

[image: Image 1]

BEM

It’s easy

Greetings and Welcome! 10

Who Is This Book For? 11

How to Use This Book 14

About the Author 17

Ukraine's Struggle for Independence: A Call for Global Support 18

Wishes 21

1. Introduction to BEM 22

What is BEM? 22

History and Evolution of BEM 23

The Origins of BEM 23

The Need for a Methodology 23

Adoption and Growth 25

Modern Context and Adaptations 25

BEM Beyond CSS 25

Why BEM Matters Today 27

Reasons for BEM's Popularity in Modern Web

Development 28

1. Modularity and Reusability 28

2. Scalability for Large Projects 29

3. Maintainability and Readability 29

4. Enhanced Team Collaboration 30

5. Integration with Modern Development

Tools 30

6. Improved CSS Performance 31

7. Flexibility and Adaptability 31

8. Longevity and Proven Success 32

9. Consistency Across Teams and Projects 32

10. Future-Proofing Code 33

Conclusion 34

Principles and Foundations: Blocks, Elements,

Modifiers 35

Blocks: The Core Building Units 35

Elements: The Child Components 36

Modifiers:Variations of Blocks and Elements 37

How Blocks, Elements, and Modifiers Work

Together 38

Conclusion 39

Advantages of Using BEM for CSS Organization 40

1. Modular and Reusable Code 40

2. Predictable and Scalable Naming

Conventions 41

3. Avoids Specificity Wars 42

4. Improved Collaboration Among

Developers 43

5. Simplifies Debugging and Maintenance 43

6. Enhances Project Scalability 44

7. Compatibility with Modern Development

Practices 44

8. Encourages Consistent Design Across the

Project 45

9. Reduces CSS File Size 46

10. Compatibility with Preprocessors and

Tools 46

Conclusion 47

2. BEM Basics: Structure and Rules 48

Structure of Class Names: Blocks, Elements,

Modifiers 48

1. Blocks: The Foundation of BEM 48

2. Elements: The Parts of a Block 49

3. Modifiers: Variations of Blocks or

Elements 51

4. Nested Example: Combining Blocks, Elements, and

Modifiers 53

5. Rules for Structuring Class Names 54

6. Benefits of the BEM Naming Structure 54

Conclusion 55

Examples and Templates for Blocks, Elements, and

Modifiers 56

Templates for Common Components 60

Best Practices for Templates 63

Conclusion 64

3. Practical Application and Techniques for Building

UI with BEM 65

Organizing CSS Using BEM in Real-World

Projects 66

1. Understanding the Project Structure 66

2. Modular Approach 66

3. Scaling and Collaboration 67

4. Improving Maintainability 69

5. Avoiding Global Styles and Conflicts 69

6. Project Integration 70

Conclusion 71

Blocks and Elements in Various Contexts: Layout

Formation and Responsiveness 72

1. Blocks and Elements in Layout Formation 72

Defining the Block: 72

Using Elements in Layouts: 74

2. Responsiveness in BEM Layouts 75

Responsive Blocks: 75

Responsive Elements: 76

Flexibility with Modifiers: 77

3. Using BEM for Layout Grids and Complex

Structures 78

Conclusion 79

Recommendations for Styling Large Components and

Building Adaptive, Responsive Interfaces 80

1. Break Down Large Components into Smaller Blocks

and Elements 80

2. Use Grid or Flexbox for Layout Formation 82

3. Use Modifier Classes for Adaptive Designs 84

4. Embrace Mobile-First Design 85

5. Utilize Utility Classes for Common

Patterns 86

Conclusion 87

Using BEM in Mobile Apps and Responsive

Designs 88

1. Adapting BEM for Mobile Design 88

2. Creating Mobile-Specific Blocks and

Elements 89

3. Building Responsive Layouts with BEM 91

4. Optimizing Touch Targets and Interactions 92

5. Implementing Media Queries with BEM 93

6. Integrating BEM with CSS Frameworks 94

Conclusion 94

BEM for Building Component Systems (Design

Systems) 95

1. Role of BEM in Design Systems 95

2. Structuring Components with BEM 96

3. Organizing Components in a Design

System 97

Component Directory Structure 97

Centralized Variables and Mixins 97

4. Building Complex Components 99

5. Establishing a Style Guide 100

6. Integration with JavaScript Frameworks 101

7. Benefits of BEM in Design Systems 102

Conclusion 102

Blocks for Modals, Forms, Tables, and Other UI

Elements 103

1. Modals 103

2. Forms 105

3. Tables 107

4. Other UI Elements 108

Conclusion 110

Connecting with Other Technologies (SVG, Canvas,

WebGL) 111

1. SVG (Scalable Vector Graphics) 111

BEM for SVG Elements: 111

Advantages of BEM with SVG: 112

2. Canvas 113

Advantages of BEM with Canvas: 114

3. WebGL 114

Advantages of BEM with WebGL: 116

Conclusion 116

4. Optimizing Structure, CSS, and Integration with

Modern Frameworks 117

Minimizing Class and Element Duplication in

BEM 118

1. Reusing Blocks Across Components 118

2. Avoiding Element Duplication Within

Blocks 119

3. Structuring Reusable Elements Within

Blocks 120

4. Reducing Modifier Duplication 121

Conclusion 121

Improving CSS Readability Through a Clear Hierarchy in

BEM 122

1. Following a Logical Block-Element-Modifier

Structure 122

2. Maintaining Consistent Indentation and Grouping

Styles 123

3. Avoiding Deep Nesting in SCSS/SASS 124

4. Using Meaningful and Predictable Naming

Conventions 125

5. Structuring Stylesheets for Scalability 126

Conclusion 127

Using CSS Variables and Functions for Flexibility in

BEM 128

1. Why Use CSS Variables in BEM? 128

Advantages of CSS Variables in BEM: 128

2. Defining and Using CSS Variables 129

3. Using CSS Functions for Flexibility 129

4. Applying CSS Variables for Theming 130

Conclusion 130

Splitting Styles: Base, Modular, and Specific CSS in

BEM 131

1. Why Split CSS? 131

2. Structure of CSS Organization 131

a) Base Styles 131

b) Modular Styles (BEM Blocks and

Elements) 133

c) Specific (Page-Specific or Contextual

Styles) 133

3. Best Practices for Splitting Styles 134

Follow a Folder Structure: 134

Use Preprocessors (SCSS, LESS) for

Organization: 134

Keep Components Self-Contained: 134

Use Variables for Consistency: 135

Conclusion 135

Improving Performance Through Proper CSS

Setup 136

1. Minimizing Unused CSS 136

2. Reducing CSS File Size 137

3. Avoiding Render-Blocking CSS 137

5. Implementing a Scalable CSS Strategy 139

Conclusion 139

Tips for Integrating BEM with Other Tools: CSS-in-JS, SASS,

LESS, PostCSS 140

BEM with CSS-in-JS 140

BEM with SASS (SCSS) 142

BEM with LESS 143

BEM with PostCSS 144

Final Thoughts 145

Creating Components Using BEM in React 146

1. Structuring React Components with BEM 146

2. Using BEM with Nested Elements 149

3. BEM with Dynamic Classes in React 151

4. Best Practices for Using BEM in React 152

Passing Classes in JSX and Using Dynamic

Modifiers 153

1. Passing Classes Dynamically in JSX 153

2. Using classnames for Cleaner JSX 155

3. Using BEM for Component States and

Variations 157

4. Best Practices for Using BEM with Dynamic Classes in

React 158

Integration with CSS Modules and styled-components in

React 159

1. CSS Modules: Scoped and Modular Styling with

BEM 159

What are CSS Modules? 159

Setting Up CSS Modules in React 159

2. Styled-components: Component-Level Styling in

React 161

What are styled-components? 161

Advantages of styled-components in BEM-based

Projects 163

3. CSS Modules vs. styled-components: Which One to

Choose? 163

4. Combining CSS Modules & styled-components in a

Single Project 164

Final Thoughts 166

Using BEM in Vue Component Templates 167

1. Understanding Vue Component

Structure 167

2. Using BEM in Vue Templates 169

3. Interacting with Vue.js Directives and

BEM 172

4. Modifier Logic in Vue Components 174

5. Benefits of Using BEM with Vue 176

Conclusion 177

Interaction Between BEM and Vue.js

Directives 178

1. Conditional Rendering with v-if, v-show, and v-

for 178

2. Dynamic Classes with v-bind:class 179

3. Repeating Elements with v-for 179

4. Modifier Logic with Vue.js 180

5. Interactivity with Vue.js and BEM 181

Modifier Logic in Vue Components 182

Why Use Modifiers in Vue? 182

Implementing BEM Modifiers in Vue 183

Modifier Logic in Vue Components 185

What Are Modifiers in BEM? 185

How to Apply Modifiers in Vue Components 186

Using Computed Properties for Modifier

Logic 188

Using BEM Modifiers with v-for 189

Using Modifiers with Vue Transitions 191

Conclusion 193

Component Structure in Angular with BEM 194

1. Organizing Angular Components with

BEM 194

2. Benefits of Using BEM in Angular

Components: 196

3. Avoiding Naming Conflicts 196

4. Practical Example: 197

5. Modifier Logic in Angular 199

6. Best Practices for BEM in Angular: 199

Using ngClass and ngStyle for Modifiers in Angular with

BEM 200

1. ngClass in Angular 200

2. ngStyle in Angular 202

3. Combining ngClass and ngStyle 204

4. Best Practices for ngClass and ngStyle with

BEM 206

Transitioning from Components to Complex UI Elements in

Angular with BEM 207

1. Managing Complexity with BEM 207

2. Complex UI Element Example: Modal with

BEM 208

3. Managing UI Transitions with BEM 211

4. Transitioning to Larger UI Components: Forms and

Tables 212

5. Best Practices for Large-Scale Projects and Team

Collaboration 214

Setting Up BEM in Large-Scale Projects 214

Organizing the Project Structure 215

Defining a Consistent Naming Convention 216

Automating BEM Enforcement with Linters &

Preprocessors 217

Establishing a Team Workflow for BEM

Collaboration 218

Handling Complex UI Components with

BEM 219

Conclusion 219

Best Practices for Complex Interfaces: Theming,

Responsiveness, SEO 220

Theming: Consistent and Flexible Styles 220

Responsiveness: Building for All Devices 222

SEO (Search Engine Optimization): Improving

Visibility 224

Performance Optimization for SEO and

Responsiveness 226

Performance is a crucial factor for both SEO and user

experience. Optimizing your website ensures faster

load times, better search rankings, and a more

pleasant user experience. 226

Conclusion 227

BEM in Teams: Standardization and

Documentation 228

Standardization: Setting Clear Guidelines 228

Documentation: Creating a Common Knowledge

Base 230

Tools for BEM in Team Projects 232

Ensuring Ongoing Adoption and

Consistency 233

Conclusion 234

Collaboration Tips for Teams: Adapting Styles & Shared

Guidelines 235

Establishing Shared Guidelines 235

Using a Modular and Scalable CSS

Approach 236

Version Control and Collaboration with Git 237

Collaboration Between Developers and

Designers 238

Establishing Code Reviews for Styles 239

Handling Theming & Global Styles in

Teams 240

Continuous Learning & Team Growth 241

Conclusion 242

Strategies for Transitioning to BEM in Large

Projects 243

Assessing the Existing Codebase 243

Choosing a Migration Approach 244

Refactoring Existing Styles 245

Implementing BEM in Components and

Templates 247

Automating BEM Compliance 248

Training & Documentation 249

Conclusion 250

Appendices 251

Test Examples for Beginner Projects 251

Templates for the Most Common Components 254

Conclusion 257

Tasks 258

1. Create a Block 258

2. Create an Element with a Modifier 259

3. Responsive Design with BEM 260

4. Create a Complex Component with BEM 261

5. BEM in Forms 262

6. BEM with CSS Preprocessors 263

7. BEM and JavaScript 264

Bonus 265

Greetings and Welcome!

Hello, and thank you for picking up this book! I’m excited to have you on this journey toward mastering one of the most important methodologies in front-end development: BEM

Whether you’re just starting out in web development or you’re a seasoned professional looking to improve your skills, this book is designed to be your guide. Throughout the pages ahead, we’ll dive deep into the BEM methodology, explore its core principles, and learn how to use it to create more maintainable, scalable, and organized CSS.

As a developer from Ukraine, this project holds a special place in my heart. In these challenging times, your interest and support are more important than ever. It’s through sharing knowledge and connecting with people from all over the world that we can keep pushing forward, both personally and professionally.

I hope this book provides you with valuable insights and practical tools that will help you in your career. Whether you're coding for personal projects or working on large-scale applications, BEM can transform the way you approach CSS

and make your life as a developer much easier.

So, let’s dive in! I’m confident that by the end of this book, you’ll have a solid understanding of BEM and be ready to apply it confidently to your own projects.Let’s get started, and happy coding!

Who Is This Book For?

This book is designed for a broad audience, with content tailored to individuals and teams interested in improving their front-end development skills, particularly in the realm of CSS architecture. Here’s a breakdown of who will benefit most from this book:

Beginner Front-End Developers

If you're just starting out with web development and want to learn how to write clean, scalable, and maintainable CSS, this book provides an excellent introduction to BEM. You'll learn core principles of BEM and how they can simplify your approach to writing CSS, making your codebase more organized and easier to maintain as your projects grow.

Experienced Front-End Developers

For those already familiar with CSS but looking to enhance their skills and optimize their workflow, BEM offers a powerful methodology for structuring large-scale CSS. This book will help you deepen your understanding of BEM's structure and its application in complex, team-based projects. You'll gain insights into how BEM can improve your code’s scalability and maintainability in real-world scenarios.

Teams and Organizations

If you work as part of a development team or are managing a team that builds large web applications, this book will guide you on how to adopt BEM across your projects. With

BEM, you can establish consistent naming conventions and coding practices, which makes collaboration more efficient.

The principles laid out in this book can help you scale your front-end development efforts and ensure that all team members work with a unified approach.

Developers Transitioning from Other Methodologies If you've previously worked with other CSS methodologies like SMACSS or OOCSS, but are looking for a more structured and scalable solution, this book will help you transition to BEM. It explains how BEM compares with and complements other CSS methodologies, making it easier for you to integrate BEM into existing projects or workflows.

Designers Collaborating with Developers

Designers who work closely with front-end developers will find this book useful in understanding how to create components that are modular, reusable, and scalable. By adopting BEM, designers can collaborate more effectively with developers, ensuring that the implementation of designs is consistent and maintainable over time.

Anyone Interested in Clean and Maintainable Code Whether you're an individual developer working on small projects or a member of a large team tackling complex applications, if you're committed to writing clean, maintainable, and scalable code, this book will help you master BEM. It provides practical strategies for implementing BEM in various types of projects, so you can produce high-quality, reusable components with ease.

In summary, this book is for anyone who wants to improve their CSS practices, from beginners to experienced professionals, and from individuals to entire teams working on complex, large-scale web applications. By the end of the

book, you'll have a solid understanding of how to implement BEM for more organized, scalable, and maintainable CSS.

How to Use This Book

This book is structured to guide you through the fundamentals of BEM, from the basics to more advanced applications. To get the most out of this book, here are some best practices for following along:

Read Sequentially

While you can always return to individual sections, it’s recommended to read the chapters in the order they are presented. Each chapter builds upon the previous one, so progressing step-by-step will help you understand the concepts in a logical and comprehensive way.

Practice as You Go

Rather than just reading, try to implement the techniques as you learn them. Each chapter includes practical examples, so take the time to recreate them or apply the concepts to your own projects. This will reinforce your learning and help you gain hands-on experience with BEM.

Refer Back When Needed

BEM is a methodology that can be applied across various types of projects. If you feel unsure about any concept or need clarification on how to apply BEM to a specific scenario, don’t hesitate to return to previous chapters. The book is designed as a reference guide, so you can revisit sections as you encounter new challenges.

Take Notes

Jotting down key points, code snippets, or any questions that arise while reading can help you retain important information. This can also be useful for future reference when you're working on projects that require BEM.

Work on Real Projects

To fully understand BEM, try to apply it to a real project (even if it’s a small one). This will help you see how BEM

principles scale with larger, more complex applications and allow you to practice organizing your CSS in a structured, maintainable way.

Follow Along with Examples

Each chapter features code examples that demonstrate BEM

in action. It’s helpful to type out the code yourself rather than simply reading it, as this will help you understand how the different elements of BEM work together.

By following these best practices, you’ll be able to absorb the content more effectively and start applying BEM

methodology to your own projects in no time.

About the Author

I am a frontend developer from Ukraine with experience working on a variety of web projects, including on the WordPress platform. Throughout my career, I have faced numerous challenges in managing CSS, especially on large projects where the complexity of the code increases. This became the main reason I turned my attention to the BEM

(Block, Element, Modifier) methodology, which helps organize and structure CSS in a way that makes it more understandable, modular, and easier to maintain.

I chose BEM as the topic of this book because I believe in its effectiveness and widespread use among web developers.

This methodology significantly simplifies code organization, allowing for consistency and scalability in complex projects.

With practical experience using BEM on personal projects, I decided to share my knowledge and help other developers understand how to use this approach in their work. This book is the result of my observations and research, which will help you quickly master BEM and apply it to improve the structure of your CSS.

As a developer from Ukraine, the ongoing war has affected my life and my work. For me, your support means more than just helping with the content of this book—it represents a shared commitment to growth and collaboration. I truly appreciate your attention and any assistance you can provide during this difficult time.

Ukraine's Struggle for Independence: A Call for Global Support

The war in Ukraine has been ongoing for almost three years, presenting

the

country

with

numerous

significant

challenges. Despite the difficult circumstances, the Ukrainian people remain steadfast in their defense of independence and territorial integrity. Russian aggression has resulted in widespread destruction, but Ukrainians continue to show an unwavering spirit and courage in their fight for a better future.

The situation on the front remains complex and tense.

Russian forces continue their offensive on multiple fronts, trying to capture vital territories. Battles rage for strategic cities and key regions, particularly in the eastern and southern parts of the country. However, the Ukrainian Armed Forces, supported by volunteers and civilians, are fiercely defending their land.

Ukraine is in urgent need of substantial international aid to persevere in this struggle and ensure the country's recovery after the war.

We appeal to all individuals and organizations to lend their support to Ukraine. The country requires assistance in various areas:

● Financial support is essential to rebuild the economy, improve the living conditions of affected citizens,

and ensure the continued functioning of government institutions.

● Humanitarian aid including food, medicine, and other essential resources is needed to support civilians in war-affected regions.

● Military assistance — the Ukrainian Armed Forces require modern weapons, equipment, and training to defend the country effectively.

● Political support — it is vital for the international community to continue imposing sanctions on the aggressor, support Ukraine’s diplomatic efforts globally, and contribute to regional stability.

Ukraine needs support at every stage of this fight. Without it, overcoming the challenges and restoring peace will be impossible. Ukraine is grateful for every bit of assistance, and together, we can help it return to peace, prosperity, and stability.

We urge you to participate in this crucial process — your help is essential. Ukraine is not alone in this struggle, and every contribution brings us closer to victory.

Wishes

I wish you success in mastering BEM and am confident that this approach will help you create more organized, scalable, and maintainable CSS. Along with this book, I hope you will be able to improve your development skills and make your projects more efficient. Remember, practice is the key to improvement, so don't be afraid to experiment and apply new knowledge to real projects. Best of luck in your development career, and may your code always be clean and efficient!

1. Introduction to BEM

What is BEM?

BEM, which stands for Block, Element, Modifier, is a front-end development methodology designed to create reusable, modular, and maintainable code. Initially developed by the team at Yandex, BEM provides a structured way of naming CSS classes to simplify the development of scalable user interfaces. By organizing components into logical units, BEM reduces code duplication, improves collaboration within teams, and ensures consistent styling across projects.

At its core, BEM divides an interface into three main concepts:

1.

Block: A standalone, reusable component that encapsulates a specific functionality or UI element.

Examples include buttons, headers, or navigation menus.

2.

Element: A child of a block that performs a specific role within the block. Examples include a button's text, icon, or dropdown list.

3.

Modifier: A variation of a block or an element that alters its appearance or behavior. Examples include a disabled button, an active menu item, or a warning style.

The naming convention is the backbone of BEM. It uses specific patterns to denote the relationships between blocks, elements, and modifiers, ensuring clarity and consistency across the codebase. For instance:

● Block: button

● Element: button__icon

● Modifier: button--disabled or button__icon--large

History and Evolution of BEM

The Origins of BEM

BEM was conceived by Yandex in the late 2000s as a solution to the challenges they faced in developing large-scale web applications. At the time, CSS lacked a standardized methodology for handling complexity, often resulting in “spaghetti code”—CSS that was difficult to debug, modify, or extend. The Yandex team needed a system that would:

● Promote reusability and modularity.

● Simplify collaboration among developers.

● Scale seamlessly as applications grew in size and complexity.

The Need for a Methodology

Before BEM, CSS practices were often ad hoc. Developers frequently used generic class names (e.g., header, main, footer) or deeply nested selectors, which led to: High specificity issues:

Overly

specific

selectors

made

overriding

styles

cumbersome.

Global namespace conflicts:

Without clear boundaries, styles from one component could inadvertently affect others.

Poor scalability:

Adding or modifying styles often required extensive changes throughout the codebase.

BEM addressed these issues by introducing a systematic approach:

The naming convention created a clear relationship between blocks, elements, and modifiers.

Components became self-contained, reducing the risk of style conflicts.

The methodology emphasized separation of concerns, with each block handling its own styles independently.

Adoption and Growth

BEM quickly gained popularity among developers, particularly those working on large projects or in team environments. It provided an opinionated framework for writing CSS, making it easier to onboard new team members and maintain consistency.

As the web development landscape evolved, so did BEM. It became a foundational tool for:

● Component-based frameworks like React, Vue, and Angular, where BEM integrates naturally with the concept of reusable components.

● CSS preprocessors like SASS and LESS, which complemented BEM by enabling nesting and modular styles.

● Design systems and UI libraries, where BEM

ensures a consistent, scalable approach to styling.

Modern Context and Adaptations

Today, BEM is often combined with other methodologies and tools to suit diverse project needs. Some notable trends include:

● Hybrid approaches: Mixing BEM with functional CSS or utility-first frameworks like Tailwind CSS for faster prototyping.

● Variations in syntax: While Yandex’s original syntax is widely used, many teams adapt it to align with their specific preferences (e.g., using double underscores __

for elements or single dashes - for modifiers).

BEM Beyond CSS

While primarily a CSS methodology, the principles of BEM—

modularity, reusability, and clarity—have influenced other aspects of front-end development:

● Component-based JavaScript frameworks adopt similar patterns to structure their templates and logic.

● Back-end teams use BEM-like principles to design modular APIs and database schemas.

Why BEM Matters Today

In a world where web applications are increasingly complex, BEM remains a relevant and powerful tool. Its structured approach to CSS not only improves the quality of your code but also enhances collaboration, simplifies debugging, and reduces technical debt.

By understanding the history and evolution of BEM, you gain insights into why it was created, how it has been adapted, and why it continues to be a cornerstone of modern frontend development. In the next sections, we’ll dive deeper into the practical application of BEM, explore its syntax, and learn how to leverage it effectively in your projects.

Reasons for BEM's Popularity in

Modern Web Development

BEM (Block Element Modifier) has become a cornerstone of CSS architecture in modern web development due to its ability to address common challenges faced by developers.

Its popularity stems from the methodology's focus on modularity,

scalability,

and

maintainability—qualities

essential for building robust web applications in today’s fast-paced development environment. Below, we explore the key reasons why BEM continues to thrive as a preferred approach among developers.

1. Modularity and Reusability

BEM promotes a modular approach to building user interfaces, where each component is self-contained and independent of others. This modularity makes it easier to: Reuse components:

Blocks can be used across different parts of a project or even in other projects without modification.

Avoid style conflicts: Each block operates in its own namespace, reducing the risk of cascading issues in CSS.

Simplify updates:

Changes to one block do not inadvertently affect unrelated components, ensuring stability in the codebase.

2. Scalability for Large Projects

As projects grow, CSS complexity often becomes unmanageable. BEM’s structured methodology helps scale projects by:

Providing a clear hierarchy:

The distinction between blocks, elements, and modifiers ensures that styles are organized logically.

Enabling consistent patterns:

Developers can predict where styles belong, making it easier to add new features without disrupting the existing codebase.

Facilitating team collaboration:

A shared understanding of BEM principles allows teams to work more effectively, even in large, distributed environments.

3. Maintainability and Readability BEM’s naming conventions make stylesheets more readable and easier to maintain:

Descriptive class names:

Classes like button__icon--large clearly indicate the purpose and relationship of the element.

Reduced dependency on selectors:

BEM minimizes reliance on overly specific or deeply nested selectors, simplifying debugging and updates.

Longevity of code:

Even after months or years, developers can quickly understand the structure and purpose of styles.

4. Enhanced Team Collaboration

BEM fosters collaboration in multi-developer environments by:

Establishing clear guidelines:

Teams can adhere to consistent naming conventions and coding practices.

Reducing onboarding time:

New team members can quickly learn and navigate a project following the BEM methodology.

Simplifying reviews:

Clear and consistent code is easier to review, reducing misunderstandings and mistakes.

5.

Integration

with

Modern

Development Tools

BEM integrates seamlessly with modern front-end workflows and tools:

Component-based frameworks:

React, Vue, and Angular align well with BEM’s focus on reusable components.

CSS preprocessors:

Tools like SASS and LESS enhance BEM’s power by enabling nesting and variables while maintaining its naming conventions.

Design systems:

BEM’s modular approach is ideal for building scalable and maintainable design systems.

6. Improved CSS Performance

By reducing specificity and limiting the scope of styles, BEM

improves the performance of CSS:

Faster rendering:

Browsers can process and apply styles more efficiently due to less complex selectors.

Fewer overrides:

BEM minimizes the need for !important or excessive overrides, leading to cleaner, faster-loading stylesheets.

7. Flexibility and Adaptability While BEM provides strict guidelines, it is also flexible: Adaptable syntax:

Teams can tweak the naming conventions to suit their needs (e.g., single underscores instead of double underscores).

Hybrid approaches:

BEM can be combined with utility-first frameworks like Tailwind CSS or methodologies like SMACSS for specific use cases.

Custom extensions:

Developers can extend BEM principles to include JavaScript behaviors or API design, creating a unified development approach.

8. Longevity and Proven Success

BEM’s longevity in the industry is a testament to its success: Adoption by major companies:

Giants like Yandex, Google, and others have used BEM to manage large-scale projects.

Community support:

A vibrant community of developers continues to create tools, extensions, and tutorials, making it easier to adopt and adapt BEM.

9. Consistency Across Teams and Projects

BEM ensures that all developers on a team follow the same rules, leading to:

Predictable results:

Developers can quickly identify the purpose and scope of styles based on class names.

Easier handoffs:

Consistent styling practices make it easier to hand off projects between teams or developers.

Unified coding standards:

Teams working on multiple projects can maintain a consistent approach across their work.

10. Future-Proofing Code

With BEM, developers can build code that withstands the test of time:

Support for refactoring:

Organized styles make refactoring safer and more straightforward.

Scalability for new features:

New blocks, elements, or modifiers can be added without disrupting existing styles.

Alignment with evolving standards:

BEM’s principles align with modern CSS trends, ensuring its relevance as technologies advance.

Conclusion

BEM’s popularity in modern web development is well-deserved. By addressing the challenges of scalability, maintainability, and team collaboration, it provides a structured and reliable approach to CSS architecture.

Whether you’re working on a small project or a massive web application, BEM offers tools and principles that empower developers to create clean, efficient, and future-proof code.

As you explore this methodology further, you’ll discover why it has become an essential part of modern front-end development.

[image: Image 2]

Principles and Foundations: Blocks,

Elements, Modifiers

Blocks: The Core Building Units

In BEM, a Block is the highest level of abstraction in a design. It represents a distinct, reusable component or part of the interface, such as a button, form, header, or sidebar.

Blocks are standalone entities that are usually large enough to be independent of other elements on the page.

Characteristics of a Block:

Self-contained: A block operates independently and doesn’t rely on other blocks to function properly.

Reusability: Blocks can be used across various parts of the project without modification.

Encapsulation: Blocks have their own CSS and structure that is independent of other blocks.

📌 Example:

Imagine you have a website with a navigation bar. The entire navigation bar can be considered a block, for instance:

Here, the nav is the block that defines the entire navigation bar. It encapsulates the functionality of the navigation and doesn’t rely on other elements in the project.

[image: Image 3]

Elements: The Child Components

An Element is a part of a block that has a specific function but cannot exist on its own without the block. Elements are dependent on the block they belong to and are often smaller components or sub-parts of the block. They define the structure of a block and are typically used to organize and arrange content within the block.

Characteristics of an Element:

Dependent on the Block: An element cannot function without its associated block.

Part of the Block's Structure: Elements represent smaller components inside a block, such as a button inside a form or an item inside a list.

Naming Convention: Elements are named using double underscores (__) to indicate the relationship with the block.

📌 Example:

In the navigation bar example, nav__list and nav__item are elements of the nav block:

Here:

● nav__list is the element representing the list inside the navigation bar.

● nav__item is the element representing each individual list item in the navigation.

[image: Image 4]

Modifiers:Variations of Blocks and

Elements

A Modifier defines the variations of a block or element by changing its appearance, behavior, or state. Modifiers are used to adapt the block or element to different scenarios or contexts. For example, a button might have a modifier that changes its size or color depending on whether it’s in a normal or active state.

Characteristics of a Modifier:

Changes Appearance or Behavior: Modifiers adjust the visual look or functional state of a block or element.

Reusability: Modifiers allow you to create different states for a single component, promoting flexibility without duplicating code.

Naming Convention: Modifiers are appended to the block or element name using double dashes (--).

📌 Example:

In the case of the button, a modifier can change the size or style of the button. Let’s say we have a primary button and a secondary button:

Here:

● btn is the block.

● btn--primary and btn--secondary are modifiers that change the appearance of the button to represent different states (primary and secondary).

Modifiers can also be used to represent other variations, such as:

● State-based modifiers: btn--disabled (for a disabled button)

● Size-based modifiers: btn--large, btn--small

[image: Image 5]

How Blocks, Elements, and Modifiers

Work Together

BEM’s power comes from how these three parts work together to build a clear, modular structure. Here’s a quick breakdown:

Block: Represents the standalone component.

Element: Represents a subcomponent that depends on a block.

Modifier: Defines variations or changes in a block or element.

📌 Example: A Card Component

Let’s look at a Card component to understand how BEM

works in action:

In this example:

● card is the Block representing the card component.

● card__title, card__content, and card__button are the Elements of the card.

● card--highlighted and card__button--primary are Modifiers that define the variations of the block and element.

Conclusion

BEM’s principles of Blocks, Elements, and Modifiers provide a robust, consistent way to structure and style web components. By following these guidelines, developers can create highly modular, reusable, and maintainable CSS that scales well across large projects. As you become familiar with these concepts, you’ll find that BEM helps reduce code duplication,

improve

readability,

and

streamline

collaboration among developers working on the same project.

[image: Image 6]

Advantages of Using BEM for CSS

Organization

BEM (Block Element Modifier) is widely recognized for its effectiveness in managing CSS for complex web applications. By offering a clear methodology for structuring styles, BEM solves many challenges associated with scaling CSS, improving code maintainability, and enhancing collaboration. Below are the key advantages of using BEM

for CSS organization:

1. Modular and Reusable Code

BEM encourages modularity by breaking down UI components into blocks, elements, and modifiers. Each component is self-contained, making it easy to reuse in different parts of the project without conflicts.

Why it matters:

Reduces redundancy in CSS.

Promotes consistency across the project.

Saves time when implementing repetitive UI patterns.

📌 Example:

The button block and its modifiers (--primary, --secondary) can be reused anywhere in the project, maintaining consistent styles.

2. Predictable and Scalable Naming Conventions

The BEM methodology introduces a standardized naming convention using double underscores (__) and double dashes (--). This predictable structure makes it easy to identify the relationship between styles and their corresponding HTML elements.

Why it matters:

Simplifies understanding of CSS even for new team members.

Avoids naming conflicts in large projects.

Facilitates the addition of new features without breaking existing styles.

📌 Example:

A developer seeing card__title immediately knows it’s an element of the card block.

3. Avoids Specificity Wars

CSS specificity issues can lead to brittle and hard-to-maintain styles. With BEM, specificity is kept low and consistent by relying on classes instead of element or ID

selectors.

Why it matters:

Prevents the need for overly specific or !important rules.

Makes it easier to override styles when necessary.

Keeps CSS cleaner and more predictable.

📌 Example Without BEM:

[image: Image 7]

[image: Image 8]

📌 Example With BEM:

BEM’s low specificity ensures styles are easier to override when required.

4. Improved Collaboration Among

Developers

BEM’s methodology establishes a shared language for naming and organizing CSS, making it easier for teams to collaborate. Developers can quickly understand and work with each other's code, even if they didn’t write it.

Why it matters:

Facilitates seamless onboarding of new team members.

Reduces miscommunication about style naming and structure.

Creates a unified approach to styling across the team.

5.

Simplifies

Debugging

and

Maintenance

With BEM, CSS is neatly organized, and each class name indicates its role and context within the UI. This makes debugging and maintaining styles much simpler.

Why it matters:

Speeds up the process of locating and fixing bugs in CSS.

Avoids accidental side effects when modifying or extending styles.

Makes

identifying

unused

or

redundant

styles

straightforward.

[image: Image 9]

📌 Example:

If there’s an issue with the menu’s style, you can immediately focus on header__menu without worrying about unrelated styles.

6. Enhances Project Scalability

As projects grow, maintaining CSS becomes increasingly difficult without a solid structure. BEM ensures CSS remains organized and scalable, even in large and complex projects.

Why it matters:

Simplifies adding new components or features.

Keeps CSS manageable in multi-developer environments.

Prevents style clashes when multiple components share the same classes.

7.

Compatibility

with

Modern

Development Practices

BEM

integrates

seamlessly

with

modern

frontend

development

tools

and

methodologies,

including

component-based frameworks like React, Vue, and Angular.

Its principles align with the way these frameworks structure components.

[image: Image 10]

Why it matters:

Allows easier adoption of BEM in modern projects.

Complements JavaScript-driven component architectures.

Encourages a uniform approach to CSS and component structure.

📌 Example in React:

8. Encourages Consistent Design

Across the Project

BEM’s strict adherence to structured naming ensures a unified design language across all components. This consistency simplifies both development and the user experience.

Why it matters:

Reduces discrepancies in design implementation.

Promotes uniformity across different parts of the application.

Helps non-technical stakeholders (e.g., designers) align more easily with the development team.

9. Reduces CSS File Size

By promoting reusable and modular styles, BEM minimizes duplication in CSS files. This results in smaller, more efficient stylesheets.

Why it matters:

Improves website performance by reducing CSS load times.

Simplifies optimization processes like tree-shaking and CSS

minification.

Prevents bloated and unmanageable CSS files.

10. Compatibility with Preprocessors

and Tools

BEM works well with CSS preprocessors like SCSS, LESS, and tools like PostCSS. Its structured methodology is highly compatible with tools that automate or enhance CSS

workflows.

Why it matters:

Enables the use of mixins, variables, and nesting without losing clarity.

Makes advanced features like scoped styles more practical.

Supports automation for consistent naming conventions and linting.

📌 Example with SCSS:

[image: Image 11]

Conclusion

BEM’s structured approach to CSS organization provides numerous advantages, including modularity, scalability, and maintainability. It simplifies collaboration, enhances consistency, and ensures projects remain manageable even as they grow in complexity. By adopting BEM, developers can focus more on delivering features and less on resolving styling issues, making it a powerful choice for modern web development.

2. BEM Basics: Structure and Rules

BEM is a methodology designed to create clear, scalable, and maintainable CSS code. It structures the way components are developed by introducing specific rules and guidelines that help developers organize their styles effectively. Below, we will explore the core structure and rules of BEM in detail.

Structure of Class Names: Blocks,

Elements, Modifiers

BEM (Block Element Modifier) provides a structured and predictable way of naming CSS classes. The naming convention is one of its core strengths, as it ensures readability, maintainability, and scalability. Below, we’ll dive deep into the structure and rules governing BEM class names.

1. Blocks: The Foundation of BEM

A block is the root of a component. It represents a standalone entity that can function independently. Blocks define the overall appearance and behavior of the component.

Characteristics of Blocks:

● Standalone and reusable.

● Represent a meaningful piece of UI (e.g., button, card, menu).

● Do not depend on other blocks.

Naming Convention:

Blocks use a single class name without special separators:

[image: Image 12]

[image: Image 13]

[image: Image 14]

[image: Image 15]

📌 Example:

For a navigation menu:

Here, menu is the block.

2. Elements: The Parts of a Block

An element is a part of a block that performs a specific function. Elements cannot exist independently and always belong to a block.

Characteristics of Elements:

● Always tied to their parent block.

● Represent specific roles within the block.

● Are prefixed with the block name.

Naming Convention:

Elements are separated from their block name by a double underscore (__):

📌 Example:

For a card component with a title and description: Here:

● card is the block.

● card__title and card__description are elements of the card block.

[image: Image 16]

[image: Image 17]

[image: Image 18]

3. Modifiers: Variations of Blocks or Elements

A modifier represents a different state, variation, or theme of a block or element. Modifiers allow for reusable styles while introducing variations like color, size, or behavior.

Characteristics of Modifiers:

● Optional and applied only when needed.

● Can modify either a block or an element.

● Should not introduce unrelated styles.

Naming Convention:

Modifiers are separated from their block or element name by a double dash (--):

📌 Example:

A button with two variations (primary and disabled): Here:

● button is the block.

● button--primary and button--disabled are modifiers of the button block.

Modifiers can also apply to elements:

● card__title is the element.

● card__title--highlighted is a modifier of the card__title element.

[image: Image 19]

4.

Nested

Example:

Combining

Blocks, Elements, and Modifiers

Let’s create a full example with nested blocks, elements, and modifiers.

📖 Explanation:

Block: menu

The root component for the navigation menu.

Modifier: menu--dark for a dark theme.

Element: menu__list

Represents the container for menu items.

Element with Modifier: menu__item--selected Indicates the currently selected menu item.

Nested Element with Modifier: menu__link--disabled Represents a disabled link.

[image: Image 20]

[image: Image 21]

5. Rules for Structuring Class Names

1.

No

Confusion

Between

Blocks

and

Elements:

Always tie elements (__) to their parent block.

Modifiers Are Independent Flags:

Modifiers (--) do not affect unrelated styles.

Avoid Deep Nesting:

Don’t overcomplicate your class names by nesting too deeply.

Avoid: .block__element__sub-element__sub-sub-element.

Stick to the Naming Convention:

Consistent use of block, block__element, and block--modifier ensures clarity.

6. Benefits of the BEM Naming

Structure

● Consistency: Predictable patterns make code easier to read and understand.

● Reusability: Blocks and elements can be reused across projects.

● Maintainability: Clear relationships between blocks, elements, and modifiers reduce complexity.

● Scalability: Works well with large teams and complex projects by preventing naming collisions.

By mastering the structure of class names in BEM, you lay the foundation for writing CSS that is modular, maintainable, and easy to understand.

Conclusion

The structure of class names in BEM is more than just a naming convention; it is a strategy for achieving clarity, consistency, and modularity in your CSS code. By defining blocks as independent components, elements as dependent parts of those blocks, and modifiers as ways to describe variations, BEM ensures that your code remains organized and predictable, even as your project scales.

This structured approach not only simplifies the development process but also fosters collaboration within teams, reduces the likelihood of style conflicts, and enhances the maintainability of your codebase. Whether you are working on a small project or a large-scale application, adhering to the principles of BEM class naming is a vital step toward creating clean, scalable, and maintainable CSS.

Mastering this structure is key to leveraging the full potential of the BEM methodology and building a solid foundation for CSS architecture.

[image: Image 22]

[image: Image 23]

Examples and Templates for Blocks,

Elements, and Modifiers

BEM’s true power lies in its simplicity and adaptability. By breaking down your UI into blocks, elements, and modifiers, you can create highly reusable and scalable code. Let’s explore practical examples and templates to see how BEM

can be applied effectively.

📌 Example Block

A block represents a standalone entity, like a navigation menu, button, or card. It should be meaningful and independent.

[image: Image 24]

[image: Image 25]

📌 Example Element

An element is a part of the block that has no standalone meaning and is dependent on its parent block.

[image: Image 26]

[image: Image 27]

📌 Example Modifier

A modifier represents a variation of a block or element. This could be a different state, size, or style.

[image: Image 28]

[image: Image 29]

📌 Example Combined

Using all BEM entities in a single component provides clarity and flexibility.

[image: Image 30]

[image: Image 31]

Templates for Common Components

📌 Button Template

[image: Image 32]

[image: Image 33]

📌Modal Template

[image: Image 34]

[image: Image 35]

📌Form Template

Best Practices for Templates

1.

Keep Classes Descriptive: Use meaningful names to ensure clarity (e.g., menu__item--active).

2.

Avoid Nesting Too Deeply: Limit nesting to avoid

overly

complex

class

names

(e.g.,

block__element__subelement is discouraged).

3.

Use Modifiers Sparingly: Modifiers should only represent variations or states.

4.

Reusable Styles: Design blocks and elements so they can be reused across different contexts.

By applying these examples and templates, you can develop structured, maintainable, and scalable CSS using the BEM methodology.

Conclusion

Understanding the structure of blocks, elements, and modifiers is essential for effectively implementing the BEM

methodology. This foundational concept underpins the clarity, scalability, and maintainability that BEM offers to modern web development.

By adhering to the strict separation of concerns between blocks, elements, and modifiers, developers can create modular, reusable, and easily comprehensible code. This structure not only improves collaboration within teams but also streamlines debugging and future enhancements.

When applied correctly, the BEM approach provides a roadmap for organizing CSS in a way that is predictable and efficient, ensuring that your projects are scalable and maintainable for years to come. It is the cornerstone of a well-organized codebase and a step toward mastering CSS

architecture.

3. Practical Application and Techniques for Building UI with

BEM

The Block Element Modifier (BEM) methodology provides a powerful and scalable approach for organizing CSS in modern web development. While its theoretical foundation is essential, its true value is realized in real-world applications. In this section, we will explore how to effectively use BEM to build user interfaces (UIs) for various projects, from simple websites to complex, responsive designs.

CSS organization using BEM isn't just about applying naming conventions—it's about creating a structure that enhances maintainability, scalability, and reusability. Whether you're designing a static website, building adaptive layouts, or developing complex mobile apps, BEM allows you to break down the UI into modular, easily manageable components.

We will dive into practical examples of how BEM can be applied to create buttons, menus, cards, forms, and other essential UI elements. Additionally, we'll explore techniques for styling large components, ensuring your designs are adaptive and responsive across different devices.

Furthermore, we’ll discuss how to extend BEM beyond traditional websites by applying it to mobile apps and responsive web designs. We'll also take a look at how BEM

fits into the creation of design systems, helping you build a cohesive set of components that can be reused and maintained efficiently. Finally, we’ll explore how BEM can work in tandem with other web technologies like SVG, Canvas, and WebGL, making it a versatile methodology for diverse use cases.

By the end of this section, you will have a solid understanding of how to implement BEM in real-world scenarios and how it can empower you to build robust, scalable UIs for any type of project.

Organizing CSS Using BEM in Real-World Projects

Organizing CSS effectively is crucial for any web project, and BEM (Block Element Modifier) methodology offers a structured approach that works well in real-world scenarios.

By organizing your CSS into clearly defined blocks, elements, and modifiers, BEM enables you to write scalable, maintainable, and predictable styles. Let’s break down how to organize CSS in a real-world project using BEM.

1.

Understanding

the

Project

Structure

In real-world projects, a well-defined structure for your CSS

is essential to avoid code duplication, conflicts, and maintainability issues. With BEM, you start by defining the

"blocks" of your project. These are independent components like buttons, navigation bars, or cards that can be reused throughout the project. Once you have your blocks, you define the "elements," which are the sub-components that cannot exist independently, such as the content of a card or the items in a menu. Finally, "modifiers" are used to define the variations of blocks or elements, like a disabled button or a highlighted menu item.

2. Modular Approach

The core advantage of using BEM in real-world projects is that it encourages modularity. By breaking down your design into small, independent, and reusable blocks, elements, and modifiers, you create a system where components can be added, updated, or removed without affecting other parts of the project. This makes the CSS

more maintainable and scalable in the long run. Each block

has its own responsibility, and the relationships between blocks, elements, and modifiers are clear and predictable.

[image: Image 36]

In this example, the button block is reusable across the project, while the button__icon element is tied specifically to the button block. The button--primary modifier changes the button's background color, and can be applied only to the block, providing flexibility and variation without affecting other components.

3. Scaling and Collaboration

As projects grow, the ability to scale your CSS without introducing complexity or conflicts becomes critical. BEM

offers an ideal solution for larger teams working on bigger projects. Since BEM enforces a clear structure and naming convention, team members can easily collaborate without accidentally overriding each other’s styles. Each team member works on their own components, which can then be combined to form the larger design system.

Moreover, because BEM encourages reusability, new components can be quickly added to the project without needing to rewrite CSS for similar elements. For example,

once a "card" block is defined, it can be reused for various purposes throughout the site with minor adjustments through modifiers.

4. Improving Maintainability As a project evolves, maintainability becomes a major concern. BEM allows you to avoid the common pitfalls of traditional CSS, like global style overrides or naming collisions. Because each block, element, and modifier has a clear and distinct name, it’s easy to identify and modify specific styles without unintended side effects. This organization makes it simpler to debug, test, and update your project’s CSS over time.

For instance, if you need to update the styling of a button component used throughout your site, you can make the change at the block level (.button). Similarly, updating the modifier (e.g., .button--primary) ensures that the change only affects the variations of that block, without touching other unrelated components.

5.

Avoiding

Global

Styles

and

Conflicts

In large projects, it’s easy for styles to overlap and cause unexpected issues. Global styles can inadvertently impact multiple elements across the website, creating conflicts and making it harder to maintain your CSS. BEM helps avoid these conflicts by encouraging a more localized approach to styling. By using clearly defined blocks, elements, and modifiers with unique class names, BEM ensures that each style is isolated to its intended component.

[image: Image 37]

[image: Image 38]

Here, the button class is independent, and even if there are other classes named button elsewhere in the project, the use of BEM ensures that no style conflicts occur due to the unique class names tied to each block.

6. Project Integration

BEM is versatile and can be integrated seamlessly into various development workflows, such as using CSS

preprocessors like SCSS or CSS-in-JS libraries. The clear class naming conventions make it easy to integrate BEM

with other tools, and the modularity of BEM makes it simple to work with frameworks like React, Angular, or Vue.

For example, in React, you can use BEM naming conventions in your JSX code to maintain consistency with your CSS: By organizing the CSS with BEM and using the same naming conventions in the JSX (or HTML), you ensure that the styles align with the structure of the component, making the entire development process more efficient and predictable.

Conclusion

Organizing CSS with BEM in real-world projects ensures that your code remains clean, maintainable, and scalable. It allows for clear separation between components and their elements, reduces conflicts, and enables efficient collaboration among team members. BEM’s modular approach encourages reusability and makes it easier to scale your project as it grows. With BEM, you can create

well-organized and adaptive interfaces that can evolve seamlessly over time.

Blocks and Elements in Various Contexts: Layout Formation and

Responsiveness

In web development, creating structured, reusable, and responsive designs is crucial to delivering a great user experience. BEM (Block Element Modifier) methodology offers a robust way to manage and organize CSS by breaking down interfaces into independent and modular components. Understanding how blocks and elements function in various contexts—such as layout formation and responsiveness—can elevate your design to be both scalable and adaptable across different devices and screen sizes.

1. Blocks and Elements in Layout

Formation

Layout formation refers to the arrangement of various UI components on a page, and in BEM, this process begins by defining blocks as the main containers that will hold elements. The structure you define at the block level serves as the skeleton of your layout, while elements define the parts inside each block.

Defining the Block:

The block is the main component or section of a layout. It could be a header, sidebar, footer, card, or any reusable container. Blocks are standalone components that can be reused and modified independently. They typically define a section's general structure, and elements help build up its internal content.

📌 Example: Let's imagine you’re creating a responsive card component. The card block would serve as the

[image: Image 39]

container, and the individual content pieces—such as the title, description, and image—are elements within the card block.

Using Elements in Layouts: Elements within blocks are used to create smaller pieces of functionality. They cannot exist without the block, and they represent specific parts within the overall layout. In a card block, elements such as the card__image, card__title, and card__description play distinct roles in shaping the appearance and structure of the card component.

When arranging multiple blocks on a page to form a larger layout, BEM’s structure allows you to group related elements within their parent blocks while maintaining clear boundaries between components.

📌 Example Layout:

Consider a website layout with a header, content area, and footer:

[image: Image 40]

[image: Image 41]

Here, header, main-content, and footer are blocks, while their internal parts (such as header__title, header__nav-item, card__title) are elements.

2. Responsiveness in BEM Layouts

In the context of responsiveness, the BEM methodology remains as effective as ever. By using blocks and elements, developers can implement flexible and responsive layouts that adapt seamlessly to different screen sizes.

Responsive Blocks:

Each block can be styled with CSS media queries to modify its appearance depending on the viewport size. This allows blocks to adjust their layout without affecting other blocks.

For instance, on smaller screens, a navigation menu block might change from a horizontal to a vertical layout. Here, media queries can modify the header__nav element inside the header block to accommodate these changes:

In this case, the navigation (header__nav) behaves differently based on screen size, adapting the layout to smaller devices by stacking the navigation items vertically.

[image: Image 42]

Responsive Elements:

Elements within blocks also need to adjust to various screen sizes. For example, within a card block, the card__title and card__image elements may need to adjust their size or positioning on smaller screens.

Here, the card block is designed to have a fixed width on larger screens, but when the screen size is reduced, the card takes up the full width of the container. Similarly, the title size decreases on smaller devices to ensure readability.

[image: Image 43]

Flexibility with Modifiers:

Modifiers in BEM allow you to define different variations of blocks and elements. When it comes to responsiveness, modifiers can represent different states for specific elements or blocks on various screen sizes.

📌 Example: A button could have a modifier that adjusts its size on mobile devices:

In this case, the .button--large modifier is responsive, and the button's padding and font size are adjusted based on screen size.

[image: Image 44]

[image: Image 45]

3. Using BEM for Layout Grids and

Complex Structures

In larger, more complex layouts—such as grid-based designs or multi-column layouts—BEM ensures that each individual section remains modular. Each block and element can adapt to the grid, and responsiveness can be easily managed through CSS grid or flexbox systems.

📌 Example of a flexible layout using BEM:

In this example, the .grid block defines a 3-column layout for larger screens, while on smaller screens, the layout changes to a single column.

Conclusion

By organizing your CSS into blocks and elements with BEM, you can create layouts that are modular, reusable, and scalable, while also ensuring responsiveness across different screen sizes. The clear distinction between blocks and elements, combined with BEM’s flexible modifiers, allows for easy adjustments and a consistent approach to designing responsive user interfaces. Whether you're creating simple layouts or complex grid-based structures, BEM's principles of organization and flexibility provide an efficient way to handle layout formation and responsiveness in modern web development.

[image: Image 46]

Recommendations for Styling Large

Components and Building Adaptive,

Responsive Interfaces

Designing large components and ensuring their adaptability across various devices is a critical aspect of modern UI development. With the BEM methodology, we can maintain a clean, modular structure while building responsive interfaces. This section outlines practical recommendations for styling large components and creating adaptive designs.

1. Break Down Large Components

into Smaller Blocks and Elements

Large components, such as forms, dashboards, or modal windows, should be divided into smaller, manageable blocks and elements. This ensures a clear structure and easier maintenance.

📌 Example: Modal Window

[image: Image 47]

📌 CSS for Modal

[image: Image 48]

2. Use Grid or Flexbox for Layout

Formation

When building large components, layout design plays a vital role. CSS Grid and Flexbox are powerful tools for managing layout complexities and making designs responsive.

📌 Example: Responsive Dashboard

CSS with Grid Layout

[image: Image 49]

[image: Image 50]

Making It Responsive:

3. Use Modifier Classes for Adaptive

Designs

Modifiers can define variations of components for different screen sizes or contexts. By applying modifiers, you can adjust the appearance of a block or element without altering the core structure.

📌 Example: Form with Modifiers

[image: Image 51]

[image: Image 52]

[image: Image 53]

📌 CSS for Modifiers

4. Embrace Mobile-First Design

Start designing components with small screens in mind and progressively enhance them for larger devices. This approach ensures a seamless experience on mobile devices.

📌 Example: Card Component

[image: Image 54]

[image: Image 55]

Mobile-First CSS

[image: Image 56]

[image: Image 57]

5. Utilize Utility Classes for Common Patterns

Utility classes can complement BEM for styling repetitive patterns like margins, padding, or alignment.

📌 Example: Utility Classes for Spacing

Conclusion

Styling large components with BEM allows for clear separation of concerns and adaptability. By breaking down components into manageable blocks, leveraging modern CSS techniques like Grid and Flexbox, and embracing mobile-first design, developers can create responsive and scalable interfaces. Additionally, utility classes and modifiers add flexibility, enabling seamless customization and rapid development of adaptive designs.

Using BEM in Mobile Apps and Responsive Designs

The BEM methodology, originally designed for web development, can be effectively adapted to mobile app development and responsive designs. Its modular approach simplifies the process of structuring, styling, and maintaining interfaces across different screen sizes and device types. This section explores how to use BEM

principles to create responsive and mobile-friendly applications.

1. Adapting BEM for Mobile Design

Mobile apps often have unique challenges, such as limited screen real estate and touch-based interactions. By applying BEM, you can ensure your CSS is structured, maintainable, and scalable for mobile-first development.

📖 Key Strategies:

● Start with a mobile-first approach: Design and implement styles for smaller screens before scaling up for larger devices.

● Use modifiers for screen-specific variations: Apply BEM modifiers to adjust styles for different breakpoints or device capabilities.

2. Creating Mobile-Specific Blocks and Elements

Mobile apps often include components like navigation bars, cards, and buttons optimized for touch interfaces. These components can be structured using BEM.

📌 Example: Mobile Navigation Bar

[image: Image 58]

[image: Image 59]

[image: Image 60]

Enhancing for Larger Screens

[image: Image 61]

3. Building Responsive Layouts with

BEM

Responsive layouts ensure a consistent user experience across devices. Use BEM to create reusable and adaptable blocks.

📌 Example: Responsive Grid System

CSS for Grid System

[image: Image 62]

[image: Image 63]

[image: Image 64]

4. Optimizing Touch Targets and

Interactions

Mobile interfaces rely heavily on touch interactions. Using BEM modifiers, you can define different styles for buttons, links, and other interactive elements optimized for touch.

📌 Example: Button with Touch Optimization

[image: Image 65]

[image: Image 66]

5. Implementing Media Queries with

BEM

Media queries allow you to apply styles conditionally based on screen size. With BEM, media queries can be scoped to specific blocks or elements for precise control.

📌 Example: Card Component

CSS for Adaptive Cards

[image: Image 67]

6.

Integrating

BEM

with

CSS

Frameworks

CSS frameworks like Tailwind or Bootstrap can complement BEM for mobile app development. Use framework utilities for common patterns while maintaining custom BEM blocks for app-specific components.

Conclusion

BEM's structured approach is ideal for mobile apps and responsive designs, ensuring scalability and maintainability.

By combining BEM with responsive design principles, media queries, and mobile-first strategies, developers can create interfaces that deliver consistent user experiences across all devices. Whether you're building navigation, forms, or layouts, BEM provides a reliable foundation for modern mobile development.

BEM for Building Component Systems (Design Systems)

Building component systems, often referred to as Design Systems, is a cornerstone of scalable and consistent UI development. The BEM methodology provides a robust foundation for organizing, naming, and maintaining components within such systems. Its modular approach ensures that components are reusable, predictable, and easy to integrate into larger applications.

1. Role of BEM in Design Systems

A Design System typically consists of a collection of reusable components (buttons, forms, cards, etc.) and design guidelines. Using BEM in this context ensures:

● Consistency: Uniform naming and structure for all components.

● Scalability: Easy addition of new components or modifications without breaking existing styles.

● Separation of Concerns: Clear distinction between structure (blocks), sub-elements (elements), and variations (modifiers).

[image: Image 68]

[image: Image 69]

2. Structuring Components with BEM

Each component in a Design System can be represented as a block, with its internal structure defined using elements and variations handled by modifiers.

📌 Example: Button Component

[image: Image 70]

3. Organizing Components in a

Design System

Component Directory Structure

To maintain clarity and reusability, structure your components systematically:

Centralized Variables and Mixins

Create shared variables and mixins for consistent styling across components.

[image: Image 71]

[image: Image 72]

4. Building Complex Components

Complex UI elements, such as modals or data tables, can be broken into smaller BEM components.

📌 Example: Modal Component

[image: Image 73]

[image: Image 74]

5. Establishing a Style Guide

In a Design System, every BEM-based component should be documented in a style guide. The guide should include:

● Component previews: Visual examples of components and their states.

● Code snippets: HTML, CSS, or JavaScript for easy reuse.

● Guidelines: Usage instructions, accessibility recommendations, and customization options.

📌 Example: Style Guide Entry for Buttons

Button type

Code Example

Primary

<button class=”button button--primary”></button> Secondary

<button class=”button button--secondary”></button> Disabled

<button class=”button button--disabled”></button>

[image: Image 75]

[image: Image 76]

6.

Integration

with

JavaScript

Frameworks

When using frameworks like React or Vue, BEM can help maintain consistency in component naming. For instance:

📌 Example React Component:

📌 Example Vue Component:

7. Benefits of BEM in Design Systems

● Reusability: Clearly defined blocks and elements can be reused across projects.

● Maintainability:Changes to one component don't cascade unexpectedly.

● Consistency: Adherence to BEM ensures all components follow the same structure and naming conventions.

● Scalability: Easy to scale from small projects to large, enterprise-grade systems.

Conclusion

Using BEM in Design Systems bridges the gap between design and development, ensuring consistency and maintainability in UI components. By combining the modular structure of BEM with best practices for component organization, developers can create systems that are robust, scalable, and adaptable to any project. Whether building buttons, modals, or entire layouts, BEM provides a reliable framework for crafting cohesive Design Systems.

[image: Image 77]

Blocks for Modals, Forms, Tables, and

Other UI Elements

BEM methodology excels at structuring complex UI elements like modals, forms, and tables, ensuring they are modular, maintainable, and easy to scale. Each of these elements can be designed as a block with clearly defined elements and modifiers, enabling consistent styling and functionality across projects.

1. Modals

Modals are overlay components often used for user interactions such as confirmations, forms, or displaying detailed content.

📖 Structure:

● Block: modal

● Elements: modal__header, modal__body, modal__footer, modal__close, etc.

● Modifiers: modal--large, modal--small, modal--

centered, etc.

[image: Image 78]

2. Forms

Forms are essential for user input and interaction, comprising various inputs, labels, and buttons.

📖 Structure:

● Block: form

● Elements: form__field, form__label, form__input, form__button, etc.

● Modifiers: form--inline, form--stacked, form__field--error, etc.

[image: Image 79]

[image: Image 80]

[image: Image 81]

3. Tables

Tables display structured data and can include features like sorting, filtering, and pagination.

📖 Structure:

● Block: table

● Elements: table__row, table__header, table__cell, table__footer, etc.

● Modifiers: table--striped, table--bordered, table--

responsive, etc.

[image: Image 82]

4. Other UI Elements

Other elements, such as tabs, tooltips, or sliders, can be similarly structured. 📌 Example: Tabs

[image: Image 83]

[image: Image 84]

Conclusion

By applying BEM to modals, forms, tables, and other UI elements, developers can create modular, maintainable, and reusable components. This approach ensures consistent design and functionality across projects, improving scalability and ease of collaboration.

[image: Image 85]

Connecting with Other Technologies

(SVG, Canvas, WebGL)

BEM methodology can be seamlessly integrated with various advanced front-end technologies like SVG, Canvas, and WebGL. These technologies, used for creating graphics and interactive content, benefit from BEM's clear structure, allowing you to manage styles and behaviors effectively within complex visual elements.

1. SVG (Scalable Vector Graphics)

SVG is widely used for creating 2D graphics such as icons, charts, illustrations, and more. It’s scalable, meaning the quality remains sharp at any size, and it integrates well with CSS for styling.

BEM for SVG Elements:

Using BEM for SVG components allows us to structure the graphical elements into blocks, elements, and modifiers for better organization and maintainability.

📌 Example:

[image: Image 86]

Here, icon--home is a modifier for a specific icon, while chart__bar--first and chart__bar--second are modifiers used to define different styles for each bar in a bar chart.

Advantages of BEM with SVG:

● Consistent class naming for different graphical elements

● Easier styling of individual elements in SVGs

● Reusability of styles across different components (e.g., icons, charts)

[image: Image 87]

[image: Image 88]

2. Canvas

The HTML <canvas> element is used to draw graphics via JavaScript. It’s commonly used for rendering graphics like 2D/3D games, animations, or visualizations. While Canvas itself doesn’t rely on CSS for styling, BEM can still be beneficial for organizing the structure of the Canvas-based components in your project.

[image: Image 89]

[image: Image 90]

In this example, canvas--chart is a modifier that allows you to apply specific styles or behaviors to different canvas elements, like setting background colors or adding borders.

Advantages of BEM with Canvas:

● Allows consistent class naming for the wrapper and related canvas components

● Makes it easier to manage Canvas element styles, positioning, and overall layout

● Can be applied to various graphics within your Canvas (e.g., charts, game elements)

3. WebGL

WebGL is a powerful API for rendering 3D graphics within the browser. It allows complex visualizations and interactions, including 3D games, simulations, and immersive experiences. BEM can be used for structuring the elements around WebGL, ensuring consistent naming and separation of concerns between the layout, styles, and JavaScript functionality.

[image: Image 91]

[image: Image 92]

Advantages of BEM with WebGL:

● BEM helps to maintain clean structure by separating layout and styling from WebGL-specific logic

● Modifiers like webgl__button--rotate or webgl__button--zoom allow for specific styling of interactive WebGL elements, making it easier to scale and maintain

● It simplifies the management of user interface elements that interact with WebGL scenes

Conclusion

By connecting BEM with technologies like SVG, Canvas, and WebGL, developers can maintain a consistent and scalable structure in complex, graphics-intensive projects. BEM

provides clear guidelines for naming and organizing elements, ensuring that the codebase remains modular and maintainable, even as the complexity of the visuals increases. Whether you’re dealing with 2D graphics, animations, or full 3D rendering, BEM can help keep your front-end development clean, understandable, and easy to manage.

4. Optimizing Structure, CSS, and Integration with Modern

Frameworks

BEM (Block, Element, Modifier) is a powerful methodology that improves the maintainability and scalability of CSS

codebases. However, to fully leverage its benefits, it's essential to optimize the structure, minimize redundancy, and integrate it effectively with modern web development frameworks.

In this section, we will explore best practices for organizing and optimizing CSS using BEM, ensuring code clarity, flexibility, and performance. We’ll discuss strategies to reduce class duplication, improve readability, and enhance maintainability through CSS variables, modular styles, and structured file organization. Additionally, we’ll examine how BEM can be integrated with popular JavaScript frameworks—

React, Vue, and Angular—focusing on passing dynamic classes, managing modifiers, and structuring components efficiently.

Beyond traditional CSS, we’ll also cover how BEM interacts with modern styling tools like CSS-in-JS, SASS, LESS, and PostCSS. By following these techniques, developers can create structured, maintainable, and scalable UI systems that seamlessly adapt to different frameworks and projects.

Minimizing

Class

and

Element

Duplication in BEM

One of the key principles of BEM is maintaining a clean and efficient class structure by avoiding unnecessary duplication of blocks, elements, and modifiers. Reducing redundancy

not only keeps the codebase lightweight but also improves maintainability and scalability.

[image: Image 93]

[image: Image 94]

[image: Image 95]

1. Reusing Blocks Across Components

Instead of creating separate blocks with similar functionality, it’s best to reuse existing blocks by keeping them generic and flexible.

✨ (Good Practice)

Here, the .button block is reused with different modifiers (--

primary, --secondary) instead of creating separate blocks like .submit-button and .cancel-button.

❌ (Bad Practice)

This creates unnecessary duplication and reduces reusability.

2. Avoiding Element Duplication

Within Blocks

Elements should always be tied to a parent block. Instead of creating new elements for each variation, use modifiers to define different states.

✨ (Good Practice)

Here, card__title--highlighted is used instead of creating an entirely new element class like .card__title-highlight.

[image: Image 96]

[image: Image 97]

❌ (Bad Practice)

This breaks the BEM principle and introduces unnecessary class duplication.

3. Structuring Reusable Elements

Within Blocks

When elements are common across multiple blocks, consider creating independent utility classes or separate blocks instead of duplicating elements in multiple locations.

✨ (Good Practice - Utility Class for Reuse) The .button block is reused in both card and modal components instead of defining separate button elements within each block.

[image: Image 98]

[image: Image 99]

[image: Image 100]

❌ (Bad Practice - Duplicating Elements)

Here, .card__button and .modal__button serve the same purpose but are defined separately, leading to redundant styles.

4. Reducing Modifier Duplication

Modifiers should be used only when they introduce meaningful changes to an element’s behavior or appearance.

✨ (Good Practice - Meaningful Modifier Use) Each modifier (--large, --small) affects the button’s size without creating unnecessary variations.

❌ (Bad Practice - Redundant Modifiers)

Here, the modifiers are unnecessarily verbose and redundant.

Conclusion

Minimizing class and element duplication in BEM is crucial for maintaining a scalable and efficient CSS architecture. By reusing blocks, properly structuring elements, and using meaningful modifiers, developers can avoid redundancy and create a maintainable codebase that is easier to manage and extend.

[image: Image 101]

Improving CSS Readability Through a

Clear Hierarchy in BEM

One of the core advantages of BEM is its structured and hierarchical approach to CSS, making styles easy to read, understand, and maintain. A well-organized BEM hierarchy improves collaboration within teams, speeds up debugging, and enhances scalability. Below are key techniques for improving CSS readability by maintaining a clear hierarchy.

1. Following a Logical Block-Element-

Modifier Structure

A well-structured BEM hierarchy ensures that styles are applied in a predictable way, preventing confusion and conflicts.

✨ (Good Practice - Clear Hierarchy)

This structure ensures clarity:

[image: Image 102]

● .card defines the main component.

● .card__title is an element of .card.

● .card__title--highlighted modifies the appearance of the title without affecting the base .card__title styles.

❌ (Bad Practice - Unclear Structure)

This approach lacks a defined parent-child relationship, making it harder to understand which styles belong to which component.

2. Maintaining Consistent Indentation

and Grouping Styles

Organizing related styles together improves readability and makes modifications easier.

✨ (Good Practice - Logical Grouping & Indentation)

[image: Image 103]

Each section follows a clear indentation pattern, making it easy to read.

[image: Image 104]

[image: Image 105]

❌ (Bad Practice - Messy Styles Without Grouping) Here, the order is inconsistent, making it harder to locate styles quickly.

3.

Avoiding

Deep

Nesting

in

SCSS/SASS

Excessive nesting can reduce readability and increase specificity issues.

✨ (Good Practice - Minimal Nesting in SCSS/SASS)

This approach keeps styles modular and easy to read.

[image: Image 106]

[image: Image 107]

❌ (Bad Practice - Deep Nesting in SCSS/SASS) Deep nesting makes the structure harder to follow and can cause specificity issues.

4. Using Meaningful and Predictable

Naming Conventions

Consistent and descriptive class names help developers understand styles without needing to check the HTML

structure.

✨ (Good Practice - Descriptive and Predictable Names)

This approach makes it clear that .navbar__link--active is a variation of .navbar__link within .navbar.

[image: Image 108]

[image: Image 109]

❌ (Bad Practice - Confusing Names)

Here, .highlighted-link is not clearly related to .menu-item, making it harder to understand.

5.

Structuring

Stylesheets

for

Scalability

Large projects benefit from breaking styles into smaller, manageable files.

✨ (Good Practice - Modular File Structure) Each component has its own file, making maintenance easier.

❌ (Bad Practice - Single Large Stylesheet)

[image: Image 110]

A single large file becomes difficult to manage as the project grows.

Conclusion

By maintaining a clear hierarchy in BEM, using logical nesting, meaningful naming conventions, and a modular structure, developers can significantly improve CSS

readability. These practices lead to more maintainable, scalable, and efficient stylesheets, making collaboration and future updates easier.

Using CSS Variables and Functions for Flexibility in BEM

One of the key advantages of using CSS variables and functions in BEM-based projects is increased flexibility and maintainability. CSS variables allow for easy theme customization, while functions like calc(), var(), and clamp() help create dynamic styles.

1. Why Use CSS Variables in BEM?

CSS variables (--variable-name) enable dynamic styling without modifying multiple CSS rules. Instead of hardcoding values in each class, you define them in a central location and reuse them across your BEM components.

Advantages of CSS Variables in BEM:

● Improved maintainability: Change a single variable instead of multiple CSS rules.

● Theme customization: Easily switch between themes by modifying variable values.

● Better consistency: Ensures uniform spacing, colors, and typography across components.

[image: Image 111]

[image: Image 112]

[image: Image 113]

2. Defining and Using CSS Variables

To define a CSS variable, use the :root selector or define it inside a block for more specific control.

BEM allows defining block-specific variables within the block itself.

3. Using CSS Functions for Flexibility

CSS functions like calc(), clamp(), and min()/max() allow dynamic calculations based on existing values.

[image: Image 114]

[image: Image 115]

4.

Applying

CSS

Variables

for

Theming

To create multiple themes, override variables in different contexts.

Conclusion

Using CSS variables and functions in BEM-based projects enhances reusability, consistency, and adaptability. By structuring variables efficiently, you can create scalable UI components while keeping the codebase clean and easy to maintain.

Splitting Styles: Base, Modular, and Specific CSS in BEM

A well-organized CSS structure is crucial for scalability and maintainability,

especially

in

large

projects.

BEM

methodology naturally promotes a modular approach to styling, and splitting CSS into base, modular, and specific styles further enhances readability and reusability.

1. Why Split CSS?

Separating styles into distinct layers helps:

● Improve maintainability by keeping styles organized.

● Avoid conflicts between global and component-specific styles.

● Enhance reusability, making components more flexible.

● Optimize performance by loading only necessary styles.

2. Structure of CSS Organization

A common approach is to divide styles into three levels: a) Base Styles

Base styles define global rules, typography, colors, and reset styles. These styles are independent of specific components.

📌 Examples of Base Styles:

● CSS Reset or Normalize

● Typography (font sizes, line heights)

● Colors and variables

● Utility classes (e.g., .hidden, .clearfix)

[image: Image 116]

b) Modular Styles (BEM Blocks and Elements) Modular styles apply to reusable BEM components like buttons, cards, forms, and grids. Each component is independent and follows BEM naming conventions.

[image: Image 117]

[image: Image 118]

📌 Example of a Button Block:

Each module should be in its own file (e.g., _button.css, _card.css) to keep styles organized.

c) Specific (Page-Specific or Contextual Styles) Sometimes, styles need to be adjusted for specific pages or sections. These styles should be isolated to prevent conflicts with other components.

📌 Example of a Page-Specific Style:

[image: Image 119]

[image: Image 120]

3. Best Practices for Splitting Styles

Follow a Folder Structure:

Use Preprocessors (SCSS, LESS) for

Organization:

With SCSS, you can import styles into a single file: Keep Components Self-Contained:

● Each BEM block should be independent.

● Avoid styling components based on their parent elements.

[image: Image 121]

Use Variables for Consistency:

Define common values in a variables.css or SCSS file: Conclusion

Splitting styles into base, modular, and specific CSS

ensures a clean, scalable, and efficient project. By structuring CSS correctly, you enhance reusability and make it easier to maintain and expand your codebase over time.

[image: Image 122]

Improving

Performance

Through

Proper CSS Setup

Efficient CSS setup is essential for optimizing web performance, ensuring fast page loads, and reducing unnecessary styles. Properly structured and optimized CSS

improves user experience, reduces render-blocking issues, and enhances maintainability.

1. Minimizing Unused CSS

Unused CSS can slow down page load times and increase file size. To remove unnecessary styles:

● Use PurgeCSS or UnCSS: These tools analyze your HTML and JavaScript files to remove unused styles.

● Avoid Overwriting Styles: Instead of adding extra overrides, structure CSS properly from the beginning.

● Minimize the Use of !important: This can make debugging difficult and create specificity issues.

📌 Example: Purging Unused CSS with PurgeCSS in TailwindCSS

This configuration ensures that only used styles are included in the final CSS file.

[image: Image 123]

2. Reducing CSS File Size

Large CSS files can cause longer load times. To minimize file size:

● Use Minification: Tools like CSSNano or Terser remove unnecessary spaces, comments, and characters.

● Gzip or Brotli Compression: Compressing CSS

files can significantly reduce their size.

● Use a CDN for Faster Delivery: Content Delivery Networks (CDNs) distribute CSS files globally for quicker access.

📌 Example: Minifying CSS with PostCSS & CSSNano 3. Avoiding Render-Blocking CSS

Render-blocking CSS prevents a webpage from displaying content until styles are fully loaded. To improve performance:

● Use Critical CSS: Load essential styles inline and defer the rest.

● Defer or Asynchronously Load Non-Critical CSS:

[image: Image 124]

● Use Media Queries Efficiently: Load styles conditionally for different screen sizes.

[image: Image 125]

[image: Image 126]

[image: Image 127]

4.

Optimizing

CSS

for

Faster

Rendering

To speed up page rendering:

Reduce CSS Selectors' Complexity:

Bad Practice:

Optimized:

● Avoid deep selector nesting, as it increases calculation time.

Use Efficient Box Models:

● This prevents unnecessary layout recalculations.

[image: Image 128]

5. Implementing a Scalable CSS

Strategy

● Use BEM for Maintainability: Keeps styles modular and prevents unnecessary duplication.

● Split CSS into Smaller Files: Load only required styles per page.

● Use CSS Variables Instead of Duplicated Values:

● This reduces the need for multiple overrides and improves consistency.

Conclusion

By applying proper CSS optimization techniques—such as removing unused styles, minifying CSS, avoiding render-blocking issues, and improving selector efficiency—you can significantly enhance web performance. A well-structured CSS setup ensures faster page loads, better maintainability, and improved user experience.

Tips for Integrating BEM with Other Tools: CSS-in-JS, SASS, LESS, PostCSS

As front-end development evolves, CSS preprocessing and styling solutions like CSS-in-JS, SASS, LESS, and PostCSS

have gained popularity. When using the BEM (Block, Element, Modifier) methodology, integrating it with these tools enhances scalability, maintainability, and flexibility in styling complex projects. This guide explores best practices for integrating BEM with these tools, ensuring a clean, efficient, and structured workflow.

BEM with CSS-in-JS

CSS-in-JS solutions like Styled Components (React), Emotion, and Stitches provide dynamic styles scoped to components, reducing global conflicts. While BEM is typically used in traditional CSS, it can still be beneficial when naming styled components.

✨ Best Practices

✅ Use template literals and functions to apply modifiers dynamically.

✅ Keep BEM structure in class names even if you’re styling components directly.

[image: Image 129]

📌 Example (Styled Components in React)

💡 Tip: While Styled Components automatically scope styles, keeping BEM-like class names improves debugging and consistency in a hybrid approach.

[image: Image 130]

BEM with SASS (SCSS)

SASS is a powerful CSS preprocessor that enhances BEM

with nesting, mixins, variables, and functions.

✨ Best Practices

✅ Use nesting to maintain clarity while avoiding excessive depth.

✅ Leverage mixins for modifiers to reduce redundancy.

✅ Utilize SASS variables for better consistency across styles.

📌 Example (SCSS with BEM)

💡 Tip: Nesting elements (&__element) is okay, but nesting modifiers (&--modifier) is preferred to keep styles readable.

[image: Image 131]

BEM with LESS

LESS, like SASS, supports variables, mixins, and nesting, making BEM a great fit. However, LESS does not support deep parent referencing (&--modifier) like SASS does.

✨ Best Practices

✅ Use mixins for reusability.

✅ Avoid deep nesting to prevent specificity issues.

✅ Leverage LESS functions for color manipulations.

📌 Example (LESS with BEM)

💡 Tip: LESS does not fully support &--modifier, so avoid deep class structures.

[image: Image 132]

BEM with PostCSS

PostCSS is a powerful tool that processes CSS with plugins, enabling autoprefixing, nesting, and modular styles.

✨ Best Practices

✅ Use the postcss-nested plugin to enable SCSS-like nesting.

✅ Utilize postcss-custom-properties to maintain CSS

variables.

✅ Leverage autoprefixer for cross-browser compatibility.

📌 Example (PostCSS with BEM)

💡 Tip: PostCSS works great with BEM, especially when using plugins like postcss-nested and CSS variables for flexible theming.

Summary Table: BEM Integration with Styling Tools Tool

Strengths

Best Practices

CSS-in-JS (Styled

Dynamic styling,

Keep BEM naming for

scoped styles

readability,

Components, Emotion)

use functions

for modifiers

SASS (SCSS)

Nesting, mixins,

Use mixins for modifiers,

variables

limit deep nesting

LESS

Simplicity, mixins

Avoid deep class nesting,

use functions for color

adjustments

PostCSS

Modern, flexible,

Use postcss-nested,

plugin-based

leverage CSS variables

Final Thoughts

● BEM works with all modern styling solutions, though integration techniques vary.

● SASS & LESS enhance BEM with nesting & variables.

● CSS-in-JS benefits from dynamic class-based styling while keeping the BEM structure.

● PostCSS offers a future-proof modular approach with plugin support.

By integrating BEM with the right tools, you ensure a scalable, maintainable, and organized CSS architecture for your project.

[image: Image 133]

Creating Components Using BEM in

React

BEM (Block-Element-Modifier) provides a structured approach to writing CSS that improves maintainability and reusability in React applications. Since React encourages modular and reusable UI components, integrating BEM helps in keeping styles well-organized and predictable.

1. Structuring React Components

with BEM

Each React component can be considered a Block, while its internal parts are Elements, and variations are Modifiers.

📌 Example: Button Component with BEM

[image: Image 134]

Corresponding BEM CSS (Button.css)

Usage in App.js

[image: Image 135]

[image: Image 136]

This approach ensures that styles remain consistent and easy to manage across multiple components.

2. Using BEM with Nested Elements

For components with nested elements, BEM helps maintain a clear structure.

📌 Example: Card Component

Card CSS (Card.css)

[image: Image 137]

[image: Image 138]

3. BEM with Dynamic Classes in React

React allows dynamic class names using template literals or utility libraries like classnames.

Alert CSS (Alert.css)

[image: Image 139]

4. Best Practices for Using BEM in React

● Keep Components Small and Focused: Each component should represent a single BEM Block.

● Use Modifiers for Variants: Instead of multiple classes, leverage BEM modifiers for styling variations.

● Avoid Deep Nesting: Keep elements structured but not overly nested for better readability.

● Use CSS Modules or Styled Components for Scalability: For larger applications, consider CSS Modules or styled-components while still following BEM naming conventions.

By integrating BEM into React components, you create a scalable, maintainable, and modular CSS structure that enhances development efficiency.

[image: Image 140]

Passing Classes in JSX and Using

Dynamic Modifiers

In React, applying BEM class naming dynamically in JSX

allows for more flexible and reusable components. This is particularly useful when working with modifiers, as React can conditionally apply different classes based on props or state.

1. Passing Classes Dynamically in JSX

React provides several ways to assign classes dynamically to components. You can use template literals, ternary operators, or utility libraries like classnames.

📌 Example: Button Component with Conditional Classes

[image: Image 141]

[image: Image 142]

Button Styles (Button.css)

Usage in App.js

2. Using classnames for Cleaner JSX

The classnames library helps simplify the conditional application of classes.

Installation

[image: Image 143]

[image: Image 144]

[image: Image 145]

📌 Example: Alert Component with classnames

Alert Styles (Alert.css)

[image: Image 146]

Usage in App.js

[image: Image 147]

[image: Image 148]

3. Using BEM for Component States

and Variations

BEM works well for defining different component states using modifiers.

📌 Example: Card Component with Active State

Card Styles (Card.css)

[image: Image 149]

Usage in App.js

This approach makes it easy to manage component states and visual changes dynamically.

4. Best Practices for Using BEM with Dynamic Classes in React

● Use classnames for better readability when handling multiple class conditions.

● Keep modifiers simple—avoid overusing nested conditions for class names.

● Encapsulate styles inside components using CSS Modules or styled-components where necessary.

● Ensure consistent class naming—follow the block__element--modifier structure to maintain clarity and reusability.

By using BEM with dynamic class application in React, you create a scalable, maintainable, and efficient styling system that works seamlessly across various components.

Integration with CSS Modules and styled-components in React

When working with React, managing styles effectively is crucial for maintainability and scalability. While BEM

provides a solid methodology for structuring CSS, integrating it with CSS Modules and styled-components enhances reusability, avoids global scope issues, and improves performance.

1. CSS Modules: Scoped and Modular

Styling with BEM

What are CSS Modules?

CSS Modules allow you to write styles that are scoped locally to a component, eliminating class name conflicts.

Unlike traditional CSS, where styles can leak globally, CSS

Modules generate unique class names for each component automatically.

Setting Up CSS Modules in React

First, ensure your project is set up with Create React App or another bundler that supports CSS Modules out of the box.

📌 Example Folder Structure:

[image: Image 150]

[image: Image 151]

📌 Example: Button Component Using CSS Modules with BEM

Button.module.css

Button.js

[image: Image 152]

[image: Image 153]

📖 Key Takeaways:

✅ Scoped Styles – Styles do not leak into other components.

✅ BEM + CSS Modules – Classes are structured following BEM principles.

✅ Dynamic Class Handling – classnames makes it easy to switch modifiers.

2. Styled-components: Component-

Level Styling in React

What are styled-components?

styled-components is a popular CSS-in-JS library that allows you to write CSS directly inside JavaScript files. This approach helps eliminate class name conflicts, supports dynamic styling, and improves component reusability.

Installing styled-components

Run the following command to install the library:

[image: Image 154]

📌 Example: Button Component Using styled-components with BEM

Button.js

Advantages of styled-components in BEM-based Projects

✅ No Class Name Collisions – Each styled component is scoped locally.

✅ Dynamic Props – Styles change based on props (e.g., variant="primary").

✅ Easier Maintenance – Styles live within components, improving readability.

3.

CSS

Modules

vs.

styled-

components: Which One to Choose?

Feature

CSS Modules

styled-components

Scoped

✅ Yes

✅ Yes

Styles

Performance

✅ Faster (compiled CSS)

✅ Slightly slower (runtime

evaluation)

Dynamic

❌ Requires class toggling

✅ Uses props directly

Styling

Global Styles

❌ Limited (must import

✅ Can create global styles

separately)

Theme

✅ Requires external setup

✅ Built-in theme support

Support

[image: Image 155]

4. Combining CSS Modules & styled-components in a Single Project

While both approaches are powerful, they can also be used together in different scenarios:

● CSS Modules for structure-based styles (e.g., layout, typography).

● styled-components for interactive/dynamic components (e.g., buttons, forms).

📌 Example: Card Component with Both CSS Modules and styled-components

Card.module.css

[image: Image 156]

Card.js

Here, CSS Modules handle the structural styles (.card,

.card__title), while styled-components dynamically modify the shadow effect.

Final Thoughts

Integrating BEM with CSS Modules and styled-components allows you to:

✨ Keep styles modular and maintainable

✨ Leverage both global and scoped styles efficiently

✨ Improve performance with optimized stylesheets

✨ Enhance flexibility with dynamic, prop-driven styling

📖 Key Recommendation: If you work on a large-scale React application, consider combining both approaches:

● CSS Modules for layout & structural styles

● styled-components for reusable, dynamic UI elements

This hybrid approach maximizes maintainability while adhering to BEM principles effectively.

Using

BEM

in

Vue

Component

Templates

Integrating

the

BEM

(Block-Element-Modifier)

methodology within Vue.js allows you to build clean, maintainable, and scalable components. Vue's Single File Components (SFC) provide a seamless way to structure both HTML and CSS, ensuring that your styles are encapsulated and do not interfere with other parts of the application.

When combined with BEM, Vue components become even more modular, intuitive, and easy to scale as your project grows.

1. Understanding Vue Component

Structure

Vue components are typically written as Single File Components (SFC), where the template, script, and style are contained within one file. This modular structure not only promotes separation of concerns but also allows for the encapsulation of styles within each component, meaning they won’t unintentionally affect other components in the project.

[image: Image 157]

In a Vue SFC, the template, script, and style sections allow developers to create components that are isolated from one another. Here’s a simple example:

In this example:

● The block is .button.

● The element is .button__item.

This simple structure ensures that the styles are scoped only to the Button component and will not affect other parts of your application. Notice the use of the scoped attribute in the <style> tag, which is crucial for avoiding global CSS

conflicts.

2. Using BEM in Vue Templates Vue’s template syntax allows you to easily implement BEM conventions. Each component can be structured using blocks, elements, and modifiers, just as you would with plain HTML and CSS. However, Vue’s templating system provides more dynamic capabilities, such as the ability to bind classes conditionally.

📌 Example: Card Component with BEM in Vue

Let’s explore a more complex example where we create a Card component using BEM in a Vue template.

Card.vue

[image: Image 158]

[image: Image 159]

📖 Explanation:

● The block is .card, which represents the entire card container.

● Elements include .card__title, .card__content, and

.card__button, which represent different sections inside the card.

● Modifiers like .card__button--primary and

.card__button--secondary are dynamically applied to style the button based on the buttonVariant prop.

By using Vue’s computed properties (buttonClass), we can apply conditional BEM modifiers based on the component's props, providing flexibility and reusability in our design.

3. Interacting with Vue.js Directives and BEM

Vue’s directives—such as v-bind, v-for, and v-if—enable us to apply BEM principles dynamically and conditionally. These directives allow us to adjust class names based on data or component state, ensuring that the component remains both functional and stylistically consistent.

📌 Example: Dynamic Class Bindings Using BEM in Vue Button.vue

[image: Image 160]

[image: Image 161]

📖 Key Features:

● The buttonClass computed property determines the classes to be applied dynamically. It combines the block

.button and modifies it based on the variant and disabled props passed into the component.

● The use of v-bind (via :class) allows the component to reactively update the class names based on state changes.

In this case:

● If variant is "primary", the button gets the .button--

primary class.

● If the disabled prop is true, the .button--disabled class is added, disabling the button and altering its appearance.

4. Modifier Logic in Vue Components Modifiers in BEM represent variations or states of a block or element. In Vue, you can easily toggle these modifiers by leveraging the reactivity system. Vue allows you to bind classes dynamically, ensuring that the UI reflects the component's current state.

📌 Example: Toggleable Class Modifiers

ToggleButton.vue

[image: Image 162]

[image: Image 163]

📖 Explanation:

● The button’s appearance toggles between active and inactive states by changing the classes dynamically.

This is done by using Vue’s computed property buttonClass which determines which modifier class to apply based on the active data property.

● The class toggle-button--active applies when the button is active, and toggle-button--inactive applies when it’s not.

● The toggle() method switches the active state when the button is clicked, demonstrating how Vue's reactivity makes it simple to update the UI based on component state.

5. Benefits of Using BEM with Vue Maintainability

● BEM promotes the separation of concerns by clearly distinguishing between blocks, elements, and modifiers.

This makes it easy for developers to locate styles and troubleshoot issues in large projects.

Reusability

● Vue components styled using BEM can be easily reused across different parts of the application. The clear naming conventions allow components to retain their functionality and styling even when reused in different contexts.

Scalability

● As your Vue application grows, following BEM

ensures that your CSS remains scalable. You can extend blocks with new elements or modifiers without affecting the global styles.

Dynamic Styling

● Vue’s reactivity system, combined with BEM, allows for dynamic changes to styles based on data or user interaction. The use of computed properties and class bindings makes it easy to modify the styles without having to manually manipulate the DOM.

Avoiding Global Conflicts

● The scoped attribute in Vue ensures that the styles defined in each component do not leak into other components. This, combined with the modularity of BEM, ensures that your styles remain isolated and maintainable.

Conclusion

Using BEM in conjunction with Vue.js provides a powerful, maintainable, and scalable approach to component-based styling. By leveraging Vue's built-in directives, computed properties, and scoped styles, you can apply BEM’s principles dynamically and conditionally. This enhances the modularity of your components, ensures consistency across your application, and makes it easier to manage styles as the project grows.

Whether you’re developing simple buttons, complex forms, or even interactive UI elements, Vue and BEM work together to give you complete control over your component’s styling while maintaining a clean and maintainable structure.

[image: Image 164]

Interaction Between BEM and Vue.js

Directives

One of the key advantages of using BEM alongside Vue.js is the ability to seamlessly adapt class names and CSS

structure to changes in component states. Vue.js provides powerful directives like v-if, v-for, v-bind, and v-model, which allow for effective control over the rendering of elements on the page. This is especially useful when working with large, dynamic interfaces.

1. Conditional Rendering with v-if, v-show, and v-for

Using directives like v-if for conditional rendering and v-show for toggling visibility allows you to conditionally include or exclude components based on certain conditions.

📌 Example:

In this example, the card__content class remains attached to the element even if the element is not displayed (using v-if).

This helps maintain the structure while keeping the code clean and understandable in terms of styles.

[image: Image 165]

[image: Image 166]

2. Dynamic Classes with v-bind:class

Thanks to the v-bind:class directive, you can dynamically add or change classes based on the component’s state. This is useful for adjusting styles under certain conditions without manually managing the classes.

📌 Example:

In this case, when the variable isHighlighted is true, the card--highlighted class is added to the element. This makes it easy to change styles for components while preserving the BEM structure.

3. Repeating Elements with v-for

The v-for directive is incredibly useful for rendering lists or repeating elements. Each item in the list receives a unique class, helping to maintain consistency and organization in your CSS.

📌 Example:

Here, we use v-for to create a list of cards, and each card has the classes card, card__title, and card__description. This allows for flexible scaling of the interface while keeping the BEM style hierarchy intact even for large sets of elements.

[image: Image 167]

4. Modifier Logic with Vue.js

BEM modifiers are typically used for variations of components. In Vue.js, modifiers can be conditionally applied based on the state or data using reactive properties.

📌 Example:

In this example, the button--active class is added or removed based on the value of isActive. This allows for easy modification of the component's appearance in response to the component's state changes while keeping the BEM

naming conventions intact.

5. Interactivity with Vue.js and BEM

Vue.js also allows you to manage complex interactivity with ease, and when used with BEM, it ensures that even complex components maintain a clear and manageable structure.

For example, if you have a toggle button that changes its state dynamically, you can use Vue's reactivity to apply different styles with BEM modifiers:

[image: Image 168]

📌 Example:

In this case, when the state is x, the class is added, changing the button's appearance. This demonstrates how you can use BEM’s modifier system effectively with Vue’s reactive capabilities.

This is a more in-depth explanation of how BEM interacts with Vue.js directives, complete with examples and quotes.

Let me know if you need further details or adjustments!

Modifier Logic in Vue Components

Modifiers in BEM provide a structured way to create variations of components while keeping CSS maintainable and scalable. When used in Vue, modifiers can dynamically adapt to state changes, user interactions, and reactive data.

This flexibility allows for cleaner code, better performance, and more maintainable styles.

Why Use Modifiers in Vue?

Modifiers help differentiate component states without duplicating styles. Instead of adding multiple separate classes, we modify the base component using --modifiers.

This approach works seamlessly with Vue’s reactivity and directives, allowing real-time UI updates.

📌 Example of Modifier Naming:

[image: Image 169]

In Vue, we can dynamically assign these modifiers based on component state.

[image: Image 170]

Implementing BEM Modifiers in Vue

Binding Classes with v-bind:class

Vue provides v-bind:class, which allows dynamic assignment of BEM modifiers based on component state.

📌 Example: Dynamically setting button states

[image: Image 171]

[image: Image 172]

[image: Image 173]

Modifier Logic in Vue Components

What Are Modifiers in BEM?

Modifiers in BEM (Block__Element--Modifier) help create flexible and scalable components by allowing variations in appearance and behavior. In Vue, modifiers can be dynamically

applied

using

computed

properties,

directives, and reactive data.

📌 Example Modifier Syntax:

Instead of creating separate components for different button styles, we reuse the same base .button and apply modifiers

dynamically in Vue.

How to Apply Modifiers in Vue Components

Using v-bind:class for Dynamic Modifiers

Vue’s v-bind:class allows us to apply BEM modifiers based on component state.

📌 Example: Dynamic Button States

[image: Image 174]

[image: Image 175]

📖 How it works:

● When isPrimary is true, .button--primary is applied.

● When isDisabled is true, .button--disabled is applied.

● The button’s appearance updates dynamically.

Using

Computed

Properties

for

Modifier Logic

For complex conditions, use computed properties to manage class assignments.

📌 Example: Toggle Button with Computed Classes

[image: Image 176]

📖 Key benefits:

● Computed properties make the template cleaner.

● Modifiers are applied dynamically.

● Scales well for more complex modifier logic.

Using BEM Modifiers with v-for

When rendering multiple elements, modifiers differentiate items based on their state.

📌 Example: Highlighting Active Menu Items

[image: Image 177]

[image: Image 178]

Why use BEM here?

● menu__item--active visually marks the selected menu item.

● Clicking an item updates the active state dynamically.

● Works well for navigation menus, lists, and tabs.

[image: Image 179]

Using Modifiers with Vue Transitions

Vue’s transition system works well with BEM modifiers for animations.

📌 Example: Fading in/out Elements with Modifiers

Why use BEM modifiers here?

● .box--visible keeps styles modular and reusable.

● Works seamlessly with Vue’s transition system.

● Enhances UX by making UI elements interactive.

✨ Best Practices for Using Modifiers in Vue

✅ Use v-bind:class for dynamic modifier application.

✅ Use computed properties for complex class logic.

✅ Keep styles modular by following the BEM structure.

✅ Combine with transitions for better UI/UX.

By following BEM best practices in Vue, you create a well-structured,

maintainable,

and

scalable

CSS

architecture.

Conclusion

Integrating BEM methodology into Vue development enhances

code

maintainability,

scalability,

and

readability. By structuring styles into blocks, elements, and modifiers, we achieve a clear, reusable, and consistent styling system.

📖 Key Takeaways:

1.

BEM in Vue Templates – Ensures structured and predictable styling for components.

2.

Vue Directives + BEM – Enables dynamic styling and class binding using Vue’s v-bind:class and computed properties.

3.

Modifiers in Vue Components – Allows flexible style variations while keeping the base structure

intact.

By applying BEM principles correctly, Vue applications become easier to scale, collaborate on, and maintain, making the UI codebase more robust and future-proof.

[image: Image 180]

Component Structure in Angular with

BEM

Integrating the BEM (Block, Element, Modifier) methodology in Angular components allows developers to maintain clear and consistent CSS, ensuring that styles are scalable, maintainable, and reusable. Angular components are self-contained units of the UI, making them an ideal candidate for BEM's modular approach.

1. Organizing Angular Components

with BEM

In Angular, the structure of a component typically includes:

● Component class (.ts file)

● Template (.html file)

● Styles (.scss or .css file) When applying BEM to these files, it's essential to keep in mind the separation of concerns for block, element, and modifier.

📌 Example:

Let’s say we’re building a card component. The structure would look something like this:

● Component Class (card.component.ts):

○ Manages the logic and data of the component.

● Component Template (card.component.html):

● The card block wraps everything.

● The card__title and card__description elements are parts of the card block.

● The card--highlighted modifier is dynamically applied depending on the component’s state.

[image: Image 181]

📌 Component Styles (card.component.scss):

○ The block card defines the root component styles.

○ The elements card__title and card__description are part of the card block, and they are styled separately.

○ The card--highlighted modifier is used to change the appearance of the entire card when necessary.

[image: Image 182]

2. Benefits of Using BEM in Angular

Components:

● Encapsulation: Since Angular components encapsulate styles, the use of BEM ensures that the styles do not leak into other components, maintaining modularity and reducing style conflicts.

● Scalability: BEM allows components to scale efficiently. New elements or modifiers can be added as the app grows.

● Consistency: Following BEM's naming conventions creates a consistent and predictable CSS structure, which is especially useful when working in larger teams.

3. Avoiding Naming Conflicts

One of the core principles of BEM is avoiding naming conflicts. Angular's View Encapsulation provides an additional layer of protection, but using BEM in combination ensures that class names are unique and descriptive, further preventing any potential issues.

4. Practical Example:

Let’s build a more complex example with Angular and BEM

where we have a modal component.

📌 Component Class (modal.component.ts):

📌 Component Template (modal.component.html):

[image: Image 183]

[image: Image 184]

📌 Component Styles (modal.component.scss):

5. Modifier Logic in Angular Angular's [ngClass] directive allows dynamic application of classes based on component state. By combining BEM

modifiers with ngClass, we can apply variations in a clean and efficient manner.

For instance, toggling the modal--open modifier in the example above when the isOpen property changes ensures that the modal element is either shown or hidden.

6. Best Practices for BEM in Angular:

● Use ngClass to dynamically add modifiers based on state changes in the component.

● Maintain modularity by creating components for different parts of the UI (e.g., button, card, modal), and use BEM to structure them clearly.

● Always use descriptive and unique class names to prevent conflicts and ensure clarity.

By combining Angular's component-based architecture with BEM's structured naming convention, you can build scalable, maintainable, and efficient user interfaces. This approach ensures clear separation of concerns, and when applied correctly, it greatly enhances the development process, especially for large-scale applications.

[image: Image 185]

Using ngClass and ngStyle for

Modifiers in Angular with BEM

In Angular, the ngClass and ngStyle directives provide powerful tools for dynamically applying classes and inline styles based on the component's state. These directives align perfectly with the BEM (Block, Element, Modifier) methodology, allowing developers to dynamically modify the appearance of a component by adding or removing modifiers in response to changes in the component's logic.

When building Angular applications using BEM, it's crucial to manage modifiers effectively so that your application remains modular, maintainable, and flexible.

1. ngClass in Angular

The ngClass directive is used to dynamically add or remove classes to/from an HTML element based on certain conditions. This is especially useful when working with BEM, where modifiers are often added or removed based on component states (like hovering, focusing, or active states).

📌 Syntax:

Here, block--modifier is the BEM modifier, and condition is a boolean expression that determines if the modifier should be applied.

📌 Example:

Let's consider a card component where we want to add a card--highlighted modifier when the card is selected.

[image: Image 186]

[image: Image 187]

[image: Image 188]

📌 Component Class (card.component.ts):

📌 Component Template (card.component.html):

📌 Component Styles (card.component.scss):

[image: Image 189]

[image: Image 190]

● The card--highlighted modifier is conditionally applied using ngClass based on the value of isSelected.

● When the user clicks the Select button, the toggleSelection() method toggles the selection state, adding or removing the modifier accordingly.

2. ngStyle in Angular

The ngStyle directive allows for the dynamic application of inline styles to elements. Unlike ngClass, which applies pre-defined CSS classes, ngStyle gives you the ability to apply inline styles directly based on the component’s state.

📌 Syntax:

This applies an inline style for background-color based on the value of the condition.

📌 Example:

Let’s extend the card example and apply a dynamic background color when the card is highlighted.

📌 Component Template (card.component.html):

Here, ngStyle is used to change the background-color dynamically depending on the isSelected state, while ngClass manages the card--highlighted modifier.

[image: Image 191]

[image: Image 192]

3. Combining ngClass and ngStyle

In many cases, you'll find it beneficial to use both ngClass and ngStyle together in your Angular components. This allows you to manage class-based modifiers and inline styles simultaneously.

📌 Example:

Suppose you have a button component that changes its appearance when hovered over. You could use ngClass to add a modifier for the hover state and ngStyle to adjust the button’s inline styles, such as changing its background color.

📌 Component Class (button.component.ts):

📌 Component Template (button.component.html):

[image: Image 193]

📌 Component Styles (button.component.scss):

● The button--hovered modifier is applied when the mouse is over the button, using ngClass.

● The background color changes dynamically using ngStyle, based on the isHovered state.

4. Best Practices for ngClass and

ngStyle with BEM

● Use ngClass for Class Modifiers: Apply BEM

modifiers using ngClass to keep your class-based styling modular and maintainable.

● Use ngStyle for Inline Styles: Reserve ngStyle for dynamically applied inline styles, such as colors or specific layout changes, based on the component’s logic.

● Combine Both When Needed: Often, you’ll need to use both ngClass and ngStyle to fully control both class and style modifications based on component states.

● Ensure Clean Separation: Keep your BEM

classes for structure, and use ngStyle for specific styles that depend on dynamic conditions.

By utilizing ngClass and ngStyle in combination with BEM, Angular developers can maintain clear, readable, and scalable code. This approach empowers you to handle

dynamic UI changes efficiently while keeping your CSS

modular and aligned with BEM's principles.

Transitioning from Components to Complex UI Elements in Angular with

BEM

As your Angular application evolves, the need to manage complex UI structures grows. Initially, developers start by creating individual components, but eventually, these components need to be integrated into larger, more complex UI elements like modals, forms, tables, and other sophisticated interface elements. The BEM (Block, Element, Modifier) methodology is a fantastic way to keep your structure consistent, maintainable, and flexible as you transition from simple components to complex UI elements.

Let’s explore how to scale from basic components to full-fledged UI elements while using BEM in Angular.

1. Managing Complexity with BEM

When working with simple components, BEM is straightforward because the relationships between blocks and elements are clear. However, as the UI becomes more complex, BEM allows you to maintain clarity and organization even in larger, more intertwined elements.

In complex UI elements, you typically have multiple blocks (which can become larger sections of the UI), multiple elements (which can be buttons, inputs, titles), and several modifiers (which adjust appearance or behavior based on different states like "active", "disabled", or "focused").

📌 For Example:

When transitioning to a complex modal UI element, you’ll start by breaking down the modal into separate BEM blocks (for the entire modal, header, content, and footer) and elements (such as buttons or titles).

[image: Image 194]

[image: Image 195]

2. Complex UI Element Example:

Modal with BEM

Let’s build a modal component that incorporates multiple blocks and elements using BEM conventions in Angular.

📌 Component Class (modal.component.ts):

📌 Component Template (modal.component.html):

[image: Image 196]

📌 Component Styles (modal.component.scss):

[image: Image 197]

📖 In this example:

● Blocks: modal, modal__header, modal__footer, modal__content represent the primary sections of the modal.

● Elements: modal__title, modal__close, modal__action are elements within those blocks.

● Modifiers: modal--open, modal__action--secondary are used to modify the modal’s appearance based on state (open/closed) or specific elements (secondary actions).

[image: Image 198]

3. Managing UI Transitions with BEM

When transitioning to more complex UI elements, you may also need to implement animations or transitions. For example, when opening or closing the modal, the transition should be smooth and maintain consistency.

Using BEM, we can control these transitions by adding modifier classes to the modal and adjusting CSS properties like transition or transform.

📌 Example (Updating modal.component.scss to include transition effects):

The modal--open modifier not only toggles the visibility of the modal but also applies a fade-in effect using CSS

transitions. This is especially useful in complex UI elements where user experience is important.

[image: Image 199]

4.

Transitioning

to

Larger

UI

Components: Forms and Tables

As we continue with larger UI elements like forms or tables, BEM remains just as effective for organizing components, elements, and modifiers. Each section of a form (such as input fields, labels, buttons) can be treated as a block. For tables, each row and column can become elements, and the modifier logic can be used to style different states such as sorting, highlighted rows, or disabled buttons.

📌 Example: Table component

📖 In this case:

● Blocks: table, table__row, table__cell represent distinct sections of the table.

● Elements: table__header, table__button are components within the blocks.

● Modifiers: table__row--highlighted is used to apply different styles (e.g., background color) to highlighted rows.

Conclusion

As you transition from smaller components to more complex UI elements in Angular, using BEM ensures that you maintain a consistent structure while also enhancing modularity and maintainability. By leveraging ngClass, ngStyle, and BEM's systematic naming convention, you can manage complex UI elements like modals, forms, tables, and more without losing clarity in your component structure.

● Start simple with basic components, and gradually build to more complex UI elements.

● Use modifiers to handle dynamic changes and different states in these UI elements.

● Maintain consistency across your app by keeping styles and component structures clear and well-organized using the BEM methodology.

5. Best Practices for Large-Scale Projects and Team

Collaboration

As projects grow in scale and complexity, maintaining a well-structured and efficient CSS architecture becomes crucial. BEM (Block-Element-Modifier) is a methodology that helps developers create scalable, maintainable, and consistent styles. However, implementing BEM in large-scale projects requires careful planning and collaboration, especially when working in a team environment.

In this section, we will explore best practices for using BEM

in large projects, including setting up a clear structure, handling

complex

interfaces

with

theming

and

responsiveness, and ensuring SEO-friendly styles. We will also discuss standardization and documentation strategies for teams, collaboration techniques to maintain consistency, and effective approaches for transitioning an existing codebase to BEM.

By following these best practices, you can ensure that your project remains modular, flexible, and easy to maintain, making development more efficient and teamwork more seamless.

Setting Up BEM in Large-Scale

Projects

Implementing BEM (Block, Element, Modifier) in large-scale projects ensures scalability, maintainability, and team collaboration. Proper setup from the start helps prevent

CSS

bloat,

selector

conflicts,

and

inconsistency. This guide covers folder structure,

naming conventions, automation, and team workflow to effectively apply BEM in enterprise-level applications.

[image: Image 200]

Organizing the Project Structure

A well-structured project helps separate concerns, improve reusability, and streamline development.

✨ Best Practices

✅ Divide styles into categories: base, layout, components, utilities.

✅ Use SCSS or PostCSS to modularize styles.

✅ Encapsulate styles per component to avoid global conflicts.

📌 Example: Recommended Project Structure

💡 Tip: Organizing styles this way makes maintenance and debugging easier as the project scales.

Defining

a

Consistent

Naming

Convention

BEM naming rules ensure that styles remain predictable, modular, and easy to extend.

✨ Best Practices

✅ Use double underscores (__) for elements and double hyphens (--) for modifiers.

✅ Stick to lowercase, hyphen-separated names for readability.

✅ Ensure descriptive, meaningful class names.

📌 Example: Correct vs. Incorrect Naming

[image: Image 201]

💡 Tip: Use a linter like stylelint-config-bem to automate rule enforcement.

[image: Image 202]

Automating BEM Enforcement with

Linters & Preprocessors

Automation helps maintain code quality and prevent errors.

✨ Recommended Tools

✅ Stylelint: Enforces BEM rules (stylelint-config-bem).

✅ SCSS Nesting: Helps maintain BEM structure.

✅ Prettier: Formats code automatically.

✅ PostCSS: Optimizes CSS and improves maintainability.

📌 Example: Stylelint BEM Configuration (.stylelintrc.json)

💡 Tip: Run npx stylelint "**/*.scss" to check for violations.

Establishing a Team Workflow for BEM Collaboration

In large teams, maintaining a shared understanding of BEM is critical.

✨ Best Practices

✅ Create a BEM style guide in project documentation.

✅ Use Git hooks to enforce BEM standards before commits.

✅ Conduct regular code reviews to ensure consistency.

✅ Leverage a design system to standardize UI components.

💡 Tip: Platforms like Storybook or Figma Design Systems help teams collaborate efficiently.

[image: Image 203]

Handling Complex UI Components

with BEM

BEM is powerful for structuring large, reusable UI components.

📌 Example: Advanced BEM Implementation for a Modal

💡 Tip: Encapsulate components with SCSS modules or CSS-in-JS to keep styles scoped.

Conclusion

Setting up BEM in large-scale projects improves maintainability, performance, and collaboration. By structuring files properly, following strict naming conventions,

automating

enforcement,

and

maintaining a team workflow, teams can efficiently build scalable, high-quality applications.

✅ Next Steps: Implement BEM linting, modular architecture, and automation tools in your projects for maximum efficiency.

Best

Practices

for

Complex

Interfaces: Theming, Responsiveness,

SEO

Building complex user interfaces (UI) requires attention to theming, responsiveness, and SEO to ensure the UI is scalable, accessible, and optimized for search engines.

These practices improve the user experience (UX) and site performance, while also making the interface easier to maintain. Below are some best practices for handling these challenges effectively.

Theming: Consistent and Flexible

Styles

Theming involves defining a consistent set of visual styles (colors, typography, spacing, etc.) across the entire application, while also allowing for flexibility. It ensures that the interface is aesthetically appealing and can adapt to different use cases (light/dark modes, branding variations).

✨ Best Practices

✅ Use CSS Variables for consistent theming. CSS

variables (custom properties) allow you to define global values that can be reused throughout the application.

✅ Centralize your theme definitions: Define a global theme file to manage colors, fonts, spacings, etc.

✅ Implement dark/light modes: With CSS, it’s easy to switch between themes based on user preference or system settings.

✅ Use design tokens for a modular approach to theming, such as spacing, colors, and font sizes.

[image: Image 204]

📌 Example: Theme Setup Using CSS Variables

💡 Tip: Use JavaScript or CSS media queries to automatically toggle themes based on user preferences (prefers-color-scheme).

Responsiveness: Building for All Devices

With the variety of screen sizes and devices available today, creating a responsive UI is essential. It ensures the layout adapts seamlessly, improving user satisfaction.

✨ Best Practices

✅ Use Fluid Layouts: Use percentages, flexbox, or CSS

grid to make the layout adapt to various screen sizes. Avoid using fixed-widths.

✅ Media Queries: Adjust styles based on the device’s screen size or resolution.

✅ Mobile-First Design: Start by designing for smaller screens (mobile) and progressively enhance the design for larger screens (tablet, desktop).

✅ Breakpoints: Define clear breakpoints for different screen sizes to optimize the user interface for various devices (small, medium, large).

✅ Test Responsiveness: Regularly test the layout on different devices and screen sizes.

[image: Image 205]

📌 Example: Responsive Layout with CSS Grid and Media Queries

💡 Tip: Use rem or em units for font sizes and spacing to create a more flexible and scalable layout.

SEO (Search Engine Optimization): Improving Visibility

SEO plays a critical role in driving traffic to your site. It involves optimizing the structure and content of your UI to ensure search engines can properly crawl and index your site.

✨ Best Practices

✅ Semantic HTML: Use proper HTML5 elements (<header>, <footer>, <section>, <article>, etc.) for better search engine understanding.

✅ Meta Tags: Ensure that each page has meta tags for title, description, and keywords. This helps improve the visibility of your pages on search engines.

✅ Accessible Content: Properly use ARIA roles and attributes to make content accessible to all users, including search engines.

✅ Optimizing Assets: Compress images, use responsive images (e.g., <picture> tag), and minify CSS/JS to improve page load speed, a crucial factor for SEO.

✅ Sitemap & Robots.txt: Make sure you have a sitemap and robots.txt file to guide search engines on what to index and what to avoid.

✅ Structured Data: Use JSON-LD or Microdata to provide search engines with more structured information about the content.

[image: Image 206]

📌 Example: Semantic HTML and Meta Tags

[image: Image 207]

💡 Tip: Use Google Search Console and Google Analytics to monitor the performance of your website and track SEO improvements.

Performance Optimization for SEO

and Responsiveness

Performance is a crucial factor for both SEO and user experience. Optimizing your website ensures faster load times, better search rankings, and a more pleasant user experience.

✨ Best Practices

[image: Image 208]

✅ Lazy Load Images and Videos: Use lazy loading to defer loading of images and videos until they are needed.

✅ CSS and JavaScript Minification: Minify your CSS and JS files to reduce their size and improve loading speed.

✅ Server-Side Rendering (SSR): For React, Vue, or Angular apps, implement SSR to render content server-side for faster page load times and improved SEO.

✅ Content Delivery Networks (CDN): Use CDNs to deliver static files quickly by caching content at various locations worldwide.

✅ Preload Key Assets: Preload critical resources (like fonts, CSS, and JS files) to improve the perceived load time.

📌 Example: Lazy Loading Images

💡 Tip: Use Google PageSpeed Insights or Lighthouse to analyze your website's performance and receive actionable improvement suggestions.

Conclusion

By integrating theming, responsiveness, and SEO best practices, you can build a high-quality, scalable, and efficient UI that enhances user experience and site visibility. These techniques not only make the application look great across devices, but also ensure it loads quickly, ranks well on search engines, and is easily maintainable.

Next Steps: Prioritize performance, maintain a responsive layout, and optimize your site for SEO from the start of development to ensure long-term success.

BEM in Teams: Standardization and Documentation

In collaborative web development, BEM (Block Element Modifier) is an essential methodology that enhances code consistency, improves maintainability, and enables teams to work more effectively together. The key to successful implementation of BEM in a team environment is through standardization and documentation. By ensuring that all team members follow consistent naming conventions and coding practices, you reduce confusion, improve communication, and foster better collaboration.

Standardization:

Setting

Clear

Guidelines

Standardizing the way BEM is implemented across a team ensures that everyone is on the same page. When all team members follow the same conventions, it creates a uniform and predictable structure that makes the codebase easier to navigate and understand.

✨ Best Practices for Standardization

✅ Consistent Naming Conventions:

● Always follow the BEM naming convention: block__element--modifier

● Example: .button__icon--primary, .card__title--

highlighted

● Avoid unnecessary abbreviations or shorthand. Stick to clear, descriptive names.

● Use lowercase letters and hyphens (e.g.,

.menu__item--active instead of .Menu__Item--Active).

✅ Block, Element, and Modifier Clarification:

● Block: Represents the base component (e.g.,

.button, .card).

● Element: A part of the block that can’t function on its own (e.g., .button__icon, .card__title).

● Modifier: Describes the variations or states of a block/element

(e.g.,

.button--primary,

.card__title--

highlighted).

[image: Image 209]

Ensure all team members understand the difference and apply these concepts consistently.

✅ Enforce Naming Conventions in Code Reviews:

● Create code review checklists that include guidelines for BEM naming. This ensures the team adheres to the structure during the development process.

● Example checklist item: "Ensure all class names follow BEM methodology: block__element--modifier".

✅ Namespace Prefixing:

● In some large projects or teams, it might be beneficial to use namespace prefixes to prevent naming conflicts, especially when working with third-party libraries or components.

● Example: .project-name__button, .admin__modal.

📌 Example: Standardized BEM Naming Convention

Documentation: Creating a Common Knowledge Base

Documentation is crucial in a team environment as it ensures

clarity

and

consistency.

Well-maintained

documentation not only helps new team members onboard faster but also acts as a reference for resolving ambiguities in implementation.

✨ Best Practices for Documentation

✅ Create a Style Guide:

● Document the team's BEM naming conventions along with rules and examples in a style guide. This should include examples of common blocks, elements, and modifiers used across the project.

● Include guidelines for when and how to use modifiers (e.g., when to use the --active modifier versus --

disabled).

✅ Document Reusable Components:

● If your team has created reusable components (e.g., buttons, cards, or modals), document these components in detail with their BEM structure and usage instructions.

● Include examples of how to modify components using modifiers and elements.

✅ Use a Visual Guide or Component Library:

● Create or maintain a component library that demonstrates each component’s structure, including its BEM

class names.

● Tools like Storybook can be used to document the UI components with their BEM classes and examples.

✅ Version Control for Documentation:

● Store the BEM documentation in version control (e.g., Git) to ensure it evolves alongside the project. This ensures that the documentation remains accurate as new blocks, elements, and modifiers are introduced.

[image: Image 210]

✅ Provide a "BEM Reference" File:

● Maintain a centralized BEM reference file (such as a .md file or .json object) that includes all the BEM blocks, elements, and modifiers used across the project. This file can act as a living document that is updated as the project evolves.

📌 Example: BEM Documentation in a README File

Tools for BEM in Team Projects There are several tools and practices that can further enhance the implementation of BEM in a team setting.

These tools automate, enforce, and simplify the BEM

process.

✨ Tools and Practices

✅ Linters for CSS:

● Use CSS linters (e.g., Stylelint) to enforce BEM

naming conventions in your CSS files. Linters can help detect violations of the naming convention, ensuring that developers follow the correct structure.

● Example: Configure Stylelint with custom rules to enforce BEM class names.

✅ Preprocessors:

● Use SASS or LESS to streamline BEM class generation and manage more complex styles in a modular way. These tools allow you to define mixins or functions to reduce code duplication and keep styles DRY (Don’t Repeat Yourself).

✅ Component-based Architecture:

● Implement component-based architecture using frameworks like React, Vue, or Angular, and structure your components with BEM. This way, each component encapsulates its own styles, and BEM helps maintain clear boundaries between different parts of the application.

Ensuring

Ongoing

Adoption

and

Consistency

Once BEM is introduced and standardized, it’s important to maintain ongoing adherence across the team.

✨ Tips for Ensuring Long-Term Consistency

✅ Regular Code Reviews:

● Make BEM naming conventions part of your code review process. Ensure that reviewers check for consistency in naming and the application of modifiers and elements.

✅ Team Training and Workshops:

● Hold regular workshops or training sessions on BEM

to ensure that team members understand how to implement it properly. These sessions can include practical examples, challenges, and common pitfalls.

✅ Encourage Collaboration:

● Foster a collaborative environment where team members share and discuss BEM best practices. Encourage open communication about naming conventions, block structures, and modifier logic to prevent inconsistencies.

Conclusion

Implementing BEM in teams requires a strategic approach to standardization and documentation. By following consistent

naming

conventions,

creating

detailed

documentation, and using tools that help enforce BEM

principles, teams can build scalable and maintainable codebases. It leads to better collaboration, reduces misunderstandings, and helps ensure that everyone is on

the same page, making it easier to manage and extend the project over time.

Collaboration

Tips

for

Teams:

Adapting Styles & Shared Guidelines

In team-based development, maintaining consistency in styles and code structure is essential for efficiency and scalability. Adapting styles and setting shared guidelines ensures that team members follow the same approach, reducing conflicts and improving maintainability. Below are best practices for ensuring smooth collaboration when working with styles, including BEM, CSS methodologies, and component-based design.

Establishing Shared Guidelines

✨ Define and Document a Common Style Guide

A style guide is the foundation of consistency across a project. It should cover:

● CSS Naming Conventions (e.g., BEM, SMACSS, Atomic CSS)

● Component Structure (How blocks, elements, and modifiers are used)

● Color Palette, Typography, and Spacing

● State Management (Hover, Active, Disabled, Focus, etc.)

● Guidelines for Responsiveness and Breakpoints

📌 Example: Creating a Style Guide Repository

● Store your style guide in a centralized location like a GitHub wiki, Notion, or Figma Design System.

● Regularly update the guide when new styles or components are introduced.

[image: Image 211]

Using a Modular and Scalable CSS

Approach

✨ Choose a CSS Architecture that Works for Teams

✅ BEM (Block Element Modifier) – Ideal for structured CSS in large teams.

✅ ITCSS (Inverted Triangle CSS) – Helps organize CSS

from generic to specific.

✅ CSS Modules or Tailwind CSS – Useful for isolating styles in component-based frameworks.

📌 Example: BEM in a Team Project

[image: Image 212]

[image: Image 213]

Version Control and Collaboration

with Git

✨ Best Practices for Managing Styles with Git

✅ Use Feature Branches: Each feature should have a separate branch to prevent conflicts.

✅ Pull Requests (PRs) with Style Checks: Before merging styles, PRs should be reviewed to ensure they follow the style guide.

✅ Linting for CSS/SASS: Use Stylelint to enforce styling rules automatically.

📌 Example: Using Stylelint in a Project

✅ CSS Variables for Shared Styles: Instead of hardcoded colors and spacing, use CSS variables.

📌 Example: Using CSS Variables

[image: Image 214]

Collaboration Between Developers

and Designers

✨ Maintain a Design System

✅ Use a UI Component Library: Implement a design system (e.g., Storybook, Figma Tokens, ZeroHeight) that both designers and developers can reference.

✅ Use Tokens for Consistent Spacing & Colors: Define spacing, typography, and colors in a shared token format.

✅ Regular Syncs with Designers: Set up weekly design-review meetings to align on styling decisions.

📌 Example: Design Tokens JSON for Shared Styles Enforcing Consistency with Automation

✨ Use CI/CD Pipelines for Styling Checks

✅ Pre-commit Hooks: Automate linting before pushing styles.

✅ GitHub Actions / GitLab CI: Set up automated checks for CSS linting and visual regressions (e.g., Percy, Chromatic).

[image: Image 215]

📌 Example: GitHub Action for Stylelint

Establishing Code Reviews for Styles

✨ Conduct Regular Style Reviews

✅ Use a CSS Review Checklist:

✅ Is the CSS modular and reusable?

✅ Are the class names following BEM or the agreed convention?

✅ Does it follow the design system's spacing and color guidelines?

✅ Is it optimized for performance (no excessive nesting)?

✅ Use PR Templates for Style-Related Changes:

● Ensure every PR includes before-and-after screenshots for UI changes.

[image: Image 216]

[image: Image 217]

📌 Example: PR Template for CSS Updates

Handling Theming & Global Styles in Teams

✨ Support Multiple Themes with CSS Variables or Tailwind

✅ Use CSS Variables for theme switching.

✅ Implement SASS Maps to organize themes if using SASS.

✅ Use a theme provider if working in React, Vue, or Angular.

📌 Example: Light & Dark Theme with CSS Variables

Continuous Learning & Team Growth

✨ Encourage Knowledge Sharing

✅ Internal Workshops: Run team sessions on CSS

architecture, BEM, or new styling tools.

✅ Document Learnings: If the team discovers new CSS

strategies, document them for future reference.

✅ Encourage Open Feedback: Allow developers to suggest improvements to the styling process.

📌 Example: Organizing a Team Workshop on Styling 1.

Review Current Codebase & Identify Issues 2.

Discuss Best Practices & Standardization 3.

Live Coding Session: Implementing BEM in a Real Project

4.

Q&A & Team Feedback

Conclusion

By adapting styles and setting shared guidelines, teams can achieve consistency, scalability, and efficiency in web development. Standardized BEM conventions, linting tools, and CI/CD pipelines help enforce structure, while collaborating with designers ensures a seamless workflow. Regular code reviews, automation, and team workshops keep the styling process aligned and continuously improving.

📖 Key Takeaways:

● Define and document a shared style guide

● Use CSS methodologies like BEM for maintainability

● Implement version control & linting for styling

● Automate style checking using CI/CD pipelines

● Conduct regular design & code reviews for consistency

● Encourage collaboration between developers and designers

By following these best practices, teams can build scalable, maintainable, and efficient styling systems for any project.

Strategies for Transitioning to BEM in Large Projects

Migrating a large project to BEM (Block Element Modifier) requires careful planning and execution. The main challenges include legacy code, deeply nested styles, and team adaptation. A structured approach ensures

minimal

disruption

while

improving

maintainability, scalability, and consistency across the project.

Assessing the Existing Codebase

✨ Conduct a CSS Audit

Before making changes, analyze the current state of CSS:

✅ Overly specific selectors (.container .header .nav ul li a {})

✅ Deep nesting in SCSS/SASS

✅ Redundant or conflicting styles

✅ Global styles that should be modularized

[image: Image 218]

📌 Example: Detecting Deep Nesting Issues

✨ Identify Core Components

List UI elements that can be structured as BEM Blocks:

● Global Components: Buttons, Forms, Cards, Modals

● Layout Elements: Headers, Footers, Sidebars

● Page-Specific Components: Hero Sections, Product Lists

Choosing a Migration Approach

Full vs. Incremental Migration

Full Migration – Suitable for new projects or major rewrites Incremental Migration – More practical for large, active projects

✨ Recommended Strategy: Incremental Migration

● Start with new components using BEM

● Refactor high-impact sections first (header, navigation, buttons)

● Convert styles feature-by-feature or page-by-page

● Gradually remove unused CSS

[image: Image 219]

[image: Image 220]

✨ Define Naming Conventions

To maintain consistency, establish strict BEM rules: Naming Rule

Example

Block

.card

Element

.card__title

Modifier

.card--highlighted

Avoid Nesting

.card__header--large

Refactoring Existing Styles

✨ Converting Global Styles to BEM Blocks

📌 Before (Non-BEM, Global Classes)

After (BEM with Clear Structure)

[image: Image 221]

[image: Image 222]

[image: Image 223]

[image: Image 224]

✨ Flattening Deep Nesting

📌 Before (SCSS Nesting Issue)

After (Flattened BEM Structure)

✨ Using Modifiers for Variants

Instead of creating separate classes, use BEM modifiers.

📌 Before (Multiple Classes for Variants)

After (Using BEM Modifiers)

[image: Image 225]

[image: Image 226]

Implementing BEM in Components

and Templates

📌 BEM in HTML & CSS

[image: Image 227]

[image: Image 228]

Automating BEM Compliance

✨ Linting & Code Reviews

📌 Use Stylelint to enforce BEM:

Conduct pull request reviews to ensure consistency.

✨ Implement a Design System

● Use Storybook for documenting UI components

● Store CSS variables in a centralized file

📌 Example: CSS Variables for BEM Theming

Training & Documentation

✨ Onboarding Developers with BEM

● Host team workshops on BEM principles

● Create a BEM Reference Guide

✨ Maintain Up-to-Date Documentation

Include:

✅ Naming conventions

✅ Component examples

✅ Common mistakes

✅ Migration checklist

📌 Example: Migration Checklist

✅ Convert global styles to modular BEM components

✅ Replace deeply nested selectors with flat structures

✅ Use modifiers instead of multiple class variations

✅ Ensure code reviews check BEM compliance

Conclusion

Transitioning a large project to BEM requires careful planning, step-by-step refactoring, and team-wide adoption. By gradually introducing BEM, automating linting, and standardizing conventions, teams can improve code maintainability, readability, and scalability.

📖 Key Takeaways:

● Audit existing styles and identify problematic areas

● Adopt an incremental migration strategy

● Refactor deeply nested styles into clear BEM

blocks

● Enforce BEM standards using linting and documentation

● Onboard and train the team for a smooth transition

By following these strategies, BEM becomes a structured, scalable solution for managing CSS in large projects.

[image: Image 229]

Appendices

The appendices provide additional resources to help developers effectively implement BEM methodology in real-world projects. This section includes practical test examples for beginners to practice BEM structuring, as well as ready-to-use templates for the most common UI components.

These resources will serve as a reference for maintaining consistency and efficiency in large-scale and small-scale projects alike.

Test Examples for Beginner Projects

For beginners learning BEM (Block Element Modifier), it is essential to practice with structured test examples. Below are test cases and challenges to help solidify BEM principles.

📌 Example 1: Simple Navigation Menu

Task:

● Create a simple navigation menu using BEM.

● Include three links: Home, About, Contact.

● Highlight the active link using a modifier.

HTML (Before BEM)

[image: Image 230]

Refactored HTML (BEM)

CSS (BEM Compliant)

[image: Image 231]

Test Yourself: Try adding a hover effect on .nav__link.

[image: Image 232]

[image: Image 233]

📌 Example 2: Interactive Button Component

Task:

● Create a button component with three variations: default, primary, and disabled.

HTML (BEM Structure)

CSS (BEM Compliant)

Test Yourself: Add an icon inside the button using BEM.

[image: Image 234]

Templates for the Most Common

Components

Below are ready-to-use BEM templates for commonly used UI components.

📌 Template 1: Card Component

HTML

[image: Image 235]

CSS

[image: Image 236]

Test Yourself: Add a card--highlighted modifier.

📌 Template 2: Modal Window

HTML

CSS

[image: Image 237]

Test Yourself: Add JavaScript to toggle the modal visibility.

Conclusion

This appendix provides structured test cases and ready-to-use templates for BEM beginners and developers transitioning

to

BEM.

By

using

these

common

components, developers can improve code consistency, readability, and scalability in their projects.

Next Steps: Try building your own UI components using these templates and customize them with modifiers and additional elements!

Tasks

1. Create a Block

● Task: Create a card block for a product card on an e-commerce website. The block should contain:

○ Product image

○ Product name

○ Product price

○ "Add to Cart" button Requirements:

● Use BEM principles for class organization.

● Apply a modifier to change the appearance of the button (e.g., card__button--primary for the "Add to Cart"

button).

Tips: You need to create the HTML structure for the block and properly organize the CSS rules for this block.

2. Create an Element with a Modifier

● Task: Create an form__input element for an input field in a form, which has two variations:

○ A regular input field

○ An input field with a tooltip (e.g., form__input--with-tooltip)

Requirements:

● Use the modifier form__input--with-tooltip for the input field with a tooltip.

● Follow BEM methodology for element and modifier class names.

Tips: Create two variations of this element with different appearances. Test if the modifier correctly changes the appearance of the element.

3. Responsive Design with BEM

● Task: Develop a header block for the top part of a website with navigation:

○ Logo

○ Menu items

○ "Log In" button

Requirements:

● On large screens, the menu should be horizontal.

● On small screens, the menu should be vertical with a hamburger menu.

● Use modifiers for style changes depending on the screen size.

Tips: Use media queries for responsiveness and remember to follow BEM principles in class names for elements.

4. Create a Complex Component with BEM

● Task: Create a modal block for a modal window:

○ Title

○ Message text

○ Close button

○ "OK" button

Requirements:

● Use BEM for the modal block and its elements.

● The close button should have a modal__close class, and the "OK" button should have a modal__button--ok class.

● Apply modifiers for different styles (e.g., modal--

error for error modals).

Tips: Think of the modal as a reusable component that can be modified using BEM.

5. BEM in Forms

● Task: Create a form block for a login form that includes:

○ Username field

○ Password field

○ Submit button

Requirements:

● Each field should be an element of the form block (e.g., form__username, form__password).

● Apply a modifier to the submit button for a primary action (e.g., form__button--primary).

Tips: Use BEM to ensure that the form fields and button are modular and can be easily reused or modified.

6. BEM with CSS Preprocessors

● Task: Create a profile block for a user profile page, and style it using SCSS:

○ Profile picture

○ User name

○ Bio

○ Follow button

Requirements:

● Use SCSS for nesting the BEM classes (e.g.,

.profile__picture, .profile__name).

● Create a modifier for the "Follow" button (e.g., profile__button--followed).

Tips: Practice using SCSS features like nesting and variables while adhering to the BEM methodology.

7. BEM and JavaScript

● Task: Create a dropdown block for a navigation menu:

○ Dropdown button

○ List of items

Requirements:

● Use BEM for the dropdown (dropdown, dropdown__button, dropdown__item).

● Add JavaScript to toggle the dropdown visibility when the button is clicked.

Tips: Use JavaScript to add or remove a modifier class (e.g., dropdown--open) when the dropdown is visible.

These tasks help to practice applying BEM principles in various real-world scenarios, from simple blocks to more complex components, and they also cover the integration of BEM with CSS preprocessors and JavaScript.

[image: Image 238]

Bonus

You will receive links to Figma mockups for portfolio layout design. These mockups are provided to help you build your portfolio and practice implementing web designs using BEM.

Document Outline

	1 . Introduction to BEM

	2 . BEM Basics : Structure and Rules

	3 . Practical Application and Techniques for Building UI with BEM

	4 . Optimizing Structure , CSS , and Integration with Modern Frameworks

	5 . Best Practices for Large - Scale Projects and Team Collaboration

index-245_1.jpg
export class CardComponent {
isSelected: boolean = false;

toggleSelection() {
this.isSelected = !this.isSelected;

index-244_1.jpg
<div [ngClass]="{ 'block--modifier': condition }"></div>

index-245_3.jpg
.card {
background-color: #fff;
padding: 20px;
border: 1px solid #ccc;

.card__title {
font-size: 24px;
color: #333;

.card__description {
font-size: 16px;
color: #666;

.card—-highlighted {
background-color: #fofefo;
border-color: #007bff;

index-245_2.jpg
<div class="card" [ngClassl="{ 'card--highlighted': isSelected }">
<h2 class="card__title">{{ title }}</h2>
<p class="card__description">{{ description }}</p>
<button (click)="toggleSelection()">Select</button>

</div>

index-240_1.jpg
export class ModalComponent {
isOpen = false;
toggleModal() {
this.isOpen = !this.isOpen;

index-239_1.jpg
.card {
background: #fff;
border: 1px solid #ccc;
padding: 20px;

.card__title {
font-size: 24px;
color: #333;

.card__description {
font-size: 16px;
color: #666;

.card--highlighted {
background-color: #fofofo;

index-242_1.jpg
.modal {
display: none;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(e, o, o,
justify-content: center;
align-items: center;

.modal__content {
background: white;
padding: 20px;
border-radius: 5px;

.modal__close {
background: transparent;
border: none;
cursor: pointer;
position: absolute;
top: 10px;
right: 10px;

.modal-—open {
display: flex;

0.5);

index-241_1.jpg
<div class="modal" [ngClass]="{ 'modal--open': isOpen }">
<div class="modal__content">
<button class="modal__close" (click)="toggleModal()">X</button>
<h2 class="modal__title">Modal Title</h2>
<p class="modal__body">This is the modal content.</p>
</div>
</div>

cover_image.jpg
Methodology BEM
: Building Efficient
Web Structures

Ivasyk, Illia

index-237_1.jpg
<div class="card" [ngClass]="{ 'card--highlighted': isHighlighted }">
<h2 class="card__title">{{ title }}</h2>
<p class="card__description">{{ description }}</p>

</div>

index-234_1.jpg
<template>
<transition name="fade">
<div v-if="isVisible" class="box box—-visible">
I fade in and out!
</div>
</transition>

<button @click="toggleVisibility">Toggle</button>
</template>

<script>
export default {
data() {
return {
isVisible: true,
H
h
methods: {
toggleVisibility() {
this.isVisible = !this.isVisible;

}
};
</script>

<style>

.box { width: 10@0px; height: 100px; background-color: lightblue; }
.box—-visible { opacity: 1; }

.fade-enter-active, .fade-leave-active { transition: opacity 0.5s; }
.fade-enter, .fade-leave-to { opacity: 0; }

</style>

index-228_1.jpg
<style>

.button {
padding: 1@0px 20px;
border: none;
cursor: pointer;

.button——primary {
background-color: green;
color: white;

.button--disabled {
background-color: gray;
cursor: not-allowed;

}

</style>

index-227_1.jpg
<template>

<button
tclass="[
'button’,
{

'button——primary': isPrimary,
'button--disabled': isDisabled
}
™
@click="toggleState"

Click me
</button>
</template>

<script>
export default {
data() {
return {
isPrimary: true,
isDisabled: false,

};
h
methods: {
toggleState() {
if (!this.isDisabled) {
this.isPrimary = !this.isPrimary;
}
}
}
i

</script>

index-232_1.jpg
<template>
<ul class="menu">
<li

v-for="(item, index) in menuItems"

tkey="1index"

tclass="[
‘menu__item',
{ 'menu__item—-active': index === activeIndex }

™

@click="setActive(index)"

{{ item }}

</template>

<script>
export default {
data() {
return {
menuItems: ["Home", "About", "Contact"l,
activeIndex: 0,
H
+H
methods: {
setActive(index) {
this.activeIndex = index;

}
H
</script>

index-230_1.jpg
<template>

<button :class="buttonClasses" @click="toggle">

{{ isActive ? 'Active' : 'Inactive' }}

</button>
</template>

<script>
export default {
data() {
return {
isActive: false,
H
hH
computed: {
buttonClasses() {
return {
button: true,
'button--active': this.isActive,

'button--inactive': !this.isActive,

}
methods: {
toggle() {
this.isActive = !this.isActive;

}
s
</script>

<style>
.button { padding: 1@px; border: 1px solid
.button--active { background-color: green;
.button——inactive { background-color: red;
</style>

black; cursor:
}
+

pointer; }

index-223_1.jpg
<script>
export default {
data() {
return {
isDisabled: false,
isActive: false,
i
hH
methods: {
toggleState() {
if (!this.isDisabled) this.isActive = !this.isActive;

}
i
</script>

index-222_1.jpg
<template>

<button
tclass="[
'button’,
{

'button--disabled': isDisabled,
'button--active': isActive
}
™
:disabled="1isDisabled"
@click="toggleState"

{{ isActive ? '@ Active' : 'X Inactive' }}
</button>
</template>

index-224_2.jpg
.button { background-color: blue; }
.button—-primary { background-color: green; }
.button--disabled { background-color: gray; cursor: not-allowed; }

index-224_1.jpg
<style>
.button {
padding: 1@0px 20px;
border: none;
cursor: pointer;
transition: background-color 0.3s ease-in-out;

.button--disabled {
background-color: gray;
cursor: not-allowed;
opacity: 0.6;

.button—-active {
background-color: green;
color: white;

}

</style>

index-233_1.jpg
<style>

.menu {
list-style: none;
padding: 0;

}

.menu__item {
padding: 10px;
cursor: pointer;

.menu__item——active {
font-weight: bold;
color: blue;

}

</style>

index-221_1.jpg
.button { background-color: blue; }
.button--disabled { background-color: gray; cursor: not-allowed; }
.button--active { background-color: green; }

index-216_1.jpg
<template>
<div class="card">
<div v-if="isVisible" class="card__content">
This content is conditionally rendered.
</div>
</div>
</template>

index-213_1.jpg
<style scoped>

.toggle-button {
padding: 12px 24px;
border-radius: 5px;
border: none;
cursor: pointer;

.toggle-button—-active {
background-color: green;
color: white;

.toggle-button——inactive {
background-color: red;
color: white;

}

</style>

index-217_2.jpg
<template>
<div class="card-list">
<div v-for="card in cards" :key="card.id" class="card">
<h3 class="card__title">{{ card.title }}</h3>
<p class="card__description">{{ card.description }}</p>
</div>
</div>
</template>

index-217_1.jpg
<template>
<div :class="['card', { 'card——highlighted': isHighlighted }]1">
Card content
</div>
</template>

index-209_1.jpg
<template>
<button :class="buttonClass">{{ label }}</button>
</template>

<script>
export default {
name: "Button",
props: {
label: String,
variant: String,
disabled: Boolean,

+H
computed: {
buttonClass() {
return {
"button": true,
"button—-primary": this.variant === "primary",
"button--secondary": this.variant "'secondary",
"button--disabled": this.disabled,
};
+H
+H
};
</script>

<style scoped>
.button {
padding: 1@0px 20px;
border-radius: 5px;
border: none;

.button——primary {
background-color: blue;
color: white;

index-206_1.jpg
<style scoped>

.card {
border: 1px solid #ccc;
padding: 16px;
border-radius: 8px;

.card__title {
font-size: 18px;
font-weight: bold;

.card__content {
font-size: 14px;
color: #666;

.card__button {
padding: 8px 16px;
border: none;

.card__button——primary {
background-color: blue;
color: white;

.card__button——secondary {
background-color: gray;
color: black;

}

</style>

index-212_1.jpg
<template>
<button :class="buttonClass" @click="toggle">{{ label }}</button>

</template>

<script>
export default {
name: "ToggleButton",
data() {
return {
active: false,
H
+H
computed: {
buttonClass() {
return {
"toggle-button": true,
"toggle-button——active": this.active,
“toggle-button——inactive": !this.active,
H
+H
hH
methods: {
toggle() {
this.active = !this.active;
+H
hH
props: {
label: String,
h
H
</script>

index-210_1.jpg
.button——primary {
background-color: blue;
color: white;

.button--secondary {
background-color: gray;
color: black;

.button--disabled {
background-color: lightgray;
cursor: not-allowed;

+

</style>

index-52_1.jpg
function Button({ type, label }) {
const buttonClass = “button button--${typel}";
return <button className={buttonClass}>{label}</button>;

index-51_1.jpg
<div class="header">
<div class="header__logo"></div>
<div class="header__menu"></div>

</div>

index-220_1.jpg
<template>
<button :class="['toggle-btn', { 'toggle-btn--active': isToggled }]">
{{ isToggled ? 'Active' : 'Inactive' }}
</button>
</template>

index-57_1.jpg
.block-name

index-219_1.jpg
<template>
<button :class="['button', { 'button—-active': isActive }]">
Click me
</button>
</template>

index-54_1.jpg
.card {
&_ title {
font-size: 1.5rem;
}
&__content {
margin-top: lrem;

index-58_2.jpg
.block—-name__element—-name

index-58_1.jpg
<nav class="menu'"></nav>

index-196_1.jpg
npm install styled-components

index-195_1.jpg
import React from "react";
import styles from "./Button.module.css";
import classNames from "classnames";

const Button = ({ label, variant = “primary”, disabled = false }) => {
const buttonClass = classNames(styles.button, {

[styles["button——primary"]]l: variant === "primary",
"'secondary",

[styles["button—-secondary"]]: variant
[styles["button——disabled"]]: disabled,

H;

return <button className={buttonClass} disabled={disabled}>{label}</button>;
s

export default Button;

index-199_1.jpg
.card {
border: 1px solid #ddd;
padding: 20px;
border-radius: 8px;
background-color: white;

.card__title {
font-size: 20px;
font-weight: bold;

index-197_1.jpg
import styled from "styled—components";

const Button = styled.button”
padding: 1@px 20px;
border: none;
font-size: 16px;
color: white;
cursor: ${({ disabled }) => (disabled ? "not-allowed" : "pointer")};
opacity: ${({ disabled }) => (disabled ? "@.5" : "1")};
background-color: ${({ variant }) => {
switch (variant) {
case "primary":
return "#0056b3";
case "secondary":
return "#6c757d";
default:
return "#ccc";

const App = () => {
return (
<div>
<Button variant="primary">Primary Button</Button>
<Button variant="secondary">Secondary Button</Button>
<Button disabled>Disabled Button</Button>
</div>

export default App;

index-191_1.jpg
import React from "react";
import Card from "./Card";

const App = () => {
return (
<div>
<Card title="Card Title" description="This is a card. Click to activate!" />
</div>

export default App;

index-194_1.jpg
.button {
background-color: #007bff;
color: white;
padding: 10px 20px;
border: none;
cursor: pointer;
font-size: 16px;

.button--primary {
background-color: #0056b3;

.button--secondary {
background-color: #6¢757d;

.button--disabled {
background-color: #ccc;
cursor: not-allowed;

index-193_1.jpg
/src
}— components
|— Button
| }— Button. js
| }— Button.module.css
|— card
| }— card. s
|

}— card.module.css

index-203_1.jpg
<template>
<div class="button">
<button class="button__item">Click me</button>
</div>
</template>

<script>

export default {
name: "Button",

};

</script>

<style scoped>

.button {
background-color: blue;
color: white;

.button__item {
font-size: 16px;
border: none;

}

</style>

index-200_1.jpg
import React from "react";
import styles from "./Card.module.css";
import styled from "styled-components";

const CardWrapper = styled.div"
box-shadow: ${({ highlighted }) =>
highlighted ? "@px 4px 6px rgba(@, @, @, 0.1)" : "none"};
transition: box-shadow 0.3s ease-in-out;

const Card = ({ title, highlighted }) => (
<CardWrapper highlighted={highlighted} className={styles.card}>
<h2 className={styles.card__title}>{title}</h2>
</CardWrapper>
)i

export default Card;

index-205_1.jpg
<template>
<div class="card">
<h2 class="card__title">{{ title }}</h2>
<p class="card__content">{{ content }}</p>
<button :class="buttonClass" class="card__button">{{ buttonText }}</button>
</div>
</template>

<script>
export default {
name: "Card",
props: {
title: String,
content: String,
buttonText: String,
buttonVariant: String,

+H
computed: {
buttonClass() {
return {
"card__button——primary": this.buttonVariant === "primary",
"card__button--secondary": this.buttonVariant === "secondary",
};
hH
h
b

</script>

index-1_1.jpg
Methodology

BEM

Building Efficient Web
Structures

Avthor e
lllialvasyk @ ccec.n

ooooooo
0000000
oooooo

index-41_1.jpg
<div class="nav">
<ul class="nav__list">
<li class="nav__item">Home</1li>
<li class="nav__item'">About</1i>

</div>

index-40_1.jpg
<div class="nav">
<ul class="nav__list'">
<li class="nav__item">Home</1li>
<li class="nav__item'">About</1i>

</div>

index-44_1.jpg
<div class="card card--highlighted">
<h2 class="card__title">Card Title</h2>
<p class="card__content">This is some content inside the card.</p>
<button class="card__button card__button-—primary">Read More</button>
</div>

index-42_1.jpg
<button class="btn btn——primary">Submit</button>
<button class="btn btn--secondary">Cancel</button>

index-48_1.jpg
/* Non-BEM code with high specificity */
.card h2.title {
color: red;

index-46_1.jpg
<div class="button button-—primary"></div>
<div class="button button--secondary"></div>

index-49_1.jpg
/* BEM code with low specificity */
.card__title {
color: red;

index-186_2.jpg
import React, { useState } from "react";
import Button from "./Button";

const App = () = {
const [isDisabled, setIsDisabled] = useState(false);

return (
<div>
<Button label="Click Me" isDisabled={isDisabled} />
<button onClick={() => setIsDisabled(!isDisabled)}>Toggle Disable</button>
</div>
)i
i

export default App;

index-186_1.jpg
.button {
padding: 10px 20px;
border: none;
cursor: pointer;

.button--disabled {
background-color: gray;
cursor: not-allowed;
opacity: 0.5;

index-188_1.jpg
import React from "react";
import classNames from "classnames";
import "./Alert.css";

const Alert = ({ type, message }) => {
const alertClass = classNames("alert", {

"alert-—success": type "success",
"alert—error": type = error",
"alert--warning": type === "warning",

H;

return <div className={alertClass}>{message}</div>;

};

export default Alert;

index-187_1.jpg
npm install classnames

index-185_1.jpg
import React from "react";
import "./Button.css";

const Button = ({ label, isDisabled }) => {
const className = “button ${isDisabled ? "button—--disabled"

return (
<button className={className} disabled={isDisabled}>
{label}
</button>

export default Button;

: "} .trim();

index-183_1.jpg
.alert {
padding: 10@px;
border-radius: 5px;
font-weight: bold;

.alert——success {
background-color: green;
color: white;

.alert—error {
background-color: red;
color: white;

.alert——warning {
background-color: orange;
color: black;

index-70_1.jpg
<button class="button button--large button--disabled">Submit</button>

index-69_2.jpg
.menu {
display: flex;
list-style: none;
padding: 0;

.menu__item {
padding: 10px 20px;
cursor: pointer;
color: #333;

.menu__item——active {
font-weight: bold;
color: #007bff;

index-71_1.jpg
<div class="modal modal--open'>
<div class="modal__header">Modal Title</div>
<div class="modal__body">Modal content goes here.</div>
<div class="modal__footer">
<button class="button button--close">Close</button>
</div>

</div>

index-70_2.jpg
.button--large {
font-size: 1.5rem;
padding: 15px 30px;

.button--disabled {
background-color: #ccc;
cursor: not-allowed;

index-189_1.jpg
import React from "react";
import Alert from "./Alert";

const App = () = {
return (
<div>
<Alert type="success" message="Operation successful!" />
<Alert type="error" message="Something went wrong!" />
<Alert type="warning" message="This is a warning!" />
</div>

export default App;

index-72_1.jpg
<form class="form">
<div class="form__group">
<label class="form__label" for="email">Email:</label>
<input class="form__input" type="email" id="email" />
</div>
<button class="form__button form__button--submit">Submit</button>
</form>

index-188_2.jpg
.alert {
padding: 10px;
border-radius: 5px;
font-weight: bold;

.alert——success {
background-color: green;
color: white;

.alert—error {
background-color: red;
color: white;

.alert——warning {
background-color: orange;
color: black;

index-71_2.jpg
.modal {
position: fixed;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
background: white;
box-shadow: @ 4px 8px rgba(o0, @, 0, 0.2);

.modal--open {
display: block;

.modal__header {
font-weight: bold;

.modal__footer {
text—align: right;

index-190_2.jpg
.card {
border: 1px solid #ddd;
padding: 20px;
border-radius: 8px;
transition: 0.3s ease-in-out;

.card—-active {
background-color: lightblue;

index-79_1.jpg
/* Button Block *x/
.button {
background-color: blue;
color: white;
padding: 10px;

/* Button Element */
.button__icon {
margin-right: 5px;

/* Button Modifier %/
.button——primary {
background-color: red;

index-190_1.jpg
import React, { useState } from "react";
import "./Card.css";

const Card = ({ title, description }) => {
const [isActive, setIsActivel = useState(false);

const handleClick = () => setIsActive((prev) => !prev);
const className = “card ${isActive ? "card--active" : ""}'.trim();

return (
<div className={className} onClick={handleClick}>
<h2 className="card__title">{title}</h2>
<p className="card__description">{description}</p>
</div>

export default Card;

index-72_2.jpg
.form__group {
margin-bottom: 15px;

.form__label {
display: block;
margin-bottom: 5px;

.form__input {
padding: 8px;
border: 1px solid #ddd;

.form__button--submit {
background-color: #28a745;
color: white;
padding: 10px 15px;

index-68_2.jpg
.button-—primary {
background-color: #007bff;
color: #ffffff;

.button--secondary {
background-color: #6¢c757d;
color: #ffffff;

index-68_1.jpg
<div class="button button-—primary">Primary Button</div>
<div class="button button--secondary">Secondary Button</div>

index-69_1.jpg
<div class="menu'">

<div
<div
<div

</div>

class="menu__item menu__item——active">Home</div>
class="menu__item">About</div>
class="menu__item">Contact</div>

index-174_1.jpg
@primary-color: blue;
@secondary-color: gray;

.button {
padding: 10px 20px;
border: none;
cursor: pointer;

&—primary {
background: @primary-color;
color: white;

&—-secondary {
background: @secondary-color;
color: black;

index-173_1.jpg
$primary—color: blue;
$secondary-color: gray;

.button {
padding: 10px 20px;
border: none;
cursor: pointer;

&—primary {
background: $primary-color
color: white;

&-secondary {
background: $secondary-color;
color: black;

index-177_1.jpg
import React from "react";
import "./Button.css"; // Import the corresponding styles

const Button = ({ label, size, theme }) => {
const className = “button
${size ? ‘button——${size}’ : ""}
${theme ? button—-${theme}’ : ""} .trim();

return <button className={className}>{label}</button>;
s

export default Button;

index-175_1.jpg
/* Using postcss—nested */
.button {
padding: 10px 20px;
border: none;
cursor: pointer;

&—primary {
background: var(--primary-color, blue);
color: white;

&-secondary {
background: var(--secondary-color, gray);
color: black;

index-172_1.jpg
import styled from 'styled—components';

const Button = styled.button”

background: blue;
color: white;
padding: 1@px 20px;
border: none;
cursor: pointer;

&—primary {

background: blue;

&—-secondary {
background: gray;

export default function App() {
return <Button className="button

button——primary">Click Me</Button>;

index-62_1.jpg
<div class="menu menu--dark'>
<ul class="menu__list">
<li class="menu__item menu__item—-selected">
Home

<li class="menu__item">
About

</div>

index-182_1.jpg
import React from "react";
import classNames from "classnames";
import "./Alert.css";

const Alert = ({ type, message }) => {
const alertClass = classNames("alert", {

"alert-—success": type === "success",

"alert—-error": type === "error",

"alert-—-warning": type === "warning",
b;

return <div className={alertClass}>{message}</div>;

b

export default Alert;

index-63_2.jpg
<div class="block block--modifier"></div>

index-63_1.jpg
<div class="block">
<div class="block__element"></div>

</div>

index-179_1.jpg
import React from "react";
import Button from "./Button";

const App = () => {
return (
<div>
<Button label="Small Button" size="small" theme="primary" />
<Button label="Large Button" size="large" theme="secondary" />
</div>

export default App;

index-66_2.jpg
.button {
background-color: #007bff;
color: #ffffff;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
text-align: center;

index-178_1.jpg
.button {
padding: 10px 20px;
font-size: 16px;
border: none;
cursor: pointer;

.button--small {
font-size: 12px;
padding: 5px 10px;

.button--large {
font-size: 20px;
padding: 15px 30px;

.button——primary {
background-color: blue;
color: white;

.button--secondary {
background-color: gray;
color: black;

index-66_1.jpg
<div class="button">Click Me</div>

index-181_1.jpg
.card {
border: 1px solid #ddd;
padding: 20px;
border-radius: 8px;

.card__title {
font-size: 18px;
margin-bottom: 10px;

.card__description {
font-size: 14px;
color: #666;

index-67_2.jpg
.card {
border: 1px solid #ddd;
border-radius: 5px;
padding: 10px;

.card__header {
font-size: 1.25rem;
font-weight: bold;

.card__body {
font-size: 1lrem;
margin: 10px 0;

.card__footer {
text-align: right;
font-size: 0.9rem;
color: #555;

index-180_1.jpg
import React from "react";
import "./Card.css";

const Card = ({ title, description }) => {
return (
<div className="card">
<h2 className="card__title">{title}</h2>
<p className="card__description">{description}</p>
</div>
)i
i

export default Card;

index-67_1.jpg
<div class="card">
<div class="card__header">Card Header</div>
<div class="card__body">This is the card body content.</div>
<div class="card__footer">Card Footer</div>

</div>

index-60_1.jpg
.block-name--modifier—-name

.block-name__element-name—-modifier—-name

index-58_3.jpg
<div class="card">

<h2 class="card__title">Card Title</h2>

<p class="card__description">Card description text goes here.</p>
</div>

index-60_3.jpg
<div class="card">
<h2 class="card__title card__title—-highlighted">Highlighted Title</h2>

</div>

index-60_2.jpg
<button class="button button--primary">Primary Button</button>
<button class="button button--disabled">Disabled Button</button>

index-164_2.jpg
@import "base/reset";
@import "base/typography";

@import "components/button";

@import "pages/homepage";

’

index-164_1.jpg
styles/

}— base/

}— _reset.css

}— _typography.css
}— _variables.css

}— components/

}— _button.css
}— _card.css
}— _form.css

|— pages/
}— _homepage. css
}— _dashboard.css

index-166_1.jpg
module.exports = {
purge: ["./src/sk/*.html", "./src/%k/*.js"],
theme: {
extend: {},
h
plugins: [1,
i

index-165_1.jpg
:root {
——primary-color: #007bff;
—font-size-base: 16px;

index-100_1.jpg
@media (max-width: 768px) {
.dashboard {
grid-template-columns: 1fr;
grid-template-rows: auto auto 1fr;

.dashboard__sidebar {
grid-column: 1;
grid-row: 2;

.dashboard__header {
grid-column: 1;
grid-row: 1;

.dashboard__content {
grid-column: 1;
grid-row: 3;

index-99_1.jpg
.dashboard {
display: grid;
grid-template-columns: 250px 1fr;
grid-template-rows: auto 1fr;
gap: 10px;
height: 100vh;

.dashboard__sidebar {
grid-column: 1;
grid-row: 1 / 3;
background-color: #fofofo;

.dashboard__header {
grid-column: 2;
grid-row: 1;
background-color: #007bff;
color: white;

.dashboard__content {
grid-column: 2;
grid-row: 2;

index-102_1.jpg
/x Default form *x/

.form {
padding: 20px;
border: 1px solid #ddd;
border-radius: 5px;

/* Compact form modifier x/
. form——compact {
padding: 10px;
border-width: 2px;

.form__button-—primary {
background-color: #007bff;
color: white;

index-170_1.jpg
rroot {
——primary-color: #007bff;

.button {
background-color: var(--primary-color);

index-101_1.jpg
<form class="form form--compact">

<label class="form__label" for="name'">Name</label>

<input class="form__input" type="text" id="name" />

<button class="form__button form__button-—primary">Submit</button>
</form>

index-169_3.jpg
* {
box-sizing: border-box;

}

index-103_1.jpg
/* Base styles x/

.card {
display: block;
border: 1px solid #ddd;
border-radius: 8px;
overflow: hidden;

.card__image {
width: 100%;
height: auto;

.card__content {
padding: 10px;

/* Enhancements for larger screens */
@media (min-width: 768px) {
.card {
display: flex;

.card__image {
width: 50%;

index-102_2.jpg
<div class="card">

<div class="card__content">
<h3 class="card__title">Card Title</h3>
<p class="card__description">Card description goes here.</p>
</div>

</div>

index-104_1.jpg
<div class="modal u-mb-20">
<div class="modal__header u-pb-10">Header</div>
</div>

index-168_1.jpg
<link
rel="stylesheet"
href="styles.css"
media="print"

onload="this.onload=null; this.media='all';">

index-103_2.jpg
.card__content {
width: 50%;
padding: 20px;

index-167_1.jpg
module.exports = {
plugins: [
require("cssnano") ({
preset: "default",
b,
1,
};

index-107_1.jpg
<nav class="nav'">
<button class="nav__button
<ul class="nav__list">
<li class="nav__item"><a
<li class="nav__item"><a
<li class="nav__item"><a

</nav>

nav__button--menu'>Menu</button>

href="#" class="nav__link'">Home</1i>
href="#" class="nav__link">Profile</1i>
href="#" class="nav__link">Settings</1i>

index-169_2.jpg
.button { color: red; }

index-104_2.jpg
/* Utility classes *x/
.u-mb-20 {
margin-bottom: 20px;

.u-pb-10 {
padding-bottom: 10px;

index-169_1.jpg
div.container ul i a.button { color: red; }

index-98_1.jpg
<div class="dashboard">
<aside class="dashboard__sidebar">Sidebar</aside>
<main class="dashboard__main">
<header class="dashboard__header">Header</header>
<section class="dashboard__content">Content</section>
</main>

</div>

index-156_2.jpg
/styles

|— base.css (global styles, resets)
|— components/

| | button.css

| | card.css

| | navbar.css

|— tlayout.css (grid, flexbox, spacing)
|— theme.css (colors, typography)

index-303_1.jpg
<nav class="nav'>
<ul class="nav__list">
<1i class="nav__item nav__item—-active">
<a
class="nav__1link"
href="#"

Home

<1i class="nav__item">

About

<1i class="npav__item">
Contact

</nav>

index-302_1.jpg
<nav class="menu">

<li class="active'">Home</1i>
About</1i>
Contact</1i>

</nav>

index-159_1.jpg
rroot {
——primary-color: #007bff;
——font-size-base: 16px;

.button {
background-color: var(--primary-color);
font-size: var(--font-size-base);

index-305_1.jpg
<button class="button">Default</button>
<button class="button button-—primary">Primary</button>
<button class="button button--disabled" disabled>Disabled</button>

index-157_1.jpg
/styles
|— style.css (entire CSS code in one file)

index-304_1.jpg
.nav {
background: #f4f4f4;
padding: 10px;

.nav__list {
list-style: none;
display: flex;
gap: 15px;

}

.nav__item {
padding: 5px;
}

.nav__item—-active {
font-weight: bold;
color: blue;

}

.nav__link {
text-decoration: none;
color: black;

}

index-86_1.jpg
<div class="card">

<h2 class="card__title">Card Title</h2>
<p class="card__description">This is the description of the card.</p>

</div>

index-163_1.jpg
.button {
display: inline-block;
padding: 10px 20px;
font-size: 16px;
background-color: var(--primary—color);
color: #fff;
border: none;
cursor: pointer;

.button--secondary {
background-color: #6¢757d;

.button__icon {
margin-right: 8px;

index-318_1.jpg

index-89_1.jpg
.header__nav {
display: flex;
justify-content: space-between;

@media (max-width: 768px) {
.header__nav {
flex—-direction: column;
align-items: center;

.header__nav-item {
margin-bottom: 10px;

index-162_1.jpg
/* Reset and general styles *x/
* {

margin: 0;

ELL R VHEH

box-sizing: border-box;

/* Global typography */

body {
font-family: Arial, sans-serif;
color: #333;
background-color: #f9f9f9;

/* Utility classes */
.hidden {
display: none;

}

index-309_1.jpg
.modal {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(e, o, 0,
display: flex;
align-items: center;
justify—-content: center;
opacity: 1;
transition: opacity 0.3s;

}

.modal--hidden {
opacity: 0;
pointer-events: none;

}

.modal__content {
background: white;
padding: 20px;
border-radius: 5px;

}

.modal__close {
background: none;
border: none;
font-size: 20px;
cursor: pointer;

0.5);

index-88_1.jpg
<div class="header">
<hl class="header__title">Website Title</h1>
<nav class="header__nav">

<li class="header__nav-item">Home</1i>
<li class="header__nav-item">About
<1li class="header__nav-item">Contact

</nav>

</div>

<div class="main-content">
<div class="card">

<h2 class="card__title">Card Title</h2>
<p class="card__description">This is the description of the card.</p>
</div>
<!—— More cards can be added here -—>

</div>

<div class="footer">
<p class="footer__text">0 2025 Company Name</p>

</div>

index-92_1.jpg
.button {
padding: 10px 20px;

.button--large {
font-size: 18px;

@media (max-width: 600px) {
.button--large {
padding: 8px 16px;
font-size: 16px;

index-163_2.jpg
.homepage .header {
background-image: url("hero.jpg");
height: 400px;

index-91_1.jpg
.card {
width: 300px;
margin: 20px;

.card__image {
width: 100%;
height: auto;

@media (max-width: 600px) {
.card {
width: 100%;
}
.card__title {
font-size: 18px;

index-159_3.jpg
.card {
padding: calc(var(—-font-size-base) * 1.5);
width: clamp(200px, 50%, 600px);

}

index-306_1.jpg
<div class="card">
<div class="card__image">

</div>
<div class="card__content">
<h3 class="card__title">Card Title</h3>
<p class="card__description">This is a description of the card.</p>
</div>
<div class="card__footer">
<button class="button button--primary">Read More</button>
</div>
</div>

index-93_2.jpg
.grid {
display: grid;
grid-template-columns: repeat(3, 1fr);

.grid__item {
padding: 20px;
background: #fofofo;

@media (max-width: 768px) {
.grid {
grid-template-columns: 1fr;

index-159_2.jpg
.button {
——button-bg: #28a745;
background-color: var(--button-bg);

index-305_2.jpg
.button {
padding: 1@px 20px;
border: none;
cursor: pointer;
font-size: 16px;

}

.button——primary {
background-color: blue;
color: white;

}

.button--disabled {
background-color: gray;
color: #ccc;
cursor: not-allowed;

}

index-93_1.jpg
<div class="grid">
<div class="grid__item grid__item—-1">
<h2 class="grid__item-title">Item 1</h2>
</div>
<div class="grid__item grid__item—--2">
<h2 class="grid__item-title">Item 2</h2>
</div>

</div>

index-160_2.jpg
. theme-light {
—primary-color: #f8f9fa;
——font-size-base: 16px;

}

index-308_1.jpg
<div class="modal modal--hidden">
<div class="modal__content">
<button class="modal__close">x</button>
<h2 class="modal__title">Modal Title</h2>
<p class="modal__text">This is a modal window.</p>
</div>
</div>

index-97_1.jpg
.modal {
max-width: 600px;
margin: @ auto;
padding: 20px;
background-color: #fff;
border-radius: 10px;
box-shadow: @ 4px 10px rgba(e, 0, 0, 0.2);

.modal__header,

.modal__footer {
display: flex;
justify-content: space-between;
align-items: center;

.modal__title {
font-size: 1.5rem;

.modal__button--confirm {
background-color: #4caf50;
color: white;

.modal__button--cancel {
background-color: #f44336;
color: white;

index-160_1.jpg
.theme-dark {
——primary-color: #222;
——font-size-base: 18px;

index-307_1.jpg
.card {

border: 1px solid #ddd;

padding: 15px;

width: 300px;

box-shadow: 2px 2px 5px rgba(e, @, @, 0.1)
}

.card__image img {
width: 100%;
height: auto;

}

.card__content {
padding: 1@0px 0;

.card__title {
font-size: 20px;
margin-bottom: 5px;

}

.card__description {
font-size: 14px;
color: #666;

}

.card__footer {
margin-top: 10px;

}

index-96_1.jpg
<div class="modal">
<div class="modal__header">
<h2 class="modal__title">Modal Title</h2>
<button class="modal__close-button">X</button>
</div>
<div class="modal__body">
<p class="modal__text">This is the modal content.</p>
</div>
<div class="modal__footer">
<button class="modal__button modal__button--confirm">Confirm</button>
<button class="modal__button modal__button--cancel'">Cancel</button>
</div>

</div>

index-83_1.jpg
<div className="card card--highlighted">

<h2 className="card__title">Card Title</h2>

<p className="card__description">Card description goes here.</p>
</div>

index-82_1.jpg
/* Global styles */

body {
font—family: Arial, sans-serif;
margin: 0;
padding: 0;

/* BEM styles for a button */
.button {
background-color: blue;
color: white;
padding: 10px;

index-296_1.jpg
.container .header .nav ul i a {
color: blue;

index-147_3.jpg
<button class="button button--big-size">Large Button</button>
<button class="button button--small-size">Small Button</button>

index-297_1.jpg
.card {
.card__header {
.card__title {
font-size: 24px;

index-147_2.jpg
<button class="button button--large">Large Button</button>
<button class="button button—-small">Small Button</button>

index-296_2.jpg
.nav__link {
color: blue;

index-116_1.jpg
components/

}— button/

T

— _button.scss
— _button-modifiers.scss
L— _button-variables.scss

card/
— _card.scss
— _card-modifiers.scss

L— _card-variables.scss

form/
— _form.scss

— _form-elements.scss

— _form-variables.scss

index-115_2.jpg
.button {
padding: 10px 20px;
font-size: 1lrem;
border: none;
border-radius: 5px;
cursor: pointer;

.button——primary {
background-color: #007bff;
color: #fff;

.button--secondary {
background-color: #6c¢757d;
color: #fff;

.button--disabled {
background-color: #e0e0@ed;
color: #aaa;
cursor: not-allowed;

index-118_1.jpg
<div class="modal">
<div class="modal__header">
<h2 class="modal__title">Modal Title</h2>
<button class="modal__close">x</button>
</div>
<div class="modal__body">
<p class="modal__content">This is the modal content.</p>
</div>
<div class="modal__footer">
<button class="button button--secondary">Close</button>
<button class="button button--primary'>Save changes</button>
</div>

</div>

index-117_1.jpg
// _variables.scss
$primary-color: #007bff;
$secondary-color: #6c757d;
$font-family: 'Roboto', sans-serif;

// _mixins.scss

@nixin button-base {
padding: 10px 20px;
font-size: 1lrem;
border-radius: 5px;

index-120_1.jpg
.modal__close {
background: none;
border: none;
font-size: 1.5rem;
cursor: pointer;

.modal__body {
padding: 20px;

index-154_1.jpg
.card {
padding: 20px;

.card__header {
.card__title {
.card__title--highlighted {
color: #ff6600;

index-299_1.jpg
"rules": {
"selector-class-pattern":
"~a-zl+(-la-z]+)*(__[a-z]+(-[a-z]+)*) ? (- [a-z]+(-[a-z] +)*) 7$"

index-119_1.jpg
.modal {
display: flex;
flex—direction: column;
width: 80%;
max-width: 500px;
background-color: #fff;
border-radius: 8px;
box-shadow: @ 4px 6px rgba(e, 0, 0, 0.1);
overflow: hidden;

.modal__header,
.modal__footer {
padding: 15px;
background-color: #f8f9fa;

.modal__title {
margin: 0;
font-size: 1.25rem;

index-152_2.jpg
.card {
padding: 20px;
border-radius: 8px;
background-color: #fff;

&_ title {
font-size: 20px;
font-weight: bold;

&-highlighted {
color: #ff6600;

index-298_2.jpg
.card {
border: 1px solid #ddd;
padding: 20px;

.card——featured {
border-color: gold;

.card__title {
font-size: 24px;

index-121_2.jpg
<template>
<button :class="buttonClass">{{ label }}</button>
</template>

<script>
export default {
props: ['type', 'label'],
computed: {
buttonClass() {
return ‘button button--${this.type}";
o
By
+

</script>

index-156_1.jpg
.menu {
display: flex;
}

.menu-item {
text-decoration: none;

.highlighted-link {
font-weight: bold;

index-121_1.jpg
const Button = ({ type, children }) => {
const className = ‘button button--${type}";
return <button className={className}>{children}</button>;

3

index-154_2.jpg
.navbar {
display: flex;

.navbar__link {
text-decoration: none;

.navbar__link—-active {
font-weight: bold;

index-299_2.jpg
rroot {
——primary-color: #007bff;

.button——primary {
background-color: var(--primary—color);

index-124_1.jpg
.modal {
position: fixed;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
width: 90%;
max-width: 500px;
background: white;
border-radius: 8px;
box-shadow: @ 4px 1@px rgba(o, @, 0, 0.1);

.modal--centered {
display: flex;
align-items: center;
justify-content: center;

.modal__header,

.modal__footer {
padding: 1lrem;
background: #f1f1f1;
border-bottom: 1px solid #e5e5e5;

.modal__close {
background: none;
border: none;
font-size: 1.5rem;
cursor: pointer;

index-150_1.jpg
/* No clear hierarchy x/
.card-title {
font-size: 20px;

.card-highlight {
color: #ff6600;

index-297_3.jpg
.button-primary { background: blue; }
.button-secondary { background: gray; }

index-123_1.jpg
<div class="modal modal--centered">
<div class="modal__header">
<h2 class="modal__title">Modal Title</h2>
<button class="modal__close">×</button>
</div>
<div class="modal__body">
<p>Content goes here...</p>
</div>
<div class="modal__footer">
<button class="button button--secondary">Cancel</button>
<button class="button button--primary">Confirm</button>
</div>

</div>

index-149_1.jpg
/* Block */

.card {
padding: 20px;
border-radius: 8px;
background-color: #fff;

/* Element */

.card__title {
font-size: 20px;
font-weight: bold;

/* Modifier x/
.card__title--highlighted {
color: #ff6600;

index-297_2.jpg
.card__header { }
.card__title {
font-size: 24px;

index-152_1.jpg
.card__title {
font-size: 20px;

.card {
border-radius: 8px;
padding: 20px;

.card__title--highlighted {
color: #ff6600;

index-298_1.jpg
<div class="card card—-featured">
<div class="card__header">
<h2 class="card__title">Product Name</h2>
</div>
<div class="card__body">
<p class="card__description">This is a description.</p>
</div>
</div>

index-151_1.jpg
.card {
padding: 20px;
border-radius: 8px;
background-color: #fff;

.card__title {
font-size: 20px;
font-weight: bold;

.card__title--highlighted {
color: #ff6600;

index-297_4.jpg
.button { background: gray; }
.button--primary { background: blue; }

index-281_1.jpg
BEM Naming Conventions

Block
- A block is a standalone entity that is meaningful on its own.
-~ Example: ‘.button', ‘.header’, ‘.card®

Element

— An element is a part of the block that cannot exist without it.
— Example: ‘.button__icon‘, ‘.header__title', ‘.card__content®

Modifier

-~ A modifier is a flag on a block or element that alters its appearance or behavior.
- Example: °.button-—-primary’, °.header__title—-large’, '.card__content——highlighted"

Naming Conventions
- Use xxlowercasexk letters with *xhyphensxx to separate words.
— Do not use underscores between words, unless it's for element classes.

— Example: ‘.button__icon--primary*, not ‘.button__Icon——Primary".
Common Blocks
" .button’
-~ A simple button component.
— xkElements*k: °.button__icon’, ‘.button__text®
— xkModifierssk: °.button-—primary", ‘.button--disabled"

index-278_1.jpg
/* Block */

.button {
background-color: #007bff;
padding: 10px;

/* Element */
.button__icon {
margin-right: 8px;

/* Modifier x/
.button--primary {
background-color: #0056b3;

index-107_2.jpg
.nav {
display: flex;
align-items: center;
justify-content: space-between;
background-color: #007bff;
padding: 10px;

.nav__button——-menu {
font-size: 1.5rem;
color: white;
background: none;
border: none;

.nav__list {
display: none; /* Hidden by default for mobile */

.nav__item {
list-style: none;

.nav__link {
color: white;
text-decoration: none;

index-109_1.jpg
<div class="grid">
<div class="grid__item grid__item——full">Header</div>
<div class="grid__item grid__item--half">Sidebar</div>
<div class="grid__item grid__item—-half">Main Content</div>
<div class="grid__item grid__item——full">Footer</div>

</div>

index-108_1.jpg
@media (min-width: 768px) {
.nav__list {
display: flex;
gap: 15px;

.nav__button——menu {
display: none; /* Hide menu button on larger screens x*/

index-111_1.jpg
<button class="button button--large">Click Me</button>

index-290_1.jpg
Summary of Changes
- Updated °.button——primary’ styles to match new design system.
— Refactored “grid__container® for better responsiveness.

Screenshots
(Before & After UI Comparison)

Checklist

- [1 €SS follows BEM conventions

—~ [1 Tested on all breakpoints

— [1 No conflicts with existing styles

index-110_1.jpg
.grid {
display: grid;
gap: 10px;

.grid__item {
padding: 10px;
background-color: #fofofo;

.grid__item—full {
grid-column: span 2; /*x Full width by default */

.grid__item—half {
grid-column: span 1; /% Half width by default */

@media (max-width: 768px) {
.grid {
grid-template-columns: 1fr; /% Single-column layout for mobile */

.grid__item—full {
grid-column: span 1; /* Adjust full width for smaller screens x/

index-289_1.jpg
name: Stylelint Check
on: [pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
— uses: actions/checkout@v3
- name: Install dependencies
run: npm install
— name: Run Stylelint
run: npm run lint:css

index-112_1.jpg
<div class="card">

<div class="card__content">
<h3 class="card__title">Card Title</h3>
<p class="card__text">Card text goes here.</p>
</div>

</div>

index-294_1.jpg
/% > Problem: Excessive nesting makes styles hard to maintain x/

.container {
.header {
.nav {
ul {

i {

ad

color: blue;

index-111_2.jpg
.button {
padding: 10px 20px;
font-size: 1lrem;
border: none;
border-radius: 5px;
background-color: #007bff;
color: white;

.button--large {
padding: 15px 25px; /% Larger touch area for mobile */
font-size: 1.25rem;

index-290_2.jpg
:root {
——bg-color: #ffffff;
——text-color: #333;

[data-theme="dark"] {
——bg-color: #333;
——text-color: #ffffff;

index-113_1.jpg
@media (min-width: 768px) {
.card {
flex—direction: row;

.card__image {
width: 50%;

.card__content {
width: 50%;
padding: 20px;

index-287_1.jpg
"extends": "stylelint-config-standard",
“rules": {
"selector-class-pattern":
"Ma-z]+(-la-z]+)*(__[a-z]+(-[a-z]+)*) ? (- [a-z] +(-[a-z] +) %) 7$"

index-112_2.jpg
.card {
display: flex;
flex—direction: column;
border: 1px solid #ddd;
border-radius: 8px;
overflow: hidden;

.card__image {
width: 100%;
height: auto;

.card__content {
padding: 10px;

index-286_1.jpg
/* Button Component x/

.button {
background-color: var(--primary—color);
padding: 1@px 15px;
border-radius: 4px;

.button——primary {
background-color: #007bff;

.button__icon {
margin-right: 8px;

index-288_1.jpg
"colors": {
"primary": "#007bff",
""secondary": "#6¢757d"
+H
"spacing": {
"small": "8px",
"medium": "16px",
"large": "24px"

index-115_1.jpg
<button class="button button--primary">Submit</button>
<button class="button button--secondary">Cancel</button>
<button class="button button--disabled" disabled>Disabled</button>

index-287_2.jpg
:root {
——primary-color: #007bff;
—-secondary-color: #6¢757d;

index-274_1.jpg

index-138_1.jpg
<div class="webgl-container">
<canvas class="webgl__canvas" id="webglCanvas'"></canvas>
<div class="webgl__controls">
<button class="webgl__button webgl__button--rotate">Rotate</button>
<button class="webgl__button webgl__button--zoom">Zoom</button>
</div>
</div>

index-255_1.jpg
<table class="table">
<thead>
<tr>
<th class="table__header">Name</th>
<th class="table__header">Age</th>

<th class="table__header">Actions</th>
</tr>
</thead>
<tbody>
<tr class="table__row table__row--highlighted">
<td class="table__cell">John</td>
<td class="table__cell">30</td>
<td class="table__cell">
<button class="table__button">Edit</button>
</td>
</tr>
<!-—- More rows ——>
</tbody>
</table>

index-137_1.jpg
const canvas = document.getElementById('chartCanvas');
const ctx = canvas.getContext('2d');

ctx.fillStyle = '#ff5733"';
ctx.fillRect(50, 50, 200, 150);

index-140_1.jpg
const canvas = document.getElementById('webglCanvas');
const gl = canvas.getContext('webgl');

if (tgl) {
console. log('WebGL not supported, falling back to experimental-webgl');
gl = canvas.getContext('experimental-webgl');

}

// WebGL drawing and interaction logic goes here

index-139_1.jpg
.webgl-container {
position: relative;
width: 100%;
height: 100%;

.webgl__canvas {
width: 100%;
height: 100%;
display: block;

.webgl__controls {
position: absolute;
top: 10px;
right: 10px;

.webgl__button {
background-color: #007bff;
color: white;
padding: 1@px 20px;
margin: 5px;
border: none;
cursor: pointer;

.webgl__button--rotate {
background-color: #28a745;

.webgl__button--zoom {
background-color: #dc3545;

index-144_2.jpg
<div class="submit-button">Submit</div>
<div class="cancel-button">Cancel</div>

index-144_1.jpg
<div class="button button--primary">Submit</div>
<div class="button button--secondary">Cancel</div>

index-146_1.jpg
<div class="card">

<h2 class="card__title-highlight">Title</h2>

<p class="card__description">Content goes here...</p>
</div>

index-270_1.jpg
/* Base Styles for Mobile */

.container {
display: grid;
grid-template-columns: 1fr;
gap: 20px;

}

/* Medium Screens (Tablets) */
@media (min-width: 768px) {
.container {
grid-template-columns: 1fr 1fr;
}

/* Large Screens (Desktops) */
@media (min-width: 1024px) {
.container {
grid-template-columns: 1fr 1fr 1fr;
}

index-144_3.jpg
<div class="card">
<h2 class="card__title card__title--highlighted">Title</h2>
<p class="card__description">Content goes here...</p>
</div>

index-268_1.jpg
/* Global Theme Variables */

rroot {
——primary-color: #007bff;
——secondary-color: #6c757d;
——font-family: 'Arial', sans-serif;
——font-size: 16px;
——background-color: #fff;

/* Dark Theme */

[data-theme="dark"] {
——primary-color: #6610f2;
——background-color: #343a40;

/* Light Theme */
[data—theme="1ight"] {
——primary-color: #007bff;
——background-color: #fff;
}

body {
background-color: var(--background-color);
color: var(--primary-color);
font—family: var(--font-family);
font-size: var(-—font-size);

index-147_1.jpg
<div class="card">
<h2 class="card__title">Title</h2>
<button class="card__button">Read More</button>

</div>

<div class="modal">
<button class="modal__button">Close</button>

</div>

index-273_1.jpg
<body>
<header>
<nav>

Home</1i>
About</1i>
Services</1i>

</nav>
</header>

<main>
<section id="about">
<h1>About Us</h1>
<p>We specialize in designing beautiful, responsive websites.</p>
</section>
</main>

<footer>
<p>© 2025 Web Design Company</p>
</footer>
</body>

index-146_2.jpg
<div class="card">
<h2 class="card__title">Title</h2>
<button class="button button--primary">Read More</button>

</div>

<div class="modal">
<button class="button button--secondary">Close</button>

</div>

index-272_1.jpg
<head>
<title>Best Web Design Practices</title>
<meta
name="description"
content="Learn how to optimize your web design
for performance, SEO, and user experience."
>
<meta
name="keywords"
content="web design, responsive, SEO0, performance, UX"
>
<meta
name="author"
content="John Doe"
>
<meta charset="UTF-8">
</head>

index-262_1.jpg
/* ® Correct (BEM-compliant) */
.card {
&_ title {
font-size: 20px;
}
& button {
padding: 10px;
}
&-highlighted {
background-color: yellow;

/* > Incorrect (Inconsistent Naming) */
.cardTitle {
font-size: 20px;
}
.card .button {
padding: 10@px;
}
.card.highlighted {
background-color: yellow;

index-260_1.jpg
/styles
F—— base/ # Resets, typography, variables
| |— _reset.scss

|— _typography.scss

|— _variables.scss

layout/ # Grid, global layout rules

_grid.scss

_header.scss

TT

o
o
3

°
o
S|
o
g
-+
»
~

UI components (buttons, cards, modals)
button.scss

card.scss

modal.scss

TTT

°
o

=
3
[
~

Page-specific styles
home.scss
about.scss

TT

c
I
o
=
=
+
-
o
0
S

Mixins, helpers
_mixins.scss
_helpers.scss

TT

|
|
—
|
|
—
|
|
|
—
|
|
—
|
|
—

main.scss # Entry point

index-265_1.jpg
.modal {

position: fixed;

& header {
font-size: 18px;
font-weight: bold;

}

&__body {
padding: 20px;

}

&_ footer {
text-align: right;

}

&-active {
display: block;

}

&-hidden {
display: none;

}

index-263_1.jpg
{
"extends": [
"stylelint-config-bem"
1,
"rules": {
"selector-class-pattern":
"~ Ma-z]+(-[a-z]+)*(__[a-z]+(-[a-z]+)*) ?"
+ "(—[a-z]+(-[a-z]+)*) 2"

index-126_1.jpg
<form class="form form—-stacked">
<div class="form__field">
<label
class="form__label"
for="name">
Name
</label>
<input
class="form__input"
id="name"
type="text"
placeholder="Enter your name">
</div>
<div class="form__field form__field—error">
<label
class="form__label"
for="email">
Email
</label>
<input
class="form__input"
id="email"
type="email"
placeholder="Enter your email">

Invalid email address

</div>
<button
class="form__button button button——primary"
type="submit">
Submit
</button>
</form>

index-128_1.jpg
<table class="table table--striped table--responsive'>
<thead class="table__header">
<tr class="table__row">
<th class="table__cell">Name</th>
<th class="table__cell">Age</th>
<th class="table__cell">Actions</th>
</tr>
</thead>
<tbody class="table__body">
<tr class="table__row">
<td class="table__cell">John Doe</td>
<td class="table__cell">30</td>
<td class="table__cell">
<button class="button button--small">Edit</button>
</td>
</tr>
<tr class="table__row">
<td class="table__cell"”>Jane Smith</td>
<td class="table__cell">25</td>
<td class="table__cell">
<button class="button button--small">Edit</button>
</td>
</tr>
</tbody>
</table>

index-127_1.jpg
.form {
display: flex;
flex—direction: column;
gap: 1lrem;

. form—-stacked {
flex—direction: column;

.form—inline {
flex-direction: row;
align-items: center;

.form__label {
font-weight: bold;
margin-bottom: 0.5rem;

.form__input {
padding: 0.5rem;
border: 1px solid #ccc;
border-radius: 4px;

.form__field——error .form__input
border—color: red;

.form__error-message {
color: red;
font-size: 0.875rem;
margin-top: 0.25rem;

index-131_1.jpg
<div class="tabs">

<div class="tabs__header">
<button class="tabs__tab tabs__ tab--active">Tab 1</button>
<button class="tabs__tab">Tab 2</button>

</div>

<div class="tabs__content">
<div class="tabs__panel tabs__panel--active">Content for Tab 1</div>
<div class="tabs__panel">Content for Tab 2</div>

</div>

</div>

index-129_1.jpg
.table {
width: 100%;
border-collapse: collapse;

.table--striped .table__row:nth-child(odd) {
background-color: #f9f9f9;

.table——bordered .table_ cell {
border: 1px solid #ddd;

.table__header {
background-color: #f1f1f1;
font-weight: bold;

.table__cell {
padding: 0.75rem;
text-align: left;

}

index-134_1.jpg
<svg
class="icon icon-—home"
viewBox="0 0 24 24"
xmlns="http://www.w3.0rg/2000/svg">
<use href="#home-icon"></use>
</svg>

index-132_1.jpg
.tabs {
display: flex;
flex—direction: column;

.tabs__header {
display: flex;
border-bottom: 2px solid #ddd;

.tabs__tab {
padding: 0.75rem lrem;
cursor: pointer;
border: none;
background: none;

.tabs__tab--active {
border-bottom: 2px solid #007bff;
font-weight: bold;

.tabs__panel {
display: none;

.tabs__panel--active {
display: block;
padding: 1rem;

index-136_1.jpg
<div class="canvas—-container">
<canvas
class="canvas canvas——chart"
id="chartCanvas"

width="400"
height="400">
</canvas>

</div>

index-135_1.jpg
.icon {
width: 24px;
height: 24px;
fill: #000;

.icon--home {
fill: #007bff;

.chart {
width: 100%;
height: 100%;

.chart__bar {
fill: #eoffeo;

.chart__bar——first {
fill: #ff5733;

.chart__bar--second {
fill: #3333ff;

index-136_2.jpg
.canvas—container {
display: flex;
justify-content: center;
align-items: center;
padding: 20px;

.canvas {
border: 2px solid #ddd;

.canvas——chart {
background-color: #f1f1f1;

index-253_1.jpg
.modal__footer {
margin-top: 20px;
display: flex;
justify—-content: flex-end;

.modal__action {
padding: 10px 20px;
background-color: #007bff;
color: white;
border: none;
border-radius: 5px;
cursor: pointer;

.modal__action--secondary {
background-color: #ccc;

index-252_1.jpg
.modal {
background-color: white;
border-radius: 8px;
box-shadow: @ 2px 1@px rgba(e, 0, 0, 0.1);
padding: 20px;
width: 400px;
display: none;

.modal-—open {
display: block;

.modal__header {
display: flex;
justify-content: space-between;

.modal__title {
font-size: 24px;

.modal__close {
font-size: 18px;
cursor: pointer;

.modal__content {
margin-top: 15px;

index-254_1.jpg
.modal {
background-color: white;
border-radius: 8px;
box-shadow: @ 2px 1@px rgba(e, 0, 0, 0.1);
padding: 20px;
width: 400px;
display: none;
opacity: 0;
transition: opacity 0.3s ease-in-out;

.modal-—open {
display: block;
opacity: 1;

}

index-248_1.jpg
.button {
color: white;
padding: 10px 20px;
border: none;
cursor: pointer;

.button--hovered {
transform: scale(1.1);

index-247_2.jpg
<button class="button"
[ngClass]="{ 'button—-hovered': isHovered }"
[ngStylel="{ 'background-color': isHovered ? 'lightblue' : 'blue' }"
(mouseover)="toggleHover()" (mouseleave)="toggleHover()">
Hover me!
</button>

index-251_2.jpg
<div class="modal" [ngClass]="{ 'modal-—open': isOpen }">
<div class="modal__header">
<h2 class="modal__title">{{ modalTitle }}</h2>
<button class="modal__close" (click)="toggleModal()">X</button>
</div>
<div class="modal__content">
<p>{{ modalContent }}</p>
</div>
<div class="modal__footer">
<button class="modal__action">Confirm</button>
<button class="modal__action modal__action--secondary">Cancel</button>
</div>
</div>

index-251_1.jpg
export class ModalComponent {
isOpen: boolean = false;
modalTitle: string = 'Sample Modal';
modalContent: string = 'This is a sample content of the modal.';

toggleModal() {
this.isOpen = !this.isOpen;

index-246_1.jpg
<div [ngStylel="{ 'background-color': condition ? ‘'yellow' : 'blue' }"></div>

index-247_1.jpg
export class ButtonComponent {
isHovered: boolean = false;

toggleHover() {
this.isHovered = !this.isHovered;

index-246_2.jpg
<div class="card"
[ngClass]="{ 'card—-highlighted': isSelected }"
[ngStylel="{ 'background-color': isSelected ? '#fofefe' : '#fff' }'>
<h2 class="card__title">{{ title }}</h2>
<p class="card__description">{{ description }}</p>
<button (click)="toggleSelection()">Select</button>
</div>

