
        
            
                
            
        

    
[image: Image 1]

EXPERT INSIGHT

Microservices with Spring 

F Boot an

Micr

our

Boot and Spring Cloud

Fourth Edition

th Edition

oser

Microservices with 

d Sprin vic

Do you want to build and deploy microservices 

Things you will learn:

but are unsure where to begin? Check out the 

fully updated 2025 edition of Microservices with 

es with Sprin

Spring Boot and

• 

Build reactive microservices using 

Spring Boot and Spring Cloud. 

Spring Boot

Drawing from Magnus’ decades of experience, 

g Cloud

• 

Develop resilient and scalable 

you’ll start with simple microservices and 

microservices using Spring Cloud

progress to complex distributed applications, 

Spring Cloud

learning essential functionality and deploying 

• 

Use OAuth and Spring Security to 

microservices using Kubernetes and Istio along 

protect public APIs

the way. 

Build resilient and scalable microservices using 

• 

Implement Docker to bridge the gap 

This book covers Java 24, Spring Boot 3.5, and 

Spring Cloud, Istio, and Kubernetes

between development, testing, and 

Spring Cloud 2025, featuring updated code 

production

examples and replacing deprecated APIs. 

g

You’ll get a clear understanding of Spring’s 

 

• 

Deploy and manage microservices 

Ahead of Time (AOT) module, observability, 

with Kubernetes

distributed tracing, and Helm for Kubernetes 

packaging. The chapters show you how to use 

• 

Apply Istio for improved security, 

Docker Compose to run microservices with 

observability, and traff ic 

databases and messaging services and deploy 

Ma

management

microservices on Kubernetes with Istio. You’ll 

also explore persistence, resilience, reactive 

• 

Write and run automated 

gnus L

microservices, and API documentation with 

microservice tests with JUnit, test 

OpenAPI, as well as learn service discovery with 

Netfl ix Eureka, edge servers with Spring Cloud 

containers, Gradle, and Bash

Gateway, and monitoring with Prometheus, 

• 

Use Spring AOT and GraalVM to 

Grafana, and the EFK stack. 

compile your microservices into native 

a

By the end of this book, you’ll be able to 

executables

rsson

confi dently build scalable microservices using 

Spring Boot and Spring Cloud. 

• 

Utilize Micrometer for distributed 

tracing

Fourth Edition

www.packtpub.com

Magnus Larsson

Microservices with Spring Boot 

and Spring Cloud

Fourth Edition

Build resilient and scalable microservices using Spring Cloud, Istio, and 

Kubernetes

Magnus Larsson

Microservices with Spring Boot and Spring Cloud

Fourth Edition

Copyright © 2025 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. 

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Packt Publishing or its dealers and distributors will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book. 

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. 

Portfolio Director: Ashwin Nair

Relationship Lead: Aaron Lazar

Content Engineer: Kinnari Chohan

Project Manager: Ruvika Rao

Technical Editor: Sweety Pagaria

Copy Editor: Safis Editing

Indexer: Hemangini Bari

Proofreader: Kinnari Chohan

Production Designer: Ganesh Bhadwalkar

Growth Lead: Anamika Singh

First published: September 2019

Second edition: September 2021

Third edition: August 2023

Fourth edition: August 2025

Production reference: 1290725

Published by Packt Publishing Ltd. 

Grosvenor House 

11 St Paul’s Square 

Birmingham  

B3 1RB, UK. 

ISBN 978-1-80580-127-6

www.packtpub.com

Contributors

About the author

Magnus Larsson, an IT industry veteran since 1986, has consulted for major Swedish firms such as Volvo, Ericsson, and AstraZeneca. Despite past struggles with distributed systems, today’s open source tools (such as Spring Cloud, Kubernetes, and Istio) offer effective solutions. For the past 10 years, Magnus has been helping customers use these tools and has shared his insights through presentations and blog posts. 

 I would like to thank the following people:

 Aaron Lazar, Kinnari Chohan, and Ruvika Rao, from Packt Publishing, for their support. To my wife, Maria, thank you for all of your support and understanding throughout the process of writing this book. 

About the reviewer

K. Siva Prasad Reddy works as a Developer Advocate at JetBrains. He has 18+ years of experience in building scalable distributed enterprise applications using Java, Go, and Node.js. 

He is a published author and a conference speaker. He has extensive experience in building software systems using modern architectures and cloud-native technologies. 

Siva is a strong practitioner of Agile practices such as TDD, CI/CD, and DevOps. 

He shares his knowledge on his blog at https://sivalabs.in and through his YouTube channel 

https://youtube.com/sivalabs. 

Table of Contents

Preface  

 xxv

Part 1: Getting Started with Microservice  

Development Using Spring Boot  

 1

Chapter 1: Introduction to Microservices  

 3

Technical requirements  ...................................................................................................... 3

Getting the most out of this book – get to know your free benefits  ..................................... 3

Next-gen reader • 4

Interactive AI assistant (beta) • 4

DRM-free PDF or ePub version  • 5

My way into microservices  .................................................................................................. 5

Benefits of autonomous software components • 7

Challenges with autonomous software components • 9

Enter microservices  ..........................................................................................................  10

A sample microservice landscape • 12

Defining a microservice  ..................................................................................................... 13

Challenges with microservices ........................................................................................... 15

Design patterns for microservices  .....................................................................................  16

Service discovery • 17

 Problem • 17

 Solution • 18

 Solution requirements • 18

vi

 Table of Contents

Edge server • 19

 Problem • 19

 Solution • 19

 Solution requirements • 20

Reactive microservices • 20

 Problem • 20

 Solution • 20

Solution requirements • 20

Central configuration • 21

 Problem • 21

 Solution • 22

 Solution requirements • 22

Centralized log analysis • 22

 Problem • 22

 Solution • 23

 Solution requirements • 23

Distributed tracing • 24

 Problem • 24

 Solution • 25

 Solution requirements • 26

Circuit breaker • 26

 Problem • 26

 Solution • 26

 Solution requirements • 26

Control loop • 27

 Problem • 27

 Solution • 28

 Solution requirements • 28

Centralized monitoring and alarms • 28

 Problem • 28

 Table of Contents

vii

 Solution • 28

 Solution requirements • 29

Software enablers  ............................................................................................................. 30

Other important considerations  ........................................................................................ 31

Summary  .......................................................................................................................... 34

Chapter 2: Introduction to Spring Boot  

 35

Technical requirements  .................................................................................................... 36

Spring Boot  ....................................................................................................................... 36

Convention over configuration and fat JAR files  ................................................................  37

Code examples for setting up a Spring Boot application  ................................................... 38

The magic @SpringBootApplication annotation • 38

Component scanning • 39

Java-based configuration • 40

What’s new in Spring Boot 3.0 to 3.5? • 41

Migrating a Spring Boot 2 application  .............................................................................. 44

Spring WebFlux  ................................................................................................................ 45

Code examples of setting up a REST service  ...................................................................... 46

Starter dependencies • 46

Property files • 47

Sample RestController • 48

springdoc-openapi • 48

Spring Data • 50

Entity • 51

Repositories • 52

Spring Cloud Stream  ......................................................................................................... 54

Code examples for sending and receiving messages  .......................................................... 54

Docker  .............................................................................................................................. 56

Summary  .......................................................................................................................... 59

Questions  ..........................................................................................................................  59

viii

 Table of Contents

Chapter 3: Creating a Set of Cooperating Microservices  

 61

Technical requirements  ....................................................................................................  61

Introducing the microservice landscape  ........................................................................... 62

Information handled by the microservices • 62

 The product service • 62

 The review service • 63

 The recommendation service • 63

 The product composite service • 63

 Infrastructure-related information • 63

Temporarily replacing service discovery • 64

Generating skeleton microservices  ................................................................................... 64

Using Spring Initializr to generate skeleton code • 64

Setting up multi-project builds in Gradle • 69

Adding RESTful APIs  .......................................................................................................... 71

Adding an API and a util project • 71

The api project • 72

The util project • 74

Implementing our API • 74

Adding a composite microservice  ......................................................................................  77

API classes • 78

Properties • 79

The integration component • 80

Composite API implementation • 83

Adding error handling  ....................................................................................................... 84

The global REST controller exception handler • 85

Error handling in API implementations • 86

Error handling in the API client • 86

Testing APIs manually  ......................................................................................................  87

Adding automated microservice tests in isolation  ............................................................. 90

Adding semi-automated tests of a microservice landscape  ............................................... 94

Trying out the test script • 95

 Table of Contents

ix

Summary  .......................................................................................................................... 96

Questions  ..........................................................................................................................  97

Chapter 4: Deploying Our Microservices Using Docker  

 99

Technical requirements  .................................................................................................. 100

Introduction to Docker  ................................................................................................... 100

Running our first Docker commands  ............................................................................... 101

Running Java in Docker • 103

Limiting available CPUs • 103

Limiting available memory • 104

Using Docker with one microservice  ...............................................................................  106

Changes in source code • 107

Building a Docker image • 110

Starting up the service • 111

Running the container in detached mode  ........................................................................ 114

Managing a landscape of microservices using Docker Compose  ......................................  115

Changes in the source code • 115

Starting up the microservice landscape • 117

Automating tests of cooperating microservices  ...............................................................  120

Troubleshooting a test run  ............................................................................................... 123

Summary  ......................................................................................................................... 124

Questions  ......................................................................................................................... 125

Chapter 5: Adding an API Description Using OpenAPI  

 127

Technical requirements  ..................................................................................................  128

Introduction to using springdoc-openapi  .......................................................................  128

Adding springdoc-openapi to the source code  ................................................................  130

Adding dependencies to the Gradle build files • 131

Adding OpenAPI configuration and general API  

documentation to ProductCompositeService • 131

Adding API-specific documentation to the ProductCompositeService interface • 134

x

 Table of Contents

Building and starting the microservice landscape  ..........................................................  138

Trying out the OpenAPI documentation  .........................................................................  140

Summary  ........................................................................................................................  146

Questions  ........................................................................................................................  146

Chapter 6: Adding Persistence  

 149

Technical requirements  ..................................................................................................  150

Chapter objectives  ..........................................................................................................  150

Adding a persistence layer to the core microservices  ........................................................ 152

Adding dependencies • 153

Storing data with entity classes • 154

Defining repositories in Spring Data • 157

Writing automated tests that focus on persistence  .........................................................  158

Using Testcontainers • 159

Writing persistence tests • 161

Using the persistence layer in the service layer  ................................................................ 167

Logging the database connection URL • 167

Adding new APIs • 168

Calling the persistence layer from the service layer • 169

Declaring a Java bean mapper • 171

Updating the service tests • 172

Extending the composite service API  ............................................................................... 174

Adding new operations to the composite service API • 174

Adding methods to the integration layer • 177

Implementing the new composite API operations • 178

Updating the composite service tests • 179

Adding databases to the Docker Compose landscape  ......................................................  180

The Docker Compose configuration • 180

Database connection configuration • 182

The MongoDB and MySQL CLI tools • 184

`Manual tests of the new APIs and the persistence layer  .................................................. 185

 Table of Contents

xi

Updating the automated tests of the microservice landscape  .........................................  188

Summary  ......................................................................................................................... 191

Questions  .........................................................................................................................  191

Chapter 7: Developing Reactive Microservices  

 193

Technical requirements  ..................................................................................................  194

Choosing between non-blocking synchronous APIs and event-driven asynchronous 

services  ...........................................................................................................................  194

Developing non-blocking synchronous REST APIs  .......................................................... 195

An introduction to Project Reactor • 196

Non-blocking persistence using Spring Data for MongoDB • 198

 Changes in the test code • 199

Non-blocking REST APIs in the core services • 200

 Changes in the APIs • 200

 Changes in the service implementations • 200

 Changes in the test code • 202

 Dealing with blocking code • 202

Non-blocking REST APIs in the composite services • 205

 Changes in the API • 205

 Changes in the service implementation • 205

 Changes in the integration layer • 206

 Changes in the test code • 208

Developing event-driven asynchronous services  ............................................................ 209

Handling challenges with messaging • 210

 Consumer groups • 211

 Retries and dead-letter queues • 213

 Guaranteed order and partitions • 214

Defining topics and events • 215

Changes in the Gradle build files • 217

Consuming events in the core services • 218

 Declaring message processors • 218

 Changes in the service implementations • 220

xii

 Table of Contents

 Adding configuration for consuming events • 221

 Changes in the test code • 222

Publishing events in the composite service • 224

 Publishing events in the integration layer • 224

 Adding configuration for publishing events • 225

 Changes in the test code • 226

Running manual tests of the reactive microservice landscape  ........................................  229

Saving events • 230

Adding a health API • 230

Using RabbitMQ without using partitions • 234

Using RabbitMQ with partitions • 238

Using Kafka with two partitions per topic • 241

Running automated tests of the reactive microservice landscape  ................................... 244

Summary  ........................................................................................................................  245

Questions  ........................................................................................................................  245

Part 2: Leveraging Spring Cloud to  

Manage Microservices  

 247

Chapter 8: Introduction to Spring Cloud  

 249

Technical requirements  .................................................................................................. 250

The evolution of Spring Cloud  ........................................................................................ 250

Using Netflix Eureka for service discovery  ......................................................................  252

Using Spring Cloud Gateway as an edge server  ...............................................................  253

Using Spring Cloud Config for centralized configuration  ................................................  254

Using Resilience4j for improved resilience  ......................................................................  256

Sample usage of the circuit breaker in Resilience4j • 257

Using Micrometer Tracing and Zipkin for distributed tracing  .........................................  259

Summary  ........................................................................................................................ 262

Questions  ........................................................................................................................ 262

 Table of Contents

xiii

Chapter 9: Adding Service Discovery Using Netflix Eureka  

 263

Technical requirements  ..................................................................................................  263

Introducing service discovery  ......................................................................................... 264

The problem with DNS-based service discovery • 264

Challenges with service discovery • 266

Service discovery with Netflix Eureka in Spring Cloud • 267

Setting up a Netflix Eureka server  ................................................................................... 269

Connecting microservices to a Netflix Eureka server ....................................................... 270

Setting up the configuration for development use  ..........................................................  272

Eureka configuration parameters • 273

Configuring the Eureka server • 274

Configuring clients to the Eureka server • 275

Trying out the discovery service  .....................................................................................  275

Scaling up • 276

Scaling down • 279

Disruptive tests with the Eureka server • 280

 Stopping the Eureka server • 280

 Starting up an extra instance of the product service • 281

Starting up the Eureka server again  ................................................................................ 282

Summary  ........................................................................................................................ 283

Questions  ........................................................................................................................ 283

Chapter 10: Using Spring Cloud Gateway to  

Hide Microservices behind an Edge Server  

 285

Technical requirements  .................................................................................................. 286

Adding an edge server to our system landscape ............................................................... 286

Setting up Spring Cloud Gateway  ...................................................................................  287

Adding a composite health check • 288

Configuring Spring Cloud Gateway • 290

 Routing rules • 291

xiv

 Table of Contents

Trying out the edge server  .............................................................................................. 296

Examining what is exposed outside the Docker engine • 297

Trying out the routing rules • 298

 Calling the product composite API through the edge server • 298

 Calling the Swagger UI through the edge server • 299

 Calling Eureka through the edge server • 300

 Routing based on the host header • 301

Summary  ........................................................................................................................ 303

Questions  ........................................................................................................................ 303

Chapter 11: Securing Access to APIs  

 305

Technical requirements  .................................................................................................. 305

Introduction to OAuth 2.0 and OpenID Connect  ............................................................. 306

Introducing OAuth 2.0 • 306

Introducing OpenID Connect • 310

Securing the system landscape  ........................................................................................  311

Protecting external communication with HTTPS  ............................................................ 313

Replacing a self-signed certificate at runtime • 315

Securing access to the discovery server  ............................................................................ 317

Changes in the Eureka server • 317

Changes in Eureka clients • 319

Adding a local authorization server  ................................................................................. 319

Protecting APIs using OAuth 2.0 and OpenID Connect  .................................................... 321

Changes in both the edge server and the product-composite service • 322

Changes in the product-composite service only • 324

Changes to allow Swagger UI to acquire access tokens • 325

Changes in the test script • 327

Testing with the local authorization server  .................................................................... 328

Building and running the automated tests • 328

Testing the protected discovery server • 328

Acquiring access tokens • 330

 Table of Contents

xv

 Acquiring access tokens using the client credentials grant flow • 330

Acquiring access tokens using the authorization code grant flow • 331

Calling protected APIs using access tokens • 334

Testing Swagger UI with OAuth 2.0 • 337

Testing with an external OpenID Connect provider  ........................................................  339

Setting up and configuring an account in Auth0 • 339

Applying the required changes to use Auth0 as an OpenID provider • 344

Changing the configuration in the OAuth resource servers • 345

Changing the test script so it acquires access tokens from Auth0 • 346

Running the test script with Auth0 as the OpenID Connect provider • 347

Acquiring access tokens using the client credentials grant flow • 349

Acquiring access tokens using the authorization code grant flow • 349

Calling protected APIs using the Auth0 access tokens • 353

Getting extra information about the user • 353

Summary  ........................................................................................................................  354

Questions  ........................................................................................................................  355

Chapter 12: Centralized Configuration  

 357

Technical requirements  ................................................................................................... 357

Introduction to Spring Cloud Config Server  .................................................................... 358

Selecting the storage type of the configuration repository • 359

Deciding on the initial client connection • 359

Securing the configuration • 360

Securing the configuration in transit • 360

Securing the configuration at rest • 360

Introducing the config server API • 361

Setting up a config server  ................................................................................................. 361

Setting up a routing rule in the edge server • 363

Configuring the config server for use with Docker • 363

Configuring clients of a config server  .............................................................................. 364

Configuring connection information • 366

Structuring the configuration repository • 367

xvi

 Table of Contents

Trying out Spring Cloud Config Server  ............................................................................  367

Building and running automated tests • 368

Getting the configuration using the config server API • 368

Encrypting and decrypting sensitive information • 370

Summary  ......................................................................................................................... 371

Questions  ........................................................................................................................  372

Chapter 13: Improving Resilience Using Resilience4j  

 373

Technical requirements  ..................................................................................................  374

Introducing the Resilience4j resilience mechanisms .......................................................  374

Introducing the circuit breaker • 375

Introducing the time limiter • 378

Introducing the retry mechanism • 378

Adding the resilience mechanisms to the source code  .....................................................  379

Adding programmable delays and random errors • 380

Changes in the API definitions • 381

Changes in the product-composite microservice • 381

Changes in the product microservice • 382

Adding a circuit breaker and a time limiter • 384

Adding dependencies to the build file • 384

Adding annotations in the source code • 385

Adding fail-fast fallback logic • 386

Adding configuration • 387

Adding a retry mechanism • 388

Adding the retry annotation • 388

Adding configuration • 388

Adding automated tests • 389

Trying out the circuit breaker and retry mechanism  .......................................................  393

Building and running the automated tests • 394

Verifying that the circuit is closed under normal operations • 394

Forcing the circuit breaker to open when things go wrong • 395

Closing the circuit breaker again • 396

 Table of Contents

xvii

Trying out retries caused by random errors • 397

Summary  ........................................................................................................................ 399

Questions  .......................................................................................................................  400

Chapter 14: Understanding Distributed Tracing  

 401

Technical requirements  ..................................................................................................  401

Introducing distributed tracing with Micrometer Tracing and Zipkin  ............................ 402

Adding distributed tracing to the source code  ................................................................  404

Adding dependencies to build files • 404

Adding configuration for Micrometer Tracing and Zipkin • 405

Adding Zipkin to the Docker Compose files • 406

Adding workarounds for the lack of support of reactive clients • 407

Adding custom spans and custom tags to existing spans • 409

Adding a custom span • 410

Adding custom tags to existing spans • 413

Trying out distributed tracing  ........................................................................................  416

Starting up the system landscape • 416

Sending a successful API request • 417

Sending an unsuccessful API request • 421

Sending an API request that triggers asynchronous processing • 422

Summary  ........................................................................................................................  427

Questions  ........................................................................................................................  427

Part 3: Developing Lightweight  

Microservices Using Kubernetes  

 429

Chapter 15: Introduction to Kubernetes  

 431

Technical requirements  ................................................................................................... 431

Introducing Kubernetes concepts  ................................................................................... 432

Introducing Kubernetes API objects  ................................................................................  433

Introducing Kubernetes runtime components  ................................................................ 436

xviii

 Table of Contents

Creating a Kubernetes cluster using minikube  ................................................................ 439

Working with minikube profiles • 440

Working with the Kubernetes CLI, kubectl • 441

Working with kubectl contexts • 442

Creating a Kubernetes cluster • 443

Trying out a sample Deployment  .................................................................................... 445

Managing a local Kubernetes cluster  ..............................................................................  453

Hibernating and resuming a Kubernetes cluster • 454

Terminating a Kubernetes cluster • 455

Summary  ........................................................................................................................  455

Questions  ........................................................................................................................ 456

Chapter 16: Deploying Our Microservices to Kubernetes  

 457

Technical requirements  ..................................................................................................  457

Replacing Netflix Eureka with Kubernetes Services  ........................................................ 458

Introducing how Kubernetes will be used .......................................................................  461

Using Spring Boot’s support for graceful shutdown and  

probes for liveness and readiness  ....................................................................................  461

Introducing Helm  ........................................................................................................... 463

Running Helm commands • 465

Looking into a Helm chart • 465

Helm templates and values • 466

The common library chart • 468

The ConfigMap template • 469

 Example of using the ConfigMap template • 470

The Secrets template • 471

 Example of using the Secrets template • 472

The Service template • 474

 Example of using the Service template • 476

The Deployment template • 478

 Example of using the Deployment template • 482

 Table of Contents

xix

The components charts • 484

The environment charts • 485

Deploying to Kubernetes for development and test  ........................................................  487

Building Docker images • 487

Resolving Helm chart dependencies • 488

Deploying to Kubernetes • 489

Changes in the test script for use with Kubernetes • 492

Testing the Deployment • 492

Testing Spring Boot’s support for graceful shutdown and  

probes for liveness and readiness • 493

Deploying to Kubernetes for staging and production  .....................................................  500

Changes in the source code • 501

Deploying to Kubernetes • 503

Cleaning up • 504

Summary  ........................................................................................................................ 505

Questions  ........................................................................................................................ 506

Chapter 17: Implementing Kubernetes Features to  

Simplify the System Landscape  

 509

Technical requirements  ..................................................................................................  510

Replacing the Spring Cloud Config Server  .......................................................................  510

Changes required to replace the Spring Cloud Config Server • 512

Replacing the Spring Cloud Gateway  ............................................................................... 517

Changes required to replace the Spring Cloud Gateway • 518

Automating certificate provisioning  ...............................................................................  523

Testing with Kubernetes ConfigMaps, Secrets, Ingress, and cert-manager  .....................  525

Rotating certificates • 529

Deploying to Kubernetes for staging and production • 531

Verifying that the microservices work without Kubernetes  ............................................  532

Changes in the Docker Compose files • 533

Testing with Docker Compose • 535

xx

 Table of Contents

Summary  ......................................................................................................................... 537

Questions  ........................................................................................................................  538

Chapter 18: Using a Service Mesh to  

Improve Observability and Management  

 539

Technical requirements  .................................................................................................. 540

Introducing service meshes using Istio  ........................................................................... 540

Introducing Istio • 541

Injecting Istio proxies into microservices • 543

Introducing Istio API objects • 546

Simplifying the microservice landscape  ..........................................................................  547

Replacing the Kubernetes Ingress controller with an Istio ingress gateway • 547

Replacing the Zipkin server with Istio’s Jaeger component  ............................................ 548

Deploying Istio in a Kubernetes cluster  ........................................................................... 549

Setting up access to Istio services • 554

Creating the service mesh  ...............................................................................................  558

Source code changes • 558

Content in the _istio_base.yaml template • 558

Content in the _istio_dr_mutual_tls.yaml template • 561

Running commands to create the service mesh • 562

Logging propagation of trace and span IDs • 564

Observing the service mesh  ............................................................................................ 566

Securing a service mesh  ................................................................................................... 571

Protecting external endpoints with HTTPS and certificates • 571

Authenticating external requests using OAuth 2.0/OIDC access tokens • 574

Protecting internal communication using mutual authentication with mTLS • 577

Ensuring that a service mesh is resilient  .........................................................................  579

Testing resilience by injecting faults • 580

Testing resilience by injecting delays • 581

Performing zero-downtime updates  ............................................................................... 584

Source code changes • 586

Virtual services and destination rules • 586

 Table of Contents

xxi

Deployments and services • 588

Tying things together in the prod-env Helm chart • 589

Deploying the v1 and v2 versions of the microservices with routing to the v1 version • 590

Verifying that all traffic initially goes to the v1 version of the microservices • 593

Running canary tests • 594

Running a blue-green deployment • 596

A short introduction to the kubectl patch command • 597

Performing the blue-green deployment • 598

Running tests with Docker Compose  .............................................................................. 602

Summary  ........................................................................................................................ 603

Questions  ........................................................................................................................ 603

Chapter 19: Centralized Logging with the EFK Stack  

 605

Technical requirements  .................................................................................................. 606

Introducing Fluentd  ........................................................................................................ 606

Overview of Fluentd • 606

Configuring Fluentd • 608

Deploying the EFK stack on Kubernetes ........................................................................... 617

Building and deploying our microservices • 617

Deploying Elasticsearch and Kibana • 619

 A walkthrough of the manifest files • 620

 Running the deploy commands • 622

Deploying Fluentd • 623

 A walkthrough of the manifest files • 623

 Running the deploy commands • 626

Trying out the EFK stack  .................................................................................................  627

Initializing Kibana • 628

Analyzing the log records • 629

Discovering the log records from microservices • 634

Performing root cause analysis • 640

Summary  ........................................................................................................................ 646

Questions  ........................................................................................................................  647

xxii

 Table of Contents

Chapter 20: Monitoring Microservices  

 651

Technical requirements  ................................................................................................... 651

Introduction to application monitoring using Prometheus and Grafana  ........................  652

Changes in source code to collect application metrics  .................................................... 654

Building and deploying the microservices  ...................................................................... 656

Monitoring microservices using Grafana dashboards  .....................................................  657

Installing a local mail server for tests • 658

Configuring Grafana • 659

Starting up the load test • 660

Using Kiali’s built-in dashboards • 660

Importing existing Grafana dashboards • 663

Developing your own Grafana dashboards • 665

 Examining Prometheus metrics • 665

 Creating the dashboard • 666

Exporting and importing Grafana dashboards • 674

Setting up alarms in Grafana  ..........................................................................................  676

Configuring a mail-based contact point • 676

Configuring default notification policies • 678

Setting up an alarm on the circuit breaker • 679

Trying out the circuit breaker alarm • 684

Summary  .......................................................................................................................  688

Questions  ........................................................................................................................ 689

Chapter 21: Installation Instructions for macOS  

 693

Technical requirements  ..................................................................................................  693

Installing the necessary tools  .......................................................................................... 694

Installing SDKMan, Java, and the Spring Boot CLI • 695

Installing Homebrew • 696

Using Homebrew to install tools • 697

Install tools without Homebrew • 697

Installing tools on an Intel-based Mac • 697

 Table of Contents

xxiii

Installing tools on an Apple silicon-based Mac • 698

Post-installation actions • 698

Verifying the installations • 700

Accessing the source code  ...............................................................................................  701

Using an IDE • 702

The structure of the code • 702

Summary  ........................................................................................................................ 703

Chapter 22: Installation Instructions for Microsoft Windows with WSL 2 and 

Ubuntu  

 705

Technical requirements  ..................................................................................................  705

Installing the necessary tools  .......................................................................................... 706

Installing tools on Windows • 707

Installing WSL 2 with a default Ubuntu server • 707

 Installing a new Ubuntu 24.04 server on WSL 2 • 708

 Installing Windows Terminal • 708

 Installing Docker Desktop for Windows • 709

 Installing Visual Studio Code and its extension for Remote WSL • 711

Installing tools on the Linux server in WSL 2 • 711

 Installing tools using apt install • 711

 Installing the Java and Spring Boot CLI using SDKMan • 712

 Installing the remaining tools using curl and install • 713

 Verifying the installations • 714

Accessing the source code  ................................................................................................ 715

The structure of the code • 716

Summary  ......................................................................................................................... 717

Chapter 23: Native Compiled Java Microservices  

 719

Technical requirements  .................................................................................................. 720

When to natively compile Java source code  ..................................................................... 720

Introducing the GraalVM project  ..................................................................................... 721

Introducing Spring’s AOT engine  ....................................................................................  722

xxiv

 Table of Contents

Handling problems with native compilation  ..................................................................  725

Changes in the source code  .............................................................................................  727

Updates to the Gradle build files • 728

Providing reachability metadata and custom hints • 729

Enabling Spring beans at build time in application.yml files • 730

Updated runtime properties • 732

Configuration of the GraalVM Native Image tracing agent • 732

Updates to the test-em-all.bash verification script • 733

Testing and compiling Native Images  .............................................................................  734

Running the tracing agent • 734

Running native tests • 735

Creating a Native Image for the current OS • 736

Creating a Native Image as a Docker image • 737

Testing with Docker Compose  ........................................................................................  739

Testing Java VM-based microservices with AOT mode disabled • 740

Testing Java VM-based microservices with AOT mode enabled • 742

Testing natively compiled microservices • 743

Testing with Kubernetes  .................................................................................................  745

Summary  ........................................................................................................................  749

Questions  ........................................................................................................................ 750

Chapter 24: Unlock Your Book’s Exclusive Benefits  

 751

How to unlock these benefits in three easy steps  ............................................................. 751

Step 1 • 751

Step 2 • 752

Step 3 • 752

Need help? • 753

Other Books You May Enjoy  

 757

Index  

 761

Preface

This book is about building production-ready microservices using Spring Boot and Spring Cloud. 

Twelve years ago, when I began to explore microservices, I was looking for a book like this. 

This book was developed after I learned about, and mastered, open source software used for 

developing, testing, deploying, and managing landscapes of cooperating microservices. 

This book primarily covers Spring Boot, Spring Cloud, Docker, Kubernetes, Istio, the EFK stack, Prometheus, and Grafana. Each of these open source tools works great by itself, but it can be challenging to understand how to use them together in an advantageous way. In some areas, 

they complement each other, but in other areas they overlap, and it is not obvious which one to choose for a particular situation. 

This is a hands-on book that describes step by step how to use these open source tools together. 

This is the book I was looking for ten years ago when I started to learn about microservices, but with updated versions of the open source tools it covers. 

Who this book is for

This book is for Java and Spring developers and architects who want to learn how to build microservice landscapes from the ground up and deploy them either on-premises or in the cloud, using Kubernetes as a container orchestrator and Istio as a service mesh. No familiarity with microservices architecture is required to get started with this book. 

What this book covers

 Part 1,  Getting Started with Microservice Development Using Spring Boot, in this first part of the book, you will learn how to use some of the most important features of Spring Boot to develop microservices. 

 Chapter 1,  Introduction to Microservices, will help you understand the basic premise of the book – 

microservices – along with the essential concepts and design patterns that go along with them. 

xxvi

 Preface

 Chapter 2,  Introduction to Spring Boot, will get you introduced to Spring Boot and the other open source projects that will be used in the first part of the book: Spring WebFlux for developing RESTful APIs, springdoc-openapi for producing OpenAPI-based documentation for the APIs, 

Spring Data for storing data in SQL and NoSQL databases, Spring Cloud Stream for message-based microservices, and Docker to run the microservices as containers. 

 Chapter 3,  Creating a Set of Cooperating Microservices, will teach you how to create a set of cooperating microservices from scratch. You will use Spring Initializr to create skeleton projects based on Spring Framework and Spring Boot. The idea is to create three core services (that will handle their own resources) and one composite service that uses the three core services to aggregate a composite result. Toward the end of the chapter, you will learn how to add very basic RESTful APIs based on Spring WebFlux. In the following chapters, more and more functionality will be added to these microservices. 

 Chapter 4,  Deploying Our Microservices Using Docker, will teach you how to deploy microservices using Docker. You will learn how to add Dockerfiles and docker-compose files in order to start up the whole microservice landscape with a single command. Then, you will learn how to use 

multiple Spring profiles to handle configurations with and without Docker. 

 Chapter 5,  Adding an API Description Using OpenAPI, will get you up to speed with documenting the APIs exposed by a microservice using OpenAPI. You will use the springdoc-openapi tool to annotate the services to create OpenAPI-based API documentation on the fly. The key highlight will be how the APIs can be tested in a web browser using Swagger UI. 

 Chapter 6,  Adding Persistence, will show you how to add persistence to the microservices’ data. You will use Spring Data to set up and access data in a MongoDB document database for two of the core microservices and access data in a MySQL relational database for the remaining microservice. 

Testcontainers will be used to start up databases when running integration tests. 

 Chapter 7,  Developing Reactive Microservices, will teach you why and when a reactive approach is of importance and how to develop end-to-end reactive services. You will learn how to develop and test both non-blocking synchronous RESTful APIs and asynchronous event-driven services. You 

will also learn how to use the reactive non-blocking driver for MongoDB and use conventional blocking code for MySQL. 

 Part 2,  Leveraging Spring Cloud to Manage Microservices, in this first part of the book, you’ll gain an understanding of how Spring Cloud can be used to manage the challenges faced when 

developing microservices (that is, building a distributed system). 

 Preface

xxvii

 Chapter 8,  Introduction to Spring Cloud, will introduce you to Spring Cloud and the components of Spring Cloud that will be used in this book. 

 Chapter 9,  Adding Service Discovery Using Netflix Eureka, will show you how to use Netflix Eureka in Spring Cloud to add service discovery capabilities. This will be achieved by adding a Netflix Eureka-based service discovery server to the system landscape. You will then configure the microservices to use Spring Cloud LoadBalancer to find other microservices. You will understand how microservices are registered automatically and how traffic through Spring Cloud LoadBalancer is automatically load balanced to new instances when they become available. 

 Chapter 10,  Using Spring Cloud Gateway to Hide Microservices behind an Edge Server, will guide you through how to hide the microservices behind an edge server using Spring Cloud Gateway and 

only expose select APIs to external consumers. You will also learn how to hide the internal complexity of the microservices from external consumers. This will be achieved by adding a Spring Cloud Gateway-based edge server to the system landscape and configuring it to only expose the public APIs. 

 Chapter 11,  Securing Access to APIs, will explain how to protect exposed APIs using OAuth 2.1 and OpenID Connect. You will learn how to add an OAuth authorization server based on Spring Authorization Server to the system landscape, and how to configure the edge server and the composite service to require valid access tokens issued by that authorization server. You will learn how to expose the authorization server through the edge server and secure its communication 

with external consumers using HTTPS. Finally, you will learn how to replace the internal OAuth authorization server with an external OpenID Connect provider from Auth0. 

 Chapter 12,  Centralized Configuration, will deal with how to collect the configuration files from all the microservices in one central repository and use the configuration server to distribute the configuration to the microservices at runtime. You will also learn how to add a Spring Cloud Config Server to the system landscape and configure all microservices to use the Spring Config Server to get its configuration. 

 Chapter 13,  Improving Resilience Using Resilience4j, will explain how to use the capabilities of Resilience4j to prevent, for example, the “chain of failure” anti-pattern. You will learn how to add a retry mechanism and a circuit breaker to the composite service, how to configure the circuit breaker to fail fast when the circuit is open, and how to utilize a fallback method to create a best-effort response. 

xxviii

 Preface

 Chapter 14,  Understanding Distributed Tracing, will show you how to use Zipkin to collect and visualize tracing information. You will also use Micrometer Tracing to add trace IDs to requests so that request chains between cooperating microservices can be visualized. 

 Part 3,  Developing Lightweight Microservices Using Kubernetes, this part will help you to understand the importance of Kubernetes as a runtime platform for containerized workloads. 

 Chapter 15,  Introduction to Kubernetes, will explain the core concepts of Kubernetes and how to perform a sample deployment. You will also learn how to set up Kubernetes locally for development and testing purposes using Minikube. 

 Chapter 16,  Deploying Our Microservices to Kubernetes, will show how to deploy microservices on Kubernetes. You will also learn how to use Helm to package and configure microservices for deployment in Kubernetes. Helm will be used to deploy the microservices for different runtime environments, such as test and production environments. Finally, you will learn how to replace Netflix Eureka with the built-in support in Kubernetes for service discovery, based on Kubernetes Service objects and the kube-proxy runtime component. 

 Chapter 17,  Implementing Kubernetes Features to Simplify the System Landscape, will explain how to use Kubernetes features as an alternative to the Spring Cloud services introduced in the previous chapters. You will learn why and how to replace Spring Cloud Config Server with Kubernetes 

Secrets and ConfigMaps. You will also learn why and how to replace Spring Cloud Gateway with Kubernetes Ingress objects and how to add cert-manager to automatically provision and rotate certificates for external HTTPS endpoints. 

 Chapter 18,  Using a Service Mesh to Improve Observability and Management, will introduce the concept of a service mesh and explain how to use Istio to implement a service mesh at runtime using Kubernetes. You will learn how to use a service mesh to further improve the resilience, security, traffic management, and observability of the microservice landscape. 

 Chapter 19,  Centralized Logging with the EFK Stack, will explain how to use Elasticsearch, Fluentd, and Kibana (the EFK stack) to collect, store, and visualize log streams from microservices. You will learn how to deploy the EFK stack in Minikube and how to use it to analyze collected log records and find log output from all microservices involved in the processing of a request that spans several microservices. You will also learn how to perform root cause analysis using the EFK stack. 

 Chapter 20,  Monitoring Microservices, will show you how to monitor the microservices deployed in Kubernetes using Prometheus and Grafana. You will learn how to use existing dashboards in Grafana to monitor different types of metrics, and you will also learn how to create your own dashboards. Finally, you will learn how to create alerts in Grafana that will be used to send emails with alerts when configured thresholds are passed for selected metrics. 

 Preface

xxix

 Chapter 21,  Installation Instructions for macOS, will show you how to install the tools used in this book on a Mac. Both Intel- and Apple silicon (ARM64)-based Macs are covered. 

 Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu, will show you how to install the tools used in this book on a Windows PC using Windows Subsystem for Linux (WSL) v2. 

 Chapter 23,  Native Compiled Java Microservices, will show you how to create Spring-based microservices that are compiled to native code. You will learn how to use the native image support in Spring Framework and Spring Boot and the underlying GraalVM Native Image compiler. Compared to using the regular Java Virtual Machine, this will result in microservices that can start up almost instantly. 

At the end of every chapter, you’ll find some straightforward questions that will help you to recap some of the content covered in the chapter. Assessments is a file that can be found in the GitHub repository containing the answers to these questions. 

To get the most out of this book

A basic understanding of Java and Spring is recommended. To be able to run all content in the book, you are required to have a Mac Intel- or Apple silicon-based machine or a PC with at least 16 

GB of memory, though it is recommended you have at least 24 GB, as the microservice landscape becomes more complex and resource-demanding toward the end of the book. For a full list of 

software requirements and detailed instructions for setting up your environment to be able to follow along with this book, head over to  Chapter 21 (for macOS) and  Chapter 22 (for Windows). 

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Microservices-with-Spring-Boot-and-Spring-Cloud-Fourth-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/

PacktPublishing. Check them out! 

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://packt.link/gbp/9781805801276. 

Conventions used

There are a number of text conventions used throughout this book. 

xxx

 Preface

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Execute 

the docker ps command:” 

A block of code is set as follows:

@SpringBootApplication

public class ProductServiceApplication {

public static void main(String[] args) {

SpringApplication.run(ProductServiceApplication.class, args); 

}

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

@SpringBootTest

class ProductServiceApplicationTests {

@Test

void contextLoads() {

}

}

Any command-line input or output is written as follows:

./gradlew build 

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “We will use Spring Initializr to generate a skeleton project for each microservice “

Warnings or important notes appear like this. 

Tips and tricks appear like this. 

 Preface

xxxi

Get in touch

Feedback from our readers is always welcome. 

General feedback: If you have questions about any aspect of this book or have any general feedback, please email us at customercare@packt.com and mention the book’s title in the subject 

of your message. 

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. 

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form. 

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material. 

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packt.com/. 

Share your thoughts

Once you’ve read  Microservices with Spring Boot and Spring Cloud,  Fourth Edition we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback. 

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content. 


Part 1

Getting Started 

with Microservice 

Development Using 

Spring Boot

In this first part of the book, you will learn how to use some of the most important features of Spring Boot to develop microservices. 

This part of the book includes the following chapters:

•   Chapter 1 , Introduction to Microservices

•   Chapter 2 , Introduction to Spring Boot

•   Chapter 3 , Creating a Set of Cooperating Microservices

•   Chapter 4, Deploying Our Micr oservices Using Docker

•   Chapter 5 , Adding an API Description Using OpenAPI

•   Chapter 6, Adding P ersistence

•   Chapter 7 , Developing Reactive Microservices


1Introduction to Microservices

This book does not blindly praise microservices. Instead, it’s about how we can use their benefits while being able to handle the challenges of building scalable, resilient, and manageable microservices. 

As an introduction to this book, the following topics will be covered in this chapter:

•  My way into microservices

•  What is a microservice-based architecture? 

•  Challenges with microservices

•  Design patterns for handling challenges

•  Software enablers that can help us handle these challenges

•  Other important considerations that aren’t covered in this book

Technical requirements

No installations are required for this chapter. However, you may be interested in taking a look at the C4 model conventions, https://c4model.com, since the illustrations in this chapter are inspired by the C4 model. 

This chapter does not contain any source code. 

Getting the most out of this book – get to know your 

free benefits

Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge your learning journey and help you learn without limits. 

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

[image: Image 7]

[image: Image 8]

[image: Image 9]

4

 Introduction to Microservices

Here’s a quick overview of what you get with this book:

Next-gen reader

Our web-based reader, designed to help you 

learn effectively, comes with the following 

features:

Multi-device progress sync: Learn from 

any device with seamless progress sync. 

Highlighting and notetaking: Turn your 

reading into lasting knowledge. 

Bookmarking: Revisit your most 

important learnings anytime. 

Dark mode: Focus with minimal eye 

 Figure 1.1: Illustration of the 

strain by switching to dark or sepia mode. 

 next-gen Packt Reader’s 

 features

Interactive AI assistant (beta)

Our interactive AI assistant has been trained 

on the content of this book, to maximize 

your learning experience. It comes with the 

following features:

Summarize it: Summarize key sections or 

an entire chapter. 

AI code explainers: In the next-gen Packt 

Reader, click the Explain button above each 

code block for AI-powered code explanations. 

Note: The AI assistant is part of next-gen Packt 

 Figure 1.2: Illustration of Packt’s 

Reader and is still in beta. 

 AI assistant

[image: Image 10]

[image: Image 11]

[image: Image 12]

[image: Image 13]

[image: Image 14]

 Chapter 1

5

DRM-free PDF or ePub version 

Learn without limits with the following perks 

included with your purchase:

Learn from anywhere with a DRM-free PDF 

copy of this book. 

Use your favorite e-reader to learn using a 

DRM-free ePub version of this book. 

 Figure 1.3: Free PDF and ePub

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then search for this book by name. Ensure it’s the correct edition. 

Note: Keep your purchase invoice ready before you start. 

My way into microservices

When I first learned about the concept of micr services back in 2014, I realized that I had been developing microservices (well, kind of) for a number of years without knowing it was microservices I was dealing with. 

I was involved in a project that started in 2009 where we developed a platform based on a set of separated features. The platform was delivered to a number of customers that deployed it 

on-premises. To make it easy for customers to pick and choose what features they wanted to 

use from the platform, each feature was developed as an autonomous software component; that is, it had its own persistent data and only communicated with other components using 

well-defined APIs. 

[image: Image 15]

[image: Image 16]

6

 Introduction to Microservices

Since I can’t discuss specific features of this project’s platform, I have generalized the names of the components, which are labeled from Component A to Component F. The composition of the platform as a set of components is illustrated as follows:

 Figure 1.4: The composition of the platform

From the illustration, we can also see that each component has its own storage for persistent data and does not share databases with other components. 

Each component is developed using Java and the Spring Framework, packaged as a WAR file, and deployed as a web app in a Java EE web container, for example, Apache Tomcat. Depending on 

the customer’s specific requirements, the platform can be deployed on single or multiple servers. 

A two-node deployment may look as follows:

 Figure 1.5: A two-node deployment scenario

[image: Image 17]

 Chapter 1

7

Benefits of autonomous software components

From this project, I learned that decomposing the platform’s functionality into a set of autonomous software components provides a number of benefits:

•  A customer can deploy parts of the platform in its own system landscape, integrating it 

with its existing systems using its well-defined APIs. 

•  The following is an example where a customer decided to deploy Component A, Component B, Component D, and Component E from the platform and integrate them with two existing systems, System A and System B, in the customer’s system landscape: Figure 1.6: Partial deployment of the platform

[image: Image 18]

[image: Image 19]

8

 Introduction to Microservices

•  Another customer could choose to replace parts of the platform’s functionality with im-

plementations that already exist in the customer’s system landscape, potentially requiring 

some adoption of the existing functionality in the platform’s APIs. The following is an 

example where a customer has replaced Component C and Component F in the platform with their own implementation:

 Figure 1.7: Replacing parts of the platform

•  Each component in the platform can be delivered and upgraded separately. Thanks to 

the use of well-defined APIs, one component can be upgraded to a new version without 

being dependent on the life cycle of the other components. 

The following is an example where Component A has been upgraded from version v1.1 

to v1.2. Component B, which calls Component A, does not need to be upgraded since it uses a well-defined API; that is, it’s still the same after the upgrade (or it’s at least backward-compatible):

 Figure 1.8: Upgrading a specific component

[image: Image 20]

 Chapter 1

9

•  Thanks to the use of well-defined APIs, each component in the platform can also be scaled out to multiple servers independently of the other components. Scaling can be done either 

to meet high-availability requirements or to handle higher volumes of requests. In this 

specific project, it was achieved by  manually setting up load balancers in front of a number of servers, each running a Java EE web container. An example where Component A has 

been scaled out to three instances looks as follows:

 Figure 1.9: Scaling out the platform

Challenges with autonomous software components

My team also learned that decomposing the platform introduced a number of new challenges 

that we were not exposed to (at least not to the same degree) when developing more traditional, monolithic applications:

•  Adding new instances to a component required manually configuring load balancers and 

manually setting up new nodes. This work was both time-consuming and error-prone. 

10

 Introduction to Microservices

•  The platform was initially prone to errors caused by the other systems it was communi-

cating with. If a system stopped responding to requests that were sent from the platform 

in a timely fashion, the platform quickly ran out of crucial resources, for example, OS 

threads, specifically when exposed to a large number of concurrent requests. This caused 

components in the platform to hang or even crash. Since most of the communication in 

the platform was based on synchronous communication, one component crashing could 

lead to cascading failures; that is, clients of the crashing components could also crash after a while. This is known as a chain of failures. 

•  Keeping the configuration in all the instances of the components consistent and up to 

date quickly became a problem, causing a lot of manual and repetitive work. This led to 

quality problems from time to time. 

•  Monitoring the state of the platform in terms of latency issues and hardware usage (for 

example, usage of CPU, memory, disks, and the network) was more complicated compared 

to monitoring a single instance of a monolithic application. 

•  Collecting log files from a number of distributed components and correlating related log 

events from the components was also difficult, but feasible since the number of compo-

nents was fixed and known in advance. 

Over time, we addressed most of the challenges that were mentioned in the preceding list with a mix of in-house-developed tools and well-documented instructions for handling these challenges manually. The scale of the operation was, in general, at a level where manual procedures for releasing new versions of the components and handling runtime issues were acceptable, even though they were not desirable. 

Enter microservices

Learning about microservice-based architectures in 2014 made me realize that other projects had also been struggling with similar challenges (partly for other reasons than the ones I described earlier, for example, the large cloud service providers meeting web-scale requirements). Many microservice pioneers had published details of lessons they’d learned. It was very interesting to learn from these lessons. 

Many of the pioneers initially developed monolithic applications that made them very successful from a business perspective. But over time, these monolithic applications became more and more difficult to maintain and evolve. They also became challenging to scale beyond the capabilities of the largest machines available (also known as vertical scaling). 

 Chapter 1

11

Eventually, the pioneers started to find ways to split monolithic applications into smaller components that could be released and scaled independently of each other. Scaling small components can be done using horizontal scaling, that is, deploying a component on a number of smaller servers and placing a load balancer in front of it. If done in the cloud, the scaling capability is potentially endless – it is just a matter of how many virtual servers you bring in (given that your component can scale out on a huge number of instances, but more on that later on). 

In 2014, I also learned about a number of new open source projects that delivered tools and 

frameworks that simplified the development of microservices and could be used to handle the 

challenges that come with a microservice-based architecture. Some of these are as follows:

•  Pivotal released Spring Cloud, which wraps parts of the Netflix OSS in order to provide capabilities such as dynamic service discovery, configuration management, distributed 

tracing, circuit breaking, and more. 

•  I also learned about Docker and the container revolution, which is great for minimizing the gap between development and production. Being able to package a component not 

only as a deployable runtime artifact (for example, a Java .war or .jar file) but as a com-

plete image, ready to be launched as a container on a server running Docker, was a great 

step forward for development and testing. 

For now, think of a container as an isolated process. We will learn more 

about containers in  Chapter 4,  Deploying Our Microservices Using Docker. 

•  A container engine, such as Docker, is not enough to be able to use containers in a pro-

duction environment. Something is needed that can ensure that all the containers are up 

and running and that can scale out containers on a number of servers, thereby providing 

high availability and increased compute resources. 

•  These types of products became known as container orchestrators. A number of prod-

ucts have evolved over the last few years, such as Apache Mesos, Docker in swarm mode, 

Amazon ECS, HashiCorp Nomad, and Kubernetes. Kubernetes was initially developed by 

Google. When Google released v1.0 in 2015, it also donated Kubernetes to CNCF (https://

www.cncf.io/). During 2018, Kubernetes became kind of a de facto standard, available both pre-packaged for on-premises use and as a service from most of the major cloud 

providers. 

[image: Image 21]

12

 Introduction to Microservices

As explained at https://kubernetes.io/blog/2015/04/borg-

predecessor-to-kubernetes/, Kubernetes is actually an open source-based rewrite of an internal container orchestrator, named Borg, used by 

Google for more than a decade before the Kubernetes project was founded. 

•  In 2018, I started to learn about the concept of a service mesh and how it can complement a container orchestrator to further offload microservices from responsibilities to make 

them manageable and resilient. 

A sample microservice landscape

Since this book can’t cover all aspects of the technologies I just mentioned, I will focus on the parts that have proven to be useful in customer projects I have been involved in since 2014. I will describe how they can be used together to create cooperating microservices that are manageable, scalable, and resilient. 

Each chapter in this book will address a specific concern. To demonstrate how things fit together, I will use a small set of cooperating microservices that we will evolve throughout this book. The microservice landscape will be described in  Chapter 3,  Creating a Set of Cooperating Microservices; for now, it is sufficient to know that it looks like this:

 Figure 1.10: The microservice-based system landscape used in the book

Note that this is a very small system landscape of cooperating microservices. The 

surrounding support services that we will add in the coming chapters might look 

overwhelmingly complex for these few microservices. But keep in mind that the 

solutions presented in this book aim to support a much larger system landscape. 

 Chapter 1

13

Now that we have been introduced to the potential benefits and challenges of microservices, let’s start to look into how a microservice can be defined. 

Defining a microservice

A microservice architecture is about splitting up monolithic applications into smaller components, which achieves two major goals:

•  Faster development, enabling continuous deployments

•  Easier to scale, manually or automatically

A microservice is essentially an autonomous software component that is independently upgradeable, replaceable, and scalable. To be able to act as an autonomous component, it must fulfill certain criteria, as follows:

•  It must conform to a shared-nothing architecture; that is, microservices don’t share data in databases with each other! 

•  It must only communicate through well-defined interfaces, either using APIs and synchro-

nous services or preferably by sending messages asynchronously. The APIs and message 

formats used must be stable and well documented and evolve by following a defined 

versioning strategy. 

•  It must be deployed as separate runtime processes. Each instance of a microservice runs 

in a separate runtime process, for example, a Docker container. 

•  Microservice instances are stateless so that incoming requests to a microservice can be 

handled by any of its instances. 

Using a set of cooperating microservices, we can deploy to a number of smaller servers instead of being forced to deploy to a single big server, like we have to do when deploying a monolithic application. 

Given that the preceding criteria have been fulfilled, it is easier to scale up a single microservice into more instances (for example, using more virtual servers) compared to scaling up a big monolithic application. 

Utilizing autoscaling capabilities that are available in the cloud is also a possibility but is not typically feasible for a big monolithic application. It’s also easier to upgrade or even replace a single microservice compared to upgrading a big monolithic application. 

[image: Image 22]

14

 Introduction to Microservices

This is illustrated by the following diagram, where a monolithic application has been divided into six microservices, all of which have been deployed into separate servers. Some of the microservices have also been scaled up independently of the others:

 Figure 1.11: Dividing a monolith into microservices

A very frequent question I receive from customers is:

How big should a microservice be? 

I try to use the following rules of thumb:

•  Small enough for a developer to keep track of

•  Big enough to not jeopardize performance (that is, latency) and/or data consistency (SQL 

foreign keys between data that’s stored in different microservices are no longer something 

you can take for granted)

So, to summarize, microservice architecture is, in essence, an architectural style where we decompose a monolithic application into a group of cooperating autonomous software components. 

The motivation is to enable faster development and to make it easier to scale the application. 

With a better understanding of how to define a microservice, we can move on and detail the 

challenges that come with a system landscape of microservices. 

 Chapter 1

15

Challenges with microservices

In the  Challenges with autonomous software components section, we have already seen some of the challenges that autonomous software components can bring (and they all apply to microservices as well), as follows:

•  Many small components that use synchronous communication can cause  a chain of failure problem, especially under high load

•  Keeping the configuration up to date for many small components can be challenging

•  It’s hard to track a request that’s being processed and involves many components, for 

example, when performing root cause analysis, where each component stores log records 

locally

•  Analyzing the usage of hardware resources on a component level can be challenging as well

•  Manual configuration and management of many small components can become costly 

and error-prone

Another downside (but not always obvious initially) of decomposing an application into a group of autonomous components is that they form a distributed system. Distributed systems are known to be, by their nature, very hard to deal with. This has been known for many years (but in many cases was neglected until proven differently). My favorite quote to establish this fact is from Peter Deutsch, who, back in 1994, stated the following:

The 8 fallacies of distributed computing: Essentially everyone, when they 

first build a distributed application, makes the following eight assump-

tions. All prove to be false in the long run and all cause big trouble and 

painful learning experiences:

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. The topology doesn’t change

6. There is one administrator

16

 Introduction to Microservices

7. The transport cost is zero

8. The network is homogeneous

(Peter Deutsch, 1994)

In general, building microservices based on these false assumptions leads to solutions that are prone to both temporary network glitches and problems that occur in other microservice instances. 

When the number of microservices in a system landscape increases, the likelihood of problems also goes up. A good rule of thumb is to design your microservice architecture based on the assumption that there is always something going wrong in the system landscape. The microservice architecture needs to be designed to handle this, in terms of detecting problems and restarting failed components. Also, on the client side, ensure that requests are not sent to failed microservice instances. When problems are corrected, requests to the previously failing microservice should be resumed; that is, microservice clients need to be resilient. All of this needs, of course, to be fully automated. With a large number of microservices, it is not feasible for operators to handle this manually! 

The scope of this is large, but we will limit ourselves for now and move on to learn about design patterns for microservices. 

Design patterns for microservices

This topic will cover the use of design patterns to mitigate challenges with microservices, as described in the preceding section. Later in this book, we will see how we can implement these design patterns using Spring Boot, Spring Cloud, Kubernetes, and Istio. 

The concept of design patterns is actually quite old; it was invented by Christopher Alexander back in 1977. In essence, a design pattern is about describing a reusable solution to a problem when given a specific context. Using a tried and tested solution from a design pattern can save a lot of time and increase the quality of the implementation compared to spending time inventing the solution ourselves. 

 Chapter 1

17

The design patterns we will cover are as follows:

•  Service discovery

•  Edge server

•  Reactive microservices

•  Central configuration

•  Centralized log analysis

•  Distributed tracing

•  Circuit breaker

•  Control loop

•  Centralized monitoring and alarms

This list is not intended to be comprehensive; instead, it’s a minimal list of design 

patterns that are required to handle the challenges we described previously. 

We will use a lightweight approach to describing design patterns and focus on the following:

•  The problem

•  A solution

•  Requirements for the solution

Throughout this book, we will delve more deeply into how to apply these design patterns. The context for these design patterns is a system landscape of cooperating microservices where the microservices communicate with each other using either synchronous requests (for example, 

using HTTP) or by sending asynchronous messages (for example, using a message broker). 

Service discovery

The service discovery pattern has the following problem, solution, and solution requirements. 

Problem

How can clients find microservices and their instances? 

[image: Image 23]

18

 Introduction to Microservices

Microservices instances are typically assigned dynamically allocated IP addresses when they start up, for example, when running in containers. This makes it difficult for a client to make a request to a microservice that, for example, exposes a REST API over HTTP. Consider the following diagram: Figure 1.12: The service discovery issue

Solution

Add a new component – a service discovery service – to the system landscape, which keeps track of currently available microservices and the IP addresses of its instances. 

Solution requirements

Some solution requirements are as follows:

•  Automatically register/unregister microservices and their instances as they come and go. 

•  The client must be able to make a request to a logical endpoint for the microservice. The request will be routed to one of the available microservice instances. 

•  Requests to a microservice must be load-balanced over the available instances. 

•  We must be able to detect instances that are currently unhealthy so that requests will 

not be routed to them. 

Implementation notes: As we will see in  Chapter 9,  Adding Service Discovery Using Netflix Eureka, 

 Chapter 15,  Introduction to Kubernetes, and  Chapter 16,  Deploying Our Microservices to Kubernetes, this design pattern can be implemented using two different strategies:

[image: Image 24]

 Chapter 1

19

•  Client-side routing: The client uses a library that communicates with the service discovery service to find out the proper instances to send the requests to. 

•  Server-side routing: The infrastructure of the service discovery service also exposes a reverse proxy that all requests are sent to. The reverse proxy forwards the requests to a 

proper microservice instance on behalf of the client. 

Edge server

The edge server pattern has the following problem, solution, and solution requirements. 

Problem

In a system landscape of microservices, it is in many cases desirable to expose some of the microservices to the outside of the system landscape and hide the remaining microservices from external access. The exposed microservices must be protected against requests from malicious clients. 

Solution

Add a new component, an edge server, to the system landscape that all incoming requests will go through:

 Figure 1.13: The edge server design pattern

Implementation notes: An edge server typically behaves like a reverse proxy and can be integrated with a discovery service to provide dynamic load-balancing capabilities. 

20

 Introduction to Microservices

Solution requirements

Some solution requirements are as follows:

•  Hide internal services that should not be exposed outside their context; that is, only route requests to microservices that are configured to allow external requests

•  Expose external services and protect them from malicious requests; that is, use standard 

protocols and best practices such as OAuth, OIDC, JWT tokens, and API keys to ensure 

that the clients are trustworthy

Reactive microservices

The reactive microservices pattern has the following problem, solution, and solution requirements. 

Problem

Traditionally, as Java developers, we are used to implementing synchronous communication 

using blocking I/O, for example, a RESTful JSON API over HTTP. Using blocking I/O means that a thread is allocated from the operating system for the length of the request. If the number of concurrent requests goes up, a server might run out of available threads in the operating system, causing problems ranging from longer response times to crashing servers. Using a microservice architecture typically makes this problem even worse, where typically a chain of cooperating microservices is used to serve a request. The more microservices involved in serving a request, the faster the available threads will be drained. 

Solution

Use non-blocking I/O to ensure that no operating system threads are allocated while waiting for processing to occur in another service, that is, a database or another microservice, for example, by using a reactive programming model such as Project Reactor or using virtual threads. 

Solution requirements

Some solution requirements are as follows:

•  Whenever feasible, use an asynchronous programming model, sending messages without 

waiting for the receiver to process them. 

•  If a synchronous programming model is preferred, use reactive frameworks that can ex-

ecute synchronous requests using non-blocking I/O, without allocating a thread while 

waiting for a response. This will make the microservices easier to scale in order to handle 

an increased workload. 

 Chapter 1

21

•  Microservices must also be designed to be resilient and self-healing. Resilient means being capable of producing a response even if one of the services it depends on fails; self-healing means that once the failing service is operational again, the microservice must be able 

to resume using it. 

In 2013, key principles for designing reactive systems were established in The Reactive Manifesto (https://www.reactivemanifesto.org/). 

According to the manifesto, the foundation for reactive systems is that they are 

message-driven; they use asynchronous communication. This allows them to be 

elastic – that is, scalable – and resilient – that is, tolerant to failures. Elasticity and 

resilience together enable a reactive system to always respond in a timely fashion. 

Central configuration

The central configuration pattern has the following problem, solution, and solution requirements. 

Problem

An application is, traditionally, deployed together with its configuration, for example, a set of environment variables and/or files containing configuration information. Given a system landscape based on a microservice architecture, that is, with a large number of deployed microservice instances, some queries arise:

•  How do I get a complete picture of the configuration that is in place for all the running microservice instances? 

•  How do I update the configuration and make sure that all the affected microservice in-

stances are updated correctly? 

[image: Image 25]

22

 Introduction to Microservices

Solution

Add a new component, a configuration server, to the system landscape to store the configuration of all the microservices, as illustrated by the following diagram:

 Figure 1.14: The central configuration design pattern

Solution requirements

Make it possible to store configuration information for a group of microservices in one place, with different settings for different environments (for example, dev, test, qa, and prod). 

Centralized log analysis

Centralized log analysis has the following problem, solution, and solution requirements. 

Problem

Traditionally, an application would write log events to log files that are stored in the local filesystem of the server that the application runs on. Given a system landscape based on a microservice architecture, that is, with a large number of deployed microservice instances on a large number of smaller servers, we can ask the following questions:

•  How do I get an overview of what is going on in the system landscape when each micro-

service instance writes to its own local log file? 

•  How do I find out if any of the microservice instances get into trouble and start writing error messages to their log files? 

[image: Image 26]

 Chapter 1

23

•  If end users start to report problems, how can I find related log messages; that is, how 

can I identify which microservice instance is the root cause of the problem? The following 

diagram illustrates the problem:

 Figure 1.15: Microservices write log files to their local filesystem

Solution

Add a new component that can manage centralized logging and is capable of the following:

•  Detecting new microservice instances and collecting log events from them

•  Interpreting and storing log events in a structured and searchable way in a central database

•  Providing APIs and graphical tools for querying and analyzing log events

Solution requirements

Some solution requirements are as follows:

•  Microservices stream log events to standard system output, stdout. This makes it easier 

for a log collector to find the log events compared to when log events are written to mi-

croservice-specific log files. 

24

 Introduction to Microservices

•  Microservices tag the log events with the correlation ID described in the next section 

about the distributed tracing design pattern. 

•  A canonical log format is defined, so that log collectors can transform log events collected from the microservices to a canonical log format before log events are stored in the central database. Storing log events in a canonical log format is required to be able to query and 

analyze the collected log events. 

Distributed tracing

Distributed tracing has the following problem, solution, and solution requirements. 

Problem

It must be possible to track requests and messages that flow between microservices while processing an external request to the system landscape. 

Some examples of fault scenarios are as follows:

•  If end users start to file support cases regarding a specific failure, how can we identify the microservice that caused the problem, that is, the root cause? 

•  If one support case mentions problems related to a specific entity, for example, a specific order number, how can we find log messages related to processing this specific order – for 

example, log messages from all microservices that were involved in processing it? 

•  If end users start to file support cases regarding an unacceptably long response time, how can we identify which microservice in a call chain is causing the delay? 

The following diagram depicts this:

[image: Image 27]

 Chapter 1

25

 Figure 1.16: The distributed tracing issue

Solution

To track the processing between cooperating microservices, we need to ensure that all related requests and messages are marked with a common correlation ID and that the correlation ID is part of all log events. Based on a correlation ID, we can use the centralized logging service to find all related log events. If one of the log events also includes information about a business-related identifier, for example, the ID of a customer, product, or order, we can find all related log events for that business identifier using the correlation ID. 

To be able to analyze delays in a call chain of cooperating microservices, we must be able to collect timestamps for when requests, responses, and messages enter and exit each microservice. 

26

 Introduction to Microservices

Solution requirements

The solution requirements are as follows:

•  Assign unique correlation IDs to all incoming or new requests and events in a well-known 

place, such as a header with a standardized name

•  When a microservice makes an outgoing request or sends a message, it must add the 

correlation ID to the request and message

•  All log events must include the correlation ID in a predefined format so that the centralized logging service can extract the correlation ID from the log event and make it searchable

•  Trace records must be created for when requests, responses, and messages both enter or 

exit a microservice instance

Circuit breaker

The circuit breaker pattern has the following problem, solution, and solution requirements. 

Problem

A system landscape of microservices that uses synchronous intercommunication can be exposed 

to a chain of failures. If one microservice stops responding, its clients might get into problems as well and stop responding to requests from their clients. The problem can propagate recursively throughout a system landscape and take out major parts of it. 

This is especially common in cases where synchronous requests are executed using blocking I/O, that is, blocking a thread from the underlying operating system while a request is being processed. 

Combined with a large number of concurrent requests and a service that starts to respond un-

expectedly slowly, thread pools can quickly become drained, causing the caller to hang and/or crash. This failure can spread unpleasantly quickly to the caller’s caller, and so on. 

Solution

Add a circuit breaker that prevents new outgoing requests from a caller if it detects a problem with the service it calls. 

Solution requirements

The solution requirements are as follows:

•  Open the circuit and fail fast (without waiting for a timeout) if problems with the service are detected. 

[image: Image 28]

 Chapter 1

27

•  Probe for failure correction (also known as a half-open circuit); that is, allow a single request to go through on a regular basis to see whether the service is operating normally 

again. 

•  Close the circuit if the probe detects that the service is operating normally again. This capability is very important since it makes the system landscape resilient to these kinds 

of problems; in other words, it self-heals. 

The following diagram illustrates a scenario where all synchronous communication within the 

system landscape of microservices goes through circuit breakers. All the circuit breakers are closed; they allow traffic, except for one circuit breaker (for Microservice E) that has detected problems in the service the requests go to. Therefore, this circuit breaker is open and utilizes fast-fail logic; that is, it does not call the failing service and waits for a timeout to occur. Instead, Microservice E can immediately return a response, optionally applying some fallback logic before responding: Figure 1.17: The circuit breaker design pattern

Control loop

The control loop pattern has the following problem, solution, and solution requirements. 

Problem

In a system landscape with a large number of microservice instances spread out over a number of servers, it is very difficult to manually detect and correct problems such as crashed or hung microservice instances. 

[image: Image 29]

28

 Introduction to Microservices

Solution

Add a new component, a control loop, to the system landscape. This process is illustrated as follows:

 Figure 1.18: The control loop design pattern

Solution requirements

The control loop will constantly observe the actual state of the system landscape, comparing it with a desired state, as specified by the operators. If the two states differ, it will take action to make the actual state equal to the desired state. 

Implementation notes: In the world of containers, a  container orchestrator such as Kubernetes is typically used to implement this pattern. We will learn more about Kubernetes in  Chapter 15, 

 Introduction to Kubernetes. 

Centralized monitoring and alarms

For this pattern, we have the following problem, solution, and solution requirements. 

Problem

If observed response times and/or the usage of hardware resources become unacceptably high, 

it can be very hard to discover the root cause of the problem. For example, we need to be able to analyze hardware resource consumption per microservice. 

Solution

To curb this, we add a new component, a monitor service, to the system landscape, which is capable of collecting metrics about hardware resource usage for each microservice instance level. 

[image: Image 30]

 Chapter 1

29

Solution requirements

The solution requirements are as follows:

•  It must be able to collect metrics from all the servers that are used by the system landscape, which includes autoscaling servers

•  It must be able to detect new microservice instances as they are launched on the available servers and start to collect metrics from them

•  It must be able to provide APIs and graphical tools for querying and analyzing the col-

lected metrics

•  It must be possible to define alerts that are triggered when a specified metric exceeds a specified threshold value

The following screenshot shows Grafana, which visualizes metrics from Prometheus, a monitoring tool that we will look at in  Chapter 20,  Monitoring Microservices: Figure 1.19: Monitoring with Grafana

30

 Introduction to Microservices

That was an extensive list! I am sure these design patterns helped you to understand the challenges with microservices better. Next, we will move on to learning about software enablers. 

Software enablers

As we’ve already mentioned, we have a number of very good open source tools that can help us both meet our expectations of microservices and, most importantly, handle the new challenges that come with them:

•  Spring Boot, an application framework

•  Spring Cloud/Netflix OSS, a mix of application framework and ready-to-use services

•  Docker, a tool for running containers on a single server

•  Kubernetes, a container orchestrator that manages a cluster of servers that run containers

•  Istio, a service mesh implementation

The following table maps the design patterns we will need to handle these challenges, along with the corresponding open source tool that will be used in this book to implement the design patterns: Design Pattern

Spring Boot

Spring Cloud

Kubernetes

Istio

Netflix 

Service 

Eureka and 

Kubernetes kube-proxy 

discovery

Spring Cloud 

and service resources

LoadBalancer

Spring Cloud 

Gateway and 

Kubernetes Ingress 

Istio ingress 

Edge server

Spring Security 

controller

gateway

OAuth

Project 

Reactive 

Reactor 

microservices

and Spring 

WebFlux

Central 

Spring Config 

Kubernetes ConfigMaps 

configuration

Server

and Secrets

 Chapter 1

31

Elasticsearch, Fluentd, 

and Kibana. Note: 

Actually not part of 

Centralized log 

Kubernetes, but can 

analysis

easily be deployed and 

configured together with 

Kubernetes. 

Micrometer 

Distributed 

Tracing and 

Jaeger

tracing

Zipkin

Outlier 

Circuit breaker

Resilience4j

detection

Kubernetes controller 

Control loop

managers

Centralized 

Kiali, 

monitoring and 

Grafana, and 

alarms

Prometheus

 Figure 1.17: Mapping design patterns to open source tools

Please note that Spring Cloud, Kubernetes, or Istio can be used to implement some design patterns, such as service discovery, edge server, and central configuration. We will discuss the pros and cons of using these options later in this book. 

With the design patterns and tools that we will use in the book introduced, we will wrap up this chapter by going through some related areas that are also important, but not covered in this book. 

Other important considerations

To be successful when it comes to implementing a microservice architecture, there are a num-

ber of related areas to consider. I will not cover these areas in this book; instead, I’ll just briefly mention them here as follows:

•  Importance of DevOps: One of the benefits of a microservice architecture is that it enables shorter delivery times and, in extreme cases, allows  continuous delivery of new versions. 

To be able to deliver that fast, you need to establish an organization where dev and ops 

work together under the mantra  you built it, you run it. This means that developers are no longer allowed to simply pass new versions of the software over to the operations team. 

32

 Introduction to Microservices

Instead, the dev and ops teams need to work much more closely together, organized into 

teams that have full responsibility for the end-to-end life cycle of one microservice (or a 

group of related microservices). Besides the organizational part of dev and ops, the teams 

also need to automate the delivery chain, that is, the steps for building, testing, packaging, and deploying the microservices to the various deployment environments. This is known 

as setting up a  delivery pipeline. 

•  Organizational aspects and Conway’s law: Another interesting aspect of how a microservice architecture might affect the organization is  Conway’s law, which states the following:

 “Any organization that designs a system (defined broadly) will produce 

 a design whose structure is a copy of the organization’s communication 

 structure.” 

 (Melvyn Conway, 1967)

This means that the traditional approach of organizing IT teams for large applications 

based on their technology expertise (for example, UX, business logic, and database teams) 

will lead to a big three-tier application – typically, a big monolithic application with a 

separately deployable unit for the UI, one for processing the business logic, and one for the big database. To successfully deliver an application based on a microservice architecture, 

the organization needs to be changed into teams that work with one or a group of related 

microservices. The team must have the skills that are required for those microservices, 

for example, languages and frameworks for the business logic and database technologies 

for persisting its data. 

•  Decomposing a monolithic application into microservices: One of the most difficult decisions (and expensive if done wrong) is how to decompose a monolithic application 

into a set of cooperating microservices. If this is done in the wrong way, you will end up 

with problems such as the following:

•  Slow delivery: Changes in the business requirements will affect too many of the 

microservices, resulting in extra work

•  Bad performance: To be able to perform a specific business function, a lot of 

requests have to be passed between various microservices, resulting in long re-

sponse times

 Chapter 1

33

•  Inconsistent data: Since related data is separated into different microservices, 

inconsistencies can appear over time in data that’s managed by different micro-

services

A good approach to finding proper boundaries for microservices is to apply domain-driven 

design and its concept of bounded contexts. According to Eric Evans, a  bounded context is: 

 “A description of a boundary (typically a subsystem, or the work of a par-

 ticular team) within which a particular model is defined and applicable.” 

This means that a microservice defined by a bounded context will have a well-defined 

model of its own data. 

•  Importance of API design: If a group of microservices exposes a common, externally available API, it is important that the API is easy to understand and adheres to the following guidelines:

•  If the same concept is used in multiple APIs, it should have the same description 

in terms of the naming and data types used. 

•  It is of great importance that APIs are allowed to evolve in an independent but 

controlled manner. This typically requires applying a proper versioning schema 

for the APIs, for example, https://semver.org/. This implies supporting multiple major versions of an API over a specific period of time, allowing clients of the API 

to migrate to new major versions at their own pace. 

•  Migration paths from on-premises to the cloud: Many companies today run their workloads on-premises, but are searching for ways to move parts of their workload to the cloud. 

Since most cloud providers today offer  Kubernetes as a service, an appealing migration approach can be to first move the workload into Kubernetes on-premises (as microservices or not) and then redeploy it on a Kubernetes-as-a-service offering provided by a 

preferred cloud provider. 

•  Good  design  principles  for  microservices  –  the  12-factor  app: The 12-factor app 

(https://12factor.net) is a set of design principles for building software that can be deployed in the cloud. Most of these design principles are applicable to building microservices independently of where and how they will be deployed, that is, in the cloud or 

on-premises. Some of these principles will be covered in this book, such as config, pro-

cesses, and logs, but not all. 

[image: Image 31]

34

 Introduction to Microservices

That’s it for the first chapter! I hope it gave you a good basic idea of microservices and the challenges that come with them, as well as an overview of what we will cover in this book. 

Summary

In this introductory chapter, I described my own way into microservices and delved into a bit of their history. We defined what a microservice is – a kind of autonomous distributed component with some specific requirements. We also went through both the good and challenging aspects 

of microservice-based architecture. 

To handle these challenges, we defined a set of design patterns and briefly mapped the capa-

bilities of open source products such as Spring Boot, Spring Cloud, Kubernetes, and Istio to the design patterns. 

You’re eager to develop your first microservice now, right? In the next chapter, you will be introduced to Spring Boot and complementary open source tools that we will use to develop our first microservices. 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

2Introduction to Spring Boot

In this chapter, you will be introduced to how to build a set of cooperating microservices using Spring Boot, focusing on how to develop functionality that delivers business value. The challenges with microservices that we pointed out in the previous chapter will be considered only to some degree, but they will be addressed to their full extent in later chapters. 

We will develop microservices that contain business logic based on plain Spring beans and expose REST APIs using Spring WebFlux. The APIs will be documented based on the OpenAPI Specification using springdoc-openapi. To make the data processed by the microservices persistent, we will use Spring Data to store data in both SQL and NoSQL databases. 

Since Spring Boot v2.0 was released in March 2018, it has become much easier to develop reactive microservices, including non-blocking synchronous REST APIs. To develop message-based 

asynchronous services, we will use Spring Cloud Stream. Refer to  Chapter 1,  Introduction to Microservices, the Reactive microservices section, for more information. 

Spring Boot 3.0 was released in November 2022. It is based on the Spring Framework 6.0 and 

Jakarta EE 9 and is compatible with Jakarta EE 10. Java 17, the current long-term support (LTS) release, is required as the minimum Java version. Five minor versions, 3.1–3.5, have been released since Spring Boot 3.0. This book is based on Spring Boot 3.5, which was released in May 2025. 

Finally, we will use Docker to run our microservices as containers. This will allow us to start and stop our microservice landscape, including database servers and a message broker, with a single command. 

That’s a lot of technologies and frameworks, so let’s go through each of them briefly to see what they are about! 

36

 Introduction to Spring Boot

In this chapter, we will introduce the following open source projects:

•  Spring Boot – this section also includes an overview of what is new in versions 3.0–3.5 

and how to migrate v2 applications

•  Spring WebFlux

•  springdoc-openapi

•  Spring Data

•  Spring Cloud Stream

•  Docker

More details about each product will be provided in upcoming chapters. 

Technical requirements

This chapter does not contain any source code that can be downloaded, nor does it require any tools to be installed. 

Spring Boot

Spring Boot, and the Spring Framework that Spring Boot is based on, is a great framework for developing microservices in Java. 

When the Spring Framework v1.0 was released back in 2004, one of its main goals was to ad-

dress the overly complex J2EE standard (short for Java 2 Platform,  Enterprise Edition) with its infamous and heavyweight deployment descriptors. The Spring Framework provided a much 

more lightweight development model based on the concept of dependency injection. The Spring Framework also used far more lightweight XML configuration files compared to the deployment 

descriptors in J2EE. 

To make things even worse, with the J2EE standard, the heavyweight deployment 

descriptors actually came in two types:

• 

Standard deployment descriptors, describing the configuration in a stan-

dardized way

• 

Vendor-specific deployment descriptors, mapping the configuration to ven-

dor-specific features in the vendor’s application server

 Chapter 2

37

In 2006, J2EE was renamed Java EE, short for Java Platform, Enterprise Edition. In 2017, Oracle submitted Java EE to the Eclipse Foundation. In February 2018, Java EE was renamed Jakarta EE. 

The new name, Jakarta EE, also affects the names of the Java packages defined by the standard, requiring that developers perform package renaming when upgrading to Jakarta EE, as described in the  Migrating a Spring Boot 2 application section later in this chapter. Over the years, while the Spring Framework gained increasing popularity, the functionality in the Spring Framework grew significantly. Slowly, the burden of setting up a Spring application using the no-longer-so-lightweight XML configuration file became a problem. 

In 2014, Spring Boot v1.0 was released, addressing these problems! 

Convention over configuration and fat JAR files

Spring Boot targets the fast development of production-ready Spring applications by being strongly opinionated about how to set up both core modules from the Spring Framework and third-party products, such as libraries that are used for logging or connecting to a database. Spring Boot does that by applying a number of conventions by default, minimizing the need for configuration. 

Whenever required, each convention can be overridden by writing some configuration, case by 

case. This design pattern is known as convention over configuration and minimizes the need for initial configuration. 

Configuration, when required, is, in my opinion, written best using Java and anno-

tations. The good old XML-based configuration files can still be used, although they 

are significantly smaller than before Spring Boot was introduced. 

Added to the usage of convention over configuration, Spring Boot also favors a runtime model based on a standalone JAR file, also known as a fat JAR file. Before Spring Boot, the most common way to run a Spring application was to deploy it as a WAR file on a Java EE web server, such as Apache Tomcat. WAR file deployment is still supported by Spring Boot. 

A fat JAR file contains not only the classes and resource files of the application itself 

but also all the JAR files the application depends on. This means that the fat JAR file is 

the only JAR file required to run the application; that is, we only need to transfer one 

JAR file to an environment where we want to run the application instead of transfer-

ring the application’s JAR file along with all the JAR files the application depends on. 

[image: Image 32]

[image: Image 33]

38

 Introduction to Spring Boot

Starting a fat JAR requires no separately installed Java EE web server, such as Apache Tomcat. 

Instead, it can be started with a simple command such as java -jar app.jar, making it a perfect choice for running in a Docker container! If the Spring Boot application, for example, uses HTTP 

to expose a REST API, it will also contain an embedded web server. 

Code examples for setting up a Spring Boot 

application

To better understand what this means, let’s look at some source code examples. 

We will only look at some small fragments of code here to point out the main features. 

For a fully working example, you’ll have to wait until the next chapter! 

The magic @SpringBootApplication annotation

The convention-based autoconfiguration mechanism can be initiated by annotating the application class (that is, the class that contains the static main method) with the @SpringBootApplication annotation. The following code shows this:

@SpringBootApplication

public class MyApplication {

public static void main(String[] args) {

SpringApplication.run(MyApplication.class, args); 

}

}

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button (1) to quickly copy code into your coding environment, or click the Explain button (2) to get the AI assistant to explain a block of code to you. 

[image: Image 34]

[image: Image 35]

 Chapter 2

39

The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one. 

The following functionality will be provided by this annotation:

•  It enables component scanning, that is, looking for Spring components and configuration 

classes in the package of the application class and all its subpackages. 

•  The application class itself becomes a configuration class. 

•  It enables autoconfiguration, where Spring Boot looks for JAR files in the classpath that it can configure automatically. For example, if you have Tomcat in the classpath, Spring 

Boot will automatically configure Tomcat as an embedded web server. 

Component scanning

Let’s assume we have the following Spring component in the package of the application class (or in one of its subpackages):

@Component

public class MyComponentImpl implements MyComponent { ... 

Another component in the application can get this component automatically injected, also known as auto-wiring, using the @Autowired annotation:

public class AnotherComponent {

private final MyComponent myComponent; 

@Autowired

public AnotherComponent(MyComponent myComponent) {

this.myComponent = myComponent; 

}

40

 Introduction to Spring Boot

If we want to use components that are declared in a package outside the application’s package, for example, a utility component shared by multiple Spring Boot applications, we can complement the 

@SpringBootApplication annotation in the application class with a @ComponentScan annotation: package se.magnus.myapp; 

@SpringBootApplication

@ComponentScan({"se.magnus.myapp"," se.magnus.util" })

public class MyApplication {

We can now auto-wire components from the se.magnus.util package in the application code, 

for example, a utility component named MyUtility, as follows:

package se.magnus.util; 

@Component

public class MyUtility { ... 

This utility component can be auto-wired in an application component like so:

package se.magnus.myapp.services; 

public class AnotherComponent {

private final MyUtility myUtility; 

@Autowired

public AnotherComponent(MyUtility myUtility) {

this.myUtility = myUtility; 

}

If a class only defines one constructor, the @Autowired annotation is not required. 

In the book’s source code, no @Autowired annotations are used in these cases. 

Java-based configuration

If we want to override Spring Boot’s default configuration, or we want to add our own configuration, we can simply annotate a class with @Configuration and it will be picked up by the 

component-scanning mechanism we described previously. 

 Chapter 2

41

For example, if we want to set up a filter in the processing of HTTP requests (handled by Spring WebFlux, which is described in the following section) that writes a log message at the beginning and the end of the processing, we can configure a log filter, as follows:

@Configuration

public class SubscriberApplication {

@Bean

public Filter logFilter() {

CommonsRequestLoggingFilter filter = new

CommonsRequestLoggingFilter(); 

filter.setIncludeQueryString(true); 

filter.setIncludePayload(true); 

filter.setMaxPayloadLength(5120); 

return filter; 

}

We can also place the configuration directly in the application class since the @

SpringBootApplication annotation implies the @Configuration annotation. 

That’s all for now about Spring Boot, but before moving on to the next component, let’s see what is new in the Spring Boot 3.x releases and how to migrate a Spring Boot 2 application. 

What’s new in Spring Boot 3.0 to 3.5? 

For the purposes of this book, the most important new items in Spring Boot 3.0 are the following:

•  Observability

Spring Boot 3.0 comes with improved support for observability, with built-in support 

for distributed tracing added to the already-existing support for metrics and logging in 

previous Spring Boot releases. The new distributed tracing support is based on a new 

Observability API in Spring Framework 6.0 and a new module named Micrometer Tracing. 

Micrometer Tracing is based on Spring Cloud Sleuth, which is now deprecated.  Chapter 

 14,  Understand Distributed Tracing, covers how to use the new support for observability and distributed tracing. 

42

 Introduction to Spring Boot

•  Native compile

Spring Boot 3.0 also comes with support for compiling Spring Boot applications to na-

tive images using GraalVM, which are standalone executable files. A natively compiled Spring Boot application starts significantly faster and consumes less memory.  Chapter 

 23,  Natively Compiled Java Microservices, describes how to natively compile microservices based on Spring Boot. 

•  Virtual threads and structured concurrency

Finally, Spring Boot 3.0 comes with support for lightweight threads called virtual threads from OpenJDK’s Project Loom. Virtual threads are expected to simplify the programming 

model for developing reactive non-blocking microservices, for example, compared to the 

programming model used in Project Reactor and various Spring components. Virtual 

threads have been available since Java 21. To develop microservices that perform con-

current activities, for example, concurrently aggregate information from other microser-

vices, we also need support for composability features. This is expected to be supported 

by structured concurrency, which is currently in preview; see https://openjdk.org/

jeps/8340343. Since structured concurrency is not yet finalized, this book will not cover virtual threads and structured concurrency.  Chapter 7,  Developing Reactive Microservices,   

covers implementing reactive microservices using Project Reactor and Spring WebFlux. 

In the minor versions, Spring Boot 3.1–3.5, the following new features are of most interest:

•  Simplified use of Testcontainers

Testcontainers simplifies automated integration testing with the same databases, message 

brokers, and other services used in production. One challenge when configuring Test-

containers is determining which Spring properties should be mapped to Testcontainers’ 

properties. Spring Boot 3.1 handles this automatically for many services using the new 

concept of Service Connection. Testcontainers will be introduced in  Chapter 6,  Adding Persistence. 

•  Simplified use of SSL bundles

Establishing secure communication with SSL and TLS is inherently complex. This com-

plexity is made even greater by the fact that different libraries—and even major versions 

of the same library—often require unique configuration approaches. To simplify this 

process, Spring Boot 3.1 introduces SSL bundles, a new concept designed to streamline 

and centralize SSL configuration. SSL bundles will be introduced in  Chapter 11,  Securing Access to APIs. 

 Chapter 2

43

•  Auto-configuring Spring Authorization Server

Spring Boot 3.1 also supports auto-configuring Spring Authorization Server, simplifying 

its dependency declaration. Spring Authorization Server will be introduced in  Chapter 11, 

 Securing Access to APIs. 

•  Faster startup using CRaC

Since Spring Boot 3.2 Coordinated Restore at Checkpoint (CRaC) can be used to shorten the startup time of a Spring Boot application. Its concept is based on the idea of writing 

the memory of a started Spring Boot application’s Java process to disk during a training 

phase. Later on, the Spring Boot application can be restarted quickly by loading the mem-

ory in a new process from disk. Using CRaC is generally easier to set up than using Native 

Compile with GraalVM. Unfortunately, not all libraries used in this book support CRaC, 

so CRaC will not be covered. For example, MongoDB’s Java client does not yet support 

suspending and resuming MongoClient as CRaC requires; see https://jira.mongodb. 

org/browse/JAVA-5034 for details. 

•  Faster startup using AppCDS

Since Spring Boot 3.3, AppCDS can be used to shorten the startup time of a Spring Boot 

application. AppCDS is an extension of Class-Data Sharing (CDS), a feature in JVM that allows the sharing of preprocessed class metadata across multiple JVM instances. Initially, 

CDS only worked for core Java classes from the JDK, but AppCDS expanded this to include 

application classes and third-party libraries. AppCDS is very easy to use, but currently, 

the improved startup times are relatively modest; at most, twice-as-fast startup times 

can be expected. Since Native Compile with GraalVM can deliver 10 to 20 times faster 

startup times, only Native Compile will be covered in this book; see  Chapter 23,  Natively Compiled Java Microservices. 

•  Structured logging

Spring Boot 3.4 supports structured logging to facilitate the ingestion of log output from 

Spring Boot applications into search and analytics engines such as Elasticsearch. For details on how log output from Spring Boot applications is collected and analyzed using 

the Elasticsearch, Fluentd, and Kibana (EFK) stack, see  Chapter 19,  Centralized Logging with the EFK Stack. 

•  Support for Java 24

Starting with Spring Boot 3.4, Java 24 is supported. 

44

 Introduction to Spring Boot

•  Deprecation of code

A number of classes and methods have been deprecated in Spring Boot 3.1–3.5, to be re-

moved in Spring Boot 4.0. All classes and methods marked as deprecated that were used 

in this book have been replaced with the recommended alternatives. This ensures that the 

code examples provided by this book are future-proof; that is, they should run on Spring 

Boot 4.0 without any concerns. 

For complete information on what is new in each 3.x release, see https://github.com/spring-

projects/spring-boot/wiki/Spring-Boot-3.{MINOR}-Release-Notes.  Replace {MINOR} in the URL with the minor version of interest, from 0 to 5. 

Migrating a Spring Boot 2 application

If you already have applications based on Spring Boot 2, you might be interested in understanding what it takes to migrate to Spring Boot 3.0. Here is a list of actions you need to take:

•  Pivotal recommends first upgrading Spring Boot 2 applications to the latest v2.7.x release since their migration guide assumes you are on v2.7. 

•  Ensure you have Java 17 or later installed, in both your development and runtime envi-

ronments. If your Spring Boot applications are deployed as Docker containers, you need 

to ensure that your company approves the usage of Docker images based on Java 17 or 

newer releases. 

•  Remove calls to deprecated methods in Spring Boot 2.x. All deprecated methods are re-

moved in Spring Boot 3.0, so you must ensure that your application does not call any of 

these methods. To see exactly where calls are being made in your application, you can 

enable the lint:deprecation flag in the Java compiler using the following (assuming 

the use of Gradle):

tasks.withType(JavaCompile) {

options.compilerArgs += ['-Xlint:deprecation']

}

•  Rename all imports of javax packages that are now part of Jakarta EE to jakarta. 

•  For libraries that are not managed by Spring, you need to ensure that you are using ver-

sions that are Jakarta-compliant, that is, using jakarta packages. 

•  For breaking changes and other important migration information, read through the 

following: https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-

3.0-Migration-Guide and https://docs.spring.io/spring-security/reference/

migration/index.html. 

 Chapter 2

45

•  Ensure that you have end-to-end black-box tests that verify the functionality of your ap-

plication. Run these tests before and after the migration to ensure that the application’s 

functionality has not been affected by the migration. 

When migrating the source code of the previous edition of this book to Spring Boot 3.0, the most time-consuming part was figuring out how to handle breaking changes in the Spring Security 

configuration; see  Chapter 11,  Securing Access to APIs, for details. As an example, the following configuration of the authorization server in the previous edition needed to be updated:

@Bean

SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws 

Exception {

http

.authorizeRequests(authorizeRequests -> authorizeRequests

.antMatchers("/actuator/**").permitAll()

This configuration looks like the following with Spring Boot 3.0:

@Bean

SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws 

Exception {

http

.authorizeHttpRequests(authorizeRequests -> authorizeRequests

.requestMatchers("/actuator/**").permitAll()

The end-to-end test script, test-em-all.bash, that comes with each chapter turned out to be 

indispensable in verifying that the functionality was unaffected after the migration of each chapter. 

Now that we have learned about Spring Boot, let’s talk about Spring WebFlux. 

Spring WebFlux

Spring Boot 3.5 is based on the Spring Framework 6.2, which has built-in support for developing reactive applications. The Spring Framework uses Project Reactor as the base implementation of its reactive support and also comes with a new web framework, Spring WebFlux, which supports the development of reactive, that is, non-blocking, HTTP clients and services. 

Spring WebFlux supports two different programming models:

•  An annotation-based imperative style, similar to the already-existing web framework, 

Spring Web MVC, but with support for reactive services

•  A new function-oriented model based on routers and handlers

46

 Introduction to Spring Boot

In this book, we will use the annotation-based imperative style to demonstrate how easy it is to move REST services from Spring Web MVC to Spring WebFlux and then start to refactor the 

services so that they become fully reactive. 

Spring WebFlux also provides a fully reactive HTTP client, WebClient, as a complement to the existing RestTemplate client. 

Spring WebFlux supports running on a servlet container based on the Jakarta Servlet specification v5.0 or higher, such as Apache Tomcat, but also supports reactive non-servlet-based embedded web servers such as Netty (https://netty.io/). 

The Servlet specification is a specification in the Java EE platform that standardizes 

how to develop Java applications that communicate using web protocols such as 

HTTP. 

Code examples of setting up a REST service

Before we can create a REST service based on Spring WebFlux, we need to add Spring WebFlux 

(and the dependencies that Spring WebFlux requires) to the classpath for Spring Boot to be detected and configured during startup. Spring Boot provides a large number of convenient starter dependencies that bring in a specific feature, together with the dependencies each feature normally requires. So, let’s use the starter dependency for Spring WebFlux and then see what a simple REST service looks like! 

Starter dependencies

In this book, we will use Gradle as our build tool, so the Spring WebFlux starter dependency will be added to the build.gradle file. It looks like this:

implementation('org.springframework.boot:spring-boot-starter-webflux')

You might be wondering why we don’t specify a version number. We will talk about 

that when we look at a complete example in  Chapter 3 , Creating a Set of Cooperating Microservices! 

 Chapter 2

47

When the microservice is started up, Spring Boot will detect Spring WebFlux on the classpath and configure it, as well as other things, such as starting up an embedded web server. Spring WebFlux uses Netty by default, which we can see from the log output:

2025-03-09 15:23:43.592 INFO 17429 --- [ main] o.s.b.web.embedded.netty. 

NettyWebServer : Netty started on port(s): 8080

If we want to switch from Netty to Tomcat as our embedded web server, we can override the 

default configuration by excluding Netty from the starter dependency and adding the starter 

dependency for Tomcat:

implementation('org.springframework.boot:spring-boot-starter-webflux')

{

exclude group: 'org.springframework.boot', module: 'spring-boot-

 starter-reactor-netty' 

}

implementation('org.springframework.boot:spring-boot-starter-tomcat' )

After restarting the microservice, we can see that Spring Boot picked Tomcat instead:

2025-03-09 18:23:44.182 INFO 17648 --- [ main] o.s.b.w.embedded.tomcat. 

TomcatWebServer : Tomcat initialized with port(s): 8080 (http)

Property files

As you can see from the preceding examples, the web server is started up using port 8080. If you want to change the port, you can override the default value using a property file. Spring Boot application property files can either be a .properties file or a YAML file. By default, they are named application.properties and application.yml, respectively. 

In this book, we will use YAML files so that the HTTP port used by the embedded web server can be changed to, for example, 7001. By doing this, we can avoid port collisions with other microservices running on the same server. To do this, we can add the following line to the application.yml file: server.port: 7001

When we begin to develop our microservices as containers in  Chapter 4,  Deploying Our Microservices Using Docker, port collisions will no longer be a problem. Each 

container has its own hostname and port range, so all microservices can use, for 

example, port 8080 without colliding with each other. 

48

 Introduction to Spring Boot

Sample RestController

Now, with Spring WebFlux and an embedded web server of our choice in place, we can write a 

REST service in the same way as when using Spring MVC, that is, as a RestController:

@RestController

public class MyRestService {

@GetMapping(value = "/my-resource", produces = "application/json") List<Resource> listResources() {

…

}

The @GetMapping annotation on the listResources() method will map the Java method to an 

HTTP GET API on the host:8080/myResource URL. The return value of the List<Resource> type will be converted into JSON. 

Now that we’ve talked about Spring WebFlux, let’s see how we can document the APIs we develop using Spring WebFlux. 

springdoc-openapi

One very important aspect of developing APIs, for example, RESTful services, is how to document them so that they are easy to use. The Swagger specification from SmartBear Software is one of the most widely used ways of documenting RESTful services. Many leading API gateways have 

native support for exposing the documentation of RESTful services using the Swagger specification. 

In 2015, SmartBear Software donated the Swagger specification to the Linux Foundation under 

the OpenAPI Initiative and created the OpenAPI Specification. The name Swagger is still used for the tooling provided by SmartBear Software. 

springdoc-openapi is an open source project, separate from the Spring Framework, that can 

create OpenAPI-based API documentation at runtime. It does so by examining the application, 

for example, inspecting WebFlux and Swagger-based annotations. 

We will look at full source code examples in upcoming chapters, but for now, the following condensed screenshot (removed parts are marked with …) of a sample API documentation will do:

[image: Image 36]

[image: Image 37]

[image: Image 38]

[image: Image 39]

 Chapter 2

49

 Figure 2.1: Sample API documentation visualized using Swagger UI

Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy. 

The next-gen Packt Reader and a free PDF/ePub copy of this book are included 

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure 

you get the right one. 

50

 Introduction to Spring Boot

Note the big Execute button, which can be used to actually try out the API, not just 

read its documentation! 

springdoc-openapi helps us to document the APIs exposed by our microservices. Now, let’s 

move on to Spring Data. 

Spring Data

Spring Data comes with a common programming model for persisting data in various types of 

database engines, ranging from traditional relational databases (SQL databases) to various types of NoSQL database engines, such as document databases (for example, MongoDB), key-value 

databases (for example, Redis), and graph databases (for example, Neo4j). 

The Spring Data project is divided into several subprojects, and in this book, we will use Spring Data subprojects for MongoDB and JPA that have been mapped to a MySQL database. 

JPA stands for Jakarta Persistence API and is a Java specification about how to handle relational data. Please go to https://jakarta.ee/specifications/

persistence/ for the latest specifications. Jakarta EE 9 is based on Jakarta Per sistence 3.0. 

The two core concepts of the programming model in Spring Data are entities and repositories. 

Entities and repositories generalize how data is stored and accessed from the various types of databases. They provide a common abstraction but still support adding database-specific behavior to the entities and repositories. These two core concepts are briefly explained together with some illustrative code examples as we proceed through this chapter. Remember that more details will be provided in the upcoming chapters! 

Even though Spring Data provides a common programming model for different types 

of databases, this doesn’t mean that you will be able to write portable source code. 

For example, switching the database technology from a SQL database to a NoSQL 

database will, in general, not be possible without some changes in the source code! 

 Chapter 2

51

Entity

An entity describes the data that will be stored by Spring Data. Entity classes are, in general, annotated with a mix of generic Spring Data annotations and annotations that are specific to each database technology. 

For example, an entity that will be stored in a relational database can be annotated with JPA annotations such as the following:

import jakarta.persistence.Entity; 

import jakarta.persistence.Id; 

import jakarta.persistence.IdClass; 

import jakarta.persistence.Table; 

@Entity

@IdClass(ReviewEntityPK.class)

@Table(name = "review")

public class ReviewEntity {

@Id private int productId; 

@Id private int reviewId; 

private String author; 

private String subject; 

private String content; 

If an entity is to be stored in a MongoDB database, annotations from the Spring Data MongoDB 

subproject can be used together with generic Spring Data annotations. For example, consider 

the following code:

import org.springframework.data.annotation.Id; 

import org.springframework.data.annotation.Version; 

import org.springframework.data.mongodb.core.mapping.Document; 

@Document

public class RecommendationEntity {

@Id

private String id; 

@Version

private int version; 

52

 Introduction to Spring Boot

private int productId; 

private int recommendationId; 

private String author; 

private int rate; 

private String content; 

The @Id and @Version annotations are generic annotations, while the @Document annotation is 

specific to the Spring Data MongoDB subproject. 

This can be revealed by studying the import statements; the import statements that 

contain mongodb come from the Spring Data MongoDB subproject. 

Repositories

Repositories are used to store and access data from different types of databases. In its most basic form, a repository can be declared as a Java interface, and Spring Data will generate its implementation on the fly using opinionated conventions. These conventions can be overridden and/

or complemented by additional configuration and, if required, some Java code. Spring Data also comes with some base Java interfaces, for example, CrudRepository, to make the definition of a repository even simpler. The base interface, CrudRepository, provides us with standard methods for create, read, update, and delete operations. 

To specify a repository for handling the ReviewEntity JPA entity, we only need to declare the following:

import org.springframework.data.repository.CrudRepository; 

public interface ReviewRepository extends

CrudRepository< ReviewEntity, ReviewEntityPK> {

Collection<ReviewEntity> findByProductId(int productId); 

}

In this example, we use a class, ReviewEntityPK, to describe a composite primary key. It looks as follows:

public class ReviewEntityPK implements Serializable {

public int productId; 

public int reviewId; 

}

 Chapter 2

53

We have also added an extra method, findByProductId, which allows us to look up Review en-

tities based on productid – a field that is part of the primary key. The method follows a naming convention defined by Spring Data that allows Spring Data to generate the implementation of 

this method on the fly as well. 

If we want to use the repository, we can simply inject it in the constructor and then start to use it, as in the following example:

private final ReviewRepository repository; 

public ReviewService(ReviewRepository repository) {

this.repository = repository; 

}

public void someMethod() {

repository.save(entity); 

repository.delete(entity); 

repository.findByProductId(productId); 

Added to the CrudRepository interface, Spring Data also provides a reactive base interface, 

ReactiveCrudRepository, which enables reactive repositories. The methods in this interface 

do not return objects or collections of objects; instead, they return Mono and Flux objects. Mono and Flux objects are, as we will see in  Chapter 7,  Developing Reactive Microservices, reactive streams that are capable of returning either 0...1 or 0...m entities as they become available on the stream. The reactive-based interface can only be used by Spring Data subprojects that support reactive database drivers; that is, they are based on non-blocking I/O. The Spring Data MongoDB 

subproject supports reactive repositories, while Spring Data JPA does not. 

Specifying a reactive repository for handling the MongoDB entity, RecommendationEntity, as 

described previously, might look something like the following:

import org.springframework.data.repository.reactive. 

ReactiveCrudRepository; 

import reactor.core.publisher.Flux; 

public interface RecommendationRepository extends 

ReactiveCrudRepository< RecommendationEntity, String> {

Flux<RecommendationEntity> findByProductId(int productId); 

}

54

 Introduction to Spring Boot

This concludes the section on Spring Data. Now, let’s see how we can use Spring Cloud Stream to develop message-based asynchronous services. 

Spring Cloud Stream

We will not focus on Spring Cloud in this part; we will do that in Part 2 of the book, from 

 Chapter 8,  Introduction to Spring Cloud, to  Chapter 14,  Understanding Distributed Tracing. However, we will bring in one of the modules that’s part of Spring Cloud: Spring Cloud Stream. Spring Cloud Stream provides a streaming abstraction over messaging, based on the publish and subscribe integration pattern. Spring Cloud Stream currently comes with built-in support for Apache Kafka and RabbitMQ. A number of separate projects exist that provide integration with other popular messaging systems. See https://github.com/spring-cloud?q=binder for more details. 

The core concepts in Spring Cloud Stream are as follows:

•  Message: A data structure that’s used to describe data sent to and received from a messaging system. 

•  Publisher: Sends messages to the messaging system, also known as a supplier. 

•  Subscriber: Receives messages from the messaging system, also known as a consumer. 

•  Destination: Used to communicate with the messaging system. Publishers use output 

destinations and subscribers use input destinations. Destinations are mapped by the 

specific binders to queues and topics in the underlying messaging system. 

•  Binder: A binder provides the actual integration with a specific messaging system, similar to what a JDBC driver does for a specific type of database. 

The actual messaging system to be used is determined at runtime, depending on what is found 

on the classpath. Spring Cloud Stream comes with opinionated conventions on how to handle 

messaging. These conventions can be overridden by specifying a configuration for messaging 

features such as consumer groups, partitioning, persistence, durability, and error handling; for example, retries and dead letter queue handling. 

Code examples for sending and receiving messages

To better understand how all this fits together, let’s look at some source code examples. 

Spring Cloud Stream comes with two programming models: one older and nowadays depre-

cated model based on the use of annotations (for example, @EnableBinding, @Output, and @

StreamListener) and one newer model based on writing functions. In this book, we will use 

functional implementations. 

 Chapter 2

55

To implement a publisher, we only need to implement the java.util.function.Supplier func-

tional interface as a Spring bean. For example, the following is a publisher that publishes messages as a string:

@Bean

public Supplier<String> myPublisher() {

return () -> new Date().toString(); 

}

A subscriber is implemented as a Spring bean implementing the java.util.function.Consumer 

functional interface. For example, the following is a subscriber that consumes messages as strings:

@Bean

public Consumer<String> mySubscriber() {

return s -> System.out.println("ML RECEIVED: " + s); 

}

It is also possible to define a Spring bean that processes messages, meaning that it both consumes and publishes messages. This can be done by implementing the java.util.function.Function 

functional interface – for example, a Spring bean that consumes incoming messages and publishes a new message after some processing (both messages are strings in this example):

@Bean

public Function<String, String> myProcessor() {

return s -> "ML PROCESSED: " + s; 

}

To make Spring Cloud Stream aware of these functions, we need to declare them using the spring. 

cloud.function.definition configuration property. For example, for the three functions defined previously, this would look as follows:

spring.cloud.function:

definition: myPublisher;myProcessor;mySubscriber

Finally, we need to tell Spring Cloud Stream what destination to use for each function. To connect our three functions so that our processor consumes messages from our publisher and our 

subscriber consumes messages from the processor, we can supply the following configuration:

spring.cloud.stream.bindings:

myPublisher-out-0:

destination: myProcessor-in

myProcessor-in-0:

56

 Introduction to Spring Boot

destination: myProcessor-in

myProcessor-out-0:

destination: myProcessor-out

mySubscriber-in-0:

destination: myProcessor-out

This will result in the following message flow:

myPublisher → myProcessor → mySubscriber

A supplier is triggered by Spring Cloud Stream by default every second, so we could expect output like the following if we start a Spring Boot application including the functions and configuration described previously:

ML RECEIVED: ML PROCESSED: Wed Mar 09 16:28:30 CET 2021

ML RECEIVED: ML PROCESSED: Wed Mar 09 16:28:31 CET 2021

ML RECEIVED: ML PROCESSED: Wed Mar 09 16:28:32 CET 2021

ML RECEIVED: ML PROCESSED: Wed Mar 09 16:28:33 CET 2021

In cases where the supplier should be triggered by an external event instead of using a timer, the StreamBridge helper class can be used. For example, if a message should be published to the 

processor when a REST API, sampleCreateAPI, is called, the code could look like the following:

@Autowired

private StreamBridge streamBridge; 

@PostMapping

void sampleCreateAPI(@RequestBody String body) {

streamBridge.send("myProcessor-in-0", body); 

}

Now that we understand the various Spring APIs, let’s learn a bit about Docker and containers in the next section. 

Docker

I assume that Docker and the concept of containers need no in-depth presentation. Docker made the concept of containers as a lightweight alternative to virtual machines very popular in 2013. 

A container is actually a process in a Linux host that uses Linux namespaces to provide isolation between different containers, in terms of their use of global system resources such as users, processes, filesystems, and networking. Linux control groups (also known as cgroups) are used to limit the amount of CPU and memory that a container is allowed to consume. 

 Chapter 2

57

Compared to a virtual machine that uses a hypervisor to run a complete copy of an operating 

system in each virtual machine, the overhead in a container is a fraction of the overhead in a traditional virtual machine. This leads to much faster startup times and significantly lower overhead in terms of CPU and memory usage. 

The isolation that’s provided for a container is, however, not considered to be as secure as the isolation that’s provided for a virtual machine. With the release of Windows Server 2016, Microsoft supports the use of Docker in Windows servers. 

Over the last few years, a lightweight form of virtual machines has evolved. It mixes 

the best of traditional virtual machines and containers, providing virtual machines 

with a footprint and startup time similar to containers and with the same level of 

secure isolation provided by traditional virtual machines. Some examples are Amazon 

Firecracker and Microsoft Windows Subsystem for Linux v2 (WSL2). For more 

information, see https://firecracker-microvm.github.io/ and https://docs.  

microsoft.com/en-us/windows/wsl/. 

Containers are very useful during both development and testing. Being able to start up a complete system landscape of cooperating microservices and resource managers (for example, database 

servers, messaging brokers, and so on) with a single command for testing is simply amazing. 

For example, we can write scripts in order to automate end-to-end tests of our microservice 

landscape. A test script can start up the microservice landscape, run tests using the exposed APIs, and tear down the landscape. This type of automated test script is very useful, both for running locally on a developer PC before pushing code to a source code repository, and to be executed as a step in a delivery pipeline. A build server can run these types of tests in its continuous integration and deployment process whenever a developer pushes code to the source repository. 

For production usage, we need a container orchestrator such as Kubernetes. We will 

come back to container orchestrators and Kubernetes later in this book. 

For most of the microservices we will look at in this book, a Dockerfile such as the following is all that is required to run the microservice as a Docker container:

FROM openjdk:24

MAINTAINER Magnus Larsson <magnus.larsson.ml@gmail.com> 

58

 Introduction to Spring Boot

EXPOSE 8080

ADD ./build/libs /*.jar app.jar

 ENTRYPOINT ["java","-jar","/app.jar"]

If we want to start and stop many containers with one command, Docker Compose is the perfect tool. Docker Compose uses a YAML file to describe the containers to be managed. For our microservices, it might look something like the following:

product:

build: microservices/product-service

recommendation:

build: microservices/recommendation-service

review:

build: microservices/review-service

composite:

build: microservices/product-composite-service

ports:

- " 8080:8080" 

Let me explain the preceding source code a little:

•  The build directive is used to specify which Dockerfile to use for each microservice. Docker Compose will use it to build a Docker image and then launch a Docker container based 

on that Docker image. 

•  The ports directive for the composite service is used to expose port 8080 on the server 

where Docker runs. On a developer’s machine, this means that the port of the composite 

service can be reached simply by using localhost:8080! 

All the containers in the YAML files can be managed with simple commands such as the following:

•  docker compose up -d: Starts all containers. -d means that the containers run in the 

background, not locking the terminal from where the command was executed. 

•  docker compose down: Stops and removes all containers. 

•  docker compose logs -f --tail=0: Prints out log messages from all containers. -f means 

that the command will not complete, and instead waits for new log messages. --tail=0 

means that we don’t want to see any previous log messages, only new ones. 

 Chapter 2

59

For a full list of Docker Compose commands, see https://docs.docker.com/compose/reference/. 

This was a brief introduction to Docker. We will go into more detail about Docker starting with 

 Chapter 4,  Deploying Our Microservices Using Docker. 

Summary

In this chapter, we have introduced Spring Boot and complementary open source tools that can be used to build cooperating microservices. 

Spring Boot is used to simplify the development of Spring-based, production-ready applications, such as microservices. It is strongly opinionated in terms of how to set up both core modules from the Spring Framework and third-party tools. Using Spring WebFlux, we can develop microservices that expose reactive, that is, non-blocking, REST services. To document these REST services, we can use springdoc-openapi to create OpenAPI-based documentation for the APIs. If we need to 

persist data used by the microservices, we can use Spring Data, which provides an elegant abstraction for accessing and manipulating persistent data using entities and repositories. Spring Data’s programming model is similar, but not fully portable between different types of databases, for example, relational, document, key-value, and graph databases. 

If we prefer sending messages asynchronously between our microservices, we can use Spring Cloud Stream, which provides a streaming abstraction over messaging. Spring Cloud Stream comes with out-of-the-box support for Apache Kafka and RabbitMQ but can be extended to support other 

messaging brokers using custom binders. Finally, Docker makes the concept of containers as a lightweight alternative to virtual machines easy to use. Based on Linux namespaces and control groups, containers provide isolation similar to what traditional virtual machines provide, but with a significantly lower overhead in terms of CPU and memory usage. 

In the next chapter, we will take our first small steps, creating microservices with minimalistic functionality using Spring Boot and Spring WebFlux. 

Questions

1.  What is the purpose of the @SpringBootApplication annotation? 

2.  What are the main differences between the older Spring component for developing REST 

services, Spring Web MVC, and the new Spring WebFlux? 

3.  How does springdoc-openapi help a developer document REST APIs? 

4.  What is the function of a repository in Spring Data and what is the simplest possible 

implementation of a repository? 

[image: Image 40]

60

 Introduction to Spring Boot

5.  What is the purpose of a binder in Spring Cloud Stream? 

6.  What is the purpose of Docker Compose? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

3Creating a Set of Cooperating 

Microservices

In this chapter, we will build our first couple of microservices. We will learn how to create cooperating microservices with minimalistic functionality. In upcoming chapters, we will add more and more functionality to these microservices. By the end of this chapter, we will have a RESTful API exposed by a composite microservice. The composite microservice will call three other microservices using their RESTful APIs to create an aggregated response. 

The following topics will be covered in this chapter:

•  Introducing the microservice landscape

•  Generating skeleton microservices

•  Adding RESTful APIs

•  Adding a composite microservice

•  Adding error handling

•  Testing the APIs manually

•  Adding automated tests of microservices in isolation

•  Adding semi-automated tests to a microservice landscape

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

[image: Image 41]

62

 Creating a Set of Cooperating Microservices

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter03. 

With the tools and source code in place, we can start learning about the system landscape of microservices that we will create in this chapter. 

Introducing the microservice landscape

In  Chapter 1,  Introduction to Microservices, we briefly introduced the microservice-based system landscape that we will use throughout this book:

 Figure 3.1: The microservice landscape

It consists of three core microservices, the Product, Review, and Recommendation services, all of which deal with one type of resource, and a composite microservice called the Product Composite service, which aggregates information from the three core services. 

Information handled by the microservices

To keep the source code examples in this book easy to understand, they have a minimal amount of business logic. The information model for the business objects they process is kept minimal for the same reason. In this section, we will go through the information that’s handled by each microservice, including infrastructure-related information. 

The product service

The product service manages product information and describes each product with the following attributes:

•  Product ID

•  Name

•  Weight

 Chapter 3

63

The review service

The review service manages product reviews and stores the following information about each 

review:

•  Product ID

•  Review ID

•  Author

•  Subject

•  Content

The recommendation service

The recommendation service manages product recommendations and stores the following in-

formation about each recommendation:

•  Product ID

•  Recommendation ID

•  Author

•  Rate

•  Content

The product composite service

The product composite service aggregates information from the three core services and presents information about a product as follows:

•  Product information, as described in the product service

•  A list of product reviews for the specified product, as described in the review service

•  A list of product recommendations for the specified product, as described in the recom-

mendation service

Infrastructure-related information

Once we start to run our microservices as containers that are managed by the infrastructure 

(first Docker and later on Kubernetes), it will be of interest to track which containers actually responded to our requests. As a simple solution, a serviceAddress attribute has been added to all responses, formatted as hostname/ip-address:port. 

64

 Creating a Set of Cooperating Microservices

In  Chapter 18,   Using a Service Mesh to Improve Observability and Management, and 

 Chapter 19,   Centralized Logging with the EFK Stack, we will learn about more powerful solutions to track requests that are processed by the microservices. 

Temporarily replacing service discovery

Since at this stage we don’t have any service discovery mechanism in place, we will run all microservices on localhost and use hardcoded port numbers for each microservice. We will use 

the following ports:

•  The product composite service: 7001

•  The product service: 7002

•  The recommendation service: 7003

•  The review service: 7004

We will get rid of the hardcoded ports later when we start using Docker and Kubernetes! 

In this section, we have introduced the microservices we are going to create and the information that they will handle. In the next section, we will use Spring Initialize to create skeleton code for the microservices. 

Generating skeleton microservices

Now it’s time to see how we can create projects for our microservices. The final result for this topic can be found in the $BOOK_HOME/Chapter03/1-spring-init folder. To simplify setting up 

the projects, we will use Spring Initializr to generate a skeleton project for each microservice. A skeleton project contains the necessary files for building the project, along with an empty main class and test class for the microservice. After that, we will see how we can build all our microservices with one command using multi-project builds in the build tool that we will use, Gradle. 

Using Spring Initializr to generate skeleton code

To get started with developing our microservices, we will use a tool called Spring Initializr to generate skeleton code for us. Spring Initializr is provided by the Spring team and can be used to configure and generate new Spring Boot applications. The tool helps developers to choose additional Spring modules to be used by the application and ensures that dependencies are configured to use compatible versions of the selected modules. The tool supports the use of either Maven or Gradle as a build system and can generate source code for either Java, Kotlin, or Groovy. 

 Chapter 3

65

It can either be invoked from a web browser using the URL https://start.spring.io/ or using a command-line tool, spring init. To make it easier to reproduce the creation of the microservices, we will use the command-line tool. 

For each microservice, we will create a Spring Boot project that does the following:

•  Uses Gradle as a build tool

•  Uses Java 24 to compile and run the microservice

•  Packages the project as a fat JAR file

•  Brings in dependencies for the Actuator and WebFlux Spring modules

•  Is based on Spring Boot v3.5.0 (which depends on Spring Framework v6.2.6)

Spring Boot Actuator enables a number of valuable endpoints for management and 

monitoring. We will see them in action later on. Spring WebFlux will be used here 

to create our RESTful APIs. 

To create the skeleton code for our microservices, we need to run the following command for 

product-service:

spring init \

--boot-version=3.5.0 \

--type=gradle-project \

--java-version=24 \

--packaging=jar \

--name=product-service \

--package-name=se.magnus.microservices.core.product \

--groupId=se.magnus.microservices.core.product \

--dependencies=actuator,webflux \

--version=1.0.0-SNAPSHOT \

product-service

If you want to learn more about the spring init CLI, you can run the spring 

help init command. To see what dependencies you can add, run the spring init 

--list command. 

[image: Image 42]

66

 Creating a Set of Cooperating Microservices

If you want to create the four projects on your own instead of using the source code in this book’s GitHub repository, try out $BOOK_HOME/Chapter03/1-spring-init/create-projects.bash, as 

follows:

mkdir some-temp-folder

cd some-temp-folder

$BOOK_HOME/Chapter03/1-spring-init/create-projects.bash

After creating our four projects using create-projects.bash, we will have the following file structure:

microservices/

├── product-composite-service

├── product-service

├── recommendation-service

└── review-service

For each project, we can list the created files. Let’s do this for the product-service project: find microservices/product-service -type f

We will receive the following output:

 Figure 3.2: Listing the files we created for product-service

Spring Initializr created a number of files for Gradle – a .gitignore file and three Spring Boot files:

• 

ProductServiceApplication.java, our main application class

•  application.properties, an empty property file

• 

ProductServiceApplicationTests.java, a test class that’s been configured to run tests 

on our Spring Boot application using JUnit

The main application class, ProductServiceApplication.java, looks as we’d expect based on 

the The  magic @SpringBootApplication annotation section in the previous chapter:

 Chapter 3

67

package se.magnus.microservices.core.product; 

@SpringBootApplication

public class ProductServiceApplication {

public static void main(String[] args) {

SpringApplication.run(ProductServiceApplication.class, args); 

}

}

The test class looks as follows:


package se.magnus.microservices.core.product; 

@SpringBootTest

class ProductServiceApplicationTests {

@Test

void contextLoads() {

}

}

The  @SpringBootTest annotation will initialize our application in the same way that  

@SpringBootApplication does when running the application; that is, the Spring application 

context will be set up before the tests are executed using component scanning and auto-configuration, as described in the previous chapter. 

Let’s also look at the most important Gradle file, build.gradle. The content of this file describes how to build the project – for example, how to resolve dependencies and compile, test, and package the source code. The Gradle file starts by listing what plugins to apply:

plugins {

id 'java' 

id 'org.springframework.boot' version '3.5.0' 

id 'io.spring.dependency-management' version '1.1.7' 

}

The declared plugins are used as follows:

•  The java plugin adds the Java compiler to the project. 

68

 Creating a Set of Cooperating Microservices

•  The org.springframework.boot and io.spring.dependency-management plugins are 

declared, which together ensure that Gradle will build a fat JAR file and that we don’t need to specify any explicit version numbers on our Spring Boot starter dependencies. Instead, 

they are implied by the version of the org.springframework.boot plugin, that is, 3.5.0. 

In the rest of the build file, we basically declare a group name and version for our project, Java version, and its dependencies:

group = 'se.magnus.microservices.composite.product' 

version = '1.0.0-SNAPSHOT' 

java {

toolchain {

languageVersion = JavaLanguageVersion.of(24)

}

}

repositories {

mavenCentral()

}

dependencies {

implementation 'org.springframework.boot:spring-boot-starter-actuator' 

implementation 'org.springframework.boot:spring-boot-starter-webflux' 

testImplementation 'org.springframework.boot:spring-boot-starter-test' 

testImplementation 'io.projectreactor:reactor-test' 

testRuntimeOnly 'org.junit.platform:junit-platform-launcher' 

}

tasks.named('test') {

useJUnitPlatform()

}

The following are some notes regarding the dependencies used and the final test declaration:

•  Dependencies are, as with the preceding plugins, fetched from the central Maven repos-

itory

•  Dependencies are set up as specified in the Actuator and WebFlux modules, along with 

a couple of useful test dependencies

•  Finally, JUnit is configured to be used to run our tests in the Gradle builds

 Chapter 3

69

We can build each microservice separately with the following command:

cd microservices/product-composite-service; ./gradlew build; cd -; \

cd microservices/product-service;           ./gradlew build; cd -; \

cd microservices/recommendation-service;    ./gradlew build; cd -; \

cd microservices/review-service;            ./gradlew build; cd -; 

Note how we use the gradlew executables that are created by Spring Initializr; that 

is, we don’t need to have Gradle installed! 

The first time we run a command with gradlew, it will download Gradle automati-

cally. The Gradle version that’s used is determined by the distributionUrl property 

in the gradle/wrapper/gradle-wrapper.properties files. 

Setting up multi-project builds in Gradle

To make it a bit simpler to build all the microservices with one command, we can set up a 

multi-project build in Gradle. The steps are as follows:

1.  First, we create the settings.gradle file, which describes what projects Gradle should 

build:

cat <<EOF > settings.gradle

include ':microservices:product-service' 

include ':microservices:review-service' 

include ':microservices:recommendation-service' 

include ':microservices:product-composite-service' 

EOF

2.  Next, we copy the Gradle executable files that were generated from one of the projects so that we can reuse them for the multi-project builds:

cp -r microservices/product-service/gradle . 

cp microservices/product-service/gradlew . 

cp microservices/product-service/gradlew.bat . 

cp microservices/product-service/.gitignore . 

3.  We no longer need the generated Gradle executable files in each project, so we can remove them with the following commands:

find microservices -depth -name "gradle" -exec rm -rfv "{}" \; 

find microservices -depth -name "gradlew*" -exec rm -fv "{}" \; 

[image: Image 43]

70

 Creating a Set of Cooperating Microservices

The result should be similar to the code you can find in the $BOOK_HOME/Chapter03/1-

spring-init folder. 

4.  Now, we can build all the microservices with one command:

./gradlew build

If you haven’t run the preceding commands, you can simply go to the book’s source code 

and build it from there:

cd $BOOK_HOME/Chapter03/1-spring-init

./gradlew build

This should result in the following output:

 Figure 3.3: Output upon successful build

With skeleton projects for the microservices created using Spring Initializr and successfully built using Gradle, we are ready to add some code to the microservices in the next section. 

From a DevOps perspective, a multi-project setup might not be preferred. Instead, 

to enable each microservice to have its own build and release cycle, setting up a 

separate build pipeline for each microservice project would probably be preferred. 

However, for the purposes of this book, we will use the multi-project setup to make 

it easier to build and deploy the whole system landscape with a single command. 

 Chapter 3

71

Adding RESTful APIs

Now that we have projects set up for our microservices, let’s add some RESTful APIs to our three core microservices! 

The final result of this and the remaining topics in this chapter can be found in the $BOOK_HOME/

Chapter03/2-basic-rest-services folder. 

First, we will add two projects (api and util) that will contain code that is shared by the microservice projects, and then we will implement the RESTful APIs. 

Adding an API and a util project

To add an api project, we need to do the following:

1.  First, we will set up a separate Gradle project where we can place our API definitions. We will use Java interfaces in order to describe our RESTful APIs and model classes to describe the data that the API uses in its requests and responses. To describe what types of errors 

can be returned by the API, a number of exception classes are also defined. Describing a 

RESTful API in a Java interface instead of directly in the Java class is, to me, a good way of separating the API definition from its implementation. We will further extend this pattern 

later in this book when we add more API information in the Java interfaces to be exposed 

in an OpenAPI specification. See  Chapter 5 , Adding an API Description Using OpenAPI, for more information. 

It is debatable whether it is a good practice to store API definitions for a 

group of microservices in a common API module. It could potentially cause 

undesired dependencies between the microservices, resulting in monolithic 

characteristics, for example, causing a more complex and slow development 

process. To me, it is a good choice for microservices that are part of the same 

delivery organization, that is, whose releases are governed by the same or-

ganization (compare this to a bounded context in domain-driven design, 

where our microservices are placed in a single bounded context). As already 

discussed in  Chapter 1,  Introduction to Microservices, microservices within the same bounded context need to have API definitions that are based on 

a common information model, so storing these API definitions in the same 

API module doesn’t add any undesired dependencies. 

72

 Creating a Set of Cooperating Microservices

2.  Next, we will create a util project that can hold some helper classes that are shared by our microservices, for example, for handling errors in a uniform way. 

Again, from a DevOps perspective, it would be preferable to build all the proj-

ects in their own build pipeline and have version-controlled dependencies 

for the api and util projects in the microservice projects, that is, so that 

each microservice can choose what versions of the api and util projects to 

use. But to keep the build and deployment steps simple in the context of this 

book, we will make the api and util projects part of the multi-project build. 

The api project

The api project will be packaged as a library; that is, it won’t have its own main application class. 

Unfortunately, Spring Initializr doesn’t support the creation of library projects. Instead, a library project has to be created manually from scratch. The source code for the API project is available at $BOOK_HOME/Chapter03/2-basic-rest-services/api. 

The structure of a library project is the same as for an application project, except that we no longer have the main application class, as well as some minor differences in the build.gradle file. The org.springframework.boot Gradle plugin is replaced with an implementation platform section:

ext {

springBootVersion = '3.5.0' 

}

dependencies {

implementation platform("org.springframework.boot:spring-boot-

dependencies:${springBootVersion}")

This allows us to retain Spring Boot dependency management while we are replacing the con-

struction of a fat JAR in the build step with the creation of a normal JAR file that only contains the project’s own classes and property files. 

The Java files in the api project for our three core microservices are as follows:

$BOOK_HOME/Chapter03/2-basic-rest-services/api/src/main/java/se/magnus/

api/core

├── product

│   ├── Product.java

│   └── ProductService.java

├── recommendation

 Chapter 3

73

│   ├── Recommendation.java

│   └── RecommendationService.java

└── review

├── Review.java

└── ReviewService.java

The structure of the Java classes looks very similar for the three core microservices, so we will only go through the source code for the product service. 

First, we will look at the ProductService.java Java interface, as shown in the following code: package se.magnus.api.core.product; 

public interface ProductService {

@GetMapping(

value    = "/product/{productId}", 

produces = "application/json")

Product getProduct(@PathVariable int productId); 

}

The Java interface declaration works as follows:

•  The product service only exposes one API method, getProduct() (we will extend the API 

later in this book in  Chapter 6,  Adding Persistence). 

•  To map the method to an HTTP GET request, we use the @GetMapping Spring annotation, 

where we specify what URL path the method will be mapped to (/product/{productId}) 

and what format the response will be in, in this case, JSON. 

•  The {productId} part of the path maps to a path variable named productId. 

•  The productId method parameter is annotated with @PathVariable, which will map 

the value that’s passed in the HTTP request to the parameter. For example, an HTTP GET 

request to /product/123 will result in the getProduct() method being called with the 

productId parameter set to 123. 

The method returns a Product object, a plain POJO-based model class with the member variables corresponding to attributes for Product, as described at the start of this chapter. Product.java looks as follows (with constructors and getter methods excluded):

public class Product {

private final int productId; 

74

 Creating a Set of Cooperating Microservices

private final String name; 

private final int weight; 

private final String serviceAddress; 

}

This type of POJO class is also known as a Data Transfer Object (DTO) as it is used to transfer data between the API implementation and the caller of the API. When we 

get to  Chapter 6,  Adding Persistence, we will look at another type of POJO that can be used to describe how data is stored in the databases, also known as entity objects. 

The API project also contains the InvalidInputException and NotFoundException exception 

classes. 

The util project

The util project will be packaged as a library in the same way as the api project. The source code for the util project is available at $BOOK_HOME/Chapter03/2-basic-rest-services/

util. The project contains the following utility classes: GlobalControllerExceptionHandler, 

HttpErrorInfo, and ServiceUtil. 

Except for the code in ServiceUtil.java, these classes are reusable utility classes that we can use to map Java exceptions to proper HTTP status codes, as described in the  Adding error handling section. The main purpose of ServiceUtil.java is to find out the hostname, IP address, and port used by the microservice. The class exposes a method, getServiceAddress(), that can be used 

by the microservices to find their hostname, IP address, and port, as described in the previous section,  Infrastructure-related information. 

Implementing our API

Now we can start to implement our APIs in the core microservices! 

The implementation looks very similar for the three core microservices, so we will only go through the source code for the product service. You can find the other files in $BOOK_HOME/Chapter03/2-basic-rest-services/microservices. Let’s see how we go about this:

1.  We need to add the api and util projects as dependencies to our build.gradle file, in 

the product-service project:

dependencies {

implementation project(':api')

implementation project(':util')

 Chapter 3

75

2.  To enable Spring Boot’s autoconfiguration feature to detect Spring beans in the api and 

util projects, we also need to add a @ComponentScan annotation to the main application 

class, which includes the packages of the api and util projects:

@SpringBootApplication

@ComponentScan("se.magnus")

public class ProductServiceApplication {

3.  Next, we create our service implementation file, ProductServiceImpl.java, in order to 

implement the Java interface, ProductService, from the api project and annotate the 

class with @RestController so that Spring will call the methods in this class according 

to the mappings specified in the Interface class:

package se.magnus.microservices.core.product.services; 

@RestController

public class ProductServiceImpl implements ProductService {

}

4.  To be able to use the ServiceUtil class from the util project, we will inject it into the constructor, as follows:

private final ServiceUtil serviceUtil; 

public ProductServiceImpl(ServiceUtil serviceUtil) {

this.serviceUtil = serviceUtil; 

}

5.  Now, we can implement the API by overriding the getProduct() method from the inter-

face in the api project:

@Override

public Product getProduct(int productId) {

return new Product(productId, "name-" + productId, 123, 

serviceUtil.getServiceAddress()); 

}

Since we aren’t currently using a database, we simply return a hardcoded response based 

on the input of productId, along with the service address supplied by the ServiceUtil 

class. 

For the final result, including logging and error handling, see ProductServiceImpl.java. 

[image: Image 44]

76

 Creating a Set of Cooperating Microservices

6.  Finally, we also need to set up some runtime properties – what port to use and the desired level of logging. This is added to the application.yml property file:

server.port: 7002

logging:

level:

root: INFO

se.magnus.microservices: DEBUG

Note that the empty application.properties file generated by Spring Initializr 

has been replaced by a YAML file, application.yml. YAML files provide better 

support for grouping related properties compared to .properties files. See 

the log level setting above as an example. 

7.  We can try out the product service on its own. Build and start the microservice with the following commands:

cd $BOOK_HOME/Chapter03/2-basic-rest-services

./gradlew build

java -jar microservices/product-service/build/libs/*.jar & 

Wait until the following is printed in the terminal:

 Figure 3.4: Starting ProductServiceApplication

8.  Make a test call to the product service:

curl http://localhost:7002/product/123

[image: Image 45]

 Chapter 3

77

It should respond with something similar to the following:

 Figure 3.5: Expected response to test call

9.  Finally, stop the product service:

kill $(jobs -p)

We have now built, run, and tested our first single microservice. In the next section, we will implement the composite microservice that will use the three core microservices we’ve created so far. 

Starting  with  Spring  Boot  v2.5.0,  two  JAR  files  are  created  when  running  the 

./gradlew build command: the ordinary JAR file, plus a plain JAR file containing only 

the class files resulting from compiling the Java files in the Spring Boot application. 

Since we don’t need the new plain JAR file, its creation has been disabled to make it 

possible to refer to the ordinary JAR file using a wildcard when running the Spring 

Boot application, as in this example:

java -jar microservices/product-service/build/libs/*.jar 

The creation of the new plain JAR file has been disabled by adding the following 

lines to the build.gradle file for each microservice:

jar {

enabled = false

}

For further details, see https://docs.spring.io/spring-boot/3.5/gradle-

plugin/packaging.html#packaging-executable.and-plain-archives. 

Adding a composite microservice

Now, it’s time to tie things together by adding the composite service that will call the three core services! 

The implementation of the composite services is divided into two parts: an integration component that handles the outgoing HTTP requests to the core services and the composite service implementation itself. The main reason for this division of responsibility is that it simplifies automated unit and integration testing; we can test the service implementation in isolation by replacing the integration component with a mock. 

78

 Creating a Set of Cooperating Microservices

As we will see later on in this book, this division of responsibility will also make it 

easier to introduce a circuit breaker! 

Before we look into the source code of the two components, we need to take a look at the API classes that the composite microservices will use and also learn about how runtime properties are used to hold address information for the core microservices. 

The full implementation of both the integration component and the implementation of the com-

posite service can be found in the se.magnus.microservices.composite.product.services 

Java package. 

API classes

In this section, we will take a look at the classes that describe the API of the composite component. 

They can be found in $BOOK_HOME/Chapter03/2-basic-rest-services/api. The following are 

the API classes:

$BOOK_HOME/Chapter03/2-basic-rest-services/api

└── src/main/java/se/magnus/api/composite

└── product

├── ProductAggregate.java

├── ProductCompositeService.java

├── RecommendationSummary.java

├── ReviewSummary.java

└── ServiceAddresses.java

The Java interface class, ProductCompositeService.java, follows the same pattern that’s used by the core services and looks as follows:

package se.magnus.api.composite.product; 

public interface ProductCompositeService {

@GetMapping(

value    = "/product-composite/{productId}", 

produces = "application/json")

ProductAggregate getProduct(@PathVariable int productId); 

}

 Chapter 3

79

The model class, ProductAggregate.java, is a bit more complex than the core models since it 

contains fields for lists of recommendations and reviews:

package se.magnus.api.composite.product; 

public class ProductAggregate {

private final int productId; 

private final String name; 

private final int weight; 

private final List<RecommendationSummary> recommendations; 

private final List<ReviewSummary> reviews; 

private final ServiceAddresses serviceAddresses; 

The remaining API classes are plain POJO-based model objects and have the same structure as 

the model objects for the core APIs. 

Properties

To avoid hardcoding the address information for the core services into the source code of the composite microservice, the latter uses a property file where information on how to find the core services is stored. The property file, application.yml, looks as follows:

server.port: 7001

app:

product-service:

host: localhost

port: 7002

recommendation-service:

host: localhost

port: 7003

review-service:

host: localhost

port: 7004

This configuration will, as already noted, be replaced by a service discovery mechanism later on in this book. 

80

 Creating a Set of Cooperating Microservices

The integration component

Let’s look at the first part of the implementation of the composite microservice, the integration component, ProductCompositeIntegration.java. It is declared as a Spring bean using the  

@Component annotation and implements the three core services’ APIs:

package se.magnus.microservices.composite.product.services; 

@Component

public class ProductCompositeIntegration implements ProductService, 

RecommendationService, ReviewService {

The integration component uses a helper class in the Spring Framework, RestTemplate, to perform the actual HTTP requests to the core microservices. Before we can inject it into the integration component, we need to configure it. We do that in the main application class, ProductComposit eServiceApplication.java, as follows:

@Bean

RestTemplate restTemplate() {

return new RestTemplate(); 

}

A RestTemplate object is highly configurable, but we leave it with its default values for now. 

In the  Spring WebFlux section in  Chapter 2,  Introduction to Spring Boot, we introduced the reactive HTTP client, WebClient. Using WebClient instead of RestTemplate in 

this chapter would require all source code where WebClient is used to also be reac-

tive, including the declaration of the RESTful API in the API project and the source 

code in the composite microservice. In  Chapter 7,  Developing Reactive Microservices, we will learn how to change the implementation of our microservices to follow a 

reactive programming model. As one of the steps in that update, we will replace the 

RestTemplate helper class with the WebClient class. But until we have learned 

about reactive development in Spring, we will use the RestTemplate class. 

We can now inject RestTemplate, along with a JSON mapper, which is used for accessing error 

messages in case of errors, and the configuration values that we have set up in the property file. 

Let’s see how this is done:

1.  The objects and configuration values are injected into the constructor as follows:

 Chapter 3

81

private final RestTemplate restTemplate; 

private final ObjectMapper mapper; 

private final String productServiceUrl; 

private final String recommendationServiceUrl; 

private final String reviewServiceUrl; 

public ProductCompositeIntegration(

RestTemplate restTemplate, 

ObjectMapper mapper, 

@Value("${app.product-service.host}")

String productServiceHost, 



@Value("${app.product-service.port}")

int productServicePort, 

@Value("${app.recommendation-service.host}")

String recommendationServiceHost, 

@Value("${app.recommendation-service.port}")

int recommendationServicePort, 

@Value("${app.review-service.host}")

String reviewServiceHost, 

@Value("${app.review-service.port}")

int reviewServicePort

)

2.  The body of the constructor stores the injected objects and builds the URLs based on the injected values, as follows:

{

this.restTemplate = restTemplate; 

this.mapper = mapper; 

productServiceUrl = "http://" + productServiceHost + ":" +

productServicePort + "/product/"; 

recommendationServiceUrl = "http://" + recommendationServiceHost

82

 Creating a Set of Cooperating Microservices

+ ":" + recommendationServicePort + "/recommendation? 

productId="; reviewServiceUrl = "http://" + reviewServiceHost +

":" + reviewServicePort + "/review?productId="; 

}

3.  Finally, the integration component implements the API methods for the three core services by using RestTemplate to make the actual outgoing calls:

public Product getProduct(int productId) {

String url = productServiceUrl + productId; 

Product product = restTemplate.getForObject(url, 

Product.class); 

return product; 

}

public List<Recommendation> getRecommendations(int productId) {

String url = recommendationServiceUrl + productId; 

List<Recommendation> recommendations =

restTemplate.exchange(url, GET, null, new

ParameterizedTypeReference<List<Recommendation>>()

{}).getBody(); 

return recommendations; 

}

public List<Review> getReviews(int productId) {

String url = reviewServiceUrl + productId; 

List<Review> reviews = restTemplate.exchange(url, GET, 

null, 

new ParameterizedTypeReference<List<Review>>()

{}).getBody(); 

return reviews; 

}

Some interesting notes regarding the methods implementations:

•  For the getProduct() implementation, the getForObject() method can be used in 

RestTemplate. The expected response is a Product object. It can be expressed in the call 

to getForObject() by specifying the Product.class class that RestTemplate will map 

the JSON response to. 

 Chapter 3

83

•  For the calls to getRecommendations() and getReviews(), a more advanced method, 

exchange(), has to be used. The reason for this is the automatic mapping from a JSON 

response to a model class that RestTemplate performs. The getRecommendations() and 

getReviews() methods expect a generic list in the responses, that is, List<Recommendation> and List<Review>. Since generics don’t hold any type of information at runtime, we can’t specify that the methods expect a generic list in their responses. Instead, we can use a 

helper class from the Spring Framework, ParameterizedTypeReference, which is de-

signed to resolve this problem by holding the type information at runtime. This means 

that RestTemplate can figure out what class to map the JSON responses to. To utilize this 

helper class, we have to use the more involved exchange() method instead of the simpler 

getForObject() method on RestTemplate. 

Composite API implementation

Finally, we will look at the last piece of the implementation of the composite microservice: the ProductCompositeServiceImpl.java API implementation class. Let’s go through it step by step: 1.  In the same way that we did for the core services, the composite service implements its 

API interface, ProductCompositeService, and is annotated with @RestController to 

mark it as a REST service:

package se.magnus.microservices.composite.product.services; 

@RestController

public class ProductCompositeServiceImpl implements 

ProductCompositeService {

2.  The implementation class requires the ServiceUtil bean and its own integration com-

ponent, so they are injected into its constructor:

private final ServiceUtil serviceUtil; 

private ProductCompositeIntegration integration; 

public ProductCompositeServiceImpl(ServiceUtil serviceUtil, 

ProductCompositeIntegration integration) {

this.serviceUtil = serviceUtil; 

this.integration = integration; 

}

84

 Creating a Set of Cooperating Microservices

3.  Finally, the API method is implemented as follows:

@Override

public ProductAggregate getProduct(int productId) {



Product product = integration.getProduct(productId); 

List<Recommendation> recommendations =

integration.getRecommendations(productId); 

List<Review> reviews = integration.getReviews(productId); 



return createProductAggregate(product, recommendations, 

reviews, serviceUtil.getServiceAddress()); 

}

The integration component is used to call the three core services, and a helper method, createProductAggregate(), is used to create a response object of the ProductAggregate type based on the responses from the calls to the integration component. 

The implementation of the helper method, createProductAggregate(), is quite lengthy and 

not very important and so has been omitted from this chapter; however, it can be found in this book’s source code. 

The full implementation of both the integration component and the composite service can be 

found in the se.magnus.microservices.composite.product.services Java package. 

That completes the implementation of the composite microservice from a functional point of 

view. In the next section, we will see how we handle errors. 

Adding error handling

Handling errors in a structured and well-thought-out way is essential in a microservice landscape where a large number of microservices communicate with each other using synchronous APIs, 

for example, using HTTP and JSON. It is also important to separate protocol-specific handling of errors, such as HTTP status codes, from the business logic. 

 Chapter 3

85

It could be argued that a separate layer for the business logic should be added when 

implementing the microservices. This should ensure that business logic is separated 

from the protocol-specific code, making it easier both to test and reuse. To avoid 

unnecessary complexity in the examples provided in this book, we have left out a 

separate layer for business logic, so the microservices implement their business logic 

directly in the @RestController components. 

I have created a set of Java exceptions in the util project that are used by both the API implementations and the API clients, initially InvalidInputException and NotFoundException. Look into the se.magnus.util.exceptions Java package for details. 

The global REST controller exception handler

To separate protocol-specific error handling from the business logic in the REST controllers, that is, the API implementations, I have created a utility class, GlobalControllerExceptionHandler. 

java, in the util project, which is annotated as @RestControllerAdvice. 

For each Java exception that the API implementations throw, the utility class has an exception handler method that maps the Java exception to a proper HTTP response, that is, with a proper HTTP status and HTTP response body. 

For example, if an API implementation class throws InvalidInputException, the utility class 

will map it to an HTTP response with the status code set to 422 (UNPROCESSABLE_ENTITY). The 

following code shows this:

@ResponseStatus(UNPROCESSABLE_ENTITY)

@ExceptionHandler(InvalidInputException.class)

public @ResponseBody HttpErrorInfo handleInvalidInputException(

ServerHttpRequest request, InvalidInputException ex) {

return createHttpErrorInfo(UNPROCESSABLE_ENTITY, request, ex); 

}

In the same way, NotFoundException is mapped to a 404 (NOT_FOUND) HTTP status code. 

Whenever a REST controller throws any of these exceptions, Spring will use the utility class to create an HTTP response. 

86

 Creating a Set of Cooperating Microservices

Note that Spring itself returns the HTTP status code 400 (BAD_REQUEST) when it de-

tects an invalid request, for example, if the request contains a non-numeric product 

ID (productId is specified as an integer in the API declaration). 

For the full source code of the utility class, see GlobalControllerExceptionHandler.java. 

Error handling in API implementations

API implementations use the exceptions in the util project to signal errors. They will be reported back to the REST client as HTTPS status codes indicating what went wrong. For ex-

ample, the Product microservice implementation class, ProductServiceImpl.java, uses the 

InvalidInputException exception to return an error that indicates invalid input, as well as the NotFoundException exception to tell us that the product that was asked for does not exist. The code looks as follows:

if (productId < 1) throw new InvalidInputException(

"Invalid productId: " + productId); 

if (productId == 13) throw new NotFoundException(

"No product found for productId: " + productId); 

Since we currently aren’t using a database, we have to simulate when to throw 

NotFoundException. 

Error handling in the API client

The API client, that is, the integration component of the Composite microservice, does the reverse; it maps the 422 (UNPROCESSABLE_ENTITY) HTTP status code to InvalidInputException and the 

404 (NOT_FOUND) HTTP status code to NotFoundException. See the getProduct() method in 

ProductCompositeIntegration.java for the implementation of this error-handling logic. The 

source code looks as follows:

catch (HttpClientErrorException ex) {

switch (HttpStatus.resolve(ex.getStatusCode().value())) {

case NOT_FOUND:

throw new NotFoundException(getErrorMessage(ex)); 

 Chapter 3

87

case UNPROCESSABLE_ENTITY:

throw new InvalidInputException(getErrorMessage(ex)); 

default:

LOG.warn("Got an unexpected HTTP error: {}, will rethrow it", 

ex.getStatusCode()); 

LOG.warn("Error body: {}", ex.getResponseBodyAsString()); 

throw ex; 

}

}

The error handling for getRecommendations() and getReviews() in the integration compo-

nent is a bit more relaxed – classed as best-effort, meaning that if it succeeds in getting product information but fails to get either recommendations or reviews, it is still considered to be okay. 

However, a warning is written to the log. 

For details, see ProductCompositeIntegration.java. 

That completes the implementation of both the code and composite microservices. In the next 

section, we will test the microservices and the API that they expose. 

Testing APIs manually

That concludes the implementation of our microservices. Let’s try them out by performing the following steps:

1.  Build and start the microservices as background processes. 

2.  Use curl to call the composite API. 

3.  Stop them. 

First, build and start up each microservice as a background process, as follows:

cd $BOOK_HOME/Chapter03/2-basic-rest-services/

./gradlew build

Once the build completes, we can launch our microservices as background processes to the terminal process with the following code:

java -jar microservices/product-composite-service/build/libs/*.jar & 

java -jar microservices/product-service/build/libs/*.jar & 

java -jar microservices/recommendation-service/build/libs/*.jar & 

java -jar microservices/review-service/build/libs/*.jar & 

[image: Image 46]

[image: Image 47]

88

 Creating a Set of Cooperating Microservices

A lot of log messages will be written to the terminal, but after a few seconds, things will calm down and we will find the following messages written to the log:

 Figure 3.6: Log messages after applications start

This means that they are all ready to receive requests. Try this out with the following code: curl http://localhost:7001/product-composite/1

After some log output, we will get a JSON response that looks something like the following:

 Figure 3.7: JSON response after the request

To get the JSON response pretty-printed, you can use the jq tool:

curl http://localhost:7001/product-composite/1 -s | jq . 

[image: Image 48]

 Chapter 3

89

This results in the following output (some details have been replaced by ... for increased readability):

 Figure 3.8: Pretty-printed JSON response

If you want to, you can also try out the following commands to verify that the error handling works as expected:

# Verify that a 404 (Not Found) error is returned for a non-existing 

productId (13)

curl http://localhost:7001/product-composite/13 -i

# Verify that no recommendations are returned for productId 113

curl http://localhost:7001/product-composite/113 -s | jq . 

# Verify that no reviews are returned for productId 213

curl http://localhost:7001/product-composite/213 -s | jq . 

# Verify that a 422 (Unprocessable Entity) error is returned for a 

productId that is out of range (-1)

curl http://localhost:7001/product-composite/-1 -i

# Verify that a 400 (Bad Request) error is returned for a productId that 

is not a number, i.e. invalid format

curl http://localhost:7001/product-composite/invalidProductId -i

[image: Image 49]

90

 Creating a Set of Cooperating Microservices

Finally, you can shut down the microservices with the following command:

kill $(jobs -p)

If you are using an IDE such as Visual Studio Code with Spring Tool Suite, you can use their support for Spring Boot Dashboard to start and stop your microservices with one click. For instructions on how to install Spring Tool Suite, see https://github.com/spring-projects/sts4/wiki/

Installation. 

The following screenshot shows the use of Spring Boot Dashboard in Visual Studio Code:

 Figure 3.9: Spring Boot Dashboard in Visual Studio Code

In this section, we have learned how to manually start, test, and stop the system landscape of cooperating microservices. These types of tests are time-consuming, so they clearly need to be automated. In the next two sections, we will take our first steps toward learning how to automate testing, testing both a single microservice in isolation and a whole system landscape of cooperating microservices. Throughout this book, we will improve how we test our microservices. 

Adding automated microservice tests in isolation

Before we wrap up the implementation, we also need to write some automated tests. 

 Chapter 3

91

We don’t have much business logic to test at this time, so we don’t need to write any unit tests. 

Instead, we will focus on testing the APIs that our microservices expose; that is, we will start them up in integration tests with their embedded web server and then use a test client to perform HTTP 

requests and validate the responses. With Spring WebFlux comes a test client, WebTestClient, that provides a fluent API for making a request and then applying assertions on its result. 

The following is an example where we test the composite product API by doing the following tests:

•  Sending in productId for an existing product and asserting that we get back 200 as an 

HTTP response code and a JSON response that contains the requested productId along 

with one recommendation and one review

•  Sending in a missing productId and asserting that we get back 404 as an HTTP response 

code and a JSON response that contains relevant error information

The implementation for these two tests is shown in the following code. The first test looks like this:

@Autowired

private WebTestClient client; 

@Test

void getProductById() {

client.get()

.uri("/product-composite/" + PRODUCT_ID_OK)

.accept(APPLICATION_JSON_UTF8)

.exchange()

.expectStatus().isOk()

.expectHeader().contentType(APPLICATION_JSON_UTF8)

.expectBody()

.jsonPath("$.productId").isEqualTo(PRODUCT_ID_OK)

.jsonPath("$.recommendations.length()").isEqualTo(1)

.jsonPath("$.reviews.length()").isEqualTo(1); 

}

The test code works like this:

•  The test uses the fluent WebTestClient API to set up the URL to call “/product-composite/" 

+ PRODUCT_ID_OK and specify the accepted response format, JSON. 

•  After executing the request using the exchange() method, the test verifies that the re-

sponse status is OK (200) and that the response format actually is JSON (as requested). 

92

 Creating a Set of Cooperating Microservices

•  Finally, the test inspects the response body and verifies that it contains the expected 

information in terms of productId and the number of recommendations and reviews. 

The second test looks as follows:

@Test

public void getProductNotFound() {

client.get()

.uri("/product-composite/" + PRODUCT_ID_NOT_FOUND)

.accept(APPLICATION_JSON_UTF8)

.exchange()

.expectStatus().isNotFound()

.expectHeader().contentType(APPLICATION_JSON_UTF8)

.expectBody()

.jsonPath("$.path").isEqualTo("/product-composite/" +

PRODUCT_ID_NOT_FOUND)

.jsonPath("$.message").isEqualTo("NOT FOUND: " +

PRODUCT_ID_NOT_FOUND); 

}

One important note regarding this test code is that this negative test is very similar to the preceding test in terms of its structure; the main difference is that it verifies that it got an error status code back, Not Found (404), and that the response body contains the expected error message. 

To test the composite product API in isolation, we need to mock its dependencies, that is, the requests to the other three microservices that were performed by the integration component, 

ProductCompositeIntegration. We use Mockito to do this, as follows:

private static final int PRODUCT_ID_OK = 1; 

private static final int PRODUCT_ID_NOT_FOUND = 2; 

private static final int PRODUCT_ID_INVALID = 3; 

@MockitoBean

private ProductCompositeIntegration compositeIntegration; 

@BeforeEach

void setUp() {

when(compositeIntegration.getProduct(PRODUCT_ID_OK)). 

thenReturn(new Product(PRODUCT_ID_OK, "name", 1, "mock-address")); 

when(compositeIntegration.getRecommendations(PRODUCT_ID_OK)). 

 Chapter 3

93

thenReturn(singletonList(new Recommendation(PRODUCT_ID_OK, 1, 

"author", 1, "content", "mock address"))); 

when(compositeIntegration.getReviews(PRODUCT_ID_OK)). 

thenReturn(singletonList(new Review(PRODUCT_ID_OK, 1, "author", 

"subject", "content", "mock address"))); 

when(compositeIntegration.getProduct(PRODUCT_ID_NOT_FOUND)). 

thenThrow(new NotFoundException("NOT FOUND: " +

PRODUCT_ID_NOT_FOUND)); 

when(compositeIntegration.getProduct(PRODUCT_ID_INVALID)). 

thenThrow(new InvalidInputException("INVALID: " +

PRODUCT_ID_INVALID)); 

}

The mock implementation works as follows:

1.  First, we declare three constants that are used in the test class: PRODUCT_ID_OK, PRODUCT_

ID_NOT_FOUND, and PRODUCT_ID_INVALID. 

2.  Next, the @MockitoBean annotation is used to configure Mockito to set up a mock for the 

ProductCompositeIntegration interface. 

3.  If the getProduct(), getRecommendations(), and getReviews() methods are called on 

the integration component, and productId is set to PRODUCT_ID_OK, the mock will return 

a normal response. 

4.  If the getProduct() method is called with productId set to PRODUCT_ID_NOT_FOUND, the 

mock will throw NotFoundException. 

5.  If the getProduct() method is called with productId set to PRODUCT_ID_INVALID, the 

mock will throw InvalidInputException. 

The full source code for the automated integration tests on the composite product API can be found in the ProductCompositeServiceApplicationTests.java test class. 

The automated integration tests on the API exposed by the three core microservices are similar, but simpler since they don’t need to mock anything! The source code for the tests can be found in each microservice’s test folder. 

The tests are run automatically by Gradle when performing a build:

./gradlew build

94

 Creating a Set of Cooperating Microservices

You can, however, specify that you only want to run the tests (and not the rest of the build):

./gradlew test

This was an introduction to how to write automated tests for microservices in isolation. In the next section, we will learn how to write tests that automatically test a microservice landscape. 

In this chapter, these tests will only be semi-automated. In upcoming chapters, the tests will be fully automated, which is a significant improvement. 

Adding semi-automated tests of a microservice 

landscape

Being able to automatically run unit and integration tests for each microservice in isolation using plain Java, JUnit, and Gradle is very useful during development, but insufficient when we move over to the operation side. In operation, we also need a way to automatically verify that a  system landscape of cooperating microservices delivers what we expect. Being able to, at any time, run a script that verifies that a number of cooperating microservices all work as expected in operation is very valuable – the more microservices there are, the higher the value of such a verification script. 

For this reason, I have written a simple Bash script that can verify the functionality of a deployed system landscape by performing calls to the RESTful APIs exposed by the microservices. It is based on the curl commands we learned about and used previously. The script verifies return codes 

and parts of the JSON responses using jq. The script contains two helper functions, assertCurl() and assertEqual(), to make the test code compact and easy to read. 

For example, making a normal request and expecting 200 as the status code, as well as asserting that we get back a JSON response that returns the requested productId along with three recommendations and three reviews, looks like the following:

# Verify that a normal request works, expect three recommendations and 

three reviews

assertCurl 200 "curl http://$HOST:${PORT}/product-composite/1 -s" 

assertEqual 1 $(echo $RESPONSE | jq .productId)

assertEqual 3 $(echo $RESPONSE | jq ".recommendations | length")

assertEqual 3 $(echo $RESPONSE | jq ".reviews | length")

 Chapter 3

95

Verifying that we get 404 (Not Found) back as an HTTP response code (when we try to look up a product that doesn’t exist) looks as follows:

# Verify that a 404 (Not Found) error is returned for a non-existing 

productId (13)

assertCurl 404 "curl http://$HOST:${PORT}/product-composite/13 -s" 

The test script, test-em-all.bash, implements the manual tests that were described in the Testing APIs manually section and can be found in the top-level $BOOK_HOME/Chapter03/2-basic-rest-services folder. We will extend the functionality of the test script as we add more functionality to the system landscape in later chapters. 

In  Chapter 20,   Monitoring Microservices, we will learn about complementary techniques for automatically keeping an eye on a system landscape in operation. Here, 

we will learn about a monitoring tool that continuously monitors the state of the 

deployed microservices and how alarms can be raised if the collected metrics exceed 

configured thresholds, such as overuse of CPU or memory. 

Trying out the test script

To try out the test script, perform the following steps:

1.  First, start the microservices, as we did previously:

cd $BOOK_HOME/Chapter03/2-basic-rest-services

java -jar microservices/product-composite-service/build/libs/*.jar & 

java -jar microservices/product-service/build/libs/*.jar & 

java -jar microservices/recommendation-service/build/libs/*.jar & 

java -jar microservices/review-service/build/libs/*.jar & 

2.  Once they’ve all started up, run the test script:

./test-em-all.bash

[image: Image 50]

96

 Creating a Set of Cooperating Microservices

Expect the output to look similar to the following:

 Figure 3.10: Output after running the test script

3.  Wrap this up by shutting down the microservices with the following command:

kill $(jobs -p)

In this section, we have taken the first steps toward automating testing for a system landscape of cooperating microservices, all of which will be improved in upcoming chapters. 

Summary

We have now built our first few microservices using Spring Boot. After being introduced to the microservice landscape that we will use throughout this book, we learned how to use Spring 

Initializr to create skeleton projects for each microservice. 

[image: Image 51]

 Chapter 3

97

Next, we learned how to add APIs using Spring WebFlux for the three core services and imple-

mented a composite service that uses the three core services’ APIs to create an aggregated view of the information in them. The composite service uses the RestTemplate class in the Spring 

Framework to perform HTTP requests to APIs that are exposed by the core services. After adding logic for error handling to the services, we ran some manual tests on the microservice landscape. 

We wrapped this chapter up by learning how to add tests for microservices in isolation and 

when they work together as a system landscape. To provide controlled isolation for the composite service, we mocked its dependencies to the core services using Mockito. Testing the whole system landscape is performed by a Bash script that uses curl to perform calls to the API of the composite service. 

With these skills in place, we are ready to take the next step, entering the world of Docker and containers in the next chapter! Among other things, we will learn how to use Docker to fully automate the testing of a system landscape of cooperating microservices. 

Questions

1.  What is the command that lists available dependencies when you create a new Spring 

Boot project using the spring init Spring Initializr CLI tool? 

2.  How can you set up Gradle to build multiple related projects with one command? 

3.  What are the @PathVariable and @RequestParam annotations used for? 

4.  How can you separate protocol-specific error handling from the business logic in an API 

implementation class? 

5.  What is Mockito used for? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 


4Deploying Our Microservices 

Using Docker

In this chapter, we will start using Docker and put our microservices into containers! 

By the end of this chapter, we will have run fully automated tests of our microservice landscape that start all our microservices as Docker containers, requiring no infrastructure other than a Docker engine. We will also have run a number of tests to verify that the microservices work together as expected, and finally, shut down all the microservices, leaving no traces of the tests we executed. 

Being able to test a number of cooperating microservices in this way is very useful. As developers, we can verify that the microservices work on our local developer machines. We can also run exactly the same tests in a build server to automatically verify that changes to the source code won’t break the tests at a system level. Additionally, we don’t need to have a dedicated infrastructure allocated to run these types of tests. In the upcoming chapters, we will see how we can add databases and queue managers to our test landscape, all of which will run as Docker containers. 

This does not, however, replace the need for automated unit and integration tests, 

which test individual microservices in isolation. They are as important as ever. 

For production usage, as we mentioned earlier in this book, we need a container 

orchestrator such as Kubernetes. We will get back to container orchestrators and 

Kubernetes later in this book. 

100

 Deploying Our Microservices Using Docker

The following topics will be covered in this chapter:

•  Introduction to Docker

•  Docker and Java – Java hasn’t been very friendly to containers historically, but that changed with Java 10, so let’s see how Docker and Java fit together

•  Using Docker with one microservice

•  Managing a landscape of microservices using Docker Compose

•  Automating tests of cooperating microservices

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following chapters:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,   Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter04. 

If you want to see the changes that were applied to the source code in this chapter, that is, see what it took to add support for Docker, you can compare it with the source code for  Chapter 3, 

 Creating a Set of Cooperating Microservices. You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter03/2-basic-rest-services and $BOOK_HOME/Chapter04. 

Introduction to Docker

As we already mentioned in  Chapter 2,   Introduction to Spring Boot, Docker made the concept of containers as a lightweight alternative to virtual machines very popular in 2013. To quickly recap: containers are actually processed in a Linux host that uses Linux namespaces to provide isolation between containers, and Linux Control Groups (cgroups) are used to limit the amount of CPU 

and memory that a container is allowed to consume. 

Compared to a virtual machine that uses a hypervisor to run a complete copy of an operating 

system in each virtual machine, the overhead in a container is a fraction of the overhead in a virtual machine. This leads to much faster startup times and a significantly smaller footprint. 

Containers are, however, not considered to be as secure as virtual machines. Take a look at the following diagram:

[image: Image 52]

[image: Image 53]

 Chapter 4

101

 Figure 4.1: Virtual machines versus containers

The diagram illustrates the difference between the resource usage of virtual machines and containers, demonstrating that the same type of server can run significantly more containers than virtual machines. The main gain is that a container doesn’t need to run its own instance of an operating system as a virtual machine does. 

Running our first Docker commands

Let’s try to start a container by launching an Ubuntu server using Docker’s run command:

docker run -it --rm ubuntu

With the preceding command, we ask Docker to create a container that runs Ubuntu, based on 

the latest version that’s available of the official Docker image for Ubuntu. The -it option is used so that we can interact with the container using the Terminal, and the --rm option tells Docker to remove the container once we exit the Terminal session; otherwise, the container will remain in the Docker engine with an Exited state. 

The first time we use a Docker image that we haven’t built ourselves, Docker will download it from a Docker registry, which is Docker Hub by default (https://hub.docker.com). This will take some time, but for subsequent usage of that Docker image, the container will start in just a few seconds! 

Once the Docker image has been downloaded and the container has been started up, the Ubuntu 

server should respond with a prompt such as the following:

 Figure 4.2: Ubuntu server response

[image: Image 54]

[image: Image 55]

102

 Deploying Our Microservices Using Docker

We can try out the container by, for example, asking what version of Ubuntu it runs:

cat /etc/os-release | grep 'PRETTY_NAME' 

It should respond with something like the following:

 Figure 4.3: Ubuntu version response

We can leave the container with an exit command and verify that the Ubuntu container no longer exists with the docker ps -a command. We need to use the -a option to see stopped containers; otherwise, only running containers are displayed. 

If you favor Fedora over Ubuntu, feel free to try the same with the docker run --rm -it fedora command. Once the Fedora server has started running in its container, you can, for example, 

ask what version of Fedora is running with the cat /etc/os-release | grep 'PRETTY_NAME' 

command. It should respond with something like the following:

 Figure 4.4: CentOS version response

Leave the container with the exit command to remove it. 

If, at some point, you find that you have a lot of unwanted containers in Docker 

Engine and you want to get a clean sheet, that is, get rid of them all, you can run 

the following command:

docker rm -f $(docker ps -aq)

The docker rm -f command stops and removes the containers whose container IDs 

are specified by the command. The docker ps -aq command lists the container IDs 

of all the running and stopped containers in Docker Engine. The -q option reduces 

the output from the docker ps command so that it only lists the container IDs. 

Now we’ve understood what Docker is, we can move on to learn how to run Java in Docker. 

 Chapter 4

103

Running Java in Docker

Over the past few years, there have been a number of attempts to get Java working in Docker in a good way. Most importantly, Java hasn’t historically been very good at respecting limits set for Docker containers when it comes to the use of memory and CPU. 

Previously, the official Docker image for Java came from the OpenJDK project: https://hub. 

docker.com/_/openjdk/. Since July 2022, no Docker images are published in this registry. We will use an alternative Docker image from the Eclipse Temurin project. It contains the same binaries from the OpenJDK project and provides variants of the Docker images that meet our needs better than the Docker images from the OpenJDK project. 

In this section, we will use a Docker image that contains the full JDK (Java Development Kit) with all its tools. When we start to package our microservices in Docker images in the  Using Docker with one microservice section, we will use a more compact Docker image that is based on the Java Runtime Environment (JRE), only containing the Java tools required at runtime. 

As already mentioned, earlier versions of Java have not been very good at honoring the quotas specified for a Docker container using Linux cgroups; they simply ignored these settings. So, instead of allocating memory inside the JVM in relation to the memory available in the container, Java allocated memory as if it had access to all the memory in the Docker host. When trying to allocate more memory than allowed, the Java container was killed by the host with an “out of memory” error message. In the same way, Java allocated CPU-related resources such as thread 

pools in relation to the total number of available CPU cores in the Docker host, instead of the number of CPU cores that were made available for the container JVM was running in. 

In Java SE 9, initial support for container-based CPU and memory constraints was provided, much improved in Java SE 10. 

Let’s look at how Java SE 24 responds to limits we set on a container it runs in! 

In the following tests, we will run Docker Engine inside a virtual machine on a MacBook Pro, acting as the Docker host. The Docker host is configured to use 8 CPU cores and 16 GB of memory. 

We will start by seeing how we can limit the number of available CPUs to a container that runs Java. After that, we will do the same with limiting memory. 

Limiting available CPUs

Let’s start by finding out how many available processors (that is, CPU cores) Java sees without applying any constraints. We can do this by sending the Java statement Runtime.getRuntime(). 

[image: Image 56]

104

 Deploying Our Microservices Using Docker

availableprocessors() to the Java CLI tool jshell. We will run jshell in a container using 

the Docker image that contains the full Java 24 JDK. The Docker tag for this image is eclipse-temurin:24. The command looks like this:

echo 'Runtime.getRuntime().availableProcessors()' | docker run --rm -i 

eclipse-temurin:24 jshell -q

This command will send the string Runtime.getRuntime().availableProcessors() to the 

Docker container, which will process the string using jshell. We will get the following response: Figure 4.5: Response showing the number of CPU cores available

The response of 8 cores is as expected since the Docker host was configured to use 8 CPU cores. 

Let’s move on and restrict the Docker container to only be allowed to use three CPU cores using the --cpus 3 Docker option, then ask the JVM about how many available processors it sees:

echo 'Runtime.getRuntime().availableProcessors()' | docker run --rm -i 

--cpus=3 eclipse-temurin:24

jshell -q

The JVM now responds with $1 ==> 3; that is, Java SE 24 honors the settings in the container and will, therefore, be able to configure CPU-related resources such as thread pools correctly! 

Limiting available memory

In terms of the amount of available memory, let’s ask the JVM for the maximum size that it thinks it can allocate for the heap. We can achieve this by asking the JVM for extra runtime information using the -XX:+PrintFlagsFinal Java option and then using the grep command to filter out the MaxHeapSize parameter, like so:

docker run -it --rm eclipse-temurin:24 java -XX:+PrintFlagsFinal | grep 

"size_t MaxHeapSize" 

[image: Image 57]

 Chapter 4

105

With 16 GB of memory allocated to the Docker host, we will get the following response:

 Figure 4.6: Response showing MaxHeapSize

With no JVM memory constraints (that is, not using the JVM parameter -Xmx), Java will allocate one-quarter of the memory available to the container for its heap. So, we expect it to allocate up to 4 GB to its heap. From the preceding screenshot, we can see that the response was 4,188,012,544 

bytes. That equals  4,188,012,544 / 1024 / 1024 = 3,994 MB, which is close to the expected 4 GB. 

If we constrain the Docker container to only use up to 1 GB of memory using the Docker option 

-m=1024M, we expect to see a lower max memory allocation. Run the following command:

docker run -it --rm -m=1024M eclipse-temurin:24 java -XX:+PrintFlagsFinal 

| grep "size_t MaxHeapSize" 

This will result in the response 268,435,456 bytes, which equals  268,435,456 / 1024 / 1024 = 256 

MB. 256 MB is one-quarter of 1 GB, so again, this is as expected. 

We can, as usual, set the max heap size on the JVM ourselves. For example, if we want to allow the JVM to use 600 MB of the total 1 GB we have for its heap, we can specify that using the JVM 

option -Xmx600m like so:

docker run -it --rm -m=1024M eclipse-temurin:24 java -Xmx600m 

-XX:+PrintFlagsFinal -version | grep "size_t MaxHeapSize" 

The JVM will respond with 629,145,600 bytes =  629,145,600 / 1024 / 1024  = 600 MB, again as expected. 

Let’s conclude with an “out of memory” test to ensure that this really works! 

We’ll allocate some memory using jshell in a JVM that runs in a container that has been given 1 GB of memory; that is, it has a max heap size of 256 MB. 

First, try to allocate a byte array of 100 MB:

echo 'new byte[100_000_000]' | docker run -i --rm -m=1024M eclipse-

temurin:24 jshell -q

The command will respond with $1 ==>, meaning that it worked fine! 

106

 Deploying Our Microservices Using Docker

Normally, jshell will print out the value resulting from the command, but 100 MB 

of bytes all set to zero is a bit too much to print, so we get nothing. 

Now, let’s try to allocate a byte array that is larger than the max heap size, for example, 500 MB: echo 'new byte[500_000_000]' | docker run -i --rm -m=1024M eclipse-temurin:24 jshell -q

The JVM sees that it can’t perform the action since it honors the container settings of max memory and responds immediately with Exception java.lang.OutOfMemoryError: Java heap space. Great! 

So, to summarize, we have now seen how Java honors the settings of available CPUs and the memory of its container. Let’s move on and build our first Docker images for one of the microservices! 

Using Docker with one microservice

Now that we understand how Java works in a container, we can start using Docker with one of 

our microservices. Before we can run our microservice as a Docker container, we need to package it in a Docker image. To build a Docker image, we need a Dockerfile, so we will start with that. 

Next, we need a Docker-specific configuration for our microservice. Since a microservice that runs in a container is isolated from other microservices – it has its own IP address, hostname, and ports – it needs a different configuration compared to when it’s running on the same host with other microservices. 

For example, since the other microservices no longer run on the same host, no port conflicts will occur. When running in Docker, we can use the default port 8080 for all our microservices without any risk of port conflicts. On the other hand, if we need to talk to the other microservices, we can no longer use localhost like we could when we ran them on the same host. 

The source code in the microservices will not be affected by running the microservices 

in containers, only their configuration! 

To handle the different configurations that are required when running locally without Docker and when running the microservices as Docker containers, we will use Spring profiles. Since  Chapter 

 3,  Creating a Set of Cooperating Microservices, we have been using the default Spring profile for running locally without Docker. Now, we will create a new Spring profile named docker to be 

used when we run our microservices as containers in Docker. 

 Chapter 4

107

Changes in source code

We will start with the product microservice, which can be found in the source code at $BOOK_HOME/

Chapter04/microservices/product-service/. In the next section, we will apply this to the 

other microservices as well. 

First, we add the Spring profile for Docker at the end of the property file, application.yml:

---

spring.config.activate.on-profile: docker

server.port: 8080

Spring profiles can be used to specify the environment-specific configuration, which, 

in this case, is a configuration that is only to be used when running the microservice 

in a Docker container. Other examples are configurations that are specific to dev, 

test, and production environments. Values in a profile override values from the 

default profile. By using YAML files, multiple Spring profiles can be placed in the 

same file, separated by ---. 

The only parameter we change for now is the port that’s being used; we will use the default port 8080 when running the microservice in a container. 

Next, we will create the Dockerfile that we will use to build the Docker image. As mentioned in 

 Chapter 2,  Introduction to Spring Boot, a Dockerfile can be as straightforward as this: FROM openjdk:24

EXPOSE 8080

ADD ./build/libs/*.jar app.jar

ENTRYPOINT [“java”,”-jar”,”/app.jar”]

Some things to take note of are the following:

•  The Docker images will be based on the official Docker image for OpenJDK and use ver-

sion 24

•  Port 8080 will be exposed to other Docker containers

108

 Deploying Our Microservices Using Docker

•  The fat JAR file will be added to the Docker image from the Gradle build library, build/libs

•  The command used by Docker to start a container based on this Docker image is java 

-jar /app.jar

This simple approach has a few disadvantages:

•  We are using the full JDK of Java SE 24, including compilers and other development tools. 

That makes the Docker images unnecessarily large and, from a security perspective, we 

don’t want to bring more tools into the image than necessary. Therefore, we would pre-

fer to use a base image for the Java SE 24 JRE that only contains programs and libraries 

required to run a Java program. Unfortunately, the OpenJDK project does not provide a 

Docker image for Java SE 24 JRE. 

•  The fat JAR file takes time to unpackage when the Docker container starts up. A better 

approach is to instead unpackage the fat JAR file when the Docker image is built. 

•  The fat JAR file is very big, as we will see shortly, some 20 MB. If we want to make repeatable changes to the application code in the Docker images during development, this will 

result in suboptimal usage of the Docker build command. Since Docker images are built 

in layers, we will get one very big layer that needs to be replaced each time, even in the 

case where only a single Java class is changed in the application code. 

•  A better approach is to divide the content into different layers, where files that do not change so frequently are added in the first layer, and files that change the most are placed in the last layer. This will result in good use of Docker’s caching mechanism for layers. For the first stable layers that are not changed when some application code is changed, Docker 

will simply use the cache instead of rebuilding them. This will result in faster builds of 

the microservices’ Docker images. 

Regarding the lack of a Docker image for Java SE 24 JRE from the OpenJDK project, there are other open source projects that package the OpenJDK binaries into Docker images. One of the most 

widely used projects is Eclipse Temurin (https://adoptium.net/temurin/). The Temurin project provides both full JDK editions and minimized JRE editions of their Docker images. 

When it comes to handling the suboptimal packaging of fat JAR files in Docker images, Spring Boot addressed this issue in v2.3.0, making it possible to extract the content of a fat JAR file into a number of folders. By default, Spring Boot creates the following folders after extracting a fat JAR file:

•  dependencies, containing all dependencies as JAR files

•  spring-boot-loader, containing Spring Boot classes that know how to start a Spring 

Boot application

 Chapter 4

109

•  snapshot-dependencies, containing snapshot dependencies, if any

•  application, containing application class files and resources

The Spring Boot documentation recommends creating one Docker layer for each folder in the 

order just listed. After replacing the JDK-based Docker image with a JRE-based image and adding instructions for exploding the fat JAR file into proper layers in the Docker image, the Dockerfile looks like this:

FROM eclipse-temurin:24_36-jre-noble AS builder

WORKDIR extracted

ADD ./build/libs/*.jar app.jar

RUN java -Djarmode=layertools -jar app.jar extract

FROM eclipse-temurin:24_36-jre-noble

WORKDIR application

COPY --from=builder extracted/dependencies/ ./

COPY --from=builder extracted/spring-boot-loader/ ./

COPY --from=builder extracted/snapshot-dependencies/ ./

COPY --from=builder extracted/application/ ./

EXPOSE 8080

ENTRYPOINT [“java”, “org.springframework.boot.loader.launch.JarLauncher”]

To handle the extraction of the fat JAR file in the Dockerfile we use a multi-stage build, meaning that there is a first step, named builder, that handles the extraction. The second stage builds the actual Docker image that will be used at runtime, picking the files as required from the first stage. Using this technique, we can handle all packaging logic in the Dockerfile but, at the same time, keep the size of the final Docker image to a minimum:

•  The first stage starts with this line:

FROM eclipse-temurin:24_36-jre-noble AS builder

•  From this line, we can see that a Docker image from the Temurin project is used and that 

it contains Java SE JRE for v24+36. We can also see that the stage is named builder. 

•  The builder stage sets the working directory to extracted and adds the fat JAR file from 

the Gradle build library, build/libs, to that folder. 

•  The builder stage then runs the java -Djarmode=layertools -jar app.jar extract 

command, which will perform the extraction of the fat JAR file into its working directory, 

the extracted folder. 

[image: Image 58]

110

 Deploying Our Microservices Using Docker

•  The next and final stage starts with this line:

FROM eclipse-temurin:24_36-jre-noble

•  It uses the same base Docker image as in the first stage, and the application folder as 

its working directory. It copies the exploded files from the builder stage, folder by fold-

er, into the application folder. This creates one layer per folder, as just described. The 

--from=builder parameter is used to instruct Docker to pick the files from the file system 

in the builder stage. 

•  After exposing the proper ports – 8080 in this case – the Dockerfile wraps up by telling 

Docker what Java class to run to start the microservice in the exploded format, that is, 

org.springframework.boot.loader.launch.JarLauncher. 

After learning about the required changes in the source code, we are ready to build our first Docker image. 

Building a Docker image

To build the Docker image, we first need to build our deployment artifact (that is, the fat JAR file) for product-service:

cd $BOOK_HOME/Chapter04

./gradlew :microservices:product-service:build

Since we only want to build product-service and the projects it depends on (the 

api and util projects), we don’t use the normal build command, which builds 

all the microservices. Instead, we use a variant that tells Gradle to only build the 

product-service project: :microservices:product-service:build. 

We can find the fat JAR file in the Gradle build library, build/libs. The ls -l microservices/

product-service/build/libs command will report something like the following:

 Figure 4.7: Viewing the fat JAR file details

[image: Image 59]

 Chapter 4

111

As you can see, the JAR file is close to 20 MB in size – no wonder they are called fat 

JAR files! 

If you are curious about its actual content, you can view it by using the unzip -l 

microservices/product-service/build/libs/product-service-1.0.0-

SNAPSHOT.jar command. 

Next, we will build the Docker image and name it product-service, as follows:

cd microservices/product-service

docker build -t product-service . 

Docker will use the Dockerfile in the current directory to build the Docker image. The image will be tagged with the name product-service and stored locally inside Docker Engine. 

Verify that we got a Docker image, as expected, by using the following command:

docker images | grep product-service

The expected output is as follows:

 Figure 4.8: Verifying that we built our Docker image

So, now that we have built the image, let’s see how we can start the service. 

Starting up the service

Let’s start up the product microservice as a container by using the following command:

docker run --rm -p8080:8080 -e "SPRING_PROFILES_ACTIVE=docker" product-

service

This is what we can infer from the command:

1.  docker run: The docker run command will start the container and display log output in 

the Terminal. The Terminal will be locked as long as the container runs. 

2.  We have seen the --rm option already; it will tell Docker to clean up the container once we stop the execution from the Terminal using  Ctrl +  C. 

[image: Image 60]

112

 Deploying Our Microservices Using Docker

3.  The -p8080:8080 option maps port 8080 in the container to port 8080 in the Docker host, 

which makes it possible to call it from the outside. In the case of Docker Desktop for Mac, 

which runs Docker in a local Linux virtual machine, the port will also be port-forwarded 

to macOS, which is made available on localhost. Remember that we can only have one 

container mapping to a specific port in the Docker host! 

4.  With the -e option, we can specify environment variables for the container, which, in this case, is SPRING_PROFILES_ACTIVE=docker. The SPRING_PROFILES_ACTIVE environment 

variable is used to tell Spring what profiles to use. In our case, we want Spring to use the docker profile. 

5.  Finally, we have product-service, which is the name of the Docker image we just built 

and which Docker will use to start the container. 

The expected output is as follows:

 Figure 4.9: Output after starting up the product microservice

From the preceding screenshot, we can see the following:

•  The profile that’s used by Spring is docker. Look for The following profiles are active: 

docker in the output to verify this. 

[image: Image 61]

[image: Image 62]

 Chapter 4

113

•  The port that’s allocated by the container is 8080. Look for Netty started on port8080 

in the output to verify this. 

•  The microservice is ready to accept requests once the log message Started 

ProductServiceApplication has been written! 

We can use port 8080 on localhost to communicate with the microservice, as explained previ-

ously. Try out the following command in another Terminal window:

curl localhost:8080/product/3

The following is the expected output:

 Figure 4.10: Requesting information on product 3

This is similar to the output we received from the previous chapter, but with one major difference: we now have the content of "service Address":"9dc086e4a88b/172.17.0.2:8080", the port is 8080, as expected, and the IP address, 172.17.0.2, is the IP address that’s been allocated to the container from an internal network in Docker – but where did the hostname, 9dc086e4a88b, come from? 

Ask Docker for all the running containers:

docker ps

We will see something like the following:

 Figure 4.11: All running containers

As we can see from the preceding output, the hostname is equivalent to the ID of the container, which is good to know if you want to understand which container actually responded to your 

request! 

Wrap this up by stopping the container in the Terminal with the  Ctrl +  C command. With this done, we can now move on to running the container detached from the terminal. 

[image: Image 63]

114

 Deploying Our Microservices Using Docker

Running the container in detached mode

Okay, that was great, but what if we don’t want to lock the Terminal from where we started the container? In most cases, it is inconvenient to have a Terminal session locked for each running container. It’s time to learn how to start the container as detached – running the container without locking the Terminal! 

We can do this by adding the -d option and, at the same time, giving it a name using the --name option. Giving it a name is optional, and Docker will generate a name if we don’t, but it makes it easier to send commands to the detached container using a name that we have decided. The 

--rm option is no longer required since we will stop and remove the container explicitly when we are done with it:

docker run -d -p8080:8080 -e "SPRING_PROFILES_ACTIVE=docker" --name my-

prd-srv product-service

If we run the docker ps command again, we will see our new container, called my-prd-srv:

 Figure 4.12: Starting the container as detached

But how do we get the log output from our container? 

Meet the docker logs command:

docker logs my-prd-srv -f

The -f option tells the command to follow the log output, that is, not end the command when 

all the current log output has been written to the Terminal, but also wait for more output. If you expect a lot of old log messages that you don’t want to see, you can also add the --tail 0 option so that you only see new log messages. Alternatively, you can use the --since option and specify either an absolute timestamp or a relative time, for example, --since 5m, to see log messages that are, at most, five minutes old. 

Try this out with a new curl request. You should see that a new log message has been written to the log output in the Terminal. 

 Chapter 4

115

Wrap this up by stopping and removing the container:

docker rm -f my-prd-srv

The -f option forces Docker to remove the container, even if it is running. Docker will automatically stop the container before it removes it. 

Now that we know how to use Docker with a microservice, we can see how to manage a micro-

service landscape with the help of Docker Compose. 

Managing a landscape of microservices using Docker 

Compose

We’ve already seen how we can run a single microservice as a Docker container, but what about managing a whole system landscape of microservices? 

As we mentioned earlier, this is the purpose of docker compose. By using single commands, we can build, start, log, and stop a group of cooperating microservices running as Docker containers. 

Changes in the source code

To be able to use Docker Compose, we need to create a configuration file, docker-compose.yml, that describes the microservices Docker Compose will manage for us. We also need to set up Dockerfiles for the remaining microservices and add a Docker-specific Spring profile to each of them. 

All four microservices have their own Dockerfile, but they all look the same as the preceding one. 

When it comes to the Spring profiles, the three core services, product-, recommendation-, and review-service, have the same docker profile, which only specifies that the default port 8080 

should be used when running as a container. 

For product-composite-service, things are a bit more complicated since it needs to know where to find the core services. When we ran all the services on localhost, it was configured to use localhost and individual port numbers, 7002-7004, for each core service. When running in Docker, each service will have its own hostname but will be accessible on the same port number, 8080. 

Here, the docker profile for product-composite-service looks as follows:

---

spring.config.activate.on-profile: docker

server.port: 8080

116

 Deploying Our Microservices Using Docker

app:

product-service:

host: product

port: 8080

recommendation-service:

host: recommendation

port: 8080

review-service:

host: review

port: 8080

This configuration is stored in the property file, application.yml. 

Where did the hostnames product, recommendation, and review come from? 

These are specified in the docker-compose.yml file, which is located in the $BOOK_HOME/Chapter04 

folder. It looks like this:

services:

product:

build: microservices/product-service

mem_limit: 512m

environment:

- SPRING_PROFILES_ACTIVE=docker

recommendation:

build: microservices/recommendation-service

mem_limit: 512m

environment:

- SPRING_PROFILES_ACTIVE=docker

review:

build: microservices/review-service

mem_limit: 512m

environment:

- SPRING_PROFILES_ACTIVE=docker

product-composite:

build: microservices/product-composite-service

 Chapter 4

117

mem_limit: 512m

ports:

- "8080:8080" 

environment:

- SPRING_PROFILES_ACTIVE=docker

For each microservice, we specify the following:

•  The name of the microservice. This will also be the hostname of the container in the 

internal Docker network. 

•  A build directive that specifies where to find the Dockerfile that was used to build the 

Docker image. 

•  A memory limit of 512 MB. 512 MB should be sufficient for all our microservices for the 

scope of this book. For this chapter, it could be set to a lower value, but as we add more 

capabilities in the microservices in the coming chapters, their memory requirements 

will increase. 

•  The environment variables that will be set up for the container. In our case, we used these to specify which Spring profile to use. 

For the product-composite service, we will also specify port mappings – we will expose its port so it can be reached from outside Docker. The other microservices will not be accessible from the outside. Next, we will see how to start up a microservice landscape. 

In  Chapter 10,  Using Spring Cloud Gateway to Hide Microservices behind an Edge Server, and  Chapter 11,  Securing Access to APIs, we will learn more about how to lock down and secure external access to a system landscape of microservices. 

Starting up the microservice landscape

With all the necessary code changes in place, we can build our Docker images, start up the microservice landscape, and run some tests to verify that it works as expected. For this, we need to do the following:

1.  First, we build our deployment artifacts with Gradle and then the Docker images with 

Docker Compose:

cd $BOOK_HOME/Chapter04

./gradlew build

docker compose build

[image: Image 64]

118

 Deploying Our Microservices Using Docker

2.  Then, we need to verify that we can see our Docker images, as follows:

docker images | grep chapter04

3.  We should see the following output:

 Figure 4.13: Verifying our Docker images

4.  Start up the microservices landscape with the following command:

docker compose up -d

5.  The -d option will make Docker Compose run the containers in detached mode, the same 

as for Docker. 

6.  We can follow the startup by monitoring the output that’s written to each container log 

with the following command:

docker compose logs -f

The docker compose logs command supports the same -f and --tail 

options as docker logs, as described earlier. 

The dockter-composelogs command also supports restricting the log out-

put to a group of containers. Simply add the names of the containers you 

want to see the log output of after the logs command. For example, to only 

see log output from the product and review services, use docker compose 

logs -f product review. 

7.  When all four microservices have reported that they have started up, we are ready to try out the microservices landscape. Look for the following:

[image: Image 65]

[image: Image 66]

[image: Image 67]

 Chapter 4

119

 Figure 4.14: Starting up all four microservices

Note that each log message is prefixed with the name of the container that 

produced the output! 

Now, we are ready to run some tests to verify that this works as expected. The port number is the only change we need to make when calling the composite service in Docker compared to when 

we ran it directly on the localhost, as we did in the previous chapter. We now use port 8080: curl localhost:8080/product-composite/123 -s | jq . 

We will get the same type of response:

 Figure 4.15: Calling the composite service

However, there’s one big difference – the hostnames and ports reported by serviceAddresses 

in the response:

 Figure 4.16: Viewing serviceAddresses

120

 Deploying Our Microservices Using Docker

Here, we can see the hostnames and IP addresses that have been allocated to each of the Docker containers. 

We’re done; now only one step is left:

docker compose down

The preceding command will shut down the microservices landscape. So far, we have seen how 

we can test the cooperating microservices running Bash commands by hand. In the next section, we will see how we can enhance our test script to automate these manual steps. 

Automating tests of cooperating microservices

Docker Compose is really helpful when it comes to manually managing a group of microservices. 

In this section, we will take this one step further and integrate Docker Compose into our test script, test-em-all.bash. The test script will automatically start up the microservice landscape, run all the required tests to verify that the microservice landscape works as expected, and finally, tear it down, leaving no traces behind. 

The test script can be found at $BOOK_HOME/Chapter04/test-em-all.bash. 

Before the test script runs the test suite, it will check for the presence of a start argument in the invocation of the test script. If found, it will restart the containers with the following code: if [[ $@ == *"start"* ]]

then

echo "Restarting the test environment..." 

echo "$ docker compose down --remove-orphans" 

docker compose down --remove-orphans

echo "$ docker compose up -d" 

docker compose up -d

fi

After that, the test script will wait for the product-composite service to respond with OK:

waitForService http://$HOST:${PORT}/product-composite/1

The waitForService Bash function is implemented as follows:

function testUrl() {

url=$@

if curl $url -ks -f -o /dev/null

then

 Chapter 4

121

return 0

else

return 1

fi; 

}

function waitForService() {

url=$@

echo -n "Wait for: $url... " 

n=0

until testUrl $url

do

n=$((n + 1))

if [[ $n == 100 ]]

then

echo " Give up" 

exit 1

else

sleep 3

echo -n ", retry #$n " 

fi

done

echo "DONE, continues..." 

}

The waitForService function sends HTTP requests to the supplied URL using curl. Requests 

are sent repeatedly until curl responds that it got a successful response back from the request. 

The function waits 3 seconds between each attempt and gives up after 100 attempts, stopping 

the script with a failure. 

Next, all the tests are executed as they were previously. Afterward, the script will tear down the landscape if it finds the stop argument in the invocation parameters:

if [[ $@ == *"stop"* ]]

then

echo "We are done, stopping the test environment..." 

echo "$ docker compose down" 

docker compose down

fi

[image: Image 68]

122

 Deploying Our Microservices Using Docker

Note that the test script will not tear down the landscape if some tests fail; it will 

simply stop, leaving the landscape up for error analysis! 

The test script has also changed the default port from 7001, which we used when we ran the 

microservices without Docker, to 8080, which is used by our Docker containers. 

Let’s try it out! To start the landscape, run the tests, and tear it down afterward, run this command:

./test-em-all.bash start stop

The following is some sample output from a test run focusing on the startup and shutdown phases. 

Output from the actual tests have been removed (they are the same as in the previous chapter): Figure 4.17: Sample output from a test run

After running these tests, we can move on to see how to troubleshoot tests that fail. 

[image: Image 69]

[image: Image 70]

 Chapter 4

123

Troubleshooting a test run

If the tests that were running ./test-em-all.bash start stop fail, following these steps can help you identify the problem and resume the tests once the problem has been fixed:

1.  First, check the status of the running microservices with the following command:

docker compose ps

2.  If all the microservices are up and running and healthy, you will receive the following 

output:

 Figure 4.18: Checking the status of running microservices

3.  If any of the microservices do not have a status of Up, check their log output for any errors by using the docker compose logs command. For example, you would use the following 

command if you wanted to check the log output for the product service:

docker compose logs product

4.  At this stage, it is not easy to cause an error to be logged, since the microservices are so simple. Instead, here is a sample error log from the product microservice in  Chapter 6,  

 Adding Persistence. Assume that the following is found in its log output:

 Figure 4.19: Sample error information in the log output

5.  From reading the above log output, it is quite clear that the product microservice can’t reach its MongoDB database. Given that the database also runs as a Docker container 

managed by the same Docker Compose file, the docker compose logs command can be 

used to see what’s wrong with the database. 

124

 Deploying Our Microservices Using Docker

6.  If required, you can restart a failed container with the docker compose restart com-

mand. For example, you would use the following command if you wanted to restart the 

product microservice:

docker compose restart product

7.  If a container is missing, for example, due to a crash, you start it up with the docker 

compose up -d --scale command. For example, you would use the following command 

for the product microservice:

docker compose up -d --scale product=1

8.  If errors in the log output indicate that Docker is running out of disk space, parts of it can be reclaimed with the following command:

docker system prune -f --volumes

9.  Once all the microservices are up and running and healthy, run the test script again, but without starting the microservices:

./test-em-all.bash

10.  The tests should now run fine! 

When you are done with the testing, remember to tear down the system landscape:

docker compose down

Finally, a tip about a combined command that builds runtime artifacts and 

Docker images from the source and then executes all tests in Docker:

./gradlew clean build && docker compose build && ./

test-em-all.bash start stop

This is perfect if you want to check that everything works before you push new 

code to your Git repository or as part of a build pipeline in your build server! 

Summary

In this chapter, we have seen how Docker can be used to simplify testing a landscape of cooperating microservices. 

 Chapter 4

125

We learned how Java SE, since v10, honors constraints that we put on containers regarding how much CPU and memory they are allowed to use. We have also seen how little it takes to make it possible to run a Java-based microservice as a Docker container. Thanks to Spring profiles, we can run the microservice in Docker without having to make any code changes. 

Finally, we have seen how Docker Compose can help us manage a landscape of cooperating microservices with single commands, either manually or, even better, automatically, when integrated with a test script such as test-em-all.bash. 

In the next chapter, we will study how we can add some documentation of the API using OpenAPI/

Swagger descriptions. 

Questions

1.  What are the major differences between a virtual machine and a Docker container? 

2.  What is the purpose of namespaces and cgroups in Docker? 

3.  What happens with a Java application that doesn’t honor the max memory settings 

in a container and allocates more memory than it is allowed to? 

4.  How can we make a Spring-based application run as a Docker container without 

requiring modifications of its source code? 

5.  Why will the following Docker Compose code snippet not work? 

review:

build: microservices/review-service

ports:

- "8080:8080" 

environment:

- SPRING_PROFILES_ACTIVE=docker

product-composite:

build: microservices/product-composite-service

ports:

- "8080:8080" 

environment:

- SPRING_PROFILES_ACTIVE=docker

[image: Image 71]

126

 Deploying Our Microservices Using Docker

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

5Adding an API Description 

Using OpenAPI

The value of an API, such as a RESTful service, depends to a large extent on how easy it is to consume. Good and easily accessible documentation is an important part of whether an API is useful. 

In this chapter, we will learn how we can use the OpenAPI Specification to document APIs that we can make externally accessible from a microservice landscape. 

As we mentioned in  Chapter 2,  Introduction to Spring Boot, the OpenAPI Specification, previously known as the Swagger specification, is one of the most commonly used specifications when it 

comes to documenting RESTful services. Many of the leading API gateways have native support for the OpenAPI Specification. We will learn how to use the open source project springdoc-openapi to produce such documentation. We will also learn how to embed an API documentation viewer, 

Swagger UI viewer, which can be used both to inspect the API documentation and also to make requests to the API. 

By the end of this chapter, we will have OpenAPI-based API documentation for the external API that’s exposed by the product-composite-service microservice. The microservice will also 

expose a Swagger UI viewer that we can use to both visualize and test the API. 

The following topics will be covered in this chapter:

•  Introduction to using springdoc-openapi

•  Adding springdoc-openapi to the source code

•  Building and starting the microservice landscape

•  Trying out the OpenAPI documentation

128

 Adding an API Description Using OpenAPI

Technical requirements

For instructions on how to install tools used in this book and how to access the source code for this book, refer to the following:

1.  Chapter 21 for macOS

2.  Chapter 22 for Windows

The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter05. 

If you want to view the changes that were applied to the source code in this chapter, that is, see what it took to create OpenAPI-based API documentation using springdoc-openapi, you can 

compare it with the source code for  Chapter 4,  Deploying Our Microservices Using Docker. You can use your favorite diff tool and compare the two folders – that is, $BOOK_HOME/Chapter04 and 

$BOOK_HOME/Chapter05. 

Introduction to using springdoc-openapi

Using springdoc-openapi makes it possible to keep the documentation of the API together with the source code that implements the API. With springdoc-openapi, you can create the API documentation on the fly at runtime by inspecting Java annotations in the code. To me, this is an important feature. If the API documentation is maintained in a separate life cycle from the Java source code, they will diverge from each other over time. In many cases, this will happen sooner than expected (based on my own experience). 

As always, it is important to separate the interface of a component from its implementation. In terms of documenting a RESTful API, we should add the API documentation to the Java interface that describes the API, and not to the Java class that implements the API. To simplify updating the textual parts of the API documentation (for example, longer descriptions), we can place the descriptions in property files instead of in the Java code directly. 

Added to creating the API specification on the fly, springdoc-openapi also comes with an em-

bedded API viewer called Swagger UI. We will configure the product-composite-service service to expose Swagger UI for its API. 

[image: Image 72]

 Chapter 5

129

Even though Swagger UI is very useful during development and test phases, it is 

typically not exposed in public for APIs in a production environment, for security 

reasons. In many cases, APIs are exposed publicly using an API gateway. Today, most 

API gateway products support exposing API documentation based on an OpenAPI 

document. So instead of exposing Swagger UI, the API’s OpenAPI documentation 

(generated by springdoc-openapi) is exported to an API gateway that can publish 

the API documentation in a secure way. 

If APIs are expected to be consumed by third-party developers, a developer portal can 

be set up containing documentation and tools, used for self-registration, for example. 

Swagger UI can be used in a developer portal to allow developers to learn about the 

API by reading the documentation and also trying out the APIs using a test instance. 

In  Chapter 11,  Securing Access to APIs, we will learn how to lock down access to APIs using OAuth 2.1. We will also learn how to configure the Swagger UI component 

to acquire OAuth 2.1 access tokens and use them when the user tries out the APIs 

through Swagger UI. 

The following screenshot is an example of what Swagger UI looks like:

 Figure 5.1: Swagger UI example

130

 Adding an API Description Using OpenAPI

Some, for now, unimportant parts of the screenshot have been replaced by “…” in 

the preceding figure. We will get back to these details later on in this chapter. 

To enable springdoc-openapi to create the API documentation, we need to add some dependen-

cies to our build files and add some annotations to the Java interfaces that define the RESTful services. As mentioned previously, we will also place the descriptive parts of the API documentation in a property file. 

If parts of the documentation have been placed in property files to simplify updating 

the API documentation, it is important that the property files are handled in the same 

life cycle and under the same version control as the source code. Otherwise, there 

is a risk that they will start to diverge from the implementation – that is, become 

out of date. 

With springdoc-openapi introduced, let’s see how we can start using it by making the required changes in the source code. 

Adding springdoc-openapi to the source code

To add OpenAPI-based documentation regarding the external API that’s exposed by the product-

composite-service microservice, we need to change the source code in two projects:

•  product-composite-service: Here, we will set up a configuration of springdoc-openapi 

in the Java application class, ProductCompositeServiceApplication, and add some 

general information pertaining to the API. 

•  api: Here, we will add annotations to the Java interface, ProductCompositeService, describing each RESTful service and its operations. At this stage, we only have one RESTful service with one operation, accepting HTTP GET requests to /product-composite/{productId}, 

which is used for requesting composite information regarding a specific product. 

The actual texts that are used to describe the API operation will be placed in the default property file, application.yml, in the product-composite-service project. 

Before we can start using springdoc-openapi, we need to add it as a dependency in the Gradle build files. So, let’s start with that! 

 Chapter 5

131

Adding dependencies to the Gradle build files

The springdoc-openapi project is divided into a number of modules. For the api project, we only need the module that contains the annotations we will use to document the API. We can add it to the api project’s build file, build.gradle, as follows:

implementation ‘org.springdoc:springdoc-openapi-starter-common:2.8.6’

The product-composite-service project requires a more fully featured module that contains 

both the Swagger UI viewer and support for Spring WebFlux. We can add the dependency to the 

build file, build.gradle, as follows:

implementation ‘org.springdoc:springdoc-openapi-starter-webflux-ui:2.8.6’

That is all the dependencies that need to be added; now, it’s time for the configuration. 

Adding OpenAPI configuration and general API 

documentation to ProductCompositeService

To enable springdoc-openapi in the product-composite-service microservice, we have to add 

some configuration. To keep the source code compact, we will add it directly to the application class, ProductCompositeServiceApplication.java. 

If you prefer, you can place the configuration of springdoc-openapi in a separate 

Spring configuration class. 

First, we need to define a Spring bean that returns an OpenAPI bean. The source code looks like this:

@Bean

public OpenAPI getOpenApiDocumentation() {

return new OpenAPI()

.info(new Info().title(apiTitle)

.description(apiDescription)

.version(apiVersion)

.contact(new Contact()

.name(apiContactName)

.url(apiContactUrl)

.email(apiContactEmail))

.termsOfService(apiTermsOfService)

[image: Image 73]

[image: Image 74]

[image: Image 75]

[image: Image 76]

132

 Adding an API Description Using OpenAPI

.license(new License()

.name(apiLicense)

.url(apiLicenseUrl)))

.externalDocs(new ExternalDocumentation()

.description(apiExternalDocDesc)

.url(apiExternalDocUrl)); 

}

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button (1) to quickly copy code into your coding environment, or click the Explain button (2) to get the AI assistant to explain a block of code to you. 

The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one. 

From the preceding code, we can see that the configuration contains general descriptive information about the API, such as the following:

•  The name, description, version, and contact information for the API

•  Terms of usage and license information

•  Links to external information regarding the API, if any

 Chapter 5

133

The api* variables that are used to configure the OpenAPI bean are initialized from the property file using Spring @Value annotations. These are as follows:

@Value(“${api.common.version}”)         String apiVersion; 

@Value(“${api.common.title}”)           String apiTitle; 

@Value(“${api.common.description}”)     String apiDescription; 

@Value(“${api.common.termsOfService}”)  String apiTermsOfService; 

@Value(“${api.common.license}”)         String apiLicense; 

@Value(“${api.common.licenseUrl}”)      String apiLicenseUrl; 

@Value(“${api.common.externalDocDesc}”) String apiExternalDocDesc; 

@Value(“${api.common.externalDocUrl}”)  String apiExternalDocUrl; 

@Value(“${api.common.contact.name}”)    String apiContactName; 

@Value(“${api.common.contact.url}”)     String apiContactUrl; 

@Value(“${api.common.contact.email}”)   String apiContactEmail; 

The actual values are set in the property file, application.yml, as follows:

api:

common:

version: 1.0.0

title: Sample API

description: Description of the API... 

termsOfService: MY TERMS OF SERVICE

license: MY LICENSE

licenseUrl: MY LICENSE URL

externalDocDesc: MY WIKI PAGE

externalDocUrl: MY WIKI URL

contact:

name: NAME OF CONTACT

url: URL TO CONTACT

email: contact@mail.com

The property file also contains configuration parameters for springdoc-openapi:

springdoc:

swagger-ui.path: /openapi/swagger-ui.html

api-docs.path: /openapi/v3/api-docs

packagesToScan: se.magnus.microservices.composite.product

pathsToMatch: /**

134

 Adding an API Description Using OpenAPI

The configuration parameters have the following purposes:

•  springdoc.swagger-ui.path and springdoc.api-docs.path are used to specify that the 

URLs used by the embedded Swagger UI viewer are available under the /openapi path. 

Later on in this book, when we add different types of edge servers in front and address 

security challenges, this will simplify the configuration of the edge servers used. Refer to the following chapters for more information:

•   Chapter 10,  Using Spring Cloud Gateway to Hide Microservices Behind an Edge Server

•   Chapter 11,  Securing Access to APIs

•   Chapter 17,  Implementing Kubernetes Features to Simplify the System Landscape –  the Replacing the Spring Cloud Gateway section

•   Chapter 18,  Using a Service Mesh to Improve Observability and Management –  the Replacing Kubernetes Ingress controller with Istio Ingress Gateway  section

•  springdoc.packagesToScan and springdoc.pathsToMatch control where in the code 

base springdoc-openapi will search for annotations. The narrower the scope we can give 

springdoc-openapi, the faster the scan will be performed. 

For details, refer to the ProductCompositeServiceApplication.java application class and the 

application.yml property file in the product-composite-service project. We can now proceed 

to see how to add API-specific documentation to the Java interface, ProductCompositeService. 

java, in the api project. 

Adding API-specific documentation to the 

ProductCompositeService interface

To document the actual API and its RESTful operations, we will add an @Tag annotation to the Java interface declaration in ProductCompositeService.java in the api project. For each RESTful operation in the API, we will add an @Operation annotation, along with @ApiResponse annotations on the corresponding Java method, to describe the operation and its expected responses. 

We will describe both successful and error responses. 

As well as reading these annotations at runtime, springdoc-openapi will also inspect Spring annotations, such as the @GetMapping annotation, to understand what input arguments the operation takes and what the response will look like if a successful response is produced. To understand the structure of potential error responses, springdoc-openapi will look for @RestControllerAdvice and @ExceptionHandler annotations. In  Chapter 3,  Creating a Set of Cooperating Microservices, we added a utility class, GlobalControllerExceptionHandler.java, in the util project. 

 Chapter 5

135

This class is annotated with @RestControllerAdvice. See the  The global REST controller exception handler section for details. The exception handler takes care of 404 (NOT_FOUND) and 422 

(UNPROCESSABLE_ENTITY) errors. To allow springdoc-openapi to also correctly document 400 

(BAD_REQUEST) errors that Spring WebFlux generates when it discovers incorrect input arguments in a request, we have added an @ExceptionHandler for 400 (BAD_REQUEST) errors in GlobalCont

rollerExceptionHandler.java. 

The documentation of the API on the resource level, corresponding to the Java interface declaration, looks as follows:

@Tag(name = “ProductComposite”, description =

“REST API for composite product information.”)

public interface ProductCompositeService {

For the API operation, we have extracted the actual text used in the @Operation and @ApiResponse annotations to the property file. The annotations contain property placeholders, such as ${name-of-the-property}, that springdoc-openapi will use to look up the actual text from the property file at runtime. The API operation is documented as follows:

@Operation(

summary =

“${api.product-composite.get-composite-product.description}”, 

description =

“${api.product-composite.get-composite-product.notes}”)

@ApiResponses(value = {

@ApiResponse(responseCode = “200”, description =

“${api.responseCodes.ok.description}”), 

@ApiResponse(responseCode = “400”, description =

“${api.responseCodes.badRequest.description}”), 

@ApiResponse(responseCode = “404”, description =  

“${api.responseCodes.notFound.description}”), 

@ApiResponse(responseCode = “422”, description =  

“${api.responseCodes.unprocessableEntity.description}”)

})

@GetMapping(

value = “/product-composite/{productId}” , 

produces = “application/json”)

ProductAggregate getProduct(@PathVariable int productId); 

136

 Adding an API Description Using OpenAPI

From the preceding source code, springdoc-openapi will be able to extract the following information about the operation:

•  The operation accepts HTTP GET requests to the URL /product-composite/{productid}, 

where the last part of the URL, {productid}, is used as an input parameter to the request

•  A successful response will produce a JSON structure corresponding to the Java class, 

ProductAggregate

•  In the event of an error, an HTTP error code of either 400, 404, or 422 will be returned 

together with error information in the body, as described by @ExceptionHandler in the 

GlobalControllerExceptionHandler.java Java class in the util project, as described 

previously

For the values specified in the @Operation and @ApiResponse annotations, we can use property placeholders directly, without using Spring @Value annotations. The actual values are set in the property file, application.yml, like this:

api:

responseCodes:

ok.description: OK

badRequest.description: Bad Request, invalid format of the request. 

See response message for more information

notFound.description: Not found, the specified id does not exist

unprocessableEntity.description: Unprocessable entity, input 

parameters caused the processing to fail. See response message for more 

information

product-composite:

get-composite-product:

description: Returns a composite view of the specified product id

notes: |

 # Normal response

If the requested product id is found the method will return 

information regarding:

1. Base product information

1. Reviews

1. Recommendations

1. Service Addresses\n(technical information regarding the 

addresses of the microservices that created the response)

 Chapter 5

137

 # Expected partial and error responses

In the following cases, only a partial response be created (used 

to simplify testing of error conditions)

 ## Product id 113

200 - Ok, but no recommendations will be returned

 ## Product id 213

200 - Ok, but no reviews will be returned

 ## Non-numerical product id

400 - A **Bad Request** error will be returned

 ## Product id 13

404 - A **Not Found** error will be returned

 ## Negative product ids

422 - An **Unprocessable Entity** error will be returned

From the preceding configuration, we can learn the following:

•  A property placeholder such as ${api.responseCodes.ok.description} will be translated 

to OK. Note the hierarchical structure of the YAML-based property file:

api:

responseCodes:

ok.description: OK

•  A multi-line value starts with |, such as the one for the api.get-composite-product. 

description.notes property. Also note that springdoc-openapi supports the provision 

of a multi-line description using the Markdown syntax. 

For details, see the service interface class, ProductCompositeService.java, in the api project and the application.yml property file in the product-composite-service project. 

If you want to find out more about how a YAML file is constructed, view the speci-

fication at https://yaml.org/spec/1.2/spec.html. 

138

 Adding an API Description Using OpenAPI

Building and starting the microservice landscape

Before we can try out the OpenAPI documentation, we need to build and start the microservice landscape! 

This can be done with the following commands:

cd $BOOK_HOME/Chapter05

./gradlew build && docker compose build && docker compose up -d

You may run into an error message regarding port 8080 already being allocated. This will look as follows:

ERROR: for product-composite Cannot start service 

product-composite: driver failed programming external 

connectivity on endpoint chapter05_product-composite_1 

(0138d46f2a3055ed1b90b3b3daca92330919a1e7fec20351728633222db5e737): Bind 

for 0.0.0.0:8080 failed: port is already allocated

If this is the case, you might have forgotten to bring down the microservice landscape from the previous chapter. To find out the names of the executing containers, run the following command: docker ps --format {{.Names}}

A sample response when a microservice landscape from the previous chapter is still running is as follows:

chapter05_review_1

chapter05_product_1

chapter05_recommendation_1

chapter04_review_1

chapter04_product-composite_1

chapter04_product_1

chapter04_recommendation_1

If you find containers from other chapters in the output from the command, for example, from 

 Chapter 4,  Deploying Our Microservices Using Docker, as in the preceding example, you need to jump over to the source code folder for that chapter and bring down its containers:

cd ../Chapter04

docker compose down

 Chapter 5

139

Now, you can bring up the missing container for this chapter:

cd ../Chapter05

docker compose up -d

Note that only the missing container, product-composite, is started by the command since the other ones were already started successfully:

Starting chapter05_product-composite_1 ... done

To wait for the microservice landscape to start up and verify that it works, you can run the following command:

./test-em-all.bash

Note that the test script, test-em-all.bash, has been extended with a set of tests that verifies that the Swagger UI endpoints work as expected:

# Verify access to Swagger and OpenAPI URLs

echo “Swagger/OpenAPI tests” 

assertCurl 302 “curl -s  http://$HOST:$PORT/openapi/swagger-ui.html” 

assertCurl 200 “curl -sL http://$HOST:$PORT/openapi/swagger-ui.html” 

assertCurl 200 “curl -s  http://$HOST:$PORT/openapi/swagger-ui/index.html” 

assertCurl 200 “curl -s  http://$HOST:$PORT/openapi/swagger-ui/oauth2-

redirect.html” 

assertCurl 200 “curl -s  http://$HOST:$PORT/openapi/v3/api-docs” 

assertEqual “3.1.0” “$(echo $RESPONSE | jq -r .openapi)” 

assertEqual “http://$HOST:$PORT” “$(echo $RESPONSE | jq -r ‘.servers[0]. 

url’)” 

assertCurl 200 “curl -s  http://$HOST:$PORT/openapi/v3/api-docs.yaml” 

With the successful startup of the microservices, we can move on and try out the OpenAPI documentation exposed by the product-composite microservice using its embedded Swagger UI 

viewer. 

[image: Image 77]

140

 Adding an API Description Using OpenAPI

Trying out the OpenAPI documentation

To browse the OpenAPI documentation, we will use the embedded Swagger UI viewer. If we open 

the http://localhost:8080/openapi/swagger-ui.html URL in a web browser, we will see a web page that looks something like the following screenshot:

 Figure 5.2: OpenAPI documentation with the Swagger UI viewer

Here, we can ascertain the following:

1.  It contains general information we specified in the springdoc-openapi OpenAPI bean 

and a link to the actual OpenAPI document, /openapi/v3/api-docs, pointing to http://

localhost:8080/openapi/v3/api-docs. 

Note that this is the link to the OpenAPI document that can be exported to 

an API gateway, as discussed in the  Introduction to using springdoc-openapi 

section previously. 

[image: Image 78]

 Chapter 5

141

2.  There is a list of API resources – in our case, the ProductComposite API. 

3.  At the bottom of the page, there is a section where we can inspect the schemas used in 

the API. 

Proceed with the examination of the API documentation as follows:

•  Click on the ProductComposite API resource to expand it. You will get a list of 

operations that are available on the resource. You will only see one operation, /

product-composite/{productId}. 

•  Click on it to expand it. You will see the documentation of the operation that we 

specified in the ProductCompositeService Java interface:

 Figure 5.3: ProductComposite API documentation

[image: Image 79]

142

 Adding an API Description Using OpenAPI

Here, we can see the following:

•  The one-line description of the operation. 

•  A section with details regarding the operation, including the input parameters it supports. 

Note how the Markdown syntax from the notes field in the @ApiOperation annotation 

has been nicely rendered! 

If you scroll down the web page, you will also find documentation regarding the expected re-

sponses and their structure. This shows it for a normal 200 (OK) response:

 Figure 5.4: Documentation for a 200 response

[image: Image 80]

 Chapter 5

143

These are the various 4xx error responses we defined earlier:

 Figure 5.5: Documentation for the 4xx responses

For each documented potential error response, we can learn about its meaning and the structure of the response body. 

If we scroll back up to the parameter description, we will find the Try it out button. If we click on the button, we can fill in actual parameter values and send a request to the API by clicking on the Execute button. For example, if we enter 123 in the productId field, we will get the following response:

[image: Image 81]

[image: Image 82]

[image: Image 83]

[image: Image 84]

144

 Adding an API Description Using OpenAPI

 Figure 5.6: Response after sending a request for an existing product

Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy. 

The next-gen Packt Reader and a free PDF/ePub copy of this book are included 

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure 

you get the right one. 

[image: Image 85]

 Chapter 5

145

We will get an expected 200 (OK) as the response code and a JSON structure in the response body that we are already familiar with! 

If we enter an incorrect input, such as -1, we will get a proper error code as the response code, 422, and a corresponding JSON-based error description in the response body:

 Figure 5.7: Response after sending a request with invalid input

Note that the message field in the response body clearly points out the problem: “Invalid productId: -1” . 

146

 Adding an API Description Using OpenAPI

If you want to try calling the API without using the Swagger UI viewer, you can copy the corresponding curl command from the Responses section and run it in a Terminal window, as shown in the preceding screenshot:

curl -X GET “http://localhost:8080/product-composite/123” -H “accept: 

application/json” 

Great, isn’t it? 

Summary

Good documentation of an API is essential for its acceptance, and OpenAPI is one of the most commonly used specifications when it comes to documenting RESTful services. springdoc-openapi 

is an open source project that makes it possible to create OpenAPI-based API documentation on the fly at runtime by inspecting Spring WebFlux and Swagger annotations. Textual descriptions of an API can be extracted from the annotations in the Java source code and be placed in a property file for ease of editing. springdoc-openapi can be configured to bring an embedded Swagger UI viewer into a microservice, which makes it very easy to read about APIs that have been exposed by the microservice and also try them out from the viewer. 

Now, what about bringing some life to our microservices by adding persistence – that is, the capability to save those microservices’ data in a database? To do this, we will need to add some more APIs so that we can create and delete the information that’s handled by the microservices. 

Head over to the next chapter to find out more! 

Questions

1.  How does springdoc-openapi help us create API documentation for RESTful services? 

2.  What specification for documenting APIs does springdoc-openapi support? 

3.  What is the purpose of the springdoc-openapi OpenAPI bean? 

4.  Name some annotations that springdoc-openapi reads at runtime to create the API doc-

umentation on the fly. 

5.  What does the code “: |” mean in a YAML file? 

6.  How can you repeat a call to an API that was performed using the embedded Swagger UI 

viewer without using the viewer again? 

[image: Image 86]

 Chapter 5

147

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 


6Adding Persistence

In this chapter, we will learn how to persist data that a microservice is using. As already men-

tioned in  Chapter 2,  Introduction to Spring Boot, we will use the Spring Data project to persist data to MongoDB and MySQL databases. 

The product and recommendation microservices will use Spring Data for MongoDB and the 

review microservice will use Spring Data for the Java Persistence API (JPA) to access a MySQL 

database. We will add operations to the RESTful APIs to be able to create and delete data in the databases. The existing APIs for reading data will be updated to access the databases. We will run the databases as Docker containers, managed by Docker Compose, that is, in the same way 

as we run our microservices. 

The following topics will be covered in this chapter:

•  Adding a persistence layer to the core microservices

•  Writing automated tests that focus on persistence

•  Using the persistence layer in the service layer

•  Extending the composite service API

•  Adding databases to the Docker Compose landscape

•  Manual testing of the new APIs and the persistence layer

•  Updating the automated tests of the microservice landscape

150

 Adding Persistence

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu To access the databases manually, we will use the CLI tools provided in the Docker images used to run the databases. We will also expose the standard ports used for each database in Docker Compose, 3306 for MySQL, and 27017 for MongoDB. This will enable us to use our favorite database tools for accessing the databases in the same way as if they were running locally on our computers. 

The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter06. 

If you want to view the changes applied to the source code in this chapter, that is, see what it took to add persistence to the microservices using Spring Data, you can compare it with the source code for  Chapter 5,  Adding an API Description Using OpenAPI. You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter05 and $BOOK_HOME/Chapter06. 

Before going into detail, let’s see where we are heading. 

Chapter objectives

By the end of this chapter, we will have layers inside our microservices that look like the following:

[image: Image 87]

 Chapter 6

151

 Figure 6.1: The microservice landscape we’re aiming for

The  Protocol layer  handles  protocol-specific  logic.  It  is  very  thin,  only  consisting  of  the RestController annotations in the api project and the common GlobalControllerException

Handler in the util project. The main functionality of each microservice resides in each Service layer. The product-composite service contains an Integration layer used to handle the communication with the three core microservices. The core microservices will all have a Persistence layer used for communicating with their databases. 

[image: Image 88]

[image: Image 89]

152

 Adding Persistence

We will be able to access data stored in MongoDB with a command like the following:

docker compose exec mongodb mongosh product-db --quiet --eval "db. 

products.find()" 

The result of the command should look like the following:

 Figure 6.2: Accessing data stored in MongoDB

Regarding data stored in MySQL, we will be able to access it with a command like this:

docker compose exec mysql mysql -uuser -p review-db -e "select * from 

reviews" 

The result of the command should look as follows:

 Figure 6.3: Accessing data stored in MySQL

The output from the mongo and mysql commands has been shortened for improved 

readability. 

Let’s see how to implement this. We will start by adding persistence functionality to our core microservices! 

Adding a persistence layer to the core microservices

Let’s start with adding a persistence layer to the core microservices. Besides using Spring Data, we will also use a Java bean mapping tool, MapStruct, which makes it easy to transform between Spring Data entity objects and the API model classes. For further details, see http://mapstruct. 

org/. 

 Chapter 6

153

First, we need to add dependencies to MapStruct, Spring Data, and the JDBC drivers for the 

databases we intend to use. After that, we can define our Spring Data entity classes and repositories. The Spring Data entity classes and repositories will be placed in their own Java package, persistence. For example, for the product microservice, they will be placed in the se.magnus. 

microservices.core.product.persistence Java package. 

Adding dependencies

We will use MapStruct v1.6.3, so we will start by defining a variable holding the version information in the build file for each core microservice, build.gradle:

ext {

mapstructVersion = "1.6.3.Final" 

}

Next, we declare a dependency on MapStruct:

implementation "org.mapstruct:mapstruct:${mapstructVersion}" 

Since MapStruct generates the implementation of the bean mappings at compile time by processing MapStruct annotations, we need to add an annotationProcessor and testAnnotationProcessor 

dependency:

annotationProcessor "org.mapstruct:mapstruct-

processor:${mapstructVersion}" 

testAnnotationProcessor "org.mapstruct:mapstruct-

processor:${mapstructVersion}" 

To make the compile-time generation work in popular IDEs such as IntelliJ IDEA, we also need to add the following dependency:

compileOnly "org.mapstruct:mapstruct-processor:${mapstructVersion}" 



If you are using IntelliJ IDEA, you also need to ensure that support for annotation 

processing is enabled. Open Preferences and navigate to Build, Execute, Deployment | Compiler | Annotations Processors. Verify that the checkbox named Enable 

annotation processing is selected. 

For the product and recommendation microservices, we declare the following dependencies to 

Spring Data for MongoDB:

implementation 'org.springframework.boot:spring-boot-starter-data-mongodb' 

154

 Adding Persistence

For the review microservice, we declare a dependency on Spring Data for JPA and a JDBC driver for MySQL like this:

implementation 'org.springframework.boot:spring-boot-starter-data-jpa' 

implementation 'mysql:mysql-connector-java' 

To enable the use of MongoDB and MySQL when running automated integration tests, we will 

use Testcontainers and its support for JUnit 5, MongoDB, and MySQL. For the product and recommendation microservices, we declare the following test dependencies:

testImplementation 'org.springframework.boot:spring-boot-testcontainers' 

testImplementation 'org.testcontainers:junit-jupiter' 

testImplementation 'org.testcontainers:mongodb' 

For the review microservices, we declare the following test dependencies:

testImplementation 'org.springframework.boot:spring-boot-testcontainers' 

testImplementation 'org.testcontainers:junit-jupiter' 

testImplementation 'org.testcontainers:mysql' 

For more information on how Testcontainers is used in integration tests, see the  Writing automated tests that focus on persistence section later in this chapter. 

Storing data with entity classes

The entity classes are similar to the corresponding API model classes in terms of what fields they contain; see the se.magnus.api.core Java package in the api project. We will add two fields, id and version, in the entity classes compared to the API model classes. 

The id field is used to hold the database identity of each stored entity, corresponding to the primary key when using a relational database. We will delegate the responsibility of generating unique values for the id field to Spring Data. Depending on the database used, Spring Data can delegate this responsibility to the database engine or handle it on its own. In either case, the application code does not need to consider how a unique database id value is set. The id field is not exposed in the API, as a best practice from a security perspective. The fields in the model classes that identify an entity will be assigned a unique index in the corresponding entity class, to ensure consistency in the database from a business perspective. 

The version field is used to implement optimistic locking, allowing Spring Data to verify that updates of an entity in the database do not overwrite a concurrent update. If the value of the version field stored in the database is higher than the value of the version field in an update request, this indicates that the update is performed on stale data—the information to be updated has been updated by someone else since it was read from the database. 

 Chapter 6

155

Attempts to perform updates based on stale data will be prevented by Spring Data. In the section on writing persistence tests, we will see tests verifying that the optimistic locking mechanism in Spring Data prevents updates performed on stale data. Since we only implement APIs for create, read, and delete operations, we will, however, not expose the version field in the API. 

The most interesting parts of the product entity class, used for storing entities in MongoDB, look like this:

@Document(collection="products")

public class ProductEntity {

@Id

private String id; 

@Version

private Integer version; 

@Indexed(unique = true)

private int productId; 

private String name; 

private int weight; 

Here are some observations from the preceding code:

•  The @Document(collection = "products") annotation is used to mark the class as an entity class used for MongoDB, that is, mapped to a collection in MongoDB with the 

name products

•  The @Id and @Version annotations are used to mark the id and version fields to be used 

by Spring Data, as explained previously

•  The @Indexed(unique = true) annotation is used to get a unique index created for the 

business key, productId

The most interesting parts of the Recommendation entity class, also used for storing entities in MongoDB, look like this:

@Document(collection="recommendations")

@CompoundIndex(name = "prod-rec-id", unique = true, def = "{'productId': 

1, 'recommendationId' : 1}")

public class RecommendationEntity {

156

 Adding Persistence

@Id

private String id; 

@Version

private Integer version; 

private int productId; 

private int recommendationId; 

private String author; 

private int rating; 

private String content; 

We can see how a unique compound index is created using the @CompoundIndex annotation for 

the compound business key based on the productId and recommendationId fields. 

Finally, the most interesting parts of the Review entity class, used for storing entities in a SQL 

database such as MySQL, look like this:

@Entity

@Table(name = "reviews", indexes = { @Index(name = "reviews_unique_idx", unique = true, columnList = "productId,reviewId") })

public class ReviewEntity {

@Id @GeneratedValue

private int id; 

@Version

private int version; 

private int productId; 

private int reviewId; 

private String author; 

private String subject; 

private String content; 

The following are notes on the preceding code:

•  The @Entity and @Table annotations are used to mark the class as an entity class used 

for JPA—mapped to a table in a SQL database with the name reviews. 

 Chapter 6

157

•  The @Table annotation is also used to specify that a unique compound index will be created for the compound business key based on the productId and reviewId fields. 

•  The @Id and @Version annotations are used to mark the id and version fields to be used by Spring Data, as explained previously. To direct Spring Data to JPA in order to automatically generate unique id values for the id field, we are using the @GeneratedValue annotation. 

For the full source code of the entity classes, see the persistence package in each of the core microservice projects. 

Defining repositories in Spring Data

Spring Data comes with a set of interfaces for defining repositories. We will use the CrudRepository and PagingAndSortingRepository interfaces:

•  The CrudRepository interface provides standard methods for performing basic create, 

read, update, and delete operations on the data stored in the databases

•  The PagingAndSortingRepository interface adds support for paging and sorting to the 

CrudRepository interface

We will use the CrudRepository interface as the base for the Recommendation and Review repositories and also the PagingAndSortingRepository interface as the base for the Product repository. 

We will also add a few extra query methods to our repositories for looking up entities using the business key, productId. 

Spring Data supports defining extra query methods based on naming conventions for the sig-

nature of the method. For example, the findByProductId(int productId) method signature 

can be used to direct Spring Data to automatically create a query that returns entities from the underlying collection or table. In this case, it will return entities that have the productId field set to the value specified in the productId parameter. For more details on how to declare extra queries, see https://docs.spring.io/spring-data/commons/reference/repositories/query-

methods-details.html. 

The Product repository class looks like this:

public interface ProductRepository extends

PagingAndSortingRepository <ProductEntity, String>, 

CrudRepository<ProductEntity, String> {

Optional<ProductEntity> findByProductId(int productId); 

}

158

 Adding Persistence

Since the findByProductId method might return zero or one product entity, the return value is marked as optional by wrapping it in an Optional object. 

The Recommendation repository class looks like this:

public interface RecommendationRepository extends CrudRepository 

<RecommendationEntity, String> {

List<RecommendationEntity> findByProductId(int productId); 

}

In this case, the findByProductId method will return zero or more recommendation entities, so the return value is defined as a list. 

Finally, the Review repository class looks like this:

public interface ReviewRepository extends CrudRepository<ReviewEntity, 

Integer> {

@Transactional(readOnly = true)

List<ReviewEntity> findByProductId(int productId); 

}

Since SQL databases are transactional, we have to specify the default transaction type—read-only in our case—for the query method, findByProductId(). 

That’s it—this is all it takes to establish a persistence layer for our core microservices. 

For the full source code of the repository classes, see the persistence package in each of the core microservice projects. 

Let’s start using the persistence classes by writing some tests to verify that they work as intended. 

Writing automated tests that focus on persistence

When writing persistence tests, we want to start a database when the tests begin and tear it down when the tests are complete. However, we don’t want the tests to wait for other resources to start up, for example, a web server such as Netty (which is required at runtime). 

Spring Boot comes with two class-level annotations tailored to this specific requirement:

• 

@DataMongoTest: This annotation starts up a MongoDB database when the test starts. 

 Chapter 6

159

• 

@DataJpaTest: This annotation starts up a SQL database when the test starts. 

•  By default, Spring Boot configures the tests to roll back updates to the SQL database 

to minimize the risk of negative side effects on other tests. In our case, this behavior 

will cause some of the tests to fail. Therefore, automatic rollback is disabled with 

the @Transactional(propagation = NOT_SUPPORTED) class-level annotation. 

To handle the startup and teardown of databases during the execution of the integration tests, we will use Testcontainers. Before looking into how to write persistence tests, let’s learn how to use Testcontainers. 

Using Testcontainers

Testcontainers (https://www.testcontainers.org) is a library that simplifies running automated integration tests by running resource managers such as a database or a message broker as a Docker container. Testcontainers can be configured to automatically start up Docker containers when JUnit tests are started and tear down the containers when the tests are complete. 

To enable Testcontainers in an existing test class for a Spring Boot application like the microservices in this book, we can add the @Testcontainers annotation to the test class. Using the @

Container annotation, we can, for example, declare that the Review microservice’s integration tests will use a Docker container running MySQL. The code looks like this:

@SpringBootTest

@Testcontainers

class SampleTests {

@Container

private static MySQLContainer database = new MySQLContainer(

"mysql:9.2.0"); 

The version specified for MySQL, 9.2.0, is copied from Docker Compose files to ensure 

that the same version is used. 

160

 Adding Persistence

A disadvantage of this approach is that each test class will use its own Docker container. Bringing up MySQL in a Docker container takes a few seconds, typically 10 seconds on my Mac. Running 

multiple test classes that use the same type of test container will add this latency for each test class. To avoid this extra latency, we can use the Single Container pattern (see https://www. 

testcontainers.org/test_framework_integration/manual_lifecycle_control/#singleton-

containers). Following this pattern, a base class is used to launch a single Docker container for MySQL. The base class, MySqlTestBase, used in the Review microservice looks like this:

public abstract class MySqlTestBase {

@ServiceConnection

static final JdbcDatabaseContainer database =

new MySQLContainer("mysql:9.2.0").withStartupTimeoutSeconds(300); 



static {

database.start(); 

}

}

The following is an explanation of the preceding source code:

•  The database container is declared in the same way as in the preceding example, with the 

addition of an extended wait period of five minutes for the container to start up. 

•  A static block is used to start the database container before any JUnit code is invoked. 

•  Some properties will be defined for the database container when started up, such as which port to use. The @ServiceConnection annotation will auto-configure the corresponding Spring connection properties. It will, for example, set the spring.datasource.url, 

spring.datasource.username, and spring.datasource.password properties based on 

the information from the database object using the getJdbcUrl(), getUsername(), and 

getPassword()methods. 

The test classes use the base class as follows:

class PersistenceTests extends MySqlTestBase {

class ReviewServiceApplicationTests extends MySqlTestBase {

For the product and review microservices, which use MongoDB, a corresponding base class, 

MongoDbTestBase, has been added. 

 Chapter 6

161

By default, the log output from Testcontainers is rather extensive. A Logback configuration file can be placed in the src/test/resource folder to limit the amount of log output. Logback is a logging framework (http://logback.qos.ch), and it is included in microservices by using the spring-boot-starter-webflux dependency. For details, see https://www.testcontainers.org/

supported_docker_environment/logging_config/. The configuration file used in this chapter is named src/test/resources/logback-test.xml and looks like this:

<?xml version="1.0" encoding="UTF-8" ?> 

<configuration> 

<include resource="org/springframework/boot/logging/logback/defaults. 

xml"/> 

<include resource="org/springframework/boot/logging/logback/console-

appender.xml"/> 

<root level="INFO"> 

< appender-ref ref="CONSOLE"  /> 

</root> 

</configuration> 

The following are some notes on the preceding XML file:

•  The config file includes two config files provided by Spring Boot to define the default values, and a log appender is configured that can write log events to the console

•  The config file limits log output to the INFO log level, discarding the DEBUG and TRACE log records emitted by the Testcontainers library

For details on Spring Boot’s support for logging and the use of Logback, see https://docs.spring. 

io/spring-boot/how-to/logging.html#howto.logging.logback. 

With Testcontainers introduced, we are ready to see how persistence tests can be written. 

Writing persistence tests

The persistence tests for the three core microservices are similar to each other, so we will only go through the persistence tests for the product microservice. 

162

 Adding Persistence

The test class, PersistenceTests, declares a method, setupDb(), annotated with @BeforeEach, 

which is executed before each test method. The setup method removes any entities from previous tests in the database and inserts an entity that the test methods can use as the base for their tests:

@DataMongoTest

class PersistenceTests {

@Autowired

private ProductRepository repository; 

private ProductEntity savedEntity; 

@BeforeEach

void setupDb() {

repository.deleteAll(); 

ProductEntity entity = new ProductEntity(1, "n", 1); 

savedEntity = repository.save(entity); 

assertEqualsProduct(entity, savedEntity); 

}

Next come the various test methods. First is a create test:

@Test

void create() {

ProductEntity newEntity = new ProductEntity(2, "n", 2); 

repository.save(newEntity); 

ProductEntity foundEntity = repository. findById(

newEntity.getId()).get(); 

assertEqualsProduct(newEntity, foundEntity); 

assertEquals(2, repository.count()); 

}

This test creates a new entity, verifies that it can be found using the findById method, and wraps up by asserting that there are two entities stored in the database, the one created by the setup method and the one created by the test itself. 

 Chapter 6

163

The update test looks like this:

@Test

void update() {

savedEntity.setName("n2"); 

repository. save(savedEntity); 

ProductEntity foundEntity =

repository. findById(savedEntity.getId()).get(); 

assertEquals(1, (long)foundEntity.getVersion()); 

assertEquals("n2" , foundEntity.getName()); 

}

This test updates the entity created by the setup method, reads it again from the database using the standard findById() method, and asserts that it contains expected values for some of its fields. Note that, when an entity is created, its version field is set to 0 by Spring Data, so we expect it to be 1 after the update. 

The delete test looks like this:

@Test

void delete() {

repository. delete(savedEntity); 

assertFalse(repository.existsById(savedEntity.getId())); 

}

This test deletes the entity created by the setup method and verifies that it no longer exists in the database. 

The read test looks like this:

@Test

void getByProductId() {

Optional<ProductEntity> entity = repository. findByProductId(

savedEntity.getProductId()); 

assertTrue(entity.isPresent()); 

assertEqualsProduct(savedEntity, entity.get()); 

}

164

 Adding Persistence

This test uses the findByProductId() method to get the entity created by the setup method, 

verifies that it was found, and then uses the local helper method, assertEqualsProduct(), to verify that the entity returned by findByProductId() looks the same as the entity stored by the setup method. 

Next are two test methods that verify alternative flows for handling error conditions. First is a test that verifies that duplicates are handled correctly:

@Test

void duplicateError() {

assertThrows(DuplicateKeyException.class, () -> {

ProductEntity entity = new ProductEntity(savedEntity.getProductId(), 

"n", 1); 

repository.save(entity); 

}); 

}

The test tries to store an entity with the same business key as used by the entity created by the setup method. The test will fail if the save operation succeeds, or if the save fails with an exception other than the expected DuplicateKeyException. 

The other negative test is, in my opinion, the most interesting test in the test class. It is a test that verifies correct error handling in the case of updates of stale data—it verifies that the optimistic locking mechanism works. It looks like this:

@Test

void optimisticLockError() {

 // Store the saved entity in two separate entity objects

ProductEntity entity1 = repository.findById(

savedEntity.getId()).get(); 

ProductEntity entity2 = repository.findById(savedEntity.getId()).get(); 

 // Update the entity using the first entity object

entity1.setName("n1"); 

repository. save(entity1); 

 //  Update the entity using the second entity object. 

 // This should fail since the second entity now holds an old version

 Chapter 6

165

 // number, that is, an Optimistic Lock Error

assertThrows(OptimisticLockingFailureException.class, () -> {

entity2.setName("n2"); 

repository. save(entity2); 

}); 

 // Get the updated entity from the database and verify its new state

ProductEntity updatedEntity = repository.findById(

savedEntity.getId()).get(); 

assertEquals(1, (int)updatedEntity.getVersion()); 

assertEquals("n1" , updatedEntity.getName()); 

}

The following is observed from the code:

•  First, the test reads the same entity twice and stores it in two different variables, entity1 

and entity2. 

•  Next, it uses one of the variables, entity1, to update the entity. The update of the entity in the database will cause the version field of the entity to be increased automatically 

by Spring Data. The other variable, entity2, now contains stale data, manifested by its 

version field, which holds a lower value than the corresponding value in the database. 

•  When the test tries to update the entity using the entity2 variable, which contains stale data, it is expected to fail by throwing an OptimisticLockingFailureException exception. 

•  The test wraps up by asserting that the entity in the database reflects the first update, that is, contains the name "n1", and that the version field has the value 1; only one update has been performed on the entity in the database. 

Finally, the product service contains a test that demonstrates the usage of built-in support for sorting and paging in Spring Data:

@Test

void paging() {

repository.deleteAll(); 

List<ProductEntity> newProducts = rangeClosed(1001, 1010)

.mapToObj(i -> new ProductEntity(i, "name " + i, i))

.collect(Collectors.toList()); 

repository.saveAll(newProducts); 

166

 Adding Persistence

Pageable nextPage = PageRequest.of(0, 4, ASC, "productId"); 

nextPage = testNextPage(nextPage, "[1001, 1002, 1003, 1004]", true); 

nextPage = testNextPage(nextPage, "[1005, 1006, 1007, 1008]", true); 

nextPage = testNextPage(nextPage, "[1009, 1010]", false); 

}

The following is an explanation of the preceding code:

•  The test starts by removing any existing data, then inserts 10 entities with the productId field ranging from 1001 to 1010. 

•  Next, it creates PageRequest, requesting a page count of 4 entities per page and a sort 

order based on ProductId in ascending order. 

•  Finally, it uses a helper method, testNextPage, to read the expected three pages, verifying the expected product IDs on each page and verifying that Spring Data correctly reports 

back whether more pages exist or not. 

The testNextPage helper method looks like this:

private Pageable testNextPage(Pageable nextPage, String 

expectedProductIds, boolean expectsNextPage) {

Page<ProductEntity> productPage = repository. findAll(nextPage); 

assertEquals(expectedProductIds, productPage.getContent()

.stream().map(p -> p.getProductId()).collect(

Collectors.toList()).toString()); 

assertEquals(expectsNextPage, productPage.hasNext()); 

return productPage.nextPageable(); 

}

The helper method uses the page request object, nextPage, to get the next page from the repository method, findAll(). Based on the result, it extracts the product IDs from the returned entities into a string and compares it to the expected list of product IDs. Finally, it returns the next page. 

For the full source code of the persistence tests, see the PersistenceTests test class in each of the core microservice projects. 

The persistence tests in the product microservice can be executed using Gradle with a command like this:

cd $BOOK_HOME/Chapter06

./gradlew microservices:product-service:test --tests PersistenceTests

[image: Image 90]

 Chapter 6

167

After running the tests, it should respond with the following:

 Figure 6.4: BUILD SUCCESSFUL response

With a persistence layer in place, we can update the service layer in our core microservices to use the persistence layer. 

Using the persistence layer in the service layer

In this section, we will learn how to use the persistence layer in the service layer to store and retrieve data from a database. We will go through the following steps:

1.  Logging the database connection URL

2.  Adding new APIs

3.  Calling the persistence layer from the service layer

4.  Declaring a Java bean mapper

5.  Updating the service tests

Logging the database connection URL

When scaling up the number of microservices where each microservice connects to its own database, it can be hard to keep track of what database each microservice actually uses. To avoid this confusion, a good practice is to add a LOG statement directly after the startup of a microservice that logs connection information that is used to connect to the database. 

For example, the startup code for the product service looks like this:

public class ProductServiceApplication {

private static final Logger LOG =

LoggerFactory.getLogger(ProductServiceApplication.class); 

public static void main(String[] args) {

ConfigurableApplicationContext ctx =

SpringApplication.run(ProductServiceApplication.class, args); 

String mongodDbHost = ctx.getEnvironment().getProperty(

"spring.data.mongodb.host"); 

String mongodDbPort = ctx.getEnvironment().getProperty(

[image: Image 91]

168

 Adding Persistence

"spring.data.mongodb.port"); 

LOG.info("Connected to MongoDb: " + mongodDbHost + ":" +mongodDbPort); 

}

}

The call to the LOG.info method will write something like the following to the log:

 Figure 6.5: Expected log output

For the full source code, see the main application class in each of the core microservice projects, for example, ProductServiceApplication in the product-service project. 

Adding new APIs

Before we can use the persistence layer to create and delete information in the database, we need to create the corresponding API operations in our core service APIs. 

The API operations for creating and deleting a product entity look like this:

@PostMapping(

value    = "/product", 

consumes = "application/json", 

produces = "application/json")

Product createProduct(@RequestBody Product body); 

@DeleteMapping(value = "/product/{productId}")

void deleteProduct(@PathVariable int productId); 

The implementation of the delete operation will be idempotent; that is, it will re-

turn the same result if called several times. This is a valuable characteristic in fault 

scenarios. For example, if a client experiences a network timeout during a call to 

a delete operation, it can simply call the delete operation again without worrying 

about varying responses, for example, OK (200) in response the first time and Not 

Found (404) in response to consecutive calls, or any unexpected side effects. This 

implies that the operation should return the status code OK (200) even though the 

entity no longer exists in the database. 

 Chapter 6

169

The API operations for the recommendation and review entities look similar; however, note that when it comes to the delete operation for the recommendation and review entities, it will delete all recommendations and reviews for the specified productId. 

For the full source code, see the interface declarations (ProductService, RecommendationService, and ReviewService) of the core microservices in the api project. 

Calling the persistence layer from the service layer

The source code in the service layer for using the persistence layer is structured in the same way for all core microservices. Therefore, we will only go through the source code for the product microservice. 

First, we need to inject the repository class from the persistence layer and a Java bean mapper class into the constructor:

private final ServiceUtil serviceUtil; 

private final ProductRepository repository; 

private final ProductMapper mapper; 

public ProductServiceImpl(ProductRepository repository, ProductMapper 

mapper, ServiceUtil serviceUtil) {

this.repository = repository; 

this.mapper = mapper; 

this.serviceUtil = serviceUtil; 

}

In the next section, we will see how the Java mapper class is defined. 

Next, the createProduct method is implemented as follows:

public Product createProduct(Product body) {

try {

ProductEntity entity = mapper.apiToEntity(body); 

ProductEntity newEntity = repository. save(entity); 

return mapper. entityToApi(newEntity); 

} catch (DuplicateKeyException dke) {

throw new InvalidInputException("Duplicate key, Product Id: " +

body.getProductId()); 

}

}

170

 Adding Persistence

The createProduct method used the save method in the repository to store a new entity. It should be noted that the mapper class is used to convert Java beans between an API model class and an entity class using the two mapper methods, apiToEntity() and entityToApi(). The only error 

we handle for the create method is the DuplicateKeyException exception, which we convert 


into an InvalidInputException exception. 

The getProduct method looks like this:

public Product getProduct(int productId) {

if (productId < 1) throw new InvalidInputException(

"Invalid productId: " + productId); 

ProductEntity entity = repository. findByProductId(productId)

. orElseThrow(() -> new NotFoundException(

"No product found for productId: " + productId)); 

Product response = mapper.entityToApi(entity); 

response.setServiceAddress(serviceUtil.getServiceAddress()); 

return response; 

}

After  some basic input validation (that is, ensuring that productId is not negative), the 

findByProductId() method in the repository is used to find the product entity. Since the repository method returns an Optional product, we can use the orElseThrow() method in the Optional class to conveniently throw a NotFoundException exception if no product entity is found. Before the product information is returned, the serviceUtil object is used to fill in the currently used address of the microservice. 

Finally, let’s see the deleteProduct method:

public void deleteProduct(int productId) {

repository. findByProductId(productId). ifPresent(e -> 

repository.delete(e)); 

}

The delete method also uses the findByProductId() method in the repository and uses the 

ifPresent() method in the Optional class to conveniently delete the entity only if it exists. Note that the implementation is idempotent; it will not report any failure if the entity is not found. 

For the full source code, see the service implementation class in each of the core microservice projects, for example, ProductServiceImpl in the product-service project. 

 Chapter 6

171

Declaring a Java bean mapper

So, what about the magic Java bean mapper? 

As already mentioned, MapStruct is used to declare our mapper classes. The use of MapStruct is similar in all three core microservices, so we will only go through the source code for the mapper object in the product microservice. 

The mapper class for the product service looks like this:

@Mapper(componentModel = "spring")

public interface ProductMapper {

@Mappings({

@Mapping(target = " serviceAddress", ignore = true)

})

Product entityToApi(ProductEntity entity); 

@Mappings({

@Mapping(target = " id", ignore = true), 

@Mapping(target = " version", ignore = true)

})

ProductEntity apiToEntity(Product api); 

}

The following can be noted from the code:

•  The entityToApi() method maps entity objects to the API model object. Since the entity 

class does not have a field for serviceAddress, the entityToApi() method is annotated 

to ignore the serviceAddress field in the API model object. 

•  The apiToEntity() method maps API model objects to entity objects. In the same way, 

the apiToEntity() method is annotated to ignore the id and version fields that are 

missing in the API model class. 

Not only does MapStruct support mapping fields by name but it can also be directed to map fields with different names. In the mapper class for the recommendation service, the rating entity field is mapped to the API model field, rate, using the following annotations:

@Mapping(target = " rate", source="entity. rating"), 

Recommendation entityToApi(RecommendationEntity entity); 

172

 Adding Persistence

@Mapping(target = " rating", source="api. rate"), 

RecommendationEntity apiToEntity(Recommendation api); 

After a successful Gradle build, the generated mapping implementation can be found in the 

build/classes folder for each project, for example, ProductMapperImpl.java in the product-

service project. 

For the full source code, see the mapper class in each of the core microservice projects, for example, ProductMapper in the product-service project. 

Updating the service tests

The tests of the APIs exposed by the core microservices have been updated since the previous chapter with tests covering the create and delete API operations. 

The added tests are similar in all three core microservices, so we will only go through the source code for the service tests in the product microservice. 

To ensure a known state for each test, a setup method, setupDb(), is declared and annotated 

with @BeforeEach, so it is executed before each test. The setup method removes any previously created entities:

@Autowired

private ProductRepository repository; 

@BeforeEach

void setupDb() {

repository.deleteAll(); 

}

The test method for the create API verifies that a product entity can be retrieved after it has been created and that creating another product entity with the same productId results in an expected error, UNPROCESSABLE_ENTITY, in the response to the API request:

@Test

void duplicateError() {

int productId = 1; 

postAndVerifyProduct(productId, OK); 

assertTrue(repository.findByProductId(productId).isPresent()); 

postAndVerifyProduct(productId, UNPROCESSABLE_ENTITY)

 Chapter 6

173

.jsonPath("$.path").isEqualTo("/product")

.jsonPath("$.message").isEqualTo("Duplicate key, Product Id: " +

productId); 

}

The test method for the delete API verifies that a product entity can be deleted and that a second delete request is idempotent—it also returns the OK status code, even though the entity no longer exists in the database:

@Test

void deleteProduct() {

int productId = 1; 

postAndVerifyProduct(productId, OK); 

assertTrue(repository.findByProductId(productId).isPresent()); 

deleteAndVerifyProduct(productId, OK); 

assertFalse(repository.findByProductId(productId).isPresent()); 

deleteAndVerifyProduct(productId, OK); 

}

To simplify sending the create, read, and delete requests to the API and verify the response status, three helper methods have been created:

•  postAndVerifyProduct()

•  getAndVerifyProduct()

•  deleteAndVerifyProduct()

The postAndVerifyProduct() method looks like this:

private WebTestClient.BodyContentSpec postAndVerifyProduct(int productId, 

HttpStatus expectedStatus) {

Product product = new Product(productId, "Name " + productId, 

productId, "SA"); 

return client.post()

.uri("/product")

.body(just(product), Product.class)

.accept(APPLICATION_JSON)

.exchange()

.expectStatus().isEqualTo(expectedStatus)

174

 Adding Persistence

.expectHeader().contentType(APPLICATION_JSON)

.expectBody(); 

}

The helper method performs the actual HTTP request and verifies the response code and content type of the response body. Added to that, the helper method also returns the body of the response for further investigations by the caller, if required. The other two helper methods for read and delete requests are similar. 

The source code for the three service test classes can be found in each of the core microservice projects, for example, ProductServiceApplicationTests in the product-service project. 

Now, let’s move on to see how we extend a composite service API. 

Extending the composite service API

In this section, we will see how we can extend the composite API with operations for creating and deleting composite entities. We will go through the following steps:

1.  Adding new operations to the composite service API

2.  Adding methods to the integration layer

3.  Implementing the new composite API operations

4.  Updating the composite service tests

Adding new operations to the composite service API

The composite versions of creating and deleting entities and handling aggregated entities are similar to the create and delete operations in the core service APIs. The major difference is that they have annotations added for OpenAPI-based documentation. For an explanation of the usage of the OpenAPI @Operation and @ApiResponse annotations, refer to  Chapter 5,  Adding an API Description Using OpenAPI, specifically the  Adding API-specific documentation to the ProductCompositeService interface section. 

The API operation for creating a composite product entity is declared as follows:

@Operation(

summary = "${

api.product-composite.create-composite-product.description}", 

description = "${api.product-composite.create-composite-product.notes}")

@ApiResponses(value = {

@ApiResponse(responseCode = "400", description = "${

 Chapter 6

175

api.responseCodes.badRequest.description}"), 

@ApiResponse(responseCode = "422", description = "${

api.responseCodes.unprocessableEntity.description}")

})

@PostMapping(

value    = "/product-composite", 

consumes = "application/json")

void createProduct(@RequestBody ProductAggregate body); 

The API operation for deleting a composite product entity is declared as follows:

@Operation(

summary = "${api.product-composite.delete-composite-product. 

description}", 

description = "${api.product-composite.delete-composite-product.notes}")

@ApiResponses(value = {

@ApiResponse(responseCode = "400", description = "${api.responseCodes. 

badRequest.description}"), 

@ApiResponse(responseCode = "422", description = "${api.responseCodes. 

unprocessableEntity.description}")

})

@DeleteMapping(value = "/product-composite/{productId}")

void deleteProduct(@PathVariable int productId); 

For the full source code, see the ProductCompositeService Java interface in the api project. 

We also need to, as before, add the descriptive text of the API documentation to the property file, application.yml, in the product-composite project:

create-composite-product:

description: Creates a composite product

notes: |

 # Normal response

The composite product information posted to the API will be

split up and stored as separate product-info, recommendation

and review entities. 

 # Expected error responses

1. If a product with the same productId as specified in the

posted information already exists, an **422 - Unprocessable

[image: Image 92]

176

 Adding Persistence

Entity** error with a "duplicate key" error message will be

Returned

delete-composite-product:

description: Deletes a product composite

notes: |

 # Normal response

Entities for product information, recommendations and reviews

related to the specified productId will be deleted. 

The implementation of the delete method is idempotent, that is, 

it can be called several times with the same response. 

This means that a delete request of a non-existing product will

return **200 Ok**. 

Using the Swagger UI viewer, the updated OpenAPI documentation will look like this:

 Figure 6.6: Updated OpenAPI documentation

Later on in this chapter, we will use the Swagger UI viewer to try out the new composite API operations. 

 Chapter 6

177

Adding methods to the integration layer

Before we can implement the new create and delete APIs in the composite services, we need to extend the integration layer so it can call the underlying create and delete operations in the APIs of the core microservices. 

The methods in the integration layer for calling the create and delete operations in the three core microservices are straightforward and similar to each other, so we will only go through the source code for the methods that call the product microservice. 

The createProduct() method looks like this:

@Override

public Product createProduct(Product body) {

try {

return restTemplate.postForObject(

productServiceUrl, body, Product.class); 

} catch (HttpClientErrorException ex) {

throw handleHttpClientException(ex); 

}

}

It simply delegates the responsibility of sending the HTTP request to the RestTemplate object and delegates error handling to the helper method, handleHttpClientException. 

The deleteProduct() method looks like this:

@Override

public void deleteProduct(int productId) {

try {

restTemplate.delete(productServiceUrl + "/" + productId); 

} catch (HttpClientErrorException ex) {

throw handleHttpClientException(ex); 

}

}

It is implemented in the same way as for the create method but performs an HTTP delete request instead. 

The full source code for the integration layer can be found in the ProductCompositeIntegration class in the product-composite project. 

178

 Adding Persistence

Implementing the new composite API operations

Now, we can implement the composite create and delete methods! 

The composite create method will split up the aggregate product object into discrete objects for product, recommendation, and review and call the corresponding create methods in the 

integration layer:

@Override

public void createProduct(ProductAggregate body) {

try {

Product product = new Product(body.getProductId(), 

body.getName(), body.getWeight(), null); 

integration.createProduct(product); 

if (body.getRecommendations() != null) {

body.getRecommendations().forEach(r -> {

Recommendation recommendation = new Recommendation(

body.getProductId(), 

r.getRecommendationId(), r.getAuthor(), r.getRate(), 

r.getContent(), null); 

integration.createRecommendation(recommendation); 

}); 

}

if (body.getReviews() != null) {

body.getReviews().forEach(r -> {

Review review = new Review(body.getProductId(), 

r.getReviewId(), r.getAuthor(), r.getSubject(), 

r.getContent(), null); 

integration.createReview(review); 

}); 

}

} catch (RuntimeException re) {

LOG.warn("createCompositeProduct failed", re); 

throw re; 

}

}

 Chapter 6

179

The composite delete method simply calls the three delete methods in the integration layer to delete the corresponding entities in the underlying databases:

@Override

public void deleteProduct(int productId) {

integration.deleteProduct(productId); 

integration.deleteRecommendations(productId); 

integration.deleteReviews(productId); 

}

The full source code for the service implementation can be found in the ProductCompositeServiceImpl class in the product-composite project. 

For happy-day scenarios, this implementation will work fine, but if we consider various error scenarios, we see that this implementation will cause trouble! 

What if, for example, one of the underlying core microservices is temporarily unavailable, for instance, due to internal, network, or database problems? 

This might result in partly created or deleted composite products. For the delete operation, this can be fixed if the requester simply calls the composite’s delete method until it succeeds. However, if the underlying problem remains for a while, the requester will probably give up, resulting in an inconsistent state of the composite product—which is not acceptable in most cases! 

In the next chapter,  Chapter 7,  Developing Reactive Microservices, we will see how we can address these types of shortcomings with synchronous APIs as a RESTful API. 

For now, let’s move on with this fragile design in mind. 

Updating the composite service tests

Testing composite services, as already mentioned in  Chapter 3,  Creating a Set of Cooperating Microservices (refer to the  Adding automated microservice tests in isolation section), is limited to using simple mock components instead of the actual core services. This restricts us from testing more complex scenarios, for example, error handling when trying to create duplicates in the underlying databases. The tests for the composite create and delete API operations are therefore relatively simple:

@Test

void createCompositeProduct1() {

ProductAggregate compositeProduct = new ProductAggregate(1, "name", 

1, null, null, null); 

180

 Adding Persistence

postAndVerifyProduct(compositeProduct, OK); 

}

@Test

void createCompositeProduct2() {

ProductAggregate compositeProduct = new ProductAggregate(1, "name", 

1, singletonList(new RecommendationSummary(1, "a", 1, "c")), 

singletonList(new ReviewSummary(1, "a", "s", "c")), null); 

postAndVerifyProduct(compositeProduct, OK); 

}

@Test

void deleteCompositeProduct() {

ProductAggregate compositeProduct = new ProductAggregate(1, "name", 

1,singletonList(new RecommendationSummary(1, "a", 1, "c")), 

singletonList(new ReviewSummary(1, "a", "s", "c")), null); 

postAndVerifyProduct(compositeProduct, OK); 

deleteAndVerifyProduct(compositeProduct.getProductId(), OK); 

deleteAndVerifyProduct(compositeProduct.getProductId(), OK); 

}

The full source code for the service test can be found in the ProductCompositeServiceApplica tionTests class in the product-composite project. 

These are all the changes required in the source code. Before we can test the microservices together, we must learn how to add databases to the system landscape managed by Docker Compose. 

Adding databases to the Docker Compose landscape

Now, we have all of the source code in place. Before we can start up the microservice landscape and try out the new APIs together with the new persistence layer, we must start up some databases. 

We will bring MongoDB and MySQL into the system landscape controlled by Docker Compose 

and add configuration to our microservices so that they can find their databases when running. 

The Docker Compose configuration

MongoDB and MySQL are declared as follows in the Docker Compose configuration file, docker-

compose.yml:

 Chapter 6

181

mongodb:

image: mongo:8.0.5

mem_limit: 512m

ports:

- "27017:27017" 

command: mongod

healthcheck:

test: echo 'db.runCommand("ping").ok' | mongosh --quiet

interval: 5s

timeout: 2s

retries: 60

mysql:

image: mysql:9.2.0

mem_limit: 512m

ports:

- "3306:3306" 

environment:

- MYSQL_ROOT_PASSWORD=rootpwd

      - MYSQL_DATABASE=review-db

      - MYSQL_USER=user

      - MYSQL_PASSWORD=pwd

    healthcheck:

      test: "/usr/bin/mysql --user=user --password=pwd --execute \"SHOW 

DATABASES;\"" 

interval: 5s

timeout: 2s

retries: 60

The following are notes on the preceding code:

•  We will use the official Docker image for MongoDB v8.0.5 and MySQL v9.2.0 and forward 

their default ports, 27017 and 3306, to the Docker host, also made available on localhost 

when using Docker Desktop for Mac

•  For MySQL, we also declare some environment variables, defining the following:

•  The root password

•  The name of the database that will be created on container startup

•  A username and password for a user that is set up for the database on container 

startup

182

 Adding Persistence

•  We also declare a health check that Docker will run to determine the status of the Mon-

goDB and MySQL databases

To avoid microservices trying to connect to databases before they are up and running, the product and recommendation services are declared as dependent on the MongoDB database, as follows:

depends_on:

mongodb:

condition: service_healthy

For the same reason, the review service is declared as dependent on the MySQL database:

depends_on:

mysql:

condition: service_healthy

This means that Docker Compose will not start up the microservice containers until the database containers are launched and reported as healthy by their health checks. 

Database connection configuration

With the database in place, we now need to set up the configuration for the core microservices so they know how to connect to their databases. This is set up in each core microservice’s configuration file, application.yml, in the product-service, recommendation-service, and review-

service projects. 

The configuration for the product and recommendation services are similar, so we will only look into the configuration of the product service. The following part of the configuration is of interest: spring.data.mongodb:

host: localhost

port: 27017

database: product-db

logging:

level:

org.springframework.data.mongodb.core. MongoTemplate: DEBUG

---

spring.config.activate.on-profile: docker

 Chapter 6

183

spring.data.mongodb.host: mongodb

The following are important parts of the preceding code:

•  When running without Docker using the default Spring profile, the database is expected 

to be reachable on localhost:27017

•  Setting the log level for MongoTemplate to DEBUG will allow us to see which MongoDB 

statements are executed in the log

•  When running inside Docker using the Spring profile, docker, the database is expected 

to be reachable on mongodb:27017

The configuration for the review service, which affects how it connects to its SQL database, looks like the following:

spring.jpa.hibernate.ddl-auto: update

spring.datasource:

url: jdbc:mysql://localhost/review-db

username: user

password: pwd

spring.datasource.hikari. initializationFailTimeout: 60000

logging:

level:

org.hibernate.SQL: DEBUG

org.hibernate.type.descriptor.sql.BasicBinder: TRACE

---

spring.config.activate.on-profile: docker

spring.datasource:

url: jdbc:mysql://mysql/review-db

The following is an explanation of the preceding code:

•  By default, Hibernate will be used by Spring Data JPA as the JPA’s EntityManager. 

184

 Adding Persistence

•  The spring.jpa.hibernate.ddl-auto property is used to tell Spring Data JPA to create 

new or update existing SQL tables during startup. 

Note: It is strongly recommended to set the spring.jpa.hibernate.ddl-auto 

property to none or validate in a production environment—this prevents Spring 

Data JPA from manipulating the structure of the SQL tables. For more informa-

tion, see https://docs.spring.io/spring-boot/docs/current/reference/

htmlsingle/#howto-database-initialization. 

•  When running without Docker, using the default Spring profile, the database is expected 

to be reachable on localhost using the default port 3306. 

•  By default, HikariCP is used by Spring Data JPA as the JDBC connection pool. To 

minimize startup problems on computers with limited hardware resources, the 

initializationFailTimeout parameter is set to 60 seconds. This means that the Spring 

Boot application will wait for up to 60 seconds during startup to establish a database 

connection. 

•  The log-level settings for Hibernate will cause Hibernate to print the SQL statements 

used and the actual values used. Please note that when used in a production environment, 

writing the actual values to the log should be avoided for privacy reasons. 

•  When running inside Docker using the Spring profile, docker, the database is expected 

to be reachable on the mysql hostname using the default port 3306. 

With this configuration in place, we are ready to start up the system landscape. But before we do that, let’s learn how we can run database CLI tools. 

The MongoDB and MySQL CLI tools

Once we have started to run some tests with the microservices, it will be interesting to see what data is actually stored in the microservices’ databases. Each database Docker container comes with CLI-based tools that can be used to query the database tables and collections. To be able to run the database CLI tools, the Docker Compose exec command can be used. 

The commands described in this section will be used when we get to the manual tests in the next section. Don’t try to run them now; they will fail since we have no databases up and running yet! 

To start the MongoDB CLI tool, mongo, inside the mongodb container, run the following command: docker compose exec mongodb mongosh ––quiet

> 

 Chapter 6

185

Enter exit to leave the mongo CLI. 

To start the MySQL CLI tool, mysql, inside the mysql container and log in to review-db using the user created at startup, run the following command:

docker compose exec mysql mysql -uuser -p review-db

mysql> 

The mysql CLI tool will prompt you for a password; you can find it in the docker-

compose.yml file. Look for the value of the MYSQL_PASSWORD environment variable. 

Enter exit to leave the mysql CLI. 

We will see the usage of these tools in the next section. 

`Manual tests of the new APIs and the persistence 

layer

Now, we have everything in place to test the microservices together. We will build new Docker images and start up the system landscape using Docker Compose based on the Docker images. 

Next, we will use the Swagger UI viewer to run some manual tests. Finally, we will use the database CLI tools to see what data was inserted into the databases. 

Build and start the system landscape with the following command:

cd $BOOK_HOME/Chapter06

./gradlew build && docker compose build && docker compose up

Open Swagger UI in a web browser, http://localhost:8080/openapi/swagger-ui.html, and 

perform the following steps on the web page:

1.  Click on the ProductComposite service and the POST method to expand them. 

2.  Click on the Try it out button and go down to the body field. 

3.  Replace the default value, 0, of the productId field with 123456. 

4.  Scroll down to the Execute button and click on it. 

5.  Verify that the returned response code is 200. 

[image: Image 93]

[image: Image 94]

186

 Adding Persistence

The following is a sample screenshot after hitting the Execute button:

 Figure 6.7: Testing the server response

In the log output from the docker compose up command, we should be able to see output like 

the following (abbreviated for increased readability):

 Figure 6.8: Log output from docker compose up

[image: Image 95]

[image: Image 96]

 Chapter 6

187

We can also use the database CLI tools to see the actual content in the different databases. 

Look up the content in the product service, that is, the products collection in MongoDB, with the following command:

docker compose exec mongodb mongosh product-db --quiet --eval "db. 

products.find()" 

Expect a response like this:

 Figure 6.9: Looking up products

Look up the content in the recommendation service, that is, the recommendations collection in MongoDB, with the following command:

docker compose exec mongodb mongosh recommendation-db --quiet --eval "db. 

recommendations.find()" 

Expect a response like this:

 Figure 6.10: Looking up recommendations

[image: Image 97]

188

 Adding Persistence

Look up the content in the review service, that is, the reviews table in MySQL, with the following command:

docker compose exec mysql mysql -uuser -p review-db -e "select * from 

reviews" 

The mysql CLI tool will prompt you for a password; you can find it in the docker-compose.yml file. Look for the value of the MYSQL_PASSWORD environment variable. Expect a response like the following:

 Figure 6.11: Looking up reviews

Bring down the system landscape by interrupting the docker compose up command with Ctrl 

+ C, followed by the docker compose down command. After this, let us see how to update the automated tests in a microservice landscape. 

Updating the automated tests of the microservice 

landscape

The automated tests of the microservice landscape, test-em-all.bash, need to be updated so 

that they ensure that the database of each microservice has a known state before it runs the tests. 

The script is extended with a setup function, setupTestdata(), which uses the composite create and delete APIs to set up test data used by the tests. 

The setupTestdata function looks like this:

function setupTestdata() {

body=\

'{"productId":1,"name":"product 1","weight":1, "recommendations":[

{"recommendationId":1,"author":"author

1","rate":1,"content":"content 1"}, 

{"recommendationId":2,"author":"author

 Chapter 6

189

2","rate":2,"content":"content 2"}, 

{"recommendationId":3,"author":"author

3","rate":3,"content":"content 3"}

], "reviews":[

{"reviewId":1,"author":"author 1","subject":"subject 1","content":"content 1"}, 

{"reviewId":2,"author":"author 2","subject":"subject 2","content":"content 2"}, 

{"reviewId":3,"author":"author 3","subject":"subject 3","content":"content 3"}

]}' 

recreateComposite 1 "$body" 

body=\

'{"productId":113,"name":"product 113","weight":113, "reviews":[

{"reviewId":1,"author":"author 1","subject":"subject 1","content":"content 1"}, 

{"reviewId":2,"author":"author 2","subject":"subject 2","content":"content 2"}, 

{"reviewId":3,"author":"author 3","subject":"subject 3","content":"content 3"}

]}' 

recreateComposite 113 "$body" 

body=\

'{"productId":213,"name":"product 213","weight":213, 

"recommendations":[

{"recommendationId":1,"author":"author

1","rate":1,"content":"content 1"}, 

{"recommendationId":2,"author":"author

2","rate":2,"content":"content 2"}, 

{"recommendationId":3,"author":"author

3","rate":3,"content":"content 3"}

]}' 

recreateComposite 213 "$body" 

}

[image: Image 98]

190

 Adding Persistence

It uses a helper function, recreateComposite(), to perform the actual requests to the delete and create APIs:

function recreateComposite() {

local productId=$1

local composite=$2

assertCurl 200 "curl -X DELETE http://$HOST:$PORT/product-

composite/${productId} -s" 

curl -X POST http: //$HOST:$PORT/product-composite -H "Content-Type:

application/json" --data "$composite" 

}

The setupTestdata function is called directly after the waitForService function:

waitForService curl -X DELETE http://$HOST:$PORT/product-composite/13

setupTestdata

The main purpose of the waitForService function is to verify that all microservices are up and running. In the previous chapter, the get API on the composite product service was used. In this chapter, the delete API is used instead. When using the get API, only the product core microservice is called if the entity is not found; the recommendation and review services will not be called to verify that they are up and running. The call to the delete API will also ensure that the  Not Found test on productId 13 will succeed. In the next chapter, we will see how we can define specific APIs for checking the health state of a microservice landscape. 

Execute the updated test script with the following command:

cd $BOOK_HOME/Chapter06

./test-em-all.bash start stop

The execution should end by writing a log message like this:

 Figure 6.12: Log message at the end of test execution

This concludes the updates on the automated tests of the microservice landscape. 

 Chapter 6

191

Summary

In this chapter, we saw how we can use Spring Data to add a persistence layer to the core microservices. We used the core concepts of Spring Data, repositories, and entities to store data in both MongoDB and MySQL. The programming model is similar for a NoSQL database such as 

MongoDB and a SQL database such as MySQL, even though it’s not fully portable. We also saw 

how Spring Boot’s annotations, @DataMongoTest and @DataJpaTest, can be used to conveniently 

set up tests targeted for persistence; this is where a database is started automatically before the test runs, but no other infrastructure that the microservice will need at runtime, for example, a web server such as Netty, is started up. To handle the startup and teardown of databases, we have used Testcontainers, which runs the databases in Docker containers. This results in persistence tests that are easy to set up and that start with minimum overhead. 

We have also seen how the persistence layer can be used by the service layer and how we can add APIs for creating and deleting entities, both core and composite. 

Finally, we learned how convenient it is to start up databases such as MongoDB and MySQL at 

runtime using Docker Compose and how to use the new create and delete APIs to set up test data before running automated tests of the microservice-based system landscape. 

However, one major concern was identified in this chapter. Updating (creating or deleting) a composite entity—an entity whose parts are stored in a number of microservices—using synchronous APIs can lead to inconsistencies if not all involved microservices are updated successfully. 

This is, in general, not acceptable. This leads us into the next chapter, where we will look into why and how to build reactive microservices, that is, microservices that are scalable and robust. 

Questions

1.  Spring Data, a common programming model based on entities and repositories, can be 

used for different types of database engines. From the source code examples in this chapter, what are the most important differences in the persistence code for MySQL and MongoDB? 

2.  What is required to implement optimistic locking using Spring Data? 

3.  What is MapStruct used for? 

4.  What does it mean if an operation is idempotent and why is that useful? 

5.  How can we access the data that is stored in the MySQL and MongoDB databases without 

using the API? 

[image: Image 99]

192

 Adding Persistence

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

7Developing Reactive 

Microservices

In this chapter, we will learn how to develop reactive microservices, that is, how to develop non-blocking synchronous REST APIs and asynchronous event-driven services. We will also learn about how to choose between these two alternatives. Finally, we will see how to create and run manual and automated tests of a reactive microservice landscape. 

As already described in  Chapter 1,  Introduction to Microservices, the foundation for reactive systems is that they are message-driven—they use asynchronous communication. This enables them 

to be elastic (in other words, scalable and resilient), meaning that they are tolerant of failures. 

Elasticity and resilience together enable a reactive system to be responsive. 

The following topics will be covered in this chapter:

•  Choosing between non-blocking synchronous APIs and event-driven asynchronous ser-

vices

•  Developing non-blocking synchronous REST APIs

•  Developing event-driven asynchronous services

•  Running manual tests of the reactive microservice landscape

•  Running automated tests of the reactive microservice landscape

194

 Developing Reactive Microservices

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter07. 

If you want to view the changes applied to the source code in this chapter, that is, see what it takes to make the microservices reactive, you can compare it with the source code for  Chapter 6,   Adding Persistence. You can use your favorite diff tool and compare the two folders, that is, $BOOK_HOME/

Chapter06 and $BOOK_HOME/Chapter07. 

Choosing between non-blocking synchronous APIs 

and event-driven asynchronous services

When developing reactive microservices, it is not always obvious when to use non-blocking 

synchronous APIs and when to use event-driven asynchronous services. In general, to make a 

microservice robust and scalable, it is important to make it as autonomous as possible, for example, by minimizing its runtime dependencies. This is also known as loose coupling. Therefore, the asynchronous message passing of events is preferable over synchronous APIs. This is because the microservice will only depend on access to the messaging system at runtime, instead of being dependent on synchronous access to a number of other microservices. 

There are, however, a number of cases where synchronous APIs could be favorable, such as the following:

•  For read operations where an end user is waiting for a response

•  Where the client platforms are more suitable for consuming synchronous APIs, for example, mobile apps or SPA web applications

•  Where the clients will connect to the service from other organizations – where it might 

be hard to agree on a common messaging system to use across organizations

[image: Image 100]

 Chapter 7

195

For the system landscape in this book, we will use the following:

•  The create, read, and delete services exposed by the product composite microservice 

will be based on non-blocking synchronous APIs. The composite microservice is assumed 

to have clients on both web and mobile platforms, as well as clients coming from other 

organizations rather than the ones that operate the system landscape. Therefore, syn-

chronous APIs seem like a natural match. 

•  The read services provided by the core microservices will also be developed as non-block-

ing synchronous APIs since there is an end user waiting for their responses. 

•  The create and delete services provided by the core microservices will be developed as 

event-driven asynchronous services, meaning that they will listen for create and delete 

events on topics dedicated to each microservice. 

•  The synchronous APIs provided by the composite microservices to create and delete ag-

gregated product information will publish create and delete events on these topics. If 

the publish operation succeeds, it will return with a 202 (Accepted) response; otherwise, 

an error response will be returned. The 202 response differs from a normal 200 (OK) re-

sponse – it indicates that the request has been accepted but not fully processed. Instead, 

the processing will be completed asynchronously and independently of the 202 response. 

This is illustrated by the following diagram:

 Figure 7.1: The microservice landscape

First, let’s learn how we can develop non-blocking synchronous REST APIs, and thereafter, we will look at how to develop event-driven asynchronous services. 

Developing non-blocking synchronous REST APIs

In this section, we will learn how to develop non-blocking versions of the read APIs. The composite service will make reactive (that is, non-blocking) calls in parallel to the three core services. 

[image: Image 101]

196

 Developing Reactive Microservices

When the composite service has received responses from all of the core services, it will create a composite response and send it back to the caller. This is illustrated in the following diagram: Figure 7.2: The getCompositeProduct part of the landscape

In this section, we will cover the following:

•  An introduction to Project Reactor

•  Non-blocking persistence using Spring Data for MongoDB

•  Non-blocking REST APIs in the core services, including how to handle blocking code for 

the JPA-based persistence layer

•  Non-blocking REST APIs in the composite service

An introduction to Project Reactor

As we mentioned in the  Spring WebFlux section in  Chapter 2,  Introduction to Spring Boot, the reactive support in Spring 5 is based on Project Reactor (https://projectreactor.io). Project Reactor is based on the  Reactive Streams specification (http://www.reactive-streams.org), a standard for building reactive applications. Project Reactor is fundamental – it is what Spring WebFlux, Spring WebClient, and Spring Data rely on to provide their reactive and non-blocking features. 

The programming model is based on processing streams of data, and the core data types in Project Reactor are Flux and Mono. A Flux object is used to process a stream of  0...n elements and a Mono object is used to process a stream that either is empty or returns at most one element. We will see numerous examples of their usage in this chapter. As a short introduction, let’s look at the following test:

@Test

void testFlux() {

[image: Image 102]

 Chapter 7

197

List<Integer> list = Flux.just(1, 2, 3, 4)

.filter(n -> n % 2 == 0)

.map(n -> n * 2)

.log()

.collectList().block(); 

assertThat(list).containsExactly(4, 8); 

}

Here is an explanation of the preceding source code:

1.  We initiate the stream with the integers 1, 2, 3, and 4 using the Flux.just() static helper method. 

2.  Next, we filter out the odd numbers – we only allow even numbers to proceed through 

the stream. In this test, these are 2 and 4. 

3.  Next, we transform (or map) the values in the stream by multiplying them by 2, so they 

become 4 and 8. 

4.  Then, we log the data that flows through the stream after the map operation. 

5.  We use the collectList method to collect all items from the stream into a List, emitted 

once the stream completes. 

6.  So far, we have only declared the processing of a stream. To actually get the stream processed, we need someone to subscribe to it. The final call to the block method will register a subscriber that waits for the processing to complete. 

7.  The resulting list is saved in a member variable named list. 

8.  We can now wrap up the test by using the assertThat method to assert that list after 

the processing of the stream contains the expected result – the integers 4 and 8. 

The log output will look like the following:

 Figure 7.3: Log output for the preceding code

198

 Developing Reactive Microservices

From the preceding log output, we can see the following:

1.  The processing of the stream is started by a subscriber that subscribes to the stream and requests its content. 

2.  Next, the integers 4 and 8 pass through the log operation. 

3.  The processing concludes with a call to the onComplete method on the subscriber, noti-

fying it that the stream has come to an end. 

For the full source code, see the ReactorTests test class in the util project. 

Normally, we don’t initiate the processing of the stream. Instead, we only define how 

it will be processed, and it will be the responsibility of an infrastructure component to 

initiate the processing. For example, Spring WebFlux will do this as a response to an 

incoming HTTP request. An exception to this rule of thumb is the case where blocking 

code needs a response from a reactive stream. In these cases, the blocking code can call 

the block() method on the Flux or Mono object to get the response in a blocking way. 

Non-blocking persistence using Spring Data for MongoDB

Making the MongoDB-based repositories for the product and recommendation services reactive 

is very simple:

•  Change the base class for the repositories to ReactiveCrudRepository

•  Change the custom finder methods to return either a Mono or a Flux object

ProductRepository and RecommendationRepository look like the following after the change:

public interface ProductRepository extends ReactiveCrudRepository 

<ProductEntity, String> {

Mono<ProductEntity> findByProductId(int productId); 

}

public interface RecommendationRepository extends 

ReactiveCrudRepository<RecommendationEntity, String> {

Flux<RecommendationEntity> findByProductId(int productId); 

}

No changes are applied to the persistence code for the review service; it will remain blocking using the JPA repository. See the following section,  Dealing with blocking code, for how to handle the blocking code in the persistence layer of the review service. 

 Chapter 7

199

For the full source code, take a look at the following classes:

•  ProductRepository in the product project

•  RecommendationRepository in the recommendation project

Changes in the test code

When it comes to testing the persistence layer, we have to make some changes. Since our per-

sistence methods now return a Mono or Flux object, the test methods have to wait for the response to be available in the returned reactive objects. The test methods can either use an explicit call to the block() method on the Mono/Flux object to wait until a response is available, or they can use the StepVerifier helper class from Project Reactor to declare a verifiable sequence of asynchronous events. 

Let’s see how we can change the following test code to work for the reactive version of the repository:

ProductEntity foundEntity = repository.findById(newEntity.getId()).get(); 

assertEqualsProduct(newEntity, foundEntity); 

We can use the block() method on the Mono object returned by the repository.findById() 

method and keep the imperative programming style, as shown here:

ProductEntity foundEntity = repository.findById(

newEntity.getId()). block(); 

assertEqualsProduct(newEntity, foundEntity); 

Alternatively, we can use the StepVerifier class to set up a sequence of processing steps that both executes the repository find operation and also verifies the result. The sequence is initialized by the final call to the verifyComplete() method like this:

StepVerifier.create(repository.findById(newEntity.getId()))

.expectNextMatches(foundEntity -> areProductEqual(newEntity, 

foundEntity))

.verifyComplete(); 

For examples of tests that use the StepVerifier class, see the PersistenceTests test class in the product project. 

For corresponding examples of tests that use the block() method, see the PersistenceTests 

test class in the recommendation project. 

200

 Developing Reactive Microservices

Non-blocking REST APIs in the core services

With a non-blocking persistence layer in place, it’s time to make the APIs in the core services non-blocking as well. We need to make the following changes:

•  Change the APIs so that they only return reactive data types

•  Change the service implementations so they don’t contain any blocking code

•  Change our tests so that they can test the reactive services

•  Deal with blocking code – isolate the code that still needs to be blocking from the 

non-blocking code

Changes in the APIs

To make the APIs of the core services reactive, we need to update their methods so that they return either a Mono or Flux object. 

For example, getProduct() in the product service now returns Mono<Product> instead of a Product object:

Mono<Product> getProduct(@PathVariable int productId); 

For the full source code, take a look at the following core interfaces in the api project:

• 

ProductService

•  RecommendationService

•  ReviewService

Changes in the service implementations

For the implementations of the services in the product and recommendation projects, which use a reactive persistence layer, we can use the fluent API in Project Reactor. For example, the implementation of the getProduct() method looks like the following code:

public Mono<Product> getProduct(int productId) {

if (productId < 1) {

throw new InvalidInputException("Invalid productId: " + productId); 

}

return repository. findByProductId(productId)

.switchIfEmpty(Mono.error(new NotFoundException("No product found

for productId: " + productId)))

[image: Image 103]

[image: Image 104]

 Chapter 7

201

.log(LOG.getName(), FINE)

.map(e -> mapper. entityToApi(e))

.map(e -> setServiceAddress(e)); 

}

Let’s examine what the code does:

1.  The method will return a Mono object; the processing is only declared here. The processing is triggered by the web framework, Spring WebFlux, subscribing to the Mono object once 

it receives a request to this service! 

2.  A product will be retrieved using its productId from the underlying database using the 

findByProductId() method in the persistence repository. 

3.  If no product is found for the given productId, a NotFoundException error will be thrown. 

4.  The log method will produce log output. 

5.  The mapper.entityToApi() method will be called to transform the returned entity from 

the persistence layer into an API model object. 

6.  The final map method will use a helper method, setServiceAddress(), to set the DNS 

name and IP address of the microservices that processed the request in the serviceAddress 

field of the model object. 

Some sample log output for successful processing is as follows:

 Figure 7.4: Log output when processing is successful

The following is a sample log output of a failed processing (throwing NotFoundException):

 Figure 7.5: Log output when processing fails

202

 Developing Reactive Microservices

For the full source code, see the following classes:

• 

ProductServiceImpl in the product project

•  RecommendationServiceImpl in the recommendation project

Changes in the test code

The test code for service implementations has been changed in the same way as the tests for the persistence layer we described previously. To handle the asynchronous behavior of the reactive return types, Mono and Flux, the tests use a mix of calling the block() method and using the StepVerifier helper class. 

For the full source code, see the following test classes:

• 

ProductServiceApplicationTests in the product project

•  RecommendationServiceApplicationTests in the recommendation project

Dealing with blocking code

In the case of the review service, which uses JPA to access its data in a relational database, we don’t have support for a non-blocking programming model. Instead, we can run the blocking code using a Scheduler, which is capable of running the blocking code on a thread from a dedicated thread pool with a limited number of threads. Using a thread pool for the blocking code avoids draining the available threads in the microservice and avoids affecting concurrent non-blocking processing in the microservice, if there are any. 

Let’s see how this can be set up in the following steps:

1.  First, we configure a scheduler bean and its thread pool in the main class, 

ReviewServiceApplication, as follows:

public ReviewServiceApplication(

@Value("${app.threadPoolSize:10}" ) Integer threadPoolSize, 

@Value("${app.taskQueueSize:100}" ) Integer taskQueueSize

) {

this.threadPoolSize = threadPoolSize; 

this.taskQueueSize = taskQueueSize; 

}

@Bean

public Scheduler jdbcScheduler() {

return Schedulers.newBoundedElastic(threadPoolSize, 

 Chapter 7

203

taskQueueSize, "jdbc-pool"); 

}

From the preceding code, we can see that the scheduler bean is named jdbcScheduler 

and that we can configure its thread pool using the following properties:

•  app.threadPoolSize, specifying the maximum number of threads in the pool – 

defaults to 10

•  app.taskQueueSize, specifying the maximum number of tasks that are allowed 

to be placed in a queue waiting for available threads – defaults to 100

2.  Next, we inject the scheduler named jdbcScheduler into the review service implemen-

tation class, as shown here:

@RestController

public class ReviewServiceImpl implements ReviewService {

private final Scheduler jdbcScheduler; 

public ReviewServiceImpl(

@Qualifier("jdbcScheduler")

Scheduler jdbcScheduler,  ...) {

this.jdbcScheduler = jdbcScheduler; 

}

3.  Finally, we use the scheduler’s thread pool in the reactive implementation of the 

getReviews() method, like so:

@Override

public Flux<Review> getReviews(int productId) {

if (productId < 1) {

throw new InvalidInputException("Invalid productId: " +

productId); 

}

LOG.info("Will get reviews for product with id={}", 

productId); 

return Mono.fromCallable(() -> internalGetReviews(productId))

.flatMapMany(Flux::fromIterable)

[image: Image 105]

204

 Developing Reactive Microservices

.log(LOG.getName(), FINE)

.subscribeOn(jdbcScheduler); 

}

private List<Review> internalGetReviews(int productId) {

List<ReviewEntity> entityList = repository. 

findByProductId(productId); 

List<Review> list = mapper.entityListToApiList(entityList); 

list.forEach(e -> e.setServiceAddress(serviceUtil. 

getServiceAddress())); 

LOG.debug("Response size: {}", list.size()); 

return list; 

}

Here, the blocking code is placed in the internalGetReviews() method and is wrapped 

in a Mono object using the Mono.fromCallable() method. The getReviews() method 

uses the subscribeOn() method to run the blocking code in a thread from the thread 

pool of jdbcScheduler. 

When we run tests later on in this chapter, we can look at the log output from the review service and see proof that SQL statements are run in threads from the scheduler’s dedicated pool. We will be able to see log output like this:

 Figure 7.6: Log output from the review service

From the preceding log output, we can see the following:

•  The first log output is from the LOG.info() call in the getReviews() method and it is 

executed on an HTTP thread named ctor-http-nio-4, which is a thread used by WebFlux. 

•  In the second log output, we can see the SQL statement generated by Spring Data JPA, 

using Hibernate under the hood. The SQL statement corresponds to the repository. 

findByProductId() method call. It is executed on a thread named jdbc-pool-1, meaning 

it is executed in a thread from the dedicated thread pool for blocking code, as expected! 

 Chapter 7

205

For the full source code, see the ReviewServiceApplication and ReviewServiceImpl classes in 

the review project. 

With the logic for handling blocking code in place, we are done with implementing the non-blocking REST APIs in the core services. Let’s move on and see how to also make the REST APIs in the composite services non-blocking. 

Non-blocking REST APIs in the composite services

To make our REST API in the composite service non-blocking, we need to do the following:

•  Change the API so that its operations only return reactive data types

•  Change the service implementation so it calls the create services’ APIs in parallel and in a non-blocking way

•  Change the integration layer so it uses a non-blocking HTTP client

•  Change our tests so that they can test the reactive service

Changes in the API

To make the API of the composite service reactive, we need to apply the same type of change 

that we applied for the APIs of the core services we described previously. This means that 

the return type of the getProduct() method, ProductAggregate, needs to be replaced with 

Mono<ProductAggregate>. The createProduct() and deleteProduct() methods need to be 

updated to return a Mono<Void> instead of a void; otherwise, we can’t propagate any error responses back to the callers of the API. 

For the full source code, see the ProductCompositeService interface in the api project. 

Changes in the service implementation

To be able to call the three APIs in parallel, the service implementation uses the static zip() method on the Mono class. The zip method is capable of handling a number of parallel reactive requests and zipping them together once they all are complete. The code looks like this:

@Override

public Mono<ProductAggregate> getProduct(int productId) {

return Mono.zip(



values -> createProductAggregate(

(Product) values[0], 

(List<Recommendation>) values[1], 

(List<Review>) values[2], 

206

 Developing Reactive Microservices

serviceUtil.getServiceAddress()), 



integration.getProduct(productId), 

integration.getRecommendations(productId).collectList(), 

integration.getReviews(productId).collectList())



.doOnError(ex -> 

LOG.warn("getCompositeProduct failed: {}", 

ex.toString()))

.log(LOG.getName(), FINE); 

}

Let’s take a closer look:

•  The first parameter of the zip method is a lambda function that will receive the responses in an array, named values. The array will contain a product, a list of recommendations, and 

a list of reviews. The actual aggregation of the responses from the three API calls is handled by the same helper method as before, createProductAggregate(), without any changes. 

•  The parameters after the lambda function are a list of the requests that the zip method 

will call in parallel, one Mono object per request. In our case, we send in three Mono objects that were created by the methods in the integration class, one for each request that is sent to each core microservice. 

For the full source code, see the ProductCompositeServiceImpl class in the product-composite project. 

For information on how the createProduct and deleteProduct API operations 

are implemented in the product-composite service, see the Publishing events in 

the composite service section later on. 

Changes in the integration layer

In the ProductCompositeIntegration integration class, we have replaced the blocking HTTP 

client, RestTemplate, with a non-blocking HTTP client, WebClient, that comes with Spring 5. 

To create a WebClient instance, a builder pattern is used. If customization is required, for example, setting up common headers or filters, it can be done using the builder. For the available configuration options, see https://docs.spring.io/spring/docs/current/spring-framework-

reference/web-reactive.html#webflux-client-builder. 

 Chapter 7

207

The WebClient is used as follows:

1.  In the constructor, the WebClient is auto-injected. We build the WebClient instance without any configuration:

public class ProductCompositeIntegration implements ProductService, 

RecommendationService, ReviewService {

private final WebClient webClient; 

public ProductCompositeIntegration(

WebClient.Builder webClient,  ... 

) {

this.webClient = webClient.build(); 

}

2.  Next, we use the webClient instance to make our non-blocking requests for calling the 

product service:

@Override

public Mono<Product> getProduct(int productId) {

String url = productServiceUrl + "/product/" + productId; 

return webClient.get().uri(url).retrieve()

.bodyToMono(Product.class)

.log(LOG.getName(), FINE)

.onErrorMap(WebClientResponseException.class, 

ex -> handleException(ex)

); 

}

If the API call to the product service fails with an HTTP error response, the whole API request will fail. The onErrorMap() method in WebClient will call our handleException(ex) method, 

which maps the HTTP exceptions thrown by the HTTP layer to our own exceptions, for example, 

NotFoundException or InvalidInputException. 

However, if calls to the product service succeed but the call to either the recommendation or review API fails, we don’t want to let the whole request fail. Instead, we want to return as much information as is available back to the caller. Therefore, instead of propagating an exception in 

208

 Developing Reactive Microservices

these cases, we will instead return an empty list of recommendations or reviews. To suppress the error, we will make the onErrorResume(error -> empty())call. For this, the code looks like the following:

@Override

public Flux<Recommendation> getRecommendations(int productId) {

String url = recommendationServiceUrl + "/recommendation? 

productId=" + productId; 

 // Return an empty result if something goes wrong to make it

 // possible for the composite service to return partial responses

return webClient.get().uri(url).retrieve()

.bodyToFlux(Recommendation.class)

.log(LOG.getName(), FINE)

.onErrorResume(error ->  empty()); 

}

The GlobalControllerExceptionHandler class, from the util project, will, as previously, catch exceptions and transform them into proper HTTP error responses that are sent back to the caller of the composite API. This way, we can decide whether a specific HTTP error response from the underlying API calls will result in an HTTP error response or just a partly empty response. 

For the full source code, see the ProductCompositeIntegration class in the product-composite project. 

Changes in the test code

The only change that’s required in the test classes is to update the setup of Mockito and its mock of the integration class. The mock needs to return Mono and Flux objects. The setup() method uses the Mono.just() and Flux.fromIterable() helper methods, as shown in the following code: class ProductCompositeServiceApplicationTests {

@BeforeEach

void setUp() {

when(compositeIntegration.getProduct(PRODUCT_ID_OK)). 

thenReturn(Mono.just(new Product(PRODUCT_ID_OK, "name", 1, 

"mock-address"))); 

when(compositeIntegration.getRecommendations(PRODUCT_ID_OK)). 

thenReturn(Flux.fromIterable(singletonList(new Recommendation(

[image: Image 106]

 Chapter 7

209

PRODUCT_ID_OK, 1, "author", 1, "content", 

"mock address")))); 

when(compositeIntegration.getReviews(PRODUCT_ID_OK)). 

thenReturn(Flux.fromIterable(singletonList(new Review(

PRODUCT_ID_OK, 1, "author", "subject", "content", 

"mock address")))); 

For the full source code, see the ProductCompositeServiceApplicationTests test class in the 

product-composite project. 

This completes the implementation of our non-blocking synchronous REST APIs. Now, it is time to develop our event-driven asynchronous services. 

Developing event-driven asynchronous services

In this section, we will learn how to develop event-driven and asynchronous versions of the create and delete services. The composite service will publish create and delete events on each core service topic and then return an OK response to the caller without waiting for processing to take place in the core services. This is illustrated in the following diagram:

 Figure 7.7: The createCompositeProduct and deleteCompositeProduct parts of the landscape We will cover the following topics:

•  Handling challenges with messaging

•  Defining topics and events

•  Changes in Gradle build files

•  Consuming events in the core services

•  Publishing events in the composite service

210

 Developing Reactive Microservices

Handling challenges with messaging

To implement the event-driven create and delete services, we will use Spring Cloud Stream. In 

 Chapter 2,  Introduction to Spring Boot, we saw how easy it is to publish and consume messages on a topic using Spring Cloud Stream. The programming model is based on a functional paradigm, 

where functions implementing one of the functional interfaces (Supplier, Function, or Consumer) in the java.util.function package can be chained together to perform decoupled event-based 

processing. To trigger such functional-based processing externally, from non-functional code, the StreamBridge helper class can be used. 

For example, to publish the body of an HTTP request to a topic, we only have to write the following:

@Autowired

private StreamBridge streamBridge; 

@PostMapping

void sampleCreateAPI(@RequestBody String body) {

streamBridge.send("topic", body); 

}

The StreamBridge helper class is used to trigger the processing. It will publish a message on a topic. A function that consumes events from a topic (not creating new events) can be defined by implementing the java.util.function.Consumer functional interface as follows:

@Bean

public Consumer<String> mySubscriber() {

return s -> System.out.println("ML RECEIVED: " + s); 

}

To tie the various functions together, we use configuration. We will see examples of such configuration later in the  Adding configuration for publishing events and  Adding configuration for consuming events sections. 

This programming model can be used independently of the messaging system used, for example, 

RabbitMQ or Apache Kafka! 

[image: Image 107]

 Chapter 7

211

Even though sending asynchronous messages is preferred over synchronous API calls, it comes 

with challenges of its own. We will see how we can use Spring Cloud Stream to handle some of them. The following features in Spring Cloud Stream will be covered:

•  Consumer groups

•  Retries and dead-letter queues

•  Guaranteed orders and partitions

We’ll study each of these in the following sections. 

Consumer groups

The problem here is that if we scale up the number of instances of a message consumer, for example, if we start two instances of the product microservice, both instances of the product microservice will consume the same messages, as illustrated by the following diagram:

 Figure 7.8: Products #1 and #2 consuming the same messages

This could result in one message being processed two times, potentially leading to duplicates or other undesired inconsistencies in the database. Therefore, we only want one instance per consumer to process each message. This can be solved by introducing a consumer group, as illustrated by the following diagram:

[image: Image 108]

212

 Developing Reactive Microservices

 Figure 7.9: Consumer group

In Spring Cloud Stream, a consumer group can be configured on the consumer side. For example, for the product microservice, it will look like this:

spring.cloud.stream:

bindings.messageProcessor-in-0:

destination: products

group: productsGroup

From this configuration, we can learn the following:

•  Spring Cloud Stream applies, by default, a naming convention for binding a configuration 

to a function. For messages sent to a function, the binding name is <functionName>-in-

<index>:

•  functionName is the name of the function, which is messageProcessor in the 

preceding example. 

•  index is set to 0, unless the function requires multiple input or output arguments. We 

will not use multi-argument functions, so index will always be set to 0 in our examples. 

•  For outgoing messages, the binding name convention is <functionName>-out-

<index>. 

•  The destination property specifies the name of the topic that messages will be consumed 

from, which is products in this case. 

•  The group property specifies what consumer group to add instances of the product mi-

croservice to, which is productsGroup in this example. This means that messages sent to 

the products topic will only be delivered by Spring Cloud Stream to one of the instances 

of the product microservice. 

 Chapter 7

213

Retries and dead-letter queues

If a consumer fails to process a message, it may be re-queued for the failing consumer until it is successfully processed. If the content of the message is invalid, also known as a poisoned message, the message will block the consumer from processing other messages until it is manually removed. If the failure is due to a temporary problem, for example, the database can’t be reached due to a temporary network error, the processing will probably succeed after a number of retries. 

It must be possible to specify the number of retries until a message is moved to another storage for fault analysis and correction. A failing message is typically moved to a dedicated queue called a dead-letter queue. To avoid overloading the infrastructure during temporary failure (for example, a network error), it must be possible to configure how often retries are performed, preferably with an increasing length of time between each retry. 

In Spring Cloud Stream, this can be configured on the consumer side, for example, for the product microservice, as shown here:

spring.cloud.stream.bindings.messageProcessor-in-0.consumer:

maxAttempts: 3

backOffInitialInterval: 500

backOffMaxInterval: 1000

backOffMultiplier: 2.0

spring.cloud.stream.rabbit.bindings.messageProcessor-in-0.consumer:

autoBindDlq: true

republishToDlq: true

spring.cloud.stream.kafka.bindings.messageProcessor-in-0.consumer:

enableDlq: true

In the preceding example, we specify that Spring Cloud Stream should perform 3 retries before placing a message on the dead-letter queue. The first retry will be attempted after 500 ms and the two other attempts after 1000 ms. 

Enabling the use of dead-letter queues is binding-specific; therefore, we have one configuration for RabbitMQ and one for Kafka. 

[image: Image 109]

214

 Developing Reactive Microservices

Guaranteed order and partitions

If the business logic requires that messages are consumed and processed in the same order as they were sent, we cannot use multiple instances per consumer to increase processing performance; for example, we cannot use consumer groups. This might, in some cases, lead to an unacceptable latency in the processing of incoming messages. 

We can use partitions to ensure that messages are delivered in the same order as they were sent but without losing performance and scalability. 

In most cases, strict order in the processing of messages is only required for messages that affect the same business entities. For example, messages affecting the product with product ID 1 can, in many cases, be processed independently of messages that affect the product with product ID 2. 

This means that the order only needs to be guaranteed for messages that have the same product ID. 

The solution to this is to make it possible to specify a key for each message, which the messaging system can use to guarantee that the order is kept between messages with the same key. This can be solved by introducing sub-topics, also known as partitions, in a topic. The messaging system places messages in a specific partition based on its key. 

Messages with the same key are always placed in the same partition. The messaging system only needs to guarantee the delivery order for messages in the same partition. To ensure the order of the messages, we configure one consumer instance per partition within a consumer group. By increasing the number of partitions, we can allow a consumer to increase its number of instances. This increases its message processing performance without losing the delivery order. This is illustrated in the following diagram: Figure 7.10: Specifying keys for messages

As seen in the preceding diagram, all messages with Key set to 123 always go to the Products-1 

partition, while messages with Key set to 456 go to the Products-2 partition. 

 Chapter 7

215

In Spring Cloud Stream, this needs to be configured on both the publisher and consumer sides. 

On the publisher side, the key and number of partitions must be specified. For example, for the product-composite service, we have the following:

spring.cloud.stream.bindings.products-out-0.producer:

partition-key-expression: headers['partitionKey' ]

partition-count: 2

This configuration means that the key will be taken from the message header with the name 

partitionKey and that two partitions will be used. 

Each consumer can specify which partition it wants to consume messages from. For example, for the product microservice, we have the following:

spring.cloud.stream.bindings.messageProcessor-in-0:

destination: products

group:productsGroup

consumer:

partitioned: true

instance-index: 0

This configuration tells Spring Cloud Stream that this consumer will only consume messages 

from partition number 0, that is, the first partition. 

Defining topics and events

As we already mentioned in the  Spring Cloud Stream section in  Chapter 2,  Introduction to Spring Boot, Spring Cloud Stream is based on the publish and subscribe pattern, where a publisher publishes messages to topics and subscribers subscribe to topics they are interested in receiving messages from. 

We will use one topic per type of entity: products, recommendations, and reviews. 

Messaging systems handle messages that typically consist of headers and a body. An event is a message that describes something that has happened. For events, the message body can be 

used to describe the type of event, the event data, and a timestamp for when the event occurred. 

An event is, for the scope of this book, defined by the following:

•  The type of event – for example, a create or de lete event

•  A key that identifies the data – for example, a product ID

216

 Developing Reactive Microservices

•  A data element – that is, the actual data in the event

•  A timestamp, which describes when the event occurred

The event class we will use looks as follows:

public class Event<K, T>  {

public enum Type {CREATE, DELETE}

private Event.Type eventType; 

private K key; 

private T data; 

private ZonedDateTime eventCreatedAt; 

public Event() {

this.eventType = null; 

this.key = null; 

this.data = null; 

this.eventCreatedAt = null; 

}

public Event(Type eventType, K key, T data) {

this.eventType = eventType; 

this.key = key; 

this.data = data; 

this.eventCreatedAt = now(); 

}

public Type getEventType() {

return eventType; 

}

public K getKey() {

return key; 

}

public T getData() {

return data; 

 Chapter 7

217

}

public ZonedDateTime getEventCreatedAt() {

return eventCreatedAt; 

}

}

Let’s explain the preceding source code in detail:

•  The Event class is a generic class parameterized over the types of its key and data fields, K and T

•  The event type is declared as an enumerator with the allowed values – that is, CREATE 

and DELETE

•  The class defines two constructors, one empty and one that can be used to initialize the 

type, key, and value members

•  Finally, the class defines getter methods for its member variables

For the full source code, see the Event class in the api project. 

Changes in the Gradle build files

To bring in Spring Cloud Stream and its binders for RabbitMQ and Kafka, we need to add the 

two starter dependencies known as spring-cloud-starter-stream-rabbit and spring-cloud-

starter-stream-kafka in all four microservice projects. We also need a test dependency in the product-composite project, spring-cloud-stream::test-binder, to bring in test support. The 

following code shows this:

dependencies {

implementation 'org.springframework.cloud:spring-cloud-starter-stream-

rabbit' 

implementation 'org.springframework.cloud:spring-cloud-starter-stream-

kafka' 

testImplementation 'org.springframework.cloud:spring-cloud-stream::test-

binder' 

}

To specify what version of Spring Cloud we want to use, we first declare a variable for the version: ext {

springCloudVersion = "2025.0.0" 

}

218

 Developing Reactive Microservices

Next, we use the variable to set up dependency management for the specified Spring Cloud version, as seen here:

dependencyManagement {

imports {

mavenBom "org.springframework.cloud:spring-cloud-

dependencies:${springCloudVersion}" 

}

}

For the full source code, see the build.gradle file in each of the microservices projects. 

With the required dependencies added to the Gradle build files, we can start to learn how to consume events in the core services. 

Consuming events in the core services

To be able to consume events in the core services, we need to do the following:

•  Declare message processors that consume events published on the core service’s topic

•  Change our service implementations to use the reactive persistence layer

•  Add configuration required for consuming events

•  Change our tests so that they can test the asynchronous processing of the events

The source code for consuming events is structured in the same way in all three core services, so we will only go through the source code for the product service. 

Declaring message processors

The REST APIs for creating and deleting entities have been replaced with a message processor in each core microservice that consumes create and delete events on each entity’s topic. To be able to consume messages that have been published to a topic, we need to declare a Spring bean that implements the java.util.function.Consumer functional interface. 

The message processor for the product service is declared as follows:

@Configuration

public class MessageProcessorConfig {

private final ProductService productService; 

public MessageProcessorConfig(ProductService productService)

 Chapter 7

219

{

this.productService = productService; 

}

@Bean

public Consumer<Event<Integer,Product>> messageProcessor() {

... 

From the preceding code, we can see the following:

•  The class is annotated with @Configuration, telling Spring to look for Spring beans in 

the class. 

•  We inject an implementation of the ProductService interface in the constructor. The 

productService bean contains the business logic to perform the actual creation and 

deletions of the product entities. 

•  We declare the message processor as a Spring bean that implements the Consumer func-

tional interface, accepting an event as an input parameter of the Event<Integer,Product> type. 

The implementation of the Consumer function looks like this:

return event -> {

switch (event.getEventType()) {

case CREATE:

Product product = event.getData(); 

productService.createProduct(product).block(); 

break; 

case DELETE:

int productId = event.getKey(); 

productService.deleteProduct(productId).block(); 

break; 

default:

String errorMessage = "Incorrect event type: " +

event.getEventType() +

", expected a CREATE or DELETE event"; 

220

 Developing Reactive Microservices

throw new EventProcessingException(errorMessage); 

}

}; 

The preceding implementation does the following:

•  It takes an event of the Event<Integer,Product> type as an input parameter

•  Using a switch statement, based on the event type, it will either create or delete a product entity

•  It uses the injected productService bean to perform the actual create and delete op-

eration

•  If the event type is neither create nor delete, an exception will be thrown

To ensure that we can propagate exceptions thrown by the productService bean back to the messaging system, we call the block() method on the responses we get back from the productService bean. 

This ensures that the message processor waits for the productService bean to complete its creation or deletion in the underlying database. Without calling the block() method, we would not be able to propagate exceptions and the messaging system would not be able to re-queue a failed attempt or possibly move the message to a dead-letter queue; instead, the message would silently be dropped. 

Calling a block() method is, in general, considered a bad practice from a perfor-

mance and scalability perspective. But in this case, we will only handle a few in-

coming messages in parallel, one per partition, as described previously. This means 

that we will only have a few threads blocked concurrently, which will not negatively 

impact the performance or the scalability. 

For the full source code, see the MessageProcessorConfig classes in the product, recommendation, and review projects. 

Changes in the service implementations

The service implementations of the create and delete methods for the product and 

recommendation service have been rewritten to use the non-blocking reactive persistence layer for MongoDB. For example, creating product entities is done as follows:

@Override

public Mono<Product> createProduct(Product body) {

 Chapter 7

221

if (body.getProductId() < 1) {

throw new InvalidInputException("Invalid productId: " +

body.getProductId()); 

}

ProductEntity entity = mapper.apiToEntity(body); 

Mono<Product> newEntity = repository.save(entity)

.log(LOG.getName(), FINE)

.onErrorMap(

DuplicateKeyException.class, 

ex -> new InvalidInputException

("Duplicate key, Product Id: " + body.getProductId()))

.map(e -> mapper.entityToApi(e)); 

return newEntity; 

}

Note from the preceding code that the onErrorMap() method is used to map the 

DuplicateKeyException persistence exception to our own InvalidInputException exception. 

For the review service, which uses the blocking persistence layer for JPA, the create 

and delete methods have been updated in the same way as described in the  Dealing 

 with blocking code section. 

For the full source code, see the following classes:

• 

ProductServiceImpl in the product project

•  RecommendationServiceImpl in the recommendation project

•  ReviewServiceImpl in the review project

Adding configuration for consuming events

We also need to set up a configuration for the messaging system to be able to consume events. To do this, we need to complete the following steps:

1.  We declare that RabbitMQ is the default messaging system and that the default content 

type is JSON:

spring.cloud.stream:

defaultBinder: rabbit

default.contentType: application/json

222

 Developing Reactive Microservices

2.  Next, we bind the input to the message processors to specific topic names, as follows:

spring.cloud.stream:

bindings.messageProcessor-in-0:

destination: products

3.  Finally, we declare connectivity information for both Kafka and RabbitMQ:

spring.cloud.stream.kafka.binder:

brokers: 127.0.0.1

defaultBrokerPort: 9092

spring.rabbitmq:

host: 127.0.0.1

port: 5672

username: guest

password: guest

---

spring.config.activate.on-profile: docker

spring.rabbitmq.host: rabbitmq

spring.cloud.stream.kafka.binder.brokers: kafka

In the default Spring profile, we specify hostnames to be used when we run our system landscape without Docker on localhost with the IP address 127.0.0.1. In the docker Spring profile, we 

specify the hostnames we will use when running in Docker and using Docker Compose – that is, rabbitmq and kafka. 

Added to this configuration, the consumer configuration also specifies consumer groups, retry handling, dead-letter queues, and partitions as they were described earlier in the  Handling challenges with messaging section. 

For the full source code, see the application.yml configuration files in the product, recommendation, and review projects. 

Changes in the test code

Since the core services now receive events for creating and deleting their entities, the tests need to be updated so that they send events instead of calling REST APIs, as they did in the previous 

 Chapter 7

223

chapters. To be able to call the message processor from the test class, we inject the message processor bean into a member variable:

@SpringBootTest

class ProductServiceApplicationTests {

@Autowired

@Qualifier("messageProcessor")

private Consumer<Event<Integer, Product>> messageProcessor; 

From the preceding code, we can see that we not only inject any Consumer function but also use the @Qualifier annotation to specify that we want to inject the Consumer function that has the name messageProcessor. 

To send create and delete events to the message processor, we add two helper methods, 

sendCreateProductEvent and sendDeleteProductEvent, in the test class:

private void sendCreateProductEvent(int productId) {

Product product = new Product(productId, "Name " + productId, 

productId, "SA"); 

Event<Integer, Product> event = new Event<>(CREATE, productId, 

product); 

messageProcessor. accept(event); 

}

private void sendDeleteProductEvent(int productId) {

Event<Integer, Product> event = new Event<>(DELETE, productId, null); 

messageProcessor. accept(event); 

}

Note that we use the accept() method in the Consumer function interface declaration to invoke the message processor. This means that we skip the messaging system in the tests and call the message processor directly. 

The tests for creating and deleting entities are updated to use these helper methods. 

For the full source code, see the following test classes:

• 

ProductServiceApplicationTests in the product project

•  RecommendationServiceApplicationTests in the recommendation project

•  ReviewServiceApplicationTests in the review project

224

 Developing Reactive Microservices

We have seen what is required to consume events in the core microservices. Now, let’s see how we can publish events in the composite microservice. 

Publishing events in the composite service

When the composite service receives HTTP requests for the creation and deletion of composite products, it will publish the corresponding events to the core services on their topics. To be able to publish events in the composite service, we need to perform the following steps:

1.  Publish events in the integration layer. 

2.  Add configuration for publishing events. 

3.  Change tests so that they can test the publishing of events. 

Note that no changes are required in the composite service implementation class – it 

is taken care of by the integration layer! 

Publishing events in the integration layer

To publish an event in the integration layer, we need to do the following:

1.  Create an Event object based on the body of the HTTP request. 

2.  Create a Message object where the Event object is used as the payload and the key field 

in the Event object is used as the partition key in the header. 

3.  Use the StreamBridge helper class to publish the event on the desired topic. 

The code for sending  create product events looks like this:

@Override

public Mono<Product> createProduct(Product body) {

return Mono.fromCallable(() -> {

sendMessage("products-out-0", 

new Event<>(CREATE, body.getProductId(), body)); 

return body; 

}).subscribeOn(publishEventScheduler); 

}

private void sendMessage(String bindingName, Event event) {

Message message = MessageBuilder.withPayload(event)

 Chapter 7

225

.setHeader("partitionKey", event.getKey())

.build(); 

streamBridge.send(bindingName, message); 

}

In the preceding code, we can see the following:

•  The integration layer implements the createProduct() method in the ProductService 

interface by using a helper method, sendMessage(). The helper method takes the name 

of an output binding and an event object. The binding name, products-out-0, will be 

bound to the topic of the product service in the following configuration. 

•  Since sendMessage() uses blocking code, when calling streamBridge, it is executed on 

a thread provided by a dedicated scheduler, publishEventScheduler. This is the same 

approach as for handling blocking JPA code in the review microservice. See the  Dealing 

 with blocking code section for details. 

•  The helper method, sendMessage(), creates a Message object and sets the payload and the 

partitionKey header, as described previously. Finally, it uses the streamBridge object to send the event to the messaging system, which will publish it on the topic defined in the configuration. 

For the full source code, see the ProductCompositeIntegration class in the product-composite project. 

Adding configuration for publishing events

We also need to set up the configuration for the messaging system, to be able to publish events; this is similar to what we did for the consumers. Declaring RabbitMQ as the default messaging system, JSON as the default content type, and Kafka and RabbitMQ for connectivity information is the same as for the consumers. 

To declare what topics should be used for the output binding names, we have the following 

configuration:

spring.cloud.stream:

bindings:

products-out-0:

destination: products

recommendations-out-0:

destination: recommendations

reviews-out-0:

destination: reviews

226

 Developing Reactive Microservices

When using partitions, we also need to specify the partition key and the number of partitions that will be used:

spring.cloud.stream.bindings. products-out-0.producer:

partition-key-expression: headers['partitionKey' ]

partition-count: 2

In the preceding configuration, we can see the following:

•  The configuration applies for the products-out-0 binding name

•  The partition key used will be taken from the partitionKey message header

•  Two partitions will be used

For the full source code, see the application.yml configuration file in the product-composite project. 

Changes in the test code

Testing asynchronous event-driven microservices is, by its nature, difficult. Tests typically need to synchronize on the asynchronous background processing in some way to be able to verify the result. Spring Cloud Stream comes with support in the form of a test binder, which can be used to verify what messages have been sent without using any messaging system during the tests! 

See the  Changes in the Gradle build files section earlier for how the test support is included in the product-composite project. 

The test support includes an OutputDestination helper class, which can be used to get the messages that were sent during a test. A new test class, MessagingTests, has been added to run tests that verify that the expected messages are sent. Let’s go through the most important parts of the test class:

1.  To be able to inject an OutputDestination bean in the test class, we also need to bring 

in its configuration from the TestChannelBinderConfiguration class. This is done with 

the following code:

@SpringBootTest

@Import({TestChannelBinderConfiguration.class})

class MessagingTests {

 Chapter 7

227

@Autowired

private OutputDestination target; 

2.  Next, we declare a couple of helper methods for reading messages and also to be able to 

purge a topic. The code looks like this:

private void purgeMessages(String bindingName) {

getMessages(bindingName); 

}

private List<String> getMessages(String bindingName){

List<String> messages = new ArrayList<>(); 

boolean anyMoreMessages = true; 

while (anyMoreMessages) {

Message<byte[]> message =

getMessage(bindingName); 

if (message == null) {

anyMoreMessages = false; 

} else {

messages.add(new String(message.getPayload())); 

}

}

return messages; 

}

private Message<byte[]> getMessage(String bindingName){

try {

return target.receive(0, bindingName); 

} catch (NullPointerException npe) {

LOG.error("getMessage() received a NPE with binding = {}", 

bindingName); 

return null; 

}

}

228

 Developing Reactive Microservices

From the preceding code, we can see the following:

•  The getMessage() method returns a message from a specified topic using the 

OutputDestination bean, named target

•  The getMessages() method uses the getMessage() method to return all messages 

in a topic

•  The purgeMessages() method uses the getMessages() method to purge a topic 

from all current messages

3.  Each test starts with purging all topics involved in the tests using a setup() method 

annotated with @BeforeEach:

@BeforeEach

void setUp() {

purgeMessages("products"); 

purgeMessages("recommendations"); 

purgeMessages("reviews"); 

}

4.  An actual test can verify the messages in a topic using the getMessages() method. For 

example, see the following test for the creation of a composite product:

@Test

void createCompositeProduct1() {

ProductAggregate composite = new ProductAggregate(

1, "name", 1, null, null, null); 

postAndVerifyProduct(composite, ACCEPTED); 

final List<String> productMessages = getMessages("products"); 

final List<String> recommendationMessages = getMessages(

"recommendations"); 

final List<String> reviewMessages = getMessages("reviews"); 

 // Assert one expected new product event queued up

assertEquals(1, productMessages.size()); 

Event<Integer, Product> expectedEvent =

new Event<>(CREATE, composite.getProductId(), 

 Chapter 7

229

new Product(composite.getProductId(), composite.getName(), 

composite.getWeight(), null)); 

assertThat(productMessages.get(0), 

is(sameEventExceptCreatedAt(expectedEvent))); 

 // Assert no recommendation and review events

assertEquals(0, recommendationMessages.size()); 

assertEquals(0, reviewMessages.size()); 

}

From the preceding code, we can see an example where a test does the following:

•  First, it makes an HTTP POST request, requesting the creation of a composite prod-

uct. 

•  Next, it gets all messages from the three topics, one for each underlying core service. 

•  For these tests, the specific timestamp for when an event was created is irrelevant. 

To be able to compare an actual event with an expected event, ignoring differences 

in the eventCreatedAt field, a helper class called IsSameEvent can be used. The 

sameEventExceptCreatedAt() method is a static method in the IsSameEvent class 

that compares Event objects and treats them as equal if all the fields are equal, 

except for the eventCreatedAt field. 

•  Finally, it verifies that the expected events can be found, and no others. 

For the full source code, see the MessagingTests and IsSameEvent test classes in the product-composite project. 

Running manual tests of the reactive microservice 

landscape

Now, we have fully reactive microservices, both in terms of non-blocking synchronous REST APIs and event-driven asynchronous services. Let’s try them out! 

We will learn how to run tests using both RabbitMQ and Kafka as the message broker. Since 

RabbitMQ can be used both with and without partitions, we will test both cases. Three different configurations will be used, each defined in a separate Docker Compose file:

•  Using RabbitMQ without the use of partitions

•  Using RabbitMQ with two partitions per topic

•  Using Kafka with two partitions per topic

230

 Developing Reactive Microservices

However, before testing these three configurations, we need to add two features to be able to test the asynchronous processing:

•  Saving events for later inspection when using RabbitMQ

•  A health API that can be used to monitor the state of the microservice landscape

Saving events

After running some tests on event-driven asynchronous services, it might be of interest to see what events were actually sent. When using Spring Cloud Stream with Kafka, events are retained in the topics, even after consumers have processed them. However, when using Spring Cloud Stream 

with RabbitMQ, the events are removed after they have been processed successfully. 

To be able to see what events have been published on each topic, Spring Cloud Stream is configured to save published events in a separate consumer group, auditGroup, per topic. For the products topic, the configuration looks like the following:

spring.cloud.stream:

bindings:

products-out-0:

destination: products

producer:

required-groups: auditGroup

When using RabbitMQ, this will result in extra queues being created where the events are stored for later inspection. 

For the full source code, see the application.yml configuration file in the product-composite project. 

Adding a health API

Testing a system landscape of microservices that uses a combination of synchronous APIs and 

asynchronous messaging is challenging. For example, how do we know when a newly started 

landscape of microservices, together with their databases and messaging system, are ready to process requests and messages? 

To make it easier to know when all the microservices are ready, we have added health APIs to the microservices. The health APIs are based on the support for health endpoints that come with the Spring Boot Actuator module. By default, an Actuator-based health endpoint responds with UP 

(and gives 200 as the HTTP return status) if the microservice itself and all the dependencies Spring 

 Chapter 7

231

Boot knows about are available. Dependencies that Spring Boot knows about include databases 

and messaging systems. If the microservice itself or any of its dependencies are not available, the health endpoint responds with DOWN (and returns 500 as the HTTP return status). 

We can also extend health endpoints to cover dependencies that Spring Boot is not aware of. We will use this feature to extend to the product composite’s health endpoint, so it also includes the health of the three core services. This means that the product composite health endpoint will only respond with UP if itself and the three core microservices are healthy. This can be used either manually or automatically by the test-em-all.bash script to find out when all the microservices and their dependencies are up and running. 

In the ProductCompositeIntegration class, we have added helper methods for checking the 

health of the three core microservices, as follows:

public Mono<Health> getProductHealth() {

return getHealth(productServiceUrl); 

}

public Mono<Health> getRecommendationHealth() {

return getHealth(recommendationServiceUrl); 

}

public Mono<Health> getReviewHealth() {

return getHealth(reviewServiceUrl); 

}

private Mono<Health> getHealth(String url) {

url += "/actuator/health"; 

LOG.debug("Will call the Health API on URL: {}", url); 

return webClient.get().uri(url).retrieve().bodyToMono(String.class)

.map(s -> new Health.Builder().up().build())

.onErrorResume(ex -> Mono.just(new

Health.Builder().down(ex).build()))

.log(LOG.getName(), FINE); 

}

This code is similar to the code we used previously to call the core services to read APIs. Note that the health endpoint is, by default, set to /actuator/health. 

232

 Developing Reactive Microservices

For the full source code, see the ProductCompositeIntegration class in the product-composite project. 

In the configuration class, HealthCheckConfiguration, we use these helper methods to register a composite health check using the Spring Actuator class called CompositeReactiveHealthContributor:

@Configuration

public class HealthCheckConfiguration {

@Autowired

ProductCompositeIntegration integration; 

@Bean

ReactiveHealthContributor coreServices() {

final Map<String, ReactiveHealthIndicator> registry =

new LinkedHashMap<>(); 

registry.put("product", () -> integration.getProductHealth()); 

registry.put("recommendation", () -> 

integration.getRecommendationHealth()); 

registry.put("review", () -> integration.getReviewHealth()); 

return CompositeReactiveHealthContributor.fromMap(registry); 

}

}

For the full source code, see the HealthCheckConfiguration class in the product-composite project. 

Finally, in the application.yml configuration file of all four microservices, we configure the Spring Boot Actuator so that it does the following:

•  Shows details about the state of health, which not only includes UP or DOWN but also in-

formation about its dependencies

•  Exposes all its endpoints over HTTP

The configuration for these two settings looks as follows:

management.endpoint.health.show-details: "ALWAYS" 

management.endpoints.web.exposure.include: "*" 

[image: Image 110]

 Chapter 7

233

For an example of the full source code, see the application.yml configuration file in the product-composite project. 

Warning: These configuration settings are helpful during development, but it can 

be a security issue to reveal too much information in actuator endpoints in produc-

tion systems. Therefore, plan to minimize the information exposed by the actuator 

endpoints in production! 

This can be done by replacing "*" with, for example, health,info in the previous 

setting of the management.endpoints.web.exposure.include property. 

For details regarding the endpoints that are exposed by Spring Boot Actuator, see https://docs. 

spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html. 

The health endpoint can be used manually with the following command (don’t try it yet, wait 

until we have started up the microservice landscape!):

curl localhost:8080/actuator/health -s | jq . 

This will result in a response containing the following:

 Figure 7.11: Health endpoint response

234

 Developing Reactive Microservices

In the preceding output, we can see that the composite service reports that it is healthy – that is, its status is UP. At the end of the response, we can see that all three core microservices are also reported as healthy. 

With a health API in place, we are ready to test our reactive microservices. 

Using RabbitMQ without using partitions

In this section, we will test the reactive microservices together with RabbitMQ but without using partitions. 

The default docker-compose.yml Docker Compose file is used for this configuration. The following changes have been added to the file:

•  RabbitMQ has been added, as shown here:

rabbitmq:

image: rabbitmq:4.0.7-management

mem_limit: 512m

ports:

- 5672:5672

- 15672:15672

healthcheck:

test: ["CMD", "rabbitmqctl", "status"]

interval: 5s

timeout: 2s

retries: 60

From the preceding declaration of RabbitMQ, we can see the following:

•  We use a Docker image for RabbitMQ v4.0.7 including the management plugin 

and Admin Web UI

•  We expose the standard ports for connecting to RabbitMQ and the Admin Web 

UI, 5672 and 15672

•  We add a health check so that Docker can find out when RabbitMQ is ready to 

accept connections

 Chapter 7

235

•  The microservices now have a dependency declared on the RabbitMQ service. This means 

that Docker will not start the microservice containers until the RabbitMQ service is re-

ported to be healthy:

depends_on:

rabbitmq:

condition: service_healthy

To run manual tests, perform the following steps:

1.  Build and start the system landscape with the following commands:

cd $BOOK_HOME/Chapter07

./gradlew build && docker compose build && docker compose up -d

2.  Now, we have to wait for the microservice landscape to be up and running. Try running 

the following command a few times:

curl -s localhost:8080/actuator/health | jq -r .status

When it returns UP, we are ready to run our tests! 

3.  First, create a composite product with the following commands:

body='{"productId":1,"name":"product name C","weight":300, 

"recommendations":[

{"recommendationId":1,"author":"author 1", 

"rate":1,"content":"content 1"}, 

{"recommendationId":2,"author":"author 2", 

"rate":2,"content":"content 2"}, 

{"recommendationId":3,"author":"author 3", 

"rate":3,"content":"content 3"}

], "reviews":[

{"reviewId":1,"author":"author 1","subject":"subject 1", 

"content":"content 1"}, 

{"reviewId":2,"author":"author 2","subject":"subject 2", 

"content":"content 2"}, 

{"reviewId":3,"author":"author 3","subject":"subject 3", 

"content":"content 3"}

]}' 

[image: Image 111]

236

 Developing Reactive Microservices

curl -X POST localhost:8080/product-composite -H "Content-Type: 

application/json" --data "$body" 

When using Spring Cloud Stream together with RabbitMQ, it will create one RabbitMQ 

exchange per topic and a set of queues, depending on our configuration. Let’s see what 

queues Spring Cloud Stream has created for us! 

4.  Open the following URL in a web browser: http://localhost:15672/#/queues. Log in with the default username/password guest/guest. You should see the following queues:

 Figure 7.12: List of queues

For each topic, we can see one queue for auditGroup, one queue for the consumer group 

that’s used by the corresponding core microservice, and one dead-letter queue. We can 

also see that the auditGroup queues contain messages, as expected! 

5.  Click on the products.auditGroup queue and scroll down to the Get messages section, expand it, and click on the button named Get Message(s) to see the message in the queue:

[image: Image 112]

 Chapter 7

237

 Figure 7.13: Viewing the message in the queue

From the preceding screenshot, note the Payload section but also the header, partitionKey, which we will use in the next section where we try out RabbitMQ with partitions. 

6.  Next, try to get the product composite using the following code:

curl -s localhost:8080/product-composite/1 | jq

7.  Finally, delete it with the following command:

curl -X DELETE localhost:8080/product-composite/1

8.  Try to get the deleted product again. It should result in a 404 - "NotFound" response! 

9.  If you look in the RabbitMQ audit queues again, you should be able to find new messages 

containing delete events. 

10.  Wrap up the test by bringing down the microservice landscape with the following com-

mand:

docker compose down

This completes the tests where we use RabbitMQ without partitions. Now, let’s move on and test RabbitMQ with partitions. 

238

 Developing Reactive Microservices

Using RabbitMQ with partitions

Now, let’s try out the partitioning support in Spring Cloud Stream! 

We have a separate Docker Compose file prepared for using RabbitMQ with two partitions per 

topic: docker-compose-partitions.yml. It will also start two instances per core microservice, one for each partition. For example, a second product instance is configured as follows:

product-p1:

build: microservices/product-service

mem_limit: 512m

environment:

- SPRING_PROFILES_ACTIVE=docker, streaming_partitioned, 

streaming_instance_1

depends_on:

mongodb:

condition: service_healthy

rabbitmq:

condition: service_healthy

Here is an explanation of the preceding configuration:

•  We use the same source code and Dockerfile that we did for the first product instance 

but configure them differently. 

•  To make all microservice instances aware that they will use partitions, we have added the Spring profile, streaming_partitioned, to their SPRING_PROFILES_ACTIVE environment 

variable. 

•  We assign the two product instances to different partitions using different Spring pro-

files. The streaming_instance_0 Spring profile is used by the first product instance and 

streaming_instance_1 is used by the second instance, product-p1. 

•  The second product instance will only process asynchronous events; it will not respond 

to API calls. Since it has a different name, product-p1 (also used as its DNS name), it will not respond to calls to a URL starting with http://product:8080. 

Start up the microservice landscape with the following command:

export COMPOSE_FILE=docker-compose-partitions.yml

docker compose build && docker compose up -d

[image: Image 113]

 Chapter 7

239

Create a composite product in the same way as for the tests in the previous section but also create a composite product with the product ID set to 2. If you take a look at the queues set up by Spring Cloud Stream, you will see one queue per partition and that the product audit queues now contain one message each; the event for product ID 1 was placed in one partition and the event for product ID 2 was placed in the other partition. If you go back to http://localhost:15672/#/

queues in your web browser, you should see something like the following: Figure 7.14: List of queues

To end the test with RabbitMQ using partitions, bring down the microservice landscape with 

the following command:

docker compose down

unset COMPOSE_FILE

240

 Developing Reactive Microservices

We are now done with tests using RabbitMQ, both with and without partitions. The final test 

configuration we shall try out is testing the microservices together with Kafka. 

Using Kafka with two partitions per topic

Now, we shall try out a very cool feature of Spring Cloud Stream: changing the messaging system from RabbitMQ to Apache Kafka! 

This can be done simply by changing the value of the spring.cloud.stream.defaultBinder prop-

erty from rabbit to kafka. This is handled by the docker-compose-kafka.yml Docker Compose 

file, which has also replaced RabbitMQ with Kafka and ZooKeeper. The configuration of Kafka 

and ZooKeeper looks as follows:

kafka:

image: confluentinc/cp-kafka:7.9.0

restart: always

mem_limit: 1024m

ports:

- "9092:9092" 

environment:

- KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181

- KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092

- KAFKA_BROKER_ID=1

- KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR=1

depends_on:

- zookeeper

zookeeper:

image: confluentinc/cp-zookeeper:7.9.0

restart: always

mem_limit: 512m

ports:

- "2181:2181" 

environment:

- ZOOKEEPER_CLIENT_PORT=2181

Kafka is also configured to use two partitions per topic, and as before, we start up two instances per core microservice, one for each partition. See the Docker Compose file, docker-compose-kafka.yml, for details! 

[image: Image 114]

 Chapter 7

241

Start up the microservice landscape with the following command:

export COMPOSE_FILE=docker-compose-kafka.yml

docker compose build && docker compose up -d

Repeat the tests from the previous section: create two products, one with the product ID set to 1 

and one with the product ID set to 2. 

Unfortunately, Kafka doesn’t come with any graphical tools that can be used to 

inspect topics, partitions, and the messages that are placed within them. Instead, 

we can run CLI commands in the Kafka Docker container. 

To see a list of topics, run the following command:

docker compose exec kafka kafka-topics --bootstrap-server localhost:9092 

--list

Expect an output like the one shown here:

 Figure 7.15: Viewing a list of topics

Here is what we see in the preceding output:

•  The topics prefixed with error are the topics corresponding to dead-letter queues. 

•  You will not find any auditGroup groups as in the case of RabbitMQ. Since events are 

retained in the topics by Kafka, even after consumers have processed them, there is no 

need for an extra auditGroup group. 

To see the partitions in a specific topic (for example, the products topic), run the following command:

docker compose exec kafka kafka-topics --bootstrap-server localhost:9092 

--describe --topic products

[image: Image 115]

[image: Image 116]

242

 Developing Reactive Microservices

Expect an output like the one shown here:

 Figure 7.16: Viewing partitions in the products topic

To see all the messages in a specific partition (for example, partition 1 in the products topic), run the following command:

docker compose exec kafka kafka-console-consumer --bootstrap-server 

localhost:9092 --topic products --from-beginning --timeout-ms 1000 

--partition 1

Expect an output like the one shown here:

 Figure 7.17: Viewing all messages in partition 1 in the products topic

The output will end with a timeout exception since we stop the command by specifying a timeout for the command of 1000 ms. 

Bring down the microservice landscape with the following command:

docker compose down

unset COMPOSE_FILE

Now, we have learned how Spring Cloud Stream can be used to switch a message broker from 

RabbitMQ to Kafka without requiring any changes in the source code. It just requires a few changes in the Docker Compose file. 

Let’s move on to the last section of this chapter: learning how to run these tests automatically! 

 Chapter 7

243

Running automated tests of the reactive microservice 

landscape

To be able to run tests of the reactive microservice landscape automatically instead of manually, the automated test-em-all.bash test script has been enhanced. The most important changes 

are as follows:

•  The script uses the new health endpoint to know when the microservice landscape is 

operational, as shown here:

waitForService curl http://$HOST:$PORT/actuator/health

•  The script has a new waitForMessageProcessing() function, which is called after the test 

data is set up. Its purpose is simply to wait for the creation of the test data to be completed by the asynchronous create services. 

To use the test script to automatically run the tests with RabbitMQ and Kafka, perform the following steps:

1.  Run the tests using the default Docker Compose file (that is, with RabbitMQ without 

partitions) with the following commands:

unset COMPOSE_FILE

./test-em-all.bash start stop

2.  Run the tests for RabbitMQ with two partitions per topic using the Docker Compose 

docker-compose-partitions.yml file with the following commands:

export COMPOSE_FILE=docker-compose-partitions.yml

./test-em-all.bash start stop

unset COMPOSE_FILE

3.  Finally, run the tests with Kafka and two partitions per topic using the Docker Compose 

docker-compose-kafka.yml file with the following commands:

export COMPOSE_FILE=docker-compose-kafka.yml

./test-em-all.bash start stop

unset COMPOSE_FILE

In this section, we have learned how to use the test-em-all.bash test script to automatically run tests of the reactive microservice landscape, which has been configured to use either RabbitMQ 

or Kafka as its message broker. 

244

 Developing Reactive Microservices

Summary

In this chapter, we have seen how we can develop reactive microservices! 

Using Spring WebFlux and Spring WebClient, we can develop non-blocking synchronous APIs 

that can handle incoming HTTP requests and send outgoing HTTP requests without blocking any 

threads. Using Spring Data’s reactive support for MongoDB, we can also access MongoDB data-

bases in a non-blocking way, that is, without blocking any threads while waiting for responses from the database. Spring WebFlux, Spring WebClient, and Spring Data rely on Project Reactor to provide their reactive and non-blocking features. When we must use blocking code (for example, when using Spring Data for JPA), we can encapsulate the processing of the blocking code by scheduling the processing of it in a dedicated thread pool. 

We have also seen how Spring Data Stream can be used to develop event-driven asynchronous 

services that work on both RabbitMQ and Kafka as messaging systems without requiring any 

changes in the code. By doing some configuration, we can use features in Spring Cloud Stream such as consumer groups, retries, dead-letter queues, and partitions to handle the various challenges of asynchronous messaging. 

We have also learned how to manually and automatically test a system landscape consisting of reactive microservices. 

This was the final chapter on how to use fundamental features in Spring Boot and Spring Framework. 

Next up is an introduction to Spring Cloud and how it can be used to make our services production-ready, scalable, robust, configurable, secure, and resilient! 

Questions

1.  Why is it important to know how to develop reactive microservices? 

2.  How do you choose between non-blocking synchronous APIs and event-/message-driven 

asynchronous services? 

3.  What makes an event different from a message? 

4.  Name some challenges with message-driven asynchronous services. How do we handle 

them? 

[image: Image 117]

 Chapter 7

245

5.  Why is the following test not failing? 

@Test

void testStepVerifier() {

StepVerifier.create(Flux.just(1, 2, 3, 4)

.filter(n -> n % 2 == 0)

.map(n -> n * 2)

.log())

.expectNext(4, 8, 12); 

}

First, ensure that the test fails. Next, correct the test so that it succeeds. 

6.  What are the challenges of writing tests with reactive code using JUnit, and how can we 

handle them? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 


Part 2

Leveraging Spring Cloud 

to Manage Microservices

In this part of the book, you’ll gain an understanding of how Spring Cloud can be used to

manage the challenges faced when developing microservices (that is, building a

distributed system). 

This part of the book includes the following chapters:

•   Chapter 8 , Introduction to Spring Cloud

•   Chapter 9, Adding Ser vice Discovery Using Netflix Eureka

•   Chapter 10, U sing Spring Cloud Gateway to Hide Microservices behind an Edge Server

•   Chapter 11 , Securing Access to APIs

•   Chapter 12, C entralized Configuration

•   Chapter 13 , Improving Resilience Using Resilience4j

•   Chapter 14 , Understanding Distributed Tracing


8Introduction to Spring Cloud

So far, we have seen how we can use Spring Boot to build microservices with well-documented 

APIs, along with Spring WebFlux and springdoc-openapi; persist data in MongoDB and SQL 

databases using Spring Data for MongoDB and JPA; reactive microservices either as non-blocking APIs using Project Reactor or as event-driven asynchronous services using Spring Cloud Stream with RabbitMQ or Kafka, together with Docker; and manage and test a system landscape consisting of microservices, databases, and messaging systems. 

Now, it’s time to see how we can use Spring Cloud to make our services production-ready, that is, scalable, robust, configurable, secure, and resilient. 

In this chapter, we will introduce you to how Spring Cloud can be used to implement the following design patterns from  Chapter 1,  Introduction to Microservices, in the  Design patterns for microservices section:

•  Service discovery

•  Edge server

•  Centralized configuration

•  Circuit breaker

•  Distributed tracing

250

 Introduction to Spring Cloud

Technical requirements

This chapter does not contain any source code, so no tools need to be installed. 

The evolution of Spring Cloud

In its initial 1.0 release, in March 2015, Spring Cloud was mainly a wrapper around tools from Netflix OSS, which are as follows:

•  Netflix Eureka, a discovery server

•  Netflix Ribbon, a client-side load balancer

•  Netflix Zuul, an edge server

•  Netflix Hystrix, a circuit breaker

The initial release of Spring Cloud also contained a configuration server and integration with Spring Security that provided OAuth 2.0 protected APIs. In May 2016, the Brixton release (v1.1) of Spring Cloud was made generally available. With the Brixton release, Spring Cloud got support for distributed tracing based on Spring Cloud Sleuth and Zipkin, which originated from Twitter. 

These initial Spring Cloud components could be used to implement the preceding design patterns. 

For more details, see https://spring.io/blog/2015/03/04/spring-cloud-1-0-0-available-

now and https://spring.io/blog/2016/05/11/spring-cloud-brixton-release-is-available. 

Since its inception, Spring Cloud has grown considerably over the years and has added support for the following, among others:

•  Service discovery and centralized configuration based on HashiCorp Consul and Apache 

Zookeeper

•  Event-driven microservices using Spring Cloud Stream

•  Cloud providers such as Microsoft Azure, Amazon Web Services, and Google Cloud Plat-

form

See https://spring.io/projects/spring-cloud for a complete list of tools. 

Since the release of Spring Cloud Greenwich (v2.1) in January 2019, some of the Netflix tools mentioned previously have been placed in maintenance mode in Spring Cloud. 

 Chapter 8

251

The reason for this is a mixture of Netflix no longer adding new features to some of the tools and Spring Cloud adding better alternatives. The following replacements are recommended by the 

Spring Cloud project:

Current component

Replaced by

Netflix Hystrix

Resilience4j

Netflix Hystrix Dashboard/Netflix Turbine

Micrometer and monitoring system

Netflix Ribbon

Spring Cloud LoadBalancer

Netflix Zuul

Spring Cloud Gateway

 Table 8.1: Spring Cloud tool replacements

For more details, see the following:

•  https://spring.io/blog/2019/01/23/spring-cloud-greenwich-release-is-now-

available

•  https://github.com/Netflix/Hystrix#hystrix-status

•  https://github.com/Netflix/ribbon#project-status-on-maintenance

With the release of Spring Cloud Ilford (v2020.0.0) in December 2020, the only remaining Netflix component in Spring Cloud is Netflix Eureka. 

The latest release of Spring Cloud, Northfields (v2025.0.0), was released in May 2025 together with Spring Boot 3.5.0. As already mentioned in  Chapter 2,   Introduction to Spring Boot, in the  News in Spring Boot 3.0 to 3.5  section, Spring Cloud Sleuth has been replaced by Micrometer Tracing to support distributed tracing. 

In this book, we will use the software components in the following table to implement the design patterns mentioned previously:

Design pattern

Software component

Service discovery

Netflix Eureka and Spring Cloud LoadBalancer

Edge server

Spring Cloud Gateway and Spring Security OAuth

Centralized configuration

Spring Cloud Configuration Server

Circuit breaker

Resilience4j

Distributed tracing

Micrometer Tracing and Zipkin

 Table 8.2: Software components by design pattern

Now, let’s go through the design patterns and introduce the software components that will be used to implement them! 

[image: Image 118]

252

 Introduction to Spring Cloud

Using Netflix Eureka for service discovery

Service discovery is probably the most important support function required to make a landscape of cooperating microservices production-ready. As we already described in  Chapter 1,  Introduction to Microservices, in the  Service discovery section, a service discovery service (or a  discovery service as an abbreviation) can be used to keep track of existing microservices and their instances. 

The first discovery service that Spring Cloud supported was  Netflix Eureka. 

We will use this in  Chapter 9,  Adding Service Discovery Using Netflix Eureka, along with a   load balancer based on Spring Cloud LoadBalancer. 

We will see how easy it is to register microservices with Netflix Eureka when using Spring Cloud. 

We will also learn how a client can send HTTP requests, such as a call to a RESTful API, to one of the instances registered in Netflix Eureka. In addition, the chapter will cover how to scale up the number of instances of a microservice, and how requests to a microservice will be load-balanced over its available instances (based on, by default, round-robin scheduling). 

The following screenshot demonstrates the web UI from Eureka, where we can see what micro-

services we have registered:

 Figure 8.1: Viewing microservices currently registered with Eureka

From the preceding screenshot, we can see that the review service has three instances available, while the other three services only have one instance each. 

[image: Image 119]

 Chapter 8

253

With Netflix Eureka introduced, let’s introduce how Spring Cloud can help to protect a microservices system landscape using an edge server. 

Using Spring Cloud Gateway as an edge server

Another very important support function is an edge server. As we already described in  Chapter 

 1,  Introduction to Microservices, in the  Edge server section, it can be used to secure a microservice landscape, which involves hiding private services from external usage and protecting public 

services when they’re used by external clients. 

Initially, Spring Cloud used Netflix Zuul v1 as its edge server. Since the Spring Cloud Greenwich release, it’s recommended to use Spring Cloud Gateway instead. Spring Cloud Gateway comes with similar support for critical features, such as URL path-based routing and the protection of endpoints via the use of OAuth 2.0 and OpenID Connect (OIDC). 

One important difference between Netflix Zuul v1 and Spring Cloud Gateway is that Spring Cloud Gateway is based on non-blocking APIs that use Spring 6, Project Reactor, and Spring Boot 3, while Netflix Zuul v1 is based on blocking APIs. This means that Spring Cloud Gateway should be able to handle larger numbers of concurrent requests than Netflix Zuul v1, which is important for an edge server that all external traffic goes through. 

The following diagram shows how all requests from external clients go through Spring Cloud 

Gateway as an edge server. Based on URL paths, it routes requests to the intended microservice: Figure 8.2: Requests being routed through an edge server

254

 Introduction to Spring Cloud

In the preceding diagram, we can see how the edge server will send external requests that have a URL path that starts with /product-composite/ to the Product Composite microservice. The core Product, Recommendation, and Review services are not reachable from external clients. 

In  Chapter 10,  Using Spring Cloud Gateway to Hide Microservices Behind an Edge Server, we will look at how to set up Spring Cloud Gateway with our microservices. 

In  Chapter 11,  Securing Access to APIs, we will see how we can use Spring Cloud Gateway together with Spring Security OAuth2 to protect access to the edge server using OAuth 2.0 and OIDC. We will also see how Spring Cloud Gateway can propagate the identity information of the caller down to our microservices, for example, the username or email address of the caller. 

With Spring Cloud Gateway introduced, let’s see how Spring Cloud can help to manage the con-

figuration of a system landscape of microservices. 

Using Spring Cloud Config for centralized 

configuration

To manage the configuration of a system landscape of microservices, Spring Cloud contains Spring Cloud Config, which provides the centralized management of configuration files according to 

the requirements described in  Chapter 1,  Introduction to Microservices, in the  Central configuration section. 

Spring Cloud Config supports storing configuration files in a number of different backends, such as the following:

•  A Git repository, for example, on GitHub or Bitbucket

•  A local filesystem

•  HashiCorp Vault

•  A JDBC database

Spring Cloud Config allows us to handle configuration in a hierarchical structure; for example, we can place common parts of the configuration in a common file and microservice-specific settings in separate configuration files. 

Spring Cloud Config also supports detecting changes in the configuration and pushing notifications to the affected microservices. It uses Spring Cloud Bus to transport the notifications. Spring Cloud Bus is an abstraction on top of Spring Cloud Stream that we are already familiar with; that is, it supports the use of either RabbitMQ or Kafka as the messaging system for transporting notifications out of the box. 

[image: Image 120]

 Chapter 8

255

The following diagram illustrates the cooperation between Spring Cloud Config, its clients, a Git repository, and Spring Cloud Bus:

 Figure 8.3: How Spring Cloud Config fits into the microservice landscape

The diagram shows the following:

1.  When the microservices start up, they ask the configuration server for its configuration. 

2.  The configuration server gets the configuration from, in this case, a Git repository. 

3.  Optionally, the Git repository can be configured to send notifications to the configuration server when Git commits are pushed to the Git repository. 

4.  The configuration server will publish change events using Spring Cloud Bus. The micro-

services that are affected by the change will react and retrieve the updated configuration 

from the configuration server. 

Finally, Spring Cloud Config also supports the encryption of sensitive information in the configuration, such as credentials. 

We will learn about Spring Cloud Config in  Chapter 12,  Centralized Configuration. 

With Spring Cloud Config introduced, let’s see how Spring Cloud can help make microservices 

more resilient to failures that happen from time to time in a system landscape. 

[image: Image 121]

256

 Introduction to Spring Cloud

Using Resilience4j for improved resilience

In a fairly large-scale system landscape of cooperating microservices, we must assume that there is something going wrong all of the time. Failures must be seen as a normal state, and the system landscape must be designed to handle it! 

Initially, Spring Cloud came with Netflix Hystrix, a well-proven circuit breaker. But as already mentioned above, since the Spring Cloud Greenwich release, it is recommended to replace Netflix Hystrix with Resilience4j. Resilience4j is an open source-based fault tolerance library. It comes with a larger range of fault tolerance mechanisms compared to Netflix Hystrix:

•  A circuit breaker is used to prevent a chain of failure reaction if a remote service stops responding. 

•  A rate limiter is used to limit the number of requests to a service during a specified time period. 

•  A bulkhead is used to limit the number of concurrent requests to a service. 

•  Retries are used to handle random errors that might happen from time to time. 

•  A time limiter is used to avoid waiting too long for a response from a slow or unresponsive service. 

You can discover more about Resilience4j at https://github.com/resilience4j/resilience4j. 

In  Chapter 13,  Improving Resilience Using Resilience4j, we will focus on the circuit breaker in Resilience4j. It follows the classic design of a circuit breaker, as illustrated in the following state diagram:

 Figure 8.4: Circuit breaker state diagram

 Chapter 8

257

Let’s take a look at the state diagram in more detail:

1.  A circuit breaker starts as Closed, allowing requests to be processed. 

2.  As long as the requests are processed successfully, it stays in the Closed state. 

3.  If failures start to happen, a counter starts to count up. 

4.  If a threshold of failures is reached within a specified period of time, the circuit breaker will trip, that is, go to the Open state, not allowing further requests to be processed. Both the threshold of failures and the period of time are configurable. 

5.  Instead, a request will fast fail, meaning it will return immediately with an exception. 

6.  After a configurable period of time, the circuit breaker will enter a Half Open state and allow one request to go through, as a probe, to see whether the failure has been resolved. 

7.  If the probe request fails, the circuit breaker goes back to the Open state. 

8.  If the probe request succeeds, the circuit breaker goes to the initial Closed state, allowing new requests to be processed. 

Sample usage of the circuit breaker in Resilience4j

Let’s assume we have a REST service, called myService, that is protected by a circuit breaker using Resilience4j. 

If the service starts to produce internal errors – for example, because it can’t reach a service it depends on – we might get a response from the service such as 500 Internal Server Error. 

After a number of configurable attempts, the circuit will open and we will get a fast failure that returns an error message such as CircuitBreaker 'myService' is open. When the error is 

resolved and we make a new attempt (after the configurable wait time), the circuit breaker will allow a new attempt as a probe. If the call succeeds, the circuit breaker will be closed again; that is, operating normally. 

When using Resilience4j together with Spring Boot, we will be able to monitor the state of the circuit breakers in a microservice using its Spring Boot Actuator health endpoint. If it operates normally, that is, the circuit is  closed, it will respond with something such as the following:

[image: Image 122]

[image: Image 123]

258

 Introduction to Spring Cloud

 Figure 8.5: Closed circuit response

If something is wrong and the circuit is  open, it will respond with something such as the following: Figure 8.6: Open circuit response

 Chapter 8

259

With Resilience4j introduced, we have seen an example of how the circuit breaker can be used to handle errors for a REST client. Let’s wrap up this chapter with an introduction to how Spring Cloud can be used for distributed tracing. 

Using Micrometer Tracing and Zipkin for distributed 

tracing

To understand what is going on in a distributed system such as a system landscape of cooperating microservices, it is crucial to be able to track and visualize how requests and messages flow between microservices when processing an external call to the system landscape. 

Refer to  Chapter 1,  Introduction to Microservices, in the  Distributed tracing section, for more information on this subject. 

Starting with Spring Boot 3, distributed tracing is handled by Micrometer Tracing, replacing Spring Cloud Sleuth. Micrometer Tracing can mark requests and messages/events that are part of the same processing flow with a common correlation ID. 

Micrometer Tracing can also be used to decorate log records with correlation IDs to make it 

easier to track log records from different microservices that come from the same processing flow. 

Zipkin is a distributed tracing system (http://zipkin.io) that Micrometer Tracing can send tracing data to for storage and visualization. Later on, in  Chapter 19,  Centralized Logging with the EFK Stack, we will learn how to find and visualize log records from one and the same processing flow using the correlation ID. 

The infrastructure for handling distributed tracing information in Micrometer Tracing and Zipkin is originally based on Google Dapper (https://research.google/pubs/dapper-a-large-

scale-distributed-systems-tracing-infrastructure/). In Dapper, the tracing information from a complete workflow is called a trace tree, and subparts of the tree, such as the basic units of work, are called spans. Spans can, in turn, consist of sub-spans, which form the trace tree. A correlation ID is called TraceId, and a span is identified by its own unique SpanId, along with the TraceId of the trace tree it belongs to. 

260

 Introduction to Spring Cloud

A short history lesson regarding the evolution of standards (or at least common ef-

forts on establishing open, de facto standards) for implementing distributed tracing:

Google published the paper on Dapper back in 2010, after using it internally since 

2005. 

In 2016, the OpenTracing project joined CNCF. OpenTracing is heavily influenced by Dapper and provides vendor-neutral APIs and language-specific libraries for 

instrumenting distributed tracing. 

In 2019, the OpenTracing project merged with the OpenCensus project, forming a 

new CNCF project, OpenTelemetry. The OpenCensus project delivers a set of libraries 

for collecting metrics and distributed traces. 

Here are some suggested URLs for further reading:

https://opentracing.io

https://opencensus.io

https://opentelemetry.io

In  Chapter 14,  Understanding Distributed Tracing, we will see how we can use Micrometer Tracing and Zipkin to trace the processing that goes on in our microservice landscape. The following is a screenshot from the Zipkin UI, which visualizes the trace tree that was created as a result of processing the creation of an aggregated product:

[image: Image 124]

 Chapter 8

261

 Figure 8.7: Trace tree in Zipkin

From the preceding screenshot, we can see that an HTTP POST request is sent to the product-composite service through the gateway (our edge server) and it responds by publishing create events to the topics for products, recommendations, and reviews. These events are consumed by the 

three core microservices in parallel and asynchronously, meaning that the product-composite service does not wait for the core microservices to complete their work. The data in the create events are stored in each microservice’s database. 

[image: Image 125]

262

 Introduction to Spring Cloud

With Micrometer Tracing and Zipkin for distributed tracing having been introduced, we have seen an example of distributed tracing of the processing of an external synchronous HTTP request that includes asynchronous passing of events between the involved microservices. 

Summary

In this chapter, we have seen how Spring Cloud has evolved from being rather Netflix OSS-centric to having a much larger scope as of today, used together with tools including Resilience4j and Micrometer Tracing. We also introduced how components from the latest release of Spring Cloud 2025 can be used to implement some of the design patterns we described in  Chapter 1,  Introduction to Microservices, in the  Design patterns for microservices section. These design patterns are required to make a landscape of cooperating microservices production-ready. 

Head over to the next chapter to see how we can implement service discovery using Netflix Eureka and Spring Cloud LoadBalancer! 

Questions

1.  What is the purpose of Netflix Eureka? 

2.  What are the main features of Spring Cloud Gateway? 

3.  What backends are supported by Spring Cloud Config? 

4.  What are the capabilities that Resilience4j provides? 

5.  What are the concepts of trace tree and span used for in distributed tracing, and what is the paper called that originally defined them? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

9Adding Service Discovery 

Using Netflix Eureka

In this chapter, we will learn how to use Netflix Eureka as a discovery service for microservices based on Spring Boot. To allow our microservices to communicate with Netflix Eureka, we will use the Spring Cloud module for Netflix Eureka clients. Before we delve into the details, we will elaborate on why a discovery service is needed and why a DNS server isn’t sufficient. 

The following topics will be covered in this chapter:

•  Introduction to service discovery

•  Setting up a Netflix Eureka server

•  Connecting microservices to a Netflix Eureka server

•  Setting up the configuration for development use

•  Trying out Netflix Eureka as a discovery service

Technical requirements

For instructions on how to install tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter09. 

264

 Adding Service Discovery Using Netflix Eureka

If you want to view the changes applied to the source code in this chapter, that is, see what it took to add Netflix Eureka as a discovery service to the microservices landscape, you can compare it with the source code for  Chapter 7,   Developing Reactive Microservices. You can use your favorite diff tool and compare the two folders, that is, $BOOK_HOME/Chapter07 and $BOOK_HOME/Chapter09. 

Introducing service discovery

Service discovery is probably the most important support function required to make a landscape of cooperating microservices production-ready. Netflix Eureka was the first discovery server supported by Spring Cloud. 

We are strictly speaking about a  service for  service discovery, but instead of referring to it as a  service discovery service, it will simply be referred to as a  discovery service. When referring to an actual implementation of  service discovery, such as Netflix Eureka, the term  discovery server will be used. 

We will see how easy it is to register microservices with Netflix Eureka when using Spring Cloud. 

We will also learn how a client can use Spring Cloud LoadBalancer to send HTTP requests to one of the instances registered in Netflix Eureka. Finally, we will try scaling the microservices up and down, together with running some disruptive tests to see how Netflix Eureka can handle different types of fault scenarios. 

Before we jump into the implementation details, we will look at the following topics:

•  The problem with DNS-based service discovery

•  Challenges with service discovery

•  Service discovery with Netflix Eureka in Spring Cloud

The problem with DNS-based service discovery

Why can’t we simply start new instances of a microservice and rely on round-robin DNS? 

The idea behind round-robin DNS is that each instance of a microservice registers its IP address under the same name in a DNS server. When a client asks for IP addresses for the DNS name, the DNS server will return a list of IP addresses for the registered instances. The client can use this list of IP addresses to send requests to the microservice instances in a round-robin fashion, using the IP addresses one after another. 

[image: Image 126]

[image: Image 127]

 Chapter 9

265

Let’s try it out and see what happens! Follow these steps:

1.  Assuming that you have followed the instructions from  Chapter 7,  Developing Reactive Microservices, start the system landscape and insert some test data with the following command:

cd $BOOK_HOME/Chapter07

./test-em-all.bash start

2.  Scale up the review microservice to two instances:

docker compose up -d --scale review=2

3.  Ask the composite product service for the IP addresses it finds for the review microservice: docker compose exec product-composite getent hosts review

Expect an answer like the following:

 Figure 9.1: Review microservice IP addresses

Great, the composite product service sees two IP addresses – in my case, 192.168.96.9 

and 192.168.96.8 – one for each instance of the review microservice! 

4.  If you want to, you can verify that these are the correct IP addresses by using the following commands. The commands ask each instance of the review microservice for its IP address:

docker compose exec --index=1 review cat /etc/hosts

docker compose exec --index=2 review cat /etc/hosts

The last line in the output from each command should contain one of the IP addresses, as 

shown in the preceding code. Here’s an example:

 Figure 9.2: IP address output

[image: Image 128]

266

 Adding Service Discovery Using Netflix Eureka

5.  Now, let’s try out a couple of calls to the product-composite service and see whether it uses both instances of the review microservice:

curl localhost:8080/product-composite/1 -s | jq -r 

.serviceAddresses.rev

Unfortunately, we will only get responses from one of the microservice instances, as in 

this example:

 Figure 9.3: Response from one review instance only

That was disappointing! 

Okay, so what is going on here? 

A DNS client asks a DNS server to resolve a DNS name and receives a list of IP addresses. Next, the DNS client tries out the received IP addresses one by one until it finds one that works – in most cases, the first one in the list. A DNS client typically holds on to a working IP address; it does not apply a round-robin approach per request. Added to this, neither a typical DNS server implementation nor the DNS protocol itself is well suited for handling volatile microservice instances that come and go all the time. Because of this, even though DNS-based round robin is appealing in theory, it is not very practical to use for the service discovery of microservice instances. 

Before we move on and learn how to handle service discovery in a better way, let’s shut down the system landscape:

docker compose down

Challenges with service discovery

So, we need something a bit more powerful than a plain DNS to keep track of available microservice instances! 

We must take the following into consideration when we’re keeping track of many small moving 

parts, that is, microservice instances:

•  New instances can start up at any point in time. 

•  Existing instances can stop responding and eventually crash at any point in time. 

[image: Image 129]

 Chapter 9

267

•  Some of the failing instances might be okay after a while and should start to receive traffic again, while others will not and should be removed from the service registry. 

•  Some microservice instances might take some time to start up; that is, just because they 

can receive HTTP requests doesn’t mean that traffic should be routed to them. 

•  Unintended network partitioning and other network-related errors can occur at any time. 

Building a robust and resilient discovery server is not an easy task, to say the least. Let’s see how we can use Netflix Eureka to handle these challenges! 

Service discovery with Netflix Eureka in Spring Cloud

Netflix Eureka implements client-side service discovery, meaning that the clients run software that talks to the discovery server, Netflix Eureka, to get information about the available microservice instances. This is illustrated in the following diagram:

 Figure 9.4: Discovery server diagram

The process is as follows:

1.  Whenever a microservice instance starts up – for example, the Review service – it registers itself to one of the Eureka servers. 

2.  On a regular basis, each microservice instance sends a heartbeat message to the Eureka 

server, telling it that the microservice instance is okay and is ready to receive requests. 

268

 Adding Service Discovery Using Netflix Eureka

3.  Clients – for example, the Product Composite service – use a client library that regularly asks the Eureka service for information about available services. 

4.  When the client needs to send a request to another microservice, it already has a list of available instances in its client library and can pick one of them without asking the discovery server. Typically, available instances are chosen in a round-robin fashion; that is, 

they are called one after another before the first one is called once more. 

In  Chapter 17,  Implementing Kubernetes Features to Simplify the System Landscape, we will look at an alternative approach to providing a discovery service using the server-side service concept in Kubernetes. 

Spring Cloud comes with an abstraction of how to communicate with a discovery service such 

as Netflix Eureka and provides an interface called DiscoveryClient. This can be used to interact with a discovery service to get information regarding available services and instances. Implementations of the DiscoveryClient interface are also capable of automatically registering a Spring Boot application with the discovery server. 

Spring Boot can find implementations of the DiscoveryClient interface automatically during 

startup, so we only need to bring in a dependency on the corresponding implementation to 

connect to a discovery server. In the case of Netflix Eureka, the dependency that’s used by our microservices is spring-cloud-starter-netflix-eureka-client. 

Spring Cloud also has DiscoveryClient implementations that support the use 

of either Apache ZooKeeper or HashiCorp Consul as a discovery server. 

Spring Cloud also comes with an abstraction – the LoadBalancerClient interface – for clients that want to make requests through a load balancer to registered instances in the discovery service. 

The standard reactive HTTP client, WebClient, can be configured to use the LoadBalancerClient implementation. By adding the @LoadBalanced annotation to a @Bean declaration that returns 

a WebClient.Builder object, a LoadBalancerClient implementation will be injected into the 

Builder instance as an ExchangeFilterFunction. Later in this chapter, in the  Connecting microservices to a Netflix Eureka server  section, we will look at some source code examples of how this can be used. 

In summary, Spring Cloud makes it very easy to use Netflix Eureka as a discovery service. With this introduction to service discovery and its challenges, as well as how Netflix Eureka can be used together with Spring Cloud, we are ready to learn how to set up a Netflix Eureka server. 

[image: Image 130]

[image: Image 131]

[image: Image 132]

 Chapter 9

269

Setting up a Netflix Eureka server

In this section, we will learn how to set up a Netflix Eureka server for service discovery. Setting up a Netflix Eureka server using Spring Cloud is really easy – just follow these steps:

1.  Create a Spring Boot project using Spring Initializr, as described in  Chapter 3,  Creating a Set of Cooperating Microservices, in the  Using Spring Initializr to generate skeleton code section. 

2.  Add a dependency to spring-cloud-starter-netflix-eureka-server. 

3.  Add the @EnableEurekaServer annotation to the application class. 

4.  Add a Dockerfile, similar to the Dockerfiles that are used for our microservices, with the exception that we export the default Eureka port, 8761, instead of the default port for our 

microservices, 8080. 

5.  Add the Eureka server to our three Docker Compose files, that is, docker-compose.yml, 

docker-compose-partitions.yml, and docker-compose-kafka.yml, like this:

eureka:

build: spring-cloud/eureka-server

mem_limit: 512m

ports:

- "8761:8761" 

Quick tip: Enhance your coding experience with the AI Code Explainer 

and Quick Copy features. Open this book in the next-gen Packt Reader. Click 

the Copy button

(1) to quickly copy code into your coding environment, or click the Explain 

button

(2) to get the AI assistant to explain a block of code to you. 

The next-gen Packt Reader is included for free with the purchase of 

this book. Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to 

make sure you get the right one. 

[image: Image 133]

270

 Adding Service Discovery Using Netflix Eureka

6.  Finally, add some configuration. Please see the  Setting up the configuration for development use section in this chapter, where we will go through the configuration for both the Eureka server and our microservices. 

That’s all it takes! 

You can find the source code for the Eureka server in the $BOOK_HOME/Chapter09/spring-cloud/

eureka-server folder. 

Now that we have set up a Netflix Eureka server for service discovery, we are ready to learn how to connect microservices to it. 

Connecting microservices to a Netflix Eureka server

In this section, we will learn how to connect microservice instances to a Netflix Eureka server. 

We will learn both how microservice instances register themselves to the Eureka server during their startup and how clients can use the Eureka server to find the microservice instances they want to call. 

To be able to register a microservice instance in the Eureka server, we need to do the following: 1.  Add a dependency to spring-cloud-starter-netflix-eureka-client in the build file, 

build.gradle:

Implementation 'org.springframework.cloud:spring-cloud-starter-

netflix-eureka-client' 

2.  When running tests on a single microservice, we don’t want to depend on having the 

Eureka server up and running. Therefore, we will disable the use of Netflix Eureka in all 

Spring Boot tests, that is, JUnit tests annotated with @SpringBootTest. This can be done 

by adding the eureka.client.enabled property and setting it to false in the annotation, 

like so:

@SpringBootTest(webEnvironment=RANDOM_PORT, properties = {"eureka. 

client.enabled=false"})

 Chapter 9

271

3.  Finally, add some configuration. Please go to the  Setting up the configuration for development use section, where we will go through the configuration for both the Eureka server and our microservices. 

There is one property in the configuration that is extra important: spring.application.name. It is used to give each microservice a virtual hostname, a name used by the Eureka service to identify each microservice. Eureka clients will use this virtual hostname in the URLs that are used to make HTTP calls to the microservice, as we will see as we proceed. 

To be able to look up available microservice instances through the Eureka server in the product-composite microservice, we also need to do the following:

1.  Add a Spring bean in the main application class, ProductCompositeServiceApplicati

on, which creates a load balancer-aware WebClient builder:

@Bean

@LoadBalanced

public WebClient.Builder loadBalancedWebClientBuilder() {

return WebClient.builder(); 

}

For more information on how to use a WebClient instance as a load bal-

ancer client, see https://docs.spring.io/spring-cloud-commons/

docs/current/reference/html/#webclinet-loadbalancer-client. 

2.  The  WebClient-builder bean can be used by the integration class, 

ProductCompositeIntegration, by injecting it into the constructor:

private WebClient webClient; 

public ProductCompositeIntegration(

WebClient.Builder webClientBuilder, 

... 

) {

this.webClient = webClientBuilder.build(); 

... 

}

The constructor uses the injected builder to create the webClient. 

272

 Adding Service Discovery Using Netflix Eureka

Once a WebClient is built, it is immutable. This means that it can be reused by concurrent 

requests without risking them stepping on each other’s toes. 


3.  We can now get  rid  of  our  hardcoded  configuration  of  available  microservices  in application.yml. It looks like this:

app:

product-service:

host: localhost

port: 7002

recommendation-service:

host: localhost

port: 7003

review-service:

host: localhost

port: 70034

4.  The corresponding code in the integration class, ProductCompositeIntegration, that 

handled the hardcoded configuration is simplified and replaced by a declaration of the 

base URLs to the APIs of the core microservices. This is shown in the following code:

private static final String PRODUCT_SERVICE_URL = "http://product"; 

private static final String RECOMMENDATION_SERVICE_URL = "http://

recommendation"; 

private static final String REVIEW_SERVICE_URL = "http://review"; 

The hostnames in the preceding URLs are not actual DNS names. Instead, they are the 

virtual hostnames that are used by the microservices when they register themselves to 

the Eureka server – in other words, the values of the spring.application.name property. 

Now that we’ve seen how to connect microservice instances to a Netflix Eureka server, we can move on and learn how to configure the Eureka server and the microservice instances that connect to it. 

Setting up the configuration for development use

Now, it’s time for the trickiest part of setting up Netflix Eureka as a discovery service: setting up a working configuration for both the Eureka server and its clients, our microservice instances. 

Netflix Eureka is a highly configurable discovery server that can be set up for a number of different use cases, and it provides robust, resilient, and fault-tolerant runtime characteristics. One downside of this flexibility and robustness is that it has an almost overwhelming number of 

configuration options. 

 Chapter 9

273

Fortunately, Netflix Eureka comes with good default values for most of the configurable parameters – at least when it comes to using them in a production environment. 

When it comes to using Netflix Eureka during development, the default values cause long start-up times. For example, it can take a long time for a client to make an initial successful call to a microservice instance that is registered in the Eureka server. 

Up to two minutes of wait time can be experienced when using the default configuration values. 

This wait time is added to the time it takes for the Eureka service and the microservices to start up. The reason for this wait time is that the involved processes need to synchronize registration information with each other. The microservice instances need to register with the Eureka server, and the client needs to gather information from the Eureka server. This communication is mainly based on heartbeats, which happen every 30 seconds by default. A couple of caches are also involved, which slows down the propagation of updates. 

We will use a configuration that minimizes this wait time, which is useful during development. 

In production environments, the default values should be used as a starting point! 

We will only use one Netflix Eureka server instance, which is okay in a development 

environment. In a production environment, you should always use two or more 

instances to ensure high availability for the Netflix Eureka server. 

Let’s start to learn what types of configuration parameters we need to know about. 

Eureka configuration parameters

The configuration parameters for Eureka are divided into three groups:

•  Parameters for the Eureka server, prefixed with eureka.server. 

•  Parameters for Eureka clients, prefixed with eureka.client. This is for clients who want 

to communicate with the Eureka server. 

•  Parameters for Eureka instances, prefixed with eureka.instance. This is for the micros-

ervice instances that want to register themselves in the Eureka server. 

Some of the available parameters are described in the Spring Cloud Netflix documentation: 

https://docs.spring.io/spring-cloud-netflix/docs/current/reference/html/. 

For an extensive list of available parameters, I recommend reading the source code:

•  For Eureka server parameters, look at the org.springframework.cloud.netflix.eureka. 

server.EurekaServerConfigBean class for default values and the com.netflix.eureka. 

EurekaServerConfig interface for the relevant documentation

274

 Adding Service Discovery Using Netflix Eureka

•  For Eureka client parameters, look at the org.springframework.cloud.netflix.eureka. 

EurekaClientConfigBean class for the default values and documentation

•  For Eureka instance parameters, look at the org.springframework.cloud.netflix. 

eureka.EurekaInstanceConfigBean class for default values and documentation

Let’s start to learn about configuration parameters for the Eureka server. 

Configuring the Eureka server

To configure the Eureka server for use in a development environment, the following configuration can be used:

server:

port: 8761

eureka:

instance:

hostname: localhost

client:

registerWithEureka: false

fetchRegistry: false

serviceUrl:

defaultZone: http://${eureka.instance.hostname}:${server.port}/

eureka/

server:

waitTimeInMsWhenSyncEmpty: 0

response-cache-update-interval-ms: 5000

The first part of the configuration, for a Eureka instance and client, is a standard configuration for a standalone Eureka server. For details, see the Spring Cloud documentation, which we referred to previously. The last two parameters used for the Eureka server, waitTimeInMsWhenSyncEmpty and response-cache-update-interval-ms, are used to minimize the startup time. 

With the Eureka server configured, we are ready to see how clients to the Eureka server, that is, the microservice instances, can be configured. 

 Chapter 9

275

Configuring clients to the Eureka server

To be able to connect to the Eureka server, the microservices have the following configuration: eureka:

client:

serviceUrl:

defaultZone: http://localhost:8761/eureka/

initialInstanceInfoReplicationIntervalSeconds: 5

registryFetchIntervalSeconds: 5

instance:

leaseRenewalIntervalInSeconds: 5

leaseExpirationDurationInSeconds: 5

---

spring.config.activate.on-profile: docker

eureka.client.serviceUrl.defaultZone: http://eureka:8761/eureka/

The eureka.client.serviceUrl.defaultZone parameter is used to find the Eureka server, using 

the localhost hostname when running without Docker and the eureka hostname when running 

as containers in Docker. The other parameters are used to minimize the startup time and the time it takes to deregister a microservice instance that is stopped. 

Now, we have everything in place that’s required to actually try out the discovery service using the Netflix Eureka server together with our microservices. 

Trying out the discovery service

With all of the details in place, we are ready to try out Netflix Eureka:

1.  First, build the Docker images with the following commands:

cd $BOOK_HOME/Chapter09

./gradlew build && docker compose build

2.  Next, start the system landscape and run the usual tests with the following command:

./test-em-all.bash start

[image: Image 134]

276

 Adding Service Discovery Using Netflix Eureka

Expect output similar to what we have seen in previous chapters:

 Figure 9.5: Successful test output

With the system landscape up and running, we can start by testing how to scale up the number of instances for one of the microservices. 

Scaling up

Run the following commands to try out scaling up a service:

1.  Launch two extra review microservice instances:

docker compose up -d --scale review=3

With the preceding command, we ask Docker Compose to run three 

instances of the review service. Since one instance is already running, 

two new instances will be started up. 

[image: Image 135]

[image: Image 136]

 Chapter 9

277

2.  Once the new instances are up and running, browse to http://localhost:8761/ and 

expect something like the following:

 Figure 9.6: Viewing instances registered with Eureka

Verify that you can see three review instances in the Netflix Eureka web UI, as shown in 

the preceding screenshot. 

3.  One way of knowing when the new instances are up and running is to run this command:

docker compose logs review | grep Started

Expect output that looks as follows:

 Figure 9.7: New review instances

[image: Image 137]

[image: Image 138]

278

 Adding Service Discovery Using Netflix Eureka

4.  We can also use a REST API that the Eureka service exposes. To get a list of instance IDs, we can issue a curl command, like this:

curl -H "accept:application/json" localhost:8761/eureka/apps -s | jq 

-r .applications.application[].instance[].instanceId

Expect a response that looks similar to the following:

 Figure 9.8: List of microservice instance IDs

5.  If you look into the test script, test-em-all.bash, you will find new tests that verify that we can reach Eureka’s REST API and that it reports four instances:

# Verify access to Eureka and that all four microservices are # 

registered in Eureka

assertCurl 200 "curl -H "accept:application/json" $HOST:8761/eureka/

apps -s" 

assertEqual 4 $(echo $RESPONSE | jq ".applications.application | 

length")

6.  Now that we have all of the instances up and running, let’s try out the client-side load balancer by making some requests and focusing on the address of the review service in 

the responses, as follows:

curl localhost:8080/product-composite/1 -s | jq -r 

.serviceAddresses.rev

Expect responses similar to the following:

 Figure 9.9: Review service addresses

[image: Image 139]

 Chapter 9

279

Note that the address of the review service changes in each response; the load balancer 

uses round-robin logic to call the available review instances, one at a time! 

7.  We can also take a look into the review instance’s log records with the following command: docker compose logs review | grep "Response size" 

You will see output that looks similar to the following:

 Figure 9.10: Review instance log records

In the preceding output, we can see how the three review microservice instances, review_1, 

review_2, and review_3, in turn, have responded to the requests. 

We can also try to scale down the instances, which we will do next. 

Scaling down

Let’s also see what happens if we lose one instance of the review microservice. Run the following commands:

1.  We can simulate one instance stopping unexpectedly by running the following command:

docker compose up -d --scale review=2

2.  After the shutdown of the review instance, there is a short time period during which 

calls to the API might fail. This is caused by the time it takes for information regarding 

the lost instance to propagate to the client, the product-composite service. During this 

time frame, the client-side load balancer might choose the instance that no longer exists. 

To prevent this from occurring, resilience mechanisms such as timeouts and retries can 

be used. In  Chapter 13,  Improving Resilience Using Resilience4j, we will see how this can be applied. For now, let’s specify a timeout on our curl command, using the -m 2 option to 

specify that we will wait no longer than two seconds for a response:

curl localhost:8080/product-composite/1 -m 2

[image: Image 140]

[image: Image 141]

280

 Adding Service Discovery Using Netflix Eureka

If a timeout occurs, that is, the client-side load balancer tries to call an instance that no longer exists, the following response is expected from curl:

 Figure 9.11: Response from curl if a timeout occurs

Besides that, we should expect normal responses from the two remaining instances; that 

is, the serviceAddresses.rev field should contain the addresses of the two instances, as 

in the following:

 Figure 9.12: Normal responses from remaining instances

In the preceding sample output, we can see that two different container names and IP addresses are reported. This means that the requests have been served by the two remaining microservice instances. 

After trying out the scaling down of microservice instances, we can try out something that is a bit more disruptive: stopping the Eureka server and seeing what happens when the discovery 

server is temporarily unavailable. 

Disruptive tests with the Eureka server

Let’s bring some disorder to our Eureka server and see how the system landscape manages it! 

To start with, what happens if we crash the Eureka server? 

As long as clients have read the information regarding available microservice instances from the Eureka server before it is stopped, the clients will be fine since they cache the information locally. 

However, new instances will not be made available to clients, and they will not be notified if any running instances are terminated. So, calls to instances that are no longer running will cause failures. 

Let’s try this out! 

Stopping the Eureka server

To simulate a Eureka server crash, follow these steps:

[image: Image 142]

[image: Image 143]

 Chapter 9

281

1.  First, stop the Eureka server and keep the two review instances up and running:

docker compose up -d --scale review=2 --scale eureka=0

2.  Try a couple of calls to the API and extract the service address of the review service:

curl localhost:8080/product-composite/1 -s | jq -r 

.serviceAddresses.rev

The response will – just like before we stopped the Eureka server – contain the addresses 

of the two review instances, like so:

 Figure 9.13: Response with two review instance addresses

This shows that the client can make calls to existing instances, even though the Eureka server is no longer running. 

Starting up an extra instance of the product service

As a final test of the effects of a crashed Eureka server, let’s see what happens if we start up a new instance of the product microservice. Perform the following steps:

1.  Let’s try starting a new instance of the product service:

docker compose up -d --scale review=2 --scale eureka=0 --scale 

product=2

2.  Call the API a couple of times and extract the address of the product service with the 

following command:

curl localhost:8080/product-composite/1 -s | jq -r 

.serviceAddresses.pro

Since no Eureka server is running, the client will not be notified of the new product in-

stance, and so all calls will go to the first instance, as in the following example:

 Figure 9.14: Address of the first product instance only

[image: Image 144]

[image: Image 145]

282

 Adding Service Discovery Using Netflix Eureka

We have seen some of the most important aspects of not having a Netflix Eureka server up and running. Let’s conclude the section on disruptive tests by starting up the Netflix Eureka server again and seeing how the system landscape handles self-healing, that is, resilience. 

Starting up the Eureka server again

In this section, we will wrap up the disruptive tests by starting up the Eureka server again. We will also verify that the system landscape self-heals, which means the new instance of the product microservice gets registered with the Netflix Eureka server and the client gets updated by the Eureka server. Perform the following steps:

1.  Start the Eureka server with the following command:

docker compose up -d --scale review=1 --scale eureka=1 --scale 

product=2

2.  Make the following call a couple of times to extract the addresses of the product and the review service:

curl localhost:8080/product-composite/1 -s | jq -r .serviceAddresses

Verify that the following happens:

•  All calls go to the remaining review instance, demonstrating that the client has 

detected that the second review instance is gone. 

•  Calls to the product service are load-balanced over the two product instanc-

es, demonstrating the client has detected that there are two product instances 

available. 

The response should contain the same address for the review instance and two different 

addresses for the two product instances, as shown in the following two examples:

 Figure 9.15: Product and review addresses

This is the second response:

 Figure 9.16: Product and review addresses

 Chapter 9

283

The IP addresses 192.168.128.4 and 192.168.128.10 belong to the two product instances. 

192.168.128.8 is the IP address of the single remaining review instance. 

To summarize, the Eureka server provides a very robust and resilient implementation 

of a discovery service. If even higher availability is desired, multiple Eureka servers can 

be launched and configured to communicate with each other. Details on how to set up 

multiple Eureka servers can be found in the Spring Cloud documentation: https://docs. 

spring.io/spring-cloud-netflix/docs/current/reference/html/#spring-cloud-

eureka-server-peer-awareness. 

3.  Finally, shut down the system landscape with this command:

docker compose down

This completes the tests of the discovery server, Netflix Eureka, where we have learned how to scale up and scale down microservice instances and what happens if a Netflix Eureka server 

crashes and later on comes back online. 

Summary

In this chapter, we learned how to use Netflix Eureka for service discovery. First, we looked into the shortcomings of a simple DNS-based service discovery solution and the challenges that a 

robust and resilient service discovery solution must be able to handle. 

Netflix Eureka is a very capable service discovery solution that provides robust, resilient, and fault-tolerant runtime characteristics. However, it can be challenging to configure correctly, especially for a smooth developer experience. With Spring Cloud, it becomes easy to set up a Netflix Eureka server and adapt Spring Boot-based microservices, both so that they can register themselves to Eureka during startup and, when acting as a client to other microservices, to keep track of available microservice instances. 

With a discovery server in place, it’s time to see how we can handle external traffic using Spring Cloud Gateway as an edge server. Head over to the next chapter to find out how! 

Questions

1.  What is required to turn a Spring Boot application created with Spring Initializr into a fully fledged Netflix Eureka server? 

2.  What is required to make a Spring Boot-based microservice register itself automatically 

as a startup service with Netflix Eureka? 

[image: Image 146]

284

 Adding Service Discovery Using Netflix Eureka

3.  What is required to make it possible for a Spring Boot-based microservice to call another microservice that is registered in a Netflix Eureka server? 

4.  Let’s assume that you have a Netflix Eureka server up and running, along with one in-

stance of microservice  A and two instances of microservice  B. All microservice instances register themselves with the Netflix Eureka server. Microservice  A makes HTTP requests to microservice  B based on the information it gets from the Eureka server. What will happen if, in turn, the following happens? 

a.  The Netflix Eureka server crashes

b.  One of the instances of microservice  B crashes

c.  A new instance of microservice  A starts up

d.  A new instance of microservice  B starts up

e.  The Netflix Eureka server starts up again

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

10

Using Spring Cloud Gateway to 

Hide Microservices behind an 

Edge Server

In this chapter, we will learn how to use Spring Cloud Gateway as an edge server, to control what APIs are exposed from our microservices-based system landscape. We will see how microservices that have public APIs are made accessible from the outside through the edge server, while microservices that have private APIs are only accessible from the inside of the microservice landscape. In our system landscape, this means that the product composite service and the discovery server, Netflix Eureka, will be exposed through the edge server. The three core services, product, recommendation, and review, will be hidden from the outside. 

Spring Cloud Gateway is well-suited as an edge server for development and testing. In 

a production environment, a full-featured API management product such as Apigee, 

Kong Konnect, IBM API Connect, or MuleSoft Anypoint is typically used. 

The following topics will be covered in this chapter:

•  Adding an edge server to our system landscape

•  Setting up Spring Cloud Gateway, including configuring routing rules

•  Trying out the edge server

[image: Image 147]

286

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter10. 

If you want to view the changes applied to the source code in this chapter – that is, see what it took to add Spring Cloud Gateway as an edge server to the microservices landscape – you 

can compare it with the source code for  Chapter 9,  Adding Service Discovery Using Netflix Eureka. 

You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter09 and 

$BOOK_HOME/Chapter10. 

Adding an edge server to our system landscape

In this section, we will see how the edge server is added to the system landscape and how it affects the way external clients access the public APIs that the microservices expose. All incoming requests will now be routed through the edge server, as illustrated by the following diagram: Figure 10.1: Adding an edge server

As we can see from the preceding diagram, external clients send all their requests to the edge server. The edge server can route the incoming requests based on the URL path. 

 Chapter 10

287

For example, requests with a URL that starts with /product-composite/ are routed to the product composite microservice, and a request with a URL that starts with /eureka/ is routed to the discovery server based on Netflix Eureka. 

To make the discovery service work with Netflix Eureka, we don’t need to expose it 

through the edge server. The internal services will communicate directly with Netflix 

Eureka. The reasons for exposing it are to make its web page and API accessible to an 

operator that needs to check the status of Netflix Eureka and to see what instances 

are currently registered in the discovery service. 

In  Chapter 9,  Adding Service Discovery Using Netflix Eureka, we exposed both the product-composite service and the discovery server, Netflix Eureka, to the outside. When we introduce the edge server in this chapter, this will no longer be the case. This is implemented by removing the following port declarations for the two services in the Docker Compose files:

product-composite:

build: microservices/product-composite-service

ports:

- "8080:8080" 

eureka:

build: spring-cloud/eureka-server

ports:

- "8761:8761" 

With the edge server introduced, we will learn how to set up an edge server based on Spring 

Cloud Gateway in the next section. 

Setting up Spring Cloud Gateway

Setting up Spring Cloud Gateway as an edge server is straightforward and can be done with the following steps:

1.  Create a Spring Boot project using Spring Initializr, as described in  Chapter 3,  Creating a Set of Cooperating Microservices – refer to the  Using Spring Initializr to generate skeleton code section. 

2.  Add a dependency on spring-cloud-starter-gateway-server-webflux. 

288

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

3.  To be able to locate microservice instances through Netflix Eureka, also add the spring-

cloud-starter-netflix-eureka-client dependency. 

4.  Add the edge server project to the common build file, settings.gradle:

include ':spring-cloud:gateway' 

5.  Add a Dockerfile with the same content as for the microservices; see the Dockerfile 

content in the $BOOK_HOME/Chapter10/microservices folder. 

6.  Add the edge server to our three Docker Compose files:

gateway:

environment:

- SPRING_PROFILES_ACTIVE=docker

build: spring-cloud/gateway

mem_limit: 512m

ports:

- "8080:8080" 

From the preceding code, we can see that the edge server exposes port 8080 to the outside 

of the Docker engine. To control how much memory is required, a memory limit of 512 

MB is applied to the edge server, in the same way as we did for the other microservices. 

7.  Since the edge server will handle all incoming traffic, we will move the composite health check from the product composite service to the edge server. This is described in the 

 Adding a composite health check section next. 

8.  Add configuration for routing rules and more. Since there is a lot to configure, it is handled in a separate section,  Configuring Spring Cloud Gateway. 

You can find the source code for Spring Cloud Gateway in $BOOK_HOME/Chapter10/spring-cloud/

gateway. 

Adding a composite health check

With an edge server in place, external health check requests also have to go through the edge server. Therefore, the composite health check that checks the status of all microservices has been moved from the product-composite service to the edge server. See  Chapter 7,  Developing Reactive Microservices – refer to the  Adding a health API section for implementation details for the composite health check. 

 Chapter 10

289

The following has been added to the edge server:

1.  The HealthCheckConfiguration class has been added, which declares the reactive health 

contributor:

@Bean

ReactiveHealthContributor healthcheckMicroservices() {

final Map<String, ReactiveHealthIndicator> registry =

new LinkedHashMap<>(); 

registry.put("product",           () -> 

getHealth("http://product")); 

registry.put("recommendation",    () -> 

getHealth("http://recommendation")); 

registry.put("review",            () -> 

getHealth("http://review")); 

registry.put("product-composite", () -> 

getHealth("http://product-composite")); 

return CompositeReactiveHealthContributor.fromMap(registry); 

}

private Mono<Health> getHealth(String baseUrl) {

String url = baseUrl + "/actuator/health"; 

LOG.debug("Setting up a call to the Health API on URL: {}", 

url); 

return webClient.get().uri(url).retrieve()

.bodyToMono(String.class)

.map(s -> new Health.Builder().up().build())

.onErrorResume(ex -> 

Mono.just(new Health.Builder().down(ex).build()))

.log(LOG.getName(), FINE); 

}

From the preceding code, we can see that a health check for the product-composite 

service has been added, instead of the health check used in  Chapter 7,  Developing Reactive Microservices! 

290

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

2.  The main application class, GatewayApplication, declares a WebClient.Builder bean to 

be used by the implementation of the health indicator, as follows:

@Bean

@LoadBalanced

public WebClient.Builder loadBalancedWebClientBuilder() {

return WebClient.builder(); 

}

From the preceding source code, we can see that WebClient.builder is annotated with 

@LoadBalanced, which makes it aware of microservice instances registered in the dis-

covery server, Netflix Eureka. Refer to the  Service discovery with Netflix Eureka in Spring Cloud section in  Chapter 9,  Adding Service Discovery Using Netflix Eureka, for more details. 

With a composite health check in place for the edge server, we are ready to look at the configuration that needs to be set up for Spring Cloud Gateway. 

Configuring Spring Cloud Gateway

When it comes to configuring Spring Cloud Gateway, the most important thing is setting up the routing rules. We also need to set up a few other things in the configuration:

1.  Since Spring Cloud Gateway will use Netflix Eureka to find the microservices it will route traffic to, it must be configured as a Eureka client in the same way as described in  Chap-

 ter 9,  Adding Service Discovery Using Netflix Eureka – refer to the  Configuring clients to the Eureka server section. 

2.  Configure Spring Boot Actuator for development usage, as described in  Chapter 7,  Developing Reactive Microservices – refer to the  Adding a health API section:

management.endpoint.health.show-details: "ALWAYS" 

management.endpoints.web.exposure.include: "*" 

3.  Configure log levels so that we can see log messages from interesting parts of the internal processing in Spring Cloud Gateway – for example, how it decides where to route 

incoming requests to:

logging:

level:

root: INFO

org.springframework.cloud.gateway.route. 

 Chapter 10

291

RouteDefinitionRouteLocator: INFO

org.springframework.cloud.gateway: TRACE

4.  To prevent forwarding sensitive headers such as X-Forwarded-For and Forwarded from 

untrusted proxies, Spring Cloud Gateway requires IP addresses for trusted proxies to be 

specified in the spring.cloud.gateway.trusted-proxies property. For development 

purposes, it can be set to allow any IP address. Note that this must be narrowed down 

to the actual IP addresses used by proxies, in a production environment! For the sample 

code in this book, the Swagger UI and its “Try out an API” feature require a trusted proxy. 

For more information, see https://spring.io/security/cve-2025-41235.  To specify trusted proxies during development, the following configuration is added:

spring.cloud.gateway.trusted-proxies: ".*" 

For the full source code, refer to the configuration file, src/main/resources/application.yml. 

Routing rules

Setting up routing rules can be done in two ways: programmatically, using a Java DSL, or by 

configuration. Using a Java DSL to set up routing rules programmatically can be useful in cases where the rules are stored in external storage, such as a database, or are given at runtime, for example, via a RESTful API or a message sent to the gateway. In more static use cases, I find it more convenient to declare the routes in the configuration file, src/main/resources/application. 

yml. Separating the routing rules from the Java code makes it possible to update the routing rules without having to deploy a new version of the microservice. 

A route is defined by the following:

•  Predicates, which select a route based on information in the incoming HTTP request

•  Filters, which can modify both the request and/or the response

•  A destination URI, which describes where to send a request

•  An ID, that is, the name of the route

For a full list of available predicates and filters, refer to the reference documentation: https://

cloud.spring.io/spring-cloud-gateway/single/spring-cloud-gateway.html. 

In the following subsections, we will first learn how to route requests to product-composite and the Eureka server. After that, we will see how predicates and filters can be used, even though they are not used in this book elsewhere. 

292

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

Routing requests to the product-composite API

If we, for example, want to route incoming requests where the URL path starts with /product-

composite/ to our product-composite service, we can specify a routing rule like this:

spring.cloud.gateway.routes:

- id: product-composite

uri: lb://product-composite

predicates:

- Path=/product-composite/**

Here are some points to note from the preceding code:

•  id: product-composite: The name of the route is product-composite. 

•  uri: lb://product-composite: If the route is selected by its predicates, the request will be routed to the service that is named product-composite in the discovery service, Netflix 

Eureka. The lb:// protocol is used to direct Spring Cloud Gateway to use the client-side 

load balancer to look up the destination in the discovery service. 

•  predicates: - Path=/product-composite/** is used to specify what requests this route 

should match. ** matches zero or more elements in the path. 

To be able to route requests to the Swagger UI set up in  Chapter 5,   Adding an API Description Using OpenAPI, an extra route to the product-composite service is added:

- id: product-composite-swagger-ui

uri: lb://product-composite

predicates:

- Path=/openapi/**

Requests sent to the edge server with a URI starting with /openapi/ will be directed to the 

product-composite service. 

When the Swagger UI is presented behind an edge server, it must be able to pres-

ent an OpenAPI specification of the API that contains the correct server URL – the 

URL of the edge server instead of the URL of the product-composite service itself. 

To enable the product-composite service to produce a correct server URL in the 

OpenAPI specification, the following configuration has been added to the product-

composite service:

server.forward-headers-strategy: framework 

 Chapter 10

293

For more details, see https://springdoc.org/index.html#how-can-i-deploy-

springdoc-openapi-starter-webmvc-ui-behind-a-reverse-proxy. 

To verify that the correct server URL is set in the OpenAPI specification, the following 

test has been added to the test script, test-em-all.bash:

assertCurl 200 “curl -s  http://$HOST:$PORT/

openapi/v3/api-docs” 

assertEqual “http://$HOST:$PORT” “$(echo $RESPONSE

| jq -r .servers[].url)” 

Routing requests to the Eureka server’s API and web page

Eureka exposes both an API and a web page for its clients. To provide a clean separation between the API and the web page in Eureka, we will set up routes as follows:

•  Requests sent to the edge server with the path starting with /eureka/api/ should be 

handled as a call to the Eureka API

•  Requests sent to the edge server with the path starting with /eureka/web/ should be 

handled as a call to the Eureka web page

API requests will be routed to http://${app.eureka-server}:8761/eureka. The routing rule 

for the Eureka API looks like this:

- id: eureka-api

uri: http://${app.eureka-server}:8761

predicates:

- Path=/eureka/api/{segment}

filters:

- SetPath=/eureka/{segment}

The {segment} part in the Path value matches zero or more elements in the path and will be used to replace the {segment} part in the SetPath value. 

Web page requests will be routed to http://${app.eureka-server}:8761. The web page will 

load several web resources, such as .js, .css, and .png files. These requests will be routed to http://${app.eureka-server}:8761/eureka. The routing rules for the Eureka web page look 

like this:

- id: eureka-web-start

uri: http://${app.eureka-server}:8761

294

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

predicates:

- Path=/eureka/web

filters:

- SetPath=/

- id: eureka-web-other

uri: http://${app.eureka-server}:8761

predicates:

- Path=/eureka/**

From the preceding configuration, we can take the following notes. The ${app.eureka-server} 

property is resolved by Spring’s property mechanism, depending on what Spring profile is activated:

1.  When running the services on the same host without using Docker, for example, for de-

bugging purposes, the property will be translated to localhost using the default profile. 

2.  When running the services as Docker containers, the Netflix Eureka server will run in 

a container with the DNS name eureka. Therefore, the property will be translated into 

eureka using the docker profile. 

The relevant parts in the application.yml file that define this translation look like this:

app.eureka-server: localhost

---

spring.config.activate.on-profile: docker

app.eureka-server: eureka

With this, we have seen how to route requests to both product-composite and the Eureka server. 

As a final step, let’s see how predicates and filters can be used in Spring Cloud Gateway. 

Routing requests with predicates and filters

To learn a bit more about the routing capabilities in Spring Cloud Gateway, we will try out host-based routing, where Spring Cloud Gateway uses the hostname of the incoming request to determine where to route the request. We will use one of my favorite websites for testing HTTP 

code: http://httpstat.us/. 

A call to http://httpstat.us/${CODE} simply returns a response with the ${CODE} HTTP code 

and a response body, also containing the HTTP code and corresponding descriptive text. For 

example, see the following curl command:

curl http://httpstat.us/200 -i

 Chapter 10

295

This will return the HTTP code 200, and a response body with the text 200 OK. 

Let’s assume that we want to route calls to http://${hostname}:8080/headerrouting as follows:

•  Calls to the i.feel.lucky host should return 200 OK

•  Calls to the im.a.teapot host should return 418 I'm a teapot

•  Calls to all other hostnames should return 501 Not Implemented

To implement these routing rules in Spring Cloud Gateway, we can use the Host route predicate to select requests with specific hostnames, and the SetPath filter to set the desired HTTP code in the request path. This can be done as follows:

1.  To make calls to http://i.feel.lucky:8080/headerrouting return 200 OK, we can set 

up the following route:

- id: host_route_200

uri: http://httpstat.us

predicates:

- Host=i.feel.lucky:8080

- Path=/headerrouting/**

filters:

- SetPath=/200

2.  To make calls to http://im.a.teapot:8080/headerrouting return 418 I'm a teapot, 

we can set up the following route:

- id: host_route_418

uri: http://httpstat.us

predicates:

- Host=im.a.teapot:8080

- Path=/headerrouting/**

filters:

- SetPath=/418

3.  Finally, to make calls to all other hostnames return 501 Not Implemented, we can set up 

the following route:

- id: host_route_501

uri: http://httpstat.us

predicates:

- Path=/headerrouting/**

[image: Image 148]

296

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

filters:

- SetPath=/501

Okay, that was quite a bit of configuration, so let’s now try it out! 

Trying out the edge server

To try out the edge server, we perform the following steps:

1.  First, build the Docker images with the following commands:

cd $BOOK_HOME/Chapter10

./gradlew clean build && docker compose build

2.  Next, start the system landscape in Docker and run the usual tests with the following 

command:

./test-em-all.bash start

3.  Expect output similar to what we have seen in previous chapters:

 Figure 10.2: Output from test-em-all.bash

4.  From the log output, note the second to last test result, http://localhost:8080. That is the output from the test that verifies that the server URL in Swagger UI’s OpenAPI specification is correctly rewritten as the URL of the edge server. 

With the system landscape, including the edge server, up and running, let’s explore the following topics:

•  Examining what is exposed by the edge server outside of the system landscape running 

in the Docker engine

[image: Image 149]

 Chapter 10

297

•  Trying out some of the most frequently used routing rules, as follows:

•  Using URL-based routing to call our APIs through the edge server

•  Using URL-based routing to call the Swagger UI through the edge server

•  Using URL-based routing to call Netflix Eureka through the edge server, both using 

its API and web-based UI

•  Using header-based routing to see how we can route requests based on the host-

name in the request

Examining what is exposed outside the Docker engine

To understand what the edge server exposes to the outside of the system landscape, perform the following steps:

1.  Use the docker compose ps command to see which ports are exposed by our services:

docker compose ps gateway eureka product-composite product 

recommendation review

2.  As we can see in the following output, only the edge server (named gateway) exposes its 

port (8080) outside the Docker engine:

 Figure 10.3: Output from docker compose ps

3.  If we want to see what routes the edge server has set up, we can use the /actuator/

gateway/routes API. The response from this API is rather verbose. To limit the response 

to information we are interested in, we can apply a jq filter. In the following example, the id of the route and the uri that the request will be routed to are selected:

curl localhost:8080/actuator/gateway/routes -s | jq '.[] | {"\

(.route_id)": "\(.uri)"}' | grep -v '{\|}' 

[image: Image 150]

[image: Image 151]

298

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

4.  This command will respond with the following:

 Figure 10.4: Spring Cloud Gateway routing rules

This gives us a good overview of the actual routes configured in the edge server. Now, let’s try out the routes! 

Trying out the routing rules

In this section, we will try out the edge server and the routes it exposes to the outside of the system landscape. Let’s start by calling the product-composite API and its Swagger UI. Then, we’ll call the Eureka API and visit its web page. Finally, we’ll conclude by testing the routes that are based on hostnames. 

Calling the product composite API through the edge server

Let’s perform the following steps to call the product composite API through the edge server: 1.  To be able to see what is going on in the edge server, we can follow its log output:

docker compose logs -f --tail=0 gateway

2.  Now, in a separate terminal window, make the call to the product-composite API through 

the edge server:

curl http://localhost:8080/product-composite/1

3.  Expect the normal type of response from the product-composite API:

 Figure 10.5: Output from retrieving the composite product with Product ID 1

[image: Image 152]

[image: Image 153]

 Chapter 10

299

4.  We should be able to find the following information in the log output:

 Figure 10.6: Log output from the edge server

5.  From the log output, we can see the pattern matching based on the predicate we specified in the configuration, and we can see which microservice instance the edge server selected 

from the available instances in the discovery server – in this case, it forwards the request to http://b8013440aea0:8080/product-composite/1. 

Calling the Swagger UI through the edge server

To verify that we can reach the Swagger UI introduced in  Chapter 5,   Adding an API Description Using OpenAPI, through the edge server, open the http://localhost:8080/openapi/swagger-ui.html URL in a web browser. The resulting Swagger UI page should look like this:

 Figure 10.7: The Swagger UI through the edge server, gateway

[image: Image 154]

300

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

Note the server URL: http://localhost:8080; this means that the product-composite API’s own 

URL, http://product-service:8080/, has been replaced in the OpenAPI specification returned 

by the Swagger UI. 

If you want to, you can proceed and actually try out the product-composite API in the Swagger UI, as we did back in  Chapter 5,  Adding an API Description Using OpenAPI! 

Calling Eureka through the edge server

To call Eureka through an edge server, perform the following steps:

1.  First, call the Eureka API through the edge server to see what instances are currently 

registered in the discovery server:

curl -H "accept:application/json" \

localhost:8080/eureka/api/apps -s | \

jq -r .applications.application[].instance[].instanceId

2.  Expect a response along the lines of the following:

 Figure 10.8: Eureka listing the edge server, gateway, in the REST call

Note that the edge server (named gateway) is also present in the response. 

[image: Image 155]

 Chapter 10

301

3.  Next, open the Eureka web page in a web browser using the http://localhost:8080/

eureka/web URL:

 Figure 10.9: Eureka listing the edge server, gateway, in the web UI

4.  From the preceding screenshot, we can see the Eureka web page reporting the same avail-

able instances as the API response in the previous step. 

Routing based on the host header

Let’s wrap up by testing the route configuration based on the hostname used in the requests to see predicates and filters in use! 

302

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

Normally, the hostname in the request is set automatically in the Host header by the HTTP client. 

When testing the edge server locally, the hostname will be localhost – that is not so useful when testing hostname-based routing. However, we can cheat by specifying another hostname in the 

Host header in the call to the API. Let’s see how this can be done:

1.  To call for the i.feel.lucky hostname, use this code:

curl http://localhost:8080/headerrouting -H "Host: i.feel. 

lucky:8080" 

2.  Expect the response 200 OK. 

3.  For the im.a.teapot hostname, use the following command:

curl http://localhost:8080/headerrouting -H "Host: im.a.teapot:8080" 

4.  Expect the response 418 I'm a teapot. 

5.  Finally, if not specifying any Host header, use localhost as the Host header:

curl http://localhost:8080/headerrouting

6.  Expect the response 501 Not Implemented. 

We can also use i.feel.lucky and im.a.teapot as real hostnames in the requests if we add 

them to the /etc/hosts file, specifying that they should be translated into the same IP address as localhost, that is, 127.0.0.1. To do so, perform the following steps:

1.  Run the following command to add a row to the /etc/hosts file with the required in-

formation:

sudo bash -c "echo '127.0.0.1 i.feel.lucky im.a.teapot' >> /etc/

hosts" 

2.  We can now perform the same routing based on the hostname, but without specifying 

the Host header. Try it out by running the following commands:

curl http://i.feel.lucky:8080/headerrouting

curl http://im.a.teapot:8080/headerrouting

3.  Expect the same responses as previously, 200 OK and 418 I'm a teapot. 

4.  Wrap up the tests by shutting down the system landscape with the following command:

docker compose down

 Chapter 10

303

5.  Clean up the /etc/hosts file from the DNS name translation we added for the hostnames, 

i.feel.lucky and im.a.teapot. Edit the /etc/hosts file and remove the line we added:

127.0.0.1 i.feel.lucky im.a.teapot

These tests of the routing capabilities in the edge server end the chapter. 

Summary

In this chapter, we have seen how Spring Cloud Gateway can be used as an edge server to control what services are allowed to be called from outside of the system landscape. Based on predicates, filters, and destination URIs, we can define routing rules in a very flexible way. If we want to, we can configure Spring Cloud Gateway to use a discovery service such as Netflix Eureka to look up the target microservice instances. 

An important topic we still need to address is how we prevent unauthorized access to the APIs exposed by the edge server, and how we can prevent third parties from intercepting traffic. 

In the next chapter, we will see how we can secure access to the edge server using standard security mechanisms, such as HTTPS, OAuth, and OpenID Connect. 

Questions

1.  What are the elements used to build a routing rule in Spring Cloud Gateway called? 

2.  What are the aforementioned elements used for? 

3.  How can we instruct Spring Cloud Gateway to locate microservice instances through a 

discovery service such as Netflix Eureka? 

4.  In a Docker environment, how can we ensure that external HTTP requests to the Docker 

Engine can only reach the edge server? 

5.  How do we change the routing rules so that the edge server accepts calls to the product-

composite service on the http://$HOST:$PORT/api/product URL instead of the currently 

used http://$HOST:$PORT/product-composite? 

[image: Image 156]

304

 Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

11

Securing Access to APIs

In this chapter, we will see how we can secure access to the APIs and web pages exposed by the edge server introduced in the previous chapter. We will learn how to use HTTPS to protect against eavesdropping on external access to our APIs, and how to use OAuth 2.0 and OpenID Connect to authenticate and authorize users and client applications to access our APIs. Finally, we will use HTTP Basic authentication to secure access to the discovery server, Netflix Eureka. 

The following topics will be covered in this chapter:

•  An introduction to the OAuth 2.0 and OpenID Connect standards

•  A general discussion on how to secure the system landscape

•  Protecting external communication with HTTPS

•  Securing access to the discovery server, Netflix Eureka

•  Adding a local authorization server to our system landscape

•  Authenticating and authorizing API access using OAuth 2.0 and OpenID Connect

•  Testing with the local authorization server

•  Testing with an external OpenID Connect provider, Auth0

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter11. 

306

 Securing Access to APIs

If you want to view the changes applied to the source code in this chapter, that is, see what it took to secure access to the APIs in the microservice landscape, you can compare it with the source code for  Chapter 10, Using Spring Cloud Gateway to Hide Microservices behind an Edge Server. 

You can use your favorite diff tool and compare the two folders $BOOK_HOME/Chapter10 and 

$BOOK_HOME/Chapter11. 

Introduction to OAuth 2.0 and OpenID Connect

Before introducing OAuth 2.0 and OpenID Connect, let’s clarify what we mean by authentication and authorization. Authentication means identifying a user by validating credentials supplied by the user, such as a username and password. Authorization is about giving access to various parts of, in our case, an API to an authenticated user. 

OAuth 2.0 is an open standard for authorization delegation, and OpenID Connect is an add-on to OAuth 2.0 that enables client applications to verify the identity of users based on the authentication performed by the authorization server. Let’s look briefly at OAuth 2.0 and OpenID Connect separately to get an initial understanding of their purposes! 

Introducing OAuth 2.0

OAuth 2.0 is a widely accepted open standard for authorization that enables a user to give consent for a third-party client application to access protected resources in the name of the user. Giving a third-party client application the right to act in the name of a user, for example, calling an API, is known as authorization delegation. 

So, what does this mean? 

 Chapter 11

307

Let’s start by sorting out the concepts used:

•  Resource owner: The end user. 

•  Client: The third-party client application – for example, a web app or a native mobile app that wants to call some protected APIs in the name of the end user. 

•  Resource server: The server that exposes the APIs that we want to protect. 

•  Authorization server: The authorization server issues tokens to the client after the resource owner, that is, the end user, has been authenticated. The management of user 

information and the authentication of users are typically delegated, behind the scenes, 

to an Identity Provider (IdP). 

A client is registered in the authorization server and is given a client ID and a client secret. The client secret must be protected by the client, like a password. A client also gets registered with a set of allowed redirect URIs that the authorization server will use after a user has been authenticated to send authorization codes and tokens that have been issued back to the client application. 

The following is an example by way of illustration. Let’s say that a user accesses a third-party client application and the client application wants to call a protected API to serve the user. To be allowed to access these APIs, the client application needs a way to tell the APIs that it is acting in the name of the user. To avoid solutions where the user must share their credentials with the client application for authentication, an access token is issued by an authorization server that gives the client application limited access to a selected set of APIs in the name of the user. 

This means that the user never has to reveal their credentials to the client application. The user can also give consent to the client application to access specific APIs on behalf of the user. An access token represents a time-constrained set of access rights, expressed as scopes in OAuth 2.0 

terms. A refresh token can also be issued to a client application by the authorization server. A refresh token can be used by the client application to obtain new access tokens without having to involve the user. 

[image: Image 157]

308

 Securing Access to APIs

The OAuth 2.0 specification defines four authorization grant flows for issuing access tokens, explained as follows:

•  Authorization code grant flow: This is the safest, but also the most complex, grant flow. 

This grant flow requires that the user interacts with the authorization server using a web 

browser for authentication and giving consent to the client application, as illustrated by 

the following diagram:

 Figure 11.1: OAuth 2.0 – authorization code grant flow

Here’s what’s going on in this diagram:

1.  The client application initiates the grant flow by sending the user to the authori-

zation server in the web browser. 

2.  The authorization server will authenticate the user and ask for the user’s consent. 

3.  The authorization server will redirect the user back to the client application with 

an authorization code. The authorization server will use a redirect URI specified 

by the client in  step 1  to know where to send the authorization code. Since the 

authorization code is passed back to the client application using the web browser, 

that is, to an unsecured environment where malicious JavaScript code can poten-

tially pick up the authorization code, it is only allowed to be used once and only 

during a short time period. 

 Chapter 11

309

4.  To exchange the authorization code for an access token, the client application 

is expected to call the authorization server again. The client application must 

present its client ID and client secret together with the authorization code for the 

authorization server. Since the client secret is sensitive and must be protected, this 

call must be executed from server-side code. 

5.  The authorization server issues an access token and sends it back to the client 

application. The authorization server can also, optionally, issue and return a re-

fresh token. 

6.  Using the access token, the client can send a request to the protected API exposed 

by the resource server. 

7.  The resource server validates the access token and serves the request in the event 

of a successful validation.  Steps 6  and  7  can be repeated as long as the access token is valid. When the lifetime of the access token has expired, the client can use their 

refresh token to acquire a new access token. 

•  Implicit grant flow: This flow is also web browser-based but intended for client applications that are not able to keep a client secret protected, for example, a single-page web 

application. The web browser gets an access token back from the authorization server 

instead of an authorization code. Since the implicit grant flow is less secure than the 

authorization code grant flow, the client can’t request a refresh token. 

The implicit grant flow has been deprecated and removed from the OAuth 

2.1 draft specification (see below) and should therefore no longer be used. 

•  Resource owner password credentials grant flow: If a client application can’t interact with a web browser, it can fall back on this grant flow. In this grant flow, the user must 

share their credentials with the client application and the client application will use these credentials to acquire an access token. 

The resource owner password credentials grant flow has been deprecated 

and removed from the OAuth 2.1 draft specification (see below) and should 

therefore no longer be used. 

•  Client credentials grant flow: In the case where a client application needs to call an API unrelated to a specific user, it can use this grant flow to acquire an access token using its own client ID and client secret. 

310

 Securing Access to APIs

The full specification can be found here: https://tools.ietf.org/html/rfc6749. There are also a number of additional specifications that detail various aspects of OAuth 2.0; for an overview, refer to https://www.oauth.com/oauth2-servers/map-oauth-2-0-specs/.  One additional specification that is worth some extra attention is  RFC 7636 – Proof Key for Code Exchange by OAuth Public Clients (or PKCE for short),  https://tools.ietf.org/html/rfc7636. This specification describes how an otherwise unsecured public client, such as a mobile native app or desktop application, can utilize the authorization code grant flow in a secure way by adding an extra layer of security. 

The OAuth 2.0 specification was published in 2012, and over the years, a lot of lessons have been learned about what works and what does not. In 2019, work began to establish OAuth 2.1, consolidating all the best practices and experiences from using OAuth 2.0. A draft version can be found here: https://tools.ietf.org/html/draft-ietf-oauth-v2-1-13. 

In my opinion, the most important improvements in OAuth 2.1 are the following:

•  PKCE is integrated into the authorization code grant flow. The use of PKCE will be re-

quired by public clients to improve their security, as described above. For confidential 

clients, where the authorization server can verify their credentials, the use of PKCE is not required, only recommended. 

•  The implicit grant flow is deprecated and omitted from the specification, due to its less secure nature. 

•  The resource owner password credentials grant flow is also deprecated and omitted from 

the specification, for the same reasons. 

Given the direction in the upcoming OAuth 2.1 specification, we will only use the authorization code grant flow and the client credentials grant flow in this book. 

When it comes to automating tests against APIs that are protected by OAuth 2.0, the 

client credentials grant flow is very handy since it doesn’t require manual interaction 

using a web browser. We will use this grant flow later on in this chapter with our 

test script; see the  Changes in the test script section. 

Introducing OpenID Connect

OpenID Connect (abbreviated to OIDC) is, as has already been mentioned, an add-on to OAuth 2.0 that enables client applications to verify the identity of users. OIDC adds an extra token, an ID token, that the client application gets back from the authorization server after a completed grant flow. 

 Chapter 11

311

The ID token is encoded as a JSON Web Token (JWT) and contains a number of claims, such as the ID and email address of the user. The ID token is digitally signed using JSON web signatures. 

This makes it possible for a client application to trust the information in the ID token by validating its digital signature using public keys from the authorization server. 

Optionally, access tokens can also be encoded and signed in the same way as ID tokens, but it is not mandatory, according to the specification. Also important, OIDC defines a discovery endpoint, which is a standardized way to establish URLs to important endpoints, such as requesting authorization codes and tokens or getting the public keys to verify a digitally signed JWT. Finally, it also defines a user-info endpoint, which can be used to get extra information about an authenticated user given an access token for that user. 

For an overview of the available specifications, see https://openid.net/developers/specs/. 

In this book, we will only use authorization servers that comply with the OpenID 

Connect specification. This will simplify the configuration of resource servers by the 

use of their discovery endpoints. We will also use the optional support for digitally 

signed JWT access tokens to simplify how resource servers can verify the authenticity 

of the access tokens. See the  Changes in both the edge server and the product-composite 

 service section below. 

This concludes our introduction to the OAuth 2.0 and OpenID Connect standards. Later on in 

this chapter, we will learn more about how to use these standards. In the next section, we will get a high-level view of how the system landscape will be secured. 

Securing the system landscape

To secure the system landscape as described in the introduction to this chapter, we will perform the following steps:

1.  Encrypt external requests and responses to and from our external API using HTTPS to 

protect against eavesdropping. 

2.  Authenticate and authorize users and client applications that access our APIs using OAuth 2.0 and OpenID Connect. 

3.  Secure access to the discovery server, Netflix Eureka, using HTTP basic authentication. 

We will only apply HTTPS for external communication to our edge server, using plain HTTP for communication inside our system landscape. 

[image: Image 158]

312

 Securing Access to APIs

In the chapter on service meshes ( Chapter 18,  Using a Service Mesh to Improve Observability and Management) that will appear later in this book, we will see how we can 

get help from a service mesh product to automatically provision HTTPS to secure 

communication inside a system landscape. 

For test purposes, we will add a local OAuth 2.0 authorization server to our system landscape. 

All external communication with the authorization server will be routed through the edge server. 

The edge server and the product-composite service will act as OAuth 2.0 resource servers; that is, they will require a valid OAuth 2.0 access token to allow access. 

To minimize the overhead of validating access tokens, we will assume that they are encoded as signed JWTs and that the authorization server exposes an endpoint that the resource servers can use to access the public keys, also known as a JSON Web Key Set, or jwk-set for short, required to validate the signing. 

The system landscape will look like the following:

 Figure 11.2: Adding an authorization server to the system landscape

From the preceding diagram, we can note the following:

•  HTTPS is used for external communication, while plain text HTTP is used inside the sys-

tem landscape

•  The local OAuth 2.0 authorization server will be accessed externally through the edge 

server

 Chapter 11

313

•  Both the edge server and the product-composite microservice will validate access tokens 

as signed JWTs

•  The edge server and the product-composite  microservice will get the authorization 

server’s public keys from its jwk-set endpoint and use them to validate the signature of 

the JWT-based access tokens

Note that we will focus on securing access to APIs over HTTP, not on covering general 

best practices for securing web applications – for example, managing web application 

security risks pointed out by the OWASP Top Ten Project. Refer to https://owasp. 

org/www-project-top-ten/ for more information. 

With this overview of how the system landscape will be secured, let’s start to see how we can protect external communication from eavesdropping using HTTPS. 

Protecting external communication with HTTPS

In this section, we will learn how to prevent eavesdropping on external communication, for example, from the internet, via the public APIs exposed by the edge server. We will use HTTPS to encrypt communication. Under the hood, HTTPS uses the Secure Sockets Layer (SSL) protocol to encrypt communication. SSL is a protocol that provides privacy, authentication, and data integrity in communications. Over time, SSL was succeeded by its more secure and modern counterpart, 

Transport Layer Security (TLS). 

To use HTTPS, we need to do the following:

•  Create a certificate: We will create our own self-signed certificate, sufficient for development purposes

•  Configure the edge server: It has to be configured to accept only HTTPS-based external traffic using the certificate

The self-signed certificate is created with the following command:

keytool -genkeypair -alias localhost -keyalg RSA -keysize 2048 -storetype 

PKCS12 -keystore edge.p12 -validity 3650

The source code comes with a sample certificate file, so you don’t need to run this 

command to run the following examples. 

314

 Securing Access to APIs

The command will ask for a number of parameters. When asked for a password, I entered password. 

For the rest of the parameters, I simply entered an empty value to accept the default value. The certificate file created, edge.p12, is placed in the gateway projects folder, src/main/resources/

keystore. This means that the certificate file will be placed in the .jar file when it is built and will be available on the classpath at runtime at keystore/edge.p12. 

Providing certificates using the classpath is sufficient during development, but not 

applicable to other environments, for example, a production environment. See the 

 Replacing a self-signed certificate at runtime section for how we can replace this certificate with an external certificate at runtime! 

Configuring secure communication with SSL and TLS is inherently complex. This complexity is 

made even greater because different libraries—and even major versions of the same library—often require unique configuration approaches. SSL Bundles were introduced in Spring Boot 3.1 to simplify this process, a concept designed to streamline and centralize SSL and TLS configuration. SSL 

bundles support both Java KeyStore files in the JKS or PKCS12 format, and PEM-encoded certificates. Once an SSL bundle has been configured, it can be reused by multiple types of connections, such as a web server, database, queue manager, or its clients. In this case, the edge server will use an SSL bundle to secure the communication to its embedded web server. For more information 

on how SSL bundles can be used in Spring Boot, see https://docs.spring.io/spring-boot/

reference/features/ssl.html. 

To configure the edge server to use the certificate and HTTPS, the following is added to application. 

yml in the gateway project:

server.port: 8443

spring.ssl.bundle.jks.gateway:

key:

alias: localhost

keystore:

type: PKCS12

location: classpath:keystore/edge.p12

password: password

server.ssl.bundle: gateway

 Chapter 11

315

Some notes from the preceding source code:

•  First, an SSL bundle for a Java Key Store, named gateway, is declared. 

•  The SSL bundle points out the path to the certificate in the keystore.location parameter 

set to classpath:keystore/edge.p12. This means that the certificate will be picked up 

on the classpath from the location keystore/edge.p12. 

•  The password for the certificate is specified in the keystore.password parameter. 

•  To indicate that the edge server talks HTTPS and not HTTP, we also change the port from 

8080 to 8443 in the server.port parameter. 

•  Secondly, the server.ssl.bundle parameter is used to specify that the gateway SSL bundle 

shall be used by the embedded web server. 

In addition to these changes in the edge server, changes are also required in the following files to reflect the changes to the port and HTTP protocol, replacing HTTP with HTTPS and 8080 with 8443:

•  The three Docker Compose files, docker-compose*.yml

•  The test script, test-em-all.bash

Providing certificates using the classpath is, as mentioned previously, only sufficient during development. Let’s see how we can replace this certificate with an external certificate at runtime. 

Replacing a self-signed certificate at runtime

Placing a self-signed certificate in the .jar file is only useful for development. For a working solution in runtime environments – for example, for test or production – it must be possible to use certificates signed by authorized CAs (short for Certificate Authorities). 

It must also be possible to specify the certificates to be used during runtime without the need to rebuild the .jar files and, when using Docker, the Docker image that contains the .jar file. 

When using Docker Compose to manage the Docker container, we can map a volume in the 

Docker container to a certificate that resides on the Docker host. We can also set up environment variables for the Docker container that points to the external certificate in the Docker volume. 

In  Chapter 15 , Introduction to Kubernetes, we will learn about Kubernetes, where we will see more powerful solutions for how to handle secrets, such as certificates, that 

are suitable for running Docker containers in a cluster; that is, where containers are 

scheduled on a group of Docker hosts and not on a single Docker host. 

The changes described in this topic have not been applied to the source code in the 

book’s GitHub repository; you need to make them yourself to see them in action! 

316

 Securing Access to APIs

To replace the certificate packaged in the .jar file, perform the following steps:

1.  Create a second certificate and set the password to testtest when asked for it:

cd $BOOK_HOME/Chapter11

mkdir keystore

keytool -genkeypair -alias localhost -keyalg RSA -keysize 2048 

-storetype PKCS12 -keystore keystore/edge-test.p12 -validity 3650

2.  Update the Docker Compose file, docker-compose.yml, with environment variables for 

the location, the password for the new certificate, and a volume that maps to the folder 

where the new certificate is placed. The configuration of the edge server will look like the following after the change:

gateway:

environment:

- SPRING_PROFILES_ACTIVE=docker

- SERVER_SSL_BUNDLE_JKS_GATEWAY_KEYSTORE_LOCATION=

file:/keystore/edge-test.p12

- SERVER_SSL_BUNDLE_JKS_GATEWAY_KEYSTORE_PASSWORD=

testtest

volumes:

- $PWD/keystore:/keystore

build: spring-cloud/gateway

mem_limit: 512m

ports:

- "8443:8443" 

3.  If the edge server is up and running, it needs to be restarted with the following commands: docker compose up -d --scale gateway=0

docker compose up -d --scale gateway=1

The docker compose restart gateway command might look like a good 

candidate for restarting the gateway service, but it actually does not take 

changes in docker-compose.yml into consideration. Hence, it is not a useful 

command in this case. 

4.  The new certificate is now in use! 

 Chapter 11

317

This concludes the section on how to protect external communication with HTTPS. In the next 

section, we will learn how to secure access to the discovery server, Netflix Eureka, using HTTP 

Basic authentication. 

Securing access to the discovery server

Previously, we learned how to protect external communication with HTTPS. Now we will use HTTP 

Basic authentication to restrict access to the APIs and web pages on the discovery server, Netflix Eureka. This means that we will require a user to supply a username and password to get access. 

Changes are required both on the Eureka server and in the Eureka clients, described as follows. 

Changes in the Eureka server

To protect the Eureka server, the following changes have been applied to the source code:

1.  In build.gradle, a dependency has been added for Spring Security:

implementation 'org.springframework.boot:spring-boot-starter-

security' 

2.  Security configuration has been added to the SecurityConfig class:

a.  The user is defined as follows:

@Bean

public InMemoryUserDetailsManager userDetailsService() {

UserDetails user = User.withDefaultPasswordEncoder()

.username(username)

.password(password)

.roles("USER")

.build(); 

return new InMemoryUserDetailsManager(user); 

}

b.  The username and password are injected into the constructor from the config-

uration file:

public SecurityConfig(

@Value("${app.eureka-username}") String username, 

@Value("${app.eureka-password}") String password

) {

this.username = username; 

this.password = password; 

}

318

 Securing Access to APIs

c.  All APIs and web pages are protected using HTTP Basic authentication by means 

of the following definition:

@Bean

public SecurityFilterChain configure(HttpSecurity http) 

throws Exception {

 // Disable CSRF to allow services to register themselves 

 with Eureka

http

.csrf(csrf -> csrf.disable())

.authorizeHttpRequests(requests -> 

requests.anyRequest().authenticated())

.httpBasic(Customizer.withDefaults()); 

return http.build(); 

}

3.  Credentials for the user are set up in the configuration file, application.yml:

app:

eureka-username: u

eureka-password: p

4.  Finally, the test class, EurekaServerApplicationTests, uses the credentials from the 

configuration file when testing the APIs of the Eureka server:

@Value("${app.eureka-username}")

private String username; 

@Value("${app.eureka-password}")

private String password; 

@Autowired

void setTestRestTemplate(TestRestTemplate testRestTemplate)  {

this.testRestTemplate = testRestTemplate.withBasicAuth(

username, password); 

}

 Chapter 11

319

The preceding are the steps required for restricting access to the APIs and web pages of the discovery server, Netflix Eureka. It will now use HTTP Basic authentication and require a user to supply a username and password to get access. The last step is to configure Netflix Eureka clients so that they pass credentials when accessing the Netflix Eureka server. 

Changes in Eureka clients

For Eureka clients, the credentials can be specified in the connection URL for the Eureka server. 

This is specified in each client’s configuration file, application.yml, as follows:

app:

eureka-username: u

eureka-password: p

eureka:

client:

serviceUrl:

defaultZone: "http://${app.eureka-username}:${app.eureka-

password}@${app.eureka-server}:8761/eureka/" 

This concludes the section on how to restrict access to the Netflix Eureka server. In the  Testing the protected discovery server section, we will run tests to verify that the access is protected. In the next section, we will learn how to add a local authorization server to the system landscape. 

Adding a local authorization server

To be able to run tests locally and fully automated with APIs that are secured using OAuth 2.0 and OpenID Connect, we will add an authorization server that is compliant with these specifications to our system landscape. Historically, Spring Security has not provided an authorization server out of the box. But in April 2020, a community-driven project, Spring Authorization Server, led by the Spring Security team, was announced with the goal of delivering an authorization server. In August 2021, the Spring Authorization Server project was moved out of experimental status and became a member of the Spring project’s portfolio. For more information, see https://spring. 

io/blog/2020/04/15/announcing-the-spring-authorization-server and https://spring. 

io/blog/2021/08/17/spring-authorization-server-officially-moves-to-spring-projects . 

320

 Securing Access to APIs

The Spring Authorization Server supports both the use of the OpenID Connect discovery endpoint and the digital signing of access tokens. It also provides an endpoint that can be accessed using the discovery information to get keys for verifying the digital signature of a token. With support for these features, it can be used as the authorization server in local and automated tests that verify that the system landscape works as expected. 

The authorization server in this book is based on the sample authorization server provided by the Spring Authorization Server project; see https://github.com/spring-projects/spring-

authorization-server/tree/main/samples/default-authorizationserver. 

The following changes have been applied to the sample project:

•  The build file has been updated to follow the structure of the other projects’ build files in this book. 

•  The port is set to 9999. 

•  A Dockerfile has been added with the same structure as for the other projects in this book. 

•  The authorization server has been integrated with Eureka for service discovery in the 

same way as the other projects in this book. 

•  Public access has been added to the actuator’s endpoints. 

WARNING: As already warned about in  Chapter 7 , Developing Reactive Microservices, allowing public access to the actuator’s endpoints is very helpful 

during development, but it can be a security issue to reveal too much infor-

mation in actuator endpoints in production systems. Therefore, plan for min-

imizing the information exposed by the actuator endpoints in production! 

•  Unit tests have been added that verify access to the most critical endpoints according to the OpenID Connect specification. 

•  The username and password for the single registered user are set to u and p, respectively. 

•  Two OAuth clients are registered, reader and writer. The reader client is grant-

ed a product:read scope, and the writer client is granted both a product:read and 

product:write scope. The clients are configured to have their client secret set to secret-

reader and secret-writer, respectively. 

•  Allowed redirect URIs for the clients are set to https://my.redirect.uri and https://

localhost:8443/openapi/swagger-ui/oauth2-redirect.html. The first URL will be 

used in the tests described shortly, and the second URL will be used by the Swagger UI 

component. 

 Chapter 11

321

•  By default, for security reasons, the authorization server does not allow redirect URIs 

that start with https://localhost. The authorization server has been customized to 

accept https://localhost for development and testing purposes. The applied custom-

ization is described here: https://docs.spring.io/spring-authorization-server/

docs/1.0.0/reference/html/protocol-endpoints.html#oauth2-authorization-

endpoint-customizing-authorization-request-validation. 

The source code for the authorization server is available in $BOOK_HOME/Chapter11/spring-

cloud/authorization-server. 

To incorporate the authorization server in the system landscape, changes to the following files have been applied:

•  The server has been added to the common build file, settings.gradle. 

•  The server has been added to the three Docker Compose files, docker-compose*.yml. 

•  The edge server, spring-cloud/gateway. 

•  A health check has been added for the authorization server in HealthCheckConfiguration. 

•  Routes to the authorization server for the URIs starting with /oauth, /login, and /error 

have been added in the configuration file, application.yml. These URIs are used to issue 

tokens for clients, authenticate users, and show error messages. 

•  Since these three URIs need to be unprotected by the edge server, they are configured in 

the new SecurityConfig class to permit all requests. 

With an understanding of how a local authorization server is added to the system landscape, 

let’s move on and see how to use OAuth 2.0 and OpenID Connect to authenticate and authorize 

access to APIs. 

Protecting APIs using OAuth 2.0 and OpenID 

Connect

With the authorization server in place, we can enhance the edge server and the product-composite service to become OAuth 2.0 resource servers, so that they will require a valid access token to allow access. The edge server will be configured to accept any access token it can validate using the digital signature provided by the authorization server. The product-composite service will also require the access token to contain valid OAuth 2.0 scopes:

•  The product:read scope will be required for accessing the read-only APIs

•  The product:write scope will be required for accessing the create and delete APIs

322

 Securing Access to APIs

The product-composite service will also be enhanced with a configuration that allows its Swagger UI component to interact with the authorization server to issue an access token. This will allow users of the Swagger UI web page to test the protected API. 

We also need to enhance the test script, test-em-all.bash, so that it acquires access tokens and uses them when it performs the tests. 

Changes in both the edge server and the product-composite 

service

The following changes have been applied in the source code for both the edge server and the 

product-composite service:

•  Spring Security dependencies have been added to build.gradle to support OAuth 2.0 

resource servers:

implementation 'org.springframework.boot:spring-boot-starter-

security' 

implementation 'org.springframework.security:spring-security-oauth2-

resource-server' 

implementation 'org.springframework.security:spring-security-oauth2-

jose' 

•  Security configurations have been added to new SecurityConfig classes in both projects:

@Configuration

@EnableWebFluxSecurity

public class SecurityConfig {

@Bean

SecurityWebFilterChain springSecurityFilterChain(

ServerHttpSecurity http) {

http

.csrf(csrf -> csrf.disable()

.authorizeExchange(exchange -> exchange

.pathMatchers("/actuator/**").permitAll()

.anyExchange().authenticated()))

.oauth2ResourceServer(server -> server.jwt(

Customizer.withDefaults())); 

return http.build(); 

}

}

 Chapter 11

323

•  Explanations for the preceding source code are as follows:

•  The @EnableWebFluxSecurity annotation enables Spring Security support for 

APIs based on Spring WebFlux. 

•  .pathMatchers("/actuator/**").permitAll() is used to allow unrestricted ac-

cess to URLs that should be unprotected – for example, the actuator endpoints, 

in this case. Refer to the source code for URLs that are treated as unprotected. Be 

careful about which URLs are exposed unprotected. For example, the actuator 

endpoints should be protected before going to production. 

•  .anyExchange().authenticated() ensures that the user is authenticated before 

being allowed access to all other URLs. 

•  .oauth2ResourceServer(…) specifies that authorization will be based on OAuth 

2.0 access tokens encoded as JWTs. 

•  The authorization server’s OIDC discovery endpoint has been registered in the 

configuration file, application.yml:

app.auth-server: localhost

spring.security.oauth2.resourceserver.jwt.issuer-uri: 

http://${app.auth-server}:9999

---

spring.config.activate.on-profile: docker

app.auth-server: auth-server

Later on in this chapter, when the system landscape is started up, you can 

test the discovery endpoint. You can, for example, find the endpoint that 

returns the keys required for verifying the digital signature of a token using 

this command:

docker compose exec auth-server curl localhost:9999/. 

well-known/openid-configuration -s | jq -r .jwks_uri

We also need to make some changes that only apply to the product-composite service. 

324

 Securing Access to APIs

Changes in the product-composite service only

In addition to the common changes applied in the previous section, the following changes have also been applied to the product-composite service:

•  The security configuration in the SecurityConfig  class has been refined by requiring 

OAuth 2.0 scopes in the access token in order to allow access:

.pathMatchers(POST, "/product-composite/**")

.hasAuthority("SCOPE_product:write")

.pathMatchers(DELETE, "/product-composite/**")

.hasAuthority("SCOPE_product:write")

.pathMatchers(GET, "/product-composite/**")

.hasAuthority("SCOPE_product:read")

By convention, OAuth 2.0 scopes need to be prefixed with SCOPE_ when 

checked for authority using Spring Security. 

•  A method, logAuthorizationInfo(),  has been added to log relevant parts from the 

JWT-encoded access token upon each call to the API. The access token can be acquired 

using the standard Spring Security SecurityContext, which, in a reactive environment, 

can be acquired using the static helper method, ReactiveSecurityContextHolder. 

getContext(). Refer to the ProductCompositeServiceImpl class for details. 

•  The use of OAuth has been disabled when running Spring-based integration tests. To 

prevent the OAuth machinery from kicking in when we are running integration tests, we 

disable it as follows:

•  A security configuration, TestSecurityConfig, is added to be used during tests. 

It permits access to all resources:

http.csrf(csrf -> csrf.disable().authorizeExchange(

exchange -> exchange.anyExchange().permitAll())); 

•  In each Spring integration test class, we configure TestSecurityConfig to override 

the existing security configuration with the following:

@SpringBootTest(

classes = {TestSecurityConfig.class}, 

properties = {"spring.main.allow-bean-definition-

overriding=true"})

 Chapter 11

325

Changes to allow Swagger UI to acquire access tokens

To allow access to the protected APIs from the Swagger UI component, the following changes 

have been applied in the product-composite service:

•  The web pages exposed by the Swagger UI component have been configured to be publicly 

available. The following line has been added to the SecurityConfig class:

.pathMatchers("/openapi/**").permitAll()

•  The OpenAPI Specification of the API has been enhanced to require that the security_auth 

security schema is applied. 

The following line has been added to the definition of the ProductCompositeService 

interface in the API project:

@SecurityRequirement(name = "security_auth")

•  To define the semantics of the security_auth security schema, the OpenApiConfig class 

has been added to the product-composite project. It looks like this:

@SecurityScheme(

name = "security_auth", type = SecuritySchemeType.OAUTH2, 

flows = @OAuthFlows(

authorizationCode = @OAuthFlow(

authorizationUrl = "${springdoc.oAuthFlow. 

authorizationUrl}", 

tokenUrl = "${springdoc.oAuthFlow.tokenUrl}", 

scopes = {

@OAuthScope(name = "product:read", description =

"read scope"), 

@OAuthScope(name = "product:write", description =

"write scope")

}

)))

public class OpenApiConfig {}

•  From the preceding class definition, we can see the following:

•  The security schema will be based on OAuth 2.0. 

•  The authorization code grant flow will be used. 

326

 Securing Access to APIs

•  The required URLs for acquiring an authorization code and access tokens will be 

supplied by the configuration using the springdoc.oAuthFlow.authorizationUrl 

and springdoc.oAuthFlow.tokenUrl parameters. 

•  A list of scopes (product:read and product:write) that Swagger UI will require 

to be able to call the APIs. 

•  Finally, some configuration is added to application.yml:

swagger-ui:

oauth2-redirect-url: /swagger-ui/oauth2-redirect.html

oauth:

clientId: writer

clientSecret: secret-writer

useBasicAuthenticationWithAccessCodeGrant: true

oAuthFlow:

authorizationUrl: https://localhost:8443/oauth2/authorize

tokenUrl: https://localhost:8443/oauth2/token

•  From the preceding configuration, we can see the following:

•  The redirect URL that Swagger UI will use to acquire the authorization code. 

•  Its client ID and client secret. 

•  It will use HTTP Basic authentication when identifying itself for the authorization 

server. 

•  The values of the authorizationUrl  and tokenUrl  parameters used by the 

OpenApiConfig class described previously. Note that these URLs are used by the 

web browser and not by the product-composite service itself, so they must be 

resolvable from the web browser. 

To allow unprotected access to the Swagger UI web pages, the edge server has also been configured to allow unrestricted access to URLs that are routed to the Swagger UI component. The following is added to the edge server’s SecurityConfig class:

.pathMatchers("/openapi/**").permitAll()

With these changes in place, both the edge server and the product-composite service can act as OAuth 2.0 resource servers, and the Swagger UI component can act as an OAuth client. The last step we need to take to introduce the usage of OAuth 2.0 and OpenID Connect is to update the test script so it acquires access tokens and uses them when running the tests. 

 Chapter 11

327

Changes in the test script

To start with, we need to acquire an access token before we can call any of the APIs, except the health API. This is done, as already mentioned, using the OAuth 2.0 client credentials flow. To be able to call the create and delete APIs, we acquire an access token as the writer client, as follows: ACCESS_TOKEN=$(curl -k https://writer:secret-writer@$HOST:$PORT/

oauth2/token -d grant_type=client_credentials -d scope="product:read 

product:write" -s | jq .access_token -r)

From the preceding command, we can see that it uses HTTP Basic authentication, passing its 

client ID and client secret as writer:secret-writer@ before the hostname. 

To verify that the scope-based authorization works, two tests have been added to the test script:

# Verify that a request without access token fails on 401, Unauthorized

assertCurl 401 "curl -k https://$HOST:$PORT/product-composite/$PROD_ID_

REVS_RECS -s" 

# Verify that the reader client with only read scope can call the read API 

but not delete API

READER_ACCESS_TOKEN=$(curl -k https://reader:secret-reader@$HOST:$PORT/

oauth2/token -d grant_type=client_credentials -d scope="product:read" -s | 

jq .access_token -r)

READER_AUTH="-H \"Authorization: Bearer $READER_ACCESS_TOKEN\"" 

assertCurl 200 "curl -k https://$HOST:$PORT/product-composite/$PROD_ID_

REVS_RECS $READER_AUTH -s" 

assertCurl 403 "curl -k https://$HOST:$PORT/product-composite/$PROD_ID_

REVS_RECS $READER_AUTH -X DELETE -s" 

The test script uses the reader client’s credentials to acquire an access token:

•  The first test calls an API without supplying an access token. The API is expected to return the 401 Unauthorized HTTP status. 

•  The second test verifies that the reader client can call a read-only API. 

•  The last test calls an updating API using the reader client, which is only granted a read scope. A request sent to the delete API is expected to return the 403 Forbidden HTTP status. 

For the full source code, see test-em-all.bash. 

With the test script updated to acquire and use OAuth 2.0 access tokens, we are ready to try it out in the next section! 

328

 Securing Access to APIs

Testing with the local authorization server

In this section, we will try out the secured system landscape; that is, we will test all the security components together. We will use the local authorization server to issue access tokens. The following tests will be performed:

1.  First, we build from the source and run the test script to ensure that everything fits together. 

2.  Next, we will test the protected discovery server’s API and web page. 

3.  After that, we will learn how to acquire access tokens using OAuth 2.0 client credentials and authorization code grant flows. 

4.  With the issued access tokens, we will test the protected APIs. We will also verify that an access token issued for a reader client can’t be used to call an updating API. 

5.  Finally, we will also verify that Swagger UI can issue access tokens and call the APIs. 

Building and running the automated tests

To build and run automated tests, we perform the following steps:

1.  First, build the Docker images from source with the following commands:

cd $BOOK_HOME/Chapter11

./gradlew build && docker compose build

2.  Next, start the system landscape in Docker and run the usual tests with the following 

command:

./test-em-all.bash start

Note the new negative tests at the end that verify that we get a 401 

Unauthorized code back when not authenticated, and 403 Forbidden 

when not authorized. 

Testing the protected discovery server

With the protected discovery server, Eureka, up and running, we have to supply valid credentials to be able to access its APIs and web pages. 

[image: Image 159]

[image: Image 160]

 Chapter 11

329

For example, asking the Eureka server for registered instances can be done by means of the following curl command, where we supply the username and password directly in the URL:

curl -H "accept:application/json" https://u:p@localhost:8443/eureka/api/

apps -ks | jq -r .applications.application[].instance[].instanceId

A sample response is as follows:

 Figure 11.3: Services registered in Eureka using an API call

When accessing the web page on https://localhost:8443/eureka/web, we first have to accept 

an unsecured connection, since our certificate is self-signed, and next, we have to supply valid credentials, as specified in the configuration file (u as username and p as password):

 Figure 11.4: Eureka requires authentication

[image: Image 161]

[image: Image 162]

330

 Securing Access to APIs

Following a successful login, we will see the familiar web page from the Eureka server:

 Figure 11.5: Services registered in Eureka using the web page

After ensuring that access to the Eureka server is protected, we will learn how to issue OAuth access tokens. 

Acquiring access tokens

Now we are ready to acquire access tokens using grant flows defined by OAuth 2.0. We will first try out the client credentials grant flow, followed by the authorization code grant flow. 

Acquiring access tokens using the client credentials grant flow

To get an access token for the writer client, that is, with both the product:read and product:write scopes, issue the following command:

curl -k https://writer:secret-writer@localhost:8443/oauth2/token -d grant_

type=client_credentials -d scope="product:read product:write" -s | jq . 

The client identifies itself using HTTP Basic authentication, passing its client ID, writer, and its client secret, secret. A sample response is as follows:

 Figure 11.6: Sample token response

 Chapter 11

331

From the screenshot, we can see that we got the following information in the response:

•  The access token itself. 

•  The scopes granted to the token. The writer client is granted both the product:write 

and product:read scope. It is also granted the openid scope, allowing access to infor-

mation regarding the user’s ID, such as an email address. 

•  The type of token we got; Bearer means that the bearer of this token should be given access according to the scopes granted to the token. 

•  The number of seconds that the access token is valid – 3599 seconds in this case. 

To get an access token for the reader client, that is, with only the product:read scope, simply replace writer with reader in the preceding command, resulting in the following:

curl -k https://reader:secret-reader@localhost:8443/oauth2/token -d grant_

type=client_credentials -d scope="product:read" -s | jq . 

Acquiring access tokens using the authorization code grant 

flow

To acquire an access token using the authorization code grant flow, we need to involve a web browser. This grant flow is a bit more complicated in order to make it secure in an environment that is partly unsecured (the web browser). 

In the first unsecured step, we will use the web browser to acquire an authorization code that can be used only once, to be exchanged for an access token. The authorization code will be passed from the web browser to a secure layer – for example, server-side code, which can make a new request to the authorization server to exchange the authorization code for an access token. In this secure exchange, the server has to supply a client secret to verify its identity. 

Perform the following steps to execute the authorization code grant flow:

1.  To get an authorization code for the reader client, use the following URL in a web browser that accepts the use of self-signed certificates – for example, Chrome: https://localhost:8443/

oauth2/authorize?response_type=code&client_id=reader&redirect_uri=https://

my.redirect.uri&scope=product:read&state=35725. 

[image: Image 163]

[image: Image 164]

332

 Securing Access to APIs

2.  When asked to log in by the web browser, use the credentials specified in the configuration of the authorization server, u and p:

 Figure 11.7: Trying out the authorization code grant flow

3.  Next, we will be asked to give the reader client consent to call the APIs in our name:

 Figure 11.8: Authorization code grant flow consent page

[image: Image 165]

 Chapter 11

333

4.  After clicking on the Submit Consent button, we will get the following response: Figure 11.9: Authorization code grant flow redirect page

5.  This might, at first glance, look a bit disappointing. The URL that the authorization server sends back to the web browser is based on the redirect URI specified by the client in the 

initial request. Copy the URL into a text editor and you will find something similar to the 

following: 

https://my.redirect.uri/?code=7XBs...0mmyk&state=35725

Great! We can find the authorization code in the redirect URL in the code request param-

eter. Extract the authorization code from the code parameter and define an environment 

variable, CODE, with its value:

CODE=7XBs...0mmyk

6.  Next, pretend you are the backend server that exchanges the authorization code with an 

access token using the following curl command:

curl -k https://reader:secret-reader@localhost:8443/oauth2/token \

-d grant_type=authorization_code \

-d client_id=reader \

-d redirect_uri=https://my.redirect.uri \

-d code=$CODE -s | jq . 

[image: Image 166]

334

 Securing Access to APIs

A sample response is as follows:

 Figure 11.10: Authorization code grant flow access token

From the screenshot, we can see that we got similar information in the response as we 

got from the client credentials flow, with the following exceptions:

•  Since we used a more secure grant flow, we also got a refresh token issued

•  Since we asked for an access token for the reader client, we only got a product:read 

scope, no product:write scope

7.  To get an authorization code for the writer client, use the following URL: 

https://localhost:8443/oauth2/authorize?response_type=code&client_

id=writer&redirect_uri=https://my.redirect.uri&scope=product:read+product

:write&state=72489. 

8.  To exchange the code for an access token for the writer client, run the following command: curl -k https://writer:secret-writer@localhost:8443/oauth2/token \

-d grant_type=authorization_code \

-d client_id=writer \

-d redirect_uri=https://my.redirect.uri \

-d code=$CODE -s | jq . 

9.  Verify that the response now also contains the product:write scope! 

Calling protected APIs using access tokens

Now, let’s use the access tokens we have acquired to call the protected APIs. 

An OAuth 2.0 access token is expected to be sent as a standard HTTP authorization header, 

where the access token is prefixed with Bearer. 

[image: Image 167]

[image: Image 168]

 Chapter 11

335

Run the following commands to call the protected APIs:

1.  First, call an API to retrieve a composite product without a valid access token:

ACCESS_TOKEN=an-invalid-token

curl https://localhost:8443/product-composite/1 -k -H 

"Authorization: Bearer $ACCESS_TOKEN" -i

It should return the following response:

 Figure 11.11: Invalid token results in a 401 Unauthorized response

The error message clearly states that the access token is invalid! 

2.  Next, try using the API to retrieve a composite product using one of the access tokens 

acquired for the reader client from the previous section:

ACCESS_TOKEN={a-reader-access-token}

curl https://localhost:8443/product-composite/1 -k -H 

"Authorization: Bearer $ACCESS_TOKEN" -i

Now we will get the 200 OK status code and the expected response body will be returned:

 Figure 11.12: Valid access token results in a 200 OK response

3.  If we try to access an updating API, for example, the delete API, with an access token 

acquired for the reader client, the call will fail:

ACCESS_TOKEN={a-reader-access-token}

curl https://localhost:8443/product-composite/999 -k -H 

"Authorization: Bearer $ACCESS_TOKEN" -X DELETE -i

[image: Image 169]

[image: Image 170]

336

 Securing Access to APIs

It will fail with a response similar to the following:

 Figure 11.13: Insufficient scope results in a 403 Forbidden result

From the error response, it is clear that we are forbidden to call the API since the request requires higher privileges than what our access token is granted. 

4.  If we repeat the call to the delete API, but with an access token acquired for the writer client, the call will succeed with 202 Accepted in the response. 

The delete operation should return 202 even if the product with the speci-

fied product ID does not exist in the underlying database, since the delete 

operation is idempotent, as described in  Chapter 6,  Adding Persistence.  Refer to the  Adding  new  APIs section. 

If you look into the log output using the docker compose logs -f product-composite 

command, you should be able to find authorization information such as the following:

 Figure 11.14: Authorization info in the log output

This information was extracted in the product-composite service from the JWT-encod-

ed access token; the product-composite service did not need to communicate with the 

authorization server to get this information! 

With these tests, we have seen how to acquire an access token with the client credentials and authorization code grant flows. We have also seen how scopes can be used to limit what a client can do with a specific access token – for example, only use it for reading operations. 

[image: Image 171]

 Chapter 11

337

Testing Swagger UI with OAuth 2.0

In this section, we will learn how to use the Swagger UI component to access the protected API. 

The configuration described in the earlier  Changes in the product-composite service only section allows us to issue an access token for Swagger UI and use it when calling the APIs from Swagger UI. 

To try it out, perform the following steps:

1.  Open the Swagger UI start page by going to the following URL in a web browser: https://

localhost:8443/openapi/swagger-ui.html. 

2.  On the start page, we can now see a new button, next to the Servers drop-down list, with the text Authorize. 

3.  Click on the Authorize button to initiate an authorization code grant flow. 

4.  Swagger UI will present a list of scopes that it will ask the authorization server to get access to. Select all scopes by clicking on the link with the text select all and then clicking on the Authorize button:

 Figure 11.15: Swagger UI asking for OAuth scopes

[image: Image 172]

338

 Securing Access to APIs

You will then be redirected to the authorization server. If you are not already logged in 

from the web browser used, the authorization server will ask for your credentials as in 

the  Acquiring access tokens using the authorization code grant flow section. 

5.  Log in with username u and password p. 

6.  Next, the authorization server will ask for your consent. Select both scopes and click on the Submit Consent button. 

7.  Swagger UI will complete the authorization process by showing information about the 

completed grant flow. Click on the Close button to get back to the start page:

 Figure 11.16: Swagger UI summarizing the OAuth grant flow

8.  Now you can try out the APIs in the same way as described in  Chapter 5 , Adding an API Description Using OpenAPI. Swagger UI will add the access token to the requests. If you look closely at the curl command reported below the Responses header, you can find 

the access token. 

 Chapter 11

339

This completes the tests we will perform with the local authorization server. In the next section, we will replace it with an external OpenID Connect-compliant provider. 

Testing with an external OpenID Connect provider

So, the OAuth dance works fine with an authorization server we control ourselves. But what 

happens if we replace it with a certified OpenID Connect provider? In theory, it should work out of the box. Let’s find out, shall we? 

For a list of certified implementations of OpenID Connect, refer to https://openid. 

net/developers/certified/. 

We will use Auth0, https://auth0.com/, for our tests with an external OpenID provider. To be able to use Auth0 instead of our own authorization server, we will go through the following topics:

•  Setting up an account with a reader and writer client and a user in Auth0

•  Applying the changes required to use Auth0 as an OpenID provider

•  Running the test script to verify that it is working

•  Acquiring access tokens using the following grant flows:

•  Client credentials grant flow

•  Authorization code grant flow

•  Calling protected APIs using the access tokens acquired from the grant flows

•  Using the user info endpoint to get more information about a user

Let us go through each of them in the following sections. 

Setting up and configuring an account in Auth0

Most of the configuration required in Auth0 will be taken care of by a script that uses Auth0’s management API. But we must perform a few manual steps up to the point where Auth0 has 

created a client ID and client secret we can use to access the management API. Auth0’s service is multi-tenant, allowing us to create our own domain of OAuth objects in terms of clients, resource owners, and resource servers. 

Perform the following manual steps to sign up for a free account in Auth0 and create a client that we can use to access the management API:

1. Open the https://auth0.com URL in your browser. 

340

 Securing Access to APIs

2.  Click on the Sign up button:

a.  Sign up with an email of your choice. 

b.  Select the coding role by selecting the box named Yes,  Coding. 

c.  Select the I need advanced settings checkbox to select the region and name of 

your tenant. 

d.  Click on the Next button. 

e.  Select the Region and enter the name of the new Tenant Domain – in my case, dev-ml-1.eu.auth0.com. Click on the Create Account button. 

f.  Look in your mailbox for an email with the subject Verify Your email and use the instructions in the email to verify your account. 

3.  Following sign-up, you will be directed to an onboarding page. 

4.  In the menu to the left, click on Applications to get it expanded, then click on APIs to find the management API, Auth0 Management API. This API was created for you during the creation of your tenant. We will use this API to create the required definitions in the tenant. 

5.  Click on Auth0 Management API and select the Test tab. 

6.  A big button with the text Create & Authorize Test Application will appear. Click on it to get a client created that can be used to access the management API. 

7.  Once created, a page is displayed with the header Asking Auth0 for tokens from my 

application. As a final step, we need to give the created client permission to use the management APIs. 

8.  Click on the Machine to Machine Applications tab, next to the Test tab. 

9.  Here, we will find the test client, Auth0 Management API (Test Application), and we can see that it is authorized to use the management API. If we click on the down arrow 

next to the Authorized toggle button, a large number of available privileges are revealed. 

[image: Image 173]

 Chapter 11

341

10.  Click on the All choice and then on the Update button. The screen should look similar to the following screenshot:

 Figure 11.17: Auth0 management API client permissions

11.  Click on the Continue button after understanding that you now have a very powerful client with access to all management APIs within your tenant. 

[image: Image 174]

342

 Securing Access to APIs

12.  Now, we just need to collect the client ID and client secret of the created client. The easiest way to do that is to select Applications in the menu to the left (under the main menu choice, Applications) and then select the application named Auth0 Management API 

(Test Application).  A screen similar to the following should be displayed:

 Figure 11.18: Auth0 Management API client application information

13.  Open the $BOOK_HOME/Chapter11/auth0/env.bash file and copy the following values 

from the preceding screen:

a. Domain into the value of the TENANT variable

b. Client ID into the value of the MGM_CLIENT_ID variable

c. Client Secret into the value of the MGM_CLIENT_SECRET variable

14.  Complete the values required in the env.bash  file by specifying an email address and 

password, in the USER_EMAIL and USER_PASSWORD variables, of a test user that the script 

will create for us. 

[image: Image 175]

 Chapter 11

343

Specifying a password for a user like this is not considered best practice from 

a security perspective. Auth0 supports enrolling users who will be able to 

set the password themselves, but it is more involved to set up. For more 

information, see https://auth0.com/docs/connections/database/

password-change.  Since this is only used for test purposes, specifying a password like this is OK. 

15.  We can now run the script that will create the following definitions for us:

•  Two applications, reader and writer, or clients in OAuth terminology

•  The product-composite API, a resource server in OAuth terminology, with the 

OAuth scopes product:read and product:write

•  A user, a resource owner in OAuth terminology, that we will use to test the autho-

rization code grant flow

•  Finally, we will grant the reader application the product:read scope, and the 

writer application the product:read and product:write scopes

16.  Run the following commands: 

cd $BOOK_HOME/Chapter11/auth0 

./setup-tenant.bash

17.  Expect the following output (details removed from the following output):

 Figure 11.19: Output from setup-tenant.bash the first time it is executed

[image: Image 176]

344

 Securing Access to APIs

18.  Save a copy of the export commands printed at the end of the output; we will use them 

multiple times later on in this chapter. 

19.  Look in your mailbox for the email specified for the test user. You will receive a mail with the subject Verify your email. Use the instructions in the email to verify the test user’s email address. 

20.  Note that the script is idempotent, meaning it can be run multiple times without corrupting the configuration. If running the script again, it should respond with the following:

 Figure 11.20: Output from setup-tenant.bash the next time it is executed

21.  It can be very handy to be able to run the script again – for example, to get access to the client ID and client secret of the reader and writer. 

If you need to remove the objects created by setup-tenant.bash, you can run the 

reset-tenant.bash script. 

With an Auth0 account created and configured, we can move on and apply the necessary config-

uration changes in the system landscape. 

Applying the required changes to use Auth0 as an OpenID 

provider

In this section, we will learn what configuration changes are required to be able to replace the local authorization server with Auth0. We only need to change the configuration for the two services that act as OAuth resource servers, the product-composite and gateway services. 

 Chapter 11

345

We also need to change our test script a bit, so that it acquires the access tokens from Auth0 instead of acquiring them from our local authorization server. Let’s start with the OAuth resource servers, the product-composite and gateway services. 

The changes described in this topic have not been applied to the source code in the 

book’s Git repository; you need to make them yourself to see them in action! 

Changing the configuration in the OAuth resource servers

As already described, when using an OpenID Connect provider, we only have to configure the 

base URI to the standardized discovery endpoint in the OAuth resource servers. 

In the product-composite and gateway projects, update the OIDC discovery endpoint to point to Auth0 instead of to our local authorization server. Make the following change to the application. 

yml file in both projects:

1.  Locate the spring.security.oauth2.resourceserver.jwt.issuer-uri property. 

2.  Replace its value with https://${TENANT}/, where ${TENANT} should be replaced with 

your tenant domain name; in my case, it is dev-ml-1.eu.auth0.com. Do not forget the 

trailing /! 

In my case, the configuration of the OIDC discovery endpoint will look like this:

spring.security.oauth2.resourceserver.jwt.issuer-uri: https://dev-ml-1. 

eu.auth0.com/

If you are curious, you can see what’s in the discovery document by running the 

following command:

curl https://${TENANT}/.well-known/openid-configuration -s | 

jq 

Rebuild the product-composite and gateway services as follows:

cd $BOOK_HOME/Chapter11

./gradlew build && docker compose up -d --build product-composite gateway

With the product-composite and gateway services updated, we can move on and also update 

the test script. 

346

 Securing Access to APIs

Changing the test script so it acquires access tokens from 

Auth0

We also need to update the test script so it acquires access tokens from the Auth0 OIDC provider. 

This is done by performing the following changes in test-em-all.bash:

1.  Find the following command:

ACCESS_TOKEN=$(curl -k https://writer:secret-writer@$HOST:$PORT/

oauth2/token -d grant_type=client_credentials -d scope="product:read 

product:write" -s | jq .access_token -r)

2.  Replace it with these commands:

export TENANT=... 

export WRITER_CLIENT_ID=... 

export WRITER_CLIENT_SECRET=... 

ACCESS_TOKEN=$(curl -X POST https://$TENANT/oauth/token \

-d grant_type=client_credentials \

-d audience=https://localhost:8443/product-composite \

-d scope=product:read+product:write \

-d client_id=$WRITER_CLIENT_ID \

-d client_secret=$WRITER_CLIENT_SECRET -s | jq -r .access_token)

Note from the preceding command that Auth0 requires us to specify the 

intended audience of the requested access token, as an extra layer of secu-

rity. The audience is the API we plan to call using the access token. Given 

that an API implementation verifies the audience field, this would prevent 

the situation where someone tries to use an access token issued for another 

purpose to get access to an API. 

3.  Set the values for the TENANT, WRITER_CLIENT_ID, and WRITER_CLIENT_SECRET environ-

ment variables in the preceding commands with the values returned by the setup-tenant. 

bash script. 

As mentioned previously, you can run the script again to acquire these values 

without risking any negative side effects! 

 Chapter 11

347

4.  Next, find the following command:

READER_ACCESS_TOKEN=$(curl -k https://reader:secret-

reader@$HOST:$PORT/oauth2/token -d grant_type=client_credentials -d 

scope="product:read" -s | jq .access_token -r)

5.  Replace it with this command:

export READER_CLIENT_ID=... 

export READER_CLIENT_SECRET=... 

READER_ACCESS_TOKEN=$(curl -X POST https://$TENANT/oauth/token \

-d grant_type=client_credentials \

-d audience=https://localhost:8443/product-composite \

-d scope=product:read \

-d client_id=$READER_CLIENT_ID \

-d client_secret=$READER_CLIENT_SECRET -s | jq -r .access_token)

Note that we only request the product:read scope and not the 

product:write scope here. 

6.  Set the values for the READER_CLIENT_ID and READER_CLIENT_SECRET environment vari-

ables in the preceding commands with the values returned by the setup-tenant.bash 

script. 

Now the access tokens are issued by Auth0 instead of our local authorization server, and our API implementations can verify the access tokens using information from Auth0’s discovery service configured in the application.yml files. The API implementations can, as before, use the scopes in the access tokens to authorize the client to perform the call to the API, or not. 

With this, we have all the required changes in place. Let’s run some tests to verify that we can acquire access tokens from Auth0. 

Running the test script with Auth0 as the OpenID Connect 

provider

Now, we are ready to give Auth0 a try! 

Run the usual tests, but this time, using Auth0 as the OpenID Connect provider, with the following command:

./test-em-all.bash

[image: Image 177]

[image: Image 178]

348

 Securing Access to APIs

In the logs, you will be able to find authorization information from the access tokens issued by Auth0. Run this command:

docker compose logs product-composite | grep "Authorization info" 

Expect the following outputs from the command:

1.  From calls using an access token with both the product:read and product:write scopes, 

we will see both scopes listed as follows:

 Figure 11.21: Authorization information for the writer client from Auth0 in the log 

 output

2.  From calls using an access token with only the product:read scope, we will see that only that scope is listed as follows:

 Figure 11.22: Authorization information for the reader client from Auth0 in the log 

 output

As we can see from the log output, we now also get information regarding the intend-

ed audience for this access token. To strengthen security, we could add a test to our service that verifies that its URL, https://localhost:8443/product-composite 

in this case, is part of the audience list. This would, as mentioned earlier, prevent 

the situation where someone tries to use an access token issued for another purpose 

than to get access to our API. 

 Chapter 11

349

With the automated tests working together with Auth0, we can move on and learn how to ac-

quire access tokens using the different types of grant flow. Let’s start with the client credentials grant flow. 

Acquiring access tokens using the client credentials grant 

flow

If you want to acquire an access token from Auth0 yourself, you can do so by running the following command, using the client credentials grant flow:

export TENANT=... 

export WRITER_CLIENT_ID=... 

export WRITER_CLIENT_SECRET=... 

curl -X POST https://$TENANT/oauth/token \

-d grant_type=client_credentials \

-d audience=https://localhost:8443/product-composite \

-d scope=product:read+product:write \

-d client_id=$WRITER_CLIENT_ID \

-d client_secret=$WRITER_CLIENT_SECRET

Set the values for the TENANT, WRITER_CLIENT_ID, and WRITER_CLIENT_SECRET environment 

variables in the preceding commands with the values returned by the setup-tenant.bash script. 

Following the instructions in the  Calling protected APIs using access tokens section, you should be able to call the APIs using the acquired access token. 

Acquiring access tokens using the authorization code grant 

flow

In this section, we will learn how to acquire an access token from Auth0 using the authorization code grant flow. As already described, we first need to acquire an authorization code using a web browser. Next, we can use server-side code to exchange the authorization code for an access token. 

Perform the following steps to execute the authorization code grant flow with Auth0:

1.  To get an authorization code for the default app client, use the following URL in the web browser:

https://${TENANT}/authorize?audience=https://localhost:8443/product-

composite&scope=openid email product:read product:write&response_

type=code&client_id=${WRITER_CLIENT_ID}&redirect_uri=https://my.redirect. 

uri&state=845361. 

[image: Image 179]

350

 Securing Access to APIs

2.  Replace ${TENANT} and ${WRITER_CLIENT_ID} in the preceding URL with the tenant do-

main name and writer client ID returned by the setup-tenant.bash script. 

3.  Auth0 should present the following login screen:

 Figure 11.23: Authorization code grant flow with Auth0, the login screen

[image: Image 180]

 Chapter 11

351

4.  Following a successful login, Auth0 will ask you to give the client application your consent: Figure 11.24: Authorization code grant flow with Auth0, the consent screen

[image: Image 181]

352

 Securing Access to APIs

5.  The authorization code is now in the URL in the browser, just like when we tried out the authorization code grant flow with our local authorization server:

 Figure 11.25: Authorization code grant flow with Auth0, access token

6.  Extract the code and run the following command to get the access token:

CODE=... 

export TENANT=... 

export WRITER_CLIENT_ID=... 

export WRITER_CLIENT_SECRET=... 

curl -X POST https://$TENANT/oauth/token \

-d grant_type=authorization_code \

-d client_id=$WRITER_CLIENT_ID \

-d client_secret=$WRITER_CLIENT_SECRET  \

-d code=$CODE \

-d redirect_uri=https://my.redirect.uri -s | jq . 

 Chapter 11

353

7.  Set the values for the TENANT, WRITER_CLIENT_ID, and WRITER_CLIENT_SECRET environ-

ment variables in the preceding commands to the values returned by the setup-tenant. 

bash script. 

Now that we have learned how to acquire access tokens using both grant flows, we are ready to try calling the external API using an access token acquired from Auth0 in the next section. 

Calling protected APIs using the Auth0 access tokens

We can use access tokens issued by Auth0 to call our APIs, just like when we used access tokens issued by our local authorization server. 

For a read-only API, execute the following command:

ACCESS_TOKEN=... 

curl https://localhost:8443/product-composite/1 -k -H "Authorization: 

Bearer $ACCESS_TOKEN" -i

For an updating API, execute the following command:

ACCESS_TOKEN=... 

curl https://localhost:8443/product-composite/999 -k -H "Authorization: 

Bearer $ACCESS_TOKEN" -X DELETE -i

Since we have requested both scopes, product:read and product:write, both the preceding 

API calls are expected to return 200 OK. 

Getting extra information about the user

From the log output in  Figures 11.21  and  11.22  in the  Running the test script with Auth0 as the OpenID 

 Connect provider section, we could not see any information about the user that initiated the API request. If you want your API implementation to know a bit more about the user, it can call Auth0’s userinfo_endpoint. The URL of the userinfo endpoint can be found in the response of a request to the OIDC discovery endpoint, as described in the  Changing the configuration in the OAuth resource servers  section. To get user info related to an access token, make the following request: Export TENANT=... 

curl -H "Authorization: Bearer $ACCESS_TOKEN" https://$TENANT/userinfo -s 

| jq

Set the values for the TENANT  environment variable in the preceding commands to the values 

returned by the setup-tenant.bash script. 

[image: Image 182]

354

 Securing Access to APIs

Note that this command only applies to access tokens issued using the authorization code grant flow. Access tokens issued using the client credentials grant flow don’t contain any user information and will result in an error response if tried. 

A sample response is as follows:

 Figure 11.26: Requesting extra user information from Auth0

This endpoint can also be used to verify that the user hasn’t revoked the access token in Auth0. 

Wrap up the tests by shutting down the system landscape with the following command:

docker compose down

This concludes the section, where we have learned how to replace the local OAuth 2.0 authorization server with an external alternative. We have also seen how to reconfigure the microservice landscape to validate access tokens using an external OIDC provider. 

Summary

In this chapter, we learned how to use Spring Security to protect our APIs. 

We saw how easy it is to enable HTTPS to prevent eavesdropping by third parties using Spring Security. With Spring Security, we also learned that it is straightforward to restrict access to the discovery server, Netflix Eureka, using HTTP Basic authentication. Finally, we saw how we can use Spring Security to simplify the use of OAuth 2.0 and OpenID Connect to allow third-party client applications to access our APIs in the name of a user, but without requiring that the user share credentials with the client applications. We learned both how to set up a local OAuth 2.0 

authorization server based on Spring Security and also how to change the configuration so that an external OpenID Connect provider, Auth0, can be used instead. 

[image: Image 183]

 Chapter 11

355

One concern, however, is how to manage the configuration required. Each microservice instance must be provided with its own configuration, making it hard to get a good overview of the current configuration. Updating configuration that concerns multiple microservices will also be challenging. Added to the scattered configuration is the fact that some of the configurations we have seen so far contain sensitive information, such as credentials or certificates. It seems like we need a better way to handle the configuration for a number of cooperating microservices and also a solution for how to handle sensitive parts of the configuration. 

In the next chapter, we will explore Spring Cloud Config Server and see how it can be used to handle these types of problems. 

Questions

1.  What are the benefits and shortcomings of using self-signed certificates? 

2.  What is the purpose of OAuth 2.0 authorization codes? 

3.  What is the purpose of OAuth 2.0 scopes? 

4.  What does it mean when a token is a JWT? 

5.  How can we trust the information that is stored in a JWT? 

6.  Is it suitable to use the OAuth 2.0 authorization code grant flow with a native mobile app? 

7.  What does OpenID Connect add to OAuth 2.0? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 


12

Centralized Configuration

In this chapter, we will learn how to use Spring Cloud Config Server to centralize managing the configuration of our microservices. As already described in  Chapter 1,   Introduction to Microservices, an increased number of microservices typically comes with an increased number of configuration files that need to be managed and updated. 

With Spring Cloud Config Server, we can place the configuration files for all our microservices in a central configuration repository, which will make it much easier to handle them. Our microservices will be updated to retrieve their configuration from the configuration server at startup. 

The following topics will be covered in this chapter:

•  Introduction to Spring Cloud Config Server

•  Setting up a config server

•  Configuring clients of a config server

•  Structuring the configuration repository

•  Trying out Spring Cloud Config Server

Technical requirements

For instructions on how to install tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter12. 

[image: Image 184]

[image: Image 185]

[image: Image 186]

[image: Image 187]

358

 Centralized Configuration

If you want to view the changes applied to the source code in this chapter, that is, see what it took to add a configuration server to the microservice landscape, you can compare it with the source code for  Chapter 11,  Securing Access to APIs. You can use your favorite diff tool and compare the two folders $BOOK_HOME/Chapter11 and $BOOK_HOME/Chapter12. 

Introduction to Spring Cloud Config Server

Spring Cloud Config Server (shortened to config server) will be added to the existing microservice landscape behind the edge server, in the same way as for the other microservices:

 Figure 12.1: Adding a config server to the system landscape

Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy. 

The next-gen Packt Reader and a free PDF/ePub copy of this book are included 

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure 

you get the right one. 

 Chapter 12

359

When it comes to setting up a config server, there are a number of options to consider:

•  Selecting a storage type for the configuration repository

•  Deciding on the initial client connection, either to the config server or to the discovery server

•  Securing the configuration, both against unauthorized access to the API and by avoiding 

storing sensitive information in plain text in the configuration repository

Let’s go through each option one by one and also introduce the API exposed by the config server. 

Selecting the storage type of the configuration repository

As already described in  Chapter 8,   Introduction to Spring Cloud, the config server supports the storing of configuration files in a number of different backends. Here are some examples:

•  Git repository

•  Local filesystem

•  HashiCorp Vault

•  JDBC database

In this chapter, we will use a local filesystem. To use the local filesystem, the config server needs to be launched with the Spring profile, native, enabled. The location of the configuration repository is specified using the spring.cloud.config.server.native.searchLocations property. 

Using the local filesystem is easy to set up and therefore preferable in a develop-

ment environment. In a product environment, a more secure alternative should 

be used – for example, HashiCorp Vault. For an introduction on how to get started 

with HashiCorp Vault, see https://docs.spring.io/spring-cloud-config/

reference/server/environment-repository/vault-backend.html. 

Deciding on the initial client connection

By default, a client connects first to the config server to retrieve its configuration. Based on the configuration, it connects to the discovery server (Netflix Eureka in our case) to register itself. It is also possible to do this the other way around, that is, the client first connects to the discovery server to find a config server instance and then connects to the config server to get its configuration. There are pros and cons to both approaches. 

360

 Centralized Configuration

In this chapter, the clients will first connect to the config server. With this approach, it will be possible to store the configuration of the discovery server in the config server. 

To learn more about the other alternative, see https://docs.spring.io/spring-cloud-config/

docs/current/reference/html/#discovery-first-bootstrap. 

One concern with connecting to the config server first is that the config server can 

become a single point of failure. If the clients connect first to a discovery server, such 

as Netflix Eureka, there can be multiple config server instances registered so that a 

single point of failure can be avoided. When we learn about the Service concept in 

Kubernetes later on in this book, starting with  Chapter 15,  Introduction to Kubernetes, we will see how we can avoid a single point of failure by running multiple containers 

– for example, config servers, behind each Kubernetes Service. 

Securing the configuration

Configuration information will, in general, be handled as sensitive information. This means 

that we need to secure the configuration information both in transit and at rest. From a runtime perspective, the config server does not need to be exposed to the outside through the edge server. During development, however, it is useful to be able to access the API of the config server to check the configuration. In production environments, it is recommended to lock down external access to the config server. 

Securing the configuration in transit

When the configuration information is asked for by a microservice, or anyone using the API of the config server, it will be protected against eavesdropping by the edge server since it already uses HTTPS. 

To ensure that the API user is a known client, we will use HTTP Basic authentication. We can set up HTTP Basic authentication by using Spring Security in the config server and specifying the SPRING_SECURITY_USER_NAME and SPRING_SECURITY_USER_PASSWORD  environment variables, 

with the permitted credentials. 

Securing the configuration at rest

To avoid a situation where someone with access to the configuration repository can steal sensitive information, such as passwords, the config server supports the encryption of configuration information when stored on disk. The config server supports the use of both symmetric and 

asymmetric keys. Asymmetric keys are more secure but harder to manage. 

 Chapter 12

361

In this chapter, we will use a symmetric key. The symmetric key is given to the config server at startup by specifying an environment variable, ENCRYPT_KEY. The encrypted key is just a plain text string that needs to be protected in the same way as any sensitive information. 

To learn more about the use of asymmetric keys, see https://docs.spring.io/spring-cloud-

config/docs/current/reference/html/#_key_management. 

Introducing the config server API

The config server exposes a REST API that can be used by its clients to retrieve their configuration. 

In this chapter, we will use the following endpoints in the API:

•  /actuator: The standard actuator endpoint exposed by all microservices. As always, these 

should be used with care. They are very useful during development but must be locked 

down before being used in production. 

•  /encrypt and /decrypt: Endpoints for encrypting and decrypting sensitive information. 

These must also be locked down before being used in production. 

•  /{microservice}/{profile}: Returns the configuration for the specified microservice 

and the specified Spring profile. 

We will see some sample uses for the API when we try out the config server. 

Setting up a config server

Setting up a config server on the basis of the decisions discussed is straightforward:

1.  Create a Spring Boot project using Spring Initializr, as described in  Chapter 3,  Creating a Set of Cooperating Microservices. Refer to the  Using Spring Initializr to generate skeleton code section. 

2.  Add the dependencies, spring-cloud-config-server and spring-boot-starter-

security, to the Gradle build file, build.gradle. 

3.  Add the @EnableConfigServer annotation to the application class, 

ConfigServerApplication:

@EnableConfigServer

@SpringBootApplication

public class ConfigServerApplication {

362

 Centralized Configuration

4.  Add the configuration for the config server to the default property file, application.yml: server.port: 8888

spring.cloud.config.server.native.searchLocations: file:${PWD}/

config-repo

management.endpoint.health.show-details: "ALWAYS" 

management.endpoints.web.exposure.include: "*" 

logging:

level:

root: info

---

spring.config.activate.on-profile: docker

spring.cloud.config.server.native.searchLocations: file:/config-repo

The most important configuration is to specify where to find the configuration repository, 

indicated using the spring.cloud.config.server.native.searchLocations property. 

5.  Add a routing rule to the edge server to make the API of the config server accessible from outside the microservice landscape. 

6.  Add a Dockerfile and a definition of the config server to the three Docker Compose files. 

7.  Externalize sensitive configuration parameters to the standard Docker Compose envi-

ronment file, .env. The parameters are described in the  Configuring the config server for use with Docker section. 

8.  Add the config server to the common build file, settings.gradle:

include ':spring-cloud:config-server' 

The source code for ] Spring Cloud Config Server can be found in $BOOK_HOME/Chapter12/spring-cloud/config-server. 

Now, let’s look into how to set up the routing rule referred to in  step 5 and how to configure the config server added in Docker Compose, as described in  steps 6 and  7. 

 Chapter 12

363

Setting up a routing rule in the edge server

To be able to access the API of the config server from outside the microservice landscape, we add a routing rule to the edge server. All requests to the edge server that begin with /config will be routed to the config server with the following routing rule:

- id: config-server

uri: ${spring.cloud.config.uri}

predicates:

- Path=/config/**

filters:

- RewritePath=/config/(?<segment>.*), /$\{segment}

The RewritePath filter in the routing rule will remove the leading part, /config, from the incoming URL before it sends it to the config server. 

The edge server is also configured to permit all requests to the config server, delegating the security checks to the config server. The following line is added to the SecurityConfig class in the edge server:

.pathMatchers("/config/**").permitAll()

With this routing rule in place, we can use the API of the config server; for example, run the following command to ask for the configuration of the product service when it uses the docker Spring profile:

curl https://dev-usr:dev-pwd@localhost:8443/config/product/docker -ks | jq

We will run this command when we try out the config server later on. 

Configuring the config server for use with Docker

The Dockerfile of the config server looks the same as for the other microservices, except for the fact that it exposes port 8888 instead of port 8080. 

When it comes to adding the config server to the Docker Compose files, it looks a bit different from what we have seen for the other microservices:

config-server:

build: spring-cloud/config-server

mem_limit: 512m

environment:

- SPRING_PROFILES_ACTIVE=docker,native

364

 Centralized Configuration

- ENCRYPT_KEY=${CONFIG_SERVER_ENCRYPT_KEY}

- SPRING_SECURITY_USER_NAME=${CONFIG_SERVER_USR}

- SPRING_SECURITY_USER_PASSWORD=${CONFIG_SERVER_PWD}

volumes:

- $PWD/config-repo:/config-repo

Here are the explanations for the preceding source code:

1.  The Spring profile, native, is added to signal to the config server that the config repository is based on local files. 

2.  The ENCRYPT_KEY environment variable is used to specify the symmetric encryption key 

that will be used by the config server to encrypt and decrypt sensitive configuration in-

formation. 

3.  The SPRING_SECURITY_USER_NAME and SPRING_SECURITY_USER_PASSWORD environment 

variables are used to specify the credentials to be used for protecting the APIs using basic HTTP authentication. 

4.  The volumes declaration will make the config-repo folder accessible in the Docker con-

tainer at /config-repo. 

The values of the three preceding environment variables, marked in the Docker Compose file with ${...}, are fetched by Docker Compose from the .env file:

CONFIG_SERVER_ENCRYPT_KEY=my-very-secure-encrypt-key

CONFIG_SERVER_USR=dev-usr

CONFIG_SERVER_PWD=dev-pwd

The information stored in the .env file, that is, the username, password, and 

encryption key, is sensitive and must be protected if used for something other 

than development and testing. Also, note that losing the encryption key will 

lead to a situation where the encrypted information in the config repository 

cannot be decrypted! 

Configuring clients of a config server

To be able to get their configurations from the config server, our microservices need to be updated. The microservices will use Spring’s retry mechanism to reconnect to a config server. This is especially useful when the whole landscape of microservices and its config server are started simultaneously – for example, when using the docker compose up command. 

 Chapter 12

365

In this scenario, many of the clients will be trying to connect to the config server before it is ready, and the retry logic will make the clients connect to the config server successfully once it is up and running. 

Initially, Spring Cloud Config provided a bootstrap mechanism for clients to connect 

to the server. Starting with Spring Boot 2.4, configuration data can be imported using 

the spring.config.import property. This has become the default approach for 

connecting to Spring Cloud Config Server. 

However, in scenarios where we need to define multiple config server URLs and 

enable retries for each, using the spring.config.import property does not work. 

Instead, we must use the older bootstrap mechanism. This is enabled by adding the 

spring-cloud-starter-bootstrap dependency. 

The bootstrap method for connecting to Spring Cloud Config Server remains fully 

supported, with no current plans for deprecation. For more details, see https://

github.com/spring-cloud/spring-cloud-config/issues/2244#issuecomm 

ent-1497695548. 

This can be done with the following steps:

1.  Add the spring-cloud-starter-config,spring-cloud-starter-bootstrap, and 

spring-retry dependencies to the Gradle build file, build.gradle. 

2.  Move the configuration file, application.yml, to the config repository and rename it with the name of the client as specified by the spring.application.name property. 

3.  Add a new bootstrap.yml file to the src/main/resources folder. This file will be used 

to hold the configuration required to connect to the config server. Refer to the following 

 Configuring connection information section for an explanation of its content. 

4.  Add credentials for accessing the config server to the Docker Compose files – for example, the product service:

product:

environment:

- CONFIG_SERVER_USR=${CONFIG_SERVER_USR}

- CONFIG_SERVER_PWD=${CONFIG_SERVER_PWD}

366

 Centralized Configuration

5.  Disable the use of the config server when running Spring Boot-based automated tests. 

This is done by adding spring.cloud.config.enabled=false to the @DataMongoTest, @

DataJpaTest, and @SpringBootTest annotations. They look like this:

@DataMongoTest(properties = {"spring.cloud.config.enabled=false"})

@DataJpaTest(properties = {"spring.cloud.config.enabled=false"})

@SpringBootTest(webEnvironment=RANDOM_PORT, 

properties = {"eureka.client.enabled=false", 

"spring.cloud.config.enabled=false"})

Configuring connection information

As mentioned previously, the src/main/resources/bootstrap.yml file now holds the client 

configuration that is required to connect to the config server. This file has the same content for all clients of the config server, except for the application name as specified by the spring. 

application.name property (in the following example, set to product):

spring.application.name: product

spring.cloud.config:

failFast: true

retry:

initialInterval: 3000

multiplier: 1.3

maxInterval: 10000

maxAttempts: 20

uri: http://localhost:8888

username: ${CONFIG_SERVER_USR}

password: ${CONFIG_SERVER_PWD}

---

spring.config.activate.on-profile: docker

spring.cloud.config.uri: http://config-server:8888

This configuration will make the client do the following:

1.  Connect to the config server using the http://localhost:8888 URL when it runs out-

side Docker, and using the http://config-server:8888 URL when running in a Docker 

container. 

 Chapter 12

367

2.  Use HTTP Basic authentication, based on the value of the CONFIG_SERVER_USR and CONFIG_

SERVER_PWD properties, as the client’s username and password. 

3.  Try to reconnect to the config server during startup up to 20 times, if required. 

4.  If the connection attempt fails, the client will initially wait for 3 seconds before trying to reconnect. 

5.  The wait time for subsequent retries will increase by a factor of 1.3. 

6.  The maximum wait time between connection attempts will be 10 seconds. 

7.  If the client can’t connect to the config server after 20 attempts, its startup will fail. 

This configuration is generally good for resilience against temporary connectivity problems with the config server – for example, when the whole landscape of microservices and its config server is started at once, as described. 

Structuring the configuration repository

After moving the configuration files from each client’s source code to the configuration repository, we will have some common configuration in many of the configuration files – for example, for the configuration of actuator endpoints and how to connect to Eureka, RabbitMQ, and Kafka. The 

common parts have been placed in a common configuration file named application.yml. This 

file is shared by all clients. The configuration repository contains the following files:

config-repo/

├── application.yml

├── auth-server.yml

├── eureka-server.yml

├── gateway.yml

├── product-composite.yml

├── product.yml

├── recommendation.yml

└── review.yml

The configuration repository can be found in $BOOK_HOME/Chapter12/config-repo. 

Trying out Spring Cloud Config Server

Now it is time to try out the config server:

1.  First, we will build from source and run the test script to ensure that everything fits together. 

368

 Centralized Configuration

2.  Next, we will try out the config server API to retrieve the configuration for our microservices. 

3.  Finally, we will see how we can encrypt and decrypt sensitive information – for example, passwords. 

Building and running automated tests

So, now we’ll build and run verification tests of the system landscape, as follows:

1.  First, build the Docker images with the following commands:

cd $BOOK_HOME/Chapter12

./gradlew build && docker compose build

2.  Next, start the system landscape in Docker and run the usual tests with the following 

command:

./test-em-all.bash start

Getting the configuration using the config server API

As described previously, we can reach the API of the config server through the edge server by using the URL prefix, /config. We also have to supply credentials as specified in the .env file for HTTP Basic authentication. For example, to retrieve the configuration used for the product service when it runs as a Docker container, that is, having activated the docker Spring profile, run the following command:

curl https://dev-usr:dev-pwd@localhost:8443/config/product/docker -ks | jq

Expect a response with the following structure (many of the properties in the response are replaced by ... to increase readability):

{

"name": "product", 

"profiles": [

"docker" 

], 

... 

"propertySources": [

{

"name": "...file [/config-repo/product.yml]...", 

"source": {

"spring.config.activate.on-profile": "docker", 

 Chapter 12

369

"server.port": 8080, 

... 

}

}, 

{

"name": "...file [/config-repo/product.yml]...", 

"source": {

"server.port": 7002, 

... 

}

}, 

{

"name": "...file [/config-repo/application.yml]...", 

"source": {

"spring.config.activate.on-profile": "docker", 

... 

}

}, 

{

"name": "...file [/config-repo/application.yml]...", 

"source": {

... 

"app.eureka-password": "p", 

"spring.rabbitmq.password": "guest" 

}

}

]

}

The explanations for this response are as follows:

•  The response contains properties from a number of property sources, one per property file and Spring profile that matched the API request. The property sources are returned 

in priority order; if a property is specified in multiple property sources, the first property in the response takes precedence. The preceding sample response contains the following 

property sources, in the following priority order:

•  /config-repo/product.yml, for the docker Spring profile

•  /config-repo/product.yml, for the default Spring profile

[image: Image 188]

370

 Centralized Configuration

•  /config-repo/application.yml, for the docker Spring profile

•  /config-repo/application.yml, for the default Spring profile

For example, the port used will be 8080 and not 7002, since "server.port": 8080 is specified before "server.port": 7002 in the preceding response. 

•  Sensitive information, such as the passwords to Eureka and RabbitMQ, are returned in 

plain text – for example, "p" and "guest", but they are encrypted on disk. In the configuration file, application.yml, they are specified as follows:

app:

eureka-password:

'{cipher}

bf298f6d5f878b342f9e44bec08cb9ac00b4ce57e98316f030194a225fac89fb' 

spring.rabbitmq:

password: '{cipher}17fcf0ae5b8c5cf87de6875b699be4a1746dd49 

3a99d926c7a26a68c422117ef' 

Encrypting and decrypting sensitive information

Information can be encrypted and decrypted using the /encrypt and /decrypt endpoints exposed by the config server. The /encrypt endpoint can be used to create encrypted values to be placed in the property file in the config repository. Refer to the example in the previous section, where the passwords to Eureka and RabbitMQ are stored encrypted on disk. The /decrypt endpoint can be used to verify encrypted information that is stored on disk in the config repository. 

1.  To encrypt the hello world string, run the following command:

curl -k https://dev-usr:dev-pwd@localhost:8443/config/encrypt 

--data-urlencode "hello world" 

It is important to use the --data-urlencode flag when using curl to call 

the /encrypt endpoint, to ensure the correct handling of special characters 

such as +. 

2.  Expect a response along the lines of the following:

 Figure 12.2: An encrypted value of a configuration parameter

[image: Image 189]

 Chapter 12

371

3.  To decrypt the encrypted value, run the following command:

curl -k https://dev-usr:dev-pwd@localhost:8443/config/decrypt -d 

d91001603dcdf3eb1392ccbd40ff201cdcf7b9af2fcaab3da39e37919033b206

4.  Expect the hello world string as the response:

 Figure 12.3: A decrypted value of a configuration parameter

5.  If you want to use an encrypted value in a configuration file, you need to prefix it with 

{cipher} and wrap it in ''. For example, to store the encrypted version of hello world, 

add the following line in a YAML-based configuration file:

my-secret: '{cipher}

d91001603dcdf3eb1392ccbd40ff201cdcf7b9af2fcaab3da39e37919033b206' 

6.  When the config server detects values in the format '{cipher}...', it tries to decrypt 

them using its encryption key before sending them to a client. 

7.  These tests conclude the chapter on centralized configuration. Wrap it up by shutting 

down the system landscape:

docker compose down

Summary

In this chapter, we saw how we can use Spring Cloud Config Server to centralize managing the configuration of our microservices. We can place the configuration files in a common configuration repository and share common configurations in a single configuration file while keeping microservice-specific configuration in microservice-specific configuration files. The microservices were updated to retrieve their configuration from the config server at startup and configured to handle temporary outages while retrieving their configuration from the config server. 

The config server can protect configuration information by requiring authenticated usage of its API with HTTP Basic authentication and can prevent eavesdropping by exposing its API externally through the edge server that uses HTTPS. To prevent intruders who obtained access to the configuration files on disk from gaining access to sensitive information such as passwords, we can use the config server /encrypt endpoint to encrypt the information and store it encrypted on disk. 

[image: Image 190]

372

 Centralized Configuration

While exposing the APIs from the config server externally is useful during development, they should be locked down before use in production. 

In the next chapter, we will learn how we can use Resilience4j to mitigate the potential drawbacks of overusing synchronous communication between microservices. 

Questions

1.  What API call can we expect from a review service to the config server during startup to retrieve its configuration? 

2.  The review service was started up using the following command: docker compose up -d. 

What configuration information should we expect back from an API call to the config 

server using the following command? 

curl https://dev-usr:dev-pwd@localhost:8443/config/application/

default -ks | jq

3.  What types of repository backend does Spring Cloud Config support? 

4.  How can we encrypt sensitive information on disk using Spring Cloud Config Server? 

5.  How can we protect the config server API from misuse? 

6.  Mention some pros and cons for clients that first connect to the config server as opposed to those that first connect to the discovery server. 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

13

Improving Resilience Using 

Resilience4j

In this chapter, we will learn how to use Resilience4j to make our microservices more resilient – 

that is, how to mitigate and recover from errors. As we already discussed in  Chapter 1,  Introduction to Microservices, in the  Circuit breaker section, and  Chapter 8,  Introduction to Spring Cloud, in the Using Resilience4j for improved resilience section, a circuit breaker can be used to minimize the damage that a slow or unresponsive downstream microservice can cause in a large-scale system landscape of synchronously communicating microservices. We will see how the circuit breaker 

in Resilience4j can be used together with a time limiter and retry mechanism to prevent two of the most common error situations:

•  Microservices that start to respond slowly or not at all

•  Requests that randomly fail from time to time, for example, due to temporary network 

problems

The following topics will be covered in this chapter:

•  Introducing the three Resilience4j mechanisms: circuit breaker, time limiter, and retry

•  Adding the mechanisms to the source code

•  Trying out the mechanisms when deployed in the system landscape

[image: Image 191]

374

 Improving Resilience Using Resilience4j

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter13. 

If you want to view the changes applied to the source code in this chapter – that is, see what it took to add resilience using Resilience4j – you can compare it with the source code for  Chapter 

 12,   Centralized Configuration. You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter12 and $BOOK_HOME/Chapter13. 

Introducing the Resilience4j resilience mechanisms

The circuit breaker, time limiter, and retry mechanisms are potentially useful in any synchronous communication between two software components, for example, microservices. In this chapter, 

we will apply these mechanisms in one place, in calls from the product-composite service to the product service. This is illustrated in the following figure:

 Figure 13.1: Adding resilience capabilities to the system landscape

Note that the synchronous calls to the discovery and config servers from the other microservices are not shown in the preceding diagram (to make it easier to read). 

[image: Image 192]

 Chapter 13

375

With the Spring Cloud Hoxton release in November 2019, the Spring Cloud Circuit 

Breaker project was added. It provides an abstraction layer for circuit breakers. Re-

silience4j can be configured to be used under the hood. This project does not provide 

other resilience mechanisms such as retries, time limiters, bulkheads, or rate limiters 

in an integrated way as the Resilience4j project does. For more information on the 

project, see https://spring.io/projects/spring-cloud-circuitbreaker. 

A number of other alternatives exist as well. For example, the Reactor project comes 

with built-in support for retries and timeouts; see Mono.retryWhen() and Mono. 

timeout(). Spring also has a retry mechanism (see https://github.com/spring-

projects/spring-retry and style), but it does not support a reactive programming model. 

However, none of the alternatives provide such a cohesive and well-integrated approach 

to providing a set of resilience mechanisms as Resilience4j does, specifically, in a Spring 

Boot environment, where dependencies, annotations, and configuration are used in an 

elegant and consistent way. Finally, it is worth noting that the Resilience4j annotations 

work independently of the programming style used, be it reactive or imperative. 

Introducing the circuit breaker

Let’s quickly revisit the state diagram for a circuit breaker from  Chapter 8 , Introduction to Spring Cloud, in the  Using Resilience4j for improved resilience section:

 Figure 13.2: Circuit breaker state diagram

376

 Improving Resilience Using Resilience4j

The key features of a circuit breaker are as follows:

•  If a circuit breaker detects too many faults, it will open its circuit – that is, not allow new calls. 

•  When the circuit is open, a circuit breaker will perform fail-fast logic. This means that it doesn’t wait for a new fault, for example, a timeout, to happen on subsequent calls. Instead, it directly redirects the call to a fallback method. The fallback method can apply various business logic to produce a best-effort response. For example, a fallback method 

can return data from a local cache or simply return an immediate error message. This will 

prevent a microservice from becoming unresponsive if the services it depends on stop 

responding normally. This is specifically useful under high load. 

•  After a while, the circuit breaker will be half-open, allowing new calls to see whether the issue that caused the failures is gone. If new failures are detected by the circuit breaker, it will open the circuit again and go back to the fail-fast logic. Otherwise, it will close the circuit and go back to normal operation. This makes a microservice resilient to faults, or 

self-healing – a capability that is indispensable in a system landscape of microservices 

that communicate synchronously with each other. 

Resilience4j exposes information about circuit breakers at runtime in a number of ways:

•  The current state of a circuit breaker can be monitored using the microservice’s actuator health endpoint, /actuator/health

•  The circuit breaker also publishes events on an actuator endpoint, for example, state 

transitions and /actuator/circuitbreakerevents

•  Finally, circuit breakers are integrated with Spring Boot’s metrics system, which can be 

used to publish metrics to monitoring tools such as Prometheus

We will try out the health and event endpoints in this chapter. In  Chapter 20, Monitoring  Microservices, we will see Prometheus in action and how it can collect metrics that are exposed by Spring Boot, for example, metrics from our circuit breaker. 

To control the logic in a circuit breaker, Resilience4j can be configured using standard Spring Boot configuration files. We will use the following configuration parameters:

•  slidingWindowType: To determine whether a circuit breaker needs to be opened, Resil-

ience4j uses a sliding window, counting the most recent events to make the decision. The 

sliding windows can either be based on a fixed number of calls or a fixed elapsed time. 

This parameter is used to configure what type of sliding window is used. We will use a 

count-based sliding window, setting this parameter to COUNT_BASED. 

 Chapter 13

377

•  slidingWindowSize: This is the number of calls in a closed state, which are used to determine whether the circuit should be opened. We will set this parameter to 5. 

•  failureRateThreshold: This is the threshold, in percent, for failed calls that will cause the circuit to be opened. We will set this parameter to 50%. This setting, together with 

slidingWindowSize set to 5, means that if three or more of the last five calls are faults, 

then the circuit will open. 

•  automaticTransitionFromOpenToHalfOpenEnabled: This determines whether the circuit 

breaker will automatically transition to the half-open state once the waiting period is over. 

Otherwise, it will wait for the first call after the waiting period is over until it transitions to the half-open state. We will set this parameter to true. 

• 

waitDurationInOpenState: This specifies how long the circuit stays in an open state – 

that is, before it transitions to the half-open state. We will set this parameter to 10000 

ms. This setting, together with enabling the automatic transition to the half-open state, 

set by the previous parameter, means that the circuit breaker will keep the circuit open 

for 10 seconds and then transition to the half-open state. 

•  permittedNumberOfCallsInHalfOpenState: This is the number of calls in the half-open 

state, which are used to determine whether the circuit will be opened again or go back to 

the normal, closed state. We will set this parameter to 3, meaning that the circuit breaker 

will decide whether the circuit will be opened or closed based on the first three calls af-

ter the circuit has transitioned to the half-open state. Since the failureRateThreshold 

parameters are set to 50%, the circuit will be open again if 2 or all 3 calls fail. Otherwise, the circuit will be closed. 

•  ignoreExceptions: This can be used to specify exceptions that should not be counted 

as faults. Expected business exceptions such as not found or invalid input are typical 

exceptions that the circuit breaker should ignore; users who search for non-existing data 

or enter invalid input should not cause the circuit to open. We will set this parameter to a list containing the NotFoundException and InvalidInputException exceptions. 

Finally, to configure Resilience4j to report the state of the circuit breaker in the actuator health endpoint in the correct way, the following parameters are set:


•  registerHealthIndicator = true enables Resilience4j to fill in the health endpoint with 

information regarding the state of its circuit breakers. 

378

 Improving Resilience Using Resilience4j

•  allowHealthIndicatorToFail = false tells Resilience4j not to affect the status of the 

health endpoint. This means that the health endpoint will still report "UP" even if one of the component’s circuit breakers is in an open or half-open state. It is very important 

that the health state of the component is not reported as "DOWN" just because one of its circuit breakers is not in a closed state. This means that the component is still considered to be OK, even though one of the components it depends on is not. 

This is actually the core value of a circuit breaker, so setting this value to true 

would more or less spoil the value of bringing in a circuit breaker. In earlier 

versions of Resilience4j, this was the behavior. In more recent versions, this 

has been corrected, and false is the default value for this parameter. How-

ever, since I consider it very important to understand the relation between 

the health state of the component and the state of its circuit breakers, I have 

added it to the configuration. 

•  Finally, we must also configure Spring Boot Actuator to add the circuit breaker health 

information that Resilience4j produces in the response to a request to its health endpoint:

management.health.circuitbreakers.enabled: true

For a full list of available configuration parameters, see https://resilience4j.readme.io/docs/

circuitbreaker#create-and-configure-a-circuitbreaker. 

Introducing the time limiter

To help a circuit breaker handle slow or unresponsive services, a timeout mechanism can be helpful. Resilience4j’s timeout mechanism, called a TimeLimiter, can be configured using standard Spring Boot configuration files. We will use the following configuration parameter:

•  timeoutDuration: This specifies how long a TimeLimiter instance waits for a call to 

complete before it throws a timeout exception. We will set it to 2s. 

Introducing the retry mechanism

The retry mechanism is very useful for random and infrequent faults, such as temporary network glitches. The retry mechanism can simply retry a failed request a number of times with a configurable delay between the attempts. One very important restriction on the use of the retry mechanism is that the services that it retries must be idempotent – that is, calling the service one or many times with the same request parameters gives the same result. 

 Chapter 13

379

For example, reading information is idempotent, but creating information is typically not. You don’t want a retry mechanism to accidentally create two orders just because the response from the first order’s creation got lost in the network. 

Resilience4j exposes retry information in the same way as it does for circuit breakers when it comes to events and metrics but does not provide any health information. Retry events are accessible on the actuator endpoint, /actuator/retryevents. To control the retry logic, Resilience4j can be configured using standard Spring Boot configuration files. We will use the following configuration parameters:

• 

maxAttempts: The number of attempts before giving up, including the first call. We will set 

this parameter to 3, allowing a maximum of two retry attempts after an initial failed call. 

• 

waitDuration: The wait time before the next retry attempt. We will set this value to 1000 

ms, meaning that we will wait 1 second between retries. 

•  retryExceptions: A list of exceptions that will trigger a retry. We will only trigger retries on InternalServerError exceptions – that is, when HTTP requests respond with a 500 

status code. 

Be careful when configuring retry and circuit breaker settings so that, for 

example, the circuit breaker doesn’t open the circuit before the intended 

number of retries has been completed! 

For a full list of available configuration parameters, see https://resilience4j.readme.io/docs/ 

retry#create-and-configure-retry. 

With this introduction, we are ready to see how to add these resilience mechanisms to the source code in the product-composite service. 

Adding the resilience mechanisms to the source code

Before we add the resilience mechanisms to the source code, we will add code that makes it possible to force an error to occur, as a delay and/or as a random fault. Next, we will add a circuit breaker together with a time limiter to handle slow or unresponsive APIs, as well as a retry mechanism that can handle faults that happen randomly. Adding these features from Resilience4j follows the Spring Boot way, which we have been using in the previous chapters:

•  Add a starter dependency on Resilience4j in the build file

•  Add annotations in the source code where the resilience mechanisms will be applied

•  Add a configuration that controls the behavior of the resilience mechanisms

380

 Improving Resilience Using Resilience4j

Handling resilience challenges is a responsibility of the integration layer; therefore, the resilience mechanisms will be placed in the ProductCompositeIntegration class. The source code in the 

business logic, implemented in the ProductCompositeServiceImpl class, will not be aware of 

the presence of the resilience mechanisms. 

Once we have the mechanisms in place, we will finally extend our test script, test-em-all.bash, with tests that automatically verify that the circuit breaker works as expected when deployed in the system landscape. 

Adding programmable delays and random errors

To be able to test our resilience mechanisms, we need a way to control when errors happen. A simple way to achieve this is by adding optional query parameters in the API used to retrieve a product and a composite product. 

The code and API parameters added in this section to force delays and errors to occur 

should only be used during development and tests, not in production. When we learn 

about the concept of a service mesh in  Chapter 18,  Using a Service Mesh to Improve Observability and Management, we will learn about better methods that can be used 

in production to introduce delays and errors in a controlled way. By using a service 

mesh, we can introduce delays and errors, typically used for verifying resilience 

capabilities, without affecting the source code of the microservices. 

The composite product API will simply pass on the parameters to the product API. The following query parameters have been added to the two APIs:

•  delay: Causes the getProduct API on the product microservice to delay its response. The 

parameter is specified in seconds. For example, if the parameter is set to 3, it will cause a delay of 3 seconds before the response is returned. 

•  faultPercentage: Causes the getProduct API on the product microservice to throw an 

exception randomly with the probability specified by the query parameter, from 0 to 

100%. For example, if the parameter is set to 25, it will cause every fourth call to the API, on average, to fail with an exception. It will return HTTP error 500 (Internal Server 

Error) in these cases. 

 Chapter 13

381

Changes in the API definitions

The two query parameters that we introduced previously, delay and faultPercentage, have 

been defined in the api project in the following two Java interfaces:

• 

ProductCompositeService:

Mono<ProductAggregate> getProduct(

@PathVariable int productId, 

@RequestParam(value = "delay", required = false, 

defaultValue ="0") int delay, 

@RequestParam(value = "faultPercent", required = false, 

defaultValue = "0") int faultPercent

); 

• 

ProductService:

Mono<Product> getProduct(

@PathVariable int productId, 

@RequestParam(value = "delay", required = false, 

defaultValue = "0") int delay, 

@RequestParam(value = "faultPercent", required = false, 

defaultValue = "0") int faultPercent

); 

The query parameters are declared optional with default values that disable the use of the error mechanisms. This means that if none of the query parameters are used in a request, neither a delay will be applied nor an error thrown. 

Changes in the product-composite microservice

The product-composite microservice simply passes the parameters to the product API. The 

service implementation receives the API request and passes on the parameters to the integration component that makes the call to the product API:

•  The call from the ProductCompositeServiceImpl class to the integration component 

looks like this:

public Mono<ProductAggregate> getProduct(int productId, 

int delay, int faultPercent) {

return Mono.zip(

... 

integration.getProduct(productId, delay, faultPercent), 

.... 

[image: Image 193]

[image: Image 194]

382

 Improving Resilience Using Resilience4j

•  The call from the ProductCompositeIntegration class to the product API looks like this:

public Mono<Product> getProduct(int productId, int delay, 

int faultPercent) {



URI url = UriComponentsBuilder.fromUriString(

PRODUCT_SERVICE_URL + "/product/{productId}?delay={delay}" 

+ "&faultPercent={faultPercent}")

.build(productId, delay, faultPercent); 

return webClient.get().uri(url).retrieve()... 

Changes in the product microservice

The product microservice implements the actual delay and random error generator in the 

ProductServiceImpl class by extending the existing stream used to read product information 

from the MongoDB database. It looks like this:

public Mono<Product> getProduct(int productId, int delay, 

int faultPercent) {

... 

return repository.findByProductId(prowductId)

.map(e -> throwErrorIfBadLuck(e, faultPercent))

.delayElement(Duration.ofSeconds(delay))

... 

}

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button (1) to quickly copy code into your coding environment, or click the Explain button (2) to get the AI assistant to explain a block of code to you. 

[image: Image 195]

[image: Image 196]

 Chapter 13

383

The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one. 

When  the  stream  returns  a  response  from  the  Spring  Data  repository,  it  first  applies  the throwErrorIfBadLuck method to see whether an exception needs to be thrown. Next, it applies 

a delay using the delayElement function in the Mono class. 

The random error generator, throwErrorIfBadLuck(), creates a random number between 1 and 

100 and throws an exception if it is higher than, or equal to, the specified fault percentage. If no exception is thrown, the product entity is passed on in the stream. The source code looks like this: private ProductEntity throwErrorIfBadLuck(

ProductEntity entity, int faultPercent) {

if (faultPercent == 0) {

return entity; 

}

int randomThreshold = getRandomNumber(1, 100); 

if (faultPercent < randomThreshold) {

LOG.debug("We got lucky, no error occurred, {} < {}", 

faultPercent, randomThreshold); 



} else {

LOG.info("Bad luck, an error occurred, {} >= {}", 

faultPercent, randomThreshold); 



throw new RuntimeException("Something went wrong..."); 

}

return entity; 

384

 Improving Resilience Using Resilience4j

}

private final Random randomNumberGenerator = new Random(); 

private int getRandomNumber(int min, int max) {

if (max < min) {

throw new IllegalArgumentException("Max must be greater than min"); 

}

return randomNumberGenerator.nextInt((max - min) + 1) + min; 

}

With the programmable delays and random error functions in place, we are ready to start adding resilience mechanisms to the code. We will start with the circuit breaker and the time limiter. 

Adding a circuit breaker and a time limiter

As we mentioned previously, we need to add dependencies, annotations, and configuration. We 

also need to add some code for implementing fallback logic for fail-fast scenarios. We will see how to do this in the following sections. 

Adding dependencies to the build file

To add a circuit breaker and a time limiter, we have to add dependencies to the appropriate Resilience4j libraries in the build file, build.gradle. From the product documentation (https://

resilience4j.readme.io/docs/getting-started-3#setup), we can learn that the following three dependencies need to be added. We will use the latest available version (v2.3.0, when this chapter was written):

ext {

resilience4jVersion = "2.3.0" 

}

dependencies {

implementation "io.github.resilience4j:resilience4j-spring-boot2:

${resilience4jVersion}" 

implementation "io.github.resilience4j:resilience4j-reactor:

${resilience4jVersion}" 

implementation 'org.springframework.boot:spring-boot-starter-aop' 

... 

 Chapter 13

385

To avoid Spring Cloud overriding the version used with the older version of Resilience4j that it bundles, we also import a resilience4j-bom (bill of materials) file, as described in the Spring Boot 3 demo project at https://github.com/resilience4j/resilience4j-spring-boot3-demo. We add this bom file to the existing bom file for Spring Cloud in the dependencyManagement section: dependencyManagement {

imports {

mavenBom "org.springframework.cloud:spring-cloud-dependencies:

${springCloudVersion}" 

mavenBom "io.github.resilience4j:resilience4j-bom:

${resilience4jVersion}" 

}

}

Adding annotations in the source code

The circuit breaker can be applied by annotating the method it is expected to protect 

with  @CircuitBreaker(...), which, in this case, is the getProduct() method in the 

ProductCompositeIntegration class. The circuit breaker is triggered by an exception, not by a timeout itself. To be able to trigger the circuit breaker after a timeout, we will add a time limiter that can be applied with the @TimeLimiter(...) annotation. The source code looks as follows:

@TimeLimiter(name = "product")

@CircuitBreaker( name = "product", 

fallbackMethod = "getProductFallbackValue")

public Mono<Product> getProduct(

int productId, int delay, int faultPercent) {

... 

}

The name of the circuit breaker and the time limiter annotation, "product", are used to identify the configuration that will be applied. The fallbackMethod parameter in the circuit breaker annotation is used to specify what fallback method to call (getProductFallbackValue, in this case) when the circuit breaker is open; we will provide information on how it is used shortly. 

386

 Improving Resilience Using Resilience4j

To activate the circuit breaker, the annotated method must be invoked as a Spring bean. In our case, it’s the integration class that’s injected by Spring into the service implementation class, ProductCompositeServiceImpl, and therefore used as a Spring bean:

private final ProductCompositeIntegration integration; 

public ProductCompositeServiceImpl(

ProductCompositeIntegration integration) {

this.integration = integration; 

}

public Mono<ProductAggregate> getProduct(int productId, int delay, 

int faultPercent) {

return Mono.zip(

..., 

integration.getProduct(productId, delay, faultPercent), 

... 

Adding fail-fast fallback logic

To be able to apply fallback logic when the circuit breaker is open – that is, when a request fails fast – we can specify a fallback method on the CircuitBreaker annotation, as seen in the previous source code. The method must follow the signature of the method the circuit breaker is applied for and also have an extra last argument used for passing the exception that triggered the circuit breaker. In our case, the method signature for the fallback method looks like this:

private Mono<Product> getProductFallbackValue(int productId, 

int delay, int faultPercent, CallNotPermittedException ex) {

The last parameter specifies that we want to be able to handle exceptions of the 

CallNotPermittedException type. We are only interested in exceptions that are thrown when 

the circuit breaker is in its open state so that we can apply fail-fast logic. When the circuit breaker is open, it will not permit calls to the underlying method; instead, it will immediately throw a CallNotPermittedException exception. Therefore, we are only interested in catching 

CallNotPermittedException exceptions. 

The fallback logic can look up information based on the productId from alternative sources, for example, an internal cache. In our case, we will return hardcoded values based on productId, to simulate a hit in a cache. To simulate a miss in the cache, we will throw a not found exception in the case where productId is 13. The implementation of the fallback method looks like this:

 Chapter 13

387

private Mono<Product> getProductFallbackValue(int productId, 

int delay, int faultPercent, CallNotPermittedException ex) {

if (productId == 13) {

String errMsg = "Product Id: " + productId

+ " not found in fallback cache!"; 

throw new NotFoundException(errMsg); 

}

return Mono.just(new Product(productId, "Fallback product" 

+ productId, productId, serviceUtil.getServiceAddress())); 

}

Adding configuration

Finally, the configuration of the circuit breaker and time limiter is added to the product-composite.yml file in the config repository, as follows:

resilience4j.timelimiter:

instances:

product:

timeoutDuration: 2s

management.health.circuitbreakers.enabled: true

resilience4j.circuitbreaker:

instances:

product:

allowHealthIndicatorToFail: false

registerHealthIndicator: true

slidingWindowType: COUNT_BASED

slidingWindowSize: 5

failureRateThreshold: 50

waitDurationInOpenState: 10000

permittedNumberOfCallsInHalfOpenState: 3

automaticTransitionFromOpenToHalfOpenEnabled: true

ignoreExceptions:

- se.magnus.api.exceptions.InvalidInputException

- se.magnus.api.exceptions.NotFoundException

388

 Improving Resilience Using Resilience4j

The values in the configuration have already been described in the previous sections,  Introducing the circuit breaker and  Introducing  the  time  limiter. 

Adding a retry mechanism

In the same way as we did for the circuit breaker, a retry mechanism is set up by adding de-

pendencies, annotations, and configuration. The dependencies were added previously in the 

 Adding  dependencies  to  the  build  file section, so we only need to add the annotation and set up the configuration. 

Adding the retry annotation

The retry mechanism can be applied to a method by annotating it with @Retry(name="nnn"), where nnn is the name of the configuration entry to be used for this method. See the following Adding  configuration section for details on the configuration. The method, in our case, is the same as it is for the circuit breaker and time limiter, getProduct() in the ProductCompositeIntegration class:

@Retry(name = "product")

@TimeLimiter(name = "product")

@CircuitBreaker(name = "product", fallbackMethod =

"getProductFallbackValue")

public Mono<Product> getProduct(int productId, int delay, 

int faultPercent) {

Adding configuration

Configuration for the retry mechanism is added in the same way as for the circuit breaker and time limiter in the product-composite.yml file in the config repository, like so:

resilience4j.retry:

instances:

product:

maxAttempts: 3

waitDuration: 1000

retryExceptions:

- org.springframework.web.reactive.function.client. 

WebClientResponseException$InternalServerError

The actual values were discussed in the previous  Introducing the retry mechanism section. 

 Chapter 13

389

When using multiple mechanisms of Resilience4j (in our case, the circuit breaker, 

time limiter, and retry mechanism), understanding the order in which these as-

pects are applied is important. For more information, see https://resilience4j. 

readme.io/docs/getting-started-3#aspect-order. 

That is all the dependencies, annotations, source code, and configuration required. Let’s wrap up by extending the test script with tests that verify that the circuit breaker works as expected in a deployed system landscape. 

Adding automated tests

Automated tests for the circuit breaker have been added to the test-em-all.bash test script in a separate function, testCircuitBreaker():

function testCircuitBreaker() {

echo "Start Circuit Breaker tests!" 

... 

}

... 

testCircuitBreaker

... 

echo "End, all tests OK:" `datè

To be able to perform some of the required verifications, we need to have access to the actuator endpoints of the product-composite microservice, which are not exposed through the edge 

server. Therefore, we will access the actuator endpoints by running a command in the product-composite microservice using the Docker Compose exec command. The base image used by the 

microservices, Eclipse Temurin, bundles wget, so we can simply run a wget command in the 

product-composite container to get the information required. The command looks like this:

docker compose exec -T product-composite wget -qO - http://product-

composite:8080/actuator/health

The -T argument is used to disable the use of a terminal for the exec command. 

This is important to make it possible to run the test-em-all.bash test script in an 

environment where no terminals exist, for example, in an automated build pipeline 

used for CI/CD. 

390

 Improving Resilience Using Resilience4j

To be able to extract the information we need for our tests, we can pipe the output to the jq tool. 

For example, to extract the actual state of the circuit breaker, we can run the following command: docker compose exec -T product-composite wget -qO - http://product-composite:8080/actuator/health | jq -r .components.circuitBreakers. 

details.product.details.state

It will return either CLOSED, OPEN, or HALF_OPEN, depending on the actual state. 

The test starts by doing exactly this – that is, verifying that the circuit breaker is closed before the tests are executed:

assertEqual "CLOSED" "$(docker compose exec -T product-composite wget 

-qO - http://product-composite:8080/actuator/health | jq -r .components. 

circuitBreakers.details.product.details.state)" 

Next, the test will force the circuit breaker to open up by running three commands in a row, all of which will fail on a timeout caused by a slow response from the product service (the delay parameter is set to 3 seconds):

for ((n=0; n<3; n++))

do

assertCurl 500 "curl -k https://$HOST:$PORT/product-composite/$PROD_

ID_REVS_RECS?delay=3 $AUTH -s" 

message=$(echo $RESPONSE | jq -r .message)

assertEqual "Did not observe any item or terminal signal within 

2000ms" "${message:0:57}" 

done

A quick reminder of the configuration: The timeout of the product service is set 

to 2 seconds so that a delay of 3 seconds will cause a timeout. The circuit breaker is 

configured to evaluate the last five calls when closed. The tests in the script that pre-

cede the circuit breaker-specific tests have already performed a couple of successful 

calls. The failure threshold is set to 50%. Three calls with a three-second delay are 

enough to open the circuit. 

With the circuit open, we expect a fail-fast behavior – that is, we won’t need to wait for the timeout before we get a response. We also expect the fallback method to be called to return a best-effort response. This should also apply to a normal call – that is, without requesting a delay. This is verified with the following code:

 Chapter 13

391

assertEqual "OPEN" "$(docker compose exec -T product-composite wget -qO 

- http://product-composite:8080/actuator/health | jq -r .components. 

circuitBreakers.details.product.details.state)" 

assertCurl 200 "curl -k https://$HOST:$PORT/product-composite/$PROD_ID_

REVS_RECS?delay=3 $AUTH -s" 

assertEqual "Fallback product$PROD_ID_REVS_RECS" "$(echo "$RESPONSE" | jq 

-r .name)" 

assertCurl 200 "curl -k https://$HOST:$PORT/product-composite/$PROD_ID_

REVS_RECS $AUTH -s" 

assertEqual "Fallback product$PROD_ID_REVS_RECS" "$(echo "$RESPONSE" | jq 

-r .name)" 

Product ID 1 is stored in a variable, $PROD_ID_REVS_RECS, to make it easier to modify 

the script if required. 

We can also verify that the simulated not found error logic works as expected in the fallback method – that is, the fallback method returns 404, NOT_FOUND for product ID 13:

assertCurl 404 "curl -k https://$HOST:$PORT/product-composite/$PROD_ID_

NOT_FOUND $AUTH -s" 

assertEqual "Product Id: $PROD_ID_NOT_FOUND not found in fallback cache!" 

"$(echo $RESPONSE | jq -r .message)" 

Product ID 13 is stored in a variable, $PROD_ID_NOT_FOUND. 

As configured, the circuit breaker will change its state to half-open after 10 seconds. To be able to verify that, the test waits for 10 seconds:

echo "Will sleep for 10 sec waiting for the CB to go Half Open..." 

sleep 10

392

 Improving Resilience Using Resilience4j

After verifying the expected state (half-open), the test runs three normal requests to make the circuit breaker go back to its normal state, which is also verified:

assertEqual "HALF_OPEN" "$(docker compose exec -T product-composite wget 

-qO - http://product-composite:8080/actuator/health | jq -r .components. 

circuitBreakers.details.product.details.state)" 

for ((n=0; n<3; n++))

do

assertCurl 200 "curl -k https://$HOST:$PORT/product-composite/$PROD_

ID_REVS_RECS $AUTH -s" 

assertEqual "product name C" "$(echo "$RESPONSE" | jq -r .name)" 

done

assertEqual "CLOSED" "$(docker compose exec -T product-composite wget 

-qO - http://product-composite:8080/actuator/health | jq -r .components. 

circuitBreakers.details.product.details.state)" 

The test code also verifies that it got a response with data from the underlying database. It does that by comparing the returned product name with the value stored in the database. For the 

product with product ID 1, the name is "product name C". 

A quick reminder of the configuration: The circuit breaker is configured to evaluate 

the first three calls when in the half-open state. Therefore, we need to run 3 requests 

where more than 50% are successful before the circuit is closed. 

The test wraps up by using the /actuator/circuitbreakerevents actuator API, which is exposed by the circuit breaker to reveal internal events. It is used to find out what state transitions the circuit breaker has performed. We expect the last three state transitions to be as follows:

•  First state transition: Closed to open

•  Next state transition: Open to half-open

•  Last state transition: Half-open to closed

This is verified by the following code:

assertEqual "CLOSED_TO_OPEN"      "$(docker compose exec -T product-

composite wget -qO - http://product-composite:8080/actuator/

circuitbreakerevents/product/STATE_TRANSITION | jq -r

.circuitBreakerEvents[-3].stateTransition)" 

 Chapter 13

393

assertEqual "OPEN_TO_HALF_OPEN"   "$(docker compose exec -T 

product-composite wget -qO - http://product-composite:8080/

actuator/circuitbreakerevents/product/STATE_TRANSITION | jq -r 

.circuitBreakerEvents[-2].stateTransition)" 

assertEqual "HALF_OPEN_TO_CLOSED" "$(docker compose exec -T 

product-composite wget -qO - http://product-composite:8080/

actuator/circuitbreakerevents/product/STATE_TRANSITION | jq -r 

.circuitBreakerEvents[-1].stateTransition)" 

The jq expression, circuitBreakerEvents[-1], means the last entry in the array 

of circuit breaker events, [-2] is the second to last event, while [-3] is the third to 

last event. Together, they are the three latest events, the ones we are interested in. 

We added quite a lot of steps to the test script, but with this, we can automatically verify that the expected basic behavior of our circuit breaker is in place. In the next section, we will try it out. We will run tests both automatically by running the test script and manually by running the commands in the test script by hand. 

Trying out the circuit breaker and retry mechanism

Now, it’s time to try out the circuit breaker and retry mechanism. We will start, as usual, by building the Docker images and running the test script, test-em-all.bash. After that, we will manually run through the tests we described previously to ensure that we understand what’s 

going on! We will perform the following manual tests:

•  Happy days tests of the circuit breaker to verify that the circuit is closed under normal operations

•  Negative tests of the circuit breaker to verify that the circuit opens up when things start to go wrong

•  Going back to normal operation to verify that the circuit goes back to its closed state once the problems are resolved

•  Trying out the retry mechanism with random errors

394

 Improving Resilience Using Resilience4j

Building and running the automated tests

To build and run the automated tests, we need to do the following:

1.  First, build the Docker images with the following commands:

cd $BOOK_HOME/Chapter13

./gradlew build && docker compose build

2.  Next, start the system landscape in Docker and run the usual tests with the following 

command:

./test-em-all.bash start

When the test script prints out Start Circuit Breaker tests!,  the tests we described previously have been executed! 

Verifying that the circuit is closed under normal operations

Before we can call the API, we need an access token. Run the following commands to acquire an access token:

unset ACCESS_TOKEN

ACCESS_TOKEN=$(curl -k https://writer:secret-writer@localhost:8443/

oauth2/token -d grant_type=client_credentials -d scope="product:read 

product:write" -s | jq -r .access_token)

echo $ACCESS_TOKEN

An access token issued by the authorization server is valid for one hour. So, if you 

start to get 401 – Unauthorized errors after a while, it is probably time to acquire 

a new access token. 

Try a normal request and verify that it returns the HTTP response code 200:

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://localhost:8443/

product-composite/1 -w "%{http_code}\n" -o /dev/null -s

The -w "%{http_code}\n" switch is used to print the HTTP return status. As long 

as the command returns 200, we are not interested in the response body, so we 

suppress it with the -o /dev/null switch. 

[image: Image 197]

[image: Image 198]

 Chapter 13

395

Verify that the circuit breaker is closed using the health API:

docker compose exec product-composite wget -qO - http://product-

composite:8080/actuator/health | jq -r .components.circuitBreakers. 

details.product.details.state

We expect it to respond with CLOSED. 

Forcing the circuit breaker to open when things go wrong

Now, it’s time to make things go wrong! By that, I mean it’s time to try out some negative tests to verify that the circuit opens up when things start to go wrong. Call the API 3 times and direct the product service to cause a timeout on every call – that is, delay the response by 3 seconds. This should be enough to trip the circuit breaker:

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://localhost:8443/

product-composite/1?delay=3 -s | jq . 

We expect a response such as the following each time:

 Figure 13.3: Response after a timeout

The circuit breaker is now open, so if you make a fourth attempt (within waitInterval – that is, 10 seconds), you will see fail-fast behavior and the fallback method in action. You will get a response back immediately instead of an error message once the time limiter kicks in after 2 seconds: Figure 13.4: Response when the circuit breaker is open

The response will come from the fallback method. This can be recognized by looking at the value in the name field, Fallback product1. 

396

 Improving Resilience Using Resilience4j

Fail-fast and fallback methods are key capabilities of a circuit breaker. A configu-

ration with a wait time set to only 10 seconds in the open state requires you to be 

rather quick to be able to see fail-fast logic and fallback methods in action! Once in 

a half-open state, you can always submit three new requests that cause a timeout, 

forcing the circuit breaker back to the open state, and then quickly try the fourth 

request. Then, you should get a fail-fast response from the fallback method. You can 

also increase the wait time to a minute or two, but it can be rather boring to wait 

that amount of time before the circuit switches to the half-open state. 

Wait 10 seconds for the circuit breaker to transition to half-open, and then run the following command to verify that the circuit is now in a half-open state:

docker compose exec product-composite wget -qO - http://product-

composite:8080/actuator/health | jq -r .components.circuitBreakers. 

details.product.details.state

Expect it to respond with HALF_OPEN. 

Closing the circuit breaker again

Once the circuit breaker is in a half-open state, it waits for three calls to see whether it should open the circuit again or go back to normal by closing it. 

Let’s submit three normal requests to close the circuit breaker:

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://localhost:8443/

product-composite/1 -w "%{http_code}\n" -o /dev/null -s

They should all respond with 200. Verify that the circuit is closed again by using the health API: docker compose exec product-composite wget -qO - http://product-composite:8080/actuator/health | jq -r .components.circuitBreakers. 

details.product.details.state

We expect it to respond with CLOSED. 

Wrap this up by listing the last three state transitions using the following command:

docker compose exec product-composite wget -qO - http://product-

composite:8080/actuator/circuitbreakerevents/product/STATE_TRANSITION | jq 

-r '.circuitBreakerEvents[-3].stateTransition, .circuitBreakerEvents[-2]. 

stateTransition, .circuitBreakerEvents[-1].stateTransition' 

[image: Image 199]

 Chapter 13

397

Expect it to respond with the following:

 Figure 13.5: Circuit breaker state changes

This response tells us that we have taken our circuit breaker through a full lap of its state diagram:

•  From closed to open when the timeout errors start to prevent requests from succeeding

•  From open to half-open to see whether the error is gone

•  From half-open to closed when the error is gone – that is, when we are back to normal 

operation

With that, we are done with testing the circuit breaker; let’s move on and see the retry mechanism at play. 

Trying out retries caused by random errors

Let’s simulate that there is a – hopefully temporary – random issue with our product service or the communication with it. 

We can do this by using the faultPercent parameter. If we set it to 25, we expect every fourth request on average to fail. We hope that the retry mechanism will kick in to help us by automatically retrying failed requests. One way of noticing that the retry mechanism has kicked in is to measure the response time of the curl command. 

A normal response should take around 100 ms. Since we have configured the retry mechanism 

to wait 1 second (see the waitDuration parameter in the section on the configuration of the retry mechanism), we expect the response time to increase by 1 second per retry attempt. To force a random error to occur, run the following command a couple of times:

time curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://

localhost:8443/product-composite/1?faultPercent=25 -w "%{http_code}\n" -o 

/dev/null -s

[image: Image 200]

[image: Image 201]

398

 Improving Resilience Using Resilience4j

The command should respond with 200, indicating that the request succeeded. A response time 

prefixed with real (for example, real 0m0.078s) means that the response time was 0.078 s or 78 

ms. A normal response – that is, without any retries – should report a response time of around 100 ms, as follows:

 Figure 13.6: Elapsed time for a request without a retry

A response after 1 retry should take a little over 1 second and look as follows:

 Figure 13.7: Elapsed time for a request with one retry

The HTTP status code 200 indicates that the request has succeeded, even though it 

required one retry before succeeding! 

After you have noticed a response time of 1 second, indicating that the request required 1 retry to succeed, run the following command to see the last 2 retry events:

docker compose exec product-composite wget -qO - http://product-

composite:8080/actuator/retryevents | jq '.retryEvents[-2], 

.retryEvents[-1]' 

You should be able to see the failed request and the next successful attempt. The creationTime timestamps are expected to differ by 1 second. Expect a response such as the following:

[image: Image 202]

 Chapter 13

399

 Figure 13.8: Retry events captured after a request with one retry

If you are really unlucky, you will get 2 faults in a row, and then you will get a re-

sponse time of 2 seconds instead of 1. If you repeat the preceding command, you will 

be able to see that the numberOfAttempts field is counted for each retry attempt, 

which is set to 1 in this case: "numberOfAttempts": 1. If calls continue to fail, the circuit breaker will kick in and open its circuit – that is, subsequent calls will apply 

fail-fast logic and the fallback method will be applied! 

This concludes the chapter. Feel free to experiment with the parameters in the configuration to understand the resilience mechanisms better. 

Don’t forget to shut down the system landscape:

docker compose down

Summary

In this chapter, we saw Resilience4j and its circuit breaker, time limiter, and retry mechanism in action. 

[image: Image 203]

400

 Improving Resilience Using Resilience4j

A microservice that has synchronous dependencies to other services can become unresponsive 

or even crash if these services stop responding as expected, especially under a high load. These types of error scenarios can be avoided by using a circuit breaker, which applies fail-fast logic and calls fallback methods when it is open. A circuit breaker can also make a microservice resilient by allowing requests when it is half-open to see whether the failing service is operating normally again and close the circuit if so. To support a circuit breaker in handling unresponsive services, a time limiter can be used to maximize the time a circuit breaker waits before it kicks in. 

A retry mechanism can retry requests that randomly fail from time to time, for example, due to temporary network problems. It is very important to only apply retry requests on idempotent 

services – that is, services that can handle the same request being sent two or more times. 

Circuit breakers and retry mechanisms are implemented by following Spring Boot conventions: 

declaring dependencies and adding annotations and configuration. Resilience4j exposes infor-

mation about its circuit breakers and retry mechanisms at runtime, using actuator endpoints. 

For circuit breakers, information regarding health, events, and metrics is available. For retries, information regarding events and metrics is available. 

We have seen the usage of endpoints for both health and events in this chapter, but we will have to wait until  Chapter 20, Monitoring Micr oservices,  before we use any of the metrics. 

In the next chapter, we will cover the last part of using Spring Cloud, where we will learn how to trace call chains through a set of cooperating microservices using Spring Cloud Sleuth and Zipkin. 

Head over to  Chapter 14, Under standing Distributed Tracing,  to get started! 

Questions

1.  What are the states of a circuit breaker and how are they used? 

2.  How can we handle timeout errors in the circuit breaker? 

3.  How can we apply fallback logic when a circuit breaker fails fast? 

4.  How can a retry mechanism and a circuit breaker interfere with each other? 

5.  Provide an example of a service that you can’t apply a retry mechanism to. 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

14

Understanding Distributed 

Tracing

In this chapter, we will learn how to use distributed tracing to better understand how our microservices cooperate – for example, in fulfilling a request sent to the external API. Being able to utilize distributed tracing is essential for being able to manage a system landscape of cooperating microservices. As already described in  Chapter 8 , Introduction to Spring Cloud, Micrometer Tracing will be used to collect trace information, and Zipkin will be used for the storage and visualization of said trace information. 

In this chapter, we will learn about the following topics:

•  Introducing distributed tracing with Micrometer Tracing and Zipkin. 

•  How to add distributed tracing to the source code. 

•  How to programmatically add information to the traces. 

•  How to perform distributed tracing, visualizing both successful and unsuccessful API re-

quests. We will see how both synchronous and asynchronous processing can be visualized. 

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter14. 

[image: Image 204]

402

 Understanding Distributed Tracing

If you want to view the changes applied to the source code in this chapter, that is, see what it took to add distributed tracing using Micrometer Tracing and Zipkin, you can compare it with the source code for  Chapter 13,  Improving Resilience Using Resilience4j.  You can use your favorite diff tool and compare the two folders $BOOK_HOME/Chapter13 and $BOOK_HOME/Chapter14. 

Introducing distributed tracing with Micrometer 

Tracing and Zipkin

To recapitulate  Chapter 8 , Introduction to Spring Cloud, in reference to the  Using Micrometer Tracing and Zipkin for distributed tracing section, the tracing information from a complete workflow is called a trace or a trace tree, and sub-parts of the tree – for example, the basic units of work – are called spans. Spans can consist of sub-spans forming the trace tree. Metadata can be added to a trace and its spans as key-value pairs called tags. The Zipkin UI can visualize a trace tree and its spans as follows:

 Figure 14.1: Example of a trace with its spans

Micrometer Tracing is used to collect trace information, propagate trace contexts (for example, trace and span IDs) in calls to other microservices, and export the trace information into trace analysis tools such as Zipkin. The handling of the trace information is done under the hood, by a tracer. Micrometer supports auto-configuration of tracers based on OpenTelemetry (https://

opentelemetry.io/) or OpenZipkin Brave (https://github.com/openzipkin/brave). Exporting the trace information into a trace analysis tool is done by a reporter. Before the OpenTelemetry standard existed, the Zipkin format for sending trace information to trace analysis tools was very commonly used. Today, an increasing number of trace analysis tools support the OpenTelemetry format. Over time, the OpenTelemetry standard will probably become the most widely used format. 

 Chapter 14

403

By default, trace headers are propagated between microservices using W3C trace context headers (https://www.w3.org/TR/trace-context/) – most importantly, the traceparent header – but can be configured to use OpenZipkin’s B3  headers. In this chapter, we will use the W3C trace context headers. In  Chapter 18 ,  we will use the B3 headers. 

A sample W3C trace context traceparent header looks like this:

traceparent:"00-2425f26083814f66c985c717a761e810-fbec8704028cfb20-01" 

The value of the traceparent header contains four parts, separated by a “-”:

•  “00” indicates the version used. It will always be “00” using the current specification. 

•  “124…810” is the trace ID. 

•  “fbe…b20” is the span ID. 

•  “01”, the last part, contains various flags. The only flag supported by the current specification is a flag named sampled, with the value “01”. It means that the caller is recording 

the trace data for this request. We will configure our microservices to record trace data 

for all requests, so this flag will always have the value of “01”. 

Use of OpenZipkin Brave B3 headers will look like this:

X-B3-TraceId:"64436ea679e8eb6e6fa028bb3459e703" 

X-B3-SpanId:"120678270898ddd5" 

X-B3-ParentSpanId:"3c431d3d01987c22" 

X-B3-Sampled:"1" 

The header names are self-explanatory, and we can see that headers are not only provided for the trace and span ID but also for the parent span’s ID. 

Traces and spans are created automatically by Spring Boot for incoming traffic, both for incoming HTTP requests and messages received by Spring Cloud Stream. If an incoming request contains 

a trace ID, it will be used when creating spans; if not, a new trace ID will be created. Trace and span IDs are automatically propagated to outgoing traffic, either as HTTP requests or by sending messages using Spring Cloud Stream. 

If required, extra trace info can be added programmatically, either by adding custom spans or by adding custom tags to all spans created by a microservice. This is done by using Micrometer Observability (https://micrometer.io/docs/observation) and its Observation API. 

404

 Understanding Distributed Tracing

The initial release of Micrometer Tracing together with Spring Boot 3 came with some limitations for supporting distributed tracing in reactive clients. This affects the microservices used in this book that use Project Reactor under the hood. In the  Adding workarounds for lacking support of reactive clients section, we will learn how to mitigate these shortcomings. 

Zipkin comes with native support for storing trace information either in memory, or in a database such as Apache Cassandra, Elasticsearch, or MySQL. Added to this, a number of extensions are available. For details, refer to https://zipkin.io/pages/extensions_choices.html. In this chapter, we will store the trace information in memory. 

With Micrometer Tracing and Zipkin introduced, let’s see what changes are required in the source code to enable distributed tracing. 

Adding distributed tracing to the source code

In this section, we will learn how to update the source code to enable distributed tracing. This can be done with the following steps:

1.  Add dependencies to the build files to bring in Micrometer Tracing with a tracer imple-

mentation and a reporter. 

2.  Add a Zipkin server to the Docker Compose files. 

3.  Configure the microservices to send trace information to Zipkin. 

4.  Add workarounds for the lack of support of reactive clients. 

5.  Add code for creating custom spans and custom tags in existing spans. 

We will go through each of the steps in turn. 

Adding dependencies to build files

To be able to utilize Micrometer Tracing and the ability to export trace information to Zipkin, we need to add a dependency to the selected tracer and reporter to the Gradle project build files, build.gradle. 

This is accomplished by adding the following two lines:

implementation 'io.micrometer:micrometer-tracing-bridge-otel' 

implementation 'io.opentelemetry:opentelemetry-exporter-zipkin' 

 Chapter 14

405

For the review service, a dependency has also been added to enable trace information regarding SQL database operations. It looks like this:

implementation 'net.ttddyy.observation:datasource-micrometer-spring-

boot:1.0.0' 

This library can create spans for the SQL operations executed by the review service. These spans will contain information about the SQL query that was executed and its execution time. 

Adding configuration for Micrometer Tracing and Zipkin

Configuration for using Micrometer Tracing and Zipkin is added to the common configuration 

file, config-repo/application.yml. In the default profile, it is specified that trace information will be sent to Zipkin using the following URL:

management.zipkin.tracing.endpoint: http://zipkin:9411/api/v2/spans

By default, Micrometer Tracing only sends 10% of the traces to Zipkin. To ensure that all traces are sent to Zipkin, the following property is added to the default profile:

management.tracing.sampling.probability: 1.0

We also want trace and span IDs to be written to logs; this will enable us to correlate log output from cooperating microservices that, for example, fulfill a request sent to the external API. 

We will investigate how to use this in  Chapter 19,  Centralized Logging with the EFK 

 Stack. 

Trace and span IDs are written to the logs by default when Micrometer Tracing is used. To simplify the parsing of the log output in  Chapter 19 , Centralized Logging with the EFK Stack, the log format has been customized using the following configuration:

logging.pattern.correlation: "[${spring.application.name:}, 

%X{traceId:-},%X{spanId:-}] " 

logging.include-application-name: false

For more information on how to customize the log format for trace information, see https://

docs.spring.io/spring-boot/reference/actuator/tracing.html#actuator.micrometer-

tracing.logging. 

406

 Understanding Distributed Tracing

When using Spring Cloud Configuration Server, the logging.include-

application-name property must be placed in the bootstrap.yml file under each 

microservice’s src/main/resources folder. To keep the two new logging proper-

ties together, the logging.pattern.correlation property has also been placed 

there. In  Chapter 17 ,  where Spring Cloud Configuration Server is replaced by the corresponding Kubernetes features, these properties will be moved to the common 

property file config-repo/application.yml. 

With the preceding log format, the log output will look like this:

2025-04-22T14:02:07.417Z  INFO ... [product-composite,01234,56789] ... 

Where product-composite is the name of the microservice, 01234 is the trace ID, and 56789 is the span ID. 

To reduce the log output, we also change the log level from DEBUG to INFO for each microservice’s configuration file in the config-repo. This makes it easier to verify that trace and span IDs are added as expected. This change is applied by this line:

se.magnus: INFO

For the product-composite microservice, the log level for the HttpWebHandlerAdapter class 

has been changed from TRACE to INFO for the same reason:

org.springframework.web.server.adapter.HttpWebHandlerAdapter: INFO

Adding Zipkin to the Docker Compose files

To run the Zipkin server as a Docker container, we will use a Docker image, openzipkin/zipkin, published by the Zipkin project. Refer to https://hub.docker.com/r/openzipkin/zipkin for details. The definition of the Zipkin server appears as follows:

zipkin:

image: openzipkin/zipkin:3.5.0

restart: always

mem_limit: 1024m

environment:

- STORAGE_TYPE=mem

ports:

- 9411:9411

 Chapter 14

407

Let’s explain the preceding source code:

•  The version of the Docker image, openzipkin/zipkin, is specified to be version 3.5.0. 

•  The STORAGE_TYPE=mem environment variable is used to specify that Zipkin will keep all 

trace information in memory. 

•  The memory limit for Zipkin is increased to 1,024 MB, compared to 512 MB for all other 

containers. The reason for this is that since Zipkin is configured to keep all trace infor-

mation in memory, it will consume more memory than the other containers after a while. 

•  In the case where Zipkin happens to run out of memory and stops, we have applied a 

restart policy that requests the Docker engine to always restart the container. This will 

apply both if the container itself crashes or if the Docker engine is restarted. 

•  Zipkin exposes HTTP port 9411 for web browsers to access its web user interface. 

While it is OK to store the trace information in Zipkin in memory for de-

velopment and test activities, Zipkin should be configured to store trace 

information in a database in a production environment. 

Adding workarounds for the lack of support of reactive clients

As mentioned previously, the current versions of Spring Boot, Project Reactor, and Micrometer Tracing do not yet work together perfectly. Therefore, a couple of workarounds have been applied to the source code for reactive clients. That is, the four microservices and the gateway. The problems are mainly related to the complexity of propagating trace contexts (for example, trace and span IDs) between different threads involved in reactive asynchronous processing, specifically if parts of the processing involve imperative synchronous processing. 

If all processing of a request is done with a synchronous implementation, using one 

and the same thread for all processing, propagating trace context is not an issue. A 

ThreadLocal variable can be used to store the trace context. The trace context can 

be retrieved from the ThreadLocal  variable in any place of the implementation 

since all code runs in one and the same thread. 

An example of this mix of reactive and imperative processing is the implementation of the review microservice, where calls to the underlying SQL database are done synchronously. 

408

 Understanding Distributed Tracing

If you are interested in understanding the challenges in more detail, see the three-

part blog series “Unified Bridging between Reactive and Imperative” published by 

the Spring team. It can be found here: https://spring.io/blog/2023/03/30/

context-propagation-with-project-reactor-3-unified-bridging-between- 

reactive. 

It is also worth noting that the predecessor of Micrometer Tracing, Spring Cloud Sleuth, has better support for reactive clients than the current versions of Spring Boot, Project Reactor, and Micrometer Tracing. Hopefully, the coming versions will soon address these shortcomings. 

If you have a code base that already uses Spring Cloud Sleuth, you can find migra-

tion guidelines here: https://github.com/micrometer-metrics/tracing/wiki/

Spring-Cloud-Sleuth-3.1-Migration-Guide. 

To address many of the challenges with context propagation, we can turn on automatic context propagation by calling the Hooks.enableAutomaticContextPropagation() method in a reactive 

client’s main()  method. For details, see the blog series “Unified Bridging between Reactive and Imperative” previously referred to. For the product-composite service, it looks like this: public static void main(String[] args) {

Hooks.enableAutomaticContextPropagation(); 

SpringApplication.run(ProductCompositeServiceApplication.class, args); 

}

However, for the product-composite service, one problem remains. To ensure that a WebClient 

instance is correctly instrumented for observation – for example, to be able to propagate the current trace and span IDs as headers in an outgoing request – the WebClient.Builder instance is expected to be injected using auto-wiring. Unfortunately, when using Eureka for service discovery, the WebClient.Builder instance is recommended to be created as a bean annotated with 

@LoadBalanced as follows:

@Bean

@LoadBalanced

public WebClient.Builder loadBalancedWebClientBuilder() {

return WebClient.builder(); 

}

 Chapter 14

409

So, there is a conflict in how to create a WebClient instance when used with both Eureka and Micrometer Tracing. To resolve this conflict, the @LoadBalanced  bean can be replaced by a 

load-balancer-aware exchange-filter function, ReactorLoadBalancerExchangeFilterFuncti

on. An exchange-filter function can be set on an auto-wired WebClient.Builder instance like this:

@Autowired

private ReactorLoadBalancerExchangeFilterFunction lbFunction; 

@Bean

public WebClient webClient(WebClient.Builder builder) {

return builder.filter(lbFunction).build(); 

}

This means that the application class, ProductCompositeServiceApplication, registers a WebClient bean instead of a WebClient.Builder bean. This affects the ProductCompositeIntegration class; it now needs to auto-wire a WebClient bean instead of a WebClient.Builder bean. 

To get access to the ReactorLoadBalancerExchangeFilterFunction  function, a dependency 

to org.springframework.cloud:spring-cloud-starter-loadbalancer has been added to the 

build file, build.gradle. 

Adding custom spans and custom tags to existing spans

Besides relying on the built-in support for creating traces and spans for the ongoing processing, we can also use the Observation API provided by Micrometer Observability to, for example, add our own spans or add custom tags to existing spans created by a microservice. The Observation API is implemented behind a Java interface with the same name. 

Let’s first see how to add a custom span, and after that, see how we can add custom tags to all spans created by a microservice. 

For any observation to take place using the Observation  API, observation objects need to be registered in an ObservationRegistry  bean. An ObservationRegistry  bean can be injected 

using auto-wiring as in the following example:

@Component

public class MyComponent {

private final ObservationRegistry registry; 

public MyComponent(ObservationRegistry registry) {

this.registry = registry; 

}

410

 Understanding Distributed Tracing

Adding a custom span

To add a custom span, the Observation interface provides a static method, createNotStarted(), that can be used to create a span. To execute the span, an observe() method can be used to provide the code that the span shall cover. If the code doesn’t return any value, it can be specified as a Runnable function; otherwise, it needs to be specified as a Supplier function. 

An example of the creation of a custom span for the execution of a minimalistic Supplier function looks like this:

int y = Observation.createNotStarted("my observation", registry)

.observe(() -> {

int x = 1; 

LOG.info("Will return {}", x); 

return 1; 

}); 

LOG.info("Got {}", y); 

The registry parameter is a bean of type ObservationRegistry and is auto-wired as described 

earlier. 

The execution of this code will result in log output like this:

YYYY-MM-DDT14:02:07.417Z  INFO 1 --- [     parallel-6] [product-

composite,9761b2b2b2da59c5096e78252c48ab3d,d8bcbd9cde9fe2d7]  

s.m.m.c.p.s.ProductCompositeServiceImpl  : Will return 1

YYYY-MM-DDT14:02:07.417Z  INFO 1 --- [     parallel-6] [product-

composite,9761b2b2b2da59c5096e78252c48ab3d,4c8ea2820fb74ec9]  

s.m.m.c.p.s.ProductCompositeServiceImpl  : Got 1

From the log output, we can see that both log statements refer to the same trace ID, 9761b2b2b 2da59c5096e78252c48ab3d, but specify different span IDs, d8bcbd9cde9fe2d7  being the span 

ID of the custom span! 

If we want to add metadata regarding the span, we can specify it by adding a contextual name and a set of tags as key-value pairs. The contextual name will be the name of the span and it can be used to identify the span when a trace tree is visualized in Zipkin. If the possible values for the information are bounded, limited to a finite number of alternatives, the tag should be specified using the lowCardinalityKeyValue() method. For unbounded values, the highCardinalityKeyValue() 

method should be used. Calling these methods will result in tags being added to the current span, while low-cardinality values will also be tagged to metrics created by the observation. 

 Chapter 14

411

We will investigate how to use metrics in  Chapter 20 , Monitoring Microservices. 

An example of specifying information as tags looks like this:

int y = Observation.createNotStarted("my observation", registry)

.contextualName("product info")

.lowCardinalityKeyValue("template-url", 

"/product-composite/{productId}")

.highCardinalityKeyValue("actual-url", 

"/product-composite/12345678")

.observe(() -> {

int x = 1; 

LOG.info("Will return {}", x); 

return x; 

}); 

LOG.info("Got {}", y); 

From the preceding example, we can see the following:

•  The contextual name is set to “product info”. 

•  A key, “template-url”,  that  only  has  a  few  possible  values,  is  specified  with  the lowCardinalityKeyValue() method. In our case, it has only three possible values for 

the create, get, and delete methods. 

•  A key, “actual-url”, with an unlimited number of values depending on the specified 

productId, has been specified with the highCardinalityKeyValue() method. 

Let’s apply this to the product-composite service to create a custom span that provides 

productId as a tag. Since the number of product IDs is unlimited, we will specify it using the highCardinalityKeyValue() method. We will create a span that specifies the current product ID for each of the three API methods for creating, retrieving, and deleting composite products. The creation of a custom span that contains one high-cardinality tag is handled by a utility class, ObservationUtil. The utility class is placed in the se.magnus.microservices.composite. 

product.services.tracing package. The observe() utility method in this class looks like this: public <T> T observe(String observationName, String contextualName, 

String highCardinalityKey, String highCardinalityValue, 

412

 Understanding Distributed Tracing

Supplier<T> supplier) {

return Observation.createNotStarted(observationName, registry)

.contextualName(contextualName)

.highCardinalityKeyValue(highCardinalityKey, highCardinalityValue)

.observe(supplier); 

}

The observe() method wraps the call to the Observation.createNotStarted() method. The 

use of this method is explained in the preceding example, so it needs no further explanation. 

This utility method is used in the ProductCompositeServiceImpl class by a help-

er method, observationWithProductInfo(), that applies common values to the 

ProductCompositeServiceImpl class:

private <T> T observationWithProductInfo(int productInfo, Supplier<T> 

supplier) {

return observationUtil.observe(

"composite observation", 

"product info", 

"productId", 

String.valueOf(productInfo), 

supplier); 

}

Finally, the helper method is used by the three API methods, createProduct(), getProduct(), 

and deleteProduct(). The custom span is created by wrapping the existing code in each method. 

The existing code has been moved to corresponding “internal” methods to simplify the structure of the solution. The “internal” methods are called by the observationWithProductInfo() method. 

For getProduct(), the implementation now looks like this:

public Mono<ProductAggregate> getProduct(int productId, ...) {

return observationWithProductInfo(productId, 

() -> getProductInternal(productId, ...)); 

}

private Mono<ProductAggregate> getProductInternal(int productId, ...) {

return observationWithProductInfo(productId, () -> {

 Chapter 14

413

LOG.info("Will get composite product info for product.id={}", 

productId); 

return Mono.zip(

values -> createProductAggregate(... 

integration.getProduct(productId, ...), 

integration.getRecommendations(productId).collectList(), 

integration.getReviews(productId).collectList())

...); 

}

If compared with the corresponding implementation in  Chapter 13, we can see that the changes required to create a custom span are limited to adding a new “inner” method and calling it from the observationWithProductInfo() method:

public Mono<ProductAggregate> getProduct(int productId, ...) {

LOG.info("Will get composite product info for product.id={}", 

productId); 

return Mono.zip(

values -> createProductAggregate(... 

integration.getProduct(productId, ...), 

integration.getRecommendations(productId).collectList(), 

integration.getReviews(productId).collectList())

...); 

}

So, adding a custom span to existing code can be done with a very small change, given a proper utility method that handles the details of setting up a custom span. When we try out distributed tracing later in this chapter, we will see this custom span in action. With a custom span in place, let’s see how we can add custom tags to any span created in a microservice! 

Adding custom tags to existing spans

If we want to add some custom information to all spans that are created by a microservice, we can use an ObservationFilter. It needs to be registered in the ObservationRegistry bean using an ObservationRegistryCustomizer bean. 

414

 Understanding Distributed Tracing

Let’s apply a filter that registers the current version of the product-composite microservice as a tag on every span it creates. We need to do the following:

•  Update the build file to make Gradle create build info, including the current version specified by the version property in the build.gradle file

•  Create a filter that adds the current version as a low-cardinality tag to all spans

•  Create a registry configuration bean that registers the filter

To make Gradle create build info, the following is added to the build file, build.gradle:

springBoot {

buildInfo()

}

This addition will result in the build/resources/main/META-INF/build-info.properties file 

being created when the ./gradlew build command is executed. This file will specify the current version as the following:

build.version=1.0.0-SNAPSHOT

The build info file will be bundled into the microservice’s JAR file, and its information can be accessed using a BuildProperties bean. 

The filter looks like this:

public class BuildInfoObservationFilter implements ObservationFilter {

private final BuildProperties buildProperties; 

public BuildInfoObservationFilter(BuildProperties buildProperties) {

this.buildProperties = buildProperties; 

}

@Override

public Observation.Context map(final Observation.Context context) {

KeyValue buildVersion = KeyValue.of("build.version", 

buildProperties.getVersion()); 

return context.addLowCardinalityKeyValue(buildVersion); 

}

}

 Chapter 14

415

From the preceding source code, we can see the following:

•  A BuildProperties bean is injected into the filter’s constructor

•  The filter’s map() method retrieves the microservice version from using the BuildProperties bean and sets it as a low-cardinality tag on the provided observation context

The registry configuration bean looks like this:

@Configuration(proxyBeanMethods = false)

public class ObservationRegistryConfig implements 

ObservationRegistryCustomizer<ObservationRegistry> {

private final BuildProperties buildProperties; 

public ObservationRegistryConfig(BuildProperties buildProperties) {

this.buildProperties = buildProperties; 

}

@Override

public void customize(final ObservationRegistry registry) {

registry.observationConfig().observationFilter(new 

BuildInfoObservationFilter(buildProperties)); 

}

}

From the preceding source code, we can learn the following:

•  A BuildProperties bean is also injected into the configuration class’s constructor. 

•  In the customize() method, the filter is created and registered. The filter also gets the BuildProperties bean injected here. 

The filter and the registry configuration bean can be found in the se.magnus.microservices. 

composite.product.services.tracing package. When we try out distributed tracing later in 

this chapter, we will see this observation filter in action. 

For more ways of handling custom spans – for example, setting up predicates for when to apply an observation filter or using annotations to describe an observation, see https://micrometer. 

io/docs/observation. 

That’s what it takes to add distributed tracing using Micrometer Tracing and Zipkin, so let’s try it out in the next section! 

416

 Understanding Distributed Tracing

Trying out distributed tracing

With the necessary changes to the source code in place, we can try out distributed tracing. We will do this by performing the following steps:

1.  Build, start, and verify the system landscape. 

2.  Send a successful API request and see what trace information we can find in Zipkin related to this API request. 

3.  Send an unsuccessful API request and see what error information we can find. 

4.  Send a successful API request that triggers asynchronous processing and see how its trace information is represented. 

We will discuss these steps in detail in the upcoming sections. 

Starting up the system landscape

Let’s start up the system landscape. Build the Docker images with the following commands:

cd $BOOK_HOME/Chapter14

./gradlew build && docker compose build

Start the system landscape in Docker and run the usual tests with the following command:

./test-em-all.bash start

Before we can call the API, we need an access token. Run the following commands to acquire an access token:

unset ACCESS_TOKEN

ACCESS_TOKEN=$(curl -k https://writer:secret-writer@localhost:8443/

oauth2/token -d grant_type=client_credentials -d scope="product:read 

product:write" -s | jq -r .access_token)

echo $ACCESS_TOKEN

As noticed in previous chapters, an access token issued by the authorization server 

is valid for one hour. So, if you start to get 401 Unauthorized errors after a while, 

it is probably time to acquire a new access token. 

[image: Image 205]

 Chapter 14

417

Sending a successful API request

Now, we are ready to send a normal request to the API. Run the following command:

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://localhost:8443/

product-composite/1 -w "%{http_code}\n" -o /dev/null -s

Expect the command to return the HTTP status code for success, 200. 

We can now launch the Zipkin UI to look into what trace information has been sent to Zipkin: 1.  Open the following URL in your web browser: http://localhost:9411/zipkin/. 

2.  To find the trace information for our request, we can search for traces that have passed through the gateway service. Perform the following steps:

a.  Click on the large plus sign (a white + sign on a red background) and select ser-

viceName and then gateway. 

b.  Click on the RUN QUERY button. 

c.  Click on the Start Time header to see the results ordered by the latest first (a down arrow should be visible to the left of the Start Time header). 

The response from finding traces should look like the following screenshot:

 Figure 14.2: Searching for distributed traces using Zipkin

[image: Image 206]

418

 Understanding Distributed Tracing

3.  The trace information from our preceding API request is the first one in the list. Click on its SHOW button to see details pertaining to the trace:

 Figure 14.3: Sample distributed trace visualized in Zipkin

In the detailed information view, we can observe the following:

a.  The request was received by the gateway service. 

b.  The gateway  service delegated the processing of the request to the product-

composite service. 

c.  The product-composite service, in turn, sent three parallel requests to the core 

services: product, recommendation, and review. See spans named product-com-

posite: http get. 

[image: Image 207]

 Chapter 14

419

d.  Once the product-composite service received the response from all three core 

services, it created a composite response and sent it back to the caller through 

the gateway service. 

e.  The custom span created in the previous section is named product-composite: 

product info. Click on it to see its tags. In the details view to the right, we can see both the tag created by the custom span, productId = 1,  and the tag created by the observation filter build.version = 1.0.0-SNAPSHOT. 

f.  To verify that the tag created by the observation filter works as expected, click on 

other spans created by the product-composite service, and verify that the build. 

version is present. 

4.  Select the span named review: query to see a span reported by the review microservice’s database layer:

 Figure 14.4: A span that describes the execution of a SQL query

5.  In the span’s list of tags, we can see the actual SQL query it has performed. We can also see its execution time of 0.8 ms. Rather valuable information! 

420

 Understanding Distributed Tracing

To better understand how trace and span IDs are propagated between microservices, we can 

change the logging configuration of the product-composite service so that HTTP headers in 

outgoing requests are written to its log. This can be achieved by taking the following steps: 1.  Add the following two lines to the config-repo/product-composite.yml configuration 

file:

spring.codec.log-request-details: true

logging.level.org.springframework.web.reactive.function.client. 

ExchangeFunctions: TRACE

2.  The two lines already exist in the configuration file but are commented out. They are 

preceded by the following comment:

# To see tracing headers, uncomment the following two lines and 

restart the product-composite service

3.  Find the preceding comment in the configuration file and uncomment the two lines be-

low it. 

4.  After that, restart the product-composite service:

docker compose restart product-composite

5.  Display the log output from the product-composite service:

docker compose logs -f --tail 0 product-composite

6.  Rerun the preceding curl request and you will see the log output containing the 

traceparent HTTP header mentioned previously – for example, a request sent to the 

recommendation service:

product-composite-1  | YYYY-MM-DDT09:24:50.849Z TRACE 1 --- [     

parallel-2] [product-composite,e1420dcc38901378e888b8ce7022510e,0686

7b65cf84b552] o.s.w.r.f.client.ExchangeFunctions       : [14606b71] 

HTTP GET http://d40874197b77:8080/recommendation?productId=1, 

headers=[traceparent:"00-e1420dcc38901378e888b8ce7022510e-

06867b65cf84b552-01"]

[image: Image 208]

 Chapter 14

421

7.  In the sample log output, we can see the value of the traceparent HTTP header, where 

the trace ID  is set to e1420dcc38901378e888b8ce7022510e, and the span ID is set to 

06867b65cf84b552. 

8.  If you don’t want to keep the logging of the traceparent HTTP header, comment out the two lines in config-repo/product-composite.yml and restart the product-composite service. 

Sending an unsuccessful API request

Let’s see what the trace information looks like if we make an unsuccessful API request; for example, searching for a product that causes a timeout:

1.  Send an API request for product ID 1, enforce a delay of three seconds, which will trigger the time limiter, and verify that it returns the HTTP status code 500:

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://

localhost:8443/product-composite/1?delay=3 -w "%{http_code}\n" -o /

dev/null -s

2.  In the Zipkin UI, go back to the search page (use the back button in the web browser) and click on the RUN QUERY button again. To see the results ordered by the latest first, click 

on the Start Time header. Expect a result similar to the following screenshot:

 Figure 14.5: Finding a failed request using Zipkin

[image: Image 209]

422

 Understanding Distributed Tracing

3.  You should see the failed request at the top of the returned list. Note that its duration bar is red, indicating that an error has occurred. Click on its SHOW button to see details:

 Figure 14.6: Viewing a trace of a failed request using Zipkin

Here, we can see a span, product-composite: secured request, with an error symbol in 

front of it (a red circle with an exclamation mark). 

4.  Click on the span to see its tags. You will find a tag named error that clearly indicates that the error is caused by a timeout that occurred after two seconds. 

Sending an API request that triggers asynchronous 

processing

The third type of request sending that is interesting to see represented in the Zipkin UI is a request where parts of its processing are done asynchronously. Let’s try a delete request, where the delete process in the core services is done asynchronously. The product-composite service sends a delete event to each of the three core services over the message broker and each core service picks up the delete event and processes it asynchronously. Thanks to Micrometer Tracing, trace information is added to the events that are sent to the message broker, resulting in a coherent view of the total processing of the delete request. 

[image: Image 210]

 Chapter 14

423

Perform the following steps:

1.  Run the following command to delete the product with a product ID of 12345 and verify 

that it returns the HTTP status code for the request being accepted, 202:

curl -X DELETE -H "Authorization: Bearer $ACCESS_TOKEN" -k https://

localhost:8443/product-composite/12345 -w "%{http_code}\n" -o /dev/

null -s

Remember that the delete operation is idempotent, that is, it will succeed 

even if the product doesn’t exist! 

2.  In the Zipkin UI, go back to the search page (use the back button in the web browser) and click on the RUN QUERY button again. To see the results ordered by the latest first, click 

on the Start Time header. Expect a result like the following screenshot:

 Figure 14.7: Finding a delete request using Zipkin

[image: Image 211]

424

 Understanding Distributed Tracing

3.  You should see the delete request at the top of the returned list. Note that the root service name, gateway, is suffixed by the HTTP method used, delete. Click on its SHOW button to see details:

 Figure 14.8: Viewing a delete request using Zipkin

4.  Here, we can see the trace information for processing the delete request:

•  The request was received by the gateway service. 

•  The gateway  service delegated the processing of the request to the product-

composite service. 

[image: Image 212]

 Chapter 14

425

•  The product-composite service has created a custom span named product-com-

posite: product info, as expected. 

•  The product-composite service, in turn, published three events on the message 

broker (RabbitMQ, in this case). See spans with names suffixed with “send.” 

•  The product-composite service is now done and returns an HTTP success status 

code, 200, through the gateway service back to the caller. Note that this is done 

before all processing is completed by the core services! 

•  The core services (product, recommendation, and review) receive the delete 

events and start to process them asynchronously, that is, independently of one 

another. See spans with names suffixed with “receive.” 

5.  To confirm the involvement of the message broker, click on the first produnct span:

  

 Figure 14.9: Viewing information about the asynchronous processing of an event 

 using Zipkin

6.  The selected span contains a tag named peer. service that reveals that RabbitMQ is used, and the tag spring. rabbit. listener. id points out that the messages are received by the consumer group productsGroup. 

7.  Finally, to see the traceparent header in a message sent through RabbitMQ, we can inspect the message stored in the audit queue for the products. Open http://localhost:15672/#/

queues/%2F/products.auditGroup in your web browser. 

[image: Image 213]

426

 Understanding Distributed Tracing

8.  Click on the button named Get Messages(s) to see the oldest message in the queue. The web page should look like the following:

 Figure 14.10: A message with a traceparent header in RabbitMQ

9.  In the Properties section, you will find the traceparent header for this message. In this case, the trace ID is 99a9f2501e4d454643184c6b1cb0a232 and the span ID is 

7458430fe56d6df1. 

This completes the tests of distributed tracing for this chapter! 

The Zipkin UI contains much more functionality for finding traces of interest! 

To get more accustomed to the Zipkin UI, try out the query functionality by clicking 

on the plus sign and selecting tagQuery. For example, to find requests that failed 

on a 403 - Forbidden error, set its value to tagQuery=http.status_code=403, 

searching for traces that failed on a Forbidden (403) error. Also, try setting limits 

for the lookback range (start and end time) and the maximum number of hits by 

clicking on the cogwheel icon to the right of the RUN QUERY button. 

 Chapter 14

427

Wrap up the tests by bringing down the system landscape. Run the following command:

docker compose down

Summary

In this chapter, we learned how to use distributed tracing to understand how our microservices cooperate. We learned how to use Micrometer Tracing to collect trace information, and Zipkin to store and visualize the trace information. 

We saw how adding Micrometer Tracing to microservices is affected by adding a couple of dependencies to the build files and setting up a few configuration parameters. Reactive microservices are currently not fully supported, but we learned how to work around the most important issues. 

If required, we can use the Observation  API to create custom spans or add tags to all spans created by a microservice. We also saw how the Zipkin UI makes it very easy to identify which part of a complex workflow caused either an unexpectedly long response time or an error. Both synchronous and asynchronous workflows can be visualized with the Zipkin UI. 

In the next chapter, we will learn about container orchestrators, specifically Kubernetes. We will learn how to use Kubernetes to deploy and manage microservices, while also improving important runtime characteristics such as scalability, high availability, and resilience. 

Questions

1.  What is the purpose of the management.tracing.sampling.probability configuration 

parameter? 

2.  How can you identify the longest-running request after executing the test-em-all.bash 

test script? 

3.  How can we find requests that have been interrupted by a timeout introduced in  Chapter 

 13, Impr oving Resilience Using Resilience4j? 

4.  What does the trace look like for an API request when the circuit breaker introduced in 

 Chapter 13 , Improving Resilience Using Resilience4j, is open? 

5.  How can we locate APIs that failed on the caller not being authorized to perform the 

request? 

6.  How can we programmatically add trace information? 

[image: Image 214]

428

 Understanding Distributed Tracing

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

Part 3

Developing Lightweight 

Microservices Using 

Kubernetes

This part will help you to understand the importance of Kubernetes as a runtime platform for containerized workloads. You will learn how to set up Kubernetes in a local development environment and deploy microservices on Kubernetes. Finally, you will learn how to use some of the most important features in Kubernetes instead of the corresponding Spring Cloud features to 

provide a more lightweight microservice system landscape (in other words, one that is easier to maintain and manage). 

This part of the book includes the following chapters:

•   Chapter 15 , Introduction to Kubernetes

•   Chapter 16, Deploying Our Micr oservices in Kubernetes

•   Chapter 17, Implementing K ubernetes Features to Simplify the System Landscape

•   Chapter 18 , Using a Service Mesh to Improve Observability and Management

•   Chapter 19, C entralized Logging with the EFK Stack

•   Chapter 20, Monitoring Micr oservices


15

Introduction to Kubernetes

In this chapter, we will start to learn about Kubernetes, the most popular and widely used container orchestrator at the time of writing this book. Since the subjects on container orchestrators in general and Kubernetes itself are too big to be covered in one chapter, I will focus on introducing the areas that I have found to be the most important in my use of Kubernetes over the last few years. 

The following topics will be covered in this chapter:

•  Introducing Kubernetes concepts

•  Introducing Kubernetes API objects

•  Introducing Kubernetes runtime components

•  Creating a local Kubernetes cluster

•  Trying out a sample Deployment and getting used to the kubectl Kubernetes CLI tool

•  Managing a local Kubernetes cluster

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter15. The source code for the sample Deployment on Kubernetes that will be performed in this chapter can be found in the $BOOK_HOME/Chapter15/kubernetes/first-attempts folder. 

432

 Introduction to Kubernetes

Introducing Kubernetes concepts

At a high level, as a container orchestrator, Kubernetes makes a cluster of (physical or virtual) servers that run containers appear as one big logical server running containers. As an operator, we declare a desired state to the Kubernetes cluster by creating objects using the Kubernetes API. 

Kubernetes continuously compares the desired state with the current state. If it detects differences, it takes action to ensure that the current state is the same as the desired state. 

One of the main purposes of a Kubernetes cluster is to deploy and run containers, but also to support zero-downtime rolling upgrades using techniques such as blue/green and canary Deployments. Kubernetes can schedule containers, that is, Pods that contain one or more co-located containers, to the available nodes in the cluster. To be able to monitor the health of running containers, Kubernetes assumes that containers implement a liveness probe. If a liveness probe reports an unhealthy container, Kubernetes will restart the container. Containers can be scaled in the cluster manually or automatically using a horizontal autoscaler. To optimize the use of the available hardware resources in a cluster (for example, memory and CPU), containers can be configured with quotas that specify the amount of resources a container needs. On the other hand, limits regarding how much a container is allowed to consume can be specified on the Pod or for a group of Pods on the namespace level. Namespaces will be introduced as we proceed through this chapter. This is of extra importance if several teams share a common Kubernetes cluster. 

Another main purpose of Kubernetes is to provide Service discovery of the running Pods and their containers. Kubernetes Service objects can be defined for Service discovery and will also load balance incoming requests over the available Pods. Service objects can be exposed to the outside of a Kubernetes cluster. However, as we will see, an Ingress object is, in many cases, better suited to handling externally incoming traffic to a group of Services. To help Kubernetes find out whether a container is ready to accept incoming requests, a container can implement a readiness probe. 

Internally, a Kubernetes cluster provides one big flat IP network where each Pod gets its own IP 

address and can reach all the other Pods, independent of which node they run on. To support 

multiple network vendors, Kubernetes allows the use of network plugins that comply with the 

Container Network Interface (CNI) specification (https://github.com/containernetworking/

cni). Pods are not isolated by default; they accept all incoming requests. CNI plugins that support the use of network policy definitions can be used to lock down access to Pods – for example, only allowing traffic from Pods in the same namespace. 

 Chapter 15

433

To allow multiple teams to work on the same Kubernetes cluster in a safe way, Role-Based Access Control (RBAC) can be applied (https://kubernetes.io/docs/reference/access-authn-

authz/rbac/). For example, administrators can be authorized to access resources on a cluster level, while the access of team members can be locked down to resources that are created in a namespace owned by the teams. 

In total, these concepts provide a platform for running containers that is scalable, secure, highly available, and resilient. 

Let’s look a bit more into API objects that are available in Kubernetes and, after that, the runtime components that make up a Kubernetes cluster. 

Introducing Kubernetes API objects

Kubernetes defines an API that is used to manage different types of  objects or  resources, as they are also known. Some of the most commonly used types, or  kinds, as referred to in the API, are as follows:

•  Node: A node represents a server, virtual or physical, in the cluster. 

•  Pod: A Pod represents the smallest possible deployable component in Kubernetes, consisting of one or more co-located containers. The containers share the same IP address 

and port range. This means that containers in the same Pod instance can talk to each 

other over localhost but need to be aware of potential port collisions. Typically, a Pod 

consists of one container, but there are use cases for extending the functionality of the 

main container by running the second container in a Pod. In  Chapter 18,  Using a Service Mesh to Improve Observability and Management, a second container will be used in the Pods, running a sidecar that makes the main container join the service mesh. 

•  Deployment: A Deployment is used to deploy and upgrade Pods. The Deployment objects hand over the responsibility of creating and monitoring the Pods to a ReplicaSet. When 

creating a Deployment for the first time, the work performed by the Deployment object is 

not much more than creating the ReplicaSet object. When performing a rolling upgrade 

of a Deployment, the role of the Deployment object is more involved. 

•  ReplicaSet: A ReplicaSet is used to ensure that a specified number of Pods is running at all times. If a Pod is deleted, it will be replaced with a new Pod by the ReplicaSet. 

434

 Introduction to Kubernetes

•  Service: A Service is a stable network endpoint that you can use to connect to one or multiple Pods. A Service is assigned an IP address and a DNS name in the internal network of 

the Kubernetes cluster. The IP address of the Service will stay the same for the lifetime of the Service. Requests that are sent to a Service will be forwarded to one of the available 

Pods using round-robin-based load balancing. By default, a Service is only exposed inside 

the cluster using a cluster IP address. It is also possible to expose a Service outside the 

cluster, either on a dedicated port on each node in the cluster or – even better – through 

an external load balancer that is aware of Kubernetes – that is, it can automatically pro-

vision a public IP address and/or DNS name for the Service. Cloud providers that offer 

Kubernetes as a Service, in general, support this type of load balancer. 

•  Ingress: Ingress can manage external access to Services in a Kubernetes cluster, typically using HTTP or HTTPS. For example, it can route traffic to the underlying Services based 

on URL paths or HTTP headers such as the hostname. Instead of exposing a number of 

Services externally, either using node ports or through load balancers, it is, in general, 

more convenient to set up an Ingress in front of the Services. To handle the actual com-

munication defined by the Ingress objects, an Ingress controller must be running in the 

cluster. We will see an example of an Ingress controller as we proceed. 

•  Namespace: A namespace is used to group and, on some levels, isolate resources in a Kubernetes cluster. The names of resources must be unique in their namespaces, but not 

between namespaces. 

•  ConfigMap: A ConfigMap is used to store configuration that’s used by containers. ConfigMaps can be mapped into a running container as environment variables or files. 

•  Secret: Secrets are used to store sensitive data used by containers, such as credentials. 

Secrets can be made available to containers in the same way as ConfigMaps. Anyone with 

full read access to the API server can access the values of created Secrets, so they are not as safe as the name might imply. The Secret values are stored Base64-encoded, so they are in fact not encrypted. 

A few extensions to the standard Secret resource exist, which provide more 

secure alternatives. For example, HashiCorp provides an alternative based 

on HashiCorp Vault. See https://developer.hashicorp.com/vault/

tutorials/kubernetes-introduction/vault-secrets-operator. 

•  DaemonSet: This ensures that one Pod is running on each node in a set of nodes in the cluster. In  Chapter 19,  Centralized Logging with the EFK Stack, we will see an example of a log collector, Fluentd, that will run on each worker node as a DaemonSet. 

[image: Image 215]

 Chapter 15

435

For a full list of resource objects that the Kubernetes API covers in v1.32, see https://kubernetes. 

io/docs/reference/generated/kubernetes-api/v1.32/. 

The following diagram summarizes the Kubernetes resources that are involved in handling in-

coming requests:

 Figure 15.1: Overview of Kubernetes resources

In the preceding diagram, we can see the following:

•  Two Deployments, Deployment A and Deployment B, have been deployed to a cluster with two nodes, Node 1 and Node 2

•  Deployment A contains two Pods, Pod A1 and Pod A2

•  Deployment B contains one Pod, Pod B1

•  Pod A1 is scheduled to Node 1

•  Pod A2 and Pod B1 are scheduled to Node 2

•  Each Deployment has a corresponding Service deployed, Service A and Service B, and they are available on all nodes

•  An Ingress is defined to route incoming requests to the two Services

•  A client typically sends requests to the cluster via an external load balancer

436

 Introduction to Kubernetes

These objects are not, by themselves, running components; instead, they are definitions of different types of desired states. To reflect the desired state in the cluster’s current state, Kubernetes comes with an architecture consisting of a number of runtime components, as described in the next section. 

Introducing Kubernetes runtime components

A Kubernetes cluster contains two types of nodes: master nodes and worker nodes. Master nodes manage the cluster, while the main purpose of worker nodes is to run the actual workload – for example, the containers we deploy in the cluster. Kubernetes is built up of a number of runtime components. The most important components are as follows:

•  There are components that run on master nodes, constituting the control plane:

•  API server, the entry point to the control plane. This exposes a RESTful API, which, for example, the Kubernetes CLI tool known as kubectl uses. 

•  etcd, a highly available and distributed key/value store, used as a database for 

all cluster data. 

•  A controller manager, which contains a number of controllers that continuously 

evaluate the desired state versus the current state for the objects defined in the 

etcd database. Whenever the desired or current state changes, a controller that’s 

responsible for that type of state takes action to move the current state to the de-

sired state. For example, a replication controller that’s responsible for managing 

Pods will react if a new Pod is added through the API server or a running Pod is 

deleted and ensures that new Pods are started. Another example of a controller 

is the node controller. It is responsible for acting if a node becomes unavailable, 

ensuring that Pods running on a failing node are rescheduled on other nodes in 

the cluster. 

•  A scheduler, which is responsible for assigning newly created Pods to a node with 

available capacity – for example, in terms of memory and CPU. Affinity rules can 

be used to control how Pods are assigned to nodes. For example, Pods that perform 

a lot of disk I/O operations can be assigned to a group of worker nodes that have 

fast SSD disks. Anti-affinity rules can be defined to separate Pods – for example, 

to avoid scheduling Pods from the same Deployment to the same worker node. 

 Chapter 15

437

•  There are also components that run on all the nodes, constituting the data plane:

•  kubelet, a node agent that executes as a process directly in the nodes’ operating 

system and not as a container. A kubelet ensures that the Pods that are scheduled 

to its node have their containers up and running and that they are healthy. It acts 

as a conduit between the API server and the container runtime on its node. 

•  kube-proxy, a network proxy that enables the Service concept in Kubernetes and is 

capable of forwarding requests to the appropriate Pods, typically in a round-robin 

fashion if more than one Pod is available for the specific Service. kube-proxy is 

deployed as a DaemonSet. 

•  Container runtime, which is the software that runs the containers on a node. 

Historically, Kubernetes used Docker Engine, but today, any implementation of 

the Kubernetes Container Runtime Interface (CRI) can be used, such as cri-o (https://cri-o.io) and containerd (https://containerd.io/). Support for Docker Engine was removed in Kubernetes v1.24. 

containerd is actually the container engine of Docker. It was separat-

ed from Docker back in 2017 and is today a graduated CNCF project. 

•  Kubernetes DNS, which is a DNS server that’s used in the cluster’s internal net-

work. Services and Pods are assigned a DNS name, and Pods are configured to use 

this DNS server to resolve the internal DNS names. The DNS server is deployed as 

a Deployment object and a Service object. 

[image: Image 216]

438

 Introduction to Kubernetes

The following diagram summarizes the Kubernetes runtime components described previously:

 Figure 15.2: Overview of Kubernetes runtime components

Based on the diagram, we can imagine the following sequence of events:

1.  An operator uses kubectl to send in a new desired state to Kubernetes, containing manifests declaring a new Deployment, Service, and Ingress object. The Ingress defines a route to the Service object and the Service object is defined to select Pods that are configured 

by the Deployment object. 

2. kubectl talks to the API server and it stores the new desired state as objects in the etcd database. 

3.  Various controllers will react to the creation of the new objects and take the following actions:

•  For the Deployment object:

•  New ReplicaSet and Pod objects will be registered in the API server. 

•  The scheduler will see the new Pod(s) and schedule them to the appro-

priate worker nodes. 

•  On each worker node, the kubelet agent will launch containers as de-

scribed by the Pods. The kubelet will use the container runtime on the 

worker node to manage the containers. 

 Chapter 15

439

•  For the Service object:

•  A DNS name will be registered in the internal DNS server for the Service 

object and the kube-proxies will be able to route requests that use the 

DNS name to one of the available Pods. 

Note that Pods are reachable from any node in the cluster, so the 

kube-proxy does not need to run on the same node as the Pod to be 

able to forward requests to it. 

•  For the Ingress object:

•  An Ingress controller will set up routes according to the Ingress object 

and be ready to accept requests from outside of the Kubernetes cluster. 

External requests that match the routes defined by the Ingress object will 

be forwarded by the Ingress controller to the Service object. These requests 

will be forwarded by the kube-proxy to a Pod, as described previously. 

Now that we understand the Kubernetes runtime components and what they support and run 

on, let’s move on to creating a Kubernetes cluster with minikube. 

Creating a Kubernetes cluster using minikube

Now, we are ready to create a Kubernetes cluster! We will use minikube to create a local single-node cluster. 

Several alternatives to running a local Kubernetes cluster for development using 

minikube exist. Here are some:

• 

kind: see https://kind.sigs.k8s.io

• 

Docker Desktop (with Kubernetes): see https://docs.docker.com/

desktop/features/kubernetes/

• 

MicroK8s: see https://microk8s.io

• 

k0s: see https://k0sproject.io

• 

k3s: https://k3s.io 

440

 Introduction to Kubernetes

minikube can be deployed in a VM, a container, or on bare metal using different drivers. We 

will use one of the preferred drivers, the Docker driver, where the minikube instance runs in a container managed by Docker Desktop on macOS and Windows with Windows Subsystem for 

Linux, v2 (WSL 2). 

For information on available drivers in minikube, see https://minikube.sigs. 

k8s.io/docs/drivers/. 

Docker and its containers are already running in a separate WSL 2 instance; see the 

Installing Docker Desktop for Windows section in  Chapter 22, Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu. 

One drawback of running minikube as a container on Docker is that ports exposed by minikube 

are only accessible in the host that runs Docker. To make the ports available to Docker clients – for example, macOS or the Linux server we will use on WSL 2 – we can specify port mappings when 

creating the minikube cluster. 

Before creating the Kubernetes cluster, we need to learn a bit about minikube profiles, the Kubernetes CLI tool known as kubectl, and its use of contexts. 

Working with minikube profiles

In order to run multiple Kubernetes clusters locally, minikube comes with the concept of profiles. 

For example, if you want to work with multiple versions of Kubernetes, you can create multiple Kubernetes clusters using minikube. Each cluster will be assigned a separate minikube profile. 

Most of the minikube commands accept a --profile flag (or -p for short), which can be used 

to specify which of the Kubernetes clusters the command will be applied to. If you plan to work with one specific profile for a while, a more convenient alternative exists, where you specify the current profile with the following command:

minikube profile my-profile

This command will set the my-profile profile as the current profile. 

To get the current profile, run the following command:

minikube config get profile

If no profile is specified, either using the minikube profile command or the --profile switch, a default profile named minikube will be used. 

 Chapter 15

441

Information regarding existing profiles can be found with the minikube profile list command. 

Working with the Kubernetes CLI, kubectl

kubectl is the Kubernetes CLI tool. Once a cluster has been set up, this is usually the only tool you need to manage the cluster! 

For managing the API objects, as we described earlier in this chapter, the kubectl apply command is the only command you need to know about. It is a declarative command; that is, as an operator, we ask Kubernetes to apply the object definition we give to the command. It is then up to Kubernetes to figure out what actually needs to be done. 

Another example of a declarative command that’s hopefully familiar to many readers 

of this book is a SQL SELECT statement, which can join information from several 

database tables. We only declare the expected result in the SQL query, and it is up 

to the database query optimizer to figure out in what order the tables should be 

accessed and what indexes to use to retrieve the data in the most efficient way. 

In some cases, imperative statements that explicitly tell Kubernetes what to do are preferred. One example is the kubectl delete command, where we explicitly tell Kubernetes to delete some 

API objects. Creating a namespace object can also be conveniently done with an explicit kubectl create namespace command. 

Repetitive usage of the imperative statements will make them fail – for example, deleting the same API object twice using kubectl delete or creating the same namespace twice using kubectl create. A declarative command (that is, using kubectl apply) will not fail on repetitive usage – it will simply state that there is no change and exit without taking any action. 

Some commonly used commands for retrieving information about a Kubernetes cluster are as 

follows:

•  kubectl get shows information about the specified API object

•  kubectl describe gives more detail about the specified API object

•  kubectl logs displays log output from containers

We will see a lot of examples of these and other kubectl commands in this and the upcoming 

chapters! 

[image: Image 217]

442

 Introduction to Kubernetes

If in doubt about how to use the kubectl tool, the kubectl help and kubectl <command> --help commands are always available and provide very useful information. Another helpful command 

is kubectl explain, which can be used to show what fields are available when declaring a Kubernetes object. For example, run the following command if you need to look up the fields available to describe a container in the template of a Deployment object:

kubectl explain deployment.spec.template.spec.containers

Working with kubectl contexts

To be able to work with more than one Kubernetes cluster, using either minikube locally or Kubernetes clusters set up on on-premises servers or in the cloud, kubectl comes with the concept of contexts. A context is a combination of the following:

•  A Kubernetes cluster

•  Authentication information for a user

•  A default namespace

By default, contexts are saved in the ~/.kube/config file, but the file can be changed using the KUBECONFIG environment variable. In this book, we will use the default location, so we will unset KUBECONFIG using the unset KUBECONFIG command. 

When a Kubernetes cluster is created in minikube, a context is created with the same name as the minikube profile and is then set as the current context. So, kubectl commands that are issued after the cluster is created in minikube will be sent to that cluster. 

To list the available contexts, run the following command:

kubectl config get-contexts

The following is a sample response:

 Figure 15.3: List of kubectl contexts

The wildcard, *, in the first column marks the current context. 

 Chapter 15

443

You will only see the handson-spring-boot-cloud context in the preceding re-

sponse once the cluster has been created, the process for which we will describe 

shortly. 

If you want to switch the current context to another context – that is, work with another Kubernetes cluster – run the following command:

kubectl config use-context my-cluster

In this example, the current context will be changed to my-cluster. 

To update a context (for example, switching the default namespace used by kubectl), use the 

kubectl config set-context command. 

For example, to change the default namespace of the current context to my-namespace, use the following command:

kubectl config set-context $(kubectl config current-context) --namespace 

my-namespace

In this command, kubectl config current-context is used to get the name of the current context. 

Creating a Kubernetes cluster

To create a Kubernetes cluster using minikube, we need to run a few commands:

•  Unset the KUBECONFIG environment variable to ensure that the kubectl context is created 

in the default config file, ~/.kube/config. 

•  Create the cluster using the minikube start command, where we can also specify what 

version of Kubernetes to use and the amount of hardware resources we want to allocate 

to the cluster:

•  To be able to complete the examples in the remaining chapters of this book, allocate 10 

GB of memory (that is, 10,240 MB) to the cluster. The samples should also work if only 6 

GB (6,144 MB) is allocated to the minikube cluster, albeit more slowly. 

•  Allocate the number of CPU cores and disk space you find suitable; 4 CPU cores and 30 

GB of disk space are used in the following example. 

•  Specify what version of Kubernetes will be used. In this book, we will use v1.32.0. 

•  Specify that we will use the Docker driver as described previously. 

444

 Introduction to Kubernetes

•  Specify the required port mappings. Ports 8080 and 8443 will be used by the Ingress con-

troller, and ports 30080 and 30443 will be used by Services of the NodePort type. 

See  Chapter 16 , Deploying Our Microservices to Kubernetes,  for information on how the Gateway server deploys a Service of the NodePort type. 

•  Specify the minikube profile to be used for the coming minikube commands. We will use 

handson-spring-boot-cloud as the profile name. 

•  After the cluster has been created, we will use the add-on manager in minikube to enable 

an Ingress controller and a metrics server that comes out of the box with minikube. The 

Ingress controller and the metrics server will be used in the next chapters. 

Run the following commands to create the Kubernetes cluster:

unset KUBECONFIG

minikube start \

--profile=handson-spring-boot-cloud \

--memory=10240 \

--cpus=4 \

--disk-size=30g \

--kubernetes-version=v1.32     .     0 \

--driver=docker \

--ports=8080:80 --ports=8443:443 \

--ports=30080:30080 --ports=30443:30443

minikube profile handson-spring-boot-cloud

minikube addons enable ingress

minikube addons enable metrics-server

After the preceding commands are complete, you should be able to communicate with the cluster. 

Try the kubectl get nodes command. It should respond with something that looks similar to 

the following:

[image: Image 218]

[image: Image 219]

 Chapter 15

445

 Figure 15.4: List of nodes in the Kubernetes cluster

Once created, the cluster will initialize itself in the background, starting up a number of system Pods in the kube-system and the ingress-nginx namespace. We can monitor its progress by 

issuing the following command:

kubectl get pods --all-namespaces

Once the startup is complete, the preceding command should report the status for all Pods as Running and the READY count should be 1/1, meaning that a single container in each Pod is up and running:

 Figure 15.5: List of running system Pods

Note that two Pods are reported as Completed, and not Running. They are Pods created by Job objects, used to execute a container a fixed number of times such as a batch job. Run the kubectl get jobs --namespace=ingress-nginx command to reveal the two Job objects. 

We are now ready for some action! 

Trying out a sample Deployment

Let’s see how we can do the following:

•  Deploy a simple web server based on NGINX in our Kubernetes cluster

446

 Introduction to Kubernetes

•  Apply some changes to the Deployment:

•  Change the current state by deleting the Pod and verify that the ReplicaSet cre-

ates a new one

•  Change the desired state by scaling the web server to three Pods and verify that 

the ReplicaSet fills the gap by starting up two new Pods

•  Route external traffic to the web server using a Service with a node port

First, create a namespace, first-attempts, and update the kubectl context to use this name-

space by default:

kubectl create namespace first-attempts

kubectl config set-context $(kubectl config current-context) 

--namespace=first-attempts

We can now create a Deployment of NGINX in the namespace using the kubernetes/first-

attempts/nginx-deployment.yaml file. This file looks as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deploy

spec:

replicas: 1

selector:

matchLabels:

app: nginx-app

template:

metadata:

labels:

app: nginx-app

spec:

containers:

- name: nginx-container

image: nginx:latest

ports:

- containerPort: 80

 Chapter 15

447

Let’s explain this source code in more detail:

•  The kind and apiVersion attributes are used to specify that we are declaring a Deploy-

ment object. 

•  The metadata section is used to describe the Deployment object. For example, we give it 

the name nginx-deploy. 

Other commonly used metadata for a Kubernetes object include the name 

of the namespace it belongs to, labels, and annotations. We will see them 

used in this chapter and the following chapters. 

Next comes a spec section that defines our desired state for the Deployment object:

•  replicas: 1 specifies we want to have one Pod up and running. 

•  The selector section specifies how the Deployment will find the Pods it manag-

es. In this case, the Deployment will look for Pods that have the app label set to 

nginx-app. 

•  The template section is used to specify how Pods will be created. 

•  The metadata section specifies the label, app: nginx-app, which is used to identify the Pods, thereby matching the selector. 

•  The spec section specifies details for the creation of the single container in the 

Pod, that is, name, image, and what ports it uses. 

Create the Deployment with the following commands:

cd $BOOK_HOME/Chapter15

kubectl apply -f kubernetes/first-attempts/nginx-deployment.yaml

[image: Image 220]

448

 Introduction to Kubernetes

Let’s see what we got with the kubectl get all command:

 Figure 15.6: Kubernetes objects created by the sample deployment

As expected, we got a Deployment, ReplicaSet, and Pod object. After a short while, which mainly depends on the time it takes to download the NGINX Docker image, the Pod will be up and running, reported as 1/1 in the READY column, meaning that the desired state is equal to the current state! 

Now, we will change the current state by deleting the Pod. Before deleting the Pod, run the kubectl get pod --watch command in another terminal. The use of the --watch option makes the command hang, waiting for state changes of Pods in the current namespace. Delete the Pod using 

the following command:

kubectl delete pod --selector app=nginx-app

Since the Pod has a random name (nginx-deploy-79f9d4bcf5-vxmw7 in the preceding example), 

the Pod is selected based on the app label, which is set to nginx-app in the Pod. 

Note how kubectl get pod --watch reports how the current Pod is terminated and, at the same 

time, a new Pod is started up. It is the ReplicaSet that detects the difference between the desired and current state and almost immediately starts up a new Pod to compensate for the deviation. 

The reported events should look like the following screenshot:

[image: Image 221]

[image: Image 222]

 Chapter 15

449

 Figure 15.7: kubectl get pod --watch reporting changes to the Pods

In the screenshot, we can see that the Pod with a name ending with cgc2v was stopped by the 

delete command and that the ReplicaSet immediately started up a new Pod with a name ending 

with knhfp. 

Change the desired state by setting the number of desired Pods to three replicas in the kubernetes/

first-attempts/nginx-deployment.yaml Deployment file. Apply the change in the desired state 

by simply repeating the kubectl apply command, as we mentioned previously. 

Again, note that the kubectl get pod --watch command reports new Pods being launched by 

the ReplicaSet to get the current state equivalent to the new desired state – that is, three Pods. 

After a few seconds, two new NGINX Pods will be reported as up and running. Stop the command with Ctrl + C. 

Run the kubectl get all command and expect a response that looks similar to the following:

 Figure 15.8: New Pods started up by Kubernetes to meet the desired state

450

 Introduction to Kubernetes

Note the three Pods and that the Deployment object reports 3/3. This is interpreted as three ready and three desired Pods, meaning that all desired Pods are ready to be used. 

To enable external communication with the web servers, create a Service using the kubernetes/

first-attempts/nginx-service.yaml file. It looks like the following:

apiVersion: v1

kind: Service

metadata:

name: nginx-service

spec:

type: NodePort

selector:

app: nginx-app

ports:

- targetPort: 80

port: 80

nodePort: 30080

The kind and apiVersion attributes are used to specify that we are declaring a Service object. 

The metadata section is used to describe the Service object – for example, to give it a name: nginx-service. 

Next comes a spec section, which defines the desired state of the Service object:

•  With the type field, we specify that we want NodePort – that is, a Service that is accessible externally on a dedicated port on each node in the cluster. This means that an external 

caller can reach the Pods behind this Service using this port on any of the nodes in the 

cluster, independent of which nodes the Pods actually run on. 

•  The selector is used by the Service to find available Pods, which, in our case, are Pods 

labeled with app: nginx-app. 

•  Finally, ports are declared as follows:

•  port: 80 specifies which port the Service will be accessible on – that is, internally 

in the cluster. 

•  targetPort: 80 specifies the port in the Pod where the requests will be forwarded 

to. 

•  nodePort: 30080 specifies which port the Service will be externally accessible 

on using any of the nodes in the cluster. By default, a node port must be in the 

range of 30000 to 32767. 

[image: Image 223]

 Chapter 15

451

This port range is used to minimize the risk of colliding with other ports in use. In 

a production system, a load balancer is typically placed in front of the Kubernetes 

cluster, shielding the external users both from the knowledge of these ports and the 

IP numbers of the nodes in the Kubernetes cluster. See  Chapter 18,  Using a Service Mesh to Improve Observability and Management, specifically the  Setting up access to Istio Services section, for more on the usage of a LoadBalanced Kubernetes Service. 

Create the Service with the following command:

kubectl apply -f kubernetes/first-attempts/nginx-service.yaml

To see what we get, run the kubectl get svc command. Expect a response like the following:

 Figure 15.9: The NodePort Service for our Deployment

kubectl supports short names for many of the API objects as an alternative to their 

full name. For example, svc was used in the preceding command instead of the full 

name, service. Run the kubectl api-resources command to see all available 

short names. 

To access the web server through the Service’s node port, we need to know the IP address or 

hostname of the single node in our cluster. When using the Docker driver, the hostname is always localhost. 

The node port, 30080, is forwarded from the Docker engine by the –ports option in the minikube start command. See the previous  Creating a Kubernetes cluster section for details. This means that the Service can be reached at the address localhost:30080. 

Ports opened in a WSL 2 instance are accessible in Windows on localhost. 

[image: Image 224]

452

 Introduction to Kubernetes

With this information, we can direct a web browser on macOS and Windows to the deployed 

web server using the address http://localhost:30080. Expect a response such as the following: Figure 15.10: NGINX default web page

Great! But what about the internal cluster IP address and port? 

One way to verify that the web server is also reachable internally in the cluster is to launch a small Pod that we can use to run curl from the inside. The curl command will use the internal cluster IP address and port. We don’t need to use the internal IP address; instead, we can use a DNS name that is created for the Service in the internal DNS server. The short name of the DNS 

name is the same as the name of the Service – that is, nginx-service. 

The full DNS name of a Service is <service-name>.<namespace>.svc.cluster. 

local. The full name for this Service is nginx-service.first-attempts.svc. 

cluster.local. Since we will run the following command in the same namespace, 

we can use the short name. 

Run the following command:

kubectl run -i --rm --restart=Never curl-client --image=curlimages/curl 

--command -- curl -s 'http://nginx-service:80' 

The command looks a bit complex, but it will do the following:

1.  Create a Pod with a small container based on the Docker image, curlimages/curl, which 

contains the curl command. 

2.  Run the curl -s 'http://nginx-service:80' command inside the container and redirect 

the output to the terminal using the -i option. 

3.  Delete the Pod using the --rm option. 

[image: Image 225]

 Chapter 15

453

Expect the output from the preceding command to contain the following information (we are 

only showing parts of the response here):

 Figure 15.11: Accessing NGINX inside the Kubernetes cluster

This means that the web server is also accessible internally in the cluster! 

This is basically all we need to know to be able to deploy our system landscape. 

Wrap this up by removing the namespace containing the nginx Deployment:

kubectl delete namespace first-attempts

Before we end this introductory chapter on Kubernetes, we need to learn how to manage our 

Kubernetes cluster. 

Managing a local Kubernetes cluster

A running Kubernetes cluster consumes a lot of resources, mostly memory. So, when we are done working with a Kubernetes cluster in minikube, we must be able to hibernate it in order to release the resources allocated to it. We also need to know how to resume the cluster when we want to continue working with it. Eventually, we must also be able to permanently remove the cluster when we don’t want to keep it on disk anymore. 

minikube comes with a stop command that can be used to hibernate a Kubernetes cluster. The 

start command we used to initially create the Kubernetes cluster can also be used to resume 

the cluster from its hibernated state. To permanently remove a cluster, we can use the delete command from minikube. 

454

 Introduction to Kubernetes

Hibernating and resuming a Kubernetes cluster

Run the following command to hibernate (that is, stop) the Kubernetes cluster:

minikube stop

Run the following command to resume (that is, start) the Kubernetes cluster again:

minikube start

Running kubectl commands directly after restarting the cluster might result in error messages like this:

E0428 09:44:16.333361   79175 memcache.go:106] couldn't get resource list 

for metrics.k8s.io/v1beta1: the server is currently unable to handle the 

request

This is due to metrics-server being a bit slow on starting up; the error message will disappear after a short while. 

When resuming an already existing cluster, the start command ignores switches 

that were used when you were creating the cluster. 

After resuming the Kubernetes cluster, the kubectl context will be updated to use this cluster with the currently used namespace set to default. If you are working with another namespace (for 

example, the hands-on namespace that we will use in the upcoming chapter,   Chapter 16,  Deploying Our Microservices to Kubernetes), you can update the kubectl context with the following command: kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

Subsequent kubectl commands will be applied to the hands-on namespace when applicable. 

minikube also comes with a more lightweight and faster alternative to the stop and 

start commands: the pause and unpause commands. In this case, the components 

in the control plane are paused, not stopped, reducing the CPU consumption of the 

cluster to a minimum. I have, however, seen issues with these commands when 

used in the recent chapters, so I recommend using the start and stop commands. 

 Chapter 15

455

Terminating a Kubernetes cluster

If you later want to terminate the Kubernetes cluster, you can run the following command:

minikube delete --profile handson-spring-boot-cloud

You can actually run the delete command without specifying the profile, but I find it safer to be explicit about the profile. Otherwise, you may accidentally delete the wrong Kubernetes cluster! 

We’ve successfully learned how to manage a Kubernetes cluster that runs in minikube. We now 

know how to suspend and resume a cluster and, when no longer needed, we know how to per-

manently remove it. 

Summary

In this chapter, we have been introduced to Kubernetes as a container orchestrator. 

Using Kubernetes, we can handle a cluster of servers as one big logical server that runs our containers. We declare a desired state for the Kubernetes cluster, and it ensures that the actual state is the same as the desired state at all times, provided that enough hardware resources are available in the cluster. 

The desired state is declared by creating resources using the Kubernetes API server. The controller manager in Kubernetes and its controllers react to the various resources that were created by the API server and take actions to ensure that the current state meets the new desired state. The scheduler assigns nodes to newly created containers – that is, Pods that contain one or more containers. On each node, an agent (a kubelet) runs and ensures that the Pods that were scheduled to its node are up and running. The kube-proxy acts as a network proxy, enabling a Service abstraction by forwarding requests that are sent to the Service to available Pods in the cluster. 

External requests can be handled either by a Kubernetes-aware load balancer that can provision a public IP address and/or DNS name for the Service, a node port that’s available on all of the nodes in the cluster, or through a dedicated Ingress resource. 

We also tried out Kubernetes by creating a local single-node cluster using minikube. The minikube cluster runs as a Docker container using the Docker driver. To make ports accessible outside of the Docker engine, we can use the --ports option on the minikube start command. Using the 

Kubernetes CLI tool known as kubectl, we deployed a simple web server based on NGINX. We 

tried out resilience capabilities by deleting the web server, and we observed it being recreated automatically. We learned how to manually scale it by requesting that three Pods run on the web server. We created a Service with a node port and verified that we could access it both externally and from the inside of the cluster. 

[image: Image 226]

456

 Introduction to Kubernetes

Finally, we learned how to manage a Kubernetes cluster running in minikube in terms of how to hibernate, resume, and terminate the cluster. 

We are now ready to deploy our system landscape from the earlier chapters in Kubernetes. Head over to the next chapter to find out how to do this! 

Questions

1.  What happens if you run the same kubectl create command twice? 

2.  What happens if you run the same kubectl apply command twice? 

3.  In terms of questions 1 and 2, why do they act differently the second time they are run? 

4.  What is the purpose of a ReplicaSet, and what other resource creates a ReplicaSet? 

5.  What is the purpose of etcd in a Kubernetes cluster? 

6.  How can a container find out the IP address of another container that runs in the same Pod? 

7.  What happens if you create two Deployments with the same name but in different name-

spaces? 

8.  What configuration of two Services with the same name can make them fail, even if they 

are created in two different namespaces? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

16

Deploying Our Microservices to 

Kubernetes

In this chapter, we will deploy the microservices in this book to Kubernetes. To bundle and configure the microservices for Deployments in different runtime environments, Helm, a package manager for Kubernetes, will be used. Before doing that, we need to review how Service discovery is used. Since Kubernetes comes with built-in support for Service discovery, it seems unnecessary to deploy Netflix Eureka for that purpose. Finally, we will also try out some Spring Boot features that facilitate the deployment of microservices in Kubernetes. 

The following topics will be covered in this chapter:

•  Replacing Netflix Eureka with Kubernetes Service objects and kube-proxy for Service 

discovery

•  Introducing how Kubernetes will be used

•  Using Spring Boot’s support for graceful shutdown and probes for liveness and readiness

•  Using Helm to package, configure, and deploy the microservices in different environments

•  Verifying the deployments with the test script, test-em-all.bash

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

458

 Deploying Our Microservices to Kubernetes

The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter16. 

If you want to view the changes applied to the source code in this chapter – that is, see what it took to deploy the microservices on Kubernetes – you can compare this source code with that in 

 Chapter 15,  Introduction to Kubernetes. You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter15 and $BOOK_HOME/Chapter16. 

Replacing Netflix Eureka with Kubernetes Services

As shown in the previous chapter,  Chapter 15,  Introduction to Kubernetes, Kubernetes comes with a built-in discovery service based on Kubernetes Service objects and the kube-proxy runtime 

component. This makes it unnecessary to deploy a separate discovery service such as Netflix 

Eureka, which we used in the previous chapters. 

An advantage of using the Kubernetes discovery service is that it doesn’t require a client library such as Spring Cloud LoadBalancer, which we have used together with Netflix Eureka. This makes the Kubernetes discovery service easy to use, independent of which language or framework a 

microservice is based on. 

A drawback of using the Kubernetes discovery service is that it only works in a Kubernetes environment. However, since the discovery service is based on kube-proxy, which accepts requests to the DNS name or IP address of a Service object, it should be fairly simple to replace it with a similar discovery service – for example, one that comes bundled with another container orchestrator. 

To summarize this, we will remove the discovery server based on Netflix Eureka from our microservice landscape, as illustrated in the following diagram:

[image: Image 227]

 Chapter 16

459

 Figure 16.1: Replacing Netflix Eureka with the Kubernetes built-in discovery service

To replace the discovery server based on Netflix Eureka with the built-in discovery service in Kubernetes, we need to make some changes in our build and configuration files. We do not need to make any changes in the Java source code, except for some of the test classes, where a property is no longer required and will therefore be removed. The following changes have been applied to the source code:

•  Netflix Eureka and the Spring Cloud LoadBalancer-specific configuration (client and serv-

er) have been removed from the configuration repository, config-repo. 

•  Routing rules in the gateway Service to the Eureka server have been removed from the 

config-repo/gateway.yml file. 

•  The Eureka server project, in the spring-cloud/eureka-server folder, has been removed. 

•  The Eureka server has been removed from the Docker Compose files and the settings. 

gradle Gradle file. 

•  The dependency on spring-cloud-starter-netflix-eureka-client has been removed 

in all of Eureka’s client build files, build.gradle. 

460

 Deploying Our Microservices to Kubernetes

•  The eureka.client.enabled=false property setting has been removed from all integra-

tion tests of former Eureka clients. 

•  The gateway Service no longer uses routing based on the client-side load balancer in Spring Cloud LoadBalancer, using the lb protocol. For example, the lb://product-composite 

routing destination has been replaced with http://product-composite in the config-

repo/gateway.yml file. 

•  The HTTP port used by the microservices and the authorization server has been changed 

from port 8080 (9999 in the case of the authorization server) to the default HTTP port, 80. 

This has been configured in config-repo for each affected Service, like so:

spring.config.activate.on-profile: docker

server.port: 80

None of the HTTP addresses that we will use are affected by the replacement of Netflix Eureka with Kubernetes Services. For example, addresses used by the composite Service are unaffected: private final String productServiceUrl = "http://product"; 

private final String recommendationServiceUrl = "http://recommendation"; 

private final String reviewServiceUrl = "http://review"; 

This is because we changed the HTTP port used by the microservices and the authorization server to the default HTTP port, 80, as described previously. 

Using Docker Compose still works, even though Netflix Eureka has been removed. 

The main reason that this works is that the container names in the Docker Compose 

files are the same as the corresponding Service names used in Kubernetes, meaning 

that the microservices’ DNS names are the same in both environments. This can be 

used to run functional tests of the microservices without deploying them to Kuber-

netes – for example, running test-em-all.bash together with Docker Desktop in 

the same way we did in the previous chapters. Removing Netflix Eureka, however, 

means that we no longer have a discovery service in place when using plain Docker 

and Docker Compose. Therefore, scaling microservices will only work when de-

ploying to Kubernetes. 

In  Chapter 17,  Implementing Kubernetes Features to Simplify the System Landscape, in the  Verifying that microservices work without Kubernetes section, we will discuss the importance of avoiding the source code of the microservices being dependent on the 

Kubernetes platform, thus avoiding vendor lock-in. We will also use the test script, 

test-em-all.bash, together with Docker Compose, to verify that the microservices 

don’t require Kubernetes from a functional perspective. 

 Chapter 16

461

Now that we’ve familiarized ourselves with how Netflix Eureka will be replaced with Kubernetes Services, let’s introduce the other Kubernetes objects we will use. 

Introducing how Kubernetes will be used

Later on in the chapter, we will see in detail how various Kubernetes objects are used to deploy the microservices and the resource managers they depend on, such as databases and queue managers. 

Before delving into all the details, let’s get an overview of the Kubernetes objects that will be used:

•  For each microservice, database, and queue manager that will be deployed in Kubernetes, 

one Deployment object and one Service object will be created. For all components, except 

for the edge server named gateway, the Service object will be of the ClusterIP type. For 

the gateway, the Service object will be of the NodePort type, accepting external HTTPS 

requests on port 30433. 

•  The config server will use a ConfigMap, containing the configuration files in config-repo. 

•  To hold credentials for the config server and its clients, two Secrets will be created: one for the config server and one for its clients. 

Now that we’ve seen what Kubernetes objects will be created, let’s learn about the Spring Boot features that facilitate deployment to Kubernetes. 

Using Spring Boot’s support for graceful shutdown 

and probes for liveness and readiness

Back in Spring Boot v2.3, a couple of useful features were added to support deployments to Kubernetes:

•  Graceful shutdown: Whenever a microservice instance needs to be stopped (for example, in a rolling upgrade scenario), there is a risk that active requests are affected when the 

instance is stopped. To minimize this risk, Spring Boot has added support for graceful 

shutdown. When applying graceful shutdown, a microservice stops accepting new re-

quests and waits for a configurable time for active requests to complete before it shuts 

down the application. Requests that take a longer time to complete than the shutdown 

wait period will be aborted. These requests will be seen as exceptional cases that a shut-

down procedure can’t wait for before it stops the application. 

Graceful shutdown is enabled by default, and has been configured with a waiting period 

of 10 seconds for all microservices by adding the following to the common application. 

yml file in the config-repo folder:

spring.lifecycle.timeout-per-shutdown-phase: 10s

462

 Deploying Our Microservices to Kubernetes

For more information, see https://docs.spring.io/spring-boot/3.5/reference/web/

graceful-shutdown.html. 

•  Liveness and readiness probes: As described in  Chapter 15,  Introduction to Kubernetes, proper implementations of liveness and readiness probes are essential for Kubernetes to 

be able to manage our Pods. To briefly recap, a liveness probe tells Kubernetes whether a 

Pod needs to be replaced, and a readiness probe tells Kubernetes whether its Pod is ready 

to accept requests. To simplify this work, Spring Boot has added support to implement 

liveness and readiness probes. The probes are exposed on the URLs /actuator/health/

liveness and /actuator/health/readiness, respectively. They can either be declared 

by configuration or implementation in source code if increased control is required com-

pared to what configuration gives. When declaring the probes by configuration, a health 

group can be declared for each probe, specifying what existing health indicators it should include. For example, a readiness probe should report DOWN if a microservice can’t access its MongoDB database. In this case, the health group for the readiness probe should include 

the mongo health indicator. For available health indicators, see https://docs.spring.io/

spring-boot/3.5/reference/actuator/endpoints.html#actuator.endpoints.health. 

auto-configured-health-indicators. 

In this chapter, we will declare the probes using the following configuration in the com-

mon application.yml file in the config-repo folder:

management.endpoint.health.probes.enabled: true

management.endpoint.health.group.readiness.include: readinessState, 

rabbit, db, mongo

The first line of the configuration enables the liveness and readiness probes. The second 

line declares that readiness probes will include health indicators for RabbitMQ, MongoDB, 

and SQL databases, if available. For the liveness probe, we don’t need to add any extra 

health indicators. For the scope of this chapter, it is sufficient that the liveness probe 

reports UP given that the Spring Boot application is up and running. 

For more information, see https://docs.spring.io/spring-boot/3.5/

reference/actuator/endpoints.html#actuator.endpoints. 

kubernetes-probes. 

 Chapter 16

463

We will try out these features once we have deployed our microservices in Kubernetes. Before we do that, we need to learn about Helm and see how it helps us bundle, configure, and deploy microservices to Kubernetes. 

Introducing Helm

As described previously, deploying a microservice to Kubernetes requires writing manifest files that declare the desired state of a Deployment object and a Service object. If we also need to add some configuration for the microservices, manifests for ConfigMaps and Secrets must be added. 

The approach of declaring a desired state and handing over the responsibility to Kubernetes to ensure that the actual state is always as close as possible to the desired state is very useful. 

However, writing and maintaining these manifest files can become a significant maintenance 

overhead. The files will contain a lot of boilerplate code, meaning duplicated manifests that will look the same for all microservices. It is also cumbersome to handle environment-specific settings without duplicating the whole set of manifest files, even though only a fraction of the content needs to be updated. 

In the case of a few microservices that will only be deployed to a few environments, such as a test, QA, and production environment, this might not be a major issue to handle. When the number 

of microservices grows to tens and hundreds and it must be possible to deploy different groups of microservices to different test, QA, and production environments, this quickly becomes an unmanageable maintenance problem. 

To address these shortcomings, we will use Helm (https://helm.sh), an open source-based package manager for Kubernetes. Helm comes with a templating language that can be used 

to extract settings specific to a microservice or an environment from generic definitions of the various Kubernetes objects used. 

For smaller system landscapes with only a few Deployment objects, simpler tem-

plating tools can be sufficient. For example, if you are already familiar with Ansible 

and its Jinja2 templates, they can be used instead. Also, kubectl itself comes with 

built-in support for Kustomize, offering a template-free alternative to customize 

Kubernetes manifest files. 

A package is known as a chart in Helm. A chart contains templates, default values for the templates, and optional dependencies on definitions in other charts. Each component that needs to be deployed (meaning the microservices and the resource managers they depend on like databases 

and queue managers) will have its own chart describing how to deploy it. 

464

 Deploying Our Microservices to Kubernetes

To extract boilerplate definitions from the components’ charts, a special type of chart, a library chart, will be used. A library chart doesn’t contain any deployable definitions but only templates expected to be used by other charts for Kubernetes manifests – in our case, for Deployment, Service, ConfigMap, and Secret objects. 

Finally, to be able to describe how to deploy all components into different types of environments (for example, for development and testing or staging and production), the concept of parent charts and subcharts will be used. We will define two types of environments, dev-env and prod-env. Each environment will be implemented as a parent chart that depends on different sets 

of subcharts, for example, the microservice charts. The environment charts will also provide environment-specific default values, such as for the requested number of Pods, Docker image 

versions, credentials, and resource requests and limits. 

In summary, we will have one reusable library chart, named common; a set of microservice- and resource manager-specific charts, placed in the components folder; and two environment-specific parent charts, placed in the environments folder. The file structure looks like this:

|-- common

|   |-- Chart.yaml

|   |-- templates

|   |-- templates_org

|   `-- values.yaml

|-- components

|   |-- auth-server

|   |-- config-server

|   |-- gateway

|   |-- mongodb

|   |-- mysql

|   |-- product

|   |-- product-composite

|   |-- rabbitmq

|   |-- recommendation

|   |-- review

|   `-- zipkin-server

`-- environments

|-- dev-env

`-- prod-env

The files can be found in the $BOOK_HOME/Chapter16/kubernetes/helm folder. 

 Chapter 16

465

To share Helm charts with others, they can be published to a Helm chart repository. In this book, we will not publish any charts, but in  Chapter 17,  Implementing Kubernetes Features to Simplify the System Landscape, we will install a component named cert-manager using a Helm chart from a chart repository. 

Before we learn about how charts are constructed, let’s learn about the most frequently used Helm commands and how to run them. 

Running Helm commands

To make Helm do something for us, we will use its CLI tool, helm. 

Some of the most frequently used Helm commands are the following:

•  create: Used to create new charts. 

•  dependency update (dep up for short): Resolves dependencies on other charts. Charts 

are placed in the charts folder and the Chart.lock file is updated. 

•  dependency build: Rebuilds the dependencies based on the content in the Chart.lock file. 

•  template: Renders the definitions files created by the templates. 

•  install: Installs a chart. This command can override the values supplied by a chart, ei-

ther using the --set flag to override a single value or using the --values flag to supply 

its own yaml file with values. 

•  install --dry-run: Simulates a Deployment without performing it; it’s useful for veri-

fying a Deployment before executing it. 

•  list: Lists installations in the current namespace. 

•  upgrade: Updates an existing installation. 

•  uninstall: Removes an installation. 

For full documentation of the commands that Helm provides, see https://helm.sh/docs/helm/. 

Let’s put these Helm commands in context and see what files a chart consists of. 

Looking into a Helm chart

A Helm chart has a predefined structure of files. We will use the following files:

•  Chart.yaml, which contains general information about the chart and a list of other charts it might depend on. 

•  templates, which is a folder that contains the templates that will be used to deploy the 

chart. 

466

 Deploying Our Microservices to Kubernetes

•  values.yaml, which contains default values for the variables used by the templates. 

•  Chart.lock, which is a file created by Helm when resolving the dependencies described 

in the Chart.yaml file. This information describes in more detail what dependencies are 

actually used. It is used by Helm to track the entire dependency tree, making it possible 

to recreate the dependency tree exactly as it looked the last time the chart worked. 

•  charts, which is a folder that will contain the charts this chart depends on after Helm 

has resolved the dependencies. 

•  .helmignore, which is an ignore file similar to .gitignore. It can be used to list files that should be excluded when building the chart. 

Now that we understand the structure inside a Helm chart, let’s learn about one of the core features of Helm – its template mechanism – and how to pass values to it. 

Helm templates and values

Helm templates are used to parameterize Kubernetes manifest files. Using templates, we no 

longer need to maintain long-winded Deployment manifests for each microservice. Instead, we 

can define a common template that contains placeholders for where microservice-specific values will be placed in the template when a manifest is rendered for a specific microservice. Let’s see an example, extracted from kubernetes/helm/common/templates/_deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

name: {{ include "common.fullname" . }}

spec:

replicas: {{ .Values.replicaCount }}

template:

spec:

containers:

- name: {{ .Chart.Name }}

It looks very similar to the Deployment manifest we saw in  Chapter 15,  Introduction to Kubernetes, with the exception of the use of the {{ ... }} constructs, used to insert microservice-specific values into the template. The {{ include "common.fullname" . }} construct is used to invoke other templates, as explained shortly. The other two constructs are used to insert values using one of the built-in objects in Helm. The most frequently used parts of the built-in objects are as follows:

 Chapter 16

467

•  Values: Used to refer to values in the chart’s values.yaml file or values supplied when 

running a Helm command such as install. 

•  Release: Used to provide metadata regarding the current release that is installed. It contains fields such as the following:

• 

Name: The name of the release

• 

Namespace: The name of the namespace where the installation is performed

•  Service: The name of the installation Service, always returning Helm

•  Chart: Used to access information from the Chart.yaml file. Examples of fields that can 

be useful for providing metadata for a Deployment are as follows:

• 

Name: The name of the chart

•  Version: The chart’s version number

•  Files: Containing functions for accessing chart-specific files. In this chapter, we will use the following two functions in the Files object:

•  Glob: Returns files in a chart based on a glob pattern. For example, the "config-repo/*" pattern will return all files found in the config-repo folder. 

•  AsConfig: Returns the content of files as a YAML map appropriate for declaring 

values in ConfigMap. 

•  Capabilities: Can be used to find information regarding the capabilities of the Kubernetes cluster that the installation is performed on. For example, a template can use information 

in this object to adopt a manifest based on what API versions the actual Kubernetes cluster 

supports. We will not use this object in this chapter, but I think it is in our interest to be aware of it for more advanced use cases. 

For further details on built-in objects, see https://helm.sh/docs/chart_template_guide/

builtin_objects. 

All objects are accessible in a tree where the root context, in most cases, can be addressed using the current scope, represented by a period, “.", also known as the dot. From the preceding examples, we can see the use of the dot, for example, in .Values.replicaCount and .Chart.Name, where 

we can see that the built-in objects Values and Chart are accessible directly under the current scope. In the preceding include directive, we can also see the dot being used as a parameter sent to the template named common.fullname, meaning the whole tree is sent to the template. Instead of sending the whole tree to a template, a sub-tree can be passed. 

468

 Deploying Our Microservices to Kubernetes

When using some of the Helm functions, the current scope will be changed and no longer point to the root context. We will, for example, meet the range function later on, which can be used to iterate through collections of values. If we need to access the root context inside the scope of a range function, we can use the predefined variable, $. 

Helm templates also support the declaration of variables to reference other objects, as in this example:

$name := .Release.Name

In this example, a variable, name, has been declared to hold the value of the Helm release that is currently being processed. We will see later on how variables are used in more advanced constructs. 

If you recognize the format of using the {{ ... }} constructs from using kubectl, 

you are right. They are, in both cases, based on Go templates. For more information, 

see https://golang.org/pkg/text/template/. 

With the templating mechanism introduced, let’s learn about how the three types of charts 

are constructed. We will start with the most important chart, the common chart, explaining the components and environments charts after that. 

The common library chart

This chart contains reusable templates, also known as named templates, for the four types of Kubernetes manifests we will use in this chapter: Deployment, Service, ConfigMap, and Secret. 

The structure and content of the common chart are based on the output from a helm create 

command. Specifically, the _helpers.tpl template file has been retained to reuse best practices for naming conventions. It declares the following templates that encapsulate naming conventions:

•  common.name: Based on the chart name. 

•  common.fullname: Based on a combination of the name of the release and the chart. In 

this book, we will override this naming convention and simply use the name of the chart. 

•  common.chart: Based on the chart name and version. 

For details, see the implementation in the _helpers.tpl file. 

Named templates, which will only be used by other templates and not used to create manifests themselves, must have a name that starts with an underscore, “_". This is used to prevent Helm from trying to create manifests using them alone. 

 Chapter 16

469

Since the named templates for the Kubernetes manifests mentioned previously contain the main part of the logic and, therefore, most of the complexity in the Helm charts, we will go through them one by one. 

The ConfigMap template

This template is designed to create ConfigMaps from files in the config-repo folder. Each ConfigMap will contain all non-sensitive configurations required by a specific Deployment. The Deployment manifest will map the content of the ConfigMap as a volume in its Pod template. This will result in Pods created by the Deployment being able to access the configuration as files in their local filesystem. See the later  The Deployment template section for details. The config-repo folder needs to be placed in the charts that use the common chart. 

In this chapter, this template will be used only by the config server chart in the 

components folder. In the next chapter, all other microservices will also use this 

template to define their own ConfigMaps, since the config server will be removed. 

The template file is named _configmap_from_file.yaml, and it looks like this:

{{- define "common.configmap_from_file" -}}

apiVersion: v1

kind: ConfigMap

metadata:

name: {{ include "common.fullname" . }}

labels:

app.kubernetes.io/name: {{ include "common.name" . }}

helm.sh/chart: {{ include "common.chart" . }}

app.kubernetes.io/managed-by: {{ .Release.Service }}

data:

{{ (.Files.Glob "config-repo/*").AsConfig | indent 2 }}

{{- end -}}

An explanation of the template is as follows:

•  The first line, {{- define "common.configmap_from_file " -}}, is used to declare the name of the reusable template. The scope of the template ends with a matching {{- end 

-}}, the last line in this example. 

•  To set the name of the ConfigMap, the common.fullname template from the _helpers. 

tpl file is used. 

470

 Deploying Our Microservices to Kubernetes

•  Next, a number of labels are defined to make it easier to identify the ConfigMap later on. 

Again, templates from the _helpers.tpl file are used to set the name and specify the 

chart used. To mark that this Service has been created using Helm, the app.kubernetes. 

io/managed-by label is set to the value for the .Release.Service field. From the earlier 

description of the Release object, we know that it always returns the Helm value. 

•  Next comes the core part of the ConfigMap, its data section. To specify the actual configuration in the ConfigMap, the Glob function in the Files object is used to get all files in 

the config-repo folder. Next, the AsConfig function is applied to the content in the files 

to form a proper YAML map. The result is piped to the indent function, which ensures a 

proper indentation is rendered – in this case, using two characters. 

The hyphens in {{- and -}} are used to remove preceding and trailing whitespace remaining 

after the processing of the directive inside the curly braces. 

Example of using the ConfigMap template

In this chapter, only the config server will use a ConfigMap. See the  The components charts section for a description of how this template is used. 

To see the ConfigMap that will be created by Helm using this template, run the following commands:

cd $BOOK_HOME/Chapter16/kubernetes/helm/components/config-server

helm dependency update . 

helm template . -s templates/configmap_from_file.yaml

Expect output from the helm template command like the following:

---

# Source: config-server/templates/configmap_from_file.yaml

apiVersion: v1

kind: ConfigMap

metadata:

name: config-server

labels:

app.kubernetes.io/name: config-server

helm.sh/chart: config-server-1.0.0

app.kubernetes.io/managed-by: Helm

data:

application.yml: |-

 Chapter 16

471

app:

auth-server: localhost

... 

auth-server.yml: |-

server.port: 9999

... 

The data field contains the content of all files in the config-repo folder. 

The Secrets template

This template is designed to create Secrets defined by values such as credentials provided by the dev-env and prod-env environments. The Secrets will be mapped as environment variables in 

the Pods. See the  The Deployment template section for details. Since an environment must be able to define multiple Secrets, this template is designed to create multiple Secret manifests using the range function in Helm. The template file is named _secrets.yaml, and it looks like this:

{{- define "common.secrets" -}}

{{- range $secretName, $secretMap := .Values.secrets }}

apiVersion: v1

kind: Secret

metadata:

name: {{ $secretName }}

labels:

app.kubernetes.io/name: {{ $secretName }}

helm.sh/chart: {{ include "common.chart" $ }}

app.kubernetes.io/managed-by: {{ $.Release.Service }}

type: Opaque

data:

{{- range $key, $val := $secretMap }}

{{ $key }}: {{ $val | b64enc }}

{{- end }}

---

{{- end -}}

{{- end -}}

472

 Deploying Our Microservices to Kubernetes

An explanation of the template is as follows:

•  After the declaration of the template in line 1 comes the use of the range function in line 2. The function assumes that the .Values.secrets field contains a map of Secret names 

and a map of the Secret’s keys/value pairs. A declaration of the Secrets field in one of the environment’s values.yaml files will look like this:

secrets:

a-secret:

key-1: secret-value-1

key-2: secret-value-2

another-secret:

key-3: secret-value-3

This definition will render two Secrets, named a-secret and another-secret. The range 

function assigns the current Secret name and its map to the $secretName and $secretMap 

variables. 

•  Since the range function changes the current scope, we can no longer use the dot nota-

tion to pass the root context to the common.chart template. Instead, the $ variable has 

to be used. 

•  In the data section of the manifest, a second range function is applied a second time to 

traverse the current Secret’s key/value pairs. Each key/value pair is assigned by the range 

function to the $key and $val variables. 

•  Finally, the Secret’s key/value pairs are defined as a map entry in the data section. The value in the $val variable is piped to the b64enc function to get it properly Base64-encoded, as required by a Secret manifest. 

The --- characters are used to separate the rendered Secret manifests from each other so that they are processed as separate YAML documents. 

Example of using the Secrets template

Secrets are only defined by the dev-env and prod-env environment charts. They are used to create environment-specific credentials. See the  The environment charts section for a description of how this template is used. 

To see the Secrets that will be created for dev-env by Helm using this template, run the following commands:

 Chapter 16

473

cd $BOOK_HOME/Chapter16/kubernetes/helm

for f in components/*; do helm dependency update $f; done

helm dependency update environments/dev-env

helm template environments/dev-env -s templates/secrets.yaml

Expect output from the helm template command like this:

---

# Source: dev-env/templates/secrets.yaml

apiVersion: v1

kind: Secret

metadata:

name: config-client-credentials

labels:

app.kubernetes.io/name: config-client-credentials

helm.sh/chart: dev-env-1.0.0

app.kubernetes.io/managed-by: Helm

type: Opaque

data:

CONFIG_SERVER_PWD: ZGV2LXB3ZA==

CONFIG_SERVER_USR: ZGV2LXVzcg==

---

# Source: dev-env/templates/secrets.yaml

apiVersion: v1

kind: Secret

metadata:

name: config-server-secrets

labels:

app.kubernetes.io/name: config-server-secrets

helm.sh/chart: dev-env-1.0.0

app.kubernetes.io/managed-by: Helm

type: Opaque

data:

ENCRYPT_KEY: bXktdmVyeS1zZWN1cmUtZW5jcnlwdC1rZXk=

SPRING_SECURITY_USER_NAME: ZGV2LXVzcg==

SPRING_SECURITY_USER_PASSWORD: ZGV2LXB3ZA==

474

 Deploying Our Microservices to Kubernetes

The Service template

The Service template introduces support for overriding default values from the common chart, with values specific to the charts that use the common chart. The common chart will, for example, provide default values for the Service type and what ports the Service will expose. This will be useful for most of the microservices, but some of them need to be able to override these default values in their own values.yaml file. 

The template file is named _service.yaml and starts like the other named templates, with the declaration of its name, followed by the implementation of the override mechanism. It looks like this:

{{- define "common.service" -}}

{{- $common := dict "Values" .Values.common -}}

{{- $noCommon := omit .Values "common" -}}

{{- $overrides := dict "Values" $noCommon -}}

{{- $noValues := omit . "Values" -}}

{{- with merge $noValues $overrides $common -}}

This construct can be explained in the following way:

•  When the _service.yaml template is used by a microservice to render its Service man-

ifest, the values from the microservice values.yaml file will be available in the .Values 

object, and the common chart’s values will be available under the .Values.common field. 

•  So, the $common variable will refer to a dictionary, created by the dict function, with one key, Values, and its value will be the default values from the common chart. These values 

are taken from the common key in the .Values object. 

•  The $noCommon variable will hold all values from the microservice except values under the common key, specified using the omit function. 

•  The $overrides variable will refer to a dictionary, also with one key, Values, but its value will be the values from the microservice’s values, except the common values. It gets the 

values from the $noCommon variable declared on the previous line. 

•  The $noValues variable will hold all other built-in objects, except for the Values object. 

•  Now, here is where the override will happen; the merge function will create one dictionary based on the dictionaries referred to by the $noValues, $overrides, and $common variables. 

In this case, values found in the $overrides dictionary will take precedence over values 

in the $common dictionary, thereby overriding its values. 

 Chapter 16

475

•  Finally, the with function will change the scope for the template code that follows until its {{- end -}} definition is reached. So, the current scope, “.", will now refer to the merged dictionary. 

Let’s take an example to see how this will work out. The common chart’s values.yaml file contains the following default settings for the Service type and exposed ports:

Service:

type: ClusterIP

ports:

- port: 80

targetPort: http

protocol: TCP

name: http

This setting will render Service objects that are of the ClusterIP type. The Service objects will expose port 80 and forward requests to the Pods on their port, named http. 

The gateway Service needs to expose a NodePort and use other port settings. To override the 

preceding default values, it declares the following in its chart’s values.yaml file:

service:

type: NodePort

ports:

- port: 443

targetPort: 8443

nodePort: 30443

The gateway’s values.yaml file can be found in the $BOOK_HOME/Chapter16/kubernetes/helm/

components/gateway/values.yaml folder. 

The rest of the Service template file looks like this:

apiVersion: v1

kind: Service

metadata:

name: {{ include "common.fullname" . }}

labels:

app.kubernetes.io/name: {{ include "common.name" . }}

helm.sh/chart: {{ include "common.chart" . }}

476

 Deploying Our Microservices to Kubernetes

app.kubernetes.io/managed-by: {{ .Release.Service }}

spec:

type: {{ .Values.service.type }}

ports:

{{ toYaml .Values.service.ports | indent 4 }}

selector:

app.kubernetes.io/name: {{ include "common.name" . }}

{{- end -}}

{{- end -}}

An explanation of the template is as follows:

•  The metadata fields for name and labels are defined in the same way as already seen for 

the previous templates. 

•  The type of the Service is set by the .Values.service.type field. 

•  The ports exposed by the Service are specified using the .Values.service.ports field. The built-in toYaml function is used to format its value as yaml, and the result is piped to the indent function, which ensures a proper indentation is rendered, in this case, 4 characters. 

•  Finally, the Pod selector is defined. It is based on the app.kubernetes.io/name label 

and is given the name using the common.name template. 

Example of using the Service template

The Service template is used by each component to create its Service manifest. As described previously, the core microservices reuse the configuration in the common chart’s values.yaml file, while the other components override these values in their own values.yaml file. 

To see the Service manifest generated for a core component for the product microservice, run the following commands:

cd $BOOK_HOME/Chapter16/kubernetes/helm

helm dependency update components/product

helm template components/product -s templates/service.yaml

Expect output from the helm template command like this:

# Source: product/templates/service.yaml

apiVersion: v1

kind: Service

metadata:

name: product

 Chapter 16

477

labels:

app.kubernetes.io/name: product

helm.sh/chart: product-1.0.0

app.kubernetes.io/managed-by: Helm

spec:

type: ClusterIP

ports:

- name: http

port: 80

protocol: TCP

targetPort: http

selector:

app.kubernetes.io/name: product

To see the Service manifest generated for a component that overrides the settings in the common chart for the gateway component, run the following commands:

cd $BOOK_HOME/Chapter16/kubernetes/helm

helm dependency update components/gateway

helm template components/gateway -s templates/service.yaml

Expect output from the helm template command like this:

---

# Source: gateway/templates/service.yaml

apiVersion: v1

kind: Service

metadata:

name: gateway

labels:

app.kubernetes.io/name: gateway

helm.sh/chart: gateway-1.0.0

app.kubernetes.io/managed-by: Helm

spec:

type: NodePort

ports:

- nodePort: 30443

port: 443

targetPort: 8443

selector:

app.kubernetes.io/name: gateway

478

 Deploying Our Microservices to Kubernetes

The Deployment template

Finally, let’s discuss the template for rendering Deployment manifests. This is the most complex template since it must handle many parts of the Deployment manifest as optional. Different 

components will use different parts of a Deployment manifest. The common chart values.yaml 

file contains default values for these settings that are applicable to most of the components, minimizing the need to override these settings in each component’s own chart’s values.yaml 

file. The following parts of the Deployment manifest are optional for use by the components:

•  Arguments given to the container when it starts up

•  Environment variables

•  Environment variables from Secrets

•  The liveness probe

•  The readiness probe

•  A ConfigMap and a corresponding volume

The template file is named _deployment.yaml, and its first lines look very similar to the Service template, utilizing the same type of override mechanism:

{{- define "common.deployment" -}}

{{- $common := dict "Values" .Values.common -}}

{{- $noCommon := omit .Values "common" -}}

{{- $overrides := dict "Values" $noCommon -}}

{{- $noValues := omit . "Values" -}}

{{- with merge $noValues $overrides $common -}}

apiVersion: apps/v1

kind: Deployment

metadata:

name: {{ include "common.fullname" . }}

labels:

app.kubernetes.io/name: {{ include "common.name" . }}

helm.sh/chart: {{ include "common.chart" . }}

app.kubernetes.io/managed-by: {{ .Release.Service }}

For an explanation of this part of the template, see the previous description of the Service template. 

 Chapter 16

479

When it comes to the spec part of the manifest, it starts with the following:

spec:

replicas: {{ .Values.replicaCount }}

selector:

matchLabels:

app.kubernetes.io/name: {{ include "common.name" . }}

template:

metadata:

labels:

app.kubernetes.io/name: {{ include "common.name" . }}

spec:

containers:


- name: {{ .Chart.Name }}

image: "{{ .Values.image.repository }}/{{ .Values.image.name 

}}:{{ .Values.image.tag }}" 

imagePullPolicy: {{ .Values.image.pullPolicy }}

Here, we can see how the core parts of the spec are defined: the requested number of replicas, the selector for the Pods, and the template used to create new Pods. The template defines labels that match the selector and the name, Docker image, and imagePullPolicy to use when starting a 

container. 

Next comes the various optional parts of the manifest, as described previously:

args:

{{- toYaml . | nindent 12 }}

{{- end }}

{{- if .Values.env }}

env:

{{- range $key, $val := .Values.env }}

- name: {{ $key }}

value: {{ $val }}

{{- end }}

{{- end }}

{{- if .Values.envFromSecretRefs }}

envFrom:

{{- range .Values.envFromSecretRefs }}

480

 Deploying Our Microservices to Kubernetes

- secretRef:

name: {{ . }}

{{- end }}

{{- end }}

{{- if .Values.livenessProbe_enabled }}

livenessProbe:

{{ toYaml .Values.livenessProbe | indent 12 }}

{{- end }}

{{- if .Values.readinessProbe_enabled }}

readinessProbe:

{{ toYaml .Values.readinessProbe | indent 12 }}

{{- end }}

For the environment variables and Secrets that are mapped to environment variables, the range function is used in the same way the secrets template uses it. The environment variables can be specified on either a component or environment level, depending on their use case. Secrets are always specified by an environment chart. See the following sections regarding the component and environment charts. 

The manifest is concluded by the declaration of the ports the container exposes, resource requests and limits, and finally, the optional declaration of a ConfigMap and a corresponding volume to map the files in the ConfigMap to:

ports:

{{ toYaml .Values.ports | indent 12 }}

resources:

{{ toYaml .Values.resources | indent 12 }}

{{- if .Values.configmap.enabled }}

volumeMounts:

- name: {{ include "common.fullname" . }}

mountPath: {{ .Values.configmap.volumeMounts.mountPath }}

volumes:

- name: {{ include "common.fullname" . }}

configMap:

name: {{ include "common.fullname" . }}

{{- end }}

{{- end -}}

{{- end -}}

 Chapter 16

481

From the common chart’s values.yaml file, we can find some default values of interest, for example, how default values for the liveness and readiness probes are defined:

livenessProbe_enabled: false

livenessProbe:

httpGet:

scheme: HTTP

path: /actuator/health/liveness

port: 80

initialDelaySeconds: 10

periodSeconds: 10

timeoutSeconds: 2

failureThreshold: 20

successThreshold: 1

readinessProbe_enabled: false

readinessProbe:

httpGet:

scheme: HTTP

path: /actuator/health/readiness

port: 80

initialDelaySeconds: 10

periodSeconds: 10

timeoutSeconds: 2

failureThreshold: 3

successThreshold: 1

From these declarations, we can see the following:

•  The probes are by default disabled since not all Deployments use probes. 

•  The probes are based on HTTP GET requests sent to the endpoints exposed by Spring Boot, 

as described in the previous  Using Spring Boot’s support for graceful shutdown and probes for liveness and readiness section. 

•  As long as the endpoint responds with a 2xx or a 3xx response code, the probe is consid-

ered to be successful. 

•  The probes can be configured using the following parameters:

•  initialDelaySeconds specifies how long Kubernetes waits to probe a container 

after it’s started up. 

482

 Deploying Our Microservices to Kubernetes

•  periodSeconds specifies the time between probe requests sent by Kubernetes. 

•  timeoutSeconds specifies how long Kubernetes waits on a response before it treats 

the probe as failed. 

•  failureThreshold specifies how many failed attempts Kubernetes makes before 

giving up. In the case of a liveness probe, this means restarting the Pod. In the case 

of a readiness probe, it means that Kubernetes will not send any more requests to 

the container until the readiness probes are successful again. 

•  successThreshold specifies the number of successful attempts that are required 

for a probe to be considered successful again after a failure. This only applies to 

readiness probes, since it must be set to 1 if specified for liveness probes. 

Finding optimal settings for the probes can be challenging – that is, finding a proper 

balance between getting a swift reaction from Kubernetes when the availability of 

a Pod changes and not overloading the Pods with probe requests. 

Specifically, configuring a liveness probe with values that are too low can result in 

Kubernetes restarting Pods that don’t need to be restarted; they just need some extra 

time to start up. Starting a large number of Pods at the same time, also resulting in 

extra-long startup times, can similarly result in a lot of unnecessary restarts. 

Setting the configuration values too high on the probes (except for the 

successThreshold value) makes Kubernetes react more slowly, which can be an-

noying in a development environment. Proper values also depend on the available 

hardware, which affects the startup times for the Pods. For the scope of this book, 

failureThreshold for the liveness probes is set to a high value, 20, to avoid unnec-

essary restarts on computers with limited hardware resources. 

Example of using the Deployment template

The Deployment template is used by each component to create its Deployment manifest. The core microservices reuse most of the configuration in the common chart’s values.yaml file, minimizing the need for component-specific configuration, while the other components override more 

of these values in their own values.yaml file. 

To see the Deployment manifest generated for a core component, run the following commands 

for the product microservice:

cd $BOOK_HOME/Chapter16/kubernetes/helm

helm dependency update components/product

helm template components/product -s templates/deployment.yaml

 Chapter 16

483

To see the Deployment manifest generated for a component that overrides the settings in the 

common chart, run the following commands for the MongoDB component:

cd $BOOK_HOME/Chapter16/kubernetes/helm

helm dependency update components/mongodb

helm template components/mongodb -s templates/deployment.yaml

Expect output from the helm template command like this:

---

# Source: mongodb/templates/deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

name: mongodb

labels:

app.kubernetes.io/name: mongodb

helm.sh/chart: mongodb-1.0.0

app.kubernetes.io/managed-by: Helm

spec:

replicas: 1

selector:

matchLabels:

app.kubernetes.io/name: mongodb

template:

metadata:

labels:

app.kubernetes.io/name: mongodb

spec:

containers:

- name: mongodb

image: "registry.hub.docker.com/library/mongo:8.0.5" 

imagePullPolicy: IfNotPresent

ports:

- containerPort: 27017

resources:

limits:

memory: 400Mi

484

 Deploying Our Microservices to Kubernetes

This concludes the walk-through of the reusable named templates in the common chart. The files can be found in the $BOOK_HOME/Chapter16/kubernetes/helm/common folder. 

Next, let’s see how the component-specific charts are defined. 

The components charts

The charts for the microservices and the resource managers are stored in the components folder, and they all share the same file structure:

•  Chart.yaml expresses a dependency on the common library chart. 

•  The template folder contains two templates, deployment.yaml and service.yaml. Both 

templates apply the corresponding named template from the common chart. For example, 

the Service.yaml template looks like this:

{{- template "common.service" . -}}

•  The values.yaml file contains settings specific to the microservice. For example, the values file for the auth-server chart looks like this:

fullnameOverride: auth-server

image:

name: auth-server

env:

SPRING_PROFILES_ACTIVE: "docker" 

livenessProbe_enabled: true

readinessProbe_enabled: true

The auth-server only needs to declare its name, Docker image, Spring profile, and that 

it wants to use the default configuration of the liveness and readiness probes. 

The config server differs from the other charts in that it uses a ConfigMap to store the config-repo containing the configuration files for all the other microservices. In its template folder, it defines a template for a ConfigMap that is based on the named template in the common chart 

for ConfigMaps that we have already been introduced to:

{{- template "common.configmap_from_file" . -}}

 Chapter 16

485

The template expects to find the property files in the charts folder, config-repo. To avoid duplicating config-repo from $BOOK_HOME/Chapter16/config-repo, a soft link, also known as a symbolic link, has been created with the following command:

cd $BOOK_HOME/Chapter16/kubernetes/helm/components/config-server

ln -s ../../../../config-repo config-repo

Since Git preserves soft links, you don’t need to recreate the soft link – the git clone 

command makes it for you! 

As already mentioned in the walk-through of the common chart, the gateway Service differs from the other microservices, since it needs to expose a Service of the NodePort type. 

Besides the charts for the microservices, the components folder also contains charts for the databases, message broker, and Zipkin server we use. They are structured in the same way as the microservices. Since the common templates have been designed to streamline the charts for 

the microservices, the other charts need to override more default values in values.yaml files compared to the microservices. For more details, look at the values.yaml files in the following folders: mongodb, mysql, rabbitmq, and zipkin-server. 

The environment charts

Finally, the dev-env and prod-env charts in the environments folder tie everything together to complete installation packages for a typical development/test or staging/production environment. Their Charts.yaml file contains dependencies on both the common chart and the charts 

in the components folder, and the template folder contains a secrets.yaml template to create environment-specific credentials as Secrets. It is based on the named template for Secrets from the common chart and looks like this:

{{- template "common.secrets" . -}}

Looking at the dev-env chart’s values.yaml file, we can find the following Secret values defined for the config-server-secrets Secret:

secrets:

config-server-secrets:

ENCRYPT_KEY: my-very-secure-encrypt-key

SPRING_SECURITY_USER_NAME: dev-usr

SPRING_SECURITY_USER_PASSWORD: dev-pwd

486

 Deploying Our Microservices to Kubernetes

This will result in the config-server-secrets Secret containing three Secret values, all Base64-encoded. Its manifest will look like this:

apiVersion: v1

kind: Secret

metadata:

name: config-server-secrets

labels:

... 

type: Opaque

data:

ENCRYPT_KEY: bXktdmVyeS1zZWN1cmUtZW5jcnlwdC1rZXk=

SPRING_SECURITY_USER_NAME: ZGV2LXVzcg==

SPRING_SECURITY_USER_PASSWORD: ZGV2LXB3ZA==

Note that this values.yaml file contains sensitive information, for example, the 

encrypt key used by the config server and the password used to access the config 

server. This file must be stored securely. An alternative, if it is inappropriate to store 

this file securely, is to remove the sensitive information from this file and supply it 

when the helm install command is executed. 

To use the Secret in the Deployment manifest for the config server, the following is defined in the dev-env chart’s values.yaml file:

config-server:

envFromSecretRefs:

- config-server-secrets

This will be used by the Deployment template described previously to add the Secret as environment variables in the Deployment manifest for the config server. 

The prod-env chart overrides more values than the dev-env chart. For example, the values.yaml file in the prod-env chart specifies that an extra Spring profile, prod, should be used and what version to use for the Docker images. This looks like the following for the product microservice: product:

image:

tag: v1

env:

SPRING_PROFILES_ACTIVE: "docker,prod" 

[image: Image 228]

 Chapter 16

487

With this introduction to what the various types of charts contain, let’s move on and use them together with the Helm commands we learned about to deploy our microservices in Kubernetes! 

Deploying to Kubernetes for development and test

In this section, we will deploy the microservices in an environment to be used for development and test activities, such as system integration tests. This type of environment is used primarily for functional tests and is, therefore, configured to use minimal system resources and the latest available versions of the microservices’ Docker images. 

To be able to run functional tests, we will deploy the microservices together with the resource managers they require in the same namespace, which we will call hands-on. This makes it easy to set up a test environment and also to remove it once we are done with it. We can simply delete the namespace to get rid of all resources used by the test environment. This Deployment scenario is illustrated by the following diagram:

 Figure 16.2: Resource managers deployed in the same Kubernetes namespace as the micro-

 services in the dev environment

Before we can deploy the system landscape, we need to build our Docker images and resolve the dependencies for our Helm charts. 

Building Docker images

Normally, we have to push images to a Docker registry and configure Kubernetes to pull images from the registry. In our case, where we have a local single-node cluster, we can shortcut this process by pointing our Docker client to the Docker engine in minikube and then running the 

docker compose build command. This will result in the Docker images being immediately 

available to Kubernetes. For development, we will use latest as the Docker image version for the microservices. 

488

 Deploying Our Microservices to Kubernetes

You can build Docker images from the source as follows:

cd $BOOK_HOME/Chapter16

./gradlew build

eval $(minikube docker-env)

docker compose build

The eval $(minikube docker-env) command directs the local Docker client to communicate 

with the Docker engine in minikube. 

The docker-compose.yml file has been updated to specify a name for the Docker images it builds. 

For example, for the product Service, we have the following:

product:

build: microservices/product-service

image: hands-on/product-service

latest is the default tag for a Docker image name, so it is not specified. 

With the Docker images built, it’s time to build the Helm charts. 

Resolving Helm chart dependencies

First, we update the dependencies in the components folder:

for f in kubernetes/helm/components/*; do helm dep up $f; done

Next, we update the dependencies in the environments folder:

for f in kubernetes/helm/environments/*; do helm dep up $f; done

Finally, we verify that the dependencies for the dev-env folder look good:

helm dep ls kubernetes/helm/environments/dev-env/

Expect the command to respond with the following:

[image: Image 229]

 Chapter 16

489

 Figure 16.3: Helm chart dependencies resolved

With both Docker images built and Helm dependencies resolved, we can start deploying to Ku-

bernetes! 

Deploying to Kubernetes

Deploying to Kubernetes means creating or updating Kubernetes objects. We will use Helm to 

perform the deployment, per the following steps:

1.  To avoid a slow deployment process due to Kubernetes downloading Docker images (po-

tentially causing the liveness probes we described previously to restart our Pods), run the 

following docker pull commands to download the images in advance:

eval $(minikube docker-env)

docker pull mysql:9.2.0

docker pull mongo:8.0.5

docker pull rabbitmq:4.0.7-management

docker pull openzipkin/zipkin:3.5.0

2.  Before using the Helm charts, render the templates using the helm template command 

to see what the manifests will look like:

helm template kubernetes/helm/environments/dev-env

Note that no interaction was performed with the Kubernetes cluster, so cluster informa-

tion will be faked, and no tests will be run to verify whether the rendered manifest will 

be accepted by the cluster. 

490

 Deploying Our Microservices to Kubernetes

3.  To also verify that the Kubernetes cluster will actually accept the rendered manifest, a dry run of the installation can be performed by passing –-dry-run to the helm install command. Passing the --debug flag will also show which user-supplied and calculated 

values Helm will use when rendering the manifests. Run the following command to per-

form a dry run:

helm install --dry-run --debug hands-on-dev-env \

kubernetes/helm/environments/dev-env

4.  To initiate the deployment of the complete system landscape, including creating the 

hands-on namespace, run the following command:

helm install hands-on-dev-env \

kubernetes/helm/environments/dev-env \

-n hands-on \

--create-namespace

Note that here is where the Helm machinery kicks in. It will use the charts 

we walked through in the previous  Introducing Helm section to render and 

apply the Kubernetes manifests, resulting in the required Kubernetes objects 

for the deployment being created. 

5.  Set the newly created namespace as the default namespace for kubectl:

kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

6.  To see the Pods starting up, run the following command:

kubectl get pods --watch

This command will continuously report when new Pods are running, and if something 

goes wrong, it will report the status, such as Error and CrashLoopBackOff. After a while, 

you might see that errors are reported for the gateway, product-composite, and zipkin-

server Pods. The reason for this is that they all depend on external resources that they 

require to be accessible during the startup. If not, they will crash. The gateway and product composite Service depend on the auth server, and the Zipkin server depends on access 

to RabbitMQ. Typically, they start up faster than the resources they rely on, causing this 

situation. However, Kubernetes will detect the crashed Pods, and they will restart. Once 

the resources are up and running, all Pods will start up and be reported as ready, showing 

1/1 in the READY column. A sample output from the command looks like this:

[image: Image 230]

[image: Image 231]

 Chapter 16

491

 Figure 16.4: Pods restarted until external dependencies are ready

After seeing some output like the preceding, interrupt the command with  Ctrl +  C. 

7.  Wait for all the Pods in the namespace to be ready with the followingcommand:

kubectl wait --timeout=600s --for=condition=ready pod --all

Expect the command to respond with 11 log lines such as pod/... condition met, where 

the three dots (...) are replaced with the name of the actual Pod that is reported to be 

ready. 

8.  To see the Docker images that are used, run the following command:

kubectl get pods -o json | jq .items[].spec.containers[].image

The response should look like the following:

 Figure 16.5: Docker images used in a test environment

492

 Deploying Our Microservices to Kubernetes

Note that the Docker images have the version tag set to latest for the microservices. 

We are now ready to test our deployment! However, before we can do that, we need to go through changes that are required in the test script for use with Kubernetes. 

Changes in the test script for use with Kubernetes

To verify the deployment, we will, as usual, run the test script, test-em-all.bash. To work with Kubernetes, the circuit breaker tests have been slightly modified. The circuit breaker tests call the actuator endpoints on the product-composite Service to check their health state and get access to circuit breaker events. Since this endpoint isn’t exposed externally, the previous chapters used the docker compose exec command to run a curl command inside of the product-composite 

Service to perform the tests. 

Starting with this chapter, the test script can either use the docker compose exec command or the corresponding kubectl command, kubectl exec, depending on whether we run the microservices using Docker Compose or Kubernetes. 

To know which command to use, a new parameter has been added to the script, USE_K8S. It de-

faults to false. For details, see the testCircuitBreaker() function in the test script. 

Testing the Deployment

When launching the test script, we have to give it the address of the host that runs Kubernetes (that is, our minikube instance) and the NodePort where our gateway Service listens for external requests. The gateway is accessible using port 30443. As mentioned in  Chapter 15, since we use minikube’s docker driver, the hostname is always localhost. Since the hostname is the same 

as when running tests with Docker Compose, we don’t have to specify it; only the port has to be specified, together with the USE_K8S parameter. 

Start the tests with the following command:

PORT=30443 USE_K8S=true ./test-em-all.bash

In the output from the script, we can see how the NodePort is used, but besides that, everything looks the same as when we used Docker Compose in the previous chapters:

[image: Image 232]

 Chapter 16

493

 Figure 16.6: Output from the automated tests of the system landscape

With the system landscape validations performed, let’s see how we can test the new features in Spring Boot: graceful shutdown and the probes for liveness and readiness. 

Testing Spring Boot’s support for graceful shutdown and 

probes for liveness and readiness

In this section, we will test out the new Spring Boot features and see how they interact with other components in Kubernetes. 

Let’s start by testing Spring Boot’s support for graceful shutdown, where the application during its shutdown phase will wait a configurable length of time for active requests to complete. Remember that no new requests are allowed during the shutdown phase. 

To test the graceful shutdown mechanism, we will run a client that continuously sends requests to the composite Service. First, we will use it to send requests that take 5 seconds, a shorter amount of time than the shutdown wait period. The waiting period is configured to be 10 seconds. Next, we will use it to send requests that take a longer time, 15 seconds, to see how they are handled. 

As the test client, we will use Siege, a command line-based load test tool. 

To be able to test run requests that take this long to complete, we need to temporarily disable the timeout in the product-composite Service. Otherwise, its circuit breaker will kick in and prevent us from running the long requests. To be able to disable Resilience4j, a configuration class, ResilienceConfig, has been added to the composite service. If the app.resilience.enabled 

property is set to false, all features in Resilience4j are disabled. To disable Resilience4j in the composite Service, perform the following steps:

494

 Deploying Our Microservices to Kubernetes

1.  Add the following under the product-composite section in the values file for the dev-env environment kubernetes/helm/environments/dev-env/values.yaml:

env:

APP_RESILIENCE_ENABLED: '"false"' 

After the change, the configuration file should look like this:

product-composite:

env:

APP_RESILIENCE_ENABLED: '"false"' 

envFromSecretRefs:

- config-client-credentials

As long as this setting is active, the circuit breaker tests in test-em-all. 

bash will no longer work since they assume a timeout of 2 seconds. 

2.  Update the Helm installation with Helm’s upgrade command, using the --wait flag to 

ensure that the update is completed when the command terminates:

helm upgrade hands-on-dev-env -n hands-on \

kubernetes/helm/environments/dev-env --wait

Now we can run the tests, proceeding with the following steps to test with requests that are shorter than the shutdown wait period:

1.  Get an access token:

ACCESS_TOKEN=$(curl -d grant_type=client_credentials \

-ks https://writer:secret-writer@localhost:30443/oauth2/token \

-d scope="product:read product:write" \

| jq .access_token -r)

Ensure you have an access token by issuing the echo $ACCESS_TOKEN command. If it’s 

empty, you have to check the preceding curl command and the logs from the gateway 

and the auth server. 

 Chapter 16

495

2.  Make a test request and ask for a delay of 5 seconds using the delay query parameter:

time curl -kH "Authorization: Bearer $ACCESS_TOKEN" \

https://localhost:30443/product-composite/1?delay=5

If you get a normal response and the time command reports a 5-second response time, 

the config changes of the increased timeout worked! 

3.  Use Siege to start requests that take 5 seconds to complete, with 5 concurrent users sending requests with a random delay of between 0 and 2 seconds to spread out the requests 

slightly:

siege -c5 -d2 -v -H "Authorization: Bearer $ACCESS_TOKEN" \

https://localhost:30443/product-composite/1?delay=5

Expect output from the tool for each completed request like this:

HTTP/1.1 200 5.04 secs: 771 bytes ==> GET /product-

composite/1?delay=5

4.  Watch the log output from the product Service in a separate Terminal window with the 

following command:

kubectl logs -f --tail=0 -l app.kubernetes.io/name=product

5.  We will now ask Kubernetes to restart the product Deployment. The restart will first 

start a new Pod before the old one is shut down, meaning that none of the requests sent 

by Siege should be affected by the restart. Of specific interest are the few requests that 

are processed by the old Pod when it starts to shut down. If the graceful shutdown works 

as expected, none of the active requests should fail. Perform the restart by running the 

following command in a separate window:

kubectl rollout restart deploy/product

6.  Ensure that there are only successful requests reported in the output from the load test tool, Siege, reporting 200 (OK). 

[image: Image 233]

496

 Deploying Our Microservices to Kubernetes

7.  In the log output from the now-stopped product Pod, you should see that all requests were allowed to terminate gracefully before the application was stopped. Expect log output 

similar to the following at the end of the log output:

 Figure 16.7: Graceful shutdown where all requests are allowed to complete

Specifically, note the time between the two log messages (4 seconds, in this case), in-

dicating that the shutdown procedure actually waited for the last request to complete. 

Now, let’s run the second test, with requests taking a longer time to complete than the shutdown wait period:

1.  Restart Siege, requesting longer response times above the wait limit of 10 seconds. Start 15 concurrent users, asking for a 15-second response time and a random delay between 

the requests of 0–15 seconds. Stop Siege with  Ctrl +  C and run the following command: siege -c15 -d15 -v -H "Authorization: Bearer $ACCESS_TOKEN" \

https://localhost:30443/product-composite/1?delay=15

2.  Watch the log output from the product Pod with the following command:

kubectl logs -f --tail=0 -l app.kubernetes.io/name=product

3.  Restart the product Deployment:

kubectl rollout restart deploy/product

4.  Follow the log output from the product Pod. Once it has shut down, you should be able to see that not all requests were allowed to terminate gracefully before the application was 

stopped. Expect log output similar to the following at the end of the log output:

[image: Image 234]

[image: Image 235]

 Chapter 16

497

 Figure 16.8: Graceful shutdown where some long-running requests are aborted

The log message Graceful shutdown aborted with one or more requests still 

active indicates that at least one request was not allowed to complete before the appli-

cation was stopped. 

5.  In the output from the load test tool, Siege, there should now appear one or a few failing requests reporting 500 (Internal Server Error) like this:

 Figure 16.9: Long-running requests fail during shutdown

This demonstrates how the shutdown procedure proceeds after the configured wait time 

and that the remaining long-running requests are aborted, as expected. 

This completes the tests of Spring Boot’s graceful shutdown mechanism, which is clearly useful to avoid normal client requests being affected by Pods being stopped, for example, as a result of scaling down or a rolling upgrade being performed. 

Clean up after the tests:

1.  Stop the Siege load test tool with  Ctrl +  C. 

2.  Roll back the latest Helm release to get rid of the increased timeout:

helm rollback hands-on-dev-env -n hands-on --wait

[image: Image 236]

498

 Deploying Our Microservices to Kubernetes

The helm rollback command is also useful to roll back a failed upgrade. 

3.  Also, remove the increased timeout setting in the kubernetes/helm/environments/dev-

env/values.yaml file. 

4.  Run test-em-all.bash to verify that the configuration is rolled back:

PORT=30443 USE_K8S=true ./test-em-all.bash

Finally, let’s see what information the Spring Boot liveness and readiness probes report. We will use the product Service, but feel free to also try out the probes for other Services:

1.  Run the following command to get output from the product Service’s liveness probe:

kubectl exec -it deploy/product -- \

wget -qO - localhost/actuator/health/liveness | jq . 

2.  Expect it to respond with the following:

 Figure 16.10: Response from a liveness probe

3.  Run the following command to get output from the product Service’s readiness probe:

kubectl exec -it deploy/product -- \

wget -qO - localhost/actuator/health/readiness | jq . 

Expect its response to be a bit more extensive:

[image: Image 237]

 Chapter 16

499

 Figure 16.11: Response from a readiness probe

From the preceding output, we can confirm that the readiness of product now depends 

on its access to both MongoDB and RabbitMQ. This is expected, since we configured the 

readiness health group to include health indicators for RabbitMQ, MongoDB, and SQL 

databases, if available. See the  Using Spring Boot’s support for graceful shutdown and probes for liveness and readiness section to recap, if required. 

Before we move on, let’s clean up what we have installed in the development environment. We 

can do this by simply deleting the namespace. Deleting the namespace will recursively delete the resources that exist in the namespace, including information regarding the Helm installation. 

Delete the namespace with the following command:

kubectl delete namespace hands-on

If you just want to uninstall what the helm install command installed, you can 

run the helm uninstall hands-on-dev-env command. 

500

 Deploying Our Microservices to Kubernetes

With the development environment removed, we can move on and set up an environment tar-

geting staging and production. 

Deploying to Kubernetes for staging and production

In this section, we will deploy the microservices in an environment for staging and production usage. A staging environment is used to perform quality assurance (QA) and user acceptance tests (UATs) as the last step before taking a new release into production. To be able to verify that a new release not only meets functional requirements but also non-functional requirements (for example, in terms of performance, robustness, scalability, and resilience), a staging environment is configured to be as similar as possible to the production environment. 

When deploying to an environment for staging or production, there are a number of changes 

required compared to when deploying for development or tests:

•  Resource managers should run outside of the Kubernetes cluster: It is technically feasible to run databases and queue managers for production use on Kubernetes as stateful 

containers, using StatefulSets and PersistentVolumes. At the time of writing, I recom-

mend against it, mainly because the support for stateful containers is relatively new and 

unproven in Kubernetes. Instead, I recommend using the existing database and queue 

manager Services on-premises or as managed Services in the cloud, leaving Kubernetes 

to do what it is best at: running stateless containers. For the scope of this book, to sim-

ulate a production environment, we will run MySQL, MongoDB, and RabbitMQ as plain 

Docker containers outside of Kubernetes, using the already existing Docker Compose files. 

•  Lock down: For security reasons, things such as actuator endpoints and log levels need to be constrained in a production environment. Externally exposed endpoints should 

also be reviewed from a security perspective. For example, access to the configuration 

server should probably be locked down in a production environment, but we will keep it 

exposed in this book for convenience. Docker image tags must be specified to be able to 

track which versions of the microservices have been deployed. 

•  Scale up available resources: To meet the requirements of both high availability and higher load, we need to run at least two Pods per Deployment. We might also need to 

increase the amount of memory and CPU that are allowed to be used per Pod. To avoid 

running out of memory in the minikube instance, we will keep one Pod per Deployment 

but increase the maximum memory allowed in the production environment. 

[image: Image 238]

 Chapter 16

501

•  Set up a production-ready Kubernetes cluster: This is outside the scope of this book, but, if feasible, I recommend using one of the managed Kubernetes Services provided 

by the leading cloud providers. For the scope of this book, we will deploy to our local 

minikube instance. 

This is not meant to be an exhaustive list of things that have to be considered when 

setting up an environment for production, but it’s a good start. 

Our simulated production environment will look as follows:

 Figure 16.12: Resource managers deployed outside of Kubernetes

Changes in the source code

The following changes have been applied to the source code to prepare for deployment in an 

environment that’s used for staging and production:

•  A Spring profile named prod has been added to the configuration files in the config-repo 

configuration repository:

spring.config.activate.on-profile: prod

502

 Deploying Our Microservices to Kubernetes

•  In the prod profiles, the following have been added:

•  URLs to the resource managers that run as plain Docker containers:

spring.rabbitmq.host: 172.17.0.1

spring.data.mongodb.host: 172.17.0.1

spring.datasource.url: jdbc:mysql://172.17.0.1:3306/review-db

We use the 172.17.0.1 IP address to address the Docker engine in the mini-

kube instance. This is the default IP address for the Docker engine when 

creating it with minikube, at least for minikube up to version 1.18. 

There is work ongoing to establish a standard DNS name for containers to 

use if they need to access the Docker host they run on, but at the time of 

writing, this work effort hasn’t been completed. 

•  Log levels have been set to a warning or higher – that is, error or fatal. Here is 

an example:

logging.level.root: WARN

•  The only actuator endpoints that are exposed over HTTP are the info and health end-

points that are used by the liveness and readiness probes in Kubernetes, as well as the 

circuitbreakerevents endpoint that’s used by the test script, test-em-all.bash:

management.endpoints.web.exposure.include: 

health,info,circuitbreakerevents

In a real-world production environment, we should also have changed the 

imagePullPolicy: Never setting to IfNotPresent, to download Docker 

images from a Docker registry. However, since we will deploy the production 

setup to the minikube instance where we manually build and tag the Docker 

images, we will not update this setting. 

 Chapter 16

503

Deploying to Kubernetes

To simulate the use of production-grade resource managers, MySQL, MongoDB, and RabbitMQ 

will run outside of Kubernetes using Docker Compose. We will start them up as we did in the 

previous chapters:

eval $(minikube docker-env)

docker compose up -d mongodb mysql rabbitmq

We also need to tag the existing Docker images with v1, using the following commands:

docker tag hands-on/auth-server hands-on/auth-server:v1

docker tag hands-on/config-server hands-on/config-server:v1

docker tag hands-on/gateway hands-on/gateway:v1

docker tag hands-on/product-composite-service hands-on/product-composite-

service:v1

docker tag hands-on/product-service hands-on/product-service:v1

docker tag hands-on/recommendation-service hands-on/recommendation-

service:v1

docker tag hands-on/review-service hands-on/review-service:v1

From here, the commands are very similar to how we deployed to the development environment:

1.  Deploy using Helm:

helm install hands-on-prod-env \ kubernetes/helm/environments/prod-

env \

-n hands-on --create-namespace

2.  Wait for the Deployments to be up and running:

kubectl wait --timeout=600s --for=condition=ready pod --all

3.  To see the Docker images that are currently used in the production environment, run the 

following command:

kubectl get pods -o json | jq .items[].spec.containers[].image

[image: Image 239]

504

 Deploying Our Microservices to Kubernetes

The response should look something like the following:

 Figure 16.13: Docker images used in a production environment

Note the v1 version of the Docker images! 

Also note that the resource manager Pods for MySQL, MongoDB, and RabbitMQ are gone; 

these can be found with the docker compose ps command. 

4.  Run the test script, test-em-all.bash, to verify the simulated production environment:

CONFIG_SERVER_USR=prod-usr \

CONFIG_SERVER_PWD=prod-pwd \

PORT=30443 USE_K8S=true ./test-em-all.bash

Expect the same type of output that we got when the test script was run 

against the development environment. 

That completes the tests; let’s clean up so that the Kubernetes environment is ready for the next chapter. 

Cleaning up

To delete the resources that we used, run the following commands:

1.  Delete the namespace:

kubectl delete namespace hands-on

 Chapter 16

505

2.  Shut down the resource managers that run outside of Kubernetes:

eval $(minikube docker-env)

docker compose down

eval $(minikube docker-env -u)

The eval $(minikube docker-env -u) command directs the local Docker 

client to communicate with the local Docker engine and no longer commu-

nicate with the Docker engine in minikube. 

As already described earlier in this chapter, the kubectl delete namespace command will re-

cursively delete all Kubernetes resources that existed in the namespace, and the docker compose down command will stop MySQL, MongoDB, and RabbitMQ. With the production environment 

removed, we have reached the end of this chapter. 

Summary

In this chapter, we learned how to deploy the microservices in this book on Kubernetes using Helm. 

We have seen how Helm can be used to create reusable templates, minimizing the boilerplate code required to create the Kubernetes manifests. Reusable templates are stored in a common chart, while microservice-specific charts provide values specific to each microservice. At the top level, we have parent charts that describe how a development/test and stage/production environment 

should be deployed using the microservice charts, optionally together with charts for resource managers such as databases and queue managers. 

We have also seen how we can benefit from using Spring Boot features to facilitate deployments to Kubernetes. Spring Boot’s support for graceful shutdown can be used to allow active requests to complete before a Spring Boot-based microservice is stopped, such as during a rolling upgrade. 

The support for liveness and readiness probes makes it easy to declare probes that are aware of the availability of external resources that a specific microservice depends on. 

Finally, to be able to deploy our microservices in Kubernetes, we had to replace Netflix Eureka with the built-in discovery service in Kubernetes. Changing the discovery service was done without any changes in the Java source code – all we had to do was apply changes to the build dependencies and some of the configuration. 

506

 Deploying Our Microservices to Kubernetes

In the next chapter, we will see how we can further utilize Kubernetes to reduce the number of supporting services we need to deploy in Kubernetes. Head over to the next chapter to see how we can eliminate the need for the configuration server and how our edge server can be replaced by a Kubernetes Ingress controller. 

Questions

1.  Why did we remove the Eureka server from the microservice landscape when deploying 

it on Kubernetes? 

2.  What did we replace the Eureka server with and how was the source code of the micros-

ervices affected by this change? 

3.  What’s the purpose of liveness and readiness probes? 

4.  How is Spring Boot’s mechanism for graceful shutdown useful? 

5.  What is the purpose of the following Helm template directives? 

{{- $common := dict "Values" .Values.common -}}

{{- $noCommon := omit .Values "common" -}}

{{- $overrides := dict "Values" $noCommon -}}

{{- $noValues := omit . "Values" -}}

{{- with merge $noValues $overrides $common -}}

6.  Why would the following named Helm template fail? 

{{- define "common.secrets" -}}

{{- range $secretName, $secretMap := .Values.secrets }}

apiVersion: v1

kind: Secret

metadata:

name: {{ $secretName }}

labels:

app.kubernetes.io/name: {{ $secretName }}

type: Opaque

data:

{{- range $key, $val := $secretMap }}

{{ $key }}: {{ $val | b64enc }}

{{- end }}

{{- end -}}

{{- end -}}

 Chapter 16

507

7.  Why would the following manifests not work together? 

apiVersion: v1

kind: Service

metadata:

name: review

labels:

app.kubernetes.io/name: review

spec:

type: ClusterIP

ports:

- name: http

port: 80

protocol: TCP

targetPort: http

selector:

app.kubernetes.io/pod-name: review

---

apiVersion: apps/v1

kind: Deployment

metadata:

name: review

labels:

app.kubernetes.io/name: review

spec:

replicas: 1

selector:

matchLabels:

app.kubernetes.io/name: review

template:

metadata:

labels:

app.kubernetes.io/name: review

spec:

containers:

- name: review

image: "hands-on/review-service:latest" 

ports:

[image: Image 240]

508

 Deploying Our Microservices to Kubernetes

- containerPort: 80

name: http-port

protocol: TCP

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

17

Implementing Kubernetes 

Features to Simplify the System 

Landscape

The current microservice landscape contains several supporting services that implement important design patterns required in a large-scale microservice landscape, for example, an edge server, a config server, an authorization server, and a service for distributed tracing. For a recap, refer to 

 Chapter 1,  Introduction to Microservices. In the previous chapter, we replaced the implementation of the design pattern for service discovery, based on Netflix Eureka, with the built-in discovery service in Kubernetes. In this chapter, we will further simplify the microservice landscape by reducing the number of supporting services required to be deployed. Instead, the corresponding design patterns will be handled by built-in capabilities in Kubernetes. The Spring Cloud Config Server will be replaced with Kubernetes ConfigMaps and Secrets. The Spring Cloud Gateway will be replaced by a Kubernetes Ingress object, which can act as an edge server in the same way as the Spring Cloud Gateway. 

In  Chapter 11,  Securing Access to APIs, we introduced the use of certificates to protect the external API. The certificates were provisioned manually, which is both time-consuming and error-prone, specifically when it comes to remembering to rotate the certificates before they expire. In this chapter, we will learn about cert-manager and how it can be used to automate the process of creating, provisioning, and rotating certificates. 

510

 Implementing Kubernetes Features to Simplify the System Landscape

When more and more features in a platform, such as Kubernetes, are being used, it is important to ensure that the source code for the microservices doesn’t become dependent on the platform. 

To ensure that we can still use the microservices without deploying them to Kubernetes, we 

will conclude the chapter by deploying the microservice landscape using Docker Compose and 

executing the test-em-all.bash test script to verify that the microservices still work from a functional perspective without using Kubernetes. 

The following topics will be covered in this chapter:

•  Replacing the Spring Cloud Config Server with Kubernetes ConfigMaps and Secrets

•  Replacing the Spring Cloud Gateway with a Kubernetes Ingress object

•  Using cert-manager to automatically provision certificates

•  Deploying and testing the microservice landscape on Kubernetes

•  Deploying and testing the microservice landscape using Docker Compose to ensure that 

the source code in the microservices isn’t locked into Kubernetes

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter17. 

If you want to view the changes applied to the source code in this chapter, that is, see what it took to replace the Spring Cloud Config Server and Spring Cloud Gateway with corresponding features in Kubernetes, and use cert-manager to provision certificates, you can compare it with the source code for  Chapter 16,  Deploying Our Microservices to Kubernetes. You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter16 and $BOOK_HOME/Chapter17. 

Replacing the Spring Cloud Config Server

As we have seen in the previous chapter, ConfigMaps and Secrets can be used to hold configuration information for our microservices. The Spring Cloud Config Server adds features such as keeping all configurations in one place, optional version control using Git, and the ability to encrypt sensitive information on the disk. But it also consumes a non-negligible amount of memory (as with any Java and Spring-based application) and adds significant overhead during startup. 

[image: Image 241]

 Chapter 17

511

For example, when running automated integration tests such as the test script we are using in this book, test-em-all.bash, all microservices are started up at the same time, including the configuration server. Since the other microservices must get their configuration from the configuration server, they all have to wait for the configuration server to be up and running before they can start up. This leads to a significant delay when running integration tests. If we use Kubernetes ConfigMaps and Secrets instead, this delay is eliminated, making automated integration tests run faster. Therefore, it makes sense to use the Spring Cloud Config Server when the underlying platform doesn’t provide a similar capability, but when deploying to Kubernetes, it is better to use ConfigMaps and Secrets. 

Using Kubernetes ConfigMaps and Secrets instead of the Spring Cloud Config Server will make 

the microservice landscape start up faster, and it will require less memory. It will also simplify the microservice landscape by eliminating one supporting service, the configuration server. When we perform the replacement, it is important to do it in such a way that the source code in the microservices isn’t affected, thereby avoiding unnecessary lock-in to Kubernetes. 

This change is illustrated in the following diagram:

 Figure 17.1: Replacing the Spring Cloud Config Server with Kubernetes built-in ConfigMaps and Secrets

Let’s see what is required to replace the Spring Cloud Config Server with Kubernetes ConfigMaps and Secrets! 

512

 Implementing Kubernetes Features to Simplify the System Landscape

Note especially that we only change the configuration; no changes are required in 

the Java source code! 

Changes required to replace the Spring Cloud Config 

Server

The following changes have been applied in the configuration of the source code to replace the Spring Cloud Config Server with Kubernetes ConfigMaps and Secrets:

1.  We have removed the spring-cloud/config-server project and also removed the project 

from the settings.gradle build file. 

2.  We have removed the Helm chart for the configuration server. 

3.  We have removed the config server-specific tests from the test-em-all.bash test script. 

4.  We have removed the following configuration from all microservices:

•  The spring-cloud-starter-config dependency in the build.gradle build files

•  The application.yml files in the src/main/resource folders in each project, 

which were used to connect to the config server

•  The spring.cloud.config.enabled=false property setting in integration tests, 

since it is no longer required

5.  Changes to the configuration files in the config-repo folder include the following:

•  We have removed properties with sensitive information, for example, credentials 

for MongoDB, MySQL, RabbitMQ, and the password for the TLS certificate used by 

the edge server. Kubernetes Secrets will be used to handle sensitive information. 

•  The route to the configuration server API has been removed in the configuration 

of the edge server. 

6.  Changes to the microservices’ Helm charts in kubernetes/helm/components include 

the following:

•  A config-repo folder has been added to each chart. Soft links have been created in 

the Helm chart’s config-repo folder for the required configuration files from the 

common config-repo folder. For each microservice, a soft link has been created to 

the common configuration file, application.yaml, and to the microservice-spe-

cific configuration file. 

 Chapter 17

513

For a recap on how soft links are created, refer to the  The components 

 charts section in  Chapter 16,  Deploying Our Microservices to Kubernetes. 

•  The values.yaml file has been updated with the following:

•  An environment variable for a Spring property that is used to point out what con-

figuration files to use. For example, the property looks like the following for the 

product microservice:

SPRING_CONFIG_LOCATION: file:/config-repo/application. 

yml,file:/config-repo/product.yml

•  A ConfigMap that the microservices will use to find their configuration files. The 

ConfigMap will be made available inside the container on the /config-repo path. 

The declaration looks like this:

configmap:

enabled: true

volumeMounts:

mountPath: /config-repo

•  To create the ConfigMap, a template has been added that is based on the named 

template, common.configmap_from_file, from the common chart. 

7.  Changes to the environments’ Helm charts in kubernetes/helm/environments include 

the following:

•  We have removed the dependency on the config server’s chart. 

•  The values.yaml file has been updated. 

•  The Secrets for the config server and its clients have been replaced with Secrets 

for the resource managers, MongoDB, MySQL, and RabbitMQ, and their clients, 

as in this example:

rabbitmq-zipkin-credentials:

RABBIT_USER: rabbit-user-dev

RABBIT_PASSWORD: rabbit-pwd-dev

mongodb-credentials:

514

 Implementing Kubernetes Features to Simplify the System Landscape

SPRING_DATA_MONGODB_AUTHENTICATION_DATABASE: admin

SPRING_DATA_MONGODB_USERNAME: mongodb-user-dev

SPRING_DATA_MONGODB_PASSWORD: mongodb-pwd-dev

Recap from the previous chapter that this values.yaml file contains 

sensitive information, such as the passwords from the preceding 

example. This file must therefore be stored securely. An alternative, 

if it is inappropriate to store this file securely, is to remove the sensi-

tive information from this file and supply the sensitive information 

when the helm install command is executed. 

•  Each component is assigned the Secrets it requires. 

Recap from the previous chapter: the Secrets will be mapped into 

each Pod as environment variables. 

For example, the product service needs access to both MongoDB and RabbitMQ and is 

therefore assigned the following two Secrets:

product:

envFromSecretRefs:

- rabbitmq-credentials

- mongodb-credentials

Most of the changes in the Helm charts’ values.yaml files end up in Kubernetes manifests for Deployment objects. For example, the product microservice’s Deployment object will look like the following:

apiVersion: apps/v1

kind: Deployment

metadata:

name: product

spec:

template:

spec:

containers:

- name: product

[image: Image 242]

[image: Image 243]

[image: Image 244]

[image: Image 245]

 Chapter 17

515

env:

- name: SPRING_CONFIG_LOCATION

value: file:/config-repo/application.yml,file:/config-

repo/product.yml

- name: SPRING_PROFILES_ACTIVE

value: docker

envFrom:

- secretRef:

name: rabbitmq-credentials

- secretRef:

name: mongodb-credentials

volumeMounts:

- name: product

mountPath: /config-repo

volumes:

- name: product

configMap:

name: product

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button (1) to quickly copy code into your coding environment, or click the Explain button (2) to get the AI assistant to explain a block of code to you. 

The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one. 

516

 Implementing Kubernetes Features to Simplify the System Landscape

Note that parts of the manifest that have not been affected by the preceding changes have been omitted for improved readability. 

If you want to render a component’s Kubernetes manifest yourself, you can do that by applying Helm’s template command on the chart of interest. You must also add values from the environment’s values.yaml file that are applicable for the component to the template command. Take 

the product service as an example. The dev-env chart’s values.yaml file contains the following settings that apply to the product service:

product:

envFromSecretRefs:

- rabbitmq-credentials

- mongodb-credentials

To add these settings to the template command, we can use the --set flag. 

There is also a --values flag that can be used to add a values.yaml file when the 

command is executed. 

When adding values from an environment chart, we must remember that they are parent charts 

to the component charts. This means that the name of the component chart must be removed 

from the settings when applied directly to the component chart. In this case, it means that we should add the following values to the template command to render the product chart correctly: envFromSecretRefs:

- rabbitmq-credentials

- mongodb-credentials

YAML arrays (such as the preceding one) can be defined using the --set flag by listing the elements within curly braces, for example, "{a,b,c}". The product chart can be rendered using the following command:

helm template kubernetes/helm/components/product \

--set envFromSecretRefs= \

"{rabbitmq-credentials, mongodb-credentials}" 

The result will contain manifests for the product microservice, a ConfigMap, a Service, and finally, a Deployment object. 

This is what is required to replace the configuration server with Kubernetes ConfigMaps and 

 Chapter 17

517

Secrets. In the next section, we will learn about how we can replace the Spring Cloud Gateway with a Kubernetes Ingress object. 

Replacing the Spring Cloud Gateway

In this section, we will further simplify the microservice landscape by replacing the Spring Cloud Gateway using the built-in Ingress object in Kubernetes, reducing the number of supporting 

services required to be deployed. 

As introduced in  Chapter 15,   Introduction to Kubernetes, an Ingress object can be used in Kubernetes to act as an edge server in the same way as a Spring Cloud Gateway. The Spring Cloud Gateway comes with a richer routing functionality compared to an Ingress object. However, the Ingress is part of the Kubernetes platform, requiring no extra deployments, and can also be extended using cert-manager to automatically provision certificates, as we will see later in this chapter. 

We have also used the Spring Cloud Gateway to protect our microservices from unauthenticated requests by requiring a valid OAuth 2.0/OIDC access token from a trusted OAuth authorization server or OIDC provider. See  Chapter 11,  Securing Access to APIs, if a recap is required. Generally, Kubernetes Ingress objects do not have support for this. However, specific implementations of the Ingress controller might support it. 

Finally, the composite health check we added to the gateway in  Chapter 10,  Using Spring Cloud Gateway to Hide Microservices Behind an Edge Server, can be replaced by the Kubernetes liveness and readiness probes defined in each microservice’s deployment manifest. 

Therefore, in the same way as for the Spring Cloud Config Server, it makes sense to use the Spring Cloud Gateway where the underlying platform doesn’t provide a similar capability. When deploying to Kubernetes, it is better to use Ingress objects. 

In this chapter, we will delegate the responsibility of validating that the request contains a valid access token to the product-composite microservice. This is done by the Ingress forwarding the HTTP header that contains the access token in the requests to the product-composite microservice, and it will perform its validation of the OAuth access tokens as in the previous chapters. 

The next chapter will introduce the concept of a service mesh, where we will see an alternative implementation of an Ingress that fully supports validating JWT-encoded OAuth access tokens. 

In the  Verifying that the microservices work without Kubernetes section, we will still use the Spring Cloud Gateway together with Docker Compose, so we will not remove 

the project. 

[image: Image 246]

518

 Implementing Kubernetes Features to Simplify the System Landscape

The following diagram shows that the Spring Cloud Gateway is removed from the microservice 

landscape when deploying to Kubernetes:

 Figure 17.2: Replacing the Spring Cloud Gateway with the Kubernetes built-in Ingress controller Let’s see what is required to replace the Spring Cloud Gateway with a Kubernetes Ingress object! 

Note especially that we only change the configuration; that is, no changes are re-

quired in the Java source code! 

Changes required to replace the Spring Cloud Gateway

The following changes have been applied to the configuration of the source code to replace the Spring Cloud Gateway with a Kubernetes Ingress object:

1.  We have removed the Helm chart for the Spring Cloud Gateway. 

2.  We have added a named template for Ingress manifests and some default values for the 

Ingress in the common chart. 

 Chapter 17

519

The named template, kubernetes/helm/common/templates/_ingress.yaml, begins with 

a declaration that we recognize from the previous chapter:

{{- define "common.ingress" -}}

{{- $common := dict "Values" .Values.common -}}

{{- $noCommon := omit .Values "common" -}}

{{- $overrides := dict "Values" $noCommon -}}

{{- $noValues := omit . "Values" -}}

{{- with merge $noValues $overrides $common -}}

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

name: {{ include "common.fullname" . }}

labels:

app.kubernetes.io/name: {{ include "common.name" . }}

helm.sh/chart: {{ include "common.chart" . }}

app.kubernetes.io/managed-by: {{ .Release.Service }}

{{- with .Values.ingress.annotations }}

annotations:

{{ toYaml . | indent 4 }}

{{- end }}

The name of the template is common.ingress, and apiVersion and kind are set to 

networking.k8s.io/v1 and Ingress to identify it as an Ingress manifest. Most of the 

remainder of the preceding template looks the same as seen in other manifests where 

overriding parameters are required, such as the Deployment or Service template. 

The only new part is that the template allows the addition of annotations, if required, 

using the ingress.annotations field in the values.yaml file. 

The rest of the Ingress template contains the main part of the manifest, the spec part. It 

looks like this:

spec:

tls:

- hosts:

- {{ .Values.ingress.host | quote }}

secretName: {{ .Values.ingress.tls.secretName }}

rules:

- host: {{ .Values.ingress.host | quote }}

520

 Implementing Kubernetes Features to Simplify the System Landscape

http:

paths:

{{- range .Values.ingress.paths }}

- path: {{ .path }}

pathType: Prefix

backend:

service:

name: {{ .service }}

port:

name: http

{{- end }}

{{- end }}

{{- end -}}

First comes a tls section where the manifest declares that the Ingress only accepts HTTPS 

traffic and that the accepted hostname will be specified with the ingress.host key in 

the values.yaml files. The certificate used for serving HTTPS requests will be stored in a 

Secret named as specified in the values.yaml files using the ingress.tls.secretName key. 

Next are the routing rules declared in the rules section. First is the hostname used for 

routing. This will be the same hostname as in the preceding tls section. Next comes a list 

of routes. They will be filled in using the ingress.paths section in the values.yaml file. 

Each entry contains a path and the name of the service to which requests to that path will 

be routed. Each service is expected to have the name of its port set to http. 

The common chart’s values.yaml file provides the following default values for the Ingress 

manifest:

ingress:

annotations:

cert-manager.io/issuer: selfsigned

tls:

secretName: tls-certificate

First is an annotation, cert-manager.io/issuer, declared for the Ingress object, indicat-

ing that cert-manager should manage the required certificate for this Ingress object using 

an issuer named selfsigned. More about this can be found in the  Automating certificate 

 provisioning section. Next is the Secret that will hold the certificate, given the default name tls-certificate. 

 Chapter 17

521

3.  We have added templates and additional settings to the environment charts, dev-env and 

prod-env, for Ingress manifests. The templates are named ingress.yml and are based on 

the named template from the common chart described previously:

{{- template "common.ingress" . -}}

4.  The remaining values required to render an Ingress manifest (a hostname and the actual 

paths used for routing) are specified in each environment chart’s values.yaml files. The 

declaration looks like this:

ingress:

host: minikube.me

paths:

- path: /oauth2

service: auth-server

- path: /login

service: auth-server

- path: /error

service: auth-server

- path: /product-composite

service: product-composite

- path: /actuator/health

service: product-composite

- path: /openapi

service: product-composite

From the configuration, we can see that we will use the hostname minikube.me and that 

three routes are defined for auth-server, while the rest of the declared paths will be 

routed to the product-composite service. 

We will register the hostname minikube.me in the local /etc/hosts file later, in the 

 Testing with Kubernetes ConfigMaps, Secrets, Ingress, and cert-manager section. 

The preceding changes will result in an Ingress manifest being rendered by Helm. Since the Ingress template is only used by the environments charts, we need to render one of the charts to see the Ingress manifest. 

522

 Implementing Kubernetes Features to Simplify the System Landscape

Run the following command to render manifests using the dev-env chart:

helm template kubernetes/helm/environments/dev-env

Look for kind: Ingress in the output, and you will find the Ingress manifest. It looks like this: apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

name: RELEASE-NAME-dev-env

labels:

app.kubernetes.io/name: dev-env

helm.sh/chart: dev-env-1.0.0

app.kubernetes.io/managed-by: Helm

annotations:

cert-manager.io/issuer: selfsigned

spec:

tls:

- hosts:

- "minikube.me" 

secretName: tls-certificate

rules:

- host: "minikube.me" 

http:

paths:

- path: /oauth2

pathType: Prefix

backend:

service:

name: auth-server

port:

name: http

- path: /product-composite

pathType: Prefix

backend:

service:

name: product-composite

port:

name: http

 Chapter 17

523

- path: /actuator/health

pathType: Prefix

backend:

service:

name: product-composite

port:

name: http

Note that some of the routing rules have been removed for improved readability. 

The final missing piece is how the Secret containing the certificate is created; let’s look into that next. 

Automating certificate provisioning

The cert-manager tool (https://cert-manager.io/docs/) is a certificate management controller for Kubernetes. It can facilitate the automated creation, provisioning, and rotation of certificates. 

It supports several sources for the certificates, such as the following:

•  An RFC8555 (https://tools.ietf.org/html/rfc8555)-compliant ACME server such as Let’s Encrypt (https://letsencrypt.org)

•  HashiCorp Vault PKI Secrets Engine (https://www.vaultproject.io/docs/secrets/

pki)

•  Self-signed certificates, issued by cert-manager itself

For a full list of available issuers, see https://cert-manager.io/docs/configuration/. 

Since self-signed certificates don’t require communication with any external resources, they are a good candidate for use during development. We will use them within the scope of this book. 

Using cert-manager in production typically requires the use of an issuer, such as 

Let’s Encrypt, which can issue certificates for the external APIs that the API clients 

(for example, web browsers and external systems) will trust. 

After the installation of cert-manager in a Kubernetes cluster, at least one issuer must be registered. An issuer can either be local to a namespace or accessible cluster-wide. We will use a local issuer that is registered in the existing namespace, hands-on. 

524

 Implementing Kubernetes Features to Simplify the System Landscape

It will be the responsibility of the environment charts, dev-env and prod-env, to register a proper issuer. Both environments will use the self-signed issuer. A named template, _issuer.yaml, has been added to the common chart. It looks like this:

{{- define "common.issuer" -}}

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

name: selfsigned

spec:

selfSigned: {}

{{- end -}}

The apiVersion and kind fields specify that this is an issuer defined by cert-manager. Its name is set to selfsigned. In the preceding  Changes required to replace the Spring Cloud Gateway section, we saw how this name was used to annotate the Ingress manifest:

ingress:

annotations:

cert-manager.io/issuer: selfsigned

tls:

secretName: tls-certificate

This is all that it takes to get cert-manager to kick in and provide a certificate for the Ingress object. cert-manager listens for the registration of Ingress objects that are annotated with cert-manager.io/issuer and starts to issue certificates using the issuer referenced in the value of the annotation, in this case, selfsigned. 

The cert-manager tool will use the issuer to create a certificate and will store it in a Secret named by the Ingress object. In our case, the name is set to tls-certificate. A Certificate object will also be created with the same name, containing administrative information such as when it is time for cert-manager to renew the certificate. 

Since the named template, common.issuer, does not accept any configuration, all that is required to apply it in the dev-env and prod-env charts is to add a template in each chart that uses the named template. The template is named issuer.yaml and looks like this:

{{- template "common.issuer" . -}}

With this, we have everything that is required to replace the Spring Cloud Config Server and Gateway with native Kubernetes components and cert-manager. Let’s deploy and run some tests! 

[image: Image 247]

 Chapter 17

525

Testing with Kubernetes ConfigMaps, Secrets, 

Ingress, and cert-manager

With the preceding changes described, we are ready to test the system landscape with the Spring Cloud Config Server and the Spring Cloud Gateway replaced by Kubernetes ConfigMaps, Secrets, an Ingress object, and cert-manager. As before, when we use the Spring Cloud Gateway as the 

edge server, the external API will be protected by HTTPS. With this deployment, it will be the Ingress controller that uses the certificate provisioned by cert-manager to protect the external API with HTTPS. This is illustrated in the following diagram:

 Figure 17.3: Protecting external access using HTTPS

The Ingress controller is exposed on the default HTTPS port, 443, on the minikube instance. On the host where we run the minikube instance as a Docker container, we communicate with the 

minikube instance via localhost. When the minikube instance was created, port forwarding 

was configured from port 8443 on localhost to port 443 in the minikube instance. The Ingress controller was installed when we performed the minikube addons enable ingress command. 

For a recap on the setup of the minikube instance, see the  Creating a Kubernetes cluster 

section in  Chapter 15,  Introduction to Kubernetes. 

An interesting question here is, how can the Ingress controller use port 443 on the minikube instance? We have seen the use of services of the NodePort type that can allocate a port starting from 30000, so how can the Ingress controller use the standard port for HTTPS, 443? 

526

 Implementing Kubernetes Features to Simplify the System Landscape

The Ingress controller consists of a Deployment object, ingress-nginx-controller, in the 

ingress-nginx namespace. The answer to the question is that the Deployment object configures its Pod using hostPort to map port 443 in the Kubernetes host, that is, the minikube instance, to port 443 in the container that runs in the Pod. The central parts in the definition of the Deployment object look like the following:

apiVersion: apps/v1

kind: Deployment

metadata:

name: ingress-nginx-controller

spec:

template:

spec:

containers:

image: registry.k8s.io/ingress-nginx/controller:v1.5.1

ports:

- containerPort: 443

hostPort: 443

This setup works for a single-node Kubernetes cluster used for development and 

testing. In a multi-node Kubernetes cluster, external load balancers are used to ex-

pose an Ingress controller for high availability and scalability. 

The Deployment object uses the same type of commands as we used in  Chapter 16,  Deploying Our Microservices to Kubernetes; refer to the  Deploying to Kubernetes for development and test section. In this section, we will also install cert-manager and add an entry to the/etc/hosts file for the hostname minikube.me. 

Execute the following steps to deploy the system landscape and verify that it works as expected: 1.  Install cert-manager in the cert-manager namespace and wait for the deployment to 

complete. Before cert-manager can be installed, we need to add its Helm repository. Run 

the following commands:

helm repo add jetstack https://charts.jetstack.io

helm repo update

helm install cert-manager jetstack/cert-manager \

--create-namespace \

--namespace cert-manager \

[image: Image 248]

 Chapter 17

527

--version v1.11.0 \

--set installCRDs=true \

--wait

The cert-manager tool also comes with a set of Kubernetes Custom Re-

source Definitions (CRDs), such as the Issuer object that was introduced 

previously. CRDs are used in Kubernetes to extend its API, that is, to add 

new objects to its API. The --set installCRDs=true flag in the preceding 

command ensures that these object definitions are installed when installing 

cert-manager. 

Verify that three Pods are ready in the cert-manager namespace with the following com-

mand:

kubectl get pods --namespace cert-manager

Expect a response like this:

 Figure 17.4: Pods in the cert-manager namespace

2.  Map minikube.me to the IP address we can use to reach the minikube instance by adding 

a line to the /etc/hosts file. Run the following command:

sudo bash -c "echo 127.0.0.1 minikube.me | tee -a /etc/hosts" 

Note that the sudo command will probably ask for your password. 

Verify the result with the cat /etc/hosts command. Expect a line that contains 127.0.0.1 

minikube.me. 

If your /etc/hosts file contains multiple lines for minikube.me (for example, from earlier 

attempts), you need to remove the old ones manually. 

528

 Implementing Kubernetes Features to Simplify the System Landscape

3.  You can build Docker images from the source code as follows:

cd $BOOK_HOME/Chapter17

eval $(minikube docker-env -u)

./gradlew build

eval $(minikube docker-env)

docker compose build

The eval $(minikube docker-env -u) command is used to ensure that 

the ./gradlew build command uses the host’s Docker engine and not the 

Docker engine in the minikube instance. The build command uses Docker 

to run test containers. 

4.  Resolve the Helm chart dependencies:

a.  First, we update the dependencies in the components folder:

for f in kubernetes/helm/components/*; do helm dep up $f; done

b.  Next, we update the dependencies in the environments folder:

for f in kubernetes/helm/environments/*; do helm dep up $f; 

done

5.  Set the hands-on namespace as the default namespace for kubectl:

kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

6.  In a separate terminal window, run the following command to monitor how certificate 

objects are created by cert-manager:

kubectl get certificates -w --output-watch-events

7.  Deploy the system landscape using Helm and wait for all deployments to complete:

helm install hands-on-dev-env \

kubernetes/helm/environments/dev-env \

-n hands-on \

--create-namespace \

--wait

[image: Image 249]

[image: Image 250]

 Chapter 17

529

8.  Note how the certificate is created by cert-manager during the deployment. Expect the 

following output from the kubectl get certificates command:

 Figure 17.5: Events from cert-manager provisioning a certificate

9.  Stop the kubectl get certificates command with  Ctrl +  C. 

10.  Run the test to verify that the system landscape works as expected:

HOST=minikube.me PORT=8443 USE_K8S=true ./test-em-all.bash

Expect output from the tests similar to what we obtained in the previous chapter (in 

condensed format):

 Figure 17.6: Verifying the system landscape created by the dev-env Helm chart

Before wrapping up dev-env, let’s try out the certificate object that cert-manager created and see how it can be used to affect the retention time for the certificate. 

Rotating certificates

Let’s start getting acquainted with the certificate object by issuing the following command: kubectl describe cert tls-certificate

[image: Image 251]

[image: Image 252]

530

 Implementing Kubernetes Features to Simplify the System Landscape

At the end of the output from the command, we will find the following information regarding 

the time for which the certificate will be valid:

 Figure 17.7: Certificate validation period and renewal time

We can see that the certificate is valid for 90 days (Not After – Not Before) and that cert-manager will try to renew it after 60 days (Renewal Time – Not Before). Since the self-signed issuer we are using doesn’t allow any configuration, these are the default values that cert-manager uses: 90 days lifetime and a renewal process that is initiated after 2/3 of the lifetime. 

But we don’t want to wait 60 days before we can observe a renewal of the certificate. If we study the API specification for the certificate object at https://cert-manager.io/docs/reference/

api-docs/#cert-manager.io/v1.Certificate, we will find a field in the spec section that is of interest. It is named renewBefore and can be used to specify how early cert-manager should start the renewal process. If we want the certificate to be renewed once per minute, we can specify renewBefore to be 90 days – 1 minute = 90*24 hours – 1 minute = 2,160 hours – 1 minute = 2,159 

hours and 59 minutes. 

Start the kubectl get events -w command in a separate terminal window and run the following 

patch command to add the renewBefore field to the certificate:

kubectl patch certificate tls-certificate --type=json \

-p='[{"op": "add", "path": "/spec/renewBefore", "value": "2159h59m"}]' 

Within one minute, the get events command should start to report on certificate renewals. For each renewal, the following should be printed by the get events command:

 Figure 17.8: Events from cert-manager rotating a certificate

 Chapter 17

531

Wait a couple of minutes to verify that the certificate is renewed once per minute. If you are curious about when the next renewal will happen, you can issue the following command:

kubectl get cert tls-certificate -o json | jq .status.renewalTime

It should respond with a date such as 2025-05-07T05:48:20Z. 

If you no longer want to have a custom retention time, you can remove the renewBefore field 

with the following command:

kubectl patch certificate tls-certificate --type=json \

-p='[{"op": "remove", "path": "/spec/renewBefore"}]' 

This concludes the tests we will do in the system landscape deployed using the dev-env chart. 

We can remove the system landscape with the following command:

kubectl delete namespace hands-on

Let us also recap how to deploy the system landscape using the prod-env chart! 

Deploying to Kubernetes for staging and production

Deploying to a staging and production environment using the prod-env chart follows the same 

steps as we used in the  Deploying to Kubernetes for staging and production section in  Chapter 16,  

 Deploying Our Microservices to Kubernetes. The steps are recapitulated here in a compact form: 1.  Start MySQL, MongoDB, and RabbitMQ outside of Kubernetes:

eval $(minikube docker-env)

docker compose up -d mongodb mysql rabbitmq

2.  Tag Docker images with v1 versions:

docker tag hands-on/auth-server hands-on/auth-server:v1

docker tag hands-on/product-composite-service hands-on/product-

composite-service:v1

docker tag hands-on/product-service hands-on/product-service:v1

docker tag hands-on/recommendation-service hands-on/recommendation-

service:v1

docker tag hands-on/review-service hands-on/review-service:v1

532

 Implementing Kubernetes Features to Simplify the System Landscape

3.  Deploy the microservices using the prod-env Helm chart:

helm install hands-on-prod-env \

kubernetes/helm/environments/prod-env \

-n hands-on --create-namespace \

--wait

4.  Run the test to verify that the system landscape works as expected:

HOST=minikube.me PORT=8443 USE_K8S=true ./test-em-all.bash

When you are done, clean up the resources created in both Kubernetes and Docker using the 

following commands:

1.  Stop the kubectl get cert -w and kubectl get events -w commands if they are still 

running by using  Ctrl +  C. 

2.  Delete the namespace in Kubernetes with the following command:

kubectl delete namespace hands-on

3.  Stop MySQL, MongoDB, and RabbitMQ with the following command:

eval $(minikube docker-env)

docker compose down

With this, we are done with all tests running on Kubernetes. Let’s see how to verify that the microservices still work  without Kubernetes. 

Verifying that the microservices work without 

Kubernetes

In this chapter and the previous one, we have seen how features in the Kubernetes platform, 

such as ConfigMaps, Secrets, Services, and Ingress objects, can simplify the effort of developing a landscape of cooperating microservices. But it is important to ensure that the source code of the microservices doesn’t become dependent on the platform from a functional perspective. 

Avoiding such a lock-in makes it possible to change to another platform in the future, if required, with minimal effort. Changing the platform should not require changes in the source code, only in the configuration of the microservices. 

Testing the microservices using Docker Compose and running the test-em-all.bash verification script will ensure that they work from a functional perspective without Kubernetes. Since Kubernetes is a far more advanced and complex tool than Docker Compose, running integration tests with some cooperating microservices using minikube takes longer than it does with Docker Compose. 

 Chapter 17

533

This makes Docker Compose a more convenient developer tool. minikube is, however, a very 

good tool for verifying that the microservices work as expected in a local Kubernetes environment before deploying them to test, QA, and production environments. 

When running microservices without Kubernetes, we will lack the non-functional features that Kubernetes provides us with, for example, monitoring, scaling, and restarting containers. When using Docker Compose, we will replace the following Kubernetes features:

•  Instead of ConfigMaps, we will use volumes that map the configuration files directly from the host filesystem

•  Instead of using Secrets, we will keep sensitive information such as credentials in the 

Docker Compose .env file

•  Instead of an Ingress, we will use the Spring Cloud Gateway

•  Instead of Services, we will map hostnames used by the clients directly to the hostnames 

of the containers, meaning that we will not have any service discovery in place and will 

not be able to scale containers

Using Docker Compose this way will result in significant disadvantages from a non-functional perspective compared to using Kubernetes. But this is acceptable, given that Docker Compose 

will only be used to run functional tests. 

Let’s go through the changes in the docker-compose*.yml files before we run the tests using 

Docker Compose. 

Changes in the Docker Compose files

To run microservices outside Kubernetes, using Docker Compose, the following changes have 

been applied to the docker-compose*.yml files:

•  We have removed the configuration server definition

•  We have removed the use of the following configuration server environment variables: 

CONFIG_SERVER_USR and CONFIG_SERVER_PWD

•  We have mapped the config-repo folder as a volume in each container that needs to read 

configuration files from the configuration repository

•  We have defined the SPRING_CONFIG_LOCATION environment variable to point to the con-

figuration files in the configuration repository

•  We have stored sensitive information, such as credentials and passwords, in TLS certifi-

cates in the Docker Compose .env file

534

 Implementing Kubernetes Features to Simplify the System Landscape

•  We have defined environment variables with credentials for access to resource managers 

using the variables defined in the .env file

For example, the configuration of the product microservice looks like the following in docker-compose.yml:

product:

build: microservices/product-service

image: hands-on/product-service

environment:

- SPRING_PROFILES_ACTIVE=docker

- SPRING_CONFIG_LOCATION=file:/config-repo/application.yml, 

file:/config-repo/product.yml

- SPRING_RABBITMQ_USERNAME=${RABBITMQ_USR}

- SPRING_RABBITMQ_PASSWORD=${RABBITMQ_PWD}

- SPRING_DATA_MONGODB_AUTHENTICATION_DATABASE=admin

- SPRING_DATA_MONGODB_USERNAME=${MONGODB_USR}

- SPRING_DATA_MONGODB_PASSWORD=${MONGODB_PWD}

volumes:

- $PWD/config-repo:/config-repo

Here is an explanation of the source code:

•  The config-repo folder is mapped as a volume into the container at /config-repo

•  The SPRING_CONFIG_LOCATION environment variable tells Spring where to find the prop-

erty files, in this case, the /config-repo/application.yml and /config-repo/product. 

yml files

 Chapter 17

535

•  Credentials for accessing RabbitMQ and MongoDB are set up as environment variables 

based on the content in the .env file

The credentials referred to in the preceding source code are defined in the .env file as follows: RABBITMQ_USR=rabbit-user-prod

RABBITMQ_PWD=rabbit-pwd-prod

MONGODB_USR=mongodb-user-prod

MONGODB_PWD=mongodb-pwd-prod

Testing with Docker Compose

To test with Docker Compose, we will use Docker Desktop instead of minikube. Perform the 

following steps:

1.  To direct the Docker client to use Docker Desktop instead of minikube, run the following command:

eval $(minikube docker-env --unset)

2.  To avoid port conflicts on port 8443, you need to stop the minikube instance:

minikube stop

3.  Build the Docker images in Docker Desktop with the following command:

docker compose build

4.  Run the tests using RabbitMQ (with one partition per topic):

COMPOSE_FILE=docker-compose.yml ./test-em-all.bash start stop

[image: Image 253]

536

 Implementing Kubernetes Features to Simplify the System Landscape

5.  The tests should begin by starting all the containers, running the tests, and finally, stopping all the containers. Expect output similar to what we have seen in the previous chapters 

(output reduced to improve readability):

 Figure 17.9: Verifying the functionality of the system landscape without using Ku-

 bernetes

6.  Optionally, run the tests using RabbitMQ with multiple partitions per topic:

COMPOSE_FILE=docker-compose-partitions.yml ./test-em-all.bash start 

stop

Expect output that’s similar to the preceding test. 

 Chapter 17

537

7.  Alternatively, run the test using Kafka with multiple partitions per topic:

COMPOSE_FILE=docker-compose-kafka.yml ./test-em-all.bash start stop

Expect output that’s similar to the preceding test. 

Since it can take a few seconds for the Kafka broker to decide which partition 

to assign to the instances in the consumer groups, the tests can fail since the 

rebalancing operation is still in progress when the tests are started. If the 

test fails, then rerun the command, but without the start flag:

COMPOSE_FILE=docker-compose-kafka.yml ./test-em-all. 

bash stop

8.  Start the minikube instance, and set the default namespace to hands-on:

minikube start

kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

With the successful execution of these tests, we have verified that the microservices also work without Kubernetes. 

Summary

In this chapter, we have seen how capabilities in Kubernetes can be used to simplify a microservice landscape, meaning that we reduce the number of supporting services to be developed and deployed together with the microservices. We have seen how Kubernetes ConfigMaps and Secrets can be used to replace the Spring Cloud Config Server and how a Kubernetes Ingress object can replace the Spring Cloud Gateway. 

Using cert-manager allowed us to automatically provision certificates for HTTPS endpoints exposed by the Ingress controller, eliminating the need for manual and cumbersome work. 

To verify that the source code of the microservices can run on other platforms (that is, isn’t locked into Kubernetes), we deployed the microservices using Docker Compose and ran the test-em-all.bash test script. 

In the next chapter, we will be introduced to the concept of a service mesh and learn how a service mesh product, Istio, can be used to improve observability, security, resilience, and routing in a landscape of cooperating microservices that are deployed on Kubernetes. 

Head over to the next chapter! 

[image: Image 254]

538

 Implementing Kubernetes Features to Simplify the System Landscape

Questions

1.  How was the Spring Cloud Config Server replaced by Kubernetes resources? 

2.  How was the Spring Cloud Gateway replaced by Kubernetes resources? 

3.  What is required to make cert-manager automatically provision certificates for an Ingress object? 

4.  How can the retention time of a certificate be checked and updated? 

5.  Where is the actual certificate stored? 

6.  Why did we run the tests using Docker Compose? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

18

Using a Service Mesh to 

Improve Observability and 

Management

In this chapter, you will be introduced to the concept of a service mesh and see how its capabilities can be used to handle challenges in a system landscape of microservices in areas including security, policy enforcement, resilience, and traffic management. A service mesh can also be used to provide observability, the ability to visualize how traffic flows between microservices. 

A service mesh overlaps partly with the capabilities of Spring Cloud and Kubernetes that we 

learned about earlier in this book. But most of the functionality in a service mesh complements Spring Cloud and Kubernetes, as we will see in this chapter. 

The following topics will be covered in this chapter:

•  An introduction to the service mesh concept and Istio, a popular open source implemen-

tation

•  Deploying Istio in Kubernetes

•  Creating, observing, and securing a service mesh

•  Ensuring that a service mesh is resilient

•  Performing zero-downtime updates

•  Testing the microservice landscape using Docker Compose to ensure that the source code 

in the microservices is not locked into either Kubernetes or Istio

540

 Using a Service Mesh to Improve Observability and Management

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following chapters:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter18. 

If you want to view the changes applied to the source code in this chapter, that is, see what it took to create a service mesh using Istio, you can compare it with the source code for  Chapter 17, 

 Implementing Kubernetes Features to Simplify the System Landscape. You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter17 and $BOOK_HOME/Chapter18. 

Introducing service meshes using Istio

A service mesh is an infrastructure layer that controls and observes the communication between services, for example, microservices. The functionalities of a service mesh, for example, observability, security, policy enforcement, resilience, and traffic management, are implemented by controlling and monitoring all internal communication inside the service mesh, that is, between the microservices in the service mesh. 

One of the core components of a service mesh is a lightweight proxy component, which is injected into each microservice that will be part of the service mesh. All traffic in and out of a microservice is configured to go through its proxy component. The proxy components are configured at runtime by a control plane in the service mesh using APIs exposed by the proxy. The control plane also collects telemetry data through these APIs from the proxies to visualize how the traffic flows in the service mesh. 

A service mesh also contains a data plane, consisting of the proxy components together with separate components for handling external traffic to and from the service mesh, known as an 

ingress gateway and an egress gateway, respectively. The gateway components also communicate with the control plane using a proxy component. This is illustrated by the following diagram:

[image: Image 255]

 Chapter 18

541

 Figure 18.1: Service mesh with a control plane and a data plane

The first publicly available implementation of a service mesh was the open source project Linkerd, managed by Buoyant (https://linkerd.io), which originated in Twitter’s Finagle project 

(http://twitter.github.io/finagle). It was launched in 2016 and, one year later, in 2017, IBM, Google, and Lyft launched the open source Istio project (https://istio.io). Since then, several service mesh projects have been launched. For an overview of available implementations, see the service mesh category in CNCF’s cloud-native landscape map: https://landscape.cncf. 

io/card-mode?category=service-mesh&grouping=category. In this book, we will use Istio. 

Introducing Istio

Istio can be deployed on a number of Kubernetes distributions and platforms using various installation tools, as described in https://istio.io/docs/setup.  We will use Istio’s CLI tool, istioctl, to install Istio in our Minikube-based, single-node Kubernetes cluster. 

Istio, as explained previously, is divided into a control plane and a data plane. As an operator, we will define the desired state by creating Istio objects in the Kubernetes API server, for example, declaring routing rules. The control plane will read these objects and send commands to the proxies in the data plane to take action according to the desired state, for example, configuring routing rules. The proxies handle the actual communication between the microservices and report back telemetry data to the control plane. The telemetry data is used in the control plane to visualize what’s going on in the service mesh. 

542

 Using a Service Mesh to Improve Observability and Management

When deploying Istio on Kubernetes, most of its runtime components are deployed in a separate Kubernetes Namespace, istio-system. For the configuration we will use in this book, we will 

find the following Deployments in this Namespace:

•  istiod, Istio’s daemon that runs the whole control plane. 

Fun fact: Up until Istio v1.4, the control plane was divided into a set of co-

operating microservices. Starting with v1.5, they were consolidated into a 

single binary run by istiod, simplifying the installation and configuration 

of the control plane at runtime. Also, runtime characteristics such as startup 

time, resource usage, and responsiveness improved. This evolution of Istio’s 

control plane is, to me, an interesting lesson learned when it comes to the 

use of fine-grained microservices. 

•  istio-ingressgateway and istio-egressgateway, Istio’s ingress and egress gateway 

components, are part of the data plane. 

A number of integrations with other popular open source projects are supported by Istio to bring extra functionality into the control plane. In this book, we will integrate the following components:

•  Kiali: Provides observability to the service mesh, visualizing what is going on in the mesh. 

For more information, see https://www.kiali.io. 

•  Tracing: Handles and visualizes distributed tracing information based on either Jaeger or Zipkin. We will use Jaeger. For more information, see https://www.jaegertracing.io. 

•  Prometheus: Performs data ingestion and storage for time-series-based data, for example, performance metrics. For more information, see https://prometheus.io. 

•  Grafana: Visualizes performance metrics and other time series-related data collected by Prometheus. For more information, see https://grafana.com. 

In  Chapter 20,  Monitoring Microservices, we will explore performance monitoring capabilities using Prometheus and Grafana. 

For more information on the integration available in Istio, see https://istio.io/latest/docs/

ops/integrations/. 

[image: Image 256]

 Chapter 18

543

The only Istio components that are deployed outside of the istio-system Namespace are the 

proxy components, which are injected into the microservices that are part of the service mesh. 

The proxy component is based on Lyft’s Envoy proxy (https://www.envoyproxy.io). 

The runtime components in Istio’s control plane and data plane are summarized in the following diagram:

 Figure 18.2: Istio runtime components

Now that we’ve had an introduction, we will look into how these proxy objects can be injected into the microservices. 

Injecting Istio proxies into microservices

The microservices we deployed in Kubernetes in the previous chapters run as a single container in a Kubernetes Pod (refer to the  Introducing Kubernetes API objects section of  Chapter 15,  Introduction to Kubernetes, for a recap). To make a microservice join an Istio-based service mesh, an Istio proxy is injected into each microservice. This is done by adding an extra container to the Pod that runs the Istio proxy. 

A container added to a Pod with the aim of supporting the main container, such as 

an Istio proxy, is referred to as a sidecar. 

[image: Image 257]

544

 Using a Service Mesh to Improve Observability and Management

The following diagram shows how an Istio proxy has been injected into a sample Pod, Pod A, as a sidecar:

 Figure 18.3: Istio proxy injected into Pod A

The main container in the Pod, Container A, is configured to route all its traffic through the Istio proxy. 

Istio proxies can be injected either automatically when a Pod object is created or manually using the istioctl tool. To tell Istio to automatically inject an Istio proxy into new Pods in a Namespace, the Namespace can be labeled with istio-injection: enabled. If some Pods in the 

Namespace are to be excluded from the auto-injection, they can be annotated with sidecar. 

istio.io/inject: "false". 

To inject an Istio proxy manually into the Pods of an existing Deployment object, the following command can be used:

kubectl get deployment sample-deployment -o yaml | istioctl kube-inject -f 

- | kubectl apply -f -

This command may, at first glance, appear somewhat daunting, but it is actually just three separate commands. The previous command sends its output to the next command using pipes, that 

is, the | character. Let’s go through each command:

 Chapter 18

545

•  The kubectl get deployment command gets the current definition of a Deployment 

named sample-deployment from the Kubernetes API server and returns its definition in 

the YAML format. 

•  The istioctl kube-inject command reads the definition from the kubectl get 

deployment command and adds an extra container for an Istio proxy in Pods that the 

Deployment handles. The configuration for the existing container in the Deployment 

object is updated so that incoming and outgoing traffic goes through the Istio proxy. 

•  The istioctl command returns the new definition of the Deployment object, including 

a container for the Istio proxy. 

•  The kubectl apply command reads the updated configuration from the istioctl kube-

inject command and applies the updated configuration. An upgrade of the Pods belonging 

to the Deployment will start up in the same way as we have seen before (refer to the  Trying out a sample deployment section of  Chapter 15,  Introduction to Kubernetes). 

In this book, we will inject the Istio proxies automatically by applying the following definition of the hands-on Namespace:

apiVersion: v1

kind: Namespace

metadata:

name: hands-on

labels:

istio-injection: enabled

From the preceding definition, we can see how the Namespace is given the label istio-injection with the value enabled. 

At the time of writing, Istio is not fully capable of acting as a proxy for MySQL, MongoDB, and RabbitMQ, so they will be excluded from the service mesh by adding the following annotation 

to their Helm charts’ values.yaml file:

annotations:

sidecar.istio.io/inject: "false" 

After this introduction to how Istio proxies can be injected into Pods, we can now learn about the Istio API objects used in this book. 

546

 Using a Service Mesh to Improve Observability and Management

Introducing Istio API objects

Istio also comes with a set of Kubernetes Custom Resource Definitions (CRDs). CRDs are used in Kubernetes to extend its API, that is, to add new objects to its API. Refer to the  Introducing Kubernetes API objects section of  Chapter 15,  Introduction to Kubernetes, for a recap of the Kubernetes API. In this book, we will use the following Istio objects:

•  Gateway is used to configure how to handle incoming traffic to and outgoing traffic from 

the service mesh. A gateway depends on a virtual service routing the incoming traffic 

to Kubernetes Services. We will use a gateway object to accept incoming traffic to DNS 

names ending with minikube.me using HTTPS. The Istio gateway objects will replace the 

Ingress objects used in the previous chapter. Refer to the  Replacing the Kubernetes Ingress controller with an Istio ingress gateway section for details. 

•  VirtualService is used to define routing rules in the service mesh. We will use virtual 

services to describe how to route incoming traffic from an Istio gateway to the Kubernetes 

Services and between Services. We will also use virtual services to inject faults and delays to test the reliability and resilience capabilities of the service mesh. 

• 

DestinationRule is used to define policies and rules for traffic that is routed (using a 

virtual service) to a specific service (that is, a destination). We will use destination rules to set up encryption policies to encrypt internal HTTP traffic and define service subsets that 

describe available versions of the services. We will use service subsets when performing 

zero-downtime (blue-green) deployments from an existing version of a microservice to 

a new version. 

The division of responsibility between VirtualService and 

DestinationRule might seem a bit unclear in the beginning. A 

VirtualService  object  is  used  to  configure  routing  to a service and 

DestinationRule is used to configure how to handle traffic for a select-

ed service. So, first are VirtualService objects, which are used to deter-

mine where to send a request. Once that is decided, the receiving service’s 

DestinationRule is applied. 

• 

PeerAuthentication is used to control service-to-service authentication inside the service 

mesh. Istio can protect communication between services in a service mesh by automati-

cally provisioning mutual TLS (mTLS) for transport authentication, where client services are authenticated by using a client certificate that is provided by Istio. To allow Kubernetes to call liveness and readiness probes using plain HTTP, we will configure Istio to allow a 

mix of mTLS and plain HTTP, called PERMISSIVE mode. 

 Chapter 18

547

•  RequestAuthentication is used to authenticate end users based on the credentials pro-

vided in a request. Istio supports using JSON Web Tokens (JWTs) in general and specifically when used according to the OpenID Connect (OIDC) specification. Istio supports the use of the standard discovery endpoint in OIDC to specify where Istio can fetch the 

public key set (JSON Web Key Set (JWKS)) to validate the signatures of the JWTs. We will configure Istio to authenticate external requests using the auth server by specifying its 

JWKS discovery endpoint. For a recap, see  Chapter 11,  Securing Access to APIs. 

•  AuthorizationPolicy is used to provide access control in Istio. We will not use Istio’s access control in this book. Instead, we will reuse the existing access control implemented in the 

product-composite microservice. We will therefore configure an AuthorizationPolicy 

object that allows access to the product-composite microservice for any authenticated 

user, that is, for requests that contain a valid JWT in the form of an OIDC access token. 

Now that we have introduced the API objects we will use, we will go through the changes applied to the microservice landscape arising from the introduction of Istio. 

Simplifying the microservice landscape

As we saw in the preceding section, Istio comes with components that overlap with components currently used in the microservice landscape in terms of functionality:

•  The Istio ingress gateway can act as an edge server, an alternative to a Kubernetes Ingress controller

•  The Jaeger component that comes bundled with Istio can be used for distributed tracing 

instead of the Zipkin server that we deploy together with the microservices

In the following two subsections, we will get an overview of why and how the Kubernetes Ingress controller is replaced with an Istio ingress gateway, and why and how our Zipkin server is replaced with the Jaeger component that comes integrated with Istio. 

Replacing the Kubernetes Ingress controller with an Istio 

ingress gateway

In the previous chapter, we introduced the Kubernetes Ingress controller as an edge server (refer to the  Replacing Spring Cloud Gateway section of  Chapter 17,  Implementing Kubernetes Features to Simplify the System Landscape). An Istio ingress gateway has a number of advantages over a Kubernetes Ingress controller:

•  It can report telemetry data to the control plane for the traffic that flows through it

548

 Using a Service Mesh to Improve Observability and Management

•  It can be used for more fine-grained routing

•  It can both authenticate and authorize requests before routing them into the service mesh To benefit from these advantages, we will replace the Kubernetes Ingress controller with the Istio ingress gateway. The Istio ingress gateway is used by creating Gateway and VisualService objects, as described previously in the  Introducing Istio API objects section. 

The definition of the previously used Ingress objects has been removed from the dev-env and 

prod-env Helm charts in kubernetes/helm/environments. The definition files for Istio Gateway and VirtualService objects will be explained in the  Creating the service mesh section. 

The Istio ingress gateway is reached using a different IP address from the IP address used to access the Kubernetes Ingress controller, so we also need to update the IP address mapped to the hostname, minikube.me, which we use when running tests. This is handled in the  Setting up access to Istio services section. 

Replacing the Zipkin server with Istio’s Jaeger 

component

As mentioned in the  Introducing Istio section, Istio comes with built-in support for distributed tracing using Jaeger. Using Jaeger, we can offload and simplify the microservice landscape in Kubernetes by removing the Zipkin server we introduced in  Chapter 14,  Understanding Distributed Tracing. We will also change the way trace and span IDs are propagated between the microservices from using the default W3C trace context headers to using OpenZipkin’s B3 headers. See the  Introducing distributed tracing with Micrometer Tracing and Zipkin section of  Chapter 14,  Understanding Distributed Tracing, for more information. 

The following changes have been applied to the source code:

•  The following dependencies have been replaced in all microservice build files, build. 

gradle:

implementation 'io.micrometer:micrometer-tracing-bridge-otel' 

implementation 'io.opentelemetry:opentelemetry-exporter-zipkin' 

The dependencies have been replaced with the following:

implementation 'io.micrometer:micrometer-tracing-bridge-brave' 

implementation 'io.zipkin.reporter2:zipkin-reporter-brave' 

 Chapter 18

549

•  The management.zipkin.tracing.endpoint property in the common configuration file, 

config-repo/application.yml, points to the Jaeger component in Istio. It has the host-

name jaeger-collector.istio-system. 

•  The definition of the Zipkin server in the three Docker Compose files, docker-compose.yml, docker-compose-partitions.yml, and docker-compose-kafka.yml, has been retained 

to be able to use distributed tracing outside of Kubernetes and Istio, but the Zipkin server has been given the same hostname as the Jaeger component in Istio, jaeger-collector. 

istio-system. 

•  The Helm chart for the Zipkin server has been removed. 

Jaeger will be installed in the Deploying Istio in a Kubernetes cluster section coming up. 

With these simplifications of the microservice landscape explained, we are ready to deploy Istio in a Kubernetes cluster. 

Deploying Istio in a Kubernetes cluster

In this section, we will learn how to deploy Istio in a Kubernetes cluster and how to access the Istio services in it. 

We will use Istio’s CLI tool, istioctl, to install Istio using a demo configuration of Istio that is suitable for testing Istio in a development environment, that is, with most features enabled but configured for minimalistic resource usage. 

This configuration is unsuitable for production usage and for performance testing. 

For other installation options, see https://istio.io/latest/docs/setup/install/. 

To deploy Istio, perform the following steps:

1.  Ensure that your Minikube instance from the previous chapter is up and running with 

the following command:

minikube status

[image: Image 258]

[image: Image 259]

550

 Using a Service Mesh to Improve Observability and Management

Expect a response along the lines of the following, provided it is up and running:

 Figure 18.4: Minikube status OK

2.  Run a precheck to verify that the Kubernetes cluster is ready for Istio to be installed in it: istioctl experimental precheck

Expect a response like the following:

 Figure 18.5: Istio precheck OK

3.  Install Istio using the demo profile with the following command:

cd $BOOK_HOME/Chapter18

istioctl install --skip-confirmation \

--set profile=demo \

--set meshConfig.accessLogFile=/dev/stdout \

--set meshConfig.accessLogEncoding=JSON \

--set values.pilot.env.PILOT_JWT_PUB_KEY_REFRESH_INTERVAL=15s \

-f kubernetes/istio-tracing.yml

The command parameters do the following:

•  The accessLog parameters are used to enable the Istio proxies to log requests 

that are processed. Once Pods are up and running with Istio proxies installed, 

the access logs can be inspected with the command kubectl logs <MY-POD> -c 

istio-proxy. 

 Chapter 18

551

•  The PILOT_JWT_PUB_KEY_REFRESH_INTERVAL parameter configures Istio’s daemon, 

istiod, to refresh the fetched JWKS public keys every 15 seconds. The usage of this 

parameter will be explained in the Deploying v1 and v2 versions of the microser-

vices with routing to the v1 version section. 

•  The configuration file kubernetes/istio-tracing.yml enables the creation of 

trace spans used for distributed tracing. It also configures Istio to propagate trace 

spans between requests using OpenZipkin’s B3 headers, as mentioned in the Re-

placing the Zipkin server with Istio’s Jaeger component section. It looks like this:

apiVersion: install.istio.io/v1alpha1

kind: IstioOperator

spec:

meshConfig:

enableTracing: true

defaultConfig:

tracing: {} # disable legacy MeshConfig tracing options

extensionProviders:

- name: "zipkin" 

zipkin:

service: zipkin.istio-system.svc.cluster.local

port: 9411

The zipkin field declares the tracer service to which all trace spans are sent using the Zipkin API. The hostname specified in the service field, zipkin.istio-system.svc.cluster. 

local, points to the Jaeger component and the port (9411) where Jaeger receives trace 

spans using the Zipkin API. 

If you inspect the Zipkin service with the kubectl get svc -n istio-

system zipkin -o yaml command, you will see that its selector field 

points to Pods labeled with app: jaeger, meaning that the Zipkin service 

will direct all calls to one of the Jaeger component’s Pods. 

552

 Using a Service Mesh to Improve Observability and Management

4.  By default, trace spans are only created for one percent of the requests. In a production environment, it seems to be a reasonable default value to avoid being overwhelmed by 

trace spans. But in our test environment, we want to be able to see distributed traces 

for every request we send. To update the sampling rate used by Istio, we must create a 

Telemetry object. The configuration file kubernetes/istio-telemetry.yml defines the 

object as follows:

apiVersion: telemetry.istio.io/v1

kind: Telemetry

metadata:

name: mesh-default

spec:

tracing:

- providers:

- name: "zipkin" 

randomSamplingPercentage: 100.00

The Telemetry object configures the tracing provider Zipkin to have a 100% random sam-

pling percentage, meaning that it will create distributed traces for all incoming requests. 

Create the Telemetry object with the following command:

kubectl -n istio-system apply -f kubernetes/istio-telemetry.yml

5.  Wait for the Deployment objects and their Pods to be available with the following com-

mand:

kubectl -n istio-system wait --timeout=600s 

--for=condition=available deployment --all

6.  Next, install the extra components described in the  Introducing Istio section – Kiali, Jaeger, Prometheus, and Grafana – with these commands:

istio_version=$(istioctl version --remote=false -o json | jq -r 

.clientVersion.version)

echo "Installing integrations for Istio v$istio_version" 

kubectl apply -n istio-system -f https://raw.githubusercontent.com/

istio/istio/${istio_version}/samples/addons/kiali.yaml

kubectl apply -n istio-system -f https://raw.githubusercontent.com/

[image: Image 260]

 Chapter 18

553

istio/istio/${istio_version}/samples/addons/jaeger.yaml

kubectl apply -n istio-system -f https://raw.githubusercontent.com/

istio/istio/${istio_version}/samples/addons/prometheus.yaml

kubectl apply -n istio-system -f https://raw.githubusercontent.com/

istio/istio/${istio_version}/samples/addons/grafana.yaml

If any of these commands fail, try rerunning the failing command. Errors 

can occur due to timing issues, which can be resolved by running commands 

again. Specifically, the installation of Kiali can result in error messages start-

ing with unable to recognize. Rerunning the command makes these 

error messages go away. 

7.  Wait a second time for the extra components to be available with the following command:

kubectl -n istio-system wait --timeout=600s 

--for=condition=available deployment --all

8.  Finally, run the following command to see what was installed:

kubectl -n istio-system get deploy

Expect an output similar to this:

 Figure 18.6: Deployments in the Istio Namespace

Istio is now deployed in Kubernetes, but before we move on and create the service mesh, we need to learn a bit about how to access the Istio services in a Minikube environment. 

554

 Using a Service Mesh to Improve Observability and Management

Setting up access to Istio services

The demo configuration used in the previous section to install Istio comes with a few connectivity-related issues that we need to resolve. The Istio ingress gateway is configured as a load-balanced Kubernetes service; that is, its type is LoadBalancer. To be able to access the gateway, we need to run a load balancer in front of the Kubernetes cluster. 

Minikube contains a command that can be used to simulate a local load balancer, minikube 

tunnel. This command assigns an external IP address to each load-balanced Kubernetes service, including the Istio ingress gateway. The hostname, minikube.me, that we use in our tests needs to be translated into the external IP address of the Istio ingress gateway. To simplify access to the web UIs of components such as Kiali and Jaeger, we will also add hostnames dedicated to these services, for example, kiali.minikube.me. 

We will also register a hostname to the external health endpoint, as described in the  Observing the service mesh section. Finally, a few hostnames for services installed and used in subsequent chapters will also be registered so that we don’t need to add new hostnames in the following chapters. 

The services that we will install in the next chapters are Kibana, Elasticsearch, and a mail server. 

To enable external access using these hostnames to the Istio services, a Helm chart has been created; see kubernetes/helm/environments/istio-system. The chart contains a Gateway, 

VirtualService, and DestinationRule object for each Istio component. To protect requests to 

these hostnames from eavesdropping, only HTTPS requests are allowed. cert-manager, which 

was introduced in the previous chapter, is used by the chart to automatically provision a TLS 

certificate for the hostnames and store it in a Secret named hands-on-certificate. All Gateway objects are configured to use this Secret in their configuration of the HTTPS protocol. All definition files can be found in the Helm charts templates folder. 

The use of these API objects will be described in more detail in the  Creating the service mesh and Protecting external endpoints with HTTPS and certificates sections. 

Run the following command to apply the Helm chart:

helm upgrade --install istio-hands-on-addons kubernetes/helm/environments/

istio-system -n istio-system --wait

This will result in the gateway being able to route requests for the following hostnames to the corresponding Kubernetes Service:

•  kiali.minikube.me requests are routed to kiali:20001

•  tracing.minikube.me requests are routed to tracing:80

[image: Image 261]

[image: Image 262]

 Chapter 18

555

•  prometheus.minikube.me requests are routed to prometheus:9000

•  grafana.minikube.me requests are routed to grafana:3000

To verify that the certificate and secret objects have been created, run the following commands: kubectl -n istio-system get secret hands-on-certificate

kubectl -n istio-system get certificate  hands-on-certificate

Expect an output like this:

 Figure 18.7: The cert-manager has delivered both a TLS Secret and a certificate

The following diagram summarizes how the components can be accessed:

 Figure 18.8: Hostnames to be used for accessing components through the Minikube tunnel

Perform the following steps to set up the Minikube tunnel and register the hostnames:

1.  Run the following command in a separate terminal window (the command locks the 

terminal window when the tunnel is up and running):

minikube tunnel

556

 Using a Service Mesh to Improve Observability and Management

Note that this command requires that your user has sudo privileges and 

that you enter your password during startup. It can take a couple of seconds 

before the command asks for the password, so it is easy to miss! 

Once the tunnel is up and running, it will list the istio-ingressgateway as one of the 

services it exposes (the only one in our case). 

2.  Configure the hostnames to be resolved to the IP address of the Istio ingress gateway. Start by getting the IP address exposed by the minikube tunnel command for the Istio ingress 

gateway and save it in an environment variable named INGRESS_IP:

INGRESS_IP=$(kubectl -n istio-system get service istio-

ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

echo $INGRESS_IP

The echo command will print an IP address. Since we use Minikube’s Docker driver, it 

will always be 127.0.0.1. 

3.  Update /etc/hosts so that all minikube.me hostnames will use the IP address of the Istio ingress gateway:

MINIKUBE_HOSTS="minikube.me grafana.minikube.me kiali.minikube. 

me prometheus.minikube.me tracing.minikube.me kibana.minikube.me 

elasticsearch.minikube.me mail.minikube.me health.minikube.me" 

echo 127.0.0.1 $MINIKUBE_HOSTS | sudo tee -a /etc/hosts

4.  On Windows, we also need to update the Windows hosts file:

a.  In Windows, open a PowerShell terminal. 

b.  Open the Windows hosts file in Visual Code Studio with the following command:

code C:\Windows\System32\drivers\etc\hosts

c.  Add the following line to the Windows hosts file:

127.0.0.1 minikube.me grafana.minikube.me kiali.minikube.me 

prometheus.minikube.me tracing.minikube.me kibana.minikube.me 

elasticsearch.minikube.me mail.minikube.me health.minikube.me

[image: Image 263]

 Chapter 18

557

d.  When you try to save it, you will get an error regarding Insufficient permissions. 

Click on the Retry as Admin...  button to update the hosts file as an administrator. 

e.  Verify the update:

cat C:\Windows\System32\drivers\etc\hosts

By default, the /etc/hosts file is overwritten by the content in the Windows 

hosts file when WSL is restarted. Restarting WSL takes a long time as it also 

restarts Docker. Restarting Docker, in turn, results in the Minikube instance 

being stopped, so it needs to be restarted manually. To prevent this slow and 

tedious restart process, we simply updated both files. 

5.  Remove the line in /etc/hosts where minikube.me points to only the IP address of the 

Minikube instance (127.0.0.1). Verify that /etc/hosts only contains one line that 

translates minikube.me and that it points to the IP address of the Istio ingress gateway, 

127.0.0.1:

 Figure 18.9: /etc/hosts file updated

6.  Verify that Kiali, Jaeger, Grafana, and Prometheus can be reached through the tunnel with the following commands:

curl -o /dev/null -sk -L -w "%{http_code}\n" https://kiali.minikube. 

me/kiali/

curl -o /dev/null -sk -L -w "%{http_code}\n" https://tracing. 

minikube.me

curl -o /dev/null -sk -L -w "%{http_code}\n" https://grafana. 

minikube.me

curl -o /dev/null -sk -L -w "%{http_code}\n" https://prometheus. 

minikube.me/graph#/

558

 Using a Service Mesh to Improve Observability and Management

Each command should return 200 (OK). If the request sent to Kiali doesn’t return 200, it often means that its internal initialization is not complete. Wait a minute and try again in that case. 

The minikube tunnel command will stop running if, for example, your computer 

or the Minikube instance is paused or restarted. It needs to be restarted manually in 

these cases. So, if you fail to call APIs on any of the minikube.me hostnames, always 

check whether the Minikube tunnel is running and restart it if required. 

With the Minikube tunnel in place, we are now ready to create the service mesh. 

Creating the service mesh

With Istio deployed, we are ready to create the service mesh. The steps required to create the service mesh are the same as those we used in  Chapter 17,   Implementing Kubernetes Features to Simplify the System Landscape (refer to the  Testing with Kubernetes ConfigMaps, Secrets, Ingress, and cert-manager section). Let’s first see what additions have been made to the Helm templates to set up the service mesh before we run the commands to create the service mesh. 

Source code changes

To be able to run the microservices in a service mesh managed by Istio, the dev-env Helm chart brings in two new named templates from the common chart, _istio_base.yaml and _istio_dr_

mutual_tls.yaml. Let’s go through them one by one. 

Content in the _istio_base.yaml template

_istio_base.yaml defines a number of Kubernetes manifests that will be used by both environ-

ment charts, dev-env and prod-env. First, it defines three Istio-specific security-related manifests:

•  An AuthorizationPolicy manifest named product-composite-require-jwt

•  A PeerAuthentication manifest named default

•  A  RequestAuthentication manifest named product-composite-request-

authentication

These three manifests will be explained in the  Securing a service mesh section. 

The remaining four manifests will be discussed here. They are two pairs of Gateway and 

VirtualService manifests that are used to configure access to and routing from the minikube. 

me and health.minikube.me hostnames. Gateway objects will be used to define how to receive 

external traffic, and VirtualService objects are used to describe how to route the incoming 

traffic inside the service mesh. 

 Chapter 18

559

The Gateway manifest for controlling access to minikube.me looks like this:

apiVersion: networking.istio.io/v1beta1

kind: Gateway

metadata:

name: hands-on-gw

spec:

selector:

istio: ingressgateway

servers:

- hosts:

- minikube.me

port:

name: https

number: 443

protocol: HTTPS

tls:

credentialName: hands-on-certificate

mode: SIMPLE

Here is an explanation of the source code:

•  The gateway is named hands-on-gw; this name is used by the virtual services underneath. 

•  The selector field specifies that the gateway object will be handled by the default Istio ingress gateway, named ingressgateway. 

•  The hosts and port fields specify that the gateway will handle incoming requests for the 

minikube.me hostname using HTTPS over port 443. 

•  The tls field specifies that the Istio ingress gateway can find the certificate and private key used for HTTPS communication in a TLS Secret named hands-on-certificate. Refer 

to the  Protecting external endpoints with HTTPS and certificates section for details on how these certificate files are created. The SIMPLE mode denotes that normal TLS semantics 

will be applied. 

The VirtualService manifest for routing requests sent to minikube.me appears as follows:

apiVersion: networking.istio.io/v1beta1

kind: VirtualService

metadata:

name: hands-on-vs

spec:

560

 Using a Service Mesh to Improve Observability and Management

gateways:

- hands-on-gw

hosts:

- minikube.me

http:

- match:

- uri:

prefix: /oauth2

route:

- destination:

host: auth-server

– match:

... 

Explanations of the preceding manifest are as follows:

•  The gateways and hosts fields specify that the virtual service will route requests that are sent to the minikube.me hostname through the hands-on-gw gateway. 

•  Within the http element is an array of match and route blocks that specify how URL paths 

will be forwarded to the associated Kubernetes service. In the preceding manifest, only 

the first pair of match and route elements is shown. They map requests sent to minikube. 

me using the /oauth2 path to the auth-server service. This mapping should be familiar 

from how we specified routing rules in both Spring Cloud Gateway and Ingress objects 

in the previous chapters. The remaining pairs of match and route elements configure the 

same routing rules as we have seen for Spring Cloud Gateway and Ingress objects:

•  /login → auth-server

•  /error → auth-server

•  /product-composite → product-composite

•  /openapi → product-composite

For more details, see kubernetes/helm/common/templates/_istio_base.yaml. 

In the preceding source code, the destination host is specified using its short name, 

in other words, product-composite. This works, since the example is based on 

Kubernetes definitions from the same Namespace, hands-on. If that is not the case, 

it is recommended in the Istio documentation to use the host’s fully qualified do-

main name (FQDN) instead. In this case, it is product-composite.hands-on.svc. 

cluster.local. 

 Chapter 18

561

Content in the _istio_dr_mutual_tls.yaml template

_istio_dr_mutual_tls.yaml defines a template for specifying a number of DestinationRule 

objects. It is used to specify that mTLS should be used when routing a request to its corresponding service. It can also be used optionally to specify subsets, something that we will use in the prod-env chart in the  Performing zero-downtime updates section. The template looks like this:

{{- define "common.istio_dr_mutual_tls" -}}

{{- range $idx, $dr := .Values.destinationRules }}

apiVersion: networking.istio.io/v1beta1

kind: DestinationRule

metadata:

name: {{ $dr.name }}

spec:

host: {{ $dr.name }}

{{- if $dr.subsets }}

{{- with $dr.subsets }}

subsets:

{{ toYaml . | indent 2 }}

{{- end }}

{{- end }}

trafficPolicy:

tls:

mode: ISTIO_MUTUAL

---

{{- end -}}

{{- end -}}

Here are some comments about the preceding template:

•  The range directive loops over the elements defined in the destinationRules variable

•  The host field in the spec part of the manifest is used to specify the name of the Kubernetes Service that this DestinationRule applies to

•  A subsets section is only defined if a corresponding element is found in the current ele-

ment, $dr, in the destinationRules list

•  A trafficPolicy is always used to require mTLS

562

 Using a Service Mesh to Improve Observability and Management

The template is used in the dev-end Helm chart by specifying the destinationRules variable in the values.yaml file as follows:

destinationRules:

- name: product-composite

- name: auth-server

- name: product

- name: recommendation

- name: review

The files can be found at kubernetes/helm/common/templates/_istio_dr_mutual_tls.yaml 

and kubernetes/helm/environments/dev-env/values.yaml. 

With these changes in the source code in place, we are now ready to create the service mesh. 

Running commands to create the service mesh

Create the service mesh by running the following commands:

1.  Build Docker images from the source code with the following commands:

cd $BOOK_HOME/Chapter18

eval $(minikube docker-env -u)

./gradlew build

eval $(minikube docker-env)

docker compose build

The eval $(minikube docker-env -u) command ensures that the ./

gradlew build command uses the host’s Docker engine and not the Docker 

engine in the Minikube instance. The build command uses Docker to run 

test containers. 

2.  Recreate the hands-on Namespace and set it as the default Namespace:

kubectl delete namespace hands-on

kubectl apply -f kubernetes/hands-on-namespace.yml

kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

Note that the hands-on-namespace.yml file creates the hands-on Namespace labeled with 

istio-injection: enabled. This means that Popds created in this Namespace will get 

istio-proxy containers injected as sidecars automatically. 

[image: Image 264]

 Chapter 18

563

3.  Resolve the Helm chart dependencies with the following commands:

a.  First, we update the dependencies in the components folder:

for f in kubernetes/helm/components/*; do helm dep up $f; 

done

b.  Next, we update the dependencies in the environments folder:

for f in kubernetes/helm/environments/*; do helm dep up $f; 

done

4.  Deploy the system landscape using Helm and wait for all Deployments to complete:

helm install hands-on-dev-env \

kubernetes/helm/environments/dev-env \

-n hands-on --wait

5.  Once the Deployment is complete, verify that we have two containers in each of the mi-

croservice Pods:

kubectl get pods

Expect a response along the lines of the following:

 Figure 18.10: Pods up and running

Note that the Pods that run our microservices report two containers per Pod; that is, they 

have the Istio proxy injected as a sidecar! 

6.  Run the usual tests with the following command:

./test-em-all.bash

[image: Image 265]

564

 Using a Service Mesh to Improve Observability and Management

The default values for the test-em-all.bash script have been updated 

from previous chapters to accommodate Kubernetes running in Minikube. 

Expect the output to be similar to what we have seen in previous chapters:

 Figure 18.11: Tests running successfully

Before we start to try out Istio and its various components, let’s see how we can log the propagation of trace and span IDs using the B3 headers mentioned in the  Replacing the Zipkin server with Istio’s Jaeger component section. 

Logging propagation of trace and span IDs

We can see the trace and span IDs in the outgoing requests from the product-composite mi-

croservice as we did in the  Sending a successful API request section of  Chapter 14,  Understanding Distributed Tracing. Since we now run the microservices in Kubernetes, we need to change the log configuration in a ConfigMap and then delete the running Pod to make it affect the microservice: 1.  Edit the ConfigMap with the following command:

kubectl edit cm product-composite

Look for the following lines:

# To see tracing headers, uncomment the following two lines and 

restart the product-composite service

# spring.codec.log-request-details: true

# logging.level.org.springframework.web.reactive.function.client. 

ExchangeFunctions: TRACE

 Chapter 18

565

2.  Uncomment the last two of these lines and exit the editor. 

3.  Restart the product-composite microservice by deleting its Pod with this command:

kubectl delete pod -l app=product-composite

4.  Print the log output to a terminal window with the following command:

kubectl logs -f -l app=product-composite

5.  Acquire an access token and make a request using the access token:

unset ACCESS_TOKEN

ACCESS_TOKEN=$(curl -k https://writer:secret-writer@minikube.me/

oauth2/token -d grant_type=client_credentials -d scope="product:read 

product:write" -s | jq -r .access_token)

echo $ACCESS_TOKEN

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://minikube. 

me/product-composite/1 -w "%{http_code}\n" -o /dev/null -s

Verify that the command returns the HTTP status code for success, 200. 

6.  In the log output, lines like the following should be seen:

YYYY-MM-DDT09:18:52.014Z TRACE 1 --- [     parallel-6] [product-

composite,9f96e8379863d637a0d7301b48cee91b,163bbf8f529f8

1a3] o.s.w.r.f.client.ExchangeFunctions       : [741082ec] 

HTTP GET http://product/product/1?delay=0&faultPercent=0, 

headers=[X-B3-TraceId:"9f96e8379863d637a0d7301b48cee91b", X-B3-

SpanId:"163bbf8f529f81a3", X-B3-ParentSpanId:"252a9d9d278d206b", 

X-B3-Sampled:"1"]

In the example log output, we can see the standard B3 headers such as X-B3-TraceId 

and X-B3-SpanId. 

7.  Revert to not logging trace and span IDs by adding the comments back in the ConfigMap 

and restart the microservice by deleting its Pod. 

With the service mesh up and running, let’s see how we can observe what’s going on in it using Kiali! 

566

 Using a Service Mesh to Improve Observability and Management

Observing the service mesh

In this section, we will use Kiali together with Jaeger to observe what’s going on in the service mesh. 

Before we do that, we need to understand how to get rid of some noise created by the health 

checks performed by Kubernetes’ liveness and readiness probes. In the previous chapters, they used the same port as the API requests. This means that Istio will collect metrics for the usage of both health checks and requests sent to the API. This will cause the graphs shown by Kiali to become unnecessarily cluttered. Kiali can filter out traffic that we are not interested in, but a simpler solution is to use a different port for the health checks. 

Microservices can be configured to use a separate port for requests sent to the actuator endpoints, for example, health checks sent to the /actuator/health endpoint. The following line has been added to the common configuration file for all microservices, config-repo/application.yml:

management.server.port: 4004

This will make all microservices use port 4004 to expose the health endpoints. The values.yaml file in the common Helm chart has been updated to use port 4004 in the default liveness and readiness probes. See kubernetes/helm/common/values.yaml. 

The product-composite microservice exposes its management port not only to the Kubernetes 

probes but also externally for health checks, for example, performed by test-em-all.bash. This is done through Istio’s ingress gateway, and therefore port 4004 is added to the product-composite microservice Deployment and Service manifests. See the ports and service.ports definitions 

in kubernetes/helm/components/product-composite/values.yaml. 

Spring Cloud Gateway (which is retained so we can run tests in Docker Compose) will continue to use the same port for requests to the API and the health endpoint. In the config-repo/gateway. 

yml configuration file, the management port is changed to the port used for the API:

management.server.port: 8443

To simplify external access to the health check exposed by the product-composite microservice, a route is configured for the health.minikube.me hostname to the management port on the 

product-composite microservice. Refer to the explanation of the _istio_base.yaml template. 

With the requests sent to the health endpoint out of the way, we can start to send some requests through the service mesh. 

[image: Image 266]

 Chapter 18

567

We will start a low-volume load test using siege, which we learned about in  Chapter 16,  Deploying Our Microservices to Kubernetes. After that, we will go through some of the most important parts of Kiali to see how it can be used to observe a service mesh in a web browser. We will also see how Jaeger is used for distributed tracing. 

Since the certificate we use is self-signed, web browsers will not rely on it automat-

ically. Most web browsers let you visit the web page if you assure them that you 

understand the security risks. If the web browser refuses, opening a private window 

helps in some cases. 

Specifically, regarding Chrome, if it does not let you visit the web page, saying Your 

connection is not private, you can click the Advanced button and then click on the Proceed to … (unsafe) link. 

Start the test client with the following commands:

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/token 

-d grant_type=client_credentials -d scope="product:read product:write" -ks 

| jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

siege https://minikube.me/product-composite/1 -H "Authorization: Bearer 

$ACCESS_TOKEN" -c1 -d1 -v

The first command will get an OAuth 2.0/OIDC access token that will be used in the next com-

mand, where siege is used to submit one HTTP request per second to the product-composite API. 

Expect output from the siege command as follows:

 Figure 18.12: System landscape under siege

[image: Image 267]

568

 Using a Service Mesh to Improve Observability and Management

Use a web browser of your choice that accepts self-signed certificates and proceed with the following steps:

1.  Open Kiali’s web UI using the https://kiali.minikube.me URL. By default, you will be logged in as an anonymous user. Expect a web page similar to the following:

 Figure 18.13: Kiali web UI

2.  Click on the Overview tab if it is not already active. 

3.  Click on the menu (three vertical dots in the top-right corner) in the box named hands-on and select Graph. Expect a graph to be shown that represents the current traffic flowing through the service mesh. 

4.  Click on the Display button and deselect all options except for Response Time,  Median, and Traffic Animation. 

5.  In the Hide… field, specify name = jaeger to avoid cluttering the view with traces sent to Jaeger. 

6.  Kiali now displays a graph representing requests that are currently sent through the service mesh, where active requests are represented by small moving circles along the arrows, 

as follows:

[image: Image 268]

[image: Image 269]

 Chapter 18

569

 Figure 18.14: Kiali graph showing the hands-on Namespace

7.  The traffic from unknown to the auth-server represents calls to the authorization server to get the JWKS public keys. 

This gives a pretty good initial overview of what’s going on in the service mesh! 

8.  Let’s now look at some distributed tracing using Jaeger. Open the web UI using the 

https://tracing.minikube.me URL. Click on the Service dropdown in the menu to the left and select the istio-ingressgateway.istio-system service. Click on the Find Trace button; you should see a result like this:

 Figure 18.15: Distributed traces visualized by Jaeger

[image: Image 270]

570

 Using a Service Mesh to Improve Observability and Management

9.  Click on one of the traces that is reported to contain 23 Spans to examine it. Expect a web page such as the following:

 Figure 18.16: View a full trace call tree in Jaeger

This is basically the same tracing information as Zipkin made available in  Chapter 14,  Understanding Distributed Tracing. Note that we can see trace information from both the Istio proxies and the microservices themselves. The spans reported by Istio proxies are suffixed with the Kubernetes Namespace, that is, .istio-system and .hands-on. 

There is much more to explore, but this is enough by way of an introduction. Feel free to explore the web UI in Kiali and Jaeger on your own. 

Be aware that the access token acquired for the test client, siege, is only valid for 

an hour. If the traffic drops unexpectedly, check the output from siege; if it reports 

4XX instead of 200, it’s time to renew the access token! 

Let’s move on and learn how Istio can be used to improve security in the service mesh! 

 Chapter 18

571

Securing a service mesh

In this section, we will learn how to use Istio to improve the security of a service mesh. We will cover the following topics:

•  How to protect external endpoints with HTTPS and certificates

•  How to require that external requests are authenticated using OAuth 2.0/OIDC access 

tokens

•  How to protect internal communication using mutual authentication (mTLS)

Let’s now understand each of these in the following sections. 

Protecting external endpoints with HTTPS and certificates

In the  Setting up access to Istio services  and  Content in the _istio_base.yaml template sections, we learned that the gateway objects use a TLS certificate stored in a Secret named hands-on-certificate for their HTTPS endpoints. 

The Secret is created by the cert-manager based on the configuration in the istio-system Helm chart. The chart’s template, selfsigned-issuer.yaml, is used to define an internal self-signed CA and has the following content:

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

name: selfsigned-issuer

spec:

selfSigned: {}

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

name: ca-cert

spec:

isCA: true

commonName: hands-on-ca

secretName: ca-secret

issuerRef:

name: selfsigned-issuer

---

572

 Using a Service Mesh to Improve Observability and Management

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

name: ca-issuer

spec:

ca:

secretName: ca-secret

From the preceding manifests, we can see the following:

•  A self-signed issuer named selfsigned-issuer. 

•  This issuer is used to create a self-signed certificate named ca-cert. 

•  The certificate is given the common name hands-on-ca. 

•  Finally, a self-signed CA, ca-issuer, is defined using the certificate, ca-cert, as its root certificate. This CA will be used to issue the certificate used by the gateway objects. 

The chart’s template, hands-on-certificate.yaml, defines this certificate as follows:

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

name: hands-on-certificate

spec:

commonName: minikube.me

subject:

... 

dnsNames:

- minikube.me

- health.minikube.m

- dashboard.minikube.me

- kiali.minikube.me

- tracing.minikube.me

- prometheus.minikube.me

- grafana.minikube.me

- kibana.minikube.me

- elasticsearch.minikube.me

- mail.minikube.me

issuerRef:

name: ca-issuer

secretName: hands-on-certificate

[image: Image 271]

 Chapter 18

573

From this manifest, we can see the following:

•  The certificate is named hands-on-certificate

•  Its common name is set to minikube.me

•  It specifies a few optional extra details about its subject (left out for clarity)

•  All other hostnames are declared as Subject Alternative Names in the certificate

•  It will use the issuer named ca-issuer declared previously

•  The cert-manager will store the TLS certificate in a Secret named hands-on-certificate

When the istio-system Helm chart was installed, these templates were used to create the cor-

responding API objects in Kubernetes. This triggered the cert-manager to create the certificates and Secrets. 

The template files can be found in the kubernetes/helm/environments/istio-system/templates 

folder. 

To verify that it is these certificates that are used by the Istio ingress gateway, we can run the following command:

keytool -printcert -sslserver minikube.me | grep -E "Owner:|Issuer:" 

Expect the following output:

 Figure 18.17: Inspecting the certificate for minikube.me

The output shows that the certificate is issued for the common name minikube.se and that it is issued by our own CA, using its root certificate with the common name hands-on-ca. 

As mentioned in  Chapter 17,  Implementing Kubernetes Features to Simplify the System Landscape (refer to the  Automating certificate provisioning section), this self-signed CA needs to be replaced for production use cases with, for example, Let’s Encrypt or another CA that the cert-manager can use to provision trusted certificates. 

With the certificate configuration verified, let’s move on to see how the Istio ingress gateway can protect microservices from unauthenticated requests. 

574

 Using a Service Mesh to Improve Observability and Management

Authenticating external requests using OAuth 2.0/OIDC 

access tokens

An Istio ingress gateway can require and validate JWT-based OAuth 2.0/OIDC access tokens, in other words, protecting the microservices in the service mesh from external unauthenticated 

requests. For a recap on JWT, OAuth 2.0, and OIDC, refer to  Chapter 11,  Securing Access to APIs (see the  Protecting APIs using OAuth 2.0 and OpenID Connect section). Istio can also be configured to perform authorization but, as mentioned in the  Introducing Istio API objects section, we will not use it. 

This is configured in the common Helm chart’s template, _istio_base.yaml. The two manifests 

look like this:

apiVersion: security.istio.io/v1beta1

kind: RequestAuthentication

metadata:

name: product-composite-request-authentication

spec:

jwtRules:

- forwardOriginalToken: true

issuer: http://auth-server

jwksUri: http://auth-server.hands-on.svc.cluster.local/oauth2/jwks

selector:

matchLabels:

app.kubernetes.io/name: product-composite

---

apiVersion: security.istio.io/v1beta1

kind: AuthorizationPolicy

metadata:

name: product-composite-require-jwt

spec:

action: ALLOW

rules:

- {}

selector:

matchLabels:

app.kubernetes.io/name: product-composite

 Chapter 18

575

From the manifests, we can see the following:

•  The RequestAuthentication named product-composite-request-authentication re-

quires a valid JWT-encoded access token for requests sent to the product-composite ser-

vice:

•  It selects services that it performs request authentication for based on a label selector, app.kubernetes.io/name: product-composite. 

•  It allows tokens from the issuer, http://auth-server. 

•  It will use the http://auth-server.hands-on.svc.cluster.local/oauth2/jwks URL 

to fetch a JWKS. The key set is used to validate the digital signature of the access tokens. 

•  It will forward the access token to the underlying services, in our case, the product-composite microservice. 

•  The AuthorizationPolicy named product-composite-require-jwt is configured to allow 

all requests to the product-composite service; it will not apply any authorization rules. 

It can be a bit hard to understand whether Istio’s RequestAuthentication is validating the access tokens or whether it is only the product-composite service that is performing the validation. One way to ensure that Istio is doing its job is to change the configuration of RequestAuthentication so that it always rejects access tokens. 

To verify that RequestAuthentication is in action, apply the following commands:

1.  Make a normal request:

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/

token  -d grant_type=client_credentials -d scope="product:read 

product:write" -ks | jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

curl -k https://minikube.me/product-composite/1 -H "Authorization: 

Bearer $ACCESS_TOKEN" -i

Verify that it returns an HTTP response status code 200 (OK). 

2.  Edit the RequestAuthentication object and temporarily change the issuer, for example, 

to http://auth-server-x:

kubectl edit RequestAuthentication product-composite-request-

authentication

576

 Using a Service Mesh to Improve Observability and Management

3.  Verify the change:

kubectl get RequestAuthentication product-composite-request-

authentication -o yaml

Verify that the issuer has been updated, in my case to http://auth-server-x. 

4.  Make the request again. It should fail with the HTTP response status code 401 (Unautho-

rized) and the error message Jwt issuer is not configured:

curl -k https://minikube.me/product-composite/1 -H "Authorization: 

Bearer $ACCESS_TOKEN" -i

Since it takes a few seconds for Istio to propagate the change, the new name of the issuer, 

you might need to repeat the command a couple of times before it fails. 

This proves that Istio is validating the access tokens! 

5.  Revert the changed name of the issuer to http://auth-server:

kubectl edit RequestAuthentication product-composite-request-

authentication

6.  Verify that the request works again. First, wait a few seconds for the change to be propagated. Then, run the following command:

curl -k https://minikube.me/product-composite/1 -H "Authorization: 

Bearer $ACCESS_TOKEN" 

Suggested additional exercise: Try out the Auth0 OIDC provider, as de-

scribed in  Chapter 11,  Securing Access to APIs (refer to the  Testing with an external OpenID Connect provider section). Add your Auth0 provider to jwt-

authentication-policy.yml. In my case, it appears as follows:

- jwtRules:

issuer: “https://dev-magnus.eu.auth0.com/” 

jwksUri: “https://dev-magnus.eu.auth0.com/.well-

known/jwks.json” 

Now, let’s move on to the last security mechanism that we will cover in Istio: the automatic protection of internal communication in the service mesh using mutual authentication with mTLS. 

 Chapter 18

577

Protecting internal communication using mutual 

authentication with mTLS

In this section, we will learn how Istio can be configured to automatically protect internal communication within the service mesh using mTLS. When using mutual authentication, not only does the service prove its identity by exposing a certificate but the clients also prove their identity to the service by exposing a client-side certificate. This provides a higher level of security compared to normal TLS/HTTPS usage, where only the identity of the service is proven. Setting up and maintaining mutual authentication, that is, provisioning new certificates and rotating outdated certificates for the clients, is known to be complex and is therefore seldom used. Istio fully automates the provisioning and rotation of certificates for the mutual authentication used for internal communication inside the service mesh. This makes it much easier to use mutual 

authentication compared to setting it up manually. 

So, why should we use mutual authentication? Isn’t it sufficient to protect external APIs with HTTPS and OAuth 2.0/OIDC access tokens? 

As long as the attacks come through the external API, it might be sufficient. But what if a Pod inside the Kubernetes cluster becomes compromised? For example, if an attacker gains control over a Pod, they can start listening to traffic between other Pods in the Kubernetes cluster. If the internal communication is sent as plaintext, it will be very easy for the attacker to gain access to sensitive information sent between Pods in the cluster. To minimize the damage caused by such an intrusion, mutual authentication can be used to prevent an attacker from eavesdropping on internal network traffic. 

To enable the use of mutual authentication managed by Istio, Istio needs to be configured both on the server side using a policy called PeerAuthentication, and on the client side using a 

DestinationRule. 

The policy is configured in the common Helm chart’s template, _istio_base.yaml. The manifest looks like this:

apiVersion: security.istio.io/v1beta1

kind: PeerAuthentication

metadata:

name: default


spec:

mtls:

mode: PERMISSIVE

[image: Image 272]

578

 Using a Service Mesh to Improve Observability and Management

As mentioned in the  Introducing Istio API objects section, the PeerAuthentication policy is configured to allow both mTLS and plain HTTP requests using PERMISSIVE mode. This enables Ku-

bernetes to call liveness and readiness probes using plain HTTP. 

We have also already met the DestinationRule manifests, in the  Content in the _istio_dr_mutual_tls. 

 yaml template section. The central part of the DestinationRule manifests for requiring mTLS 

looks like this:

trafficPolicy:

tls:

mode: ISTIO_MUTUAL

To verify that the internal communication is protected by mTLS, perform the following steps: 1.  Ensure that the load tests started in the preceding  Observing the service mesh section are still running and report 200 (OK). 

2.  Go to the Kiali graph in a web browser (https://kiali.minikube.me). 

3.  Click on the Display button and enable the Security label. The graph will show a padlock on all communication links that are protected by Istio’s automated mutual authentication, as follows:

 Figure 18.18: Inspecting mTLS settings in Kiali

 Chapter 18

579

Expect a padlock on all links. 

Calls to RabbitMQ, MySQL, and MongoDB are not handled by Istio proxies and 

therefore require manual configuration to be protected using TLS, if required. 

With this, we have seen all three security mechanisms in Istio in action, and it is now time to see how Istio can help us to verify that a service mesh is resilient. 

Ensuring that a service mesh is resilient

In this section, we will learn how to use Istio to ensure that a service mesh is resilient, that is, that it can handle temporary faults in a service mesh. Istio comes with mechanisms similar to what the Spring Framework offers in terms of timeouts, retries, and a type of circuit breaker called outlier detection to handle temporary faults. When it comes to deciding whether language-native mechanisms should be used to handle temporary faults or whether this should be delegated to 

a service mesh such as Istio, I tend to favor using language-native mechanisms, as in the examples in  Chapter 13,  Improving Resilience Using Resilience4j. In many cases, it is important to keep the logic for handling errors, for example, handling fallback alternatives for a circuit breaker, together with other business logic for a microservice. Keeping the logic for handling temporary faults in the source code also makes it easier to test it using, for example, JUnit and testcontainers, something that becomes much more complex if handling temporary faults is delegated to a service mesh such as Istio. 

There are cases when the corresponding mechanisms in Istio could be of great help. For example, if a microservice is deployed and it is determined that it can’t handle temporary faults that occur in production from time to time, then it can be very convenient to add a timeout or a retry mechanism using Istio instead of waiting for a new release of the microservice with corresponding error handling features put in place. 

Another capability in the area of resilience that comes with Istio is the capability to inject faults and delays into an existing service mesh. Why might we want to do that? 

Injecting faults and delays in a controlled way is very useful to verify that the resilient capabilities in the microservices work as expected! We will try them out in this section, verifying that the retry, timeout, and circuit breaker in the product-composite microservice work as expected. 

580

 Using a Service Mesh to Improve Observability and Management

In  Chapter 13,  Improving Resilience Using Resilience4j (refer to the  Adding programmable delays and random errors section), we added support for injecting faults and delays 

into the microservices source code. That source code should preferably be replaced by 

using Istio’s capabilities for injecting faults and delays at runtime, as demonstrated 

in the following subsections. 

We will begin by injecting faults to see whether the retry mechanisms in the product-composite microservice work as expected. After that, we will delay the responses from the product service and verify that the circuit breaker handles the delay as expected. 

Testing resilience by injecting faults

Let’s make the product service throw random errors and verify that the microservice landscape handles this correctly. We expect the retry mechanism in the product-composite microservice 

to kick in and retry the request until it succeeds or its limit of the maximum number of retries is reached. This will ensure that a short-lived fault does not affect the end user more than the delay introduced by the retry attempts. Refer to the  Adding a retry mechanism section of  Chapter 

 13,   Improving Resilience Using Resilience4j, for a recap on the retry mechanism in the product-composite microservice. 

Faults can be injected using a virtual service such as kubernetes/resilience-tests/product-

virtual-service-with-faults.yml. This appears as follows:

apiVersion: networking.istio.io/v1beta1

kind: VirtualService

metadata:

name: product

spec:

hosts:

- product

http:

- route:

- destination:

host: product

fault:

abort:

httpStatus: 500

percentage:

value: 20

[image: Image 273]

 Chapter 18

581

The definition says that 20% of the requests sent to the product service will be aborted with the HTTP status code 500 (Internal Server Error). 

Perform the following steps to test this:

1.  Ensure that the load tests using siege, as started in the  Observing the service mesh section, are running. 

2.  Apply the fault injection with the following command:

kubectl apply -f kubernetes/resilience-tests/product-virtual-

service-with-faults.yml

3.  Monitor the output from the siege load testing tool. Expect output similar to the following: Figure 18.19: Observing the retry mechanism in action

From the output, we can see that all requests are still successful (in other words, status 200 

(OK) is returned); however, some of them (20%) take an extra second to complete. This 

indicates that the retry mechanism in the product-composite microservice has kicked 

in and has retried a failed request to the product service. 

4.  Conclude the tests by removing the fault injection with the following command:

kubectl delete -f kubernetes/resilience-tests/product-virtual-

service-with-faults.yml

Let’s now move on to the next section, where we will inject delays to trigger the circuit breaker. 

Testing resilience by injecting delays

As we learned in  Chapter 13,  Improving Resilience Using Resilience4j, a circuit breaker can be used to prevent problems due to the slow or complete lack of response of services after accepting requests. 

Let’s verify that the circuit breaker in the product-composite service works as expected by injecting a delay into the product service using Istio. A delay can be injected using a virtual service. 

582

 Using a Service Mesh to Improve Observability and Management

Refer to kubernetes/resilience-tests/product-virtual-service-with-delay.yml. Its code 

appears as follows:

apiVersion: networking.istio.io/v1beta1

kind: VirtualService

metadata:

name: product

spec:

hosts:

- product

http:

- route:

- destination:

host: product

fault:

delay:

fixedDelay: 3s

percent: 100

This definition says that all requests sent to the product service will be delayed by 3 seconds. 

Requests sent to the product service from the product-composite service are configured to time out after two seconds. The circuit breaker is configured to open its circuit if three consecutive requests fail. When the circuit is open, it will fast-fail; in other words, it will immediately throw an exception without attempting to call the underlying service. The business logic in the product-composite microservice will catch this exception and apply fallback logic. For a recap,  see  Chapter 

 13,   Improving Resilience Using Resilience4j (refer to the  Adding a circuit breaker and a time limiter section). 

Perform the following steps to test the circuit breaker by injecting a delay:

1.  Stop the load test by pressing  Ctrl +  C in the terminal window where siege is running. 

2.  Create a temporary delay in the product service with the following command:

kubectl apply -f kubernetes/resilience-tests/product-virtual-

service-with-delay.yml

[image: Image 274]

[image: Image 275]

 Chapter 18

583

3.  Acquire an access token as follows:

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/

token  -d grant_type=client_credentials -d scope="product:read 

product:write" -ks | jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

4.  Send six requests in a row:

for i in {1..6}; do time curl -k https://minikube.me/product-

composite/1 -H "Authorization: Bearer $ACCESS_TOKEN"; done

Expect the following:

•  The circuit opens up after the first three failed calls. 

•  The circuit breaker applies fast-fail logic for the last three calls. 

•  A fallback response is returned for the last three calls. 

The responses from the first three calls are expected to be a timeout-related error message 

with a response time of 2 seconds (in other words, the timeout time). Expect responses 

for the first three calls along the lines of the following:

 Figure 18.20: Observing timeouts

The responses from the last three calls are expected to come from the fallback logic with 

a short response time. Expect responses for the last three calls as follows:

 Figure 18.21: Fallback method in action

584

 Using a Service Mesh to Improve Observability and Management

5.  Simulate the delay problem being fixed by removing the temporary delay with the fol-

lowing command:

kubectl delete -f kubernetes/resilience-tests/product-virtual-

service-with-delay.yml

6.  Verify that the correct answers are returned again, and without any delay, by sending a 

new request using the for loop command in  step 4. 

If you want to check the state of the circuit breaker, you can do it with the following 

command:

curl -ks https://health.minikube.me/actuator/health | jq -r 

.components.circuitBreakers.details.product.details.state

It should report CLOSED, OPEN, or HALF_OPEN, depending on its state. 

This proves that the circuit breaker reacts as expected when we inject a delay using Istio. This concludes testing the features in Istio that can be used to verify that the microservice landscape is resilient. The final feature we will explore in Istio is its support for traffic management; we will see how it can be used to enable deployments with zero downtime. 

Performing zero-downtime updates

As mentioned in  Chapter 16,   Deploying Our Microservices to Kubernetes, being able to deploy an update without downtime becomes crucial with a growing number of autonomous microservices 

that are updated independently of one another. 

In this section, we will learn about Istio’s traffic management and routing capabilities and how they can be used to perform deployments of new versions of microservices without requiring any downtime. In  Chapter 15,  Introduction to Kubernetes, we learned that Kubernetes can be used to perform a rolling upgrade without requiring any downtime. Using the Kubernetes rolling upgrade mechanism automates the entire process, but, unfortunately, it provides no option to test the new version before all users are routed to it. 

Using Istio, we can deploy the new version but initially route all users to the existing version (called the old version in this chapter). After that, we can use Istio’s fine-grained routing mechanism to control how users are routed to the new and the old versions. We will see how two popular upgrade strategies can be implemented using Istio:

 Chapter 18

585

•  Canary deployments: When using canary deployments, all users are routed to the old version, except for a group of selected test users who are routed to the new version. When 

the test users have approved the new version, regular users can be routed to the new 

version using a blue-green deploy. 

•  Blue-green deployments: Traditionally, a blue-green deploy means that all users are switched to either the blue or the green version, one being the new version and the other 

being the old version. If something goes wrong when switching over to the new version, 

it is very simple to switch back to the old version. Using Istio, this strategy can be refined by gradually shifting users over to the new version, for example, starting with 20% of the 

users and then slowly increasing the percentage. At all times, it is very easy to route all 

users back to the old version if a fatal error is revealed in the new version. 

As already stated in  Chapter 16, it is important to remember that a prerequisite for these types of upgrade strategies is that the upgrade is backward-compatible. Such an upgrade is compatible both in terms of APIs and message formats, which are used to communicate with other services and database structures. If the new version of the microservice requires changes to external APIs, message formats, or database structures that the old version can’t handle, these upgrade strategies can’t be applied. 

We will go through the following deployment scenario:

1.  We will start by deploying the v1 and v2 versions of the microservices, with routing configured to send all requests to the v1 version of the microservices. 

2.  Next, we will allow a test group to run canary tests; that is, we’ll verify the new v2 versions of the microservices. To simplify the tests somewhat, we will only deploy new versions of 

the core microservices, that is, the product, recommendation, and review microservices. 

3.  Finally, we will start to move regular users over to the new versions using a blue-green deploy; initially, a small percentage of users and then, over time, more and more users until, eventually, they are all routed to the new version. We will also see how we can quickly 

switch back to the v1 version if a fatal error is detected in the new v2 version. 

Let’s first see what changes need to be applied to the source code to be able to deploy and route traffic to two concurrent versions, v1 and v2, of the core microservices. 

586

 Using a Service Mesh to Improve Observability and Management

Source code changes

To be able to run multiple versions of a microservice concurrently, the Deployment objects and their corresponding Pods must have different names, for example, product-v1 and product-v2. 

There must, however, be only one Kubernetes Service object per microservice. All traffic to a specific microservice always goes through the same Service object, irrespective of what version of the Pod the request will be routed to in the end. To configure the actual routing rules for canary tests and blue-green deployments, Istio’s VirtualService and DestinationRule objects are 

used. Finally, the values.yaml file in the prod-env Helm chart is used to specify the versions of each microservice that will be used in the production environment. 

Let’s go through the details for each definition in the following subsections:

•  Virtual services and destination rules

•  Deployments and services

•  Tying things together in the prod-env Helm chart

Virtual services and destination rules

To split the traffic between two versions of a microservice, we need to specify the weight distribution between the two versions in a virtual service on the sender side. The virtual service will spread the traffic between two subsets, called old and new. The exact meaning of the new and old subsets is defined in a corresponding DestinationRule on the receiver side. It uses labels to determine which Pods run the old and new versions of the microservice. 

To support canary tests, a routing rule is required in the virtual services that always routes the canary testers to the new subset. To identify canary testers, we will assume that requests from a canary tester contain an HTTP header named X-group with the value test. 

A template has been added to the common Helm chart for creating a set of virtual services that can split the traffic between two versions of a microservice. The template is named _istio_vs_

green_blue_deploy.yaml and looks like this:

{{- define "common.istio_vs_green_blue_deploy" -}}

{{- range $name := .Values.virtualServices }}

apiVersion: networking.istio.io/v1beta1

kind: VirtualService

metadata:

name: {{ $name }}

spec:

 Chapter 18

587

hosts:

- {{ $name }}

http:

- match:

- headers:

X-group:

exact: test

route:

- destination:

host: {{ $name }}

subset: new

- route:

- destination:

host: {{ $name }}

subset: old

weight: 100

- destination:

host: {{ $name }}

subset: new

weight: 0

---

{{- end -}}

{{- end -}}

From the template, we can see the following:

•  The range directive loops over the elements defined in the virtualServices variable

•  The hosts field in the spec part of the manifest is used to specify the names of the Kubernetes service that this VirtualService will apply to

•  In the http section, two routing destinations are declared, along with a weight:

•  One route matching the canary testers’ HTTP header, X-group, set to test. This 

route always sends the requests to the new subset. 

•  One route destination for the old subset and one for the new subset. 

•  The weight is specified as a percentage, and the sum of the weights will always be 100. 

•  All traffic is initially routed to the old subset. 

588

 Using a Service Mesh to Improve Observability and Management

To be able to route canary testers to the new versions based on header-based routing, the product-composite microservice has been updated to forward the HTTP header, X-group. Refer to 

the getCompositeProduct() method in the se.magnus.microservices.composite.product. 

services.ProductCompositeServiceImpl class for details. 

For the destination rules, we will reuse the template introduced in the  Content in the _istio_dr_mutual_tls.yaml template section. This template will be used by the prod-env Helm chart to specify the versions of the microservices to be used. This is described in the  Tying things together in the prod-env Helm chart section. 

Deployments and services

To make it possible for a destination rule to identify the version of a Pod based on its labels, a version label has been added in the template for deployments in the common Helm chart, _

deployment.yaml. Its value is set to the tag of the Pod’s Docker image. We will use the Docker image tags v1 and v2, so that will also be the value of the version label. The added line looks like this:

version: {{ .Values.image.tag }}

To give the Pods and their Deployment objects names that contain their version, their default names have been overridden in the prod-env chart. In their values.yaml files, the fullnameOverride field is used to specify a name that includes version info. This is done for the three core microservices and looks like this:

product:

fullnameOverride: product-v1

recommendation:

fullnameOverride: recommendation-v1

review:

fullnameOverride: review-v1

An undesired side effect of this is that the corresponding Service objects will also get a name that includes the version info. As explained previously, we need to have one service that can route requests to the different versions of the Pods. To avoid this naming problem, the Service template, _service.yaml, in the common Helm chart, is updated to use the common.name template instead of the common.fullname template used previously in  Chapter 17. 

 Chapter 18

589

Finally, to be able to deploy multiple versions of the three core microservices, their Helm charts have been duplicated in the kubernetes/helm/components folder. The name of the new charts 

is suffixed with -green. The only difference compared to the existing charts is that they don’t include the Service template from the common chart, avoiding the creation of two Service objects per core microservice. The new charts are named product-green, recommendation-green, and 

review-green. 

Tying things together in the prod-env Helm chart

The prod-env Helm chart includes the _istio_vs_green_blue_deploy.yaml template from the 

common Helm chart, as well as the templates included by the dev-env chart; see the  Creating the service mesh section. 

The three new *-green Helm charts for the core microservices are added as dependencies to the Chart.yaml file. 

In its values.yaml file, everything is tied together. From the previous section, we have seen how the v1 versions of the core microservices are defined with names that include version info. 

For the v2 versions, the three new *-green Helm charts are used. The values are the same as for the v1 versions except for the name and Docker image tag. For example, the configuration of the v2 version of the product microservice looks like this:

product-green:

fullnameOverride: product-v2

image:

tag: v2

To declare virtual services for the three core microservices, the following declaration is used: virtualServices:

- product

- recommendation

- review

590

 Using a Service Mesh to Improve Observability and Management

Finally, the destination rules are declared in a similar way to the dev-env Helm chart. The main difference is that we now use subsets to declare the actual versions that should be used when traffic is routed by the virtual services to either the old or the new subset. For example, the destination rule for the product microservice is declared like this:

destinationRules:

- ... 

- name: product

subsets:

- labels:

version: v1

name: old

- labels:

version: v2

name: new

... 

From the preceding declaration, we can see that traffic sent to the old subset is directed to v1 

Pods of the product microservice and to v2 Pods for the new subset. 

For details, see the file in the prod-env chart available in the kubernetes/helm/environments/

prod-env folder. 

Note that this is where we declare for the production environment what the exist-

ing (old) and the coming (new) versions are, v1 and v2 in this scenario. In a future 

scenario, where it is time to upgrade v2 to v3, the old subset should be updated to 

use v2 and the new subset should use v3. 

Now, we have seen all the changes to the source code and we are ready to deploy the v1 and v2 

versions of the microservices. 

Deploying the v1 and v2 versions of the microservices with 

routing to the v1 version

To be able to test the v1 and v2 versions of the microservices, we need to remove the development environment we used earlier in this chapter and create a production environment where we can deploy the v1 and v2 versions of the microservices. 

 Chapter 18

591

To achieve this, run the following commands:

1.  Uninstall the development environment:

helm uninstall hands-on-dev-env

2.  To monitor the termination of Pods in the development environment, run the following 

command until it reports No resources found in hands-on namespace.:

kubectl get pods

3.  Start MySQL, MongoDB, and RabbitMQ outside of Kubernetes:

eval $(minikube docker-env)

docker compose up -d mongodb mysql rabbitmq

4.  Tag the Docker images with v1 and v2 versions:

docker tag hands-on/auth-server hands-on/auth-server:v1

docker tag hands-on/product-composite-service hands-on/product-

composite-service:v1

docker tag hands-on/product-service hands-on/product-service:v1

docker tag hands-on/recommendation-service hands-on/recommendation-

service:v1

docker tag hands-on/review-service hands-on/review-service:v1

docker tag hands-on/product-service hands-on/product-service:v2

docker tag hands-on/recommendation-service hands-on/recommendation-

service:v2

docker tag hands-on/review-service hands-on/review-service:v2

The v1 and v2 versions of the microservices will be the same versions of the 

microservices in this test. But it doesn’t matter to Istio, so we can use this 

simplified approach to test Istio’s routing capabilities. 

5.  Deploy the system landscape using Helm and wait for all deployments to complete:

helm install hands-on-prod-env \

kubernetes/helm/environments/prod-env \

-n hands-on --wait

[image: Image 276]

592

 Using a Service Mesh to Improve Observability and Management

6.  Once the deployment is complete, verify that we have the v1 and v2 Pods up and running 

for the three core microservices with the following command:

kubectl get pods

Expect a response like this:

 Figure 18.22: v1 and v2 Pods deployed at the same time

7.  Run the usual tests to verify that everything works:

./test-em-all.bash

Unfortunately, the tests will fail initially with an error message like this:

- Response Body: Jwks doesn't have key to match kid or alg from Jwt

This error is caused by the Istio daemon, istiod, caching the JWKS public keys from the 

auth server in the development environment. The auth server in the production environ-

ment will have new JWKS keys but the same identity as istiod, so it tries to reuse the 

old JWKS public keys, causing this failure. Istio caches JWKS public keys for 20 minutes 

by default, but when installing Istio, we lowered the refresh interval to 15 seconds; see 

the  Deploying Istio in a Kubernetes cluster section. So, after waiting a short while, up to a minute depending on how quickly the refreshed keys are propagated, you should be able 

to run the tests successfully. The tests might still fail once the issue with cached JWKS 

has disappeared, with errors such as this:

Test FAILED, EXPECTED VALUE: 3, ACTUAL VALUE: 0, WILL ABORT

Then, simply rerun the command, and it should run fine! These errors are secondary 

failures caused by the original error caused by the JWKS cache. 

[image: Image 277]

 Chapter 18

593

Expect output that is similar to what we have seen in the previous chapters:

 Figure 18.23: Tests run successfully

We are now ready to run some zero-downtime deployment tests. Let’s begin by verifying that all traffic goes to the v1 version of the microservices! 

Verifying that all traffic initially goes to the v1 version of the 

microservices

To verify that all requests are routed to the v1 version of the microservices, we will start up the load test tool, siege, and then observe the traffic that flows through the service mesh using Kiali. 

Perform the following steps:

1.  Get a new access token and start the siege load test tool with the following commands:

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/

token -d grant_type=client_credentials -d scope="product:read 

product:write" -ks | jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

siege https://minikube.me/product-composite/1 -H "Authorization: 

Bearer $ACCESS_TOKEN" -c1 -d1 -v

2.  Go to the Graph view in Kiali’s web UI (https://kiali.minikube.me): a.  Click on the Display menu button and select Namespace Boxes. 

b.  Click on the App graph menu button and select Versioned app graph. 

[image: Image 278]

594

 Using a Service Mesh to Improve Observability and Management

c.  Expect only traffic to the v1 version of the microservices, as follows:

 Figure 18.24: All requests go to the v1 Pods

This means that even though the v2 versions of the microservices are deployed, they do not get any traffic routed to them. Let’s now try out canary tests where selected test users are allowed to try out the v2 versions of the microservices! 

Running canary tests

To run a canary test so that some users are routed to the new versions while all other users are still routed to the old versions of the deployed microservices, we need to add the X-group HTTP 

header set to the value test in our requests sent to the external API. 

[image: Image 279]

 Chapter 18

595

To see which version of a microservice served a request, the serviceAddresses field in the response can be inspected. The serviceAddresses field contains the hostname of each service that took part in creating the response. The hostname is equal to the name of the Pod, so we can find the version in the hostname; for example, product-v1-... for a product service of version v1, and product-v2-... for a product service of version v2. 

Let’s begin by sending a normal request and verifying that it is the v1 versions of the microservices that respond to our request. Next, we’ll send a request with the X-group HTTP header set to the value test and verify that the new v2 versions are responding. 

To do this, perform the following steps:

1.  Perform a normal request to verify that the request is routed to the v1 version of the microservices by using jq to filter out the serviceAddresses field in the response:

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/

token  -d grant_type=client_credentials -d scope="product:read 

product:write" -ks | jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

curl -ks https://minikube.me/product-composite/1 -H "Authorization: 

Bearer $ACCESS_TOKEN" | jq .serviceAddresses

Expect a response along the lines of the following:

 Figure 18.25: All requests go to the v1 Pods

As expected, all three core services are v1 versions of the microservices. 

2.  If we add the X-group=test header, we expect the request to be served by v2 versions of 

the core microservices. Run the following command:

curl -ks https://minikube.me/product-composite/1 -H "Authorization: 

Bearer $ACCESS_TOKEN" -H "X-group: test" | jq .serviceAddresses

[image: Image 280]

596

 Using a Service Mesh to Improve Observability and Management

Expect a response similar to the following:

 Figure 18.26: Setting the HTTP header to X-group=test makes the requests go to the 

 v2 Pods

As expected, all three core microservices that respond are now v2 versions; as a canary 

tester, we are routed to the new v2 versions! 

Given that the canary tests returned the expected results, we are ready to allow normal users to be routed to the new v2 versions using a blue-green deployment. 

Running a blue-green deployment

To route a portion of the normal users to the new v2 versions of the microservices, we need to modify the weight distribution in the virtual services. They are currently 100/0; in other words, all traffic is routed to the old v1 versions. We can achieve this, as we did before, by editing the manifest files of the virtual services and executing a kubectl apply command to make the changes take effect. As an alternative, we can use the kubectl patch command to change the weight distribution directly on the virtual service objects in the Kubernetes API server. 

I find the patch command useful when making a number of changes to the same objects to try 

something out, for example, to change the weight distribution in the routing rules. In this section, we will use the kubectl patch command to quickly change the weight distribution in the routing rules between the v1 and v2 versions of the microservices. To get the state of a virtual service after a few kubectl patch commands have been executed, a command such as kubectl get 

vs NNN -o yaml can be issued. For example, to get the state of the virtual service of the product microservice, issue the following command: kubectl get vs product -o yaml. 

Since we haven’t used the kubectl patch command before and it can be a bit involved to start with, let’s undertake a short introduction to see how it works before we perform the blue-green deployment. 

 Chapter 18

597

A short introduction to the kubectl patch command

The kubectl patch command can be used to update specific fields in an existing object in the Kubernetes API server. We will try the patch command on the virtual service for the review microservice, named review. The relevant parts of the definition of the virtual service, review, appear as follows:

spec:

http:

- match:

... 

- route:

- destination:

host: review

subset: old

weight: 100

- destination:

host: review

subset: new

weight: 0

An example patch command that changes the weight distribution of the routing to the v1 and 

v2 Pods in the review microservice appears as follows:

kubectl patch virtualservice review --type=json -p='[

{"op": "add", "path": "/spec/http/1/route/0/weight", "value": 80}, 

{"op": "add", "path": "/spec/http/1/route/1/weight", "value": 20}

]' 

The command will configure the routing rules of the review microservice to route 80% of the 

requests to the old version and 20% of the requests to the new version. 

To specify that the weight value should be changed in the review virtual service, the /spec/

http/1/route/0/weight path is given for the old version, and the /spec/http/1/route/1/weight path is for the new version. 

The 0 and 1 in the path are used to specify the index of array elements in the definition of the virtual service. For example, http/1 means the second element in the array under the http element. 

See the definition of the preceding review virtual service. 

598

 Using a Service Mesh to Improve Observability and Management

From the definition, we can see that the first element with index 0 is the match element, which we will not change. The second element is the route element, which we want to change. 

Now that we know a bit more about the kubectl patch command, we are ready to carry out a 

blue-green deployment. 

Performing the blue-green deployment

It is time to gradually move more and more users to the new versions using a blue-green deployment. To perform the deployment, run the following steps:

1.  Ensure that the load test tool, siege, is still running. Note that it was started in the preceding  Verifying that all traffic initially goes to the v1 version of the microservices section. 

2.  To allow 20% of users to be routed to the new v2 version of the review microservice, we 

can patch the virtual service and change the weights with the following command:

kubectl patch virtualservice review --type=json -p='[

{"op": "add", "path": "/spec/http/1/route/0/weight", "value": 80}, 

{"op": "add", "path": "/spec/http/1/route/1/weight", "value": 20}

]' 

3.  To observe the change in the routing rule, go to the Kiali web UI (https://kiali.minikube. 

me) and select the Graph view. 

4.  Click on the Display menu and change the edge labels to Traffic Distribution. 

[image: Image 281]

 Chapter 18

599

5.  Wait for a minute before the metrics are updated in Kiali so that we can observe the change. 

Expect the graph in Kiali to show something like the following:

 Figure 18.27: 80% goes to v1 services and 20% goes to v2 services

Depending on how long you have waited, the graph might look a bit different! In the screenshot, we can see that Istio now routes traffic to both the v1 and v2 versions of the review microservice. 

600

 Using a Service Mesh to Improve Observability and Management

Of the traffic that is sent to the review microservice from the product-composite microservice, 6% is routed to the new v2 Pod, and 21.6% to the old v1 Pod. This means that 6/(6 + 21.6) = 22% 

of the requests are routed to the v2 Pod, and 78% to the v1 Pod. This is in line with the 20/80 

distribution we have requested. 

Please feel free to try out the preceding kubectl patch command to affect the routing rules for the other core microservices, product and recommendation. 

To simplify changing the weight distribution for all three core microservices, the./kubernetes/

routing-tests/split-traffic-between-old-and-new-services.bash script can be used. For 

example, to route all traffic to the v2 version of all microservices, run the following script, feeding it with the weight distribution 0 100:

./kubernetes/routing-tests/split-traffic-between-old-and-new-services.bash 

0 100

You have to give Kiali a minute or two to collect metrics before it can visualize the changes in routing, but remember that the change in the actual routing is immediate! 

Expect that requests are routed only to the v2 versions of the microservices in the graph after a while:

[image: Image 282]

 Chapter 18

601

 Figure 18.28: All traffic goes to v2 services

Depending on how long you have waited, the graph might look a bit different! 

602

 Using a Service Mesh to Improve Observability and Management

If something goes terribly wrong following the upgrade to v2, the following command can be 

executed to revert all traffic to the v1 version of all microservices:

./kubernetes/routing-tests/split-traffic-between-old-and-new-services.bash 

100 0

After a short while, the graph in Kiali should look like the screenshot in the previous  Verifying that all traffic initially goes to the v1 version of the microservices section, showing all requests going to the v1 version of all microservices again. 

This concludes the introduction to the service mesh concept and Istio as an implementation of it. 

Before we wrap up the chapter, let’s recap how we can run tests in Docker Compose to ensure 

that the source code of our microservices does not rely on either the deployment in Kubernetes or the presence of Istio. 

Running tests with Docker Compose

As mentioned a few times now, it is important to ensure that the source code of the microservices doesn’t become dependent on a platform such as Kubernetes or Istio from a functional perspective. 

To verify that the microservices work as expected without the presence of Kubernetes and Istio, run the tests as described in  Chapter 17 (refer to the  Testing with Docker Compose section). Since the default values of the test script, test-em-all.bash, have been changed, as described previously in the  Running commands to create the service mesh section, the following parameters must be set when using Docker Compose: USE_K8S=false HOST=localhost PORT=8443 HEALTH_URL=https://

localhost:8443. For example, to run the tests using the default Docker Compose file, docker-

compose.yml, run the following command:

USE_K8S=false HOST=localhost PORT=8443 HEALTH_URL=https://localhost:8443 

./test-em-all.bash start stop

The test script should, as before, begin by starting all containers; it should then run the tests, and, finally, stop all containers. For details of the expected output, see  Chapter 17 (refer to the  Verifying that the microservices work without Kubernetes section). 

After successfully executing the tests using Docker Compose, we have verified that the microservices are dependent on neither Kubernetes nor Istio from a functional perspective. These tests conclude the chapter on using Istio as a service mesh. 

 Chapter 18

603

Summary

In this chapter, we learned about the service mesh concept and Istio, an open source implementation of the concept. A service mesh provides capabilities for handling challenges in a system landscape of microservices in areas such as security, policy enforcement, resilience, and traffic management. A service mesh can also be used to make a system landscape of microservices observable by visualizing the traffic that flows through the microservices. 

For observability, Istio can be integrated with Kiali, Jaeger, and Grafana (more on Grafana and Prometheus in  Chapter 20,  Monitoring Microservices). When it comes to security, Istio can be configured to use a certificate to protect external APIs with HTTPS and require that external requests contain valid JWT-based OAuth 2.0/OIDC access tokens. Finally, Istio can be configured to automatically protect internal communication using mutual authentication (with mTLS). 

For resilience and robustness, Istio comes with mechanisms for handling retries, timeouts, and an outlier detection mechanism similar to a circuit breaker. In many cases, it is preferable to implement these resilience capabilities in the source code of the microservices, if possible. The ability in Istio to inject faults and delays is very useful for verifying that the microservices in the service mesh work together as a resilient and robust system landscape. Istio can also be used to handle zero-downtime deployments. Using its fine-grained routing rules, both canary and blue-green deployments can be performed. 

One important area that we haven’t covered yet is how to collect and analyze log files created by all microservice instances. In the next chapter, we will see how this can be done using a popular stack of tools known as the EFK stack, based on Elasticsearch, Fluentd, and Kibana. 

Questions

1.  What is the purpose of a proxy component in a service mesh? 

2.  What’s the difference between a control plane and a data plane in a service mesh? 

3.  What is the istioctl kube-inject command used for? 

4.  What is the minikube tunnel command used for? 

5.  What tools are Istio integrated with for observability? 

6.  What configuration is required to make Istio protect communication within the service 

mesh using mutual authentication? 

7.  What can the abort and delay elements in a virtual service be used for? 

8.  What configuration is required to set up a blue-green deployment scenario? 

[image: Image 283]

604

 Using a Service Mesh to Improve Observability and Management

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

19

Centralized Logging with the 

EFK Stack

In this chapter, we will learn how to collect and store log records from microservice instances, as well as how to search and analyze log records. As we mentioned in  Chapter 1,  Introduction to Microservices, it is difficult to get an overview of what is going on in a system landscape of microservices when each microservice instance writes log records to its local filesystem. We need a component that can collect the log records from the microservice’s local filesystem and store them in a central database for analysis, search, and visualization. A popular open source-based solution for this is based on the following tools:

•  Elasticsearch, a distributed database with great capabilities for searching and analyzing large datasets

•  Fluentd, a data collector that can be used to collect log records from various sources, filter and transform the collected information, and finally send it to various consumers 

(for example, Elasticsearch)

•  Kibana, a graphical frontend to Elasticsearch that can be used to visualize search results and run analyses of the collected log records

Together, these tools are called the EFK stack, named after the initials of each tool. 

The following topics will be covered in this chapter:

•  Configuring Fluentd

•  Deploying the EFK stack on Kubernetes for development and test usage

•  Analyzing the collected log records

606

 Centralized Logging with the EFK Stack

•  Discovering log records from microservices and finding related log records

•  Performing root cause analysis

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following chapters:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter19. 

If you want to view the changes applied to the source code in this chapter (that is, see the changes we made so that we can use the EFK stack for centralized log analysis), you can compare it with the source code for  Chapter 18,   Using a Service Mesh to Improve Observability and Management. 

You can use your favorite diff tool and compare the two folders, $BOOK_HOME/Chapter18 and 

$BOOK_HOME/Chapter19. 

Introducing Fluentd

In this section, we will learn the basics of how to configure Fluentd. Before we do that, let’s learn a bit about the background of Fluentd and how it works at a high level. 

Overview of Fluentd

Historically, one of the most popular open source stacks for handling log records has been the ELK stack from Elastic (https://www.elastic.co), based on Elasticsearch, Logstash (used for log collection and transformation), and Kibana. Since Logstash runs on a Java VM, it requires a relatively large amount of memory. Over the years, a number of open source alternatives have been developed that require significantly less memory than Logstash, one of them being Fluentd (https://www.fluentd.org). 

Fluentd is managed by the Cloud Native Computing Foundation (CNCF) (https://www.cncf. 

io), the same organization that manages the Kubernetes project. Therefore, Fluentd has become a natural choice as an open source-based log collector that runs in Kubernetes. Together with Elastic and Kibana, it forms the EFK stack. 

CNCF maintains a list of alternative products for several categories, for example, for 

logging. For alternatives to Fluentd listed by CNCF, see https://landscape.cncf. 

io/card-mode?category=logging&grouping=category. 

 Chapter 19

607

Fluentd is written in a mix of C and Ruby, using C for the performance-critical parts and Ruby where flexibility is of more importance, for example, allowing the simple installation of third-party plugins using Ruby’s gem install command. 

A log record is processed as an event in Fluentd and consists of the following information:

•  A time field describing when the log record was created

•  A tag field that identifies what type of log record it is – the tag is used by Fluentd’s routing engine to determine how a log record will be processed

•  A record field that contains the actual log information, which is stored as a JSON object A Fluentd configuration file is used to tell Fluentd how to collect, process, and finally send log records to various targets, such as Elasticsearch. A configuration file consists of the following types of core elements:

•  <source>: Source elements describe where Fluentd will collect log records; for example, tailing log files that have been written to by Docker containers. 

 Tailing a log file means monitoring what is written to a log file. A frequently 

used Unix/Linux tool for monitoring what is appended to a file is named tile. 

Source elements typically tag the log records, describing the type of log record. They could, for example, be used to tag log records to state that they come from containers running 

in Kubernetes. 

•  <filter>: Filter elements are used to process the log records. For example, a filter element can parse log records that come from Spring Boot-based microservices and extract interesting parts of the log message into separate fields in the log record. Extracting information 

into separate fields in the log record makes the information searchable by Elasticsearch. 

A filter element selects the log records to process based on their tags. 

•  <match>: Match elements decide where to send log records, acting as output elements. 

They are used to perform two main tasks:

•  Sending processed log records to targets such as Elasticsearch. 

•  Routing to decide how to process log records. A routing rule can rewrite the tag 

and re-emit the log record into the Fluentd routing engine for further processing. 

A routing rule is expressed as an embedded <rule> element inside the <match> 

element. Output elements decide what log records to process, in the same way as 

a filter, based on the tag of the log records. 

608

 Centralized Logging with the EFK Stack

Fluentd comes with a number of built-in and external third-party plugins that are used by the source, filter, and output elements. We will see some of them in action when we walk through the configuration file in the next section. For more information on the available plugins, see Fluentd’s documentation, which is available at https://docs.fluentd.org. 

With this overview of Fluentd out of the way, we are ready to see how Fluentd can be configured to process the log records from our microservices. 

Configuring Fluentd

The configuration of Fluentd is based on the configuration files from a Fluentd project on GitHub, fluentd-kubernetes-daemonset. The project contains Fluentd configuration files for how to 

collect log records from containers that run in Kubernetes and how to send them to Elasticsearch once they have been processed. We will reuse this configuration without changes, and it will simplify our own configuration to a great extent. The Fluentd configuration files can be found at 

https://github.com/fluent/fluentd-kubernetes-daemonset/tree/master/archived-image/

v1.4/debian-elasticsearch/conf. 

The configuration files that provide this functionality are kubernetes.conf and fluent.conf. 

The kubernetes.conf configuration file contains the following information:

•  Source elements that tail container log files and log files from processes that run outside of Kubernetes; for example, kubelet and the Docker daemon. The source elements also 

tag the log records from Kubernetes with the full name of the log file, with / replaced 

by . and prefixed with kubernetes. Since the tag is based on the full filename, the name 

contains the name of the namespace, Pod, and container, among other things. So, the tag 

is very useful for finding log records of interest by matching the tag. 

For example, the tag from the product-composite microservice could be something 

like kubernetes.var.log.containers.product-composite-7...s_hands-on_comp-

e...b.log, while the tag for the corresponding istio-proxy microservice in the same 

Pod could be something like kubernetes.var.log.containers.product-composite-

7...s_hands-on_istio-proxy-1...3.log. 

 Chapter 19

609

•  A filter element that enriches the log records that come from containers running inside 

Kubernetes, along with Kubernetes-specific fields that contain information such as the 

names of the containers and the namespace they run in. 

The main configuration file, fluent.conf, contains the following information:

• 

@include statements for other configuration files; for example, the kubernetes.conf 

file we described previously. It also includes custom configuration files that are placed 

in a specific folder, making it very easy for us to reuse these configuration files without 

any changes and provide our own configuration file that only handles processing related 

to our own log records. We simply need to place our own configuration file in the folder 

specified by the fluent.conf file. 

•  An output element that sends log records to Elasticsearch. 

As described in the  Deploying Fluentd section later on, these two configuration files will be packaged into the Docker image we will build for Fluentd. 

What’s left to cover in our own configuration file is the following:

•  Detecting and parsing Spring Boot-formatted log records from our microservices. 

•  Handling multiline stack traces. Stack traces are written to log files using multiple lines. 

This makes it hard for Fluentd to handle a stack trace as a single log record. 

•  Separating log records from the istio-proxy sidecars from the log records that were 

created by the microservices running in the same Pod. The log records that are created 

by istio-proxy don’t follow the same pattern as the log patterns that are created by our 

Spring Boot-based microservices. Therefore, they must be handled separately so that 

Fluentd doesn’t try to parse them as Spring Boot-formatted log records. 

To achieve this, the configuration is, to a large extent, based on using the rewrite_tag_filter plugin. This plugin can be used for routing log records based on the concept of changing the name of a tag and then re-emitting the log record to the Fluentd routing engine. 

[image: Image 284]

[image: Image 285]

[image: Image 286]

610

 Centralized Logging with the EFK Stack

This processing is summarized by the following UML activity diagram. 

 Figure 19.1: Fluentd processing of log records

Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy. 

The next-gen Packt Reader and a free PDF/ePub copy of this book are included 

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure 

you get the right one. 

[image: Image 287]

 Chapter 19

611

At a high level, the design of the configuration file looks as follows:

•  The tags of all log records from Istio, including istio-proxy, are prefixed with istio so that they can be separated from the Spring Boot-based log records. 

•  The tags of all log records from the hands-on namespace (except for the log records from 

istio-proxy) are prefixed with spring-boot. 

•  The log records from Spring Boot are checked for the presence of multiline stack traces. If the log record is part of a multiline stack trace, it is processed by the third-party detect-exceptions plugin to recreate the stack trace. Otherwise, it is parsed using a regular 

expression to extract information of interest. See the  Deploying Fluentd section for details on this third-party plugin. 

The fluentd-hands-on.conf configuration file implements this activity diagram. The configu-

ration file is placed inside a Kubernetes ConfigMap (see kubernetes/efk/fluentd-hands-on-

configmap.yml). Let’s go through this step by step, as follows:

1.  First comes the definition of the ConfigMap and the filename of the configuration file, 

fluentd-hands-on.conf. It looks as follows:

apiVersion: v1

kind: ConfigMap

metadata:

name: fluentd-hands-on-config

namespace: kube-system

data:

fluentd-hands-on.conf: |

We can see that the data element will contain the configuration of Fluentd. It starts with 

the filename and uses a vertical bar, |, to mark the beginning of the embedded configu-

ration file for Fluentd. 

612

 Centralized Logging with the EFK Stack

2.  The first <match> element matches the log records from Istio; that is, tags that are prefixed with Kubernetes and contain istio as either part of their namespace or part of their 

container name. It looks like this:

<match kubernetes.**istio**> 

@type rewrite_tag_filter

<rule> 

key log

pattern ^(.*)$

tag istio.${tag}

</rule> 

</match> 

Let’s explain the preceding source code:

•  The <match> element matches any tags that follow the kubernetes.**istio** 

pattern; that is, tags that start with Kubernetes and then contain the word istio 

somewhere in the tag name. The word istio can come from the name of either 

the namespace or the container; both are part of the tag. 

•  The <match> element contains only one <rule> element, which prefixes the tag 

with istio. The ${tag} variable holds the current value of the tag. 

•  Since this is the only <rule> element in the <match> element, it is configured to match all log records. 

•  Since all log records that come from Kubernetes have a log field, the key field is 

set to log; that is, the rule looks for a log field in the log records. 

•  To match any string in the log field, the pattern field is set to the ^(.*)$ regular 

expression. The ^ part marks the beginning of a string, while $ marks the end of 

a string. The (.*) part matches any number of characters, except for line breaks. 

•  The log records are re-emitted to the Fluentd routing engine. Since no other el-

ements in the configuration file match tags starting with istio, the log records 

will be sent directly to the output element for Elasticsearch, which is defined in 

the fluent.conf file we described previously. 

3.  The second <match> element matches all log records from the hands-on namespace; that is, the log records that are emitted by our microservices. It looks like this:

<match kubernetes.**hands-on**> 

@type rewrite_tag_filter

 Chapter 19

613

<rule> 

key log

pattern ^(.*)$

tag spring-boot.${tag}

</rule> 

</match> 

From the source code, we can see the following:

•  The log records emitted by our microservices use formatting rules for the log mes-

sage defined by Spring Boot, so their tags are prefixed with spring-boot. Then, 

they are re-emitted for further processing. 

•  The  <match> element is configured in the same way as the <match 

kubernetes.**istio**> element we looked at previously, to match all records. 

4.  The third <match> element matches spring-boot log records and determines whether they are ordinary Spring Boot log records or part of a multiline stack trace. Since Spring Boot 3, Project Reactor has added extra information to stack traces to clarify what caused an exception. (For details, see https://projectreactor.io/docs/core/release/reference/

debugging.html#reading-a-stack-trace-in-debug-mode.) To be able to parse the actual stack trace, we will filter out this information. The <match> element looks like this:

<match spring-boot.**> 

@type rewrite_tag_filter

<rule> 

key log

pattern /^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{3}

([-+]\d{2}:\d{2}|Z).*/

tag parse.${tag}

</rule> 

 # Get rid of Reactor debug info:

 #

 #   Suppressed: reactor.core.publisher. 

 FluxOnAssembly$OnAssemblyException:

 # Error has been observed at the following site(s):

 #   *__checkpoint 'á¢ Handler se.magnus.microservices.core. 

 product.services.ProductServiceImpl#getProduct(HttpHeaders, int, 

 int, int) [DispatcherHandler]

 #   *__checkpoint 'á¢ org.springframework.web.filter.reactive. 

614

 Centralized Logging with the EFK Stack

 ServerHttpObservationFilter [DefaultWebFilterChain]

 #   *__checkpoint 'á¢ HTTP GET "/product/1?faultPercent=100" 

 [ExceptionHandlingWebHandler]

 # Original Stack Trace:

<rule> 

key log

pattern /^\s+Suppressed:.*$/

tag skip.${tag}

</rule> 

<rule> 

key log

pattern /^Error has been observed at the following site.*/

tag skip.${tag}

</rule> 

<rule> 

key log

pattern /^\s+\*__checkpoint.*/

tag skip.${tag}

</rule> 

<rule> 

key log

pattern /^Original Stack Trace:.*/

tag skip.${tag}

</rule> 

<rule> 

key log

pattern /^.*/

tag check.exception.${tag}

</rule> 

</match> 

As seen in the source code, this is determined by using six <rule> elements:

•  The first uses a regular expression to check whether the log field in the log element 

starts with a timestamp or not. 

•  If the log field starts with a timestamp, the log record is treated as an ordinary 

Spring Boot log record and its tag is prefixed with parse. 

 Chapter 19

615

•  Next follows four rule elements that are used to filter out the extra information 

added by Project Reactor; they all prefix the tag with skip. 

•  Otherwise, the last <rule> element will match, and the log record is handled as a 

multiline log record. Its tag is prefixed with check.exception. 

•  The log record is re-emitted in either case, and its tag will either start with check. 

exception.spring-boot, skip.spring-boot, or parse.spring-boot after this 

processing. 

5.  The fourth <match> element is used to get rid of the log output from Project Reactor; that is, match tags starting with skip.spring-boot. The <match> element applies the null 

output plugin that throws away the events. It looks like this:

<match skip.spring-boot.**> 

@type null

</match> 

6.  In the fifth <match> element, the selected log records have a tag that starts with check. 

exception.spring-boot; that is, log records that are part of a multiline stack trace. It 

looks like this:

<match check.exception.spring-boot.**> 

@type detect_exceptions

languages java

remove_tag_prefix check

message log

multiline_flush_interval 5

</match> 

The detect_exceptions plugin works like this:

•  The detect_exceptions plugin is used to combine multiple one-line log records 

into a single log record that contains a complete stack trace

•  Before a multiline log record is re-emitted into the routing engine, the check prefix 

is removed from the tag to prevent a never-ending processing loop of the log record

616

 Centralized Logging with the EFK Stack

7.  Finally, the configuration file consists of a <filter> element that parses Spring Boot log messages using a regular expression, extracting information of interest. It looks like this:

<filter parse.spring-boot.**> 

@type parser

key_name log

time_key time

time_format %Y-%m-%dT%H:%M:%S.%N

reserve_data true

format /^(?<time>\d{4}-\d{2}-\d{2}

T\d{2}:\d{2}:\d{2}\.\d{3}([-+]\d{2}:\d{2}|Z))\s+

(?<spring.level>[^\s]+)\s+(?<spring.pid>\d+)\s+---\s+

\[\s*(?<spring.thread>[^\]]+)\]\s+

(\[(?<spring.service>[^,]*),(?<spring.trace>[^,]*), 

(?<spring.span>[^\]]*)]*\])\s+

(?<spring.class>[^\s]+)\s*:\s+(?<log>.*)$/    </filter> 

Note that filter elements don’t re-emit log records; instead, they just pass them on to the 

next element in the configuration file that matches the log record’s tag. 

The following fields are extracted from the Spring Boot log message that’s stored in the 

log field in the log record:

•  <time>: The timestamp for when the log record was created

•  <spring.level>: The log level of the log record: FATAL, ERROR, WARN, INFO, DEBUG, 

or TRACE

•  <spring.service>: The name of the microservice

•  <spring.trace>: The trace ID used to perform distributed tracing

•  <spring.span>: The span ID, the ID of the part of the distributed processing that 

this microservice executed

•  <spring.pid>: The process ID

•  <spring.thread>: The thread ID

•  <spring.class>: The name of the Java class

•  <log>: The actual log message

 Chapter 19

617

The names of Spring Boot-based microservices are specified using the spring. 

application.name property. This property has been added to each microser-

vice-specific property file in the config repository, in the config-repo folder. 

Getting regular expressions right can be challenging, to say the least. Thankfully, there are several websites that can help. When it comes to using regular expressions together with Fluentd, I recommend using the following site: https://fluentular.herokuapp.com/. 

Now that we have been introduced to how Fluentd works and how the configuration file is con-

structed, we are ready to deploy the EFK stack. 

Deploying the EFK stack on Kubernetes

Deploying the EFK stack on Kubernetes will be done in the same way as we have deployed our 

own microservices: using Kubernetes manifest files for objects such as Deployments, Services, and ConfigMaps. 

The deployment of the EFK stack is divided into three parts:

•  Deploying Elasticsearch and Kibana

•  Deploying Fluentd

•  Setting up access to Elasticsearch and Kibana

But first, we need to build and deploy our own microservices. 

Building and deploying our microservices

Building, deploying, and verifying the deployment using the test-em-all.bash test script is 

done in the same way as it was done in  Chapter 18,  Using a Service Mesh to Improve Observability and Management, in the  Running commands to create the service mesh section. These instructions assume that cert-manager and Istio are installed as instructed in  Chapters 17 and  18. 

Run the following commands to get started:

1.  First, build the Docker images from the source with the following commands:

cd $BOOK_HOME/Chapter19

eval $(minikube docker-env -u)

./gradlew build

eval $(minikube docker-env)

docker compose build

618

 Centralized Logging with the EFK Stack

The eval $(minikube docker-env -u) command ensures that the ./

gradlew build command uses the host’s Docker engine and not the Docker 

engine in the Minikube instance. The build command uses Docker to run 

test containers. 

2.  Recreate the namespace, hands-on, and set it as the default namespace:

kubectl delete namespace hands-on

kubectl apply -f kubernetes/hands-on-namespace.yml

kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

3.  Resolve the Helm chart dependencies with the following commands. 

First, we update the dependencies in the components folder:

for f in kubernetes/helm/components/*; do helm dep up $f; done

Next, we update the dependencies in the environments folder:

for f in kubernetes/helm/environments/*; do helm dep up $f; done

4.  Deploy the system landscape using Helm and wait for all deployments to complete:

helm install hands-on-dev-env \

kubernetes/helm/environments/dev-env \

-n hands-on --wait

5.  Start the Minikube tunnel in a separate terminal window, if it’s not already running (see 

 Chapter 18, the  Setting up access to Istio services section, for a recap if required): minikube tunnel

Remember that this command requires that your user has sudo privileges and that you 

enter your password during startup. It takes a couple of seconds before the command 

asks for the password, so it is easy to miss! 

6.  Run the normal tests to verify the deployment with the following command:

./test-em-all.bash

[image: Image 288]

 Chapter 19

619

Expect the output to be similar to what we saw in the previous chapters:

 Figure 19.2: Tests running fine

7.  You can also try out the APIs manually by running the following commands:

ACCESS_TOKEN=$(curl -k https://writer:secret-writer@minikube.me/

oauth2/token -d grant_type=client_credentials -d scope="product:read 

product:write" -s | jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

curl -ks https://minikube.me/product-composite/1 -H "Authorization: 

Bearer $ACCESS_TOKEN" | jq .productId

Expect the requested product ID, 1, in the response. 

With the microservices deployed, we can move on and deploy Elasticsearch and Kibana! 

Deploying Elasticsearch and Kibana

We will deploy Elasticsearch and Kibana to their own namespace, logging. Both Elasticsearch 

and Kibana will be deployed for development and test usage using a Kubernetes Deployment and Service object. The services will expose the standard ports for Elasticsearch and Kibana internally in the Kubernetes cluster; that is, port 9200 for Elasticsearch and port 5601 for Kibana. 

To provide external HTTP access to Elasticsearch and Kibana, we will create Istio objects, as we did in  Chapter 18 , Using a Service Mesh to Improve Observability and Management, for Kiali and Jaeger – see the  Setting up access to Istio services section for a recap, if required. This will result in Elasticsearch and Kibana being available at https://elasticsearch.minikube.me and https://

kibana.minikube.me. 

620

 Centralized Logging with the EFK Stack

The manifest files have been packaged in a Helm chart in the kubernetes/helm/environments/

logging folder. 

For recommended deployment options for Elasticsearch and Kibana in a produc-

tion environment on Kubernetes, see https://www.elastic.co/elastic-cloud-

kubernetes. 

We will use the latest versions that were available for version 7 when this chapter was written:

•  Elasticsearch version 7.17.28

•  Kibana version 7.17.28

Elasticsearch version 8 is not used, due to limited support in the Fluentd plugin for 

Elasticsearch; see https://github.com/uken/fluent-plugin-elasticsearch/

issues/1005. The fluentd-kubernetes-daemonset base Docker image that we will use in the following section to install Fluentd uses this plugin. 

Before we deploy, let’s look at the most interesting parts of the manifest files in the Helm chart’s template folder. 

A walkthrough of the manifest files

The manifest file for Elasticsearch, elasticsearch.yml, contains a standard Kubernetes De-

ployment and Service object that we have seen multiple times before; for example, in  Chapter 15, 

 Introduction to Kubernetes, in the  Trying out a sample deployment section. The most interesting part of the manifest file is the following:

apiVersion: apps/v1

kind: Deployment

... 

containers:

- name: elasticsearch

image: docker.elastic.co/elasticsearch/elasticsearch:7.17.28

resources:

limits:

cpu: 500m

memory: 2Gi

requests:

cpu: 500m

memory: 2Gi

 Chapter 19

621

Let’s explain some of this manifest:

•  We use an official Docker image from Elastic that’s available at docker.elastic.co. The 

version is set to 7.17.28. 

•  The Elasticsearch container is allowed to allocate a relatively large amount of memory – 2 

GB – to be able to run queries with good performance. The more memory, the better the 

performance. 

The manifest file for Kibana, kibana.yml, also contains a standard Kubernetes Deployment and Service object. The most interesting parts in the manifest file are as follows:

apiVersion: apps/v1

kind: Deployment

... 

containers:

- name: kibana

image: docker.elastic.co/kibana/kibana:7.17.28

env:

- name: ELASTICSEARCH_URL

value: http://elasticsearch:9200

Let’s explain some of the manifest:

•  For Kibana, we also use an official Docker image from Elastic that’s available at docker. 

elastic.co. The version is set to 7.17.28. 

•  To connect Kibana with the Elasticsearch Pod, an environment variable, ELASTICSEARCH_URL, is defined to specify the address to the Elasticsearch service, http://elasticsearch:9200. 

Finally, the Istio manifests for setting up external access are found in the expose-elasticsearch. 

yml and expose-kibana.yml  files.  For  a  recap  on  how  the  Gateway,  VirtualService, and DestinationRule objects are used, see the  Creating the service mesh section in  Chapter 18. They will provide the following forwarding of external requests:

•  https://elasticsearch.minikube.me → http://elasticsearch:9200

•  https://kibana.minikube.me → http://kibana:5601

With these insights, we are ready to perform the deployment of Elasticsearch and Kibana. 

622

 Centralized Logging with the EFK Stack

Running the deploy commands

Deploy Elasticsearch and Kibana by performing the following steps:

1.  To make the deployment steps run faster, prefetch the Docker images for Elasticsearch 

and Kibana with the following commands:

eval $(minikube docker-env)

docker pull docker.elastic.co/elasticsearch/elasticsearch:7.17.28

docker pull docker.elastic.co/kibana/kibana:7.17.28

2.  Use the Helm chart to create a logging namespace, deploy Elasticsearch and Kibana in it, and wait for the Pods to be ready:

helm install logging-hands-on-add-on kubernetes/helm/environments/

logging \

-n logging --create-namespace --wait

3.  Verify that Elasticsearch is up and running with the following command:

curl https://elasticsearch.minikube.me -sk | jq -r .tagline

Expect You Know, for Search as a response. 

Depending on your hardware, you might need to wait for a minute or two 

before Elasticsearch responds with this message. 

4.  Verify that Kibana is up and running with the following command:

curl https://kibana.minikube.me \

-kLs -o /dev/null -w "%{http_code}\n" 

Expect 200 as the response. 

Again, you might need to wait for a minute or two before Kibana is initialized 

and responds with 200. 

With Elasticsearch and Kibana deployed, we can start to deploy Fluentd. 

 Chapter 19

623

Deploying Fluentd

Deploying Fluentd is a bit more complex compared to deploying Elasticsearch and Kibana. To 

deploy Fluentd, we will use a Docker image that’s been published by the Fluentd project on Docker Hub, fluent/fluentd-kubernetes-daemonset, and the sample Kubernetes manifest files from 

a Fluentd project on GitHub, fluentd-kubernetes-daemonset. It is located at https://github. 

com/fluent/fluentd-kubernetes-daemonset. As is implied by the name of the project, Fluentd will be deployed as a DaemonSet, running one Pod per Node in the Kubernetes cluster. Each 

Fluentd Pod is responsible for collecting log output from processes and containers that run on the same Node as the Pod. Since we are using Minikube with a single Node cluster, we will only have one Fluentd Pod. 

To handle multiline log records that contain stack traces from exceptions, we will use a third-party Fluentd plugin provided by Google, fluent-plugin-detect-exceptions, which is available 

at https://github.com/GoogleCloudPlatform/fluent-plugin-detect-exceptions. To be able to use this plugin, we will build our own Docker image where the fluent-plugin-detect-exceptions plugin will be installed. 

Fluentd’s Docker image, fluentd-kubernetes-daemonset, will be used as the base image. 

We will use the following versions:

•  Fluentd version 1.4.2

•  fluent-plugin-detect-exceptions version 0.0.12

Before we deploy, let’s look at the most interesting parts of the manifest files. 

A walkthrough of the manifest files

The Dockerfile that’s used to build the Docker image, kubernetes/efk/Dockerfile, looks as 

follows:

FROM fluent/fluentd-kubernetes-daemonset:v1.4.2-debian-elasticsearch-1.1

RUN gem install fluent-plugin-detect-exceptions -v 0.0.12 \

&& gem sources --clear-all \

&& rm -rf /var/lib/apt/lists/* \

/home/fluent/.gem/ruby/2.3.0/cache/*.gem

624

 Centralized Logging with the EFK Stack

Let’s explain this in detail:

•  The base image is Fluentd’s Docker image, fluentd-kubernetes-daemonset. The v1.4.2-

debian-elasticsearch-1.1 tag specifies that version 1.4.2 will be used with a package 

that contains built-in support for sending log records to Elasticsearch. The base Docker 

image contains the Fluentd configuration files that were mentioned in the  Configuring 

 Fluentd section. 

•  The Google plugin, fluent-plugin-detect-exceptions, is installed using Ruby’s package 

manager, gem. 

The manifest file of the DaemonSet, kubernetes/efk/fluentd-ds.yml, is based on a sample 

manifest file in the fluentd-kubernetes-daemonset project, which can be found at https://

github.com/fluent/fluentd-kubernetes-daemonset/blob/master/fluentd-daemonset-

elasticsearch.yaml. 

This file is a bit complex, so let’s go through the most interesting parts separately:

1.  First, here’s the declaration of the DaemonSet:

apiVersion: apps/v1

kind: DaemonSet

metadata:

name: fluentd

namespace: kube-system

The kind key specifies that this is a DaemonSet. The namespace key specifies that the Dae-

monSet will be created in the kube-system namespace and not in the logging namespace 

where Elasticsearch and Kibana are deployed. 

2.  The next part specifies the template for the Pods that are created by the DaemonSet. The most interesting parts are as follows:

spec:

template:

spec:

containers:

- name: fluentd

image: hands-on/fluentd:v1

env:

- name: FLUENT_ELASTICSEARCH_HOST

value: "elasticsearch.logging" 

 Chapter 19

625

- name: FLUENT_ELASTICSEARCH_PORT

value: "9200" 

The Docker image that’s used for the Pods is hands-on/fluentd:v1. We will build this 

Docker image after walking through the manifest files using the Dockerfile we described 

previously. 

A number of environment variables are supported by the Docker image and are used to 

customize it. The two most important ones are as follows:

•  FLUENT_ELASTICSEARCH_HOST, which specifies the hostname of the Elasticsearch 

service, elasticsearch.logging

•  FLUENT_ELASTICSEARCH_PORT, which specifies the port that’s used to communicate 

with Elasticsearch, 9200

Since the Fluentd Pod runs in a different namespace from Elasticsearch, the 

hostname cannot be specified using its short name; that is, elasticsearch. 

Instead, the namespace part of the DNS name must also be specified; that 

is, elasticsearch.logging. As an alternative, the fully qualified domain 

name (FQDN), elasticsearch.logging.svc.cluster.local, can also be 

used. But since the last part of the DNS name, svc.cluster.local, is shared 

by all DNS names inside a Kubernetes cluster, it does not need to be specified. 

3.  Finally, a number of volumes (that is, filesystems) are mapped to the Pod, as follows:

volumeMounts:

- name: varlog

mountPath: /var/log

- name: varlibdockercontainers

mountPath: /var/lib/docker/containers

readOnly: true

- name: journal

mountPath: /var/log/journal

readOnly: true

- name: fluentd-extra-config

mountPath: /fluentd/etc/conf.d

volumes:

- name: varlog

hostPath:

626

 Centralized Logging with the EFK Stack

path: /var/log

- name: varlibdockercontainers

hostPath:

path: /var/lib/docker/containers

- name: journal

hostPath:

path: /run/log/journal

- name: fluentd-extra-config

configMap:

name: "fluentd-hands-on-config" 

Let’s take a look at the source code in detail:

•  Three folders on the host (that is, the Node) are mapped to the Fluentd Pod. These 

folders contain the log files that Fluentd will tail and collect log records from. The 

folders are /var/log, /var/lib/docker/containers, and /run/log/journal. 

•  Our own configuration file, which specifies how Fluentd will process log records 

from our microservices, is mapped using a ConfigMap called fluentd-hands-on-

config to the /fluentd/etc/conf.d folder. The base Docker image configures 

Fluentd to include any configuration file that’s found in the /fluentd/etc/conf.d 

folder. See the  Configuring Fluentd section for details. 

For the full source code of the manifest file for the DaemonSet, see the kubernetes/efk/fluentd-ds.yml file. 

Now that we’ve walked through everything, we are ready to perform the deployment of Fluentd. 

Running the deploy commands

To deploy Fluentd, we have to build the Docker image, create a ConfigMap, and finally deploy the DaemonSet. Run the following commands to perform these steps:

1.  Build the Docker image and tag it with hands-on/fluentd:v1 using the following com-

mand:

eval $(minikube docker-env)

docker build -f kubernetes/efk/Dockerfile -t hands-on/fluentd:v1 

kubernetes/efk/

 Chapter 19

627

2.  Create a ConfigMap, deploy Fluentd’s DaemonSet, and wait for the Pod to be ready with 

the following commands:

kubectl apply -f kubernetes/efk/fluentd-hands-on-configmap.yml

kubectl apply -f kubernetes/efk/fluentd-ds.yml

kubectl wait --timeout=120s --for=condition=Ready pod -l app=fluentd 

-n kube-system

3.  Verify that the Fluentd Pod is healthy with the following command:

kubectl logs -n kube-system -l app=fluentd --tail=-1 | grep "fluentd 

worker is now running worker" 

Expect a response of 2023-05-22 14:59:46 +0000 [info]: #0 fluentd worker is 

now running worker=0. 

As with Elasticsearch and Kibana, you might need to wait for a minute or 

two before Fluentd responds with this message. 

4.  Fluentd will start to collect a considerable number of log records from the various containers in the Minikube instance. After a minute or so, you can ask Elasticsearch how many 

log records have been collected with the following command:

curl https://elasticsearch.minikube.me/_all/_count -sk | jq .count

5.  The command can be a bit slow the first time it is executed but should return a total count of several thousands of log records. In my case, it returned 55607. 

This completes the deployment of the EFK stack. Now, it’s time to try it out and find out what all the collected log records are about! 

Trying out the EFK stack

The first thing we need to do before we can try out the EFK stack is to initialize Kibana so that it knows which indices to use in Elasticsearch. 

An index in Elasticsearch corresponds to a database in SQL concepts. The SQL 

concepts table, row, and column correspond to type, document, and property in Elasticsearch. 

628

 Centralized Logging with the EFK Stack

Once that is done, we will try out the following common tasks:

1.  We will start by analyzing what types of log records Fluentd has collected and stored in Elasticsearch. Kibana has a very useful visualization capability that can be used for this. 

2.  Next, we will learn how to find all related log records created by the microservices while processing an external request. We will use the trace ID in the log records as a correlation ID to find related log records. 

3.  Finally, we will learn how to use Kibana to perform root cause analysis, finding the actual reason for an error. 

Initializing Kibana

Before we start to use Kibana, we must specify which search indices to use in Elasticsearch and which field in the indices holds the timestamps for the log records. 

Just a quick reminder that we are using a certificate created by our own certificate 

authority (CA), meaning that it is not trusted by web browsers! For a recap on how to make web browsers accept our certificate, see the  Observing the service mesh sec-

tion of  Chapter 18. 

Perform the following steps to initialize Kibana:

1.  Open Kibana’s web UI using the https://kibana.minikube.me URL in a web browser. 

2.  Text box down right, Your data is not secure  Dismiss button. 

3.  On the Welcome to Elastic page, select Explore on my own. 

4.  On the Welcome home page, click on the ≡ hamburger menu (three horizontal lines) in the upper-left corner, and click on Stack Management at the bottom of the menu to the left. 

5.  In the Management menu, go to the bottom and select Index Patterns under the Kibana header. 

6.  Click on the button named Create index pattern. 

7.  Enter logstash-* as the index pattern name and click on the Next Step button. 

Indices are, by default, named logstash for historical reasons, even though 

Fluentd is used for log collection. 

8.  Click on the drop-down list for the Timestamp field and select the only available field, @

timestamp. 

[image: Image 289]

 Chapter 19

629

9.  Click on the Create index pattern button. 

10.  Kibana will show a page that summarizes the fields that are available in the selected indices. 

With Kibana initialized, we are ready to examine the collected log records. 

Analyzing the log records

From the deployment of Fluentd, we know that it immediately started to collect a significant number of log records. So, the first thing we need to do is get an understanding of what types of log records Fluentd has collected and stored in Elasticsearch. 

We will use Kibana’s visualization feature to divide the log records by the Kubernetes namespace and then ask Kibana to show us how the log records are divided by the type of container within each namespace. A pie chart is a suitable chart type for this type of analysis. Perform the following steps to create a pie chart:

1.  In Kibana’s web UI, click on the hamburger menu again and select Visualize Library 

under Analytics in the menu. 

2.  Click on the Create new visualization button and select the Lens type on the next page. 

A web page like the following will be displayed:

 Figure 19.3: Starting to analyze log records in Kibana

[image: Image 290]

630

 Centralized Logging with the EFK Stack

3.  Verify that logstash-* is the selected index pattern in the top-left drop-down menu. 

4.  In the Bar vertical stacked drop-down menu next to the index pattern, select Pie as the visualization type. 

5.  In the time picker (a date interval selector) above the pie chart, set a date interval large enough to cover log records of interest (set to the Last 15 minutes in the following screenshot). Click on its calendar icon to adjust the time interval. 

6.  In the field named Search field names below the index pattern, enter kubernetes. 

namespace_name.keyword. 

7.  Under the Available fields list, the kubernetes.namespace_name.keyword field is now present. Drag this field into the big box in the middle of the page, named Drop some fields here to start. Kibana will immediately start to analyze log records and render a pie chart divided into Kubernetes namespaces. In my case, it looks like this:

 Figure 19.4: Kibana analysis of log records per Kubernetes namespace

We can see that the log records are divided into the namespaces we have been working 

with in the previous chapters: kube-system, istio-system, logging, and our own hands-

on namespace. To see which containers have created the log records per namespace, we 

need to add a second field. 

8.  In the Search field names field, enter kubernetes.container_name.keyword. 

[image: Image 291]

 Chapter 19

631

9.  In the Available fields list, the kubernetes.container_name.keyword field is now present. 

Drag this field into the big box in the middle of the page showing the pie chart. Kibana 

will immediately start to analyze log records and render a pie chart divided by Kubernetes 

namespace and container name. 

10.  In the result of  step 9, we can see a lot of log records coming from coredns – 67%, in my case. Since we are not particularly interested in these log records, we can remove them 

by adding a filter with the following steps:

a.  Click on + Add filter (in the top-left corner). 

b.  Select the kubernetes.container_name.keyword field and the is not operator. 

Finally, enter the coredns value and click on the Save button. 

11.  In my case, the rendered pie chart now looks like this:

 Figure 19.5: Kibana analysis of log records per namespace and container

Here, we can find the log records from our microservices. Most of the log records come 

from the review and recommendation microservices. The product and product-composite 

microservices can be found under the Other section of the pie chart. 

12.  Wrap up this introduction to how to analyze what types of log records we have collected by saving this pie chart in a dashboard. Click on the Save button in the top-right corner. 

[image: Image 292]

632

 Centralized Logging with the EFK Stack

13.  On the page named Save Lens visualization, do the following:

a.  Give it a title; for example, hands-on-visualization. 

b.  Enter a description; for example, This is my first visualization in Kibana. 

c.  In the Add to dashboard box, select New. The page should look like this:

 Figure 19.6: Creating a dashboard in Kibana

d.  Click on the button named Save and go to Dashboard. A dashboard like the fol-

lowing should be presented:

[image: Image 293]

 Chapter 19

633

 Figure 19.7: The new dashboard in Kibana

14.  Click on the Save button in the top-right corner, give the dashboard a name (for example, hands-on-dashboard), and click on the Save button. 

You can now always go back to this dashboard by selecting Dashboard from the ham-

burger menu. 

Kibana contains tons of features for analyzing log records – feel free to try them out on your own. 

For inspiration, see https://www.elastic.co/guide/en/kibana/7.17/dashboard.html. We will now move on and start to locate the actual log records from our microservice. 

634

 Centralized Logging with the EFK Stack

Discovering the log records from microservices

In this section, we will learn how to utilize one of the main features of centralized logging, finding log records from our microservices. We will also learn how to use the trace ID in the log records to find log records from other microservices that belong to the same process; for example, processing an external request sent to the public API. 

Let’s start by creating some log records that we can look up with the help of Kibana. We will use the API to create a product with a unique product ID and then retrieve information about the product. After that, we can try to find the log records that were created when retrieving the product information. 

The creation of log records in the microservices has been updated a bit from the previous chapter so that product-composite and the three core microservices, product, recommendation, and 

review, all write a log record with the log level set to INFO when they begin processing a GET 

request. Let’s go over the source code that’s been added to each microservice:

•  Product composite microservice log creation:

LOG.info("Will get composite product info for product.id={}", 

productId); 

•  Product microservice log creation:

LOG.info("Will get product info for id={}", productId); 

•  Recommendation microservice log creation:

LOG.info("Will get recommendations for product with id={}", 

productId); 

•  Review microservice log creation:

LOG.info("Will get reviews for product with id={}", productId); 

For more details, see the source code in the microservices folder. 

Perform the following steps to use the API to create log records and, after that, use Kibana to look up the log records:

[image: Image 294]

 Chapter 19

635

1.  Get an access token with the following command:

ACCESS_TOKEN=$(curl -k https://writer:secret-writer@minikube.me/

oauth2/token -d grant_type=client_credentials -d scope="product:read 

product:write" -s | jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

2.  As mentioned in the introduction to this section, we will start by creating a product with a unique product ID. Create a minimalistic product (without recommendations and reviews) for "productId" :1234 by executing the following command:

curl -X POST -k https://minikube.me/product-composite \

-H "Content-Type: application/json" \

-H "Authorization: Bearer $ACCESS_TOKEN" \

--data '{"productId":1234,"name":"product name 

1234","weight":1234}' 

Read the product with the following command:

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k 'https://minikube. 

me/product-composite/1234' -s | jq . 

Expect a response similar to the following:

 Figure 19.8: Looking up the product with productId = 1234

[image: Image 295]

636

 Centralized Logging with the EFK Stack

Hopefully, some log records were created by these API calls. Let’s jump over to Kibana 

and find out! 

3.  On the Kibana web page, click Discover from the hamburger menu. You will see something like the following:

 Figure 19.9: Kibana web UI with its major parts

In the top-left corner, we can see that Kibana has found 7,474 log records. The time picker shows that they are from the last 15 minutes. In the histogram, we can see how the log 

records are spread out over time. Below the histogram is a table showing the most recent 

log events that were found by the query. 

4.  If you want to change the time interval, you can use the time picker. Click on its calendar icon to adjust the time interval. 

5.  To get a better view of the content in the log records, add some fields from the log records as columns in the table under the histogram. 

[image: Image 296]

 Chapter 19

637

6.  To be able to see all available fields, click on the down arrow to the right of the Filter by type label, and unselect Hide empty fields. 

7.  Select fields from the Available fields list to the left. Scroll down until the field is found. 

To find fields more easily, use the field named Search field names to filter the list of available fields. 

Hold the cursor over the field, and a + button will appear (a white cross in a blue circle); click on it to add the field as a column in the table. Select the following fields, in order: a.  spring.level, the log level

b.  kubernetes.namespace_name, the Kubernetes namespace

c.  kubernetes.container_name, the name of the container

d.  spring.trace, the trace ID used for distributed tracing

e.  log, the actual log message

To save some space, you can hide the list of fields by clicking on the collapse icon next to the index pattern field (containing the text logstash-*). 

The web page should look something like the following:

 Figure 19.10: Kibana web UI showing log records

[image: Image 297]

638

 Centralized Logging with the EFK Stack

The table now contains information that is of interest regarding the log records! 

8.  To find log records from the call to the GET API, we can ask Kibana to find log records where the log field contains the text info for product.id=1234. This matches the log output 

from the product-composite microservice that was shown previously. 

This can be done by entering log:"info for product.id=1234" in the top-left Search field and clicking on the Update button (this button can also be named Refresh). Expect one log record to be found:

 Figure 19.11: Kibana web UI showing a log record for productId = 1234

9.  Verify that the timestamp is from when you called the GET API, and verify that the name 

of the container that created the log record is product-composite; that is, verify that the 

log record was sent by the product composite microservice. 

10.  Now, we want to see the related log records from the other microservices that participated in the process of returning information about the product with product ID 1234. In other 

words, we want to find log records with the same trace ID as that of the log record we 

found. To do this, place the cursor over the spring.trace field for the log record. Two 

small magnifying glasses will be shown to the right of the field, one with a + sign and one with a - sign. Click on the magnifying glass with the + sign to filter on the trace ID. 

11.  Clear the Search field so that the only search criterion is the filter of the trace field. Then, click on the Update button to see the result. Expect a response like the following:

[image: Image 298]

[image: Image 299]

 Chapter 19

639

 Figure 19.12: Kibana web UI showing log records for a trace ID

We can see some detailed debug messages that clutter the view; let’s get rid of them! 

12.  Place the cursor over a DEBUG value and click on the magnifying glass with the – sign to filter out log records with the log level set to DEBUG. 

13.  We should now be able to see the four expected log records, one for each microservice 

involved in the lookup of product information for the product with product ID 1234:

 Figure 19.13: Kibana web UI showing log records for a trace ID with log level = INFO

[image: Image 300]

640

 Centralized Logging with the EFK Stack

Also, note that the filters that were applied included the trace ID but excluded log records with the log level set to DEBUG. 

Now that we know how to find the expected log records, we are ready to take the next step. This will be to learn how to find unexpected log records (that is, error messages), and how to perform root cause analysis to find the reason for these error messages. 

Performing root cause analysis

One of the most important features of centralized logging is that it makes it possible to analyze errors using log records from many sources and, based on that, perform root cause analysis, finding the actual reason for the error message. 

In this section, we will simulate an error and see how we can find information about it all the way down to the line of source code that caused the error in one of the microservices in the system landscape. To simulate an error, we will reuse the fault parameter we introduced in  Chapter 

 13,   Improving Resilience Using Resilience4j, in the  Adding programmable delays and random errors section. We can use this to force the product microservice to throw an exception. Perform the following steps:

1.  Run the following command to generate a fault in the product microservice while search-

ing for product information on the product with product ID 1234:

curl -H "Authorization: Bearer $ACCESS_TOKEN" -k https://minikube. 

me/product-composite/1234?faultPercent=100 -s | jq . 

Expect the following error in response:

 Figure 19.14: A request that caused an error in the processing

 Chapter 19

641

Now, we must pretend that we have no clue about the reason for this error! Otherwise, 

the root cause analysis wouldn’t be very exciting, right? 

Let’s assume that we work in a support organization and have been asked to investigate 

a problem that just occurred when an end user tried to look up information regarding a 

product with product ID 1234, but got an error message saying 500 Internal Server 

Error in response. 

2.  Before we start to analyze the problem, let’s delete the previous search filters in the Kibana web UI so that we can start from scratch. For each filter we defined in the previous section, click on its close icon (an x sign) to remove it. 

3.  Start by using the time picker to select a time interval that includes the point in time when the problem occurred. In my case, 15 minutes is sufficient. 

4.  Select log records belonging to our namespace, hands-on. This can be done with the 

following steps:

a.  Expand the list of fields to the left by clicking on the hamburger icon (≡) in the top-left corner. 

b.  Click on the kubernetes.namespace_name field in the Selected fields list. A list of the top five namespaces is shown. 

c.  Click on the + sign after the hands-on namespace. 

[image: Image 301]

642

 Centralized Logging with the EFK Stack

5.  Next, search for log records with the log level set to WARN within this time frame where the log message mentions product ID 1234. This can be done by clicking on the spring. 

level field in the list of selected fields. When you click on this field, its most used values will be displayed under it. Filter on the WARN value by clicking on its + sign. Kibana will now show log records within the selected time frame with their log level set to WARN from 

the hands-on namespace, like this:

 Figure 19.15: Kiali web UI showing log records that report errors

We can see a number of error messages related to product ID 1234. The top log entries 

have the same trace ID, so this seems like a trace ID of interest to use for further investigation. The first log entry also contains the text reported by the end user, 500 and Internal 

Server Error, and a Something went wrong… error message, which probably has to do 

with the root cause of the error. 

[image: Image 302]

 Chapter 19

643

6.  Filter on the trace ID of the first log record as we did in the previous section. 

7.  Remove the filter of the WARN log level to be able to see all the records belonging to this trace ID. Expect Kibana to respond with a lot of log records looking something like this:

 Figure 19.16: Kiali web UI – looking for the root cause

8.  Unfortunately, we cannot find any stack trace identifying the root cause by using trace IDs. 

This is due to a limitation in the Fluentd plugin we use for collecting multiline exceptions, fluent-plugin-detect-exceptions. It cannot relate stack traces to the trace ID that was 

used. Instead, we can use a feature in Kibana to find surrounding log records that have 

occurred near in time to a specific log record. 

[image: Image 303]

644

 Centralized Logging with the EFK Stack

9.  Expand the log record that says Error body: {… status":500,"error":"Internal Server Error","message":"Something went wrong..."…} using the arrow to the left of the log record. Detailed information about this specific log record will be revealed:

 Figure 19.17: Kiali web UI – expanding the log record with the root cause log message

10.  There is also a link named View surrounding documents; click on it to see nearby log records. Scroll down to the bottom of the page to find a Load field where the number of records can be specified. Increase the default value from 5 to 10. Expect a web page like 

the following:

[image: Image 304]

 Chapter 19

645

 Figure 19.18: Kiali web UI – the root cause found

11.  The third log record below the expanded log record contains the stack trace for the Something went wrong... error message. This error message looks interesting. It was logged by the 

product microservice just 5 milliseconds before the expanded log record. They seem to 

be related! The stack trace in that log record points to  line 102 in ProductServiceImpl. 

java. Looking at the source code (see microservices/product-service/src/main/java/

se/magnus/microservices/core/product/services/ProductServiceImpl.java),  line 

 102 looks as follows:

throw new RuntimeException("Something went wrong..."); 

646

 Centralized Logging with the EFK Stack

This is the root cause of the error. We did know this in advance, but now we have seen 

how we can navigate to it as well. 

In this case, the problem is quite simple to resolve; simply omit the 

faultPercent parameter in the request to the API. In other cases, resolving 

the root cause can be much harder to figure out! 

12.  This concludes the root cause analysis. Click on the back button in the web browser to 

get back to the main page. 

13.  To be able to reuse the configuration of the search criteria and table layout, its definition can be saved by Kibana. Select, for example, to filter on log records from the hands-on 

namespace and click on the Save link in the top-right menu. Give the search definition a name and click on the Save button. The search definition can be restored when required using the Open link in the menu. 

This concludes this chapter on using the EFK stack for centralized logging. 

Summary

In this chapter, we learned about the importance of collecting log records from microservices in a system landscape into a common centralized database where analysis and searches of the 

stored log records can be performed. We used the EFK stack, Elasticsearch, Fluentd, and Kibana, to collect, process, store, analyze, and search for log records. 

Fluentd was used to collect log records not only from our microservices but also from the various supporting containers in the Kubernetes cluster. Elasticsearch was used as a text search engine. 

Together with Kibana, we saw how easy it is to get an understanding of what types of log records we have collected. 

We also learned how to use Kibana to perform important tasks such as finding related log records from cooperating microservices and how to perform root cause analysis, finding the real reason for an error message. 

[image: Image 305]

 Chapter 19

647

Being able to collect and analyze log records in this way is an important capability in a production environment, but these types of activities are always done afterward, once the log record has been collected. Another important capability is to be able to monitor the current health of the microservices, collecting and visualizing runtime metrics in terms of the use of hardware resources, response times, and so on. We touched on this subject in the previous chapter, and in the next chapter, we will learn more about monitoring microservices. 

Questions

1.  A user searched for ERROR log messages in the hands-on namespace for the last 30 days 

using the search criteria shown in the following screenshot, but none were found. Why? 

 Figure 19.19: Kiali web UI not showing expected log records

[image: Image 306]

[image: Image 307]

648

 Centralized Logging with the EFK Stack

2.  A user has found a log record of interest (shown in the following screenshot). How can the user find related log records from this and other microservices, for example, that come 

from processing an external API request? 

 Figure 19.20: Kiali web UI – how do we find related log records? 

3.  A user has found a log record that seems to indicate the root cause of a problem that was reported by an end user. How can the user find the stack trace that shows where in the 

source code the error occurred? 

 Figure 19.21: Kiali web UI – how do we find the root cause? 

[image: Image 308]

 Chapter 19

649

4.  Why doesn’t the following Fluentd configuration element work? 

<match kubernetes.**hands-on**> 

@type rewrite_tag_filter

<rule> 

key log

pattern ^(.*)$

tag spring-boot.${tag}

</rule> 

</match> 

5.  How can you determine whether Elasticsearch is up and running? 

6.  You suddenly lose connection to Kibana from your web browser. What could have caused 

this problem? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 


20

Monitoring Microservices

In this chapter, we will learn how to use Prometheus and Grafana to collect, monitor, and alert us about performance metrics. As we mentioned in  Chapter 1,  Introduction to Microservices, in a production environment, it is crucial to be able to collect metrics for application performance and hardware resource usage. Monitoring these metrics is required to avoid long response times or outages for API requests and other processes. 

To be able to monitor a system landscape of microservices cost-efficiently and proactively, we must also be able to define alarms that are triggered automatically if the metrics exceed the configured limits. 

In this chapter, we will cover the following topics:

•  Introduction to application monitoring using Prometheus and Grafana

•  Changes in source code to collect application metrics

•  Building and deploying the microservices

•  Monitoring microservices using Grafana dashboards

•  Setting up alarms in Grafana

Technical requirements

For instructions on how to install the tools used in this book and how to access this book’s source code, please refer to the following chapters in this book:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

652

 Monitoring Microservices

The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter19. 

If you want to view the changes that will be applied to the source code in this chapter so that you can use Prometheus and Grafana to monitor and alert on performance metrics, you can compare 

it with the source code for  Chapter 19,  Centralized Logging with the EFK Stack. You can use your favorite diff tool and compare the two folders – that is, $BOOK_HOME/Chapter19 and $BOOK_HOME/

Chapter20. 

Introduction to application monitoring using 

Prometheus and Grafana

In this chapter, we will reuse the deployment of Prometheus and Grafana that we created in 

 Chapter 18,  Using a Service Mesh to Improve Observability and Management, in the  Deploying Istio in a Kubernetes cluster section. Also in that chapter, we were briefly introduced to Prometheus, a popular open source database used to collect and store time series data such as performance 

metrics. There, we learned about Grafana, an open source tool to visualize performance metrics. 

The Grafana deployment comes with a set of Istio-specific dashboards. Kiali can also render 

some performance-related graphs without the use of Grafana. In this chapter, we will get some hands-on experience with these tools. 

The Istio configuration we deployed in  Chapter 18 includes a configuration of Prometheus that automatically collects metrics from Pods in Kubernetes. All we need to do is set up an endpoint in our microservice that produces metrics in a format Prometheus can consume. We also need 

to add annotations to the Kubernetes Pods so that Prometheus can find the address of these 

endpoints. See the  Changes in source code to collect application metrics section of this chapter for details on how to set this up. To demonstrate Grafana’s capabilities to raise alerts, we will also deploy a local mail server. 

The following diagram illustrates the relationship between the runtime components we just 

discussed:

[image: Image 309]

 Chapter 20

653

 Figure 20.1: Adding Prometheus and Grafana to the system landscape

Here, we can see how Prometheus uses the annotations in the definitions of the Kubernetes Pods to be able to collect metrics from our microservices. It then stores these metrics in its database. 

A user can access the web UIs of Kiali and Grafana to monitor these metrics in a web browser. 

The web browser uses the minikube tunnel that was introduced in  Chapter 18, in the  Setting up access to Istio services section, to access Kiali, Grafana, and also a web page from the mail server to see alerts sent out by Grafana. 

Please remember that the configuration that was used to deploy Istio in  Chapter 18 

is only intended for development and testing, not production. For example, perfor-

mance metrics stored in the Prometheus database will not survive the Prometheus 

Pod being restarted! 

The Istio version used in this book, v1.24.2, comes with Grafana v11.2.2 and Prometheus v2.54.1. 

In the next section, we will look at what changes have been applied to the source code to make the microservices produce performance metrics that Prometheus can collect. 

[image: Image 310]

[image: Image 311]

654

 Monitoring Microservices

Changes in source code to collect application metrics

Spring Boot 2 introduced support for producing performance metrics in a Prometheus format 

using the Micrometer library (https://micrometer.io). There’s only one change we need to make to the source code of the microservices: we need to add a dependency on the Micrometer 

library, micrometer-registry-prometheus, to the Gradle build files, build.gradle. The depen-

dency looks like this:

implementation 'io.micrometer:micrometer-registry-prometheus' 

This will make the microservices produce Prometheus metrics on port 4004 using the /actuator/

prometheus path. 

In  Chapter 18, we separated the management port, used by the actuator, from the port serving requests to APIs exposed by a microservice. See the  Observing the service 

 mesh section for a recap, if required. 

To let Prometheus know about these endpoints, each microservice’s Pod is annotated with the 

following code:

annotations:

prometheus.io/scrape: "true" 

prometheus.io/port: "4004" 

prometheus.io/scheme: http

prometheus.io/path: "/actuator/prometheus" 

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button (1) to quickly copy code into your coding environment, or click the Explain button (2) to get the AI assistant to explain a block of code to you. 

[image: Image 312]

[image: Image 313]

 Chapter 20

655

The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one. 

This is added to the values.yaml file of each component’s Helm chart. See kubernetes/

helm/components for more details. 

To make it easier to identify the source of the metrics once they have been collected by Prometheus, they can be tagged with the name of the microservice that produced the metric. This can be 

achieved by adding the following configuration to the common configuration file, config-repo/

application.yml:

management.metrics.tags.application: ${spring.application.name}

This will result in each metric that’s produced having an extra label named application. It 

will contain the value of the standard Spring property for the name of a microservice, spring. 

application.name. 

Finally, to ensure that we get metrics from the configured Prometheus endpoints, a test must be added to test-em-all.bash. It looks like this:

if [[ $USE_K8S == "true" ]]

then

 # Verify access to Prometheus formatted metrics

echo "Prometheus metrics tests" 

assertCurl 200 "curl -ks https://health.minikube.me/actuator/prometheus" 

fi

Note that this test only runs if the test script is run against Kubernetes. 

These are all the changes that are required to prepare the microservices to produce performance metrics and make Prometheus aware of what endpoints to use to start collecting them. In the 

next section, we will build and deploy the microservices. 

656

 Monitoring Microservices

Building and deploying the microservices

Building, deploying, and verifying the deployment using the test-em-all.bash test script is done in the same way it was done in  Chapter 19,  Centralized Logging with the EFK Stack, in the  Building and deploying the microservices section. Follow these steps:

1.  Build the Docker images from the source with the following commands:

cd $BOOK_HOME/Chapter20

eval $(minikube docker-env -u)

./gradlew build

eval $(minikube docker-env)

docker compose build

The eval $(minikube docker-env -u) command ensures that the ./

gradlew build command uses the host’s Docker engine and not the Docker 

engine in the Minikube instance. The build command uses Docker to run 

test containers. 

2.  Recreate the namespace, hands-on, and set it as the default namespace:

kubectl delete namespace hands-on

kubectl apply -f kubernetes/hands-on-namespace.yml

kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

3.  Resolve the Helm chart dependencies. 

First, we must update the dependencies in the components folder:

for f in kubernetes/helm/components/*; do helm dep up $f; done

Next, we must update the dependencies in the environments folder:

for f in kubernetes/helm/environments/*; do helm dep up $f; done

4.  Deploy the system landscape using Helm and wait for all deployments to complete:

helm install hands-on-dev-env \

kubernetes/helm/environments/dev-env \

-n hands-on --wait

[image: Image 314]

 Chapter 20

657

5.  Start the Minikube tunnel, if it’s not already running, as follows (see the  Setting up access to Istio services section, in  Chapter 18, for a recap if you need one): minikube tunnel

Remember that this command requires that your user has sudo privileges 

and that you enter your password during startup. It takes a couple of seconds 

for the command to ask for the password, so it is easy to miss! 

6.  Run the normal tests to verify the deployment:

./test-em-all.bash

Expect the output to be similar to what we’ve seen in the previous chapters:

 Figure 20.2: All tests are OK

With the microservices deployed, we can move on and start monitoring our microservices using Grafana! 

Monitoring microservices using Grafana dashboards

As we already mentioned in the introduction, Kiali provides some very useful dashboards out 

of the box. In general, they focus on application-level performance metrics such as requests per second, response times, and fault percentages to process requests. As we will see shortly, they are very useful at the application level. But if we want to understand the usage of the underlying hardware resources, we need more detailed metrics, such as Java VM-related ones. 

Grafana has an active community that, among other things, shares reusable dashboards. We will try out a dashboard from the community that’s tailored to get a lot of valuable Java VM-related metrics from a Spring Boot application, such as our microservices. Finally, we will learn how to build our own dashboards in Grafana. But let’s start by exploring the dashboards that come out of the box in Kiali and Grafana. 

658

 Monitoring Microservices

Before we do that, we need to make two preparations:

1.  Install a local mail server for tests and configure Grafana to be able to send alert emails to it. We will use the mail server in the  Setting up alarms in Grafana section. 

2.  To be able to monitor some metrics, we will start the load test tool we used in previous chapters. 

Installing a local mail server for tests

In this section, we will set up a local test mail server and configure Grafana to send alert emails to the mail server. 

Grafana can send emails to any SMTP mail server, but to keep the tests local, we will deploy a test mail server named maildev. Go through the following steps:

1.  Install the test mail server in Istio’s namespace with the following commands:

kubectl -n istio-system create deployment mail-server --image 

maildev/maildev:2.0.5

kubectl -n istio-system expose deployment mail-server 

--port=1080,1025 --type=ClusterIP

kubectl -n istio-system wait --timeout=60s --for=condition=ready pod 

-l app=mail-server

2.  To make the mail server’s web UI available from the outside of Minikube, a set of Gateway, VirtualService, and DestinationRule manifest files has been added for the mail server 

in Istio’s Helm chart. See the template at kubernetes/helm/environments/istio-system/

templates/expose-mail.yml for more details. Run the following helm upgrade command 

to apply the new manifest files:

helm upgrade istio-hands-on-addons kubernetes/helm/environments/

istio-system -n istio-system

3.  Verify that the test mail server is up and running by visiting its web page at https://mail. 

minikube.me. Expect a web page such as the following to be rendered:

[image: Image 315]

 Chapter 20

659

 Figure 20.3: Mail server web page

For more information on the mail server, see https://hub.docker.com/r/

maildev/maildev. 

With the mail server installed, we can configure Grafana to send emails to the server for alerts. 

Configuring Grafana

Configuring Grafana can be done by setting up environment variables in its Kubernetes Deployment object. To set Grafana in development mode, enable the alert system, and configure Grafana to send emails to the test mail server, run the following command:

kubectl -n istio-system set env deployment/grafana \

GF_DEFAULT_APP_MODE=development \

GF_AUTH_BASIC_ENABLED=false \

GF_AUTH_ANONYMOUS_ENABLED=true \

GF_AUTH_ANONYMOUS_ORG_ROLE=Admin \

GF_FEATURE_TOGGLES_ENABLE=alertingSimplifiedRouting,\

alertingQueryAndExpressionsStepMode \

GF_SMTP_ENABLED=true \

GF_SMTP_SKIP_VERIFY=true \

GF_SMTP_HOST=mail-server:1025 \

GF_SMTP_FROM_ADDRESS=grafana@minikube.me

660

 Monitoring Microservices

The first four variables are used to configure Grafana for use in a development environment, where no login is required and the admin role is assigned to anonymous users. The GF_FEATURE_

TOGGLES_ENABLE variable is used to configure the alerting system, the GF_SMTP_ENABLED variable is used to allow Grafana to send emails, the GF_SMTP_SKIP_VERIFY variable is used to tell Grafana to skip SSL checks with the test mail server, the GF_SMTP_HOST variable points to our mail server, and, finally, the GF_SMTP_FROM_ADDRESS variable specifies what “from” address to use in the mail. 

Kubernetes will start a new Pod for Grafana that contains the new configuration. Wait for the new Pod to be ready by running the following command:

kubectl -n istio-system wait --timeout=60s --for=condition=ready pod -l 

app.kubernetes.io/name=grafana

Now that Grafana has been configured, we will start the load test tool in the next section. 

Starting up the load test

So that we have something to monitor, let’s start up the load test using Siege, which we used in previous chapters. Run the following commands to get an access token and then start up the load test, using the access token for authorization:

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/token 

-d grant_type=client_credentials -d scope="product:read product:write" -ks 

| jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

siege https://minikube.me/product-composite/1 -H "Authorization: Bearer 

$ACCESS_TOKEN" -c1 -d1 -v

Remember that an access token is only valid for one hour – after that, you need to 

get a new one. 

Now, we are ready to learn about the dashboards available in Kiali and Grafana and explore the Grafana dashboards that come with Istio. 

Using Kiali’s built-in dashboards

In  Chapter 18, we learned about Kiali, but we skipped the part where Kiali shows performance metrics. Now, it’s time to get back to that subject! 

[image: Image 316]

 Chapter 20

661

Execute the following steps to learn about Kiali’s built-in dashboards:

Open the Kiali web UI in a web browser by going to https://kiali.minikube.me. Log in with admin/admin if required. 

1.  To see our deployments, go to the workloads page by clicking on the Workloads tab from the menu on the left-hand side. 

2.  Select the product-composite deployment by clicking on it. 

3.  On the product-composite page, select the Outbound Metrics tab. You will see a page similar to the following:

 Figure 20.4: Kiali outbound metrics

Kiali will visualize some overall performance graphs that are of great value, and there are 

more graphs to explore. Feel free to try them out on your own! 

4.  However, far more detailed performance metrics are available in Grafana. Open the Grafa-

na web UI in a web browser by going to https://grafana.minikube.me. 

5.  You will be presented with a welcome page with the text Welcome to Grafana. To the left, you will see a menu. If you don’t see this menu, click on the hamburger menu with 

≡ Home over the welcome text. Click on Dashboards in the menu to get an overview of the available dashboards. You will see a folder named istio that contains the dashboards that were installed when Grafana was deployed alongside Istio in  Chapter 18.  Click on this folder to expand it and select the dashboard named Istio Mesh Dashboard. 

[image: Image 317]

662

 Monitoring Microservices

To save some space in the UI, hide the left-hand side menu by clicking on 

its  Undock menu icon in the top-right corner of the menu. 

You’ll see a web page similar to the following:

 Figure 20.5: Grafana showing Istio Mesh Dashboard

This dashboard gives a very good overview of metrics for the microservices involved in 

the service mesh, such as request rates, response times, and success rates. 

6.  There are a lot of detailed performance metrics available. Go back to the Istio folder (click on istio in the top menu) and select the dashboard named Istio Workload Dashboard. 

Select the hands-on namespace and the product-composite workload. Finally, expand the Outbound Services tab. Collapse the top sections named General and Inbound Workloads to be able to see the section named Outbound Workloads. The web page should look like this:

[image: Image 318]

 Chapter 20

663

 Figure 20.6: Grafana with a lot of metrics for a microservice

This page displays metrics such as response codes, duration, and bytes sent per destination. 

Feel free to look through the remaining dashboards provided by Istio! 

As we’ve already mentioned, the Istio dashboards give a very good overview at an application level. However, there is also a need to monitor the metrics for hardware usage per microservice. 

In the next section, we will learn about how existing dashboards can be imported – specifically, a dashboard showing Java VM metrics for a Spring Boot-based application. 

Importing existing Grafana dashboards

As we’ve already mentioned, Grafana has an active community that shares reusable dashboards. 

They can be explored at https://grafana.com/grafana/dashboards. We will try out a dashboard called JVM (Micrometer) - Kubernetes - Prometheus by Istio that’s tailored to get a lot of valuable JVM-related metrics from Spring Boot applications in a Kubernetes environment. This dashboard can be found at https://grafana.com/grafana/dashboards/11955. Perform the following steps to import this dashboard:

[image: Image 319]

664

 Monitoring Microservices

1.  Import the JVM (Micrometer) dashboard:

a.  On the Grafana web page, click on Dashboards in the menu to the left. Next, click on the blue New button and select Import from the menu that pops up. 

b.  On the Import page, enter the dashboard ID 11955 into the Find and import 

dashboards… field and click on the blue Load button next to it. 

c.  On the Import page that’s displayed, click on the Prometheus drop-down menu and select the Prometheus data source. 

d.  Now, by clicking on the Import button, the JVM (Micrometer) dashboard will be imported and rendered. 

2.  Inspect the JVM (Micrometer) dashboard:

a.  To get a good view of the metrics, use the time picker (in the top-right corner) to 

select Last 5 minutes, and select a refresh rate of 5s in the dropdown to the right. 

b.  In the Application drop-down menu, which can be found at the top left of the 

page, select the product-composite microservice. 

c.  Since we are running a load test using Siege in the background, we will see a lot 

of metrics. The following is a sample screenshot:

 Figure 20.7: Grafana showing Java VM metrics

[image: Image 320]

 Chapter 20

665

In this dashboard, we can find all types of relevant Java VM metrics for, among other things, CPU, memory, heap, and I/O usage, as well as HTTP-related metrics such as requests/

second, average duration, and error rates. Feel free to explore these metrics on your own! 

Being able to import existing dashboards is of great value when we want to get started quickly. 

However, what’s even more important is to know how to create our own dashboards. We will 

learn about this in the next section. 

Developing your own Grafana dashboards

Getting started with developing Grafana dashboards is straightforward. The important thing for us to understand is what metrics Prometheus makes available for us. 

In this section, we will learn how to examine the available metrics. Based on these, we will create a dashboard that can be used to monitor some of the more interesting metrics. 

Examining Prometheus metrics

Earlier, in the  Changes in source code to collect application metrics section, we configured Prometheus to collect metrics from our microservices. We can make a call to the same endpoint and see what metrics Prometheus collects. Run the following command:

curl https://health.minikube.me/actuator/prometheus -ks

Expect a lot of output from the command, as shown in the following example:

 Figure 20.8: Prometheus metrics

Among all of the metrics that are reported, there are two very interesting ones:

•  resilience4j_retry_calls: Resilience4j reports on how the retry mechanism operates. 

It reports four different values for successful and failed requests, combined with and 

without retries. 

•  resilience4j_circuitbreaker_state: Resilience4j reports on the state of the circuit 

breaker. 

[image: Image 321]

666

 Monitoring Microservices

Note that the metrics have a label named application, which contains the name of the micros-

ervice. This field comes from when we configured the management.metrics.tags.application 

property, which we did in the  Changes in source code to collect application metrics section. 

These metrics are interesting to monitor. None of the dashboards we have used so far use metrics from Resilience4j. In the next section, we will create a dashboard for these metrics. 

Creating the dashboard

In this section, we will learn how to create a dashboard that visualizes the Resilience4j metrics we described in the previous section. 

We will set up the dashboard in four stages:

•  Creating an empty dashboard. 

•  Creating a new panel for the circuit breaker metric. 

•  Creating a new panel for the retry metric. 

•  Arranging the panels. 

Creating an empty dashboard

Perform the following steps to create an empty dashboard:

1.  On the Grafana web page, click on Dashboards in the menu to the left. Next, click on the blue New button and select New dashboard from the menu that pops up. A web page named New dashboard will be displayed:

 Figure 20.9: Creating a new dashboard in Grafana

2.  Click on the Dashboard settings button (it has a gear as its icon) in the menu shown in the preceding screenshot. Then, follow these steps:

a.  Specify the name of the dashboard in the Title field and set the value to Hands-on Dashboard. 

b.  Click on the Close button in the top right. 

3.  Click on the time picker and select Last 5 minutes as the range. 

4.  Click on the refresh rate icon to the right and specify 5s as the refresh rate. 

[image: Image 322]

 Chapter 20

667

Creating a new panel for the circuit breaker metric

Perform the following steps to create a new panel for the circuit breaker metric:

1.  Click on the blue + Add visualization button and select Prometheus as the data source. 

A page will be displayed where the new panel can be configured. 

2.  On the tab to the right, in the Panel options section, set Title to Circuit Breaker. 

3.  Also on the tab to the right, in the Tooltip section, set Tooltip mode to All. 

4.  In the bottom-left Query panel, under the letter A, specify the query as the name of the circuit breaker metric for the closed state, as follows:

a.  Set Metric to resilience4j_circuitbreaker_state. 

b.  Set Label to state and specify that it shall be equal to closed. 

c.  Verify that the query at the bottom of the A panel is set to resilience4j_

circuitbreaker_state{state="closed"}. 

5.  Expand the Options tab and, in the Legend drop-down box, select Custom. In the Legend field, specify {{state}} as the value. This will create a legend in the panel where the names of the different states are displayed. 

The filled-in values should look as follows:

 Figure 20.10: Specifying circuit breaker metrics in Grafana

668

 Monitoring Microservices

6.  Click on the + Add query button at the bottom of the page to enter a new query under B 

for the open state. Repeat the steps for query A, but set the state’s value to open. Verify that the Raw query field is set to resilience4j_circuitbreaker_state{state="open"} 

and set the Legend field to {{state}}. 

7.  Click on the + Add query button a final time to enter a new query under C for the half_

open state. Set the state’s value to half_open, verify that the Raw query field is set to resilience4j_circuitbreaker_state{state="half_open"}, and set the Legend field to {{state}}. 

8.  Click on the blue Apply button in the top right to get back to the dashboard. 

Creating a new panel for the retry metric

Here, we will repeat the same procedure that we went through to add a panel for the preceding circuit breaker metric, but instead, we will specify the values for the retry metrics:

1.  Create a new panel by clicking on the Add button in the top-level menu, and select Visualization from the drop-down menu. 

2.  Specify Retry as the panel’s Title value, and set Tooltip mode to All in the same way as you did for the previous panel. 

3.  Set Metric to resilience4j_retry_calls_total. 

4.  Since the retry metric is a counter, its value will only go up. An ever-increasing metric is rather uninteresting to monitor. Therefore, a rate function is used to convert the retry metric into a rate-per-second metric. The time window specified – that is, 30s – is used 

by the rate function to calculate the average values of the rate. To apply the rate function, do the following:

a.  Click on the + Operations button. 

b.  Click on Range functions and select the Rate function. 

c.  Set Range to 30s. 

5.  Verify that the query at the bottom of the A panel is set to rate(resilience4j_retry_

calls_total[30s]). 

6.  Expand the Options tab and, in the Legend drop-down box, select Custom. In the Legend field, specify {{kind}} as the value. This will create a legend in the panel where the names of the different kinds of retries are displayed. 

7.  Note that Grafana immediately starts to render a graph in the panel editor based on the 

specified values. 

[image: Image 323]

 Chapter 20

669

8.  Click on the blue Apply button in the top right to get back to the dashboard. 

Arranging the panels

Perform the following steps to arrange the panels on the dashboard:

1.  You can resize a panel by dragging its lower right-hand corner to the preferred size. 

2.  You can also move a panel by dragging its header to the desired position. 

3.  The following is an example layout of the two panels:

 Figure 20.11: Moving and resizing a panel in Grafana

Since this screenshot was taken with Siege running in the background, the Retry panel reports successful_without_retry metrics, while the Circuit Breaker panel reports that closed equals 1 and open and half_open equal 0, meaning that it is closed and operating normally (something that is about to change in the next section). 

670

 Monitoring Microservices

4.  Finally, click the Save dashboard button (a diskette icon) at the top of the page. A Save dashboard dialog will appear; ensure that its name is Hands-on Dashboard and hit the Save button. 

If you get stuck when configuring the dashboard, take a look at the end of the 

 Trying out the circuit breaker alarm section. An easy solution is described there. 

With the dashboard created, we are ready to try it out. In the next section, we will try out both metrics. 

Trying out the new dashboard

Before we start testing the new dashboard, we must stop the load test tool, Siege. To do this, go to the command window where Siege is running and press  Ctrl +  C to stop it. 

Let’s start by testing how to monitor the circuit breaker. Afterward, we will try out the retry metrics. 

Testing the circuit breaker metrics

If we force the circuit breaker to open, its state will change from closed to open, and then eventually to the half-open state. This should be reported in the circuit breaker panel. 

Open the circuit, just like we did in  Chapter 13,  Improving Resilience Using Resilience4j, in the  Trying out the circuit breaker and retry mechanism section – that is, make some requests to the API in a row, all of which will fail. Run the following commands:

 Chapter 20

671

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/token 

-d grant_type=client_credentials -d scope="product:read product:write" -ks 

| jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

for ((n=0; n<4; n++)); do curl -o /dev/null -skL -w "%{http_code}\n" 

https://minikube.me/product-composite/1?delay=3 -H "Authorization: Bearer 

$ACCESS_TOKEN" -s; done

We can expect three 500 responses and a final 200 response, indicating three errors in a row, which is what it takes to open the circuit breaker. The last response, 200, indicates a fail-fast response from the product-composite microservice when it detects that the circuit is open. 

On some rare occasions, I have noticed that the circuit breaker metrics are not re-

ported in Grafana directly after the dashboard is created. If they don’t show up after 

a minute, simply rerun the preceding command to reopen the circuit breaker. 

Expect the value for the closed state to drop to 0 and the open state to take a value of 1, meaning that the circuit is now open. After 10 seconds, the circuit will turn to the half-open state, indicated by the half-open metrics having a value of 1 and open being set to 0. This means that the circuit breaker is ready to test some requests to see whether the problem that opened the circuit is gone. 

Close the circuit breaker again by issuing three successful requests to the API with the following command:

for ((n=0; n<4; n++)); do curl -o /dev/null -skL -w "%{http_code}\n" 

https://minikube.me/product-composite/1?delay=0 -H "Authorization: Bearer 

$ACCESS_TOKEN" -s; done

We will get only 200 responses. Note that the circuit breaker metric goes back to normal again, meaning that the closed metric goes back to 1. 

[image: Image 324]

672

 Monitoring Microservices

After this test, the Grafana dashboard should look as follows:

 Figure 20.12: Retry and Circuit Breaker in action, as viewed in Grafana

From the preceding screenshot, we can see that the retry mechanism also reports metrics that succeeded and failed. When the circuit was opened, all requests failed without retries. When the circuit was closed, all requests were successful without any retries. This is as expected. 

Now that we have seen the circuit breaker metrics in action, let’s see the retry metrics in action! 

If you want to check the state of the circuit breaker, you can do so with the following 

command:

curl -ks https://health.minikube.me/actuator/health | jq -r 

.components.circuitBreakers.details.product.details.state

It should report CLOSED, OPEN, or HALF_OPEN, depending on its state. 

[image: Image 325]

 Chapter 20

673

Testing the retry metrics

To trigger the retry mechanism, we will use the faultPercentage parameter we used in previ-

ous chapters. To avoid triggering the circuit breaker, we need to use relatively low values for the parameter. Run the following command:

while true; do curl -o /dev/null -s -L -w "%{http_code}\n" -H 

"Authorization: Bearer $ACCESS_TOKEN" -k https://minikube.me/product-

composite/1?faultPercent=10; sleep 3; done

This command will call the API once every third second. It specifies that 10% of the requests should fail so that the retry mechanism will kick in and retry the failed requests. 

After a few minutes, the dashboard should report various metrics:

 Figure 20.13: Result of retry tests viewed in Grafana

674

 Monitoring Microservices

In the preceding screenshot, we can see that most of the requests have been executed successfully, without any retries. Approximately 10% of the requests have been retried by the retry mechanism and successfully executed after the retry. 

Before we leave this section on creating dashboards, we will learn how we can export and import dashboards. 

Exporting and importing Grafana dashboards

Once a dashboard has been created, we typically want to take two actions:

•  Save the definition of the dashboard as source code in a Git repo

•  Move the dashboard to other Grafana instances – for example, those used in Q/A and 

production environments

To perform these actions, we can use Grafana’s API for exporting and importing dashboards. Since we only have one Grafana instance, we will perform the following steps:

1.  Export the dashboard as a JSON file. 

2.  Delete the dashboard. 

3.  Import the dashboard from the JSON file. 

Before we perform these steps, we need to understand the two different types of IDs that a dashboard has:

•  id, an auto-incremented identifier that is unique only within a Grafana instance. 

•  uid, a unique identifier that can be used in multiple Grafana instances. It is part of the URL when accessing dashboards, meaning that links to a dashboard will stay the same, 

so long as the uid value of a dashboard remains the same. When a dashboard is created, 

a random uid value is created by Grafana. 

When we import a dashboard, Grafana will try to update it if the id field is set. To be able to test importing a dashboard in a Grafana instance that doesn’t have the dashboard already installed, we need to set the id field to null. 

Perform the following steps to export and then import your dashboard:

1.  Identify the uid value of your dashboard. 

The uid value can be found in the URL in the web browser where the dashboard is shown. 

It will look like this:

https://grafana.minikube.me/d/YMcDoBg7k/hands-on-dashboard

 Chapter 20

675

2.  The uid value in the preceding URL is YMcDoBg7k. In a Terminal window, create a variable with its value. In my case, it will be ID=YMcDoBg7k. 

3.  Export the dashboard to a JSON file with the following command:

curl -sk https://grafana.minikube.me/api/dashboards/uid/$ID | jq 

'.dashboard.id=null' > "Hands-on-Dashboard.json" 

The curl command exports the dashboard in JSON format. The jq statement sets the id 

field to null, and the output from the jq command is written to a file named Hands-on-

Dashboard.json. 

4.  Delete the dashboard. 

5.  In your web browser, select Dashboards from the top menu. Identify Hands-on Dashboard in the list of dashboards and select it by clicking on the checkbox in front of it. If the dashboard isn’t in the list, refresh your web browser. A red Delete button will appear; click on it, enter Delete as asked, and then click on the new Delete button that is shown in the confirmation dialog box that pops up. 

6.  Recreate the dashboard by importing it from the JSON file. To do so, run the following 

command:

curl -i -XPOST -H 'Accept: application/json' -H 'Content-Type: 

application/json' -k \

'https://grafana.minikube.me/api/dashboards/db' \

-d @Hands-on-Dashboard.json

Note that the URL used to access the dashboard is still valid – in my case,  https://grafana. 

minikube.me/d/YMcDoBg7k/hands-on-dashboard. 

7.  Verify that the imported dashboard reports metrics in the same way as before it was 

deleted and re-imported. Since the request loop that was started in the  Testing the retry metrics section is still running, the same metrics from that section should be reported. 

For more information regarding Grafana’s APIs, see https://grafana.com/docs/

grafana/v11.2/developers/http_api/dashboard/#get-dashboard-by-uid 

Before proceeding to the next section, remember to stop the request loop that we started for the retry test by pressing  Ctrl +  C in the Terminal window where the request loop executes! 

In the next section, we will learn how to set up alarms in Grafana based on these metrics. 

676

 Monitoring Microservices

Setting up alarms in Grafana

Being able to monitor the circuit breaker and retry metrics is of great value, but even more important is the capability to define automated alarms on these metrics. Automated alarms relieve us from monitoring the metrics manually. 

Grafana comes with built-in support to define alarms and send notifications to a number of 

channels. In this section, we will define alerts on the circuit breaker and configure Grafana to send emails to the test mail server when alerts are raised. The local test mail server was installed earlier in the  Installing a local mail server for tests section. 

For other types of channels supported by the version of Grafana used in this chap-

ter, see https://grafana.com/docs/grafana/v11.2/alerting/configure-

notifications/manage-contact-points/#list-of-supported-integrations. 

In the next section, we will configure a mail-based contact point that will be used by the alert we set up afterwards. 

Configuring a mail-based contact point

Grafana comes with a pre-defined mail-based contact point. To configure and test it, perform the following steps:

1.  On the Grafana web page, click on the hamburger menu icon, ≡, to open the menu and select Contact points. 

2.  Click on the Edit button for the grafana-default-email contact point. 

3.  Enter an email address of your choice. Emails will only be sent to the local test mail server, independent of the email address that’s specified. 

[image: Image 326]

 Chapter 20

677

4.  The configuration for the contact point should look as follows:

 Figure 20.14: Setting up an email-based contact point

[image: Image 327]

678

 Monitoring Microservices

5.  Click on the Test button to send a test mail. 

6.  A Test contact point modal panel will be displayed. Click the Send test notification button to send the mail, then close the modal panel. 

7.  Click on the Save contact point button. 

8.  Check the test mail server’s web page to ensure that we have received a test email. You 

should receive the following response:

 Figure 20.15: Verifying the test mail on the mail server’s web page

With a contact point in place, we will modify the default notification policies before we define an alert on the circuit breaker. 

Configuring default notification policies

In a development environment, you want alerts to be sent as soon as possible to verify that everything works as expected. The default notification policies within Grafana are configured for a typical production environment, where you typically want to be a bit slower with sending 

alerts. This is to avoid unnecessary false alerts being sent out for temporary glitches that will be resolved after a short while. 

 Chapter 20

679

To configure the default notification policies, perform the following steps:

1.  On the Grafana web page, click on the hamburger menu icon, ≡, to open the menu and 

select Notification policies under the Alerting submenu. 

2.  Edit a Default policy value by clicking the three dots, …, on the right-hand side and select the Edit menu option. 

3.  Expand the Timing options section and set Group wait to 1s and Group interval to 5s. 

4.  Click the blue Update default policy button to save the changes. 

With the default policies updated, we are ready to define an alert on the circuit breaker. 

Setting up an alarm on the circuit breaker

To create an alarm on the circuit breaker, we need to create the alert and then add an alert panel to the dashboard, where we can see the current state of the alert. 

An error message complaining about an incorrectly configured Loki-based data 

source will be displayed when setting up the alert. Either ignore the error message 

or delete the data source by performing these steps:

1.  On the Grafana web page, click on the hamburger menu icon, ≡, to open the 

menu and select Data sources. 

2.  Click on the Loki-based data source. 

3.  Scroll to the bottom of the page and click the red Delete button. 

4.  Click on the red Delete button shown in the confirmation dialog box once 

more. 

Also, if a warning message saying Unauthorized is displayed, it can safely be ignored. 

It will disappear after a few seconds. 

Perform the following steps to create an alert for the circuit breaker:

1.  On the Grafana web page, click on the hamburger menu icon, ≡, to open the menu and 

select Alert rules under the Alerting submenu. 

2.  Click on the blue New alert rule button to open the New alert rule dialog. 

3.  In the 1. Enter alert rule name section, enter circuit_breaker_rule. 

680

 Monitoring Microservices

4.  In the 2. Define query and alert condition section, set the following values:

a.  Select Prometheus as the data source. 

b.  In the Metric field, enter resilience4j_circuitbreaker_state. 

c.  In the Label filters field, set state as the label and closed as its value. 

d.  Verify that the full Metric value is set to resilience4j_circuitbreaker_

state{state="closed"}. 

e.  In the Expressions section, set Function to Min and Threshold to IS BELOW 0.5. 

5.  In the 3. Set evaluation behavior section, set the following values:

a.  Set Folder to a new folder named rules_folder by clicking on the + New folder 

button, entering the new name, and clicking the Create button. 

b.  Set Evaluation group to a new group named evaluation_group by clicking on 

the + New evaluation group button, entering the new name, setting Evaluation 

interval to 10s, and clicking the Create button. 

c.  Set Pending period to None. 

6.  In the 4. Configure labels and notifications section, for Contact point, select the grafana-default-email contact. 

7.  Save the alert rule by clicking the blue Save rule and exit button in the top-right menu. 

The alarm rule should look as follows (to reduce the size, some parts of the settings have been removed from this screenshot):

[image: Image 328]

 Chapter 20

681

 Figure 20.16: Setting up an alarm rule in Grafana, part 1

[image: Image 329]

682

 Monitoring Microservices

Now, we need to perform the following steps to add a panel that shows the current state of the alarm:

1.  On the Grafana web page, click on the hamburger menu icon, ≡, to open the menu and 

click Dashboards. 

2.  Click on Hands-on Dashboard to open it. 

3.  Create a new panel by clicking on the Add button in the top-level menu, and select Visualization from the drop-down menu. 

4.  In the top right, change the visualization type from Time series to Alert list. 

5.  Specify Circuit Breaker alert status as the panel’s Title. 

6.  Select Grafana under Datasource. 

7.  Select rules_folder under Folder. 

8.  Select all options under Alert state filter. 

The settings should look as follows:

 Figure 20.17: Setting up an alarm in Grafana, part 2

9.  Click on the blue Apply button in the top right. 

[image: Image 330]

 Chapter 20

683

10.  Rearrange the panel to suit your needs. 

11.  Finally, click the Save dashboard button (a diskette icon) at the top of the page. A Save dashboard dialog will appear; add a note, such as Added an alert list, and hit the 

Save button. 

Here is a sample layout with the alarm list added:

 Figure 20.18: Setting up a layout in Grafana with Retry, Circuit Breaker, and alert panels We can see that Circuit Breaker alert status is set to Normal, meaning no alert is fired. Now, it’s time to try out the alarm! 

684

 Monitoring Microservices

Trying out the circuit breaker alarm

Here, we will repeat the tests that we ran in the  Testing the circuit breaker metrics section, but this time, we expect alarms to be raised and emails to be sent as well! Let’s get started:

1.  Acquire a new access token, if required (valid for one hour):

ACCESS_TOKEN=$(curl https://writer:secret-writer@minikube.me/oauth2/

token -d grant_type=client_credentials -d scope="product:read 

product:write" -ks | jq .access_token -r)

echo ACCESS_TOKEN=$ACCESS_TOKEN

2.  Open the circuit breaker, as we did previously:

for ((n=0; n<4; n++)); do curl -o /dev/null -skL -w "%{http_code}\n" 

https://minikube.me/product-composite/1?delay=3 -H "Authorization: 

Bearer $ACCESS_TOKEN" -s; done

The dashboard should report the circuit as open, as it did previously. After a few seconds, 

an alarm should be raised, and an email should also be sent. Expect the dashboard to look 

like this (you might need to refresh your web page for the alert to appear):

[image: Image 331]

 Chapter 20

685

 Figure 20.19: Alarm raised in Grafana

[image: Image 332]

686

 Monitoring Microservices

Take note of the alarm icon in the header of the circuit breaker panel (a red broken heart). 

The red line marks the time of the alert event and indicates that an alert has been added 

to the alert list. 

3.  In the test mail server, you should see an email, as shown in the following screenshot:

 Figure 20.20: Alarm email

4.  Great! We got alarms, just like we expected! Now, close the circuit with the following 

command, simulating that the problem is gone:

for ((n=0; n<4; n++)); do curl -o /dev/null -skL -w "%{http_code}\n" 

https://minikube.me/product-composite/1?delay=0 -H "Authorization: 

Bearer $ACCESS_TOKEN" -s; done

The closed metric should go back to normal – that is, 1 – and the alert should turn green again. 

[image: Image 333]

 Chapter 20

687

The dashboard should now look like this:

 Figure 20.21: Error resolved, as reported in Grafana

Note that the alarm icon in the header of the circuit breaker panel is green again; the green line marks the time of the OK event and that it has been added to the alert list. 

[image: Image 334]

688

 Monitoring Microservices

5.  In the test mail server, you should see an email, as shown in the following screenshot:

 Figure 20.22: Error resolved, as reported in an email

With that, we’ve learned how to monitor microservices using Prometheus and Grafana. 

Summary

In this chapter, we learned how to use Prometheus and Grafana to collect and monitor alerts on performance metrics. 

We saw that, to collect performance metrics, we can use Prometheus in a Kubernetes environment. 

We then learned how Prometheus can automatically collect metrics from a Pod when a few Pro-

metheus annotations are added to the Pod’s definition. To produce metrics in our microservices, we used Micrometer. 

 Chapter 20

689

After, we learned how to monitor the collected metrics using dashboards in both Kiali and Grafana, which comes with the installation of Istio. We also experienced how to consume dashboards shared by the Grafana community and learned how to develop our own dashboards, where we used metrics from Resilience4j to monitor the usage of its circuit breaker and retry mechanisms. Using the Grafana API, we can export created dashboards and import them into other Grafana instances. 

Finally, we learned how to define alerts on metrics in Grafana and how to use Grafana to send out alert notifications. We used a local test mail server to receive alert notifications from Grafana as emails. 

The next two chapters should already be familiar to you as they cover how to install the tools used in this book on a Mac or Windows PC. So, head over to the last chapter in this book, which will introduce how we can compile our Java-based microservices into binary executable files 

using the brand-new Spring Native project, still in beta at the time of writing. This will enable the microservices to start up in a fraction of a second, though it should be noted that increased complexity and time are involved when it comes to building them. 

Questions

1.  What changes did we need to make to the source code in the microservices to make them 

produce metrics that are consumed by Prometheus? 

2.  What is the management.metrics.tags.application config parameter used for? 

3.  If you want to analyze a support case regarding high CPU consumption, which of the 

dashboards in this chapter would you start with? 

4.  If you want to analyze a support case regarding slow API responses, which of the dash-

boards in this chapter would you start with? 

5.  What is the problem with counter-based metrics such as Resilience4j’s retry metrics, and what can be done so that we can monitor them in a useful way? 

6.  What is going on here? 

[image: Image 335]

690

 Monitoring Microservices

 Figure 20.23: What is going on here? 

If you are reading this with screenshots rendered in grayscale, it might be hard to figure 

out what the metrics say. So, here’s some help:

[image: Image 336]

 Chapter 20

691

a.  The state transitions reported by the circuit breaker are, in order:

1. half_open → open. 

2. open → half_open. 

3. half_open → closed. 

b.  The retry mechanism reports the following:

1.  An initial burst of requests, where most of them are reported as failed_

without_retry and a few are reported as successful_without_retry

2.  A second burst of requests, all reported as successful_without_retry

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 


21

Installation Instructions for 

macOS

In this chapter, we will learn how to set up the tools required to run the commands described in this book on macOS. We will also learn how to gain access to this book’s source code. 

The following topics will be covered in this chapter:

•  Technical requirements

•  Installing the necessary tools

•  Accessing the source code

If you are using a Windows PC, you should follow the instructions provided in  Chapter 

 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu. 

Technical requirements

All of the commands described in this book were run on a MacBook Pro with macOS Sequoia 

and use bash, a command shell. All commands have been verified on both an Intel and an Apple silicon-based MacBook Pro. 

If you are using another shell, such as zsh, I recommend that you switch to bash before running any of the commands in this book. To do so, use the following command:

/bin/bash

694

 Installation Instructions for macOS

Installing the necessary tools

In this section, we will learn how to install and configure the tools that will be used in this book. 

Here is a list of the tools we will install, with a link to more information on downloading and installing them, if required:

•  Git: https://git-scm.com/downloads

•  Docker Desktop for Mac: https://hub.docker.com/editions/community/docker-ce-

desktop-mac/

•  Java: https://adoptium.net/installation

•  curl: https://curl.haxx.se/download.html

• 

jq: https://stedolan.github.io/jq/download/

•  Spring Boot CLI:  https://docs.spring.io/spring-boot/3.5/installing. 

html#getting-started.installing.cli

•  Siege: https://github.com/JoeDog/siege#where-is-it

•  Helm: https://helm.sh/docs/intro/install/

•  kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl-macos/

• 

minikube: https://minikube.sigs.k8s.io/docs/start/

• 

istioctl: https://istio.io/latest/docs/setup/getting-started/#download

The following versions were used at the time of writing this book:

•  Git: v2.39.5

•  Docker Desktop for Mac: v4.40.0:

•  This includes Docker Engine: v28.0.4

•  Java: v24

•  curl: v8.7.1

• 

jq: v1.7.1

•  Spring Boot CLI: v3.5.0

•  Siege: v4.1.7

•  Helm: v3.17.2

 Chapter 21

695

•  kubectl: v1.32.0

• 

minikube: v1.35.0

• 

istioctl: v1.24.2

To install the specific versions of Java and the Spring Boot CLI, we will use SDKMan. For minikube, kubectl, and istioctl, we will use the curl and install commands to install the versions used in this book. For the remaining tools, where the latest version is acceptable, the Homebrew package manager (https://brew.sh/) will be used. We will start by installing tools using SDKMan and Homebrew. After that, we will wrap up by installing the remaining tools using the curl and install commands. 

When it comes to minikube, kubectl, and istioctl, it is important to install ver-

sions that are compatible with each other, specifically when it comes to the versions 

of Kubernetes that they support. Simply installing and upgrading to the latest ver-

sions can lead to situations where incompatible versions are used. 

For supported Kubernetes versions when it comes to Istio, see https://istio.io/

latest/about/supported-releases/#support-status-of-istio-releases. 

For  minikube, see https://minikube.sigs.k8s.io/docs/handbook/

config/#selecting-a-kubernetes-version. 

Installing SDKMan, Java, and the Spring Boot CLI

First, install SDKMan and verify its version by running the following commands:

curl -s "https://get.sdkman.io" | bash

source "$HOME/.sdkman/bin/sdkman-init.sh" 

sdk version

You should see a response similar to the following:

SDKMAN! 

script: 5.18.1

native: 0.2.9

Next, install the Spring Boot CLI with the following command:

sdk install springboot 3.5.0

696

 Installation Instructions for macOS

For Java, we will install two distributions of OpenJDK:

•  Eclipse Temurin, a plain OpenJDK distribution used in all chapters except for  Chapter 23, 

 Native Compiled Java Microservices

•  Oracle GraalVM, an OpenJDK distribution that contains the Native Image compiler used in  Chapter 23

If you are interested in understanding the background of why multiple distributions 

of OpenJDK exist, I recommend the following blog post:

https://bell-sw.com/announcements/2022/02/24/java-licensing-

changes-in-2021/. 

Install these two Java distributions by running the following commands:

sdk install java 24-tem

sdk install java 24-graalce

When asked if the Java distribution should be set as the default, answer yes for Temurin and no for GraalVM. This results in the Temurin distribution being used when opening a new Terminal window. 

Installing Homebrew

If you don’t have Homebrew installed already, you can install it with the following command:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/

install/HEAD/install.sh)" 

Installing Homebrew also installs the command-line tools for Xcode, if they are not 

already installed, so it might take a while. 

Verify the installation of Homebrew with the following command:

brew --version

You should see a response similar to the following:

Homebrew 4.4.27

 Chapter 21

697

Using Homebrew to install tools

On macOS, curl comes pre-installed, and git was installed as part of the installation of the command-line tools for Xcode, required by Homebrew. Homebrew can be used to install docker, 

jq, helm, and siege:

brew install jq && \

brew install helm && \

brew install siege && \

brew install --cask docker

Brew installs the tools in different folders on Intel and Apple silicon-based Macs – in 

/usr/local and /opt/homebrew, respectively. 

Install tools without Homebrew

When it comes to installing minikube, kubectl, and istioctl, we will avoid using brew for improved control over what versions we install. The commands look slightly different on Intel and Apple silicon-based Macs, so I will go through them separately. 

Installing tools on an Intel-based Mac

To install the kubectl version used in this book, run the following commands:

curl -LO "https://dl.k8s.io/release/v1.32.0/bin/darwin/amd64/kubectl" 

sudo install kubectl /usr/local/bin/kubectl

rm kubectl

To install the minikube version used in this book, run the following commands:

curl -LO https://storage.googleapis.com/minikube/releases/v1.35.0/

minikube-darwin-amd64

sudo install minikube-darwin-amd64 /usr/local/bin/minikube

rm minikube-darwin-amd64

To install the istioctl version used in this book, run the following commands:

curl -L https://istio.io/downloadIstio | ISTIO_VERSION=1.24.2 TARGET_

ARCH=x86_64 sh -

sudo install istio-1.24.2/bin/istioctl /usr/local/bin/istioctl

rm -r istio-1.24.2

698

 Installation Instructions for macOS

Installing tools on an Apple silicon-based Mac

To install the kubectl version used in this book, run the following commands:

curl -LO "https://dl.k8s.io/release/v1.32.0/bin/darwin/arm64/kubectl" 

sudo install kubectl /usr/local/bin/kubectl

rm kubectl

To install the minikube version used in this book, run the following commands:

curl -LO https://storage.googleapis.com/minikube/releases/v1.35.0/

minikube-darwin-arm64

sudo install minikube-darwin-arm64 /usr/local/bin/minikube

rm minikube-darwin-arm64

To install the istioctl version used in this book, run the following commands:

curl -L https://istio.io/downloadIstio | ISTIO_VERSION=1.24.2 TARGET_

ARCH=arm64 sh -

sudo install istio-1.24.2/bin/istioctl /usr/local/bin/istioctl

rm -r istio-1.24.2

If you want to use the latest versions, which, as mentioned previously, run the risk of 

introducing incompatibility issues, you can install minikube, kubectl, and istioctl 

with Homebrew by running the following commands:

brew install kubernetes-cli && \

brew install istioctl && \

brew install minikube

With the tools installed, we need to take some post-installation actions before we can verify the installations. 

Post-installation actions

We need to perform some actions after installing Docker to make it work properly. 

To be able to run the examples in this book, it is recommended that you configure Docker so that it can use most CPUs, except for a few (allocating all CPUs to Docker can make your computer unresponsive when tests are running), and 10 GB of memory, if available. 

[image: Image 337]

 Chapter 21

699

The initial chapters will work fine with less memory allocated – for example, 6 GB. But the more features we add later in this book, the more memory will be required by the Docker host to be able to run all the microservices smoothly. 

Before we can configure Docker, we must ensure that the Docker daemon is running. You can 

start Docker just like you can start any application on a Mac: by using Spotlight or opening the Application folder in Finder and starting it from there. 

To configure Docker, click on the Docker icon in the status bar and select Settings…. Go to the Resources tab in the settings for Docker and set CPUs and Memory accordingly, as illustrated in the following screenshot:

 Figure 21.1: Docker Desktop resource configuration

[image: Image 338]

700

 Installation Instructions for macOS

If you don’t want to start Docker manually after system startup, you can go to the General tab and select the Start Docker Desktop when you log in option:

 Figure 21.2: Docker Desktop general configuration

Finalize the configuration by clicking on the Apply & Restart button. 

With the post-installation actions performed, we can verify that the tools are installed as expected. 

Verifying the installations

To verify the tool installations, run the following commands to print each tool’s version:

git version && \

docker version -f json | jq -r .Client.Version && \

java -version 2>&1 | grep "openjdk version" && \

curl --version | grep "curl" | sed 's/(.*//' && \

jq --version && \

spring --version && \

siege --version 2>&1 | grep SIEGE && \

helm version --short && \

[image: Image 339]

 Chapter 21

701

kubectl version --client -o json | jq -r .clientVersion.gitVersion && \

minikube version | grep "minikube" && \

istioctl version --remote=false

Running these commands will return an output similar to the following:

 Figure 21.3: Versions used

With the tools installed and verified, let’s see how we can access the source code for this book. 

Accessing the source code

The source code for this book can be found in this book’s GitHub repository:

https://github.com/PacktPublishing/Microservices-with-Spring-Boot-and-Spring-

Cloud-Fourth-Edition. 

To be able to run the commands described in this book, download the source code to a folder and set up an environment variable, $BOOK_HOME, that points to that folder. Here are some sample commands you can use:

export BOOK_HOME=~/Documents/Microservices-with-Spring-Boot-and-Spring-

Cloud-Fourth-Edition

git clone https://github.com/PacktPublishing/Microservices-with-Spring-

Boot-and-Spring-Cloud-Fourth-Edition.git $BOOK_HOME

702

 Installation Instructions for macOS

The Java source code is written for Java SE 8 and uses a Java SE 24 JRE when executed in Docker containers. The following versions of Spring are used:


•  Spring Framework: 6.2.6

•  Spring Boot: 3.5.0

•  Spring Cloud: 2025.0.0

The code examples in each chapter all come from the source code in $BOOK_HOME/ChapterNN, where NN is the number of the chapter. The code examples in this book have been, in many cases, edited to remove irrelevant parts of the source code, such as comments, imports, and log statements. 

Using an IDE

I recommend that you work on your Java code using an IDE that supports the development of 

Spring Boot applications, such as Visual Studio Code, Eclipse, or IntelliJ IDEA Ultimate Edition. 

For more information, see https://spring.io/tools. However, you don’t need an IDE to be able to follow the instructions in this book. 

The structure of the code

Each chapter consists of several Java projects – one for each microservice and Spring Cloud service, plus a couple of library projects used by the other projects.   Chapter 14 contains the largest number of projects; its project structure looks like this:

├── api

├── microservices

│   ├── product-composite-service

│   ├── product-service

│   ├── recommendation-service

│   └── review-service

├── spring-cloud

│   ├── authorization-server

│   ├── config-server

│   ├── eureka-server

│   └── gateway

└── util

 Chapter 21

703

All projects have been built using Gradle and have a file structure that follows Gradle’s standard conventions:

├── build.gradle

├── settings.gradle

└── src

├── main

│   ├── java

│   └── resources

└── test

├── java

└── resources

For more information on how to organize a Gradle project, see

https://docs.gradle.org/current/userguide/organizing_gradle_projects.html. 

With this, we have the required tools installed for macOS and the source code for this book downloaded. In the next chapter, we will learn how to set up the necessary tools in a Windows environment. 

Summary

In this chapter, we learned how to install, configure, and verify the tools required to run the commands described in this book on macOS. For development, we will use git, docker, java, 

and spring. To create a Kubernetes environment to deploy our microservice at runtime, we will use minikube, helm, kubectl, and istioctl. Finally, to run tests to verify that the microservices work as expected at runtime, we will use curl, jq, and siege. 

We also learned how to access the source code from GitHub and how the source code is structured. 

In the next chapter, we will learn how to set up the same tools in an environment based on Microsoft Windows with Windows Subsystem for Linux v2 (WSL 2), where we will use a Linux server based on Ubuntu. 

[image: Image 340]

704

 Installation Instructions for macOS

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

22

Installation Instructions for 

Microsoft Windows with WSL 2 

and Ubuntu

In this chapter, we will learn how to set up the tools required to run the commands described in this book on Microsoft Windows. We will also learn how to gain access to this book’s source code. 

The following topics will be covered in this chapter:

•  Technical requirements

•  Installing the necessary tools

•  Accessing the source code

If you are using a Mac, you should follow the instructions in  Chapter 21,  Installation Instructions for macOS. 

Technical requirements

All the commands described in this book have been run on a MacBook Pro using bash as the command shell. In this chapter, we will learn how to set up a development environment in Microsoft Windows in which the commands in this book can be run without any changes being required. In a few cases, the commands must be modified so that they can be run in the Windows environment. 

This is pointed out in each chapter, and the alternative command to be used in Windows is also specified. All commands have been verified to work on Windows 11. 

706

 Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

The development environment is based on Windows Subsystem for Linux v2 (WSL 2), which requires Windows 10, version 2004 (build 19041) or later. We will use WSL 2 to run a Linux server based on Ubuntu 24.04, where we will run all the commands using bash as the command shell. 

Microsoft provides integration between Windows and Linux servers that run in WSL 2. Linux files can be accessed from Windows, and vice versa. We will learn how to access files in a Linux server from Visual Studio Code running in Windows. Ports accessible from localhost in the Linux server are also available on localhost in Windows. We will use this integration to access web pages exposed by web applications running on the Linux server from a web browser running in Windows. 

For more information on WSL 2, see https://docs.microsoft.com/en-us/windows/wsl/. 

Installing the necessary tools

In this section, we will learn how to install and configure the tools. Here is a list of the tools we will install, with a link to more information on downloading and installation, if required. 

On Windows, we will install the following tools:

•  Windows Subsystem for Linux v2 (WSL 2): https://docs.microsoft.com/en-us/

windows/wsl/install-win10

•  Ubuntu 24.04 in WSL 2: https://apps.microsoft.com/detail/9nz3klhxdjp5

•  Windows  Terminal:  https://www.microsoft.com/en-us/p/windows-

terminal/9n0dx20hk701

•  Docker Desktop for Windows: https://hub.docker.com/editions/community/docker-

ce-desktop-windows/

•  Visual Studio Code and its extension for Remote WSL: https://code.visualstudio. 

com and https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote. 

remote-wsl

On the Linux server, we will install the following tools:

•  Git: https://git-scm.com/downloads

•  Java: https://adoptium.net/installation

•  curl: https://curl.haxx.se/download.html

• 

jq: https://stedolan.github.io/jq/download/

•  Spring Boot CLI:  https://docs.spring.io/spring-boot/3.5/installing. 

html#getting-started.installing.cli 

•  Siege: https://github.com/JoeDog/siege#where-is-it

•  Helm: https://helm.sh/docs/intro/install/#from-apt-debianubuntu

 Chapter 22

707

•  kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

• 

minikube: https://minikube.sigs.k8s.io/docs/start/

• 

istioctl: https://istio.io/latest/docs/setup/getting-started/#download

The following versions were used at the time of writing this book:

•  Windows Terminal: v1.22.11141.0

•  Visual Studio Code: v1.99.3

•  Docker Desktop for Windows: v4.40.0

•  Docker Engine: v28.0.4

•  Git: v2.43.0

•  Java: v24

•  curl: v8.5.0

• 

jq: v1.7

•  Spring Boot CLI: v3.5.0

•  Siege: v4.0.7

•  Helm: v3.17.2

•  kubectl: v1.32.0

• 

minikube: v 1.35.0

• 

istioctl: v1.24.2

We will start by installing the necessary tools on Windows. After that, we will install them on the Linux server running in WSL 2. 

Installing tools on Windows

In the Windows environment, we will install WSL 2 together with a Linux server, Windows Ter-

minal, Docker Desktop, and, finally, Visual Studio Code with an extension that provides remote access to files in WSL. 

Installing WSL 2 with a default Ubuntu server

Run the following commands to install WSL 2 with an Ubuntu server:

1.  Open PowerShell as an administrator and run the following command:

wsl –install

2.  Restart your PC to complete the installation. 

708

 Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

3.  After restarting, the Ubuntu server will automatically be installed in a new Terminal 

window. 

4.  After a while, you will be asked to enter a username and password. 

5.  When the installation is complete, you can verify the installed version of Ubuntu by running this command:

lsb_release -d

6.  You should see an output similar to the following:

Description:    Ubuntu 24.04.1 LTS

Installing a new Ubuntu 24.04 server on WSL 2

If you already have WSL 2 installed but not an Ubuntu 24.04 server, you can install it by performing the following steps:

1.  Download an installation file from the Microsoft Store:

•  To choose from the available Linux distributions for WSL 2, go to

https://apps.microsoft.com/

•  To go directly to Ubuntu 24.04, visit

https://apps.microsoft.com/detail/9nz3klhxdjp5

2.  After downloading the installation file, execute it to install Ubuntu 24.04. 

3.  A console window will open and, after a minute or two, you will be asked for a username 

and password that will be used on the Linux server. 

Installing Windows Terminal

To simplify access to the Linux server, I strongly recommend installing Windows Terminal. It provides support for the following aspects:

•  Using multiple tabs

•  Using multiple panes within a tab

•  Using multiple types of shells – for example, Windows Command Prompt, PowerShell, 

bash for WSL 2, and the Azure CLI

More options are supported than this. For more information, see

https://docs.microsoft.com/en-us/windows/terminal/. 

Windows Terminal can be installed from the Microsoft Store; see https://aka.ms/terminal for more details. 

[image: Image 341]

[image: Image 342]

 Chapter 22

709

When you start Windows Terminal and click on the  down arrow in the menu, you will find that it has already been configured so that it starts a Terminal on the Linux server:

 Figure 22.1: Windows Terminal configured for the Linux server in WSL 2

Select Ubuntu-24.04; a bash shell will be started. Depending on your settings, your working directory might be set to your home folder in Windows – for example, 

/mnt/c/Users/magnus. To get to your home folder via the Linux server, simply use the cd and pwd commands to verify that you are inside your Linux server’s filesystem:

 Figure 22.2: Windows Terminal using bash to access files in the Linux server

Installing Docker Desktop for Windows

To install and configure Docker Desktop for Windows, perform the following steps:

1.  Download and install Docker Desktop for Windows from

https://hub.docker.com/editions/community/docker-ce-desktop-windows/. 

[image: Image 343]

710

 Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

2.  If you are asked to enable WSL 2 during installation, answer YES. 

3.  After the installation is complete, launch Docker Desktop from the Start menu. 

4.  From the Docker menu, select Settings and, in the Settings window, select the General tab:

•  Ensure that the Use the WSL 2 based engine check box is selected

•  To avoid starting up Docker Desktop manually each time your PC is restarted, I 

also recommend selecting the Start Docker Desktop when you log in check box

The General settings should look like this:

 Figure 22.3: Docker Desktop configuration

5.  Finalize the configuration by clicking on the Apply & Restart button. 

 Chapter 22

711

Installing Visual Studio Code and its extension for Remote WSL

To simplify editing source code inside the Linux server, I recommend using Visual Studio Code. 

With its extension for WSL 2, named Remote WSL, you can easily work with source code inside the Linux server using Visual Studio Code running in Windows. 

To install and configure Visual Studio Code and its extension for Remote WSL, perform the following steps:

1.  Download and install Visual Studio Code from https://code.visualstudio.com:

When asked to Select Additional Tasks, select the Add to PATH option. This will make it possible to open a folder in Visual Studio Code from within the Linux server with the 

code command. 

2.  After the installation is complete, launch Visual Studio Code from the Start menu. 

3.  Install the extension for Remote WSL: https://marketplace.visualstudio.com/

items?itemName=ms-vscode-remote.remote-wsl. 

If you want to learn more about how Visual Studio Code integrates with WSL 2, see 

this article: https://code.visualstudio.com/docs/remote/wsl. 

Installing tools on the Linux server in WSL 2

Now, it is time to install the tools required in the Linux server in WSL 2. 

Launch Windows Terminal from the Start menu and open a Terminal in the Linux server, as described in the  Installing Windows Terminal section. 

The git and curl tools are already installed in Ubuntu. The remaining tools will be installed using either apt install, sdk install, or a combination of curl and install. 

Installing tools using apt install

In this section, we will install jq, siege, Helm, and a couple of dependencies required by the other tools. 

Install jq, zip, unzip, and siege with the following commands:

sudo apt update

sudo apt install -y jq

712

 Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

sudo apt install -y zip

sudo apt install -y unzip

sudo apt install -y siege

To install Helm, run the following commands:

curl -s https://baltocdn.com/helm/signing.asc | \

gpg --dearmor | sudo tee /usr/share/keyrings/helm.gpg > /dev/null

sudo apt-get install apt-transport-https --yes

echo "deb [arch=$(dpkg --print-architecture) \

signed-by=/usr/share/keyrings/helm.gpg] \

https://baltocdn.com/helm/stable/debian/ all main" | \

sudo tee /etc/apt/sources.list.d/helm-stable-debian.list

sudo apt-get update

sudo apt install -y helm

Installing the Java and Spring Boot CLI using SDKMan

To install the Java and Spring Boot CLI, we will use SDKMan (https://sdkman.io). Install SDKMan by running the following commands:

curl -s "https://get.sdkman.io" | bash

source "$HOME/.sdkman/bin/sdkman-init.sh" 

Verify that SDKMan was installed correctly with the following command:

sdk version

Expect it to return something like this:

SDKMAN! 

script: 5.19.0

native: 0.7.4 (linux x86_64)

For Java, we will install two distributions of OpenJDK:

•  Eclipse Temurin, a plain OpenJDK distribution used in all chapters except for  Chapter 23, 

 Native Compiled Java Microservices

•  Oracle GraalVM, an OpenJDK distribution that contains the Native Image compiler used in  Chapter 23

 Chapter 22

713

If you are interested in understanding the background of why multiple distributions 

of OpenJDK exist, I recommend reading the following blog post:

https://bell-sw.com/announcements/2022/02/24/java-licensing-

changes-in-2021/. 

Install the two Java distributions by running the following commands:

sdk install java 24-tem

sdk install java 24-graalce

When asked if the Java distribution should be set as the default, answer yes for Temurin and no for GraalVM. This results in the Temurin distribution being used when opening a new Terminal window. 

GraalVM’s Native Image compiler depends on some libraries that can be installed with the following command:

sudo apt install -y build-essential zlib1g-dev

Finally, install the Spring Boot CLI:

sdk install springboot 3.5.0

Installing the remaining tools using curl and install

Finally, we will install kubectl, minikube, and istioctl using curl to download the executable files. Once downloaded, we will use the install command to copy the files to the proper places in the filesystem, and also ensure that owner and access rights are configured properly. When it comes to these tools, it is important to install versions that are compatible with each other, specifically when it comes to what versions of Kubernetes they support. Simply installing and upgrading to the latest versions can lead to situations where incompatible versions of minikube, Kubernetes, and Istio are used. 

For supported Kubernetes versions when it comes to Istio, see

https://istio.io/latest/about/supported-releases/#support-status-

of-istio-releases. For minikube, see

https://minikube.sigs.k8s.io/docs/handbook/config/#selecting-a-

kubernetes-version. 

714

 Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

To install the kubectl version used in this book, run the following commands:

curl -LO "https://dl.k8s.io/release/v1.32.0/bin/linux/amd64/kubectl" 

sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

rm kubectl

To install the minikube version used in this book, run the following commands:

curl -LO https://storage.googleapis.com/minikube/releases/v1.35.0/

minikube-linux-amd64

sudo install -o root -g root -m 0755 minikube-linux-amd64 \

/usr/local/bin/minikube

rm minikube-linux-amd64

To install the istioctl version used in this book, run the following commands:

curl -L https://istio.io/downloadIstio | ISTIO_VERSION=1.24.2 TARGET_

ARCH=x86_64 sh -

sudo install -o root -g root -m 0755 istio-1.24.2/bin/istioctl \

/usr/local/bin/istioctl

rm -r istio-1.24.2

With the tools now installed, we can verify that they have been installed as expected. 

Verifying the installations

To verify the tool installations, run the following commands to print each tool’s version:

git version && \

docker version -f json | jq -r .Client.Version && \

java -version 2>&1 | grep "openjdk version" && \

curl --version | grep "curl" | sed 's/(.*//' && \

jq --version && \

spring --version && \

siege --version 2>&1 | grep SIEGE && \

helm version --short && \

kubectl version --client -o json | \

jq -r .clientVersion.gitVersion && \

minikube version | grep "minikube" && \

istioctl version --remote=false

[image: Image 344]

 Chapter 22

715

You should see version information similar to the following:

 Figure 22.4: Versions used on the Linux server in WSL 2

With the tools installed and verified, let’s see how we can access the source code for this book. 

Accessing the source code

The source code for this book can be found in this book’s GitHub repository at https://github. 

com/PacktPublishing/Microservices-with-Spring-Boot-and-Spring-Cloud-Fourth-Edition. 

To be able to run the commands that are described in this book on the Linux server in WSL 2, download the source code to a folder and set up an environment variable, $BOOK_HOME, that points to that folder. Here are some sample commands:

export BOOK_HOME=~/Microservices-with-Spring-Boot-and-Spring-Cloud-Fourth-

Edition

git clone https://github.com/PacktPublishing/Microservices-with-Spring-

Boot-and-Spring-Cloud-Fourth-Edition.git $BOOK_HOME

To verify that you have access to the source code that’s been downloaded to the Linux server in WSL 2 from Visual Studio Code, run the following commands:

cd $BOOK_HOME

code . 

[image: Image 345]

716

 Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

Visual Studio Code will open a window from which you can start to inspect the source code. You can also start a Terminal window for running bash commands on the Linux server by going to 

Terminal | New Terminal. The Visual Studio Code window should look something like this: Figure 22.5: Accessing a file on the Linux server from Visual Studio Code

The Java source code is written for Java SE 8 and uses a Java SE 24 JRE when executed in Docker containers. The following versions of Spring are used:

•  Spring Framework: 6.2.6

•  Spring Boot: 3.5.0

•  Spring Cloud: 2025.0.0

The code examples in each chapter all come from the source code in $BOOK_HOME/ChapterNN, where NN is the number of the chapter. The code examples in this book have been, in many cases, edited to remove irrelevant parts of the source code, such as comments, imports, and log statements. 

The structure of the code

Each chapter consists of several Java projects – one for each microservice and Spring Cloud service, plus a couple of library projects used by the other projects.   Chapter 14 contains the largest number of projects; its project structure looks like this:

├── api

├── microservices

 Chapter 22

717

│   ├── product-composite-service

│   ├── product-service

│   ├── recommendation-service

│   └── review-service

├── spring-cloud

│   ├── authorization-server

│   ├── config-server

│   ├── eureka-server

│   └── gateway

└── util

All projects have been built using Gradle and have a file structure that follows Gradle’s standard conventions:

├── build.gradle

├── settings.gradle

└── src

├── main

│   ├── java

│   └── resources

└── test

├── java

└── resources

For more information on how to organize a Gradle project, see https://docs.gradle.org/

current/userguide/organizing_gradle_projects.html. 

Summary

In this chapter, we learned how to install, configure, and verify the tools required to run the commands described in this book on WSL 2 and Windows. For development, we will use git, 

docker, java, and spring. To create a Kubernetes environment to deploy our microservice at 

runtime, we will use minikube, helm, kubectl, and istioctl. Finally, to run tests to verify that the microservices work as expected at runtime, we will use curl, jq, and siege. 

We also learned how to access the source code from GitHub and how the source code is structured. 

In the next and final chapter, we will learn how to compile microservices natively, reducing their startup time to sub-seconds. 

[image: Image 346]

718

 Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

23

Native Compiled Java 

Microservices

In this chapter, we will learn how to compile the Java source code in our microservices into binary executable files, known as Native Images. A Native Image starts up significantly faster compared to using a Java VM and is also expected to consume less memory. We will be introduced to the Spring AOT engine introduced in Spring Framework 6 and the GraalVM project and its Native Image compiler, and learn how to use them. 

We will cover the following topics:

•  When to natively compile Java source code

•  Introducing the GraalVM project and Spring’s AOT engine

•  Handling problems with native compilation

•  Testing and compiling Native Images

•  Testing with Docker Compose

•  Testing with Kubernetes

Even though Spring Framework 6 and Spring Boot 3 come with General Availability 

(GA) support for building native executables of Spring Boot applications, it must be 

considered as being in an early stage. At the time of writing this chapter, a lot of pit-

falls were discovered while natively compiling the microservices in this book. Since 

natively compiling the microservices is not required for the rest of the material in 

this book, this chapter is placed at the end of the book as an extra chapter, describing 

an exciting but not yet fully mature technology. 

720

 Native Compiled Java Microservices

Technical requirements

For instructions on how to install the tools used in this book and how to access the source code for this book, see the following:

•   Chapter 21,  Installation Instructions for macOS

•   Chapter 22,  Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu The code examples in this chapter all come from the source code in $BOOK_HOME/Chapter23. 

If you want to view the changes applied to the source code in this chapter so you can natively compile the microservices, you can compare it with the source code for  Chapter 20,  Monitoring Microservices. You can use your favorite diff tool and compare the two folders $BOOK_HOME/

Chapter20 and $BOOK_HOME/Chapter23. 

When to natively compile Java source code

Java has always been known for its build-once-run-anywhere capability, providing excellent cross-platform support. The Java source code is compiled once into bytecode. At runtime, a Java VM transforms the bytecode into executable code for the target platform using a Just-in-Time compiler, also known as JIT compilation. This takes some time, slowing down the startup of Java programs. Before the era of microservices, Java components typically ran on an application server, such as a Java EE server. After being deployed, the Java component ran for a long time, making the longer startup time less of a problem. 

With the introduction of microservices, this perspective changed. With microservices, there comes the expectation of being able to upgrade them more frequently and quickly scale instances for a microservice up and down based on its usage. Another expectation is to be able to scale to zero, meaning that when a microservice is not used, it should not run any instances at all. An unused microservice should not allocate any hardware resources and, even more importantly, should not create any runtime cost, for example, in a cloud deployment. To be able to meet these expectations, it is important that a microservice instance can be started swiftly. 

Also, with the use of containers, the importance of cross-platform support built into the application itself has faded. Instead, Docker can be used to build Docker images that contain support for multiple platforms – for example, Linux on both arm64 and amd64 (also known as x86_64), 

or Docker images that can be run on Windows and Linux. For more information, see https://

docs.docker.com/build/building/multi-platform/. For an example of a Docker image that contains multi-platform support, see the OpenJDK Docker image used in this book: https://hub. 

docker.com/_/eclipse-temurin/tags. 

 Chapter 23

721

Given that the startup time for Java programs can be significantly reduced, other use 

cases also come to mind; for example, developing Java-based Function-as-a-Service 

(FaaS) solutions using AWS Lambda, Azure Functions, or Google Cloud Functions, 

to mention some of the major platforms. Also, developing CLI tools in Java becomes 

a feasible option. 

Together, these lead to a situation where faster startup becomes a more critical requirement than cross-platform support. This requirement can be achieved by compiling the Java source code 

into the target platform’s binary format at build time, in the same way as C or Go programs are compiled. This is known as Ahead of Time compilation or AOT compilation. The GraalVM Native Image compiler will be used to perform the AOT compilation. 

As we will see in the next section, the GraalVM Native Image compiler comes with a 

few restrictions – for example, relating to the use of reflection and dynamic proxies. 

It also takes quite some time to compile Java code into a binary Native Image. This 

technology has its strengths and weaknesses. 

With a better understanding of when it might be of interest to natively compile Java source code, let’s learn about the tooling: first, the GraalVM project, and then the Spring AOT engine. 

Introducing the GraalVM project

Oracle has worked for several years on a high-performance Java VM and associated tools, known together as the GraalVM project (https://www.graalvm.org). It was launched back in April 2018 

(https://medium.com/graalvm/graalvm-in-2018-b5fa7ff3b917), but work can be traced back to, for example, a research paper from Oracle Labs in 2013 on the subject:  Maxine: An approach-able virtual machine for, and in, Java; see https://dl.acm.org/doi/10.1145/2400682.2400689. 

Fun fact: The Maxine VM is known as a metacircular Java VM implementation, 

meaning that it is, itself, written in Java. 

GraalVM’s virtual machine is polyglot, supporting not only traditional Java VM languages such as Java, Kotlin, and Scala but also languages such as JavaScript, C, C++, Ruby, Python, and even programs compiled into WebAssembly. 

722

 Native Compiled Java Microservices

The part of GraalVM that we will focus on is its Native Image compiler, which can be used to compile Java bytecode into a Native Image containing binary executable code for a specific operating system (OS) and HW platform – for example, macOS on Apple silicon (arm64) or Linux on Intel (amd64). 

The Native Image can run without a Java VM, including binary compiled application classes and other classes required from the application’s dependencies. It also includes a runtime system called Substrate VM, which handles garbage collection, thread scheduling, and more. 

To be able to build a Native Image, the native compiler runs static code analysis based on a closed-world assumption, meaning that all bytecode that can be called at runtime must be reachable 

during build time. Therefore, it is not possible to load or create classes on the fly at runtime that were not available during the AOT compilation. 

To overcome these restrictions, the GraalVM project provides configuration options for the native compiler where we can provide reachability metadata. With this configuration, we can describe the use of dynamic features such as reflection and the generation of proxy classes at runtime. For more information, see  https://www.graalvm.org/latest/reference-manual/native-image/

metadata/. We will learn, later in this chapter, about various ways to create the required reachability metadata. 

The GraalVM Native Image compiler can be launched using a CLI command, Native Image, or 

as part of a Maven or Gradle build. GraalVM provides a plugin for both Maven and Gradle. In this chapter, the Gradle plugin will be used. 

With GraalVM introduced, it is time to learn about Spring’s AOT engine. 

Introducing Spring’s AOT engine

The Spring team has also worked on supporting the native compilation of Spring applications 

for some time. In March 2021, after 18 months of work, the experimental Spring Native project launched a beta release; see https://spring.io/blog/2021/03/11/announcing-spring-

native-beta. Based on the experiences from the Spring Native project, official support for building Native Images was added in Spring Framework 6 and Spring Boot 3; see https://spring.io/

blog/2023/02/23/from-spring-native-to-spring-boot-3. To perform the actual native compilation, Spring uses GraalVM’s Native Image compiler under the hood. 

The most important feature is Spring’s new AOT engine, which analyzes the Spring Boot application at build time and generates initialization source code and reachability metadata required by the GraalVM Native Image compiler. 

[image: Image 347]

 Chapter 23

723

The generated initialization source code, also known as AOT-generated code, replaces the reflection-based initialization performed when using a Java VM, eliminating most of the requirements of dynamic features such as reflection and the generation of proxy classes at runtime. 

When this AOT processing is performed, a closed-world assumption is made in the same way as 

for the GraalVM Native Image compiler. This means that only Spring beans and classes reachable at build time will be represented in the AOT-generated code and reachability metadata. Special attention must be given to Spring beans that are only created if some profiles are set or if some conditions are met, using @Profile or @ConditionalOnProperty annotations. These profiles 

and conditions must be set at build time; otherwise, these Spring beans will not be represented in the Native Image. 

To perform the analysis, the AOT engine creates bean definitions for all Spring beans it can find by scanning the source code of the application. But instead of instantiating the Spring beans, meaning starting the application, it generates the corresponding initialization code that will instantiate the Spring beans when executed. For all use of dynamic features, it will also generate the required reachability metadata. 

The process of creating a Native Image from the source code of a Spring Boot application is summarized by the following data flow diagram:

 Figure 23.1: Data flow diagram explaining the creation of a Native Image

724

 Native Compiled Java Microservices

The creation of a Native Image goes through the following steps:

1.  The application’s source code is compiled into bytecode by the Java compiler. 

2.  Spring’s AOT engine analyzes the code under a closed-world assumption and generates 

AOT source code and reachability metadata. 

3.  The AOT-generated code is compiled into bytecode using the Java compiler. 

4.  The application’s bytecode, together with the reachability metadata and bytecode cre-

ated by the AOT engine, is sent to GraalVM’s Native Image compiler, which creates the 

Native Image. 

For more information on how the creation of GraalVM Native Images is supported in Spring 

Boot 3, see https://docs.spring.io/spring-boot/docs/current/reference/html/Native 

Image.html. 

Building a Native Image can be done in two ways:

•  Creating a Native Image for the current OS

The first option is to use Gradle’s nativeImage task. It will use the installed GraalVM’s 

Native Image compiler to create an executable file for the current OS and hardware archi-

tecture. The nativeImage task is available given that GraalVM’s Gradle plugin is declared 

in the build file. 

•  Creating a Native Image as a Docker image

The second option is to use the existing Gradle task, bootBuildImage, to create a Docker 

image. Given that GraalVM’s Gradle plugin is declared in the build file, the bootBuildImage 

task will create a Docker image that contains the Native Image instead of a Java VM with 

the application’s JAR file that is used otherwise. The Native Image will be built in a Docker container so that it will be built for Linux. This also means that the GraalVM’s Native Image compiler does not need to be installed when the bootBuildImage task is used. Under 

the hood, this task uses buildpacks, instead of a Dockerfile, to create the Docker image. 

The concept of buildpacks was introduced by Heroku back in 2011. In 2018, the Cloud 

Native Buildpacks project (https://buildpacks.io) was created by Pivotal and Heroku, and later that year, it joined CNCF. 

To be a bit more formal, a buildpack creates an OCI image, according to the OCI 

Image Format Specification: https://github.com/opencontainers/image-spec/

blob/master/spec.md. Since the OCI specification is based on Docker’s image format, the formats are very similar and are both supported by container engines. 

 Chapter 23

725

To create the OCI images, Spring Boot uses buildpacks from the Paketo project; for more information, see https://docs.spring.io/spring-boot/reference/packaging/container-images/

cloud-native-buildpacks.html and https://paketo.io/docs/builders. 

Creating Native Images with the nativeImage task for the local OS is faster than creating Docker images. Therefore, the nativeImage task can be used for a quick feedback loop when initially trying to build a Native Image successfully. But once that has been worked out, creating Docker images containing the Native Image is the most useful alternative for testing natively compiled microservices, together with either Docker Compose or Kubernetes. 

Several tools and projects are available to help eliminate challenges with native compilation. The next section will give an overview of them, and in the  Testing and compiling Native Images section, we will learn how to use them. 

Handling problems with native compilation

Natively compiling Spring Boot applications is, as already mentioned, not yet mainstream. Therefore, you will probably run into problems when trying it out on your own applications. This section will go through a few projects and tools that can be used to handle these problems. Examples of how to use these tools will be provided in the following sections. 

The following project and tools can be used to handle problems with the native compilation of Spring Boot applications:

•  Spring AOT smoke tests: This project contains a suite of tests verifying that the various Spring projects work when natively compiled. Whenever you encounter issues with natively compiling a Spring feature, you should start looking into this project for a working 

solution. Also, if you want to report a problem with natively compiling a Spring project, 

you can use tests from this project as a boilerplate to demonstrate the problem in a repro-

ducible way. The project is available at https://github.com/spring-projects/spring-

aot-smoke-tests. Test results can be found in Spring’s CI environment. For example, the tests of the various Spring Cloud projects can be found here: https://spring-asa-aot-

smoke-tests-dashboard.azuremicroservices.io/#cloud. 

•  GraalVM reachability metadata repository: This project contains reachability metadata for various open source projects that do not yet support native compilation themselves. 

The GraalVM community can submit reachability metadata, which is approved after a 

review by the project’s team. GraalVM’s Gradle plugin automatically looks up reachabil-

ity metadata from this project and adds it when natively compiling. For more informa-

tion, see https://graalvm.github.io/native-build-tools/0.10.6/gradle-plugin. 

html#metadata-support. 

726

 Native Compiled Java Microservices

•  Testing AOT-generated code with the Java VM: Since natively compiling a Spring Boot application takes a few minutes, an interesting alternative can be to try out the initialization code generated by the Spring AOT engine on the Java VM. Normally, the AOT-generated 

code is ignored when using a Java VM, but this can be changed by setting the spring.aot. 

enabled system property to true. This means that the normal reflection-based initializa-

tion of the application is replaced by executing the generated initialization code. This can be used as a quick verification that the generated initialization code works as expected. 

Another positive effect is that the application starts slightly faster. 

•  Providing custom hints: If an application requires custom reachability metadata for the GraalVM Native Image compiler to create a Native Image, it can be provided as JSON files, 

as described in the  Introducing the GraalVM project section. Spring provides an alternative to the JSON files by either using an annotation named @RegisterReflectionForBinding 

or implementing the RuntimeHintsRegistrar interface in a class, which can be activated 

by using the @ImportRuntimeHints annotation. The RegisterReflectionForBinding 

annotation is easier to use, but implementing the RuntimeHintsRegistrar interface gives 

full control of the hints specified. 

One important benefit of using Spring’s custom hints over using GraalVM JSON files is 

that the custom hints are type-safe and checked by the compiler. If an entity referred to 

in a GraalVM JSON file is renamed but the JSON file is not updated, that metadata is lost. 

This will result in the GraalVM Native Image compiler failing to create a Native Image. 

When using custom hints, the source code will not even compile; typically, the IDE will 

complain as soon as the entity is renamed that the custom hint is no longer valid. 

•  Running native tests: Even though testing AOT-generated code with the Java VM can give a quick indication of whether the native compilation will work, we still need to create the 

Native Image of the application to test it fully. A feedback loop based on creating a Native Image, starting the application, and finally running some tests by hand is very slow and 

error-prone. A compelling alternative to this process is to run native tests, where Spring’s Gradle plugin will automatically create a Native Image and then run JUnit tests defined in 

the application’s project using the Native Image. This will still take time due to the native compilation, but the process is fully automated and repeatable. After ensuring the native 

tests run as expected, they can be placed in a CI build pipeline for automated execution. 

Native tests can be started using Gradle with this command:

gradle nativeTest

 Chapter 23

727

•  Using GraalVM’s tracing agent: If it turns out to be hard to determine what reachability metadata and/or custom hints are required to create a working Native Image for an 

application, GraalVM’s tracing agent can help out. If the tracing agent is enabled when 

running the application in the Java VM, it can gather the required reachability metadata 

based on how the application uses reflection, resources, and proxies. This is specifically 

useful if run together with JUnit tests, since gathering the required reachability metadata 

will be automated and repeatable. 

With the tooling introduced and explained for how to handle the main expected challenges, let’s see what changes are required in the source code to be able to natively compile the microservices. 

Changes in the source code

Before compiling the Java source code in the microservices into native executable images, the source code needs to be updated a bit. To be able to natively compile the microservices, the following changes have been applied to the source code:

•  The Gradle build files, build.gradle, have been updated by adding the GraalVM plugin, 

adjusting some dependencies, and configuring the bootBuildImage command. 

•  Required reachability metadata and custom hints have been added. 

•  Build-time property files have been added to ensure that required Spring beans are reach-

able during the AOT processing at build time. 

•  Some properties used at runtime have been added to config-repo to make the natively 

compiled microservices operate successfully. 

•  The configuration to be able to run the GraalVM Native Image tracing agent has been added. 

•  The verification script, test-em-all.bash, has been updated since the Docker images no 

longer include the wget command. 

•  Some native tests have been disabled using the @DisabledInNativeImage annotation as 

described in the  Running native tests section. 

•  Two new Docker Compose files for using the Docker images containing the Native Images 

have been added. 

•  A system property has been added to the microservices’ Dockerfile to simplify toggling 

the AOT mode. The ENVIRONMENT command has been updated to disable the AOT mode 

when run with the Java VM. It looks like this:

ENTRYPOINT ["java", "-Dspring.aot.enabled=false", "org. 

springframework.boot.loader.JarLauncher"]

728

 Native Compiled Java Microservices

Note that it doesn’t work to specify spring.aot.enabled as an environment vari-

able or in a property file; it has to be set as a system property on the java command. 

Let’s go through the changes one by one and start with the changes applied to the build files. 

Updates to the Gradle build files

The changes described in this section have been applied to the build.gradle files in each microservice project unless stated otherwise. 

The following updates have been applied:

•  To enable Spring AOT tasks, the GraalVM plugin has been added:

plugins {

... 

id 'org.graalvm.buildtools.native' version '0.10.6' 

}

•  The bootBuildImage task is configured to specify the name of the Docker image that is 

created. The same naming conventions are used as in earlier chapters, but the name of 

the image is prefixed with native- to separate it from the existing Docker images. Also, 

the created date in the image’s metadata is set to the current timestamp. By default, it is 

set to 0, meaning 1 January 1970 in epoch time. For the product microservice, the configuration looks like this:

tasks.named('bootBuildImage') {

createdDate = "now" 

imageName = "hands-on/native-product-service" 

}

•  Due to the issue described at https://github.com/spring-projects/spring-boot/

issues/33238, the jar task is no longer disabled. 

To recap why the jar task was disabled, see the  Implementing our API section in 

 Chapter 3. 

 Chapter 23

729

These are all the changes required for the build files. In the next section, we will learn about how we need to help the native compiler to compile our source code in some cases. 

Providing reachability metadata and custom hints

There are a few cases in the source code where the GraalVM native compiler needs help to be able to compile the source code correctly. The first case is the JSON-based APIs and messages that the microservices use. The JSON parser, Jackson, must be able to create Java objects based on the JSON documents that the microservices receive. Jackson uses reflection to perform this work, and we need to tell the native compiler about the classes to which Jackson will apply reflection. 

For example, a native hint for the Product class looks like this:

@RegisterReflectionForBinding({ Event.class, ZonedDateTimeSerializer. 

class, Product.class})public class ProductServiceApplication {

All necessary custom hint annotations have been added to each microservice’s main class. 

Also, Jackson requires Joda time-related resources to be loaded at startup. To instruct the GraalVM 

native compiler to keep these resources, an implementation of the RuntimeHintsRegistrar in-

terface is provided. The most central parts of the class look like the following:

@Configuration

@ImportRuntimeHints(NativeHintsConfiguration.class)

public class NativeHintsConfiguration implements RuntimeHintsRegistrar {

@Override

public void registerHints(RuntimeHints hints, ClassLoader classLoader) {

hints.resources().registerPattern("org/joda/time/tz/data/**"); 

}

}

From the preceding source code, we can see that a hint is registered for resources found in the org/joda/time/tz/data folder, including its subfolders. The class also provides the necessary configuration by importing itself using the ImportRuntimeHints annotation. Each microservice contains its own hints registration class with the hints required per microservice. 

730

 Native Compiled Java Microservices

A final corner case is that we must provide reachability metadata for Resilience4J’s use of reflection in the declaration of the retry mechanism. The configuration looks like this:

resilience4j.retry:

instances:

product:

maxAttempts: 3

waitDuration: 1000

retryExceptions:

- org.springframework.web.reactive.function.client. 

WebClientResponseException$InternalServerError

This configuration will enable the retry mechanism to retry errors of type InternalServerError. 

To let the GraalVM Native Image compiler know that reflection must be enabled for this class, it has been added to the product-composite's native hints declaration like this:

@RegisterReflectionForBinding({ ..., 

WebClientResponseException.InternalServerError.class })

We now know how to provide metadata and custom hints for our own source code. Next, we will 

learn how we can ensure that Spring beans required at runtime also exist at build time so that the AOT processing can introspect them and generate proper AOT code. 

Enabling Spring beans at build time in application.yml files

As mentioned previously, due to the closed-world assumption that the static analysis uses at build time, all Spring beans required at runtime must be reachable at build time. Otherwise, they cannot be activated at runtime. Given that they are reachable at build time, they can be configured at runtime. To summarize, this means that if you are using Spring beans that are only created if some profiles are set or if some conditions are met (using @Profile or @ConditionalOnProperty annotations), you must ensure that these profiles and conditions are met at build time. 

For example, the possibility to specify a separate management port at runtime when using a 

natively compiled microservice is only possible if the management port was set to a random port (different from the standard port) at build time. Therefore, each microservice has an application. 

yml file in its src/main/resources folder that specifies the following:

 # Required to make the Spring AOT engine generate the appropriate 

 infrastructure for a separate management port at build time

management.server.port: 9009

 Chapter 23

731

With this specified at build time, when the Native Image is created, the management port can be set to any value at runtime using property files in the config-repo folder. 

Following is a list of all properties set at build time in the application.yml files to avoid these types of problems for various Spring beans used by the four microservices:

 # Required to make Springdoc handling forward headers correctly when 

 natively compiled

server.forward-headers-strategy: framework

 # Required to make the Spring AOT engine generate the appropriate 

 infrastructure for a separate management port, Prometheus, and K8S probes 

 at build time

management.server.port: 9009

management.endpoint.health.probes.enabled: true

management.endpoints.web.exposure.include: 

health,info,circuitbreakerevents,prometheus

 # Required to make the Spring AOT engine generate a ReactiveJwtDecoder for 

 the OIDC issuer

spring.security.oauth2.resourceserver.jwt.issuer-uri: http://someissuer

 # See https://github.com/springdoc/springdoc-openapi/

 issues/1284#issuecomment-1279854219

springdoc.enable-native-support: true

 # Native Compile: Point out that RabbitMQ is to be used when performing 

 the native compilation

spring.cloud.stream.defaultBinder: rabbit

 # Native Compile: Required to disable the health check of RabbitMQ when 

 using Kafka

 # management.health.rabbit.enabled: false

 # Native Compile: Required to disable the health check of Kafka when using 

 RabbitMQ

management.health.kafka.enabled: false

 # Native Compile: Required to get the circuit breaker's health check to 

 work properly

management.health.circuitbreakers.enabled: true

732

 Native Compiled Java Microservices

There can also exist cases where natively compiled microservices also require slightly different configurations at runtime; this will be covered in the next section. 

Updated runtime properties

In one case, a runtime property also needs to be updated when using natively compiled images. 

That is the connection string for the MySQL database used by the review microservice. Since not all character sets are represented in the Native Image by default, we must specify one as available in the Native Image. We will use the UTF-8 character set. This is done for all MySQL connection properties in the config-repo/review.yml review config file. It looks like this:

spring.datasource.url: jdbc:mysql://localhost/review-

db?useUnicode=true&connectionCollation=utf8_general_

ci&characterSetResults=utf8&characterEncoding=utf-8

With the required changes of properties both at build time and runtime covered, let’s learn how to configure the GraalVM Native Image tracing agent. 

Configuration of the GraalVM Native Image tracing agent

In cases where it is hard to determine what reachability metadata and/or custom hints are required, we can use the GraalVM Native Image tracing agent. As previously mentioned, it can, at runtime, detect the usage of reflection, resources, and proxies and create the required reachability metadata based on that. 

To enable the tracing agent to observe the execution of JUnit tests, the following jvmArgs can be added to the build.gradle file in the test section:

tasks.named('test') {

useJUnitPlatform()

jvmArgs "-agentlib:Native Image-agent=access-filter-file=src/test/

resources/access-filter.json,config-output-dir=src/main/resources/META-

INF/Native Image" 

}

Since the tracing agent is not required to make native compilation work for the microservices in this book, this configuration is commented out in the build files. 

The Native Image-agent=access-filter-file parameter specifies a file listing Java packages 

and classes that the tracing agent should exclude, typically test-related classes that we have no use for at runtime. For example, for the product microservice, the src/test/resources/access-filter.json file looks like this:

 Chapter 23

733

{ "rules":

[

{"excludeClasses": "org.apache.maven.surefire.**"}, 

{"excludeClasses": "net.bytebuddy.**"}, 

{"excludeClasses": "org.apiguardian.**"}, 

{"excludeClasses": "org.junit.**"}, 

{"excludeClasses": "org.gradle.**"}, 

{"excludeClasses": "org.mockito.**"}, 

{"excludeClasses": "org.springframework.test.**"}, 

{"excludeClasses": "org.springframework.boot.test.**"}, 

{"excludeClasses": "org.testcontainers.**"}, 

{"excludeClasses": "se.magnus.microservices.core.product. 

MapperTests"}, 

{"excludeClasses": "se.magnus.microservices.core.product. 

MongoDbTestBase"}, 

{"excludeClasses": "se.magnus.microservices.core.product. 

PersistenceTests"}, 

{"excludeClasses": "se.magnus.microservices.core.product. 

ProductServiceApplicationTests"}

]

}

The folder specified by the config-output-dir parameter will contain the generated configuration files. The specified folder, src/main/resources/META-INF/Native Image, is where the GraalVM 

native compiler looks for reachability metadata. 

Finally, let’s learn how the verification script has been adopted to be able to test the Native Images. 

Updates to the test-em-all.bash verification script

In the previous chapters, eclipse-temurin was used as the base image for the Docker images. 

The verification script, test-em-all.bash, uses the wget command that comes with that base 

image for running circuit breaker tests inside the product-composite container. 

The verification script runs the wget command inside the product-composite con-

tainer since the endpoints used to verify the functionality of the circuit breaker are 

not exposed outside of the internal network in Docker. 

734

 Native Compiled Java Microservices

With natively compiled microservices, the Docker image will no longer contain utility tools such as the wget command. To overcome this problem, the wget commands are executed from the 

auth-server's container, whose Docker image is still based on eclipse-temurin and therefore 

contains the required wget command. Since the tests of the circuit breaker are executed from auth-server, the hostname, localhost, is replaced with product-composite. 

For details, see the verification script: test-em-all.bash. 

With the required changes in the source code explained, let’s learn how to use the various tools mentioned in the previous sections to test and create Native Images for the microservices. 

Testing and compiling Native Images

Now, it is time to try out the tools for testing and building Native Images! 

The following tools will be covered in this section:

•  Running the tracing agent

•  Executing native tests

•  Creating a Native Image for the current OS

•  Creating a Native Image as a Docker image

Since the first three tools require GraalVM and its Native Image compiler locally, we must switch to the GraalVM-based Java compiler with this command:

sdk use java 24-graalce

Next, we will go through the tools one by one; let’s start with the tracing agent! 

Running the tracing agent

For the microservices in this book, the tracing agent is not required. But it can be interesting to see how to use it in other cases. If, for example, one of your microservices requires help from the tracing agent to generate the required reachability metadata. 

If you want to try out the tracing agent, you can do so with the following steps:

1.  Activate the jvmArgs parameter in the section of the build.gradle file for the selected 

microservice by removing the preceding comment characters, //. 

2.  Run a gradle test command – in this case, for the product service:

cd $BOOK_HOME/Chapter23

./gradlew :microservices:product-service:test --no-daemon

 Chapter 23

735

This is a normal gradle test command, but to avoid running out of memory, we disable 

the use of the Gradle daemon. By default, the daemon is limited to using 512 MB for its 

heap, which is insufficient for the tracing agent in most cases. 

After the tests are complete, you should find a file named reachability-metadata.json 

in the microservices/product-service/src/main/resources/META-INF/Native Image 

folder. 

To learn more about the content of this file, see https://www.graalvm.org/latest/

reference-manual/native-image/metadata/. 

After browsing through the generated file, wrap up by re-adding the comment before the jvmArgs parameter in the build file to disable the tracing agent and remove the created file. 

Next, on to how to use native tests! 

Running native tests

Running native tests can, as described earlier, be very useful for automating the process of finding issues with creating Native Images. Unfortunately, a couple of problems currently prevent us from using native tests with the microservices in this book. Therefore, some tests have been disabled when running native tests using the @DisabledInNativeImage annotation. The error 

that is thrown when running the native test is described in a comment next to the annotation for each disabled test. When these problems are resolved in the future, the @DisabledInNativeImage 

- annotations can be removed step by step, and more and more tests will be run by the native test command. 

To run the native tests on all four microservices, run this command:

./gradlew nativeTest

To test a specific microservice, run a command like this:

./gradlew :microservices:product-service:nativeTest

After each test of a microservice, the native testing tool creates a test report that looks like this: Test run finished after 3441 ms

... 

[        13 tests found           ]

736

 Native Compiled Java Microservices

[         1 tests skipped         ]

[        12 tests started         ]

[         0 tests aborted         ]

[        12 tests successful      ]

[         0 tests failed          ]

As seen in the preceding report, 12 native tests ran successfully, and one test was skipped. 

After covering the test agent and native tests, let’s see how we can create Native Images. 

Creating a Native Image for the current OS

The first option for creating a Native Image is to use Gradle’s nativeImage command. It will use the installed GraalVM Native Image compiler to create an executable file for the current OS and hardware architecture. 

Since we will only test our microservices using Docker and Kubernetes, we will not use Native Images created by this command. But to try it out on the product-composite microservice, run the following commands:

1.  Create the Native Image with the following command:

./gradlew microservices:product-composite-service:nativeCompile

The executable file will be created in the build/native/nativeCompile folder with the 

name product-composite-service. 

The executable file can be inspected using the file command:

file microservices/product-composite-service/build/native/

nativeCompile/product-composite-service

It will respond with something like this:

…product-composite-service: Mach-O 64-bit executable arm64

Here, Mach-O indicates that the file is compiled for macOS, and arm64 indicates it is com-

piled for Apple silicon. 

2.  To try it out, we need to start up the resources it needs manually. In this case, it is only RabbitMQ that is required to make it start up successfully. Start it up with this command:

docker compose up -d rabbitmq

 Chapter 23

737

3.  The Native Image can now be started in the terminal by specifying the same environment 

variables that are supplied in the docker-compose files:

SPRING_RABBITMQ_USERNAME=rabbit-user-prod \

SPRING_RABBITMQ_PASSWORD=rabbit-pwd-prod \

SPRING_CONFIG_LOCATION=file:config-repo/application.yml,file:config-

repo/product-composite.yml \

microservices/product-composite-service/build/native/nativeCompile/

product-composite-service

It should start up quickly and print something like the following in the log output:

Started ProductCompositeServiceApplication in 0.543 seconds

4.  Try it out by calling its liveness probe:

curl localhost:4004/actuator/health/liveness

5.  Expect it to answer with the following:

{"status":"UP"}

6.  Stop the execution by pressing  Ctrl +  C and stop the RabbitMQ container with this command:

docker compose down

Even though this is the fastest way to create a Native Image, it is not very useful for the scope of this book. Instead, it needs to be built for Linux and placed in a Docker container. Let’s jump into the next section and learn how to do that. 

Creating a Native Image as a Docker image

Now, it is time to build Docker images containing Native Images of our microservices. Go through the following steps:

1.  This is a very resource-demanding process. Therefore, first, ensure that Docker Desktop 

is allowed to consume at least 10 GB of memory to avoid out-of-memory faults. 

If a build fails with an error message that looks like <container-name> 

exited with code 137, you have run out of memory in Docker. 

738

 Native Compiled Java Microservices

2.  If your computer has less than 32 GB of memory, it could be a good idea to stop the 

minikube instance at this time to avoid running out of memory on the computer. Use 

the following command:

minikube stop

3.  Ensure that the Docker client talks to Docker Desktop and not to the minikube instance:

eval $(minikube docker-env -u)

4.  Run the following command to compile the product service:

./gradlew :microservices:product-service:bootBuildImage --no-daemon

Expect it to take some time. The command will start a Docker container to 

perform the native compilation. The first time it runs, it will also download 

the GraalVM native compiler to be used in Docker, making the compilation 

time even longer. On my MacBook, the first compilation takes a few minutes, 

mainly depending on my network’s capacity; after that, it takes around just 

a minute or two. 

Expect a lot of output during the compilation, including all sorts of warning and error 

messages. A successful compilation ends with a log output like this:

Successfully built image 'docker.io/hands-on/native-product-

service:latest' 

Natively compile the three remaining microservices with the following commands:

./gradlew :microservices:product-composite-service:bootBuildImage 

--no-daemon

./gradlew :microservices:recommendation-service:bootBuildImage --no-

daemon

./gradlew :microservices:review-service:bootBuildImage --no-daemon

5.  To verify that the Docker images were successfully built, run the following command:

docker images | grep "hands-on/native" 

Expect output like this:

[image: Image 348]

 Chapter 23

739

 Figure 23.2: Docker images containing the natively compiled executables

Now that we’ve created the Docker images containing the natively compiled executables, we 

are ready to try them out! We will start with Docker Compose and, after that, try them out with Kubernetes. 

Testing with Docker Compose

We are ready to try out the natively compiled microservices. To use the Docker images that 

contain the natively compiled microservices, two new Docker Compose files have been created, docker-compose-native.yml and docker-compose-partitions-native.yml. They are copies 

of docker-compose.yml and docker-compose-partitions.yml, where the build option has 

been removed from the definitions of the microservices. Also, the names of the Docker images to use have been changed, so the ones we created in the previous section are used, with names that start with native-. 

In this chapter, we will only use docker-compose-native.yml.; feel free to try out 

docker-compose-partitions-native.yml on your own. 

We’ll first get a benchmark using the Java VM-based microservices to compare the startup times and initial memory consumption. We will run the following tests:

•  Use the Java VM-based microservices with AOT mode disabled

•  Use the Java VM-based microservices with AOT mode enabled

•  Use the Docker images that contain the natively compiled microservices

To avoid port collisions, we first must stop the minikube instance with this command:

minikube stop

[image: Image 349]

740

 Native Compiled Java Microservices

Testing Java VM-based microservices with AOT mode 

disabled

We will start the tests by ignoring the AOT-generated code, starting the Java VM-based microservices as we did in the previous chapters. Run through the following commands to test the Java VM-based microservices:

1.  Start by compiling the source code and building the Java VM-based Docker images in 

Docker Desktop:

cd $BOOK_HOME/Chapter23

eval $(minikube docker-env -u)

./gradlew build

docker compose build

2.  Use the default Docker Compose file for the Java VM-based microservices:

unset COMPOSE_FILE

3.  Start all containers, except the microservices’ containers:

docker compose up -d mysql mongodb rabbitmq auth-server gateway

Wait for the containers to start up until the CPU load goes down. 

4.  Start up the microservices using the Java VM:

docker compose up -d

Wait for the microservices to start up, again monitoring the CPU load. 

5.  To find out how long it took to start the microservices, we can look for a log output containing: Started. Run the following command:

docker compose logs product-composite product review recommendation 

| grep ": Started" 

Expect an output like this:

 Figure 23.3: Startup times for Java VM-based microservices

[image: Image 350]

[image: Image 351]

 Chapter 23

741

In the output, we can see startup times varying from 5.5 to 7 seconds. Remember that 

all four microservice instances were started simultaneously, resulting in longer startup 

times compared to if they were started up one by one. 

6.  Run through the tests to verify that the system landscape works as expected:

USE_K8S=false HOST=localhost PORT=8443 HEALTH_URL=https://

localhost:8443 ./test-em-all.bash

7.  Expect the output we have seen in previous chapters from the tests:

 Figure 23.4: Output from the test script

8.  Finally, to find out how much memory is used after starting up and running the tests, run the following command:

docker stats --no-stream

Expect a response like this:

 Figure 23.5: Memory usage for Java VM-based microservices

From the preceding output, we can see that the microservices consume around 240-310 MB. 

742

 Native Compiled Java Microservices

Bring down the system landscape:

docker compose down

Now we know how long the microservices take to start up without using the AOT-generated 

code; let’s test them in AOT mode. 

Testing Java VM-based microservices with AOT mode 

enabled

Now we will enable AOT mode, using the AOT-generated code to start the Java VM-based micros-

ervices. We expect them to start a bit faster in AOT mode. Run through the following commands: 1.  Start all containers, except the microservices’ containers:

docker compose up -d mysql mongodb rabbitmq auth-server gateway

2.  Enable AOT mode by editing each microservice’s Dockerfile and set “-Dspring.aot. 

enabled=true" in the ENVIRONMENT command so it looks like this:

ENTRYPOINT ["java", "-Dspring.aot.enabled=true", "org. 

springframework.boot.loader.JarLauncher"]

3.  Rebuild the microservices:

docker compose build

4.  Start the microservices:

docker compose up -d

5.  Check AOT mode:

docker compose logs product-composite product review recommendation 

| grep "Starting AOT-processed" 

Expect four lines containing “Starting AOT-processed". 

6.  Check the startup times:

docker compose logs product-composite product review recommendation 

| grep ": Started" 

Expect the same type of output as when running without AOT mode in the preceding sec-

tion, but with slightly shorter startup times. In my case, the startup times vary from 4.5 to 5.5 seconds. Compared to the normal Java VM startup times, this is 1 to 1.5 seconds faster. 

 Chapter 23

743

7.  Run test-em-all.bash:

USE_K8S=false HOST=localhost PORT=8443 HEALTH_URL=https://

localhost:8443 ./test-em-all.bash

Expect an output like when running without AOT mode in the preceding section. 

8.  Revert the changes in the Dockerfiles and perform a rebuild of the Docker images to dis-

able the AOT mode. 

9.  Bring down the system landscape:

docker compose down

In this test, we verified that Java VM-based microservices start up a bit faster using the AOT-generated code. Now it’s time to try out the natively compiled microservices. 

Testing natively compiled microservices

Now, we are ready to repeat the same procedure, but this time using the Docker images with the natively compiled microservices:

1.  Change to the new Docker Compose file:

export COMPOSE_FILE=docker-compose-native.yml

2.  Start all containers, except for the microservices’ containers:

docker compose up -d mysql mongodb rabbitmq auth-server gateway

Wait for the containers to start up until the CPU load goes down. 

3.  Start up the microservices using the Java VM:

docker compose up -d

Wait for the microservices to start up, again monitoring the CPU load. 

4.  To find out how long it took to start the natively compiled microservices, run the same 

command we ran previously:

docker compose logs product-composite product review recommendation 

| grep ": Started" 

[image: Image 352]

[image: Image 353]

744

 Native Compiled Java Microservices

Expect output like this:

 Figure 23.6: Startup times for natively compiled microservices

In the preceding output, we can see startup times varying from 0.2-0.5 seconds. Consid-

ering that all microservices instances were started up at the same time, these are rather 

impressive figures compared to the 5.5 to 7 seconds it took for the Java VM-based tests! 

5.  Run through the tests to verify that the system landscape works as expected:

USE_K8S=false HOST=localhost PORT=8443 HEALTH_URL=https://

localhost:8443 ./test-em-all.bash

Expect the same output as from the preceding test using the Java VM-based Docker images. 

6.  Finally, to find out how much memory is used after starting up and running the tests, run the following command:

docker stats --no-stream

Expect a response like this:

 Figure 23.7: Memory usage for natively compiled microservices

From the preceding output, we can see that the microservices consume around 80-130 

MB. Again, this is a noticeable reduction compared to the 240-310 MB that the Java VM 

containers used! 

 Chapter 23

745

7.  Bring down the system landscape:

docker compose down

To get a better understanding of both the memory and CPU consumption of the 

natively compiled microservices, a more realistic load test needs to be performed, 

but that is beyond the scope of this book. 

After seeing how much faster and less memory-consuming the natively compiled microservices 

are when starting up compared to Java VM-based alternatives, let’s see how we can run them 

using Kubernetes. 

Testing with Kubernetes

To be able to deploy the natively compiled microservices in Kubernetes, a new environment Helm chart has been added, which has been configured to use the Docker images that contain the natively compiled microservices. The Helm charts can be found in the following folders:

kubernetes/helm/

└── environments

└── dev-env-native

Another thing we need to consider before deploying the natively compiled microservices to Kubernetes is how to provision the Docker images. We don’t want to run the lengthy native compilation commands again to get new Docker images created in the minikube instance. If we used a Docker registry in this book, we could have pushed the images to the registry, but we haven’t. Instead, we will extract the Docker images from Docker Desktop and import them into the minikube instance, as a workaround for not using a Docker registry. 

Move the Docker images from Docker Desktop to the minikube instance with the following com-

mands:

1.  Export the Docker images from Docker Desktop:

eval $(minikube docker-env -u)

docker save hands-on/native-product-composite-service:latest -o 

native-product-composite.tar

docker save hands-on/native-product-service:latest -o native-

product.tar

746

 Native Compiled Java Microservices

docker save hands-on/native-recommendation-service:latest -o native-

recommendation.tar

docker save hands-on/native-review-service:latest -o native-review. 

tar

2.  Start up the minikube instance again:

minikube start

3.  In a separate terminal, start the minikube tunnel command:

minikube tunnel

Note that this command requires that your user has sudo privileges and 

that you enter your password during startup. It can take a couple of seconds 

before the command asks for the password, so it is easy to miss! 

4.  Import the Docker images into the minikube instance:

eval $(minikube docker-env)

docker load -i native-product-composite.tar

docker load -i native-product.tar

docker load -i native-recommendation.tar

docker load -i native-review.tar

5.  Finally, delete the exported .tar files:

rm native-product-composite.tar native-product.tar native-

recommendation.tar native-review.tar

Building, deploying, and verifying the deployment on Kubernetes is done in the same way as in the previous chapters. Run the following commands:

1.  Build the Docker image for auth-server with the following command:

docker compose build auth-server

2.  Recreate the namespace, hands-on, and set it as the default namespace:

kubectl delete namespace hands-on

kubectl apply -f kubernetes/hands-on-namespace.yml

 Chapter 23

747

kubectl config set-context $(kubectl config current-context) 

--namespace=hands-on

3.  Resolve the Helm chart dependencies with the following commands. 

First, we update the dependencies in the components folder:

for f in kubernetes/helm/components/*; do helm dep up $f; done

4.  Next, we update the dependencies in the environments folder:

for f in kubernetes/helm/environments/*; do helm dep up $f; done

5.  We are now ready to deploy the system landscape using Helm. Run the following command 

and wait for all the deployments to complete:

helm upgrade -install hands-on-dev-env-native \

kubernetes/helm/environments/dev-env-native \

-n hands-on --wait

In the previous chapters, we used the helm install command. The helm 

upgrade -install command used here is a better alternative for scripting 

since it performs an insert if the chart is not installed, but an upgrade 

if the chart is already installed. It’s a bit like an upsert command in the 

relational database world. 

6.  Run the normal tests to verify the deployment with the following command:

./test-em-all.bash

Depending on how long you waited, the tests might fail with an error message like this:

- Response Body: Jwks doesn't have key to match kid or alg from Jwt

This error is caused by the Istio daemon, istiod, caching the JWKS public keys from the 

auth server in the previous deployment. Refer to  Chapter 18,  Introduction to Microservices, in the  Deploying v1 and v2 versions of the microservices with routing to the v1 version section, for more information. Allow around a minute to pass after the helm update command is 

executed, and the tests should run without any errors. Expect the output to be like what 

we’ve already seen in the previous tests. 

[image: Image 354]

[image: Image 355]

748

 Native Compiled Java Microservices

7.  Check the startup time for one of the Pods. To measure the actual startup time for a 

specific microservice, let’s delete it and then measure the time it takes to start up once 

Kubernetes recreates it:

Kubectl delete pod -l app=product-composite

kubectl logs -l app=product-composite --tail=-1 | grep ": Started" 

Expect a response like this:

 Figure 23.8: Startup time when running as a Pod in Kubernetes

Expect a startup time around what we noticed when using Docker Compose – 0.4 seconds 

in the preceding example. Since we also start an Istio proxy as a sidecar, there might be 

some extra delay. 

8.  Check the Docker images used with the following command:

kubectl get pods -o jsonpath="{.items[*].spec.containers[*].image}" 

| xargs -n1 | grep hands-on

Expect the following response:

 Figure 23.9: Docker images with natively compiled code

From the output, we can see that all containers, except auth-server, use Docker images 

with the native name prefix, meaning we are running natively compiled executables 

inside the Docker containers. 

This completes this chapter on using Spring’s AOT engine and the GraalVM project to create 

natively compiled executables for our microservices. 

 Chapter 23

749

Summary

In this chapter, we were introduced to the new  Spring AOT engine and underlying  GraalVM project, along with its Native Image compiler. After declaring GraalVM’s plugin in the build file and providing the Native Image compiler with some reachability metadata and custom hints, it can be used to create Native Images. Spring Boot’s buildBootImage Gradle task packages these standalone executable files into ready-to-use Docker images. 

The main benefit of compiling Java-based source code into Native Images is a significantly faster startup time and less memory usage. In a test where we started up the microservice instances at the same time, we observed 0.2-0.5 seconds startup times for the natively compiled microservices, compared with the 5.5 to 7 seconds required for the Java VM-based microservices for the same test. Also, the natively compiled microservices required less than half of the memory compared to the Java VM-based microservices after running through the verifications in the test-em-all. 

bash script. 

Most libraries and frameworks in this book already support GraalVM’s Native Image compiler. For those that don’t,  GraalVM Reachability Metadata Repository can help out by providing reachability metadata from the community. GraalVM’s build plugin can automatically detect and download 

reachability metadata from this repository. As a last resort, the GraalVM Native Image  tracing agent can be used to create reachability metadata to help the native compiler. The tracing agent is configured to run together with the existing JUnit tests, creating reachability metadata based on the execution of the tests. 

If we find it problematic to get the Native Image creation to work properly for a specific Spring feature, we can reach out to the  Spring AOT Smoke Tests project for working examples per Spring feature. To verify that the microservices will work once natively compiled, we can run the unit tests in a Native Image using Spring Boot’s Gradle task, nativeTest. 

We have also seen how easy it is to replace the Docker images running a Java VM with Docker 

images containing natively compiled images. By running the Java VM Docker images in  AOT 

 mode, the startup times can be reduced a bit and, at the same time, ensure that the generated AOT code works as expected. Finally, we tested the natively compiled images, both using Docker Compose and Kubernetes. 

With this, we have reached the end of the book. I hope it has helped you learn how to develop microservices using all the amazing features of Spring Boot, Spring Cloud, Kubernetes, and Istio, and that you feel encouraged to try them out! 

[image: Image 356]

750

 Native Compiled Java Microservices

Questions

1.  How are Spring’s AOT engine and the GraalVM projects related to each other? 

2.  How is the tracing agent used? 

3.  What is the difference between JIT and AOT compilation? 

4.  What is AOT mode, and how can it be beneficial to use? 

5.  What is a native custom hint? 

6.  What is a native test, and why is it useful? 

7.  How are initial memory usage and startup times affected by natively compiling Java code? 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 

[image: Image 357]

[image: Image 358]

[image: Image 359]

24

Unlock Your Book’s Exclusive 

Benefits

Your copy of this book comes with the following exclusive benefits:

Next-gen Packt Reader

AI assistant (beta)

DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few minutes and needs to be done only once. 

How to unlock these benefits in three easy steps

Step 1

Have your purchase invoice for this book ready, as you’ll need it in  Step 3. If you received a physical invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG. 

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help. 

Note: Did you buy this book directly from Packt? You don’t need an invoice. After completing Step 2, you can jump straight to your exclusive content. 

[image: Image 360]

[image: Image 361]

752

 Unlock Your Book’s Exclusive Benefits

Step 2

Scan this QR code or go to packtpub.com/unlock. 

On the page that opens (which will look similar to Figure X.1 if you’re on desktop), search for this book by name. Make sure you select the correct edition. 

 Figure X.1: Packt unlock landing page on desktop

Step 3

Once you’ve selected your book, sign in to your Packt account or create a new one for free. Once you’re logged in, upload your invoice. It can be in PDF, PNG, or JPG format and must be no larger than 10 MB. Follow the rest of the instructions on the screen to complete the process. 

[image: Image 362]

[image: Image 363]

 Chapter 24

753

Need help? 

If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your invoices and more. The following QR code will take you to the help 

page directly:

Note: If you are still facing issues, reach out to customercare@packt.com. 

Unlock this book’s exclusive benefits now

Scan this QR code or go to packtpub.com/unlock, then 

search this book by name. 

Note: Keep your purchase invoice ready before you start. 


[image: Image 364]

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website. 

Why subscribe? 

•  Spend less time learning and more time coding with practical eBooks and Videos from 

over 4,000 industry professionals

•  Improve your learning with Skill Plans built especially for you

•  Get a free eBook or video every month

•  Fully searchable for easy access to vital information

•  Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks. 


[image: Image 365]

Other Books  

You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Software Architecture with Spring

Wanderson Xesquevixos

ISBN: 978-1-83588-060-9

•  Translate complex business needs into clear and implementable design

•  Design resilient systems with common architectural styles

•  Transform monolithic applications into microservices following best practices

•  Implement event-driven architecture with Kafka

•  Monitor, trace, and ensure robust testing, security, and performance

•  Identify bottlenecks and optimize performance using patterns, caching, and database 

strategies

•  Automate development workflows with CI/CD pipelines, using Jenkins to deploy the 

application to Kubernetes

[image: Image 366]

758

 Other Books You May Enjoy

Spring System Design in Practice

Rodrigo Santiago

ISBN: 978-1-80324-901-8

•  Implement microservices for scalable, resilient web systems

•  Break down business goals into well-structured product requirements

•  Weigh tradeoffs between writing asynchronous vs. synchronous services and SQL vs. 

NoSQL storage

•  Accelerate service development and reliability through the adoption of test-driven de-

velopment

•  Identify and eliminate hidden performance bottlenecks to maximize speed and efficiency

•  Achieve real-time processing and responsiveness in distributed environments

 Other Books You May Enjoy

759

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea. 

Share your thoughts

Now you’ve finished  Microservices with Spring Boot and Spring Cloud,  Fourth Edition  we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight 

to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from. 

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content. 


Index

Symbols

application monitoring

with Prometheus and Grafana  652, 653

12-factor app

application.yml files

reference link  33

Spring beans, enabling at  

build time  730-732

A

apt install

access token  307

used, for installing tools  711

affinity rules  436

Auth0

Ahead of Time (AOT) compilation  721

account, configuring  339-344

used, for running test script as OpenID 

alarms, Grafana

Connect provider  347, 348

circuit breaker alarm  684-687

authentication  306

default notification policies, configuring  678

mail-based contact point, 

authorization  306

configuring  676, 678

codes  307

setting up  676

delegation  306

setting up, on circuit breaker  679-683

automated microservice tests

Amazon Firecracker  57

adding, in isolation  90-94

AOT engine  722

automated tests

AOT-generated code  723

building  394

running  394

API request

sending, that triggers asynchronous 

automated tests, microservice landscape

processing  422-427

updating  188-190

APIs

autonomous software components  5

manual tests, performing  185-188

benefits  7, 8

testing, manually  87-90

challenges  9, 10

AppCDS  43

B

Apple silicon-based Mac

tools, installing  698

bash  705

application metrics

block() method  220

collecting, by making changes in source 

Borg  12

code  654, 655

762

 Index

bounded contexts  33

clients configuration, config server  364-366

builder pattern  206

configuration repository, structuring  367

connection information  366, 367

C

client secret  307

central configuration pattern  22

client-side routing  19

centralized configuration

Cloud Native Buildpacks

Spring Cloud Config, using for  254, 255

URL  724

centralized log analysis  22, 23

Cloud Native Computing  

Foundation (CNCF)  260

centralized monitoring and  

alarms pattern  28-30

URL  606

Certificate Authorities (CAs)  315

components charts  484, 485

certificate provisioning

composite microservice

automating  523, 524

adding  77

API classes  78, 79

certificates

implementation  83, 84

rotating  529-531

integration component  80-83

cert-manager

properties  79

reference link  523

composite service

testing with  525-529

configuration for publishing events, 

cgroups  56

adding  225

chain of failures  10, 26

events publishing  224

circuit

events publishing, in  

verifying for closure, under normal 

integration layer  224, 225

operations  394

test code changes  226-229

circuit breaker  375, 376

composite service API

closing  396, 397

composite service tests, updating  179, 180

configuration parameters  376, 377

extending  174

features  376

methods, adding to integration layer  177

forcing to open  395, 396

new operations, adding  174-176

trying out  393

new operations, implementing  178, 179

circuit breaker metric

ConfigMap template  469, 470

new panel, creating  667, 668

usage, example  470

testing  670-672

config server setup  361, 362

circuit breaker pattern  26, 27

for using with Docker  363

Class-Data Sharing (CDS)  43

routing rule, setting in edge server  363

client ID  307

container

running, in detached mode  114, 115

 Index

763

containerd

delivery pipeline

URL  437

setting up  32

Container Network Interface (CNI)

dependency injection  36

reference link  432

Deployment template  478-482

container orchestrators  11

usage, example  482-484

Container Runtime Interface (CRI)  437

design patterns, for microservices

control loop pattern  27, 28

central configuration pattern  21

convention over configuration  37

centralized log analysis  22

Conway’s law  32

centralized monitoring and alarms  28

circuit breaker pattern  26

Coordinated Restore at  

Checkpoint (CRaC)  43

control loop pattern  27

distributed tracing  24

core services event  218

edge server pattern  19

configuration for consuming events, 

adding  221, 222

reactive microservices pattern  20

message processor, declaring  218-220

service discovery pattern  17

service implementation changes  220

DevOps  31

test code changes  222, 223

discovery endpoint  311

correlation ID  25

discovery server

cri-o

access, securing to  317-319

URL  437

disruptive tests, with  

curl command

Netflix Eureka server  280

used, for installing tools  713, 714

extra instance, starting up of  

product service  281

Custom Resource Definitions (CRDs)  546

stopping  280

custom spans

distributed system  15

adding  409-413

distributed tracing  24, 25

custom tags

adding, to source code  404-415

adding  409

API request, sending that triggers 

adding, to existing spans  413-415

asynchronous processing  422

successful API request, sending  417-421

D

system landscape, starting up  416

DaemonSet  434, 435

unsuccessful API request, sending  421, 422

with Micrometer Tracing  259-262, 402-404

dead-letter queue  213

with Zipkin  259-262, 402-404

declarative command  441

DNS-based service discovery

default notification policies

issues  264-266

configuring  678

764

 Index

Docker  11, 56, 100

product composite API, 

Docker commands

calling through  298, 299

CPUs, limiting  103, 104

routing, based on host header  301, 302

memory, limiting  104, 105

Spring Cloud Gateway, using as  253, 254

running  101, 102

Swagger UI, calling through  299, 300

Docker Compose  58, 120

working with  296, 297

files changes, applying  533-535

edge server pattern  19

testing with  535-537, 739

EFK stack  43

tests, running with  602

EFK stack deployment, on Kubernetes  617

Zipkin, adding to files  406, 407

Elasticsearch, deploying  619

Docker Compose landscape

Fluentd, deploying  623

database connection configuration  182- 184

Kibana, deploying  619

databases, adding  180

microservice, building  617

Docker Compose configuration  180, 181

microservice, deploying  618, 619

Docker Desktop for Windows

EFK stack implementation  627

installing  709, 710

Kibana, initializing  628

Dockerfile  57

log records, analyzing  629-633

Docker Hub by default

log records, discovering  

from microservices  634-640

URL  101

root cause analysis, performing  640-646

Docker image

egress gateway  540

building  487, 488

Native Image, creating as  737-739

Elastic

reference link  606

Docker with microservice  106

changes, in source code  107-110

Elasticsearch  43, 605

Docker image, building  110, 111

deploying, on Kubernetes  619

service, starting up  111-113

deploying, with commands  622

index  627

domain-driven design  33

manifest files  620

E

entities  50

environment charts  485-487

Eclipse Temurin  696, 712

error handling

URL  108

adding  84

edge server

in API client  86, 87

adding, to system landscape  286, 287

in API implementations  86

changes, applying  322, 323

Eureka

Eureka, calling through  300, 301

calling, through edge server  300, 301

ports outside Docker engine, examining  297

 Index

765

changes in clients  319

Flux  196

changes in server  317, 318

fully qualified domain name (FQDN)  560

event-driven asynchronous services

Function-as-a-Service (FaaS)  721

core services event  218

developing  209

G

events, publishing in composite service  224

Gradle build files, changes  217, 218

getMessage() method  228

messaging challenges, handling  210

global REST controller exception handler  85

topic and event, defining  215-217

GraalVM Native Image tracing agent

versus non-blocking  

configuring  732, 733

synchronous APIs  194, 195

GraalVM project  721, 722

external OpenID Connect provider

Gradle build files

access tokens, acquiring with authorization 

updating  728, 729

code grant flow  349-353

access tokens, acquiring with client 

Grafana  542

credentials grant flow  349

alarms, setting up  676

account, setting up in Auth0  339-344

used, for application monitoring  652, 653

configuration, changing in OAuth resource 

Grafana dashboards

servers  345

circuit breaker metrics, testing  670-672

protected APIs, calling with Auth0 access 

configuring  659

tokens  353

creating  666

required changes, applying to Auth0 as 

developing  665

OpenID provider  344

empty dashboard, creating  666

test script, running  347-349

exporting  674, 675

test script, updating  346, 347

importing  663-675

used, for testing  339

Kiali’s built-in dashboards, using  661-663

F

load test, starting up  660

local mail server, installing for tests  658, 659

fallback method  376

new panel, creating for circuit breaker 

fat JAR file  37

metric  667, 668

new panel, creating for retry metric  668

Finder  699

panels, arranging  669, 670

Fluentd  605, 606

Prometheus metrics, examining  665

configuring  608-617

retry metrics, testing  673, 674

deploying  623

trying out  670

deploying, with commands  626, 627

used, for monitoring microservices  657, 658

manifest files  623-626

overview  606-608

URL  606

766

 Index

H

Intel-based Mac

tools, installing  697

half-open circuit  27

Istio  541, 542

HashiCorp Vault PKI Secrets Engine

API objects  546, 547

reference link  523

deploying, in Kubernetes cluster  549-553

Helm  463-465

proxies, injecting into  

chart  465, 466

microservices  543-545

commands, running  465

runtime components  543

common library chart  468

service access, setting up  554-557

components charts  484, 485

Istio project

ConfigMap template  469

URL  541

Deployment template  478-482

environment charts  485-487

J

Secrets template  471-476

J2EE standard  36

templates and values  466-468

Jaeger component  548

Helm chart dependencies

resolving  488

Jakarta Persistence API  50

Homebrew  695

Java

installing, on macOS  696

installing, on macOS  696

using, for installing tools  697

installing, with SDKman  712, 713

running, in Docker  103

horizontal scaling  11

Java EE  37

host-based routing  294

Java KeyStore files  314

HTTPS

self-signed certificate, 

Java source code

replacing at runtime  315-317

changes, applying  727, 728

used, for protecting  

GraalVM Native Image tracing agent, 

external communication  313-315

configuring  732, 733

Gradle build files, updating  728, 729

I

reachability metadata and custom hints, 

providing  729, 730

Identity Provider (IdP)  307

Spring beans, enabling at build time in 

imperative statements  441

application.yml files  730-732

Ingress controller  439

test-em-all.bash verification script, 

updating  733

testing with  525-529

updated runtime properties  732

ingress gateway  540

Java VM-based microservices

install command

testing, with AOT mode disabled  740-742

used, for installing tools  713, 714

testing, with AOT mode enabled  742, 743

 Index

767

JSON Web Key Set (jwk-set)  312, 547

Secrets  434

JSON Web Token (JWT)  311

Service  434

Just in Time (JIT) compilation  547, 720

Kubernetes cluster

creating, with minikube  439-445

K

hibernating  454

resuming  454

Kiali  542

terminating  455

built-in dashboards, using  661-663

Kubernetes ConfigMaps

Kibana  605

testing with  525-529

deploying, on Kubernetes   619

deploying, with commands  622

Kubernetes, for development and test

manifest files  621

deploying  487-492

deployment, testing  492, 493

kubectl

Docker images, building  487, 488

contexts, working with  442, 443

Helm chart dependencies, resolving  488

working with  441

Spring Boot’s support, testing  493-500

Kubernetes  11, 431

test script, modifying for using  492

concepts  432

Kubernetes, for staging and production

deploying, to staging and production 

environment  531, 532

cleaning up  504, 505

desired state  432

deploying  500-504

EFK stack, deploying  617

source code, modifying  501, 502

Ingress object  432

Kubernetes Ingress controller

liveness probe  432

replacing, with Istio  

namespace  432

ingress gateway  547, 548

Pods  432

Kubernetes Ingress object

readiness probe  432

using, to replace Spring Cloud  

reference link  12

Gateway  518-521

Service objects  432

Kubernetes objects

testing with  745-748

usage  461

Kubernetes API objects  433

Kubernetes resources

ConfigMap  434

overview  435

Deployment  433

Kubernetes runtime components  436

Ingress  434

API server  436

Namespace  434

container runtime  437

node  433

controller manager  436

Pod  433

etcd  436

ReplicaSet  433

kubelet  437

kube-proxy  437

768

 Index

Kubernetes DNS  437

M

master nodes  436

overview  438, 439

mail-based contact point

scheduler  436

configuring  676, 678

worker nodes  436

manifest file

Kubernetes Services

for Elasticsearch  620

Netflix Eureka, replacing with  458-461

for Fluentd  623-626

for Kibana  621

L

MapStruct  152

Let’s Encrypt

URL  152

URL  523

Markdown syntax  137

Linkerd

messaging challenges

URL  541

consumer group  211, 212

Linux control groups  56, 100

guaranteed order and partitions  214

retries and dead-letter queues  213

Linux namespaces  100

metacircular  721

Linux server in WSL 2

tools, installing  711

Micrometer library

reference link  654

local authorization server

access tokens, acquiring with authorization 

Micrometer Observability

code grant flow  331-334

URL  403

adding  319-321

Micrometer Tracing  259

automated tests, building  328

configuration, adding  405, 406

automated tests, running  328

distributed tracing with  402-404

protected APIs, calling with  

for distributed tracing  259-262

access tokens  334-336

microservice landscape  62

protected discovery server, 

automated tests, updating  188-190

testing  328-331

building  138, 139

Swagger UI testing with OAuth 2.0  337, 338

changes in source code  115-117

used, for testing  328

infrastructure-related information  63

local Kubernetes cluster

managing, with Docker Compose  115

managing  453

product composite service  63

Logback configuration file  161

product service  62

loose coupling  194

recommendation service  63

review service  63

 Index

769

semi-automated tests, adding  94

N

service discovery, replacing temporarily  64

simplifying  547

namespaces  56

starting up  117-120

native compilation

microservices  10, 11

used, for handling problems  725-727

architecture considerations  31-33

native compile Java source code

autonomous software components, 

using  720, 721

benefits  7-9

Native Image compiler  712

building  656, 657

challenges  15, 16

Native Images  719

connecting, to Netflix Eureka server  270-272

compiling  734

defining  13, 14

creating, as Docker image  737-739

deploying  656, 657

creating, for current OS  736, 737

deploying, on Kubernetes  617-619

native tests, running  735, 736

design patterns  16, 17

testing  734

Docker Compose files changes, 

tracing agent, running  734, 735

applying  533-535

natively compiled microservices

landscape  12

testing  743-745

monitoring with  

native tests  726

Grafana dashboards  657, 658

Netflix Eureka

platform composition  5, 6

disruptive tests  280

testing, with Docker Compose  535-537

problem, with DNS-based  

usage, verifying without  

service discovery  264-266

Kubernetes  532, 533

replacing, with Kubernetes Services  458-461

minikube

service discovery  264

drawback  440

service discovery, challenges  266

Kubernetes cluster, creating with  439, 440

using, for service discovery  252

profiles  440

Netflix Eureka server

minikube tunnel  554

clients, configuring to  275

Mockito  92

configuration parameters  273, 274

MongoDB  184

configuration, setting up  

monitor service  28

for development use  272, 273

configuring  274

Mono objects  53, 196

discovery service, exploring  275, 276

multi-stage build  109

executing  282, 283

mutual TLS (mTLS)  546

microservices, connecting to  270-272

MySQL CLI tool

scaling down  279, 280

starting  184

scaling up  276-279

setting up  269, 270

770

 Index

Netflix Hystrix  256

OpenAPI Specification  48, 127

Netflix OSS  11

OpenCensus project  260

Netty

OpenID Connect  

URL  46

(OIDC)  253, 306, 310, 311, 547

non-blocking persistence

used, for protecting APIs  321-327

test code change  199

OpenTelemetry  260

with Spring Data for MongoDB  198

URL  402

non-blocking REST APIs  

OpenTracing  260

composite services  205

Oracle GraalVM  696, 712

implementation change  205, 206

outlier detection  579

integration layer change  206-208

OWASP Top Ten Project

methods, updating  205

reference link  313

test code change  208

non-blocking REST APIs core services  200

P

code blocking  202-204

implementation changes  200-202

Paketo project  725

method, updating  200

partitions  214

test code changes  202

persistence layer

non-blocking synchronous APIs

manual tests, performing  185-188

developing  195

persistence layer, adding to core 

Project Reactor  196

microservices  152

versus event-driven  

data, storing with entity classes  154-157

asynchronous services  194, 195

dependencies, adding  153, 154

O

repositories, defining in  

Spring Data  157, 158

OAuth 2.0  253, 306

persistence layer, in service layer  167

authorization code grant flow  308

APIs, adding  168, 169

client credentials grant flow  309

calling from  169, 170

implicit grant flow  309

database connection URL, logging  167, 168

resource owner password  

Java bean mapper, declaring  171

credentials grant flow  309

service tests, updating  172-174

used, for protecting APIs  321-327

persistence tests

OAuth 2.1

automated tests, writing  158

improvements  310

Testcontainers, using  159-161

OpenAPI documentation  140-146

writing  161-166

OpenAPI Initiative  48

PKCS12 format  314

 Index

771

Pods  432

Visual Studio Code, installing  711

poisoned message  213

repositories  50

prod-env Helm chart  589

Resilience4j  256

product composite API

bulkhead  256

calling, through edge server  298, 299

circuit breaker  256-258

product-composite service  261

rate limiter  256

changes, applying  322-324

resilience mechanisms  374, 375

Project Reactor  45, 196, 198

retries  256

reference link  196

time limiter  256

URL  256

Prometheus  542

used, for application monitoring  652, 653

resilience mechanisms, adding to source 

code  379, 380

proxy component  540

annotations, adding  385, 386

purgeMessages() method  228

automated tests, adding  389-393

changes, in API definitions  381

Q

changes, in product-composite  

microservice  381

quality assurance (QA)  500

changes, in product microservice  382-384

R

circuit breaker, adding  384

configuration, adding  387-389

reachability metadata  722

dependencies, adding to build file  384

reactive microservice automated tests

fail-fast fallback logic, adding  386

running  243

programmable delays  380

reactive microservice manual tests

random errors  380

events, saving  230

retry annotation, adding  388

health API, adding  230-234

retry mechanism, adding  388

Kafka, using with two partitions  

time limiter, adding  384

per topic  240-242

resilience, service mesh

RabbitMQ, using without partitions  234-237

ensuring  579

RabbitMQ, using with partitions  238, 239

testing by injecting delays  581-584

running  229

testing by injecting faults  580, 581

reactive microservices pattern  20, 21

RESTful APIs

Reactive Streams specification

adding  71

reference link  196

api project, adding  72-74

refresh token  307

implementing  74-77

Remote WSL

util project, adding  71-74

Visual Studio Code extension, installing  711

772

 Index

retry mechanism  378, 379

Secrets template  471, 472

reference link  375

usage example  472

trying out  393, 397, 398

Secure Sockets Layer (SSL)  313

retry metric

semi-automated tests

new panel, creating  668, 669

adding  94

testing  673, 674

script, trying  95, 96

RFC8555

server-side routing  19

reference link  523

server-side service concept  268

Role-Based Access Control (RBAC)

service discovery  264

reference link  433

challenges  266

root cause analysis  628

Netflix Eureka, using for  252

route  291

service discovery pattern  18

destination URI  291

service mesh  12, 540

filters  291

control plane  540

ID  291

creating  558

predicates  291

creation, by running commands  562-564

routing rules

data plane  540

implementing  298

_istio_base.yaml template  558-560

requests, routing to Eureka server’s API and 

istio_dr_mutual_tls.yaml template  561, 562

web page  293, 294

observing  566-570

requests, routing to  

resilience testing, 

product-composite API  292

by injecting delays  581-584

requests, routing with  

resilience testing, 

predicates and filters  294-296

by injecting faults  580, 581

setting up  291

resilient, ensuring  579

S

source code changes  558

trace and span IDs, 

sample Deployment

logging propagation  564, 565

trying  445-453

with Istio  540, 541

scopes  307

service mesh security  571

SDKMan  695

external endpoints, protecting with HTTPS 

and certificates  571-573

installing, on macOS  695

external requests, authenticating with 

used, for installing Java  712

OAuth 2.0/OIDC access tokens  574-576

used, for installing Spring Boot CLI  712

internal communication, protecting using 

Secrets

mutual authentication  

testing with  525-529

with mTLS  577-579

 Index

773

Service objects  432

spans  259, 402

Service template  474-476

Spotlight  699

usage example  476, 477

@SpringBootApplication annotation  38

sidecar  543

Spring Authorization Server  319

Single Container pattern

Spring beans

reference link  160

enabling, at build time in application.yml 

skeleton microservices generation  64

files  730-732

multi-project builds, 

Spring Boot  36, 37

setting up in Gradle  69, 70

usage  461-463

skeleton code, generating with Spring 

Spring Boot 2 application

Initializr  64-69

migrating  44, 45

software enablers  30, 31

Spring Boot Actuator  65

source code

Spring Boot CLI

accessing  701, 702, 715, 716

installing, on macOS  695

accessing, with IDE  702

installing, with SDKman  712, 713

distributed tracing, adding  404-415

structure  702, 703, 716, 717

SpringBootTest annotation  67

source code examples

Spring Cloud  11, 249

for sending and receiving messages  54-56

evolution  250, 251

references  250

source code examples, for REST service 

setup  46

service discovery, 

with Netflix Eureka  267, 268

entity  51, 52

property files  47

Spring Cloud Bus  254

repositories  52, 53

Spring Cloud Circuit Breaker project  375

Sample RestController  48

reference link  375

Spring Data  50

Spring Cloud Config Server  358

springdoc-openapi  48-50

automated tests, building  368

starter dependencies  46, 47

automated tests, running  368

source code examples, for Spring Boot 

config server API  361

application

configuration at rest, securing  360

component scanning  39, 40

configuration in transit, securing  360

Java-based configuration  40, 41

configuration, obtaining with config server 

setting up  38

API  368-370

Spring Boot 3.0  41, 42

configuration repository storage type, 

Spring Boot 3.1-3.5  42

selecting  359

@SpringBootApplication annotation  38

configuration, securing  360

initial client connection, deciding  359

SpanId  259

774

 Index

replacing  510, 511

Spring’s AOT engine  722-725

replacing, with Kubernetes ConfigMaps and  Spring WebFlux  45, 65, 198

Secrets  512-516

SSL Bundles  314

sensitive information, decrypting  370, 371

sensitive information, encrypting  370, 371

starter dependencies  46

trying  367

structured concurrency  42

using, for centralized configuration  254, 255 Substrate VM  722

Spring Cloud Gateway

successful API request

composite health check, adding  288-290

sending  417-421

configuring  290, 291

Swagger UI

replacing  517, 518

access, allowing to protected APIs  325, 326

replacing, with  

calling, through edge server  299, 300

Kubernetes Ingress object  518-521

testing, with OAuth 2.0  337, 338

setting up  287, 288

system landscape  416

using, as edge server  253, 254

edge server, adding to  286, 287

Spring Cloud Sleuth  259

securing  311-313

Spring Cloud Stream  54

core concepts  54

T

Spring Data  50, 157

tags  402

repositories, defining  157

test automation

springdoc.api-docs.path  134

of cooperating microservices  120-122

springdoc-openapi  127

Testcontainers  159

adding, to source code  130

URL  159

API-specific documentation, adding to 

ProductCompositeService  

used, for persistence tests  159-161

interface  134-137

test-em-all.bash verification script

dependencies, adding to  

updating  733

Gradle build files  131

test run

general API documentation, adding to 

troubleshooting  123, 124

ProductCompositeService  131-134

tests

OpenAPI configuration, adding to 

ProductCompositeService  131-134

running, with Docker Compose  602

using  128-130

test script

springdoc.packagesToScan  134

changes, applying  327

springdoc.pathsToMatch  134

The Reactive Manifesto

reference link  21

springdoc.swagger-ui.path  134

time limiter  378

Spring Initializr  64

tokens  307

 Index

775

tools

unsuccessful API request

installations, verifying  714, 715

sending  421, 422

installing  706, 707

user acceptance tests (UATs)  500

installing, on Linux server in WSL 2  711

user-info endpoint  311

installing, on Windows  707

installing, with apt install  711

V

installing, with curl command  713, 714

installing, with install command  713, 714

vertical scaling  10

tools, for installation on Linux server

virtual threads  42

reference link  706

Visual Studio Code

tools, for installation on Windows

extension, installing for Remote WSL  711

reference link  706

installing, for Remote WSL  711

tools, installing on macOS  694, 695

URL  711

Homebrew  696

W

installation, on Apple silicon-based Mac  698

installation, on Intel-based Mac  697

W3C trace context

installations, verifying  700, 701

URL  403

Java  696

web browser  653

post-installation actions  698-700

Windows

SDKMan  695

Docker Desktop, installing  709, 710

Spring Boot CLI  695

tools, installing on  707

without Homebrew  697

Windows Subsystem for  

trace  402

Linux v2 (WSL 2)  706

TraceId  259

installing, with Ubuntu server  707

trace tree  259, 402

Ubuntu 24.04 server, installing on  708

tracing  542

Windows Terminal

Transport Layer Security (TLS)  313

installing  708, 709

reference link  708

U

Y

Ubuntu 24.04 LTS

reference link  708

YAML file

Ubuntu 24.04 server

reference link  137

installing, on WSL 2  708

Z

Ubuntu server

WSL 2, installing with  707

zero-downtime updates

all requests routed to v1 version, 

verifying  593, 594

776

 Index

blue-green deployment, 

performing  598-602

blue-green deployment, running  596

canary tests, running  594, 595

deployments  588

destination rules  586, 587

kubectl patch command  597

performing  584, 585

prod-env Helm chart  589

services  588

source code changes  586

v1 and v2 versions, deploying  590-592

virtual services  586, 587

Zipkin  259

adding, to Docker Compose files  406, 407

configuration, adding  405, 406

distributed tracing with  402-404

for distributed tracing  259-262

URL  259

Zipkin server

replacing, with Istio’s  

Jaeger component  548, 549





Document Outline


	Cover

	Copyright

	Contributors

	Table of Contents

	Preface

	Part 1: Getting Started with Microservice Development Using Spring Boot

	Chapter 1: Introduction to Microservices

	Technical requirements

	Getting the most out of this book – get to know your free benefits

	Next-gen reader

	Interactive AI assistant (beta)

	DRM-free PDF or ePub version 





	My way into microservices

	Benefits of autonomous software components

	Challenges with autonomous software components





	Enter microservices

	A sample microservice landscape





	Defining a microservice

	Challenges with microservices

	Design patterns for microservices

	Service discovery

	Problem

	Solution

	Solution requirements





	Edge server

	Problem

	Solution

	Solution requirements





	Reactive microservices

	Problem

	Solution





	Solution requirements

	Central configuration

	Problem

	Solution

	Solution requirements





	Centralized log analysis

	Problem

	Solution

	Solution requirements





	Distributed tracing

	Problem

	Solution

	Solution requirements





	Circuit breaker

	Problem

	Solution

	Solution requirements





	Control loop

	Problem

	Solution

	Solution requirements





	Centralized monitoring and alarms

	Problem

	Solution

	Solution requirements









	Software enablers

	Other important considerations

	Summary





	Chapter 2: Introduction to Spring Boot

	Technical requirements

	Spring Boot

	Convention over configuration and fat JAR files

	Code examples for setting up a Spring Boot application

	The magic @SpringBootApplication annotation

	Component scanning

	Java-based configuration

	What’s new in Spring Boot 3.0 to 3.5? 





	Migrating a Spring Boot 2 application

	Spring WebFlux

	Code examples of setting up a REST service

	Starter dependencies

	Property files

	Sample RestController

	springdoc-openapi

	Spring Data

	Entity

	Repositories





	Spring Cloud Stream

	Code examples for sending and receiving messages

	Docker

	Summary

	Questions





	Chapter 3: Creating a Set of Cooperating Microservices

	Technical requirements

	Introducing the microservice landscape

	Information handled by the microservices

	The product service

	The review service

	The recommendation service

	The product composite service

	Infrastructure-related information





	Temporarily replacing service discovery





	Generating skeleton microservices

	Using Spring Initializr to generate skeleton code

	Setting up multi-project builds in Gradle





	Adding RESTful APIs

	Adding an API and a util project

	The api project

	The util project

	Implementing our API





	Adding a composite microservice

	API classes

	Properties

	The integration component

	Composite API implementation





	Adding error handling

	The global REST controller exception handler

	Error handling in API implementations

	Error handling in the API client





	Testing APIs manually

	Adding automated microservice tests in isolation

	Adding semi-automated tests of a microservice landscape

	Trying out the test script





	Summary

	Questions





	Chapter 4: Deploying Our Microservices Using Docker

	Technical requirements

	Introduction to Docker

	Running our first Docker commands

	Running Java in Docker

	Limiting available CPUs

	Limiting available memory





	Using Docker with one microservice

	Changes in source code

	Building a Docker image

	Starting up the service





	Running the container in detached mode

	Managing a landscape of microservices using Docker Compose

	Changes in the source code

	Starting up the microservice landscape





	Automating tests of cooperating microservices

	Troubleshooting a test run

	Summary

	Questions





	Chapter 5: Adding an API Description Using OpenAPI

	Technical requirements

	Introduction to using springdoc-openapi

	Adding springdoc-openapi to the source code

	Adding dependencies to the Gradle build files

	Adding OpenAPI configuration and general API documentation to ProductCompositeService

	Adding API-specific documentation to the ProductCompositeService interface





	Building and starting the microservice landscape

	Trying out the OpenAPI documentation

	Summary

	Questions





	Chapter 6: Adding Persistence

	Technical requirements

	Chapter objectives

	Adding a persistence layer to the core microservices

	Adding dependencies

	Storing data with entity classes

	Defining repositories in Spring Data





	Writing automated tests that focus on persistence

	Using Testcontainers

	Writing persistence tests





	Using the persistence layer in the service layer

	Logging the database connection URL

	Adding new APIs

	Calling the persistence layer from the service layer

	Declaring a Java bean mapper

	Updating the service tests





	Extending the composite service API

	Adding new operations to the composite service API

	Adding methods to the integration layer

	Implementing the new composite API operations

	Updating the composite service tests





	Adding databases to the Docker Compose landscape

	The Docker Compose configuration

	Database connection configuration

	The MongoDB and MySQL CLI tools





	`Manual tests of the new APIs and the persistence layer

	Updating the automated tests of the microservice landscape

	Summary

	Questions





	Chapter 7: Developing Reactive Microservices

	Technical requirements

	Choosing between non-blocking synchronous APIs and event-driven asynchronous services

	Developing non-blocking synchronous REST APIs

	An introduction to Project Reactor

	Non-blocking persistence using Spring Data for MongoDB

	Changes in the test code





	Non-blocking REST APIs in the core services

	Changes in the APIs

	Changes in the service implementations

	Changes in the test code

	Dealing with blocking code





	Non-blocking REST APIs in the composite services

	Changes in the API

	Changes in the service implementation

	Changes in the integration layer

	Changes in the test code









	Developing event-driven asynchronous services

	Handling challenges with messaging

	Consumer groups

	Retries and dead-letter queues

	Guaranteed order and partitions





	Defining topics and events

	Changes in the Gradle build files

	Consuming events in the core services

	Declaring message processors

	Changes in the service implementations

	Adding configuration for consuming events

	Changes in the test code





	Publishing events in the composite service

	Publishing events in the integration layer

	Adding configuration for publishing events

	Changes in the test code









	Running manual tests of the reactive microservice landscape

	Saving events

	Adding a health API

	Using RabbitMQ without using partitions

	Using RabbitMQ with partitions

	Using Kafka with two partitions per topic





	Running automated tests of the reactive microservice landscape

	Summary

	Questions





	Part 2: Leveraging Spring Cloud to Manage Microservices

	Chapter 8: Introduction to Spring Cloud

	Technical requirements

	The evolution of Spring Cloud

	Using Netflix Eureka for service discovery

	Using Spring Cloud Gateway as an edge server

	Using Spring Cloud Config for centralized configuration

	Using Resilience4j for improved resilience

	Sample usage of the circuit breaker in Resilience4j





	Using Micrometer Tracing and Zipkin for distributed tracing

	Summary

	Questions





	Chapter 9: Adding Service Discovery Using Netflix Eureka

	Technical requirements

	Introducing service discovery

	The problem with DNS-based service discovery

	Challenges with service discovery

	Service discovery with Netflix Eureka in Spring Cloud





	Setting up a Netflix Eureka server

	Connecting microservices to a Netflix Eureka server

	Setting up the configuration for development use

	Eureka configuration parameters

	Configuring the Eureka server

	Configuring clients to the Eureka server





	Trying out the discovery service

	Scaling up

	Scaling down

	Disruptive tests with the Eureka server

	Stopping the Eureka server

	Starting up an extra instance of the product service









	Starting up the Eureka server again

	Summary

	Questions





	Chapter 10: Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

	Technical requirements

	Adding an edge server to our system landscape

	Setting up Spring Cloud Gateway

	Adding a composite health check

	Configuring Spring Cloud Gateway

	Routing rules









	Trying out the edge server

	Examining what is exposed outside the Docker engine

	Trying out the routing rules

	Calling the product composite API through the edge server

	Calling the Swagger UI through the edge server

	Calling Eureka through the edge server

	Routing based on the host header









	Summary

	Questions





	Chapter 11: Securing Access to APIs

	Technical requirements

	Introduction to OAuth 2.0 and OpenID Connect

	Introducing OAuth 2.0

	Introducing OpenID Connect





	Securing the system landscape

	Protecting external communication with HTTPS

	Replacing a self-signed certificate at runtime





	Securing access to the discovery server

	Changes in the Eureka server

	Changes in Eureka clients





	Adding a local authorization server

	Protecting APIs using OAuth 2.0 and OpenID Connect

	Changes in both the edge server and the product-composite service

	Changes in the product-composite service only

	Changes to allow Swagger UI to acquire access tokens

	Changes in the test script





	Testing with the local authorization server

	Building and running the automated tests

	Testing the protected discovery server

	Acquiring access tokens

	Acquiring access tokens using the client credentials grant flow





	Acquiring access tokens using the authorization code grant flow

	Calling protected APIs using access tokens

	Testing Swagger UI with OAuth 2.0





	Testing with an external OpenID Connect provider

	Setting up and configuring an account in Auth0

	Applying the required changes to use Auth0 as an OpenID provider

	Changing the configuration in the OAuth resource servers

	Changing the test script so it acquires access tokens from Auth0

	Running the test script with Auth0 as the OpenID Connect provider

	Acquiring access tokens using the client credentials grant flow

	Acquiring access tokens using the authorization code grant flow

	Calling protected APIs using the Auth0 access tokens

	Getting extra information about the user





	Summary

	Questions





	Chapter 12: Centralized Configuration

	Technical requirements

	Introduction to Spring Cloud Config Server

	Selecting the storage type of the configuration repository

	Deciding on the initial client connection

	Securing the configuration

	Securing the configuration in transit

	Securing the configuration at rest

	Introducing the config server API





	Setting up a config server

	Setting up a routing rule in the edge server

	Configuring the config server for use with Docker





	Configuring clients of a config server

	Configuring connection information

	Structuring the configuration repository





	Trying out Spring Cloud Config Server

	Building and running automated tests

	Getting the configuration using the config server API

	Encrypting and decrypting sensitive information





	Summary

	Questions





	Chapter 13: Improving Resilience Using Resilience4j

	Technical requirements

	Introducing the Resilience4j resilience mechanisms

	Introducing the circuit breaker

	Introducing the time limiter

	Introducing the retry mechanism





	Adding the resilience mechanisms to the source code

	Adding programmable delays and random errors

	Changes in the API definitions

	Changes in the product-composite microservice

	Changes in the product microservice

	Adding a circuit breaker and a time limiter

	Adding dependencies to the build file

	Adding annotations in the source code

	Adding fail-fast fallback logic

	Adding configuration

	Adding a retry mechanism

	Adding the retry annotation

	Adding configuration

	Adding automated tests





	Trying out the circuit breaker and retry mechanism

	Building and running the automated tests

	Verifying that the circuit is closed under normal operations

	Forcing the circuit breaker to open when things go wrong

	Closing the circuit breaker again

	Trying out retries caused by random errors





	Summary

	Questions





	Chapter 14: Understanding Distributed Tracing

	Technical requirements

	Introducing distributed tracing with Micrometer Tracing and Zipkin

	Adding distributed tracing to the source code

	Adding dependencies to build files

	Adding configuration for Micrometer Tracing and Zipkin

	Adding Zipkin to the Docker Compose files

	Adding workarounds for the lack of support of reactive clients

	Adding custom spans and custom tags to existing spans

	Adding a custom span

	Adding custom tags to existing spans





	Trying out distributed tracing

	Starting up the system landscape

	Sending a successful API request

	Sending an unsuccessful API request

	Sending an API request that triggers asynchronous processing





	Summary

	Questions





	Part 3: Developing Lightweight Microservices Using Kubernetes

	Chapter 15: Introduction to Kubernetes

	Technical requirements

	Introducing Kubernetes concepts

	Introducing Kubernetes API objects

	Introducing Kubernetes runtime components

	Creating a Kubernetes cluster using minikube

	Working with minikube profiles

	Working with the Kubernetes CLI, kubectl

	Working with kubectl contexts

	Creating a Kubernetes cluster





	Trying out a sample Deployment

	Managing a local Kubernetes cluster

	Hibernating and resuming a Kubernetes cluster

	Terminating a Kubernetes cluster





	Summary

	Questions





	Chapter 16: Deploying Our Microservices to Kubernetes

	Technical requirements

	Replacing Netflix Eureka with Kubernetes Services

	Introducing how Kubernetes will be used

	Using Spring Boot’s support for graceful shutdown and probes for liveness and readiness

	Introducing Helm

	Running Helm commands

	Looking into a Helm chart

	Helm templates and values

	The common library chart

	The ConfigMap template

	Example of using the ConfigMap template





	The Secrets template

	Example of using the Secrets template





	The Service template

	Example of using the Service template





	The Deployment template

	Example of using the Deployment template





	The components charts

	The environment charts





	Deploying to Kubernetes for development and test

	Building Docker images

	Resolving Helm chart dependencies

	Deploying to Kubernetes

	Changes in the test script for use with Kubernetes

	Testing the Deployment

	Testing Spring Boot’s support for graceful shutdown and probes for liveness and readiness





	Deploying to Kubernetes for staging and production

	Changes in the source code

	Deploying to Kubernetes

	Cleaning up





	Summary

	Questions





	Chapter 17: Implementing Kubernetes Features to Simplify the System Landscape

	Technical requirements

	Replacing the Spring Cloud Config Server

	Changes required to replace the Spring Cloud Config Server





	Replacing the Spring Cloud Gateway

	Changes required to replace the Spring Cloud Gateway





	Automating certificate provisioning

	Testing with Kubernetes ConfigMaps, Secrets, Ingress, and cert-manager

	Rotating certificates

	Deploying to Kubernetes for staging and production





	Verifying that the microservices work without Kubernetes

	Changes in the Docker Compose files

	Testing with Docker Compose





	Summary

	Questions





	Chapter 18: Using a Service Mesh to Improve Observability and Management

	Technical requirements

	Introducing service meshes using Istio

	Introducing Istio

	Injecting Istio proxies into microservices

	Introducing Istio API objects





	Simplifying the microservice landscape

	Replacing the Kubernetes Ingress controller with an Istio ingress gateway





	Replacing the Zipkin server with Istio’s Jaeger component

	Deploying Istio in a Kubernetes cluster

	Setting up access to Istio services





	Creating the service mesh

	Source code changes

	Content in the _istio_base.yaml template

	Content in the _istio_dr_mutual_tls.yaml template

	Running commands to create the service mesh

	Logging propagation of trace and span IDs





	Observing the service mesh

	Securing a service mesh

	Protecting external endpoints with HTTPS and certificates

	Authenticating external requests using OAuth 2.0/OIDC access tokens

	Protecting internal communication using mutual authentication with mTLS





	Ensuring that a service mesh is resilient

	Testing resilience by injecting faults

	Testing resilience by injecting delays





	Performing zero-downtime updates

	Source code changes

	Virtual services and destination rules

	Deployments and services

	Tying things together in the prod-env Helm chart

	Deploying the v1 and v2 versions of the microservices with routing to the v1 version

	Verifying that all traffic initially goes to the v1 version of the microservices

	Running canary tests

	Running a blue-green deployment

	A short introduction to the kubectl patch command

	Performing the blue-green deployment





	Running tests with Docker Compose

	Summary

	Questions





	Chapter 19: Centralized Logging with the EFK Stack

	Technical requirements

	Introducing Fluentd

	Overview of Fluentd

	Configuring Fluentd





	Deploying the EFK stack on Kubernetes

	Building and deploying our microservices

	Deploying Elasticsearch and Kibana

	A walkthrough of the manifest files

	Running the deploy commands





	Deploying Fluentd

	A walkthrough of the manifest files

	Running the deploy commands









	Trying out the EFK stack

	Initializing Kibana

	Analyzing the log records

	Discovering the log records from microservices

	Performing root cause analysis





	Summary

	Questions





	Chapter 20: Monitoring Microservices

	Technical requirements

	Introduction to application monitoring using Prometheus and Grafana

	Changes in source code to collect application metrics

	Building and deploying the microservices

	Monitoring microservices using Grafana dashboards

	Installing a local mail server for tests

	Configuring Grafana

	Starting up the load test

	Using Kiali’s built-in dashboards

	Importing existing Grafana dashboards

	Developing your own Grafana dashboards

	Examining Prometheus metrics

	Creating the dashboard





	Exporting and importing Grafana dashboards





	Setting up alarms in Grafana

	Configuring a mail-based contact point

	Configuring default notification policies

	Setting up an alarm on the circuit breaker

	Trying out the circuit breaker alarm





	Summary

	Questions





	Chapter 21: Installation Instructions for macOS

	Technical requirements

	Installing the necessary tools

	Installing SDKMan, Java, and the Spring Boot CLI

	Installing Homebrew

	Using Homebrew to install tools

	Install tools without Homebrew

	Installing tools on an Intel-based Mac

	Installing tools on an Apple silicon-based Mac

	Post-installation actions

	Verifying the installations





	Accessing the source code

	Using an IDE

	The structure of the code





	Summary





	Chapter 22: Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

	Technical requirements

	Installing the necessary tools

	Installing tools on Windows

	Installing WSL 2 with a default Ubuntu server

	Installing a new Ubuntu 24.04 server on WSL 2

	Installing Windows Terminal

	Installing Docker Desktop for Windows

	Installing Visual Studio Code and its extension for Remote WSL





	Installing tools on the Linux server in WSL 2

	Installing tools using apt install

	Installing the Java and Spring Boot CLI using SDKMan

	Installing the remaining tools using curl and install

	Verifying the installations









	Accessing the source code

	The structure of the code





	Summary





	Chapter 23: Native Compiled Java Microservices

	Technical requirements

	When to natively compile Java source code

	Introducing the GraalVM project

	Introducing Spring’s AOT engine

	Handling problems with native compilation

	Changes in the source code

	Updates to the Gradle build files

	Providing reachability metadata and custom hints

	Enabling Spring beans at build time in application.yml files

	Updated runtime properties

	Configuration of the GraalVM Native Image tracing agent

	Updates to the test-em-all.bash verification script





	Testing and compiling Native Images

	Running the tracing agent

	Running native tests

	Creating a Native Image for the current OS

	Creating a Native Image as a Docker image





	Testing with Docker Compose

	Testing Java VM-based microservices with AOT mode disabled

	Testing Java VM-based microservices with AOT mode enabled

	Testing natively compiled microservices





	Testing with Kubernetes

	Summary

	Questions





	Chapter 24: Unlock Your Book’s Exclusive Benefits

	How to unlock these benefits in three easy steps

	Step 1

	Step 2

	Step 3

	Need help? 









	PacktPage

	Other Books You May Enjoy

	Index






index-391_3.jpg





index-391_2.jpg





index-403_1.jpg
e0e bash 82

d91001603dcdf3eb1392ccbd40ff201cdcf7b9af2fcaab3da39e37919033b206%

$ i





index-391_4.png





index-387_1.jpg
A

bash 32

"sub": "authol...",
"email": "...my users email...",
"email_verified": true






index-385_1.jpg
00 & my.redirect.uri X + v
& - C O @O my.redirect.uri/?2code=NTiTN... O & & % O ‘ :

B

This site can't be reached
my.redirect.uri’'s server IP address could not be found.

Try:
e Checking the connection
e Checking the proxy, firewall and DNS configuration

ERR_NAME_NOT_RESOLVED






index-391_1.jpg
Authorization Server
URL Path: /oauthy/... (Spring Security OAuth2)

/jwk-set

Edge Server Product Composite
[microservice] [microservice]

URL Path: /product-composite/...

URL Path: /eureka/... Discovery Server
(Netflix Eureka)

URL Path: /config/.. Config Server

(Spring Cloud Config Server)
The microservice landscape
[System boundary]

Product
[microservice]

Recommendation
[microservice]

% Review
[microservice]






index-388_1.png





cover_image.jpg
Larsson M.
Microservices with
Spring Boot and
Spring Cloud...4ed
2025





index-384_1.png
~ < =) dev-ml-1.eu.authO.com

7N
\ 14

Authorize App

writer is requesting access to your dev-ml-1
account.

e Profile: access to your email
e Read: product your read

e Write: product your write






index-383_1.png
eee ([~ < dev-ml-1.eu.auth0.com M+ O

0

N
\Y4
Welcome

Log in to dev-ml-1 to continue to writer.

Don't have an account?

OR

G Continue with Google






index-376_1.jpg
. bash X2

Update the tenant, set its default connection to a user dictionary...

é;éates reader client app...

é;éates writer client app...

é;éates API product-composite Chttps://localhost:8443/product-composite)...
é;éates user with email NNN...

é;éate client grant for the reader app to access the product-composite API...
é;éate client grant for the writer app to access the product-composite API...
A&éh@ - OAuth2 settings:

export TENANT=...

export WRITER_CLIENT_ID=...

export WRITER_CLIENT_SECRET=...

export READER_CLIENT_ID=...
export READER_CLIENT_SECRET=...

£y |





index-670_1.png
kibana.minikube.me & © m +

eee [ ~v <

10

@ elastic
= . Discover Options New Open Share Inspect [5) Save
[§) v Search KQL =) v Last 15 minutes Show dates G Refresh

®  + Add filter

= 7,366 hits €3 Chart options
300
250
200
150
100
50
o I
13:41:00 13:42:00 13:43:00 13:44:00 13:45:00 13:46:00 13:47:00 13:48:00 13:49:00 13:50:00 13:51:00 13:52:00 13:53:00 13:54:00 13:55:00 13:56:00

Jun 2, 2025 @ 13:41:25.625 - Jun 2, 2025 @ 13:56:25.625

Time v spring.level kubernetes.namespace_name kubernetes.container_name spring.trace log
> Jun 2, 2025 @ 13:56:21.817 - kube-system coredns - [INFO] 10.244.0.42:53785 - 12833 "AAAA IN elasticsearch.logging.kube-s
ystem.svc.cluster.local. udp 69 false 512" NXDOMAIN qr,aa,rd 162 ©.000
115208s
> Jun 2, 2025 @ 13:56:21.817 - kube-system coredns - [INFO] 10.244.0.42:53785 - 864 "A IN elasticsearch.logging.kube-syste
m.svc.cluster.local. udp 69 false 512" NXDOMAIN qr,aa,rd 162 0.0001323
75s
> Jun 2, 2025 @ 13:56:21.817 - kube-system coredns - [INFO] 10.244.0.42:48195 - 55122 "AAAA IN elasticsearch.logging.svc.cl

uster.local. udp 57 false 512" NOERROR qr,aa,rd 150 ©.000048375s

> Jun 2, 2025 @ 13:56:21.817 - kube-system coredns - [INFO] 10.244.0.42:40195 - 560 "A IN elasticsearch.logging.svc.cluste
r.local. udp 57 false 512" NOERROR qr,aa,rd 112 ©.000043667s

> Jun 2, 2025 @ 13:56:21.814 - kube-system coredns - [INFO] 10.244.0.42:59255 - 12650 "AAAA IN elasticsearch.logging.svc.cl





index-375_1.png
°
°
°
B8
>
<
N\
10

manage.auth0.com ¢ m +

dev-ml-1
DEVELOPMENT

Q Search Discuss your needs Documentation

4 = Thank you for signing up for Auth@! You have 22 days left in your trial to experiment with features that are not in the Free plan. View PI
iew Plans

Like what you're seeing? Please enter your billing information here.

~M

<

n . .

O < Back to Applications

g

: Auth® Management API (Test Application)
: Machine to Machine Client ID _

7/
v
Quickstart Settings Credentials APIs Organizations
e
]
4 & This feature is included in your current plan for up to 1,000 tokens per month. Upgrade your subscription or contact enterprise sales 4 for
additional monthly quota.
a
£
Basic Information Name *
Auth@ Management API (Test Application) 0y
Domain
dev-ml-1.eu.auth@.com 0y
Client ID

I 9

Client Secret

& O
©
O

The Client Secret is not base64 encoded.

» Save changes # + Return Cancel Save Changes






index-669_1.png
eee [ ~v <

@ elastic

10

kibana.minikube.me & © m +

= . Discover

[§) v Search

@ — + Add filter
logstash-*

QU Search field names

Filter by type 0

\ Available fields
t _id

t _index

# _score

t _type

] @timestamp

t docker.container_id

t kubernetes.container_image
t kubernetes.container_image_id
t kubernetes.container_name

t kubernetes.host

t kubernetes.labels.app

t kubernetes.labels.
aop_kubernetes io/instance

Options New Open Share Inspect [5) Save

KQL =) v Last 15 minutes Show dates G Refresh

see <= 7,474 hits €3 Chart options

300
250
200
150
100
50
0

=ANEnEEEnnnnnnnisnninnnnnsnnil.

13:37:00 13:38:00 13:39:00 13:40:00 13:41:00 13:42:00 13:43:00 13:44:00 13:45:00 13:46:00 13:47:00 13:48:00 13:49:00 13:50:00 13:51:00 13:52:00
Jun 2, 2025 @ 13:37:13.610 - Jun 2, 2025 @ 13:52:13.610

54

Time v Document

> Jun 2, 2025 @ 13:52:09.220  @timestamp: Jun 2, 2025 @ 13:52:09.220 docker.container_id: a2e81667121560a2ae4689ae25132fa9f1bce3c65838b165d8af26537cdfo6ch
kubernetes.container_image: istio/proxyv2:1.24.2
kubernetes.container_image_id: docker://sha256:15883541c39921a8c3b91a4037f2ad574821717b33dae59f671d6ead6288bbic
kubernetes.container_name: istio-proxy kubernetes.host: handson-4ed kubernetes.labels.app: product-composite

kubernetes.labels.app_kubernetes_io/name: product-composite kubernetes.labels.pod-template-hash: 65c76fcf8c

> Jun 2, 2025 @ 13:52:09.122  @timestamp: Jun 2, 2025 @ 13:52:09.122 docker.container_id: d@69a11f1527e@eB58ac2706c3e5d221bd723dd79d3edfaB8aas5hf173287194b5
kubernetes.container_image: istio/proxyv2:1.24.2
kubernetes.container_image_id: docker://sha256:15883541c39921a8c3b91a4037f2ad574821717b33dae59f671d6ead6288bbic
kubernetes.container_name: istio-proxy kubernetes.host: handson-4ed kubernetes.labels.app: recommendation

kubernetes.labels.app_kubernetes_io/name: recommendation kubernetes.labels.pod-template-hash: 6cb88fd596





index-381_1.png
product-composite-1 | ... Authorization info:
Subject: ...@clients,

scopes: product:read product:write,

expires YYYY-MM-DDT06:09:45Z:

issuer: https://dev-ml-1.eu.auth@.com/,

audience: [https://localhost:8443/product—composite]





index-672_1.png
kibana.minikube.me ¢ @ ﬁ +

°
°
°
B8
>
<
N\
10

@ elastic

= . Discover Options New Open Share Inspect [5) Save

() v pearch KQL C Refresh

@ spring.trace: Obd96c5e3093f036835bc9fdd23676f3 X | + Add filter

= 7 hits €3 Chart options

caNwWwROON

13:44:00 13:45:00 13:46:00 13:47:00 13:48:00 13:49:00 13:50:00 13:51:00 13:52:00 13:53:00 13:54:00 13:55:00 13:56:00 13:57:00
Jun 2, 2025 @ 13:43:14.833 - Jun 2, 2025 @ 13:58:14.833

Time v spring.level kubernetes.namespace_name kubernetes.container_name spring.trace log

> Jun 2, 2025 @ 13:51:56.366 DEBUG hands-on review _ select re1_0.id,re1_0.author,re1_0.content,re1_08.product_id,re1_0.revi
_ ew_id,re1_0.subject,re1_8.version from reviews rel1_0 where rel_0.produ
f3 ct_id=?

> Jun 2, 2025 @ 13:51:56.360 DEBUG hands-on recommendation _ find using query: { "productId" : 1234} fields: Document{{}} for clas
_ s: class se.magnus.microservices.core.recommendation.persistence.Recom
. mendationEntity in collection: recommendations

> Jun 2, 2025 @ 13:51:56.356 DEBUG hands-on product _ find using query: { "productId" : 1234} fields: Document{{}} for clas
_ s: class se.magnus.microservices.core.product.persistence.ProductEntit
. y in collection: products

> Jun 2, 2025 @ 13:51:56.355 1INFO hands-on recommendation _ Will get recommendations for product with id=1234





index-377_1.jpg
-bash 31

Update the tenant, set its default connection to a user dictionary...

Reader client app already exists

Writer client app already exists

API product-composite (https://localhost:8443/product-composite) already exists
User with email NNN already exists

Client grant for the reader app to access the product-composite API already exists
Client grant for the writer app to access the product-composite API already exists

Auth@ - OAuth2 settings:

export TENANT=...

export WRITER_CLIENT_ID=...
export WRITER_CLIENT_SECRET=...
export READER_CLIENT_ID=...
export READER_CLIENT_SECRET=...

£y |





index-671_1.png
eee [~ (< 2

@ elastic

kibana.minikube.me ¢ @ ﬁ +

= . Discover Options New Open Share Inspect [5) Save

[2) v log:"info for product.id=1234'| KQL G Refresh

®  +Add filter

= 1hit €3 Chart options
1
08
06
0.4

0.2
0

13:42:00 13:43:00 13:44:00 13:45:00 13:46:00 13:47:00 13:48:00 13:49:00 13:50:00 13:51:00 13:52:00

Jun 2, 2025 @ 13:41:55.457 - Jun 2, 2025 @ 13:56:55.457

13:53:00 13:54:00 13:55:00 13:56:00

Time v spring.level kubernetes.namespace_name kubernetes.container_name spring.trace log

> Jun 2, 2025 @ 13:51:56.347 INFO hands-on product-composite 0bd96c5e30931036835bc9fdd23676f3  Will get composite product - - _=-





index-370_1.jpg
o0 . Swagger Ul X + v

< C ¢ A NotSecure | https://localhost:8443/openapi/webjars/swagger-uifindex.html Qa h % & » 0O ‘ :

Available authorizations

Scopes are used to grant an application different levels of access to data on behalf of the end user. Each
API| may declare one or more scopes.

API requires the following scopes. Select which ones you want to grant to Swagger Ul.

security_auth (OAuth2, authorizationCode)

Authorization URL: https://1localhost:8443/0auth2/authorize
Token URL: https://localhost:8443/oauth2/token

Flow: authorizationCode

client_id:
writer

client_secret:

eccecscsccece

Scopes: selectall select none

product:read
read scope

product:write
write scope






index-665_1.jpg
ece & Lens - Elastic X  + N7

& C (@ A NotSecure | https://kibana.minikube.me/app/lens#/?_g=(filters:!(),refreshinterval:(pa... & " Y & * O ‘ :

Save Lens visualization

Title Add to dashboard

hands-on-visualization Existing
Description Search dashboards...
This is my first yisualization in Kibana O New

None

Add to library ®

Cancel Save and go to Dashboard






index-369_2.jpg
chapterll-product-composite-1 | . Authorization info: Subject: u,
scopes: [product:write, product:read], expires 2023-04-07T05:27:38Z:
issuer: http://auth-server:9999, audience: [writer]

$





index-664_1.jpg
®0O® D Lens-Elastic x  + v

<« CcC o A Not Secure | hitps://kibana.minikube.me/app/lens#/?_g=(filters:!(),refreshinterval:(pause:!f,value:10000),time: (from:now-15m,to:now)) Q 0

= . Visualize Library  Create Inspect  Download as CSV [ save

[ v Search KQL @® v Last 15 minutes Show dates

@ NOT kubernetes.container_name.keyword: coredns X  + Add filter

logstash-* v e € Pie v 1= ¢ Pie &
-* v
QU kubernetes.container_name.t € & Fardi-cn : logstash
- istio—proxy @ istio-system H
Filter by type 0 v o) 5. 20.38% @ logging H Slice by
©® kube-system H
v Available fields © Top values of
kubernetes. %
t kubernetes.container_name. namespace_name.
keyword keyword
> Empty fields n kibana Top values of kubernetes.
) 16.97% container_name.keyword
> Metafields n

@ Add or drag-and-drop a field

istio-proxy 36.76%

Size by

Count of records X





index-374_1.png
°
°
°
B8
10

manage.auth0.com ﬁ +

dev-ml-1
DEVELOPMENT

Q Search Discuss your needs Documentation

Autho M t API (Test Applicati
9 anagemen (Test Application) Authorized o ~

- ciient I« |
<
. Select which permissions (scopes) should be granted to this client:
ip Grant ID
: I
4

Permissions Select: All None ‘ Q ’
v

(=

read:client_grants create:client_grants delete:client_grants update:client_grants
'
update:users

[]
. read:users_app_metadata . update:users_app_metadata ~/ delete:users app_metadata

n create:users ann metadata n read:user custom hlocks | M create:user custom blocks |

+

2O &

& You are about to create a grant with all scopes available. If you understand this well, choose to continue below.

» Cancel





index-668_1.jpg
bash

"productId": 1234,

"name": "product name 1234",

"weight": 1234,

"recommendations": [],

"reviews": [],

"serviceAddresses": {
"cmp": "product-composite-59fb54568c-p8kzd/10.244.0.166:80",
"pro": "product-5454d77458-9b565/10.244.0.156:80",
"rev": "",

rec":





index-371_1.jpg
oo 0 @ swagger ul X e

< C 0 A NotSecure | https://localhost:8443/openapi/webjars/swagger-ui/index.html Qa h &% & » 0O ‘ :

Available authorizations

Scopes are used to grant an application different levels of access to data on behalf of the end user. Each
AP| may declare one or more scopes.

API requires the following scopes. Select which ones you want to grant to Swagger Ul.

security_auth (OAuth2, authorizationCode)
Authorized

Authorization URL: https://localhost:8443/oauth2/authorize
Token URL: https://localhost:8443/oauth2/token

Flow: authorizationCode

client_id: ¥¥**k*

client_secret: ke ok ok ok ok






index-666_1.jpg
® & ® O NewDashboard - Elastic x  + v

<« C O A NotSecure | https://kibana.minikube.me/app/dashboards#/create?_g=(filters:!(),refreshinterval: (pause:!f,value:1000.. @ ¢ ¥ @ *» O ‘ 3

elastic : )
= . Dashboard  Editing New Dashboard [{Unsavedchanges|  Options  Share ) save

@) v Search KQL  (® v Last 15 minutes Show dates G Refresh

®  +Add filter

T &  Alltypes v [ Add from library

hands-on-visualization © 3

© hands-on
%‘ % istio-proxy o istio-system
2 21.35% ® logging

@,
""b,,%% or ® kube-system
>
®xr,,

—— discovery 0.41%

kibana
18.35%

istio-proxy 37.98%

\ \— fluentd 1.53%
etcd 0.66% J





index-381_2.png
product-composite-1 | ... Authorization info:
Subject: ...@clients,

scopes: product:read,

expires YYYY-MM-DDT06:09:49Z:

issuer: https://dev-ml-1.eu.auth@.com/,

audience: [https://localhost:8443/product—composite]





index-369_1.jpg
bash

HTTP/1.1 403 Forbidden
WWW-Authenticate: Bearer error="insufficient_scope", error_descriptio

n="The request requires higher privileges than provided by the access
token.", error_uri="https://tools.ietf.org/html/rfc6750#section-3.1"

$ i





index-663_1.jpg
@0 ® O Lens-Elastic x [ N7

value:10000) time:(from:now-15m,to:now)) a b %« @*»0@ :

& CcC O A Not Secure | https://kibana.minikube.me/app/lens#/?_g=(filters:!(),refreshinterval:(pau:

elastic

= . Visualize Library Create Inspect  Download as CSV 3 save

) v Search KQL @® v Last 15 minutes Show dates

®  +Add filter

ooo S
logstash-* v C Dponut v~ 8= € Donut &

< ReE
QU kubernetes.namespace_nami € logstash:

Filter by type 0 v Slice by
v Available fields © [ 1] Top values of
kubernetes.
X
t kubernetes. namespace_name.
namespace_name.keyword keyword

> Empty fields ©
o @ Add or drag-and-drop a field
> Metafields n

Size by

Count of records X






index-662_1.jpg
®0® D Lens-Elastic x  + -

< C O A NotSecure | hitps://kibana.minikube.me/app/lens#/?_g=(filters:!(),refreshinterval: (pause:!f,value:10000),time: (from:now-15m,to:now)) Qah %« 0@ :

elastic

= . Visualize Library Create Inspect

[ v Search KQL @® v~ Last 15 minutes Show dates

®  +Add filter

logstash-* v aos 15 Bar vertical stacked 8= b,

< = ° < Bar vertical stack... v &
QQ Search field names [x] logstash-* v
: Drop some fields here to start
Filter by type 0 v

Horizontal axis
# Records .
0 Add or drag-and-drop a field

\ Available fields © 37

@ @timestamp Vertical axis

t ocker.container_id. or drag-and-drop a fiel
dock iner_id © Addord d-d field

keyword

t kubernetes. Break down by
container_image._id.

keyword
Lens is a new tool for creating visualization © Add or drag-and-drop a field

t kubernetes.
container_image.keyword Make requests and give feedback (2

t Kkubernetes.
container_name.keyword





index-365_2.jpg
[ JCN @/ Consent required X  + n7
< C A NotSecure | https://localhost:8443/oaut.. @ @ w @ * O ‘ i

Consent required

reader wants to access your account u

The following permissions are requested by the above app.
Please review these and consent if you approve.

product:read

Submit Consent

Cancel

Your consent to provide access is required.
If you do not approve, click Cancel, in which case no information will be shared with

the app.





index-643_2.jpg





index-365_1.jpg
[ 2N @/ Please signin X -+ v
& > C 0 A NotSecure | hitps://localhost:8443/login @ M w & * O ’ :

Please sign in

u






index-643_1.jpg
New Kubernetes log record
(kubernetes.**)

Re-emit log record

Tag as Istio log record
9 9 (istio.kubernetes.**)

1. Istio tag?
g (prefix tag with istio)

(kubernetes.**istio**)

Re-emit log record

2. hands-on tag? Tag as Spring Boot log record (spring-boot,kubernetes’**)

(kubernetes.**hands-on**) (prefix tag with spring-boot)

ili Tag as exception Re-emit log record
I:xr::::tli:;:-,e (pgrefix tag P (check.exception.spring-boot.**)

check.exception)
3. Spring Boot log record? Yes P

(spring-boot.**)

Re-emit log record

Tag fi
agiorparse (parse.spring-boot.**)

(prefix tag with parse)

4. Aggregate Spring Boot Aggregate Rermove Re-emit log record
multi line exception? multi line (exception.spring-boot.**)

. heck t:
(check.exception.spring-boot.**) exception checktag

5. Parse Spring Boot
single line log record? Parse using regexp
(parse.spring-boot.**)

6. Send log record
to Elaszigs)»earch Send to Elasticsearch





index-367_1.jpg
"access_token": "eyJr...ciwA",
"refresh_token": "1CRP...HMvh",
"scope": "product:read",
"token_type":. "Bearer",
"expires_in": 3599

$ B






index-644_1.png





index-366_1.jpg
[ O N J @ my.redirect.uri X <+ Vi

&« C 0 @® my.redirect.uri/?code=7XBshhce7M6tTNxB07... h w & #* [ ‘

=

This site can't be reached

my.redirect.uri's server IP address could not be found.
Try:

¢ Checking the connection

¢ Checking the proxy, firewall and DNS configuration

ERR_NAME_NOT_RESOLVED





index-643_3.jpg





index-362_2.jpg
&

@ https://localhost:8443/eureka/ X -
C O A NotSecure | https://localhost:8443/eurekajweb W @ #* O .
Sign in

https://localhost:8443

Password





index-632_1.png
istio-ingressgateway
latest vl

@) review

unknown auth-server
vl

@ hands-on

PassthroughCluster

—






index-362_1.jpg
b4b0637cf8c6:gateway: 8443
550237832856 :auth-server:9999
90a30474d7cb :product-composite: 8080
097117159678 :product: 8080
6d49c12522bb:review: 8080
251a152c737c:recommendation: 8080

L

$ B






index-629_1.jpg
bash 81

{
"cmp": "product-composite-546597978c-j2cdc/10.244.0.26:80",
"pro": "product-v2-5ff8575567-s632b/10.244.0.27:80",

"rev": "review-v2-5d86f74cof-f7rgm/10.244.0.31:80",

"rec": "recommendation-vZ2-655b4c4cc7-17jxz/10.244.0.33:80"





index-363_2.jpg
bash

"access_token": "eyJr...jtDA",
"scope”: "product:write product:read”,
"token_type": "Bearer",

"expires_in": 3599

A Y






index-637_1.png





index-363_1.jpg
eoe @ Eureka X o+ N

& C (@ A NotSecure | hitps://localhost:8443/eureka/web Qa M % @ » 0O ‘ H

Instances currently registered with Eureka

Application AMIs  Availability Zones  Status

AUTH-SERVER n/a(1l) (1) UP (1) - 781f8298fd2f:auth-server:9999
GATEWAY n/a(1) (1) UP (1) - dbf6372880b2:gateway:8443
PRODUCT n/a(1) (1) UP (1) - 9f1deef92da2:product:8080
PRODUCT-COMPOSITE n/a(1) (1) UP (1) - fc578652b403:product-composite:8080
RECOMMENDATION n/a(l) (1) UP (1) - 00bcc1a9954e:recommendation:8080

REVIEW n/a(1) (1) UP (1) - 552632decc14:review:8080





index-634_1.jpg
]

istio-ingressgateway product-composite 28[“23/0
latest vi © PassthroughCluster
i
@ istio-system w2 /
) recommendation /
2 “
27.9% /
v2
e —
O review
@——o——3ms——?®
unknown auth-server
vl

hands-on





index-38_1.png
Browse Library Mylibrarg v Recent v

My Account

My Subscription Personal Defails  Communication Preferences

My Orders

Search Ordor Purchased Date (Most Recert) &

Certified Information Security Manager PE= Machine Learning with Py Torch and Scikit-

ExamPrep Guide &1 more e [

s iyt [
PP-186006|09/Aug/2024 | Amezon - PP-1869910 025/4eb/2022 | Amazon

Book Book
cuek

ramcrsaes ) (omerorr ] () comor

<= LLM Engineer's Handbook & 2more C#13 and NET9 - Modern Cross-Platform

= o Development Fundamentals

PP-16238401 09/Aug/2026 | Amazon 2699
PP-2734983 15/Sept/2026 | Amazon
Book

DOWNLOAD PDF

PDF

EPUB





index-37_8.png





index-368_2.jpg
bash

HTTP/1.1 200 OK

{"productId":1, ...}
$

p
)






index-38_3.png





index-368_1.jpg
[ NN ) bash 362

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="invalid_token",






index-38_2.png





index-652_1.png
Start Tests: Thu MMM DD ©9:27:34 CEST YYYY

Wait for: curl -k https://health.minikube.me/actuator/health...
DONE, continues...

Test OK (HTTP Code: 200)

End, all tests OK: Thu MMM DD ©9:28:01 CEST YYYY

X |





index-38_5.png





index-38_4.png
4 ;)
LUNLOCK NOWJ





index-628_1.jpg
bash 31

@
: "product-composite-546597978c-j2cdc/10.244.0.26:80",
: "product-v1-76dd48574-hlfgt/10.244.0.28:80",

: "review-v1-5f5f74b49d-bpprh/10.244.0.29:80",

: "recommendation-v1-8fc6456fd-dv92b/10.244.0.30:80"





index-332_2.jpg
enve . Swagger Ul X + v

< C 0 @ localhost:8080/openapi/webjars/swagger-uif/index.html Q h % @ % 0O ‘ :

Swagger Jopenapi/v3/api-docs Explore
supported by SMARTBEAR

Sample AP| €9 &

lopenapi/v3/api-docs

Description of the API...

Terms of service

NAME OF CONTACT - Website
Send email to NAME OF CONTACT

MY LICENSE
MY WIKI PAGE

Servers

http:/localhost:8080 - Generated server url v

Productcomposite REST API for composite product information. AN\

POST /product-composite Creates a composite product v

m /product-composite/{productId} Returns acomposite view of the specified product id v

P38 /product-composite/{productId} Deletes a product composite Vv






index-616_1.png
X382
{"timestamp":"YYYY-MM-DDTQ9:54:40.942+00:00","path":"/product-composite/1
","status":500,"error":"Internal Server Error","requestId":"183bedda-3201
","message":"Did not observe any item or terminal signal within 2000ms in

'onErrorResume' (and no fallback has been configured)"}
real @m2.038s






index-332_1.jpg
bash

Pattern "/product-composite/**" matches against value "/product-composite/1"
Route matched: product-composite

LoadBalancerClientFilter url chosen: http://2911a48d86ec:8080/product-composite/1





index-614_1.jpg
eo0 bash X1

bash

HTTP/1.1 200 0.03 secs: 771 bytes ==> GET /product-composite/1 @&
HTTP/1.1 200 1.02 secs 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 0.03 secs: 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 1.05 secs 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 0.02 secs: 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 0.03 secs: 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 0.01 secs: 771 bytes ==> GET /product-composite/1





index-334_1.png
eee [ ~v <

10

localhost ¢ @ ﬁ +

@ Spring HOME LAST 1000 SINCE STARTUP

System Status

Environment test Current time 2025-04-16T05:45:41 +0000
Data center default Uptime 00:15
Lease expiration enabled true
Renews threshold 10
Renews (last min) 60
DS Replicas

Instances currently registered with Eureka

Application AMIs Availability Zones Status

GATEWAY n/a(l) (1) UP (1) - f504f66325b1:gateway:8080
PRODUCT n/a (1) (1) UP (1) - 9d15e00916f7:product:8080
PRODUCT-COMPOSITE n/a (1) (1) UP (1) - a550f6de3168:product-composite:8080
RECOMMENDATION n/a (1) (1) UP (1) - 380fa71dblcc:recommendation:8080

REVIEW n/a (1) (1) UP (1) - dfffaf04e30c:review:8080





index-625_1.jpg
bash

NAME

auth-server-78c4d44b55-ml2rg
product-composite-546597978c-j2cdc
product-v1-76dd48574-hlfgt
product-v2-5ff8575567-s63j2b
recommendation-v1-8fc6456fd-dv92b
recommendation-v2-655b4c4cc7-17jxz
review-v1-5f5f74b49d-bpprh
review-v2-5d86f74c6f-f7rgm

Y |

bash

READY
2/2
2/2
2/2
2/2
2/2
2/2
2/2
2/2

STATUS

Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

[SESINCRCS R RS RS R )

X1

AGE &
47s
47s
47s
47s
47s
47s
47s
47s





index-333_1.jpg
d94do51b2d@b : gateway : 8080
2911a48d86ec:product-composite: 8080
9e0000bdd56e :product: 8080
8aleef3e8fbd:review: 8080
84a68e56553b: recommendation: 8080

$ B






index-616_2.jpg





index-330_1.jpg
NAME

chapterl@-eureka-1
chapterl@-gateway-1
chapterl@-product-1
chapterl@-product-composite-1
chapterl@-recommendation-1
chapterl@-review-1

.y |

SERVICE

eureka

gateway

product
product-composite
recommendation
review

STATUS

running
running
running
running
running
running

PORTS

8761/tcp
0.0.0.0:8080->8080/tcp
8080/tcp

8080/tcp

8080/tcp

8080/tcp





index-603_1.jpg
eve & Jaeger Ul x

< C 0 A NotSecure | hitps://tracing.minikube.me/jaeger/trace/a93730ee60244b19c75b9483d6a933a0

EGER UI Sear

Compare System Architecture Monitor

e | v istio-ingressgateway.istio-system: product-composite.
hands-on.svc.cluster.local:80/product-composite* 2937

May 10 2023, 09:16:07.796 [

38 Trace Timeline v

7.87Tms es® Depth® Total

s23

ops

591ms 7.87ms

Service & Operation vV >V¥» o 1.97ms 3.94ms 591ms 7.87ms

v| istio-ingressgateway.istio-system poduct

v | product-composite.hands-on pro

+ | product-composite rip et /produc

| product-composite -
| product-composite «
| product-composite

urity fiterchain

| product-composite product o (]

+ | product-composite 1

v | product-composite.hands-on ¢

+ | producthands-on product

© product hitp

+ | product-composite nio et

v product-composite.hands-on

v | recommendation.hands-on recom

| recommendation hitp got /rece

e I product-composite hip

+ | product-composite.hands-on

v | review.hands-on roview hands
v | review htp ot review
v | review connection
| review » @ review-db quory
| review » @ review-db resuset
| product-composite security fiterchain after





index-602_2.jpg
000 & scgerul x  + <
essgatewayis.. 0 %* © % O @

< C O A NotSecure | hitps://tracing.minikube.me/ja: 683702970388000&limit=208&lookback:

h&maxDuration&minDuration&service=istio-in

JAEGER UI Searc! Compare System Architecture Monitor About Jaeger
D
Search JSON File
3 C -
Service o & )
istio-ingressgateway.istio-system o 1] &

<
@
o
-

Operation 8 am 09:16:00 1:16:02 a * 09
all
20 Traces Sort:  Most Recent Deep Dependency Graph
Tags
Compare traces by selecting result items
Lookback
Last Hour
istio-ingressgateway.istio-system: product-composite.hands-on.svc.cluster.local:80/product-composite* 293730« 7.87Tms
Max Duration Min Duration 23 Spans [l istio-ingressgateway.istio-system (1) product (1) [ product-composite (9) Today 9:16:07 am
1 product-composite.nands-on (4) ] producthands-on (1) = [l recom ation (1) afow seconds ago
recommendation.hands-on (1) (] review () [l reviewn
Limit Results
20 istio-ingressgateway.istio-system: product-composite.hands-on.svc.cluster.local:80/product-composite* a: 15.86ms
23 Spans [ stio-ingressgat product (1) [Jl] product-composite (9) Today 9:16:07 am

on() [l

recommendation.ha






index-331_2.jpg
ese bash X#3

{"productId":1, ... "recommendations":[...],"reviews":[...],"serviceAddresses":{...}}

Sy |





index-611_1.png
Namespace: hands-on + Traffic « App graph + ‘D Replay Lastim Everyim n

Display + Find... v name=jaeger Q@ +- x 0O ® Help & Reset

May 7 at 11:46:45 AM ... 11:47:45 AM

(Fy——sr——( ) .

unknown auth-server product

mongodb

13

istio-ingressgateway
. @ istio-system -
n rabbitmq
o = recommendation
8ms,

kS
H®
® . [ ] :

review 3
.z,e, mysql &

«





index-331_1.jpg
bash

"product-composite": "lb://product-composite"
"product-composite-swagger-ui": "lb://product-composite”
"eureka-api": "http://eureka:8761"

"eureka-web-start": "http://eureka:8761"
"eureka-web-other": "http://eureka:8761"
"host_route_200": "http://httpstat.us:80"
"host_route_418": "http://httpstat.us:80"
"host_route_501": "http://httpstat.us:80"






index-606_1.jpg
X1

Owner: SERIALNUMBER=my-sn, CN=minikube.me, OU=my-ou, O=my-org, 0ID.2.5.4.
=my-pc, STREET=my-address, L=my-locality, ST=my-province, C=my-country
Issuer: CN=hands-on-ca

$ i





index-341_1.jpg
Authorization
Server

Web Browser

Client
Application

Resource
Server

OAuth 2.0 - Authorization Code Grant flow






index-627_1.jpg
istio-ingressgateway
latest

@ istio-system

unknown

product-composite
vl

) review

auth-server
vl

@ hands-on

PassthioughCluster





index-337_1.png





index-626_1.png
382

Start Tests: Wed MMM DD 10:07:21 CEST YYYY

Wait for: curl -k https://health.minikube.me/actuator/health...
DONE, continues...

Test OK (HTTP Code: 200)

End, all tests OK: Wed MMM DD 10:07:48 CEST YYYY

s i





index-345_1.jpg
HTTPS HTTP

Authorization Server
(Spring Security OAuth2) Product

[microservice]

URL Path: /oauth/... /Jwk-set

Edge Server Product Composite N Recommendation
[microservice] [microservice] [microservice]

URL Path: /product-composite/...

URL Path: /eureka/... Review

. microservice
Discovery Server ! :

The microservice landscape (Netflix Edveka)

[System boundary]






index-1_1.png
i
I ‘I ol
mlml‘”“w

HHH\
IR






index-37_2.png





index-37_1.png
Browse Library

Understanding the LLM Twin Concept
Planing the MVP off the the LLM Twin product

Building ML systems with feature/training/
Inference pipelines

Designing the system architecture of the LLM
Twin

Summary

References

Tooling and Installation

Data Enineering

RAG Feature Pipline.

Supervised Fine Tuning

Fine -Tuning with preferences alignment

Evaluating LLMs

My Library v Recent v

Understanding the LLM Twin Concept and Architecture

By the end of this book, we will have walked you through the journey of building an end-to-

end large language model (LLM) product. We firmly believe that the best way to learn about LLMs
and production machine learning (ML) is to get your hands dirty and build systems. This book will
show you how fo build an LLM Twin, an Al character that learns to write like a particular person by
incorporating its style, voice, and personality into an LLM. Using this example, we will walk you
through the complete ML life cycle, from data gathering to deployment and monitoring. Most of
the concepts learned while implementing your LLM Twin can be applied in other LLM-based or ML
applications.

When starting to implement a new product, from an engineering point of view, there are three
planning steps we must go through before we start building. First, it is critical to understand the
problem we are trying fo solve and what we want o build. In our case, what exactly is an LLM Twin,
and why build it? This step is where we must dream and focus on the “Why.” Secondly, fo reflect a
real-world scenario, we will design the first iteration of a product with minimum functionality. Here,
we must clearly define the core features required fo create a working and valuable product. The
choices are made based on the timeline, resources, and team'’s knowledge. This is where we bridge
the gap between dreaming and focusing on what is redlistic and eventually answer the following
question: “What are we going to build?".

Finally, we will go through a system design step, laying out the core architecture and design choices
used fo build the LLM system. Note that the first two components are primarily product-related,
while the last one is technical and focuses on the “How.”

These three steps are natural in building a real-world product. Even if the first two do not require
much ML knowledge, it is critical o go through them to understand “how” to build the product with
aclear vision. In a nutshell, this chapter covers the following topics:






index-37_4.png





index-37_3.png





index-37_6.png





index-37_5.png





index-37_7.png





index-314_1.png
3d71f@dade20/192.168.112.9:8080
81308b0a3bcb/192.168.112.10: 8080






index-590_1.jpg
bash
bash

$ cat /etc/hosts

127.0.0.1 minikube.me grafana.minikube.me kiali.minikube.me
prometheus.minikube.me tracing.minikube.me kibana.minikube.me
elasticsearch.minikube.me mail.minikube.me health.minikube.me

Y |





index-313_2.png
"rev": "3d71f@dade20/192.168.112.9:8080"

"rev": "81308b0a3bcb/192.168.112.10:8080"

-






index-588_2.jpg
https://minikube.me/product-composite
https://health.minikube.me/actuator/health ——
https://minikube . me/oauth2/token Edge Server Authorization Server

(Istio Ingress Gateway) ‘ (Spring Auth Server)

@ minikube tunnel
Kiali
https://kiali.minikube.me (Istio Control plane) Product Composite

https://tracing.minikube.me [microservice]
https://grafana.minikube.me
https://prometheus.minikube.me Tracing ( Jaege r)

(Istio Control plane)

Web
browser

Grafana
(Istio Control plane)

The microservice landscape
[System boundary]





index-315_1.png
"pro": "@f5cf99dffcd/192.168.128.4:8080",
"rev": "ac38f5642c2b/192.168.128.8:8080",






index-597_1.png
Start Tests: Tue MMM DD 18:12:07 CEST YYYY

Wait for: curl -k https://health.minikube.me/actuator/health...
DONE, continues...

Test OK (HTTP Code: 200)

End, all tests OK: Tue MMM DD 18:12:33 CEST YYYY

X |





index-314_2.png
"pro": "@f5cf99dffcd/192.168.128.4:8080"






index-596_1.jpg
bash

NAME

auth-server-cf57b9bff-12wnf
mongodb-6f4b595bbf -kvwnm
mysql-5dd488c7d-171vz
product-5454d77458-dvrtz
product-composite-59fb54568c-t8czm
rabbitmg-9cbbbb894-wlkgv
recommendation-96984995d-mpvq9
review-5f965dcd76-dsgsm

£y |

bash

READY
2/2
1/1
171
2/2
2/2
171
2/2
2/2

STATUS

Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

[SESES IS BRI N

AGE
39s
39s
39s
39s
39s
39s
39s
39s

X1

@





index-583_2.jpg
bash

31
v No 1ssues found when checking the cluster.
Isti0 1s safe to install or upgrade!

To get started, check out https://istio.10/

latest/docs/setup/getting-started/
$ B






index-313_1.png
curl: (28) Operation timed out after 2005 milliseconds with @ bytes received

$ 1






index-588_1.jpg
. bash X381

NAME
hands-on-certificate

NAME
hands-on-certificate

$ B

TYPE DATA  AGE
kubernetes.io/tls 3 59s
READY SECRET AGE
True hands-on-certificate 65s





index-312_1.png
chapter@9-review-2 ... DEBUG ... Response size: 3

chapter@9-review-3 ... DEBUG ... Response size: 3
chapter@9-review-1 ... DEBUG ... Response size: 3






index-586_1.jpg
bash

NAME READY  UP-TO-DATE  AVAILABLE  AGE

grafana 1/1 1 1 46s
istio-egressgateway 1/1 1 1 3m45s
istio-ingressgateway 1/1 1 1 3m45s
istiod 1/1 1 1 4mls
jaeger 1/1 1 1 62s
kiali 1/1 1 1 72s
prometheus 1/1 1 1 54s

$ 1





index-62_1.jpg
@

oo
oo

&

grafana.minikube.me;

88 General / JVM (Micrometer)- Kubernet... «3 W B & O LastSminutes v Q & 5 B

Application ~ product v Namespace  hands-on v JVM Memory Pools Heap ~ All v JVM Memory Pools Non-Heap ~ All v
version  latest v Restart Detection (@
Rate Duration

25 ops/s 60 ms
20 ops/s
15 ops/s 40 ms
10 ops/s

5 ops/s 20 ms

0 ops/s

15:22 15:23 15:24 15:25 15:26
== GET /actuator/health/{*path} Current: 0.178 ops/s Os
15:22 15:23 15:24 15:25 15:26

== GET /actuator/prometheus Current: 0.0667 ops/s

«= GET /product/{productld} Current: 18.3 ops/s == HTTP-AVG Current: 2.43 ms

== GET /actuator/health/{*path} Current: 0 ops/s == HTTP - MAX Current: 52.5 ms

Errors CPU Usage

0.0800 ops/s

0.0600 ops/s :

NS ) e | |

0.0400 ops/s
0.0%
0.0200 ops/s 15:22 15:23 15:24 15:25 15:26
0 ops/s == system Max: 0.49% Current: 0.49%

15:22 15:23 15:24 15:25 15:26 == process Max: 0.50% Current: 0.50%

«= HTTP - 5xx Current: 0 ops/s == process-1h Max: 0.15% Current: 0.15%






index-61_1.png
Read the
Actual state

\ Microservice A Microservice B Microservice C

Observe -

Read the
Desired state

Updates the
Desired state

Analyze

Microservice D Microservice E Microservice F

Operator Desired State The microservice landscape

Storage Update the
Actual state

The control loop





index-71_1.jpg





index-67_1.png





index-317_1.png





index-601_1.png
kiali.minikube.me b+ ©

eee [ ~v <

10

© kial &1 ¢ [ 0 moomo

Overview Namespace v Filter by Namespace Name «~ 12 Lastim Everylm n
Traffic Graph Health for Apps + Traffic Inbound +
Applications

cert-manager i default i hands-on i
Workloads 2labels 1label 2labels

Istio config N/A Istio config N/A Istio config 8 mTLSis partially
Srfas 3 application @3 0 application N/A enable'd f(I)r this namespace@

8 application ®s
) ops inbound traffic, Im
Bl Sy No inbound traffic No inbound traffic -— — .
5
Mesh 7 7 T
n:29 n:29 1:30

ooe
ooe

ingress-nginx istio-system | control plane

3labels 1label
Istio config N/A Istio config (V]
0 application N/A 5 application ®5

No inbound traffic No inbound traffic






index-72_1.jpg





index-315_2.png
"pro": "d9f3e6f3fe95/192.168.128.10:8080",

"rev": "ac38f5642c2b/192.168.128.8:8080",





index-600_1.jpg
bash

bash

** STIEGE 4.1.6
** Preparing 1 concurrent users for battle.
The server is now under siege...

HTTP/1.1 200 0.08 secs: 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 0.03 secs: 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 0.03 secs: 771 bytes ==> GET /product-composite/1
HTTP/1.1 200 0.05 secs: 771 bytes ==> GET /product-composite/1

HTTP/1.1 200 0.03 secs: 771 bytes ==> GET /product-composite/1





index-71_2.jpg
Copy Explain

function calculate(a, b) { & @
return {sum: a + b};

bh





index-329_1.png
$ ./test-em-all.bash start
Start Tests: Wed MMM DD 15:42:42 CEST YYYY

i Container chapterl@—-gateway-1 Started
Wait for: curl http://localhost:8080/actuator/health... DONE, continues...

Test OK (actual value: http://localhost:8080)
Test OK (HTTP Code: 200)
End, all tests OK: Wed MMM DD 15:43:10 CEST YYYY

s i





index-82_1.jpg
€)> e e

© & https://localhost:8443/webjars/swagger-uifindex 80% O % [N ® % =

vegEy e

Sample AP| €2 &=

Napi-docs.
L I B )
Pdeuctcomposite REST API for composite product information. .
/product-composite Creatos a composite product i ‘
m /product-composite/{productId} Retums acomposite view of the specified product id Y
L I B )
s
Name Description
productld * sved
integer($int32) productid
(path)
LI B |

Responses






index-319_1.jpg
Product Composite

[microservice]
URL Path:

/product-composite/...

Edge Server
[microservice]

URL Path:

/eureka/... Discovery Server

(Netflix Eureka)

The microservice landscape
[System boundary]

Product

[microservice]

Recommendation
[microservice]

Review
[microservice]






index-602_1.jpg
May 7 at 11:34:06 AM ... 11:35:06 AM

()

unknown

o—
istio-ingressgateway
5 @ istio-system
H
H
®

auth-server

10 S e e

product-composite

OWC&
product
\

\ - rabbitmq
8m recommendatlon/

mysql

review

A Show





index-72_2.png





index-58_1.jpg
Microservice A | S| Microservice B | mmmmm) Microservice C

IS

Microservice D Microservice E = Microservice F

The microservice landscape






index-56_1.jpg
Edge Server

Microservice A Microservice B

Microservice D Microservice E

=)

The microservice landscape

Microservice C






index-60_1.jpg
=
/1N

Edge Server

\4J|

: —— ———
Microservice A = Microservice B l=.'l= Microservice C
Microservice D {(Microservice E m

The microservice landscape

Circuit Breaker states

o—o | Closed

o Open

Half Open






index-302_2.jpg
Copy Explain

function calculate(a, b) { & @
return {sum: a + b};

bh





index-563_2.png
Qs Normal Issuing certificate/tls—certificate
Renewing certificate as renewal was scheduled at YYYY-MM-DD 05:55:40 +0000 UTC

Qs Normal Issuing certificate/tls—certificate
The certificate has been successfully issued





index-302_1.jpg





index-563_1.png
X382

Not After: 2025-08-03T18:43:477
Not Before: 2025-05-05T18:43:477
Renewal Time: 2025-07-04T18:43:477





index-303_1.png





index-571_1.png





index-302_3.jpg





index-569_1.png
382

Start Tests: Sun MMM DD 08:13:43 CEST YYYY
HOST=1ocalhost

PORT=8443

USE_K8S=false

SKIP_CB_TESTS=false

Restarting the test environment...

$ docker—compose down —-remove-orphans

$ docker—compose up -d

i Container chapterl7-auth-server-1 Healthy 6.1s

i Container chapterl7-zipkin-server-1 Started 0.8s
Wait for: curl -k https://localhost:8443/actuator/health... ,

retry #1 , retry #2 DONE, continues...
ACCESS_TOKEN=eyJra. ..

Test OK (HTTP Code: 202, )

We are done, stopping the test environment...
$ docker—compose down

i Container chapterl7-auth-server-1 Removed 1.3s
i Container chapterl7-zipkin-server-1 Removed 2.6s

End, all tests OK: Sun MMM DD ©8:14:43 CEST YYYY

s i





index-300_1.png
Product Composite
[microservice]
3. ..any services?

/N

4. Call one of the
available instances Discovery server

1. Register me!

Review, #1 Review, #2 2. ..I'mstill alive
[microservice instance] [microservice instance]

The microservice landscape
[System boundary]






index-562_2.png
HOST=minikube.me

PORT=8443

USE_K8S=true

SKIP_CB_TESTS=false

Wait for: curl -k https://minikube.me:8443/actuator/health...
DONE, continues...

ACCESS_TOKEN=eyJra...

Test OK (HTTP Code: 202, )

End, all tests OK: Sun MMM DD 07:48:58 CEST YYYY

s i





index-562_1.jpg
EVENT
ADDED

MODIFIED

MODIFIED

NAME
tls-certificate

tls-certificate

tls-certificate

bash

READY

False

True

SECRET
tls-certificate

tls-certificate

tls-certificate

381
AGE
Qs
S

1s





index-41_2.jpg
Component A Component A

Component B Component B
v2.3 v2.3

The platform The platform
[System boundary] [System boundary]






index-311_2.png
d2583dfd2c6d/192.168.112.10:8080
2f19e5a1695b/192.168.112.9:8080
283ab4318911/192.168.112.11:8080






index-45_1.jpg
Product Composite
[microservice]

Review

Recommendation
[microservice] [microservice]

Product
[microservice]

The microservice landscape
[System boundary]





index-42_1.jpg
Component A
[Web App]

Java EE
Web Container

Component A ]
[Web App)

Java EE
Web Container

Component A
[Web App]

Java EE
Web Container






index-310_1.png
eee [ ~v <

10

localhost ¢ ﬁ +

@ Spring HOME LAST 1000 SINCE STARTUP

System Status

Environment test Current time 2025-04-13T15:44:03 +0000
Data center default Uptime 00:02
Lease expiration enabled true
Renews threshold 11
Renews (last min) 48
DS Replicas

Instances currently registered with Eureka

Application AMIs Availability Zones Status

PRODUCT n/a(1) (1) UP (1) - 2c486a2c6649:product:8080
PRODUCT-COMPOSITE n/a(1) (1) UP (1) - 9c4dd9c9c076:product-composite:8080
RECOMMENDATION n/a(1) (1) UP (1) - 84171c38d0e3:recommendation:8080

REVIEW n/a(3) (3) UP (3) - dd19b99b5607:review:8080 , 0e147ab738df:review:8080 , 6¢cc8alcf1f46:review:8080





index-51_1.jpg
Microservice A






index-576_1.jpg
. Istio Proxy . Istio Proxy Istio Proxy

| (sidecar) J (sidecar) Istio Proxy
Istio Ingres Pod A Istio Egres

Istio Data plane

Tracing (Jaeger
Istio Control plane g Uaeger)

Kubernetes






index-309_1.png
$ ./test-em-all.bash start
Start Tests: Wed MMM DD 11:45:59 CEST YYYY

i Container chapter@9-eureka-1 Started

Wait for: curl http://localhost:8080/actuator/health... DONE, continues...
Test OK ...
End, all tests OK: Wed MMM DD 11:46:22 CEST YYYY

s i





index-47_1.jpg





index-574_1.jpg
v v
. Service Mesh . Service Mesh l Service Mesh .

Service Mesh Data plane

Service Mesh Control plane






index-311_1.png
c983c84cd214:product-composite: 8080
3e2583567ff7:product: 8080
d2583dfd2cbd:review: 8080
2f19e5a1695b:review: 8080
283ab4318911:review: 8080
ce425f147212:recommendation: 8080

Ly |






index-55_1.jpg
N ///
| I ~ o

% & Configuration
The microservice landscape Storage





index-583_1.jpg
. bash 381
handson-spring-boot-cloud
type: Control Plane

host: Running

kubelet: Running
apiserver: Running
kubeconfig: Configured

3 |





index-310_2.png
chapter@9-review-2 ... Started ReviewServiceApplication in 5.254 seconds
chapter@9-review-3 ... Started ReviewServiceApplication in 5.202 seconds






index-52_1.jpg
Edge Server

Microservice A Microservice B Microservice C

Microservice D Microservice E Microservice F

The microservice landscape






index-577_1.jpg
Istio Proxy

(sidecar)
Pod A

Istio Data plane

Istio Control plane

Kubernetes






index-39_2.jpg
Component A ' ComponentB S | Component C
[Web App] [Web App] [Web App]

Component D Component E Component F
[Web App] [Web App] [Web App]

The platform The platform
[Java EE Web Container) [Java EE Web Container]






index-39_1.jpg
==

=

(Sl

The platform -
[System boundary]

4.1

—
S





index-41_1.jpg
System A
[External System]

The platform
[System boundary]

Custom implementation
[System boundary]

- - =

System B System C System D
[External System] [External System] [External System]

R T L L L4





index-40_1.jpg
System A
[External System]

Component D | e ComponentE

The platform
[System boundary]

System B
[External System]






index-288_1.png
Product Composite
[microservice]
1. Get Configuration
[microservice]
Spring Cloud 2. Get Configuration
[microservice) > Configuration Server

[micreservice] 3. Change Notification

Review
[microservice]

4. Change
Notification

Config Changes

[topic] | }

The microservice landscape
[System boundary]






index-544_1.jpg
Authorization Server
(Spring Security OAuth2)

Edge Server Product Composite
(Spring Cloud Gateway) [microservice]

M| Distributed Tracing Server
(Apache Zipkin)

The microservice landscape, deployed in Kubernetes
[System boundary]

Product
[microservice]

Recommendation
[microservice]

Review
[microservice]






index-786_1.png





index-286_1.png
URL Path:
/product-composite/..

Edge Server
[microservice]

URL Path:

/another-path/...

The microservice landscape
[System boundary]

Product Composite
[microservice]

Another Public Service
[microservice]

Product
[microservice]

Recommendation
[microservice]

Review
[microservice]






index-541_1.png





index-785_2.png
(quk"') Q  Search... Subscription f @

Explore Products Best Sellers New Releases Books Videos Audiobooks Learning Hub Newsletter Hub Free Learning

Discover and unlock your book's exclusive benefits

Bought a Packt book? Your purchase may come with free bonus benefits designed to maximise your learning. Discover and unlock them here

®

Discover Benefits Sign Up/In Upload Invoice
Need Help?
%+ 1. Discover your book’s exclusive benefits A
Q  Search by title or ISBN
CONTINUE TO STEP2
o . .
<o 2.Login or sign up for free v

@ 3. Upload your invoice and unlock v





index-291_1.jpg
{
"status": "UP",
"details": {
"product”: {
"status": "UP",
"details": {
"failureRate": "-1.0%",
"failureRateThreshold": "50.0%",
"slowCallRate": "-1.0%",
"slowCallRateThreshold": "100.0%",

"bufferedCalls": 0,
"slowCalls": 0,
"slowFailedCalls": 0,
"failedCalls": 0,
"notPermittedCalls": 0,
"state": "CLOSED"






index-548_2.jpg
Copy Explain

function calculate(a, b) { & @
return {sum: a + b};

bh





index-788_1.png





index-289_1.png
2. success 5. fast fail

4. trip
(failure threshold)

7. trip 6. attempt

fail close
8. close (fail

(success)

Half Open





index-548_1.jpg





index-786_2.png





index-129_1.png
@52ed908dac59:/

./test—-em—-all.bash
HOST=1localhost
PORT=7001

Test
Test
Test
Test
Test

OK
OK
OK
OK
OK

(HTTP Code: 200)
(actual value: 1)
(actual value: 3)
(actual value: 3)
(HTTP Code: 404, {"timestamp":"YYYY-MM-DDT12:55:59.65947+02:00","path":"/product-comp

osite/13","message":"No product found for productId: 13","status":404,"error":"Not Found"})

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

(actual value: No product found for productId: 13)

(HTTP Code: 200)

(actual value: 113)

(actual value: 0)

(actual value: 3)

(HTTP Code: 200)

(actual value: 213)

(actual value: 3)

(actual value: 0)

(HTTP Code: 422, {"timestamp":"YYYY-MM-DDT12:55:59.754238+02:00","path":"/product—-com

posite/-1","message":"Invalid productId: -1","status":422,"error":"Unprocessable Entity"})
Test OK (actual value: "Invalid productId: -1")

Test OK (HTTP Code: 400, {"timestamp":"YYYY-MM-DDT10:55:59.771+00:00","path":"/product-compos
ite/invalidProductId","status":400,"error":"Bad Request","requestId":'"5d6271ba-12","message":
"Type mismatch."})

Test OK (actual value: "Type mismatch.")

End, all tests OK: Fri MMM DD 12:55:59 CEST YYYY

' |





index-537_1.jpg
"hands-on/auth-server:v1"
"hands-on/config-server:v1"

"hands-on/gateway:v1"
"hands-on/product-service:v1"
"hands-on/product-composite-service:v1"
"hands-on/recommendation-service:v1"
"hands-on/review-service:v1"
"registry.hub.docker.com/openzipkin/zipkin:3.5.0"

s |l





index-785_1.png





index-123_1.png
N
Jo
%
ﬂ'\

00
I

A

Y ©

® @ R O

®
B

SPRING BOOT DASHBOARD

v APPS
Sa api
& product-composite-service [:7001] =
r. product-service [:7002]
& recommendation-service [:7003]
or. review-service [:7004]
S util
> BEANS

v ENDPOINT MAPPINGS
v oor. product-composite-service pid: 60658
[} I
@ [actuator [GET]
@ [actuator/health [GET]
@ [actuator/health/{*path} [GET]
@ [product-composite/{productld} [GET]
@ [webjars/**
v & product-service pid: 61224
(3} I
@ [actuator [GET]
@ [actuator/health [GET]
@ [actuator/health/{*path} [GET]
@ [product/{productld} [GET]
@ [webjars/**
v oor. recommendation-service pid: 61721
(a) /**
@ [actuator [GET]
@ [actuator/health [GET]
@ [actuator/health/{*path} [GET]
@ [recommendation [GET]
@ [webjars/**
v & review-service pid: 62229
(3} I
@ [actuator [GET]
@ [actuator/health [GET]
> PROPERTIES
> MEMORY
7« Launchpad ®O0A 0D 1

of

<~ £ 2-basic-rest-services

&> Spring Boot-ProductCompositeServiceApplication<product-composite-service> (2-bas 4> Live Share

1
> v <« ®

S
J ProductCompositeServicelmpljava X J

microservices )

O v  Spring Boot-ProductComp v

ProductCompositeServiceImpl(
’ ) {

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

@ Run: ProductCompositeServiceApplication —|— v @[

/\\ / !

()
CONC_—T2ore
!
Il

VAN
|\\\\
ZLr)y)y)y)
| /7777
/=/_1_/_/

\\V/ D] I (
' LN

(v3.5.0-M3)

YYYY-MM-DDT16:29:49.130+02:00 60658 —— [ main] m.c.p.ProductCompositeServiceApplication : Starting ProductCo
mpositeServiceApplication using Java 24 with PID 60658 (/Users/magnus/Documents/projects/books/4th/git/3E-INIT/Chapter@3/2-ba
sic-rest-services/microservices/product-composite-service/build/classes/java/main started by magnus in /Users/magnus/Document
s/projects/books/4th/git/3E-INIT/Chapter@3/2-basic-rest-services/microservices/product-composite-service)
YY MM-DDT16:29:49.133+02:00 60658 —— [ main] m.c.p.ProductCompositeServiceApplication
g Boot v3.5.0-M3, Spring v6.2.5
Y IM-DDT16:29:49.133+02: 00 60658 —— [
set, falling back to 1 default profile: "default"
WARNING: A terminally deprecated method in sun.misc.Unsafe has been called
WARNING: sun.misc.Unsafe::allocateMemory has been called by io.netty.util.internal.PlatformDependent@$2 (file:/Users/magnus/.
gradle/caches/modules-2/files-2.1/io.netty/netty—-common/4.1.119.Final/2f7c360b@3c@aceab7efclf7c2b75274f0135909/netty—-common—4
.1.119.Final.jar)
WARNING: Please consider reporting this to the maintainers of class io.netty.util.internal.PlatformDependent@$2
WARNING: sun.misc.Unsafe::allocateMemory will be removed in a future release
T16:29:49.923+02:00 60658 —— [ main] o.s.b.a.e.web.EndpointLinksResolver
t beneath base path '/actuator'
T16:29:50.152+02:00
ort 7001 (http)
YY-MM-DDT16:29:50.165+02:00 60658 —— [ main] m.c.p.ProductCompositeServiceApplication
positeServiceApplication in 1.285 seconds (process running for 1.717)

Running with Sprin

main] m.c.p.ProductCompositeServiceApplication

: No active profile

: Exposing 1 endpoin

60658 —— [ main] o.s.b.web.embedded.netty.NettyWebServer : Netty started on p

Started ProductCom

v/ AWS: profile:default & Java: Ready LF {} Java

=

@ © es > composite > product > services > J ProductCompositeServicelmpl.ja

55 b BB 1B X

8 -





index-784_3.png





index-134_1.jpg
Virtual machines

Binaries &

Libraries

Binaries &
Libraries

Hypervisor

Containers

Binaries &
Libraries

Binaries &
Libraries

Binaries &
Libraries






index-299_1.png
70eb82fc7e61/192.168.96.8:8080

Y |





index-130_1.png





index-298_2.png
[ XC N J bash %3

192.168.96.8 70eb82fc7ebl

Y |





index-560_1.jpg
NAME

cert-manager-64f9f45d6f-2dmld
cert-manager-cainjector-56bbdd5c47-krzpw
cert-manager-webhook-d4f4545d7-zrhvf

$ i

READY
1/1
1/1
1/1

STATUS

Running
Running
Running

RESTARTS
0
0
0

AGE
10h
10h
10h





index-135_1.png
O] root@5a9c0bae8632: X #3

root@5a9c@bae8632: /# cat /etc/os-release | grep 'PRETTY_NAME'
="Ubuntu 24.04.1 LTS"
root@5a9cObae8632: /# I





index-134_2.jpg
® O ® 4. root@435dc56d3916: / (docker)

$ docker run -it --rm ubuntu
root@435dc56d39f6:/# ||





index-137_1.png
bash X#3

$ echo 'Runtime.getRuntime().availableProcessors()"' |
docker run ——rm —1i eclipse-temurin:24 jshell —q
jshell> $1 ==> 8

Y |





index-294_1.png
Si ID
¥ ENGLISH v & 06c0eef80b15e4838

gateway: http post

Oms

SPAN TABLE =
Duration 33.520ms ~ Services 5 Total Spans 31 Trace |D 06c0eef80b15e4838543f20cedfde8a7
11.173ms 22.347ms 33.520ms
© <
Oms 11.173ms 22.347ms 33.520ms
gateway. http post 15.392ms
gateway: security filterchain before 2.352ms
—
gateway: authorize -security-context-server-web-exchange 533ps
-
gateway: secured request 12.452ms
————————————
gateway: http post 9.519ms
product-composite: http post /product-composite 5.665ms
product-composite: security filterchain before 2.220ms
—
product-composite: authorize -security-context-server-web-exchange 276ps
.
product-composite: secured request 2.782ms
—
product-composite: recommendations/recommendations send 310us
recommendation: recommendations.recommendationsgroup receive 4.321ms
product-composite: products/products send 246ps
product: products.productsgroup receive 5.274ms
|—
product-composite: recommendations/recommendations send 184ps
recommendation: recommendations.recommendationsgroup receive 3.210ms
product-composite: reviews/reviews send 194ps
product-composite: recommendations/recommendations send 212ps
recommendation: recommendations.recommendationsgroup receive 2.722ms
—
product-composite: reviews/reviews send 231ps
product-composite: reviews/reviews send " 202ps
product-composite: security filterchain after 97ps

'
gateway: security filterchain after 116ps





index-548_4.png





index-791_1.jpg
<packh

Spring System Design
in Practice

Build scalable web applications using microservices and
design patterns in Spring and Spring Boot

RODRIGO SANTIAGO

Foreword by Shalini Goyal, Global Technology Leader, Ex-Amazon





index-135_2.png
@52ed908dac59:/

$ docker run ——rm -it fedora

[root@52ed908dac59 /1# cat /etc/os-release | grep 'PRETTY_NAME'
PRETTY_NAME="Fedora Linux 41 (Container Image)"
[root@52ed908dac59 /1# I





index-291_2.jpg
{
"status™: "UNKNOWN",
"details": {
"product”: {
"status": "CIRCUIT_OPEN",
"details": {
"failureRate": "60.0%",
"failureRateThreshold": "50.0%",
"slowCallRate": "0.0%",
"slowCallRateThreshold": "100.0%",

"bufferedCalls": 5,
"slowCalls": 0,
"slowFailedCalls": 0,
"failedCalls": 3,
"notPermittedCalls": 3,
"state": "OPEN"






index-548_3.jpg





index-790_1.jpg
<packh

Software Architecture
with Spring

Design scalable and high-performance
Java applications with Spring

<> IWANDERSON XESQUEVIXOS





index-143_1.png
$ 1s -1 microservices/product-service/build/1libs
total 46472

-rw-r--r-- 1 magnus staff 23791030 Mar 21 ©9:41 product-service-1.0.0-SNAPSHOT. jar

3 |






index-298_1.png
192.168.96.9 review
192.168.96.8 review

4





index-558_1.jpg
Authorization Server 3 Product
Self signed cert (Spring Security OAuth2) / [microservice]
(minikube.me)

https://minikube.me:8443

Edge Server Product Composite Recommendation
(Kubernetes Ingress) [microservice] [microservice]

Review

The microservice landscape
[microservice]

[System boundary]

minikube.me > 127.0.0.1





index-138_1.png
bash X#3

$ docker run —-it ——rm eclipse-temurin:24 java -XX:+PrintFlagsFinal |
grep "size_t MaxHeapSize"
size_t MaxHeapSize = 4188012544

s i





index-295_1.png





index-551_1.jpg
Authorization Server

l (Spring Security OAuth2)

I\ Product Composite
[microservice]

W Distributed Tracing Server
(Apache Zipkin)

The microservice landscape, deployed in Kubernetes
[System boundary]

Product
[microservice]

Recommendation
[microservice]

Review
[microservice]






index-122_1.png
bash X#3

$ curl http://localhost:7001/product-composite/1 -s | jq .

{
"productId": 1,

"recommendations": [ ... 1,
"reviews": [ ... 1,
"serviceAddresses": { ... }

X |





index-247_1.jpg
Product #1

[microservice instance]

A B c
Key=123 Key=456 Key=123

Product Composite 5
[microservice]

- ————— - ————— -~

Product #2
[microservice instance]

The microservice landscape
[System boundary]





index-524_1.jpg
- kubectl 381

config-server-6b9f6c6988-s1t9n 0/1 ContainerCreating 0 5s
product-76bb56d7fc-7qrgf 0/1 ContainerCreating 0 5s
mongodb-d466986f-xtlsj 0/1 ContainerCreating 0 bs
auth-server-5c58bbcb9b-c9npg 0/1 Running 0 6s
rabbitmg-6¢c7b9bf547-c44dj 0/1 Running 0 /s
gateway-7bdcf586df-pm914 0/1 Running 0 /s
product-composite-f45fccdf5-46dpt 0/1 Running 0 /s
mongodb-d466986f-xtlsj 1/1 Running 0 8s
review-777ff7d5b4-g7zrj 0/1 Running 0 8s
product-76bb56d7fc-7qrgf 0/1 Running 0 Os
mysql-5846f7fb7c-kxxd?7 1/1 Running 0 Os
zipkin-server-58obcccd96-1grj7 0/1 Running 0 Os





index-774_2.jpg
CONTAINER ID NAME CPU % MEM USAGE ...
c2fd8c3cf276  chapter23-review-1 0.14% 307.7MiB
ecb84348619f  chapter23-recommendation-1 0.13% 251.4MiB
d276f9d9c4bf  chapter23-product-composite-1 0.16% 293.6MiB
0aa87dcc@145  chapter23-product-1 0.19% 245 .2MiB
8a37a5918b2f  chapter23-jaeger-collector.istio-system-1  0.13% 198.4MiB
6ee062ef5073  chapter23-gateway-1 0.12% 232.9MiB
efc90cd@9472  chapter23-auth-server-1 0.20% 164.2MiB
32cf@ffa6870  chapter23-mongodb-1 1.17% 164.7MiB
7ead773af325  chapter23-mysql-1 0.85% 394 .6MiB
b46099e@b2ab  chapter23-rabbitmg-1 7.96% 122.8MiB
.y |





index-522_1.jpg
-bash 381

NAME VERSION REPOSITORY STATUS

common 1.0.0 file://../../common ok
rabbitmq 1.0.0 file://../../components/rabbitmq ok
mongodb 1.0.0 file://../../components/mongodb ok
mysql 1.0.0 file://../../components/mysql ok
config-server 1.0.0 file://../../components/config-server ok
gateway 1.0.0 file://../../components/gateway ok
auth-server 1.0.0 file://../../components/auth-server ok
product 1.0.0 file://../../components/product ok
recommendation 1.0.0 file://../../components/recommendation ok
review 1.0.0 file://../../components/review ok
product-composite 1.0.0 file://../../components/product-composite ok
zipkin-server 1.0.0 file://../../components/zipkin-server ok

Ly |





index-774_1.png
382

Start Tests: Sat MMM DD 09:36:19 CEST YYYY

Wait for: curl -k https://health.minikube.me/actuator/health...
DONE, continues...

Test OK (HTTP Code: 200)

End, all tests OK: Sat MMM DD ©9:36:40 CEST YYYY

s i





index-269_1.png
[ XX ) O ~v < localhost ¢ @ @ +

0

Refreshed 2025-04-12 20:59:05 ( Refresh every 5 seconds % )

Virtual host -AII o
E Ra b b It RabbitMQ 4.0.7 Erlang 27.3.1

Cluster rabbit@bcd73b4d7a25
Overview Connections Channels Exchanges Queues and Streams Admin

User guest
Queues

w All queues (9)

Pagination
Page (1 %) of 1 - Filter: Regex ? Displaying 9 items , page size up to: 100
Overview Messages Message rates +/-
‘I:irti?al Name Type Features State Ready Unacked Total incoming de{iver / ack
os ge
/ products.auditGroup classic | ] 1 0 1 0.00/s
. - running
/ products.productsGroup classic | ] 0 0 0 0.00/s 0.00/s 0.00/s
. -- running
/ products.productsGroup.diq classic . - [ | 0 0 0
running
/ recommendations.auditGroup classic . - [ 3 0 3 0.00/s
running
/l recommendations.recommendationsGroup classic . . . | 0 0 0 0.00/s 0.00/s 0.00/s
- running
/ recommendations.recommendationsGroup.dlq | classic D Args [ | 0 0 0
running
/ reviews.auditGroup classic | | 8 0 8 0.00/s
. - running
/] reviews.reviewsGroup classic [ | 0 0 0 0.00/s 0.00/s 0.00/s
. -- running
/ reviews.reviewsGroup.diq classic . - | 0 0 0
running

» Add a new queue

HTTP API Documentation Tutorials New releases Commercial edition Commercial support Discussions Discord Plugins GitHub





index-526_1.png
Start Tests: Mon MMM DD 16:41:35 CEST YYYY

HOST=1ocalhost

PORT=30443

USE_K8S=true

SKIP_CB_TESTS=false

Wait for: curl -k https://localhost:30443/actuator/health...
DONE, continues...

ACCESS_TOKEN=eyJraW. ..

Test OK (HTTP Code: 200)

End, all tests OK: Mon MMM DD 16:42:03 CEST YYYY

[y | |






index-777_2.jpg
CONTAINER ID NAME CPU % MEM USAGE ...
bc@db@67daef  chapter23-review-1 0.03% 98.16MiB
5dd4faceb8ab  chapter23-product-1 0.04% 81.8MiB
f2add10d08de  chapter23-recommendation-1 0.03% 87.82MiB
bSfa5el4d4a6  chapter23-product-composite-1 0.02% 131.8MiB
aedcef@@06a5  chapter23-jaeger-collector.istio-system-1  0.58% 202 .4MiB
29051d43ede6  chapter23-gateway-1 0.22% 238.7MiB
960630b2ecf@®  chapter23-auth-server-1 0.39% 160.1MiB
2ba3e34a60a8  chapterZ3-mongodb-1 3.11% 164 .4MiB
ab50716bc791  chapter23-rabbitmg-1 0.72% 119.7MiB
dSﬁde4eS7l3 chapter23-mysql-1 1.33% 397.3MiB
$





index-266_1.png
"status": "UP",
"components": {
"coreServices": {
"status": "UP",
"components": {
"product": {
"status": "UP"
}9
"recommendation": {
"status": "UP"
})
"review": {
"status": "UP"
}
}

b






index-524_2.jpg
X381

"hands-on/auth-server: latest"
"hands—-on/config-server: latest"
"hands—-on/gateway: latest"
"registry.hub.docker.com/library/mongo:8.0.5"
"registry.hub.docker.com/library/mysql:9.2.0"
"hands—on/product-service: latest"
"hands-on/product-composite-service: latest"
"registry.hub.docker.com/library/rabbitmq:4.0.7-management"
"hands—on/recommendation-service: latest"
"hands—-on/review-service: latest"
"registry.hub.docker.com/openzipkin/zipkin:3.5.0"

s i





index-777_1.jpg
bash X1

product-composite-1 . Started ProductCompositeServiceApplication in 0.482 seconds

|
product-1 | . Started ProductServiceApplication in 0.205 seconds
recommendation-1 | . Started RecommendationServiceApplication in 0.198 seconds
review-1 |

. Started ReviewServiceApplication in 0.269 seconds

Ly |





index-773_1.jpg
bash X1
. Started RecommendationServiceApplication in 5.809 seconds
. Started ProductCompositeServiceApplication in 6.696 seconds
. Started ProductServiceApplication in 5.611 seconds

. Started ReviewServiceApplication in 6.901 seconds

recommendation-1 |
product-composite-1 |
product-1 |
review-1 |

£y |





index-82_4.png





index-278_1.png





index-534_1.jpg
Authorization Server Product 4
(Spring Security OAuth2) [microservice] \\
X

4 ‘
// \ I MongoDB
5 o
/
\\\
o

[database]

Edge Server é/ Product Composite & Recommendation —~
b P (Spring Cloud Gateway) % [microservice] X microservice] \
\\ N TS
b Config Server 5 Review 5o MysQL
(Spring Cloud Config Server) [microservice] \ [database]
A\

\\\ \

g
M Distributed Tracing Server N RabbitMQ
(Apache Zipkin) [queue manager]

Docker Compose

Kubernetes namespace hands-on

The microservice landscape
[System boundary]






index-95_1.jpg
Product Composite

[microservice]

Product Review Recommendation
[microservice] [microservice] [microservice]

The microservice landscape
[System boundary]






index-275_2.png
won

{"eventType":"CREATE","key":1,"data" : {"productId":1, " "name":"product name C","weight":300,
"serviceAddress":null}, "eventCreatedAt":"2023-03-21T18:58:12.719423052"}
[2023-03-21 18:59:28,573] ERROR Error processing message, terminating consumer process:

(kafka.tools.ConsoleConsumer$)
org.apache.kafka.common.errors.TimeoutException
Processed a total of 1 messages

$






index-532_1.png
"status": "UP",
"components": {

"mongo": {
"status": "UP",
"details": {
"maxWireVersion":
}
}
"rabbit": {
"status": "UP",
"details": {
"version": "4.0.7"
}
}
"readinessState": {
"status": "UP"
}

25





index-784_2.png





index-93_1.png





index-103_1.jpg
$ ./gradlew build

Starting a Gradle Daemon (subsequent builds will be faster)
Download ...

> Task :microservices:product-composite-service:test

> Task :microservices:product-service:test

> Task :microservices:recommendation-service:test

> Task :microservices:review-service:test

BUILD SUCCESSFUL in 34s
s





index-285_1.png
eee [ ~v <

10

localhost ¢ ﬁ +

@ Spring HOME LAST 1000 SINCE STARTUP

System Status

Environment test Current time 2025-04-13T15:44:03 +0000
Data center default Uptime 00:02
Lease expiration enabled true
Renews threshold 11
Renews (last min) 48
DS Replicas

Instances currently registered with Eureka

Application AMIs Availability Zones Status

PRODUCT n/a(1) (1) UP (1) - 2c486a2c6649:product:8080
PRODUCT-COMPOSITE n/a(1) (1) UP (1) - 9c4dd9c9c076:product-composite:8080
RECOMMENDATION n/a(1) (1) UP (1) - 84171c38d0e3:recommendation:8080

REVIEW n/a(3) (3) UP (3) - dd19b99b5607:review:8080 , 0e147ab738df:review:8080 , 6¢cc8alcf1f46:review:8080





index-99_1.jpg
B s & D Y ———
$ find microservices/product-service -type f

microservices/product-service/gradle/virapper/gradle-wrapper. jar
microservices/product-service/gradle/vrapper/gradle-wrapper.properties

microservices/product-service/gradlew

microservices/product-service/.gitignore

microservices/product-service/build.gradle

microservices/product-service/gradlew.bat

microservices/product-service/settings.gradle
microservices/product-service/src/test/java/se/magnus/microservices/core/product/ProductServiceApplicationTests. java
microservices/product-service/src/main/resources/application.properties
microservices/product-service/src/main/java/se/magnus/microservices/core/product/ProductServiceApplication. java

s B





index-110_1.png
bash

$ curl http://localhost:7002/product/123
{"productId":123,"name":"name-123","weight":123,"serviceAddress" :"MagnusMBP/127.0.0.1:7002"}

s i





index-272_1.png
eee [ ~v <

bRabbit

RabbitMQ 4.0.7

10

Erlang 27.3.1

localhost

¢

0

+ O

Refreshed 2025-04-13 16:44:31 ( Refresh every 5 seconds % )

Virtual host

Cluster rabbit@0981164ccad8

User guest

Overview Connections Channels Exchanges Queues and Streams Admin
Queues
« Al queues (15)
Pagination
Page (1 %) of 1 - Filter: Regex ? Displaying 15 items , page size up to: 100
Overview Messages Message rates +/-
Llirttlal Name Type Features State Ready Unacked Total incoming de{iver / ack
os ge
/ products.auditGroup-0 classic | ] 1 0 1 0.00/s
. - running
/ products.auditGroup-1 classic | ] 1 0 1 0.00/s
. - running
/ products.productsGroup-0 classic | ] 0 0 0 0.00/s 0.00/s 0.00/s
. -- running
Vi products.productsGroup-1 classic . - - [ | 0 0 0 0.00/s 0.00/s 0.00/s
- running
/ products.productsGroup.diq classic . - [ | 0 0 0
running
/ recommendations.auditGroup-0 classic . - | 3 0 3 0.00/s
running
/) recommendations.auditGroup-1 classic | 3 0 3 0.00/s
. - running
[ recommendations.recommendationsGroup-0 classic || 0 0 0 0.00/s 0.00/s 0.00/s
. -- running
/ recommendations.recommendationsGroup-1  classic . - - [ | 0 0 0 0.00/s 0.00/s 0.00/s
- running
/ recommendations.recommendationsGroup.dlq | classic D Args [ ] 0 0 0
running
/ reviews.auditGroup-0 classic D Args [ | 3 0 3 0.00/s
running
j reviews.auditGroup-1 classic . - [ | 3 0 3 0.00/s
running
/ reviews.reviewsGroup-0 classic . - - [ | 0 0 0 0.00/s 0.00/s 0.00/s
- running
/] reviews.reviewsGroup-1 classic || 0 0 0 0.00/s 0.00/s 0.00/s
. -- running
/ reviews.reviewsGroup.diq classic . - | 0 0 0
running
) Add a new queue
HTTP API Documentation Tutorials New releases Commercial edition Commercial support Discussions Discord Plugins GitHub





index-530_1.png
YYYY-MM-DDT14:38:51.191Z INFO 1 ——— [ionShutdownHook]
[product,,] o.s.b.w.embedded.netty.GracefulShutdown
Commencing graceful shutdown. Waiting for active requests to complete

YYYY-MM-DDT14:39:01.205Z INFO 1 ——— [ionShutdownHook]

[product,,] o.s.c.support.DefaultLifecycleProcessor

Shutdown phase 2147482623 ends with 1 bean still running after timeout
of 10000ms: [webServerGracefulShutdown]

YYYY-MM-DDT14:39:01.207Z INFO [product,,] 1 —-

[ netty-shutdown] o.s.b.w.embedded.netty.GracefulShutdown

Graceful shutdown aborted with one or more requests still active





index-781_2.jpg
. bash X381
hands-on/auth-server:latest
hands-on/native-product-service:latest
hands-on/native-product-composite-service:latest
hands-on/native-recommendation-service:latest
hands-on/native-review-service:latest

$






index-109_1.png
bash

$ java —jar microservices/product-service/build/libs/*.jar &

ANW4

[ G F W W W
COMN | ") "2 "N I YN
VAR I [ 1 O O B R B D
ol M N N T

—========|_|=========—====|_ /=/ /_/_/
:: Spring Boot :: (v3.5.0)

...Started ProductServiceApplication in 1.305 seconds (process running for 1.563)

Y |





index-270_1.png
localhost ¢ m +

10

eee [ ~v <

Refreshed 2025-04-13 16:32:43 ( Refresh every 5 seconds % |

Virtual host -AII o
E Ra b b It RabbitMQ 4.0.7 Erlang 27.3.1

Cluster rabbit@bcd73b4d7a25
Overview Connections Channels Exchanges Queues and Streams Admin

User guest
v Get messages

Warning: getting messages from a queue is a destructive action. ?

A

Ack Mode: ( Nack message requeue true 4% )

A

Encoding: ( Auto string / base64 4] ?

Messages: 1

Get Message(s)

Message 1

The server reported 0 messages remaining.

Exchange products

Routin oducts
Kegl produ

Redelivered o

Properties timestamp: 1744484008
message_id: b187b046-2850-7222-e70a-645a7e6e68d1
priority: 0
delivery_mode: 2
headers: partitionKey: 1
target-protocol: amqp

content_type: application/json

Payload
161 bytes {"eventType":"CREATE", "key":1, "data": {"productId":1, "name": "product name C","weight":300,"serviceAddress":null}, "eventCreatedAt":"

Encoding:
string






index-529_1.png
YYYY-MM-DDT14:12:30.877Z INFO 1 ——— [ionShutdownHook]
[product,,] o.s.b.w.embedded.netty.GracefulShutdown
Commencing graceful shutdown. Waiting for active requests to complete

YYYY-MM-DDT14:12:35.245Z INFO 1 ——— [ netty-shutdown]
[product,,] o.s.b.w.embedded.netty.GracefulShutdown
Graceful shutdown complete





index-781_1.jpg
2023-06-17T08:20:50.759Z ... Started ProductCompositeServiceApplication in 0.442 seconds
Ly |





index-121_2.png
bash

$ curl http://localhost:7001/product—composite/1

... log output...
{"productId":1,"name":"name-1","weight":123," recommendations": [{" recomm

endationId":1,"author":"Author 1","rate":1},{"recommendationId":2,"auth
or":"Author 2","rate":2},{"recommendationId":3,"author":"Author 3","rat
e":3}],"reviews": [{"reviewId":1,"author":"Author 1","subject":"Subject

1"}, {"reviewId":2,"author":"Author 2","subject":"Subject 2"},{"reviewld
":3,"author":"Author 3","subject":"Subject 3"}],"serviceAddresses":{"cm
p":"MagnusMBP. local/127.0.0.1:7001","pro":"MagnusMBP. local/127.0.0.1:70
02" ,"rev":"MagnusMBP. local/127.0.0.1:7004" ," rec" :"MagnusMBP. local/127.0

.0.1:7003"}}

s i






index-275_1.png
Topic: products TopicIld: awodZFheRTmPAQWHC@OFOBQ PartitionCount: 2

ReplicationFactor: 1 Configs:
Topic: products Partition: @ Leader: 1 Replicas: 1 Isr: 1
Topic: products Partition: 1 Leader: 1 Replicas: 1 Isr: 1

Y |






index-531_1.jpg
d

"status”": "UP"

}
5 B






index-784_1.png





index-121_1.jpg
[ NON 4. bash

..Started ProductCompositeServiceApplication...
..Started RecommendationServiceApplication...
..Started ProductServiceApplication...
..Started ReviewServiceApplication...





index-274_1.jpg
bash
error.products.productsGroup
error.recommendations.recommendationsGroup
error.reviews.reviewsGroup
products
recommendations
reviews

&y |






index-530_2.jpg
eoe bash X1

HTTP/1.1 200 15.06 secs: 771 bytes ==> GET /product-composite/1?delay=15
HTTP/1.1 500 13.76 secs: 205 bytes ==> GET /product-composite/1?delay=15
HTTP/1.1 200 15.12 secs: 771 bytes ==> GET /product-composite/1?delay=15





index-783_1.png





index-82_3.jpg





index-82_2.jpg





index-478_2.jpg
NAMESPACE
ingress-nginx
ingress-nginx
ingress-nginx
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

$

$ kubectl get pods --all-namespaces

NAME
ingress-nginx-admission-create-88v7k
ingress-nginx-admission-patch-j2xws
ingress-nginx-controller-77669ff58-qfj5j
coredns-787d4945fb-wbp2r
etcd-handson-spring-boot-cloud
kube-apiserver-handson-spring-boot-cloud
kube-controller-manager-handson-spring-boot-cloud
kube-proxy-prrjn
kube-scheduler-handson-spring-boot-cloud
metrics-server-5f8fcc9bb7-11ns9
storage-provisioner

READY
0/1
0/1
171
171
171
1/1
171
171
171
1/1
171

STATUS
Completed
Completed
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

0
1
0
0
0
]
0
0
0
0
i}

(62m ago)

AGE
41m
41m
41m
63m
63m
63m
63m
63m
63m
40m
63m





index-737_1.png





index-734_1.png
382

git version 2.39.5 (Apple Git-154)
28.0.4

openjdk version "24" 2025-03-18
curl 8.7.1

jog-1.7.1

Spring CLI v3.5.0

SIEGE 4.1.7

v3.17.2+gcc@bbbd

v1.32.0

minikube version: v1.35.0
client version: 1.24.2

A |





index-228_1.jpg
getCompositeProduct ©
createCompositeProduct o

deleteCompositeProduct ©-

The microservice landscape
[System boundary]

iy

getProduct

o

i

getRecommendations

U
0

getReviews
o

[





index-482_1.jpg
8 kubect! X381

$ kubectl get pod --watch
NAME
nginx-deploy-58bfb487f9-cgc2v
nginx-deploy-58bfb487f9-cgc2v
nginx-deploy-58bfb487f9-knhfp
nginx-deploy-58bfb487f9-knhfp
nginx-deploy-58bfb487f9-knhfp
nginx-deploy-58bfb487f9-cgc2v
nginx-deploy-58bfb487f9-cgc2v
nginx-deploy-58bfb487f9-cgc2v
nginx-deploy-58bfb487f9-knhfp

READY
1/1
1/1
0/1
0/1
0/1
0/1
0/1
0/1
1/1

STATUS RESTARTS
Running 0
Terminating @
Pending 0
Pending 0
ContainerCreating
Terminating
Terminating
Terminating
Running

54s

0s
0s

0s
55s
55s
55s
2s





index-742_2.jpg
P2 Windows Powe X . magnus@magi X 2 = O X

$ cd
$ pwd
/home/magnus





index-225_1.png





index-481_1.png
X1

$ kubectl get all

NAME READY  STATUS RESTARTS  AGE
pod/nginx-deploy-79f9d4bcf5-vxmw7 1/1 Running 0 99s

NAME READY  UP-TO-DATE  AVAILABLE AGE
deployment.apps/nginx—deploy 1/1 1 1 99s

NAME DESIRED CURRENT READY  AGE
replicaset.apps/nginx—-deploy-79f9d4bcf5 1 1 1 99s

X |





index-742_1.jpg
P2¥ windows PowerShell X J5 = O

PS C:\> 22 Windows PowerShell  Ctrl+Shift+1
Command Prompt Ctrl+Shift+2
B Azure Cloud Shell Ctrl+Shift+3
§83 Settings Ctrl+,
£/ Command palette Ctrl+Shift+P

? About






index-156_2.png
@52ed908dac59:/ X3#3

$ docker—compose logs product

chapter@6-product-1 | ... INFO 1 —— [}-mongodb:27017] org.mongodb.driver.cluster

: Exception in monitor thread while connecting to server mongodb:27017
chapter@6-product-1 | com.mongodb.MongoSocketException: mongodb: Name or service not known

s i





index-156_1.png
$ docker-compose ps

NAME

chapter@4-product-1
chapter@4-product-composite-1
chapter@4-recommendation-1
chapter@4-review-1

1 |

COMMAND

"java
"java
"java
"java

org.
org.
org.
org.

sprlngFram

sprlngfrqm

SERVICE

product
product-composite
recommendation
review

STATUS

running
running
running
running

PORTS

8080/tcp
0.0.0.0:8080->8080/tcp
8080/tcp

8080/tcp






index-162_1.jpg
Sample AP| ¥2 &=

ProductComposite RESTAP1for composite product information.

I /o-otect-composite/ (productid) Renme s compote o o o medid ot

e“es
Parameters
e Duscipon
productia *
Snteperipianizy | productid
ses

Responses





index-159_1.png





index-165_2.jpg
Copy Explain

function calculate(a, b) { & @
return {sum: a + b};

bh





index-242_1.jpg
createCompositeProduct

deleteCompositeProduct

The microservice landscape
[System boundary]

106
ik

000





index-492_1.jpg
Edge Server
(Spring Cloud Gateway)

The microservice landscape
[System boundary]

Authorization Server
(Spring Security OAuth2)

Product Composite
[microservice]

Config Server
(Spring Cloud Config Server)

N Distributed Tracing Server
(Apache Zipkin)

Product
[microservice]

Recommendation
[microservice]

Review
[microservice]






index-772_1.png
382

hands—-on/native-review-service .«. 3 minutes ago

hands—on/native-recommendation-service .«: 5 minutes ago
hands—on/native-product—-composite-service ... 8 minutes ago
hands—on/native-product-service ... 11 minutes ago

s |l





index-165_1.jpg





index-237_1.png
X#3
YYYY-MM-DD 17:10:13.376 INFO —- [ctor-http-nio—-4] s.m.m.c.r.services.ReviewServiceImpl:
Will get reviews for product with id=1
YYYY-MM-DD 17:10:13.423 DEBUG —- [ jdbc—-pool-1] org.hibernate.SQL
select ... from reviews reviewenti@_ where reviewenti@_.product_id=?





index-489_1.png





index-756_1.jpg
Spring Boot
Application

source code

Application
bytecode

Spring Boot
Application
native image

GraalvM
native-image

Spring Reachability
AOT engine Metadata

AOT
source code

AOT
bytecode





index-165_4.png





index-245_1.png
&
: Product #1
° g (icroservice instance]

T

'

'

'

T

'

'

'

v

Product #2
[microservice instance]

Product Composite n B N
[microservice] J

[consumer group]

Another Consumer

The microservice landscape 3
[microservice]

[System boundary]






index-165_3.jpg





index-244_1.jpg
Product #1

[microservice instance]

Product Composite nB O Products Product #2
[microservice] [topic] [microservice instance]

&
-BD
%
|| Another Consumer

The microservice landscape [microservice]

[System boundary]





index-520_1.jpg
Authorization Server
(Spring Security OAuth2)

Edge Server Product Composite
(Spring Cloud Gateway) [microservice]

Config Server
(Spring Cloud Config Server)

Product
[microservice]

Recommendation
[microservice]

Review
[microservice]

W Distributed Tracing Server
Kubernetes namespace hands-on (Apache Zipkin)

[System boundary]

MongoDB
[database]

MysQL
[database]

RabbitMQ

[queue manager]






index-174_1.jpg
000 < > MO localhost < [ull =

ProductComposite ReST i for composite product information. v

Normal response

If the requested product id is found the method will retum information regarding:
1. Base product information
2. Heviews

3. Recommendations
4. Service Addresses\n(technical information regarding the addresses of the microservices that created the response)

Expected partial and error responses

In the following cases, only a partial response be created (used to simplify testing of error conditions)
Product id 113

200 - Ok, but no recommendations will be returned
Product id 213

200 - Ok, but no reviews will be returned

Non numerical product id

400 - A Bad Request error will be returned
Product id 13

404 - A Not Found error will be returned

Negative product ids

422 - An Unprocessable Entity error will be returned

Parameters Try itout

Name Description

productld * avred
integer($int32)
(path)






index-230_1.png
17:01:09.603 [Test worker] INFO reactor.Flux
FluxMapFuseable .MapFuseableSubscriber)
17:01:09.604 [Test worker] INFO reactor.Flux
17:01:09.604 [Test worker] INFO reactor.Flux
17:01:09.604 [Test worker] INFO reactor.Flux
17:01:09.605 [Test worker] INFO reactor.Flux

.MapFuseable.

.MapFuseable.
.MapFuseable.
.MapFuseable.
.MapFuseable.

=

e

onSubscribe([Fuseable]

request(unbounded)
onNext(4)
onNext(8)
onComplete()





index-484_1.jpg
€ bash X1

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S)
nginx-service NodePort 10.100.230.194
$ B

AGE
<none> 80:30080/TCP 30s





index-748_1.jpg
2¥ Windows Powe X . magnus@magi X

git version 2.43.0

28.0.4

openjdk version "24" 2025-03-18
curl 8.5.0

jq-1.7

Spring CLI v3.5.0

SIEGE 4.0.7
v3.17.2+gccObbbd

v1.32.0

minikube version: v1.35.0
client version: 1.24.2

$ 1l

+





index-173_1.jpg
o000 < m localhost ¢ t a

Swagger JopenapiN3/api-docs Explore

Sample AP| ¥ %2

Jopenaplva/apl-docs

Description of the API...

Terms of service

NAME OF CONTACT - Website
Send email to NAME OF CONTACT

MY LICENSE
MY WIKI PAGE

Servers

http:/localhost:8080 - Generated server url v
@

ProductComposite ReST AP for composite product information. | >
E3E >





index-229_1.png
getProduct
Product

[microservice]

-

getCompositeProduct A getRecommendations

M Product Compo: /
[microservice] \
S getReviews

. i Review
The microservice landscape M [microservice]
[System boundary]

MongoDB

Recommendation
[microservice]






index-482_2.jpg
$ kubectl get all

NAME READY  STATUS RESTARTS  AGE
pod/nginx-deploy-59b8c5f7cd-mtépg 1/1 Running @ 46s
pod/nginx-deploy-59b8c5f7cd-pmns9 1/1 Running ©@ 12s
pod/nginx-deploy-59b8c5f7cd-vtstj 1/1 Running @ 12s

NAME READY  UP-TO-DATE  AVAILABLE AGE
deployment.apps/nginx-deploy 3/3 3 3 46s

NAME DESIRED CURRENT  READY  AGE
replicaset.apps/nginx-deploy-59b8c5f7cd 3 3 3 46s

.y |





index-743_1.png
docker.desktop

Settings  Give feedback @ X

.

Start Docker Desktop when you sign in to your computer

Resources

@ Docker Engine Open Docker Dashboard when Docker Desktop starts

/2 Builders Choose theme for Docker Desktop
Light Dark Use system settings
© rinrem Oum Qo ©
Choose container terminal
QD Software updates
@ integrated () System defauit
&> Extensions Determines which termina is launched when opering the terminal from a containe.
88 Features in development Enable Docker terminal
. Customize terminal appearance
Notifications
Font famiy Fontsize
Default v 15 v

Enable Docker Debug by default  Learn more (3

Must be signed in with an active subscription

Expose daemon on tcp://localhost:2375 without TLS

Exposing daemon on TCP without TLS helps legacy clients connect to the daemon. It
also makes yourself vulnerable to remote code execution attacks. Use with caution

Use the WSL 2 based engine

‘WSL 2 provides better performance than the Hyper-V backend. Learn more 7

Cancel Apply & restart

@0 Resource Saver mode [P RAM2.47 GB CPU0.08% Disk: 32.51 GB used (limit 1006.85 GB) PN}






index-234_2.png
@52ed908dac59:/ X383

YYYY-MM-DD 17:09:52.643 INFO 62314 —— [ctor-http-nio-3] reactor.Mono.SwitchIfEmpty.2 : onSubscribe(FluxSwitchIf
Empty.SwitchIfEmptySubscriber)

YYYY-MM-DD 17:09:52.643 INFO 62314 —— [ctor-http-nio-3] reactor.Mono.SwitchIfEmpty.2 : request(unbounded)
YYYY-MM-DD 17:09:52.648 ERROR 62314 ——— [ntLoopGroup-2-2] reactor.Mono.SwitchIfEmpty.2 : onError(se.magnus.util.
exceptions.NotFoundException: No product found for productId: 2)

YYYY-MM-DD 17:09:52.654 ERROR 62314 ——- [ntLoopGroup-2-2] reactor.Mono.SwitchIfEmpty.2 :

se.magnus.util.exceptions.NotFoundException: No product found for productId: 2
at se.magnus.microservices.core.product.services.ProductServiceImpl.getProduct(ProductServiceImpl.java:58) ~[c
lasses/:nal





index-486_1.jpg
$ kubectl run -i --rm --restart=Never \
curl-client --image=curlimages/curl \
--command -- curl -s 'http://nginx-service:80'

<h1l>Welcome to nginx!</hl>

pod "curl-client" deleted
s B





index-751_1.png





index-234_1.png
@52ed908dac59:/ X33

YYYY-MM-DD 17:08:47.006 INFO 62314 ——— [ctor-http-nio-2] reactor.Mono.SwitchIfEmpty.1l : onSubscribe(FluxSwitchIf
Empty.SwitchIfEmptySubscriber)

YYYY-MM-DD 17:08:47.007 INFO 62314 —— [ctor-http-nio-2] reactor.Mono.SwitchIfEmpty.1l : request(unbounded)
YYYY-MM-DD 17:08:47.034 INFO 62314 ——— [ntLoopGroup—2-2] reactor.Mono.SwitchIfEmpty.1l : onNext(ProductEntity: 1)

YYYY-MM-DD 17:08:47.048 INFO 62314 —— [ntLoopGroup-2-2] reactor.Mono.SwitchIfEmpty.1 : onComplete()





index-485_1.jpg
eve @ Welcome to nginx! x =
€ C O ® localhost:30080 a % © 0@ :

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.





index-749_1.png
<

File Edit Selection View Go Run

EXPLORER

+ MicRosERvIcEs- w... [} B] O
> Chapter03
> Chapteroa
~ Chapter0s
> api
> gradle

~ microservices

7w o B

~ product-composite-service
> sic
© gtignore

B &

@ build gradle

4 Dockerfile
| settings gradle
> product-service
> recommendation-service

> review-senvice
> util

© gitignore

$ create-projects bash
& docker-composeyml
= gradiew

8 gradlewbat

@ settings gradle

$ test-em-allbash

> Chapters

> Chaptero7

> Chapterog

> Chapter1o

> Chaptert1

® > Chapter12
£33 [>ounme

> TIMELINE

EXEETE o ein o ®0A0 Wo

magnus@nagnus-mini-pc:~/Mi croservices-with-Spring-Boot-and-spring-Cloud-Fourth-Editions

Ln1,Col 1

Spaces:4  UTF-8

I

Terminal Help ¢« - | O Microservices-with-Spring-Boot-and-Spring-Cloud-Fourth-Edition [WSL: Ubuntu] 8- podOo - o X
# buildgradle X m
Chapter0s > microservices > product-composite-service > A build gradle

1 plugins {

2 id “org.springfranework.boot’ version '3.5.@-RC1’

3 id *io.spring.dependency-management’ version '1.1.7'

4 id *java'

5 3

6

7 group = "se.magnus.microservices.composite.product”

8 version = '1.0.0-SNAPSHOT'

o

10 java {

1 toolchain {

12 languageversion = JavalanguageVersion.of(24)

13 }

8}

15

16 repositories {

17 mavenCentral(); maven { url = "https://repo.spring.io/milestone’ }

FERD S

10

20 jar {

21 enabled = false

2 3

23

24 dependencies {

25 implementation project(

2 implementation project(

27 implementation *org.springfranework.boot : spring-boot-starter-actuator"
PROBLEMS ~ OUTPUT ~ DEBUGCONSOLE  TERMINAL  PORTS (9 bash - Microsenvces-with-Spring-Boot-and-Spring-Cloud-Fourt-Edton -+ [ @ - ~ X

{} Gooy 8 0Q






index-715_1.png
grafana.minikube.me

@ Q Search or jump to... @ R+k + v ® A Signin
= Home > Dashboards > Hands-on Dashboard > Edit panel Discard | = Save - ~
Table view @ Fill Actual ® Last5minutes v Q & i= Alertlist 2 S

Circuit Breaker alert status Q Search options

circuit_breaker_rule View alert rule &
Datasource
> 1instance Filter from alert source
g% -- Grafana -- v Clear
Folder

Filter for alerts in the selected folder (only for
Grafana alerts)

rules_folder X v

v Alert state filter

Alerting / Firing

Pending

7
o
o
2
o

.Z.
)
=
=
=

Error





index-456_1.jpg
XA ENGLISH v o Search by trace ID

Zipkin Q, Find a trace

serviceName ' gateway X £ RUN QUERY £ v

10 Results EXPAND ALL  COLLAPSE ALL Service filters -

Root @ Start Time Spans Duration

v gateway: htip delete aminute ago (04/23 11:42:54:382) 21 39.273ms

v gateway: http get 12 minutes ago (04/23 11:32:25:960) 21 2.027s SHOW






index-718_1.jpg
grafana.minikube.me

or jump to... E %+k + v ® A Signin

= Home > Dashboar... > Hands-on D... Add v - Oy @ O 5s v : A

Circuit Breaker alert status

circuit_breaker_rule View alert rule &
¢y Firing for 51s
> 1instance
Retry

0.3

0.25

0.2

0.15

01

0.05
o ° - ° ° o o o ° o o ° ° - ° ° .

0=
10:20:30  10:21:00 10:21:30  10:22:00 10:22:30 10:23:00 10:23:30 10:24:00 10:24:30 10:25:00
== failed_with_retry == failed_without_retry == successful_with_retry == successful_without_retry

Circuit Breaker

1—» - - - - - - - - - - ° - - * - -
0.8
0.6
0.4
0.2
[ o - » ° . - o - o o —a > ° .

10:20:30  10:21:00  10:21:30  10:22:00 10:22:30 10:23:00 10:23:30 10:24:00 10:24:30 10:25:00
== closed == open == half_open






index-455_1.jpg
@O ® A Zipkin X +

& C O @ localhost:9411/zipkin/traces/02a3e605a548f60e7748200d3b4732fd

Xp ENGLISH 2

Search by trace ID

gateway: http get

Duration 2.038s @ Services 5 Total Spans 21 Trace ID 02a3e605a548f60e7748200d3b4732fd

Oms 679.230ms 1.358s 2.038s

N e Focus on selected span ® >
Oms 679.230ms 1.358s 2.038s
gateway: http get 2.038s
||
m E;ateway: security filterchain before 11.225ms
glgateway: authorize -security-context-server-web-exchange 643us
gateway: secured request 2.025s
%ateway: http get 2.023s
G product-composite: http get /product-composite/{productid} 2.019s
e e
m plroduct—composite: security filterchain before 2.441ms
plroduct-composite: authorize -security-context-server-web-exchange 404us

() product-composite: secured request 2.013s

Address

Tags

build.version

error

otel.library.name
otel.library.version
otel.scope.name
otel.scope.version

otel.status_code

:= SPAN TABLE

composite)

1.0.0-SNAPSHOT

Did not observe any item or
terminal signal within 2000ms
in 'onErrorResume’ (and no
fallback has been configured)

org.springframework.boot
3.5.0
org.springframework.boot
3.5.0

ERROR





index-716_1.jpg
= grafana.minikube.me

@ ch orjump to... & ®+k + v ® A Signin
= Home > Dashb... > Hands-o... - Oy Q O 5s v : PN
Circuit Breaker alert status
circuit_breaker_rule View alert rule &
> 1instance
Retry
100
80
60
40
20
Do o o e o o o o @ o+ o o o o o o o+ o o
09:21:00 09:22:00 09:23:00 09:24:00 09:25:00

== failed_with_retry == failed_without_retry == successful_with_retry == successful_without_retry

Circuit Breaker

T—e—e o+ o o o o o o o o o o o+ o o+ o+

0.8

0.6

0.4

0.2

Do+ o o o+ o o o+ o+ o o o o o+ o+ o o+ o
09:21:00 09:22:00 09:23:00 09:24:00 09:25:00

= closed == open == half_open





index-144_1.png
$ docker images | grep product-service
product-service latest  1896ce@4468b 6 seconds ago  289MB

s il ‘






index-146_1.png
$ curl localhost:8080/product/3
{"productId":3,"name": "name-3","weight":123,"serviceAddress": "f308fea277a4/172.17.0.2:8080"}$ I






index-145_1.png
@52ed908dac59:/

$ docker run —rm -p8080:8080 —e "SPRING_PROFILES_ACTIVE=docker" product-service

AN ' (L) — VN VAN

COMN_ | ") "2 "N I YN\
AN/ 0 e crroy)))
ol e el N VST
:: Spring Boot :: (v3.5.0)
YYYY-MM-DDT@8:38:34.524Z INFO 1 —- [ main] s.m.m.c.p.ProductServiceApplication

Starting ProductServiceApplication v1.0.0-SNAPSHOT using Java 24 with PID 1 (/application/B00T-I
NF/classes started by root in /application)

YYYY-MM-DDT@8:38:34.526Z DEBUG 1 —- [ main] s.m.m.c.p.ProductServiceApplication
Running with Spring Boot v3.5.0-M3, Spring v6.2.5

YYYY-MM-DDT@8:38:34.526Z INFO 1 —- [ main] s.m.m.c.p.ProductServiceApplication

The following 1 profile is active: "docker"

YYYY-MM-DDT@8:38:35.223Z INFO 1 —- [ main] o.s.b.a.e.web.EndpointLinksResolver
Exposing 1 endpoint beneath base path '/actuator'

YYYY-MM-DDT@8:38:35.441Z INFO 1 —- [ main] o.s.b.web.embedded.netty.NettyWebServer
Netty started on port 8080 (http)

YYYY-MM-DDT@8:38:35.452Z INFO 1 —- [ main] s.m.m.c.p.ProductServiceApplication

Started ProductServiceApplication in 1.149 seconds (process running for 1.294)





index-147_1.png
$ docker ps

CONTAINER ID  IMAGE COMMAND CREATED
STATUS PORTS NAMES
327dc680a0e5  product-service  "java org.springfram.." 35 second

s ago Up 35 seconds 0.0.0.0:8080->8080/tcp  my-prd-srv





index-471_1.jpg
controller
manager
Container A Container B

i Container Runtime

Master Node Worker Node






index-732_1.png
docker.desktop

Settings Give feedback @

=% General

|E Resources

e Advanced
File sharing
Proxies

Network

4@ Docker Engine

gg Features in development

. Notifications

Engine running | :

Resources Advanced

Resource Allocation

CPU limit: 8

Memory limit: 10 GB

—e [ [ [ [
1GB 16 GB 32GB
Swap: 1 GB
—_e [ [ [
0 Bytes 1GB 2GB

Disk usage limit: 104 GB

48 GB

3GB

10

64 GB

4GB

Limit to the amount of disk space the engine can use, including overheads.

—Q | | | | |
8GB 512 GB 178

RAM 11.15 GB CPU 12.72% Disk: 80.05 GB used (limit 102.06 GB)

1.5TB

2TB

Apply & restart






index-146_2.png
bash X2

$ docker ps

CONTAINER ID  IMAGE COMMAND CREATED
STATUS PORTS NAMES
f308fea277a4  product-service  "java org.springfram.."  About a

minute ago Up About a minute 0.0.0.0:8080->8080/tcp  interest
ing_mahavira

L$I y






index-468_1.png
External
Load Balancer

Ingress

Container Al Container A2 Container B1

Deployment A Deployment B






index-724_1.png





index-152_1.png
$ docker-compose logs -f

chapter@4-product-1 ... Started ProductServiceApplication in 1.935 seconds

chapter@4-review-1 ... Started ReviewServiceApplication in 1.883 seconds
chapter@4-product-composite-1 ... Started ProductCompositeServiceApplication in 1.993 seconds

chapter@4-recommendation-1 ... Started RecommendationServiceApplication in 1.904 seconds






index-478_1.png
382

NAME STATUS  ROLES AGE  VERSION
handson-spring-boot-cloud Ready control-plane 12m v1.32.0

Y |





index-151_1.png
$ docker images | grep chapter04
chapter@4-product-composite latest

chapter@4-review latest
chapter@4-recommendation latest
chapter@4-product latest

Y |

2cf@de12a652
e8b95c4afec?
3blalbe6b5e7
1896ce04468b

10 seconds
10 seconds
10 seconds
14 minutes

ago
ago
ago
ago

289MB
289MB
289MB
289MB






index-475_1.jpg
$ kubectl config get-contexts

CURRENT
*

.y |

NAME

handson-spring-boot-cloud
minikube

bash

CLUSTER

handson-spring-boot-cloud
minikube

AUTHINFO
handson-spring-boot-cloud
minikube

NAMESPACE
first-attempts
default





index-733_1.png
Settings Give feedback @

General

=% General

8 R Start Docker Desktop when you sign in to your computer
esources

4@ Docker Engine Open Docker Dashboard when Docker Desktop starts

ﬁ Builders Choose theme for Docker Desktop

O Light O Dark @ Use system settings

Configure shell completions
(Ti. Qnfrwara indatac

A Completions not installed

Apply & restart

Engine running | : RAM 11.19 GB CPU 2.82% Disk: 80.05 GB used (limit 102.06 GB) > @





index-152_3.png
bash

"serviceAddresses": {
"cmp": "2ee20b47521b/172.18.0.5:8080",
"pro": "e5e4907e1332/172.18.0.3:8080",
"rev": "bde9f32737bf/172.18.0.2:8080",
"rec": "93bd0c3e02d8/172.18.0.4:8080"






index-458_1.jpg
@O ® A zZipkin X |

< C 0 @ localhost:9411/zipkin/traces/a31d7cfbf873025946d9cfaaf96c4318

a n % @ O@ :

Xa ENGLISH v

Search by trace ID

gateway: http delete

Duration 39.273ms @ Services 5 Total Spans 21 @ Trace ID a31d7cfbf873025946d9cfaaf96c4318

Oms 13.09Tms 26.182ms
I —*_
—

Y e, Focus on selected span
Oms 13.09Tms 26.182ms
I
product-composite: product info
|

product-composite: products/products send
product: products.productsgroup receive

product-composite: recommendations/recommendations send

l
I

recommendation: recommendations.recommendationsgroup receive

39.273ms

39.273ms

503pus
531s
6.144ms
1.445ms

6.899ms

:= SPAN TABLE

Tags A

otel.library.name org.springframework.boot
otel.library.version 3.5.0

otel.scope.name org.springframework.boot
otel.scope.version 3.5.0

peer.service RabbitMQ

products.productsGroup.prod

spring.rabbit.listener.id :
uctsGroup.container





index-720_1.jpg
@ Q Search or jump to... G ¥+k SE A ® AN Signin
= Home > Dashboar... > Hands-onD... Add v - Oy Q & 5s v H ~
Circuit Breaker alert status
circuit_breaker_rule View alert rule &

> 1instance

Retry

0.3

0.25
0.2
0.15
01
0.05
0—-= o ° ° ° o o ° ° o ° ° - ° °- .

10:21:30  10:22:00 10:22:30 10:23:00 10:23:30 10:24:00 10:24:30 10:25:00 10:25:30 10:26:00
== failed_with_retry == failed_without_retry == successful_with_retry == successful_without_retry

Circuit Breaker

T—e oo o o o o o o o 1 S T—
0.8
0.6
0.4

0.2

0—e - - - - o -+ - o - - - .
10:21:30  10:22:00 10:22:30 10:23:00 10:23:30 10:24:00 10:24:30 10:25:00 10:25:30 10:26:00
== closed == open == half_open





index-152_2.png
curl localhost:808@/product-composite/123 -s | jq .

"productId": 123,

"recommendations": [ ... ],
"reviews": [ ... ],
"serviceAddresses": { ... }

$





index-457_1.jpg
-~ QO =0 =~ Q0 0O

gateway: http delete 15.359ms
~
gateway: security filterchain before 2.032ms
s
gateway: authorize -security-context-server-web-exchange 409ps
=
gateway: secured request 12.864ms
e
gateway: htt;; delete 7.331ms
product-composite: http delete /product-composite/{productid} 4.798ms
=——|
product-composite: security filterchain before 1.982ms
=
product-composite: authorize -security-context-server-web-exchange 293ps
=
product-composite: secured request 2.279ms
E—
product-composite: product info 476ps
-
product-composite: products/proﬂucts send 397us
product: products.productsgroup receive 4.109ms
[——
product-composite: recommendations/recommendations send 352ps

recommendation: recommendations.recommendationsgroup receive 4.602ms

==
product-composite: reviews/reviews send 265ps
review: reviews.reviewsgroup receive 10.488ms
=
review: connection 5.245ms
e
review: query 1.073ms
o
review: connection 1.369ms

product-composite: security filterchain after 61us
I

gateway: security filterchain after 106ps





index-719_1.png
o0 M+ < > =] mail.minikube.me ¢ ﬁ +

M a a a . % MailDev

HTML [ 100% & Download <4 Relay [ Delete

Q search... [FIRING:1] circuit_breaker_rule rules_folder (product-
e composite product-composite product-composite

[FIRING:1] circuit_breaker_rule .

S e e e 10.244.0.25:15020 kubernetes-pods product hands-on

product-composite product- handson-4ed product-composite-77c44d55d4-rzkft
composite 10.244.0.25:15020 77c44d55d4 istio product-composite latest closed
kubernetes-pods product hands- Iatest)

on handson-4ed product-

composite-77c44d55d4-rzkft From:

77c44d55d4 istio product- Grafana <grafana@minikube.me>

composite latest closed latest) ot

To: magnus@minikube.me
2025-06-07 10:24:30 (+0200)

magnus@minikube.me

15 Grafana

[ rules_folder > circuit_breaker_rule

& 1 firing instances

circuit_breaker_rule





index-461_1.png





index-723_1.jpg
grafana.minikube.me

6 Q Search or jump to... 8+k + v ® A Signin

= Home > Dashbo... > Hands-on ... - Oy @ ) 5s v : A

Circuit Breaker alert status
circuit_breaker_rule View alert rule &

> 1instance

Retry

0.3

0.2
0.15
0.1
0.05

18:30:00 18:31:00 18:32:00 18:33:00 18:34:00
== failed_with_retry == failed_without_retry == successful_with_retry == successful_without_retry

Circuit Breaker

18:30:00 18:31:00 18:32:00 18:33:00 18:34:00
== closed == open == half_open





index-155_1.png
@52ed908dac59:/

$ ./test-em-all.bash start stop
Start Tests: Wed MMM DD 17:57:28 CEST YYYY
HOST=1ocalhost
PORT=8080
Restarting the test environment...
$ docker—compose down —-remove-orphans
$ docker—compose up -d
[+] Running 5/5
i Network chapter@4_default
i Container chapter@4-recommendation-1
i Container chapter@4-product—composite-1
i Container chapter@4-review-1
i Container chapter@4-product-1

Cuus

Started
Started
Started
Started

S © &0 O

.0s
.4s
.4s
.65
.65

Wait for: curl http://localhost:8080/product-composite/1...

retry #1 DONE, continues...
...lest OK...

We are done, stopping the test environment.

$ docker—compose down
[+] Running 5/5
i Container chapter@4-review-1
i Container chapter@4-product-1
i Container chapter@4-product—composite-1
i Container chapter@4-recommendation-1
i Network chapter@4_default

Removed
Removed
Removed
Removed
R.e..

End, all tests OK: Wed MMM DD 17:57:37 CEST YYYY

s |l

S N N NN

.4s
.25S
.4s
.4s
.1s





index-459_1.png
eee ([~

<

bRabbit

Overview

Connections

10

RabbitMQ 4.0.7

Channels

localhost

Erlang 27.3.1

Get Message(s)

Message 1

The server reported 6 messages remaining.

Exchange
Routing Key
Redelivered

Properties

Payload
93 bytes
Encoding: string

products

products
[e]

timestamp
message_id

headers:

content_type

1 1745991632

: 2f8f0d82-cale-4ab8-0107-4c5bfaf6d45f
priority:
delivery_mode:

0
2

target-protocol: amgp
traceparent: 00-8e7c97d44acab24bff4996f526292845-86ea25936acb6edc-01

. application/json

partitionKey: 113

¢

Exchanges Queues and Streams Admin

®

0

+

Refreshed 2025-04-30 08:03:13 ( Refresh every 5 seconds

A
v

Virtual host

Cluster rabbit@b5369881e25c

User guest

{"eventType":"DELETE", "key":113, "data":null, "eventCreatedAt":"2025-04-30T05:40:32.401027672"}





index-721_1.png
0

mail.minikube.me ¢ @ +

¥ MailDev

HTML [ 100% & Download <4 Relay [ Delete

Q Search...

[RESOLVED] circuit_breaker_rule
rules_folder (product-composite
product-composite product-
composite 10.244.0.25:15020
kubernetes-pods product hands-
on handson-4ed product-

composite-77c44d55d4-rzkft
77c44d55d4 istio product-
composite latest closed latest)
To: magnus@minikube.me
2025-06-07 10:25:30 (+0200)

[FIRING:1] circuit_breaker_rule
rules_folder (product-composite
product-composite product-
composite 10.244.0.25:15020
kubernetes-pods product hands-
on handson-4ed product-
composite-77c44d55d4-rzkft
77c44d55d4 istio product-
composite latest closed latest)

 Open #/email/EkVvedSI on this page in a new tab

[RESOLVED] circuit_breaker_rule rules_folder
(product-composite product-composite product-
composite 10.244.0.25:15020 kubernetes-pods
product hands-on handson-4ed product-composite-
77c44d55d4-rzkft 77c44d55d4 istio product-
composite latest closed latest)

From:
Grafana <grafana@minikube.me>

To:
magnus@minikube.me

15 Grafana

[ rules_folder > circuit_breaker_rule

1 resolved instances






index-454_1.jpg
Zipkin Q, Find a trace I ! Fa ENGLISH v 4 Search by trace ID

serviceName | gateway X & RUN QUERY f o 3
7 Results EXPAND ALL  COLLAPSE ALL Service filters -
Root < Start Time Spans Duration

v gateway: htip get 10 minutes ago (04/23 11:31:15:780) 21 2.038s SHOW

v gateway: http get 11 minutes ago (04/23 11:30:25:735) 19 32.853ms SHOW





index-200_1.jpg
[ NON ) 2. bash

BUILD SUCCESSFUL

Y |





index-430_1.jpg
bash

CLOSED_TO_OPEN
OPEN_TO_HALF_OPEN

HALF_OPEN_TO_CLOSED
$ B






index-698_1.jpg
resilience4j_retry_calls_total{application="product-composite", kind="successful_with_retry" name="product",} 0.0
resilience4j_retry_calls_total{application="product-composite”, kind="failed_with_retry", , name="product",} 0.0
resilience4j_retry_calls_total{application="product-composite", kind="successful_without_retry",name="product",} 11978.0
resilience4j_retry_calls_total{application="product-composite",kind="failed_without_retry",name="product",} 6.0

resilience4j_circuitbreaker_state{application="product-composite",name="product",state="open",} 0.0
resilience4j_circuitbreaker_state{application="product-composite",name="product",state="forced_open",} 0.0
resilience4j_circuitbreaker_state{application="product-composite",name="product",state="half_open",} 0.0
resilience4j_circuitbreaker_state{application="product-composite",name="product",state="closed",} 1.0






index-185_2.jpg
1 | author 1 | content
2 | author 2 | content






index-697_1.png
grafana.minikube.me

0

v 1/0 Overview

Rate

2 ops/s
1.5 ops/s
10ps/s
0.5 ops/s

0 ops/s
15:00

== GET /product-composite/{productld} Last *: 0 ops/s
== GET /product-composite/{productld} Last *: 0 ops/s
== DELETE UNKNOWN Last *: 0 ops/s

v JVM Memory

JVM Heap

128 MiB

96 MiB

64 MiB ——— 4

32 MiB

0B
15:00

== used Last*: 53.0 MiB Max: 66.8 MiB
== committed Last*: 111 MiB Max: 111 MiB

== max Last*:122 MiB Max: 122 MiB

+vJVM Misc

CPU Usage

100.0%
80.0%
60.0%
40.0%
20.0%

0.0%

15:00
== system Last*:10.5% Max: 11.3%

== process Last*:0.1% Max: 0.2%
== process-lh Last *:0.2% Max: 0.2%

Q Search or jump to...

Home > Dashboards > JVM (Micrometer)- Kubernetes - Prometheus by Istio

Errors

100 ops/s
80 ops/s
60 ops/s
40 ops/s

20 ops/s

0 ops/s
15:00

== HTTP - 5xx Last *: 0 ops/s

JVM Non-Heap

1.25 GiB
1GiB
768 MiB
512 MiB
256 MiB
0B

15:00
== used Last *:138 MiB Max: 138 MiB

== committed Last*:142 MiB Max: 142 MiB
== max Last*:1.23 GiB Max: 1.23 GiB

Load

8.0
7.0
6.0
5 _re——————
40
30
2.0

1.0
0.0

15:00
== system-1m Last *: 4.8 Max: 5.2

== cpus Last *: 8.0 Max: 8.0

#+k

Duration

20 ms

15 ms

10 ms

+ v @ A Signin

Add v - @ Last5minutes v Q O 5s v ~

Utilisation

5ms

Os

== HTTP - AVG Last *: 8.33 ms
== HTTP - MAX Last *:19.8 ms

JVM Total

No data

15:00

JVM Process Memory

1.25 GiB

1GiB
768 MiB
512 MiB

256 MiB

No data

0B

== used Last *:191 MiB Max: 205 MiB
== committed Last *: 253 MiB Max: 253 MiB
== max Last*:1.35GiB Max: 1.35 GiB

Threads

15:00

Thread States

50
40

15

o e

30
20
10

== live Last*: 40 Max: 40
== daemon Last *: 31 Max: 31
== peak Last*:52 Max: 52

5

0
15:00 15:00
= blocked Last*: 0 Max: 0

e= new Last*:0 Max: 0

== runnable Last*:16 Max: 16





index-209_1.jpg
00 <> om] localhost & & IS

PrOductcomposite REST API for composite product information. %

90 /product-composite Creates a composite product
m /product-composite/{productId} Retumsacomposite view of the specified product id

/product-composite/{productId} Deletes a product composite

Normal response

Entities for product information, recommendations and reviews related to the specificed productld will be deleted.
The implementation of the delete method is idempotent, i.e. it can be called several times with the same response.

This means that a delete request of a non existing product will return 200 Ok.

Parameters Try it out





index-201_1.jpg
[ NON ) 2. bash

Connected to MongoDB: localhost:27017





index-219_2.jpg
L 2N 2. bash

product-composite_1 | . createCompositeProduct: creates a new composite entity for productId: 123456
product_1 | ... createProduct: entity created for productld: 123456

recommendation_1 | . createRecommendation: created a recommendation entity: 123456/0Q

review_1 | . createReview: created a review entity: 123456/0





index-219_1.jpg
o900 < > O

1

localhost

ProductComposite |ResT AP for composite product information.

Request body "¢

“name”: “str

“weight": 0,

"r:comendations”: [
“recommendationId”
“author”: “string",
“rate": 0,
“content": “string"

}

1.
“reviews": [

“reviewId": o,
“author": “string",

"subject": “string”,

“content™: “string"

}

1,
"serviceAddresses": {

"produ:tld“: 3

4

/product-composite Creates a composite product

Server response
Code 5 Details
200 Response headers

th






index-220_2.jpg
bash 32

$ docker-compose exec mongodb mongosh recommendation-db --quiet --eval "db.recommendations.find()"
[
{

_1d: ObjectId("6419b18ef5533a465e39565a"),

version: 0,

productld: 12345606,

recommendationld: 0,

author: 'string',

rating: 0,

content: 'string’,

_class: 'se.magnus.microservices.core.recommendation.persistence.RecommendationEntity’






index-450_1.jpg
lekln Q Find a trace Jepende 5 XA ENGLISH v 1 Search by trace ID

serviceName | gateway X (M| & RUN QUERY o IV
10 Results EXPAND ALL ~ COLLAPSE ALL Service filters v
Root C m Spans Duration
v gateway: http get aminute ago (04/23 11:13:30:849) 21 26.751ms SHOW
v gateway: http post a minute ago (04/23 11:13:20:613) 12 22.687ms SHOW

v gateway: http get 2 minutes ago (04/23 11:12:17:377) 20 37.461ms SHOW





index-710_1.png
grafana.minikube.me

0

Q Search or jump to... 8+k + v ® N Signin

Home > Alerting > Contact points A

Contact pOintS Alertmanager {5 Grafana v

Choose how to notify your contact points when an alert instance fires

Update contact point

Name *

grafana-default-email

Integration q
5 > Test © Duplicate @ Delete
Email v
Addresses
You can enter multiple email addresses using a ";", "\n" or "," separator

magnus@minikube.me|

> Optional Email settings

> Notification settings

+ Add contact point integration





index-220_1.jpg
bash

$ docker-compose exec mongodb mongosh product-db --quiet --eval "db.products.find()"
L

i

_1d: ObjectId("6419b18e62925d253399fe46"),
version: 0,

productId: 1234560,

name: 'string’,

weight: 0,

_class: 'se.magnus.microservices.core.product.persistence.ProductEntity’






index-435_1.jpg
ﬁateway: http get 36.859ms
- 8) = /

Trace gateway: security filterchain before 3.087ms
I
gateway: authorize -security-context-server-web-exchange 458us
|
Spans gateway: secured request 33.198ms
|
gateway: http get 29.776ms
14 +

gateway: security filterchain after 86us
|

localhost:9411/zipkin/dependency





index-706_1.png
grafana.minikube.me

@ Q Searchorjump to... G #+k + v ® AN Signin
= Home > Dashbo... > Hands-on... - Oy @ & 5sv : A
Retry
0.35
0.3
0.25
0.2
015
01
0.05 / o /\ /\ /\/
0 —o < < < < < < < < < < '
20:42:00 20:43:00 20:44:00 20:45:00 20:46:00

== failed_with_retry == failed_without_retry == successful_with_retry == successful_without_retry

Circuit Breaker

1—e - - - - - - - - - - - - - - - - - - °
0.75
0.5
0.25
0 —e = = = = = = = = = = = = = = = = = = 2]
20:42:00 20:43:00 20:44:00 20:45:00 20:46:00

== closed == open == half_open





index-223_1.png
[ XCN J @52ed908dac59:/ %3

End, all tests OK: Wed MMM DD 17:57:37 CEST YYYY

s i






index-452_1.jpg
@ o 4 Zipkin X 4 v

< C O @ localhost:9411/zipkin/traces/249b9b443ae721d1b278b524973cef26 Q@ dh % @ *» O ‘ :

Xp ENGLISH v o Search by trace ID

gateway: http get := SPAN TABLE

Duration 26.751ms | Services 5 Total Spans 21 @ Trace ID 249b9b443ae721d1b278b524973cef26

Oms 8.917ms 17.834ms 26.75Tms

I '———l
‘—. Tags ~

N “e' Focus on selected span ® > select
o

| - P r1_0.id,r1_0.author,r1_0.conte
Oms 8.917ms 17.834ms  26.751ms nt,r1_0.product_id,r1_0.review

1 ~

jdbc. 0
jdbc.query[0] _id,r1_0.subject,r1_0.version

————
product-composite: http get 12.466ms from reviews r1 0 where
lf ] -
m review: http get /review 10.712ms r1_0.product_id=?
—
m review: connection 5.052ms otel.library.name org.springframework.boot
[
g review: query - 822us otel.library.version 3.5.0
review: result-set - 723ps otel.scope.name org.springframework.boot
product-composite: security filterchain after I1 03us otel.scope.version 350
gateway: security filterchain after 11Tus

| peer.service review-db





index-714_1.png
grafana.minikube.me

Q Searchorjump to... @ %+k + v ® A Signin

= Home > Alerting > Alertrules > New alert rule _ Cancel ~

o}

New alert rule

1. Enter alert rule name

Enter a name to identify your alert rule.

Name

circuit_breaker_rule

2. Define query and alert condition

Define query and alert condition ® Need help?

A QPrometheus v ® Options v 10 minutes Set as alert condition ® 0 w
Kick start your query Explain @ Run queries Builder Code
Metric Label filters
resilienced4j_circuitbreaker_state - state v = v closed v @ X +

+ Operations

resilience4j_circuitbreaker_state{state="closed"}

Expressions
Manipulate data returned from queries with math and other operations.

B Reduce Set as alert condition @ C Threshold v Alert condition | i/
Takes one or more time series returned from a query or an expression and turns Takes one or more time series returned from a query or an expression and
each series into a single number. checks if any of the series match the threshold condition.

Input A + Input B v

Function =~ Min v ISBELOW v 0.5

3. Set evaluation behavior

Define how the alert rule is evaluated. ® Need help?

Folder
Select a folder to store your rule.

rules_folder v or |+ New folder

Evaluation group and interval
Define how often the alert rule is evaluated.

evaluation_group ¥ or | + New evaluation group

All rules in the selected group are evaluated every 10s.

Pending period
Period the threshold condition must be met to trigger the alert. Selecting "None"
triggers the alert immediately once the condition is met.

Os - 10s 20s 30s 40s 50s

-
4. Configure labels and notifications

Contact point

grafana-default-email v & View or create contact points






index-221_1.jpg
et ommmmmm-- ommmmmmm o ommmmmmm o ommmmmm- Fommmmmm- +
| id | author | content | product_id | review_id | subject | version |
e ommmmmmeo ommmmmmm oo Hommmmmmm o ommmmmmo Fommmmmmeo +
I'1 | string | string | 123456 | @ | string | 0 |
et SE TR $om—mmmm-- ommmmmmm - - Fo-mmmmm- Fo-mmm - -

s





index-451_1.jpg
é

C o0

4> Zipkin X +

@ localhost:9411/zipkin/traces/249b9b443ae721d1b278b524973cef26

gateway: http get

Xa ENGLISH

Duration 26.751Tms | Services 5 @ Total Spans 21 | Trace ID 249b9b443ae721d1b278b524973cef26

Oms

8.917ms 17.834ms 26.75Tms

[ — e —— |

20 -

ey

‘o) Focus on selected span ® >
Oms 8.917ms 17.834ms 26.75Tms
gateway: http get 26.751Tms
_
gateway: security filterchain before 1.363ms

]
gateway: authorize -security-context-server-web-exchange 239us
@
gateway: secured request 24.899ms
_————
gateway: http get 22.459ms
product-composite: http get /product-composite/{productid} 19.842ms
_
product-composite: security filterchain before 1.795ms
=

product-composite: authorize -security-context-server-web-exchange 288us
]

product-composite: secured request 17.524ms

product-composite: p:)duct info 722us

product-composite: http get 8.458ms

f ]
product: http get /product/{productid} 5.981ms
|
product-composite: http get 9.499ms
f ]

recommendation: http get /recommendation 10.133ms
e

product-composite: http get 12.466ms

lf ]
review: http get /review 10.712ms
T

review: connection 5.052ms
1 —

review: query - 822us

review: result-set 723us

|

product-composite: security filterchain after 103ps
|

gateway: security filterchain after 111ps
|

Service name

product-composite

Span ID
d3a20ec43ff3a30f

Tags

build.version
otel.library.name
otel.library.version
otel.scope.name
otel.scope.version

productld

Search by trace ID

:= SPAN TABLE

Span name

product info

Parent ID
c4ef5246ed35e6¢cd

1.0.0-SNAPSHOT
org.springframework.boot
3.5.0
org.springframework.boot
3.5.0

1






index-711_1.png
mail.minikube.me ¢ ﬁ + O

[
[
@
>
<
A
v
10

) 100% & Download

Q search... [FIRING:1] TestAlert Grafana

From:

[FIRING:1] TestAlert Grafana o
Grafana <grafana@minikube.me>

To: magnus@minikube.me

2025-06-06 13:29:25 (+0200) To:
magnus@minikube.me

@ Grafana

[7 Grouped by

alertname=TestAlert instance=Grafana
& 1 firing instances

TestAlert





index-431_2.jpg
200

real Oml.072s





index-700_1.jpg
A (Prometheus)

® 0w
Kick start your query SIET ] Run queries Builder Code
Metric Label filters
resiliencedj_circuitbreaker_state v state v = v closed v | X e

+ Operations

resilience4j_circuitbreaker_state{state="closed"}

v Options

Legend Min step & Format
{{state}} auto Time series v

Type Exemplars

Range Instant Both e





index-431_1.jpg
200

real Om@.Q60bs





index-699_1.png
grafana.minikube.me

26 Q & B+k + v ® AN Signin

= Home > Dashboards > New dashboard B & |Addv ® Last6hours v @Q & v A





index-433_1.png





index-705_1.png
grafana.minikube.me

@ Q Searchorjump to... G #+k + v ® AN Signin
= Home > Dashbo... > Hands-on... - Oy @ & 5sv : A
Retry

0.3

0.25

0.2

015

01

0.05

0 L L L . L L o L L L L L L L L ]
20:30:00 20:31:00 20:32:00 20:33:00 20:34:00

== failed_with_retry == failed_without_retry == successful_with_retry == successful_without_retry

Circuit Breaker

1 - - - - - - - - - - - - - - ]
0.75
0.5
0.25
0 = = = - - = = = = = = = = = 2]
20:30:00 20:31:00 20:32:00 20:33:00 20:34:00

== closed == open == half_open





index-432_1.png
bash

"retryName": "product",

"type": "RETRY",

"creationTime": "2025-04-24T17:09:40.999021381Z[Etc/UTC]",

"errorMessage": "org.springframework.web.reactive.function.client.Web
ClientResponseException$InternalServerError: 500 Internal Server Error
from GET http://0473acd8d79b:8080/product/1",

"numberOfAttempts”: 1

"retryName": "product",

"type": "SUCCESS",

"creationTime": "2025-04-24T17:09:42.016292965Z[Etc/UTC]",

"errorMessage": "org.springframework.web.reactive.function.client.Web
ClientResponseException$InternalServerError: 500 Internal Server Error
from GET http://0473acd8d79b:8080/product/1",

"numberOfAttempts”: 1

}

A |





index-702_1.png
grafana.minikube.me

Q Search or jump to... Bk |+ v ® AN Signin

0

Home > Dashbo... > Hands-on ... Oy @ & 5sv : A

Retry

3
2.5
2
1.5
1
0.5

0 - o o o o o o o o o o o o o o o o o o ®
17:06:00 17:07:00 17:08:00 17:09:00 17:10:00
== failed_with_retry == failed_without_retry == successful_with_retry

== successful_without_retry

Circuit Breaker

1e - . . . - - - - - - - +«— 2025-05-14 17:10:30 »

0.75 = closed
05 == open
== half_open
0.25
0e - - - - - - - - - - - - - - - - - - ®
17:06:00 17:07:00 17:08:00 17:09:00 17:10:00

== closed == open == half_open





index-696_1.png
fana.minikube.me

0

Namespace

datasource  Prometheus v

Inbound Workload Namespace @ All v

> General (6 panels)

> Inbound Workloads (8 panels)

v Outbound Services

Outgoing Requests By Destination And Response Code

Home > Dashboards > istio > Istio Workload Dashboard

hands-on v

Inbound Workload

#B+k

Q Search or jump to... + v @ N Signin

B & | Addv - ® Last30minutes v Q & v ~

destination v

Workload Reporter

product-composite v

All v Destination Service | All v

OUTBOUND SERVICES

Outgoing Success Rate (non-5xx responses) By Destination

3 ops/s 100%
80%
2 ops/s 60%
40%
1ops/s
ps/ 20%
0 ops/s 0%
14:25 14:30 14:35 14:40 14:45 14:50 14:25 14:30 14:35 14:40 14:45 14:50
== auth-server.hands-on.svc.cluster.local : 200 (@fmTLS) == jaeger-collector.istio-system.svc.cluster.local
== product.hands-on.svc.cluster.local : 0 (@fmTLS) == product.hands-on.svc.cluster.local
— mradiiat handa an aua aliatar laaal = 90N (00 T1 C) — rAmAmmnAn Antinm handa an auia aliiatarlaaal  — raviauhanda an ava aliiabar laaal
Outgoing Request Duration By Destination Outgoing Request Size By Destination Response Size By Destination
80 ms 10 kB 1kB
) 750 B
60 ms 6 kB
40 ms 4 KB 500 B
20ms 2x8 208 :_
Os 0B 0B
14:30 14:40 14:50 14:30 14:40 14:50 14:30 14:40 14:50

== jaeger-collector.istio-system.svc.cluster.local P50

== jaeger-collector.istio-system.svc.cluster.local P50 == jaeger-collector.istio-system.svc.cluster.local P50





index-175_1.jpg
< m localhost

Responses
Code Description
200

OK.

Media type

application/json 4

Controls Accept header

Example Value Schema

{

“productId®: 0,
“name”: “string”,
“"weight®: 0,
“recommendations”: [
{
“recommendationld®: @,
“author®: "string”,
“rate”:
}
1,
“reviews": [
{
“reviewld®: 0,
“"author®: “string”,
“subject®: “"string”
}
1,
“serviceAddresses”: {
Eearstringt;
“string”,
“string”,
“string”

Links

No links





index-686_1.jpg
Kubernetes annotations on the microservice pods:

. Auth Server
annotations:
prometheus.io/scrape: "true”

prometheus.io/port: "4004"

L Product Composite Recommendation
prometheus.io/scheme: http
prometheus.io/path: "/actuator/prometheus"

Review

pyeh ‘minikubetunnel P = h
broweer \ rometheus

https://kiali.minikube.me
https://grafana.minikube.me
https://mail.minikube.me

Istio Data plane

Grafana

Istio Control plane

Kubernetes






index-177_1.jpg
0O (< im} localhost & th @

Parameters

Name Description

productid * avred

integer($int32) 123
(path)

RGSPODSGS

Curl

curl -X GET “http://loca 980/product-com ept: application/json®

Request URL

http://localhost

Server response

Code Detalls

200 Response body

{
“productId®: -
“name”: “name-123",
eight™: 5
“recommendations”™: [

{

“recommendationId”: 1,
“Author 17,






index-176_1.jpg
localhost

0]
<
\
-,
Q

h + ©

400 No links
Bad Request, invalid format of the request. See response message for more information

Media type
*/* v

Example Value Schema

"timestamp": "YYYY-MM-DDT10:49:47.238Z",
"path”: "string”,

"message”: "string”,
"status": 0,
"error”": "string"

404 No links
Not found, the specified id does not exist

Media type
*/* v

Example Value Schema

"timestamp”: "YYYY-MM-DDT10:49:47.239Z",
"path”™: "string”,

"message”: "string”,

"status”: 0,

"error”": "string"

422 No links
Unprocessable entity, input parameters caused the processing to fail. See response
message for more information

Media type
*/* v

Example Value Schema

i

"timestamp”:





index-177_3.jpg





index-177_2.jpg





index-178_1.jpg
000 [{]+v (< localhost ¢ [I] .

Parameters Cancel

Name Description

productld * required

integer($int32) -1
(path)

Responses

Curl

curl -X "GET" \
"http://localhost:8080/product-composite/-1" \

-H "'accept: application/json’

Request URL

http://localhost:8080/product-composite/-1

Server response

Code Details

422
Error: Unprocessable Entity

Response body

"timestamp”: "YYYY-MM-DDT11:02:57.1952404232",
"path": "/product-composite/-1",

"message”: "Invalid productld: -1",
"status": , |
"error": "Unprocessable Entity" e oo






index-692_1.png
0

00 [ ~v (< mail.minikube.me & © + »

MailDev ¢ v @ € % . . .
Now receiving all emails on port 1025

Q Search...
For information on how to send emails from your

No emails k e
guide.

For questions, feature requests or to report issues visit
the GitHub repository.

You are running MailDev 2.0.5





index-177_4.png





index-690_1.png
382

Start Tests: Sat MMM DD 17:02:59 CEST YYYY

Wait for: curl -k https://health.minikube.me/actuator/health...
DONE, continues...

Test OK (HTTP Code: 200)

End, all tests OK: Sat MMM DD 17:03:26 CEST YYYY

s i





index-184_1.jpg
ProductComposite
[microservice]

Protocol layer
Service layer

Integration layer

Protocol layer Protocol layer Protocol layer
Service layer Service layer Service layer
Persistence layer Persistence layer | Persistence layer
Product Recommendation Review
[microservice] [microservice] [microservice]

~= = ———y
MongoDB MongoDB MySQL

The microservice landscape
[System boundary]





index-695_1.png
grafana.minikube.me

@ Q Search or jump to... 8+k + v ® N Signin
= Home > Dashboards > istio > Istio Mesh Dashboard ® 6y | Add v - ® Last5minutes UTC v Q@ & 5s v ~
datasource  Prometheus v

v Global Traffic

Traffic Volume © Success Rate © 4xxs @ 5xxs @

.Oreq/s 100+ 0 req/s 0 req/s

HTTP/gRPC Workloads ©

Service Workload Requests ¥ P50 Latency P90 Latency P99 Latency Success Rate
jaeger-collector.istio-system.svc.cluster.local jaeger.istio-system 4.27 req/s 0.28 ms 0.50 ms 4.57 ms
product-composite.hands-on.svc.cluster.local product-composite.hz 1.84 req/s 13.40 ms 22,91 ms 29.00 ms
review.hands-on.svc.cluster.local review.hands-on 1.84 req/s 7.66 ms 9.84 ms 22.90 ms
recommendation.hands-on.svc.cluster.local recommendation.hanc 1.84 req/s 3.43 ms 7.54 ms 18.70 ms
product.hands-on.svc.cluster.local product.hands-on 1.84 req/s 3.51ms 8.07 ms 20.80 ms
grafana.istio-system.svc.cluster.local grafana.istio-system 1.20 req/s 11.21ms 23.02ms 42.38 ms
mail-server.istio-system.svc.cluster.local mail-server.istio-syste 0.00 req/s NaN NaN NaN
kiali.istio-system.svc.cluster.local kiali.istio-system 0.00 req/s NaN NaN NaN
kibana.logging.svc.cluster.local kibana.logging 0.00 req/s NaN NaN NaN

auth-server.hands-on.svc.cluster.local auth-server.hands-on 0.00 req/s NaN NaN NaN






index-180_1.png





index-694_1.jpg
© kiali

Overview Workio

> Namespace: hands-on 5 product-composite Lastlom = EveryiOs v E

raph
Grap! L Met Outbound Metrics

Applications

Matics Setiogs = P 1= e re—
‘Workloads
’_‘\ S
Isto Config V\/ \ =
gt - s -
e

Wtcp_opened Bicp_roceived






index-687_2.jpg
Copy Explain

function calculate(a, b) { & @
return {sum: a + b};

bh





index-185_1.jpg
{ "_id" : ..., "productId" : 1, "name" : "product 1", "weight" : 1}

{ "_id" : ..., "productId" : 113, "name" : "product 113", "weight" : 113 }
{ "_id" : ..., "productId" : 213, "name" : "product 213", "weight" : 213 }
Y |





index-687_1.jpg





index-688_2.png





index-688_1.jpg





index-682_1.png





index-681_2.jpg
Time v spring.level kubernetes.namespace_name kubernetes.container_name spring.trace log

v May 24, 2023 @ 16:44:19.173 - hands-on product-composite f4861c653b9238b39dff  getCompositeProduct failed: se.ma
9b78aBff69f9 gnus.api.exceptions.InvalidInputE

xception: Invalid productId: -1

[ Expanded document View surrounding documents  View single document





index-678_1.png
kibana.minikube.me © m +

°
°
°
B8
>
<
N\
0

= . Discover Surrounding documents

acawvosTyCy onjyiLnternalservercrror: dvvy 1Lnternal Server crror 1T
rom GET http://product/product/1234

> May 13, 2025 @ 19:41:35.532 WARN hands-on product-composite 79c860975ed Error body: {"timestamp":"2025-85-13T17:41:35.528+0
c863a80651cd 0:00", "path":"/product/1234", "status":500, "error":"
aca058f9ce Internal Server Error","requestId":"414cd6bc-791","

message" : "Something went wrong..."}
> May 13, 2025 @ 19:41:35.532 WARN hands-on product-composite 79c860975ed Got an unexpected HTTP error: 500 INTERNAL_SERVER_E
c863a8051cd RROR, will rethrow it
acaB58f9co
> May 13, 2025 @ 19:41:35.530 - hands-on product -
> May 13, 2025 @ 19:41:35.530 - ® © hands-on product - java.lang.RuntimeException: Something went wrong...
at se.magnus.microservices.core.product.ser
vices.ProductServiceImpl.throwErrorIfBadLuck(Produc
tServiceImpl.java:182) ~[classes/:1.0.0-SNAPSHOT]
at se.magnus.microservices.core.pro
duct.services.ProductServiceImpl.throwErrorIfBadLuc
k(ProductServiceImpnl.iava:102) ~[classes/:1.0.0-SNA
> May 13, 2025 @ 19:41:35.530 - hands-on product -
> May 13, 2025 @ 19:41:35.529 ERROR hands-on product 79c860975ed [414cd6bbc-791] 500 Server Error for HTTP GET "/pro
c863a8051cd duct/1234?delay=0&faultPercent=100"
acaB58f9co
> May 13, 2025 @ 19:41:35.528 1INFO hands-on product 79c860975ed Bad luck, an error occurred, 100 >= 75
c863a8051cd
acaB58f9co
> May 13, 2025 @ 19:41:35.526 DEBUG hands-on product 79c860975ed  find using query: { "productId" : 1234} fields: Doc
c863a80651cd ument{{}} for class: class se.magnus.microservices.
aca@58f9ce core.product.persistence.ProductEntity in collectio
n: products
> May 13, 2025 @ 19:41:35.525 INFO hands-on product 79c860975ed  Will get product info for id=1234
c863a8051cd

acaB58f9co





index-677_1.png
eee [~ < 2

@ elastic

kibana.minikube.me ¢ m +

= . Discover Options New Open Share Inspect [5) Save

() v 1234 KQL = v Last 15 minutes Show dates G Refresh

® kubernetes.namespace_name: hands-on X || spring.trace: 79c860975edc863a8051cdaca058f9c0 X | + Add filter

= 18 hits €3 Chart options
15
10
5
0
19:34:00 19:35:00 19:36:00 19:37:00 19:38:00 19:39:00 19:40:00 19:41:00 19:42:00 19:43:00 19:44:00 19:45:00 19:46:00 19:47:00

May 13, 2025 @ 19:33:24.837 - May 13, 2025 @ 19:48:24.837

v May 13, 2025 @ 19:41:35.532 WARN -—. product-composite _ Error body: {"timestamp":"2025
a8@51cdacaB58f9  -05-13T17:41:35.528+00:00", "pa
. th": ”/product/-", "status":5
00, "error":"Internal Server Er
ror","requestId":"414cd6bc-79
1", "message" :"Something went w
rona..."}
5 Expanded document View surrounding documents  View single document
Table JSON
Actions Field Value
t _id Gu08ypYBm2hO-_0804zxc
t _index logstash-2025.085.13
# _score -

t _type _doc





index-681_1.jpg
[ NON ) & Discover - Elastic X +

& - C ) A NotSecure | https://kibana.minikube.me/app/discover#/?_g=(filters:!(),refreshinterval:(.. &

& elastic

— . Discover

[) v Search

@ kubernetes.namespace_name: hands-on X

= 9 hits

t log

t spring

t spring.

t spring

t spring.

t spring.

t spring

t spring

.class

level

.pid

service

span

.thread

.trace

Options New Open Share Inspect [8) Save

KQL v Last 1 hour Show dates C Refresh

spring.level: INFO X | + Add filter
{33 Chart options

Will get composite product info for product.id=1234
s.m.m.c.p.s.ProductCompositeServicelImpl

INFO

1

product-composite

bed8522970670d65

parallel-2

55d35b33a9a539250fc4a8af208fa8ae





index-680_1.jpg
[ MON & Discover - Elastic X +

é

v

C 1) A NotSecure | https://kibana.minikube.me/app/discover#/?_g=(filters:!(),refreshin.. @ @ w* & ®» O ‘ :

& elastic

— . Discover

[3) v Search

Options New Open Share Inspect [5) Save

KQL v Last 30 days Show dates C Refresh

@ spring.level: INFO X NOT kubernetes.namespace_name: hands-on X

+ Add filter

No results match your search criteria

Expand your time range
Try searching over a longer period of time.
Adjust your filters

Try removing or temporarily disabling filters.






index-673_1.png
X381

bash (bash) ©
{ @

"timestamp": "2025-05-13T17:41:35.534+00:00",

"path": "/product-composite/1234",

"status": 500,

"error": "Internal Server Error",

"requestId”: "2bffdc47-819",

"message": "500 Internal Server Error from GET
http://product/product/1234"

}
s i






index-672_2.png
kibana.minikube.me ¢ @ ﬁ +

°
°
°
B8
>
<
N\
10

@ elastic

= . Discover Options New Open Share Inspect [5) Save

[§) v Search KQL =) v Last 15 minutes Show dates G Refresh

@ spring.trace: 0bd96c5e3093f036835bc9fdd23676f3 X = NOT spring.level: DEBUG X =+ Add filter

= 4 hits 3 Chart options

4
3
2
1
0

13:44:00 13:45:00 13:46:00 13:47:00 13:48:00 13:49:00 13:50:00 13:51:00 13:52:00 13:53:00 13:54:00 13:55:00 13:56:00 13:57:00 13:58:00

Jun 2, 2025 @ 13:43:40.396 - Jun 2, 2025 @ 13:58:40.396

Time v spring.level kubernetes.namespace_name kubernetes.container_name spring.trace log
> Jun 2, 2025 @ 13:51:56.355 1INFO hands-on recommendation _ Will get recommendations for product with id=1234
> Jun 2, 2025 @ 13:51:56.354 INFO hands-on product _ Will get product info for id=1234
> Jun 2, 2025 @ 13:51:56.354 INFO hands-on review _ Will get reviews for product with id=1234
> Jun 2, 2025 @ 13:51:56.347 1INFO hands-on product-composite _ Will get composite product info for product.id=1234





index-676_1.png
eee [~ < 2

@ elastic

kibana.minikube.me @] B +

= . Discover Options New Open Share Inspect [5) Save

() v 1234 KQL = v Last 15 minutes Show dates G Refresh

® kubernetes.namespace_name: hands-on X || spring.trace: 79c860975edc863a8051cdaca058f9c0 X | + Add filter

= 18 hits €3 Chart options
15
10
5
0
19:34:00 19:35:00 19:36:00 19:37:00 19:38:00 19:39:00 19:40:00 19:41:00 19:42:00 19:43:00 19:44:00 19:45:00 19:46:00 19:47:00

May 13, 2025 @ 19:33:24.837 - May 13, 2025 @ 19:48:24.837
Time v spring.level kubernetes.namespace_name kubernetes.container_name spring.trace log
> May 13, 2025 @ 19:41:35.534 ERROR hands-on product-composite [2bffdc47-819] 508 Server Err

or for HTTP GET "/product-comp
osite/_?faultPercent=1BB”

> May 13, 2025 @ 19:41:35.533 WARN -—. product-composite getCompositeProduct failed: or
g.springframework.web.reactiv
e.function.client.WebClientRes
ponseException$InternalServerE
rror: 500 Internal Server Erro

r from GET http://product/prod
uct/1234

> May 13, 2025 @ 19:41:35.532 WARN -—. product-composite Error body: {"timestamp":"2025
-05-13T17:41:35.528+00:00", "pa
th": ”/product/-", "status":5





index-675_1.png
eee [~ < 2

@ elastic

kibana.minikube.me ¢ m +

= . Discover Options New Open Share Inspect [5) Save

v 1234 KQL G Refresh

@ kubernetes.namespace_name: hands-on X spring.level: WARN X + Add filter

Ill

4 hits €3 Chart options

Now A

19:32:00 19:33:00 19:34:00 19:35:00 19:36:00 19:37:00 19:38:00 19:39:00 19:40:00 19:41:00 19:42:00 19:43:00 19:44:00 19:45:00 19:46:00
May 13, 2025 @ 19:31:35.957 - May 13, 2025 @ 19:46:35.957

Time v spring.level kubernetes.namespace_name kubernetes.container_name spring.trace log
> May 13, 2025 @ 19:41:35.533 - -—. product-composite 79c860975edc863  getCompositeProduct failed: or
a8051cdacad58f9  g.springframework.web.reactiv
co e.function.client.WebClientRes

ponseException$InternalServerE
rror: 500 Internal Server Erro
r from GET http://product/prod

uct/1234
> May 13, 2025 @ 19:41:35.532 - -—. product-composite 79c860975edc863  Error body: {"timestamp":"20825
a8051cdaca@58f9 -05-13T17:41:35.528+00:00", "pa
co th": ”/product/-", "status":5

00, "error":"Internal Server Er
ror","requestId":"414cd6bc-79

1", "message" :"Something went w
rona..."}





index-428_1.png
bash

"path": "/product-composite/1",
"status": 500,

"error": "Internal Server Error",
"requestId": "9d7254b5-42",
"message”: "Did not observe any item or terminal signal within

2000ms in 'onErrorResume' (and no fallback has been configured)"

}
Y |





index-416_2.png





index-428_2.jpg
"productId”: 1,
"name": "Fallback productl”,
"weight": 1,





index-415_1.jpg





index-408_1.jpg
2. success 5. fast fail

4. trip

(failure threshold)
Closed

8. close tail)

(success)

Half Open

7. trip 6. attempt

close





index-416_1.jpg





index-415_2.jpg
Copy Explain

function calculate(a, b) { & @
return {sum: a + b};

bh





index-404_1.jpg
® 00 bash \3¥2

hello world$

$ B





index-407_1.jpg
Circuit Breaker,
Authorization Server Time Limiter and Retry
(Spring Security OAuth2) 8 Product

[microservice]

Edge Server Product Composite Recommendation
[microservice] [microservice] Ve [microservice]

Review

Discovery Server
[microservice]

(Netflix Eureka)

Config Server
(Spring Cloud Config Server)

The microservice landscape
[System boundary]






index-405_1.png





