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 This  book  is  dedicated  to  our  families. 

Preface 

This  book  is  intended  to  serve  as  a  textbook  for  courses  dealing  with  Digital Communications, Cellular Mobile Systems, or Modulation Theory. The modulation 

theory is dealt with using stochastic processes, which remains a novel approach for undergraduate texts. The book is suitable for the undergraduate as well as the initial graduate levels of Electrical Engineering courses. 

Chapter  1  presents  a  guided  tour  through  communications  history,  covering important communications and historical facts around the world up to the beginning of the Internet. Chapter 2 covers signals and linear systems, time signals, discrete-time signals, power, and autocorrelation. 

Chapter 3 introduces the concepts of system response and convolution, including discrete impulse response, discrete convolution, algorithm for discrete deconvolution, as well as continuous impulse response and continuous convolution. 

Spectral analysis is treated in Chap. 4 including Fourier analysis, Fourier transform and its properties, the sampling theorem, Parseval’s theorem, average power 

and  autocorrelation,  Hilbert  transform  and  its  properties,  and  useful  relations involving Hilbert transforms. 

Chapter  5  presents  random  signal  and  noise,  including  the  autocorrelation function,  stationarity,  the  power  spectral  density,  linear  systems,  expected  value of  the  output  signal,  the  response  of  linear  systems  to  random  signals,  phase information, analysis of a digital signal, signal fading, Rayleigh fading, Nakagami distribution, Rice distribution, slow and fast fading, and Jakes’ model. 

Analog-to-digital conversion is the subject of Chap. 6, including signal coding, signal  compression  systems,  features  of  speech  signals,  pulse  code  modulation, the  uniform  quantizer,  noise  spectrum  for  the  uniform  quantizer,  the  nonuniform quantizer,  vector  quantization,  linear  predictive  coding  parameters,  overview  of speech coding, waveform coding, and parametric and hybrid coding. 

Chapter  7  explains  modulation  theory,  covering  amplitude  modulation,  amplitude  modulation  by  random  signals,  suppressed  carrier  amplitude  modulation and  its  spectrum,  quadrature  amplitude  modulation,  quadrature  modulation  with random  signals,  single  sideband  modulation,  independent  sideband  modulation, vii

viii

Preface

angle modulation, angle modulation using random signals, and frequency and phase 

modulation. 

Digital  modulation  theory  is  the  subject  of  Chap. 8,  presenting  signal  space, digital modulation schemes, differential coding, offset phase modulation, constant envelope  modulation,  the  rotated  constellation,  computing  the  spectra  of  digital schemes,  calculation  of error probability,  and orthogonal  frequency  division  multiplexing. 

Chapter 9 addresses information theory, covering uncertainty measure, the information unit, entropy, conditional entropy, mutual information, discrete memoryless information source, extension of a discrete memoryless source, coding for a discrete information source, types of source codes, prefix-free codes, instantaneous codes, Kraft inequality, Huffman code, joint information measurement, noiseless channel, 

discrete noisy channel, and channel capacity. 

Chapter 10 presents basic concepts of error-correcting codes, addressing block codes,  cyclic  codes,  decoding  of  cyclic  codes,  algebraic  decoding,  soft  decision decoding, and convolutional codes. 

Computer networks are presented in Chap. 11, addressing data flow in networks, queue  models,  local  area  networks,  network  protocols  and  architecture,  layer architecture,  TCP/IP  protocol  history,  internet  coordination,  types  of  networks, transmission  protocols,  interconnection  equipment,  interconnection  protocols,  the IP protocol, the TCP/IP protocol, and security protocols for TCP/IP. 

The  book  has  six  appendices.  Appendix  A  covers  Fourier  series  and  Fourier transform  and  their  properties,  as  well  as  Fourier  transform  in  two  dimensions. 

A  table  of  Fourier  transforms  is  included.  Appendix  B  presents  discrete  Fourier transforms and brings a table of discrete Fourier transforms. Appendix C presents a table of Hilbert transform formulas and some important inequalities. Appendix D 

presents some important formulas used in the text. Appendix E presents a review of probability  theory  covering  set  theory,  functions  and  measure  probability  theory, and  random  variables.  It  also  includes  Bayes’  theorem,  moments,  variance,  the characteristic function and function of a random variable, and the concept of joint random  variables.  Glossary  presents  the  usual  acronyms  and  the  terminology  of digital communications. 

As an important part for learning the contents, many examples and problems are 

provided throughout the book. 

Natal, Brazil
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Recife, Brazil

Valdemar C. da Rocha, Jr. 

Acknowledgments 

The  authors  are  grateful  to  Professor  Elvino  S.  Sousa  (University  of  Toronto, Canada), Professor Paddy Farrell, Emeritus Professor Garik Markarian, and Emeritus  Professor  Bahram  Honary  (in  memoriam)  (Lancaster  University,  UK)  for technical communications and useful discussions related to digital communication 

systems. 

The authors are also grateful to all the members of their respective communica-

tions research groups, certified by the Brazilian National Council for Scientific and Technological Development (CNPq), at Federal University of Rio Grande do Norte, 

Federal University of Bahia, Federal University of Campina Grande, Senai Cimatex 

(Salvador, Bahia), Federal University of Rio Grande do Norte, Federal University 

of Paraíba, and Federal University of Pernambuco, for their collaboration in many 

ways, helpful discussions and friendship, as well as our colleagues at the Institute for Advanced Studies in Communications (Iecom). 

The authors wish also to acknowledge the contribution of Prof. Maria de Lourdes 

Alcoforado  (State  University  of  Pernambuco)  to  the  chapter  on  error-correcting codes, and the support of Prof. José Sampaio Lemos-Neto (Federal University of 

Pernambuco),  who  helped  with  the  reviewing  process  and  producing  part  of  the figures in the text. 

The  authors  also  acknowledge  the  support  of  Prof.  Francisco  Madeiro  (State University  of  Pernambuco)  and  Prof.  Waslon  T.  A.  Lopes  (Federal  University  of Paraíba), who contributed to the chapter on speech coding, and Prof. Wamberto J. 

L Queiroz (Federal University of Campina Grande), who contributed to the chapter 

on digital modulation. 

The authors are indebted to their families for their patience and support during 

the course of the preparation of this book. 

Finally, the authors are thankful to Mary E. James, from Springer, who strongly 

supported this project from the beginning and helped with the reviewing process. 

ix

Contents 

1 

Communications  History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 

1.1

The Beginning of Communications in America . . . . . . . . . . . . . . . . . . . 

1 

1.2

The Early Radio Broadcasting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 

1.3

The Empire of Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 

1.4

The Emperor and the Teacher of the Deaf and Dumb . . . . . . . . . . . . . 

4 

1.5

The Inception of Digital Communications in America  . . . . . . . . . . . 

5 

1.6

Coding in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 

1.7

The Beginning of the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7 

2 

Signals  and  Linear  Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13 

2.1

Usual Time Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13 

2.2

Discrete-Time Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

35 

2.3

Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

39 

2.4

Power and Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

44 

2.5

Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

47 

3 

System  Response  and  Convolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

51 

3.1

Discrete Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

51 

3.2

Discrete Convolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

51 

3.3

Algorithm for Discrete Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

59 

3.4

Continuous Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

61 

3.5

Continuous Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

64 

3.6

Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

70 

4 

Fourier  and  Hilbert  Transforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

73 

4.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

73 

4.2

Fourier Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

73 

4.3

Fourier Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

81 

4.4

Some Properties of the Fourier Transform. . . . . . . . . . . . . . . . . . . . . . . . . 

89 

4.5

Parseval’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

96 

4.6

Average Value, Power, and Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . 

96 

4.7

The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi

xii

Contents

4.8

Linearity of the Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

4.9

Multiple Hilbert Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

4.10

The Fourier Transform of  1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

 π t  

4.11

Hilbert Transform of the Signal Derivative . . . . . . . . . . . . . . . . . . . . . . . . 103 

4.12

Hilbert Transform of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 104 

4.13

Hilbert Transform of the Complex Exponential Functions . . . . . . . 105 

4.14

Hilbert Transform of Periodic Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

4.15

Properties of the Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

4.16

Orthogonality of the Hilbert Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

4.17

Energy of a Hilbert Transform of a Signal. . . . . . . . . . . . . . . . . . . . . . . . . 109 

4.18

Hilbert Transform of a Low-Pass Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

4.19

Hilbert Transform of an Amplitude-Modulated Signal  . . . . . . . . . . . 111 

4.20

Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 

5 

Random  Signals  and  Noise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

5.1

The Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

5.2

Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 

5.3

The Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

5.4

Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 

5.5

Expected Value of the Output Signal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

5.6

The Response of Linear Systems to Random Signals . . . . . . . . . . . . . 145 

5.7

Phase Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 

5.8

Analysis of a Digital Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 

5.9

Signal Fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 

5.10

Rayleigh Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

5.11

Nakagami Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 

5.12

Rice Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 

5.13

Slow and Fast Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 

5.14

Jakes’ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

5.15

Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 

6 

Analog-to-Digital  Conversion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

6.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

6.2

Signal Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 

6.3

Signal Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 

6.4

The Performance of a Signal Compression System . . . . . . . . . . . . . . . 179 

6.5

Features of Speech Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 

6.6

Pulse Code Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 

6.7

The Uniform Quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 

6.8

Noise Spectrum for the Uniform Quantizer  . . . . . . . . . . . . . . . . . . . . . . . 192 

6.9

Compression Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 

6.10

Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 

6.11

LPC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 

6.12

Overview of Speech Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 

6.13

Waveform Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 

6.14

Parametric and Hybrid Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Contents

xiii

6.15

Speech Coder Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 

6.16

Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 

7 

Modulation  Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 

7.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 

7.2

Amplitude Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 

7.3

Amplitude Modulation by Random Signals . . . . . . . . . . . . . . . . . . . . . . . 223 

7.4

Suppressed Carrier Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . 229 

7.5

Autocorrelation for the AM-SC Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 

7.6

AM-SC Power Spectral Density  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 

7.7

Quadrature Amplitude Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 

7.8

Single Sideband Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 

7.9

Angle Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 

7.10

Angle Modulation Using Random Signals  . . . . . . . . . . . . . . . . . . . . . . . . 240 

7.11

Digital Frequency Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 

7.12

Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 

8 

Digital  Modulation  Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 

8.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 

8.2

Signal Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 

8.3

Digital Modulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 

8.4

Differential Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 

8.5

Offset Phase Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 

8.6

The Transmission Pulse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 

8.7

Constant Envelope Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 

9 

Information  Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 

9.1

Uncertainty Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 

9.2

Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 

9.3

Conditional Entropy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 

9.4

Informational Divergence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 

9.5

Uncertainty Reduction by Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 

9.6

The Chain Rule for Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 

9.7

Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 

9.8

Discrete Information Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 

9.9

Source Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 

9.10

Prefix-Free Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 

9.11

Kraft Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 

9.12

Capacity of Discrete Noiseless Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 324 

9.13

Capacity of Discrete Noisy Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 

9.14

Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 

10 

Error-Correcting  Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 

10.1

Block Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 

10.2

Simple Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 

10.3

Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 

10.4

Decoding Cyclic Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

xiv

Contents

10.5

Hard-Decision Algebraic Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 

10.6

Soft-Decision Decoding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 

10.7

Convolutional Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 

10.8

Recursive Systematic Convolutional Codes  . . . . . . . . . . . . . . . . . . . . . . 370 

10.9

Punctured Convolutional Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 

10.10  Decoding Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 

10.11  Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 

11 

Computer  Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 

11.1

Data Flow in Computer Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 

11.2

Queueing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 

11.3

Local Area Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 

11.4

Network Protocols and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 

11.5

Network Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 

11.6

The TCP/IP History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 

11.7

The Internet Coordination Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 

11.8

Types of Computer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 

11.9

Data Transmission Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 

11.10  Interconnection Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 

11.11  Interconnection Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 

11.12  The Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 

11.13  The TCP/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 

11.14  Security Protocols for TCP/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 

11.15  Video Transmission Over the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 

A 

Fourier  Series  and  Fourier  Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 

A.1

Table of Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 

A.2

Fourier Transform in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 

B 

Discrete  Fourier  Transforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 

B.1

Table of Discrete Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 

C 

Table  of  Hilbert  Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 

D 

Formulas  and  Important  Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 

E 

Probability  Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 

E.1

Set Theory, Functions, and Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 

E.2

Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 

E.3

Random Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

[image: Image 2]

About  the  Authors 

Marcelo  Sampaio  de  Alencar  was  born  in  Serrita, 

Brazil,  in  1957.  He  received  his  bachelor  degree  in 

Electrical  Engineering,  from  Universidade  Federal 

de  Pernambuco  (UFPE),  Brazil,  1980;  his  master 

degree  in  Electrical  Engineering,  from  Universidade 

Federal da Paraiba (UFPB), Brazil, 1988; and his PhD 

from University of Waterloo, Department of Electrical 

and  Computer  Engineering,  Canada,  1993.  Marcelo 

S.  Alencar  has  more  than  44  years  of  engineering 

experience,  and  he  is  currently  IEEE  Life  Senior 

Member.  Between  1982  and  1984,  he  worked  for 

the  State  University  of  Santa  Catarina  (UDESC). 

From  1984  to  2002,  he  worked  for  the  Department  of 

Electrical  Engineering,  Federal  University  of  Paraiba, 

Campina  Grande,  Brazil.  From  2002  to  2017,  he 

was  Chair  Professor  at  the  Department  of  Electrical 

Engineering,  Federal  University  of  Campina  Grande, 

Brazil. He spent some time working for MCI-Embratel 

and for the University of Toronto, as Visiting Professor. 

Since  2017,  he  has  spent  some  time  as  Visiting 

Professor at the Federal University of Bahia, Salvador, 

at  Cimatec  Salvador,  and  at  the  Federal  University  of 

Rio  Grande  do  Norte,  Natal,  Brazil.  Marcelo  Alencar 

supervised  seven  post-doctoral  fellows,  23  PhDs,  36 

master’s, and several undergraduate students. 

He  is  founder  and  President  of  the  Institute  for 

Advanced  Studies  in  Communications  (Iecom).  He 

has  been  awarded  several  scholarships  and  grants, 

including three scholarships and several research grants 

from the Brazilian National Council for Scientific and 

Technological  Research  (CNPq),  two  grants  from  the

xv

xvi

About the Authors

IEEE  Foundation,  a  scholarship  from  the  University 

of Waterloo, a scholarship from the Federal University 

of  Paraiba,  an  achievement  award  for  contributions 

to  the  Brazilian  Telecommunications  Society  (SBrT), 

an  award  from  the  Medical  School  of  the  Federal 

University  of  Campina  Grande  (UFCG),  and  an 

achievement award from the Engineering School of the 

Federal University of Pernambuco, during its 110th year 

celebration. His biography is included in the following 

publications:  Who’s  Who  in  the  World   and  Who’s  Who 

 in  Science  and  Engineering,  by  Marquis  Who’s  Who, 

New Providence, USA. 

He  published  over  570  papers  in  scientific  journals 

and  conferences.  He  wrote  chapters  for  13  books.  He 

also published 31 books: Set, Measure and Probability 

Theory, Cryptography and Network Security, Economic 

Theory, Linear Electronics, Music Science, Modulation 

Theory, Spectrum Sensing and Applications, Scientific 

Style  in  English,  Cellular  Network  Planning,  by 

River  Publishers;  Digital  Television  Systems,  by 

Cambridge;  Informação,  Codificação  e  Segurança 

de  Redes,  by  Elsevier;  Communication  Systems, 

Third  Edition,  Nanotechnology-Based  Smart  Remote 

Sensing  Networks  for  Disaster  Prevention,  IoT 

Based  Control  Networks  and  Intelligent  Systems, 

by  Springer;  Communication,  Management  and 

Information  Technology:  International  Conference 

on  Communication,  Management  and  Information 

Technology,  by  CRC  Press,  Taylor  &  Francis  Group; 

Probability Theory, Information Theory, by Momentum 

Press;  Televisão  Digital,  Second  Edition,  Telefonia 

Celular  Digital,  Third  Edition,  Telefonia  Digital,  Fifth 

Edição, Teoria de Conjuntos, Medida e Probabilidade, 

Engenharia de Redes de Computadores, Probabilidade 

e  Processos  Estocásticos,  Sistemas  de  Comunicações, 

Ondas  Eletromagnéticas  e  Teoria  de  Antenas,  by 

Editora  Érica  Ltda;  História,  Tecnologia  e  Legislação 

de  Telecomunicações,  Divulgação  Científica,  História 

da  Comunicação  no  Brasil,  Soluços  d’Alma,  Sexo 

Conexo  by  Gráfica  e  Editora  Epgraf;  Princípios  de 

Comunicação, by Editora Universitária, UFPB. 

Marcelo  Sampaio  de  Alencar  has  contributed  in 

different capacities to the following scientific journals:

[image: Image 3]

About the Authors

xvii

Editor  of  the  Journal  of  the  Brazilian  Telecommuni-

cation  Society;  Member  of  the  International  Editorial 

Board  of  the  Journal  of  Communications  Software 

and  Systems  (JCOMSS),  published  by  the  Croatian 

Communication  and  Information  Society  (CCIS); 

Member  of  the  Editorial  Board  of  the  Journal  of 

Networks  (JNW),  published  by  Academy  Publisher; 

Editor-in-Chief  of  the  Journal  of  Communication  and 

Information  Systems  (JCIS),  special  joint  edition  of 

the  IEEE  Communications  Society  (ComSoc)  and 

SBrT. He was a member of the SBrT-Brasport Editorial 

Board. He has been involved as a volunteer with several 

IEEE  and  SBrT  activities,  including  being  a  member 

of  the  Advisory  or  Technical  Program  Committee 

in  several  events.  Marcelo  Alencar  chaired  several 

Brazilian  and  international  conferences.  He  served 

as  member  of  the  IEEE  Communications  Society 

Sister  Society  Board  and  as  Liaison  to  Latin  America 

Societies.  He  also  served  on  the  Board  of  Directors 

of  IEEE’s  Sister  Society  SBrT.  He  is  a  Registered 

Professional  Engineer.  He  was  a  columnist  for  the 

traditional  Brazilian  newspaper  Jornal  do  Commercio, 

from  2000  to  2020.  He  was  Vice-President  External 

Relations, and he is Emeritus Member, of SBrT. He is 

member of the IEICE, in Japan, SBMO, SBPC, ABJC, 

and SBEB, in Brazil. Marcelo S. Alencar is a laureate of 

the  prestigious  Attilio  Giarola  Medal,  of  the  Brazilian 

Microwave and Optoelectronics Society. 

Valdemar  Cardoso  da  Rocha,  Jr. born  in  Jaboatão, 

Pernambuco,  Brazil,  on  August  27,  1947,  is  a  former 

chair of the Department of Electronics and Systems at 

the Federal University of Pernambuco (UFPE), Brazil. 

His work focuses on coding theory, information theory, 

and cryptography. He received the BS degree in electri-

cal and electronics engineering from Escola Politécnica, 

Recife,  Brazil,  1970.  He  began  graduate  studies  in 

1972 at the University of Kent, concentrating on coding 

theory  and  was  awarded  a  PhD  in  1976,  with  Paddy 

Farrell  as  his  supervisor.  He  returned  to  Brazil  and 

became  a  Faculty  Member  at  UFPE,  at  the  Depart-

ment  of  Electrical  Engineering  (1976–1979)  and  the

xviii

About the Authors

Department  of  Electronics  and  Systems  as  Professor 

of Telecommunications at UFPE until his retirement in 

2022. 

He  has  been  a  consultant  to  the  Brazilian  Ministry 

of Education, the Ministry of Science and Technology, 

and the Ministry of Defense on postgraduate education 

and  research  in  electrical  engineering.  He  is  a  found-

ing  member,  former  President,  and  Emeritus  Member 

of  the  Brazilian  Telecommunications  Society;  a  Life 

Senior  Member  of  the  IEEE  Communications  Soci-

ety  and  the  IEEE  Information  Theory  Society;  was 

elected  a  Fellow  of  the  Institute  of  Mathematics  and 

its  Applications  in  1992;  and  has  taught  at  the  Swiss 

Federal  Institute  of  Technology-Zürich,  the  University 

of Leeds, and Lancaster University. Published over 100 

engineering and scientific papers, including journal and 

conference papers, and the books Communication Sys-

tems, Springer, 3rd edition, 2023, Principles of Applied 

Digital  Information  Theory  (in  Portuguese),  Interciên-

cia, 2018, and Elements of Algebraic Coding Systems, 

Momentum Press, 2014. 

[image: Image 4]

Chapter  1 

Communications  History 

 A  man  has  died  and  his  body  turned  into  sand. 

 All  his  relatives  disintegrated  into  dust. 

 It  is  by  his  writings  that  he  will  be  remembered. 

Egyptian  scribe,  four  thousand  years  ago  (Fischer  2007) 

1.1 

The  Beginning  of  Communications  in  America 

The  history  of  communications  in  the  United  States  spans  two  centuries  and encompasses  a  wide  range  of  technologies  and  innovations.  This  chapter  presents the  main  milestones  and  developments  in  the  history  of  American  communications. 

The  first  known  attempt  at  long-distance  communication  in  the  United  States occurred  in  1639,  when  a  system  of  signal  fires  was  set  up  between  Boston  and Salem.  In  the  late  1700s,  the  telegraph  was  invented  in  Europe,  and  by  the  mid-1800s,  it  had  been  introduced  to  the  United  States  (Beauchamp  2001). 

The  United  States  Postal  Service  was  established  in  1775,  with  Benjamin 

Franklin  serving  as  the  first  postmaster  general.  The  postal  service  played  a  critical role  in  early  American  communications,  helping  to  connect  people  across  vast distances. 

The  telegraph  was  introduced  in  the  United  States  by  Samuel  Morse,  who 

developed  a  printing  telegraph  system  in  1835.  The  first  commercial  telegraph  line between  Baltimore  and  Washington,  DC,  was  established  in  1844  (Bray  1995). 

In  1844,  Samuel  Morse  sent  the  first  telegraph  message  from  Washington,  DC,  to Baltimore,  Maryland,  using  a  code  he  had  developed.  The  telegraph  allowed  for  fast and  reliable  long-distance  communication  and  was  widely  used  by  businesses  and governments.  Morse  sent  the  first  telegraph  message,  which  said  “What  hath  God wrought,”  from  Washington,  DC,  to  Baltimore. 

The  telegraph  was  a  system  for  transmitting  messages  over  long  distances  using electrical  signals.  The  telegraph  revolutionized  communications  by  allowing  people to  send  and  receive  information  almost  instantaneously  and  laid  the  groundwork  for future  innovations  like  the  telephone  and  the  Internet. 
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Alexander  Graham Bell  patented  the first telephone  in 1876.  The first commercial telephone  service  was  established  in  1878.  The  telephone  quickly  became  a ubiquitous  form  of  communication  in  the  United  States,  connecting  people  across the  country  and  around  the  world. 

The  telephone  made  it  possible  for  people  to  communicate  with  each  other  from afar  and  transformed  the  way  businesses  and  individuals  conducted  their  affairs.  By the  early  1900s,  the  Bell  Telephone  Company  had  become  the  dominant  telephone provider  in  the  United  States. 

1.2 

The  Early  Radio  Broadcasting 

Radio  broadcasting  began  in  the  United  States  in  the  early  1900s  and  became  a  popular  medium  for  entertainment  and  news.  The  first  transoceanic  radio  transmission was  sent  by  Guglielmo  Marconi  across  the  Atlantic  Ocean  in  1901  (Lewis  1991). 

The  first  commercial  radio  station,  KDKA,  in  Pittsburgh  began  broadcasting  in 1920.  Radio  broadcasting  emerged  as  a  new  form  of  mass  communication.  Initially used  mainly  for  entertainment,  radio  soon  became  a  key  means  of  disseminating news  and  information  to  a  broad  audience. 

The  Communications  Act  of  1934  established  the  Federal  Communications 

Commission  (FCC)  to  regulate  interstate  and  international  communications  by radio,  television,  wire,  satellite,  and  cable.  The  FCC  was  established  to  regulate the  use  of  the  radio  spectrum  and  ensure  fair  competition  in  the  industry.  The  FCC 

is  responsible  to  assigning  to  each  radio  station  in  the  United  States  a  precise  carrier frequency  (Frost  2010). During  World  War  II,  radio  played  a  crucial  role  in  keeping people  informed  about  the  progress  of  the  conflict. 

The  first  experimental  television  broadcast  began  in  the  late  1920s.  This  broadcast  was  made,  in  1927,  by  Philo  Farnsworth,  though  it  took  several  years  for  it to  become  commercially  available.  The  television  development  was  halted  during World  War  II.  After  the  war,  television  quickly  became  the  dominant  form  of entertainment  in  the  United  States  for  decades. 

Television  broadcasting  began  in  the  United  States  in  the  late  1930s.  The  first  TV 

stations  began  broadcasting  in  1941,  and  by  the  early  1950s,  TV  had  become  a  major source  of  entertainment  and  news.  But  it  was  not  until  the  1950s  that  the  technology became  widely  available  to  American  consumers.  Television  quickly  became  the dominant  form  of  mass  media  and  had  a  profound  impact  on  American  culture  and society.  By  the  end  of  the  decade,  television  was  also  available  to  consumers  in Brazil  (Alencar  et  al. 2010). 
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1.3 

The  Empire  of  Communications 

The  beginning  of  communications  in  the  United  States  and  Brazil  had  a  common patron  who,  despite  not  having  had  access  to  a  formal  education  in  communications, became  one  of  the  greatest  enthusiasts  of  the  area.  D.  Pedro  II  was  educated  at  home by  a  tutor,  José  Bonifácio  de  Andrada  e  Silva,  one  of  the  first  scientists  to  have  a doctoral  degree  in  Brazil  (Alencar  2003a). 

José  Bonifácio  de  Andrada  e  Silva  (1763–1838),  a  diplomat,  professor,  jurist, and  Brazilian  politician,  graduated  in  Law,  Mathematics,  and  Natural  Philosophy, in  Portugal  and  obtained  a  doctorate  in  Mineralogy  in  France.  He  also  wrote  for 

“O  Patriota”  and  was  a  supporter  of  the  installation  of  blast  furnaces  in  Brazil,  a thesis  also  embraced  by  the  editor  of  the  newspaper  “Correio  Braziliense.” 

The  Patriarch  of  Independence,  as  Andrada  e  Silva  was  called,  in  addition  to promoting  science,  was  also  a  member  of  the  Brazilian  Historical  and  Geographical Institute,  the  Geographical  Societies  of  Rio  de  Janeiro  and  Lisbon,  the  Geographical Institute  of  Paraíba  do  Norte,  and  the  Geographical  Institute  of  Pará,  corresponding member  of  the  Ateneu  Ibero-Americano,  and  permanent  honorary  member  of  the Brazilian  Institute  of  Culture. 

With  the  guidance  of  José  Bonifácio,  D.  Pedro  II  developed  scientific  curiosity and  absorbed  the  state-of-the-art  knowledge  of  the  time  and  a  little  of  the  revolu-tionary  spirit.  Therefore,  technological  innovations  always  attracted  the  Emperor’s attention.  The  organization  of  postal  services  in  Brazil  dates  back  to  1829.  In  1843, just  over  2  years  after  D.  Pedro  II  assumed  power  in  Brazil,  the  first  Brazilian postage  stamp,  the  well-known  “Olho  de  Boi,”  was  launched.  Brazil  was  the  third country  in  the  world  to  use  the  stamp. 

The  first  submarine  cables  in  Brazil  were  inaugurated  by  D.  Pedro  II  in  1874, connecting  Rio-Salvador-Recife-Belém.  The  Recife-João  Pessoa-Natal  line  was 

established  in  1875.  The  first  Brazilian  international  cable  connection  was  made in  the  same  year,  with  Portugal,  having  been  completed  through  a  contract  with  the British  Eastern  Telegraph  Company. 

Less  than  a  year  later,  in  1877,  D.  Pedro  II  inaugurates  the  telephone  in  Brazil. 

He  had  met  the  telephone  at  the  Philadelphia  Exposition  (Alencar  2003a). 

To  get  an  idea  of  the  evolution  of  events  at  that  time,  the  first  telephone  exchange in  Paris  was  activated  in  1879.  In  the  same  year,  D.  Pedro  II  gave  permission  to install  the  one  in  Rio  de  Janeiro.  Companhia  Telefonica  do  Brasil  was  created on  November  15,  1879,  with  initial  capital  of  1,500,000$000  réis,  divided  into 7,500  shares  distributed  by  the  Western  Telegraph  Company,  the  first  telephone concessionaire  in  Brazil. 

The  Rio  de  Janeiro  exchange  is  among  the  first  telephone  exchanges  in  the world,  inaugurated  in  1881,  at  the  same  time  that  the  Anglo-Portuguese  Telephone Company  installed  the  one  in  Lisbon.  In  April  1885,  Brazil  had  seven  exchanges  in operation,  with  3335  subscribers.  Comparing  with  what  was  happening  in  the  world at  that  time,  the  United  States  had  137,570  subscribers  in  the  same  year,  Germany with  14,732,  Italy  with  4,346,  France  with  7,175,  and  Sweden  with  5,705. 
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Excluding  the  United  States,  Brazil  did  not  do  poorly  in  telephony  in  the  last century—taking  into  account  that  the  country’s  per  capita  income  was  very  small due  to  the  huge  number  of  slaves  still  existing.  Brazil  would  start  the  Republic  as  a member  of  the  International  Postal  Union  and  as  part  of  all  international  agreements that  regulated  telegraphy,  submarine  cables,  and  maritime  signaling. 

1.4 

The  Emperor  and  the  Teacher  of  the  Deaf  and  Dumb 

Alexander  Graham  Bell  arrived  in  Boston  in  1868  as  a  teacher  for  the  deaf  and dumb  from  Edinburgh  and  Montreal,  becoming  a  naturalized  citizen  of  the  United States.  In  the  year  of  the  Philadelphia  Centennial  Exposition,  1876,  Bell  decided to  make  an  exhibition  of  his  inventions  to  Sir  William  Thomson  (Lord  Kelvin), including  a  demonstration  of  the  telephone,  which  had  been  under  development since  the  autumn  of  1875.  The  device  was  developed  between  the  fall  of  1875  and the  summer  of  1877.  The  official  date  for  the  invention  of  the  telephone  is  1876 

(Shiers  1977). 

D.  Pedro  II,  who  was  on  a  visit  to  the  United  States,  discovered  the  telephone at  the  exhibition  marking  the  first  centenary  of  the  country’s  independence.  He accepted  the  invitation  of  the  President  of  the  United  States,  Ulysses  Grant,  to  attend the  inauguration  and,  together  with  him,  to  start  the  machines  in  the  Machinery  Hall. 

About  250,000  people  attended  the  ceremony. 

It  is  said  that  the  Emperor,  when  trying  the  telephone,  was  surprised  and  said 

“Holy  God!  This  speaks. . . .”   Enthusiastic   about  the  invention,  he  offered  Bell  a sum  of  money  to  develop  it,  with  the  condition  that  Brazil  would  be  the  first  country to  use  it.  The  inventor  fulfilled  his  promise  and  sent,  in  the  following  year,  the first  telephone  sets  for  the  installation  of  a  telephone  line  between  the  palace  of São  Cristóvão   and  the   Santa  Cruz   farm,  of  the  imperial  family—long  before  the telephone  was  commercialized  in  the  world  (Lopes  1997). 

The  Emperor’s  main  interest  was  to  meet  the  poet  Henry  Wadsworth  Longfellow and  General  William  T.  Sherman  but  ended  up  knowing  the  inventions  of  Thomas Edison  and  Alexander  Graham  Bell.  Less  than  a  year  later,  in  1877,  D.  Pedro  II inaugurated  the  telephone  in  Brazil,  installed  by  the  American  company  Western and  Brazilian  Telegraph  Company.  Brazil  joined  the  International  Telegraphy Convention  in  the  same  year  (Hill  1947). 

In  1879,  Charles  Paul  MacKie  obtained  the  first  concession  to  establish  a telephone  network  in  the  country.  The  company  was  incorporated  in  Boston  under the  name  of  Telephone  Company  of  Brazil  with  an  initial  capital  of  US$  300,000. 

The  first  three  lines  were  built  in  May  1881,  with  a  cable  that  totaled  1,600  meters length  (Bandeira  2007). 

The  Bell  Telephone  Company  was  established  in  1878  in  New  York  City,  with 5,000  shares  issued  and  distributed  among  7  members  of  Graham  Bell  family  and friends  as  shareholders.  AT&T  was  created  on  February  28,  1885,  in  the  State  of
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New  York,  with  the  initial  mission  to  build  and  operate  long-distance  telephone circuits.  In  1899,  AT&T  became  the  holding  of  the  Bell  Company  (Chapuis  1982). 

In  1879,  D.  Pedro  II  granted  Thomas  Edison  the  privilege  of  introducing  his devices  for  transmitting  electric  light  in  Brazil.  The  lighting  contract  for  the  capital was with a company  linked to the Baron of Mauá, Rio de Janeiro Gás Co., an English consortium.  The  first  attempt  to  implement  electric  lighting  was  made  in  1883,  but it  was  only  implemented  in  1905,  through  the  Canadian  consortium  Rio  de  Janeiro Tramway,  Light  and  Power  Company,  organized  by  Alexander  Mackenzie  and  Fred Stark  Pearson,  inspired  by  the  American  capitalist  Percival  Farquhar  (Bandeira 

2007). 

1.5 

The  Inception  of  Digital  Communications  in  America 

Claude  Elwood  Shannon  (1916–2001),  an  American  mathematician,  electrical  engineer,  computer  scientist,  and  cryptographer,  is  considered  the  Father  of  Information Theory.  In  1948,  he  published  a  seminal  paper  on  the  mathematical  concept  of information,  which  has  remained  the  most  cited  for  decades.  From  that  article, information  left  the  field  of  Journalism  to  occupy  the  more  formal  field  of Probability  Theory  (Shannon  1948a). 

Shannon’s  development  was  also  based  on  the  work  of  Harry  Nyquist  (Harry Theodor  Nyqvist,  1889–1976),  who  determined  the  necessary  sampling  rate,  as  a function  of  the  maximum  frequency  of  a  continuous  signal,  so  that  this  signal  could be  reproduced  completely  only  with  a  set  of  discrete  samples  (Widrow  1956). 

Independently,  Andrey  Nikolaevich  Kolmogorov  (1903–1987),  a  Soviet  math-

ematician,  developed  his  Complexity  Theory  in  the  1960s.  It  was  a  new  theory of  information  based  on  the  length  of  the  algorithm  designed  to  describe  a  given sequence  of  data.  He  used  Alan  Turing’s  machine  model  for  this  new  definition. 

Under  certain  conditions,  Shannon’s  and  Kolmogorov’s  definitions  are  equivalent. 

The  idea  of  relating  the  number  of  states  of  a  system  to  a  physical  measure, however,  had  been  circulating  since  the  nineteenth  century.  Rudolf  Julius  Emanuel Clausius  (1822–1888),  a  German  physicist  and  mathematician,  proposed  the  term entropy  for  this  measure  in  1895. 

Entropy  comes  from  the  Greek  word  for  transformation,  and  in  Physics,  it  is related  to  the  logarithm  of  the  ratio  between  the  final  and  the  initial  temperature  of  a system  or  with  the  ratio  between  the  change  in  heat  and  the  temperature  of  the  same system. 

Shannon  defined  the  entropy  of  an  alphabet  as  the  negative  mean  value  of  the symbol  probability  logarithm.  Thus,  when  the  symbols  are  equiprobable,  that  is, they  have  the  same  probability,  this  definition  of  entropy  is  equivalent  to  that  created by  Nyquist. 

However,  as  it  is  more  generic,  Shannon’s  entropy  also  applies  to  the  calculation of  the  capacity  of  communication  channels.  Much  of  the  work  of  researchers  in  the
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field  is  devoted  to  calculating  the  capacity  or  developing  error  correcting  codes  to achieve  this  capacity. 

Shannon  died  on  February  24,  2001,  a  victim  of  the  disease  named  after  the physician  Alois  Alzheimer  (1864–1915),  a  German  psychiatrist  and  neuropatholo-gist.  According  to  his  wife,  he  lived  calmly  but  without  the  possibility  of  retaining new  information—a  bad  joke  of  nature  on  the  genius  that  reinvented  information. 

1.6 

Coding  in  Space 

The  history  of  coding,  the  branch  of  Information  Theory  that  deals  with  the correction  of  transmission  errors  and  made  possible  the  development  of  the  Internet, had  a  special  chapter  with  the  launch  of  the  Voyager  1  and  2  spacecraft  three  decades ago. 

The  probes  began  their  journey  on  August  20,  1977,  with  the  launch  of  Voyager 2.  Voyager  1  was  launched  on  September  5  of  the  same  year.  Currently,  Voyager  2 

is  15.5  billion  kilometers  from  the  Sun  and  Voyage  1  12.5  billion.  They  travel  1.6 

million  kilometers  a  day. 

The  probes’  original  mission  was  to  obtain  data  from  Jupiter  and  Saturn,  which would  take  just  4  years.  However,  the  technology  employed  proved  to  be  much more  resistant  and  efficient.  In  the  first  12  years,  they  conducted  explorations  of Jupiter,  Saturn,  and  the  planets’  moons  and  the  first  expeditions  to  Uranus  and Neptune,  sending  back  never-before-seen  images  and  scientific  data  that  resulted in  fundamental  discoveries  about  the  Solar  System’s  outer  planets. 

In  December  2004,  Voyager  2  reached  the  Solar  System’s  final  frontier,  a turbulent  region  that  begins  approximately  14  billion  kilometers  from  the  Sun  and  in which  the  solar  wind  is  reduced  as  it  encounters  the  interstellar  medium,  the  rarefied gas  that  fills  space.  among  the  stars. 

Each  spacecraft  carries  five  functional  science  instruments,  used  to  study  the solar  wind,  energetic  particles,  magnetic  fields,  and  other  types  of  waves  as  they make  their  way  through  deep  space  hitherto  unexplored  by  humans. 

Voyagers  use  radioisotope  thermoelectric  generators  to  power  the  instruments. 

With  a  consumption  of  less  than  300  watts  per  probe,  equivalent  to  a  medium-sized digital  television,  the  equipment  should  operate  by  2020. 

The  probes  carry  a  12-inch  copper  and  gold  disk  that  contains  data  on  the diversity  of  life,  society,  and  culture  on  Earth.  117  images  and  various  sounds obtained  in  nature  were  recorded,  in  addition  to  musical  selections  from  different cultures  and  times  and  greetings  in  54  languages. 

Communication  between  the  Voyager  1  and  2  probes  and  National  Aeronautics and  Space  Administration  (NASA)  takes  place  through  the  Deep  Space  Network, a  network  of  antennas  installed  in  several  countries.  Commands  sent  from  Earth take  12  hours  to  reach  Voyager  1  and  14  hours  to  be  received  by  Voyager  2. 

Signals  sent  by  spacecraft  take  the  same  time  to  reach  Earth  and  arrive  very  weakly, 
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heavily  corrupted  by  noise.  Therefore,  the  probes  are  equipped  with  error  correction encoders. 

The  ships  used  the  convolutional  code  (2,  1,  6),  developed  by  Peter  Elias  in 1955,  concatenated  with  the  Reed-Solomon  code  (255,  223),  known  as  RS,  created by  Irving  Stoy  Reed  (1923–2012),  an  American  mathematician  and  engineer, 

and  Gustave  Solomon  (1930–1996),  an  American  mathematician  and  electrical 

engineer,  in  1960.  This  code  concatenation  scheme  can  achieve  a  rate  of  only  one error  per  million  transmitted  bits,  with  signal  power  just  under  twice  the  noise  power (van  Lint  and  Springer  1987). 

The  convolutional  code  used  produces  two  output  bits  for  each  input  bit  and  has order  6,  related  to  the  memory  used.  The  RS  code  can  correct  16  symbol  errors per  transmitted  block.  This  code  uses  32  eight-bit  symbols,  or  octets,  for  parity checking,  which  added  to  the  223  information  symbols  gives  the  255  transmitted symbols. 

When  the  Voyager  space  probes  were  launched,  there  were  no  adequate  ReedSolomon  decoders.  Only  in  1986,  when  Voyager  2  was  approaching  Uranus,  did technology  and  the  evolution  of  algorithms  finally  make  it  possible  to  build  an operational  RS  (255,  223)  decoder. 

Elwyn  Ralph  Berlekamp  (1940–2019),  a  professor  of  Mathematics  and  Com-

puter  Science  at  the  University  of  California,  Berkeley,  was  the  inventor  of  the efficient  decoding  algorithm  for  the  RS  code.  The  algorithm  for  decoding  the convolutional  code  was  invented  by  Andrew  James  Viterbi  (1935–),  born  Andrea Giacomo  Viterbi,  an  Italian  Jewish-American  electrical  engineer  and  businessman who  co-founded  Qualcomm  Inc.  and  invented  the  Viterbi  algorithm  (Berlekampe and  Tong  1985). 

In  1969,  Viterbi,  along  with  Irvin  Mark  Jacobs  (1935–),  an  American  electrical engineer  and  businessman,  and  Leonard  Kleinrock  (1934–),  an  American  computer scientist  and  Internet  pioneer,  founded  Linkabit.  They  were  professors  at  the University  of  California  at  Los  Angeles  and  also  consultants  for  NASA  for  projects in  the  field  of  Digital  Transmission  (Viterbi  and  Omura  1979). 

The  company  was  acquired  by  the  company  Microwave  Associates  Communi-

cations  in  1980.  In  1985,  Viterbi  and  Jacobs  left  the  company  to  found  Qualcomm, which  became  a  giant  in  the  field  of  Cellular  Mobile  Communications.  Kleinrock, who  invented  packet  switching  and  was  one  of  the  creators  of  ARPANET,  the network  that  gave  rise  to  the  Internet,  remained  in  academia. 

1.7 

The  Beginning  of  the  Internet 

Incredible  as  it  may  seem,  there  was  a  time  when  there  was  no  Internet.  At  that  time, when  you  wanted  to  set  up  a  meeting,  it  was  necessary  to  place  a  phone  call.  To announce  a  birthday  or  birth,  it  was  common  use  to  send  a  telegram.  People  would even  leave  their  rooms,  in  companies,  to  talk  to  colleagues  about  a  work  topic  or just  to  make  small  talk  (Alencar  2008a). 
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Of  course,  some  companies  started  out  in  the  business  of  exchanging  posts.  In the  1970s,  there  was  the  Telex  service,  provided  by  the  European  Post,  Telephone and  Telegraph  (PTT)  companies,  the  American  Telephone  and  Telegraph  (AT&T) Corporation,  the  Brazilian  Telecommunications  Company  (Embratel),  and  other public  companies.  They  formed  an  international  system  of  written  communications, which  prevailed  until  the  1990s,  and  consisted  of  a  worldwide  network  with  a numeric  addressing  plan,  with  terminals  that  could  send  written  messages  to  other terminals. 

The  Telex  had  some  limitations,  as  it  did  not  have  all  the  characters  used  in the  most  languages,  such  as  accents,  and  all  the  letters  were  capitalized.  The  older machines  had  no  random  access  memory  (RAM).  Therefore,  the  messages  were prerecorded  by  mechanical  means,  typically  with  perforated  paper  tape,  and  then transmitted.  Incoming  messages  were  printed  on  continuous  rolls  of  paper  (Alencar 

2011a). 

The  service  worked  in  some  countries,  until  the  past  decade,  despite  the  number of  falling  subscribers  due  to  the  introduction  of  electronic  mail.  The  terminals resembled  electric  typewriters,  and  there  was  a  guarantee  of  immediate  delivery, with  terminal  authentication,  which  was  important  for  the  companies  that  hired  the service  (Alencar  2011b). 

In  Brazil,  Embratel  already  had  an  information  packet  exchange  service  in  the early  1980s.  It  was  known  as  Projeto  Ciranda  and  served  only  its  employees. 

Then  Cirandão  was  launched  to  the  public  access,  but  few  people  took  notice.  The marketers  of  company  changed  its  name  to  STM-400,  but  it  did  not  have  much  effect on  the  market.  The  company  missed  the  target  audience.  The  company  should  have bet  on  the  university  market. 

Regarding  the  use  of  data  communication  networks,  a  significant  event  was  the decision  of  the  National  Science  Foundation  (NSF)  of  the  United  States  in  1985 

to  invest  in  setting  up  networks  to  serve  the  academic  and  research  community.  In 1986,  articles  were  published  describing  the  networks  used  by  the  academic  and research  community  in  the  United  States,  with  emphasis  on  the  Bitnet  network, which  has  been  in  operation  since  1981,  and  for  the  National  Science  network Foundation  (NSFNET),  created  in  1986. 

Bitnet,  also  known  as  Because  It’s  Time  Network,  was  a  large  computer  network, which  carried  electronic  mail  messages.  It  used  technology  developed  by  IBM, mainly  the  protocol  Network  Job  Entry  (NJE),  and  gave  rise  to  the  Listserv  program for  maintenance  of  lists  of  debates.  Its  appeal  was  its  simplicity  of  adhesion  and operation,  mainly  for  institutions  that  had  an  IBM  computer  (Alencar  2008b). 

Bitnet  was  managed  by  the  Corporation  for  Research  and  Educational  Networking  (CREN),  from  Washington,  USA,  and  was  used  to  provide  electronic  mail  and file  transfer  between  large  computers  in  educational  and  research  institutions  in North  America,  South  America,  Europe,  and  Japan.  It  reached  more  than  2,500 

universities  and  institutes  worldwide. 

The  network  NSFNET,  which  would  be  part  of  the  Internet,  used  the  family  of protocols  TCP/IP,  developed  from  Defense  Advanced  Research  Projects  Agency (DARPA).  This  protocol  would  allow  several  applications  via  the  network,  espe-
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cially  the  interactive  use  of  remote  computers  (Telnet);  the  transfer  of  files,  known  as File  Transfer  Protocol  (ftp);  and,  from  the  decade  the  1990s,  interactive  consultation of  information  bases  on  the  World  Wide  Web  (www),  in  addition  to  electronic  mail. 

Considering  the  importance  for  the  academic  community  of  the  use  of  computer networks,  several  projects  in  this  direction  took  place  in  the  1980s  at  the  National Scientific  Computing  Laboratory  (LNCC)  of  CNPq,  at  the  São  Paulo  State  Research Support  Foundation  (FAPESP),  and  at  the  Federal  University  of  Rio  de  Janeiro (UFRJ). 

The  first  meeting  to  discuss  the  establishment  of  a  national  network  for researchers,  with  access  to  international  networks,  was  held  at  the  University  of  São Paulo  (USP)  in  October  1987.  The  meeting  was  attended  by  research  institutions, development  agencies,  and  Embratel.  The  network  aimed  at  allowing  broad  access for  members  of  the  research  community  to  Bitnet,  using  the  facilities  of  the  LNCC, through  dial-up,  or  through  the  Embratel’s  National  Network  of  Packages  (Renpac). 

The  message  exchange  service  for  university  students  in  Brazil  started  in  mid-1987,  with  the  arrival  of  Bitnet.  After  8  months  of  connection,  the  network  reached 110  nodes  in  January  1988,  when  the  decision  was  taken  to  use  FAPESP  to implement  an  international  connection  to  state  universities. 

Embratel,  concerned  with  the  monopoly  it  had  in  the  area,  only  allowed  the transport  of  third-party  traffic  through  community  networks  research  and  academic research  in  October  1988,  a  month  after  the  establishment  of  of  the  first  international connection.  Thus,  the  first  connection  established  with  Bitnet,  with  a  rate  of 9,600  baud  or  symbols  per  second,  was  made  between  the  LNCC,  in  Rio  de  Janeiro, and  the  University  of  Maryland,  in  the  United  States. 

Then,  negotiations  began  with  the  Central  Committee  of  the  Bitnet  (Educom). 

The  entry  point  was  placed  at  Fermi  National  Laboratory  (Fermilab),  which  had a  Vax  platform  (Vax  750)  and  a  cooperation  contact  signed  with  the  Institute  of Physics  of  the  University  of  São  Paulo  (IFUSP). 

In  September  1988,  Educom  changed  its  rules,  no  longer  accepting  us  at  Bitnet in  foreign  countries.  It  was  then  necessary  to  structure  a  cooperation  network, which  changed  the  long-term  plans.  Negotiation  finals  were  closed  with  Fermilab in  October  1988  in  Batavia,  Illinois,  and  then  with  Educom.  Thus,  a  cooperation network  was  established  with  the  Bitnet,  which  became  known  as  Academic 

Network  at  São  Paulo  (ANSP)  (Alencar  2008c). 

The  network’s  second  international  connection,  which  initially  operated  at  a  of 4,800  baud,  was  installed  in  November  1988  between  FAPESP  and  Fermilab  in Chicago.  This  connection  provided  for  the  service  of  the  university  system  and research  center  in  São  Paulo  and  used  DECnet  technology,  which  allowed  access to   High-Energy  Physics  Network  (HEPnet)  and  Bitnet. 

In  February  1989,  the  Embratel  connection  from  São  Paulo,  Brazil,  to 

Batavia,  USA,  was  installed,  using  HEPnet  (DECnet),  with  the  address 

user@FPSP.HEPNET.  It  became  the  IFUSP  DECnet  node. 

A  third  independent  connection  to  Bitnet,  also  at  4,800  baud,  was  installed  in May  1989  between  UFRJ  and  the  University  of  California,  Los  Angeles  (UCLA). 
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The  Federal  University  of  Rio  Grande  do  Sul  (UFRGS)  entered  the  network  in  July 1989,  using  the  Phonenet  protocol  over  X.25,  a  set  of  protocols  standardized  by  the ITU  for  wide  area  networks,  using  the  telephone  system  or  the  Integrated  Services Digital  Network  (ISDN)  as  a  means  of  transmission  (Alencar  2003b). 

In  December  1989,  a  Vax6330  and  an  mVax3600  were  purchased  for  FAPESP, 

with  financial  support  from  the  Department  of  Science  and  Technology  of  the  State, leaving  the  mVax3600  exclusively  for  network  management.  The  international  line has  increased  from  4800  to  9600  baud  in  September  1990. 

At  the  end  of  the  1980s,  Embratel  offered  the  following  communication  services: private  lines,  with  transmission  rates  between  300  and  9600  baud;  a  switched  data service  called  Renpac,  with  X.25  and  X.28  access,  at  rates  up  to  9,600  baud;  and satellite  service,  using  technology  Very  Small  Aperture  Terminal  (VSAT). 

In  May  1989,  the  country  had  three  islands  of  access  to  Bitnet.  Two  in  the  city of  Rio  de  Janeiro  and  one  in  São  Paulo.  Communications  between  these  islands were  through  the  international  Bitnet  network.  The  Federal  University  of  Paraíba was  interconnected  to  the  network  in  1989,  with  a  direct  connection  with  Embratel in  Recife. 

After  the  elimination,  by  Embratel,  of  the  restriction  on  traffic  of  third  parties, it  was  possible  to  establish  a  national  network  to  share  the  access  to  international networks.  This  was  accomplished  in  1991,  with  the  interconnection  between  islands and  with  the  extension  of  connectivity  to  other  research  centers  in  the  country. 

The  adoption  of  a  final  form  of  addressing  by  the  National  Network  of  Research (RNP),  from  CNPq,  only  took  place  in  December  1990.  The  addresses  in  the  form user@maquina.departamento.instucional.BR  started  to  be  used  by  institutions  that had  the  capacity  to  manage  their  own  sub-domain  (Alencar  2008d). 

Addresses  such  as  user@maquina.departamento.instucional.ANxx.BR  still 

remained  for  some  of  the  other  institutions.  Pseudo-addresses  related  to  Bitnet nodes,  such  as  user@node.ANxx.BR,  were  formally  eliminated,  although  their  use has  continued  in  practice. 

Brazil’s  access  to  the  Internet  became  possible  in  February  of  1991,  when FAPESP  increased  the  transmission  rate  to  9,600  baud,  for  its  connection  to Fermilab  and  installed  the  Multinet  program  from  TGV,  to  carry  traffic  that  used the  Internet  Protocol  (IP),  in  addition  to  DECnet,  which  was  a  proprietary  network technology  from  Digital  Equipment  Corporation  (DEC),  and  also  Bitnet  traffic (Tolhurst  and  Pike  1994). 

IP  connectivity  has  been  extended  to  a  small  number  of  institutions  in  São  Paulo, Rio  de  Janeiro,  Rio  Grande  do  Sul,  and  Minas  Gerais,  with  low  transmission  rate private  lines,  between  2,400  and  9,600  baud,  or  through  Renpac. 

The  components  of  the  second-generation  network  were  installed  in  1992  and included  RNP  and  the  state  networks  of  Rio  de  Janeiro  and  São  Paulo,  which  were financed  by  FAPERJ  and  FAPESP.  State  networks  were  installed  for  the  United Nations  Conference  on  Environment  and  Development  (UNCED-92  or  Rio-92), 

held  in  June  1992,  in  Rio  de  Janeiro,  and  both  the  networks  used  new  international connections  of  64  kbit/s.  They  served  to  support  the  Global  Forum,  a  meeting  of nongovernmental  organizations  (NGOs),  carried  out  in  parallel  to  UNCED-92. 

1.7 The Beginning of the Internet
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Bitnet was important for worldwide connectivity  until the beginning  of the 1990s, when  it  was  supplanted  by  the  Internet.  The  main  application  of  Bitnet  was  the maintenance  of  distribution  lists.  The  most  visible  difference  between  Bitnet  and the  Internet  was  the  addresses  of  the  servers.  The  addresses  of  Bitnet  had  no  points to  separate  server  names  from  domains. 

From  the  beginning  of  the  1990s,  RNP  started  to  provide  access  to  approximately 600  teaching  and  research  institutions,  serving  a  wide  range  of  community  of  about 65  thousand  users. 

[image: Image 5]

Chapter  2 

Signals  and  Linear  Systems 

 Pure  mathematics  is,  in  its  way,  the  poetry  of  logical  ideas. 

– Albert Einstein 

Signals are physical processes that are expressed as functions of independent variables, usually time, that contain information about the behavior and characteristics of given physical phenomena. For example, the voice signal is the result of the sound pressure caused by the vibration of the vocal chords over time (Lourtie 2007). Other examples of signals include the temperature, the pressure, the stock prices, and the transmission of messages using the Internet Mandal and Asif (2007). 

Most  signals  are  usually  processed  to  extract,  digest,  or  remove  information. 

They are used to excite electronic circuits, such as control or robotic systems, video and image systems, communication equipment, and a large variety of information 

processing systems. 

These systems are complex in nature and involve analog or digital devices. The 

modeling of a complex system is difficult and requires that it could be analyzed, or separated, into simpler and mathematically tractable parts. 

For most systems, restrictions on the frequency or power range, as well as limits 

on  operating  lifetime,  are  established  to  render  them  amenable  to  mathematical analysis. It is important to obtain solutions that reflect the behavior of the original equipment or system, but real life is always very complex. 

2.1 

Usual  Time  Signals 

As mentioned, the mathematical model of a signal is a functional relation in which the argument, also known as the independent variable, is the time. A typical signal is the voltage across the terminals of a circuit or the current flowing in that circuit (Baskakov 1986). 

Signals  can  be  one-dimensional,  when  described  by  one-time  function,  x(t)., or  they  can  be  multidimensional, x (t) = [ x 1 (t), x 2 (t), · · ·  , xN (t)].,  as  seen  in Fig. 2.1. In  this  case, x (t).  is  the  multidimensional  input  signal,  and  y (t) =
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Fig.  2.1  A system with 
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[ y 1 (t),   y 2 (t), · · ·   ,   yN(t)]. is the output signal. The number  N is the dimensionality of  the  multidimensional  signal.  The  set  of  messages  that  flow  through  a  mobile cellular communication system is an example of a multidimensional signal. 

It is possible to characterize a system as analog or digital. A system that has an analog input and an analog output is defined as an analog system. On the other hand, a system that has a digital input and a digital output is considered a digital system. 

Systems  can  have  mixed-type  attributes  too.  A  system  with  analog  input  and digital output  is an analog-to-digital  converter.  By the same token, a system with digital  input  and  analog  output  is  referred  to  as  digital-to-analog  converter.  Of course, those systems can include several parts, which are either analog or digital. 

Signals,  on  the  other  hand,  can  be  deterministic  or  random  in  nature.  A deterministic signal is usually described by an equation, such as 

.  x(t ) =  A  cos (ωt +  φ), 

(2.1) 

in which  A represents the signal amplitude,  ω = 2 πf . is the angular frequency,  f  is the frequency in hertz (Hz), and  φ. is its initial phase. 

Sometimes, a signal is described by a drawing, as seen in Fig. 2.2, that characterizes the sinusoidal signal for the time interval of interest [−3 T ,  3 T ].. In this case, the sinusoidal function has a repetition period, of just period, of 2 T . This means that two peaks, or valleys, of the cosine function are separated by 2 T . 

Regarding  the  nature  of  the  signals,  they  can  be  described  as  continuous  or discrete  in  time,  as  well  as  continuous  or  discrete  in  amplitude.  Signals  that  are

2.1 Usual Time Signals
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continuous  in  time  and  continuous  in  amplitude  are  known  as  analog  signals,  in this  case  x(t) ∈ R , t ∈ R..  Signals  that  are  continuous  in  time  and  discrete  in amplitude are called discrete-amplitude signals, that is,  x(t) ∈ R , t ∈ Q.. Signals that are discrete in time and continuous in amplitude are discrete-time signals, that is,  x(t) ∈ Q , t ∈ R.. Signals that are discrete in time and discrete in value are digital signals, that is,  x(t) ∈ Q , t ∈ Q.. Sometimes, the set of integers Z. is used in place of the set of rationals Q. to characterize the discrete support or represent the discrete amplitude. 

 2.1.1 

 Stochastic  Signals 

Deterministic  signals  are  hardly  found  in  real  life,  because  nature  is  random and  its  outcomes  are  usually  stochastic  and,  sometimes,  unpredictable.  But  it  is sometimes  convenient  to  think  of  signals  as  being  deterministic,  because  this expedient facilitates the analysis. 

One of the convenient properties of deterministic signals states that if the signal is  known  at  a  certain  time,  it  can  be  inferred  for  the  whole  time  interval.  This  is clear, for instance, in the case of the sinusoidal function. 

A  random,  or  stochastic,  signal  can  be  described  by  one  of  its  samples  or realizations,  as  depicted  in  Fig. 2.3,  or  by  some  of  its  probabilistic  properties  or statistical means, such as its probability density function, as shown in Fig. 2.4. 

The  important  stochastic  signals  are  studied  in  the  chapter  on  random  signals and  noise.  A  review  of  probability,  which  discusses  the  fundamental  concepts  of set  and  measure,  as  well  as  random  variables  and  their  moments,  is  presented  in 

Appendix E. 

Fig.  2.3  A random, or 

stochastic, signal 
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Fig.  2.4  A random signal 

and its probability density 
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Fig.  2.5  The gate function  
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Examples of random functions are abundant and include voice signals, television 

signals, telephone traffic, digital video, Internet traffic, and communication signals in general. 

 2.1.2 

 The  Gate  and  the  Unit  Step  Functions 

The gate function,  g(t)., plays an important role in the study of signals and systems, because it can be used to represent a pulse signal, the response of a linear system to a given signal, or the time a certain circuit is in operation, for example. Figure 2.5 

illustrates the gate function. 
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Fig.  2.6  A unit step function 
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The gate function, or signal, can be obtained as the composition of two displaced 

unit step functions, 

.  g(t ) =  A[u (t +  T / 2 ) − u (t −  T / 2 )] , (2.2) 

in which the unit step function is depicted in Fig. 2.6 and is defined as 0 if  t ∈  (−∞ ,  0 )

.u (t ) =

(2.3) 

1 if  t ∈  ( 0 , ∞ ). 

The value of the unit step function at zero is usually undefined. Some authors prefer to define u ( 0 ) = 1 / 2. for reasons of expediency. 

The unit step function lasts from minus infinity to plus infinity, which spans the whole  real  line  R..  It  can  indicate  the  exact  time  moment  a  certain  phenomenon occurs, for instance, when a switch is closed or a signal is turned on. 

Example  The unit step function can be used to generate a digital waveform from a sinusoidal function, using a composite function. Consider that the input signal is x(t ) = cos (ωt).. Then, the required formula for the output signal can be written as 1 ,  if  x(t) ∈  ( 0 , ∞ )

.  y(t ) = u[ x(t )] = u[cos (ωt )] =

(2.4) 

0 ,  if  x(t) ∈  (−∞ ,  0 ), 

and the output signal is depicted in Fig. 2.7. Note that the signal is a square wave, a periodic signal that can only assume the values 0 and 1. 
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Fig.  2.7  A square wave 
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 2.1.3 

 Properties  of  the  Unit  Step  Function 

The  unit  step  function  is  a  very  useful  one  for  applications  in  Mathematics and  Engineering,  because  it  can  be  used  to  delimit  other  functions.  Some  of  its interesting properties are presented in the sequence. 

For instance, the following property illustrates a typical application of the unit step function to delimit the range of integration of a given signal: 

∞

∞

. 

 x(t ) u (t) d t =

 x(t ) d t

(2.5) 

−∞

0

Note,  in  the  following  property,  that  the  unit  step  function  has  been  inverted, regarding the abscissa, and shifted to the position  t on the  τ . axis. Thus, u (t −  τ ). is equal to one from  τ = −∞. to  τ =  t. and zero elsewhere: 

∞

 t

. 

 x(τ ) u (t −  τ ) d τ =

 x(τ ) d τ

(2.6) 

−∞

−∞

 2.1.4 

 The  Sign  Function 

The signum, or sign, function attributes one to positive values of the independent variable and minus one to the negative values as follows: 

1 ,  if  x(t) ∈  ( 0 , ∞ )

.sgn (t ) =

−

(2.7)

1 ,  if  x(t) ∈  (−∞ ,  0 )
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Fig.  2.8  The signum 
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The sign function, depicted in Fig. 2.8, is usually not defined for  t = 0., but the value zero can be attributed in some cases to facilitate limiting operations. 

The sign function can be defined with the help of the unit step function as 

.sgn (t ) = u (t ) − u (− t ). 

(2.8) 

Example  A formula for an alternating square wave can be written using the sgn (t).. 

It is only necessary to write the composite function  f (t) = sgn[sin (t)].. 

 2.1.5 

 The  Impulse  Function 

The  impulse  function,  also called  Dirac  function  or  Dirac  delta  distribution,  after the  British  theoretical  physicist  Paul  Adrien  Maurice  Dirac  (1902–1984),  is  an important mathematical construct that helps explain several phenomena. An impulse 

function can be seen in Fig. 2.9. 

The impulse function, which does not meet the requirements of a typical function 

but can be considered as a generalized function, is defined as follows: 

∞ ,  if  t = 0

.  δ(t ) =

(2.9) 

0 ,  if  t = 0

The  value  of  the  impulse  function  at  zero  is  infinity.  This  can  cause  problems, sometimes, and therefore some authors prefer to define the impulse function as a 

limit.  For  instance,  it  can  be  defined  as  the  limit  of  the  Laplace  function  as  the parameter  α. goes to infinity: 

 α

.  δ(t ) = lim

 e− α| x|

(2.10)

 α→∞ 2
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Fig.  2.9  The impulse 
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This can be observed in Fig. 2.10. Note that the Laplace function is squeezed, as α → ∞., but the area under the curve remains the same. 

The  Laplace  function  was  named  after  Pierre-Simon,  Marquis  de  Laplace 

(1749–1827),  a  French  scholar  and  polymath  with  important  contributions  to  the development  of  Engineering,  Mathematics,  Statistics,  Physics,  Astronomy,  and Philosophy. 

Note that the Laplace function is normalized, as can be verified, which means 

that it can be used as a probability distribution function: 

∞





 α

0

 α

∞  α

. 

 e− α| x|d x =

 eαx  d x +

 e− αx  d x

−∞ 2

−∞ 2

0

2









0

∞

=  α eαx

+  α − e− αx

= 1

(2.11)

2

 α

−∞

2

 α

0
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The  same  result  for  the  impulse  can  also  be  obtained  from  the  limit  of  a normalized gate function, considering the interval  ( 0 , τ )., which one defines as  gτ (t)., 

.  gτ (t ) = 1 [u (t ) − u (t −  τ )] , 

(2.12) 

 τ

as the parameter  τ → 0.: 

u (t) − u (t −  τ )

.  δ(t ) = lim  gτ (t ) = lim

(2.13) 

 τ →0

 τ →0

 τ

The operational definition of the impulse function is therefore related to the unit step function, as follows, 

du (t)

. 

=  δ(t), 

(2.14) 

d t

that is, the impulse function is the derivative of the unit step function. This is a useful relation, and several examples are given to emphasize its importance. 

Therefore, because of the fundamental theorem of Calculus, 

 t

. 

 δ(τ ) d τ = u (t). 

(2.15) 

−∞

The impulse function has other important properties, for example, 

∞

. 

 δ(t ) d t = 1 , 

(2.16) 

−∞

the area of the impulse function is one, which means that the impulse function is 

normalized. 

The  impulse  function  can  also  extract  a  sample  of  a  given  signal,  as  can  be observed in the following, 

∞

. 

 x(t )δ(t ) d t =  x( 0 ), 

(2.17) 

−∞

and as displayed in Fig. 2.11, 

∞

. 

 x(t )δ(t −  τ ) d t =  x(τ ). 

(2.18) 

−∞

The impulse function can be used to model voltage, current, or power peaks. For 

example, a lightning can be modeled as a voltage impulse, because it occurs during a short time interval and has an amplitude that can reach millions of volts. 
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Fig.  2.11  The impulse 
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Example  The derivative of the sign function can be computed using the properties of the unit step function, 

d

. 

sgn (t) = d [u (t) − u (− t)] =  δ(t) +  δ(− t) = 2 δ(t), d t

d t

which is true, because the impulse is an even function. 

Example  The circuit depicted in Fig. 2.12 is closed at  t = 0.. Determine the voltage across the capacitor and the current that flows in the circuit. 

Using  the  relationship  between  the  voltage  and  the  current  for  a  capacitor  of capacitance  C, one can write 

d v(t)

.  i(t ) =  C

 . 

(2.19) 

d t

The  voltage  across  the  capacitor  terminals  is  v(t) =  V  u (t).  for  all  time. 

Therefore, the current that flows in the circuit is given by
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d[ V  u (t)]

.  i(t ) =  C

=  CV δ(t). 

(2.20) 

d t

That is, the current is an impulse whose area is proportional to the capacitance times the source voltage. This happens because there is no resistance to limit the current that flows in the circuit. 

Example  A series of alternating impulses can be created from the formula for the sinusoidal wave, as a composite function,  y(t) = u[ x(t)] = u[cos (ωt +  φ)].. 

The derivative of  y(t). can be obtained using the formula for the derivative of a composite function, that is, 

.  z(t ) = d y(t ) = d u(t ) × d x(t ) , 

(2.21) 

d t

d x(t)

d t

.  z(t ) = d u[cos (ωt +  φ)] =  δ[cos (ωt +  φ)] × [− ω  sin (ωt +  φ)] , (2.22) 

d t

.  z(t ) = − ωδ[cos (ωt +  φ)] × sin (ωt +  φ), (2.23) 

which is the formula for the series of alternating impulses depicted in Fig. 2.13. 

 2.1.6 

 Properties  of  the  Impulse  Function 

Some important properties of the impulse generalized function, which are useful to model linear systems, are listed in the following Hsu (1973): 

Fig.  2.13  Periodic series of 
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First, recall that  δ(t) = u (t).. Then, from the properties of the unit step function, u (t)  if  α  is positive , and

.u (αt ) =

(2.24) 

u (− t)  if  α  is negative . 

Taking the derivative of the unit step function u (αt)., one obtains 



du (αt)

 αδ(t )

if  α  is positive , and

. 

=

(2.25) 

d t

− αδ(t)  if  α  is negative . 

Therefore, combining both results, one obtains 

.  δ(αt ) = 1  δ(t ). 

(2.26) 

| α|

Because it is possible to write u (− t) = 1 − u (t)., then 

. u (− t ) = − δ(− t ) = d[1 − u (t )] = − δ(t ); d t

thus, 

.  δ(− t ) =  δ(t ). 

(2.27) 

By convention, one has the following property: 

.  t δ(t ) = 0

(2.28) 

The following property is a result of the sampling property, because the impulse 

is different from zero only at  t = 0.. It means that the area of the impulse takes the value of the signal at  t = 0., 

.  x(t )δ(t ) =  x( 0 )δ(t )

(2.29) 

if  x(t). is continuous at  t = 0.. 

The last property can be generalized for any time  t =  τ ., 

.  x(t )δ(t −  τ ) =  x(τ )δ(t −  τ ), 

(2.30) 

and, for any continuous-time signal  x(t)., 

∞

.  x(t ) =

 x(τ )δ(t −  τ ) d τ. 

(2.31)

−∞
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The equation that defines the derivatives of the impulse function is 





. 

 f (t )δ(n)(t ) d t = −

 f  (t )δ(n−1 )(t ) d t. 

(2.32) 

 2.1.7 

 Composite  Function  with  the  Impulse 

The  composite  function  that  results  by  combining  the  impulse  with  a  function  of time  f (t)., which has  N roots  ti, i = 1 ,  2 , . . . , N., is given by N

 δ(t −  ti)

.  δ[ f (t )] =

 . 

(2.33) 

| f  (ti)|

 i=1

This is an important result, which has several applications, mainly regarding the 

identification of zeros of a given function. It is demonstrated for a polynomial but can be generalized for any function that has zeros on the real line. 

To  demonstrate  this  last  property  of  the  impulse  function  for  a  polynomial, consider  that  the  function  f (t).  can  be  put  in  the  following  form,  with  no  loss  of generality, 

 N



.  f (t ) =  (t −  t 1 )(t −  t 2 ) · · ·  (t −  tN ) =

 (t −  ti), 

 i=1

in which  ti. are the ordered ( t 1  < t 2 · · ·  < tN .) roots of the polynomial  f (t).. 

Figure 2.14 illustrates the composite function u[ f (t)].. Observe that this composite function is the sum of gate functions of the form 





.u[ f (t )] =

 g(t −  ti) =

[u (t −  ti) − u (t −  ti+1 )] . 

(2.34) 

 i

 i

Note also, by the chain rule, that 

d

. 

u[ f (t)] =  δ[ f (t)] f  (t). 

(2.35) 

d t

Taking the derivative of the composite function in Eq. 2.34 and equating to 2.35 

yield 



.  δ[ f (t )] f  (t ) =

[ δ(t −  ti) −  δ(t −  ti+1 )] , 

(2.36)

 i
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Fig.  2.14  The function u[ f (t)]. 

which can be put into the following form: 

[ δ(t −  ti) −  δ(t −  ti+1 )]

.  δ[ f (t )] =

(2.37) 

 f  (ti)

 i

This  represents  a  series  of  alternating  impulses  that  occur  at  the  roots  of  the polynomial.  Because  the  sign  of  each  impulse  coincides  with  the  sign  of  the polynomial  derivative  at  each  point,  it  is  possible  to  put  the  equation  in  its  final form: 

[ δ(t −  ti)]

.  δ[ f (t )] =

(2.38) 

| f  (ti)|

 i

Example  Consider that  f (t) =  t 2− α 2., and determine the formula for  δ[ f (t)].. This is an equation for a parabola that crosses the abscissa axis, as sketched in Fig. 2.15. 

Substituting the expression for  f (t). into the formula, one obtains 

2

 δ(t −  ti)

.  δ[ t  2 −  α 2] =

2| ti|

 i=1

for  t 1 = − α. and  t 2 =  α.. Thus, 

.  δ[ t  2 −  α 2] =

1

2| α| [ δ(t +  α) +  δ(t −  α)]  , 

as can be observed in the figure. 
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Fig.  2.15  Parabola that 
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 t 

Example  Consider now that  f (t) =  t 2 + 2 t − 3., and again, determine the formula for  δ[ f (t)].. For this polynomial, after determining the roots, one obtains  f (t) =

 (t − 1 )(t + 3 ).. Thus,  f  (t) = 2 t + 2.,  f  ( 1 ) = 4., and  f  (−3 ) = −4.. 

Substituting the expression for  f (t)., and the root values, into the formula, one obtains 

2

 δ(t −  ti)

.  δ[ t  2 + 2 t − 3] =

; 

4

 i=1

therefore, 

.  δ[ t  2 + 2 t − 3] = 1 [ δ(t − 1 ) +  δ(t + 3 )]  . 

4

 2.1.8 

 Doublet  Generalized  Function 

The doublet generalized function  δ (t). is obtained as the derivative of the impulse function. It is shown in Fig. 2.16: 

.  δ (t ) = d δ(t )

(2.39) 

d t

The doublet function has the following fundamental property, 

∞

∞

. 

 x(t )δ (t ) d t = −

 x (t )δ(t ) d t = − x ( 0 ), 

(2.40) 

−∞

−∞

which  can  be  obtained  using  integration  by  parts  for  a  function  x(t).  which  is continuous at  t = 0. and vanishes outside some fixed interval. 
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Fig.  2.16  Doublet 

(  ) 

generalized function 

δ   t

0 

0 

 t 

Defining the  n-th derivative of the impulse function as 

.  δ(n)(t ) = d nδ(t ) , 

(2.41) 

d tn

one obtains 

∞

. 

 x(t )δ(n)(t ) d t =  (−1 )nx(n)( 0 ). 

(2.42) 

−∞

Finally,  observe  that  putting  x(t) =  τ δ(τ −  t).  and  n = 1.  into  Eq. 2.41  and integrating in  τ ., one obtains 

∞

. 

 τ δ(τ −  t)δ (τ ) d τ =  tδ (t); 

(2.43) 

−∞

thus, 

.  t δ (t ) = − δ(t ). 

(2.44) 

Also, putting  x(t) =  tnδ(t). into Eq. 2.40 yields 

∞

∞

. 

 t nδ(t )δ (t ) d t = −

 nt n−1 δ (t )δ(t ) d t. 

(2.45) 

−∞

−∞

Integrating again the second term  n − 1. times, one obtains 

∞

∞

. 

 t nδ(t )δ (t ) d t =

 (−1 )nn!  δ (t)δ(t) d t; 

(2.46)

−∞

−∞
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therefore, observing the integrand, the following result is obtained: 

.  t nδ(n)(t ) =  (−1 )n!  δ(t )

(2.47) 

Finally, 

.  δ (− t ) = − δ (t ), 

(2.48) 

which means that the doublet generalized function is antisymmetric. 

 2.1.9 

 The  Ramp  Function 

The  ramp  function, r (t).,  is  obtained  as  the  integral  of  the  unit  step  function,  as sketched in Fig. 2.17: 

 t

.r (t ) =

u (τ ) d τ

(2.49) 

−∞

It can also be written as r (t) =  t u (t).. 

Of course, by the fundamental theorem of Calculus, the derivative of the ramp 

function gives the unit step function, 

d r (t)

. 

= u (t). 

(2.50) 

d t

As  can  be  seen,  the  ramp  function  grows  without  limit  as  time  goes  by.  This function can be used to model different signals, including the sawtooth wave, which is used to synchronize the time base in oscilloscopes. The ramp function can also be Fig.  2.17  Ramp function 

r (  ) 

 t 

0 

0 

 t 
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Fig.  2.18  A capacitive 

circuit excited by a current 

source 
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 I  u (  )

 t 


 C

 v (  )

 t 

− 

(  )

 i  t

Fig.  2.19  Rectifier using a 

semiconductor diode 

 R 

+ 

 D

 v (  )

 t  − 

(  )

 i  t

used to produce composite signals, such as the half-wave signal that is produced as the result of the signal rectification by a semiconductor diode. 

Example  The capacitive circuit, depicted in Fig. 2.18, is excited by a current source i(t ) =  I  u (t).. Compute the voltage across the capacitor. 

Using the relation between the current and the voltage across the terminals of a 

capacitor, 

 t

.  v(t ) = 1

 i(τ ) d τ. 

(2.51) 

 C −∞

Substituting the equation for the current source and computing the integral, one 

obtains 

 t

.  v(t ) = 1

 I  u (τ ) d τ =  I  r (τ ). 

(2.52) 

 C −∞

 C

Therefore,  the  voltage  across  the  terminals  of  the  capacitor  will  linearly  increase without limit, until the device is disrupted. 

Example  The circuit depicted in Fig. 2.19 has an ideal semiconductor diode. Write an equation for the current that flows through the resistor using the ramp function, considering that the input voltage is 

.  v(t ) =  V  cos (ωt ). 

(2.53)
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The current only flows through the circuit during the positive circle of the input signal; therefore, using Kirchhoff’s law, a relation derived by the German physicist Gustav Robert Kirchhoff (1824–1887), one obtains 

 V  cos (ωt)  if the cosine is positive,  and

 R

.  i(t ) =

(2.54) 

0

if the cosine is negative . 

The previous result can be written in a concise manner, using the ramp function, 

.  i(t ) =  V  r[cos (ωt )] . 

(2.55) 

 R

 2.1.10 

 The  Exponential  Function 

The exponential function, depicted in Fig. 2.20, is expressed as (Oppenheim et al. 

2002) 

.  x(t ) =  eαt , 

(2.56) 

in which  α. is a constant parameter. For  α >  0., the function grows without limit, and for  α <  0., it decreases to zero as times goes by. 

This function has large application in Electrical Engineering, as well as several 

other scientific areas. It is usually combined with the unit step function to delimit its support. For instance, the decreasing exponential 

.  y(t ) =  e− αt  u (t ), 

(2.57) 

for  α. positive, has its domain in the interval [0 , ∞].. 

Fig.  2.20  The exponential 

 t
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 x 

function 
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α>0
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A diode is a nonlinear device, and the relationship between the voltage across 

its terminals and the current that flows through it is better modeled by the Shockley diode equation, or the diode law, named after the Nobel Prize winner and transistor co-inventor William Bradford Shockley Jr. (1910–1989). 

The  diode  equation  gives  a  formula  for  the  current  through  a  diode,  i(t).  as  a function of voltage,  v(t)., as in the following, 





 qv(t )

.  i(t ) =  I 0  e kT

− 1  , 

(2.58) 

in which  I 0. is the diode leakage current density in the absence of light (dark satu-ration current),  q is the absolute value of the electron charge,  k is the Boltzmann’s constant,  and   T  is  the  absolute  temperature  in  kelvin  (K).  At  300K,  the  thermal voltage  kT /q = 25 .  85. mV. 

Figure  2.21  sketches  the  diode  equation.  The  negative  part  is  emphasized  to facilitate the observation. 

Systems composed  of nonlinear  devices,  such as the semiconductor  diode, are 

difficult to solve or require complex mathematical tools to produce results. Anyway, the obtained solutions are usually of a particular type. 

That is one of the reasons the linear systems are studied. They provide simple, 

analytical,  results  based  on  strong  mathematical  foundations.  Even  better,  linear systems also produce general solutions, which can be used in different cases. 

 2.1.11 

 The  Growing  and  Decaying  Sinusoidal  Functions 

The growing sinusoidal function is defined as (Oppenheim et al. 2002) 

.  y(t ) =  eαt  cos (ωt +  φ), 

(2.59) 

Fig.  2.21  Model for a 

 i  t(  )

semiconductor diode 

 kT/q=  28.85 mV

0 

0 

 v  t(  ) 
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Fig.  2.22  Growing 

sinusoidal function 

 t

(  )

 y 

0 

0

 t 

Fig.  2.23  Decaying 

sinusoidal function 

 t

(  )

 y 

0 

0

 t 

in  which  α >  0.  is  a  real  number,  φ.  is  the  initial  phase,  and   ω.  is  the  angular frequency. This function is depicted in Fig. 2.22. 

The  decaying  sinusoidal  function,  which  frequently  appears  as  a  response  of systems with elements that store energy, is defined as 

.  y(t ) =  e− αt  cos (ωt +  φ). 

(2.60) 

This function is shown in Fig. 2.23. 

The  decaying  sinusoidal  function  is  usually  referred  to  as  a  dumped  sinusoid. 

This type of signal appears in the response of  RLC   circuits and in excited mechanical systems, composed of mass and spring, for example, because the nonconservative 

damping force removes energy from the system. 

The energy is removed from the systems, usually, in the form of thermal energy. 

A guitar string stops oscillating a few seconds after being plucked, because it is also subject  to dumping,  and  part  of  the  energy  is  released  by  means  of  a  mechanical
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wave,  called  sound,  that  propagates  along  or  through  a  medium  by  particle-to-particle interaction. 

 2.1.12 

 The  Complex  Exponential  Function 

The complex exponential function is defined as (Oppenheim et al. 2002) 

.  x(t ) =  ej ωt = cos (ωt ) +  j  sin (ωt ), 

(2.61) 

in which  ω = 2 πf . is the angular frequency and  f  is the frequency in hertz [Hz]. 

The complex exponential function is depicted in Fig. 2.24. 

An important property of the complex exponential function is that it is periodic, 

with period  T = 1 /f . given in seconds [s]. To verify this, consider a shifted version of the complex exponential 

.  x(t +  T ) =  ej ω(t+ T ) =  ej ωt ·  ej ωT , (2.62) 

in which, from the preceding definition,  T = 2 π/ω.. Substituting this value into the previous equation, one obtains 

.  x(t +  T ) =  ej ωt ·  ej  2 π . 

(2.63) 

But 

.  ej  2 π = cos ( 2 π ) +  j  sin ( 2 π ) = 1 . 

(2.64) 

Therefore, 

ω  t 

cos (      ) 

0

 t 

 j

ω  t

sin (     ) 

0 

Fig.  2.24  Complex exponential function
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.  x(t +  T ) =  ej ωt , 

(2.65) 

as expected. 

2.2 

Discrete-Time  Signals 

Mathematical modeling is the art of establishing the conditions to make the devices and systems amenable to general solutions. For example, if a device is linear only for  a  certain  frequency  range  or  for  a  given  maximum  power,  it  is  the  job  of  the designer to make sure these limits are not exceeded to maintain the system under 

control. 

Several  phenomena  are  modeled  as  discrete  in  time,  for  example,  the  number of objects produced by a factory per hour, the number of people that enter a bank 

agency at a given date, or the output of a digital circuit. 

Discrete-time systems are characterized by difference equations, which express 

the  relationship  between  discrete-time  functions  or  sequences.  A  sequence  of numbers { xk}.  is  an  ordered  collection,  which  is  indexed  by  a  set  of  integers { k}.. 

Thus, if  k ∈ Z., the set of integers, then  xk ∈ { . . . , x−2 , x−1 , x 0 , x 1 , x 2 , . . . }. (Gabel and Roberts 1973). 

 2.2.1 

 Discrete  Unit  Step  Function 

The  discrete  unit  step  function u (k).  is  the  infinite  sequence  represented  by 

{ . . . ,  0 ,  0 ,  0 ,  1 ,  1 ,  1 , . . . }.,  in  which  the  first  one  occurs  at  k = 0., as shown in Fig. 2.25. 

The discrete step function can be defined as 

0 if  k <  0

.u (k) =

(2.66) 

1 if  k ≥ 0

for  k ∈ Z.. 

 2.2.2 

 Discrete  Impulse  Function 

The discrete unit step function can be used to define the discrete impulse function, also known as Kronecker impulse,  δ(k)., after the German mathematician Leopold Kronecker  (1823–1891),  who  made  contributions  to  the  fields  of  Algebra  and Continuity of Functions. 
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Fig.  2.25  The discrete 
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Fig.  2.26  The discrete 

δ   k

(   ) 

version of the impulse 

function 

1 

0 

−3

−2

−1 

0

1 

2

3  k 

The discrete impulse function is defined as 

0 if  k = 0

.  δ(k) =

(2.67) 

1 if  k = 0

for  k ∈ Z. . Figure 2.26 sketches the discrete impulse function. 

If  one  takes  the  difference  between  the  discrete  unit  step  function u (k).  and  a delayed  version  of  it u (k − 1 ).,  the  result  is  the  Kronecker  impulse  function,  as follows: 

.  δ(k) = u (k) − u (k − 1 )

(2.68)

2.2 Discrete-Time Signals

37

By the same token, the discrete unit step function can be obtained as 

 k



.u (k) =

 δ(n), 

(2.69) 

 n=−∞

in which the summation is done over the set of integers Z.. 

 2.2.3 

 Discrete  Ramp  Function 

The discrete-time ramp, shown in Fig. 2.27, can be written as the summation of the discrete unit step function, in the following manner, 

 k



.r (k + 1 ) =

u (n), 

(2.70) 

 n=−∞

in  which  the  summation  is  done  over  the  set  of  integers  Z..  The  discrete  ramp function can also be expressed as r (k) =  k u (k). for all  k ∈ Z.. 

On  the  other  hand,  the  discrete  unit  step  function  can  be  obtained  from  the discrete ramp function, as indicated: 

.u (k) = r (k + 1 ) − u (k)

(2.71) 

Fig.  2.27  The discrete 
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In  fact,  any  arbitrary  sequence  can  be  represented  as  a  linear  combination  of time-shifted Kronecker functions, as follows, Mandal and Asif (2007) 

∞



.  x(k) =

 x(n)δ(k −  n), 

(2.72) 

 n=−∞

in which, once more, the summation is done over the set of integers Z.. 

Example  The window function, w (k)., is used to filter a certain set of samples from a given signal. It is defined as 

0 if  k < − n,k > n and

.w (k) =

(2.73) 

1 if −  n ≤  k ≤  n

for  k, n ∈ Z.. Write this function using the discrete unit step function. 

From definition of the unit step function, as sketched in Fig. 2.28 for  n = 2., one can write the window function as 

.w (k) = u (k +  n) − u (k −  n). 

(2.74) 

Example  A decaying discrete-time exponential may be written as 

.  x(k) =  e− k  u (k), 

(2.75) 

while a discrete-time complex exponential may be written as 

.  y(k) =  ej ωk , 

(2.76) 

which has the following property: 

.  y(k) =  ej (ω+2 π)k =  ej ωk ej  2 πk =  ej ωk (2.77) 

Fig.  2.28  The discrete 
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2.3 

Linear  Systems 

The word system comes from the ancient Greek  σ ´ νσ τ ημα., which is used to refer to a musical scale, an organized body or a whole compounded of parts or members. A 

system  can  be  continuous  or  discrete  in  time  or  amplitude.  A  true  linear  system is  hardly  found  in  practice,  but  the  concept  is  useful  because  there  are  several mathematical tools to solve linear systems. 

 2.3.1 

 Continuous-Time  and  Discrete-Time  Systems 

If the input and output of a system are capable of changing at any instant of time, it is called a continuous-time system. The continuous-time systems are usually modeled 

by the use of differential equations. The domain of the continuous-time systems is the real line R.. 

When the signals associated with the system change only at discrete instants, the 

system is considered discrete-time. Difference equations are used to model discrete-time  systems.  The  domain  of  the  discrete-time  systems  is  the  set  of  integers  Z.. 

Consider the following example: 

Example  A  discrete-time  circuit  is  shown  in  Fig. 2.29,  in  which { xk}.  represents the  sequence  of  inputs { x 1 , x 2 , . . . , xk, . . . }.  and { yk}.  represents the output values 

{ y 1 , y 2 , . . . , yk, . . . }.. The system can be modeled by the following equation, taken at time  t =  k., 

.  yk =  αxk−1 +  βxk, 

(2.78) 

in which  α.  and  β.  are constant parameters, representing the gains associated with each arm of the system, and  . represents a unit delay. It is not difficult to verify that this system is linear. 

α 

Δ 

{    }

 xk

+

 y k

{    } 

β 

Fig.  2.29  Discrete system
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Example  In  the  previous  example,  if  one  puts  α =  β = 1 / 2.,  the  discrete-time circuit is known as the moving average filter, 

.  yk =  xk−1 +  xk . 

(2.79) 

2

A moving average filter is used with time signals and series data to smooth out 

short-term  fluctuations  and  highlight  longer-term  trends  or  cycles.  It also reduces random noise while retaining a sharp step response. 

Example  The general formula for the response of a moving average filter, which takes the mean of the previous  N samples, is given b y 

 N −1



.  yk = 1

 xk− i. 

(2.80) 

 N i=0

The moving average is a finite impulse response (FIR) filter that takes  N  input points,  computes  their  average,  and  produces  a  single  output  point.  As  the  filter length expands, that is, as the parameter  N  increases, the smoothness of the output signal  increases,  whereas  the  sharp transitions in the  data  are made  progressively flat. 

A  discrete-time  signal  x[ k].  may  represent  a  phenomenon  for  which  the  independent variable is inherently discrete, such as the number of coronavirus cases that occur per day, or it may be obtained by sampling a continuous-time signal  x(t)., such as when a voice signal is digitized to be transmitted over the Internet (Hsu 2011). 

 2.3.2 

 Time-Invariant  and  Time-Varying  Systems 

The  system  parameters  can  vary  in  time,  and  the  system  is  therefore  considered time-varying, or the system parameters do not change with time, that is, the system is time-invariant. 

The  time-varying  systems  are  modeled  by  differential  equations  or  difference equations with time-varying coefficients.  The time-invariant systems are modeled 

by differential equations or difference equations with constant coefficients. 

The shifting property is useful to characterize a system as time-invariant. For the case of a linear system, if, for any values of  t and  τ ., 

.  y(t −  τ ) =  L[ x(t −  τ )] , 

(2.81) 

then the system is time-invariant. 

Regarding the discrete-time system, in analogy to the precedent discussion, 

.  y(n −  k) =  L[ x(n −  k)] , 

(2.82)
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and the system response is independent of the time origin and depends only on the 

shape of the input. 

Example  A general moving average system is described by the following equation, NS



.  y(k) =

1

 x(k −  n), 

(2.83) 

1 +  NI +  NS n=− NI

in which  NI . and  NS. refer to the limits of the window that are used to take 1+ NI + NS. 

samples of  x(k). around  n to be averaged. The moving average system is used as a filter, which has a smoothing effect on the input signal. 

 2.3.3 

 Memory  and  Memoryless  Systems 

The systems can also be characterized as memory or memoryless. If a system output 

at time  t, say   y(t)., depends only on the input value at the same instant,  x(t)., it is considered memoryless. 

Memoryless systems do not depend on any past inputs and are also independent 

of  future  inputs.  Therefore,  the  impulse  response  of  a  memoryless  system  is  an impulse whose area depends on the system features. Causal systems, on the other 

hand, do not depend on future inputs. 

On the other hand, if the output at the present time depends on past values of the input, for example, the interval [ t −  τ, t]., then the system is said to have memory of length  τ .. 

Example  The  system  that  takes  the  square  of  the  input  signal  is  memoryless,  as follows: 

.  y(k) = [ x(k)]2

(2.84) 

Example  A system that has an inductor, with the voltage  v(t). as the input and the current  i(t). as the output, 

 t

.  i(t ) = 1

 v(σ ) d σ, 

(2.85) 

 L −∞

has a memory of infinite duration, because the output depends on the input for the whole interval  (−∞ , t].. 

Analog systems with memory may be also classified as lumped or distributed. 

If the number of state variables necessary to describe a future output is finite, the system is lumped, but if it is infinite, the system is distributed. 
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 2.3.4 

 Lumped  and  Distributed  Systems 

Most  systems  are  composed  of  several  elements,  devices,  or  even  sub-systems, which  are  interconnected  to  perform  in  a  certain  manner  or  execute  a  given procedure or function. Sometimes, because of the size of the system, as in the case of an electrical transmission line, the signal response is not instantaneous. It takes a finite, nonzero, amount of time for the signal to propagate through the system. This is an example of a distributed parameter system. 

On the other hand, if the stimulus is propagated instantaneously throughout the 

system,  it  is  characterized  as  a  lumped  parameter  system.  Ordinary  differential equations are used to model the lumped system, while the distributed systems are 

modeled by partial differential equations. 

 2.3.5 

 Conditions  for  a  Continuous  Linear  System 

A continuous linear system has its output in some sense proportional to the input. 

This means that if  x(t). produces an output  y(t)., that is Gabel and Roberts (1973), 

.  x(t ) →  y(t ), 

(2.86) 

then it is expected that 

.  αx(t ) →  αy(t ). 

(2.87) 

This property, shared by every linear system, is called homogeneity. But linear 

systems must also possess the superposition property, that is, if 

.  x 1 (t ) →  y 1 (t )

(2.88)

 x 2 (t) →  y 2 (t), 

then 

.  x 1 (t ) +  x 2 (t ) →  y 1 (t ) +  y 2 (t ). 

(2.89) 

This can be summarized in a single relation, that is, a system is linear if and only if 

.  αx 1 (t ) +  βx 2 (t ) →  αy 1 (t ) +  βy 2 (t ), (2.90) 

in which  α. and  β. are constants. 
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It is usually convenient to use a compact notation to represent the transformation implied by the previous relations 

.  y(t ) =  L[ x(t )] , 

(2.91) 

and  L is considered a linear transformation if and only i f 

.  L[ αx 1 (t ) +  βx 2 (t )] =  αL[ x 1 (t )] +  βL[ x 2 (t )] . 

(2.92) 

 2.3.6 

 Conditions  for  a  Discrete  Linear  System 

A discrete linear system also has its output proportional to the input. This means that if  x(n). produces an output  y(n)., that is Gabel and Roberts (1973), 

.  x(n) →  y(n), 

(2.93) 

then one expects that 

.  αx(n) →  αy(n). 

(2.94) 

A linear system must satisfy the property of homogeneity and also possess the 

superposition property; this means that 

.  x 1 (n) →  y 1 (n)

(2.95)

 x 2 (n) →  y 2 (n)

and 

.  x 1 (n) +  x 2 (n) →  y 1 (n) +  y 2 (n), (2.96) 

for a discrete system can be also summarized in a single relation, implying that 

a system is linear if and only if 

.  αx 1 (n) +  βx 2 (n) →  αy 1 (n) +  βy 2 (n), (2.97) 

in which  α. and  β. are constant parameters. 

The  compact  notation  is  used  to  represent  the  transformation  implied  by  the previous relations 

.  y(n) =  L[ x(n)] , 

(2.98)
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and  L is considered a linear transformation if and only i f 

.  L[ αx 1 (n) +  βx 2 (n)] =  αL[ x 1 (n)] +  βL[ x 2 (n)] . 

(2.99) 

 2.3.7 

 Deterministic  or  Stochastic  Systems 

A  system  that  always  produces  the  same  output  for  a  given  input  is  said  to  be deterministic.  This  means  that  the  system  parameters  do  not  change  with  time, by chance, or other conditions. A system whose parameters are subject to random 

behavior is said to be stochastic. A stochastic system generates different outputs for a given input. 

Most systems are stochastic by nature. This can be caused by aging components, 

by  electric  faults,  by  chance,  or  by  the  randomness  of  the  quantum  particles  that interact within the devices. Some systems are designed to be stochastic, such as the random noise generator used in the laboratories. 

The  signal  processing  and  communication  systems  are  particularly  stochastic. 

The  vocal  tract,  for  example,  is  a  signal  processing  system  that  produces  voice when  excited,  depending  on  many  random  parameters,  which  include  the  humor and health of the speaker, the subject of the speech, the ambient temperature, the memories associated with the matter at hand, and so on. 

Communication systems are subject to random noise, stochastic fading, random 

delays,  interference  from  multiple  signals,  scattering,  and  many  other  problems, besides components aging and design errors, to name a few. 

However, the inclusion of randomness in the analysis of linear systems greatly 

increases  the  complexity.  Therefore,  most  authors  leave  this  question  to  research papers and theses. This book is only about systems with deterministic parameters. 

2.4 

Power  and  Autocorrelation 

The average value of a real signal  x(t).  is given by the normalized integral of the signal over the time interval. The normalization parameter is the time interval  T : T

1

2

.  x(t ) = lim

 x(t ) d t

(2.100) 

 T →∞  T

− T

2

The instantaneous power of  x(t). is given by 

.  pX (t ) =  x 2 (t ). 

(2.101) 

This is a simplification, which usually assumes a voltage applied to a resistor of one ohm [  ω.]. 
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The  instantaneous  power,  in  fact,  is  the  product  of  voltage  and  current  and  is measured in joules per second [J/s] or watts [W]. It is, of course, a function of time 

(Scott 1960), 

.  p(t ) =  v(t ) ·  i(t ), 

(2.102) 

the voltage is measured in volts [V], and the current is in amperes [A]. 

If  the  signal  x(t).  exists  for  the  whole  interval  (−∞ , +∞ ).,  the  total  average power  P X. is defined for a real signal  x(t). as the power dissipated in a 1-ohm resistor, when a voltage  x(t). is applied to this resistor (or a current  x(t). flows through the resistor) (Lathi 1989). Thus, 

 T

1

2

.  P X = lim

 x 2 (t ) d t. 

(2.103) 

 T →∞  T

− T

2

From the previous definition, the unit to measure  P X. corresponds to the square of the units of the signal  x(t). (either volt2. or ampère2., depending on the use of voltage or current). These units are commonly converted to watt, using a normalization by 

units of impedance (ohm). 

It is common use to express the power in decibels (dBm), relative to the reference power of 1 mW. The power in dBm is given by the following formula (Gagliardi 

1988): 





 P X

.  P X = 10 log

dBm

(2.104) 

1 mW

The  total  power  (  P X.)  contains  two  components:  one  constant  component, because of the nonzero average value of the signal  x(t). ( P DC.), and an alternating component ( P AC.). The DC power of the signal is given by 

.  P DC = [ x(t )]2 W . 

(2.105) 

Therefore, the AC power can be determined by removing the DC power from the 

total power, that is, 

.  P AC =  P X −  P DC  W . 

(2.106) 

 2.4.1 

 Time  Autocorrelation  of  a  Continuous  Signal 

The average time autocorrelation  RX(τ )., or simply autocorrelation, of a real signal x(t ). is defined as follows:
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 T

1

2

.  RX (τ ) = lim

 x(t )x(t +  τ ) d t

(2.107) 

 T →∞  T

− T

2

A simple change of variable allows Eq. 2.107 to be written as 

 T

1

2

.  RX (τ ) = lim

 x(t )x(t −  τ ) d t. 

(2.108) 

 T →∞  T

− T

2

Example  Compute the autocorrelation function for the sinusoidal signal 

.  x(t ) =  V  sin (ωt +  φ), 

in which  ω. is the angular frequency and  φ. is the initial phase of the signal. 

From the definition 2.108, 

 T

1

2

.  RX (τ ) = lim

 V  sin[ ωt +  φ] V  sin[ ω(t −  τ ) +  φ]d t, T →∞  T

− T

2

which gives, using a trigonometric property, 

 T

 V  2

2

.  RX (τ ) = lim

[cos (ωτ ) − cos ( 2 ωt −  τ + 2 φ)] d t. 

 T →∞ 2 T

− T

2

Separating the terms and integrating 

 T

 T

 V  2

2

 V  2

2

.  RX (τ ) = lim

cos (ωτ )

d t + lim

cos ( 2 ωt −  τ + 2 φ) d t, 

 T →∞ 2 T

− T

 T →∞ 2 T

− T

2

2

one obtains 

.  RX (τ ) =  V  2 cos (ωτ ), 

2

because the mean value of the cosine is zero. 

From Eqs. 2.107 and 2.108, it follows that  RX(τ ). is an even function of  τ ., and thus Lathi (1989) 

.  RX (− τ ) =  RX(τ ). 

(2.109) 

From the definition of autocorrelation and power, one obtains 

.  P X =  RX( 0 )

(2.110)
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τ 

Fig.  2.30  Autocorrelation and its parameters 

and 

.  P  DC =  RX(∞ ), 

(2.111) 

that is, from its autocorrelation function, it is possible to obtain information about the power of a signal. The AC power can be obtained as 

.  P AC =  P X −  P  DC =  RX( 0 ) −  RX(∞ ). 

(2.112) 

The parameters derived from the autocorrelation can be seen in Fig. 2.30. 

Example  Considering  that  the  DC  power  is  zero  for  a  sinusoidal  signal,  the  AC 

power can be computed from the autocorrelation function as follows: 

.  P AC =  RX( 0 ) =  V  2 cos (ω · 0 ) =  V  2

2

2

2.5 

Problems 

1.  Draw the graphs for the following discrete signals: 

(a)   x(k) =  ku(  k).. 

(b)   x(k) =  αk  u(k  ). for  α. larger, smaller, or equal to zero. 

(c)   x(k) =  α− k  u(k  ). for  α. larger, smaller, or equal to zero. 
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(d)   x(k) =  (− α)k  u(k  ).. 

(e)   x(k) =  ku(k) −  (k − 1 )u(k − 1  ).. 

(f)   x(k) = cos  ωk.. 

2.  Sketch the graphs for the following signals: 

(a)   x(t) =  d  [ tu(  t)]

d t 

.. 

(b)   x(t) =  e− αt  u(t) −  e− βt  u(t  ). for diverse values of  α. and  β.. 

(c)   x(t) =  u( cos  πt).. 

(d)   x(t) =  δ( sin  πt).. 

(e)   x(t) =  tu(t) −  (t −  T   )u(t −  T ).. 

(f)   x(t) =  d  [ u( cos  πt)]

d t 

.. 

3.  Using the following property of the step function, demonstrate the fundamental property of the impulse function: 

∞

 t

. 

 x(τ ) u (t −  τ ) d τ =

 x(τ ) d τ

−∞

0

4.  Compute the derivative of the gate function. Draw the graphic: 

.  g(t ) = u (t +  T / 2 ) − u (t −  T / 2 ) 5.  Determine the voltage across the terminals of an inductor that is fed by a current source  i(t) =  I  u (t).. 

6.  Determine the voltage across the terminals of an inductor that is fed by a current source  i(t) =  I δ(t).. 

7.  Demonstrate the fundamental property of the doublet function, Formula 2.40, 

using integral by parts. 

8.  Determine  the  voltage  v(t).  across  the  terminals  of  the  semiconductor  diode, using the following equation for the current  i(t).: 





 qv(t )

.  i(t ) =  I 0  e kT

− 1

9.  Write the equation for the growing sinusoidal function assuming that the signal starts at time  t =  T . seconds. Use the unit step function: 

.  y(t ) =  eαt  cos (ωt +  φ)

10.  Obtain  the  derivative  of  the  following  version  of  the  decaying  sinusoidal function: 

.  y(t ) =  e− αt  cos (ωt +  φ)  u (t )

2.5 Problems
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11.  Demonstrate the fundamental property of the doublet function, 

∞

∞

. 

 x(t )δ (t ) d t = −

 x (t )δ(t ) d t = − x ( 0 ). 

−∞

−∞

12.  Demonstrate the following result, using the definition of the impulse function: 

.  δ(αt ) = 1  δ(t ). 

| α|

13.  Using the previous  result, demonstrate  the following property  of the impulse function: 

.  δ(− t ) =  δ(t )

14.  Show that the doublet generalized function is antisymmetric, that is, 

.  δ (− t ) = − δ (t ). 

15.  Consider that  f (t) =  t 2 +  t − 2., and determine the formulas for u[ f (t)]. and δ[ f (t)].. 

[image: Image 6]

Chapter  3 

System  Response  and  Convolution 

 Mathematics  is  the  most  beautiful  and  most  powerful  creation  of 

 the  human  spirit. 

– Stefan Banach 

Convolution  is  an  important  concept  in  Engineering,  because  it  can  be  used  to determine the output of a system for a given input signal, to compute the probability distribution of the sum of random variables, and to determine the effect of channel noise  in  the  probability  of  error  of  a  received  signal,  among  other  important applications. 

3.1 

Discrete  Impulse  Response 

Figure  3.1  illustrates  a  discrete  linear  system  that  has  an  impulse  response { hn}.. 

The system is excited by the input sequence { xn}. to produce the output sequence 

{ yn}.. The impulse response implies that  δ(n) →  h(n)., that is, the application of a Kronecker impulse at the input of the system gives as output the sequence  h(n).. 

The discrete impulse function can be used to test discrete systems, such as digital filters, to verify if the response corresponds to the design specifications. 

3.2 

Discrete  Convolution 

The discrete convolution process can be seen graphically in the set of Figs. 3.2, 3.3, 

and 3.4. The procedure is also equivalent to a computer algorithm that can be written directly in any mathematical language, such as Python, Fortran, C++, or Maple. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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Fig.  3.1  Discrete linear 

system

{   }

{   } 

 x

 y

 n

 n 

{   }

 hn 

 x  5   x  4    x 3    x 2    x 1    x 0 

 y 0    y 1   y 2   y 3    y  4   y 5 

 x  0  y  0

Fig.  3.2  Convolution as a computer algorithm,  n = 0. 

 x 5   x  4  x  3  x  2  x 1  x 0

 y 0    y 1   y 2   y 3   y 4   y 5 

 x

+

1 y 0 

 x  0  y 1

Fig.  3.3  Convolution as a computer algorithm,  n = 1. 

 x  5  x 4

3

 x  x 2  x  1  x 0

 y 0    y 1   y 2   y 3   y 4   y 5 

 x 2  y 0 + 1 

 x  y 1 +   x  0  y  2

Fig.  3.4  Convolution as a computer algorithm,  n = 2. 

The sequence { xn} = { x 0 , x 1 , x 2 , . . . , xn, . . . }. that can be expressed as 

∞



.{ xn} =

 xiδn− i

(3.1) 

 i=0

is  convolved  with  the  sequence { yn} = { y 0 , y 1 , x 2 , . . . , yn, . . . }.,  which  can  be written as 

∞



.{ yn} =

 yiδn− i, 

(3.2)

 i=0

3.2 Discrete Convolution
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to produce the sequence { zn} = { z 0 , z 1 , z 2 , . . . , zn, . . . }. that can be expressed as 

∞



.{ zn} =

 ziδn− i. 

(3.3) 

 i=0

In the previous equations,  δn =  δ(n). is the discrete impulse or Kronecker impulse function.  Observe  that  the  impulses  inside  the  summations  merely  indicate  the positions where the signals have values different from zero. 

As can be deducted by inductive reasoning, the convolution between  x(n).  and y(n).,  z(n) =  x(n) ∗  y(n). gives the following sequence of values: 

.  z( 0 ) =  x( 0 )y( 0 )

(3.4)

 z( 1 ) =  x( 1 )y( 0 ) +  x( 0 )y( 1 ) z( 2 ) =  x( 2 )y( 0 ) +  x( 1 )y( 1 ) +  x( 0 )y( 2 )

 ... 

∞



 z(n) =

 x(n −  k)y(k)

 k=0

The preceding formula can be generalized to include the whole set of integers Z.. 

Therefore, the discrete convolution of two functions  x(n). and  y(n). is defined by the following summation, 

∞



.  z(n) =  x(n) ∗  y(n) =

 x(k)y(n −  k), 

(3.5) 

 k=−∞

which  is  equivalent  to  the  following  result,  as  can  be  verified  by  a  change  of variables: 

∞



.  z(n) =  y(n) ∗  x(n) =

 x(n −  k)y(k)

(3.6) 

 k=−∞

To  understand  the  convolution  operation,  it  is  necessary  to  plot  each  function. 

Then, one of the functions has its plot reflected across the  k = 0. axis. This function is shifted right by  n, as   n ∈ Z. increases. The point-wise product of the resulting plots is computed, and all of the terms are summed. 
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 3.2.1 

 Discrete  Convolution  Properties 

The discrete convolution is a linear operation. It is also a commutative operation, because 

.  z(n) =  x(n) ∗  y(n) =  y(n) ∗  x(n), 

(3.7) 

as  can  be  verified  with  a  change  of  variables.  The  convolution  operation  is  also associative, that is, 

.  z(n) ∗ [ x(n) ∗  y(n)] = [ z(n) ∗  y(n)] ∗  x(n). 

(3.8) 

The operation of convolution is distributive over the addition operation, that is, 

.  z(n) ∗ [ x(n) +  y(n)] = [ z(n) ∗  y(n)] + [ z(n) ∗  x(n)] . 

(3.9) 

If the set { xn}. has  N elements and { yn}. has  M elements, the set that results from the convolution operation, { zn}., will have  N +  M − 1. elements. 

The difference operator,  D[ x(n)] =  x(n + 1 ) −  x(n)., satisfies the relationship 

.  D[ z(n)] =  D[ x(n) ∗  y(n)] =  D[ x(n)] ∗  y(n) =  x(n) ∗  D[ y(n)] . 

(3.10) 

The  discrete  convolution  formula  can  be  simplified,  regarding  the  summation limits if one takes into consideration the causality of  x(n). and  y(n).. The following properties are useful to simplify the computation. 

If  x(n). is general and  y(n). is general, then 

∞



.  z(n) =  x(n) ∗  y(n) =

 x(k)y(n −  k). 

(3.11) 

 k=−∞

If  x(n). is causal and  y(n). is general, then 

∞



.  z(n) =  x(n) ∗  y(n) =

 x(k)y(n −  k), x(k) = 0 ,  for  k <  0 . 

(3.12) 

 k=0

If  x(n). is general and  y(n). is causal, then 

 K



.  z(n) =  x(n) ∗  y(n) =

 x(k)y(n −  k), y(k) = 0 ,  for  k <  0 . 

(3.13)

 k=−∞

3.2 Discrete Convolution
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Finally, if  x(n). is causal and  y(n). is causal, then 

 K



.  z(n) =  x(n) ∗  y(n) =

 x(k)y(n −  k), x(k) = 0 , y(k) = 0 ,  for  k <  0 . 

(3.14) 

 k=0

The convolution of a signal  x(n). with the unit step function u (n). produces the summation of the signal samples, because the inverted and shifted discrete unit step function u (n −  k). is equal to one from minus infinity to  n, as follows: 

∞



.  x(n) ∗ u (n) =

 x(k) u (n −  k)

(3.15)

 k=−∞

 n



=

 x(k)

 k=−∞

The convolution of a signal  x(n). with the discrete impulse function  δ(n). produces the same signal: 

∞



.  x(n) ∗  δ(n) =

 x(k)δ(n −  k)

(3.16)

 k=−∞

∞



=  x(n)

 δ(n −  k)

 k=−∞

=  x(n)

Also, it is possible to verify that  x(n)∗ αδ(n) =  αx(n). and  x(n)∗ δ(n− k) =  x(n− k).. 

Example  Suppose  that  the  impulse  response  for  a  discrete-time  system  with parameter  α. is given by 

.  h(n) =  αn  u (n), 

(3.17) 

in which 0  < α <  1., and consider the response of this linear system to an input signal that is also a geometrical function, 

.  x(n) =  βn  u (n), 

(3.18) 

in which 0  < β <  1.. 

The output of the linear system for this input is given by the convolution of the 

impulse response with the input signal, as expressed in the following formula: 

.  y(n) =  h(n) ∗  x(n)

(3.19)
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To compute this convolution operation, one uses the convolution definition from 

Eq. 3.5, substituting the appropriate terms in the formula 

∞



.  y(n) =

 αk  u (k)βn− k  u (n −  k). 

(3.20) 

 k=−∞

Appendix  D  contains  a  set  of  formulas  and  inequalities  that  can  help  compute summations. 

The properties of the unit step function can be used to simplify this sum, giving 

 y(n) = 0. for  n <  0. and 

 n



.  y(n) =

 (αβ)k  for  n ≥ 0 . 

(3.21) 

 k=0

Therefore, provided that  αβ = 0., one obtains 

0

if  n <  0

.  y(n) =

1− (αβ)n+1

(3.22) 

 and  if  n ≥ 0 . 

1− αβ

It is possible to visualize the convolution computation as a graphical process in 

the sequence of Figs. 3.5 and 3.6, as the reversed version of the input signal shifts to the right, with increasing  n. 

The  final  result  of  the  convolution  process,  which  produces  the  output  y(n)., is  seen  in  Fig. 3.7.  Note  that  the  resulting  function  reflects  the  behavior  of  the convolution product, which increases at first, because large terms are multiplied and summed, and then decreases, as the sum of the product of the two discrete functions reduces. 
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Fig.  3.5  Digital convolution as a graphical process,  n = −1. 
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Fig.  3.6  Digital convolution as a graphical process,  n = 2. 
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Fig.  3.7  Final result of the digital convolution process 

Example  The response of a discrete linear system, with discrete impulse response h(n) = u (n) − u (n −  N)., to the input  x(n) =  αn u (n).. This system represents a discrete-time window with a width of  N samples (Oppenheim and Schafer 1989). 

The response of the discrete system is given by the convolution 

∞



.  y(n) =  x(n) ∗  h(n) =

 x(k)h(n −  k), 

 k=−∞

which is the sum over all  k of the product  x(k)h(n −  k).. This yields 

∞



.  y(n) =

 αk u (k)[u (n −  k) − u (n −  k −  N)] , k=−∞
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which is different from zero only for  k ≥ 0.; thus, 

∞



.  y(n) =

 αk[u (n −  k) − u (n −  k −  N)] . 

(3.23) 

 k=0

This summation can be divided into two parts: First, for 0 ≤  n ≤  N − 1., Eq. 3.23 

is the sum of  n + 1. terms of a geometric series, which can be expressed in closed form as 

 n



.  y(n) =

 αk = 1 −  αn+1  . 

1 −  α

 k=0

This result can be obtained from the list of formulas presented in Appendix D. 

On the other hand, for the remaining interval, 1 +  n −  N < k ≤  n., for  N − 1  < n., the summation yields 

 n







1 −  αN

.  y(n) =

 αk =  α 1+ n− N −  αn+1 =  α 1+ n− N

 . 

1 −  α

1 −  α

 k=1+ n− N

The intermediary steps toward the convolution are shown in Figs. 3.8 and  3.9, 

as the inverted version of the impulse response  h(n −  k). is shifted to the right and passes through the input signal  x(k).. 

Finally, the complete response  y(n). can be written as 

⎧

⎪

⎨ 0

if  n <  0 , 

1− αn+1

.  y(n) =

if 0 ≤  n ≤  N − 1 , 

⎪





⎩ 1− α

 α 1+ n− N  1− αN

 N − 1 ≤  n. 

1− α

(  )

 y  n

 h n−k 

(      )
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Fig.  3.8  Response of a discrete system,  n <  0. 
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Fig.  3.9  Response of a discrete system, 0 ≤  n ≤  N − 1. 
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Fig.  3.10  Response of a discrete system 

The  final  result  is  seen  in  Fig. 3.10.  Note  that  the  response  y(n).  is  spread  and occupies a number of points that are the sum of the points of  x(n). and  h(n)., minus one point. 

This example illustrates the analytical convolution  computation when both the 

input signal and the impulse response are given by known formulas. In this case, it is possible to resort to tabulated geometric series. The example also draws attention to  the  importance  of  sketching  the  functions  as  careful  as  possible  to  correctly determine the limits on the summation. 

3.3 

Algorithm  for  Discrete  Deconvolution 

Sometimes, it is necessary to obtain the input sequence, given the output sequence, for a certain transfer function. It is also interesting, and useful in the semiconductor industry, to discover the transfer function of a determined digital circuit, given the set of outputs in response to a given input sequence. 
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This can be computed using the set of algebraic Eqs. 3.4. Consider that  y(n). is the output of a digital filter defined by the transfer function  h(n)., given the input x(n)., as follows: 

.  y( 0 ) =  x( 0 )h( 0 )

(3.24)

 y( 1 ) =  x( 1 )h( 0 ) +  x( 0 )h( 1 ) y( 2 ) =  x( 2 )h( 0 ) +  x( 1 )h( 1 ) +  x( 0 )h( 2 )

 ... 

∞



 y(n) =

 x(n −  k)h(k)

 k=0

Suppose one is interested in discovering the transfer function of the filter. The 

procedure is the following: First, invert the term  n = 0. from the set of Eqs. 3.25 to obtain 

.  h( 0 ) =  y( 0 ) . 

 x( 0 )

Then, solve the second equation of the set for  h( 1 ). to get 

.  h( 1 ) =  y( 1 ) −  x( 1 )h( 0 ) , x( 0 )

and substitute the value of  h( 0 ). obtained in the first step of the process to achieve y( 1 ) −  y( 0 )x( 1 )

 x( 0 )

.  h( 1 ) =

 . 

 x( 0 )

Continuing  the  iterative  process,  it  is  possible  to  obtain  all  the  terms  of  the sequence  h(n).  which  defines  the  transfer  function  of  the  digital  filter.  This  is  all that is required to design the required circuit. 

 3.3.1 

 Moving  Average  Filter 

As can be observed, the window  h(n).  has the property of smoothing the original signal  x(n)..  This  is  a  useful  feature  to  soften  the  borders  of  a  given  signal,  for example, to filter a video signal that is affected by impulsive noise. 

In fact, a scaled version of this impulse response, 

.  l(n) =  h(n) = u (n) − u (n −  N ) , 

(3.25)

 N

 N

3.4 Continuous Impulse Response
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is a finite impulse response (FIR) filter, called moving average filter, that performs the following functions:

• The  filter  takes   N  input  points,  computes  their  average,  and  produces  a  single output point. 

• Because of the computation involved, the filter introduces a finite delay. 

• The equation works as a low-pass filter. 

The  difference  equation  for  an   N -point  discrete-time  moving  average  filter with  input  represented  by  x(k).  and  the  averaged  output  by  the  signal  y(k).  is  the following: 

 N −1



.  y(n) = 1

 x(n −  i)

(3.26) 

 N i=0

Example  The unit step response of the moving average filter is given by 





u (n) − u (n −  N)

.  y(n) = u (n) ∗  l(n) = u (n) ∗

 , 

 N

which produces 

.  y(n) = r (n) − r (n −  N ) , 

(3.27) 

 N

which is equivalent to 

⎧

⎨ 0

if  n <  0 , 

 n+1

.  y(n) = ⎩

if 0 ≤  n < N, 

(3.28) 

 N

1

if  n ≥  N. 

Figure 3.11  sketches  the  unit  step response  of  an  FIR  filter, when  a  Heaviside step  function  is  applied  to  the  input,  for  N = 5..  The  function  is  named  after Oliver Heaviside (1850–1925), an English mathematician and physicist that applied 

complex numbers to circuit analysis, invented a technique equivalent to the Laplace transform  for  solving  differential  equations,  developed  the  Vector  Calculus,  and expressed the equations derived by James Clerk Maxwell (1831–1879) in the way 

they are used today (Alencar 2018). 

3.4 

Continuous  Impulse  Response 

It is possible to obtain an analogous solution for the response of a continuous linear system using the convolution operation, as the one obtained for the discrete system. 
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Fig.  3.11  Unit step response of a moving average FIR filter 

Fig.  3.12  Impulse response 

of an RC circuit 
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The convolution operation, in this case, involves functions defined in the set of real numbers R., and it is important to take care with the definition of integration limits. 

It is important to clarify the concept of impulse response with an example. 

Example  Consider  again  the  circuit  presented  in  Fig. 3.12,  which  is  reproduced here for convenience, in which the input signal is the voltage  v(t) =  V  u (t). and the output is the voltage across the capacitor terminals  vC(t).. 

The voltage step  vC(t). response is given by 





.  vC (t ) =  V

1 −  e−  tRC  u (t). 

(3.29) 

Because this is the response to a voltage step and, by the properties of a linear 

circuit  the  derivative  of  the  input,  v  (t) =  V δ(t).,  produces  the  derivative  of  the output, the impulse response of the circuit is given by 







d vC(t)

. 

= d  V  1 −  e−  tRC  u (t) , 

(3.30) 

d t

d t

which, using the multiplication rule for the derivative, results in 









d vC(t)

1

. 

=  V

 e−  t

 RC

u (t) +  V  1 −  e−  tRC δ(t), 

(3.31)

d t

 RC
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but by the properties of the impulse function, the second term of the equation is null, and one finally obtains the impulse response of this system in terms of voltage, 

.  h(t ) = d vC (t ) =  V e−  t

 RC  u (t ). 

(3.32) 

d t

 RC

 3.4.1 

 Impulse  Response  Using  Convolution 

Consider the general analog linear system shown in Fig. 3.13, which has impulse response  h(t). and provides a response  y(t). to the input  x(t).. 

The  impulse  response  h(t).  is  defined  as  the  output  that  results  from  the application of an impulse  δ(t). to the system. The impulse excites the energy-storing devices of the system and produces a response 

.  h(t ) =  L[ δ(t )] , 

(3.33) 

in which  L[·]. represents the linear operation executed by the system. 

For a linear time-invariant system, the application of an impulse of area  x(τ ). at time  t =  τ ., that is,  x(τ )δ(t −  τ )., produces 

.  x(τ )h(t −  τ ) =  L[ x(τ )δ(t −  τ )] . 

The  complete  response  y(t).  is  the  sum  of  all  the  infinitesimal  contributions, which gives, in the limit, 

∞

.  y(t ) =

 x(τ )h(t −  τ ) d τ, 

(3.34) 

−∞

which is called the continuous convolution of  x(t). and  h(t).. The notation 

.  y(t ) =  x(t ) ∗  h(t )

(3.35) 

is a compact way of expressing the same idea. 

Fig.  3.13  Continuous linear 

system 
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Fig.  3.14  Cascade of continuous linear systems 

Example  Suppose  two  linear  systems  are  mounted  in  cascade,  as  shown  in Fig. 3.14, in which the first system has impulse response  h(t). and the second system has impulse response  g(t).. The overall response of the composite system is given by 

.  z(t ) =  y(t ) ∗  g(t ) = [ x(t ) ∗  h(t )] ∗  g(t ) =  x(t ) ∗ [ h(t ) ∗  g(t )] , (3.36) 

because  the  convolution  operation  is  associative.  Therefore,  it  is  equivalent  to  a linear system whose impulse response is the convolution of the responses of both 

systems. 

Example  Compute the unit step response of the linear system, supposing that the impulse response of the system is given by the following formula: 

.  h(t ) =  V e−  t

 RC  u (t )

(3.37) 

 RC

From Formula 3.34, the unit step response is given by 

∞

 V

.  y(t ) =

u (t −  τ )

 e−  τ

 RC  u (τ ) d τ. 

(3.38) 

−∞

 RC

Because the product of the unit step functions u (t −  τ ) u (τ ). is one only in the interval 0 ≤  τ ≤  t., it is possible to simplify the equation to 

 t









 V

 t

.  y(t ) =

 e−  τ

 RC  d τ =  V

− RCe−  τRC

=  V  1 −  e− 1 RC , 

(3.39) 

0  RC

 RC

0

which is the unit step response, obtained from the impulse response of the circuit. 

3.5 

Continuous  Convolution 

As  discussed,  the  behavior  of  a  linear,  continuous-time,  time-invariant  system, defined by the impulse response  h(t)., with input signal  x(t). and output signal  y(t). 

3.5 Continuous Convolution
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is described by the convolution integral, 

∞



∞



.  y(t ) =  x(t ) ∗  h(t ) =

 x(t −  τ ) ·  h(τ )  d τ =

 x(τ ) ·  h(t −  τ )  d τ. 

(3.40) 

−∞

−∞

The  system  response,  y(t).,  is  proportional  to  a  weighted  average  of  the  input signal  x(τ ).. This process is made clear with an example. 

Example  Suppose  the  signal  x(t) = u (t).  is  the  input  to  a  system  with  impulse response given by  h(t) = u (t).. For this case, the output is 

∞



.  y(t ) = u (t ) ∗ u (t ) =

u (t −  τ ) · u (τ )  d τ. 

−∞

As  mentioned,  when  computing  the  convolution,  it  is  important  to  observe carefully the definition  of the limits. In this case, the limits are explicitly defined by the unit step functions. 

Because the product u (t −  τ ) · u (τ ). is zero for  t <  0. and equals one for  t ≥ 0., as seen in Figs. 3.15 and  3.16, the integral can be put into the following form, t



.  y(t ) =

u (τ )  d τ = r (t), 

0

by  the  definition  of  the  ramp  function.  Therefore,  the  integrator  has  impulse response  h(t) = u (t).. 

This result can be observed in Fig. 3.17. Note that this result is of a general nature, that is, the convolution of any signal with the unit step function gives the integral of y  t( ) 

u   t   τ

(  −   ) 

u(  )

τ

0 

 t 

0 

τ

Fig.  3.15  Graphical convolution for unit step functions,  t <  0. 
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τ

Fig.  3.16  Graphical convolution for unit step functions,  t ≥ 0. 
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Fig.  3.17  Final result of the convolution of unit step functions 

that signal: 

∞



 t



.  x(t ) ∗ u (t ) =

 x(τ ) u (t −  τ )  d τ =

 x(τ )  d τ

(3.41) 

−∞

0

Example  A  differentiator  has  impulse  response  h(t) =  δ  (t).,  as  can  be  demonstrated in the following, 

∞



.  y(t ) =  x(t ) ∗  δ  (t ) =

 x(τ ) ·  δ  (t −  τ )  d τ

(3.42)

−∞

∞



=

 x  (τ ) ·  δ(t −  τ )  d τ =  x  (t), 

−∞

taking into account the fundamental property of the impulse function. 
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 3.5.1 

 Linear  System  with  an  Exponential  Impulse  Response 

As another application of the convolution operation, consider that a time-invariant linear  system,  with  impulse  response  h(t) =  e− αt  u (t).,  is  excited  with  an  input signal  x(t) =  e− βt  u (t).. This type of impulse response is typical of linear systems that have memory, or energy-storing devices. 

The  weighting  function  is  an  inverted  version  of  the  impulse  response,  h(τ )., shifted by the amount of time  t, as shown in Fig. 3.18. It is important to consider the delimiting effect of the unit step functions to define the region of integration. 

As depicted in Fig. 3.19, as time goes by, the weighting function is displaced and emphasizes different parts of the input function. 

The output signal is then obtained by computing the convolution integral 

∞



.  y(t ) =

 x(τ ) ·  h(t −  τ )  d τ, 

(3.43) 

−∞

 y  t( ) 

 x t  τ u

(  −   )    t

(  τ

−   )   

 h (  ) 
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τ

0 

 t 

0

τ

Fig.  3.18  Convolution as a graphical process,  t <  0. 
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Fig.  3.19  Convolution as a graphical process,  t >  0. 
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with the limits defined by the unit step functions, as follows, 

∞



.  y(t ) =

 e− βτ  u (τ )e− α(t− τ) u (t −  τ )  d τ, 

−∞

in which the product u (τ ) u (t −  τ ) = 1. for 0 ≤  τ ≤  t. and zero otherwise. Therefore, t



 t



.  y(t ) =

 e− βτ e− α(t− τ )  d τ =  e− αt

 e(α− β)τ  d τ. 

0

0

The integral can be obtained, as follows, for  α =  β. 









 t

 e(α− β)τ

 e(α− β)t

.  y(t ) =  e− αt

=  e− αt

−

1

 . 

 α −  β

 α −  β

 α −  β

0

Finally, 

.  y(t ) =  e− βt −  e− αt . 

 α −  β

If  α =  β., the integral 

 t



 t



.  y(t ) =  e− αt

 e(α− β)τ  d τ =  e− αt

d τ =  te− αt . 

0

0

The final result is observed in Fig. 3.20. Note that the output signal first increases from  zero  to  a  maximum  value,  which  can  be  determined  deriving  the  resulting y  t( ) 

0 

0

 t 

Fig.  3.20  Final result of the convolution

3.5 Continuous Convolution

69

formula  and  equating  the  derivative  to  zero.  The  second  derivative  is  negative, indicating that there is a maximum value at that point. 

For example, considering the case in which  α =  β., one obtains 

.  y  (t ) =  e− αt −  αt e− αt = 0 , which gives 

.  t = 1  . 

 α

 3.5.2 

 Continuous  Convolution  Properties 

The  continuous  convolution  formula  can  be  simplified,  regarding  the  integration limits  taking  into  consideration  the  causality  of  the  operands  x(t).  and  y(t).. The following properties are useful to simplify the calculation: 

If  x(t). is general and  y(t). is general, then their convolution  z(t) =  x(t) ∗  y(t). is 

∞



.  z(t ) =

 x(τ ) ·  y(t −  τ )  d τ. 

(3.44) 

−∞

If  x(t). is causal and  y(t). is general, then 

∞



.  z(t ) =

 x(τ ) ·  y(t −  τ )  d τ. 

(3.45) 

0

If  x(t). is general and  y(t). is causal, then 

 t



.  z(t ) =

 x(τ ) ·  y(t −  τ )  d τ. 

(3.46) 

−∞

Finally, if  x(t). is causal and  y(t). is causal, then 

 t



.  z(t ) =

 x(τ ) ·  y(t −  τ )  d τ. 

(3.47)

0
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Example  The convolution of a signal  x(t). with the unit step function u (t). produces the integral of the signal. Making  y(t) = u (t). in the convolution operation gives 

∞



.  z(t ) =  x(t ) ∗ u (t ) =

 x(τ ) · u (t −  τ )  d τ, 

−∞

which, by Property 3.46, results in 

 t



.  z(t ) =

 x(τ )  d τ. 

−∞

Example  The convolution of a signal  x(t). with the impulse function  δ(t). produces the same signal, as follows, 

∞



.  z(t ) =  x(t ) ∗  δ(t ) =

 x(τ ) ·  δ(t −  τ )  d τ =  x(t), 

−∞

by the integration property of the impulse function. 

3.6 

Problems 

1.  The unit step response of a linear system is given by  y(t) = [cos  ωt]u (t).. Find the impulse response. 

2.  Compute the response of a linear system described by  h(t) =  e− βu(t), β >  0., to the input signals  u(t). and  r(t).. Draw the graphics. 

3.  An  integrator  is  described  by  the  equation

 t

 y(t ) =

−∞  x(τ )dτ .. Find the  

impulse response of the integrator and verify if the system is stable. 

4.  For a periodic input  x(t). with period  N , show that the output of a discrete linear time-invariant system  y(t). is also periodic, with the same period. 

5.  Verify if the system with an impulse response  h(n) =  αnu(n). is causal and for what values of  α. it is stable. 

6.  For a system described by the equation  y(n)− 1  y(n−1 ) =  x(n) 2

., com  y(−1 ) =

0., find the response  y(n). for the following inputs. Draw the graphics: 

(a)   x(n) =  (  1  )nu(n). 

2

. 

(b)   x(n) =  (  1  )nu(n). 

3

. 

7.  Design a linear system described by the equation  y(n) −  αy(n − 1 ) =  x(n).. 

Obtain the system impulse response. 
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8.  Make the drawing of a linear system described by the equation  y(n) −  αy(n −

1 ) −  βy(n − 2 ) =  x(n).. Determine the impulse response of the system. 

9.  Compute  the  response  of  a  linear  system  that  is  described  by  the  equation h(t ) =  e− βu(t), β >  0., to the input signals  u(t). e  r(t).. Make the graphics. 

10.  For the system described by the equation  y(n)− y(n−1 ) =  x(n)., with  y(−1 ) =

0., find the response  y(n). for the following inputs. Sketch the plots: 

(a)   x(n) =  (  1  )nu(n). 

2

. 

(b)   x(n) =  (  1  )nu(n). 

3

. 

11.  Compute  the  output  signal  for  a  circuit  with  impulse  response   h(t) =  ( 1 −

 t )[ u(t) −  u(t − 1 )]. for the input  x(t) =  e− t  u (t).. 

12.  Compute the output signal of a circuit with impulse response  h(t) =  t[u (t) −

u (t − 1 )]. for the input  x(t) =  e− t  u (t).. 

[image: Image 7]

Chapter  4 

Fourier  and  Hilbert  Transforms 

 Mathematics  compares  the  most  diverse  phenomena  and 

 discovers  the  secret  analogies  that  unite  them. 

—Joseph Fourier 

4.1 

Introduction 

The objective of this chapter is to provide the reader with the necessary mathematical basis for understanding communication systems in conjunction with probability 

theory and stochastic processes. The reader will become familiar with concepts and equations involving Fourier series, which have a significant historical relevance for the theory of communications. Furthermore, both the theory and properties of the 

Fourier  and  Hilbert  transforms  are  presented,  which  constitute  powerful  tools  for spectral and temporal analyses (Alencar 1999). 

4.2 

Fourier  Analysis 

The basic Fourier theory establishes fundamental conditions for the representation of  a  fairly  arbitrary  function  defined  in  a  finite  interval  as  a  sum  of  sinusoids.  In fact, this is just an instance of the more general Fourier representation of signals in which a periodic signal  f (t), . under fairly general conditions, can be represented by a complete set of orthogonal functions. By a complete set  S. of orthogonal functions, it is understood that, except for those orthogonal functions already in  S., there are no other orthogonal functions not belonging to  S. to be considered. 

In the following, it is assumed that a periodic signal  f (t). satisfies the Dirichlet conditions,  i.e.,  that  f (t).  is  a  bounded  function  which  in  any  one  period  has  at most a finite number of local maxima and minima and a finite number of points of 

discontinuity (Wylie 1966). The representation of signals by orthogonal functions has very often an error, which diminishes as the number of component terms in the 

corresponding series is increased. 
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The  fact  that  a  periodic  signal  f (t).  can  in  general  be  expanded  as  a  sum of  mutually  orthogonal  functions  demands  for  a  closer  look  at  the  concepts  of periodicity and orthogonality. 

Periodicity  relates  to  the  repetitive  character  of  the  function.  A  function  f (t). 

is  defined  to  be  a  periodic  function  of  period   T  if  and  only  if   T  is  the  smallest positive number for which  f (t +  T ) =  f (t).. In other words,  f (t). is periodic if its domain  contains  t +  T .  whenever it contains  t, and  f (t +  T ) =  f (t).. It follows from the definition of a periodic function that if  T  represents the period of  f (t). then f (t ) =  f (t +  nT ). for  n = 1 ,  2 , . . . , . i.e.,  f (t). will repeat its values when integer multiples of  T  (Wozencraft and Jacobs 1965) are added to its argument. Figure 4.1 

represents a general periodic signal,  x(t)., with period 2 T  and amplitude  B . 

If  f (t).  and  g(t).  are two periodic functions with the same period  T , then their sum  f (t) +  g(t). will also be a periodic function with period  T . We prove this result by making  h(t) =  f (t) +  g(t). and noticing that  h(t +  T ) =  f (t +  T ) +  g(t +  T ) =

 f (t ) +  g(t) =  h(t).. 

We  shall  now  investigate  the  concept  of  orthogonality.  Orthogonality  provides the tool for introducing the concept of a basis, i.e., of a minimum set of functions that can be used to generate other functions. However, orthogonality by itself does not guarantee that a complete vector space is generated. 

Two  real  functions  u(t).  and  v(t).,  defined  in  the  interval  α ≤  t ≤  β., are orthogonal if their inner product is null, that is, if 

 β

.  (u(t ), v(t )) =

 u(t )v(t ) d t = 0 . 

(4.1) 

 α

The set of functions  fn(t), n = 1 ,  2 ,  3 , . . . ., as illustrated in Fig. 4.2, can be used for  representing  signals  in  the  time  domain.  This  set  of  functions  constitutes  an orthogonal set in the interval  (−3 T ,  3 T ).. 

Fig.  4.1  Example of a 
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Fig.  4.2  Set of orthogonal functions 

 4.2.1 

 The  Trigonometric  Fourier  Series 

The trigonometric Fourier series representation of a signal  f (t). can be written as 

∞



.  f (t ) =  a 0 +

[ an  cos (nω 0 t) +  bn sin  (nω 0 t)] , (4.2) 

 n=1

in which the term  a 0. (the average value of the function  f (t).) indicates whether or not  the  signal  contains  a  DC  value  and  the  terms   an.  and  bn.  are denominated  the Fourier series coefficients, in which  n is a positive integer . 

The equality sign holds in (4.2) for all values of  t  only when  f (t).  is periodic. 

However, the Fourier series representation is a useful tool for any type of signal as long as that signal representation is required only in the [0 , T ]. interval. Outside that interval, the Fourier series representation will always be periodic, even if the signal f (t ). is not periodic (Knopp 1990). 

The  sine  and  cosine  functions  are  examples  of  orthogonal  functions  because they  satisfy  the  following  equations  for  integer  values  of   n  and   m,  denominated orthogonality relations:

 T

. 

cos (nωot)  sin (mωot) d t = 0 for all integers  n  and  m, (4.3) 

0





 T

0 if  n =  m

. 

cos (nωot)  cos (mωot) d t =

(4.4) 

 T

0

if  n =  m

2





 T

0 if  n =  m

. 

sin (nωot)  sin (mωot) d t =

(4.5) 

 T

0

if  n =  m

2

in which  ω 0 = 2 π/T . . 
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As  a  consequence  of  the  orthogonality  conditions,  explicit  expressions  for  the coefficients   an.  and   bn.  of  the  Fourier  trigonometric  series  can  be  computed.  By integrating  both  sides  in  expression  (4.2)  in  the  interval [0 , T ]., it follows that (Oberhettinger 1990) 









 T

 T

∞

 T

∞

 T

. 

 f (t ) d t =

 ao d t +

 an  cos (nωot) d t +

 bn  sin (nωot) d t, 

0

0

 n=1 0

 n=1 0

and since 





 T

 T

. 

 an  cos (nωot) d t =

 bn  sin (nωot) d t = 0 , 

0

0

it follows that 

 T

.  ao = 1

 f (t ) d t. 

(4.6) 

 T

0

Now, by multiplying both sides in expression (4.2) by cos (mωot). and integrating in the interval [0 , T ]., it follows that  





 T

 T

. 

 f (t )  cos (mωot) d t =

 ao  cos (mωot) d t

(4.7)

0

0

∞

 T

+

 an  cos (nωot)  cos (mωot) d t

 n=1  o

∞

 T

+

 bn  cos (mω 0 t)  sin (nωot) d t, 

 n=1  o

which after simplification produces 

 T

.  an = 2

 f (t )  cos (nωot) d t,  for  n = 1 ,  2 ,  3 , . . . . 

(4.8) 

 T

0

In a similar manner,  bn. is found by multiplying both sides in expression (4.2) by sin (nωot). and integrating in the interval [0 , T ]., i.e., 

 T

.  bn = 2

 f (t )  sin (nωot) d t

(4.9) 

 T

0

for  n = 1 ,  2 ,  3 , . . . .. 
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 4.2.2 

 Even  Functions  and  Odd  Functions 

A function is called an odd function if it is antisymmetric with respect to the ordinate axis, i.e., if  f (− t) = − f (t)., in which − t. and  t are assumed to belong to the function domain.  Examples  of  odd  functions  are  provided  by  the  functions   t,  t 3., sin  t.  and t |2 n+1|.. 

Similarly, a function is called an even function if it is symmetric with respect to the ordinate axis, i.e., if  f (− t) =  f (t)., in which  t. and − t. are assumed to belong to the function domain. Examples of even functions are provided by the functions 1, 

 t  2., cos  t., | t|., exp  (−| t| )., and  t|2 n|.. 

Some  Elementary  Properties 

(a)  The sum (difference) and the product (quotient) of two even functions are an 

even function. 

(b)  The sum (difference) of two odd functions is an odd function. 

(c)  The product (quotient) of two odd functions is an even function. 

(d)  The sum (difference) of an even function and an odd function is neither an even function nor an odd function. 

(e)  The product (quotient) between an even function and an odd function is an odd function. 

Two other important properties are the following: 

(f)  If  f (t). is an even periodic function of period  T , t hen





 T / 2

 T / 2

. 

 f (t ) d t = 2

 f (t ) d t. 

(4.10) 

− T / 2

0

(g)  If  f (t). is an odd periodic function of period  T , t hen

 T/ 2

. 

 f (t ) d t = 0 . 

(4.11) 

− T / 2

Properties  (4.2.2) and  (4.2.2) allow  for a  considerable  simplification  when computing coefficients of a trigonometric Fourier series: 

(h)  If  f (t). is an even function then  bn = 0., and 

 T

.  an = 2

 f (t )  cos (nωot) d t  for  n = 1 ,  2 ,  3 , . . . . 

(4.12) 

 T

0

(i)  If  f (t). is an odd function, then  an = 0. and 

 T

.  bn = 2

 f (t )  sin (nωot) d t  for  n = 1 ,  2 ,  3 , . . . . 

(4.13)

 T

0
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Example  Compute  the  coefficients  of  the  trigonometric  Fourier  series  for  the waveform  f (t) =  A[ u(t +  τ ) −  u(t −  τ )].,  which  repeats  itself  with  period   T , in which  u(t). denotes the unit step function and 2 τ ≤  T .. 

Solution  Since the given signal is symmetric with respect to the ordinate axis, it follows that  f (t) =  f (− t). and the function is even. Therefore,  bn = 0., and all that is left for computing is  ao. and  an. for  n = 1 ,  2 , . . . .. The expression for computing the average value  a 0. is given by 

 T

 τ

2

.  ao = 1

 f (t ) d t = 1

 A d t = 2 Aτ . 

 T

−  T

 T

− τ

 T

2

In the previous equation, the maximum value of  τ . is  T / 2.. The coefficients  an. for n = 1 ,  2 , . . . . are computed as 





 T

 τ

.  an = 2

 f (t )  cos (nωot) d t = 2

 A  cos (nωot) d t, 

 T

0

 T

− τ





 τ

 τ

sin (nωoτ )

.  an = 4 A

cos (nωot) d t = 4 A  sin (nωot)

=  ( 4 Aτ/T )

 . 

 T



0

 T nωo

0

 nω 0 τ

The signal  f (t). is then represented by the following trigonometric Fourier series: 



∞

4 Aτ

sin (nωoτ)

.  f (t ) = 2 Aτ +

cos (nωot). 

 T

 T

 nω 0 τ

 n=1

 4.2.3 

 The  Compact  Fourier  Series 

It is also possible to represent the Fourier series in a form known as the  compact Fourier series as follows: 

∞



.  f (t ) =  C 0 +

 Cn  cos (nωot +  θn)

(4.14) 

 n=1

By  expanding  the  expression  Cn  cos (nωot +  θ).  as   Cn  cos (nωot)  cos  θn −

 Cn  sin (nωot)  sin  θn. and comparing this result with (4.2), it follows that  ao =  Co., an =  Cn  cos  θn.,  and  bn = − Cn  sin  θn..  It  is  now  possible  to  compute  Cn.  as  a function of  an. and  bn.. For that purpose, it is sufficient to square  an. and  bn. and add the result, i.e., 

.  a 2 +

=

 n

 b 2 n

 C 2 n  cos2  θn +  C 2 n sin2 θn =  C 2 n. 

(4.15)
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From Eq. (4.15), the modulus of  Cn. can be written as 



.  Cn =

 a 2 +

 n

 b 2 n. 

(4.16) 

In order to determine  θn., it suffices to divide  bn. by  an., i.e., bn

. 

= −sin  θn = − tan  θn, 

(4.17) 

 an

cos  θn

which when solved for  θn. produces 



 bn

.  θn = − arctan

 . 

(4.18) 

 an

 4.2.4 

 The  Exponential  Fourier  Series 

Since the set of exponential functions  ejnωot .,  n = 0 , ±1 , ±2 , . . . , . is a complete set of orthogonal functions in an interval of magnitude  T , in which  T = 2 π/ωo., then it  is  possible  to  represent  a  function  f (t).  by  a  linear  combination  of  exponential functions in an interval  T , 

∞



.  f (t ) =

 Fnejnω 0 t

(4.19) 

−∞

in which 

 T 2

.  Fn = 1

 f (t )e− jnω 0 t  d t. 

(4.20) 

 T

− T

2

Equation  (4.19)  represents  the  exponential  Fourier  series  expansion  of  f (t)., and  Eq. (4.20)  is  the  expression  to  compute  the  associated  series  coefficients. 

The  exponential  Fourier  series  is  also  known  as  the   complex  Fourier  series. It is immediate to show that Eq. (4.19) is just another way of expressing the Fourier series as given in (4.2). Replacing cos (nωot) +  j  sin (nω 0 t). for  enω 0 t . (Euler’s identity) in (4.19), it follows that 

−1



.  f (t ) =  Fo +

 Fn[cos (nωot) +  j  sin (nωot)]

 n=−∞

∞



+

 Fn[cos (nωot) +  j  sin (nωot)]

 n=1
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or 

∞



.  f (t ) =  Fo +

 Fn[cos (nωot) +  j  sin (nωot)] +  F− n[cos (nωot) −  j  sin (nωot)] . 

 n=1

Grouping the coefficients of the sine and cosine terms, it follows that 

∞



.  f (t ) =  Fo +

 (Fn +  F− n)  cos (nωot) +  j (Fn −  F− n)  sin (nωot). 

(4.21) 

 n=1

Comparing the above expression with (4.2), it follows that 

.  ao =  Fo, an =  (Fn +  F− n)  and  bn =  j (Fn −  F− n) (4.22) 

and that 

.  Fo =  ao, 

(4.23) 

.  Fn =  an −  j bn

(4.24) 

2

and 

.  F− n =  an +  j bn . 

(4.25) 

2

In case the function  f (t). is even, i.e., if  bn = 0., then 

.  ao =  Fo, Fn =  an  and  F− n =  an . 

(4.26) 

2

2

Example  Compute the exponential Fourier series for the train of impulses 

∞



.  δT (t ) =

 δ(t −  nT ). 

 n=−∞

Solution  The complex coefficients are given by 

 T 2

.  Fn = 1

 δT (t)e− jnωot  d t = 1  , 

(4.27) 

 T

− T

 T

2

since 

∞

. 

 δ(t −  to)f (t) d t =  f (to) (impulse filtering) . 

(4.28)

−∞
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It follows that  f (t). can be written as 

∞



.  f (t ) = 1

 e− jnωot . 

(4.29) 

 T n=−∞

In practice, in order to obtain an approximation of an impulse train, it is sufficient to  pass  a  binary  digital  signal  through  a  differentiator  circuit  and  then  pass  the resulting waveform through a half-wave rectifier. 

The Fourier series expansion of a periodic function is equivalent to its decompo-

sition in frequency components. In general, a periodic function with period  T  has frequency components 0 , ± ωo, ±2 ωo, ±3 ωo, . . . , ± nωo., in which  ωo = 2 π/T . is the fundamental frequency and the multiples of  ω 0. are called harmonics. Notice that the spectrum exists only for discrete values of  ω. and that the spectral components are spaced by at least  ωo.. 

4.3 

Fourier  Transform 

It  was  shown  earlier  that  an  arbitrary  function  can  be  represented  in  terms  of  an exponential (or trigonometric) Fourier series in a finite interval. If such a function is periodic, this representation can be extended for the entire interval  (−∞ , ∞ ).. 

However, it is interesting to observe the spectral behavior of a function in general, periodic  or  not,  in  the  entire  interval  (−∞ , ∞ )..  In  order  to  do  that,  the  function f (t ). is truncated in the interval [− T / 2 , T / 2]., obtaining  fT (t).. It is possible then to represent this function as a sum of exponentials in the entire interval  (−∞ , ∞ ). by making  T  approach infinity. In other wo rds, 

.  lim  fT (t ) =  f (t ). 

 T →∞

The  fT (t). signal can be represented by the exponential Fourier series as 

∞



.  fT (t ) =

 Fnejnωot , 

(4.30) 

 n=−∞

in which  ωo = 2 π/T . and 

 T 2

.  Fn = 1

 fT (t)e− jnωot  d t. 

(4.31) 

 T

−  T 2

 Fn. represents the spectral amplitude associated with a component of frequency  nωo.. 

As  T  increases, the amplitudes diminish, but the spectrum shape is not altered. This increase in  T  forces  ωo. to diminish and the spectrum to become denser. 
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In the limit, as  T → ∞.,  ωo. becomes infinitesimally small, being represented by d ω.. On the other hand, there are now infinitely many components, and the spectrum is no longer a discrete one, becoming a continuous spectrum in the limit. 

For  convenience,  write  T Fn =  F (ω).,  that  is,  the  product  T Fn.  becomes  a function of the variable  ω., since  nωo →  ω.. Replacing  F (ω) T

.  for   Fn.  in  4.30, one 

obtains 

∞



.  fT (t ) = 1

 F (ω)ejωt . 

(4.32) 

 T n=−∞

Replacing  ω 0 / 2 π. for 1 /T ., it follows that 

∞



.  fT (t ) = 1

 F (ω)ejωt ω 0 . 

(4.33) 

2 π n=−∞

In the limit, as  T  approaches infinity, one has

∞

.  f (t ) = 1

 F (ω)ejωt  d ω

(4.34) 

2 π −∞

which is known as the inverse Fourier transform. 

Similarly, from 4.31, as  T  approaches infinity, one obtains

∞

.  F (ω) =

 f (t )e− jωt  d t

(4.35) 

−∞

which is known as the direct Fourier transform, sometimes denoted in the literature as  F (ω) =  F[ f (t)].. A Fourier transform pair is often denoted as  f (t) ←→  F (ω).. 

In the sequel, some important Fourier transforms are presented (Haykin 1988). 

 4.3.1 

 Bilateral  Exponential  Signal 

If  f (t) =  e− a| t|., it follows from (4.35) that 

∞

.  F (ω) =

 e− a| t| e− jωt  d t. 

(4.36) 

−∞





0 

∞ 

=

 eat  e− jωt  d t +

 e− at  e− jωt  d t 

−∞ 

0 

=

1 

+

1

 , 

 a −  j ω

 a +  j ω
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 F (ω)  =

2 a 

 . 

(4.37) 

 a 2 +  ω 2

 4.3.2 

 Gate  Function 

The gate function is defined by the expression  pT (t) =  A[ u(t +  T / 2 ) −  u(t −  T / 2 )]. 

or 

 A  if | t| ≤  T/ 2

.  pT (t ) =

(4.38) 

0 if | t|  > T / 2

in which  u(t). denotes the  unit  step   function, defined as 

1 if  t ≥ 0

.  u(t ) =

(4.39) 

0 if  t <  0

and represented in Fig. 4.3. 

The  gate  function  is  illustrated  in  Fig. 4.4.  The  Fourier  transform  of  the  gate function can be calculated as 

 T 2

.  F (ω) =

 Ae− jωt  d t

(4.40)

−  T 2 



=  A ejω T 2 −  e− jω T 2

 j ω

=  A  2 j sin (ωT / 2 ), 

 j ω

Fig.  4.3  The unit step 

(  )

 u  t 

function 

1 

0

0 

 t 

84

4

Fourier and Hilbert Transforms

Fig.  4.4  The gate function  

(  )

 x  t

 A 

0 

 /

 −T  2

0

 T / 2

 t 

Fig.  4.5  Magnitude plot of 

the Fourier transform of the 

 |X (    )

ω   | 

gate function 

 AT 

0 

−4 π/ T

π

−2 /  T

0

2π/ T  π

4  / T

ω 

which can be rearranged as 





sin (ω T / 2 )

.  F (ω) =  AT

 , 

 ωT / 2

and finally 





 ωT

.  F (ω) =  AT  Sa

 , 

(4.41) 

2

in which Sa  (x) = sin  x

 x .  is  the   sampling   function.  This  function  converges  to  one, as  x  goes to zero. The sampling function, the magnitude of which is illustrated in Fig. 4.5, is of great relevance in communication theory. 
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The  sampling   function obeys the following important relationship: 

∞  k

. 

Sa  (kt) d t = 1

(4.42) 

−∞  π

The  area  under  this  curve  is  equal  to  1.  As   k  increases,  the  amplitude  of  the sampling  function  increases,  the  spacing  between  zero  crossings  diminishes,  and most of the signal energy concentrates near the origin. For  k → ∞., the function converges to an impulse function, i.e., 

 k

.  δ(t ) = lim

Sa  (kt). 

(4.43) 

 k→∞  π

∞

In this manner, in the limit, it is true that

−∞  δ(t) d t = 1.. Since the function 

concentrates its nonzero values near the origin, it follows that  δ(t) = 0. for  t = 0.. 

Therefore, 

∞

∞

. 

 f (t )δ(t ) d t =  f ( 0 )

 δ(t ) d t =  f ( 0 ). 

(4.44) 

−∞

−∞

In general, it is possible to write (4.44) as  

∞

. 

 f (t )δ(t −  to) d t =  f (to). 

(4.45) 

−∞

This important relationship, mentioned earlier in (4.28), is known as the filtering property of the impulse function. 

 4.3.3 

 Impulse  Function  or  Dirac’s  Delta  Function 

By making  f (t) =  δ(t). in (4.35), it follows that 

∞

.  F (ω) =

 δ(t )e− jωt  d t. 

(4.46) 

−∞

Using  the  impulse  filtering  property,  it  follows  that  F (ω) = 1.. Therefore, the impulse function contains a continuum of equal amplitude spectral components. 

Alternatively, by making  F (ω) = 1. in 4.34 and simplifying, the impulse function can be written as 



1

∞

. 

cos  ωtdω. 

 π

0
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 4.3.4 

 The  Constant  Function 

If  f (t). is a constant function, then its Fourier transform in principle would not exist since this function does not satisfy the absolute integrability criterion. In general, F (ω), ., the Fourier transform of  f (t)., is expected to be finite, i.e., 

∞

.| F (ω)| ≤

| f (t)|| e− jωt|d t < ∞ , 

(4.47) 

−∞

since | e− jωt | = 1.; then, 

∞

. 

| f (t)|d t < ∞ . 

(4.48) 

−∞

However, that is just a sufficiency condition and not a necessary condition for the existence of the Fourier transform, since there exist functions that, although do not satisfy the condition of absolute integrability, in the limit have a Fourier transform (Carlson  1975).  This  is  a  very  important  observation  since  this  approach  is  often used in the computation of Fourier transforms of many functions. Returning to the 

constant function, it can be approximated by a gate function with amplitude  A and width  τ . and then making  τ . approach very large values, 





 ωτ

.  F [ A] = lim  Aτ  Sa

(4.49) 

 τ →∞

2





 τ

 ωτ

.  = 2 π A  lim

Sa

 τ →∞ 2 π

2

.  F [ A] = 2 π Aδ(ω). 

(4.50) 

This result is not only a very interesting one but also somehow intuitive since a 

constant function in time represents a DC level and, as was to be expected, contains no spectral component except for the one at  ω = 0.. 

 4.3.5 

 Fourier  Transform  of  Sine  and  Cosine 

Since  both  the  sine  and  the  cosine  functions  are  periodic  functions,  they  do  not satisfy  the  condition  of  absolute  integrability.  However,  their  respective  Fourier transforms exist in the limit when  τ . goes to infinity. Assuming the function to exist only in the interval  ( − τ , τ )

2

2 . and to be zero outside this interval and considering the 

limit of the expression when  τ . goes to infinity, 

 τ 2

.  F ( sin  ω 0 t ) = lim

sin  ω 0 t e− jωt  d t

(4.51)

 τ →∞

− τ

2
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 τ 2  e− j(ω− ω 0 )t

.  = lim

−  e− j(ω+ ω 0 )t  d t

 τ →∞

− τ

2 j

2 j

2





 j τ  sin  (ω +  ω 0 ) τ

 j τ  sin  (ω −  ω

2

0 ) τ 2

.  = lim

−

 τ →∞

2 (ω +  ω 0 ) τ

2 (ω −  ω

2

0 ) τ 2











 τ

 (ω +  ω 0 )

 τ

 τ (ω +  ω 0 )

.  = lim

 j  Sa

−  j  Sa

 . 

 τ →∞

2

2

2

2

Therefore, 

.  F ( sin ω 0 t ) =  j π [ δ(ω +  ω 0 ) −  δ(ω −  ω 0 )] . 

Applying a similar reasoning, it follows that 

.  F ( cos  ω 0 t) =  π [ δ(ω −  ω 0 ) +  δ(ω +  ω 0 )] , (4.52) 

in which  ω 0 = 2 π/T .. Figure 4.6 illustrates the cosine function, and Fig. 4.7 depicts the magnitude of the Fourier transform of the cosine function. 

 4.3.6 

 The  Fourier  Transform  of ejω0 t . 

Using Euler’s identity,  ejω 0 t = cos  ω 0 t +  j  sin ω 0 t., it follows that  

.  F [ ej ω 0 t ] =  F [cos  ω 0 t +  j  sin ω 0 t ] . 

(4.53) 

Fig.  4.6  The cosine function 

 t(  )

 x 

1 

0 

−1 

−3 T/2   T

/2 0 

 −T

 T/2

 T  3 T/2  t 
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Fig.  4.7  Magnitude plot of 

the Fourier transform of the 

 X (    )

ω   |

 |

cosine function 

0 

−ω0 

0

ω0

ω 

Substituting  in  (4.53)  the  Fourier  transforms  of  the  sine  and  of  the  cosine functions, respectively, it follows that 

.  F [ ej ω 0 t ] = 2 π δ(ω −  ω 0 ). 

(4.54) 

 4.3.7 

 The  Fourier  Transform  of  a  Periodic  Function 

We consider next the exponential Fourier series representation of a periodic function fT (t). of period  T : 

∞



.  fT (t ) =

 Fnejnω 0 t

(4.55) 

 n=−∞

Applying the Fourier transform to both sides in (4.55), it follows that 





∞



.  F [ fT (t )] =  F

 Fnejnω 0 t

(4.56) 

 n=−∞

∞



. =

 FnF[ ejnω 0 t ] . 

(4.57) 

 n=−∞

Now, applying in (4.57) the result from (4.54), it follows that 

∞



.  F (ω) = 2 π

 Fnδ(ω −  nω 0 ). 

(4.58)

 n=−∞
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4.4 

Some  Properties  of  the  Fourier  Transform 

 4.4.1 

 Linearity 

Linearity is an important property when studying communication systems. A system 

is  defined  to  be  a  linear  system  if  satisfies  the  properties  of  homogeneity  and additivity: 

1  Homogeneity—If the application of the signal  x(t). at the system input produces y(t ). at the system output, then the application of the input  αx(t)., in which  α. is a constant, produces  αy(t). at the output. 

2  Additivity—If the application of the signals  x 1 (t). and  x 2 (t). at the system input produces, respectively,  y 1 (t). and  y 2 (t). at the system output, then the application of the input  x 1 (t) +  x 2 (t). produces  y 1 (t) +  y 2 (t). at the output. 

By applying the tests for homogeneity and additivity, it is immediate to check 

that  the  process  that  generates  the  signal  s(t) =  A  cos (ωct +   m(t) +  θ).  from an  input  signal  m(t).  is  nonlinear.  By  applying  the  same  test  to  the  signal   r(t) =

 m(t )  cos (ωct +  θ)., it is immediate to show that the process generating  r(t). is linear. 

The  Fourier  transform  is  a  linear  operator,  i.e.,  if  a  function  can  be  written  as a linear combination of other (well behaved) functions, the corresponding Fourier 

transform  will  be  given  by  a  linear  combination  of  the  corresponding  Fourier transforms of each one of the functions involved in the linear combination (Gagliardi 

1988). 

If  f (t) ←→  F (ω). and  g(t) ←→  G(ω)., then it follows that 

.  αf (t ) +  βg(t ) ←→  αF (ω) +  βG(ω). 

(4.59) 

 Proof   Letting  h(t) =  αf (t) +  βg(t) →., it then follows that 

∞

.  H (ω) =

 h(t )e− jωt  d t

−∞

∞

∞

=  α

 f (t )e− jωt  d t +  β

 g(t )e− jωt  d t

−∞

−∞

and finally 

.  H (ω) =  αF (ω) +  βG(ω). 

(4.60)
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 4.4.2 

 Scaling 

∞

.  F [ f (at )] =

 f (at )e− jωt  d t. 

(4.61) 

−∞

Initially,  let  us  consider  a >  0.  in  (4.61). By  letting  u =  at.,  it  follows  that d t =  ( 1 /a) d u.. Replacing  u for  at in (4.61), it follows that 

∞  f(u)

 u

.  F [ f (at )] =

 e− j ωa  d u

−∞

 a

which simplifies to 



 ω

.  F [ f (at )] = 1  F

 . 

(4.62) 

 a

 a

Consider now the case in which  a <  0.. By a similar procedure, it follows that ω

.  F [ f (at )] = − 1  F

 . 

(4.63) 

 a

 a

Finally, Eqs. 4.62 and 4.63 can be combined and written as 



 ω

.  F [ f (at )] = 1  F

 . 

(4.64) 

| a|

 a

This result points to the fact that if a signal is compressed in the time domain by a factor  a, then its frequency spectrum will expand in the frequency domain by that same factor. 

 4.4.3 

 Symmetry 

This is an interesting property which can be fully observed in even functions. The symmetry property states that if 

.  f (t ) ←→  F (ω), 

(4.65) 

then it follows that 

.  F (t ) ←→ 2 πf (− ω). 

(4.66)
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 Proof   By definition, 

+∞

.  f (t ) = 1

 F (ω)ejωt  d ω, 

2 π −∞

which after multiplication of both sides by 2 π . becomes 

+∞

. 2 πf (t ) =

 F (ω)ejωt  d ω. 

−∞

By letting  u = −  t., it follows that  

+∞

. 2 πf (− u) =

 F (ω)e− jωu d ω, 

−∞

and now by making  t =  ω., one obtains 

+∞

. 2 πf (− u) =

 F (t )e− jtu d t. 

−∞

Finally, by letting  u =  ω., it follows that 

+∞

.2 πf (− ω) =

 F (t )e− jωt  d t. 

(4.67) 

−∞

Example  The Fourier transform of a constant function can be easily derived by the use of the symmetry property. Since 

.  Aδ(t ) ←→  A, 

it follows that 

.  A ←→ 2 π Aδ(− ω) = 2 π Aδ(ω). 

 4.4.4 

 Time-Domain  Shift 

Given that  f (t) ←→  F (ω)., it then follows that  f (t −  t 0 ) ←→  F (ω)e− jωt 0.. Let g(t ) =  f (t −  t 0 ).. In this case, it follows that 

∞

.  G(ω) =  F [ g(t )] =

 f (t −  t 0 )e− jωt  d t. 

(4.68)

−∞
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By making  τ =  t −  t 0., it follows that  

∞

.  G(ω) =

 f (τ )e− jω(τ + t 0 ) d τ

(4.69) 

−∞

∞

. =

 f (τ )e− jωτ e− jωt 0 d τ

(4.70) 

−∞

and finally 

.  G(ω) =  e− j ωt 0  F (ω). 

(4.71) 

This result shows that whenever a function is shifted in time its frequency domain amplitude spectrum remains unaltered. However, the corresponding phase spectrum 

experiences a rotation proportional to  ωt 0.. 

 4.4.5 

 Frequency  Domain  Shift 

Given that  f (t) ←→  F (ω)., it then follows that  f (t)ejω 0 t ←→  F (ω −  ω 0 ).: 

∞

.  F [ f (t )ej ω 0 t ] =

 f (t )ejω 0 t e− jωt  d t

(4.72) 

−∞

∞

.  =

 f (t )e− j (ω− ω 0 )t  d t, 

−∞

.  F [ f (t )ej ω 0 t ] =  F (ω −  ω 0 )

(4.73) 

 4.4.6 

 Differentiation  in  the  Time  Domain 

Given the following transformation 

.  f (t ) ←→  F (ω), 

(4.74) 

it then follows that 

d f (t)

. 

←→  jωF (ω); 

(4.75) 

d t

notice that if  f (t). has a constant term then it will disappear after the derivative. 
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 Proof   Let us consider the expression for the inverse Fourier transform: 

∞

.  f (t ) = 1

 F (ω)ejωt  d ω

(4.76) 

2 π −∞

Differentiating in time, it follows that 



d f (t)

d

∞

. 

= 1

 F (ω)ejωt  d ω

d t

2 π  d t −∞

∞

= 1

d  F(ω)ejωt d ω

2 π −∞ d t

∞

= 1

 j ωF (ω)ejωt  d ω

2 π −∞

and then 

d f (t)

. 

←→  jωF (ω). 

(4.77) 

d t

In general, it follows that 

 dnf (t )

. 

←→  (jω)nf (ω). 

(4.78) 

d t

By computing the Fourier transform of the signal  f (t) =  δ(t) −  αe− αt u(t)., it is immediate to show that, by applying the property of differentiation in time, this signal is the time derivative of the signal  g(t) =  e− αt u(t).. 

 4.4.7 

 Integration  in  the  Time  Domain 

∞

Let  f (t). be a signal with zero average value, i.e., let −∞  f (t) d t = 0.. By defining t

.  g(t ) =

 f (τ ) d τ, 

(4.79) 

−∞

it follows that 

d g(t)

. 

=  f (t), 

d t

and since 

.  g(t ) ←→  G(ω), 

(4.80)
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then 

.  f (t ) ←→  j ωG(ω), 

and 

.  G(ω) =  F (ω) . 

(4.81) 

 j ω

In this manner, it follows that for a signal with zero average value 

.  f (t ) ←→  F (ω)

 t

. 

 f (τ ) d τ ←→  F (ω) . 

(4.82) 

−∞

 j ω

Generalizing, for the case in which  f (t). has a nonzero average value, it follows that 

 t

. 

 f (τ ) d τ ←→  F (ω) +  πδ(ω)F ( 0 ). 

(4.83) 

−∞

 j ω

 4.4.8 

 The  Convolution  Theorem 

The convolution theorem is a powerful tool for analyzing the frequency contents of a signal, allowing obtention of many relevant results. One instance of the use of the convolution  theorem,  of  fundamental  importance  in  communication  theory,  is  the sampling theorem which will be the subject of the next section. 

The  convolution  between  two  time  functions  f (t).  and  g(t).  is  defined  by  the following integral, 

∞

. 

 f (τ )g(t −  τ ) d τ, 

(4.84) 

−∞

which is often denoted as  f (t) ∗  g(t).. 

Let  h(t) =  f (t) ∗  g(t). and let  h(t) ←→  H (ω).. It follows that 

∞

∞  ∞

.  H (ω) =

 h(t )e− jωt  d t =

 f (τ )g(t −  τ )e− jωt  d tdτ, 

(4.85) 

−∞

−∞ −∞

∞

∞

.  H (ω) =

 f (τ )

 g(t −  τ )e− jωt  d tdτ, 

(4.86)

−∞

−∞
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∞

.  H (ω) =

 f (τ )G(ω)e− jωτ  d τ, 

(4.87) 

−∞

and, finally, 

.  H (ω) =  F (ω)G(ω). 

(4.88) 

The convolution of two time functions is equivalent in the frequency domain to 

the  product  of  their  respective  Fourier  transforms.  For  the  case  in  which   h(t) =

 f (t ) ·  g(t)., proceeding in a similar manner, one obtains 

.  H (ω) = 1 [ F (ω) ∗  G(ω)] . 

(4.89) 

2 π

In other words, the product of two time functions has a Fourier transform given 

by the convolution of their respective Fourier transforms. The convolution operation is  often  used  when  computing  the  response  of  a  linear  circuit,  given  its  impulse response and an input signal. 

Example  The circuit in Fig. 4.8 has the impulse response  h(t). given by 

.  h(t ) =

1  e−  tRC u(t). 

 RC

The application of the unit impulse  x(t) =  δ(t). as the input to this circuit causes an output  y(t) =  h(t)∗ x(t).. In the frequency domain, by the convolution theorem, it follows that  Y (ω) =  H (ω)X(ω) =  H (ω)., i.e., the Fourier transform of the impulse response of a linear system is the system transfer function. 

Using the frequency domain convolution theorem, it can be shown that 

 ω

. cos (ωct )u(t ) ←→  π [ δ(ω +  ωc) +  δ(ω −  ωc)] +  j

 . 

2

 ω 2 −

 c

 ω 2

Fig.  4.8  An RC circuit 

 C

+ 

+ 

 x (  )

 t

 y t

(  )

 R 
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4.5 

Parseval’s  Theorem 

For a real signal  f (t). of finite energy, often called simply a real energy signal, the energy  E associated with  f (t). is given by 

∞

.  E =

 f  2 (t ) d t

−∞

and can equivalently be calculated by the formula 

∞

.  E = 1

| F (ω)|2d .ω. 

2 π −∞

It follows that 

∞

∞

. 

 f  2 (t ) d t = 1

| F (ω)|2d ω. 

(4.90) 

−∞

2 π −∞

The  relationship  given  in  (4.90)  is  known  as  Parseval’s  theorem  or  Parseval’s identity. For a real signal  x(t). with energy  E, it can be shown, by using Parseval’s identity, that the signals  x(t). and  y(t) =  x(t −  τ ). have the same energy  E. 

Another way of expressing Parseval’s identity is as follows: 

∞

∞

. 

 f (x)G(x) d x =

 F (x)g(x) d x

(4.91) 

−∞

−∞

4.6 

Average  Value,  Power,  and  Autocorrelation 

As mentioned earlier, the average value of a real signal  x(t). is given by T

1

2

.  x(t ) = lim

 x(t ) d t. 

(4.92) 

 T →∞  T

− T

2

The instantaneous power of  x(t). is given by 

.  pX (t ) =  x 2 (t ). 

(4.93) 

If  the  signal  x(t).  exists  for  the  whole  interval  (−∞ , +∞ ).,  the  total  power P X.  is  defined  for  a  real  signal  x(t).  as  the  power  dissipated  in  a  1-ohm  resistor, when a voltage  x(t). is applied to this resistor (or a current  x(t). flows through the
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resistor) (Lathi 1989). Thus, 

 T

1

2

.  P X = lim

 x 2 (t ) d t. 

(4.94) 

 T →∞  T

− T

2

From the previous definition, the unit to measure  P X. corresponds to the square of  the  units  of  the  signal  x(t).  (v olt 2., amp2.).  These  units  will  only  be  converted to watts if they are normalized by units of impedance (ohm). It is common use to 

express the power in decibel (dB). The power in decibel is given by the expression (Gagliardi 1988) 

.  P X,dB = 10 log  P X. 

(4.95) 

The total power (  P X.) contains two components: one DC component, due to a nonzero average value of the signal  x(t). ( P DC.), and an AC component ( P AC.). The DC power of the signal is given by 

.  P DC =  (x(t )) 2 . 

(4.96) 

It follows that the AC power can be determined by removing the DC power from 

the total power, i.e., 

.  P AC =  P X −  P DC . 

(4.97) 

 4.6.1 

 Time  Autocorrelation  of  Signals 

The average time autocorrelation  RX(τ )., or simply autocorrelation, of a real signal x(t ). is defined as follows: 

 T

1

2

.  RX (τ ) = lim

 x(t )x(t +  τ ) d t

(4.98) 

 T →∞  T

− T

2

The change of variable  y =  t +  τ . allows Eq. (2.107) to be written as T

1

2

.  RX (τ ) = lim

 x(t )x(t −  τ ) d t. 

(4.99) 

 T →∞  T

− T

2

From Eqs. (4.98) and (4.99), it follows that  RX(τ ). is an even function of  τ ., and thus (Lathi 1989) 

.  RX (− τ ) =  RX(τ ). 

(4.100)
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From the definition of autocorrelation and power, it follows that 

.  P X =  RX( 0 )

(4.101) 

and 

.  P DC =  RX(∞ ), 

(4.102) 

i.e.,  from  its  autocorrelation  function,  it  is  possible  to  obtain  information  about the  power  of  a  signal.  The  autocorrelation  function  can  also  be  considered  in  the frequency domain by taking its Fourier transform, i.e., 

+∞

 T

1

2

.  F { RX(τ )} =

lim

 x(t )x(t +  τ )e− jωτ  d t  d τ =

(4.103) 

−∞  T →∞  T

− T

2

 T



1

+∞

2

.  = lim

 x(t )

 x(t +  τ ) d τ  d t

 T →∞  T

− T

−∞

2

 T

1

2

.  = lim

 x(t )X(ω)ejωt  d t

 T →∞  T

− T

2

 T

1

2

.  =  X(ω)  lim

 x(t )ejωt  d t

 T →∞  T

− T

2

 X(ω)X(− ω)

.  = lim

 T →∞

 T

| X(ω)|2

. = lim

 . 

(4.104) 

 T →∞

 T

The power spectral density  SX. of a signal  x(t). is defined as the Fourier transform of the autocorrelation function  RX(τ ). of  x(t)., i.e., as 

∞

.  SX =

 RX(τ )e− jωτ  d τ. 

(4.105) 

−∞

Example  Find  the  power  spectral  density  of  the  sinusoidal  signal   x(t)

=

 A  cos (ω 0 t +  θ)., which is illustrated in Fig. 4.9. 

Solution 

 T

1

2

.  RX (τ ) = lim

 A 2 cos (ω 0 t +  θ)  cos [ ω 0 (t +  τ ) +  θ]d t T →∞  T

− T

2

4.6 Average Value, Power, and Autocorrelation

99

Fig.  4.9  Sinusoidal signal 

 x  t(  ) 

 A 

0 

 −A 

0

 t 

Fig.  4.10  Autocorrelation of 

 R (  )τ 

the sinusoidal signal 

 X 

 X

 P 

0 

0 

τ 





 T

 T

1

2

2

.  =  A 2 lim

cos  ω 0 τ  d t +

cos  ( 2 ω 0 t +  ω 0 τ + 2 θ)  d t

2  T →∞  T

− T

− T

2

2

.  =  A 2 cos  ω 0 τ. 

2

Notice that the autocorrelation function, depicted in Fig. 4.10, is independent of the phase  θ .. The power spectral density, shown in Fig. 4.11, is given by 

.  SX (ω) =  F [ RX(τ )]

.  SX (ω) =  π A 2 [ δ(ω +  ω 0 ) +  δ(ω −  ω 0 )]  . 

2
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Fig.  4.11  Power spectral 

density of the sinusoidal 

(    )

 S X   ω 

signal 

π  A  2/ 2

π  A 2 / 2  

0 

−ω0 

0

ω0

ω 

Finally, the power, or mean square average, of  x(t). is given by 

.  P X =  RX( 0 ) =  A 2  . 

2

4.7 

The  Hilbert  Transform 

The Hilbert transform is a time-domain-to-time-domain transformation which shifts 

the phase of a signal. The application of a Hilbert transform to a signal, twice in succession,  shifts  the  phases  of  all  of  the  components  of  this  signal  by 1800.  and therefore produces the negative of the original signal. It is named after the German mathematician David Hilbert (1862–1943) (Hilbert 1912). 

The Hilbert transform of a time signal  f (t). is denoted by  H[ f (t)]., or   ˆ

 f (t )., and 

defined by the following integral (Gagliardi 1978): 

∞  f(τ)

.  H[ f (t )] = ˆ

 f (t ) = 1

d τ

(4.106) 

 π

−∞  t −  τ

The functions  f (t). and ˆ

 f (t ). form a pair of Hilbert transforms. It is important to 

mention that the transform is actually the Cauchy principal value of the integral. 

The Hilbert transform is a linear operation, and its inverse is given by 

∞ ˆ f(t)

.  H−1[ ˆ

 f (t )] =  f (t) = − 1

d τ. 

(4.107) 

 π

−∞  t −  τ

From the definition, it is possible to interpret ˆ

 f (t ). as the convolution of  f (t). with 

the function  1

 π t .. From a known property of the Fourier transform, the convolution

4.9 Multiple Hilbert Transforms
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in time is equivalent to the multiplication in the frequency domain. Therefore, 









1

.  G(ω) =  F

 f (t ) ∗ 1

=  F[ f (t)] ·  F

 . 

(4.108) 

 π t

 π t

4.8 

Linearity  of  the  Hilbert  Transform 

The Hilbert transform is also a linear operation. Consider the transform of the linear combination of functions  h(t) =  αf (t) +  βg(t)., 

.  H[ g(t )] =  H[ αf (t ) +  βg(t )]

(4.109)

∞

= 1

 αf (τ ) +  βg(τ )  d τ

 π

−∞

 t −  τ

∞

∞

=  α

 f (τ )

 g(τ )

d τ +  β

d τ

 π

−∞  t −  τ

 π

−∞  t −  τ

=  αH[ f (t)] +  βH[ g(t)] . 

Example  The  Hilbert  transform  for  a  constant  function  f (t) =  c.  is  easy  to calculate using the definition 

∞



 c

∞

1

.  H[ c] = 1

d τ =  c

d τ = 0 . 

(4.110) 

 π

−∞  t −  τ

 π

−∞  t −  τ

The last equality is a result of the integrand 1 /(t −  τ ). being an odd function over a symmetric interval around  t =  τ .. Hence,  H[ c] = 0. for any constant  c. 

It is not always easy and straightforward to compute the Hilbert transform for a 

general  function.  For  more  advanced  functions,  it  is  necessary  to  use  techniques from  complex  analysis  to  handle  the  integral.  These  techniques  include  contour integrals in the complex plane and the residue theorem. The singularity in  t =  τ . 

on the real line has to be taken care of in this case. 

4.9 

Multiple  Hilbert  Transforms 

The  Hilbert  transform  applied  twice  on  a  real  function  produces  the  same  real function but changes its sign. That is, 

∞ ˆ f(τ)

.  H 2[ f (t )] =  H[ H[ f (t )]] = 1

d τ = − f (t). 

(4.111)

 π

−∞  t −  τ
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From this property, it is possible to derive the following, 

.  H 4[ f (t )] =  f (t ), 

(4.112) 

that is, it is possible to use the multiple Hilbert transform to calculate the inverse Hilbert transform, 

.  H−1[ ˆ

 f (t )] =  H 3[ f (t)] . 

(4.113) 

By multiplying the Hilbert transform operator by itself, one obtains a practical 

method to do multiple Hilbert transforms: 

.  H−1[ ˆ

 f (t )] =  H 3[ f (t)]

(4.114) 

Hilbert  transform  can  be  applied  in  the  time  domain  by  using  the  former definition.  In  the  frequency  domain,  it  is  only  necessary  to  multiply  the  Hilbert transform operator − j  sgn (ω). by the Fourier transform  F (ω). of the function  f (t)., 

.  Hn[ f (t )] ↔ [− j  sgn  (ω)] nF (ω), 

(4.115) 

in which  n is the number of time that the Hilbert transform is applied. 

4.10 

The  Fourier  Transform  of  1

 π t . 

To  obtain  the  Fourier  transform  of  the  hyperbolic  function,  g(t) = 1

 π t ., shown in  

Fig. 4.12, it is possible to use the following reasoning: 

Fig.  4.12  Signal function 

 g (  ) 

 t

0 

0 

 t 
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Fig.  4.13  Signal function 

sgn (  ) 

 t 

1 

0 

−1 

0 

 t 

• Consider the signal function presented in Fig. 4.13. 

• The derivative of this function results in an impulse centered at the origin of the axis, with total area equal to 2, and the Fourier transform of the impulse is equal to 2. 

• Because the impulse has been obtained from the signal function, then, its Fourier transform is obtained dividing the previous result by  j ω.. Therefore, 

.sgn (t ) = u (t ) − u (− t ) ↔ 2  . 

(4.116)

 j ω

• Finally, using the symmetry property, one obtains 

1

. 

↔  j[u (− ω) − u (ω)] = − j sgn (ω). 

 π t

Therefore,  the  Fourier  transform  of  the  hyperbolic  function  is  the  imaginary signal function, as follows: 

.  G(ω) = − j  sgn (ω)

(4.117) 

This property helps computing the Hilbert transform because it is possible to use 

the available tables of Fourier transform with this objective. 

4.11 

Hilbert  Transform  of  the  Signal  Derivative 

The Hilbert transform of the derivative of a signal is the derivative of the Hilbert transform of that signal. This can be verified using a property of the doublet function δ (t ).. 
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Recall that 

.  δ (t ) = d  δ(t ) = d2 u (t ), 

(4.118) 

d t

d t 2

in which  δ(t). is the impulse function and u (t). is the unit step function. 

Because, by a property of the doublet function,  g(t) ∗  δ (t) =  g (t)., then 





.  H[ g (t )] = [ g(t ) ∗  δ (t )] ∗ 1 =

 g(t ) ∗ 1

∗  δ (t) = d ˆ g(t). 

(4.119) 

 π t

 π t

d t

Iterating this identity, one obtains 

.  H[ g(n)(t )] = d n  ˆ

 g(t ). 

(4.120) 

d tn

Example  Calculate the Hilbert transform of the delta function  δ(t). and its derivatives. Consider the Hilbert transform of the delta function, 

∞  δ(τ)

.  H[ δ(t )] = 1

d τ = 1  , 

(4.121) 

 π

−∞  t −  τ

 π t

by the fundamental property of the convolution with an impulse function. 

Using the property of the Hilbert transform derivative, one obtains 

.  H[ δ (t )] = − 1  . 

(4.122) 

 π t  2

By the same token, 

.  H[ δ (t )] =

2  . 

(4.123) 

 π t  3

4.12 

Hilbert  Transform  of  Trigonometric  Functions 

The  Hilbert  transform  of  the  cosine  function  can  be  computed  directly  from  the definition. Considering that  f (t) = cos (ωt)., then 

∞ cos (ωτ)

.  H[cos (ωt )] = 1

d τ,  change variable  τ =  σ +  t

(4.124)

 π

−∞  t −  τ

∞

= − 1

cos (ω(σ +  t))  d σ

 π

−∞

 σ

4.13 Hilbert Transform of the Complex Exponential Functions
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∞







∞ 

= − 1 

cos (ωσ ) 

sin (ωσ ) 

cos (ωt) 

d σ −

sin (ωt) 

d σ

 π

−∞ 

 σ 

−∞ 

 σ 



∞







∞

= − 1 

cos (ωσ ) 

sin (ωσ )



cos (ωt)

d σ − sin (ωt)

d σ

 π

−∞ 

 σ 

−∞

 σ

= sin (ωt). 

The result comes from the fact that cos (ωσ )/σ . is an odd function and 

∞ sin (ωσ)

. 

d σ =  π. 

(4.125) 

−∞

 σ

Following the same reasoning, one obtains 

∞ sin (ωτ)

.  H[sin (ωt )] = 1

d τ,  change variable  τ =  σ +  t

(4.126)

 π

−∞  t −  τ

∞

= − 1

sin (ω(σ +  t))  d σ

 π

−∞

 σ

∞

∞



= − 1

sin (ωσ )

cos (ωσ )

cos (ωt)

d σ −

sin (ωt)

d σ

 π

−∞

 σ

−∞

 σ



∞

∞



= − 1

sin (ωσ )

cos (ωσ )

cos (ωt)

d σ − sin (ωt)

d σ

 π

−∞

 σ

−∞

 σ

= − cos (ωt). 

4.13 

Hilbert  Transform  of  the  Complex  Exponential 

Functions 

The Hilbert transform of the complex exponential function  ejωt . can be computed in the following manner, 

.  H[ ej ωt ] =  H[cos (ωt ) +  j  sin (ωt )] = sin (ωt ) −  j  cos (ωt ) (4.127)

= − j sgn  (ω)ejωt = sgn  (ω)ej(ωt− π/ 2 ), 

in  which  the  operator − j  sgn  (ω).  produces  a  phase  lag  of  π/ 2.  for  all  positive frequencies and a phase lead of  π/ 2. for the negative frequencies. 

By  the  same  token,  the  Hilbert  transform  of  the  complex  exponential  function e− jωt . can be computed as 

.  H[ e− j ωt ] =  H[cos (ωt ) −  j  sin (ωt )] = sin (ωt ) +  j  cos (ωt ) (4.128)

=  j sgn  (ω)e− jωt = sgn  (ω)e− j(ωt− π/ 2 ). 
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4.14 

Hilbert  Transform  of  Periodic  Functions 

A periodic function can be written in trigonometric form as 

∞



.  f (t ) =  a 0 +

 an  cos (nω 0 t +  φn), 

(4.129) 

 n=1

in which  ω 0 = 2 π/T . and  T  is the period of the wave form. 

Applying  the  Hilbert  transform  to  the  previous  signal,  using  the  discussed properties, one obtains 

∞



ˆ

.  f (t ) =  H[ f (t )] =

 an  sin (nω 0 t +  φn), 

(4.130) 

 n=1

because the Hilbert transform of a constant is zero. 

A  periodic  signal  can  also  be  expressed  in  complex  form,  using  the  complex exponential  formula,  also  known  as  Euler’s  formula,  ejnω 0 t = cos (nω 0 t) +

 j  sin (nω 0 t).. This formula was originally derived  by Leonhard  Paul  Euler (1707– 

1783),  a  Swiss  mathematician,  physicist,  astronomer,  geographer,  logician,  and engineer, who founded the studies of graph theory and topology and made pioneering discoveries in many other branches of Mathematics, including analytic number 

theory, complex analysis, and infinitesimal calculus: 

∞



.  f (t ) =

 Cnenω 0 t

(4.131) 

 n=−∞

Applying the Hilbert transform signal, one obtains 

∞



∞



ˆ

.  f (t ) =  H[ f (t )] =

 CnH[ enω 0 t ] = −

 Cnj  sgn (n) enω 0 t . 

(4.132) 

 n=−∞

 n=−∞

4.15 

Properties  of  the  Hilbert  Transform 

The Hilbert transform has the following properties (Johansson 1999):

• The Hilbert transform is a linear operation; thus, 

.  H[ αf (t ) +  βg(t )] =  αH[ f (t )] +  βH[ g(t )] . 

(4.133)

• The Hilbert transform of a constant is zero, as follows, 

4.15 Properties of the Hilbert Transform
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∞



 c

∞ 1

.  H[ c] = 1

d τ =  c

d σ = 0 , 

(4.134) 

 π

−∞  t −  τ

 π

−∞  σ

in which the change of variables  σ =  t −  τ . and d τ = −d σ . was performed. 

• The time shift property implies that 

.  H[ f (t −  α)] = ˆ

 f (t −  α). 

(4.135)

• The scaling property implies that 

.  H[ f (αt )] = ˆ

 f (αt ), α >  0 . 

(4.136)

• The time reversal property implies that 

.  H[ f (− αt )] = − ˆ

 f (− αt), α >  0 . 

(4.137)

• The derivative property implies that 

.  H[ f  (t )] = ˆ

 f  (t ). 

(4.138) 

In this case, computing the derivative of the Hilbert transform, one obtains 











d

1

∞  f (τ)

∞  ∂ f (τ)

. 

 H[ f (t)] = d

d τ

= 1

d τ, 

d t

d t

 π

−∞  t −  τ

 π

−∞  ∂t

 t −  τ

which, by a change of variables, gives 





d

d

. 

 H[ f (t)] =  H

 f (t ) . 

d t

d t

• The Hilbert transform of the convolution of functions  f (t). and  g(t). yields 

.  H[ f (t ) ∗  g(t )] =  H[ f (t )] ∗  g(t ) =  f (t ) ∗  H[ g(t )] . 

(4.139)

• Applying the Hilbert transform of the convolution of functions  f (t). and  g(t). in Formula 4.139 gives 

.  H[ H[ f (t ) ∗  g(t )]] = − H[ f (t )] ∗  H[ g(t )] . 

(4.140)

• The signal  f (t). and its transform ˆ

 f (t ). have the same power spectral density. 

• The signal  f (t). and its transform ˆ

 f (t ). have the same autocorrelation function. 

• The signal  f (t). and its transform ˆ

 f (t ). are orthogonal. 

• If ˆ

 f (t ).  is  the  Hilbert  transform  of  f (t).,  then  the  Hilbert  transform  of ˆ

 f (t ).  is 

−  f (t).. 
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For  a  function  f (t).  that  is  either  even  or  odd  and  has  a  well-defined  Hilbert transform, the following holds:

• If  f (t). is even, its Hilbert transform is an odd function. 

• If  f (t). is odd, its Hilbert transform is an even function. 

It is important to remember that a signal  f (t). and its Hilbert transform ˆ

 f (t ). have 

the same amplitude spectrum and the same autocorrelation function. Also, the power spectral density is the same for both  f (t). and ˆ

 f (t ).. Finally, if the Fourier transform 

of  f (t). exists, then the Hilbert transform also exists for energy and power signals. 

Example  Using the corresponding properties, it is possible to calculate the Hilbert transforms of the basic trigonometric functions. Supposing that  ω >  0., then ejωt +  e− jωt

 H[ ejωt] +  H[ e− jωt]

.  H[cos (ωt )] =  H

=

(4.141)

2

2

−

=  j sgn (ω)ejωt −  j sgn (− ω)e− jωt

2

−

=  jejωt +  je− jωt =  ejωt −  e− jωt = sin (ωt). 

2

2 j

By the same token, 







.  H[sin (ωt )] =  H  cos  ωt −  π

= sin (ωt −  π ) = − cos (ωt). (4.142) 

2

2

Concluding, if  ω >  0., then  H[cos (ωt)] = sin (ωt)., and  H[sin (ωt)] = − cos (ωt).. 

Using  the  time  reversal  property,  if  ω <  0.,  then  H[cos (ωt)] = − sin (ωt).,  and H[sin (ωt)] = −[− cos (ωt)] = cos (ωt).. 

It is possible to write a compact set of formulas, using the signum function, for 

all  ω ∈ R., 

.  H[cos (ωt )] = sgn (ω)  sin (ωt )

(4.143)

 H[sin (ωt)] = −sgn (ω)  cos (ωt), 

which are the Hilbert transforms for the cosine and sine functions. 

4.16 

Orthogonality  of  the  Hilbert  Transform 

If  f (t). is a real-valued energy signal, then  f (t). and ˆ

 f (t ). are orthogonal. To prove 

this, recall that a complex function is called Hermitian if its real part is even and its imaginary part is odd. Therefore, the Fourier transform  F (ω). of a real function  f (t). 

is Hermitian:

4.17 Energy of a Hilbert Transform of a Signal
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∞

.  f (t ),  ˆ

 f (t ) =

 f (t )  ˆ

 f ∗ (t ) d t

(4.144)

−∞

∞

=

 F (ω)  ˆ

 F ∗ (ω) d ω

−∞

∞

=

 F (ω)[− j  sgn (ω)  ˆ

 F (ω)]∗d ω

−∞

∞

=

 j | F (ω)|2sgn (ω) d ω

−∞

= 0 , 

in  which  the  use  has  been  made  of  the  property  that  since | G(ω)|2.  is  an  even function,  then | G(ω)|2sgn (ω).  is an odd function of  ω.  and hence the value of the integral is zero. 

4.17 

Energy  of  a  Hilbert  Transform  of  a  Signal 

The energy of a function  f (t). is related to the energy of its Fourier transform  F (ω). 

by Parseval’s theorem, 

∞

∞

.  Ef =

| f (t)|2d t = 1

| F (ω)|2d ω, 

(4.145) 

−∞

2 π −∞

assuming that the energy is finite. 

The same theorem can be used to define the energy of the Hilbert transform of 

 f (t )., that is, 

∞

∞

.  E  ˆ =

| ˆ

 f (t )|2d t = 1

| −  j sgn  (ω)F (ω)|2d ω, 

(4.146)

 f

−∞

2 π −∞

∞

= 1

| −  j sgn  (ω)|2| F (ω)|2d ω. 

2 π −∞

It can be seen that | −  j  sgn  (ω)|2 = | −  j |2|sgn  (ω)|2 = 1., except for  ω = 0.. 

But  since  F (ω).  does  not  contain  any  impulses  at  the  origin,  one  concludes  that Ef =  E  ˆ f.. 

Example  Compute the Hilbert transform of  tf (t).. In order to solve this, consider the original definition of the Hilbert transform, 

∞  τf(τ)

.  H[ tf (t )] = 1

d τ, 

 π

−∞  t −  τ

and insert the new variable  σ =  t −  τ . to obtain
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∞  (t −  σ)f(t −  σ)

.  H[ tf (t )] = 1

d σ

(4.147)

 π

−∞

 σ

∞

∞

= 1

 tf (t −  σ )  d σ − 1

 f (t −  σ ) d σ

 π

−∞

 σ

 π

−∞

∞

=  tH[ f (t)] − 1

 f (t −  σ ) d σ. 

 π

−∞

4.18 

Hilbert  Transform  of  a  Low-Pass  Signal 

Let  f (t). be signal whose Fourier transform satisfies  F (ω) = 0. for | ω| ≥  W ., and let h(t ). be a signal with  H (ω) = 0. for | f |  < W .. Then (Kschischang 2015), 

.  H[ f (t )h(t )] =  f (t )  ˆ

 h(t ), 

(4.148) 

that is, it is only necessary to transform the high-pass signal to compute the Hilbert transform of the product of a low-pass signal with a high-pass signal. 

To prove this property, let  g(t) =  f (t)h(t).. Then, 

.  G(ω) =  F (ω) ∗  H (ω) =  F (ω) ∗ [ H (ω) u (ω) +  H (ω) u (− ω)] , in which u (ω). is the unit step function. 

It is possible to note that  F (ω) ∗ [ H (ω) u (ω)]. is zero if  ω <  0. and that  F (ω) ∗

[ H (ω) u (− ω)]. is zero if  ω >  0.. Therefore, 

ˆ

.  G(ω) = − j  sgn (ω)G(ω)

(4.149)

= − jF (ω) ∗ [ H(ω) u (ω)] +  jF (ω)[ H(ω) u (− ω)]

=  F (ω) ∗ [− jH(ω) u (ω) +  jH(ω) u (− ω)]

=  F (ω) ∗ [− j sgn (ω)H(ω)]

=  F (ω) ∗ ˆ

 H (ω). 

An  important  special  case  of  this  property  appears  in  the  case  of  quadrature amplitude  modulation  (QAM)  modulation.  Assuming  that  mI (t).,  the  in-phase component,  and  mQ(t).,  the  quadrature  component  of  the  modulating  signal,  are bandlimited to  W  Hz, then if  ωc > W ., it can be shown that 

.  H[ mI (t )  cos (ωct ) +  mQ(t )  sin (ωct )] =  mI (t )  sin (ωct ) −  mQ(t )  cos (ωct ), (4.150) 

in which  ωc. is the carrier frequency. 

4.19 Hilbert Transform of an Amplitude-Modulated Signal
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4.19 

Hilbert  Transform  of  an  Amplitude-Modulated  Signal 

The Hilbert transform of an amplitude-modulated signal is given by Kschischang 

(2015) 





.  H[ m(t )  cos (ωct +  φ)] =

 m(t ) ∗ cos (ωct)  cos (ωct +  φ)

(4.151)

 π t





+  m(t) ∗ sin (ωct)  sin (ωct +  φ). 

 π t

In order to obtain this result, it is necessary to write  m(t) =  mL(t) +  mH (t)., in which  mL(t). is the low-pass component of the modulating signal  m(t)., given by 

.  mL(t ) =  m(t ) ∗ sin (ωct ) , 

 π t

and  mH (t). is the high-pass component 





.  mH (t ) =  m(t ) ∗

 δ(t ) − sin (ωct) . 

 π t

Note that  mL(t). contains all frequency components of  m(t). from zero up to frequency  ωc., while  mH (t). contains the remaining components at higher frequencies. 

Therefore, 

.  H[ m(t )  cos (ωct +  φ)] =  H[ mL(t )  cos (ωct +  φ)]

(4.152)

+  H[ mH (t)  cos (ωct +  φ)]

=  mL(t)H[cos (ωct +  φ)]

+  mH (t)H[cos (ωct +  φ)] , 

in  which  the  second  equality  follows  from  application  of  the  previous  results  on low-pass and high-pass products. 

From the properties of the Hilbert transform,  H[cos (ωct +  φ)] = sin (ωct +  φ).. 

The remaining term can be computed as follows, 





.  H[ mH (t )] =  m(t ) ∗

 δ(t ) − sin (ωct) ∗ 1

(4.153)

 π t

 π t





=

1

 m(t ) ∗

− sin (ωct) ∗ 1

 π t

 π t

 π t





=

1

 m(t ) ∗

− sin (ωct) ∗ 1

 π t

 π t

 π t
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=

1 

 m(t) ∗

[1 − 2 sin2 (ωct/ 2 )]

 π t  

=

cos (ωc  t)

 m(t) ∗ 

 , 

 π t

which leads to the main result. In the derivation, one used the fact that  H[sinc (t)] =

sinc (t)  sin (π t/ 2 ).. 

4.20 

Problems 

1.  Consider the signal 

1 ,  0 ≤  t < π

.  x(t ) =

−1 , π ≤  t ≤ 2 π

which is approximated as ˜ x(t) = 4 sin (t)

 π

. in the time interval considered. 

(a)  Show that the error in the approximation is orthogonal to the function ˜ x(t).. 

(b)  Show that the energy of  x(t).  is the sum of the energy in the error signal with the energy of the signal ˜ x(t).. 

2.  Calculate  the  instantaneous  power  and  the  average  power  of  the  following signals: 

(a)   x(t) = cos ( 2  πt). 

(b)   y(t) = sin ( 2  πt). 

(c)   z(t) =  x(t) +  y(  t). 

3.  Determine the constant  A such that  f 1 (t). and  f 2 (t). are orthogonal for all  t, in which  f 1 (t) =  e−| t|. and  f 2 (t) = 1 −  Ae−2| t|.. 

4.  Given the set of functions  fn(t)., as illustrated in Fig. 4.2, show the following: (a)  This set of functions constitutes an orthogonal set in the interval  ( 0 ,  1 ).. For an  orthonormal  set,  the  integral  of  the  product  of  the  functions  is  one  or zero. Is the set orthonormal? 

(b)  Represent a given signal  f (t) = 2 t. in the interval  ( 0 ,  1 )., using this set of orthogonal functions. 

(c)  Plot the function  f (t). and its approximate representation ˜

 f (t ). in the same 

graph. 

(d)  Determine the energy of the error signal resulting from the approximation. 

5.  Represent the gate function, and its complement, using the unit step. 

6.  Represent  analytically  the  graph  of  a  series  of  triangular  functions,  using generalized functions. 

7.  Calculate the following integrals:

4.20 Problems
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∞ 

(a)

−∞  e− αt  u(t  ) d t



. 

∞ 

(b)

−∞  e− αt  δ(t  ) d t



. 

∞





(c)

 t

−∞  e− αt  r(t  ) d t



. for  r(t ) = −∞  u(τ )dτ . 

8.  Calculate the Fourier transform of the impulse function assuming the Fourier 

transform of the unit step function is known. 

9.  Calculate the inverse Fourier transform of the function 

.  F (ω) =  A[ u(ω +  ω 0 ) −  u(ω −  ω 0 )] . 

10.  Calculate the Fourier transform of the function  f (t) =  Ae− αt u(t)., and plot the corresponding magnitude and phase diagrams. 

11.  Plot the magnitude and phase diagrams of the Fourier transform of the function δ(t +  t 0 ).. 

12.  For a circuit with impulse response  h(t)., 

.  h(t ) = 1  e−  tτ u(t ), 

 τ

find the response for the excitation  x(t). given by 

.  x(t ) =  t e−  tτ u(t ). 

13.  Find  the  Fourier  transform  of  the  function  g(t) =  f (t)  cos (ωct)., given the Fourier transform of  f (t).. 

14.  Show that for a function  f (t). in general, 

 t

. 

 f (t ) d t ←→  F (ω) +  πF ( 0 )δ(ω). 

−∞

 j ω

15.  Prove that, for a real energy signal  f (t)., the energy associated with  f (t)., 

∞

. 

 f  2 (t ) d t, 

−∞

can be calculated by the formula 



1

∞

. 

| F (ω)|2 dω. 

2 π −∞

16.  Use the property of the convolution in the frequency domain to show that 

 ω

. cos (ωct )u(t ) ←→  π [ δ(ω +  ωc) +  δ(ω −  ωc)] +  j

 . 

2

 ω 2 −

 c

 ω 2
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17.  A signal  x(t). has the exponential Fourier series expansion as given: 

∞



1

.  x(t ) = − 2 A

 ej 2 πnt

 π

4 n 2 − 1

 n=−∞

Find its corresponding trigonometric Fourier series expansion. 

18.  By defining the cutoff frequency as the smallest frequency for which the first spectral zero occurs, determine the cutoff frequency  (ω 0 ). of the signal  x(t). in Fig. 4.14. 

19.  Calculate the Fourier transform of the signals represented in Figs. 4.15 and 4.16. 

20.  Calculate  the  frequency  response  of  a  linear  system  the  transfer  function  of which  is  given,  when  the  input  is  the  pulse   x(t) =  A[ u(t +  T / 2 ) −  u(t −

 T / 2 )].. Plot the corresponding magnitude and phase diagrams of the frequency Fig.  4.14  Shifted gate 

(  )

 x  t

function 

 A 

0

 T 

 t 

Fig.  4.15  Triangular 

(  )

 g  t 

waveform 

 B 

0

 −T 

0 

 T

 t 
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Fig.  4.16  Trapezoidal 

 f (  ) t 

waveform 

 A 

0 

−2 T

 T

 −

0 

 T

 T

2 

 t 

response: 

.  H (ω) =  j u(− ω) −  j u(ω)

21.  A signal  x(t). is given by the expression 

.  x(t ) = sin (At ) . 

 π t

Determine the Nyquist frequency for sampling this signal. 

22.  What  is  the  least  sampling  rate  that  is  required  to  sample  the  signal   f (t) =

sin3 (ω 0 t).? Show graphically the effect caused by a reduction of the sampling rate, falling below the Nyquist rate. 

23.  Calculate the Fourier transform of the signal 

.  g(t ) =  Ae− t u(t ), 

and  then  apply  the  property  of  integration  in  the  time  domain  to  obtain  the Fourier transform of  f (t) =  A( 1 −  e− t )u(t).. 

24.  Determine  the  magnitude  spectrum  and  phase  function  of  the  signal   f (t) =

 t e− at u(t ).. 

25.  A voltage signal 

∞



.  v(t ) =  V 0 +

 Vn  cos (nω 0 t +  θn)

 n=1
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is applied to the input of a circuit, producing the current 

∞



.  i(t ) =  I 0 +

 Im  cos (mω 0 t +  φm). 

 m=1

Using the orthogonality  concept,  calculate  the power  ( P ) absorbed  by the circuit, considering 

 T/ 2

.  P = 1

 v(t )i(t ) d t. 

 T

− T / 2

What is the power for the case in which  θn =  φn.? 

26.  Define  an  ideal  low-pass  filter,  and  explain  why  it  is  not  physically  realizable. Indicate  the corresponding  filter transfer  function  and  the filter  impulse response. 

27.  Given the linear system shown in Fig. 4.17, in which  T  represents a constant delay, determine

(a)  The system transfer function  H (ω). 

(b)  The system impulse response  h(t). 

28.  Let  f (t). be the signal with spectrum  F (ω). as follows, 

.  F (ω) =

 AT

 ,  in which  T = 0 .  5 μs , A = 5 V . 

1 +  j wT

(a)  Calculate and plot the magnitude of the Fourier transform, | F (ω)|.. 

(b)  Calculate the frequency for which | F (ω)|. corresponds to a value 3dB below the maximum amplitude value in the spectrum. 

(c)  Calculate the energy of the signal in time,  f (t).. 

29.  Represent the following signals using the unit step: 

(a)  The ramp function,  r(t +  T ). 

(b)  The echo function,  δ(t −  T ) +  δ(t +  T ). 

(c)  A periodic sawtooth waveform with period  T  and peak amplitude given by A

Plot the corresponding graphs. 

x(t)  + 

y(t)

+ 

T 

-

Fig.  4.17  Linear system with feedback

4.20 Problems

117

30.  Calculate the Fourier transform of each one of the following signals: 

(a)   x(t) =  e− t+ to u(t −  to). 

(b)   y(t) =  tu(  t). 

(c)   z(t) =  y (t). 

Draw the time signals, as well as the associated magnitude spectra. 

31.  Verify, by applying the properties of homogeneity and additivity, whether the process generating the signal 

.  s(t ) =  A  cos (ωct +   m(t ) +  θ )

from the input signal  m(t). is linear. Perform the same test for the signal 

.  r(t ) =  m(t )  cos (ωct +  θ ). 

32.  A linear system has impulse response  h(t) = 2[ u(t) −  u(t −  T )].. Using the convolution theorem, determine the system response to the input signal  x(t) =

 u(t) −  u(t −  T ).. 

33.  A digital signal  x(t). has autocorrelation function 





¯

| τ|

.  RX (τ ) =  A 2 1 −

[ u(τ +  Tb) −  u(τ −  Tb)] , 

 Tb

in which  Tb. is the bit duration. Determine the total power, the AC power, and the DC power of the given signal. Calculate the signal power spectral density. 

Plot the diagrams representing these functions. 

34.  Calculate the Fourier transform of a periodic signal  x(t)., represented analytically as 

∞



.  x(t ) =

 Fnejnω 0 t . 

−∞

35.  Prove the following property of the Fourier transform: 



 ω

.  x(αt ) ←→ 1  X

| α|

 α

36.  Calculate the average value and the power of the signal 

.  x(t ) =  V u( cos  t ). 

37.  For a given real signal  x(t)., prove the following Parseval identity: 

∞

∞

.  E =

 x 2 (t ) d t = 1

| X(ω)|2 dω

−∞

2 π −∞
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Consider the signals  x(t). and  y(t) =  x(t −  τ )., and show, by using Parseval’s identity, that both signals have the same energy  E. 

38.  A signal  y(t). is given by the following expression, 

∞  x(τ)

.  y(t ) = 1

 dτ, 

 π

−∞  t −  τ

in which the signal  x(t). has a Fourier transform  X(ω).. By using properties of the Fourier transform, determine the Fourier transform of  y(t).. 

39.  Given  that  the  Fourier  transform  of  the  signal  f (t) = cos (ωot).  is   F (ω) =

 π [ δ(w + ωo)+ δ(w − ωo)]., determine the Fourier transform of the signal  g(t) =

sin (ωot −  φ)., in which  φ. is a phase constant. Sketch the magnitude and phase graphs of the Fourier transform of this signal. 

40.  Calculate the Fourier transform of the radio frequency pulse 

.  f (t ) = cos (ωot )[ u(t +  T ) −  u(t −  T )] , considering  that  ωo  2 π

 T ..  Sketch  the  magnitude  and  phase  graphs  of  the 

Fourier transform of this signal. 

41.  Calculate  the  Fourier  transform  of  the  signal  f (t) =  δ(t) −  αe− αt u(t).,  and show, by using the property of the derivative in the time domain, that this signal is the derivative of the signal  g(t) =  e− αt u(t).. Sketch the respective time and frequency domain graphs of the signals, specifying the magnitude and the phase 

spectra of each signal. 

42.  By making use of properties of the Fourier transform, show that the derivative of the signal  h(t) =  f (t) ∗  g(t). can be expressed as 

.  h (t ) =  f  (t ) ∗  g(t ),  or  h (t ) =  f (t ) ∗  g (t ). 

43.  Determine  the  Nyquist  frequency  for  which  the  following  signal  can  be recovered without distortion: 

.  f (t ) = sin  αt · sin  βt , α > β. 

 t  2

Sketch the signal spectrum, and give a graphical description of the procedure. 

44.  Using the Fourier transform, show that the unit impulse function can be written as 



1

∞

. 

cos (ωt)dω. 

 π

0

45.  Using properties of the Fourier transform, determine the Fourier transform of the function | t|.. Plot the corresponding magnitude and phase spectrum of that transform. 
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46.  Show that  u(t) ∗  u(t) =  r(t)., in which  u(t). represents the unit step function and  r(t). denotes the ramp with slope 1. 

47.  Determine the Fourier transform for each one of the following functions:  u(t −

 T ).,  t,  te− at u(t).,  1 t.,  1 t 2 .. Plot the corresponding time-domain diagrams and the respective magnitude and phase spectrum of the associated transforms. 

48.  Calculate the Fourier transform  P (ω). of the signal  p(t) =  v 2 (t). representing the instantaneous power in a 1-  . resistor, as a function of the Fourier transform V (ω). of  v(t).. Using the expression obtained for  P (ω)., plot the instantaneous power spectrum for a sinusoidal input signal  v(t) =  A  cos (ωot).. 

49.  Find the complex Fourier series for the signal, its Fourier transform, and plot the corresponding magnitude spectrum: 

.  f (t ) = cos (ωot ) + sin2 (ωot )

50.  Show that if  x(t). is a bandlimited signal, i.e.,  X(ω) = 0. for | ω|  > ωM ., then 

.  x(t ) ∗ sin (at ) =  x(t ),  if  a > ωM . 

 π t

Plot the corresponding graphs to illustrate the proof. 

51.  Prove the following Parseval equation, 

∞

∞

. 

 f (x)G(x)dx =

 F (x)g(x) d x, 

−∞

−∞

in which  f (· ). and  g(· ). are the original functions and  F (· ). and  G(· ). are their Fourier transforms. 

52.  Find the Fourier transform of the current through a diode, represented by the expression  i(t) =  Io[ eαv(t) − 1]., given the voltage  v(t).  applied to the diode and its Fourier transform  V (ω)., in which  α. is a diode parameter and  Io. is the reverse current. Plot the magnitude spectrum of the Fourier transform. 

53.  Give a physical interpretation for the Hilbert transform of a constant. 

54.  Obtain a general formula for the iteration of the Hilbert transform  Hn[ f (t)].. 

55.  Compute the Hilbert transform of the function  f (t) = sgn  (t)., and sketch the graph of the transform. 

56.  Use the formula for the Hilbert transform of the  n-ary derivative of a function, H[ f (n)(t)]., to obtain a general formula in the case  f (t) = sin (αt).. 

57.  Obtain  a  general  formula  for  the  Hilbert  transform  of  the  derivative  of  the function  f (t) =  δ(αt)., using the property associated with the Hilbert transform of the function derivative,  H[ f (n)(t)].. 

58.  Prove that 

∞ sin (ωσ)

. 

 dσ =  π. 

−∞

 σ
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59.  Calculate  the  Hilbert  transform  of  the  complex  exponential  function   f (t) =

 ejωt+ φ., using Euler’s formula  ejωt = cos (ωt) +  j  sin (ωt).. 

60.  Demonstrate the time reversal property of the Hilbert transform,  H[ f (− αt)] =

− ˆ

 f (− αt), α >  0.. 

61.  Demonstrate that 

∞

. 

 f (t −  σ )dσ =  π[ tH[ f (t)] −  H[ tf (t)]] . 

−∞

62.  Considering that  f (t). is a signal whose Fourier transform satisfies  F (ω) = 0. 

for | ω| ≥  W . and that  h(t). is a signal with  H (ω) = 0. for | f |  < W ., prove that 

.  H[ f (t )h(t )] =  f (t )  ˆ

 h(t ). 

63.  Explain how to obtain a single-sideband modulated signal, in which a sideband is suppressed, using some Hilbert transform properties. 

[image: Image 8]

Chapter  5 

Random  Signals  and  Noise 

 In  mathematics  the  art  of  proposing  a  question  must  be  held  of 

 higher  value  than  solving  it. 

—Georg Cantor 

Signals that convey information are by nature random. A random signal, also known 

generically  as  a  stochastic  process,  is  an  extension  of  the  concept  of  a  random variable, involving a time variable. In fact, a stochastic process is a function of a random  variable,  or  of  a  combination  of  random  variables,  and  time.  Figure  5.1 

illustrates a random signal, and Fig. 5.2 depicts its associated pdf. 

A  random  process  X(t).  defines  a  random  variable  for  each  point  on  the  time axis. A stochastic process is said to be stationary in the strict sense if the probability densities associated with the process do not change with time. 

5.1 

The  Autocorrelation  Function 

The autocorrelation function is an important joint moment of the random process 

 X(t ).,  because  it  reveals  certain  characteristics  of  the  signal,  that  could  not  be apparent  at  first  sight.  It  is  used  to  detect  signals  in  noise  but  has  many  other applications: 

.  RX(ξ , η) = E[ X(ξ )X(η)] , 

(5.1) 

in which 

+∞  +∞

.E[ X(ξ )X(η)] =

 x(ξ )x(η)pX(ξ)X(η)(x(ξ )x(η)) d x(ξ ) d y(η)

(5.2) 

−∞

−∞

denotes the joint moment of the random variable.  X(t). at  t =  ξ . and at  t =  η.. 

The random process is called wide-sense stationary if its autocorrelation depends 

only on the interval of time separating  X(ξ ). and  X(η)., that is, it depends only on 
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Fig.  5.1  Signal representing a sample of a random process 
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Fig.  5.2  Probability  density  function  for  the  random  process  to  which  the  sample  in  Fig. 5.1 

belongs 

 τ =  ξ −  η.. Equation 5.1 in this case can be written as 

.  RX (τ ) = E[ X(t )X(t +  τ )] . 

(5.3) 

5.2 

Stationarity 

In general, the statistical mean of a random signal is a function of time, that is, it changes with time. Thus, the mean value

5.2 Stationarity
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. E[ X(t )] =  mX(t ), 

the power 

. E[ X 2 (t )] =  PX(t ), 

and the autocorrelation 

.  RX (τ, t ) = E[ X(t )X(t +  τ )] , 

are, in general, time-dependent. However, there exists a set of time signals the mean value of which is time-independent. These signals are called stationary signals, as illustrated in the following example: 

Example  Consider the digital signal shown in Fig. 5.3, with equiprobable amplitudes  A and − A.. 

The pdf of the digital signal, as shown in Fig. 5.4, is given by 

.  pX (x) = 1 [ δ(x +  A) +  δ(x −  A)]  . 

2

Applying the definition of the mean to E[ X(t)]., it follows that  

. E[ X(t )] = 0 . 

The power is given as 

. E[ X 2 (t )] = 1  A 2 + 1  (− A) 2 =  A 2 . 

2

2

(  )

 x  t 

 A 

0 

 −A 

 b

 T 

0

 t 

Fig.  5.3  A digital signal
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Fig.  5.4  Probability density function for the digital signal of Fig. 5.3 
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 X 
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Dynamic range 
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 x

Fig.  5.5  The dynamic range of a signal 

Finally, the variance and the standard deviation are calculated as 

.  σ  2 =

 X

E[ X 2 (t)] =  A 2 ⇒  σX =  A. 

Example  The  dynamic  range  of  a  signal,  from  a  probabilistic  point  of  view,  is illustrated in Fig. 5.5. As can be seen, the dynamic range depends on the standard deviation,  or  RMS  voltage,  being  usually  specified  for 2 σX.  or 4 σX..  For  a  signal with a Gaussian probability distribution of amplitudes, this corresponds to a range encompassing, respectively, 97%. and 99 .  7%. of all signal amplitudes. 

5.2 Stationarity
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Fig.  5.6  A time-varying probability density function 
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Fig.  5.7  A time-invariant probability density function 

However,  since  the  signal  is  time-varying,  its  statistical  mean  can  also  change with  time,  as  illustrated  in  Fig. 5.6. In  the  example  considered,  the  variance  is initially  diminishing  with  time,  and  later  it  is  growing  with  time.  In  this  case, an  adjustment  in  the  signal  variance,  by  means  of  an  automatic  gain  control mechanism, can remove the pdf dependency on time. 

A  signal  is  stationary  whenever  its  pdf  is  time-independent,  that  is,  whenever pX(x, t) =  pX(x)., as illustrated in Fig. 5.7. 

Stationarity may occur in various instances: 

1.  The  signal  is  stationary  in  the  mean  when  the  mean  is  independent  of  time, mX(t) =  mX.. 

2.  The  signal  is  stationary  in  power  when  the  power  is  independent  of  time, PX(t) =  PX.. 
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3.  First-order  stationarity  implies  that  the  first-order  moment  of  the  signal  is independent of time. 

4.  Second-order stationarity implies that the first- and second-order moments of the signal are independent of time. 

5.  Strict sense stationarity implies that the signal is stationary for all orders, that is, pX

 (x

 (x

1··· XM

1 , · · ·  , xM ;  t ) =  pX 1··· XM

1 , · · ·  , xM ).. 

A real stochastic signal is seldom strictly stationary for the whole time. But most signals can be considered stationary, in the mean and power, if some conditions are met, for instance, if the time interval is restricted or if the audio equipment or the communication receiver has automatic gain control. 

 5.2.1 

 Wide-Sense  Stationarity 

However,  there  is  a  type  of  stationarity  that  is  useful  to  most  purposes  but  does not require the signal to fulfill many statistical tests. The following conditions are necessary to guarantee that a stochastic process is wide-sense stationary: 

1.  The signal mean and the power are constant. 

2.  The autocorrelation depends only on the time difference between the measure-

ments, 

.  RX (t 1 , t 2 ) =  RX(t 2 −  t 1 ) =  RX(τ ), that is, the autocorrelation does not depend on the origin of the time interval. 

 5.2.2 

 Ergodic  Signals 

Ergodicity is another important characteristic of random processes. For simplicity, a  signal  is  ergodic  in  the  mean  if  the  time  expected  value  of  the  signal  coincides with its statistical mean. The same is valid for other signal statistics. Therefore, an ergodic signal has a typical waveform that represents the whole ensemble. 

Ergodicity can occur on the mean, on the power, on the autocorrelation, or with 

respect to other statistics. Ergodicity of the mean implies that the time average is equivalent to the statistical signal average. Therefore, 

1.  Ergodicity of the mean— X(t) ∼ E[ X(t)].. 

2.  Ergodicity of the power— X 2 (t) ∼  RX(τ ) ∼  RX(τ ).. 

3.  Ergodicity of the autocorrelation— RX(τ ) ∼  RX(τ ).. 

A strictly stationary stochastic process has a joint pdf that is independent of time. 

A wide-sense stationary process has the first- and second-order means constant and the autocorrelation depending only on the measuring time interval. 

5.2 Stationarity
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Therefore, a stochastic process is ergodic whenever its statistical means, which 

are functions of time, can be approximated by their corresponding time averages, 

which are random processes, with a standard deviation which is close to zero. The 

ergodicity  may  appear  only  on  the  mean  value  of  the  process,  in  which  case  the process is said to be ergodic in the mean. 

 5.2.3 

 Properties  of  the  Autocorrelation 

It  is  not  necessary  to  compute  the  autocorrelation  using  the  definition  every time. The autocorrelation function has some important properties, presented in the following, that help solve most of the problems: 

1.  The total power of a signal is obtained by computing the autocorrelation at the origin, 

.  RX ( 0 ) = E[ X 2 (t )] =  PX. 

(5.4) 

2.  The average power or DC power level is the limit of the autocorrelation, as the time difference goes to infinity, 

.  RX (∞ ) =

lim  RX(τ ) = lim E[ X(t +  τ )X(t)] = E2[ X(t)] . 

(5.5) 

 τ →∞

 τ →∞

3.  The signal mean value is the square root of the autocorrelation evaluated at the infinity, 



.E[ X(t )] =

 RX(∞ ). 

(5.6) 


4.  The autocovariance is the unbiased autocorrelation, 

.  CX(τ ) = E[ (X(t +  τ ) −  mX)(X(t ) −  mX)]

=  RX(τ) − E2[ X(t)] . 

(5.7) 

5.  The variance, or AC power, is the unbiased total power, 

. V[ X(t )] = E[ (X(t ) − E[ X(t )] ) 2]

= E[ X 2 (t)] − E2[ X(t)]

=  RX( 0 ) −  RX(∞ ) =  PAC. 

(5.8) 

6.  The autocorrelation has a maximum at the origin, 

.  RX ( 0 ) ≥ | RX(τ )| . 

(5.9)
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This property is demonstrated by considering the following mathematical tautol-

ogy, which is always true for real signals, 

. E[ (X(t ) −  X(t +  τ )) 2] ≥ 0 . 

Thus, 

. E[ X 2 (t ) − 2 X(t )X(t +  τ )] + E[ X 2 (t +  τ )] ≥ 0 , that is, 

. 2 RX ( 0 ) − 2 RX(τ ) ≥ 0

⇒  RX( 0 ) ≥  RX(τ). 

7.  The autocorrelation is a symmetric function, 

.  RX (τ ) =  RX(− τ ). 

(5.10) 

In order to prove this property, it is sufficient to use the definition 

.  RX (− τ ) = E[ X(t )X(t −  τ )] . 

Considering a change of variables,  t −  τ =  σ ⇒  t =  σ +  τ ., one obtains 

.  RX (− τ ) = E[ X(σ +  τ ) ·  X(σ )] =  RX(τ ). 

The relationship between the autocorrelation function and various other power 

measures is illustrated in Fig. 5.8. 

 RX (   )

τ 

 X

 P 

 PAC 

 PDC 

0 

0 

τ 

Fig.  5.8  Relationship between the autocorrelation and various power measures
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Fig.  5.9  Digital random signal 

Example  The autocorrelation of a digital signal  X(t)., with equiprobable amplitude levels  A and −  A., and a random initial transition, as seen in Fig. 5.9, with uniform distribution, can be computed in the following manner: 

A baseband random binary signal assumes only two states, −  A. and  A, and the transition between the states can take place every  Tb. seconds. The autocorrelation can be computed by Lathi (1968) 



.  RX (τ ) =

 x 1 x 2 PX

 (x

1 X 2

1 , x 2 )

(5.11) 

 X 1  X 2

in which  x 1. and  x 2. represent the signal amplitudes at  t and  t + τ . and the summations are over the sets  X 1 =  X 2 = {− A, A}.. This can be written as 



.  RX (τ ) =  A 2  PX

 (A, A) +  P

 (− A, − A)

1 X 2

 X 1 X 2



−  PX

 (− A, A) −  P

 (A, − A) . 

(5.12) 

1 X 2

 X 1 X 2

But 

.  PX

 (A, A) =  P (A)P (A| x

1 X 2

 X 1

 X 2

1 =  A), 

and, since the signal states are equiprobable, 

.  PX (A) =  P

 (− A) = 0 .  5 . 

1

 X 1
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Therefore, it is possible to write 

.  RX (τ ) =  A 2 PX (A)P

 (A| x

1

 X 2

1 =  A)

+  A 2 PX (− A)P (− A| x

1

 X 2

1 = − A)

−  A 2 PX (− A)P (A| x

1

 X 2

1 = − A)

−  A 2 PX (A)P (− A| x

1

 X 2

1 =  A). 

(5.13) 

On the other hand, 

.  PX (A| x

 (− A| x

2

1 =  A) = 1 −  PX 2

1 =  A), 

in which  PX (A| x

2

1 =  A). is the probability of observing  x 2 =  A. given that  x 1 =  A.. 

First, consider the condition  τ < Tb.. In this case,  x 2 = − A., when  x 1 =  A. only if a transition occurs in the interval [ t, t +  τ ]., and the state changes at this point. 

But because of the assumption of a uniform distribution for the initial transition, the probability that a transition lies in the interval [ t, t +  τ ]. is proportional to the size of the interval, that is,  τ/Tb.. Hence, 

.  PX (− A| x

 ,  0  < τ < T

2

1 =  A) =

 τ

 b, 

2 Tb

and 

.  PX (A| x

 ,  0  < τ < T

2

1 =  A) = 1 −

 τ

 b. 

2 Tb

In a similar way, 

.  PX (A| x

 ,  0  < τ < T

2

1 = − A) =

 τ

 b, 

2 Tb

and 

.  PX (− A| x

 ,  0  < τ < T

2

1 = − A) = 1 −

 τ

 b. 

2 Tb

Substituting into Eq. 5.13 and making the simplifications, one obtains 

.  RX (τ ) = 1 −  τ ,  0  < τ < Tb. 

 Tb

Therefore, considering that the autocorrelation is an even function and that the 

signal pulses are uncorrelated outside the symbol interval  Tb., the digital signal  X(t). 

5.2 Stationarity
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has the following autocorrelation function for any time difference, 





| τ|

.  RX (τ ) =  A 2 1 −

[ u(τ +  Tb) −  u(τ −  Tb)]  , 

(5.14) 

 Tb

in which  Tb. is the pulse duration (Fig. 5.10). 

Example  A telegraphic signal  X(t)., with equiprobable amplitude levels  A and − A., is illustrated in Fig. 5.11. For this signal, the transitions can occur at any time, and they are usually modeled as a Poisson stochastic process. 
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τ 

Fig.  5.10  Autocorrelation of a digital random signal 
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Fig.  5.11  Telegraphic random signal
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For the Poisson process, with an arriving rate  λ., the probability that the system is in state  k, at time  τ ., is given by the following formula: 

.  pk (τ ) =  (λτ )k e− λτ

(5.15) 

 k! 

Using 5.15, the probability of no transition in the interval is 

.  p 0 (τ ) =  (λτ ) 0  e− λτ =  e− λτ , (5.16) 

0! 

and the probability of, at least, a transition occurring is 

.  pT (τ ) = 1 −  e− λτ . 

(5.17) 

The autocorrelation of the telegraphic signal can be computed in the following 

manner. As before, 



.  RX (τ ) =

 x 1 x 2 PX

 (x

1 X 2

1 , x 2 )

(5.18) 

 X 1  X 2

in which  x 1. and  x 2. represent the signal amplitudes at  t and  t + τ . and the summations are over the sets  X 1 =  X 2 = {− A, A}.. 

This can again be written as 



.  RX (τ ) =  A 2  PX

 (A, A) +  P

 (− A, − A)

1 X 2

 X 1 X 2



−  PX

 (− A, A) −  P

 (A, − A) . 

(5.19) 

1 X 2

 X 1 X 2

Substituting the transition probabilities, from the Poisson formula, and simplify-

ing the equation give 

.  RX (τ ) =  A 2 e− λ| τ | . 

(5.20) 

The autocorrelation function for the telegraphic signal is shown in Fig. 5.12. One can verify that the signal power is  PX =  RX( 0 ) =  A 2.. 

5.3 

The  Power  Spectral  Density 

The  autocorrelation  function  makes  it  possible  to  define  the  following  Fourier transform pair, known as the Wiener-Khinchin theorem: 

+∞

.  SX (w) =

 RX(τ )e− jwτ  d τ

(5.21)

−∞

5.3 The Power Spectral Density
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Fig.  5.12  Autocorrelation of a telegraphic random signal 
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Fig.  5.13  Random signal truncated in an interval  T 

+∞

.  RX (τ ) = 1

 SX(w)ejwτ  d w

(5.22) 

2 π −∞

The  function  SX(w).  is  called  the  power  spectral  density  (PSD)  of  the  random process. 

The Wiener-Khinchin theorem relates the autocorrelation function with the PSD, 

that  is,  it  plays  the  role  of  a  bridge  between  the  time  domain  and  the  frequency domain for random signals. This theorem will be proved in the sequel. Figure 5.13 

shows a random signal truncated in an interval  T . 
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The  Fourier  transform  for  the  signal  x(t).  given  in  Fig. 5.13  is  given  by F[ xT (t)] =  XT (ω)..  The  time,  or  deterministic,  PSD  of  x(t).  is  calculated  as follows: 

1

.  lim

| XT (ω)|2 =  SX(ω)

 T →∞  T

The result obtained is obviously a random quantity, and it is possible to compute its statistical mean to obtain the PSD: 

.  SX (ω) = E[ SX(ω)]

(5.23) 

Recall that 

. | XT (ω)|2 =  XT (ω) ·  X∗

 T (ω) =  XT (ω) ·  XT (− ω)

for a real  X(t)., in which 

 T/ 2

.  XT (ω) =

 XT (t)e− jωt dt. 

− T / 2

Substituting the last transform into Eq. 5.23, with an adequate variable change, gives 

1

1

.  SX (ω) =

lim

 E[| XT (ω)|2] = lim

 E[ XT (ω) ·  XT (− ω)] =

 T →∞  T

 T →∞  T







 T / 2

 T / 2

.  =

lim  E

 XT (σ )e− jωσ  d σ ·

 XT (ρ)ejωρ  d ρ

=

 T →∞

− T / 2

− T / 2





1

 T / 2

 T / 2

.  =

lim

 E[ XT (σ )XT (ρ)] e− j (σ− ρ)ω  d σ  d ρ =

 T →∞  T

− T / 2 − T / 2





1

 T / 2

 T / 2

.  =

lim

 RX (σ −  ρ)e− j (σ− ρ)ω  d σ  d ρ. 

 T

 T →∞  T

− T / 2 − T / 2

Figure 5.14 shows the integration region. The real plane is covered as  T → ∞.. 

Making the variable changes  τ =  σ −  ρ. and  t =  σ ., the power spectral density is given by 





1

 T / 2

 T / 2− t

.  SX (ω) =

lim

 RX (τ )e− jτω  d τ  d t. 

 T

 T →∞  T

− T / 2 − T / 2− t

5.3 The Power Spectral Density
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Fig.  5.14  Rectangular integration region 

 x  t(  ) 

 t 

 T 

 t = T/2 −  τ 

 −T/2 

 T/2

0

 t 

 t = −T/2− τ 

 −T 

0 

Fig.  5.15  Integration region obtained after the variable change 

Figure  5.15  shows  the  new  integration  region,  after  the  variable  changes.  In order to compute the integral, with the indicated limits, it is useful to separate the integration region into two parts, the first one for  τ ≥ 0. and the other for  τ <  0.. 

Therefore, the expression is given by 



1

 T

 T / 2− τ

.  SX (ω) = lim

 RX (τ )e− jτω  d τ  d t

 T

 T →∞  T

0

− T / 2
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0 

 T / 2 

+

 RX (τ )e− jτω d τ d  t . 

 T 

− T − T / 2− τ 

Integration of the equation gives 



1

 T

.  SX (ω) = lim

 (T −  τ )RX (τ )e− jτω  d τ

 T

 T →∞  T

0





0

+

 (T +  τ )RX (τ )e− jτω  d τ . 

 T

− T

Combining the integrals, one obtains 



1

 T

.  SX (ω) = lim

 RX (τ )e− jτω  d τ

 T

 T →∞  T

− T





 T

− 2

 τ  cos (ωτ )RX (τ )e− jτω  d τ . 

 T

0

Finally,  taking  the  limit  and  computing  the  integral  in  the  second  term  of  the expression lead to the Wiener-Khinchin theorem 

∞

.  SX (ω) =

 RX(τ )e− jωτ  d τ. 

(5.24) 

−∞

Therefore,  SX(ω) =  F[ RX(τ )]., given that  τ RX. is absolutely integrable, which implies that 

∞

. 

| τ RX(τ)| d τ < ∞ . 

−∞

The function  SX(ω). represents the power spectral density of the random signal X(t )., which measures power per unit frequency. The corresponding inverse Fourier transform is the autocorrelation function 

.  RX (τ ) =  F −1[ SX(ω)] , 

that is, 

∞

.  RX (τ ) =

1

 SX(ω)ejωτ  d ω. 

(5.25) 

2 π

−∞

As an example, Fig. 5.16 illustrates the power spectral density of a bandlimited signal. This is a common type of signal, because the filtered noise at the input of a receiver is usually considered a bandlimited white noise. 

5.3 The Power Spectral Density
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Fig.  5.16  Power spectral density for a bandlimited signal 
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Fig.  5.17  Autocorrelation function for a bandlimited signal 

The autocorrelation function for the bandlimited signal is depicted in Fig. 5.17. 

Note that  the  autocorrelation  has  several  zeros  along  the  abscissa,  which  indicate the  points  at  which  the  correlation  is  null.  For  the  case,  the  signal  total  power  is PX =  ωM S 0 /π.. 

Figure 5.18 illustrates the power spectral density for a white noise. Note that the spectrum indicates that the noise has a constant power density associated with every frequency. 

The corresponding autocorrelation function for white noise is shown in Fig. 5.19. 

As mentioned, the power spectral density  SX(ω) =  S 0., which indicates a uniform distribution for the power spectral density along the whole spectrum, and  RX(τ ) =
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Fig.  5.18  Power spectral density for white noise 
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Fig.  5.19  Autocorrelation function for white noise 

 S 0 δ(τ )., which indicates that the white noise is the most uncorrelated or most random signal. Correlation is nonzero for this signal only at  τ = 0.. 

On the other hand, the PSD for a constant signal is an impulse at the origin, and 

its autocorrelation is a constant for all  τ ., which renders the constant function as the most predictable among all signals. 

Example  The  power  spectral  density  for  the  telegraphic  signal  can  be  computed using  the  Wiener-Khinchin  theorem,  due  to  Norbert  Wiener  (1894–1964),  an 

American  mathematician  and  philosopher,  and  Aleksandr  Yakovlevich  Khinchin

5.3 The Power Spectral Density
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(1894–1959), a Soviet mathematician. It states that 

∞

.  SX (ω) =  A 2

 RX(τ )e− jωτ e− λ| τ|d τ. 

−∞

Splitting into two integrals, 

∞

0

.  SX (ω) =  A 2

 RX(τ )e− (jω+ λ)τ  d τ +  A 2

 RX(τ )e− (jω− λ)τ  d τ. 

0

−∞

Changing the variables and the order of integration and computing the integrals, 

.  SX (ω) =

 A 2

+  A 2  . 

 λ +  j ω

 λ −  j ω

Computing the common divisor and adding the fractions, one obtains 

.  SX (ω) =

2 λA 2  . 

(5.26) 

 λ 2 +  ω 2

The power spectral density of a random telegraphic signal is shown in Fig. 5.20. 

 5.3.1 

 Properties  of  the  Power  Spectral  Density 

Some properties of the PSD function are listed in the following: 

 S  (   )

ω 

 X 

2 

 2   /

 A   λ 

0 

0 

ω 

Fig.  5.20  Power spectral density of a random telegraphic signal

140

5

Random Signals and Noise

1.  The area under the curve of the PSD is equal to the total power of the random 

process, that is, 

+∞

.  PX = 1

 SX(ω) d ω. 

(5.27) 

2 π −∞

This fact can be verified directly as 

∞

.  PX =  RX( 0 ) =

1

 SX(ω)ejω 0 d ω

2 π

−∞

∞

∞

= 1

 SX(ω)  d ω =

 SX(f )  d f, 

2 π

−∞

−∞

in which  ω = 2 πf .. 

2.  The area under the autocorrelation function is PSD computed at the origin, 

∞

.  SX ( 0 ) =

 RX(τ )  d τ. 

(5.28) 

−∞

The proof is similar to the previous property. 

3.  If  RX(τ ). is real and even, then 

∞

.  SX (ω) =

 RX(τ )[cos  ωτ −  j  sin  ωτ ] d τ, 

−∞

∞

=

 RX(τ )  cos  ωτ  d τ, 

(5.29) 

−∞

that is,  SX(ω). is real and even. 

4.  SX(ω) ≥ 0., since the density reflects a power measure. 

5.  The following identities hold: 

+∞

+∞

. 

 RX(τ )RY (τ ) d τ = 1

 SX(ω)SY (w) d ω

(5.30) 

−∞

2 π −∞

+∞

+∞

. 

 R 2 X(τ ) d τ = 1

 S 2 X(ω) d ω. 

(5.31) 

−∞

2 π −∞

Finally, the cross-correlation, or just correlation, between two random processes 

 X(t ). and  Y (t). is defined as 

.  RXY (τ ) = E[ X(t )Y (t +  τ )] . 

(5.32) 

The cross-correlation has some important properties that are useful in deriving 

the quadrature modulation theory:

5.3 The Power Spectral Density
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1.  For any two stochastic processes, 

.  RXY (− τ ) = E[ X(t )Y (t −  τ )] = E[ X(t +  σ )Y (t )] =  RY X(τ ). 

(5.33) 

2.  The correlation is bounded by 



.| RXY (τ )| ≤

 RX( 0 )RY ( 0 ). 

(5.34) 

3.  If the two stochastic processes  x(t). or  y(t). are independent, then 

.  RXY (τ ) =  RY X(τ ) = E[ X(t )]E[ Y (t )] . 

(5.35) 

The Fourier transform of the correlation leads to the definition of the cross-power spectral density  SXY (ω).: 

+∞

.  SXY (ω) =

 RXY (τ )e− jωτ dτ

(5.36) 

−∞

Example  By knowing that ˆ

 m(t ) = 1 ∗  m(t)

 π t

. is the Hilbert transform of  m(t ). and 

using properties of the autocorrelation and of the cross-correlation, it can be shown that 

. E[ m(t ) 2] = E[ ˆ

 m(t ) 2]

and that 

. E[ m(t )  ˆ

 m(t )] = 0 . 

The following property is commonly used in communications to detect a carrier 

or a pilot signal. If two stationary processes,  X(t). and  Y (t)., are added to form a new process  Z(t) =  X(t) +  Y (t)., then the autocorrelation function of the new process is given by 

.  RZ (τ ) = E[ Z(t ) ·  Z(t +  τ )]

= E[ (x(t) +  y(t))(x(t +  τ) +  y(t +  τ))] , which implies 

.  RZ (τ ) = E[ x(t )x(t +  τ ) +  y(t )y(t +  τ ) +  x(t )y(t +  τ ) +  x(t +  τ )y(t )] . 

By applying properties of the expected value to the above expression, it follows that 

.  RZ (τ ) =  RX(τ ) +  RY (τ ) +  RXY (τ ) +  RY X(τ ). 

(5.37)
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If the stochastic processes  X(t).  and  Y (t).  can be considered uncorrelated, then RXY (τ ) =  RY X(τ ) = 0., and  RZ(τ ). is written as 

.  RZ (τ ) =  RX(τ ) +  RY (τ ). 

(5.38) 

This  equation  is  useful  to  detect  a  periodic  signal  in  the  presence  of  noise  by correlation. 

Example  A radar signal is a periodic waveform that is, for example, transmitted to detect  the  presence  of  an  object,  usually  an  enemy  plane.  Of  course,  the  enemy does  not  want  to  be  detected  and  generates  an  electromagnetic  noise  signal  to counterattack and hide the plane. 

Suppose,  for  the  sake  of  simplicity,  that  the  transmitted  radar  signal  is  a sinusoidal waveform,  X(t) =  A  cos (ω 0+ φ)., and the thermal noise  N(t). is produced by a device operating at a high temperature. 

Then, the received signal is 

.  Z(t ) =  A  cos (ω 0 +  φ) +  N (t ), 

and the autocorrelation is given by 

.  RZ (τ ) =  A 2 cos (ω 0 τ ) +  αkT Ge− α| τ | , 2

in which  α. is a parameter that depends on the medium characteristics, the parameter k = 1 .  38 × 10−23. is the Boltzmann constant,  G is the conductance of the device, and  T  is the absolute temperature in k elvin. 

Figure 5.21 shows that, for large values of  τ ., the thermal noise fades down, and the  autocorrelation  of  the  received  signal  shows  a  periodic  behavior  of  the  same period as that of  X(t).. This permits the detection of the periodic signal. 

The decorrelation time, which is used to estimate how large  τ . should be to extract the periodic signal, is given by Lévine (1973) 

∞

.  τ 0 = 1

| ρ(τ)| dτ, 

(5.39) 

2 −∞

in which the correlation coefficient is defined as 

.  ρ(τ ) =  R(τ ) , −1 ≤  ρ ≤ 1 . 

 R( 0 )

If,  in  the  formula  for  the  noise  autocorrelation,  the  parameter  α → ∞., the function  becomes  an  impulse,  and  the  interfering  signal  is  called  additive  white Gaussian noise (AWGN). In this case, for any value of  τ ., the noise autocorrelation fades down immediately, and the periodic signal can be easily detected. 
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 R  (   )

 X   τ 

 PX 

0 

0 

τ 

Fig.  5.21  Autocorrelation at the output of a noisy channel with a periodic input signal The resulting detected power can be written as 

.  PZ =  RZ ( 0 ) =  PX +  PY

and for the example 

.  PZ =  A 2 +  αkT G. 

2

The corresponding PSD is given by 

.  SZ (ω) =  SX(ω) +  SY (ω), 

(5.40) 

which results in 

.  SZ (ω) =  π A 2 [ δ(ω +  ω 0 ) +  δ(ω −  ω 0 )] + 2 α 2 kT G , 2

 α 2 +  ω 2

that is shown in Fig. 5.22. 

5.4 

Linear  Systems 

Linear  systems  can  be  analyzed  using  the  theory  of  stochastic  processes.  This provides  more  general  and  more  interesting  solutions  than  those  resulting  from classical analysis. This section deals with the response of linear systems to a random input  X(t).. 
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Fig.  5.22  Spectrum at the output of a noisy channel with a periodic input signal Fig.  5.23  A random signal at 

the input of a linear system 
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 x  t

 y (  )

 t 

Linear system 

For a linear system, as illustrated in Fig. 5.23, the Fourier transform of its impulse response  h(t). is given by 

∞

.  H (ω) =

 h(t )e− jωt  d t. 

(5.41) 

−∞

The linear system response  Y (t). is obtained by means of the convolution of the input signal with the impulse response as follows: 

∞

.  Y (t ) =  X(t ) ∗  h(t )

⇒  Y (t) =

 X(t −  α) h(α)  d α

−∞

∞

=

 X(α) h(t −  α)  d α

−∞

5.5 

Expected  Value  of  the  Output  Signal 

The mean value of the random signal at the output of a linear system is calculated as follows:

5.6 The Response of Linear Systems to Random Signals
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∞



∞

. E[ Y (t )] = E

 X(t −  α) h(α) dα =

 E[ X(t −  α)]  h(α)  d α

−∞

−∞

Considering the random signal  X(t).  to be narrow-sense stationary, it follows that E[ X(t −  α)] = E[ X(t)] =  mX., and thus 

∞

. E[ Y (t )] =  mX

 h(α)  d α =  mXH ( 0 ), 

−∞

∞

in which  H ( 0 ) = −∞  h(α) dα. follows from (5.41) computed at  ω = 0.. Therefore, the mean value of the output signal depends only on the mean value of the input 

signal and on the value assumed by the transfer function at  ω = 0.. 

5.6 

The  Response  of  Linear  Systems  to  Random  Signals 

The computation of the autocorrelation of the output signal, given the autocorrelation of the input signal to a linear system, can be performed as follows: 

The relationship between the input and the output of a linear system was shown 

earlier to be given by 

∞

∞

.  Y (t ) =

 X(ρ) h(t −  ρ)  d ρ =

 X(t −  ρ) h(ρ)  d ρ =  X(t) ∗  h(t). 

−∞

−∞

The output autocorrelation function can be calculated directly from its definition as 

.  RY (τ ) = E[ Y (t )Y (t +  τ )]

∞

∞



= E

 X(t −  ρ) h(ρ)  d ρ ·

 X(t +  τ −  σ ) h(σ )  d σ

−∞

−∞

∞  ∞

=

E[ X(t −  ρ)X(t +  τ −  σ )] ·  h(ρ) ·  h(σ )  d ρ  d σ

−∞ −∞

∞  ∞

=

 RXX(τ +  ρ −  σ ) h(ρ) h(σ )  d ρ  d σ. 

=∞ −∞

Example  Suppose that white noise with autocorrelation  RX(τ ) =  δ(τ ). is the input signal to a linear system. The corresponding autocorrelation function of the output signal is given by 

∞  ∞

.  RY (τ ) =

 δ(τ +  ρ −  σ ) h(ρ) h(σ )  d ρ  d σ

−∞ −∞
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∞ 

=

 h(σ −  τ ) ·  h(σ )  d σ 

−∞ 

=  h(−  τ) ∗  h(τ). 

The Fourier transform of  RY (τ ). leads to the following result, 

.  RY (τ ) =  h(− t ) ∗  h(t )

⇐⇒  SY (ω) =  H(− ω) ·  H(ω), 

and for  h(τ ). a real function of  τ ., it follows that  H (− ω) =  H ∗ (ω). and consequently 

.  SY (ω) =  H (− ω) ·  H (ω) =  H ∗ (ω) ·  H (ω) = | H (ω)|2 . 

Summarizing, the output PSD is  SY (ω) = | H (ω)|2. when white noise is the input to a linear system. 

In  general,  the  output  spectrum  can  be  computed  by  applying  the  Wiener-

Khinchin theorem  SY (ω) =  F[ RY (τ )].: 

∞  ∞  ∞

.  SY (ω) =

 RX(τ +  ρ −  σ ) h(ρ) h(σ ) ·  e− jωτ  d ρ  d σ  d τ

−∞ −∞ −∞

Integrating on the variable  τ ., it follows that 

∞  ∞

.  SY (ω) =

 SX(ω)ejω(ρ− σ) h(ρ) h(σ )  d ρ  d σ. 

−∞ −∞

Finally, removing  SX(ω).  from the double integral and then separating the two variables in this double integral it follows that 

∞

∞

.  SY (ω) =  SX(ω)

 h(ρ)ejωρ  d ρ

 h(σ )e− jωσ  d σ

−∞

−∞

=  SX(ω) ·  H(− ω) ·  H(ω). 

Therefore,  SY (ω) =  SX(ω) · | H (ω)|2. will result whenever the system impulse response is a real function. 

Example  Consider again white noise with autocorrelation function  RX(τ ) =  δ(τ ). 

applied to a linear system. The white noise spectrum is calculated as follows, 

∞

∞

.  SX (ω) =

 RX(τ )e− jωτ  d τ =

 δ(τ )e− jωτ  d τ = 1 , 

−∞

−∞

from which it follows that 

.  SY (ω) = | H (ω)|2 , 

similar to the previous example. 
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Fig.  5.24  A differentiator 

circuit 

(  )

 x  t

 y (  )

 t

. 

d(  )/d  t 

 R (   )

 R (   )

τ

τ

 X

 Y 

(    ) 

 S   ω 

 Y 

 S  0 

0 

0 

ω 

ω

 M

−ω 

 M

Fig.  5.25  Spectrum of the low-pass noise 

Example  The linear system shown in Fig. 5.24 is a differentiator, used in control systems or demodulator/detector for frequency-modulated signals. 

The output PSD for this circuit (or its frequency response) is equal to 

.  SY (ω) = | j ω|2 ·  SX(ω) =  ω 2 SX(ω). 

It is thus noticed that, for frequency-modulated signals, the noise at the detector output  follows  a  square  law,  that  is,  the  output  PSD  grows  with  the  square  of the  frequency.  In  this  manner,  in  a  frequency  division  multiplexing  of  frequency-modulated channels, the noise will affect more intensely those channels occupying 

the higher-frequency region of the spectrum. 

Figure  5.25  shows,  as  an  illustration  of  what  has  been  discussed  so  far  about square  noise,  the  spectrum  of  a  low-pass  flat  noise  (obtained  by  passing  white noise  through  an  ideal  low-pass  filter).  This  filtered  white  noise  is  applied  to  the differentiator circuit of the example, which in turn produces at the output the square law noise shown in Fig. 5.26 (Alencar and da Rocha Jr. 2022). 

Observation  Preemphasis circuits are used in FM modulators to compensate for the quadratic noise and other effects. 
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Fig.  5.26  Spectrum of the quadratic noise 

Other  relationships  among  different  correlation  functions  can  be  derived.  The correlation measures between input and output (input-output cross-correlation) and correlation between output and input can also be calculated from the input signal 

autocorrelation. 

The  correlation  between  the  input  and  the  output  can  be  calculated  with  the formula 

.  RXY (τ ) = E[ X(t )Y (t +  τ )] , 

and in an analogous manner, the correlation between the output and the input can be calculated as 

.  RY X (τ ) = E[ Y (t )X(t +  τ )] . 

For a linear system, the correlation between output and input is given by 

∞



.  RY X(τ ) = E

 X(t −  ρ) h(ρ)  d ρ ·  X(t +  τ ) . 

−∞

Exchanging the order of the expected value and integral computations, due to their linearity, it follows that 

∞

∞

.  RY X (τ ) =

E[ X(t −  ρ)X(t +  τ )]  h(ρ)  d ρ =

 RX(τ +  ρ) h(ρ)  d ρ. 

−∞

−∞

5.6 The Response of Linear Systems to Random Signals
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In a similar manner, the correlation between the input and the output is calculated as 



∞



.  RXY (τ ) = E  X(t ) ·

 X(t +  τ −  ρ) h(ρ)  d ρ

−∞

∞

=

E[ X(t)X(t +  τ −  ρ)]  h(ρ)  d ρ, 

−∞

and, finally, 

∞

.  RXY (τ ) =

 RX(τ −  ρ) h(ρ)  d ρ. 

−∞

Therefore, 

.  RXY (τ ) =  RX(τ ) ∗  h(τ )

and 

.  RY X(τ ) =  RX(τ ) ∗  h(− τ ). 

The resulting cross-power spectral density (CPSD) between input and output is 

given by 

.  SXY (τ ) =  SX(ω) ·  H (ω)

and between output and input by 

.  SY X (τ ) =  SX(ω) ·  H ∗ (ω). 

By assuming  SY (ω) = | H (ω)|2 SX(ω)., the following relationships are immediate: 

.  SY (ω) =  H ∗ (ω)SXY (ω)

=  H(ω)SYX(ω). 

It  is  usually  easier  to  deal  with  PSD  rather  than  autocorrelations,  and  the determination of  SY (ω). from  SX(ω). is a rather direct operation for linear systems. 

The  CPSDs  are  calculated  afterward,  and  the  correlations  are  then  obtained  by
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inverse Fourier transformation. This is indicated in the following: 

 RX(τ ) ←→  SX(ω)

⏐

 RY (τ ) ←→  SY (ω) −→  SXY (ω) ←→  RXY (τ )

⏐

. 

 SY X(ω)



 RY X(τ )

5.7 

Phase  Information 

The  autocorrelation  is  a  special  measure  of  average  behavior  of  a  signal.  Consequently, it is not always possible to recover a signal from its autocorrelation. Since the PSD is a function of the autocorrelation, it also follows that signal recovery from its PSD is not always possible because phase information about the signal has been lost in the averaging operation involved. 

On the other hand, the CPSDs, relating input-output and output-input, preserve 

signal phase information and can be used to recover the phase function explicitly. 

The transfer function of a linear system can be written as 

.  H (ω) = | H (ω)| ej θ(ω), 

in which the modulus | H (ω)|. and the phase  θ(ω). are clearly separated. The complex conjugate of the transfer function is 

.  H ∗ (ω) = | H (ω)| e− j θ(ω). 

Since 

.  SY (ω) =  H ∗ (ω)SXY (ω) =  H (ω) ·  SY X(ω), 

it follows for a real  h(t). that 

. | H (ω)| e− j θω ·  SXY (ω) = | H (ω)| ·  ej θω ·  SY X(ω) and, finally, 

.  e 2 j θ (ω) =  SXY (ω) . 

 SY X(ω)

5.7 Phase Information
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The function  θ (ω). can then be extracted, thus giving 

 SXY (ω)

.  θ (ω) =

1 ln

 , 

2 j

 SY X(ω)

which is the desired signal phase information. 

Thus,  the  previous  diagram  can  be  completed  with  the  information  on  how  to compute the phase function of the signal, as follows: 

 RX(τ ) ←→  SX(ω)

⏐

 RY (τ ) ←→  SY (ω) −→  SXY (ω) ←→  RXY (τ )

⏐

⏐

. 

 SY X(ω) −→  θ(ω)



 RY X(τ )

Example  The Hilbert transform provides an example of how to apply the preceding theory.  A  representation  of  the  filter  impulse  response  for  the  Hilbert  transform has  been  shown  previously.  The  frequency  domain  representation  of  the  Hilbert transform is shown in Fig. 5.27, and its phase function is depicted in Fig. 5.28. 

Since  for  the  Hilbert  transform  H (ω) =  j [ u(− ω) −  u(ω)]., it follows that  

| H(ω)|2 = 1., and from the important result 

.  SY (ω) = | H (ω)|2 ·  SX(ω), 

ω)

(

 H    

 j 

0 

 −j 

0 

ω 

Fig.  5.27  Transfer function of the Hilbert transform
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Fig.  5.28  The phase function of the Hilbert transform in the frequency domain it follows that 

.  SY (ω) =  SX(ω). 

Therefore, the PSD of a signal at the output of a Hilbert filter is exactly the same as the input. The fact that  SY (ω) =  SX(ω). is expected, since the Hilbert transform operates only on the signal phase and the PSD does not contain phase information. 

5.8 

Analysis  of  a  Digital  Signal 

Most modulation techniques use digital signals as inputs, and this is the only reason they are called digital modulation schemes. Then, digital signal analysis is important to obtain the spectra of digitally modulated carriers. 

This  section  presents  a  mathematical  formulation  for  the  digital  signal,  which includes the computation of its autocorrelation and power density spectrum. 

The digital signal can be produced by the digitization of an audio or a video signal or can be directly generated by a digital equipment or by a computer connected to a network. A possible mathematical expression of the digital signal is as follows, 

∞



.  m(t ) =

 mkp(t −  kTb), 

(5.42)

 k=−∞
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in which  mk. represents the  k-th randomly generated symbol from a discrete alphabet M.,  p(t). is the pulse function that shapes the transmitted signal, and  Tb. is the bit interval. 

 5.8.1 

 Autocorrelation  of  a  Digital  Signal 

As previously discussed, the autocorrelation function for signal  m(t)., which can be nonstationary, is computed by the formula 

.  RM (τ, t ) = E[ m(t )m(t +  τ )] . 

(5.43) 

Substituting the expression for  m(t). into Formula 5.43 gives 





∞



∞



.  RM (τ, t ) = E

 mkp(t −  kTb)mj p(t +  τ −  iTb) . 

(5.44) 

 k=−∞  i=−∞

Because of the linearity property, the expected value operator applies directly to the random signals, 

∞



∞







.  RM (τ, t ) =

E  mkmj p(t −  kTb)p(t +  τ −  iTb). 

(5.45) 

 k=−∞  i=−∞

Equation 5.45 is averaged in time to eliminate the time dependency, producing Tb

.  RM (τ ) = 1

 RM (τ, t) d t, 

(5.46) 

 Tb  0

or, equivalently, 

 T ∞

∞

 b







.  RM (τ ) = 1

E  mkmj p(t −  kTb)p(t +  τ −  iTb) d t. 

(5.47) 

 Tb  0

 k=−∞  i=−∞

The integral and summation operations can be changed, which gives 

∞



∞





 Tb

.  RM (τ ) = 1

E  mkmj

 p(t −  kTb)p(t +  τ −  iTb) d t. 

(5.48) 

 Tb k=−∞  i=−∞

0

In the last equation, it is possible to define the discrete autocorrelation, to simplify the expression, as 





.  R(k −  i) = E  mk mj , 

(5.49)
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and the signal autocorrelation can be written as 

∞



∞



 Tb

.  RM (τ ) = 1

 R(k −  i)

 p(t −  kTb)p(t +  τ −  iTb) d t, 

(5.50) 

 Tb k=−∞  i=−∞

0

which is the general formula for the autocorrelation of a digital signal. 

Example  For the particular case of a signal, shaped as a rectangular pulse defined in the interval 0 ≤  t ≤  Tb., with independent and equiprobable symbols from the set M = {− A, A}., the autocorrelation function is given by 

| τ|

.  RM (τ ) =  A 2[1 −

][ u(τ +  Tb) −  u(τ −  Tb)] , 

(5.51) 

 Tb

in which  Tb. is the bit interval and  A represents the pulse amplitude. 

Figure 5.29  shows  that  the  autocorrelation  function  has  a  triangular  shape. 

Its  maximum,  the  signal  power,  occurs  at  the  origin  and  is  equal  to  A 2.. The autocorrelation decreases linearly with the time interval and reaches zero at time  Tb.. 

 5.8.2 

 Power  Spectral  Density  for  the  Digital  Signal 

The  Fourier  transform  of  the  autocorrelation  function,  Eq. 5.50, is  computed  to obtain the PSD for the digital signal: 

∞

.  SM (ω) =

 RM (τ )e− jωτ  d τ

(5.52) 

−∞

 RX (  )τ 

 A2 

0 

0 

 −Tb 

 Tb  τ 

Fig.  5.29  Autocorrelation for the digital signal
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Substituting the expression for the autocorrelation, 

∞



∞



.  SM (ω) = 1

 R(k −  i)

 Tb k=−∞  i=−∞

∞   Tb

·

 p(t −  kTb)p(t +  τ −  iTb)e− jωτ  d t d τ. 

(5.53) 

−∞ 0

The order of integration is changed to compute the Fourier integral of the shifted pulse. This can be written as 

∞



∞



 Tb

.  SM (ω) = 1

 R(k −  i)

 p(t −  kTb)P (ω)e− jω(kTb− t) d t. 

(5.54) 

 Tb k=−∞  i=−∞

0

Because the term  P (ω)e− jωkTb . is independent of time, it can be taken out of the integral, that is, 

∞



∞



 Tb

.  SM (ω) = 1

 R(k −  i)P (ω)e− jωkTb

 p(t −  kTb)ejωt  d t. 

(5.55) 

 Tb k=−∞  i=−∞

0

The integral in 5.55 is then evaluated to give 

∞



∞



.  SM (ω) = 1

 R(k −  i)P (ω)P (− ω)e− jω(k− j)Tb . 

(5.56) 

 Tb k=−∞  i=−∞

The  shape  of  the  spectrum  for  the  random  digital  signal  depends  on  the  pulse shape, defined by  P (ω)., and also on the manner the symbols relate to each other, specified by the discrete autocorrelation function  R(k −  i).. 

Therefore,  the  signal  design,  necessary  to  produce  an  adequate  modulation scheme,  involves  pulse  shaping  as  well  as  the  control  of  the  correlation  between the transmitted symbols. It can be obtained by signal processing. 

For a real pulse,  P (− ω) =  P ∗ (ω)., and the PSD can be written as 

|

∞

∞

 P (ω)|2 



.  SM (ω) =

 R(k −  i)e− jω(k− j)Tb , 

(5.57) 

 Tb

 k=−∞  i=−∞

which can be simplified to 

| P (ω)|2

.  SM (ω) =

 S(ω); 

(5.58)

 Tb
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if one puts  l =  k −  i., the summations can be simplified, and the PSD for the discrete sequence of symbols is given by 

∞



.  S(ω) =

 R(l)e− jωlTb . 

(5.59) 

 l=−∞

For the example of Eq. 5.51, the corresponding spectrum is 

sin2  (ωTb/ 2 )

.  SM (ω) =  A 2 Tb

 , 

(5.60) 

 (ωTb/ 2 ) 2

which is the squared sampling function and shows that the random digital signal has a continuous spectrum that occupies a large portion of the spectrum. The function is sketched in Fig. 5.30. The first null is a usual measure of the bandwidth and is given by  ωM = 2 π/Tb.. 

Example  Suppose the digital signal has an expected value different from zero, as is the case illustrated in Fig. 5.31. 

For this case, the signal is shaped as a rectangular pulse defined in the interval 0 ≤  t ≤  Tb., with independent and equiprobable symbols from the set M = {0 , A}.. 

The autocorrelation function is given by 





| τ|

.  RM (τ ) =  A 2

1 −

[ u(τ +  Tb) −  u(τ −  Tb)] +  A 2  , 

(5.61) 

4

 Tb

4

in which  Tb. is the bit interval, and shown in Fig. 5.32. 
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Fig.  5.30  Power spectral density for the random digital signal
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Fig.  5.31  Random digital signal with mean different from zero 
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Fig.  5.32  Autocorrelation function of a random digital signal with mean different from zero The power spectral density is then obtained by Fourier transforming the autocorrelation function, 

sin2  (ωTb/ 2 )

.  SM (ω) =  A 2 Tb

 , 

(5.62) 

 (ωTb/ 2 ) 2

which  is the squared  sampling function,  and  shows  an impulse at the origin. The first null is again a measure of the bandwidth, given by  ωM = 2 π/Tb.. 

The spectrum is illustrated in Fig. 5.33. Notice that an impulse appeared at zero, indicating the digital signal has an expected value different from zero. 
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Fig.  5.33  Spectrum of a random digital signal with mean different from zero 

 5.8.3 

 Spectrum  for  Non-equiprobable  Levels 

The results of the previous subsection have been obtained for a digital signal with equiprobable levels. If level  A has probability  p and level − A. has probability 1− p., then the PSD can be computed and gives (Gagliardi 1988) 

sin2  (ωTb/ 2 )

.  SM (ω) = [4 p( 1 −  p)]  A 2 Tb

+ 2 πA 2 ( 2 p − 1 ) 2 δ(ω). 

(5.63) 

 (ωTb/ 2 ) 2

This  represents  a  similar  spectrum,  with  the  amplitude  adjusted  by  the  factor 

[4 p( 1 −  p)]. and with an additional impulse at the origin, indicating a possible DC 

level, depending on the symbol probability. 

It  is  also  possible  to  shape  the  signal  spectrum  by  controlling  the  symbol sequence statistics. First, substitute Eq. 5.59 into 5.58: 

|

∞

 P (ω)|2 

.  SM (ω) =

 R(l)e− jωlTb . 

(5.64) 

 Tb

 l=−∞

The summation in Eq. 5.64,  which  shapes  the  pulse  spectrum,  is  the  discrete Fourier transform of the discrete autocorrelation  R(l).. Therefore, as the properties of the binary signal depend on the characteristics of the information sequence, it is possible to change the signal spectrum by the introduction of correlation between 

the sequence bits. 
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Example  The input bit sequence,  mk., is equally likely and independent, as assumed previously. Suppose a new discrete sequence is produced as 

.  bk =  mk +  mk−1  . 

(5.65) 

2

Equation  5.65  represents  a  moving  average  operation,  in  which  symbol   bk.  is obtained by averaging the current symbol with the previous one. 

The discrete autocorrelation function is then 

.  R(l) =  δ(l) +  δ(l + 1 ) +  δ(l − 1 ) , 

(5.66) 

2

in  which  δ(· ).  is  the  Kronecker  delta  function,  after  the  German  mathematician Leopold Kronecker (1823–1891), defined as  δ(l) = 1., for   l = 0. and zero otherwise. 

And the discrete Fourier transform is 

∞



.  S(ω) =

 R(l)e− jωlTb = 1 +  e− jωTb +  ejωTb

2

 l=−∞

= 1 + cos  ωTb

= 2 cos2  ωTb . 

2

Finally, the signal spectrum is given by 

.  SM (ω) = 2| P (ω)|2 cos2  ωTb . 

(5.67) 

 Tb

2

It  is  possible  to  note  that  the  pulse  spectrum  has  been  low-pass  filtered  by  the sequence  spectrum,  as  a  result  of  the  introduction  of  correlation  between  the symbols, and also there are no discrete lines in the resulting spectrum. 

 5.8.4 

 The  Digital  Signal  Bandwidth 

The signal bandwidth can be defined in several ways. In industry, the most usual 

definition  is  the  half-power  bandwidth  ( ω 3 dB .).  This  bandwidth  is  computed  by dividing the maximum value of the function by two and finding the frequency for 

which this particular value occurs. 

The  root  mean  square  (RMS)  bandwidth  is  computed  using  the  frequency 

deviation  around  the  carrier,  if  the  signal  is  modulated,  or  around  the  origin,  for a  baseband  signal.  The  frequency  deviation,  or  RMS  bandwidth,  for  a  baseband
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signal is given by 





∞

−∞  ω 2 SM(ω) d ω

.  ωRMS =

∞

 , 

(5.68) 

−∞  SM (ω) d ω

and the RMS bandwidth is 2 ωRMS.. 

The previous formula is equivalent to 

− R  ( 0 )

 M

.  ωRMS =

 . 

(5.69) 

 RM ( 0 )

The RMS bandwidth for a modulated signal, around the carrier frequency  ωc., is given by 





∞

−∞ (ω −  ωc) 2 SM(ω −  ωc) d ω

.  ωRMS =

∞

 . 

(5.70) 

−∞  SM (ω −  ωc) d ω

The  white  noise  bandwidth  can  be  computed  by  equating  the  maximum  of 

the  signal  power  spectrum  density  to  the  noise  power  spectrum  density   SN =

max  SM (ω)..  After  that,  the  power  for  both  signal  and  noise  are  equated  and  ωN . 

is obtained. The noise power is  PN = 2 ωN SN ., and the signal power,  PM ., is given by the formula 

∞

.  PM =  RM ( 0 ) = 1

 SM (ω) d ω. 

(5.71) 

2 π −∞

There  are  signals  that  exhibit  a  finite  bandwidth,  when  the  spectrum  vanishes after  a  certain  frequency.  They  exhibit  a  real  bandwidth.  Finally,  the  percent bandwidth  is  computed  by  finding  the  frequency  range  that  includes  a  known percentage, for instance, 90%, of the signal power. 

5.9 

Signal  Fading 

In wireless communications, fading is a variation induced on the attenuation of a 

transmitted signal as a result of various channel effects. These effects are caused by variations in time, geographical position, and radio frequency. 

Fading  is  frequently  modeled  as  a  random  process,  and  a  fading  channel  is a  communication  channel  that  experiences  this  kind  of  attenuation.  In  wireless systems, fading may either be due to multipath propagation, referred to as multipath-induced fading (caused by multiple reflections, refractions, or diffractions), weather

5.10 Rayleigh Fading
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(e.g., dust or rain), or shadowing from obstacles affecting the signal propagation, which is called shadow fading. 

The superposition of multiple copies of the transmitted signal, traversing differ-

ent paths, in which each signal copy experiences  different attenuation, delay, and phase shift while traveling from the source to the receiver, results in either constructive  or  destructive  interference,  amplifying  or  attenuating  the  signal  amplitude  at the receiver. Strong destructive interference is referred to as a deep fade and may result in temporary failure of communication due to a severe drop in the channel 

signal-to-noise ratio. 

5.10 

Rayleigh  Fading 

Rayleigh fading is a statistical model for the effect of a propagation environment on  a  radio  signal,  such  as  that  used  by  wireless  devices.  Rayleigh  fading  models assume that the magnitude of a received signal varies randomly, or fades, according to a Rayleigh distribution, which represents the radial component of the sum of two uncorrelated Gaussian random variables. 

This type of fading was named after John William Strutt, 3rd Baron Rayleigh, 

(1842–1919), an English mathematician and physicist who made extensive contri-

butions  to  science.  Lord  Rayleigh  spent  his  academic  career  at  the  University  of Cambridge, served as president of the Royal Society, and received the 1904 Nobel 

Prize in Physics. 

Rayleigh  fading  is  an  adequate  model  for  tropospheric  and  ionospheric  signal propagation, as well as the effect of heavily built-up urban environments on radio signals. This kind of fading is usual when the number of multiple reflective paths is  large  and  there  is  no  dominant  propagation  along  a  line  of  sight  between  the transmitter and the receiver. If there is a dominant line of sight, Rician fading may be more adequate. 

In  probability  theory  and  statistics,  the  Rayleigh  distribution  is  a  continuous probability  distribution  for  nonnegative-valued  random  variables.  The  probability density function of the Rayleigh distribution is 

.  pR (r ) =  r e− r 2 /( 2 σ  2 ), 

 r ≥ 0 , 

(5.72) 

 σ  2

in which  σ . is the scale parameter of the distribution. An illustration of the Rayleigh distribution is presented in Fig. 5.34. 

The cumulative distribution function is 

.  PR (r ) = 1 −  e− r 2 /( 2 σ  2 )

(5.73) 

for  r ∈ [0 , ∞ ).. 
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 pR  r(  ) 

0 

0 

 r

Fig.  5.34  Envelope of the Rayleigh distribution 

Consider the two-dimensional vector  Y =  (U, V )., which has components that are bivariate normally distributed, centered at zero, and independent. Then  U and  V 

have density functions

.  pU (u) =  e− u 2 /( 2 σ  2 )

√

(5.74) 

2 π σ  2

and 

.  pV (v) =  e− v 2 /( 2 σ  2 )

√

 . 

(5.75) 

2 π σ  2

√

Let   R  be  the  length  of  the  radius.  That is,  R =

 U  2 +  V  2..  Then   R  has 

cumulative distribution f unction



.  PR (r ) =

 pU (u)pV (v)  d A, 

(5.76) 

 DR

in which d A = d u d v. and  DR. is the disk 







.  DR =

 (u, v) :

 u 2 +  v 2 ≤  r . 

Writing the double integral in polar coordinates, one obtains 







2 π

 r

 r

.  PR (r ) =

1

 xe− x 2 /( 2 σ  2 )  d x  d θ = 1

 xe− x 2 /( 2 σ  2 )  d x. 

(5.77)

2 π σ  2 0

0

 σ  2 0
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Finally, the probability density function for  X is the derivative of its cumulative distribution function, which by the fundamental theorem of calculus is

.  pR (r ) = d  PR (r ) =  r e− r 2 /( 2 σ  2 ), (5.78) 

d r

 σ  2

which is the Rayleigh distribution. The statistical mean is 

 π

. E[ R] =  σ

 , 

2

and the variance is given by 

. V[ R] =  ( 4 −  π )σ  2  . 

2

5.11 

Nakagami  Distribution 

The Nakagami distribution is a recent probability distribution, which first appeared in 1960. It generalizes the modeling of small-scale fading for dense signal scatters and  is one  of the most common  distributions for modeling  right-skewed,  positive data  sets.  Applications  include  modeling  wireless  signal  and  radio  wave  propagation,  the  characterization  of  breast  tumors  using  ultrasound  imaging,  and  in meteorology (Nakagami 1960). 

The Nakagami or the Nakagami- m probability distribution, named after professor  Minoru  Nakagami,  from  the  Kobe  University,  Japan,  is  related  to  the  gamma distribution.  The  family  of  Nakagami  distributions  has  two  parameters:  a  shape parameter  m ≥ 1 / 2.  and  the  parameter  that  controls  the  distribution  spreading 

  >  0.. 

It  is  known  that  the  Nakagami- m  distribution  approximates  both  the  Hoyt distribution, for  m <  1., and the Rice distribution, for  m >  1.. In fact, for the Hoyt parameter  b = 0., the Rice parameter  k = 0., and the Nakagami parameter  m = 1., the three distributions converge to the Rayleigh, one for which the uniform phase 

condition applies. But it is not the same for the Nakagami distribution. 

The Nakagami- m phase-envelope joint distribution is described as follows: Let R  and  . be random variables representing, respectively, the envelope and phase of the Nakagami- m distribution. The corresponding joint probability density function is given by Yacoub et al. (2005) 





.  pR(r, θ ) =  mm| sin ( 2 θ )| m−1  r  2 m−1 exp −  m r  2  , ∀ r ≥ 0 , (5.79) 

2 m−1  2 (m/ 2 )m

 

in which  m ≥ 1 / 2 and   >  0.. 
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The envelope pdf is given by the formula 





.  pR (r ) =

2 mm

 r 2 m−1 exp −  m r 2  , ∀ r ≥ 0 . 

(5.80) 

 (m)m

 

The phase pdf is given by 

.  p(θ ) =  (m)| sin ( 2 θ )| m−1  . 

(5.81) 

2 m 2 (m/ 2 )

It is not difficult to show that 

.  pR(r, θ ) =  pR (r ) ×  p(θ ), 

and the envelope and phase are independent random variables. 

The cumulative distribution function of the envelope can be computed to give 





 mr 2

.  P (r ) =  G

 m, 

 , 

(5.82) 

 

in which  G is the regularized (lower) incomplete gamma function. 

The parameters  m and  . are given by 

2

E  X 2

.  m =



(5.83) 

V  X 2

and 



.   = E  X 2  . 

(5.84) 

5.12 

Rice  Distribution 

In probability theory, the Rice or Rician distribution is the probability distribution of the magnitude of a circularly symmetric bivariate normal random variable, usually 

with a mean different from zero. It was named after Stephen Oswald Rice (1907– 

1986),  an  electrical  engineer  who  pioneered  in  the  fields  of  Information  Theory, Communications Theory, and Telecommunications. 

Consider again the two-dimensional vector  Y =  (U, V )., which has components that are bivariate normally distributed and independent. But let one of the components  to  reflect  the  possibility  of  a  direct  (line-of-sight)  path,  with  amplitude   A. 

5.12 Rice Distribution
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Then,  U and  V  have density functions

.  pU (u) =  e− (u+ A) 2 /( 2 σ  2 )

√

(5.85) 

2 π σ  2

and 

.  pV (v) =  e− v 2 /( 2 σ  2 )

√

 . 

(5.86) 

2 π σ  2

Then, the resulting combination of random components gives 

.| R|2 =  (U +  A) 2 +  V  2 =  U  2 +  V  2 + 2 AU +  A 2 , (5.87) 

and the Jacobian of the transformation is  J (R, ) =  R.. 

Therefore, the joint probability distribution can be obtained, 





− (u 2 +  v 2 + 2 Au +  A 2 )

.  pR,(r, θ ) =

 r

exp

 . 

(5.88) 

2 π σ  2

2 σ  2

This last formula can be integrated in  θ . to obtain the marginal probability density function of  R, 







2 π

 r

− (u 2 +  v 2 + 2 Au +  A 2 )

.  pR (r ) =

exp

d θ. 

(5.89) 

0

2 π σ  2

2 σ  2

Taking out of the integrand the part that do not depend on  θ ., one obtains 







− A 2

2 π

− (u 2 +  v 2 + 2 Au)

.  pR (r ) =

 r

 e  2 σ 2

exp

d θ. 

(5.90) 

2 π σ  2

0

2 σ  2

Recalling that  u =  r  cos  θ., one obtains 







− A 2

2 π

− (u 2 +  v 2 + 2 Ar  cos  θ)

.  pR (r ) =

 r

 e  2 σ 2

exp

d θ, 

(5.91) 

2 π σ  2

0

2 σ  2

which can be written as 







− A 2

 r

2 π

− (r 2 + 2 Ar  cos  θ)

.  pR (r ) =  e  2 σ  2

exp

d θ, 

(5.92) 

2 π σ  2 0

2 σ  2

which can be adjusted to 











− (r 2 +  A 2 )

1

2 π

− Ar  cos  θ

.  pR (r ) =  r  exp

exp

d θ. 

(5.93)

 σ  2

2 σ  2

2 π  0

 σ  2
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Considering the definition of the modified Bessel function, 

2 π

.  I 0 (x) = 1

 ex  cos  θ  d θ, 

(5.94) 

2 π  0

the required probability density function is then obtained, 







− (r 2 +  A 2 )

 rA

.  pR (r ) =  r  exp

 I 0

 , 

(5.95) 

 σ  2

2 σ  2

 σ  2

in which  I 0 (z). is the modified Bessel function of the first kind with order zero. 

The pdf is depicted in Fig. 5.35, for some values of the parameter  A, considering σ . fixed. Note that the Rice distribution approaches the Gaussian distribution, as the parameter  A increases. 

In the context of Rician fading, the distribution is often also rewritten using the shape parameter 

.  K =  A 2  , 

2 σ  2

defined as the ratio of the power contributions by the line-of-sight path, represented by  A 2., to the remaining multipaths, and the scale parameter 

.   =  A 2 + 2 σ  2 , 

 pR  r(  ) 

0 

0 

 r

Fig.  5.35  Envelope of the Rice distribution
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defined as the total power received in all paths. The mean of the Rice distribution is π

.E[ X] =  σ

 L 1 / 2 −  A 2

 , 

(5.96) 

2

2 σ  2

and the variance is 





.V[ X] = 2 σ  2 +  A 2  π σ  2  L 2

−  A 2  , 

(5.97) 

2

1 / 2

2 σ  2

in  which  Ln(x).  denotes  the  Laguerre  polynomials,  named  after  Edmond  Nicolas Laguerre  (1834–1886),  a  French  mathematician,  that  may  be  defined  by  the Rodrigues  formula,  which  was  independently  introduced  by  Benjamin  Olinde 

Rodrigues (1795–1851), a French banker, mathematician, and social reformer; by 

Sir James Ivory, (1765–1842), a British mathematician; and by Carl Gustav Jacob 

Jacobi (1804–1851), a German mathematician who made fundamental contributions 

to  elliptic  functions,  dynamics,  differential  equations,  determinants,  and  number theory, 





d n

d

 n

.  Ln(x) =  ex

 (e− x xn) = 1

− 1

 xn. 

(5.98) 

 n! d xn

 n! 

d x

The formula can also be written as 

.  Ln(x) =  L( 0 )

 n (x) =  M(− n,  1 , x) = 1 F 1 (− n; 1;  x), (5.99) 

in which 

.  M(a, b, z) = 1 F 1 (a;  b;  z)

(5.100) 

is the confluent hypergeometric function of the first kind. 

5.13 

Slow  and  Fast  Fading 

The terms slow and fast fading refer to the rate at which the magnitude and phase 

change  imposed  by  the  channel  on  the  signal  changes.  The  coherence  time  is  a measure of the minimum time required for the magnitude change or phase change 

of the channel to become uncorrelated from its previous value. 

Slow  fading  arises  when  the  coherence  time  of  the  channel  is  large  relative  to the delay  requirement  of the application.  In this regime,  the amplitude  and phase change imposed by the channel can be considered roughly constant over the period 

of use. Slow fading can be caused by events such as shadowing, in which a large 

obstruction such as a hill or large building obscures the main signal path between
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the transmitter and the receiver. The received power change caused by shadowing is often modeled using a log-normal distribution with a standard deviation according 

to the log-distance path loss model. 

Fast fading occurs when the coherence time of the channel is small relative to the delay requirement of the application. In this case, the amplitude and phase change imposed by the channel varies considerably over the period of use. 

5.14 

Jakes’  Model 

The Doppler power spectral density of a fading channel describes how much spectral broadening the relative movement between the antennas causes. This means that a 

sinusoid signal, which Fourier transforms into an impulse in the frequency domain, is spread out across frequency when it passes through the communication channel. 

The Doppler power spectral density is the Fourier transform of the corresponding 

autocorrelation function in the time domain. 

Christian  Doppler  (1803–1853)  was  director  of  the  Physical  Institute  and  professor  of  Experimental  Physics  of  the  University  of  Vienna.  He  was  an  Austrian physicist who described how the observed frequency of light and sound waves is 

affected by the relative motion of the source and the detector. 

The Doppler effect is defined as the increase or decrease in the frequency of a 

transmitted signal as the transmitter and receiver move toward or away from each 

other, 



 v

.  f (t ) =  fc

cos  θ (t), 

(5.101) 

 c

in  which  f (t).  is  the  frequency  shift,  fc.  is  the  carrier  frequency  in  Hz,  v  is  the mobile velocity,  c is the speed of light, and  θ (t). is the angle function between the mobile  velocity  vector  and  the  imaginary  line  that  extends  from  the  transmitting antenna and the mobile. 

It  is  important  to  point  out  that  this  angle  is  a  stochastic  process,  because one  considers  that  the  mobile  changes  direction  at  random.  Because  of  this,  the frequency deviation is also a function of time. 

If one multiplies Eq. 5.101 by 2 π ., one obtains the frequency in radians per second 

[rd/s], as follows 





 v

 v

.  ω(t ) = 2 π f (t ) = 2 πfc

cos  θ (t) =  ωc

cos  θ (t), 

(5.102) 

 c

 c

which is more convenient to work with. 

Consider that an unmodulated signal  s(t). is transmitted, 

.  s(t ) =  A  cos[ ωct +  φ] , 

(5.103) 

in which  φ. is a random phase, uniformly distributed in the interval [0 ,  2 π].. 
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The received signal, by the mobile, is given by 







 v

.  s(t ) =  A  cos  ωct +  ωc

cos  θ (t)  d t +  φ) . 

(5.104) 

 c

Equation  5.104  is  equivalent  to  a  frequency-modulated  signal,  with  frequency deviation index given by 



 v

.  F M =  ωc

 . 

(5.105) 

 c

Therefore, the power spectral density can be obtained as follows if one considers 

a large frequency deviation (Alencar and da Rocha Jr. 2022), 











 ω +  ωc

 ω −  ωc

.  SS (ω) =

 π A 2

 pM

+  pM

 , 

(5.106) 

2 F M

 F M

 F M

in which  pM (· ). is the probability distribution function of the random process  m(t) =

cos  θ (t).. 

Considering  that  the  distribution  of  θ (t).  is  known,  it  is  possible  to  obtain  the probability  density  function  of  m(t).  by  a  transformation  of  probability  density function, as follows: 

.  p



 M (m) =  p(θ )



 , θ =  f −1 (m)

(5.107) 

d m

d θ

Taking into account that 

d m





. 

= − sin  θ = − 1 − cos2  θ = − 1 −  m 2 , 

d θ

one obtains 

.  pM (m) =

1

√

 . 

(5.108) 

 π

1 −  m 2

Substituting  5.108  into  5.106  and  cancelling  the  appropriate  constants,  one obtains 

⎡

⎤

⎣

1

⎦

.  SS (ω) =  A 2

! 

+

1

! 

 . 

(5.109) 

2

  2

−  (ω +  ω

  2

−  (ω −  ω

 F M

 c) 2

 F M

 c) 2

Considering  the  definition  of  F M .  from  Formula  5.105,  the  final  formula  is obtained  for  the  power  spectral  density  induced  by  the  Doppler  effect  caused  by
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Fig.  5.36  Spectrum of the received signal subject to the Doppler effect 

the movement of the mobile station, 
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Note that the power spectral density broadens as the mobile velocity increases 

toward the base station and narrows as the mobile moves away from the base station with increased speed. The spectrum is illustrated in Fig. 5.36. 

On the other hand, consider that the Fourier transform of the probability density 

function  pM (m). is the characteristic function  PM (ω)., given by 

 π

.  PM (ω) = 1

 ejω  sin  τ  d τ =  J 0 (ω). 

(5.111) 

2 π − π

Therefore, the associated autocorrelation function for the received signal affected by the random frequency shift, caused by the Doppler effect, is given by (Fig. 5.37) cτ

.  RS (τ ) =  A 2 c J 0

cos (ωcτ ). 

(5.112) 

4 ωcv

 ωcv

5.15 

Problems 

1.  For the following joint probability distribution, determine the first and second moments  of  the  random  variable   X.  Draw  the  graphics  for  the  distribution, 
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 RX (  )τ 

0 

0 

τ 

Fig.  5.37  Autocorrelation of the received signal subject to the Doppler effect considering  r = 0. and  r = 1.: 





−

1

 (x− m) 2 − 2 rxy +  y 2

2 ( 1− r 2 )

 σ  2

 σXσY

 σ  2

.  pXY (x, y) =

1√

 e

 X

 Y

 . 

2 π σXσY  1 −  r 2

2.  A  signal  x(t).,  with  Gauss  distribution,  pass  through  a  system  with  response Y =  X 2.. Compute the probability distribution of the output signal  y(t).. Draw the graphics: 

.  pX (x) =

1

√

 e− x 2 / 2 σ  2 X . 

 σX  2 π

3.  Determine and sketch the autocorrelation and the power spectrum density for 

the radar signal, given by 

.  Y (t ) =  V  cos (ω 0 t +  φ) +  N (t ), 

which is subject to thermal noise, with autocorrelation given in the following, 

 ω 0. is constant and  φ. is a random phase, with uniform distribution in the interval 

[− π, π].. Compute the decorrelation time to be used in the detection process: 

.  RN (τ ) =  A 2 e− λ| τ | . 

4.  Compute  the  correlation  between  input  and  output  signals  for  the  following filter, given that the input has autocorrelation  RX(τ ) =  δ(τ ).. Relate the points in which the input and output are orthogonal. Are the signals decorrelated at
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those points? Explain and draw the graphics: 

.  H (ω) = [ u(ω +  ωM ) −  u(ω −  ωM )] . 

5.  Project  an  equipment  to  compute  the  modulus  and  the  phase  of  a  complex Gaussian  signal  Z(t) =  X(t) +  j Y (t)..  What  is  the  probability  distribution of the signal amplitude at the output of the device? 

6.  Compute  the  correlations  and  the  phase  function  for  a  channel  that  has  the following cross-power densities. Sketch the correlations and the phase function 

for a transmitted signal that has the same characteristics of a white noise: 

.  SXY (ω) =  j [ u(− ω) −  u(ω)] SX(ω), 

.  SY X(ω) =  j [ u(ω) −  u(− ω)] SX(ω). 

7.  Compute and sketch the phase response of a signal at the output of the following system, considering a wide-sense random stationary process,  X(t)., 

.  h(t ) =  e− α(t− σ )u(t −  σ ). 

8.  Determine and sketch the power spectral density of the signal at the output of the following system, in which  X(t). is a wide-sense random stationary process, 

.  Y (t ) =  αX(t ) −  βX(t −  σ )

for the following input autocorrelation, 

| τ|

.  RX (τ ) =  A 2[1 −

] , − T ≤  τ ≤  T . 

 T

9.  A stochastic process is given by the following formula 

.  Y (t ) =  V  cos[ ω 0 t +  αX(t ) +  φ] , in which  ω 0. is constant and  φ. is a random phase with uniform distribution in the interval [− π, π].. Consider that the parameter  α. has a high value, and determine and sketch the power spectral density for a Gaussian signal  X(t)., with power spectral density 

.  SX (ω) =  S 0[ u(ω +  ωM ) −  u(ω −  ωM )] . 

10.  The  model  for  the  telephone  traffic  measured  at  the  busy  hour,  considering infinite  traffic  sources,  is  characterized  by  the  Poisson  distribution,  given  in the following. Determine the characteristic function, and compute the average
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traffic and the standard deviation in relation to the average traffic, 

∞

 bk

.  pX (x) =  e− b

 δ(x −  k). 

 k! 

 k=0

11.  Find the distribution of the random variable  Z =  X +  Y ., considering that  X 

and   Y  are  independent  random  variables  with  exponential  distribution.  Draw the graphics:

.  pX (x) =  α e− αx u(x), 

2

.  pY (y) =  β e− βy u(y). 

2

12.  A  signal  x(t).,  with  Gamma  probability  distribution,  in  the  interval [0 , π ]., passes  through  a  circuit  with  response  Y =  X 2 ·  u(X)..  Compute  the  signal distribution at the output of the circuit  y(t)., and sketch the graphics: 

.  pX (x) =  (α +  β) xα−1 ( 1 −  x)β−1

 (α)(β)

13.  The stochastic process  Z(t) =  X(t)X (t). is obtained from a Gaussian process X(t ).,  which  has  zero  mean  and  power  spectral  density  SX(ω)..  Compute  the power spectral density and the autocorrelation of  Z(t)., considering that for a Gaussian process 

∞

.  SX 2  (ω) = 2

 SX(ω −  φ)SX(φ) d φ. 

−∞

Taking into account that the signal  X(t). has a uniform power spectral density SX(ω) =  So., between −  ωm. and  ωM ., determine the autocorrelation and the power spectral density of  Z(t).. 

[image: Image 9]

Chapter  6 

Analog-to-Digital  Conversion∗ 

 Without  mathematics,  there’s  nothing  you  can  do.  Everything 

 around  you  is  mathematics.  Everything  around  you  is  numbers. 

 –   Shakuntala  Devi 

6.1 

Introduction 

The  fundamental  purpose  of  signal  compression  techniques  is  to  reduce  the number  of  bits  required  to  represent  a  signal  (e.g.,  speech,  image,  video,  audio) while  maintaining  an  acceptable  signal  quality.  Signal  compression  is  essential for  applications  which  need  the  minimization  of  the  storage  and  /.or  transmission requirements,  such  as  multimedia  systems,  integrated  services  digital  networks (ISDN),  video  conference,  voice  response  systems,  voice  mail,  music  broadcast, high-resolution  facsimile,  high-definition  television  (HDTV),  mobile  telephony, storage  of  medical  images,  archiving  of  fingerprints,  and  transmission  of  remote sensing  images  obtained  from  satellites. 

Although  some  systems  do  not  present  severe  bandwidth  limitations,  such  as optical  fiber  networks,  and  although  the  technological  evolution  is  continuously leading  to  memories  with  high  storage  capacity,  signal  compression  plays  an important  role,  because  of  many  aspects,  such  as  (Jayant  and  Noll  1984;  Gersho and Gray 1992): 

•  The  wide  use  of  multimedia  systems  has  led  to  an  increasing  demand  concerning the  storage  of  speech,  audio,  image,  and  video  in  compressed  form; 

•  A  larger  number  of  communication  channels  may  be  multiplexed  in  broadband systems,  using  compression  techniques  to  reduce  the  bandwidth  requirements  of each  signal  to  be  multiplexed; 

•  In  mobile  telephony,  the  bandwidth  is  severely  limited,  which  has  motivated research  and  development  in  speech  coding. 

∗ This  chapter  received  contributions  from  Francisco  Madeiro  and  Waslon  Terllizzie  Araújo  L opes. 
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6.2 

Signal  Sampling 

A  bandlimited  signal  f (t).,  having  no  frequency  components  above  ωM = 2 πfM ., can  be reconstructed  from its samples,  collected  at  uniform  time intervals  Ts = 1 /fs., i.e.,  at  a  sampling  rate   fs.,  in  which  fs ≥ 2 fM .. 

By  a  bandlimited  signal  f (t) ←→  F (ω).,  it  is  understood  that  there  is  a frequency  ωM . above  which  F (ω) = 0.,  i.e.,  that  F (ω) = 0. for | ω|  > ωM ..  Nyquist concluded  that  all  the  information  about  f (t).,  as  illustrated  in  Fig. 6.1, is  contained in  the  samples  of  this  signal,  collected  at  regular  time  intervals   Ts.. 

In  this  manner  the  signal  can  be  completely  recovered  from  its  samples.  For a  bandlimited  signal  f (t).,  i.e.,  such  that  F (ω) = 0.  for | ω|  > ωM .,  as  shown  i  n Fig. 6.2,  it  follows  th  at

.  f (t ) ∗ sin (at ) =  f (t ),  if  a > ωM , 

 π t

Fig.  6.1  Bandlimited  signal 

 f (  ) 

 t

 f (t ). 

0 
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 t 
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M

Fig.  6.2  Spectrum  of  a  bandlimited  signal  F (ω). 
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because  in  the  frequency  domain  this  corresponds  to  the  product  of  F (ω). by  a  gate function  of  width  greater  than 2 ωM .. 

The  function  f (t).  is  sampled  once  every   Ts.  seconds  or,  equivalently,  sampled with  a  sampling  frequency   fs.,  in  which  fs = 1 /Ts ≥ 2 fM .. 

Consider  the  signal  fs(t) =  f (t)δT (t).,  in  which 

∞



.  δT (t ) =

 δ(t −  nT ). 

(6.1) 

 n=−∞

Computing  the  Fourier  transform  of  the  series  of  impulses,  one  obtains 

∞



.  T (ω) =  ωo

 δ(ω −  nωo). 

(6.2) 

 n=−∞

The  signal  δT (t). is  illustrated  in  Fig. 6.3,  and  its  Fourier  transform  is  depicted  in Fig. 6.4. 

Fig.  6.3  Impulse  train  used 

for  sampling 
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The  signal  fs(t). represents  f (t). sampled  at  uniform  time  intervals   Ts. seconds. 

From  the  frequency  convolution  theorem,  it  follows  that  the  Fourier  transform  of the  product  of  two  functions  in  the  time  domain  is  given  by  the  convolution  of  their respective  Fourier  transforms.  It  now  follows  that 

.  fs (t ) ←→ 1 [ F (ω) ∗  T (ω)]

(6.3) 

2 π

and  thus 

∞



.  fs (t ) ←→ 1

 F (ω −  nωo). 

(6.4) 

 T n=−∞

Figure  6.5  shows  the  sampled  signal.  It  can  be  observed  from  Fig. 6.6  that  if the  sampling  frequency   ωs.  is  less  than 2 ωM .,  there  will  be  an  overlap  of  spectral components.  This  will  cause  a  loss  of  information  because  the  original  signal  can Fig.  6.5  Sampled  signal 
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no  longer  be  fully  recovered  from  its  samples.  As   ωs. becomes  smaller  than 2 ωM ., the  sampling  rate  diminishes  causing  a  partial  loss  of  information. 

Therefore  the  minimum  sampling  frequency  that  allows  perfect  recovery  of  the signal  is  ωs = 2 ωM . and  is  known  as  the  Nyquist  sampling  rate.  In  order  to  recover the  original  spectrum  F (ω).,  it  is  enough  to  pass  the  sampled  signal  through  a  low-pass  filter  with  cutoff  frequency  ωM .. 

For  applications  in  telephony,  the  sampling  frequency  is  fS = 8000. samples  per second  or  8  k samples  /.s.  Then  the  speech  signal  is  quantized,  as  will  be  discussed later,  for  256  distinct  levels.  Each  level  corresponds  to  an  8  bit  code  (28 = 256.). 

After  encoding,  the  signal  is  transmitted  at  a  rate  of  8000  samples  /.s  ×. 

8  bits  /.sample  =  64  kbits  /.s  and  occupies  a  bandwidth  of  approximately  64  kHz. 

If  the  sampling  frequency   wS. is  lower  than 2 πB.,  there  will  be  spectra  overlap and,  as  a  consequence,  information  loss.  Therefore,  the  sampling  frequency  for  a baseband  signal  to  be  recovered  without  loss  is  wS = 2 πB.,  known  as  the  Nyquist sampling  frequency. 

As  just  mentioned,  if  the  sampling  frequency  is  lower  than  the  Nyquist  frequency, the  signal  will  not  be  completely  recovered,  since  there  will  be  spectral  superposition,  leading  to  distortion  in  the  highest  frequencies.  This  phenomenon  is  known  as aliasing.  On  the  other  hand,  increasing  the  sampling  frequency  for  a  value  higher than  the  Nyquist  frequency  leads  to  spectra  separation  higher  than  the  minimum necessary  to  recover  the  signal. 

6.3 

Signal  Coding 

Signal  coding  is  the  process  of  representing  an  information  signal  with  the  purpose of  reaching  a  communication  target,  such  as  analog  to  digital  conversion,  low  bit rate  transmission,  or  message  encryption.  In  the  literature,  the  terms  source  coding, signal  compression,  data  compression,  digital  coding,  and  bandwidth  compression are  all  employed  when  referring  to  the  techniques  to  obtain  a  compact  digital representation  of  a  signal  (Jayant  1992; Jayant  et  al. 1993). 

6.4 

The  Performance  of  a  Signal  Compression  System 

The  purpose  of  signal  compression  is  to  reduce  the  bit  rate  in  the  digital  representation  of  a  signal  while  maintaining  the  required  levels  of  signal  quality, implementation  complexity,  and  communication  delay.  Each  one  of  those  aspects will  be  discussed  in  the  following. 
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 6.4.1 

 Quality  of  the  Reconstructed  Signals 

It  is  important,  in  digital  coding  of  signals,  to  develop  methods  for  assessing the  quality  of  reconstructed  signals,  usually  obtained  from  the  application  of compression  techniques.  The  measures  used  for  assessing  the  quality  of  signals may  be  classified  into  two  general  groups:  subjective  quality  measures  and  objective quality  measures. 

The  subjective  measures  are  based  on  comparisons  (performed  by  means  of 

listening  or  visualization  tests)  between  the  original  signal  and  the  processed  signal, performed  by  a  group  of  human  observers  which  subjectively  rank  the  quality  of the  processed  signal  according  to  a  predetermined  scale.  The  objective  measures are  based  on  a  direct  mathematical  comparison  between  the  original  and  processed signals  (Deller  Jr.  et  al. 1993). 

To  be  useful,  the  objective  quality  measures  must  present  two  main  attributes. 

They  should  have  a  subjective  significance,  in  the  sense  that  low  and  high  changes in  the  objective  measures  correspond,  respectively,  to  low  and  high  changes  in  the subjective  quality  of  the  reconstructed  signals.  Hence,  they  should  present  a  strong correlation,  positive  or  negative,  with  the  subjective  evaluation  results.  Second,  they should  be  mathematically  tractable  and  be  easily  implementable. 

Subjective  quality  measures  are  used  to  definitely  assess  the  quality  of  algorithms and techniques of signal coding. However, subjective tests are difficult to implement, since  they  require  personnel  to  participate  in  the  evaluation,  including  lay  men, specialists,  and  possible  users  of  the  signal  coding  system,  involve  a  large  volume  of processed  signal,  and  require  the  availability  of  laboratories  with  conditions  suitable for  the  subjective  evaluations. 

Therefore,  subjective  tests  are  very  time-consuming.  For  those  reasons,  objective quality  measures,  which  are  less  time-consuming,  play  an  important  role  in  the process  of  assessing  the  quality  of  reconstructed  signals  and  are  very  useful  for  the task  of  adjusting  the  parameters  of  algorithms  and  techniques  of  compression.  The assessment  of  speech  and  image  quality  has  been  a  research  theme  for  a  long  time, being  addressed  by  many  researchers  (Eskicioglu  and  Fischer  1995; Dimolitsas 

1991). 

In  the  following,  an  important  subjective  measure,  the  mean  opinion  score (MOS),  is  discussed.  Three  objective  quality  measures  are  addressed:  the  signal to  noise  ratio  (SNR),  the  segmental  signal  to  noise  ratio  (SNRseg),  and  the  spectral distortion  (SD). 

Mean  Opinion  Score 

A  subjective  quality  measure  widely  used  for  assessing  the  performance  of  speech compression  systems  is  the  mean  opinion  score  (MOS).  Each  listener  rates  the quality  of  the  reconstructed  signal  according  to  a  predetermined  scale,  shown  in Table  6.1  (Jayant  and  Noll  1984;  Deller  Jr.  et  al. 1993). Then  the  scores  are  averaged
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Table  6.1  Mean  Opinion 

Score  ( s) 

Quality 

Score  (MOS)  five-point  scale 

5

Excellent 

4

Good 

3

Fair 

2

Poor 

1

Unsatisfactory 

to  determine  the  final  value  of  the  evaluation,  that  is, 

 L



.  MO S = 1

 sl, 

(6.5) 

 L l=1

in  which   L is  the  number  of  listeners  in  the  test and  sl. is  the  score  assigned  by  the l-th  listener. 

In  speech  coding,  assessments  by  means  of  MOS  are  well  accepted  and 

sometimes complemented by intelligibility measures, such as MRT (modified rhyme 

test)  and  DRT  (diagnostic  rhyme  test)  (Deller  Jr.  et  al. 1993).  Other  measures have  been  used  to  assess  the  quality  of  speech  signals,  such  as  IAJ  (isometric absolute  judgment),  QUART  (quality  acceptance  rating  test),  and  DAM  (diagnostic acceptability  measure)  (Deller  Jr.  et  al. 1993). 

Signal-to-Noise  Ratio  (SNR) 

Let  x(n). be  the  original  signal,  y(n). the  processed  signal,  and  e(n) =  x(n) −  y(n). 

the  error  signal  at  time   n. 

The  energy  contained  in  the  original  signal  is 



.  Ex =

 x 2 (n). 

(6.6) 

 n

The  energy  contained  in  the  error  signal  is 





.  Ee =

 e 2 (n) =

[ x(n) −  y(n)]2 . 

(6.7) 

 n

 n

The  resulting  SNR,  in  dB,  is  given  by  Deller  Jr.  et  al.  (1993) 

⎡



⎤





 x 2 (n)

 Ex

⎢

 n

⎥

.SNR = 10 log

=



10

10 log

⎣

⎦ . 

(6.8)

 E

10

 e

[ x(n) −  y(n)]2

 n
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Segmental  Signal-to-Noise  Ratio  (SNRseg) 

In  spite  of  its  mathematical  simplicity,  the  SNR  measure  has  a  limitation:  it  weights all  time  domain  errors  equally.  This  is  the  reason  why  a  high  SNR  measure, with  undesirable  results,  can  be  obtained  if  the  speech  utterance  presents  high concentration  of  voiced  segments  (high  energy  segments),  since  noise  has  a  greater perceptual  effect  in  low-energy  segments,  such  as  unvoiced  fricatives  (Deller  Jr. 

et  al. 1993). 

An  improved  quality  measure  may  be  obtained  if  SNR  is  measured  over  short time  intervals  and  the  results  averaged.  The  frame-based  measure  is  called  the segmental  signal  to  noise  ratio  (SNRseg)  and  is  expressed  as 

.SNRseg =  E[SNR (j )] , 

(6.9) 

in  which SNR (j ). denotes  the  conventional  SNR  for  the   j -th  frame  (time  interval) of  the  signal. 

The  SNRseg  measure  is  formulated  as  Deller  Jr.  et  al. (1993) 

⎡

⎤

 mj



 x 2 (n)

 J −1



⎢

⎢

⎥

⎢

 n= m

⎥

 j − NA−1

⎥

.SNRseg = 1

10 log

 , 

(6.10) 

 J

10 ⎢

⎣

 m

⎥

 j



⎦

 j =0

[ x(n) −  y(n)]2

 n= mj − NA−1

in  which  m 0 , m 1 , . . . , mJ −1. are  the  end-times  for  the   J  frames,  each  of  which  is length  NA. samples,  typically  15–25  milliseconds. 

Other  objective  quality  measures  may  be  pointed  out,  such  as  LAR  (log-area ratio),  Itakura  log-likelihood  measure  (Deller  Jr.  et  al. 1993), and  the  spectral distortion. 

Spectral  Distortion 

For  applications  that  require  low-rate  speech  coding,  it  is  essential  to  quantize suitably  the  line  spectral  frequency  (LSF)  parameters,  using  a  number  of  bits  as  low as  possible.  The  development  of  LSF  coding  methods  has  been  an  intense  research area  for  many  years  (Paliwal  and  Atal  1993;  LeBlanc  et  al. 1993; Eriksson  et  al. 

1999). 

The  quality  of  the  LSF  quantization  is  measured  by  the  spectral  distortion  (SD), formulated  as 





1 / 2

1

 FS

ˆ

.SD =

[10 log

 S(f )]2d f

 , 

(6.11) 

 F

10  S(f ) − 10 log10

 S

0

in  which  S(f ). and ˆ

 S(f ). denote,  respectively,  the  original  and  quantized  envelope. 
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Table  6.2  Digital  audio  formats  (Jayant  1992) 

Format

Sampling  rate  (kHz) 

Bandwidth  (kHz) 

Frequency  range  (Hz) 

Telephony

8

3.2

200–3400 

Teleconferencing

16

7

50–7000 

Compact  Disc  (CD)

44.1

20

20–20,000 

Digital  Audio  Tape  (DAT) 

48

20

20–20,000 

 6.4.2 

 Bit  Rate 

The  bit  rate  of  a  digital  representation  may  be  measured  in  bits  per  sample,  bits per  pixel  (bpp),  or  bits  per  second,  depending  on  the  scenario.  The  rate  in  bits  per second  is  simply  the  product  of  the  sampling  rate  by  the  number  of  bits  per  sample. 

The  sampling  rate  is  usually  slightly  higher  than  twice  the  signal  bandwidth,  as stated  by  the  Nyquist  sampling  theorem  (Jayant  and  Noll  1984; Lathi  1988). 

Table  6.2  shows  some  formats  usually  used  for  audio  (Jayant  1992; Jayant  et  al. 

1993). Typical  sampling  rates  are  8  kHz  for  telephone  speech,  16  kHz  for  AM  radio-grade  audio,  32  kHz  for  FM  audio,  and  44.1  kHz  or  48  kHz  for  CD  (compact  disc) audio  or  DAT  (digital  audio  tape)  audio.  Notice  that  the  bandwidths  are  lower  than half  the  corresponding  sampling  rates,  in  accordance  to  Nyquist  sampling  principle. 

It  is  worth  mentioning  that  a  PCM  signal  has  a  band  limited  by  a  low-pass  filter. 

The  telephony  band  usually  transmitted  is  300  Hz  to  3400  Hz  in  Europe  and  Latin America  and  200  Hz  to  3400  Hz  in  United  States  and  Japan. 

 6.4.3 

 Complexity 

The  complexity  of  a  coding  algorithm  is  related  to  the  computational  effort required  to  implement  the  encoding  and  decoding  processes.  Therefore,  it  concerns to  arithmetic  capability  and  memory  requirements.  The  complexity  is  usually measured  in  millions  of  instructions  per  second  (MIPS).  Other  measures  related to  the  complexity  are  the  physical  size  of  the  encoder,  decoder,  or  codec  (encoder plus  decoder),  the  cost,  and  the  power  consumption  (measured,  for  instance,  in milliwatt,  mW),  which,  in  turn,  is  a  criterion  particularly  important  for  handheld systems  (Jayant  1992; Jayant  et  al. 1993). 

 6.4.4 

 Communication  Delay 

The  complexity  increase  of  a  coding  algorithm  is  generally  associated  with  a processing  delay  increase  in  encoder  and  decoder.  The  importance  of  delay  in a  communication  system  depends  on  the  application.  Depending  on  the  commu-
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nication  environment,  the  tolerated  overall  delay  may  be  severely  limited,  as  in network  telephony  (Jayant  1992;  Jayant  et  al. 1993).  Thus,  the  delay  produced  by a   codec   imposes  some  practical  constraints  concerning  the  use  in  communication systems,  since  the  delay  must  not  be  higher  than  a  certain  limit.  However,  for  some applications  the  communication  delay  in  irrelevant. 

6.5 

Features  of  Speech  Signals 

The  knowledge  of  the  features  of  speech  signals  has  been  efficiently  used  in techniques  for  speech  coding  and  speech  synthesis,  as  well  as  in  speech  and  speaker recognition  systems. 

The  mechanism  of  speech  production,  as  occurs  in  any  physical  system,  presents limited  frequency  response.  The  limit,  which  varies  from  person  to  person,  is  about 10  kHz  (Aguiar  Neto  1995). However,  in  telephony  systems,  the  speech  signal is  limited  to  the  range  200–3400  Hz,  without  great  damage  to  speech  quality.  In other  applications,  as  teleconference,  the  speech  signal  is  limited  to  7  kHz,  which  is known  as  broadband  transmission. 

Speech  sounds  may  be  classified  in  three  distinct  classes:  voiced  sounds  (such as  / a /.  and  / i /.),  unvoiced  sounds  (such  as  / sh /.),  and  plosive  sounds  (such  as 

 / p /, / t /  and  / k /.)  (Rabiner  and  Schafer  1978). 

The  voiced  sounds  are  quasi-periodic  in  time  domain  and  harmonically  structured  in  frequency,  while  the  unvoiced  sounds  have  a  random  nature  and  broadband. 

The  energy  of  the  voiced  sounds  is  generally  higher  than  that  of  unvoiced  frames. 

Voiced  sounds  are  produced  by  quasi-periodic  pressure  waves  exciting  the  vocal tract,  which,  acting  as  a  resonator,  produces  resonance  frequencies  called  formants, which  characterize  the  different  voiced  sounds.  In  general  there  are  three  to  five formants  below  5  kHz. 

The  amplitudes  and  the  location  of  the  first  three  formants  are  very  important to  synthesis  and  perception  of  speech  (Spanias  1994).  The  fundamental  frequency of  the  voiced  sounds  is  typically  in  the  range  of  80  Hz  (for  men)  to  350  Hz  (for children),  with  240  Hz  being  a  typical  value  for  women  (Aguiar  Neto  1995).  In generation  of  plosive  sounds,  the  air  is  completely  oriented  to  the  mouth,  which is  completely  closed.  With  the  increase  of  the  pressure,  the  occlusion  is  suddenly broken. 

One  can  also  cite  the  mixed  excitation  sounds,  such  as  unvoiced  fricative  sounds (such  as   / j /.,  / v /.  and  / z /.),  which  are  produced  by  combining  the  vocal  chords vibration  with  a  turbulent  excitation,  and  the  occlusive  (or  plosive)  voiced  sounds (such  as   / d./  and  / b /.). 

Speech  signals  are  non-stationary.  However,  they  may  be  considered  as  quasi-stationary  in  short  frames  (short  time  intervals),  typically  5–20  ms  (Spanias  1994). 

In  this  sense,  the  speech  signals  can  be  considered  approximately  ergodic. 

One  of  the  simplest  descriptions  of  a  waveform  is  given  by  a  graphical  representation  of  amplitude  versus  time,  as  shown  in  Fig. 6.7. In  the  waveform,  one  can
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Fig.  6.7  Voice  waveform  corresponding  to  the  Portuguese  sentence  “O  sol  ilumina  a  fachada  de tarde.  Trabalhou  mais  do  que  podia.”,  with  29,120  samples,  3.64  s  duration,  8  kHz  sampling  rate Fig.  6.8  Model  for  the 
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identify  high  energy  frames,  low  energy  frames,  and  inter-syllabic  pause  frames. 

These  and  the  frames  of  pause  between  words  correspond  to  about  50  to  60  %  of the  total  duration  of  the  speech  signal  (Aguiar  Neto  1995). 

Speech  signals  present  a  high  variation  of  signal  amplitude.  The  amplitude variation,  which  corresponds  to  about  50  dB,  is  called  the  dynamic  range  of  the signal.  It  is  worth  mentioning  that  the  acquisition  (8.0  bit  /.sample,  8  kHz  sampling rate)  of  the  speech  signal  shown  in  Fig. 6.7,  as  well  as  in Fig. 6.8, was  performed  by using  a  Sun . workstation,  equipped  with  audio  processing  tools. 

Regarding  the  probability  density  function  for  the  amplitudes  of  the  speech signal,  approximations  by  the  Laplacian  model,  for  long  voice  sequences  (hundreds of  milliseconds);  bilateral  Gamma  model,  for  short  periods  (tens  of  milliseconds); and  Gaussian  model,  for  very  short  periods  of  time  (hundreds  of  microseconds), have  been  used  (Aguiar  Neto  1995). 
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Concerning  the  energy  of  the  speech  signal,  a  concentration  in  the  lowest  frequencies  of  the  spectrum  is  observed,  mainly  in  the  range  500  to  800  Hz.  However, although  presenting  low  values  of  energy,  the  highest  frequency  components  are important  since  they  determine  most  of  the  speech  intelligibility.  The  spectrum decays  about  8–10  dB  per  octave. 

Frequencies  below  500  Hz  have  a  minor  contribution  for  the  speech  understanding,  but  they  have  a  crucial  role  in  the  naturalness  of  the  speech  (Aguiar  Neto  1995). 

The  probability  density  function,  pV (v). of  a  speech  signal,  v(t).,  is  presented  in Fig. 6.8, modeled  after  a  result  from  Alcaim  et  al.  (1992), produced  by  ten  different speakers,  five  males  and  five  females.  A  typical  feature  of  the  speech  signals  is that  it  can  be  modeled  by  a  Laplace  probability  density  function,  because  of  the predominance  of  small  amplitude  samples. 

6.6 

Pulse  Code  Modulation 

Pulse  code  modulation  (PCM)  provides  a  method  for  accomplishing  the  digital transmission  or  storage  of  an  original  analog  signal.  In  this  method  of  signal  coding, the  analog  message  signal  is  sampled,  and  the  amplitude  of  each  sample  is  mapped (approximated,  rounded  off)  to  the  nearest  one  of  a  finite  set  of  discrete  levels (allowed  quantization  levels),  so  that  both  time  and  amplitude  are  represented  in discrete  form.  This  allows  the  message  to  be  transmitted  by  means  of  a  digital (coded)  waveform. 

The  fundamental  operations  in  the  transmitter  of  a  PCM  system  are  sampling, quantizing,  and  encoding. 

The  incoming  message  waveform  is  sampled  using  a  train  of  narrow  rectangular pulses  so  as  to  closely  approximate  the  instantaneous  sampling  process.  In  the sampling  process,  a  continuous-time  signal  is  transformed  to  a  discrete-time  signal. 

The  sampling,  or  Nyquist  theorem,  previously  discussed,  states  that  a  signal  f (t)., bandlimited  to   B Hz (i.e.,  F (w) = 0. for | w|  >  2 πB.)  may  be  reconstructed  exactly (without error) from its samples taken at a rate  RS >  2 B. Hz (samples per second).  In other  words,  the  minimum  sampling  frequency  for  a  baseband  signal  to  be  recovered without  distortion  is  fS = 2 B. Hz  (Lathi  1988). 

In  practice,  a  low-pass  pre-alias  filter  is  used  at  the  front  end  of  the  sampler  in order  to  exclude  frequencies  greater  than   B,  before  sampling. 

After  sampling,  the  sample  values  are  still  analog  because  they  lie  in  a  continuous range.  By  means  of  the  quantization  process,  each  sample  is  approximated  to  the nearest  quantization  level.  Each  sample  is  approximated  to  the  midpoint  of  the interval  in  which  the  sample  value  falls.  The  information  is  thus  digitized. 

The  quantization  process  introduces  a  certain  amount  of  error  or  distortion  in the  signal  samples.  This  error,  known  as  quantization  noise  or  quantization  error,  is intrinsic  to  the  process  of  analog  to  digital  conversion  (Sripad  and  Snyder  1977). 

It  is  minimized  by  establishing  a  large  number  ( L)  of  quantization  intervals.  To
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assure  the  intelligibility  of  voice  signals,  for  example,  L = 8. or  16  is  sufficient.  For commercial  use,  L = 32. is  a  minimum,  and  for  telephone  communication,  L = 128. 

or  256  is  commonly  used  (Lathi  1988). 

During  each  sampling  interval,  one  quantized  sample  is  transmitted,  which  takes one  of  the   L possible  quantized  values.  To  exploit  the  advantages  of  sampling  and quantizing,  it  is  required  the  use  of  an  encoding  process  to  translate  the  discrete  set of  sample  values  to  a  binary  signal,  because  of  its  simplicity  and  ease  of  detection. 

The  quantization  process  performed  by using  L = 8. quantization  levels  requires  the use  of  codewords  with log2 8 = 3. bits  to  represent  each  quantization  level. 

Several  formats  (waveforms)  can  be  used  to  represent  the  binary  sequences produced  by  the  analog-to-digital  conversion.  Figure  6.9  depicts  an  example  of  a format, by which the binary symbol “1” is represented by a positive pulse of constant amplitude  and  duration  of  one  bit  and  symbol  “0”  is  represented  by  a  negative  pulse for  the  same  duration.  This  format  is  called  bipolar  signal. 

The  scheme  to  transmit  or  store  the  digitized  data  using  pulses  is  known  as  pulse code  modulation  (PCM)  (Shannon  1948b). 

The  quantization  noise  can  be  minimized  by  increasing  the  number  of  quantization  levels.  This  leads  to  the  use  codewords  with  a  higher  number  of  bits  for representing  each  quantization  level,  which  increases  the  transmission  rate. 

 6.6.1 

 Uniform  Quantization 

Quantization  can  be  uniform  or  nonuniform.  In  uniform  quantization,  the  quantization  levels  are  uniformly  spaced.  Otherwise,  the  quantization  is  nonuniform.  The quantizer  characteristic  can  be  of  midtread  or  midriser  type.  Fig. 6.10a  shows  the input-output  characteristic  of  a  uniform  quantizer  of  the  midtread  type,  which  is  so called  because  the  origin  lies  in  the  middle  of  a  tread  of  the  staircase-like figure. 
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Fig.  6.10  (a)  Characteristic  of  the  midtread  quantizer.  (b)  Variation  of  the  corresponding  quantization  error  with  input 

Figure  6.11a  shows  the  input-output  characteristic  of  a  uniform  quantizer  of  the midriser  type,  in  which  the  origin  lies  in  the  middle  of  a  rising  part  of  the  staircase like  diagram. 

The  staircase-like  characteristic  of  the  midtread  quantizer  in  Fig. 6.10a  shows that  the  decision  thresholds  of  the  quantizer  are  located at ±  d/ 2., ± 3 d/ 2., ± 5 d/ 2., 

6.6 Pulse Code Modulation

189

Output 

7d/2 

5d/2 

3d/2 

4

− d

−3 d

−2 d

− d d/2 

d

2d

3d

4d

Input 

−d/2 

−3d/2 

−5d/2 

−7d/2 

(a) 

Quantization

error

d/2 

Input

−d/2

d 

(b)

Fig.  6.11  (a)  Characteristic  of  the  midriser  quantizer.  (b)  Variation  of  the  corresponding  quantization  error  with  input 

 . . . , .  and  the  representation  levels  (quantization  levels)  are  located  at  0, ±  d.,  ±

2 d.,  . . . , . in  which   d is  the  stepsize.  The  staircase-like  characteristic  of  the  midriser quantizer  in Fig. 6.11a shows that the decision thresholds of the quantizer  are located at 0 , ± d, ±2 d, . . . , . and  the  representation  levels  (quantization  levels)  are  located  at 

±  d/ 2., ± 3 d/ 2., ± 5 d/ 2.,  . . . , . in  which   d is  the  stepsize. 
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Figures  6.10b  and  6.11b  show  that  the  maximum  quantization  error  (which corresponds  to  the  difference  between  the  output  and  input  values  of  the  quantizer) for  a  sample  is  half  one  stepsize.  It  is  also  observed  that  the  total  range  of  variation of  the  quantization  noise  is  from −  d/ 2. to  d/ 2.. 

 6.6.2 

 Quantization  Noise 

The  error  or  quantization  noise  consists  of  the  difference  between  the  signal  at  the quantizer  input  and  the  signal  at  the  output,  n =  x −  y.,  in  which  y =  q(x). and q(· ). represents  the  quantization  function.  The  performance  of  coding  or  processing systems  is  limited  by  the  level  of  the  quantization  noise.  The  channel  capacity  itself is  limited  by  that  noise.  As  a  consequence,  the  figure  of  merit  which  is  most  used  in comparative  analysis  is  the  signal  to  quantization  noise  ratio  (SQNR). 

Throughout  this  chapter,  the  notation  SNR  (signal  to  noise  ratio)  is  also  used to  denote  the  signal  to  quantization  noise  ratio  (Paez  and  Glisson  1972).  The mean  square  error,  for  a  uniform  quantizer,  is  given  by  d 2 / 12.  (Bennett  1948), 

supposing  a  uniform  distribution  for  the  quantization  noise,  in  which   d  represents the  quantization  step.  This  result  is  shown  in  the  sequel. 

Assuming  a  uniform  probability  distribution  for  the  noise  in  the  interval 

[− d/ 2 , d/ 2]., 

.  pN (n) = 1 [u (n +  d/ 2 ) − u (n −  d/ 2 )]  , (6.12) 

 d

the  power  of  the  quantization  noise  is  determined  by  the  expression 

∞

.  PN =

 n 2 pN (n)dn. 

(6.13) 

−∞

Taken  into  account  the  probability  distribution  assumed, 

 d/ 2

 d 3

.  PN = 1

 n 2 dn = 1

=  d 2  . 

(6.14) 

 d − d/ 2

 d  12

12

This  result  was  obtained  by  the  first  time  by  Claude  E.  Shannon,  in  1948  (Shannon 

1948b). 

In  what  follows  it  is  shown  that  each  additional  bit  increases  the  SQNR  by  about 6  dB.  The  SQNR  is  given  by 





 PX

.SQNR = 10 log

 , 

(6.15) 

 PN

in  which   PX. denotes  the  power  of  the  signal  to  be  quantized  and  PN =  d 2 / 12. is  the power  of  the  quantization  noise. 
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For  a  signal  with  dynamic  range  (i.e.,  the  interval  corresponding  to  the  signal 

√

amplitude  variation)  that  is  equal  to 2  PX. and  quantization  with  N = 2 m. levels,  in which   m denotes  the  number  of  coding  bits,  the  quantization  step  is  given  by
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As  a  consequence,  the  power  of  the  quantization  noise  is  given  by 

.  PN =  d 2 = 4 PX =

 PX . 

(6.17) 

12

12 N  2

3 · 4 m

Substituting  Eq. 6.17  in  6.15, it  follows  that 

.SQNR = 10 log 3 · 4 m = 10 log 3 + 10 m  log 4 ≈ 5 + 6 m  dB . 

(6.18) 

Hence,  from  Eq. 6.18  it  is  observed  that  the  SNQR  increase  is  about  6  dB  for each  additional  bit,  considering  uniform  quantization. 

6.7 

The  Uniform  Quantizer 

The  need  for  representing  signals  by  a  finite  number  of  bits  implies  that  quantization noise  is  present  in  almost  all  digital  signal  processing  systems  and  inherently  occurs in  the  analog-to-digital  conversion  process.  The  quantization  process  is  a  nonlinear mapping  from  the  domain  of  continuous  amplitude  signals  to  one  of  a  countable number  of  possible  output  levels  (Sripad  and  Snyder  1977). 

The  distortion  error,  or  quantization  noise,  consists  of  the  difference  between the  input  to  the  quantizer  and  the  discrete  output  signal.  The  figure  of  merit  most commonly  used  in  comparative  analyses  is  the  signal  to  quantization  noise  ratio (SQNR)  (Paez  and  Glisson  1972).  The  mean  square  error  for  a  uniform  quantizer  is approximately  given  by  d 2 / 12.,  under  a  supposition  of  uniform  probability  density function  for  the  quantization  noise,  where   d represents  the  stepsize  (Bennett 1948). 

The  usual  optimization  techniques  for  the  scalar  quantizer  are  centered  on properties  of  the  probability  density  function  (pdf)  of  the  input  signal  (Paez  and Glisson  1972;  Lloy  d 1982;  Ma  x 1960). In  fact,  there  seems  to  be  a  tendency  of the  proposed  schemes  to  obtain  an  output  pdf  that  more  closely  resembles  the uniform  type  (Jayant  and  Noll  1984). Usually,  the  information  on  the  noise  power  is sufficient  to  approach  a  given  problem.  Sometimes,  as  in  the  case  of  matched  filters design,  the  shape  of  the  noise  spectrum  plays  a  more  important  role. 

Some  theoretical  models  have  been  proposed  to  explain  the  power  spectral density  of  the  quantization  noise,  and  conditions  have  been  given  for  the  quantization  noise  to  have  a  white  spectrum  (Sripad  and  Snyder  1977). In  particular,  a characteristic  function  has  been  found  to  account  for  the  generated  noise  (Bennett
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1948). The  idea  of  using  the  Fourier  series  decomposition  of  the  characteristic function  is  due  to  Lévine  (1973). 

An  interesting  model  was  derived  for  deterministic  signals  that  made  use  of Fourier  series  analysis  (Claasen  and  Jongepier  1981). It  can  be  seen  as  the  first attempt  to  use  Woodward’s  theorem  to  approach  the  problem,  but  the  results  were stated  without  a  formal  proof  and  required  considerations  on  the  convergence  of  the model  introduced.  An  interesting  model  for  the  quantization  noise  autocorrelation, for  the  uniform  quantizer,  was  introduced  in  a  recent  article.  The  result  is  based  on the  two-dimensional  characteristic  function  of  the  input  signal  (Gray  1990). 

The  main  body  of  this  work  is  divided  into  five  parts.  First,  the  mathematical model  for  evaluating  the  power  spectral  density  of  the  quantization  noise  is reviewed.  Second,  the  rationale  behind  the  minimization  of  the  noise  is  discussed. 

This  is  followed  by  a  model  for  a  two-level  quantizer.  Then,  an  optimum  method,  in the  sense  of  the  mean  square  error,  for  filtering  out  the  quantizing  noise  is  presented. 

Finally,  a  view  of  quantization  as  a  sampling  process  is  discussed. 

It  is  shown  that  the  spectrum  of  the  quantization  noise  is  quite  independent  of the  spectrum  of  the  applied  signal  and  remarkably  related  to  the  probability  density function  of  the  signal  derivative.  It  is  also  shown,  for  Gaussian  signals,  that  the  noise is  statistically  uncorrelated,  and  thus  independent,  of  the  input  signal. 

6.8 

Noise  Spectrum  for  the  Uniform  Quantizer 

Quantization  noise  can  be  thought  as  the  result  of  the  application  of  the  signal  x(t). 

to  a  circuit  with  characteristic  f (x).,  as  shown  in  Fig. 6.12  (Alencar  1998a). 

The  input  signal  is  assumed  stationary  in  the  wide  sense,  but  no  restriction is  made  concerning  its  probability  density  function  (Alencar  1993a).  A  small quantization  step  and  a  uniform  quantization  scheme  are  considered  in  the  model. 

The  function  f (x). is  periodic,  with  period   d;  therefore,  it  can  be  written  as 

.  f (x) =  x −  md









 m − 1  d < x ≤  m + 1  d, m = 0 , ±1 , ±2 , · · ·

(6.19) 

2

2

A  Fourier  series  representation  for  the  preceding  function  can  be  obtained  in terms  of  the  input  signal  in  which   d represents  the stepsize,  x(t). is  the  input  signal, and  XM . is  the  quantizer  threshold,  given  by  Lévine  (1973) 

∞
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The  signal  is  not  allowed  to  exceed  the  threshold  level,  and  so  there  is  no  overload noise  in  the  model.  Equation  6.20  represents  a  sum  of  phase  modulated  signals, 
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with  phase  deviation 2 π n/d. and  amplitude  d/π n..  The  autocorrelation  function  of Eq. 6.20  can  be  computed,  as  described  in  Alencar  (1993a),  giving 
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The  phase  modulated  signals  are  assumed  to  form  an  orthogonal  set,  which implies  that  the  cross-correlations  are  zero.  Equation  6.21  can  be  written  as 

∞









1

2 π n

.  RN (τ ) =  d 2

 E  cos

 (x(t +  τ ) −  x(t))

 . 

(6.22) 

2 π  2

 n 2

 d

 n=1

Equation  6.22  can  be  re-written,  using  the  exponential  formula  for  the  cosine,  to emphasize  the  role  of  the  expectancy  operator  in  that  equation 

∞

1

 (x(t + τ )− x(t))

.  RN (τ ) =  d 2

 E[ e± j  2 πn

 d

] . 

(6.23) 

4 π  2

 n 2

 n=1

The  linear  mean  square  estimator  can  be  used  in  the  last  expression  to  account for  the  expression  x(t +  τ ) −  x(t)..  This  estimator  can  be  shown  to  be  unbiased  and
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consistent  (Alencar  1998b).  In  fact,  the  mean  square  error  of  the  estimator  is  always reduced  as  τ → 0.. 

Finally,  the  autocorrelation  function  of  Eq. 6.20  is  evaluated 

∞

1

 τ x (t )

 τ x (t )

.  RN (τ ) =  d 2

 E[ e− j  2 πn

 d

+  e+ j  2 πn

 d

] . 

(6.24) 

4 π  2

 n 2

 n=1

The  previous  formula  can  be  easily  verified  by  evaluation  at  the  origin,  which gives  the  well-known  value  for  the  total  noise  power 

∞

1

 π  2

.  PN =  RN ( 0 ) =  d 2

=  d 2  . 

=  d 2  . 

(6.25) 

2 π  2

 n 2

2 π  2 6

12

 n=1

The  actual  noise  power,  inside  the  signal  bandwidth,  can  be  much  smaller.  It  is worth  noting  that  the  last  result  was  obtained  without  any  constraints  on  the  shape  of the  noise  probability  density  function.  This  means  that  the  probability  distribution for  the  quantization  noise  does  not  have  to  be  uniform  in  order  to  verify  Eq. 6.25. 

The  power  spectrum  density  of  the  quantization  noise  can  be  obtained  by  using the  Wiener-Khinchin  theorem  in  Eq. 6.24  (Alencar  and  Neto  1991) 
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1

 wd

.  SN (w) =  d 2

 pX

 , 

(6.26) 

2 π  2

 n 3

2 π n

 n=1

in  which  pX (· ).  is  the  probability  density  function  of  the  derivative  of  the  input signal. 

Equation  6.26  demonstrates  that  the  power  spectral  density  of  the  quantization noise  is  related  to  the  probability  density  function  of  the  derivative  of  the  input signal.  The  convergence  of  the  noise  spectrum  to  Eq. 6.26,  as  the  stepsize  decreases, is  a  result  of  a  previous  work  Alencar  (1993b). In  fact,  the  noise  spectrum  reflects an  infinite  sum  of  contributions,  each  one  with  the  shape  of  the  probability  density function,  but  with  decreasing  intensity  and  increasing  bandwidth. 

In  order  to  give  an  example  of  how  to  use  Formula  6.26, suppose  the  input  signal is  zero  mean  Gaussian,  with  variance  σ  2 =  P

 X

 X . 

.  pX(x) =

1

√

 e− x 2 / 2 PX , PX =  RX( 0 ). 

(6.27) 

2 π PX

For  this  type  of  signal  it  is  possible  to  compute  the  probability  density  function of  its  derivative,  in  terms  of  the  second  derivative  of  the  autocorrelation  function RX(τ ). 

.  pX  (x) =

1

√

 e− x 2 / 2 PX  , PX = − R

2 π P

 X ( 0 ). 

(6.28)

 X
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Substituting  pX (x). from  Eq. 6.28  into  Formula  6.26  yields  the  power  spectrum density  of  the  quantization  noise,  when  the  input  to  the  quantizer  is  a  stationary Gaussian  signal: 
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1

1

 (wd) 2

8 π  2 n 2 R  ( 0 )


.  SN (w) =  d 2



 e

 X

 . 

(6.29) 

2 π  2

 n 3

 n=1

−2 πR  ( 0 )

 X

Figure  6.13  illustrates  the  application  of  the  formula  for  a  Gaussian  input  signal, showing  the  spectrum  of  the  quantization  noise  for  two  values  of  the  stepsize.  It  is noted  that  the  spectrum  broadens  for  a  smaller  stepsize. 

Another  example  can  be  given,  to  clarify  the  use  of  Formula  6.26.  Suppose  a  sine waveform,  x(t) =  Asin(ωct +  φ).,  is  applied  to  the  input  of  the  quantizer.  The  pdf for  a  sine  waveform  is  Papoulis  (1981b) 

.  pX(x) =

1



 , PX =  RX( 0 ) =  A 2  . 

(6.30) 

 π

2 P

2

 X −  x 2

Again,  for  a  sinusoidal  signal,  it  is  easy  to  compute  the  pdf  of  its  derivative,  in terms  of  the  second  derivative  of  the  autocorrelation  function  RX(τ ). 

.  pX  (x) =

1



 . 

(6.31) 

 π

 (ωcA) 2 −  x 2

Substituting  this  equation  into  Formula  6.26  yields  the  power  spectrum  density of  the  quantization  noise,  when  the  input  to  the  quantizer  is  a  sine  waveform 
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Fig.  6.13  Spectrum  of  the 
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The  method  for  voice  waveform  uniform  coding,  called  pulse  code  modulation (PCM),  is  defined  in  ITU-T  G.711  and  AT&T  43801.  Basically,  the  signal  is sampled  at  a  rate  8000  times  per  second  and  uniformly  coded  using  8  bits  per sample. 

 6.8.1 

 Nonuniform  Quantization 

In  uniform  quantization,  the  signal  to  quantization  noise  ratio  is  given  by  Eq. 6.15, 

and  the  noise  power  depends  only  on  the  magnitude  of  the  quantization  intervals, d,  as  shown  in  E  q. 6.14. Thus,  SQNR  depends  directly  on  the  power  of  the  input signal.  As  the  dynamic  range  of  speech  signals  is  about  50  dB,  the  SQNR  varies significantly,  decreasing  with  the  decrease  of  the  power  of  the  input  signal. 

The  signal  quality  may  deteriorate,  for  instance,  in  time  intervals  when  the  person speaks  very  softly.  Statistically,  it  is  observed  a  predominance  of  low  amplitude speech  samples,  meaning  that  the  SQNR  is  low  most  of  the  time. 

However,  it  is  ideally  desirable  to  obtain  an  SQNR  that  is  as  constant  (same quality)  as  possible  for  all  the  values  of  power  of  the  message  signal  (input  signal). 

The  use  of  a  nonuniform  quantizer  attempts  to  assure  the  SQNR  constancy.  In  this case,  the  quantization  step  is  not  constant;  it  varies  as  a  function  of  the  signal amplitude.  For  lower  levels  of  the  input  signal,  the  quantization  step  is  small. 

The  width  of  the  quantization  step  is  logarithmically  increased  as  the  level  of  the message  signal  increases. 

Alternatively,  the  logarithm  of  the  input  signal  can  be  uniformly  quantized rather  than  the  input  signal  itself.  Indeed,  at  the  transmitter,  the  encoder  expands the  number  of  levels  at  low  amplitudes  and  compresses  those  at  high  amplitudes, as  depicted  in  Fig. 6.14.  At  the  receiver,  this  procedure  is  reversed  to  bring  the relative  amplitude  levels  of  the  signal  to  their  original  value.  The  process  of  first compressing  and  then  expanding  a  signal  is  referred  to  as   companding.  Figure  6.15 

illustrates  a  block  diagram  of  a  communication  system  based  on  companding (Alencar  and  da  Rocha  Jr. 2022). 

Concerning  nonuniform  quantization,  the  term  companding  is  used  to  address the  processes  of  compression  and  expansion  of  the  signal  to  be  coded. 

The  compression  is  necessary  for  increasing  the  weaker  levels  of  the  signal, making  the  coder  more  efficient.  The  expansion  is  carried  out  at  the  receiver,  with  a function  which  is  the  inverse  of  the  compression  function. 

It  is  possible  to  obtain  an  ideal  model  for  a  voice  compandor,  to  minimize  the quantizatio  noise,  using  the  transformation  of  probability  density  function,  as  shown in  the  following  example. 

Example  Assume  that  the  voice  signal,  v(t).,  can  be  modeled  by  a  Laplace probability  density  function,  as  shown  in  Fig. 6.16. 
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The  equation  that  describes  the  Laplace  distribution  is 

.  pV (v) =  α e− α| v| , 

(6.33) 

2

which  has  zero  mean,  as  expected,  and  the  variance  is  given  by  2

 α 2 ..  This  is  a  usual 

model  for  the  voice  signal,  because  it  is  simple  and  relatively  accurate. 

As  discussed,  because  the  compandor  function  is  invertible,  it  does  not  distort the  voice  signal  in  the  process.  Also,  the  Nyquist  criterion  garantees  that  the signal  spectrum  can  be  completely  recovered.  Therefore,  in  order  to  minimize  the quantization  noise,  it  is  necessary  to  optimize  the  nonuniform  quantizer  to  match the  signal  probability  distribution. 

Because  the  nonuniform  quantizer  can  be  decomposed  into  two  parts,  a  nonlinear function  followed  by  a  uniform  quantizer,  the  objective  is  to  convert  the  Laplacian probability  density  function  into  a  uniform  distribution,  which  is  the  optimal  one,  in the  sense  that  it  produces  the  minimum  quantization  error  for  this  case. 

The  transformation  of  a  general  pdf,  pV (v).,  into  a  uniform  pdf,  pY (y).,  in  the interval 0 ≤  y ≤ 1.,  is  explained  in  the  following.  In  this  case,  the  output  distribution is  given  by 

d y

.  py (y) =  pV (v) , v =  f −1 (y), 

≥ 0 , 

|d y |

d v

d v

.  py (y) =  pV (v)

⇒  pV (v) = 1  ,  0 ≤  y ≤ 1 . 

d y/ d v

d y/ d v

Therefore, 

.  pV (v) = d y

⇒ d y =  pV (v)  d v. 

d v

Then,  integrating  the  differential  in   y,  the  desired  function  is  obtained y

 v

.  y(v) =

 dy =

 pV (v)  d v =  PV (v). 

(6.34) 

−∞

−∞

Therefore,  the  compandor  function  must  take  the  format  of  the  signal  cumulative probability  function  in  the  defined  interval. 

Suppose  the  uniform  quantizer  operates  in  the  interval [− A, A].,  then  the  output of  the  compressor  must  be  a  signal  with  a  uniform  probability  distribution,  as follows: 

.  pY (y) = 1 [u (y +  A) − u (y −  A)]  . 

(6.35) 

2 A

This  function  is  depicted  in  Fig. 6.17. 
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Fig.  6.17  Uniform 
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Thus,  for  the  right-hand  side  of  the  input  signal  domain, 

 v α

.  y(v) =

 e− α| v| d v,  0 ≤  y ≤  A. 

0

2

In  this  case, 

 pV (v)

. 

= 1  ,  0 ≤  y ≤  A. 

d y/ d v

2 A

Therefore, 

d y

.  pV (v) = 1

⇒ d y = 2 ApV (v)  d v. 

2 A  d v

Integrating  the  differential  in   y,  one  obtains 

 v

.  y(v) = 2 A

 pV (v)  d v, 

(6.36) 

−∞

which  gives 



 α

 v





.  y(v) = 2 A

 e− αv  d v =  A  1 −  e− αv ,  0 ≤  y ≤  A,  0 ≤  v < ∞ . 

2 0

Because  the  input  signal  is  symmetric,  the  compressor  function  is  anti-

symmetric.  Therefore,  the  function  for  the  left-hand  side  of  the  input  domain  is obtained  by  the  following  transformation  f (v) = − y(− v)..  Figure  6.18  shows  the compressor  function. 
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Fig.  6.18  Optimal 
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6.9 

Compression  Laws 

For  non-uniform  coding,  two  compression  laws  are  recommended  by  the  International  Telecommunication  Union  (ITU-T),  formerly  known  as  ITU-T:  the   μ.-law used  in  North  America  and  Japan,  and  the   A-law  used  in  the  Europe  and  most  of  the rest  of  the  world.  The   A-law  is  also  used  in  international  routes. 

The  corresponding  expressions  for  the  previous  compression  laws  are  given  next. 

Note  that  the  maximum  amplitudes  of  both  input  and  output  signals  are   V . 

•   μ.-law 

⎧

⎪

⎨  C(x) =  V  ln ( 1 +  μx/V ), x >  0

ln ( 1 +  μ)

.  y = ⎪

(6.37) 

⎩  C(x) = − C(− x), 

 x ≤ 0

•   A-law 

⎧

⎪

⎪

⎪  C(x) =

 Ax

 , 

0 ≤  x ≤  V /A

⎪

⎪

1 + ln  A

⎪

⎨

.  y = ⎪  C(x) =  V ( 1 + ln (Ax/V )), V/A ≤  x ≤  V

(6.38) 

⎪

⎪

1 + ln  A

⎪

⎪

⎪

⎩  C(x) = − C(− x), 

 x ≤ 0 . 

The  corresponding  compression  curves  are  shown,  respectively,  in  Figs. 6.19 

and  6.20. The  curves  show  the  effect  of  changing  the  parameters   μ.  and   A.  An increase  on  the  respective  parameter  leads  to  an  increase  in  the  curve  nonlinearity. 

For  A = 1. and  μ = 0.,  the  compression  curves  are  linear,  i.e.,  no  compression  is

6.9 Compression Laws
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Fig.  6.19  Compression  curves  for   μ.-law 
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obtained.  The  typical  values,  obtained  from  subjective  tests  ( mean  opinion  score, MOS),  are  μ = 255. and  A = 87 .  6..  The  G.711  PCM   A-law  or   μ.-law  has  an  MOS 

of  about  4.2. 

The  curve  of  signal  to  quantization  noise,  as  a  function  of  the  inverse  of  the signal  amplitude,  for  nonuniform  quantizers  is  flatter  when  compared  to  the  uniform quantizer.  This  way,  the  input  lower  levels  are  preserved. 

For  the  nonuniform  case,  one  can  assume  that  the  signal  is  transformed  by  a nonlinear  function  g(· ). prior  to  the  quantization  process.  This  gives 

∞







1

 wd

.  SN (w) =  d 2

 pg (x)

 , 

(6.39) 

2 π  2

 n 3

2 π n

 n=1

in  which  g (x). is  the  derivative  of  the  compression  function.  Its  probability  density function  is  usually  difficult  to  compute.  For  example,  using  a  sine  waveform,  with amplitude   V ,  as  input  and  the  nonlinear  A −  Law. scheme,  the  resulting  pdf  is  given by 

⎧ 

⎨ [ π ( A.V ) 2 −  ξ 2]−1 | ξ|  < A.V

1+ln  A

1+ln  A

.  pg (x)(ξ ) = ⎩

 . 

(6.40) 

 ξ  2 ( 1+ln  A)

| ξ| ≥  A.V

 π XM V

1+ln  A

Careful  selection  of  g(x). can  minimize  the  following  expression  and  maximize the  signal  to  quantization  noise  ratio.  The  compression  function  must  be  chosen  in order  to  displace  the  peak  of  the  quantization  noise  spectrum  far  outside  the  signal bandwidth: 









 ω

∞

 M

1

 ωM

 ωd

.  P  =

 N

 SN (ω) d ω =  d 2

 pg (x)

d ω, 

(6.41) 

− ω

2 π  2

 n 3

2 π n

 M

−

 n=1

 ωM

in  which   P  N . represents  the  noise  power  that  falls  inside  the  signal  bandwidth.  This quantity  can  be  made  quite  small,  compared  to  the  total  noise   PN . in  6.25. 

6.10 

Vector  Quantization 

Vector  quantization  (Gersho  and  Gray  1992;  Gray  1984)  may  be  seen  as  an extension  of  scalar  quantization  to  a  multidimensional  space  and  is  supported  by Shannon’s  rate  distortion  theory,  which  states  that  a  better  performance  is  achievable by  coding  blocks  of  samples  (vectors)  instead  of  individual  samples  (scalars). 

Mathematically,  vector  quantization  may  be  defined  as  a  mapping   Q of  a  v ector

 x. belonging  to  the   K-dimensional  Euclidean  space, R K .,  into  a  vector  belonging  to a  finite  subset   W  of R K .,  that  is, 

.  Q : R K →  W. 

(6.42)

6.10 Vector Quantization
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Fig.  6.21  Coding  system  based  on  vector  quantization 

The  codebook  W = { wi;  i = 1 ,  2 , . . . , N}. is  the  set  of  the   K-dimensional codevectors  (reconstruction  vectors).  The  index  of  codevector   wi. is  denoted  by   i.. 

Each  index  i ∈ {0 ,  1} b. represents  a  binary  word  of   b bits.  The  code  rate  of  a  vector quantizer,  measuring  the  number  of  bits  per  vector  component,  i s  R = 1 log K

2  N =

 b

 K ..  In  voice  waveform  coding,  R is  expressed  in  b its /.sample.  In  image  coding,  R is expressed  in  bits  per  pixel  ( bpp). 

In  a  signal  coding  system  based  on  vector  quantization,  shown  in  Fig. 6.21 

(Alencar and da Rocha Jr. 2022), the coder and the decoder operate as follows. Given a  vector  x ∈ R K . from  the  signal  to  be  coded,  the  coder  determines  the  distortion d(x, wi).  between  that  vector  and  each  codevector   wi.,  i = 1 ,  2 , . . . , N.  from the  codebook   W .  The  optimum  coding  rule  is  the  nearest  neighbor  rule,  by  which a  binary  word   i.  is  transmitted  to  the  decoder  if  codevector   wi. corresponds  to  the minimum  distortion,  that  is,  if   wi. is  the  vector  with  greatest  similarity  to   x. among all  codevectors  of  the  codebook. 

In  other  words,  the  coder  employs  the  coding  rule  C(x) =  i.  if   d(x, wi) < d(x, wj )., ∀ j =  i..  The  task  of  the  decoder  is  very  simple:  upon  receiving  the  index 

 i. of   b bits,  the  decoder  simply  looks  for  the  vector  wi. in  its  copy  of  the  codebook W  and outputs  wi.  as  the  reproduction  (reconstruction)  of   x..  Hence,  the  decoder uses  the  decoding  rule  D(i) =  wi..  The  mapping  of   x. in   wi. is  usually  expressed  as 

 wi =  Q(x).. 

Thus,  in  the  scenario  of  digital  coding  of  signals,  vector  quantization  is  a  lossy compression  technique,  since  the  reconstructed  signal  is  a  distorted  version  of the  original  signal.  The  quantization  error,  introduced  when  representing  the  input signal  by  its  corresponding  quantized  version,  is  called  quantizer  distortion.  A  key question  in  vector  quantizer  design  is  the  trade-off  between  rate  and  distortion.  The target  is  an  optimum  codebook,  which  minimizes,  for  a  given  code  rate,  the  average distortion  introduced  by  approximating  the  input  vectors  by  the  corresponding codevectors. 

The  Linde-Buzo-Gray  (LGB)  algorithm  (Linde  et  al. 1980)  is  a  widely  used technique  for  codebook  design.  Other  methods  have  been  applied  for  codebook design,  such  as  Kohonen  learning  algorithm  (Kohonen  1990)  and  other  unsuper-
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vised  learning  algorithms  (Krishnamurthy  et  al. 1990; Chen  et  al. 1994);  stochastic relaxation  (Zeger  et  al. 1992); fuzzy  algorithms  (Karayiannis  and  Pai  1995), and genetic  algorithm  (Pan  et  al. 1995). 

Codebook  design  plays  an  important  role  for  the  performance  of  digital  processing  systems  based  on  vector  quantization  (VQ)  (Gray  1984;  Gersho  and  Gray  1992). 

In  speech  and  image  coding  based  on  VQ  (Abut  et  al. 1982; Ramamurthi  and  Gersho 

1986), the  quality  of  the  reconstructed  signals  depends  on  the  designed  codebook. 

In  speaker  identification  systems  based  on  VQ  (Soong  et  al. 1987;  Fechine  2000), 

the  recognition  rates  depend  on  the  codebook  of  acoustic  parameters  designed  for each  speaker  registered  in  the  system. 

The  mapping   Q leads  to  a  partitioning of R K .  into   N  subspaces  (cells,  called Voronoi  regions)  Si.,  i = 1 ,  2 , . . . , N.,  for  whic  h N



. 

 Si = R K  and  Si ∩  Sj = ∅ if  i =  j. 

(6.43) 

 i=1

Each  Voronoi  region   Si. is  defined  as 

.  Si = { x :  Q(x) =  wi } = { x :  C(x) =  i} . 

(6.44) 

Codevector   wi. is  the  representative  vector  of  all  input  vectors  belonging  to  cell Si.,  as  shown  in  Fig. 6.22. 

 6.10.1 

 LBG  Algorithm 

Let  the  iteration  step  of  the  LBG  algorithm  be  denoted  by   n.  Given   K,  N  and  a distortion threshold   ≥ 0.,  the  LBG  algorithm  (Linde  et  al. 1980)  consists  of  the following  steps: 

•   Step  (1)   initialization:  given  an  initial  codebook  W 0.  and  a  training  set   X =

{ xm;  m = 1 ,  2 , . . . , M}.,  set  n = 0. and  D−1 = ∞.. 

•   Step  (2)   partitioning:  given  Wn.  (codebook  at  the   n-th  iteration),  assign  each training  vector  (input  vector)  in  the  corresponding  class  (Voronoi  cell)  according to  the  nearest  neighbor  rule;  determine  the  distortion 

 N



.  Dn =

 d(xm, wi). 

(6.45) 

 i=1  xm∈ Si

•   Step  (3)   convergence  test  (stop  criterion):  if  (Dn−1 −  Dn)/Dn ≤  .  then  stop, with   Wn. representing  the  final  codebook  (designed  codebook);  else,  continue. 

•   Step  (4)   codebook  updating:  calculate  the  new  codevectors  as  the  centroids  of  the classes;  set  Wn+1 ←  Wn.;  set  n ←  n + 1. and  go  to   Step  (2). 
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Fig.  6.22  Partitioning  of  the  Euclidean  space  R2.,  introduced  by  mapping  input  vectors   x.  into codevectors   wi ..  Coordinates   x 1. and   x 2. represent  the  first  and  the  second  components  of  vector 

 x ∈ R2.,  respectively 

The  distortion  decreases  monotonically  in  the  LBG  algorithm,  since  the  codebook  is  iteratively  updated  attempting  to  satisfy  the  centroid  condition  and  nearest neighbor  condition.  In  the  LBG  algorithm  the  distortion  introduced  by  representing the  training  vectors  by  the  corresponding  codevectors  (centroids)  is  monitored  at each  iteration.  The  stopping  rule  (convergence  test)  is  based  on  that  monitored distortion.  The  codebook  training  stops  when  (Dn−1 −  Dn)/Dn ≤  ..  The convergence  speed  of  the  LBG  algorithm  depends  on  the  initial  codebook. 

6.11 

LPC  P arameters

Most  current  speech  coding  algorithms  use  the  source-filter  model  of  speech production.  The  voice  is  modeled  as  the  response  of  a  linear  time-variant  synthesis filter  to  an  input  signal  called  excitation.  Examples  of  speech  coders  based on  that  model  include  the  numerous  variations  of  the  LPC  (linear  predictive
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coding)  vocoder  and  the  wide  family  of  analysis  by  synthesis  coders  based  on linear  prediction  (LPAS,  linear-prediction-based  analysis-by-synthesis)—including CELP  (code-excited  linear  prediction).  The  synthesis  filter,  which  determines  the short-term  spectral  envelope  of  the  synthesized  speech,  is  characterized  by  the  linear prediction  coefficients,  obtained  from  a  linear  prediction  (LP)  analysis  of  the  input speech  signal.  Those  coefficients  are  usually  called  LPC  coefficients  and  are  related generically  to  each  of  the  many  different  (but  equivalent)  sets  of  parameters  that specify  the  synthesis  filter. 

Much  research  has  been  developed  in  LPC  quantization  (Paliwal  and  Atal  1993; Kleijn  and  Paliwal  1995;  Atal  et  al. 1993).  The  main  purpose  of  LPC  quantization for  speech  coding  is  to  avoid  the  introduction  of  any  audible  distortion  in  the  coded speech,  maintaining  the  bit  rate  as  low  as  possible.  If  this  purpose  is  reached,  then we  have   transparent  quality   or   transparent  quantization. 

Due  to  the  cost  and  difficulty  to  perform  subjective  quality  tests,  the  researchers have  used  objective  measures  to  assess  the  distortion  in  spectral  envelope  caused  by the  LPC  quantization.  Specifically,  the  spectral  distortion  or  spectral  distance  has been  used  as  a  standard  performance  criterion.  Associated  with  that  measure,  an objective  criterion  for  transparent  LPC  quantization  has  been  proposed  by  Paliwal and  Atal  (1993),  based  on  the  role  of  the   outliers. 

The  first  study  on  vector  quantization  applied  to  LPC  parameters  is  due  to  Buzo et  al.  in  1980  (Buzo  et  al. 1980). Recently,  many  papers  regarding  sophisticated schemes  of  vector  quantization  have  been  presented.  Paliwal  and  Atal  (1993)  have efficiently  applied  split  VQ  (split  vector  quantization)  for  obtaining  transparent quality  at  24  bits  per  frame.  That  work  has  been  a  reference  usually  used  as  a benchmark  for  comparing  other  results.  Other  researchers  have  obtained  similar  or better  r esults. 

 6.11.1 

 LPC  Quantization 

In  a  speech  coder  based  on  the  source-filter  model,  the  LPC  coefficients { ai}.  are obtained  by  using  linear  predictive  analysis  (Markel  and  Gray  1976)  in  each  speech frame.  The  coefficients  are  used  to  form  a  synthesis  filter  given  by  H (z) = 1 /A(z)., in  which  A(z). is  the  inverse  filter,  given  by 

.  A(z) = 1 +  a 1 z−1 + · · · +  aM z− M , 

(6.46) 

in  which   M is  typically  a  number  between  10  and  16  called  order  of  the  predictor. 

Due  to  the  quasi  stationary  nature  of  the  speech,  that  filter  is  updated  at  every frame,  whose  typical  size  is  20  ms.  This  leads  to  a  rate  of  50  frames  per  second. 

A  description  of  that  synthesis  filter  may  be  communicated  to  the  receiver  at  each frame.  The  quantization  of  the  filter  into  a  finite  number  of  bits  per  frame  is  known as  LPC  spectrum quantization. 
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The  purpose  of  LPC  quantization  is  to  efficiently  code  the  LPC  parameters without  introducing  audible  distortion  in  the  coded  speech.  As  stated  previously, the  difficulties  associated  with  subjective  evaluation  tests  have  led  to  performance assessments  of  quantization  schemes  by  using  the  spectral  distortion,  SD,  which  is expressed  in  dB  and  determined  to  a  speech  frame  according  to 

 FS

.SD2 = 2

{20 log | H (ejπf/FS )| − 20 log | ˆ

 H (ejπf/FS )|}2d f, 

(6.47) 

 F

10

10

 S

0

in  which   FS.  is  the  sampling  frequency  and ˆ

 H (z).  is  the  quantized  synthesis  filter 

transfer  function. 

Thus, SD2.  is  the  mean  square  error  related  to  the  log  magnitudes  of  the synthesis  filter  frequency  responses,  quantized  and  non-quantized,  considering  that the  averaging  is  taken  in  the  frequency  domain.  For  evaluating  the  performance of  a  LPC  quantization  scheme,  the  average  spectral  distortion  (average  value  of SD  considering  all  speech  frames)  is  determined  and  the  percentage  of  outliers is  determined.  The  outliers  are  frames  whose  SD.  exceeds  a  determined  threshold value.  In  Paliwal  and  Atal  (1993)  three  conditions  based  on  SD  for  transparent quantization  are  presented: 

1.  The  average  spectral  distortion  is  lower  than  1  dB. 

2.  There  are  no  outliers  with  SD  larger  than  4  dB. 

3.  The  percentage  of  outliers  with  SD  in  the  range  2–4  dB  is  smaller  than  2%. 

For  quantization  of  the  LPC  parameters,  the  prediction  coefficients { ai}.  are mapped  into  an  equivalent  representation,  with  good  quantization  properties  in terms  of  distribution,  stability,  and  spectral  sensitivity.  Representations  such  as  log-area  ratios,  arcsines  of  reflection  coefficients.  and  line  spectrum  frequencies  (also called  line  spectrum  pairs,  LSPs)  have  been  studied.  They  give  better  quantization efficiency  and  better  stability  properties  when  compared  to  the  LPC  coefficients. 

Since  the  1980s,  the  LSF  representation  has  been  the  dominant  form  for  the  purpose of  LPC  spectrum  quantization.  According  to  Soong  and  Juang  (1993), the  formal result  in  terms  of  DRT  evaluation  of  an  800  bit  /.s  vocoder  LSP  is  only  0.7  worse than  the  2400  bit  /.s  residual  excited  vocoder  LPC.  At  a  rate  4800  bit  /.s,  the  DRT 

score  of  the  vocoder  LSP  in  only  0.7  worse  than  the  9600  bit  /.s  residual  excited vocoder  LPC. 

It  is  worth  mentioning  that  in  speech  coding  algorithms  using  linear  prediction, the  transmission  of  the  LPC  parameters,  usually  transformed  to  the  LSF  representation,  consumes  most  of  the  total  bit  rate  of  the  coder. 

In  order  to  define  the  LSF  parameters,  the  inverse  filter  polynomial  is  used  to construct  two  polynomials: 

.  P (z) =  A(z) +  z− (M+1 )A(z−1 )

(6.48)
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and 

.  Q(z) =  A(z) −  z− (M+1 )A(z−1 ). 

(6.49) 

The  roots  of  polynomials  P (z).  and  Q(z).  are  called  LSFs.  The  polynomials  P (z). 

and  Q(z). have  the  following  properties:  1)  all  zeros  of  P (z). and  Q(z). lie  on  the  unit circle  and  2)  zeros  of  P (z). and  Q(z). are  interlaced  with  each  other,  that  is,  the  LSFs wi. are  in  ascending  order  in  ( 0 , π).,  in  the  form  (Kim  and  Oh  1999) 

.0  < w 1  < w 2  < . . . < wp < π. 

(6.50) 

An  important  question  in  LSF  coding  is  that  the  ordering  relation  is  required for  assuring  the  stability  of  the  synthesis  filter  (Sugamura  and  Farvardin  1988). 

The  properties  (1)  and  (2)  previously  presented  are  useful  for  determining  the  LSF 

parameters  from  P (z). and  Q(z).. 

For  a  long  time,  almost  all  coding  schemes  have  used  some  form  of  scalar quantization  (Eriksson  et  al. 1999).  Complexity  questions  (number  of  operations performed  to  compare  an  input  vector  to  each  codevector  of  the  codebook)  and memory  requirements  were  viewed  as  limiting  factors  to  the  effective  use  of  vector quantization.  The  first  work  incorporating  VQ  was  described  in  Buzo  et  al.  (1980), 

but  a  performance  far  from  the  acceptable  was  obtained  with  VQ  at  10  bits  per frame. 

Hence,  due  to  the  prohibitive  size  of  the  training  set,  to  the  high  computational cost  of  the  codebook  design,  and  to  the  computational  requirements  prohibitive to  full  search  vector  quantization,  hybrid  schemes  (scalar  and  vectorial)  (Grass and  Kabal  1991;  Laroia  et  al. 1991)  and  methods  for  reducing  the  computational complexity  have  been  investigated.  As  an  example,  one  can  cite  the  method proposed  by  Paliwal  and  Atal  in  Paliwal  and  Atal  (1993), by  which  the  vector  of  LSF 

parameters  is  divided  into  two  vectors,  each  one  quantized  by  a  different  codebook. 

This  procedure  is  known  as  split  VQ. 

In memoryless quantization, each vector of LSF parameters is quantized indepen-

dently  of  the  past  LSF  vectors.  However,  this  is  not  the  most  efficient  method  for coding  the  LSF  vectors,  which  present  significant  interframe  correlation  (correlation regarding  successive  frames).  As  a  consequence,  performance  gains  in  coding  may be  obtained  by  exploring  the  interframe  correlation,  as  occurs  in  predictive  vector quantization  (Shoham  1987)  and  finite-state  vector  quantization. 

Besides  the  type  of  quantization  (scalar,  vectorial,  hybrid)  and  the  inclusion  or exclusion  of  memory  in  the  quantization  process,  many  aspects,  generally  related, affect  the  performance  of  an  LSF  quantizer,  such  as  Ramachandran  et  al. (1995): the  distortion  measure  used  for  the  quantizer  design,  the  codebook  design,  the complexity of the search, the number of bits, the memory requirements for codebook storage,  and  the  robustness  to  channel  errors. 

Code  excited  linear  prediction  (CELP)  (Schoroeder  and  Atal  1985)  is  a  class of  speech  coders  which  present  a  good  strategy  for  high-quality  digital  speech transmission  at  low  bit  rates.  An  important  technique  belonging  to  that  class  of
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coders  is  the  vector  sum  excited  linear  prediction  (VSELP)  (Electronic  Industries Association  (EIA), EIA). 

6.12 

Overview  of  Speech  Coding 

Speech  compression  has  been  an  intense  research  area  for  decades.  Almost  all works  in  speech  compression  regard  to  lossy  compression,  by  which  the  numerical representation  of  the  signal  samples  is  never  recovered  exactly  after  decoding.  There exists  a  wide  range  of  compromises  between  the  bit  rate  and  the  quality  of  the reconstructed  signal  that  are  of  practical  interest  for  telephone  speech  coding.  The cell  phone  users,  for  instance,  are  accustomed  to  varied  levels  of  signal  degradation. 

The  speech  coding  algorithms  may  be  divided  into  two  main  groups:  waveform coders  and  vocoders  (Gersho  1994). 

Historically,  the  term  vocoder  originated  from  the  contraction  of  voice  encoder and  decoder.  In  waveform  coders,  the  data  transmitted  from  the  coder  to  the  decoder specify  a  speech  representation  as  a  waveform  of  amplitude   versus   time,  such  that the  reconstructed  signal  approximates  the  original  waveform  and,  consequently, provides  an  approximated  recreation  of  the  original  sound. 

On  the  other  hand,  vocoders  do  not  produce  an  approximation  of  the  original waveform.  In  vocoders,  parameters  which  characterize  the  segments  of  sounds  are specified  and  transmitted  to  the  decoder,  which  reconstructs  a  new  waveform,  with a  similar  sound.  Vocoders  are  also  called  parametric  coders  by  an  obvious  reason. 

Frequently  those  parameters  characterize  the  short-term  spectrum  of  a  sound. 

The  parameters  specify  the  mathematical  model  of  human  speech  production. 

But,  the  parameters  do  not  provide  sufficient  information  to  produce  a  good approximation  of  the  original  waveform,  but  the  information  is  sufficient  for  the decoder  to  synthesize  a  sound  which  is  perceptually  similar  to  the  voice  signal. 

Vocoders  operate  at  rates  lower  than  the  ones  of  waveform  coders,  but  the  quality  of the  reconstructed  speech,  although  intelligible,  suffers  from  loss  of  naturalness,  and some  unique  features  which  identify  a  speaker  may  be  damaged. 

For  waveform  coders  the  quantization  is  performed  directly  on  the  signal  waveform,  while  for  parametric  coders,  the  quantization  is  performed  on  the  parameters of  the  model  under  consideration.  Hybrid  coders  are  based  on  the  models  of  speech production,  but  they  use  an  excitation  for  the  synthesizer  which  is  more  accurate than  that  one  used  in  parametric  coders 

Most  of  the  research  in  speech  coding  is  based  on  the  speech  allocated  in  the telephony  bandwidth,  that  is,  limited  to  3.2  kHz,  which  corresponds  to  the  range 200 Hz to 3.4 kHz, sampled at 8 ksamples  /.s. Speech coding in broadband  has gained attention  and  concerns  7  kHz  signals,  sampled  at  16  ksamples  /.s. 

A  popular  coding  technique  is  the  code-excited  linear  prediction  (CELP).  Some other  coding  methods  are  adaptive  delta  modulation  (ADM),  adaptive  differential pulse  code  modulation  (ADPCM),  adaptive  predictive  coding  (APC),  multipulse linear  predictive  coding  (MP-LPC),  and  regular  pulse  excitation  (RPE). 
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The  coders  MP-LPC,  RPE,  and  CELP  belong  to  the  family  of  algorithms  of analysis  by  synthesis,  which  can  be  seen  as  hybrid  coders,  since  they  combine  some features  of  vocoders  and  waveform  coders.  A  well-known  analysis  by  synthesis speech  coder  is  the  full  rate  GSM  RPE-LTP  13  kbit  /.s,  standardized  by  ETSI,  in 1988,  for  the  digital  cellular  mobile  system  (Hersent  et  al. 2002). 

The  linear  predictive  coding  (LPC)  vocoder  is  widely  used  in  secure  telephone speech.  It  is  also  possible  to  cite  the  vocoder  sinusoidal  coding  technique,  whose corresponding versions are the sinusoidal transform coding (STC) and the multiband excitation  (MBE). 

6.13 

Waveform  Coding 

For  waveform  coders  the  quantization  is  performed  directly  on  the  voice  waveform. 

The  purpose  is  to  reproduce  the  waveform,  sample  by  sample,  as  efficiently  as possible.  In  general  the  coders  have  low  implementation  complexity,  present  low delay,  and  are  suitable  for  use  in  telephone  networks  at  bit  rates  R ≥ 16. kbit  /.s.  An exception  is  the  VQ-based  technique,  which  code  a  set  of  samples. 

Regarding  the  complexity,  usually  the  coders  may  be  classified  as  low,  medium, and  high  complexity.  Low-complexity  waveform  coders  present  good  speech  quality at  rates  of  56  kbit  /.s  minimum.  Lower  rates,  up  to  32  kbit  /.s,  are  obtained  with medium  complexity  coders  and  lower  rates,  up  to  16  kbit  /.s,  with  high-complexity coders. 

Differential  Pulse  Code  Modulation 

Differential  coding  exploits  the  fact  that  the  speech  signal  presents  significant correlation  between  successive  samples.  This  means  that  the  speech  signal  is very  redundant.  The  purpose  of  differential  pulse  code  modulation  (DPCM)  is  to reduce  the  redundancy  of  the  speech  signal,  by  quantizing  the  difference  between amplitudes  of  adjacent  samples.  As  the  difference  presents  lower  variance  when compared  to  the  original  signal,  fewer  bits  may  be  used  for  its  representation. 

Figure  6.23  shows  a  block  diagram  of  a  DPCM  encoder.  It  can  be  seen  that the  previous  input  value  is  reconstructed  by  a  feedback  loop  that  integrates  the encoded  sample  differences.  The  advantage  of  the  feedback  implementation  is  that Fig.  6.23  Block  diagram  of 
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quantization  errors  do  not  accumulate  indefinitely  (Bellamy  1991).  As  in  PCM 

systems,  the  analog-to-digital  conversion  process  can  be  uniform  or  companded.  By using  DPCM,  the  transmission  rate  may  be  decreased  to  56  kbit  /.s  with  comparable quality  to  that  of  PCM. 

Adaptive  Differential  Pulse  Code  Modulation 

It  is  interesting  to  notice  that  a  DPCM  coder  may  increase  its  performance  gain  if the  quantization  and  /.or  prediction  is  carried  out  adaptively.  In  such  case  the  coder is  called  adaptive  differential  pulse  code  modulation  (ADPCM). 

The  adaptive  techniques  for  speech  coding  try  to  solve  the  trade-off  between a  stepsize  large  enough  to  accommodate  the  maximum  peak-to-peak  range  of the  signal  and  small  enough  to  minimize  the  quantization  noise.  So,  adaptive quantization  consists  on  adjusting  the  quantization  steps  as  a  function  of  the signal  level.  A  nonuniform  quantization  is  performed,  by  which  the  width  of  the quantization  levels  is  not  predetermined. 

Adaptive  prediction  consists  on  the  dynamic  adjustment  of  the  predictor  coefficients,  according  to  the  variations  of  the  speech  signal.  This  way,  the  non-stationary nature  of  the  speech  signal  is  taken  into  consideration  in  the  coding  process. 

ADPCM  coders  present  good  speech  quality  for  rates  between  24  and  48  kbit  /.s. 

Delta  Modulation 

Delta  modulation  (DM)  is  a  special  case  of  DPCM.  The  variation  of  amplitude  from sample  to  sample  is  quantized,  by  using  only  two  quantization  levels.  Thus,  DM 

uses  only  one  bit  per  sample  of  the  difference  signal. 

The  output  of  the  two-level  quantizer  is  related  to  the  input  by  the  expression y = 2 du(x) −  d.,  in  which  u(· ). is  the  unit  step  function,  d denotes  the  quantization step,  and   x  is  the  difference  signal  between  successive  samples  of  the  original signal (Alencar 2002).  The  single  bit  is  used  to  increment  or  decrement,  by  a constant  stepsize,  the  coded  signal  when  the  difference  signal  is  positive  or  negative, respectively.  Thus,  the  coded  signal  resembles  a  staircase,  as  illustrated  in  Fig. 6.24. 

Fig.  6.24  Example  of  the 
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The  practical  advantages  of  using  a  small  number  of  quantization  levels, including  quantization  with  only  one  bit,  have  been  confirmed  by  the  popularity  of sigma-delta  (  −  .)  coding  schemes.  Those  schemes  have  wide  acceptance  due  to their  robustness  to  circuitry  imperfections  and  suitability  to  VLSI  (very  large  scale integration)  implementation  (Gray  1987;  Zamir  and  Feder  1995). 

The  quantization  noise,  caused  by  the  quantization  stage  in  the   − . modulator, has  been  analyzed  by  many  techniques  (Gray  1989; Galton  1993). The  use  of pseudo-random  noise  ( dither)  and  the  sampling  at  high  rates  have  been  studied, demonstrating  the  viability  of  recovering  a  signal  with  two  levels  (Chou  and  Gray 

1991; Shamai  1994). 

6.14 

Parametric  and  Hybrid  Coding 

Parametric  coders,  or  vocoders,  are  based  on  the  model  of  speech  production.  This model  is  represented  by  a  set  of  parameters  periodically  updated.  For  determining those  parameters,  the  signal  is  segmented  at  periodic  intervals,  called  frames.  The parameters  are  usually  updated  at  each  frame.  The  rate  required  by  the  vocoders  is low  (lower  than  4.8  kbit  /.s),  but  the  delay  and  the  complexity  are  high  and  the  signal sounds  synthetic. 

Different  from  waveform  coders,  in  parametric  coders  the  quantization  is  carried out  on  the  parameters  of  the  speech  production  model,  which  are  used  in  speech synthesis.  The  parameters  of  the  speech  model  are  determined  over  short  frames, in  which  the  speech  signal  may  be  considered  stationary,  and  transmitted  to  the synthesizer  in  the  receiver.  Parametric  coders  do  not  provide  speech  quality  required by  the  telephone  network.  They  are  more  used  in  military  applications. 

Hybrid  coders  combine  the  quality  of  waveform  coders  with  the  efficiency  of parametric  coders.  Hybrid  coders,  more  sophisticated  than  vocoders,  are  based  on models  of  speech  production  and  use  a  better  excitation  to  the  synthesizer.  The excitation  improvement  is  responsible  for  the  improvement  in  the  quality  of  the synthesized  speech,  which  is  more  intelligible  than  the  speech  from  conventional vocoders.  The  improvement  is  due  to  quantization  and  coding  of  the  parameters  that define  the  excitation  as  well  as  to  parameters  of  the  synthesis  filter.  A  process  known as  analysis  by  synthesis  is  responsible  for  obtaining  the  parameters  used  in  short frames.  Hybrid  coders  are  usually  complex  and  lead,  for  rates  from  4  to  16  kbit  /.s, to  a  better  quality  when  compared  to  the  one  obtained  from  waveform  coding  with higher  rates. 

Channel  Vocoder 

Most  of  the  coding  processes  of  the  channel  coders  involve  the  determination  of the  sampled  spectrum  of  the  speech  signal  as  a  time  function.  In  channel  vocoder,  a bank  of  bandpass  filters  is  used  to  separate  the  energy  of  the  speech  signal  in  sub-bands,  which  are  completely  rectified  and  filtered  for  determining  the  relative  power levels.  The  individual  power  levels  are  coded  and  transmitted  to  the  destination. 

6.14 Parametric and Hybrid Coding
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In  addition  to  measuring  the  signal  spectrum,  modern  channel  vocoders  also determine  the  nature  of  the  speech  excitation. 

Most  of  the  difficulties  encountered  in  the  great  majority  of  vocoder  implementations  regard  the  determination  of  the  speech  harmonics.  Without  an  accurate information  of  excitation,  the  quality  in  the  coder  output  is  poor,  and  many  times it  depends  on  the  person  who  talks.  Some  channel  vocoders  have  produced  high intelligibility,  in  spite  of  producing  a  synthetic  sound  at  a  rate  2.4  kbit  /.s  (Bayless et  al. 1973). 

Formant  Vocoder 

A  formant  vocoder  determines  the  localization  and  the  amplitude  of  the  formants  (in which the energy of the speech signal is concentrated)  and transmits that information instead  of  transmitting  the  whole  spectral  envelope.  Hence,  the  formant  vocoder produces  a  low  bit  rate  by  coding  only  the  most  important  pulses  of  the  speech spectrum  (Alencar  2002). 

The  most  important  point  in  formant  vocoder  is  the  accurate  tracking  of  the formants.  Once  that  requirement  is  satisfied,  the  formant  vocoder  may  provide speech  intelligibility  at  a  rate  lower  than  1  kbit  /.s  (Flanagan  et  al. 1979). 

Linear  Predictive  Coder 

Linear  predictive  coder  (LPC)  is  a  widely  used  vocoder.  It  extracts  the  perceptually important  features  of  the  speech  directly  from  the  waveform  in  the  time  domain. 

The  effect  is  better  than  that  one  obtained  from  the  frequency  spectrum,  such  as  in channel  vocoder  and  formant  vocoder.  Fundamentally,  an  LPC  analyses  the  voice waveform  for  producing  a  model  of  the  time-varying  vocal  tract  and  for  producing the  transfer  function  of  the  vocal  model.  A  synthesizer  at  the  receiver  terminal recreates  the  speech  signal  by  using  a  mathematical  model  of  the  vocal  tract.  By the  periodic  updating  of  the  parameters  of  the  model  and  the  specification  of  the excitation,  the  synthesizer  is  adapted  to  the  changes  performed.  Figure  6.25  presents Predictor 
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Fig.  6.25  Model  of  speech  generation  in  linear  predictive  coding
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the  basic  model  of  speech  generation  of  the  linear  predictive  coding.  The  figure  is also  a  model  of  an  LPC  coder  /.synthesizer. 

The  equation  of  the  model  of  the  vocal  tract  is  defined  by 

 p



.  y(n) =

 aky(n −  k) +  Gx(n), 

(6.51) 

 k=1

in  which  y(n).  denotes  de   n-th  output  sample,  ak.  denotes  the   k-th  predictor coefficient,  G is  the  gain  factor,  x(n).  denotes  the  input  sampled  at  time   n,  and   p is  the  order  of  the  model. 

The  speech  output  in Eq. 6.51  is  represented  as  the  actual  input  of  the  system, summed  to  a  linear  combination  of  the  predicted  outputs  of  the  vocal  tract.  The model  is  adaptive  and  the  coder  determines,  periodically,  a  new  set  of  parameters corresponding  to  the  successive  frames  of  speech.  A  basic  LPC  does  not  perform the  measurement  and  coding  of  the  differences  of  waveforms.  Instead,  the  error signals  are  minimized  in  a  mean  square  sense,  when  the  predictor  coefficients  are determined  (Alencar  2002). 

The  information  that  the  LPC  coder  /.analyzer  determines  and  transmits  to  the decoder  /.synthesizer  consists  of: 

1.  Nature  of  excitation,  if  voiced  or  not. 

2.  Counting  of  the  period  for  the  excitation  of  the  speech. 

3.  Gain  factor. 

4.  Predictor  coefficients,  that  is,  parameters  of  the  vocal  tract  model. 

An  LPC  coder  is  capable  of  performing  gradual  changes  in  the  spectral  envelope. 

As  a  final  result,  a  more  natural  speech  representation  is  obtained  when  compared  to that  of  vocoders  based  purely  in  the  frequency  domain  (Bayless  et  al. 1973).  Most LPCs  have  concentrated  speech  coding  in  the  range  1.4  to  2.4  kbit  /.s. 

Code-excited  Linear  Prediction:  CELP 

The  basic  LPC  algorithm  synthesizes  the  speech  in  the  decoder  by  using  a  very simple  excitation  model,  which  requires  only  10%  of  the  data  rate  (Alencar  2002). 

The  simplicity  of  the  model  leads  to  speech  that  sounds  synthetic.  To  overcome  this problem,  many  techniques  have  been  developed  to  improve  the  excitation.  Three methods  may  be  cited:  multipulse  excitation  LPC  (MLPC),  residual  excitation  LPC 

(RELP),  and  code-excited  linear  prediction  (CELP). 

The  CELP  coders  look  like  the  multipulse  coders.  The  synthesis  filter  and the  predictors  are  the  same.  The  difference  resides  in  the  fact  that  in  CELP 

coders  the  sequence  of  excitation  pulses  is  selected  from  a  set  of  random  vectors, previously  stored,  forming  a  kind  of  codebook.  The  vectors  stored  in  the  codebook have  Gaussian  distribution  and  zero  mean,  as  an  attempt  to  match  the  short-term characteristics  of  the  speech  signal  (Aguiar  Neto  1995). 

The  choice  of  the  ideal  sequence  to  be  used  as  the  excitation  of  the  synthesis filter  at  the  decoder  is  performed  by  a  search  in  a  codebook,  using  the  analysis  by synthesis  technique.  As  in  MLPC,  a  short-term  correlation  analysis  and  a  long-term
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correlation  analysis  are  carried  out,  leading  to  the  spectral  envelope  (formants)  and the  periodicity  (pitch)  of  the  speech  signal.  By  using  those  parameters,  the  speech signal  is  synthesized. 

The  CELP  coders  lead  to  a  good  speech  quality  at  rates  ranging  from  4.8  kbit  /.s to  16  kbit  /.s  and  present  a  better  performance  in  terms  of  quality  versus  bit  rate when  compared  to  other  coders.  However,  the  CELP  coding  demands  a  high 

computational  effort,  which  was  seen  as  an  obstacle,  for  a  long  time,  to  real-time implementation. 

Simplifications  in  the  basic  structure  of  CELP  coder  (introduction  of  efficient search  methods  in  the  codebook  or  use  of  algebraic  codebooks)  and  the  increase of  MIPS  in  digital  signal  processors  (DSPs)  made  the  coding  method  feasible.  It is  worth  mentioning  that  the  decoder  is  much  simpler  than  the  coder  (since  there is  no  analysis  by  synthesis  search),  and  a  posterior  filtering  may  be  optionally performed  (Hersent  et  al. 2002). 

A  modification  introduced  in  the  CELP  coder,  such  that  the  delay  was  lowered from  about  20–40  ms  to  about  2  ms,  has  originated  the  LD-CELP  (low  delay  CELP). 

Many  international  standards  in  the  range  4.8  kbit  /.s  to  16  k  bit /.s  are  CELP  coders or  CELP  based  coders,  such  as  ITU-T  G.729,  multimedia  standard  ITU-T  G.723.1, full-rate  GSM  ETSI,  and  half-rate  GSM. 

6.15 

Speech  Coder  Attributes 

Speech  coders  have  attributes  classified  into  four  groups:  bit  rate,  quality,  complexity,  and  delay.  For  a  given  application,  some  attributes  are  pre-specified,  while trade-offs  can  be  made  among  the  others.  As  an  example,  the  communication channel  may  establish  a  limit  in  the  bit  rate;  cost  constraints  may  set  limits  in  the complexity. 

Quality  can  be  generally  improved  by  increasing  the  bit  rate  or  the  complexity and  sometimes  by  increasing  the  delay.  Requirements  or  goals  may  be  set  for  all of  these  speech  coders  attributes.  For  the  purposes  of  standards,  two  additional attributes  are  the  method  of  specification  and  conformance  validation  and  the schedule  in  which  the  work  plan  is  to  be  accomplished  (Cox  1995). 

Bit  Rate 

As  mentioned  earlier,  telephone  bandwidth  speech  signals  have  a  bandwidth  of about  300–3400  Hz  and  are  generally  sampled  at  8000  Hz.  The  speech  coders  that have  been  standardized  in  recent  years  have  bit  rates  ranging  from  800  bit  /.s  to 16 kbit /.s  (Co  x 1995). 

Some  of  these  coders,  notably  the  ones  that  have  been  standardized  for  cellular telephony,  also  have  a  channel  coder  associated  with  them.  In  such  case,  the  bit rate  increases  (for  instance,  to  22.8  kpbs).  The  lower  bit  rates  (800–4800  bit  /.s)  are
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associated  mainly  to  secure  telephony,  while  cellular  telephony  speech  coding  rates range  from  3.3  kbit  /.s  to  14  k  bit /.s,  for  regular  voice  services  (Cox  1995). 

Wideband  speech  signals  have  a  bandwidth  of  50–7000  Hz  and  are  sampled  at 16  kHz.  Due  to  the  wider  bandwidth,  intelligibility  and  naturalness  are  improved, and  listener  fatigue  during  long  conversations  is  lessened.  Among  the  wideband telephony  standards  (7  kHz),  one  can  cite  G.722,  with  rates  64,  56,  and  48  kbit  /.s. 

Delay 

Low-rate  speech  coders  can  be  considered  block  coders.  They  encode  a  block (frame)  of  speech  at  a  time.  Depending  on  the  application,  the  total  speech  coding delay  is  some  multiple  of  the  frame  size.  The  minimum  delay  is  generally  about three  to  four  times  the  frame  size.  For  purposes  of  standardization,  the  delay  is  a factor  in  real-time  conversational  systems  (Cox  1995). 

Complexity 

Regarding  speech  coder  implementation,  speed  and  random  access  memory  (RAM) usage  are  the  two  most  important  aspects  to  complexity.  The  faster  the  chip  (DSP) or  the  greater  the  chip  size,  the  greater  the  cost.  The  same  attributes  also  influence the  power  consumption,  which  is  a  critical  attribute  to  handheld  applications. 

Hence,  complexity  is  determinant  for  both  cost  and  power  consumption.  For  the perspective  of  standardization,  complexity  is  determined  by  the  application  (Cox 

1995). Speech  coders  that  require  less  than  15  MIPS  are  considered  low-complexity coders.  The  ones  that  require  30  MIPS  or  more  are  considered  high-complexity coders  (Rao  et  al. 2002). 

Quality 

The  Speech  Quality  Experts  Group  (SQEG)  of  the  International  Telecommuni-

cations  Union  (ITU)  has  a  very  strict  view  of  what  constitutes  network  toll  quality. 

The  first  digital  speech  coding  standard  was  ITU-T  Recommendation  G.711  for 64  kbit  /.s  PCM  speech.  The  distortion  introduced  by  a  G.711  codec  is  considered one  QDU  (quantization  distortion  unit).  SQEG  uses  QDU  for  network  planning purposes.  The  second  digital  speech  coding  standard  was  G.721  32  kbit  /.s  ADPCM. 

This  coder  was  standardized  to  be  used  in  combination  with  a  G.711  codec  as  its input  and  output.  The  resulting  distortion  is  considered  to  be  3.5  QDU  (Cox  1995). 

SQEG network planning guidelines call for a maximum of 14 QDU for an end-to-

end  international  connection  and  less  than  4  QDU  for  a  domestic  connection  (Cox 

1995). G.728  16  kbit  /.s  LD-CELP  codec  is  considered  to  have  the  same  QDU  of G.721.  Both  are  ITU  coders  which  present  toll  quality. 

Regarding  quality,  some  aspects  must  be  considered,  such  as  intelligibility, naturalness,  and  coder  performance  when  the  input  contains  other  signals  (such  as background  noise  or  music)  besides  speech.  Speech  quality  can  be  measured  by subjective  tests. 

Other  dimensions  of  speech  quality  can  be  considered.  The  channel  error 

sensitivity  can  be  regarded  as  one  aspect  of  quality.  In  the  case  of  digital  cellular standards,  additional  bits  for  channel  coding  are  provisioned  to  protect  the  information  bearing  bits. 

6.16 Problems
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6.16 

Problems 

1.  Explain  signal  compression  (definition,  types,  importance,  purpose,  applications). 

2.  Discuss  the  function  of  source  coding,  channel  coding,  and  modulation,  in  a typical  digital  communication  system. 

3.  Enunciate  the  sampling  theorem,  presenting  a  brief  mathematical  analysis  of the  sampling  process.  Comment  on  the  following:  if  the  sampling  frequency is  lower  than  the  Nyquist  frequency,  then  the  signal  cannot  be  completely recovered. 

4.  Discuss  the  aspects  used  for  assessing  the  performance  of  a  signal  compression system. 

5.  Present  the  main  features  of  speech  signals.  Some  features  are  efficiently explored  in  speech  coding  systems.  Explain. 

6.  Pulse  code  modulation  (PCM)  transforms  an  analog  signal  into  a  series  of binary  pulses.  What  is  the  minimum  sampling  frequency  for  a  signal  with bandwidth  of  3.4  kHz? 

7.  The  minimum  square  error  of  a  uniform  scalar  quantizer  is  given  by  d 2 / 12.,  in which   d  is  the  quantization  step.  What  are  the  reasons  by  which  this  result  i s obtained? 

8.  The  scalar  quantization  noise  leads  to  a  loss  in  signal  quality.  What  is  the improvement,  in  terms  of  signal  to  quantization  noise  ratio  (SQNR),  obtained by  using  two  additional  bits  in  the  coding  process?  Explain. 

9.  Define  mathematically  vector  quantization.  Discuss  its  importance  in  the scenario  of  signal  compression. 

10.  Regarding  LPC  quantization,  what  is  transparent  quantization? 

11.  Describe  what  is  meant  by  waveform  coders,  parametric  coders,  and  hybrid coders.  Present  a  comparison  concerning  reconstructed  signal  quality   versus bit  rate. 

12.  Discuss  the  following  attributes  of  speech  coders:  bit  rate,  delay,  complexity and  quality. 

[image: Image 10]

Chapter  7 

Modulation  Theory 

 Go  down  deep  enough  into  anything  and  you  will  find 

 mathematics. 

– Dean Schlicter 

7.1 

Introduction 

The  signals  that  carry  information  are  transmitted  from  one  point  to  another  by means of electromagnetic fields, using a given propagation media, as illustrated in block diagram, as devised in Fig. 7.1 by Claude Elwood Shannon (1916–2001), an American mathematician, electrical engineer, and cryptographer. 

In  Fig. 7.1,  m(t).  is  the  message,  or  modulating  signal,  s(t).  is  the  modulated signal that is transmitted through the channel, and  r(t) =  s(t) +  n(t). represents the received signal, in which  n(t). is the additive noise, representing a combination of all sources of random interference in the channel. Finally, ˜

 m(t ). is the demodulated 

signal, which incorporates noise and other channel effects, such as fading. 

The  efficient  radiation  of  radio  signals  employs  antennas,  the  dimensions  of which  are  compatible  with  the  wavelength  of  the  electromagnetic  field  and  with the media characteristics. Such waves provide a support for carrying information, 

which is also represented by an electrical signal, called modulating signal, used to modify one or more parameters of the carrier (Schwartz 1970). 

As briefly mentioned earlier, modulation consists of the variation of one or more 

characteristics  of  the  carrier  waveform  as  a  function  of  the  modulating  signal.  A sinusoidal waveform is used as the carrier, and the modulation is performed in three main ways, as represented in the following: 

.  s(t ) =  a(t )  cos[ ωct +  θ (t ) +  φ] , (7.1) 

in which  s(t). is the modulated carrier,  a(t). is the amplitude modulating signal,  θ (t). 

represents the angle modulating signal, and  φ. is a carrier random phase:

• Amplitude modulation (AM), when the carrier amplitude is varied according to 

the variation of the modulating signal; 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 

219

M. Sampaio de Alencar, V. C. da Rocha, Jr.,  Digital  Communications, 

https://doi.org/10.1007/978-3-031-92397-5_7

220

7

Modulation Theory

 m  t 

(  )

 s  t

(  ) 

 r  t

(  )

(  )

 m  t 

m

s

n

a

r

T

t

i t r

e

h

C  n

a e

n l

Re

e

v

i

e

c

r

 n  t 

(  )

Noise 

Fig.  7.1  Elementary model for and information transmission system

• Angle  modulation,  when  either  the  phase  (PM)  or  the  frequency  (FM)  of  the carrier is varied as a function of the modulating signal; 

• Quadrature  amplitude  modulation  (QAM),  when  both  the  amplitude  and  the 

phase  of  the  carrier  are  varied  simultaneously  as  a  function  of  the  modulating signal. 

7.2 

Amplitude  Modulation 

Amplitude modulation is a transmission system in which the instantaneous ampli-

tude of the carrier electromagnetic wave varies according to the modulating signal (Alencar 1999). It is also known as double-sideband amplitude modulation (AM-DSB)  and  is  by  far  the  most  widely  used  modulation  system,  because  it  has been  adopted  for  commercial  broadcast.  This  is  a  consequence  of  some  practical advantages  of  the  technique,  regarding  economy,  receiver  design  simplicity,  and easy maintenance. The AM carrier is a sinusoid represented as 

.  c(t ) =  A  cos (ωct +  φ), 

(7.2) 

in  which   A  denotes  the  carrier amplitude,  ωc.  denotes  the  angular  frequency (measured in radians per second, rad/s), and  φ. denotes the carrier phase, measured in radians (rad). 

Figure 7.2 illustrates an AM modulator, which includes the signal source, such as a microphone, the modulator, the oscillator that produces the carrier, the carrier amplifier, and the transmitting antenna. 

The  message  signal,  or  modulating  signal,  usually  written  as  m(t)., must have its largest frequency well below the carrier frequency  ωc.. The available modulation bandwidth is restricted by the linear region of operation of the transmitter amplifiers and varies from 0 .  1%. to 1%. of the carrier frequency (Gagliardi 1978). 

The instantaneous carrier amplitude needs to have the following form, so that the 

carrier amplitude varies according to  m(t).:

7.2 Amplitude Modulation
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Fig.  7.2  Amplitude modulation technique 

.  a(t ) =  A +  Bm(t ) =  A[1 +  AM m(t )] , (7.3) 

in  which  AM =  B/A.  is  called  the  AM  modulation  index.  The  instantaneous amplitude of the message signal produces the modulated waveform as follows: 

.  s(t ) =  a(t )  cos (ωct +  φ), 

(7.4) 

This can be also written as 

.  s(t ) =  A[1 +  AM m(t )] cos (ωct +  φ), 

(7.5) 

in which  ωc. is the unmodulated carrier frequency, in rad/s, and  φ. is the carrier phase, which is usually random. 

Figure 7.3 shows the modulating waveform, which alters the carrier amplitude in  order  to  produce  the  modulated  waveforms  seen  in  Figs. 7.4,  7.5,  and  7.6, for various values of the modulation index. 

It  is  noticed  in  Fig. 7.4  that  the  envelope  of  the  modulated  waveform  has  the same format as the modulating signal. This follows because  A +  Bm(t) >  0., that is, AM =  B/A <  1.. In Fig.  7.5 the modulation index is equal to one ( AM = 1.) and is usually referred as a 100%. modulated carrier. In Fig. 7.6 the modulation index is greater than one ( AM >  1.) and causes phase inversion or phase rotation, in the modulated carrier, which is said to be over modulated. 

The modulation index indicates how strong the modulating signal is with respect 

to  the  carrier.  The  modulation  index  should  not  exceed  100%  in  order  to  avoid distortion in a demodulated signal whenever an envelope detector is employed. 

Depending  on  the  manner  by  which  the  instantaneous  amplitude  varies  as  a function of  AM ., assuming | m(t)| = 1., the following terminology is applicable:
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Fig.  7.6  Effect of the 
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•  AM  = 1. implies 100% carrier modulation and allows envelope detection of the modulating signal; 

•  AM   >  1. means carrier overmodulation that causes phase rotation of the carrier and requires synchronous demodulation for recovering the modulating signal; 

•  AM   <   1., the carrier undermodulation case permits envelope detection of the modulating signal but does not make efficient use of the carrier power. 

7.3 

Amplitude  Modulation  by  Random  Signals 

The  mathematical  treatment  used  in  this  section  involves  concepts  of  a  random process,  or  random  signal,  which  were  developed  previously.  The  results  derived here  by  using  an  analysis  based  on  random  processes  by  far  compensate  for  the extra effort required to understand the theory of stochastic processes. The theoretical development that follows, besides being particularly more elegant than the standard treatment  based  on  deterministic  signals,  is  closer  to  real-life  signals  of  a  true random nature. 

Consider  the  modulated  carrier  given  by  s(t) =  a(t)  cos (ωct +  φ).,  in  which a(t ) =  A[1 +  AM m(t)]..  Let  the  carrier  phase   φ.  be  a  random  variable  with  a uniform  distribution  in  the  interval [0 ,  2 π]..  The  signal  m(t).  is  assumed  to  be  a stationary random process with zero mean and statistically independent of  φ.. 

The  carrier  is  a  random  process  because  it  possesses  a  random  phase  and because  it  was  modulated  by  a  stochastic  process.  The  stationarity  of  the  carrier is thus guaranteed. The autocorrelation of a stationary random process, which was 

discussed previously, is given by 

.  RS (τ ) =  E[ s(t )s(t +  τ )] . 

(7.6) 

By plugging (7.4) into (7.6), it follows that
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.  RS (τ ) =  E[ (a(t )  cos (ωct +  φ))(a(t +  τ )  cos (ωc(t +  τ ) +  φ))] , (7.7) 

or 

.  RS (τ ) =  E[ a(t )a(t +  τ )  cos (ωct +  φ)  cos (ωc(t +  τ ) +  φ)] , (7.8) 

and by replacing a sum of cosines for a product of cosines it follows that 

.  RS (τ ) = 1  E[ a(t )a(t +  τ ) ( cos (ωcτ ) + cos ( 2 ωct +  ωcτ + 2 φ))] . 

(7.9) 

2

By  making  use  of  properties  of  the  mean,  considering  that  a(t).  and   φ.  are independent  random  variables  and  that  the  mean  value  of  the  carrier  is  zero,  it follows that 

.  RS (τ ) = 1  RA(τ )  cos (ωcτ ), 

(7.10) 

2

in which the autocorrelation of the modulating signal  RA(τ ). is defined as 

.  RA(τ ) =  E[ a(t )a(t +  τ )] . 

(7.11) 

Replacing the expression (7.3) for   a(t). in (7.11), it follows that 

.  RA(τ ) =  E[ A( 1 +  AM m(t ))A( 1 +  AM m(t +  τ ))]

(7.12)

=  A 2 E[1 +  

2

 AM m(t ) +  AM m(t +  τ ) +  AM m(t )m(t +  τ )] . 

Again using properties of the mean and recalling that  m(t). is stationary and zero mean, that is, that  E[ m(t)] =  E[ m(t +  τ )] = 0., it follows that  

.  RA(τ ) =  A 2[1 +   2 AM RM (τ )] , 

(7.13) 

in  which  RM =  E[ m(t)m(t +  τ )].  represents  the  autocorrelation  of  the  message signal. Finally, the autocorrelation of the amplitude modulated carrier is given by 

.  RS (τ ) =  A 2 [1 +   2

2

 AM RM (τ )] cos  ωcτ. 

(7.14) 

 7.3.1 

 Total  Power  of  an  AM  Carrier 

The  total  power  of  an  AM  carrier  is  given  by  the  value  of  its  autocorrelation  for τ = 0., thus
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.  PS =  RS ( 0 ) =  A 2  ( 1 +   2

2

 AM PM ), 

(7.15) 

in which  PM =  RM ( 0 ). represents the power in the message signal  m(t).. The power in the unmodulated carrier is given by   A 2

2 ., as can be easily checked, and represents 

a significant portion of the total transmitted power. 

 7.3.2 

 Power  Spectral  Density 

The power spectral density of the AM-modulated carrier is obtained as the Fourier 

transform of the autocorrelation function  RS(τ ).. This result is known as the Wiener-Khinchin theorem, seen in previous chapters, that is, 

.  SS (ω) =  F [ RS (τ )] , 

in which  RS(τ ) = 1  R

2

 A(τ )  cos (ωcτ ).. 

The  function  RS(τ ).  can be seen as the product of two functions: 1  R

2

 A(τ ).  and 

cos (ωcτ ).. Using this line of reasoning, the Fourier transform of  Rs(τ ). is calculated with the application of the convolution theorem, that is, 





.  SS (ω) =  F [ RS (τ )] = 1

 F[1 RA(τ)] ∗  F[cos (ωcτ)]

2 π

2





= 1

1  SA(ω) ∗  (πδ(ω +  ωc) +  πδ(ω −  ωc)) , 

2 π

2

and applying the impulse filtering property it follows that 

.  SS (ω) = 1 [ SA(ω +  ωc) +  SA(ω −  ωc)]  , (7.16) 

4

in which  SA(ω) =  F[ RA(τ )].. 

The power spectral density of the modulating signal can be derived by writing 

the expression for  RA(τ ). and then calculating its Fourier transform. Thus, 2

.  SA(ω) =  F [ A 2 ( 1 +  AM RM (τ )] , 

=  A 2[2 πδ(ω) +  

2

 AM SM (ω)] . 

in which  SM (ω). is the power spectral density of the message signal. 

Finally, the power spectral density of the modulated AM carrier is given by 

.  SS (ω) =  A 2 [2 π(δ(ω +  ωc) +  δ(ω −  ωc)) +

4
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Fig.  7.7  Power spectral 

density of the message signal 
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Fig.  7.8  Power spectral 

density the modulating signal 

 S  (    )

ω

 A

0 

0 

ω 



 

2

 AM   (SM (ω +  ωc) +  SM (ω −  ωc)) . 

(7.17) 

The power spectral density of a message signal is depicted in Fig. 7.7, and the spectrum of the modulating signal is shown in Fig. 7.8, which includes an impulse at the origin due to the DC level. 

Finally,  the  power  spectral  density  of  the  modulated  carrier  is  illustrated  in Fig. 7.9, which  shows  two  identical  spectra  centered  at  the  carried  frequency   ωc. 

and its negative counterpart −  ωc.. 

The  bandwidth  required  for  the  transmission  of  an  AM  signal  is  precisely twice the bandwidth of the message signal. In AM radio broadcast, the maximum 

frequency  of  the  message  signal  is  limited  to  5  kHz,  and  consequently  the  AM 

bandwidth for commercial radio broadcast is 10 kHz. 

7.3 Amplitude Modulation by Random Signals

227

Fig.  7.9  Power spectral 

density of an AM signal 
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Fig.  7.10  A binary ASK  
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 7.3.3 

 Digital  AM  Signal 

The digital AM signal, also called amplitude-shift keying (ASK), can be generated 

by  the  process  of  multiplying  the  digital  modulating  signal  by  the  carrier.  An example of the ASK signal is shown in Fig. 7.10. 

The  ASK  signal  can  also  be  represented  in  a  different  manner,  using  a  phase diagram, which consists of representing the modulated signal in axes which are in 

phase (I axis) and in quadrature (with a phase lag of  π/ 2., or Q axis) with respect to the carrier phase. 

This diagram is also known as a constellation because it represents signal points 

as stars on a plane. The digital signal which amplitude modulates the carrier can be written as 

∞



.  m(t ) =

 mkp(t −  kTb), 

(7.18)

 k=−∞
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Fig.  7.11  Constellation 

 Q 

diagram for a 4ASK signal 
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in  which  mk.  represents  the   k-th  randomly  generated  symbol,  from  a  discrete alphabet,  p(t). is the pulse shape of the transmitted digital signal and  Tb. is the bit interval. 

The modulated signal without carrier is then given by 

∞



.  s(t ) =

 mkp(t −  kTb)  cos (ωct +  φ). 

(7.19) 

 k=−∞

As an example, Fig. 7.11 shows the constellation diagram of a 4ASK signal, the symbols  of  which  are  mk ∈ {−3 A, − A, A,  3 A}.. All the signal points are on the cosine axis (in phase with the carrier), since there is no quadrature component in this case. 

When the modulating signal is a digital signal, the transmitted power is calculated by considering the average power per symbol. In the 4-ASK case, by considering 

equiprobable symbols it follows that the transmitted power is given by 

4







 (−3 A) 2 +  (− A) 2 +  (A) 2 +  ( 3 A) 2

.  PS = 1

 m 2

= 5 A 2 . 

2

 k p(mk ) = 1

2

4

2

 k=1

(7.20) 

The probability of error for the coherent binary ASK is (Haykin 1988) Eb

.  Pe = 1 erfc

 , 

(7.21) 

2

 N 0

in  which  Eb.  is  the  binary  pulse  energy,  N 0.  represents  the  noise  power  spectral density, and erfc (· ). is the complementary error function
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∞

.erfc (x) =

2

√

 e− t 2  dt. 

(7.22) 

 π

 x

For a rectangular pulse,  Eb =  A 2 Tb., in which  A is the pulse amplitude and  Tb. is the pulse duration. 

7.4 

Suppressed  Carrier  Amplitude  Modulation 

It  has  been  seen  that  in  standard  AM  systems,  most  of  the  power  is  spent  in transmitting  the  carrier.  In  principle,  this  is  a  waste  of  power  if  one  reasons  that the carrier by itself conveys no information. 

In a suppressed carrier AM system (AM-SC), the carrier is not sent as part of the 

AM signal, and all of the transmitter power is available for transmitting information over the two sidebands. Obviously, in terms of efficient use of transmitter power, the AM-SC system is more efficient than an AM system. However, a receiver for an 

AM-SC signal is significantly more complex than an AM receiver. 

The  AM-SC  technique  essentially  translates  the  frequency  spectrum  of  the 

modulating  signal  by  multiplying  it  by  a  sinusoid,  the  frequency  of  which  has  a value equal to the desired frequency translation. In other words the original message, or modulating, signal  m(t). becomes  m(t)  cos (ωct +  φ)., after multiplication by the carrier. 

7.5 

Autocorrelation  for  the  AM-SC  Signal 

Let  s(t) =  m(t)  cos (ωct +  φ)., in which  m(t). is a stationary random process with zero mean and  φ. is a random variable uniformly distributed in the interval [0 ,  2 π]. 

and statistically independent of  m(t).: 

.  RS (τ ) =  E[ s(t )s(t +  τ )]

(7.23) 

.  RS (τ ) =  E [ m(t )m(t +  τ )  cos (ωct +  φ)  cos (ωc(t +  τ ) +  φ)]

(7.24) 





.  RS (τ ) =  E m(t )m(t +  τ )] ·  E[ 1  ( cos  ωcτ ) + cos (ωcτ + 2 ωct + 2 φ) (7.25) 

2

1

.  RS (τ ) =  E [ m(t )m(t +  τ )]  (

cos  ωcτ )

(7.26) 

2

.  RS (τ ) = 1  RM (τ )  cos  ωc(τ )

(7.27)

2
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The power of the AM-SC signal can be derived from the autocorrelation function 

computed for  τ = 0.: 

.  PS =  RS ( 0 ) = 1  PM . 

(7.28) 

2

 7.5.1 

 Autocorrelation  of  a  Digitally  Modulated  Signal 

Consider  the  digital  signal,  with  independent  and  equiprobable  symbols  from  the set M = {− A, A}., whose autocorrelation is defined by Formula 5.51. 

The  autocorrelation  function  for  the  amplitude  modulated  carrier,  considering that the signal has zero mean, is given by 





| τ|

.  RM (τ ) =  A 2

1 −

][ u(τ +  Tb) −  u(τ −  Tb)  cos (ωcτ), 

(7.29) 

2

 Tb

in which  Tb. is the bit interval and  A represents the pulse amplitude. 

Figure 7.12 shows the modulated carrier autocorrelation. Its maximum, which is the modulated signal power, occurs at the origin and is equal to  A 2 / 2.. As can be observed from the figure, the autocorrelation decreases with an increase in the time interval and reaches zero at time  Tb.. 

 R  (  )

 X  τ 

 A2 /2 

0 

0 

 −Tb 

 Tb  τ 

Fig.  7.12  Autocorrelation for the digitally modulated signal
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7.6 

AM-SC  Power  Spectral  Density 

The  power  spectral  density  is  obtained  by  means  of  the  Fourier  transform  of  the autocorrelation function, as follows: 

∞

.  SS (ω) =

 RS(τ )e− jωτ  d τ, 

(7.30) 

−∞

.  SS (ω) = 1  SM (ω) ∗  δ[ (ω +  ωc) +  δ(ω −  ωc)] , (7.31) 

4

.  SS (ω) = 1 [ SM (ω +  ωc) +  SM (ω −  ωc)] . 

(7.32) 

4

Figure 7.13 represents the spectrum of the modulating signal, without the impulse associated to the DC level, and Fig. 7.14 is the spectrum of the modulated AM-SC 

signal,  also  called  AM-DSB,  without  the  impulses  associated  with  the  carrier.  It is important to note that the modulated signal bandwidth is double the modulating 

signal bandwidth, which is a waste of the available frequency spectrum. 

Fig.  7.13  Spectrum of the 

modulating signal  S
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Fig.  7.14  Spectrum of the 

AM-DSB modulated signal 
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Fig.  7.15  Power spectral density for the digitally modulated signal 

 7.6.1 

 Spectrum  of  a  Digitally  Modulated  Signal 

For the digital signal, whose autocorrelation is given by Formula  5.51, the corresponding spectrum is 





sin2 [ (ω +  ωc)Tb/ 2]

.  SS (ω) =  A 2 Tb

+ sin2 [ (ω −  ωc)Tb/ 2]  , 

(7.33) 

4

[ (ω +  ωc)Tb/ 2]2

[ (ω −  ωc)Tb/ 2]2

which  represents  two  squared  sampling  functions  and  shows  that  the  modulated digital signal has a continuous spectrum. 

The power density spectrum is sketched in Fig. 7.15. The distance between the first nulls around the carrier frequency is a measure of the bandwidth. 

7.7 

Quadrature  Amplitude  Modulation 

The  quadrature  modulation  scheme  (QAM)  uses  sine  and  cosine  orthogonality properties  to  allow  the  transmission  of  two  different  signals  in  the  same  carrier, which occupies a bandwidth that is equivalent to the AM signal. 

The  QAM  modulator  can  be  assembled  using  two  DSB-SC  modulators.  The 

information is transmitted by both the carrier amplitude and phase. The quadrature modulated signal  s(t). can be written as 

.  s(t ) =  b(t )  cos (ωct +  φ) +  d(t )  sin (ωct +  φ), (7.34)
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in which the random modulating signals  b(t). e  d(t). can be correlated or uncorrelated. 

It is also possible to write the modulated signal as 







.  s(t ) =

 b 2 (t ) +  d 2 (t)  cos  ωct − tan−1  d(t) +  φ , (7.35) 

 b(t )

in which the modulating signal, or resultant amplitude, can be expressed as 



.  a(t ) =

 b 2 (t ) +  d 2 (t), 

(7.36) 

and the resultant phase is 





 d(t )

.  θ (t ) = − tan−1

 . 

(7.37) 

 b(t )

The autocorrelation function for the quadrature modulated carrier can be com-

puted from the definition 

.  RS (τ ) =  E[ s(t ) ·  s(t +  τ )] . 

(7.38) 

Substituting Eq. 7.34 into 7.38 gives 

.  RS (τ ) =  E [[ b(t )  cos (ωct +  φ) +  d(t )  sin (ωct +  φ)]

· [ b(t +  τ)  cos (ωc(t +  τ) +  φ)

+  d(t +  τ)  sin (ωc(t +  τ) +  φ)]]  . 

(7.39) 

Expanding the product gives 

.  RS (τ ) =  E[ b(t )b(t +  τ )  cos (ωct +  φ)  cos (ωc(t +  τ ) +  φ)

+  d(t)d(t +  τ)  sin (ωct +  φ)  sin  megac(t +  τ) +  φ)

+  b(t)d(t +  τ)  cos (ωct +  φ)  sin (ωc(t +  τ) +  φ)

+  b(t +  τ)d(t)  cos (ωc(t +  τ) +  φ)  sin (ωct +  φ)] . 

(7.40) 

Using  trigonometric  properties  and  collecting  terms  which  represent  known 

autocorrelation functions, it follows that 

.  RS (τ ) =  RB (τ )  cos  ωcτ +  RD (τ )  cos  ωcτ

2

2

+  RDB(τ)  sin  ωcτ −  RBD(τ)  sin  ωcτ. 

(7.41)

2

2
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Which can be simplified to 









 RB (τ ) +  RD(τ )

 RDB (τ ) −  RBD(τ )

.  RS (τ ) =

cos  ωcτ +

sin  ωcτ . 

(7.42) 

2

2

It  is  observed  that  the  QAM  signal  is  subject  to  both  amplitude  and  phase modulation, and its autocorrelation function can be written as 

.  RS (τ ) =  R(τ )  cos [ ωcτ +  θ (τ )]  , 

(7.43) 

2

in which 



.  R(τ ) =

[ RB (τ ) +  RD(τ )]2 + [ RDB(τ ) −  RBD(τ )]2

(7.44) 





 RDB (τ ) −  RBD(τ )

.  θ (τ ) = − tan−1

(7.45) 

 RB (τ ) +  RD(τ )

Considering zero mean uncorrelated modulating signals,  RBD(τ ) =  E[ b(t)d(t +

 τ )] = 0. and  RDB(τ ) =  E[ b(t +  τ )d(t)] = 0.. The resulting autocorrelation is then given by 

.  RS (τ ) =  RB (τ )  cos  ωcτ +  RD (τ )  cos  ωcτ . 

(7.46) 

2

2

The carrier power is given by the following formula 

.  PS =  RS ( 0 ) =  PB +  PD . 

(7.47) 

2

The power spectrum density is obtained by applying the Fourier transform to the 

autocorrelation function (Wiener-Khinchin theorem), which gives 

.  SS (ω) = 1 [ SB (ω +  ωc) +  SB (ω −  ωc) +  SD (ω +  ωc) +  SD (ω −  ωc)]

4

=  j [ SBD(ω −  ωc) +  SBD(ω +  ωc)

4

+  SDB(ω +  ωc) −  SDB(ω −  ωc)]  , 

(7.48) 

in which  SB (ω).  and  SD(ω).  represent the respective power spectrum densities for b(t ).  and  d(t).;  SBD(ω).  is  the  cross-spectrum  density  between  b(t).  and  d(t).;  and SDB (ω). is the cross-spectrum density between  d(t). and  b(t).. 

For uncorrelated signals, the previous formula can be simplified to
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Fig.  7.16  Block diagram for the quadrature modulator 

.  SS (ω) = 1 [ SB (ω +  ωc) +  SB (ω −  ωc) +  SD (ω +  ωc) +  SD (ω −  ωc)]  . 

4

(7.49) 

The quadrature amplitude modulation scheme is shown in Fig. 7.16. 

7.8 

Single  Sideband  Amplitude  Modulation 

Single  sideband  amplitude  modulation,  or  AM-SSB,  is,  in  reality,  a  type  of quadrature  amplitude  modulation  which  uses  either  the  lower  or  upper  AM  side band  for  transmission.  The  AM-SSB  signal  can  be  obtained  by  filtering  out  the undesired side band of an AM-SC signal. 

The SSB signal saves bandwidth and power, as compared to other systems, but 

needs frequency and phase synchronization to be recovered (Carlson 1975). In order to  explain  the  process  of  generating  the  SSB  signal,  use  is  made  of  the  Hilbert transform, which has been introduced in a previous chapter. 

 7.8.1 

 Producing  the  SSB  Signal 

The  usual  process  to  obtain  the  SSB  signal  is  by  filtering  one  of  the  AM-SC 

sidebands.  Another  method  is  to  use  the  properties  of  the  Hilbert  transform, discussed  previously.  Consider  a  sinusoidal  signal  m(t) = cos (ωM t).,  which  has a Fourier spectrum  SM (ω). represented by two impulses at ±  ωM .. 

The modulated signal is given by cos (ωM t)  cos (ωct)., whose Fourier spectrum is that of  SM (ω). shifted to ±  ωc.. The carrier spectrum is formed by two impulses at
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± ωc.. Therefore, producing an SSB signal, for the special case,  m(t) = cos (ωMt). is equivalent to generating the signal cos[ (ωc −  ωM )t]. or the signal cos[ (ωc +  ωM )t].. 

By trigonometry, it follows that 

. cos[ (ωc −  ωM )t ] = cos  ωM t  cos  ωct + sin  ωM t  sin  ωct. 

(7.50) 

Thus,  the  desired  SSB  signal  can  be  produced  adding cos  ωM t  cos  ωct.  and sin  ωM t  sin , ωct.. Signal cos  ωM t  cos  ωct. can be produced by a balanced modulator. 

Signal sin  ωM t  sin  ωct. can be written as cos (ωM t −  π )  cos (ω

 )

2

 ct −  π

2 .. 

This signal can also be generated by a balanced modulator, as long as cos  ωM t. 

and carrier cos  ωct. be phase shifted by   π 2 .. Although this result has been derived for the special case  m(t) = cos  ωM t., it is valid to any waveform, because of the Fourier series properties, that allow the representation of any signal by a sum of sine and cosine functions. 

The SSB signal associated with  m(t). is thus 

.  s(t ) =  m(t )  cos (ωct +  φ) + ˆ

 m(t )  sin (ωct +  φ), 

(7.51) 

in which ˆ

 m(t ). is obtained by phase shifting all frequency components of  m(t). by   π 2 .. 

The block diagram of the modulator is shown in Fig. 7.17. 

 7.8.2 

 Lower  Sideband  SSB:  Random  Signal 

If  the  modulating  signal  m(t).  is  a  zero  mean,  stationary,  stochastic  process,  the usual path to follow, in order to obtain the power spectrum density, is to compute its autocorrelation function. The modulated SSB signal is given by 
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Fig.  7.17  Block diagram for the SSB modulator
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.  s(t ) =  m(t )  cos (ωct +  φ) + ˆ

 m(t )  sin (ωct +  φ)

(7.52) 

The autocorrelation function is calculated, as usual, by the formula 

.  RS (τ ) =  E[ s(t )s(t +  τ )]

(7.53) 

Substituting  s(t)., given by Eq. 7.52 



.  RS (τ ) =  E (m(t )  cos (ωct +  φ) + ˆ

 m(t )  sin (ωct +  φ))

·  (m(t +  τ)  cos (ωc(t +  τ) +  φ)

+ ˆ m(t +  τ)  sin (ωc(t +  τ) +  φ)) . 

(7.54) 

The previous equation can be split into 

.  RS (τ ) =  E [ m(t )m(t +  τ )  cos (ωct +  φ)  cos (ωc(t +  τ ) +  φ)]





+  E m(t)  ˆ m(t +  τ)  cos (ωct +  φ)  sin (ωc(t +  τ) +  φ)





+  E  ˆ m(t)m(t +  τ)  sin (ωct +  φ)  cos (ωc(t +  τ) +  φ)





+  E  ˆ m(t)  ˆ m(t +  τ)  sin (ωct +  φ)  sin (ωc(t +  τ) +  φ) . 

(7.55) 

After the corresponding simplifications, one obtains 

.  RS (τ ) = 1  RMM (τ )  cos  ωcτ + 1  R

 (τ )  sin  ωcτ

2

2  M  ˆ

 M

− 1 R  ˆ  (τ)  sin  ωcτ + 1 R  ˆ  (τ)  cos  ωcτ. 

(7.56) 

2  MM

2  M  ˆ

 M

It  is  known  that  RMM (τ ) =  R  ˆ  (τ )

 (τ ) = − R

 (τ )

 M  ˆ

 M

.  and  RM  ˆ

 M

ˆ

 MM

..  Therefore, 

the power spectrum density can be computed as  SS(ω) =  F[ RS(τ )]., by the use of previous relations and using the equation for the Hilbert filter 

− j  se  ω ≥ 0

.  H (ω) =

+

(7.57) 

 j  se  ω <  0

which leads to 

.  S  ˆ

 (ω) =  S

 M  ˆ

 M

 MM (ω). 

(7.58) 

 S

 (ω) =  j [ u(− ω) −  u(ω)] S

 M  ˆ

 M 

 MM (ω). 

(7.59) 

 S ˆ  (ω) =  j[ u(ω) −  u(− ω)] S

 MM 

 MM (ω), 

(7.60) 

Fig. 7.18 illustrates the spectrum of the original signal,  SMM (ω). at the input of the modulator. The signals filtered by the Hilbert filter are seen in Figs. 7.19 and 7.20. 
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Fig.  7.18  Spectrum of the 

modulating signal  S
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Fig.  7.19  Spectrum of the 

filtered modulating signal 
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Fig.  7.21  Spectrum of the 

SSB modulated signal  SS (ω). 
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It is possible to notice that the following power spectral density results for the SSB signal: 

.  S(ω)SSB =  SM (ω −  ωc)u(− ω +  ωc) +  SM (ω +  ωc)u(ω +  ωc), (7.61) 

which  represents  the  lower  sideband  SSB  signal,  obtained  from  the  original spectrum  SM (ω).. 

The power spectral density for the SSB modulated carrier for the upper sideband 

SSB signal is given by 

.  S(ω)SSB =  SM (ω −  ωc)u(ω −  ωc) +  SM (ω +  ωc)u(− ω −  ωc), (7.62) 

The spectrum for the upper sideband SSB modulated signal is shown in Fig. 7.21. 

7.9 

Angle  Modulation 

Angle modulation is a generic term for both frequency modulation (FM) and phase 

modulation (PM). The objective of this section is to derive a general mathematical model to analyze stochastic angle modulated signals. Several transmission systems 

use  either  frequency  or  phase  modulation,  including  analog  and  digital  mobile cellular communication systems, satellite transmission systems, television systems, and wireless telephones. 

Nowadays, it is well established that a frequency-modulated signal cannot fit in 

a bandwidth that is narrower than the one occupied by the original, or modulating, signal.  Ironically,  frequency  modulation  was  originally  conceived  as  a  means  to reduce the bandwidth required for the transmission of a given signal. 

It is not difficult to prove that this argument is false. John R. Carson was the first to recognize the fallacy of the reduction in bandwidth and clarified the subject in a
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paper published in 1922 (Carson 1922). At the time, however, he could foresee the advantage of frequency modulation over amplitude modulation, and the subject was 

forgotten for some time, until Edwin H. Armstrong invented the first radio which 

modulated a carrier in frequency (Armstrong 1936). 

Later on, Carson proved, in an unpublished memorandum of August 28, 1939, 

that the bandwidth of the frequency-modulated signal was equal to twice the sum 

of the peak frequency deviation and the highest frequency of the modulating signal (Carlson 1975). 

7.10 

Angle  Modulation  Using  Random  Signals 

The  use  of  stochastic  processes  allows  the  development  of  a  general  and  elegant method  to  compute  the  power  spectrum  density  of  angle  modulated  signals,  and also  to  determine  the  bandwidth  associated  with  the  resulting  modulated  carrier. 

The  modulating  signal  is  considered  a  stationary  random  process  m(t).  that  has autocorrelation  RM (τ ).. 

 7.10.1 

 Mathematical  Model 

Philip  Mayne  Woodward  (1919–2018),  a  British  engineer,  mathematician,  and 

horologist, published a paper establishing the concept that the spectrum of a highindex frequency-modulated (FM) waveform has a shape that is approximately that of 

the probability distribution of its instantaneous frequency (Woodward 1952; Alencar and Neto 1991). 

The  method  described  in  this  section  estimates  the  spectrum  of  an  anglemodulated  signal,  based  on  the  first-order  probability  density  function  (pdf)  of the  random  modulating  signal  to  validate  the  previous  theorem.  A  new  proof  is presented which includes the linear mean square estimator (Papoulis 1981a; Alencar 

1998a). 

The general angle modulated signal  s(t). is obtained from the following known equation: 

.  s(t ) =  A  cos  (ωct +  θ (t ) +  φ) , 

(7.63) 

in which 

 t

.  θ (t ) =  F M

 m(t )dt, 

(7.64) 

−∞

for frequency modulation and
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.  θ (t ) =  P M m(t )dt , 

(7.65) 

for phase modulation, in which the constant parameters  A,  ωc.,  F M ., and  P M . represent, respectively, the carrier amplitude and angular frequency and the frequency and phase deviation indices. 

The  message  signal  is  represented  by  m(t).,  which  is  considered  a  zero  mean random  stationary  process,  which  is  a  reasonable  assumption.  The  carrier  phase φ.  is  random,  assumed  uniformly  distributed  in  the  range  ( 0 ,  2 π ].  and statistically independent of  m(t).. 

The  modulating  signal,  θ (t).,  represents  the  variation  in  the  carrier  phase, produced by the message signal. The frequency modulation index is defined as 

.  β =  F M σM , 

(7.66) 

 ωM

√

in which  σM =

 PM . and  PM . represents the power of the message signal,  m(t)., and ωM . is the maximum angular frequency of the signal. 

The frequency deviation  σF =  F M σM . represents the shift from the original, or spectral, carrier frequency. The modulation index gives an idea of how many times 

the modulating signal bandwidth fits into the frequency deviation. 

The phase modulation index, which indicates how the carrier phase deviates from 

the original phase, is defined as 

.  α =  P M σM . 

(7.67) 

In  the  evaluation  of  the  spectrum  of  the  angle  modulated  signal,  subject  to  a stochastic modulating signal, the following steps are observed: 

1  Compute the autocorrelation function of the modulated carrier  s(t). in Eq. 7.63. 

2  Obtain an estimate of this autocorrelation, for the special cases of a low, medium, and  high  modulation  indices,  using  the  theory  of  stochastic  processes  and,  in particular, the linear mean square estimator (Papoulis 1981a). 

3  Compute the power spectrum density (PSD) of  s(t). as the Fourier transform of the autocorrelation estimate for each special case. 

The first step involves  the computation  of the autocorrelation  function of  s(t)., defined by Eq. 7.63. It can be expressed as 

.  RS (τ ) =  E[ s(t )s(t +  τ )]

(7.68) 

in which  E[·]. represents the expected value operator. It follows that 

.  RS (τ ) =  A 2  E[cos (wcτ −  θ (t ) +  θ (t +  τ ))] . 

(7.69)

2
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The  following  sections  demonstrated  the  computation  of  the  power  spectrum density of the modulated signal, for the two special cases of low modulation index and high modulation index. 

 7.10.2 

 Modulation  with  Low  Index 

For the case of a carrier modulated with a low modulation index, that is,  β <  0 .  5., the autocorrelation function of the modulated carrier  s(t). can be obtained from Eq. 7.69 

by expanding the cosine function 

.  RS (τ ) =  A 2 cos (ωcτ )E[cos (− θ (t ) +  θ (t +  τ ))]

2

−  A 2 sin (ωcτ)E[sin (− θ(t) +  θ(t +  τ))] . 

(7.70) 

2

In this case, it is possible to expand the sine and cosine functions of Eq. 7.70 in Taylor series, neglecting the high-order terms, which are negligible, to obtain 





.  RS (τ ) =  A 2 cos (ωcτ )E  1 −  (− θ (t ) +  θ (t +  τ )) 2

2

2

−  A 2 sin (ωcτ)E [− θ(t) +  θ(t +  τ)]  . 

(7.71) 

2

Considering that  m(t). is usually a zero mean, stationary process, it follows that 

.  RS (τ ) =  A 2 cos (ωcτ )[1 −  R( 0 ) +  R(τ )] , (7.72) 

2

in which 

.  R(τ ) =  E[ θ (t )θ (t +  τ )]

(7.73) 

and  R( 0 ) =  P. is the power of signal  θ(t).. 

The power spectral density of the modulated carrier  s(t). is obtained by the use of the Wiener-Khinchin theorem or using the Fourier transform of Eq. 7.72 (Papoulis 

1983b): 

.  SS (ω) =  π A 2 ( 1 −  P) [ δ(ω +  ω 0 ) +  δ(ω −  ω 0 )]

2 



  2

 A 2

+

 S

 F M

 M (ω +  ωc) +  SM(ω −  ωc)

(7.74)

4

 (ω +  ωc) 2

 (ω −  ωc) 2

7.10 Angle Modulation Using Random Signals

243

Fig.  7.22  Spectrum for the 
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Fig.  7.23  Spectrum for a 
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in  which  SM (ω).  represents  the  PSD  of  the  message  signal  m(t).,  which  has bandwidth  ωM ..  The  modulated  signal  bandwidth  is  double  the  message  signal bandwidth BW = 2 ωM .. 

Some  observations  are  possible.  From  Eq. 7.74  one  can  notice  that  the  FM 

spectrum  has  the  shape  of  the  message  signal  spectrum  multiplied  by  a  squared hyperbolic function. 

Example  Consider a uniform power spectrum density for the modulating signal, as depicted in Fig. 7.22. 

The  power  spectral  density  for  a  carrier  that  is  frequency  modulated  by  white Gaussian  noise,  with  low  modulating  index,  is  shown  in  Fig. 7.23,  in  which  the power spectral density of the modulating signal is given by 

.  SM (ω) =  S 0 [u (ω +  ωM ) − u (ω −  ωM )]  . 

(7.75)
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Fig.  7.24  Digital modulating 
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As can be observed, the main modulation effect is to distort the spectrum of the 

modulating  signal.  In  fact,  the  power  spectral  density  shows  a  peak  at  the  carrier frequency and then decreases following the shape of a squared hyperbola. 

 7.10.3 

 Modulation  with  a  Digital  Signal 

Consider  that  the  carrier  is  modulated  in  frequency  by  a  digital  signal.  The modulating signal, shown in Fig. 7.24, can be written as the following summation 



.  m(t ) =

 mkp(t −  kTb), 

(7.76) 

 k

in  which  mk ∈ {− V , V }.,  k ∈ Z.,  p(t).  is  a  discrete  unit  pulse,  and   Tb.  is  the  bit interval. This digital modulating signal is shown in Fig. 7.24. 

The frequency-modulated carrier by a digital signal can be written as 







 t

.  s(t ) =  A  cos  ωct +  F M

 m(t ) d t +  φ

(7.77)

−∞







 t



=  A  cos  ωct +  FM

 mkp(t −  kTb) d t +  φ

−∞  k







 t

=  A  cos  ωct +  FM

 mk

 p(t −  kTb) d t +  φ

−∞

 k

=  A  cos [ ωct +  θ(t) +  φ]  , 

in which
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Fig.  7.25  Adjusted angle 

 t(  )

θ  

modulating signal 

Δ

 T

 V 

 FM 

 b

0 

 −       V 

Δ

 T

 FM 

 b 

0

 t 

Fig.  7.26  Carrier modulated 
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in frequency by a digital 

(  )

 s 

signal 
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 t

.  θ (t ) =  F M

 mk

 p(t −  kTb) d t. 

(7.78) 

−∞

 k

The adjusted modulating signal,  θ (t)., is represented in Fig. 7.25. Recall that the instantaneous angular frequency is the derivative of the angle function in time, as given by 

.  ω(t ) = d θ (t ) . 

(7.79) 

d t

The carrier modulated in frequency by a digital signal is depicted in Fig. 7.26. 

Again, for the digital signal, whose autocorrelation is given by Formula 5.51, the corresponding spectrum is depicted in Fig. 7.27. As can be observed, the spectrum shape is limited by the squared hyperbole. 
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Fig.  7.27  Spectrum for a 
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 7.10.4 

 Modulation  with  High  Index 

As a result of Woodward’s theorem, discussed in the following, the power spectrum 

density of the modulated carrier  s(t). approaches the probability density function of the modulating signal  m(t). in Eq. 7.64, as the modulation index is increased, that is, β >  5.. 

A high modulating index causes a wide spectrum broadening of the modulated 

signal,  although  the  spectrum  converges  somehow  for  an  infinite  index.  Actually, the modulated carrier power spectrum density converges to the probability density 

function of the modulating signal, as stated in Woodward (1952) and Blachman and McAlpine (1969). 

As practical cases, the analog mobile cellular system, the commercial FM, and 

the angle modulated wireless telephone can be considered as high modulation index 

systems (Lee 1989). For  the high modulation  index  case, it is more useful to use Euler’s formula, named after the mathematician Leonhard Euler (1707–1783), and 

rewrite Eq. 7.69 as 

.  RS (τ ) =  A 2  ej ωcτ E[ ej (− θ(t)+ θ(t+ τ ))]

4

+  A 2  e− jωcτ E[ ej(θ(t)− θ(t+ τ))] . 

(7.80) 

4

Some  initial  considerations  are  in  place.  For  instance,  the  second-order  linear mean square estimate of the process  θ (t +  τ ). includes its current value  θ(t). and its derivative  θ  (t). 

.  θ (t +  τ ) ≈  α θ (t ) +  β θ  (t ). 

(7.81) 

In this case, the mean square error is given by
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2

.  e(t , α, β ) =  E

 θ (t +  τ ) −  α θ(t) −  β θ (t)

 . 

(7.82) 

To obtain the values of the optimization parameters   α.  and  β., the derivative  of the error must converge to zero. To begin with, the partial derivative of the error in terms of  α. gives 

 ∂e(t, α, β)







. 

=  E θ(t +  τ) −  α θ(t) −  β θ (t) θ(t) = 0 , (7.83) 

 ∂α

which indicates that the minimum error is orthogonal to the random process. 

It is useful to recognize the autocorrelations in the previous expression, which 

yields 

.  R(τ ) −  αR( 0 ) −  βR ( 0 ) = 0 . 

Observe that the last term of the equation is zero, because the autocorrelation has a maximum at the origin. Thus, 

.  α =  R(τ ) . 

(7.84) 

 R( 0 )

The partial derivative of the error in terms of  β. gives 

 ∂e(t, α, β)







. 

=  E θ(t +  τ) −  α θ(t) −  β θ (t) θ (t) = 0

(7.85) 

 ∂β

or 

.  R (τ ) −  αR ( 0 ) −  βR  (τ ) = 0 . 

The first term of the expression is the derivative of the autocorrelation function in relation to  τ .. The second term is zero, as explained previously, and the third term is the negative of the second derivative of the autocorrelation function in relation to  τ .. 

Thus, 

 R  (τ )

 

.  β =

 . 

(7.86) 

 R  ( 0 )

 

Therefore, the best approximation to the future value of the process, in the mean 

square sense, is 

 R  (τ )

 

.  θ (t +  τ ) ≈  R(τ ) θ (t ) +

 θ  (t ). 

(7.87)

 R( 0 )

 R  ( 0 )
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Considering  that  the  random  process  is  slowly  varying,  as  compared  to  the spectral frequency of the modulated carrier, leads the approximation 

.  R(τ ) ≈  R( 0 ). 

Expanding the derivative of the autocorrelation in a Taylor series, named after 

the mathematician Brook Taylor (1685–1731), gives 

.  R (τ ) ≈  R ( 0 ) +  τ R

 ( 0 ). 

(7.88) 

Recalling  that  the  autocorrelation  has  a  maximum  at  the  origin,  simplifies  the approximation to 

.  R (τ ) ≈  τ R

 ( 0 ). 

Finally, the future value of the random process can be approximated by 

.  θ (t +  τ ) ≈  θ (t ) +  τ θ  (t ). 

(7.89) 

Using  the  linear  mean  square  estimator  in  Eq. 7.80  then  gives  (Alencar  1989; Papoulis 1983b) 

.  RS (τ ) =  A 2  ej ωcτ E[ ej τ θ (t)] +  A 2  e− j ωcτ E[ e− j τ θ (t)] . 

(7.90) 

4

4

By  definition,  θ  (t) =  dθ(t)/dt =  ω(t)., in which  ω(t).  is the carrier angular frequency deviation, at the instantaneous carrier angular frequency, thus 

.  RS (τ ) =  A 2  ej ωcτ E[ ej τ ω(t)] +  A 2  e− j ωcτ E[ e− j τ ω(t)] . 

(7.91) 

4

4

Taking into account that 

∞

.  E[ ej τ ω(t)] =

 p(ω(t))ejτω(t)dω(t)

(7.92) 

−∞

represents the characteristic function of process  ω(t) =  θ (t). and  p(ω(t)). is its probability density function, considered symmetrical here, without essential loss of generality. 

Calculating the Fourier transform of Eq. 7.91, it follows that  

.  SS (ω) =  π A 2 [ p(ω +  ωc) +  p(ω −  ωc)] . 

(7.93)

2
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Considering  the  definition  of  ω(t).  from  Eq. 7.64, it  is  noticed  that   ω(t) =

 F M .m(t)., thus 





 m

.  p(ω (t )) =

1

 pM

(7.94) 

 F M

 F M

in which  pM (· ). is the probability density function of  m(t).. 

Substituting  7.94  into  7.93  gives,  finally,  the  formula  for  the  power  spectrum density for the wideband frequency modulated signal (Alencar and Neto 1991): ω +  ωc

 ω −  ωc

.  SS (ω) =

 π A 2

 pM

+  pM

 . 

(7.95) 

2 F M

 F M

 F M

 7.10.5 

 Phase  Modulation 

Following a similar line of thought, it is possible to derive a formula for the spectrum of  the  phase  modulated  signal  (PM).  It  is  instructive  to  recall  the  instantaneous angular frequency, given by 

.  ω(t ) =  θ (t ) =  P M m(t ). 

(7.96) 

 dt

Therefore, 











 ω +  ωc

 ω −  ωc

.  SS (ω) =

 π A 2

 pM

+  pM

 , 

(7.97) 

2 P M

 P M

 P M

in which  pM (· ). is the probability density function of the derivative of the message signal  m(t).. 

For a Gaussian modulating signal 

−  m 2

2 P

.  pM (m) =

1

√

 e

 M , 

(7.98) 

2 π PM

in which  PM =  RM ( 0 ). denotes the power of signal  m(t)., which gives 

−  m 2

2 R

.  pM (m) =

1

√

 e

 M ( 0 ) . 

(7.99) 

2 π RM ( 0 )

From  Eq. 7.99, and  considering  the  property  RM (τ ) = − R  (τ ) M

.  (the  auto-

correlation of the signal derivative equals the negative of the second derivative of the autocorrelation function) and the fact that the response of a linear system to a Gaussian input is also Gaussian, one can determine the probability density function

250

7

Modulation Theory

Fig.  7.28  Spectrum of FM 

signal for a Gaussian 
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(7.100) 

−2 πR  ( 0 )

 M

That is, the spectrum of a wideband PM signal, when modulated by a Gaussian 

signal,  presents  similar  characteristics  to  his  FM  counterpart.  For  a  narrowband modulation, the PM spectrum approximates the spectrum of the modulating signal 

which is different from the FM spectrum for the same conditions (Fig. 7.28). 

 7.10.6 

 Modulated  Carrier  Bandwidth 

It is noticeable that for a high modulation index, the frequency deviation is given 

√

√

by  F M PM . and the bandwidth approximated by the formula BW = 2 F M PM ., in order to include most of the modulated carrier power. As previously derived, the bandwidth for a narrowband FM is BW = 2 ωM .. Interpolating between both values gives a formula that covers the whole range of modulation indices  β. 



. BW = 2 ωM + 2 F M

 PM

(7.101)



√



=

 F M PM

2

+ 1  ωM

 ωM

= 2  (β + 1 ) ωM, 

in which, as defined, the frequency modulation index is given by
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.  β =  F M σM . 

 ωM

Equation  7.102  is  the  well-known  Carson’s  rule,  whose  heuristic  deduction first  appeared  in  1922  (Carson  1922).  John  Renshaw  Carson  (1886–1940)  was an  American  electrical  engineer  who  invented  single-sideband  modulation  and developed  the  Carson  bandwidth  rule  to  estimate  frequency  modulation  (FM) bandwidth. 

A sinusoidal signal  m(t) =  V  sin (ωM t +  ϕ)., in which  ϕ. is uniformly distributed in the interval [0 ,  2 π]., has the following probability density function: 

.  pM (m) =

1

√

 , | m|  < V . 

(7.102) 

 π

 V  2 −  m 2

Consequently, a carrier modulated by a sinusoidal signal, with high modulation 

index, has the following spectrum: 

.  SS (ω) =

1



 , | ω −  ωc|  < F M V . 

(7.103) 

2  (V F M ) 2 −  (ω ±  ωc) 2

The modulated signal occupies, in this case, a bandwidth equivalent to 2 F M V .. 

Its PSD is shown in Fig. 7.29. 

For  a  signal  which  is  phase  modulated,  using  the  same  sinusoid  as  before  as the  modulating  signal,  the  derivative  of  the  message  signal  is  given  by   m (t) =

 ωM V  cos (ωM t +  ϕ)., which has the following probability density function: 

.  pM  (m) =

1



 , | m|  < ωM V . 

(7.104) 

 π

 (ωM V ) 2 −  m 2

The spectrum can be computed, resulting in 

Fig.  7.29  Spectrum of an 

FM signal for a sinusoidal 
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Fig.  7.30  Spectrum of an 

FM signal for a voice signal, 
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 , | ω −  ωc|  < ωM P M V . 

(7.105) 

2  (ωM V P M ) 2 −  (ω ±  wc) 2

The bandwidth is now 2 ωM P M V ., and its PSD is similar to the one shown in 

Fig. 7.29. 

Example  The probability density function of the speech signal can be modeled by a Laplace distribution (Gazor and Zhang 2003): 

.  pM (m) =  αe− α| m|

(7.106) 

Therefore, using the previous development, the power spectral distribution can 

be expressed by the following formula, as shown in Fig. 7.30: 





 α

 (| ω+ ω

−  α | (ω− ω

 

 c )|

 

 c )|

.  SS (ω) =

 αA 2

 e FM

+  e FM

 , 

(7.107) 

2 F M

√

and  its  bandwidth  is BW = 2 2 FM

 α

..  Note  that  the  bandwidth  is  an  inverse 

function  of  the  distribution  parameter   α.,  which  controls  the  variance  (power)  of the probability density function: 

.  σ  2 = 2

 M

 . 

(7.108) 

 α 2

Example  A  more  precise  model  for  the  voice  signal  uses  the  bilateral  Gamma distribution (Paez and Glisson 1972), defined by the following formula: 

√ k e− k| m|

.  pM (m) =

√ √

(7.109)

2  π

| m|
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Fig.  7.31  Spectrum of an 

FM signal for a voice signal, 
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Therefore, the corresponding FM spectrum, depicted in Fig. 7.31, is given by 

√

−  k | ω± ω

 π k e 

 c |

 F M

.  SS (ω) =  A 2

√

√

(7.110) 

4  F M

| ω ±  ωc|

√

and its bandwidth is BW = 2 FM  0 .  75

 k

.. 

7.11 

Digital  Frequency  Modulation 

Because  the  digital  signal  has  only  two  levels,  from  the  set {− V , V }., it has a probability  density  function  given  by  two  impulses,  as  depicted  in  Fig. 7.32, and shown  in  the  following  formula  that  has  been  written  considering  equiprobable levels: 

.  pM (m) = 1 [ δ(m +  V ) +  δ(m −  V )]  . 

(7.111) 

2

When the digital signal modulates a carrier in frequency, with a high index of 

modulation, it produces a spectrum that is given by two impulses centered at  ωc. and two additional impulses centered at −  ωc.. 

Because the voltage levels of the modulating signal are  V  and −  V ., the voltage difference  is  2 V .  Therefore,  the  frequency  range  of  the  modulated  carrier,  or  the modulated carrier bandwidth, is BW = 2 F M V . (Fig. 7.33). 

Example  Suppose  that  the  modulating  signal  pulses  are  triangular  in  shape,  as depicted in Fig. 7.34. 

The probability density function for the digital modulating signal, which has a 

uniform probability density function, is given by the following formula:
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Fig.  7.32  Probability density 
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Fig.  7.34  Triangular-shaped 
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Fig.  7.35  Spectrum for 

carrier that is frequency 
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.  pM (m) =

1 [u (m +  V ) + u (m −  V )] . 

(7.112) 

2 V

In  this  case,  the  modulated  carrier  power  spectral  density  is  given  by  the following formula and shown in Fig. 7.35: 









 ω +  ωc +  F M V

 ω +  ωc +  F M V

.  SS (ω) =

 π A 2

u

− u

4 V F M

 F M

 F M









+

 ω −  ωc −  F M V

 ω −  ωc −  F M V

u

− u

 . 

 F M

 F M

and the modulated carrier bandwidth is BW = 2 F M V .. 

7.12 

Problems 

1.  Describe the main modulation schemes and point their characteristics. 

2.  Is it possible to modulate, at the same time, the amplitude and the angle of a carrier? Give a practical example: 

.  s(t ) =  a(t )  cos[ ωct +  θ (t ) +  φ] . 

3.  Explain  why  the  radiation  efficiency  of  radio  signals  depend  on  the  antenna dimension. 

4.  Why the antenna dimensions must be compatible with the wavelength of the 

electromagnetic field and with the media characteristics? 

5.  Is  it  possible  to  use  the  sine  function  in  place  of  the  cosine  in  the  formula for  amplitude  modulation?  What  would  be  the  noticeable  difference  in  the
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modulated signal in time? 

.  s(t ) =  a(t )  cos (ωct +  φ). 

6.  In case the modulation index is greater than one ( AM >  1.), that causes phase inversion in the modulated carrier, is it still possible to demodulate the signal? 

Explain! 

7.  Explain  why  the  power  spectral  density  of  the  modulating  signal  is  always symmetrical. 

8.  Consider the power spectral density of the AM signal. Explain what happens to 

the spectrum for the cases  AM → 0. and  AM → ∞.: 

.  SS (ω) =  A 2 [2 π(δ(ω +  ωc) +  δ(ω −  ωc)) 4



+  

2

 AM (SM (ω +  ωc) +  SM (ω −  ωc)) . 

9.  Consider  the  following  digitally  modulated  signal.  Why  is  it  important  to guarantee  that  the  expected  value  of  the  random  symbols  be  zero,  that  is, E[ mk] = 0.? 

∞



.  s(t ) =

 mkp(t −  kTb)  cos (ωct +  φ). 

 k=−∞

10.  The  following  equation  gives  the  resultant  amplitude  for  a  QAM  signal. 

Compute the expected power of the signal E[ a(t)].? 



.  a(t ) =

 b 2 (t ) +  d 2 (t). 

11.  The QAM resultant phase is given in the following. Plot the function  θ (t). for the case:  b(t) =  A  cos (ωM t). and  d(t) =  A  sin (ωM t)., in which  ωM = 2 πfM . is a given angular frequency: 





 d(t )

.  θ (t ) = − tan−1

 . 

 b(t )

12.  Determine  the  expected  power  of  the  resulting  signal, E[ a(t)].,  for  the  case b(t ) =  A  cos (ωM t). and  d(t) =  A  sin (ωM t).. 

13.  The  expression  for  the  ISB  signal  is  given  in  the  following.  Determine  the expected power of the resulting signal, E[ a(t)]., for this modulation scheme. 

.  s(t ) = [ l(t ) +  r(t )] cos (ωct +  φ) + [ ˆ

 r(t ) − ˆ l(t)] sin (ωct +  φ). 
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14.  Compute  the  expected  power  of  the  modulated  signal, E[ s(t)].,  for  the  ISB 

scheme. 

15.  Determine  a  general  expression  for  the  power  spectrum  density  of  the  ISB 

modulation scheme. 

16.  Give physical explanations for the frequency and phase modulation indices. 

17.  Considering that  m(t). is a zero mean, stationary process, compute the expected power of the modulated signal, E[ s(t)]., using the autocorrelation function for the case of low modulation index: 

.  RS (τ ) =  A 2 cos (ωcτ )[1 −  R( 0 ) +  R(τ )] . 

2

18.  Derive the formula for the autocorrelation function of the modulated carrier, for the narrowband phase modulation (NBPM) scheme. 

19.  Compute the power of the angle-modulated carrier  s(t). using the autocorrelation function: 

.  RS (τ ) =  A 2  ej ωcτ E[ ej τ ω(t)] +  A 2  e− j ωcτ E[ e− j τ ω(t)] . 

4

4

20.  Compute the power of the angle-modulated carrier  s(t). using the power spectral density function, 

.  SS (ω) =  π A 2 [ p(ω +  ωc) +  p(ω −  ωc)] . 

2

21.  Compute  the  bandwidth  of  the  FM  modulated  carrier  when  the  modulating signal has a Laplace distribution. 

[image: Image 11]

Chapter  8 

Digital  Modulation  Theory∗ 

 It’s fine to work on any problem, so long as it generates 

 interesting mathematics along the way – even if you don’t solve 

 it at the end of the day. 

 –  Andrew  Wiles 

8.1 

Introduction 

This  chapter  presents  the  general  principles  that  are  used  to  analyze  digital  communication schemes, in order to compute the effect of channel  noise on the transmission of  digital  signals.  Digital  modulation  can  be  considered  as  a  mapping  of  symbols into  waveforms,  to  transmit  information  through  a  communication  channel. 

Modulation  schemes  with  varying  carrier  envelopes,  such  as  QAM  and  ASK,  are more susceptible to amplitude variations,  because  of nonlinear  amplification,  fading, and  interference.  Digital  angle  modulation  signals  occupy  a  wider  bandwidth  and can  be  used  if  resilience  against  noise  is  required. 

Regarding  the  complexity  of  the  modulation  scheme,  larger  constellations  can provide  high  transmission  rates,  but  are  more  susceptible  to  noise  and  fading, while  the  small  ones  are  more  robust,  but  only  support  low  bit  transmission  rates. 

Thus,  there  is  always  a  trade-off  between  high  transmission  rates  and  greater  error probabilities. 

8.2 

Signal  Space 

Digital  modulation  codes  a  finite  bit  sequence  into  a  signal  waveform,  selected from  a  certain  set  of  signals.  Assuming  equally  probable  messages,  the  receiver 
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minimizes  error  probability  by  decoding  a  received  signal  that  is  closer  to  the transmitted  signal,  under  a  given  distance  metric. 

The  usual  procedure  to  represent  the  signal  is  to  project  it  over  a  set  of  orthogonal basis  functions,  to  obtain  a  vectorial  representation  of  each  waveform.  This  restricts the  dimensionality  of  the  signal  space  and  permits  the  use  of  regular  vectorial distance  metrics. 

 8.2.1 

 Digital  Signal  Model 

Consider  the  communication  system  shown  in  Fig. 8.1,  which  is  subject  to  additive white  Gaussian  noise  (AWGN),  considered  stationary,  which  has  zero  mean  and  a uniform  power  spectral  density  (PSD)  SN (ω) =  N 0 / 2.. 

The  channel  impulse  response  is  h(t) =  δ(t).  and  every   T  seconds  the  source selects  for  transmission  a  message  mi.  from  a  set  M = { m 1 , · · ·  , mM }..  Each message  is  chosen  with  probability   pi.,  such  that

 p

 i

 i = 1.. 

Because  the  message  set   M. has  cardinality   M,  each  transmitted  message  carries, at  most,  R =  ( log2  M)/T .  bits  of  information  per  second.  Assuming   M  to  be  a power  of  two,  the log2  M. bits  corresponding  to  message   mi. are  coded  as  a  signal si(t) ∈  S = { s 1 (t), · · ·  , sM (t)}. with  energy 2

.  Ei =

 si (t) d t, i = 1 , · · ·  , M. 

(8.1) 

 T

The  transmitted  signal  is,  therefore,  given  by 



. 

 si(t −  kT ), 

(8.2) 

 k

in  which  si(t). is  an  analog  message  that  represents  message   mi. in  the  transmission interval [ kT , (k + 1 )T ].. 

The  received  signal,  corresponding  to  the  original  message   mi.,  in  the  interval 

[ kT , (k + 1 )T ]. is  x(t) =  si(t −  kT ) +  n(t)..  For  each  transmitted  signal,  si(t −  kT )., the  receiver  must  determine  the  best  estimate  of  si(t) ∈  S.,  which  is  equivalent  to minimizing  the  error  probability  for  each  symbol 

 mi

 i  (        )

 S   t−kT 

 x   t

AWGN 

 i(  )

 mi

Transmitter

Receiver 

Channel 

Fig.  8.1  Communication  system  model
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 M



.  Pe =

 piP (  ˆ

 m =  mi| mi  sent ), 

(8.3) 

 i=1

in  each  time  interval [ kT , (k + 1 )T ].. 

The  geometrical  representation  of  the  set  of  signals  is  a  way  to  solve  the  problem of  finding  the  optimum  receiver,  subject  to  AWGN,  based  on  a  minimum  distance criterion. 

 8.2.2 

 Representation  by  Basis  Functions 

The  representation  of  signals  by  basis  functions  uses  the  Gram-Schmidt  orthogonalization  procedure  (Wozencraft  and  Jacobs  1965),  which  states  that  it  is  possible to  represent  a  set  of   M  waveforms  S =  (s 1 (t), · · ·  , sM (t)).  defined  in  the interval [0 , T ].  by  a  linear  combination  of  N ≤  M.  orthonormal  basis  functions 

{ φ 1 (t), . . . , φN(t)}.. 

Therefore,  it  is  possible  to  write  each  waveform  si(t) ∈  S.,  a  s N



.  si (t ) =

 sij φj (t),  0 ≤  t < T , 

(8.4) 

 i=1

in  which 

 T

.  sij =

 si(t)φj (t) d t

(8.5) 

0

is  a  real  coefficient  that  represents  the  projection  of  si(t).  over  the  basis  function φj (t). and 





 T

1 , i =  j

. 

 φi(t)φj (t) d t =

(8.6) 

0

0 , i =  j. 

If  the  functions { si(t)}. are  linearly  independent,  then  N =  M.;  otherwise,  N < M..  For  most  modulation  techniques,  the  basis  set  has  only  two  functions  ( N = 2.) that  correspond  to  the  in-phase  and  quadrature  dimensions  of  the  transmitted  signal. 

Coefficients { sij }.  are  denoted  as  si =  (si 1 , · · ·  , siN ).,  in  the  vector  space. 

Given  the  basis  functions, { φ 1 (t), · · ·  , φN (t)}.,  there  is  a  one  to  one  correspondence between  the  signal  si(t). and  its  vectorial  representation   si.. 

Vector   si. defines  a  point  corresponding  to  message   mi. in  the  signal  constellation. 

As  discussed  previously,  signal  constellations  for  the  usual  modulation  schemes, such  as   M-PSK  and   M-QAM,  are  bidimensional.  The  noise  signal  is  also  projected
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into  the  signal  space,  and  this  simplifies  the  performance  analysis  of  the  system,  as well  as  the  optimum  receiver  design. 

Before  converting  the  model  described  in  Fig. 8.1  into  a  vectorial  model,  it  is convenient  to  present  some  definitions  to  characterize  a  vector  in  the  signal  space R N.. 

The  length  of  a  vector  in  signal  space  is  defined  as 

 N



.|| si ||2 =  sT s

 i

 i =

 s 2 ik. 

(8.7) 

 k=1

The  positive  square  root  of  this  length, || si||.,  is  the  vector  norm. 

The  distance  between  two  vectors   si. and   sj . is  defined  as N



 T

.|| si −  sj ||2 =

 (sik −  sjk) 2 =

 (si(t) −  sj (t)) 2d t, 

(8.8) 

 k=1

0

in  which  the  second  equality  is  obtained  by  writing  si(t). and  sj (t). as  basis  functions in  Eq. 8.4, and  using  the  orthonormality  property  of  the  basis  functions. 

The  inner  product,  < si(t), sj (t) > .,  between  two  real  signals  si(t). and  sj (t). in the  interval [0 , T ]. is  defined  as 

 T

.  < si (t ), sj (t ) > =

 si(t)sj (t) d t. 

(8.9) 

0

In  a  similar  manner,  the  inner  product  < si, sj > . between  two  real  vectors, T

.  < si , sj > =  sT s

 i

 j =

 si(t)sj (t) d t =  < si(t), sj (t) > . 

(8.10) 

0

Two  signals  are  considered  orthogonal,  if  their  inner  product  is  zero. 

 8.2.3 

 Receiver  Design  and  Sufficient  Statistics 

The  output  of  a  channel  is  given  by 

.  x(t ) =  si (t ) +  n(t ),  0 ≤  t < T , 

(8.11) 

therefore,  one  can  design  a  receiver  to  infer  which   mi.  (or  si(t).)  has  been  sent  in the  time  interval [0 , T ].,  and  a  similar  procedure  is  attempted  for  each  time  interval 

[ kT , (k + 1 )T ].. 

Consider  the  receiver  structure  shown  in  Fig. 8.2, in  which
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Fig.  8.2  Receiver  structure  to  detect  a  signal  subject  to  AWGN 

 T

.  sij =

 si(t)φj (t) d t

(8.12) 

0

and 

 T

.  nj =

 n(t )φj (t) d t. 

(8.13) 

0

It  is  possible  to  write  x(t). as 

 N



 N



. 

 (sij +  nj )φj (t) +  nr (t) =

 xj φj (t) +  nr (t), 

(8.14) 

 j =1

 j =1

in  which  xj =  sij +  nj . and 

 N



.  nr (t ) =  n(t ) −

 nj φj (t)

 j =1

denotes  the  remaining  noise. 

The  receiver  obtains  an  estimate  ˆ

 m. of  the  transmitted  message   mi. as  a  function 

of  x 1 , · · ·  , xN ..  Therefore,  the  receiver  ignores  any  information  contained  in  the remaining  noise  term  nr (t).,  which  is  the  noise  component  orthogonal  to  the  signal space  generated  by  the  basis  set  (φ 1 (t), · · ·  , φN (t)).. 

If  it  is  possible  to  prove  that  nr (t). is  useless  when  deciding  whether  si(t). has  been sent,  then  it  is  only  necessary  to  determine  the  optimum  receiver  for  (x 1 , . . . , xN )., once  it  contains  all  information  needed  to  the  optimum  detection  of  si(t). given  x(t).. 

In  other  words,  (x 1 , · · ·  , xN ). constitutes  a  sufficient  statistic  to  detect  si(t).. 

Because  n(t). is  a  Gaussian  random  process,  the  channel  output   x(t) =  si(t) +

 n(t ). is  also  a  Gaussian  random  process,  and  the  random  vector  (x 1 , · · ·  , xN ). is  also Gaussian. 
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Recalling  that  xj =  sij +  nj .,  the  mean  of   xj . is  given  by 

.  μx =  E[ x

 j

 j ] =  E[ sij +  nj ] =  sij , 

(8.15) 

and  because  n(t). has  zero  mean,  the  variance  is 

.  σx =  E[ x

]2 =  E[ s

] . 

(8.16) 

 j

 j −  μxj

 ij +  nj −  sij ]2 =  E[ n 2

 j

Therefore,  one  obtains 

Cov[ xj xk] =  E[ (xj −  μx )(x

 )] =  E[ n

 j

 k −  μxk

 j nk ]







 T

 T

=  E

 n(t )φj (t) d t

 n(τ )φk(τ ) d τ

0

0



 T

 T

=

 E[ n(t)n(τ )] φj (t)φk(τ ) d t d τ

. 

(8.17) 

0

0



 T

 T

=

 N 0  δ(t −  τ)φj(t)φk(τ) d t d τ

0

0

2





 T

=  N 0

 N

 φ

0 / 2 , i =  j

 j (t )φk (τ ) d t =

2

0

0 , i =  j

in  which  the  last  equality  is  a  result  of  the  basis  functions  orthogonality  property. 

The terms   xi. are uncorrelated, and independent,  because they are Gaussian (Papoulis 

1984). Furthermore,  E[ n 2] =  N

 j

0 / 2.. 

If  the  random  vector  corresponding  to  the  correlator  output  is  defined  as 

 x = [ x 1 , · · ·  , xN ].,  given  that  message   mi.  is  transmitted,  then   xi.  has  Gaussian distribution,  with  average   sij . and  variance  N 0 / 2.. 

Therefore,  by  the  independence  of  the  terms   xi.,  it  follows  th  at

⎡

⎤

 N



 N



⎣

⎦

.  p(x| mi ) =

 p(xj | mi) =

1

exp − 1

 (xj −  sij ) 2  . 

(8.18) 

 (π N 0 )N/ 2

 N 0

 j =1

 j =1

It  can  be  shown  that  if  E[ xj nr (tk)] = 0. for  any  tk : 0 ≤  tk < T ..  Because  every random  process  is  completely  characterized  by  its  set  of  time  samples,  then   xj . is independent  of  any  function  of  the  remaining  noisy  process  nr (t)..  Besides,  as  the transmitted  signal  is  independent  of  the  channel  noise,  sij . is  independent  of  nr (t).. 

The  main  goal  of  the  receiver  design  is  to  minimize  the  message  symbol   mi. 

detection  error  probability  given  the  received  signal  x(t)..  In  order  to  minimize  the error  probability 

.  Pe =  p(  ˆ

 m =  mi| x(t)) = 1 −  p(  ˆ

 m =  mi| x(t)), 

(8.19)
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one  needs  to  maximize  p(  ˆ

 m =  mi| x(t)).. 

Therefore,  the  receiver  output,  ˆ

 m.,  given  the  received  signal  x(t).,  must  correspond 

to  the  message   mi. that  maximizes  the  conditional  probability  p(mi  sent| x(t)).. 

Recall  that  x(t).  is  completely  described  by  x =  (x 1 , · · ·  , xN ).  and  nr (t).  and that  the  decision  on  which  message  has  been  transmitted  must  be  a  function  of  the remaining  noisy  process  f [ nr (t)].,  then 

 p(mi  sent| x(t)) =  p((si 1 , · · ·  , siN )  sent| (x 1 , · · ·  , xN , f [ nr (t)] ))

=  p((si 1 , · · ·  , siN)  sent , (x 1 , · · ·  , xN), f [ nr(t)]

 p((x 1 , · · ·  , xN ), f [ nr (t)] )

. 

(8.20) 

=  p((si 1 , · · ·  , siN)  sent , (x 1 , · · ·  , xN))p(f [ nr(t)] ) p((x 1 , · · ·  , xN ))p(f [ nr (t)] )

=  p((si 1 , · · ·  , siN)  sent| (x 1 , · · ·  , xN)), in  which  the  third  equality  results  from  the  fact  that  any  function  of  the  remaining noisy  process  is  independent  of  (x 1 , · · ·  , xN ). and  (si 1 , · · ·  , siN ).. 

It  is  possible  to  show  that  (x 1 , · · ·  , xN ). is  a  sufficient  statistic  for  x(t).,  regarding the  detection  of   mi.,  because  the  error  detection  probability  is  minimized. 

 8.2.4 

 Maximum  Likelihood  Decision 

The  previous  section  has  demonstrated  that  the  detection  probability  error  is minimized  if  the  detector  output  ˆ

 m. is  selected  to  maximize  the  probability  of  correct 

decision, 1 −  Pe =  p(  ˆ

 m  sent| x)..  Using  Bayes  rule, 

.  p(  ˆ

 m  sent| x) =  p(x| ˆ

 m  sent )p(  ˆ

 m  sent ) . 

(8.21) 

 p(x)

Assuming  equiprobable  messages  ( p(mi) = 1 /M.),  ˆ

 m. is  chosen  as  the  argument 

that  maximizes  p(x| ˆ

 m)., 

. ˆ

 m = arg max  p(x| mi), i = 1 , · · ·  , M. 

(8.22) 

 mi

The  maximum  likelihood  function,  associated  with  the  receiver,  is  defined  as 

.  L(mi ) =  p(x| mi  sent ). 

(8.23) 

For  a  maximum  likelihood  receiver,  ˆ

 m. is  chosen  as  the  argument  that  maximizes 

 L(mi)..  Because  the  logarithmic  function  is  an  increasing  function  of  its  positive argument,  the  maximization  of  L(mi).  is  equivalent  to  maximize  the  logarithm  of the  likelihood  function,  defined  as
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 N



.  l(mi ) = ln  L(mi ) = − 1

 (xj −  sij ) 2 , 

(8.24) 

 N 0  j=1

in  which  the  second  equality  is  obtained  by  the  substitution  of  L(mi). into  Eq. 8.18. 

Note  that  the  log-likelihood  function  depends  only  on  the  distance  between  the received  vector   x.  and  the  set  of  points  of  the  transmitted  signal  constellation,  si., i = 1 , . . . , M.. 

Therefore,  the  maximum  likelihood  receiver  computes   x.  from  x(t).  using  the structure  presented  in  Fig. 8.2  and  then  decodes 

. ˆ

 m = arg max  l(mi). 

(8.25) 

 mi

In  a  similar  way,  it  is  possible  to  find  the  signal  constellation  corresponding  to the  maximization  of  the  message  signal   mi. in  Eq. 8.25,  a  s

⎛

⎞

 N







⎝

⎠

. arg max

− 1

 (xj −  sij ) 2

= arg max − 1 || x −  si||2  . 

(8.26) 

 si

 N 0

 si

 N 0

 j =1

The  maximum  likelihood  (ML)  receiver  decodes  the  message   mi. corresponding to  the  signal  constellation,  si.,  i = 1 , . . . , M.,  as  the  one  which  is  nearest  to  the received  vector   x..  It  is  possible  to  divide  the  signal  space  into   M decision  re gions

.  Zi =  (x : || x − si ||  < || x − sj || , ∀ j = 1 , · · ·  , M, j =  i) i = 1 , · · ·  , M. 

(8.27) 

Then,  the  ML  decoding  implies  the  determination  of  the  decision  region   Zi. in which  the  received  vector   x. is  located,  that  is,  x ∈  Zi → ˆ

 m =  mi..  Therefore,  the 

function  f (x) =  f (x 1 , · · ·  , xN ). in  Fig. 8.2  is  given  by ˆ

 m =  mi :  x ∈  Zi.. 

It  can  be  shown  that  Fig. 8.2  is  equivalent  to  the  matched  filter  depicted  in Fig. 8.3. 

Fig.  8.3  Matched  filter  structure
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 8.2.5 

 Error  Probability  and  the  Union  Bound 

Consider  the  error  probability  associated  with  the  ML  receiver  structure.  For equiprobable  messages,  p(mi  sent ) = 1 /M.,  one  has 

 M



 Pe =

 p(x /

∈  Zi| mi  sent )p(mi  sent )

 i=1

 M



= 1

 p(x /

∈  Zi| mi  sent )

 M i=1

 M



= 1 − 1

 p(x ∈  Zi| mi  sent )

 M i=1

. 

(8.28) 

 M



= 1 − 1

 p(x| mi)dx

 M i=1  Zi

 M



= 1 − 1

 p(x =  si +  n| si)dn

 M i=1  Zi

 M



= 1 − 1

 p(n)dn. 

 M i=1  Zi− si

The  integrals  in  Expression  8.28  are  defined  in  the   N -dimensional  subset   Zi ⊂

R N..  The  method  to  compute  the  error  probability  is  illustrated  in  Fig. 8.4, in  which the  constellation  stars  s 1 , . . . , s 8. are  equally  spaced  around  a  circle,  with  minimum separation  d min.. 

The  probability  of  correct  reception,  assuming  that  the  first  symbol  is  sent,  p(x ∈

 Z 1| m 1 sent ).,  corresponds  to  the  probability  p(x =  s 1 +  n| s 1 )..  This  implies  that Fig.  8.4  Computation  of  the 

error  probability 

 Z i 

 s

 s i 

2

 xi =   si +  n

 s  1 
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when  noise  is  added  to  the  transmitted  signal   s 1.,  the  resulting  vector  x =  s 1 +  n. 

remains  in  the  region   Z 1. shown  in  Fig. 8.4. 

The  error  probability  is  invariant  to  any  rotation  or  translation  of  the  signal constellation.  If  the  signal  undergoes  a  phase  rotation   θ . and  a  translation   P ,  then, 

 s  =  s

 i

 i ej θ +  P .. 

Expression  8.28  provides  an  exact  solution  for  the  error  probability,  but,  in general,  it  is  not  possible  to  determine  the  probability  with  a  closed  known  function. 


Therefore,  the  union  bound  is  used  to  find  a  solution  to  that  case. 

Let  Aik. be  the  event || x −  sk||  < || x −  si||.,  given  that  the  constellation  point 

 si. has  been  sent.  If  event  Aik. occurs,  then  the  signal  will  be  decoded  with  an  error, since  the  received  symbol   si. is  not  the  nearest  point  to  the  received  vector   x.. 

On  the  other  hand,  Aik. does  not  necessarily  imply  that   sk. is  decoded,  instead  of 

 si.,  because  it  is  possible  to  exist  another  constellation  point   sj . with 

. || x −  sj ||  < || x −  sk ||  < || x −  si || . 

The  constellation  point  can  be  correctly  decoded  if 

. || x −  si ||  < || x −  sk || ∀ k =  i. 

Then, 

⎛

⎞

⎜  M



 M



⎜

⎟

⎟

.  Pe(mi  sent ) =  p ⎝

 Aik⎠ ≤

 p(Aik), 

(8.29) 

 k=1

 k=1

 k= i

in  which  the  inequality  follows  from  the  union  bound. 

Consider  p(Aik). in  detail.  This  gives, 

 p(Aik) = p(|| sk −  x||  < || si −  x|| | si  sent )

. 

= p(|| sk −  (si +  n)||  < || si −  (si +  n)||

(8.30) 

+  p(|| n +  si −  sk||  < || n|| ), that  is,  the  error  probability  equals  the  likelihood  that  the  noise   n.  is  closer  to  the vector  si −  sk. than  to  the  origin. 

The probability error depends  only on the projection of the noise   n. on the line that connects  the  origin  and  the  point  si −  sk.,  as  shown  in  Fig. 8.5. Given  the  properties of   n.,  that  projection  is  a  uni-dimensional  Gaussian  random  variable   n.,  with  zero mean  and  variance  N 0 / 2.. 

Event  Aik. occurs  if  the  noise   n. is  closer  to  si −  sk. than  to  zero,  that  is,  if   n > dik/ 2.,  in  which  dik = || si −  sk||. is  the  distance  between  the  constellation  points   si. 

and   sk..  Therefore, 

8.2 Signal Space

269

Fig.  8.5  Noise  projection  on 

 n 

signal  coordinate 

 Si   Sk  

 n 

 d k 

0 

∞





1

− v 2

.  p(Aik ) =  p(n > dik / 2 ) =

√

exp

d v

(8.31)

 d

 π N

 N

 ik / 2

0

0





=

 dik

 Q

√

 . 

2 N 0

Substitution  into  Eq. 8.29  gives 

 M





 dik

.  Pe(mi  sent ) ≤

 Q

√

 . 

(8.32) 

2 N 0

 k=1

 k= i

Adding  all  possible  messages, 

 M



 M

 M





 dik

.  Pe =

 p(mi)Pe(mi  sent ) ≤ 1

 Q

√

 . 

(8.33) 

 M

2 N

 i=1

 i=1

0

 k=1

 k= i

Defining  the  minimum  constellation  distance  as  d min = min  dik.,  it  is  possible  to i,k

simplify  Expression  8.33  using  the  union  bound 





 d min

.  Pe ≤  (M − 1 )Q

√

 . 

(8.34) 

2 N 0

The  use  of  a  well-known  bound 

.  Q(x) ≤ 1  e− x 2 / 2

2

gives  a  closed  formula  for  the  error  probability 





− d 2min

.  Pe ≤  M − 1

√

exp

 . 

(8.35)

 π

 N 0
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For  the  binary  case,  M = 2.,  there  is  only  one  way  to  commit  an  error,  and  d min. 

is  the  distance  between  two  points  in  the  signal  constellation;  then  the  upper  bound on  the  Expression  8.34  is  met  with  equality, 





 d min

.  Pb =  Q

√

 . 

(8.36) 

2 N 0

Note  that   Pe. is  the  error  probability  of  a  symbol  (message), 

.  Pe =  p(  ˆ

 m =  mi| mi  sent ), 

in  which   mi.  corresponds  to  a  message  with log2  M.  bits,  and  it  is  possible  to approximate  the  bit  error  probability  as 

.  Pb ≈

 Pe

 , 

(8.37) 

log2  M

that  was  obtained  using  the  Gray  code  (Lee  1986). 

8.3 

Digital  Modulation  Schemes 

The  digital  modulation  schemes  use  the  information  bits  to  select  the  appropriate amplitude,  phase,  or  frequency  or  a  combination  of  them,  to  modulate  the  carrier. 

There  are  three  principal  modulation  systems: 

1  Amplitude  shift  keying  (ASK)—The  information  signal  modulates  the  carrier amplitude. 

2  Phase  shift  keying  (PSK)—The  information  signal  bits  modulate  the  carrier phase. 

3  Quadrature  amplitude  modulation  (QAM)—The  information  signal  modulates 

both  the  carrier  amplitude  and  phase. 

Using  the  notation  s(t) = { u(t)ej 2 πfct }.  for  the  transmitted  signal,  then  the modulating  signal  is  given  by 



.  u(t ) =

 sng(t −  nTs), 

 sn =  an +  j bn, 

(8.38) 

 n

in  which   Ts.  denotes  the  symbol  interval,  Ts  1 /fc.,  an.  and   bn.  are  the  real  and imaginary  parts  of  the  symbol,  n is  the  interval  signaling  index,  g(t).  is  the  pulse format,  and   sn. is  a  complex  number  that  represents  K = log2  M. information  bits that  is  invariant  during  the  symbol  interval. 

The  bit  rate  corresponds  to   K bits  per  symbol,  or  R =  K/Ts. bits  second.  Because sn =  an + j bn. is  a  complex  number,  both  the  signal  envelope  and  phase  are  affected. 
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The  information  mapping  on  the  complex  number  and  the  choice  of  the  pulse  format specify  the  digital  modulation  technique. 

Therefore,  the  transmitted  signal  is 







.  s(t ) =

 ang(t −  nTs)  cos (ωct)

 n







−

 bng(t −  nTs)  sin (ωct), 

(8.39) 

 n

in  which  the  first  term  is  the  in-phase  component,  sI (t).,  and  the  second  term represents  the  quadrature  component,  sQ(t).,  and  ωc = 2 πfc.. 

The  spectral  properties  of  s(t). and  u(t). are  defined  by  the  spectral  characteristics of  g(t)..  The  modulated  signal  bandwidth  is,  at  least,  twice  the  pulse  bandwidth,  and the  design  criteria,  to  minimize  the  main  lobe  bandwidth  and  the  amplitude  of  the other  lobes,  to  reduce  co-channel  interference,  depend  on  the  pulse  format. 

The  mentioned  modulation  schemes  can  be  represented  by  the  general  scheme  of Fig. 8.6. 

 8.3.1 

 Amplitude  Shift  Keying 

The  simplest  modulation  system  is  the   M-ASK  that  has  no  quadrature  component ( bn = 0.).  The  information  is  carried  by  the  amplitude  variation,  Am.,  of  the transmitted  signal

Fig.  8.6  General  structure  for  a  digital  modulator
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.  sm(t ) =   Amg(t )ej ωct

=  Amg(t)  cos (ωct), 

1 ≤  t ≤  Ts, 

(8.40) 

in  which  Am =  ( 2 m − 1 −  M)d.,  m = 1 ,  2 , . . . , M.,  and  ωc = 2 πfc.. 

The  transmitted  signal  amplitude  is  obtained  from  a  set  of  M = 2 K .  distinct values,  which  correspond  to log2  M =  K. bits  per  signaling  interval   Ts.. 

The  transmitted  signal  energy,  in  a  signaling  interval [0 , Ts).,  i  s Ts

 Ts

.  Es

=

 s 2

 A 2

[1 + cos ( 2 ω

 m

 m(t ) d t =

 mg 2 (t ) · 1

 ct )]d t

0

0

2

 Ts

≈ 1 A 2

 g 2 (t ) d t = 1  A 2

2  m

 mEg , 

(8.41) 

0

2

in  which   Eg. is  the  pulse  energy. 

This  is  a  good  approximation,  when  fcTs  1.,  because  g(t). is  fairly  constant  in a  cycle  Tc = 1 /fc..  The  Euclidean  distance  between  two  symbols,  which  represent different  information  sequences,  is  given  by 

 Ts

.  dmn = || sm(t ) −  sn(t )|| =

| sm(t) −  sn(t)|2d t

0





≈ 0 ,  5 Eg| Am −  An| ≥  d  2 Eg =  d min , (8.42) 

in  which  d min. is  the  smallest  distance  between  any  two  constellation  symbols. 

It  is  usual  to  resort  to  the  Gray  code  to  associate  the  bit  sequences  with  certain constellation  symbols.  For  this  mapping,  the  adjacent  symbols,  associated  with certain  bit  sequences,  differ  in  only  one  bit,  as  shown  in  Fig. 8.7. Therefore,  an  error that  produces  a  change  from  a  symbol  to  an  adjacent  one  only  changes  a  single  bit in  the  sequence. 

00
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(  M = 4,   K = 2)   

000
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100

(  M = 8,   K = 3)   

Fig.  8.7  Gray  mapping  for  the   M-ASK  modulation  scheme
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 8.3.2 

 Phase  Shift  Keying 

For  the   M-PSK  scheme,  the  information  is  coded  in  the  transmitted  signal  phase, that  is, 

.  sm(t ) = { g(t )ej  2 π(m−1 )/M ej ωct } , 

0 ≤  t ≤  Ts, 





=  g(t)  cos  ωct + 2 π (m − 1 )

 M





=

2 π

 g(t )  cos

 (m − 1 )  cos (ωct)

 M





−

2 π

 g(t )  sin

 (m − 1 )  sin (ωct), 

(8.43) 

 M

in  which  ωc = 2 πfc.. 





Thus,  for  s

2 π

 n =  an +  j bn.,  the  coefficients   an. and   bn. are  given  as cos (m − 1 )

 M

. 





and sin 2 π (m − 1 )

 M

.,  respectively.  As  in  the   M -ASK  case,  g(t ). is  the  pulse  format, and  θm = 2 π (m − 1 )

 M

.,  m = 1 ,  2 , . . . , M . are  the  possible  carrier  phases  that  contain the  information  bits. 

All  the  signals  have  equal  energy: 





 Ts

 Ts

.  Es

=

 s 2

 g 2 (t ) d t = 1  E

 m

 m(t ) d t ≈ 1

 g . 

(8.44) 

0

2 0

2

Observe  that  for  a  rectangular  pulse,  g(t) = 1.  in  the  pulse  interval,  the transmitted  signal  has  constant  envelope,  differing  from  the   M-ASK  and   M-

QAM  schemes.  However,  rectangular  pulses  are  spectrally  inefficient,  because  they generate  many  sidelobes. 

The  distance  dmn. between  two   M-PSK  constellation  symbols,  sm −  sn.,  is  give  n by











2 π

.  dmn =

 Eg  1 − cos

 (m − 1 )

≥  Eg( 1 − cos ( 2 π/M) =  d min . 

 M

(8.45) 

As  in  the  case  of   M-ASK,  it  is  common  to  use  the  Gray  code  to  map  the  signal, as  illustrated  in  Fig. 8.8. 
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Fig.  8.8  Gray  code  mapping  for  the  QPSK  and  8-PSK  modulation  schemes 

 8.3.3 

 Quadrature  Modulation 

For  the   M-QAM  scheme,  the  information  bits  modulate  both  the  carrier  phase  and amplitude.  There  are,  then,  two  degrees  of  freedom  to  code  the  information  bits. 

As  a  result,  the   M-QAM  scheme  has  better  spectral  efficiency,  that  is,  for  a  given bandwidth  and  a  certain  average  power,  the   M-QAM  modulation  scheme  manages to  code  a  larger  number  of  bits  per  transmitted  symbol. 

The  transmitted  signal  is 

.  sm(t ) = { Amej θm g(t )ej ωct } =  Amg(t )  cos (ωct +  θm), 0 ≤  t ≤  Ts, 

(8.46) 

in  which  ωc = 2 πfc.. 

The  energy  of  the  signal  sm(t). is 

 Ts

.  Es

=

 s 2

 A 2

 m

 m(t ) d t ≈ 1

 mEg , 

(8.47) 

0

2

which  is  the  same  result  for  the   M-ASK  scheme. 

The  Euclidean  distance  dmn.  between  two  constellation  symbols,  sm.  and   sn.,  is given  b y

1

.  dmn =

 Eg[ (am −  an) 2 +  (bm −  bn) 2] , 

(8.48) 

2

in  which  ak =  Ak  cos  θk. and  bk =  Ak sen  θk. for  k =  m, n.. 

Considering  square   M-QAM  in  which   an. and   bn. assume  values  ( 2 m−1− L)d. for m = 1 ,  2 , . . . , L = 2 l.,  the  shortest  distance  between  the  symbols  is  d min =  d  2 Eg.. 

This  is  equivalent  to  the  distance  obtained  for  the   M-ASK  constellation. 
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Fig.  8.9  Constellations 
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4-QAM  and  16-QAM 

 I 

4−QAM 

16−QAM

On  the  other  hand,  the  number  of  symbols  in  a  square  QAM  constellation  is M =  d 2 l..  The  transmission  rate  is  2 l bits/symbol,  that  is,  l bits  per  dimension.  The usual  square  constellations  are  4-QAM  and  16-QAM,  illustrated  in Fig. 8.9. 

8.4 

Differential  Coding 

In  the   M-PSK  and   M-QAM  schemes,  the  information  modulates  the  carrier  phase. 

Therefore,  they  require  coherent  demodulation  to  recover  the  original  signal.  This implies  that  the  carrier  phase  must  be  known  at  the  receiver. 

The  carrier  phase  can  be  recovered  using  a  pilot  signal,  a  low-amplitude  sub-carrier  that  is  transmitted  along  with  the  signal  or  using  a  phase-locked  loop (PLL)  (Koufalas  1996).  However,  the  additional  complexity  raises receiver  costs and makes  the  detection  more  susceptible  to  carrier  phase  drift,  for  example.  Besides,  it is  difficult  to  obtain  a  phase  reference  when  dealing  with  fast  fading  channels. 

Therefore,  differential  modulation  schemes  that  do  not  require  phase  references are  sometimes  preferred  in  wireless  applications. 

The  differential  modulation  techniques  belong  to  a  general  modulation  class known  as  modulation  with  memory,  in  which  a  symbol  transmitted  in  a  discrete time  instant   n depends  either  on  current  and  on  past  b its, 

Differential  modulation  can  be  used  to  adjust  the  transmitted  signal  spectrum format  according  to  the  channel  spectral  characteristics,  as  in  the  case  of  non-return to  zero  (NRZ)  and  non-return  to  zero  inverted  (NRZI). 
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As  mentioned  earlier,  the  main  advantage  of  differential  modulation  is  to  avoid the  need  for  a  phase  reference  to  demodulate  a  signal.  The  rationale  is  to  use  the previously  sent  symbol  as  the  phase  reference  for  the  current  symbol.  That  is,  the information  bits  code  the  phase  difference  between  the  current  symbol  and  the previous  symbol. 

Differential  coding  is  less  sensitive  to  carrier  random  phase  shifts.  However,  if the channel  is subject  to Doppler  shift, for instance,  when  the transmitter, or receiver, is  moving,  the  phases  in  distinct  time  intervals  can  be  uncorrelated,  which  renders the  previous  symbol  a  noisy  phase  reference.  This  implies  that  the  error  probability will  have  a  floor,  an  irreducible  level. 

8.5 

Offset  Phase  Modulation 

The  baseband  signal,  sn =  an +  j bn.,  that  phase  modulates  a  carrier  assumes  a certain  initial  phase  in  the  four  quadrants  of  the  complex  plane.  At  time  nTs.,  the transition  to  a  new  symbol  can  imply a 180◦. phase  change,  and  this  can  make  the signal  amplitude  to  pass  through  zero. 

Sudden  phase  changes,  combined  with  large  amplitude  variations,  produce 

sidelobes  and  the  signal  can  be  distorted  by  amplifiers  or  filters.  The  abrupt transitions  can  be  avoided  with  the  introduction  of  an  offset  in  the  quadrature  pulse, which  is  accomplished  by  the  introduction  of  a  delay  of  a  half  symbol  period,  as shown  in  Fig. 8.10. 

As  can  be  observed,  the  offset  quadrature  phase  shift  modulation  (OQPSK) has  the  same  spectral  characteristics  of  the  QPSK  system,  for  linear  amplification, but  has  a  better  efficiency  for  nonlinear  operation,  because  the  maximum  phase transition  is 90◦.. 

Fig.  8.10  Offset  phase  modulator
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Another  technique  to  minimize  the  phase  transitions,  used  in  some  mobile cellular  and  digital  television  standards,  is  the  π/ 4.-QPSK,  that  rotates  the  QPSK 

by 45◦. and  avoids  switching  the  oscillators  on  and  off.  It  can  also  be  deferentially coded,  eliminating  the  need  for  a  phase  reference,  producing  the  π/ 4.-DQPSK. 

8.6 

The  Transmission  Pulse 

For  the   M-PSK  modulation  scheme,  if  g(t).  is  a  rectangular  pulse  of  width   T , the  signal  envelope  is  constant,  which  gives  an  advantage  regarding  nonlinear amplification,  such  as  obtained  from  a  satellite  transponder  amplifier.  On  the  other hand,  rectangular  pulses  produces  high-energy  sidelobes,  which  requires  a  large bandwidth,  to  minimize  co-channel  interference. 

Of course, the pulse format can be modified, to reduce the out-of-band energy, but this must be done without introducing inter-symbol interference (ISI). Therefore, the pulse  format  g(t). must  satisfy  the  Nyquist  criterion,  which  states  that  the  ISI  must be  null  at  the  sampling  instants  (Haykin  1989). 

The  following  pulse  formats  satisfy  the  Nyquist  criterion: 

1.  Rectangular  pulse—That  is,  g(t) = 1., 0 ≤  t ≤  Ts..  This  pulse  format  produces a  constant  envelope,  for   M-PSK  schemes,  but  has  poor  spectral  properties,  with high-energy  sidelobes. 

2.  Sine  or  cosine  pulse—That  is,  g(t) = sin (πt/Ts)., 0 ≤  t ≤  Ts..  This pulse  format  is  often  used  in  the  minimum  shift  keying  (MSK)  modulation scheme.  The  quadrature  symbol  is  delayed by  Ts/ 2.,  and  this  produces  a  constant amplitude  modulation  and  also  low-energy  sidelobes.  The  Gaussian  minimum 

shift  keying  (GMSK)  modulation  scheme,  used  in  the  Global  System  for  Mobile Communications  (GSM)  standard,  included  this  pulse  format. 

3.  Raised  cosine  pulse—This  format  has  been  designed  in  the  frequency  domain, to  obtain  some  desired  spectral  properties.  Thus,  the  pulse  g(t). is  specified  as  a function  of  its  Fourier  transform: 

⎧

⎪

⎨  Ts,  0 ≤ | f | ≤  ( 1 −  β)/ 2 Ts, 



$

$

%%

 Ts

 π Ts

.  G(f ) = ⎪

1 − sin

 f − 1

 , 

(8.49) 

⎩ 2

 β

2 Ts

 ( 1 −  β)/ 2 Ts < | f | ≤  ( 1 +  β)/ 2 Ts, in  which   β.  is  defined  as  the  roll-off  factor  that  determines  the  spreading percentage  of  the  pulse. 

The  time  domain  representation  of  pulse  g(t).,  corresponding  to  G(f ).,  is  give  n by

cos (βπ t/Ts)

.  g(t ) = sen (π t /Ts )

 . 

(8.50)

 π t /Ts

1 − 4 β 2 t 2 /T  2

 s
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Fig.  8.11  Raised  cosine  pulse,  in  the  time  domain 
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Fig.  8.12  Raised  cosine  pulse,  in  the  frequency  domain 

Figures  8.11  and  8.12  present  the  raised  cosine  pulse  in  the  time  and  frequency domains,  respectively,  for  some  values  of   β..  In  the  limit,  for  β = 0.,  the  pulse is  rectangular.  The  pulse  amplitude  decay,  in  the  time  domain,  is  proportional  to 1 /t 3.,  which  is  faster  than  the  previous  ones. 

8.7 Constant Envelope Modulation
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8.7 

Constant  Envelope  Modulation 

Constant  envelope  modulation  permits  the  use  of  nonlinear  amplification,  which  is common  in  satellite  transmission,  for  example.  That  type  of  modulation  is  more efficient  in  terms  of  energy  use.  It  is  also  more  robust  in  the  presence  of  channel fading  and  noise.  However,  this  type  of  modulation  has  poor  spectral  efficiency and  occupies  a  larger  bandwidth,  as  compared  to  the  ASK  and  QAM  schemes.  The FSK  modulation  scheme  has  a  constant  envelope  and  has  the  following  available versions:   M-FSK,  MSK,  and  GMSK. 

For  the   M-FSK  scheme,  the  modulated  signal  has  the  format  given  by 

.  sm(t ) =  A  cos (ωct +  αmωct ), 

0 ≤  t ≤  Ts, 

(8.51) 

in  which  ωc = 2 πfc.,  αm =  ( 2 m − 1 −  M).,  m = 1 ,  2 , . . . , M = 2 K ..  This  way,  the shortest  frequency  distance  between  different  symbols  is 2 fc.. 

The  usual  way  to  generate  the   M-FSK  signal  is  to  change  the  carrier  frequency directly,  as  done  in  the  analog  FM  case, 







 t

.  sm(t ) =  A  cos  ωct + 2 πβ

 v(τ ) d τ

=  A  cos [ ωct +  θ(t)]  , 

(8.52) 

−∞

in  which 



.  v(t ) =

 ang(t −  nTS)

 n

is  an   M-ASK  signal  modulated  by  the  information  bits,  as  previously  described,  and t

.  θ (t ) = 2 πβ

 v(τ ) d τ. 

−∞

The  phase  θ (t). is  continuous,  and  the  scheme  is  called  continuous  phase  frequency shift  keying  (CPFSK). 

Using  Carson’s  rule,  for  small  values  of   β.,  gives  the  following  bandwidth:  for s(t ). 

.  Bs ≈  Mfc + 2 B, 

(8.53) 

in  which   B is  the   M-ASK  signal  bandwidth,  considering  the  modulating  signal  v(t).. 

As  discussed  earlier,  the  MSK  modulation  is  a  special  case  of  the  FSK  modulation  scheme,  in  which  the  frequency  separation  is  fc = 0 ,  5 /Ts..  This  value  of  fc. 

is  the  minimum  frequency  separation,  for  which  the  inner  product  < sm(t), sn(t) > . 

is  null  in  a  symbol  interval,  for  m =  n..  Therefore,  the  MSK  signal  occupies  a smaller  bandwidth  in  comparison  with  FSK. 
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Because  FSK  and  MSK  are  nonlinear  modulating  techniques,  their  bandwidth  is larger  than  that  of  the  linear  modulation  schemes,  for  the  same  spectral  efficiency. 

The  bandwidth  can  be  reduced  by  an  adequate  selection  of  the  pulse  format  to convey  the  PAM  signal.  The  Gaussian  pulse  shape  is  commonly  used  to  improve the  spectral  efficiently,  as  is  the  case  for  the  MSK  modulation  scheme. 

The  Gaussian  pulse  format  is  used  to  improve  the  MSK  spectral  efficiency because  it  has  the  minimum  bandwidth  by  pulse  width  product: 

√ π

.  g(t ) =

 e− π 2 t 2 /α 2  , 

(8.54) 

 α

in  which   α. is  a  parameter  related  to  the  spectral  efficiency  of  the  system. 

The  Gaussian  pulse  spectrum  has  a  Gaussian  format  too,  given  by 

.  G(f ) =  e− α 2 f  2  , 

(8.55) 

in  which  the  parameter   α. is  related  to  the  bandwidth 



√

− ln 1 / 2

.  B =

 . 

(8.56) 

 α

Therefore,  an  increase  in the  value  of  the  parameter   α. has  the  potential  to improve the  spectral  efficiency  of  the  GMSK  scheme.  On  the  other  hand,  the  Gaussian  pulses do  not  satisfy  the  Nyquist  criterion,  and  thus,  there  is  an  increasing  intersymbol interference  when   α. becomes  larger. 

The  increase  in  the  value  of   α. to  improve  the  spectral  efficiently  introduces  an error  floor  that  is  caused  by  the  high  level  of  intersymbol  interference.  Therefore, Gaussian  pulses  are  more  common  for  voice  transmission,  which  tolerates  higher bit  error  rates. 

[image: Image 12]

Chapter 9 

Information Theory 

 Mathematics is the science of what is clear by itself. 

 –  Carl  Jacobi 

9.1  Uncertainty Measure 

 Information  theory   is  the  name  of  the  scientific  discipline  created  by  Claude Shannon  in  1948  in  one  of  the  most  important  articles  in  the  history  of  engineering (Shannon  1948a).  Shannon’s  pioneering  work,  entitled   A  Mathematical  Theory of  Communication,  was  published  in  the   Bell  System  Technical  Journal,  vol.  27, July  1948,  pp.  379–423  and  October  1948,  pp.  623–656,  and  established  the scientific  foundations  of  this  new  discipline.  Information  theory,  in  addition  to dealing  quantitatively  with  the  concept  of  information,  also  deals  with  establishing performance  limits  for  transmission  or  storage  of  information,  among  other  issues. 

The  word  “information”  is  often  used  in  situations  where  the  correct  term  would be  “uncertainty.”  Strictly  speaking,  as  we  will  see  later,  information  means  the  nonnegative  difference  between  two  levels  of  uncertainty.  In  the  case  where  one  of  the levels  of  uncertainty  is  equal  to  zero,  it  follows  that  the  measure  of  information  and the  measure  of  uncertainty  are  equal,  as  is  the  case  in  the  following  sections. 

The  main  objectives  of  information  theory  are  the  establishment  of  theoretical performance  limits  for  information  transmission  systems,  information  storage systems,  and  cryptographic  systems.  Currently,  we  find  applications  of  information theory  in  well-established  areas,  such  as  mathematics,  in  theorem  proving. 

Hartley’s Measure of Information 

The  only  work  prior  to  Shannon’s  of  which  we  are  aware  was  developed  by R.  V.  L.  Hartley  and  is  entitled   Transmission of Information,  Bell  System  Technical Journal,  vol.  3,  July  1928,  pp.  535–564.  Hartley  clearly  recognized  the  essential importance  of  some  aspects  of  information.  Perhaps  the  most  important  was  his 
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recognition  that  the  reception  of  a  given  symbol  only  provides  information  if  it  is part  of  a  set  of  symbols  with  at  least  two  symbols.  Going  a  little  further,  in  today’s terms  the  occurrence  of  a  symbol  only  provides  information  if  it  represents  the  value of  a  random  variable.  The  idea  proposed  by  Hartley  represented  a  radical  change for  the  time  and  took  time  to  be  assimilated  by  telecommunications  engineers.  In other  words,  the  design  of  communication  systems  had  to  take  into  account  the transmission  of  random  quantities,  rather  than  just  reproducing  static  sinusoids. 

Hartley  then  set  out  to  propose  a  measure  of  information  based  on  the  following reasoning. 

Consider  the  occurrence  of  a  symbol  belonging  to  a  set  with   L symbols.  The information  provided  by  the  occurrence  of   n such  symbols  should  be  equal  to   n times  the  value  of  the  information  provided  by  the  occurrence  of  a  single  symbol from  this  set,  even  though there are  Ln.  possible  different  ways  for   n  symbols to  occur.  This  suggests that log b(Ln) =  n  log b L.  is  the  appropriate  measure  of information  in  which  the  base   b selected  for  the  logarithm  fixes  the  size  of  the  unit  of information,  in  Hartley’s  own  words.  We  can  therefore  express  Hartley’s  measure  of the  amount  of  information  provided  by  the  observation  of  a  discrete  random  variable X as

.  I (X) = log b L

(9.1) 

in  which   L denotes  the  number  of  possible  values  of   X . 

As  noticed  by  Massey,  when  b = 2.  in  Eq. 9.1  Hartley’s  unit  of  information is  called  the   bit,  although  the  word   bit   was  not  used  before  Shannon’s  1948 

paper  (Massey  1990).  Hartley’s  information  measure  makes  it  possible  to  correctly interpret  various  technical  problems.  For  example,  16  binary  digits  are  required  to access  a  given  memory  location  in  a  semiconductor  memory  with  65,536  locations. 

In  this  manner  the  memory  address  provides  16  binary  digits  (bits)  of  information. 

Why  is  Hartley’s  measure  of  information  incomplete?  The  main  issue  with  this measure  of  information  is  the  fact  that  it  ignores  the  probability  of  occurrence  of the  various  values  of   X.  In  retrospect,  Hartley’s  measure  of  information  is  correct only  when   X is  uniformly  distributed  and  fails  when  such  values  are  not  uniformly distributed.  Hartley’s  pioneering  work  apparently  had  a  small  impact  and  his  name is  more  frequently  remembered  in  association  with  an  oscillator  rather  than  with  his measure  of  i nformation. 

Shannon’s Measure of Information 

In  1948,  20  years  after  the  publication  of  Hartley’s  article,  Shannon  published  an article  proposing  a  new  measure  of  information,  which  caused  a  big  turmoil  of activities  making  use  of  Shannon’s  concepts,  which  lasts  to  the  present  day.  Clearly Shannon  perceived  something  that  was  not  noticed  by  Hartley  and  that  was  essential to  allow  a  general  application  of  that  theory. 

9.1 Uncertainty Measure
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As  explained  by  Massey,  a  small  modification  to  Hartley’s  original  definition  of information  measure  leads  to  the  same  measure  as  proposed  by  Shannon  (Massey 

1982). In  general,  if  the   i th  value  of   X  has probability  PX(xi).,  then  Hartley’s information  measure log ( 1 /PX(xi)) = − log  PX(xi).  for  this  value  should  be weighted  by  PX(xi). giving 

 L



. −

 PX(xi)  log  PX(xi) =  E[− log  PX(X)]

(9.2) 

 i=1

as  the  amount  of  information  provided  by   X.  Expression  9.2  is  precisely  Shannon’s measure  of  information,  which  can  be  interpreted  as   average Hartley information. 

Shannon  referred  to  his  measure  of  information  as   entropy. 

An  apparent  difficulty  appears  in  Eq. 9.2  when  pi = 0. for  one  or  more  choices  of i.  However,  from  a  practical  point  of  view,  it  can  be  argued  that  those  corresponding values  of   X will  never  occur  and  that  they  would  not  contribute  to  the  information provided  by   X.  Therefore,  it  would  be  reasonable  not  to  include  such  terms  in Eq. 9.2.  On  the  other  hand,  from  a  mathematical  point  of  view,  the  following  result can  be  used: 

.  lim

 p  log  p = 0

 p→0+

as  a  justification  not  to  include  terms  with  pi = 0. in  Eq. 9.2. 

At  this  point  it  is  convenient  to  introduce  the  terminology  and  notation  that will  be  used  in  the  sequel,  aiming  at  a  simplification  in  the  presentation  of  some concepts.  If   f  is  any  real  valued  function,  then  the   support   of   f  is  defined  as  a subset  of  its  domain  in  which   f  takes  on  non-zero  values  and is denoted as supp (f ).. 

If   PX. denotes  the  probability  distribution  of  a  random  variable   X,  then supp (PX). 

represents  the  subset  of  values  of   X with  non-zero  probability  of  occurrence. 

Fundamental Inequality 

The  inequality  in  Eq. 9.3  plays  a  key  role  in  information  theory,  very  often  appearing in  the  proof  of  properties,  theorems,  etc.,  and  for  this  reason  is  coined   Fundamental Inequality of Information Theory (IT Inequality) 

. ln  x ≤  x − 1 , 

(9.3) 

where   x denotes  a  positive  real  number  and  equality  is  verified  if  and  only  if  x = 1.. 

Multiplying  by − 1. both  sides  of  the  inequality  in  Eq. 9.3, the  following  equivalent form  is  obtained  for  the  fundamental  inequality  of  information  theory: 

. ln ( 1 /x) ≥ 1 −  x, 

(9.4)
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Fig. 9.1  Auxiliary  graph  to 

illustrate  the  proof  of  the  IT 

inequality 

where  equality  occurs  if  and  only  if  x = 1.. 

Theorem 9.1 (IT Inequality)   For a given positive real number x, 

. log  x ≤  (x − 1 )  log  e

(9.5) 

 with equality if and only if x = 1.  . 

 Proof   The  graphs  for ln  x. and  x − 1. coincide  in  x = 1. as  illustrated  in  Fig. 9.1. 

However 



 d

 >  1 for  x <  1

. 

 ( ln  x) = 1

 dx

 x

 <  1 for  x >  1

and  therefore  these  graphs  never  cross  each  other.  Thus, ln  x ≤  x − 1. with  equality if  and  only  if  x = 1..  Multiplying  by log  e. both  sides  of  this  inequality  and  recalling that log  x =  ( ln  x)( log  e). then  Eq. 9.5  results. 



9.2  Entropy 

The  concept  of  entropy  is  central  to  information  theory  and,  according  to  Shannon, is  associated  with  the  idea  of  uncertainty.  The  approach  followed  by  Shannon  to measure  entropy,  or  uncertainty,  employs  probability  theory.  Let   X denote  a  random variable  taking   L  possible values  x 1 , x 2 , . . . , xL.,  which  occur  with  probabilities PX(x 1 ), PX(x 2 ), . . . , .  PX(xL).,  respectively. 

9.2 Entropy
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Definition 9.2  The  entropy,  or  uncertainty,  H (X).  of  a  random  variable   X  is  the quantity



.  H (X) = −

 PX(x)  log b PX(x). 

(9.6) 

 x∈supp (PX)

Due  to  its  practical  importance,  this  chapter  will  focus  on  digital  information theory,  i.e.,  will  be  concerned  with  discrete  structures,  for  example,  sources  with a  finite  of  countably  infinite  number  of  symbols,  code  dictionaries  with  a  finite number  of  codewords,  and  so  on. 

Shannon  associated  the  concept  of  entropy  with   uncertainty.  Some  people mistakenly  refer  to  H (X).  as  a  measure  of  information.  As  we  will  see  later on,  information  according  to  Shannon  is  always  associated  with  a  reduction  in uncertainty,  i.e.,  information  is  that  which  is  received  when   uncertainty  is  reduced. 

Shannon  used  the  word   entropy  because  in  statistical  thermodynamics,  this  is  the name  given  to  the  expression  of  H (X). in  the  formula  Eq. 9.6. Although  the  symbol H  was  also  borrowed  from  thermodynamics,  according  to  Massey  (1990), there would  be  no  harm  in  thinking  of  it  as  a  late  homage  to  Hartley. 

Before  presenting  an  example  of  calculating  H (X).,  it  is  necessary  to  define  the base  of  the  logarithms  used.  Defining  the  base   b  of  logarithms  implicitly  defines a  unit  for  measuring  entropy.  When  b = 2. the  unit  of  entropy  is   bits/symbol,  the word   bit  having  been  suggested  to  Shannon  by  John  Tukey  to  signify  a  contraction of   binary digit.  John  Tukey  is  much  more  remembered,  however,  for  his  work  with fast  Fourier  transforms.  When  b =  e. (the  basis  of  natural  logarithms),  the  unit  is nepers/symbol.  There  is  also  the  base  b = 10. the  unit  of  which  is   hartleys/symbol, but  almost  never  used.  This  text  adopts  the  convention  of  not  indicating  the  base  of logarithms  when  base  2  is  used. 

Example 9.3  Suppose  the  random  variable   X  takes  the  values 0 ,  1 ,  2.  and  3 

with  probabilities 1 / 2 ,  1 / 4 ,  1 / 8.  and 1 / 8.,  respectively.  The  uncertainty  H (X).  is calculated  as 

.  H (X) =  ( 1 / 2 )  log 2 +  ( 1 / 4 )  log 4 +  ( 1 / 8 )  log 8 +  ( 1 / 8 )  log 8

= 1 .  75 bits/symbol . 

Example 9.4   r-ary  Entropy:  If,  instead  of  base  2  logarithms,  base   r logarithms  are employed,  the   r- ary entropy  is  expressed  as  follo ws:



.  Hr (X) = −

 PX(x)  log r PX(x) r-ary units

 x∈supp (PX)

and  is  related  to  the  entropy  in  base  2  as  follows: 

.  Hr (X) =  H (X) . 

log  r
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Example 9.5  Suppose  the  random  variable   X takes  only  two  values,  x 1. and   x 2.,  and that  PX(x 1 ) =  p..  Then,  the  uncertainty  of   X in  bits, considering 0  < p <  1.,  is given  b y

.  H (X) = − p  log  p −  ( 1 −  p)  log ( 1 −  p). 

Due  to  its  frequent  occurrence  in  information  theory,  the  expression  −  p  log  p −

 ( 1 −  p)  log ( 1 −  p). is  given  the  name   binary entropy function  and  is  denoted  as  h(p).. 

A  graph  of  h(p). is  shown  in  Fi  g. 9.2,  and  Table  9.1  contains  a  few  useful  values  of h(p)..  It  is  also  specified  that  h( 0 ) =  h( 1 ) = 0.. 

Fig. 9.2  The  binary  entropy 

function 

Table  9.1  Some  values  of 

 p

−  p  log2  p. −  ( 1 −  p)  log2 ( 1 −  p).  h(p) (bits). 

the  binary  entropy  function 

0

0

0

0 

 h(p). 

0.05 

0.216

0.070

0.286 

0.10 

0.332

0.137

0.469 

0.11 

0.350

0.150

0.500 

0.15 

0.411

0.199

0.610 

0.20 

0.464

0.258

0.722 

0.25 

0.500

0.311

0.811 

0.30 

0.521

0.360

0.881 

1/3 

0.528

0.390

0.918 

0.35 

0.530

0.404

0.934 

0.40 

0.529

0.442

0.971 

0.45 

0.518

0.474

0.993 

0.50 

1/2

1/2

1
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Therefore  we  can  write 

.  h(p) = − p  log  p −  ( 1 −  p)  log ( 1 −  p),  0 ≤  p ≤ 1 , as  long  as  the  convention  that 

.  p  log  p = 0 for  p = 0 , 

(9.7) 

is  adopted  and  that  will  be  assumed  in  this  chapter.  In  this  manner,  following  the convention  expressed  in  Eq. 9.7,  we  can  write  Eq. 9.6  as  follows: 



.  H (X) = −

 PX(xi)  log  PX(xi), 

 xi

or,  equivalently,  in  terms  its  mathematical  expectation  as 

.  H (X) =  E[− log  PX(xi )] . 

(9.8) 

It  is  worth  observing  that  mathematically  there  is  no  distinction  between   discrete random  variables   and   discrete  random  vectors.  For  example,  it  is  possible  to have  X

= [ X 1 , X 2 , . . . , Xn].,  and  thus  the  definition  of  entropy  Eq. 9.8  also defines  the  uncertainty  (or  entropy)  of  random  vectors.  The  uncertainty  of   X =

[ X 1 , X 2 , . . . , Xn]. is  denoted  by  H(X 1 X 2  . . . Xn).,  resulting  in 

.  H (X 1 X 2  . . . Xn) =



−

 PX

 (x

 (x

1 X 2 ...Xn

1 , x 2 , . . . , xn)  log  PX 1 X 2 ...Xn

1 , x 2 , . . . , xn). 

(9.9) 

 x 1 x 2 ...xn

In  order  to  simplify  notation,  in  situations  where  there  is  no  doubt  about  the origin  of  the  variables  in  a  given  expression  involving  probabilities,  it  is  used P (x 1 , x 2 , . . . , xn). to  mean  PX

 (x

1 X 2 ...Xn

1 , x 2 , . . . , xn).. 

Properties of the Entropy Function 

Next,  the  first  significative  result  about  the  measure  of  uncertainty  is  proved,  which has  the  intuitive  properties  that  the  uncertainty  about   X attains  a  maximum  when  the values  of   X are  equiprobable  and  attains  a  minimum  when  one  of  the  values  of   X 

has  probability  1.  This  result  also  shows  that  Shannon’s  measure  of  information coincides  with  the  corresponding  Hartley’s  information  measure  only  when  the values  of  the  random  variable  considered are equiprobable. 

Theorem 9.6   If  the  discrete  random  variable  X   has  L  possible  values,  then  the entropy H (X).  will satisfy the following inequalities:
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.0 ≤  H (X) ≤ log  L, 

(9.10) 

 with equality on the left if and only if P (xi) = 1.  for some xi.  or with equality on the right if and only if P (xi) = 1 /L.  for all xi.  . 

 Proof 

1.  The  inequality  on  the  left  in  Eq. 9.10  is  proved  by  using  the  definition  of  entropy Eq. 9.6  and  expression  9.4,  as  follows: 



.  H (X) = −

 P (xi)  log  P (xi)

 x∈supp (PX)



=  ( log  e)

 P (xi)  ln ( 1 /P (xi)). 

(9.11) 

 x∈supp (PX)

 L



≥  ( log   e) 

 P (xi)( 1 −  P (xi)). 

(9.12) 

 i=1 

 L



=  ( log   e)   (P (xi) −  P  2 (xi)) ≥ 0 . 

(9.13) 

 i=1 

Expression 9.12 results by applying Eq. 9.4 to each term in Eq. 9.11 and including those  terms  for  which  P (xi) = 0..  There  will  be  equality  simultaneously  in Eqs. 9.12  and  9.13  if  and  only  if  P (xi) = 1. for  some  value  of   i. 

2.  The  expression log  L −  H (X). is  considered  next  to  prove  the  inequality  on  the right  in  Eq. 9.10,  followed  by  the  use  of  the  inequality  in  Eq. 9.4, i.e., 



. log  L −  H (X) = log  L +

 P (xi)  log  P (xi)

 x∈supp (PX)





=

 P (xi)  log  L +

 P (xi)  log  P (xi)

 x∈supp (PX)

 x∈supp (PX)



=

 P (xi)  log  LP (xi). 

(9.14) 

 x∈supp (PX) 

=  ( log   e)

 P (xi)  ln   LP (xi) 

 x∈supp (PX) 







≥

1 

 ( log   e)

 P (xi)  1  − 

. 

(9.15) 

 LP (xi)

 x∈supp (PX) 







=

1 

 ( log   e)

 P (xi) − 

≥ 0 . 

(9.16)

 L

 x∈supp (PX)
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The  inequality  in  Eq. 9.15  results  by  applying  Eq. 9.4  to  each  term  in  Eq. 9.14. 

Equality  occurs  in  Eq. 9.15  if  and  only  if  P (xi) = 1 /L. for  all   xi..  The  inequality in  Eq. 9.16  follows  from  the  observation  that  the  summation  in   xi.  contains  at most   L terms. 



9.3  Conditional Entropy 

Very  often  there  is  interest  in  the  behavior  of  a  random  variable  when  another random  variable  is  specified.  The  following  definition  generalizes  in  a  natural manner  the  concept  of  uncertainty  in  this  situation. 

Definition 9.7  The  conditional  uncertainty,  or  conditional  entropy,  of  the  discrete random  variable   X,  given  that  the  event  Y =  y. occurred  is  given  by  the  expression 



.  H (X| Y =  y) = −

 P (x| y)  log  P (x| y). 

(9.17) 

 x∈supp (P (x| y))

Alternatively,  Eq. 9.17  can  be  written  as  the  conditional  expectation  as  follows: 





.  H (X| Y =  y) =  E − log  PX| Y (X| Y =  y) . 

(9.18) 

Due  to  the  similarity  between  expressions  Eqs. 9.6  and  9.17,  for  H (X).  and H (X| Y =  y).,  respectively,  the  following  result  is  immediate. 

Corollary 9.8   If the discrete random variable X  has L  possible values, then

.0 ≤  H (X| Y =  y) ≤ log  L

(9.19) 

 with  equality  on  the  left  if  and  only  if P (x| y) = 1.  for some value of x   and with equality on the right if and only if P (x| y) = 1 /L.  for all x. 

It  should  be  kept  in  mind  that   y  is  a  fixed  value  of   Y  in Corollary 9.8. When referring  to  the   uncertainty  of  X   given  Y ,  it  is  meant  the  average  conditional uncertainty  of   X given  the  event   Y ,  taken  over  all  possible  values  of   Y . 

Definition 9.9  The  average  conditional  uncertainty,  or  average  conditional  entropy, of  the  discrete  random  variable   X,  given  the  discrete  random  variable   Y ,  is  given  by the  expression 



.  H (X| Y ) =

 P (y)H (X| Y =  y). 

(9.20)

 y∈supp (P (y))
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Alternatively,  Eq. 9.20  can  be  written  as 





.  H (X| Y ) =  E − log  PX| Y (X| Y ) . 

(9.21) 

The  second  most  important  result  relating  entropy  is  proved  next,  which  has a  pleasant  intuitive  interpretation  that  the  knowledge  of   Y  never  increases  the uncertainty  about   X but  in  general  it  can  reduce  such  uncertainty  or  not  to  alter  it  in the  particular  case  when   X and   Y  are  statistically  independent  random variables. 

Theorem 9.10   For any two random variables X  and Y   the e xpression

.  H (X| Y ) ≤  H (X)

 is satisfied with equality if and only if X  and Y   are s tatistically independent. 

 Proof   Using  expressions  Eqs. 9.6  and  9.20,  it  follows  that 

.  H (X| Y ) −  H (X) =

(9.22)





=

 P (y)H (X| Y =  y) +

 P (x)  log  P (x)

 y∈supp P (y)

 x∈supp (P (x))





= −

 P (y)

 P (x| y)  log  P (x| y)

 y∈supp (P (y))

 x∈supp (PX| Y (. | y))





+

 P (x, y)  log  P (x)

 y∈supp (P (y)) x∈supp (P (x))





= −

 P (x, y)  log  P (x| y) +

 P (x, y)  log  P (x)

 (x,y)∈supp (P (x,y))

 (x,y)∈supp (P (x,y))



=

 P (x)

 P (x, y)  log  P(x| y)

 (x,y)∈supp (P (x,y))



=

 P (x)P (y)

 P (x, y)  log

 . 

 P (x, y)

 (x,y)∈supp (P (x,y))

However 



 P (x)P (y)

. 

 P (x, y)  log  P(x, y)

 (x,y)∈supp (P (x,y))







≤

 P (x)P (y)

 P (x, y)

− 1 log  e. 

(9.23)

 P (x, y)

 (x,y)∈supp (P (x,y))
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⎡ 

⎤ 



= ⎣

 P (x)P (y)  − 1 ⎦ log   e 

 x,y: P (x,y)=0 







≤

 P (x)P (y)  − 1 log  e

(9.24) 

 x,y 









=

 P (x)

 P (   y) − 1 log  e = 0 . 

 x 

 y 

Equality  occurs  in  the  inequality  in  Eq. 9.23  if  and  only  if  P (x, y) =  P (x)P (y)., whenever  P (x, y) = 0.,  and  occurs  with  equality  in  the  inequality  in  Eq. 9.24  if and  only  if  P (x)P (y) = 0.  whenever  P (x, y) = 0..  Therefore,  equality  occurs simultaneously  in  the  inequalities  in  Eqs. 9.23  and  9.24  if  and  only  if   P (x, y) =

 P (x)P (y). for  all   x and  all   y,  which  is  just  the  definition  of  statistical  independence. 



It  follows  immediately  from  expressions  Eqs. 9.19  and  9.20  that 

.0 ≤  H (X| Y ) ≤ log  L

(9.25) 

with  equality  on  the  right  if  and  only  if  the  two  following  conditions  are  satisfied: (i)   X and   Y  are  s tatistically independent

(ii)   P (x)  = 1  /L. for  all   x, 

and  with  equality  on  the  left  if  and  only  if  for  all   y such that  P (y) = 0. there  is  an   x such that  P (x| y) = 1.. 

It  is  possible  to  express  Eq. 9.9  as  a  sum  of  entropies  based  on  the  following relation: 

.  P (x 1 , x 2 , . . . , xn) =  P (x 1 )P (x 2| x 1 )P (x 3| x 1 , x 2 ) . . . P (xn| x 1 , x 2 , . . . , xn−1 , obtaining 

.  H (X 1 X 2  . . . Xn) =

 H (X 1 ) +  H (X 2| X 1 ) + · · · +  H (Xn| X 1 X 2  . . . Xn−1 . 

(9.26) 

Definition 9.11  The  conditional  uncertainty,  or  conditional  entropy,  of  the  discrete random  variable   X,  given  the  discrete  random  variable   Y  and  given  that  the  ev ent Z =  z. occurs,  is  the  quantity 





.  H (X| Y, Z =  z) =  E − log  PX| Y Z(X| Y, Z =  z) . 

(9.27)
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Equivalently,  Eq. 9.27  can  be  expressed  as 



.  H (X| Y, Z =  z) = −

 PXY | Z(x, y| z)  log  PX| YZ(x| y, z). 

 (x,y)∈supp (PXY | Z(.,. | z)))

(9.28) 

Equations  9.18, 9.21,  and  9.27  that 



.  H (X| Y, Z) =

 PZ(z)H (X| Y, Z =  z), 

(9.29) 

 z∈supp (PZ)

in  which,  by  means  of  Eq. 9.21,  it  is  observed  that  in  the  theory  of  discrete probability  there  is  no  essential  difference  between  a  single  random  variable   Y  and a  random  vector  (Y, Z)..  Expression  9.29,  together  with  expression  9.28,  in  many occasions  represent  the  most  adequate  way to compute  H (X| Y, Z).. 

9.4  Informational Divergence 

A  very  useful  quantity  when  proving  inequalities  in  information  theory  is  introduced  next.  Basically  this  quantity  represents  a  measure  of   distance  between  two probability  distributions. 

Definition 9.12  If   X and  ˜

 X. are  discrete  random  variables  with  the  same  domain, 

i.e.,  with  the  same  set  of  possible  values,  X() = ˜

 X().,  then  the  informational 

divergence  between   PX. and   P ˜ X. is  the  quantity 







 PX(x)

.  D(PX    P ˜ =

 P

 . 

 X

 X (x)  log

 P ˜  (x)

 x∈supp (P

 X

 X )

The  informational  divergence  between   PX. and   P ˜ X. is  also  known  by  various  other names  and  that  can  be  considered  as  an  indirect  proof  of  its  utility.  In  some  texts,  it is  called   relative entropy between X  and  ˜

 X. and  is  known  in  statistics  as  the   distance 

 of Kullback-Leibler between PX.  and P ˜ X.. 

Every  time  D(PX    P ˜ X. is  written,  it  is  implicitly  assumed  that 

.  X() = ˜

 X(), 

because,  without  this  assumption,  the  definition  of  informational  divergence  does not  make  sense.  It  follows  from  Definition  9.12  that,  if  there  is  an  x ∈ supp (PX). but x /

∈ supp (P ˜

 (x) = 0

 X .,  i.e.,  for  which  PX (x) = 0. but  P ˜

 X

.,  then 

.  D(PX    P ˜ = ∞ . 

 X

9.4 Informational Divergence
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It  is  therefore  apparent  that,  in  general, 

.  D(PX    P ˜ =  D(P

 P

 X

˜ X

 X )

and  thus  the  informational  divergence  does  not  satisfy  the  symmetry  property required  to  be  a  measure  of   distance. 

In  Definition  9.12, it  is  observed  that  the  informational  divergence  can  be  written as  an  average  or  expected  value,  and  that  turns  out  to  be  useful,  in  the  following manner: 





 PX(X)

.  D(PX    P ˜ =  E  log

 . 

 X

 P ˜  (X)

 X

The  following  inequality,  simple  and  yet  elegant,  is  the  key  to  the  usefulness  of  the informational  divergence  and  serves  as  a  justification  for  its  interpretation  as  similar to  a   distance. 

Theorem 9.13   The informational divergence inequality 

.  D(PX    P ˜ ≥ 0

 X

 occurs with equality if and only if PX =  P ˜

 (x)

 X .  , i.e., if and only if PX (x) =  P ˜

 X

.  for 

 all x ∈  X() = ˜

 X().  . 

 Proof   Consider 



 P ˜  (x)

 X

.  −  D(PX    P ˜ =

 P

 X

 X (x)  log  PX(x)

 x∈supp (PX)

and  by  the  IT  inequality,  we  have 







 P ˜  (x)

 X

.  −  D(PX    P ˜ ≤

 P

− 1 log  e

 X

 X (x)

 PX(x)

 x∈supp (PX)

⎡

⎤





= ⎣

 P ˜  (x) −

 P

⎦ log  e

 X

 X (x)

 x∈supp (PX)

 x∈supp (PX)

≤  ( 1 − 1 )  log  e

= 0 . 

Equality  occurs  in  the  IT  inequality  if  and  only  if  PX(x) =  P ˜  (x) X

.  for  all   x ∈

supp (PX).,  which  is  equivalent  to  PX(x) =  P ˜  (x)

 X

.  for  all  x ∈  X() = ˜

 X(). and 

that  causes  equality  also  in  the  second  inequality. 
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The  following  example  serves  the  purpose  of  illustrating  the  usefulness  of  the informational  divergence. 

Example 9.14  Let   X have   L values, i.e., let # (X()) =  L

˜

..  Let   X.  be  the  random 

variable  with  probability  distribution  P ˜  (x) = 1 /L

 X

. for  all  x ∈ ˜

 X()..  Then 







 PX(x)

.  D(PX    P ˜ =  E  log

 X

 P ˜ X(x)







=

 PX(x)

 E  log

1 /L

= log  L −  E[− log  PX(x)]

= log  L −  H(X). 

It  follows  from  the  informational  divergence  inequality  that  H (X) ≤ log  L.,  with equality  if  and  only  if  PX(x) = 1 /L. for  all  x ∈  X().,  which  is  the  fundamental inequality  on  the  right  in  Eq. 9.10,  Theorem  9.6. 

9.5  Uncertainty Reduction by Conditioning 

The  informational  divergence  inequality  is  used  below  to  prove  a  very  useful  result which  has  an  intuitively  interesting  interpretation,  namely,  that  the  knowledge  of   Y 

reduces,  in  general,  the  uncertainty  about   X . 

Theorem 9.15 (Second  Entropy  Inequality)   For  any  two  discrete  random  variables X  and Y , the expr ession

.  H (X| Y ) ≤  H (X)

(9.30) 

 occurs  with  equality  if  and  only  if  X   and  Y   are  statistically  independent  r andom variables. 

 Proof   Expressing  H (X). and  H (X| Y ).,  respectively,  as  expected  values,  it  follows that 

.  H (X) −  H (X| Y ) =  E[− log  PX(X)] −  E[− log  PX| Y (X| Y )]





=

 PX| Y (X| Y )

 E  log

 PX(X)





=

 PX| Y (X| Y )PY (Y )

 E  log

 PX(X)PY (Y )

9.5 Uncertainty Reduction by Conditioning
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=

 PXY  (X,   Y ) 

 E  log   PX(X)PY  (Y)

=  D(PXY    P ˜  , 

 X ˜

 Y

in  which  P ˜  (x, y) =  P

 X ˜

 Y

 X (x)PY (y). for  all  (x, y) ∈  X() ×  Y ()..  It  follows  from the  informational  divergence inequality that  H (X| Y ) ≤  H (X).,  with  equality  if  and only  if  PXY (x, y) =  PX(x)PY (y).  for  all  (x, y) ∈  X() ×  Y ().,  which  is  the definition  of  statistical  independence  for  discrete  random  variables. 



Expressions  9.20  and  9.27  differ  only  by  the  fact  that  the  probability  distribution of  the  latter  has  an  additional  conditioning,  on  the  event  Z =  z..  In  this  manner,  due to  the  mathematical  similarity,  the  following  result  is  stated. 

Corollary 9.16 (From  Theorem  9.15)   For  any  three  discrete  random  variables X, Y .  and Z, the expression 

.  H (X| Y, Z =  z) ≤  H (X| Z =  z)

(9.31) 

 occurs with equality if and only if PXY | Z(x, y| z) =  PX| Z(x| z)PY| Z(y| z).  for all x and y. (Notice that z  represents a fixed value of Z  in this corollary.) Multiplying  by  PZ(z).  the  two  sides  in  the  inequality  in  Eq. 9.31  and  adding for  all  z ∈ supp (PZ).,  the  following  intuitive  and  useful  result  is  obtained,  which represents  the  last  inequality  to  be  presented  relating  various  uncertainties  and  once more  demonstrates  that  conditioning  can  never  increase  uncertainty. 

Corollary 9.17 (From  Theorem  9.15)   Third  entropy  inequality:  For  any  three discrete random variables X, Y .  and Z, the expression 

.  H (X| Y Z) ≤  H (X| Z)

 occurs with equality if and only if, for all z ∈ supp (PZ).  , the relation 

.  PXY | Z(x, y| z) =  PX| Z(x| z)PY | Z(y| z) remains true for all x  and y, or, equivalently, if and only if X  and Y  are independent when conditioned on the knowledge o f Z. 

Summarizing  what  has  been  presented  about  inequalities,  involving  the  conditioning  of  random  variables,  it  turns  out  that  such  conditioning  never  increases uncertainty  about  the  conditioned  variable.  This  is  yet  another  intuitive  property of  the  Shannon  uncertainty  measure.  However,  it  is  observed  that  conditioning  a variable  on  an  event  can  increase  uncertainty,  i.e.,  H (X| Y =  y). can  be  greater  than H (X)..  Example  9.18  presented  below  illustrates  such  a  situation. 

Example 9.18  Suppose  that  the  random  vector [ X, Y, Z].  takes  on  any  of  the four  values [0 ,  0 ,  0] , . [0 ,  1 ,  0] , . [1 ,  0 ,  0].,  and [1 ,  0 ,  1].  with  equal  probability.  Then
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 PX( 0 ) =  PX( 1 ) = 1 / 2. and  thus 

.  H (X) =  h( 1 / 2 ) = 1  bit . 

Note  that  PY | X( 0|1 ) = 1. and  thus 

.  H (Y | X = 1 ) = 0 . 

Analogously,  PY | X( 0|0 ) = 1 / 2. and  therefore 

.  H (Y | X = 0 ) =  h( 1 / 2 ) = 1  bit . 

Using  Eq. 9.20  we  obtain 

.  H (Y | X) = 1  ( 1 ) = 1 / 2  bit . 

2

Because  P (z| xy). is  equal  to  1  for  (x, y, z) =  ( 0 ,  0 ,  0 ).,  equal  to  1  for   (x, y, z) =

 ( 0 ,  1 ,  0 ). and  equal  to 1 / 2. for  (x, y, z) =  ( 1 ,  0 ,  0 ).,  it  follows  that 

.  H (Z| X = 0 , Y = 0 ) = 0

 H (Z| X = 0 , Y = 1 ) = 0

 H (Z| X = 1 , Y = 0 ) = 1  bit. 

Noting  that  P (x, y).  is  equal  to 1 / 4 ,  1 / 4.  and 1 / 2. for  (x, y). equal  to  ( 0 ,  0 ), ( 0 ,  1 )., and  ( 1 ,  0 ).,  respectively,  it  follows  from  Eq. 9.20  that 

.  H (Z| XY ) = 1  ( 0 ) + 1  ( 0 ) + 1  ( 1 ) = 1 / 2  bit . 

4

4

2

By  making  use  of  Eq. 9.26,  we  obtain 

.  H (XY Z) = 1 + 1 / 2 + 1 / 2 = 2  bit s. 

However  there  is  a  simpler  way  to  compute  H (XY Z).,  based  on  the  fact  that 

[ X, Y, Z]. is  equally  likely  to  assume  any  of  the  four  values  and  so 

.  H (XY Z) = log 4 = 2  bit s. 

Since  PY ( 1 ) = 1 / 4.,  we  obtain 

.  H (Y ) =  h( 1 / 4 ) = 0 .  811  bit s. 

Therefore,  it  turns  out  that

9.6 The Chain Rule for Uncertainty
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.  H (Y | X) = 1 / 2  < H (Y ) = 0 .  811

in  agreement  with  Theorem  9.6. However,  the  following  situation  is  observed: 

.  H (Y | X = 0 ) = 1  > H (Y ) = 0 .  811  bit s. 

9.6  The Chain Rule for Uncertainty 

One  of  the  simplest,  most  intuitive,  and  useful  information  theory  identities  is presented  below.  Let [ X 1 , X 2 , . . . , XN ].  be  a  discrete  random  vector  with   N 

components  that  are  discrete  random  variables.  For  the  fact  that  discrete  random vectors  are  also  discrete  random  variables,  E q. 9.8  can  be  written  as 

.  H (X 1 X 2  . . . XN ) =  E[− log  PX

 (X

1 ,X 2 ,...,XN

1 , X 2 , . . . , XN )] , 

(9.32) 

which  can,  equivalently,  be  written  using  the  multiplication  rule  for  probability distributions  as 

.  H (X 1 X 2  . . . XN ) =  E[− log (PX (X

 (X

1

1 )PX 2| X 1

2| X 1 ) . . . 

 . . . PX

 (X

 N | X 1 ,...,XN −1

 N | X 1 , . . . , XN −1 )] . 

(9.33) 

Expression  9.33  can  be  written  in  a  more  compact  form  as  shown  next. 





 N



.  H (X 1 X 2  . . . XN ) =  E

− log

 PX

 (X

 n| X 1 ...Xn−1

 n| X 1 , . . . , Xn−1

 n=1

 N





=

 E − log  PX

 (X

 n| X 1 ...Xn−1

 n| X 1 , . . . , Xn−1

 n=1

 N



=

 H (Xn| X 1  . . . Xn−1 . 

(9.34) 

 n=1

By  using  a  less  compact  notation,  however  easier  to  read,  Eq. 9.34  can  be  written  as 

.  H (X 1 X 2  . . . XN ) =  H (X 1 ) +  H (X 2| X 1 ) + · · · +  H (XN | X 1  . . . XN−1 . 

(9.35) 

Expression  9.35, which  is  sometimes  called   the  chain  rule  for  uncertainty,  can be  interpreted  as  meaning  that   the uncertainty of a random vector is equal to the uncertainty of its first coordinate, plus the uncertainty of its second coordinate when
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 the first coordinate is known, . . . .  , plus the uncertainty of the last coordinate when all previous coordinates are known.  This  is  such  an  intuitively  pleasing  property  that,  in Massey’s  words,  can  induce  an  individual  to  prematurely  conclude  that  Shannon’s measure  of  information  is  the  correct  measure  of  information  (Massey  1990). 

The  reader  should  notice  that  in  the  derivation  of  Eq. 9.35  the  choice  of  the order  of  the  coordinates  is  arbitrary.  Therefore  it  is  possible  to  expand  H (XY Z)., for  example,  in  six  distinct  manners  as  shown  next: 

.  H (XY Z) =  H (X) +  H (Y | X) +  H (Z| XY )

=  H(X) +  H(Z| X) +  H(Y | XZ)

=  H(Y ) +  H(X| Y ) +  H(Z| XY )

=  H(Y ) +  H(Z| Y ) +  H(X| Y Z)

=  H(Z) +  H(X| Z) +  H(Y | XZ)

=  H(Z) +  H(Y | Z) +  H(X| Y Z). 

In  general  H (X 1 X 2  . . . XN ). can  be  expanded  in   N!. distinct  ways. 

9.7  Mutual Information 

As  mentioned  earlier,  uncertainty  is  the  central  element  in  Shannon’s  information theory,  who  characterized   information   as  a  non-negative  difference  between  two interrelated  uncertainty  values.  Shannon’s  answer  to  the  question  “how  much information  the  random  variable   Y  provides  about  the  random  variable   X?”  was  “it is  the  value  by  which   Y  reduces  the  uncertainty  abour   X,” i.e.,  H (X) −  H (X| Y ).. 

Definition 9.19  The  mutual  information  between  the  discrete  random  variables   X 

and   Y  is  by  definition  t he quantity

.  I (X;  Y ) =  H (X) −  H (X| Y ). 

(9.36) 

As  shown  below,  the  denomination   mutual information  is  very  appropriate  by  the fact  that  I (X;  Y ) =  I (Y ;  X)..  This  can  be  seen  by  expanding  H (XY ). in  two  ways, namely, 

.  H (XY ) =  H (X) +  H (Y | X)

=  H(Y ) +  H(X| Y ), 

from  which  it  follows  that  H (X) −  H (X| Y ) =  H (Y ) −  H (Y | X). or,  equivalently, 

.  I (X;  Y ) =  I (Y ;  X). 

(9.37)

9.7 Mutual Information
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The  equality  in  Eq. 9.37  means  that  the  amount  of  information  provided  by  the random  variable   X  about  the  random  variable   Y  is  exactly  the  same  amount  of information  provided  by  the  random  variable   Y  about  the  random  variable   X.  It is  therefore  a  symmetric  relationship  between  the  random  variables   X  and  Y . 

Example 9.20  (Continuing  from  Example  9.18. Recalling  that  PY ( 1 ) = 1 / 4.  it follows  that 

.  H (Y ) =  h( 1 / 4 ) = 0 .  811 bits . 

Therefore, 

.  I (X;  Y ) =  H (Y ) −  H (Y | X)

= 0 .  811 − 0 .  500 = 0 .  311  bits. 

This  means  that  the  component   X of  the  random  vector [ X, Y, Z]. gives 0 .  311. bits of  information  about  the  component   Y  and  vice  ve rsa. 

It  is  interesting  to  note  that  Shannon,  in  1948,  neither  referred  to   mutual information   nor  used  a  special  symbol  to  denote  it  but  instead  always  talked about  difference  between  uncertainties  (Massey  1990). It  was  Fano  who  later introduced  the  terminology   mutual  information   or   average  mutual  information, as  it  is  frequently  called,  as  well  as  the  symbol  I (X;  Y ).  (Fano  1961). Certainly, it  is  convenient  to  use  the  terminology  introduced  by  Fano,  but  one  should  not lose  sight  of  Shannon’s  idea  that  information  means  a  change  in  uncertainty  level. 

The  following  two  definitions  are  natural  consequences  of  the  definition  of  mutual information. 

Definition 9.21  The  conditional  mutual  information  between  the  discrete  random variables   X and   Y ,  given  that  the  event  Z =  z. occurred,  is  the  quantity 

.  I (X;  Y | Z =  z) =  H (X| Z =  z) −  H (X| Y, Z =  z). 

(9.38) 

Definition 9.22  The  conditional  mutual  information  between  the  discrete  random variables   X and   Y ,  given  the  discrete  random  variable   Z,  is  the  quantity

.  I (X;  Y | Z) =  H (X| Z) −  H (X| Y Z). 

(9.39) 

It  follows  from  Eqs. 9.20  and  9.32  that 



.  I (X;  Y | Z) =

 PZ(z)I (X;  Y | Z =  z). 

(9.40) 

 z∈supp (PZ)

By  the  fact  that  H (XY | Z =  z). and  H (XY | Z). can,  each  one  of  them,  be  expanded in  two  distinct  manners,  namely, 
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.  H (XY | Z =  z) =  H (X| Z =  z) +  H (Y | X, Z =  z)

=  H(Y | Z =  z) +  H(X| Y, Z =  z)

and 

.  H (XY | Z) =  H (X| Z) +  H (Y | XZ)

=  H(Y | Z) +  H(X| Y Z), 

it  follows  from  Definition  9.21  and  from  Definition  9.22  that 

.  I (X;  Y | Z =  z) =  I (Y ;  X| Z =  z) and  that 

.  I (X;  Y | Z) =  I (Y ;  X| Z). 

The  fundamental  inequalities  satisfied  by  the  mutual  information  are  considered next.  Expression  9.36,  due  to  Eqs. 9.25  and  9.37,  immediately  implies  the  following result,  expressed  as  a  theorem. 

Theorem 9.23   For any two discrete random variables X  and Y , we have

. 0 ≤  I (X;  Y ) ≤ min[ H (X), H (Y )]

 with equality on the left if and only if X  and Y   are statistically independent random variables and equality on the right if and only if Y   essentially determines X, or  X 

 essentially determines Y  , or both. 

Similarly,  Definition  9.21  and  Definition  9.22  lead  to  the  inequalities 

.0 ≤  I (X;  Y | Z =  z) ≤ min[ H (X| Z =  z), H (Y | Z =  z)]

(9.41) 

and 

.0 ≤  I (X;  Y | Z) ≤ min[ H (X| Z), H (Y | Z)] , (9.42) 

respectively. 

9.8  Discrete Information Sources 

For  our  study  of  information  theory,  it  is  essential  that  we  have  a  mathematical description  of  the  information  generation  mechanism.  Considering  that  information is  generated  by  a  message  source,  our  next  step  is  to  mathematically  characterize
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message  sources.  Unless  we  note  otherwise,  we  will  from  now  on  consider  only discrete  sources,  that  is,  sources  the  set  of  generated  symbols  of  which  is  finite  or countably  infinite. 

Self-Information 

Let   E be  an  event  that  occurs  with probability  P (E)..  If  we  are  informed  that  event E occurred,  then  we  say  that  we  receive d

1

.  I (E) = log

bits

 P (E)

of  information.  Recall  that  entropy  can  be  interpreted  as  the  average  value  of  the self-information. 

Discrete Memoryless Source 

Let   U  denote  the  output  of  a  discrete  message  source  (DMS)   S  which  emits sequences  of  symbols  from  a  fixed alphabet { u 0 , u 1 , . . . , uL}.,  and  those  symbols  are generated obeying a probability distribution  P (u 1 ), P (u 2 ), . . . , P (uL).. We consider next  the  case  where  the  symbols  emitted  by   S are   statistically independent . 

In  spite  of  its  simplicity,  the   discrete memoryless source  mathematical  model  of a  message  source  is  quite  useful  and  is  completely  described  by  the  source  alphabet and  by  the  probability  distribution  of  occurrence  of  its  symbols.  The  entropy  (or average  uncertainty)  of  a  memoryless  DMS  is  given  by 

 L



.  H (U ) = −

 P (ui)  log  P (ui)  bits/symbol , 

 i=1

which  can  be  interpreted  as  the  uncertainty  that  an  observer  has,  about  which  symbol will  be  emitted,  before  knowing  which  symbol  was  in  fact  emitted  by  the  source.  As we  have  already  said,  this  source   S is  completely  described  by  its  alphabet  and  by the  probability  distribution  of  occurrence  of  its symbols  P (u 1 ), P (u 2 ), . . . , P (uL)., which  we  will  also  denote  by  P 1 , P 2 , . . . , PL. when  this  does  not  cause  ambiguity of  interpretation. 

Denoting  the  self-information  per  symbol  by  I (ui).,  i.e., 

1

.  I (ui ) = log

= − log  Pi, 

 Pi
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we  can  interpret  the  entropy  H (U ). of  a  memoryless  DMS  as  being  the  average  value of  the  information  obtained  per  observed  symbol,  that  is, 

 L



.  H (U ) =

 PiI (ui). 

 i=1

Finite Extension of a Memoryless Source 

In  many  practical  situations  as,  for  example,  when  enciphering  or  coding  data,  it is  more  convenient  to  work  with  blocks  of  source  symbols  rather  than  to  work with  individual  symbols.  For  example,  the  ASCII  representation  of  symbols  on  a computer  keyboard  uses  binary  7  digit  words,  that  is,  binary  blocks  of  length  7.  For now  we  will  consider  blocks  of  fixed  size  equal  to   n symbols.  The  number   n is  called order   of  the  source  extension.  We  treat  this  case  mathematically  by  considering  a new source  Sn. the  output  of  which,  denoted  by   U n.,  consists  of  all  blocks  formed by  the  concatenation  of   n symbols  from  the  alphabet  of   S.  We  will  denote  the  set  of symbols  from  Sn. by { σ 1 , σ 2 , . . . , σLn}..  We  present  next  the  definition  of  extension of  a  memoryless  source. 

Definition 9.24  Consider  a  memoryless  DMS,  the  output   U  of  which  emits symbols  from  the alphabet { u 1 , u 2 , . . . , uL}. and  denote  by   Pi. the  probability  of  the DMS  emitting  the  symbol   ui..  The  extension  of  order   n of  this  DMS  is  the  DMS  with output  denoted by  U n. which  emits  symbols  from  the  alphabet { σ 1 , σ 2 , . . . , σLn}., in  which  to  each   σi. corresponds  a  specific  sequence  of   n symbols  from  the  alphabet

{ u 1 , u 2 , . . . , uL}..  Supposing  that   σi. corresponds  to  the  sequence  ui , u , . . . , u 1

 i 2

 in ., 

the  probability  P (σi). is  given  by 

.  P (σi ) =  P (ui , u , . . . , u

=  P (u P (u . . . P (u =  P P . . . P . 

1

 i 2

 in

 i 1

 i 2

 in

 i 1  i 2

 in

Example 9.25  Consider  a  memoryless  binary  source   S  with  output  alphabet

{ u 1 , u 2}..  The  third-order  extension  of   S,  denoted  by   S 3.,  has  the  output  alphabet 

{ σ 1 , σ 2 , σ 3 , σ 4 , σ 5 , σ 6 , σ 7 , σ 8}.,  in  which  σ 1

=

 u 1 u 1 u 1.,  σ 2

=

 u 1 u 1 u 2., 

 σ 3 =  u 1 u 2 u 1.,  σ 4 =  u 1 u 2 u 2.,  σ 5 =  u 2 u 1 u 1.,  σ 6 =  u 2 u 1 u 2.,  σ 7 =  u 2 u 2 u 1., σ 8 =  u 2 u 2 u 2.. 

Entropy of the Finite Extension of a Memoryless Source 

Since  each  symbol  of   Sn.,  the  extension  of  order   n  of  the  memoryless  message source   S,  corresponds  to   n symbols  from   S,  it  would  be  reasonable  to  expect  that  the entropy  per symbol of  Sn.,  denoted  by  H (U n).,  be  equal  to   n times  the  entropy  per symbol  of   S.  As  we  will  show  below,  this  result  is  indeed  true.  Using  the  definition of  entropy  and considering  σi =  ui , u , . . . , u

1

 i 2


 in .,  we  have
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.  H (U n) = −

 P (σi)  log  P (σi). 

(9.43) 

 i=1

 L



 L



= −  

· · ·  

 P (ui ,   .   .   .   ,   u  log   P (u ,   .   .   .   ,   u 1

 in 

 i 1

 in 

 i 1=1 

 in=1 

 L



 L



= −  

· · ·  

 P (ui ,   .   .   .   ,   u  log (P .   .   .   P

1

 in 

 i 1 

 in 

 i 1=1 

 in=1 

 L



 L



= −  

· · ·  

 P (ui ,   .   .   .   ,   u   [log  P + · · · + log  P ]

1

 in

 i 1

 in

 i 1=1 

 in=1 

 L



 L



= −

 Pi  log  P − · · · −

 P  log  P

1

 i 1

 in

 in

 i 1=1

 in=1

=  nH(U). 

(9.44) 

In  order  to  show  the  result  in  Eq. 9.44  and  other  related  results  later  we  used  the following  properties  of  the  joint  probability: 



. 

 P (ui , . . . , u

=  P (u , . . . , u

 , u

 , . . . , u . 

(9.45) 

1

 iN

 i 1

 ij−1

 ij+1

 in

 uij











. 

 P (σi) =

· · ·

 Pi . . . P =

 P · · ·

 P

= 1

(9.46) 

1

 in

 i 1

 in

 σi

 i 1

 in

 i 1

 in









.  −

 P (σi)  log  Pi = −

· · ·

· · ·

 P . . . P . . . P  log  P

 j

 i 1

 ij

 in

 ij

 σi

 i 1

 ij

 in







= −

 Pi  log  P

 P · · ·

 P

 j

 ij

 i 1

 in

 ij

 i 1

 in



= −

 Pi  log  P

 j

 ij

 ij

=  H(U). 

(9.47) 

Example 9.26  Let   S be  the  source  in Example 9.25, with  P 1 = 1 / 3. and  P 2 = 2 / 3.. 

The  third-order  extension  of   S,  denoted  as   S 3.,  has  the  following  symbol  probability distribution:
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 P (σ 1 ) =  P (u 1 u 1 u 1 ) =  P (u 1 )P (u 1 )P (u 1 ) = 1 / 27

 P (σ 2 ) =  P (u 1 u 1 u 2 ) =  P (u 1 )P (u 1 )P (u 2 ) = 2 / 27

 P (σ 3 ) =  P (u 1 u 2 u 1 ) =  P (u 1 )P (u 2 )P (u 1 ) = 2 / 27

 P (σ 4 ) =  P (u 1 u 2 u 2 ) =  P (u 1 )P (u 2 )P (u 2 ) = 4 / 27

.  P (σ 5 ) =  P (u 2 u 1 u 1 ) =  P (u 2 )P (u 1 )P (u 1 ) = 2 / 27

 P (σ 6 ) =  P (u 2 u 1 u 2 ) =  P (u 2 )P (u 1 )P (u 2 ) = 4 / 27

 P (σ 7 ) =  P (u 2 u 2 u 1 ) =  P (u 2 )P (u 2 )P (u 1 ) = 4 / 27

 P (σ 8 ) =  P (u 2 u 2 u 2 ) =  P (u 2 )P (u 2 )P (u 2 ) = 8 / 27 . 

For  this  source  we  obtain  H (U ) = 0 .  918. and  H (U  3 ) = 3 × 0 .  918 = 2 .  754.. 

Discrete Information Sources with Memory 

Increasing  a  little  the  complexity  of  the  message  source  model  considered  so  far, which  was  the  one  in  which  the  source  has  no  memory,  we  will  now  consider sources  where  the  occurrence  of  a  symbol  depends  statistically  on  the   m last  emitted symbols,  for  a  finite   m.  This  type  of  source  is  called  a   Markov source of order  m and  is  specified  by its alphabet { u 1 , u 2 , . . . , uL}. and  by  its  conditional  probability distribution 

.  P (ui /uj , u

 , . . . , u , . . . , u , 

1

 j 2

 jl

 jm

in  which  i ∈ {1 ,  2 , . . . , L}.,  jl ∈ {1 ,  2 , . . . , L}.,  l ∈ {1 ,  2 , . . . , m}. and  the  symbol sequence  in  time  is  uj , . . . , u , . . . , u , u

1

 jl

 jm

 i .,  i.e.,  ui . succeeds  ujm .. 

For  a  Markov  source  of  order   m,  the  probability  of  it  emitting  a  given  symbol is  known  if  the   m preceding  symbols  are  known.  Due  to  the  importance  they  have in  characterizing  a  Markov  source  of  order   m,  the  preceding   m symbols  are  called state  of  the  source.  Since  the  source  alphabet  consists  of   L symbols,  the  number  of possible  distinct states is  Lm..  As  the  source  emits  symbols,  state  changes  occur.  A useful  way  to  represent  the  possible  state  changes  of  a  Markov  source  is  through  the state diagram.  In  a  state  diagram,  each  node  represents  a  state,  and  each  possible transition  between  two  states  is  represented  by  an  oriented  line  (indicated  by  an arrow)  connecting  these  two  states. 

Example 9.27  Consider  the  second-order  (m = 2 ). Markov  source  with  a  binary alphabet  (L = 2 ).,  shown  in  Fig. 9.3.  The  symbol  conditional  probabilities (transition  probabilities)  are  the  following: 

.  P ( 0|00 ) =  P ( 1|11 ) = 0 .  8

 P ( 1|00 ) =  P ( 0|11 ) = 0 .  2

 P ( 0|01 ) =  P ( 0|10 ) = 0 .  5
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Fig. 9.3  State  diagram  of  a 

second-order  binary  Markov 

source 

 P ( 1|01 ) =  P ( 0|10 ) = 0  .  5 . 

Since  this  is  a  second-order  binary  source,  i.e.,  L = 2.  and  m = 2.,  we  ha  ve Lm = 4. and  therefore  four  states: 00 ,  01 ,  10 ,  11..  In  Fig. 9.3, the  four  possible  states are  indicated  by  four  circles.  In  general,  the  transitions  between  states  are  indicated by  arrows,  each  arrow  connecting  two  states,  and  the  state  transition  probability  is indicated  by  a  number  associated  with  each  arrow.  For  example,  from  state  10,  it  is possible  to  go  to  state  00,  with  probability  0 .  5. if  the  source  emits  a  0,  or  to  go  to state  01,  with  probability  0 .  5. if  the  source  emits  a  1,  but  state  11  cannot  be  reached and  the  source  is  not  allowed  to  remain  in  state  10.  Notice  however  in  this  example that  one  of  the  arrows  leaving  state  00  and  state  11,  respectively,  return  to  the  same state  with  probability  0 .  8.. 

In  our  presentation  of  Markov  sources,  we  shall  consider  only   ergodic sources. 

It  is  beyond  the  scope  of  the  current  treatment  to  go  into  the  nuances  of  the mathematical  definition  of  what  an  ergodic  source  is.  However,  a  purposefully imprecise  conceptualization,  which  we  introduce  below,  will  serve  our  purposes well. 

Definition 9.28  An  ergodic  source  is  one  that,  when  observed  over  a  long  period  of time,  emits  with  probability  1  a  typical  sequence  of  its  symbols. 

In  order  to  better  characterize  what  is  meant  by  a  non-ergodic  source,  the  following example  is  presented. 

Example 9.29  Consider  the  second-order  (m = 2 ). Markov  source  with  a  binary alphabet  (L = 2 ).  shown  in  Fi  g. 9.4.  The  symbol  state  transition  probabilities (transition  probabilities)  are  the  following:
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Fig. 9.4  State  diagram  of  a 

non-ergodic  second-order 

binary  Markov  source 

.  P ( 0|00 ) =  P ( 1|11 ) = 0 .  5

 P ( 1|00 ) =  P ( 0|11 ) = 0 .  5

 P ( 0|01 ) =  P ( 1|10 ) = 1

 P ( 1|01 ) =  P ( 0|10 ) = 0 . 

Similar  to  the  case  in  Example  9.27, here  we  also  have  Lm = 4.,  i.e.,  four  states denoted  as 00 ,  01 ,  10.,  and  11.  The  state  diagram  for  this  source  is  shown  in  Fig. 9.4. 

Notice  that,  once  states  01  or  10  are  reached,  from  that  point  on,  the  source  will permanently  emit  the  sequence  . . .  101010101010  . . . .  and  will  never  reach  state 00  or  11.  Even  if  the  initial  state  is  randomly  selected  from  a  uniform  probability distribution,  that  is,  each  state  being  selected  in  a  statistically  independent  manner with  probability 1 / 4.,  after  a  sufficiently  long  number  of  state  transitions  either state  01  or  state  10  will  be  reached  with  probability  1.  Therefore,  whatever  the sequence  of  symbols  emitted  by  this  source,  if  we  wait  a  sufficiently  long  time, with  probability  1  we  will  see  the  sequence  . . .  101010101010  . . . .  appear.  Thus, with  probability  1  we  will  not  see  a  typical  sequence  emitted  by  this  source,  and  for this  reason,  it  is  not  ergodic. 

An  important  property  of  ergodic  Markov  sources  is  that  the  probability  distribution of  states  is  unique,  and  the  states  in  any  long  sequence  of  symbols  emitted  by  the source  will  occur,  with  probability  1,  according  to  this  distribution.  This  probability distribution  is  called   stationary  distribution   of  the  ergodic  Markov  process.  Due to  the  fact  that  the  stationary  distribution  of  states  does  not  depend  on  any initial  distribution  for  choosing  these  states,  it  is  possible  to  calculate  it  from  the conditional  probabilities  of  source  symbols  (Abramson  1963, Ch.  2). 
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Entropy of a Markov Source 

Given  that  the  Markov  source  of  order   m  is  in  the  state  uj , u , . . . , u 1

 j 2

 jm .,  its 

corresponding  conditional  uncertainty  is  given  by 

.  H (U | uj , u , . . . , u

=

1

 j 2

 jm

 L



−

 P (ui| uj , u , . . . , u

log  P (u

 , u , . . . , u

(9.48) 

1

 j 2

 jm

 i | uj 1

 j 2

 jm

 i=1

The  average  value  of  H (U | uj , u , . . . , u

1

 j 2

 jm .,  over  all   Lm. possible  states  is  defined 

as  the  entropy  (or  uncertainty)  of   U and  is  expressed  a s

 L

 L



 L



.  H (U ) =

 . . . 

 P (uj , u , . . . , u H (U | u , u , . . . , u . 

(9.49) 

1

 j 2

 jm

 j 1

 j 2

 jm

 j 1=1  j 2=1

 jm=1

The Adjoint Source 

By  employing  the  symbol  first-order  probability  distribution  of  a  Markov  source,  an auxiliary  source  is  defined  and  called   adjoint source. 

Definition 9.30  Let { u 1 , u 2 , . . . , uL}. be  the  alphabet  of  a  Markov  source   S of  order m,  and let  P 1 , P 2 , . . . , PL.  be  the  first-order  probability  distribution  of  the  source symbols.  The  adjoint source of   S,  denoted  by   S.,  is  the  memoryless  source  with  the same  alphabet  as   S and  with  symbol  probability  distribution  P 1 , P 2 , . . . , PL.. 

We  will  prove  below  that  the  entropy  of  the  adjoint  source   S. is  never  less  than  the entropy  of  the  source   S.  This  important  fact  can  be  interpreted  in  the  following  way. 

The  two  sources,  S and   S.,  have  the  same  first-order  symbol  probability  distribution; the  essential  difference  among  them  comes  from  the  fact  that   S  has  additional restrictions,  expressed  in  the  form  of  symbol  conditional  probabilities,  which  restrict the  possible  output  sequences.  Such  restrictions  reduce  uncertainty  about  the  source output. 

In  order  to  keep  notation  as  simple  as  possible,  we  will write  H (U ).  for  the entropy  of   S  and  will write  H (U ).  for  the  entropy  of   S.  and  will  prove  that  H (U ). 

is  greater  than  or  equal  to  H (U ). when   S is  a  first-order  Markov  source.  We  leave  as an  exercise  for  the  reader  to  prove  the  case  in  which   S is  a  Markov  source  of  order m (see Problem 16). 

Let   S  be  a  first-order  Markov  source,  the  symbols  of  which are  u 1 , u 2 , . . . , uL. 

and  conditional  probabilities  are  P (ui| uj ),  1 ≤  i ≤  L,  1 ≤  j ≤  L..  Let  us denote  by  P 1 , P 2 , . . . , PL. the  symbol  first-order  probabilities  of   S and let  S. denote the  adjoint  source.  Let  us  denote  by  P (uj , ui). the  joint  probability  of  the  source   S 

being  in  the  state  specified by  uj . and  emit  the  symbol   ui..  We  can  then  write
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.  P (uj , ui ) =  P (ui | uj )Pj . 

(9.50) 

Let  us  now  consider  the  following  double  summation: 







 Pj Pi

. 

 P (uj , ui)  log

 . 

(9.51) 

 P (uj , ui)

 i

 j

If  follows  from  the  fundamental  inequality  of  information  theory  that  Eq. 9.51  is less  than  or  equal  to  zero,  with  equality  if  and  only  if 

.  P (uj , ui ) =  Pj Pi  for all  i  and  j. 

(9.52) 

By  combining  Eqs. 9.50  and  9.51  and  writing  the  inequality,  we  obtain Pi

. 

 P (uj , ui)  log

≤ 0

(9.53) 

 P (ui| uj )

 i

 j

or,  equivalently, 









1



1

. 

 P (uj , ui)  log

≤

 P (uj , ui)  log

 P (ui| uj )

 Pi

 i

 j

 i

 j

that  is, 

 L

 L





1

.  H (U ) ≤

 P (uj , ui)  log  Pi

 i=1  j =1

 L



 L



=

1

log

 P (uj , ui)

 Pi

 i=1

 uj =1

 L





=

1

 P (ui)  log  Pi

 i=1

=  H(U

and  thus 

.  H (U ) ≤  H (U , 

recalling  that  the  condition  for  equality  Eq. 9.52  implies  that   ui.  and   uj .  are statistically  independent,  or,  that  the  source   S is memoryless. 
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Finite Extension of a Markov Source 

We  take  a  look  next  at  some  properties  of  a  Markov  source  considering  blocks  of   n symbols  from  this  source  as  forming  a  new  symbol  σi.. 

Definition 9.31  Let   S  be  a  Markov  message  source,  of  order   m,  with alphabet  u 1 , u 2 , .  . . . , uL.  and  symbol  conditional  probability  distribution P (ui| uj , u , . . . , u

1

 j 2

 jm ..  The  extension  of  order   n of   S,  denoted by  Sn.,  is  a  Markov source of order  μ.  with   Ln.  symbols,  σ 1 , σ 2 , . . . , σLn..  Each   σi.  corresponds  to a  certain  sequence  of   n  symbols  ui , u , . . . , u

1

 i 1

 in .,  with  conditional  probability 

 P (σi| σj , σ , . . . , σ

1

 j 1

 jμ .,  where  μ =  m/n.. 

Theorem 9.32   The  entropy H (U n).  of  the  extension  Sn.  of  a  Markov  source  S   of order m  is equal to n  times the entropy H (U ).  of the source S, that is, 

.  H (U n) =  nH (U ). 

 n

 n

Theorem 9.33   Let S .  denote the adjoint source of Sn.  . The entropy H (U ).  of the adjoint source is greater than or equal to H (U n).  , that is, 

 n

.  H (U ) ≥  H (U n) =  nH (U ). 

Actually  it  is  shown  in  Abramson  (1963)  that 

 n

.  H (U ) =  nH (U ) +  n

in  which   n. is  a  positive  constant  and,  for  n > m.,  it  depends  only  on  the  statistics of   U ,  and  that 

 n

.  lim

= 0 . 

 n→∞  n

Therefore 

 n

 H (U )

.  lim

=  H(U). 

 n→∞

 n

In  other  words,  for   n sufficiently  large,  the  Markov  source  constraints  over  symbols from  U n. become  less  and  less  important. 

9.9  Source Codes 

In  this  section  we  investigate  the  representation  of  each  symbol  from  a  given  source by  a  codeword  of  a  given  code.  Only  some  special  classes  of  such  codes  will  be
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considered,  aiming  at  practical  applications  as  well  as  keeping  this  presentation  at  a level  more  accessible  to  the  reader.  Initially,  definitions  and  code  properties  will  be presented  and  that  is  followed  by  some  specific  code  constructions. 

Frequently  in  practical  applications  like,  for  example,  voice  digital  signal processing,  there  is  a  need  to  represent  source  symbols  by  codewords  formed  by  a sequence  of  symbols  from  another  alphabet,  commonly  a  binary  alphabet.  A  formal definition  of  a  code  is  presented  next. 

Definition 9.34  Let { u 1 , u 2 , . . . , uL}. denote  the  set  of  symbols  of  a  given  alphabet U .  A  code  is  a  mapping  of  all  symbol  sequences  from   U to  symbol  sequences  from another alphabet { x 1 , x 2 , . . . , xD}.  denoted  by   X.  We  call   U  the  source alphabet and  call   X the  code alphabet. 

However,  Definition  9.34   is  so  general  that  it  does  not  help  us  very  much  when constructing  codes.  Our  next  step  is  the  introduction  of  restrictions  in  the  definition of  a  code,  in  the  form  of  properties  required  from  a  code.  The  first  code  property  is to  require  it  to  be  a  block code. 

Definition 9.35  A  block  code  is  a  code  which  maps  each  symbol  in  the  source alphabet   U  to  a  fixed  sequence  of  symbols  from  the  code  alphabet   X.  These  fixed sequences  of  symbols  from   X are  called  codew ords. 

Alternatively,  the  designation   a  block  code  for  U  is  used  to  mean  a  list (z 1 , z 2 , . . . , zL). of   D-ary  sequences  for  which   zi. denotes  the  codeword  for   ui.,  i.e., U =  ui. implies  Z =  zi.. 

Example 9.36  Table  9.2  presents  a  binary  block  code. 

The  values  of  the  random  variable  Z = [ X 1 , X 2 , .  . . . , XW ]. are   D-ary  sequences of  variable  length   W ,  in  which   W  is  a  random  variable.  The  average  codeword length  E[ W ]. of  the  codewords  will  be  used  as  an  indication  of  the  quality  of  the code,  meaning  that  the  shorter  E[ W ]. the  better  the  code. 

If  zi = [ xi 1 , xi 2 , . . . , xiw ]

 i .  is  the  codeword  for   ui .  and   wi .  is  the  length  of  this word,  then  it  is  possible  to  write  the  average  length  of  words  as 

 L



.  E[ W ] =

 wiPU (ui), 

(9.54) 

 i=1

Table  9.2  A  binary  block 

Source  Symbols 

Codewords 

code 

 u 1. 

0 

 u 2. 

00 

 u 3. 

01 

 u 4. 

10 

 u 5. 

01

9.9 Source Codes
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Table  9.3  Non-singular 

Source  Symbols 

Codewords 

block  code 

 u 1. 

0 

 u 2. 

01 

 u 3. 

10 

 u 4. 

11 

 u 5. 

00 

because   W  is  a  real  function  of  the  random  variable   U .  Note  that  the  v alues Z = [ X 1 , X 2 , . . . , .  XW ].  are,  in  general,  random  variables  defined  conditionally only,  because   Xi. only  takes  on  a  value  when  W ≥  i.. 

Uniquely Decodable Codes 

Observing  the  code  in  Example  9.36  we  notice  the  need  to  add  a  few  restrictions to  avoid,  for  example,  that  two  distinct  source  symbols  be  represented  by  the  same codeword,  which  is  the  case  of   u 3. and   u 5. in  Table  9.2,  because  that  situation  would lead  to  an  ambiguity  when  decoding  the  codeword  01. 

Definition 9.37  A  block  code  is  non-singular if  all  its  codewords  are  distinct. 

Example 9.38  Table  9.3  presents  a  non-singular  block  code. 

Despite  all  the  codewords  in  Table  9.3  being  distinct,  we  will  still  have  problems with  ambiguity  in  decoding  when,  for  example,  the  sequence  010  is  received  as it  could  represent  u 1 u 3. or  u 2 u 1..  In  other  words,  preventing  against  non-singularity considering  only  codewords  alone  is  not  enough,  we  need  to  prevent  non-singularity from  occurring  when  we  consider  the  concatenation  of  codewords. 

Definition 9.39  The   n th  extension  of  a  block  code,  which  maps  the  source  symbols ui. to  codewords   Zi.,  is  the  block  code  that  maps  the  sequences  ui , u , 1

 i 2 .  . . . , uin . of 

source  symbols  to  sequences  of  codewords  Zi Z . . . Z

1

 i 2

 in .. 

It  follows  from  Definition  9.39  that  the   n th  extension  of  a  block  code  is  also  a  block code. 

Example 9.40  Table  9.4  presents  the  second-order  extension  of  the  block  code shown  in  Table  9.3. 

Definition 9.41  A  block  code   C  is  a  uniquely decodable code if  and  only  if  the n th  extension  of   C is  non-singular  for  all  finite   n. 

Definition  9.41  apparently  guarantees  only  that  any  two  sequences  of  source  symbols  containing  the  same  number  of  symbols  produce  distinct  codeword  sequences. 

Obviously,  it  would  be  desirable  to  be  more  protected  by  requiring  that  sequences of  source  symbols  of  different  lengths  produce  distinct  sequences  of  codewords. 

This  property,  however,  is  contained  in  Definition  9.41  as  we  shall  see  shortly.  On the  contrary,  suppose  for  a  moment  that  code   C fulfills Definition 9.41  but  that   U 1. 

and   U 2.  are  two  sequences  of  source  symbols,  of  different  length,  which  produce the  same  sequence   Z 0. of  codewords.  Consider  now  two  new  sequences  of  source
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Table  9.4  Second-order 

Source  symbols 

Codewords 

Source  symbols 

Codewords 

extension  of  the  block  code  in 

 u

Example  Eq. 9.38 

1 u 1. 

00

 u 3 u 4. 

1011 

 u 1 u 2. 

001

 u 3 u 5. 

1000 

 u 1 u 3. 

010

 u 4 u 1. 

110 

 u 1 u 4. 

011

 u 4 u 2. 

1101 

 u 1 u 5. 

000

 u 4 u 3. 

1110 

 u 2 u 1. 

010

 u 4 u 4. 

1111 

 u 2 u 2. 

0101

 u 4 u 5. 

1100 

 u 2 u 3. 

0110

 u 5 u 1. 

000 

 u 2 u 4. 

0111

 u 5 u 2. 

0001 

 u 2 u 5. 

0100

 u 5 u 3. 

0010 

 u 3 u 1. 

100

 u 5 u 4. 

0011 

 u 3 u 2. 

1001

 u 5 u 5. 

0000 

 u 3 u 3. 

1010

-

-

symbols,  U 1. and   U 2.,  and  that   U 1. is  the  sequence  of  source  symbols  formed  by   U 1. 

followed  by   U 2.,  while   U 2. is  the  sequence  of  source  symbols  formed  by   U 2. followed by   U 1..  We  notice  that  both   U 1. and   U 2. are  sequences  of  equal  length  and  that  both produce  the  same  sequence  of  codewords  Z 0 Z 0..  In  this  case  code   C does  not  satisfy the  condition  to  be  uniquely  decodable  stated  in  Definition 9.41. 

We  now  examine  in  more  detail  some  typical  uniquely  decodable  codes,  illustrated  in  Example  9.42.  Code   A. is  an  example  of  the  simplest  possible  method  of constructing  a  uniquely  decodable  code.  Namely,  all  codewords  in   A. have  the  same length  and  are  distinct,  i.e.,  A. is  non-singular.  The  two  properties  are  sufficient  to guarantee  that  a  code  is  uniquely  decodable  (see  Problem  1.Eq. 18). Code   B.,  in addition  to  being  non-singular,  employs  the  symbol  0  as  a  comma  to  separate  its codewords  and  is  thus  uniquely  decodable.  Due  to  the  comma,  it  is  possible  in  code B.to determine where one codeword ends and another begins. Code   C.is non-singular but  differs  from   A. and   B. in  an  aspect  of  practical  importance.  When  decoding   C., on  receiving  a  sequence  of  codewords,  we  are  generally  only  able  to  detect  the end  of  a  codeword  when  we  receive  the  first  digit  of  the  next  codeword.  The  only exception  to  this  rule  occurs  with  the  codeword  0111,  the  ending  of  which  is  easily identified  since  there  is  no  codeword  in   C.  formed  by  a  0  followed  by  more  than three  1’s.  We  observe  that  in  the  codes   A. and   B.,  the  end  of  each  received  codeword is  identified  immediately,  that  is,  without  the  need  to  wait  for  the  first  digit  of  the next  codeword.  At  this  point  in  our  discussion,  it  should  be  clear  that  the  unique decodability  depends  essentially  on  our  ability  to  determine  the  beginning  and  end of  a  codeword  immersed  in  a  finite  sequence  of  codewords. 

Example 9.42  In  Table  9.5  three  examples  are  presented  of  uniquely  decodable codes. 
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Table  9.5  Uniquely 

Source  symbols 

Code   A.  Code   B.  Code   C. 

decodable  codes 

 u 1. 

00

0

0 

 u 2. 

01

10

01 

 u 3. 

10

110

011 

 u 4. 

11

1110

0111 

9.10  Prefix-Free Codes 

We  will  begin  this  section  by  introducing  the  definition  of  a  prefix-free  code,  so  that we  can  then  determine  necessary  and  sufficient  conditions  for  a  code  to  be  prefix-free. 

Definition 9.43  A  uniquely  decodable  code  is  also  a  prefix-free  code  if  it  is possible  to  decode  each  codeword,  in  a  sequence  of  codewords,  without  needing to  observe  succeeding  codeword  symbols. 

Example 9.44  Without  going  into  details,  we  state  (and  the  reader  will  be  able  to verify)  that  the  codes   A. and   B. of  Example  9.42  are  prefix-free.  Code   C.,  from  this same  example,  despite  being  uniquely  decodable,  is  not prefix-free. 

Except  for  relatively  simple  codes,  we  generally  need  a  practical  criterion  to  test whether  a  given  code  is  uniquely  decodable  or  not.  Such  criterion  exists  and  is  quite simple  as  can  be  seen  shortly. 

Definition 9.45  Let  zi =  xi x . . . x

1

 i 2

 im .  denote  a  codeword  of  a  given  code.  The 

sequence  of  symbols  xi x . . . x ,  1 ≤  l ≤  m

1

 i 2

 il

.,  in  codeword   zi . is  called  a  prefix  of 

 zi.. 

Example 9.46  The  word  1110  has  as  prefixes 1 ,  11 ,  111. and  1110. 

The  test  to  verify  whether  a  code  is  prefix-free  is  presented  next  in  the  form  of  a theorem. 

Theorem 9.47   A necessary and sufficient condition for a code C  to be prefix-free is that none of its codewords be a prefix of another codeword in C  . 

 Proof   The   sufficiency  condition  is  an  immediate  consequence  of  the  definition  of a  prefix-free  code.  Supposing  that  no  codeword  is  a  prefix  to  another  codeword, we  proceed  with  decoding  by  scanning  a  received  sequence  of  symbols  from  the code  alphabet  until  we  can  form  a  subsequence  which  is  a  valid  codeword.  Such subsequence  actually  represents  a  single  valid  codeword  because  by  hypothesis  it cannot  be  the  prefix  to  any  other  codeword.  This  way  we  can  proceed  with  word-by-word  decoding. 

We  will  prove  by  contradiction  the   necessary   part  of  the  theorem.  Let  us  then assume  that,  contrary  to  the  hypothesis,  there  is  a  codeword   Z 1. which  is  the  prefix  of another  codeword   Z 2..  If  we  proceed  with  decoding  by  scanning  a  received  sequence of  symbols  from  the  code  alphabet  we  can  form  a  subsequence   Z 1.,  and  such  a
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Fig. 9.5  Subclasses  of  source  codes 

Table  9.6  Construction  of  a 

Source  symbols 

Step  1 

Step  2 

Step  3 

prefix-free  code 

 u 1. 

0

0

0 

 u 2. 

*

10

10 

 u 3. 

*

*

110 

 u 4. 

*

*

111 

subsequence  may  in  fact  be  a  valid  codeword,  or  it  may  just  be  a  prefix  of   Z 2..  We will  not  be  able  to  decide  which  of  the  two  alternatives  is  true  until  we  examine  more symbols  in  the  received  sequence  and  this  way  the  code  is  no  longer  prefix-free. 



Figure  9.5  schematically  presents  the  sequence  of  code  subclasses  that  takes  us  from a  simple  code  to  the  subclass  of  prefix-free  codes. 

We  will  now  discuss,  through  examples,  the  construction  of  prefix-free  codes. 

Let  us  consider  the  construction  of  a  prefix-free  binary  code  for  a  source  with  four symbols.  To  begin  with,  let  us  allocate  the  word  0  to  represent  the  symbol   u 1..  This choice  leaves  us  with  the  option  to  choose  only  words  that  start  with  the  digit  1, to represent  u 2 , u 3.,  and   u 4..  Obviously  if  we  choose  1  to  represent   u 2.,  we  will  be unable  to  choose  new  words  that  do  not  have  the  0  or  1  as  a  prefix.  Therefore,  we are  forced  (due  to  the  way  how   u 1. was  chosen)  to  choose  a  word  with  two  digits, starting  with  1,  to  represent   u 2..  Let  our  choice  for   u 2. be  the  word  10.  We  are  then left  with  a  single  two-digit  prefix  that  has  not  yet  been  used,  that  is,  11.  As  there are  still  two  symbols  left  (  u 3. and   u 4.)  to  be  encoded  and  we  have  a  single  two-digit prefix  not  yet  used,  we  are  forced  to  choose  a  three-digit  word  for   u 3.,  starting  with 11.  Let  our  choice  for   u 3. be  word  110.  Finally,  our  choice  for   u 4. is  the  word  111. 

Table  9.6  illustrates  the  allocation  of  words,  and  asterisks  are  employed  to  indicate positions  yet  void  to  be  occupied  by  words  yet  to  be  selected. 

9.11  Kraft Inequality 

We  concluded  the  previous  section  by  discussing  restrictions  of  a  qualitative  nature on  the  length  of  codewords  in  the  construction  of  prefix-free  codes.  We  will  now deal  with  restrictions  of  a  quantitative  nature  on  the  length  of  the  codewords  of  such codes. 

9.11 Kraft Inequality
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Theorem 9.48   A  necessary  and  sufficient  condition  for  the  existence  of  a  prefix-free  code,  the  codewords  of  which  have  lengths w 1 , w 2 , . . . , wL.  ,  respectively,  is that these lengths satisfy the following condition: 

 L



. 

 D− wi ≤ 1 , 

(9.55) 

 i=1

 in which D  denotes the number of distinct symbols in the code alphabet. 

 Proof   We  will  first  prove  that  the  condition  expressed  in  the  inequality  in  Eq. 9.55 

is  enough  to  build  a  prefix-free  code  that  satisfies  it.  Let  us  suppose  we  are  given  the set  of  codeword  lengths  w 1 , w 2 , . . . , wL.  satisfying  the  inequality  in  Eq. 9.55  and we  are  asked  to  construct  a  prefix-free  code  with  these  word  lengths.  The  length values,  that  is,  w 1 , w 2 , . . . , wL.,  are  not  necessarily  all  distinct.  Let  us  denote  by ni. the  number  of  words  of  length   i.  Therefore,  n 1. denotes  the  number  of  words  of length  1,  n 2. denotes  the  number  of  words  of  length  2,  etc.  Denote  by   w the  length of  the  longest  codeword,  that  is,  let  w = max  wi,  1 ≤  i ≤  L.,  and  thus w



. 

 ni =  L. 

 i=1

Alternatively,  we  can  write  the  inequality  in  Eq. 9.55  as w



. 

 niD− i ≤ 1 . 

(9.56) 

 i=1

Multiplying  by  Dw. both  sides  in  the  inequality  in  Eq. 9.56,  we  ha  ve w



. 

 niDw− i ≤  Dw. 

(9.57) 

 i=1

Expanding  the  inequality  in  Eq. 9.57  and  placing  all  its  terms  on  the  right  side,  we obtain 

.0 ≤  Dw −  n 1 Dw−1 −  n 2 Dw−2 − · · · −  nw−1 D −  nw. 

(9.58) 

We  observe  that,  since  nw >  0.,  we  can  suppress  it  in  the  inequality  in  Eq. 9.58  and simplify  the  result  dividing  by   D the  two  sides  and  obtain

.0 ≤  Dw−1 −  n 1 Dw−2 −  n 2 Dw−3 − · · · −  nw−1 . 

(9.59) 

Continuing  in  an  analogous  manner,  starting  from  the  inequality  in  Eq. 9.59  we obtain
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.0 ≤  Dw−2 −  n 1 Dw−3 −  n 2 Dw−4 − · · · −  nw−2. 

(9.60) 

 .. . . 

 .    ..    ..  

0  ≤  D 3 −  n 1 D 2 −  n 2 D −  n 3. 

(9.61) 

0  ≤  D 2 −  n 1 D −  n 2. 

(9.62) 

0  ≤  D −  n 1 . 

(9.63) 

The  proof  follows  by  observing  that  from  inequalities  Eqs. 9.58–9.63,  we  can construct  a  prefix-free  code  in  the  following  manner.  We  need  to  form   n 1. codewords of  length  1.  We  know  that  there  are   D distinct  codewords  of  length  1,  which  we  can form  using  a   D-ary  code.  By  the  inequality  in Eq. 9.63  n 1 ≤  D.,  and  therefore  we can  choose  these   n 1. codewords  arbitrarily.  In  doing  so,  we  will  be  left  with  D −  n 1. 

prefixes  that  have  not  yet  been  used,  to  form  codewords  of  length  2.  Adding  to the  right  of  each  of  these  D −  n 1.  symbols  (possible  prefixes),  a  second  symbol, we  will  have  D(D −  n 1 ) =  D 2 −  n 1 D.  possible  codewords  of  length  2.  By  the inequality  in  Eq. 9.62  we  only  need   n 2. codewords  of  length  2,  where   n 2 ≤  D 2 −

 n 1 D..  When  using   n 2. codewords  of  length  2,  D 2 −  n 1 D −  n 2. prefixes  will  remain available  to  form  codewords  of  length  3.  By  the  inequality  in  Eq. 9.61, we  will  need at  most  this  total  of  codewords  of  length  3.  Continuing  with  this  procedure,  we build  all  the  codewords.  It  is  therefore  proven  that  the  condition  expressed  by  the inequality  in  Eq. 9.55  is  sufficient  to  construct  a  prefix-free  code  with  the  lengths  of the  codewords  being  w 1 , w 2 , . . . , wL..  To  prove  that  the  condition  in  the  inequality in  Eq. 9.55  is  also  necessary,  we  reverse  the  steps  used  in  proving  the  sufficiency condition  and  arrive  at  the  desired  result. 



Example 9.49  Verification  of  the  prefix-free  condition  in  source  codes.  It  follows from  Fig. 9.6  that  the  code  in  b)  is  non-prefix-free  because  1,  the  codeword representing   u 1.,  is  a  prefix  of  11  which  is  the  codeword  representing   u 3.. 

Rooted Trees 

In  order  to  facilitate  the  reader  to  penetrate  the  nuances  of  the  nature  of  prefix-free codes,  it  is  interesting  to  represent  the  digits  in  the  codewords  of  a  given  code  as branches  of  a  rooted  tree.  In  a  rooted  tree  nodes,  leaves  and  root  are  defined.  The nodes   are  vertices  from  which  branches  of  the  tree  stem  outward  in  the  direction away  from  the  root  and   leaves  are  vertices  with  no  outgoing  branches.  A  tree   grows by  adding  branches  to  a  direction  away  from  a  vertex  with  special  notation  called root.  The  root  is  denoted  by  the   earth  symbol  used  in  electrical  circuits. 

Figure  9.6  shows  the   binary  trees   associated  with  the  binary  codes  of  Example  9.49.  Codewords  are  represented  by  dark  circles  at  the  end  of  branches  marked with  the  last  digit  of  the  respective  codeword.  Note  that  all  codewords  of  prefix-free  codes  match  the  leaves  of  the  respective  tree  and  that  codes  with  a  prefix  also have  one  or  more  codewords  that  correspond  to   nodes.  Some  relevant  definitions  are presented  below. 
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Fig. 9.6  A  prefix-free  code  is  shown  in  (a)  and  a  non-prefix-free  code  is  shown  in  (b) Definition 9.50  A   D-ary  tree  is  a  finite  or  semi-infinite  rooted  tree  such  that   D 

branches  emanate  from  each  node  of  this  tree  in  the  direction  away  from  the  root. 

Each  of  the   D  branches  stemming  outward  from  a  node  of  a   D-ary  tree  will  be denoted  by  one  of  the   D distinct   D-ary letters, 0 ,  1 , . . . , D − 1. of  the  code  alphabet. 

Definition 9.51  A  full   D-ary  tree  of  length   N  is  the   D-ary tree with  DN .  leaves, each  leaf  at  depth   N from  the  root. 

It  may  now  be  clear  to  the  reader  that  all   D-ary  prefix-free  code  can  be  identified with  a  set  of  leaves  on  a   D-ary  tree  and  that,  conversely,  any  set  of  leaves  in  a   D-ary tree  defines  a   D-ary  prefix-free  code.  In  this  text  a   D-ary  tree  is  represented  using the  following  convention:  the  leaves  representing  codewords  are  denoted  by  dark circles,  and  the  leaves  not  used  as  codewords  are  denoted  by  hollow  circles.  The D-ary  tree  that  represents  a  given   D-ary  prefix-free  code  is  made  unique  by   pruning the  tree  at  each  node  from  which  no  codewords  stem. 

Example 9.52  Construct  a  binary  prefix-free  code  with  codeword  lengths   w 1 =

2 , w 2 = 2 , w 3 = 2 , w 4 = 3. and  w 5 = 4.. 



Since

5

 i=1 2− wi = 1 / 4 + 1 / 4 + 1 / 4 + 1 / 8 + 1 / 16 = 15 / 16  <  1.,  by  the  Kraft inequality,  it  is  concluded  that  a  binary  prefix-free  code  for  this  source  exists.  This code  is  constructed  and  shown  in  Fig. 9.7. 

Example 9.53  Construct  a  binary  prefix-free  code  with  codeword  lengths   w 1 =

1 , w 2 = 2 , w 3 = 2 , w 4 = 3. e  w 5 = 4.. 
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Fig. 9.7  Binary  prefix-free  code  of  Example  9.52 

Fig. 9.8  Ternary  prefix-free  code  of  Example  9.54 



Since

5

 i=1 2− wi = 1 / 2 + 1 / 4 + 1 / 4 + 1 / 8 + 1 / 16 = 19 / 16  >  1.,  the  Kraft inequality  establishes  that  this  code  cannot  be  constructed  as  specified. 

Example 9.54  Construct  a  ternary  prefix-free  code  with  codeword  lengths   w 1 =

1 , w 2 = 2 , w 3 = 2 , w 4 = 3. e  w 5 = 4.. 



Since

5

 i=1 3− wi = 1 / 3 + 1 / 9 + 1 / 9 + 1 / 27 + 1 / 81 = 49 / 81  <  1.,  by  the  Kraft inequality,  it  is  concluded  that  a  ternary  prefix-free  code  for  this  source  exists.  This code  is  constructed  and  shown  in  Fig. 9.8. 

Rooted Trees with Probabilities 

It  is  observed  in  a  rooted  tree  with  probabilities  that  the  sum  of  the  leaf  probabilities is  necessarily  equal  to  one  (see  Example  9.57). 

Lemma 9.55 (The Path Length Lemma)   In a rooted tree with probabilities, the average  depth  of  the  leaves  is  equal  to  the  sum  of  the  probabilities  of  the  nodes, including the root node. 

 Proof   The  probability  of  each  node  is  equal  to  the  sum  of  the  probabilities  of  the leaves  in  the  subtree  stemming  from  that  node.  It  turns  out  that  a  leaf  at  depth   d is connected  to  the   d subtrees  that  correspond  to  the   d nodes,  including  the  root  node, on  the  path  from  the  root  to  that  leaf.  In  this  way,  the  sum  of  the probabilities of
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the  nodes  is  equal  to  the  sum  of  the  products  of  the  probability  of  each  leaf  by  its respective  depth,  but  this  sum  corresponds  exactly  to  the  average  depth  of  the  leaves according  to  the  Eq. 9.54. 



Shannon-Fano Code 

The   Shannon-Fano  code   is  a  heuristic  construction  of  a  prefix-free  source  code which  in  general  is  not  optimum.  An  intuitive  way  to  approach  the  Shannon-Fano  construction  is  obtained  by  initially  considering  the  reasoning  of  the  Hartley measure  of  information.  In  that  situation,  when  the  event  U =  ui. occurs,  everything happens  as  if  one  of 1 /PU (ui).  equally  likely  possibilities  occurs.  However  the coding  of   L equally  likely  possibilities  with   D-ary  words  of  the  same  length  requires a  codeword  length  of log D L.  digits,  where  x.  denotes  the  smallest  integer number  greater  than  or  equal  to   x.  This  fact  suggests  that  the  length   wi.,  of  the codeword for  ui.,  should  be  chosen  as  being 









1





− log  PU (ui)

.  wi =

log

= −

=

 D

log

 . 

(9.64) 

 P

 D PU (ui )

 U (ui )

log  D

If  PU (ui) = 0. occurs,  the  condition  in  Eq. 9.64  becomes  meaningless.  This  apparent difficulty  is  resolved  by  agreeing  that  no  codewords  will  be  allocated  to  values  of U  that  have  zero  probability  of  occurring.  With  this  impasse  resolved,  two  new questions  arise.  The  first  is  whether  there  is  a  prefix-free  code  the  codeword  lengths of  which  are  those  indicated  in Eq. 9.64. The  answer  to  this  question  is  obtained  by observing  the  following  inequality 

.  x ≤  x  < x + 1 . 

(9.65) 

It  follows  from  Eq. 9.64  that 

.  wi ≥ − log D PU (ui ), 

such  that,  if   U is  a   L-ary  random  variable,  we  hav e

 L



 L



 L



. 

 D− wi ≤

 D log D PU (ui) =

 PU (ui) = 1 . 

 i=1

 i=1

 i=1

Therefore,  the  Kraft  inequality  guarantees  that  in  fact  it  is  possible  to  find  a   D-ary prefix-free  code,  the  codeword  lengths  of  which  are  given  by  Eq. 9.64.  The  quality of  the  codes  thus  generated  can  be  evaluated  by  combining  expressions  Eqs. 9.64 

and  9.65  resulting  in  this 

− log  PU (ui)

− log  PU (ui)

. 

≤  wi < 

+ 1 . 

(9.66) 

log  D

log  D

Multiplying  Eq. 9.66  by  PU (ui). and  adding  for  all   i,  due  to  Eq. 9.54  it  follows  that
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 H (U )

 H (U )

. 

≤  E[ W]  < 

+ 1 . 

(9.67) 

log  D

log  D

The  codes  produced  by  this  source  coding  method  are  called  Shannon-Fano  codes, because  this  technique  appears  implicit  in  Shannon’s  1948  paper,  but  was  first  made explicit  by  Fano,  and  provides  a  prefix-free  code  the  average  codeword  length  of which  lies  within  one  digit  of  the  lower  bound  in  Eq. 9.67,  satisfied  by  all  prefix-free  codes.  The  following  theorem  is  thus  proven. 

Theorem 9.56 (Coding  Theorem  for  a   L-ary  Random  Variable.)   The  average codeword length of an optimal prefix-free D-ary code for a L-ary random variable U  satisfies the r elation

 H (U )

 H (U )

. 

≤  E[ W]  < 

+ 1

(9.68) 

log  D

log  D

 with equality on the left if and only if the probability of each value of U  is a negative integer  power  of  D.  Furthermore,  the value E[ W ].  resulting  from  Shannon-Fano coding,  which  is  generally  not  optimal,  also  satisfies  inequalities  Eq. 9.68   with equality on the left if and only if the probability of each value of U   is an integer negative power of D  . 

Theorem  9.56  does  not  yet  represent  a  complete  justification  for  the  Shannon information  measure  because  it  is  not  possible  to  make  the  upper  bound  arbitrarily close  to  the  lower  bound.  However,  since  inequalities  Eq. 9.68  are  valid  for  any discrete  memoryless  source   S,  we  may  apply  it  to   Sn.,  the   n th  extension  of   S, according  to Eq. 9.44, i.e.,  H (U n) =  nH (U ).,  and  obtain H (U n)

 H (U n)

. 

≤  En[ W]  < 

+ 1 , 

(9.69) 

log  D

log  D

in  which  En(W ).  denotes  the  average  length  of  the  codewords  representing  the symbols  of   Sn..  Equivalently,  we  can  write  Eq. 9.69  as H (U )

 H (U )

. 

≤  En[ W] /n < 

+ 1 /n, 

(9.70) 

log  D

log  D

in  which  En[ W ] /n. represents  the  average  number  of  code  symbols  per  symbol  of S.  Thus  it  is  possible  to  make  En[ W ] /n.  as  close  to  H (U )/  log  D.  as  we  wish  by coding  the   n th  extension  of   S  rather  than  coding  individual  symbols  of   S  or,  in mathematical terms

 En[ W ]

. lim

=  H(U). 

(9.71)

 n→∞

 n

log  D
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The  inequalities  in  Eq. 9.70  exhibit  the  result  known  as   Shannon’s first theorem  or the   noiseless coding theorem. 

Example 9.57  Consider  the  binary  Shannon-Fano  code  construction  for  the  source with  alphabet  U = { u 1 , u 2 , u 3 , u 4}. and  symbol  probability  distribution  as  follows. 

 u

 u 1. 

 u 2. 

 u 3. 

 u 4. 

 PU (u).  0.4 

0.3 

0.2 

0.1 

Initially,  Eq. 9.64  is  used  with  D = 2. in  order  to  determine  the  codeword  lengths. 





1

.  w 1 =

log

= 2

0 .  4





1

 w 2 = log

= 2

0 .  3





1

 w 3 = log

= 3

0 .  2





1

 w 4 = log

= 4 . 

0 .  1

The  code  is  constructed  by  growing  a  tree  as  explained  earlier  in  order  to  obtain  the Shannon-Fano  code  with  the  tree  illustrated  in  Fig. 9.9.  By  applying  the  path  length lemma  in  Fig. 9.9,  we  obtain 

.  E[ W ] = 1 + 0 .  7 + 0 .  3 + 0 .  3 + 0 .  1 = 2 .  4

and  a  direct  calculation  gives 

.  H (U ) = 1 .  846  bit s. 

Comment:  It  is  observed  that  the  condition  in  Eq. 9.68  is  indeed  satisfied.  Although, clearly  this  code  is  not  optimal,  because  it  would  simply  be  enough  to  choose  the 4  possible  codewords  of  length  2  which  would  result  in  a  better  code   (E[ W ] =

2 )..  Despite  this,  the  coding  theorem  guarantees  that  no  code  can  beat  the  average codeword  length  of  the  Shannon-Fano  code  by  more  than  one  digit. 

Huffman Code 

In  the  sequel,  we  show  how  to  construct  an  optimum  prefix-free   D-ary  code  for  a L-ary  random  variable   U .  We  assume  that  PU (ui) >  0.,  i = 1 ,  2 , . . . , L, . so  that  it is  necessary  to  allocate  a  codeword  for  every  possible  value  of   U .  Initially,  binary coding  is  considered,  i.e.,  D = 2..  Two  simple  lemmas,  presented  next,  provide  the key  to  construct  an  optimum  code. 
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Fig. 9.9  Binary  tree  of  the 

Shannon-Fano  code  of 

Example  9.57 

Fig. 9.10  Tree  with  leaf  not 

used  for  a  codeword 

Lemma 9.58   The binary tree of an optimum prefix-free binary code for U   has no unused leaves. 

 Proof   Contrary  to  the  hypothesis,  suppose  that  the  tree  has  unused  leaves.  Because the  code  is  optimum,  these  unused  leaves  should  be  located  at  the  maximum  depth  in the  tree.  Therefore,  for  at  least  one  value   ui. of   U ,  the  situation  indicated  in  Fig. 9.10 

will  occur.  In  one  or  the  other  of  the  two  cases  indicated  in  Fig. 9.10,  it  is  possible  to suppress  the  last  digit  of  the  codeword  for   ui.,  without  changing  the  other  codewords, and  still  have  a  prefix-free  code.  It  turns  out,  however,  that  this  new  code  has  a smaller  E[ W ]. value  and  therefore  the  original  code  could  not  be  optimum. 



Lemma 9.59   There exists an optimum binary prefix-free code for U   such that the two least likely codewords, without loss of essential generality, are associated with uL−1.  and uL.  and differ only in their last digit. 

 Proof   Suppose  that  PU (uL−1 ≥  PU (uL)..  Let   zi. be  one  of  the  longest  codewords in  an  optimum  code  for   U .  So,  because  according  to  Lemma  Eq. 9.58  there  cannot be  unused  leaves  in  the  code  tree,  the  situation  illustrated  in  Fig. 9.11  necessarily occurs,  where   uj . denotes  some  other  value  of  the  random  variable   U being  encoded. 

So, if  j =  L., the leaves  associated with   uj . and   uL. are swapped.  This cannot  increase E[ W ]. because  PU (uj ) ≥  PU (uL). and  wj ≥  wL..  If  i =  L − 1.,  the  nodes  associated with   ui.  and  uL−1.  are  also  swapped.  This  cannot  increase  E[ W ].  due  to  a  similar argument.  Because  the  original  code  is  optimum,  the  new  code  is  optimum  too. 

However,  the  new  optimum  code  has  two  less  likely  codewords,  which  differ  only in  the  last  digit. 



9.11 Kraft Inequality
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Fig. 9.11  Situation 

considered  in  the  proof  of 

Lemma  Eq. 9.59,  in  which  ui . 

and   uj . denote  values  of  the 

random  variable   U 

Fig. 9.12  Optimized  choice  of  a  node  in  a  tree  with  probabilities Due  to  Lemma  Eq. 9.58  and  the  path  length  lemma,  constructing  an  optimum  prefix-free  binary  code  for  a   L-ary  random  variable   U  is  equivalent  to  constructing  a binary  tree  with   L leaves  such  that  the  sum  of  the  node  probabilities  is  minimum when  the  leaves  have  allocated probabilities  PU (ui). for  i = 1 ,  2 , . . . , L..  However, Lemma  Eq. 9.59  suggests  how  a  node  can  be  chosen  in  an  optimum  tree  of  a  code, specifically  as  indicated  in  Fig. 9.12, in  which  uL−1. and   uL. represent  the  two  least likely  values  of   U .  However,  if  the  binary  tree  is  pruned  at  this  node,  to  make  it  a  leaf with  probability  PU (uL−1 +  PU (uL)).,  this  would  become  one  of  the  L − 1. leaves in  a  new  tree.  Completing  the  code  construction  would  be  equivalent  to  building  a binary  tree  with  these  L − 1. leaves  such  that  the  sum  of  the  node  probabilities  is  a minimum.  Applying  Lemma  Eq. 9.59  allows  you  to  choose  the  next  specific  node  in this  tree  and  so  on.  It  is  thus  proven  the  validity  of  the  following  algorithm. 

Huffman Algorithm 

Purpose:  Construction  of  an  optimal  prefix-free  binary  code  for  a   L-ary  random variable   U ,  such  that  P (u) = 0. for  all   u. 

Step  0:  Designate   L  vertices  (which  will  be  the  leaves  in  the  final  tree)  as u 1 , u 2 , . . . , uL.  and  assign  probability  PU (ui).  to  vertex   ui.,  for  i = 1 ,  2 , . . . , L.. 

Designate  these   L vertices  as   active . 

Step 1:  Create  a  node  that  interconnects  the  two  least  likely  active  vertices,  using binary  branches.  Deactivate  these  two  active  vertices,  activate  the  new  node,  and assign  it  a  probability  equal  to  the  sum  of  the  probabilities  of  the  two  vertices  that have  just  been  deactivated.  This  way,  the  number  of  active  vertices  decreases  by one. 

Step 2:  If  there  is  now  a  single  active  vertex,  then  make  this  vertex  the  root  of  the tree  and  stop.  Otherwise,  go  to  step  1. 

Example 9.60  Consider  the  construction  of  a  binary  Huffman  code  for  the  random variable   U such  that

 u

 u 1. 

 u 2. 

 u 3. 

 u 4. 

 u 5. 

 u 6. 

 PU (u).  0.05 

0.10 

0.15 

0.20 

0.23 

0.27
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Fig. 9.13  Binary  tree  for  the 

Huffman  code  of  Example 

9.60 

Table  9.7  Huffman  code 

 u

 u 1. 

 u 2. 

 u 3. 

 u 4. 

 u 5. 

 u 6. 

constructed  for  the  random 

 P

variable   U of Example 9.60 

 U (u). 

0.05 

0.10 

0.15 

0.20 

0.23 

0.27 

 Z

0000 

0001 

001 

10

11

01 

An  optimal  binary  tree  for   U  is  shown  in  F ig. 9.13,  and  the  corresponding Huffman  code  (optimum  binary  code)  is  given  in  Table  9.7. 

It  is  noticed  in  this  example  that 

.  E[ W ] = 2 ( 0 .  20 + 0 .  23 + 0 .  27 ) + 3 ( 0 .  15 ) + 4 ( 0 .  10 + 0 .  05 ) = 2 .  45 . 

On  the  other  hand, 

6



.  H (U ) = −

 PU (u)  log  PU (u) = 2 .  42  bits, 

 i=1

verifying  that  the  inequality  in  Eq. 9.67  is  satisfied. 

9.12  Capacity of Discrete Noiseless Channels 

Consider  a  message  source   U  with  a   L symbol  alphabet,  for  which  we  arbitrarily assign  a  uniquely  decodable  source  code   C.  Consider  that  the   L codewords  of   C 

have lengths  wi,  1 ≤  i ≤  L.,  respectively.  Following  Shannon  (1948a), we  use  the
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expression   discrete channel,  in  a  generic  manner,  to  refer  to  a  system  by  which  a sequence of choices  of  elements  from  a  finite  (or  countably  infinite)  set  of  symbols 

{ x 1 , x 2 , ..., xD}. can  be  transmitted  between  two  points.  The  electronic  mail  (e-mail) system  is  an  example  of  a  discrete  channel  for  the  transmission  of  information. 

The  capacity  of  a  source  code  to  transmit  information  in  a  discrete  channel  was defined  in  da  Rocha  Jr. (1999)  as  the  maximum  rate  in  bits  per  symbol  of  the  code and  turns  out  to  be  a  function  of  the  codeword  lengths  only.  We  assume  that  each of  the  symbols  xi,  1 ≤  i ≤  D.,  has  duration   ti.  seconds  and  that,  in  general,  for any  two  symbols,  xi. and   xj .,  i =  j .,  we  can  have  ti =  tj ..  Telegraphic  transmission gives  us  an  example  of  a  case  where  the  symbols  used,  called   dot  and   dash,  have different  durations.  In  general  the  system  may  have  constraints,  that  is,  the  system may  not  allow  the  transmission  of  all  possible  symbol  sequences  from   U .  Just  a  few sequences  may  be  allowed.  These  represent  the  possible   signals  for the channel. 

In  the  telegraph  channel,  the  following  symbols  are  employed: 

1  DOT,  consisting  of  a  pulse  present  during  a  time  unit,  and  a  pulse  absent  during a  time  unit. 

2  DASH,  consisting  of  a  pulse  present  during  three  time  units,  and  a  pulse  absent during  a  time  unit. 

3  LETTER SPACE,  consisting  of  a  pulse  absent  during  three  time  units. 

4  WORD SPACE,  consisting  of  a  pulse  absent  during  six  time  units. 

A  natural  restriction  for  telegraphy  sequences  is  to  forbid  the  transmission,  for example,  of  two  consecutive   letter  spaces,  because  they  are  identical  to  a   word space. 

We  next  consider  the  question  of  how  we  can  measure  the   capacity   of  such channels  to  transmit  information.  For  electronic  mail,  for  example,  which  employs binary  symbols  of  the  same  duration,  and  the  messages  of  which  consist  of sequences  of   words   of  7  binary  digits,  the  response  is  immediate.  If  this  system transmits   R words  per  second,  the  natural  response  is  that  the  channel  has  a  capacity of  7 R bits  per  second.  This,  however,  does  not  mean  that  the  system  will  be  always transmitting  information  at  this  rate.  The  value  is  7 R  represents  the  maximum information  rate  that  the  channel  can  transmit.  In  a  more  general  case,  where symbols  have  different  durations  and  there  is  restriction  on  the  sequences  to  be transmitted, Shannon (1948a)  introduced  the  following  definition. 

Definition 9.61  The  capacity   C. of  a  discrete  noiseless  channel  is  given  by log  N (T )

.  C = lim

(9.72) 

 T →∞

 T

in  which  N (T ). denotes  the  number  of  signals  of  duration   T  which  are  allowed. 

326

9

Information Theory

By  applying  formula  Eq. 9.72, it  can  be  easily  checked  that  for  the  case  of  electronic mail  the  result  C = 7 R. bits  per  second  coincides  with  that  obtained  earlier.  Shannon (1948a)  observed  that  the  limit  in  formula  Eq. 9.72  exists  in  the  majority  of  cases  of interest. 

Capacity Without Restrictions 

Let  us  now  calculate  the  discrete  noiseless  channel  capacity  assuming  a  case  in which  all  possible  sequences  of  symbols  x 1 , x 2 , . . . , xD. are  allowed  and  that  each of  the  symbols   xi. has  a  certain  duration  in  time   ti.,  assuming  that  for  two  distinct symbols   xi.  and   xj .,  we  can  have  ti =  tj ..  Representing  by  N(t).  the  number  of sequences  of  duration   t,  we  ha  ve

.  N (t ) =  N (t −  t 1 ) +  N (t −  t 2 ) + · · · +  N (t −  tD ). 

(9.73) 

The  total  number  of  sequences  N (t). is  equal  to  the  sum  of  the  numbers  of  sequences ending  in   x 1.,  or  ending  in   x 2.,  . . . . etc.,  or  ending  in   xD.,  and  these  are,  respectively, N (t −  t 1 ), N(t −  t 2 ), . . . , N(t −  tD).. 

Using  the  finite  difference  method,  we  find  the  following  solution  (Goldman 

1968, pp.  311–317)  for  N (t).: 

.  N (t ) =  A 1 at +  A

+ · · · +  A

 , 

(9.74) 

1

2 at 2

 D atD

in  which  the  Ai,  1 ≤  i ≤  D.,  are  arbitrary  constants  and  the  ai,  1 ≤  i ≤  D.,  are determined  using  E q. 9.75. Notice  that,  in  general, 

.  N (t −  ti ) =  A 1 at− ti +  A

+ · · · +  A

1

2 at− ti

2

 r at − ti

 r

 , 

and  substituting  these  values  in  Eq. 9.73, we  obtain 

−

−

−

 A

 t 1

 t 2

 tD

1 at [  a

+  a

+ · · · +  a

− 1]

1

1

1

1

+

−

−

−

 A

 t 1

 t 2

 tD

2 at [  a

+  a

+ · · · +  a

− 1]

2

2

2

2

.  .. 

 . 

 . 

 .. 

+

−

−

−

 A

 t 1

 t 2

 tD

 D at [  a

+  a

+ · · · +  a

− 1] = 0 . 

 D

 D

 D

 D

The  general  solution  of  Eq. 9.73  is  given  by  Eq. 9.74, in  which  the  ai,  1 ≤  i ≤  D., are  the  roots  of  the  characteristic  equation 

.  X− t 1 +  X− t 2 + · · · +  X− tD − 1 = 0 . 

(9.75) 

The  value  of  N (t). is  necessarily  real  and  non-negative  for  all  positive  values  of   t. 

By  making   t sufficiently  large, Eq. 9.74  reduces  to 

.  N (t ) =  Al at , 

(9.76)

 l
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in  which   al. is  the  largest  real  root  in  Eq. 9.75  since,  asymptotically,  the  contribution of  all  other  roots  becomes  negligible.  Shannon  used  the  notation  X 0 =  al.. 

Substituting  the  asymptotic  value  of  N (t).,  given  in  Eq. 9.76,  in  E  q. 9.72  of  the capacity  definition,  we  obtain  the  value 

.  C = log  X 0 . 

By  examining  Eq. 9.76  it  is  noticed  that  the  number  of  possible  sequences  of duration   t grows  exponentially  for  sufficiently  large  values  of   t . 

Capacity with Restrictions 

A  very  general  type  of  restriction  that  can  be  imposed  on  permitted  sequences  is the  following.  Initially  we  will  define   state  as  the  consecutive  symbols  of  a  segment of  arbitrary  but  fixed  length,  l,  formed  by  the  symbols  xj , x , ..., x 1

 j 2

 jl .  of  a  given 

allowed  sequence.  For  each  state,  just  certain  symbols  from  the  set  x 1 , x 2 , ..., xD. 

can  be  transmitted.  We  assume  that  different  states  are  associated  with  different subsets  of  permitted  symbols. 

When  one  of  the  allowed  symbols  is  transmitted,  the  status  changes  to  a  new state  depending  on  the  previous  state  and  the  transmitted  symbol.  If  the  restrictions on  the  allowed  sequences  can  be  described  by  a   linear graph,  or   state diagram ,  C. 

exists  and  is  calculated  from  the  result  of  the  following  theorem  (Shannon  1948a). 

Theorem 9.62   Let b(l)

 ij .  be the duration of the lth symbol which is allowed in state i 

 and leads to state j . Then the capacity of the discrete noiseless channel C.  is equal to  log  W .  , being W   the largest real root of the equation defined by the determinant









− bl



. 

 ij −



 W

 δij  = 0 , 

(9.77) 

 l

 in which δij = 1.  if i =  j .  and is equal to 0 otherwise. 

The  code  alphabet  for  the  telegraph  channel  employs  the  following  symbols:  dot =

+−., dash = + + +−., letter space = − − −.  and  word space  = − − − −

− −  . . Table  9.8  illustrates  the  states  and  respective  state  transitions  for  the  telegraph channel. 

By  using  Eq. 9.77  we  obtain  the  following  determinant  equation  for  the  telegraph channel  which  embeds  the  restriction  on  allowable  sequences  that  no  spaces  follow each  other;  otherwise,  if  two  letter  spaces  are  consecutive,  they  are  identical  to  a word  space. 

Table  9.8  Constraints  on  the 

TO  STATE  1 

TO  STATE  2 

use  of  telegraph  symbols 

FROM  STATE  1

− 1. 

 W −2 +  W −4. 

FROM  STATE  2

 W −3 +  W −6.  W −2 +  W −4 − 1. 
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Fig. 9.14  Constraints  on  the  use  of  telegraph  symbols 







−1

 (W −2 +  W −4



.  (W−3 +  W−6  (W−2 +  W−4 − 1 )  = 0 , 

or,  equivalently, 

.  W −10 +  W −8 +  W −7 +  W −5 +  W −4 +  W −2 − 1 = 0 . 

(9.78) 

Figure  9.14  illustrates  the  constraints  on  the  use  of  telegraph  symbols. 

9.13  Capacity of Discrete Noisy Channels 

The  basic  objective  of  the  communications  engineer  is  to  transmit  information  in an  efficient  and  reliable  way,  from  the  source,  through  a  channel,  to  its  destination. 

Having  already  dealt  with  the  fundamental  aspects  of  information  sources  earlier in  this  chapter,  the  next  step  is  to  address  fundamental  aspects  of  communication channels.  The  first  question  that  arises  naturally  is:  what  is  a   channel? 

The  authors  in  (Wozencraft  and  Reiffen  1961,  p.  6)  attribute  to  John  L.  Kelly  1  a provocative  description  of  a  channel  as  being  that  part  of  a  communications  system that  one  is  either   unwilling to change  or  is   unable to change.  For  example,  if  it  is mandatory  to  use  radio  signals  in  a  certain  band  of  the  frequency  spectrum,  then  this restriction  becomes  part  of  the  channel.  When  an  individual  is  restricted  from  using communications  equipment,  consisting  of  a  transceiver  and  antenna,  such  restriction also  becomes  part  of  the  channel.  After  all  restrictions  have  been  specified,  thus characterizing  the  channel,  the  freedom  that  remains  is  what  can  be  used  to  transmit information. 

If  one  is  allowed  the  unaltered  transmission  of  only  a  single  signal,  for  example, a  sinusoid  with  invariant  amplitude,  frequency,  and  phase,  then  it  is  not  possible  to transmit  information  to  a  recipient.  In  order  for  information  transmission  to  occur, 1  John  L.  Kelly  was  a  colleague  of  Shannon’s  at  Bell  Laboratories,  but  worked  in  another department.  Kelly  worked  on  the   asset allocation problem  in  investment  markets. 
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freedom  of  choice  between  at  least  two  different  signal  options  is  required.  Once the  choice  of  a  signal  for  transmission  has  been  exercised,  from  then  on,  the  channel governs  what  happens  with  that  signal  during  the  journey  to  the  destination  point. 

Said  in  mathematical  terms,  the  channel  specifies  the  conditional  probabilities  of  the various  signals  that  can  be  received;  however  the  a priori   probabilities  of  the  input signals  are  chosen  by  the  sender  using  the  channel. 

Here  only  discrete  time  channels  are  considered,  such  that  both  the  input  and output  of  the  channel  can  both  be  described  as  sequences  of  random  variables. 

The  input  sequence  X 1 , X 2 , X 3 , . . . .  is  chosen  by  the  sender,  but  it  is  the  channel that  determines  the  conditional  probabilities  of  the  corresponding  output  sequence Y 1 , Y 2 , Y 3 , . . . ..  The   discrete  memoryless  channel  (DMC)  is  mathematically  the simplest  channel  model  and  is  the  one  that  receives  the  most  attention  here.  The characterization  of  a  DMC  requires  the  following  three  specified  quantities: 1.  The   input alphabet,  A,  which  is  a  finite  or  countably  infinite  set { a 1 , a 2 , a 3 , . . . }., each  element  of  which  represents  one  of  the  signals  that  a  sender  can  choose  each instant  of  time  when  using  the  channel; 

2.  The   output  alphabet,  B,  which  is  also  a  finite  or  countably  infinite  set 

{ b 1 , b 2 , b 3 , . . . }.,  each  element  of  which  represents  one  of  the  output  signals  that can  result  at  each  instant  of  time  in  which  the  channel  is  used; 

3.  The   conditional probability distributions PY | X(. | x). over   B for each  x ∈  A.,  which govern  channel  behavior  in  such  a  way  that 

.  P (yn| x 1 , . . . , xn−1 , xn, y 1 , . . . , yn−1 =  PY | X(yn| xn), (9.79) 

for  n = 1 ,  2 ,  3 , . . . .. 

Equation 9.79  represents  the  mathematical  condition  that  corresponds  to  the   memoryless  nature  of  the  DMC,  that  is,  what  happens  to  the  signal  sent  in  the   n th  use of  the  channel  is  statistically  independent  of  what  happens  in  the  previous  n − 1. 

uses.  Using  the  Eq. 9.79, it  can  also  be  observed  that  the  DMC  is  invariant  in the  sense  that  the  probability  distribution  PYn| Xn.  does  not  depend  on   n.  For  this reason  P (yn| xn). cannot  be  written  on  the  right  side  of  Eq. 9.79, because  this  is  the abbreviated  notation,  used  to  mean  PY

 (y

 n| Xn

 n| xn).,  and  which  would  not  imply  that 

such  probability  distribution  does  not  depend  on   n. 

Discrete  memoryless  channels  are  generally  specified  using  diagrams  as  illustrated  in  Fig. 9.15  in  which: 

1.  the  nodes  on  the  left  are  associated  with  the  input  alphabet   A; 2.  nodes  on  the  right  are  associated  with  the  output  alphabet   B;  and 3.  the  directed  branch  from   ai. to   bj . is  associated  with  the  conditional  probability PY | X(bj | ai).,  unless  this  probability  is  equal  to  zero,  in  which  case  this  branch would  be  omitted. 

The  channel  illustrated  in  Fig. 9.15a  is  called   binary symmetric channel (BSC), while  the  channel  illustrated  in  Fig. 9.15b  is  called   binary  channel  with  erasure

330

9

Information Theory

Fig. 9.15  (a)  Binary  

symmetric  channel  (BSC). 

(b)  Binary  erasure  channel 

(BEC)

(BEC).  We  shall  give  special  attention  to  these  two,  apparently  very  simple,  discrete memoryless  channel  models. 

The  following  discussion  is  made  with  the  purpose  of  illustrating  the  modeling of  a  real  channel  by  a  BSC  channel.  Suppose  a  communications  system  that  allows transmitting  a  voltage  pulse  lasting   t 0. microseconds  with  two  possible  amplitudes, for  example, −  V . or +  V . volts,  which  can  represent  0  or  1,  respectively.  Suppose that  these  signals  are  transmitted  over  a  broadband  medium,  such  as  a  coaxial  cable, and  are  processed  by  a  receiver.  The  receiver  examines  the  received  signal  during consecutive  intervals  of   t 0.  microseconds  and  makes  a   hard  decision   about  which voltage  pulse  is  most  likely  in  each  interval  of  time  considered.  The  use  of  a  receiver with   soft decision,  which  additionally  provides  information  about  the  reliability  of the decision, is generally preferable. As a consequence, receivers with  hard decision, in  general,  perform  worse  than  receivers  with   soft decision. 

Due  to  the  presence  of  thermal  noise  in  the  transmission  medium  and  at  the receiver  input,  there  is  a  probability  that  the  decision  made  is  wrong.  If  the bandwidth  of  the  communications  system  is  wide  enough,  the  errors  in  each  time slot  will  be  statistically  independent,  in  such  a  way  that  the   complete system  formed by  the  pulse  transmitter,  the  medium  of  transmission,  and  the  receiver  with  hard decision  becomes  a  BSC  that  is  used  every   t 0. microseconds.  Other  examples  could be  presented  to  illustrate  practical  situations  in  which  the  BSC  is  the  appropriate model  from  the  information  theory  point  of  view.  The  beauty  and  strength  of information  theory  comes  from  the  fact  that  it  is  possible  to  ignore  many  of  the technical  details  in  practical  systems  and  focus  attention  only  on  what  really  matters, related  to  the  ability  to  transmit  information,  which  are  the  conditional  probability distributions  that  are  created. 
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When  working  with  probabilities,  it  is  not  uncommon  for  a  student  to  ask  how  to specify  a  conditional  probability  for  which  the  conditioning  event  has  a  probability of  occurrence  equal  to  zero.  The  teacher  responds  that,  in  this  case,  the  value specified  for  the  conditional  probability  is  arbitrary.  In  general,  such  an  answer does  not  leave  the  student  completely  convinced.  For  this  reason,  this  situation  is illustrated  next  using  a  DMC  as  an  example.  Suppose  the  BSC  in  Fig. 9.15a  is  being used  and  it  has  been  decided  that  only  0’s  will  be  transmitted.  Said  equivalently, we  choose  PX ( 0 ) = 1

 ( 1 ) = 0

 n

.  and  PXn

.  for  all   n.  Even  so,  the  channel  specifies 

 PY

 ( 1|1 ) = 1 −  ε

 n| Xn

.,  even  though  the  conditioning  event  has  probability  equal  to 

zero  by  the  formula  PX

 ( 1 ,  1 )/P

 ( 1 )

 nYn

 Xn

..  In  this  channel,  although  the  conditional 

probability  distribution  can  be  chosen  arbitrarily  when  the  conditioning  event  has  a probability  equal  to  zero,  the  channel  is  left  to  do  such  an  arbitrary  choice  as  this avoids  having  to  treat  as  special  cases  those  situations  in  which  it  is  decided  not  to transmit  one  or  more  symbols. 

The  case  in  which  DMC  is  used  without  feedback  is  discussed  next,  that  is,  when the  inputs  are  selected  in  such  a  way  as  to  satisfy  the  following  expression: 

.  P (xn| x 1 , . . . , xn−1 , y 1 , . . . , yn−1 =  P (xn| x 1 , . . . , xn−1 ), (9.80) 

for  n = 1 ,  2 ,  3 , . . . ..  When  successive  input  digits  are  chosen,  note  that  Eq. 9.80 

does  not  imply  that  each  input  digit  is  chosen  independently  of  the  previous  input digits,  just  that  the  previous  output  digits  are  not  being  used  at  all,  as  could  be  the case  when  a  feedback  channel  is  available  from  the  output  to  the  input  of  the  DMC. 

Next,  an  important  result  is  demonstrated  using  Theorem  Eq. 9.63. 

Theorem 9.63   When a DMC is used without feedback, then 

 n



.  P (y 1 , . . . , yn| x 1 , . . . , xn) =

 PY | X(yi| xi)

(9.81) 

 i=1

 for n = 1 ,  2 ,  3 , . . . .  . 

 Proof   It  follows  from  the  conditional  probability  multiplication  rule  that 

.  P (x 1 , . . . , xn, y 1 , . . . , yn) =

 n

 P(xi| x 1 ,...,xi−1 ,y 1 ,...,yi−1 P(yi| x 1 ,...,xi,y 1 ,...,yi−1 . 

 i=1

(9.82) 

Applying  Eqs. 9.79  and  9.80  to  the  right  side  of  Eq. 9.82,  we  ha  ve n



.  P (x 1 , . . . , xn, y 1 , . . . , yn) =

 P (xi| x 1 , . . . , xi−1 PY| X(yi| xi) =

 i=1
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 n



 n



 n



 P (xj | x 1 ,   .   .   .   ,   xj−1 

 PY | X(yi| xi) =  P (x 1 ,   .   .   .   ,   x   n) PY | X(yi| xi), 

 j =1 

 i=1 

 i=1

and  after  dividing  both  sides  by  P (x 1 , . . . , xn). we  obtain  Eq. 9.81. 



It  is  observed  here  that  the  relationship  Eq. 9.81  is  so  fundamental  that  it  is  often presented  as  the  definition  of  DMC.  The  reader  is  cautioned  to  remember  this  fact when  you  are  consulting  the  literature  on  information  theory.  When  Eq. 9.81  is  used, it  is  implied  that  DMC  is  being  used  without  feedback. 

Example 9.64  It  is  observed  for  the  BSC  that 

 ( 1 −  ε)  if  y =  x

.  PY | X(y| x) =

 ε

if  y =  x. 

Thus,  when  a  BSC  is  used  without  feedback  to  transmit  a  block  of   N binary  digits, it  results

.  P (y|x =  εd(x , y ( 1 −  ε)N− d(x , y d(x , y

=

 ε

 ( 1 −  ε)N

 , 

(9.83) 

1 −  ε

in  which x = [ x 1 , x 2 , . . . , xN ]. denotes  the  transmitted  block, y = [ y 1 , y 2 , . . . , yN ]. 

denotes  the  received  block,  and  d(x , y.  denotes  the  Hamming  distance  between  x. 

and  y.,  i.e.,  the  number  of  positions  at  which  the  vectors  x. and  y. differ. 

Channel Capacity 

Recall  that  a  DMC  specifies  the  conditional  probability  distribution  P (y| x).,  but also  recall  that  the  sender  is  free  to  choose  the  input  probability  distribution  P (x).. 

Therefore,  it  is  natural  to  define  the  capacity   C. of  a  DMC  as  the  maximum  value  of the  average  mutual  information  I (X;  Y ). which  can  be  obtained  by  choosing  P (x)., that  is, 

.  C = max  I (X;  Y )

(9.84) 

 PX

or,  equivalently, 

.  C = max[ H (Y ) −  H (Y | X)] . 

(9.85)

 PX
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However,  we  now  face  the  more  challenging  task  of  showing  that  this  definition is  useful,  that  is,  showing  that   C. provides  the  answer  to  some  important  practical questions  regarding  transmission  of  information.  However,  before  demonstrating this  fact,  the  channel  capacity  of  some  relatively  simple  channel  models  is  calculated below,  which  nevertheless  include  most  channels  of  practical  interest. 

Fano’s Lemma 

Next,  the  notion  of   errors  in  the  study  of  information  theory  is  introduced  for  the first  time  in  this  chapter.  Consider  that  the  random  variable  ˆ

 U . represents  an  estimate 

of  the  random  variable   U .  It  is  required  that  ˆ

 U . takes  on  values  in  the  same  alphabet 

as   U .  Therefore,  an  error  is  the  event  in  which ˆ

 U =  U . and  the  error  probability, 

denoted  by   Pe.,  is  therefore 

.  Pe =  P (  ˆ

 U =  U ). 

(9.86) 

After  this  brief  characterization  of  the  notion  of  error,  one  of  the  most  important  and interesting  results  in  information  theory  is  presented  next,  which  relates   Pe. with  the conditional  uncertainty  H (U | ˆ

 U .. 

Lemma 9.65 (Fano’s Lemma)   Suppose that U  and   ˆ

 U .  are L-ary random variables 

 with the same alphabet and that the error probability Pe.  is defined by the Eq. 9.86, 

 then 

.  h(Pe) +  Pe  log2 (L − 1 ) ≥  H (U | ˆ

 U , 

(9.87) 

 in which the uncertainty H (U | ˆ

 U ).  is expressed in bits. 

Converse of the Noisy Coding Theorem 

The  following  theorem  states  that  it  is  impossible  to  transmit   information reliably through  a  DMC  at  a   rate   above  its  capacity.  Without  loss  of  essential  generality, suppose  that  the  information  to  be  transmitted  comes  from  the  output  of  a  binary symmetric  source  (BSS),  represented  by  the  DMS  with  PU ( 0 ) =  PU ( 1 ) = 1 / 2., having  a  rate  of  H (U ) = 1. bit  per  source  letter.  Usually  the  letters  in  the  binary output  sequence  U 1 , U 2 , U 3 , . . . . of  the  BSS  are  called   bits of information  because each  letter  carries  a  bit  of  information,  although  care  should  be  taken  in  use  of  this abuse  of  terminology.  Assume  that   L information  bits  are  sent  to  their  destination via   N uses  of  the  DMC  without  feedback,  leading  to  a  rate  of  transmission   R defined as

.  R =  L/N bit s per use of t he DM C. 

(9.88) 

Our  real  interest  is  in  the  fraction  of  these  digits  that  are  in  error,  i.e.,  in  the   bit error probability 

 L



.  Pb = 1

 Pe

(9.89)

 L

 i

 i=1
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in  which  we  have  used  the  notation 

.  Pe =  P (  ˆ

 U

 i

 i =  Ui ). 

(9.90) 

Theorem 9.66 (Converse of the Noisy Coding Theorem)   If information bits from a BSS are sent to the receiver at a rate R  (in bits per channel use) through a DMC 

 with capacity C.  (in bits per use) without feedback, then the error probability at the destination satisfies the condition 

.  Pb ≥  h−1  ( 1 −  C/R) , if R > C, 

(9.91) 

 in  which h−1.  denotes  the  inverse  binary  entropy  function,  defined  as  h−1 (x) =

min{ p :  h(p) =  x}.  , in a manner that the minimum is selected so as to make the inverse unique. 

Noisy Coding Theorem for a DMC 

Theorem  9.66  establishes  what  is  impossible  to  do  and  now  we  turn  to  see  what  is possible  when  one  wishes  to  transmit  a  BSS  over  a  DMC.  We  consider  here  block coding  in  which  each   block  of   N  channel  digits  is  determined  by  a  corresponding block   of   L  information  bits.  The  decoder  makes  its  decisions  on  a  block  of   L 

information  bits  by  an  examination  of  only  the  corresponding  received  block  of   N 

digits.  The  rate   R,  and  the  bit error probability,  Pb.,  are  already  defined  by  Eqs. 9.88 

and  9.89, respectively.  We  now  introduce  the  block  error  probability,  PB .,  which  is defined  as 

.  PB =  P (  ˆ

 U 1  . . .  ˆ

 UL =  U 1  . . . UL). 

(9.92) 

Theorem 9.67   Consider  the  transmission  of  information  bits  from  a  BSS  to  a receiver at a rate R =  L/N.  , using block coding with block length N, via a DMC  

 with  capacity  C.  (in  bits  per  use  )  operating  without  feedback.  Then,  it  is  always possible to achieve PB < ε.  , for any given ε >  0.  , provided that R < C.  , and that N 

 is chosen sufficiently large and that suitable encoders and decoders are designed. 

Theorem  9.67  was  the  most  surprising  result  of  Shannon’s  article  Shannon  (1948a). 

Before  this  result  appeared,  it  was  believed  that  the  only  ways  to  make  communication  more  reliable  were: 

•  reduce  the  rate  of  information  transmission,  or 

•  increase  the  signal-to-noise  ratio, 

as  all  good  telecommunications  engineers  knew  in  1947.  Theoretically,  Shannon put  an  end  to  these  myths  forever,  which  however  in  practice  proved  hard  to  die. 

Under  the  condition  of  R < C.,  Shannon  showed  that  it  is  possible  to  obtain  greater reliability  just  by  increasing  the  complexity  of  the  coding  system,  without  the  need to  change  the  signal-to-noise  ratio. 

Even  though  this  is  not  a  complex  matter,  the  proof  of  Theorem  9.67  is  not presented  here  for  the  following  reasons:
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1.  The  theorem  lacks  an  important  practical  consideration,  which  does  not  exist when  it  lacks  an  indication  of  how  large   N must  be  for  a  give n  ε..  That  is,  without considering  how  complex  the  encoder  and  decoder  need  to  be  in  order  to  achieve a  given  reliability. 

2.  The  proof  of  the  theorem  will  be  much  more  significant  after  having  deepened the  knowledge  about  channel  encoder  and  channel  decoder. 

Among  the  breakthroughs  in  coding  theory  with  great  impact  in  practical  applications,  it  is  worth  noting  the  discovery  of  turbo  codes  (Berrou  and  Glavieux  1996), 

the  re-discovery  of  LDPC  codes  (MacKay  and  Neal  1996), and  the  discovery  of polar  codes  (Arikan  2009). 

9.14  Problems 

1.  Derive  Eq. 9.26. 

2.  You  are  given  nine  apparently  identical  coins  and  a  scale,  with  which  it  is possible  to  compare  two  groups  of  coins.  Using  your  knowledge  of  information theory,  prove  that  it  is  possible,  through  three  weighings,  to  determine  the existence  or  not  of  a  fake  coin  among  the  nine  coins,  and  determine  whether the  eventual  fake  coin  is  lighter  or  heavier  than  the  others. 

3.  Suppose  the  random  vector [ X 1 , X 2 , X 3].  takes  the  values [0 ,  0 ,  0]., [0 ,  1 ,  1]., 

[1 ,  0 ,  1]. and [1 ,  1 ,  0].,  each  of  them  with  probability  1/4. 

(i)  Compute  H (X 1 X 2 X 3 ). 

(ii)  Compute  the  following  uncertainties: 

i.  H (X 1 ).,  H (X 2 ). and  H (X 3 ). 

ii.  H (X 2| X 1  = 0  ).,  H (X 2| X 1 = 1 ). and  H (X 2| X 1 ). 

iii.  H (X 3| X 1 X 2  = 00  ).,  H (X 3| X 1 X 2 = 01 ). 

(iii)  Verify,  using  (a)  and  (b),  that  the  expression 

.  H (X 1 X 2 X 3 ) =  H (X 1 ) +  H (X 2| X 1 ) +  H (X 3| X 1 X 2 ) is  satisfied. 

4.  Show  that  conditional  uncertainties  also  have  expansions  analogous  to  the Eq. 9.35, i.e.,  show  that 

.  (a)

 H (X 1 X 2  . . . XN | Y =  y) =  H (X 1| Y =  y)+

 H (X 2| X 1 , Y =  y) + · · · +  H (XN | X 1  . . . XN−1 , Y =  y), (b) H (X 1 X 2  . . . XN | Y ) =  H (X 1| Y ) +  H (X 2| X 1 Y ) + · · ·

· · · +  H(XN| X 1  . . . XN−1 Y ), 
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 (c)   H (X 1 X 2   .   .   .   XN | Y,   Z =  z) =  H (X 1| Y,   Z =  z)+ 

 H (X 2| X 1 Y,   Z =  z) + · · · +  H (XN | X 1  . . . XN−1 Y, Z =  z). 

5.  State  the  conditions  for  equality  in  the  inequalities  Eqs. 9.41  and  9.42. 

6.  A  memoryless  binary  source   U outputs  the symbol  u 1. with  probability  0 .  8. and symbol   u 2. with  probability  0 .  2..  Successive  symbols  are  output  independently at  a  rate  of  80  symbols  per  minute.  A  binary  channel  is  available,  that  is,  it transmits  0’s  and  1’s,  without  restrictions,  at  a  rate  of  1  symbol  per  second. 

(i)  What  is  the  information  rate  of   U ,  measured  in  bits  per  second? 

(ii)  Is  it  possible  to  transmit  the  information  generated  by   U through  the  given binary  channel?  Justify  your  answer . 

(iii)  If  the  answer  to  the  previous  question  is  yes,  construct  a  source  code  which allows  the  transmission  of  the  information  generated  by   U . 

7.  For  the  ergodic  Markov  source  in  Example  9.27,  calculate  the  following: (i)  The  probability  distribution  for  the  states  of  the  Markov  source. 

(ii)  The  probability  of  0’s  and  1’s  being  emitted  by  the  ergodic  Markov  source from  Example  9.27. 

8.  Compute  the  entropy  of  the  ergodic  Markov  source  from  Example  9.27.  Hint: use  the  state  probabilities  from  Problem  7. 

9.  Define  a  memoryless  (or  zero-memory)  message  source. 

10.  Define  the  extension  of  order   n of  a  memoryless  source   U  and  show  that  its entropy,  H (U n).,  is  equal  to  nH (U ).,  in  which  H (U ). denotes  the  entropy  of  the memoryless  source. 

11.  Define  a  Markov  message  source. 

12.  Define  adjoint  source  and  explain  what  is  meant  by  an  extension  of  a  Markov source. 

13.  Show  that  it  is  also  valid  for  the   n th  extension  of  a  Markov  source  with  entropy H (U ). a  result  analogous  to  that  for  memoryless  sources  (see  Problem  10), i.e., H (U n) =  nH (U ).. 

14.  A  second-order  binary  Markov  source  has  the  following  transition  probabilities: P ( 0 / 00 ) =  P ( 1 / 11 ) =  p, P ( 0 / 01 ) =  P ( 1 / 10 ) =  q.. 

(a)  Calculate  the  stationary  probability  distribution  of  the  states  of  this  source. 

(b)  Calculate  the  source  entropy  H (U ).. 

(c)  Calculate  the  entropy  of  the  adjoint  source  H (U ).. 

15.  Let   U 0. be  a  binary  memoryless  source,  for  which  the  probability  of  the  symbol 0  is  equal  to   p (almost  equal  to  1).  In  view  of  the  high  occurrence  of  zeros  a source  code  is  proposed  for  transmitting  the  length  of  the  sequences  of  consecutive  zeros.  That  is,  a  new  source   U is  considered with symbols  u 1 , u 2 , u 3 , . . . , . 

for  which   u 1.  corresponds  to  the  symbol  1  from   U 0.,  u 2.  corresponds  to  the sequence  01,  u 3. corresponds  to  the  sequence  001,  etc. 

a.  Calculate  the  entropy  H (U ). as  a  function  of   p. 
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b.  Calculate  the  ratio  H (U )/H (U 0 ).. 

16.  Prove  that  the  entropy  H (U ).  of  the  adjoint  source   U .  is  never  less  than  the entropy  H (U ). of  the  source   U ,  when   U is  a  Markov  source  of  order   m . 

17.  Define  a  uniquely  decodable  code. 

18.  Prove  that  code   A. in  Example  9.42  is  uniquely  decodable.  Generalize  this  result by  proving  that  the  following  properties  are  sufficient  for  a  block  code  to  be uniquely  decodable. 

(a)  All  codewords  have  the  same  length. 

(b)  The  code  is  non-singular. 

19.  Show  how  to  construct  a  prefix-free  code. 

20.  Prove  Kraft  inequality. 

21.  Find  the  largest  real  solution  of  the  characteristic  equation  as  presented  in Eq. 9.78  and  determine  the  capacity  of  the  telegraph  channel. 

22.  It  is  common  in  several  cryptographic  systems  to  eliminate  the  spaces  between words  in  the  plain  text  in  order  to  make  the  enemy  cryptanalyst’s  work  more difficult.  Calculate  the  information  transmission  capacity,  measured  in  bits  per unit  of  time,  of  the  code  that  uses  the  symbols:  dot = +−., dash = + + +−., and  letter space = − − −.,  without  any  other  additional  restriction. 

23.  Mutual  information. 

A  code   C,  consisting  of  just  two  equiprobable  codewords,  000  and  111,  is  used to  transmit  messages  through  a  BSC  with  transition  probability   ε..  Calculate  the mutual  information  between  the  input  and  the  output  of  this  BSC,  when  the codeword  000  is  sent  and  the  sequence  100  is  received. 

24.  Capacity  of  discrete  memoryless  channels  (DMC). 

Determine  the  capacity  of  the  DMC  channels  shown  in  Fig. 9.16. 

25.  In  a  binary  ( 0 ,  1 ). transmission,  suppose  that  1  occurs  with  probability   p,  0  < p <  1.,  and  that  the  digits  of  this  sequence  are  statistically  independent.  The probability  of  a  binary  sequence  of  length   R,  in  which  the  first  R − 1. digits  are 0  and  the   R th  digit  is  1  is  given  by 

.  PR (r ) =  p( 1 −  p)r−1 , r = 1 ,  2 ,  3 , . . . . 

(a)  Show  that  the  expected  value  of  the  length  of  this  sequence  is  E[ R] = 1 /p. 

and  its  variance  is  Var (R) =  ( 1 −  p)/p 2.. 

Fig. 9.16  Discrete  memoryless  channels  of  Problem  24
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(b)  Find  the  uncertainty  H (R). in  terms  of  both  the  binary  entropy  function  and E[ R].. 

26.  Coding  for  the  binary  erasure  channel  (BEC). 

Suppose  we  have  a  binary  symmetric  memoryless  source   U  and  a  BEC. 

Suppose  the  encoder  for   U can  observe  the  outputs  of  this  BEC  and  constructs a  variable  length  code  described  as  follows.  When  the  information  symbol produced  by   U  is  a  zero,  the  encoder  keeps  sending  successive  zeros  through the  channel  until  the  channel  output  is  a  zero.  If  the  information  symbol  is  a  1, then  the  encoder  keeps  sending  1’s  through  the  BEC  until  the  channel  output  is a 1.  For  each  information  symbol  the  corresponding  number  of  channel  symbols employed  is  a  random  variable. 

(a)  Calculate  the  average  length  of  a  codeword  for  each  bit  of  information transmitted. 

(b)  What  is  the  information  transmission  rate  of  this  coding  scheme,  measured in  information  bits  per  unit  of  channel  use? 

(c)  What  is  the  rate  of  information  symbols  (bits)  not  correctly  recovered  after decoding? 

[image: Image 13]

Chapter  10 

Error-Correcting  Codes 

 If I were again beginning my studies, I would follow the advice 

 of Plato and start with mathematics. 

 –  Galileo  Galilei 

10.1 

Block  Codes 

One  way  to  characterize  block  codes  is  by  their  encoding  process,  which  consists  of segmenting  a  stream  of  message  digits,  to  be  transmitted  or  stored,  into  blocks  with a  fixed  length  and  attaching  to  each  block  a  fixed  number  of  redundant  digits.  These redundant  digits  are  calculated  for  each  corresponding  block  of  message  digits,  with the  purpose  of  detecting  or  correcting  errors  or  correcting  erasures  caused  by  noise on  the  channel  during  transmission  or  by  faults  in  the  storage  media.  Block  codes can  be  classified  as  linear  or  nonlinear.  In  a  linear  block  code,  redundant  digits result  from  a  calculation  that  performs  a  linear  combination  of  information  digits. 

Linear  block  codes,  as  a  consequence,  benefit  from mathematical  tools  such  as  linear algebra  and  finite  field  theory,  or   Galois field  theory,  with  significant  relevance  in  the development  of  algebraic  decoding.  In  order  to  benefit  from  a  Galois  field  structure, the  code  alphabet  is   q-ary,  where   q denotes  a  power  of  a  prime,  with  predominance of  q = 2. for  binary  codes.  Unless  otherwise  noted,  in  the  following,  we  will  mainly consider  binary  linear  block  codes  due  to  their  importance  in  practical  applications. 

A  formal  definition  of  what  is  meant  by  a   linear block code  is  presented  next. 

Definition  10.1  A   q-ary  (n, k, d).  linear  block  code  consists  of  a  set  of   qk.  codewords  of  length   n forming  a  subspace  of  the  vector  space  of all  qn.  q-ary   n-tuples, in  which  any  two  distinct  codewords  differ  in  at  least   d corresponding  positions. 
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 10.1.1 

 Linear  Algebra  Representation 

The  codewords  of  a  linear  block  code  can  be  represented  by  vectors  with   n components.  The  codeword  components  are  in  general  elements  of  a   q-ary  finite field,  denoted by GF (q).  and  called  a   Galois  field.  For  q = 2.,  i.e.,  for  binary fields,  the  codeword  elements  are  represented  by  zero  and  1.  Because  a  linear  code constitutes  a   q-ary  subspace  of  the  space  of  all   q-ary   n-tuples,  it  follows  that  any codeword  can  be  represented  by  a  linear  combination  of  the  basis  vectors  of  the subspace,  i.e.,  by  a  linear  combination  of  linearly  independent  vectors.  A  convenient representation  for  the  basis  vectors  consists  in  writing  them  as  rows  of  a  matrix, called  the  code   generator matrix (Lin  and  Costello  2004, p.  67).  The  code  generator matrix  G. has   k rows  and   n columns, and from G.,  a  matrix  H. is  derived,  with  n −  k. 

rows  and   n columns,  which  is  orthogonal  to  the  row  space of G..  Equivalently,  if  v i. 

is  a  codeword  (or  vector)  in  the  row  space  of  G.,  then 

. v i H T = 0 ,  0 ≤  i ≤  qk − 1 , in  which H T . denotes  the  transpose  of  H. and  0. denotes  the  all-zero  (n −  k).-tuple. 

The  H. matrix,  also  called  the  code   parity-check matrix,  can  be  represented  as 

. H = [h :  In− k] , 

in  which  h. denotes  an  (n −  k) ×  k. matrix  and  In− k. is  the  (n −  k) ×  (n −  k). identity matrix.  The  G. matrix  can  be  written  as 

. G = [ Ik : g] , 

(10.1) 


called  reduced  echelon  form  of  G.  (Peterson  and  Weldon  Jr. 1972, pp.  45-46),  in which  g. denotes  a  k ×  (n −  k). matrix  and   Ik. denotes  the  k ×  k. identity  matrix.  The g.  and  h.  matrices  are  related  by  the  expression g = h T ..  Since  the  rows  of  H.  are linearly  independent,  they  generate  a  (n, n −  k, d ). linear  code  called  the   dual code of  the  (n, k, d). code  generated  by  G..  The  code  generated  by  H. constitutes  the  dual subspace  of  the  code  generated  by  G..  Thus,  it  follows  that  an  encoder  for  a  linear block  code  has  the  function  of  performing  the  product mG. of  a  row  matrix  m.,  with k elements  which  represent  the  information  digits,  by  the  code generator G. matrix. 

The  product mG. gives  as  a  result  a  linear  combination  of  the  rows  of  G. and  is  thus a  codeword. 

 10.1.2 

 Error  Detection  and  Error  Correction 

In  order  to  characterize  the  error  detection  or  the  error  correction  power  of  a  code, we  need  first  define   Hamming  weight   of  an   n-tuple  and  the   Hamming  distance between  two   n-tuples. 
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Definition  10.2  The  Hamming  weight  WH (v ).  of  an   n-tuple  v.  is  defined  as  the number  of  nonzero  coordinates  in  v.. 

Definition  10.3  The  Hamming  distance  between  two   n-tuples, v1. and  v2.,  denoted as  dH (v1 , v2 ).,  is  defined  as  the  number  of  coordinate  positions  is  which  these  two n-tuples  differ. 

The  modulo- q  sum  of  any  two  codewords  of  a  linear  code  over GF (q).  produces a  codeword,  as  a  consequence  of  the  code  linearity.  Equivalently,  if  v i.  and  v j . 

are  codewords  then v i + v j = v l.,  where  v l.  is  a  codeword.  It  follows  from the  definition  of  Hamming  distance  and  the  definition  of  Hamming  weight  that dH (v i, v j ) =  WH (v i − v j ) =  WH (v s).,  where  v s. is  a  codeword. 

Definition  10.4  The  minimum  distance  of  a  code  is  defined  as  the  smallest Hamming  distance  between  pairs  of  distinct  codewords. 

It  follows  from  the  linearity  property  of  a  code  that  to  determine  its  minimum  distance  means  to  find  the  minimum  nonzero  Hamming  weight  among  the  codewords. 

So,  for  a  linear  code  with   M codewords,  instead  of making  M(M − 1 )/ 2. operations of  addition  modulo- q  and  the  corresponding  Hamming  weight  calculation,  it  is sufficient  to  calculate  the  Hamming  weight  of the  M − 1.  nonzero  codewords  to obtain  the  code  minimum  distance.  If  a  linear  code  satisfies  additional  mathematical properties,  the  calculation  of  the  code  minimum  distance  or  the  determination of  upper  or  lower  bounds  for  the  minimum  distance  can  be  further  simplified. 

Additionally,  the  minimum  distance   d of  a  code  can  be  interpreted  as  the  minimum number  of  coordinate  changes  necessary  to  convert  a  codeword  into  another codeword.  Therefore,  the  occurrence  of  up to  d − 1.  errors  in  a  codeword  can  be detected,  because  the  resulting   n-tuple  does  not  match  any  valid  codeword.  When performing  error  correction,  after  errors  are  detected  in  a  codeword,  the  decoder must  decide  which  codeword  is  more  likely  be  the  correct  one.  Very  often,  it  is assumed  that  the  codewords  are  equiprobable,  and  in  this  case,  the  decoder  decides in  favor  of  the  codeword  nearest  to  the  received   n-tuple,  i.e.,  the  codeword  at minimum  Hamming  distance  from  the  received   n-tuple.  This  approach  to  decoding will  always  make  the  correct  decision  as  long  as  up  to   t errors  occur  in  a  codeword and   t satisfies the condition 2 t + 1 ≤  d.. 

 10.1.3 

 Standard  Array  Decoding 

Suppose  a  codeword  v. of  a  linear  block  code  is  transmitted  through  a  noisy  channel or  stored  in  a  noisy  media.  At  the  receiver,  the  signal  associated  with  v. is  processed on  arrival  to  produce  an   n-tuple  r. defined  over  the  code  alphabet,  and  r. may  differ from  v. due  to  the  noise  added  during  transmission  or  storage.  The  decoder  has  the task  of  recovering  v. from  r.,  and  as  a  first  step,  it  checks  whether  r. is  a  codeword.  For a  code  with  generator  matrix  G. and  parity-check  matrix  H.,  this  checking  process can  be  implemented  as  follows:
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. rH T = s , 

in  which  s. denotes  a  vector  with  n −  k. components,  called   syndrome.  If  the  n −  k. 

components  in  s.  are  equal  to  zero,  denoted  as s = 0.,  we  assume  that  no  errors occurred,  which  implies r = v.. 

However, s = 0.  implies r = v.,  and  more  than  that, r.  does  not  match  any codeword  in  the  row  space  of  G..  The  decoder  can  then  use  this  nonzero  syndrome for  detection  or  for  detection  and  correction.  Let  the  received   n-tuple  r. be  written  as 

. r = v + e , 

where  +.  denotes  modular  addition  of  corresponding  components  with  e.  defined over  the  code  alphabet  and  denoting  the  error  pattern.  Notice  that  an  undetectable error  will  occur  if e = v.,  in  which  v.  denotes  a  codeword  because  then s = 0.. 

However,  the  code  is  designed  such  that e = v. is  a  rare  event  and  in  practice  has  a negligible  impact  on  the  error  rate.  The  decoder  task  is  to  perform  a  process  leading to  a  decision  on  which  codeword  was  sent  to  the  receiver.  A  systematic  way  for  the decoder  to  implement  the  decision  process,  assuming  a  binary  code,  is  to  distribute the  2 n. distinct   n-tuples  into  2 k. disjoint  sets,  each  set  having  cardinality 2 n− k.,  in  a manner  that  each  one  of  the  disjoint  sets  contains  only  one  codeword.  The  decoder decides  correctly  if  the  received  n-tuple r. is  in  the  subset  of  the  codeword  sent  to the  receiver.  We  now  describe  one  way  of  doing  this.  The  2 n.  binary   n-tuples  are separated  into  cosets  as  follows.  The  2 k. codewords  are  written  in  the  first  row  then, below  the  all-zero  codeword,  place  an   n-tuple  e1.  which  is  not  present  in  the  first row.  Form  the  second  row  by  adding  modulo-2  to  e1. the  codewords  of  the  first  row as  follows: 

0 v1

v2

· · · v2 k−1

. e1 e1 ⊕ v1 e1 ⊕ v2 · · · e1 ⊕ v2 k−1 , in  which  ⊕. denotes  modulo-2  addition  of  corresponding  coordinates.  Subsequent rows  are  formed  similarly,  and  each  new  row  begins  with  an  element  not  present  in the  previous  rows.  In  this  manner,  the  array  presented  in  Table  10.1  is  constructed, which  is  called  the   standard array. 

The  standard  array  rows  are  called   cosets,  and  the  element  furthest  left  in  each coset  is  called  a   coset leader.  The  procedure  used  to  construct  the  standard  array for  a  given  linear  code  is  called  the   coset decomposition  of  the  vector  space  of   n-

tuples  over GF (q)..  When  using  the  standard  array,  it  is  necessary  to  find  the  row and,  therefore,  the  associated  coset  leader,  to  which  the  incoming   n-tuple  belongs. 

There  are  situations  in  which  this  procedure  is  not  practical  to  implement,  for example,  when 2 n− k.  is  large.  Consequently,  the  concept  of  standard  array  proves more  useful  as  a  way  to  understand  the  structure  of  linear  codes,  rather  than  as a  practical  decoding  algorithm.  A  few  decoding  procedures  which  are  potentially more  practical  are  presented  next. 
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Table  10.1  A  binary  linear  code  of  block  length   n having  codewords v i ., 0 ≤  i ≤ 2 k − 1.,  with v0 = 0.,  used  to  construct  the  standard  array  decomposition  of  an   n-dimensional  vector  space  over GF ( 2 ). 

0. 

v1. 

v2. 

· · · . 

v2 k−1. 

e1. 

e1 ⊕ v1. 

e1 ⊕ v2. 

· · · . 

e1 ⊕ v2 k−1. 

e2. 

e2 ⊕ v2. 

e2 ⊕ v2. 

· · · . 

e2 ⊕ v2 k−1. 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . . 

 . . 

 . . 

· · · . 

 . . 

e

⊕

⊕

⊕

2 n− k −1. 

e2 n− k−1

v1. 

e2 n− k−1

v2. 

· · · . 

e2 n− k−1

v2 k−1. 

 10.1.4 

 Maximum  Likelihood  Decoding 

Let  v. denote  a  codeword  that  is  transmitted  through  a  noisy  channel  and  let  r. denote the  corresponding  word  arriving  at  the  receiver.  The  conditional  probability  of  r. 

being  received  when  v. is  the  transmitted  codeword  is  denoted  as  P (r|v )..  In  statistics, the  conditional  probability  P (r|v ). is  called  the   likelihood function.  If  all  codewords have  the  same  probability  of  being  selected  for  transmission,  then  it  follows  from the  probability  formula: 

.  P (v , r ) =  P (v )P (r|v ) that  P (v , r ).  is  maximized  when  the  decoder  selects  that  codeword  v.  which maximizes  P (r|v )..  Therefore,  if  the  codewords  of  a  (n, k, d). code  are  equally  likely to  occur  and  are  independently  selected  to  be  sent  through  a  noisy  channel,  an optimum  way  to  decode  them  is  by  deciding  for  that  codeword  which  maximizes the  likelihood  function.  Let  r. denote  a  received   n-tuple.  The  task  of  the  decoder  is to  compare  r. with  all  possible  codewords.  For  a  binary  (n, k, d). code,  this  means comparing  r. with  2 k. distinct  codewords.  The  decoder  then  decides  for  the  codeword nearest  to  r. in  terms  of  the  Hamming  distance,  i.e.,  decoding  is  completed  when  the decoder  selects  the  codeword  that  differs  from  r.  in  the  least  number  of  positions. 

The  decoder  implementation  operates  by  comparing  r.  with  2 k.  codewords  during a  time  interval  corresponding  to  the  duration  of   n channel  digits.  This  fact  sets  a practical  limit  to  the  use  of  this  decoding  process,  i.e.,  it  is  not  appropriate  in  many practical  cases  even  for  moderate  values  of   k.  Again,  a  practical  limit  for  the  use  of this  decoding  process  occurs  due  to  high  decoder  complexity  if  one  chooses  to  trade search  time  by  a  parallel  decoder  implementation. 

 10.1.5 

 Probabilistic  Decoding 

Important  probabilistic  decoding  algorithms  have  appeared  in  the  literature  since the  early  1960s.  A  probabilistic  decoding  algorithm  can  operate  on  non-quantized values  of  the  received   n-tuple;  however,  for  practical  reasons,  channel  output
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quantization  is  employed.  Hard-decision  decoding  is  the  name  given  to  a  decoding technique in which the channel  output is quantized to a number of levels equal to that of  the  code  alphabet;  otherwise,  it  is  called  a   soft-decision  decoding  technique.  For example,  when  a  binary  code  is  employed  and  the  channel  output  is  quantized  to  two levels,  the  decoding  technique  is  called  hard-decision,  and  if  instead  the  quantization employs  more  than  two  levels,  the  decoding  technique  is  called  a   soft-decision decoding  technique.  It  was  introduced  in  Hartmann  and  Rudolph  (1976)  an  optimal probabilistic  decoding  algorithm,  in  the  sense  that  it  minimizes  the  probability of  error  per  digit,  with  the  assumption  that  the  codewords  are  equiprobable  and are  transmitted  in  the  presence  of  additive  noise  in  a  memoryless  channel.  The Hartmann-Rudolph  (HR)  decoding  algorithm  is  exhaustive  in  that  every  codeword of  the  dual  code  is  used  in  the  decoding  process.  This  feature  makes  the  HR 

decoding  algorithm  practical  for  use  with  high  rate  codes,  differing  in  this  manner to  what  happens  with  some  other  decoding  techniques.  In  Wolf  (1978), an  efficient maximum  likelihood  decoding  algorithm  was  introduced  which  consists  of  a  rule to  traverse  a  trellis  type  structure  which  is  dependent  on  the  code  parity-check  H. 

matrix.  Based  on  the  received   n-tuple,  the  decoder  determines  the  most  probable path  through  the  trellis,  i.e.,  the  most  probable  codeword.  In  Honary  and  Markarian (1998), the  authors  address  trellis  decoders  for  practical  applications  employing block  codes.  Later  in  this  chapter,  a  brief  view  of  the  probabilistic  decoding  of  low-density  parity-check  (LDPC)  codes  is  presented  (MacKay  and  Neal  1996). 

10.2 

Simple  Block  Codes 

Codes  constructed  with  a  relatively  simple  structure  are  described  in  the  sequel to  help  the  reader  become  familiar  with  this  approach  and  later  understand  more sophisticated  code  constructions. 

 10.2.1 

 Repetition  Codes 

A  binary  (n, k, d).  repetition  code  has  just  two  codewords,  namely,  the  all-0 

codeword  and  the  all-1  codeword,  the  block  length   n  is  arbitrary  and  the  other code  parameters  are:  k = 1.,  d =  n..  The  parity-check  digits  are  a  repetition  of the  information  digit.  A  simple  decoding  rule  for  this  type  of  code  consists  in counting  which  binary  digit  occurs  more  often  in  a  received  word  and  declare  it as  the  information  digit  transmitted.  This  decoding  rule  assumes  that  the  probability of  a  bit  being  in  error  is  less  than 1 / 2.,  obviously,  and  works  fine  for   n odd.  If   n is  even,  a  tie  may  occur  when  counting  of  occurrence  of  zeros  and  1’s,  in  which case  the  decoder  declares  that  errors  have  been  detected.  The  rate  or  efficiency  of  a repetition  code  is  given by  R =  k/n = 1 /n.,  and  the  number   t of  correctable  errors must  satisfy  the condition  t ≤  (n − 1 )/ 2.. 
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 10.2.2 

 Single  Parity-Check  Codes 

A  binary  (n, k, d). single  parity-check  code  has  parameters  k =  n−1.,  d = 2.,  and  the block  length   n is  arbitrary.  The  single  parity-check  digit  is  calculated  so  as  to  make even  the  number  of  1’s  in  the  codeword,  i.e.,  make  the  parity-check  digit  equal  to  1 

when  the  number  of  information  digits  in  a  codeword  is  odd,  otherwise  make  it  equal to  0.  The  rate  or  efficiency  of  a  single  parity-check  code  is  given  b y  R =  k/n =

 (n − 1 )/n.,  and  its  Hamming  distance  is  d = 2..  A  simple  decoding  rule  for  single parity-check  codes  consists  in  counting  the  number  of  1’s  in  the  received  word.  If  the resulting  count  is  an  even  number,  the  received  word  is  assumed  to  be  free  of  errors and  is  delivered  to  the  data  sink.  Otherwise,  the  received  word  is  declared  not  free from  error,  and  the  receiver  declares   error detected  and  notifies  the  data  recipient. 

Single  parity-check  codes  detect  an  odd  number  of  errors  in  a  received  word  and are  more  effective  when  decoded  with  a  soft-decision  algorithm.  In  general,  codes which  detect  errors  can  be  efficiently  employed  when  an  ideally  error-free  feedback channel  is  available  to  request  retransmission  of  messages  detected  to  contain  error. 

 10.2.3 

 Hamming  Codes 

The  first  nontrivial  codes  for  correcting  errors  were  proposed  in  Hamming  (1950) and  are  called  Hamming  codes.  Hamming  codes  are  linear  (n, k, d).  codes  with  a minimum  distance  d = 3.,  block  length  n ≤ 2 n− k − 1.,  where  n −  k. is  the  number of  redundant  digits,  and  are  thus  capable  of  correcting  one  error  per  codeword.  The condition  on   n guarantees  enough  redundancy  to  detect  and  correct  an  error  in  a codeword,  because  the  number  of  nonzero  syndromes, 2 n− k − 1.,  is  always  greater than  or  equal  to  the  number  of  positions  where  an  error  can  be. 

Example  10.5  Consider  the  construction  of  the  (n, k, d) =  ( 7 ,  4 ,  3 ).  Hamming code.  The  number  of  parity-check  digits  in  this  code  is  n −  k = 3..  Numbers representing  powers  of  2,  i.e.,  2 j .  , 0 ≤  j ≤ 2.,  are  associated  with  parity-check positions   ci., 1 ≤  i ≤ 3., in a codeword.  Other codeword  positions are associated with information  digits   ki., 1 ≤  i ≤ 4.,  as  indicated  in  Table  10.2. Now,  looking  downward at  the  columns  in  Table  10.2,  the  parity-check  equations  denoted  as  ci,  1 ≤  i ≤ 3 , . 

are  written  as  modulo-2  sums  of  information  positions  where  a  1  appears  in  the particular  column  considered.  That  is, 

.  c 1 =  k 1 ⊕  k 2 ⊕  k 4

.  c 2 =  k 1 ⊕  k 3 ⊕  k 4

.  c 3 =  k 2 ⊕  k 3 ⊕  k 4 . 
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Table  10.2  Nonzero 

0 

0 

1

 c 1. 

numbers  that  can  be  written 

0 

1 

0

 c

with  n −  k = 3

2. 

. binary  digits 

and  associated  codeword 

0 

1 

1

 k 1. 

positions  in  the  ( 7 ,  4 ,  3 ). 

1 

0 

0

 c 3. 

Hamming  code 

1 

0 

1

 k 2. 

1 

1 

0

 k 3. 

1 

1 

1

 k 4. 

When  a  word  is  received,  its  parity-check  digits  are  recalculated  by  the  decoder  and are  then  added  modulo-2  to  their  corresponding  parity-check  digits  in  the  received word  in  order  to  obtain  the  syndrome.  If,  for  example,  an  error  has  altered  the  digit k 2.,  the  syndrome  digits  in  positions   c 1. and   c 3. will  be  1  indicating  failure,  while  in position   c 2.,  no  failure  is  indicated  because   c 2. does  not  check   k 2..  This  syndrome  is represented  as 

.  (c 3 , c 2 , c 1 ) =  ( 1 ,  0 ,  1 ), which  corresponds  to  the  row  for   k 2. in  Table  10.2.  The  error  in   k 2. has  been  identified and  can  then  be  corrected.  Obviously,  this  construction  and  decoding  procedure  can be  applied  to  Hamming  codes  of  any  length  n = 2 k − 1.  and  to  their  shortened versions. 

In  an  important  sense,  Hamming  codes  are  special  as  no  other  class  of  nontrivial codes  can  be  so  easily  decoded  and,  furthermore,  Hamming  codes  are  perfect  codes as  defined  next. 

Definition  10.6  An  error-correcting  code  over GF (q).  with  parameters  (n, k, d). 

which  corrects   t errors  per  codeword  is  defined  as  perfect  if  and  only  if  the  following condition  is  s atisfied:

 t



. 

 (q − 1 )iCi =

 n

 qn− k. 

 i=0

The  only  nontrivial  linear  perfect  codes  are  the  Hamming  codes,  the  binary ( 23 ,  12 ,  7 ).  Golay  code,  and  the  ( 11 ,  6 ,  5 ).  ternary  Golay  code.  There  are  no  other nontrivial  linear  perfect  codes  (Pless  1982, p.20).  A  class  of  nonlinear  single  error-correcting  codes  with  the  same  parameters  as  the  Hamming  codes  was  published  in Vasil’ev  (1962). 
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 10.2.4 

 Low-Density  Parity-Check  Codes 

Turbo  codes  (Berrou  et  al. 1993), publicly  presented  in  1993,  were  the  first  capacity approaching  practical  codes.  Three  years  after  the  discovery  of  turbo  codes,  a  class of  linear  codes  called  low-density  parity-check  (LDPC)  codes  were  rediscovered (MacKay  and  Neal  1996)  and  turned  out  to  be  the  strongest  competitor  to  turbo codes  at  that  time.  Later,  LDPC  codes  were  adopted  in  the  4G  and  5G  generations of  mobile  communications.  Originally,  LDPC  codes  were  discovered  by  Gallager  in 1960  (Gallager  1963), who  presented  a  decoding  algorithm  with  a  complexity  that increases  linearly  with  block  length.  When  LDPC  codes  were  discovered,  the  means to  perform  computer  simulation  or  practical  implementation  were  not  available. 

In  1981,  a  graphical  representation  of  LDPC  codes  was  introduced  (Tanner  1981) which  significantly  contributed  to  their  rediscovery,  followed  by  further  theoretical advances,  namely,  in  MacKay  (1999)  it  was  shown  that  long  LDPC  codes  achieve a  performance  close  to  the  Shannon  capacity  with  a  low  error  rate,  when  iterative decoding  is  employed.  Among  the  advantages  of  LDPC  codes  with  respect  to  turbo codes,  it  is  worth  mentioning  that  LDPC  codes  do  not  require  a  long  interleaver in  order  to  achieve  lower  error  rates,  and  their  error  floor  occurs  at  lower  bit  error rates  for  a  decoder  complexity  comparable  to  that  of  turbo  codes.  An  LDPC  code  is characterized  by  its  parity-check  matrix  as  follows. 

Definition  10.7  A  binary  LDPC  code  is  defined  as  the  set  of  codewords  that  satisfy a  parity-check  matrix  H.,  where  H.  has   ρ.  1’s  per  row  and   γ .  1’s  per  column.  The number  of  1’s  in  common  between  any  two  columns  in  H.,  denoted  by   λ.,  is  at  mos  t 1, i.e.,  λ ≤ 1 . . 

In  Definition  10.7, the  parameters   ρ.  and   γ .  denote  positive  integers,  where   ρ.  is small  in  comparison  with  the  code  block  length  and   γ .  is  small  in  comparison with  the  number  of  rows  in  H..  A  number  of  good  LDPC  codes  were  constructed by  computer  search  after  their  rediscovery  (MacKay  and  Neal  1996),  which  were mainly  non-systematic  codes,  causing  them  to  lack  in  further  mathematical  structure and  consequently  to  have  more  complex  encoding  than  naturally  systematic  LDPC 

codes.  A  more  practical  construction  using  systematic  algebraic  LDPC  codes  was introduced  in  Kou  et  al.  (2001)  based  on  finite  geometries. 

10.3 

Cyclic  Codes 

From  the  point  of  view  of  practical  engineering  applications,  cyclic  codes  are  the most  important  (Clark  Jr.  and  Cain  1981,  p.333)  among  block  codes.  Cyclic  codes are  used  in  magnetic  recording  (Immink  1994), communication  protocols  (Nguyen et  al. 1992), music  (Compact  Disc),  video  (Digital  Versatile  Disc),  coding  schemes for  space  application,  etc.  Basically,  this  is  due  to  the  fact  that  cyclic  codes  have a  mathematical  structure  based  on  finite  fields  and  that  allows  lower  complexity
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encoders  and  decoders  for  these  codes.  A  formal  treatment  of  cyclic  codes  employs polynomial  rings,  with  polynomials  over  a  Galois  field GF (q).,  modulo  xn − 1.,  in which   n denotes  the  code  block  length  and   q  is  a  power  of  a  prime (Berlekamp

1968, p.119).  A  simpler  way  to  characterize  and  define  a  cyclic  code  is  as  follows. 

Definition  10.8  A  cyclic  code  is  a  block  code  that  is  invariant  to  cyclic  shifts  of  its codewords,  i.e.,  a  cyclic  shift  applied  to  any  codeword  produces  a  codeword  in  the same  code.  Namely,  if v =  (v 0 , v 1 , v 2 , . . . , vn−1 ). is  a  codeword,  then  a  cyclic  shift by   i places  to  the  right  applied  t o v. produces  a  codeword  in  the  same  code,  i.e., 

. v i =  (vn− i , vn− i+1 , . . . , v 0 , v 1 , . . . , vn− i−1 ) in  which  indices  are  reduced  modulo   n. 

We  call  the  reader’s  attention  to  the  fact  that  a  cyclic  code  in  Definition  10.8  is  not necessarily  a  linear  code.  In  order  to  be  a  linear  code,  a  cyclic  code  must  satisfy  the same  property  as  linear  block  codes,  i.e.,  a  linear  combination  of  codewords  always produces  a  codeword  belonging  to  the  codebook  of  the  cyclic  code  considered.  A useful  representation  of  an   n-tuple v =  (v 0 , v 1 , v 2 , . . . , vn−1 ). results  by  employing a  polynomial  of  degree  at  most  n − 1. as  follows: 

.  v(x) =  v 0 +  v 1 x +  v 2 x 2 + · · · +  vn−1 xn−1 . 

Based  on  properties  of  finite  fields,  it  can  be  shown  that  the  codewords  of  a  (n, k, d). 

cyclic  code  are  multiples  of  a  polynomial  g(x).,  of  degree  n −  k.,  called  the  code generator polynomial  and  conversely  that  all  polynomials  of  degree  at  most  n − 1. 

which  are  divisible  by  g(x).  are  codewords  of  this  code  (Lin  and  Costello  2004, 

p.140).  Furthermore,  g(x). is  a  factor  of  xn − 1.. 

 10.3.1 

 Matrix  Representation  of  a  Cyclic  Code 

Because  each  codeword  of  a  cyclic  code  is  a  multiple  of  the  code  generator polynomial  g(x).,  as  mentioned  earlier,  it  follows  that  the  polynomials g(x), xg(x), x 2 g(x), . . . , xk−1 g(x).  are  codewords  and  are  also  linearly independent.  Therefore,  the  coefficients  of  the  polynomials  g(x).,  xg(x).,  x 2 g(x)., 

 . . . .,  xk−1 g(x).  can  be  used  to  construct  a  generator  matrix  G.  for  the  cyclic  code which  has  g(x).  as  its  generator  polynomial.  Each  row  of  G.  is  associated  one  to one  with  one  of  the   k polynomials  g(x).,  xg(x).,  x 2 g(x).,  . . . .,  xk−1 g(x). and  contains n elements,  consisting  of  the  coefficients  of  the  corresponding  polynomial,  while the  remaining  empty  positions  in  a  row  are  filled  with  zeros.  The  cyclic  shift  code preserving  property  of  cyclic  codes  is  useful  for  encoding  purposes,  allowing  a sequential  implementation  of  the G. matrix  as  described  next. 
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 10.3.2 

 Shift-Register  Encoder  with n −  k.  Delay  Cells 

The  n −  k. delay  cell  shift-register  encoder  exploits  the  property  that  each  codeword in  a  cyclic  code  is  a  multiple  of  the  code  generator  polynomial  g(x)..  The implementation  of  this  encoder  performs  the  multiplication  of  the polynomial  I (x). 

by  xn− k. to  produce  I (x)xn− k.,  i.e.,  a  polynomial  of  degree  at  most  n − 1. with  its nonzero  terms  confined  to  the  higher  order   k terms.  Division of  I (x)xn− k. by  g(x). 

produces  as  a  result 

.  I (x)xn− k =  Q(x)g(x) +  R(x), 

in  which  Q(x).  and  R(x).  denote  the  quotient  polynomial  and  the  remainder polynomial,  respectively.  The  remainder  polynomial  R(x).  has  degree  at  most n −  k − 1..  By  subtracting  R(x).  from  I (x)xn− k.,  the  result  is  a  multiple  of  g(x)., and  a  codeword  is  thus  generated,  i.e., 

.  I (x)xn− k −  R(x) =  Q(x)g(x). 

In  this  manner,  the  parity-check  digits  are  represented  by  R(x). which  has  no  terms overlapping  with  I (x)xn− k..  The  operations  involved  can  be  implemented  with  the circuit  illustrated  in  Fig. 10.1.  The  circuit  in  Fig. 10.1  employs  n −  k. delay  cells  of  a shift  register  with  feedback  connections  specified  by  the  code  generator  polynomial as  explained  next,  performing  a  pre-multiplication  of  the  information  polynomial I (x).  by  xn− k..  Let  g(x) =  xn− k +  gn− k−1 xn− k−1 + · · · +  g 1 x + 1.  denote  the generator  polynomial.  In  Fig. 10.1, a  switch  is  associated  with  each  coefficient   gi., 1 ≤  i ≤  n −  k − 1.,  which  is  closed  if  gi = 1.;  otherwise,  it  is  kept  open.  The shift-register  cells  are  initially  filled  with  zeros,  with  switch   S 1. closed  and  switch S 2. staying  in  position  1.  The  information  digits  are  then  fed  simultaneously  to  the output  and  into  the  division  circuit.  After  being  fed  with  the   k information  digits, the  shift-register  contents  are  the  remainder,  i.e.,  the  parity-check  digits.  In  the  next step, switch  S 1. is  left  open,  switch   S 2. is  moved  to  position  2,  and  during  the  next n −  k.  clock  pulses,  the  parity-check  digits  are  sent  to  the  output.  This  encoding Fig.  10.1  Encoder  for  a  binary  cyclic  code  employing  n −  k. shift-register  delay  cells
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procedure  is  performed  in  the  same  manner  for  all  subsequent   k-digit  information blocks. 

Another  sequential  encoding  procedure  exists  for  cyclic  codes  based  on  the polynomial  h(x) =  (xn − 1 )/g(x).,  which  employs   k shift-register  delay  cells  and is  described  elsewhere  in  the  coding  literature,  in  Clark  Jr.  and  Cain  (1981, p.73), Lin  and  Costello  (2004,  p.148),  for  example.  In  the  sequel,  a  few  classes  of  cyclic codes  are  presented  which  benefit  from  their  cyclic  structure  regarding  encoding and  decoding  operations. 

 10.3.3 

 Cyclic  Hamming  Codes 

The  Hamming  codes  presented  earlier  in  Sect. 10.1  admit  also  a  cyclic  representation.  The  binary  cyclic  (n, k, d). Hamming  codes  have  as  their  generator  polynomial a  primitive  polynomial  p(x).  of  degree   m (Peterson  and  Weldon  Jr . 1972, p.  161) and  have  the  following  parameters: 

.  n = 2 m − 1 , k = 2 m −  m − 1 , d = 3 . 

As  examples  of  easily  implementable  decoders  for  cyclic  Hamming  codes,  one  can cite  the  Megitt  decoder  and  the  error-trapping  decoder,  which  are  described  later. 

Due  to  the  fact  that  Hamming  codes  are  perfect  codes  (see  Definition  10.6),  very often,  they  appear  in  the  literature  in  most  varied  applications  as,  for  example, subsets  of  their  codewords  being  used  as  protocol  sequences  for  the  collision channel  without  feedback  (da  Rocha  Jr. 1993)  and  for  a  low-power,  wide-area (LPWA)  networking  protocol  designed  to  wirelessly  connect  battery  operated devices  to  the  Internet  (Seller  and  Sornin  2014). 

 10.3.4 

 Maximum-Length-Sequence  Codes 

The  length  of  a   q-ary  sequence  generated  by  a  shift  register  with   m  delay  cells, employing  linear  feedback,  is  at most  qm − 1..  By  considering  q = 2.,  a  binary sequence  of  length 2 m − 1. generated  in  this  manner,  together  with  its  cyclic  shifts and  the  all  zero  ( 2 m − 1 ).-tuple  constitute  a  linear  binary  cyclic  code  called  an   m-

sequence  code.  The  parameters  of  a  (n, k, d). binary  cyclic   m-sequence  code  are  the following: 

.  n = 2 m − 1 , k =  m, d = 2 m−1 ,  for  m ≥ 2 , the  generator  polynomial  of  which  has  the  form  g(x) =  (xn − 1 )/p(x).,  in which  p(x).  denotes  a  degree   m primitive  polynomial.  All  nonzero  codewords  of an   m-sequence  code  have  the  same  Hamming  weight  and  have  the  property of
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being  equidistant.  The   m-sequence  codes  are  also  called  simplex  codes.  Regarding their  decoding,  m-sequence  codes  are  completely  orthogonalizable  in  one  step (Massey  1963)  which  makes  them  easily  decodable  by  majority  logic.  The  practical applications  of  an   m-sequence  code  include  direct  sequence  spread  spectrum, ranging,  and  location  techniques. 

 10.3.5 

 Bose-Chaudhuri-Hocquenghem  Codes 

The  Bose-Chaudhuri-Hocquenghem  codes  appeared  in  the  literature  first  in  France (Hocquenghem  1959)  and  about  a  year  later  in  the  USA  (Bose  and  Ray-Chaudhuri 

1960), but  due  to  a  possible  lack  of  good  communications,  it  is  considered  that they  were  independently  discovered.  The  respective  authors  of  both  articles  are considered  codiscovers  of  these  codes  which  became  known  as  BCH  codes.  Among cyclic  codes,  the  BCH  codes  are  considered  one  of  the  most  important  classes  of block  codes  having  an  algebraic  decoding  algorithm.  Given  two  arbitrary  positive integers,  m  and   t, a  (n, k, d).  BCH  code  can  be  constructed  with  the  following parameters: 

.  n =  qm − 1 , n −  k ≤  mt , d ≥ 2 t + 1 . 

The  lower  bound  d ≥ 2 t +1. for  a  BCH  code  minimum  distance  is  known  as  the   BCH 

 bound theorem (da  Rocha  Jr. 2014,  p.  23).  The  BCH  codes  can  be  interpreted  as  a generalization  of  Hamming  codes,  which  can  correct  multiple  errors  in  a  codeword. 

Since  a  BCH  code  is  a  cyclic  code,  it  can  be  defined  in  terms  of  the  roots  of  its generator  polynomial  as  follows. 

Definition  10.9  Let   α. denote  a  primitive  element  of GF (qm)..  A  primitive  (n, k, d). 

BCH  code  over GF (q).,  with  block  length  n =  qm − 1.,  which  can  correct   t  errors per  codeword, has  αh 0  , αh 0+1 , . . . , αh 0+2 t−1. as  roots  of  its  generator  polynomial, for  any  integer   h 0.. 

It  follows  from  Definition  10.9  that  the  generator  polynomial  g(x). of  a  BCH  code can  be  written  as  the  least  common  multiple  (LCM)  of  minimal  polynomials  of  the specified  roots  (Berlekamp  1968,  p.101),  that  is, 

.  g(x) = LCM{ m 0 (x), m 1 (x), ..., m 2 t−1 (x)} , in  which  mi(x). is  the  minimal  polynomial  of  αh 0+ i,  0 ≤  i ≤ 2 t − 1..  Non-primitive BCH  codes  are  those  BCH  codes  for  which   α. is  not  a  primitive  element  of GF (qm)., and,  as  a  consequence,  non-primitive  BCH  codes  have  a  block  length  equal  to  the multiplicative  order  of   α..  In  case  h 0 = 1.,  the  corresponding  codes  are  called   narrow sense BCH codes. Alternatively, BCH codes can be defined in terms of the finite field Fourier  transform  (da  Rocha  Jr. 2014, Appendix  C)  of  the  generator  polynomial g(x). (Blahut  1983, p.207). 
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 10.3.6 

 Reed-Solomon  Codes 

Reed-Solomon  (RS)  codes  (Blahut  1983,  p.174)  are  an  important  class  of  nonbinary BCH  (n, k, d). codes due to their algebraic structure and the fact that they constitute a class  of   maximum distance separable  codes  (MacWilliams  and  Sloane  1977,  p.323), i.e.,  d =  n −  k + 1..  An  RS  (n, k, d).  code  defined  over GF (q). has  the  following parameters: 

.  n =  q − 1 , n −  k = 2 t, d = 2 t + 1 . 

A  generator  polynomial  g(x). of  an  RS  code  over GF (q). has  n −  k = 2 t. consecutive roots,  and  if  the  roots  are  α, α 2 , α 3 , . . . , α 2 t .,  then  g(x). can  be  written  as 

.  g(x) =  (x −  α)(x −  α 2 )(x −  α 3 ) . . . (x −  α 2 t ), in  which   α. denotes  a  primitive  element  in GF (q)..  Very  often,  practical  applications require  binary  digits  to  be  employed,  and  that  makes  q = 2 r .  symbols  a  natural choice  for  the  alphabet  size  of  an  RS  code  since  then  each  2 r .-ary  symbol  can  be represented  by   r  binary  digits.  An  RS  code  defined  over GF ( 2 r ). when  mapped  to binary  produces  a  binary  code  of  block  length   nr which  can  correct  any  combination of   t  erroneous  binary   r-tuples;  in  other  words,  this  binary  code  is  capable  of correcting  both  random  errors  and  burst  errors.  RS  codes  have  been  successfully employed  as  outer  codes  in  coding  schemes  known  as  serial  concatenated  coding (Clark  Jr. and Cain 1981,  p.333). 

 10.3.7 

 Golay  Codes 

There  are  two  Golay  codes,  one  is  a  binary  (n, k, d) =  ( 23 ,  12 ,  7 ). code  while  the other  is  a  ternary  (n, k, d) =  ( 11 ,  6 ,  5 ). code.  Those  are  the  only  perfect  codes  with t >  1. (van  Lint  1982, p.102). 

 10.3.8 

 The  Binary (23 , 12 , 7 ).  Golay  Code 

The  binary  ( 23 ,  12 ,  7 ). Golay  code  is  a  linear  code  which  can  be  algebraically  treated as  a  non-primitive  BCH  code  and  can  be  generated  as  follows.  Let   α. be  a  primitive element of GF ( 211 ).,  and  since 211 − 1 = 89 × 23.,  it  follows  that  β =  α 89.  is  a non-primitive  element  of  order  23  because  β 23 = 1. and  βi = 1.,  for 1 ≤  i ≤ 22.. 

The  factoring  of  x 23 + 1. over GF ( 2 ). produces 

.  x 23 +1 =  (x +1 )(x 11 + x 10 + x 6 + x 5 + x 4 + x 2 +1 )(x 11 + x 9 + x 7 + x 6 + x 5 + x +1 ), 
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in  which  one  of  the  degree  11  factors  has  β, β 2 , β 3.,  and   β 4. as  the  longest  string  of consecutive  roots,  while  the  other  degree  11  factor  has  β 19 , β 20 , β 21.,  and  β 22. as the  longest  string  of  consecutive  roots.  Any  of  the  two  degree  11  factors  of  x 23 + 1. 

can  be  the  code  generator  polynomial.  We  call  the  reader’s  attention  to  the  fact  that by  the  BCH  bound  (Lin  and  Costello  2004,  p.205)  this  code  has  a  designed  distance δ = 5.,  while  its  true  minimum  distance  is  7.  Since  the  minimum  distance  of  the binary  Golay  code  is  an  odd  number,  namely,  d = 7.,  it  follows  that  we  can  extend the  binary  Golay  code  to  become  a  ( 24 ,  12 ,  8 ). code  by  appending  an  overall  parity-check  digit  to  each  codeword  in  a  manner  to  make  even  the  total  number  of  1s  (see Problem  2.10.11). 

 10.3.9 

 The  Ternary (11 , 6 , 5 ).  Golay  Code 

The  only  nontrivial  perfect  ternary  code  is  the  ( 11 ,  6 ,  5 ). Golay  code.  By  employing finite  field  tools,  the  ternary  Golay  code  can  be  classified  as  a  non-primitive  BCH 

code  over GF ( 3 )..  Let   α. denote  a  primitive  element  in GF ( 35 ).,  i.e.,  α 35−1 = 1. and αi = 1.,  for 1 ≤  i ≤ 35 − 2..  Since 35 − 1 = 242 = 22 × 11.,  it  follows  that  α 22. 

is  an  element  of  order  11  in GF ( 35 ).,  i.e.,  (α 22 ) 11 =  α 242 = 1. and  (α 22 )i = 1.,  fo  r 1 ≤  i ≤ 10..  Letting  β =  α 22.,  the  powers  βi =  (α 22 )i., 0 ≤  i ≤ 10.,  are  the  roots of  x 11 − 1. and  can  be  separated  into  the  cyclotomic  classes  {1}., { β, β 3 , β 9 , β 5 , β 4}., 

{ β 2 , β 6 , β 7 , β 10 , β 8}..  Therefore,  x 11 − 1.  can  be  factored  over GF ( 3 ).  into  three irreducible  factors  as 

.  x 11 − 1 =  (x − 1 )(x 5 +  x 4 + 2 x 3 +  x 2 + 2 )(x 5 + 2 x 3 +  x 2 + 2 x + 2 ), in  which { β, β 3 , β 9 , β 5 , β 4}.  are  the  roots  of  x 5 +  x 4 + 2 x 3 +  x 2 + 2.  and 

{ β 2 , β 6 , β 7 , β 10 , β 8}.  are  the  roots  of  x 5 + 2 x 3 +  x 2 + 2 x + 2..  Either  degree  5 

factor  of  x 11 − 1.  can  be  used  as  a  generator  polynomial  for  the  cyclic  ( 11 ,  6 ,  5 ). 

ternary  Golay  code.  Both  degree  5  irreducible  factors  of  x 11 − 1. have  a  maximum of  three  consecutive  roots,  and,  by  the  BCH  bound,  the  codes  they  generate  have  a designed  distance  δ = 4. while  the  code  true  minimum  Hamming  distance  is  d = 5., required  for  double-error  correction.  By  extending  the  ( 11 ,  6 ,  5 ). ternary  Golay  code with  an  overall  parity-check  digit  added  to  each  codeword,  the  ( 12 ,  6 ,  6 ). extended ternary  Golay  code  is  obtained  (MacWilliams  and  Sloane  1977,  p.  635). 

 10.3.10 

 Reed-Muller  Codes 

Reed-Muller  (RM)  codes  are  binary  block  codes  equivalent  to  cyclic  codes  with an  overall  parity-check  digit  appended  to  each  codeword.  The  RM  codes  are  a large  class  of  binary  codes  which  in  general  have  a  lower  error  correcting  power  in
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comparison  with  BCH  codes  of  equivalent  rate.  One  important  aspect  of  RM  codes is  that  they  are  easily  decodable  by  majority  logic,  and  another  relevant  aspect  is  that they  form  a  subclass  of  codes  constructed  from  Euclidean  geometry  (da  Rocha  Jr. 

2014, pp.  142 - 160).  In  order  to  define  RM  codes,  it  is  necessary  first  to  define  the Hadamard  product  of  vectors. 

Definition  10.10  Given   m  binary  vectors v1 , v2 , . . . , vm.  of  length   n,  their Hadamard  product,  denoted  as v1v2  . . . vm.,  is  the  binary  vector  of  length   n  the coordinates  of  which  are  obtained  by  multiplying  the  corresponding  coordinates  of the  f actors. 

Example  10.11  Given  the  binary  vectors a =  (a 1 , a 2 , . . . , an)., b =  (b 1 , . 

 b 2 , . . . , bn).,  and c =  (c 1 , c 2 , . . . , cn).,  their  Hadamard  product  denoted  by abc. 

is  given  by 

. abc =  (a 1 b 1 c 1 , a 2 b 2 c 2 , . . . , anbncn). 

Let  v0. denote  the  all-1  vector  of  length  n = 2 m.,  i.e.,  having  all   n coordinates  equal to  1. Let v1 , v2 , . . . , vm. denote  binary  vectors  of  length  n = 2 m. forming  the  rows of  a  matrix  having  n = 2 m. columns  consisting  of  all  the  distinct  binary   m-tuples. 

Definition  10.12  The  Reed-Muller  code  of  order   r is  the  set  of  codewords  produced by  the  generator  matrix,  the  rows  of  which  are  the  vectors v0 , v1 , . . . , vm. and  their respective  Hadamard  products  two  at  a  time,  three  at  a  time,  . . . .,  r at  a  time.  For  any given  positive  integer   m,  the  resulting  Reed-Muller  code  of  order   r has  the  follo wing parameters:

 r



.  n = 2 m, k =

 Cim, d = 2 m− r. 

 i=0

 10.3.11 

 Quadratic  Residue  Codes 

Quadratic  residue  (n, k, d). codes  constitute  a  well-defined  class  of  cyclic  codes  with prime  block  length  n =  p.,  rate  k/n ≈ 1 / 2.,  and  minimum  Hamming  distance d ≥ √ p..  The  name   quadratic residue code  reflects  the  connection  of  these  codes with   quadratic residues  studied  in  number  theory  as  explained  next. 

Definition  10.13  Given  a  prime  number   p,  an  integer   r  is  defined  as  a  quadratic residue  of   p if  and  only  if  there  exists  an  integer   s  such that  s 2 ≡  r  mod  p.,  i.e.,  the square  of   s reduced  modulo   p equals   r. 

For  a  given  prime   n,  let  R 0. denote  the  set  of  quadratic  residue  modulo   n,  and  let R 0.  denote  the  set  of  quadratic  non-residue  modulo   n.  If  n = 8 m ± 1.  is  a  prime number,  then  2  is  a  quadratic  residue  of   n (MacWilliams  and Sloane 1977, p.481), 
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and  letting   α.  denote  an  element  of  multiplicative  order   n in  an  extension  field  o f GF ( 2 ).,  it  follows  that 

.  xn + 1 =  (x + 1 )Gr (x)Gr (x), 

in  which 





.  Gr (x) =

 (x +  αr )  and  Gr (x) =

 (x +  αr ). 

 r∈ R 0

 r∈ R 0

Definition  10.14  A  quadratic  residue  code  is  a  cyclic  code  with  generator  polynomial  g(x).,  such  that  g(x) ∈ { Gr (x), ( 1 +  x)Gr (x), Gr (x), (x + 1 )Gr (x)}.. 

Permutation  decoding  represents  an  efficient  way  of  decoding  quadratic  residue codes  (MacWilliams  and  Sloane  1977,  p.  513).  However,  permutation  decoders  are usually  more  complex  than  algebraic  BCH  decoders.  The  relevance  of  quadratic residue  codes  comes  from  the  fact  that  some  of  these  codes  of  moderate  length  have a  minimum  Hamming  distance  greater  than  that  of  BCH  codes  of  comparable  block length. 

 10.3.12 

 Alternant  Codes 

An  important  class  of  algebraic  codes  which  includes  as  special  cases  the  BCH 

codes,  Goppa  codes,  Srivastava  codes,  and  Chien-Choy  codes  is  the  class  of alternant  codes  (MacWilliams  and  Sloane  1977,  p.332).  By  a  relatively  simple,  but not  obvious,  modification  of  the  parity-check  matrix  of  a  BCH  code,  an  alternant code  is  constructed.  Consider  a  (n, k, d). BCH  code  with  designed  distance   δ. over GF (q). and  parity-check  matrix H = [ hij ].,  in  which   hij =  αij ,  1 ≤  i ≤  δ − 1 ,  0 ≤

 j ≤  n − 1.,  and   α.  is  a  primitive   n th  root  of  unity  in GF (qm).  (MacWilliams and  Sloane  1977, p.196).  By  making  hij =  xi−1 y j

 j .,  an  alternant  code  results,  in 

which x =  (x 1 , x 2 , . . . , xn).  is  a  vector  over GF (qm).  with  distinct  components and y =  (y 1 , y 2 , . . . , yn). is  a  vector  with  nonzero  components  also  over GF (qm). 

(MacWilliams  and  Sloane  1977, Ch.  12). 

10.4 

Decoding  Cyclic  Codes 

The  decoding  procedures  for  linear  block  codes  are  also  applicable  to  cyclic codes.  However,  the  algebraic  properties  associated  with  the  cyclic  structure  allow important  simplifications  when  implementing  a  decoder  for  a  cyclic  code,  both for  calculating  the  syndrome  and  for  correcting  errors.  The  syndrome  computation consists  in  dividing  by  the  generator  polynomial  g(x). the  polynomial  representing
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the  word  received  by  the  decoder.  The  remainder  of  this  division  is  the  syndrome, denoted  by  s(x)..  If  s(x) = 0.,  the  received  word  is  accepted  as  being  a  codeword. 

Otherwise,  i.e.,  if  s(x) = 0.,  we  declare  that  errors  have  occurred.  In  this  manner,  it  is clear  that  a  circuit  to  detect  errors  with  a  cyclic  code  is  rather  simple.  The  problem of  locating  error  positions  in  a  received  word  for  correction  is  a  different  matter and  in  general  requires  more  elaborate  techniques  in  order  to  be  implemented  in practice.  So  far,  the  most  important  algebraic  decoding  techniques  for  cyclic  codes are  those  based  on  the  Berlekamp-Massey  algorithm  Massey  (1969)  and  on  the Euclidean  algorithm  (MacWilliams  and  Sloane  1977,  pp.  362-365),  (Clark  Jr.  and Cain  1981,  pp.  216-218).  In  the  sequel,  we  give  a  brief  presentation  of  the  more relevant  decoding  procedures  for  cyclic  codes. 

 10.4.1 

 Meggitt  Decoder 

The  Meggitt  decoding  algorithm  (Lin  and  Costello  2004,  p.156)  consists  in  employing  a  circuit  to  identify  those  syndromes  that  correspond  to  error  patterns  containing an  error  in  the  highest-order  position  of  the  received  word,  i.e.,  an  error  at  position xn−1..  Thus,  when  the  digit  at  position  xn−1. is  being  delivered  to  the  sink,  it  can  be altered  or  not,  depending  on  the  decision  determined  by  the  circuit  that  identifies errors  in  that  position.  If  we  cyclically  shift  the  received  word,  digit  by  digit  with a  shift  register,  all  the  digits  in  this  word  will  necessarily  occupy  position  xn−1. 

after  a  certain  number  of  shifts  and  will  be  examined  by  the  circuit  that  identifies errors  in  that  position.  The  decision  for  choosing  the  Meggitt  decoder  depends  on the  complexity  of  the  circuit  that  identifies  errors  at  position  xn−1. of  the  received word.  A  straightforward  way  of  implementing  a  Meggitt  decoder  is  by  the  use  of programmable  memories. 

 10.4.2 

 Error-Trapping  Decoder 

An  error-trapping  decoder  (Lin  and  Costello  2004,  p.166)  for  a  (n, k, d). cyclic  code is  able  to  locate  and  correct  an  error  which  cyclically  spreads  to  at  most  n −  k. 

positions  in  a  received  word  and  has  Hamming  weight  at  most   t,  t ≤  (d − 1 ) / 2.. 

Suppose  the  Hamming  weight  of  the  syndrome  of  a  received  word  is  nonzero,  i.e., the  received  word  is  not  error-free.  If  the  Hamming  weight  of  the  syndrome  is  at most   t,  then  the  errors  are  confined  to  the  parity-check  section  of  the  received word,  the  information  digits  are  error-free,  and  no  further  action  is  required  from  the decoder.  Otherwise,  an  error-trapping  decoder  then  operates  by  cyclically  shifting the  syndrome  shift  register,  bit  by  bit,  and  observing  its  Hamming  weight  at  each step.  If,  at  some  step,  a  syndrome  of  Hamming  weight  at  most   t  is  detected, then
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the  corresponding  segment  of  length  n −  k.  of  the  error  vector,  containing  all  the errors,  coincides  with  this  shifted  syndrome.  After  an  error  pattern  is  identified,  or trapped,  then  error  correction  is  immediate.  However,  if  after   n cyclic  shifts,  the syndrome  Hamming  weight  was  never  equal  to  or  less  than   t  the  decoder  declares the  occurrence  of  an  error  pattern  which  cyclically  spreads  over  a  length  g reater than n −  k. of  cyclically  consecutive  word  positions  and  decoding  stops.  Error-trapping decoding  is  more  appropriate  for  use  with  low  rate  codes,  since  in  this  case  it  will be  easier  to  satisfy  the  requirement  n/k = 1 /R > t. to  correct   t errors  in  a  received word  by  employing  this  t echnique. 

 10.4.3 

 Information  Set  Decoding 

An   information  set  (Clark  Jr.  and  Cain  1981,  p.102)  defined  for  a  given  a  linear (n, k, d). block  code  contains   k elements  corresponding  to   k positions  which  can  be independently  specified  in  a  codeword.  Therefore,  the   k symbols  in  an  information set  can  be  used  to  construct  a  codeword.  It  follows  that  an  information  set  free  from errors  in  a  received   n-tuple  can  be  used  to  reconstitute  the  transmitted  codeword. 

Furthermore,  information  set  decoding  is  applicable  to  linear  codes  in  general, not  just  to  cyclic  codes.  A  conceivable  decoding  algorithm  based  on  a  number  of information  sets  consists  of  the  f ollowing steps:

1.  First,  construct  several  information  sets  for  the  given  code. 

2.  Use  each  information  set  from  the  previous  step  to  form  an  estimate  of  the transmitted  codeword. 

3.  The  received  word  is  now  compared  with  each  one  of  the  estimates  obtained  in the  previous  step  and  decide  for  the  codeword  nearest  to  the  received  word  in terms  of  Hamming  distance. 

 10.4.4 

 Threshold  Decoding 

Threshold  decoding  (Massey  1963)  is  a  technique  that  has  been  employed  with success  in  a  number  of  applications  using  cyclic  codes  and  is  also  known  by  the name of   majority logic decoding. The implementation of threshold decoders is based on  the  use  of   parity-check sums  or  just   parity sums  as  described  in  the  sequel.  Given a  (n, k, d).  binary  linear  code  with  parity-check  matrix H = [ hij ].,  the  syndrome s =  (s 0 , s 1 , . . . , sn− k−1 ).  is  a  vector  of  length  n −  k.,  obtained  by  multiplying  an error  word e =  (e 0 , e 1 , . . . , en−1 ). by  the  transpose  of  the  code  parity-check  matrix, i.e., 

. s = eH T , 
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in  which  each  syndrome  component  sj ,  0 ≤  j ≤  n −  k − 1.,  is  computed  as n−1



.  sj =

 eihij . 

(10.2) 

 i=0

Consider  the  linear  combination  of  syndrome  digits: 

 n− k−1



.  A =

 aisi, 

 i=0

in  which   ai. is  either  0  or  1,  and  by  employing  Eq. 10.2, it  can  be  written  as n−1



.  A =

 biei, 

(10.3) 

 i=0

in  which   bi.  is  either  1  or  0.  Expression  10.3  is  called  a   parity-check  sum   which checks  an  error  in  position   ei. if  bi = 1.. 

Definition  10.15  A  set  of   J  parity-check sums  A 1 , A 2 , . . . , AJ .  is  defined  as orthogonal  in  a  position   el. in  the  error  vector e =  (e 0 , e 1 , . . . , en−1 ). if   el. is  checked by  each  one  of  the   J parity-check  sums  and  all  other  error  vector positions  ei.,  i =  l., are  checked  by  at  most  one  of  the   J  parity-check  sums. 

Consider  that   t  errors  occurred  in  a  received  word,  t ≤  J / 2..  The  threshold decoding  procedure  works  as  follows: 

i.  Suppose  el = 1..  This  hypothesis  implies  that  the  other  t − 1. errors  can  affect  at most  t − 1 ≤  J / 2 − 1.  of  the   J  parity  sums,  leaving  at  least  J −  ( J / 2 −

1 ) =  J / 2 + 1. of  the  parity  sums  equal  to  1,  i.e.,  the  indication  provided  by  the majority  of  the  parity  sums  allows  one  to  correctly  decide  for  el = 1.. 

ii.  Suppose  el = 0..  This  hypothesis  implies  that  the   t errors  can  affect  at most  J / 2. 

parity  sums,  i.e.,  at  most  half  of  the  parity  sums  fail  in  a  worst  case  situation,  and one  can  safely  assume  that  el = 0. in  this  case. 

If  the  binary  linear  code  considered  is  a  cyclic  code,  the  threshold  decoding operation  should  employ   J  parity  sums  orthogonal  on position  en−1.  and  start by  checking  for  error  in  that  position.  After  that  is  done,  the  received  word  is cyclically  shifted  by  one  position  to  the  right  and  the  same  set  of   J  parity  sums is  used  to  decode position  en−2. and  continue  in  a  similar  manner  for  decoding  the remaining  received  word  positions  until  the  complete  word  is  decoded.  Completely orthogonalizable  codes  are  those  codes  for  which  J =  d − 1..  There  are  cases  when it  is  not  possible  to  construct   J  parity  sums  orthogonal  on  a  given  position  of  a codeword.  For  various  classes  of  codes  (Lin  and Costello 2004,  p.296),  orthogonal parity  sums  can  be  obtained  in   L steps,  where  at  each  step  one  uses  parity sums
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orthogonal  on  a  sum  of  codeword  positions.  The  topic   threshold decoding  is  treated in  greater  detail  in  da  Rocha  Jr.  (2014, Ch.  11). 

10.5 

Hard-Decision  Algebraic  Decoding 

It  is  well  known  that  in  practice  the  decoding  process  for  a  given  (n, k, d).  code has  a  complexity  higher  than  the  corresponding  encoding  process.  Consequently, the  choice  of  the  most  suitable  code  for  a  given  application  depends  on  the  budget available.  In  some  cases,  the  budget  constraint  forces  the  use  of  a  suboptimum solution  by  opting  for  a  decoder  with  an  amenable  implementation  cost.  However, computationally  efficient  decoding  algorithms  (Berlekamp  1968, p.178),  Blahut (1983)  have  been  discovered  for  some  classes  of  algebraic  codes.  The  decoding  of algebraic  codes  involves  solving  a  system  of  nonlinear  equations,  the  direct  solution of  which  is  not  obvious  in  general. 

 10.5.1 

 Berlekamp-Massey  Time  Domain  Decoding 

The  Berlekamp-Massey  (BM)  time  domain  decoding  algorithm  is  widely  applicable for  decoding  algebraic  codes,  including  RS  codes  and  BCH  codes  (Berlekamp  1968; Massey  1969). Obviously,  for  binary  algebraic  codes,  there  is  no  need  to  calculate error  magnitude  values,  since  in GF ( 2 ).  it  is  sufficient  to  determine  the  positions of  the  errors  to  perform  error  correction.  For  nonbinary  algebraic  codes,  including RS  codes  and  BCH  codes,  both  error  locations  and  error  magnitudes  have  to  be determined  in  order  to  perform  error  correction. 

Let  (n, k, d).  denote  a  cyclic  code  with  generator  polynomial  g(x).  having roots  α, α 2 , . . . , α 2 t .  and  coefficients  both  in  some  finite  field GF (q)..  Let   c(x) =





 n−1  c

 n−1  e

 i=0

 i xi .  denote  a  codeword,  let  e(x) =

 i=0

 i xi .  denote  the  error  polynomial 

with  coefficients  in GF (q).,  and  let  r(x) =  c(x) +  e(x).,  with  addition  defined  in GF (q).,  denote  the  received  word,  i.e.,  an   n-tuple  in  polynomial  form.  The  algebraic decoding  procedure  contains,  in  general,  the  following  steps: 

1.  Calculate  the  first  2 t  coefficients  s 0 , s 1 , . . . , s 2 t−1. of  the  syndrome  polynomial s(x) =  s 0 +  s 1 x + · · · +  s 2 t−1 x 2 t−1 + · · · .,  in  which   s 0 =  r(α), s 1 =

 r(α 2 ), . . . , s 2 t−1 =  r(α 2 t ).. 

2.  The  sequence  s 0 , s 1 , . . . , s 2 t−1. is  fed  as  an  input  to  the  BM  algorithm  to  compute the  error-locator  polynomial  σ (x).,  of  degree  τ .,  τ ≤  t.,  expressed  as 

.  σ (x) = 1 +  σ 1 x +  σ 2 x 2 + · · · +  στ xτ . 

3.  The  roots  β 1 , β 2 , . . . , βτ . of  σ (x). are  found  in  this  step  and  their  multiplicative inverses  give  the  error  locations. 
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4.  If  the  code  considered  is  nonbinary,  then  calculate  the  error  magnitudes. 

A  procedure  for  computing  error  magnitudes  for  nonbinary  cyclic  codes  was introduced  in  Berlekamp  (1968, p.220)  and  defined  the  polynomial 

.  Z(x) = 1 +  (s 0 +  σ 1 )x +  (s 1 +  σ 1 s 0 +  σ 2 )x 2 + · · ·

· · · +  (sτ−1 +  σ 1 sτ−2 +  σ 2 sτ−3 + · · · +  στ )xτ . 

(10.4) 

An  error  magnitude  at  position  β−1 ,  1 ≤  i ≤  τ, 

 i

. is  calculated  as 

.  ei =

 Z(βi)



 . 

(10.5) 

 τ

 ( 1 −  β−1 β

 j =1 ,j = i

 j

 i )

The  BM  algorithm  gives  as  a  result  an  estimate  of  the  error  pattern  of  minimum Hamming  weight  that  satisfies  all  the  syndrome  equations.  Whether  or  not  such an  estimate  represents  the  true  error  pattern  that  hit  the  transmitted  codeword  will depend  on  its  Hamming  weight   τ . in  comparison  to   t.  The  true  error  pattern  is  found by  the  BM  algorithm  whenever  the  condition  τ ≤  t. is  satisfied.  A  flowchart  of  the BM  time  domain  decoding  algorithm  is  presented  in  da  Rocha  Jr. (2014,  p.  35). 

 10.5.2 

 Euclidean  Frequency  Domain  Decoding 

Reference  (Blahut  1983,  p.193)  brings  an  authoritative  presentation  of  the  decoding procedure  known  as   algebraic decoding in the frequency domain  which  is  applicable to  any  cyclic  code  and,  in  particular,  is  more  efficient  with  (n, k, d). BCH  codes.  We assume  r. is  a  received  word  representing  the  sum  over GF (q). of  a  codeword  v. and an  error  word  e.,  i.e., r = v + e..  The  Euclidean  frequency  domain  decoding  employs the  following  steps: 

1. Received  word  finite  field  Fourier  transform 

First,  the  received  vector r =  (r 0 , r 1 , . . . , rn−1 ). is  used  to  compute  its  finite  field Fourier  transform  R..  The  linearity  of  the  Fourier  transform  R. can  be  expressed as  a  sum  of  the  corresponding  Fourier  transforms  of  v. and  e.,  i.e.,  as R = V + E.. 

2. Syndrome 

2 t−1



.  S(z) =

 Sj zj , 

 j =0

in which

 n−1



 Sj =  Rj+ h =

 r

0

 i αi(j + h 0 ), j = 0 ,  1 , . . . ,  2 t − 1 , i=0
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for  a  code  having  2 t  consecutive  roots  αj+ h 0 ., 0 ≤  j ≤ 2 t − 1.,  in  its  generator polynomial  and   h 0. is  a  fixed  integer  satisfying 0 ≤  h 0 ≤  n − 1.. 

3. Error-locator  polynomial 

The  error-locator  polynomial,  denoted  by  L(z).,  can  be  expressed  as ν



 ν



.  L(z) =

 Lzzk =

 ( 1 −  zαik ), 

 k=0

 k=1

where  ν ≤  t.  and  i 1 , i 2 , . . . , iν.,  correspond  to  error  locations.  The  Euclidean algorithm  (da  Rocha  Jr. 2014, pp.  176 - 177)  is  then  applied  with  a(z) =  z 2 t . 

and  b(z) =  S(z).,  stopping  when  the  degree  of  ri(z). becomes  less  than   t.  Finally, we  make  L(z). equal  to  gi(z)..  This  step  is  also  known  as  the   solution of the key equation (Clark  Jr.  and  Cain  1981,  p.189). 

4. Error  word  finite  field  Fourier  transform 

The  error  word  e.  has  its  finite  field  Fourier  transform  denoted  by  E.,  with  the following  polynomial  representation: 

 n−1



.  E(z) =

 Ej zj , 

 j =0

in  which  the  coefficients  Ej , j =  h 0 , h 0 + 1 , . . . , h 0 + 2 t − 1. are  known  since the  code  is  assumed  to  have  2 t  consecutive  roots  in  its  generator  polynomial. 

The  following  recursive  formula  is  employed  to  calculate  the  remaining  unknown coefficients  of  E(z).: 

 n−1



. 

 LkEj− k = 0 , 

 k=0

which  can  be  slightly  simplified  to  be  expressed  as 

 ν



.  Ej = −

 LkEj− k, 

 k=1

because  L 0 = 1. and  L(z). has  degree  ν ≤  t.. 

5. Error  correction 

The  inverse  finite  field  Fourier  transform  of  the   n-tuple  E. gives  the  error  word  e., and,  finally,  the  decoded  codeword  v. is  given  by 

. v = r − e . 
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10.6 

Soft-Decision  Decoding 

Probabilistic  decoding  algorithms,  as  mentioned  earlier,  are  used  to  implement soft-decision  decoding.  Received  symbol  reliability  information  supplied  by  the demodulator  is  used  by  a  soft-decision  decoder  when  deciding  which  codeword  was transmitted.  A  typical  gain  of  at  least  2.0   dB results  when  soft-decision  decoding  is employed  instead  of  hard-decision  decoding. 

 10.6.1 

 Decoding  Low-Density  Parity-Check  Codes 

The  decoding  algorithm  called  sum-product  algorithm  (SPA)  (Moreira  and  Farrell 

2006, p.282)  is  a  symbol-by-symbol  soft-in  soft-out  iterative  decoding  algorithm particularly  efficient  for  decoding  low  density  parity-check  (LDPC)  codes.  The SPA  uses  the  code  parity-check  matrix  H.  and  makes  iterations  starting  with  the received  symbols  fed  to  the  decoder,  in  order  to  improve  the  reliability  of  the decoded  symbols.  Symbol  reliability  values  after  each  iteration  are  used  to  make hard  decisions  and  to  output  a  decoded  binary   n-tuple  z..  The  operation zH T .  is performed  and  decoding  stops  if zH T = 0.  because  z.  is  a  codeword.  However,  if zH T = 0.,  then  z. is  not  a  codeword,  and  the  iteration  process  is  continued  to  produce fresh  symbol  reliability  values  and  test  again  whether  a  codeword  is  obtained.  A maximum  number  of  decoder  iterations  is  specified  which  is  employed  to  halt  the decoding  process  when  the  decoder  does  not  find  a  codeword,  and  a  decoding failure  is  then  declared.  Let  y. denote  a  received   n-tuple  with  real-valued  coordinates when  a  codeword v =  (v 1 , v 2 , . . . , vi, . . . , vn). is  transmitted.  The  SPA  operates  by computing  the  marginal  probabilities  P (vi|y ).,  for 1 ≤  i ≤  n..  In  MacKay  (1999), 

the  reader  will  find  a  detailed  description  of  SPA  decoding  of  LDPC  codes. 

10.7 

Convolutional  Codes 

Convolutional  codes  were  introduced  in  the  literature  in  1954  (Elias  1954),  and since  then,  many  researchers  have  dedicated  time  to  study  their  structure  (Forney  Jr. 

1970). In  1961,  the  first  practical  decoding  algorithm  for  convolutional  codes was  described  (Wozencraft  and  Reiffen  1961).  In  1967,  another  way  of  decoding convolutional  codes  was  discovered  (Viterbi  1967)  which  at  first  was  thought  to be  asymptotically  optimum.  A  few  years  later,  in  1973  (Forney  Jr. 1973),  it  was shown  that  the  Viterbi  algorithm  was  a  maximum  likelihood  decoding  algorithm  for convolutional  codes.  In  1993,  a  turbo  decoding  algorithm  was  introduced  for  a  code construction  employing  convolutional  codes  (Berrou  et  al. 1993). At  the  time,  this was  by  far  the  most  remarkable  result  in  coding  theory  since  Shannon’s  papers. 

A  turbo  decoder  allows  performance  very  close  to  the  Shannon  limit  (channel
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capacity)  (Berrou  and  Glavieux  1996), in  the  presence  of  additive  white  Gaussian noise.  Turbo  decoding  was  also  shown  to  work  equally  well  with  block  codes (Pyndiah  et  al. 1994).  Convolutional  codes  have  led  the  code  race  in  space  research (Massey  1992)  in  combination  with  Reed-Solomon  codes  (Hagenauer  et  al. 1993; Wicker  and  Bhargava  1994). Convolutional  codes  offer  an  alternative  for  error control  which  is  quite  different  from  that  offered  by  block  codes.  Some  relevant concepts  which  are  needed  for  implementing  turbo  codes  (Heegard  and  Wicker 

1999; Johanneson  and  Zigangirov  1999;  Lin  and  Costello  2004)  are  presented  in this  chapter.  In  the  sequel,  the  basic  theory  of  convolutional  codes  is  revisited. 

 10.7.1 

 Representation  and  Basic  Concepts 

As  mentioned  in  Viterbi  and  Omura  (1979, p.  227),  convolutional  codes  are  related to  a  special  class  of  linear  block  codes;  however,  the  additional  convolutional  structure  aggregates  further  properties  which  are  relevant  to  reduce  decoder  complexity at  the  cost  of  increased  memory  and  higher  computational  speed  requirements.  A linear  convolutional  encoder  can  be  treated  as  a  finite  state  machine,  and  from  this point  of  view,  a  state  diagram  and  a  trellis  appear  as  important  tools  both  to  describe the  code  and  to  analyze  its  behavior. 

 10.7.2 

 Shift-Register  Encoder 

A   binary  convolutional  encoder  (BCE)  is  a  device,  the  output  of  which  consists of  blocks  of   n binary  symbols,  which  are  dependent  on  the  current   k binary  input symbols  as  well  as  on   m  consecutive   k-bit  blocks  of  the  previous   m  messages. 

A  convolutional encoder with parameters  (n, k, m).  can  be  implemented  as  a sequential  logic  circuit  with   k  inputs,  n  outputs,  and  a  memory  order  of   m  bits (see Definition 10.19). Usually,  n and   k  are  small  positive  integers, with  k < n.. 

Larger  values  of  the  memory  order   m allow  the  construction  of  convolutional  codes that  can  achieve  lower  probability  of  error  after  decoding.  The  ratio  k/n. is  called  the asymptotic  code  rate.  A   binary convolutional code (BCC)  is  the  set  of  all  codewords which  can  be  produced  at  the  output  of  a  binary  convolutional  encoder. 

Example  10.16  The  BCE  illustrated  in  Fig. 10.2  employs  a  shift  register  with  three memory  elements  which  accepts  message  blocks  of  length  k = 1.  symbol  at  the input,  denoted  by  the  vector  u.,  and  has  output  blocks  of  length  n = 2.  symbols denoted  by  the  vectors v ( 0 ). and v ( 1 ).,  respectively,  i.e.,  it  implements  a  convolutional code  with  parameters  (n, k, m) =  ( 2 ,  1 ,  3 ).,  and  asymptotic  code  rate  k/n = 1 / 2.. 

The  information  sequence u =  (u 0 , u 1 , u 2 , . . .). is  fed  bit  by  bit  to  the  encoder. 

Since  the  encoder  implements  a  linear  system,  its  two  output  sequences,  namely, 
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Fig.  10.2  BCE  with  parameters  (n, k, m) =  ( 2 ,  1 ,  3 ).  implemented  with  a  shift  register  and exclusive  or  gates 

. v ( 0 ) =  (v( 0 ), v( 0 ), v( 0 ), . . .) 0

1

2

and 

. v ( 1 ) =  (v( 1 ), v( 1 ), v( 1 ), . . .) 0

1

2

can  be  obtained  by  the  convolution  of  the  input  sequence  u.  with  the  two  impulse responses  of  the  encoder  circuit.  The  two  impulse  responses  are  obtained  when the  encoder  input  is  fed  with u =  ( 1 0 0  . . .).  and  the  corresponding  two output  sequences  are  observed  at  the  encoder  output.  Since  the  encoder  memory is   m,  the  impulse  responses  are g ( 0 ) =  (g( 0 ), g( 0 ), g( 0 ), . . . , g( 0 ) 0

1

2

 m ).  and  g ( 1 )

=

 (g( 1 ), g( 1 ), g( 1 ), . . . , g( 1 )

0

1

2

 m )..  For  the  encoder  in  Fig. 10.2,  it  follows  that  the  impulse responses  are g ( 0 ) =  ( 1 0 1 1 ). and g ( 1 ) =  ( 1 1 1 1 ). and  are  called  code   generator sequences. 

The  encoding  equations  can  be  written  as 

. v ( 0 ) = u ∗ g ( 0 ), 

. v ( 1 ) = u ∗ g ( 1 ), 

in  which  ∗.  denotes  the  discrete  convolution  and  all  operations  of  addition  and multiplication  are  reduced  modulo  2.  The  convolution  implies  that  for  all  l ≥ 0. 

 m



 (j )

 (j )

 (j )

 (j )

 (j )

.  v

=

 u

=  u

+  u

+ · · · +  u

 l

 l− i gi

 l g 0

 l−1 g 1

 l− mgm , 

 j ∈ {0 ,  1} , 

 i=0

in  which  ul− i = 0. for  all  l < i..  Therefore,  for  the  encoder  in  Fig. 10.2,  we  ha  ve

.  v( 0 ) =  u

 l

 l +  ul−2 +  ul−3 , 

 v( 1 ) =  u

 l

 l +  ul−1 +  ul−2 +  ul−3 , 
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which  can  be  immediately  obtained  by  direct  inspection  of  the  encoding  circuit. 

The  two  output  encoded  sequences, v ( 0 ).  and v ( 1 ).,  are  then  multiplexed  to  form a  single  sequence  called  a   codeword,  ready  for  storage  or  transmission  through  a communication  channel.  The  codeword  is  represented  as 

. v =  (v( 0 )v( 1 ), v( 0 )v( 1 ), v( 0 )v( 1 ), . . .). 

0

0

1

1

2

2

Convolutional  Encoder  Types 

Digital  filters  can  be  implemented  with  shift  registers,  and  because  of  that,  a  BCE 

can  be  neatly  described  using  the  terminology  for  digital  filters,  i.e.,  we  may  classify a  BCE  from  the  point  of  view  of  a  digital  filter.  A  BCE  may  exhibit  a  finite  impulse response  (FIR),  as  the  BCE  in  Fig. 10.2,  also  called  a   non-recursive,  feedback-free,  or   feed-forward   BCE  (Heegard  and  Wick er 1999). A  BCE  may  also  exhibit an  infinite  impulse  response  (IIR)  and  implement   recursive   convolutional  codes or  convolutional  encoders  with   feedback  (Heegard  and  Wicker  1999).  Recursive BCEs  played  an  important  role  in  the  development  of  turbo  codes  and  are  treated in  more  detail  later  in  this  chapter.  Figure  10.3  shows  an  example  of  a  binary convolutional  encoder  with  feedback,  i.e.,  a  recursive  BCE.  Finally,  a  BCE  can  also be  classified  as   systematic  or   non-systematic,  thus  leading  to  a  systematic  BCC  or a  non-systematic  BCC,  respectively.  A  BCC  is  called  systematic  if  each  block  of length   n at  the  output  of  the  BCE  contains  the  same   k information  symbols  present at  each  corresponding   k-bit  input  block,  for  example,  the  BCE in Fig. 10.3, in  which v ( 0 ) = u.,  is  systematic.  Figures  10.4  and  10.5  illustrate  other  types  of  BCE. 

Fig.  10.3  Recursive  BCE  implemented  with  shift  registers  and  exclusive  or  gates Fig.  10.4  Non-systematic 

and  non-recursive  BCE
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Fig.  10.5  Non-systematic 

and  recursive  BCE 

 10.7.3 

 Polynomial  Matrix 

For  any  linear  system,  operations  in  the  time  domain  containing  convolutions  can  be replaced  by  operations  with  polynomials.  Since  a  convolutional  encoder  is  a  linear system,  by  a  linear  correspondence,  each  sequence  in  its  encoding  equations  can be  replaced  by  a  polynomial,  and  each  convolution  operation  can  be  replaced  by a  polynomial  multiplication.  For  example,  in  a  ( 2 ,  1 , m).  convolutional  code,  the encoding  equations  can  be  expressed  as  functions  of  a  delay  operator   D as  follo ws:

. v ( 0 )(D) = u (D)g ( 0 )(D), and 

. v ( 1 )(D) = u (D)g ( 1 )(D), in  which 

. u (D) =  u 0 +  u 1 D +  u 2 D 2 + · · ·

denotes  the  information  sequence,  and 

. v ( 0 )(D) =  v( 0 ) +  v( 0 )D +  v( 0 )D 2 + · · ·

0

1

2

and 

. v ( 1 )(D) =  v( 1 ) +  v( 1 )D +  v( 1 )D 2 + · · ·

0

1

2

are  the  encoded  sequences,  and 

. g ( 0 )(D) =  g( 0 ) +  g( 0 )D +  g( 0 )D 2 + · · · +  g( 0 ) 0

1

2

 m Dm, 

and 

. g ( 1 )(D) =  g( 1 ) +  g( 1 )D +  g( 1 )D 2 + · · · +  g( 1 ) 0

1

2

 m Dm, 

are  the  respective  code  generator  polynomials. 
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Recalling  that  the  encoder  is  a  linear  system  and  that u (i−1 )(D).  represents  the i th  input  sequence  and v (j−1 )(D). represents  the   j  th  output  sequence,  the  generator (j −1 )

polynomial  g

 (D)

 i−1

.  can  be  interpreted  as  the  encoder  transfer  function  relating 

the   i th  input  to  the   j  th  output.  Considering  a  linear  system  with   k  inputs  and   n outputs,  there  are  a  total  of   kn transfer  functions  which  can  be  represented by a k ×  n. transfer  function  matrix,  also  called  polynomial  generator  matrix G (D).,  i.e., 

⎡

⎤

g ( 0 )(D) g ( 1 )(D) · · · g (n−1 )(D)

⎢ 0

0

0

⎢

⎥

⎢ g ( 0 )(D) g ( 1 )(D) · · · g (n−1 )(D) ⎥

1

1

1

⎥

. G (D) = ⎢

 . 

 . 

 . 

 , 

(10.6) 

⎣

 . 

 . 

⎥

 . 

 .. 

 . . 

 .. 

⎦

g ( 0 ) (D) g ( 1 ) (D) · · · g (n−1 )(D) k−1

 k−1

 k−1

 (j −1 )

in  which g

 (D)

 i−1

.  is  the  generator  polynomial  relating  the   i th  input  to  the   j  th output. 

By  employing  the  polynomial  transfer  function  matrix,  the  encoding  equations for  a  (n, k, m). code  can  be  written  as 

. V (D) = U (D)G (D), 

(10.7) 

in  which U (D) = [u ( 0 )(D), u ( 1 )(D), . . . , u (k−1 )(D)]. is  a   k-tuple  of  input  sequences and V (D) = [v ( 0 )(D), v ( 1 )(D), . . . , v (n−1 )(D)]. is  an   n-tuple  of  output  sequences. 

Example  10.17 

(a)  The  polynomial  generator  matrix  G(D). for  the  BCE  in  Fig. 10.2  is 





. G (D) =

1 +  D 2 +  D 3 1 +  D +  D 2 +  D 3  . 

and 

(b)  The  polynomial  generator  matrix  G(D). for  the  BCE  in  Fig. 10.4  is 1 +  D 2 1 +  D +  D 2 0

. G (D) =

0

1

1

 10.7.4 

 State  Diagram 

Consider  a  (n, k, m).  convolutional  encoder  with  polynomial  generator  matrix  as presented  in  Eq. 10.6. 

Definition  10.18  The  constraint  length  for  the   i th  input  in  a  polynomial  generator matrix  is  defined  as
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 (j )

.  νi =

max {deg g  (D)} , 

0 ≤  i ≤  k − 1 . 

 i

0≤ j ≤ n−1

Definition  10.19  The  encoder  memory  order   m is  defined  as  the  maximum  constraint  length,  i.e., 

.  m =

max { νi} . 

0≤ i≤ k−1

Definition  10.20  The  total  encoder  memory   ν. is  defined  as  the  sum  of  all  constraint lengths  for  all   k inputs,  i.e., 

 k−1



.  ν =

 νi. 

 i=0

Therefore,  for  a  (n, k, m). code  with  k >  1.,  the   i th  encoder  shift  register  contains  the previous  νi. information  symbols.  Thus,  the  elements  in  the  vector  (ν 1 , ν 2 , . . . , νk). 

represent  the  respective  lengths  of  the   k  encoder  shift  registers,  i.e.,  the   i th  shift register contains  νi. memory  elements. 

The  state  of  the  encoder  at  time  instant   l,  when  the  encoder  inputs  are 

.  u( 0 )u( 1 ) . . . u(k−1 ), 

 l

 l

 l

is  the  binary   m-tuple 

.  (u( 0 ) u( 0 ) . . . u( 0 )

 u( 1 ) u( 1 ) . . . u( 1 )

 . . . u(k−1 )u(k−1 ) . . . u(k−1 )). 

 l−1  l−2

 l− m 1  l−1  l−2

 l− m 2

 l−1

 l−2

 l− mk

It  follows  that  a  binary  convolutional  encoder  with  memory   ν. has  a  total  of  2 ν . states. 

Example  10.21  For  a  (n,  1 , m). code,  we  have  ν =  ν 1.,  and  the  encoder  state  at  time instant   l is 

.  (ul−1 ul−2  . . . ul− m). 

The  state  diagram  is  a  graph  consisting  of  nodes,  representing  the  states  of  the encoder,  and  lines  with  arrows  representing  the  transitions  between  states.  Each  line is  labelled  with  a  pair  (input   k-bits)/(output   n-bits).  There  are  2 k. branches  leaving each  state,  corresponding  to  each  distinct  input  block.  For  a  (n,  1 , m).  code,  there are  just  two  branches  leaving  each  state,  and  each  branch  is  labelled  with  a  pair (input  1-bit)/(output   n-bits). 

Example  10.22  Consider  the  (n = 2 , k = 1 , m = 3 ). encoder  shown  in  Fig. 10.2. 

The  corresponding  state  diagram  is  shown  in  Fig. 10.6.  The  encoder  has  eight  states labelled as 000, 001.,  010,  011, 100.,  101,  110, and 111,  in which each  state represents the  contents  of  the  shift  register.  There  are  two  possible  branches  leaving  each  state, corresponding  to  the  two  possible  values  of  the  message  symbol. 
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Fig.  10.6  State  diagram  of  the  encoder  illustrated  in  Fig. 10.2,  in  which  the  labels  indicated  on  the branches  represent  pairs  (input  1-bit/output  2-bits) 

Given  the  current  encoder  state,  the  input  information  sequence  determines  both the  path  through  the  state  diagram  and  the  associated  output  sequence.  Some  new blocks  of   k inputs  cause  a  transition  to  a  new  state;  however,  for  some  blocks  of   k inputs,  a  state  transition  does  not  occur,  and  the  state  remains  the  same.  For  example, in Fig. 10.6,  each  new  input  block  causes  a  transition  to  a  new  state,  except  for  state 000  when  the  input  is  a  0  and  for  state  111  when  the  input  is  a  1. 

 10.7.5 

 Trellis  Diagram 

A  trellis  diagram  is  obtained  from  a  state  diagram  by  drawing  all  possible  state transitions  and  writing  the  respective  input/output  sequences  expanded  in  time (Viterbi  and  Omura  1979;  Lin  and  Costello  2004).  As  an  example,  consider the  trellis  diagram  in  Fig. 10.8  for  the  ( 2 ,  1 ,  2 ).  code  illustrated  in  Fig. 10.7  with polynomial  generator  matrix: 





. G (D) = 1 +  D 2

1 +  D +  D 2  , 

and  an  information  sequence  of  length  L = 5..  The  trellis  diagram  contains  L+ m+1. 

time  units  or  levels  which  are  labelled  from  0  to  L +  m. as  indicated  in  Fig. 10.8. 

Considering  that  the  encoder  initial  state  is  00  and  that  the  final  state  is  also  00,  the encoder  uses  the  first   m time  units  to  be  able  to  reach  any  state  in  its  trellis  diagram and  uses  the  last   m time  units  to  return  to  the  state  00.  Consequently,  not  all  states can  be  reached  neither  in  the  first   m time  units  nor  in  the  last   m time  units.  However, all  states  are  reachable  in  the  center  part  of  the  trellis,  where  each  time  unit  contains a  replica  of  the  state  diagram.  There  are  two  branches  leaving  and  two  branches entering  each  state.  The  dotted  branches  represent  input  symbols  equal  to  1  and  the continuous  branches  represent  input  symbols  equal  to  0. Each branch is labelled
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Fig.  10.7  FIR  non-systematic  code  used  for  constructing  the  trellis  in  Fig. 10.8 

Fig.  10.8  Trellis  diagram  for  the  encoder  in  Fig. 10.7. The  states  are  represented  by  00,  01,  10, and  11.  The  labels  indicated  on  the  branches  represent  the  encoder  outputs.  The  dotted  branches and  the  continuous  branches  represent  input  symbols  equal  to  1  and  equal  to  0,  respectively.  The numbers  in  boldface  below  the  trellis  represent  the  time  intervals  considered,  also  referred  to  as  the trellis  depth 

with  a  corresponding  encoder  output  block  v i.,  and  each  one  of  the  2 L. codewords  of length  N =  n(L +  m). is  represented  by  a  unique  path  in  the  trellis.  For  example,  the codeword  corresponding  to  the  information  sequence u =  ( 1 1 0 0 1 ). has  its  path highlighted  in  the  trellis  in  Fig. 10.9. 

Considering  the  general  case  of  a  (n, k, m). code  and  an  information  sequence  of length   kL,  there  are  2 k.  branches  leaving  and  2 k.  branches  entering  each  state  and 2 kL. distinct  paths  in  the  trellis  corresponding  to 2 kL. codewords. 

10.8 

Recursive  Systematic  Convolutional  Codes 

The  recursive  systematic  convolutional  (RSC)  codes  (Heegard  and  Wicker  1999; Vucetic  and  Yuan  2001; Berrou  and  Glavieux  1996),  also  called  infinite  impulse response  (IIR)  codes,  can  be  obtained  from  finite  impulse  response  (FIR)  codes  as shown  in  the  sequel. 
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Fig.  10.9  The  sequence  of  labels  (11  10  10  11  11  01  11)  on  the  highlighted  path  corresponds  to the  sequence  of  information  subblocks  ( 11001 ). 

In  a  systematic  (n, k, m).  convolutional  code,  the  first   k  output  sequences  are exact  replicas  of  the  input  information  sequences.  The  polynomial  generator  matrix of  a  systematic  convolutional  code  has  the  following  form:





. G (D) =

I P (D) , 

in  which  I. denotes  the  k ×  k. identity  matrix  and P (D). is  a  k ×  (n −  k). matrix.  In order  to  obtain  the  systematic  form  for  a  given  polynomial  generator  matrix  of  a convolutional  code,  it  is  necessary  first  to  define  an  equivalent  polynomial  generator matrix. 

Definition  10.23  Two  polynomial  generator  matrices  are  equivalent  when  they generate  the  same  convolutional  code. 

Example  10.24  Consider  the  polynomial  generator  matrix  for  the  encoder  in Fig. 10.7,  i.e., 





. G (D) =

1 +  D 2 1 +  D +  D 2  . 

The  code  sequence  for  this  encoder  is  given  by 

. V (D) = U (D)G (D)





= U (D)  1 +  D 2 1 +  D +  D 2





=

1 +  D +  D 2

U (D)( 1 +  D 2 )  1

(10.8)

1 +  D 2
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=

1 +  D +  D 2 

U (D)  1 

1 +  D 2

= U (D) G1 (D), 

in  which 





1 +  D +  D 2

. G1 (D) =

1

 , 

U (D) = U (D)T (D)

1 +  D 2

and 

. T (D) = 1 +  D 2 . 

The  set V (D). of  output  sequences  is  produced  by  the  product  of  the  set U (D). of input  sequences  by  the  generator  matrix G1 (D).,  as  well  as  by  the  product  of  the  set U (D). of  input  sequences  by  the  original  generator  matrix G (D).,  in  which 

. G (D) = T (D)G1 (D). 

The  two  generator  matrices G (D). and G1 (D). are  said  to  be  equivalent  if T (D). is invertible.  Matrix G1 (D). in  Example  10.24  is  in  systematic  form;  however,  its  parity entry  is  not  a  polynomial  but  rather  a  rational  function.  The  parity  sequence  output in  Eq. 10.8  is  obtained  by  the  multiplication  of  its  input  sequence  by  the  polynomial 1+ D+ D 2. and  division  by  the  polynomial 1+ D 2..  The  multiplication  operations  can be  performed  with  a  shift  register  without  feedback,  while  the  division  operations can  be  performed  with  a  shift  register  with  feedback.  The  entries  in  the  parity  sub-matrix of the generator  matrix of a RSC encoder  are rational functions in the variable D with  binary  coefficients;  in  other  words,  they  are  a  ratio  of  two  polynomials  with binary  coefficients.  A  rational  transfer  function  like  t his

 f 0 +  f 1 D + · · · +  fmDm

. 

 , 

1 +  q 1 D + · · · +  qmDm

can  be  implemented  with  the  circuit  shown  in  Fig. 10.10  (Johanneson  and  Zigangirov  1999)  as  part  of  an  encoder.  The  output   vj . in  Fig. 10.10  is  a  linear  function of  both  the  input  data  and  the  shift-register  contents.  The  shift-register  input  is  a function  of  both  its  input  data  and  its  contents.  At  time  instant   j  the output  vj . is given  by 

 m



.  vj =

 fiwj− i. 

 i=0

By  employing  the  polynomial  representation,  it  follows  that

10.8 Recursive Systematic Convolutional Codes
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Fig.  10.10  Circuit  for  implementing  the  f 0+ f 1 D+···+ fmDm 1+ q 1 D+···+ qmDm . rational  transfer  function 

∞



∞

 m



.  v(D) =

 vj Dj =

 fiwj− iDj

 j =−∞

 j =−∞  i=0





∞



 m



=

 fiDi wsDs =  f (D)w(D), 

(10.9) 

 s=−∞

 i=0

in  which  j −  i. was  replaced  by   s and  f (D). and  w(D). are  compact  representations for 

.  f (D) =  f 0 +  f 1 D + · · · +  fmDm, 

and 

∞



.  w(D) =

 wsDs. 

 s=−∞

From  Fig. 10.10, it  follows  that 

 m



.  wj =  uj +

 qiwj− i, 

 i=1

or,  equivalently,  supposing  q 0 = 1.,  we  ha  ve

 m



.  uj =

 qiwj− i. 

 i=0

By  repeating  the  steps  employed  to  obtain  Eq. 10.9,  we  ha  ve

.  u(D) =  q(D)w(D), 

(10.10)
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in  which 

∞



.  u(D) =

 uj Dj , 

 j =−∞

and 

.  q(D) = 1 +  q 1 D + · · · +  qmDm. 

By  combining  Eq. 10.9  and  Eq. 10.10,  it  follows  that f (D)

 f 0 +  f 1 D + · · · +  fmDm

.  v(D) =  u(D)

=  u(D)

 . 

(10.11) 

 q(D)

1 +  q 1 D + · · · +  qmDm

Let 

.  g(D) =  f (D)

 q(D)

in  Eq. 10.11, then 

.  v(D) =  u(D)g(D). 

The  function  g(D). is  called  a  rational  transfer  function.  In  general,  a  matrix G (D). 

the  inputs  of  which  are  rational  functions  is  called  a  matrix  of  rational  transfer functions.  The  matrices  of  rational  transfer  functions  associated  with  the  encoders in  Figs. 10.3  and  10.5,  respectively,  are 





. G (D) =

1 1+ D+ D 2

 , 

1+ D 2





G (D) = 1+ D 2 1+ D+ D 2  . 

1+ D

1+ D

10.9 

Punctured  Convolutional  Codes 

In  certain  applications,  there  is  a  need  to  vary  the  rate  of  a  convolutional  code without  altering  the  structure  of  the  encoder.  In  this  situation,  the  code  rate  is  altered by  not  transmitting  certain  parity  symbols  in  the  codeword  or,  in  other  words,  by puncturing  the  original  code  (Vucetic  and  Yuan  2001; Clark  Jr.  and  Cain  1981). The main  reason  for  constructing  punctured  codes  is  the  fact  that  their  respective  trellises possess  a  structure  which  is  simpler  than  the  corresponding  non-punctured  codes, thus  allowing  a  simplification  when  implementing  the  Viterbi  algorithm  at  the  cost of  a  small  increase  in  the  bit  error  probability. 

10.9 Punctured Convolutional Codes
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Punctured  codes  are  convolutional  codes  with  parameters  (n, k, m).,  obtained  in general  from  a  convolutional  code  with  parameters  (n,  1 , m)..  It  is  possible  to  explain the  construction  of  a  punctured  convolutional  code  by  means  of  an  example. 

Example  10.25  Consider  the  encoder  shown  in  Fig. 10.7,  with  polynomial  generator  matrix: 





. G (D) =

1 +  D 2 1 +  D +  D 2  , 

and  trellis  diagram  illustrated  in  Fig. 10.8.  For  each  four  output  symbols,  one  output symbol  is  punctured  (or  extracted),  and  so  the  encoder  will  output  three  symbols  for every  two  input  information  symbols.  The  resulting  punctured  code  has  asymptotic rate 2 / 3..  The  trellis  diagram  for  this  code  is  shown  in  Fig. 10.11, in  which  ×. 

indicates  a  punctured  symbol.  The  set  of  code  sequences  produced  by  this  punctured code  is  identical  to  the  set  of  code  sequences  generated  by  the  code  with  asymptotic rate 2 / 3. and  polynomial  generator  matrix: 





1 +  D  1 +  D

1

. G (D) =

 , 

0

 D

1 +  D

for  which  the  encoder  and  trellis  diagram  are  illustrated  in  Figs. 10.12  and  10.13, 

respectively.  It  is  noticed  that  the  trellis  illustrated  in  Fig. 10.13  is  more  complex than  that  for  the  punctured  code  illustrated  in  Fig. 10.11, since  a  maximum  of  four branches  enter  each  state  instead  of  only  two  branches  as  in  the  punctured  code trellis.  As  a  result,  the  encoding  and  decoding  operations  are  more  complex.  The Fig.  10.11  Trellis  diagram  for  the  punctured  code  obtained  from  the  code  with  polynomial generator  matrix  G(D) =

1 +  D 2 1 +  D +  D 2  . . For  each  four  output  symbols,  one  output symbol  is  punctured  (or  extracted),  and  in  this  manner,  the  encoder  will  output  three  symbols  for every  two  input  information  symbols.  The  resulting  punctured  code  has  asymptotic  rate 2 / 3. 
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Fig.  10.12  Encoder  for  a  rate 

2 / 3. code 

Fig.  10.13  Trellis  for  the  encoder  illustrated  in  Fig. 10.12 

symbols  to  be  extracted  from  the  code  are  indicated  in  the  trellis  in  Fig. 10.11  and can  be  described  by  the  following  puncturing  table: 





1 0

. P =

 , 

1 1

in  which  a “0. in  the  puncturing  table  means  that  the  corresponding  code  symbol is  not  transmitted.  In  Example  10.27,  the  first  symbol  of  the  label  in  every second  branch  is  not  transmitted.  In  general,  a  punctured  convolutional  code  with asymptotic  rate  p/q. can  be  constructed  from  a  convolutional  code  with  parameters (n,  1 , m). after  puncturing  np −  q. symbols  from  each   np symbols  corresponding  to p input  information  symbols.  The  convolutional  code with parameters  (n,  1 , m). is called  the  mother  code  and  is  specified  by  the  following  generator  matrix: 





. 

g ( 1 )g ( 2 ) . . . g (n) . 

1

1

1
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The  symbols  to  be  punctured  are  specified  in  a  puncturing  table  P.,  i.e., 

⎡

⎤

 p

⎢ 11  p 12 · · ·  p 1 j · · ·  p 1 p

⎢

⎥

 p

⎢ 21  p 22 · · ·  p 2 j · · ·  p 2 p ⎥

⎢  . 

 . 

⎥

 . 

 . 

 . 

⎢  . 

⎥

 . 

 .. 

 . . .. · · ·  .. ⎥

. P = ⎢

⎢

⎥  , 

⎢  pi 1  pi 2 · · ·  pij · · ·  pip ⎥

⎢

⎥

 . 

 . 

 . 

 . 

⎣  . 

 . 

⎥

 . 

 .. 

 . . .. · · ·  .. ⎦

 pn 1  pn 2 · · ·  pnj · · ·  pnp

in  which  pij ∈ {0 ,  1}., 1 ≤  i ≤  n.,  and 1 ≤  j ≤  p..  The  puncturing  operation is  performed  periodically  at  each   np  code  symbols  and   p is  called  the  puncturing period. 

10.10 

Decoding  Convolutional  Codes 

At  present,  in  most  practical  applications  of  convolutional  codes,  the  Viterbi algorithm  (VA)  (Viterbi  1967;  Viterbi  and  Omura  1979)  is  employed  for  decoding. 

This  preference  comes  from  the  fact  that  the  bit  error  rate  at  the  output  of  a  Viterbi decoder  is  considered  adequate  in  such  applications.  Lower  bit  error  rates  however may  call  for  a  sequential  decoder.  As  mentioned  earlier,  the  VA  performs  maximum likelihood  decoding  and  benefits  from  the  trellis  structure  of  convolutional  codes. 

On  receiving  a  sequence  of  convolutionally  encoded  symbols  contaminated  by noise,  at  the  decoder,  the  VA  estimates  the  most  likely  sequence  path  through  the corresponding  code  trellis. 

The  scope  of  this  chapter  and  the  limited  space  available  do  not  allow  us  to address  the  VA  decoding  of  convolutional  codes  at  its  deserved  depth.  However, the  interested  reader  now  has  available  a  wide  choice  of  publications  covering  the Viterbi  algorithm  as,  for  example,  references  Viterbi  and  Omura  (1979), Lin  and Costello  (2004),  and  Johanneson  and  Zigangirov  (1999),  to  name  a  few. 

In  the  following,  we  present  the  original  BCJR  algorithm  (Bahl  et  al. 1974)  and the  modified  BCJR  algorithm  (Berrou  and  Glavieux  1996),  both  of  which  minimize the  bit  error  probability,  recalling  that  the  VA  algorithm  minimizes  the  block  error probability. 

 10.10.1 

 The  BCJR  Algorithm 

The  Viterbi  algorithm  (Lin  and  Costello  2004;  Michelson  and  Levesque  1985; Johanneson  and  Zigangirov  1999)  provides  an  optimum  decoding  method  in  the sense  that  it  minimizes  the  probability  of  error  per  block  for  convolutional  codes
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contaminated  by  additive  white  Gaussian  noise.  The  Viterbi  algorithm  does  not necessarily  minimizes  the  probability  of  error  per  symbol.  An  algorithm  which minimizes  the  probability  of  error  per  symbol  was  proposed  in  1974  by  Bahl,  Cocke, Jelinek,  and  Raviv  and  became  known  as  the  BCJR  decoding  algorithm  (Bahl  et  al. 

1974). The  BCJR  algorithm  was  later  modified  (Berrou  and  Glavieux  1996)  to  be used  with  recursive  convolutional  encoders  and  was  used  for  decoding  turbo  codes in  mobile  communication  (3G systems1 ).  Both  the  original  BCJR  algorithm  and the  modified  BCJR  algorithm  (Berrou  and  Glavieux  1996;  Thitimajshima  1993)  are addressed  in  the  sequel. 

 10.10.2 

 The  Original  BCJR  Algorithm 

Without  loss  of  essential  generality,  consider  a  systematic  convolutional  encoder with  asymptotic  code  rate  of 1 / 2.  and   M  states.  The  corresponding  sequence  of input  information  symbols  is  denoted  as

. u = u N = { u

1

1 , u 2 , . . . , uk , . . . , uN } . 

The  associated  encoded  output  sequence  is  denoted  as 

. v = v N = {v

1

1 , v2 , . . . , v k , . . . , v N } , in  which v k =  (v( 1 ), v( 2 )) =  (u

 )

 k

 k

 k , v( 2 )

 k

.  is  the  output  block  associated  with  an 

information  symbol,  v( 2 )

 k .  is  the  non-systematic  encoder  output,  and  v N

1 .  is  fed  as 

input  to  a  memoryless  channel  contaminated  by  additive  white  Gaussian  noise  the output  of  which  is  the  received  sequence 

. r = r N = {r

1

1 , r2 , . . . , r k , . . . , r N } , in  which r k =  (xk, yk)..  The  random  variables   xk. and   yk. at  time  instant   k are  defined by  the  following  equations:

.  xk =  ( 2 uk − 1 ) +  ik. 

(10.12) 

 yk  =  ( 2 v  ( 2 ) − 1 ) +  q

 k 

 k , 

(10.13) 

in  which   ik. and   qk. are  two  independent  noise  samples  with  identical  variance   σ  2.. 

1  The  evolution  of  technology  for  mobile  communication  has  moved  from  turbo  codes  (3G 

systems),  the  decoding  of  which  is  based  on  the  BCJR  algorithm  (Berrou  and  Glavieux  1996), 

to  LDPC  (4G  systems)  (Gallager  1963;  Tanner  1981;  MacKay  1999), and  now,  5G  systems,  which employ  LDPC  codes  on  the  coding  scheme  for  the  data  channel  and  Polar  Codes  (Arikan  2009), 

are  used  on  the  coding  scheme  for  the  control  channel. 

10.10 Decoding Convolutional Codes
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The  BCJR  algorithm  starts  by  computing  the  log-likelihood  ratio  (uk). associated  with  each  information  symbol  as  follows: 





 P { uk = 1|r}

.  (uk ) = log

 , 

(10.14) 

 P { uk = 0|r}

in  which  P { uk =  i|r}.,  i ∈ {0 ,  1}.,  is  the   a posteriori  probability  of  the  i nformation symbol  uk..  Considering 1 ≤  k ≤  N.,  where   N  denotes  the  length  of  the  received sequence r.,  the  decoder  decides  that ˆ uk = 1.,  if    P { uk = 1|observation} ≥

 P { uk = 0|observation}.;  otherwise,  it  decides  that ˆ uk = 0..  This  decision  rule  can  be expressed  as  follows: 

≥ 0 : ˆ uk = 1 , 

.  (uk )

 <  0 : ˆ uk = 0 . 

The  modulo  of  (uk).  represents  the  soft-decision  information  associated  with the  hard-decision  value  (0  or  1)  estimated  for   uk..  The  state  of  the  encoder  at  the k th  time  interval  is  given  by   Sk..  The   a posteriori  probability  of  each  information symbol  can  be  extracted  from  the  joint  probability  λi (m)

 k

. defined  as 

.  λi (m) =  P { u

}

 k

 k =  i, Sk =  m|r N

1

 p{ u

}

=

 k =  i, Sk =  m, r N

1

 , 

(10.15) 

 p{r N }

1

in  which  p{r N }

1 . represents  the  probability  density  function  of  r N

1 ..  Therefore,  the   a 

 posteriori  probability  of  the  information  symbol   uk. is  given  by M−1



.  P { uk =  i|r N } =

 λi (m), 

 i ∈ {0 ,  1} . 

1

 k

 m=0

Thus,  the  log-likelihood  ratio  in  Eq. 10.14  can  be  written  as M−1  λ 1 (m)

 m=0

 k

.  (uk ) = log



 . 

(10.16) 

 M−1  λ 0 (m)

 m=0

 k

From  Eq. 10.15  and  Eq. 10.16, it  follows  that 





 , r

}

 m

 m  p{ uk = 1 , Sk =  m, Sk−1 =  m , r k−1

1

 k , r N

 k+1

.  (uk ) = log



 . 

 , r

}

 m

 m  p{ uk = 0 , Sk =  m, Sk−1 =  m , r k−1

1

 k , r N

 k+1

(10.17)
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By  taking  into  account  the  fact  that  events  after  time  instant   k are  not  influenced  by the  observation r k 1. and  by  bit   uk. whenever  state   Sk. is  known,  it  follows  that 



| S

}

 m

 m  p{r N

 k+1

 k =  m} p{ Sk−1 =  m , r k−1

1

.  (uk ) = log



| S

}

 m

 m  p{r N

 k+1

 k =  m} p{ Sk−1 =  m , r k−1

1



×  p{ uk = 1 , Sk =  m, r k| Sk−1 =  m}  . 

(10.18) 

 p{ uk = 0 , Sk =  m, r k| Sk−1 =  m}

By  introducing  the  following  probability  functions 

.  αk (m) =  p{ Sk =  m, r k } , 

1

 βk(m) =  p{r N | S

 k+1

 k =  m} , 

 γi(r k, m , m) =  p{ uk =  i, Sk =  m, r k| Sk−1 =  m} , it  follows  that 





 m

 m  γ 1 (r k , m , m)αk−1 (m )βk (m)

.  (uk ) = log



 , 

(10.19) 

 m

 m  γ 0 (r k , m , m)αk−1 (m )βk (m) in  which  αk(m).,  for  k = 1 ,  2 , . . . , N.,  can  be  computed  in  a  recursive  manner  by means  of 

 M−1



.  αk (m) =

 p{ Sk−1 =  m , Sk =  m, r k}

1

 m=0

 M−1



=

 p{ Sk−1 =  m , r k−1} p{ S

}

1

 k =  m, r k | Sk−1 =  m , r k−1

1

 m=0

 M−1



=

 p{ Sk−1 =  m , r k−1} p{ S

1

 k =  m, r k | Sk−1 =  m}. 

(10.20) 

 m=0

1

 M−1



= 

 p{ Sk−1  =  m , r k−1 } p{ u

1 

 k  =  i,   Sk  =  m,  r k | Sk−1  =  m} 

 i=0   m=0 

1

 M−1



= 

 αk−1 (m )γi(r k, m , m). 

(10.21) 

 i=0   m=0 

Equality  in  Eq. 10.20  follows  from  the  fact  that  events  after  time  k − 1.  are  not influenced  by r k−1

1

.  whenever  Sk−1.  is  known.  Considering  that  the  code  trellis  is 

initialized  at  state  S 0 = 0.,  the  boundary  conditions  are  as  follows:
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.  α 0 (0 ) = 1 and  α 0 (m) = 0 ,  for  m = 0 . 

(10.22) 

Similarly,  for  k = 1 ,  2 , . . . , N − 1.,  βk(m).  can  also  be  calculated  in  a  recursive manner  as 

 M−1



.  βk (m) =

 p{ Sk+1 =  m , r N | S

 k+1

 k =  m}

 m=0

 M−1



=

 p{ Sk+1 =  m , r k+1| Sk =  m} p{r N | S

 k+2

 k =  m, Sk+1 =  m , r k+1}

 m=0

 M−1



=

 p{ Sk+1 =  m , r k+1| Sk =  m} p{r N | S

 k+2

 k+1 =  m}

 m=0

1

 M−1



=

 p{ uk+1 =  i, Sk+1 =  m , r k+1| Sk =  m} p{r N | S

 k+2

 k+1 =  m}

 i=0  m=0

1

 M−1



=

 γi(r k+1 , m, m )βk+1 (m ). 

(10.23) 

 i=0  m=0

The  appropriate  boundary  conditions  when  the  decoder  is  guided  to  terminate  at state  0.,  i.e.,  SN = 0.,  are  the  following: 

.  βN (0 ) = 1 and  βN (m) = 0 ,  for  m = 0 . 

(10.24) 

When  the  final  decoder  state  in  unknown,  the  appropriate  boundary  conditions (Berrou  and  Glavieux  1996)  ar  e

.  βN (0 ) = 1 /M  and  βN (m) = 0 ,  for  m = 0 . 

(10.25) 

The  probabilities  γi(r k, m , m). can  be  determined  from  the  transition  probabilities of  the  channel  contaminated  with  additive  white  Gaussian  noise  and  the  transition probabilities  of  the  encoder  trellis  as 

.  γi (r k , m , m) =  P { Sk =  m| Sk−1 =  m} p{r k| uk =  i, Sk =  m, Sk−1 =  m}

 P { uk =  i| Sk =  m, Sk−1 =  m} . 

(10.26) 

The  transition  probabilities  P { Sk =  m| Sk−1 =  m}.  are  defined  by  the   a priori probabilities  of  the  input  bits.  When  the  input  bits  are  equiprobable,  i.e.,  P { uk =

1} =  P { uk = 0} = 1 / 2.,  then  P { Sk =  m| Sk−1 =  m} = 1 / 2..  The  probability P {r k| uk =  i, Sk =  m, Sk−1 =  m}.  is  the  transition  probability  of  the  channel contaminated  with  additive  white  Gaussian  noise  and  can  be  written  as
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.  p{r k | uk =  i, Sk =  m, Sk−1 =  m} =  p{r k|v k} , (10.27) 

in  which 

 n−1



 (j )

 (j )

.  p{r k |v k } =

 p{ r

| v } , 

 k

 k

 j =0

and 





 (j )

 (j )

 (j )

 (j )

 (r

−  v ) 2

 k

 k

.  p{ r

| v } =

1

√

exp −

 , 

 k

 k

2 π σ

2 σ  2

thus 





 (j )

 (j )

 (j )

 (r

+ 1 ) 2

 k

.  p{ r

| v

= −1} =

1

√

exp −

 , 

 k

 k

2 π σ

2 σ  2





 (j )

 (j )

 (j )

 (r

− 1 ) 2

 k

.  p{ r

| v

= +1} =

1

√

exp −

 . 

 k

 k

2 π σ

2 σ  2

The  probability  P { uk =  i| Sk =  m, Sk−1 =  m ). is  either  equal  to  0  or  1  since  the convolutional  encoder  is  a  deterministic  machine.  The  expression  for  γi(r k, m , m). 

can  be  written  as 

⎧





⎨

 n−1

 (j )

 (j )

 (r

− v ) 2

 P { u

 j =0

 k

 k,i

 k =  i} exp

−

for  m, m ∈  Bik

.  γi (r k , m , m) =

2 σ  2

⎩ 0 , 

otherwise, 

(10.28) 

 (j )

in  which  vk,i . is  the  encoder  output  associated  with  the  transition  of  state  Sk−1 =  m. 

to  state  Sk =  m. and  input  uk =  i. and   Bik. denotes  the  set  of  state  transitions  from Sk−1 =  m. to  Sk =  m. caused  by  the  input  bit  uk =  i..  Substituting  γi(r k, m , m). 

from  Eq. 10.28  into  Eq. 10.19,  we  have  for  (uk). the  following: 

⎧





⎫

⎪ 

 n−1

 (j )

 (j )

⎪

 (r

− v ) 2

⎨

−  j=0  k

 k,  1

 α

⎪

⎪

 m

 m  P { uk = 1} exp

⎬

2 σ  2

 k−1 (m )βk (m)

.  (uk ) = log ⎪





 . 

⎪

 n−1

 (j )

 (j )

⎩ 

⎪

−

 (r

− v ) 2

 j =0

 k

 k,  0

⎪

 α


⎭

 m

 m  P { uk = 0} exp

2 σ  2

 k−1 (m )βk (m)

(10.29) 

In  order  to  simplify  notation,  we  make  P { uk =  i} =  pk(i). in  Eq. 10.29  and  write
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⎧





⎫

⎪ 

 n−1

 (j )

 (j )

⎪

 (r

− v ) 2

⎨

−  j=0  k

 k,  1

 α

⎪

⎪

 m

 m  pk ( 1 )  exp

⎬

2 σ  2

 k−1 (m )βk (m)

.  (uk ) = log ⎪





 , 

⎪

 n−1

 (j )

 (j )

⎩ 

⎪

−

 (r

− v ) 2

 j =0

 k

 k,  0

⎪

 α

⎭

 m

 m  pk ( 0 )  exp

2 σ  2

 k−1 (m )βk (m)

(10.30) 

for  (m, m ) ∈  Bik.,  where  it  is  assumed  that  in  Eq. 10.29  and  10.30  that  the  numerator contemplates  all  state  transitions  from  Sk−1 =  m. to  Sk =  m. which  are  caused  by the  input  bit  uk = 0.,  (m, m ∈  B 0 )

 k .  and  the  denominator  contemplates  all  state 

transitions  from  Sk−1 =  m. to  Sk =  m. which  are  caused  by  the  input  bit  uk = 1. 

 (m, m ∈  B 1 )

 k .. 

Summarizing,  the  steps  for  the  BCJR  algorithm  to  be  executed  are  as  follows: 1.  Initial  conditions  for  α 0 (m). and  βN (m). are  presented  in  Eq. 10.22  and  Eq. 10.24 

or  Eq. 10.25. 

2.  When  r k.  is  received,  the  decoder  computes  γi(r k, m , m).  using  Eq. 10.28  and computes  αk(m). using  Eq. 10.21. The  values  of  αk(m). are  stored,  for  all   k and m . 

3.  After  the  complete  sequence  r N

1 .  is  received,  the  decoder  recursively  computes 

 βk(m). using  Eq. 10.23. The  value  computed  for  βk(m). is  then  multiplied  by  the appropriate  αk(m). and  γi(r k, m , m). to  obtain  Eq. 10.30. 

Example  10.26  Consider  a  coding  system  employing  a  RSC  ( 2 ,  1 ,  1 ). with  polynomial  generator  matrix: 





. G (D) =

1

1

 . 

1+ D

The  corresponding  trellis  is  illustrated  in  Fig. 10.14.  The  BPSK  modulation  is assumed  and  Eb = 2

 N

. dB,  where   Eb. denotes  the  signal  energy  per  bit  and   N 0. denotes 0

the  noise  power.  The  transmitted  information  sequence  is 

. u =  ( 001101 ), 

and  the  received  code  sequence  is 

. r =  (r1 , r2 , r3 , r4 , r5 , r6 , r7 ), Fig.  10.14  Trellis 

constructed  with  the 

polynomial  generator  matrix 





 G(D) = 1 1

1+ D . 
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Table  10.3  Parameters  α, β, γ .,  an  d  . after  the  BCJR  algorithm  is  applied  to  decode  codewords from  a  RSC  (2,1,1)  with  polynomial  generator  matrix  G(D) =

1

1

1+ D ..  Values  are  rounded  off 

to  four  decimal  places  due  to  space  limitations 

 k

1

2

3

4

5

6

7 

 uk. 

0

0

1

1

0

1

– 

 xk. 

−.0.0236

−.2.1084 

0.7163 

1.4271

−.1.4689 

0.7887 

0.2671 

 yk. 

−.1.5870

−.1.0626 

0.2762 

0.2771

−.1.7265 

1.5689

−.2.0307 

 γ 0 (r k,  0 ,  0 ). 

0.2071

0.2165

0.0224 

0.0030 

0.3009

0.0006 

0.0816 

 γ 0 (r k,  1 ,  1 ). 

0.0278

0.0121

0.0474 

0.0064 

0.0028

0.0457 

0.0003 

 γ 1 (r k,  0 ,  1 ). 

0.0026

0

0.3317 

0.3097 

0

0.3893 

0.0007 

 γ 1 (r k,  1 ,  0 ). 

0.1942

0.0007

0.1566 

0.1459 

0.0056

0.0055 

0.1687 

 αk( 0 ). 

0.2071

0.0448

0.0010 

0.0022 

0.0007

0

0 

 αk( 1 ). 

0.0026

0

0.0149 

0.0004 

0

0.0002 

0 

 βk( 0 ). 

0.0001

0.0002

0.0001 

0.0099 

0.0329

0.0408 

0.5 

 βk( 1 ). 

0

0.0001

0.0014 

0.0002 

0.0041

0.0843 

0 

 k(uk). 

−.8.7332

−.9.5391 

5.4428 

6.0920

−.5.6578 

6.8868 

– 

ˆ uk. 

0

0

1

1

0

1

– 

in  which  the  values  of   xk. and   yk. obtained  from  Eq. 10.12  and  Eq. 10.13,  respectively, are  presented  in  Table  10.3. Our  goal  here  is  to  compute  both  the  hard  output  and  the soft  output  from  the  BCJR  decoder.  After  feeding  the  complete  input  sequence,  one more  bit  is  fed  to  the  encoder  so  as  to  have  an  information  sequence  of  length  6  bits and  an  output  sequence  of  length  14  bits.  The  last  bit  appended  to  the  information sequence  was  not  intended  to  reach  state  0. in  the  trellis;  for  this  reason,  the  boundary conditions  used  for  βN (m). were 

.  β 7 (0 ) = 0 .  5  and

 β 7 (m) = 0 ,  for  m = 0 . 

The  asymptotic  code  rate  is 

.  R =

5

= 0 .  416 . 

10 + 2

The  white  Gaussian  noise  variance  is 

.  σ  2 =  N 0  . 

2

The  signal  to  noise  ratio  is 

.  SN R =  Es , 

 N 0

in  which   Es. denotes  the  signal  energy  per  block
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.  Es =  REb. 

The  variance  can  be  written  as  follows: 

.  σ  2 =

 Es

=

0 .  5

! "  , 

2 SN R

 R Eb

 N 0

and  substituting  the  value  for   Es. and  expressing   Eb

 N . in  dB,  we  have 

0

.  σ  2 =

0 .  5

 . 

0 .  416 ( 100 .  2 )

The  values  computed  at  time  instants  k = 1 ,  2 , . . . ,  7.  for  γi(r k, m , m).,  αk(m)., βk(m).,  and  k(uk). are  illustrated  in  Table  10.3. 

 10.10.3 

 The  Modified  BCJR  Algorithm 

When  the  original  BCJR  algorithm  is  used  with  a  RSC,  the  value  of  αk(m). decreases rapidly  as  the  value  of   k increases,  and  the  value of  βk(m). decreases  rapidly  as  the value  of   k diminishes  (see  Table 10.3),  consequently  making  it  difficult  to  compute the  value  of  (uk). in  Eq. 10.19. In  order  to  avoid  this  difficulty,  the  modified  BCJR 

algorithm  was  introduced  Berrou  et  al. (1993), Berrou  and  Glavieux  (1996), and Thitimajshima  (1993). 

Starting  from  (10.18)  and  introducing  the  probability  functions 

.  αk (m) =  P { Sk =  m|r k } , 

1

. 

(10.31) 

 p{r N  | Sk  =  m} 

 β

 k+1

 k (m) = 

 , . 

(10.32) 

 p{r N  |r k}

 k+1  1

 γi(r k,   m ,   m)  =  p{ uk  =  i,   Sk  =  m, r k| Sk−1 =  m} , (10.33) 

the  value  of  (uk). in  Eq. 10.19  can  be  obtained  by  recursively  computing  Eq. 10.31 

and  Eq. 10.32  as  explained  next.  From  Eq. 10.31, it  follows  that 

.  αk (m) =  P { Sk =  m|r k }

1

 p{ S

}

 p{ S

 , r

=

 k =  m, r k 1 =

 k =  m, r k−1

1

 k }

 p{r k}

1

 p{r k−1 , r

1

 k }

 p{ S

}

=

 k =  m, r k |r k−1

1

 . 

(10.34)

 p{r k|r k−1}

1
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The  numerator  in  Eq. 10.34  can  be  written  as  a  function  of  bit   uk. and  the  state  Sk−1. 

as  follows: 

1



.  p{ Sk =  m, r k |r k−1} =

 p{ u

}

1

 k =  i, Sk−1 =  m , Sk =  m, r k |r k−1

1

 m  i=0

1



=

 p{ uk =  i, Sk =  m, r k| Sk−1 =  m , r k−1}

1

 m  i=0

 P { Sk−1 =  m|r k−1}

1

1



=

 γi(r k, m , m)αk−1 (m ). 

(10.35) 

 m  i=0

Equation  10.35  results  from  the  fact  that  events  after  time  (k − 1 ). are  independent  of the  observation r k−1 , 

1

. if  Sk−1. is  known.  The  denominator  in  (10.34)  can  be  written as 

1



.  p{r k |r k−1} =

 p{ u

}

1

 k =  i, Sk =  m, Sk−1 =  m , r k |r k−1

1

 m

 m  i=0

1



=

 p{ uk =  i, Sk =  m, r k| Sk−1 =  m , r k−1}

1

 m

 m  i=0

 P { Sk−1 =  m|r k−1}

1

1



=

 γi(r k, m , m)αk−1 (m ). 

(10.36) 

 m

 m  i=0

Finally,  the  probability  αk(m). can  be  written  as  a  function  of  αk−1 (m). by  employing Eq. 10.35  and  Eq. 10.36, i.e., 

1

 m

 i=0  γi (r k , m , m)αk−1 (m )

.  αk (m) =  



 . 

(10.37) 

1

 m

 m

 i=0  γi (r k , m , m)αk−1 (m )

In  a  similar  manner,  it  follows  that  βk(m). can  be  computed  recursively,  and  from Eq. 10.32,  it  follows  that 

 p{r N | S

 k+1

 k =  m}

.  βk (m) =

 p{r N |r k}

 k+1 1
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1 

 , r

=

 m

 i=0   p{ uk+1  =  i,   Sk+1  =  m ,  r N 

 k+2

 k+1| Sk  =  m}  . 

 p{r N  |r k}

 k +1 1

(10.38) 

The  numerator  in  Eq. 10.38  can  equivalently  be  written  as 1



 p{r N | S

 p{r N | S

 k+1

 k =  m} =

 k+2

 k+1 =  m}

 m  i=0

. 

×  p{ uk+1 =  i, Sk+1 =  m , r k+1| Sk =  m}

1



=

 γi(r k+1 , m, m )βk+1 (m )p{r N |r k+1} . 

 k+2 1

 m  i=0

Also,  βk(m). can  equivalently  be  written  as 

1

 m

 i=0  γi (r k+1 , m, m )βk+1 (m )

.  βk (m) =

 . 

(10.39) 

 P {r k+1|r k}

1

Substituting   k by  k + 1. in  Eq. 10.36, the  denominator  in  Eq. 10.39  becomes 1



.  p{r k+1|r k} =

 γ

1

 i (r k+1 , m , m)αk (m ). 

 m

 m  i=0

Finally,  the  probability  βk(m). can  equivalently  be  written  as  a  function  of  βk+1 (m ). 

by  employing  the  following  relation: 

1

 m

 i=0  γi (r k+1 , m, m )βk+1 (m )

.  βk (m) =  



 . 

(10.40) 

1

 m

 m

 i=0  γi (r k+1 , m , m)αk (m )

The  modified  BCJR  algorithm  follows  steps  similar  to  the  original  BCJR 

algorithm: 

1.  Initial  conditions  α 0 (m).  and  βN (m).  are  given  in  Eq. 10.22  and  Eq. 10.24  or Eq. 10.25. 

2.  When  r k.  is  received,  the  decoder  computes  γi(r k, m , m).  using  Eq. 10.26  and computes  αk(m). using  Eq. 10.37.  The  values  of  αk(m). are  stored  for  all   k and   m . 

3.  After  the  complete  r N

1 .  sequence  is  received,  the  decoder  recursively  computes 

 βk(m).  using  Eq. 10.40.  The  value  computed  for  βk(m).  is  multiplied  by  αk(m). 

and  the  appropriate  γi(r k, m , m). to  obtain  (uk). as  given  in  Eq. 10.19. 

Example  10.27  We  now  solve  Example  10.26  by  employing  the  modified  BCJR 

algorithm.  The code  considered  is a RSC  ( 2 ,  1 ,  1 ). with polynomial  generator  matrix:
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Table  10.4  Parameters  α, β, γ .,  and  .  resulting  from  the  application  of  the  modified  BCJR 

algorithm  to  a  system  encoded  with  a  RSC  ( 2 ,  1 ,  1 ).  having  polynomial  generator  matrix G(D) =

1

1

1+ D ..  Values  are  rounded  off  to  four  decimal  places  due  to  space  limitations k

1

2

3

4

5

6

7 

 uk. 

0

0

1

1

0

1

– 

 xk. 

− 0 .  0236. 

− 2 .  1084.  0.7163 

1.4271

− 1 .  4689.  0.7887 

0.2671 

 yk. 

− 1 .  5870. 

− 1 .  0626.  0.2762 

0.2771

− 1 .  7265.  1.5689

− 2 .  0307. 

 γ 0 (r k,  0 ,  0 ). 

0.2071

0.2164

0.0224 

0.0030 

0.3009

0.0006 

0.0816 

 γ 0 (r k,  1 ,  1 ). 

0.0278

0.0121

0.0474 

0.0064 

0.0028

0.0457 

0.00033 

 γ 1 (r k,  0 ,  1 ). 

0.0026

0

0.3316 

0.3097 

0

0.3893 

0.0007 

 γ 1 (r k,  1 ,  0 ). 

0.1942

0.0007

0.1566 

0.1459 

0.0056

0.0055 

0.1687 

 αk( 0 ). 

0.9876

0.9991

0.0635 

0.8419 

0.9981

0.0017 

0.9980 

 αk( 1 ). 

0.0124

0.0009

0.9365 

0.1580 

0.0019

0.9983 

0.0019 

 βk( 0 ). 

1.0104

0.9988

0.0661 

1.1810 

0.9997

0.4834 

0.5000 

 βk( 1 ). 

0.0129

0.1713

1.0613 

0.0232 

0.1240

0.9989 

0 

 k(uk). 

− 8 .  7332. 

− 9 .  5391.  5.4428 

6.0920

− 5 .  6579.  6.8868

−. 

ˆ uk. 

0

0

1

1

0

1

−. 





. G (D) =

1

1

 . 

1+ D

The  received  value  of  r. is  the  same  as  that  in  Table  10.3. It  is  observed  in  Table  10.4 

that  the  values  of  γi(r k, m , m).  and  (uk).  are  the  same  as  in  Table  10.3.  The values of  αk(m).,  computed  according  Eq. 10.37, do  not  decrease  monotonically  as k increases.  The  values of  βk(m).,  computed  according  to  Eq. 10.40, do  not  decrease monotonically  as  the  values  of   k become  smaller  and  smaller . 

10.11 

Problems 

1.  Calculate  the  probability  that  an  error  pattern  will  not  be  detected  at  the  receiver when  a  ( 7 ,  3 ,  4 ).  m-sequence  code  is  employed  for  transmission  through  a  BSC 

with  probability  of  error   p,  p <  1 / 2.. 

2.  Calculate  the  block  error  rate  after  decoding  is  performed  on  a  received  word when  a  ( 7 ,  3 ,  4 ).  m-sequence  code  is  employed  for  transmission  through  a  BSC 

with  probability  of  error   p,  p <  1 / 2.. 

3.  Compute  the  Hamming  weight  of  the  vectors v1 =  ( 1 ,  0 ,  1 ,  0 ,  2 ).  and  v2 =

 ( 1 ,  1 ,  3 ,  0 ,  2 ). and  the  Hamming  distance  dH (v1 , v2 ).. 

4.  Consider  a  binary  (n, k, d). block  code  for  which   d is  an  odd  number.  Prove  that an  extended  (n + 1 , k, d + 1 ). code  results  when  an  overall  parity-check  digit  is appended  to  each  codeword  of  the  given  (n, k, d). code. 

5.  Construct  the  set  of  codewords  for  the  linear  binary  ( 7 ,  3 ,  4 ).  code  the  parity-check  digits  of  which  satisfy  the  following  expressions:
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 c 1 =  k 1 ⊕  k 2 , c 2 =  k 1 ⊕  k 3 , 

.  c 3 =  k 2 ⊕  k 3 , c 4 =  k 1 ⊕  k 2 ⊕  k 3 . 

6.  Consider  the  code  specified  in  Problem  2.10.11. Construct  the  generator  matrix and  the  parity-check  matrix  for  this  code. 

7.  Show  that  the  ( 2 m − 1 ,  2 m −  m − 1 ,  3 ).  binary  Hamming  code  is  capable  of correcting  any  two  erasures  per  codeword. 

8.  Consider  the  primitive  polynomial  p(x) =  x 3 +  x 2 + 1.  having   α.  as  a  root. 

Construct  a  table  with  the  elements  of  the  Galois  field GF ( 8 ).  expressed  as powers  of   α.. 

9.  Consider  the  primitive  polynomial  p(x) =  x 4 +  x 3 + 1.  having   α.  as  a  root. 

Construct  a  table  with  the  elements  of  the  Galois  field GF ( 16 ).  expressed  as powers  of   α.. 

10.  Determine  the  generator  polynomial  g(x). of  a  Reed-Solomon  code  over GF ( 8 ). 

with  minimum  distance  5,  having  the  binary  primitive  polynomial   p(x) =  x 3 +

 x + 1. as  a  factor  of  g(x).. 

11.  Suppose  a  ( 15 ,  5 ,  7 ). binary  BCH  code  is  required  to  have  the  roots   αi .,  1 ≤  i ≤

6.,  in  its  generator  polynomial  g(x)..  Determine  the  polynomial  g(x). satisfying this  root  composition  requirement. 

12.  Specify  three  parity-check  sums,  orthogonal  on  position   e 6.  for  the  ( 7 ,  3 ,  4 ). 

binary  cyclic   m-sequence  code  with  generator  polynomial   g(x) =  x 4 +  x 3 +

 x 2 + 1.. 

13.  The  ( 7 ,  4 ,  3 ). binary  cyclic  Hamming  code  is  threshold  decodable  in  two  steps. 

Consider  g(x) =  x 3 +  x 2 + 1. as  the  code  generator  polynomial  and  describe a  corresponding  two-step  decoding  algorithm.  Hint:  Look  at  the  code  parity-check  matrix  H.. 

14.  Consider  the  ( 15 ,  7 ,  5 ).  binary  BCH  code,  with  generator  polynomial   g(x) =

 m 1 (x)m 3 (x). =  (x 4 +  x + 1 )(x 4 +  x 3 +  x 2 +  x + 1 ).,  and  decode  the  received word  r(x) =  x +  x 9. with  the  BM  algorithm. 

15.  Decode  the  received  word  r(x) =  α 2 x 3. employing  the  BM  algorithm  with  the ( 7 ,  5 ,  3 ). RS  code  over GF ( 8 ). having  generator  polynomial   g(x) =  (x −  α)(x −

 α 2 ).. 

16.  Decode  the  received  word  r(x) =  α 2 x +  α 3 x 9. employing  the  BM  algorithm with  the  ( 15 ,  11 ,  5 ). RS  code  over GF ( 16 ). having  generator  polynomial   g(x) =

 (x −  α)(x −  α 2 )(x −  α 3 )(x −  α 4 ).,  and  consider   α. to  be  a  primitive  element  of GF ( 16 ).. 

17.  Decode  the  received  word  r(x) =  x 6 +  x 3. employing  the  Euclidean  frequency domain  decoder  with  the  binary  ( 7 ,  4 ,  3 ).  BCH  code  having  α, α 2.,  and   α 4.,  as roots  of  the  generator  polynomial,  and consider  α. to  be  a  primitive  element  of GF ( 23 ).. 

18.  Draw  the  state  diagram  and  trellis  for  the  (n, k, m) =  ( 2 ,  1 ,  1 ).  binary convolutional  code  with  polynomial  generator  matrix: 

. G = [1 1 +  D] . 
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Suppose  this  code  is  used  on  a  BSC  and  the  received  sequence  for  the  first  seven branches  is 11 10 11 01 11 01 00..  Sketch  the  decisions  on  a  trellis  diagram  and label  the  survivor’s  Hamming  distance  metric  at  each  node  level.  In  case  a  tie occurs  in  the  metrics  of  two  paths  converging  to  the  same  state  in  the  trellis, randomly  decide  between  the  upper  and  lower  paths  to  choose  the  survivor. 

19.  Draw  the  state  diagram  for  the  (n, k, m) =  ( 2 ,  1 ,  3 ). binary  convolutional  code with  polynomial  generator  matrix: 





. G =

1 +  D 3 1 +  D 2 +  D 3

and  write  the  codeword  corresponding  to  the  input  sequence 1 1 1 0 0 1 0.. 

20.  Apply  the  original  BCJR  algorithm  to  the  encoder  considered  in  Example  10.26 

with  the  input  data  given  in  Table  10.3  and  compute  k(uk)., 1 ≤  k ≤ 6.. 

21.  Apply  the  modified  BCJR  algorithm  to  the  encoder  considered  in  Example  10.27  with  the  input  data  given  in  Table  10.4, and  compute  k(uk)., 1 ≤  k ≤ 6.. 

[image: Image 14]

Chapter  11 

Computer  Networks 

 If  people  do  not  believe  that  mathematics  is  simple,  it  is  only 

 because  they  do  not  realize  how  complicated  life  is. 

 –   John von Neumann 

Computer  networks  have  become  ubiquitous  and  permeate  the  society.  They  are the  main  means  of  social  communication,  which  includes  voice,  data  and  video communication, and services, including electronic commerce, information search, 

distance learning, academic consultation, events, business, and malicious activities. 

A typical computer network, with the servers of network and users’ machines, is 

illustrated in Fig. 11.1. 

Computer networks differ from telephone networks, which dominated the second 

half of the twentieth century, in the switching technique used and in the transmission rates, because they employ packet switching, variable topology, and high transmission rates. Information routing is performed at each node in the system. 

The telephone networks, in turn, use exchanges with circuit switching; they have 

a  transmission  rate  limited  to  64  kbits/s,  for  fixed-line  telephony,  and  use  a  star topology, with the switches located in the center of the star (Hammond and O’Reilly 

1986). 

The purpose of this chapter is to present the concepts of data flow, queue models, structure  and  topology,  performance  measures,  traffic,  channel  capacity,  latency, protocols, and more representative architectures of computer networks. 

These concepts are quickly incorporated into the communication systems, in a 

way  that  its  intrinsic  data  traffic  characteristics  need  to  be  taken  into  account  in the design of the systems. In particular, the information presented in this chapter is essential  to  understand  how  common  activities  take  place,  such  as  sending  files, searching  for  information,  and  providing  telephony  via  the  computer  network, known as IP telephony. 
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Fig.  11.1  Example of a computer network (Marsi 2023) 

11.1 

Data  Flow  in  Computer  Networks 

The  performance  analysis  of  computer  networks  is  related  to  the  nature  and characteristics  of  the  data  stream,  which  in  computer  networks  is  typically  not uniform  and  random.  The  arrival  times  of  messages,  packets,  or  characters  are random. 

The time to process a message on the channel depends on the number of bits of 

the message, which can be random, so that the time also becomes a random variable. 

Efficiency, throughput, delay, and other parameters of interest are measures of how the network processes messages. 

Queuing theory, which encompasses the theory of telephone traffic, provides an 

important model for the analysis of quantitative performance, correlating the most interesting computer networks (Hayes 1986). 

A computer network can have thousands of servers, interconnected by thousands 

of  communication  channels,  usually  with  some  kind  of  cooperation  between  the servers and users. This makes capacity analysis a complex task. Therefore, designers use simpler parameters to be specified, such as flow (throughput) and latency. 

 11.1.1 

 Stationary  Data  Flow 

Several properties related to stationary flow of packets or messages can be derived regardless of the distributions of the parameters that define the flow. In the analysis of the data flow, it is assumed that the network stores the messages, in the sense that they cannot be created, destroyed, or modified by the network. 

11.1 Data Flow in Computer Networks
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Messages can only flow in or out of the network perimeter or can remain stored 

for certain of time on the network. The time spent in the network corresponds to 

the sum of the processing times of the packets by the servers. On each server, the message  needs  to  be  examined,  eventually  corrected,  and  then  routed  to  the  next destination. 

If  the  average  entry  rate  into  the  network  exceeds  the  exit  rate,  the  number  of stored messages is constantly increasing. On the other hand, if the average rate is higher than the input rate, the number of stored messages may decrease to zero. 

From these considerations, it was concluded that, for stable operation of network 

in steady state, the input and output rates must be equivalent. 

Consider  α(t). the number of incoming packets and  δ(t). the number of network outgoing  packets  in  a  certain  time  interval  ( 0 , t)..  The  difference  between  these quantities,  denoted  by  N (t).,  represents  the  increase  in  the  number  of  messages stored on the network in the given time interval: 

.  N (t ) =  α(t ) −  δ(t ). 

(11.1) 

The input rate, in a time interval  t., is defined as 

.  λt =  α(t ) . 

(11.2) 

 t

Another  measure  of  interest  is  the  total  time  that  all  messages  spend  on  the network: 





 t

 t

.  γ (t ) =

 N (x) d x =

 α(x) −  δ(x) d x. 

(11.3) 

0

0

Proceeding in this way, it is possible to find the average number of messages,  Nt ., on the network in the range  ( 0 , t).: 

 t

.  Nt = 1

 N (x) d x =  γ (t) . 

(11.4) 

 t

0

 t

The  average  time  spent  by  any  message  that  has  entered  in  the  range  ( 0 , t).  is given by 

.  Tt =  γ (t ) . 

(11.5) 

 α(t )

The previous formulas can be combined, taking the limit of each term, assuming 

that they remain finite, providing 

.  N =  λT , 

(11.6)
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which is known as Little’s law, in honor of Professor John Little, and establishes that the number of messages stored in a network is equal to the product of the rate of 

incoming messages to the network by the average time that these messages remain 

on the network, for a stationary system (Little 1961). 

Considering the network illustrated in Fig. 11.2, equipped with a unit of storage or  buffered  and  an  output  channel  with rate  C.  bits per  second,  it is assumed  that there are  λ. messages per second and that the average length of messages 1 /μ. bits per  message  and  the  traffic  intensity,  or  time  the  channel  is  busy,  is  given  by   ρ. 

(Alencar 2012). 

The average transmission or processing time is 1 /μC. seconds. This implies  μC. 

messages processed per second, so that the output rate can be expressed by 

.  λ =  ρμC

(11.7) 

or 

.  ρ =

 λ , 

(11.8) 

 μC

indicating  that  the  traffic  intensity  equals  the  arrival  rate,  divided  by  the  channel transmission rate. So that there are no messages left in the network, which would 

lead to unstable behavior, the arrival rate should be less or equal the channel average processing rate, then 0 ≤  ρ ≤ 1.. 

Little’s law  can be applied to a region which includes the buffer and the channel, providing 

.  N =  λT . 

(11.9) 

If the region involves only the buffer, which stores  Nq . messages on average for a period of  W . seconds, one has 

.  Nq =  λW. 

(11.10) 

As  T . is the sum of the average delays in the buffer and in the channel, one obtains 

.  T =  W +

1  . 

(11.11) 

 μC

A relationship can be obtained between  N . and  Nq . from the previous equation, multiplying the equality by  λ., which results in 

.  N =  Nq +  ρ. 

(11.12) 

Equation 11.12 expresses the number of messages stored in the network as the sum of the average quantity stored in the buffer,  Nq ., plus   ρ., which must represent the number of messages stored in the channel. 
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Fig.  11.2  The  network’s  theoretical  model.  The  top  figure  indicates  the  network  as  the  composition  of  a  buffer  memory  and  a  communication  channel  with  capacity   C..  The  lower  figures represent, respectively, (a) the network model as described earlier, (b) the network model with a region including the memory buffer and the channel and (c) the network model with the region that includes only the memory. (Adapted from Alencar 2012) 

11.2 

Queueing  Models 

Computer networks generally start out structured but typically evolve in an amor-

phous  way,  as  computational  demands  appear.  The  network  manager,  in  addition to dealing with keeping the system running and its security, needs to take care of network optimization, which involves knowledge of queuing theory (Whittle 2007; Leon-Garcia and Widjaja 2000). 
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Queuing theory provides adequate models for the quantitative analysis of system 

and  network  performance,  or  even  user  behavior,  and  allows  you  to  correlate important  parameters.  The  usual  notation  indicates  the  premises  for  the  input process, the server process, and the number of output channels (Kleinrock 1975). 

There are four different types of queue that can be listed as follows: 

Simple  queue  or  linear  queue 

For  this  kind  of  queue,  an  insertion  takes  place 

from one end, while the deletion occurs from another end. 

Circular  queue 

In this queue, all the nodes are represented in a circular format. It 

is similar to the linear queue except that the last element of the queue is connected to the first element. It is also known as ring buffer. 

Double-ended  queue 

A kind of queue in which the insertion and deletion can be 

done  from both  ends  of  the  queue  either  from  the  front  or  rear.  There  are  two types of priority queue that are presented in the following: 

Input  restricted  double-ended  queue 

In input restricted queue, the insertion 

operation can be performed at only one end, while deletion can be performed 

from both ends. 

Output  restricted  double-ended  queue 

In  the  output  restricted  queue,  the 

deletion operation can be performed at only one end, while insertion can be 

performed from both ends. 

Priority  queue 

A  type  of  queue  in  which  the  elements  are  arranged  based  on 

a  predefined  set  of  priorities.  There  are  two  types  of  priority  queue  that  are discussed as follows: 

Ascending  priority  queue 

In this case, the elements can be inserted in arbi-

trary  order,  but  only  the  one  with  smallest  priority  assgined  can  be  deleted first. 

Descending  priority  queue 

In  this  case,  the  elements  can  be  inserted  in 

arbitrary order, but only element with the largest priority can be deleted first. 

A  queue  is  a  non-primitive  linear  data  structure  that  allows  insertion  of  an element  at  one  end  and  deletion  of  an  element  at  the  other  end.  The  characteristics  that  define  a  queue,  for  simplicity,  are  described  using  the  notation  of the  English  mathematician  and  statistician  David  George  Kendall  (1918–2007), proposed in 1953 (Kendall 1953), and composed of a series of symbols of the form A/B/C/D/E/Q, in which: 

A 

Distribution of times between successive arrivals 

B 

Distribution of service times or attendance 

C 

Number of servers or service stations 

D 

Physical capacity of the system 

E 

Size of the population 

F 

Service discipline

11.2 Queueing Models
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The most common probability distributions that are used in queuing theory are:

• Exponential (  M.)

• Uniform (  U .)

• Arbitrary or general (  G.)

• Erlang type  k. (  Ek.)

• Hyperexponential (  Hk.) 

Some of the most common service disciplines in queuing theory are: 

FIFO 

First in, first out, that is, the first to enter is the first to leave. 

FCFS 

First come, first served is identical do the previous one, that is, the first to 

arrive is the first to be served. 

LCFS 

Last come, first served, that is, the last to arrive is the first to be served. 

LIFO 

Last in, first out, that is, the last to arrive is the first to leave. 

SIRO 

Serve in random order, that is, the service is done according to a statistical 

procedure. 

The following examples illustrate the use of Kendall’s notation, known for his 

work on probability, statistical shape analysis, and queueing theory. 

 M/G/ 1. 

In  the  case  of  an  entry  process  being  Poisson,  without 

restriction  on  the  server  process  and  only  one  output 

channel. 

 M/M/ 20. 

If the entry process follows a Poisson sistribution, as well 

as the server process, with 20 output channels. 

 M/D/ 1. 

If the entry process is Poisson, but the server is determin-

istic, with only one output channel. 

 M/Ek/ 30 / 200. 

If the entry process is Poisson, the server is Erlang type  k., 

with 30 channels of output and capacity for 200 clients. 

 M/M/ 2 /∞ /∞ / FIFO.  If  the  entry  process  is  Poisson,  as  well  as  the  server process,  with  two  output  channels,  unlimited  capacity, 

infinite population, and service discipline in which the first 

to enter is the first to leave. 

 11.2.1 

 The  Markov  Model 

The  Markov  model  shown  in  Fig. 11.3  serves  as  a  basis  for  the  traffic  analysis on computer networks. Andrey Andreyevich Markov (1856–1922) was a Russian 

mathematician  well  known  for  his  work  on  stochastic  processes.  He  was  elected to  the  Saint  Petersburg  Academy  of  Sciences,  in  1886,  the  same  year  he  was appointed  extraordinary  professor  of  the  Saint  Petersburg  University.  In  1896, Markov was elected an ordinary member of the academy as the successor of Pafnuty 

Lvovich Chebyshev (1821–1894), a Russian mathematician who made fundamental 

contributions to the fields of probability, statistics, mechanics, and number theory, and is considered the founding father of Russian mathematics. 
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Fig.  11.3  Markov model of birth and death 

A discrete-time Markov chain is used to model a stochastic process in honor of 

mathematician Andrei Andreyevich Markov. For this chain, the states prior to the 

current one are not relevant to the prediction of future states, as long as the current state is known. 

The  stochastic  process  is  known  as  the  birth  and  death  model,  because  the transitions occur only between adjacent states. For example, from the state  k., it is possible to go only to state   k + 1. or state  k − 1 , . with some assigned probability. This reflects the fact that it is negligible the likelihood of more than one user entering the system at the same time. Using this model, it is possible to calculate the steady-state probabilities of the Markov chain (Kleinrock 1975). 

The transition matrix probabilities P = { pij } = { p(yj | xi)}. define the dynamics of the model. The transition probabilities are obtained from the Markov model, in 

which  λk. and  μk. are the birth and death parameters. 

⎡

⎤

 p(y 1| x 1 ) p(y 2| x 1 ) . . . p(yN | x 1 )

⎢

⎢  p(y

⎥

1| x 2 ) p(y 2| x 2 ) . . . p(yN | x 2 ) ⎥

. P = ⎣

 . . . . . . . . . . . . . . . . 

⎦  . 

(11.13) 

 p(y 1| xM ) p(y 2| xM ) . . . p(yN | xM )

In  a  stable  Markov  chain,  it  is  possible  to  reach  a  steady  state  after  a  certain number  of  iterations.  The  probabilities  of  the  steady  state,  Π = {  pik| k =

1 ,  2 ,  3  . . . }., can be calculated using one of the known techniques (Kleinrock 1975; Adke and Manjunath 1984). Each state  k. defines the number of users, packets, or other objects in the system. 

Two  cases  of  application  of  the  Markov  chain  are  presented  in  the  following. 

Initially,  one  can  define  a  problem  in  which  the  birth  and  death  parameters  are constant for any state. It can be determined that  λk =  λ. and  μk =  μ.. 

The first case, which illustrates the operation of a traditional computer network, connected  by  wires  or  cables,  which  operates  with  defined  flow  parameters, produces a geometric distribution for the probabilities: 

.  pk =  ( 1 −  ρ)ρk k = 0 ,  1 ,  2 , . . . ,  for  ρ <  1 , (11.14)
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Fig.  11.4  Geometric 
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in which  ρ =  λ/μ.  is usually called the use of the system. Figure 11.4 illustrates the geometric probability distribution as a function of the state  k. of the system. 

For the geometric distribution, the statistical average is given by  ρ/( 1 −  ρ). and the variance is  ρ/( 1 −  ρ) 2.. The probability of finding more than  L. users at a given time in the system is  ρL+1.. 

Then, the problem related to the efficiency of the system server is calculated, and it reacts to the increased data flow in the system. This is equivalent to the case when users drop out as a function of, for example, the delay in completing a connection. 

This Markov model exemplifies the operation of a wireless computer network, 

for example, in the case of the interconnection of notebooks, tablets, or cell phones, in which there is some competition to access the channel. For this case, one obtains λk =  λ/(k + 1 ). and  μk =  μ., in which  λ. and  μ. are fixed probabilities. 

The solution for the second case generates a Poisson distribution: 

.  pk =  ρk e− ρ k = 0 ,  1 ,  2 , . . . 

(11.15) 

 k! 

with mean and variance given by  ρ.. Figure 11.5 illustrates the geometric probability distribution as a function of the state  k. of the system. 

 11.2.2 

 Markov  Solution  for  a  Stable  Network 

The formula that relates the probability of  k. existence packets at a given time on a network is given by the solution of the following equations, which depends on the 

configuration assumed for the system (Kleinrock 1975): 

 k−1

 λi

.  pk =  po

 , 

 μi+1

 i=0
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Fig.  11.5  Poisson 
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.  po =

1

 , 

∞

 k−1



1 +

 λi

 μi+1

 k=1  i=0

∞



.  N =

 kpk, 

 k=0

∞



.  σ  2 =

 N

 (k −  N) 2 pk, 

 k=0

.  N =  λT , 

in which:

•  po.—probability that there are no packets in the system

•  pk.—probability of having  k. packets in the system

•  λi.—packet arrival rate to state  i. 

•  μi+1.—departure rate for state packet  i + 1. 

•  N .—average number of packets in the system

•  σ  2 

 N .—variance of the number of packets in the system

•  T .—average waiting time in line 

These  equations  serve  as  a  starting  point  for  solving  several  queuing  theory problems, as well as, for other solutions shown below in this chapter. 

 11.2.3 

 A  System  with  Constant  Arrival  Rate 

In this type of system, the arrival and departure rates of packets can be described, in terms of the coefficients, as follows:
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 λk =  λ, k = 1 ,  2 ,  3 ,  4 , . . . 

.  μk =  μ, k = 1 ,  2 ,  3 ,  4 , . . . 

The probabilities associated to  k. packets and none packet are given by 

 k−1

 λ

.  pk =  po

 , 

 μ

 i=0



 λ k

.  pk =  po

 , 

 μ

.  po =

1

 , 

∞

 k−1



1 +

 λi

 μi+1

 k=1  i=0

.  po = 1 −  λ , 

 μ

With the restriction that   λ

 μ . must be less than 1. Making  ρ =  λ

 μ ., one obtains 

.  pk =  ( 1 −  ρ)ρk

and 

.  po =  ( 1 −  ρ). 

The number  of packets in the system is given by a summation of terms consisting 

of  the  product  of  the  number   k  of  packets  by  the  corresponding  probability  of occurrence  pk.. Mathematically, this can be represented by 

∞



.  N =

 kpk, 

 k=0

after some mathematical manipulations, by recalling that 

∞

∞

 d 



. 

 ρk =

 kρk−1

 dρ k=1

 k=1

and that 

∞



. 

 ρk =

1

 , 

1 −  ρ

 k=1
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Fig.  11.6  Growth in the 
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one has 

.  N =

 ρ

 . 

 ( 1 −  ρ)

Figure 11.6 illustrates the growth in the number of packets on a network, as a function of the coefficient  ρ.. 

The variance in the number of packets in the system is given by 

∞



.  σ  2 =

 N

 (k −  N) 2 pk, 

 k=0

.  σ  2 =

 ρ

 N

 . 

 ( 1 −  ρ) 2

The described results do not depend on the the individual parameters  λ.  and  μ. 

but  only  of  the  ratio  between  them.  This  ratio  relates  the  arrival  and  processing parameters. 

The  average  waiting  time  in  the  queue  is  given  by  the  quotient  between  the average number of packets and the average rate of arrival of packets to the system. 

Therefore 

.  T =  N =

1 /μ . 

 λ

 ( 1 −  ρ)

Figure  11.7  illustrates  the  increase  in  latency  in  a  network,  as  the  coefficient   ρ. 

increases. 

When  ρ = 0.,  the  latency   T .  corresponds  to  the  expected  service  time  for  the first  packet,  being  equal  to 1 /μ..  This  average  time  depends  on  the  parameter   μ. 

individually, contrary to the previous ones. 
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Fig.  11.7  Increased network 
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Note that, as  ρ.  tends to unity, that is, as the rate of packets that arrives on the network approaches the processing rate of the network’s servers, the average number of packets in the system and the average waiting time in the queue tend to grow in an unlimited manner. This type of behavior when  ρ. tends to one is characteristic of almost all queuing systems encountered. 

In general, this feature is exploited by hackers for an attack known as denial of 

service (denial of service—DoS), in which the network receives a flood of packets, so that the arrival rate approaches the processing rate, and the number of packets on the network tends to infinity. 

Another interesting quantity to be analyzed is the probability that there must be 

at least  k. packets in the system. This probability is given by 

∞



.  P [ x ≥  k in the system] =

 pi

 i= k

∞



.  =

 ( 1 −  ρ)ρi =  ρk, 

 i= k

∞



for  ρ. less than 1, since

 ρi . only converges if  ρ <  1.. 

 i= k

 11.2.4 

 Model  for  the  Efficient  Server 

This  type  of  system  can  be  interpreted  in  two  ways:  as  a  server  responsible  for increasing the service rate, as the the number of packets in the queue increases, or as a new server available for each incoming packets. The model can be described by the following parameters:
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 λk =  λ k = 1 ,  2 ,  3 ,  4 , . . . 

.  μk =  kμ k = 1 ,  2 ,  3 ,  4 , . . . 

The results are given as 

−  λ

.  pk =  (λ/μ)k e μ , 

 k! 

−  λ

.  po =  e μ , 

.  N =  λ , 

 μ

.  T = 1  , 

 μ

from Little’s equation. 

It can be noted that the system with an efficient server is equivalent to a system with discouraged arrivals, as described next, when  α =  λ. . 

 11.2.5 

 A  System  with  Discouraged  Arrivals 

In general, it is common to consider only a fixed network of computers intercon-

nected by wire cables, or optical cables, to solve problems related to latency and the number of stored packets. However, the access network, typically wireless, is also important and includes the equipment used for the connection, such as cell phones, notebooks, and tablets. In this type of network, competition is established between users  to  gain  access  to  available  channels.  This  competition  changes  the  scenario used  for  mathematical  modeling.  The  fundamental  change  is  to  make  the  arrival rate dependent on the number of users (or packets) on the network. 

Consider  now  an  access  system  in  which  the  entry  of  users  tends  to  be discouraged, as the number of packets increases in system. To model this system, 

the parameter values must be assigned as follows: 

 λk =  α k = 1 ,  2 ,  3 ,  4 , . . . 

 k+1

.  μk =  μ k = 1 ,  2 ,  3 ,  4 , . . . 

It is assumed that there is a lack of incentive for new arrivals, as the number of packets in the system increases. For this system, one obtains
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 k−1

 α

 i+1

.  pk =  po

 , 

 μ

 i−0



 α k  1

.  pk =  po

 , 

 μ

 k! 

.  po =

1

 , 

∞

 k−1



1 +

 λi

 μi+1

 k=1  i−0

−  α

.  po =  e μ , 

−  α

.  ρ = 1 −  e μ , 

∞



.  N =

 kpk, 

 k=0

.  N =  α , 

 μ

.  T =  N , 

 λ

.  T =

 α



 , 

−  α

 μ 2 1 −  e μ

∞



.  P [ x ≥  k in the system] =

 pi. 

 i= k

This  solution  is  equivalent  to  the  one  obtained  for  the  efficient  server,  that  is, different assumptions can lead to similar mathematical models. 

 11.2.6 

 Models  of  Queues  M/G/1,  M/M/1  and  M/D/1 

The  M/G/ 1.  model  is  used  as  a  starting  point  for  analysis.  With  respect  to  the service process, it is convenient to consider the message processing as a sequence of variables that are independent and identically distributed. 

For the Poisson entry process, the number of arrivals at any time is statistically independent of the number of messages arriving at any other time interval that is not superimposed. 
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The probability of  k. messages arriving in a time interval  T . is given by 

.  P { k} =  (λT )k e− λT , k = 0 ,  1 ,  2 , . . . 

(11.16) 

 k! 

The message arrival rate, that is, the average number of message arrivals at  T = 1. 

second, is  λ. messages per second. Analyzing the  M/G/ 1. model, it is concluded that the average number of messages on the network is given by 

2 ρ −  ρ 2 +  λ 2 σ  2

 ρ 2 +  λ 2 σ  2

 Y

 Y

.  N =

=  ρ +

 . 

(11.17) 

2 ( 1 −  ρ)

2 ( 1 −  ρ)

in which  σ  2

 Y . is the variance of message  Y . processing time. 

The application of Little’s law permits to obtain an expression for the message 

average time in the system (Alencar 2012): 

 ρ +  λμCσ  2 Y

.  T =

1 +

 . 

(11.18) 

 μC

2 μC( 1 −  ρ)

The Pollaczek-Khinchine formulas 11.16, 11.17, and 11.18 show the growth in the  number   N  of  packets  in  the  network,  for  typical  values  of  network  rates  and capacity. The model  M/M/ 1. is a special case of the previous model. In this case, the message processing time is described by a Poisson process. 

Therefore, it can be demonstrated that the variance of the processing time is given by  σ  2 =  ( 1 /μC) 2

 Y

. and, thus, the number of messages in the system becomes 

.  N =

 ρ

 . 

(11.19) 

1 −  ρ

As  a  result,  the  average  delay  time  on  the  route  between  the  buffer  and  the channel is given by 

.  T =

 ρ

=

1

 . 

(11.20) 

 λ( 1 −  ρ)

 μC( 1 −  ρ)

The formulas for  Nq ., the average number of messages stored in the buffer, and W ., the average time in the buffer, are, respectively 

.  Nq =

 ρ 2

(11.21) 

1 −  ρ

and 

.  W =

 ρ

 . 

(11.22)

 μC( 1 −  ρ)
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It  should  be  noted  that  the  model  M/D/ 1.  is  also  a  special  case  of  the  model M/G/ 1., in which the message processing time is set as invariant and denoted by 1 /μC.. 

As the variance in this case is zero, one can write 

.  N =  ρ +

 ρ 2

=  ρ( 2 −  ρ)

(11.23) 

2 ( 1 −  ρ)

2 ( 1 −  ρ)

and 

.  T =

1 +

 ρ

=

2 −  ρ

 . 

(11.24) 

 μC

2 μC( 1 −  ρ)

2 μC( 1 −  ρ)

As a consequence 

.  Nq =

 ρ 2

(11.25) 

2 ( 1 −  ρ)

and 

.  W =

 ρ

 . 

(11.26) 

2 μC( 1 −  ρ)

The curves in Fig. 11.8 show the number of packets,  N , in the network versus  ρ., for a  M/D/ 1. queue, compared with similar results for a  M/M/ 1. queue (Alencar 

2012). 

Fig.  11.8  Curves for  N . 
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11.3 

Local  Area  Networks 

Computer networks often make use of efficient communication channels and take 

advantage of their potential for resource sharing among users (Moura et al. 1986; Giozza  et  al. 1986). The  communication  of  processes  takes  place  through  the network, between its edge nodes. 

A generic computer network can be defined as a set of autonomous computers 

interconnected,  so  that  no  machine  completely  controls  the  others.  Computer networks have been developed to enable the sharing of facilities and the distribution of  resources  among  users.  The  function  of  the  network  is  to  provide  a  means  by which the computers connected to the network can exchange data. 

 11.3.1 

 Network  Definitions 

From  the  user’s  point  of  view,  computer  networks  have  become  the  basis  for  the exchange of information, for the purchase of products and services, and for carrying out  works  of  various  kinds.  There  are  several  types  of  computer  networks.  A geographic classification is generally used (Tanenbaum 1989):

• Local area networks

• Wide area networks 

Wide  area  networks,  such  as  the  Internet,  cover  large  geographic  areas,  often extending nationally or globally. Local area networks, such as Fibernet, Ethernet, or Novell, are characterized by restricted physical dimensions, usually covering a few hundred meters. 

The difference in physical dimensions has a pronounced effect on the structure of 

networks. The local network, due to its limited physical extension, may be owned 

by  network  users.  In  this  way,  it  is  possible  the  use  of  dedicated  high-speed  and reliable channels. 

The  typical  means  of  transmission  on  local  computer  networks  are  twisted pair, optical fiber link, 50   .  coaxial cable (for baseband transmission), and 75   . 

coaxial cable (for broadband transmission). Wireless networks are also used, such 

as Wi-Fi (IEEE 802.11), whose IEEE 802.11n standard employs transfer rates from 

65 Mbit/s to 600 Mbit/s, with transmission based on MIMO-OFDM, operating in 

the frequency range of 2.4 GHz or 5 GHz (Gast 2005). 

Long-distance  networks,  for  regulatory  and  economic  reasons,  used  telephone links, which resulted in lower transmission rates. With the deployment of long-haul optical networks, including submarine cables, underground cables, and transmission over high voltage lines (OPGW), transmission rates have increased considerably. 

Wireless  networks  are  also  formed  with  WiMAX  technology  (IEEE  802.16), 

stand  for  Worldwide  Interoperability  for  Microwave  Access,  and  offer  fixed, nomadic, portable, or mobile connectivity, without the need for line of sight with
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a  base  station.  For  a  typical  scenario,  with  distances  from  3  to  10  km,  WiMAX 

presents a transmission rate of 40 Mbit/s per channel (IEEE 2004). 

Four physical layer standards have been specified for the metropolitan WiMAX 

network:  SC  (Single  Carrier),  SCa  (Single  Carrier  a),  OFDM  (Orthogonal 

Frequency-Division Multiplexing), and OFDMA (Orthogonal Frequency-Division 

Multiple  Access).  However,  cellular  mobile  telephony  with  long-term  evolution technology (LTE) eclipsed WiMAX. 

 11.3.2 

 Applications  for  Local  Area  Networks 

One of the most versatile applications for local networks is the office automation, in which the local network interconnects workstations, computing equipment and 

printers (Soares et al. 1995). 

In  an  academic  or  business  environment,  the  local  network  can  provide  the interconnection  of  workstations  for  development  of  computer-aided  programs  or projects. 

Point-of-sale systems can have their equipment, such as cash registers and optical readers, in addition to consultation of files interconnected in network. 

Local area networks can also be used in banking systems, libraries, laboratories, 

computational  facilities  in  universities,  and  several  other  applications  that  require communication between computers. Figure 11.9 illustrates a generic point-to-point (P2P) local area network. 

Fig.  11.9  Generic local peer-to-peer network
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Fig.  11.10  Generic local client-server network 

Local networks implement data transfer in discrete units called packets. A packet 

can vary from a few bits to thousands of bits according to each particular protocol. 

Eventually, there is a general server on the network, as in the case of the client-server model of Fig. 11.10. 

 11.3.3 

 Network  Structure  and  Topology 

The  nodes  of  a  network  can  be  connected  in  several  ways.  The  unstructured  or amorphous  topology  is  common  for  wide  area  networks,  which  grow  due  to  the disorderly demand for services, but uncommon for local networks. 

The  storage  and  retransmission  operation  is  typical  of  unstructured  networks, which allows flexibilization in the positioning of the nodes and in the communication between them. Local area networks have a combination of requirements that 

make the storage and retransmission operation unnecessary. 

In local area networks, efficient communication between devices is the main goal. 

Therefore, the delay and cost associated with routing messages between nodes are 

considered excessive. 

Unstructured networks generally need to perform the error control at each link, 

due to the insertion of noise in the path. Error control between source and recipient is enough for local networks. Local area networks frequently use the broadcasting 

of messages, which is unusual in long-distance networks. 

Some  common  network  topologies  have  characteristics  that  are  appropriate 

for  the  provided  services,  such  as  the  star,  bus,  and  ring.  The  tree  structure  is
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Fig.  11.11  Structures for typical networks: star network 

Fig.  11.12  Structures for typical networks: bus network 

a  generalization  of  the  bus  network.  Typical  network  structures  are  shown  in Figs. 11.11, 11.12, 11.13, and 11.14 (Alencar 2012). 

For  the  bus  topology,  the  station  sends  the  message  in  both  directions.  Each station,  or  node,  has  the  ability  to  read  the  packet  heading,  and  there  are  buffers to store messages for which the node is the destiny. 

Communication  is  typically  in  one  direction  in  the  ring  topology.  Therefore, routing is usually not necessary. The ring topology uses the central node as a traffic redirector, as in a telephone exchange. The links must be of the full-duplex type. 

The tree network structure is common for pay-TV (CATV), which uses coaxial 

cable,  optical  cable,  or  a  hybrid  optical-coaxial  system,  and  access  by  frequency division. Local networks can use the CATV cabling or use the power distribution 

network, with the Power Line Communications (PLC) technology (Marcelo et al. 

2006). 
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Fig.  11.13  Structures for 

typical networks: ring 

network 

Fig.  11.14  Structures for 

typical networks: tree 

network 

 11.3.4 

 Access  Techniques 

There  is  a  number  of  different  access  techniques  that  are  used  for  different topologies.  The  choice  of  the  technique  of  access  is  a  determining  factor  in network performance. Techniques can be classified into four major categories: fixed allocation, random allocation, allocation on demand, and adaptive allocation. 

In  the  fixed  allocation,  resources  are  placed  at  disposition  of  each  station  in  a predetermined  way.  Two  common  schemes  in  this  category  are  multiple  access by  multiple  division  into  frequency  (FDMA)  and  division  into  time  (TDMA).  At the  opposite  end  to  the  fixed  allocation  strategy,  there  are  the  random  allocation methods.  The  simplest  method  is  known  as  pure  ALOHA,  in  which  each  station transmits as soon as it is ready. 
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The  adaptive  or  on-demand  allocation  methods  require  a  control  mechanism, operating in real time, to allocate the channel capacity to all stations in an optimum or quasi-optimum manner. 

The  on-demand  allocation  methods  are  still  classified  as  central  or  distributed control.  Algorithms  to  monitor  systems  illustrate  central  control,  while  ring  networks use distributed control. 

The adaptive allocation methods try to refine the random on-demand allocation 

protocols. Adaptive protocols usually perform contention resolution, provided that collisions  are  allowed,  under  low  loading,  to  minimize  access  times.  For  high loading,  however,  the  procedures  adjust  for  some  form  of  polling  or  TDMA.  A characteristic  of  these  methods  is  that  some  estimate  of  the  load  on  the  network is required by all stations. 

 11.3.5 

 Type  of  Network  Traffic 

In  a  computer  network,  the  nature  of  the  traffic  offered  by  the  user  devices  is  an important factor in evaluating performance (Alencar 2012). 

However,  the  traffic  offered  to  the  network  is  variable  and  random,  because  it depends on many factors. Peak data rates range from 100 bits/s for security systems, telemetry, and networks wireless sensors, at 100 Mbits/s for video transmission. 

The establishment of a probability distribution for the stationary state is a difficult problem, because of the significant differences between averages taken at distinct time intervals. 

The data in Fig. 11.15, for example, suggest an exponential distribution for the arrival times, and this distribution is often used as a basic model for research and development of networks: 
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.  pT (t ) =  βe− βt u(t ), 

(11.27) 

in which  u(· ). represents the unit step function and  α. is a parameter to be estimated. 

The  distribution  of  packet  lengths  over  an  experimental  Ethernet  network  has a  bimodal  character.  Smaller  packets  occur  depending  on  the  interactive  traffic (bursty), while larger packets represent the result of the transfer of large volumes of data. 

 11.3.6 

 Measuring  the  Performance  of  the  Network 

An  important  performance  measure,  from  the  user  point  of  view,  is  the  network response  time,  that  is,  the  time  to  correctly  transmit  a  packet  from  one  user  to another, with the confirmation. Note that both network delays and user/station link delays  can  dominate  the  response  time  between  users.  If  the  network  delays  are significant, the choice of the best access technique is very important. 

At the network level, a specific measure is the throughput, which measures the 

number of bits/s or packets/s, which can, on average, be processed by the network. 

If  the  average  input  rate  for  one  part  of  the  network  is   λ.  packets/s,  the  channel transmission rate is  R.  bits/s, and there is  ¯

 X.  bits/packet on average; therefore, the 

normalized throughput is given by 

.  S =  λ ¯

 X . 

(11.28) 

 R

Throughput  is  used  in  the  design  and  performance  evaluation  of  computer 

networks  because  the  capacity,  based  on  information  theory,  is  not  amenable  to calculation for a complex network. But it must be kept in mind that the upper limit for  the  transmission  rate  in  a  communication  system  is  its  capacity,  calculated  as the maximum of the mutual information for all probability distributions of the input alphabet. 

The average transfer delay,  T ., is defined as the time between the arrival of the last bit of a packet to a network station and the delivery of the last bit of that packet to the destination. The normalized average delay, in relation to the average time of transmission in the channel, is given by 

ˆ.  T =  T

¯

=  RT . 

(11.29) 

 X/R

¯ X

The  delay,  or  latency,  of  the  network  is  an  important  parameter  when  dealing with voice transmission in real time, as in the case of Voice over IP (VoIP), which is the technology used in applications like WhatsApp and Skype. 

The  computation  of  the  total  delay   T .,  or  network  latency,  which  is  a  random variable, is done using properties of probability theory. Consider that each partial
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Fig.  11.16  Probabilistic 

 p ( ) t 

k 

model for the time delay in a 

computer network

βk 

0  0 

 t 

delay  time,  typically  represented  by  the  processing  time  of  the  message  by  each individual  server,  plus  the  traffic  time  on  the  corresponding  link,  has  exponential probability distribution: 

 M



.  T =

 tk, 

(11.30) 

 k=1

in which  M. is the number of servers in the message path, and each particular time delay has distribution: 

.  pk (t ) =  βk e− βkt u(t ), 

(11.31) 

in which  u(· ). is the unit step function and  βk. represents the parameter it regulates the probability distribution for the time  tk.. The distribution is illustrated in Fig. 11.16. 

The  sum  of  independent  random  variables  leads  to  the  convolution  of  the  two respective  probability  distributions.  Therefore,  the  probability  distribution  of  the total time is given by 

.  pT (t ) =  p 1 (t ) ∗  p 2 (t ) ∗ · · · ∗  pM (t ), (11.32) 

in which the convolution operation between two functions  f (t). and  g(t). is defined as 

∞

.  f (t ) ∗  g(t ) =

 f (τ )g(t −  τ ) d τ. 

(11.33) 

−∞

Example  For  two  servers,  or  two  subnets,  M = 2.,  the  calculation  can  be  done using Formula 11.33:
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∞

.  pT (t ) =

 p 1 (τ )p 2 (t −  τ ) d τ

−∞

∞

=

 β 1 e− β 1 τ  u (τ )β 2 e− β 2 (t− τ) u (t −  τ ) d τ

−∞

 t

=  β 1 β 2 e− β 1 t

 e− (β 2− β 1 )τ  d τ

0





=  β 1 β 2

 e− β 2 t −  e− β 1 t  u (t). 

 β 1 −  β 2

If the processing times are the same for both servers, that is, the parameters  β 1 =

 β 2 =  β., the solution converges to 

.  pT (t ) =  β 2 t e− βt  u (t ). 

This is a special case of the Erlang distribution, a family of continuous probability distributions  with  support  t ∈ [0 , ∞ )..  The  Erlang  probability  density  function represents  the  distribution  of  a  sum  of   k  independent  exponential  variables  with mean 1 /β. each, in which  k is the shape and  β. is the rate parameter. 

The Erlang probability density function is given by 

.  pT (t ) =

 βk

 t k−1 e− βt  u (t), 

(11.34) 

 (k − 1 )! 

and the Erlang cumulative density function is 





 k−1

1

.  PT (t ) =

1 −

 (βt )ne− βt

u (t). 

(11.35) 

 n! 

 n=0

The random variable expected value is  k/β., and the variance is  k/β 2.. 

The Erlang distribution was proposed by Agner Krarup Erlang (1878–1929), a 

Danish mathematician, statistician, and engineer, who developed the fields of traffic engineering and queueing theory, to examine the number of telephone calls which 

might  be  placed  to  the  telephone  exchange.  Erlang  worked  for  the  Copenhagen Telephone Company, from 1908 until his death in Copenhagen after an abdominal 

surgery. 

The Erlang distribution can be used to model the time between incoming calls, 

in a telephone network, or packets, in a computer network. It is used in conjunction with  the  expected  duration  of  incoming  calls,  or  packets,  to  produce  information about the traffic load measured in erlangs (Erl). 

This  information  is  used  to  determine  the  probability  of  packet  loss  or  delay, according  to  certain  assumptions  made  about  whether  blocked  calls  are  aborted, which results in the Erlang B formula, or queued until served, giving the solution in terms of the Erlang C formula. 
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Fig.  11.17  Probabilistic 
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The  solution  for  the  combined  latency  of  two  servers,  or  two  subnets,  is represented  in  Fig. 11.17. As  can  be  noticed,  it  resembles  the  distribution  of  the arrival time between packets on an Ethernet network, illustrated in Fig. 11.15. 

The cumulative distribution function for the combined latency of two servers is 

represented in Fig. 11.18. The general case, for  M. servers with different processing times, produces the following probability distribution for the total time (Akkouchi 

2008): 

 M



 β 1 · · ·  βM

.  pT (t ) =



 e− βkt u(t ). 

(11.36) 

 M

 (β

 k=1

 i=1 ,i= k

 i −  βk )

The probability distribution allows to calculate the average total network delay, 

latency, and also the deviation around this delay, which indicates the jitter. Latency is a measure of time that a packet takes to get from the source to the destination. 

The jitter is the stochastic variation of delay in data delivery, that is, the temporal variation between successive data packets. The jitter limits the minimum separation
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between bits, which affects the baud rate on the network. For the case of the Erlang 

√

distribution, the jitter is just the standard deviation,  σT =

 k/β.. 

11.4 

Network  Protocols  and  Architecture 

In  informatics,  computer  science,  and  engineering,  the  term  protocol  means  the set of rules that makes possible the execution of a program efficiently and without errors or the exchange of information between servers of a computer network, for 

sending information. Nowadays, the protocols in evidence are those associated with the Internet, the worldwide network that connects most of Earth’s population. But it was not always so Alencar (2010). 

The  word  protocol  comes  from  the  Greek   protókollon,  meaning  leaf  placed  in front, referring to the content description, usually placed on first page of a book. It came to English in medieval Latin  protocollu, with the usual meaning of the word protocol, that is, a set of rules or criteria fulfilled in a given activity, whether in the execution, evaluation, or acceptance of services and materials. 

11.5 

Network  Layer  Architecture 

Computer networks use layered architectures, to organize the project and minimize 

its complexity. Each layer represents a logical entity that performs certain functions. 

The  layers  switch  information  through  primitives,  simple  commands  that  define simple operations. 

The services provided by the highest level of the network, known as application 

layer, are sent directly to users. Each layer provides services for the next layer above it Alencar (2012). 

When users in different nodes communicate, corresponding layers also exchange 

information using appropriate rules. A set of rules, called a protocol, is necessary so that each level can communicate in a structured way. A layered architecture, with 

the indicated protocols, is shown in Fig. 11.19. 

Protocols  are  hierarchically  organized,  corresponding  to  the  layers  of  the  network.  Protocols  control  exchange  of  information  through  a  single  layer,  and  all the  information  layers  communicate  by  logical  or  virtual  paths.  The  lowest  layer protocol is the only one to control the data flow in a physical connection channel. 

The flow of information from one level to another is done through an interface 

that is present between each pair of adjacent layers. The purpose of the interface is to interpret formats and other characteristics of the protocols. 

The number of layers, the name of each layer, and its function differ from one 

network to another. The most extreme layers are usually the physical and application layers. The application layer, as the name implies, handles user-specific applications such  as  access  to  files  or  graphic  output  from  a  computer  assisted  project.  The
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Fig.  11.19  A layered architecture with the indicated protocols 

physical  layer  is  always  the  lowest  level  and  is  responsible  for  the  transmission of signals between two nodes, providing an electrical or logical connection between processes. 

When designing a network architecture, it must be taken into account that lower-

level  protocols  must  be  transparent  to  higher-level  protocols.  Each  layer  must perform a defined function. The main advantages of layer architecture are flexibility to adapt lower-level protocols without affecting those of the highest level and the ability to isolate well-defined functions (Alencar 2012). 

Some  major  network  architectures  have  become  classic,  including  the  IBM 

System Network Architecture (SNA), the Distributed Network Architecture (DNA) 

by Digital Equipment, and the Department of Defense Advanced Research Projects 

Agency Network (ARPANET), from the USA. 

 11.5.1 

 The  ISO  Reference  Model 

The  International  Standards  Organization  (ISO)  developed  a  reference  model  to compare different architectures and to construct new networks. This model is called the Open Systems Reference Model for Interconnection (OSI). The layers of the ISO 

reference model are illustrated in Fig. 11.20 Marksteiner et al. (2017), as compared to the TCP/IP model. 
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Fig.  11.20  Layer structure of 
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It is important to point out that the terminology for system, in this context, can cover  from  one  simple  terminal  to  a  complete  computer  network.  The  term  open is  used  to  indicate  that  the  model  applies  to  the  transfer  of  information  between interconnected systems, without concern with the internal operation of the systems themselves. 

Generally, all layers of the reference model are used at the origin and destination nodes,  but  only  three  are  necessary  in  each  intermediary  node  that  just  serves  to transport packets to the destination nodes. 

 11.5.2 

 Layers  of  the  Reference  Model 

The layers of the ISO reference model are described in detail in this section. Concisely, the physical layer coordinates the necessary functions for the transmission of information in a physical connection, and the link layer synchronizes the characters and messages and makes the transmission more reliable. 
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For the transfer of packets between the source and the destination, there is the 

network layer, for this purpose, the transport layer divides messages into packets, the  session  layer  serves  as  an  interface  between  the  user  and  the  network,  the presentation layer simplifies communication between end users, and the application layer allows user access to the network. 

Physical  Layer 

The electrical, mechanical, and functional characteristics, necessary for the transmission  of  the  sequence  of  bits,  are  specified  in  the  physical  layer.  These  project specifications include signal features, such as amplitude, period, frequency spectrum (e.g., baseband or modulated transmission), and the digital modulation scheme that is adopted Farouzan (2008). 

Some details regarding  physical connections,  such as number of pins, are also 

considered,  as  well  as  the  mode  of  operation  (full  or  half-duplex).  The  physical layer synchronizes the bits, establishing, maintaining, and releasing the connection between the nodes. 

Data  Link  Layer 

The data link layer provides the synchronizations of character and message (frame) and  ensures  reliable  transmission  of  data  blocks  or  frames  between  physically connected  nodes.  For  this,  the  link  layer  creates  and  recognizes  the  limits  (with the encapsulation) of the frames and uses redundant bits for the detection of errors. 

The data link layer retransmits frames with errors, producing error messages. It 

does  confirmations  and  manages  other  necessary  details.  The  data  link  layer  also controls  the  flow  of  packets  to  prevent  the  receiver  from  being  overloaded  and controls access, to determine which device takes control of the link at every moment. 

Network  Layer 

The  network  layer  performs  the  transfer  of  a  data  packet  between  the  origin  and the destination, typically through several links. It provides the services required to establish and maintain the flow of messages between users connected to the network. 

The basic data unit of the network layer is the packet, and one of the functions of that layer is to ensure that packets are forwarded to their destinations. Considering that  users  are  not  necessarily  connected  by  a  direct  physical  link,  this  layer  is responsible for routing and switching messages. 

For forwarding messages, the network layer adds a header to the packet, which 

includes the logical addresses of the transmitter and receiver. The type of service provided to the transport layer by the network layer is usually specified as datagram service or virtual circuit. In addition, the network layer controls flow and congestion on the network, preventing many packets from being routed to the same connection. 

Transport  Layer 

The  transport  layer  subdivides  messages  passed  through  the  session  layer  into units, called packets, if necessary, and allows the transmission of these units to the intended destination. It performs segmentation of the message at the source and its assembly at the destination, identifying and replacing damaged packets during the 

transmission. 
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The transport layer also provides associated services to the application processes, which  run  on  hosts  or  user  devices.  Its  function  is  to  transfer  data  transparently between  application  programs  in  a  way  that  is  as  independent  as  possible  of  the network.  Some  of  these  services  involve  the  delivery  of  e-mail  messages,  with appropriate  ordering,  the  diffusion  of  messages  for  multiple  destinations,  and  the delivery of isolated messages. 

Session  Layer 

The  session  layer  establishes  and  maintains  a  connection  between  application processes,  serving  as  an  interface  for  the  user  with  the  network.  In  addition,  the layer can verify the authenticity of the user, provide charging, and decide the type of communication, for example, full-duplex or half-duplex. 

It also allows for the exchange of information between two systems and makes 

it  possible  for  the  process  to  verify  a  data  stream.  Therefore,  there  is  no  need  to transmit the entire message in case of loss of part of the packets. 

Presentation  Layer 

The  presentation  layer  has  the  task  of  providing  as  many  general  functions  as possible  to  simplify  the  communication  between  end  users  and  to  protect  the information that travels on the network. It is responsible for the syntax and semantics of the information exchanged between two systems. 

The  layer  deals  with  the  interoperability  of  different  methods  of  encryption, encryption  of information, to guarantee  privacy,  and data compression.  Examples of services provided by the of presentation layer are the conversion of codes, the text compression, and the use of layout standards for terminals and printers. 

Application  Layer 

The application layer allows the user to access the computer network, such as the 

Internet. For example, it provides the right interface and support for certain services, such as message exchange, file transfer, establishment of a virtual terminal which emulates a remote system terminal, and shared database management. 

This  layer  has  a  configuration  and  includes  functions  that  depend  on  the  user. 

Therefore, at this level, the software must contain the specific application programs, as a provision for the management of the required resources. 

 11.5.3 

 IEEE  802  Standards  for  Computer  Networks 

The  Institute  of  Electrical  and  Electronics  Engineers  (IEEE)  has  committees  that produce standards for all areas related to their professional activities, including those relating to computer networks, communication protocols, and modulation, among 

others. 

The  IEEE  802  standard,  for  example,  defines  the  standards  for  local  area  and metropolitan area network physical and link layers of the OSI model for computer
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Fig.  11.21  Components of the IEEE 802 standard and the ISO model 

networks.  The  standards  specify  different  types  of  networks,  such  as  Ethernet, wireless network, and fiber optics among others. 

The IEEE 802 standards are divided into six basic parts, according to Fig. 11.21, 

plus  nine  specific  parts.  The  standards  specify  the  physical  and  link layers  of  the ISO reference, with a unique logical link protocol and four types of media access 

technologies (Alencar 2012): 

1.  Standard IEEE 802.1, a document describing network management, the rela-

tionship between the various parts of the pattern, and the relationship with the 

ISO reference model and with protocols for the highest level. 

2.  Standard IEEE 802.2, a common protocol for the control of logical link (logical link control—LLC). 

3.  Standard IEEE 802.3 specifies the syntax and semantics for access control in 

the middle (media access control—MAC). A bus that uses CSMA/CD as access 

method. 

4.  Standard IEEE 802.4, a bus that uses token passing as access method (Token 

Bus—TB). 

5.  Standard IEEE 802.5, a ring that uses token passing as access method (Token 

Ring—TR). 

6.  Standard  IEEE  802.6,  a  metropolitan  network  (metropolitan  area  network— 

MAN). 

7.  Standard 802.7 defines broadband MAN. 

8.  Standard 802.8 defines the transmission in fiber optic network. 

9.  Standard 802.9 specifies the integration of local networks. 

10.  Standard 802.10 deals with security on local networks. 

11.  Standard 802.11, protocol for wireless local area network (LAN). 

12.  Standard 802.12 defines the demand priority access method, physical layer, and repeater specifications. 

13.  Standard 802.15 defines the personal wireless network (wireless personal area network—WPAN) (Bluetooth). 
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Fig.  11.22  Comparison between the reference model for local IEEE networks and the ISO model 14.  Standard 802.16 defines broadband wireless access (BWA) (Wimax). 

15.  Standard IEEE 802.17 defines the Resilient Packet Ring (RPR) access. 

16.  Standard 802.20 specifies mobile wireless access (WMA) (Mobile-fi). 

17.  Standard 802.22 describes the wireless regional area network (WRAN). 

18.  Standard  802.24,  defined  by  the  attributions  of  the  Vertical  Applications Technical Advisory Group that determines what enhancements to the horizontal 

technologies would improve their ability to support the applications. 

The  IEEE  standard  for  local  area  networks  presents,  essentially,  the  same characteristics for transmission and reception of bits that are described in the ISO 

model, as can be seen in Fig. 11.22. 

11.6 

The  TCP/IP  History 

In  1975,  the  Defense  Advanced  Research  Projects  Agency  (DARPA),  which 

originated  the  ARPA  network,  started  to  develop  the  TCP/IP  stack.  In  1979,  a committee was formed to lead the development of these protocols. This committee 

was called Internet Configuration Control Board (ICCB). 

DARPA has assigned the rights to the TCP/IP code to the University of California 

for it to be distributed in UNIX version, in 1983, and requested that all computers connected to ARPANET use the TCP/IP. Protocols spread quickly over the network. 

It has been defined that information can travel on communications networks in 

two different ways:

• Packet  switching—In  which  a  line  on  the  network  can  be  shared  by  multiple information  packets  from  different  sources.  Internet  traffic  is  based  on  packet switching. 
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• Circuit switching—In which there is an exclusive  line between the source and 

the destination. The transmission of information is done as a telephone call, in 

which a circuit is established between the parties throughout the communication. 

11.7 

The  Internet  Coordination  Structure 

The Internet is an articulated set of computer networks, which uses the TCP/IP to 

provide packet communication, and contains many servers that generally work with 

operating systems UNIX and Linux. The Internet is coordinated by some entities, 

which  take  care  of  the  organization  of  the  network,  distribution  of  IP  addresses, creation of protocols, documentation, intermediation with government institutions, and the implementation of new technologies. The main bodies are:

• The Internet Advisory Board (IAB) is made up of several organizations and aims 

to coordinate the general organization of the Internet. 

• The  Internet  Network  Information  Center  (InterNIC)  was  created  by  NSF  to distribute IP addresses. 

• The Internet Research Task Force (IRTF) is one of the committees that make up 

the IAB, responsible for research activities, such as the development of protocols. 

• The Requests for Comments (RFC) are technical documents related to Internet 

protocols. They can contain standards for the protocol or can become standards. 

These documents form the Internet documentation. 

• The Federal Networking Council (FNC) is a committee that produces informa-

tion  on  the  Internet.  The  FNC  performs  the  intermediation  between  the  IAB 

and government institutions, in addition to supporting agencies in the use of the 

Internet. 

• The Internet Engineering Task Force (IETF) is a subcommittee of the IAB that 

deals with constructive problems of network and also with the implementation of 

new technologies. 

The Internet works as follows. Suppose a machine on a local network wants to 

send a packet of information to a distant network. Initially, the packet is sent to the local network, where it is received by all machines and the router. The router checks the destination address of the packet, queries its route table, and sends it forward. 

The  packet  travels  through  routers  of  various  networks,  in  which  it  is  sent  to routers  closer  to  the  final  address,  until  it  reaches  the  destination  machine.  If  the packet reaches the final address, the originating machine receives an acknowledgment message. If this message does not arrive within a certain time, the packet is retransmitted. 
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11.8 

Types  of  Computer  Networks 

The networks that make up the Internet can have several topologies, according to 

the coverage area, or coverage, and also depending on the technology used. 

• Local area network (LAN) is a network located in a building or on campus. Its 

coverage  is  restricted  to  a  few  kilometers  and  its  objective  is  to  interconnect computers, workstations, and peripherals; this shares resources such as printers. 

• Metropolitan  area  network  (MAN)  is  a  network  that  covers  from  some  offices and neighborhoods to an entire city. 

• Wide  area  network  (WAN)  is  a  network  that  covers  a  large  geographic  area, which can be a country or continent, usually formed by the interconnection of 

LAN networks. 

11.9 

Data  Transmission  Protocols 

As described earlier, protocols are the transmission agreements established between network  servers,  to  enable  communication.  They  can  be  connection  oriented  or not. 

• Connection-oriented protocols—In this type of transmission, packets do not need 

to  have  overheads,  as  occurs  in  nonconnection-oriented  transmissions.  At  the beginning of the connection, the source and destination exchange all information 

needed for transmission. It has mechanisms for forwarding packets, as well as 

acknowledgment messages. 

• Nonconnection-oriented protocols—The origin and the destination need to have 

a prior agreement on the communication and on the characteristics of quality of 

service (QoS). This mode of transmission associates each packet with a global 

address,  which  identifies  the  source  and  destination  of  the  packet.  Successive packets transferred are considered independent. 

For  nonconnection-oriented  transmission  mode,  flow  control  is  not  important, nor  is  there  recognizing  or  resending  packets.  In  this  way,  one  can  communicate with any machine without having to make a connection. On the other hand, there is 

no guarantee of the success of the transmission, and the monitoring of the process needs to be more effective. 

11.10 

Interconnection  Equipment 

Physical Internet connections rely on certain basic components:

11.11 Interconnection Protocols
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• Router—A circuit or computer with routing software, which has ports connected 

to different networks. When the router receives an information packet, it checks 

the destination address and looks for the equivalent port, based on network level 

addressing, which in the case of TCP/IP architecture is IP addressing. It tries to send the packet to networks that are closer to the destination network, decreasing the number of networks on which the packet travels. 

• Gateway—It  is  a  component  of  the  network  that  aims  to  connect  different networks, converting different levels of protocols, or in the case of IP, in order to perform the routing. 

• Bridge—This device is used to connect similar networks. It forwards messages 

based on the level two addressing, known as medium access control (MAC). It 

segments network traffic, creating a single collision domain if necessary. 

11.11 

Interconnection  Protocols 

The Transmission Control Protocol (TCP) performs communication between appli-

cations  from  two  different  hosts.  The  TCP  is  a  transport-level  protocol  that works  with  acknowledgment  messages,  specification  of  the  information  format, and  security  mechanisms.  It  ensures  that  all  protocol  data  units  (PDUs)  are  sent successfully, as it performs connection-oriented transmissions. 

The  TCP  allows  the  use  of  various  applications  aimed  at  conversation.  When executed, it uses the IP, not connection oriented. The TCP is then responsible for control of secure data transfer procedures. For greater efficiency in communications, TCP encompasses several functions that could be in the applications, such as word 

processor, database, and electronic mail. It was created to be a universal software that contains these functions. 

The TCP performs additional services, such as:

• Flow control—Flow control assigns a transmission window to the source host. 

This window limits the number of bytes transmitted at a time interval. 

• Transmission security—Reliability in transmissions via TCP in the connection 

orientation  of  the  protocol  and  works  with  sequential  and  positive  recognition numbers. 

The TCP of the originating host transfers the data in the form of octets (bytes). 

Each octet is assigned numbers in sequence. The TCP of the target host analyzes 

these numbers to ensure the order and integrity of the message sent. If the transfer is  perfect,  the  TCP  of  the  destination  host  sends  an  acknowledgment  message  to the origin. Otherwise, a numeric string is sent to the TCP from the host source that informs the type of the problem, as well as order a new transmission. 

For the TCP, sequential numbers can also be used to eliminate duplicate octets, 

which  can  occur  on  account  of  nonconnection-oriented  transmission.  The  source TCP has a timer to ensure that time is not wasted between the transmission of wrong
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Fig.  11.23  Structure of a TCP header 

messages and their correction. When the originating TCP receives an error message, a time-out occurs and the message is resent. 

 11.11.1 

 Some  Additional  TCP  Services 

The TCP performs additional services, which include:

• Open/close  commands—Through  physical  devices,  the  TCP  can  establish  a 

virtual connection, with the open command. At that moment, the TCP performs 

the three-way handshake, which is a process in which the source and destination 

TCP exchange acknowledgment messages to make the connection possible. 

By the time the transfer of information ends, any host (source or destination) 

can close the virtual connection with the close command. 

• Information  management  in  connection-oriented  transmissions—The  TCP  can 

control  all  aspects  of  the  information  being  transmitted,  as  it  is  a  connection-oriented transmission protocol. 

• Priority  and  security—The  TCP  allows  the  host  administrator  to  control  the levels of security and access permission, as well as connection priorities. These 

characteristics  are  not  present  in  all  versions,  although  they  are  defined  in  the TCP standards. 

• Flow-oriented  transfer  stream—Interface  applications  send  data  to  TCP  in  a targeted manner to stream. When the information arrives at TCP, it is grouped 

into packets and sent to the other transmission levels. 

The TCP can use several ways of sending messages, including telephone lines, 

local networks, or high-speed fiber optic networks (Fig. 11.23). 

 11.11.2 

 TCP  Header  Structure 

The structure of the TCP header includes:
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• Source port—Contains the source port number. 

• Destination port—Contains the destination port number. 

• Sequence  number—The  sequence  number  of  the  segment’s  first  data  octet 

(except  when  SYN  is  present).  If  SYN  is  present,  the  sequence  number  is  the starting sequence number (ISN), and the first data octet is ISN + 1. 

• Acknowledgment number—If the ACK control bit is activated, the field contains 

the value of the next sequence number that the recipient of the segment is waiting to receive. 

• Data offset—Indicates where the data field starts within the TCP header. 

• Reserved—Six bits reserved for future use. 

• Control bits—The control bit can be (from left to right): 

–  U (URG) Informs the application of the arrival of urgent data, which must be 

processed in the buffer. 

–  A (ACK) Indicates that the acknowledgment field is important. 

–  P (PSH) Function push. 

–  R (RST) Reinitializes the connection. 

–  S (SYN) Synchronize sequence numbers. 

–  F (FIN) Indicates the end of data transmission. 

• Window—16  bits.  The  number  of  data  octets  that  the  recipient  is  waiting  to receive, starting with the octet that indicates the acknowledgment field. 

11.12 

The  Internet  Protocol 

The main function of the IP is to transport datagrams from one network to another on the Internet. It is a nonconnection-oriented transmission protocol, with the following characteristics:

• It has no retransmission mechanisms. 

• There is no guarantee of full or orderly transmission. 

• Uses IP addresses as a basis for targeting datagrams. 

• Discards a datagram if it is not delivered or if it has spent a long of time traveling on the Internet. 

• Its operations and standards are described in Request for Comments (RFCs) and 

Internet Engineering Notes (IENs). 

Although the IP does not have these characteristics, they are important so that 

data  transmitted  integrity  remains  with  the  TCP.  Sending  datagrams  via  IP  goes through some basic steps that are explained in the following. 
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 11.12.1 

 IP  Addresses 

Each  computer  connected  to  the  Internet  has  one  or  more  IP  numbers,  each  IP 

number  on  the  Internet  being  unique,  which  prevents  datagrams  from  being  sent to  the  wrong  place.  A  computer  can  play  the  role  of  host  or  gateway  or  both.  IP 

addresses are made up of four bytes, separated by periods and divided into network address and local address. 

The network address, provided by InterNIC, contains the part that refers to the 

main  network  and  the  subnets.  It  is  represented  in  the  first  three  bytes  of  the  IP 

number. The local address is assigned by the host administrator. It occupies the last byte and is used to identify local machines. 

To facilitate the identification of addresses, the Domain Name System (DNS) was 

created, which associates a name to each IP number, with some characteristics:

• Names (domains) are separated by periods. 

• There are no spaces between domains. 

• The number of names can vary from one address to another, and they identify a 

single machine. 

• There is no difference between uppercase and lowercase letters. 

• Unlike the IP number, they are read from right to left. 

 11.12.2 

 How  to  Define  a  DNS 

DNS example: dee.ufcg.edu.br, in which:

• dee is the name of the machine (host). 

• ufcg identifies the organization to which the host is connected. 

• edu is part of the organization’s identification. 

• br is the field that represents the country (Brazil) or the type of the org anization. 

In  addition  to  the  common  DNS  hierarchy  (country  name,  organization  name, machine name), there may also be a special hierarchy, such as the names ufcg and 

edu, where edu indicates an educational institution and ufcg is a university. 

Associated with this address in the form of names can be the user’s name (at the 

far left), separated by the symbol @ from the rest of the address, as in the example: malencar@iecom.org.br, on what:

• malencar is the part that identifies the user (also called login). 

• @ is the character that separates the user’s name from the rest of the address. 

• iecom.org.br constitutes the remainder of the domain that goes from the name 

of the organization to the name of the country. 

11.12 The Internet Protocol
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 11.12.3 

 Datagram  Fragmentation 

When exchanging packets, Internet applications find a difference in size messages 

on different networks. The IP allows for fragmentation, and datagrams are divided 

into smaller units. 

The fragmentation procedure is performed by a gateway, and the messages are 

broken into units and identified. The destination host regroups the instructions based on the identification (ID) of the gateway. 

When  identifying  fragments,  the  gateway  creates  a  header  for  each  fragment, which contains the initial addresses of the networks (source address) and a message ID. 

Upon regrouping, the destination host, upon receiving the first fragment, triggers a  timer  (time  to  live).  If  the  standard  time  is  exceeded  and  the  message  is  not reconnected,  the  destination  host  discards  fragments  received  and  send  an  error message to the source. 

 11.12.4 

 IP  Routing 

A datagram sent by a host is not able to reach its destination without being guided by one or more routers. 

A  router  receives  the  sent  datagram  and  verifies  its  destination  IP  address, comparing  it  to  its  table.  After  this  analysis,  the  datagram  is  sent  to  the  gateway closest to the destination or even to the destination itself. 

The table of a router can be static or dynamic. The dynamics are more flexible to 

adapt to the network modifications. 

These tables determine the forwarding of datagrams to:

• Another subnet connected to the same router as the source network. 

• A gateway, in case the network has access through one or more gateways (indirect routing). 

• A default route if the address is not identified in the local table. In this case, the usual default is to send the datagram to an external circuit. 

Router tables are made up of four numeric fields, as shown in Table 11.1. 

• Field 1: IP address field. It contains all addresses sent by a given network. 

• Field 2: This field contains a control called a metric, which uses algorithms to analyze  the  most  efficient  for  a  given  address  (including  distance,  equipment, and time). 

• Field 3: The field that contains the IP address of the destination, be it a host from another subnet, a gateway, or an address default. 

• Field 4: Field four contains the flags. A flag controls the frequency of use of a given address, so that, in the case of pivot tables, the address can be deleted if it is little used. 
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Table  11.1  Example of 

Router fields 

router tables 

145.55.0.0

134  145.55.0.1

1 

200.19.162.00  122  145.55.0.3

0 

200.133.0.0

59  145.44.0.2

1 

200.112.0.0

171  145.54.1.22  0 

Default

173  821.27.8.11  1 

Routers  use  a  protocol  to  communicate  or  to  communicate  to  hosts  connected to  them  the  information  of  status.  This  protocol  can  be  the  Routing  Information Protocol (RIP) or Open Shortest Path First (OSPF). 

There  is  yet  another  protocol,  the  Internet  Control  Message  Protocol  (ICMP), which informs about possible errors in the routing process. 

 11.12.5 

 IP  Address  Resolution 

Sometimes, when a host wants to send a message, it may not know the full address 

of the host destination, that is, to know only the IP number. For these cases, the IP 

has a protocol called Address Resolution Protocol (ARP). 

Two situations can occur in address resolution:

• The  destination  host  is  on  the  same  network.  Then,  the  originating  host  sends an ARP packet containing the destination IP number of the message to all other 

stations of your network. Only the station that identifies itself with the IP number of that packet will respond to the message, sending back your MAC address. 

In  addition  to  sending  the  message,  the  originating  host  stores  the  MAC 

address  received  from  the  host  from  destination  in  a  temporary  table,  which relates IP numbers to the MAC addresses of the supposed local network. 

• The destination host is on a distant network. In this case, the originating host will send an ARP packet containing the IP number to the gateway, which then will 

guide this packet through several connections  until it reaches the desired local 

network. 

Then, there will be the same as in the previous situation, with the difference 

that gateway itself will send ARP packets for all local stations. 

The  Reverse  Address  Resolution  Protocol  (RARP)  is  a  protocol  that  allows  a station to discover the user’s own IP address. It is used by workstations without a hard disk, since they cannot permanently store an IP address. 

Each time a station of this type is going to send a message, it needs to discover 

its IP address. To do so, it sends a message to your local network’s RARP server, 

containing its MAC address. The server returns its IP number to the station, thus 

enabling the sending of messages. 

The ARP Proxy is a variation of the ARP. It allows an organization to have only 

one IP address for its various networks. 

11.12 The Internet Protocol
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Fig.  11.24  Structure of the ARP/RARP header 

In  that  case,  all  networks  are  connected  to  a  router.  When  a  host  wants  to communicate with a host from another network (without knowing its MAC address), 

it will dump a packet with the destination host IP number. 

However, the packet is intercepted first by the router, which returns to the host 

destination MAC address itself. 

Subsequent  information  is  directed  to  the  router,  which  rewrites  it  to  the  host destination, according to its own address table. 

The structure of the header ARP/RARP is shown in Fig. 11.24. 

The structure of the ARP/RARP header is composed as follows:

•  Hardware  Type—Specifies the type of hardware interface from which the issuer of the request expects a response from the request. 

 Protocol  Type—Specifies  the  type  of  high-level  protocol  the  issuer  of  the request has. 

 HLen—Hardware address length. 

 PLen—Protocol address length. 

 Operation—Values are as follows: 

1.  ARP request 

2.  ARP response 

3.  RARP request 

4.  RARP response 

5.  Dynamic RARP request 

6.  Dynamic RARP reply 

7.  Dynamic RARP error 

8.  InARP request 

9.  InARP reply 

The structure of the ARP/RARP header includes:

• Sender hardware address—Hardware address of the request sender

• Sender protocol address—Address of the third-level (top level) protocol of the 

request sender

• Target hardware address—Hardware address of the request recipient

• Target protocol address—Recipient third-level (top level) protocol address
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 11.12.6 

 User  Datagram  Protocol 

The UDP is restricted to ports and sockets and transmits data in a nonconnection-

oriented manner. It is just an interface to the IP. 

The basic function of UDP is to serve as a multiplexer or demultiplexer for IP 

information traffic. Like TCP, it works with ports that properly guide the information traffic to each application. These ports are:

• Destination  Port—It  is  a  part  of  the  datagram  (one  end)  that  indicates  the application to which whether to send the incoming information. 

• Originating Port—It is located at the other end of the datagram and indicates the application that sent the message. It can be used for a resend, or when not used, 

it is filled with zeros. 

 11.12.7 

 Applications  Based  on  TCP  and  UDP 

There are a number of top-level Internet applications such as e-mail that use TCP or UDP services. These applications are widely used Internet standards, mainly by its versatility. 

Some TCP application protocols:

• TELNET—The telecommunications network protocol allows a user to work on 

a host distant. It emulates a special terminal that does the necessary conversions between two different terminals, allowing you to remotely act on a host without 

the need for both hosts to have a similar terminal. 

• FTP—The File Transfer Protocol is a tool for transmitting files over the Internet. 

It defines the procedures for managing the exchange of information between TCP 

hosts. An FTP connection goes through two processes: control connection and 

data transfer. 

The control connection is the first step in the FTP connection process. It serves 

to hold the host and define security and file manipulation levels. 

Data  transfer  is  the  stage  at  which  files  are  transmitted.  It  depends  on  the success of control connection to be made. 

 11.12.8 

 Applications  Based  on  TCP  and  UDP 

The TCP application protocols are:

• SMTP—Simple  Mail  Transfer  Protocol  is  a  top-level  application  that  is  connected to the transmission e-mail via the Internet. 

11.13 The TCP/IP
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It is one of the most used top-level protocols on the Internet, which works as 

follows. SMTP is made up of two parts, which are the source and the destination, 

each of which has access to a storage server. 

When the source sends a message to the destination, this message is stored on 

the source’s storage server. The server then tries to send messages, and, if there is a problem with the destination, the server will later try to resend the message. 

If not, the message will be sent back to the source or to postmaster. 

• SNMP—The  Simple  Network  Management  Protocol  is  the  most  expressive 

standard  in terms of network  management.  It is a protocol  that  is used to deal with eventual network or equipment failures. SNMP is still used for monitoring 

networks, mainly in networks that use TCP/IP. 

• RPC—Remote Procedure Call is a protocol that allows a host to use a function 

located on a remote host. RPC allows the exchange of messages, in which the 

source sends parameters to a server and is waiting for a return that provides the 

result of the remote function. 

• TFTP—Trivial File Transfer Protocol is one of the most elementary of all, as it 

has few utilities, such as time and integrity control. It is a simpler model of FTP, as it has no mechanism security, and as it is based on the UDP, the integrity of 

your transmissions cannot be trusted. This protocol is not widely used today, but 

some vendors still distribute it to their customers’ equipment to avoid possible 

incompatibilities. 

11.13 

The  TCP/IP 

A protocol is a set of rules that allow two or more computers to communicate, and 

TCP/IP is the most widely used network protocol today. It is, actually, a set or stack of protocols. The acronym refers to two different protocols, Transmission Control 

Protocol (TCP) and the Internet Protocol (IP). 

In fact, there are many other protocols that compose the TCP/IP stack, including 

FTP, HTTP, SMTP, and UDP. TCP/IP has four layers. 

The programs communicate with the application layer. In the application layer, 

it is possible to find application protocols such as SMTP (for email), FTP (for file transfer), and HTTP (for network browsing). 

After  processing  the  program  request,  the  protocol  in  the  application  layer communicates with another protocol in the transport layer, usually TCP. This layer is responsible for taking the data sent by the upper layer, divide them into packets, and send them to the immediately lower layer, the Internet layer. In addition, during data reception, this layer is responsible for placing packets received from the network in order (since they may arrive out of order) and also check that the contents of the packets are intact. 

In the Internet layer, there is the IP, which takes the packets received from the 

transport layer and adds information address, also known as IP address (the address of the computer sending the data and the address the computer receiving the data). 
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Then,  the  data  packets  are  sent  to  the  next  lower  layer,  the  network  interface layer. In this layer, the packets are called datagrams, a reference to the time-honored telegram. 

The network interface layer receives the packets sent by the Internet layer and 

sends  them  to the network  (or receives  data from the network,  if the computer  is receiving data). What is in that layer depends on the type of network the computer is connected to. 

Currently,  most  computers  use  the  Ethernet  network  and,  therefore,  the  layers of  the  network  interface  must  be  found  in  the  Ethernet,  which  are  logical  link control (LLC), media access control (MAC), and physics. Packets transmitted over 

the network are called frames. 

 11.13.1 

 Application  Layer 

This  layer  communicates  between  programs  and  transport  protocols.  There  are several protocols that operate at the application layer. The most known are:

• The  HyperText  Transfer  Protocol  (HTTP)  is  an  application-layer  protocol  for transmitting hypermedia documents, such as HTML. 

• The Simple Mail Transfer Protocol Mail Transfer (SMTP) is an Internet standard 

communication protocol for electronic mail transmission. Mail servers and other 

message transfer agents use SMTP to send and receive mail messages. 

• The File Transfer Protocol (FTP) is a standard to download, upload, and transfer files from one location to another on the Internet and between computer systems. 

• The  Simple  Network  Management  Protocol  (SNMP)  is  an  Internet  Standard 

protocol  for  collecting  and  organizing  information  about  managed  devices  on IP networks. 

• The  Domain  Name  System  (DNS)  is  a  hierarchical  and  distributed  naming 

system for computers, services, and other resources in the Internet. 

• Telnet  is  a  protocol  for  communication  between  remote  terminals.  It  is  a client/server  application  protocol  that  provides  access  to  virtual  terminals  of remote systems on local area networks or the Internet. 

When an email client program wants to download messages that are stored on the 

email server, it makes this request to the application layer of TCP/IP, being served by the SMTP. 

When entering a www address to view a page on the Internet, the communication 

is executed with the layer application of TCP/IP, being served by the HTTP. 

The application layer communicates with the transport layer through a door. The 

doors are numbered and the doors standard applications always use the same ports. 

For  example,  the  SMTP  always  uses  port  25,  the  HTTP  always  uses  port  80, and FTP uses ports 20 (for data transmission) and 21 (for transmission of control 

information). 
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Fig.  11.25  How the application layer works 

The  use  of  a  port  number  allows  the  Transmission  Control  Protocol  (TCP)  to know what type of content of the data packet (e.g., if it is an email) and receiver, to know which application protocol it should deliver the data packet to. 

Upon receiving a packet destined for port 25, the TCP delivers it to the protocol 

that is connected to this port, typically SMTP, which in turn delivers the data to the application that requested it (the email program). 

Figure 11.25 illustrates how the application layer works. 

 11.13.2 

 Transport  Layer 

In  data  transmission,  the  transport  layer  is  responsible  for  taking  the  data  passed through the data layer application and transform them into packets. 

The TCP is the most used protocol in the transport layer. At the reception of data, the TCP takes the packets passed through the Internet layer and puts them in order, since that the packets can reach the destination out of order, check if the data inside the packets are intact and sends a confirmation signal called acknowledge (ACK) to the transmitter, warning that the packet has been received correctly and that the data is healthy. 

If no acknowledgment signal (ACK) is received, either because the data did not 

reach  its  destination  or  because  TCP  discovered  that  the  data  was  corrupted,  the transmitter will resend the lost packet. 

While TCP reorders packets and uses an acknowledgment mechanism, which is 

desirable in data transmission, there is another protocol that operates in this layer that does not have these resources. This protocol is UDP (User Datagram Protocol). 

For this reason, TCP is considered a reliable protocol, while UDP is considered 

an  unreliable  protocol.  UDP  is  typically  used  when  no  important  data  is  being transmitted, such as DNS requests. Since UDP does not reorder packets or use an 

acknowledgment mechanism, it is faster than TCP. 
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Fig.  11.26  Data packet generated at the transport layer 

When UDP is used, the application that requests the transmission is responsible 

for  verifying  that  the  data  received  they  are  intact  or  not  and  also  to  reorder  the received packets, that is, the application does the work of TCP. 

During  data  transmission,  both  UDP  and  TCP  receive  data  passed  from  the application  layer  and  add  a  header  to  that  data.  Upon  receipt  of  data,  the  header will be removed before the data is sent to the appropriate port. 

This header contains control information, in particular the number of the source 

port,  destination  port  number,  sequence  number  (for  acknowledgment  of  receipt and  reordering  mechanisms  used  by  TCP),  and  a  checksum  (called  checksum  or CRC, which is a calculation used to verify that the data was received intact at the destination). 

The UDP header is eight bytes long, while the TCP header has between 20 and 

24 bytes, depending on whether the options field is being used or not. 

Figure 11.26 illustrates the data packet generated at the transport layer. This data packet  is  sent  to  the  Internet  layer,  for  data  transmission,  or  is  received  from  the Internet layer, when receiving data. 

 11.13.3 

 Internet  Layer 

In  TCP/IP  networks,  each  computer  is  identified  with  a  unique  virtual  address, called  an  IP  address.  The  Internet  layer  is  responsible  for  adding  a  header  to  the data packet received from the transport layer where, among other control data, the source IP address and the destination IP address are added, that is, the IP address of  the  computer  sending  the  data  and  the  IP  address  of  the  computer  that  should receive it. 

Each computer network card has a physical address. This address is recorded in 

the card’s ROM memory network and is called MAC address. That way, on a local 

network, if computer A wants to send data to the computer B, it needs to know the 

MAC address of computer B. In a small local network computers are easily found. 

The task is not so simple on a global network such as the Internet. 
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If no virtual addressing scheme is used, you need to know the MAC address of 

the target computer, which is not only a complicated task but also does not help in the routing of packets, as this address does not use a tree structure. 

Routing is the path that the data must use to reach the destination. When someone 

requests  data  from  a  Internet  server,  for  example,  this  data  goes  through  several locations (called routers) before it arrives to the computer. 

In all networks connected to the Internet, there is a device called a router, which bridges between computers on the local network and the Internet. Every router has 

a table containing the known networks and also a configuration called the default 

gateway pointing to another router on the Internet. 

When the computer sends a data packet to the Internet, the router connected to 

the network first checks if it knows the destination computer; in other words, the router checks whether the destination computer is located on the same network or 

on a network that it knows the route. If it does not know the route to the destination computer, it will send the packet to its default gateway, which is another router. This process is repeated until the data packet reaches its destination. 

There are several protocols that operate at the Internet layer:

• The Internet Protocol (IP) is the network layer communications protocol in the 

Internet Protocol suite for relaying datagrams across network boundaries. 

• The Internet Control Message Protocol (ICMP) is a supporting protocol in the 

Internet Protocol suite that is used by network devices, including routers, to send error  messages  and  operational  information  indicating  success  or  failure  when communicating with another IP address. 

• The Address Resolution Protocol (ARP) is a procedure that connects a dynamic 

Internet Protocol (IP) address to a fixed physical machine address, also known as 

a media access control (MAC) address, in a local area network (LAN). 

• The Reverse Address Resolution Protocol (RARP) is a procedure used to link a 

MAC address to an Internet Protocol (IP) address. 

Data packets are transmitted using the IP. The IP takes the data packets received 

from the transport layer and divides them into datagrams. 

The datagram is a packet that does not contain any type of acknowledgment of 

receipt (ACK), which means that IP does not implement a receipt acknowledgment 

mechanism, that is, it is an untrusted protocol. 

It should be noted that during data transfer the TCP will be used over the Internet layer (i.e., over IP) and TCP implements the receipt acknowledgment mechanism. 

Therefore,  although  the  IP  does  not  verify  if  the  datagram  has  arrived  at  the destination, the TCP will do this verification. The connection will then be reliable, although IP alone is an unreliable protocol. Figure 11.27 illustrates a datagram in the Internet layer. 

Each IP datagram can have a maximum size of 65,535 bytes, including its header, 

which can use 20 or 24 bytes, depending on whether a field called options is used 

or not. That way, IP datagrams can carry up to 65,515, which means 65,511 bytes 

of data. 
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Fig.  11.27  Datagram in the Internet layer 

If the data packet received from the transport layer is larger than than 65,515, or 65,511 bytes, the IP will fragment packets into as many datagrams as needed The 

header added by the IP includes the source IP address, the destination IP address, and several other control information. 

11.14 

Security  Protocols  for  TCP/IP 

The  protocol  architecture  that  governs  data  transmission  on  computer  networks that  make  up  the  Internet,  designated  by  the  acronym  TCP/IP,  initially  foresaw an  open  network  environment  with  few  security  mechanisms.  This  provided  the public  nature  of  the  references  (Request  For  Comments—RFC)  and  standard 

implementations of the TCP/IP suite. 

This public and open nature of the Internet Protocol, without protection mech-

anisms,  made  the  security  one  of  the  main  structural  problems  of  the  TCP/IP 

architecture.  This  opening  was  responsible  for  the  success  and  popularization  of the  protocol.  However,  the  deficiency  in  the  security  aspect  represents  one  of  the limitations to the use of technology, especially in commercial applications. 

Among  the  deficiencies,  in  the  security  aspect,  of  the  IP  is  its  inability  to authenticate a machine on the network. Based on the source IP address of a received packet, it is not possible to determine with certainty the identity of the machine that has it originated. There is also no guarantee that the contents of a received packet are unchanged or that data privacy has been preserved (Pouw 1999). 

The  initial  solution  to  provide  network  security  was  to  implement  individual algorithms, for each application, when the needs arose. In this way, the PGP was 

created for communication by e-mail, SSL/TLS for Internet browsing, and SSH for 

login secure remote. However, although implementation at the application layer is
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simpler, since it does not involve the operating system and is restricted to a specific application, a service implemented in this layer makes it specific, creating the need for a new development for each new application. 

The most appropriate solution was to implement the security service in the inter-

network layer, which delivers packets without connection, which allows control by 

flow or connection. Some protocols were developed for this layer for this purpose, some run only on IP (as in the case of GRE and PPTP), and others, more versatile, 

are able to handle not only IP packets but also IPX and NetBEUI (as in the case of L2F or L2TP). 

The  guarantee  of  security  on  the  Internet  requires  that  the  IP  itself  offers  this service, without relying on other protocols. The integration of this functionality with the new version of IP (IPv6) was proposed, and its development was in charge of 

the working group IP Security (IPSec), the Internet Engineering Task Force (IETF). 

Considering  the  delay  in  the  migration  of  the  Internet  to  the  new  version  of IP, several adaptations were made for IPSec to run over IPv4. Its implementation 

was made with special headers, with header extensions in IPv6 and an additional 

protocol  header  in  IPv4,  typically  placed  between  the  original  IP  header  and  its payload. 

 11.14.1 

 The  IP  Security 

The IP Security is an open platform formed by a set of protocols that provide the 

following security services:

• Access control

• Packet integrity

• Origin authentication

• Packet privacy

• Privacy in packet flow

• Protection against replays 

The  open  architecture  makes  it  possible  to  include  other  authentication  and encryption algorithms, in addition to the necessary HMAC-MD5 and HMAC-SHA-1, for authentication and encryption, and DES-CBC, for encryption only. 

 11.14.2 

 Vulnerabilities  and  Safety  Measures  Regarding 

 TCP/IP 

Vulnerabilities in the TCP/IP stack are exploited through the following attacks. 

SYN  Flooding 

This  attack  consists  of  sending  several  packets  to  open  a  data 

exchange connection (SYN packets), containing a forged IP address of a machine
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that is not operational and, therefore, that is not able to complete the connection opening process. 

IP  Spoofing 

When  the  attacker  masks  his  computer  as  a  legitimate  network 

machine. This is done by forging the source address of IP datagrams. Thus, the 

attacker associates his or her datagrams with a legitimate IP address of the target network. 

Sequence  Number  Attack 

To ensure that the packets arrive at the destination in 

the order in which they were sent, the TCP uses a sequence of numbers associated 

with  the  packets.  The  TCP  Sequence  Number  Prediction  attack  consists  of 

predicting the next sequence number of the packet that travels and thus forging 

packets with the numbering expected by the target machine. 

TCP  Session  Hijacking 

This  is  a  variation  of  the  attack  by  sequence  number, 

which also uses a forged IP address. This attack can be performed against any 

application  based  on  the  TCP,  such  as  Telnet,  rlogin,  and  FTP.  It  consists  of hijacking the connection between two machines: a client machine and a server. 

RST  and  FIN  attacks 

Because  the  TCP  has  flags  that  are  used  to  control  the 

connection,  an attacker can use the RST and FIN flags to generate a denial of 

service  attack.  Normally,  the  RST  flag  is  used  to  restart  a  connection,  and  the FIN flag is used to indicate that there is no more data to be sent. 

Ping  O’Death 

The Ping program is used to test whether a machine is operational, 

by sending a packet of the type “ICMP echo” and waiting for the receipt of this 

packet to be received by the target machine. Older versions of this program make 

it  possible  to  send  a  packet  with  a  larger  size  than  allowed.  When  the  target machine  receives  this  packet  and  starts  processing,  system  variables  overflow may occur. 

Possible measures against these attacks on the TCP/IP stack are:

• Block the transmission of packets, the source address of which does not belong 

to the set of addresses that make up the local network

• Block the reception of packets that originate on the Internet and that contain a source address equal to an IP address on the local network

• Use encryption and authentication in communication between machines via the 

Internet and in all TCP services

• Periodically update the operating systems (Ping O’Death) 

 11.14.3 

 Vulnerabilities  and  Safety  Measures  Regarding 

 TCP/IP  Services 

Some services are vulnerable to attack by hackers. The vulnerabilities of the services offered by TCP/IP are typically associated with certain stack protocols:
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Telnet 

This  is  a  program  used  for  communication  between  hosts.  The  vulnera-

bility of Telnet is that it does not protect the user’s login and password during 

transmission to the remote machine. 

Finger 

It is used to obtain information about the users of a given host, such as the 

user’s name and the last time he had access to the system. An attacker could use 

information provided by the finger command to perform an attack, for example, 

using the user’s login and name to try to find out their password. 

File  Transfer  Protocol  (FTP) 

FTP  is  vulnerable  because,  when  establishing  a 

connection  between  a  client  and  an  FTP  server,  the  user’s  login  and  password are sent without protection, and an attacker who is monitoring packet traffic on 

the network can discover the user’s password. 

The usual solutions to these problems are listed next:

• Periodically update the network’s software. 

• Limit the services offered by the network’s servers. 

• Inspect the system’s logs files. 

• Check running processes and strange files. 

• Validate system settings. 

• Educate users about network security. 

• Limit users’ access to the system. 

• Disable the Telnet and Finger commands. 

• Run frequent backups. 

• Constant updating of administrators and those responsible for security in relation to methods of systems invasion. 

• Encourage the use of cryptography on the network. 

• Install firewalls to filter incoming packets. 

11.15 

Video  Transmission  Over  the  Internet 

The Society of Motion Picture and Television Engineers (SMPTE) developed the 

SMPTE ST 2110 standards suites that specifies the carriage, synchronization, and 

description of separate elementary nature streams over IP for real-time production, reproduction, and other professional media applications. Each stream is individually timed by the ST 2110 system and can take different routes over the network to reach the destination via unicast or multicast at one or more receivers (SMPTE 2024). 

The  SMPTE  ST  2110  suite  is  based  on  VSF  TR-03,  a  standard  designed  for professional  broadcast  applications  that  uses  Real-time  Transport  Protocol  (RTP) as  its  underlying  transport  protocol.  The  audio-video-data  synchronization  using Precision Time Protocol (PTP) clocks guarantees that the accurate synchronization 

of all streams regardless of how the packets were routed. 

The purpose of SMPTE ST 2110 is to create a single standard for the professional 

media  industries  to  transmit  and  receive  media.  The  ST  2110  suite  of  standards include audio encapsulation, background and system overview, data encapsulation, 
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synchronization  and  identification,  traffic  shaping  and  delivery  timing,  and  video encapsulation (Mason 2024): 

The  standards  are  split  into  four  main  components:  2110-10  for  timing  and synchronization, 2110-20 for video, 2110-30 for audio, and 2110-40 for ancillary 

data (Matrox 2024; SMPTE  2024), as follows:

• ST  2110-10  System  Timing  and  Definitions—Defines  the  timing  and  requirements  for  all  the  ST  2110  series  essence  streams.  This  family  of  engineering documents  defines  an  extensible  system  of  RTP-based  essence  streams  referenced  to  a  common  reference  clock,  in  a  manner  which  specifies  their  timing relationships. 

• ST 2110-20 Uncompressed Active Video—Standardizes the transport of uncom-

pressed video over IP networks. An SDP-based signaling method is defined for 

image technical metadata necessary to receive and interpret the stream. 

• ST  2110-21  Video  Stream  Packet  Shaping—Specifies  the  traffic  shaping  and delivery timing for uncompressed video. A timing model for SMPTE ST 2110-10 video RTP streams as measured leaving the RTP sender and defines the sender 

SDP parameters used to signal the timing properties of such streams. 

• ST  2110-22  Constant  Bit-Rate  Compressed  Video—Describes  the  payload  for 

constant rate compression video. The real-time, RTP-based transport of constant 

bit rate compressed video over IP networks, referenced to a common reference 

clock. 

• ST 2110-30 Professional Media Over Managed IP Networks—Standardizes the 

transport of uncompressed audio streams, PDCM digital audio, over IP networks 

based  on  AES67.  The  real-time,  RTP-based  transport  of  PCM  digital  audio 

streams  over  IP  networks  by  reference  to  AES67.  An  SDP-based  signaling 

method  is  defined  for  metadata  necessary  to  receive  and  interpret  the  stream. 

Non-PCM digital audio signals including compressed audio signals are outside 

the scope of this standard. 

• ST 2110-31 AES3 Audio Streams—Specifies the real-time, RTP-based transport 

of AES3 signals over IP networks, referenced to a network reference clock, that 

is, the transport of uncompressed audio streams over IP networks using AES3. 

• ST  2110-40  Ancillary  Data—Standardizes  how  ancillary  data  is  encapsulated and transported using RTP. It maps ancillary data packets, as defined in SMPTE 

ST 291-1, into Real-time Transport Protocol (RTP) packets that are transported 

via User Data Protocol/Internet Protocol (UDP/IP) and enables those packets to 

be moved synchronously with associated video and audio essence streams. 

• SMPTE ST 2110-41—Defines a flexible RTP payload framework for data items. 

The  framework  can  be  used  to  transport  data  items  which  are  tightly  time associated  with  video  or  audio  RTP  Streams  or  those  that  are  independent  of any video or audio RTP streams. 

• SMPTE ST 2110-43—Adds support for Timed Text Markup Language (TTML) 

for captions and subtitles in systems conforming to SMPTE ST 2110-10. 

The SMTPE ST 2110 suite is an improvement over previous IP video transport 

protocols, because it is based on openly available and easily accessible standards, 
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the technology is also openly available, which means that the users are not tied to a  particular  vendor,  it  is  flexible  to  adapt  to  different  use  cases  and  workflows,  it supports high-quality, high-resolution audio and video formats, and it can also work on gigabyte IP networks with compressed video. 

The  SMPTE  ST  2110  suite  transports  media  by  splitting  the  video,  audio, and  ancillary  components  into  independent  essence  streams.  This  allows  each component  to  be  processed,  transported,  and  stored  separately  from  the  others. 

Essence streams in ST 2110 are carried in a UDP/RTP packet and are self-contained, with each stream having all the information necessary for that media type, including timing information (Matrox 2024). 

Some Recommended Practices (RPs) support and extend the core standards:

• SMPTE  RP  2110-23—Specifies  how  a  single  video  essence,  with  a  high  rate such as the UHD video, can be transported using multiple ST 2110-20 streams. 

• SMPTE RP 2110-24—Addresses special considerations for standard definition 

(SD) video in SMPTE ST 2110 systems. 

• SMPTE RP 2110-25—Recommends nomenclature for measurements on SMPTE 

2110 systems, together with their associated formulas. 

Appendix  A 

Fourier  Series  and  Fourier  Transform 

 Mathematics  consists  of  proving  the  most  obvious  thing  in  the 

 least  obvious  way. 

 –   George Pólya 

This  appendix  presents  a  summary  of  properties  of  the  Fourier  series  and  also  a collection of Fourier transforms to help the interested reader in solving the problems. 

The Parseval’s theorem is also presented (Hsu 1973; Lathi 1989). 
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A

Fourier Series and Fourier Transform

Conversion  Formulas 
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Symmetry  Conditions  for  the  Periodical  Waveforms 
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 T / 2

 f (t ) = − f (− t). 

 bn = 4

 f (t )  sin (nω

 T

0

0 t ) d t . 



Half-wave

 T / 2

 f (t ) = − f (t +  T )

 f (t )  cos[ ( 2 n − 1 )ω

2 . 

 a 2 n−1 = 4 T  0

0 t ]d t . 

 T/ 2

 b 2 n−1 = 4

 f (t )  sin[ ( 2 n − 1 )ω

 T

 o

0 t ]d t . 



Quarter

 T / 4

 f (t ) =  f (− t). 

 a 2 n−1 = 8

 f (t )  cos[ ( 2 n − 1 )ω

 T

0

0 t ]d t . 

wave, even

 f (t ) = − f (t +  T )

2 . 



Quarter

 T / 4

 f (t ) = − f (− t). 

 b 2 n−1 = 8

 f (t )  sin[ ( 2 n − 1 )ω

 T

0

0 t ]d t . 

wave, odd

 f (t ) = − f (t +  T )

2 . 

Definition  of  the  Fourier  Transform  and  Some  Properties

∞

• Definition:  F (ω) = −∞  f (t)e− jωt d t. 
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∞

• Inverse:  f (t) = 1

2 π

−∞  F (ω)ejωt  d ω. 

• Magnitude and phase:  F (ω) = | F (ω)| ejθ(ω). 

∞

• Even  f (t). function:  F (ω) = 2

 f (t )  cos  ωt d t

0

. 

∞

• Odd  f (t). function:  F (ω) = −2 j

 f (t )  sin  ωt d t

0

. 

∞

• Area under the curve in time:  F ( 0 ) = −∞  f (t) d t. 

∞

• Area under the transform:  f ( 0 ) = 1

2 π

−∞  F (ω) d ω. 

• Linearity:  αf (t) +  βg(t) ↔  αF (ω) +  βG(ω). 

Parseval’s  Theorem 

∞

∞

. 

 f (t )g(t ) d t = 1

 F (ω)G∗ (ω) d ω, 

−∞

2 π −∞

∞

∞

| f (t)|2d t = 1

| F (ω)|2d ω, 

−∞

2 π −∞

∞

∞

 f (ω)G(ω) d ω =

 F (ω)g(ω) d ω. 

−∞

−∞

A.1 

Table  of  Fourier  Transforms 

This section presents a set of Fourier transforms that are necessary to solve some of the proposed problems. Some properties are also presented, which help computing 

the transforms (Hsu 1973; Spiegel 1976; Lathi 1989; Gradshteyn and Ryzhik 1990; Oberhettinger 1990). 

 f (t ). 

 F (ω). 

 f (at )

1

. 

|

 )

 a|  F ( ω

 a . 

 f (− t). 

 F (− ω). 

 f ∗ (t ). 

 F ∗ (− ω). 

 f (t −  τ ). 

 F (ω)e− jωτ . 

 f (t )ejω 0 t . 

 F (ω −  ω 0 ). 

 f (t )  cos  ω

1

0 t . 

 F (ω −  ω

 F (ω +  ω

2

0 ) + 1

2

0 ). 

 f (t )  sin  ω

1

0 t . 

 F (ω −  ω

 F (ω +  ω

2 j

 o) − 1

2 j

0 ). 

 F (t ). 

2 πf (− ω). 

 f  (t ). 

 j ωF (ω). 

 f (n)(t ). 

 (j ω)nF (ω). 

 t

1

−∞  f (x)dx. 

 F (ω) +  πF ( 0 )δ(ω)

 j ω

. 

−  jtf (t). 

 F  (ω). 

 (− j t)nf (t). 

 F (n)(ω). 

(continued)
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 f (t ). 

 F (ω). 

∞

 f (t ) ∗  g(t) = −∞  f (τ)g(t −  τ)dx. 

 F (ω)G(ω). 

 δ(t ). 

1 

 δ(t −  τ ). 

 e− jωτ . 

 δ (t ). 

 j ω. 

 δ(n)(t ). 

 (j ω)n. 

∞

 f (t )g(t )

1

. 

 F (ω) ∗  G(ω) = 1

2 π

2 π

−∞  F (φ)G(ω −  φ)dφ. 

 e− at u(t )

1

. 

 a+ j ω . 

 e− a| t|

2 a

. 

 a 2+ ω 2 . 



 e− at 2

 π

. 

 e− ω 2 /( 4 a)

 a

. 



 t e− at 2

 π

. 

 j

 ωe− ω 2 /( 4 a). 

4 a 3

0 para | t| >T/ 2

sin ( ωT )

 p

2

 T (t ) =

 A  para | t|≤ T / 2 . 

 AT

. 

 ( ωT )

2

sin  at

 π t . 

 p 2 a(ω). 

 t e− at u(t )

1

. 

 (a+ j ω) 2 . 

 tn−1

1

 (n−1 )!  e− at u(t ). 

 (a+ j ω)n . 

 e− at  sin  bt u(t)

 b

. 

 (a+ j ω) 2+ b 2 . 

 e− at  cos  bt u(t)

 a+ j ω

. 

 (a+ j ω) 2+ b 2 . 

1

 π e− a| ω|. 

 a 2+ t 2 . 

 a

 t

 a 2+ t 2 . 

 j π e− a| ω|[ u(− ω) −  u(ω)]. 

cos  bt

 π [ e− a| ω− b| +  e− a| ω+ b|]. 

 a 2+ t 2 . 

2 a

sin  bt

 π [ e− a| ω− b| −  e− a| ω+ b|]. 

 a 2+ t 2 . 

2 aj



sin  bt 2

 π

. 

cos  ω 2 − sin  ω 2

2 b

4 b

4 b . 





cos  bt 2

 π

. 

cos  ω 2 + sin  ω 2

2 b

4 b

4 b . 

sech  bt

 π

. 

sech  πω

 b

2 b . 





ln  x 2+ a 2

2 e− bω −2 e− aω

. 

 x 2+ b 2

 π ω

. 

 fP (t) = 1 [ f (t) +  f (− t)]

2

. 

Re  (ω). 

 fI (t) = 1 [ f (t) −  f (− t)]

2

. 

 j  Im  (ω). 

 f (t ) =  fP (t) +  fI (t). 

 F (ω) = Re  (ω) +  j  Im ω). 

 ejω 0 t . 

2 π δ(ω −  ω 0 ). 

cos  ω 0 t. 

 π [ δ(ω −  ω 0 ) +  δ(ω +  ω 0 )]. 

sin  ω 0 t. 

−  jπ[ δ(ω −  ω 0 ) −  δ(ω +  ω 0 )]. 

sin  ω

 ω 0

0 t u(t ). 

+  π [ δ(ω −  ω 0 ) −  δ(ω +  ω 0 )]. 

 ω 2− ω 2

2 j

0

(continued)
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 f (t ). 

 F (ω). 

cos  ω

 j ω

0 t u(t ). 

+  π [ δ(ω −  ω 0 ) +  δ(ω +  ω 0 )]. 

 ω 2− ω 2

2

0

 u(t ). 

 π δ(ω) + 1

 j ω . 

 u(t −  τ ). 

 π δ(ω) + 1  e− jωτ

 j ω

. 

 t u(t ). 

 j π δ (ω) − 1

 ω 2 . 

1

2 π δ(ω). 

 t

2 πj δ (ω). 

 t n. 

2 πj nδ(n)(ω). 

| t|

−2

. 

 ω 2 . 

1

 t . 

 πj − 2 πj u(ω). 

1

 (− j ω)n−1

 tn . 

 (n−1 )! [ πj − 2 πj u(ω)]. 

 u(t ) −  u(− t)

2

. 

 j ω . 

1

− jπ

. 

coth  πω +  j

 e 2 t −1

2

2

 ω . 





 δ

∞

∞

 T (t ) =

 (ω) =  ω

 n=−∞  δ(t −  nT ). 

 ω 0 δω 0

0

 n=−∞  δ(ω −  nω 0 ). 





√

cos

 t 2 − 1  π

 π a  cos (aω 2 )

4 a

4

. 

2

. 





√

sin

 t 2 + 1  π

 π a  sin (aω 2 )

4 a

4

. 

2

. 





 Γ ( 1− s)  sin 1  sπ

2

| t|1− s

. 

 π | ω|− s  0  <  Re  (s) <  1. 

√

1

2 π

| t| . 

| ω| . 

√



 α 2+ t 2+ α

√

2 π

. 

|

 α 2+ t 2

 ω|  e− α| ω|. 

cos (  1  α)  cosh (  1  t)

2

2

 π  cosh (αω)

−  π < α < π

cosh (t)+cos (α) . 

cosh (π ω)

. 

sin (α)

 π  sinh  (αω)

−  π < α < π

cosh (t)+cos (α) . 

sinh  (π ω)

. 

2

 J

√

| ω|  < α. 

0 (αt ). 

 α 2− ω 2

0

| ω|  > α. 

√

1

 J

2 ]

√

0 (α

 b 2 −  t 2 )| t|  < b. 

2 sin[ b(α 2+ ω 2 )

. 

 α 2+ ω 2

0

| t|  > b. 

√

 j nJ

 (t )

2 P

 n+ 1

. 

 n(ω)| ω|  <  1. 

2

0

| ω|  >  1. 

√

√

 J

2 cos (b

 α 2− ω 2 )

√

0 (α

 t  2 +  b 2 ). 

| ω|  < α. 

 α 2− ω 2

0

| ω|  > α. 

√

√

 J

2 cosh (b

 α 2− ω 2 )

√

0 (α

 t  2 −  b 2 ). 

| ω|  < α. 

 α 2− ω 2

0

| ω|  > a. 

1

 (α− j t)ν . 

2 π ων−1 e− αω/Γ (ν), 

 ω >  0. 

Re  α >  0 , 

Re  ν >  0. 

0 , 

 ω <  0. 

(continued)
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 f (t ). 

 F (ω). 

1

 (α+ j t)ν . 

− 2 π(− ω)ν−1 eαω/Γ (ν), ω <  0. 

Re  ν >  0 , 

Re  α >  0. 

0 , 

 ω >  0. 

1

 (t 2+ α 2 )(j t)ν . 

 π α− ν−1 e−| ω| α. 

| ν|  <  1 ,  Re  α >  0. 

arg (j t) = 1 / 2 π, (t >  0 ). 

arg (j t) = −1 / 2 π, (t <  0 ). 

1

Re  ν > −1

 π e− αω

. 

 (t 2+ α 2 )(β+ j t)ν

 α(α+ β)ν , 

 ω >  0. 

Re  α >  0 , 

Re  β >  0. 

1

 π(β− α)ν eαω , ω >  0. 

 (x 2+ α 2 )(β− j t)ν . 

 α

Re  ν > −1 , 

Re  α >  0. 

Re  β >  0 , 

 α =  β. 

1

 (α− e− t )eλt . 

 π αλ−1+ jω  cot (π λ +  j πω). 

0  <  Re  λ <  1 , 

 α >  0. 

1

 (α+ e− t )eλt . 

 π αλ−1+ jω cossec (π λ +  j πω). 

0  <  Re  λ <  1 , 

− π <  arg  α < π. 

 t

 (α+ e− t )eλt . 

 π αλ−1+ jω cossec (π λ +  j πω). 

0  <  Re  λ <  1 , 

− π <  arg  α < π. × [log  α −  π  cot (πλ +  jπω)]. 

 t 2

 ( 1+ e− t )eλt . 

 π  3cossec3 (π λ +  j ωπ)[2 − sin2  (πλ +  j ωπ)]. 

0  <  Re  λ <  1. 

1

 (α+ e− t )(β+ e− t )eλt . 

 π(β −  α)−1 (αλ−1+ jω −  βλ−1+ jω). 

0  <  Re  λ <  2 , 

 β =  α. 

× cossec  (πλ +  jωπ). 

| arg  α|  < π, | arg  β|  < π. 

 t

 π(αλ−1+ jω  log  α− βλ−1+ jω  log  β)

 (α+ e− t )(β+ e− t )eλt . 

 (α− β)  sin  (λπ+ j ωπ)

. 

0  <  Re  λ <  2 , 

 α =  β. 

+  π 2 (αλ−1+ jω− βλ−1+ jω) cos (λπ+ jωπ) . 

 (β− α)  sin2  (λπ+ j ωπ)

| arg  α|  < π, | arg  β|  < π. 



1

 n−1  (j −  λ −  jω)/(n − 1 )!. 

 ( 1+ e− t )neλt . 

 π  cossec  (π λ +  j ωπ)

 j =1

 n = 1 ,  2 ,  3 , · · ·  , 

0  <  Re  α < n. 

 e− λt  log |1 −  e− t |. 

 π(λ +  j ω)−1 cot (πλ +  j ωπ). 

− 1  <  Re  λ <  0. 

 e− λt  log ( 1 +  e− t ). 

 π(λ +  j ω)−1cossec  (πλ +  j ωπ). 

− 1  <  Re  λ <  0. 





 e− λt  log |1+ e− t |

|

. 

 π(λ +  j ω)−1 tan (  1  πλ + 1  j ωπ). 

1− e− t |

2

2

|Re  λ|  <  1. 

1

 α >  0

 ( sinh  t+sinh  α)

. 

−  πjejαω sech  α  cossech  (πω) × [cosh (πω) −  e−2 jαω]. 

1

1  jω(μ− ν)

[

 ω)] μ+ ν−2 e  2

×[ Γ (μ+ ν−1 )]−1 , | ω|  < π

 Γ (ν− t)Γ (μ+ t)] . 

[2 cos (  12

. 

0 , 

| ω|  > π. 
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A.2 

Fourier  Transform  in  Two  Dimensions 

This  section  contains  some  interesting  properties  of  the  Fourier  transform  in  two dimensions (Bracewell 1965; Hsu  1973; Spiegel 1976; Lathi 1989; Gradshteyn and Ryzhik 1990; Oberhettinger 1990). 

 f (t, τ ). 

 F (ω, φ). 

 αf (t, τ ) +  βg(t, τ ). 

 αF (ω, φ) +  βG(ω, φ). 

 f (at, bτ )

1

. 

|

 , φ )

 ab|  F ( ω

 a

 b . 

 f (− t, − τ ). 

 F (− ω, − φ). 

 f ∗ (t, τ ). 

 F ∗ (− ω, − φ). 

 f (t −  σ, τ −  ζ ). 

 F (ω, φ)e− jωσ − jφζ . 

 f (t, τ )ejω 0 t . 

 F (ω −  ω 0 , φ). 

 f (t, τ )  cos  ω

1

0 t . 

 F (ω −  ω

 F (ω +  ω

2

0 , φ) + 1

2

0 , φ). 

 f (t, τ )  sen  ω

1

0 t . 

 F (ω −  ω

 F (ω +  ω

2 j

 o, φ) − 1

2 j

0 , φ). 

 F (t, τ ). 

 ( 2 π ) 2 f (− ω, − φ). 

 ∂ f (t, τ )

 ∂t

. 

 j ωF (ω, φ). 

 ∂ f (t, τ )

 ∂τ

. 

 j φF (ω, φ). 

 ∂ 2  f (t, τ )

 ∂t ∂τ

. 

−  ωφF (ω, φ). 

 ∂n

 ∂tn f (t , τ ). 

 (j ω)nF (ω, φ). 

 ∂n

 ∂τ n f (t , τ ). 

 (j φ)nF (ω, φ). 

 t

1

−∞  f (t, τ )dt. 

 F (ω, φ) +  πF ( 0 , φ)δ(ω, φ)

 j ω

. 

∞  ∞

−∞ −∞  f (t, τ )dtdτ . 

 F ( 0 ,  0 ). 

∞  ∞

∞  ∞

−∞ −∞ | f (t, τ )|2 dtdτ . 

−∞ −∞ | F (ω, φ)|2 dωdφ. 

∞  ∞

∞  ∞

−∞ −∞  f (t, τ )g∗ (t, τ )dtdτ . 

−∞ −∞  F (ω, φ)G∗ (ω, φ)dωdφ. 

 f (t, τ ) ∗  g(t, τ ). 

 F (ω, φ)G(ω, φ). 

 f (t, τ ) ∗  f ∗ (− t, − τ ). 

| F (ω, φ)|2. 

Appendix  B 

Discrete  Fourier  Transforms 

 Anyone  who  attempts  to  generate  random  numbers  by 

 deterministic  means  is,  of  course,  living  in  a  state  of  sin. 

 –   John von Neumann 

This appendix presents discrete Fourier transforms and a table of discrete Fourier transforms. 

Some  properties  are  also  presented,  which  help  computing  the  transforms 

(Lourtie 2007; Mandal and Asif 2007; Körner 2002; Oppenheim et al. 2002). 

Plancherel  and  Parseval’s  Theorems 

If  Xk.  and   Yk.  are  the  discrete  Fourier  transforms  of   xn.  and   yn.,  respectively,  then Parseval’s theorem states that 

 N −1



 N −1



. 

 xny∗ = 1

 n

 XkY ∗

 N

 k , 

 n=0

 k=0

in which the asterisk denotes complex conjugation. 

Plancherel theorem is a special case of the Parseval’s theorem and states that 

 N −1



 N −1



. 

| xn|2 = 1

| Xk|2 . 

 N

 n=0

 k=0
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B

Discrete Fourier Transforms

Periodicity 

The periodicity of the discrete Fourier transform can be demonstrated directly from the definition: 

 N −1



 N −1



 (k+ N)n

 kn

.  Xk+ N 

 xne−  i 2 π

 N

=

 xne−  i 2 π

 N

 e− i 2 πn

 n=0

 n=0

 N −1



 kn

.  Xk+ N =

 xne−  i 2 π

 N

=  Xk, 

 n=0

because  e− i 2 πn = 1.. 

In  a  similar  way,  it  can  be  shown  that  the  inverse  discrete  Fourier  transform formula leads to a periodic extension. 

Shift  Theorem 

 i 2 π(n−1 )

Multiplying  x

 m

 n. by the complex exponential  e

 N

., for some integer  m, that leads 

to  a  linear  phase,  corresponds  to  a  circular  shift  of  the  output  Xk.,  that  is,  Xk.  is replaced by  Xk− m., in which the subscript is interpreted modulo  N. 

Similarly, a circular shift of the input  xn. corresponds to introducing a linear phase shift in the output  Xk.. Mathematically, if { xn}. represents the vector  x, then, if 

.  F ({ xn} )k =  Xk , 

then 





 i 2 π nm

.  F

 xn ·  e N

=  Xk− m

 k

and 

 km

.  F ({ xn− m} ) =

 k

 Xk ·  e−  i 2 π

 N

 . 
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B.1 

Table  of  Discrete  Fourier  Transforms 

 x(n). 

 X(k). 

 αx 1 (n) +  βx 2 (n). 

 αX 1 (k) +  βX 2 (k). 

 x(n −  l). 

 e− j 2 πlk/N X(k). 

 x(n)ej 2 πln. 

 X(k +  l). 

 x(n)e− j 2 πln. 

 X(k −  l). 

 x(N −  n). 

 X(N −  k). 

 x(− n). 

 X(− k). 

 x 1 (n) ∗  x 2 (n). 

 X 1 (k) ·  X 2 (k). 

 x

1

1 (n) ·  x 2 (n). 

[ X

 N

1 (k) ∗  X 2 (k)]. 

 x∗ (n). 

 X∗ (N −  k). 

 x∗ (N −  n). 

 X∗ (k). 









 N −1

 N −1

1 +  e− j 2 πk/N

 n

. 

. 

 N

if  α =  ej 2 πkl/N

 αn. 

1− αN

. 

otherwise

1− αe− j 2 πk/N







 x(n)

 N −1

2 π kn

. real and even

 x(n)  cos

 n=0

 N

. 







 x(n)

 N −1

2 π kn

. real and odd

−  j

 x(n)  sin

 n=0

 N

. 

 xn ∈ R. 

 Xk =  X∗ N− k. 





 (x

1

 n). 

 X

2

 k +  X∗

 N − k . 





 (x

1

 n). 

 X

2 i

 k −  X∗

 N − k . 





1

 x

2

 n +  x∗

 N − n . 

 (Xk). 





1

 x

2 i

 n −  x∗

 N − n . 

 (Xk). 

Appendix  C 

Table  of  Hilbert  Transforms 

 It  is  not  knowledge,  but  the  act  of  learning,  not  possession  but 

 the  act  of  getting  there,  which  grants  the  greatest  enjoyment. 

 –   Carl Friedrich Gauss 

The  appendix  presents  a  table  of  Hilbert  transform  formulas  and  some  important inequalities. 

This  appendix  presents  a  table  of  Hilbert  transform,  named  after  the  German mathematician David Hilbert (1862–1943) Hilbert (1912). For the third and fourth properties, the signal is assumed bandpass. In the following, consider that sinc  (t) =

sin (π t)

 π t

. (Haykin 1987; Poularikas 1954; Erdélyi 1954; Baskakov 1986). 

Recall that the Hilbert transform of a time signal  f (t). is denoted by  H[ f (t)]., or ˆ

 f (t )., and defined by the following integral (Gagliardi 1978): 

∞  f(τ)

.  H[ f (t )] = ˆ

 f (t ) = 1

d τ. 

(C.1) 

 π

−∞  t −  τ

The functions  f (t). and ˆ

 f (t ). form a pair of Hilbert transforms, and the transform 

is the Cauchy principal value of the integral (Tables C.1, C.2, C.3, and C.4). The Hilbert transform is a linear operation, and its inverse is given by 

∞ ˆ f(t)

.  H−1[ ˆ

 f (t )] =  f (t) = − 1

d τ. 

(C.2) 

 π

−∞  t −  τ
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Table of Hilbert Transforms

Table  C.1 

Useful relations 

Property

Relation 

between functions and their 

∞

Hilbert transforms 

Orthogonality

−∞  f (t)  ˆ

 f (t ) d t = 0. 

∞

Autocorrelation 

−∞  f (t)f (t

−  τ) d t

=

∞ ˆ

−∞  f (t)  ˆ

 f (t −  τ ) d t. 

∞

∞

Energy

−∞ | f (t)|2d t = −∞ | ˆ

 f (t )|2d t. 

∞

Integration 

−∞  f (t)  ˆ g(t) d t

=

∞ ˆ

−∞  f (t)g(t) d t. 

∞

−∞  f (t)g(t) d t

=

∞ ˆ

−∞  f (t)  ˆ g(t) d t. 

∞

∞ ˆ

−∞  f  2 (t) d t = −∞  f  2 (t) d t. 

Table  C.2  Table of Hilbert 

 f (t )

ˆ

. 

 f (t ). 

transforms 

 f (t )

ˆ

. 

 f (t ) = 1 ∗  f (t)

 π t

. 

 αf (t ) +  βg(t).  α  ˆ

 f (t ) +  β  ˆ g(t). 

 f (t )  cos  ωct. 

 f (t )  sin  ωct. 

 f (t )  sin  ωct. 

−  f (t)  cos  ωct. 

1. 

0. 

sin  t

1−cos  t

 t

. 

 t

. 

Table  C.3  Table of Hilbert transforms 

 f (t )

ˆ

. 

 f (t ). 

 f (t −  σ )

ˆ

. 

 f (t −  σ ). 

 f (αt ). 

sgn (α)  ˆ

 f (αt ). 

d  f (t)

d ˆ

 f (t )

d t

. 

d t

. 

 ejt . 

 j ejt . 

1

 t . 

−  πδ(t). 

1

1

1+ t 2 . 

1+ t 2 . 

 α

 , α >  0

 t

. 

 α 2+ t 2

 α 2+ t 2 . 





 δ(t −  α) −  δ(t +  α)

2

 α

. 

 π

. 

 t 2− α 2





 δ(t −  α) +  δ(t +  α)

2

 t

. 

 π

. 

 t 2− α 2





 u(t + 1 / 2 ) −  u(t − 1 / 2 ). 

− 1 ln   t−1 / 2 

 π

 t+1 / 2 . 

(continued)
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Table  C.3  (continued) 

 f (t )

ˆ

. 

 f (t ). 

 e− t , t >  0

1

. 

 e− t  Ei (t)

 π

. 





 e−| t|

1

. 

 e− t  Ei (t) +  et  Ei (− t)

 π

. 





sgn (t) e−| t|

1

. 

 e− t  Ei (t) −  et  Ei (− t)

 π

. 

sgn (t). 

− ∞. 

u (t +  τ ) − u (t −  τ )., even rectangular pulse

1 ln   t+ τ 

 π

 t− τ . 









2u (t) − u (t +  τ ) − u (t −  τ )

 t+ τ 

 t− τ 

., odd rectangular pulse

− 1 ln

+ 1 ln

 π

 t

 π

 t

. 









1  (τ −  t) [u (t +  τ) − u (t −  τ)]

 t− τ  ln   t− τ  + 1

 τ

., ramp pulse

1

 π

 τ

 t

. 











1  (τ − | t| ) [u (t +  τ) − u (t −  τ)]

 t− τ  ln   t− τ  +  t+ τ  ln   t+ τ 

 τ

., triangular pulse

1

 π

 τ

 t

 τ

 t

. 













1  (τ − | t| ) [2u (t) − u (t +  τ) − u (t −  τ)]

1

 t− τ  ln   t− τ  −  t+ τ  ln   t+ τ  + 2

 τ

., sawtooth 

 π

 τ

 t

 τ

 t

. 

pulse 

cos (αt)Jn(βt),  0  < β < α. 

− sin (αt)Jn(βt). 

Table  C.4  Table of Hilbert 

 f (t )

ˆ

. 

 f (t ). 

transforms 

 δ(t )

1

. 

 π t . 

 c. 

0. 

1

√

1

. 

√ . 

 t

 t

sinc  t. 

sinc  (t/ 2 )  sin (π t/ 2 ). 

sinc  t

cos  t+ t  sin  t−1

. 

 t 2

. 

 δ (t ). 

− 1

 π t 2 . 

1

 π t 2 . 

 δ (t ). 

 δ (t )

2

. 

 π t 3 . 

− 2

 π t 3 . 

 δ (t ). 

 αβ− t 2

 (α+ β)t

 t 2 (α+ β) 2+ (αβ− t 2 ) 2 . 

 t 2 (α+ β) 2+ (αβ− t 2 ) 2 . 



| t| z−1 ,  0  <  Re  z <  1

 π z

. 

cot

| t| z−1sgn (t)

2

. 



sgn (t) | t| z−1 ,  0  <  Re  z <  1

 π z

. 

− tan

| t| z−1

2

. 

 ejωt . 

−  j sgn (ω)ejωt. 

 e− jωt . 

 j  sgn (ω)e− jωt . 

 e− t 2 . 

−  je− t 2erf (jt). 

cos  ωct. 

sin  ωct. 

sin  ωct. 

− cos  ωct. 

cos2  t

cos ( 2 t)

. 

2

. 

sin2  t. 

− sin ( 2 t)

2

. 

Appendix  D 

Formulas  and  Important  Inequalities 

 To  not  know  math  is  a  severe  limitation  to  understanding  the 

 world. 

 –   Richard Feynman 

The appendix presents some important formulas and inequalities used in the text. 

Schwartz  Inequality 

∞



∞

∞

1 / 2





. Re

 x(t )y∗ (t ) d t ≤

| x 2 (t)|d t

| y 2 (t)|d t

−∞

−∞

−∞

the equality verifies for  x(t) =  ky(t)., in which  k   is a constant. 

Holder  Inequality 







1 / 2

∞





∞

∞



. 

 aibi ≤

 a 2



 i

 b 2 i

 i=0

 i=0

 i=0

the equality is verified for  ai =  kbi.. 

Other  Inequalities 

1.  Consider  that  w 1 , w 2 , . . . , wN .  are  arbitrary  positive  numbers  and  let q

 N

1 , q 2 , . . . , qN . be positive numbers, such that

 i=1  pi = 1.. Then 

 k



 k



 k



. 

 qiwi  log

 qiwi ≤

 qiwi  log  qi, 

 i=1

 i=1

 i=1

this equality is verified because of the continuity and convexity of the function 

 x  log  x.  in  the  closed  interval  ( 0 ,  1 )..  The  equality  occurs  if  qi =  q.,  for  all i = 1 , . . . , N. (Nedoma 1957). 

2.  Let  p 1 , p 2 , . . . , pN .  be arbitrary positive numbers and let  q 1 , q 2 , . . . , qN .  be positive numbers, such that their sum is unit, that is, 

 N

 i=1  pi = 1.. Then 
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 k



 N



 p 1

 pk

.  q

· · ·  q ≤

 p

 q

1

 k

 i qi , 

 i = 1 , qi ≥ 0 , 

 i=1

 i=1

the equality occurs for  k =  N. and  qi =  q. (Ash 1990). 

3.  If  p 1 ≥  p 2 ≥ · · · ≥  pk. and  q 1 ≥  q 2 ≥ · · · ≥  qk., then (Chebyshev Inequality) k

 p



1 +  p 2 · · ·  pk

 q 1 +  q 2 · · ·  qk

. 

≤ 1

 piqi, 

 k

 k

 k i=1

or 

 k



 k



 k



. 

 qi

 pj ≤  k

 piqi, 

 i=1

 j =1

 i=1

the equality is verified only and only if  pi =  p. or  qi =  q., for 1 ≤  i ≤  k. 

(Gradshteyn and Ryzhik 1990). 

4.  Consider  w 1 , w 2 , . . . , wN . positive arbitrary numbers and let  p 1 , p 2 , . . . , pN . 



be positive numbers, such that

 N

 i=1  pi = 1.. Then 

 k



 N



 p 1

 pk

.  w

· · ·  w ≤

 p

 p

1

 k

 i wi , 

 i = 1 , pi ≥ 0 , 

 i=1

 i=1

the equality is obtained for  k =  N. and  wi =  w.. The inequality works even if any  p

 N

 i . equals zero, if

 i=1  pi = 1. (Ash 1990). 

Final  Value  Theorem 

.  lim  x(t ) = lim [ j ωX(ω)]

 t →∞

 ω→0

MacLaurin  Series 







.  f (x) =  f ( 0 ) +  f ( 0 )x + 1  f ( 0 )x 2 + 1  f ( 0 )x 3 + · · ·

2! 

3! 

Bessel  Identities 

∞

 x n   (− x 2 / 4 )k

.  Jn(x) =

2

 k!  (n +  k)! 

 k=0

 π

. =  j − n

 ejx  cos  θ  cos (nθ )dθ

 π

0
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.  Jn(xej mπ ) =  ej nmπ Jn(x)

.  In(x) =  j nJn(x/j )

 π

.  = 1

 ex  cos  θ  cos (nθ )dθ

 π

0

Complex  Identities 



.  z =  x +  jy =

 x 2 +  y 2 ej  tan−1 (y/x)



.  z∗ =  x −  jy =

 x 2 +  y 2 e− j  tan−1 (y/x)

. | z|2 =  zz∗ =  x 2 +  y 2

. Re{ z} = 1 [ z +  z∗]

2

. Im{ z} =

1 [ z −  z∗]

2 j

. Re{ z 1 z 2} = Re{ z 1}Re{ z 2} − Im{ z 1}Im{ z 2}

. Im{ z 1 z 2} = Re{ z 1}Im{ z 2} + Im{ z 1}Re{ z 2}

Trigonometric  Identities 

. sen  θ =

1  (ejθ −  e− jθ)

2 j

. cos  θ = 1  (ej θ +  e− j θ )

2

.  e± j θ = cos  θ ±  j  sen  θ

. sen  (α ±  β) = sen  α  cos  β ± cos  α sen  β

. cos (α ±  β) = cos  α  cos  β ∓ sen  α sen  β

. tan (α ±  β) = tan  α ± tan  β

1 ∓ tan  α  tan  β

.sen  α sen  β = 1 cos (α −  β) − 1 cos (α +  β) 2

2
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. cos  α  cos  β = 1 cos (α −  β) + 1 cos (α +  β) 2

2

. sen  α  cos  β = 1 sen  (α −  β) + 1 sen  (α +  β) 2

2

.  e± j θ = cos  θ ±  j  sen  θ

. cos  θ = 1  (ej θ +  e− j θ )

2

. sen  θ =  (ej θ −  e− j θ )/ 2 j

. sen2  θ + cos2  θ = 1

. cos2  θ − sen2  θ = cos 2 θ

. cos2  θ = 1  ( 1 + cos 2 θ )

2

. cos3  θ = 1  ( 3 cos  θ + cos 3 θ )

4

. sen2  θ = 1  ( 1 − cos 2 θ )

2

. sen3  θ = 1  ( 3sen  θ − sen 3 θ )

4

Series  Expansions 

.  ( 1 +  x)n = 1 +  nx +  n(n − 1 ) x 2 + · · · | nx|  <  1

2! 

.  ex = 1 +  x + 1  x 2 + · · ·

2! 

.  ax = 1 +  x  ln  a + 1  (x  ln  a) 2 + · · ·

2! 

. ln ( 1 +  x) =  x − 1  x 2 + 1  x 3 + · · ·

2

3

.sen  x =  x − 1 !  x 3 + 1 !  x 5 − · · ·

3

5
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. cos  x = 1 − 1  x 2 + 1  x 4 − · · ·

2! 

4! 

. tan  x =  x + 1  x 3 + 1  x 5 + · · ·

3

5

 M



. 

 xm =  (xM − 1 )

 (x − 1 )

 m=0

∞



.  ea  cos  b =

 iIi(a)  cos (ib), 

  0 = 1 , i = 2 , i ≥ 1

 i=0

∞



. cos (x sen  θ ) =  J 0 (x) + 2

 J 2 k(x)  cos ( 2 kθ)

 k=1

∞



. sen  (x sen  θ ) = 2

 J 2 k+1 (x) sen [ ( 2 k + 1 )θ]

 k=0

∞



. cos (x  cos  θ ) =  J 0 (x) + 2

 (−1 )kJ 2 k(x)  cos ( 2 kθ)

 k=0

∞



. sen  (x  cos  θ ) = 2

 (−1 )kJ 2 k+1 (x)  cos[ ( 2 k + 1 )θ]

 k=0

∞



d x

∞

d x

. 

=  (π/n) , n >  1

=  π

0

1 +  xn

sen  (π/n)

0

 (a 2 +  x 2 ) 2

4 a 3

∞







 xu d x

 π

 (u + 1 )π)

∞

d x


. 

=

cossec

= tan−1 (b)

0

1 +  xn

 n

 n

0

1 +  x 2

Indefinite  Integrals 



. 

sen  ax  d x = − 1 cos  ax

 a



. 

cos  ax  d x = 1 sen  ax

 a



. 

sen2  ax  d x =  x − sen 2 ax

2

4 a
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. 

cos2  ax  d x =  x + sen 2 ax

2

4 a



. 

sen  ax  cos  ax  d x = 1 sen2 (ax)

2 a



. 

 x sen  ax  d x = 1  ( sen  ax −  ax  cos  ax) a 2



. 

 x  cos  ax  d x = 1  ( cos  ax +  ax sen  ax) a 2



. 

 x 2sen  ax  d x = 1  ( 2 ax sen  ax + 2 cos  ax −  a 2 x 2 cos  ax) a 3



. 

 x 2 cos  ax  d x = 1  ( 2 ax  cos  ax − 2sen  ax +  a 2 x 2sen  ax) a 3



. 

sen  ax sen  bx  d x = sen  (a −  b)x − sen  (a +  b)x a 2 =  b 2

2 (a −  b)

2 (a +  b)



. 

cos  ax  cos  bx  d x = sen  (a −  b)x + sen  (a +  b)x x a 2 =  b 2

2 (a −  b)

2 (a +  b)



. 

sen  ax  cos  bx  d x = cos (a −  b)x − cos (a +  b)x a 2 =  b 2

2 (a −  b)

2 (a +  b)



. 

 eax  d x = 1  eax

 a



. 

 xeax  d x = 1  eax(ax − 1 )

 a 2



. 

 x 2 eax  d x = 1  eax(a 2 x 2 − 2 ax + 2 ) a 3



. 

 eax  sen  bx  d x =

1

 eax (a sen  bx −  b  cos  bx)

 a 2 +  b 2



. 

 eax  cos  bx  d x =

1

 eax (a  cos  bx +  b sen  bx)

 a 2 +  b 2







sen  ax  2

sen 2 ax

. 

d x =  a

d x − sen2  ax

 x

 x

 x
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d x

 bx

. 

= 1 tan−1

 a 2 +  b 2 x 2

 ab

 a







 x 2d x

 bx

. 

=  x −  a  tan−1

 a 2 +  b 2 x 2

 b 2

 b 3

 a







d x

 bx

. 

=

 x

+ 1 tan−1

 (a 2 +  b 2 x 2 ) 2

2 a 2 (a 2 +  b 2 x 2 )

2 ab 3

 a







 x 2d x

− x

 bx

. 

=

+ 1 tan−1

 (a 2 +  b 2 x 2 ) 2

2 b 2 (a 2 +  b 2 x 2 )

2 ab 3

 a







d x

 bx

. 

=

 x

+

3 x

+ 3 tan−1

 (a 2 +  b 2 x 2 ) 3

4 a 2 (a 2 +  b 2 x 2 ) 2

8 a 4 (a 2 +  b 2 x 2 )

8 a 5 b

 a

Definite  Integrals 

⎧

∞

⎨  π/ 2  a >  0

sen  ax

. 

d x = ⎩ 0  a = 0

0

 x

− π/ 2  a <  0

 x



sen  u

. 

 du = Si (x)  the integral is a function of  x

0

 u

∞ sen2 ax

. 

d x = | a| π/ 2

0

 x 2

∞



. 

 e− ax 2 d x = 1  π/a

0

2

∞

. 

 xe− ax 2 d x = 1

0

2 a

∞



. 

 x 2 e− ax 2 d x = 1

 π/a

0

4 a

∞

d x

. 

=

 π

 a >  0 , b >  0

0

 (x 2 +  a 2 )(x 2 +  b 2 )

2 ab(a +  b)

∞



d x

 b  1 / 4

. 

=

 π

√

 ab >  0

0

 ax 4 +  b

2 2 b

 a
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∞



d x

 b  1 / 6

. 

=  π

 ab >  0

0

 ax 6 +  b

3 b

 a

Useful  Summations 

∞



. 

 αn =

1

 , | α|  <  1

1 −  α

 n=0

∞



. 

 αn =  αk , | α|  <  1

1 −  α

 n= k

 N



. 

 αn =  αk −  αN+1  , α = 1

1 −  α

 n= k



 N −1



1− αN ,  if | α| = 1

. 

 αn =

1− α

 N, 

if  α = 1

 n=0

Appendix  E 

Probability  Theory 

 Logic  is  the  anatomy  of  thought. 

 –   John Locke 

The appendix presents a review of probability theory covering set theory, functions and  measure  probability  theory,  and  random  variables.  It  also  includes  Bayes’ 

theorem, moments, variance, the characteristic function and function of a random 

variable, and the concept of joint random variables. 

E.1 

Set  Theory,  Functions,  and  Measure 

The general theory of sets was developed by Georg Cantor, in the nineteenth century. 

Georg Ferdinand Ludwig Philipp Cantor (1845–1918), a mathematician who played 

an important role in the development  of set theory, was born in Saint Petersburg, Russian Empire. Cantor established the basis for this theory and demonstrated some of its most important results, including the concept of set cardinality. 

Cantor  lived  most  of  his  life  in  Germany  Boyer  (1974), where  he  defined  the concept of cardinal and ordinal numbers and also their arithmetic. The ideas relative to the notions of universal set, empty set, set partition, discrete systems, continuous systems, and infinity are, in reality, as old as philosophy itself. 

In  the  time  of  Zenon,  one  of  the  most  famous  pre-Socratic  philosophers, the  notion  of  infinity  was  already  discussed.  Zenon,  considered  the  creator  of the  dialectic,  was  born  in  Elea,  Italy,  around  504  B.C.  and  was  the  defendant of  Parmenides,  his  master,  against  criticism  from  the  followers  of  Pythagoras. 

Pythagoras was born in Samos around 580 B.C. and created a philosophic current 

based on the quantification of the universe. 

For the Pythagoreans, the unity is itself the result of existence and of nonexis-

tence. It can be noticed that the concept of emptiness is expressed in the previous sentence, as well as the concept of a universal set. 
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The  Pythagoreans  established  an  association  between  the  number  one  and  the point,  between  the  number  two  and  the  line,  between  the  number  three  and  the surface, and between the number four and the volume (de Souza 1996). In spite of dominating  the  notion  of  emptiness,  the  Greeks  still  did  not  have  the  concept  of zero. 

Zenon,  by  his  turn,  defended  the  idea  of  a  unique  being  continuous  and indivisible, of Parmenides, against the multiple being, discontinuous and divisible of Pythagoras. Aristotle presents various of Zenon’s arguments relative to movement, 

with the objective of establishing the concept of a continuum. 

Aristotle  was  born  in  Estagira,  Macedonia,  in  the  year  384  B.C.  The  first  of Aristotle’s  arguments  suggests  the  idea  of  an  infinite  set,  to  be  discussed  later (Durant 1996). This argument is as follows: If a mobile object has to cover a given distance, in a continuous space, it must then cover first the first half of the distance before covering the whole distance. 

Reasoning  in  this  manner  Zenon’s  argument  implies  that  infinite  segments  of distance  cannot  be  successively  covered  in  a  finite  time.  The  expositive  logic  in Aristotle’s counter argument is impressive(de Souza 1996): 

In effect, length and time and in general all contents are called infinite in two senses, whether meaning  division  or  whether  with  respect  to  extremes.  No  doubt,  infinities  in  quantity cannot  be  touched  in  a  finite  time,  but  infinities  in  division,  yes,  since  time  itself  is  also infinite in this manner. As a consequence, it is in an infinite time and not in a finite time that one can cross infinite, and, if infinities are touched, they are touched by infinities and not by finite. 

Despite the reflections of pre-Socratic philosophers and of others that followed, 

no  one  had  yet  managed  to  characterize  infinite  until  1872.  In  that  year,  Julius Wilhelm Richard Dedekind (1831–1916) pointed to the universal property of infinite sets, which has found applications as far as in the study of fractals (Boyer 1974): “A system  S is called infinite when it is similar to a part of itself. On the contrary,  S is said to be finite.” 

Cantor also recognized the fundamental property of sets, but, differing from the 

observations of Dedekind, he noticed that not all infinite sets are equal. This notion originated the cardinal numbers, which will be covered later, in order to establish a hierarchy of infinite sets in accordance with their respective powers. 

The results obtained by Cantor led him to establish set theory as a fully developed subject. As a consequence of his results on transfinite arithmetic, too advanced for his time, Cantor suffered attacks of mathematicians like Leopold Kronecker (1823– 

1891), who disregarded him for a position at the University of Berlin. 

Cantor spent most of his carrier life in the smaller University of Halle, in a city of medieval aspect with the same name in Germany, famous for its mines of rock 

salt, and died there in an institution for persons with mental health problems . 

However,  his  theory  received  from  David  Hilbert  (1862–1943),  one  of  the 

greatest  mathematicians  of  the  twentieth  century,  the  following  citation  Bo yer (1974): “The new transfinite arithmetic is the most extraordinary product of human thought and one of the most beautiful achievements of human activity in the domain of the purely intelligible.” 
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 E.1.1 

 Set  Theory 

The  definition  of  a  set,  a  concept  of  fundamental  importance  in  Mathematics,  is axiomatic—which means that a set does not admit a nonrecursive definition, that is, a definition which will not resort to the original notion of a set. On the other hand, the concept of a set is fundamental for all branches of Mathematics. 

Set  theory  is  usually  developed  based  on  a  set  of  axioms,  called  fundamental axioms: axiom of extension, axiom of specification, Peano axioms, axiom of choice, besides Zorn’s lemma, and Schröder-Bernstein’s theorem (Halmos 1960). 

This section presents the theory of sets in an informal manner, eventually quoting the fundamental axioms, since this theory is used as a basis to establish the notion of probability measure. Some examples of common sets are given next. 

• The set of faces of a coin:  A = { H, T }. 

• The binary set:  B = {−1 ,  1}. 

• The set of natural numbers:  N = {1 ,  2 ,  3 ,  4 , . . . }. 

• The set of integer numbers:  Z = { . . . , −3 , −2 , −1 ,  0 ,  1 ,  2 ,  3 , . . . }. 

The most important relations in set theory are the belonging relation, denoted as 

 a ∈  A., in which  a is an element of the set  A, and the inclusion relation,  A ⊂  B., which is read “A is a subset of the set  B” or   B is a superset of the set  A. 

Sets  may  be  specified  by  means  of  examples  or  using  propositions  as,  for instance,  “the  set  of  students  that  do  not  complain  about  the  exams”  or  a  little more formally  A = { x |  x  do not complain about exams }.. This is, in a few cases, a way of denoting the empty set! Alias, the empty set can be written formally as 

∅ = { a |  a =  a}., that is, the set the elements that are not equal to themselves. 

A fundamental concept is the notion of a universal set. It is understood as that set which contains all other sets of interest. An example of a universal set is provided by the sample space in probability theory, usually denoted as  S or  .. 

On the other hand, the empty set is that set which contains no element and which 

is usually denoted as ∅. or { }.. It is implicit that the empty set is contained in any set, that is, that ∅ ⊂  A., for any given set  A. However, the empty set is not in general an element of any other set. 

The Venn diagram is a practical way of representing the logical relation between 

sets, which was popularized by John Venn in the 1880s, as illustrated in Fig. E.1. 

John Venn (1834–1923) was an English mathematician, logician, and philosopher, 

who published the book The Logic of Chance, in which he explained the frequency 

theory of probability. 

Two sets are said to be disjoint if they have no element in common, as illustrated in Fig. E.2. Thus, for example, the set of even natural numbers and the set of odd natural numbers are disjoint. 
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Fig.  E.1  Venn diagram 

Ω 

representing sets that 

intercept 

A 

B

Fig.  E.2  Disjoint sets

Ω 

A 

B

 E.1.2 

 Operations  on  Sets

• The operation  A. represents the complement of  A with respect to the sample s pace

 .. 

• The subtraction of sets, denoted  C =  A −  B., gives as a result the set the elements of which belong to  A and do not belong to  B. 

Note: If  B is completely contained in  A :  A −  B. =  A ∩  B.. 

• The set of elements belonging to  A and to  B, but not belonging to  (A ∩  B). é, is specified by  A  B =  A ∪  B −  A ∩  B.. 

The generalization of these concepts to families of sets, for example, ∪ N A

 i=1

 i . and 

∩ N A

 i=1

 i ., is immediate.  The following properties are usually employed as axioms in developing the theory of sets (Lipschutz 1968). 

• Idempotent 

 A ∪  A =  A, 

 A ∩  A =  A. 

• Associative 

 (A ∪  B) ∪  C =  A ∪  (B ∪  C), 

 (A ∩  B) ∩  C =  A ∩  (B ∩  C). 

• Commutative 

 A ∪  B =  B ∪  A, 

 A ∩  B =  B ∩  A. 

• Distributive 

 A ∪  (B ∩  C) =  (A ∪  B) ∩  (A ∪  C). , 
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 A  ∩   (B  ∪   C)  =   (A ∩  B) ∪  (A ∩  C). 

• Identity 

 A ∪ ∅ =  A, 

 A ∩  U =  A. 

 A ∪  U =  U, 

 A ∩ ∅ = ∅. 

• Complementary 

 A ∪  A =  U, 

 A ∩  A = ∅. 

 (A) =  A. 

 U = ∅ , 

∅ =  U. 

• de  Morgan  laws 

 A ∪  B =  A ∩  B, 

 A ∩  B =  A ∪  B. 

 E.1.3 

 Families  of  Sets 

Among the most interesting families of sets, it is worth mentioning an increasing 

sequence of sets, such that lim i→∞ ∪  Ai =  A., as shown in Fig. E.3. This sequence is used in proofs of limits over sets. 

A  decreasing  sequence  of  sets  is  defined  in  a  similar  manner  with 

lim i→∞ ∩  Ai =  A., as shown in Fig. E.4. 

 E.1.4 

 Indexing  of  Sets 

The  Cartesian  product  is  a  way  of  expressing  the  idea  of  indexing  of  sets.  The indexing  of  sets expands  the possibilities for the use of sets, allowing  to produce eventually entities known as vectors and signals. 

Example  Consider the set of amplitudes  Bi = {0 ,  1}.. Starting from this set, it is possible to construct an indexed sequence of sets by defining its indexing: { BiI }., I = {0 , · · ·  ,  7}.. This family of indexed sets  Bi. constitutes a finite discrete sequence, that is, a vector. The ASCII set of binary symbols is an example. 

Fig.  E.3  Increasing 

sequence of sets

A 

A i
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Fig.  E.4  Decreasing 

sequence of sets 

Ai 

A 

Fig.  E.5  Signal discrete in 

(   )

 x  i 

time and in amplitude  

 A 

0 

 −A 

0

 i 

Example  Consider  the  set  of  amplitudes  given  by  Bi = {− A, A}.,  and  let  the indexing set  I =  Z. (the set of positive and negative integers plus zero). It follows that { BiZ}., which represents an infinite series of − A.’s and  A’s, that is, it represents a binary digital signal. For example, Fig. E.5 represents a signal,  x(i)., that is discrete both in amplitude and time. 

Example  Letting the set  Bi = {− A, A}., but considering the indexing over the set of real numbers, { BiI }., in which  I =  R., a signal is displayed which is discrete in amplitude but continuous in time, such as the telegraph signal in Fig. E.6. 

Example  Consider now the sets  B =  R. and  I =  R.. In this manner, the result is an analog signal, that is, continuous in time and in amplitude, as shown in Fig. E.7. 
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Fig.  E.6  Telegraphic signal, 

(   )

 x  i 

discrete in amplitude, and 

continuous in time 

 A 

0 

 −A 

0

 i 

(   )

 x  i 

0 

0

 i 

Fig.  E.7  Analog signal 

 E.1.5 

 Algebra  of  Sets 

In  order  to  construct  an  algebra  of  sets  or,  equivalently,  to  construct  a  field  over which operations involving sets make sense, a few properties have to be obeyed. 

1.  If  A ∈  F., then  A ∈  F..  A is the set containing desired results or over which one wants to operate. 

2.  If  A ∈  F. and  B ∈  F., then  A ∪  B ∈  F.. 

The above properties guarantee the closure of the algebra with respect to finite 

operations  over  sets.  It  is  noticed  that  the  universal  set   .  always  belongs  to  the algebra, that is,   ∈  F., because   =  A ∪  A.. The empty set also belongs to the algebra, that is, ∅ ∈  F., since ∅ =  ., follows by property 1. 
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Example  The  family {∅ , }.  complies  with  the  above  properties  and  therefore represents an algebra. In this case, ∅ = {}. and ∅ =  .. The union is also represented, as can be easily checked. 

Example  Given the sets { CH }. and { CT }., representing the faces of a coin, respectively,  if { CH } ∈  F.,  then { CH } = { CT } ∈  F..  It  follows  that { CH , CT } ∈  F. 

⇒   ∈  F. ⇒ ∅ ∈  F.. 

The previous example can be translated by the following expression. If there is 

a  measure  for  heads,  then  there  must  be  also a  measure  for  tails, in order  for  the algebra to be properly defined. Whenever a probability is assigned to an event, then a probability must also be assigned to the complementary event. 

The  cardinality  of  a  finite  set  is  defined  as  the  number  of  elements  belonging to  this  set.  Sets  with  an  infinite  number  of  elements  are  said  to  have  the  same cardinality  if  they  are  equivalent,  that  is,  A ∼  B.  if  A =  B..  Some  examples of sets and their respective cardinals are presented next. 

•  I  = {1 , · · ·   ,   k} ⇒  CI =  k.. 

•  N  = {0 ,  1 ,  · · · } ⇒   CN . or ℵ0.. 

•  Z = {· · ·   ,  −2 , −1 ,  0 ,  1 ,  2 , · · · } ⇒  CZ.. 

•  Q = {· · ·   , −1 / 3 ,  0 ,  1 / 3 ,  1 / 2 , · · · } ⇒   CQ.. 

•  R =  (−∞ , ∞ ) ⇒  CR. or ℵ.. 

For the above examples, the following relations are verified:  CR > CQ =  CZ =

 CN > CI .. The notation ℵ0., for the cardinality of the set of natural numbers, was employed by Cantor. 

The cardinality of the power set, that is, of the family of sets consisting of all subsets of a given set  I ,  F. = 2 I ., is  2 CI .. 

 E.1.6 

 Borel  Algebra 

The Borel algebra  B., or   σ .-algebra, is an extension of the algebra so far discussed to operate with limits at infinity. The following properties are required from a  σ .-

algebra: 

1.  A  ∈   B. ⇒  A ∈  B. 



2.  A

∞

 i  ∈   B. ⇒

 i=1  Ai ∈  B. 

The  above  properties  guarantee  the  closure  of  the   σ .-algebra  with  respect  to enumerable operations over sets. These properties allow the definition of limits in the Borel field. 

Examples  Considering  the  above  properties,  it  can  be  verified  that   A 1 ∩  A 2 ∩

 A 3 · · · ∈  B.. In effect, it is sufficient to notice that 

.  A ∈  B  and  B ∈  B ⇒  A ∪  B ∈  B, 
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and 

.  A ∈  B  and  B ∈  B ⇒  A ∪  B ∈  B, and finally 

.  A ∪  B ∈  B

⇒  A ∩  B ∈  B. 

In  summary,  any  combination  of  unions  and  intersections  of  sets  belongs  to  the Borel  algebra.  In  other  words,  operations  of  union  or  intersection  of  sets,  or  a combination of these operations, produce a set that belongs to the  σ .-algebra. 

E.2 

Probability  Theory 

This  section  summarizes  the  more  basic  definitions  related  to  probability  theory, random  variables,  and  stochastic  processes,  the  main  results  and  conclusions  of which will be used in subsequent chapters. 

Probability theory began in France with studies about games of chance. Antoine 

Gombaud  (1607–1684),  known  as   Chevalier  de  Méré,  was  very  keen  on  card games and would discuss with Blaise Pascal (1623–1662) about the probabilities of 

success in this game. Pascal, also interested on the subject, began a correspondence with Pierre de Fermat (1601–1665) in 1654, which originated the theory of finite 

probability (Zumpano and de Lima 2004). 

However, the first known work about probability is  De  Ludo  Aleae  (About Games of  Chance),  by  the  Italian  medical  doctor  and  mathematician  Gerolamo  Cardano (1501–1576), published in 1663, almost 90 years after his death. This book was a 

handbook for players, containing some discussion about probability. 

The  first  published  treatise  about  the  probability  theory,  dated  1657,  was written by the Dutch scientist Christiaan Huygens (1629–1695), a folder titled  De Ratiociniis  in  Ludo  Aleae  (About Reasoning in Games of Chance). 

Another Italian, the physicist and astronomer Galileo Galilei (1564–1642), was 

also concerned with random events. In a fragment probably written between 1613 

and 1623, entitled  Sopra  le  Scorpete  dei  Dadi  (About Dice Games), Galileu answers a question asked; it is believed, by the Grand Duke of Tuscany. 

Abraham de Moivre (1667–1754) was another important mathematician for the 

development of probability theory. He wrote a book of great influence at the time, called   Doctrine  of  Chances.  The  law  of  large  numbers  was  discussed  by  Jacques Bernoulli  (1654–1705),  Swiss  mathematician,  in  his  work  Ars  Conjectandi  (The Art of Conjecturing). 

The study of probability was deepened in the eighteentn and nineteenth centuries, 

being  worth  of  mentioning  the  works  of  French  mathematicians  Pierre-Simon  de Laplace  (1749–1827)  and  Siméon  Poisson  (1781–1840),  as  well  as  the  German mathematician Carl Friedrich Gauss (1777–1855). 
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 E.2.1 

 Axiomatic  Approach  to  Probability 

Probability  theory  is  usually  presented  in  one  of  the  following  manners:  the classical  approach,  the  relative  frequency  approach,  and  the  axiomatic  approach. 

The classical approach is based on the symmetry of an experiment but employs the 

concept of probability in a cyclic manner, because it is defined only for equiprobable events. The relative frequency approach to probability is more recent and relies on experiments. The following example illustrates the classical approach. 

Considering the theoretical difficulties found in the two previous approaches to 

probability,  respectively,  the  cyclic  definition  in  the  first  case  and  the  problem  of convergence  in  a  series  of  experiments  for  the  second  case,  henceforth  only  the axiomatic  approach  will  be  followed  in  this  text.  Those  readers  interested  in  the classical or in the relative frequency approach are referred to the literature (Papoulis 

1981a). 

The axioms of probability were established by Andrey Nikolaevich Kolmogorov 

(1903–1987), a Russian mathematician whose work influenced many branches of 

modern mathematics. Just three statements, as follows, permitted the development 

of the complete theory (Papoulis 1983a): 

Axiom 1

 P () = 1., in which  . denotes the sample space or universal set and P (· ). denotes the associated probability measure. 

Axiom 2

 P (A) ≥ 0., in which  A denotes an event belonging to the sample s pace. 

Axiom 3

 P (A ∪  B) =  P (A) +  P (B)., in which  A and  B are mutually exclusive events and  A ∪  B. denotes the union of events  A and  B . 

Using his axiomatic  approach  to probability  theory,  Kolmogorov  established  a firm  mathematical  basis  on  which  other  theories  rely,  for  example,  the  theory  of stochastic processes, communications theory, and information theory. 

Kolmogorov’s  fundamental  work  was  published  in  1933,  in  Russia,  and  soon afterward  was  published  in  German  with  the  title   Grundbegriffe  der  Wahrschein-lichkeits  Rechnung  (Fundamentals  of  Probability  Theory)  (James  1981). In  this work,  Kolmogorov  managed  to  combine  advanced  set  theory,  of  Cantor,  with measure theory, of Lebesgue, in order to produce what to this date is the modern 

approach to probability theory. 

By  applying  the  above  axioms,  it  is  possible  to  deduce  all  results  relative  to probability theory. For example, the probability of the empty set, ∅ = {}., is easily calculated as follows. First, it is noticed that 

. ∅ ∪   =  , 

since the sets ∅. and  . are disjoint. Thus, it follows that 

.  P (∅ ∪  ) =  P () =  P (∅ ) +  P () = 1 ⇒  P (∅ ) = 0 . 
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In the case of sets  A and  B which are not disjoint, it follo ws that

.  P (A ∪  B) =  P (A) +  P (B) −  P (A ∩  B). 

 E.2.2 

 Bayes’  Rule 

In  probability  theory  and  statistics,  Bayes’  rule,  or  Bayes’  theorem,  concerns  the computation  of  conditional  probabilities.  Thomas  Bayes  (1701–1761)  was  the English  statistician,  philosopher,  and  Presbyterian  minister  who  formulated  the theorem. 

It can be expressed as 

.  P (A| B) =  P (A ∩  B) , 

 P (B)

assuming  P (B) = 0..  An  equivalent  manner  of  expressing  the  same  result  is  the following: 

.  P (A ∩  B) =  P (A| B) ·  P (B) , P (B) = 0 . 

Curiously, Bayes never published the theorem that bears his name. In fact, his 

notes  were  edited  and  published  posthumously  by  Richard  Price  (1723–1791),  a Welsh moral philosopher, minister, and mathematician. 

Some important properties of measure of sets are presented next, in which  A and B denote events from a given sample space:

• If A is independent of B, then  P (A| B) =  P (A).. It then follows that  P (B| A) =

 P (B). and that  B is independent of  A. 

• If  B ⊂  A., then:  P (A| B) = 1.. 

• If  A ⊂  B., then:  P (A| B) =  P (A) ≥  P (A) P (B)

.. 

• If  A and  B are independent events, then  P (A ∩  B) =  P (A) ·  P (B).. 

• If  P (A) = 0. or  P (A) = 1., then event  A is independent of itself. 

• If  P (B) = 0., then  P (A| B). can assume any arbitrary value. Usually, in this case, one assumes  P (A| B) =  P (A).. 

• If events  A and  B are disjoint and non-empty, then they are dependent. 

A partition is a possible splitting of the sample space into a family of subsets, in a manner that the subsets in this family are disjoint and their union coincides with the sample space. It follows that any set in the sample space can be expressed by using a partition of that sample space and thus be written as a union of disjoint events. 

The  following  property  can  be  illustrated  by  means  of  a  Venn  diagram,  as illustrated in Fig. E.8: 

.  B =  B ∩   =  B ∩ ∪ M

 i=1  Ai = ∪ N

 B ∩  A

 i=1

 i . 
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Fig.  E.8  Partition of a set

Ω 

A i

B 

It now follows that 

 N



.  P (B ) =  P (∪ N

 B ∩  A

 P (B ∩  A

 i=1

 i ) =

 i ), 

 i=1

 P (Ai| B) =  P (Ai ∩  B) =  P (B| Ai) ·  P (Ai)



=

 P (B| Ai) ·  P (Ai)



 . 

 P (B)

 N

 N

 i=1  P (B ∩  Ai )

 i=1  P (B| Ai ) ·  P (Ai )

Therefore, the probability of a set  B can be computed using the partition of this set. Also, the conditional probability of a set  Ai., given the set  B, can be calculated using the  a  priori   probabilities of the set  B, given the set  Ai.. 

E.3 

Random  Variables 

A random variable (r.v.)  X represents a mapping of the sample space on the line (the set  of  real  numbers).  A  random  variable  is  usually  characterized  by  a  cumulative probability function (CPF)  PX(x). or by a probability density function (pdf)  pX(x).. 

Example  A  random  variable   X,  defined  in  the  interval [0 ,  1].,  with  a  uniform probability density function  pX(x). is described by the equation  pX(x) = u (x) −

u (x − 1 ).. It follows by Axiom 1, and from the definition of the unit step function, that 

+∞

1

. 

 pX(x) d x =

[u (x) − u (x − 1 )]d x = 1 . 

(E.1) 

−∞

0

For a given probability distribution,  pX(x). the probability that  X is in the interva l (a, b]. is given by 

 b

.  P (a < x ≤  b) =

 pX(x) d x. 

(E.2)

 a
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The cumulative probability function  PX(x)., of a random variable  X, is defined as the integral of the probability density function,  pX(x)., that is, 

 x

.  PX (x) =

 pX(t) d t. 

(E.3) 

−∞

The cumulative probability is a measure, defined in the real set, R.. It measures 

the probability that a given random variable spans the real line, from minus infinity to the value  x. 

 E.3.1 

 The  Mean  Value  of  a  Random  Variable 

Let  f (X). denote a function of a random variable  X. The average value (or expected value) of  f (X). with respect to  X is defined as

+∞

.  E[ f (X)] =

 f (x)pX(x) d x. 

(E.4) 

−∞

The following properties of the expected value follow from (E.4): 

.  E[ αX] =  αE[ X] , 

(E.5) 

.  E[ X +  Y ] =  E[ X] +  E[ Y ]

(E.6) 

and if  X and  Y  are statistically independent random variables, then

.  E[ XY ] =  E[ X] E[ Y ] . 

(E.7) 

 E.3.2 

 Moments  of  a  Random  Variable 

The  n th moment of a random variable  X is defined as

+∞

.  mn =  E[ Xn] =

 xnpX(x) d x. 

(E.8) 

−∞

Some of the moments of  X have special importance in probability, statistics and random processes, and also physical interpretation in engineering. 

•  m 1  =  E[ X ]. is the arithmetic mean, average value, average voltage, or statistical mean. 

•  m 2  =  E[ X 2 ]. represents the quadratic mean or total power. 

•  m 3  =  E[ X 3 ]. is a measure of asymmetry of the probability density function. 

•  m 4  =  E[ X 4 ]. conveys a measure of flatness of the probability density function. 
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 E.3.3 

 The  Variance  of  a  Random  Variable 

The  variance  of  a  random  variable   X  is  an  important  quantity  in  signal  analysis and communication theory, usually associated to the AC power, and is defined as 

follo ws:

.  V [ X] =  E[ (X −  m 1 ) 2] =  m 2 −  m 21 . 

(E.9) 

The standard deviation of a random variable,  σX., is defined as the square root of the variance of  X. It is a measure of the deviation from the statistical of the random variable: 



.  σX =

 E[ (X −  m 1 ) 2] . 

(E.10) 

 E.3.4 

 The  Characteristic  Function  of  a  Random  Variable 

The  characteristic  function  PX(ω).,  or  moment  generating  function,  of  a  random variable  X is usually defined from the Fourier transform of the probability density function (pdf) of  X, which is equivalent to making  f (x) =  e− jωx. in (E.4), that is, 

+∞

√

.  PX (ω) =  E[ e− j ωx ] =

 e− jωx pX(x) d x,  in which  j =

−1 . 

(E.11) 

−∞

The  moments  of  a  random  variable   X  can  be  obtained  directly  from  the characteristic function, by taking the partial derivatives of the function for  ω = 0., as follows: 



 ∂i P



 X (ω) 

.  mi =

1

 . 

(E.12) 

 (− j )i

 ∂ωi

 ω=0

 E.3.5 

 Function  of  a  Random  Variable 

Given that  X is a random variable, it follows that a given function of  X,  Y =  f (X). 

is also a random variable, obtained by the application of the transformation  f (· ).. 

The probability density function of  Y  is related to that of  X by the formula (Blake

1987): 



.  pY (y) =

 pX(x)

 , 

(E.13)

|d y/ d x| x= f−1 (y)
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in  which  f −1 (· ).  denotes  the  inverse  function  of  f (· )..  This  formula  assumes  the existence of the inverse function of  f (· ). as well as its derivative at all points. 

Some  Important  Random  Variables 

Some  random  variables  appear  in  several  mathematical  applications  to  model physical phenomena and deserve special mention. 

1. Gaussian  random  variable 

The random variable  X with pdf

−  (x− mX) 2

2 σ  2

.  pX(x) =

1

√

 e

 X

(E.14) 

 σX  2 π

is called a Gaussian (or Normal) random variable. The Gaussian random variable 

plays  an  extremely  important  role  in  engineering,  considering  that  many  well-known processes can be described or approximated by this pdf. 

The  noise  present  in  either  analog  or  digital  signal  processing  or  communications systems usually can be considered Gaussian as a consequence of the 

influence  of  many  factors  (Leon-Garcia  1989).  In  (E.14)  mX.  represents  the average value and  σ  2

 X . represents the variance of  X. 

Figure  E.9  illustrates  the  Gaussian  pdf,  and  its  corresponding  cumulative probability function is depicted in Fig. E.10i. 

 p (  )

 X  x

0 

0 

 x 

Fig.  E.9  Gaussian probability density function
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 P  (  )

 X  x

1 

0 

0 

 x 

Fig.  E.10  Gaussian cumulative probability function 

2. Rayleigh  random  variable 

An  often  used  model  to  represent  the  behavior  of  the  amplitudes  of  signals subjected to fading employs the following pdf Kennedy (1969), Proakis (1990): 

−  x 2

.  pX (x) =  x e  2 σ  2  u(x)

(E.15) 

 σ  2

√

known as the Rayleigh pdf, with average  E[ X] =  σ π/ 2. and variance  V [ X] =

 ( 2 −  π) σ 2

2 .. 

The  Rayleigh  pdf  represents  the  effect  of  multiple  signals,  reflected  or refracted,  which  are  captured  by  a  receiver,  in  a  situation  in  which  there  is no  main  signal  component  or  main  direction  of  propagation  (Lecours  et  al. 

1988). In  this  situation,  the  phase  distribution  of  the  received  signal  can  be considered  uniform  in  the  interval  ( 0 ,  2 π )..  It  is  noticed  that  it  is  possible  to closely  approximate  a  Rayleigh  pdf  by  considering  only  six  waveforms  with independently distributed phases (Schwartz et al. 1966). 

3. Sinusoidal  random  variable 

A sinusoidal tone  X has the following pdf:

.  pX(x) =

1

√

 , | x|  < V . 

(E.16) 

 π

 V  2 −  x 2

The pdf and the CPF of  X are illustrated in Figs. E.11 and  E.12. 
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Fig.  E.11  Probability 

 p (  ) 

   x 

density function of a 

 X 

sinusoidal random variable 

0 

0 

 x

 −V

 V 

(   )

 P   x 

 X 

1 

0 

0 

 x

 −V

 V 

Fig.  E.12  Cumulative probability function of a sinusoidal random variable 

 E.3.6 

 Joint  Random  Variables 

Considering  that   X  and   Y  represent  a  pair  of  real  random  variables,  with  joint pdf  pXY (x, y).,  as  illustrated  in  Fig. E.13, then  the  probability  of   x  and   y  being simultaneously  in  the  region  defined  by  the  polygon  [abcd]  is  given  by  the  joint integral:



 b

 d

.Prob{ a < x < b, c < y < d} =

 pXY (x, y) d x d y, 

(E.17) 

 a

 c

in which  a, b, c, d. are given constants that define the limits of the polygon. 
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Fig.  E.13  Joint probability 
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The individual distributions of  X and  Y , also called marginal pdfs, result from the integration of the joint pdf as follo ws:

+∞

.  pX (x) =

 pXY (x, y) d y, 

(E.18) 

−∞

and 

+∞

.  pY (y) =

 pXY (x, y) d x. 

(E.19) 

−∞

The joint average E[ f (X, Y )]. is calculated as 

+∞  +∞

.E[ f (X, Y )] =

 f (x, y)pXY (x, y) d x d y, 

(E.20) 

−∞

−∞

for an arbitrary function  f (X, Y ). of  X and  Y . 

The joint moments  mik., of order  ik, are calculated as 

+∞  +∞

.  mik = E[ Xi , Y k ] =

 xi ykpXY (xy) d x d y. 

(E.21) 

−∞

−∞

The  two-dimensional  characteristic  function  is  defined  as  the  two-dimensional Fourier transform of the joint probability density  pXY (x, y).: 

.  PXY (ω, ν) = E[ e− j ωX− j νY ] . 

(E.22)
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When the sum  Z =  X +  Y . of two statistically independent random variables is considered, it is noticed that the characteristic function of  Z turns out to be

.  PZ (ω) = E[ e− j ωZ ] = E[ e− j ω(X+ Y )] =  PX(ω)PY (ω). 

(E.23) 

As far as the pdf of  Z is concerned, it can be said that

∞

.  pZ (z) =

 pX(ρ)pY (z −  ρ) d ρ, 

(E.24) 

−∞

or 

∞

.  pZ (z) =

 pX(z −  ρ)pY (ρ) d ρ. 

(E.25) 

−∞

Equivalently, the sum of two statistically independent random variables has a pdf 

given by the convolution of the respective pdfs of the random variables involved in the sum. 

The  random  variables   X  and   Y  are  uncorrelated if E[ XY ] = E[ X]E[ Y ].. The criterion  of  statistical  independence  of  random  variables,  which  is  stronger  than that  for  the  random  variables  being  uncorrelated,  is  satisfied  if   pXY (x, y) =

 pX(x).pY (y).. 

Glossary 

 The  union  of  the  mathematician  with  the  poet,  fervor  with 

 measure,  passion  with  correctness,  this  surely  is  the  ideal. 

 –   William James 

This glossary presents common acronyms and terminology used in digital modula-

tion theory, computer networks, and digital communications (Furiati 1998; Alencar 

1999; Design  2001; MobileWord 2001; Skycell 2001; TIAB2B.com 2001; Alencar and da Rocha Jr. 2005; Alencar 2011c, 2009; Alencar et al. 2018). 

ADPCM—Adaptive  Differential  Pulse  Code  Modulation  ADPCM  is  a  speech coding method that achieves bit rate reduction using adaptive prediction quantization. 

ADSL—Asymmetric  Digital  Subscriber  Line  A  modem  that  permits  the  transmission of digital information in a twisted pair. 

A/D—Analog-to-Digital  Converter  A  device  that  converts  from  the  analog domain to the discrete domain. 

AES3—Audio  Engineering  Society  3  A  standard  for  the  exchange  of  digital audio signals between professional audio devices. 

AF  Audio Frequency. The range of frequencies, approximately 20 Hz to 20 kHz, that can be heard by the normal human ear, when transmitted as acoustic waves. 

AGC—Automatic  Gain  Control  A function of the receiver that produces a constant power output, even if the input is varying, for instance, because of fading. 

AM—Amplitude  Modulation  In a modulation system, in which the modulating 

signal controls the carrier amplitude. 

AMPS—Advanced  Mobile  Phone  Service  The  first-generation  analog  cellular phone system that originated in the USA. 

AM-SC—Amplitude  Modulation  Suppressed  Carrier  A modulation scheme in 

which the unmodulated carrier is eliminated to save energy. 

AM-VSB—AM-Vestigial  Sideband  Modulation  A method used to modulate car-

riers in analog video. 
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ANSI—American  National  Standards  Institute  American  National  Standards Institute,  a  US-based  organization  which  develops  standards  and  defines 

interfaces for telecommunications. 

ARQ—Automatic  ReQuest  for  retransmission  A type of communication link, in which the receiver asks the transmitter to resend a block of data when errors are 

detected. 

ASCII—American  Standard  Code  for  Information  Interchange  ASCII data is a standard seven-bit code with one parity bit. Otherwise referred to as text. ASCII data can be interchanged between almost every type of computer. 

ASK—Amplitude  Shift  Keying  A  modulation  scheme  in  which  the  modulating signal changes the carrier amplitude. 

ATSC—Advanced  Television  System  Committee  The  American  forum  to  discuss digital television. 

AWGN—Additive  White  Gaussian  Noise  The  usual  type  of  noise  that  affects signal transmission in a channel, usually produced by thermal effect. 

BCH—Bose-Chaudhuri-Hocquenghem  A code used in the AMPS standard. 

BCJR  Bahl-Cocke-Jelinek-Raviv Decoding Algorithm. 

BEC—Binary  Erasure  Channel  A discrete channel model. 

BER—Bit  Error  Rate  A measure of the error introduced in the signal, computed at the receiver end. 

BPSK—Binary  Phase  Shift  Keying  A binary phase modulation scheme. 

BSC—Binary  Symmetric  Channel  A discrete channel model. 

BSS  Broadcasting Satellite Service. 

BSS  Binary Symmetric Source. 

BTA  Broadcasting Technology Association (Japanese industrial organization). 

BW—Bandwidth  The  difference  between  the  limiting  frequencies  within  which performance  of  a  device,  regarding  some  characteristic,  falls  within  specified limits. 

 C  Channel Capacity. 

CIF—Common  Interchange  Format  A standardized format for the picture resolution, frame rate, color space, and color subsampling of digital video sequences, used in video systems. 

C-QUAM  Compatible QUAM. 

CATV—Community  Antenna  Television  Often called community access televi-

sion or cable TV, it is television distribution method in which signals from distant stations are received, amplified, and then transmitted by (coaxial or fiber) cable or microwave links to users. 

Cable  Modem  Modem used with optical fiber or coaxial cable. 

CCI—Cochannel  Interference  Superposition of adjacent signals in the frequency spectrum. 

CCITT—Commité  Consultatif  International  de  Telegraphique  et  Telephonique 

Consultative  Committee  International  Telephone  and  Telegraph  is  an 

international  organization  which  develops  standards  and  defines  interfaces  for telecommunications (now ITU-T)
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CDMA—Code  Division  Multiple  Access  A  multiple  access  system  that  uses spread spectrum. 

CELP—Code-Excited  Linear  Prediction  An  analog-to-digital  voice  coding scheme. 

CENELEC  Comité Européen de Normalisation Électrotechnique. 

C/I—Carrier-to-Interference  Ratio  The ratio of the desired unmodulated signal power to the interfering signal power. 

CNR—Carrier-to-Noise  Ratio  The ratio of the level of the carrier to that of the noise in the intermediate frequency (IF) band before any nonlinear process, such 

as amplitude limitation and detection, takes place. 

Codec—Coder/Decoder  Device that converts analog signals to digital signals and vice versa. 

COFDM—Coded  Orthogonal  Frequency  Division  Multiplex  A frequency mul-

tiplexing system that uses coded signals as inputs. 

CRC—Cyclic  Redundancy  Check  A  method  of  detecting  errors  in  the  serial transmission of  data.  A CRC  for  a  block  of  data  is  calculated  before  it is sent and is then sent along with the data. A new CRC is calculated on the received 

data. If the new CRC does not match the one that has been sent along with the 

data, then an error has occurred. 

 D  Cardinality of a Source Code Alphabet. 

 D(PX|| P ˜  )

 X  .  Informational Divergence between  PX . and   P ˜

 X .. 

D/A—Digital-to-Analog  Converter  A device to convert from the discrete to the analog domain. 

dB—Decibel  Abbreviation for decibel(s). One-tenth of the common logarithm of the ratio of relative powers, equal to 0.1 B (bel). 

dBi  Unit used to express the gain related to the isotropic antenna. 

dBm  Decibel related to 1 milliwatt that is used as a reference. 

DCT—Discrete  Cosine  Transform  A transform that is used in video compression for digital television. 

DEMUX—Demultiplexer  The  separation  of  two  or  more  channels  previously multiplexed, i.e. , the reverse of multiplexing. 

DFE—Decision  Feedback  Equalizer  An  equalizer  that  uses  a  decision  over  the received data do adjust the frequency response of the reception filter. 

DM—Delta  Modulation  A  simple  analog-to-digital  and  digital-to-analog  signal conversion technique used for transmission of voice information. 

DMC  Discrete Memoryless Channel. 

DMS  Discrete Memoryless Source. 

DSS  Discrete Stationary Source. 

DPCM—Differential  Pulse  Code  Modulation  Form  of  pulse  code  modulation for  which  efficiency  is  enhanced  by  transmitting  the  difference  between  the current  signal  strength  and  the  previous  pulse  signal  strength  rather  than  the absolute values. 

DQPSK  Differential Quadrature Phase Shift Keying. 

DS-SS—Direct  Sequence  Spread  Spectrum  A  type  of  spread  spectrum  technique that uses a pseudorandom sequence. 
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DSL—Digital  Subscriber  Line  A dedicated link using leased line or wireless for subscriber connection. In Integrated Services Digital Networks (ISDN), it is an 

equipment that provides full-duplex service on a single twisted metallic pair at 

a  rate  sufficient  to  support  ISDN  basic  access  and  additional  framing,  timing recovery, and operational functions. 

DTMF—Dual-Tone  Multifrequency  The signaling scheme used in “touch tone” 

telephones.  Each  depressed  key  generates  two  audio  tones  in  this  scheme.  In telephone systems, multifrequency signaling in which standard set combinations 

of two specific voice band frequencies, one from a group of four low frequencies 

and the other from a group of four higher frequencies, are used. 

DTV—Digital  Television  An acronym for any digital television standard. 

DVB—Digital  Video  Broadcasting  An  acronym  for  the  European  digital  television standard. 

DVD—Digital  Video  Disk  An acronym for the digital video standard. 

 E(X).  Average Value or Expectation of the Random Variable  X. 

Eb/No—Energy-Per-Bit  to  Noise  Density  Ratio  A  ratio,  or  figure  of  merit,  that is used to compare digital modulation schemes. 

EDTV—Enhanced  Definition  Television  The quality of EDTV is between SDTV 

and HDTV. 

ETSI—European  Telecommunications  Standards  Institute  The  board  that  has the authority to produce international communications standards in Europe. 

FCC—Federal  Communications  Commission  The  US  government  board  that 

has the authority to regulate all nonfederal government interstate telecommuni-

cations (including radio and television broadcasting) as well as all international communications that originate or terminate in the USA. 

FDMA  Frequency Division Multiple Access. 

FEC—Forward  Error  Correction  System of error control for data transmission for  which  the  receiving  device  has  the  capability  to  detect  and  correct  any character  or  code  block  that  contains  fewer  than  a  predetermined  number  of symbols in error. 

FFT—Fast  Fourier  Transform  An efficient algorithm devised by John Tukey and J. W. Cooley to compute the Fourier transform of a discrete signal. 

FH-SS—Frequency-Hopping  Spread  Spectrum  A type of spread spectrum tech-

nique in which the frequency of the carrier changes pseudorandomly. 

FM—Frequency  Modulation  A  modulation  scheme  in  which  the  carrier  frequency is a linear function of the modulating signal. 

FSK—Frequency  Shift  Keying  A digital modulation technique in which the modulating signal changes the carrier frequency. 

FTP—File  Transfer  Protocol  File  transfer  protocol  is  the  TCP/IP  standard  for remote file transfer. 

FVC—Forward  Voice  Channel  The  radio  channel  used  for  communication  of voice and user data from the base station to a cellular device. 

GEO—Geostationary  Earth  Orbit  Communications  system  with  satellites  in geosynchronous orbits 40,000 km miles above the Earth, on the Equator plane. 

GHz—Gigahertz  A unit of frequency denoting 109. Hz. 
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GMSK—Gaussian  Minimum  Shift  Keying  A  modulation  scheme  that  uses  a Gaussian pulse. 

GSM—Global  System  for  Mobile  Communication  GSM  originally  stood  for Groupe  Speciale  Mobile  but  has  been  renamed  to  Global  System  for  Mobile Communications, an international digital cellular standard. 

 h(p).  Binary Entropy Function. 

 H (X| Y  =  y).  Conditional Uncertainty of the Discrete Random Variable  X Given That the Ev ent  Y  =  y. Occurs. 

 H (X| Y ).  Conditional  Uncertainty  of  the  Discrete  Random  Variable   X  Given  the Discrete Random Variable  Y . 

 H (X).  Entropy or Uncertainty of the Random Variable  X. 

 Hr (X).  r-ary Entropy or Uncertainty of the Random Variable  X. 

 H (X 1 X 2  .   .   .   X   n).  Joint  Entropy  of  Mutual  Entropy  of  the  Random  Variables X 1 X 2  .   .   .   X   n.. 

HDSL  High Data Rate Digital Subscriber Line. 

HDTV—High-Definition  Television  Television that has approximately twice the horizontal  and  twice  the  vertical  emitted  resolution  specified  by  the  NTSC 

standard. 

HEO—Highly  Elliptical  Orbit  This  class  of  satellites  covers  orbits  which  have large eccentricities (are highly elliptical). 

HF—High  Frequency  From 3 to 30 MHz. 

HFC  Hybrid network, including fiber and coaxial cable. 

Hz—Hertz  Frequency unit equivalent to 1 cycle per second. 

 I (X;  Y ).  Mutual Information Between the Discrete Random Variables  X and  Y . 

 I (X;  Y | Z).  Mutual Information Between the Discrete Random Variables  X and  Y , Given the Random Variable  Z. 

IEEE  Institute of Electrical and Electronic Engineers 

IEC  International Electrotechnical Commission. 

IF—Intermediate  Frequency  A frequency to which a carrier frequency is shifted as an intermediate phase in transmission or reception. 

IFFT  Inverse Fast Fourier Transform. 

IP—Internet  Protocol  The Internet Protocol is the network layer communications protocol  in  the  Internet  Protocol  suite  for  relaying  datagrams  across  network boundaries. 

ISB—Independent  Sideband  Double-sideband  transmission  in  which  the  information carried by each sideband is different. 

ISDB  Integrated Services Digital Broadcasting. 

ISDN—Integrated  Services  Digital  Network  A digital phone service which provides two data channels, each with its own phone number 

ISDTV—International  System  for  Digital  Television  HDTV standard developed in Brazil and based on the ISDB standard. 

ISI—Intersymbol  Interference  Digital  communication  system  impairment  in which  adjacent  symbols  in  a  sequence  are  distorted,  creating  dispersion  that interferes in the time domain with neighboring symbols. 

ISO  International Organization for Standardization. 
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ITU—International  Telecommunications  Union  A 

United 

Nations 

(UN) 

agency,  headquartered  in  Geneva,  Switzerland,  specialized  in  producing 

recommendations for communication systems. 

ITU-R  International Telecommunications Union, Radiocommunication Sector. 

ITU-T  International Telecommunications Union, Telecommunication Standardisation Sector. 

JPEG—Joint  Photographic  Experts  Group  A method of lossy compression for digital images. 

LAN—Local  Area  Network  A computer network limited to the immediate area, usually the same building or floor of a building. 

LDPC  Low Density Parity Check. 

LEO—Low  Earth  Orbit  Mobile communications satellite between 700 and 2000 

kilometers above the Earth. 

LF—Low  Frequency  Frequency band between 30 kHz and 300 kHz. 

lim.  Limit. 

ln.  Natural Logarithm. 

log.  Base 2 Logarithm. 

log b.  Base  b Logarithm. 

LMDS  Local Multipoint Distribution System. 

MCM—Multicarrier  Modulation  A technique of transmitting data by dividing it into several interleaved bit streams and using these to modulate several carriers. 

MEO—Medium  Earth  Orbit  MEO  satellites  orbit  about  10,000  km  above  the earth. 

ML  Maximum Likelihood. 

Modem—Modulator/Demodulator  A device that can encode digital signals from 

a computer into analog signals that can be transmitted over analog phone lines 

and vice versa. 

MPEG  Motion Picture Experts Group. 

MPSK—M-ary  Phase  Shift  Keying  A  modulation  scheme  in  which  the  carrier phase is a function of the information signal. 

MSE  Mean Square Error. 

MSK—Minimum  Shift  Keying  A  modulation  scheme  in  which  the  carrier  frequency is a function of the information signal and the pulse format has the sine 

shape. 

MUX—Multiplexer  A  device  that  combines  multiple  inputs  into  an  aggregate signal to be transported via a single transmission channel. 

 n  Length of a Block of Symbols. 

 N  Length of a Codeword. 

NBFM—Narrowband  Frequency  Modulation  A scheme with a low modulation 

index. 

NEXT—Near-End  Crosstalk  Impairment  typically  associated  with  twisted-pair transmission, in which a local transmitter interferes with a local receiver. 

NF—Noise  Figure  A measure of how much noise is produced by a d evice. 
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NMT—Nordic  Mobile  Telephony  One of the earliest cellular network developed jointly in Denmark, Finland, Iceland, Norway, and Sweden. Originally operated 

in the 450 MHz band and later the 900 MHz was used as well. 

NTT  Nippon Telephone and Telegraph Co. 

NRZ—Not-Return-to-Zero  Data  encoding  format  in  which  each  bit  is  represented  for  the  entire  duration  of  the  bit  period  as  a  logic  high  or  a  logic  low. 

A transmission encoding scheme in which two separate states are used to define 

binary ones and zeros, neither state is the electrical zero state. 

OFDM—Orthogonal  Frequency  Division  Multiplexing  Multi-carrier  signaling technique  designed  to  maximize  throughput  in  channels  with  potentially  poor frequency response. It is the technology used in discrete multitone (DMT), in the 

ADSL standard, and also in television standards. 

OQPSK—Offset  Quadrature  Phase  Shift  Keying  QPSK  system  in  which  the two  bits  that  compose  a  QPSK  symbol  are  offset  in  time  by  a  half-bit  period for nonlinear amplification. 

PABX—Private  Automatic  Branch  eXchange  An exchange linked to the PSTN 

that handles calls automatically. 

PAL—Phase  Alternated  Line  A television signal standard (625 lines, 50 Hz, 220 

V primary power) used in the UK, much of the rest of western Europe, several 

South  American  countries,  some  Middle  East  and  Asian  countries,  several 

African countries, Australia, New Zealand, and other Pacific Island countries. 

PAL-M  A  modified  version  of  the  phase-alternation-by-line  (PAL)  television signal standard (525 lines, 50 Hz, 220 V primary power), used in Brazil. 

PAM—Pulse  Amplitude  Modulation  Amplitude  modulation  of  a  carrier  which uses pulses of varying amplitude to transmit information from source to destination. 

 PB .  Block Error Probability. 

PCM—Pulse  Code  Modulation  A  common  way  of  converting  an  analog  signal to a digital signal. This is done by sampling the signal and coding the sample. 

The usual sampling rate is 8000 times per second, and each sampling represents 

8 bits. This produces a transmission rate of 64 kbit/s. 

PCS  Personal Communications Service. 

 Pe.  Error Probability. 

PLL—Phase-Locked  Loop  A tracking system that is used to recover a modulated carrier. 

PM—Phase  Modulation  A  modulation  system  in  which  the  carrier  phase  is  a linear function of the modulating signal. 

PMD—Principle  of  Majority  Decision  The most frequent symbol is chosen in a detection system. 

PN—Pseudorandom  Noise  An interfering signal produced by a shift register that emulates noise. 

PSK—Phase  Shift  Keying  A  modulation  system  in  which  the  carrier  phase  is  a function of the discrete modulating signal. 

PSTN—Public  Switched  Telephone  Network  The  traditional  voice  network infrastructure, including both local service and long distance service. 
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PTP—Precision  Time  Protocol  A  protocol  used  to  synchronize  clocks  throughout a computer network. 

 PX.  Probability Distribution of the Discrete Random Variable  X. 

QAM  Quadrature Amplitude Modulation. 

QCIF—Quarter  Common  Interchange  Format  A common interchange format, 

in which the height and width of the frame are halved. 

QoS—Quality  of  Service  A parameter used to describe the attributes of a variety of network functions. 

QPSK  Quadrature Phase Shift Keying. 

QUAM  Quadrature Amplitude Modulation. 

 R—Code  Rate  Rate of a block code. 

RACE—Research  and  Development  for  Advanced  Communications  A  Euro-

pean  Community  endeavor  aimed  at  creating  advanced  communications 

networks. 

RF  Radio Frequency. 

RGB—Red-Blue-Green  Related to the use of three separate signals to carry the red, green, and blue components, respectively, of a color video image. 

RLE  Run-Length Encoding. 

RS—Reed-Solomon  Error correcting code. 

RTP—Real-Time  Protocol  A  network  protocol  for  delivering  audio  and  video over IP networks. 

Rx  Receiver. 

RZ  Return to Zero. Data encoding format in which each bit is represented for only a portion of the bit period as a logic high or a logic low and what remains of the duration of the bit returns to logic zero. 

SAN—Small  Area  Network  A network, generally limited to tens of meters, which uses specialized communications methods and is applied in such areas as process 

control and other specific real time computer applications. 

S-CDMA  Synchronous Code Division Multiple Access. 

SDH—Synchronous  Digital  Hierarchy  The ITU standard for synchronous transmission. 

SDMA—Space  Division  Multiple  Access  A multiple access scheme that relies on intelligent antennas to separate the transmitted signals. 

SDTV—Standard  Definition  Television  A digital television standard whose resolution is equivalent to the analog television. 

SHF—Super  High  Frequency  Frequency band from 3 to 30 GHz. 

 σ i .  i th Symbol of Source  U n.. 

supp (f  ).  Support of  f ] If   f  is any real-valued function, then the  support   of  f  is defined  as  a  subset  of  its  domain  in  which   f  takes  on  nonzero  values  and  is denoted as supp (f  ).. 

SMPTE—Society  of  Motion  Picture  and  Television  Engineers  An  internationally  recognized  standards  organization  that  provides  a  technical  framework to  the  industry,  including  standards,  recommended  practices,  and  engineering guidelines that deal with motion-imaging content. 

SNR—Signal-to-Noise  Ratio  A metric used to compare modulation schemes. 
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SONET—Synchronous  Optical  Network  The  US  standard  for  digital  optical networks. 

SQNR—Signal-to-Quantization  Noise  Ratio  A  metric  used  to  compare  quantization schemes. 

SSB—Single  Sideband  A  modulation  scheme  that  transmits  only  of  the  two sidebands and saves bandwidth. 

TACS—Total  Access  Communication  System  A  British  analog  mobile  telephone standard based on the US AMPS system. 

TCM  Trellis-Coded Modulation. 

TCP/IP—Transmission  Control  Protocol/Internet  Protocol  This is the suite of protocols that defines the Internet. Originally designed for the UNIX operating 

system,  TCP/IP  software  is  now  available  for  every  major  kind  of  computer operating system. 

TDM  Time Division Multiplexing. 

TDMA  Time Division Multiple Access. 

TIA—Telecommunications  Industry  Association  A  membership  organization 

concerned with various standards aspects of the telecommunications industry. 

TWTA—Travelling  Wave  Tube  Amplifier  An amplifier technology designed for generation of very high-power microwave signals, such as those used in satellite 

communication applications. 

Tx  Transmitter. 

 U  Discrete Information Source. 

 U n.  Order  n Extension of a Discrete Information Source. 

UDP/IP—User  Datagram  Protocol/Internet  Protocol  The  User  Datagram  Protocol (UDP) is one of the core communication protocols of the Internet protocol 

suite used to send messages, transported as datagrams in packets, to other hosts 

on an Internet Protocol (IP) network. 

UHF—Ultra-High  Frequency  Frequency band from 300 MHz to 3 GHz. 

ULF—Ultra-Low  Frequency  Frequency band from 300 Hz to 3000 Hz. 

VA  Viterbi Algorithm. 

VCO—Voltage-Controlled  Oscillator  A device in which the output frequency is a function of the input voltage. 

VDSL—Very  High-Speed  Digital  Subscriber  Line  The next-generation twisted-pair  technology  (after  ADSL)  that  targets  higher  data  transmission  rates  than ADSL in exchange for shorter guaranteed distances. 

VHF—Very-High  Frequency  Frequency band from 30 Hz to 300 Hz. 

VLF—Very-Low  Frequency  Frequency band from 3 Hz to 30 Hz. 

VSWR—Voltage  Standing  Wave  Ratio  In a transmission line, the ratio of maximum to minimum voltage in a standing wave pattern. 

Var X  Variance of the Discrete Random Variable  X. 

 W  Length of Word of a Source Code. 

WAN—Wide  Area  Network  A network which covers a larger geographical area 

than a LAN and in which telecommunications links are implemented. 

WAP—Wireless  Application  Protocol  A global protocol for wireless systems to permit interaction between data services. 
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WBFM—Wide-Band  Frequency  Modulation  A  modulation  that  uses  a  high 

deviation index. 

WDM—Wavelength  Division  Multiplexing  A multiplexing scheme for the light frequency range. 

WLL—Wireless  Local  Loop  A wireless system meant to bypass a local landline telephone system. 

 X  Discrete Random Variable  X. 

#( X()).  Cardinality of set  X().. 

 X.  Least Integer That Is Greater Than or Equal to  X. 

 X.  Greatest Integer That Is Less Than or Equal to  X. 

X.25—A  Standard  for  Packet  Transmission  A  set  of  ITU  protocols  for  long distance networks. 

X.400—A  Standard  for  Packet  Transmission  A  suite  of  ITU  recommendations that  define  standards  for  data  communication  networks  for  message  handling systems. 
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