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Preface 

This  book  is  intended  for  STEM  students  who  are  eager  to  learn  the  principles  of  computer programming  and  apply  these  techniques  to  the  numerical  analysis  challenges  that  arise in  engineering  and  science.  By  focusing  on  practical  applications,  the  book  aims  to  bridge the  gap  between  theoretical  knowledge  and  real-world  problem-solving. 

The  objectives  of  this  book,  as  implied  by  its  title,  are  twofold: 1.  To  introduce  the  fundamental  concepts  of  computer  programming  using  the  C  language.  This  includes  understanding  syntax,  data  structures,  algorithms,  and  best practices  in  coding.  Through  step-by-step  explanations  and  examples,  readers  will  gain a  solid  foundation  in  programming  that  will  serve  as  a  valuable  tool  in  their  academic and  professional  careers. 

2.  To  use  programming  skills  to  tackle  the  numerical  analysis  challenges  essential  in science  and  engineering.  This  book  helps  readers  learn  how  to  implement  algorithms to  solve  mathematical  problems  such  as  non-linear  equations,  simultaneous  equations, differential  equations,  and  numerical  integrations.  By  focusing  on  practical  exercises and  real-world  examples,  it  shows  students  how  programming  is  relevant  to  their  fields of  study. 

While  no  prior  programming  knowledge  is  required,  it’s  helpful  for  readers  to  have a  basic  understanding  of  sophomore-level  calculus  and  linear  algebra.  This  background will  make  it  easier  for  students  to  grasp  the  mathematical  concepts  discussed  and  better understand  how  to  apply  them  through  programming. 

This  book  uses  C  as  the  main  programming  language.  There’s  an  ongoing  debate  in academic  circles  about  which  programming  language  is  best  for  college  courses.  Histori-cally,  FORTRAN  was  the  dominant  programming  language  for  scientific  and  engineering computations  until  the  1990s.  However,  its  popularity  declined  with  the  rise  of  modern languages  such  as  PASCAL  and  C.  Today,  MATLAB  is  often  taught  as  an  introductory  computer  tool  for  STEM  students.  Python  is  becoming  more  popular  as  a  versatile, v
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general-purpose  language  and  is  increasingly  seen  as  a  good  starting  point  for  students. 

Among  the  many  modern  programming  languages,  using  C  for  scientific  and  engineering computations  is  still  beneficial.  C  covers  almost  all  the  basic  concepts  and  syntax  found  in modern  programming  languages,  except  for  object-oriented  programming,  which  is  used in  languages  such  as  C++  and  Java. 

Those  who  learn  C  as  their  first  language  often  find  it  easy  to  pick  up  other  programming  languages  and  tools,  including  MATLAB.  However,  the  reverse  is  not  true.  A key  advantage  of  C  is  that  it  is  a  compiled  language,  making  it  preferable  to  interpreted languages  for  scientific  and  engineering  tasks. 

While  there  are  many  excellent  textbooks  on  C  and  numerical  analysis,  finding  one  that effectively  combines  both  topics  is  difficult.  This  book  is  not  meant  to  be  a  comprehensive  reference  to  C  or  numerical  analysis.  Instead,  it  focuses  on  the  C  features  essential for  numerical  analysis,  intentionally  leaving  out  features  not  directly  related  to  this  purpose.  This  book  does  not  cover  C++,  as  the  benefits  of  object-oriented  programming  in numerical  analysis  are  minimal. 

By  the  end  of  this  book,  readers  will  be  able  to  solve  various  engineering  and  science problems  by  writing  their  own  C  programs. 

The  book  is  structured  into  two  parts.  In  Part  I,  comprehensive  coverage  of  the  general  syntax  of  the  C  language  is  provided.  The  compiler  utilized  throughout  is  gcc, which  is  freely  available  on  nearly  all  platforms.  Given  that  gcc is  native  to  the  UNIX 

environment,  a  concise  introduction  to  the  UNIX  operating  system  is  included. 

Part  II  focuses  on  key  topics  in  numerical  analysis,  accompanied  by  detailed  explanations  and  listings  of  corresponding  C  programs.  The  subjects  covered  include  solving single  equations,  numerical  differentiation,  numerical  integration,  solving  a  set  of  simultaneous  equations,  and  solving  differential  equations. 

Appendix  A  introduces  gnuplot,  a  visualization  application  essential  for  plotting program  output,  as  the  C  language  itself  lacks  graphical  capabilities. 

Appendix  B  offers  a  brief  tutorial  on  Octave/MATLAB,  designed  for  those  acquainted with  C  seeking  a  quick  mastery  of  Octave/MATLAB. 

In  Appendix  C,  a  concise  tutorial  on  FORTRAN  is  provided  for  those  already  familiar with  C,  enabling  a  rapid  understanding  of  programs  written  in  FORTRAN  (FORTRAN 

77). 

This  book  is  derived  from  the  course  notes  in  a  sophomore-level  numerical  analysis and  programming  course  taught  at  the  Department  of  Mechanical  and  Aerospace  Engineering  at  the  University  of  Texas  at  Arlington.  I  extend  my  gratitude  to  the  students  who participated  in  this  course  for  their  invaluable  feedback.  I  also  wish  to  express  apprecia-tion  to  Paul  Petralia  of  Springer  Nature  for  his  encouragement  and  understanding  and  Dr. 

Clovis  L.  Tondo  of  T&T  TechWorks,  Inc.  for  his  support.  The  programs  and  tools  featured in  this  book  are  accessible  at  no  cost  via  the  internet,  a  testament  to  the  commendable vision  of  the  GNU  project  and  the  Free  Software  Foundation  (FSF). 
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The  first  edition  of  this  book  was  published  in  2018.  The  second  edition  corrects  minor errors,  enhances  content  clarity,  and  includes  an  expanded  section  on  memory  management.  I  would  like  to  thank  Dr.  Dieter  Merkle  and  Bagavathi  Murugesan  of  Springer Nature  for  their  support. 
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Part  I 

Introduction  to  C  Programming 

In  Part  I,  we  provide  an  overview  of  the  basic  syntax  of  the  C  language,  laying  a  strong foundation  for  developing  programs  to  solve  scientific  and  engineering  problems,  as discussed  in  Part  II. 

This  section  is  not  intended  to  be  a  complete  reference  for  C;  instead,  it  focuses  on elements  that  are  relevant  to  scientific  and  engineering  computations.  After  completing Part  I,  readers  should  have  the  skills  needed  to  explore  additional  topics  on  their  own.  All programs  are  compatible  with  various  computing  environments  and  are  designed  to  run smoothly  on  any  version  o  f gcc. 

Remember  that  true  programming  proficiency  comes  from  hands-on  practice.  Simply reading  the  material  without  actively  coding  won’t  lead  to  a  deep  understanding  or  the skills  needed  for  effective  programming. 

[image: Image 2]
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In  this  chapter,  we  outline  the  fundamental  process  for  executing  a  C  program. 

To  run  a  C  program  successfully,  the  initial  step  involves  writing  C  code  using  a  text editor,  saving  the  code  with  the  file  extension  “.c”,  launching  a  C  compiler  to  translate  the text  into  binary  code,  and  subsequently,  if  all  processes  transpire  smoothly,  executing  an executable  file  (referred  to  as  a.out in  UNIX). 1 For  those  of  you  starting  your  learning path  with  C  programming,  it  is  absolutely  necessary  to  carefully  follow  each  step  outlined in  the  subsequent  sections. 

1.1

A  Cycle  of  C  Programming 

This  section  assumes  that  the  platform  for  C  programming  is  a  Unix  server  and  involves running  gcc [ 1]  from  a  remotely  connected  Windows  computer. 2

Before  the  arrival  of  Windows  10,  the  primary  method  for  connecting  to  a  remote  Unix server  was  through  putty,  a  lightweight  Windows  terminal  program  supporting  ssh connections. 

Today,  the  functionality  of  ssh is  integrated  into  the  Windows  system  and  accessible directly  from  the  command  line.  To  utilize  ssh,  simply  enter  “ssh abc1234@server. 

myschool.edu”  into  the  Windows  search  box  at  the  bottom  as  shown  in  Fig. 1.1  where 1  gcc first  compiles  the  source  file  into  an  object  file  (*.o),  then,  links  the  object  file  to  necessary libraries,  and  finally  produces  an  executable  file  (a.out). 

2  If  you  are  using  a  Linux  system,  simply  open  a  shell  window. 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 
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Fig.  1.1  Connecting  to  an  ssh  server  via  Windows  search  box abc1234 is  your  username  and server.myschool.edu is  the  host  name  of  your  server. 

Once  connected,  enter  your  password  at  the  prompt  which  is  not  echoed.  When  successfully logged  in,  you  see  a  screen  similar  to  Fig. 1.2. 3

Navigating  through  a  Unix  shell  is  different  from  Windows/Mac  environments  where users  are  accustomed  to  interacting  with  graphical  user  interfaces  (GUIs)  by  simply  clicking icons  to  access  applications.  However,  to  use  gcc,  you  must  use  the  character  based  interface (CUI)  to  compile  and  run  your  program  in  a  UNIX  shell,  on  a  command  line  (DOS)  window (Windows)  or  in  Terminal  App  (Mac). 

In  the  following  sections  of  this  book,  we  use  a  Unix  shell  connected  to  a  remote  server from  a  terminal  on  either  a  PC  or  a  Mac. 

If  you  have  never  used  a  UNIX  system  before,  you  may  want  to  play  with  some  of  the essential  UNIX  commands.  Try  the  following:

3  It  is  also  possible  to  have  a  similar  setup  at  home  by  running  your  own  Linux  server  or  installing  a PC/Mac  version  of  gcc. 

[image: Image 4]
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Fig.  1.2  Opening  screen  of  the  ssh  server 

Fig.  1.3  A  nano session  in  a  shell
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1.  Login  to  the  server  via  ssh abc1234@server.myschool.edu from  the  search box. 

2.  Using  nano, 4 a  simple  text  editor,  to  compose  your  C  program  (Fig. 1.3). 

$ nano MyProgram.c 

The  symbol,  $,  is  the  system  prompt  so  do  not  type  it.  Enter  the  following  text  into  nano. 

Note  that  all  the  input  in  UNIX  is  case-sensitive. 

#include <stdio.h> 

int main() 

{ 

printf("Hello, World!\n"); 

return 0; 

} 

3.  After  you  finish  entering  the  text,  save  the  file  (Control-O 5) by entering MyProgram.c 

6

as  the  file  name  to  be  saved  and  press  Control-X  to  exit  from  nano.  This  will  save  the file  you  just  created  permanently  under  MyProgram.c. 

4.  The  file  you  created  with  nano is  a  text  file  that  is  not  understood  by  the  computer.  It  is necessary  to  translate  this  text  file  into  a  code  which  can  be  run  on  the  computer.  This translation  process  is  called  compiling  and  the  software  to  do  this  translation  is  called  a compiler.  We  use  gcc for  this  purpose. 

At  the  system  prompt  ($),  run  a  C  compiler  (gcc)  to  generate  an  executable  file (a.out 

7). 

$ gcc MyProgram.c 

If  everything  works,  the  system  will  create  an  executable  binary  file  whose  default  name is  a.out. 

5.  Run  the  executable  file. 

4  nano is  a  simple  editor  that  comes  with  all  the  installation  of  UNIX.  It  is  a  clone  of  another  simple text  editor,  pico. 

5  Hold  down  the  control  key  and  press  O. 

6  The  file  name  is  case  sensitive. 

7  a.out is  an  abbreviation  for.assembler output. 
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$ ./a.out 

8

6.  If  there  is  a  syntax  error,  go  back  to  item  2  and  reissue  nano. 

$ nano MyProgram.c 

7.  If  there  is  no  syntax  error,  run  the  executable  file. 

$ ./a.out 

8.  To  logoff  from  the  server,  enter  exit,  logout or  hit  control-D. 

1.2

UNIX  Command  Primer 

In  a  perfect  world,  you  could  compose  a  C  program,  compile  it  and  run  a.out and  you  are done  with  it.  This  scenario  may  work  for  a  program  of  less  than  10  lines  but  as  the  size  of the  program  grows  or  the  program  depends  on  other  modules,  it  is  necessary  to  manipulate and  organize  files  on  the  UNIX  system.  Even  though  this  is  not  an  introductory  book  of the  UNIX  operating  system,  a  minimum  amount  of  knowledge  about  the  UNIX  operating system  is  needed.  The  following  are  some  of  the  UNIX  commands  that  are  used  often.  Try each  command  yourself  from  the  system  prompt  and  find  out  what  it  does.  It  won’t  damage the  machine. 

• ls (Directory  listing.)

• ls -l (Directory  listing  in  long  format.)

• ls -lt . | more (Directory  listing,  one  screen  at  one  time,  long  format,  chronological order.)

• dir (alias  for  ls)

• ls . (Lists  the  current  directory.)

• cd .. (Moves  to  the  directory  one  level  up.)

• pwd (Shows  the  present  working  directory.)

• cd / (Moves  to  the  top  directory.)

• cd (Returns  to  the  home  directory.)

• mkdir MyNewFolder (Creates  a  new  directory.)

• nano myfile.txt (Creates  a  new  file.)

• cp program1.c program2.c (Copies  program1.c to  program2.c.)

8  ”./"  represents  the  current  directory.  If  the  current  directory  is  included  in  the  PATH environmental variable,  ”./"  is  not  necessary. 
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• mv old.c new.c (Renames  old.c to  new.c.)

• rm program.c (Deletes  program.c.)

• rm *.c (Do  not  do  this.  It  will  delete  all  the  files  with  extension  c.)

• whoami (Shows  your  username.)

• who (Shows  who  are  logged  on.)

• cal (Shows  this  year’s  calendar.)

• cal 1980 (Shows  the  calendar  of  1980.) 

To  quickly  move  while  entering/editing  a  command  line  and  in  nano sessions,  master  the following  shortcuts.  ˆf means  holding  down  the  control  key  and  pressing  the  f key. 

• ˆf (Moves  cursor  forward  by  one  character,  f for  forward.)

• ˆb (Moves  cursor  backward  by  one  character,  b for  backward.)

• ˆd (Deletes  a  character  on  cursor,  d for  delete.)

• ˆk (Deletes  entire  line,  k for  kill.)

• ˆp (Moves  to  previous  line,  same  as  up  arrow,  p for  previous.)

• ˆn (Moves  to  next  line,  same  as  down  arrow,  n for  next.)

• â (Moves  to  top  of  line,  a for  the  first  alphabet.)

• ê (Moves  to  end  of  line,  e for  end.) 

1.3

Overview  of  C  Programming 

Arguably,  the  most  important  book  on  the  C  language  is  a  book  known  as  “K&R”  written by  Kernighan  and  Ritchie  [ 2]  who  themselves  developed  the  C  language.  It  is  concise  yet well-written  and  is  highly  recommended  for  reading. 

1.3.1

Principles  of  C  Language 

Surprisingly  the  C  language  is  based  on  a  few  simple  principles  summarized  as  follows: 1.  A  C  program  is  a  set  of  functions. 

2.  A  function  in  C  is  a  code  that  follows  the  syntax  below: 

type name(type var) 

{ 

//your C code here..... 

... 

return value; 

}

1.3
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3.  A  function  must  be  defined  before  it  is  used. 

4.  A  function  must  return  a  value  whose  type  must  be  declared  (e.g., int, float, double, char).  The  last  line  of  a  function  must  be  a  return statement  where  value is  the value  to  be  returned  upon  exit. 

5.  A  function  must  take  arguments  and  must  have  a  placeholder  ()  even  if  there  are  no arguments. 

6.  The  content  of  a  function  must  be  enclosed  by  “{”  and  “}”. 

7.  The  special  function,  int main(),  is  the  one  executed  first. 9 It  is  recommended  that this  function  returns  an  integer  value  of  0. 

8.  All  the  variables  used  within  a  function  must  be  declared. 

1.3.2

Skeleton  C  Program 

The  following  program  is  absolutely  the  smallest  C  program  that  can  be  written: int main() 

{ 

return 0; 

} 

You  can  compile  and  execute  this  program  using  the  following  commands: $ gcc MyProgram.c 

$ ./a.out 

where  MyProgram.c is  the  name  of  the  saved  file.  Despite  its  simplicity,  this  program  is fully  functional.  When  you  run  ./a.out,  the  program  simply  exits  and  returns  you  to  the system  prompt. 

Here  is  a  line-by-line  analysis  of  the  program  above.  Refer  to  Sect. 1.3.1  for  related concepts: 

The  first  line,  int main(),  declares  a  function  named  main that  returns  an  integer value  (int)  upon  exit  (Item  4).  This  function  takes  no  arguments  as  indicated  by  the  empty content  (Item  5).  The  program  consists  solely  of  the  main() function,  which  is  executed first  (Item  7).  The  content  of  the  main() function  is  enclosed  by  { and  } (Item  6).  The function  executes  the  return 0 statement  and  exits,  returning  a  value  of  0  to  the  operating system.  As  C  is  a  free-form  language,  the  end  of  each  statement  has  to  be  clearly  marked. 

A  semicolon  ; is  placed  at  the  end  of  each  statement.  Hence,  return 0;. 

9  int main(void) is  also  used.  If  void is  used,  no  arguments  are  accepted. 
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The  following  program  is  a  celebrated  code  that  appeared  first  in  the  K&R  book  in  the Getting  Started   section  and  later  adapted  in  just  about  every  introductory  book  for  C  as  the first  C  program  that  prints  “Hello,  World!”  followed  by  an  extra  blank  line. 

1:#include <stdio.h> 

2:int main() 

3:  { 

4: 

printf("Hello, World!\n"); 

5: 

return 0; 

6:  } 

Each  line  in  the  program  above  is  now  parsed.  The  first  line,  .#include <stdio.h>, might  be  a  bit  confusing,  so  let’s  skip  it  for  now  and  move  on  to  the  subsequent  lines. 

If  you  compile  the  program  and  execute  a.out,  you  will  see  that  the  program  prints Hello, World! followed  by  a  new  line  on  the  screen.  Thus,  you  can  infer  that  the  special characters  \n represent  a  newline.  Since  there  is  no  specific  character  that  represents  a  blank line,  you  can  use  \n to  print  a  newline. 

Next,  note  that  the  part  printf is  followed  by  a  pair  of  parentheses,  indicating  that it  is  a  function  in  C  (Item  5).  It  is  clear  that  this  function,  printf(),  prints  the  string Hello, World! and  then  terminates.  Since  it  is  a  function  in  C,  it  must  be  defined  and declared  before  it  is  used.  However,  no  such  definition  is  found  above  the  main() line. 

The  first  line,.#include <stdio.h>,  actually  refers  to  a  file  that  contains  the  definition of  printf(),  which  is  preloaded  before  anything  else.  The  file  stdio.h is  a  header file  (hence  the  extension  h)  available  in  the  C  library  that  comes  with  gcc.  As  the  name indicates  (stdio = STanDard  Input  and  Output),  this  header  file  contains  the  definitions of  many  functions  that  handle  input  and  output  (I/O)  operations. 

Finally,  a  function  must  specify  the  type  of  the  value  it  returns,  such  as  int,  float, double,  etc.  (Item  4).  In  this  case,  the  function  int main() is  declared  to  return  an integer  value  upon  exit.  Indeed,  the  last  statement  return 0; returns  0  when  the  execution is  complete,  and  0  is  an  integer. 

Here  is  how  gcc parses  this  program  line  by  line: 

Line  1  Before  anything  else,  it  loads  the  header  file  .<stdio.h>,  which  contains  the definitions  of  all  the  functions  that  deal  with  I/O  from  the  system  area. 

Line  2  This  is  the  start  of  a  function  called  main().  This  function  returns  an  integer  value (int)  upon  exit.  Since  this  function  has  no  parameters,  the  parentheses  are  empty. 

Line  3  The  {  character  indicates  the  beginning  of  the  content  of  the  function  main(). 

Line  4  This  line  calls  the  function  printf(),  which  is  defined  in.<stdio.h>,  and  prints the  string  Hello, World! followed  by  a  newline.  The  semicolon  (;)  marks  the end  of  this  statement. 
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Line  5  This  is  the  last  statement  of  the  function  main().  It  returns  the  value  0  to  the operating  system  and  exits. 

Line  6  The  }  character  indicates  the  end  of  the  content  of  the  function  main(). 

You  can  execute  this  program  by 

$ nano hello.c 

(Enter  the  content  of  the  program  above.) 

$ gcc hello.c 

(If  it  is  not  compiled,  reedit  hello.c.) 

$ ./a.out 

Hello, World! 

Here  is  another  program  that  does  some  scientific  computation. 

1:#include <stdio.h> 

2:#include <math.h> 

3: /* This is a comment */ 

4:int main() 

5:  { 

6: 

float x, y; 

7: 

x = 6.28; 

8: 

y = sin(x); 

9: 

printf("Sine of %f is %f.\n", x, y); 

10: 

return 0; 

11:  } 

This  program  computes  the  value  of  .sin  x  where  .  x = 6 .  28 radians.  The  program  can  be compiled  as: 

$ gcc MyProgram.c -lm

12
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Note  that  the -lm 

10 option  is  necessary  when  including.<math.h>. 11

Here  is  a  line  by  line  analysis  of  the  program: 

Line  1

The  program  preloads  a  header  file, .<stdio.h>. 

Line  2

The  program  also  preloads  an  another  header  file,.<math.h>.  This  header  file  is necessary  whenever  mathematical  functions  such  as.sin (x)  are  used  in  the  program. 

Line  3

This  entire  line  is  a  comment.  Anything  surrounded  by  /* and  /* is  a  comment and  is  ignored  by  a  compiler. 13

Line  4

This  is  the  declaration  of  a  function,  main(),  that  returns  an  integer  value  but with  no  parameter. 

Line  5

The  { character  indicates  that  this  is  the  beginning  of  the  content  of  the  function, main(). 

Line  6

Two  variables,  x and  y,  are  declared  both  of  which  represent  a  floating  number. 

Line  7

The  variable,  x,  is  assigned  a  floating  number,  6.28. 

Line  8

The  function,.sin (x),  is  evaluated  where.  x  is  6.28  and  the  result  is  assigned  to  the variable,  y. 

Line  9

The  result  is  printed.  First,  a  literal  string  of  “Sine of”  is  printed  followed  by the  actual  value  of  x and  “is”  is  printed  followed  by  the  actual  value  of  y,  a  period and  a  new  line. 

Line  10  The  function,  main(),  exits  with  a  return  value  of  0. 

Line  11  The } character  indicates  that  this  is  the  end  of  the  content  of  the  function, main(). 

There  are  several  new  concepts  in  this  program  that  need  to  be  explained.  The  second  line preloads  another  header  file,.math.h,  as  this  program  computes  the  sine  of  a  number.  In  the fourth  line,  two  variables,  x and  y,  are  declared.  The  float keyword  indicates  that  the  two variables  represent  floating-point  numbers  (real  numbers  with  decimal  points).  The  fifth  line assigns  the  number  6.28  to  the  variable  x.  The  equal  sign  (=)  here  is  not  the  mathematical equality  you  are  accustomed  to.  In  C  and  most  other  programming  languages,  an  equal  sign (=)  is  used  for  assignment,  meaning  the  value  on  the  right  of  = is  assigned  to  the  variable on  the  left.  In  the  eighth  line,  the  printf() function  prints  a  list  of  variables  (x and  y) with  formatting  specified  by  the  double  quotation  marks  (“...”).  The  way  formatting  works is  that  printf() prints  everything  literally  within  the  quotation  marks  except  for  special codes  starting  with  the  percentage  sign  (%).  Here,  %f represents  a  floating-point  number, which  is  replaced  by  the  actual  value  of  the  variable.  As  there  are  two  %f’s,  the  first  %f is replaced  by  the  value  of  x,  and  the  second  %f is  replaced  by  the  value  of  y.  The  details  of the  new  concepts  shown  here  will  be  explained  in  Chap. 2. 

10  “-l”  is  used  to  link  a  library,  and  “m”  stands  for  the  math  library. 

11.<math.h> contains  only  the  function  declarations  (prototypes)  for  mathematical  functions.  It  is necessary  to  link  the  math  library  libm.a locally  using  the -lm option. 

13  A  comment  can  also  start  with  //.  This  is  for  one-line  comment  originated  in  C++. 
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1.4

Exercise 

It  is  not  necessary  to  know  all  the  C  syntax  to  work  on  the  following  problems.  Each  problem includes  a  template  that  you  can  modify.  Begin  with  the  template  code,  make  adjustments, and  understand  the  purpose  of  each  statement.  It  is  crucial  that  you  write  the  code  yourself (rather  than  copying  and  pasting)  and  execute  it. 

1.  Write  a  C  program  to  print  three  blank  lines  followed  by  “Hello,  World!”.  Use  the following  code  as  a  template. 

#include <stdio.h> 

int main() 

{ 

printf("\nHello, World!\n\n"); 

return 0; 

} 

\n prints  a  new  line. 

2.  Write  a  program  to  read  two  real  numbers  from  the  keyboard  and  prints  their  product. 

Use  the  following  code  as  a  template.  Do  not  worry  about  the  syntax,  Just  modify  one place. 

#include <stdio.h> 

int main() 

{ 

int a, b;  /* to declare that a and b are integer variables */ 

printf("Enter two integer numbers separated by space = "); 

scanf("%d %d", &a, &b); /* This is the way to read two integer numbers and assign them to a and b. */ 

printf("The sum of the two numbers is %d.\n", a + b); 

/* %d is for integer format. */ 

return 0; 

} 

3.  Write  a  program  to  read  a  real  number,  .  x,  and  outputs  its  sine,  i.e.  .sin (x).  You  need  to use  .<math.h> and  the -lm compile  option.  Use  the  following  template  program  that computes .  ex . 

#include <stdio.h> 

#include <math.h> 
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int main() 

{ 

float x; 

printf("Enter a number ="); scanf("%f", &x); 

printf("x = %f exp(x) = %f\n",x, exp(x)); 

return 0; 

} 

You  have  to  use  the -lm option  when  compiling. 

$ gcc MyProgram.c -lm 

$ ./a.out 

4.  The  following  code  contains  syntax  errors.  Correct  the  errors  and  compile  it. 

#include <stdio.h> 

int main() 

{ 

print(’Hello World!\n’) 

return o; 

}

[image: Image 6]
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In  this  chapter,  we  introduce  and  explain  the  essential  components  of  the  C  language.  While the  syntax  covered  is  not  exhaustive,  by  the  end  of  this  chapter,  you  should  be  able  to  write a  simple  C  program  capable  of  solving  various  problems  in  engineering  and  science. 

2.1

Variables  and  Data  Types 

Every  variable  used  in  C  must  have  a  type  that  specifies  the  kind  of  value  it  represents.  The four  variable  types  are  listed  in  Table  2.1. 

In  Table  2.1,  the  third  column  displays  the  format  specifiers  for  each  data  type,  which  are used  in  the  printf() and  scanf() functions. 

•  int represents  an  integer  value.  The  range  of  int depends  on  the  hardware  and  the version  of  the  compiler.  In  most  modern  systems,  int ranges  from  . −2147483647  to 2147483647. 

•  float represents  a  floating-point  number.  This  type  is  suitable  for  most  non-scientific floating-point  calculations  (single  precision).  For  scientific  and  engineering  computations,  double should  be  used. 

•  double is  an  extension  of  float.  This  data  type  can  handle  larger  floating-point numbers  at  the  cost  of  increased  memory  usage  (though  not  significantly). 

•  char represents  a  single  ASCII  character.  This  data  type  is  essentially  a  subset  of  int with  a  range  limited  to  0  to  255.  Characters  represented  by  char must  be  enclosed  in single  quotation  marks  (’). 
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Table  2.1  Data  types 

Type

Content

Format

Range

Example 

int

Integer

%d

.−2147483647 ∼

10 

+2147483647

float

Floating  number 

%f

.±2 .  9387 e − 39 ∼

3.14 

±1 .  7014 e + 38

double

Double  precision 

%lf

.2−63 ∼ 2+63

3.14159265358979 

char

Character

%c

ASCII  code

‘a’ 

2.1.1

Cast  Operators 

When  an  operation  between  variables  of  different  types  is  performed,  the  variables  of  a lower  type  are  automatically  converted  to  the  highest  type  according  to  the  following  order: 

. char < int < float < double

For  example,  in  the  expression  a * b, where  a is  of  type  int and  b is  of  type  float,  a is  automatically  converted  to  float,  and  the  result  is  also  of  type  float. 

There  are  instances  where  two  variables  are  both  of  type  int,  yet  the  result  of  the operation  is  desired  to  be  of  type  float.  For  example, 

#include <stdio.h> 

int main()

{

int a, b; 

a = 3; b = 5; 

printf("%f\n", a/b); 

return 0; 

}

The  output  is:

$ gcc prog.c

2.c: In function ’main’:

2.c:6:10: warning: format ’%f’ expects argument of type ’double’, 

but argument 2 has type ’int’ [-Wformat=]

printf("%f\n", a/b); 

ˆ

$ ./a.out

-0.000000

2.1
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It  prints  0  with  a  warning,  even  though  the  expected  result  is  0.6.  To  perform  this  operation as  intended, 1 a  cast  operator  (an  operator  that  allows  the  temporary  change  of  a  variable’s type)  must  be  used  as 

#include <stdio.h> 

int main()

{

int a, b; 

a = 3; b = 5; 

printf("%f\n", (float)a/b); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

0.600000

The  (float)a/b part  forces  both  variables  to  be  of  float type  and  returns  0.6  as intended. 

2.1.2

Examples  of  Data  Type 

1.  This  program  prints  a  character,  ‘h’. 

/*

Print a character

*/

#include <stdio.h> 

int main()

{

char a = ’h’; 

printf("%c\n",a); 

return 0; 

}

1  Another  way  to  achieve  this  is  by  modifying  a/b to  1.0*a/b. 
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Note  that  the  variable  a is  declared  as  char and  initialized  with  the  value  ‘h’ on the same  line. 

2.  This  program  prints  an  integer  10. 

/*

Print an integer

*/

#include <stdio.h> 

int main()

{

int a = 10; 

printf("%d\n",a); 

return 0; 

}

Note  that  the  variable  a is  declared  as  int and  initialized  with  the  value  10 on  the  same line. 

3.  This  program  prints  a  floating  number  10.5. 

/* Print a floating number */

#include <stdio.h> 

int main()

{

float a = 10.5; 

printf("%f\n",a); 

return 0; 

}

Note  that  the  variable,  a,  is  declared  as  float and  initialized  with  the  value  10.5 on the  same  line. 

2.2

Input/Output 

Almost  all  C  programs  include  at  least  one  output  statement.  Without  it,  the  program  will not  display  any  output  on  the  screen,  making  it  impossible  to  determine  if  the  program  ran successfully  or  not. 

The  most  commonly  used  input/output  functions  in  C  are  printf() and  scanf(), both  of  which  are  defined  in  the  header  file stdio.h. Use printf() (“Print  with  Format”) to  output  data  to  the  console,  and  scanf() (“Scan  with  Format”)  to  input  data  from  the keyboard. 

2.2
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•  printf() 

The  syntax  of  the  printf() function  is 

printf("format",argument(s)); 

where  format specifies  the  formatting  of  the  output,  which  you  can  control,  and argument(s) is  a  list  of  variables  to  be  printed. 

The  printf() function  outputs  the  value(s)  of  variables  specified  in  argument(s) to the  standard  output  (screen)  according  to  the  formatting  commands  defined  by  format. 

Examples: 

printf("Hello, World!\n"); 

printf("Two integers are %d and %d.\n",a,b); 

printf("Two floating numbers are %f and %f.\n",a,b); 

printf("Three floating numbers are %f, %f and %f.\n",a,b,c); 

A  string  of  characters  surrounded  by  the  double  quotes  (")  is  printed  as  is.  However,  the percentage  sign  (%)  followed  by  a  format  specifier  is  automatically  replaced  by  the  value of  a  variable  followed.  Use  %d for  an  integer,  %f for  a  floating  number  and  %c for  a character. 

The  backslash  (\)  is  called  the  escape  character  and  escapes  the  following  letter.  \n represents  the  next  line  (inserting  a  blank  line),  \t represents  a  tab  character  and  \a rings  the  bell.  If  you  want  to  print  the  double  quotation  mark  ("),  use  \".  To  print  the backslash  (\)  itself,  use  \\. 

•  scanf() 

The  scanf() function  is  the  counterpart  of  printf();  it  reads  the  value(s)  of  variable(s)  from  the  standard  input  (keyboard)  according  to  a  specified  format. 

The  format  specification  in scanf() (% ...)  follows  the  same  conventions  as printf(). 

However,  each  variable  name  must  be  prefixed  with  an  & (ampersand)  symbol. 

The  reason  why  an  & is  required  for  scanf() but  not  for  printf() will  be  explained in  Sect. 2.9  (pointers). 

Unlike  in  printf(),  the  format  specifiers  %f and  %lf are  distinguished  in  scanf(). 

Use  %f for  reading  a  single-precision  floating-point  number,  and  %lf for  reading  a double-precision  floating-point  number. 
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Examples  Compare  the  following  two  programs: 

#include <stdio.h> 

int main()

{

int a, b; 

printf("Enter two integers separated by a comma = "); 

scanf("%d, %d",&a, &b); 

printf("a = %d b = %d\n", a, b); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter two integers separated by a comma = 12, 29

a=12 b=29

This  program  expects  two  values  to  be  entered  from  the  keyboard,  separated  by  a  comma (,),  as  specified  by  "%d, %d" in  the  scanf() function.  Ensure  you  type  the  comma (,)  immediately  after  the  first  number.  The  second  number  can  be  entered  with  any number  of  spaces  preceding  it. 

#include <stdio.h> 

int main()

{

int a; float b; 

printf("Enter an integer and a real number separated by a space = "); scanf("%d

%f",&a, &b); 

printf("a = %d b = %f\n", a, b); 

return 0; 

}

The  output  is:

$ gcc prog.c

$ ./a.out

Enter an integer and a real number separated by a space = 21 6.5

a=21 b=6.500000

2.3
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In  this  program,  two  numbers  must  be  entered  separated  by  at  least  one  space.  The  number of  spaces  between  the  numbers  can  vary  arbitrarily. 

•  getchar() and  putchar() 

For  character-wise  input/output,  getchar()  and  putchar()  are  available. 

getchar() and putchar() are  simpler,  lower-level  functions  compared  to scanf() and  printf().  getchar() reads  a  single  character  from  standard  input  (usually  the keyboard),  while  putchar() writes  a  single  character  to  standard  output  (usually  the screen).  They  work  on  individual  characters,  making  them  suitable  for  character-by-character  input/output  operations.  In  contrast,  scanf() and  printf() are  formatted I/O  functions.  Below  is  an  example  code  to  use  getchar() and  putchar(). 

#include <stdio.h> 

int main()

{

char ch; 

printf("Enter a character: "); 

ch = getchar(); 

printf("You entered: "); 

putchar(ch); 

/* Print a newline for formatting*/

putchar(’\n’); 

return 0; 

}

The  output  is: 

$ gcc program.c

$ ./a.out

Enter a character: A

You entered: A

2.3

Operators  Between  Variables 

There  are  three  types  of  operators  used  with  variables:  (1)  relational  operators,  (2)  logical operators,  and  (3)  increment/decrement  operators. 
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2.3.1

Relational  Operators 

Relational  operators  are  mathematical  operators  commonly  utilized  in  the  if statement. 

As  shown  in  Table  2.2,  a  single  equal  sign  (=)  and  a  double  equal  sign  (==)  serve  distinct purposes. 

Examples 

1.  if (a == b) printf("a and b are equal.\n"); 

else printf("a and b are not equal.\n"); 

The  statement  above  indicates  that  if  the  two  variables,  a and  b,  have  the  same  value, 

“a and b are equal.”  is  printed;  otherwise,  “a and b are not equal.” 

is  printed.  It’s  important  to  distinguish  between  the  single  equal  sign  (=),  used  for  assignment,  and  the  double  equal  signs  (==),  used  for  checking  logical  equality.  In  C,  as  in many  other  programming  languages,  the  double  equal  sign  (==)  is  used  to  represent equality,  similar  to  the  single  equal  sign  in  standard  mathematical  equations. 

2.  a = 10; 

a = a + 1; 

In  C,  as  in  almost  all  other  programming  languages,  the  single  equal  sign  (=)  represents an  assignment  operation,  where  the  value  on  the  right-hand  side  of  the  equal  sign  is assigned  to  the  variable  on  the  left-hand  side.  The  statement  a = a + 1  

may  seem 

strange  and  wrong  in  mathematical  terms,  but  it  is  perfectly  valid  in  C.  Here,  a + 1  

is 

evaluated  to  yield  11,  and  this  resulting  value  is  then  assigned  to  a.  As  a  result,  the  value of  a is  incremented  by  1. 

Table  2.2  Relational  operators 

Symbol

Meaning 

.  < 

.  a < b;  a  is  less  than  b 

.  < =

.  a < =  b;  a  is  less  than  or  equal  to  b 

.  > 

.  a > b;  a  is  greater  than  b 

.  > =

.  a > =  b;  a  is  greater  than  or  equal  to  b 

.==

.  a ==  b;  a  is  equal  to  b. 

.! =

.  a! =  b ;  a  is  not  equal  to  b

2.3
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2.3.2

Logical  Operators 

Logical  operators  in  C  are  primarily  used  within  the  if statement.  These  operators  are essential  for  making  decisions  based  on  multiple  conditions  as  shown  in  Table  2.3. 

Examples  The  following  examples  are  self-explanatory. 

if (a > 0 && a < 100) printf("a is between 0 and 100.\n"); if (a > 0 || a < -5) printf("a is positive or less than -5.\n"); int a = 20; 

if (!(a == 10)) printf("a is not equal to 10."); 

if (a == 10)

{

printf("The value of a is 10.\n"); 

return 0; 

}

else .... 

2.3.3

Increment/Decrement/Substitution  Operators 

In  C  programming,  the  expression  a = a + 1  

increments  the  value  of  a by  1.  However, 

a  more  concise  notation,  a++ or  ++a,  can  be  used  as  a  shorthand.  While  this  is  not  the primary  motivation,  using  a++ or  ++a reduces  memory  usage  by  2  bytes  compared  to  a =  

a + 1,  appealing  to  C  programmers,  who  often  value  minimalist  code. 2

Table  2.3  Logical  operators 

Symbol

Meaning 

.&& 

And 

.||

Or 

! 

Not

2  The  naming  of  C++  (another  compiler)  reflects  this  concept,  signifying  an  “incremental”  improve-ment  over  the  C  language. 
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Table  2.4  Shorthand  notations  for  assignment  operations 

Symbol

Meaning 

.++

.  b = + +  a

.  a  is  incremented  by  1  and  assigned  to .  b. Same as  

.  a =  a + 1;  b =  a; 

.  b =  a + +

.  a  is assigned to b first and incremented by 1. Same as  

.  b =  a;  a =  a + 1; 

.−−

.  b = − −  a

.  a  is  decremented  by  1  and  assigned  to .  b. Same as  

.  a =  a − 1;  b =  a; 

.  b =  a − −

.  a  is  assigned  to .  b  first  and  decremented  by  1.  Same  as 

.  b =  a;  a =  a − 1; 

.+ =

.  a+ =  b

.  a +  b  is  assigned  to .  a. Same as .  a =  a +  b; 

.− =

.  a− =  b

.  a −  b  is  assigned  to .  a. Same as .  a =  a −  b; 

.∗ =

.  a∗ =  b

.  a ∗  b  is  assigned  to .  a. Same as .  a =  a ∗  b; 

.  / =

.  a/ =  b

.  a/b  is  assigned  to .  a. Same as .  a =  a/b; 

%=

.  a% =  b

Remainder  of.  a/b  is  assigned  to.  a. Same as.  a =  a% b; Table  2.4  lists  shorthand  notations  for  assignment  operations. 

Although  ++a and  a++ behave  identically  when  used  in  isolation,  there  is  a  distinction when  they  are  part  of  an  assignment.  In  b = ++a,  ++a is  referred  to  as  the  pre-increment operator,  which  increments  the  value  of  a by  1  before  assigning  it  to  b.  Conversely,  in  b 

= a++,  a++ is  known  as  the  post-increment  operator.  In  this  case,  the  value  of  a is  first assigned  to  b, and  then  a is  incremented  by  1. 

Examples 

i = 100; 

i++; 

is  the  same  as 

i = 100; 

i = i + 1; 

All  of  the  following  statements  increment  i by  1. 

i = i + 1; 

i+ = 1; 

i++; 

++i; 

2.4

Control Statements
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2.4

Control  Statements 

Without  control  statements,  a  program  can  only  execute  code  sequentially  from  top  to  bottom once,  which  is  often  not  very  useful.  Control  statements  enable  a  program  to  branch  to different  parts  and  repeat  operations  as  many  times  as  needed,  making  the  program  more flexible  and  powerful. 

The  following  are  the  five  types  of  control  statements  that  can  control  the  flow  of  the program: 

• if .... else

• for ( ; ; )

• while

• do while

• switch

2.4.1 

if Statement 

A  block,  denoted  by  { and  },  following  an  if statement  is  executed  when  the  condition inside  the  parentheses  (.  . . . ) is  satisfied.  If  there  is  no  block,  only  the  next  statement  is executed.  The  else clause  is  optional. 

The  following  program  tells  whether  an  integer  entered  from  the  keyboard  is  between  1 

and  100  or  not. 

#include <stdio.h> 

int main()

{

int i; 

printf("Enter an integer = "); 

scanf("%d", &i); 

if (i > 1 && i < 100)

printf("The number is between 1 and 100.\n"); 

else

printf("The number is not in that range.\n"); 

return 0; 

}

The  output  looks  like:
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$ gcc prog.c 

$ ./a.out 

Enter an integer = 45 

The number is between 1 and 100. 

$ ./a.out 

Enter an integer = 104 

The number is not in that range. 

In  fact,  the  program  above  functions  correctly  without  the  else clause.  If  the  condition  in if (…) is  not  satisfied,  control  simply  proceeds  to  the  next  statement. 

2.4.2 

for Statement 

A  for loop  is  used  when  the  number  of  iterations  to  be  executed  is  known  in  advance.  The for loop  consists  of  three  parts,  each  separated  by  a  semicolon  (;).  The  first  part  initializes a  counter  variable,  the  second  part  tests  the  iteration  counter  variable,  and  if  this  test  fails, the  loop  terminates.  The  third  part  defines  an  action  on  the  counter  variable.  A  block  of  code can  follow  the  for statement  to  execute  multiple  statements  for  each  iteration. 

for (initial value; condition ; counter increment) statement; 

Examples 

1.  The  following  program  prints  0  to  9. 

#include <stdio.h> 

int main()

{

int i; 

for (i = 0; i < 10; i++) printf("i = %d\n",i); 

return 0; 

}

The  output  is:

$ gcc prog.c

$ ./a.out

i = 0

i = 1

2.4
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i = 2  

i = 3  

i = 4  

i = 5  

i = 6  

i = 7  

i = 8  

i = 9  

2.  The  following  program  computes 

.  S = 1 + 2 + 3 + 4 + 5 + 6 +  . . . + 100 . 

#include <stdio.h> 

int main()

{

int i, sum = 0; 

for (i = 0; i <= 100; i++) sum = sum

+ i; 

printf("Sum = %d\n", sum); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Sum = 5050

In  this  program,  i serves  as  the  iteration  variable,  while  sum acts  as  a  placeholder  for  the partial  summation  of  .1 + 2 + 3 +  . . . .  The  parameters  in  the  for loop  specify  that  the iteration  variable  i is  initialized  to  0.  As  long  asi remains  less  than  or  equal  to  100,  the statement  sum = sum + i is  repeatedly  executed.  After  each  execution  of  sum = 

sum + i,  the  iteration  variable  i is  incremented  by  1.  This  newly  incremented  value of  i is  then  added  to  the  previous  value  of  sum,  thereby  updating  sum.  Therefore,  sum now  represents .1 + 2 + 3 +  . . . +  i. 

In  general,  the  following  pattern  can  be  used  to  compute  a  mathematical  summation: sum = 0.0; 

for (i = 0; i <= 100; i++) sum = sum + f(i); 

which  corresponds  to
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100



. 

 f (i) =  f ( 0 ) +  f ( 1 ) +  f ( 2 ) +  . . . +  f ( 100 ). 

 i =0

Note:  The  iteration  variables  (i,  j,  k,.  . . . )  must  be  always  declared  as  int. 

3.  Approximating . ln 2

The  following  series 

.1 − 1 + 1 − 1 + 1 −  . . . 

(2.1) 

2

3

4

5

is  known  as  the  alternating  harmonic  series,  and  to  converge  to.ln 2 (natural  logarithm). 3

Therefore,  by  numerically  summing  up  Eq. (2.1), one  can  obtain  a  numerical  value  of 

.ln 2 (=  0.693147...).  Equation  (2.1)  can  be  written  as 

∞

 (−1 )i+1

. 

 . 

(2.2) 

 i

 i =1

To  implement  Eq. (2.2)  in  C,  use  the  following  statement. 

sum = sum + pow(-1, i+1)/i; 

Note  that  pow(a,b) is  a  function  found  in  math.h which  returns  .  ab.  A  program  to implement  Eq. (2.1)  is  as  follows: 

#include <stdio.h> 

#include <math.h> 

int main()

{

int i, n; 

float sum = 0.0; 

printf("Enter # of iterations = "); 

scanf("%d", &n); 

3  Integrating  the  both  sides  of  the  geometric  series, 

1

. 

= 1 −  x +  x 2 −  x 3 +  x 4 −  x 5 +  . . . 

1 +  x

one  can  obtain 

.  ln  ( 1 +  x ) =  x −  x  2 +  x  3 −  x  4 +  x  5 −  x  6 +  . . . 

2

3

4

5

6

Substituting.  x = 1 on  both  sides  yields 

.  ln 2 = 1 − 1 + 1 − 1 + 1 −  . . . 

2

3

4

5

. 
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for (i = 1; i < n; 

i++) 

sum = sum + pow(-1, i+1)/i; 

printf("Approximation of log(2) = %f.\n ", sum); 

/* Natural logarithms in C is log(x).*/ 

printf("Exact value of log(2) = %f.\n", log(2)); 

return 0; 

} 

The  output  is: 

$ gcc prog.c -lm

$ ./a.out

Enter # of iterations = 1000

Approximation of log(2) = 0.693646. 

Exact value of log(2) = 0.693147. 

$ ./a.out

Enter # of iterations = 10000

Approximation of log(2)= 0.693191. 

Exact value of log(2)= 0.693147. 

$ ./a.out

Enter # of iterations = 10000000

Approximation of log(2)= 0.693137. 

Exact value of log(2)= 0.693147. 

As  seen  from  the  output  above,  the  convergence  of  the  series  is  rather  slow.  Also,  note that  for  modern  computers,  performing  10,000,000  iterations  poses  no  issue  whatsoever. 

4.  We  want  to  find  one  of  the  roots  of  a  cubic  equation  defined  by 

.  x  3 +  x − 1 = 0 , 

(2.3) 

which  lies  between  0  and  1  using  an  iterative  method.  By  rearranging  Eq. (2.3), we  obtain 

.  x =

1

 . 

(2.4) 

1 +  x 2

Although  Eqs. (2.3)  and  (2.4)  are  mathematically  equivalent,  Eq. (2.3)  cannot  be  used  as a  valid  C  statement,  whereas  Eq.  (2.4)  can  be  implemented  as  a  valid  C  statement  where the  evaluated  value  of

1

. 

is  assigned  to.  x.  By  starting  with  an  appropriate  initial  guess 1+ x 2

for.  x,  Eq.  (2.4)  can  be  iterated  until  convergence  is  attained.  The  following  program  uses 

.  x = 1 as  the  initial  guess. 
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#include <stdio.h> 

int main() 

{ 

int i, n; 

float x = 1.0; 

printf("Enter # of iterations = "); 

scanf("%d", &n); 

for (i = 1; i < n; 

i++) x = 1/(1 + x*x); 

printf("Iteration # = %d, x = %f.\n", i, x); 

return 0; 

} 

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter # of iterations = 30

Iteration # = 30, x = 0.682327. 

$ ./a.out

Enter # of iterations = 31

Iteration # = 31, x = 0.682328. 

$ ./a.out

Enter # of iterations = 32

Iteration # = 32, x = 0.682328. 

It  is  observed  that  convergence  was  attained  after  31  iterations.  Although  the  convergence rate  of  this  iteration  method  is  slow,  it  demonstrates  that  solving  this  cubic  equation  does not  require  any  advanced  mathematical  techniques. 

2.4.3 

while Statement 

A  while statement  executes  the  subsequent  statement(s)  as  long  as  the  specified  condition remains  true.  The  following  program  outputs  10. 

#include <stdio.h> 

int main()

{

int i = 0; 

while (i < 10) i++; 

printf("%d\n",i); 

return 0; 

}
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The  output  is: 

$ gcc prog.c

$ ./a.out

10

It  may  seem  that  the  program  should  output  9  instead  of  10.  However,  when  the  condition 

.i<10 is  tested  with  i=9,  i is  incremented  to  10,  and  this  value  is  retained  thereafter. 

For  multiple  statements,  it  is  necessary  to  use  a  block  with  curly  brackets  ({ and  }). 

#include <stdio.h> 

int main()

{

int i = 0; 

while (i < 10)

{

i++; 

printf("i = %d\n",i); 

}

printf("%d\n",i); 

return 0; 

}

The  output  is:

$ gcc prog.c

$ ./a.out

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

10
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2.4.4 

do While Statement 

The  do while loop  is  similar  to  the  while loop,  except  that  the  test  occurs  at  the  end of  the  loop  body.  This  guarantees  that  the  loop  is  executed  at  least  once  before  continuing. 

Such  a  structure  is  frequently  used  in  scenarios  where  data  needs  be  read  and  validated.  The loop  re-reads  the  data  if  the  initial  input  is  unacceptable. 

The  following  program  keeps  prompting  until  the  user  enters  0  or  1. 

#include <stdio.h> 

int main()

{

int yesno; 

do

{

printf("Enter 1 for yes, 0 for no :"); 

scanf("%d", &yesno); 

} while (yesno ! = 1 && yesno ! = 0); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter 1 for yes, 0 for no :10

Enter 1 for yes, 0 for no :2

Enter 1 for yes, 0 for no :-1

Enter 1 for yes, 0 for no :0

2.4.5 

switch Statement 

A  switch statement  enables  branching  to  different  tasks  based  on  the  value  of  the  variable provided. 

Although  the  same  outcome  can  be  achieved  using  multiple  if statements,  employing  a switch statement  enhances  the  clarity  and  flow  of  the  program. 

The  following  program  checks  whether  the  input  value  is  either  1  or  2,  and  outputs  “a is neither 1 nor 2.”  if  it  is  not. 
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#include <stdio.h> 

int main() 

{ 

int i; 

printf("Enter an integer="); scanf("%d", &i); 

switch(i) 

{ 

case 1: printf("a is 1\n");break; 

case 2: printf("a is 2\n");break; 

default: printf("a is neither 1 nor 2\n");break; 

} 

return 0; 

} 

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter an integer=12

a is neither 1 nor 2

$ ./a.out

Enter an integer=2

a is 2

It  is  important  to  use  a  break statement  to  exit  the  block  after  each  executed  case.  Note that  a  colon  (:) must be used after  case instead  of  a  semicolon  (;). 

2.5

Miscellaneous  Remarks 

Several  key  aspects  of  C  and  UNIX,  while  not  warranting  separate  sections,  are  still  important to  highlight.  These  are  summarized  below: 

•  Exiting  an  infinite  loop. 

Occasionally,  a  program  may  become  trapped  in  an  infinite  loop,  and  the  only  option might  be  to  close  the  window  or  shutting  down  the  machine.  For  instance,  the  following program  creates  an  infinite  loop  as  shown  in  Fig. 2.1:

#include <stdio.h> 

int main()

{

int i ; 

for (i = 1; i > 0; i++) printf("loop"); 

return 0; 

}

[image: Image 7]
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Fig.  2.1  Trapped  in  infinite  loop 

To  exit  the  infinite  loop,  press  Control-C. 4

•  Output  formatting 

The  appearance  of  the  output  generated  by  the  printf() function  can  be  customized. 

Consider  the  following  format  control  codes  used  within  the  printf() statement. 

#include <stdio.h> 

int main()

{

float a = 3.14; 

printf("%f\n",a); 

printf("%10f\n",a); 

printf("%20f\n",a); 

printf("%30f\n",a); 

printf("%10.3f\n",a); 

printf("%10.4f\n",a); 

printf("%10.5f\n",a); 

printf("%10.6f\n",a); 

return 0; 

}

The  output  is:

4  Hold  down  the  Control  key  and  press  C.  Also  if  the  screen  is  suddenly  frozen  and  does  not  accept any  keyboard  input,  try  pressing  Control-Q.  This  is  usually  caused  by  accidentally  pressing  Control-S 

which  pauses  output). 
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$ gcc prog.c 

$ ./a.out 

3.140000 

3.140000 

3.140000 

3.140000 

3.140 

3.1400 

3.14000 

3.140000 

The  format,  %10.6f specifies  that  10  spaces  are  reserved  from  the  beginning  of  the line,  with  the  floating-point  number  printed  with  6  decimal  places,  right-justified.  This formatting  option  is  purely  cosmetic  and  does  not  alter  the  actual  value  of  the  variable. 

•  What  is  a = b = 20? 

A  statement  such  as  a = b = 20  

may  appear  unusual  but  is  a  valid  C  statement. 

Consider  running  the  following  code: 

#include <stdio.h> 

int main()

{

float a, b; 

printf("%f\n", a = 20.0); 

b = a = 30.0; 

printf("%d\n", a == 20.0); 

return 0; 

}

In  C,  a  statement  such  as  b = 20  

not  only  assigns  the  value  20  to  b,  but  also  the 

expression  b = 20  

itself  also  evaluates  to  20. 

The  output  of  the  program  is: 

$ gcc prog.c

$ ./a.out

20.000000

0

In  the  statement  a = b = 20,  the  evaluation  proceeds  from  right  to  left.  Thus,  b =  

20 is  executed  first,  which  assigns  20  to  b and  also  results  in  the  value  20  being  assigned to  a.  This  is  a  convenient  way  to  assign  the  value  20  to  both  a and  b on  the  same  line. 
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Similarly,  in  the  statement  b = a =  

30.0,  a is  assigned  30.0,  and  then  this  value  is 

assigned  to  b.  As  a  result,  a == 20.0 evaluates  to  false,  and  the  printf() function returns  0  (false). 

•  In  gcc,  you  can  use  the -o 5 option  (also  called  a  flag)  to  specify  the  name  of  the executable  file  instead  of  the  default  name  a.out. 

$ gcc -o MyProgram MyProgram.c

This  generates  an  executable  binary,  MyProgram,  instead  of  the  default  file,  a.out, in  the  same  directory.  For  the  Windows  version  of  gcc,  the  name  of  the  executable  is MyProgram.exe. 

•  You  can  define  a  symbolic  constant  by  the  define preprocessor: 

#include <stdio.h> 

#define PI 3.141592 /* Defines pi. */

int main()

{

float a; 

printf("Enter radius = "); 

scanf("%f", &a); 

printf("The area of circle is = %f.\n", a*a*PI); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter radius = 2.0

The area of circle is = 12.566368. 

Whenever  the  C  compiler  encounters  PI,  it  replaces  PI by  3.141592.  It  is  customary  to use  upper  case  letters  to  define  constants  with  the  #define preprocessor. 

•  Why  does  the  return 0; in  int main() need  to  return  0? 

Returning  0  is  not  absolutely  necessary.  In  fact,  return -1; or  return 2025; is equally  valid.  However,  by  returning  0  to  the  operating  system  when  int main() exits, the  operating  system  knows  that  the  program  has  terminated  normally  with  no  errors  or issues.  It  informs  the  operating  system  that  it  can  proceed  without  invoking  any  additional error-handling  procedures. 

5  o for  output. 
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2.5.1

Exercise 

1.  Write  a  program  that  interactively  reads  temperature  in  Celsius  and  convert  it  to  Fahrenheit.  Note 

.  C =  (F − 32 ) × 5  . 

9

Expected  output: 

$ ./a.out

Enter temperature in C = 29

It is 84.2 degrees in Fahrenheit. 

2.  Write  a  C  program  that  determines  whether  an  integer  entered  via  the  keyboard  is  a multiple  of  3  or  not.  Use  the  modulus  operator,.  a% b,  which  returns  the  remainder  when 

.  a  is  divided  by .  b. 

3.  Write  a  C  program  that  interactively  reads  the  three  coefficients  of  a  quadratic  equation and  compute  the  two  roots.  The  program  must  alert  if  there  is  no  real  root.  The  quadratic equation  is  given  by 

.  ax  2 +  bx +  c = 0 , 

and  the  two  roots  are  expressed  as 

√

− b ±  b 2 − 4 ac

.  x =

 . 

2 a

Note:  sqrt is  available  in  math.h.  You  need  to  compile  the  program  with  the -lm option,  i.e. 

$ gcc MyProgram.c -lm

4.  Write  a  C  program  to  numerically  compute  the  following  series: 

. 1 − 1 + 1 − 1 + 1 − · · ·  , 

3

5

7

9

As  this  series  is  known  to  be  convergent  to.  π/ 4, 6 approximate.  π  using  the  program.  Vary iteration  numbers.  Note  that  the  general  term, .  an,  is  expressed  as 6  We  start  with  the  geometric  series: 

1

. 

= 1 −  x 2 +  x 4 −  x 6 +  x 8 −  . . . 

1 +  x 2

Integrating  both  sides,  we  obtain
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 (−1 )n+1

.  an =

 , n = 1 ,  2 ,  3  . . . 

2 n − 1

2.6

Functions 

2.6.1

Definition  of  Functions  in  C 

The  concept  of  functions  in  C  is  important  as  a  C  program  is  essentially  composed  of  a  set of  functions. 

You  have  already  encountered  a  basic  example  of  a  C  function,  main(),  which  serves as  the  entry  point  of  every  C  program  and  is  always  executed  first.  However,  aside  from this  unique  behavior,  main() follows  the  same  syntax  as  any  other  functions  in  C.  This common  structure  includes: 

•  Declaration  of  the  return  type  (e.g.,  int for  main()) 

•  Listing  arguments  within  parentheses  (leave  blank  if  there  are  none,  e.g.  main()) 

•  Enclosing  all  statements  within  {  and  } 

•  Concluding  with  a  return statement,  which  typically  appears  as  the  last  line  in  the function. 

For  functions  that  do  not  return  a  value,  the  return  type  void is  used. 

Examples 

1.  The  following  program  demonstrates  the  use  of  the  void return  type.  The  user-defined function,  write(), 7 prints  "Hello World!" and  does  not  return  any  value  upon exit.  Therefore,  it  is  declared  as  void. 

#include <stdio.h> 

void write()

{

printf("Hello, World!\n"); 

}

.  arctan  x =  x −  x  3 +  x  5 −  x  7 +  x  9 −  . . . 

3

5

7

9

Substitute.  x = 1 into  the  series,  we  get 

 π

.  arctan 1 =

= 1 − 1 + 1 − 1 + 1 −  . . . 

4

3

5

7

9

. 

7  Surprisingly,  C  does  not  have  a  built-in  function  named  write(). 
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int main() 

{ 

write(); 

return 0; 

} 

The  output  is: 

$ gcc prog.c

$ ./a.out

Hello, World! 

Since  the  function  write() does  not  accept  any  parameters,  it  must  be  called  without any  arguments  in  the  main function. 

2.  The  following  program  defines  a  function,  cube(),  which  returns  the  cube  of  a  parameter,  x. 

#include <stdio.h> 

float cube(float x)

{

return x*x*x; 

}

int main()

{

float x; 

printf("Enter x = "); scanf("%f",&x); 

printf("The cube of x is %f.\n", cube(x)); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter x = 3

The cube of x is 27.000000. 

Upon  exit,  cube(x) returns.  x 3 with  x as  the  argument  passed  from  the  main function. 
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3.  The  following  program  computes  .  x y (.  x  to  the  power  of  .  y) 8 using  its  own  function, power(),  instead  of  the  pow() 

9 function  available  in.<math.h>. 

#include <stdio.h> 

#include <math.h> 

float power(float x, float y)

{

return exp(y * log(x)); 

}

int main()

{

float x,y; 

printf("Enter x and y separated by space = "); 

scanf("%f %f", &x, &y); 

if (x < 0)

{

printf("x must be positive !!\n"); 

return 0; 

}

printf("%f to power of exponent %f is %f.\n", x, y, power(x,y)); return 0; 

}

The  output  is: 

$ gcc prog.c -lm

$ ./a.out

Enter x and y separated by space = 2 4

2.000000 to power of exponent 4.000000 is 16.000000. 

$ ./a.out

Enter x and y separated by space = -2 4

x must be positive !! 

The  program  exits  if .  x  is  negative.  Otherwise,  it  computes .  x y  and  prints  its  value. 

8  If  .  z =  x y,  taking  the  natural  logarithm  of  both  sides  yields  .ln  z = ln  x y =  y  ln  x. Hence,  .  z =

 ey  ln  x . 

9  pow(x,y) in  math.h returns.  x y. 
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2.6.2

Locality  of  Variables  Within  a  Function 

Variables  used  within  a  function  are  local,  i.e.  they  do  not  retain  the  values  outside  the function.  In  the  following  program,  the  variable  name,  sum,  is  used  for  both  f() and main() yet  sum used  within  f() does  not  propagate  outside  the  function  f(). 

#include <stdio.h> 

int f(int n)

{

int i,sum = 0; 

for (i = 1; i <= n; i++) sum = sum + i; 

return sum; 

}

int main()

{

int i, sum = 0; 

for (i = 1; i <= 10; i++) sum = sum + i*i; 

printf("%d %d\n", sum, f(10)); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

385 55

The  printed  value  of  sum is  the  sum defined  in  main() even  though  a  variable  of  the same  name  is  returned  in  the  function,  f(). 

2.6.3

Recursivity  of  Functions 

C  functions  can  be  used  and  defined  recursively,  meaning  that  a  C  function  can  call  itself within  its  own  definition 10 Using  recursive  algorithms,  programs  can  be  written  compactly and  efficiently. 

10  In  older  languages  such  as  FORTRAN,  recursion  is  not  supported. 
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Examples 

1.  Fibonacci  numbers 

The  Fibonacci  numbers  [ 3], .  an,  are  defined  as  follows: 

.  an =  an−1 +  an−2 , 

 a 1 = 1 , a 2 = 1 . 

(2.5) 

Given.  a 1 = 1 and.  a 2 = 1,.  a 3 can  be  computed  as.  a 3 =  a 2 +  a 1 = 1 + 1 = 2.  Similarly, 

.  a 4 can  be  computed  as  .  a 4 =  a 3 +  a 2 = 2 + 1 = 3.  Starting  with  .  a 1 and  .  a 2,  .  an  for  any value  of .  n  can  be  computed  by  repeatedly  applying  Eq.  (2.5). 11

As  C  functions  can  be  defined  recursively,  coding  the  Fibonacci  number  is  straightforward as  shown  in  the  program  below: 

#include <stdio.h> 

int fibo(int n)

{

if (n == 1) return 1; 

if (n == 2) return 1; 

return fibo(n-1) + fibo(n-2); 

}

int main()

{

int i; 

printf("Enter n = "); scanf("%d", &i); 

printf("%d\n", fibo(i)); 

return 0; 

}

The  output  looks  like: 

$ gcc prog.c

$ ./a.out

Enter n = 12

144

The  program  simply  translates  Eq. (2.5)  into  the  definition  of  fibo(). 12

11  There

is

an

interesting

background

story

with

this

number. 

See 

www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat. 

html#Rabbits. 

12  The  explicit  formula  of  the  Fibonacci  sequence  is  given  by 



√  n



√  n

1

1 +

5

− 1 1 − 5

2

2

.  an =

√

 . 

5

. 
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2.  Compute .1 + 2 + 3 + 4 +  . . . +  n  using  a  recursive  algorithm. 

If  we  define 

. sum (n) ≡ 1 + 2 + 3 + 4 +  . . . +  n, 

the  following  relation  holds: 

. sum (n) = sum (n − 1 ) +  n, 

sum ( 0 ) = 0 . 

Using  this  recursive  property,  the  following  program  can  compute 

. 1 + 2 + 3 +  . . . +  n

without  using  a  for statement. 

#include <stdio.h> 

int sum_of_integers(int n)

{

if (n == 0) return 0; 

return n + sum_of_integers(n - 1); 

}

int main()

{

int n; 

printf("Enter n = "); 

scanf("%d", &n); 

printf("1 + 2 + .... + %d = %d \n", n, sum_of_integers(n)); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter n = 100

1+2+....+100 =5050

2.6.4

Random  Numbers, rand() 

Random  numbers  can  be  generated  using  the  rand() function  from  the  stdlib.h library. 

This  function  is  commonly  employed  in  numerical  simulations  to  model  various  experiments that  would  otherwise  be  difficult  or  impractical  to  perform.  The  following  program  prints random  numbers  10  times. 

44

2

Components of C Language

#include <stdio.h> 

#include <stdlib.h> 

int main() 

{ 

int i; 

for (i = 0; i < 10; i++)  printf("%d\n", rand()); 

printf("\nMAX = %d\n", RAND_MAX); 

return 0; 

} 

The  output  is: 

$ gcc prog.c

$ ./a.out

1804289383

846930886

1681692777

1714636915

1957747793

424238335

719885386

1649760492

596516649

1189641421

MAX = 2147483647

The  function,  rand(),  returns  an  integer  between  0  and  RAND_MAX (system  dependent) 13 which  is  defined  in  the  header  file,  stdlib.h. 14

If  floating  random  numbers  between  0  and  1.0  are  desired  instead  of  between  0  and RAND_MAX,  the  following  program  is  used:

#include <stdio.h> 

#include <stdlib.h> 

int main()

{

int i; 

for (i = 0; i < 10; i++)

printf("%f\n", 1.0 * rand() / RAND_MAX); 

return 0; 

}

13  2147483647  for  most  systems.  It  is  the  maximum  integer  value  handled  by  the  system. 

14  stdlib = standard  library. 
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The  output  is: 

$ gcc prog.c

$ ./a.out

0.840188

0.394383

0.783099

0.798440

0.911647

0.197551

0.335223

0.768230

0.277775

0.553970

Note  the  %f format  and  the  factor  of  1.0.  The  value  of  rand()/RAND_MAX alone returns  0  as  both  rand() and  RAND_MAX are  integers  and  the  result  is  a  truncated  integer. 

However,  the  same  numbers  are  output  again  and  again  each  time  the  program  is  run.  They are  all  predictive  and  not  true  random  numbers.  In  order  to  generate  a  different  sequence  of random  numbers  each  time  the  program  is  run, srand() 

15 available  in  stdlib.h must 

be  used  in  conjunction  with  rand(). The  srand() function  sets  its  argument  as  the  seed for  a  new  sequence  of  pseudo-random  integers  to  be  returned  by  rand().  These  sequences are  repeatable  by  calling  srand() with  the  same  seed  value.  If  no  seed  value  is  provided, the  rand() function  is  automatically  seeded  with  a  value  of  1. 

#include <stdio.h> 

#include <stdlib.h> 

int main()

{

int i; 

printf("Enter a seed integer = "); 

scanf("%d", &i); 

srand(i); 

printf("%d\n", rand()); 

return 0; 

}

The  output  looks  like:

$ gcc prog.c

$ ./a.out

Enter a seed integer = 10

1215069295

15  srand = seed  random. 
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In  the  program  above,  srand(i) takes  a  seed  number  i and  generates  a  random  number based  on  the  value  of  i.  The  issue  with  this  approach  is  that  if  the  same  seed  number  is given,  the  rand() function  returns  the  same  value. 

To  generate  a  different  seed  every  time,  the  time() function  defined  in  time.h can be  used.  The  function  time() with  the  argument  NULL returns  the  elapsed  time  since 00:00:00  GMT,  January  1, 1970, 16 measured  in  seconds. 

#include <stdio.h> 

#include <time.h> 

int main()

{

int i; 

printf("%d\n", time(NULL)); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

1729224502

At  the  time  of  writing,  1,729.224.502  s  have  passed  since  1/1/1960.  As  this  value  keeps increasing,  it  can  be  used  as  a  seed  number  for  srand().  The  following  program  generates a  different  random  number  every  time  it  is  called. 17

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

int main()

{

srand(time(NULL)); 

printf("%d\n", rand()); 

return 0; 

}

The  output  may  look  like:

16  This  is  the  birthday  of  UNIX! 

17  If  the  program  is  run  twice  within  1  s,  the  same  random  number  is  generated. 
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$ gcc prog.c; 

$ ./a.out 

1729224502 

(Wait a few seconds.) 

$ ./a.out 

1729224510 

Generating  Random  Numbers  in  Various  Ranges 

With  an  integer  random  number  generated  by  rand() and  MAX_RAND,  it  is  possible  to convert  this  number  to  any  desired  range,  whether  it  be  an  integer  range  or  a  floating-point number  range.  The  following  examples  illustrate  how  to  generate  random  numbers  withing various  ranges  using  rand(). 

1.  rand() returns  an  integer  between. 0 and  RAND_MAX. 

2.  1.0*rand()/RAND_MAX returns  a  floating  number  between. 0 and. 1. 

3.  5.0*rand()/RAND_MAX returns  a  floating  number  between. 0 and. 5. 

4.  10.0*rand()/RAND_MAX-5 returns  a  floating  number  between.−5 and. 5. 

5. rand()%7 

18 returns  an  integer  of  0,  1,  2,  3,  4,  5,  or  6. 

6.  rand()%7+10 returns  an  integer  of  10,  11,  12,  13,  14,  15,  or  16. 

Using  Random  Numbers  to  Do  Simulations  (Monte  Carlo  Method) 

Using  random  numbers  to  conduct  numerical  simulations  is  called  the  Monte  Carlo  method 

[ 4]. 19

As  an  example,  consider  the  following  integral: 

1 

 π

. 

1 −  x 2 dx =

 . 

(2.6) 

0

4

This  integration  represents  the  shaded  area  in  Fig. 2.2.  As  it  is  a  quarter  of  the  whole  unit circle,  its  area  is .  π/ 4. 20

Instead  of  carrying  out  the  integral  directly,  the  Monte  Carlo  method  can  be  used  to approximate  this  area,  providing  an  approximate  value  of.  π.  To  understand  how  this  works, 18  a%b returns  the  remainder  of  a/b. 

19  Monte  Carlo  is  a  city  in  Monaco  where  one  of  the  major  businesses  is  casinos. 

20  Mathematically,  one  can  integrate  the  function  directly  as 





1 





1 

1

 π

. 

1 −  x 2 dx =

1 −  x 2  x + sin−1 (x)

=  . 

0

2

0

4

. 

[image: Image 8]
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Fig.  2.2  Monte  Carlo  method 

for  numerical  integration 

consider  a  pair  of  random  numbers,.  x, and.  y,  each  ranging  between  0  and  1.  These  numbers can  be  identified  as  a  point,  .  (x, y),  inside  the  square  defined  by  . { (x, y),  0 ≤  x ≤ 1 ,  0 ≤

 y ≤ 1} as  shown in Fig.  2.2. If  .  (x, y)  satisfies  .  x 2 +  y 2  <  1,  the  point,  .  (x, y),  is  inside  the shaded  area.  Otherwise,.  (x, y)  is  outside  the  shaded  area.  Generate  a  pair  of  random  numbers between  0  and  1  for  .  N  iterations.  For  each  iteration,  if  .  x 2 +  y 2  <  1 is  satisfied,  increment the  counter .  i  by  1.  Otherwise,  continue  to  the  next  iteration.  At  the  end  of .  N  iterations,  the ratio  .  i /N  should  approximate  the  ratio  of  the  shaded  area  to  the  area  of  the  square.  As  .  N

increases,  this  ratio  is  expected  to  converge  to.  π/ 4.  This  process  can  be  implemented  by  the following  C  program: 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <time.h> 

#define PI 3.141592

int main()

{

float x, y; 

int i, count = 0; 

int n; 

printf("Enter iteration number = ");scanf("%d", &n); srand(time(NULL)); 

for (i = 0; i < n; i++)

{

x = 1.0*rand()/RAND_MAX; 

y = 1.0*rand()/RAND_MAX; 

if (x*x + y*y < 1.0) count = count + 1; 

}

printf("True value = %f\n", PI/4); 

printf("Appx value = %f\n", 1.0*count/n); 

return 0; 

}

The  output  looks  like:

[image: Image 9]
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$ gcc prog.c -lm 

$ ./a.out 

Enter iteration number = 100 

True value = 0.785398 

Appx value = 0.790000 

$ ./a.out 

Enter iteration number = 1000 

True value = 0.785398 

Appx value = 0.814000 

$ ./a.out 

Enter iteration number = 100000 

True value = 0.785398 

Appx value = 0.787400 

As  observed  in  the  output  above,  the  convergence  achieved  by  the  Monte  Carlo  method is,  at  best,  mediocre  for  one-dimensional  integrals.  Therefore,  it  should  be  employed  only  as a  last  resort  for  such  cases.  However,  the  Monte  Carlo  method  provides  a  quick  and  efficient way  to  approximate  integrals  in  two  or  more  dimensions. 

2.6.5

Exercise 

1.  A  sequence .  an  is  defined  by  the  following  rule: 

.  an+2 = −2 an+1 + 3 an , 

 a 0 = 2 , a 1 = −1 . 

Write  a  C  program  to  compute .  a 17. 

2.  (a)  Write  a  function,  int factorial(int n),  which  returns.  n! (the  factorial  of.  n, i.e. .1 × 2 × 3 ×  . . . ×  n)  using  the  recursive  rule. 

(b)  Using  int factorial(int n) above,  write  a  program  to  compute 

Fig.  2.3  Monte  Carlo  method 

for  numerical  integration  for 

Problem  3
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. 1 + 1 + 1 +  . . . + 1  . 

1! 

2! 

11! 

3.  Similar  to  the  example  above  for  the  quarter  area  of  the  circle,  use  the  Monte  Carlo method  to  numerically  integrate  the  following  integral  as  shown  in  Fig. 2.3: 

1

1

. 

 d x. 

0

1 +  x 2

Vary  the  number  of  iterations  (10,  100,  1,000)  and  estimate  the  appropriate  number  of iterations  needed  to  achieve  good  accuracy.  Note  that  the  exact  value  of  the  integral  is 

.  π/ 4,  which  can  also  be  used  to  approximate  the  value  of .  π. 

4.  Using  the  Monte  Carlo  method,  estimate  the  volume  of  the  unit  sphere  defined  by 

.  x  2 +  y 2 +  z 2 ≤ 1 . 

Note  that  the  above  volume  is  equivalent  to  1/8  of  the  total  sphere. 

5.  Using  the  Taylor  series  expansion  for .cos (x)  expressed  as 

. cos  (x ) = 1 −  x  2 +  x  4 −  x  6 +  . . . 

(2.7) 

2! 

4! 

6! 

create  your  own  implementation  of .cos (x)  and  demonstrate  your  program  by  making  a table  similar  to  the  following: 

.  x

mycos(x)

cos(x) 

0.0

1.000

1.000 

0.1

1.101

1.105 

0.2

1.308

1.221 

…

…

… 

1.0

1.69

1.781 

where  mycos(x) is  the  result  from  your  program  and.cos  (x)  is  the  math  function  from math.h. 

Note: 

1.  The  values  above  are  illustrative  and  not  accurate. 

2.  Equation  (2.7)  can  also  be  written  as 

∞

 (−1 )i x 2 i

.  cos (x ) =

 , 

 ( 2 i)! 

 i =0

3.  Use  the  first  10  terms  of  the  series  for  your  calculations. 

2.7

Arrays

51

Template: 

#include <stdio.h> 

#include <math.h> 

int factorial(int n)

{

(your code here)

}

float mycos(float x)

{

float sum = 0; int i; 

for (i = 0; i <= 10; i++) sum = sum + (your code here); 

return sum; 

}

int main()

{

float ...; 

int i = 1; /* counter */

(for i = 1; i< .......) printf....... 

return 0; 

}

2.7

Arrays 

In  C  programming,  vectors  and  matrices  in  linear  algebra  can  be  implemented  using  arrays. 

An  array  in  C  allows  the  representation  of  multiple  elements  under  a  single  variable  name. 

This  section  introduces  the  fundamental  concepts  of  arrays.  Arrays  are  closely  related  to pointers  in  C,  which  will  be  discussed  in  greater  detail  in  Sect. 2.9. 

2.7.1

Definition  of  Arrays 

An  array  is  a  variable  that  can  represent  multiple  elements,  such  as  numbers  and  characters. 

Arrays  can  be  declared  similar  to  other  variables  as  follows:

#include <stdio.h> 

int main()

{

float a[3]; 

a[0] = 1.0; a[1] = 2.0; a[2] = 5.0; 

(.......)

return 0; 

}
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The  program  above  defines  an  array,  a,  which  represents  three  elements.  The  values, 1.0,  2.0  and  5.0,  are  assigned  to  the  first,  second  and  third  elements  of  a,  respectively.  Note that  the  index  in  arrays  begins  at  . 0 rather  than  . 1 and  ends  at  .  n − 1, where .  n  is  the  number of  elements.  This  can  cause  some  confusion  when  arrays  are  used  to  represent  matrices  or vectors  in  linear  algebra,  as  indices  in  linear  algebra  typically  begin  at  . 1.  Therefore,  care must  be  taken  when  manipulating  vector  or  matrix  indices. 

You  can  also  initialize  arrays  at  the  time  of  declaration  as  follows: 

#include <stdio.h> 

int main()

{

float a[3] = {1.0, 2.0, 3.0}; 

(......)

return 0; 

}

or  simply, 

#include <stdio.h> 

int main()

{

float a[] = {1.0, 2.0, 3.0}; 

(......)

return 0; 

}

i.e.  if  an  array  is  initialized  at  the  time  of  declaration,  its  dimension  can  be  omitted,  as  the number  of  elements  is  automatically  determined. 

The  following  program  computes  the  sum  of  all  the  elements  in  an  array. 

#include <stdio.h> 

#define N 5

int main()

{

int i; 

float a[N] = {2.0, -15.0, 12.0, -5.4, 1.9}; 

float sum = 0.0; 

for (i = 0; i < N; i++) sum = sum + a[i]; 

printf("The sum is = %f.\n", sum); 

return 0; 

}
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The  output  is: 

$ gcc prog.c

$ ./a.out

The sum is = -4.500000. 

2.7.2

Multi-dimensional  Arrays 

Arrays  can  be  nested,  i.e.  they  can  take  more  than  1  indices.  Nested  arrays  (multi-dimensional arrays)  can  represent  matrices  in  linear  algebra.  For  example,  the  components  of  a  . 2 × 5

matrix,  a,  can  be  represented  in  C  as  follows: 





 a[0][0]  a[0][1]  a[0][2]  a[0][3]  a[0][4]

. a =

 . 

 a[1][0]  a[1][1]  a[1][2]  a[1][3]  a[1][4]

Note  that  the  index  begins  with  0,  not  1. 

The  following  program  defines  a  2 .× 5  matrix,  mat,  given  as 





1 .  0 ,  2 .  0 ,  3 .  0 ,  4 .  0 ,  5 .  0

. mat =

 , 

6 .  0 ,  7 .  0 ,  8 .  0 ,  9 .  0 ,  10 .  0

and  prints  all  the  elements  using  double  indices,  i and  j. 

#include <stdio.h> 

#define COL 5

#define ROW 2

int main()

{

int i,j; 

float mat[ROW][COL] = {{1.0 ,2.0 ,3.0, 4.0 ,5.0},{6.0, 7.0, 

8.0, 9.0, 10.0}}; 

for (i = 0; i < ROW; i++)

{

for (j = 0; j < COL; j++) printf("%f ", 

mat[i][j]); printf("\n"); 

}

return 0; 

}

The  output  is:
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$ gcc prog.c 

$ ./a.out 

1.000000 2.000000 3.000000 4.000000 5.000000 

6.000000 7.000000 8.000000 9.000000 10.000000 

2.7.3

Examples 

1.  Standard  deviation  and  variance 

In  statistics,  the  average  of  a  sequence, .{ x 1 , x 2 , x 3 , . . . xn},  is  the  arithmetic  mean  of  its components,  defined  as 

 N



¯

.  X ≡ 1

 xi . 

 N i=1

The  variance  of  the  same  sequence  is  defined  as 

 N



.  s 2 ≡

1

 (

 x

 xi − ¯

 X ) 2 . 

(2.8) 

 N − 1  i=1

Note  the  factor,.  N − 1,  instead  of.  N  in  Eq. (2.8). This  adjustment  is  a  mathematical  necessity  to  account  for  sample  variability.  The  standard  deviation, .  sx ,  having  the  dimension as .  xi ,  is  defined  as 







 N

1



.  sx ≡

 (xi − ¯ X) 2 . 

 N − 1  i=1

The  following  program  computes  the  average  and  the  standard  deviation  of  10  data points. 

#include <stdio.h> 

#include <math.h> 

#define N 10

int main()

{ float a[N] = {0.974742, 0.0982212, 0.578671, 0.717988, 0.881543, 

0.0771773, 0.910513,0.576627, 0.506879, 0.629856}; 

float sum = 0, average, var = 0, sd; 

int i; 

for (i = 0; i < N; i++) sum = sum + a[i]; 

average = sum/N; 

for (i = 0; i < N; i++) var = var + pow(a[i] - average, 2); 

sd = sqrt((var)/(N - 1.0)); 

printf("Average = %f S.D.= %f\n", average, sd); 

return 0; 

}

The  output  is:

[image: Image 10]
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Fig.  2.4  General  regression 

analysis 

$ gcc prog.c -lm 

$ ./a.out 

Average = 0.595222 S.D.= 0.310107 

2.  Regression  analysis  (curve  fitting) 

As  another  example  of  array  usage,  regression  analysis,  which  determines  the  best  fit curve  for  given  experimental  data,  is  introduced.  The  following  table  presents  .  N  measured  data  points  as  shown  in  Fig. 2.4. 

X

.  x 1

.  x 2

.  x 3

…

.  x N

Y

.  y 1

.  y 2

.  y 3

…

.  yN

The  goal  is  to  find  the  best  fit  line  that  represents  the  data  points  in  the  format: 

.  y =  ax +  b, 

(2.9) 

where  .  a  is  the  slope  and  .  b  is  the  y-intercept.  The  parameters  .  a  and  .  b  are  chosen  to minimize  the  error.  The  error  is  defined  as  the  difference  between  the  measured  and predicted  values.  Since  this  difference  can  be  either  positive  or  negative,  it  is  squared  to ensure  it  is  positive.  Thus,  the  total  error, 21 .  E 2,  is  the  sum  of  the  squared  differences  at each  point  and  is  defined  as: 

 N



.  E  2 ≡

 (axi +  b −  yi) 2 . 

(2.10) 

 i =1

To  minimize  .  E 2,  partially  differentiate  .  E 2 with  respect  to  both  .  a  and  .  b,  and  set  the derivatives  to  zero 22:

21  The  dimension  of.  E 2 is  the  same  as.  a 2 and.  b 2,  hence  it  is  denoted  as.  E 2. 

22  This  method  is  known  as  the  least  squares  method. 

56

2

Components of C Language

 ∂E 2

 ∂E 2

. 

= 0 , 

= 0 . 

 ∂a

 ∂b

This  yields  a  set  of  two  simultaneous  equations  for .  a  and .  b  as N



. 2

 (axi +  b −  yi)xi = 0 , 

 i =1

 N



2

 (axi +  b −  yi)(+1 ) = 0 , 

 i =1

These  equations  can  be  rewritten  as: 

 N



 N



 N



.  (

 x 2 )

 i a +  (

 xi )b =

 xi yi , 

 i =1

 i =1

 i =1

 N



 N



 N



 (

 xi )a +  (

1 )b =

 yi . 

 i =1

 i =1

 i =1

Solving  these  equations  using  Cramer’s  rule,  we  obtain: 







 N

 N





 x

 x

 i =1  i yi

 i =1  i







 N



 y



 i =1  i

 N

.  a =  



 , 

 N

 N





 x 2

 x

 i =1



 i

 i =1  i





 N



 x



 i =1  i

 N







 N

 N





 x 2

 x

 i =1  i

 i =1  i yi









 N



 x

 N

 y 

 i =1  i

 i =1  i

 b = 



 . 

 N

 N





 x 2

 x

 i =1



 i

 i =1  i





 N



 x



 i =1  i

 N

The  following  program  implements  this  calculation  using  10  data  points:

#include <stdio.h> 

#define N 10

int main()

{

float x[N] = {1,2,3,4,5,6,7,8,9,10}, 

y[N]={-3, 2.9, 0.5, 3.0, 2.6, 5.2, 4.9, 4.5, 6.1, 7.2}; 

float xysum = 0.0, xsum = 0.0, ysum = 0.0, x2sum = 0.0; 

float a, b, det; 

int i; 

for (i = 0; i< N; i++)
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{ 

xsum = xsum + x[i]; 

ysum = ysum + y[i]; 

xysum = xysum + x[i]*y[i]; 

x2sum = x2sum + x[i]*x[i]; 

} 

det = x2sum * N - xsum * xsum; 

a = (xysum * N - xsum * ysum)/det; 

b = (x2sum * ysum - xysum * xsum)/det; 

printf("The regression line is %f x + %f.\n", a, b); 

return 0; 

} 

The  output  of  the  program  is: 

$ gcc prog.c

$ ./a.out

The regression line is 0.863636 x + -1.359998. 

Regression  analysis  can  be  applied  to  a  curved  line,  such  as .  y =  ax 2 +  bx +  c. 

2.7.4

Exercise 

1.  Birthday  Paradox 

What  is  the  likelihood  that  two  individuals  in  a  group  of  .  N  people  share  the  same 

birthday? 23 Use  the  Monte  Carlo  method  to  estimate  this  probability. 

Suggested  Approach: 

(a)  Prepare  an  integer  array,  a[N],  to  hold  the  birthday  dates  for  N individuals. 

(b)  Generate  a  random  number  between  1  and  365  for  each  element  of  a[]. 24

(c)  Compare  a[0] with  the  other  elements  in  a[].  If  a  match  is  found,  exit  the  loop, increment  the  counter  by  1,  and  proceed  to  step  (b)  (i.e.,  start  the  next  round  of  the simulation). 

23  This  problem  is  known  as  the  birthday  paradox  [ 5]  and  can  be  exactly  solved  using  probability theory.  Mathematically,  the  probability  is  given  by  .  p(N ) = 1 −

365! 

.  N = 23, this  

365 N ( 365− N )! . For  

probability  exceeds  50%. 

24  Use  the  modulus  operator  %  for  this  purpose.  For  example,  300%7 returns  the  remainder  of  300 

divided  by  7,  which  is  6. 

58

2

Components of C Language

(d)  Compare  a[1] with  the  remaining  elements  in  a[].  If  a  match  is  found,  exit  the loop,  increment  the  counter  by  1,  and  proceed  to  step  (b)  (i.e.,  start  the  next  round  of the  simulation). 

(e)  Continue  this  process  for  all  elements  in  a[]. 

(f)  After  completing .  n  simulations,  compute  the  probability  as  counter/n. 

To  exit  from  the  loop,  use  the  goto statement  as 

for (i = 0; i< N - 1; i++) for (j = i + 1; j < N; j++)

if (a[i] == a[j])

{count++; goto ExitLoop;}

ExitLoop:; 

..... 

Try .  n = 100 ,  1000 ,  100000. 

2.  Roll  a  die  10,  1,000,  and  10,000  times,  and  compute  both  the  average  and  the  standard deviation  for  each  case. 

Template: 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

#include <math.h> 

int main()

{

int i, a[10000]; 

float sum = 0, avg, std; 

srand(time(NULL)); 

for (i = 0; i < 10000; i++) a[i] =....; 

for (i = 0; i < 10000; i++) sum+= ....; 

...................; 

return 0; 

}

3.  If  the  experimental  data,  as  shown  in  Fig. 2.5, exhibit  a  trend  suggesting  a  curved  relation-ship,  it  is  more  appropriate  to  model  the  data  using  a  second-order  polynomial  expressed as 

.  y =  ax  2 +  b, 

(2.11) 

rather  than  the  linear  model  of  Eq. (2.9). 

[image: Image 11]
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Fig.  2.5  Curve  fitting  by 

.  y =  ax  2 +  b

Following  the  linear  regression  analysis,  derive  the  expressions  for.  a  and.  b,  and  calculate their  values  for  the  following  given  data: 

x[N]={1,2,3,4,5,6,7,8,9,10}; 

y[N]={4.19, 8.24, 13.53, 22.12, 32.30, 44.42, 59.08,76.35, 96.29, 117.28}; 2.8

File  Handling 

In  this  section,  we  discuss  how  C  programs  can  interact  with  external  files,  covering  the necessary  functions  and  methods  to  read  from  and  write  to  files. 

2.8.1

I/O  Redirection  (Standard  Input/Output  Redirection) 

UNIX  shells  (such  as  csh,  tcsh,  and  bash  on  most  UNIX  platforms)  and  the  DOS  command prompt  support  I/O  redirection. 25 Instead  of  entering  data  from  the  keyboard  and  displaying the  output  on  the  screen,  it  is  possible  to  redirect  input  and  output  to  or  from  other  devices, such  as  files,  printers,  etc.  Table  2.5  summarizes  the  available  options. 

When  the  command  a.out is  entered  alone  from  the  keyboard,  all  the  output  is  displayed on  the  screen.  However,  if  the  command  .a.out > result.dat is  used,  the  output  is redirected  to  an  external  file  named  result.dat,  and  nothing  is  shown  on  the  screen.  The contents  of  result.dat can  be  viewed  using  the  more command. 

$ gcc prog.c

$ ./a.out > result.dat

$ more result.dat

25  Note  that  this  feature  is  dependent  on  the  operating  system  and  is  not  a  property  of  the  C  language. 
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Table  2.5  I/O  redirections 

Notion

Meaning 

$  program. > filename

Output  to  file 

$  program. » filename

Append  output  to  file 

$  program. < filename

Get  input  from  file 

If  the  program  requires  input  from  an  existing  external  file  and  the  output  needs  to  be saved  to  another  external  file,  both  input  and  output  redirections  can  be  specified  on  the same  command  line  as  follows: 

$ gcc prog.c

$ ./a.out < data.dat > result.dat

$ more result.dat

The  file  data.dat contains  the  necessary  input  data  for  the  program. 

The  following  command,  when  executed  in  a  DOS  window,  creates  a  file  named filelist.dat that  lists  all  the  files  in  the  current  directory. 26

c:\dir > filelist.dat

2.8.2

File  Handling  (from  Within  a  Program) 

I/O  redirection  is  dependent  on  the  operating  system  (e.g.,  UNIX  and  DOS)  and  is  only available  when  the  C  program  is  run  from  a  command  line.  It  is  not  possible  to  use  I/O 

redirection  when  the  C  program  is  executed  within  a  graphical  user  interface  (GUI). 

To  write  to  or  read  from  an  external  file  within  a  C  program,  the  file  must  first  be  opened and  then  closed  after  completing  the  necessary  operations. 

To  open  and  close  a  file,  the  functions  fopen() and  fclose() must  be  used  in conjunction  with  the  special  keyword FILE (note  the  uppercase), 27 as shown in the following syntax.  The  file  variable  fp is  a  pointer  (discussed  in  Sect. 2.9). 

26  In  the  Windows  system,  the  name  prn cannot  be  used  for  an  external  file,  as  it  is  reserved  for  a printer  device. 

27  This  is  a  FILE  pointer  that  keeps  track  of  the  file’s  memory  location. 
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#include <stdio.h> 

int main() 

{ 

FILE *fp; 

fp = fopen("filename","w"); 

/* 

Write something to fp. 

*/ 

fclose(fp); 

return 0; 

} 

The  function  fopen() accepts  a (append),  w (write),  or  r (read)  as  possible  arguments. 

The  following  program  opens  an  external  file  named  data.dat for  writing  and  writes  the string  “Hello, World!” to the  file. 

#include <stdio.h> 

int main()

{

FILE *fp; 

fp = fopen("data.dat","w"); 

fprintf(fp, "Hello, World!\n"); 

fclose(fp); 

return 0; 

}

The  following  program  reads  three  floating-point  numbers  separated  by  spaces  from  an external  file  named  data.dat and  prints  their  values  to  the  screen. 

#include <stdio.h> 

int main()

{

FILE *fp; float a,b,c; 

fp = fopen("data.dat", "r"); 

fscanf(fp,"%f %f %f", &a, &b, &c); 

printf("%f %f %f", a, b, c); 

fclose(fp); 

return 0; 

}
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Multiple  files  can  be  opened  for  reading  or  writing  as  follows: 

#include <stdio.h> 

int main()

{

FILE *fp1, *fp2; 

float a, b, c; 

fp1 = fopen("data1.dat","w"); 

fp2 = fopen("data2.dat","w"); 

fprintf(fp1,"This is the first file.\n"); 

fprintf(fp2,"This is the second file.\n"); 

fclose(fp1); fclose(fp2); 

return 0; 

}

2.9

Pointers 

The  concept  of  pointers  in  C  is  often  considered  one  of  the  most  challenging  topics  for learners.  While  pointers  are  a  fundamental  feature  in  both  C  and  C++,  they  are  not  present in  many  other  programming  languages. 28 When  pointers  are  extensively  used,  your  code will  exhibit  characteristics  typical  of  C  programming. 

Pointers  are  primarily  necessary  in  specific  scenarios  such  as  (1)  working  on  arrays,  (2) handling  matrices  and  vectors  in  linear  algebra  and  (3)  implementing  functions  that  require variables  to  be  passed  by  reference,  which  will  be  discussed  in  this  section. 

However,  understanding  pointers  requires  learning  only  two  new  operators:  & (address-of)  and  * (dereference). 

2.9.1

Address  Operator  & and  Dereferencing  Operator  * 

Pointers  are  closely  tied  to  the  underlying  hardware  of  the  computer  executing  a  C  program. 

When  a  C  compiler  processes  source  code,  it  maps  each  defined  variable  to  a  specific  location in  RAM  that  stores  the  variable’s  value.  For  example,  consider  the  following  program:

#include <stdio.h> 

int main()

{

float a = 20.0, b = 50.0; 

float *pa, *pb; 

28  Languages  such  as  Java,  Python,  and  JavaScript  avoid  direct  pointers  for  safety. 
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Table  2.6  Memory  map  on  a  fictitious  machine 

Variable  name

Absolute  memory  address

Content 

.  . . . 

100

.  . . . 

.  . . . 

101

.  . . . 

a

102

20.0 

.  . . . 

.  . . . 

.  . . . 

b

150

50.0 

.  . . . 

151

.  . . . 

.  . . . 

.  . . . 

.  . . . 

pa

200

102 

.  . . . 

.  . . . 

.  . . . 

pb

220

150 

pa = &a; pb = &b; 

return 0; 

} 

When  the  compiler  processes  the  program,  it  generates  a  memory  map  similar  to  the one shown in Table  2.6. Note  that  this  representation  is  based  on  a  hypothetical  machine for  illustrative  purposes.  In  this  hypothetical  machine,  the  variable  a is  mapped  to  memory location  102 in  RAM,  which  holds  the  value  20.0.  Similarly,  the  variable  b is  mapped  to memory  location  150,  which  holds  the  value  50.0. 

To  determine  the  memory  address  of  a  variable,  you  can  use  the  & (ampersand)  operator, also  known  as  the  address-of  or  referencing  operator.  For  instance,  in  the  example  above,  a represents  the  value  20.0,  while  &a represents  the  memory  address  102. 

Run  the  following  program: 

#include <stdio.h> 

int main()

{

int a = 10; 

printf("Address of a = %d.\n", &a); 

return 0; 

}

The  compiler  generates  a  warning,  and  the  output  from  a.out is  incorrect,  displaying a  negative  value. 
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$ gcc prog.c 

prog.c: In function ‘main’: 

prog.c:5:10: warning: format ‘%d’ expects argument of type ‘int’, 

but argument 2 has type ‘int *’ [-Wformat=] 

printf("Address of a=%d.\n", &a); 

ˆ 

$ ./a.out 

Address of a = -1074704200. 

This  issue  arises  because  &a holds  the  address  of  a  memory  location,  which  may  exceed the  maximum  integer  value  that  the  compiler  can  handle  (2147483647). 

To  display  a  memory  address  correctly  in  hexadecimal  format,  use  the  %p format  specifier instead  of  %d. 29 Update  the  printf() function  in  the  previous  code  by  replacing  %d with 

%p.  The  output  will  be  machine-specific  but  will  appear  similar  to  the  following: $ gcc prog.c

$ ./a.out

Address of a = 0xbfa1e9a8. 

Note  that  a  number  prefixed  with  0x is  interpreted  as  a  hexadecimal  value.  Similarly,  oX 

indicates  an  octal  format. 

Compare  the  following  two  programs  side  by  side,  using  an  array  a[3]. 

#include <stdio.h> 

int main()

#include <stdio.h> 

{

int main()

int a[] = {100, 2, -56}; 

{

printf("%p\n", &a[0]); 

double a[] = {100, 2, -56}; 

printf("%p\n", &a[1]); 

printf("%p\n", &a[0]); 

printf("%p\n", &a[2]); 

printf("%p\n", &a[1]); 

return 0; 

printf("%p\n", &a[2]); 

}

return 0; 

}

The  output  from  the  two  programs  may  vary  depending  on  the  machine.  An  example  of the  output  is  shown  below:

$ gcc prog1.c

$ ./a.out

$ gcc prog2.c

0xbfc76660

$ ./a.out

0xbfc76664

0xbf988c50

0xbfc76668

0xbf988c58

0xbf988c60

29  In  hexadecimal  format,  numbers  are  represented  using  the  digits  0-9  and  the  letters  a-f. 
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In  the  first  (left)  program,  the  array  a[] is  declared  as  an  integer  array,  while  in  the second  (right)  program,  a[] is  declared  as  a  double-precision  array. 

In  the  output  from  the  first  (left)  program,  the  addresses  of  adjacent  elements  are  separated by  4  bytes,  indicating  that  the  C  compiler  stores  each  integer  (int)  using  4  bytes. 

On  the  other  hand,  in  the  output  from  the  second  (right)  program,  the  addresses  are separated  by  8  bytes,  which  implies  that  the  C  compiler  stores  each  double-precision  number (double)  using  8  bytes. 

2.9.2

Properties  of  Pointers 

A  pointer  is  a  variable  just  like  a or  b above.  The  key  difference  is  that  it  stores  the  “address of  another  variable.”  Therefore,  if  pa is  a  pointer,  the  content  of  pa is  not  a  regular  number such  as  20.0  or  50.0,  but  rather  a  large  value  such  as  0xbf988c50 as  shown  in  the  examples above. 

To  declare  a  pointer  variable,  you  must  use  the  same  syntax  as  for  any  regular  variable, with  the  addition  of  an  asterisk  (*)  preceding  the  variable  name.  For  example: 

#include <stdio.h> 

int main()

{

float a = 20.0; 

float *pa; 

pa=&a; 

printf("%p\n", pa); 

printf("%p\n", &a); 

return 0; 

}

The  output  may  vary  for  each  machine: 

$ gcc prog.c

$ ./a.out

0xbfb0f214

0xbfb0f214

In  the  program  above,  float *pa declares  that  pa is  a  pointer  pointing  to  a  float variable.  It  is  important  to  note  that  a  pointer  itself  always  holds  a  large  integer  value representing  a  memory  address.  Thus,  the  type  of  a  pointer  (such  as  float in  the  example above)  indicates  the  type  of  the  variable  the  pointer  pa refers  to.  The  statement  pa=&a; assigns  the  address  of  a to  pa. 
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At  times,  you  may  want  to  examine  the  value  that  the  pointer  actually  refers  to,  i.e.,  the content  of  the  variable  pointed  to  by  the  pointer.  Consider  the  following  program: 

#include <stdio.h> 

int main()

{

float a = 20.0; 

float *pa; 

pa=&a; 

printf("%f\n", *pa); 

printf("%f\n", a); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

20.000000

20.000000

In  the  program  above,  the  asterisk  (*),  known  as  the  de-referencing  operator,  is  used before  a  pointer  variable.  It  allows  you  to  access  the  value  stored  in  the  memory  location  to which  the  pointer  points.  Thus,  if  pa is  a  pointer  to  a  floating-point  variable  a, using  a and 

*pa within  the  program  is  equivalent. 

This  approach  enables  you  to  modify  the  content  of  a without  directly  referencing  a itself. 

Pointers  can  be  incremented  or  decremented  like  any  other  variables.  The  key  difference is  that  the  amount  by  which  a  pointer  is  incremented  depends  on  the  type  of  the  variable  it points  to.  For  example: 

#include <stdio.h> 

int main()

{

float

a[3] = {1.0, 2.0, 3.0}, *pa = &a[0]; 

double b[3] = {1.2345670, 2.009876555, 3.14159265}, *pb = &b[0]; 

printf("float

%15p%15p%15p\n", pa, pa + 1, pa + 2); 

printf("double %15p%15p%15p\n", pb, pb + 1, pb + 2); 

return 0; 

}

The  output  may  vary  depending  on  the  machine:
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$ gcc prog.c 

$ ./a.out 

float

0xbf8135e4 

0xbf8135e8 

0xbf8135ec 

double 

0xbf8135f0 

0xbf8135f8 

0xbf813600 

In  the  program  above,  a  double-precision  variable  occupies  more  memory  space  (8  bytes) compared  to  a  single-precision  variable  (4  bytes).  Therefore,  incrementing  the  double-precision  pointer,  pb,  advances  the  memory  location  by  8  bytes,  whereas  incrementing the  single-precision  pointer,  pa,  advances  the  memory  location  by  4  bytes,  even  though  the increment  for  both  pointers  is  “1.” 

The  C  language  utilizes  pointers  extensively  for  the  following  reasons: 

•  Pointers  are  the  only  way  to  modify  the  contents  of  arguments  in  a  function  call. 

•  Pointers  allow  direct  control  of  computer  hardware. 

•  Matrices  and  vectors  in  linear  algebra  can  be  represented  using  pointers. 

2.9.3

Function  Arguments  and  Pointers 

One  use  of  pointers  is  to  modify  the  content  of  a  variable  (parameter)  passed  through  a function  call.  For  example,  suppose  you  want  to  write  a  function, tentimes(),  that  accepts a  variable,  a,  as  a  parameter  and  multiplies  a by  10.  The  program  might  look  like  this: 

#include <stdio.h> 

void tentimes(float a)

{

a = 10.0 * a; 

}

int main()

{

float b = 20; 

tentimes(b); 

printf(" b = %f\n", b); 

return 0; 

}

The  output  is:

$ gcc prog.c

$ ./a.out

b = 20.000000
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Unfortunately,  this  program  does  not  work  as  intended.  The  content  of  b remains unchanged  despite  the  statement  a = 10.0*a in  the  definition  of  tentimes(). 

There  is  nothing  inherently  wrong  with  this  program;  it  operates  as  intended  according to  how  function  calls  work  in  C. 

When  a  function  is  called  with  an  argument  (e.g.,  tentimes(b)),  a  copy  of  the  argument’s  value  (i.e.,  b)  is  made  and  passed  to  the  function.  As  a  result,  the  original  argument variable  b remains  unaltered. 

The  function  tentimes() only  has  access  to  the  copied  value  of  the  parameter  (e.g., 20)  and  does  not  interact  with  the  variable  b itself.  As  a  result,  modifying  the  argument’s value  within  the  function  does  not  affect  the  original  variable. 

This  method  of  passing  parameters  in  C  functions  is  known  as  the   call  by  value   method. 

One  solution  is  to  use  pointers.  Instead  of  passing  a  copy  of  the  variable’s  value  to  the function,  you  can  pass  the  address  of  the  variable.  This  allows  the  function  to  access  the memory  location  where  the  variable  is  stored  and  modify  its  content  directly.  This  method is  known  as   call  by  reference.  The  program  can  now  be  modified  as  follows: 

#include <stdio.h> 

void tentimes(float *a)

{

*a = 10.0**a; 

}

int main()

{

float b = 20; 

tentimes(&b); 

printf(" b = %f\n", b); 

return 0; 

}

The  output  of  this  program  is: 

$ gcc prog.c

$ ./a.out

b = 200.000000

The  output  is  as  expected.  Note  that  the  variable  a is  declared  as  a  pointer  (*a),  and instead  of  passing  b,  the  address  of  b (&b)  is  passed  to  the  function  tentimes(). 

Within  the  function  tentimes(),  *a represents  the  value  of  the  variable  pointed  to  by a. 30 To  illustrate  this  concept,  the  following  program  features  a  function,  swap(), which 30  10.0**a computes  the  product  of  10.0  and  the  value  pointed  to  by  a, which  is  *a. 
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takes  two  pointers  as  arguments  and  exchanges  the  values  of  the  variables  pointed  to  by these  pointers. 

#include <stdio.h> 

void swap(float *pa, float *pb)

{

float tmp; 

tmp = *pa; 

*pa = *pb; 

*pb = tmp; 

}

int main()

{

float a = 10.0, b = 50.0; 

printf("Old a = %f and old b = %f\n",a,b); 

swap(&a,&b); 

printf("New a = %f and new b = %f\n", a,b); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Old a = 10.000000 and old b = 50.000000

New a = 50.000000 and new b = 10.000000

2.9.4

Pointers  and  Arrays 

Matrices  and  vectors  in  linear  algebra  are  closely  associated  with  the  use  of  pointers.  When an  array,  a[3],  is  declared  as

#include <stdio.h> 

int main()

{

float a[3] = {1.0, 2.0, 3.0}; 

return 0; 

}
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the  C  compiler  interprets  a as  a  pointer  and  allocates  the  corresponding  memory  space.  In the  program  above,  the  array  a acts  as  a  pointer  to  the  0-th  element  of  the  array,  a[0], while  a[0],  a[1], and  a[2] behave  like  regular  variables.  The  value  of  a is  the  address of  a[0]. Since  a is  a  pointer,  dereferencing  the  array  name  (*a)  will  yield  the  0-th  element of  the  array,  i.e.,  a[0].  This  provides  us  with  several  equivalent  notations  for  accessing arrays. 

In  Table  2.7, *(a+2) indicates  that  the  pointer  a is  advanced  by  two  units,  and  the content  stored  at  that  address  is  accessed.  This  is  equivalent  to  the  value  of  a[2]. 

Since  an  array  is  a  pointer,  it  is  possible  to  pass  an  array  to  a  function  and  modify  its elements.  Here  is  an  example: 

#include <stdio.h> 

void twice(float *a)

{

int i; 

for (i = 0; i < 3; i++) a[i] = 2 * a[i]; 

}

int main()

{

float b[3] = {1.0, 2.0, 3.0}; 

int i; 

twice(b); 

for (i = 0; i < 3; i++) printf("%f\n", b[i]); 

return 0; 

}

The  output  from  the  program  is: 

$ gcc prog.c

$ ./a.out

2.000000

4.000000

6.000000

The  program  above  demonstrates  a  function  that  takes  an  array  as  input  and  doubles  all its  elements.  It  was  previously  noted  that  the  only  way  to  modify  an  argument  in  a  function Table  2.7  Accessing  array 

Array  access

Pointer  equivalent 

elements  in  two  different 

ways 

a[0]

*a 

a[1]

*(a+1) 

a[2]

*(a+2)
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is  by  using  a  pointer.  This  principle  applies  to  arrays  as  well,  since  the  name  of  an  array is  a  pointer.  Therefore,  when  passing  an  array  to  a  function,  the  address  operator  (&) is not needed  before  the  array  name.  The  following  program  achieves  the  same  result  as  the  one above. 

#include <stdio.h> 

void twice(float a[3])

{

int i; 

for (i = 0; i < 3; i++) a[i] = 2 * a[i]; 

}

int main()

{

float b[3] = {1.0, 2.0, 3.0}; 

int i; 

twice(b); 

for (i = 0; i < 3; i++) printf("%f\n", b[i]); 

return 0; 

}

2.9.5

Function  Pointers 

There  is  a  special  type  of  pointer  that  can  point  to  a  function  instead  of  a  variable.  This  is called  a   function  pointer.  Using  a  function  pointer,  it  is  possible  to  have  a  variable  represent different  functions.  This  is  particularly  useful  in  scenarios  where  an  operation  (such  as numerical  integration)  must  be  performed  on  multiple  functions. 

Without  a  function  pointer,  the  program  would  need  to  repeat  the  operations  as  many times  as  there  are  different  functions.  However,  with  a  function  pointer,  the  program  can be  designed  such  that  the  function’s  name  can  be  treated  like  a  variable  name,  allowing  the substitution  of  different  function  names  as  needed. 

When  a  function  is  declared,  such  as  float myfunc(),  the  function  name,  myfunc, is  actually  a  pointer  to  the  memory  location  where  the  function’s  code  begins. 31

A  function  pointer  can  be  declared  as

type_of_function (*func_name)(type_of_argument)

31  This  is  similar  to  an  array,  where  the  array  name  itself  is  a  pointer  to  the  address  of  the  first  element. 
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where  type_of_function is  the  return  type  of  the  function  to  which  the  pointer  refers, func_name is  the  name  of  the  function  pointer,  and  type_of_argument represents the  type  of  the  argument(s)  for  the  function. 

For  example,  a  function  pointer  declared  as  float (*foo)(float, float) can point  to  a  function  defined  as  float f1(float x, float y). 

In  the  following  code,  func() is  a  function  pointer  that  points  to  an  actual  function returning  a  double type  and  taking  a  double type  variable  as  an  argument. 

#include <stdio.h> 

#include <math.h> 

double f1(double x)

{

return x ; 

}

double f2(double x)

{

return x*x ; 

}

int main()

{

double (*func)(double); 

func = &f1; 

printf("%f\n", func(2)) ; 

func = &f2; 

printf("%f\n", func(2)); 

func = &cos; 

printf("%f\n", func(3.141)); 

return 0; 

}

The  output  is: 

$ gcc prog.c -lm

$ ./a.out

2.000000

4.000000

-1.000000

Since  func() is  a  function  pointer,  a  statement  such  as  func = &cos assigns  the address  of  the  cosine  function  defined  in  math.h to  func.  After  this  assignment,  func() and  cos() become  equivalent. 
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2.9.6

Summary 

•  The  asterisk  (*)  in  C  has  the  following  meanings: 

1.  Multiplication  when  used  as  a  binary  operator  (a * b). 

2.  Dereferencing  a  pointer  when  used  as  a  unary  operator  (*pa). 

3.  Declaration  of  a  variable  as  a  pointer  in  the  declaration  statement  (int *pa). 

•  The  ampersand  symbol  (&)  in  C  has  the  following  meanings: 

1.  The  address  of  a  variable  when  used  as  a  unary  operator  (&a). 

2.  Logical  AND  when  used  as  a  binary  operator  (a == 1.0 && b == 2.0). 

3.  Bitwise  AND  between  two  binary  numbers  (a & b). 

•  Pointers  must  be  used  if  the  values  of  arguments  in  a  function  need  to  be  modified.  This is  why  scanf() requires  the  address  operator  &,  whereas  printf() does  not.  The value  of  the  variable  passed  to  scanf() is  entered  from  the  keyboard,  so  it  is  necessary to  pass  the  address  of  that  variable  to  scanf() to  allow  modification  of  the  variable’s content. 

2.9.7

Exercise 

1.  Write  a  function,  circle,  that  takes  the  radius  of  a  circle  as  input  and  assigns  the area  of  the  circle  to  the  variable  area and  the  perimeter  of  the  circle  to  the  variable perimeter.  Since  the  function  needs  to  modify  these  variables,  pointers  should  be used.  Complete  the  following  template:

#include <stdio.h> 

void circle(float r, (fill in your code))

{

(fill in your code...); 

}

int main()

{

float r, area, perimeter; 

printf("Enter radius = "); scanf("%f", &r); 

circle(r, &area, &perimeter); 

printf("r = %f area = %f peri = %f\n", r, area, perimeter); 

return 0; 

}
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2.  Write  a  function  that  takes  two  floating-point  variables,.  a  and.  b,  and  rearranges  them  in ascending  order: 

#include <stdio.h> 

void reorder(float *pa, float *pb)

{

(your code here)

}

int main()

{

float a = 15, b = -6; 

reorder(&a, &b); 

printf("%f %f\n", a, b); 

return 0; 

}

This  program  will  produce  the  output: 

-6 15

3.  Remember  that  an  array  is  also  a  pointer,  as  illustrated  by: 

#include <stdio.h> 

int main()

{

int a[5] = {1, 2, 3, 4, 5}; 

int i; 

for (i = 0; i < 5; i++) printf("%d\n", a[i]); 

for (i = 0; i < 5; i++) printf("%d\n", *(a+i)); 

return 0; 

}

Since  a[i] and  *(a + i) are  equivalent,  use  this  concept  to  write  a  program  that computes  the  average  of  all  the  elements  in  the  following  array: a[20]={0.228952, 0.568418, 0.820277, 0.117099, 0.755212, 

0.509299, 0.572073, 0.224526, 0.852861, 0.0612133, 0.175636, 

0.568243, 0.0100543, 0.702012, 0.0345108, 0.146549, 0.189951, 

0.144139, 0.261263, 0.474034}; 
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2.10

String  Manipulation 

2.10.1  How  to  Handle  a  String  of  Characters  (Text) 

In  C,  a  string  of  characters  (text)  is  managed  as  an  array  of  individual  characters.  Therefore, an  array  must  be  used  to  represent  a  string.  Since  any  array  variable  is  a  pointer,  as  discussed in  Sect. 2.9, a  variable  representing  a  string  is  also  a  pointer. 

Compare  the  following  programs  side  by  side: 

#include <stdio.h> 

int main()

#include <stdio.h> 

{

int main()

float a = 2.0; 

{

printf("%f\n",a); 

char b = ’A’; 

return 0; 

printf("%c\n",b); 

}

return 0; 

}

In  the  program  on  the  left,  the  float variable  a represents  a  single  value,  .2 .  0. In the program  on  the  right,  the  char variable  c represents  a  single  character,  A. 

#include <stdio.h> 

int main()

#include <stdio.h> 

{

int main()

float a[] = {2.0, 3.0, 4.0, 5.0}; 

{

printf("%f\n",a[0]); 

char b[] = "Hello!"; 

return 0; 

printf("%c\n",b[0]); 

}

return 0; 

}

In  the  program  on  the  left,  the  array  a represents  a  set  of  four  numbers:  2.0, 3.0, 4.0, 5.0,  and  the  first  number  is  printed.  In  the  program  on  the  right,  the  array b represents a  string  of  six  characters:  “Hello!”,  and  the  first  character  H is  printed. 
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#include <stdio.h> 

int main() 

#include <stdio.h> 

{ 

int main() 

float *a; 

{ 

a[0] = 1.0; a[1] = 2.0; 

char *a; 

printf("%f\n",a[0]); 

a = "HELLO!"; 

return 0; 

printf("%c\n",a[0]); 

} 

return 0; 

} 

In  the  program  on  the  left,  the  pointer  variable  a points  to  the  address  of  a[0]. In the program  on  the  right,  the  pointer  variable  a points  to  the  address  of  the  first  character,  “H”. 

Instead  of  using  individual  assignments  such  as  *a = {’H’, ’E’,’L’, 

’L’,’O’,’!’} or  a[0] =’H’; a[1] =’E’ and  so  on,  a  direct  assignment  of  a 

="HELLO!" can  be  used  with  double  quotation  marks  ("). 

Use  the  %s format  specifier  to  print  the  entire  string,  rather  than  the  %c format  specifier, which  represents  only  a  single  character. 

#include <stdio.h> 

int main()

{

char *a; 

a = "Hello, World!"; 

printf("%s\n",a); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Hello, World! 

As  shown  in  the  examples  above,  single  quotation  marks  (’)  and  double  quotation  marks (")  serve  different  purposes.  Single  quotation  marks  are  used  for  single  characters,  while double  quotation  marks  are  used  for  strings  of  characters.  For  example,  "ABC" (double quotation  marks)  represents  a  string  of  characters  and  thus  is  an  array  (or  pointer).  In  contrast, 

’A’ (single  quotation  marks)  represents  a  single  character. 

Consider  the  following  program:
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#include <stdio.h> 

int main() 

{ 

char s[4] = "ABC"; 

printf("%s\n", s); 

return 0; 

} 

You  might  wonder  why  the  number  of  elements  in  the  array  s is  4 rather than 3. The C  compiler  automatically  appends  a  special  character,  NULL  (ASCII  code  0,  commonly denoted  as  “. \0”),  to  the  end  of  the  string  to  mark  the  end  of  the  character  array.  As  a  result, the  number  of  elements  in  a  character  array  is  always  one  more  than  the  number  of  characters in  the  string. 

To  read  a  string  from  standard  input  (i.e.,  the  keyboard),  refer  to  the  following  example. 

#include <stdio.h> 

int main()

{

char str[100]; 

printf("Enter a word = "); 

scanf("%s", str); 

printf("%s\n",str); 

return 0; 

}

The  output  may  appear  as  follows: 

$ gcc prog.c

$ ./a.out

Enter a word = Good morning

Good

Note  that  there  is  no  “&”  before  str in  the  scanf() function,  as  str is  already  a pointer.  Note  that  only  “Good”  is  printed  even  though  “Good morning”  was  entered. 

This  occurs  because  the  format  specifier  %s in  scanf() reads  input  only  up  to  the  first space  (i.e.,  a  single  word).  To  read  two  strings  (or  two  words),  use  “%s %s”.  The  C  compiler automatically  adds  “\0”  at  the  end  of  the  string  to  indicate  its  termination. 
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2.10.2  String  Copy/Compare/Length 

To  copy  a  string  to  another  string  or  to  compare  one  string  against  another,  it  is  best  to  use the  functions  strcpy() and  strcmp(),  which  are  available  in  string.h. 

#include <stdio.h> 

#include <string.h> 

int main()

{

char c1[] = "ABCDE", c2[6]; 

strcpy(c2, c1); 

printf("%s\n", c2); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

ABCDE

In  the  program  above,  the  function  strcpy(c2, c1) copies  the  string  pointed  to  by c1 to  the  string  pointed  to  by  c2.  Note  that  c2 should  have  space  for  an  extra  character (i.e.,  c2[6] instead  of  c2[5])  to  accommodate  the  NULL  character  added  at  the  end  of the  string. 

To  compare  two  strings,  use  strcmp(),  which  is  available  in  string.h. 

#include <stdio.h> 

#include <string.h> 

int main()

{

char s[100]; 

printf("Enter \"ABCDEF\""); 

scanf("%s", s); 

if (strcmp(s, "ABCDEF") == 0)

printf("ABCDEF was entered correctly.\n"); 

else

printf("Wrong. %s was entered.\n",s); 

return 0; 

}
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In  the  program  above,  the  strcmp() function  takes  two  strings  as  arguments  and  returns 0  if  the  strings  are  identical.  Note  that  you  can  output  a  double  quotation  mark  (") by  

“escaping”  it  with  the  backslash  character. 

To  find  the  length  of  a  string,  use  the  strlen() function. 

#include <stdio.h> 

#include <string.h> 

int main()

{

char c[50]; 

printf("Enter string = "); 

scanf("%s", c); 

printf("You entered %s\n", c); 

printf("Its length is %d\n", strlen(c)); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

Enter string = Good afternoon. 

You entered Good

Its length is 4

Again,  only  “Good”  was  read  because  the  format  specifier  %s reads  a  string  only  up  to the  first  space  (i.e.,  a  single  word). 

2.11

Command  Line  Arguments 

2.11.1  Entering  Command  Line  Arguments 

The  conventional  method  for  executing  a  C  program  after  successful  compilation  involves entering  the  program’s  name  at  the  system  prompt,  as  demonstrated  in  the  following  example. 

$ gcc prog.c -lm -o prog

$ ./prog

(interactive session)
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Instead  of  providing  the  necessary  information  during  an  interactive  session  (using  the scanf() and  printf() functions),  you  can  specify  the  required  parameters  when  entering  the  program  name,  as  shown  below: 

$ gcc prog.c -lm -o prog

$ ./prog 3421 8756

(executes program to manipulate 3421 and 8756 and prints results)

This  is  known  as  “command  line  arguments”  (also  referred  to  as  “command  line  parameters”)  ,  and  it  provides  a  convenient  method  for  passing  necessary  arguments  to  the  main() function  without  requiring  user  interaction. 

Recall  that  the  function  main() is  the  entry  point  of  a  C  program.  Apart  from  being the  initial  function  executed,  it  is  an  ordinary  C  function,  similar  to  any  other  functions,  and thus  must  include  a  parameter  list. 

The  main() function  can  actually  take  two  arguments.  The  first  argument  represents  the number  of  command  line  arguments,  including  the  program  name  itself.  The  second  argument,  an  array  of  strings,  contains  each  command  line  argument  entered  after  the  program name.  The  syntax  for  the  parameters  in  main() is  as  follows: 

int main(int argc, char *argv[])

The  first  argument,  argc,  is  an  integer  that  represents  the  number  of  command  line arguments,  including  the  program  name  itself. 32 The  second  argument,  argv,  is  a  pointer to  an  array  of  strings  that  contains  each  of  the  command  line  arguments.  It  is  important to  note  that  argv[] is  an  array,  which  allows  it  to  accommodate  multiple  command  line arguments. 33

Consider  the  following  program:

#include <stdio.h> 

int main(int argc, char *argv[])

{

int i; 

printf("Number of arguments = %d\n", argc); 

for (i = 0; i < argc; i++)

printf("%d: %s\n", i, argv[i]); 

return 0; 

}

32  The  “c”  in  argc stands  for  “count.”. 

33  The  “v”  in  argv stands  for  “vector.”  Technically,  argv[] is  a  pointer  to  another  pointer  (an  array of  arrays),  as  each  element  of  argv[] is  a  string  of  characters. 
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Run  the  program  above  with  command  line  arguments  as  demonstrated  in  the  following example: 

$ gcc prog.c

$ ./a.out I like C language. 

Number of arguments = 5

0: ./a.out

1: I

2: like

3: C

4: language. 

The  string  “./a.out” is stored in  argv[0],  and  the  string  “I,” is stored in  argv[1], and so on. 

Note  that  each  command  line  argument  is  entered  as  a  string.  For  example,  when  the number  4  is  entered,  it  is  stored  as  the  character  “4”  (ASCII  code  52),  not  as  the  numeric value  4.  To  interpret  the  entered  parameters  as  numeric  values  rather  than  as  a  string  of characters,  use  the  functions  atoi() (ASCII  to  INTEGER)  or  atof() (ASCII  to  FLOAT) available  in  stdlib.h. 

#include <stdio.h> 

#include <stdlib.h> 

int main(int argc, char *argv[])

{

printf("%d\n", atoi(argv[1])); 

return 0; 

}

The  output  looks  like: 

$ gcc prog.c

$ ./a.out 2018

2018

The  following  program  calculates  the  sum  of  all  numbers  provided  as  command  line arguments. 

#include <stdio.h> 

#include <stdlib.h> 

int main(int argc, char *argv[])
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{ 

float sum = 0.0; int i; 

for (i = 1; i < argc; i++) sum = sum + atof(argv[i]); 

printf("The sum is %f.\n" , sum); 

return 0; 

} 

The  output  looks  lie: 

$ gcc prog.c

$ ./a.out 1 2 3 4 5 6 7 8 9 10

The sum is 55.000000. 

2.11.2  Exercise 

1.  Write  a  program  that  uses  command  line  arguments  to  solve  a  quadratic  equation  of  the form  .  ax 2 +  bx +  c = 0.  The  coefficients  .  a,  .  b, and  .  c  should  be  provided  as  command line  arguments.  For  example,  executing 

$ ./a.out 3 -1 -1

will  output 

x1 = -0.434259, x2 = 0.767592

by  solving  the  equation .3 x 2 −  x − 1 = 0. 

2.  Write  a  program  that  uses  command  line  arguments  to  compute  the  average  and  standard deviation  of  the  numbers  entered  as  command  line  parameters.  For  example,  executing $ ./a.out 2. 4. -6. 10.2, -19.0

will  output

average = 1.2, standard deviation=7.83199
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2.12

Structures 

2.12.1  Mixture  of  Different  Types  of  Variables 

An  array  is  a  single  variable  that  can  store  multiple  elements  of  the  same  type.  However,  if you  need  a  single  variable  to  represent  different  types  of  elements,  such  as  a  mix  of  integers, floating-point  numbers,  and  strings,  you  can  use  a   structure. 

A   structure   is  a  collection  of  one  or  more  variables  grouped  under  a  single  name.  These variables  can  be  of  different  types  and  are  accessed  by  their  individual  names.  Structures are  a  convenient  way  to  group  together  several  related  pieces  of  information. 

For  example,  a  structure  called  student can  be  defined  to  represent  a  student’s  school records,  including  the  ID  number,  midterm  score,  final  score,  and  final  grade.  The  following program  illustrates  the  concept  of  structures: 

#include <stdio.h> 

struct student

{

char *ID; 

int Midterm; 

int Final; 

char Grade; 

}; 

int main()

{

struct student smith = {"1000123456", 89, 98, ’A’}, 

doe = {"1000123457", 45, 53, ’F’}; 

printf("%s\n", smith.ID); 

printf("%d\n", doe.Midterm); 

doe.Grade = ’D’; 

printf("%c\n", doe.Grade); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

1000123456

45

D

In  the  program  above,  a  structure  called  student is  defined  with  four  members:  ID, Midterm,  Final, and  Grade,  which  encompass  different  types.  The  member  ID is  a string  (thus,  a  pointer),  while  Midterm and  Final are  integers,  and  Grade is  a  character. 
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Two  variables,  smith and  doe,  are  declared  as  type  student and  initialized  accordingly. 

Members  of  a  structure  are  accessed  using  the  dot  (.)  operator. 

You  can  also  define  an  array  of  structures  as 

#include <stdio.h> 

struct student

{

char *ID; 

int Midterm; 

int Final; 

char Grade; 

}; 

int main()

{

struct student myclass[15]; 

int i; 

myclass[0].ID = "10000123212"; 

myclass[0].Grade = ’C’; 

(.....)

myclass[14].Grade = ’B’; 

(.....)

return 0; 

}

It  is  also  possible  to  use  a  pointer  to  a  structure  as

#include <stdio.h> 

struct student

{

char *ID; 

int Midterm; 

int Final; 

char Grade; 

}; 

int main()

{

struct student Smith = {"David Smith", 12, 45, ’F’}, *ptr; 

ptr = &Smith; 

/*

.................. 

*/

printf("%s %d %d %c\n", ptr->Name, ptr->Midterm, ptr->Final, ptr->Grade); return 0; 

}
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Note  that  members  of  a  structure  can  be  accessed  using  the .-> operator.  Using  pointers within  structures  facilitates  dynamic  memory  allocation,  as  discussed  in  Sect. 2.12.3, and enhances  the  efficiency  of  function  calls. 

Finally,  with  the  typedef keyword,  you  can  define  a  structure  and  declare  variables of  that  structure  type  in  a  manner  similar  to  int or  float,  without  needing  to  use  the struct prefix. 

#include <stdio.h> 

typedef struct

{

char *ID; 

int Midterm; 

int Final; 

char Grade; 

} student; 

int main()

{

student Jones = {"Jones", 12, 45, ’F’}, *ptr; 

ptr = &Jones; 

/*

.................. 

*/

printf("%s\n", ptr -> Name); 

return 0; 

}

The  typedef keyword  is  used  to  create  a  new  name  (alias)  for  an  existing  data  type. 

The  syntax  is 

typedef existing_type new name; 

For  example, 

typedef float real; 

real a, b; 

// ’a’ and ’b’ are now of type float. 

In  this  example,  real is  a  new  name  for  float.  This  makes  the  code  more  concise  and readable. 
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The  concept  of  structure extends  to  the  concept  of  class,  which  is  fundamental  in C++  (and  Java). 

A  useful  application  of  structures  in  scientific  and  engineering  computations  is  the  representation  of  complex  numbers.  While  the  C  language  does  not  natively  support  complex numbers, 34 it  is  straightforward  to  implement  them  using  structures.  The  following  program defines  a  complex  type  (.  a +  bi)  and  computes  the  addition  of  two  complex  numbers: 

#include <stdio.h> 

typedef struct

{float Real; float Im;} Complex; 

Complex ComplexAdd(Complex z1, Complex z2)

{

Complex z; 

z.Real = z1.Real + z2.Real; 

z.Im = z1.Im + z2.Im; 

return z; 

}

int main()

{

Complex z1, z2, z; 

printf("Enter real and imaginary parts of z1 separated by space = "); scanf("%f %f", &z1.Real, &z1.Im); 

printf("Enter real and imaginary parts of z2 separated by space = "); scanf("%f %f", &z2.Real, &z2.Im); 

z = ComplexAdd(z1, z2); 

printf("%f + %f I \n", z.Real, z.Im); 

return 0; 

}

The  output  is 

$ gcc prog.c

$ ./a.out

Enter real and imaginary parts of z1 separated by space = 2 3

Enter real and imaginary parts of z2 separated by space = -1 4

1.000000 + 7.000000 I

By  using  typedef,  the  structure  Complex can  be  treated  similarly  to  int or  float, allowing  variables  to  be  declared  as  Complex z1, z2;. 

34  C++  includes  a  complex  number  class. 
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2.12.2  Exercise 

1.  Based  on  the  previous  example,  write  a  program  to  perform  division  of  two  complex numbers,  i.e.,  .  z 1 /z 2.  Use  the  program  to  compute  .  z 1 /z 2, where .  z 1 = 2 .  12 + 1 .  21 i  and 

.  z 2 = −2 .  8 + 7 .  8 i . 

As  a  reference,  the  following  program  computes  the  product  of  two  complex  numbers 35: 

#include <stdio.h> 

typedef struct

{float Real; float Im;} Complex; 

Complex ComplexMultiply(Complex z1, Complex z2)

{

Complex z; 

z.Real = z1.Real * z2.Real - z1.Im * z2.Im; 

z.Im = z1.Real * z2.Im + z1.Im * z2.Real; 

return z; 

}

int main()

{

Complex z1, z2, z; 

z1.Real = 0.25; z1.Im = -3.1412; 

z2.Real = 0.98; z2.Im = 1.655; 

z = ComplexMultiply(z1, z2); 

printf("The product of z1 * z2 = %f

+ %f I.\n", z.Real, z.Im); 

return 0; 

}

The  output  is: 

$ gcc prog.c

$ ./a.out

The product of z1 * z2 = 5.443686

+ -2.664626 I. 

2.12.3  Dynamic  Memory  Manipulation  with  malloc() 

When  an  array,  a,  is  declared,  the  compiler  automatically  allocates  the  memory  space  based on  the  number  of  elements  and  type  of  a.  In  an  example  below,  the  size  of  an  array,  a,  must be  declared  at  the  time  of  compilation. 

35  For.  z 1 =  a +  bi  and.  z 2 =  c +  di,.  z 1 ×  z 2 =  (ac −  bd) +  (bc +  ad)i. 
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#include <stdio.h> 

#define N 1000 

int main() 

{ 

float a[N]; int i; 

for (i = 0; i < N; 

i++) a[i] = 1.0/(i + 1); 

return 0; 

} 

This  is  known  as  static  memory  allocation,  where  the  size  of  the  memory  is  fixed  prior to  use.  Once  the  code  is  compiled,  the  size  of  the  array  or  the  memory  portion  occupied by  a cannot  be  changed  or  released.  However,  in  many  cases,  the  size  of  an  array  may  not be  known  in  advance,  or  it  may  be  necessary  to  release  memory  previously  allocated  to  an array  to  make  room  for  additional  memory. 

Dynamic  memory  allocation  provides  the  flexibility  to  allocate  memory  at  runtime,  allowing  for  more  efficient  use  of  memory  resources.  Memory  allocated  dynamically  can  vary  in size  based  on  the  program’s  requirements. 

The  function malloc() 

36 is  used  for  dynamic  memory  allocation.  It  stands  for  “memory allocation”  and  is  declared  in  the.<stdlib.h> header  file.  The  typical  usage  of  malloc() is  as  follows: 

ptr = malloc(n * size_type); 

where.  n  represents  the  number  of  array  elements  and  size_type is  the  size  of  the  type  of the  array  variable  in  bytes.  For  instance,  size_type is  4  for  integers  and  float  numbers  and 8  for  double-precision  numbers.  The  sizeof function  can  be  used  to  determine  this  size. 

For  example,  sizeof(int) returns  4,  and  sizeof(double) returns  8.  The  function malloc() returns  a  void  pointer 37 (void *) to  the  allocated  memory  if  successful,  or NULL if  the  allocation  fails. 

Dynamic  Memory  Allocation  Example 

A  simple  example  of  using  malloc() is  as  follows:

#include <stdio.h> 

#include <stdlib.h> 

int main()

36  Typically  pronounced  as  “MAL-ock.” 

37  A  pointer  whose  type  is  undefined. 
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{ 

float *ptr; int i; 

ptr = malloc(500 * sizeof(float)); 

for (i = 0; i < 500; i++) ptr[i] = 1.0/(i + 1); 

printf("%f %f\n",ptr[0], ptr[499]); 

free(ptr); 

return 0; 

} 

In  the  example  above,  memory  space  for  500  float  numbers  (2,000  bytes)  is  allocated. 

The  top  address  of  that  memory  block  is  assigned  to  the  pointer  ptr.  Since  a  pointer  and  an array  are  essentially  equivalent,  ptr[i] accesses  the  float  number  stored  at  the  i-th  offset from  ptr. The  free(ptr) statement  releases  the  memory  space  occupied  by  ptr. 

A  more  robust  example  is  provided  below: 

#include <stdio.h> 

#include <stdlib.h> 

int main()

{

float *ptr; int i; 

ptr = (float*)malloc(500 * sizeof(float)); 

if (ptr==NULL)

{

printf("No more memory space !\n"); exit(0); 

}

for ( i=0; i < 500; i++) ptr[i] = 1.0/(i + 1); 

printf("%f %f\n",ptr[0], ptr[499]); 

free(ptr); 

return 0; 

}

In  the  program  above,  the  malloc(500*sizeof(float)) allocates  a  block  of  500 

float  values  in  memory  and  returns  a  pointer  to  the  beginning  of  the  block.  However,  it  is  a generic  pointer  without  a  specific  type.  The  type  cast  (float *) is  necessary  to  convert the  generic  pointer  returned  by  malloc (of type void *) into  a  pointer  of  type float. 

If  there  is  not  enough  memory  to  allocate  the  required  space,  NULL is  returned.  The statement  if (pa==NULL) checks  whether  enough  memory  is  available  to  hold  500  float values.  The  free(ptr) function  releases  the  previously  allocated  memory. 

The  following  example  code  prompts  the  user  to  enter  the  size  of  an  array  and  checks  if sufficient  memory  is  available  for  allocation.  If  there  is  not  enough  memory,  the  program displays  an  error  message  and  exits  with  an  exit  code  of  1  (general  error).  If  memory allocation  is  successful,  the  program  outputs  the  first  and  last  elements  of  the  array. 
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#include <stdio.h> 

#include <stdlib.h> 

int main() 

{ 

int i, size; 

double *vector; 

printf("Enter the size of double precision array ="); 

scanf("%d", &size); 

vector = (double *)malloc(size * sizeof(double)); 

if (vector == NULL) 

{ 

printf("Memory allocation failed!\n"); 

return 1; 

} 

for (i = 0; i < size; i++) vector[i] = i * 0.5; 

// Print the first and last elements of the vector to verify 

printf("Vector first element: %f\n", vector[0]); 

printf("Vector last element: %f\n", vector[size - 1]); 

free(vector); 

printf("Memory has been successfully freed.\n"); 

return 0; 

} 

$ gcc malloc_sample.c

$ ./a.out

Enter the size of double precision array =100000000

Vector first element: 0.000000

Vector last element: 49999999.500000

Memory has been successfully freed. 

$ ./a.out

Enter the size of double precision array =1000000000

Memory allocation failed! 

The  output  indicates  that  the  program  can  successfully  allocate  and  handle. 100 ,  000 ,  000

(one  hundred  million)  double-precision  components,  displaying  the  first  and  last  elements of  the  array.  However,  when  attempting  to  allocate  one  billion  components,  the  program encounters  an  error  message  due  to  insufficient  memory. 

The  following  two  additional  functions  are  available  for  memory  management:
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1.  calloc() The  calloc() function  stands  for  “contiguous  allocation.”  It  is  similar  to malloc() except  that  it  initializes  the  allocated  memory  to  zero.  An  example  is: int *arr = (int*) calloc(10, sizeof(int)); 

In  this  example,  memory  for  10  integers  is  allocated,  the  starting  address  is  assigned  to arr,  and  all  integers  are  initialized  to  0.  If  the  initialization  is  not  required,  malloc() can  be  used. 

2.  realloc() The  realloc() function  changes  the  size  of  an  existing  memory  block allocated  by  malloc() or  calloc().  It  can  either  expand  or  shrink  the  block,  and  if necessary,  move  it  to  a  new  location.  An  example  is: 

arr = (int*) realloc(arr, 1000 * sizeof(int))

In  this  example,  memory  for  1,000  integers  is  allocated,  and  the  starting  address  is assigned  to  arr.  The  values  previously  assigned  to  arr[i] are  preserved,  while  any newly  allocated  elements  are  initialized  to  0. 

Dynamic  memory  allocation  is  useful  when  dealing  with  large  arrays  of  varying  sizes with  limited  RAM. 

Part  II 

Numerical  Analysis 

Now  that  the  basic  syntax  of  the  C  language  has  been  explained,  you  are  equipped  to write  C  programs  to  address  numerous  problems  in  engineering  and  science. 

In  Part  II,  we  will  discuss  numerical  methods  for  solving  non-linear  equations,  sets of  simultaneous  equations,  and  ordinary  differential  equations,  as  well  as  techniques  for numerical  differentiation  and  integration  of  functions. 

Solving  these  equations  analytically  often  requires  advanced  mathematical  skills. 

However,  numerical  solutions  can  frequently  be  obtained  through  intuitive  or  visual interpretation,  without  the  need  for  higher-level  mathematics. 

While  all  essential  topics  in  numerical  analysis  are  covered,  it  is  beyond  the  scope  of this  text  to  address  every  aspect  of  the  field.  For  a  comprehensive  reference,  Numerical Recipes   in  C  [6]  is  recommended. 

[image: Image 12]

Note  on  Numerical  Errors 

3

In  Part  I,  the  data  type  float was  used  for  all  real  numbers,  with  4  bytes  allocated  for  each floating-point  number.  A  float variable  can  represent  values  ranging  from.10−38 to.1038, which  covers  most  practical  needs. 

However,  this  range  translates  to  a  precision  of  only  6  to  8  decimal  digits,  which  is insufficient  for  many  scientific  and  engineering  problems  that  require  higher  precision. 

Consider  the  following  examples: 

1.  #include <stdio.h> 

int main() 

{ 

float s = 0.0; int i; 

for (i = 0; i < 10000; i++) s = s +  

0.1; 

printf("%f\n",s); 

return 0; 

} 

The  program  is  intended  to  add.0 .  1 a  total  of.10 ,  000 times.  The  expected  result  is.1 ,  000. 

However,  the  program  outputs  the  following  result: 

$ gcc prog.c 

$ ./a.out 

999.902893 

The  output  is  not  .1 ,  000 but  rather  .999 .  902893.  While  this  result  is  close  to  .1 ,  000,  it  is not  acceptable  when  precision  is critical. 
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The  error  in  this  example  arises  from  the  conversion  between  decimal  and  binary  numbers.  Decimal  numbers  in  the  source  code  are  converted  to  binary  with  a  potential  conversion  error,  and  binary  numbers  are  converted  back  to  decimal,  introducing  additional conversion  errors. 1

2.  #include <stdio.h> 

int main() 

{ 

float a, b, c; 

a = 123.45678; 

b = 123.45655; 

printf("%f\n",a - b); 

return 0; 

} 

As  this  program  subtracts  123.45655  from  123.45678,  the  result  should  be  0.00023. 

However,  the  output  from  the  program  is  not  what  it  is  supposed  to  be. 

$ gcc prog.c 

$ ./a.out 

0.000229 

The  output  is  not  .0 .  00023 but  .0 .  000229.  Although  this  error  may  seem  small,  it  is  not acceptable  when  high  precision  is  required.  This  discrepancy  arises  from  subtracting one  number  from  another  very  close  in  value,  resulting  in  the  loss  of  significant  figures, commonly  known  as  cancellation  error. 

Both  types  of  errors  are  inevitable,  and  it  is  impossible  to  completely  eliminate  them. 

However,  their  impact  can  be  minimized  by  using  the  double data  type  instead  of  float for  floating-point  numbers. 

When  a  number  is  declared  as  a  double,  it  is  allocated  8  bytes,  which  effectively increases  the  valid  range  and  precision.  While  the  range  of  a  float variable  is. ±10−38 ∼

1038 with  seven  significant  digits,  a  double variable  provides  a  range  of. ±10−308 ∼ 10308

with  15  significant  digits. 

The  format  specifier  for  double is %lf (long  float).  Use %lf in scanf() when  reading double-precision  values.  However,  for  printf(),  there  is  no  difference  between  %lf and 

%f,  as  they  are  functionally  equivalent  for  compatibility  reasons. 

1  For  example,  converting  the  decimal  .0 .  1 to  binary  results  in  the  recurring  binary 

.0 .  0001100110011001100,  and  converting  this  binary  number  back  to  decimal  yields .0 .  0999985. 
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1.  #include <stdio.h> 

int main() 

{ 

double s = 0.0; int i; 

for (i=0; i < 10000; i++) s = s + 0.1; 

printf("%f\n",s); 

return 0; 

} 

$ gcc prog.c 

$ ./a.out 

1000.000000 

2.  #include <stdio.h> 

int main() 

{ 

double a,b,c; 

a = 123.45678; 

b = 123.45655; 


printf("%f\n",a - b); 

return 0; 

} 

$ gcc prog.c 

$ ./a.out 

0.000230 

Another  example  of  cancellation  error  is  found  in  the  seemingly  simple  quadratic  equation: 

.  ax  2 +  bx +  c = 0 , 

whose  two  roots  are  given  by 

√

− b ±  D



.  x =

 , D =  b 2 − 4 ac. 

(3.1) 

2 a

Consider  the  following  equation: 

.  x  2 + 200000 x − 3 = 0 , 

where  the  exact  solutions  are 

.  x 1 = −200000 , 

 x 2 = 0 .  000015 . 
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The  coding  for  this  equation  is  straightforward  as  follows: 

#include <stdio.h> 

#include <math.h> 

int main() 

{ 

float a, b, c, disc,x1, x2; 

a = 1.0; b = 200000; c = -3; 

disc = b*b - 4*a*c; 

x1 = (-b - sqrt(disc))/(2*a); 

x2 = (-b + sqrt(disc))/(2*a); 

printf("x1 = %f, x2 = %f\n",x1, x2); 

return 0; 

} 

The  output  is: 

$ gcc prog.c -lm 

$ ./a.out 

x1 = -200000.000000, x2 = 0.000000 

Apparently, .  x 2 is  incorrect,  while.  x 1 is  correct. 

From  Eq.  (3.1),  the  discriminant .  D  is  calculated  as  follows: 

.  D = 2000002 − 4 × 1 .  0 ×  (−3 )

= 40000000012 , 

√ D = 200000 .  00003 . 

On  the  other  hand,  .  b  is  .200000 .  0.  A  cancellation  error  occurs  when  .  b  is  subtracted  from 

√

. 

 D  due  to  their  close  proximity.  This  issue  can  be  mitigated  by  using  double data  type, as  demonstrated: 

#include <stdio.h> 

#include <math.h> 

int main() 

{ 

double a, b, c, disc, x1, x2; 

a = 1.0; b = 200000; c = -3; 

disc = b*b - 4*a*c; 

x1 = (-b - sqrt(disc))/(2*a); 

x2 = (-b + sqrt(disc))/(2*a); 

printf("x1 = %f, x2 = %f\n",x1, x2); 

return 0; 

}
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The  output  is: 

$ gcc prog.c -lm 

$ ./a.out 

x1 = -200000.000015, x2 = 0.000015 

In  numerical  analysis,  it  is  advisable  to  use  double rather  than  float exclusively. 

A  variable  declared  as  double occupies  twice  the  memory  space  (8  bytes)  of  a  float variable  (4  bytes),  which  increases  the  size  of  the  resulting  executable.  However,  this  is  a minor  trade-off  for  enhanced  precision. 

For  applications  requiring  infinite  precision,  symbolic  computation  systems  such  as   Mathematica  [ 7]  and   Maple   are  recommended. 

[image: Image 13]

Roots  of .  f (x) = 0

4

In  this  chapter,  we  explore  numerical  solutions  for  a  single  equation  of  the  form .  f (x) = 0. 

The  function .  f (x)  can  be  a  polynomial  or  any  other  non-linear  function  of.  x. 

The   Fundamental  Theorem  of  Algebra  [ 8]  states  that  an  .  n th  order  polynomial  equation has  .  n  roots,  which  may  include  complex  roots.  However,  this  does  not  imply  that  all  roots of  polynomial  equations  can  be  expressed  analytically  in  closed  form.  In  fact,  there  is  no closed-form  solution  for  the  roots  of  polynomial  equations  of  degree  five  or  higher. 1

This  chapter  describes  two  important  algorithms  for  numerically  solving  the  equation 

.  f (x ) = 0: 

1.  The  bisection  method,  which  is  guaranteed  to  find  at  least  one  root. 

2.  Newton’s  method,  which  is  generally  faster  for  finding  roots. 

4.1

Bisection  Method 

The  bisection  method  is  based  on  the   Mean  Value  Theorem,  which  states: If  .  f (x) is  continuous  over  the  interval  .[ x 1 , x 2],  .  f  (x) exists  for  .  x 1  < x < x 2,  and 

.  f (x 1 ) f (x 2 ) <  0,  then  there  is  at  least  one  point.  x in  the  interval.[ x 1 , x 2]  such  that.  f (x ) = 0. 

As  illustrated  in  Fig. 4.1,  if  there  is  at  least  one  zero  of.  f (x) = 0 between.  x 1 and.  x 2,  then the  product .  f (x 1 ) f (x 2 )  must  be  negative,  indicating  that  the  curve  crosses  the.  x-axis. 

1  This  result,  known  as  Galois  theory,  was  established  by  the  French  mathematician  Évariste  Galois (1811–1832),  pronounced   gal-wa,  at  the  age  of  19. 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 

101

S.  Nomura,  C  Programming  and  Numerical  Analysis,  Synthesis  Lectures  on  Mechanical Engineering, https://doi.org/10.1007/978-3-031-83457-8_4 

[image: Image 14]

[image: Image 15]

102

4 Roots of.  f (x) = 0

Once  such  an  interval  .[ x 1 , x 2] is  identified,  the  next  step  is  to  bisect  this  interval  and test  whether  .  f (x 1 ) f (x 2 ) <  0 holds  with  .  x 2 replaced  by  the  midpoint  .  (x 1 +  x 2 )/ 2.  If  

.  f (x 1 ) f ( midpoint ) <  0,  then  the  zero  must  be  in  the  first  subinterval .[ x 1 ,  midpoint].  Otherwise,  the  zero  lies  in  the  second  subinterva l .[midpoint , x 2]. 

This  process  is  repeated,  successively  halving  the  interval,  until  the  interval  becomes sufficiently  small  or .  f (x)  is  found  to  be  zero  at  the  midpoint.  As  illustrated  in  Fig. 4.1,  this procedure  can  be  summarized  as  follows  (Fig. 4.2): 1.  Choose .  x 1 and.  x 2 such  that.  f (x 1 ) f (x 2 ) <  0. 

2.  Set .  x 3 ←  (x 1 +  x 2 )/ 2. 

3.  If .  f (x 1 ) f (x 3 ) <  0,  then,  set.  x 2 ←  x 3. 

4.  Else  set .  x 1 ←  x 3. 

5.  Until .| x 1 −  x 2|  < (small  threshold)  or.  f (x 3 ) = 0,  repeat.2 ∼ 4. 

The  following  C  code  is  implementation  of  the  bisection  method  for  .  x 2 − 2 = 0.  By  

√

solving  this  equation,  an  approximation  t o . 2 can  be  obtained. 

Fig.  4.1  Bisection  method 

Fig.  4.2  Algorithm  of 

bi-section  method
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/* Compute the square root of 2 */ 

#include <stdio.h> 

#include <math.h> 

#define EPS 1.0e-10 

#define N 100 

double f(double x) 

{ 

return pow(x,2) - 2; 

} 

/* start of main */ 

int main() 

{ 

double x1, x2, x3; 

int count; 

do 

{ 

printf("Enter xleft and xright separated by space = "); 

scanf("%lf %lf", &x1, &x2); 

} while (f(x1)*f(x2) > 0); 

/* bisection start */ 

for (count = 0; count < N; count++) 

{ 

x3 = (x1 + x2)/2.0; 

if (f(x1)*f(x3) < 0 ) x2 = x3; else x1 = x3; 

if (f(x3) == 0.0 || fabs(x1-x2) < EPS ) break; 

} 

printf("iteration = %d\n", count); 

printf("x= %f\n", x1); 

return 0; 

} 

The  program  prompts  the  user  to  enter  two  points,  .  x 1 and  .  x 2.  I  f .  f (x 1 ) f (x 2 ) >  0,  the program  will  prompt  the  user  again until .  f (x 1 ) f (x 2 ) <  0 is  satisfied.  Note  the  use  of  the do {…} while{…} statement. 

The  function  fabs(),  available  in  math.h,  returns  the  absolute  value  of  its  argument. 

The  output  is  displayed  as  follows: 

$ gcc bisection.c -lm 

$ ./a.out 

Enter xleft and xright separated by 

space = 0 1 

Enter xleft and xright separated by space = 0 2 

iteration = 34 

x= 1.414214

[image: Image 16]
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Typically,  the  bisection  method  converges  within  30  to  40  iterations  for  most  equations. 

To  provide  .  x 1 and  .  x 2 as  initial  guesses,  it  is  advisable  to  sketch  a  rough  graph  of  .  f (x) using  a  graphical  tool  such  as  gnuplot (see  Appendix  A)  to  estimate  an  approximate interval  containing  a  root. 

Although  the  bisection  method  may  not  be  the  fastest  available,  it  guarantees  that  at  least one  root  will  be  found  if  the  initial  interval  is  selected  correctly. 

4.2

Newton’s  Method 

4.2.1

Newton’s  Method  for  a  Single  Equation 

Newton’s  method,  also  known  as  the  Newton-Raphson  method,  is  a  widely  used  algorithm for  finding  roots  of  the  equation .  f (x) = 0. 

Newton’s  method  converges  quadratically,  and  unlike  the  bisection  method,  it  requires only  a  single  initial  guess  to  start. 

As  illustrated  in  Fig. 4.3,  Newton’s  method  begins  with  an  initial  guess  .  x 1,  chosen  as close  as  possible  to  a  root  of .  f (x) = 0.  At  the  point .  (x 1 , f (x 1 )),  a  tangent  line  is  drawn  to approximate .  f (x)  linearly.  The  intersection  of  this  tangent  line  with  the.  x-axis,  denoted  as 

.  x 2,  serves  as  the  next  approximation,  which  is  expected  to  be  closer  to  the  root. 

This  iterative  process  continues  until  the  method  converges  to  a  sufficient  degree. 

From  Fig. 4.4, the  equation  of  a  straight  line  passing  through .  (a, b)  with  a  slope  of .  m  is given  by 

.  y −  b =  m(x −  a). 

Fig.  4.3  Iteration  scheme  in 

Newton’s  method
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Fig.  4.4  Tangent  line  as 

approximation  to.  f (x)

The  tangent  line  passing  through  the  point.  (x 1 , f (x 1 ))  with  a  slope  of.  f  (x 1 )  is  given  by 

.  y −  f (x 1 ) =  f  (x 1 )(x −  x 1 ). 

The  condition  for  this  line  to  intersect  the .  x-axis  is 

. 0 −  f (x 1 ) =  f  (x 1 )(x −  x 1 ), which  can  be  solved  for .  x  as 

.  x =  x 1 −  f (x 1 ) . 

 f  (x 1 )

Thus,  the  second  approximation  is 

.  x 2 =  x 1 −  f (x 1 ) . 

 f  (x 1 )

In  general,  the  iterative  formula 

.  xn+1 =  xn −  f (xn ) , 

(4.1) 

 f  (xn)

can  be  used  to  obtain  the .  (n + 1 ) th  approximation  from  the.  n th  approximation. 

Starting  with  an  initial  guess  .  x 1 that  is  sufficiently  close  to  the  root,  compute  subsequent  approximations.  x 2,.  x 3,.  x 4,  …,  using  Eq. (4.1). Repeat  this  iteration  until  the  absolute difference .| xn+1 −  xn| is  smaller  than  a  specified  threshold. 

√

For  example,. 2 can  be  approximated  by  solving  the  equation.  f (x) ≡  x 2 − 2 = 0.  With 

.  f (x ) =  x  2 − 2 , 

 f  (x) = 2 x, 

Equation  (4.1)  is  expressed  as 

− 2

.  xn+1 =  xn −  x  2

 n

 . 

2 xn
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Starting  with  an  initial  guess  of .  x 1 = 2 .  0,  the  iterations  proceed  as  follows: 

.  x 1 = 2 .  0 , 

 x 2 2 .  0 −  f ( 2 .  0 ) = 2 .  0 − 2 .  0 = 1 .  5 , f  ( 2 .  0 )

4 .  0

 x 3 = 1 .  5 −  f ( 1 .  5 ) = 1 .  5 − 0 .  25 = 1 .  41667 , f  ( 1 .  5 )

3 .  0

 x 4 = 1 .  41667 −  f ( 1 .  41667 ) =  . . . = 1 .  4142 . 

 f  ( 1 .  41667 )

As  demonstrated,  convergence  is  achieved  after  only  4  iterations. 

The  algorithm  for  Newton’s  method  is  as  follows: 

1.  Select  an  initial  guess, .  x 1. 

2.  Verify  that .  f  (x 1 ) = 0. 

3.  Repeat 

(a)  Compute .  x 2 ←  x 1 −  f (x 1 )

 f  (x 1 ) . 

(b)  Update .  x 1 ←  x 2. 

4.  Continue  until .| x 1 −  x 2| ≤  . 

Note  that  Newton’s  method  fails  when.  f  (xn)  is  zero,  which  results  in  a  division  by  zero in  Eq. (4.1). 

A  C  program  for  Newton’s  method  to  solve .  x 2 − 2 = 0 is  shown  below: 

#include <stdio.h> 

#include <math.h> 

#define EPS 1.0e-10 

double f(double x) 

{ 

return x*x - 2; 

} 

double fp(double x) 

{ 

return 2*x; 

} 

double newton(double x) 

{ 

return x - f(x)/fp(x); 

}

4.2 Newton’s Method
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int main() 

{ 

double x1, x2; 

int i; 

do 

{ 

printf("Enter initial guess  = "); 

scanf("%lf", &x1); 

} while (fp(x1) == 0.0); 

for (i = 0; i < 100; i++) 

{ 

x2 = newton(x1); 

if (fabs(x1 - x2)< EPS) break; 

x1 = x2; 

} 

printf("iteration = %d\n", i); 

printf("x = %f\n", x1); 

return 0; 

} 

The  output  looks  like: 

$ gcc newton.c -lm 

$ ./a.out 

Enter initial guess  = 2.9 

iteration = 5 

x= 1.414214 

$ ./a.out 

Enter initial guess  = 0 

Enter initial guess = 1.2 

iteration = 4 

x= 1.414214 

In  this  example,  convergence  is  achieved  in  4  iterations,  which  is  significantly  fewer  than the  number  required  by  the  bisection  method. 

√

As  an  additional  note,  the  square  root  of  .  a (.  a)  can  be  approximated  by  solving  the equation  .  f (x) =  x 2 −  a.  Using  Newton’s  method,  the  following  iterative  relation  can  be derived: 

−  a

.  xn+1 =  xn −  x  2

 n

2 xn





= 1  xn +  a . 

2

 xn
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√

This  iteration  scheme  can  be  used  to  approximate  .  a,  even  manually.  For  instance,  to 

√

approximate . 3 ≈ 1 .  732: 





.  x 1 = 1 , 

 x 2 = 1 1 + 3

= 2 , 

2

1









 x 3 = 1 2 + 3

= 1 .  75 , x 4 = 1 1 .  75 + 3

= 1 .  732 . 

2

2

2

1 .  75

In  summary,  while  the  bisection  method  guarantees  convergence  with  an  appropriate initial  interval,  it  converges  relatively  slowly.  In  contrast,  Newton’s  method  converges  much more  rapidly  when  a  suitable  initial  guess  is  provided. 

4.2.2

Newton’s  Method  for  Simultaneous  Equations  (Optional) 

Newton’s  method  can  also  be  applied  to  solve  simultaneous  equations  numerically  [ 9]. 2 For simplicity,  consider  the  following  system  of  two  simultaneous  equations: 

.  f (x , y) = 0 , 

 g(x, y) = 0 . 

Expanding  each  equation  using  the  Taylor  series  for  functions  of  two  variables,  we  obtain: 





 ∂ f 

 ∂ f 

.  f (x , y) ≈  f (x 0 , y 0 ) +

 (x −  x

 (y −  y

 ∂

0 ) +

0 ), 

(4.2) 

 x 



 (

 ∂

 x

 y

0 ,y 0 )

 (x 0 ,y 0 )





 ∂g 

 ∂g 

.  g(x , y) ≈  g(x 0 , y 0 ) +

 (x −  x

 (y −  y

 ∂

0 ) +

0 ). 

(4.3) 

 x 



 (

 ∂

 x

 y

0 ,y 0 )

 (x 0 ,y 0 )

If .  (x, y)  satisfies 

.  f (x , y) = 0 , 

 g(x, y) = 0 , 

Equations  (4.2)  and  (4.3)  can  be  written  as 









 ∂ f





0

 f (x

 , ∂ f

0 , y 0 )

 ∂x

 ∂ y

 x −  x 0

. 

=

+

 , 

0

 g(x

 ∂g



0 , y 0 )

 ∂ , ∂g

 y −  y

 x

 ∂ y

 (

0

 x 0 ,y 0 )

or  in  vector-matrix  form  as 

. 0 = f  (x 0 , y 0 ) +  J (x − x0 ), (4.4) 

where

2  This  topic  can  be  skipped. 
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 ∂ f ∂ f









 ∂x ∂ y

 f (x 0 , y 0 )

 x −  x 0

.  J ≡

 ∂

 , 

 , 

 . 

 g ∂g



f (x 0 , y 0 ) =

x − x0 =

 ∂

 g(x

 y −  y

 x

 ∂ y

 (

0 , y 0 )

0

 x 0 ,y 0 )

The  matrix .  J  is  known  as  the  Jacobian  matrix.  Equation  (4.4)  can  be  solved  for . x as 

. x = x0 −  J −1f  (x0 ), 

(4.5) 

where .  J −1 denotes  the  inverse  matrix  of .  J .  Equation  (4.5)  represents  the  two-dimensional extension  of  Eq. (4.1). 

Example 

Numerically  solve  the  following  system  of  simultaneous  equations  for .  (x, y): 

.  x  3 +  y 2 = 1 , 

 x y = 1  . 

2

Solution 

Define 

.  f ≡  x  3 +  y 2 − 1 , 

 g ≡  x y − 1  . 

2

The  Jacobian  matrix .  J  is  given  by 





3 x 2 2 y

.  J =

 , 

 y

 x

and  its  inverse .  J −1 is 





 x

− 2 y

3 x 3−2 y 2

3 x 3−2 y 2

.  J −1 =

 . 

−

 y

3 x 2

3 x 3−2 y 2

3 x 3−2 y 2

Thus, 





⎛





⎞

 x

− 2 y





 x 4− x y 2+1 + y

3 x 3−2 y 2

3 x 3−2 y 2

 x 3 +  y 2 − 1

⎝

3 x 3−2 y 2

⎠

.  J −1f =

=

 . 

−

 y

3 x 2

 x y − 1

4 x 3  y−3 x 2−2 y 3+2 y

3 x 3−2 y 2

3 x 3−2 y 2

2

6 x 3−4 y 2

The  iteration  scheme  is  thus  expressed  as 





⎛





⎞

 x 4−

+ +

 n

 xn y 2 n  1

 yn

 xn+1

 xn

⎝

3 x 3−2 y 2

⎠

. 

=

−

 n

 n

 . 

(4.6) 

 y

4 x 3

−2 y 3+2 y

 n+1

 yn

 n yn −3 x  2

 n

 n

 n

6 x 3−

 n

4 y 2 n

Equation  (4.6)  can  be  implemented  in  C  as:

110

4 Roots of.  f (x) = 0

#include <stdio.h> 

#include <math.h> 

int main() 

{ 

double x = 1.0, y = 1.0; 

int i, n; 

printf("Enter x, y and # of iterations = "); 

scanf("%lf %lf %d", &x, &y, &n); 

for (i = 0; i < = n; 

i++) 

{ 

x = x -(pow(x,4) + y - x*(1 + y*y))/(3*pow(x,3) - 2*y*y); 

y = y -(-3*x*x + 2*y + 4*pow(x,3)*y -

2*pow(y,3))/(6*pow(x,3) - 4*y*y); 

} 

printf("%f %f\n", x, y); 

return 0; 

} 

The  output  looks  like: 

$ gcc newton2.c -lm 

$ ./a.out 

Enter x, y and # of iterations = 1 1 4 

0.877275 0.569947 

$ ./a.out 

Enter x, y and # of iterations = 1 1 5 

0.877275 0.569947 

Starting  with  the  initial  guess.  (x, y) =  ( 1 .  0 ,  1 .  0 ),  convergence  was  achieved  at.  (x, y) =

 ( 0 .  877275 ,  0 .  569947 )  after  only  4  iterations.  Note  that  this  solution  represents  just  one  of the  possible  roots.  To  find  other  roots,  it  is  necessary  to  use  different  initial  guesses. 

4.2.3

Exercise 

1.  Determine  all  the  roots  of  the  equation 

.  ex − 3 x = 0 , 

using  the  bisection  method. 

2.  Find  the  value  of .  x  that  satisfies 



.  x  sin  x =  ex −  x  sin  x  2  , by  applying  Newton’s  method  within  the  interval .[−2 ,  2]. 

[image: Image 18]

Numerical  Differentiation 

5

5.1

Introduction 

Analytical  differentiation  of  a  function  is  always  feasible,  regardless  of  its  complexity, provided  the  function  is  explicitly  defined.  Computer  algebra  systems,  such  as   Mathematica 

[ 7]  and  Wolfram  Alpha, 1 can  differentiate  any  analytical  function  exactly. 

Numerical  differentiation  becomes  necessary  only  when  a  function  is  provided  in  a numerical  form.  Consider  Table  5.1  which  defines .  f (x)  numerically. 

Table  5.1  Example  of 

.  x

.  f (x )

numerically  given  function 

1.0

1.0 

1.5

3.375 

2.0

8.0 

2.5

15.625 

The  graph  of .  f (x)  is  shown in Fig.  5.1. Our  objective  is  to  estimate .  f  (x)  for  each .  x  in the  table  using  difference  approximations. 

Graphically,  differentiation  corresponds  to  the  slope  or  rate  of  change.  For  instance,  to approximate .  f  ( 2 .  0 ),  consider  the  following  two  approaches: 1.  By  comparing .  f ( 2 .  0 )  with.  f ( 2 .  5 ),  the  rate  of  change  is f ( 2 .  5 ) −  f ( 2 .  0 )

. 

= 15 .  625 − 8 .  0 = 15 .  25 . 

0 .  5

0 .  5

2.  By  comparing .  f ( 2 .  0 )  with.  f ( 1 .  5 ),  the  rate  of  change  is 1  www.wolframalpha.com. 
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 f ( 2 .  0 ) −  f ( 1 .  5 )

. 

= 8 .  0 − 3 .  375 = 9 .  25 . 

0 .  5

0 .  5

The  discrepancy  between  these  two  approximations  suggests  that  neither  provides  an accurate  estimate  of .  f  ( 2 .  0 ). 

Fig.  5.1  Graph  of.  f (x)

5.2

Forward/Backward/Central  Difference 

There  are  three  fundamental  schemes  for  numerical  differentiation  that  utilize  three  neigh-boring  points.  Each  of  these  schemes  can  be  derived  from  the  Taylor  series  expansion  of 

.  f (x +  h). 

•  Forward  difference 

In  the  forward  difference  scheme,  the  derivative  of .  f (x)  is  approximated  by  comparing 

.  f (x +  h)  and .  f (x ).  The  Taylor  series  expansion  of .  f (x )  is  given  by 

.  f (x +  h) =  f (x ) +  h f  (x ) +  h 2  f  (x ) +  h 3  f  (x ) + · · ·

2! 

3! 

≈  f (x) +  h f  (x). 

(5.1) 

By  retaining  only  the  first  two  terms  of  the  Taylor  series,  the  derivative  .  f  (x)  can  be approximated  as 

.  f  (x ) ≈  f (x +  h) −  f (x ) . 

(5.2)

 h
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This  method  is  known  as  the   forward  difference  scheme.  For  instance,  using  Eq.  (5.2),  the approximation  of .  f  ( 2 )  from  Table  5.1  is  calculated  as.  ( f ( 2 .  5 ) −  f ( 2 .  0 ))/ 0 .  5 = 15 .  25. 

•  Backward  difference 

The  backward  difference  scheme  is  derived  by  substituting  .  h  with  .− h  in  Eq.  (5.1), resulting  in 

.  f (x −  h) =  f (x ) −  h f  (x ) +  h 2  f  (x ) −  h 3  f  (x ) + · · ·

2! 

3! 

≈  f (x) −  h f  (x). 

(5.3) 

From  Eq.  (5.3),  the  derivative .  f  (x)  can  be  approximated  by 

.  f  (x ) ≈  f (x ) −  f (x −  h) . 

(5.4) 

 h

This  method  is  known  as  the   backward  difference  scheme.  For  example,  using  Eq.  (5.4), the  approximation  of .  f  ( 2 )  from  Table  5.1  is.  ( f ( 2 .  0 ) −  f ( 1 .  5 ))/ 0 .  5 = 9 .  25 . 

•  Central  difference 

Equations  (5.1)  and  (5.3)  are  restated  as 

.  f (x +  h) =  f (x ) +  h f  (x ) +  h 2  f  (x ) +  h 3  f  (x ) + · · ·  , (5.5) 

2! 

3! 

.  f (x −  h) =  f (x ) −  h f  (x ) +  h 2  f  (x ) −  h 3  f  (x ) + · · ·  . 

(5.6) 

2! 

3! 

Subtracting  Eq.  (5.6)  from  Eq. (5.5)  yields 

.  f (x +  h) −  f (x −  h) = 2 h f  (x ) + 2 h 3  f  (x ) + · · ·  . 

3! 

By  neglecting  terms  of  order .  h 3 and  higher, .  f  (x)  can  be  approximated  as 

.  f  (x ) ≈  f (x +  h) −  f (x −  h) . 

(5.7) 

2 h

This  is  known  as  the   central  difference  scheme. 

Using  Eq.  (5.7),  the  approximation  of .  f  ( 2 )  from  Table  5.1  is 

.  f  ( 2 ) ≈  f ( 2 .  5 ) −  f ( 1 .  5 ) = 12 .  25 . 

2 × 0 .  5

Given  that.  f (x)  in  Table  3.1  is.  f (x) =  x 3,  it  follows  that.  f  (x) = 3 x 2 and  thus.  f  ( 2 ) = 3 ×

22 = 12.  From  the  above  analysis,  it  is  evident  that  the  central  difference  method  provides the  most  accurate  approximation,  as  its  truncation  error  is  of  the  order  .  h 2.  In  contrast,  the truncation  errors  for  the  forward  and  backward  difference  methods  are  of  the  order .  h. 
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Table  5.2  Example  of  numerical  differentiation 

Time  0.0

0.1

0.2

0.3

0.4

0.5 

 f  (x)

0

0.0998  0.1986  0.2955  0.3894  0.4794 

0.6

0.7

0.8

0.9

1.0 

0.5646  0.6442  0.7173  0.7833  0.8414 

To  approximate  the  second-order  derivative  of  .  f (x), 2 consider  the  following  approach. 

Adding  Eqs.  (5.5)  and  (5.6)  yields 

.  f (x +  h) +  f (x −  h) = 2  f (x ) +  h 2  f  (x ) +  . . . 

from  which .  f  (x)  can  be  approximated  as 

.  f  (x ) ≈  f (x +  h) +  f (x −  h) − 2  f (x ) . 

(5.8) 

 h 2

Equation  (5.8)  provides  a  formula  for  approximating  the  second-order  derivative  of .  f (x). 

5.2.1

Example 

Table  5.2  presents  the  numerical  values  of.  f (x) (numerical  values  of.sin  x  from.  x = 0 .  0 ∼

1 .  0). 

The  following  code  implements  the  central  difference  scheme:

#include <stdio.h> 

#define N 11

int main()

{

double y[N] = {0, 0.0998, 0.1986, 0.2955, 0.3894, 0.4794, 0.5646, 

0.6442, 0.7173, 0.7833, 0.8414}; 

double central[N], h = 0.1; 

int i; 

for (i = 1; i < N-1; i++)

central[i] = (y[i + 1] - y[i - 1])/(2*h); 

printf (" 

x

Central \n---------------------------\n"); 

for (i = 1; i < N - 1; i++)

printf ("%f %f\n", i*h, central[i]); 

return 0; 

}

2  If.  f (x)  represents  a  position  at  time,.  x,.  f  (x)  is  its  acceleration. 
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The  output  is: 

$ gcc central.c

$ ./a.out

x

Central

---------------------------

0.100000 0.993000

0.200000 0.978500

0.300000 0.954000

0.400000 0.919500

0.500000 0.876000

0.600000 0.824000

0.700000 0.763500

0.800000 0.695500

0.900000 0.620500

The  central  difference  scheme  generally  offers  higher  accuracy  compared  to  both  the forward  and  backward  difference  schemes.  However,  as  demonstrated  in  the  output  above, the  central  difference  scheme  cannot  compute.  f  ( 0 .  0 )  and.  f  ( 1 .  0 )  since  the  values.  f (−0 .  1 ) and  .  f ( 1 .  1 )  are  not  available.  Opting  for  the  forward  difference  scheme  at  .  f  ( 0 .  1 )  or  the backward  difference  scheme  at .  f  ( 1 .  0 )  represents  a  suboptimal  compromise. 

There  is  a  method  to  approximate  .  f  ( 0 .  0 )  and  .  f  ( 1 .  0 )  with  the  same  accuracy  as  the central  difference  scheme.  By  replacing .  h  in  Eq.  (5.6)  with .2 h,  we  obtain 

.  f (x − 2  h) =  f (x ) − 2  h f  (x ) + 4  h 2  f  (x ) +  . . . 

(5.9) 

2! 

The  .  h 2 term  in  Eq.  (5.9)  can  be  eliminated  by  subtracting  Eq.  (5.9)  from  four  times Eq.  (5.6),  yielding 

. 4  f (x −  h) −  f (x − 2  h) = 3  f (x ) − 2  h f  (x ) +  ( higher order terms ) . . . 

from  which .  f  (x)  can  be  solved  as 

.  f  (x ) ∼ 3  f (x ) − 4  f (x −  h) +  f (x − 2  h) . 

(5.10) 

2  h

Equation  (5.10)  achieves  the  same  order  of  accuracy  as  the  central  difference  scheme. 

The  trade-off  is  that  three  values  of .  f (x)  are  required  instead  of  two. 

For  .  x = 1 .  0,  .  f  ( 1 .  0 )  can  be  approximated  using  .  f ( 1 .  0 ),  .  f ( 0 .  9 )  and  .  f ( 0 .  8 ).  Thus,  the previous  C  code  can  be  modified  as:
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#include <stdio.h> 

#define N 11 

int main() 

{ 

double y[N] = {0, 0.0998, 0.1986, 0.2955, 0.3894, 0.4794, 0.5646, 

0.6442, 0.7173, 0.7833, 0.8414}; 

double central[N], h = 0.1; 

int i; 

for (i = 1; i < N-1; i++) central[i] = (y[i + 1]-y[i - 1])/(2*h); 

central[10] = (3*y[10] - 4*y[9] + y[8])/(2*h); 

printf (" 

x 

Central \n---------------------------\n"); 

for (i = 1; i < N; 

i++) printf("%f %f\n", i*h, central[i]); 

return 0; 

} 

The  output  is: 

$/home/nomura: gcc prog.c

$/home/nomura: ./a.out

x

Central

---------------------------

0.100000 0.993000

0.200000 0.978500

0.300000 0.954000

0.400000 0.919500

0.500000 0.876000

0.600000 0.824000

0.700000 0.763500

0.800000 0.695500

0.900000 0.620500

1.000000 0.541500

5.3

Exercise 

1.  Derive  a  formula  analogous  to  Eq. (5.10)  for  the  case  where .  x = 0 (the  first  point). 

2.  The  altitude  (in  feet)  from  sea  level  and  the  corresponding  time  (in  seconds)  for  a  hypothetical  rocket  were  recorded  as  follows:

5.3 Exercise
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Time

0

20

40

60

80

100 

Altitude

370

9170

23835

45624

62065

87368 

120

140

160

180

200 

97355

103422

127892

149626

160095 

Numerically  compute  the  velocity  from  the  table  above  for.  t  = 0  to.  t  = 200,  maintaining the  same  accuracy  as  the  central  difference  scheme.  At  .  t  = 200, use  Eq. (5.10) and  at  

.  t  = 0,  use  the  formula  derived  in  Problem  1. 

[image: Image 19]
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6

6.1

Introduction 

Any  function  provided  explicitly  can  be  differentiated  analytically,  but  very  few  functions can  be  integrated  analytically. 1 This  is  why  numerical  integration  is  often  more  critical  than numerical  differentiation. 

While  analytical  integration  is  generally  a  challenging  task,  graphically  it  is  equivalent to  computing  the  area  enclosed  by.  f (x)  and  the.  x-axis  from  the  lower  and  upper  bounds  of integration. 

Three  methods 2 are  widely  used  to  numerically  integrate  a  function,  .  f (x):  (1)  the  rectangular  rule,  (2)  the  trapezoidal  rule,  and  (3)  Simpson’s  rule.  As  will  be  demonstrated  in the  subsequent  sections,  Simpson’s  rule  provides  the  best  approximation  among  them  and is  considered  the  de  facto  standard  for  numerical  integration. 

6.2

Rectangular  Rule 

 b

As  illustrated  in  Fig. 6.1, the  rectangular  rule  approximates. 

 f (x) dx  by  summing

 a

.  n  rectan-

gles  over  the  interval.[ a, b].  Depending  on  which  side  of  the  rectangle  is  chosen  to  represent the  value  of.  f (x),  the  left  rectangular  rule  and  the  right  rectangular  rule  can  be  considered. 

1  Even  a  simple  function  such  as  .sin 1 cannot  be  integrated  analytically  in  terms  of  elementary x

functions. 

2  The  three  methods  approximate.  f (x)  using  polynomials  of  order  0,  1,  and  2,  respectively. 
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Fig.  6.1  Rectangular  rule 

In  the  left  rectangular  rule,  the  integral, .  I ,  is  approximated  by 

.  I

∼  h ×  f 0 +  h ×  f 1 +  h ×  f 2 + · · · +  h ×  fn−1

=  h ( f 0 +  f 1 + · · · +  fn−1 ) , 

(6.1) 

where.  h =  (b −  a)/n  is  the  step  size,  and.  f 0 , f 1 , f 2 , . . . , fn−1 are  the  values  of  the  function at  the  left  endpoints  of  the  equally  divided  subintervals  of .[ a, b] starting  from .  a (the  lower bound).  As  an  example,  consider 

1

4

.  I =

 d x. 

0

1 +  x 2

Since  this  integration  can  be  carried  out  analytically 3 and  the  exact  value  is.  π,  it  serves  as  a benchmark  for  assessing  the  accuracy  of  each  numerical  integration  scheme.  The  rectangular rule,  as  expressed  in Eq. (6.1), can  be  implemented  as 

#include <stdio.h> 

double f(double x) 

{ 

return 4.0/(1.0 + x*x); 

} 

int main() 

{ 

int i, n; 

double a = 0.0, b = 1.0, h, s = 0.0, x; 

printf("Number of partitions = "); 

scanf("%d", &n); 

3 

 b

1  π

. 

 f (x) dx = arctan  x

=  . 

0

 a

4

. 

6.3
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h = (b - a)/n; 

for (i =  0; i < n; 

i++) s = s + f(a +  

i*h); 

s = s*h; 

printf("Result = %f\n", s); 

return 0; 

} 

The  output  is: 

$ gcc rectangle.c 

$ ./a.out 

Number of partitions = 10 

Result = 3.239926 

$ ./a.out 

Number of partitions = 100 

Result = 3.151576 

$ ./a.out 

Number of partitions = 10000 

Result = 3.141693 

$ ./a.out 

Number of partitions = 100000 

Result = 3.141603 

$ ./a.out 

Number of partitions = 1000000 

Result = 3.141594 

The  convergence  of  the  rectangular  rule  is  marginal.  Achieving  an  accuracy  of  five  significant  figures  requires  1,000,000  iterations. 

6.3

Trapezoidal  Rule 

As  depicted  in  Fig. 6.2, the  trapezoidal  rule  approximates  the  integral,  .  I ,  by  using  a  set  of trapezoids  over  t he interval. 

The  sum  of  all  the  trapezoids  is  expressed  as 

.  I ∼  h ( f 0 +  f 1 ) +  h ( f 1 +  f 2 ) + · · · +  h ( fn−1 +  fn ) 2

2

2

=  h ( f 0 + 2  f 1 + 2  f 2 + · · · + 2  fn−1 +  fn) 2

=  h ( f 0 +  fn) +  h ×  ( f 1 +  f 2 +  f 3 + · · · +  fn−1 ) . 

(6.2) 

2

The  following  code  is  implementation  of  Eq. (6.2). 

[image: Image 21]
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Fig.  6.2  Trapezoidal  rule 

#include <stdio.h> 

double f(double x) 

{ 

return 4.0/(1.0 + x*x); 

} 

int main() 

{ 

int i, n ; 

double a = 0.0, b = 1.0, h, s = 0.0, x; 

printf("Enter number of partitions = "); 

scanf("%d", &n); 

h = (b - a)/n ; 

for (i = 1; i <= n - 1; i++) s = s + f(a + i*h); 

s = h/2*(f(a) + f(b)) + h*s; 

printf("%20.12f\n", s) ; 

return 0; 

} 

The  output  is: 

$ gcc trapezoid.c 

$ ./a.out 

Enter number of partitions = 10 

3.139925988907 

$ ./a.out 

Enter number of partitions = 100 

3.141575986923 

$ ./a.out 

Enter number of partitions = 1000 

3.141592486923 

The  convergence  of  the  trapezoidal  rule  is  significantly  faster  than  that  of  the  rectangular rule. 

[image: Image 22]
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In  the  rectangular  rule,  a  segment  of .  f (x)  is  approximated  by  a  flat  line  (a . 0th-order  polynomial),  whereas  in  the  trapezoidal  rule,  it  is  approximated  by  a  straight  line  with  a  slope (a . 1st-order  polynomial).  As  expected,  the  next  level  of  refinement  involves  using  a  curved line  (a . 2nd-order  polynomial),  leading  to  Simpson’s  rule. 

Following  Fig. 6.3,  we  first  seek  a  second-order  polynomial  that  passes  through  the  three points  shown  in  the  figure.  The  curve  that  passes  through  the  points.  (− h, f (− h)),.  ( 0 , f ( 0 )), and .  (h, f (h))  is  assumed  to  be 

.  y =  ax  2 +  bx +  c. 

Imposing  the  condition  that  this  equation  passes  through  the  three  points  results  in 

.  f (− h) =  ah 2 −  bh +  c, 

 f ( 0 ) =  c, 

 f (h) =  ah 2 +  bh +  c, 

from  which .  a, .  b  and .  c  can  be  solved  as 

.  a

=  f (h) +  f (− h) − 2  f ( 0 ), 

2 h 2

 b =  f (h) −  f (− h) , 

2 h

 c =  f ( 0 ). 

Fig.  6.3  Second  order 

polynomial  that  passes  three 

points

124

6

Numerical Integration

Now  that .  y  is  determined,  its  integral  from .− h  to.  h  is h

 h

 f (h) +  f (− h) − 2  f ( 0 )

. 

 (ax 2 +  bx +  c)dx =

 x 2 +  f (h) −  f (− h) x +  f ( 0 ) dx

− h

− h

2 h 2

2 h

=  h ( f (− h) + 4  f ( 0 ) +  f (h)) . 

(6.3) 

3

The  result  in  Eq. (6.3)  indicates  that  the  area  under  the  curve  passing  through  the  points 

.  (− h, f (− h)),  .  ( 0 , f ( 0 )),  an  d .  (h, f (h))  can  be  expressed  as  a  weighted  average  of .  f (− h), 

.  f ( 0 ),  an  d .  f (h)  with  weights  of  1,  4,  and  1,  respectively,  as  follows: h

. 

 y d x =  f (− h) + 4  f ( 0 ) +  f (h) ×  ( 2 h). 

− h

6

Applying  this  approach  to  each  segment  in  the  interval .[ a, b] yields 

.  I

∼  h (( f 0 + 4  f 1 +  f 2 ) +  ( f 2 + 4  f 3 +  f 4 ) + · · · +  ( f 2 n−2 + 4  f 2 n−1 +  f 2 n)) 3

∼  h ( f 0 + 4  f 1 + 2  f 2 + 4  f 3 + 2  f 4 + · · · + 2  f 2 n−2 + 4  f 2 n−1 +  f 2 n) , (6.4) 

3

where 

.  h =  b −  a . 

2 n

Equation  (6.4)  is  known  as  Simpson’s  rule.  Note  that  the  number  of  partitions  for  Simpson’s rule  must  be  an  even  number  (.= 2 n). 

For  coding  purposes,  it  is  convenient  to  rewrite  Eq.  (6.4)  a  s

.  I

=  h ( f 0 +  f 2 n)

3

+ h × 4  ( f 1 +  f 3 +  f 5 + · · · +  f 2 n−1 ) 3

+ h × 2  ( f 2 +  f 4 +  f 6 + · · · +  f 2 n−2 ) . 

(6.5) 

3

Simpson’s  rule,  as  described  in  Eq. (6.5), can  be  implemented  using  the  following  code: 

#include <stdio.h> 

double f(double x) 

{ 

return 4.0/(1.0 + x*x); 

} 

int main() 

{ 

int i, n; 

double a = 0.0, b = 1.0, h, s1 = 0.0, s2 = 0.0, s3 = 0.0, x; 
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printf("Enter number of partitions (must be even) = "); 

scanf("%d", &n); 

h = (b - a)/(2.0*n); 

s1 = (f(a) + f(b)); 

for (i = 1; i < 2*n; i = i + 2) s2 = s2 + f(a +  

i*h); 

for (i = 2; i < 2*n; i = i + 2) s3 = s3 + f(a + i*h); 

printf("%20.12f\n", (h/3.0)*(s1 + 4.0*s2 + 2.0*s3)); 

return 0; 

} 

The  output  is: 

$ gcc simpson.c 

$ ./a.out 

Enter number of partitions (must be even) = 10 

3.141592652970 

$ ./a.out 

Enter number of partitions (must be even) = 20 

3.141592653580 

As  observed  in  the  output  above,  convergence  is  achieved  with  only  10  partitions.  Simpson’s  rule  is  considered  the  de  facto  standard  for  numerical  integration. 

While  it  might  be  tempting  to  extend  Simpson’s  rule  to  approximate.  f (x)  using  a  third-order  polynomial  or  higher,  such  extensions  are  generally  excessive  and  do  not  significantly enhance  accuracy. 

According  to  error  analysis,  the  truncation  error  for  each  rule  is  as  follows: 

•  Rectangular  rule 

.  I ∼  A +  f  (ξ)h, 

•  Trapezoidal  rule 

.  I ∼  A +  f  (ξ)h 2 , 

•  Simpson’s  rule 

.  I ∼  A +  f  (ξ)h 3 , 

where.  I  is  the  exact  integral  value,.  A  is  its  approximation,.  h  is  the  step  size,  and.  ξ  is  a  value within  the  interval. 

As  shown  above,  the  accuracy  of  numerical  integration  depends  not  only  on  the  step  size 

.  h  but  also  on  the  behavior  of  the  derivatives  of .  f (x ). 

√

For  example,  consider  using  .  f (x) =

1 −  x 2 to  approximate  .  π/ 4 with  the  code  pro-

vided.  Even  with  Simpson’s  rule,  the  convergence  rate  is  notably  slow.  This  occurs  because 

√

the  slope  of.  f (x) =

1 −  x 2 tends  to  infinity  as.  x  approaches  1,  causing.  f  (ξ),.  f  (ξ),  and
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.  f  (ξ)  to  become  singular.  These  singularities  contribute  to  the  slow  convergence  in  the numerical  integration. 

The  three  methods  introduced  above  are  collectively  known  as  the  Newton-Cotes  methods,  where  .  f (x)  is  approximated  by  a  polynomial  that  is  integrated  over  the  interval  of interest.  It  is  possible  to  extend  these  formulas  by  using  higher-order  polynomials,  yielding increasingly  accurate  approximations. 

However,  Newton-Cotes  methods  can  become  inefficient  for  high-degree  polynomials, especially  as  the  number  of  sample  points  grows,  which  may  introduce  numerical  instability. 

Alternatively,  the  Gaussian  quadrature  method  [ 10]  provides  an  efficient  approach, using  a  fixed  number  of  sample  points  to  achieve  high  accuracy.  Although  Gaussian  quadrature  is  not  covered  in  this  book,  it  represents  a  valuable  option  for  cases  requiring  efficient numerical  integration. 

6.5

Exercise 

1.  (a)  Evaluate  analytically 

3 

. 

2 − x 2 + 4 x − 3  dx. 

1

(b)  Write  a  C  program  to  numerically  integrate  the  above  integral  using  both  the  rectangular  rule  and  Simpson’s  rule. 

2.  (a)  Evaluate  analytically 

1

. 

 x  log  x d x. 

0

(b)  Write  a  C  program  to  numerically  integrate  the  above  integral  using  Simpson’s  rule. 

Note  that.log  x → −∞ as.  x → 0,  so  the  challenge  is  to  address  this  singularity  at.  x = 0. 

[image: Image 23]
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7.1

Introduction 

In  Chap. 4, we  discussed  numerical  techniques  for  solving  a  single  equation,  .  f (x) = 0.  In this  chapter,  we  extend  our  focus  to  numerical  methods  for  solving  systems  of  simultaneous equations. 

In  many  engineering  and  scientific  applications,  discretization  and  linearization  of  problems  often  lead  to  the  need  to  solve  systems  of  linear  simultaneous  equations.  Addressing such  systems  is  a  fundamental  topic  in  numerical  analysis. 

Students  who  have  taken  a  linear  algebra  course  may  be  familiar  with  Cramer’s  rule, which  provides  a  method  for  solving  linear  simultaneous  equations  using  determinants. 

However,  Cramer’s  rule  is  practical  only  for  small  systems  with  2  or  3  equations.  In  real-world  applications,  systems  can  include  up  to  a  million  equations,  necessitating  the  use  of specialized  methods  designed  for  large-scale  computation. 

A  system  of  linear  simultaneous  equations  can  be  expressed  in  matrix-vector  form  as 

.  Ax = c , 

or 

⎛

⎞ ⎛ ⎞

⎛ ⎞

 a 11  a 12  . . . a 1 n

 x 1

 c 1

⎜

⎜  a

⎟ ⎜ ⎟

⎜ ⎟

21  a 22  . . . a 2 n ⎟ ⎜  x 2 ⎟

⎜  c 2 ⎟

.  ⎜

=

 , 

⎝  .. 

 . . . ⎟ ⎜  . ⎟

⎜  . ⎟

 . 

 .. .. .. ⎠⎝  .. ⎠ ⎝  .. ⎠

 an 1  an 2  . . . ann

 xn

 cn

or  equivalently 
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⎧

⎪

⎪

⎪  a

⎪ 11 x 1 +  a 12 x 2 +  a 13 x 3 +  . . . +  a 1 nxn =  c 1 , 

⎪

⎨  a 21 x 1 +  a 22 x 2 +  a 23 x 3 +  . . . +  a 2 nxn =  c 2 , 

. ⎪  a 31 x 1 +  a 32 x 2 +  a 33 x 3 +  . . . +  a 3 nxn =  c 3 , (7.1) 

⎪

⎪

⎪

⎪

 . . . . . . 

⎩  an 1 x 1 +  an 2 x 2 +  an 3 x 3 +  ... +  annxn =  cn. 

The  number .  n  represents  the  number  of  equations  and  the  size  of  the  matrix, .  A. 

Cramer’s  Rule 

Cramer’s  rule  is  suitable  for  systems  of  two  or  three  simultaneous  equations.  The  determinant of  a .2 × 2 matrix  is  defined  as 





 a



11  a 12 

.  a

≡  a 11 a 22 −  a 12 a 21 . 

21  a 22 . 

Similarly,  the  determinant  for  a .3 × 3 matrix  is  defined  as 





 a



11  a 12  a 13





.  a 21  a 22  a 23 ≡  a 11 a 22 a 33 +  a 12 a 23 a 31 +  a 21 a 32 a 13





 a



31  a 32  a 33

− a 13 a 22 a 31 −  a 12 a 21 a 33 −  a 23 a 32 a 11 . 

The  determinant  of  an .  n ×  n  matrix  (where.  n >  3)  can  be  expressed  in  a  manner  similar  to the  cases  above.  It  involves .  n! terms,  each  of  which  is  a  product  of.  n  elements. 

Using  determinants,  the  solutions  for  the  following  two  simultaneous  equations 

.  a 11  x 1 +  a 12  x 2 =  c 1 , 

 a 21 x 1 +  a 22 x 2 =  c 2 , 

are  expressed  as 





 c



1  a 12





 c



2  a 22

.  x 1 = 

=  c 1 a 22 −  c 2 a 12  , 

 a



11  a 12

 a 11 a 22 −  a 12 a 21





 a



21  a 22





 a



11  c 1





 a



21  c 2

 x 2 = 

=  c 2 a 11 −  c 1 a 21  . 

 a



11  a 12

 a 11 a 22 −  a 12 a 21





 a



21  a 22
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Similarly,  for  three  simultaneous  equations, 

 a 11 x 1 +  a 12 x 2 +  a 13 x 3 =  c 1 , 

.  a 21  x 1 +  a 22  x 2 +  a 23 x 3 =  c 2 , a 31 x 1 +  a 32 x 2 +  a 33 x 3 =  c 3 , the  solution  is  expressed  as 





 c



1  a 12  a 13





 c



2  a 22  a 23





 c



3  a 32  a 33

.  x 1 = 

 , 





 a



11  a 12  a 13





 a



21  a 22  a 23





 a



31  a 32  a 33





 a



11  c 1  a 13





 a



21  c 2  a 23





 a



31  c 3  a 33

 x 2 = 

 , 





 a



11  a 12  a 13





 a



21  a 22  a 23





 a



31  a 32  a 33





 a



11  a 12  c 1





 a



21  a 22  c 2





 a



31  a 32  c 3

 x 3 = 

 . 





 a



11  a 12  a 13





 a



21  a 22  a 23





 a



31  a 32  a 33

These  formulas  provided  for  the  solutions  are  known  as   Cramer’s  rule.  Although  Cramer’s rule  can  be  extended  to  handle  more  than  three  simultaneous  equations  using  determinants of  larger  matrices,  its  practical  application  is  generally  limited  to  systems  with  two  or  three equations. 

This  limitation  arises  from  the  computational  complexity  involved  in  calculating  the determinant.  For  an.  n ×  n  matrix,  the  determinant  involves.  n! terms,  as  illustrated  for. 2 × 2

and.3 × 3 matrices  above.  Each  term  requires.  n − 1 multiplications.  Consequently,  the  total number  of  multiplications  required  for  Cramer’s  rule  with .  n  simultaneous  equations  is .  n! ·

 (n − 1 ) ·  (n + 1 ),  including  the  denominator.  For.  n = 4,  this  results  in  360  multiplications, and  for .  n = 10,  it  amounts  to  359,251,200  multiplications. 

The  approximate  computational  time  for  solving.  n  simultaneous  equations  using  Cramer’s rule  on  a  100  MFLOPS  computer  (an  older  PC)  is  estimated  as  shown  in  Table  7.1  [ 11]. 
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Table  7.1  Time  required  for  Cramer’s  rule 

n

10

12

14

16

18

20 

Time

0.4  s

1  min. 

3.6  h

41  d

38  years

16,000  years 

7.2

Gauss-Jordan  Elimination  Method 

The  Gauss-Jordan  elimination  method 1 is  a  practical  technique  for  systematically  solving a  large  set  of  simultaneous  equations  numerically.  While  it  is  less  efficient  than  the  LU 

decomposition  method  discussed  in  Sect. 7.3,  it  remains  widely  taught  as  a  fundamental numerical  technique  for  solving  simultaneous  equations. 

This  method  is  based  on  the  principle  of  linearity  (also  referred  to  as  the  principle  of  superposition),  which  states  that  if  two  linear  equations  are  combined,  their  linear  combination results  in  another  linear  equation.  For  example,  consider  the  following  two  equations: 

.  a 11  x 1 +  a 12  x 2 +  . . . +  a 1 n xn =  c 1 , (7.2) 

.  a 21  x 1 +  a 22  x 2 +  . . . +  a 2 n xn =  c 2 . 

(7.3) 

Multiplying .  λ 1 by  Eq. (7.2)  an  d.  λ 2 by  Eq.  (7.3)  and  adding  the  two  yield 

.  (λ 1 a 11 +  λ 2 a 12 )x 1 +  (λ 1 a 21 +  λ 2 a 22 )x 2 +  . . . +  (λ 1 a 1 n +  λ 2 a 2 n )xn =  λ 1 c 1 +  λ 2 c 2 . 

(7.4) 

Equation  (7.4)  represents  another  valid  linear  equation. 

The  Gauss-Jordan  elimination  method  involves  selecting.  λ  appropriately  to  successively transform  Eqs.  (7.1)  into 

⎧

⎪

⎪

⎪ 1 ×  x

⎪

1 + 0 ×  x 2 + 0 ×  x 3 +  . . . + 0 ×  xn =  d 1 , 

⎪

⎨ 0 ×  x 1 + 1 ×  x 2 + 0 ×  x 3 +  . . . + 0 ×  xn =  d 2 , 

.  ⎪ 0 ×  x 1 + 0 ×  x 2 + 1 ×  x 3 +  . . . + 0 ×  xn =  d 3 , 

⎪

⎪

⎪

⎪

 . . . . . . 

⎩ 0 ×  x 1 + 0 ×  x 2 + 0 ×  x 3 +  ... + 1 ×  xn =  dn. 

The  sequence, .{ d 1 , d 2 , d 3 , . . . dn},  is  the  solution  for.{ x 1 , x 2 , x 3 , . . . xn}. 

7.2.1

Example 

The  Gauss-Jordan  elimination  method  is  illustrated  by  the  following  example.  The  objective is  to  transform  Eq.  (7.5)  into  Eq. (7.6)  by  using  the  diagonal  elements  as  pivots. 

1  Also  known  as  Gaussian  elimination  or  row  reduction. 
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⎫

2 x −  y +  z = 2 , ⎬

. − x + 3 y + 3 z = 3 , ⎭

(7.5) 

2 x +  y + 4 z = 1 . 

.  ⇒

⎫

1 x + 0 y + 0 z =?  , ⎬

. 0 x + 1 y + 0 z =?  , ⎭

(7.6) 

0 x + 0 y + 1 z =?  . 

The  following  table  can  be  used  for  this  conversion. 

Ref.  line  number

.  x

.  y

.  z

.=

Comment 

(1)

2

. −1

1

2 

(2)

. −1

3

3

3 

(3)

2

1

4

1 

(4)

1

. −1/2

1/2

1

.  ( 1 ) ÷ 2

(5)

. −1

3

3

3 

(6)

2

1

4

1 

(7)

1

. −1/2

1/2

1 

(8)

0

5/2

7/2

4

.  ( 5 ) −  ( 4 ) ×  (−1 )

(9)

0

2

3

. −1

.  ( 6 ) −  ( 4 ) × 2

(10)

1

. −1/2

1/2

1 

(11)

0

1

7/5

8/5

.  ( 8 ) ÷  ( 5 / 2 )

(12)

0

2

3

. −1 

(13)

1

0

6/5

9/5

.  ( 10 ) −  ( 11 ) ×  (−1 / 2 ) (14)

0

1

7/5

8/5 

(15)

0

0

1/5

. −21/5

.  ( 12 ) −  ( 11 ) × 2

(16)

1

0

6/5

9/5 

(17)

0

1

7/5

8/5 

(18)

0

0

1

. −21

.  ( 15 ) ÷  ( 1 / 5 )

(19)

1

0

0

27

.  ( 16 ) −  ( 18 ) ×  ( 6 / 5 ) (20)

0

1

0

31

.  ( 17 ) −  ( 18 ) ×  ( 7 / 5 ) (21)

0

0

1

. −21 

In  the  Gauss-Jordan  elimination  method,  the  elements  in  the  first  row  are  divided  by .  a 11 to normalize .  a 11 to  1  (line  (4)). 

Using  .  a 11 = 1 as  a  pivot,  the  elements  .  a 21 and  .  a 31 are  eliminated  (lines  (8)–(9)).  Next, the  elements  in  the  second  row  (line  (8))  are  divided  by  .  a 22 to  normalize  .  a 22 to  1,  which then  serves  as  the  next  pivot.  Using .  a 22 = 1,  the  elements.  a 12 and.  a 32 are  eliminated  (lines (13)–(15)). 
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This  process  is  repeated  for .  a 33.  Finally,  lines  (19)–(21)  yield  the  results: 

.  x = 27 , 

 y = 31 , z = −21 . 

It  can  be  shown  that  the  number  of  multiplications  required  for  the  Gauss-Jordan  elimination  method  is  approximately  proportional  to  .  n 3.  For  .  n = 10,  this  amounts  to  1,000 

multiplications,  in  contrast  to  the  359,251,200  multiplications  required  by  Cramer’s  rule. 

The  inverse  of  the  matrix.  A  can  be  computed  using  the  Gauss-Jordan  elimination  method by  augmenting  the  matrix  .  A  with  the  identity  matrix  .  I  and  performing  row  operations  to transform .  A  into .  I . 

.  ( A |  I )

i.e. 

⎛

⎞

⎛

⎞

1

1

2 −1 1 1 0 0

1 − 1

0 0

2 2

2

⎝

⎠

⎜

7

1

⎟

. 

−1 3 3 0 1 0 → ⎝ 0 5

1 0 ⎠

2

2

2

2

1 4 0 0 1

0 2 3 −1 0 1

⎛

⎞

⎛

⎞

1 0 6

3

1

0

5

5

5

1 0 0 9

5 −6

→ ⎜

⎝

⎟

0 1 7

1

2

0 ⎠ → ⎝ 0 1 0 10 6 −7 ⎠  . 

5

5

5

0 0 1 − 7 − 4 1

0 0 1 −7 −4 5

5

5

5

The  inverse  of .  A  is  obtained  and  stored  in  the  second  half  of  the  augmented  matrix  as 

⎛

⎞

9

5 −6

⎝

⎠

.  A−1 =

10 6 −7

 . 

−7 −4 5

The  following  code  implements  the  Gauss-Jordan  elimination  method.  Note  that  array indices  in  C  begin  at  0,  whereas  in  linear  algebra,  indices  for  vectors  and  matrices  start  at  1. 

Therefore,  when  coding  linear  algebra  equations  in  C,  each  index  must  be  shifted  by  1. 

In  the  following  program,  the  matrix.  A  and  the  vector.  c  are  combined  and  stored  in  a  2D 

array,  a[3][4]. 

#include <stdio.h> 

#define N 3 

int main() 

{ 

double a[N][N + 1] = {{2, -1, 1, 2},{-1, 3, 3, 3},{2, 1, 4, 1}}; 

double pivot, d; 

int i, j, k; 

for (k = 0; k < N; k++) 

{ 

pivot = a[k][k]; 
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for (j = k; j < N + 1; j++) a[k][j] = a[k][j]/pivot; 

for (i = 0; i < N;  i++) 

{ 

if(i != k) 

{ 

d = a[i][k]; 

for (j = k; j < N + 1; 

j++) a[i][j] = a[i][j] - d*a[k][j]; 

} 

} 

} 

for (i = 0; i < N; 

i++) printf("x[%d]=%f\n", i + 1, a[i][N]); 

return 0; 

} 

The  output  is 

$ gcc gaussjordan.c 

$ ./a.out 

x[1]=27.000000 

x[2]=31.000000 

x[3]=-21.000000 

7.3

LU  Decomposition  (Optional) 

The  Gauss-Jordan  elimination  method  is  suitable  for  solving  large  sets  of  linear  simultaneous equations. 

The  LU  decomposition 2 (also  known  as  LU  factorization)  is  an  enhancement  of  the Gauss-Jordan  elimination  method  that  reduces  the  number  of  operations,  resulting  in  faster execution.  With  LU  decomposition,  the  number  of  operations  is  reduced  to  approximately 

.  n 3 / 3,  compared  to .  n 3 for  the  Gauss-Jordan  elimination  method. 

Any  matrix .  A  can  be  uniquely  factorized  as 

.  A =  LU , 

(7.7) 

where.  L  and.  U  are  lower  and  upper  triangular  matrices  whose  components  are  expressed  as 

⎛

⎞

⎛

⎞

1

0

0  . . .  0

 u

⎜

11  u 12  u 13  . . . u 1 n

⎜

⎟

⎜

⎟

 l

0  u

⎜ 21 1 0  . . .  0 ⎟

⎜

22  u 23  . . . u 2 n ⎟

⎜

⎟

⎜

⎟

 l

⎟

⎜ 0 0  u

⎟

.  L = ⎜ 31  l 32 1  . . .  0  , U =

33  . . . u 3 n

 . 

⎜  . . . . . ⎟

⎜  . . . . . ⎟

⎝  . 

⎟

⎜

⎟

 . .. .. .. .. ⎠

⎝  .. 

 .. .. .. .. ⎠

 ln 1  ln 2  ln 3  . . .  1

0

0

0  . . . unn

2  This  topic  can  be  omitted  if  not  relevant. 
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Note  that  the  diagonal  elements  of  .  L  are  set  to  1.  This  decomposition  is  known  as   LU 

 decomposition  (or  LU  factorization)  and  is  the  most  efficient  method  for  solving  simultaneous  equations. 

The  decomposition  in  Eq. (7.7)  is  unique,  as  it  allows  for  the  direct  determination  of  .  L

and .  U .  For  instance,  for  a .4 × 4 matrix,  Eq. (7.7)  can  be  expressed  as 

⎛

⎞ ⎛

⎞

⎛

⎞

1 0 0 0

 u 11  u 12  u 13  u 14

 a 11  a 12  a 13  a 14

⎜

⎜ l

⎟ ⎜

⎟

⎜

⎟

21 1

0 0 ⎟ ⎜ 0  u 22  u 23  u 24 ⎟ ⎜  a 21  a 22  a 23  a 24 ⎟

. ⎝  l

⎠ ⎝

⎠ = ⎝

⎠  . 

(7.8) 

31  l 32 1 0

0

0  u 33  u 34

 a 31  a 32  a 33  a 34

 l 41  l 42  l 43 1

0

0

0  u 44

 a 41  a 42  a 43  a 44

Explicitly  writing  each  element  in  Eq.  (7.8)  yields 

⎧

⎪

⎪  u

⎨ 11 =  a 11 , 

 u 12 =  a 12 , 

 u 13 =  a 13 , 

 u 14 =  a 14

 l 21 u 11 =  a 21 , l 21 u 12 +  u 22 =  a 22 , l 21 u 13 +  u 23 =  a 23 , 

 l 21 u 14 +  u 24 =  a 24

.  ⎪

⎪

⎩  l 31 u 11 =  a 31 , l 31 u 12 +  l 32 u 22 =  a 32 , l 31 u 13 +  l 32 u 23 +  u 33 =  a 33 , l 31 u 14 +  l 32 u 24 +  u 34 =  a 34

 l 41 u 11 =  a 41 , l 41 u 12 +  l 42 u 22 =  a 42 , l 41 u 13 +  l 42 u 23 +  l 43 u 33 =  a 43 , l 41 u 14 +  l 42 u 24 +  l 43 u 34 +  u 44 =  a 44 , from  which  all  the  elements  of .  li j  and.  ui j  can  be  solved  as 

⎧

⎪

⎪  u

⎪ 11 =  a 11 , u 12 =  a 12 , 

 u 13 =  a 13 , 

 u 14 =  a 14

⎨  l 21 =  a 21  , u

 u

22 =  a 22 −  l 21 u 12 , u 23 =  a 23 −  l 21 u 13 , u 24 =  a 24 −  l 21 u 14

11

.  ⎪

⎪

 , 

 , 

⎪  l 31 =  a 31  l 32 =  a 32− l 31 u 12

 u 33 =  a 33 −  l 31 u 13 −  l 32 u 23 , u 34 =  a 34 −  l 31 u 14 −  l 32 u 24

⎩

 u 11

 u 22

 l 41 =  a 41  , l

 , 

 l

 , 

 u

 u

42 =  a 42− l 41 u 12

43 =  a 43− l 41 u 13− l 42 u 23

44 =  a 44 −  l 41 u 14 −  l 42 u 24 −  l 43 u 34 . 

11

 u 22


 u 33

Note  that  the  computed  values  for.  ui j  and.  li j  are  used  immediately  to  determine  subsequent results. 

Using  the  LU  decomposition, .  Ax = c is  written  as 

.  LU x = c . 

(7.9) 

To  solve  Eq.  (7.9)  fo  r . x,  follow  these  two  steps: 1.  Define . y ≡  U x and  solve.  Ly = c for. y. 

2.  Once . y is  determined,  solve .  U x = y for. x. 

At  first  glance,  it  might  seem  that  solving  these  two  equations  requires  more  computation than  solving  a  single  equation  of.  Ax = c.  However,  the  process  of  finding.  L  and.  U  from.  A is  computationally  less  intensive,  and  solving  the  two  equations  is  nearly  trivial. 

The  first  equation, .  Ly = c,  can  be  written  as 

⎛

⎞ ⎛ ⎞

⎛ ⎞

1 0 0 0

 y 1

 c 1

⎜

⎜  l

⎟ ⎜ ⎟

⎜ ⎟

21 1

0 0 ⎟ ⎜  y 2 ⎟ ⎜  c 2 ⎟

. ⎝  l

⎠ ⎝ ⎠ = ⎝ ⎠  , 

31  l 32 1 0

 y 3

 c 3

 l 41  l 42  l 43 1

 y 4

 c 4
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or  written  explicitly  as 

⎧

⎪

⎪  y

⎨ 1 =  c 1 , 

 l 21  y 1 +  y 2 =  c 2 , 

.  ⎪

⎪

⎩ l 31 y 1 +  l 32 y 2 +  y 3 =  c 3 , l 41  y 1 +  l 42  y 2 +  l 43  y 3 +  y 4 =  c 4 . 

The  solution  for .  y 1 ∼  y 4 is  straightforward  as 

⎧

⎪

⎪  y

⎨ 1 =  c 1 , 

 y 2 =  c 2 −  l 21  y 1 , 

.  ⎪

⎪

⎩  y 3 =  c 3 −  l 31 y 1 −  l 32 y 2 , y 4 =  c 4 −  l 41  y 1 −  l 42  y 2 −  l 43  y 3 . 

The  second  equation, .  U x = y,  can  be  written  as 

⎛

⎞ ⎛ ⎞

⎛ ⎞

 u 11  u 12  u 13  u 14

 x 1

 y 1

⎜

⎜ 0  u

⎟ ⎜ ⎟

⎜ ⎟

22  u 23  u 24 ⎟ ⎜  x 2 ⎟

⎜  y 2 ⎟

.  ⎝ 0 0  u

⎠ ⎝ ⎠ = ⎝ ⎠  , 

33  u 34

 x 3

 y 3

0

0

0  u 44

 x 4

 y 4

or  equivalently  as 

⎧

⎪

⎪  u

⎨ 11 x 1 +  u 12 x 2 +  u 13 x 3 +  u 14 x 4 =  y 1 , u 22 x 2 +  u 23 x 3 +  u 24 x 4 =  y 2 , 

.  ⎪

⎪

⎩  u 33 x 3 +  u 34 x 4 =  y 3 , 

 u 44 x 4 =  y 4 . 

Solving  for .  x 1 ∼  x 4 is  straightforward  as  well  and  yields 

⎧

⎪

⎪

 , 

⎪  x 4 =  y 4

⎨

 u 44

 x 3 =  y 3− u 34 x 4  , 

 u

. 

33

⎪

⎪

⎪  x

 , 

⎩ 2 =  y 2− u 23 x 3− u 24 x 4

 u 22

 x 1 =  y 1− u 11 x 1− u 12 x 2− u 13 x 3  . 

 u 11

This  procedure  is  known  as  backward  substitution. 

The  number  of  operations  (multiplications  and  divisions)  required  to  decompose .  A  into 

.  A =  LU  is  approximately .  n 3 / 3,  while  the  operations  needed  to  solve .  L y = c and .  U x = y are  proportional  to .  n 2.  As  a  result,  the  total  number  of  operations  is  on  the  order  of .  n 3 / 3, 3

which  is  about  one-third  of  the  operations  required  for  the  Gauss-Jordan  elimination  method. 

Below  is  a  C  code  implementation  of  the  LU  decomposition,  solving  the  same  equations as  in  the  Gauss-Jordan  elimination  example. 

3.  n 2 can  be  considered  negligible  compared  to.  n 3. 
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#include <stdio.h> 

#define N 3 

int main() 

{ double a[N][N + 1] = {{2, -1, 1, 2},{-1, 3, 3, 3},{2, 1, 4, 1}}; 

int i, j, k, l; 

/* LU decomposition and forward reduction */ 

for (j = 1; j < N + 1; j++) a[0][j] = a[0][j]/a[0][0]; 

for (k = 1; k < N; k++) 

{ for (i = k; i < N; i++) 

for (l = 0; l < k; l++) a[i][k] = a[i][k] - a[i][l]*a[l][k]; 

for (j = k + 1; j < N + 1; j++) 

{ for (l = 0; l < k; l++) a[k][j] = a[k][N] - a[k][l]*a[l][j]; 

a[k][j] = a[k][j]/a[k][k]; 

} 

} 

/* Backward substitution */ 

for (k = N-1; k >= 0; --k) 

{ for (l = k + 1; l < N; l++) 

{ a[k][N] = a[k][N] - a[k][l]*a[l][N]; 

} 

} 

/* print the result */ 

for (i = 0; i <N; i++) 

{ printf("x[%d]=%f",i, a[i][N]); printf("\n"); 

} 

return 0; 

} 

The  output  is 

$ gcc lu.c 

$ ./a.out 

x[0]=27.000000 

x[1]=31.000000 

x[2]=-21.000000 

Notes 

1.  If  .  A  is  a  symmetric  matrix  (i.e.,  .  ai j =  a ji ),  the  LU  decomposition  is  known  as  the Cholesky  decomposition.  The  number  of  operations  required  for  the  Cholesky  decomposition  is  further  reduced  to  approximately .  n 3 / 6. 

2.  If .  A  is  a  sparse  matrix,  then .  L  and .  U  will  also  be  sparse. 

3.  If.  A  is  a  diagonal  triangular  matrix  (as  commonly  encountered  in  finite  element  methods), then .  L  and .  U  will  also  be  diagonal  triangular  matrices. 
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7.4

Gauss-Seidel  Method  (Jacobi  Method) 

The  Gauss-Seidel  method  and  the  Jacobi  method  are  iterative  techniques  for  solving  specific types  of  simultaneous  equations.  Unlike  the  Gauss-Jordan  elimination  method,  these  iterative methods  do  not  guarantee  convergence,  but  they  require  less  complex  programming  and  can also  be  applied  to  certain  nonlinear  systems  of  equations. 

To  illustrate  these  methods,  consider  the  following  set  of  three  simultaneous  equations. 

⎧

⎨ 7 x +  y + 2 z = 10 , 

. ⎩  x + 8 y + 3 z = 8 , 

(7.10) 

2 x + 3 y + 9 z = 6 . 

Equations  (7.10)  can  be  written  as 

⎧

⎨  x =  ( 10 −  y − 2 z)/ 7 , 

. ⎩  y =  ( 8 −  x − 3 z)/ 8 , 

(7.11) 

 z =  ( 6 − 2 x − 3 y)/ 9 . 

Equation  (7.11)  are  expressed  in  the  form  of  an  iterative  scheme  as 

⎧

⎨  xn+1 =  ( 10 −  yn − 2 zn)/ 7 , 

. ⎩  yn+1 =  ( 8 −  xn − 3 zn)/ 8 , 

(7.12) 

 zn+1 =  ( 6 − 2 xn − 3 yn)/ 9 . 

Equation  (7.12)  can  be  solved  iteratively  by  starting  with  initial  guesses  for .  x 0, .  y 0,  an  d .  z 0. 

This  method  is  known  as  the   Jacobi  method. 

A  more  refined  iterative  scheme  involves  using  the  most  recent  values  for  subsequent approximations.  Specifically, 

⎧

⎨  xn+1 =  ( 10 −  yn − 2 zn)/ 7 , 

. ⎩  yn+1 =  ( 8 −  xn+1 − 3 zn)/ 8 , 

(7.13) 

 zn+1 =  ( 6 − 2 xn+1 − 3 yn+1 )/ 9 . 

This  iterative  scheme  is  known  as  the   Gauss-Seidel  method.  It  generally  converges  faster than  the  Jacobi  method  because  it  utilizes  the  most  recent  values  for  the  iterations. 

The  Gauss-Seidel  method  is  straightforward  to  implement.  In  C  programming,  since variable  substitutions  automatically  use  the  most  recent  values,  the  Gauss-Seidel  method  is typically  preferred  over  the  Jacobi  method. 

In  the  following  code,  the  initial  guess  is  set  to .  (x 0 , y 0 , z 0 ) =  ( 0 ,  0 ,  0 ). 

#include <stdio.h> 

int main() 

{ 

double x, y, z; 
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int i, n; 

x = y = z = 0.0; 

printf("Enter # of iteration = "); 

scanf("%d", &n); 

for (i = 0; i < n; 

i++) 

{ 

x = (10 - y - 2*z)/7; 

y = (8 - x - 3*z)/8.0; 

z = (6 - 2*x - 3*y)/9.0; 

} 

printf("x = %f, y= %f, z=%f\n", x,y,z); 

return 0; 

} 

The  output  is 

$ gcc gauss-seidel.c 

$ ./a.out 

Enter # of iteration = 9 

x = 1.281553, y= 0.796117, z=0.116505 

$ ./a.out 

Enter # of iteration = 10 

x = 1.281553, y= 0.796117, z=0.116505 

Convergence  was  achieved  after  9  iterations. 

There  are  instances  where  either  the  Jacobi  method  or  the  Gauss-Seidel  method  may  fail to  converge.  Generally,  these  methods  are  effective  if  the  diagonal  elements  of  the  matrix 

.  A  are  significantly  larger  than  the  non-diagonal  elements.  More  precisely,  convergence  is assured  if  the  largest  eigenvalue, .  λ,  o  f.  A  is  greater  than  1. 

For  an  example  of  solving  a  set  of  non-linear  equations  using  the  Gauss-Seidel  method, refer  to  Problem  2  in  the  Exercise. 

7.5

Exercise 

1.  Solve  the  following  5  simultaneous  equations  by  the  Gauss-Jordan  elimination  method. 

⎧

⎪

⎪

⎪  a

⎪ 11 x 1 +  a 12 x 2 +  a 13 x 3 +  a 14 x 4 +  a 15 x 5 =  c 1 , 

⎪

⎨  a 21 x 1 +  a 22 x 2 +  a 23 x 3 +  a 24 x 4 +  a 25 x 5 =  c 2 , 

. ⎪  a 31 x 1 +  a 32 x 2 +  a 33 x 3 +  a 34 x 4 +  a 35 x 5 =  c 3 , 

⎪

⎪

⎪

⎪  a

⎩ 31 x 1 +  a 32 x 2 +  a 33 x 3 +  a 44 x 4 +  a 45 x 5 =  c 4 , an 1 x 1 +  an 2 x 2 +  an 3 x 3 +  a 54 x 4 +  a 55 x 5 =  c 5 , 
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where .  ai j  is  given  as 

a[5][5]={ 

{3.55618, 5.87317, 7.84934, 5.6951, 3.84642}, 

{-4.82893, 8.38177, -0.301221, 5.10182, -4.1169}, 

{-7.64196, 5.66605,3.20481, 1.55619, -1.19814}, 

{-2.95914, -9.16958,7.3216, 2.39876, -8.1302}, 

{-8.42043, -0.369407, -5.4102, -8.00545, 9.22153} 

}; 

and .  ci  is  given  as 

c[5]={-1.92193, -2.35262, 2.27709, -2.67493, 1.84756}; 

2.  Solve  the  following  set  of  non-linear  equations  by  the  Gauss-Seidel  method. 

⎧

⎨ 27 x +  ex  cos  y − 0 .  12 z = 3 , 

. ⎩ −0 .  2 x 2 + 37 y + 3 xz

= 6 , 

(7.14) 

 x 2 − 0 .  2 y  sin  x + 29 z

= −4 . 

Start  with  an  initial  guess  of .  x =  y =  z = 1. 

[image: Image 24]

Differential  Equations 

8

Differential  equations  are  fundamental  in  scientific  computation  as  they  describe  virtually every  physical  phenomenon  in  nature.  These  equations  represent  the  rates  of  change  of physical  objects,  and  obtaining  these  rates  is  a  key  to  understanding  their  behavior. 

For  instance,  solving  the  Navier-Stokes  equations  in  fluid  mechanics  can  predict  weather patterns  by  modeling  the  movement  of  air  particles.  Similarly,  stress  equilibrium  equations  in  solid  mechanics  help  in  assessing  the  strength  and  durability  of  materials,  while the  energy  equations  in  heat  transfer  enable  predictions  of  temperature  distribution—all  of which  are  governed  by  differential  equations.  Despite  their  significance,  solving  differential  equations  analytically  is  often  challenging.  Although  differential  equations  have  been studied  for  over  400  years,  many  important  equations  lack  closed-form  analytical  solutions. 

Fortunately,  numerical  methods  for  solving  differential  equations,  particularly  initial  value problems,  do  not  require  advanced  mathematics,  as  will  be  demonstrated  in  this  chapter.  This chapter  focuses  on  initial  value  problems  and  introduces  Euler’s  method  and  the  Runge-Kutta method. 

8.1

Initial  Value  Problems 

The  basic  form  of  a  differential  equation  for  initial  value  problems  can  be  expressed  as d y

. 

=  f (t, y), 

(8.1) 

 dt

where.  y  is  the  unknown  function,.  t  is  the  independent  variable  often  interpreted  as  time  and 

.  f (t , y)  is  a  function  of .  t  and .  y.  Equation  (8.1)  together  with  the  initial  condition  of 
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Fig.  8.1  Differential  equation 

(initial  value  problem) 

.  y(t 0 ) =  y 0 , 

constitutes  an  initial  value  problem. 

Equation  (8.1)  can  be  interpreted  graphically,  as  illustrated  in  Fig. 8.1. Solving  for .  y(x) in  Eq. (8.1)  is  equivalent  to  plotting  a  curve  that  starts  at.  (t 0 , y 0 ),  with  its  slope  at  each  point 

.  (t 1 , y 1 )  determined  by  the  function .  f (t 1 , y 1 ). 

Only  the  initial  point  and  the  slope  dy

. 

at  an  arbitrary  point  are  given. 

 dt

8.1.1

Euler’s  Method 

Euler’s  method  is  a  rudimentary  technique  for  numerically  solving  initial  value  problems. 

In  Euler’s  method,  dy

. 

in  Eq. (8.1)  is  approximated  using  the  forward  difference  as dt

 d y

. 

∼  yn+1 −  yn . 

 dt

 h

Therefore,  Eq.  (8.1)  can  be  approximated  as 

 yn+1 −  yn

. 

=  f (t, y). 

(8.2) 

 h

Equation  (8.2)  can  be  expressed  as 

.  yn+1 =  yn +  h f (tn , yn ), 

(8.3) 

which  enables  the  prediction  of  .  yn+1 based  on  .  yn  and  the  slope  at  that  point,  as  illustrated in  Fig. 8.2. 

[image: Image 26]
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Fig.  8.2  Euler’s  method 

Example  1 

Consider  the  following  initial  value  problem. 

 d y

. 

=  y, y( 0 ) = 1 . 

(8.4) 

 dt

Using  the  separation  of  variables,  the  exact  solution  is  easily  obtained  as 

.  y =  et . 

The  following  C  code  implements  Euler’s  method  for  Eq. (8.4). 

#include <stdio.h> 

#include <math.h> 

double f(double t, double y) 

{ 

return y; 

} 

int main() 

{ 

double h = 0.1, y, t; 

int i; 

t = 0.0; y = 1.0; 

printf("t

Euler 

Exact\n"); 

for (i = 0; i <= 10; i++) 

{ 

printf("t = %f %f %f\n", t, y, exp(t)); 

y = y + h*f(t,y); 

t = t + h; 

}
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return 0; 

} 

The  output  is: 

$ gcc euler.c -lm 

$ ./a.out 

t

Euler 

Exact 

t = 0.000000 1.000000 1.000000 

t = 0.100000 1.100000 1.105171 

t = 0.200000 1.210000 1.221403 

t = 0.300000 1.331000 1.349859 

t = 0.400000 1.464100 1.491825 

t = 0.500000 1.610510 1.648721 

t = 0.600000 1.771561 1.822119 

t = 0.700000 1.948717 2.013753 

t = 0.800000 2.143589 2.225541 

t = 0.900000 2.357948 2.459603 

t = 1.000000 2.593742 2.718282 

As  illustrated  in  the  table  above,  Euler’s  method  offers  limited  accuracy.  However,  despite its  modest  performance,  Euler’s  method  is  robust  and  can  be  employed  to  quickly  obtain preliminary  results. 

Example  2.  Lorenz  Equations/Strange  Attractor/Chaos 

Euler’s  method  is  applicable  not  only  to  a  single  differential  equation  but  also  to  a  set  of simultaneous  differential  equations.  Equation  (8.5), known  as  the  Lorenz  equations,  serve  as an  intriguing  example  where  a  concise  program  in  C  can  yield  surprising  results,  paving  the way  for  contemporary  research  in  non-linear  dynamics.  Lorenz 1 studied  Eq.  (8.5)  arising from  fluid  circulation  in  1963 [12],  which  are  related  to  weather  patterns.  These  equations are  non-linear  differential  equations  that  are  deterministic;  however,  the  behavior  of  the solution  can  be  neither  periodic,  divergent,  nor  convergent,  depending  on  the  parameters.  p, 

.  R,  an  d .  b,  as  well  as  the  chosen  initial  values. 

 du

. 

=  p(v −  u), 

 dt

 dv = − uw +  Ru −  v, 

 dt

 dw =  uv −  bw. 

(8.5)

 dt

1  Edward  Lorenz  (1917–2008)  was  a  mathematician,  meteorologist,  and  a  pioneer  of  chaos  theory. 
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The  following  code  solves  Eqs.  (8.5)  using  Euler’s  method.  The  parameters  are  set  to .  P =

16 .  0,.  b = 4 .  0,  an  d.  R = 35 .  0,  with  initial  values  of.  u = 5 .  0,.  v = 5 .  0,  an  d.  w = 5 .  0.  The  step size  is  chosen as .  h = 0 .  01,  and  3,000  iterations  are  performed. 

#include <stdio.h> 

#define P 16.0 

#define b 4.0 

#define R 35.0 

double f1(double u, double v, double w) 

{ 

return P*(v - u); 

} 

double f2(double u, double v, double w) 

{ 

return -u*w + R*u - v; 

} 

double f3(double u, double v, double w) 

{ 

return u*v - b*w; 

} 

int main() 

{ 

double h, t, u, v, w; 

int i; 

/* initial values */ 

t = 0.0; h = 0.01; 

u = 5.0; v = 5.0; w = 5.0; 

for (i = 0; i < 3000; i++) 

{ 

u = u + h*f1(u,v,w); 

v = v + h*f2(u,v,w); 

w = w + h*f3(u,v,w); 

printf("%f %f\n", u, w); 

t = t + h; 

} 

return 0; 

} 

To  plot.  (u, w)  from  the  program,  gnuplot,  a  freely  available  graphics  package  detailed in  Appendix  A,  can  be  utilized.  The  output  from a.out is  saved  to  a  data  file, lorenz.dat, 
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Fig.  8.3  Lorenz  equations  generating  chaos 

using  I/O  redirection,  and  this  file  is  placed  or  transferred  to  a  directory  accessible  by gnuplot. 

$ gcc lorenz.c 

$ ./a.out  > lorenz.dat 

Transfer  lorenz.dat to  a  directory  accessible  by  gnuplot.  Launch  gnuplot and execute  the  following  command: 

plot ’lorenz.dat’ with line 

The  output  from  gnuplot is  shown  in  Fi  g. 8.3. 

The  pattern  in  Fig. 8.3  was  named   chaos  2 by  Lorenz,  as  Eqs. (8.5)  are  deterministic,  yet the  trajectory.  (u, w)  in  Fig. 8.3  is  neither  periodic,  convergent,  nor  divergent.  By  introducing a  small  perturbation  to  the  parameters  and  initial  values,  the  pattern  from  Eqs.  (8.5)  changes drastically.  Refer  to  Problem  2  in  the  Exercise  section  for  another  example.  As  the  pattern in  Fig. 8.3  resembles  a  butterfly,  this  phenomenon  was  later  termed  the   butterfly  effect. 3

2  Also  referred  to  as  a   strange  attractor. 

3  A  movie,  “The  Butterfly  Effect”  (2004),  was  inspired  by  this  concept. 
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8.1.2

Runge-Kutta  Method 

The  Runge-Kutta 4 method  is  a  refinement  of  Euler’s  method,  where  .  f (tn, yn)  in  Eq. (8.3) 

is  replaced  by  a  weighted  average  of .  k 1 through.  k 4,  defined  as 

.  k 1 =  f (t , y), 

 k 2 =  f (t +  h , y +  h k 1 ), 

2

2

 k 3 =  f (t +  h , y +  h k 2 ), 

2

2

 k 4 =  f (t +  h, y +  hk 3 ). 

Using  the  above,  the  iterative  scheme  in  the  Runge-Kutta  method  is  expressed  as k 1 + 2 k 2 + 2 k 3 +  k 4

.  yn+1 =  yn +  h

 . 

(8.6) 

6

The  quantities,  .  k 1 ∼  k 4,  are  computed  at  .  t,  .  t +  h  and 2

.  t +  h.  The  derivation  of  Eq. (8.6)  is more  involved  and  is  therefore  deferred  to  an  advanced  te xtbook. 5

The  following  C  code  implements  the  Runge-Kutta  method  for  Eq. (8.4). 

#include <stdio.h> 

#include <math.h> 

double f(double t, double y) 

{ 

return y; 

} 

int main() 

{ 

double h = 0.1, t, y, k1, k2, k3, k4; 

int i; 

/* initial value */ 

t = 0.0; y = 1.0; 

for (i = 0; i <= 10; i++) 

{ 

printf("t= %f rk= %f exact=%f\n", t, y, exp(t)); 

k1 = h*f(t,y); 

k2 = h*f(t + h/2, y + k1/2.0); 

k3 = h*f(t + h/2, y + k2/2.0); 

k4 = h*f(t + h, y + k3); 

y = y + (k1 + 2.0*k2 + 2.0*k3 + k4)/6.0; 

4  Pronounced  as   roo  ng-uh-koo  t-ah.  Both  were  German  mathematicians. 

5  For  example,  see  Iserles,  A  First  Course  in  the  Numerical  Analysis  of  Differential  Equations  (Second Edition),  Cambridge  University  Press,  2008. 
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t = t + h; 

} 

return 0; 

} 

The  output  is: 

$ gcc rk4.c -lm 

$ ./a.out 

t= 0.000000 rk= 1.000000 exact=1.000000 

t= 0.100000 rk= 1.105171 exact=1.105171 

t= 0.200000 rk= 1.221403 exact=1.221403 

t= 0.300000 rk= 1.349858 exact=1.349859 

t= 0.400000 rk= 1.491824 exact=1.491825 

t= 0.500000 rk= 1.648721 exact=1.648721 

t= 0.600000 rk= 1.822118 exact=1.822119 

t= 0.700000 rk= 2.013752 exact=2.013753 

t= 0.800000 rk= 2.225540 exact=2.225541 

t= 0.900000 rk= 2.459601 exact=2.459603 

t= 1.000000 rk= 2.718280 exact=2.718282 

As  evidenced  by  the  output  above,  the  Runge-Kutta  method  provides  a  significantly  more accurate  approximation  compared  to  Euler’s  method.  It  is  considered  the  de  facto  standard for  solving  initial  value  problems. 

8.2

Higher  Order  Ordinary  Differential  Equations 

Equation  (8.1)  is  a  first-order  ordinary  differential  equation.  However,  many  important  and useful  differential  equations  are  of  higher  order,  such  as  the  equation  of  motion  (second-order)  and  the  equation  of  beam  deflections  (fourth-order). 

A  higher-order  differential  equation  can  be  transformed  into  a  system  of  first-order  differential  equations,  allowing  numerical  methods  such  as  Euler’s  method  or  the  Runge-Kutta method  to  be  applied  for  solving  these  equations. 

To  illustrate  this  technique,  consider  Eq.  (8.7),  which  describes  harmonic  oscillation  in a  spring-mass  system.  It  is  a  second-order  ordinary  differential  equation  with  two  initial conditions. 

 d 2  y

. 

= − y, y( 0 ) = 0 , y ( 0 ) = 1 . 

(8.7) 

 dt  2

Equation  (8.7)  can  be  transformed  into  a  system  of  two  simultaneous  differential  equations by  setting 

.  y 1 ≡  y, 

 y 2 ≡  dy 1  . 

(8.8)

 dt
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With  Eqs.(8.8),  Eqs.  (8.7)  can  be  rewritten  as d y 1

. 

=  y 2 , 

(8.9) 

 dt

 d y 2

. 

= − y 1 , 

(8.10) 

 dt

with 

.  y 1 ( 0 ) = 0 , 

 y 2 ( 0 ) = 1 . 

The  unknowns,  .  y 1 (t)  and  .  y 2 (t),  in  Eqs. (8.9)–(8.10)  can  be  solved  simultaneously.  The following  code  uses  Euler’s  method  to  compute .  y 1 and.  y 2. 

#include <stdio.h> 

#include <math.h> 

double f1(double x, double y1, double y2) 

{ 

return y2; 

} 

double f2(double x, double y1, double y2) 

{ 

return -y1; 

} 

int main() 

{ 

double h = 0.01, y1, y2, x; 

int i; 

y1 = 0.0; y2 = 1.0; 

x = 0.0; 

printf(" 

x

y2 

cos(x)\n"); 

for (i = 0; i <= 10; i++) 

{ 

printf("x = %f %f %f\n", x, y2, cos(x)); 

y1 = y1 + h*f1(x, y1, y2); 

y2 = y2 + h*f2(x, y1, y2); 

x = x + h; 

} 

return 0; 

} 

In  this  example,  the  exact  solution  for .  y 2 is .cos  x.  The  output  is:
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$ gcc highorder.c -lm 

$ ./a.out 

x

y2 

cos(x) 

x= 0.000000 1.000000 1.000000 

x= 0.010000 0.999900 0.999950 

x= 0.020000 0.999700 0.999800 

x= 0.030000 0.999400 0.999550 

x= 0.040000 0.999000 0.999200 

x= 0.050000 0.998500 0.998750 

x= 0.060000 0.997901 0.998201 

x= 0.070000 0.997201 0.997551 

x= 0.080000 0.996402 0.996802 

x= 0.090000 0.995503 0.995953 

x= 0.100000 0.994505 0.995004 

Similarly,  a  third-order  differential  equation,  as  well  as  higher-order  differential  equations,  can  also  be  transformed  into  a  system  of  simultaneous  first-order  differential  equations. 

8.3

Boundary  Value  Problems 

All  the  differential  equations  presented  so  far  are  classified  as  “initial  value  problems,” 

where  the  initial  conditions  of  the  unknown  function  are  specified  at  a  single  starting  point. 

Typically,  time  is  used  as  the  independent  variable.  Another  class  of  differential  equations  is known  as  “boundary  value  problems,”  in  which  the  solution  is  defined  by  values  prescribed on  the  boundaries  of  the  domain  over  which  the  differential  equation  is  defined.  In  these cases,  position  is  typically  the  independent  variable.  Many  of  physical  quantities  such  as temperature,  stress  fields,  velocity  of  particles  are  modeled  as  boundary  value  problems. 

In  general,  boundary  value  problems  are  more  difficult  to  solve  than  initial  value  problems and  are  not  covered  in  this  book.  Common  numerical  methods  for  boundary  value  problems include  the  finite  element  method  (FEM)  and  the  finite  difference  method  (FDM). 

8.4

Exercise 

1.  Solve  the  following  differential  equation: 

.  y = − x  2  y, 

 y( 0 ) = 1 , 

using  the  following  methods: 

a.  Exact  (analytical)  solution, 

b.  Euler’s  method, 
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c.  The  Runge-Kutta  method, 

and  plot  the  three  results  on  a  single  graph  using  gnuplot (see  Appendix  A).  Use  the interval.0 ≤  x ≤ 1 with  a  step  size  of.  h = 0 .  1.  Utilize  the  following  syntax  in  gnuplot: plot ’data1.txt’, ’data2.txt’, sin(x) 

where  “data1.txt”  contains  data  from  Euler’s  method  and  “data2.txt”  contains data  from  the  Runge-Kutta  method. 

2.  Numerically  solve  the  following  differential  equations  using  Euler’s  method. 

 du

. 

=  v, 

 dt

 dv = − kv −  u 3 +  B  cos  t, 

 dt

with 

.  k = 0 .  1 , 

 B = 11 .  0 , 

and  plot  the  result  using  gnuplot. Change  the  parameters  to 

.  k = 0 .  4 , 

 B = 20 .  0 , 

and  show  the  graph  as  well.  You  can  use  the  following  as  the  initial  condition: 

.  u( 0 ) = 1 , 

 v( 0 ) = 1 . 

Also,  use 

.  h = 0 .  01 , 

 i = 10000 . 

One  shows  chaos  and  the  other  does  not. 

Gnuplot 

A

The  C  language  itself  does  not  include  standard  library  support  for  graphics,  as  drawing graphics  is  machine-dependent.  To  visualize  outputs  from  a  C  program,  machine-specific library  files  are  required,  which  are  not  part  of  the  gcc distribution.  An  alternative  approach is  to  export  data  generated  by  a  C  program  to  an  external  application  that  can  read  and  plot the  data. 

The  graphical  application  gnuplot, 1 meets  this  requirement.  For  Windows  PCs,  download  the  zipped  distribution  file  from http://www.gnuplot.info.  After  downloading, extract  all  files  into  a  single  directory  and  run  wgnuplot.exe from  that  location. 

Below  is  a  list  of  commonly  used  commands  in  gnuplot.  Comments  in  gnuplot begin  with  the  “#”  symbol.  Most  commands  are  self-explanatory,  so  feel  free  to  experiment with  them. 

gnuplot > set title ’My graph’ # Prints the title. 

gnuplot > plot x**3-x-1 # Note ** (power)

gnuplot > plot sin(x) with dots # w d can be used. 

gnuplot > plot sin(x) with impulse # w i also works. 

gnuplot > plot [-5:5] sin(x)/(x**2+1) # [-5,5] specifies x range. 

gnuplot > plot [-pi:pi] sin(x), sin(2*x), sin(3*x) # List of

functions to plot. 

gnuplot > set xlabel ’My x axis’

gnuplot > set ylabel ’My y axis’

gnuplot > plot [-4:4] [0:10] x/exp(x) # Specifies x and y ranges. 

gnuplot > splot [-pi:pi] [-2*pi:3*pi] sin(x*y) # splot draws 3-d

plot. 

1  Freely  available  for  Windows,  macOS,  and  Linux.  Source  code  is  also  available. 
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Fig.  A.1  gnuplot example 

To  draw  the  graph  shown  in  Fig. A.1, enter  the  following  commands: gnuplot> set isosamples 100

gnuplot> set hidden3d

gnuplot> set contour base

gnuplot> splot [0:pi][0:pi] sin(x*y)

gnuplot > quit

Note  that  two  asterisks  (**)  are  used  for  exponentiation  instead  of  a  caret  (  ˆ). 

To  exit  gnuplot, enter  quit. 

While  gnuplot can  be  used  to  plot  built-in  functions,  its  primary  utility  lies  in  visualizing  data  generated  by  a  C  program.  Data  produced  by  a  C  program  can  be  imported  into gnuplot for  graphical  representation. 

Below  is  an  example  of  how  to  generate  a  data  file  using  C  and  export  it  to  gnuplot for  plotting. 

Prepare  the  following  C  code  and  execute  it  with  I/O  redirection  to  store  the  output  in  a separate  file. 
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#include <stdio.h> 

#include <math.h> int main() 

{ 

int i; double x; 

for (i = 0; i < 100; i++) 

{ 

x = 0.1*i; 

printf("%f %f\n", x , sin(x)); 

} 

return 0; 

} 

The  output  is: 

$ gcc gnuplotdata.c -lm

$ ./a.out > data.dat

The  output  from  a.out is  saved  to  a  file  named  data.dat.  Move  this  file  to  a  directory accessible  by  gnuplot.  For  this  purpose,  we  use  the  directory  C:\tmp as  the  working directory  on  a  Windows  system. 

Next,  open  gnuplot and  enter  the  following  commands: 

gnuplot > cd ’C:\tmp’ % Change directory to C:\tmp. 

gnuplot > plot ’data.dat’ with lines % Plot data in data.dat. 

gnuplot > exit

Note  that  the  file  name,  data.dat,  must  be  enclosed  in  single  quotation  marks  (’). 2

Figure  A.2  illustrates  the  output. 

For  another  example  of  plotting  data  generated  by  C,  refer  to  Example  2  in  Sect. 8.1.1. 

To  export  a  graph  from  gnuplot to  another  application  such  as  Word,  right-click  the top  bar  of  the  graph  window,  select  Options,  and  then  choose  Copy to Clipboard. 

The  graphic  image  is  saved  to  the  clipboard  and  can  be  pasted  into  any  application. 

Alternatively,  you  can  save  a  graph  from  gnuplot directly  to  a  file  in  various  supported graphic  formats,  including  jpg,  gif,  png, and  eps. To save a graph in  gif format,  use the  following  command:

2  Double  quotation  marks  (")  can  also  be  used. 
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Fig.  A.2  Plotting  a  graph  from  a  file 

gnuplot > cd ’c:\tmp’ % Save file to c:\tmp 

gnuplot > set terminal gif size 640, 480 % size is optional 

gnuplot > set output ’mygraph.gif’ gnuplot > plot sin(x) 

gnuplot > quit 

To save a graph in  eps (Encapsulated  PostScript)  format,  use  the  following  command: gnuplot > cd ’c:\tmp’ % Save file to c:\tmp. 

gnuplot > set terminal postscript eps enhanced color

gnuplot > set output ’mygraph.eps’

gnuplot > plot sin(x)

gnuplot > quit

gnuplot offers  many  additional  commands  that  are  beyond  the  scope  of  this  appendix. 

It  also  has  scripting  capabilities.  For  more  information,  refer  to  online  tutorials  or  reference 

books. 3

3  For  example,  see  Janert,  Gnuplot  in  Action:  Understanding  Data  with  Graphs,  Manning  Publica-tions,  2009. 
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B.1

Introduction 

MATLAB  is  a  powerful  software  package  for  scientific  and  engineering  tasks,  combining the  ease  of  hand-held  calculators  with  the  versatility  of  programming.  Many  engineering and  science  courses  require  students  to  use  MATLAB  for  homework  and  projects.  This appendix  provides  a  brief  tutorial  on  MATLAB  for  those  who  are  familiar  with  C  but  have not  yet  learned  MATLAB.  The  goal  is  to  enable  users  to  start  working  with  MATLAB 

quickly  and  efficiently.  This  is  feasible  because  many  MATLAB  commands  are  similar  to or  variations  of  corresponding  C  commands,  allowing  C  programmers  to  recognize  many MATLAB  commands  with  minimal  reference.  However,  the  reverse  is  not  necessarily  true: proficiency  in  MATLAB  does  not  automatically  translate  to  mastery  of  C,  which  may  require significant  additional  effort. 

There  are  several  MATLAB  alternatives  with  compatible  syntax  available  for  free  on  the internet,  including  GNU  Octave  and  Scilab  [ 13].  GNU  Octave 4 offers  extensive  tools  for solving  common  numerical  problems  and  features  syntax  largely  compatible  with  MATLAB. 

Octave  can  be  used  in  either  GUI  mode  or  from  the  command  line,  as  shown  in  Fig. B.1.  This appendix  is  not  intended  to  be  a  comprehensive  reference  for  Octave/MATLAB  but  rather  a quick-start  guide  for  those  familiar  with  C  who  wish  to  learn  the  basics  of  Octave/MATLAB 

efficiently.  Numerous  reference  books  on  Octave/MATLAB  are  available  for  further  study. 

This  appendix  is  based  on  GNU  Octave;  however,  all  functions  and  commands  covered are  compatible  with  MATLAB. 

4  The  program  can  be  downloaded  from  www.gnu.org/software/octave/. 
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Fig.  B.1  Octave  run  from  command  line 

B.2

Basic  Operations 

B.2.1

Principles  of  Octave/MATLAB 

The  following  are  some  key  principles  of  Octave/MATLAB: 

1.  There  is  no  distinction  between  integers  and  floating-point  numbers;  all  variables  are  of double  precision  by  default. 

2.  Variable  names  are  case-sensitive. 

3.  Array  indices  begin  at  1  (unlike  0  in  C). 

4.  Due  to  its  original  design  philosophy, 5 all  sets  of  numbers  are  represented  as  matrices, including  single  variables.  Intervals  are  also  represented  as  matrices. 

5.  Vectors  and  matrices  are  defined  using  square  brackets,  e.g.,  [3 4 1],  [1 2 3; 4  

5 6; 7 8 9]. 

6.  Any  statement  following  % is  treated  as  a  comment. 

7.  Statements  ending  with  a  semicolon  (;)  do  not  produce  output. 

8.  Both  double  quotation  marks  (")  and  single  quotation  marks  (’)  can  be  used  for  strings in  Octave,  but  MATLAB  only  accepts  single  quotation  marks  (’). 

Try  entering  the  following  commands  at  the  command  line.  Most  of  these  commands  are self-explanatory. 

5  MATLAB  stands  for  Matrix  Laboratory  and  was  initially  developed  for  solving  problems  in  linear algebra. 
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clc % Clears screen. 

1+3 2ˆ12 

(3+2*i)*(2-4*i) % Complex algebra, i*i=-1. 

abs(4-3*i) % Absolute value. 

sin(pi) % pi is a reserved constant. 

cos(2*pi) 

log(2.718) % Natural logarithm. 

log2(1024) % Logarithm with base 2. 

log10(1000) % Logarithm with base 10. 

format long % Output in long format. Just appearance. 

sqrt(5) pi 

format short % Output in short format. Just appearance. 

sqrt(3) 

B.2.2

Reserved  Constants 

Octave/MATLAB  has  reserved  constants.  Examples  follow: 

i % Imaginary number, i*i=-1. 

j % Same as i, mainly used in electrical engineering. 

clock % Current time (six elements). 

date % Current date. 

pi % 3.14156. 

eps % Smallest tolerance number in the system. 

Reserved  constants  in  Octave/MATLAB  can  be  assigned  user-defined  values.  In  the example  below,  pi is  assigned  a  user-defined  value  of  3.0,  and  this  value  remains  in  effect until  the  next  clear pi command  is  issued.  As  a  result,  variables  such  as  i and  j, which  

√

are  pre-defined  as 

−1,  can  still  be  used  as  iteration  variables. 

octave.exe:1> pi

ans =

3.1416

octave.exe:2> pi=3.0 % User defined value. 

pi =

3

octave.exe:3> pi*pi % pi=3 is used. 

ans =

9

octave.exe:4> clear pi % User defined value cancelled. 

octave.exe:5> pi

ans =

3.1416
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B.2.3

Vectors/Matrices 

Both  vectors  and  matrices  use  square  brackets [· · ·]  to  enclose  their  components.  Components are  separated  by  either  a  space  or  a  comma  (,),  as  illustrated  in  the  following  example: v1=[1 2 3] % Defines a 3-D row vector. 

v1=[1, 2, 3] % Same as above. Separator is either a space or a comma. 

v2=[1;2;3] % This defines a column vector. 

v2=v1’ % Transpose of v1, i.e. column vector. 

m1=[1 2 3;4 5 6;7 8 9] % Defines a 3x3 matrix. 

m1=[1,2,3;4,5,6;7,8,9]; % A semicolon after statement suppresses

echo back. 

m2=[-4 5 6; 1 2 -87; 12 -43 12] % Defines a 3 by 3 matrix. 

m2(:, 1) % Extracts the first column. 

m2(2, :) % Extracts the second row. 

m2(2,3)=10; % Assigns 10 to the (2,3) element of m2. 

m1*v2 % Matrix multiplication of m1 times m2. 

inv(m1) % Inverse of m1. 

[vec, lambda] = eig(m1) % Eigenvectors and eigenvalues of m1. 

m1\m2 % Inverse of m1 times m2, same as inv(m1)*m2. 

m1*v2 % Matrix m1 times vector v2. 

a=eye(3) % 3x3 identity matrix. 

a=zeros(3) % 3x3 matrix with 0 as components. 

a=ones(3) % 3x3 matrix with 1 as components. 

det(m1) % Determinant of m1. 

To  solve  the  following  three  simultaneous  equations, 

⎛

⎞ ⎛ ⎞

⎛ ⎞

1 4 5

 x

4

⎝

⎠ ⎝ ⎠

⎝ ⎠

. 

8 1 2

 y

= 7  , 

6 9 −8

 z

0

use 

a=[1 4 5; 8 1 2; 6 9 -8]; 

b=[4; 7; 0]; 

sol = inv(a)*b % sol = a\b also works. 
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Although  Octave/MATLAB  can  perform  a  variety  of  mathematical  operations  beyond linear  algebra  (such  as  working  with  matrices  and  vectors),  its  fundamental  design  principle is  to  handle  numbers  as  matrices  (including  vectors).  This  extends  to  defining  an  interval range  as  a  row  vector  along  with  the  corresponding  function  values. 

octave.exe:1> % A sequence between 1 and 10 with an increment of 2. 

octave.exe:1> x=[1: 2 :10] 

1

3

5

7

9



octave.exe:2> %A sequence between 1 and 9 with equidistant 5 entries. 

octave.exe:2> x=linspace(1, 9, 5) 

x =  

1

3

5

7

9



octave.exe:3> y=x; % Copies x to y. 

octave.exe:4> z=x*y % This generates an error message and won’t work. 

error: operator *: nonconformant arguments (op1 is 1x5, op2 is 1x5) 

octave.exe:4> z=x.*y % This works. Component wise multiplication. 

z =  

1 

9 

25 

49 

81 

octave.exe:5> z=x./y % Component wise division. 

z =  

1

1

1

1

1



B.2.4

Graph 

Both  MATLAB  and  Octave  have  built-in  graphics  support.  In  Octave,  built-in  gnuplot is automatically  called  for  graphics.  Try  the  following  graphics  commands  (Fig. B.2). 

x=[0: 0.1 : 10]; % Initial value, increment, final value. 

y=sin(x); 

plot(x, sin(x)); % Calls gnuplot. 

x=linspace(0, 2, 20) % Between 0 and 2 with 20 divisions. 

plot(x, sin(x))

[image: Image 31]
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Fig.  B.2  Graph  generated  by  Octave 

%%%%%%%%%%%%%%%%%% 

x=[0: 0.2 : 10]; 

y=1/2 * sin(2*x) ./ x; % ./ divides by individual components. 

xlabel(’X-axis’); 

ylabel(’sin(2x)/x’); 

plot(x, y); 

close; 

%%%%%%%%%%%%%%%%% 

t=[0: 0.02: 2*pi]; 

plot(cos(3*t), sin(2*t)) % Parametric plot. 

%%%%%%%%%%%%%%%%%%%% 

x=[0: 0.01: 2*pi]; 

y1=sin(x); 

y2=sin(2*x); 

y3=sin(3*x); 

plot(x, y1, x, y2,x, y3); % Plotting multiple graphs. 

%%%%%%%%%%%%%% 

xx=[-10:0.4:10]; 

yy=xx; 

[x,y]=meshgrid(xx,yy); 

z=(x .ˆ2+y.ˆ2).*sin(y)./y; 

surfc(x,y,z) % 3-D graph. 

close
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B.2.5

I/O 

Octave/MATLAB  provides  several  options  for  input  and  output.  Unlike  C,  Octave/MATLAB 

does  not  have  a  scanf() function.  Instead,  the  input function  can  be  used,  as  demonstrated  in  the  example  below.  This  function  serves  a  similar  purpose  to  a  combination of  scanf() and  printf() in  C.  The  printf() function  in  C  is  replaced  by  the 

fprintf() 

6 function  in  Octave/MATLAB. 

disp(a) % Shows the content of a. 

disp(’Enter a number = ’) % Prints a string on screen. 

a=input(’Enter a number =’); % Prompts for input and value entered is stored in a. 

fprintf(’The solution is %f\n’, a);% Same as printf() in C. 

# %f and %d are available but not %lf in fprintf. 

B.2.6

M-files 

There  are  two  types  of  external  files  that  can  be  loaded  into  Octave/MATLAB:   script  m-files and   function  m-files.  Both  types  must  have  the  extension  m (*.m)  and  be  located  in  a  directory that  Octave/MATLAB  can  access. 

1.  Function  m-files 

In  C,  functions  must  be  declared  before  use.  In  Octave/MATLAB,  a  separate  file  must  be created  for  each  user-defined  function.  The  file  containing  the  function  definition  must  be saved  with  the  same  name  as  the  function,  using  the  m extension.  If  the  file  is  located  in  a directory  accessible  to  Octave/MATLAB,  the  function  is  automatically  available  for  use as  if  it  were  a  built-in  function.  There  is  no  need  to  explicitly  load  the  m-file  (attempting to  do  so  will  result  in  an  error).  For  example,  if  a  file  named  myfunction.m exists with  the  following  content: 

function y=myfunction(x) 

y=xˆ3-x+1; 

end; 

The  function,  myfunction(x),  is  automatically  available  in  Octave/MATLAB.  In the  example  above,  function is  the  reserved  keyword  for  a  function,  y is  the  output, myfunction is  the  name  of  the  function  which  should  match  the  file  name  and  x is 6  The  fprintf() function  in  Octave/MATLAB  is  a  combination  of  printf() and  fprintf() in  C  providing  output  options. 
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the  input.  The  second  line, 

y=xˆ3-x+1;,  defines  the  output.  The  end keyword  is 

optional  but  recommended. 

A  function  can  return  multiple  values.  In  the  following  example,  when  z is  provided  as input,  x stores  zˆ2 and  y stores  zˆ3. 

function [x, y]=myfunction2(z) 

x=zˆ2; 

y=zˆ3; 

end; 

In  Octave/MATLAB,  this  function  can  be  called  as: 

[a,b]=myfunction2(3); 

There  is  a  way  to  define  a  function  without  a  separate  function  m-file  called   anonymous functions.  Use  the  following  example: 

f=@(x,y) x-yˆ2; 

The  code  above  defines   f  (x,  y)  =  x  −  y 2  that  can  be  included  in  the  script  program without  preparing  a  separate  function  m-file,  f.m, 

In  an  Octave/MATLAB  session,  this  function  can  be  called  directly  as octave.exe:21> f(1,2) 

ans = -3  

Anonymous  functions  provide  a  quick  way  to  create  simple,  one-line  functions,  useful when  you  don’t  need  a  full  function  file. 

2.  Script  m-files 

A  script  m-file  is  a  batch  file  that  contains  a  set  of  statements  which  would  otherwise  be typed  directly  from  the  keyboard.  Any  Octave/MATLAB  statement  can  be  included  in  a script  m-file,  with  the  exception  of  function  definitions,  which  must  be  saved  separately as  function  m-files.  To  load  a  script  m-file,  type  the  file  name  without  the  extension  m. 7

For  example,  a  file  named  myscript.m can  be  created  with  the  following  content  and saved  in  the  C:\tmp directory. 

7  Note  that  a  script  m-file  name  should  not  contain  a  minus  (-)  sign.  Why?. 
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a=input(’Enter a number=’); 

fprintf(’The square of %f is %f\n.’, a, aˆ2); 

In  an  Octave/MATLAB  session,  this  script  m-file  can  be  executed  as octave.exe:10> cd ’C:\tmp’ % Changes the working directory. 

octave.exe:11> myscript % Note no extension (m). 

Enter a number=12 

The square of 12.000000 is 144.000000 

B.2.7

Conditional  Statement 

The  conditional  statements  in  Octave/MATLAB  are  similar  to  those  in  C,  with  minor  modifications  in  syntax.  The  following  examples  illustrate  these  conditional  statements  clearly. 

1.  If  statement 

The  following  example  demonstrates  the  usage  of  if statements.  Note  that  each  if statement  must  be  paired  with  an  end. 

if a>2 

disp(’a is greater than 2.’) 

else 

disp(’a is less than 2.’) 

end 

Unlike  in  C,  parentheses  are  not  required  for  expressions  such  as  a > 2. 

Equivalent  C  code  would  look  as  follows: 

if (a > 2) 

printf("a is greater than 2."); 

else 

printf("a is less than 2."); 

2.  For  statement 

The  following  example  illustrates  the  usage  of  for statements.  Note  that  each  for statement  must  be  paired  with  an  end. 
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for k=0:2:10 % k goes from 0 to 10 with an increment of 2. 

disp(2*k) 

end 

Equivalent  C  code  would  look  as  follows: 

for (k = 0; k <= 10; k = k + 2) 

printf("%d\n",2*k); 

B.3

Sketch  of  Comparison  Between  C  and  Octave/MATLAB 

For  C  programmers,  a  highly  effective  way  to  quickly  learn  the  syntax  of  Octave/MATLAB 

is  to  compare  equivalent  programs  written  in  each  language  side  by  side. 

The  following  section  provides  a  side-by-side  comparison  of  programs  that  implement the  same  logic  in  both  C  and  Octave/MATLAB. 

1.  Programs  to  solve  quadratic  equations 

/* This program computes two roots

for a quadratic equation. */

% This program computes two roots

#include <stdio.h> 

% for a quadratic equation. 

#include <math.h> 

a=input("Enter a = "); 

int main()

b=input("Enter b = "); 

{

c=input("Enter c = "); 

double a, b, c, disc, x1, x2; 

disc=bˆ2-4*a*c; 

printf("Enter 3 coeffs ="); 

scanf("%lf %lf %lf", &a, &b, &c); 

if disc<0

disp(’Imaginary roots !’); 

disc = b*b - 4*a*c; 

return; 

if (disc < 0)

end; 

{ printf("Imaginary roots !\n"); 

x1=(-b-sqrt(disc))/(2*a); 

return 0; 

x2=(-b+sqrt(disc))/(2*a); 

}

x1 = (-b + sqrt(disc))/(2*a); 

fprintf(’Roots are %f %f.\n,x1,x2); 

x2 = (-b - sqrt(disc))/(2*a); 

printf("The roots are\

%f, %f.\n", x1, x2); 

return 0; 

}

2.  Programs  for  series  summation
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#include <stdio.h> 

#include <math.h> 

int main() 

sum=0; 

{ 

int i; 

for k=0:1000

double sum = 0.0; 

sum=sum+(-1)ˆk/(2*k+1); 

for (i = 0; i < 1000; i++) 

end

sum+= pow(-1,i)/(double)(2*i + 1); 

printf("approx= %f 

fprintf(’Approx and exact

exact value= %f.\n", 

values = %f %f.\n’, 

4*sum, 4*atan(1.0)); 

4*sum, 4*atan(1)); 

return 0; 

} 

Note  that  sum is  a  reserved  function  in  Octave/MATLAB. 

3.  Programs  to  handle  arrays 

#include <math.h> 

#define N 10

N=10; 

int main()

x=[-4 1.2 1.3 2.5 -12.7 9 1.41

{

65.2 -2.1 2.36]; 

float x[]={ -4.0, 1.2, 1.3, 2.5, 

sum=0; 

-12.7, 9.0,1.41, 65.2, -2.1, 2.36}; 

for k=1:N

int i; 

sum=sum+x(k)

float sum = 0.0, average, variance; 

end

for (i = 0; i < N; i++) sum+= x[i]; 

ave=sum/N; 

average = sum/N; 

var=0; 

for k=1:N

for (i = 0; i < N; i++)

var=var+(x(k)-ave)ˆ2

variance += pow(x[i] - average, 2); 

end

variance = variance/(N - 1); 

var=var/(N-1); 

fprintf(’Average = %f, 

printf("avg.= %f std. dev. = %f \n ", 

Standard deviation= %f.\n’, 

average, sqrt(variance)); 

ave, sqrt(var)); 

return 0; 

}

4.  Programs  to  use  functions
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#include <stdio.h> 

#include <math.h> 

function y=f(x) 

#define EPS 1.0e-6 

y=x*x-2; 

double f(double x) 

% 

{ 

% Save this file as f.m 

return x*x - 2; 

% 

} 

function y=fp(x) 

y=2*x; 

double fp(double x) 

% 

{ 

% Save this file as fp.m 

return 2*x; 

% 

} 

function y=newton(x) 

double newton(double x) 

y=x-f(x)/fp(x); 

{ 

% 

return x - f(x)/fp(x); 

% Save this file as newton.m 

} 

% 

int main() 

x1=input(’Enter initial 

{ 

guess = ’); 

double x1, x2; 

int i; 

if fp(x1)<eps 

printf("Enter initial guess  ="); 

disp(’No convergence !’); 

scanf("%lf", &x1); 

return; end 

if (fp(x1) == 0.0) 

{ 

for i=0:1:99 

printf("No convergence.\n"); 

x2=newton(x1); 

return 1; 

if abs(x1-x2)<1e-10 break;end 

} 

x1=x2; 

for (i = 0; i < 100; i++) 

end 

{ 

x2 = newton(x1); 

fprintf(’Iteration = %d\n’, i); 

if (fabs(x1 - x2) < EPS) break; 

fprintf(’x = %f\n’, x1); 

x1 = x2; 

} 

printf("iteration = %d\n", i); 

printf("x= %f\n", x1); 

return 0; 

} 

5.  Programs  to  handle  external  files

#include <stdio.h> 

int main()

fp1=fopen(’data1.dat’, ’r’); 

{

a=fscanf(fp1, ’%f’); 

FILE *fp1, *fp2; 

fclose(fp1); 

float a, b, c; 

fp1 = fopen("data1.dat","r"); 

fp2=fopen(’data2.dat’, ’w’); 

fscanf(fp1, "%f", &a); 

fprintf(fp2, ’This is the

fclose(fp1); 

first line.\n’); 

fclose(fp2); 

fp2 = fopen("data2.dat","w"); 

fprintf(fp2, "This is the

first file.\n"); 

fclose(fp2); 

return 0; 

}
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B.4

Exercise 

1.  Translate  the  following  C  code  to  an  equivalent  Octave/MATLAB  m-file. 

#include <stdio.h> 

int main() 

{ 

double x, y, z; 

int i,n; 

x = y = z = 0.0; 

printf("Enter # of iteration = "); 

scanf("%d", &n); 

for (i = 0; i < n; 

i++) 

{ 

x = (10 - y - 2*z)/7; 

y = (8 - x - 3*z)/8.0; 

z = (6 - 2*x - 3*y)/9.0; 

} 

printf("x = %f, y= %f, z=%f.\n", x,y,z); 

return 0; 

} 

Note  the  following  syntax: 

fprintf(’x = %f, y= %f, z=%f\n’, x,y,z); 

2.  Translate  the  following  C  code  into  equivalent  Octave/MATLAB  m-files.  You  will need  to  create  two  m-files:  one  for  a  function  m-file  (f.m)  and  one  for  a  script  m-file (simpson.m). 

/* Simpson’s rule */ 

#include <stdio.h> 

#include <math.h> 

double f(double x) 

{ 

return 4.0/(1.0 + x*x); 

} 

int main() 

{ 

int i, n; 

double a = 0.0, b = 1.0, h, s1 = 0.0, s2 = 0.0, s3 = 0.0, x; 

printf("Enter number of partitions (must be even) = "); 
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scanf("%d", &n); 

h = (b - a)/(2.0*n); 

s1 = (f(a) + f(b)); 

for (i = 1; i < 2*n; i = i + 2) s2 = s2 + f(a +  

i*h); 

for (i = 2; i < 2*n; i = i + 2) s3 = s3 + f(a +  

i*h); 

printf("%f\n", (h/3.0)*(s1 + 4.0*s2 + 2.0*s3)) ; 

return 0; 

}

FORTRAN  Tutorial  for  C  Programmers 

C

FORTRAN  (FORmula  TRANslation),  developed  in  1957  at  IBM,  was  the  predominant programming  language  for  engineers  and  scientists  until  the  1990s  due  to  its  extensive library  of  subroutines.  Even  today,  FORTRAN  remains  a  major  computational  language  in specific  scientific  and  engineering  fields,  such  as  computational  fluid  dynamics,  and  is  often used  as  a  benchmark  for  supercomputers  [ 14]. 

FORTRAN  has  evolved  over  time  to  incorporate  modern  programming  concepts,  with FORTRAN  2023  being  the  latest  version  available  at  the  time  of  writing. 

This  Appendix  aims  to  assist  C  programmers  in  reading  and  making  minor  modifications to  legacy  FORTRAN  77  code.  A  typical  scenario  might  involve  a  C  programmer  who  needs to  slightly  modify  a  FORTRAN  code  written  decades  ago  but  does  not  need  to  develop  new FORTRAN  code  from  scratch.  Understanding  the  basic  syntax  of  FORTRAN,  which  can be  related  to  C  syntax,  is  sufficient  for  this  task. 

This  Appendix  provides  a  basic  introduction  to  FORTRAN  for  C  programmers  and  is  not intended  as  a  comprehensive  reference.  Numerous  detailed  reference  books  on  FORTRAN 

are  available  for  those  seeking  further  information. 

C.1

FORTRAN  Features 

As  FORTRAN  programs  were  prepared  using  a  deck  of  IBM  punch  cards  shown  in  Fig. C.1 

one  line  per  card,  the  width  of  the  card  (80  characters)  was  all  it  was  able  to  utilize.  Unlike modern  computer  languages,  FORTRAN  has  the  following  restrictions: 

1.  Case  insensitivity.  While  originally  only  uppercase  letters  were  used,  modern  programs can  handle  both  uppercase  and  lowercase  letters. 

2.  Fixed-format  structure:  Each  line  is  restricted  to  80  columns. 

©  The  Editor(s)  (if  applicable)  and  The  Author(s),  under  exclusive  license  to  Springer 171

Nature  Switzerland  AG  2025 

S.  Nomura,  C  Programming  and  Numerical  Analysis,  Synthesis  Lectures  on  Mechanical Engineering, https://doi.org/10.1007/978-3-031-83457-8 
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172

Appendix C: FORTRAN Tutorial for C Programmers

Fig.  C.1  IBM  punch  card 

(a)  Column  1  is  reserved  for  comments.  Any  character  in  Column  1  signifies  that  the  line is  a  comment  line. 

(b)  Columns  2–5  are  designated  for  line  identification,  primarily  used  by  GOTO statements. 

(c)  Column  6  is  reserved  for  continuation.  Any  character  in  Column  6  indicates  that  the line  is  a  continuation  of  the  previous  line. 

(d)  Columns  7–72  are  reserved  for  FORTRAN  statements.  This  is  the  sole  area  where FORTRAN  code  can  be  written. 

3.  Variables  starting  with  letters  I  through  N  are  implicitly  declared  as  integers.  Variables starting  with  any  other  letters  are  implicitly  declared  as  real  numbers.  To  override  this default  behavior,  explicitly  declare  variables  as  INTEGER,  REAL,  or  DOUBLE  PRECISION. 

4.  Mixed  data  types  are  not  allowed.  If  an  integer  variable  needs  to  be  used  as  a  floating-point  number,  apply  the  FLOAT function,  e.g.,  FLOAT(I).  Conversely,  to  use  an  integer constant  with  floating-point  variables,  convert  it  from  3 to  3.0. 

C.2

How  to  Run  a  FORTRAN  Program 

As  FORTRAN  is  a  compiled  language,  its  execution  process  is  analogous  to  that  of  C 

programs. 

1.  UNIX  system 

On  a  typical  UNIX  system,  either  g77 (GNU  FORTRAN  compiler)  or  f77 or  f95 

(manufacturer-supplied  FORTRAN  compiler)  is  available.  Instead  of  using  gcc, invoke g77 followed  by  the  name  of  the  FORTRAN  file.  The  file  extension  for  FORTRAN  files must  be  .f or  .f77 or  f95. 
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$ nano MyProgram.f 

$ g77 MyProgram.f 

$ ./a.out 

2.  Windows  system 

The  free  FORTRAN  compiler,  g77,  for  Windows  is  available  from  the  same  site  where gcc was  downloaded.  Since  download  sites  may  change  over  time,  perform  a  Google search  using  keywords  such  as  gnu g77 windows to  find  the  current  download  location. 

To  compile  a  FORTRAN  program,  issue 

g77 MyProgram.c 

This  will  produce  an  executable  file,  a.exe instead  of  a.out. 

C.3

Sketch  of  Comparison  Between  C  and  FORTRAN 

Similar  to  Octave/MATLAB,  a  C  programmer  can  most  effectively  learn  FORTRAN  syntax by  comparing  side-by-side  examples  of  programs  written  in  C  and  FORTRAN. 

The  following  section  presents  the  same  programs  used  in  the  Octave/MATLAB  section, along  with  their  corresponding  FORTRAN  implementations. 

1.  Programs  to  solve  quadratic  equations

/* This program computes roots

for quadratic equation. */

#include <stdio.h> 

C

This program computes roots

#include <math.h> 

C

for quadratic equations. 

DOUBLE PRECISION A, B, C, 

int main()

c

DISC, X1,X2

{

WRITE(*,*) "Enter three coeffs" 

double a, b, c, disc, x1, x2; 

printf("Enter 3 coeffs = "); 

READ(*,*) A, B, C

scanf("%lf %lf %lf", &a, &b, &c); 

DISC=B**2-4.0*A*C

disc = b*b - 4*a*c; 

IF(DISC.LE.0.0) THEN

WRITE(*,*)"Imaginary roots." 

if (disc <= 0)

STOP

{

ENDIF

printf("Imaginary roots !\n"); 

return 0; 

}

X1=(-B+SQRT(DISC))/(2.0*A)

X2=(-B-SQRT(DISC))/(2.0*A)

x1 = (-b + sqrt(disc))/(2*a); 

WRITE(*,*) "Roots are ", X1, X2

x2 = (-b - sqrt(disc))/(2*a); 

STOP

END

printf("The roots are %f and

%f. \n", x1, x2); 

return 0; 

}
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Note: 

•  The  WRITE(*,*) "STRING", A line  means  to  write  STRING and  the  value  of A to  the  default  device  (the  first  *,  screen)  using  the  default  format  (the  second  *). 

•  A to  the  power  of  B ( AB)  can  be  entered  as  A**B. 

•  The  following  is  a  list  of  relational  operators  used  in  IF. 

–  A.LE.B A  is  less  than  or  equal  to  B  (a  < = b) 

–  A.LT.B A is less than B (a  <  b) 

–  A.EQ.B A  is  equal  to  B  (a == b) 

–  A.GT.B A  is  greater  than  B  (a  >  b) 

–  A.GE.B A  is  greater  than  or  equal  to  B  (a  > = b) 

–  A.NE.B A  is  not  equal  to  B  (a != b) 

–  A.AND.B A and  B (a && b) 

–  A.OR.B A or B (b || b) 

2.  Programs  for  series  summation 

#include <stdio.h> 

#include <math.h> 

DOUBLE PRECISION SUM

INTEGER I

int main()

SUM=0.0

{

int i; 

DO 10 I=0,999,1

double sum = 0.0; 

SUM=SUM+(-1)**I/

for (i = 0; i < 1000; i++)

c

(2.0*FLOAT(I)+1.0)

sum+= pow(-1,i)/(double)(2*i + 1); 

10

CONTINUE

printf("approx= %f true value=

%f\n ", 4*sum, 4*atan(1.0)); 

WRITE(*,*) "Approx and

return 0; 

c

exact values =", 4.0*SUM, 

}

c

4.0*ATAN(1.0)

STOP

END

•  There  is  no FOR statement  available  in  FORTRAN.  For  iterations, DO and CONTINUE 

are  used. 

•  DO 10 I=0,999,1 means  to  repeat  the  statements  between  the  DO line  and  the line  that  has  the  line  number  10 with  the  iteration  variable,  I,  from  0  to  999  with  the increment  of  1.  The  CONTINUE  statement  is  to  literally  keep  going  doing  nothing else. 

Appendix C: FORTRAN Tutorial for C Programmers

175

3.  Programs  to  handle  arrays 

#include <stdio.h> 

#include <math.h> 

PARAMETER(N=10)

#define N 10

REAL X(N), SUM, AVE, VAR

int main()

INTEGER I

{

float x[] = { -4.0, 1.2, 1.3, 2.5, 

DATA X /-4.0,1.2,1.3,2.5, 

-12.7, 9.0, 1.41, 65.2, -2.1, 

c -12.7,9.0,1.41, 

2.36}; 

c 65.2,-2.1, 2.36/

int i; 

float sum = 0.0, average, variance; 

SUM=0.0

for (i = 0; i < N; i++) sum+= x[i]; 

DO 10 I=1,N

average = sum/N; 

SUM=SUM+X(I)

10

CONTINUE

for (i = 0; i < N; i++)

variance += pow(x[i] - average, 2); 

AVE=SUM/FLOAT(N)

variance = variance/(N - 1); 

DO 20 I=1,N

printf("avg.= %f std. dev. = %f \n ", 

VAR=VAR+(X(I)-AVE)**2

average, sqrt(variance)); 

20

CONTINUE

return 0; 

VAR=VAR/(FLOAT(N)-1.0)

}

WRITE(*,*) "Average=", 

c

AVE, 

c

’ Standard deviation =’, 

c

SQRT(VAR)

STOP

END

•  PARAMETER can  specify  a  constant. 

•  FLOAT converts  an  integer  variable  to  a  floating  number. 

4.  Programs  to  use  functions
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#include <stdio.h> 

#include <math.h> 

#define EPS 1.0e-6 


****************************** 

FUNCTION F(X) 

double f(double x) 

DOUBLE PRECISION F, X 

{ 

F=X*X-2.0 

return x*x - 2; 

RETURN 

} 

END 


****************************** 

double fp(double x) 

FUNCTION FP(X) 

{ 

DOUBLE PRECISION FP, X 

return 2*x; 

FP=2.0*X 

} 

RETURN 

END 

double newton(double x) 


****************************** 

{ 

FUNCTION NEWTON(X) 

return x - f(x)/fp(x); 

DOUBLE PRECISION NEWTON, 

} 

c

X, F, FP



NEWTON=X-F(X)/FP(X) 

int main() 

RETURN 

{ 

END 

double x1, x2; 


**************************** 

int i; 

PARAMETER(EPS=1.0E-6) 

printf("Enter initial guess  ="); 

DOUBLE PRECISION X1, X2, 

scanf("%lf", &x1); 

c  NEWTON, F, FP 

INTEGER I 

if (fp(x1) == 0.0) 

{ 

WRITE(*,*) "Enter initial guess" 

printf("No convergence.\n"); 

READ(*,*) X1 

return 1; 

} 

IF(FP(X1).EQ.0.0) THEN 

WRITE(*,*) "No conv" 

for (i = 0; i < 100; i++) 

STOP 

{ 

ENDIF 

x2 = newton(x1); 

if (fabs(x1 - x2)< EPS) break; 

DO 10 I=0,99,1 

x1 = x2; 

X2=NEWTON(X1) 

} 

IF(ABS(X1-X2).LT.EPS) GOTO 11 

X1=X2 

printf("iteration = %d\n", i); 

10 

CONTINUE 

printf("x= %f\n", x1); 

return 0; 

11 

CONTINUE 

} 

WRITE(*,*)"Iteration =",I 

WRITE(*,*)"X=",X1 

STOP 

END 

•  The  type  of  of  each  function  defined  must  be  also  declared  within  the  main  program. 
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5.  Programs  to  handle  external  files 

#include <stdio.h> 

int main()

REAL A, B, C

{

B=3.14

FILE *fp1, *fp2; 

C

float a,b,c; 

OPEN(UNIT=1, 

fp1 = fopen("data11.dat", "r"); 

c

FILE=’data1.dat’, 

fscanf(fp1, "%f", &a); 

c

STATUS=’old’)

fclose(fp1)

READ(1, *) A

WRITE(*,*) A

fp2 = fopen("data2.dat", "w"); 

CLOSE (1)

fprintf(fp2, "This is the first file.\n"); 

C

fclose(fp2); 

OPEN(UNIT=2, 

c

FILE=’data2.dat’, 

return 0; 

c

STATUS=’new’)

}

WRITE(2,*) ’This is

c

the first file.’

WRITE(2,*) B

CLOSE(2)

C

STOP

END

•  To  access  an  external  file,  use  OPEN to  open  the  file,  assign  a  unit  number  to UNIT,  and  specify  whether  the  file  is  for  writing  (STATUS=’new’)  or  for  reading (STATUS=’old’). 

•  READ(1, *) A indicates  reading  a  variable  A from  unit  1  (e.g.,  an  external  file data1.dat)  using  the  default  format. 

•  WRITE(2, *) B signifies  writing  the  value  of  B to  unit  2  (e.g.,  an  external  file data2.dat)  using  the  default  format. 

C.4

Exercise 

(a)  Translate  the  following  C  code  to  a  FORTRAN  code:

#include <stdio.h> 

#define N 10

int main()

{

float x[N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 

y[N] = {549.88, 693.932, 415.337, 624.482, 

436.095, 355.256, 185.603, 
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308.003, 244.414, 376.182}; 

float xysum = 0.0, xsum = 0.0, ysum = 0.0, x2sum = 0.0; 

float a, b; 

int i; 

for (i = 0; i < N ; 

i++) 

{ 

xsum+= x[i]; 

ysum+= y[i]; 

xysum+= x[i]*y[i]; 

x2sum+= x[i]*x[i]; 

} 

a = (xysum*N - xsum*ysum)/(x2sum*N - xsum*xsum); 

b = (x2sum*ysum - xysum*xsum)/(x2sum*N - xsum*xsum); 

printf("%f %f \n", a, b); 

return 0; 

} 

(b)  Translate  the  following  C  code  to  a  FORTRAN  code:

#include <stdio.h> 

#include <math.h> 

double f(double t, double y)

{

return y; 

}

int main()

{

double h = 0.1, t, y, k1, k2, k3, k4; 

int i; 

/* initial value */

t = 0.0; y = 1.0; 

for (i = 0; i <= 10; i++)

{

printf("t= %f rk= %f exact=%f\n", t, y, exp(t)); 

k1 = h*f(t,y); 

k2 = h*f(t + h/2, y + k1/2.0); 

k3 = h*f(t + h/2, y + k2/2.0); 

k4 = h*f(t + h, y + k3); 

y = y + (k1 + 2.0*k2 + 2.0*k3 + k4)/6.0; 

t = t + h; 

}

return 0; 

}
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on your academic projects? https://kb.uta.edu/0011414

OIT Help Desk Self Service is available: https://ithelp.uta.edu
KERKEEXEEXEXAELLELERLEEKREKEEKEEKEEKEEKEEREEKRRLEREEREEEEELEEKEEKEEKE KKK KKKK

[omega.uta.edu]: /home/s/sn/sn:
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