolation 

substructures 

(XLM-R)∗ 

Round-trip 

[498]

Random  sampling 

+1.65  Acc. 

Translation 

with  a  temperature 

parameter 

Generative  Methods

[ 28]

Conditional  GPT-2 

−2.54  F1  –  +15.53 

with  human  assisted 

Acc.  (ULMFit)∗ 

filtering 

[256]

GPT-2  with  a 

+1.0  –  +4.3  F1 

reinforcement 

(XLNet)∗ 

learning  component 

(Continued)
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Table  8.10  (Continued) 

Group

Work

Method  description

Improvement 

Feature 

Noise

[181]

Virtual  adversarial 

+0.5  –  +5.4  Acc. 

Space 

training  with  special 

(RoBERTa-l) 

optimization 

[258]

Virtual  adversarial 

-0.3  Corr.  –  +1.2 

training  with 

Acc.  (RoBERTa-l) 

curriculum  learning

[398]

Embedding  noising 

+0.0  Corr.  –  +4.4 

Acc.  (RoBERTa-l) 

Interpolation

[427]

Interpolation  after 

-0.01  Acc.  –  +2.68 

lastlayer  of  the 

Corr.  (BERT-l) 

transformer

[ 67]

Interpolation  of  a 

+0.0  –  +4.6  Acc. 

random  BERT  layer 

(BERT-b)∗ 

[ 66]

Interpolating 

+0.53  –  +1.57  F1 

neighborsand 

(BERT-b)∗ 

reordered  versions 

∗ Results  contain  tests  on  low-data  regime  datasets 

8.4.3

Establishing  more  Comprehensive  Evaluation  Criteria 

and  Standards  for  Method  Comparison 

labelmethodspscomparisonspsstandardsspscriteria  A  general  problem  in  data  aug-

mentation  research  concerns  that  mostly  only  improvements  with  regard  to  the  pre-

diction  performance  on  specific  datasets  are  presented.  While  this  metric  is  likely  the most  important  one,  other  metrics,  such  as  time  and  resource  usage,  language  variety,  or  configurability,  are  also  important  for  practitioners  as  well  as  for  researchers. 

For  example,  the  generative  approaches  based  on  GPT-2  seem  very  promising  when 

considering  prediction  performance  gain.  Nevertheless,  language  variety  is  nar-

rowed  down,  as  the  model  is  primarily  trained  on  English  data.  Furthermore,  only 

few  authors  discuss  the  time  required  for  the  application  of  their  data  augmenta-

tion  methods.  The  GPT-2  based  method  of  Bayer  et  al. [ 28]  takes  up  to  30  seconds for  generating  one  example,  leading  to  several  computing  days  for  a  10-times  augmentation  of  a  small  dataset.  For  instance,  in  the  context  of  crisis  informatics  this 

might  take  too  long,  as  classifiers  have  to  be  created  quickly  for  immediate  inci-

dent  management  [192].  We  therefore  urge  scientists  developing  data  augmentation techniques  to  consistently  describe  the  limitations  of  their  approaches.  For  further 

data  augmentation  research,  flexible  standards  should  be  established  in  order  for
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methods  to  be  compared  more  reliably,  similar  to  other  machine  learning  research 

fields,  e.g.  few-shot  learning  [ 44]  or  natural  language  generation  [125]. It  seems unrealistic  that  one  or  few  general  datasets  can  capture  all  peculiarities  of  data  augmentation  methods,  especially  not  of  those  that  one  tailored  to  a  specific  problem. 

Nevertheless,  a  small  benchmark  that  can  be  included  in  evaluations  of  upcoming 

data  augmentation  methods  would  be  desirable.  In  the  best-case,  such  a  benchmark 

would  address  different  data  augmentation  goals,  consisting  of  two  or  more  datasets, 

from  which  one  replicates  a  few-shot  learning  setting  and  the  other  a  normal  learn-

ing  setting.  With  the  growing  usage  of  generative  models,  it  might  also  be  sensible 

to  consider  using  datasets  that  are  not  part  of  current  training  datasets  for  language models,  as  an  incorporation  of  testing  data  would  lead  to  wrong  conclusions.  The 

benchmark  should  not  be  too  large,  in  order  to  ensure  specific  evaluations  can  still 

be  carried  out.  Researchers  that  try  to  develop  such  a  benchmark,  could  also  con-

sider  to  specify  how  much  data  augmentation  should  be  performed  and  what  models 

should  be  used.  When  determining  which  model  should  be  used,  it  might  be  useful 

to  create  an  updatable  benchmark,  as  proposed  by  Gehrmann  et  al. [125], which  can be  modified  according  to  more  recent  state-of-the-art  models. 

8.4.4

Enhancing  the  Understanding  of  Text  Data 

Augmentation 

Shorten  and  Khoshgoftaar  [401]  highlight  that  while  for  some  image  data  augmentation  techniques  it  is  easy  to  understand  how  they  might  improve  the  dataset  and 

derived  classifiers,  however,  for  other  techniques  this  improvement  has  not  been 

explainable  yet.  This  also  applies  to  the  text  regime,  where  for  example,  data  aug-

mentation  methods  that  paraphrase  text  without  changing  the  meaning  are  naturally 

sensible,  while  methods  applied  in  the  feature  space  are  much  more  complex  to  cap-

ture.  Already  the  visualization  of  the  data  of  feature  space  augmentations  created  by, 

for  example,  adversarial  examples  or  interpolation  methods,  is  much  more  compli-

cated  than  in  the  image  domain.  As  previously  elaborated,  existing  approaches  try 

to  convert  representations  back  into  the  data  space  by  using  encoder-decoder  archi-

tectures  [254, 462]. Resulting  data  space  representations  could  then  be  investigated and  used  to  better  understand  underlying  data  augmentation  methods.  Furthermore, 

a  more  in-depth  understanding  of  why  and  when  data  augmentation  works  needs  to 

be  established.  With  the  rise  of  large  language  models  the  question  emerges  whether 

data  augmentation  methods  paraphrasing  input  instances  without  incorporating  new 

patterns  may  be  obsolete  [265]. Certain  works  have  challenged  this  perspective,  by demonstrating  that  even  existing  patterns  can  be  beneficial  for  performance  [399]. In
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this  context,  it  is  interesting  to  note  that  the  augmentation  method  of  Yoo  et  al. [512] 

provides  better  results  when  the  size  of  the  pre-trained  language  model  increases. 

8.4.5

Fostering  the  Usability  of  Data  Augmentation 

Application 

Most  data  augmentation  methods  are  still  research-based  in  their  incremental  devel-

opment  progress  and  therefore  not  suitable  for  every  practitioner.  A  simple  way  to 

improve  the  usability  is  to  publish  code  and,  in  the  best-case,  develop  libraries  that can  be  used  out  of  the  box  for  augmenting  a  text  dataset.  Dhole  et  al.  [ 90]  propose  a first  large  framework  to  include  many  text  data  augmentation  methods  and  filtering 

mechanisms.  The  library  by  Papakipos  and  Bitton  [324]  is  not  as  big  for  textual  data augmentation  methods,  but  can  be  used  for  multiple  modalities  (audio,  image,  text 

&  video).  While  these  are  very  useful  libraries,  the  amalgamation  of  many  proce-

dures  comes  with  abstraction  problems.  For  example,  only  individual  data  instances 

can  be  transformed  and  the  augmentation  procedure  does  not  have  access  to  the 

entire  dataset,  so  that,  for  example,  no  interpolation  procedures  are  implemented. 

In  addition  to  creating  libraries,  it  might  be  useful  to  explore  augmentations  with 

a  good  learning  process  integration.  This  can  be  considered  as  a  criterion  to  sim-

plify  embedding  the  procedure  in  the  general  learning  process.  Resource  utilization, 

speed,  and  general  continuity  in  the  learning  process  are  crucial  for  this  process.  The first  two  criteria  are  becoming  increasingly  relevant  as  they  are  related  to  the  current trend  of  data  augmentation,  i.e.  the  use  of  large  underlying  models  that  create  a  high resource  and  time  execution  overhead.  As  described  above,  this  might  be  countered 

with  utilizing  more  lightweight  models.  A  low  continuity  in  the  learning  process 

refers  to  the  circumstance  that  a  text  data  augmentation  method  is  detached  from 

the  actual  training  process;  or  in  the  worst  case,  the  learning  procedure  needs  to  be split  into  two  halves.  The  former,  also  described  as  offline  data  augmentation  by 

Feng  et  al. [113],  means  that  the  original  data  is  augmented  independently  from  the model  training.  A  data  augmentation  technique  is  called  online,  if  it  is  embedded 

into  the  learning  process  so  that  the  artificial  instances  are  stochastically  included 

by  the  learning  algorithm,  which  is,  e.g.,  implemented  in  the  work  of  Bonthu  et  al. 

[ 39].  The  second  form  occurs,  for  example,  when  a  feature  space  method  needs  to separate  the  normal  network  structure,  in  order  to  detach  the  encoder  or  embedding 

layer  from  the  rest  of  the  network.  This  results  in  a  continuity  problem  of  learning, so  that,  e.g.,  the  encoder  or  embedding  level  cannot  be  trained  further. 
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8.5

Conclusion 

This  survey  provides  an  overview  over  data  augmentation  approaches  suited  for  the 

textual  domain.  Data  augmentation  is  helpful  to  reach  many  goals,  including  regu-

larization,  minimizing  label  effort,  lowering  the  usage  of  real-world  data  particularly 

in  privacy-sensitive  domains,  balancing  unbalanced  datasets,  and  increasing  robust-

ness  against  adversarial  attacks  (see  Sect. 8.2).  On  a  high  level,  data  augmentation methods  are  differentiated  into  methods  applied  in  the  feature  and  in  the  data  space. 

These  methods  are  then  subdivided  into  more  fine-grained  groups,  from  noise  induc-

tion  to  the  generation  of  completely  new  instances.  In  addition,  we  propose  several 

promising  research  directions  that  are  relevant  for  future  work.  Especially  in  this 

regard,  a  holistic  view  on  the  current  state  of  the  art  is  necessary.  For  example, 

the  increasing  usage  of  transfer  learning  methods  makes  some  data  augmentation 

methods  obsolete,  as  they  follow  similar  goals.  Hence,  there  is  a  need  for  more 

sophisticated  approaches  that  are  capable  of  introducing  new  linguistic  patterns  not 

seen  during  pre-training,  as  suggested  by  Longpre,  Wang,  and  DuBois  [265]. 

While  data  augmentation  is  increasingly  being  researched  and  seems  very 

promising,  it  also  has  several  limitations.  For  instance,  many  data  augmentation 

methods  can  only  create  high  quality  augmented  data,  if  the  original  amount  of 

data  is  large  enough.  Furthermore,  as  Shorten  and  Khoshgoftaar  [401]  describe, data  augmentation  is  not  capable  of  covering  all  transformation  possibilities  and 

eliminating  all  kinds  of  biases  in  the  original  data.  Adopting  the  example  of  Shorten 

and  Khoshgoftaar  [401], in  a  news  classification  task,  in  which  there  are  no  articles containing  sports,  the  standard  data  augmentation  methods  will  most  certainly  also 

not  create  sport  articles,  even  though  this  would  be  necessary.  In  contrast,  data  aug-

mentation  might  induce  new  undesirable  biases.  For  instance,  language  models  like 

GPT  can  contain  biases  that  are  then  propagated  into  the  dataset  [412]. The  wide variety  of  techniques  and  some  very  sophisticated  methods  also  bring  another  layer 

of  complexity  that  needs  to  be  understood.  Moreover,  data  augmentation  can  be  time 

consuming,  meaning  that  not  all  methods  are  feasible  for  time  critical  machine  learn-

ing  development  domains,  e.g.,  in  some  areas  of  crisis  informatics.  An  increased 

demand  for  resources,  especially  concerning  training  generative  models,  is  inherent 

to  data  augmentation. 

In  order  to  mitigate  some  of  the  limitations  and  amplify  the  strengths  of  data 

augmentation,  however,  we  proposed  our  research  agenda,  which  comprises  (1) 

researching  the  merits  of  data  augmentation  in  the  light  of  large  pre-trained  lan-

guage  models,  (2)  improving  existing  data  augmentation  approaches,  (3)  establish-

ing  more  comprehensive  evaluation  criteria  and  standards  for  method  comparison, 
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(4)  enhancing  the  understanding  of  text  data  augmentation,  as  well  as  (5)  fostering 

the  usability  of  data  augmentation  application. 
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Approach  for  Long  and  Short  Text  Classifiers 

Abstract 

In  many  cases  of  machine  learning,  research  suggests  that  the  development  of 

training  data  might  have  a  higher  relevance  than  the  choice  and  modelling  of 

classifiers  themselves.  Thus,  data  augmentation  methods  have  been  developed 

to  improve  classifiers  by  artificially  created  training  data.  In  NLP,  there  is  the 

challenge  of  establishing  universal  rules  for  text  transformations  which  provide 

new  linguistic  patterns.  In  this  paper,  we  present  and  evaluate  a  text  generation 

method  suitable  to  increase  the  performance  of  classifiers  for  long  and  short 

texts.  We  achieved  promising  improvements  when  evaluating  short  as  well  as 

long  text  tasks  with  the  enhancement  by  our  text  generation  method.  Especially 

with  regard  to  small-data  analytics,  additive  accuracy  gains  of  up  to  15.53%  and 

3.56%  are  achieved  within  a  constructed  low-data  regime,  compared  to  the  no 

augmentation  baseline  and  another  data  augmentation  technique.  As  the  current 

track  of  these  constructed  regimes  is  not  universally  applicable,  we  also  show 

major  improvements  in  several  real  world  low-data  tasks  (up  to  +4.84  F1-score). 

Since  we  are  evaluating  the  method  from  many  perspectives  (in  total  11  datasets), 

we  also  observe  situations  where  the  method  might  not  be  suitable.  We  discuss 

implications  and  patterns  for  the  successful  application  of  our  approach  on  dif-

ferent  types  of  datasets. 
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Application 

Code:

https://github.com/PEASEC/A-novel-data-augmentation-

generation-approach-for-long-and-short-text-classifiers 

9.1

Introduction 

Deep  learning  has  attracted  considerable  attention  due  to  increased  computing  power 

in  combination  with  a  higher  availability  of  training  data  for  a  wide  range  of  prob-

lems  [425]. In  some  learning  tasks,  especially  small-data  regimes,  the  development  of  training  data  might  have  a  higher  relevance  than  the  choice  and  modelling 

of  classifiers  [ 25]. To  improve  classifiers,  data  augmentation  methods  have  been designed  to  artificially  create  training  data  with  specific  transformations  [434].  Current  research  in  data  augmentation  focuses  on  deep  learning  algorithms,  which  are 

state  of  the  art  for  many  classification  tasks,  as  they  still  often  suffer  from  a  strong variance  regarding  the  given  problem  if  not  enough  data  is  provided.  The  artificial 

creation  of  training  data  serves  as  a  kind  of  regularization  and  thus,  simpler  solu-

tions  are  preferred  [159, 518]. In  addition,  imbalance  in  datasets  can  be  addressed 

[342, 519]  and  the  safety  of  classifiers  can  be  increased  by  making  them  resistant  to the  deception  by  skillful  changes  in  the  input  sequences  [292].  Data  augmentation can  also  help  to  mitigate  the  “big  data  wall”  problem,  which  relates  to  the  fact  that smaller  companies,  research  groups  and  organizations  are  usually  unable  to  acquire 

the  same  volume  of  data  as  large  corporations  [ 81]. 

1  Minor  typographical  errors  in  the  original  publication  have  been  corrected  for  this  dissertation. 
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Regardless  of  deep  learning,  research  into  artificial  data  creation  can  benefit  nat-

ural  language  processing  (NLP)  applications  across  several  domains  where  training 

data  is  scarce  or  labeling  is  costly.  For  example,  to  enhance  the  situational  awareness of  emergency  managers,  a  part  of  crisis  informatics  deals  with  the  rapid  recognition  and  subsequent  classification  of  messages  and  pictures  during  disasters  and 

emergencies  [ 10, 198]. Due  to  the  scarcity  of  financial  and  personnel  resources, emergency  services  lose  valuable  time  dealing  with  complicated  identification  tasks, 

which  eventually  can  cost  lives  [167, 359]. This  problem  of  scarcity  also  applies to  small- and  medium-sized  enterprises  (SMEs)  when  requiring  a  high  quality  and 

volume  of  labeled  data  for  commercial  tasks  such  as  brand  analysis  or  news  classifi-

cation  [421].  In  NLP,  there  is  the  difficulty  establishing  universal  rules  for  transformations  of  textual  data  that  can  be  carried  out  automatically  and  still  maintain  the 

quality  of  the  labeling,  which  is  especially  sensitive  in  domains  such  as  sentiment 

analysis  [280]. Longpre,  Wang,  and  DuBois  [265]  suggest  that  current  pre-training or  transfer  learning  methods  in  NLP  already  cover  the  goals  of  data  augmentation.  They  argue  that  augmentation  methods  that  only  perturb  the  input  data  and 

do  not  provide  new  linguistic  patterns  fail  to  increase  the  classification  quality  of 

pre-trained  models. 

Thus,  we  propose  a  sophisticated  generation-based  method  that  overcomes  these 

problems  by  incorporating  new  linguistic  patterns  (i.e.,  a  high  grammatical  variety) 

which  prove  to  be  useful  in  combination  with  pre-trained  models.  This  method  does 

not  simply  create  very  similar  instances,  but  very  novel  ones.  Our  approach  uses 

two  sub  methods,  whereof  one  is  context-conditional  by  incorporating  parts  of  the 

instances  (e.g.,  first  words  or  title)  in  the  generation  process  and  hence  suited  for  long texts,  while  the  other  is  context  independent  and  suited  for  short  texts.  Although 

there  is  no  clear  distinction  between  long  and  short  texts,  we  are  guided  by  the 

280  character  limit  (i.e.,  the  length  of  a  message  in  Twitter),  at  which  most  standard NLP  data  sets  would  be  categorized  as  small.  Thus,  we  seek  to  answer  three  research 

questions:  How  can  we  utilize  text  generation  approaches  of  data  augmentation  that 

achieve  a  high  novelty  in  the  data  while  preserving  the  label  quality  to  improve 

pre-trained  machine  learning  classifiers  (RQ1)?  In  which  way  is  the  incorporation 

of  contexts  of  long  text  instances  in  classification  problems  helpful  when  using  text 

generation  as  data  augmentation  method  (RQ1.1)?  How  is  it  possible  to  achieve  a 

quality  improvement  for  classification  tasks  with  short  texts  when  augmenting  with 

text  generation  (RQ1.2)? 

Contributing  to  the  domain  of  small-data  analytics,  our  results  indicate  additive 

accuracy  gains  of  up  to  15.53%  and  3.56%  within  a  constructed  low-data  regime, 

compared  to  the  no  augmentation  baseline  and  another  data  augmentation  technique. 

As  the  current  track  of  these  constructed  regimes  is  not  universally  applicable,  we
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also  show  major  improvements  in  several  real  world  low-data  tasks  (up  to  +4.84 

F1-score).  Since  we  are  evaluating  the  method  from  many  perspectives  (in  total 

11  datasets),  we  also  observe  situations  where  the  method  might  not  be  suitable. 

We  discuss  empirical  (i.e.,  insights  into  the  domain-specific  application  of  small 

data  analytics),  practical  (i.e.,  new  data  augmentation  methods  based  on  the  GPT-

2  language  model)  and  theoretical  (i.e.,  a  textual  data  augmentation  basis  which 

is  beneficial  for  pre-trained  classification  models)  implications  for  the  successful 

application  of  our  approach  on  different  types  of  datasets. 

The  paper  is  structured  as  follows:  After  introducing  related  work  on  data  aug-

mentation,  NLP  and  text  generation  approaches  (Sect. 9.2),  the  paper  presents  both the  concept  and  implementation  of  a  novel  text  generation  data  augmentation  algorithm  (Sect. 9.3). Furthermore,  it  presents  the  method  and  findings  of  three  rounds  of evaluation  (Sect. 9.4)  before  discussing  the  implications,  limitations  and  potentials for  future  research  (Sect. 9.5). 

9.2

Related  Work 

9.2.1

Foundations  of  Data  Augmentation 

Data  augmentation  is  a  machine  learning  technique  that  artificially  enlarges  the 

amount  of  training  data  by  means  of  label  preserving  transformations  [434]. First variations  of  data  augmentation  can  be  identified  in  the  well-known  LeNet  by  LeCun 

et  al.  [237]. Using  random  distortions  of  training  pictures,  the  MNIST-dataset  was ninefold  enlarged,  so  that  a  better  detection  of  handwritten  digits  became  feasible.  A 

relevant  term  of  data  augmentation  is  label  preservation,  describing  transformations 

of  training  data  that  preserve  class  information  [ 81].  This  means  that  this  kind  of transformations  modifies  texts  of  a  given  class  to  other  texts  that  are  as  well  related to  this  class.  In  data  augmentation  research,  this  is  of  high  relevance  because  the 

absence  of  it  would  result  in  the  generation  of  incorrectly  labeled  data.  For  the  most part,  an  entity  replacement  within  a  sentence  is  sufficient  for  label  preservation 

in  sentiment  analysis.  However,  the  random  addition  of  words  may  result  in  an 

alteration  of  the  sentiment.  Many  researchers  loosen  the  label  preservation  term. 

Then,  transformations  that  break  the  preservation  are  legitimate  as  long  as  the  label  is adjusted  simultaneously.  Furthermore,  transformations  that  preserve  the  right  class 

with  a  high  probability,  but  not  with  certainty,  may  exist.  In  this  understanding, 

Shorten  and  Khoshgoftaar  [401]  designate  the  probability  that  the  correct  label  is assigned  after  a  transformation  as  the  safety  of  a  data  augmentation  method.  For 

example,  this  uncertainty,  if  known,  could  be  directly  integrated  in  the  label.  If 

unknown,  methods  like  label  smoothing  can  model  a  general  uncertainty. 
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In  NLP,  data  augmentation  is  considered  a  difficult  task  [188]  since  textual  transformations  that  preserve  the  label  are  difficult  to  define  [209, 481].  Thus  many methods  have  been  tried  out  in  research  so  far.  Among  them  are  methods  for  swapping  [481], deleting  [162, 336], inducing  spelling  mistakes  [ 33, 81],  paraphrasing 

[224],  and  replacing  of  synonyms  [214, 496, 526],  close  embeddings  [ 17, 473] and words  predicted  by  a  language  model  [106, 183, 209]  on  word-level.  On  a  broader level,  methods  which  change  the  dependency  tree  [375, 504], perform  round-trip-translation  [218, 391], or  interpolate  the  input  instances  [ 63, 521]  are  used.  Further studies  have  dealt  with  text  generation  approaches  for  data  augmentation.  While 

Rizos,  Hemker,  and  Schuller  [365]  and  Sun  and  He  [428]  are  using  recurrent  neural networks  and  generative  adversarial  networks  for  short-text  augmentation,  Qiu  et 

al.  [336]  sample  instances  from  a  variational  autoencoder  without  length  restric-tions.  Furthermore,  Wang  and  Li  [467]  and  Anaby-Tavor  et  al. [ 18] use  the GPT-2  

model  for  text  generation.  A  more  detailed  analysis,  taxonomy  and  listing  of  data 

augmentation  techniques  can  be  found  in  the  data  augmentation  survey  by  Bayer, 

Kaufhold,  and  Reuter  [ 29]. 

However,  challenging  many  research  directions  in  this  area,  Longpre,  Wang,  and 

DuBois  [265]  hypothesize  that  textual  data  augmentation  would  only  be  helpful  if the  generated  data  contains  new  linguistic  patterns  that  are  relevant  to  the  task  and 

have  not  yet  been  seen  in  pre-training. 

9.2.2

Research  Gap 

Our  data  augmentation  method  is  inspired  by  the  text  generation  methods  from 

Rizos,  Hemker,  and  Schuller  [365], Sun  and  He  [428]  and  Qiu  et  al. [336]  while also  considering  the  limitations  outlined  by  Longpre,  Wang,  and  DuBois  [265] and seeks  to  tackle  three  primary  research  gaps: 

1.  Considering  short  and  long  texts  while  maintaining  coherence  and  achieving 

high  novelty; 

2.  preserving  the  labels  and  quality  of  the  augmentation  method; 

3.  overcoming  the  challenge  of  limited  usefulness  of  textual  data  augmentation  in 

combination  with  pre-trained  models. 

First,  in  contrast  to  the  works  of  Rizos,  Hemker,  and  Schuller  [365]  and  Qiu  et al.[336],  we  consider  short  as  well  as  long  texts  as  input  data  instances  to  our  augmentation  method,  which  is  covered  explicitly  by  research  questions  1.1  and  1.2. 

Additionally,  and  in  relation  to  the  main  research  question,  our  method  is  character-
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ized  by  substantial  label  preservation  in  combination  with  the  novelty  and  coherence 

of  the  data.  At  first,  the  generation  is  enriched  with  a  special  fine-tuning  and  prefix addition.  Then,  a  document  embedding  filter  is  applied  so  that  instances  not  associated  with  the  actual  class  are  omitted.  Thus,  the  generation  capabilities  can  be  used 

in  full  extent  while  tailoring  them  to  the  class  data.  Furthermore,  our  experiments  are based  on  the  GPT-2-Model  by  Radford  et  al. [340]  that  achieves  very  good  results in  text  generation. 

Second,  when  it  comes  to  usage  of  the  GPT-2  model,  Wang  and  Lillis  [467] 

describe  no  measures  for  label  and  quality  preservation  in  their  GPT-2  augmentation. 

Anaby-Tavor  et  al.  [ 18]  indicate  that  the  GPT-2  model  will  be  further  trained  and improperly  generated  instances  will  be  removed.  In  contrast  to  our  method,  the 

model  of  Anaby-Tavor  et  al.  [ 18]  is  limited  exclusively  on  sentences  as  instances and  cannot  generate  coherent  text.  Furthermore,  it  uses  other  safety  mechanisms  for 

label  preservation.  For  instance,  they  use  a  filter  mechanism  based  on  a  classifier, 

that  was  trained  on  the  class  data.  This  can  severely  reduce  the  diversity  of  the  data augmentation  method. 

Third,  the  method  proposed  in  this  paper  is  intended  to  overcome  the  issue  that 

textual  data  augmentation  can  be  of  no  or  small  value  when  used  in  combination 

with  pre-trained  classifiers  [265]. In  contrast  to  the  study  by  Longpre,  Wang,  and DuBois  [265],  we  use  the  ULMFit  model  by  Howard  and  Ruder  [156].  Nevertheless, the  model  is  also  pre-trained  beforehand  and  fine-tuned  on  each  task  dataset.  As  a 

specialty,  we  also  fine-tune  the  encoder  with  the  augmented  data  for  the  baseline, 

making  sure  that  at  least  the  encoder  has  seen  all  linguistic  patterns  before. 

9.3

Concept  and  Implementation 

9.3.1

Conceptual  Design 

The  text  generation  process  can  be  based  on  any  language  model  with  good  text 

generation  capabilities.  Language  models  indicate  a  probability  distribution  of 

sequences  of  words: 

.P Θ  (w t| w t−k , .., w t−1 ) ∀t

(9.1) 

The  model  .P Θ    predicts  the  probability  that  the  current  word  is  .  w t given  the  pre-decessor  words  (context)  .  w t−1 , ..., w t−k.  This  enables  the  .P Θ    to  generate  texts.  A phrase  prefix  can  be  used  as  context  to  make  the  model  follow  a  certain  topic  by 

completing  exactly  this  part,  abstracting  from  exact  specifics  as  sampling  methods. 

In  addition,  a  temperature  parameter  can  be  introduced  to  adjust  the  randomness  in
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the  generation  of  the  texts  by  scaling  the  logits  in  the  softmax.  In  order  to  enable  the sensible  use  of  a  language  model  for  data  augmentation,  it  has  to  be  ensured  that 

the  procedure  mainly  generates  texts  which  are  similar  to  the  training  data  and,  in 

addition,  reflect  the  respective  class  (label  preservation  or  safety).  In  the  following, our  augmentation  method  is  described,  which  comprises  the  specification  of  three 

steps  for  modeling  this  behavior. 

In  a  first  step,  the  pre-trained  model .P Θ    is  further  trained  with  the  training  data 

.  X  c of  the  class .  c  that  should  be  enriched.  On  the  one  hand,  this  enables  the  model to  learn  the  words,  spelling  and  form  of  the  training  data.  On  the  other  hand,  a  bias is  generated  with  regard  to  the  selected  class.  This  means  that,  for  the  generation 

of  data,  the  selected  class  can  be  retained  more  explicitly.  In  the  following,  we 

differentiate  between  the  contextual  data  augmentation  process  that  is  suitable  for 

longer  texts  and  a  context  independent  process  for  shorter  training  instances. 

In  order  to  further  strengthen  the  safety  and  label  preservation,  special  “start  of 

text”-tokens  are  added  to  each  training  data  in  the  fine-tuning  input.  In  the  text  generation  phase,  these  tokens  are  used  as  generation  prefixes,  signaling  the  model  to 

generate  texts  similar  to  the  specific  training  data.  This  ensures  that  the  augmented 

examples  are  different  to  each  other  but  remain  based  on  the  actual  data.  If  the  training  data  consists  of  longer  texts,  i.e.  instances  containing  more  than  280  characters, 

this  token  can  be  selected  context-based,  for  example,  by  appending  the  first  words 

or  the  title  of  each  instance  (e.g.  “.  < |startoftext|  > (w 1 ...w k ) i” where  .  (w 1 ...w k ) i is  the  beginning  sequence  of  the  instance  . i).  This  results  in  a  high  diversity  of  the generated  data.  Although,  if  the  texts  of  the  dataset  are  short  and  no  context  tokens can  be  used  for  appendage,  the  context  independent  variant  is  chosen,  where  the 

number  of  the  occurrence  of  the  instance  in  the  training  set  is  concatenated  (e.g. 

“.  < |startoftext|  > |i|” where  . i is  the  occurrence).  As  the  language  model  is  fine-tuned  on  the  training  data,  it  can  be  assumed  that  it  learns  to  associate  the  unique token  with  the  respective  instance.  Thereby,  the  model  is  able  to  recognize  the  prefix and  completes  it  on  the  basis  of  memorization.  Ultimately,  this  implies  a  strengthened  label  preservation.  However,  so  that  the  data  is  not  completely  reproduced 

from  memory,  uncertainty  is  introduced  in  the  sampling  by  adjusting  the  tempera-

ture  parameter. 

Filtering  the  generated  data  is  the  final  heuristic  to  increase  label  preservation. 

For  this  purpose,  document  embeddings  for  each  instance  of  the  generated  texts 

and  training  data  of  a  class  are  created.  The  embeddings  reflect  the  content  of  the 

respective  instances.  If  in  this  latent  space  a  data  instance  from  the  generated  data 

.  X  gen is  too  far  away  from  the  actual  training  data .  X c of  the  class  to  be  augmented, it  can  be  assumed  that  the  content  differs  semantically  and/or  syntactically,  which 

is  why  such  data  is  discarded:

[image: Image 31]

184

9

Data Augmentation in Natural Language Processing: A Novel …

 X filtered = { x i ∈  X gen | dist ( Emb (x i ),  Centroid (

. 

(9.2) 

Emb (X c ))) < δ}

The  large  generative  model  is  able  to  interpolate  textual  content  in  a  sensible  and  non-trivial  way.  These  capabilities  are  very  promising  for  data  augmentation  by  creating 

highly  diverse  samples  that  are  coherent  and  contain  new  linguistic  and  semantic 

patterns  with  regards  to  the  actual  data.  However,  only  through  the  application  of 

the  safety  steps  can  the  model  generate  class-related  data  that  does  not  represent  the wrong  label. 

9.3.2

Implementation 

Figure  9.1  shows  and  summarizes  the  three  different  steps  of  the  safety  enhancement, sorted  according  to  algorithmic  order.  The  class  safety  of  the  procedure  can  be 

significantly  increased  by  this,  although  it  cannot  be  completely  ruled  out  that  the 

correct  label  is  obtained.  For  the  implementation,  we  use  GPT-2  by  Radford  et  al. 

[340]  with  355  million  parameters.  We  used  GPT-2  as  it  is  well  suited  for  small-data analytics  due  to  its  diverse  generation  capabilities  coming  from  the  size.  The  model 

is  enriched  with  the  three  different  extensions  discussed  in  the  conceptual  design 

section. 

Fig.  9.1  Three  steps  to  increase  the  probability  of  a  label  preserving  instance  in  GPT-2  text generation  (safety  increase).  In  the  first  step,  a  contextualized  or  numbered  start  token  is  added to  each  training  instance  so  that  this  can  be  used  as  a  generation  prefix  for  each  class  after  the second  step,  in  which  the  GPT-2  model  is  trained  further.  After  the  text  generation,  in  a  last step  a  filtration  is  carried  out  using  BERT  document  embeddings  so  that  significantly  deviant instances  are  not  included

9.4
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In  the  first  steps,  the  GPT-2  model  is  imported  and  the  specific  class  data  is 

extracted.  Subsequently,  all  instances  of  this  class  are  given  a  prefix  token  (“.  < 

|startoftext|  > |{num}|”)  and  suffix  token  (“.  < |endoftext|  > ”).  If  the  training data  consists  of  longer  instances  with  an  embeddable  context,  the  “.|{num}|”-field 

is  removed.  In  all  other  cases  “.{num}”  is  replaced  by  the  position  of  the  current 

data  instance.  Afterwards,  the  model  is  fine-tuned  with  this  data  several  hundred 

or  thousand  epochs,  dependent  on  the  dataset  size,  so  that  the  loss  of  the  model 

is  greatly  reduced.  This  should  sufficiently  ensure  that  the  model  prioritizes  the 

training  data  in  the  generation. 

Thereafter,  texts  are  generated  for  each  class  instance.  If  the  training  instances 

exceed  a  certain  number  of  words  they  are  considered  as  long  and  the  token 

“.  < |startoftext|  > ”  and  a  specific  context  of  the  document  (e.g.  title  or  the  first words)  are  added  to  the  generation,  else  “.  < |startoftext|  > ”  is  used  in  combination with  the  index  of  the  respective  instance.  Temperatures  between  0.7  and  0.9  should 

be  set  in  the  generation  step  [489],  whereby  a  higher  number  represents  greater randomness/creativity.  In  the  last  step  of  the  procedure,  the  generated  data  is  filtered.  This  is  done  by  using  Sentence-BERT  [356]  to  create  document  embeddings of  the  data.  Generated  instances  that  are,  according  to  a  manually  set  threshold, 

too  far  away  from  the  centroid  of  the  correct  data,  are  deleted  from  the  result  set. 

To  minimize  this  interaction,  a  predefined  value  (e.g.  0.3)  is  set  and  the  algorithm 

displays  the  10  furthest  instances  that  are  still  within  this  threshold.  Depending  on 

how  many  instances  are  wrong,  the  threshold  is  moved  further  and  the  process  is 

started  again.  For  example,  if  there  is  one  false  instance  in  the  set  of  10  generated instances,  the  threshold  is  increased  slightly.  If  there  are  only  true  instances,  the 

threshold  is  decreased.  This  is  done  until  a  meaningful  parameter  is  found. 

The  algorithms  for  long  and  short  instances  are  given  in  Appendix  A.2.3  of  the 

Electronic  Supplementary  Material. 

9.4

Evaluation 

9.4.1

Selection  of  Application  Domains 

To  conduct  our  evaluation,  we  selected  the  three  cases  of  sentitment  analysis,  news 

classification  and  crisis  informatics.  First,  sentiment  analysis  is,  according  to  Med-

hat,  Hassan,  and  Korashy  [280], the  analysis  of  opinions,  attitudes  and  emotions toward  individuals,  events  or  topics.  It  is  a  very  common  NLP  task  and  used  in  a 

broad  variety  of  applications,  as,  for  example,  the  decision  making  process  of  organ-

isations  and  individuals  is  increasingly  dependent  on  public  opinions  [253].  As  it  is
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part  of  several  textual  machine  learning  benchmarks  and  highly  used  in  research,  it 

is  a  sensible  task  for  the  experiments  of  this  paper.  To  place  this  experiment  in  the setting  of  small-data  analytics,  an  artificially  downsampled  version  will  be  used. 

Second,  due  to  the  constantly  growing  number  of  news  items  and  their  infor-

mation  sources,  it  is  becoming  more  and  more  complicated  keeping  track  of  topics 

and  finding  specific  articles  [ 56].  Classifiers  are  used  to  automatically  divide  news into  predefined  classes  [217].  However,  news  are  highly  dynamic,  so  that  the  source domains  are  constantly  shifting  and  new  classes  emerge.  As  an  extreme  example 

in  this  context,  one  can  compare  the  news  landscape  before  and  after  COVID-19 

occurred.  Such  shifts  and  newly  emerging  topics  have  as  result  that  new  data  has 

to  be  labeled  all  the  time,  leading  to  classifiers  with  small  data  bases.  While  this 

is  already  sufficient  to  form  a  focus  in  this  study,  we  are  also  interested  in  exploring  classification  as  well  as  data  augmentation  for  large  texts,  as  this  receives  little attention  in  research. 

Third,  the  research  field  of  crisis  informatics  draws  on  computing  and  social  sci-

ence  perspectives  to  study  the  ways  in  which  ICT  enables,  constrains,  and  mediates 

human  practices  related  to  crisis  and  disaster  [411]. Besides  the  topics  of  crisis  communication,  community  interaction,  and  inter-organizational  collaboration  [360], 

crisis  informatics  examines  the  application  of  machine  learning  to  reduce  the  infor-

mation  overload  of  irrelevant  information,  extract  useful  information  from  social 

media  (e.g.,  eyewitness  reports,  multimedia  files),  and  enhance  information  quality 

for  both  an  improved  situational  awareness  and  decision  making  of  emergency  ser-

vices  [192]. Despite  the  considerable  volumes  of  social  big  data  disseminated  during large-scale  emergencies,  there  is  a  class  imbalance  since  only  a  small  number  of 

social  media  posts  contribute  to  situational  awareness  [ 10]. Furthermore,  emergency services  such  as  fire  or  police  departments  often  lack  the  financial  and  personnel 

resources  to  engage  in  comprehensive  dataset  labeling  tasks  [167, 359].  In  contrast, there  might  be  a  lack  of  available  raw  data  in  small-scale  and  uncommon  types  of 

emergencies,  qualifying  crisis  informatics  as  an  interesting  application  field  for  data 

augmentation  and  small-data  analytics. 

9.4.2

Model  and  Datasets 

In  accordance  with  the  research  questions,  the  previously  conceptualized  and  imple-

mented  data  augmentation  methods  are  evaluated  in  this  chapter  based  on  a  con-

structed  low-data  regime  with  the  SST-2  dataset  (Results  I)  and  real-world  low-data 

regimes  regarding  topic  classification  of  long  (Results  II)  and  short  texts  (Results 

III).  We  use  the  ULMFit  model  by  Howard  and  Ruder  [156]  that  consists  of  a
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pre-trained  encoder  coupled  with  a  linear  pooling  network  and  a  softmax  output. 

The  encoder  is  fine-tuned  for  each  task  on  all  the  available  task-specific  data  (including  the  augmented  instances).  Then,  the  whole  network  is  trained  on  a  supervised 

task. 

For  the  evaluation  of  the  context  independent  method  with  short  texts,  we  focused 

on  sentiment  analysis  and  the  classification  of  crisis  Twitter  data.  Sentiment  analysis 

will  be  performed  with  subsampled  SST-2  [410]  datasets  to  simulate  a  low-data regime  on  a  standardized  dataset,  similar  to  Hu  et  al.  [160]  and  Kumar,  Choudhary, and  Cho  [223].  As  these  constructed  conditions  are  restricted  in  their  real-world applicability,  we  perform  further  evaluations  with  real-world  low-data  regimes. 

The  crisis  classification  tasks  have  very  limited  resources,  as  described  by 

Kaufhold,  Bayer,  and  Reuter  [198]. The  first  three  datasets  from  Olteanu,  Vieweg, and  Castillo  [313]  are  labeled  according  to  whether  or  not  they  are  informative  on the  specific  topics  that  are  related  to  the  Boston  Bombings,  the  Bohol  Earthquake, 

and  the  West  Texas  Explosions  in  2013.  The  other  two  datasets  from  Schulz,  Guck-

elsberger,  and  Janssen  [388]  consist  of  city-specific  Twitter  posts  that  are  labeled  as incident-related  or  not. 

For  the  evaluation  of  the  contextual  method  with  long  texts,  we  gathered  news 

articles  for  topic  classification  from  2019  and  2020.  For  the  contextual  start  token 

we  used  the  respective  titles.  Topic  classification  in  the  news  context  also  faces  the problem  of  few  data  instances,  because  the  news  and  dependent  topics  are  often 

very  dynamic  and  research  data  is  limited.  In  our  case,  for  every  topic,  expert 

groups  of  two  people  decided  whether  the  inspected  article  is  relevant  to  the  topic. 

Furthermore,  there  is  a  labeling  guideline  for  every  topic  so  that  disagreements  are 

excluded  if  possible  (see  Appendix  A.2.2  of  the  Electronic  Supplementary  Material). 

The  topics  include  three  economic  issues:  layoff,  management  change  (MC)  and 

mergers  and  acquisitions  (M&A)  as  well  as  two  crisis  issues:  flood  and  wildfire. 

Before  augmenting  the  data,  a  fifth  of  every  set  was  split  into  a  hold-out  set. 

9.4.3

Evaluation  Settings  and  Pre-Evaluation  of 

Hyperparameters 

All  data  augmentation  methods  are  compared  against  a  baseline  with  the  help  of  10-

fold  training  executions.  Additionally,  the  sentiment  analysis  results  are  compared 

with  the  EDA  data  augmentation  method  from  Wei  and  Zou  [481].  For  the  sentiment analysis  task  we  augment  both  classes,  while  for  the  others  we  augment  the  minority 

class. 
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The  text  generation  process  offers  various  possibilities  for  hyperparameter  opti-

mization,  which  we  evaluated  with  different  datasets  to  avoid  overfitting.  Ablation 

studies  are  shown  on  the  sentiment  dataset  (Sect. 9.4.4.1). During  generation,  the model  has  a  temperature  parameter  which,  the  larger  it  is  chosen,  the  more  creative 

the  texts  will  be  and  new  linguistic  patterns  occur.  However,  a  too  high  value  can 

lead  to  instances  that  are  not  topic  related.  A  value  that  is  too  low  can  mean  that the  model  repeats  itself  very  often,  while  a  value  too  high  can  result  in  a  loss  of  the actual  theme  in  the  texts  [202]. According  to  the  author  of  the  implementation  used in  this  paper,  the  most  suitable  value  is  between  0.7  and  0.9  [489]. In  an  evaluation with  the  management  change  topic,  0.7  was  most  suitable  for  the  existing  case  of 

application,  compared  to  0.8  and  0.9. 

The  filtering  of  generated  documents  is  of  importance  in  this  process,  as  GPT-2 

can  generate  novel  instances  that  may  have  no  relation  to  the  actual  class.  The 

parameter  of  this  filtering  was  chosen  individually  so  that  the  ten  most  distant 

documents  would  still  be  labeled  accordingly  to  the  class.  In  the  ablation  studies  of 

Sect. 9.4.4.1  we  show  that  this  filtering  is  necessary  to  achieve  the  high  results  of this  method. 

Another  aspect  that  can  be  added  to  hyperparameter  optimization  concerns  the 

number  of  documents  to  be  generated  per  training  instance.  As  this  is  a  very  impor-

tant  factor  we  consider  it  in  the  evaluations  of  Sect. 9.4.4.1.  More  details  on  the hyperparameters  of  the  model  can  be  found  in  the  appendices. 

9.4.4

Results  I:  Sentiment  Analysis  (context  independent 

method) 

The  high  quality  of  the  augmented  data  from  a  human  perspective  is  also  reflected  in 

the  quantitative  evaluation  results,  that  are  presented  in  Table  9.1.  The  proposed  data augmentation  method  has  almost  in  every  case  better  results  than  the  baseline  and 

the  EDA  method  by  Wei  and  Zou  [481]. Particularly  it  gains  the  best  improvements the  less  data  is  available  (additive  up  to  15.53%  and  3.56%  compared  to  the  baseline 

and  EDA).  However,  even  with  the  most  data,  the  augmentation  method  achieves 

additive  performance  improvements  in  the  best  run  of  0.49%  and  1.22%  compared 

to  the  baseline  and  the  EDA  method. 

The  method  has  the  highest  improvements  if  less  data  is  available  because  the 

prior  knowledge  of  the  GPT-2  model  is  most  effective  there.  The  model  also  produces 

well  written  instances  which  is  not  the  case  with  the  EDA  method  that  sometimes 

fails  to  improve  the  baseline.  Furthermore,  the  rationale  of  low-performing  data 

augmentation  methods  of  Longpre,  Wang,  and  DuBois  [265]  comes  into  play.  In
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Table  9.1  Accuracy  of  the  non-contextual  text  generation  process,  EDA  [481]  and  the  baseline  with  regard  to  different  SST-2  subsamples  (10  runs) 

Dataset

Run

Baseline

EDA

Text  Gen 

SST-2  100

AVG  (SD)

0.5581  (0.0463) 

0.6934  (0.0124) 

0.7134  (0.0207) 

Best

0.6226

0.7139

0.7495 

SST-2  300

AVG  (SD)

0.7241  (0.0119) 

0.7217  (0.0047) 

0.7402  (0.0067) 

Best

0.7417

0.7295

0.7534 

SST-2  500

AVG  (SD)

0.7505  (0.0077) 

0.7534  (0.0074) 

0.7598  (0.0126) 

Best

0.7651

0.7671

0.7754 

SST-2  700

AVG  (SD)

0.7646  (0.0054) 

0.7578  (0.0038) 

0.7627  (0.0066) 

Best

0.7705

0.7632

0.7754 

contrary  to  the  EDA  method,  the  proposed  augmentation  algorithm  enriches  the 

training  data  with  new  linguistic  patterns  that  have  not  already  been  seen  by  the 

encoder. 

9.4.4.1  Ablation  Studies 

Further,  we  want  to  show  an  excerpt  of  the  relevant  results  from  our  ablation  eval-

uations  (Fig. 9.2). First,  we  test  different  augmentation  sizes  that  are  shown  on  the SST-2  100  dataset.  We  limit  this  evaluation  to  a  maximum  of  10  augmentation  samples  per  instance,  as  higher  numbers  demand  more  computing  time.  It  is  evident  that 

the  higher  the  size,  the  better  the  results  are.  A  human  inspection  indicates,  how-

ever,  that  higher  numbers  might  not  be  as  beneficial  since  the  repetition  within  the 

samples  per  instance  increases.  The  human  inspection  process  is  detailed  in  Section 

A.2.5  in  the  Appendix  of  the  Electronic  Supplementary  Material. 

Furthermore,  we  also  removed  the  steps  of  the  augmentation  process  to  see  the 

contributions  of  each.  In  a  first  testing  case,  we  did  not  include  the  number  of  the instance  in  the  fine-tuning  and  generation  phase  (indicated  by  “w/o  n.”  in  Fig. 9.2). 

The  decrease  in  the  average  accuracy  by  5.42  points  shows  that  this  component  is 

highly  important  for  the  whole  augmentation  process.  This  also  applies  to  the  last 

step  of  the  augmentation  method  (indicated  by  “w/o  f.”  in  Fig. 9.2).  Without  the manual  filtering  the  average  accuracy  is  reduced  by  2.64  points.  This  insight  was 

already  noticed  when  the  filtering  parameter  was  chosen  in  every  task  and  some 

instances  seemed  to  be  unrelated  to  the  class. 

[image: Image 32]
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Fig.  9.2  Evaluation  of  different  augmentation  sizes  and  the  omission  of  the  numbering  token (w/o  n.)  and  the  filtering  (w/o  f.)  step  on  the  SST-2  100  dataset  (10  runs) 

In  summary,  this  indicates  that  all  the  steps  of  the  augmentation  process  need  to 

be  included  to  reach  the  highest  scores.  The  next  evaluation  studies  are  based  on 

this  best  combination. 

Furthermore,  we  conduct  an  error  analysis  by  inspecting  the  generated  instances 

of  our  technique  and  comparing  them  to  the  EDA  method.  For  our  method,  it  is 

not  clear  from  which  original  instance  the  generation  originates,  as  it  could  be  an 

interpolation  of  more  than  one  instance.  Nevertheless,  we  try  to  find  the  closest 

original  instances  by  measuring  the  resemblance  by  Levenshtein  distance. 

We  select  some  insightful  examples,  which  are  presented  in  Fig. 9.3. The first example  shows  that  EDA  is  able  to  keep  the  label,  but  substitutes  a  word  that  should not  be  substituted  ( oscar wilde play . →  academy award wilde play).  On  the  other hand,  our  method  is  able  to  find  suitable  words  for  the  replacement  and  expands 

the  original  instance  in  a  meaningful  way  without  distorting  the  label  or  the  general 

content.  Nevertheless,  while  we  did  not  see  this  case  in  our  analysis,  it  might  be 

possible  that  the  language  model  is  not  able  to  infer  the  label  during  fine-tuning  and that  the  augmentation  would  change  the  label.  A  similar  case  can  be  seen  regarding 

the  Dublin  task  of  Sect. 9.4.6, where  we  assume  that  the  model  is  not  able  to  infer the  label  due  to  a  very  high  diversity  in  the  instances  and  the  label  space.  While 

the  model  does  not  incorrectly  change  the  label,  we  see  that  more  than  50%  of  the 

generated  instances  are  “????????????”.  The  more  data  is  generated,  the  more  such 

instances  are  created  and  the  content-rich  instances  are  repeated. 

[image: Image 33]

9.4

Evaluation

191

Fig.  9.3  Two  instances  and  their  transformations  by  EDA  and  our  method.  The  first  is  from the  SST-2  task  9.4.4  and  the  second  from  the  West  Texas  Explosion  task  9.4.6.  Text  passages where  each  augmentation  method  attempted  to  paraphrase  the  original  instance  are  highlighted in  blue;  attempted  interpolations  or  introduction  of  novelties  are  highlighted  in  green 

The  second  example  displayed  in  Fig. 9.3  shows  that  our  method  brings  a  high variation  with  sensible  content  but  also  reformulates  “say  state  officials”  to  “medical 

examiner  says”  which  might  not  be  correct.  For  the  task  at  hand,  it  is  not  decisive  but it  might  be  with  regard  to  very  specific  tasks.  Moreover,  EDA  sometimes  changes 

the  instance  so  that  it  is  grammatically  incorrect,  as  it  can  also  be  seen  in  this 

example.  This  can  be  a  problem,  for  example,  when  using  language  models  that  do 

not  expect  a  specific  expression,  such  as  “atomic  number”,  in  the  context  of  this 

instance.  Furthermore  and  even  worse,  it  might  happen  that  the  method  deletes  an 

essential  word,  like  “not”,  in  the  sentence  “This  movie  was  not  bad”,  creating  an 

instance  with  a  wrong  label  when  used  for  sentiment  classification. 

These  examples  show  that  the  method  proposed  in  this  paper  is  able  to  create 

high-quality  and  diverse  instances.  The  EDA  method  instead  sometimes  creates 

instances  that  are  wrong  or  not  fitting  into  the  context  due  to  its  random  character, which  is  especially  critical  when  using  pre-trained  language  models.  Section  A.2.5 

in  the  Appendix  of  the  Electronic  Supplementary  Material  provides  further  examples 

and  analyses  of  our  data  augmentation  method.  It  is  shown,  for  example,  that  the 

model  sometimes  completely  replicates  instances  of  the  training  data.  This  property 

is  not  necessarily  bad,  as  it  can  at  least  be  seen  as  a  sophisticated  oversampling 

method  that  clones  the  very  important  data. 
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9.4.5

Results  II:  News  Classification  (context  dependent 

method) 

A  qualitative  inspection  of  the  data  generated  for  the  news  dataset  shows  that  high-

quality,  coherent,  and  diverse  texts  have  been  generated  for  the  different  article  titles. 

Nearly  all  instances  had  a  clear  reference  to  the  actual  class.  In  the  filtering  step, primarily  instances  where  the  GPT-2  model  frequently  repeated  words  were  sorted 

out. 

The  classification  results  of  our  contextual  approach  are  presented  in  Table  9.2 

in  comparison  to  the  baseline.  Looking  at  the  overall  evaluation  across  all  topics,  it can  be  seen  that  the  classifiers  also  achieve  very  good  results  through  the  contextual data  augmentation  method.  Especially  for  the  economic  tasks,  relative  increases 

Table  9.2  Accuracy  and  F1  scores  of  the  contextual  text  generation  process  and  the  baseline with  regard  to  the  five  news  article  topics  (10  runs) 

Dataset

Run

Accuracy

F1 

Layoff

AVG  (SD)

0.8350  (0.015)

0.7695  (0.012) 

Best

0.8545

0.7905 

with  DA

AVG  (SD)

0.8706  (0.009)

0.8179  (0.011) 

Best

0.8848

0.8354 

MC

AVG  (SD)

0.8760  (0.005)

0.7217  (0.021) 

Best

0.8809

0.7627 

with  DA

AVG  (SD)

0.8853  (0.015)

0.7559  (0.031) 

Best

0.9077

0.8052 

M&A

AVG  (SD)

0.8926  (0.005)

0.6953  (0.011) 

Best

0.8999

0.7075 

with  DA

AVG  (SD)

0.8975  (0.003)

0.7095  (0.011) 

Best

0.8999

0.7266 

Flood

AVG  (SD)

0.8462  (0.007)

0.8779  (0.007) 

Best

0.8540

0.8867 

with  DA

AVG  (SD)

0.8408  (0.010)

0.8804  (0.006) 

Best

0.8594

0.8931 

Wildfire

AVG  (SD)

0.9287  (0.016)

0.9253  (0.017) 

Best

0.9419

0.9395 

With  DA

AVG  (SD)

0.9312  (0.007)

0.9297  (0.006) 

Best

0.9395

0.9375
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in  the  maximum  F1  value  of  over  4%  for  the  MC  and  layoff  topic  and  2%  for  the 

M&A  task  can  be  recorded.  The  M&A  evaluation  illustrates  the  importance  of  the  F1 

measure.  While  good  improvements  in  accuracy  were  also  achieved  for  management 

change  and  layoff,  there  is  virtually  no  change  in  the  M&A  topic.  However,  the  more significant  F1  measure  increases  substantially.  A  small  improvement  is  also  evident 

for  the  flood  topic  (+0.64  with  the  maximum  F1  value).  For  the  wildfire  topic,  the 

text  generation  approach  does  not  achieve  better  results.  The  values  are  almost  the 

same  as  for  the  baseline.  However,  the  standard  deviations  of  the  results  from  the 

baseline  are  more  than  twice  as  high  as  with  the  data  augmentation  method. 

It  can  be  ascertained  that  the  contextual  text  generation  approach  is  very  well 

suited  for  the  present  topic  classification  tasks.  A  possible  bias  regarding  the  eco-

nomic  topics  could  be  attributed  to  the  pre-trained  GPT-2  model.  The  model  was 

trained  with  documents  from  outgoing  Reddit  links.  There  may  be  comparatively 

few  crisis  data  among  the  approximately  8  million  documents  so  that  the  model  is 

less  able  to  represent  this  topic  area.  Another  possible  explanation  for  the  smaller 

values  of  the  crisis  topics  is  the  already  very  high  classification  quality  of  the  two tasks.  The  flood  topic,  which  was  chosen  because  of  the  poorer  classification  quality  compared  to  the  wildfire  topic,  still  exceeds  the  three  economic  topics  in  the 

F1-measure.  The  wildfire  topic  is  by  far  the  best  task  for  the  classifiers  (about  +5% 

F1-measure  compared  to  the  flood  task).  An  improvement  of  the  two  topics  may 

not  be  possible  anymore  because  the  dataset  can  contain  errors  as  some  labeling 

decisions  are  difficult  and  subjective. 

9.4.6

Results  III:  Crisis  Informatics  (context  independent 

method) 

In  the  last  section,  we  stated  that  GPT-2  might  be  less  usable  for  crisis  data.  Since the  usage  of  machine  learning  in  crisis  situations  is  very  promising  and  getting  good 

models  is  an  ongoing  issue  due  to  little  data  and  the  challenge  of  domain  adaption, 

we  further  examine  this  consideration  by  focusing  only  on  crisis  data  for  the  second 

evaluation. 

Inspecting  the  newly  generated  data,  we  see  that  the  model  often  produces  iden-

tical  outputs  for  different  runs.  The  generated  data  of  the  context  dependent  models 

of  the  second  evaluation  is  clearly  more  diverse.  However,  the  context  independent 

method  also  seems  to  have  the  potential  to  perform  very  well,  as  Table  9.3  shows.  It is  especially  beneficial  for  the  classification  tasks  of  Olteanu  et  al.  (2015)  (first  three datasets).  The  averages  and  best  runs  outperform  the  baseline  additively  by  2.1%  to 

3.8%  and  1.5%  to  2.5%  in  the  F1-measure.  For  the  tasks  of  Schulz,  Guckelsberger, 
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Table  9.3  Accuracy  and  F1  scores  of  the  non-contextual  text  generation  process  and  the baseline  with  regard  to  the  five  crisis  Twitter  topics  (10  runs) 

Dataset

Run

Accuracy

F1 

Boston

AVG  (SD)

0.7886  (0.019)

0.7344  (0.030) 

Bombings

Best

0.8062

0.7720 

with  DA

AVG  (SD)

0.8003  (0.021)

0.7588  (0.024) 

Best

0.8311

0.7979 

Bohol

AVG  (SD)

0.9097  (0.014)

0.8857  (0.021) 

Earthquake

Best

0.9302

0.9126 

with  DA

AVG  (SD)

0.9238  (0.011)

0.9062  (0.015) 

Best

0.9399

0.9277 

West  Texas

AVG  (SD)

0.8486  (0.020)

0.8340  (0.025) 

Explosion

Best

0.8804

0.8765 

with  DA

AVG  (SD)

0.8755  (0.010)

0.8721  (0.011) 

Best

0.9004

0.8970 

Dublin

AVG  (SD)

0.9893  (0.002)

0.9199  (0.015) 

Best

0.9912

0.9351 

with  DA

AVG  (SD)

0.9858  (0.002)

0.8945  (0.014) 

Best

0.9878

0.9116 

New  York

AVG  (SD)

0.9302  (0.016)

0.8428  (0.027) 

City

Best

0.9463

0.8701 

with  DA

AVG  (SD)

0.9346  (0.003)

0.8472  (0.007) 

Best

0.9385

0.8555 

and  Janssen  [388],  however,  the  method  does  not  provide  any  substantial  improvements  regarding  the  direct  scores.  For  the  Dublin  dataset,  the  augmentation  method 

even  seems  to  have  a  negative  effect.  Yet,  a  decrease  in  the  F1  standard  deviation  is achieved  for  every  task. 

Although  we  can  confirm  the  assumption  of  the  sentiment  analysis  that  the  con-

text  independent  variant  of  the  augmentation  method  creates  less  diverse  instances, 

it  analogously  has  a  very  positive  impact  on  the  classification  quality  when  applied  to real-world  low-data  regimes.  Especially  the  narrowly  defined  problems  by  Olteanu, 

Vieweg,  and  Castillo  [313]  are  well  suited,  leading  to  the  consideration  that  the difference  of  the  results  lies  in  the  nature  of  the  problems.  While  the  first  three  tasks are  bond  to  a  special  crisis  event,  the  two  other  tasks  are  just  incident  related  with no  other  focus  than  the  respective  city.  It  may  be  that  these  two  tasks  are  too  broadly
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defined  with  very  different  instances  so  that  the  model  was  not  able  to  properly 

fine-tune  to  generate  sensible  instances.  Apart  from  that,  the  gain  in  robustness  is 

clearly  visible  because  a  decrease  in  the  F1  standard  deviation  is  achieved  on  each 

task.  The  evaluation  also  shows  that  our  data  augmentation  methods  can  achieve 

good  results  not  only  on  economic  topics. 

9.5

Discussion  and  Conclusion 

While  there  are  numerous  beneficial  data  augmentation  methods  in  computer  vision, 

textual  transformations  are  more  difficult  to  define  [209, 481]  and  often  result  in mixed  results  [265]. In  order  to  address  these  issues,  we  presented  two  data  augmentation  methods  for  long  and  short  texts  based  on  text  generation  techniques  to 

enhance  the  knowledge  base  on  small-data  analytics.  Our  results  on  11  datasets, 

which  are  listed  in  an  aggregated  form  in  Table  9.4,  contribute  to  answering  the following  research  questions. 

Table  9.4  Average  and  maximum  F1  performance  deltas  of  the  data  augmentation  methods in  comparison  to  their  respective  baseline  counterparts  across  all  datasets 

Dataset

Delta  Avg. 

Delta  Max 

SST-2  (100)  –  Acc. 

+15.53%

+12.69% 

SST-2  (300)  –  Acc. 

+1.61%

+1.17% 

SST-2  (500)  –  Acc. 

+0.93%

+1.03% 

SST-2  (700)  –  Acc. 

. −0.19%

+0.49% 

Layoff  –  F1

+4.84%

+4.49% 

MC  –  F1

+3.42%

+4.25% 

M&A  –  F1

+1.42%

+1.91% 

Flood – F1

+0.25%

+0.64% 

Wildfire  –  F1

+0.44%

–0.20% 

Boston  Bombings  –  F1

+2.44%

+2.59% 

Bohol  Earthquake  –  F1

+2.05%

+1.51% 

West  Texas  Explosion  –  F1

+3.81%

+2.05% 

Dublin  –  F1

–2.54%

–2.35% 

New  York  City  –  F1

+0.44%

–1.46%
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How  can  we  utilize  text  generation  approaches  of  data  augmentation  that 

achieve  a  high  novelty  in  the  data  while  preserving  the  label  quality  to  improve 

pre-trained  machine  learning  classifiers  (RQ1)? We  proposed  two  data  augmen-

tation  methods  that  are  based  on  text-generating  language  models.  We  constructed 

three  different  steps  (see  Fig. 9.1)  for  ensuring  a  high  label  preservation  within  the transformations  of  these  models.  As  a  first  step,  the  data  was  primed  by  a  special 

token.  This  token  can  signal  the  model  to  generate  training  data  for  this  class  in 

the  generation  phase.  In  order  to  ensure  that  the  model  is  familiar  with  the  class 

data  and  the  token,  fine-tuning  was  carried  out  with  the  prepared  data  in  the  second 

step.  After  the  generation,  filtering  based  on  the  BERT  document  embeddings  [356] 

formed  the  final  step.  In  our  experimental  setup,  we  used  a  pre-trained  encoder 

and  fine-tuned  it  on  the  various  tasks,  including  the  augmented  data,  to  face  the 

challenge  of  creating  a  sophisticated  data  augmentation  method  that  also  performs 

well  on  pre-trained  models.  The  two  derived  methods  achieved  very  good  results  in 

the  evaluation  phase  with  several  performance  gains  and  reductions  of  the  standard 

deviations. 

When  evaluating  the  utility  of  the  algorithm,  however,  further  criteria  must  be 

considered.  While  it  is  rather  easy  to  embed  the  augmentation  method  into  a  classifi-

cation  process,  the  GPT-2  model  needs  some  time  to  be  executed.  The  generation  of 

one  example  of  a  long  dataset  took  about  10-30  seconds.  Noise-inducing  methods 

such  as  EDA  take  much  less  than  a  second  to  complete  an  instance,  as  they  only  per-

form  simple  operations  such  as  changing  the  order  of  words,  deleting  some  words, 

or  generating  misspellings  [ 33, 81, 162, 336]. However,  text  generation  methods such  as  ours  are  limited  by  the  time  required  by  the  generation  process.  Nevertheless,  compared  to  the  time  it  takes  a  human  to  label  a  new  instance,  our  method 

is  still  very  advantageous.  The  time  required  can  also  be  significantly  reduced,  for 

example,  by  using  a  different  language  model  that  is  faster.  Furthermore,  the  used 

GPT-2  model  is  mainly  limited  to  English,  making  it  less  usable  for  multilingual 

tasks.  However,  this  can  also  be  mitigated  by  using  another  language  model  as  the 

proposed  method  is  suitable  for  different  language  models. 

In  which  way  is  the  incorporation  of  contexts  of  long  text  instances  in  clas-

sification  problems  helpful  when  using  text  generation  as  data  augmentation 

method  (RQ1.1)? When  dealing  with  long  texts,  we  decided  to  integrate  a  context-

based  token  in  the  generation  phase  so  that  the  generated  texts  are  more  explicit  for the  respective  instance  and  highly  diverse  among  all  instances.  A  closer  look  into 

the  generated  samples  from  the  evaluation  phase  confirmed  this  assumption.  Fur-

thermore,  the  generated  instances  seem  to  be  very  coherent  and  related  to  the  task 

at  hand,  due  to  the  strengths  of  the  GPT-2  language  model.  More  importantly,  four 

of  the  five  tasks  could  be  improved  by  including  the  newly  generated  and  filtered
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instances.  This  led  to  an  additive  increase  in  the  average  and  maximum  F1  value 

of  up  to  4.8%  and  4.5%  respectively.  However,  we  noticed  that  the  augmentation 

technique  could  not  improve  the  classification  results  when  the  classifier  already 

performs  very  well  without  additional  data. 

How  is  it  possible  to  achieve  a  quality  improvement  for  classification  tasks 

with  short  texts  when  augmenting  with  text  generation  (RQ1.2)? For  classi-

fication  tasks  with  short  texts,  a  context-based  token  integration  is  not  possible, 

wherefore  we  included  the  number  at  which  the  respective  instance  occurred  in 

the  fine-tuning.  On  closer  inspection  of  the  newly  created  instances,  several  dupli-

cates  were  found.  This  did  not  have  negative  implications  for  the  evaluation,  since 

repeating  some  training  examples  resembles  the  process  of  simple  oversampling. 

It  may  even  be  interpreted  as  a  more  sophisticated  version,  where  some  exam-

ples  are  completely  new  and  the  others  are  oversampled  from  the  most  fitting  data 

points.  Accordingly,  a  great  performance  gain  could  be  achieved  in  the  constructed 

and  real-world  low-data  regimes,  leading  to  improvements  of  up  to  15.53  and  3.81 

points  respectively.  We  noticed  that  this  augmentation  method  was  not  suitable  for 

two  special  real  world  tasks.  We  hypothesize  that  these  two  tasks  are  too  broadly 

defined  on  the  rationale  that  the  GPT-2  model  is  not  able  to  infer  the  right  context just  based  on  the  fine-tuning  of  the  data. 

9.5.1

Empirical,  Practical  and  Theoretical  Contributions 

Considering  our  findings,  the  study  revealed  practical,  theoretical  and  empirical 

contributions: 

New  data  augmentation  methods  based  on  the  GPT-2  language  model. The 

evaluation  results  of  the  data  augmentation  methods  indicated  that  the  GPT-2  model, 

in  combination  with  three  safety  steps,  can  achieve  a  considerable  improvement  in 

the  text  classification  tasks  (see  Table  9.1  to  9.3). In  contrast  to  the  similar  approaches of  Wang  and  Lillis  [467]  and  Anaby-Tavor  et  al.  [ 18]  that  utilized  GPT-2  for  text generation  too,  our  method  is  more  generally  applicable  and  offers  more  safety  steps. 

Wang  and  Lillis  [467]  describe  no  measures  for  label  preservation  in  their  approach, and  Anaby-Tavor  et  al. [ 18]  only  enable  data  augmentation  for  instances  consisting of  one  sentence.  Furthermore,  we  include  a  filtering  mechanism  which  includes 

the  human  expertise,  strongly  increasing  the  diversity  without  much  supervision. 

The  advantages  of  the  text  generation  approach  proposed  here  facilitate  a  wide 

use,  qualifying  it  as  basic  element  for  further  adaption  in  prospective  classification 

applications. 
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A  textual  data  augmentation  basis  which  is  beneficial  for  pre-trained  clas-

sification  models. Longpre,  Wang,  and  DuBois  [265]  show  that  data  augmentation might  not  be  helpful  when  dealing  with  state-of-the-art  pre-trained  models.  This 

seems  logical  from  a  theoretical  perspective  since  pre-training  and  the  transfer  to 

new  tasks  also  follow  the  goal  of  reducing  the  amount  of  necessary  training  data.  In 

order  to  get  an  enrichment  anyway,  sophisticated  augmentation  methods  are  needed, 

which  should  provide  unseen  linguistic  patterns  that  are  relevant  to  the  task  [265]. 

We  addressed  this  issue  by  leveraging  the  GPT-2  model  that  was  trained  with  more 

than  8  million  web  pages.  This  gives  the  great  potential  to  include  new  linguistic  patterns  in  the  generated  data  (example  instances  can  be  found  in  the  Appendix  A.2.5  of 

the  Electronic  Supplementary  Material).  For  creating  task  relevant  data,  we  derived 

three  steps  that  increase  the  possibility  of  class  related  content.  In  the  evaluation  we showed  that  the  proposed  method  is  able  to  improve  the  pre-trained  encoder  model. 

In  contrast  to  Longpre,  Wang,  and  DuBois  [265],  we  did  not  test  the  method  on  a transformer  model.  However,  we  trained  the  pre-trained  ULMFit  encoder  for  both 

testing  cases  (no  augmentation  and  augmentation)  with  the  augmented  data  so  that 

for  the  encoder  no  data  is  unseen  beforehand. 

Empirical  insights  into  the  domain-specific  application  of  small-data  ana-

lytics. In  this  work,  we  gathered  new  empirical  insights  into  the  application  of 

data  augmentation  in  the  research  domains  of  sentiment  analysis,  news  classifica-

tion,  and  crisis  informatics.  In  crisis  informatics,  various  studies  have  examined  the 

use  of  domain  adaptation,  transfer  learning,  active  learning,  and  online  learning  to 

reduce  the  labeling  effort  [167, 198, 305].  However,  few  research  has  examined the  application  of  textual  data  augmentation  for  crisis  management  [467],  which we  enhance  by  the  evaluation  and  interpretation  of  seven  augmented  datasets.  For 

sentiment  analysis  we  constructed  a  low-data  regime,  like  Kumar  et  al. [224] and Hu  et  al.  [160].  Small-data  analysis  research  is  gaining  popularity  and  there  is  a need  to  establish  datasets  that  can  be  used,  understood  and  compared  by  all  types  of 

researchers.  We  strengthen  this  research  direction  by  basing  our  evaluation  on  this 

dataset.  Furthermore,  with  the  five  news  classification  datasets  we  are  exploring  the 

important  topic  of  long  text  classification,  that  is  often  neglected  in  research.  News 

classification  is  mostly  done  with  short  descriptions  of  the  articles  only,  as  in  the 

AG  News  dataset  [526]. 

9.5.2

Limitations  and  Outlook 

During  the  evaluation,  a  restriction  was  made  with  regard  to  the  language  model 

used.  While  applicable  with  other  language  models,  it  is  not  clear  if  the  performance
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gain  remains  the  same.  The  GPT-3  model  by  Brown  et  al. [ 47]  seems  to  be  the  next sensible  choice  for  increasing  the  results.  However,  the  fine-tuning  step  that  is  likely to  be  necessary  is  currently  not  possible  due  to  the  high  resource  utilization  of  the model.  Nonetheless,  because  of  its  size  and  linguistic  expressiveness,  it  may  be 

especially  helpful  to  address  the  challenge  stated  by  Longpre,  Wang,  and  DuBois 

[265]  in  which  pre-trained  models  might  not  gain  any  improvement  from  data  augmentation.  In  relation  to  the  study  by  Longpre,  Wang,  and  DuBois  [265], future research  could  test  the  proposed  method  with  transformer  models.  It  would  also  be 

interesting  to  see  how  smaller  language  models  perform,  that  may  be  much  faster. 

In  addition,  there  might  also  be  an  option  to  fully  automate  the  filtering  step,  which further  increases  the  universal  usability,  even  if  the  human  effort  is  already  very  low now. 

Despite  many  efforts  in  data  augmentation,  the  big  data  wall  problem  addressed 

at  the  beginning  is  still  of  great  relevance.  However,  if  in  the  future,  according  to various  assumptions,  very  large  models,  such  as  GPT-3  by  Brown  et  al.  [ 47], are better  able  to  solve  these  problems,  the  high  resource  wall  problem  opens  up,  which 

only  allows  large  companies  to  train  and  use  these  models. 
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Abstract 

Social  media  has  an  enormous  impact  on  modern  life  but  is  prone  to  the  dissem-

ination  of  false  information.  In  several  domains,  such  as  crisis  management  or 

political  communication,  it  is  of  utmost  importance  to  detect  false  and  to  promote 

credible  information.  Although  educational  measures  might  help  individuals  to 

detect  false  information,  the  sheer  volume  of  social  big  data,  which  sometimes 

need  to  be  analysed  under  time-critical  constraints,  calls  for  automated  and  (near) 

real-time  assessment  methods.  Hence,  this  paper  reviews  existing  approaches 

before  designing  and  evaluating  three  deep  learning  models  (MLP,  RNN,  BERT) 

for  real-time  credibility  assessment  using  the  example  of  Twitter  posts.  While  our 

BERT  implementation  achieved  best  results  with  an  accuracy  of  up  to  87.07% 

and  an  F1  score  of  0.8764  when  using  metadata,  text,  and  user  features,  MLP 

and  RNN  showed  lower  classification  quality  but  better  performance  for  real-

time  application.  Furthermore,  the  paper  contributes  with  a  novel  dataset  for 

credibility  assessment. 
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Material 

Application  and  Experimental  Code:  https://github.com/PEASEC/Deep-Learning-

Credibility-Assessment 

10.1

Introduction 

Social  media  is  an  integral  part  of  modern  everyday  life  as  they  allow  the  creation 

and  exchange  of  user-generated  content.  Besides  everyday  life,  social  media  is  used 

by  journalists  for  reporting,  analysing,  and  collecting  information,  by  organisations 

to  monitor  customer  feedback  and  sentiment,  but  also  by  citizens  and  emergency 

services  to  gain  situational  awareness  in  conflicts  and  disasters  [192].  On  the  contrary,  social  media  is  prone  to  the  dissemination  of  (potentially)  false  information, 

including  conspiracy  theories,  fake  news,  misinformation,  or  rumors  [432].  While counter-measures  such  as  gatekeeping  information,  increasing  media  literacy,  or 

passing  new  laws  seem  to  be  promising  approaches  [191],  the  sheer  volume  of   big social  data,  which  sometimes  needs  to  be  analysed  under  time-critical  constraints, calls  for  automated  and  (near)  real-time  credibility  assessment  methods.  Thus,  a 

multitude  of  different  machine  learning  approaches  were  established  to  automati-

cally  distinguish  false  and  credible  information  [332, 404, 458]. Despite  their  merits,  when  reviewing  existing  deep  learning  approaches  for  credibility  assessment 

in  social  media,  we  found  that  most  approaches  provided  binary  or  multi-class 

models  but  did  not  allow  a  steady  (e.g.,  percentage)  prediction  of  credibility.  Fur-

thermore,  most  approaches  require  extensive  computations,  thus  lacking  the  ability 

for  real-time  application  in  social  media,  and,  to  our  best  knowledge,  none  of  these 

approaches  incorporated  previous  posts  of  the  user  into  their  analysis.  Thus,  the

1  Minor  typographical  errors  in  the  original  publication  have  been  corrected  for  this  dissertation. 
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paper  seeks  to  answer  the  following  research  question:  Which  deep  learning  mod-

els  and  parameters  are  suitable  for  real-time  credibility  assessment  in  Twitter? 

By  answering  this  research  question,  the  paper  makes  several  contributions.  It 

(i)  conducts  a  review  of  existing  credibility  assessment  methods  (Sect. 10.2), (ii) presents  the  design  and  fine-tuning  of  three  deep  learning  models  for  credibility 

assessment,  (iii)  provides  a  novel  dataset  for  credibility  assessment  in  Twitter  (Sect. 

10.3),  and  (iv)  evaluates  the  quality  of  the  designed  models,  also  examining  the usefulness  of  incorporating  previous  user  posts  into  credibility  assessment  (Sect. 

10.4).  The  paper  finishes  with  a  discussion  of  the  findings  and  implications  and highlights  possible  limitations  and  potential  for  future  work  (Sect. 10.5). 

10.2

Related  Work 

Since  the  study  of   credibility   is  highly  interdisciplinary,  there  is  no  universal  definition  for  it  [117]. However,  it  can  be  understood  as  a  measure  which  comprises  both objective  (e.g.,  useful,  good,  relevant,  reliable,  accurate)  and  subjective  (e.g.,  a  perception  of  the  receiver)  components.  Credible  information  is  characterized  by  trust-

worthiness  (unbiased,  true,  good  purpose)  and  expertise  (competence,  experience, 

knowledge)  [119]. When  estimating  the  credibility  of  information  in  social  media, users  are  confronted  with  different  types  of  harmful  information  [432]  that  can  be distinguished  by  the   intention  of  the  publisher  (i.e.,  intentional  or  non-intentional) and  the   truth  of  content  (i.e.,  true  or  false)  [117].  Both  disinformation  and  misinformation  are  objectively  false,  but  only  disinformation  (often  referred  to  as  fake  news 

[235])  is  published  intentionally  false.  Moreover,  rumors  are  statements  that  cannot be  immediately  verified  as  either  true  or  false  [335]. 

Amongst  others,  harmful  information  is  disseminated  to  manipulate  political 

elections  and  public  opinions  or  to  generate  financial  revenues  [ 11].  Moreover,  false information  might  affect  the  decision  making  of  emergency  services  in  conflicts 

or  disasters,  effectively  contributing  to  the  loss  of  lives.  Countermeasures  against 

harmful  information  comprise  the  gatekeeping  of  information  by  media,  increasing 

the  media  literacy  of  citizens,  passing  new  laws  and  regulations,  or  detecting  harmful 

information  via  algorithmic  detection  approaches  [191]. When  reviewing  literature on  credibility  assessment  in  social  media  (Table  10.1),  we  did  not  only  find  individual systems  but  also  interesting  survey  papers  comparing  different  machine  learning 

approaches  [332, 404, 458].  The  approaches  are  primarily  based  on  Twitter  data, often  attributed  to  different   domains,  including  credibility,  fake  news,  or  rumors, and  have  a  different   scope  of  analysis. 
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Table  10.1  Comparison  of  ML  credibility  classifiers.  Sometimes  not  all  methods  are  listed (∗

.  ).  Abbrev.:  Decision  Tree  (DT),  Decision  Rule  (DR),  Bayesian  Network  (BN),  Bayes  Classifier  (BC),  Support  Vector  Machine  (SVM),  Random  Forrest  (RF),  Convolutional/Recursive 

Neural  Network  (C/R/NN),  Naive  Bayes  (NB) 

Ref. 

Domain

Scope

Output

Realtime

Methods 

[ 57]

Credibility

Event

binary

no

DT,  DR,  BN,  SVM 

[ 58]

Credibility

Event

binary

no

RF,  LR, ∗

. 

[ 50]

Fake  News

Event

binary

no

RF, ∗

. 

[166]

Credibility

Message

binary

untested

NN 

[351]

Astroturfing

Mem

binary

no

DT,  SVM 

[139]

Credibility

Message

5  classes

untested

SVM-rank, ∗

. 

[494]

Crisis  Credibility

Event

binary

untested

SVM,  BN,  DT 

[148]

Credibility

Event

tertiary

no

SVM,  DT,  NB,  RF 

[335]

Rumors

Event

steadily

no

BC 

[149]

Fake  News

Message,  Source

binary

untested

NN,  NB,  DT,  SVM,  RF 

[371]

Fake  News

Event

binary

no

RNN,  NN 

[260]

Fake  News

Message

4  classes

almost

RNN,  CNN 

[490]

False  Information

Message

5  classes

yes

RNN,  CNN 

First,  event-based  approaches  cluster  social  media  messages  into  events  to  deter-

mine  the  credibility  of  the  event  [ 50, 57, 58, 118, 148, 494].  Second,  propagation-based  approaches  analyse  the  caused  engagement,  such  as  mentions  or  retweets,  of 

published  messages  [260, 351, 371].  Third,  message-based  approaches  assess  the credibility  of  individual  messages,  using  metadata  and  textual  features  [139, 149, 

166, 335, 490].  Especially   methods   based  on  neural  networks  achieved  high  classification  performances,  e.g.,  accuracies  of  85.20%  using  NN  [166]  or  89.20%  [371] 

using  RNN  and  NN.  Despite  the  variety  of  features  involved,  to  our  best  knowl-

edge,  none  of  these  approaches  incorporated  previously  published  messages  of  the 

user  into  their  analysis.  Further,  only  two  of  the  approaches  allow  a  near   real-time application  [260, 490], i.e.,  being  able  to  classify  tweets  directly  after  their  dissemination.  This  is  the  case  because  most  approaches  are  event-based,  requiring  event 

detection  before  classification  can  take  place,  or  rely  on  temporal  features,  such  as 

the  number  of  likes  or  retweets,  which  change  over  the  course  of  time  and  could 

lead  to  a  flawed  credibility  score  at  retrieval. 

In  terms  of   output,  most  approaches  allow  a  binary  (i.e.,  credible  or  incred-

ible  information)  or  multi-class  credibility  assessment  [139, 260, 490],  although some  works  outlined  that  they  do  not  reproduce  reality  in  a  sufficient  manner  [ 58, 
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80]. Thus,  the  use  of  a  steady  regression  seems  promising  [335]  since  it  allows  a percentage-based  representation  of  credibility  and  better  accounts  for  the  subjective  component  of  credibility  [117]. Although  multiple  attempts  have  been  made to  establish  standard  datasets  for  credibility  assessment  [290, 403, 540],  almost  all publications  used  their  own  dataset,  probably  due  to  the  methodological  requirements  of  their  approaches.  The  lack  of  standardized  datasets  is  noticed  by  diverse 

authors,  emphasizing  the  lack  of  comparability  of  the  evaluation  results  of  different 

approaches  [332, 404, 458]. 

10.3

Concept  and  Implementation 

Based  on  the  outlined  research  gaps,  we  seek  to  implement  neural  network-based 

approaches  for  credibility  assessment  that  (i)  work  with  public  Twitter  data  due  to 

the  ease  of  access,  (ii)  use  regression  to  allow  a  steadily  (i.e.,  percentage-based) 

assessment  of  credibility,  and  (iii)  allow  a  near  real-time  application  of  the  trained 

models.  Furthermore,  we  intend  to  (iv)  check  if  the  analysis  of  previously  published 

messages  of  a  user  positively  impacts  the  performance  of  credibility  assessment. 

We  also  (v)  compose  a  novel  dataset  for  credibility  assessment. 

10.3.1  Features  and  Model 

In  order  to  train  our  models,  we  reviewed  the  features  used  by  previous  approaches. 

The  used  features  can  be  roughly  categorized  into  four  types:  (i)  metadata  features 

(n. =10)  of  a  tweet  provided  by  the  Twitter  API,  such  as  hashtags,  links,  or  mentions, (ii)  computationally  extracted  text  features  (n. =25)  from  the  tweet’s  body,  such 

as  number  of  words,  text  length,  or  sentiment,  (iii)  user  features  (n. =17)  provided by  the  Twitter  API,  such  as  the  number  of  followers  or  published  tweets,  and  (iv) 

timeline  features  (n. =140),  including  the  maximum,  minimum,  arithmetic  mean, 

and  standard  deviation  (4. ∗)  of  both  the  metadata  and  text  features  (10  +  25)  of  the last  40  tweets  of  the  user. 

First,  the  baseline  model  is  a  simple  multilayer  perceptron  (MLP)  that  consists 

of  an  input  layer  with  192  neurons  for  the  features  described  before.  These  are 

projected  into  a  hidden  layer  with  32  neurons  with  .  tanh  activations.  Since  the problem  to  solve  is  a  regression  task,  a  sigmoid  function  was  selected  for  the  output and  the  entire  network  is  trained  with  mean  square  error  (MSE).  The  layers  are 

fully  connected  with  a  dropout  rate  of  0.3.  Further  hyperparameters  of  the  learning 

process  are  a  learning  rate  of  0.01,  a  batch  size  of  256,  and  the  maximum  number
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of  epochs  of  10,000,  which  is  contained  by  early  stopping  on  the  development  set. 

We  choose  ADAM  [207]  as  optimizer. 

Second,  to  extend  the  baseline,  we  embed  the  sentiment  and  textual  content  of  a 

tweet  with  a  recurrent  neural  network  (RNN)  and  feed  those  tweet  embeddings 

into  the  baseline  model.  As  a  first  step,  GloVe  [330]  pretrained  Twitter  embeddings (dimension  of  50)  are  utilized  to  create  word  embeddings  of  each  word  in  the 

tweet.  These  word  embeddings  are  enriched  by  another  dimension  that  represents 

the  VADER  [164]  sentiment  value.  Every  embedding  is  then  processed  by  a  RNN 

that  produces  a  hidden  state  (tweet  embedding)  that  serves  as  another  input  into  the 

baseline  MLP. 

Third,  another  approach  to  extend  the  baseline  is  to  use  fine-tuned  BERT  embed-

dings  [ 89].  We  replaced  user  mentions,  URLs,  and  emoticons  with  special  tokens. 

Then  we  fine-tuned  the  base  BERT  model  with  its  CLS  token  as  output  with  the 

training  data  (batch  size:  16,  learning  rate:  .5 · 10−5 and  3  epochs).  The  fine-tuned 

model  is  then  used  to  produce  the  additional  input  for  the  baseline.  The  BERT  con-

nection  to  the  baseline  is  regularized  by  a  dropout  connection  with  rate  0.3.  As  the 

dimensionality  of  the  BERT  embeddings  is  substantially  higher,  we  increased  the 

number  of  hidden  neurons  of  the  baseline  to  128. 

10.3.2  Automatic  Dataset  Composition 

The  task  of  credibility  assessment  requires  much  data  from  different  topics  and  time 

frames  to  make  the  model  invariant  to  these  patterns.  Accordingly,  we  searched  for 

Twitter  datasets  that  can  be  combined  into  a  larger  set.  The  PHEME  [540]  dataset contains  300  binarily  annotated  posts  from  which  both  the  classes  “true”  and  “false” 

are  mapped  to  a  credibility  score  of  1  and  0  respectively  in  our  coding  schema.  In 

contrast,  the  Twitter15  [259] and  Twitter16  [269]  datasets  are  categorized  into four  classes.  The  classes  “true”  and  “false”  are  mapped  analogously  to  the  PHEME 

dataset.  For  the  tweets  of  the  class  “unverified”,  we  decided  for  a  more  uncertain 

score  of  0.3  that  reflects  a  tendency  towards  dubious  content.  After  the  manual 

inspection  of  the  last  class  “no  rumor”,  we  chose  a  score  of  0.9  as  instances  of  this class  seem  to  be  primarily  true.  This  way,  additional  2,308  instances  were  added  to 

the  corpus  of  this  paper. 

Then,  we  implemented  an  automatic  coding  scheme  for  the  FakeNewsNet  [403] 

dataset.  It  contains  several  topics  to  which  a  large  number  of  tweets  are  assigned.  For each  topic,  an  associated  headline  was  labeled  as  true  or  false.  Since  the  assignment 

of  tweets  to  the  topics  was  carried  out  using  keywords,  posts  may  also  be  incorrectly assigned  to  a  topic  and  a  mapping  from  the  headline  label  to  the  label  of  tweets

[image: Image 35]

[image: Image 36]
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in  it  is  not  possible.  It  also  allows  a  topic  that  is  annotated  as  “false”  to  contain posts  that  expose  the  topic  as  wrong,  which  is  especially  important  in  our  use  case. 

To  compensate  for  this,  we  perform  a  temporal,  keyword-based,  similarity,  and 

topic  filtering,  which  is  described  in  detail  in  the  Appendix  A.3.2  of  the  Electronic 

Supplementary  Material.  Thus,  1,378  credible  and  729  implausible  tweets  were 

retrieved  and  mapped  to  a  target  score  of  0.9  and  0.1,  respectively. 

We  also  used  the  Twitter20  dataset  (see  Appendix  A.3.1  of  the  Electronic  Sup-

plementary  Material),  where  various  German  tweets  of  the  COVID-19  pandemic 

were  individually  labeled.  The  following  assumptions  have  to  be  true  so  that  a  trans-

lated  version  can  be  included  into  the  dataset  of  our  paper:  (i)  incorrect  information in  German  and  English  are  syntactically  the  same,  (ii)  the  dataset  contains  only  a  few posts  with  misinformation  or  satire,  and  (iii)  during  the  translation  of  the  articles 

no  linguistic  properties  (e.g.,  rhetorical  stylistic  devices)  that  are  a  characteristic 

of  misinformation  are  lost.  We  used  the  Google  Translate  API  and  automatically 

corrected  wrong  @  and  #  placements,  to  preserve  the  general  syntax  of  tweets. 

Since  the  assumptions  do  not  necessarily  have  to  apply,  we  have  decided  to  create  a 

“default”  dataset  (Fig. 10.1a)  without  and  a  “large”  dataset  (Fig. 10.1b)  with  these translated  instances. 

Fig.  10.1  Credibility  Datasets.  (a)  Default  dataset  (N. =3,178,  whereof  n.  credible =1,589).  (b) Large  dataset  (N. =5,225,  whereof  n.  credible =2,619) 

10.4

Evaluation 

For  the  evaluation  of  our  models,  we  use  metrics  based  on  regression  fitting  to  the 

dataset  development,  classification  for  comparisons  with  past  and  future  work,  and 

execution  time  for  insights  related  to  real-time  application.  For  the  classification, 

tweets  with  a  score  of  less  than  0.5  are  classified  as  0  and  1  otherwise.  We  split  80%, 10%  and  10%  of  the  posts  into  training,  development  and  testing  sets.  We  also  ensure 

that  all  posts  by  a  user  who  is  represented  more  than  once  in  the  dataset  are  included
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in  the  training  set  so  that  no  information  of  the  other  sets  is  already  seen  during 

training.  For  the  implementation  we  used  PyTorch,  Huggingface  Transformers  and 

NLTK.  The  system  used  for  the  evaluation  has  an  Intel  i7-9750  with  6  cores  and  2.6 

GHz,  a  NVIDIA  GeForce  RTX  2070  graphics  card  with  8  GB  Graphics  memory 

and  32  GB  of  RAM. 

10.4.1  Evaluation  of  Model  Quality 

For  the  evaluation  of  the  performance  of  the  different  model  architectures  and  feature 

combinations,  we  first  tuned  the  hyperparameters  (e.g.,  batch  size  and  dropout-rate) 

on  the  development  set  of  both  datasets.  We  chose  to  proceed  with  the  models  that 

have  the  lowest  MSE.  The  evaluation  results  regarding  the  development  set  can  be 

found  in  Table  A.5  in  the  Appendix  A.3  of  the  Electronic  Supplementary  Material. 

The  testing  set  results  on  both  datasets  are  shown  in  Table  10.2. It  is  clear  to see  that  the  adaption  of  the  standard  MLP  model  is  very  beneficial.  Especially  the 

BERT  model  can  gain  additive  accuracy  improvements  of  up  to  21.63%.  Looking 

at  the  feature  constellations  in  the  MLP  network,  it  is  evident  that  they  are  suitable for  distinguishing  credible  and  implausible  posts  without  the  addition  of  sentence 

or  BERT  embeddings  (reaching  up  to  66.77%  accuracy  and  0.6513  F1  score).  The 

Tweet,  user  and  text  feature  constellation  even  reaches  a  slightly  better  MSE  than 

the  RNN  basis  model  on  the  default  dataset. 

The  more  sophisticated  BERT-based  model,  however,  draws  less  benefit  from  the 

additional  feature  inputs.  With  the  default  set,  a  minimal  improvement  of  less  than 

1  accuracy  point  is  achieved,  while  the  features  for  the  large  set  even  degrade  the 

BERT  model.  Sometimes  we  noticed  improvements  from  the  timeline  feature,  but 

no  significant  results  were  found  when  the  test  set  evaluation  was  performed.  When 

inspecting  relative  changes  with  regard  to  both  datasets,  it  becomes  apparent  that 

the  BERT-based  model  has  a  greater  positive  impact  on  the  first  set.  The  additive 

accuracy  improvements  on  this  dataset  are  of  up  to  21.63%  compared  to  just  up  to 

14.12%  on  the  large  dataset. 

From  a  dataset  development  perspective,  one  might  think  that  the  larger  dataset 

contains  more  false  annotated  data,  since  the  classifier  scores  are  worse  on  this 

dataset.  This  can  apply,  e.g.,  if  one  of  the  assumptions  given  in  Sect. 10.3.2  is incorrect  and  significant  linguistic  properties  were  lost  during  the  translation  of 

the  Twitter20  dataset.  Another  consideration  could  be  that  the  large  dataset  covers 

more  different  or  domain-specific  tweets;  this  makes  classification  more  difficult  but 

increases  the  generalizability  and  practicality  of  a  classifier.  When  inspecting  the 

translated  posts  in  the  Twitter20  dataset,  we  noticed  some  mistakes  in  the  translated

10.4

Evaluation

209

Table  10.2  Results  of  the  quality  analysis  per  model  on  both  datasets.  Abbrev.:  Tweet  Features  (Tw),  User  Features  (Us),  Text  Features  (TX),  Advanced  timline  features  (ATi) 

Model

Features

MSE

Acc

Pre

Rec

F1 

MLP(default)

Base

–

–

–

–

– 

Tw,  Us,  Tx

0.1367

0.6552

0.6323

0.6490

0.6405 

Tw,  Us,  Tx  &  ATi

0.1474

0.6677

0.6471

0.6556

0.6513 

RNN(default)

Base

0.1380

0.7116

0.6879

0.7152

0.7116 

Tw,  Us,  Tx

0.1202

0.7367

0.7190

0.7285

0.7237 

Tw,  Us,  Tx  &  ATi

0.1199

0.7429

0.7226

0.7417

0.7320 

BERT(default) 

Base

0.0806

0.8621

0.8497

0.8609

0.8553 

Tw,  Us,  Tx

0.0794

0.8715

0.8618

0.8675

0.8674 

Tw,  Us,  Tx  &  ATi

0.0805

0.8621

0.8591

0.8477

0.8533 

MLP(large)

Base

–

–

–

–

– 

Tw,  Us,  Tx

0.1803

0.6469

0.6734

0.6162

0.6435 

Tw,  Us,  Tx  &  ATi

0.1841

0.6412

0.6895

0.5572

0.6163 

RNN(large)

Base

0.1720

0.7042

0.7266

0.6863

0.7059 

Tw,  Us,  Tx

0.1639

0.7118

0.7143

0.7380

0.7260 

Tw,  Us,  Tx  &  ATi

0.1603

0.7042

0.7538

0.6679

0.7002 

BERT(large)

Base

0.1347

0.7844

0.7883

0.7970

0.7927 

Tw,  Us,  Tx

0.1339

0.7824

0.7897

0.7897

0.7897 

Tw,  Us,  Tx  &  ATi

0.1319

0.7824

0.7962

0.7786

0.7873 

text.  However,  we  tend  to  the  second  explanation  as  the  actual  content  was  preserved 

most  of  the  time  and  we  were  still  able  to  identify  the  credibility. 

This  consideration  comes  also  into  play  when  inspecting  the  stronger  impact  of 

the  BERT-base  model  on  the  default  dataset.  BERT  can  have  a  major  impact  when  it 

is  applied  to  a  dataset  with  fewer  data  instances  as  it  can  transfer  knowledge  from  its previously  learned  tasks.  The  other  algorithms  can  only  get  closer  to  the  evaluation 

results  if  the  dataset  grows  in  its  size,  since  they  do  not  have  this  initial  capacity. 

Furthermore,  the  BERT  model  just  slightly  improves  with  the  feature  engineering 

process  while  the  features  seem  more  useful  when  applied  to  the  other  models.  This 

might  be  due  to  the  high  capabilities  of  the  pre-trained  model.  The  incorporation  of 

textual  features  might  be  redundant  as  the  language  model  is  able  to  identify  some  of these  by  itself.  Some  of  the  features  might  even  be  misleading  and  in  this  low-data 

regime  unwanted  statistics  are  more  likely  to  appear  during  the  training  process 

leading  to  better  scores  for  the  other  models  that  do  not  have  the  generalization
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capabilities  of  BERT.  The  RNN  model  builds  upon  GloVe  embeddings  which  also 

impose  a  certain  generalization  that  is  reflected  in  the  results.  However,  with  this 

model  we  still  expect  a  bias  towards  unwanted  statistics. 

10.4.2  Evaluation  of  Model  Execution  Time 

To  measure  the  execution  time  of  our  models,  all  tweets  and  previous  posts  of  the 

large  dataset  were  loaded  to  the  RAM  in  order  to  reduce  variances  of  HDD  memory 

access.  The  individual  models  were  executed  using  the  whole  dataset  to  measure 

the  execution  time  of  different  steps,  such  as  the  model  initialization,  the  processing time  per  tweet,  and  the  processed  tweets  per  second  (see  Table  10.3). For  the  RNN 

modell,  there  are  two  options  to  read  the  required  embeddings:  (i)  a  filesystem-based 

approach  that  reads  and  indexes  the  embedding  file  once  (fs)  and  (ii)  a  memory-

based  approach,  where  the  whole  file  is  loaded  into  RAM.  While  the  first  approach 

consumes  less  memory  and  has  a  shorter  initialization  time,  the  second  approach 

offers  a  faster  access  to  the  embeddings.  For  the  first  approach,  the  use  of  an  SSD 

(.≈ 3 ,  500 MB / s reading  speed)  or  HDD  (.≈ 100 MB / s reading  speed)  did  not  yield measurable  differences  in  execution  time. 

Table  10.3  Results  of  the  temporal  analysis  per  model.  The  column   tweets/second   ignores the  initialization  time 

Configuration

Init. 

Time/  Tweet

Tweets/  Second 

Features

Text

203ms

914µs

1094 

Tweet

0s

144µs

6944 

User

60ms

130µs

7692 

Timeline

265ms

40,000µs

25 

MLP

Basis

1,400ms

44µs

22,727 

Adv.  Timeline

1,430ms

52,000µs

19.2 

RNN

Basis  (fs)

7,653ms

1,354µs

738 

Basis  (ram)

32s

179µs

5586 

Adv.  Timeline  (fs)

7,653ms

107,000µs

9.3 

Adv.  Timeline  (ram)

32s

88,000µs

11.3 

BERT

Basis  (gpu)

3,706ms

7,495µs

133 

Basis  (cpu)

3,720ms

150,000µs

6.6 

Adv.  Timeline  (gpu)

3,680ms

224,000µs

4.4 

Adv.  Timeline  (cpu)

3,695ms

.  >  4s

.  <  1 / 4

10.5

Discussion and Conclusions

211

The  BERT  model  strongly  benefits  from  GPU  acceleration.  For  comparison, 

Table  10.3  highlights  the  execution  times  with  (gpu)  and  without  (cpu)  acceleration by  a  graphics  card.  For  other  models,  the  use  of  a  GPU  did  not  yield  measurable 

performance  improvements.  Generally  spoken,  complex  models  require  longer  exe-

cution  times  than  simple  models.  The  base  RNN  model  is  seven  times  faster  than 

BERT  using  a  GPU  and  more  than  110  times  faster  than  BERT  without  a  GPU. 

Furthermore,  the  processing  of  timeline  features,  i.e.,  incorporating  up  to  40  previ-

ous  posts  of  a  tweet,  requires  significantly  more  time.  While  the  RAM-based  RNN 

model  is  able  to  classify  up  to  5.5k  tweets  per  second,  BERT  processes  up  to  133 

tweets  per  second  with  a  GPU,  but  only  6.6  without  a  GPU.  In  that  model,  additional 

features  show  negligible  impact  on  the  overall  execution  time. 

10.5

Discussion  and  Conclusions 

Nowadays,  social  media  is  widely  used  for  multiple  purposes,  such  as  relationship 

maintenance,  journalism,  customer  interactions  but  also  for  crisis  management. 

However,  these  activities  can  be  severely  impeded  by  the  propagation  of  false  infor-

mation.  Hence,  it  is  important  to  promote  credible  and  to  counter  implausible  infor-

mation.  In  this  work,  we  reviewed  existing  approaches  before  designing  and  evalu-

ating  three  neural  network  models  capable  of  near  real-time  credibility  assessment 

in  Twitter  to  answer  the  following  research  question:  Which  deep  learning  models 

and  parameters  are  suitable  for  real-time  credibility  assessment  in  Twitter? 

Our  findings  indicate  that  our  BERT-based  model  achieves  the  best  results  when 

using  metadata,  text,  and  user  features,  reaching  an  accuracy  of  87.07%  and  F1 

score  of  0.8764  on  the  default  dataset.  In  comparison  to  existing  works,  the  results 

appear  to  be  promising.  While  Helmstetter  and  Paulheim  [149]  reached  an  F1  score of  0.7699,  Iftene  et  al.  [166]  achieved  an  accuracy  of  85.20%.  Although  Ruchansky, Seo,  and  Liu  [371]  reached  an  accuracy  of  89.20%  and  F1  score  of  0.9840,  their approach  is  propagation-based,  thus  having  limited  real-time  capability,  and  classifies  events  instead  of  individual  tweets.  Similarly,  Liu  and  Wu  [260]  reach  an  F1 

score  of  0.8980;  however,  their  approach  focuses  on  the  detection  of  disinformation 

and  also  incorporates  propagation-based  features. 

Furthermore,  we  compared  the  real-time  capabilities  of  our  three  models.  While 

our  MLP  baseline  is  capable  of  processing  high  volumes  of  data  (.  >  20k  tweets/sec) with  a  low  resource  demand,  the  accuracy  of  up  to  66.77%  does  not  allow  for  a  reliable  classification.  In  contrast,  our  RNN  model  is  still  capable  of  processing  high 

volumes  of  data  (.  >  5k  tweets/sec  when  used  in  RAM)  for  classification  while  reaching  more  promising  accuracies  of  up  to  74.29%.  Finally,  BERT  reached  accuracies

212

10

Design and Evaluation of Deep Learning Models for Real-Time ... 

of  87.07%  but  was  only  able  to  process  a  considerably  lower  amount  of  data  (.  >  0,1k tweets/sec  when  used  with  a  GPU).  When  including  the  previous  posts  of  the  user 

into  computation,  we  did  not  achieve  consistent  improvements  of  classification  per-

formance;  however,  the  real-time  capability  of  all  feature  and  model  combinations 

was  lost. 

10.5.1  Practical  and  Theoretical  Implications 

We  compared  existing  datasets  and  combined  suitable  ones  into  a  novel  dataset 

to  increase  the  amount  of  available  data  for  model  training  (C1).  Since  avail-

able  datasets  are  used  for  varying  credibility  classification  tasks,  several  steps  of 

transformation  were  required  to  convert  them  into  a  unified  structure.  Due  to  the 

combination  of  datasets,  it  comprises  a  richer  number  of  users,  topics,  and  message 

characteristics.  Our  future  work  will  include  the  application  of  data  augmentation 

techniques  to  increase  the  size  and  richness  of  the  dataset. 

We  provided  a  review  of  existing  machine  learning  approaches  for  credibility 

assessment  in  Twitter  (C2).  In  contrast  to  other  works,  we  critically  examined  and compared  approaches  for  credibility  assessment  in  Twitter.  Many  of  the  reviewed 

approaches  did  not  use  a  development  set,  relied  on  a  small  dataset,  or  conducted 

many  hyperparameter  optimizations,  which  entails  the  risk  of  overfitting.  While 

difficult  to  compare,  it  seems  that  propagation-based  models  achieve  the  best  results 

[371];  however,  they  lack  the  ability  of  real-time  application.  As  the  engagement based  on  tweets  unfolds  over  time,  propagation-based  models  seem  promising  when 

no  time  contraints  are  present. 

In  addition,  our  work  contributes  with  insights  into  the  real-time  capability 

of  neural  networks  for  credibility  assessment  (C3).  Comparing  our  models  in 

terms  of  real-time  capability,  their  usefulness  seems  to  be  dependent  on  many  fac-

tors.  While  our  MLP  baseline  shows  excellent  execution  times  for  large-volume 

data  processing,  the  lack  of  classification  performance  disqualifies  its  real-world 

applicability.  In  contrast,  our  RNN  model  still  offers  suitable  execution  times  and 

maintains  a  better  classification  performance.  Finally,  despite  achieving  the  best 

classification  results,  BERT  offers  limited  realtime  capability  when  used  for  large-

scale  data  analysis  unless  considerable  GPU  power  is  used  for  processing.  In  the 

end,  we  would  still  advise  to  do  further  research  regarding  the  BERT  model,  as  it 

has  the  best  generalization  capabilities.  The  credibility  research  shows  that  simple 

algorithms  tend  to  be  very  biased  towards  the  topics  and  domains  in  the  dataset  and 

often  bahave  more  like  a  topic  classifier. 
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10.5.2  Limitations  and  Outlook 

While  this  work  is  subject  limitations,  they  also  offer  potentials  for  future  research. 

First,  although  BERT  achieved  the  best  classification  results,  it  was  also  the  slowest 

classifier.  Variations  of  BERT,  such  as  DistilBERT  [379], provide  smaller  models  or  shared  weightings  within  the  model  to  achive  a  lower  memory  usage  and 

faster  execution  time.  Thus,  future  work  could  examine  if  they  achieve  compara-

ble  classification  results  for  credibility  assessment.  Second,  the  classifier  is  limited 

by  merely  using  a  dataset  based  on  textual  Twitter  data.  Although  it  can  be  used 

for  other  social  media,  it  might  perform  worse  due  to  different  linguistic  features. 

Thus,  the  exploration  of  a  cross-platform  dataset,  supported  by  active  learning  and 

data  augmentation  techniques,  could  be  worthwhile  for  future  research  [198]. Furthermore,  pictures  displaying  text  messages  (requiring  optical  character  recognition 

techniques)  or  external  sources  could  be  incorporated  into  the  credibility  assessment 

concept.  Third,  novel  but  similar  publications  emerged  during  the  implementation 

of  our  study.  For  instance,  Tian  et  al. [440]  contributed  with  a  rumor  detection  algorithm  that  achieves  an  F1  score  of  0.862  but  does  not  provide  a  steady  regression 

of  findings.  A  further  work  used  ALBERT  to  reduce  the  memory  usage  of  BERT, 

reaching  an  F1  score  of  0.795  compared  to  0.71  of  the  original  BERT  model  [439]. 

Furthermore,  additional  research  was  conducted  to  detect  fake  news  spreaders  by 

analyzing  their  previous  posts  [ 97, 348]. 
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Abstract 

The  field  of  cybersecurity  is  evolving  fast.  Security  professionals  are  in  need  of 

intelligence  on  past,  current  and—ideally—on  upcoming  threats,  because  attacks 

are  becoming  more  advanced  and  are  increasingly  targeting  larger  and  more  com-

plex  systems.  Since  the  processing  and  analysis  of  such  large  amounts  of  infor-

mation  cannot  be  addressed  manually,  cybersecurity  experts  rely  on  machine 

learning  techniques.  In  the  textual  domain,  pre-trained  language  models  like 

BERT  have  proven  to  be  helpful  as  they  provide  a  good  baseline  for  further  fine-

tuning.  However,  due  to  the  domain-knowledge  and  the  many  technical  terms 

in  cybersecurity,  general  language  models  might  miss  the  gist  of  textual  infor-

mation.  For  this  reason,  we  create  a  high-quality  dataset  and  present  a  language 

model  specifically  tailored  to  the  cybersecurity  domain  which  can  serve  as  a  basic 

building  block  for  cybersecurity  systems.  The  model  is  compared  on  15  tasks: 

Domain-dependent  extrinsic  tasks  for  measuring  the  performance  on  specific 

problems,  intrinsic  tasks  for  measuring  the  performance  of  the  internal  represen-

tations  of  the  model  as  well  as  general  tasks  from  the  SuperGLUE  benchmark. 

The  results  of  the  intrinsic  tasks  show  that  our  model  improves  the  internal  rep-

resentation  space  of  domain  words  compared  to  the  other  models.  The  extrinsic, 

domain-dependent  tasks,  consisting  of  sequence  tagging  and  classification,  show 

that  the  model  performs  best  in  cybersecurity  scenarios.  In  addition,  we  pay  spe-

cial  attention  to  the  choice  of  hyperparameters  against  catastrophic  forgetting,  as 

pre-trained  models  tend  to  forget  the  original  knowledge  during  further  training. 
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11.1

Introduction 

Cybersecurity  has  become  an  increasingly  critical  concern  in  today’s  digital  world, 

as  the  number  of  cyber  attacks  continues  to  rise  and  their  consequences  become  more 

severe  [485].  The  COVID-19  pandamic 4, the  Russian  war  of  aggression  against Ukraine  [103]  and  the  resulting  shifts  in  diplomatic  and  geopolitical  dynamics  have only  intensified  this  development.  As  a  result,  there  is  a  growing  need  for  effective 

cybersecurity  measures  to  prevent,  detect,  and  respond  to  these  threats.  One  of  the 

key  components  of  effective  cybersecurity  is  the  ability  to  analyze  and  understand 

the  vast  amounts  of  data  generated  by  various  sources,  such  as  logs,  network  traffic, 

and  threat  intelligence  reports.  However,  much  of  their  analysis  is  still  performed 

manually  by  security  experts,  which  is  a  time-consuming  and  labor-intensive  pro-

cess. 

To  address  these  challenges,  recent  advancements  in  Natural  Language  Process-

ing  (NLP)  and  machine  learning  have  shown  promise  in  automating  the  analysis  of 

cybersecurity-related  data.  For  instance,  cyber  threat  intelligence  (CTI)  [153], an important  domain  of  cybersecurity,  involves  the  collection  and  analysis  of  information  about  emerging  threats  and  vulnerabilities.  Information  thereby  is  often  dis-

seminated  in  the  form  of  indicators  of  compromise  (IOCs)  or  unstructured  natural 

language  text  in  blog  posts  and  news  articles  [413, 459]. Applying  NLP  techniques  to 1  https://github.com/PEASEC/cybersecurity_dataset 

2  https://huggingface.co/markusbayer/CySecBERT 

3  Minor  typographical  errors  in  the  original  publication  have  been  corrected  for  this  dissertation. 

4  https://enterprise.verizon.com/en-gb/resources/articles/analyzingcovid-19-data-breach-

landscape/ 
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CTI  can  help  automate  the  extraction  and  understanding  of  relevant,  evidence-based 

knowledge,  thus  significantly  reducing  the  manual  workload  for  experts  [445]. 

With  regard  to  underlying  NLP  mechanisms,  word  embedding  methods  that 

use  a  sparse  vector  space  to  represent  words  are  prominent  examples  [283].  In this  context,  language  models  such  as  Bidirectional  Encoder  Representations  from 

Transformers  (BERT)  [ 89]  have  become  the  standard  basis  models  in  all  machine learning  tasks  that  involve  natural  language  as  input.  These  models  are  already  pretrained  on  a  general  level  and  can  be  adapted  to  the  task  at  hand  by  so-called  finetuning.  However,  research  has  shown  that  the  full  potential  of  such  models  cannot  be 

realized  when  applied  to  domain-specific  tasks  [ 14, 34, 140, 238].  This  is  intuitive because  these  models  intend  to  cover  as  many  domains  as  possible  and,  especially  in 

normal-sized  models,  specific  domain  knowledge  is  lost  due  to  capacity  constraints 

or  because  the  knowledge  is  not  even  included  in  the  training  data.  To  gain  domain-

specific  knowledge,  pre-trained  models  can  be  further  trained  on  domain-specific 

corpora  to  achieve  better  results  in  this  particular  domain  [238].  However,  it  must be  ensured  that  catastrophic  forgetting  does  not  occur,  which  means  that  the  model 

forgets  its  original  knowledge. 

Models  trained  on  general  domain  corpora,  such  as  Wikipedia,  and  without  fur-

ther  training  often  reach  their  limits  when  applied  to  domain-specific  tasks  such  as 

cybersecurity  [301].  Their  limitations  can  be  explained  by  two  primary  reasons: 1.  Unfamiliarity  with  domain-specific  terminology:  General  domain  models  may 

not  have  encountered  specific  vocabulary  of  the  cybersecurity  domain,  such  as 

names  and  designations  of  new  vulnerabilities  or  unique  threat  actor  groups.  This 

lack  of  exposure  can  lead  to  reduced  performance  when  analyzing  cybersecurity 

texts,  as  the  model  may  fail  to  recognize  crucial  information. 

2.  Semantic  ambiguity  across  domains:  General  domain  models  may  fail  to  disam-

biguate  words  with  different  meanings  in  different  contexts.  For  example,  the 

word   virus   might  be  interpreted  by  a  general  model  as  referring  to  a  biological disease  rather  than  to  a  type  of  malware,  which  is  the  more  relevant  meaning  in 

the  context  of  cybersecurity  [301]. 

In  this  paper,  we  propose  CySecBERT,  a  language  model  based  on  BERT  [ 89] 

for  analyzing  cybersecurity  texts.  Our  aim  is  to  enable  state  of  the  art  NLP  for  the security  domain  and  to  provide  a  model  which  is  highly  suitable  for  practical  cybersecurity  use  cases  and  a  solid  base  for  further  research  in  this  field.  By  evaluating  our resulting  model  on  different  tasks  ( i.e. ,  intrinsic  and  extrinsic  tasks)  we  ensure  that it  indeed  enriches  the  cybersecurity  domain.  In  a  preliminary  evaluation  phase,  we 

try  to  identify  appropriate  hyperparameters  to  minimize  the  problem  of  forgetting
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previously  trained  knowledge,  which  is  then  verified  using  a  standard  NLP  bench-

mark.  In  this  study,  we  pre-train  a  model  on  a  thoroughly  chosen  cybersecurity 

corpus  consisting  of  various  datasets,  such  as  scientific  papers,  Twitter,  webpages, 

and  the  national  vulnerability  database.  A  well-performing  model  for  this  use  case 

may  supersede  high  manual  workload  for  researchers  and  experts.  Although  there 

are  well  performing  models  for  various  very  specific  purposes  in  the  cybersecurity 

domain  [240, 344], the  importance  of  a  general  cybersecurity  model  that  can  serve as  a  basis  for  all  kinds  of  tasks  is  undeniable.  The  following  contributions  are  made by  this  paper: 

•  A  pre-trained,  general  purpose  cybersecurity  language  model  based  on  BERT, 

called  CySecBERT  (C1). 

•  Experiments  for  hyperparameter  tuning  in  light  of  catastrophic  forgetting  (C2). 

•  An  evaluation  of  CySecBERT  based on several  tasks tailored to the cybersecurity  

domain,  including  intrinsic  and  extrinsic  tasks,  as  well  as  general  benchmark,  to 

measure  if  and  to  which  degree  the  model  forgets  past  knowledge  (C3). 

•  A  comparison  of  our  model  to  a  related  cybersecurity  model  and  to  the  origi-

nal  BERT  model,  as  well  as  a  discussion  about  its  shortcomings  and  potential 

improvements  (C4). 

11.2

Related  Work 

This  subsection  provides  an  overview  of  relevant  work  on  the  topic  of  BERT  models. 

We  thereby  outline  models  adapted  to  different  domains  that  have  emerged  following 

the  publication  of  BERT.  Moreover,  we  summarise  work  that  already  proposes 

BERT-like  language  models  for  the  cybersecurity  domain.  Finally,  we  specify  the 

research  gap  that  we  intend  to  fill  in  the  scope  of  our  research. 

11.2.1  BERT  Models  in  Different  Domains 

In  various  publications,  researchers  have  demonstrated  that  it  is  possible  to  achieve 

good  classification  quality  on  domain-specific  text  corpora  with  pre-trained  models 

such  as  BERT.  Of  particular  interest  for  our  research  is  the  method  of  domain-

adaptive  pre-training  (DAPT)  [140], which  describes  the  process  of  training  an already  pre-trained  language  model  on  a  domain-specific,  domain-dependent  dataset 

and  which  is  conducted  in  the  same  way  as  the  pre-training.  Hence,  this  technique
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differs  from  classical  fine-tuning  in  that  the  model  is  not  specialized  for  just  one 

task,  but  serves  as  a  building  block  for  many  tasks  in  the  field.  It  has  been  implemented  in  several  other  domains  since  the  introduction  of  BERT  [ 34, 238, 347]. 

A  prominent  example  is  BioBERT,  introduced  by  Lee  et  al. [238],  where  BERT 

was  adapted  to  a  biomedical  corpus.  BioBERT  was  initialized  with  weights  from 

Devlin  et  al.  [ 89]’s  BERT  model  and  then  pre-trained  once  again,  this  time  with a  large  biomedical  dataset,  where  the  dataset  was  more  than  five  times  larger  than 

BERT’s.  Evaluating  the  resulting  model  with  a  subsequent  fine-tuning  process  of 

three  different  biomedical  text  mining  tasks,  which  are  Named  Entity  Recogni-

tion  (NER),  Relation  Extraction  (RE),  and  Question  Answering  (QA),  Lee  et  al. 

[238]  were  able  to  largely  outperform  BERT  and  previous  state-of-the-art  models on  these  aforementioned  tasks.  Models  that  address  other  domains  present  similar 

approaches.  SciBERT  [ 34]  for  example  focuses  on  scientific  publications  whereas DA- RoBERTa,  introduced  by  Krieger  et  al.  [216]  covers  media  bias.  Gururangan et  al. [140]  underpin  our  method  of  additional  pre-training  on  BERT  by  yielding good  results  in  their  application  of  this  approach  on  RoBERTa  [263],  a  variant  of BERT  which  uses  the  same  transformer-based  architecture.  In  contrast  to  studies 

such  as  BioBERT  by  Lee  et  al. [238], in  which  only  a  single  domain  at  a  time  is considered,  Gururangan  et  al. [140]  covered  several  different  domains. 

Similarly,  researchers  have  also  explored  BERT  models  for  the  cybersecurity 

domain.  For  example,  Ranade  et  al.  [347]  propose  a  BERT  model  for  this  domain called  CyBERT.  Although  their  paper  states  that  fine-tuning  on  BERT  took  place, 

in  fact,  they  further  pre-trained  BERT  for  the  cybersecurity  domain.  Fine-tuning  is 

performed  on  top  of  this  pre-trained  cybersecurity  model  and  is  primarily  used  for 

application.  In  general,  however,  their  research  goal  is  similar  to  ours. 

Moreover,  there  are  further  cybersecurity  BERT  models,  which,  however,  are 

fine-tuned  instead  of  subjected  to  continued  pre-training,  as  is  required  for  true 

DAPT.  Hence,  this  makes  them  less  suitable  for  other  task  of  the  cybersecurity 

domain.  MalBERT  [344]  is  a  BERT-based  model  from  the  cybersecurity  domain focusing  on  the  detection  of  malicious  software.  Another  security-related  work 

is  CatBERT,  introduced  by  Lee,  Saxe,  and  Harang  [240]. They  replaced  some transformer  blocks  with  adapters  and  fine-tuned  the  BERT  model  for  the  detection 

of  phishing  emails.  Mendsaikhan  et  al.  [281]  introduced  a  BERT-based  Natural Language  filter  for  identifying  and  classifying  cyber  threat-related  information  from 

publicly  available  information  sources  with  high  accuracy. 

An  overview  of  the  approaches  with  their  domains  and  how  they  are  trained  can 

be  found  in  Table  11.1.  These  works  are  related  to  ours  because  the  approach  of adapting  BERT  to  a  specific  domain  is  similar  to  our  methodological  framework 

and  differs  mainly  in  the  specific  target  domain.  All  in  all,  the  different  pre-trained
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BERT  approaches  can  be  of  use  for  our  work  as  an  orientation  and  for  comparisons 

of  our  results  to  theirs  w.r.t.  performance.  Notwithstanding  the  fact  that  BERT  has 

achieved  great  results  in  various  domains,  the  full  potential  for  the  cybersecurity 

domain  has  yet  to  be  exploited. 

Table  11.1  Overview  over  relevant  existing  BERT  models  for  special  domains.  The  method explains  if  the  model  was  only  fine-tuned  (FT)  or  also  pre-trained  (PT) 

Model  /  Paper

Domain  /  Use  Case

Method

Model  Base 

BioBERT  [238]

biomedical

PT  (.+ FT)

BERT 

SciBERT  [ 34]

scientific

PT  (.+ FT)

BERT 

[140]

Papers  (bio..+ CS), 

PT  (.+ FT)

RoBERTa 

news,  reviews 

MalBERT  [344]

malware

FT

BERT,  RoBERTa, 

DistilBERT 

CatBERT  [240]

phishing

FT

DistilBERT 

ExBERT  [510]

exploit  prediction

FT

BERT 

[281]

CTI

FT

BERT 

CyBERT  [347]

cybersecurity

PT

BERT 

11.2.2  Research  Gap 

The  previously  established  research  objective  has  led  us  to  develop  a  model  with 

the  aim  of  achieving  satisfactory  performance  for  cybersecurity  textual  material  in 

various  tasks.  BERT  has  already  been  transferred  to  different  domains,  resulting 

in  domain-specific  models  (BioBERT  [238],  SciBERT  [ 34])  and  has  been  applied even  to  specific  domains  in  the  cybersecurity  field,  producing  models  like  MalBERT  [344] or  CatBERT  [240].  Besides,  there  are  also  BERT  models  such  as  from Mendsaikhan  et  al. [281]  that  are  not  specific  to  a  particular  cybersecurity  domain and  that  can  handle  various  different  texts,  but  are  then  fine-tuned  for  a  particular 

task,  as  in  the  case  of  the  BERT  model  from  Mendsaikhan  et  al. [281]  CTI  classification.  In  contrast  to  these  models  and  associated  research,  the  proposed  CySecBERT 

is  able  to  handle  many  different  sources  and  text  forms,  and  is  therefore  the  basic 

building  block  for  all  cybersecurity-related  tasks. 

As  outlined  in  the  introduction,  there  are  a  multitude  of  research  problems  in 

the  field  of  cybersecurity,  based  on  the  essential  aspect  of  information  extraction. 

A  solid  method  to  address  this  can  improve  research  in  the  cybersecurity  field  at
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a  stroke.  Furthermore,  the  outcome  enables  extensibility  and  the  application  of 

additional  layers  on  top  of  the  model,  for  instance  CRF  [415], (Bi)LSTM,  or  both combined  [182]. 

Ranade  et  al.  [347]  also  address  the  delineated  research  gap  to  some  extent. 

Unfortunately,  no  comparison  was  made  with  the  results  of  BERT  as  the  base-

line,  but  only  a  presentation  of  their  model’s  outcome  was  given.  We  compare  our 

CySecBERT  with  theirs,  which  is  varied  in  the  model  training  and  the  corpus  [347]. 

Furthermore,  in  delimitation  to  their  work,  we  evaluate  a  whole  span  of  different 

cybersecurity  tasks,  ranging  from  classification  to  NER  and  clustering  tasks  and  we 

include  the  results  of  BERT  for  comparison.  We  also  take  into  account  the  phe-

nomenon  of  catastrophic  forgetting,  where  the  pre-trained  model  forgets  its  already 

acquired  knowledge  in  the  new  training  phase.  This  issue  has  not  been  targeted  in 

other  works  of  this  area.  The  similarity  in  in  the  work  of  Ranade  et  al.  [347]  and  our work  results  from  the  nature  of  the  research  task,  which  all  the  more  underlines  the 

importance  of  the  approach.  We  understand  that  the  attention  given  to  this  research 

gap  is  important  and  encouraging  at  the  same  time.  Multiple  works  addressing  a  sim-

ilar  objective  can  be  complementary  and  thus  accelerate  filling  the  gap  in  research. 

Nonetheless,  our  work  distinguishes  itself  from  the  work  of  Ranade  et  al.  [347] at several  points  including  the  evaluation  step,  the  applied  data,  and  overall  by  the 

extent  of  our  work. 

11.3

Methodology 

This  section  provides  a  brief  background  on  domain  adaptive  pre-training,  including 

the  planned  training  process,  presents  the  dataset  which  is  used  to  adapt  our  proposed language  model  to  the  cybersecurity  domain,  the  architecture  of  the  model,  and  a 

pre-evaluation  phase. 

11.3.1  Domain  Adaptive  Pre-Training 

DAPT  of  language  models  to  a  specific  domain  is  a  common  method  to  achieve  an 

advanced  domain-specific  language  model  (see  Sect. 11.2).  It  has  shown  to  increase model  performance  in  several  ways.  Not  only  is  model  performance  on  downstream 

tasks  increased,  hence  receiving  better  evaluation  results,  but  training  time  is  also 

reduced  for  such  tasks  due  to  smaller  datasets  for  the  training  process  to  achieve 

similar  performance.  These  prospects  lead  us  to  expect  that  the  cybersecurity  domain
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will  benefit  greatly  from  a  domain-adapted,  pre-trained  language  model  for  every 

possible  task,  e.g. ,  NER  and  relevance  classification,  to  name  a  few. 

We  aim  to  adapt  BERT  to  the  cybersecurity  domain  based  on  domain  specific 

text  corpora  (see  Section  Sect. 11.3.2) [140]. Our  DAPT  pipeline  is  built  with   Hug-

 gingface  5 and   Weights  and  Biases 6.  The  final  domain-adapted  pre-trained  model is  based  on  bert-base-uncased.  Likewise,  the  text  corpus  is  tokenized  using 

the  bert-base-uncased model.  The  training  itself  is  done  on  the  Lichtenberg 

Cluster 7. 

During  the  training  phase,  we  try  to  mitigate  the  problem  of  catastrophic  forget-

ting  [277]  by  reducing  the  learning  rate,  the  training  steps,  and  the  size  of  the  dataset compared  to  BERT  pre-training.  In  this  way,  the  susceptibility  to  catastrophic  forgetting  should  be  greatly  reduced  because  the  new  learning  process  is  subordinated. 

Nevertheless,  we  test  whether  the  problem  also  occurs  with  the  created  model  by 

evaluating  it  on  a  non-cybersecurity  task.  While  we  expect  no  improvements,  we 

want  to  analyse  to  what  extent  the  old  knowledge  is  altered. 

Table  11.2  Statistics  of  the  number  of  tokens  and  entries  based  on  the  training  dataset 

#Tokens

Min 8

Max8

. 

Sum

Median

Mean

Entries 

Blogs

44

0.1M

169M

710

1.1k

151k 

arXiv

533

0.7M

167M

8.2k

9.9k

16k 

NVD

5

1.9k

12M

58

71

171k 

Twitter

1

500

179M

39

45

4M 

Total

1

0.7M

528M

40

122

4.3M 

11.3.2  Text  Corpus 

When  creating  the  text  corpus,  we  paid  great  attention  to  the  quality  of  the  data,  as  this quality  transfers  to  the  model  [ 28]. The  text  corpus  is  composed  of  four  different  sub-corpora:  (i)  blog  data,  (ii)  arXiv  data,  (iii)  National  Vulnerability  Database  (NVD 

data,  and  (iv)  Twitter  data.  Our  decision  for  this  selection  is  based  on  the  kind  of information  that  is  used  by  security  professionals,  and  on  the  fact  that  these  sources 5  https://huggingface.co/ 

6  https://wandb.ai/ 

7  http://www.hhlr.tu-darmstadt.de/ 

8  Minimal  or  maximal  token  per  entry. 
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are  commonly  used  in  recent  publications  regarding  machine  learning.  Furthermore, 

those  sub-corpora  vary  considerably  in  their  structure.  While  the  NVD  contains 

short,  objective  and  precise  language  with  semi-structured  information,  and  Twitter 

consists  of  short  posts  with  objective,  subjective,  emotional,  on- as  well  as  off-topic, etc.  content.  arXiv  encompasses  long  papers  with  highly  educational  language,  and 

blog  posts  are  typically  longer  articles  with  less  formal  language. 

The  blog  posts  build  a  solid  foundation  for  different  writing  styles  and  practical 

information  in  information  security,  including  vulnerability  and  exploit  information, 

threat  notifications  [252],  and  foundational  knowledge.  We  initially  aimed  for  a  set  of 41  different  website  domains  to  be  crawled.  During  the  automated  crawling  process, 

three  of  them  either  blocked  our  requests,  or  contained  so  much  advertisements  and 

cookie  information  that  we  decided  to  omit  those  sources.  This  resulted  in  38  differ-

ent  blogs  which  we  crawled,  like  troyhunt.com,  darkreading.com,  schneier.com,  and 

krebsonsecurity.com,  to  name  a  few.  Besides,  we  filtered  duplicates  and  instances 

shorter  than  300  characters 9 and  filtered  for  English  texts  using  fasttext  [185].  This process  resulted  in  a  total  of  over  151k  blog  posts,  based  on  the  initial  list  of  165k web  pages. 

Secondly,  we  use  arXiv  papers  from  the  category   Cryptography  and  Secu-

 rity  10 [238]. Due  to  errors  during  the  text  extraction  process,  we  ignored  papers with  lower  length  than  3000  characters,  resulting  in  over  16k  papers. 

Thirdly,  we  use  vulnerability  descriptions  of  the  NVD  [ 95, 219]. Experts  curate those  texts 11,  which  is  why  they  need  no  further  processing.  Hence,  we  do  neither filter  nor  pre-process  these  information. 

Finally,  we  use  Twitter  as  information  source  [ 65, 363, 374],  where  we  crawled datasets  containing  the  following  keywords  based  on  information  we  received  from 

CERT  members: 

•   infosec  OR  security  OR  threat  OR  vulnerability  OR  cyber  OR  cybersec  OR 

 infrasec  OR  netsec  OR  hacking  OR  siem  OR  soc  OR  offsec  OR  osing  OR  bug-

 bounty 

Additionally,  we  crawled  dedicated  datasets  of  data  breaches,  like  the  Microsoft 

Exchange  Server  Data  Breach,  for  example.  Of  all  the  tweets  collected,  we  only  used

9  A  randomly  selected  and  manually  inspected  sample  of  corner  case  blog  posts,  e.g. ,  shorter  or longer  posts,  showed  that  short  posts  contained  mostly  advertisements  or  cookie  notifications. 

10  For  text  extraction  we  used  opendetex  for  papers  in  tex  format  or  textract  for  papers  in  pdf 

format. 

11 https://www.cve.org/ResourcesSupport/FAQs#pc_cve_recordscve_record_descriptions_ 

created 

[image: Image 38]
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those  that  were  annotated  as  English  by  Twitter.  While  the  posts  include  retweets, 

we  did  not  gather  replies.  Overall,  we  managed  to  crawl  nearly  4M  tweets  with  over 

179M  tokens  in  total. 

We  would  like  to  emphasise  that  all  collected  entries  have  been  minimally  edited 

at  most,  as  we  want  to  have  the  most  natural  form  in  which  the  model  will  later 

function.  A  summary  of  all  datasets  is  depicted  in  Tab. 11.2. To  get  an  overview of  the  words  and  tokens  contained  in  the  dataset,  we  created  word  clouds  for  the 

dataset,  which  can  be  seen  in  Fig. 11.1.  The  first  image  represents  individual  words, the  second  highlights  bigrams,  and  the  third  illustrates  the  tokenized  dataset.  Across 

all  word  clouds,  a  prominent  association  with  the  security  domain  is  evident. 

Fig.  11.1  Visualization  of  the  training  corpus  through  word  clouds:  (a)  single  words,  (b) bigrams,  and  (c)  tokenized  input  for  the  model 

11.3.3  Architecture 

As  explained  before,  we  adapt  the  domain  of  the  BERT  model  with  further  pre-

training.  The  architecture  is  based  on  the  transformer  architecture,  introduced  by 

Vaswani  et  al.  [453]. Transformers  leverage  the  self-attention  mechanism  which enables  the  model  to  weigh  the  significance  of  each  word  in  a  sequence  relative  to  the others,  thereby  capturing  long-range  dependencies  and  contextual  information.  They
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consist  of  encoders  and  decoders,  but  BERT  only  employs  the  encoder  portion,  i.  e. 

it  only  encodes  the  text  into  an  internal  representation.  During  pre-training,  BERT 

utilizes  masked  language  modelling  by  randomly  masking  a  certain  percentage  of 

words  in  the  input  sequence.  The  model  is  then  tasked  with  predicting  the  masked 

words  based  on  their  surrounding  context.  This  encourages  BERT  to  develop  a  deep 

understanding  of  the  language  structure,  as  it  has  to  infer  the  masked  words  using 

the  available  context. 

From  this  follows  the  mathematical  representation  of  the  key  components:  Given 

an  input  text  which  is  transformed  into  a  sequence  of  tokens  .X = { x 1 , x 2 , ..., x n}. 

From  them,  the  token  embeddings,  i.  e.  fixed-size  vector  representations  (with  posi-

tional  encodings)  .E = { e 1 , e 2 , ..., e n} are  obtained.  For  each  token,  we  compute the  Query  (. Q),  Key  (. K),  and  Value  (. V)  vectors  by  projecting  the  embeddings  using learned  weight  matrices .  W  Q, .  W  K, and.  W  V: 

.Qi =  e i ∗  W  Q

Ki =  e i ∗  W  K

Vi =  e i ∗  W  V

(11.1) 

Next,  we  calculate  the  attention  scores  for  each  token  pair  .  ( i, j ) (with  . d being  the embedding  dimension): 

Qi ∗ KTj

.  score( i, j ) =

√

(11.2) 

d

Then,  we  apply  the  softmax  function  to  the  scores  to  obtain  attention  weights: 

n

∑  

.  weights( i, j ) =  escore( i, j )/

 escore( i, k )

(11.3) 

k=1

Finally,  we  compute  the  self-attention  output  for  each  token  by  taking  a  weighted 

sum of the  Value vectors:  

n

∑  

.  output =

 (

i

 weights( i, j ) ∗ Vj )

(11.4) 

j=1

BERT  uses  multiple  self-attention  heads  to  capture  different  aspects  of  the  context. 

Each  head  computes  its  own  self-attention  output.  out puth,i ,  which  are  concatenated and  projected  using  another  learned  weight  matrix .  W  O: 

.  multiheadoutput = [

⊕

⊕  ... ⊕

] ∗

i

 output 1 ,  i

 output 2 ,  i

 output H,i

 W  O

(11.5)

[image: Image 39]
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Then,  BERT  applies  a  position-wise  fully  connected  feed-forward  network  to  the 

multi-head  attention  output,  with  W1,  b1,  W2,  and  b2  as  learned  weight  matrices: 

.  nnoutput =

∗

i

 ReLU(multiheadoutput i  W  1 + b1 ) ∗  W  2 + b2

(11.6) 

Each  encoder  layer  in  BERT  consists  of  the  multi-head  self-attention  mecha-

nism,  followed  by  layer  normalization,  the  position-wise  feed-forward  network, 

and  another  layer  normalization: 

.  outputmha =

+

i

 LayerNorm(multiheadoutput i

 e i )

(11.7) 

.  outputnn =

+

 )

i

 LayerNorm(nnoutput i

 outputmha i

(11.8) 

This  process  is  repeated  for  each  encoder  layer  in  the  model,  as  depicted  in  Fig. 

11.2. 

Fig.  11.2  Visualization  of  the  BERT  encoder  stack  [104] 

While  these  mathematical  representations  describe  the  core  components  of  the 

BERT  architecture,  including  self-attention,  multi-head  attention,  and  the  position-

wise  feed-forward  network  within  the  encoder  layers,  further  details  can  be  extracted 

from  the  work  by  Devlin  et  al. [ 89]. 
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11.3.4  Preliminary  Evaluation:  Catastrophic  Forgetting 

Catastrophic  forgetting  describes  the  phenomenon  that  an  already  trained  model 

tends  to  catastrophically  forget  the  previously  trained  knowledge  when  trained  on 

further  data  [201]. If  catastrophic  forgetting  occurs,  our  model  might  lose  its  ability to  understand  or  interpret  nuances  and  contexts  that  may  not  be  explicitly  covered  in 

the  cybersecurity  domain  but  are  still  relevant  for  processing  cybersecurity-related 

texts.  (1)  In  real-world  applications,  data  often  contains  a  mix  of  domain-specific 

and  general  language.  For  instance,  cybersecurity  texts  may  include  general  lan-

guage  expressions,  analogies,  or  references  that  require  a  broader  understanding  of 

language  beyond  just  technical  terms.  (2)  There  are  certain  tasks  where  the  model 

has  to  handle  in  domain  and  out  of  the  domain  instances.  Like,  for  example,  when 

the  task  is  in  a  intersection  of  cybersecurity  and  another  domain  (like  law,  policy, 

and  management).  A  model  exclusively  trained  on  cybersecurity  might  struggle 

with  texts  that  blend  these  disciplines.  A  model  that  retains  its  general  language 

capabilities  alongside  its  domain-specific  knowledge  is  more  robust  and  flexible 

[423].  Finally,  the  work  of  Rongali  et  al. [369]  shows  that  avoiding  catastrophic forgetting  in  domain-specific  BERT  models  even  improves  the  performance  on  the 

domain  tasks.  This  illustrates  the  benefits  of  a  well-balanced  model  that  can  handle 

both  domain-specific  and  general  language  data  effectively. 

Research  [ 89, 426]  suggests  that  the  second  training  should  be  more  lightweight than  the  first,  so  that  the  already  trained  knowledge  is  not  overshadowed.  In  this 

regard,  the  three  most  important  hyperparameters  are  the  learning  rate,  which  deter-

mines  how  much  the  new  data  updates  the  weights  of  the  model,  the  epochs,  i.e. 

how  long  the  model  is  trained  and  how  many  updates  are  made,  and  finally  the  size 

of  the  dataset.  The  work  of  Sun  et  al. [426],  for  example,  addresses  the  problem of  catastrophic  forgetting  by  examining  different  learning  rates,  demonstrating  that 

a  lower  learning  rate  is  best.  Besides,  the  authors  of  the  BERT  paper  Devlin  et  al. 

[ 89]  recommend  training  with  only  a  few  epochs.  Accordingly,  further  training  can often  lead  to  overfitting  of  the  data  and,  as  already  discussed,  to  catastrophic  forgetting.  This  remark  can  also  be  transferred  to  the  size  of  the  datasets  for  DAPT,  as they  are  very  large  and  correspondingly  many  training  updates  are  carried  out.  The 

difficulty  is  to  find  the  right  configuration  of  these  parameteres  to  avoid  catastrophic forgetting  and  at  the  same  time  to  enable  enough  learning  that  the  model  achieves 

high  quality  in  the  new  domain.  Therefore,  we  test  different  configurations  of  the 

hyperparameters’  learning  rate,  dataset  size,  and  number  of  epochs  in  this  prelimi-

nary  evaluation.  Since  training  a  model  already  requires  a  considerable  amount  of 

time  and  resources  (about  4  days  on  4  Nvidia  V100  GPUs),  we  cannot  perform 

an  extensive  hyperparameter  search,  such  as  the  bio-inspired  search  by  Ibor  et  al. 
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[165].  Hence,  we  narrow  down  the  range  of  configurations  by  taking  into  account  the research  findings  and  by  orienting  our  approach  towards  the  original  BERT  training 

process.  The  authors  of  BERT  trained  the  model  with  a  learning  rate  of  . 1 × 10−4

for  about  40  epochs.  We  therefore  propose  the  following  configurations: 

1.  Learning  Rate: .1 × 10−4,.2 × 10−5,. 5 × 10−5

2.  Epochs:  20,  30,  40 

3.  Data:  5%,  10%,  15% 

For  the  other  hyperparameters,  we  followed  the  original  BERT  approach,  i.e. , we  

used  a  weight  decay  of  0.01,  a  dropout  rate  of  0.1,  10000  warm-up  steps,  and  ADAM 

as  the  optimisation  algorithm  [207].  We  trained  all  models  with  a  batch  size  of  64 

on  4  Nvidia  Tesla  V100  GPUs. 

To  be  able  to  measure  the  degree  of  forgetting,  as  well  as  the  performance  in  the 

security  domain,  we  evaluate  the  different  models  on  the  SuperGLUE  task  BoolQ 

and  the  security  task  MSExchange  (a  more  detailed  description  of  the  datasets 

follows  in  Sect. 11.4.1). 

The  results  are  presented  in  Table  11.3.  As  can  be  seen,  almost  every  configuration performs  well  in  both  tasks.  The  learning  rate  of  .2 × 10−5 appears  to  be  better  in 

both  tasks,  which  is  in  line  with  the  results  of  Sun  et  al. [426]. Similarly,  30  epochs perform  better  on  both  tasks  than  the  higher  and  lower  configurations.  However, 

with  regard  to  the  size  of  the  dataset,  the  results  are  not  so  clear.  While  a  dataset  size of  10%  of  the  BERT  training  dataset  size  performs  best  on  the  MSExchange  dataset, 

a  dataset  size  of  5%  of  the  original  BERT  training  dataset  size  seems  to  perform 

Table  11.3  Pre-evaluation  of  different  CySecBERTconfigurations  considering  the  catastrophic  forgetting  task  and  the  performance  in  the  security  domain  with  the  boolq  task  (accuracy)  and  the  MSExchange  task  (F1),  respectively 

Configuration

BoolQ

MSExchange 

LR.2 × 10−5,  Epochs  30,  Data  10%

0.6752

0.8869 

LR .1 × 10−4,  Epochs  30,  Data  10%

0.6722

0.8620 

LR .5 × 10−5,  Epochs  30,  Data  10%

0.6700

0.8544 

LR.2 × 10−5, Epochs  20,  Data  10%

0.6660

0.8860 

LR.2 × 10−5, Epochs  40,  Data  10%

0.6614

0.8846 

LR.2 × 10−5,  Epochs  30, Data  5%

0.6785

0.8816 

LR.2 × 10−5,  Epochs  30, Data  15%

0.6716

0.8496

[image: Image 40]

11.4

Evaluation

229

best  on  the  BoolQ  task.  This  is  not  surprising,  as  the  degree  of  forgetting  is  lower with  less  new  training  data.  Since  the  model  with  10%  still  performs  very  well  on 

the  BoolQ  task  and  because  we  weight  the  performance  in  the  security  domain  more 

heavily,  we  decided  to  use  the  model  with  10%  of  the  original  BERT  training  dataset. 

The  training  loss  of  this  CySecBERT  model  can  be  seen  in  Fig. 11.3. Accordingly, the  loss  decreases  logarithmically  and  improves  only  very  slowly  after  300k  steps. 

Fig.  11.3  Training  loss  of  the  CySecBERT  model 

11.4

Evaluation 

In  this  section,  the  evaluation  process  and  the  corresponding  results  are  presented  in 

detail.  We  cover  a  short  description  of  the  evaluation  tasks  in  Sect. 11.4.1,  followed by  the  presentation  and  interpretation  of  the  results  in  Sect. 11.4.2. 

11.4.1  Experiments  and  Tasks 

Since  our  goal  is  to  publish  a  model  that  is  highly  usable  for  the  cybersecurity 

domain,  we  evaluate  it  against  the  current  standard  method  of  the  domain  (BERT) 

and  against  another  cybersecurity  language  model  (CyBERT  from  Ranade  et  al. 

[347]).  We  use  different  types  of  tasks,  i.e.  intrinsic  and  extrinsic  evaluation  tasks, which  are  reasonably  chosen  for  the  field  of  cybersecurity.  While  the  extrinsic  tasks 

measure  how  well  the  trained  model  performs  on  downstream  tasks,  i.e.  measure
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real-world  application,  the  intrinsic  tasks  measure  the  model  itself  without  any  kind 

of  additional  classifier,  e.g.  by  measuring  the  representations  of  the  model  and  by demonstrating  an  overall  fit  to  the  domain. 

As  intrinsic  tasks,  we  apply  a  word  similarity  task  using  parts  of  the  dataset  by 

Mumtaz  et  al.  [301]  and  a  clustering  evaluation  with  a  Twitter  dataset.  The  clustering dataset  is  based  on  a  random  sample  of  Log4j  Twitter  posts.  For  this  task,  posts 

are  converted  into  latent  representations  with  different  BERT  models.  The  latent 

representation  consists  of  the  concatenation  of  the  last  four  layers  of  the  model 

output  and  of  the  mean  values  across  all  words  in  the  post.  A  KMeans  clustering 

algorithm  with  k-values  from  5  to  9  is  executed  on  the  gathered  and  transformed 

posts.  The  evaluation  scores  are  measured  with  the  Silhouette  Coefficient  (the  higher 

the  better).  This  is  an  internal  clustering  metric  that  analyses  the  clusters  created  and does  not  require  gold  labels.  This  is  important  because  there  can  be  many  solutions 

and  gold  labels  can  be  misleading  in  the  case  of  clustering  [ 30].  The  cybersecurity word  similarity  dataset  consists  of  words  with  their  equivalents,  all  from  the  field 

of  cybersecurity.  Moreover,  the  dataset  is  an  extension  of  the  public  cybersecurity 

word  similarity  dataset  from  Mumtaz  et  al. [301]  and  contains  over  300  word  pairs. 

For  this  extension  of  the  original  dataset,  a  cybersecurity  expert  followed  the  process of  Mumtaz  et  al.  [301]  and  added  more  cybersecurity  words  that  can  be  considered similar.  Normally,  the  word  similarity  evaluation  is  based  on  the  cosine  similarity  of 

the  word  embeddings  when  static  embeddings  are  used.  The  problem  is  that  BERT 

is  context-dependent,  which  means  that  a  clear  word  embedding  cannot  be  given 

without  context  and  the  standard  method  of  measuring  word  similarity  is  no  longer 

suitable.  For  this  reason,  we  have  developed  a  new  method  for  evaluating  word 

similarity,  in  which  the  model  predicts  whether  two  given  words  are  similar.  Similar 

to  the  works  on  zero-shot  learning,  we  create  a  meaningful  cloze  task  consisting  of 

a  sentence  with  a  masked  word  that  the  model  fills  in,  which  is  implicitly  the  answer to  the  similarity  question.  The  task  is  written  in  the  following  way: 

“Are.word1 and.word2  similar? [MASK]” , where  [MASK]  can  be  either  “Yes” 

or  “No”,  which  represent  the  masked  words  that  the  model  has  to  fill. 

Example:   “Are  virus  and  malware  similar? [MASK] ” 

This  trick  of  zero-shot  learning  means  that  no  explicit  classification  model  needs 

to  be  trained  and  the  task  remains  intrinsic.  Besides,  we  aim  to  show  that  the  evaluated  model  does  not  only  predict  the  similarity  of  each  word  to  all  other  words,  but also  detects  when  two  words  are  not  similar.  We  therefore  randomly  take  word  paris 

from  the  dataset  that  are  not  similar  and  add  them  to  the  evaluation.  This  dataset  is then  used  for  evaluation  and  an  F1  score  is  calculated  for  the  model’s  predictions. 
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As  part  of  the  extrinsic  tasks,  we  employ  two  cybersecurity  classification  tasks 

from  Riebe  et  al.  [363]  and  Bayer,  Frey,  and  Reuter  [ 27].  In  the  first  task,  the  classifier has  to  decide  whether  a  Twitter  post  is  related  to  the  field  of  cybersecurity,  and  in the  second  task,  it  has  to  predict  whether  a  post  might  be  relevant  to  experts  in  the field  during  a  major  cybersecurity  event.  Furthermore,  we  use  the  sequence  tagging 

dataset  by  Kuehn  et  al  [219].  Sequence  tagging  is  the  task  of  finding  specific  words in  a  text  and  it  requires  that  each  word  in  a  text  is  tagged,  often  as  IOB:  Either I-nside,  o-utside,  or  b-eginning,  referring  to  the  specific  words  being  searched  for. 

Specifically,  the  dataset  consists  of  several  NER  tasks  (recognition  of  named  entities) 

for  predicting  relevant  details  of  NVD  descriptions.  We  then  chose  the  task  of  tagging the  software  name  (SN),  software  version  (SV),  and  the  attack  complexity.  We 

decided  for  the  employment  of  these  tasks  because  of  their  different  performances 

in  Kuehn  et  al. [219]’s  work,  in  order  to  analyse  how  well  the  models  perform  on varying  levels  of  difficulties  of  the  tasks. 

Furthermore,  we  evaluate  CySecBERT  and  BERT  on  the  SuperGLUE  bench-

mark  [463].  This  is  a  common  NLP  benchmark  which  we  utilize  to  identify  signs  of catastrophic  forgetting  [277]. We  assume  that  our  cybersecurity  model  is  not  able to  achieve  a  better  or  even  equivalent  result,  as  a  certain  degree  of  forgetting  is 

acceptable  and  necessary  for  learning.  Nevertheless,  we  expect  the  performance  not 

to  be  too  poor,  as  this  would  otherwise  indicate  that  some  basic  knowledge  would 

have  been  forgotten  during  the  domain  training  phase. 

Neural  networks  consist  of  many  random  hyperparameters  that  have  to  be  fixed 

before  each  training  and  that  are  not  transferable  to  other  learning  processes.  As 

shown by Reimers  and Gurevych [355],  the  frequent  execution  of  a  training  process can  be  used  to  avoid  incorrect  inferences  arising  from  a  randomly  better  choice  of 

hyperparameters.  Accordingly,  and  following  the  experiments  of  Sanh  et  al. [379] 

and  Liu  et  al. [263]  all  extrinsic  experiments  were  performed  five  times  and  the mean  values  as  well  as  the  standard  deviation  are  given  in  the  respective  tables. 

11.4.2  Results 

As  stated  in  Sect. 11.4.1,  we  aim  to  evaluate  CySecBERT, as well as BERT and CyBERT  [347]  on  different  tasks  which  are  mainly  located  in  the  cybersecurity domain,  incorporating  both  intrinsic  and  extrinsic  evaluation  tasks.  Additionally, 

we  run  the  SuperGLUE  task  to  test  our  model  for  catastrophic  forgetting. 
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11.4.2.1  Intrinsic  Tasks 

To  measure  the  representation  quality  of  the  model,  we  evaluate  it  by  applying  two 

intrinsic  tasks  from  cybersecurity:  clustering  and  word  similarity. 

Clustering  The  results  of  the  clustering  task  are  given  in  Table  11.4.  While the  CyBERT  model  of  Ranade  et  al.  [347]  only  performs  better  than  the  baseline when  forming  5-7  clusters,  our  approach  performs  better  in  every  constellation, 

according  to  the  Silhouette  Score.  In  fact,  CySecBERT  outperforms  Ranade  et  al. 

[347]’s  cybersecurity  model  by  a  considerable  margin  for  each  number  of  clusters, with  consistent  improvements  ranging  from  +0.002  to  +0.059  points.  Our  model 

shows  the  highest  improvement  when  9  clusters  are  formed.  On  the  one  hand,  these 

results  demonstrate  that  we  can  obtain  more  coherent  clusters  thanks  to  our  trained 

language  model.  On  the  other  hand,  from  a  more  general  perspective,  the  results 

show  that  the  model  is  more  able  to  represent  the  given  instances  in  a  meaningful 

latent  space. 

Table  11.4  Silhouette  Score  of  the  first  intrinsic  task,  clustering  the  data  of  a  Log4J  dataset. 

The  best  values  are  marked 

#  Clusters

BERT

CyBERT  [347]

CySecBERT 

5

0.114

0.141

0.143 

6

0.115

0.124

0.150 

7

0.118

0.133

0.167 

8

0.125

0.117

0.163 

9

0.130

0.113

0.172 

Nevertheless,  even  better  results  could  be  expected  if  we  used  an  approach  like 

SentenceBERT  by  Reimers  and  Gurevych  [356]  for  our  model,  as  they  have  proven to  be  much  more  suitable  for  representing  complete  documents,  like  tweets  in  our 

case. 

Word 

Similarity  The  word  similarity  task  results  are  displayed  in  Table  11.5. 

The  baseline  model  has  the  worst  performance  with  a  F1-score  of  0.44.  This  is  to  be 

expected,  as  most  domain-specific  words  were  not  or  only  very  rarely  included  in 

the  standard  BERT  training.  Our  CySecBERTmodel  is  clearly  superior  to  the  other 

two  approaches,  which  is  remarkable  as  it  confirms  the  previous  intrinsic  results. 

However,  we  would  like  to  point  out  that  this  task  is  different  from  other  word 

similarity  tasks  as  it  does  not  reflect  word  similarities  directly  through  the  word 

representations,  but  by  questioning  the  model  in  a  cloze  fashion  (see  Sect. 11.4.1). 
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Table  11.5  Overview  of  the  results  of  the  word  similarity  task,  where  the  scores  are  indicated by  the  F1  score 

Name

Word  Similarity 

BERT

0.4382 

CyBERT  [347]

0.4861 

CySecBERT

0.6382 

11.4.2.2  Extrinsic  Tasks 

After  we  have  already  demonstrated  that  the  model  produces  meaningful  represen-

tations  of  cybersecurity-related  vocabulary  and  data,  we  want  to  test  whether  our 

model  is  also  comparably  more  suitable  for  real-world  applications,  i.e.  for  extrinsic 

tasks,  the  so-called  downstream  tasks  of  machine  learning.  The  tasks  that  we  have 

chosen  for  the  cybersecurity  domain  are  (i)  NER  (ii)  general  relevance  classification, 

and  (iii)  CTI  classification. 

NER  The  results  of  the  NER  tasks  are  shown  in  Table  11.6.  The  table  shows that  the  results  of  the  original  work  of  Kuehn  et  al. [219]  are  worse  than  those  of the  methods  evaluated  in  our  study.  While  the  basic  BERT  model  and  the  CyBERT 

model  of  Ranade  et  al.  [347]  are  more  similar  to  each  other,  e.g.  in  terms  of  software naming,  our  model  consistently  outperforms  both.  Only  in  the  tagging  of  the  software 

version  does  the  CyBERT  model  of  Ranade  et  al. [347]  perform  significantly  better than  the  baseline  BERT  model,  whereas  our  model  nevertheless  improves  this  result. 

Hence,  it  could  be  speculated  that  the  CyBERT  training  data  from  Ranade  et  al. [347] 

contained  entries  of  software  versions  at  a  higher  frequency  than  the  normal  BERT 

data.  However,  the  CyBERT  model  deteriorates  the  results  for  software  names, 

Table  11.6  NER  score  based  on  tagged  software  versions  (SV),  software  names  (SN),  and attack  complexities  (AC)  of  NVD  descriptions.  The  results  are  given  as  F1  scores  and  the best  values  are  marked.  *Showing  the  reported  results  of  the  work.  **No  comparable  results available 

Name

SV

SN

AC 

[219]*

0.8735  (–)

0.8584  (–)

–  (–)** 

BERT

0.9247  (0.0064)

0.8837  (0.0037)

0.3323  (0.0135) 

CyBERT  [347]

0.9298  (0.0019)

0.8834  (0.0029)

0.3336  (0.0214) 

CySecBERT

0.9302  (0.0066)

0.8871  (0.0025)

0.3472  (0.0116)
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which  could  indicate  that  either  a  large  number  of  software  names  are  missing  in 

high  frequency  in  their  dataset,  or  that  they  have  been  neglected  due  to  errors  in 

the  training  process.  The  highest  improvements  of  our  model  can  be  seen  in  attack 

complexity,  outperforming  the  CyBERT  model  of  Ranade  et  al.  [347]  by  with  0.0136 

points.  Nevertheless,  we  perceive  the  results  of  this  particular  task  as  overall  not 

very  satisfactory.  Reasons  therefore  have  already  been  discussed  by  Kuehn  et  al. 

[219]  and  are  mainly  related  to  the  problem  of  too  little  data  in  this  task. 

Relevance  Classification  (CySecAlert)  In  the  first  classification  task  of 

our  experiments,  the  models  are  trained  to  predict  whether  a  Twitter  post  is  related 

to  the  cybersecurity  domain  (see  Table  11.7).  This  can  be  considered  a  general cybersecurity  task,  as  the  model  only  has  to  identify  cybersecurity-related  words. 

The  original  work  by  Riebe  et  al. [363]  has  the  worst  results,  possibly  due  to  the use  of  a  classical  machine  learning  method.  It  is  particularly  interesting  to  see  that the  Ranade  et  al. [347]  model  performs  worse  than  the  basic  BERT  model.  Our model  significantly  improves  the  baseline  and  the  CyBERT  model  by  0.0104  and 

0.0236  points  in  the  F1  score,  respectively.  All  models  have  a  relatively  low  standard deviation,  indicating  that  the  fine-tuning  process  is  stable  across  all  runs. 

Specialized  CTI  Classification  (MS  Exchange)  The  second  classification 

task  is  about  identifying  specialized  CTI  information  where  very  specific  words  are 

needed  to  classify  the  instances.  The  results  of  this  task  are  also  presented  in  Table 

11.7.  Surprisingly,  unlike  in  the  previous  tasks,  the  CyBERT  model  of  Ranade  et al.  [347]  is  able  to  improve  the  baseline,  showing  that  while  it  does  not  contribute improvements  in  the  more  general  tasks,  it  could  be  beneficial  in  more  specific 

tasks.  There  is  a  high  improvement  of  our  model  compared  to  the  baseline  (+0.027), 

which  we  expected  since  this  task  focuses  on  very  domain-dependent  language  and 

specific  vocabulary.  Moreover,  although  the  CyBERT  model  of  Ranade  et  al. [347] 

is  advantageous  for  this  task,  our  model  still  improves  the  results  significantly  by 

+0.0103  F1  points.  Besides,  it  is  observable  that  our  model  has  a  significantly  lower 

Table  11.7  Classification  results  of  the  MS  Exchange  and  CySecAlert  dataset,  given  as  F1 

scores.  The  best  values  are  marked.  *Showing  the  reported  results  of  the  work 

Name

MS  Exchange

CySecAlert 

[363]*

–

0.8051  (–) 

[ 27]*

0.8536  (0.0007)

– 

BERT

0.8599  (0.0193)

0.8779  (0.0084) 

CyBERT  [347]

0.8766  (0.0153)

0.8647  (0.0095) 

CySecBERT

0.8869  (0.0026)

0.8883  (0.0064)
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Table  11.8  Classification  results  of  the  few-shot  experiments  of  the  MS  Exchange  dataset. 

The  best  values  are  marked 

Name

Model

Accuracy

F1 

Baseline

BERT

0.4965  (0.0190)

0.5870  (0.1881) 

ADAPET

BERT

0.6589  (0.0135)

0.6254  (0.0432) 

[ 27]

CySecBERT

0.7913  (0.0056)

0.8063  (0.0027) 

standard  deviation  than  the  other  two  models,  which  again  indicates  a  very  stable 

training  process.  Table  11.7  also  contains  the  result  of  the  work  by  Bayer,  Frey,  and Reuter  [ 27], which  is  very  similar  compared  to  the  BERT  baseline,  but  has  the  best standard  deviation. 

Furthermore,  we  also  included  the  few-shot  learning  task  of  this  dataset  in  Table 

11.8,  where  only  32  instances  are  given  as  training  data.  CySecBERT  is  an  integral  part  of  the  few-shot  approach  of  Bayer,  Frey,  and  Reuter  [ 27]. The  results show  a  significant  improvement  over  the  baseline  and  over  the  state-of-the-art  few-shot  learning  method  ADAPET  by  Tam  et  al.  [431].  This  demonstrates  how  the CySecBERT  model  is  incorporated  and  applied  in  further  research,  contributing  to 

the  advancements  in  other  disciplines.  Details  of  the  approach  and  further  results 

can  be  extracted  from  the  work  of  Bayer,  Frey,  and  Reuter  [ 27]. 

11.4.2.3  Catastrophic  Forgetting 

In  the  final  part  of  our  evaluation,  we  revisit  the  problem  of  catastrophic  forgetting. 

To  this  end,  we  evaluate  our  model  with  the  SuperGLUE  benchmark  to  test  if  the 

model  degrades  the  results  considerably,  which  would  indicate  that  the  model  has 

forgotten  the  initial  knowledge  acquired  in  the  BERT  training  phase.  The  results 

of  this  task  and  a  comparison  to  the  BERT  model  is  displayed  in  Table  11.9. As expected,  we  can  see  that  our  model  reduces  almost  every  task  outcome.  Nevertheless,  the  worsening  of  results  are  not  an  indication  for  catastrophic  forgetting,  as  the differences  are  still  relatively  small,  with  a  mean  drop  of  about  –0.05  points.  This 

shows  that  although  the  model  has  lost  some  of  its  knowledge,  most  of  it  is  still 

present.  Besides,  it  is  particularly  interesting  that  the  performance  in  the  cb  task  has even  increased  and  the  result  of  the  boolq  task  has  remained  almost  the  same. 

In  addition,  we  have  again  included  the  results  of  the  CyBERT  model  by  Ranade 

et  al.  [347],  which,  interestingly,  performs  almost  the  same  as  the  BERT  model. 

One  could  interpret  this  as  an  indication  that  the  model  did  not  suffer  catastrophic 

forgetting  during  training.  However,  taking  the  results  of  the  extrinsic  and  intrinsic
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Table  11.9  Results  of  the  SuperGLUE  benchmark,  each  indicated  in  the  evaluation  metric proposed  in  the  benchmark 

Name

record

rte

wic

wsc

boolq

cb

copa

multirc

total 

BERT

0.6416

0.5949

0.6476

0.5538

0.6760

0.3704

0.606

0.4067

0.6010 

CyBERT  [347]

0.6346

0.6173

0.5980

0.5337

0.6887

0.5676

0.615

0.4146

0.6065 

CySecBERT

0.6137

0.5545

0.5887

0.5404

0.6752

0.5551

0.486

0.3915

0.5468 

domain  tasks  into  account,  we  can  conclude  that  their  model  might  have  learnt  very 

little  overall,  as  it  is  seldom  better,  sometimes  worse  and  most  often  on  par  with 

BERT.  This  can  be  attributed  to  the  training  process  of  Ranade  et  al. [347], who trained  their  model  only  on  17,000  documents  with  one  epoch,  whereas  our  model 

is  trained  on  4,300,000  documents  with  30  epochs. 

11.4.2.4  Conclusion 

In  the  evaluation,  we  have  shown  that  the  model  developed  in  this  work  is  very 

well  adapted  to  the  cybersecurity  context.  The  tasks  have  demonstrated  that  the 

CySecBERT  model  is  able  to  outperform  the  BERT  baseline  and  the  CyBERT 

model  by  Ranade  et  al.  [347]  consistently  across  all  cybersecurity  tasks.  We  evaluated  these  models  on  intrinsic  cybersecurity  tasks  where  we  summarized  how 

accurate  the  models  represent  documents  and  words  in  latent  space.  Based  on  these 

tasks,  the  fundamental  quality  of  the  language  model  has  been  assessed.  In  addition, 

we  evaluated  the  three  models  using  extrinsic  cybersecurity  tasks  that  demonstrate 

the  practicality  of  the  model  in  most  real-world  application  contexts.  Our  model 

improves  the  results  of  these  tasks  by  up  to  0.027  F1  points  compared  to  the  other 

two  models  and  it  achieves  its  highest  improvement  on  an  in-depth  cybersecurity 

task  where  very  specific  language  differences  have  to  be  considered.  Moreover, 

we  analysed  the  phenomenon  of  catastrophic  forgetting  by  evaluating  our  model 

on  standard  NLP  tasks.  Although  we  observed  a  deterioration  in  performance  in 

these  tasks,  it  is  only  within  the  expected  range  of  decline.  Besides,  we  concluded 

that  the  CyBERT  model  of  Ranade  et  al. [347]  may  have  been  trained  on  a  much too  small  corpus  with  too  few  training  steps  (CyBERT:  17,000  documents  and  one 

epoch  versus  our  CySecBERT:  4,300,000  documents  and  30  epochs).  We  can  say 

with  confidence  that  our  model  is  capable  of  handling  a  wide  range  of  cybersecurity 

tasks  while  retaining  the  original  language  modelling  knowledge. 
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In  this  work  we  propose  a  novel  state-of-the-art  cybersecurity  language  model  based 

on  BERT  [ 89].  We  performed  DAPT  on  this  model  with  a  sensibly  chosen  cybersecurity  corpus.  The  corpus  consists  of  a  variety  of  source  data  structures,  such 

as  blogs,  scientific  paper,  as  well  as  Twitter  data.  The  data  and  the  sources  were 

selected  to  be  appropriate  for  cybersecurity  research  and  practice.  Furthermore,  the 

size  of  the  dataset  and  the  structure  of  the  training  process  were  chosen  to  prevent 

catastrophic  forgetting  on  the  one  hand,  and,  on  the  other  hand,  to  enable  enough 

learning  for  the  model  to  contribute  to  the  general  field  and  to  the  specific  niches 

of  cybersecurity.  We  explored  this  through  a  pre-evaluation  phase  by  tuning  the 

hyperparameters  in  terms  of  catastrophic  forgetting  and  domain  quality.  We  then 

highlighted  the  performance  of  our  model  with  a  thorough  main  evaluation  of  vari-

ous  tasks  and  drew  a  comparison  to  the  BERT  baseline  as  well  as  the  current  state 

of  the  art  of  cybersecurity  language  models.  First,  we  evaluated  the  models  on  two 

intrinsic  tasks,  where  we  demonstrate  that  the  quality  of  our  model  improves  in 

terms  of  the  learned  representation  space,  i.e.  how  well  the  cybersecurity-specific 

instances  (words  and  texts)  can  be  distinguished  from  each  other.  Table  11.4  and  11.5 

show  the  substantial  performance  increases  by  our  model.  Second,  we  evaluated  the 

model  together  with  the  other  two  models  for  cybersecurity-specific  classification 

and  NER  tasks  to  exemplify  the  usefulness  and  practicality  of  the  model  in  appli-

cation  contexts.  Our  model  outperforms  the  other  models  in  every  task,  which  can 

be  derived  from  Table  11.6  and  11.7. The  greatest  improvement  is  observed  in  the special  CTI  classification  dataset,  suggesting  that  the  model  is  particularly  beneficial  when  dealing  with  very  specific  cybersecurity  language  that  is  not  contained 

in  the  training  dataset  of  the  standard  BERT  model.  Our  evaluation  concludes  with 

a  focus  on  catastrophic  forgetting  by  which  we  assessed  the  performance  of  our 

model  against  a  general  NLP  benchmark.  While  these  results  (Table  11.9)  point  out that  our  model  does  indeed  degrade  them  overall,  they  also  show  that,  as  intended, 

there  is  no  catastrophic  forgetting  and  that  the  final  model  has  combined  much  of 

its  original  knowledge  with  the  new  knowledge  about  cybersecurity. 

While  we  are  aware  that  the  current  state  of  the  art  on  research  in  language  mod-

eling  and  NLP  generally  tends  to  focus  on  larger  language  models  like  GPT-3  by 

Brown  et  al.  [ 47], we  have  chosen  the  BERT  model  on  purpose.  Most  of  the  cybersecurity  research  and  especially  practice  does  not  have  the  necessary  resources  to 

apply  large  language  models.  In  most  cases,  the  BERT  model  can  still  be  considered 

the  standard  model  in  ML  application  contexts  such  as  the  cybersecurity  domain. 

In  this  way,  our  work  is  most  beneficial  to  the  research  landscape  and  to  practice. 
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11.5.1  Practical  and  Theoretical  Implications 

Our  work  contributes  to  research  and  pratice  through  a  novel,  state-of-the-art  cyber-

security  model  called  CySecBERT,  which  we  have  published.  We  also  publish  the 

associated  dataset  so  that  it  can  contribute  to  further  research.  Thus,  our  work  has 

several  implications  for  practice  and  research: 

A  novel,  state-of-the-art  language  model  for  cybersecurity  that  is  useful  for 

various  tasks. With  our  research  surrounding  the  model,  we  have  aimed  to  find  a 

solution  to  increase  the  performance  of  machine  learning  in  as  many  cybersecurity 

language  tasks  as  possible.  Our  model  provides  utility  for  a  large  number  of  tasks, 

as  can  be  estimated  based  on  the  success  in  extrinsic  task  scores  as  well  as  inferred from  intrinsic  task  scores.  Thereby,  they  show  that  the  representation  space  is  better 

for  the  domain-dependent  language  with  our  model.  With  the  release  of  our  model, 

we  are  paving  the  way  for  better  cybersecurity  tools,  as  practitioners  can  easily 

use  the  new  model  in  existing  pipelines,  for  example,  in  alert  aggregation  [231], 

in  detection  of  phishing  websites  [495, 507], or  even  in  malware  detection  [377]. 

More  advanced  tools  will  then  also  be  the  result  of  new  research  derived  from  the 

model  and  have  the  potential  to  improve  the  results  in  various  tasks  by  incorporating 

further  research  ideas,  as  has  already  been  implemented  as  part  of  the  research  of 

Bayer,  Frey,  and  Reuter  [ 27], for  example,  where  the  CySecBERT  model  has  been integrated.  This  can  be  pursued  on  a  smaller  scale,  where  the  model  is  not  the  focus but  serves  as  a  foundation  on  which  further  techniques  such  as  data  augmentation, 

meaningful  data  selection,  few-shot  learning  or  specific  applications  are  built.  Yet, 

it  can  also  be  done  on  a  larger  scale,  where  the  model  is  the  subject  of  research,  for example  by  analysing  its  results  in  explainable  AI  approaches. 

In  our  evaluation,  we  demonstrate  that  the  CySecBERT  model  can  serve  as  a 

substitute  for  other  models  in  the  field  of  cybersecurity  by  providing  new  state-of-

the-art  performances.  However,  the  CySecBERT  model  will  not  be  suitable  as  a 

replacement  for  every  type  of  cybersecurity  model.  We  expect  that  further  work  in 

this  area  will  adopt  our  methodology  and  will  train  other  models  that  may  be  even 

more  specialized  regarding  a  specific  cybersecurity  topic  or  that  may  have  a  much 

larger  neuron  size. 

Evaluation  of  catastrophic  forgetting  in  terms  of  learning  rate,  dataset  size, 

and  number  of  epochs. When  training  the  CySecBERT  model,  we  paid  special 

attention  to  catastrophic  forgetting  phenomena  where  the  trained  model  loses  its 

valuable  initial  knowledge.  To  ensure  that  the  level  of  catastrophic  forgetting  is  kept to  a  minimum,  we  first  performed  a  preliminary  evaluation  of  the  hyperparameters’ 

learning  rate,  dataset  size,  and  number  of  epochs,  as  research  in  this  area  suggests 

that  the  second  training  process  should  not  overshadow  the  first  training  [ 89, 426]. 
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We  narrowed  down  the  space  of  possible  hyperparameter  constellations  by  these 

considerations  and  evaluated  seven  fully  trained  CySecBERT  models  on  a  standard 

NLP  and  on  a  cybersecurity  task  to  measure  the  degree  of  catastrophic  forgetting 

and  the  quality  in  the  cybersecurity  domain.  Our  results  are  in  line  with  research 

and  show  that  the  training  process  should  not  be  too  heavyweight,  e.g.  by  heavy 

updates  due  to  a  high  learning  rate,  but  also  not  too  lightweight,  so  that  domain 

knowledge  is  not  acquired,  e.g.  due  to  a  smaller  dataset.  In  the  final  section  of 

our  main  evaluations,  we  evaluated  the  CySecBERT  model  on  the  SuperGLUE 

benchmark,  which  consists  of  standard  NLP  tasks,  and  compared  it  with  the  BERT 

model  and  the  CyBERT  model  of  Ranade  et  al. [347].  While  the  results  show  that our  model  performs  worse  than  the  BERT  model,  this  is  to  be  expected  since  some 

level  of  catastrophic  forgetting  will  always  occur  when  further  training  the  model 

towards  a  certain  domain.  However,  it  is  interesting  to  note  that  the  results  of  the 

CyBERT  model  of  Ranade  et  al.  [347]  are  very  similar  to  the  BERT  model,  which  is due  to  the  small  training  process  which  the  CyBERT  model  originates  from.  While 

the  CyBERT  model  is  trained  on  only  17,000  documents  with  one  epoch,  our  model 

is  trained  on  about  4,300,000  documents  with  30  epochs. 

It  is  not  clear  whether  these  results,  especially  with  regard  to  the  hyperparameters, 

are  generalizable  to  other  language  models,  especially  to  very  large  language  models 

such  as  GPT-3  and  4.  For  an  evaluation  with  a  broader  hyperparameter  search,  as 

for  example  executed  with  a  bio-inspired,  evolutionary  method  from  Ibor  et  al. 

[165],  or  for  a  focus  on  these  very  large  language  models,  we  expect  research  to be  primarily  concerned  with  catastrophic  forgetting  and  with  having  the  necessary 

extensive  resources. 

A  cybersecurity  dataset  containing  most  relevant  sources  for  the  training 

process. The  dataset  was  created  with  consideration  given  to  including  a  variety  of sources  and  textual  types.  This  ensures  that  the  model  can  be  applied  to  a  broad 

range  of  cybersecurity  tasks.  However,  we  anticipate  future  work  analysing  the 

published  dataset,  for  example,  to  enhance  its  quality  based  on  specific  criteria  or 

to  identify  any  unintended  biases.  The  dataset  can  also  serve  as  a  basis  for  training other  language  models.  Although  we  have  deliberately  chosen  this  size  of  the  dataset 

for  BERT  training  to  prevent  catastrophic  forgetting,  it  might  be  useful  to  expand 

it,  which  can  easily  be  done  by  collecting  more  data  from  the  sources  that  we  have 

already  selected.  It  might  also  make  sense  to  utilise  larger  language  models  that 

might  achieve  even  greater  performance  or  that  might  even  use  neural  architecture 

search  to  find  a  suitable  architecture  for  special  use  cases,  as  proposed  by  Shang  et al. [396]  or  Okunoye  and  Ibor  [310]. 
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11.5.2  Ethical  Considerations 

We  would  like  to  emphasise  that  we  did  not  explicitly  focus  on  and  analyse  social 

biases  in  the  data  or  the  resulting  model.  While  this  may  not  be  so  damaging  for  most application  contexts,  there  are  certainly  applications  that  depend  heavily  on  these 

biases,  and  including  any  kind  of  discrimination  can  have  serious  consequences. 

As  authors,  we  would  like  to  express  our  warnings  regarding  the  use  of  the  model 

in  such  contexts.  Nonetheless,  we  aim  for  an  open  source  mentality,  observing  the 

great  impact  it  can  have,  and  therefore  transfer  the  thinking  to  the  user  of  the  model, drawing  on  the  many  previous  discussions  in  the  open  source  community. 
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Multi-Level  Fine-Tuning,  Data 

Augmentation,  and  Few-Shot  Learning  for  12

Specialized  Cyber  Threat  Intelligence 

Abstract 

Gathering  cyber  threat  intelligence  from  open  sources  is  becoming  increasingly 

important  for  maintaining  and  achieving  a  high  level  of  security  as  systems 

become  larger  and  more  complex.  However,  these  open  sources  are  often  sub-

ject  to  information  overload.  It  is  therefore  useful  to  apply  machine  learning 

models  that  condense  the  amount  of  information  to  what  is  necessary.  Yet,  pre-

vious  studies  and  applications  have  shown  that  existing  classifiers  are  not  able 

to  extract  specific  information  about  emerging  cybersecurity  events  due  to  their 

low  generalization  ability.  Therefore,  we  propose  a  system  to  overcome  this 

problem  by  training  a  new  classifier  for  each  new  incident.  Since  this  requires  a 

lot  of  labeled  data  using  standard  training  methods,  we  combine  three  different 

low-data  regime  techniques—transfer  learning,  data  augmentation,  and  few-shot 

learning—to  train  a  high-quality  classifier  from  very  few  labeled  instances.  We 

evaluate  our  approach  using  a  novel  dataset  derived  from  the  Microsoft  Exchange 

Server  data  breach  of  2021  which  was  labeled  by  three  experts.  Our  findings 

reveal  an  increase  in  F1  score  of  more  than  21  points  compared  to  standard  train-

ing  methods  and  more  than  18  points  compared  to  a  state-of-the-art  method  in 

few-shot  learning.  Furthermore,  the  classifier  trained  with  this  method  and  32 

instances  is  only  less  than  5  F1  score  points  worse  than  a  classifier  trained  with 

1800  instances. 
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Experimental 

Code:

https://github.com/PEASEC/Specialized-Cyber-Threat-

Intelligence  Dataset:  https://github.com/PEASEC/msexchange-server-cti-dataset 

12.1

Introduction 

Social  media  is  where  cutting-edge  and  critical  cyber  threat  information  is  dissemi-

nated,  which  is  highly  relevant  to  researchers,  security  providers,  security  operation 

centers,  urban  infrastructures,  and  computer  emergency  response  teams  (CERTs), 

among  others  [291, 367]. While  there  have  been  several  research  works  on  general cyber  threat  event  detection  [ 93, 110], the  aim  of  this  work  is  to  enable  fine-grained and  potentially  individualized  collection  of  cybersecurity  information  in  open  data 

sources  such  as  Twitter. 

A  major  challenge  in  gathering  cybersecurity-related  information,  also  called 

Cyber  Threat  Intelligence  (CTI)  [279], which  needs  to  be  specialized,  i.e.  customiz-able,  is  that  information  in  this  area  is  very  dynamic  and  varies  greatly  from  past 

events  (in  terms  of  specific  names,  different  attack  vectors,  specific  attack  paths, 

affected  functions,  etc.)  [ 61].  As  a  result,  supervised  machine  learning  yields  poor results  because  these  dynamics  cannot  be  captured  in  the  learning  process.  Alternatively,  new  classifiers  could  be  trained  for  each  cyber  threat  event  so  that  the  new 

features  are  taken  into  account.  However,  since  machine  learning  usually  requires  a 

large  amount  of  data  for  normal  training,  this  would  result  in  having  to  label  a  dataset for  each  cyber  threat  event,  which  is  unrealistic  considering  the  effort  involved  and 

the  need  for  fast  and  up-to-date  information.  Against  this  background,  the  concept 

of  active  learning  systems  takes  a  first  step  towards  label  reduction  for  supervised 

machine  learning  for  cyber  threat  events  [363].  Active  learning  supports  the  labeling process,  so  that  only  the  instances  with  the  highest  learning  value  need  to  be  labeled 1  Minor  typographical  errors  in  the  original  publication  have  been  corrected  for  this  dissertation. 
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for  machine  learning.  However,  despite  this  method,  too  much  data  is  still  needed 

to  train  a  useful  classifier.  The  endeavor  sought  in  this  work  takes  an  even  stronger stance  on  labeling  reduction  by  proposing  a  system  consisting  of  few-shot  learning,  transfer  learning,  and  data  augmentation,  which  are  all  techniques  to  reduce 

the  amount  of  manual  labeling  required  for  a  high-quality  classifier.  With  few-shot 

learning,  it  is  sufficient  if  the  model  is  already  trained  with  very  few  instances,  as opposed  to  hundreds  or  thousands  in  the  case  of  active  or  normal  learning  [ 47]. This includes  special  learning  techniques  as  well  as  transfer  learning,  where  knowledge 

from  a  previous  task  is  transferred  to  the  new  one.  Data  augmentation  is  used  to  create  artificial  instances  from  the  training  data  using  label-preserving  transformations 

[ 29]. 

The  concept  of  few-shot  learning  is  extended  in  this  work  through  the  use  of 

multi-level  transfer  learning.  The  different  levels  start  with  a  model  that  has  been 

trained  on  a  large  general  dataset  and  thus  has  a  basic  prior  knowledge.  During  the 

next  steps,  this  model  is  approximated  more  and  more  to  the  actual  task  domain.  In 

this  way,  it  can  be  ensured  that  the  model  is  given  a  basic  cybersecurity  reference  in order  to  be  able  to  counter  the  dynamics  in  the  task,  in  addition  to  being  familiar  with the  task.  This  is  particularly  relevant  for  urban  infrastructures,  which  require  high 

resilience  against  cyberattacks,  as  well  as  for  CERTs,  as  they  need  to  collect  and 

communicate  information  in  the  most  reliable  and  targeted  way  possible  [362]. The data  augmentation  strategy  is  inspired  by  the  work  of  Bayer  et  al. [ 28]  and  follows the  example  of  Yoo  et  al.  [512]  by  utilizing  the  large  generation  model  GPT-3  to generate  new  instances  based  on  the  few  existing  labeled  ones. 

Our  paper  includes  several  contributions  relevant  for  the  cybersecurity  and 

machine  learning  community: 

•  A  novel  pipeline  combining  transfer  learning,  data  augmentation,  and  few-shot 

learning  for  rapid  development  of  effective  specialized  CTI  classifiers. 

•  Novel  techniques  of  data  augmentation  and  few-shot  learning  to  deal  with  a  small 

number  of  training  instances. 

•  A  new  specialized  CTI  dataset  annotated  by  three  experts  and  based  on  the  2021 

Microsoft  Exchange  Server  data  breach. 

The  code  and  dataset  of  this  study  are  freely  available 2. 

The  remainder  of  the  paper  is  structured  as  follows:  After  introducing  related 

work  on  transfer  learning,  data  augmentation,  few-shot  learning,  and  cyber  threat

2  Code:  https://github.com/PEASEC/Specialized-Cyber-Threat-Intelligence 

Dataset:  https://github.com/PEASEC/msexchange-server-cti-dataset/ 
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event  detection  and  intelligence  (Sect. 12.2), we  explain  the  concept  of  our  method (Sect. 12.3). It  is  subdivided  in  three  components  which  are  described  in  detail.  In Sect. 12.4  the  evaluation  is  presented  and  findings  are  given  in  detail.  The  last  section (Sect. 12.5)  contains  a  discussion  of  the  implications,  limitations,  and  potentials  for future  research. 

12.2

Related  Work 

12.2.1  Cyber  Threat  Event  Detection  and  Intelligence 

Cyber  threat  event  detection  can  be  defined  as  the  process  of  automatic  scraping 

of  the  webspace  and  Open  Source  Intelligence  (OSINT)  to  detect  possible  cyber-

security  events  [363, 374, 381]. Social  media  platforms  like  Twitter  are  part  of OSINT  and  provide  a  great  space  to  share  and  discuss  cybersecurity  vulnerabilities,  for  example.  While  vulnerability  databases  such  as  the  National  Vulnerability 

Database  (NVD)  are  often  of  high  quality  and  much  higher  credibility  of  vulner-

ability  information,  Twitter  posts  can  be  more  up-to-date  and  rich  [ 15].  There  are some  automated  systems  and  research  that  already  scrape  Twitter  and  other  OSINT 

sources  to  detect  cyber  events.  Some  examples  are  the   CySecAlert  system  by  Riebe et  al. [363] or   SONAR  by  Sceller  et  al.  [381],  which  collect  cybersecurity  relevant tweets  from  Twitter,  filter  them,  and  present  them  in  a  manageable  dashboard. 

CTI  on  the  other  hand  describes  the  process  of  collecting  additional  informa-

tion  after  the  first  detection  of  a  cyber  threat  event.  The  process  helps  deliver  the context  of  the  vulnerabilities  found  to  assist  CERTs  and  cybersecurity  organizations  make  sound  decisions  and  find  quick  solutions  [ 5, 445, 459].  CTI  is  currently mostly  accomplished  by  manually  collecting  information  on  different  platforms  [ 5]. 

It  relies  heavily  on  manual  tasks  and  is  therefore  labour  intensive  [459]. However, there  are  already  some  threat  intelligence  platforms,  such  as  Facebook  ThreatEx-change  or  CrowdStrike,  that  are  able  to  automatically  detect,  monitor,  and  analyze 

cyber  threat  occurrences  [445]. A  manageable  dashboard  is  also  provided  by  the Cyber  Threat  Observatory  [193], which  aggregates  cybersecurity  information  from various  sources,  including  social  media,  security  advisories,  indicators  of  compromise  (IoCs)  and  CVEs.  For  an  overview  of  different  CTI  platforms  and  tools,  see 

the  work  of  Kuehn  et  al. [221]. 

However,  these  systems  need  too  much  time  to  adapt  to  a  newly  discovered  threat 

that  is,  for  example,  propagated  on  Twitter,  and  cannot  be  extensively  customised. 

It  is  possible  that  this  has  not  yet  been  addressed  because  current  machine  learning 

systems  are  generally  too  rigid  and  cannot  be  easily  generalized  to  new  situations. 

Our  work  aims  to  solve  this  problem  by  providing  a  novel  pipeline  that  allows
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the  rapid  training  of  new  specialized  CTI  classifiers  through  significantly  reduced 

labeling  requirements.  This  is  achieved  with  novel  techniques  in  the  field  of  transfer 

learning,  data  augmentation  and  few-shot  learning. 

Once  the  CTI  information  has  been  collected,  there  are  several  methods  and 

research  approaches  that  can  be  used  to  analyze  this  information  and  provide  useful 

insights.  TTPDrill  by  Husari  et  al.  [163],  for  example,  extracts  and  constructs  attack patterns  from  threat  and  blog  articles.  IoCMiner  by  Niakanlahiji  et  al.[307] is able to  extract  IoCs  from  Twitter  data.  Similarly,  GoodFATR  by  Caballero  et  al. [ 51] 

collects  IoCs  from  Twitter  and  five  other  sources  (including  Telegram  and  blogs). 

They  also  give  a  good  overview  of  different  IoC  extraction  works.  Many  of  these 

works  use  or  can  be  complemented  by  machine  learning.  While  our  approach  aims 

to  provide  a  specialized  CTI  collection  in  new  cyber  threat  events,  it  could  also  be 

used  to  enhance  the  quality  of  these  works. 

12.2.2  Transfer  Learning 

Transfer  learning  describes  the  process  of  transferring  knowledge  gained  from  train-

ing  a  neural  network  from  one  task  to  another  related  task  [323, 444].  This  technique is  now  one  of  the  standard  learning  methods  for  machine  learning,  especially  in  the 

field  of  natural  language  processing  (NLP).  It  is  particularly  powerful  for  tasks  where there  is  not  enough  training  data  or  it  is  difficult  to  manually  adjust  the  data  for  training.  In  these  cases,  it  is  possible  to  use  a  pre-trained  neural  network  that  was  trained to  solve  a  related  task  or  with  more  easily  accessible  data.  Afterwards  the  neural 

network  is  fine-tuned  with  the  task-specific  data  to  fit  the  wanted  task.  One  of  the 

most  frequently  used  pre-trained  models  is  BERT  by  Devlin  et  al.  [ 89]. BERT  (short for  Bidirectional  Encoder  Representations  from  Transformers)  is  a  pre-trained  deep 

bidirectional  transformer  for  language  understanding.  In  essence,  it  is  trained  by 

predicting  words  in  a  sentence  given  the  other  words,  also  called  masked  language 

modeling.  It  has  a  lot  of  widely  used  descendants  trained  for  many  different  tasks, 

such  as  BioBERT  [238],  SciBERT  [ 34],  and  CamemBERT  [276]. While  BERT  is already  a  considerably  large  model,  nowadays  far  larger  models,  like  GPT-3  from 

[ 47],  are  trained.  Compared  to  BERT’s  base  model  with  110  million  parameters, GPT-3  has  175  billion  parameters,  however,  GPT-3  is  not  publicly  available  and 

cannot  be  easily  fine-tuned  due  to  its  size. 

Transfer  learning  can  be  an  important  step  to  overcome  the  high  labeling  require-

ments  through  knowledge  transfer.  Unlike  other  work  in  this  field,  we  do  not  just 

train  a  pre-trained  model  for  the  actual  task,  but  propose  to  train  a  model  further  and further  towards  the  actual  task  through  several  fine-tuning  steps.  Other  work  may
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not  have  addressed  this  because  it  requires  multiple  datasets  that  are  more  and  less 

specific  to  the  task  at  hand.  Moreover,  this  technique  can  only  be  used  to  handle  a 

small  number  of  tasks.  In  our  case,  however,  this  is  exactly  what  we  want,  as  we 

need  a  basic  model  that  can  be  easily  adapted  to  the  different  cybersecurity  events 

and  thus  only  very  few  labeled  instances  are  needed. 

12.2.3  Data  Augmentation 

Data  augmentation  is  the  concept  for  artificially  enlarging  the  training  datasets 

for  machine  learning  by  transforming  the  existing  ones.  Originated  and  heavily 

used  in  computer  vision,  it  is  now  also  increasingly  being  explored  on  textual  data 

[ 29].  NLP  data  augmentation  techniques  can  be  applied  to  the  raw  text  or  also  on the  numerical  representations.  Ranging  from  small  transformations,  i.e.  flipping 

characters  [ 33]  or  inducing  adversarial  noise  [181], to  interpolated  [427] or even newly  created  instances  [ 18], data  augmentation  can  have  great  effects.  Nevertheless, as  Longpre,  Wang,  and  DuBois  [265]  point  out,  the  success  of  data  augmentation in  NLP  is  often  not  perceivable  when  fine-tuning  large  pre-trained  models.  A  data 

augmentation  technique  needs  to  incorporate  new  linguistic  patterns  as  otherwise 

the  changes  are  too  small  and  already  captured  by  the  pre-training  phase  of  the 

model.  For  example,  simple  synonym  replacement  methods  have  not  been  shown 

to  be  beneficial  with  pre-trained  models,  as  these  synonyms  are  already  mapped  to 

nearly  the  same  vector  for  their  numerical  representation  [297].  On  the  other  hand, there  are  generation  models  that  can  integrate  new  linguistic  patterns,  for  example, 

through  their  own  training  data  during  pre-training,  as  for  example  shown  by  Yoo  et 

al. [512]  with  the  GPT-3  model.  The  challenge  with  using  these  models  is  to  make the  generations  truly  label  preserving.  This  is,  for  example,  done  by  Anaby-Tavor  et 

al. [ 18], Abonizio  and  Junior  [ 4]  and  Bayer  et  al. [ 28]. The  models  are  conditioned by  fine-tuning  on  the  label-induced  training  data  (or  just  the  class  data)  and  are  then tasked  to  complete  a  text  given  the  label  conditioned  beginning  (prompt).  As  this  is 

oftentimes  not  sufficient  to  achieve  a  high  label  preservation,  a  filter  mechanism  is 

used  that  removes  artificial  instances  that  are  unlikely  to  fit  the  class.  For  example, Anaby-Tavor  et  al. [ 18]  use  a  classifier  trained  on  the  data  to  predict  whether  the new  instance  can  be  assigned  to  the  expected  label. 

In  this  work,  we  take  advantage  of  recent  research  directions  by  combining  the 

strategy  of  using  GPT-3  to  generate  training  data  and  then  filtering  out  the  instances that  are  not  close  enough  to  the  respective  class.  In  this  way,  we  can  create  instances with  a  high  degree  of  novelty,  i.e.  instances  with  linguistic  patterns  that  were  not 

previously  included  in  the  training  data,  but  also  preserve  the  label.  If  we  use  this  for
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our  goal  of  reducing  the  data  needed  for  specialized  CTI,  we  try  to  generate  instances that  have  these  novel  linguistic  patterns  at  best  in  the  cybersecurity  domain,  but  are still  very  close  to  the  original  data,  especially  since  the  data  must  be  very  specific. 

For  an  overview  of  the  data  augmentation  methods  that  could  also  be  used  in  this 

study,  we  advise  the  reader  to  have  a  look  at  the  survey  from  Bayer,  Kaufhold,  and 

Reuter  [ 29]. 

12.2.4  Few-Shot  Learning 

Few-shot  learning  describes  the  training  of  effective  classifiers  on  the  basis  of  a 

small  number  of  examples.  While  there  are  several  strands  of  research  on  few-shot 

learning  [ 44], in  this  study  we  focus  on  the  use  of  pre-trained  language  models. 

At  the  latest,  the  large  language  model  GPT-3  by  Brown  et  al. [ 47]  paved  the  way for  using  these  kinds  of  models,  as  it  reaches  astounding  performance  even  without 

task-specific  training  data.  However,  as  GPT-3  is  too  large  for  most  companies  and 

research  institutes,  the  research  field  adapted  smaller  language  models  to  reach 

similar  or  even  better  few-shot  performances  [431]. 

Pre-trained  language  models  can  be  especially  beneficial  for  few-shot  settings 

when  the  instances  are  reformulated  in  a  cloze-style  way.  Cloze  tests  [435] are  tests where  some  words  in  the  text  are  missing  and  have  to  be  completed.  For  few-shot 

learning,  instances  are  rephrased,  often  into  questions,  so  that  the  text  contains  the 

label  (or  a  word  that  can  be  mapped  to  the  label),  generally  within  the  answer  to 

the  question.  The  label,  known  (training)  or  not  known  (testing  and  inference),  is 

masked  out,  so  that  the  language  model  can  fill  it  with  the  right  word  and  a  label 

can  be  inferred.  Using  the  language  model  directly  is  more  effective  for  few-shot 

learning  than  the  classical  way  of  training  a  classifier  head  on  top  of  it,  as  there  are no  more  randomly  initialized  parameters  that  have  to  be  learned  [123]. 

A  pattern  describes  the  transformation  of  the  input  instance  to  the  cloze-like  text. 

The  verbalizer  maps  the  predicted  words  for  the  mask  to  the  label.  An  example  for 

a  pattern  and  a  verbalizer  can  be  seen  in  Fig. 12.1. 

Gao,  Fisch,  and  Chen  [123]  show  that  the  choice  of  template  and  verbalizer  has a  major  impact  on  the  resulting  performance.  Since  domain  knowledge  is  often 

necessary  for  these,  the  authors  propose  a  method  to  automatically  find  meaningful 

templates  and  verbalizer.  For  this  purpose,  they  use  a  language  model  and  the  existing training  instances  to  predict  the  words  for  the  verbalizer  and  template.  Zhang  et 

al. [523]  take  a  different  perspective  on  automatic  template  generation  with  the DART  method  by  making  the  template  differentiable.  They  use  special  tokens  in 

the  template  that  are  mapped  into  trainable  parameters.  These  template  parameters

[image: Image 42]
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Fig.  12.1  Example  of  a  template  and  a  verbalizer  and  how  they  are  applied  on  an  instance are  then  optimized  together  with  the  target  label.  PERFECT  by  Mahabadi  et  al. 

[271]  leverages  task-specific  adapters  to  replace  template  tokens.  Adapters  make  it possible  to  train  only  the  newly  added  parameters,  which  are  able  to  transform  the 

hidden  states,  while  freezing  all  other  parameters. 

Schick  and  Schütze  [383]  propose  a  semi-supervised  few-shot  learning  technique,  called  PET.  They  take  several  manually  designed  templates  and  use  the 

training  data  to  train  on  each  one  a  pre-trained  language  model.  They  take  these 

models  to  generate  pseudo-labels  for  unlabeled  data.  A  classifier  is  then  trained  on 

the  resulting  dataset.  Tam  et  al. [431]  adapt  the  PET  method  to  not  be  dependent on  additional  training  data  and  can  even  improve  the  performances.  Contrary  to 

the  preceding  PET  technique,  the  word  probabilities  are  computed  not  only  for  the 

verbalizer  words,  like  “yes”  and  “no”,  but  also  for  all  other  words.  In  the  training, incorrect  class  tokens  are  explicitly  penalized  and  correct  tokens  are  encouraged. 

Furthermore,  ADAPET  [431]  introduces  a  label  conditioning  step  in  which  the model  is  tasked  to  predict  other  tokens  in  the  sentence  given  the  label. 

In  our  pipeline,  we  incorporate  the  ADAPET  technique  into  the  proposed  multi-

level  fine-tuning  technique  and  adopt  it  for  the  task  of  specialized  CTI.  Together 

with  the  novel  technique  of  data  augmentation,  we  can  create  a  system  that  enables 

specialized  CTI  by  reducing  the  amount  of  data  required  for  high-quality  classifiers. 

12.2.5  Research  Gap 

Our  study  addresses  several  research  gaps  which  are  highly  relevant  for  researchers 

as  well  as  practitioners.  Most  importantly,  our  research  paves  the  way  for  fine-
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grained  and  specialized  CTI.  Current  research  addresses  CTI  from  a  very  coarse 

perspective,  by  building  classifiers,  like  Riebe  et  al.  [363], that  are  able  to  find  general cybersecurity  information.  As  a  result,  only  a  small  amount  of  data  reduction  can  be 

achieved  in  these  information-overloaded  situations.  On  the  other  hand,  specialized 

classifiers  are  not  designed  to  generalize  well  to  new  situations.  Our  work  fills  this gap  by  introducing  a  pipeline  for  specialized  CTI,  where  new  cyber  threat  events 

are  encountered  with  the  very  fast  creation  of  new  classifiers.  By  addressing  this 

fine-grained  information  gathering  challenge,  we  create  a  novel  dataset  combined 

with  a  sophisticated  labeling  guideline  for  CTI.  Furthermore,  with  our  pipeline  we 

address  research  gaps  of  machine  learning  low-data  regimes.  Our  data  augmentation 

strategy  is  the  first  to  explore  the  generation  capabilities  of  large  language  models 

with  constraining  them  through  filtering  mechanisms.  We  combine  the  works  of  Yoo 

et  al.  [512]  and  Bayer  et  al. [ 28]  by  using  GPT-3  with  a  human-in-the-loop  filtering mechanism.  We  extend  the  few-shot  learning  research  by  proposing  a  multi-level 

fine-tuning  approach.  In  the  process,  the  model  learns  a  very  broad  knowledge  in 

the  first  levels,  which  in  the  later  levels  becomes  more  and  more  directed  to  the 

specific  CTI  task. 

12.3

Concept 

12.3.1  Dataset  Creation 

The  goal  of  dataset  creation  is  to  extract  specific  CTI  information  during  a  significant cyber  threat  event.  In  this  work,  we  focus  on  Twitter  as  a  data  source  because 

it  provides  a  wide  range  of  vulnerability  information,  unlike  the  NVD,  which  only 

provides  brief  information  that  is  not  as  up-to-date,  does  not  provide  direct  mitigation advice,  and  does  not  include  exploit  information  [ 15].  However,  we  are  also  aware  of the  disadvantages  of  Twitter,  as  the  information  may  not  be  as  credible,  for  example 

(more  on  this  in  the  limitations  in  Sect. 12.5.2). 

This  dataset  is  subsequently  binary-labeled  according  to  the  relevance  of  the 

information  for  CTI  and  for  cybersecurity  experts.  We  focused  on  the  Microsoft 

Exchange  Server  data  breach  of  2021,  where  four  zero-day  exploits  were  discovered. 

While  the  first  report  of  a  vulnerability  was  already  made  in  January  of  that  year,  in March  various  attackers  were  found  to  be  exploiting  the  vulnerabilities  and  a  proof 

of  concept  was  released. 

We  used  the  Twitter  APIv2  to  gather  50,000  tweets  in  March  that  fulfill  the 

query   “Microsoft  Exchange”  OR  “MS  Exchange”  OR  “CVE-2021-26855”  OR 

 “CVE-2021-26857” OR “CVE-2021-26858” OR “CVE-2021-27065” . From this, 
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we  filtered  out  the  tweets  that  were  not  in  English,  resulting  in  39474  tweets.  The  used query  is  intended  to  replicate  the  process  of  filtering  Tweets  by  security  experts  in 

the  event  of  the  incident.  Examination  of  the  resulting  posts  shows  that  only  a  subset of  them  are  really  relevant  to  an  expert.  While  they  contain  a  lot  of  relevant  and  up-to-date  information  such  as  references  to  patches  and  remedies,  proof  of  concepts, 

code,  IoCs  and  attacker  names,  they  also  contain  a  lot  of  irrelevant  information  aimed at  the  general  public  or,  for  example,  only  spam,  podcasts  and  news  aggregations. 

For  these  tweets,  we  drew  a  random  sample  of  3001  posts  for  labeling  and  resolved 

the  links  shortened  by  Twitter,  as  the  full  URLs  could  be  an  important  indicator  in 

the  context  of  CTI. 

For  the  labeling  process,  we  have  created  a  codebook  that  contains  guidelines 

describing  what  content  is  relevant  and  what  is  not,  closely  following  the  staff  of 

CERTs  who  work  with  this  type  of  data.  Our  goal  was  to  collect  precise  information 

that  would  yield  maximum  benefit  for  them.  This  does  not  include,  for  example, 

information  that  is  primarily  intended  for  a  wider  audience  or  information  that  is  not current.  For  instance,  valuable  insights  can  be  gained  through  details  about  exploits, 

IoCs,  and  the  vulnerabilities  themselves  (including  remediation,  impact,  solutions, 

etc.).  Figure  12.2  presents  one  case  that  is  relevant  and  another  that  is  not,  both  from the  process  of  labeling.  The  relevant  example  contains  information  about  patching 

the  Microsoft  software,  while  the  example  labeled  as  not  relevant  does  not  provide 

any  in-depth  information  or  technical  insights  that  would  be  immediately  useful  to 

a  cybersecurity  professional. 

Fig.  12.2  Two  examples  of  the  labeling  procedure,  the  upper  one  not  relevant  and  the  lower one  relevant
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The  labeling  of  the  data  was  performed  by  three  cybersecurity  experts  guided 

by  the  codebook.  The  guidelines,  which  gave  annotators  clear  guidance  on  when 

to  mark  a  post  as  relevant  or  irrelevant,  were  iteratively  updated  by  the  annotation 

leader.  A  first  draft  of  this  was  developed  with  the  help  of  the  CTI  concept  [279]: 

“Threat  intelligence  is  referred  to  as  the  task  of  gathering  evidence-based  knowledge, 

including  context,  mechanisms,  indicators,  implications,  and  actionable  advice,  about 

an  existing  or  emerging  menace  or  hazard  to  assets  that  can  be  used  to  inform  decisions regarding  the  subject’s  response  to  that  menace  or  hazard.” 

After  an  initial  sifting  of  the  tweets  and  again  after  the  first  labeling  of  750  tweets, the  process  was  refined  by  the  annotation  leader.  The  full  guidelines  can  be  found 

in  the  Appendix  A.4  of  the  Electronic  Supplementary  Material. 

The  first  round  of  annotation  of  750  tweets  was  conducted  by  the  annotation 

leader,  who  updated  the  guidelines  after  gathering  several  insights.  He  and  the  other 

two  cybersecurity  experts  then  annotated  the  750  tweets  again.  After  this  round, 

all  three  experts  discussed  the  cases  they  were  not  sure  about  and  corrected  them  if 

necessary.  Regarding  the  intercoder  reliability  the  Kappa  Scores  were  calculated  (see 

Table  12.1). Subsequently,  each  annotator  tagged  750  different  examples,  resulting in  a  total  of  3001  commented  Twitter  posts  for  the  complete  dataset  (the  labels  of 

the  750  instances  of  the  first  round  were  determined  by  majority  vote). 

Table  12.1  Intercoder  reliability  calculated  with  the  Kappa  Score 

Coder

Score 

C1  and  C2

0.8763 

C2  and  C3

0.7446 

C1  and  C3

0.8709 

The  dataset  was  then  split  into  a  full  and  few-shot  training  set  and  development 

set.  The  splits  (train,  dev)  consist  of  1800  and  600  instances  for  the  full  set  and  32 

and  8  instances  for  the  few-shot  set,  respectively.  The  test  set  is  the  same  in  both cases  and  consists  of  601  instances.  For  a  complete  overview  of  the  dataset  splits 

and  class  distribution,  see  Table  12.2. 
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Table  12.2  Split  of  the  dataset  with  count  of  relevant  and  not  relevant  labels  in  the  datasets Split

Count

Relevant

Not  Relevant 

Train  (full)

1800

949

851 

Train

32

16

16 

Dev  (full)

600

273

327 

Dev

8

4

4 

Test

601

304

297 

Total

3001

1526

1475 

12.3.2  Approach 

Our  system  for  dynamic,  specialized  cyber  threat  event  detection  consists  of  three 

components,  all  of  which  help  to  boost  performance  with  little  data.  We  explain  the 

three  components  in  detail  in  the  following: 

Multi- Level  Fine- Tuning:  In  light  of  the  success  of  large  pre-trained  mod-

els  such  as  BERT,  we  propose  to  further  tune  such  models  on  several  levels  of 

domain-dependent  data  (see  Fig. 12.3).  The  levels  begin  from  a  broader  view  and are  narrowed  down  to  the  actual  task.  In  our  case,  we  first  take  a  pre-trained  BERT 

model  (which  can  be  seen  as  the  0th  level  of  fine-tuning),  train  it  with  masked 

language  modeling  on  cybersecurity  data.  We  then  tune  the  resulting  model  for 

classification  on  the  CySecAlert  dataset  [363]  in  which  Twitter  posts  are  generally assigned  to  the  cybersecurity  domain.  Finally,  we  train  it  on  the  few  training  examples  of  the  specialized  cyber  threat  dataset.  The  rationale  behind  this  is  that  the 

model  gains  more  and  more  knowledge  as  it  is  tuned  to  more  and  more  fitting  tasks. 

The  0th  level  is  about  gaining  general  knowledge  of  text.  In  the  first  level,  the  dataset consists  of  papers,  blogs,  web  pages,  and  also  Twitter  data,  from  which  the  model 

gains  knowledge  about  cybersecurity  language  and  also  how  Twitter  data  is  written 

in  this  domain.  In  the  second  level,  the  model  should  gain  a  general  understanding 

of  the  relevance  of  cybersecurity  information.  Finally,  in  the  third  level,  the  model 

is  tuned  to  the  actual  task  data  to  which  it  can  transfer  the  knowledge  of  the  previous levels. 

GPT- 3 

Data 

Augmentation:  With  data  augmentation  we  can  create  new 

instances  from  existing  ones,  which  can  be  particularly  advantageous  when  the 

amount  of  data  is  small.  We  propose  a  data  augmentation  strategy  based  on  text 

generation  with  GPT-3  [ 47],  which  is  inspired  by  the  method  from  Yoo  et  al. [512] 

and  Bayer  et  al. [ 28].  GPT-3  can  be  tasked  to  complete  a  given  text,  also  called
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Fig.  12.3  Multi-level  fine-tuning  process  that  shows  the  model  becoming  more  specialized as  it  is  guided  to  the  actual  task  with  less  data 

a  prompt.  We  utilize  this  mechanism  so  that  the  generation  model  creates  new 

instances  based  on  the  training  data  of  one  class.  Specifically,  this  means  that  we 

are  concatenating  all  instances  of  one  class  with  a  class  specific  priming  token. 

For  the  class  of  cyber  threat  information  we  prepend  every  positive  instance  with 

“cybersecurity.→”.  For  the  irrelevant  class  we  chose  “other.→”  as  priming  token.  In 

both  cases  the  priming  token  is  also  appended  at  the  end  so  that  the  model  generates the  instance(s)  after  it.  Dependent  on  how  many  remaining  generation  tokens  the 

model  has  after  the  prompt,  it  may  generate  more  than  one  instance  by  picking  up  the priming  token.  After  the  creation  of  the  instances  we  perform  the  human-in-the-loop 

filtering  step  proposed  by  Bayer  et  al. [ 28].  The  training  examples  and  generated instances  are  mapped  into  an  embedding  space.  There,  the  generated  instances  that 

deviate  the  most  from  the  training  data  are  discarded.  The  distance  from  which  this 

happens  is  determined  by  an  expert. 

Few- Shot  Learning:  We  make  use  of  the  existing  ADAPET  [431]  few-shot learning  technique  and  adapt  it  to  our  case.  With  ADAPET,  in  contrast  to  normal  use, 

no  classification  head  is  trained  on  the  language  models.  The  instances  are  trans-

formed  to  cloze-style  phrases  and  then  the  language  model  itself  is  used  to  predict 

the  blank  word  in  the  phrases.  The  predicted  word  is  subsequently  transformed  with 

a  verbalizer  to  one  of  the  labels.  The  cloze-style  phrases  are  automatically  formed 

with  templates.  For  our  task  we  use  the  following  template:
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“[POST] Question  :  Is  this  text  helpful  for  cybersecurity  experts?  Answer:.  <  MASK.  > . 

[SEP]” 

The  verbalizer  maps  the  two  possible  words  “yes”  and  “no”  to  the  labels  represent-

ing  relevant  and  not  relevant.  As  explained  in  Sect. 12.2.4  there  also  exist  methods for  automatically  determining  the  pattern  and  verbalizer.  We  believe  that  these  techniques  are  not  necessary  in  our  case,  as  we  can  integrate  the  expert  knowledge 

regarding  the  task,  which  facilitates  the  learning  process. 

12.4

Evaluation 

12.4.1  Dataset,  Models  and  Evaluation  Settings 

Following  the  research  goal  of  specialized  CTI  for  security  professionals,  we  con-

structed  a  setting,  consisting  of  models  and  datasets,  representing  the  real  condi-

tions.  For  the  dataset,  we  labeled  data  from  the  2021  Microsoft  Exchange  Server 

data  breach.  The  specifics  of  the  dataset  can  be  found  in  Sect. 12.3.1.  The  labeled dataset,  including  few-shot  and  normal-shot  splits,  is  freely  available. 

In  our  main  evaluation  we  have  different  settings  regarding  the  dataset  and  mod-

els.  The   baseline  and  initial  model  of  our  evaluation  is  the  bert-base-uncased  model by  Devlin  et  al.  [ 89]. For  the  baseline,  this  model  is  fine-tuned  on  the  few-shot  dataset representing  the  standard  training  strategy  without  any  few-shot  or  data  augmentation  methods.  For  the   best case,  on  the  other  hand,  we  train  the  bert-base-uncased model  with  the  full  dataset  of  1800  instances.  This  is  called  the  best  case  because  we consider  this  amount  of  data  to  be  the  best  case  in  the  event  of  a  new  cybersecurity attack.  In  addition,  we  also  train  a  model  with  ADAPET,  as  we  consider  this  to  be 

the  current  state  of  the  art  in  few-shot  research.  In  preliminary  tests,  we  found  that ADAPET  performed  best  on  the  few-shot  split  with  ALBERT  [230]  compared  to DART  and  the  PERFECT  variant.  To  be  consistent  with  our  evaluation  settings  as 

opposed  to  the  evaluation  settings  of  ADAPET,  we  use  the  bert-base-uncased  model, 

instead  of  the  albert-xxlarge-v2  model  by  Tam  et  al.  [431].  The  evaluation  settings of  our  procedure  are  divided  into  the  three  components  mentioned.  For  the  data 

augmentation  technique  we  use  GPT-3  (DaVinci)  as  text  generation  model,  which 

is  prompted  with  the  specifics  explained  in  Sect. 12.3.2.  The  multi-level  fine-tuning process  starts  with  the  bert-base-uncased  model,  which  is  further  pre-trained  on  a 

cybersecurity  dataset,  which  is  then  fine-tuned  with  the  ADAPET  few-shot  method 

on  the  CySecAlert  dataset.  This  resulting  model  is  finally  trained  on  the  few-shot 

split  and  evaluated  on  the  test  set  of  the  Microsoft  Exchange  dataset.  Furthermore,  in

12.4

Evaluation

255

addition  to  the  CySecAlert  fine-tuning  process,  we  also  use  the  ADAPET  few-shot 

method  for  the  fine-tuning  of  the  Microsoft  Exchange  Server  dataset.  The  mentioned 

components  are  also  inspected  within  an  ablation  study,  showing  their  individual 

contribution  to  the  overall  pipeline. 

The  evaluation  performance  is  measured  in  accuracy  and  with  the  F1-score.  For 

every  evaluation  setting,  we  perform  five  runs  to  rule  out  random  factors.  The  results are  given  with  the  minimum,  maximum,  mean,  and  standard  deviation. 

12.4.2  Hyperparameters 

As  already  mentioned,  we  are  using  bert-base-uncased  as  base  model  for  our  experi-

ments.  The  evaluations  are  performed  on  a  NVIDIA  A100  with  40  GB  GPU  memory. 

The  training  runs  on  the  CySecAlert  and  Microsoft  Exchange  dataset  are  performed 

with  5  epochs  each.  Furthermore,  we  use  a  batch  size  of  48,  100  warmup  steps 

with  a  warmup  ratio  of  0.06,  a  learning  rate  of  0.00001,  and  weight  decay  of  0.001. 

As  optimization  algorithm,  we  use  the  Adam  algorithm.  For  the  data  augmentation 

technique  we  use  the  GPT-3  text-davinci-002,  which  has  175  billion  parameters. 

The  filtering  is  performed  with  SBERT  with  the  all-mpnet-base-v2  model. 

12.4.3  Evaluation 

The  first  section  of  our  evaluation  is  about  the  data  augmentation  process,  as  we 

manually  inspect  the  instances  generated  by  GPT-3  and  compare  our  method  to  two 

other  data  augmentation  techniques. 

After  this,  the  main  evaluation  follows  where  we  compare  our  methods  to  a 

baseline,  state-of-the-art  and  best  case  experiment.  Finally,  we  inspect  our  method 

by  doing  ablation  studies,  testing  how  each  component  evaluates. 

12.4.3.1  Data  Augmentation 

Due  to  our  human-in-the-loop  approach,  we  already  saw  that  the  generated  instances 

are  of  very  high  quality.  An  excerpt  of  the  generated  data  is  given  in  Table  12.3. For research  purposes,  we  were  also  interested  in  the  most  likely  original  instances  that 

the  model  used  for  generating  specific  instances.  This  is  why  we  tried  to  find  the 

training  instance  with  the  closest  resemblance  to  the  generated  one.  We  measured 

the  resemblance  by  generating  sentence  embeddings  with  SBERT  [356] and  comparing  them  with  the  cosine  distance.  These  counterparts  are  also  given  in  Table 

12.3.  These  examples  show  that  the  data  augmentation  method  is  capable  of  many
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Table  12.3  Generated  data  instances  and  their  most  similar  original  counterparts.  The instances  created  are  displayed  first  and  the  most  similar  ones  second.  URLs  are  removed from  the  text 

Relevant

RT  If  you’re  running  Microsoft  Exchange  Server  on  premises,  you  need  to 

take  these  urgent  security  steps  now.  The  zero-day  exploits  may  have 

already  caused  a  breach  of  your  data.  #infosec  #cybersecurity  #HAFNIUM 

http://.. 

If  you  are  hosting  #MicrosoftExchange  on  premises  you  need  to  take  these 

urgent  security  steps  right  now.  The  zero-day  exploits  may  have  already 

caused  a  breach  of  your  data.  #infosec  #HAFNIUM  http://.. 

RT  Black  Kingdom  ransomware  is  exploiting  the  Microsoft  Exchange 

Server  ProxyLogon  vulnerabilities  to  encrypt  servers.  http://.. 

Please  take  Information  Security  seriously.  #CyberAttack  can  bring  your 

reputation  down.  Another  #ransomware  operation  known  as  ‘Black 

Kingdom’  is  exploiting  the  Microsoft  Exchange  Server  ProxyLogon 

vulnerabilities  to  #encrypt  servers.  http://.. 

RT  @SecureList:  The  ProxyLogon  vulnerability  in  Microsoft  Exchange 

Server  is  being  actively  exploited  in  the  wild  to  install  ransomware.  http://.. 

RT  Just  as  predicted,  the  Microsoft  Exchange  exploit  chain  #ProxyLogon 

now  confirmed  being  used  to  install  ransomware  #DEARCRY  http://.. 

RT  RT  @hackerfantastic:  Microsoft  Exchange  Server  Remote  Code 

Execution  CVE-2021-26855  Exploit. 

#BugBounty  #RCE  #infosec  http://.. 

RT  Thousands  of  US  companies  have  been  hacked  by  Chinese  hackers 

using  This  RCE. 

Microsoft  Exchange  Server  Remote  Code  Execution  CVE-2021-26855 

Exploit. 

#BugBounty  #RCE  #infosec  http://.. 

RT  @ryan_a_h:  Microsoft  just  released  their  quarterly  updates  which 

include  a  patch  for  the  Exchange  zero-day.  You  can  find  more  information 

here:  http://.. 

If  you  are  hosting  #MicrosoftExchange  on  premises  you  need  to  take  these 

urgent  security  steps  right  now.  The  zero-day  exploits  may  have  already 

caused  a  breach  of  your  data.  #infosec  #HAFNIUM  http://.. 

(Continued)
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Table  12.3  (Continued) 

Not  Relevant

Microsoft  Exchange  Server  Attack  Escalation  Prompts  #Patching  Panic 

#cybersecurity  #vulnerabilities  http://.. 

#MicrosoftExchange  Server  Attack  Escalation  Prompts  #Patching  Panic 

#cybersecurity  #vulnerabilities  http://.. 

#Technology  #Cybersecurity  Microsoft  Exchange  Hackers  Also  Breached 

European  Banking  Authority  #AiUpNow  #techy  http://.. 

#Technology  #TechNews  Microsoft  Exchange  Hackers  Also  Breached 

European  Banking  Authority  #Cybersecurity  #AiUpNow  #techy  via 

http://.. 

RT  Microsoft  Exchange  Server  has  been  hacked  –  here’s  what  you  need  to 

know  http://.. 

RT  Here’s  what  we  know  so  far  about  the  massive  Microsoft  Exchange 

hack  http://.. 

Microsoft  Exchange  Server  Flaws  Expose  Millions  of  Emails  to  Attack 

http://.. 

RT  Here’s  what  we  know  so  far  about  the  massive  Microsoft  Exchange 

hack  http://.. 

Protected:  Microsoft  Exchange  Server  Attacks  Escalate  to  Government, 

Healthcare  and  Financial  Institutions  http://.. 

The  Microsoft  Exchange  hacks:  How  they  started  and  where  we  are  http://.. 

different  transformations.  The  first  example  demonstrates  that  the  model  sometimes 

replaces  one  or  few  words  with  synonyms  ( hosting . →  running)  or  adds  context words  ( #cybersecurity).  While  in  the  second  example,  one  can  see  that  the  model  is able  to  paraphrase  parts  of  the  original  instance  ( Another #ransomware operation 

 known as ‘Black Kingdom’ is exploiting the […] . →  Black Kingdom ransomware 

 is exploiting the […]),  in  the  third  example  the  entire  instance  is  paraphrased  ( Just as  predicted,  the  Microsoft  Exchange  exploit  chain  #ProxyLogon  now  confirmed 

 being  used  to  install  ransomware . →  The ProxyLogon vulnerability in Microsoft 

 Exchange Server is being actively exploited in the wild to install ransomware).  The 

fourth  shown  instance  is  an  example  of  the  method  stripping  away  parts,  while  still 

preserving  the  label  (   Thousands of US companies have been hacked by Chinese 

 hackers using This RCE. Microsoft Exchange Server Remote Code Execution CVE-

 2021-26855 Exploit. ).  For  some  generated  instances,  like  the  fifth  example,  we  were not  able  to  find  similar  instances.  The  instances  might  be  entirely  new  based  on  the 

interpolation  of  the  given  instances  and  the  knowledge  of  the  underlying  model. 

[image: Image 44]
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Regarding  the  irrelevant  class,  we  see  that  many  generated  instances  are  dupli-

cates  of  the  training  instances,  differing  at  most  by  very  small  changes,  such  as 

removing  the  hashtag  in  the  first  example  ( #MicrosoftExchange Server Attack . →

 Microsoft Exchange Server Attack)  or  swapping  the  position  of  words  in  the  second 

example  ( #Technology #TechNews Microsoft […] Authority #Cybersecurity #AiUp-

 Now #techy . →  #Technology #Cybersecurity Microsoft […] Authority #AiUp-Now 

 #tech).  While  the  third  example,  again,  shows  an  instance  where  the  content  is 

paraphrased,  the  last  two  generated  texts  have  no  clear  counterpart. 

We  also  quantitatively  evaluated  our  data  augmentation  strategy  by  evaluating  the 

entire  pipeline  using  our  data  augmentation  method  compared  to  two  other  popular 

methods  in  the  field.  One  of  these  augmentation  techniques  was  proposed  by  Wei 

and  Zou  [481], called  Easy  Data  Augmentation  (EDA),  and  consists  of  several  text transformations:  Replacing  a  word  with  a  synonym  or  randomly  inserting  a  synonym 

as  well  as  randomly  swapping  and  deleting  words.  The  other  data  augmentation 

technique  is  Round-trip  translation  (often  referred  to  as  Backtranslation  [391]),  as for  example  in  [105],  where  the  instance  to  be  transformed  is  first  translated  into another  language  (German  in  our  case)  and  then  back  into  the  original  language. 

The  results  of  this  experiment  can  be  found  in  Fig. 12.4. Here  we  can  see  that  the data  augmentation  proposed  in  this  work  is  clearly  superior  for  our  task,  achieving 

. +1.33  and . +3.59  F1  points  over  EDA  and  backtranslation,  respectively. 

Fig.  12.4  Evaluation  results  of  the  data  augmentation  experiment.  Showing  the  mean  F1 

results  of  5  runs  and  the  standard  deviation  in  brackets
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12.4.3.2  Main  Experiments 

In  our  main  experiments,  we  test  the  whole  pipeline  proposed  in  Sect. 12.3. As a  quick  reminder,  our  method  includes  the  multi-level  fine-tuning  with  bert-base-uncased  on  cybersecurity  data,  the  CySecAlert  dataset  and  the  actual  few-shot  learn-

ing  task  with  32  instances,  as  well  as  the  GPT-3-based  data  augmentation  technique 

and  ADAPET  for  few-shot  training.  For  a  sensible  comparison,  we  first  follow  the 

standard  training  procedure  by  fine-tuning  a  bert-base-uncased  model  with  a  clas-

sifier  head  on  the  few-shot  training  instances  (baseline).  Furthermore,  we  test  a 

bert-base-uncased  model  with  the  ADAPET  method,  as  it  can  be  regarded  as  the 

state-of-the-art  method  for  performing  few-shot  learning.  We  also  perform  a  best 

case  evaluation  in  which  we  train  the  bert-base-uncased  model  on  the  full  training 

dataset  (1800  instances)  to  see  how  a  classifier  would  perform  with  enough  data.  A 

more  detailed  analysis  of  the  approach  itself  can  be  found  in  the  ablation  studies  in Sect. 12.4.3.3. 

The  results  of  the  pipeline  experiments  are  shown  in  Table  12.4.  It  is  observable that  the  baseline  is  not  able  to  learn  any  meaningful  classification  strategy  with 

the  few-shot  dataset,  reaching  an  accuracy  of  about  50%  and  F1  score  of  58.70. 

ADAPET  reaches  a  significantly  higher  accuracy  with  an  additive  improvement  of 

about  15  points  in  accuracy  and  a  F1  score  of  62.57.  This  is,  nevertheless,  far  from a  good  classification  quality  as  the  best  case  classifier  reaches  a  F1  score  of  85.35. 

With  an  F1  score  of  80.63,  our  approach  proposed  in  this  paper  could  even  almost 

keep  up  with  the  best  case  classifier.  Particularly  noteworthy  at  this  point  is  that 

the  best  case  classifier  is  trained  with  1800  instances,  while  our  approach  only  has 

access  to  32  instances.  Furthermore,  our  approach  improves  the  current  state  of  the 

art  with  18.09  points  in  F1.  A  look  at  the  violin  plots  in  Fig. 12.5  shows  that  both the  best  case  and  our  approach  have  a  very  good  standard  deviation,  which  means 

that  both  are  robust  to  random  changes. 

Table  12.4  Detailed  evaluation  results  of  the  main  experiments.  The  values  on  the  left  show the  minimum,  in  the  middle  the  mean,  in  brackets  the  standard  deviation,  and  on  the  right  the maximum  value 

Name

Model

Accuracy  (SD)

F1 

Best  Case

BERT

84.69/85.36(0.07)/86.02

84.87/85.35(0.47)/85.81 

Baseline

BERT

46.26/49.65(1.90)/50.58

25.06/58.70(18.81)/67.18 

ADAPET

BERT

64.89/65.89(1.35)/68.05

59.30/62.54(4.32)/69.81 

Our  Approach

CySecBERT

78.54/79.13(0.56)/80.03

80.42/80.63(0.27)/81.07

[image: Image 45]
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Fig.  12.5  Violin  plots  showing  the  accuracy  differences  of  the  main  experimentation  setting The  evaluation  results  show  that  our  approach  is  able  to  identify  cyber  threat 

information  from  which  we  can  deduce  that  a  new  classifier  can  be  trained  for 

upcoming  cybersecurity  incidents  with  limited  data. 

12.4.3.3  Ablation  Studies 

Finally,  we  want  to  give  a  more  detailed  insight  into  our  method  by  showing  how  each component  contributes  to  the  resulting  score.  For  this  purpose,  we  conducted  three 

further  experiments  in  which  we  omitted  one  component  in  each  case  and  evaluated 

the  other  two  components.  When  multi-level  fine-tuning  is  not  used,  we  evaluate  the 

BERT  base  model  with  the  auxiliary  data  of  the  augmentation  method  and  ADAPET 

for  the  learning  objective.  Without  ADAPET,  we  train  the  cybersecurity  pre-trained 

model  on  the  CySecAlert  dataset  and  the  final  task  (with  augmented  data)  with  a 

classifier  head.  In  the  last  experiment,  the  augmented  data  is  simply  omitted,  while 

training  the  model  in  the  multi-level  fine-tuning  process  with  ADAPET. 

Upon  examination  of  the  results,  presented  in  Table  12.5,  it  becomes  clear  that leaving  out  a  component  worsens  the  overall  results.  The  highest  loss  is  reached 

when  the  multi-level  fine-tuning  component  is  left  out,  showing  how  important  it  is. 

This  behavior  could  be  due  to  the  many  specific  cybersecurity  words  trained  by  the 

general  language  modeling  of  cybersecurity  data  and  to  fine-tuning  by  a  very  related 

task  that  already  gives  the  model  an  idea  of  how  to  distinguish  between  relevant  and 

irrelevant  content.  Furthermore,  we  can  clearly  observe  that  leaving  out  ADAPET 

greatly  worsens  the  results.  When  compared  with  the  results  of  the  main  evaluation 

presented  in  Table  12.4,  ADAPET  even  improves  the  values  significantly  more  than compared  to  the  baseline.  This  shows  that  ADAPET  needs  a  strong  base  model
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Table  12.5  Detailed  evaluation  results  of  the  ablation  experiments.  The  values  on  the  left show  the  minimum,  in  the  middle  the  mean,  in  brackets  the  standard  deviation,  and  on  the right  the  maximum  value 

Name

F1 

Our  Approach

80.42/  80.63(0.27)  /81.07 

.→ w/o  Augmentation

78.48/  80.33(1.27)  /81.49 

.→ w/o  Multi-Level  Fine-Tuning

63.95/  66.16(1.67)  /67.43 

.→ w/o  ADAPET

65.33/  71.33(3.62)  /75.08 

to  be  highly  beneficial.  The  smallest  improvement  is  made  with  the  augmented 

data.  Although  the  data  appeared  to  be  of  high  quality  (see  Sect. 12.4.3.1), it  did  not significantly  improve  the  classifier.  Nevertheless,  a  small  increase  can  be  reached  and 

the  classifier  training  got  more  robust  through  the  additional  training  data  (smallest 

standard  deviation). 

12.5

Conclusion  and  Discussion 

CTI,  the  collection  of  evidence-based  knowledge  of  cybersecurity  threats,  is  highly 

relevant  for  identifying  and  remediating  security  incidents.  Professionals,  security 

providers,  CERTs,  as  well  as  many  others  in  the  cybersecurity  realm  can  gain  impor-

tant  information  about  the  incidents,  such  as  how  severe  they  may  be,  which  software 

and  systems  are  affected,  how  to  be  protected,  and  if  exploits  exist.  The  challenges 

lie  in  the  information  overload  and  the  high  dynamics  associated  with  every  new 

threat  event.  To  counteract  the  flood  of  information  or  to  collect  certain  types  of 

information,  it  is  necessary  to  train  a  classifier.  However,  a  trained  classifier  cannot generalise  to  new  vulnerability  events  due  to  high  dynamics  (new  names  of  vulnerabilities,  paths,  etc.)  and  new  requirements  (focus  on  exploitation,  mitigation, 

consequences,  etc.).  To  the  best  of  our  knowledge,  this  is  the  first  work  to  address 

this  problem  by  proposing  a  framework  that  enables  rapid  training  of  new,  high-

performance  classifiers  for  specialized  CTI.  It  consists  of  several  components  that 

allow  the  end  user  to  label  only  a  few  data  instances  (tested  here  with  32  instances) to  obtain  a  classifier  that  is  comparable  to  one  trained  with  1800  instances.  We 

also  constructed  a  dataset  labeled  by  three  cybersecurity  experts  showing  that  this 

method  indeed  overcomes  the  problem  of  information  overload  and  addresses  high 

dynamics  by  being  easily  adaptable  to  new  incidents. 
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12.5.1  Practical, Theoretical,  and  Empirical  Contributions 

Considering  our  findings,  the  study  revealed  (P)  practical,  (T)  theoretical,  and  (E) 

empirical  contributions: 

(P)  A  novel  pipeline  for  detecting  specialized  cyber  threat  information. Our 

work  provides  an  approach  to  detect  specific  cyber  threat  information  by  addressing 

the  problem  that  a  trained  classifier  does  not  generalise  well  to  new  cybersecurity 

events  and  is  not  able  to  adapt  to  different  requirements.  Furthermore,  it  is  aligned 

with  the  circumstances  of  such  events.  These  circumstances  include  that  information 

has  to  be  gathered  fast  in  the  early  stages  of  the  events  and  that  security  institutions and  experts  do  not  have  the  time  and  capacity  to  label  many  instances.  Therefore, 

we  combine  few-shot  learning  with  multi-level  fine-tuning  and  data  augmentation 

to  produce  classifiers  that  only  need  few  instances  to  perform  with  high  quality.  For 

few-shot  learning  we  utilize  ADAPET  by  Tam  et  al. [431]  combined  with  the  multi-level  fine-tuning  process.  For  data  augmentation  we  use  GPT-3  to  create  instances 

with  novel  linguistic  patterns.  Our  pipeline  reaches  a  F1-score  of  80.63  on  a  spe-

cialized  cyber  threat  dataset,  which  is  21.93  points  above  the  score  of  a  classical 

learning  scheme.  Other  work,  such  as  the  cyber  threat  event  detection  systems  of 

Riebe  et  al.  [363]  or  Sceller  et  al. [381],  allow  for  coarse-grained  information  gathering.  To  the  best  of  our  knowledge,  our  system  is  the  first  to  provide  rapid  detection of  specialized  cyber  threat  information,  by  needing  only  very  few  data  instances 

to  create  high-quality  classifiers.  This  way,  in  the  event  of  a  current  cybersecurity 

incident,  experts  can  quickly  create  a  classifier  tailored  to  their  specific  needs  and 

gather  important  information. 

Moreover,  our  general  approach  to  learning  with  very  few  examples  can  also  be 

used  for  these  detection  systems  or  other  cybersecurity  problems,  such  as  in  IoC 

extraction.  This  leads  over  to  the  theoretical  contributions  of  our  work. 

(T)  New  few-shot  learning  technique  based  on  multi-level  fine-tuning. We 

propose  a  novel  few-shot  learning  approach  for  creating  classifiers  of  high  quality 

with  a  smaller  amount  of  training  data.  The  idea  behind  this  approach  is  to  fine-

tune  a  machine  learning  model  in  several  levels  where  enough  data  is  available 

(see  Figure  12.3). In  our  study  we  first  further  trained  a  BERT  model  on  a  general cybersecurity  corpus.  This  model  was  then  trained  on  a  general  Twitter  cybersecurity 

relevance  dataset.  From  this  point,  the  model  has  a  fundamental  understanding 

of  cybersecurity  texts  and  is  also  able  to  distinguish  cybersecurity-related  content 

from  irrelevant  content.  With  this  pre-trained  knowledge,  the  model  only  needs  few 

data  instances  to  be  able  to  differentiate  specific  cybersecurity  content.  As  shown 

in  this  study,  this  new  technique  can  also  be  combined  with  other  techniques  like 

ADAPET  or  data  augmentation  to  further  reduce  the  amount  of  needed  training  data. 
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However,  we  show  that  this  multi-level  fine-tuning  approach  has  the  greatest  impact 

on  classification  quality  of  all  techniques  (. +14.47  F1,  see  Table  12.5).  The  multi-level  fine-tuning  approach  significantly  advances  research  in  few-shot  learning,  as 

it  allows  for  a  much  higher  model  quality  and  at  the  same  time  can  be  combined 

with  previous  few-shot  studies,  such  as  ADAPET  [431], DART  [523], or  PERFECT 

[271]. 

(T)  New  insights  on  data  augmentation  with  large  pre-trained  language 

models. In  our  study,  we  also  implemented  a  data  augmentation  technique  that 

combines  the  works  of  Yoo  et  al. [512]  and  Bayer  et  al. [ 28]. As  in  the  former,  we used  the  large  language  model  GPT-3  with  a  prompting  strategy  and  filtered  the 

generated  instances  with  a  human-in-the-loop  technique,  as  in  the  latter.  The  idea 

is  that  GPT-3  can  create  instances  with  a  very  high  degree  of  novelty,  resulting  in 

some  very  valuable  instances.  However,  this  novelty  comes  with  the  problem  of 

poor  label  preservation,  as  the  instances  may  be  too  far  away  from  the  class.  For  this reason,  we  also  introduced  this  filtering  strategy  where  the  original  labeled  data  of 

a  class  is  compared  with  the  generated  data  and  those  that  are  too  far  away  from  the original  data  are  discarded.  The  boundary  is  determined  by  an  expert  who  examines 

those  instances  close  to  a  predefined  boundary.  As  shown  in  Sect. 12.4.3.1  and Table  12.3,  this  procedure  generates  instances  with  very  different  transformation patterns,  including  word  substitution,  paraphrasing,  and  partial  removal.  It  even 

leads  to  instances  that  are  entirely  novel.  Furthermore,  we  included  a  quantitative 

evaluation  in  Sect. 12.4.3.1  comparing  the  data  augmentation  strategy  against  two of  the  most  common  NLP  data  augmentation  strategies.  It  shows  that  our  method  is 

clearly  superior  for  the  task  of  specialized  CTI  in  our  pipeline. 

However,  in  Sect. 12.4.3.3,  we  showed  that  omitting  this  method  from  the  overall pipeline  only  slightly  reduces  the  resulting  score.  This  means  that  the  model  learns 

very  little  from  the  augmented  data  when  multi-level  fine-tuning  and  ADAPET  are 

already  used.  Nevertheless,  the  evaluation  results  show  a  reduction  in  the  standard 

deviation,  which  indicates  that  the  model  has  become  more  robust  with  the  artificial 

data. 

(E)  A  specialized  CTI  dataset  for  further  research  purposes. In  this  study  we 

created  a  CTI  dataset  based  on  the  2021  Microsoft  Exchange  Server  data  breach. 

The  dataset  was  constructed  by  three  experts.  The  guidelines  have  been  revised 

several  times  in  an  attempt  to  flesh  out  the  concept  of  cyber  threat  analysis  as  much as  possible.  Along  with  the  code  and  the  dataset,  the  guidelines  are  available  in 

the  repository.  All  annotators  reached  a  good  intercoder  reliability  showing  that  the 

guidelines  and  the  general  annotation  process  was  successful.  Further  research  can 

benefit  from  this  dataset  as  it  is,  to  our  knowledge,  the  first  to  contain  a  relevance coding  regarding  CTI  in  Twitter  in  relation  to  a  specific  cybersecurity  event. 
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12.5.2  Limitations  and  Outlook 

In  this  work,  we  focus  on  Twitter  as  a  data  source,  as  it  can  be  very  up-to-date 

and  rich,  since  the  cybersecurity  community  is  very  active  when  it  comes  to  vul-

nerabilities  in  Twitter.  However,  we  would  like  to  point  out  that  using  Twitter  as  a 

data  source  also  brings  some  disadvantages.  On  Twitter,  for  example,  anyone  can 

share  information,  which  can  lead  to  a  lot  of  speculative  or  even  false  information. 

A  system  that  relies  only  on  Twitter  may  not  be  as  reliable  and  could  easily  be 

fooled.  This  is  why  we  look  forward  to  studies  making  the  proposed  approach  more 

robust.  In  addition,  we  believe  that  other  data  sources  should  also  be  examined  for 

vulnerabilities.  We  plan  to  integrate  the  component  implemented  in  this  work  into 

an  already  developed,  manageable  dashboard  that  additionally  includes  a  credibility 

component  and  aggregates  information  from  many  different  sources. 

In  terms  of  the  overall  concept,  we  look  forward  to  research  studies  testing  the 

performance  of  this  approach  in  other  domains  and  on  further  cyber  threat  events.  For 

example,  it  would  be  interesting  to  see  if  the  same  improvements  can  be  achieved 

in  medical  or  crisis  domains,  where  data  is  also  scarce.  On  a  smaller  scale,  we 

also  look  forward  to  work  applying  our  methodology  to  other  cybersecurity  events. 

Our  pipeline  was  only  evaluated  with  the  MS  Exchange  data  breach,  but  can  be 

generalized  to  other  CTI-related  incidents  as  this  was  a  priority  in  our  development 

process.  Moreover,  our  experiments  are  limited  to  the  BERT  base  model.  It  would 

be  interesting  to  see  if  the  improvements  are  as  high  when  a  larger  model  like 

RoBERTa  [263]  is  used.  Likewise,  one  could  also  test  other  language  models  for the  data  augmentation  technique.  Especially  interesting  would  be  to  test  if  open 

source  models,  like  GPT-NeoX-20B  [ 37], reach  a  good  augmentation  performance. 

A  part  of  our  experiments  was  to  fine-tune  the  model  on  the  CySecAlert  dataset 

of  Riebe  et  al.  [363].  The  authors  of  this  work  propose  an  active  learning  component to  achieve  high  classification  scores  with  less  data.  With  a  view  to  future  research, 

it  might  be  sensible  to  also  include  active  learning  into  the  concept  of  our  approach to  further  increase  the  classification  quality.  In  practice,  our  approach  would  in  the 

worst  case  lead  to  users  labeling  very  similar  examples,  resulting  in  poor  execution 

of  data  augmentation  and  poor  classification  quality,  which  can  happen  quickly 

when  labeling  such  a  small  amount  of  data.  Therefore,  an  active  learning  system 

could  help  to  collect  very  different  examples.  Otherwise,  experts  can  also  be  trained 

to  label  diverse  examples. 
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Adversarial  Example  Creation 

Abstract 

Adversarial  examples,  capable  of  misleading  machine  learning  models  into  mak-

ing  erroneous  predictions,  pose  significant  risks  in  safety-critical  domains  such  as 

crisis  informatics,  medicine,  and  autonomous  driving.  To  counter  this,  we  intro-

duce  a  novel  textual  adversarial  example  method  that  identifies  falsely  learned 

word  indicators  by  leveraging  explainable  AI  methods  as  importance  functions 

on  incorrectly  predicted  instances,  thus  revealing  and  understanding  the  weak-

nesses  of  a  model.  Coupled  with  adversarial  training,  this  approach  guides  mod-

els  to  adopt  complex  decision  rules  when  necessary  and  simpler  ones  otherwise, 

enhancing  their  robustness.  To  evaluate  the  effectiveness  of  our  approach,  we  con-

duct  a  human  and  a  transfer  evaluation  and  propose  a  novel  adversarial  training 

evaluation  setting  for  better  robustness  assessment.  While  outperforming  current 

adversarial  example  and  training  methods,  the  results  also  show  our  method’s 

potential  in  facilitating  the  development  of  more  resilient  transformer  models  by 

detecting  and  rectifying  biases  and  patterns  in  training  data,  showing  baseline 

improvements  of  up  to  23  percentage  points  in  accuracy  on  adversarial  tasks. 

The  code  of  our  approach  is  freely  available  for  further  exploration  and  use. 
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Material 

Experimental  Code:  https://github.com/PEASEC/XAI-Attack/ 

13.1

Introduction 

Adversarial  examples  are  specially  crafted  inputs  to  machine  learning  models  that 

aim  to  trick  them  into  making  incorrect  predictions.  These  inputs  can  be  created  by 

deliberately  modifying  existing  examples  to  fool  the  algorithm  [132].  It  is  evident that  such  deceptions  can  have  serious  consequences  if  they  are  framed  as  attacks. 

One  example  is  crisis  informatics,  where  deep  learning  models  are  used  by  response 

teams  to  gather  and  analyse  information  about,  e.g.,  a  natural  disaster  or  terrorist 

attack.  An  attacker  could  construct  examples  that  have  nothing  to  do  with  the  inci-

dent,  but  are  designed  in  such  a  way  that  the  model  recognises  them  as  relevant, 

leading  to  poorer  insights  and  lower  confidence  in  the  information  gathered. 

Beyond  that,  the  exploration  of  adversarial  examples  is  very  important,  as  it  can 

show  where  a  model  has  learned  spurious  correlations  or  shortcuts.  Many  machine 

learning  practices  result  in  the  preference  of  shortcut  solutions  [126].  On  the  one hand,  this  can  be  desirable,  as  the  models  may  be  less  prone  to  overfitting  and 

generalize  better  [350].  On  the  other  hand,  this  can  lead  to  solutions  that  are  too simple,  which,  for  example,  result  from  patterns  and  biases  in  the  training  dataset 

that  correlate  with  classes  in  the  data  but  are  not  actually  responsible  for  the  class. 

The  research  field  of  adversarial  examples  not  only  enables  us  to  recognise  them, 

but  also  offers  methods  to  correct  them.  A  commonly  used  strategy  is  adversarial 

training,  where  the  model  is  re-trained  with  adversarial  examples.  However,  current 

methods  suffer  from  small  or  very  specific  robustness  gains,  partly  due  to  their 

narrow  design  and  partly  due  to  ineffective  evaluation  methods. 

Therefore,  this  paper  considers  an  optimal  adversarial  example  as  one  that  has  a 

significant  learning  factor.  Instead  of  following  current  methods,  we  aim  to  uncover 

the  model’s  incorrectly  learned  patterns  by  analyzing  its  erroneous  predictions. 

As  second  novelty,  we  also  propose  to  use  feature/token  attribution  explainable 

AI  (XAI)  methods  (e.g.  LIME  or  SHAP)  as  importance  functions  to  highlight  the 

model’s  incorrectly  learned  indicators.  Incorporating  XAI  into  research  on  adver-

sarial  examples  offers  the  opportunity  to  make  more  sophisticated  importance  cal-

culations  and  to  make  them  more  flexible  by  providing  a  framework  that  can  eas-

ily  replace  them.  Our  method  coupled  with  adversarial  training  allows  for  a  more 

robust  model  by  highlighting  and  erasing  patterns  of  the  training  data  identified  by 

the  model  which  are  either  not  truly  indicative  or  not  solely  responsible  for  class 

determination.  Hence,  our  approach  promotes  models  to  favor  decision  boundaries 

that  are  intricate  when  necessary,  and  straightforward  when  appropriate. 
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Unfortunately,  there  is  currently  no  optimal  evaluation  method  to  ascertain  a 

model’s  true  robustness.  The  greatest  challenge  in  adversarial  training  evaluation 

is  that  biases  in  training  data  often  echo  in  the  test  data  [126],  leading  to  poor results.  Therefore,  we  propose  an  out-of-distribution  evaluation  method  that  specifically  addresses  attack  robustness,  which,  in  combination  with  human  and  transfer 

evaluations,  shows  the  performance  of  XAI-Attack  with  transformers. 

Our  work  contributes  the  following  aspects: 

(C1)  A  novel  method  for  creating  adversarial  examples  based  on  identifying  indi-

cators  for  wrong  predictions. 

(C2)  Proposal  to  utilize  XAI  methods  as  importance  functions  for  adversarial 

example  creation. 

(C3)  A  novel  out-of-distribution  evaluation  setting  for  adversarial  training  that 

enables  a  more  accurate  assessment  of  robustness. 

The  code  of  this  study  is  freely  available 2. 

13.2

Related  Work 

There  is  no  unique  formal  definition  of  adversarial  examples  in  the  literature.  In 

this  work,  we  follow  the  definition  of  Goodfellow,  Shlens,  and  Szegedy  [132], 

which  states  that  an  adversarial  example  is  an  instance  that  has  been  intentionally 

curated  from  existing  examples  to  fool  the  machine  learning  model.  We  add  for 

clarification  that  the  new  instance  should  be  semantically  similar  to  its  original 

instance.  An  adversarial  example  is  deemed  semantically  similar  to  its  original 

instance  if,  despite  any  textual  variations,  the  underlying  meaning  pertaining  to  its 

label  remains  unchanged.  Some  works,  such  as  [472],  also  imply  that  the  adversarial examples  should  only  be  modified  by  a  small  change,  ideally  imperceptible  to  us 

humans,  a  prerequisite  which  we  drop  explicitly  in  our  definition,  as,  for  example, 

Brown  et  al.  [ 46] or Ebrahimi et al.  [  99]. Adversarial  examples  can  be  created  in black-box  and  white-box  form,  focusing  on  the  model  to  be  tricked,  also  known  as 

the  victim  model.  A  white-box  attack  is  one  in  which  the  internals  of  the  model  are 

completely  transparent  to  the  attacker  [ 36].  In  black-box  attacks,  the  attacker  can only  query  the  victim  model  for  an  instance  and  get  the  prediction.  Depending  on 

the  victim  model,  it  outputs  the  prediction  as  soft  labels,  i.e.  the  softmax  outputs,  or as  hard  labels,  i.e.  only  the  class  labels. 

2  https://github.com/PEASEC/XAI-Attack/ 
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13.2.1  Feature  Space 

While  adversarial  examples  are  intensively  studied  in  computer  vision  [225, 326, 

430], they  are  more  difficult  to  create  for  textual  data  due  to  the  discrete  nature  and semantic  coherence  of  text  [124, 179].  This  is  also  the  reason  for  adversarial  example methods  being  divided  into  data  and  feature  space.  In  terms  of  feature  space,  they  are often  designed  to  maximise  loss  by  adding  noise  in  a  white-box  attack  scenario.  To 

solve  the  search  for  the  right  perturbation,  several  different  maximisation  methods 

and  variants  have  been  proposed  in  research  [ 29]:  PGD  [ 77, 131], FreeAT  [395], 

YOPO  [520],  FreeLB  [538], VAT  [292, 293],  SMART  [181], ALUM  [258],  and more.  These  feature  space  methods  are  often  integrated  directly  into  the  training 

process,  with  SMART  achieving  the  highest  adversarial  training  scores  in  many 

tasks  [ 29]. 

13.2.2  Data  Space 

However,  our  method  acts  in  the  data  space.  This  includes,  e.g.,  the  work  of  Ebrahimi et  al. [ 99],  in  which  the  letters  of  the  input  texts  are  flipped  in  such  a  way  that  the loss  increases.  For  this,  the  gradients  of  the  method  and  accordingly  a  white-box 

scenario  are  needed.  Jin  et  al.  [184]  propose  the  black-box  method  TextFooler, which  works  at  the  word  level  and  replaces  important  words  with  synonyms  that 

are  chosen  based  on  embedding  similarity  and  the  highest  change  in  prediction 

confidence.  BERT-Attack  [247]  and  BERT-based  adversarial  examples  (BAE)  [124] 

can  be  seen  as  variants  of  this  approach,  where  BERT  is  used  to  create  a  list  of 

substitution  words.  BERT-Attack  differs  from  BAE  in  that  it  differentiates  between 

words  and  subwords.  BAE,  conversely,  proposes  a  replace  and  insert  operation  and 

additionally  uses  a  Universal  Sentence  Encoder  to  filter  the  generated  tokens  to 

ensure  high  semantic  similarity  to  the  original  text.  The  textbugger  method  of  Ye  et 

al. [509]  also  finds  the  important  words  and  then  creates  either  word-level  changes with  GLoVe  embeddings  or  character-level  changes  based  on  rules.  The  authors 

propose  a  black-box  and  white-box  variant.  There  are  also  methods  for  sentence-

level  adversarial  examples,  e.g.  Iyyer  et  al.  [173],  which  paraphrase  a  sentence  with certain  syntactic  structures,  the  Entailment  Preserving  Transformations  method  of 

Thorne  and  Vlachos  [438], which  transforms  the  sentences  based  on  templates, or  the  SSAE  network  by  Li  et  al.  [243], which  consists  of  two  auto-encoders  to preserve  syntax  as  well  as  semantics  and  to  insert  pertubations  into  the  latent  space. 

The  research  field  also  includes  specialised  methods  such  as  the  work  of  Qaraei  and 

Babbar  [334]  for  extreme  multilabel  text  classification  scenarios,  Song  et  al. [414]
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for  text  retrieval  or  Wan  et  al.  [461]  and  Ebrahimi,  Lowd,  and  Dou  [ 98]  for  neural machine  translation. 

13.2.3  Robustness  Evaluation 

Research  indicates  that  numerous  methods  exist  for  enhancing  the  robustness  against 

adversarial  examples,  such  as  employing  adversarial  example  generation  alongside 

adversarial  training,  or  detecting  and  filtering  malicious  inputs  [133, 477]. Assessing  adversarial  robustness  is  crucial  for  determining  the  effectiveness  of  a  defense 

method  and,  ultimately,  the  true  robustness  of  a  model.  The  efficacy  of  adversarial 

training  is  often  gauged  by  evaluating  the  resulting  model  on  the  test  or  validation 

set  of  a  task  [ 98, 181, 247].  However,  evaluating  the  adversarial  robustness  of  a machine  learning  model  solely  on  those  sets  may  not  always  be  sensible  as  they 

often  share  the  same  biases  as  the  training  data  [126]. There  are  some  frameworks, such  as  CleverHans  [325]  and  FoolBox  [353], that  provide  benchmarks  for  robustness.  These  frameworks  offer  different  adversarial  attack  methods  that  can  be  used 

to  evaluate  the  robustness  of  a  model  with  a  given  dataset.  While  this  approach 

mitigates  the  issue  of  evaluating  robustness  using  only  test  or  validation  data,  it 

introduces  another  potential  challenge:  the  adversarial  attack  methods  implemented 

by  the  framework  may  not  generate  high-quality  adversarial  examples,  potentially 

skewing  the  robustness  assessment. 

13.2.4  Research  Gap 

XAI-Attack  can  be  classified  in  the  group  of  word-level  data  space  perturbation 

methods.  Unlike  other  adversarial  example  methods,  it  addresses  the  weaknesses 

of  the  models  by  extracting  indicators  from  wrong  predictions.  Thus,  it  does  not 

require  access  to  the  internals  and,  when  combined  with  adversarial  training,  can 

greatly  improve  robustness.  It  creates  the  attacks  in  a  black-box  form  and  only  needs 

the  hard  labels,  i.e.  the  labels  predicted  by  the  model,  but  not  the  softmax  outputs. 

As  discussed  before,  we  abstract  from  any  specific  importance  functions  by 

proposing  to  use  XAI  methods  that  are  not  only  easily  replaceable  in  our  framework 

but  also  tend  to  be  much  more  sophisticated.  This  way,  we  combine  the  process  of 

creating  adversarial  examples  with  any  feature/token  attribution  XAI  method  to  find 

the  most  important  words.  Importance/influence  functions  in  current  research,  e.g. 

[124, 184, 247], simply  omit  words  and  calculate  how  much  this  changes  the  prediction  score.  The  XAI  method  LIME  [361],  e.g.,  also  omits  words  but  calculates
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additional  weights  for  the  perturbed  instances  based  on  similarity  to  the  original 

instance  and  then  trains  a  locally  interpretable  model  from  which  the  importance 

scores  are  derived.  Moreover,  LIME  does  not  require  prediction  results  like  the 

others,  which  makes  our  method  suitable  for  a  hard  label  environment.  In  our  exper-

iments  we  show  the  usage  of  LIME  and  SHAP  [267]. 

Furthermore,  our  method  is  designed  with  the  objective  in  mind  of  making  models 

more  adversarially  robust  so  that  they  are  less  vulnerable  to  attacks  while  maintain-

ing  a  high  performance.  Evaluating  a  model  on  the  test  set  of  the  same  task  on  which it  was  adversarially  trained  can  be  problematic  due  to  the  presence  of  biases  in  all 

task  sets.  Frameworks  attempting  to  estimate  adversarial  robustness  by  using  other 

adversarial  example  generators  on  a  given  set  face  the  issue  that  these  examples 

may  be  of  low  quality  and  invalid.  To  address  this,  we  propose  a  novel  evaluation 

setting  by  evaluating  adversarial  training  on  the  Adversarial  GLUE  [466]  dataset, which  contains  high  quality  and  valid  adversarial  examples  for  GLUE  tasks. 

13.3

Attack  Design 

13.3.1  Problem  Formulation  and  Requirements 

In  formulating  the  problem,  we  follow  the  example  of  Ye  et  al. [509]. Suppose  we have  a  victim  model  .  f  and  a  text  instance  .  x  consisting  of  .  n  words  that  has  the label  .  y  and  is  correctly  predicted  by  .  f .  .  x' is  an  adversarial  example  of  .  x,  iff  it  is semantically  similar  to  .  x  and  changes  the  prediction  of  the  victim  model  .  f ,  i.e., 

.  f (x '  ) /=  f (x ).  It  is  constructed  by  inserting  adversarial  words  into  the  instance .  x . 

While  our  method  for  generating  adversarial  examples  aims  to  train  a  robust 

deep  learning  model,  it  requires  only  rudimentary  access  to  the  model,  making 

it  potentially  useful  for  constructing  attacks  as  well.  As  previously  described,  the 

internals  of  the  model  cannot  be  viewed  and  the  user  receives  no  indication  of  the 

confidence  in  the  prediction  other  than  the  hard  label.  In  terms  of  the  XAI  method, 

we  focus  on  LIME  [361]  and  SHAP  [267],  which  can  explain  a  model  prediction using  only  the  hard  labels  and  have  proven  to  be  advantageous  in  XAI  research.  It 

is  also  possible  to  use  different  variants  that  may  require  more  access  to  the  model. 

XAI-Attack  only  requires  an  feature/token  attribution  XAI  method,  i.e.  one  that 

provides  a  distribution  over  tokens  indicating  the  correlation  strength  between  input 

tokens  and  output. 

In  addition,  the  adversary  needs  a  hold-out  set.  Ideally,  this  data  does  not  come 

from  the  data  the  model  was  trained  on,  but  from  new  annotated  examples  or  a 

development  set.  However,  it  is  also  possible  to  separate  a  part  of  the  training  data

[image: Image 47]
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for  the  generation  of  adversarial  examples.  Due  to  the  design  of  our  method,  the 

model  is  afterwards  trained  with  the  data  kept  out  anyway. 

13.3.2  XAI-Attack 

XAI-Attack  uses  a  XAI  method  to  highlight  words  which  indicate  the  wrong  class. 

In  the  following,  these  words  are  called  adversarial  words  because  they  are  used 

to  create  adversarial  examples.  However,  potential  and  real  adversarial  words  must 

be  distinguished  according  to  our  definition  of  adversarial  examples.  The  words 

returned  by  the  XAI  method  are  potential  adversarial  words  because  their  insertion 

can  change  the  semantics,  whereas  real  adversarial  words  do  not.  Therefore,  these 

potential  adversarial  words  are  subsequently  cleaned  by  a  targeted  filtering  method. 

The  resulting  adversarial  words  are  then  used  to  create  adversarial  examples.  The 

procedure  is  demonstrated  in  Fig. 13.1  and  described  in  detail  below. 

Fig.  13.1  Illustration  of  XAI-Attack
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Step  1:  Finding  potential  adversarial  words 

The  first  step  of  our  method  is  to  use  a  XAI  method  to  find  words  that  are  responsible for  false  predictions.  This  is  achieved  by  letting  the  victim  model  make  predictions 

on  the  hold-out  data.  For  each  instance  in  this  set  that  is  incorrectly  predicted,  we apply  a  XAI  method,  which  is  able  to  highlight  words  responsible  for  the  incorrect 

prediction.  The  word  highlighted  as  most  indicative  of  the  wrong  class  is  then 

considered  as  a  potential  adversarial  word,  i.e.  a  word  that  can  potentially  change 

the  label  without  changing  semantics. 

This  step  takes  advantage  of  a  common  problem  with  training  deep  learning 

models,  as  they  tend  to  overfit  quickly  and  find  spurious  correlations  in  the  training data  due  to  sampling  and  other  biases.  To  illustrate,  we  anticipate  a  small  example 

from  a  sentiment  task.  Using  the  XAI  method,  we  can  see  that  an  example  word 

responsible  for  changing  the  negative  sentiment  into  a  positive  one  is   like.  It  stands  to reason  that  the  word   like,  in  its  verb  meaning   to find someone or something pleasant or satisfying,  is  an  indicator  of  a  positive  mood.  Nevertheless,  the  word   like, in its meaning  of  e.g.  the  preposition  as   similar to,  is  not  an  indicator  of  positive  sentiment. 

There  are  many  words  that  are  not  edge  cases  like  this  one,  but  used  as  indicators 

of  a  class,  since  they  occur  frequently  in  the  respective  class,  while  not  having 

semantic  significance  for  the  classification  (see  Sect. 13.4.5). From  this  viewpoint, it  is  apparent  that  our  approach  leans  towards  regularisers  and  eradicating  inaccurate 

bias. 

Step  2:  Filter  for  label  invariant  adversarial  words. [Optional] 

There  are  words  which  in  most  cases  truly  denote  one  class,  but  can  have  a  dif-

ferent  meaning  in  very  specific  contexts,  and  which  are  also  identified  as  potential 

adversarial  words  in  step  1.  The  word   enjoy  in  the  sentiment  task  can  serve  as  an illustrative  example.  While  in  most  cases  it  is  a  word  used  in  positive  contexts,  it  can also  be  used  in  negative  ones:  “Hard  to  say  who  might  enjoy  this”  (from  SST2).  If 

we  now  see   enjoy  as  a  real  adversarial  word,  in  adversarial  training  the  model  would be  forced  to  reject  it  as  an  indicator  of  the  positive  class.  In  the  best  case,  the  model learns  a  more  robust  indicator,  e.g.,  by  distributing  the  weight  of  the  decision  of 

 enjoy  onto  the  context.  In  the  worst  case,  however,  it  would  discard  a  very  valuable indicator  and  even  learn  further  biases,  resulting  in  poorer  performance  and  less 

robustness. 

Therefore,  we  try  to  filter  out  the  words  that  could  change  the  semantics  in 

relation  to  the  label.  Besides  no  filtering  of  words,  we  propose  two  methods,  one 

based  on  count  of  label  changes  and  one  based  on  indicator  words  for  the  correct 

class. 
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 Count of label changes.  In  the  count-based  method,  we  analyze  how  many  adver-

sarial  examples  can  be  generated  with  a  potential  adversarial  word.  If  the  count 

exceeds  a  certain  threshold  relative  to  the  class  size,  we  assume  that  the  seman-

tics  change  in  relation  to  the  label  and  exclude  all  of  those  generated  adversarial 

examples. 

 Indicator words for the correct class.  The  other  method  utilizes  the  additional 

data  that  was  correctly  predicted  by  the  model.  This  data  is  explained  using  the 

XAI  method  and  the  resulting  words  are  matched  with  the  potential  adversarial 

words.  Potential  adversarial  words,  which  are  an  indicator  of  correct  prediction,  are 

excluded  from  further  processing  as  they  could  semantically  alter  the  instance  in 

terms  of  the  label. 

Step  3:  Creating  adversarial  examples 

The  adversarial  words  may  change  the  label  only  for  certain  instances  based  on  the 

position  or  context  in  the  text.  Therefore,  we  now  check  whether  these  words  also 

change  the  labels  of  instances  that  were  originally  predicted  correctly.  That  is,  we 

insert  the  adversarial  words  into  the  correctly  predicted  instances  of  the  additional 

data.  There  are  many  possibilities  for  where  a  word  can  be  inserted,  and  although 

we  also  test  random  insertion,  our  main  experiments  are  based  on  just  prefixing 

them  (recall  that  imperceptibility  is  not  a  criterion  in  this  work).  For  more  ideas 

on  inserting  an  adversarial  word  into  an  instance,  see  Sect. 13.5.1.  The  instances whose  labels  have  been  changed  by  the  insertion  of  adversarial  words  are  then  the 

resulting  adversarial  examples. 

13.4

Experiments 

13.4.1  Experiment  Types 

Our  experimentation  perspective  lies  in  the  questions  (1)  how  often  the  method 

actually  generates  examples  that  do  not  change  the  label  but  the  prediction,  (2) 

whether  a  model  trained  with  the  examples  becomes  more  robust,  and  (3)  whether 

the  adversarial  examples  can  be  transferred  to  other  models. 

Human  Evaluation:  To  measure  how  often  the  method  generates  true  adversarial 

examples,  we  perform  a  human  evaluation  in  which  the  generated  instances  of  each 

dataset  are  labeled. 
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Adversarial  Testing  and  Training:  The  measurement  of  robustness  is  based  on 

the  benchmark  of  Wang  et  al. [466]. The  benchmark  consists  of  created  and  human-rated  adversarial  examples  for  various  GLUE  tasks.  For  each  task,  we  test  whether 

models  trained  with  XAI-Attack  adversarial  examples  from  the  normal  GLUE  tasks 

are  more  robust  than  those  trained  without  or  with  adversarial  examples  from  other 

methods.  For  completeness,  we  also  include  adversarial  training  experiments  on 

standard  GLUE  tasks. 

Adversarial  Transfer:  In  the  final  setting  of  our  experiments,  we  predict  whether the  adversarial  examples  are  transferable  to  another  model.  To  do  this,  we  create 

the  adversarial  examples  with  distilBERT  and  then  measure  the  impact  on  another 

distilBERT,  a  BERT  and  a  RoBERTa  model. 

Unlike  some  previous  work  in  the  field  of  adversarial  examples,  we  are  not 

investigating  the  success  rate  as  we  believe  that  the  success  rate  alone  is  no  indication of  the  quality  of  the  method. 

13.4.2  Datasets  &  Model  Settings 

The  tasks  we  focus  on  are  the  same  as  in  [466]  due  to  the  adversarial  testing  experiment.  That  is,  the  experiments  are  conducted  with  the  datasets  SST-2,  RTE,  QNLI, 

MNLI  and  QQP  from  the  GLUE  benchmark  [464]. For  the  experiments  we  use distilBERT  [379]  as  the  main  model 3. In  terms  of  robustness  measures,  we  employ only  standard  methods  like  weight  decay  and  dropout,  without  incorporating  any 

additional  techniques. 

13.4.3  Human  Evaluation 

For  this  section,  first  we  go  into  the  details  of  the  quantitative  experiment,  then  some adversarial  examples  are  examined.  The  adversarial  examples  used  in  this  section 

are  generated  with  LIME  and  the  optional  filtering  step  based  on  the  indicator  words 

for  the  correct  class  (see  Sect. 13.3.2). 

For  each  task,  we  randomly  select  100  instances  of  the  original  dataset  and  100 

instances  of  the  adversarial  dataset  with  uniform  class  distribution.  The  resulting

3  Main  experiments:  distilBERT-base-uncased—Transfer  models:  BERT-base  and  RoBERTa-

base—Parameter:  Standard  Huggingface  with  3  epochs,  500  warmup  steps,  learning  rate  of 

1e-3,  and  weight  decay  of  0.01—Implementations:  BAE  and  BERT-Attack  (.  k = 7) from TextAttack  [295], SMART  from  the  original  implementation  [181] 
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200  instances  for  each  task  are  randomly  labeled  by  two  independent  annotators.  A 

comparison  of  human  performance  can  show  us  whether  the  adversarial  examples 

are  mostly  valid  if  the  two  metrics  for  the  original  and  adversarial  data  of  each  task are  similar  (note  that  we  do  not  test  imperceptibility,  but  only  whether  an  adversarial example  changes  the  gold  label).  For  the  rationale  and  sizes  in  this  experiment,  we 

follow  standard  practice  in  the  field  (see  [124, 184, 247]). 

Table  13.1  shows  the  results  of  the  human  experiment,  measured  by  the  mean accuracy  of  the  two  annotators.  The  results  of  the  original  and  the  adversarial  examples  are  very  similar,  bearing  in  mind  that  the  classifier  is  wrong  100%  of  the  time on  the  adversarial  data.  There  are  even  tasks  where  the  adversarial  examples  match 

the  given  labels  more  than  the  original  data.  This  is  of  course  due  to  variance  in  the selected  sample,  which  was  to  be  expected  since  not  the  entire  dataset  is  labeled. 

Moreover,  the  agreement  between  the  annotators  (Cohen’s  kappa)  is  substantial  for 

the  non-adversarial  data  at  0.6681  and  for  the  adversarial  data  at  0.6465  according 

to  Landis  and  Koch  [232]. Looking  at  the  results  as  a  whole,  it  is  clear  that  the adversarial  examples  are  of  very  high  quality  and  only  change  the  semantics  in  a 

few  cases,  but  deceive  the  trained  classifier  in  100%  of  the  cases. 

Table  13.1  Human  evaluation:  Two  annotators  assessing  100  original  instances  and  100 

adversarial  instances  (generated  using  LIME  and  indicator  filtering)  of  each  task,  with  the averaged  accuracy 

Dataset

Original  Data

Adversarial  Data 

SST2

0.8787

0.7534 

RTE

0.9150

0.9600 

QQP

0.8550

0.7338 

QNLI

0.8994

0.7836 

MNLI-mm

0.7626

0.8333 

MNLI-m

0.7980

0.7828 

This  can  be  further  illustrated  by  looking  in  detail  at  some  adversarial  examples. 

The  adversarial  examples  listed  in  Table  13.2  are  chosen  because  of  the  different insights  that  can  be  gained  from  them.  The  first  instance  shows  a  very  subtle  adversarial  example,  with  only  the  letter  “q”  added  to  the  instance.  This  already  makes  the classifier  predict  that  the  second  sentence  is  a  valid  answer  to  the  question  of  the  first sentence.  The  second  example  also  shows  that  such  trained  classifiers  are  very  likely 

to  memorise  words  and  phrases  from  the  training  data.  The  word  “enjoy”  occurs
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512  times  in  the  positive  training  data  and  only  98  times  in  the  negative  training 

data  of  the  sentiment  task.  It  stands  to  reason  that  the  model  simply  predicts  almost every  instance  in  which  the  word  “enjoy”  occurs  as  positive.  While  this  is  mostly 

true,  there  are  some  exceptions,  such  as  this  second  example.  Likewise,  it  is  very 

probable  that  such  a  word  changes  the  semantics  of  the  instance  when  it  is  inserted, 

as  we  can  see  in  the  next  example  in  the  table.  In  such  a  case,  the  count-based 

filtering  method  might  have  excluded  the  word  “enjoy”.  In  sentiment  prediction,  it 

is  also  very  odd  to  see  that  the  word  “better”  is  an  adversarial  word  in  the  fourth example,  turning  a  positive  instance  into  a  negative  one,  predicted  by  the  classifier. 

The  fifth  example  is  a  very  interesting  case  of  a  wrong  adversarial  example.  Here, 

the  word  “Java”  is  inserted  into  the  first  question,  causing  a  semantic  shift  where 

the  resulting  question  is  a  duplicate  of  the  second  question.  While  one  might  think 

that  “Java”  is  not  a  good  adversarial  word,  it  is  even  more  interesting  to  see  that  the insertion  of  “Java”  in  the  second  question  also  leads  to  a  change  in  the  prediction, 

while  the  semantics  are  not  changed  this  time. 

Table  13.2  Examples  of  adversarial  instances  from  different  datasets  (inserted  adversarial words  shown  in  blue).  Valid  adversarial  examples  are  those  that  do  not  change  the  semantics in  relation  to  the  label 

Task

Instance

Label

Prediction

Valid 

QNLI

Question:  What  issue  has  been  plaguing 

Not 

Entailment

✓ 

the  civil  disobedience  movement. 

Entailment 

Sentence:   q  It  has  been  argued  that  the 

term  “civil  disobedience”  has  always 

suffered  from  ambiguity  and  in  modern 

times,  become  utterly  debased. 

SST2

 enjoy  not  only  unfunny  ,  but  downright 

Negative

Positive

✓ 

repellent  . 

SST2

 enjoy  but  it  could  have  been  worse  . 

Negative

Positive

✗ 

SST2

 better  good  old-fashioned  slash-and-hack 

Positive

Negative

✓ 

is  back  ! 

QQP

Question1:   Java  What  is  abstract  class 

Not 

Duplicate

✗ 

and  methods? 

Duplicate 

Question2:  What  is  abstract  class  and 

methods  in  java? 

QQP

Question1:  What  is  abstract  class  and 

Not 

Duplicate

✓ 

methods? 

Duplicate 

Question2:   Java  What  is  abstract  class 

and  methods  in  java? 
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13.4

Experiments

279

13.4.4  Adversarial  Testing 

The  rationale  behind  the  adversarial  testing  experiment  is  to  test  if  models  trained 

with  adversarial  examples  from  XAI-Attack  are  more  robust  than  those  trained  with 

no  or  other  adversarial  examples.  For  this,  we  first  generate  adversarial  examples 

for  a  standard  GLUE  task.  Then,  we  test  a  model  trained  together  with  the  task  data 

and  these  adversarial  examples  on  a  separate  dataset,  that  was  deliberately  created 

to  measure  robustness  on  the  same  task.  The  process  is  visualized  in  Fig. 13.2. 

Fig.  13.2  Adversarial  testing  illustration 

In  detail,  we  first  train  models  based  on  the  training  data  from  the  original  GLUE 

datasets  (non-adversarial).  For  these  models,  we  then  create  adversarial  examples 

for  the  development  set  of  the  same  GLUE  task  (non-adversarial).  Subsequently, 

a  model  based  on  the  training  set,  the  development  set  and  additionally  with  the 

adversarial  examples  is  tested  on  the  development  sets  of  the  Adversarial  GLUE 

benchmark  [466].  For  the  baseline,  we  omit  the  adversarial  examples  and  train  only on  the  GLUE  training  and  development  data. 

As  part  of  this  experiment,  we  also  compare  our  method  with  the  state-of-the-

art  word-level  adversarial  example  methods,  BAE  [124]  and  BERT-Attack  [247],  as
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well  as  with  the  adversarial  training  method  SMART  [181]. Regarding  the  ablations, we  test  five  different  settings  of  XAI-Attack.  For  three  of  them,  the  filtering  techniques  mentioned  in  Sect. 13.3.2  are  used.  Based  on  pre-evaluation  experiments,  we set  the  parameters  for  count-based  filtering  so  that  a  word  is  discarded  if  it  changes more  than  30%  of  the  class  data,  and  for  indicator-based  filtering  so  that  a  word 

is  an  indicator  of  the  correct  class  if  it  explains  more  than  1%  of  this  class.  In  the fourth  ablation  scenario,  adversarial  words  are  randomly  inserted  into  the  instances. 

Finally,  in  the  fifth  scenario,  we  utilize  the  SHAP  XAI  method  to  identify  adversarial words.  No  filtering  is  applied  in  either  of  the  two  scenarios. 

The  accuracy  results  of  the  baseline,  XAI-Attack  with  the  five  different  settings, 

BERT-Attack,  BAE,  and  SMART  are  shown  in  Table  13.3.  When  analysing  the results,  it  is  important  to  bear  in  mind  that  the  benchmark  itself  is  adversarial,  i.e. 

a  trained  model  gets  most  examples  wrong.  The  adversarial  training  method  with 

our  XAI-Attack  shows  significant  improvements  over  the  baseline,  BAE,  BERT-

Attack,  and  SMART.  XAI-Attack  with  indicator  and  without  filtering  is  able  to 

increase  performance  on  all  datasets  compared  to  the  baseline.  In  the  case  of  the 

QPP  dataset,  XAI-Attack  with  no  filtering  even  achieves  an  improvement  of  23.08 

accuracy  points.  This  method  also  produces  the  highest  results  overall.  While  the 

adversarial  example  method  based  on  count  filtering  seems  to  be  the  worst  filtering 

type  of  XAI-Attack,  sometimes  degrading  the  results  and  showing  weaker  improve-

ments,  the  indicator  filtering  method  shows  the  most  consistent  improvements.  The 

difference  between  the  method  without  filtering  (highest  improvements,  but  some-

what  inconsistent)  and  the  method  with  indicator  filtering  (more  consistent,  but  not 

Table  13.3  Adversarial  testing  results  on  the  adversarial  GLUE  tasks  (accuracy).  Best  values are  highlighted  and  arrows  represent  an  increase  or  a  decrease  compared  to  the  baseline, respectively 

Method

SST2

RTE

QQP

QNLI

MNLI-mm

MNLI-m 

Baseline

0.3243

0.5802

0.5513

0.5945

0.2901

0.3636 

←   .  No  Filt. 

0.4595  (. ↑)

0.8025  (. ↑)

0.7821  (. ↑)

0.6554  (. ↑)

0.3827  (. ↑)

0.5785  (. ↑) 

←   .  Count  Filt. 

0.3851  (. ↑)

0.5161  (. ↓)

0.6795  (. ↑)

0.6351  (. ↑)

0.3642  (. ↑)

0.4545  (. ↑) 

←   .  Indicator  Filt. 

0.4527  (. ↑)

0.6420  (. ↑)

0.7307  (. ↑)

0.6283  (. ↑)

0.4383  (. ↑)

0.5868  (. ↑) 

←   .  Rand.  Ins. 

0.5067  (. ↑)

0.6914  (. ↑)

0.7179  (. ↑)

0.5608  (. ↓)

0.3641  (. ↑)

0.4876  (. ↑) 

←   .  SHAP

0.3919  (. ↑)

0.4691  (. ↓)

0.5641  (. ↑)

0.5068  (. ↓)

0.3086  (. ↑)

0.3719  (. ↑) 

BAE

0.4459  (. ↑)

0.5432  (. ↓)

0.7436  (. ↑)

0.5676  (. ↓)

0.3827  (. ↑)

0.4876  (. ↑) 

BERT-Attack

0.4256  (. ↑)

0.5556  (. ↓)

0.6154  (. ↑)

0.6351  (. ↑)

0.4136  (. ↑)

0.4959  (. ↑) 

SMART

0.5000  (. ↑)

0.5679  (. ↓)

0.5384  (. ↓)

0.4527  (. ↓)

0.3765  (. ↑)

0.3636  (–)
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highest  improvements)  can  also  be  explained  intuitively.  Filtering  excludes  words 

from  the  list  of  potential  adversarial  words  that  may  be  important  for  predicting 

the  correct  class  and  in  fact  would  change  instances  semantically,  which  is  why 

the  results  consistently  improve  and  the  method  without  filtering  may  worsen  the 

prediction  quality  in  some  cases.  On  the  other  hand,  words  that  do  not  change 

instances  semantically  and  would  have  had  a  high  learning  effect  if  they  had  been 

included  in  the  adversarial  training  may  also  be  excluded  in  this  way,  resulting  in 

lower  improvements  than  the  more  open  method.  In  general,  if  the  respective  use 

case  does  not  allow  much  tuning  and  validation  (or  its  use  in  a  general  framework), 

we  would  recommend  using  the  indicator  filtering  method,  as  we  have  noticed  the 

most  consistent  improvements.  However,  if  the  use  case  allows  for  tuning  and  val-

idation,  we  would  also  recommend  trying  to  use  XAI-Attack  without  filtering,  as 

it  might  produce  even  better  results.  Besides,  the  results  show  that  XAI-Attack  has 

only  mixed  performance  with  SHAP  [267],  which  is  also  evident  in  the  adversarial words  extracted  with  the  method.  We  found  that  these  have  only  little  semantics 

with  respect  to  the  label.  Finally,  the  results  also  highlight  that  random  insertion  can further  improve  already  good  results,  as  in  the  case  of  SST2,  giving  rise  to  further 

research  into  more  sophisticated  insertion  methods. 

13.4.5  Adversarial  Training  on  Standard  GLUE 

While  we  demonstrated  that  XAI-Attack  significantly  enhances  the  resilience  of 

transformers  on  the  Adversarial  GLUE  benchmark,  this  subsequent  experiment 

focuses  on  evaluating  the  effectiveness  of  adversarial  training  on  the  standard  GLUE 

tasks. 

In  contrast  to  the  adversarial  testing  experiment,  we  split  the  training  data  for  each task  to  obtain  a  hold-out  set  of  10%.  XAI-Attack  then  creates  adversarial  examples 

using  LIME  and  indicator  filtering.  DistilBERT-base  is  subsequently  trained  using 

both  the  full  training  data  and  additional  adversarial  examples,  and  then  compared 

to  a  model  trained  only  with  the  full  training  data. 

Table  13.4  displays  the  results  for  the  validation  sets  of  the  tasks.  It  can  be observed  that  both  are  quite  similar,  with  an  expected  smaller  decrease  as  XAI-Attack  identifies  biases  in  the  models.  These  biases  may  originate  from  the  training 

data  and  could  also  be  present  in  the  validation  data.  To  further  investigate  the 

cause  of  the  decrease  in  performance,  we  conduct  a  qualitative  analysis  of  the 

adversarial  examples  in  the  SST2  sentiment  task.  Our  primary  focus  is  on  identifying 

adversarial  words  that  alter  the  prediction  of  most  correctly  classified  instances. 

These  words  serve  as  a  clear  indicator  of  a  particular  class.  Words  such  as  “bored,” 
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“silly,”  “charmless,”  “insightful,”  and  “terrific”  are  then  disregarded  due  to  their  clear semantic  relevance  to  sentiment  classification.  Our  investigation  highlights  words 

that  are  overrepresented  in  both  the  training  and  validation  datasets,  despite  their 

semantic  neutrality.  For  instance,  the  word  “strain”  was  found  to  shift  1511  positive 

instances  to  negative.  This  shift  occurs  because  the  classifier  had  erroneously  learned 

to  associate  “strain”  with  the  negative  class,  evidenced  by  its  presence  in  70  negative class  instances  compared  to  just  36  in  the  positive  class  within  the  training  data.  The benchmark  problem  then  arises  because  the  validation  set  includes  three  examples 

of  the  negative  class  and  no  examples  of  the  positive  class.  A  classifier  trained 

using  examples  from  XAI-Attack  or  other  adversarial  methods  may,  at  best,  perform 

equally  well  in  this  regard,  even  if  it  has  overcome  bias  and  learned  more  complex 

rules.  Additional  examples  of  this  phenomenon  are  detailed  in  Table  13.5. 

Table  13.4  Adversarial  training  of  XAI-Attack  (LIME  and  indicator  filtering)  on  the  standard GLUE  tasks  (accuracy) 

Method

SST2

RTE

QQP

QNLI 

Baseline

0.9037

0.5884

0.9027

0.8814 

XAI-A. 

0.9025

0.5704

0.8917

0.8706 

Table  13.5  Adversarial  words  (LIME)  from  the  SST2  dataset  that  are  over-represented  in the  train  and  validation  set.  Train  and  validation  representations  are  of  the  form  negative  (0)— 

positive  (1) 

Word

Label  Transf. 

#Adv.  Ex. 

Train  Repr.  0–1

Val.  Repr.  0–1 

strain

1.⇒ 0

1511

70–36

3–0 

pedestrian

1.⇒ 0

778

13–3

1–0 

slaps

1.⇒ 0

849

52–23

2–0 

earnest

0.⇒ 1

397

42–96

0–3 

innocence

0.⇒ 1

346

17–28

0–1 

provides

0.⇒ 1

260

3–63

0–3 

13.4.6  Adversarial  Transfer 

In  this  section  we  want  to  test  whether  the  adversarial  examples  of  one  model  are 

transferable  to  other  models,  i.e.  also  valid  adversarial  examples  for  other  models. 

To  do  this,  on  the  original  GLUE  benchmark,  we  take  the  adversarial  examples
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generated  by  XAI-Attack  with  LIME  and  indicator  filtering  on  the  distilBERT-base 

model  and  test  whether  they  can  also  fool  another  distilBERT-base  model,  a  BERT-

base  model  and  a  RoBERTa-base  model  trained  with  the  same  data. 

The  results  of  this  experiment  are  shown  in  Table  13.6.  It  is  clear  that  all  of  the models  can  be  deceived  to  a  large  extent  and  that  the  adversarial  examples  are  not 

only  valid  for  a  specifically  trained  model.  The  distilBERT  model  remains  the  one 

with  the  lowest  results,  which  was  to  be  expected  as  it  is  the  same  model  type.  The much  more  comprehensive  BERT  model  is  still  very  susceptible  to  the  adversarial 

examples,  which  is  reflected  in  the  low  accuracy  results.  The  RoBERTa  model, 

which  has  been  trained  for  much  longer  and  with  much  more  data,  performs  slightly 

better.  In  the  QQP  task,  it  even  achieves  an  acceptable  result  of  0.7653.  In  the  other tasks,  it  is  still  well  below  the  results  of  the  human  evaluation.  This  indicates  that XAI-Attack  is  able  to  find  biases  in  datasets  that  are  adopted  by  all  transformer 

models. 

Table  13.6  Accuracy  results  of  the  adversarial  transfer  experiment.  Adversarial  examples (XAI-Attack  with  LIME  and  indicator  filtering)  of  a  distilBERT  model  are  tested  with  another distilBERT,  a  BERT  and  a  RoBERTa  model 

Dataset

distilBERT

BERT

RoBERTa 

SST2

0.1940

0.3421

0.6178 

RTE

0.6136

0.6877

0.4293 

QQP

0.3299

0.4768

0.7653 

QNLI

0.3864

0.6090

0.6962 

MNLI-mm

0.2709

0.3670

0.6061 

MNLI-m

0.2672

0.3797

0.3797 

13.4.7  Summary  of  the  Results 

In  the  human  evaluation,  the  instances  of  the  original  datasets  and  the  adversarial 

examples  are  labeled  and  some  cases  are  analyzed  in  more  detail.  It  shows  that  the 

generated  adversarial  examples  are  mostly  not  semantics-changing  with  regard  to 

the  label,  i.e.  valid  adversarial  examples.  From  this,  it  can  also  be  inferred  that  the adversarial  examples  are  of  high  value  for  adversarial  training.  To  underpin  this, 

we  propose  an  experiment  in  which  we  utilize  the  Adversarial  GLUE  benchmark 

[466]  to  test  whether  models  trained  with  different  adversarial  examples  are  more robust  against  other  adversarial  attacks.  The  results  show  that  adversarial  training 

with  XAI-Attack  improves  the  robustness  considerably  even  compared  to  state-of-
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the-art  word-level  adversarial  attacks  and  training  methods,  such  as  BERT-Attack, 

BAE,  and  SMART.  We  also  test  different  filtering  strategies,  of  which  the  absence 

of  filtering  achieves  the  highest  improvements  and  the  indicator  filtering  achieves 

consistent  improvements.  Furthermore,  the  evaluation  results  of  random  insertion 

show  that  XAI-Attack’s  standard  method  of  appending  the  adversarial  words  at  the 

beginning  can  be  improved  (more  on  this  in  Sect. 13.5.1).  The  adversarial  training experiments  verify  that  common  benchmarks  have  biases  that  are  present  in  all  task 

sets  and  exemplify  the  need  for  more  out-of-distribution  evaluations.  In  the  last 

experiment  we  demonstrate  that  adversarial  examples  created  for  one  model  are 

transferable  to  other  models,  showing  that  transformer-based  models  are  generally 

susceptible  to  XAI-Attack  examples. 

13.5

Conclusion 

Adversarial  examples  are  of  great  importance  in  all  fields,  as  they  show  the  flaws 

of  a  model  and  can  even  be  used  to  attack  a  system.  In  this  study,  a  new  adversar-

ial  example  method  using  XAI  is  proposed.  The  method  was  evaluated  in  several 

experiments  consisting  of  a  human  evaluation,  a  novel  method  to  assess  robustness 

and  a  transferability  evaluation.  These  experiments  show  high  quality  adversar-

ial  examples,  significant  improvements  in  the  robustness  of  the  models  and  strong 

transferability  to  larger  models. 

13.5.1  Findings 

Besides  the  apparent  contributions  of  an  adversarial  example  creation/training 

method  based  on  XAI  and  a  novel  way  of  assessing  robustness  of  adversarial  train-

ing,  by  using  a  specialized  adversarial  example  benchmark,  this  study  also  revealed 

more  obscure  findings. 

Combining  XAI  and  adversarial  example  research  results  in  two  innovations: 

On  the  one  hand,  the  use  of  XAI  methods  allows  for  more  sophisticated  importance 

scores,  a  wider  function  space  and  fewer  constraints  on  the  model  (no  soft  labels 

required)  than  the  importance  functions  currently  used.  On  the  other  hand,  focusing 

on  mislearned  textual  cues  by  explaining  incorrectly  predicted  instances  has  a  much 

higher  success  rate  and  ultimately  the  greatest  learning  effect  when  combined  with 

adversarial  training. 

Additionally,  this  revealed  novel  insights  of  learned  biases  of  transformer  mod-

els.  One  might  tend  to  overestimate  the  performance  of  these  pre-trained  models, 

as  they  score  very  high  on  common  NLP  benchmarks.  However,  inspection  of  the
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adversarial  examples  produced  by  our  method  shows  that  the  trained  models  often 

make  their  predictions  based  on  one  word  only,  and  do  not  produce  more  complex 

rules,  also  known  as  shortcut  learning  [126]. While  showing  how  fragile  a  trained model  can  be,  this  also  shifts  the  light  towards  the  benchmarks.  Due  to  the  high 

performance  of  the  models  on  the  test  data,  but  the  heavy  reliance  on  individual 

words  without  semantics  in  relation  to  the  label,  it  is  evident  that  the  common  test datasets  have  biases  which  are  also  visible  in  the  training  and  development  data. 

While  Sect. 13.4.5  provides  even  more  evidence  for  this,  we  expect  further  research on  this  topic.  An  important  implication  for  practical  systems  is,  that  one  should 

always  ensure  that  the  validation  and  test  sets  should  strictly  represent  the  real  data (involving  constant  re-evaluations). 

Limitations 

Our  study  encountered  several  limitations,  in  light  of  which  we  identify  avenues 

for  future  research  that  extend  and  deepen  the  understanding  of  our  results.  For 

example,  we  have  not  tried  XAI-Attack  on  larger  transformer  models  such  as  GPT-

3 [  47]. These  models  are  expected  to  be  much  more  robust  against  attacks,  but since  they  can  also  be  brittle  in  terms  of  the  right  prompting,  we  could  imagine 

XAI-Attack  finding  adversarial  examples  for  them  as  well.  However,  research  into 

smaller  language  models  remains  important  because,  for  example,  they  can  be  used 

on  one’s  own  hardware,  are  easier  to  interpret,  can  be  easily  fine-tuned,  do  not 

hallucinate  and  could  be  just  as  good  or  better  in  certain  areas. 

With  regard  to  XAI-Attack  itself,  we  would  like  to  emphasise  that  it  requires  a 

hold-out  set,  which  can  be  the  development  set  or  part  of  the  training  set.  Further 

research  could  address  the  question  of  how  much  data  is  needed  for  the  hold-out  set 

and  how  the  size  affects  adversarial  training  and  ultimately  the  robustness  of  models. 

This  can  also  be  important  for  the  question  of  how  well  XAI-Attack  generalizes. 

The  adversarial  examples  in  the  Adversarial  GLUE  benchmark  are  crafted  using 

very  diverse  methods,  resulting  in  all  kinds  of  adversarial  examples.  The  significant 

performance  increase  from  adversarial  training  on  these  examples  is  a  first  indication 

that  the  model  has  indeed  become  more  generally  robust.  However,  we  believe  that 

this  generalisability  depends  on  how  many  adversarial  examples  are  found  and  used 

for  training.  With  very  few  adversarial  examples,  the  model  might  only  unlearn  the 

biases  for  the  specific  adversarial  words  used  in  training.  With  enough  adversarial 

examples  (like  in  the  experiments  in  the  paper),  on  the  other  hand,  the  model  tends 

to  become  more  robust  in  general. 

In  its  standard  implementation,  XAI-Attack  inserts  the  adversarial  words  only  at 

the  beginning  of  the  instances,  which  has  already  led  to  good  results.  However,  in 

our  experiments  we  also  looked  at  inserting  the  words  at  a  random  position,  which 

actually  improved  the  results  in  one  task  significantly  (see  Sect. 13.4.4).  Hence,  it
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could  be  very  interesting  for  further  studies  to  investigate  how  the  words  could  be 

inserted  in  a  more  informed  way  (e.g.  by  using  language  models  to  predict  the  most 

appropriate  and  coherent  insertion).  With  this,  the  instances  generated  could  also 

be  more  imperceptible  as  adversarial  examples,  which  some  works,  such  as  Wang 

et  al. [472], consider  part  of  the  definition  of  an  adversarial  example.  Regarding  the adversarial  training,  another  direction  would  be  to  remove  the  identified  adversarial 

words  of  some  of  the  training  instances,  which  could  lead  to  more  complex  decision 

rules  of  the  model  as  long  as  it  is  ensured  that  the  label  does  not  change.  Taking 

this  this  idea  even  further,  it  might  be  interesting  to  let  generative  models  create 

instances  based  on  the  adversarial  words. 

In  our  human  evaluation  experiments,  the  annotators’  labeling  performance  on 

the  normal  dataset  was  not  perfect.  This  may  be  partly  due  to  the  fact  that  our 

annotators  are  fluent  in  English  but  not  native  speakers.  Furthermore,  the  results  are 

comparable  to  the  study  by  Nangia  and  Bowman  [302], who  also  performed  human evaluations  on  the  GLUE  benchmark,  showing  that  the  tasks  are  not  as  easy  as  they 

might  seem  at  first  glance. 

Finally,  while  we  are  confident  that  XAI-Attack  will  work  well  with  other  lan-

guages,  we  have  only  experimented  with  English  examples.  We  look  forward  to 

adversarial  research  with  other  languages. 

Ethics  Statement 

In  our  work,  we  have  consistently  prioritized  ethics,  continuously  reassessing  our 

approach  to  ensure  responsible  conduct.  Research  in  the  field  of  adversarial  exam-

ple  generation  inherently  poses  risks  of  misuse,  notably  in  the  form  of  attacks 

on  machine  learning  models.  This  risk  is  especially  pronounced  in  safety-critical 

domains,  as  we  have  outlined  in  the  beginning.  While  our  method  could  be  repur-

posed  for  malicious  use,  we  want  to  emphasize  that  the  primary  goal  of  this  work  is 

to  generate  adversarial  examples  that  can  be  used  to  fortify  machine  learning  models 

against  such  and  other  attacks,  as  we  have  demonstrated  with  the  adversarial  testing 

experiment  in  Sect. 13.4.4. 

In  addition,  we  advise  reviewing  the  adversarial  examples  generated  by  XAI-

Attack.  This  applies  to  any  adversarial  example  method,  as  the  examples  may  intro-

duce  new  unwanted  biases. 

Acknowledgements  This  research  work  has  been  funded  by  the  German  Federal  Ministry  of Education  and  Research  and  the  Hessian  Ministry  of  Higher  Education,  Research,  Science  and the  Arts  within  their  joint  support  of  the  National  Research  Center  for  Applied  Cybersecurity ATHENE  and  by  the  German  Federal  Ministry  of  Education  and  Research  in  the  projects 

CYWARN  (13N15407)  and  CYLENCE  (13N16636).  The  calculations  for  this  research  were 

conducted  on  the  Lichtenberg  high  performance  computer  of  the  TU  Darmstadt. 

Bibliography1 

1.  Marah  I  Abdin,  Sam  Ade  Jacobs,  Ammar  Ahmad  Awan,  Jyoti  Aneja,  Ahmed  Awadal-

lah,  Hany  Awadalla,  Nguyen  Bach,  Amit  Bahree,  Arash  Bakhtiari,  Harkirat  S.  Behl, 

Alon  Benhaim,  Misha  Bilenko,  Johan  Bjorck,  Sébastien  Bubeck,  Martin  Cai,  Caio 

César  Teodoro  Mendes,  Weizhu  Chen,  Vishrav  Chaudhary,  Parul  Chopra,  Allie  Del 

Giorno,  Gustavo  de  Rosa,  Matthew  Dixon,  Ronen  Eldan,  Dan  Iter,  Amit  Garg,  Abhishek 

Goswami,  Suriya  Gunasekar,  Emman  Haider,  Junheng  Hao,  Russell  J.  Hewett,  Jamie 

Huynh,  Mojan  Javaheripi,  Xin  Jin,  Piero  Kauffmann,  Nikos  Karampatziakis,  Dongwoo 

Kim,  Mahoud  Khademi,  Lev  Kurilenko,  James  R.  Lee,  Yin  Tat  Lee,  Yuanzhi  Li,  Chen 

Liang,  Weishung  Liu,  Eric  Lin,  Zeqi  Lin,  Piyush  Madan,  Arindam  Mitra,  Hardik  Modi, 

Anh  Nguyen,  Brandon  Norick,  Barun  Patra,  Daniel  Perez-Becker,  Thomas  Portet,  Reid 

Pryzant,  Heyang  Qin,  Marko  Radmilac,  Corby  Rosset,  Sambudha  Roy,  Olatunji  Ruwase, 

Olli  Saarikivi,  Amin  Saied,  Adil  Salim,  Michael  Santacroce,  Shital  Shah,  Ning  Shang, 

Hiteshi  Sharma,  Xia  Song,  Masahiro  Tanaka,  Xin  Wang,  Rachel  Ward,  Guanhua  Wang, 

Philipp  Witte,  Michael  Wyatt,  Can  Xu,  Jiahang  Xu,  Sonali  Yadav,  Fan  Yang,  Ziyi  Yang, 

Donghan  Yu,  Chengruidong  Zhang,  Cyril  Zhang,  Jianwen  Zhang,  Li  Lyna  Zhang,  Yi 

Zhang,  Yue  Zhang,  Yunan  Zhang,  and  Xiren  Zhou.  “Phi-3  Technical  Report:  A  Highly 

Capable  Language  Model  Locally  on  Your  Phone”.  In:   CoRR  abs/2404.14219  (2024). 

doi:  https://doi.org/10.48550/ARXIV.2404.14219. arXiv:2404.14219. url:  https://doi. 

org/10.48550/arXiv.2404.14219. 

2.  Fabian  Abel,  Claudia  Hauff,  Geert-Jan  Houben,  Richard  Stronkman,  and  Ke  Tao. 

“Semantics  .+ filtering  .+ search  =  twitcident.  exploring  information  in  social  web 

streams”.  In:   23rd  ACM  Conference  on  Hypertext  and  Social  Media,  HT  ’12,  Mil-

 waukee, WI, USA, June 25–28, 2012.  Ed.  by  Ethan  V.  Munson  and  Markus  Strohmaier. 

ACM,  2012,  pp.  285–294.  doi:  https://doi.org/10.1145/2309996.2310043. url:  https:// 

doi.org/10.1145/2309996.2310043. 

3.  Fabian  Abel,  Claudia  Hauff,  Geert-Jan  Houben,  Richard  Stronkman,  and  Ke  Tao.  “Twit-

cident:  fighting  fire  with  information  from  social  web  streams”.  In:   Proceedings  of 

 the 21st World Wide Web Conference, WWW 2012, Lyon, France, April 16–20, 2012 

1  This  dissertation,  including  all  associated  code,  was  independently  written  by  the  authors. 

Language  and  editorial  support,  as  well  as  code  assistance,  were  provided  by  OpenAI’s  ChatGPT. 

©  The  Editor(s)  (if  applicable)  and  The  Author(s),  under  exclusive  license  to 

287

Springer  Fachmedien  Wiesbaden  GmbH,  part  of  Springer  Nature  2025 

M.  Bayer,  Deep Learning in Textual Low-Data Regimes for Cybersecurity, 

Technology,  Peace  and  Security  I  Technologie,  Frieden  und  Sicherheit, 

https://doi.org/10.1007/978-3-658-48778-2 

288

Bibliography

 (Companion Volume).  Ed.  by  Alain  Mille,  Fabien  Gandon,  Jacques  Misselis,  Michael 

Rabinovich,  and  Steffen  Staab.  ACM,  2012,  pp.  305–308.  doi:  https://doi.org/10.1145/ 

2187980.2188035.  url:  https://doi.org/10.1145/2187980.2188035. 

4.  Hugo  Queiroz  Abonizio  and  Sylvio  Barbon  Junior.  “Pre-trained  Data  Augmentation 

for  Text  Classification”.  In:  Intelligent  Systems—9th  Brazilian  Conference,  BRACIS 

 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part I.  Ed.  by  Ricardo 

Cerri  and  Ronaldo  C.  Prati.  Vol.  12319.  Lecture  Notes  in  Computer  Science.  Springer, 

2020,  pp.  551–565.  doi:  https://doi.org/10.1007/978-3-030-61377-8_38.  url:  https:// 

doi.org/10.1007/978-3-030-61377-8_38. 

5.  Md  Sahrom  Abu,  Siti  Rahayu  Selamat,  Aswami  Ariffin,  and  Robiah  Yusof.  “Cyber  threat intelligence–issue  and  challenges”.  In:   Indonesian Journal of Electrical Engineering 

 and Computer Science  10.1  (2018),  pp.  371–379. 

6.  Mistral  AI.  Au large.  Feb.  2024.  url:  https://www.mistral.ai/news/mistral-large/. 

7.  Milam  Aiken  and  Mina  Park.  “The  efficacy  of  round-trip  translation  for  MT  evaluation”. 

In:   Translation Journal  14.1  (2010),  pp.  1–10. 

8.  Firoj  Alam,  Shafiq  R.  Joty,  and  Muhammad  Imran.  “Domain  Adaptation  with  Adver-

sarial  Training  and  Graph  Embeddings”.  In:   Proceedings of the 56th Annual Meeting 

 of  the  Association  for  Computational  Linguistics,  ACL  2018,  Melbourne,  Australia, 

 July 15–20, 2018, Volume 1: Long Papers.  Ed.  by  Iryna  Gurevych  and  Yusuke  Miyao. 

Association  for  Computational  Linguistics,  2018,  pp.  1077–1087.  doi:  https://doi.org/ 

10.18653/V1/P18-1099.  url:  https://www.aclanthology.org/P18-1099/. 

9.  Firoj  Alam,  Shafiq  R.  Joty,  and  Muhammad  Imran.  “Graph  Based  Semi-Supervised 

Learning  with  Convolution  Neural  Networks  to  Classify  Crisis  Related  Tweets”.  In: 

 Proceedings of the Twelfth International Conference on Web and Social Media, ICWSM 

 2018, Stanford, California, USA, June 25–28, 2018.  AAAI  Press,  2018,  pp.  556–559. 

url:  https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17815. 

10.  Firoj  Alam,  Ferda  Ofli,  and  Muhammad  Imran.  “Descriptive  and  visual  summaries  of 

disaster  events  using  artificial  intelligence  techniques:  case  studies  of  Hurricanes  Har-

vey,  Irma,  and  Maria”.  In:  Behav. Inf. Technol.  39.3  (2020),  pp.  288–318.  doi:  https://doi. 

org/10.1080/0144929X.2019.1610908. url:  https://doi.org/10.1080/0144929X.2019. 

1610908. 

11.  Hunt  Allcott  and  Matthew  Gentzkow.  “Social  Media  and  Fake  News  in  the  2016  Elec-

tion”.  In:   Journal of Economic Perspectives  31.2  (2017),  pp.  211–236.  ISSN:  0895– 

3309. 

12.  Liz  Allen,  Alison  O’Connell,  and  Veronique  Kiermer.  “How  can  we  ensure  visibility 

and  diversity  in  research  contributions?  How  the  Contributor  Role  Taxonomy  (CRediT) 

is  helping  the  shift  from  authorship  to  contributorship”.  In:   Learn. Publ.  32.1  (2019), pp.  71–74.  doi:  https://doi.org/10.1002/LEAP.1210.  url:  https://doi.org/10.1002/leap. 

1210. 

13.  Noufa  Alnajran,  Keeley  A.  Crockett,  David  McLean,  and  Annabel  Latham.  “Cluster 

Analysis  of  Twitter  Data:  A  Review  of  Algorithms”.  In:   Proceedings of the 9th Inter-

 national  Conference  on  Agents  and  Artificial  Intelligence,  ICAART  2017,  Volume  2, 

 Porto,  Portugal,  February  24–26,  2017.  Ed.  by  H.  Jaap  van  den  Herik,  Ana  Paula Rocha,  and  Joaquim  Filipe.  SciTePress,  2017,  pp.  239–249.  doi:  https://doi.org/10. 

5220/0006202802390249.  url:  https://doi.org/10.5220/0006202802390249. 

14.  Emily  Alsentzer,  John  R.  Murphy,  Willie  Boag,  Wei-Hung  Weng,  Di  Jin,  Tristan  Nau-

mann,  and  Matthew  B.  A.  McDermott.  “Publicly  Available  Clinical  BERT  Embed-

Bibliography

289

dings”.  In:   CoRR  abs/1904.03323  (2019). arXiv:1904.03323. url:  http://arxiv.org/abs/ 

1904.03323. 

15.  Fernando  Alves,  Ambrose  Andongabo,  Ilir  Gashi,  Pedro  M.  Ferreira,  and  Alysson 

Bessani.  “Follow  the  Blue  Bird:  A  Study  on  Threat  Data  Published  on  Twitter”.  In:  Computer Security—ESORICS 2020—25th European Symposium on Research in Computer 

 Security, ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part I. 

Ed.  by  Liqun  Chen,  Ninghui  Li,  Kaitai  Liang,  and  Steve  A.  Schneider.  Vol.  12308.  Lec-

ture  Notes  in  Computer  Science.  Springer,  2020,  pp.  217–236.  doi:  https://doi.org/10. 

1007/978-3-030-58951-6_11.  url:  https://doi.org/10.1007/978-3-030-58951-6_11. 

16.  Fernando  Alves,  Aurélien  Bettini,  Pedro  M.  Ferreira,  and  Alysson  Bessani.  “Process-

ing  tweets  for  cybersecurity  threat  awareness”.  In:   Inf.  Syst.  95  (2021),  p.  101586. 

doi:  https://doi.org/10.1016/J.IS.2020.101586. url:  https://doi.org/10.1016/j.is.2020. 

101586. 

17.  Moustafa  Alzantot,  Yash  Sharma,  Ahmed  Elgohary,  Bo-Jhang  Ho,  Mani  B.  Srivastava, 

and  Kai-Wei  Chang.  “Generating  Natural  Language  Adversarial  Examples”.  In:   Pro-

 ceedings of the 2018 Conference on Empirical Methods in Natural Language Process-

 ing, Brussels, Belgium, October 31—November 4, 2018.  Ed.  by  Ellen  Riloff,  David  Chi-

ang,  Julia  Hocken-maier,  and  Jun’ichi  Tsujii.  Association  for  Computational  Linguis-

tics,  2018,  pp.  2890–2896.  doi:  https://doi.org/10.18653/V1/D18-1316.  url:  https:// 

doi.org/10.18653/v1/d18-1316. 

18.  Ateret  Anaby-Tavor,  Boaz  Carmeli,  Esther  Goldbraich,  Amir  Kantor,  George  Kour, 

Segev  Shlomov,  Naama  Tepper,  and  Naama  Zwerdling.  “Do  Not  Have  Enough  Data? 

Deep  Learning  to  the  Rescue!”  In:   The Thirty-Fourth AAAI Conference on Artificial 

 Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-

 ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in 

 Artificial Intelligence, EAAI 2020,  New  York,  NY,  USA,  February  7–12,  2020.  AAAI 

Press,  2020,  pp.  7383–7390.  doi:  https://doi.org/10.1609/AAAI.V34I05.6233. url: 

https://doi.org/10.1609/aaai.v34i05.6233. 

19.  Jacob  Andreas.  “Good-Enough  Compositional  Data  Augmentation”.  In:   Proceedings of 

 the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, 

 Online, July 5–10, 2020.  Ed.  by  Dan  Jurafsky,  Joyce  Chai,  Natalie  Schluter,  and  Joel R.  Tetreault.  Association  for  Computa  tional  Linguistics,  2020,  pp.  7556–7566.  doi: 

https://doi.org/10.18653/V1/2020.ACL-MAIN.676. url:  https://doi.org/10.18653/v1/ 

2020.acl-main.676. 

20.  Rohan  Anil,  Sebastian  Borgeaud,  Yonghui  Wu,  Jean-Baptiste  Alayrac,  Jiahui  Yu,  Radu 

Soricut,  Johan  Schalkwyk,  Andrew  M.  Dai,  Anja  Hauth,  Katie  Millican,  David  Silver, 

Slav  Petrov,  Melvin  Johnson,  Ioannis  Antonoglou,  Julian  Schrittwieser,  Amelia  Glaese, 

Jilin  Chen,  Emily  Pitler,  Timothy  P.  Lillicrap,  Angeliki  Lazaridou,  Orhan  Firat,  James 

Molloy,  Michael  Isard,  Paul  Ronald  Barham,  Tom  Hennigan,  Benjamin  Lee,  Fabio 

Viola,  Malcolm  Reynolds,  Yuanzhong  Xu,  Ryan  Doherty,  Eli  Collins,  Clemens  Meyer, 

Eliza  Rutherford,  Erica  Moreira,  Kareem  Ayoub,  Megha  Goel,  George  Tucker,  Enrique 

Piqueras,  Maxim  Krikun,  Iain  Barr,  Nikolay  Savinov,  Ivo  Danihelka,  Becca  Roelofs, 

Anaïs  White,  Anders  Andreassen,  Tamara  von  Glehn,  Lakshman  Yagati,  Mehran 

Kazemi,  Lucas  Gonzalez,  Misha  Khalman,  Jakub  Sygnowski,  and  et  al.  “Gemini:  A 

Family  of  Highly  Capable  Multimodal  Models”.  In:   CoRR  abs/2312.11805  (2023).  doi: 

https://doi.org/10.48550/ARXIV.2312.11805. arXiv:2312.11805. url:  https://doi.org/ 

10.48550/arXiv.2312.11805. 

290

Bibliography

21.  Fares  Antaki,  Daniel  Milad,  Mark  A  Chia,  Charles-douard  Gigu  re,  Samir  Touma, 

Jonathan  El-Khoury,  Pearse  A  Keane,  and  Renaud  Duval.  “Capabilities  of  GPT-4  in 

ophthalmology:  an  analysis  of  model  entropy  and  progress  towards  human-level  medical 

question  answering”.  en.  In:  British   Journal of Ophthalmology (Nov.  2023),  bjo–2023– 

324438.  issn:  0007–1161,  1468–2079.  doi:  https://doi.org/10.1136/bjo-2023-324438. 

url:  https://doi.org/10.1136/bjo-2023-324438  (visited  on  02/26/2024). 

22.  Giovanni  Apruzzese,  Pavel  Laskov,  Edgardo  Montes  de  Oca,  Wissam  Mallouli,  Luis 

Burdalo  Rapa,  Athanasios  Vasileios  Grammatopoulos,  and  Fabio  Di  Franco.  “The 

Role  of  Machine  Learning  in  Cybersecurity”.  In:   CoRR  abs/2206.09707  (2022).  doi: 

https://doi.org/10.48550/ARXIV.2206.09707. arXiv:2206.09707. url:  https://doi.org/ 

10.48550/arXiv.2206.09707. 

23.  Segun  Taofeek  Aroyehun  and  Alexander  F.  Gelbukh.  “Aggression  Detection  in  Social 

Media:  Using  Deep  Neural  Networks,  Data  Augmentation,  and  Pseudo  Labeling”.  In: 

 Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, TRAC 

 at COLING 2018, Santa Fe, New Mexico, USA, August 25, 2018.  Ed.  by  Ritesh  Kumar, 

Atul  Kr.  Ojha,  Marcos  Zampieri,  and  Shervin  Malmasi.  Association  for  Computational 

Linsguistics,  2018,  pp.  90–97.  url:  https://www.aclanthology.org/W18-4411/. 

24.  Jason  Baldridge  and  Miles  Osborne.  “Active  Learning  and  the  Total  Cost  of  Annotation”. 

In:   Proceedings of the 2004 Conference on Empirical Methods in Natural Language 

 Processing , EMNLP 2004, A meeting of SIGDAT, a Special Interest Group of the ACL, 

 held in conjunction with ACL 2004, 25–26 July 2004, Barcelona, Spain.  ACL,  2004, 

pp.  9–16.  url:  https://www.aclanthology.org/W04-3202/. 

25.  Michele  Banko  and  Eric  Brill.  “Scaling  to  Very  Very  Large  Corpora  for  Natural  Language  Disambiguation”.  In:   Association  for  Computational  Linguistic,  39th  Annual 

 Meeting  and  10th  Conference  of  the  European  Chapter,  Proceedings  of  the  Confer-

 ence,  July  9–11,  2001,  Toulouse,  France.  Morgan  Kaufmann  Publishers,  2001,  pp. 

26–33.  doi:  https://doi.org/10.3115/1073012.1073017. url:  https://www.aclanthology. 

org/P01-1005/. 

26.  Marco  Baroni,  Georgiana  Dinu,  and  Germán  Kruszewski.  “Don’t  count,  predict!  A 

systematic  comparison  of  context-counting  vs.  context-predicting  semantic  vectors”. 

In:   Proceedings  of  the  52nd  Annual  Meeting  of  the  Association  for  Computational 

 Linguistics, ACL 2014, June 22–27, 2014, Baltimore, MD, USA, Volume 1: Long Papers. 

The  Association  for  Computer  Linguistics,  2014,  pp.  238–247.  doi:  https://doi.org/10. 

3115/V1/P14-1023.  url:  https://doi.org/10.3115/v1/p14-1023. 

27.  Markus  Bayer,  Tobias  Frey,  and  Christian  Reuter.  “Multi-level  fine-tuning,  data  aug-

mentation,  and  few-shot  learning  for  specialized  cyber  threat  intelligence”.  In:   Comput. 

 Secur.  134  (2023),  p.  103430.  doi:  https://doi.org/10.1016/J.COSE.2023.103430.  url: 

https://doi.org/10.1016/j.cose.2023.103430. 

28.  Markus  Bayer,  Marc-André  Kaufhold,  Bjorn  Buchhold,  Marcel  Keller,  Jorg  Dallmeyer, 

and  Christian  Reuter.  “Data  augmentation  in  natural  language  processing:  a  novel 

text  generation  approach  for  long  and  short  text  classifiers”.  In:   Int. J. Mach. Learn. 

 Cybern.  14.1  (2023),  pp.  135–150.  doi:  https://doi.org/10.1007/S13042-022-01553-3. 

url:  https://doi.org/10.1007/s13042-022-01553-3. 

29.  Markus  Bayer,  Marc-André  Kaufhold,  and  Christian  Reuter.  “A  Survey  on  Data  Aug-

mentation  for  Text  Classification”.  In:   ACM Comput. Surv.  55.7  (2023),  146:1–146:39. 

doi:  https://doi.org/10.1145/3544558. url:  https://doi.org/10.1145/3544558. 

Bibliography

291

30.  Markus  Bayer,  Marc-André  Kaufhold,  and  Christian  Reuter.  “Information  Overload  in 

Crisis  Management:  Bilingual  Evaluation  of  Embedding  Models  for  Clustering  Social 

Media  Posts  in  Emergencies”.  In:   29th European Conference on Information Systems— 

 Human Values Crisis in a Digitizing World, ECIS 2021, Marrakech, Morocco, 2020. 

Ed.  by  Frantz  Rowe,  Redouane  El  Amrani,  Moez  Limayem,  Sabine  Matook,  Christoph 

Rosenkranz,  Edgar  A.  Whitley,  and  Ali  El  Quammah.  2021.  url:  https://www.aisel. 

aisnet.org/ecis2021_rp/64. 

31.  Markus  Bayer,  Philipp  Kuehn,  Ramin  Shanehsaz,  and  Christian  Reuter.  “CySecBERT: 

A  Domain-Adapted  Language  Model  for  the  Cybersecurity  Domain”.  In:   ACM Trans. 

 Priv. Secur.  27.2  (Apr.  2024).  issn:  2471–2566.  doi:  https://doi.org/10.1145/3652594. 

url:  https://doi.org/10.1145/3652594. 

32.  Markus  Bayer,  Markus  Neiczer,  Maximilian  Samsinger,  Björn  Buchhold,  and  Christian 

Reuter.  “XAI-Attack:  Utilizing  Explainable  AI  to  Find  Incorrectly  Learned  Patterns  for 

Black-Box  Adversarial  Example  Creation”.  In:   2024  Joint  International  Conference 

 on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 

 2024).  LREC-COLING  ’24.  2024. 

33.  Yonatan  Belinkov  and  Yonatan  Bisk.  “Synthetic  and  Natural  Noise  Both  Break  Neural 

Machine  Translation”.  In:   6th International Conference on Learning Representations, 

 ICLR 2018, Vancouver, BC, Canada, April 30—May 3, 2018, Conference Track Proceed-

 ings.  OpenReview.net,  2018.  url:  https://www.openreview.net/forum?id=BJ8vJebC-. 

34.  Iz  Beltagy,  Kyle  Lo,  and  Arman  Cohan.  “SciBERT:  A  Pretrained  Language  Model 

for  Scientific  Text”.  In:   Proceedings  of  the  2019  Conference  on  Empirical  Methods 

 in Natural Language Processing and the 9th International Joint Conference on Natu-

 ral Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3–7, 

 2019.  Ed.  by  Kentaro  Inui,  Jing  Jiang,  Vincent  Ng,  and  Xiaojun  Wan.  Association  for Computational  Linguistics,  2019,  pp.  3613–3618.  doi:  https://doi.org/10.18653/V1/ 

D19-1371.  url:  https://doi.org/10.18653/v1/D19-1371. 

35.  Emily  M.  Bender,  Timnit  Gebru,  Angelina  McMillan-Major,  and  Shmargaret 

Shmitchell.  “On  the  Dangers  of  Stochastic  Parrots:  Can  Language  Models  Be  Too 

Big?”  In:   FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Trans-

 parency, Virtual Event / Toronto, Canada, March 3–10, 2021.  Ed.  by  Madeleine  Clare 

Elish,  William  Isaac,  and  Richard  S.  Zemel.  ACM,  2021,  pp.  610–623.  doi:  https://doi. 

org/10.1145/3442188.3445922.  url:  https://doi.org/10.1145/3442188.3445922. 

36.  Battista  Biggio  and  Fabio  Roli.  “Wild  patterns:  Ten  years  after  the  rise  of  adversarial machine  learning”.  In:   Pattern Recognit.  84  (2018),  pp.  317–331.  doi:  https://doi.org/ 

10.1016/J.PATCOG.2018.07.023.  url:  https://doi.org/10.1016/j.patcog.2018.07.023. 

37.  Sid  Black,  Stella  Biderman,  Eric  Hallahan,  Quentin  Anthony,  Leo  Gao,  Laurence 

Golding,  Horace  He,  Connor  Leahy,  Kyle  McDonell,  Jason  Phang,  Michael  Pieler, 

USVSN  Sai  Prashanth,  Shivanshu  Purohit,  Laria  Reynolds,  Jonathan  Tow,  Ben  Wang, 

and  Samuel  Weinbach.  “GPT-NeoX-20B:  An  Open-Source  Autoregressive  Language 

Model”.  In:   CoRR  abs/2204.06745  (2022).  doi:  https://doi.org/10.48550/ARXIV.2204. 

06745. arXiv:2204.06745. url:  https://doi.org/10.48550/arXiv.2204.06745. 

38.  Piotr  Bojanowski,  Edouard  Grave,  Armand  Joulin,  and  Tomás  Mikolov.  “Enriching 

Word  Vectors  with  Subword  Information”.  In:   Trans.  Assoc.  Comput.  Linguistics   5 

(2017),  pp.  135–146.  doi:  https://doi.org/10.1162/TACL_A_00051. url:  https://doi. 

org/10.1162/tacl_a_00051. 

292

Bibliography

39.  Sridevi  Bonthu,  Abhinav  Dayal,  M  Lakshmi,  and  S  Rama  Sree.  “Effective  text  aug-

mentation  strategy  for  nlp  models”.  In:   Proceedings of third international conference 

 on sustainable computing.  tex.organization:  Springer.  2022,  pp.  521–531. 

40.  Mitchell  Bosley,  Musashi  Jacobs-Harukawa,  Hauke  Licht,  and  Alexander  Hoyle.  “Do 

We  Still  Need  BERT  in  the  Age  of  GPT?  Comparing  the  Benefits  of  Domain-Adaptation 

and  In-Context-Learning  Approaches  to  Using  LLMs  for  Political  Science  Research.” 

In:   2023 Annual Meeting of the Midwest Political Science Association (MPSA).  2023. 

41.  Amine  Boulemtafes,  Abdelouahid  Derhab,  and  Yacine  Challal.  “A  review  of  privacy-

preserving  techniques  for  deep  learning”.  In:   Neurocomputing  384  (2020),  pp.  21–45. 

doi:  https://doi.org/10.1016/J.NEUCOM.2019.11.041.  url:  https://doi.org/10.1016/j. 

neucom.2019.11.041. 

42.  Samuel  R.  Bowman,  Gabor  Angeli,  Christopher  Potts,  and  Christopher  D.  Manning.  “A 

large  annotated  corpus  for  learning  natural  language  inference”.  In:   Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, 

 Lisbon, Portugal, September 17–21, 2015.  Ed.  by  Lluís  Màrquez,  Chris  Callison-Burch, 

Jian  Su,  Daniele  Pighin,  and  Yuval  Marton.  The  Association  for  Computational  Lin-

guistics,  2015,  pp.  632–642.  doi:  https://doi.org/10.18653/V1/D15-1075. url:  https:// 

doi.org/10.18653/v1/d15-1075. 

43.  Samuel  R.  Bowman,  Luke  Vilnis,  Oriol  Vinyals,  Andrew  M.  Dai,  Rafal  Józefowicz,  and Samy  Bengio.  “Generating  Sentences  from  a  Continuous  Space”.  In:   Proceedings of 

 the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 

 2016, Berlin, Germany, August 11–12, 2016.  Ed.  by  Yoav  Goldberg  and  Stefan  Riezler. 

ACL,  2016,  pp.  10–21.  doi:  https://doi.org/10.18653/V1/K16-1002.  url:  https://doi. 

org/10.18653/v1/k16-1002. 

44.  Jonathan  Bragg,  Arman  Cohan,  Kyle  Lo,  and  Iz  Beltagy.  “FLEX:  Unifying  Eval-

uation  for  Few-Shot  NLP”.  In:   Advances  in  Neural  Information  Processing  Sys-

 tems  34:  Annual  Conference  on  Neural  Information  Processing  Systems  2021, 

 NeurIPS  2021,  December  6–14,  2021,  virtual.  Ed.  by  Marc’Aurelio  Ranzato,  Alina 

Beygelzimer,  Yann  N.  Dauphin,  Percy  Liang,  and  Jennifer  Wortman  Vaughan. 

2021,  pp.  15787–15800.  url:  https://www.proceedings.neurips.cc/paper/2021/hash/ 

8493eeaccb772c0878f99d60a0bd2bb3-Abstract.html. 

45.  Amy  Brand,  Liz  Allen,  Micah  Altman,  Marjorie  M.  K.  Hlava,  and  Jo  Scott.  “Beyond 

authorship:  attribution,  contribution,  collaboration,  and  credit”.  In:   Learn. Publ.  28.2 

(2015),  pp.  151–155.  doi:  https://doi.org/10.1087/20150211. url:  https://doi.org/10. 

1087/20150211. 

46.  Tom  B.  Brown,  Dandelion  Mané,  Aurko  Roy,  Martín  Abadi,  and  Justin  Gilmer.  “Adver-

sarial  Patch”.  In:   CoRR  abs/1712.09665  (2017). arXiv:1712.09665. url:  http://arxiv. 

org/abs/1712.09665. 

47.  Tom  B.  Brown,  Benjamin  Mann,  Nick  Ryder,  Melanie  Subbiah,  Jared  Kaplan,  Pra-

fulla  Dhariwal,  Arvind  Neelakantan,  Pranav  Shyam,  Girish  Sastry,  Amanda  Askell, 

Sandhini  Agarwal,  Ariel  Herbert-Voss,  Gretchen  Krueger,  Tom  Henighan,  Rewon 

Child,  Aditya  Ramesh,  Daniel  M.  Ziegler,  Jeffrey  Wu,  Clemens  Winter,  Christo-

pher  Hesse,  Mark  Chen,  Eric  Sigler,  Mateusz  Litwin,  Scott  Gray,  Benjamin  Chess, 

Jack  Clark,  Christopher  Berner,  Sam  McCandlish,  Alec  Radford,  Ilya  Sutskever, 

and  Dario  Amodei.  “Language  Models  are  Few-Shot  Learners”.  In:   Advances  in 

 Neural  Information  Processing  Systems  33:  Annual  Conference  on  Neural  Informa-

 tion  Processing  Systems  2020,  NeurIPS  2020,  December  6–12,  2020,  virtual. Ed. 

Bibliography

293

by  Hugo  Larochelle,  Marc’Aurelio  Ranzato,  Raia  Hadsell,  Maria-Florina  Balcan, 

and  Hsuan-Tien  Lin.  2020.  url:  https://www.proceedings.neurips.cc/paper/2020/hash/ 

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html. 

48.  Tom  B.  Brown,  Benjamin  Mann,  Nick  Ryder,  Melanie  Subbiah,  Jared  Kaplan,  Pra-

fulla  Dhariwal,  Arvind  Neelakantan,  Pranav  Shyam,  Girish  Sastry,  Amanda  Askell, 

Sandhini  Agarwal,  Ariel  Herbert-Voss,  Gretchen  Krueger,  Tom  Henighan,  Rewon 

Child,  Aditya  Ramesh,  Daniel  M.  Ziegler,  Jeffrey  Wu,  Clemens  Winter,  Christo-

pher  Hesse,  Mark  Chen,  Eric  Sigler,  Mateusz  Litwin,  Scott  Gray,  Benjamin  Chess, 

Jack  Clark,  Christopher  Berner,  Sam  McCandlish,  Alec  Radford,  Ilya  Sutskever, 

and  Dario  Amodei.  “Language  Models  are  Few-Shot  Learners”.  In:   Advances  in 

 Neural  Information  Processing  Systems  33:  Annual  Conference  on  Neural  Informa-

 tion  Processing  Systems  2020,  NeurIPS  2020,  December  6–12,  2020,  virtual. Ed. 

by  Hugo  Larochelle,  Marc’Aurelio  Ranzato,  Raia  Hadsell,  Maria-Florina  Balcan, 

and  Hsuan-Tien  Lin.  2020.  url:  https://www.proceedings.neurips.cc/paper/2020/hash/ 

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html. 

49.  BSI.  CERT-Bund.  2022.  url:  https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/ 

Aktivitaeten/CERT-Bund/certbund_node.html. 

50.  Cody  Buntain  and  Jennifer  Golbeck.  “Automatically  Identifying  Fake  News  in  Popular 

Twitter  Threads”.  In:  2017 IEEE International Conference on Smart Cloud, SmartCloud 

 2017, New York City, NY, USA, November 3–5, 2017.  IEEE  Computer  Society,  2017, 

pp.  208–215.  doi:  https://doi.org/10.1109/SMARTCLOUD.2017.40. url:  https://doi. 

org/10.1109/SmartCloud.2017.40. 

51.  Juan  Caballero,  Gibran  Gomez,  Srdjan  Matic,  Gustavo  S  nchez,  Silvia  Sebasti  n,  and Arturo  Villaca  as.  “The  Rise  of  GoodFATR:  A  Novel  Accuracy  Comparison  Methodology  for  Indicator  Extraction  Tools”.  en.  In:   Future  Generation  Computer  Systems 

144  (July  2023). arXiv:2208.00042  [cs],  pp.  74–89.  issn:  0167739X.  doi:  https:// 

doi.org/10.1016/j.future.2023.02.012.  url:  http://arxiv.org/abs/2208.00042  (visited  on 04/05/2023). 

52.  T.  Cali  ski  and  J.  Harabasz.  “A  Dendrite  Method  Foe  Cluster  Analysis”.  In: 

 Communications  in  Statistics  (1974).  issn:  00903272.  doi:  https://doi.org/10.1080/ 

03610927408827101. 

53.  Yihan  Cao,  Yanbin  Kang,  Chi  Wang,  and  Lichao  Sun.  Instruction Mining: When Data 

 Mining Meets Large Language Model Finetuning. en.  arXiv:2307.06290  [cs].  Oct.  2023. 

url:  http://arxiv.org/abs/2307.06290  (visited  on  02/26/2024). 

54.  Cornelia  Caragea,  Nathan  J.  McNeese,  Anuj  R.  Jaiswal,  Greg  Traylor,  Hyun-Woo  Kim, 

Prasenjit  Mitra,  Dinghao  Wu,  Andrea  H.  Tapia,  C.  Lee  Giles,  Bernard  J.  Jansen,  and 

John  Yen.  “Classifying  text  messages  for  the  haiti  earthquake”.  In:   8th Proceedings of the International Conference on Information Systems for Crisis Response and Management, Lisbon, Portugal, May, 2011.  Ed.  by  Maria  A.  Santos,  Luísa  Sousa,  and  Eliane Portela.  LNEC,  Lisbon,  Portugal,  2011.  url:  http://idl.iscram.org/files/caragea/2011/ 

371_Caragea_etal2011.pdf. 

55.  Nicholas  Carlini,  Florian  Tramér,  Eric  Wallace,  Matthew  Jagielski,  Ariel  Herbert-Voss, Katherine  Lee,  Adam  Roberts,  Tom  B.  Brown,  Dawn  Song,  Ulfar  Erlingsson,  Alina 

Oprea,  and  Colin  Raffel.  “Extracting  Training  Data  from  Large  Language  Models”.  In: 

 30th USENIX Security Symposium, USENIX Security 2021, August 11–13, 2021. Ed. 

by  Michael  D.  Bailey  and  Rachel  Greenstadt.  USENIX  Association,  2021,  pp.  2633–

294

Bibliography

2650.  url:  https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-

extracting. 

56.  Ricardo  Carreira  and  Jaime  M.  Crato.  “Evaluating  adaptive  user  profiles  for  news  classification”.  In:   Proceedings  of  the  9th  International  Conference  on  Intelligent  User 

 Interfaces, IUI 2004, Funchal, Madeira, Portugal, January 13–16, 2004.  Ed.  by  Jean 

Vanderdonckt,  Nuno  Jardim  Nunes,  and  Charles  Rich.  ACM,  2004,  pp.  206–212.  doi: 

https://doi.org/10.1145/964442.964481. url:  https://doi.org/10.1145/964442.964481. 

57.  Carlos  Castillo,  Marcelo  Mendoza,  and  Barbara  Poblete.  “Information  credibility  on 

twitter”.  In:   Proceedings  of  the  20th  International  Conference  on  World  Wide  Web, 

 WWW 2011, Hyderabad, India, March 28—April 1, 2011.  Ed.  by  Sadagopan  Srinivasan, 

Krithi  Ramamritham,  Arun  Kumar,  M.  P.  Ravindra,  Elisa  Bertino,  and  Ravi  Kumar. 

ACM,  2011,  pp.  675–684.  doi:  https://doi.org/10.1145/1963405.1963500. url:  https:// 

doi.org/10.1145/1963405.1963500. 

58.  Carlos  Castillo,  Marcelo  Mendoza,  and  Barbara  Poblete.  “Predicting  information  cred-

ibility  in  time-sensitive  social  media”.  In:   Internet  Res.  23.5  (2013),  pp.  560–588. 

doi:  https://doi.org/10.1108/INTR-05-2012-0095. url:  https://doi.org/10.1108/IntR-

05-2012-0095. 

59.  Ilias  Chalkidis,  Manos  Fergadiotis,  Prodromos  Malakasiotis,  Nikolaos  Aletras,  and 

Ion  Androutsopoulos.  “LEGAL-BERT:  The  Muppets  straight  out  of  Law  School”. 

In:   CoRR  abs/2010.02559  (2020). arXiv:2010.02559. url:  https://www.arxiv.org/abs/ 

2010.02559. 

60.  Ernie  Chang,  Xiaoyu  Shen,  Dawei  Zhu,  Vera  Demberg,  and  Hui  Su.  “Neural  Data-

to-Text  Generation  with  LM-based  Text  Augmentation”.  In:   Proceedings of the 16th 

 Conference of the European Chapter of the Association for Computational Linguistics: 

 Main Volume, EACL 2021, Online, April 19–23, 2021.  Ed.  by  Paola  Merlo,  Jörg  Tiede-

mann,  and  Reut  Tsarfaty.  Association  for  Computational  Linguistics,  f2021,  pp.  758– 

768.  doi:  https://doi.org/10.18653/V1/2021.EACL-MAIN.64.  url:  https://doi.org/10. 

18653/v1/2021.eacl-main.64. 

61.  Samrat  Chatterjee  and  Shital  A.  Thekdi.  “An  iterative  learning  and  inference  approach to  managing  dynamic  cyber  vulnerabilities  of  complex  systems”.  In:   Reliab. Eng. Syst. 

 Saf.  193  (2020),  p.  106664.  doi:  https://doi.org/10.1016/J.RESS.2019.106664.  url: 

https://doi.org/10.1016/j.ress.2019.106664. 

62.  Iti  Chaturvedi,  Yew-Soon  Ong,  Ivor  W.  Tsang,  Roy  E.  Welsch,  and  Erik  Cambria. 

“Learning  word  dependencies  in  text  by  means  of  a  deep  recurrent  belief  network”.  In: 

 Knowl. Based Syst.  108  (2016),  pp.  144–154.  doi:  https://doi.org/10.1016/J.KNOSYS. 

2016.07.019. url:  https://doi.org/10.1016/j.knosys.2016.07.019. 

63.  Nitesh  V.  Chawla,  Kevin  W.  Bowyer,  Lawrence  O.  Hall,  and  W.  Philip  Kegelmeyer. 

“SMOTE:  Synthetic  Minority  Over-sampling  Technique”.  In:   J. Artif. Intell. Res. 16  

(2002),  pp.  321–357.  doi:  https://doi.org/10.1613/JAIR.953.  url:  https://doi.org/10. 

1613/jair.953. 

64.  Banghao  Chen,  Zhaofeng  Zhang,  Nicolas  Langrené,  and  Shengxin  Zhu.  “Unleashing  the 

potential  of  prompt  engineering  in  Large  Language  Models:  a  comprehensive  review”. 

In:   CoRR  abs/2310.14735  (2023).  doi:  https://doi.org/10.48550/ARXIV.2310.14735. 

arXiv:2310.14735. url:  https://doi.org/10.48550/arXiv.2310.14735. 

65.  Haipeng  Chen,  Rui  Liu,  Noseong  Park,  and  V.  S.  Subrahmanian.  “Using  Twitter  to  Predict  When  Vulnerabilities  will  be  Exploited”.  In:   Proceedings of the 25th ACM SIGKDD

Bibliography

295

 International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchor-

 age, AK, USA, August 4–8, 2019.  Ed.  by  Ankur  Teredesai,  Vipin  Kumar,  Ying  Li,  Romer Rosales,  Evimaria  Terzi,  and  George  Karypis.  ACM,  2019,  pp.  3143–3152.  doi:  https:// 

doi.org/10.1145/3292500.3330742. url:  https://doi.org/10.1145/3292500.3330742. 

66.  Jiaao  Chen,  Zhenghui  Wang,  Ran  Tian,  Zichao  Yang,  and  Diyi  Yang.  “Local  Additivity Based  Data  Augmentation  for  Semi-supervised  NER”.  In:   Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 

 November 16–20, 2020.  Ed.  by  Bonnie  Webber,  Trevor  Cohn,  Yulan  He,  and  Yang  Liu. 

Association  for  Computational  Linguistics,  2020,  pp.  1241–1251.  doi:  https://doi.org/ 

10.18653/V1/2020.EMNLP-MAIN.95. url:  https://doi.org/10.18653/v1/2020.emnlp-

main.95. 

67.  Jiaao  Chen,  Zichao  Yang,  and  Diyi  Yang.  “MixText:  Linguistically-Informed  Interpo-

lation  of  Hidden  Space  for  Semi-Supervised  Text  Classification”.  In:   Proceedings of 

 the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, 

 Online, July 5–10, 2020.  Ed.  by  Dan  Jurafsky,  Joyce  Chai,  Natalie  Schluter,  and  Joel R.  Tetreault.  Association  for  Computational  Linguistics,  2020,  pp.  2147–2157.  doi: 

https://doi.org/10.18653/V1/2020.ACL-MAIN.194. url:  https://doi.org/10.18653/v1/ 

2020.acl-main.194. 

68.  Liangyu  Chen,  Yutong  Bai,  Siyu  Huang,  Yongyi  Lu,  Bihan  Wen,  Alan  L.  Yuille,  and 

Zongwei  Zhou.  “Making  Your  First  Choice:  To  Address  Cold  Start  Problem  in  Medi-

cal  Active  Learning”.  In:   Imaging with Deep Learning, MIDL 2023, 10–12 July 2023, 

 Nashville,  TN,  USA.  Ed.  by  Ipek  Oguz,  Jack  H.  Noble,  Xiaoxiao  Li,  Martin  Styner, Christian  Baumgartner,  Mirabela  Rusu,  Tobias  Heimann,  Despina  Kontos,  Bennett 

A.  Landman,  and  Benoit  M.  Dawant.  Vol.  227.  Proceedings  of  Machine  Learning 

Research.  PMLR,  2023,  pp.  496–525.  url:  https://www.proceedings.mlr.press/v227/ 

chen24a.html. 

69.  Yizong  Cheng.  “Mean  Shift,  Mode  Seeking,  and  Clustering”.  In:   IEEE Trans. Pattern Anal. Mach. Intell.  17.8  (1995),  pp.  790–799.  doi:  https://doi.org/10.1109/34.400568. 

url:  https://doi.org/10.1109/34.400568. 

70.  Yong  Cheng,  Lu  Jiang,  and  Wolfgang  Macherey.  “Robust  Neural  Ma  chine  Translation 

with  Doubly  Adversarial  Inputs”.  In:   Proceedings of the 57th Conference of the Associ-

 ation for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, 

 Volume 1: Long Papers.  Ed.  by  Anna  Korhonen,  David  R.  Traum,  and  Lluís  Màrquez. 

Association  for  Computational  Linguistics,  2019,  pp.  4324–4333.  doi:  https://doi.org/ 

10.18653/V1/P19-1425.  url:  https://doi.org/10.18653/v1/p19-1425. 

71.  Seungtaek  Choi,  Myeongho  Jeong,  Hojae  Han,  and  Seung-won  Hwang.  “C2L:  Causally 

Contrastive  Learning  for  Robust  Text  Classification”.  In:   Thirty-Sixth  AAAI  Confer-

 ence  on  Artificial  Intelligence,  AAAI  2022,  Thirty-Fourth  Conference  on  Innovative 

 Applications  of  Artificial  Intelligence,  IAAI  2022,  The  Twelveth  Symposium  on  Edu-

 cational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22— 

 March  1,  2022.  AAAI  Press,  2022,  pp.  10526–10534.  doi:  https://doi.org/10.1609/ 

AAAI.V36I10.21296. url:  https://doi.org/10.1609/aaai.v36i10.21296. 

72.  François 

Chollet. 

“On 

the 

Measure 

of 

Intelligence”. 

In: 

 CoRR  (2019). 

arXiv:1911.01547. url:  http://arxiv.org/abs/1911.01547. 

73.  François  Chollet  and  Dwarkesh  Patel  (Host).  François Chollet—LLMs won’t lead to 

 AGI—$1,000,000 Prize to find true solution [Video podcast].  2024.  url:  https://www. 

youtube.com/watch?v=UakqL6Pj9xo. 

296

Bibliography

74.  Aakanksha  Chowdhery,  Sharan  Narang,  Jacob  Devlin,  Maarten  Bosma,  Gaurav  Mishra, 

Adam  Roberts,  Paul  Barham,  Hyung  Won  Chung,  Charles  Sutton,  Sebastian  Gehrmann, 

Parker  Schuh,  Kensen  Shi,  Sasha  Tsvyashchenko,  Joshua  Maynez,  Abhishek  Rao, 

Parker  Barnes,  Yi  Tay,  Noam  Shazeer,  Vinodkumar  Prabhakaran,  Emily  Reif,  Nan 

Du,  Ben  Hutchinson,  Reiner  Pope,  James  Bradbury,  Jacob  Austin,  Michael  Isard,  Guy 

Gur-Ari,  Pengcheng  Yin,  Toju  Duke,  Anselm  Levskaya,  Sanjay  Ghemawat,  Sunipa 

Dev,  Henryk  Michalewski,  Xavier  Garcia,  Vedant  Misra,  Kevin  Robinson,  Liam  Fedus, 

Denny  Zhou,  Daphne  Ippolito,  David  Luan,  Hyeontaek  Lim,  Barret  Zoph,  Alexander 

Spiridonov,  Ryan  Sepassi,  David  Dohan,  Shivani  Agrawal,  Mark  Omernick,  Andrew  M. 

Dai,  Thanumalayan  Sankaranarayana  Pillai,  Marie  Pellat,  Aitor  Lewkowycz,  Erica  Mor-

eira,  Rewon  Child,  Oleksandr  Polozov,  Katherine  Lee,  Zongwei  Zhou,  Xuezhi  Wang, 

Brennan  Saeta,  Mark  Diaz,  Orhan  Firat,  Michele  Catasta,  Jason  Wei,  Kathy  Meier-

Hellstern,  Douglas  Eck,  Jeff  Dean,  Slav  Petrov,  and  Noah  Fiedel.  “PaLM:  Scaling  Lan-

guage  Modeling  with  Pathways”.  In:   J. Mach. Learn. Res.  24  (2023),  240:1–240:113. 

url:  http://jmlr.org/papers/v24/22-1144.html. 

75.  Vincent  Claveau,  Antoine  Chaffin,  and  Ewa  Kijak.  “La  generation  de  textes  artificiels  en substitution  ou  en  compl  ment  de  donn  es  d  apprentissage”.  In:   Traitement automatique des langues naturelles.  2021,  pp.  124–136. 

76.  David  A.  Cohn,  Les  E.  Atlas,  and  Richard  E.  Ladner.  “Improving  Generalization  with Active  Learning”.  In:   Mach. Learn.  15.2  (1994),  pp.  201–221.  doi:  https://doi.org/10. 

1007/BF00993277. url:  https://doi.org/10.1007/BF00993277. 

77.  Patrick  L.  Combettes  and  Jean-Christophe  Pesquet.  “Proximal  Splitting  Methods  in 

Signal  Processing”.  In:   Fixed-Point  Algorithms  for  Inverse  Problems  in  Science  and 

 Engineering.  Ed.  by  Heinz  H.  Bauschke,  Regina  Sandra  Burachik,  Patrick  L.  Combettes, Veit  Elser,  D.  Russell  Luke,  and  Henry  Wolkowicz.  Vol.  49.  Springer  Optimization 

and  Its  Applications.  Springer,  2011,  pp.  185–212.  doi:  https://doi.org/10.1007/978-1-

4419-9569-8_10.  url:  https://doi.org/10.1007/978-1-4419-9569-8_10. 

78.  Carmela  Comito,  Agostino  Forestiero,  and  Clara  Pizzuti.  “Word  Embedding  based  Clus-

tering  to  Detect  Topics  in  Social  Media”.  In:   2019 IEEE/WIC/ACM International Con-

 ference on Web Intelligence, WI 2019, Thessaloniki, Greece, October 14–17, 2019. Ed. 

by  Payam  M.  Barnaghi,  Georg  Gottlob,  Yannis  Manolopoulos,  Theodoros  Tzouramanis, 

and  Athena  Vakali.  ACM,  2019,  pp.  192–199.  doi:  https://doi.org/10.1145/3350546. 

3352518. url:  https://doi.org/10.1145/3350546.3352518. 

79.  Alexis  Conneau,  Douwe  Kiela,  Holger  Schwenk,  Loïc  Barrault,  and  Antoine  Bordes. 

“Supervised  Learning  of  Universal  Sentence  Representations  from  Natural  Language 

Inference  Data”.  In:   Proceedings  of  the  2017  Conference  on  Empirical  Methods  in 

 Natural  Language  Processing,  EMNLP  2017,  Copenhagen,  Denmark,  September  9-

 11, 2017.  Ed.  by  Martha  Palmer,  Rebecca  Hwa,  and  Sebastian  Riedel.  Association  for Computational  Linguistics,  2017,  pp.  670–680.  doi:  https://doi.org/10.18653/V1/D17-

1070. url:  https://doi.org/10.18653/v1/d17-1070. 

80.  Nadia  K.  Conroy,  Victoria  L.  Rubin,  and  Yimin  Chen.  “Automatic  deception  detection: Methods  for  finding  fake  news”.  In:   Proceedings of ASIS&T  52.1  (2015),  pp.  1–4.  issn: 2373–9231,  2373–9231. 

81.  Claude  Coulombe.  “Text  Data  Augmentation  Made  Simple  By  Leveraging  NLP  Cloud 

APIs”.  In:   CoRR  abs/1812.04718  (2018). arXiv:1812.04718. url:  http://arxiv.org/abs/ 

1812.04718. 

Bibliography

297

82.  Xiaodong  Cui,  Vaibhava  Goel,  and  Brian  Kingsbury.  “Data  Augmentation  for  deep 

neural  network  acoustic  modeling”.  In:   IEEE  International  Conference  on  Acous-

 tics,  Speech  and  Signal  Processing,  ICASSP  2014,  Florence,  Italy,  May  4–9,  2014. 

IEEE,  2014,  pp.  5582–5586.  doi:  https://doi.org/10.1109/ICASSP.2014.6854671. url: 

https://doi.org/10.1109/ICASSP.2014.6854671. 

83.  Stephan  A.  Curiskis,  Barry  Drake,  Thomas  R.  Osborn,  and  Paul  J.  Kennedy.  “An  evaluation  of  document  clustering  and  topic  modelling  in  two  online  social  networks:  Twitter and  Reddit”.  In:   Information Processing and Management (2020).  issn:  03064573.  doi: 

https://doi.org/10.1016/j.ipm.2019.04.002. 

84.  Xiangfeng  Dai,  Marwan  Bikdash,  and  Bradley  Meyer.  “From  social  media  to  public 

health  surveillance:  Word  embedding  based  clustering  method  for  twitter  classification”. 

In:   Conference Proceedings—IEEE SOUTHEASTCON.  2017.  isbn:  978-1-5386-1539-

3.  doi:  https://doi.org/10.1109/SECON.2017.7925400. 

85.  Dipankar  Dasgupta,  Zahid  Akhtar,  and  Sajib  Sen.  “Machine  learning  in  cybersecurity: 

a  comprehensive  survey”.  en.  In:   The  Journal  of  Defense  Modeling  and  Simulation: 

 Applications, Methodology, Technology  19.1  (Jan.  2022),  pp.  57–106.  issn:  1548–5129, 1557–380X.  doi:  https://doi.org/10.1177/1548512920951275.  (Visited  on  12/08/2023). 

86.  David  L.  Davies  and  Donald  W.  Bouldin.  “A  Cluster  Separation  Measure”.  In:   IEEE 

 Trans. Pattern Anal. Mach. Intell.  1.2  (1979),  pp.  224–227.  doi:  https://doi.org/10.1109/ 

TPAMI.1979.4766909. url:  https://doi.org/10.1109/TPAMI.1979.4766909. 

87.  Chunyuan  Deng,  Yilun  Zhao,  Xiangru  Tang,  Mark  Gerstein,  and  Arman  Cohan.  “Inves-

tigating  Data  Contamination  in  Modern  Benchmarks  for  Large  Language  Models”. 

In:   CoRR  abs/2311.09783  (2023).  doi:  https://doi.org/10.48550/ARXIV.2311.09783. 

arXiv:2311.09783. url:  https://doi.org/10.48550/arXiv.2311.09783. 

88.  Tim  Dettmers,  Artidoro  Pagnoni,  Ari  Holtzman,  and  Luke  Zettle  moyer.  “QLoRA: 

Efficient  Finetuning  of  Quantized  LLMs”.  In:   Advances  in  Neural  Information  Pro-

 cessing  Systems  36:  Annual  Conference  on  Neural  Information  Processing  Sys-

 tems  2023,  NeurIPS  2023,  New  Orleans,  LA,  USA,  December  10–16,  2023. Ed. 

by  Alice  Oh,  Tristan  Naumann,  Amir  Globerson,  Kate  Saenko,  Moritz  Hardt, 

and  Sergey  Levine.  2023.  url:  http://papers.nips.cc/paper_files/paper/2023/hash/ 

1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html. 

89.  Jacob  Devlin,  Ming-Wei  Chang,  Kenton  Lee,  and  Kristina  Toutanova.  “BERT:  Pre-

training  of  Deep  Bidirectional  Transformers  for  Language  Understanding”.  In:   Pro-

 ceedings of the 2019 Conference of the North American Chapter of the Association for 

 Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Min-

 neapolis, MN, USA, June 2–7,  2019,  Volume 1 (Long  and Short  Papers).  Ed.  by  Jill 

Burstein,  Christy  Doran,  and  Thamar  Solorio.  Association  for  Computational  Linguis-

tics,  2019,  pp.  4171–4186.  doi:  https://doi.org/10.18653/V1/N19-1423.  url:  https:// 

doi.org/10.18653/v1/n19-1423. 

90.  Kaustubh  D.  Dhole,  Varun  Gangal,  Sebastian  Gehrmann,  Aadesh  Gupta,  Zhenhao  Li, 

Saad  Mahamood,  Abinaya  Mahendiran,  Simon  Mille,  Ashish  Srivastava,  Samson  Tan, 

Tongshuang  Wu,  Jascha  Sohl-Dickstein,  Jinho  D.  Choi,  Eduard  H.  Hovy,  Ondrej  Dusek, 

Sebastian  Ruder,  Sajant  Anand,  Nagender  Aneja,  Rabin  Banjade,  Lisa  Barthe,  Hanna 

Behnke,  Ian  Berlot-Attwell,  Connor  Boyle,  Caroline  Brun,  Marco  Antonio  Sobrevilla 

Cabezudo,  Samuel  Cahyawijaya,  Emile  Chapuis,  Wanxiang  Che,  Mukund  Choudhary, 

Christian  Clauss,  Pierre  Colombo,  Filip  Cornell,  Gautier  Dagan,  Mayukh  Das,  Tanay 

Dixit,  Thomas  Dopierre,  Paul-Alexis  Dray,  Suchitra  Dubey,  Tatiana  Ekeinhor,  Marco

298

Bibliography

Di  Giovanni,  Rishabh  Gupta,  Rishabh  Gupta,  Louanes  Hamla,  Sang  Han,  Fabrice 

Harel-Canada,  Antoine  Honore,  Ishan  Jindal,  Przemyslaw  K.  Joniak,  Denis  Kleyko, 

Venelin  Kovatchev,  and  et  al.  “NL-Augmenter:  A  Framework  for  Task-Sensitive  Nat-

ural  Language  Augmentation”.  In:   CoRR  abs/2112.02721  (2021). arXiv:2112.02721. 

url:  https://www.arxiv.org/abs/2112.02721. 

91.  Bosheng  Ding,  Linlin  Liu,  Lidong  Bing,  Canasai  Kruengkrai,  Thien  Hai  Nguyen,  Shafiq R.  Joty,  Luo  Si,  and  Chunyan  Miao.  “DAGA:  Data  Augmentation  with  a  Generation  Approach  for  Low-resource  Tagging  Tasks”.  In:   CoRR   abs/2011.01549  (2020). 

arXiv:2011.01549. url:  https://www.arxiv.org/abs/2011.01549. 

92.  Bosheng  Ding,  Chengwei  Qin,  Ruochen  Zhao,  Tianze  Luo,  Xinze  Li,  Guizhen  Chen, 

Wenhan  Xia,  Junjie  Hu,  Anh  Tuan  Luu,  and  Shafiq  Joty.  “Data  Augmentation  using 

LLMs:  Data  Perspectives,  Learning  Paradigms  and  Challenges”.  In:   Findings  of  the 

 Association  for  Computational  Linguistics:  ACL  2024.  Ed.  by  Lun-Wei  Ku,  Andre 

Martins,  and  Vivek  Srikumar.  Bangkok,  Thailand:  Association  for  Computational  Lin-

guistics,  Aug.  2024,  pp.  1679–1705.  doi:  https://doi.org/10.18653/v1/2024.findings-

acl.97. url:  https://www.aclanthology.org/2024.findings-acl.97/. 

93.  Nuno  Dionísio,  Fernando  Alves,  Pedro  M.  Ferreira,  and  Alysson  Bessani.  “Towards  end-to-end  Cyberthreat  Detection  from  Twitter  using  Multi  Task  Learning”.  In:   2020 Inter-

 national Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United King-

 dom, July 19–24, 2020.  IEEE,  2020,  pp.  1–8.  doi:  https://doi.org/10.1109/IJCNN48605. 

2020.9207159.  url:  https://doi.org/10.1109/IJCNN48605.2020.9207159. 

94.  Shi  Dong,  Ping  Wang,  and  Khushnood  Abbas.  “A  survey  on  deep  learning  and  its 

applications”.  In:   Comput. Sci. Rev.  40  (2021),  p.  100379.  doi:  https://doi.org/10.1016/ 

J.COSREV.2021.100379. url:  https://doi.org/10.1016/j.cosrev.2021.100379. 

95.  Ying  Dong,  Wenbo  Guo,  Yueqi  Chen,  Xinyu  Xing,  Yuqing  Zhang,  and  Gang  Wang. 

“Towards  the  Detection  of  Inconsistencies  in  Public  Security  Vulnerability  Reports”. 

In:   28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, 

 August  14–16,  2019.  Ed.  by  Nadia  Heninger  and  Patrick  Traynor.  USENIX  Associ-

ation,  2019,  pp.  869–885.  url:  https://www.usenix.org/conference/usenixsecurity19/ 

presentation/dong. 

96.  Ruixue  Duan,  Dan  Li,  Qiang  Tong,  Tao  Yang,  Xiaotong  Liu,  and  Xiulei  Liu.  “A  Survey of  Few-Shot  Learning:  An  Effective  Method  for  Intrusion  Detection”.  en.  In:   Security and  Communication  Networks   2021  (Oct.  2021).  Ed.  by  Yunchuan  Guo,  pp.  1–10. 

issn:  1939–0122,  1939–0114.  doi:  https://doi.org/10.1155/2021/4259629.  url:  https:// 

www.hindawi.com/journals/scn/2021/4259629/  (visited  on  12/19/2023). 

97.  Xinhuan  Duan,  Elham  Naghizade,  Damiano  Spina,  and  Xiuzhen  Zhang.  “RMIT  at 

PAN-CLEF  2020:  Pro?ling  Fake  News  Spreaders  on  Twitter”.  In:   CLEF 2020 (2020). 

98.  Javid  Ebrahimi,  Daniel  Lowd,  and  Dejing  Dou.  “On  Adversarial  Examples  for 

Character-Level  Neural  Machine  Translation”.  In:   Proceedings  of  the  27th  Interna-

 tional Conference on Computational Linguistics, COLING 2018, Santa Fe, New Mex-

 ico, USA, August 20–26, 2018.  Ed.  by  Emily  M.  Bender,  Leon  Derczynski,  and  Pierre 

Isabelle.  Association  for  Computational  Linguistics,  2018,  pp.  653–663.  url:  https:// 

www.aclanthology.org/C18-1055/. 

99.  Javid  Ebrahimi,  Anyi  Rao,  Daniel  Lowd,  and  Dejing  Dou.  “HotFlip:  White-Box  Adver-

sarial  Examples  for  Text  Classification”.  In:   Proceedings of the 56th Annual Meeting of 

 the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July

Bibliography

299

 15–20, 2018, Volume 2: Short Papers.  Ed.  by  Iryna  Gurevych  and  Yusuke  Miyao.  Asso-

ciation  for  Computational  Linguistics,  2018,  pp.  31–36.  doi:  https://doi.org/10.18653/ 

V1/P18-2006. url:  https://www.aclanthology.org/P18-2006/. 

100.  Liat  Ein-Dor,  Alon  Halfon,  Ariel  Gera,  Eyal  Shnarch,  Lena  Dankin,  Leshem  Choshen, 

Marina  Danilevsky,  Ranit  Aharonov,  Yoav  Katz,  and  Noam  Slonim.  “Active  Learning 

for  BERT:  An  Empirical  Study”.  In:   Proceedings of the 2020 Conference on Empirical 

 Methods  in  Natural  Language  Processing,  EMNLP  2020,  Online,  November  16–20, 

 2020.  Ed.  by  Bonnie  Webber,  Trevor  Cohn,  Yulan  He,  and  Yang  Liu.  Association  for Compu  tational  Linguistics,  2020,  pp.  7949–7962.  doi:  https://doi.org/10.18653/V1/ 

2020.EMNLP-MAIN.638. url:  https://doi.org/10.18653/v1/2020.emnlp-main.638. 

101.  Kathrin  Eismann,  Oliver  Posegga,  and  Kai  Fischbach.  “Decision  Making  in  Emergency 

Management:  The  Role  of  Social  Media”.  In:   26th  European  Conference  on  Infor-

 mation Systems: Beyond Digitization—Facets of Socio Technical Change, ECIS 2018, 

 Portsmouth, UK, June 23–28, 2018.  Ed.  by  Peter  M.  Bednar,  Ulrich  Frank,  and  Karlheinz Kautz.  2018,  p.  152.  url:  https://www.aisel.aisnet.org/ecis2018_rp/152. 

102.  Martin  J.  Eppler  and  Jeanne  Mengis.  “The  Concept  of  Information  Overload:  A  Review of  Literature  from  Organization  Science,  Accounting,  Marketing,  MIS,  and  Related 

Disciplines”.  In:   Inf.  Soc.  20.5  (2004),  pp.  325–344.  doi:  https://doi.org/10.1080/ 

01972240490507974.  url:  https://doi.org/10.1080/01972240490507974. 

103.  SONG  Tae  Eun.  “Cyber  Warfare  in  the  Russo-Ukrainian  War:  Assessment  and  Impli-

cations”.  en.  In:   Institute of Foreign Affairs and National Security (2022),  p.  2. 

104.  R.  Evtimov,  M.  Falli,  and  A.  Maiwald.  Anti  Social  Online  Behaviour  Detec-

 tion  with  BERT.  Feb.  2020.  url:  https://www.humboldt-wi.github.io/blog/research/ 

information_systems_1920/bert_blog_post/. 

105.  Alexander  R.  Fabbri,  Simeng  Han,  Haoyuan  Li,  Haoran  Li,  Marjan  Ghazvininejad, 

Shafiq  R.  Joty,  Dragomir  R.  Radev,  and  Yashar  Mehdad.  “Improving  Zero  and  Few-

Shot  Abstractive  Summarization  with  Intermediate  Fine-tuning  and  Data  Augmenta-

tion”.  In:   Proceedings of the 2021 Conference of the North American Chapter of the 

 Association for Computational Linguistics: Human Language Technologies, NAACL-

 HLT 2021, Online, June 6–11, 2021.  Ed.  by  Kristina  Toutanova,  Anna  Rumshisky,  Luke 

Zettlemoyer,  Dilek  Hakkani-Tür,  Iz  Beltagy,  Steven  Bethard,  Ryan  Cotterell,  Tanmoy 

Chakraborty,  and  Yichao  Zhou.  Association  for  Computational  Linguistics,  2021,  pp. 

704–717.  doi:  https://doi.org/10.18653/V1/2021.NAACL-MAIN.57.  url:  https://doi. 

org/10.18653/v1/2021.naacl-main.57. 

106.  Marzieh  Fadaee,  Arianna  Bisazza,  and  Christof  Monz.  “Data  Augmentation  for  Low-

Resource  Neural  Machine  Translation”.  In:   Proceedings of the 55th Annual Meeting 

 of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 

 30—August  4,  Volume  2:  Short  Papers.  Ed.  by  Regina  Barzilay  and  Min-Yen  Kan. 

Association  for  Computational  Linguistics,  2017,  pp.  567–573.  doi:  https://doi.org/10. 

18653/V1/P17-2090. url:  https://doi.org/10.18653/v1/P17-2090. 

107.  Adil  Fahad,  Najlaa  Alshatri,  Zahir  Tari,  Abdullah  Alamri,  Ibrahim  Khalil,  Albert  Y. 

Zomaya,  Sebti  Foufou,  and  Abdelaziz  Bouras.  “A  Survey  of  Clustering  Algorithms  for 

Big  Data:  Taxonomy  and  Empirical  Analysis”.  In:  IEEE Trans. Emerg. Top. Comput. 2.3  

(2014),  pp.  267–279.  doi:  https://doi.org/10.1109/TETC.2014.2330519.  url:  https:// 

doi.org/10.1109/TETC.2014.2330519. 

108.  Weiguo  Fan  and  Michael  D  Gordon.  “Unveiling  the  Power  of  Social  Media  Analytic”. 

In:  Communications  of  the  ACM  12.JUNE  2014  (2013),  pp.  1–26.  issn:  00010782. 

300

Bibliography

doi:  https://doi.org/10.1145/2602574. url:  http://www.researchgate.net/publication/ 

259148570_Unveiling_the_Power_of_Social_Media_Analytics. 

109.  Hongchao  Fang  and  Pengtao  Xie.  “CERT:  Contrastive  Self-supervised  Learning  for 

Language  Understanding”.  In:   CoRR  abs/2005.12766  (2020). arXiv:2005.12766. url: 

https://www.arxiv.org/abs/2005.12766. 

110.  Yong  Fang,  Jian  Gao,  Zhonglin  Liu,  and  Cheng  Huang.  “Detecting  Cyber  Threat  Event from  Twitter  Using  IDCNN  and  BiLSTM”.  In:   Applied Sciences  10.17  (Jan.  2020),  p. 

5922.  doi:  https://doi.org/10.3390/app10175922.  url:  https://www.mdpi.com/2076-

3417/10/17/5922. 

111.  Manaal  Faruqui,  Yulia  Tsvetkov,  Pushpendre  Rastogi,  and  Chris  Dyer.  “Problems  With 

Evaluation  of  Word  Embeddings  Using  Word  Similarity  Tasks”.  In:   Proceedings  of 

 the  1st  Workshop  on  Evaluating  Vector-Space  Representations  for  NLP,  RepEval  at 

 ACL 2016, Berlin, Germany, August 2016.  Association  for  Computational  Linguistics, 

2016,  pp.  30–35.  doi:  https://doi.org/10.18653/V1/W16-2506. url:  https://doi.org/10. 

18653/v1/W16-2506. 

112.  Steven  Y.  Feng,  Varun  Gangal,  Dongyeop  Kang,  Teruko  Mitamura,  and  Eduard 

H.  Hovy.  “GenAug:  Data  Augmentation  for  Finetuning  Text  Generators”.  In: 

 CoRR   abs/2010.01794  (2020). arXiv:2010.01794. url:  https://www.arxiv.org/abs/ 

2010.01794. 

113.  Steven  Y.  Feng,  Varun  Gangal,  Jason  Wei,  Sarath  Chandar,  Soroush  Vosoughi,  Teruko 

Mitamura,  and  Eduard  H.  Hovy.  “A  Survey  of  Data  Augmentation  Approaches  for 

NLP”.  In:   Findings  of  the  Association  for  Computational  Linguistics:  ACL/IJCNLP 

 2021,  Online  Event,  August  1–6,  2021.  Ed.  by  Chengqing  Zong,  Fei  Xia,  Wenjie 

Li,  and  Roberto  Navigli.  Vol.  ACL/IJCNLP  2021.  Findings  of  ACL.  Association  for 

Computational  Linguistics,  2021,  pp.  968–988.  doi:  https://doi.org/10.18653/V1/2021. 

FINDINGS-ACL.84.  url:  https://doi.org/10.18653/v1/2021.findings-acl.84. 

114.  Steven  Y.  Feng,  Aaron  W.  Li,  and  Jesse  Hoey.  “Keep  Calm  and  Switch  On!  Preserv-

ing  Sentiment  and  Fluency  in  Semantic  Text  Exchange”.  In:   Proceedings of the 2019 

 Conference on Empirical Methods in Natural Language Processing and the 9th Interna-

 tional Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong 

 Kong, China, November 3–7, 2019.  Ed.  by  Kentaro  Inui,  Jing  Jiang,  Vincent  Ng,  and 

Xiaojun  Wan.  Association  for  Computational  Linguistics,  2019,  pp.  2701–2711.  doi: 

https://doi.org/10.18653/V1/D19-1272. url:  https://doi.org/10.18653/v1/D19-1272. 

115.  John  R  Firth.  “A  synopsis  of  linguistic  theory,  1930–1955”.  In:   Studies in Linguistic Analysis.  1957.  isbn:  90-04-10265-5. 

116.  Diana  Fischer,  Oliver  Posegga,  and  Kai  Fischbach.  “Communication  Barriers  in  Crisis Management:  a  literature  Review”.  In:   24th European Conference on Information Systems, ECIS 2016, Istanbul, Turkey, June 12–15, 2016.  2016,  Research  Paper  168.  url: 

http://aisel.aisnet.org/ecis2016_rp/168. 

117.  A.  J.  Flanagin  and  Miriam  J.  Metzger.  “Digital  media  and  youth:  Unparalled  opportunity and  unprecedented  responsibility”.  In:   Digital media, youth, and credibility.  Ed.  by  A. 

J.  Flanagin  and  Miriam  J.  Metzger.  2008,  pp.  5–28.  isbn:  978-0-262-56232-4. 

118.  Sabina-Adriana  Floria,  Florin  Leon,  and  Doina  Logofatu.  “A  Credibility-Based  Anal-

ysis  of  Information  Diffusion  in  Social  Networks”.  In:   Artificial  Neural  Networks 

 and  Machine  Learning—ICANN  2018—27th  International  Conference  on  Artificial 

 Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part III.  Ed.  by 

Vera  Kurková,  Yannis  Manolopoulos,  Barbara  Hammer,  Lazaros  S.  Iliadis,  and  Ilias

Bibliography

301

Maglogiannis.  Vol.  11141.  Lecture  Notes  in  Computer  Science.  Springer,  2018,  pp. 

828–838.  doi:  https://doi.org/10.1007/978-3-030-01424-7_80. url:  https://doi.org/ 

10.1007/978-3-030-01424-7_80. 

119.  B.  J.  Fogg  and  Hsiang  Tseng.  “The  Elements  of  Computer  Credibility”.  In:  Proceeding of the CHI ’99 Conference on Human Factors in Computing Systems: The CHI is the Limit, 

 Pittsburgh, PA, USA, May 15–20, 1999.  Ed.  by  Marian  G.  Williams  and  Mark  W.  Altom. 

ACM,  1999,  pp.  80–87.  doi:  https://doi.org/10.1145/302979.303001.  url:  https://doi. 

org/10.1145/302979.303001. 

120.  Maayan  Frid-Adar,  Idit  Diamant,  Eyal  Klang,  Michal  Amitai,  Jacob  Gold-berger,  and 

Hayit  Greenspan.  “GAN-based  Synthetic  Medical  Image  Augmentation  for  increased 

CNN  Performance  in  Liver  Lesion  Classification”.  In:   CoRR  abs/1803.01229  (2018). 

arXiv:1803.01229. url:  http://arxiv.org/abs/1803.01229. 

121.  Merna  Gamal,  Hala  M.  Abbas,  Nour  Moustafa,  Elena  Sitnikova,  and  Rowayda  A. 

Sadek.  “Few-Shot  Learning  for  Discovering  Anomalous  Behaviors  in  Edge  Networks”. 

en.  In:   Computers,  Materials  &  Continua   69.2  (2021),  pp.  1823–1837.  issn:  1546– 

2226.  doi:  https://doi.org/10.32604/cmc.2021.012877.  url:  https://www.techscience. 

com/cmc/v69n2/43839  (visited  on  12/19/2023). 

122.  Fei  Gao,  Jinhua  Zhu,  Lijun  Wu,  Yingce  Xia,  Tao  Qin,  Xueqi  Cheng,  Wengang  Zhou,  and Tie-Yan  Liu.  “Soft  Contextual  Data  Augmentation  for  Neural  Machine  Translation”.  In: 

 Proceedings of the 57th Conference of the Association for Computational Linguistics, 

 ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers.  Ed.  by 

Anna  Korhonen,  David  R.  Traum,  and  Lluís  Màrquez.  Association  for  Computational 

‘  Linguistics,  2019,  pp.  5539–5544.  doi:  https://doi.org/10.18653/V1/P19-1555. url: 

https://doi.org/10.18653/v1/p19-1555. 

123.  Tianyu  Gao,  Adam  Fisch,  and  Danqi  Chen.  “Making  Pre-trained  Language  Models  Bet-

ter  Few-shot  Learners”.  In:   Proceedings of the 59th Annual Meeting of the Association 

 for Computational Linguistics and the 11th International Joint Conference on Natu-

 ral Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, 

 August 1–6, 2021.  Ed.  by  Chengqing  Zong,  Fei  Xia,  Wenjie  Li,  and  Roberto  Navigli. 

Association  for  Computational  Linguistics,  2021,  pp.  3816–3830.  doi:  https://doi.org/ 

10.18653/V1/2021.ACL-LONG.295.  url:  https://doi.org/10.18653/v1/2021.acl-long. 

295. 

124.  Siddhant  Garg  and  Goutham  Ramakrishnan.  “BAE:  BERT-based  Adversarial  Examples 

for  Text  Classification”.  In:   Proceedings of the 2020 Conference on Empirical Meth-

 ods in Natural Language Processing, EMNLP 2020, Online, November 16–20, 2020. 

Ed.  by  Bonnie  Webber,  Trevor  Cohn,  Yulan  He,  and  Yang  Liu.  Association  for  Com-

putational  Linguistics,  2020,  pp.  6174–6181.  doi:  https://doi.org/10.18653/V1/2020. 

EMNLP-MAIN.498.  url:  https://doi.org/10.18653/v1/2020.emnlp-main.498. 

125.  Sebastian  Gehrmann,  Tosin  P.  Adewumi,  Karmanya  Aggarwal,  Pawan  Sasanka 

Ammanamanchi,  Aremu  Anuoluwapo,  Antoine  Bosselut,  Khyathi  Raghavi  Chandu, 

Miruna-Adriana  Clinciu,  Dipanjan  Das,  Kaustubh  D.  Dhole,  Wanyu  Du,  Esin  Durmus, 

Ondrej  Dusek,  Chris  Emezue,  Varun  Gangal,  Cristina  Garbacea,  Tatsunori  Hashimoto, 

Yufang  Hou,  Yacine  Jernite,  Harsh  Jhamtani,  Yangfeng  Ji,  Shailza  Jolly,  Dhruv  Kumar, 

Faisal  Ladhak,  Aman  Madaan,  Mounica  Maddela,  Khyati  Mahajan,  Saad  Mahamood, 

Bodhisattwa  Prasad  Majumder,  Pedro  Henrique  Martins,  Angelina  McMillan-Major, 

Simon  Mille,  Emiel  van  Miltenburg,  Moin  Nadeem,  Shashi  Narayan,  Vitaly  Nikolaev, 

Rubungo  Andre  Niyongabo,  Salomey  Osei,  Ankur  P.  Parikh,  Laura  Perez-Beltrachini, 

302

Bibliography

Niranjan  Ramesh  Rao,  Vikas  Raunak,  Juan  Diego  Rodriguez,  Sashank  Santhanam, 

João  Sedoc,  Thibault  Sellam,  Samira  Shaikh,  Anastasia  Shi-morina,  Marco  Antonio 

Sobrevilla  Cabezudo,  Hendrik  Strobelt,  Nishant  Subramani,  Wei  Xu,  Diyi  Yang,  Akhila 

Yerukola,  and  Jiawei  Zhou.  “The  GEM  Benchmark:  Natural  Language  Generation,  its 

Evaluation  and  Metrics”.  In:   CoRR   abs/2102.01672  (2021). arXiv:2102.01672. url: 

https://www.arxiv.org/abs/2102.01672. 

126.  Robert  Geirhos,  Jörn-Henrik  Jacobsen,  Claudio  Michaelis,  Richard  Zemel,  Wieland 

Brendel,  Matthias  Bethge,  and  Felix  A.  Wichmann.  “Shortcut  Learning  in  Deep  Neural 

Networks”.  en.  In:   Nature Machine Intelligence  2.11  (Nov.  2020). arXiv:2004.07780 

[cs,  q-bio],  pp.  665–673.  issn:  2522–5839.  doi:  https://doi.org/10.1038/s42256-020-

00257-z.  url:  http://arxiv.org/abs/2004.07780  (visited  on  03/19/2024). 

127.  Stuart  Geman,  Elie  Bienenstock,  and  René  Doursat.  “Neural  Networks  and  the 

Bias/Variance  Dilemma”.  In:   Neural  Comput.  4.1  (1992),  pp.  1–58.  doi:  https://doi. 

org/10.1162/NECO.1992.4.1.1. url:  https://doi.org/10.1162/neco.1992.4.1.1. 

128.  Fr  deric  Godin,  Baptist  Vandersmissen,  Wesley  De  Neve,  and  Rik  Van  de  Walle.  “Multimedia  Lab.  at  ACL  WNUT  NER  Shared  Task:  Named  Entity  Recognition  for  Twitter 

Microposts  using  Distributed  Word  Representations”.  In:  2015.  doi:  https://doi.org/10. 

18653/v1/w15-4322. 

129.  Yoav  Goldberg.  “Assessing  BERT’s  Syntactic  Abilities”.  In:   CoRR   abs/1901.05287 

(2019). arXiv:1901.05287. url:  http://arxiv.org/abs/1901.05287. 


130.  Micah  Goldblum,  Liam  Fowl,  and  Tom  Goldstein.  “Adversarially  Robust  Few-

Shot  Learning:  A  Meta-Learning  Approach”.  In:   Advances  in  Neural  Informa-

 tion  Processing  Systems  33:  Annual  Conference  on  Neural  Information  Pro-

 cessing  Systems  2020,  NeurIPS  2020,  Decem  ber  6–12,  2020,  virtual.  Ed.  by 

Hugo  Larochelle,  Marc’Aurelio  Ranzato,  Raia  Hadsell,  Maria-Florina  Balcan,  and 

Hsuan-Tien  Lin.  2020.  url:  https://www.proceedings.neurips.cc/paper/2020/hash/ 

cfee398643cbc3dc5eefc89334cacdc1-Abstract.html. 

131.  Tom  Goldstein,  Christoph  Studer,  and  Richard  G.  Baraniuk.  “A  Field  Guide  to  Forward-Backward  Splitting  with  a  FASTA  Implementation”.  In:   CoRR  abs/1411.3406  (2014). 

arXiv:1411.3406. url:  http://arxiv.org/abs/1411.3406. 

132.  Ian  J.  Goodfellow,  Jonathon  Shlens,  and  Christian  Szegedy.  “Explaining  and  Harnessing Adversarial  Examples”.  In:   3rd International Conference on Learning Representations, 

 ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings. Ed. 

by  Yoshua  Bengio  and  Yann  LeCun.  2015.  url:  http://arxiv.org/abs/1412.6572. 

133.  Shreya  Goyal,  Sumanth  Doddapaneni,  Mitesh  M.  Khapra,  and  Balaraman  Ravindran. 

“A  Survey  of  Adversarial  Defenses  and  Robustness  in  NLP”.  In:   ACM Comput. Surv. 

55.14s  (2023),  332:1–332:39.  doi:  https://doi.org/10.1145/3593042. url:  https://doi. 

org/10.1145/3593042. 

134.  Daniel  Grießhaber,  Johannes  Maucher,  and  Ngoc  Thang  Vu.  “Fine-tuning  BERT  for 

Low-Resource  Natural  Language  Understanding  via  Active  Learning”.  In:   Proceedings 

 of  the  28th  International  Conference  on  Computational  Linguistics,  COLING  2020, 

 Barcelona, Spain (Online), December 8–13, 2020.  Ed.  by  Donia  Scott,  Núria  Bel,  and 

Chengqing  Zong.  International  Committee  on  Computational  Linguistics,  2020,  pp. 

1158–1171.  doi:  https://doi.org/10.18653/V1/2020.COLING-MAIN.100.  url:  https:// 

doi.org/10.18653/v1/2020.coling-main.100. 

135.  Sabine  Gründer-Fahrer,  Antje  Schlaf,  Gregor  Wiedemann,  and  Gerhard  Heyer.  “Top-

ics  and  topical  phases  in  German  social  media  communication  during  a  disas-

Bibliography

303

ter”.  In:   Nat.  Lang.  Eng.  24.2  (2018),  pp.  221–264.  doi:  https://doi.org/10.1017/ 

S1351324918000025. url:  https://doi.org/10.1017/S1351324918000025. 

136.  Chuan  Guo,  Geoff  Pleiss,  Yu  Sun,  and  Kilian  Q.  Weinberger.  “On  Calibration  of  Modern Neural  Networks”.  In:   Proceedings of the 34th International Conference on Machine 

 Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017.  Ed.  by  Doina  Precup 

and  Yee  Whye  Teh.  Vol.  70.  Proceedings  of  Machine  Learning  Research.  PMLR,  2017, 

pp.  1321–1330.  url:  http://proceedings.mlr.press/v70/guo17a.html. 

137.  Demi  Guo,  Yoon  Kim,  and  Alexander  M.  Rush.  “Sequence-Level  Mixed  Sample  Data 

Augmentation”.  In:   Proceedings of the 2020 Conference on Empirical Methods in Nat-

 ural Language Processing, EMNLP 2020, Online, November 16–20, 2020.  Ed.  by  Bon-

nie  Webber,  Trevor  Cohn,  Yulan  He,  and  Yang  Liu.  Association  for  Computational 

Linguistics,  2020,  pp.  5547–5552.  doi:  https://doi.org/10.18653/V1/2020.EMNLP-

MAIN.447.  url:  https://doi.org/10.18653/v1/2020.emnlp-main.447. 

138.  Hongyu  Guo,  Yongyi  Mao,  and  Richong  Zhang.  “Augmenting  Data  with  Mixup 

for  Sentence  Classification:  An  Empirical  Study”.  In:   CoRR  abs/1905.08941  (2019). 

arXiv:1905.08941. url:  http://arxiv.org/abs/1905.08941. 

139.  Aditi  Gupta,  Ponnurangam  Kumaraguru,  Carlos  Castillo,  and  Patrick  Meier.  “Tweet-

Cred:  Real-Time  Credibility  Assessment  of  Content  on  Twitter”.  In:   Social Informatics -

 6th International Conference, SocInfo 2014, Barcelona, Spain, November 11–13, 2014. 

 Proceedings.  Ed.  by  Luca  Maria  Aiello  and  Daniel  A.  McFarland.  Vol.  8851.  Lecture Notes  in  Computer  Science.  Springer,  2014,  pp.  228–243.  doi:  https://doi.org/10.1007/ 

978-3-319-13734-6_16. url:  https://doi.org/10.1007/978-3-319-13734-6_16. 

140.  Suchin  Gururangan,  Ana  Marasovic,  Swabha  Swayamdipta,  Kyle  Lo,  Iz  Beltagy,  Doug 

Downey,  and  Noah  A.  Smith.  “Don’t  Stop  Pretraining:  Adapt  Language  Models  to 

Domains  and  Tasks”.  In:   Proceedings of the 58th Annual Meeting of the Association for 

 Computational Linguistics, ACL 2020, Online, July 5–10, 2020.  Ed.  by  Dan  Jurafsky, 

Joyce  Chai,  Natalie  Schluter,  and  Joel  R.  Tetreault.  Association  for  Computational 

Linguistics,  2020,  pp.  8342–8360.  doi:  https://doi.org/10.18653/V1/2020.ACL-MAIN. 

740.  url:  https://doi.org/10.18653/v1/2020.acl-main.740. 

141.  Kelvin  Guu,  Tatsunori  B.  Hashimoto,  Yonatan  Oren,  and  Percy  Liang.  “Generating 

Sentences  by  Editing  Prototypes”.  In:   Trans. Assoc. Comput. Linguistics  6  (2018),  pp. 

437–450.  doi:  https://doi.org/10.1162/TACL_A_00030. url:  https://doi.org/10.1162/ 

tacl_a_00030. 

142.  Matthias  Habdank,  Nikolai  Rodehutskors,  and  Rainer  Koch.  “Relevancy  assessment 

of  tweets  using  supervised  learning  techniques:  Mining  emergency  related  tweets  for 

automated  relevancy  classification”.  In:   4th International Conference on Information 

 and Communication Technologies for Disaster Management, ICT-DM 2017, Müfvnster, 

 Germany, December 11–13, 2017.  Ed.  by  Bernd  Hellingrath  and  Ivan  Gojmerac.  IEEE, 

2017,  pp.  1–8.  doi:  https://doi.org/10.1109/ICT-DM.2017.8275670.  url:  https://doi. 

org/10.1109/ICT-DM.2017.8275670. 

143.  Christine  Hagar.  “Crisis  Informatics:  Introduction”.  In:   Bulletin of the American Society for Information Science and Technology  36.5  (2010),  pp.  10–12. doihttps://doi.org/10. 

1002/bult.2010.1720360504. 

144.  Awni  Y.  Hannun,  Carl  Case,  Jared  Casper,  Bryan  Catanzaro,  Greg  Diamos,  Erich  Elsen, Ryan  Prenger,  Sanjeev  Satheesh,  Shubho  Sengupta,  Adam  Coates,  and  Andrew  Y.  Ng. 

“Deep  Speech:  Scaling  up  end-to-end  speech  recognition”.  In:   CoRR   abs/1412.5567 

(2014). arXiv:1412.5567. url:  http://arxiv.org/abs/1412.5567. 

304

Bibliography

145.  Zellig  S.  Harris.  “Distributional  Structure”.  In:   Papers on Syntax.  1954.  doi:  https://doi. 

org/10.1080/00437956.1954.11659520. 

146.  A.  Hartigan  and  M.  A.  Wong.  “A  K-Means  Clustering  Algorithm”.  In:   Journal of the Royal Statistical Society (1979).  issn:  00359254.  doi:  https://doi.org/10.2307/2346830. 

147.  Katrin  Hartwig,  Stefka  Schmid,  Tom  Biselli,  Helene  Pleil,  and  Christian  Reuter.  “Misleading  information  in  crises:  exploring  content-specific  indicators  on  Twitter  from 

a  user  perspective”.  In:   Behaviour  &  Information  Technology   0.0  (2024),  pp.  1–34. 

doi:  https://doi.org/10.1080/0144929X.2024.2373166. eprint:  https://doi.org/10.1080/ 

0144929X.2024.2373166. url:  https://doi.org/10.1080/0144929X.2024.2373166. 

148.  Doaa  Hassan.  “A  Text  Mining  Approach  for  Evaluating  Event  Credibility  on  Twit-

ter”.  In:   27th IEEE International Conference on Enabling Technologies: Infrastructure 

 for  Collaborative  Enterprises,  WETICE  2018,  Paris,  France,  June  27–29,  2018. Ed. 

by  Layth  Sliman,  Ismael  Bouassida  Rodriguez,  and  Kaori  Yoshida.  IEEE  Computer 

Society,  2018,  pp.  171–174.  doi:  https://doi.org/10.1109/WETICE.2018.00039.  url: 

https://doi.org/10.1109/WETICE.2018.00039. 

149.  Stefan  Helmstetter  and  Heiko  Paulheim.  “Weakly  Supervised  Learning  for  Fake  News 

Detection  on  Twitter”.  In:   IEEE/ACM  2018  International  Conference  on  Advances 

 in  Social  Networks  Analysis  and  Mining,  ASONAM  2018,  Barcelona,  Spain,  August 

 28–31,  2018.  Ed.  by  Ulrik  Brandes,  Chandan  Reddy,  and  Andrea  Tagarelli.  IEEE 

Computer  Society,  2018,  pp.  274–277.  doi:  https://doi.org/10.1109/ASONAM.2018. 

8508520. url:  https://doi.org/10.1109/ASONAM.2018.8508520. 

150.  Dan  Hendrycks,  Norman  Mu,  Ekin  Dogus  Cubuk,  Barret  Zoph,  Justin  Gilmer,  and  Balaji Lakshminarayanan.  “AugMix:  A  Simple  Data  Processing  Method  to  Improve  Robustness  and  Uncertainty”.  In:   8th International Conference on Learning Representations, 

 ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020.  OpenReview.net,  2020.  url: 

https://www.openreview.net/forum?id=S1gmrxHFvB. 

151.  Alex  Hernández-García  and  Peter  König.  “Data  augmentation  instead  of  explicit  regu-

larization”.  In:   CoRR  abs/1806.03852  (2018). arXiv:1806.03852. url:  http://arxiv.org/ 

abs/1806.03852. 

152.  Starr  Roxanne  Hiltz  and  Linda  Plotnick.  “Dealing  with  information  overload  when  using social  media  for  emergency  management:  Emerging  solutions”.  In:   10th Proceedings of 

 the International Conference on Information Systems for Crisis Response and Manage-

 ment, Baden-Baden, Germany, May 12–15, 2013.  Ed.  by  Tina  Comes,  Frank  Fiedrich, 

Simon  Fortier,  Jutta  Geldermann,  and  Tim  Müller.  ISCRAM  Association,  2013.  url: 

http://idl.iscram.org/files/hiltz/2013/583_Hiltz+Plotnick2013.pdf. 

153.  Eoin  Hinchy.  Voice  of  the  SOC  Analyst.  en-US.  Tech.  rep.  Tines,  2022,  p.  39.  url: 

https://www.tines.com/reports/voice-of-the-soc-analyst/  (visited  on  03/04/2022). 

154.  Neil  Houlsby,  Ferenc  Huszar,  Zoubin  Ghahramani,  and  Máté  Lengyel.  “Bayesian  Active 

Learning  for  Classification  and  Preference  Learning”.  In:   CoRR  abs/1112.5745  (2011). 

arXiv:1112.5745. url:  http://arxiv.org/abs/1112.5745. 

155.  Jeremy  Howard  and  Sylvain  Gugger.  “Fastai:  A  Layered  API  for  Deep  Learning”.  In: 

 Inf.  11.2  (2020),  p.  108.  doi:  https://doi.org/10.3390/INFO11020108. url:  https://doi. 

org/10.3390/info11020108. 

156.  Jeremy  Howard  and  Sebastian  Ruder.  “Universal  Language  Model  Fine-tuning  for  Text 

Classification”.  In:   Proceedings of the 56th Annual Meeting of the Association for Com-

 putational  Linguistics,  ACL  2018,  Melbourne,  Australia,  July  15–20,  2018,  Volume

Bibliography

305

 1: Long Papers.  Ed.  by  Iryna  Gurevych  and  Yusuke  Miyao.  Association  for  Compu-

tational  Linguistics,  2018,  pp.  328–339.  doi:  https://doi.org/10.18653/V1/P18-1031. 

url:  https://www.aclanthology.org/P18-1031/. 

157.  Cheng-Ping  Hsieh,  Simeng  Sun,  Samuel  Kriman,  Shantanu  Acharya,  Dima  Rekesh,  Fei 

Jia,  Yang  Zhang,  and  Boris  Ginsburg.  RULER:   What’s the Real Context Size of Your 

 Long-Context Language Models?  2024. arXiv:2404.06654  [cs.CL]. 

158.  Edward  J.  Hu,  Yelong  Shen,  Phillip  Wallis,  Zeyuan  Allen-Zhu,  Yuanzhi  Li,  Shean  Wang, Lu  Wang,  and  Weizhu  Chen.  “LoRA:  Low-Rank  Adaptation  of  Large  Language  Models”.  In:   The Tenth International Conference on Learning Representations, ICLR 2022, 

 Virtual Event, April 25–29,  2022.  OpenReview.net,  2022.  url:  https://www.openreview. 

net/forum?id=nZeVKeeFYf9. 

159.  Yi-Qi  Hu  and  Yang  Yu.  “A  technical  view  on  neural  architecture  search”.  In:   Int.  J. 

 Mach. Learn. Cybern.  11.4  (2020),  pp.  795–811.  doi:  https://doi.org/10.1007/S13042-

020-01062-1.  url:  https://doi.org/10.1007/s13042-020-01062-1. 

160.  Zhiting  Hu,  Bowen  Tan,  Ruslan  Salakhutdinov,  Tom  M.  Mitchell,  and  Eric  P.  Xing. 

“Learning  Data  Manipulation  for  Augmentation  and  Weighting”.  In:  Advances in Neural 

 Information Processing Systems 32: Annual Conference on Neural Information Process-

 ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.  Ed.  by 

Hanna  M.  Wallach,  Hugo  Larochelle,  Alina  Beygelzimer,  Florence  d’Alché-Buc,  Emily 

B.  Fox,  and  Roman  Garnett.  2019,  pp.  15738–15749.  url:  https://www.proceedings. 

neurips.cc/paper/2019/hash/671f0311e2754fcdd37f70a8550379bc-Abstract.html. 

161.  Amanda  Lee  Hughes  and  Leysia  Palen.  “Twitter  adoption  and  use  in  mass  convergence and  emergency  events”.  In:   Proceedings of the Information Systems for Crisis Response 

 and Management (ISCRAM).  Ed.  by  J.  Landgren  and  S.  Jul.  Vol.  6.  Gothenburg,  2009. 

doi:  https://doi.org/10.1504/IJEM.2009.031564. 

162.  Thien  Ho  Huong  and  Vinh  Truong  Hoang.  “A  data  augmentation  techsnique  based  on 

text  for  Vietnamese  sentiment  analysis”.  In:   IAIT 2020: The 11th International Con-

 ference on Advances in Information Technology, Bangkok, Thailand, July 1–3, 2020. 

Ed.  by  Kriengkrai  Porkaew,  Mark  H.  Chignell,  S.  Fong,  and  Bunthit  Watanapa.  ACM, 

2020,  13:1–13:5.  doi:  https://doi.org/10.1145/3406601.3406618.  url:  https://doi.org/ 

10.1145/3406601.3406618. 

163.  Ghaith  Husari,  Ehab  Al-Shaer,  Mohiuddin  Ahmed,  Bill  Chu,  and  Xi  Niu.  “TTPDrill: 

Automatic  and  Accurate  Extraction  of  Threat  Actions  from  Unstructured  Text  of  CTI 

Sources”.  In:   Proceedings of the 33rd Annual Computer Security Applications Confer-

 ence, Orlando, FL, USA, December 4–8, 2017.  ACM,  2017,  pp.  103–115.  doi:  https:// 

doi.org/10.1145/3134600.3134646. url:  https://doi.org/10.1145/3134600.3134646. 

164.  Clayton  J.  Hutto  and  Eric  Gilbert.  “VADER:  A  Parsimonious  Rule-Based  Model  for 

Sentiment  Analysis  of  Social  Media  Text”.  In:   Proceedings of the Eighth International 

 Conference on Weblogs and Social Media, ICWSM 2014, Ann Arbor, Michigan, USA, 

 June  1–4,  2014.  Ed.  by  Eytan  Adar,  Paul  Resnick,  Munmun  De  Choudhury,  Bernie 

Hogan,  and  Alice  Oh.  The  AAAI  Press,  2014.  url:  http://www.aaai.org/ocs/index. 

php/ICWSM/ICWSM14/paper/view/8109. 

165.  Ayei  E.  Ibor,  Olusoji  B.  Okunoye,  Florence  A.  Oladeji,  and  Khadeejah  A.  Abdulsalam. 

“Novel  Hybrid  Model  for  Intrusion  Prediction  on  Cyber  Physical  Systems’  Commu-

nication  Networks  based  on  Bio-inspired  Deep  Neural  Network  Structure”.  In:   J. Inf. 

 Secur. Appl.  65  (2022),  p.  103107.  doi:  https://doi.org/10.1016/J.JISA.2021.103107. 

url:  https://doi.org/10.1016/j.jisa.2021.103107. 

306

Bibliography

166.  Adrian  Iftene,  Daniela  Gîfu,  Andrei-Remus  Miron,  and  Mihai-Stefan  Dudu.  “A  Real-

Time  System  for  Credibility  on  Twitter”.  In:   Proceedings  of  The  12th  Language 

 Resources  and  Evaluation  Conference,  LREC  2020,  Marfseille, France,  May  11–16, 

 2020.  Ed.  by  Nicoletta  Calzolari,  Frédéric  Béchet,  Philippe  Blache,  Khalid  Choukri, Christopher  Cieri,  Thierry  Declerck,  Sara  Goggi,  Hitoshi  Isahara,  Bente  Maegaard, 

Joseph  Mariani,  Helénè  Mazo,  Asunción  Moreno,  Jan  Odijk,  and  Stelios  Piperidis. 

European  Language  Resources  Association,  2020,  pp.  6166–6173.  url:  https://www. 

aclanthology.org/2020.lrec-1.757/. 

167.  Muhammad  Imran,  Carlos  Castillo,  Fernando  Diaz,  and  Sarah  Vieweg.  “Processing 

Social  Media  Messages  in  Mass  Emergency:  A  Survey”.  In:   ACM  Comput.  Surv. 

47.4  (2015),  67:1–67:38.  doi:  https://doi.org/10.1145/2771588. url:  https://doi.org/ 

10.1145/2771588. 

168.  Muhammad  Imran,  Shady  Elbassuoni,  Carlos  Castillo,  Fernando  Diaz,  and  Patrick 

Meier.  “Practical  extraction  of  disaster-relevant  information  from  social  media”.  In: 

 22nd International World Wide Web Conference, WWW’3, Rio de Janeiro, Brazil, May 

 13–17, 2013, Companion Volume.  Ed.  by  Leslie  Carr,  Alberto  H.  F.  Laender,  Bernadette Farias  Loscio,  Irwin  King,  Marcus  Fontoura,  Denny  Vrandecic,  Lora  Aroyo,  José 

Palazzo  M.  de  Oliveira,  Fernanda  Lima,  and  Erik  Wilde.  International  World  Wide 

Web  Conferences  Steering  Committee  /  ACM,  2013,  pp.  1021–1024.  doi:  https://doi. 

org/10.1145/2487788.2488109.  url:  https://doi.org/10.1145/2487788.2488109. 

169.  Muhammad  Imran,  Prasenjit  Mitra,  and  Carlos  Castillo.  “Twitter  as  a  Lifeline:  Human-annotated  Twitter  Corpora  for  NLP  of  Crisis-related  Messages”.  In:   Proceedings of the 

 Tenth International Conference on Language Resources and Evaluation LREC 2016, 

 Portorož,  Slovenia,  May  23–28,  2016.  Ed.  by  Nicoletta  Calzolari,  Khalid  Choukri, 

Thierry  Declerck,  Sara  Goggi,  Marko  Grobelnik,  Bente  Maegaard,  Joseph  Mariani, 

Hélène  Mazo,  Asunción  Moreno,  Jan  Odijk,  and  Stelios  Piperidis.  European  Language 

Resources  Association  (ELRA),  2016.  url:  http://www.lrec-conf.org/proceedings/ 

lrec2016/summaries/842.html. 

170.  Muhammad  Imran,  Prasenjit  Mitra,  and  Jaideep  Srivastava.  “Cross  Language  Domain 

Adaptation  for  Classifying  Crisis-Related  Short  Mes  sages”.  In:   13th Proceedings of 

 the  International  Conference  on  Information  Systems  for  Crisis  Response  and  Man-

 agement,  Rio  de  Janeiro,  Brasil,  May  22–25,  2016.  Ed.  by  Andrea  H.  Tapia,  Pedro Antunes,  Victor  A.  Bañuls,  Kathleen  A.  Moore,  and  João  Porto  de  Albuquerque. 

ISCRAM  Association,  2016.  url:  http://idl.iscram.org/files/muhammadimran/2016/ 

1396_MuhammadImran_etal2016.pdf. 

171.  Muhammad  Imran,  Prasenjit  Mitra,  and  Jaideep  Srivastava.  “Enabling  Rapid  Classi-

fication  of  Social  Media  Communications  During  Crises”.  In:   Int.  J.  Inf.  Syst.  Cri-

 sis  Response  Manag.  8.3  (2016),  pp.  1–17.  doi:  https://doi.org/10.4018/IJISCRAM. 

2016070101. url:  https://doi.org/10.4018/IJISCRAM.2016070101. 

172.  Hiroshi  Inoue.  “Data  Augmentation  by  Pairing  Samples  for  Images  Classification”. 

In:   CoRR   abs/1801.02929  (2018). arXiv:1801.02929. url:  http://arxiv.org/abs/1801. 

02929. 

173.  Mohit  Iyyer,  John  Wieting,  Kevin  Gimpel,  and  Luke  Zettlemoyer.  “Adversarial  Exam-

ple  Generation  with  Syntactically  Controlled  Paraphrase  Networks”.  In:   Proceedings of 

 the 2018 Conference of the North American Chapter of the Association for Computa-

 tional Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, 

 Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers).  Ed.  by  Marilyn  A.  Walker, 

Bibliography

307

Heng  Ji,  and  Amanda  Stent.  Association  for  Computational  Linguistics,  2018,  pp.  1875– 

1885.  doi:  https://doi.org/10.18653/V1/N18-1170.  url:  https://doi.org/10.18653/v1/ 

n18-1170. 

174.  Pieter  Floris  Jacobs,  Gideon  Maillette  de  Buy  Wenniger,  Marco  A.  Wiering,  and  Lam-bert  Schomaker.  “Active  Learning  for  Reducing  Labeling  Effort  in  Text  Classification 

Tasks”.  In:   Artificial Intelligence and Machine Learning—33rd Benelux Conference on 

 Artificial Intelligence, BNAIC/Bene-learn 2021, Esch-sur-Alzette, Luxembourg, Novem-

 ber 10–12, 2021, Revised Selected Papers.  Ed.  by  Luis  A.  Leiva,  Cédric  Pruski,  Réka Markovich,  Amro  Najjar,  and  Christoph  Schommer.  Vol.  1530.  Communications  in 

Computer  and  Information  Science.  Springer,  2021,  pp.  3–29.  doi:  https://doi.org/10. 

1007/978-3-030-93842-0_1. url:  https://doi.org/10.1007/978-3-030-93842-0_1. 

175.  Anil  K.  Jain.  “Data  clustering:  50  years  beyond  K-means”.  In:   Pattern Recognit. Lett. 

31.8  (2010),  pp.  651–666.  doi:  https://doi.org/10.1016/J.PATREC.2009.09.011. url: 

https://doi.org/10.1016/j.patrec.2009.09.011. 

176.  Praphula  Kumar  Jain,  Waris  Quamer,  Vijayalakshmi  Saravanan,  and  Rajendra  Pamula. 

“Employing  BERT-DCNN  with  sentic  knowledge  base  for  social  media  sentiment  anal-

ysis”.  In:   J.  Ambient  Intell.  Humaniz.  Comput.  14.8  (2023),  pp.  10417–10429.  doi: 

https://doi.org/10.1007/S12652-022-03698-Z. url:  https://doi.org/10.1007/s12652-

022-03698-z. 

177.  Navdeep  Jaitly  and  Geoffrey  E  Hinton.  “Vocal  tract  length  perturbation  (VTLP) 

improves  speech  recognition”.  In:   Proc. ICML Workshop on Deep Learning for Audio, 

 Speech and Language.  Vol.  117.  2013,  p.  21. 

178.  Ganesh  Jawahar,  Benoîst  Sagot,  and  Djam’e  Seddah.  “What  Does  BERT  Learn  about 

the  Structure  of  Language?”  In:   Proceedings of the 57th Conference of the Association 

 for  Computational  Linguistics,  ACL  2019,  Florence,  Italy,  July  28- August  2,  2019, 

 Volume 1: Long Papers.  Ed.  by  Anna  Korho  nen,  David  R.  Traum,  and  Lluís  Márquez. 

Association  for  Computational  ‘  Linguistics,  2019,  pp.  3651–3657.  doi:  https://doi.org/ 

10.18653/V1/P19-1356.  url:  https://doi.org/10.18653/v1/p19-1356. 

179.  Robin  Jia  and  Percy  Liang.  “Adversarial  Examples  for  Evaluating  Reading  Compre-

hension  Systems”.  In:   Proceedings of the 2017 Conference on Empirical Methods in 

 Natural  Language  Processing,  EMNLP  2017,  Copenhagen,  Denmark,  September  9– 

 11, 2017.  Ed.  by  Martha  Palmer,  Rebecca  Hwa,  and  Sebastian  Riedel.  Association  for Computational  Linguistics,  2017,  pp.  2021–2031.  doi:  https://doi.org/10.18653/V1/ 

D17-1215.  url:  https://doi.org/10.18653/v1/d17-1215. 

180.  Albert  Q.  Jiang,  Alexandre  Sablayrolles,  Antoine  Roux,  Arthur  Mensch,  Blanche 

Savary,  Chris  Bamford,  Devendra  Singh  Chaplot,  Diego  de  Las  Casas,  Emma  Bou 

Hanna,  Florian  Bressand,  Gianna  Lengyel,  Guillaume  Bour,  Guillaume  Lample,  Lélio 

Renard  Lavaud,  Lucile  Saulnier,  Marie-Anne  Lachaux,  Pierre  Stock,  Sandeep  Subra-

manian,  Sophia  Yang,  Szymon  Antoniak,  Teven  Le  Scao,  Théophile  Gervet,  Thibaut 

Lavril,  Thomas  Wang,  Timothée  Lacroix,  and  William  El  Sayed.  “Mixtral  of  Experts”. 

In:   CoRR  abs/2401.04088  (2024).  doi:  https://doi.org/10.48550/ARXIV.2401.04088. 

arXiv:2401.04088. url:  https://doi.org/10.48550/arXiv.2401.04088. 

181.  Haoming  Jiang,  Pengcheng  He,  Weizhu  Chen,  Xiaodong  Liu,  Jianfeng  Gao,  and  Tuo 

Zhao.  “SMART:  Robust  and  Efficient  Fine-Tuning  for  Pre-trained  Natural  Language 

Models  through  Principled  Regularized  Optimization”.  In:   Proceedings  of  the  58th 

 Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 

 July 5–10, 2020.  Ed.  by  Dan  Jurafsky,  Joyce  Chai,  Natalie  Schluter,  and  Joel  R.  Tetreault. 

308

Bibliography

Association  for  Computational  Linguistics,  2020,  pp.  2177–2190.  doi:  https://doi.org/ 

10.18653/V1/2020.ACL-MAIN.197. url:  https://doi.org/10.18653/v1/2020.acl-main. 

197. 

182.  Shaohua  Jiang,  Shan  Zhao,  Kai  Hou,  Yang  Liu,  Li  Zhang,  et  al.  “A  BERT-BiLSTM-

CRF  model  for  Chinese  electronic  medical  records  named  entity  recognition”.  In:   2019 

 12th International Conference on Intelligent Computa tion Technology and Automation 

 (ICICTA).  IEEE.  2019,  pp.  166–169. 

183.  Xiaoqi  Jiao,  Yichun  Yin,  Lifeng  Shang,  Xin  Jiang,  Xiao  Chen,  Linlin  Li,  Fang  Wang, and  Qun  Liu.  “TinyBERT:  Distilling  BERT  for  Natural  Language  Understanding”.  In: 

 Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 

 16–20 November 2020.  Ed.  by  Trevor  Cohn,  Yulan  He,  and  Yang  Liu.  Vol.  EMNLP  2020. 

Findings  of  ACL.  Association  for  Computational  Linguistics,  2020,  pp.  4163–4174. 

doi:  https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.372. url:  https://doi.org/ 

10.18653/v1/2020.findings-emnlp.372. 

184.  Di  Jin,  Zhijing  Jin,  Joey  Tianyi  Zhou,  and  Peter  Szolovits.  “Is  BERT  Really  Robust?  A Strong  Baseline  for  Natural  Language  Attack  on  Text  Classification  and  Entailment”.  In: 

 The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-

 Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The 

 Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, 

 New  York,  NY,  USA,  February  7–12,  2020.  AAAI  Press,  2020,  pp.  8018–8025.  doi: 

https://doi.org/10.1609/AAAI.V34I05.6311. url:  https://doi.org/10.1609/aaai.v34i05. 

6311. 

185.  Armand  Joulin,  Edouard  Grave,  Piotr  Bojanowski,  Matthijs  Douze,  Hervé  Jégou,  and 

Tomás  Mikolov.  “FastText.zip:  Compressing  text  classification  models”.  In:   CoRR 

abs/1612.03651  (2016). arXiv:1612.03651. url:  http://arxiv.org/abs/1612.03651. 

186.  Armand  Joulin,  Edouard  Grave,  Piotr  Bojanowski,  and  Tomás  Mikolov.  “Bag  of  Tricks 

for  Efficient  Text  Classification”.  In:  Proceedings of the 15th Conference of the European 

 Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, 

 April 3–7, 2017, Volume 2: Short Papers.  Ed.  by  Mirella  Lapata,  Phil  Blunsom,  and 

Alexander  Koller.  Association  for  Computational  Linguistics,  2017,  pp.  427–431.  doi: 

https://doi.org/10.18653/V1/E17-2068.  url:  https://doi.org/10.18653/v1/e17-2068. 

187.  Michal  Jungiewicz  and  Aleksander  Smywinski-Pohl.  “Towards  textual  data  augmenta-

tion  for  neural  networks:  Synonyms  and  maximum  loss”.  In:   Computer Science (2019). 

issn:  23007036.  doi:  https://doi.org/10.7494/csci.2019.20.1.3023. 

188.  Kushal  Kafle,  Mohammed  A.  Yousefhussien,  and  Christopher  Kanan.  “Data  Augmen-

tation  for  Visual  Question  Answering”.  In:   Proceedings of the 10th International Con-

 ference on Natural Language Generation, INLG 2017, Santiago de Compostela, Spain, 

 September 4–7, 2017.  Ed.  by  José  Maria  Alonso,  Alberto  Bugarín,  and  Ehud  Reiter. 

Association  for  Computational  Linguistics,  2017,  pp.  198–202.  doi:  https://doi.org/10. 

18653/V1/W17-3529.  url:  https://doi.org/10.18653/v1/w17-3529. 

189.  Hacer  Karacan  and  Mehmet  Sevri.  “A  Novel  Data  Augmentation  Technique  and  Deep 

Learning  Model  for  Web  Application  Security”.  In:   IEEE Access  9  (2021),  pp.  150781– 

150797.  doi:  https://doi.org/10.1109/ACCESS.2021.3125785. url:  https://doi.org/10. 

1109/ACCESS.2021.3125785. 

190.  Omid  Kashefi  and  Rebecca  Hwa.  “Quantifying  the  Evaluation  of  Heuristic  Methods  for Textual  Data  Augmentation”.  In:   Proceedings of the Sixth Workshop on Noisy User-generated Text, W-NUT at EMNLP 2020 Online, November 19, 2020.  Ed.  by  Wei  Xu, 

Bibliography

309

Alan  Ritter,  Tim  Baldwin,  and  Afshin  Rahimi.  Association  for  Computational  Lin-

guistics,  2020,  pp.  200–208.  doi:  https://doi.org/10.18653/V1/2020.WNUT-1.26.  url: 

https://doi.org/10.18653/v1/2020.wnut-1.26. 

191.  Marc-Andr  Kaufhold  and  Christian  Reuter.  “Cultural  violence  and  peace  in  social 

media”.  In:   Information  technology  for  peace  and  security—IT—Applications  and 

 infrastructures in conflicts, crises, war, and peace.  Ed.  by  Christian  Reuter.  2019,  pp. 

361–381.  isbn:  978-3-658-25652-4. 

192.  Marc-André  Kaufhold.  “Information  refinement  technologies  for  crisis  informatics: 

user  expectations  and  design  principles  for  social  media  and  mobile  apps”.  PhD  thesis. 

Technical  University  of  Darmstadt,  Germany,  2020.  isbn:  978-3-658-33343-0.  url: 

https://www.d-nb.info/1230698515. 

193.  Marc-André  Kaufhold,  Ali  Sercan  Basyurt,  Kaan  Eyilmez,  Marc  Stöttinger,  and  Chris-

tian  Reuter.  “Cyber  Threat  Observatory:  Design  and  Evaluation  of  an  Interactive  Dash-

board  for  Computer  Emergency  Response  Teams”.  In:   30th  European  Conference 

 on  Information  Systems—New  Horizons  in  Digitally  United  Societies,  ECIS  2022, 

 Timisoara,  Romania,  June  18–24,  2022.  Ed.  by  Roman  Beck,  Dana  Petcu,  Marin 

Fotache,  Sabine  Matook,  Remko  Helms,  Martin  Wiener,  Lazar  Rusu,  and  Tuure  Tuu-

nanen.  2022.  url:  https://www.aisel.aisnet.org/ecis2022_rp/99. 

194.  Marc-André  Kaufhold,  Markus  Bayer,  Daniel  Hartung,  and  Christian  Reuter.  “Design 

and  Evaluation  of  Deep  Learning  Models  for  Real-Time  Credibility  Assessment  in 

Twitter”.  In:   Artificial Neural Networks and Machine Learning—ICANN 2021—30th 

 International Conference on Artificial Neural Networks, Bratislava, Slovakia, Septem-

 ber  14–17,  2021,  Proceedings,  Part  V.  Ed.  by  Igor  Farkas,  Paolo  Masulli,  Sebastian Otte,  and  Stefan  Wermter.  Vol.  12895.  Lecture  Notes  in  Computer  Science.  Springer, 

2021,  pp.  396–408.  doi:  https://doi.org/10.1007/978-3-030-86383-8_32.  url:  https:// 

doi.org/10.1007/978-3-030-86383-8_32. 

195.  Marc-André  Kaufhold,  Jennifer  Fromm,  Thea  Riebe,  Milad  Mirbabaie,  Philipp 

Kühn,  Ali  Sercan  Basyurt,  Markus  Bayer,  Marc  Stöttinger,  Kaan  Eyilmez,  Reinhard 

Möller,  Christoph  Fuchß,  Stefan  Stieglitz,  and  Christian  Reuter.  “CYWARN:  Strat-

egy  and  Technology  Development  for  Cross-Platform  Cyber  Situational  Awareness 

and  Actor-Specific  Cyber  Threat  Communication”.  In:   Mensch und Computer 2021— 

 Workshopband,  Ingolstadt,  Germany,  September  5–8,  2021.  Ed.  by  Carolin  Wien-

rich,  Philipp  Wintersberger,  and  Benjamin  Weyers.  Gesellschaft  für  Informatik  e.V., 

2021.  doi:  https://doi.org/10.18420/MUC2021-MCI-WS08-263.  url:  https://doi.org/ 

10.18420/muc2021-mci-ws08-263. 

196.  Marc-André  Kaufhold,  Thea  Riebe,  Markus  Bayer,  and  Christian  Reuter.  “‘We  Do  Not 

Have  the  Capacity  to  Monitor  All  Media’:  A  Design  Case  Study  on  Cyber  Situational 

Awareness  in  Computer  Emergency  Response  Teams”.  In:   Proceedings  of  the  CHI 

 Conference on Human Factors in Computing Systems, CHI 2024, Honolulu, HI, USA, 

 May 11–16, 2024.  Ed.  by  Florian  ‘Floyd’  Mueller,  Penny  Kyburz,  Julie  R.  Williamson, Corina  Sas,  Max  L.  Wilson,  Phoebe  O.  Toups  Dugas,  and  Irina  Shklovski.  ACM,  2024, 

580:1–580:16.  doi:  https://doi.org/10.1145/3613904.3642368. url:  https://doi.org/10. 

1145/3613904.3642368. 

197.  Marc-André  Kaufhold,  Nicola  Rupp,  Christian  Reuter,  and  Matthias  Habdank.  “Mit-

igating  information  overload  in  social  media  during  conflicts  and  crises:  design  and 

evaluation  of  a  cross-platform  alerting  system”.  In:   Behav. Inf. Technol.  39.3  (2020), 

310

Bibliography

pp.  319–342.  doi:  https://doi.org/10.1080/0144929X.2019.1620334.  url:  https://doi. 

org/10.1080/0144929X.2019.1620334. 

198.  Marc-André  Kaufhold,  Markus  Bayer,  and  Christian  Reuter.  “Rapid  relevance  clas-

sification  of  social  media  posts  in  disasters  and  emergencies:  A  system  and  evalua-

tion  featuring  active,  incremental  and  online  learning”.  In:   Inf. Process. Manag.  57.1 

(2020).  doi:  https://doi.org/10.1016/J.IPM.2019.102132.  url:  https://doi.org/10.1016/ 

j.ipm.2019.102132. 

199.  Marc  André  Kaufhold  and  Christian  Reuter.  “The  Self-Organization  of  Digital  Volun-

teers  across  Social  Media:  The  Case  of  the  2013  European  Floods  in  Germany”.  In: 

 Journal of Homeland Security and Emergency Management 13.1 (2016),  pp.  137–166. 

issn:  15477355.  doi:  https://doi.org/10.1515/jhsem-2015-0063. 

200.  Daniel  Keim,  Gennady  Andrienko,  Jean-daniel  Fekete,  G  Carsten,  and  Guy  Melan. 

“Visual  Analytics:  Definition,  Process  and  Challenges”.  In:   Information Visualization— 

 Human-Centered Issues and Perspectives (2008),  pp.  154–175.  issn:  0302–9743.  doi: 

https://doi.org/10.1007/978-3-540-70956-5_7. 

201.  Ronald  Kemker,  Marc  McClure,  Angelina  Abitino,  Tyler  L.  Hayes,  and  Christopher 

Kanan.  “Measuring  Catastrophic  Forgetting  in  Neural  Networks”.  In:   Proceedings of 

 the  Thirty-Second  AAAI  Conference  on  Artificial  Intelligence,  (AAAI-18),  the  30th 

 innovative  Applications  of  Artificial  Intelligence  (IAAI-18),  and  the  8th  AAAI  Sym-

 posium  on  Educational  Advances  in  Artificial  Intelligence  (EAAI-18),  New  Orleans, 

 Louisiana, USA, February 2–7, 2018.  Ed.  by  Sheila  A.  McIlraith  and  Kilian  Q.  Wein-

berger.  AAAI  Press,  2018,  pp.  3390–3398.  doi:  https://doi.org/10.1609/AAAI.V32I1. 

11651. url:  https://doi.org/10.1609/aaai.v32i1.11651. 

202.  Bilal  Khan.  Generate  your  own  text  with  OpenAI’s  GPT-2.  2019.  url:  https://www. 

kaggle.com/bkkaggle/generate-your-own-text-with-openai-s-gpt-2-117m. 

203.  Omar  Khattab,  Arnav  Singhvi,  Paridhi  Maheshwari,  Zhiyuan  Zhang,  Keshav  San-

thanam,  Sri  Vardhamanan,  Saiful  Haq,  Ashutosh  Sharma,  Thomas  T.  Joshi,  Hanna 

Moazam,  Heather  Miller,  Matei  Zaharia,  and  Christopher  Potts.  “DSPy:  Com-

piling  Declarative  Language  Model  Calls  into  Self-Improving  Pipelines”.  In: 

 CoRR   abs/2310.03714  (2023).  doi:  https://doi.org/10.48550/ARXIV.2310.03714. 

arXiv:2310.03714. url:  https://doi.org/10.48550/arXiv.2310.03714. 

204.  Aparup  Khatua,  Apalak  Khatua,  and  Erik  Cambria.  “A  tale  of  two  epidemics:  Con-

textual  Word2Vec  for  classifying  twitter  streams  during  outbreaks”.  In:   Inf. Process. 

 Manag.  56.1  (2019),  pp.  247–257.  doi:  https://doi.org/10.1016/J.IPM.2018.10.010. 

url:  https://doi.org/10.1016/j.ipm.2018.10.010. 

205.  Hazel  H.  Kim,  Daecheol  Woo,  Seong  Joon  Oh,  Jeong-Won  Cha,  and  Yo-Sub  Han.  “ALP: 

Data  Augmentation  Using  Lexicalized  PCFGs  for  Few-Shot  Text  Classification”.  In: 

 Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Con-

 ference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth 

 Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, 

 February 22—March 1, 2022.  AAAI  Press,  2022,  pp.  10894–10902.  doi:  https://doi. 

org/10.1609/AAAI.V36I10.21336. url:  https://doi.org/10.1609/aaai.v36i10.21336. 

206.  Jiyeon  Kim,  Jiwon  Kim,  Hyunjung  Kim,  Minsun  Shim,  and  Eunjung  Choi.  “CNN-Based 

Network  Intrusion  Detection  against  Denial-of-Service  Attacks”.  en.  In:   Electronics  9.6 

(June  2020),  p.  916.  issn:  2079–9292.  doi:  https://doi.org/10.3390/electronics9060916. 

url:  https://www.mdpi.com/2079-9292/9/6/916  (visited  on  11/22/2023). 

Bibliography

311

207.  Diederik  P.  Kingma  and  Jimmy  Ba.  “Adam:  A  Method  for  Stochastic  Optimization”. 

In:   3rd International Conference on Learning Representations, ICLR 2015, San Diego, 

 CA, USA, May 7–9, 2015, Conference Track Proceedings.  Ed.  by  Yoshua  Bengio  and 

Yann  LeCun.  2015.  url:  http://arxiv.org/abs/1412.6980. 

208.  Tom  Ko,  Vijayaditya  Peddinti,  Daniel  Povey,  and  Sanjeev  Khudanpur.  “Audio  augmen-

tation  for  speech  recognition”.  In:   INTERSPEECH 2015, 16th Annual Conference of the 

 International Speech Communication Association, Dresden, Germany, September 6– 

 10, 2015.  ISCA,  2015,  pp.  3586–3589.  doi:  https://doi.org/10.21437/INTERSPEECH. 

2015-711.  url:  https://doi.org/10.21437/Interspeech.2015-711. 

209.  Sosuke  Kobayashi.  “Contextual  Augmentation:  Data  Augmentation  by  Words  with 

Paradigmatic  Relations”.  In:   Proceedings of the 2018 Conference of the North Amer-

 ican  Chapter  of  the  Association  for  Computational  Linguis  tics:  Human  Language 

 Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1–6, 2018, Volume 2 

 (Short  Papers).  Ed.  by  Marilyn  A.  Walker,  Heng  Ji,  and  Amanda  Stent.  Association for  Computational  Linguis  tics,  2018,  pp.  452–457.  doi:  https://doi.org/10.18653/V1/ 

N18-2072.  url:  https://doi.org/10.18653/v1/n18-2072. 

210.  Pang  Wei  Koh  and  Percy  Liang.  “Understanding  Black-box  Predictions  via  Influence 

Functions”.  In:   Proceedings of the 34th International Conference on Machine Learning, 

 ICML 2017, Sydney, NSW, Australia, 6–11 August 2017.  Ed.  by  Doina  Precup  and  Yee 

Whye  Teh.  Vol.  70.  Proceedings  of  Machine  Learning  Research.  PMLR,  2017,  pp. 

1885–1894.  url:  http://proceedings.mlr.press/v70/koh17a.html. 

211.  Harsh  Kohli.  “Transfer  Learning  and  Augmentation  for  Word  Sense  Disambiguation”. 

In:   Advances  in  Information  Retrieval—43rd  European  Conference  on  IR  Research, 

 ECIR 2021, Virtual Event, March 28—April 1, 2021, Proceedings, Part II.  Ed.  by  Djoerd 

Hiemstra,  Marie-Francine  Moens,  Josiane  Mothe,  Raffaele  Perego,  Martin  Potthast,  and 

Fabrizio  Sebastiani.  Vol.  12657.  Lecture  Notes  in  Computer  Science.  Springer,  2021,  pp. 

303–311.  doi:  https://doi.org/10.1007/978-3-030-72240-1_29. url:  https://doi.org/10. 

1007/978-3-030-72240-1_29. 

212.  Takeshi  Kojima,  Shixiang  Shane  Gu,  Machel  Reid,  Yutaka  Matsuo,  and  Yusuke  Iwa-

sawa.  “Large  Language  Models  are  Zero-Shot  Reasoners”.  In:   Advances  in  Neu-

 ral  Information  Processing  Systems  35:  Annual  Conference  on  Neural  Information 

 Processing  Systems  2022,  NeurIPS  2022,  New  Orleans,  LA,  USA,  November  28 -

 December  9,  2022.  Ed.  by  Sanmi  Koyejo,  S.  Mohamed,  A.  Agarwal,  Danielle  Bel-

grave,  K.  Cho,  and  A.  Oh.  2022.  url:  http://papers.nips.cc/paper_files/paper/2022/ 

hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html. 

213.  Takeshi  Kojima,  Shixiang  Shane  Gu,  Machel  Reid,  Yutaka  Matsuo,  and  Yusuke  Iwa-

sawa.  “Large  Language  Models  are  Zero-Shot  Reasoners”.  In:   Advances  in  Neu-

 ral  Information  Processing  Systems  35:  Annual  Conference  on  Neural  Information 

 Processing  Systems  2022,  NeurIPS  2022,  New  Orleans,  LA,  USA,  November  28— 

 December  9,  2022.  Ed.  by  Sanmi  Koyejo,  S.  Mohamed,  A.  Agarwal,  Danielle  Bel-

grave,  K.  Cho,  and  A.  Oh.  2022.  url:  http://papers.nips.cc/paper_files/paper/2022/ 

hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html. 

214.  Oleksandr  Kolomiyets,  Steven  Bethard,  and  Marie-Francine  Moens.  “Model-Portability 

Experiments  for  Textual  Temporal  Analysis”.  In:   The 49th Annual Meeting of the Asso-

 ciation for Computational Linguistics: Human Language Technologies, Proceedings of 

 the Conference, 19–24 June, 2011, Portland, Oregon, USA—Short Papers.  The  Asso-

312

Bibliography

ciation  for  Computer  Linguistics,  2011,  pp.  271–276.  url:  https://www.aclanthology. 

org/P11-2047/. 

215.  Paris  Koloveas,  Thanasis  Chantzios,  Sofia  Alevizopoulou,  Spiros  Ski-adopoulos, 

and  Christos  Tryfonopoulos.  “inTIME:  A  Machine  Learning-Based  Framework  for 

Gathering  and  Leveraging  Web  Data  to  Cyber-Threat  Intelligence”.  en.  In:   Elec-

 tronics   10.7  (Mar.  2021),  p.  818.  issn:  2079–9292.  doi:  https://doi.org/10.3390/ 

electronics10070818. url:  https://www.mdpi.com/2079-9292/10/7/818  (visited  on 12/20/2023). 

216.  Jan-David  Krieger,  Timo  Spinde,  Terry  Ruas,  Juhi  Kulshrestha,  and  Bela  Gipp.  “A 

domain-adaptive  pre-training  approach  for  language  bias  detection  in  news”.  In:   JCDL 

 ’22:  The  ACM/IEEE  Joint  Conference  on  Digital  Libraries  in  2022,  Cologne,  Ger-

 many, June 20–24, 2022.  Ed.  by  Akiko  Aizawa,  Thomas  Mandl,  Zeljko  Carevic,  Annika 

Hinze,  Philipp  Mayr,  and  Philipp  Schaer.  ACM,  2022,  p.  3.  doi:  https://doi.org/10.1145/ 

3529372.3530932.  url:  https://doi.org/10.1145/3529372.3530932. 

217.  G  Krishnalal,  S  Babu  Rengarajan,  and  K  G  Srinivasagan.  “A  New  Text  Mining  Approach Based  on  HMM-SVM  for  Web  News  Classification”.  In:   International Journal of Computer Applications (2010).  doi:  https://doi.org/10.5120/395-589. 

218.  Anna  Kruspe,  Jens  Kersten,  Matti  Wiegmann,  Benno  Stein,  and  Friederike  Klan.  “Classification  of  Incident-related  Tweets  :  Tackling  Imbalanced  Training  Data  using  Hybrid 

CNNs  and  Translation-based  Data  Augmentation”.  In:   Notebook papers of the TREC 

 2018 conference.  2018. 

219.  Philipp  Kuehn,  Markus  Bayer,  Marc  Wendelborn,  and  Christian  Reuter.  “OVANA:  An 

Approach  to  Analyze  and  Improve  the  Information  Qual  ity  of  Vulnerability  Databases”. 

In:   ARES  2021:  The  16th  International  Conference  on  Availability,  Reliability  and 

 Security,  Vienna,  Austria,  August  17–20,  2021.  Ed.  by  Delphine  Reinhardt  and  Tilo Müller.  ACM,  2021,  22:1–22:11.  doi:  https://doi.org/10.1145/3465481.3465744.  url: 

https://doi.org/10.1145/3465481.3465744. 

220.  Philipp  Kuehn,  Moritz  Kerk,  Marc  Wendelborn,  and  Christian  Reuter.  “Cluster-

ing  of  Threat  Information  to  Mitigate  Information  Overload  for  Computer  Emer-

gency  Response  Teams”.  In:   CoRR   abs/2210.14067  (2022).  doi:  https://doi.org/10. 

48550/ARXIV.2210.14067. arXiv:2210.14067. url:  https://doi.org/10.48550/arXiv. 

2210.14067. 

221.  Philipp  Kuehn,  Thea  Riebe,  Lynn  Apelt,  Max  Jansen,  and  Christian  Reuter.  “Shar-

ing  of  Cyber  Threat  Intelligence  between  States”.  en.  In:   Sicherheit  &  Frieden   38.1 

(2020),  pp.  22–28.  issn:  0175–274X.  doi:  https://doi.org/10.5771/0175-274X-2020-

1-22.  url:  https://www.nomos-elibrary.de/index.php?doi=10.5771/0175-274X-2020-

1-22  (visited  on  04/05/2023). 

222.  Prabhat  Kumar,  Govind  P.  Gupta,  Rakesh  Tripathi,  Sahil  Garg,  and  Mohammad  Mehedi 

Hassan.  “DLTIF:  Deep  Learning-Driven  Cyber  Threat  Intelligence  Modeling  and  Identi-

fication  Framework  in  IoT-Enabled  Maritime  Transportation  Systems”.  In:   IEEE Trans. 

 Intell.  Transp.  Syst.  24.2  (2023),  pp.  2472–2481.  doi:  https://doi.org/10.1109/TITS. 

2021.3122368.  url:  https://doi.org/10.1109/TITS.2021.3122368. 

223.  Varun  Kumar,  Ashutosh  Choudhary,  and  Eunah  Cho.  “Data  Augmentation  using  Pre-

trained  Transformer  Models”.  In:   CoRR   abs/2003.02245  (2020). arXiv:2003.02245. 

url:  https://www.arxiv.org/abs/2003.02245. 

224.  Varun  Kumar,  Hadrien  Glaude,  Cyprien  de  Lichy,  and  William  Campbell.  “A  Closer 

Look  At  Feature  Space  Data  Augmentation  For  Few-Shot  Intent  Classification”.  In:

Bibliography

313

 Proceedings  of  the  2nd  Workshop  on  Deep  Learning  Approaches  for  Low-Resource 

 NLP, DeepLo at EMNLP-IJCNLP 2019, Hong Kong, China, November 3, 2019.  Ed.  by 

Colin  Cherry,  Greg  Durrett,  George  F.  Foster,  Reza  Haffari,  Shahram  Khadivi,  Nanyun 

Peng,  Xiang  Ren,  and  Swabha  Swayamdipta.  Association  for  Computational  Linguis-

tics,  2019,  pp.  1–10.  doi:  https://doi.org/10.18653/V1/D19-6101.  url:  https://doi.org/ 

10.18653/v1/D19-6101. 

225.  Alexey  Kurakin,  Ian  J.  Goodfellow,  and  Samy  Bengio.  “Adversarial  examples  in  the 

physical  world”.  In:   5th International Conference on Learning Representations, ICLR 

 2017,  Toulon,  France,  April  24–26,  2017,  Workshop  Track  Proceedings.  OpenRe-

view.net,  2017.  url:  https://www.openreview.net/forum?id=HJGU3Rodl. 

226.  Gakuto  Kurata,  Bing  Xiang,  and  Bowen  Zhou.  “Labeled  Data  Generation  with 

Encoder-Decoder  LSTM  for  Semantic  Slot  Filling”.  In:   Interspeech 2016, 17th Annual 

 Conference  of  the  International  Speech  Communication  Association,  San  Francisco, 

 CA,  USA,  September  8–12,  2016.  Ed.  by  Nelson  Morgan.  ISCA,  2016,  pp.  725– 

729.  doi:  https://doi.org/10.21437/INTERSPEECH.2016-727. url:  https://doi.org/10. 

21437/Interspeech.2016-727. 

227.  Dilek  Küçük  Matci  and  Ugur  Avdan.  “Comparative  analysis  of  unsupervised  clas-

sification  methods  for  mapping  burned  forest  areas”.  In:   Arabian  Journal  of  Geo-

 sciences  13.15  (Aug.  2020),  p.  711.  issn:  1866–7511,  1866–7538.  doi:  https://doi.org/ 

10.1007/s12517-020-05670-7.  url:  https://www.link.springer.com/10.1007/s12517-

020-05670-7  (visited  on  09/09/2022). 

228.  Lab42.  About ARC.  url:  https://www.lab42.global/arc/  (visited  on  02/26/2024). 

229.  Rabindra  Lamsal,  Maria  Rodriguez  Read,  and  Shanika  Karunasekera.  “CrisisTrans-

formers:  Pre-trained  language  models  and  sentence  encoders  for  crisis-related  social 

media  texts”.  In:   CoRR  abs/2309.05494  (2023).  doi:  https://doi.org/10.48550/ARXIV. 

2309.05494. arXiv:2309.05494. url:  https://doi.org/10.48550/arXiv.2309.05494. 

230.  Zhenzhong  Lan,  Mingda  Chen,  Sebastian  Goodman,  Kevin  Gimpel,  Piyush  Sharma, 

and  Radu  Soricut.  “ALBERT:  A  Lite  BERT  for  Self-supervised  Learning  of  Language 

Representations”.  In:   8th International Conference on Learning Representations, ICLR 

 2020, Addis Ababa, Ethiopia, April 26–30, 2020.  OpenReview.net,  2020.  url:  https:// 

www.openreview.net/forum?id=H1eA7AEtvS. 

231.  Max  Landauer,  Florian  Skopik,  Markus  Wurzenberger,  and  Andreas  Rauber.  “Dealing 

with  Security  Alert  Flooding:  Using  Machine  Learning  for  Domain-independent  Alert 

Aggregation”.  In:   ACM Trans. Priv. Secur.  25.3  (2022),  18:1–18:36.  doi:  https://doi. 

org/10.1145/3510581. url:  https://doi.org/10.1145/3510581. 

232.  J.  Richard  Landis  and  Gary  G.  Koch.  “The  Measurement  of  Observer  Agreement  for  Cat-egorical  Data”.  en.  In:  Biometrics  33.1  (Mar.  1977),  p.  159.  issn:  0006341X.  doi:  https:// 

doi.org/10.2307/2529310.  url:  https://www.jstor.org/stable/2529310?origin=crossref 

(visited  on  09/14/2023). 

233.  Simon  Lansmann  and  Stefan  Klein.  “How  much  Collaboration?  Balancing  the  Needs 

for  Collaborative  and  Uninterrupted  Work”.  In:   26th European Conference on Infor-

 mation Systems: Beyond Digitization—Facets of Socio-Technical Change, ECIS 2018, 

 Portsmouth, UK, June 23–28, 2018.  Ed.  by  Peter  M.  Bednar,  Ulrich  Frank,  and  Karlheinz Kautz.  2018,  p.  118.  url:  https://www.aisel.aisnet.org/ecis2018_rp/118. 

234.  Pedro  Lara-Benítez,  Manuel  Carranza-García,  Jorge  García-Gutiérrez,  and  José  C. 

Riquelme.  “Asynchronous  dual-pcne  data  stream  classification”.  In:   Integr.  Comput. 

314

Bibliography

 Aided Eng.  27.2  (2020),  pp.  101–119.  doi:  https://doi.org/10.3233/ICA-200617. url: 

https://doi.org/10.3233/ICA-200617. 

235.  David  M.  J.  Lazer,  Matthew  A.  Baum,  Yochai  Benkler,  Adam  J.  Berinsky,  Kelly  M. 

Greenhill,  Filippo  Menczer,  Miriam  J.  Metzger,  Brendan  Nyhan,  Gordon  Pennycook, 

David  M.  Rothschild,  Michael  Schudson,  Steven  A.  Sloman,  Cass  R.  Sunstein,  Emily 

A.  Thorson,  Duncan  J.  Watts,  and  Jonathan  L.  Zittrain.  “The  science  of  fake  news”. 

In:   CoRR  abs/2307.07903  (2023).  doi:  https://doi.org/10.48550/ARXIV.2307.07903. 

arXiv:2307.07903. url:  https://doi.org/10.48550/arXiv.2307.07903. 

236.  Rémi  Leblond,  Florent  Altché,  and  Felix  Gimeno.  AlphaCode2_Tech_Report.pdf. 

2023. 

url:

https://www.storage.googleapis.com/deepmind-media/AlphaCode2/ 

AlphaCode2_Tech_Report.pdf. 

237.  Yann  LeCun,  Léon  Bottou,  Yoshua  Bengio,  and  Patrick  Haffner.  “Gradient-based  learn-

ing  applied  to  document  recognition”.  In:  Proc. IEEE  86.11  (1998),  pp.  2278–2324.  doi: 

https://doi.org/10.1109/5.726791. url:  https://doi.org/10.1109/5.726791. 

238.  Jinhyuk  Lee,  Wonjin  Yoon,  Sungdong  Kim,  Donghyeon  Kim,  Sunkyu  Kim,  Chan 

Ho  So,  and  Jaewoo  Kang.  “BioBERT:  a  pre-trained  biomedical  language  represen-

tation  model  for  biomedical  text  mining”.  In:   Bioinform.  36.4  (2020),  pp.  1234– 

1240.  doi:  https://doi.org/10.1093/BIOINFORMATICS/BTZ682.  url:  https://doi.org/ 

10.1093/bioinformatics/btz682. 

239.  Kenton  Lee,  Kelvin  Guu,  Luheng  He,  Tim  Dozat,  and  Hyung  Won  Chung.  “Neural 

Data  Augmentation  via  Example  Extrapolation”.  In:   CoRR   abs/2102.01335  (2021). 

arXiv:2102.01335. url:  https://www.arxiv.org/abs/2102.01335. 

240.  Younghoo  Lee,  Joshua  Saxe,  and  Richard  E.  Harang.  “CATBERT:  Context-Aware  Tiny 

BERT  for  Detecting  Social  Engineering  Emails”.  In:   CoRR   abs/2010.03484  (2020). 

arXiv:2010.03484. url:  https://www.arxiv.org/abs/2010.03484. 

241.  V.  I.  Levenshtein.  “Binary  codes  capable  of  correcting  deletions,  insertions  and  reversals”.  In:   Soviet Physics Doklady  10  (Feb.  1966),  p.  707. 

242.  David  D.  Lewis  and  Jason  Catlett.  “Heterogeneous  Uncertainty  Sampling  for  Supervised Learning”.  In:   Machine Learning, Proceedings of the Eleventh International Conference, Rutgers University, New Brunswick, NJ, USA, July 10–13, 1994.  Ed.  by  William 

W.  Cohen  and  Haym  Hirsh.  Morgan  Kaufmann,  1994,  pp.  148–156.  doi:  https://doi.org/ 

10.1016/B978-1-55860-335-6.50026-X. url:  https://doi.org/10.1016/b978-1-55860-

335-6.50026-x. 

243.  Ang  Li,  Fangyuan  Zhang,  Shuangjiao  Li,  Tianhua  Chen,  Pan  Su,  and  Hong-

tao  Wang.  “Efficiently  generating  sentence-level  textual  adversarial  examples  with 

Seq2seq  Stacked  Auto-Encoder”.  In:   Expert  Syst.  Appl.  213.Part  (2023),  p.  119170. 

doi:  https://doi.org/10.1016/J.ESWA.2022.119170. url:  https://doi.org/10.1016/j. 

eswa.2022.119170. 

244.  Hongmin  Li,  Doina  Caragea,  Cornelia  Caragea,  and  Nic  Herndon.  “Disaster  response 

aided  by  tweet  classification  with  a  domain  adaptation  approach”.  In:   Journal of Contingencies and Crisis Management (2018).  issn:  14685973.  doi:  https://doi.org/10.1111/ 

1468-5973.12194. 

245.  Hongmin  Li,  Xukun  Li,  Doina  Caragea,  and  Cornelia  Caragea.  “Comparison  of 

Word  Embeddings  and  Sentence  Encodings  as  Generalized  Representations  for  Crisis 

Tweet  Classification  Tasks”.  In:   Proceedings  of  the  ISCRAM  Asian  Pacific  2018 

 Conference  (2018).  url:  https://www.google.com/url?client=internal-element-cse& 

cx=009511351313755808885:dkx-7mlm6ni&q=https://www.cs.uic.edu/~cornelia/

Bibliography

315

papers/iscram_asian18.pdf&sa=U&ved=2ahUKEwipgLHA0YmFAxW3bmwGHca_ 

DoIQFnoECAEQAQ&usg=AOvVaw35YBZYn5ZiXaD0I9PzWEre. 

246.  Ke  Li,  Hui  Wen,  Hong  Li,  Hongsong  Zhu,  and  Limin  Sun.  “Security  OSIF:  Toward  Automatic  Discovery  and  Analysis  of  Event  Based  Cyber  Threat  Intelligence”.  In:  2018 IEEE 

 SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, 

 Scalable Computing & Communications, Cloud & Big Data Computing, Internet of Peo-

 ple and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 

 2018,  Guangzhou,  China,  October  8–12,  2018.  Ed.  by  Guojun  Wang,  Qi  Han,  Md. 

Zakirul  Alam  Bhuiyan,  Xiaoxing  Ma,  Frédéric  Loulergue,  Peng  Li,  Manuel  Roveri, 

and  Lei  Chen.  IEEE,  2018,  pp.  741–747.  doi:  https://doi.org/10.1109/SMARTWORLD. 

2018.00142.  url:  https://doi.org/10.1109/SmartWorld.2018.00142. 

247.  Linyang  Li,  Ruotian  Ma,  Qipeng  Guo,  Xiangyang  Xue,  and  Xipeng  Qiu.  “BERT-

ATTACK:  Adversarial  Attack  Against  BERT  Using  BERT”.  In:   Proceedings  of  the 

 2020  Conference  on  Empirical  Methods  in  Natural  Language  Processing,  EMNLP 

 2020,  Online,  November  16-20,  2020.  Ed.  by  Bonnie  Webber,  Trevor  Cohn,  Yulan 

He,  and  Yang  Liu.  Association  for  Computational  Linguistics,  2020,  pp.  6193–6202. 

doi:  https://doi.org/10.18653/V1/2020.EMNLP-MAIN.500.  url:  https://doi.org/10. 

18653/v1/2020.emnlp-main.500. 

248.  Tao  Li,  Yongjin  Hu,  Ankang  Ju,  and  Zhuoran  Hu.  “Adversarial  Active  Learning  for 

Named  Entity  Recognition  in  Cybersecurity”.  en.  In:   Computers, Materials & Continua 

66.1  (2020),  pp.  407–420.  issn:  1546–2226.  doi:  https://doi.org/10.32604/cmc.2020. 

012023.  url:  https://www.techscience.com/cmc/v66n1/40455  (visited  on  12/20/2023). 

249.  Yang  Li,  Quan  Pan,  Suhang  Wang,  Tao  Yang,  and  Erik  Cambria.  “A  Generative  Model 

for  category  text  generation”.  In:   Inf. Sci.  450  (2018),  pp.  301–315.  doi:  https://doi.org/ 

10.1016/J.INS.2018.03.050. url:  https://doi.org/10.1016/j.ins.2018.03.050. 

250.  Yitong  Li,  Trevor  Cohn,  and  Timothy  Baldwin.  “Robust  Training  under  Linguistic 

Adversity”.  In:   Proceedings  of  the  15th  Conference  of  the  European  Chapter  of  the 

 Association  for  Computational  Linguistics,  EACL  2017,  Valencia,  Spain,  April  3–7, 

 2017, Volume 2: Short Papers.  Ed.  by  Mirella  Lapata,  Phil  Blunsom,  and  Alexander 

Koller.  Association  for  Computational  Linguistics,  2017,  pp.  21–27.  doi:  https://doi. 

org/10.18653/V1/E17-2004. url:  https://doi.org/10.18653/v1/e17-2004. 

251.  Znaonui  Liang,  Gang  Zhang,  Jimmy  Xiangji  Huang,  and  Qmming  Vivian  Hu.  “Deep 

learning  for  healthcare  decision  making  with  EMRs”.  In:   Proceedings—2014  IEEE 

 International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2014.  2014. 

isbn:  978-1-4799-5669-2.  doi:  https://doi.org/10.1109/BIBM.2014.6999219. 

252.  Xiaojing  Liao,  Kan  Yuan,  XiaoFeng  Wang,  Zhou  Li,  Luyi  Xing,  and  Raheem  A.  Beyah. 

“Acing  the  IOC  Game:  Toward  Automatic  Discovery  and  Analysis  of  Open-Source 

Cyber  Threat  Intelligence”.  In:   Proceedings of the 2016 ACM SIGSAC Conference on 

 Computer and Communications Security, Vienna, Austria, October 24–28, 2016. Ed. 

by  Edgar  R.  Weippl,  Stefan  Katzenbeisser,  Christopher  Kruegel,  Andrew  C.  Myers,  and 

Shai  Halevi.  ACM,  2016,  pp.  755–766.  doi:  https://doi.org/10.1145/2976749.2978315. 

url:  https://doi.org/10.1145/2976749.2978315. 

253.  Bing  Liu  and  Lei  Zhang.  “A  Survey  of  Opinion  Mining  and  Sentiment  Analysis”.  In: Mining Text Data.  Ed.  by  Charu  C.  Aggarwal  and  ChengXiang  Zhai.  Springer,  2012,  pp. 

415–463.  doi:  https://doi.org/10.1007/978-1-4614-3223-4_13. url:  https://doi.org/10. 

1007/978-1-4614-3223-4_13. 

316

Bibliography

254.  Dayiheng  Liu,  Yeyun  Gong,  Jie  Fu,  Yu  Yan,  Jiusheng  Chen,  Jiancheng  Lv,  Nan  Duan, and  Ming  Zhou.  “Tell  Me  How  to  Ask  Again:  Question  Data  Augmentation  with  Con-trollable  Rewriting  in  Continuous  Space”.  In:   Proceedings of the 2020 Conference on 

 Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 

 16–20, 2020.  Ed.  by  Bonnie  Webber,  Trevor  Cohn,  Yulan  He,  and  Yang  Liu.  Association for  Computational  Linguistics,  2020,  pp.  5798–5810.  doi:  https://doi.org/10.18653/V1/ 

2020.EMNLP-MAIN.467. url:  https://doi.org/10.18653/v1/2020.emnlp-main.467. 

255.  Nelson  F.  Liu,  Kevin  Lin,  John  Hewitt,  Ashwin  Paranjape,  Michele  Bevilacqua,  Fabio Petroni,  and  Percy  Liang.  “Lost  in  the  Middle:  How  Language  Models  Use  Long  Contexts”.  In:   Trans. Assoc. Comput.  Lin  guistics  12  (2024),  pp.  157–173.  doi:  https://doi. 

org/10.1162/TACL_A_00638.  url:  https://doi.org/10.1162/tacl_a_00638. 

256.  Ruibo  Liu,  Guangxuan  Xu,  Chenyan  Jia,  Weicheng  Ma,  Lili  Wang,  and  Soroush 

Vosoughi.  “Data  Boost:  Text  Data  Augmentation  Through  Re  inforcement  Learning 

Guided  Conditional  Generation”.  In:   Proceedings of the 2020 Conference on Empirical 

 Methods in Natural Language Process ing, EMNLP 2020, Online, November 16–20, 

 2020.  Ed.  by  Bonnie  Webber,  Trevor  Cohn,  Yulan  He,  and  Yang  Liu.  Association  for Computational  Linguistics,  2020,  pp.  9031–9041.  doi:  https://doi.org/10.18653/V1/ 

2020.EMNLPMAIN.726. url:  https://doi.org/10.18653/v1/2020.emnlpmain.726. 

257.  Xiao  Liu,  Fanjin  Zhang,  Zhenyu  Hou,  Li  Mian,  Zhaoyu  Wang,  Jing  Zhang,  and  Jie  Tang. 

“Self-Supervised  Learning:  Generative  or  Contrastive”.  In:   IEEE Trans. Knowl. Data 

 Eng.  35.1  (2023),  pp.  857–876.  doi:  https://doi.org/10.1109/TKDE.2021.3090866. 

url:  https://doi.org/10.1109/TKDE.2021.3090866. 

258.  Xiaodong  Liu,  Hao  Cheng,  Pengcheng  He,  Weizhu  Chen,  Yu  Wang,  Hoifung  Poon, 

and  Jianfeng  Gao.  “Adversarial  Training  for  Large  Neural  Language  Models”.  In: 

 CoRR   abs/2004.08994  (2020). arXiv:2004.08994. url:  https://www.arxiv.org/abs/ 

2004.08994. 

259.  Xiaomo  Liu,  Armineh  Nourbakhsh,  Quanzhi  Li,  Rui  Fang,  and  Sameena  Shah.  “Real-

time  Rumor  Debunking  on  Twitter”.  In:   Proceedings of the 24th ACM International 

 Conference on Information and Knowledge Management, CIKM 2015, Melbourne, VIC, 

 Australia, October 19–23, 2015.  Ed.  by  James  Bailey,  Alistair  Moffat,  Charu  C.  Aggarwal,  Maarten  de  Rijke,  Ravi  Kumar,  Vanessa  Murdock,  Timos  K.  Sellis,  and  Jeffrey  Xu 

Yu.  ACM,  2015,  pp.  1867–1870.  doi:  https://doi.org/10.1145/2806416.2806651. url: 

https://doi.org/10.1145/2806416.2806651. 

260.  Yang  Liu  and  Yi-fang  Brook  Wu.  “Early  Detection  of  Fake  News  on  Social  Media 

Through  Propagation  Path  Classification  with  Recurrent  and  Con  volutional  Networks”. 

In:   Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-

 18), the 30th innovative Applications of ArLi, Sishuo Chen, Hao Zhoutificial Intelligence 

 (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelli-

 gence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018.  Ed.  by  Sheila  A. 

McIlraith  and  Kilian  Q.  Weinberger.  AAAI  Press,  2018,  pp.  354–361.  doi:  https://doi. 

org/10.1609/AAAI.V32I1.11268.  url:  https://doi.org/10.1609/aaai.v32i1.11268. 

261.  Yi  Liu,  Lianzhe  Huang,  Shicheng  Li,  Sishuo  Chen,  Hao  Zhou,  Fan-dong  Meng,  Jie 

Zhou,  and  Xu  Sun.  “RECALL:  A  Benchmark  for  LLMs  Robustness  against  Exter-

nal  Counterfactual  Knowledge”.  In:   CoRR   abs/2311.08147  (2023).  doi:  https://doi. 

org/10.48550/ARXIV.2311.08147. arXiv:2311.08147. url:  https://doi.org/10.48550/ 

arXiv.2311.08147. 

Bibliography

317

262.  Yinhan  Liu,  Myle  Ott,  Naman  Goyal,  Jingfei  Du,  Mandar  Joshi,  Danqi  Chen, 

Omer  Levy,  Mike  Lewis,  Luke  Zettlemoyer,  and  Veselin  Stoyanov.  “RoBERTa:  A 

Robustly  Optimized  BERT  Pretraining  Approach”.  In:   CoRR  abs/1907.11692  (2019). 

arXiv:1907.11692. url:  http://arxiv.org/abs/1907.11692. 

263.  Yinhan  Liu,  Myle  Ott,  Naman  Goyal,  Jingfei  Du,  Mandar  Joshi,  Danqi  Chen, 

Omer  Levy,  Mike  Lewis,  Luke  Zettlemoyer,  and  Veselin  Stoyanov.  “RoBERTa:  A 

Robustly  Optimized  BERT  Pretraining  Approach”.  In:   CoRR  abs/1907.11692  (2019). 

arXiv:1907.11692. url:  http://arxiv.org/abs/1907.11692. 

264.  Llama  Team,  AI  @  Meta.  The Llama 3 Herd of Models.  July  2024.  url:  https://www. 

ai.meta.com/research/publications/the-llama3-herd-of-models/. 

265.  Shayne  Longpre,  Yu  Wang,  and  Chris  DuBois.  “How  Effective  is  Task-Agnostic  Data 

Augmentation  for  Pretrained  Transformers?”  In:   Findings of the Association for Com-

 putational  Linguistics:  EMNLP  2020,  Online  Event,  16–20  November  2020.  Ed.  by 

Trevor  Cohn,  Yulan  He,  and  Yang  Liu.  Vol.  EMNLP  2020.  Findings  of  ACL.  Asso-

ciation  for  Computa  tional  Linguistics,  2020,  pp.  4401–4411.  doi:  https://doi.org/ 

10.18653/V1/2020.FINDINGS-EMNLP.394. url:  https://doi.org/10.18653/v1/2020. 

findings-emnlp.394. 

266.  Xiaoyu  Sean  Lu  and  MengChu  Zhou.  “Analyzing  the  evolution  of  rare  events  via  social media  data  and  k-means  clustering  algorithm”.  In:   13th IEEE International Conference 

 on Networking, Sensing, and Control, ICNSC 2016, Mexico City, Mexico, April 28–30, 

 2016.  IEEE,  2016,  pp.  1–6.  doi:  https://doi.org/10.1109/ICNSC.2016.7479041. url: 

https://doi.org/10.1109/ICNSC.2016.7479041. 

267.  Scott  M.  Lundberg  and  Su-In  Lee.  “A  Unified  Approach  to  Interpreting  Model 

Predictions”.  In:   Advances  in  Neural  Information  Processing  Systems  30:  Annual 

 Conference  on  Neural  Information  Processing  Systems  2017,  December  4–9,  2017, 

 Long  Beach,  CA,  USA.  Ed.  by  Isabelle  Guyon,  Ulrike  von  Luxburg,  Samy  Ben-

gio,  Hanna  M.  Wallach,  Rob  Fergus,  S.  V.  N.  Vishwanathan,  and  Roman  Gar-

nett.  2017,  pp.  4765–4774.  url:  https://www.proceedings.neurips.cc/paper/2017/hash/ 

8a20a8621978632d76c43dfd28b67767-Abstract.html. 

268.  Son  T.  Luu,  Kiet  Van  Nguyen,  and  Ngan  Luu-Thuy  Nguyen.  “Empirical  Study  of  Text 

Augmentation  on  Social  Media  Text  in  Vietnamese”.  In:   Proceedings of the 34th Pacific 

 Asia Conference on Language, Information and Computation, PACLIC 2020, Hanoi, 

 Vietnam, October 24–26, 2020.  Ed.  by  Minh  Le  Nguyen,  Mai  Chi  Luong,  and  Sanghoun 

Song.  Association  for  Computational  Linguistics,  2020,  pp.  462–470.  url:  https://www. 

aclanthology.org/2020.paclic-1.53/. 

269.  Jing  Ma,  Wei  Gao,  Prasenjit  Mitra,  Sejeong  Kwon,  Bernard  J.  Jansen,  Kam-Fai  Wong, and  Meeyoung  Cha.  “Detecting  Rumors  from  Microblogs  with  Recurrent  Neural  Networks”.  In:   Proceedings of the Twenty-Fifth Interna tional Joint Conference on Artificial 

 Intelligence, IJCAI 2016,  New  York,  NY,  USA,  9–15  July  2016.  Ed.  by  Subbarao  Kamb-hampati.  IJCAI/AAAI  Press,  2016,  pp.  3818–3824.  url:  http://www.ijcai.org/Abstract/ 

16/537. 

270.  Yukun  Ma,  Haiyun  Peng,  Tahir  Khan,  Erik  Cambria,  and  Amir  Hussain.  “Sentic  LSTM: 

a  Hybrid  Network  for  Targeted  Aspect-Based  Sentiment  Analysis”.  In:   Cogn.  Com-

 put.  10.4  (2018),  pp.  639–650.  doi:  https://doi.org/10.1007/S12559-018-9549-X.  url: 

https://doi.org/10.1007/s12559-018-9549-x. 

271.  Rabeeh  Karimi  Mahabadi,  Luke  Zettlemoyer,  James  Henderson,  Marzieh  Saeidi,  Lam-

bert  Mathias,  Veselin  Stoyanov,  and  Majid  Yazdani.  “PER  FECT:  Prompt-free  and  Effi-

318

Bibliography

cient  Few-shot  Learning  with  Language  Models”.  In:  CoRR  abs/2204.01172  (2022). 

doi:  https://doi.org/10.48550/ARXIV.2204.01172. arXiv:2204.01172. url:  https://doi. 

org/10.48550/arXiv.2204.01172. 

272.  Rabeeh  Karimi  Mahabadi,  Luke  Zettlemoyer,  James  Henderson,  Marzieh  Saeidi,  Lam-

bert  Mathias,  Veselin  Stoyanov,  and  Majid  Yazdani.  “PER  FECT:  Prompt-free  and 

Efficient  Few-shot  Learning  with  Language  Models”.  In:   CoRR  abs/2204.01172  (2022). 

doi:  https://doi.org/10.48550/ARXIV.2204.01172. arXiv:2204.01172. url:  https://doi. 

org/10.48550/arXiv.2204.01172. 

273.  Samaneh  Mahdavifar  and  Ali  A.  Ghorbani.  “Application  of  deep  learn  ing  to  cybersecurity:  A  survey”.  In:   Neurocomputing  347  (2019),  pp.  149–176.  doi:  https://doi.org/10. 

1016/J.NEUCOM.2019.02.056.  url:  https://doi.org/10.1016/j.neucom.2019.02.056. 

274.  Nikolaos  Malandrakis,  Minmin  Shen,  Anuj  Kumar  Goyal,  Shuyang  Gao,  Abhishek 

Sethi,  and  Angeliki  Metallinou.  “Controlled  Text  Generation  for  Data  Augmentation 

in  Intelligent  Artificial  Agents”.  In:   of the 3rd Workshop on Neural Generation and 

 Translation at EMNLP-IJCNLP 2019, Hong Kong, November 4, 2019.  Ed.  by  Alexandra 

Birch,  Andrew  M.  Finch,  Hiroaki  Hayashi,  Ioannis  Konstas,  Thang  Luong,  Graham 

Neubig,  Yusuke  Oda,  and  Katsuhito  Sudoh.  Association  for  Computational  Linguistics, 

2019,  pp.  90–98.  doi:  https://doi.org/10.18653/V1/D19-5609. url:  https://doi.org/10. 

18653/v1/D19-5609. 

275.  Vukosi  Marivate  and  Tshephisho  Sefara.  “Improving  Short  Text  Classification  Through 

Global  Augmentation  Methods”.  In:  Machine Learning and Knowledge Extraction—4th 

 IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, 

 CD-MAKE 2020, Dublin, Ireland, August 25–28, 2020, Proceedings.  Ed.  by  Andreas 

Holzinger,  Peter  Kieseberg,  A  Min  Tjoa,  and  Edgar  R.  Weippl.  Vol.  12279.  Lecture 

Notes  in  Computer  Science.  Springer,  2020,  pp.  385–399.  doi:  https://doi.org/10.1007/ 

978-3-030-57321-8_21. url:  https://doi.org/10.1007/978-3-030-57321-8_21. 

276.  Louis  Martin,  Benjamin  Muller,  Pedro  Javier  Ortiz  Suárez,  Yoann  Dupont,  Laurent 

Romary,  Éric  de  la  Clergerie,  Djamé  Seddah,  and  Benoîst  Sagot.  “CamemBERT:  a  Tasty 

French  Language  Model”.  In:  Proceedings of the 58th Annual Meeting of the Association 

 for Computational Linguistics.  Online:  Association  for  Computational  Linguistics,  July 2020,  pp.  7203–7219.  url:  https://www.aclweb.org/anthology/2020.aclmain.645. 

277.  Michael  McCloskey  and  Neal  J  Cohen.  “Catastrophic  interference  in  connectionist 

networks:  The  sequential  learning  problem”.  In:   Psychology of learning and motivation. 

Vol.  24.  Elsevier,  1989,  pp.  109–165. 

278.  Tom  McCoy,  Ellie  Pavlick,  and  Tal  Linzen.  “Right  for  the  Wrong  Reasons:  Diagnosing Syntactic  Heuristics  in  Natural  Language  Inference”.  In:  Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 

 28- August 2, 2019, Volume 1: Long Papers.  Ed.  by  Anna  Korhonen,  David  R.  Traum,  and Lluís  Màrquez.  Association  for  Computational  Linguistics,  2019,  pp.  3428–3448.  doi: 

https://doi.org/10.18653/V1/P19-1334.  url:  https://doi.org/10.18653/v1/p19-1334. 

279.  Rob  McMillan.  Definition:  Threat  Intelligence.  2013.  doi:  https://www.gartner.com/ 

en/documents/2487216. 

280.  Walaa  Medhat,  Ahmed  Hassan,  and  Hoda  Korashy.  “Sentiment  analysis  algorithms  and 

applications:  A  survey”.  In:   Ain Shams Engineering Journal  5.4  (2014),  pp.  1093–1113. 

issn:  2090–4479.  url:  https://www.doi.org/10.1016/j.asej.2014.04.011. 

281.  Otgonpurev  Mendsaikhan,  Hirokazu  Hasegawa,  Yukiko  Yamaguchi,  Hajime  Shimada, 

and  Enkhbold  Bataa.  “Identification  of  Cybersecurity  Specific  Content  Using  Different

Bibliography

319

Language  Models”.  In:   J. Inf. Process.  28  (2020),  pp.  623–632.  doi:  https://doi.org/10. 

2197/IPSJJIP.28.623. url:  https://doi.org/10.2197/ipsjjip.28.623. 

282.  Stephen  Merity,  Nitish  Shirish  Keskar,  and  Richard  Socher.  “Regularizing  and  Opti-

mizing  LSTM  Language  Models”.  In:   6th International Conference on Learning Rep-

 resentations, ICLR 2018, Vancouver, BC, Canada, April 30—May 3, 2018, Conference 

 Track Proceedings.  OpenReview.net,  2018.  url:  https://www.openreview.net/forum? 

id=SyyGPP0TZ. 

283.  Tomas  Mikolov,  Kai  Chen,  Greg  Corrado,  and  Jeffrey  Dean.  “Efficient  Estimation  of 

Word  Representations  in  Vector  Space”.  In:   1st International Conference on Learning 

 Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2–4, 2013, Workshop Track 

 Proceedings.  Ed.  by  Yoshua  Bengio  and  Yann  LeCun.  2013.  url:  http://arxiv.org/abs/ 

1301.3781. 

284.  George  A  Miller.  The magical number seven, plus or minus two: some limits on our 

 capacity  for  processing  information.  Vol.  63.  2.  US:  American  Psychological  Asso-

ciation,  1956.  isbn:  1939–1471(Electronic),0033–295X(Print).  doi:  https://doi.org/10. 

1037/h0043158. 

285.  George  A.  Miller,  Richard  Beckwith,  Christiane  Fellbaum,  Derek  Gross,  and  Kather-

ine  J.  Miller.  “Introduction  to  wordnet:  An  on-line  lexical  database”.  In:   International Journal of Lexicography (1990).  issn:  09503846.  doi:  https://doi.org/10.1093/ijl/3.4. 

235. 

286.  Erxue  Min,  Xifeng  Guo,  Qiang  Liu,  Gen  Zhang,  Jianjing  Cui,  and  Jun  Long.  “A  Survey of  Clustering  With  Deep  Learning:  From  the  Perspec  tive  of  Network  Architecture”.  In: 

 IEEE Access  6  (2018),  pp.  39501–39514.  doi:  https://doi.org/10.1109/ACCESS.2018. 

2855437. url:  https://doi.org/10.1109/ACCESS.2018.2855437. 

287.  Junghyun  Min,  R.  Thomas  McCoy,  Dipanjan  Das,  Emily  Pitler,  and  Tal  Linzen.  “Syntactic  Data  Augmentation  Increases  Robustness  to  Inference  Heuristics”.  In:   Proceedings 

 of  the  58th  Annual  Meeting  of  the  Association  for  Computational  Linguistics,  ACL 

 2020, Online, July 5–10, 2020.  Ed.  by  Dan  Jurafsky,  Joyce  Chai,  Natalie  Schluter,  and Joel  R.  Tetreault.  Association  for  Computational  Linguistics,  2020,  pp.  2339–2352.  doi: 

https://doi.org/10.18653/V1/2020.ACL-MAIN.212. url:  https://doi.org/10.18653/v1/ 

2020.acl-main.212. 

288.  Shervin  Minaee,  Nal  Kalchbrenner,  Erik  Cambria,  Narjes  Nikzad,  Meysam  Chenaghlu, 

and  Jianfeng  Gao.  “Deep  Learning-based  Text  Classification:  A  Comprehensive 

Review”.  In:  ACM Comput. Surv.  54.3  (2022),  62:1–62:40.  doi:  https://doi.org/10.1145/ 

3439726. url:  https://doi.org/10.1145/3439726. 

289.  Milad  Mirbabaie  and  Elisa  Zapatka.  “Sensemaking  in  Social  Media  Crisis 

Communication—a  Case  Study  on  the  Brussels  Bombings  in  2016”.  In:   25th European 

 Conference on Information Systems, ECIS 2017, Guimarães, Portugal, June 5–10, 2017. 

Ed.  by  Isabel  Ramos,  Virpi  Tuunainen,  and  Helmut  Krcmar.  2017,  p.  138.  url:  https:// 

www.aisel.aisnet.org/ecis2017_rp/138. 

290.  Tanushree  Mitra  and  Eric  Gilbert.  “CREDBANK:  A  Large-Scale  Social  Media  Corpus 

With  Associated  Credibility  Annotations”.  In:   Proceedings of the Ninth International 

 Conference  on  Web  and  Social  Media,  ICWSM  2015,  University  of  Oxford,  Oxford, 

 UK, May 26–29, 2015.  Ed.  by  Meeyoung  Cha,  Cecilia  Mascolo,  and  Christian  Sand-

vig.  AAAI  Press,  2015,  pp.  258–267.  url:  http://www.aaai.org/ocs/index.php/ICWSM/ 

ICWSM15/paper/view/10582. 

320

Bibliography

291.  Sudip  Mittal,  Prajit  Kumar  Das,  Varish  Mulwad,  Anupam  Joshi,  and  Tim  Finin.  “Cyber-Twitter:  Using  Twitter  to  generate  alerts  for  cyber-security  threats  and  vulnerabilities”. 

In:   2016 IEEE/ACM International Conference on Advances in Social Networks Analy-

 sis and Mining, ASONAM 2016, San Francisco, CA, USA, August 18–21, 2016.  Ed.  by 

Ravi  Kumar,  James  Caverlee,  and  Hanghang  Tong.  IEEE  Computer  Society,  2016,  pp. 

860–867.  doi:  https://doi.org/10.1109/ASONAM.2016.7752338.  url:  https://doi.org/ 

10.1109/ASONAM.2016.7752338. 

292.  Takeru  Miyato,  Andrew  M.  Dai,  and  Ian  J.  Goodfellow.  “Adversarial  Training  Meth-

ods  for  Semi-Supervised  Text  Classification”.  In:   5th  International  Conference  on 

 Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference 

 Track Proceedings.  OpenReview.net,  2017.  url:  https://www.openreview.net/forum? 

id=r1X3g2_xl. 

293.  Takeru  Miyato,  Shin-ichi  Maeda,  Masanori  Koyama,  Ken  Nakae,  and  Shin  Ishii.  Distributional Smoothing with Virtual Adversarial Training. en.  arXiv:1507.00677  [cs,  stat]. 

June  2016.  url:  http://arxiv.org/abs/1507.00677  (visited  on  03/12/2024). 

294.  Christoph  Molnar.  Interpretable  Machine  Learning.  A  Guide  for  Making  Black  Box 

 Models Explainable.  2019. 

295.  John  X.  Morris,  Eli  Lifland,  Jin  Yong  Yoo,  Jake  Grigsby,  Di  Jin,  and  Yanjun  Qi.  “TextAttack:  A  Framework  for  Adversarial  Attacks,  Data  Augmentation,  and  Adversarial 

Training  in  NLP”.  In:   Proceedings of the 2020 Conference on Empirical Methods in 

 Natural Language Processing: System Demonstrations, EMNLP 2020—Demos, Online, 

 November 16–20,  2020.  Ed.  by  Qun  Liu  and  David  Schlangen.  Association  for  Computational  Linguistics,  2020,  pp.  119–126.  doi:  https://doi.org/10.18653/V1/2020.EMNLP-

DEMOS.16.  url:  https://doi.org/10.18653/v1/2020.emnlp-demos.16. 

296.  Marius  Mosbach,  Maksym  Andriushchenko,  and  Dietrich  Klakow.  “On  the  Stability 

of  Fine-tuning  BERT:  Misconceptions,  Explanations,  and  Strong  Baselines”.  In:   9th 

 International Conference on Learning Representations, ICLR 2021, Virtual Event, Aus-

 tria, May 3–7, 2021.  OpenReview.net,  2021.  url:  https://www.openreview.net/forum? 

id=nzpLWnVAyah. 

297.  Anna  V.  Mosolova,  Vadim  V.  Fomin,  and  Ivan  Yu  Bondarenko.  “Text  augmentation  for 

neural  networks”.  In:   CEUR Workshop Proceedings  2268  (2018),  pp.  104–109.  issn: 

16130073. 

298.  Nikola  Mrksic,  Diarmuid  Ó  Séaghdha,  Blaise  Thomson,  Milica  Gasic,  Lina  Maria 

Rojas-Barahona,  Pei-Hao  Su,  David  Vandyke,  Tsung-Hsien  Wen,  and  Steve  J.  Young. 

“Counter-fitting  Word  Vectors  to  Linguistic  Constraints”.  In:   NAACL HLT 2016, The 

 2016 Conference of the North American Chapter of the Association for Computational 

 Linguistics: Human Language Technologies, San Diego California, USA, June 12–17, 

 2016.  Ed.  by  Kevin  Knight,  Ani  Nenkova,  and  Owen  Rambow.  The  Association  for 

Computational  Linguistics,  2016,  pp.  142–148.  doi:  https://doi.org/10.18653/V1/N16-

1018.  url:  https://doi.org/10.18653/v1/n16-1018. 

299.  Subhabrata  Mukherjee,  Arindam  Mitra,  Ganesh  Jawahar,  Sahaj  Agarwal,  Hamid 

Palangi,  and  Ahmed  Awadallah.  “Orca:  Progressive  Learning  from  Complex  Expla-

nation  Traces  of  GPT-4”.  In:   CoRR   abs/2306.02707  (2023).  doi:  https://doi.org/10. 

48550/ARXIV.2306.02707. arXiv:2306.02707. url:  https://doi.org/10.48550/arXiv. 

2306.02707. 

300.  Rafael  Müller,  Simon  Kornblith,  and  Geoffrey  E.  Hinton.  “When  does  label  smooth-

ing  help?”  In:   Advances in Neural Information Processing Systems 32: Annual Con-

Bibliography

321

 ference  on  Neural  Information  Processing  Systems  2019,  NeurIPS  2019,  Decem-

 ber  8–14,  2019,  Vancouver,  BC,  Canada.  Ed.  by  Hanna  M.  Wallach,  Hugo 

Larochelle,  Alina  Beygelzimer,  Florence  d’Alché-Buc,  Emily  B.  Fox,  and  Roman  Gar-

nett.  2019,  pp.  4696–4705.  url:  https://www.proceedings.neurips.cc/paper/2019/hash/ 

f1748d6b0fd9d439f71450117eba2725-Abstract.html. 

301.  Sara  Mumtaz,  Carlos  Rodríguez,  Boualem  Benatallah,  Mortada  Al-Banna,  and  Shayan 

Zamanirad.  “Learning  Word  Representation  for  the  Cyber  Security  Vulnerability 

Domain”.  In:   2020 International Joint Conference on Neural Networks, IJCNN 2020, 

 Glasgow,  United  Kingdom,  July  19–24,  2020.  IEEE,  2020,  pp.  1–8.  doi:  https://doi. 

org/10.1109/IJCNN48605.2020.9207140.  url:  https://doi.org/10.1109/IJCNN48605. 

2020.9207140. 

302.  Nikita  Nangia  and  Samuel  R.  Bowman.  “Human  vs.  Muppet:  A  Con  servative  Estimate 

of  Human  Performance  on  the  GLUE  Benchmark”.  In:   Proceedings of the 57th Confer-

 ence of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 

 28- August 2, 2019, Volume 1: Long Papers.  Ed.  by  Anna  Korhonen,  David  R.  Traum,  and Lluís  Màrquez.  Association  for  Computational  Linguistics,  2019,  pp.  4566–4575.  doi: 

https://doi.org/10.18653/V1/P19-1449.  url:  https://doi.org/10.18653/v1/p19-1449. 

303.  Neha  Nayak,  Gabor  Angeli,  and  Christopher  D.  Manning.  “Evaluating  Word  Embed-

dings  Using  a  Representative  Suite  of  Practical  Tasks”.  In:   Proceedings  of  the  1st 

 Workshop on Evaluating Vector-Space Representations for NLP, RepEval at ACL 2016, 

 Berlin, Germany, August 2016.  Association  for  Computational  Linguistics,  2016,  pp. 

19–23.  doi:  https://doi.org/10.18653/V1/W16-2504. url:  https://doi.org/10.18653/v1/ 

W16-2504. 

304.  Dat  Tien  Nguyen,  Kamla  Al-Mannai,  Shafiq  R.  Joty,  Hassan  Sajjad,  Muhammad 

Imran,  and  Prasenjit  Mitra.  “Rapid  Classification  of  Crisis-Related  Data  on  Social 

Networks  using  Convolutional  Neural  Networks”.  In:   CoRR   abs/1608.03902  (2016). 

arXiv:1608.03902. url:  http://arxiv.org/abs/1608.03902. 

305.  Dat  Tien  Nguyen,  Ferda  Ofli,  Muhammad  Imran,  and  Prasenjit  Mitra.  “Damage  Assess-

ment  from  Social  Media  Imagery  Data  During  Disasters”.  In:   Proceedings of the 2017 

 IEEE/ACM  International  Conference  on  Advances  in  Social  Networks  Analysis  and 

 Mining 2017, Sydney, Australia, July 31—August 03, 2017.  Ed.  by  Jana  Diesner,  Elena 

Ferrari,  and  Guandong  Xu.  ACM,  2017,  pp.  569–576.  doi:  https://doi.org/10.1145/ 

3110025.3110109.  url:  https://doi.org/10.1145/3110025.3110109. 

306.  Minh  Van  Nguyen,  Nghia  Trung  Ngo,  Bonan  Min,  and  Thien  Huu  Nguyen.  “FAMIE: 

A  Fast  Active  Learning  Framework  for  Multilin-gual  Information  Extraction”.  In: 

 CoRR   abs/2202.08316  (2022). arXiv:2202.08316. url:  https://www.arxiv.org/abs/ 

2202.08316. 

307.  Amirreza  Niakanlahiji,  Lida  Safarnejad,  Reginald  Harper,  and  Bei-Tseng  Chu. 

“IoCMiner:  Automatic  Extraction  of  Indicators  of  Compromise  from  Twitter”.  In:   2019 

 IEEE International Conference on Big Data (IEEE BigData), Los Angeles, CA, USA, 

 December 9–12, 2019.  Ed.  by  Chaitanya  K.  Baru,  Jun  Huan,  Latifur  Khan,  Xiaohua  Hu, Ronay  Ak,  Yuanyuan  Tian,  Roger  S.  Barga,  Carlo  Zaniolo,  Kisung  Lee,  and  Yanfang 

(Fanny)  Ye.  IEEE,  2019,  pp.  4747–4754.  doi:  https://doi.org/10.1109/BIGDATA47090. 

2019.9006562.  url:  https://doi.org/10.1109/BigData47090.2019.9006562. 

308.  Harsha  Nori,  Nicholas  King,  Scott  Mayer  McKinney,  Dean  Carignan,  and  Eric  Horvitz. 

“Capabilities  of  GPT-4  on  Medical  Challenge  Problems”.  In:   CoRR   abs/2303.13375

322

Bibliography

(2023).  doi:  https://doi.org/10.48550/ARXIV.2303.13375. arXiv:2303.13375. url: 

https://doi.org/10.48550/arXiv.2303.13375. 

309.  Stavros  Ntalampiras  and  Ilyas  Potamitis.  “Few-shot  learning  for  modeling  cyber  physical  systems  in  non-stationary  environments”.  In:   Neural Comput. Appl.  35.5  (2023), pp.  3853–3863.  doi:  https://doi.org/10.1007/S00521-022-07903-0. url:  https://doi. 

org/10.1007/s00521-022-07903-0. 

310.  Olusoji  B.  Okunoye  and  Ayei  E.  Ibor.  “Hybrid  fake  news  detection  technique  with 

genetic  search  and  deep  learning”.  In:   Comput.  Electr.  Eng.  103  (2022),  p.  108344. 

doi:  https://doi.org/10.1016/J.COMPELECENG.2022.108344. url:  https://doi.org/ 

10.1016/j.compeleceng.2022.108344. 

311.  Anaïs  Ollagnier  and  Hywel  T.  P.  Williams.  “Text  Augmentation  Techniques  for  Clinical Case  Classification”.  In:   Working Notes of CLEF 2020—Conference and Labs of the 

 Evaluation Forum, Thessaloniki, Greece, September 22–25, 2020.  Ed.  by  Linda  Cappel-

lato,  Carsten  Eickhoff,  Nicola  Ferro,  and  Aurélie  Névéol.  Vol.  2696.  CEUR  Workshop 

Proceedings.  CEUR-WS.org,  2020.  url:  https://www.ceur-ws.org/Vol-2696/paper_ 

166.pdf. 

312.  Ekaterina  Olshannikova,  Thomas  Olsson,  Jukka  Huhtamäki,  and  Hannu  Kärkkäinen. 

“Conceptualizing  Big  Social  Data”.  In:   J. Big Data  4  (2017),  p.  3.  doi:  https://doi.org/ 

10.1186/S40537-017-0063-X. url:  https://doi.org/10.1186/s40537-017-0063-x. 

313.  Alexandra  Olteanu,  Sarah  Vieweg,  and  Carlos  Castillo.  “What  to  Expect  When  the  Unex-pected  Happens:  Social  Media  Communications  Across  Crises”.  In: Proceedings of the 

 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, 

 CSCW 2015, Vancouver, BC, Canada, March 14–18, 2015.  Ed.  by  Dan  Cosley,  Andrea 

Forte,  Luigina  Ciolfi,  and  David  McDonald.  ACM,  2015,  pp.  994–1009.  doi:  https:// 

doi.org/10.1145/2675133.2675242. url:  https://doi.org/10.1145/2675133.2675242. 

314.  Teresa  Onorati,  Paloma  Díaz,  and  Belen  Carrion  Recio.  “From  social  networks  to  emergency  operation  centers:  A  semantic  visualization  approach”.  In: Future Gener. Com-

 put.  Syst.  95  (2019),  pp.  829–840.  doi:  https://doi.org/10.1016/J.FUTURE.2018.01. 

052.  url:  https://doi.org/10.1016/j.future.2018.01.052. 

315.  OpenAI.  “GPT-4  Technical  Report”.  In:   CoRR  abs/2303.08774  (2023).  doi:  https://doi. 

org/10.48550/ARXIV.2303.08774. arXiv:2303.08774. url:  https://doi.org/10.48550/ 

arXiv.2303.08774. 

316.  OpenAI.  Learning to reason with LLMS.  2024.  url:  https://www.openai.com/index/ 

learning-to-reason-with-llms. 

317.  FY  Osisanwo,  JET  Akinsola,  O  Awodele,  JO  Hinmikaiye,  O  Olakanmi,  J  Akinjobi, 

et  al.  “Supervised  machine  learning  algorithms:  classification  and  comparison”.  In: 

 International  Journal  of  Computer  Trends  and  Technology  (IJCTT)   48.3  (2017),  pp. 

128–138. 

318.  Daniel  W.  Otter,  Julian  R.  Medina,  and  Jugal  K.  Kalita.  “A  Survey  of  the  Usages  of  Deep Learning  for  Natural  Language  Processing”.  In:   IEEE Trans. Neural Networks Learn. 

 Syst.  32.2  (2021),  pp.  604–624.  doi:  https://doi.org/10.1109/TNNLS.2020.2979670. 

url:  https://doi.org/10.1109/TNNLS.2020.2979670. 

319.  Long  Ouyang,  Jeffrey  Wu,  Xu  Jiang,  Diogo  Almeida,  Carroll  L.  Wain-wright,  Pamela 

Mishkin,  Chong  Zhang,  Sandhini  Agarwal,  Katarina  Slama,  Alex  Ray,  John  Schul-

man,  Jacob  Hilton,  Fraser  Kelton,  Luke  Miller,  Maddie  Simens,  Amanda  Askell, 

Peter  Welinder,  Paul  F.  Christiano,  Jan  Leike,  and  Ryan  Lowe.  “Training  lan-

guage  models  to  follow  instructions  with  human  feedback”.  In:   Advances  in  Neu-

Bibliography

323

 ral  Information  Processing  Systems  35:  Annual  Conference  on  Neural  Information 

 Processing  Systems  2022,  NeurIPS  2022,  New  Orleans,  LA,  USA,  November  28— 

 December  9,  2022.  Ed.  by  Sanmi  Koyejo,  S.  Mohamed,  A.  Agarwal,  Danielle  Bel-

grave,  K.  Cho,  and  A.  Oh.  2022.  url:  http://papers.nips.cc/paper_files/paper/2022/ 

hash/b1efde53be364a73914f58805a001731-AbstractConference.html. 

320.  Matteo  Pagliardini,  Prakhar  Gupta,  and  Martin  Jaggi.  “Unsupervised  Learning  of  Sen-

tence  Embeddings  Using  Compositional  n-Gram  Fea  tures”.  In:   Proceedings of the 2018 

 Conference of the North American Chapter of the Association for Computational Lin-

 guistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, 

 USA, June 1–6, 2018, Volume 1 (Long Papers).  Ed.  by  Marilyn  A.  Walker,  Heng  Ji,  and Amanda  Stent.  Association  for  Computational  Linguistics,  2018,  pp.  528–540.  doi: 

https://doi.org/10.18653/V1/N18-1049.  url:  https://doi.org/10.18653/v1/n18-1049. 

321.  Leysia  Palen  and  Kenneth  M  Anderson.  “Crisis  informatics:  New  data  for  extraordinary times”.  In:   Science (New York, N.Y.)  353.6296  (2016),  pp.  224–225.  issn:  0036-8075. 

doi:  https://doi.org/10.1126/science.aag2579. 

322.  Leysia  Palen  and  Amanda  L  Hughes.  “Social  Media  in  Disaster  Communication”.  In: 

 Handbook of Disaster Research.  Ed.  by  Havid  n  Rodr  guez,  William  Donner,  and  Joseph E  Trainor.  Cham:  Springer  International  Pub  lishing,  2018,  pp.  497–518.  isbn:  978-3-319-63254-4.  doi:  https://doi.org/10.1007/978-3-319-63254-4_24. 

323.  Sinno  Jialin  Pan.  “Transfer  Learning”.  In:   Data Classification: Algorithms and Applications.  Ed.  by  Charu  C.  Aggarwal.  CRC  Press,  2014,  pp.  537–570. doihttps://doi.org/ 

10.1201/B17320-22.  url:  http://www.crcnetbase.com/doi/abs/10.1201/b17320-22. 

324.  Zoe  Papakipos  and  Joanna  Bitton.  “AugLy:  Data  Augmentations  for  Robustness”. 

In:   CoRR  abs/2201.06494  (2022). arXiv:2201.06494. url:  https://www.arxiv.org/abs/ 

2201.06494. 

325.  Nicolas  Papernot,  Fartash  Faghri,  Nicholas  Carlini,  Ian  Goodfellow,  Reuben  Fein-

man,  Alexey  Kurakin,  Cihang  Xie,  Yash  Sharma,  Tom  Brown,  Aurko  Roy,  Alexan-

der  Matyasko,  Vahid  Behzadan,  Karen  Hambardzumyan,  Zhishuai  Zhang,  Yi-Lin 

Juang,  Zhi  Li,  Ryan  Sheatsley,  Abhibhav  Garg,  Jonathan  Uesato,  Willi  Gierke,  Yin-

peng  Dong,  David  Berthelot,  Paul  Hendricks,  Jonas  Rauber,  Rujun  Long,  and  Patrick 

McDaniel.  Technical Report on the CleverHans v2.1.0 Adversarial Examples Library. 

arXiv:1610.00768  [cs,  stat].  June  2018.  url:  http://arxiv.org/abs/1610.00768  (visited on  03/08/2024). 

326.  Nicolas  Papernot,  Patrick  D.  McDaniel,  Ian  J.  Goodfellow,  Somesh  Jha,  Z.  Berkay  Celik, and  Ananthram  Swami.  “Practical  Black-Box  Attacks  against  Machine  Learning”.  In: 

 Proceedings of the 2017 ACM on Asia Conference on Computer and Communications 

 Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2–6, 2017.  Ed.  by 

Ramesh  Karri,  Ozgur  Sinanoglu,  Ahmad-Reza  Sadeghi,  and  Xun  Yi.  ACM,  2017,  pp. 

506–519.  doi:  https://doi.org/10.1145/3052973.3053009.  url:  https://doi.org/10.1145/ 

3052973.3053009. 

327.  Ankur  P.  Parikh,  Oscar  Täckström,  Dipanjan  Das,  and  Jakob  Uszkoreit.  “A  Decompos-

able  Attention  Model  for  Natural  Language  Inference”.  In:   Proceedings  of  the  2016 

 Conference  on  Empirical  Methods  in  Natural  Language  Processing,  EMNLP  2016, 

 Austin, Texas, USA, November 1–4, 2016.  Ed.  by  Jian  Su,  Xavier  Carreras,  and  Kevin 

Duh.  The  Association  for  Computational  Linguistics,  2016,  pp.  2249–2255.  doi:  https:// 

doi.org/10.18653/V1/D16-1244. url:  https://doi.org/10.18653/v1/d16-1244. 

324

Bibliography

328.  David  A.  Patterson,  Joseph  Gonzalez,  Quoc  V.  Le,  Chen  Liang,  Lluis-Miquel  Munguia, Daniel  Rothchild,  David  R.  So,  Maud  Texier,  and  Jeff  Dean.  “Carbon  Emissions  and 

Large  Neural  Network  Training”.  In:   CoRR  abs/2104.10350  (2021). arXiv:2104.10350. 

url:  https://www.arxiv.org/abs/2104.10350. 

329.  Kellin  Pelrine,  Anne  Imouza,  Camille  Thibault,  Meilina  Reksoprodjo,  Caleb  Gupta, 

Joel  Christoph,  Jean-François  Godbout,  and  Reihaneh  Rabbany.  “Towards  Reliable 

Misinformation  Mitigation:  Generalization,  Uncertainty,  and  GPT-4”.  In:   Proceed-

 ings of the 2023 Conference on Empirical Methods in Natural Language Processing, 

 EMNLP 2023, Singapore, December 6–10, 2023.  Ed.  by  Houda  Bouamor,  Juan  Pino, 

and  Kalika  Bali.  Association  for  Computational  Linguistics,  2023,  pp.  6399–6429. 

doi:  https://doi.org/10.18653/V1/2023.EMNLP-MAIN.395.  url:  https://doi.org/10. 

18653/v1/2023.emnlp-main.395. 

330.  Jeffrey  Pennington,  Richard  Socher,  and  Christopher  D.  Manning.  “Glove:  Global  Vec-

tors  for  Word  Representation”.  In:   Proceedings of the 2014 Conference on Empirical 

 Methods in Natural Language Processing, EMNLP 2014, October 25–29, 2014, Doha, 

 Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL.  Ed.  by  Alessandro 

Moschitti,  Bo  Pang,  and  Walter  Daelemans.  ACL,  2014,  pp.  1532–1543.  doi:  https:// 

doi.org/10.3115/V1/D14-1162.  url:  https://doi.org/10.3115/v1/d14-1162. 

331.  Thananya  Phreeraphattanakarn  and  Boonserm  Kijsirikul.  “Text  data-augmentation 

using  Text  Similarity  with  Manhattan  Siamese  long  short-term  memory  for  Thai  lan-

guage”.  In:   Journal of Physics: Conference Series.  Vol.  1780.  1.  IOP  Publishing.  2021, p.  012018. 

332.  Francesco  Pierri  and  Stefano  Ceri.  “False  News  On  Social  Media:  A  Data-Driven  Survey”.  In:  SIGMOD  Rec.  48.2  (2019),  pp.  18–27.  doi:  https://doi.org/10.1145/3377330. 

3377334. url:  https://doi.org/10.1145/3377330.3377334. 

333.  Daniela  Pohl,  Abdelhamid  Bouchachia,  and  Hermann  Hellwagner.  “Social  media  for 

crisis  management:  clustering  approaches  for  sub-event  detection”.  In:   Multim. Tools 

 Appl.  74.11  (2015),  pp.  3901–3932.  doi:  https://doi.org/10.1007/S11042-013-1804-2. 

url:  https://doi.org/10.1007/s11042-013-1804-2. 

334.  Mohammadreza  Qaraei  and  Rohit  Babbar.  “Adversarial  examples  for  extreme  multilabel 

text  classification”.  In:   Mach. Learn.  111.12  (2022),  pp.  4539–4563.  doi:  https://doi. 

org/10.1007/S10994-022-06263-Z. url:  https://doi.org/10.1007/s10994-022-06263-

z. 

335.  Vahed  Qazvinian,  Emily  Rosengren,  Dragomir  R.  Radev,  and  Qiaozhu  Mei.  “Rumor  has 

it:  Identifying  Misinformation  in  Microblogs”.  In:   Proceedings of the 2011 Conference 

 on Empirical Methods in Natural Language Processing, EMNLP 2011, 27–31 July 2011, 

 John  McIntyre  Conference  Centre,  Edinburgh,  UK,  A  meeting  of  SIGDAT,  a  Special 

 Interest Group of the ACL.  ACL,  2011,  pp.  1589–1599.  url:  https://www.aclanthology. 

org/D11-1147/. 

336.  Siyuan  Qiu,  Binxia  Xu,  Jie  Zhang,  Yafang  Wang,  Xiaoyu  Shen,  Gerard  de  Melo,  Chong Long,  and  Xiaolong  Li.  “EasyAug:  An  Automatic  Textual  Data  Augmentation  Platform 

for  Classification  Tasks”.  In:   Companion of The 2020 Web Conference 2020, Taipei, 

 Taiwan, April 20–24, 2020.  Ed.  by  Amal  El  Fallah  Seghrouchni,  Gita  Sukthankar,  TieYan  Liu,  and  Maarten  van  Steen.  ACM  /  IW3C2,  2020,  pp.  249–252.  doi:  https://doi. 

org/10.1145/3366424.3383552.  url:  https://doi.org/10.1145/3366424.3383552. 

337.  Yanru  Qu,  Dinghan  Shen,  Yelong  Shen,  Sandra  Sajeev,  Weizhu  Chen,  and  Jiawei  Han. 

“CoDA:  Contrast-enhanced  and  Diversity-promoting  Data  Augmentation  for  Natural

Bibliography

325

Language  Understanding”.  In:   9th Interna tional Conference on Learning Representa-

 tions, ICLR 2021, Virtual Event, Austria, May 3–7, 2021.  OpenReview.net,  2021.  url: 

https://www.openreview.net/forum?id=Ozk9MrX1hvA. 

338.  Ella  Rabinovich,  Raj  Nath  Patel,  Shachar  Mirkin,  Lucia  Specia,  and  Shuly  Wintner. 

“Personalized  Machine  Translation:  Preserving  Original  Author  Traits”.  In:  Proceedings 

 of the 15th Conference of the European Chapter of the Association for Computational 

 Linguistics, EACL 2017, Valencia, Spain, April 3–7, 2017, Volume 1: Long Papers. Ed. 

by  Mirella  Lapata,  Phil  Blunsom,  and  Alexander  Koller.  Association  for  Computational 

Linguistics,  2017,  pp.  1074–1084.  doi:  https://doi.org/10.18653/V1/E17-1101. url: 

https://doi.org/10.18653/v1/e17-1101. 

339.  Alec  Radford,  Karthik  Narasimhan,  Tim  Salimans,  and  Ilya  Sutskever.  Improving Language Understanding by Generative Pre-Training.  en.  2018. 


340.  Alec  Radford,  Jeffrey  Wu,  Rewon  Child,  David  Luan,  Dario  Amodei,  and  Ilya 

Sutskever.  “Language  Models  are  Unsupervised  Multitask  Learners”.  In:  Ope-

nAI  Blog  (2018).  url:  https://www.paperswithcode.com/paper/language-models-are-

unsupervised-multitask. 

341.  Drasko  Radovanovic  and  Slobodan  Dukanovic.  “Image-Based  Plant  Disease  Detection: 

A  Comparison  of  Deep  Learning  and  Classical  Machine  Learning  Algorithms”.  In:  2020 

 24th International Conference on Information Technology, IT 2020.  2020.  isbn:  978-1-

72815-136-6.  doi:  https://doi.org/10.1109/IT48810.2020.9070664. 

342.  Bhagat  Singh  Raghuwanshi  and  Sanyam  Shukla.  “Classifying  imbalanced  data  using 

SMOTE  based  class-specific  kernelized  ELM”.  In:   Int.  J.  Mach.  Learn.  Cybern. 

12.5  (2021),  pp.  1255–1280.  doi:  https://doi.org/10.1007/S13042-020-01232-1.  url: 

https://doi.org/10.1007/s13042-020-01232-1. 

343.  Anton  Ragni,  Kate  M.  Knill,  Shakti  P.  Rath,  and  Mark  J.  F.  Gales.  “Data  augmentation for  low  resource  languages”.  In:   INTERSPEECH 2014, 15th Annual Conference of the 

 International Speech Communication Association, Singapore, September 14–18, 2014. 

Ed.  by  Haizhou  Li,  Helen  M.  Meng,  Bin  Ma,  Engsiong  Chng,  and  Lei  Xie.  ISCA,  2014, 

pp.  810–814.  doi:  https://doi.org/10.21437/INTERSPEECH.2014-207.  url:  https:// 

doi.org/10.21437/Interspeech.2014-207. 

344.  Abir  Rahali  and  Moulay  A.  Akhloufi.  “MalBERT:  Using  Transformers  for  Cyber-

security  and  Malicious  Software  Detection”.  In:   CoRR   abs/2103.03806  (2021). 

arXiv:2103.03806. url:  https://www.arxiv.org/abs/2103.03806. 

345.  Guillaume  Raille,  Sandra  Djambazovska,  and  Claudiu  Musat.  “Fast  Cross-domain  Data 

Augmentation  through  Neural  Sentence  Editing”.  In:   CoRR   abs/2003.10254  (2020). 

arXiv:2003.10254. url:  https://www.arxiv.org/abs/2003.10254. 

346.  Rajat  Raina,  Alexis  J.  Battle,  Honglak  Lee,  Benjamin  Packer,  and  Andrew  Y.  Ng.  “Self-taught  learning:  transfer  learning  from  unlabeled  data”.  In:   Machine Learning, Proceed-

 ings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, 

 USA,  June  20–24,  2007.  Ed.  by  Zoubin  Ghahramani.  Vol.  227.  ACM  International 

Conference  Proceeding  Series.  ACM,  2007,  pp.  759–766.  doi:  https://doi.org/10.1145/ 

1273496.1273592.  url:  https://doi.org/10.1145/1273496.1273592. 

347.  Priyanka  Ranade,  Aritran  Piplai,  Anupam  Joshi,  and  Tim  Finin.  “CyBERT:  Contextu-

alized  Embeddings  for  the  Cybersecurity  Domain”.  In:   2021 IEEE International Con-

 ference on Big Data (Big Data), Orlando, FL, USA, December 15–18, 2021.  Ed.  by 

Yixin  Chen,  Heiko  Ludwig,  Yicheng  Tu,  Usama  M.  Fayyad,  Xingquan  Zhu,  Xiao-

hua  Hu,  Suren  Byna,  Xiong  Liu,  Jianping  Zhang,  Shirui  Pan,  Vagelis  Papalexakis, 

326

Bibliography

Jianwu  Wang,  Alfredo  Cuzzocrea,  and  Carlos  Ordonez.  IEEE,  2021,  pp.  3334–3342. 

doi:  https://doi.org/10.1109/BIGDATA52589  .  2021  .  9671824.  url:  https://doi.org/ 

10.1109/BigData52589.2021.9671824. 

348.  Francisco  Rangel,  Anastasia  Giachanou,  Bilal  Ghanem,  and  Paolo  Rosso.  “Overview  of 

the  8th  Author  Pro?ling  Task  at  PAN  2020:  Pro?ling  Fake  News  Spreaders  on  Twitter”. 

In:  (2020). 

349.  Runqing  Rao,  Linda  Plotnick,  and  Starr  Roxanne  Hiltz.  “Supporting  the  Use  of  Social Media  by  Emergency  Managers:  Software  Tools  to  Overcome  Information  Overload”. 

In:   50th  Hawaii  International  Conference  on  System  Sciences,  HICSS  2017,  Hilton 

 Waikoloa Village, Hawaii, USA, January 4–7, 2017.  Ed.  by  Tung  Bui.  ScholarSpace 

/  AIS  Electronic  Library  (AISeL),  2017,  pp.  1–9.  url:  https://www.hdl.handle.net/ 

10125/41185. 

350.  Carl  Edward  Rasmussen  and  Zoubin  Ghahramani.  “Occam’s  Razor”.  In:   Advances in 

 Neural Information Processing Systems 13, Papers from Neural Information Processing 

 Systems (NIPS) 2000, Denver, CO, USA.  Ed.  by  Todd  K.  Leen,  Thomas  G.  Dietterich,  and Volker  Tresp.  MIT  Press,  2000,  pp.  294–300.  url:  https://www.proceedings.neurips. 

cc/paper/2000/hash/0950ca92a4dcf426067cfd2246bb5ff3-Abstract.html. 

351.  Jacob  Ratkiewicz,  Michael  D.  Conover,  Mark  R.  Meiss,  Bruno  Gonçalves,  Snehal  Patil, Alessandro  Flammini,  and  Filippo  Menczer.  “Truthy:  mapping  the  spread  of  astroturf 

in  microblog  streams”.  In:   Proceedings of the 20th International Conference on World 

 Wide Web, WWW 2011, Hyderabad, India, March 28—April 1, 2011 (Companion Vol-

 ume).  Ed.  by  Sadagopan  Srinivasan,  Krithi  Ramamritham,  Arun  Kumar,  M.  P.  Ravindra, Elisa  Bertino,  and  Ravi  Kumar.  ACM,  2011,  pp.  249–252.  doi:  https://doi.org/10.1145/ 

1963192.1963301.  url:  https://doi.org/10.1145/1963192.1963301. 

352.  Alexander  J.  Ratner,  Henry  R.  Ehrenberg,  Zeshan  Hussain,  Jared  Dunnmon,  and 

Christopher  Ré.  “Learning  to  Compose  Domain-Specific  Transformations  for  Data 

Augmentation”.  In:   Advances in Neural Information Processing Systems 30: Annual 

 Conference  on  Neural  Information  Processing  Systems  2017,  December  4–9,  2017, 

 Long  Beach,  CA,  USA.  Ed.  by  Isabelle  Guyon,  Ulrike  von  Luxburg,  Samy  Ben-

gio,  Hanna  M.  Wallach,  Rob  Fergus,  S.  V.  N.  Vishwanathan,  and  Roman  Gar-

nett.  2017,  pp.  3236–3246.  url:  https://www.proceedings.neurips.cc/paper/2017/hash/ 

f26dab9bf6a137c3b6782e562794c2f2-Abstract.html. 

353.  Jonas  Rauber,  Wieland  Brendel,  and  Matthias  Bethge.  Foolbox: A Python toolbox to 

 benchmark  the  robustness  of  machine  learning  models. arXiv:1707.04131  [cs,  stat]. 

Mar.  2018.  url:  http://arxiv.org/abs/1707.04131  (visited  on  03/08/2024). 

354.  Mehdi  Regina,  Maxime  Meyer,  and  Sebastien  Goutal.  “Text  Data  Augmentation: 

Towards  better  detection  of  spear-phishing  emails”.  In:   CoRR  abs/2007.02033  (2020). 

arXiv:2007.02033. url:  https://www.arxiv.org/abs/2007.02033. 

355.  Nils  Reimers  and  Iryna  Gurevych.  “Reporting  Score  Distributions  Makes  a  Differ-

ence:  Performance  Study  of  LSTM-networks  for  Sequence  Tagging”.  In:   Proceed-

 ings  of  the  2017  Conference  on  Empirical  Methods  in  Natural  Language  Process-

 ing,  EMNLP  2017,  Copenhagen,  Denmark,  September  9–11,  2017.  Ed.  by  Martha 

Palmer,  Rebecca  Hwa,  and  Sebastian  Riedel.  Association  for  Computational  Linguis-

tics,  2017,  pp.  338–348.  doi:  https://doi.org/10.18653/V1/D17-1035. url:  https://doi. 

org/10.18653/v1/d17-1035. 

356.  Nils  Reimers  and  Iryna  Gurevych.  “Sentence-BERT:  Sentence  Embeddings  using 

Siamese  BERT-Networks”.  In:   Proceedings of the 2019 Conference on Empirical Meth-

Bibliography

327

 ods  in  Natural  Language  Processing  and  the  9th  International  Joint  Conference  on 

 Natural Language Processing, EMNLPIJCNLP 2019, Hong Kong, China, November 

 3–7, 2019.  Ed.  by  Kentaro  Inui,  Jing  Jiang,  Vincent  Ng,  and  Xiaojun  Wan.  Association for  Computational  Linguistics,  2019,  pp.  3980–3990.  doi:  https://doi.org/10.18653/V1/ 

D19-1410.  url:  https://doi.org/10.18653/v1/D19-1410. 

357.  Christian  Reuter  and  Marc  Andr  Kaufhold.  “Fifteen  years  of  social  media  in  emergencies:  A  retrospective  review  and  future  directions  for  crisis  Informatics”.  In:   Journal of Contingencies and Crisis Management   26.1  (2018),  pp.  41–57.  issn:  14685973.  doi: 

https://doi.org/10.1111/1468-5973.12196. 

358.  Christian  Reuter,  Marc-Andr  Kaufhold,  Stefka  Schmid,  Thomas  Spielhofer,  Anna 

Sophie  Hahne,  and  others.  “The  impact  of  risk  cultures:  Citizens  perception  of  social 

media  use  in  emergencies  across  Europe”.  In:   Technological  Forecasting  and  Social 

 Change  148.1  (2019).  Publisher:  Elsevier,  pp.  1–17. 

359.  Christian  Reuter,  Thomas  Ludwig,  Marc-André  Kaufhold,  and  Thomas  Spielhofer. 

“Emergency  services’  attitudes  towards  social  media:  A  quantitative  and  qualita-

tive  survey  across  Europe”.  In:   Int.  J.  Hum.  Comput.  Stud.  95  (2016),  pp.  96– 

111.  doi:  https://doi.org/10.1016/J.IJHCS.2016.03.005. url:  https://doi.org/10.1016/ 

j.ijhcs.2016.03.005. 

360.  Christian  Reuter,  Alexandra  Marx,  and  Volkmar  Pipek.  “Crisis  Management  2.0: 

Towards  a  Systematization  of  Social  Software  Use  in  Crisis  Situations”.  In:   Int.  J. 

 Inf. Syst. Crisis Response Manag.  4.1  (2012),  pp.  1–16.  doi:  https://doi.org/10.4018/ 

JISCRM.2012010101.  url:  https://doi.org/10.4018/jiscrm.2012010101. 

361.  Marco  Túlio  Ribeiro,  Sameer  Singh,  and  Carlos  Guestrin.  ““Why  Should  I  Trust 

You?”:  Explaining  the  Predictions  of  Any  Classifier”.  In:   Proceedings of the 22nd ACM 

 SIGKDD  International  Conference  on  Knowledge  Discovery  and  Data  Mining,  San 

 Francisco, CA, USA, August 13–17, 2016.  Ed.  by  Balaji  Krishnapuram,  Mohak  Shah, 

Alexander  J.  Smola,  Charu  C.  Aggarwal,  Dou  Shen,  and  Rajeev  Rastogi.  ACM,  2016, 

pp.  1135–1144.  doi:  https://doi.org/10.1145/2939672.2939778. url:  https://doi.org/ 

10.1145/2939672.2939778. 

362.  Thea  Riebe,  Marc-André  Kaufhold,  and  Christian  Reuter.  “The  Impact  of  Organiza-

tional  Structure  and  Technology  Use  on  Collaborative  Practices  in  Computer  Emer-

gency  Response  Teams:  An  Empirical  Study”.  In:   Proc. ACM Hum. Comput. Interact. 

5.CSCW2  (2021),  478:1–478:30.  doi:  https://doi.org/10.1145/3479865. url:  https:// 

doi.org/10.1145/3479865. 

363.  Thea  Riebe,  Tristan  Wirth,  Markus  Bayer,  Philipp  Kuehn,  Marc-AndreKaufhold,  Volker 

Knauthe,  Stefan  Guthe,  and  Christian  Reuter.  “CySecAlert:  An  Alert  Generation  System 

for  Cyber  Security  Events  Using  Open  Source  Intelligence  Data”.  In:   Information and 

 Communications  Security—23rd  International  Conference,  ICICS  2021,  Chongqing, 

 China, Novem ber 19–21, 2021, Proceedings, Part I.  Ed.  by  Debin  Gao,  Qi  Li,  Xiaohong Guan,  and  Xiaofeng  Liao.  Vol.  12918.  Lecture  Notes  in  Computer  Science.  Springer, 

2021,  pp.  429–446.  doi:  https://doi.org/10.1007/978-3-030-86890-1_24.  url:  https:// 

doi.org/10.1007/978-3-030-86890-1_24. 

364.  Slamet  Riyanto,  Imas  Sukaesih  Sitanggang,  Taufik  Djatna,  and  Tika  Dewi  Atikah. 

“Comparative  Analysis  using  Various  Performance  Metrics  in  Imbalanced  Data  for 

Multi-class  Text  Classification”.  In:   International  Journal  of  Advanced  Computer 

 Science  and  Applications   14.6  (2023).  doi:  https://doi.org/10.14569/IJACSA.2023. 

01406116. url:  https://doi.org/10.14569/IJACSA.2023.01406116. 

328

Bibliography

365.  Georgios  Rizos,  Konstantin  Hemker,  and  Björn  W.  Schuller.  “Augment  to  Prevent: 

Short-Text  Data  Augmentation  in  Deep  Learning  for  Hate-Speech  Classification”.  In: 

 Proceedings of the 28th ACM International Conference on Information and Knowledge 

 Management, CIKM 2019, Beijing, China, November 3–7, 2019.  Ed.  by  Wenwu  Zhu, 

Dacheng  Tao,  Xueqi  Cheng,  Peng  Cui,  Elke  A.  Rundensteiner,  David  Carmel,  Qi  He, 

and  Jeffrey  Xu  Yu.  ACM,  2019,  pp.  991–1000.  doi:  https://doi.org/10.1145/3357384. 

3358040. url:  https://doi.org/10.1145/3357384.3358040. 

366.  Anthony  Robinson,  R.  Dennis  Cook,  and  Sanford  Weisberg.  “Residuals  and  Influence 

in  Regression.”  In:   Journal of the Royal Statistical Society. Series A (General)  147.1 

(1984).  issn:  00359238.  doi:  https://doi.org/10.2307/2981746. 

367.  Ariel  Rodríguez  and  Koji  Okamura.  “Generating  Real  Time  Cyber  Situational  Aware-

ness  Information  Through  Social  Media  Data  Mining”.  In:   43rd IEEE Annual Computer 

 Software and Applications Conference, COMPSAC 2019, Milwaukee, WI, USA, July 

 15–19, 2019, Volume 2.  Ed.  by  Vladimir  Getov,  Jean-Luc  Gaudiot,  Nariyoshi  Yamai, 

Stelvio  Cimato,  J.  Morris  Chang,  Yuuichi  Teranishi,  Ji-Jiang  Yang,  Hong  Va  Leong, 

Hossain  Shahriar,  Michiharu  Takemoto,  Dave  Towey,  Hiroki  Takakura,  Atilla  Elçi, 

Susumu  Takeuchi,  and  Satish  Puri.  IEEE,  2019,  pp.  502–507.  doi:  https://doi.org/10. 

1109/COMPSAC.2019.10256.  url:  https://doi.org/10.1109/COMPSAC.2019.10256. 

368.  Luis  Gustavo  Araujo  Rodriguez,  Julia  Selvatici  Trazzi,  Victor  Fossaluza,  Rodrigo  Cam-piolo,  and  Daniel  Macedo  Batista.  Analysis of Vulnerability Disclosure Delays from the 

 National Vulnerability Database.  2018. 

369.  Subendhu  Rongali,  Abhyuday  Jagannatha,  Bhanu  Pratap  Singh  Rawat,  and  Hong  Yu. 

 Continual Domain-Tuning for Pretrained Language Models.  en.  2021. 

370.  Peter  J.  Rousseeuw.  “Silhouettes:  A  graphical  aid  to  the  interpretation  and  validation  of cluster  analysis”.  In:   Journal of Computational and Applied Mathematics (1987).  issn: 

03770427.  doi:  https://doi.org/10.1016/0377-0427(87)90125-7. 

371.  Natali  Ruchansky,  Sungyong  Seo,  and  Yan  Liu.  “CSI:  A  Hybrid  Deep  Model  for  Fake 

News  Detection”.  In:   Proceedings of the 2017 ACM on Conference on Information and 

 Knowledge Management, CIKM 2017, Singapore, November 06—10, 2017.  Ed.  by  Ee-

Peng  Lim,  Marianne  Winslett,  Mark  Sanderson,  Ada  Wai-Chee  Fu,  Jimeng  Sun,  J.  Shane 

Culpepper,  Eric  Lo,  Joyce  C.  Ho,  Debora  Donato,  Rakesh  Agrawal,  Yu  Zheng,  Carlos 

Castillo,  Aixin  Sun,  Vincent  S.  Tseng,  and  Chenliang  Li.  ACM,  2017,  pp.  797–806. 

doi:  https://doi.org/10.1145/3132847.3132877.  url:  https://doi.org/10.1145/3132847. 

3132877. 

372.  Sebastian  Ruder,  Matthew  E.  Peters,  Swabha  Swayamdipta,  and  Thomas  Wolf.  “Trans-

fer  Learning  in  Natural  Language  Processing”.  In:   Proceedings of the 2019 Conference 

 of the North American Chapter of the Association for Computational Linguistics: Tuto-

 rials.  Ed.  by  Anoop  Sarkar  and  Michael  Strube.  Minneapolis,  Minnesota:  Association for  Computational  Lin  guistics,  June  2019,  pp.  15–18.  doi:  https://doi.org/10.18653/ 

v1/N19-5004.  url:  https://www.aclanthology.org/N19-5004/. 

373.  Koustav  Rudra,  Pawan  Goyal,  Niloy  Ganguly,  Prasenjit  Mitra,  and  Muhammad 

Imran.  “Identifying  Sub-events  and  Summarizing  Disaster-Related  Information  from 

Microblogs”.  In:   The 41st International ACM SIGIR Conference on Research & Devel-

 opment  in  Information  Retrieval,  SIGIR  2018,  Ann  Arbor,  MI,  USA,  July  08–12, 

 2018.  Ed.  by  Kevyn  Collins-Thompson,  Qiaozhu  Mei,  Brian  D.  Davison,  Yiqun  Liu, 

and  Emine  Yilmaz.  ACM,  2018,  pp.  265–274.  doi:  https://doi.org/10.1145/3209978. 

3210030. url:  https://doi.org/10.1145/3209978.3210030. 

Bibliography

329

374.  Carl  Sabottke,  Octavian  Suciu,  and  Tudor  Dumitras.  “Vulnerability  Disclosure  in  the Age  of  Social  Media:  Exploiting  Twitter  for  Predicting  Real-World  Exploits”.  In:   24th USENIX  Security  Symposium,  USENIX  Security 15,  Washington,  D.C.,  USA,  August 

 12–14,  2015.  Ed.  by  Jaeyeon  Jung  and  Thorsten  Holz.  USENIX  Association,  2015, 

pp.  1041–1056.  url:  https://www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/sabottke. 

375.  Gözde  Gül  Sahin  and  Mark  Steedman.  “Data  Augmentation  via  Dependency  Tree 

Morphing  for  Low-Resource  Languages”.  In:   Proceedings of the 2018 Conference on 

 Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31— 

 November 4, 2018.  Ed.  by  Ellen  Riloff,  David  Chiang,  Julia  Hockenmaier,  and  Jun’ichi Tsujii.  Association  for  Computational  Linguistics,  2018,  pp.  5004–5009.  doi:  https:// 

doi.org/10.18653/V1/D18-1545. url:  https://doi.org/10.18653/v1/d18-1545. 

376.  Tatsuhiro  Sakai,  Keiichi  Tamura,  and  Hajime  Kitakami.  “Emergency  Situation  Aware-

ness  During  Natural  Disasters  Using  Density-Based  Adaptive  Spatiotemporal  Cluster-

ing”.  In:   Database Systems for Advanced Applications—DASFAA 2015 International 

 Workshops, SeCoP, BDMS, and Posters, Hanoi, Vietnam, April 20–23, 2015, Revised 

 Selected Papers. Ed.  by  An  Liu,  Yoshiharu  Ishikawa,  Tieyun  Qian,  Sarana  Nutanong,  and Muhammad  Aamir  Cheema.  Vol.  9052.  Lecture  Notes  in  Computer  Science.  Springer, 

2015,  pp.  155–169.  doi:  https://doi.org/10.1007/978-3-319-22324-7_13.  url:  https:// 

doi.org/10.1007/978-3-319-22324-7_13. 

377.  Aleieldin  Salem,  Sebastian  Banescu,  and  Alexander  Pretschner.  “Maat:  Automati-

cally  Analyzing  VirusTotal  for  Accurate  Labeling  and  Effective  Malware  Detection”. 

 In:  ACM  Trans.  Priv.  Secur.  24.4  (2021),  25:1–25:35.  doi:  https://doi.org/10.1145/ 

3465361. url:  https://doi.org/10.1145/3465361. 

378.  David  Samuel.  “BERTs  are  Generative  In-Context  Learners”.  In:   Advances in Neural 

 Information Processing Systems 38: Annual Conference on Neural Information Process-

 ing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10–15, 2024. Ed. 

by  Amir  Globersons,  Lester  Mackey,  Danielle  Belgrave,  Angela  Fan,  Ulrich  Paquet, 

Jakub  M.  Tomczak,  and  Cheng  Zhang.  2024.  url:  http://papers.nips.cc/paper_files/ 

paper/2024/hash/04ea184dfb5f1babb78c093e850a83f9-Abstract-Conference.html. 

379.  Victor  Sanh,  Lysandre  Debut,  Julien  Chaumond,  and  Thomas  Wolf.  “DistilBERT,  a  dis-

tilled  version  of  BERT:  smaller,  faster,  cheaper  and  lighter”.  In:   CoRR  abs/1910.01108 

(2019). arXiv:1910.01108. url:  http://arxiv.org/abs/1910.01108. 

380.  Iqbal  H.  Sarker,  A.  S.  M.  Kayes,  Shahriar  Badsha,  Hamed  AlQahtani,  Paul  A.  Watters, and  Alex  Ng.  “Cybersecurity  data  science:  an  overview  from  machine  learning  perspective”.  In:   J. Big Data  7.1  (2020),  p.  41.  doi:  https://doi.org/10.1186/S40537-020-

00318-5.  url:  https://doi.org/10.1186/s40537-020-00318-5. 

381.  Quentin  Le  Sceller,  ElMouatez  Billah  Karbab,  Mourad  Debbabi,  and  Farkhund  Iqbal. 

“SONAR:  Automatic  Detection  of  Cyber  Security  Events  over  the  Twitter  Stream”.  In: 

 Proceedings of the 12th International Conference on Availability, Reliability and Secu-

 rity, Reggio Calabria, Italy, August 29—September 01, 2017.  ACM,  2017,  23:1–23:11. 

doi:  https://doi.org/10.1145/3098954.3098992.  url:  https://doi.org/10.1145/3098954. 

3098992. 

382.  Timo  Schick,  Jane  Dwivedi-Yu,  Roberto  Dessì,  Roberta  Raileanu,  Maria  Lomeli,  Eric 

Hambro,  Luke  Zettlemoyer,  Nicola  Cancedda,  and  Thomas  Scialom.  “Toolformer: 

Language  Models  Can  Teach  Themselves  to  Use  Tools”.  In:   Advances  in  Neural

330

Bibliography

 Information Processing Systems 36: Annual Conference on Neural Information Pro-

 cessing  Systems  2023,  NeurIPS  2023,  New  Orleans,  LA,  USA,  December  10–16, 

 2023.  Ed.  by  Alice  Oh,  Tristan  Naumann,  Amir  Globerson,  Kate  Saenko,  Moritz 

Hardt,  and  Sergey  Levine.  2023.  url:  http://papers.nips.cc/paper_files/paper/2023/ 

hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html. 

383.  Timo  Schick  and  Hinrich  Schütze.  “Exploiting  Cloze-Questions  for  Few-Shot  Text  Classification  and  Natural  Language  Inference”.  In:   Proceedings of the 16th Conference of 

 the European Chapter of the Association for Computational Linguistics: Main Volume, 

 EACL 2021, Online, April 19–23, 2021.  Ed.  by  Paola  Merlo,  Jörg  Tiedemann,  and  Reut 

Tsarfaty.  Association  for  Computational  Linguistics,  2021,  pp.  255–269.  doi:  https:// 

doi.org/10.18653/V1/2021.EACL-MAIN.20.  url:  https://doi.org/10.18653/v1/2021. 

eacl-main.20. 

384.  Timo  Schick  and  Hinrich  Schütze.  “It’s  Not  Just  Size  That  Matters:  Small  Language Models  Are  Also  Few-Shot  Learners”.  In:   Proceedings of the 2021 Conference of the 

 North  American  Chapter  of  the  Association  for  Computational  Linguistics:  Human 

 Language Technologies, NAACL-HLT 2021, Online, June 6–11, 2021.  Ed.  by  Kristina 

Toutanova,  Anna  Rumshisky,  Luke  Zettle  moyer,  Dilek  Hakkani-Tür,  Iz  Beltagy,  Steven 

Bethard,  Ryan  Cotterell,  Tanmoy  Chakraborty,  and  Yichao  Zhou.  Association  for  Com-

putational  Linguistics,  2021,  pp.  2339–2352.  doi:  https://doi.org/10.18653/V1/2021. 

NAACL-MAIN.185. url:  https://doi.org/10.18653/v1/2021.naaclmain.185. 

385.  Tobias  Schnabel,  Igor  Labutov,  David  M.  Mimno,  and  Thorsten  Joachims.  “Evaluation 

methods  for  unsupervised  word  embeddings”.  In:   Proceedings of the 2015 Conference 

 on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Por-

 tugal, September 17–21, 2015.  Ed.  by  Lluís  Màrquez,  Chris  Callison-Burch,  Jian  Su, 

Daniele  Pighin,  and  Yuval  Marton.  The  Association  for  Computational  Linguistics, 

2015,  pp.  298–307.  doi:  https://doi.org/10.18653/V1/D15-1036. url:  https://doi.org/ 

10.18653/v1/d15-1036. 

386.  Christopher  Schröder,  Lydia  Müller,  Andreas  Niekler,  and  Martin  Potthast.  “Small-Text: Active  Learning  for  Text  Classification  in  Python”.  In:   Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System 

 Demonstrations.  Dubrovnik,  Croatia:  Association  for  Computational  Linguistics,  May 

2023,  pp.  84–95.  url:  https://www.aclanthology.org/2023.eacl-demo.11. 

387.  Christopher  Schröder,  Andreas  Niekler,  and  Martin  Potthast.  “Revisiting  Uncertainty-

based  Query  Strategies  for  Active  Learning  with  Transformers”.  In:   Findings  of  the 

 Association  for  Computational  Linguistics:  ACL  2022,  Dublin,  Ireland,  May  22–27, 

 2022.  Ed.  by  Smaranda  Muresan,  Preslav  Nakov,  and  Aline  Villavicencio.  Association for  Computational  Linguistics,  2022,  pp.  2194–2203.  doi:  https://doi.org/10.18653/V1/ 

2022.FINDINGS-ACL.172.  url:  https://doi.org/10.18653/v1/2022.findingsacl.172. 

388.  Axel  Schulz,  Christian  Guckelsberger,  and  Frederik  Janssen.  “Semantic  Abstraction 

for  generalization  of  tweet  classification:  An  evaluation  of  incident-related  tweets”.  In: Semantic Web 8.3 (2017),  pp.  353–372.  doi:  https://doi.org/10.3233/SW-150188.  url: 

https://doi.org/10.3233/SW150188. 

389.  Eli  Schwartz,  Leonid  Karlinsky,  Joseph  Shtok,  Sivan  Harary,  Mattias  Marder,  Abhishek Kumar,  Rogé  Schmidt  Feris,  Raja  Giryes,  and  Alexander  M.  Bronstein.  “Delta-encoder: 

an  effective  sample  synthesis  method  for  few-shot  object  recognition”.  In:   Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information 

 Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada. Ed. 

Bibliography

331

by  Samy  Bengio,  Hanna  M.  Wallach,  Hugo  Larochelle,  Kristen  Grauman,  Nicolo  Cesa-

Bianchi,  and  Roman  Garnett.  2018,  pp.  2850–2860.  url:  https://www.proceedings. 

neurips.cc/paper/2018/hash/1714726c817af50457d810aae9d27a2e-Abstract.html. 

390.  Ravid  Schwartz-Ziv  and  Naftali  Tishby.  “Opening  the  black  box  of  deep  neural  networks via  information”.  In:  (2017). 

391.  Rico  Sennrich,  Barry  Haddow,  and  Alexandra  Birch.  “Improving  Neural  Machine  Trans-

lation  Models  with  Monolingual  Data”.  In:   Proceedings of the 54th Annual Meeting of 

 the Association for Computational Linguistics, ACL 2016, August 7–12, 2016, Berlin, 

 Germany, Volume 1: Long Papers.  The  Association  for  Computer  Linguistics,  2016.  doi: 

https://doi.org/10.18653/V1/P16-1009.  url:  https://doi.org/10.18653/v1/p16-1009. 

392.  Seungmin  Seo,  Donghyun  Kim,  Youbin  Ahn,  and  Kyong-Ho  Lee.  “Active  Learning 

on  Pre-trained  Language  Model  with  Task-Independent  Triplet  Loss”.  In:   Thirty-Sixth 

 AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on 

 Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium 

 on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 

 22—March 1, 2022.  AAAI  Press,  2022,  pp.  11276–11284.  doi:  https://doi.org/10.1609/ 

AAAI.V36I10.21378. url:  https://doi.org/10.1609/aaai.v36i10.21378. 

393.  Burr  Settles.  Active  Learning.  Synthesis  Lectures  on  Artificial  Intelligence  and Machine  Learning.  Morgan  &  Claypool  Publishers,  2012.  isbn:  978-3-031-00432-2.  doi:  https://doi.org/10.2200/S00429ED1V01Y201207AIM018.  url:  https://doi.org/ 

10.2200/S00429ED1V01Y201207AIM018. 

394.  Burr  Settles  and  Mark  Craven.  “An  Analysis  of  Active  Learning  Strategies  for  Sequence Labeling  Tasks”.  In:   2008 Conference on Empirical Methods in Natural Language Processing, EMNLP 2008, Proceedings of the Conference, 25–27 October 2008, Honolulu, 

 Hawaii, USA, A meeting of SIGDAT, a Special Interest Group of the ACL.  ACL,  2008, 

pp.  1070–1079.  url:  https://www.aclanthology.org/D08-1112/. 

395.  Ali  Shafahi,  Mahyar  Najibi,  Amin  Ghiasi,  Zheng  Xu,  John  P.  Dickerson,  Christoph 

Studer,  Larry  S.  Davis,  Gavin  Taylor,  and  Tom  Goldstein.  “Adversarial  training  for 

free!”  In:   Advances  in  Neural  Information  Processing  Systems  32:  Annual  Confer-

 ence  on  Neural  Information  Processing  Systems  2019,  NeurIPS  2019,  December  8-

 14,  2019,  Vancouver,  BC,  Canada.  Ed.  by  Hanna  M.  Wallach,  Hugo  Larochelle, 

Alina  Beygelzimer,  Florence  d’Alché-Buc,  Emily  B.  Fox,  and  Roman  Garnett. 

2019,  pp.  3353–3364.  url:  https://www.proceedings.neurips.cc/paper/2019/hash/ 

7503cfacd12053d309b6bed5c89de212-Abstract.html. 

396.  Ronghua  Shang,  Songling  Zhu,  Jinhong  Ren,  Hangcheng  Liu,  and  Licheng  Jiao.  “Evolu-

tionary  neural  architecture  search  based  on  evaluation  correction  and  functional  units”. 

In:   Knowl. Based Syst.  251  (2022),  p.  109206.  doi:  https://doi.org/10.1016/J.KNOSYS. 

2022.109206. doi:  https://doi.org/10.1016/j.knosys.2022.109206. 

397.  Artem  Shelmanov,  Dmitry  Puzyrev,  Lyubov  Kupriyanova,  Denis  Belyakov,  Daniil  Lar-

ionov,  Nikita  Khromov,  Olga  Kozlova,  Ekaterina  Artemova,  Dmitry  V.  Dylov,  and 

Alexander  Panchenko.  “Active  Learning  for  Sequence  Tagging  with  Deep  Pre-trained 

Models  and  Bayesian  Uncertainty  Estimates”.  In:   Proceedings of the 16th Conference of 

 the European Chapter of the Association for Computational Linguistics: Main Volume, 

 EACL 2021, Online, April 19–23, 2021.  Ed.  by  Paola  Merlo,  Jorg  Tiedemann,  and  Reut 

Tsarfaty.  Association  for  Computational  Linguistics,  2021,  pp.  1698–1712.  doi:  https:// 

doi.org/10.18653/V1/2021.EACL-MAIN.145. url:  https://doi.org/10.18653/v1/2021. 

eacl-main.145. 

332

Bibliography

398.  Dinghan  Shen,  Mingzhi  Zheng,  Yelong  Shen,  Yanru  Qu,  and  Weizhu  Chen.  “A  Simple 

but  Tough-to-Beat  Data  Augmentation  Approach  for  Natural  Language  Understanding 

and  Generation”.  In:   CoRR   abs/2009.13818  (2020). arXiv:2009.13818. url:  https:// 

www.arxiv.org/abs/2009.13818. 

399.  Haoyue  Shi,  Karen  Livescu,  and  Kevin  Gimpel.  “Substructure  Substitution:  Struc-

tured  Data  Augmentation  for  NLP”.  In:   Findings of the Association for Computational 

 Linguistics: ACL/IJCNLP 2021,  Online Event, August  1–6, 2021.  Ed.  by  Chengqing 

Zong,  Fei  Xia,  Wenjie  Li,  and  Roberto  Navigli.  Vol.  ACL/IJCNLP  2021.  Findings  of 

ACL.  Association  for  Computational  Linguistics,  2021,  pp.  3494–3508.  doi:  https://doi. 

org/10.18653/V1/2021.FINDINGS-ACL.307. url:  https://doi.org/10.18653/v1/2021. 

findings-acl.307. 

400.  Oleh  Shliazhko,  Alena  Fenogenova,  Maria  Tikhonova,  Anastasia  Kozlova,  Vladislav 

Mikhailov,  and  Tatiana  Shavrina.  “mGPT:  Few-Shot  Learners  Go  Multilingual”.  In: 

 Trans. Assoc. Comput. Linguistics  12  (2024),  pp.  58–79.  doi:  https://doi.org/10.1162/ 

TACL_A_00633.  url:  https://doi.org/10.1162/tacl_a_00633. 

401.  Connor  Shorten  and  Taghi  M.  Khoshgoftaar.  “A  survey  on  Image  Data  Augmentation  for Deep  Learning”.  In:   J. Big Data  6  (2019),  p.  60.  doi:  https://doi.org/10.1186/S40537-

019-0197-0. url:  https://doi.org/10.1186/s40537-019-0197-0. 

402.  Connor  Shorten,  Taghi  M.  Khoshgoftaar,  and  Borko  Furht.  “Text  Data  Augmentation 

for  Deep  Learning”.  In:   J.  Big  Data   8.1  (2021),  p.  101.  doi:  https://doi.org/10.1186/ 

S40537-021-00492-0.  url:  https://doi.org/10.1186/s40537-021-00492-0. 

403.  Kai  Shu,  Deepak  Mahudeswaran,  Suhang  Wang,  Dongwon  Lee,  and  Huan  Liu.  “Fake-

NewsNet:  A  Data  Repository  with  News  Content,  Social  Context  and  Dynamic  Infor-

mation  for  Studying  Fake  News  on  Social  Media”.  In:   CoRR  abs/1809.01286  (2018). 

arXiv:1809.01286. url:  http://arxiv.org/abs/1809.01286. 

404.  Kai  Shu,  Amy  Sliva,  Suhang  Wang,  Jiliang  Tang,  and  Huan  Liu.  “Fake  News  Detection on  Social  Media:  A  Data  Mining  Perspective”.  In:   SIGKDD Explor.  19.1  (2017),  pp. 

22–36.  doi:  https://doi.org/10.1145/3137597.3137600. url:  https://doi.org/10.1145/ 

3137597.3137600. 

405.  Samuel  Henrique  Silva  and  Peyman  Najafirad.  “Opportunities  and  Challenges  in 

Deep  Learning  Adversarial  Robustness:  A  Survey”.  In:   CoRR  abs/2007.00753  (2020). 

arXiv:2007.00753. url:  https://www.arxiv.org/abs/2007.00753. 

406.  Patrice  Y.  Simard,  David  Steinkraus,  and  John  C.  Platt.  “Best  Practices  for  Convolutional  Neural  Networks  Applied  to  Visual  Document  Analysis”.  In:   7th International 

 Conference on Document Analysis and Recognition (ICDAR 2003), 2-Volume Set, 3– 

 6  August  2003,  Edinburgh,  Scotland,  UK.  IEEE  Computer  Society,  2003,  pp.  958– 

962.  doi:  https://doi.org/10.1109/ICDAR.2003.1227801.  url:  https://doi.org/10.1109/ 

ICDAR.2003. 1227801. 

407.  Dan  Siroker  and  Steve  Miller.  Topical Clustering, Summarization, and Visualization. 

2008. 

408.  Leslie  N.  Smith.  “A  disciplined  approach  to  neural  network  hyper-parameters:  Part  1— 

learning  rate,  batch  size,  momentum,  and  weight  decay”.  In:   CoRR   abs/1803.09820 

(2018). arXiv:1803.09820. url:  http://arxiv.org/abs/1803.09820. 

409.  Richard  Socher,  Alex  Perelygin,  Jean  Wu,  Jason  Chuang,  Christopher  D.  Manning, 

Andrew  Y.  Ng,  and  Christopher  Potts.  “Recursive  Deep  Models  for  Semantic  Com-

positionality  Over  a  Sentiment  Treebank”.  In:   Proceedings of the 2013 Conference on 

 Empirical  Methods  in  Natural  Language  Processing,  EMNLP  2013,  18–21  October

Bibliography

333

 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special 

 Interest Group of the ACL.  ACL,  2013,  pp.  1631–1642.  url:  https://www.aclanthology. 

org/D13-1170/. 

410.  Richard  Socher,  Alex  Perelygin,  Jean  Wu,  Jason  Chuang,  Christopher  D.  Manning, 

Andrew  Y.  Ng,  and  Christopher  Potts.  “Recursive  Deep  Models  for  Semantic  Com-

positionality  Over  a  Sentiment  Treebank”.  In:   Proceedings of the 2013 Conference on 

 Empirical  Methods  in  Natural  Language  Processing,  EMNLP  2013,  18–21  October 

 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special 

 Interest Group of the ACL.  ACL,  2013,  pp.  1631–1642.  url:  https://www.aclanthology. 

org/D13-1170/. 

411.  Robert  Soden  and  Leysia  Palen.  “Informating  Crisis:  Expanding  Critical  Perspectives 

in  Crisis  Informatics”.  In:   Proc. ACM Hum. Comput. Interact.  2.CSCW  (2018),  162:1– 

162:22.  doi:  https://doi.org/10.1145/3274431.  url:  https://doi.org/10.1145/3274431. 

412.  Irene  Solaiman,  Miles  Brundage,  Jack  Clark,  Amanda  Askell,  Ariel  Herbert-Voss,  Jeff Wu,  Alec  Radford,  and  Jasmine  Wang.  “Release  Strategies  and  the  Social  Impacts  of 

Language  Models”.  In:   CoRR  abs/1908.09203  (2019). arXiv:1908.09203. url:  http:// 

arxiv.org/abs/1908.09203. 

413.  Bhavna  Soman.  Death  to  the  IOC:   What’s  Next  in  Threat  Intelligence. https:// 

www.blackhat.com/us-19/briefings/schedule/#death-to-the-ioc-whats-next-in-threat-

intelligence-15392.  Online;  accessed  28-December-2020.  2019. 

414.  Junshuai  Song,  Jiangshan  Zhang,  Jifeng  Zhu,  Mengyun  Tang,  and  Yong  Yang.  “TRAt-

tack”:  “Text  Rewriting  Attack  Against  Text  Retrieval”.  In:   Proceedings of the 7th Work-

 shop on Representation Learning for NLP, RepL4NLP at ACL 2022, Dublin, Ireland, 

 May 26, 2022.  Ed.  by  Spandana  Gella,  He  He,  Bodhisattwa  Prasad  Majumder,  Burcu 

Can,  Eleonora  Giunchiglia,  Samuel  Cahyawijaya,  Sewon  Min,  Maximilian  Mozes, 

Xiang  Lorraine  Li,  Isabelle  Augenstein,  Anna  Rogers,  Kyunghyun  Cho,  Edward  Grefen-

stette,  Laura  Rimell,  and  Chris  Dyer.  Association  for  Computational  Linguistics,  2022, 

pp.  191–203.  doi:  https://doi.org/10.18653/V1/2022.REPL4NLP-1.20. url:  https:// 

doi.org/10.18653/v1/2022.repl4nlp-1.20. 

415.  Fabio  Souza,  Rodrigo  Frassetto  Nogueira,  and  Roberto  de  Alencar  Lotufo.  “Portuguese Named  Entity  Recognition  using  BERT-CRF”.  In:   CoRR   abs/1909.10649  (2019). 

arXiv:1909.10649. url:  http://arxiv.org/abs/1909.10649. 

416.  T  Spielhofer,  R  Greenlaw,  D  Markham,  and  A  Hahne.  “Data  mining  Twitter  during  the UK  floods:  Investigating  the  potential  use  of  social  media  in  emergency  management”. 

In:  2016 3rd International Conference on Information and Communication Technologies 

 for Disaster Management (ICT-DM) (2016),  pp.  1–6.  doi:  https://doi.org/10.1109/ICT-

DM.2016.7857213. 

417.  Nitish  Srivastava,  Geoffrey  E.  Hinton,  Alex  Krizhevsky,  Ilya  Sutskever,  and  Ruslan 

Salakhutdinov.  “Dropout:  a  simple  way  to  prevent  neural  networks  from  overfitting”. 

In:   J.  Mach.  Learn.  Res.  15.1  (2014),  pp.  1929–1958.  doi:  https://doi.org/10.5555/ 

2627435.2670313.  url:  https://doi.org/10.5555/2627435.2670313. 

418.  Johan  Frederik  Steffensen.  Interpolation.  Courier  Corporation,  2006. 

419.  Stefan  Stieglitz,  Linh  Dang-Xuan,  Axel  Bruns,  and  Christoph  Neuberger.  “Social  Media Analytics—An  Interdisciplinary  Approach  and  Its  Implications  for  Information  Systems”.  In:   Bus.  Inf.  Syst.  Eng.  6.2  (2014),  pp.  89–96.  doi:  https://doi.org/10.1007/ 

S12599-014-0315-7. url:  https://doi.org/10.1007/s12599-014-0315-7. 

334

Bibliography

420.  Stefan  Stieglitz,  Milad  Mirbabaie,  Jennifer  Fromm,  and  Stefanie  Melzer.  “The  Adoption of  social  media  analytics  for  crisis  management—Challenges  and  Opportunities”.  In: 

 26th  European  Conference  on  Information  Systems:  Beyond  Digitization—Facets  of 

 Socio-Technical Change, ECIS 2018, Portsmouth, UK, June 23–28, 2018.  Ed.  by  Peter 

M.  Bednar,  Ulrich  Frank,  and  Karlheinz  Kautz.  2018,  p.  4.  url:  https://www.aisel. 

aisnet.org/ecis2018_rp/4. 

421.  Stefan  Stieglitz,  Milad  Mirbabaie,  Björn  Ross,  and  Christoph  Neuberger.  “Social  media analytics—Challenges  in  topic  discovery,  data  collection,  and  data  preparation”.  In: 

 Int. J. Inf. Manag.  39  (2018),  pp.  156–168.  doi:  https://doi.org/10.1016/J.IJINFOMGT. 

2017.12.002. url:  https://doi.org/10.1016/j.ijinfomgt.2017.12.002. 

422.  Emma  Strubell,  Ananya  Ganesh,  and  Andrew  McCallum.  “Energy  and  Policy  Consid-

erations  for  Deep  Learning  in  NLP”.  In:   Proceedings  of  the  57th  Conference  of  the 

 Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 

 2, 2019, Volume 1: Long Papers.  Ed.  by  Anna  Korhonen,  David  R.  Traum,  and  Lluís 

Marquez.  Association  for  Computational  Linguistics,  2019,  pp.  3645–3650.  doi:  https:// 

doi.org/10.18653/V1/P19-1355. url:  https://doi.org/10.18653/v1/p19-1355. 

423.  Lixin  Su,  Jiafeng  Guo,  Ruqing  Zhang,  Yixing  Fan,  Yanyan  Lan,  and  Xueqi  Cheng.  “Continual  Domain  Adaptation  for  Machine  Reading  Comprehension”.  In:   CIKM ’20: The 

 29th ACM International Conference on Information and Knowledge Management, Vir-

 tual Event, Ireland, October 19–23, 2020.  Ed.  by  Mathieu  d’Aquin,  Stefan  Dietze,  Claudia  Hauff,  Edward  Curry,  and  Philippe  Cudre-Mauroux.  ACM,  2020,  pp.  1395–1404. 

doi:  https://doi.org/10.1145/3340531.3412047.  url:  https://doi.org/10.1145/3340531. 

3412047. 

424.  Sandhya  Sukhabogi  and  M.  Anusha.  “A  Theoretical  review  on  the  importance  of  Threat Intelligence  Sharing  &  The  challenges  intricated”.  en.  In:   Turkish  Journal  of  Computer  and  Mathematics  Education  (TURCOMAT)   12.3  (Apr.  2021),  pp.  3950–3956. 

issn:  1309–4653.  doi:  https://doi.org/10.17762/turcomat.v12i3.1684. url:  https:// 

www.turcomat.org/index.php/turkbilmat/article/view/1684  (visited  on  11/22/2023). 

425.  Chen  Sun,  Abhinav  Shrivastava,  Saurabh  Singh,  and  Abhinav  Gupta.  “Revisiting  Unrea-

sonable  Effectiveness  of  Data  in  Deep  Learning  Era”.  In:  IEEE International Conference 

 on Computer Vision, ICCV 2017, Venice, Italy, October 22–29, 2017.  IEEE  Computer 

Society,  2017,  pp.  843–852.  doi:  https://doi.org/10.1109/ICCV.2017.97. url:  https:// 

doi.org/10.1109/ICCV.2017.97. 

426.  Chi  Sun,  Xipeng  Qiu,  Yige  Xu,  and  Xuanjing  Huang.  “How  to  Fine-Tune  BERT  for  Text Classification?”  In:   Chinese Computational Linguistics—18th China National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings.  Ed.  by  Maosong 

Sun,  Xuanjing  Huang,  Heng  Ji,  Zhiyuan  Liu,  and  Yang  Liu.  Vol.  11856.  Lecture  Notes 

in  Computer  Science.  Springer,  2019,  pp.  194–206.  doi:  https://doi.org/10.1007/978-

3-030-32381-3_16. url:  https://doi.org/10.1007/978-3-030-32381-3_16. 

427.  Lichao  Sun,  Congying  Xia,  Wenpeng  Yin,  Tingting  Liang,  Philip  S.  Yu,  and 

Lifang  He.  “Mixup-Transfomer:  Dynamic  Data  Augmentation  for  NLP  Tasks”.  In: 

 CoRR   abs/2010.02394  (2020). arXiv:2010.02394. url:  https://www.arxiv.org/abs/ 

2010.02394. 

428.  Xiao  Sun  and  Jiajin  He.  “A  novel  approach  to  generate  a  large  scale  of  supervised  data for  short  text  sentiment  analysis”.  In:   Multim. Tools Appl.  79.9-10  (2020),  pp.  5439– 

5459.  doi:  https://doi.org/10.1007/S11042-018-5748-4. url:  https://doi.org/10.1007/ 

s11042-018-5748-4. 

Bibliography

335

429.  Rich  Sutton.  The Bitter Lesson.  2019.  url:  https://www.cs.utexas.edu/~eunsol/courses/ 

data/bitter_lesson.pdf. 

430.  Christian  Szegedy,  Wojciech  Zaremba,  Ilya  Sutskever,  Joan  Bruna,  Dumitru  Erhan, 

Ian  J.  Goodfellow,  and  Rob  Fergus.  “Intriguing  properties  of  neural  networks”.  In:   2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 

 April 14–16, 2014, Conference Track Proceedings.  Ed.  by  Yoshua  Bengio  and  Yann 

LeCun.  2014.  url:  http://arxiv.org/abs/1312.6199. 

431.  Derek  Tam,  Rakesh  R.  Menon,  Mohit  Bansal,  Shashank  Srivastava,  and  Colin  Raffel. 

“Improving  and  Simplifying  Pattern  Exploiting  Training”.  In:   Proceedings of the 2021 

 Conference  on  Empirical  Methods  in  Natural  Lan  guage  Processing,  EMNLP  2021, 

 Virtual Event / Punta Cana, Dominican Republic, 7–11 November, 2021.  Ed.  by  Marie-

Francine  Moens,  Xuanjing  Huang,  Lucia  Specia,  and  Scott  Wen-tau  Yih.  Association 

for  Computational  Linguistics,  2021,  pp.  4980–4991.  doi:  https://doi.org/10.18653/V1/ 

2021.EMNLP-MAIN.407. url:  https://doi.org/10.18653/v1/2021.emnlp-main.407. 

432.  Edson  C.  Tandoc,  Zheng  Wei  Lim,  and  Richard  Ling.  “Defining  Fake  news  :  A  typology  of  scholarly  definitions”.  In:   Digital  Journalism   6.2  (2018),  pp.  137–153.  issn: 2167082X. 

433.  Rohan  Taori,  Ishaan  Gulrajani,  Yann  Dubois,  Xuechen  Li,  Percy  Liang,  and  Tatsunori B  Hashimoto.  Alpaca:   A Strong, Replicable Instruction- Following Model.  en.  2023. 

434.  Luke  Taylor  and  Geoff  Nitschke.  “Improving  Deep  Learning  with  Generic  Data  Aug-

mentation”.  In:   IEEE  Symposium  Series  on  Computational  Intelligence,  SSCI  2018, 

 Bangalore, India, November 18–21, 2018.  IEEE,  2018,  pp.  1542–1547.  doi:  https://doi. 

org/10.1109/SSCI.2018.8628742.  url:  https://doi.org/10.1109/SSCI.2018.8628742. 

435.  Wilson  L.  Taylor.  “Cloze  Procedure  :  A  New  Tool  for  Measuring  Readability”.  en. 

In:   Journalism  Quarterly   30.4  (Sept.  1953),  pp.  415–433.  issn:  0022–5533.  doi: 

https://doi.org/10.1177/107769905303000401. url:  http://journals.sagepub.com/doi/ 

10.1177/107769905303000401  (visited  on  07/05/2022). 

436.  Ugur  Tekin  and  Ercan  Nurcan  Yilmaz.  “Obtaining  Cyber  Threat  Intelligence  Data 

From  Twitter  With  Deep  Learning  Methods”.  en.  In:   2021  5th  International  Sym-

 posium on Multidisciplinary Studies and Innovative Technologies (ISMSIT).  Ankara, 

Turkey:  IEEE,  Oct.  2021,  pp.  82–86.  isbn:  978-1-66544-930-4.  doi:  https://doi.org/10. 

1109/ISMSIT52890.2021.9604715.  url:  https://www.ieeexplore.ieee.org/document/ 

9604715/  (vis  ited  on  12/20/2023). 

437.  Ian  Tenney,  Patrick  Xia,  Berlin  Chen,  Alex  Wang,  Adam  Poliak,  R.  Thomas  McCoy, 

Najoung  Kim,  Benjamin  Van  Durme,  Samuel  R.  Bowman,  Dipanjan  Das,  and  Ellie 

Pavlick.  “What  do  you  learn  from  context?  Probing  for  sentence  structure  in  contextu-

alized  word  representations”.  In:   7th International Conference on Learning Represen-

 tations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019.  OpenReview.net,  2019. 

url:  https://www.openreview.net/forum?id=SJzSgnRcKX. 

438.  James  Thorne  and  Andreas  Vlachos.  “Adversarial  attacks  against  Fact  Extraction  and 

VERification”.  In:   CoRR  abs/1903.05543  (2019). arXiv:1903.05543. url:  http://arxiv. 

org/abs/1903.05543. 

439.  Lin  Tian,  Xiuzhen  Zhang,  and  Min  Peng.  “FakeFinder:  Twitter  Fake  News  Detection 

on  Mobile”.  In:   Companion of The 2020 Web Conference 2020, Taipei, Taiwan, April 

 20–24, 2020.  Ed.  by  Amal  El  Fallah  Seghrouchni,  Gita  Sukthankar,  Tie-Yan  Liu,  and Maarten  van  Steen.  ACM  /  IW3C2,  2020,  pp.  79–80.  doi:  https://doi.org/10.1145/ 

3366424.3382706.  url:  https://doi.org/10.1145/3366424.3382706. 

336

Bibliography

440.  Lin  Tian,  Xiuzhen  Zhang,  Yan  Wang,  and  Huan  Liu.  “Early  Detection  of  Rumours 

on  Twitter  via  Stance  Transfer  Learning”.  In:   Advances in Information Retrieval—42nd 

 European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, 

 Proceedings, Part I.  Ed.  by  Joemon  M.  Jose,  Emine  Yilmaz,  João  Magalhães,  Pablo 

Castells,  Nicola  Ferro,  Mário  J.  Silva,  and  Flávio  Martins.  Vol.  12035.  Lecture  Notes 

in  Computer  Science.  Springer,  2020,  pp.  575–588.  doi:  https://doi.org/10.1007/978-

3-030-45439-5_38. url:  https://doi.org/10.1007/978-3-030-45439-5_38. 

441.  Naftali  Tishby  and  Noga  Zaslavsky.  “Deep  learning  and  the  information  bottleneck 

principle”.  In:   2015 IEEE Information Theory Workshop, ITW 2015, Jerusalem, Israel, 

 April 26—May 1, 2015.  IEEE,  2015,  pp.  1–5.  doi:  https://doi.org/10.1109/ITW.2015. 

7133169. url:  https://doi.org/10.1109/ITW.2015.7133169. 

442.  Josh  Tobin,  Rachel  Fong,  Alex  Ray,  Jonas  Schneider,  Wojciech  Zaremba,  and  Pieter 

Abbeel.  “Domain  randomization  for  transferring  deep  neural  networks  from  simulation 

to  the  real  world”.  In:   2017 IEEE/RSJ International Conference on Intelligent Robots 

 and Systems, IROS 2017, Vancouver, BC, Canada, September 24–28, 2017.  IEEE,  2017, 

pp.  23–30.  doi:  https://doi.org/10.1109/IROS.2017.8202133. url:  https://doi.org/10. 

1109/IROS.2017.8202133. 

443.  Simon  Tong  and  Daphne  Koller.  “Support  Vector  Machine  Active  Learning  with  Appli-

cations  to  Text  Classification”.  In:  J. Mach. Learn. Res.  2  (2001),  pp.  45–66.  url:  https:// 

www.jmlr.org/papers/v2/tong01a.html. 

444.  Lisa  Torrey  and  Jude  Shavlik.  “Transfer  learning”.  In:  Handbook of research on machine learning  applications  and  trends:  algorithms,  methods,  and  techniques.  IGI  global, 2010,  pp.  242–264. 

445.  Wiem  Tounsi  and  Helmi  Rais.  “A  survey  on  technical  threat  intelligence  in  the  age  of sophisticated  cyber  attacks”.  In:  Comput. Secur.  72  (2018),  pp.  212–233.  doi:  https://doi. 

org/10.1016/J.COSE.2017.09.001.  url:  https://doi.org/10.1016/j.cose.2017.09.001. 

446.  Hugo  Touvron,  Thibaut  Lavril,  Gautier  Izacard,  Xavier  Martinet,  Marie-Anne  Lachaux, 

Timothée  Lacroix,  Baptiste  Roziére,  Naman  Goyal,  Eric  Hambro,  Faisal  Azhar, 

Aurélien  Rodriguez,  Armand  Joulin,  Edouard  Grave,  and  Guillaume  Lample.  “LLaMA: 

Open  and  Efficient  Foundation  Language  Models”.  In:   CoRR  abs/2302.13971  (2023). 

doi:  https://doi.org/10.48550/ARXIV.2302.13971. arXiv:2302.13971. url:  https://doi. 

org/10.48550/arXiv.2302.13971. 

447.  Marcos  V.  Treviso,  Ji-Ung  Lee,  Tianchu  Ji,  Betty  van  Aken,  Qingqing  Cao,  Manuel  R. 

Ciosici,  Michael  Hassid,  Kenneth  Heafield,  Sara  Hooker,  Colin  Raffel,  Pedro  Henrique 

Martins,  André  F.  T.  Martins,  Jessica  Zosa  Forde,  Peter  A.  Milder,  Edwin  Simpson, 

Noam  Slonim,  Jesse  Dodge,  Emma  Strubell,  Niranjan  Balasubramanian,  Leon  Der-

czynski,  Iryna  Gurevych,  and  Roy  Schwartz.  “Efficient  Methods  for  Natural  Language 

Processing:  A  Survey”.  In:  Trans.  Assoc.  Comput.  Linguistics  11  (2023),  pp.  826– 

860.  doi:‘https://doi.org/10.1162/TACL_A_00577.  url:  https://doi.org/10.1162/tacl_ 

a_00577. 

448.  Akim  Tsvigun,  Artem  Shelmanov,  Gleb  Kuzmin,  Leonid  Sanochkin,  Daniil  Larionov, 

Gleb  Gusev,  Manvel  Avetisian,  and  Leonid  Zhukov.  “wards  Computationally  Feasible 

Deep  Active  Learning”.  In:   Findings of the Association for Computational Linguistics: 

 NAACL 2022, Seattle, WA, United States, July 10–15, 2022.  Ed.  by  Marine  Carpuat, 

Marie-Catherine  de  Marneffe,  and  Iván  Vladimir  Meza  Ruíz.  Association  for  Com-

putational  Linguistics,  2022,  pp.  1198–1218.  doi:  https://doi.org/10.18653/V1/2022. 

FINDINGS-NAACL.90.  url:  https://doi.org/10.18653/v1/2022.findings-naacl.90. 

Bibliography

337

449.  Lewis  Tunstall,  Nils  Reimers,  Unso  Eun  Seo  Jo,  Luke  Bates,  Daniel  Korat, 

Moshe  Wasserblat,  and  Oren  Pereg.  “Efficient  Few-Shot  Learning  Without  Prompts”. 

In:   CoRR  abs/2209.11055  (2022).  doi:  https://doi.org/10.48550/ARXIV.2209.11055. 

arXiv:2209.11055. url:  https://doi.org/10.48550/arXiv.2209.11055. 

450.  Aleksandra  Urman  and  Mykola  Makhortykh.  The Silence of the LLMs: Cross-Lingual 

 Analysis of Political Bias and False Information Prevalence in ChatGPT, Google Bard, 

 and Bing Chat.  en.  2023.  url:  https://doi.org/10.31219/osf.io/q9v8f. 

451.  Clara  Vania,  Yova  Kementchedjhieva,  Anders  Søgaard,  and  Adam  Lopez.  “A  systematic 

comparison  of  methods  for  low-resource  dependency  parsing  on  genuinely  low-resource 

languages”.  In:   Proceedings of the 2019 Conference on Empirical Methods in Natural 

 Language Processing and the 9th International Joint Conference on Natural Language 

 Processing, EMNLPIJCNLP 2019, Hong Kong, China, November 3–7, 2019.  Ed.  by 

Kentaro  Inui,  Jing  Jiang,  Vincent  Ng,  and  Xiaojun  Wan.  Association  for  Computational 

Linguistics,  2019,  pp.  1105–1116.  doi:  https://doi.org/10.18653/V1/D19-1102. url: 

https://doi.org/10.18653/v1/D19-1102. 

452.  Joaquin  Vanschoren.  “Meta-Learning:  A  Survey”.  In:   CoRR (2018). arXiv:1810.03548. 

url:  http://arxiv.org/abs/1810.03548. 

453.  Ashish  Vaswani,  Noam  Shazeer,  Niki  Parmar,  Jakob  Uszkoreit,  Llion  Jones, 

Aidan  N.  Gomez,  Lukasz  Kaiser,  and  Illia  Polosukhin.  “Attention  is  All  you 

Need”.  In:   Advances  in  Neural  Information  Processing  Systems  30:  Annual  Con-

 ference  on  Neural  Information  Processing  Systems  2017,  December  4–9,  2017, 

 Long  Beach,  CA,  USA.  Ed.  by  Isabelle  Guyon,  Ulrike  von  Luxburg,  Samy  Ben-

gio,  Hanna  M.  Wallach,  Rob  Fergus,  S.  V.  N.  Vishwanathan,  and  Roman  Gar-

nett.  2017,  pp.  5998–6008.  url:  https://www.proceedings.neurips.cc/paper/2017/hash/ 

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 

454.  Deepika  Verma,  Duncan  Jansen,  Kerstin  Bach,  Mannes  Poel,  Paul  Jarle  Mork,  and 

Wendy  Oude  Nijeweme  d’Hollosy.  “Exploratory  application  of  machine  learning  meth-

ods  on  patient  reported  data  in  the  development  of  supervised  models  for  predicting  outcomes”.  In:   BMC Medical Informatics Decis.  Mak.  22.1  (2022),  p.  227.  doi:  https://doi. 

org/10.1186/S12911-022-01973-9.  url:  https://doi.org/10.1186/s12911-022-01973-

9. 

455.  Sudha  Verma,  Sarah  Vieweg,  William  J.  Corvey,  Leysia  Palen,  James  H.  Martin,  Martha Palmer,  Aaron  Schram,  and  Kenneth  Mark  Anderson.  “Natural  Language  Processing 

to  the  Rescue?  Extracting  “Situational  Awareness”  Tweets  During  Mass  Emergency”. 

In:   Proceedings of the Fifth International Conference on Weblogs and Social Media, 

 Barcelona, Catalonia, Spain, July 17–21, 2011.  Ed.  by  Lada  A.  Adamic,  Ricardo  Baeza-

Yates,  and  Scott  Counts.  The  AAAI  Press,  2011.  url:  http://www.aaai.org/ocs/index. 

php/ICWSM/ICWSM11/paper/view/2834. 

456.  Vikas  Verma,  Alex  Lamb,  Christopher  Beckham,  Amir  Najafi,  Ioannis  Mitliagkas, 

David  Lopez-Paz,  and  Yoshua  Bengio.  “Manifold  Mixup:  Better  Representations  by 

Interpolating  Hidden  States”.  In:   Proceedings of the 36th International Conference on 

 Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA. Ed. 

by  Kamalika  Chaudhuri  and  Ruslan  Salakhutdinov.  Vol.  97.  Proceedings  of  Machine 

Learning  Research.  PMLR,  2019,  pp.  6438–6447.  url:  http://proceedings.mlr.press/ 

v97/verma19a.html. 

457.  Sarah  Elizabeth  Vieweg.  “Situational  Awareness  in  Mass  Emergency:  A  Behavioral  and 

Linguistic  Analysis  of  Microblogged  Communications”.  In:  (2012),  pp.  1–300. 

338

Bibliography

458.  Marco  Viviani  and  Gabriella  Pasi.  “Credibility  in  social  media:  Opinions,  news,  and health  information-a  survey:  Credibility  in  social  media”.  In:   Wiley Interdisciplinary 

 Reviews: Data Mining and Knowledge Discovery 7.5 (2017),  e1209.  issn:  19424787. 

459.  Thomas  D.  Wagner,  Khaled  Mahbub,  Esther  Palomar,  and  Ali  E.  Abdallah.  “Cyber 

threat  intelligence  sharing:  Survey  and  research  directions”.  In:   Comput.  Secur. 

87  (2019).  doi:  https://doi.org/10.1016/J.COSE.2019.101589. url:  https://doi.org/10. 

1016/j.cose.2019.101589. 

460.  Thomas  Walshe,  Sae  Young  Moon,  Chunyang  Xiao,  Yawwani  Gunawar-dana,  and  Fran 

Silavong.  “Automatic  Labelling  with  Open-source  LLMs  using  Dynamic  Label  Schema 

Integration”.  In:   CoRR  abs/2501.12332  (2025).  doi:  https://doi.org/10.48550/ARXIV. 

2501.12332. arXiv:2501.12332. url:  https://doi.org/10.48550/arXiv.2501.12332. 

461.  Juncheng  Wan,  Jian  Yang,  Shuming  Ma,  Dongdong  Zhang,  Weinan  Zhang,  Yong  Yu,  and 

Zhoujun  Li.  “PAEG:  Phrase-level  Adversarial  Example  Generation  for  Neural  Machine 

Translation”.  In:   Proceedings of the 29th International Conference on Computational 

 Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12–17, 2022.  Ed.  by 

Nicoletta  Calzolari,  Chu-Ren  Huang,  Hansaem  Kim,  James  Pustejovsky,  Leo  Wanner, 

Key-Sun  Choi,  Pum-Mo  Ryu,  Hsin-Hsi  Chen,  Lucia  Donatelli,  Heng  Ji,  Sadao  Kuro-

hashi,  Patrizia  Paggio,  Nianwen  Xue,  Seokhwan  Kim,  Younggyun  Hahm,  Zhong  He, 

Tony  Kyungil  Lee,  Enrico  Santus,  Francis  Bond,  and  Seung-Hoon  Na.  International 

Committee  on  Computational  Linguistics,  2022,  pp.  5085–5097.  url:  https://www. 

aclanthology.org/2022.coling-1.451. 

462.  Zhaohong  Wan,  Xiaojun  Wan,  and  Wenguang  Wang.  “Improving  Grammatical  Error 

Correction  with  Data  Augmentation  by  Editing  Latent  Representation”.  In:   Proceedings 

 of  the  28th  International  Conference  on  Computational  Linguistics,  COLING  2020, 

 Barcelona, Spain (Online), December 8–13, 2020.  Ed.  by  Donia  Scott,  Núria  Bel,  and 

Chengqing  Zong.  International  Committee  on  Computational  Linguistics,  2020,  pp. 

2202–2212.  doi:  https://doi.org/10.18653/V1/2020.COLING-MAIN.200.  url:  https:// 

doi.org/10.18653/v1/2020.coling-main.200. 

463.  Alex  Wang,  Yada  Pruksachatkun,  Nikita  Nangia,  Amanpreet  Singh,  Julian  Michael, 

Felix  Hill,  Omer  Levy,  and  Samuel  R.  Bowman.  “SuperGLUE:  A  Stickier  Benchmark 

for  General-Purpose  Language  Understanding  Systems”.  In:   Advances in Neural Infor-

 mation Processing Systems 32: Annual Conference on Neural Information Processing 

 Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada.  Ed.  by 

Hanna  M.  Wallach,  Hugo  Larochelle,  Alina  Beygelzimer,  Florence  d’Alché-Buc,  Emily 

B.  Fox,  and  Roman  Garnett.  2019,  pp.  3261–3275.  url:  https://www.proceedings. 

neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html. 

464.  Alex  Wang,  Amanpreet  Singh,  Julian  Michael,  Felix  Hill,  Omer  Levy,  and  Samuel 

R.  Bowman.  “GLUE:  A  Multi-Task  Benchmark  and  Analysis  Platform  for  Natural 

Language  Understanding”.  In:  Proceedings of the Workshop: Analyzing and Interpreting 

 Neural Networks for NLP, BlackboxNLP at EMNLP 2018, Brussels, Belgium, November 

 1,  2018.  Ed.  by  Tal  Linzen,  Grzegorz  Chrupala,  and  Afra  Alishahi.  Association  for Computational  Linguistics,  2018,  pp.  353–355.  doi:  https://doi.org/10.18653/V1/W18-

5446.  url:  https://doi.org/10.18653/v1/w18-5446. 

465.  Bing  Wang,  Liang  Ding,  Qihuang  Zhong,  Ximing  Li,  and  Dacheng  Tao.  “A  Contrastive 

Cross-Channel  Data  Augmentation  Framework  for  Aspect-Based  Sentiment  Analysis”. 

In:   Proceedings  of  the  29th  International  Conference  on  Computational  Linguistics. 

Ed.  by  Nicoletta  Calzolari,  Chu-Ren  Huang,  Hansaem  Kim,  James  Pustejovsky,  Leo

Bibliography

339

Wanner,  Key-Sun  Choi,  Pum-Mo  Ryu,  Hsin-Hsi  Chen,  Lucia  Donatelli,  Heng  Ji,  Sadao 

Kurohashi,  Patrizia  Paggio,  Nianwen  Xue,  Seokhwan  Kim,  Younggyun  Hahm,  Zhong 

He,  Tony  Kyungil  Lee,  Enrico  Santus,  Francis  Bond,  and  Seung-Hoon  Na.  Gyeongju, 

Republic  of  Korea:  International  Committee  on  Computational  Linguistics,  Oct.  2022, 

pp.  6691–6704.  url:  https://www.aclanthology.org/2022.coling-1.581/. 

466.  Boxin  Wang,  Chejian  Xu,  Shuohang  Wang,  Zhe  Gan,  Yu  Cheng,  Jianfeng  Gao,  Ahmed 

Hassan  Awadallah,  and  Bo  Li.  “Adversarial  GLUE:  A  Multi-Task  Benchmark  for 

Robustness  Evaluation  of  Language  Models”.  In:   Proceedings  of  the  Neural  Infor-

 mation Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets 

 and  Benchmarks  2021,  December  2021,  virtual.  Ed.  by  Joaquin  Vanschoren  and 

Sai-Kit  Yeung.  2021.  url:  https://www.datasets-benchmarks-proceedings.neurips.cc/ 

paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstractround2.html. 

467.  Congcong  Wang  and  David  Lillis.  “Classification  for  Crisis-Related  Tweets  Leveraging Word  Embeddings  and  Data  Augmentation”.  In:   Proceedings of the Twenty-Eighth Text 

 REtrieval Conference, TREC 2019, Gaithersburg, Maryland, USA, November 13–15, 

 2019. Ed.  by  Ellen  M.  Voorhees  and  Angela  Ellis.  Vol.  1250.  NIST  Special  Publication. 

National  Institute  of  Standards  and  Technology  (NIST),  2019.  url:  https://www.trec. 

nist.gov/pubs/trec28/papers/CS-UCD.IS.pdf. 

468.  Dilin  Wang,  ChengYue  Gong,  and  Qiang  Liu.  “Improving  Neural  Language  Modeling 

via  Adversarial  Training”.  In:   Proceedings  of  the  36th  International  Conference  on 

 Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA. Ed. 

by  Kamalika  Chaudhuri  and  Ruslan  Salakhut  dinov.  Vol.  97.  Proceedings  of  Machine 

Learning  Research.  PMLR,  2019,  pp.  6555–6565.  url:  http://proceedings.mlr.press/ 

v97/wang19f.html. 

469.  Fali  Wang,  Zhiwei  Zhang,  Xianren  Zhang,  Zongyu  Wu,  Tzuhao  Mo,  Qiuhao  Lu, 

Wanjing  Wang,  Rui  Li,  Junjie  Xu,  Xianfeng  Tang,  Qi  He,  Yao  Ma,  Ming  Huang, 

and  Suhang  Wang.  “A  Comprehensive  Survey  of  Small  Language  Models  in  the  Era 

of  Large  Language  Models:  Techniques,  Enhancements,  Applications,  Collaboration 

with  LLMs,  and  Trustworthiness”.  In:   CoRR  abs/2411.03350  (2024).  doi:  https://doi. 

org/10.48550/ARXIV.2411.03350. arXiv:2411.03350. url:  https://doi.org/10.48550/ 

arXiv.2411.03350. 

470.  Han  Wang,  Ming  Shan  Hee,  Md.  Rabiul  Awal,  Kenny  Tsu  Wei  Choo,  and  Roy  Ka-

Wei  Lee.  “Evaluating  GPT-3  Generated  Explanations  for  Hateful  Content  Modera-

tion”.  In:   Proceedings of the Thirty-Second International Joint Conference on Artificial 

 Intelligence, IJCAI 2023, 19th–25th August 2023, Macao, SAR, China.  ijcai.org,  2023, 

pp.  6255–6263.  doi:  https://doi.org/10.24963/IJCAI.2023/694. url:  https://doi.org/10. 

24963/ijcai.2023/694. 

471.  Haoyu  Wang,  Guozheng  Ma,  Cong  Yu,  Ning  Gui,  Linrui  Zhang,  Zhiqi  Huang,  Suwei 

Ma,  Yongzhe  Chang,  Sen  Zhang,  Li  Shen,  Xueqian  Wang,  Peilin  Zhao,  and  Dacheng 

Tao.  “Are  Large  Language  Models  Really  Robust  to  Word-Level  Perturbations?” 

In:   CoRR  abs/2309.11166  (2023).  doi:  https://doi.org/10.48550/ARXIV.2309.11166. 

arXiv:2309.11166. url:  https://doi.org/10.48550/arXiv.2309.11166. 

472.  Wenqi  Wang,  Lina  Wang,  Run  Wang,  Aoshuang  Ye,  and  Jianpeng  Ke.  “Better  constraints of  imperceptibility,  better  adversarial  examples  in  the  text”.  In:   Int. J. Intell. Syst.  37.6 

(2022),  pp.  3440–3459.  doi:  https://doi.org/10.1002/INT.22696.  url:  https://doi.org/ 

10.1002/int.22696. 

340

Bibliography

473.  William  Yang  Wang  and  Diyi  Yang.  “That’s  So  Annoying!!!:  A  Lexical  and  Frame-

Semantic  Embedding  Based  Data  Augmentation  Approach  to  Automatic  Categorization 

of  Annoying  Behaviors  using  #petpeeve  Tweets”.  In:   Proceedings of the 2015 Confer-

 ence on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, 

 Portugal, September 17–21, 2015.  Ed.  by  Lluís  Márquez,  Chris  Callison-Burch,  Jian 

Su,  Daniele  Pighin,  and  Yuval  Marton.  The  Association  for  Computational  Linguis-

tics,  2015,  pp.  2557–2563.  doi:  https://doi.org/10.18653/V1/D15-1306.  url:  https:// 

doi.org/10.18653/v1/d15-1306. 

474.  Xingkai  Wang,  Yiqiang  Sheng,  Haojiang  Deng,  and  Zhenyu  Zhao.  “Charcnn-svm  for 

chinese  text  datasets  sentiment  classification  with  data  augmentation”.  In:  International 

Journal  of  Innovative  Computing,  Information  and  Control  (2019).  issn:  13494198. 

doi:  https://doi.org/10.24507/ijicic.15.01.227. 

475.  Xinru  Wang,  Hannah  Kim,  Sajjadur  Rahman,  Kushan  Mitra,  and  Zhengjie  Miao. 

“Human-LLM  Collaborative  Annotation  Through  Effective  Verification  of  LLM 

Labels”.  In:   Proceedings  of  the  2024  CHI  Conference  on  Human  Factors  in  Com-

 puting  Systems.  CHI  ’24.  Hon  olulu,  HI,  USA:  Association  for  Computing  Machin-

ery,  2024.  isbn:  9798400703300.  doi:  https://doi.org/10.1145/3613904.3641960.  url: 

https://doi.org/10.1145/3613904.3641960. 

476.  Xinyi  Wang,  Hieu  Pham,  Zihang  Dai,  and  Graham  Neubig.  “SwitchOut:  an  Efficient 

Data  Augmentation  Algorithm  for  Neural  Machine  Translation”.  In:   Proceedings  of 

 the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, 

 Belgium,  October  31—November  4,  2018.  Ed.  by  Ellen  Riloff,  David  Chiang,  Julia 

Hockenmaier,  and  Jun’ichi  Tsujii.  Association  for  Computational  Linguistics,  2018,  pp. 

856–861.  doi:  https://doi.org/10.18653/V1/D18-1100.  url:  https://doi.org/10.18653/ 

v1/d18-1100. 

477.  Xuezhi  Wang,  Haohan  Wang,  and  Diyi  Yang.  “Measure  and  Improve  Robustness  in 

NLP  Models:  A  Survey”.  In:   Proceedings of the 2022 Conference of the North Ameri-

 can Chapter of the Association for Computational Linguistics: Human Language Tech-

 nologies, NAACL 2022, Seattle, WA, United States, July 10–15, 2022.  Ed.  by  Marine 

Carpuat,  Marie-Catherine  de  Marneffe,  and  Iván  Vladimir  Meza  Ruíz.  Association  for 

Computational  Linguistics,  2022,  pp.  4569–4586.  doi:  https://doi.org/10.18653/V1/ 

2022.NAACL-MAIN.339. url:  https://doi.org/10.18653/v1/2022.naaclmain.339. 

478.  Yufei  Wang,  Wanjun  Zhong,  Liangyou  Li,  Fei  Mi,  Xingshan  Zeng,  Wenyong  Huang, 

Lifeng  Shang,  Xin  Jiang,  and  Qun  Liu.  “Aligning  Large  Language  Models  with  Human: 

A  Survey”.  In:   CoRR   abs/2307.12966  (2023).  doi:  https://doi.org/10.48550/ARXIV. 

2307.12966. arXiv:2307.12966. url:  https://doi.org/10.48550/arXiv.2307.12966. 

479.  Jason  Wei,  Xuezhi  Wang,  Dale  Schuurmans,  Maarten  Bosma,  Brian  Ichter,  Fei 

Xia,  Ed  H.  Chi,  Quoc  V.  Le,  and  Denny  Zhou.  “Chain-of  Thought  Prompting 

Elicits  Reasoning  in  Large  Language  Models”.  In:   Advances  in  Neural  Informa-

 tion  Processing  Systems  35:  Annual  Conference  on  Neural  Information  Processing 

 Systems  2022,  NeurIPS  2022,  New  Orleans,  LA,  USA,  November  28—December 

 9,  2022.  Ed.  by  Sanmi  Koyejo,  S.  Mohamed,  A.  Agarwal,  Danielle  Belgrave, 

K.  Cho,  and  A.  Oh.  2022.  url:  http://papers.nips.cc/paper_files/paper/2022/hash/ 

9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html. 

480.  Jason  Wei,  Xuezhi  Wang,  Dale  Schuurmans,  Maarten  Bosma,  Brian  Ichter,  Fei 

Xia,  Ed  H.  Chi,  Quoc  V.  Le,  and  Denny  Zhou.  “Chain-of-Thought  Prompting 

Elicits  Reasoning  in  Large  Language  Models”.  In:   Advances  in  Neural  Informa-

Bibliography

341

 tion  Processing  Systems  35:  Annual  Conference  on  Neural  Information  Processing 

 Systems  2022,  NeurIPS  2022,  New  Orleans,  LA,  USA,  November  28—December 

 9,  2022.  Ed.  by  Sanmi  Koyejo,  S.  Mohamed,  A.  Agarwal,  Danielle  Belgrave, 

K.  Cho,  and  A.  Oh.  2022.  url:  http://papers.nips.cc/paper_files/paper/2022/hash/ 

9d5609613524ecf4f15af0f7b31abca4-AbstractConference.html. 

481.  Jason  W.  Wei  and  Kai  Zou.  “EDA:  Easy  Data  Augmentation  Techniques  for  Boost-

ing  Performance  on  Text  Classification  Tasks”.  In:   Proceedings  of  the  2019  Confer-

 ence on Empirical Methods in Natural Language Processing and the 9th International 

 Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, 

 China, November 3–7, 2019.  Ed.  by  Kentaro  Inui,  Jing  Jiang,  Vincent  Ng,  and  Xiaojun Wan.  Association  for  Computational  Linguistics,  2019,  pp.  6381–6387.  doi:  https:// 

doi.org/10.18653/V1/D19-1670. url:  https://doi.org/10.18653/v1/D19-1670. 

482.  Qingsong  Wen,  Liang  Sun,  Fan  Yang,  Xiaomin  Song,  Jingkun  Gao,  Xue  Wang,  and  Huan Xu.  “Time  Series  Data  Augmentation  for  Deep  Learning:  A  Survey”.  In:   Proceedings 

 of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, 

 Virtual Event / Montreal, Canada, 19–27 August 2021.  Ed.  by  Zhi-Hua  Zhou.  ijcai.org, 

2021,  pp.  4653–4660.  doi:  https://doi.org/10.24963/IJCAI.2021/631.  url:  https://doi. 

org/10.24963/ijcai.2021/631. 

483.  Moira  J  West-Brown,  Don  Stikvoort,  Klaus-Peter  Kossakowski,  Georgia  Killcrece, 

Robin  Ruefle,  and  Mark  Zajicek.  Handbook for Computer Security Incident Response 

 Teams  (CSIRTs).  2003. 

484.  Remco  H.S.  Westerink  and  Henk  P.M.  Vijverberg.  “Universal  Sentence  Encoder”.  In: 

 Toxicology and Applied Pharmacology (2018).  issn:  0041008X.  doi:  https://doi.org/ 

10.1006/taap.2002.9482. 

485.  Suzanne  Widup,  Dave  Hylender,  Gabriel  Bassett,  Philippe  Langlois,  and  Alex  Pinto. 

“2020  Verizon  Data  Breach  Investigations  Report”.  In:   Verizon (May  2020).  doi:  https:// 

doi.org/10.13140/RG.2.2.21300.48008. 

486.  Mark  A.  Williams,  Sumi  Dey,  Roberto  Camacho  Barranco,  Sheikh  Motahar  Naim, 

Mahmud  Shahriar  Hossain,  and  Monika  Akbar.  “Analyzing  Evolving  Trends  of  Vul-

nerabilities  in  National  Vulnerability  Database”.  In:   IEEE International Conference on 

 Big  Data  (IEEE  BigData  2018),  Seattle,  WA,  USA,  December  10–13,  2018.  Ed.  by 

Naoki  Abe,  Huan  Liu,  Calton  Pu,  Xiaohua  Hu,  Nesreen  K.  Ahmed,  Mu  Qiao,  Yang 

Song,  Donald  Kossmann,  Bing  Liu,  Kisung  Lee,  Jiliang  Tang,  Jingrui  He,  and  Jeffrey 

S.  Saltz.  IEEE,  2018,  pp.  3011–3020.  doi:  https://doi.org/10.1109/BIGDATA.2018. 

8622299. url:  https://doi.org/10.1109/BigData.2018.8622299. 

487.  Ian  H.  Witten,  Eibe  Frank,  Mark  A.  Hall,  and  Christopher  J.  Pal.  Data Mining: Practical Machine Learning Tools and Techniques.  2016.  isbn:  978-0-12-804291-5.  doi:  https:// 

doi.org/10.1016/c2009-0-19715-5. 

488.  Sebastien  C.  Wong,  Adam  Gatt,  Victor  Stamatescu,  and  Mark  D.  Mc-Donnell.  “Under-

standing  Data  Augmentation  for  Classification:  When  to  Warp?”  In:   2016  Interna-

 tional Conference on Digital Image Computing: Techniques and Applications, DICTA 

 2016,  Gold  Coast,  Australia,  Novem  ber  30—December  2,  2016.  IEEE,  2016,  pp. 

1–6.  doi:  https://doi.org/10.1109/DICTA.2016.7797091.  url:  https://doi.org/10.1109/ 

DICTA.2016.7797091. 

489.  Max  Woolf.  GitHub—gpt-2-simple: Python package to easily retrain OpenAI’s GPT-

 2 text-generating model on new texts.  2019.  url:  https://www.github.com/minimaxir/ 

gpt-2-simple. 

342

Bibliography

490.  Lianwei  Wu,  Yuan  Rao,  Hualei  Yu,  Yiming  Wang,  and  Ambreen  Nazir.  “False  Informa-

tion  Detection  on  Social  Media  via  a  Hybrid  Deep  Model”.  In:   Social Informatics—10th International Conference, SocInfo 2018, St. Petersburg, Russia, September 25–28, 2018, 

 Proceedings,  Part  II.  Ed.  by  Steffen  Staab,  Olessia  Koltsova,  and  Dmitry  I.  Ignatov. 

Vol.  11186.  Lecture  Notes  in  Computer  Science.  Springer,  2018,  pp.  323–333.  doi: 

https://doi.org/10.1007/978-3-030-01159-8_31. url:  https://doi.org/10.1007/978-3-

030-01159-8_31. 

491.  Xing  Wu,  Shangwen  Lv,  Liangjun  Zang,  Jizhong  Han,  and  Songlin  Hu.  “Conditional 

BERT  Contextual  Augmentation”.  In:  Computational Science—ICCS 2019—19th Inter-

 national Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part IV.  Ed.  by 

João  M.  F.  Rodrigues,  Pedro  J.  S.  Cardoso,  Jãnio  M.  Monteiro,  Roberto  Lam,  Vale-

ria  V.  Krzhizhanovskaya,  Michael  Harold  Lees,  Jack  J.  Dongarra,  and  Peter  M.  A. 

Sloot.  Vol.  11539.  Lecture  Notes  in  Computer  Science.  Springer,  2019,  pp.  84–95. 

doi:  https://doi.org/10.1007/978-3-030-22747-0_7. url:  https://doi.org/10.1007/978-

3-030-22747-0_7. 

492.  Yonghui  Wu,  Mike  Schuster,  Zhifeng  Chen,  Quoc  V.  Le,  Mohammad  Norouzi,  Wolfgang 

Macherey,  Maxim  Krikun,  Yuan  Cao,  Qin  Gao,  Klaus  Macherey,  Jeff  Klingner,  Apurva 

Shah,  Melvin  Johnson,  Xiaobing  Liu,  Lukasz  Kaiser,  Stephan  Gouws,  Yoshikiyo  Kato, 

Taku  Kudo,  Hideto  Kazawa,  Keith  Stevens,  George  Kurian,  Nishant  Patil,  Wei  Wang, 

Cliff  Young,  Jason  Smith,  Jason  Riesa,  Alex  Rudnick,  Oriol  Vinyals,  Greg  Corrado, 

Macduff  Hughes,  and  Jeffrey  Dean.  “Google’s  Neural  Machine  Translation  System: 

Bridging  the  Gap  between  Human  and  Machine  Translation”.  In:   CoRR  abs/1609.08144 

(2016). arXiv:1609.08144. url:  http://arxiv.org/abs/1609.08144. 

493.  Zhuofeng  Wu,  Sinong  Wang,  Jiatao  Gu,  Madian  Khabsa,  Fei  Sun,  and  Hao 

Ma.  “CLEAR:  Contrastive  Learning  for  Sentence  Representation”.  In:   CoRR 

abs/2012.15466  (2020). arXiv:2012.15466. url:  https://www.arxiv.org/abs/2012. 

15466. 

494.  Xin  Xia,  Xiaohu  Yang,  Chao  Wu,  Shanping  Li,  and  Linfeng  Bao.  “Information  Credi-

bility  on  Twitter  in  Emergency  Situation”.  In:   Intelligence and Security Informatics— 

 Pacific Asia Workshop, PAISI 2012, Kuala Lumpur, Malaysia, May 29, 2012. Proceed-

 ings.  Ed.  by  Michael  Chau,  G.  Alan  Wang,  Wei  Thoo  Yue,  and  Hsinchun  Chen.  Vol. 

7299.  Lecture  Notes  in  Computer  Science.  Springer,  2012,  pp.  45–59.  doi:  https://doi. 

org/10.1007/978-3-642-30428-6_4.  url:  https://doi.org/10.1007/978-3-642-30428-

6_4. 

495.  Guang  Xiang,  Jason  I.  Hong,  Carolyn  P.  Rosé,  and  Lorrie  Faith  Cranor.  “CANTINA+: 

A  Feature-Rich  Machine  Learning  Framework  for  Detecting  Phishing  Web  Sites”.  In: 

 ACM  Trans.  Inf.  Syst.  Secur.  14.2  (2011),  21:1–21:28.  doi:  https://doi.org/10.1145/ 

2019599.2019606.  url:  https://doi.org/10.1145/2019599.2019606. 

496.  Rong  Xiang,  Emmanuele  Chersoni,  Qin  Lu,  Chu-Ren  Huang,  Wenjie  Li,  and  Yunfei 

Long.  “Lexical  data  augmentation  for  sentiment  analysis”.  In:   J. Assoc. Inf. Sci. Technol. 

72.11  (2021),  pp.  1432–1447.  doi:  https://doi.org/10.1002/ASI.24493.  url:  https://doi. 

org/10.1002/asi.24493. 

497.  Guangxuan  Xiao,  Ji  Lin,  Mickaël  Seznec,  Hao  Wu,  Julien  Demouth,  and  Song  Han. 

“SmoothQuant:  Accurate  and  Efficient  Post-Training  Quantization  for  Large  Language 

Models”.  In:   International Conference on Machine Learning, ICML 2023, 23–29 July 

 2023, Honolulu, Hawaii, USA.  Ed.  by  Andreas  Krause,  Emma  Brunskill,  Kyunghyun 

Cho,  Barbara  Engelhardt,  Sivan  Sabato,  and  Jonathan  Scarlett.  Vol.  202.  Proceedings

Bibliography

343

of  Machine  Learning  Research.  PMLR,  2023,  pp.  38087–38099.  url:  https://www. 

proceedings.mlr.press/v202/xiao23c.html. 

498.  Qizhe  Xie,  Zihang  Dai,  Eduard  H.  Hovy,  Thang  Luong,  and  Quoc  Le.  “Unsu-

pervised  Data  Augmentation  for  Consistency  Training”.  In:   Advances  in  Neu-

 ral  Information  Processing  Systems  33:  Annual  Conference  on  Neural  Informa-

 tion  Processing  Systems  2020,  NeurIPS  2020,  December  6–12,  2020,  virtual. Ed. 

by  Hugo  Larochelle,  Marc’Aurelio  Ran-zato,  Raia  Hadsell,  Maria-Florina  Balcan, 

and  Hsuan-Tien  Lin.  2020.  url:  https://www.proceedings.neurips.cc/paper/2020/hash/ 

44feb0096faa8326192570788b38c1d1-Abstract.html. 

499.  Ziang  Xie,  Sida  I.  Wang,  Jiwei  Li,  Daniel  Lévy,  Aiming  Nie,  Dan  Jurafsky,  and  Andrew Y.  Ng.  “Data  Noising  as  Smoothing  in  Neural  Network  Language  Models”.  In:   5th 

 International  Conference  on  Learning  Representations,  ICLR  2017,  Toulon,  France, 

 April 24–26, 2017, Conference Track Proceedings.  OpenReview.net,  2017.  url:  https:// 

www.openreview.net/forum?id=H1VyHY9gg. 

500.  Mingyuan  Xin  and  Yong  Wang.  “Research  on  Feature  Selection  of  Intrusion  Detection 

Based  on  Deep  Learning”.  In:   16th International Wireless Communications and Mobile 

 Computing  Conference,  IWCMC  2020,  Limassol,  Cyprus,  June  15–19,  2020.  IEEE, 

2020,  pp.  1431–1434.  doi:  https://doi.org/10.1109/IWCMC48107.2020.9148217. url: 

https://doi.org/10.1109/IWCMC48107.2020.9148217. 

501.  Yang  Xin,  Lingshuang  Kong,  Zhi  Liu,  Yuling  Chen,  Yan-Miao  Li,  Hongliang  Zhu, 

Mingcheng  Gao,  Haixia  Hou,  and  Chunhua  Wang.  “Machine  Learning  and  Deep 

Learning  Methods  for  Cybersecurity”.  In:   IEEE  Access   6  (2018),  pp.  35365–35381. 

doi:  https://doi.org/10.1109/ACCESS.2018.2836950.  url:  https://doi.org/10.1109/ 

ACCESS.2018.2836950. 

502.  Mengyang  Xu,  Qihuang  Zhong,  and  Juhua  Liu.  “LLM-as-an-Augmentor:  Improving 

the  Data  Augmenta-tion  for  Aspect-Based  Sentiment  Analysis  with  Large  Language 

Models”.  In:   ICIC2024 (2024). 

503.  Rui  Xu  and  Donald  C.  Wunsch  II.  “Survey  of  clustering  algorithms”.  In:   IEEE Trans. 

 Neural  Networks   16.3  (2005),  pp.  645–678.  doi:  https://doi.org/10.1109/TNN.2005. 

845141.  url:  https://doi.org/10.1109/TNN.2005.845141. 

504.  Yan  Xu,  Ran  Jia,  Lili  Mou,  Ge  Li,  Yunchuan  Chen,  Yangyang  Lu,  and  Zhi  Jin.  “Improved relation  classification  by  deep  recurrent  neural  networks  with  data  augmentation”.  In: 

 COLING 2016, 26th International Conference on Computational Linguistics, Proceed-

 ings of the Conference: Technical Papers, December 11–16, 2016, Osaka, Japan.  Ed.  by 

Nicoletta  Calzolari,  Yuji  Matsumoto,  and  Rashmi  Prasad.  ACL,  2016,  pp.  1461–1470. 

url:  https://www.aclanthology.org/C16-1138/. 

505.  Yuanmeng  Yan,  Rumei  Li,  Sirui  Wang,  Fuzheng  Zhang,  Wei  Wu,  and  Weiran  Xu. 

“ConSERT:  A  Contrastive  Framework  for  Self-Supervised  Sentence  Representation 

Transfer”.  In:   Proceedings of the 59th Annual Meeting of the Association for Compu-

 tational Linguistics and the 11th International Joint Conference on Natural Language 

 Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1–6, 

 2021.  Ed.  by  Chengqing  Zong,  Fei  Xia,  Wenjie  Li,  and  Roberto  Navigli.  Association for  Computational  Linguistics,  2021,  pp.  5065–5075.  doi:  https://doi.org/10.18653/V1/ 

2021.ACL-LONG.393.  url:  https://doi.org/10.18653/v1/2021.acllong.393. 

506.  Aimin  Yang,  Chaomeng  Lu,  Jie  Li,  Xiangdong  Huang,  Tianhao  Ji,  Xi-chang  Li,  and 

Yichao  Sheng.  “Application  of  meta-learning  in  cyberspace  security:  a  survey”.  In:  Digit. 

344

Bibliography

 Commun. Networks  9.1  (2023),  pp.  67–78.  doi:  https://doi.org/10.1016/J.DCAN.2022. 

03.007. url:  https://doi.org/10.1016/j.dcan.2022.03.007. 

507.  Peng  Yang,  Guangzhen  Zhao,  and  Peng  Zeng.  “Phishing  Website  Detection  Based  on 

Multidimensional  Features  Driven  by  Deep  Learning”.  In:   IEEE Access  7  (2019),  pp. 

15196–15209.  doi:  https://doi.org/10.1109/ACCESS.2019.2892066. url:  https://doi. 

org/10.1109/ACCESS.2019.2892066. 

508.  Yiben  Yang,  Chaitanya  Malaviya,  Jared  Fernandez,  Swabha  Swayamdipta,  Ronan  Le 

Bras,  Ji-Ping  Wang,  Chandra  Bhagavatula,  Yejin  Choi,  and  Doug  Downey.  “Generative 

data  augmentation  for  commonsense  reasoning”.  In:   arXiv preprint arXiv:2004.11546 

(2020). 

509.  Muchao  Ye,  Chenglin  Miao,  Ting  Wang,  and  Fenglong  Ma.  “TextHoaxer:  Budgeted 

Hard-Label  Adversarial  Attacks  on  Text”.  In:   Thirty-Sixth AAAI Conference on Artifi-

 cial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of 

 Artificial Intelligence, IAAI 2022, The Twel veth Symposium on Educational Advances in 

 Artificial Intelligence, EAAI 2022 Virtual Event, February 22—March 1, 2022.  AAAI 

Press,  2022,  pp.  3877–3884.  doi:  https://doi.org/10.1609/AAAI.V36I4.20303. url: 

https://doi.org/10.1609/aaai.v36i4.20303. 

510.  Jiao  Yin,  MingJian  Tang,  Jinli  Cao,  and  Hua  Wang.  “Apply  transfer  learning  to  cybersecurity:  Predicting  exploitability  of  vulnerabilities  by  description”.  In:   Knowl.  Based Syst.  210  (2020),  p.  106529.  doi:  https://doi.org/10.1016/J.KNOSYS.2020.106529. 

url:  https://doi.org/10.1016/j.knosys.2020.106529. 

511.  Jie  Yin,  Andrew  Lampert,  Mark  A.  Cameron,  Bella  Robinson,  and  Robert  Power.  “Using Social  Media  to  Enhance  Emergency  Situation  Awareness”.  In:   IEEE Intell. Syst.  27.6 

(2012),  pp.  52–59.  doi:  https://doi.org/10.1109/MIS.2012.6. url:  https://doi.org/10. 

1109/MIS.2012.6. 

512.  Kang  Min  Yoo,  Dongju  Park,  Jaewook  Kang,  Sang-Woo  Lee,  and  Woo-Myoung  Park. 

“GPT3Mix:  Leveraging  Large-scale  Language  Models  for  Text  Augmentation”.  In: 

 Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event 

 /  Punta  Cana,  Dominican  Republic,  16–20  November,  2021.  Ed.  by  Marie-Francine 

Moens,  Xuanjing  Huang,  Lucia  Specia,  and  Scott  Wen-tau  Yih.  Association  for  Com-

putational  Linguistics,  2021,  pp.  2225–2239.  doi:  https://doi.org/10.18653/V1/2021. 

FINDINGS-EMNLP.192.  url:  https://doi.org/10.18653/v1/2021.findings-emnlp.192. 

513.  Yang  You,  Jing  Li,  Jonathan  Hseu,  Xiaodan  Song,  James  Demmel,  and  Cho-Jui 

Hsieh.  “Reducing  BERT  Pre-Training  Time  from  3  Days  to  76  Minutes”.  In:   CoRR 

abs/1904.00962  (2019). arXiv:1904.00962. url:  http://arxiv.org/abs/1904.00962. 

514.  Adams  Wei  Yu,  David  Dohan,  Minh-Thang  Luong,  Rui  Zhao,  Kai  Chen,  Mohammad 

Norouzi,  and  Quoc  V.  Le.  “QANet:  Combining  Local  Convolution  with  Global  Self-

Attention  for  Reading  Comprehension”.  In:   6th International Conference on Learning 

 Representations,  ICLR  2018,  Vancouver,  BC,  Canada,  April  30–May  3,  2018,  Con-

 ference Track Proceedings.  OpenReview.net,  2018.  url:  https://www.openreview.net/ 

forum?id=B14TlG-RW. 

515.  Lantao  Yu,  Weinan  Zhang,  Jun  Wang,  and  Yong  Yu.  “SeqGAN:  Sequence  Genera-

tive  Adversarial  Nets  with  Policy  Gradient”.  In:   Proceedings of the Thirty-First AAAI 

 Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, California, 

 USA.  Ed.  by  Satinder  Singh  and  Shaul  Markovitch.  AAAI  Press,  2017,  pp.  2852– 

2858.  doi:  https://doi.org/10.1609/AAAI.V31I1.10804. url:  https://doi.org/10.1609/ 

aaai.v31i1.10804. 

Bibliography

345

516.  Zhongjie  Yu  and  Sebastian  Raschka.  “Looking  Back  to  Lower-Level  Information 

in  Few-Shot  Learning”.  In:   Inf.  11.7  (2020),  p.  345.  doi:  https://doi.org/10.3390/ 

INFO11070345. url:  https://doi.org/10.3390/info11070345. 

517.  Michelle  Yuan,  Hsuan-Tien  Lin,  and  Jordan  L.  Boyd-Graber.  “Cold-start  Active  Learn-

ing  through  Self-supervised  Language  Modeling”.  In:   Proceedings of the 2020 Confer-

 ence on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 

 November  16–20,  2020.  Ed.  by  Bonnie  Webber,  Trevor  Cohn,  Yulan  He,  and  Yang 

Liu.  Association  for  Computational  Linguistics,  2020,  pp.  7935–7948.  doi:  https://doi. 

org/10.18653/V1/2020.EMNLP-MAIN.637. url:  https://doi.org/10.18653/v1/2020. 

emnlp-main.637. 

518.  Matthew  D.  Zeiler  and  Rob  Fergus.  “Stochastic  Pooling  for  Regularization  of  Deep 

Convolutional  Neural  Networks”.  In:   1st International Conference on Learning Rep-

 resentations, ICLR 2013, Scottsdale, Arizona, USA, May 2–4, 2013, Conference Track 

 Proceedings.  Ed.  by  Yoshua  Bengio  and  Yann  LeCun.  2013.  url:  http://arxiv.org/abs/ 

1301.3557. 

519.  Junhai  Zhai,  Jiaxing  Qi,  and  Sufang  Zhang.  “Imbalanced  data  classification  based  on diverse  sample  generation  and  classifier  fusion”.  In:   Int. J. Mach. Learn. Cybern.  13.3 

(2022),  pp.  735–750.  doi:  https://doi.org/10.1007/S13042-021-01321-9.  url:  https:// 

doi.org/10.1007/s13042-021-01321-9. 

520.  Dinghuai  Zhang,  Tianyuan  Zhang,  Yiping  Lu,  Zhanxing  Zhu,  and  Bin  Dong. 

“You  Only  Propagate  Once:  Accelerating  Adversarial  Training  via  Maximal  Prin-

ciple”.  In:   Advances  in  Neural  Information  Processing  Systems  32:  Annual  Con-

 ference  on  Neural  Information  Processing  Systems  2019,  NeurIPS  2019,  Decem-

 ber  8–14,  2019,  Vancouver,  BC,  Canada.  Ed.  by  Hanna  M.  Wallach,  Hugo 

Larochelle,  Alina  Beygelzimer,  Florence  d’Alche-Buc,  Emily  B.  Fox,  and  Roman  Gar-

nett.  2019,  pp.  227–238.  url:  https://www.proceedings.neurips.cc/paper/2019/hash/ 

812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html. 

521.  Hongyi  Zhang,  Moustapha  Cissé,  Yann  N.  Dauphin,  and  David  Lopez-Paz.  “mixup: 

Beyond  Empirical  Risk  Minimization”.  In:   6th International Conference on Learning 

 Representations,  ICLR  2018,  Vancouver,  BC,  Canada,  April  30–May  3,  2018,  Con-

 ference Track Proceedings.  OpenReview.net,  2018.  url:  https://www.openreview.net/ 

forum?id=r1Ddp1-Rb. 

522.  Ningyu  Zhang,  Luoqiu  Li,  Xiang  Chen,  Shumin  Deng,  Zhen  Bi,  Chuanqi  Tan,  Fei 

Huang,  and  Huajun  Chen.  “Differentiable  Prompt  Makes  Pre-trained  Language  Models 

Better  Few-shot  Learners”.  In:   The Tenth International Conference on Learning Repre-

 sentations, ICLR 2022, Virtual Event, April 25–29, 2022.  OpenReview.net,  2022.  url: 

https://www.openreview.net/forum?id=ek9a0qIafW. 

523.  Ningyu  Zhang,  Luoqiu  Li,  Xiang  Chen,  Shumin  Deng,  Zhen  Bi,  Chuanqi  Tan,  Fei 

Huang,  and  Huajun  Chen.  “Differentiable  Prompt  Makes  Pre-trained  Language  Models 

Better  Few-shot  Learners”.  In:   The Tenth International Conference on Learning Repre-

 sentations, ICLR 2022, Virtual Event, April 25–29, 2022.  OpenReview.net,  2022.  url: 

https://www.openreview.net/forum?id=ek9a0qIafW. 

524.  Xiang  Zhang  and  Yann  LeCun.  “Text  Understanding  from  Scratch”.  In:   CoRR 

abs/1502.01710  (2015). arXiv:1502.01710. url:  http://arxiv.org/abs/1502.01710. 

525.  Xiang  Zhang,  Junbo  Jake  Zhao,  and  Yann  LeCun.  “Character-level  Convolu-

tional  Networks  for  Text  Classification”.  In:   Advances  in  Neural  Information  Pro-

 cessing  Systems  28:  Annual  Conference  on  Neural  Information  Processing  Sys-

346

Bibliography

 tems  2015,  December  7–12,  2015,  Montreal,  Quebec,  Canada.  Ed.  by  Corinna 

Cortes,  Neil  D.  Lawrence,  Daniel  D.  Lee,  Masashi  Sugiyama,  and  Roman  Gar-

nett.  2015,  pp.  649–657.  url:  https://www.proceedings.neurips.cc/paper/2015/hash/ 

250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html. 

526.  Xiang  Zhang,  Junbo  Jake  Zhao,  and  Yann  LeCun.  “Character-level  Convolu-

tional  Networks  for  Text  Classification”.  In:   Advances  in  Neural  Information  Pro-

 cessing  Systems  28:  Annual  Conference  on  Neural  Information  Processing  Sys-

 tems  2015,  December  7–12,  2015,  Montreal,  Quebec,  Canada.  Ed.  by  Corinna 

Cortes,  Neil  D.  Lawrence,  Daniel  D.  Lee,  Masashi  Sugiyama,  and  Roman  Gar-

nett.  2015,  pp.  649–657.  url:  https://www.proceedings.neurips.cc/paper/2015/hash/ 

250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html. 

527.  Yiming  Zhang,  Shi  Feng,  and  Chenhao  Tan.  “Active  Example  Selection  for  In-Context 

Learning”.  In:   Proceedings of the 2022 Conference on Empirical Methods in Natural 

 Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7– 

 11, 2022.  Ed.  by  Yoav  Goldberg,  Zornitsa  Kozareva,  and  Yue  Zhang.  Association  for Computational  Linguistics,  2022,  pp.  9134–9148.  doi:  https://doi.org/10.18653/V1/ 

2022.EMNLP-MAIN.622. url:  https://doi.org/10.18653/v1/2022.emnlp-main.622. 

528.  Yue  Zhang,  Yafu  Li,  Leyang  Cui,  Deng  Cai,  Lemao  Liu,  Tingchen  Fu,  Xinting  Huang, Enbo  Zhao,  Yu  Zhang,  Yulong  Chen,  Longyue  Wang,  Anh  Tuan  Luu,  Wei  Bi,  Freda 

Shi,  and  Shuming  Shi.  “Siren’s  Song  in  the  AI  Ocean:  A  Survey  on  Hallucina-

tion  in  Large  Language  Models”.  In:   CoRR   abs/2309.01219  (2023).  doi:  https://doi. 

org/10.48550/ARXIV.2309.01219. arXiv:2309.01219. url:  https://doi.org/10.48550/ 

arXiv.2309.01219. 

529.  Zhisong  Zhang,  Emma  Strubell,  and  Eduard  H.  Hovy.  “A  Survey  of  Active  Learn-

ing  for  Natural  Language  Processing”.  In:   Proceedings  of  the  2022  Conference  on 

 Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United 

 Arab  Emirates,  December  7–11,  2022.  Ed.  by  Yoav  Goldberg,  Zornitsa  Kozareva, 

and  Yue  Zhang.  Association  for  Computational  Linguistics,  2022,  pp.  6166–6190. 

doi:  https://doi.org/10.18653/V1/2022.EMNLP-MAIN.414.  url:  https://doi.org/10. 

18653/v1/2022.emnlp-main.414. 

530.  Zhuosheng  Zhang,  Aston  Zhang,  Mu  Li,  and  Alex  Smola.  “Automatic  Chain  of  Thought 

Prompting  in  Large  Language  Models”.  In:   The  Eleventh  International  Conference 

 on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1–5, 2023.  OpenRe-

view.net,  2023.  url:  https://www.openreview.net/pdf?id=5NTt8GFjUHkr. 

531.  Zhuosheng  Zhang,  Aston  Zhang,  Mu  Li,  and  Alex  Smola.  “Automatic  Chain  of  Thought 

Prompting  in  Large  Language  Models”.  In:   The  Eleventh  International  Conference 

 on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1–5, 2023.  OpenRe-

view.net,  2023.  url:  https://www.openreview.net/pdf?id=5NTt8GFjUHkr. 

532.  Wayne  Xin  Zhao,  Kun  Zhou,  Junyi  Li,  Tianyi  Tang,  Xiaolei  Wang,  Yupeng  Hou, 

Yingqian  Min,  Beichen  Zhang,  Junjie  Zhang,  Zican  Dong,  Yifan  Du,  Chen  Yang,  Yushuo 

Chen,  Zhipeng  Chen,  Jinhao  Jiang,  Ruiyang  Ren,  Yifan  Li,  Xinyu  Tang,  Zikang  Liu, 

Peiyu  Liu,  Jian-Yun  Nie,  and  Ji-Rong  Wen.  “A  Survey  of  Large  Language  Models”. 

In:   CoRR  abs/2303.18223  (2023).  doi:  https://doi.org/10.48550/ARXIV.2303.18223. 

arXiv:2303.18223. url:  https://doi.org/10.48550/arXiv.2303.18223. 

533.  Wei  Zhao,  Haiyun  Peng,  Steffen  Eger,  Erik  Cambria,  and  Min  Yang.  “Towards  Scalable and  Reliable  Capsule  Networks  for  Challenging  NLP  Applications”.  In:   Proceedings 

 of the 57th Conference of the Association for Computational Linguistics, ACL 2019, 

Bibliography

347

 Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers.  Ed.  by  Anna  Korhonen, 

David  R.  Traum,  and  Lluís  Màrquez.  Association  for  Computational  Linguistics,  2019, 

pp.  1549–1559.  doi:  https://doi.org/10.18653/V1/P19-1150. url:  https://doi.org/10. 

18653/v1/p19-1150. 

534.  Haoqi  Zheng,  Qihuang  Zhong,  Liang  Ding,  Zhiliang  Tian,  Xin  Niu,  Changjian  Wang, 

Dongsheng  Li,  and  Dacheng  Tao.  “Self-Evolution  Learning  for  Mixup:  Enhance  Data 

Augmentation  on  Few-Shot  Text  Classification  Tasks”.  In:  Proceedings of the 2023 Con-

 ference on Empirical Methods in Natural Language Processing.  Ed.  by  Houda  Bouamor, 

Juan  Pino,  and  Kalika  Bali.  Singapore:  Association  for  Computational  Linguistics,  Dec. 

2023,  pp.  8964–8974.  doi:  https://doi.org/10.18653/v1/2023.emnlp-main.555. url: 

https://www.aclanthology.org/2023.emnlp-main.555/. 

535.  Zhun  Zhong,  Liang  Zheng,  Guoliang  Kang,  Shaozi  Li,  and  Yi  Yang.  “Random  Erasing 

Data  Augmentation”.  In:   The Thirty-Fourth AAAI Con ference on Artificial Intelligence, 

 AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-

 ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial 

 Intelligence, EAAI 2020, New York, NY, USA, February 7–12, 2020.  AAAI  Press,  2020, 

pp.  13001–13008.  doi:  https://doi.org/10.1609/AAAI.V34I07.7000.  url:  https://doi. 

org/10.1609/aaai.v34i07.7000. 

536.  Kun  Zhou,  Yutao  Zhu,  Zhipeng  Chen,  Wentong  Chen,  Wayne  Xin  Zhao,  Xu  Chen, 

Yankai  Lin,  Ji-Rong  Wen,  and  Jiawei  Han.  “Don’t  Make  Your  LLM  an  Evalua-

tion  Benchmark  Cheater”.  In:   CoRR   abs/2311.01964  (2023).  doi:  https://doi.org/10. 

48550/ARXIV.2311.01964. arXiv:2311.01964. url:  https://doi.org/10.48550/arXiv. 

2311.01964. 

537.  Xiaokang  Zhou,  Wei  Liang,  Shohei  Shimizu,  Jianhua  Ma,  and  Qun  Jin.  “Siamese  Neural Network  Based  Few-Shot  Learning  for  Anomaly  Detection  in  Industrial  Cyber-Physical 

Systems”.  In:   IEEE Trans. Ind. Informatics  17.8  (2021),  pp.  5790–5798.  doi:  https:// 

doi.org/10.1109/TII.2020.3047675. url:  https://doi.org/10.1109/TII.2020.3047675. 

538.  Chen  Zhu,  Yu  Cheng,  Zhe  Gan,  Siqi  Sun,  Tom  Goldstein,  and  Jingjing  Liu.  “FreeLB: Enhanced  Adversarial  Training  for  Natural  Language  Understanding”.  In:   8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 

 April  26–30,  2020.  OpenReview.net,  2020.  url:  https://www.openreview.net/forum? 

id=BygzbyHFvB. 

539.  Xinyue  Zhu,  Yifan  Liu,  Jiahong  Li,  Tao  Wan,  and  Zengchang  Qin.  “Emotion  Classification  with  Data  Augmentation  Using  Generative  Adversarial  Networks”.  In:   Advances in 

 Knowledge Discovery and Data Mining—22nd Pacific-Asia Conference, PAKDD 2018, 

 Melbourne, VIC, Australia, June 3–6, 2018, Proceedings, Part III.  Ed.  by  Dinh  Q.  Phung, Vincent  S.  Tseng,  Geoffrey  I.  Webb,  Bao  Ho,  Mohadeseh  Ganji,  and  Lida  Rashidi. 

Vol.  10939.  Lecture  Notes  in  Computer  Science.  Springer,  2018,  pp.  349–360.  doi: 

https://doi.org/10.1007/978-3-319-93040-4_28. url:  https://doi.org/10.1007/978-3-

319-93040-4_28. 

540.  Arkaitz  Zubiaga,  Geraldine  Wong  Sak  Hoi,  Maria  Liakata,  Rob  Procter,  and 

Peter  Tolmie.  “Analysing  How  People  Orient  to  and  Spread  Rumours  in  Social 

Media  by  Looking  at  Conversational  Threads”.  In:   CoRR   abs/1511.07487  (2015). 

arXiv:1511.07487. url:  http://arxiv.org/abs/1511.07487. 



Document Outline


	Foreword

	Acknowledgements

	Abstract

	Author’s Publications

	Contents

	List of Figures

	List of Tables

	Part I Synopsis

	1 Introduction

	1.1 Motivation

	1.2 Aims and Research Question

	1.3 Content and Structure of the Thesis





	2 Research Design

	2.1 Research Field and Foundations

	2.2 Research Context

	2.3 Research Methodology

	2.3.1 Motivation

	2.3.2 Data Acquisition

	2.3.3 Preprocessing

	2.3.4 Model Selection

	2.3.5 Prediction









	3 Findings

	3.1 Motivation: Clustering

	3.2 Data Acquisition: Active Learning

	3.3 Preprocessing: Data Augmentation

	3.4 Model Selection: Transfer Learning

	3.5 Prediction: Adversarial Training





	4 Discussion

	4.1 The Advent of Foundation Models

	4.1.1 Strengths

	4.1.2 Weaknesses





	4.2 Low-Data Regime Methods for Foundation Models

	4.3 Empirical Relevance of the Designed Approaches

	4.3.1 Experimentation Settings

	4.3.2 Results and Interpretation









	5 Conclusion

	5.1 Synthesis of Research Findings

	5.2 Theoretical and Practical Contributions

	5.2.1 Deep Learning

	5.2.2 Cyber Threat Intelligence





	5.3 Limitations and Future Work

	5.3.1 Deep Learning

	5.3.2 Cybersecurity

	5.3.3 Interdisciplinary Research





	5.4 Ethical and Societal Considerations





	Part II Publications

	6 Information Overload in Crisis Management: Bilingual Evaluation of Embedding Models for Clustering Social Media Posts in Emergencies

	6.1 Introduction

	6.2 Related Work

	6.2.1 Foundations and Techniques to Mitigate Information Overload in Crises

	6.2.2 Clustering, Embeddings, and their Application in Crisis Informatics

	6.2.3 Research Objectives





	6.3 Architecture and Embedding Models

	6.3.1 Software and Hardware Architectures

	6.3.2 Used Embedding Models for Comparison





	6.4 Evaluation of Embedding Models

	6.4.1 Datasets and Measurements

	6.4.2 Results for the English and German Datasets





	6.5 Towards Automatic Cluster-Labeling

	6.6 Discussion and Conclusion

	6.6.1 Practical and Theoretical Implications

	6.6.2 Limitations and Outlook









	7 ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot Scenarios

	[DELETE]

	7.1 Introduction

	7.2 Related Work

	7.2.1 Active Learning

	7.2.2 Few-Shot Learning





	7.3 Method

	7.3.1 Few-Shot Learning Mode

	7.3.2 Iterated Querying Mode





	7.4 Experiments

	7.4.1 Description

	7.4.2 Prompt Engineering Experiments

	7.4.3 General Applicability

	7.4.4 Comparison

	7.4.5 ActiveLLM and Few-Shot Learning

	7.4.6 Non-Few-Shot-Scenarios





	7.5 Discussion & Conclusion

	7.5.1 LLM-based Active Learning Strategies

	7.5.2 Limitations and Future Work









	8 A Survey on Data Augmentation for Text Classification

	8.1 Introduction

	8.2 Background: Foundations, Goals, and Applications of Data Augmentation

	8.3 Textual Data Augmentation Methods

	8.3.1 Data Space

	8.3.2 Feature Space

	8.3.3 Combination of Augmentation Methods

	8.3.4 Training Strategies

	8.3.5 Filtering Mechanisms





	8.4 Discussion: A Research Agenda For Textual Data Augmentation

	8.4.1 Researching the Merits of Data Augmentation in the Light of Large Pre-trained Language Models

	8.4.2 Improving Existing Data Augmentation Approaches

	8.4.3 Establishing more Comprehensive Evaluation Criteria and Standards for Method Comparison

	8.4.4 Enhancing the Understanding of Text Data Augmentation

	8.4.5 Fostering the Usability of Data Augmentation Application





	8.5 Conclusion





	9 Data Augmentation in Natural Language Processing: A Novel Text Generation Approach for Long and Short Text Classifiers

	9.1 Introduction

	9.2 Related Work

	9.2.1 Foundations of Data Augmentation

	9.2.2 Research Gap





	9.3 Concept and Implementation

	9.3.1 Conceptual Design

	9.3.2 Implementation





	9.4 Evaluation

	9.4.1 Selection of Application Domains

	9.4.2 Model and Datasets

	9.4.3 Evaluation Settings and Pre-Evaluation of Hyperparameters

	9.4.4 Results I: Sentiment Analysis (context independent method)

	9.4.5 Results II: News Classification (context dependent method)

	9.4.6 Results III: Crisis Informatics (context independent method)





	9.5 Discussion and Conclusion

	9.5.1 Empirical, Practical and Theoretical Contributions

	9.5.2 Limitations and Outlook









	10 Design and Evaluation of Deep Learning Models for Real-Time Credibility Assessment in Twitter

	10.1 Introduction

	10.2 Related Work

	10.3 Concept and Implementation

	10.3.1 Features and Model

	10.3.2 Automatic Dataset Composition





	10.4 Evaluation

	10.4.1 Evaluation of Model Quality

	10.4.2 Evaluation of Model Execution Time





	10.5 Discussion and Conclusions

	10.5.1 Practical and Theoretical Implications

	10.5.2 Limitations and Outlook









	11 CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain

	11.1 Introduction

	11.2 Related Work

	11.2.1 BERT Models in Different Domains

	11.2.2 Research Gap





	11.3 Methodology

	11.3.1 Domain Adaptive Pre-Training

	11.3.2 Text Corpus

	11.3.3 Architecture

	11.3.4 Preliminary Evaluation: Catastrophic Forgetting





	11.4 Evaluation

	11.4.1 Experiments and Tasks

	11.4.2 Results





	11.5 Discussion, Conclusion, and Outlook

	11.5.1 Practical and Theoretical Implications

	11.5.2 Ethical Considerations









	12 Multi-Level Fine-Tuning, Data Augmentation, and Few-Shot Learning for Specialized Cyber Threat Intelligence

	12.1 Introduction

	12.2 Related Work

	12.2.1 Cyber Threat Event Detection and Intelligence

	12.2.2 Transfer Learning

	12.2.3 Data Augmentation

	12.2.4 Few-Shot Learning

	12.2.5 Research Gap





	12.3 Concept

	12.3.1 Dataset Creation

	12.3.2 Approach





	12.4 Evaluation

	12.4.1 Dataset, Models and Evaluation Settings

	12.4.2 Hyperparameters

	12.4.3 Evaluation





	12.5 Conclusion and Discussion

	12.5.1 Practical, Theoretical, and Empirical Contributions

	12.5.2 Limitations and Outlook









	13 XAI-Attack: Utilizing Explainable AI to Find Incorrectly Learned Patterns for Black-Box Adversarial Example Creation

	13.1 Introduction

	13.2 Related Work

	13.2.1 Feature Space

	13.2.2 Data Space

	13.2.3 Robustness Evaluation

	13.2.4 Research Gap





	13.3 Attack Design

	13.3.1 Problem Formulation and Requirements

	13.3.2 XAI-Attack





	13.4 Experiments

	13.4.1 Experiment Types

	13.4.2 Datasets & Model Settings

	13.4.3 Human Evaluation

	13.4.4 Adversarial Testing

	13.4.5 Adversarial Training on Standard GLUE

	13.4.6 Adversarial Transfer

	13.4.7 Summary of the Results





	13.5 Conclusion

	13.5.1 Findings









	 Bibliography1






index-202_1.png





index-180_1.png
SMOTE





index-215_1.jpg
26LL'0 l
1890 J

€969'0
26590

S6vL'0
vE€LL'O

.

18550 I——

W Average @M Best

x3 x5 x7 x10 w/o n. w/o f.

X1

No DA





index-209_1.png
Preprocessing LM Finetuning Embedding Filtering

—
Short instances: > @_, @

<|start of text|> || x; 1 1
Class 1 General Tuned

data LM LM

-2-2

Classn General Tuned
data LM LM

<|start of text|> |n| x,

Long instances:
<|start of text|> x;

<|start of text|> x,






index-225_1.png





index-216_1.jpg
Original: smart, sassy interpretation of the oscar wilde play.

Our Method — harp, sassy interpretation of the oscar wilde play, with an unexpected twist.
EDA — smart sassy interpretation of the academy award wilde play

Original: RT @BBCBreaking: 12 confirmed dead, approximately 200 injured in
#West fertiliser plant explosion in Texas, say state officials

Searchers Find 12 Bodies After Texas Explosion http://.. (CNN) - Hundreds
believed injured in Texas fertilizer plant explosion, medical examiner says.
EDA — rt bbcbreaking: 12 confirmed dead approximately 200 injured in west
fertiliser plant explosion in texas atomic number say state official

Our Method —

mm Paraphrasing attempt mm Novelty attempt





index-231_2.jpg
[ Twitter20-de
2,000
1,000 B FakeNewsNet
0

< 0.5 > 0.5





index-231_1.jpg
1,500
1,000

500

I Twitter16

B Twitter15

! PHEME

B FakeNewsNet

< 0.5






cover_image.jpg
@
Deep Learning in

r»  Textual Low- <
Data Regimes for
Cybersecurity






index-164_1.png
Autrefois, le thé avait été utilisé surtout pour les
moines bouddhistes pour rester éveillé pendant la méditation.

(translation sentence)

k translations

English to French
NMT

French to English
NMT

kA2 paraphrases

Previously, tea had been used primarily for
Buddhist monks to stay awake during meditation.

In the past, tea was used mostly for Buddhist
monks to stay awake during the meditation.

(input sentence)

(paraphrased sentence)






index-156_1.jpg
stories
story

actors
two

performances

films
movies
movie
film
characters

the

characters
movie
film
plot
story
films
themes
movies
stories
songs

engaging ©
fun

entertaining 4
good 3
honest 2
funny

Ayiqegodd
Jaybiy

Aniqeqoud
Jaybiy

unfunny
flat
pretentious ©
bland 10





index-179_1.jpg
d

d d
(a) Token Cutoff (b) Feature Cutoff (c) Span Cutoff





index-127_1.jpg
F1 Score

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

50

100

200
Instances

300

400






index-132_1.jpg
Score

EEENCTI

EEENSST2

7 AgNews

81.09
79.57

76.95 .5 g5






index-128_1.png
— CTI(F1)

; . :
10 20 32 40 50 60 70 80 9 100
Selection size





index-134_1.jpg
25 50 75 100 125 150 175 200 225 250 275 300

25 50 75 100125 150 175 200 225 250 275 300

—— PE Coldstart
— ActivelLLM Warmstart 50
—— PE Warmstart 50

—— LC Coldstart
—— ActivelLLM Warmstart 50
—— LC Warmstart 50

Accuracy

—— BALD Coldstart
—— ActivelLLM Warmstart 50
~—— BALD Warmstart 50

—— EKM Coldstart
—— ActivelLLM Warmstart 50
—— EKM Warmstart 50

25 50 75 100 125 150 175 200 225 250 275 300

25 50 75 100 125 150 175 200 225 250 275 300

Instances






index-133_1.jpg
Accuracy

0.9

0.8

0.7

0.6

0.5

—— Baseline
------ No Recap
——=- Idx Recap L
—-= Recap

50

75

T
100 1

T T T T T

25 150 175 200 22
Instances

T T T
250 275 300





index-144_1.png
Data Augmentation
Methods

Feature Space

’ \
7/ \
/ \
X N,
ol h N -
Noise | , Interpolation | Character Word Phrase Document
Level Level Level
L 1 s N 1 \i o
’ | /1 'Synonyms | === — [
kN __ I _Z_Z__ | Interpolation | | \
'LNoise 1 lRule based ' _ _¥ J! \\ |' _________ Y -= ll
_—— - L - I Noi I Trans ation
R T N
1 ______ Smxclule : " Generative !





index-138_1.png





index-114_1.png





index-101_1.png
Embedding creation Clustering algorithm

e P o

1
5
6
2
2.

NwwN =





index-123_1.jpg
Consider yourself in the position of an active learning component to help a human annotator. You
have to choose the instances that the annotator has to label. You are given {the guidelines for the
task and} a set of instances of a dataset. You can only choose {32} instances. {You would ideally
want to choose those instances that would provide the most informative and diverse data for the
model. Here are some strategies to consider: advices}

{Label Guidelines for the human annotator: guidelines}

{The output format should be a list of the instances that you would label, separated by a comma.}
{Please think step by step about what you would do to select the instances to label. After this
provide the list of instances that you would label, separated by a comma.}

{Please describe instance by instance why you would select or not select it for labelling. Do not
stop before you successfully found {82} that you would suggest to label. After this provide the list
of the instances that you would label, separated by a comma.}

For example, if you would label the instances 1, 4, 5 then the output should be: 1, 4, 5. The
following instances are given to you (separated with "\n ##### \n"):

Guidelines
Instances
Advice

Guidelines

No CoT
Normal CoT

Explanation
Instances





index-116_1.jpg
An LLM is instructed
to select instances like
an active learning
component. A
subsample of the
dataset is given to the
model.

BERT-like

Model
+ 2

The annotators label the An efficient BERT-like
given data instances. model is trained.





index-62_1.jpg
Level 0
BERT self-supervised
Language Model Training

Corpus: approx. 3B words

Level 1
Cybersecurity self-supervised
Language Model Training

Corpus: approx. 300M words

More
Specialized

Model Level 2

CySecAlert — General Twitter
Cybersecurity Classification Training

13306 Instances

Level 3
MSExchange — Specialized Cyber
Threat Intelligence Training





index-60_1.jpg
Accuracy

0.8

0.75

0.7
0.65

S e @ Baseline (Best)
* - -® - EDA (Best)

0.6 —@— GPT-2 Aug. (Best)

0.55
100 300 500 700

Number of instances





index-66_1.png





index-64_1.jpg
Incorrect Predictions Adversarial Examples

Adversarial Words
Really

really —»
talent —
grief —»

hate —

looked
so good






index-93_1.png





index-78_1.png





index-301_1.jpg
A. Creating Adversarial Examples:

GLUE Training

Data

B. Evaluating
Adversarial Training
on AdvGLUE:

Model 1: Normal

Generation

GLUE

Development
Data

Training

Adversarial Example

Adversarial

Examples

GLUE Training GLUE Adversarial
Data Development Examples
Data P
Model 3:
MOde.I c Vs. Adversarial
Baseline L
Training

AdvGLUE

Benchmark






index-249_1.jpg
Encoder

Add & Norm
Feed Forward

Add & Norm

Multi-Head
Attention

BERTgce






index-264_1.png





index-252_1.png
Loss
— CyBERT

= 486500: 1.264 CyBERT

Steps

100k 200k 300k 400k





index-276_1.png
Level O:
BERT self-supervised
Language Model Training

Corpus: approx. 3B words

Level 1:
Cybersecurity self-supervised
Language Model Training

Corpus: approx. 300M words

More
specialized Level 2:
model 13306 Instances CySecAlert - General Twitter

Cybersecurity Classification Training

Level 3:
MSExchange — Specialized Cyber
Threat Intelligence Training

32 Instances





index-271_1.png
Template: 1 [POST] Question: Is this text helpful for cybersecurity experts? Answer : <MASK> !
re--==-=-=-"=-=-"=-"==-== 1
Verbalizer: 1Yes — True No — False |
Instance: Black Kingdom #ransomware is hunting unpatched #Microsoft Exchange servers|
Black Kingdom #ransomware is hunting unpatched #Microsoft Exchange servers
Processed:

Question: Is this text helpful for cybersecurity experts? Answer:[<MASK>

LM Prediction

Y
"Yes" [—True]






index-283_1.jpg
Best Case

Baseline

-_——————— 4
ADAPET
Mpo——

Our Approach

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Accuracy





index-281_1.jpg
81

80.63 (0.27)

80

79.3 (2.50)

79

T 78

77.04 (3.85)
77 — —

76

75 —— I o
Round Trip EDA Our Approach
Translation





index-295_1.jpg
Hold-out Data

Really

1. Identify Adversarial
Words: Utilizing XAl
(LIME or SHAP) to
identify words
responsible for wrong
classifications.

Potential

Adversarial Words

really —>

Extraction >

talent —>
grief —»

o Hold-out Data
hate —»

Real
Adversarial Words

really —>
talent —>
grief —> 0

1 3. Inserting
Adversarial Words:
Inserting the
adversarial words
into the initially
correctly classified
instances.

hate——0

2. Optional Filtering:
Excluding words that
are, e.g., good

indicators for a class.

Selection >

Adversarial Examples

4. Selecting Adversarial
Examples: Selecting
those instances that
have their
classification changed:
Adversarial Examples.





index-289_1.png





index-247_1.jpg
latected = Cybersecurity hdearcry

eim:aaiyvuln(:::‘!:abllltles
relagg-zeg_l_; server.

elel A 1 g
guldance“ rle::va)/rﬁ?s)e(d .hmm,ge H
ackers recentUu &ad

teams

gc e ™ patch @, help®
& acisa lgaeckce'jgg_w”%"day
S learn
web G d P TSt
ﬁm NOW ey, = &amp,
st L Borenen 'ge“k < Eevenv
155 O s sl
82 P
38, e s code
+ E'E\L'C Z thousands
— £ H e RoMsand;
5 R U D S fapplys:
vl Lé eU'_g>Q§F{nm ::
@5t D Seyber, © ~ o threatss
s & soY! 5 L one-click '3
35398 s 2 g attacks
oc O — q)
25 oWUR 3 “chkéﬂgbanklng
g mesic
giEVE 22 oy
says Lg“: updatese emall
JPROTT B T g T
G o S WRLYSE L
5623k proxylogonvul ner@ n}g“_
oL Securd t}/‘.
dearcry i1l EXp].Olt mw - #malnare §

targetmg |zas‘zzzm<h'P£S'Pklsses*

cve 2021 26855 g““’“

e lyMitigation#cyber using
Fecently B O e e

product #microsof tetplolted
#ransomware =targeted attacks.

o

ome

section 1! start
steps: STOP PUSN' fosidy, tarems
social securltymlcrosoft edge

marjorie taylor
natlonal security
ngm cormer make sure w!rannx system
Sremote attackers
social media  WINAOWS mac

push notifiCations sigmes mres

internet explorer

rt breaking: cress sice " ciptin

google

mnn]]v ..,.m "eg" 8

ecurity forc

edge safari °°
step 3

cyber security w

- gu1de?
data recovery awn
execute arbitrary g

search bar Q. cyber ninjas

winformation security

ce £ riert &

5 Sincerné? axplorer. 9 arbLLTarY, cote
un security a

Csecurity abducted G-de la T

= mozilla firefox >

siversorla ,,mm
p 2 sgrend ]ury‘t:
sensluve information =

mozil

isecurity
step 4:chrome
; 1
te
renoved, Es(an 0
explorer stop R
£ o
MR
glearm.n

section .

€il pachine

terrorlsts

arl

drop menu
(D umented exension

0S X
© f1refox m1crosoftu
[}
_» allows remote ¢

b ##an
G’O %?S#V number fgg## rIpCI'

“”ce used W,\HdDwS :r:e
##y o N # M =ﬁ=‘

attacks sven Case ® g0y #5
ol
SeeUrty
fird
information # #zem
At e
##saweusm,% CYK ase r

11es ae;g A

% 3
& t X,rysamattack don
> bac!

network
I step, ﬁ

e B ttps neviv"two
us’

gpessiord

=3
.
=
n
A+
**
S
00

8
8

un (@ ##bES
) :





index-238_1.png





index-9_1.png





index-31_1.jpg
0! 02 03 04

<> 2

Data Aquisition Preprocessing Model Selection Prediction

Active Learning Data Augmentation Transfer Learning Adversarial Training





index-30_1.png





index-49_1.jpg
Motivation

Clustering
1) Information
Overload in
Crisis
Management:
Bilingual
Evaluation of
Embedding
Models

for Clustering
Social Media
Posts in
Emergencies

Data Aquisition

Active Learning
2) ActiveLLM:
Large Language
Model-based
Active Learning
for Textual Few-
Shot Scenarios

Preprocessing

Model Selection

Data Augmentation  Transfer Learning

3) Survey on Data
Augmentation for
Text Classification
4) Data
augmentation in
natural language
processing: a
novel text
generation
approach for long
and short text
classifiers

5) Design and
Evaluation of deep
learning Models
for Real-Time
Credibility
Assessment in
Twitter

6) CySecBERT: A
Domain-Adapted
Language Model
for the
Cybersecurity
Domain

7) Multi-Level Fine-
Tuning, Data
Augmentation, and
Few-Shot Learning
for Specialized
Cyber Threat
Intelligence

04

s

Prediction
Adversarial Training

8) XAl-Attack:
Utilizing
Explainable Al to
Find Incorrectly
Learned Patterns
for Black-Box
Adversarial
Example Creation





index-46_1.png





index-56_1.png





index-52_1.jpg
Data Augmentation
Methods

Character Word Phrase Document
Level Level Level Level .

.
// NS s Cha 9 \

1
) '
Rule based O \y Y llnterpolatlon
1
1

\

-m 'Embedmgs Structure
Language Models

\

\
\
\






index-58_1.jpg
45

40

73.14
69.17 69.77

5686| I

ActiveGPT4 LC BALD EKM

48.85

PERFECT





