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INTRODUCTION

How does a programming

language work? How is a

simple computer organized? I’m the type

of person who likes to learn new subjects

from first principles, in a hands-on way. I

want more than just high-level overviews. 

If you’re that type of learner too, then

you’ve found the right resource. Through

the seven Python projects in this book, 

you’ll build an understanding of some

fundamental ideas from the realm of

computer science. 

Who This Book Is For

This book is for intermediate and advanced Python

programmers. If you’re a beginning programmer, you

should probably come back to this book at a later point. 

Throughout the text, I assume the reader knows the syntax

and semantics of Python, is comfortable writing programs

of moderate complexity, knows how to install Python

libraries, and understands basic data structures like lists, 

sets, and dictionaries. 

While I do assume readers will have some programming

experience, I don’t assume readers’ knowledge of computer

science or advanced mathematics. This book is designed for

those who either lack a formal computer science education

or want to fill in some gaps in their knowledge. For

example, if you have an interest in writing your own

programming language but you never took a course on

compilers, this book is a great starting point. If you want to write a video game console emulator, this book will show

you how. It even has a very digestible introduction to

machine learning. 

The exact projects in the book may not themselves be

your end goal, but that’s not the point. Think of them as a

means to unlock deeper knowledge about algorithmic

thinking and how software works, and as a jumping-off

point for your own explorations. 

What’s in the Book

Each chapter constitutes one complete project, except for

Chapters 7 and 8,  which together make up one project. The seven projects in the book range from easy (the Brainfuck

interpreter in Chapter 1) to difficult (the NES emulator in

Chapter 6), but since all the source code is provided, you’ll never get stuck and be unable to proceed. 

Each project begins with some theory—just enough to understand what we’ll be implementing, without getting

bogged down in the details—and then walks through the

code. The chapters also include stories about how I

personally got interested in the subject, a discussion of how the implemented algorithms or computational techniques

are used in the real world, and challenges for the reader to

extend the provided code. 

The book is divided into four parts. In Part I, we’ll explore the world of interpreters by creating

implementations of two simple programming languages. 

Chapter 1: The Smallest Possible Programming Language Brainfuck is a minimal programming

language often used for educational purposes because

of its simplicity—the whole language consists of just

eight characters. We’ll learn how a very simple

interpreter works by implementing one that can run any

Brainfuck program. We’ll also learn what it means for a

language to be Turing-complete. 

Chapter 2: Writing a BASIC Interpreter The BASIC

programming language and its pared-down dialect, Tiny

BASIC, were popular during the PC revolution of the

late 1970s. We’ll implement an interpreter for a slightly

simplified variant of Tiny BASIC called NanoBASIC. 

Doing so will demonstrate the constituent parts of more

sophisticated interpreters, including a tokenizer, 

parser, and runtime environment. 

In Part II,  we’ll get into the vibrant world of computational art. 

Chapter 3: Retro Image Processing When display technology was simpler, dithering algorithms were

necessary to adapt images for devices that used a

limited color palette. We’ll implement a dithering

algorithm capable of displaying modern color photos on

the black-and-white screen of an original Macintosh. 

Then, we’ll convert the dithered images to a format

compatible with the classic MacPaint application, using

the run-length encoding compression algorithm in the

process. The images we output can be displayed on

actual 1980s Macintosh hardware. 

Chapter 4: A Stochastic Painting Algorithm Can a relatively simple algorithm create sophisticated

abstract art? We’ll use a stochastic technique to

generate “impressions” of existing images by matching

random shapes to the underlying image, and we’ll see

how a hill-climbing algorithm can help optimize the

results. 

Part III is all about emulators—programs that allow one type of computer to pretend to be another type of

computer. 

Chapter 5: Building a CHIP-8 Virtual Machine CHIP-8 is a virtual machine (VM) specification that was

originally used for developing video games in the 1970s. 

Building a CHIP-8 VM is often considered the best first

step into the world of emulation: it’s relatively simple

but still involves all the steps necessary to create an

emulator. Our CHIP-8 VM will be capable of playing all

the CHIP-8 games that ran on machines in the 1970s. 

Chapter 6: Emulating the NES Game Console The NES was one of the best-selling video game consoles of

all time. We’ll create an emulator that can play real

NES games. It will have no sound, be rather slow, and

not be completely accurate or universally compatible, 

but it will still be a great way to learn not just about

emulators but also about how computers work at a low

level. 

Finally, Part IV is a very gentle introduction to the world of machine learning using the  k-nearest neighbors

(KNN) algorithm. 

Chapter 7: Classification with K-Nearest Neighbors We’ll learn KNN, perhaps the simplest

algorithm in machine learning (ML), and use it as a

gateway to understand some introductory ML topics. 

We’ll use KNN to classify fish as well as images of

handwritten digits. Amazingly, it will complete the

latter task with 98 percent accuracy. 

Chapter 8: Regression with K-Nearest Neighbors We’ll take KNN to the next level by using it not just to

classify items into categories but also to predict

unknown attributes of data points. In the chapter finale, 

we’ll use it to predict the missing pixels from an image

of a digit that the user draws. 

Beyond the main chapters, the afterword features some

suggested resources for learning more about the topics in

this book, and the appendix covers the basics of low-level bit manipulation in Python, an essential component of

several projects. 

This Book’s Approach

I try to keep my books as succinct as possible. I value your

time. I use a tutorial-like, code-centric format to teach, and where possible, I let the code speak for itself. 

This is not a textbook. You’ll find some theory, 

especially at the beginning of each chapter, but it will

never be too long before we get to some code. There’s just

enough information to help you understand how each of the

projects works, and enough pointers so that you know

where to look next if you want to dive deeper into any of

the covered topics. 

I’m not claiming to be an expert on interpreters, 

computational art, emulators, or machine learning. That

may sound weird coming from the author of a book on

those topics, but it’s true. I’m not an expert; I’m a teacher. 

I’ve worked as a software developer, and I’ve worked as

computer science faculty at a teaching college. My claim is

that I’m able to write clean code and explain that code to

you in an exceptionally comprehensible manner. And since

I’m not an expert, I won’t be talking down to you. I’ll be

treating you like my peer as we go on this journey together. 

This is the guide I wish I had as I tried doing projects in

these areas on my own. 

About the Code

All the source code in this book is available on the

companion GitHub repository at  https://github.com

 /davecom/ComputerScienceFromScratch. The code was created and tested against Python versions 3.12 and 3.13. 

Because some type hint–related features of Python 3.12 are

utilized, some of the code won’t work with earlier versions

of Python (but will likely work with any new version of

Python in the foreseeable future). However, if you remove

the type hints, the vast majority of the code will work with

Python version 3.10 and later. 

I’ve used Python type hints (or “type annotations”)

throughout the source code because I believe they increase

readability by telling you a function’s parameter and return

types without you needing to scrutinize the code or the

comments. If you don’t like them, you can ignore them; 

they don’t change anything about how the code works. I’ve

tried not to overuse type hints, as some find them to be too

verbose. For example, I rarely use them within function

bodies, but I do use them in every function signature. I

type-checked all the source code against the contemporary

version of Pyright at the time of the book’s writing. 

Several of the projects in this book use external

libraries. You should have Pygame, NumPy, and Pillow

installed in the virtual environment you create for the

book’s source code or in your system Python interpreter. 

For most readers, installing them should be as simple as

running pip install pygame, numpy, pillow. A  requirements.txt file that pip can use is included in the book’s source code

repository. 

Corrections and Comments

The book’s GitHub repository is a great place to open an

issue if you think you found a mistake. You’re also welcome

to reach out to me by email at  csfromscratch@oaksnow.com

or via X @davekopec. I welcome your feedback, both

positive and negative. If you enjoy the book, please also

consider leaving a review on Amazon or wherever you

purchased it. 

PART I

INTERPRETERS
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1

THE SMALLEST POSSIBLE

PROGRAMMING LANGUAGE

What’s the smallest possible

programming language that

can still be used to solve real problems? 

Certainly, a candidate for that prize

would be Brainfuck, an esoteric

programming language developed by

Urban Müller in 1993. In this chapter, 

we’ll develop a Brainfuck interpreter. 

Brainfuck is perhaps the easiest possible

programming language to write an

interpreter for—you’ll be amazed at how

succinct ours is. By the end of the

chapter, you’ll have learned not only how

Brainfuck works but also the core tenets

of any interpreter. 

What Is Brainfuck? 

Brainfuck has only eight commands (+, -, ., ,, >, <, [,]), and every command is a single character. Here’s “Hello World!” 

in Brainfuck:1

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++

++++..+++.>>.<-.<. 

+++.------.-----\---.>>+.>++. 

It may look strange, but that’s an actual program. 

Brainfuck’s exotic syntax and minimal feature set make it

unsuitable for any practical purpose. Instead, it’s a toy

that’s useful as an educational model. But it’s a Turing-

complete toy! 

 What Makes a Language Turing-Complete? 

A programming language is considered  Turing-complete if it can simulate a  Turing machine, an abstract model of a machine that can implement any computer algorithm.2 To picture a Turing machine, imagine a tape of unlimited

length, split into cells that either are blank or have a

character on them. Then, imagine a head that can read or

write the character in a cell, including erasing it. Imagine

that the head can move left or right one cell at a time. 

Finally, imagine that it can write or move based on the

value read—that is, that it can  branch. In other words, the head follows some simple rules, which can be thought of as

a program that essentially says, “If this value is read, write this other value. If that value is read, move left one cell.” 

That’s it. That’s enough to be able to implement any

computing algorithm. By extension, any programming

language that can simulate this functionality—even a

simple language like Brainfuck—can be used to solve real

problems.  Figure 1-1 illustrates a hypothetical Turing machine. 
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 Figure 1-1: A hypothetical Turing machine, including infinite tape, cells, and a head that follows rules

What features does a programming language need to be

Turing-complete? As Allen Tucker and Robert Noonan

explain in their book  Programming Languages: Principles

 and Paradigms, it doesn’t take much:

A programming language is said to be Turing complete if it

contains integer variables, values, and operations and has

assignment statements and the control constructs of statement sequencing, conditionals, and branching statements. All other statement forms (while and for loops, case selections, procedure declarations and calls, etc.) and data types (strings, floating point values, etc.) are provided in modern languages only to

enhance the ease of programming various complex applications. 3

Let me reduce that description further using simpler

language. A programming language needs integer

variables, a way to change the values associated with those

variables, something like an if statement, and something

like a goto statement (a “jump”) to be Turing-complete. 

That’s not much. And if you think about it, you can imagine

how those simple constructs can map to the elements of a

Turing machine. The integer variables are the characters

on the cells, changing the variables is the head writing on

the cells, and the if and goto statements represent the head

branching. 

Any programming language that’s Turing-complete can

implement the same algorithms as any other programming

language that’s Turing-complete. You can implement Quicksort in C, but you can also implement Quicksort in

Brainfuck. You can write a JSON parser in Python, but you

could also write a JSON parser in Brainfuck. In this sense, 

although Brainfuck is a “toy” programming language, it’s

also a “real” programming language. 

 How Brainfuck Works

The main state in a Brainfuck program is an array of

integers. Each of the slots in the array is called a  cell. The array of cells can be thought of as analogous to the tape in

a Turing machine. Instead of characters being read or

written on a cell, it’s integers. The commands in Brainfuck

allow the programmer to move forward one cell (>), move

backward one cell (<), increment a cell’s value (+), 

decrement a cell’s value (-), output a cell (.), input data to a cell (,), and loop while a particular cell is nonzero

([and]). Several of these operations map directly to the

operations of a Turing machine, so Brainfuck is Turing-

complete. 

In Python, we’ll need two variables to contain the cells’

states: a list of all the cells (cells) and an integer

representing the index of the current cell (cell_index). In

addition, we’ll need to keep track of where we are in the

Brainfuck source file. We’ll handle this with another

integer, called instruction_index. 

C VS. PYTHON

In a C implementation of a Brainfuck interpreter, the cells can be managed by a single pointer to an array of integers. The pointer can be used to initialize the memory for the cells and to move from cell to cell, and it can be dereferenced to change the value of a cell. 

Some of you may not know C, but I include this point to illustrate the differences between programming languages. In C, thanks to the power of pointers, we have a single variable construct, whereas we need multiple variables in our Python Brainfuck interpreter for the same functionality. 

C pointers are powerful, but they’re also dangerous and difficult to grasp for new programmers. Of course, different programming

languages come with different trade-offs for implementing an

interpreter. A C Brainfuck interpreter will also be much faster than a Python Brainfuck interpreter. The main interpreter for Python itself, CPython, is written in C. 

Table 1-1 is based on a table from a 2017 talk by Müller describing the commands that each character represents.4

I’ve translated the C descriptions to Python using the

variable names just discussed. 

Table 1-1: Brainfuck Commands

Command Python equivalent

Description

> 

cell_index += 1

Move one cell to the

right. 

< 

cell_index -= 1

Move one cell to the

left. 

+

cells[cell_index] += 1

Increment current cell. 

-

cells[cell_index] -= 1

Decrement current

cell. 

. 

print(chr(cells[cell_index]), end='', 

Print ASCII value of

flush=True)

current cell. 

, 

cells[cell_index] = int(input())

Read value for current

cell. 

[

if cells[cell_index] == 0:

If the cell is zero, 

instruction_index =

move to the

corresponding closing

self.find_bracket_match(instruction_index, 

bracket. 

True)

]

if cells[cell_index] != 0:

If the cell is nonzero, 

instruction_index =

move to the

corresponding opening

self.find_bracket_match(instruction_index, 

bracket. 

False)

Using Table 1-1, we have enough information to step through a Brainfuck program and understand what it’s

doing. We’ll consider a simple program that outputs a user-

specified single character a user-specified number of times. 

Here’s the whole program, with each command labeled

with an index so that we can refer to it later (you can find

this program in the book’s source code repository, in

 Brainfuck/Examples/repeat.bf):

,>,[<.>-]

012345678

Let’s talk about this program one command at a time. 

We’ll describe how each command works and illustrate its

effect on the program state using a table. The program

requires only two cells, plus a cell index and an instruction index. The table initially looks like this:

Cell 0

Cell 1

Cell index

Instruction index

0

0

0

0

Here’s the first command (for clarity, we’ll precede

each command with its instruction index and a colon):

0: , 

User input is retrieved and stored in cell 0 because the

cell index is initially 0. For our example, imagine the user

entered 88 (the ASCII character code for the capital letter

 X). After the command is run, the instruction index is incremented. 

Cell 0

Cell 1

Cell index

Instruction index

88

0

0

1

1: > 

The cell index is incremented, and then the instruction

index is incremented. 

Cell 0

Cell 1

Cell index

Instruction index

88

0

1

2

2: , 

User input is entered into cell 1. Let’s say the user

entered 10. Then, the instruction index is incremented. 

Cell 0

Cell 1

Cell index

Instruction index

88

10

1

3

3: [

A loop is potentially started. Since the value at the

current cell index isn’t 0 (it’s 10), instead of jumping to the matching closing bracket, we simply increment the

instruction index by 1 to go to the next command. 

Cell 0

Cell 1

Cell index

Instruction index

88

10

1

4

4: < 

The cell index is decremented. The instruction index is then incremented. 

Cell 0

Cell 1

Cell index

Instruction index

88

10

0

5

5: . 

The ASCII value of the cell at the current cell index is

output to the console—in this case, an  X. Then, the

instruction index is incremented. 

Cell 0

Cell 1

Cell index

Instruction index

88

10

0

6

6: > 

The cell index is incremented. Then, the instruction

index is incremented. 

Cell 0

Cell 1

Cell index

Instruction index

88

10

1

7

7: -

The value at the current cell index is decremented. The

instruction index is incremented. 

Cell 0

Cell 1

Cell index

Instruction index

88

9

1

8

8:]

If the value at the current cell index is nonzero, we

jump to the matching opening bracket. In this case, cell 1 is 9, so we jump, meaning the instruction index becomes 3. 

Cell 0

Cell 1

Cell index

Instruction index

88

9

1

3

Now we’re through the first iteration of a loop that will

repeat nine times to print a total of 10  X s. Instructions 3

through 8 will repeat those nine times until cell 1 is 0, in

which case the check at the closing bracket (index 8) will

end the repeats and the program will be over. 

To provide some closure on this program, let’s jump

ahead and actually run it through our interpreter:

% python3 -m Brainfuck Brainfuck/Examples/repeat.bf

88

10

XXXXXXXXXX

Our Brainfuck interpreter accepts only integers as

input. These integers can correspond to ASCII character

codes, and 88 is the ASCII character code for  X. Therefore, the expected output is 10  X s. After you complete the chapter, you’ll be able to run the program yourself, as well

as any other Brainfuck program. 

The Structure of an Interpreter

Interpreters generally have at least three parts:

A  tokenizer (sometimes known as a  lexer) that takes the original source code and divides it into the smallest

recognizable constructs allowed in the programming language. These are known as  tokens. For the code a +

2, the tokens may be a, +, and 2. 

A  parser that takes tokens that are next to each other and figures out their meaning (that is, the expressions

or statements they form). Parsers typically produce a

tree of nodes representing the relative relationships

between expressions, statements, and literal values. 

This tree is called the  abstract syntax tree (AST). For example, if a Python interpreter saw the token a

followed by the token + followed by the token 2, it may

construct an arithmetic expression node and connect it

to nodes for the a and the 2. 

A  runtime environment that walks through the nodes of the AST and runs the appropriate operations to execute

the meaning inherent in them. For our a + 2 arithmetic

expression node, this would mean looking up the value

represented by a and adding 2 to it. 

The beautiful thing about Brainfuck is that every

statement is just a single symbol, so all we need to do to

get a token is just read a single character from the source

file. And each of those tokens on its own already represents

a node of meaning. That makes writing an interpreter for

Brainfuck easier than writing one for almost any other

programming language. We can combine the tokenizer, the

parser, and the runtime into a single loop that merges the

three concepts together. 

We’ll come back to the idea of a separate tokenizer, 

parser, and runtime in Chapter 2,  where we will build an interpreter for a slightly more complicated language called

NanoBASIC. It will be illustrative to see how the pieces that are fused together in our Brainfuck interpreter get broken

apart for our NanoBASIC interpreter. 

Brainfuck interpreters are not only easy to write but

also very compact. Inspired by another esoteric language, 

called FALSE, Müller’s goal with Brainfuck was to produce a minimal language, and he certainly accomplished that. 

His original interpreter for his language with just eight

commands was just 240 bytes. More impressive still, 

there’s a Brainfuck interpreter written in x86 assembly

that’s just 69 bytes.5 We won’t get to 69 bytes, but the core of our Python Brainfuck interpreter will be just 25 lines of

code and a couple of helper functions. And those 25 lines

will be capable of running any Brainfuck program, and

therefore any computer algorithm. 

Müller’s original Brainfuck implementation had some

limitations that we’ll repeat in our interpreter. Instead of

an unlimited tape, like in a Turing machine, the original

Brainfuck was limited to 30,000 cells. And each of those

cells could hold just an 8-bit unsigned integer. 

Implementing Brainfuck in Python

Before we get into the main interpreter implementation, 

let’s do a bit of housekeeping. Every project we do in this

book will be structured as a Python package. Each package

will live in its own folder with a  __main__.py file that kicks off execution when the project is run from the command

line. You can find all the code on the book’s GitHub

repository at  https://github.com/davecom

 /ComputerScienceFromScratch. However, you’ll also find all the necessary code directly in this book, unless

otherwise noted. Each code listing appears with the name

of the Python file it’s associated with, so you can locate the code in the book’s repository. 

 Getting the Source File

Our  __main__.py file is responsible for taking in the command line argument that contains the path of a

Brainfuck source file and passing it to the main interpreter:

# Brainfuck/__main__.py

from argparse import ArgumentParser

from Brainfuck.brainfuck import Brainfuck

if __name__ == "__main__":

# Parse the file argument

file_parser = ArgumentParser("Brainfuck")

file_parser.add_argument("brainfuck_file", 

help="A file containing Brainfuck 

source code.")

arguments = file_parser.parse_args()

Brainfuck(arguments.brainfuck_file).execute()

The ArgumentParser standard library class makes handling

command line arguments easy. We’ll use it in every project

in the book. In this snippet, we create a single command

line argument, brainfuck_file, which represents the path of

the file we want to load the Brainfuck source from. The

default type of the argument is a string, so we’ll ultimately be passing a string of the path to our Brainfuck class, which will be responsible for reading its contents. 

NOTE

 To learn more about ArgumentParser, see the official argparse

 documentation at https://docs.python.org/3/library

/argparse.html

 Writing the Interpreter

Our interpreter is responsible for maintaining Brainfuck

state (the cells, cell_index, and instruction_index). It also needs to read each valid Brainfuck command in the source

file and change the state or complete an input/output

operation based on that command. Because Brainfuck

commands are just a single character, reading them is

trivial. And the actual “what to do” with each character is

pretty much identical to Table 1-1. That’s how we end up with just a single function (execute()) of 25 lines of code. 

# Brainfuck/brainfuck.py

from pathlib import Path

class Brainfuck:

def __init__(self, file_name: str | Path):

# Open text file and store in instance variable

with open(file_name, "r") as text_file:

self.source_code: str = text_file.read()

def execute(self):

# Setup state

cells: list[int] = [0] * 30000

cell_index = 0

instruction_index = 0

# Keep going as long as there are potential instruct

ions left

while instruction_index < len(self.source_code):

instruction = self.source_code[instruction_inde

x]

match instruction:

case ">":

cell_index += 1

case "<":

cell_index -= 1

case "+":

cells[cell_index] = clamp0_255_wraparoun

d(cells[cell_index] + 1)

case "-":

cells[cell_index] = clamp0_255_wraparoun

d(cells[cell_index] - 1)

case ".":

print(chr(cells[cell_index]), end='', fl

ush=True)

case ",":

cells[cell_index] = clamp0_255_wraparoun

d(int(input()))

                case "[":

if cells[cell_index] == 0:

instruction_index = self.find_bracke

t_match(instruction_index, True)

case "]":

if cells[cell_index] != 0:

instruction_index = self.find_bracke

t_match(instruction_index, False)

instruction_index += 1

The implementation of each command is straight from

Table 1-1 and consists of simple manipulations of the three state variables. For those of you who haven’t been keeping

up with the latest versions of Python, the match statement

was added in Python 3.10 and can be thought of as a

powerful version of a switch statement from other

languages. It executes the code section (or case) that

matches the value in the variable being matched. In our

program, the cases correspond to the possible values of

instruction. 

TYPE HINTS

You probably noticed my use of type hints on some of the local variables. I’ll do that in this book where I think it adds clarity, but I won’t be religious about it. For example, I think clarifying that cells is a list[int] makes sense because some people may not remember the list initialization syntax I used. But it’s obvious that instruction is going to be a str based on the context, so I didn’t provide a type hint for it. The other thing type hints allow me to do is run a static type checker to aid in verifying the correctness of all the code in the book. I always find that helpful. 

A quick note on the type hint syntax file_name: str | Path used in the signature of __init__(): the syntax means that the supplied argument is expected to be of either the str type or the Path type. 

Both types are acceptable. Our ArgumentParser provides filepaths as strings, while our unit tests will supply them as Path objects. The open() function that uses the path in __init__() can accept either. 

Missing from Table 1-1 are two helper functions: find_bracket_match() and clamp0_255_wraparound(). First, let’s look at find_bracket_match(), which helps jump from one if

statement–like bracket command to its partner. This

function is implemented as a method on the Brainfuck class

since it needs to access self.source_code:

# Find the location of the corresponding bracket to the 

one at *start*. 

# If *forward* is true go to the right looking for a mat

ching "]". 

# Otherwise do the reverse. 

def find_bracket_match(self, start: int, forward: bool) 

-> int:

in_between_brackets = 0

❶ direction = 1 if forward else -1

location = start + direction

start_bracket = "[" if forward else "]" 

end_bracket = "]" if forward else "[" 

while 0 <= location < len(self.source_code):

❷ if self.source_code[location] == end_bracket:

if in_between_brackets == 0:

return location

in_between_brackets -= 1

❸ elif self.source_code[location] == start_bracke

t:

in_between_brackets += 1

location += direction

# Didn't find a match

print(f"Error: could not find match for {start_brack

et} at {start}.")

return start

To find a matching bracket, we perform a linear search

through the Brainfuck source code, looking at each

subsequent character one at a time. We search to the right

if forward is True or to the left if forward is False. The direction

variable becomes a proxy for forward, either incrementing or decrementing location to go to the right or to the left ❶. 

The confounding factor when searching for a matching

bracket is the  in-between brackets, sets of brackets that occur between the starting bracket and the bracket we

want. For example, say we’re searching for the matching

bracket of the first bracket in this Brainfuck snippet (I’ve

labeled the characters with indices for clarity):

[++[--]<<]

0123456789

The match for the opening bracket at index 0 is the

closing bracket at index 9. If we naively accept the first

closing bracket we find, however, our search will conclude

that the match for index 0 is the closing bracket at index 6. 

In fact, that closing bracket matches the opening bracket at

index 3. 

The solution is simply to count the in-between brackets. 

Every time we encounter the start of an in-between pair of

brackets, we increment the in_between_brackets counter ❸. 

Every time we encounter the end of an in-between pair of

brackets, we decrement in_between_brackets, unless

in_between_brackets is 0, meaning there are no more in-

between brackets and the destination bracket has been

found ❷. 

A BRACKET-FINDING ALTERNATIVE

Another way to solve the in-between brackets problem is to use a stack. Every time a start bracket is encountered, its location is pushed to the stack. Every time an end bracket is encountered, the stack is popped. The two bracket locations that result (the locations of the encountered end bracket and the popped start bracket) are a pair. 

Using this method, you can run through all the source code at once and find all the bracket pairs easily. The bracket pairs’ locations can then be cached to improve the interpreter’s performance. Instead

of running a linear search as in find_bracket_match() every time a jump is required, finding the other bracket (the jump-to location) just becomes a lookup from the cache. 

The other helper function, clamp0_255_wraparound(), 

simulates the original Brainfuck by limiting cell values to 8-bit unsigned integers. We need this function because

Python’s int type is of arbitrary precision, meaning it can

accommodate integers as large as you want without

overflow (instead, more bytes are grabbed as needed). A

true 8-bit unsigned integer would wrap around to 0 once it

exceeded 255 by 1, and it would wrap back to 255 if it was

at 0 and was decremented by 1. We simulate this behavior

in clamp0_255_wraparound() with some simple conditionals:

# Simulate a 1-byte unsigned integer

def clamp0_255_wraparound(num: int) -> int:

if num > 255:

return 0

elif num < 0:

return 255

else:

return num

Because Brainfuck can’t change a cell by more than 1 at

a time, we don’t need to worry about cases where we add

more than 1 to a cell that’s 255 or subtract more than 1

from a cell that’s 0. The num > 255 and num < 0 tests are therefore sufficient. 

With these two helper functions, our implementation of

a Brainfuck interpreter is complete. It really doesn’t take

much to implement a Turing-complete language. 

Running the Interpreter

Let’s try running some Brainfuck code. The  Brainfuck

folder in this book’s repository has an  Examples subfolder with some sample programs to interpret, including

 fibonacci.bf to generate the first several members of the Fibonacci sequence and  hello_world_verbose.bf containing the “Hello World!” program shown earlier in the chapter. 

Here, I’m running those programs from the main directory

of the repository:

% python3 -m Brainfuck Brainfuck/Examples/fibonacci.bf

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

% python3 -m Brainfuck Brainfuck/Examples/hello_world_verbos e.bf

Hello World! 

You must execute these commands with the -m option

indicating Brainfuck should be understood to be a module. 

If you don’t, you’ll receive import errors. Note also that the way Python is accessed from the shell will differ by

operating system and the kind of Python installation. On my

system, the Python interpreter has the alias python3 and

paths use a forward slash. Your system may use python and

backslashes (Windows style). 

It looks like our interpreter works, but we should create

some tests to be sure. 

Testing the Interpreter

Let’s write some tests to ensure our interpreter works

correctly. We could start by writing some  unit tests to confirm each individual command of the interpreter

functions as expected. Does + work correctly? Does . work

correctly? However, for the sake of brevity (and because

the interpreter is so simple), we’ll instead write some

 integration tests. These tests examine whether whole

Brainfuck programs run correctly through the interpreter, producing the expected output. 

To make continuous integration a little simpler to set

up, the tests for the entire book live in their own folder

within the main repository’s root, called  tests. Our tests for Brainfuck will run entire Brainfuck programs through the

interpreter, capture their textual output, and compare that

output to the known expected output. 

 tests/test_brainfuck.py

import unittest

import sys

from pathlib import Path

from io import StringIO

from Brainfuck.brainfuck import Brainfuck

# Tokenizes, parses, and interprets a Brainfuck

# program; stores the output in a string and returns it

def run(file_name: str | Path) -> str:

output_holder = StringIO()

sys.stdout = output_holder

Brainfuck(file_name).execute()

return output_holder.getvalue()

The run() function initializes the Brainfuck class with a

file located at file_name. It also uses output_holder to capture and return stdout, meaning that instead of output from the

run program going to the console, it will be assigned to a

variable. This lets us programmatically compare the actual

output with the expected output after calling run() in each

of our tests:

class BrainfuckTestCase(unittest.TestCase):

def setUp(self) -> None:

self.example_folder = (Path(__file__).resolve().pare

nt.parent

                            / 'Brainfuck' / 'Examples') def test_hello_world(self):

program_output = run(self.example_folder / "hello_wo

rld_verbose.bf")

expected = "Hello World!\n" 

self.assertEqual(program_output, expected)

def test_fibonacci(self):

program_output = run(self.example_folder / "fibonacc

i.bf")

expected = "1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89" 

self.assertEqual(program_output, expected)

def test_cell_size(self):

program_output = run(self.example_folder / "cell_siz

e.bf")

expected = "8 bit cells\n" 

self.assertEqual(program_output, expected)

def test_beer(self):

program_output = run(self.example_folder / "beer.b

f")

with open(self.example_folder / "beer.out", "r") as text_file:

expected = text_file.read()

self.assertEqual(program_output, expected)

if __name__ == "__main__":

unittest.main()

Each test takes a Brainfuck program in the  Examples

directory, uses run() to execute it, and compares the final

output to some expected output via assertEqual(). Let’s try

running all the tests from the repository’s main directory:

% python3 -m tests.test_brainfuck

.... 

------------------------------------------------------------

----------

Ran 4 tests in 0.689s

OK

If our Brainfuck interpreter can successfully run four

programs that are quite different from one another, there’s

a good chance it’s working. In the online repository for this book, I’ve set up continuous integration so that these tests

automatically run anytime the code is changed. Most of the

chapters in this book have unit or integration tests that also run automatically. 

CODE MEETS LIFE

I first heard of Brainfuck a long time ago as a curiosity, but I became really interested in it in 2018 when preparing to teach a class called Emerging Languages at Champlain College. It’s a programming

language theory class with a twist: we use languages that, in 2018, were just becoming relevant in industry—namely, Go, Swift, and Clojure—to illustrate programmatic ideas. I developed the course with a colleague named Josh Auerbach. I created the Go and Swift portions of the class, and Josh developed the Clojure portion. 

We both liked the idea of doing a Brainfuck assignment, because it’s such a great educational tool for understanding how a simple interpreter works. Josh had the idea of using part of the Brainfuck assignment to teach Clojure macros. We used a Clojure macro to elucidate the idea of  homoiconicity in a Lisp (Clojure is a dialect of Lisp)—that is, the concept that “code is data.” In a Clojure macro, you can manipulate code before it runs, treating it like any other data in a Clojure program. The macro the students developed in Josh’s

assignment allows one to write Brainfuck code directly in Clojure and have it execute like it belongs there. You can just be in the middle of your Clojure program and write something like this:

(bf +++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.) I still use the assignment when teaching the class (Josh has moved on from academia), but I’ll admit that sometimes I have trouble remembering the syntax for writing a Clojure macro. Writing the Brainfuck interpreter is even easier than writing the macro. That’s why Brainfuck is a great tool for educators. 

Real-World Applications

Each chapter in the book ends with some real-world

applications, but unfortunately there are no real-world

applications of Brainfuck. It’s a language of curiosity, 

useful for learning about some fundamental ideas in

computer science. Perhaps, therefore, we could say the

real-world application of Brainfuck is in education. 

Interpreters more broadly are critical computing

infrastructure with many real-world applications. As you’re

probably aware, Python itself is an interpreted language. 

There are many ways that programming languages go from

text files to machine code, but we can broadly categorize

most programming language implementations as

interpreted, ahead-of-time compiled, or just-in-time

compiled. Some programming languages even have

implementations in all three categories. For example, there

are Java interpreters, ahead-of-time Java compilers, and the

most popular implementations of Java are just-in-time

compiled. 

As a general rule, interpreted programming language

implementations tend to be slower than compiled

programming language implementations. You may wonder, 

then, why any programming languages that people use in

the real world are implemented as interpreters. Take

Python, for instance: Why is it implemented using an

interpreter instead of a compiler? We all know Python is a

relatively slow language, and surely it would be faster if it were compiled. 

The answer is that many of Python’s runtime dynamic

features wouldn’t be possible, or at least would be very

difficult to implement, in anything but an interpreter. There are efforts to do so (PyPy, for instance), but they’re much

harder to get right. 

In addition, interpreters are much easier to implement

than compilers because they lack the entire backend phase

of the compiler that’s responsible for generating machine code. Many languages therefore start out as interpreted

because it’s simply the fastest way to get an

implementation up and running. For instance, the first

version of Java was interpreted, and it took a couple of

years before a just-in-time compiled version came out. 

In short, interpreters exist because they’re easier to

implement than compilers and because they enable certain

powerful dynamic runtime features. If you’re thinking of

implementing a new programming language, especially a

dynamic one, the easiest place to start is probably with an

interpreter. 

Exercises

1.  Write a Brainfuck-to-Python transpiler. A  transpiler is like a compiler, but instead of converting source code

that was written in a high-level language into machine

code, it converts source code from one high-level

language to another high-level language. You can reuse

a lot of the structure from the Brainfuck interpreter. 

Instead of executing each Brainfuck command, you can

emit some equivalent Python code into a list of strings. 

The final output of your program should be the

equivalent Python code saved to a file. The trickiest part

will be figuring out what to do with the brackets. 

2.  Add a debug mode to the interpreter that lets you step

through a Brainfuck program one command at a time. 

After each command, a table is output to the console

containing all the Brainfuck interpreter’s state, similar

to the tables at the beginning of this chapter for

walking through the “repeat” program. 

3.  Write a Brainfuck program that reads two numbers, 

compares them, and outputs the larger number. Write a

test in Python that verifies the program works correctly

with randomly generated numbers. Tip: You may need to modify sys.stdin similarly to how we modified

sys.stdout in the run() function for the tests. 

Notes

  1.  “Brainfuck,” Esolangs.org, accessed May 22, 2024, 

 https://esolangs.org/wiki/Brainfuck#Hello.2C_World.21. 

  2.  Terrence W. Pratt and Marvin V. Zelkowitz, Programming Languages: Design and Implementation, 

3rd ed. (Prentice Hall, 1996), 409. 

  3.  Allen B. Tucker and Robert E. Noonan,  Programming Languages: Principles and Paradigms, 1st ed. (McGraw-Hill, 2002), 84. 

  4.  Urban Müller, “Brainfuck, or How I Learned to Change the Problem,” lecture at Tamedia TX 2017, Zurich, 
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WRITING A BASIC INTERPRETER

In Chapter 1,  we built a simple

interpreter for Brainfuck, a

minimalist, esoteric language. But

Brainfuck is just a toy; while we  could

solve real problems in Brainfuck, we

wouldn’t actually  want to. There are other

programming languages that aren’t much

more complex than Brainfuck yet are

“real” in the sense that regular

programmers actually use(d) them for

their day-to-day work. In this chapter, 

we’ll build an interpreter for one such

language, NanoBASIC, and we’ll learn

more about how interpreters work in the

process. 

While Brainfuck has just eight commands, NanoBASIC, 

a pared-down dialect of BASIC, has just six types of

statements. To be fair, each of those statements has more

functionality than a Brainfuck command, but it’s still not much. It’s just complex enough that it will enable us to

explore several aspects of an interpreter that got mashed

together in our Brainfuck implementation. In particular, 

we’ll write a separate tokenizer, parser, and runtime, 

whereas our Brainfuck interpreter handled all three tasks

at once. We’ll use a scalable approach for each component, 

meaning what we do here could be expanded to work with

larger languages. 

Understanding NanoBASIC

With its simple syntax and ubiquitous presence, BASIC

(Beginner’s All-purpose Symbolic Instruction Code)

democratized the computing world and became the de

facto standard language of the personal computer

revolution. NanoBASIC is a version of the BASIC

programming language that’s derived from a popular

dialect for 1970s microcomputers known as Tiny BASIC. 

NanoBASIC is even simpler (or smaller, if you will) than

Tiny BASIC, hence the Nano designation. 

NanoBASIC is almost completely the same as Tiny

BASIC, but I’ve made a few changes: it’s missing a couple

statements, and there are some minor differences

regarding variable names and integer widths. As we

discuss the language, you may wonder about some of its

esoteric syntax or limitations. These quirks are intentional

because NanoBASIC is meant to be largely compatible with

Tiny BASIC. At the end of the chapter, you’ll be able to take actual Tiny BASIC programs you find online and run them

in our NanoBASIC interpreter. Therefore, you’ll be

implementing a language that was used in the real world. 

You can learn everything you need to know about

NanoBASIC in just a few minutes. Do you remember how

long it took you to learn Python? By the end of this section, you’ll be fully capable of writing a program in NanoBASIC. 

 BASIC History

BASIC was originally developed in 1964 by John Kemeny

and Thomas Kurtz at Dartmouth College to make

computers more accessible, including to students not

pursuing science or math majors.1 In fact, it was undergraduate students who built the first BASIC

implementation alongside Kemeny and Kurtz. When the

personal computer revolution got started in the mid-1970s, 

BASIC was a natural fit for the hobbyists and other

“regular” people who bought the first machines. As a

result, it became the most popular high-level programming

language for personal computers from the mid-1970s to the

mid-1980s. Common computers of the era, like the

Commodore 64 and the Apple II, came with built-in BASIC

interpreters. BASIC was therefore the way that many

people interacted with early personal computers. For

example, BASIC was Linus Torvalds’s first programming

language on the Commodore VIC-20 in 1981. 2

Interestingly, Microsoft got its start in 1975 when Bill

Gates and Paul Allen developed a BASIC interpreter for one

of the first personal computers, the Altair 8800. 3 Their company flourished when they ported their interpreter to

other machines of the late 1970s. Microsoft BASIC was

shipped with many personal computers, and it became the

de facto standard dialect of BASIC. Eventually, Microsoft

entered the operating system business in 1981 with DOS on

the original IBM PC, but BASIC was the company’s start. 

Now you’ll be developing a BASIC interpreter too! 

Tiny BASIC, which NanoBASIC is a form of, in turn got

its start because of Microsoft. Many of the people involved

with the early development of Tiny BASIC were partially

motivated by the high cost of Microsoft’s interpreters. 4

Some of them further believed that people should be free to

share software as they see fit. This was an early form of the Free Software Movement. Beyond skirting Microsoft’s high

fees, the developers also wanted a language that would be small enough to fit within the extreme memory constraints

of the microcomputers of the time (often just 4 kilobytes

[KB]) and portable enough that programs could be run on

multiple kinds of machines. Ultimately, Tiny BASIC was

ported to a wide variety of different personal computers

across multiple different microprocessor architectures and

was widely used. 

 NanoBASIC’s Paradigm, Syntax, and Semantics

As you’ve read, BASIC was intended to be easy to use for

nontechnical people, and many BASICs were designed to

work in memory-constrained environments. Hence, BASICs

tend to be stripped-down languages with relatively few

features, even in comparison to other languages of the

time. The dialect we’re developing, NanoBASIC, is

imperative, but we’d barely even call it procedural. Let’s

review what those terms mean. 

An  imperative language is one in which you provide

detailed instructions telling the computer how you want it

to complete a task. This contrasts with  declarative

languages, which concentrate on “what” you want to do

instead of “how” you want to do it. Say I wanted you to

draw a square in the center of a piece of graph paper. The

imperative way to do it would be to tell you: “Start at point (4, 4) and draw a line up five units. Then, draw a line to the right five units. Then, draw a line down five units. Then, 

draw a line to the left five units.” The declarative way to do it would be to say, “Draw a 5×5 square in the middle of the

paper.” In a declarative world, I declare what I want and let you (or the computer) figure out the specifics of how to

accomplish it. 

Modern imperative programming languages generally

fall into two main sub-paradigms: procedural and object-

oriented.  Procedural programming languages use the

subroutine/procedure/function (these terms are often, but not always, used interchangeably) as the main point of

abstraction. Code is broken into multiple functions that

each have a specific purpose and work in concert to form

the whole program.  Object-oriented programming uses

objects as the main point of abstraction, and since you’re

an intermediate or advanced Python programmer, I assume

you know what that means. Of course, Python can be

programmed in either style. 

NOTE

 The most popular declarative programming sub-paradigms

 are functional  and logic  programming. Getting into the details of those is beyond the scope of this chapter. 

NanoBASIC is decidedly not a declarative programming

language. It’s firmly in the imperative camp. It’s also

definitely not object-oriented. But is it procedural? While it technically has a way of making a call to a subroutine with

its GOSUB statement, which we’ll discuss shortly, there’s

nothing resembling a modern function in the sense of

having parameters and return values. That’s why I wrote

we would “barely even call it procedural.” 

Some versions of BASIC, like Tiny BASIC and

NanoBASIC, not only have no sense of a function, they also

have no loops or other modern control structures. Instead, 

all control is handled with GOTO and GOSUB, which trigger

direct jumps to a specific line number of the program. 

These, coupled with if statements, are the only way to

control a Tiny BASIC or NanoBASIC program. Early BASICs

were famous for encouraging “spaghetti code” due to these

explicit jumps from one part of a program to another and

poor mechanisms for organization. This criticism is

completely fair. Without functions or objects as organizing

mechanisms, an imperative language invariably devolves

into spaghetti code. Don’t be surprised to see some spaghetti as we start cooking up some NanoBASIC! 

Now, let’s get into NanoBASIC’s syntax and how its six

statements work. 

Comments and Line Numbers

Comments in NanoBASIC start with the REM designation and

can finish with any string. Comments won’t be processed at

all by the interpreter. 

Every non-comment line in NanoBASIC begins with a

line number and is followed by a statement. The

programmer can pick any arbitrary line numbers, as long

as they’re all in increasing order from the top of the source file to the bottom. For example, the following line numbers

are valid:

10 PRINT "Hello" 

REM This is a comment

20 PRINT "Goodbye" 

30 PRINT "WOW" 

By contrast, these line numbers aren’t valid, and so the

program’s behavior is undefined:

10 PRINT "Hello" 

REM This is a comment

40 PRINT "Goodbye" 

30 PRINT "WOW" 

Programs that have GOTO or GOSUB statements and out-of-

order line numbers won’t function correctly. 

There are only six ways to start a statement in

NanoBASIC: PRINT, IF, GOTO, GOSUB, RETURN, and LET. If you

know these six statement types, you basically know the

whole language. This is why you can learn NanoBASIC in

just a few minutes if you already know another programming language. 

LET, Variables, and Mathematical Expressions

A LET statement binds a value to a variable. All variables

represent integers. There are no other variable types. The

original Tiny BASIC was limited to just 26 single-letter

variable names (A through Z). In NanoBASIC, this is

expanded to include any arbitrary-length identifier

composed of letters and underscores. The following

statement sets the variable A to 5:

10 LET A = 5

The LET keyword must be followed by a variable name

and an equal sign (=). After that, any mathematical

expression can appear. NanoBASIC mathematical

expressions can be composed of variables; integer literals; 

the operators for addition (+), subtraction (-), multiplication (*), and division (/); and parentheses ((and)). In addition, 

you can negate any mathematical value in NanoBASIC with

a negative sign (-). All math takes place in the realm of

signed integers. From this point forward, we’ll just refer to mathematical expressions as  expressions. The following are all valid uses of LET:

20 LET B = A

30 LET C = 23 - A

40 LET D = 5 * (24 + 25)

50 LET E = -(24 + 23 - (2 * (5 + 3)))

Due to machine limitations, most Tiny BASIC

implementations were limited to 16-bit integers. Our

variables are backed by Python integers behind the scenes, 

which are of arbitrary precision, so they aren’t limited to 16

bits. This, and the arbitrary-length variable names, are

some of the few areas where NanoBASIC is superior to Tiny BASIC instead of simply being a subset of it. 

PRINT Statements

Any string literal or expression can be output to the console with PRINT. NanoBASIC string literals are any characters

that lie between double quotation marks ("). Unfortunately, there’s no way in NanoBASIC to include actual double

quotes in your strings. In other words, there’s no escape

mechanism. I’ll leave that as an exercise at the end of the

chapter. Here are some valid PRINT statements with string

literals:

10 PRINT "What a nice program" 

20 PRINT "Who said sit down?" 

30 PRINT "6734 spells HELP upside down sorta" 

As mentioned, PRINT can also print the result of any

expression:

REM This was the first thing Paul Allen ran on the Altair 88

00

70 PRINT 2 + 2

You can also supply a comma-separated list of items

(string literals and expressions) to PRINT. All items printed will have tab characters between them, and PRINT always

finishes printing by inserting a newline character. For

example:

30 PRINT "2 plus 2 is", 2 + 2, "and 3 times 5 is", 3 * 5

This will output text that looks as follows:

2 plus 2 is 4 and 3 times 5 is 15

Note that the spaces between expressions are caused by tab characters. Due to various console settings, they

may not look the same in your terminal. 

IF Statements and Boolean Expressions

NanoBASIC IF statements are like if statements in other

languages, but they are simpler and more succinct. They

can have only a single Boolean expression (there’s no and or

or operator, for example), and they have no else clause. 

Finally, they can execute only a single statement if they’re

true. The statement to execute on truth is always preceded

by the literal THEN. For example:

500 IF N < 10 THEN PRINT "Small Number" 

700 IF V >= 34 THEN GOTO 20

Boolean expressions mostly involve the comparisons

you’d expect, but the operators differ slightly from

standard C-style operators. For instance,  not equal can be either <> or >< in NanoBASIC, and  equal is =, not ==. 

GOTO, GOSUB, and RETURN Statements

A GOTO directly jumps to a line number with no way to go

back. A GOSUB jumps to a line number, but a matching RETURN

statement will send the program back to the line just after

where the GOSUB was originally called. Here’s an example:

10 GOTO 50

20 LET A = 10

40 RETURN

50 LET A = 5

60 GOSUB 20

REM RETURN returns to here; we expect A to be 10

70 PRINT A

This program will ultimately output 10 to the console. 

 NanoBASIC Style and Minutiae

It’s generally considered good style to write BASIC

keywords in all capital letters. Because NanoBASIC doesn’t

have great organizational facilities, it’s also a good idea to include comments throughout your program explaining

what’s going on. 

Unfortunately, it’s normal for BASIC code to quickly fill

up with GOTO statements and become “spaghetti code.” This

is par for the course, and there’s not much you can do

about it in NanoBASIC if you want to write a program of

any moderate complexity. Eventually, people unhappy with

the GOTO style of programming created the  structured

 programming movement. For example, Edsger Dijkstra

famously wrote a letter called “Go To Statement

Considered Harmful.” 5

Here are a couple other things you should know about

NanoBASIC:

NanoBASIC is case insensitive. This means that LET A =

5 is the same as let a = 5. 

Behavior not described in this chapter is undefined. 

Ultimately, NanoBASIC is purposely damaged goods

because I wanted to keep the interpreter simple and

provide a real-world analog—Tiny BASIC—to make this

chapter’s work feel more “real.” I also think the fact that

NanoBASIC is based on a real language and is able to run

real Tiny BASIC programs found on the internet makes

writing the interpreter more fun. However, it would have

been fairly simple for us to make the language more

powerful. We’ll leave that for the exercises. 

 An Example NanoBASIC Program

Several example NanoBASIC programs are included in the

 NanoBASIC/Examples directory of the companion

repository. One of those programs prints all the numbers in

the Fibonacci sequence that are less than 100. The Fibonacci sequence is a progressive sequence of numbers

where each number (except the special first two) is the

sum of the previous two. It starts with the numbers 0 and 1. 

It then follows that 0 + 1 = 1, so the next number in the

sequence is 1. Then, 1 + 1 = 2, so the next number is 2. It

continues 3, 5, 8, 13, and so on. 

Here’s  fib.bas, the NanoBASIC Fibonacci program:

 NanoBASIC/Examples/fib.bas

REM Printing the Fibonacci numbers less than 100

REM A is the last number

10 LET A = 0

REM B is the next number

11 LET B = 1

20 PRINT A

21 PRINT B

REM C is last + next

30 LET C = A + B

31 LET A = B

32 LET B = C

40 IF B < 100 THEN GOTO 21

In Tiny BASIC fashion, we only use single capital letters

as variable names. This highlights the importance of

plentiful comments. As previously discussed, the chosen

values for the line numbers are arbitrary as long as they’re

in increasing order. On lines 10 and 11, we start the

sequence with the hardcoded initial values 0 and 1. On line

30, we form the next number in the sequence, C, by

summing the previous two numbers. Lines 21 through 40

make up a kind of loop through the use of IF and GOTO on

line 40. Some later versions of Tiny BASIC had actual loop

statements like FOR, but the earliest versions did all loops

using syntax similar to this, much like how loops work in

most assembly languages. 

When you finish the chapter, you’ll be able to run this program yourself with a command like the following:

% python3 -m NanoBASIC NanoBASIC/Examples/fib.bas

0

1

1

2

3

5

8

13

21

34

55

89

That looks right. 

We’re almost ready to write an implementation of

NanoBASIC, but before we get there, it’s important to more

formally specify the language’s syntax. We can directly use

that specification to write our implementation. 

Formalizing NanoBASIC’s Syntax

A programming language’s syntax is formally defined by a

 grammar. Backus–Naur form (BNF) is the typical way the grammar of a programming language is specified. There

are many extensions and augmentations of BNF; we’ll use a

form of it that I think will be very clear to intermediate

programmers because it includes some regular expression–

like syntax. 

A grammar consists of a set of production rules that

define what’s allowable syntax in the programming

language. The term  production rule sounds fancy, but it’s just a way of substituting one thing for another. Let’s say I was creating a grammar for a language that could only

consist of the letters A and B and the numbers 1 and 2. Its production rules may look like this:

<expression> ::= (<letter> | <number>)*

<letter> ::= 'A' | 'B' 

<number> ::= '1' | '2' 

An identifier wrapped in angle brackets, like

<expression>, is a  non-terminal. This is an item in a grammar that, when expanded, is replaced by something else. What

it gets replaced by is specified by the right side of its

production rule. In a production rule, the ::= symbol

separates a non-terminal from its replacement. The

replacement can be composed of non-terminals or

terminals. 

A  terminal is something that will appear in the language in its literal form. It doesn’t get expanded any further. In

our syntax, a terminal is wrapped in single quotes, like 'A'. 

Our syntax also uses | to mean  or. An  or means that there’s a selection of options to choose from for that part of the

production. We use parentheses for grouping, and *

signifies zero or more repetitions of something. 

With this in mind, we can read the three production

rules shown earlier as indicating:

1. An  expression is zero or more of letters or numbers. 

2. A  letter is A or B. 

3. A  number is 1 or 2. 

We can use a grammar to check whether a particular

string of text is valid syntax for a language by simply

following its production rules. For instance, our grammar

specifies that “AAA21B” is valid syntax but “AB123” is not. 

More than one grammar can specify the same language. 

The non-terminal names are largely arbitrary and should be

chosen to make the most human sense. For example, 

there’s no reason that letters and numbers need to be separated in our grammar. We could simplify the grammar

to be:

<expression> ::= <character>*

<character> ::= 'A' | 'B' | '1' | '2' 

We could even eliminate the second production rule

altogether:

<expression> ::= ('A' | 'B' | '1' | '2')*

We generally shouldn’t use unnecessary production

rules, because they overcomplicate the grammar. However, 

if the additional non-terminal represents multiple possible

terminals and it will be used again somewhere else in the

grammar, it makes sense to give it its own production rule

instead of duplicating a long list of terminals. This will

become clearer as we work with larger grammars with

richer structures. It’s analogous to programming, where it

can be better style to have many small functions that we

reuse rather than just a few large ones. 

Let’s look at another example. Say I were specifying

production rules for a numbered list. It may look something

like this:

<list> ::= <item>*

<item> ::= <number>'.' <text>'\n' 

<number> ::= <digit><digit>*

<digit> :: = '0' | '1' | ... | '8' | '9' 

<text> ::= .*

We’ve introduced a couple more special forms. The ... 

symbol indicates a list of terminals continues in the implied way (this isn’t super formal, but it saves space), and . just means any user-imaginable terminal, like in a regular

expression. Let’s again put the five rules of this grammar into a more English-like form:

1. A  list is composed of zero or more items. 

2. An  item is a number followed by a period, some text, and a newline. 

3. A  number is one or more digits. 

4. A  digit is one of the characters 0 through 9. 

5. A  text is any arbitrary string. 

Did you notice a problem with this grammar regarding

how it handles numbers? A number with leading zeros, like

0020, would be allowed, but that wouldn’t make sense in a

numbered list. How can it be fixed? I’ll leave that as an

exercise for the reader. If you can fix it, you probably have a decent understanding of terminals and non-terminals. 

The grammars described with BNF are said to be

 context free, meaning that each production rule can stand alone for a non-terminal that appears within a larger string. 

Without any context about the rest of the string, the

production rule can still be expanded for the single non-

terminal in question. In other words, in a context-free

grammar, each non-terminal isn’t dependent on other non-

terminals around it to be expanded. 

NanoBASIC’s grammar is based on the original Tiny

BASIC grammar published by Dennis Allison, the creator of

the first Tiny BASIC implementation, in 1976. 6 It looks like this:

❶ <line> ::= <number> <statement> '\n' | 'REM' .*'\n' 

❷ <statement> ::= 'PRINT' <expr-list> |

'IF' <boolean-expr> 'THEN' <statement> |

'GOTO' <expression> |

'LET' <var> '=' <expression> |

'GOSUB' <expression> |

  'RETURN' 

❸ <expr-list> ::= (<string> | <expression>) (',' (<string> | < expression>))*

❹ <expression> ::= <term> (('+'|'-') <term>)*

❺ <term> ::= <factor> (('*'|'/') <factor>)*

❻ <factor> ::= ('-'|ε) <factor> | <var> | <number> | '('<expre ssion>')' 

<var> ::= ('_'|<letter>) ('_'|<letter>)*

<number> ::= <digit> <digit>*

<digit> ::= '0' | '1' | ... | '8' | '9' 

<letter> ::= 'a'|'b'| ... |'y'|'z'|'A'|'B'| ... |'Y'|'Z' 

<relop> ::= '<' ('>'|'='|ε) | '>' ('<'|'='|ε) | '=' 

❼ <boolean-expr> ::= <expression> <relop> <expression> 

<string> ::= '"' .* '"' 

The only new syntax in the full NanoBASIC grammar is

the epsilon character (ε). It means there could be nothing

(“empty”) in the spot where it appears. It always appears

as part of an  or, meaning there could be something, or there could be nothing. 

The NanoBASIC grammar looks a lot more

sophisticated than the previous two examples—it’s a whole

programming language, after all—but it’s actually pretty

easy to pick apart:

1. A  line is either a number (the line number) followed by a statement, or a comment (REM precedes all

comments)  ❶. 

2. A  statement is one of the six statements we learned (PRINT, IF, GOTO, LET, GOSUB, RETURN)  ❷. This is the first

place we see a kind of recursion: an IF statement

contains another statement in its THEN clause, so any of

the six statements can appear after THEN. 

3. An  expression list (expr-list) is a comma-separated list of strings or expressions  ❸. As you can see from the

PRINT section in the previous production rule, expression

lists are only used for PRINT statements. This is also the

only rule connecting to strings. Therefore, a string can

only be used as part of a PRINT statement’s expression

list. We call it a list, but really an expression list could

have just one expression or string in it. If there are

more, that’s when we utilize the * part of the grammar, 

which is attached to the comma and the following

choice of expression or string. 

4. An  expression is something to do with arithmetic. It could be adding some numbers, multiplying some

numbers, or just retrieving a value from a variable. The

expression production rule itself only includes the

possibility of addition or subtraction  ❹. 

5. An expression is made up of  terms. Whereas the

expression production rule handled addition and

subtraction, the term production rule handles

multiplication and division  ❺. The reason for this has to

do with precedence: the “deeper” we go down the walk

of non-terminals, the higher the precedence of our

operators when we ultimately turn this grammar into a

working language. That’s why you find multiplication

and division after addition and subtraction. 

6. Precedence is also why you find parentheses in the

production rule for a  factor  ❻ and not in the production rules for expressions or terms. Parentheses have the

highest precedence of any arithmetic operator. The other thing we may replace a factor with is a variable

(which in the runtime will pull its value), a number

literal, or a negation (the option of a leading -). 

7. The rules for  variables,  numbers,  digits,  letters, relational operators (relops), and  strings are largely self-explanatory. Notice how easy it is to expand what’s

allowed as a variable identifier: we permit one or more

underscores or letters, as opposed to the original Tiny

BASIC’s single letters. Those early PCs really were

memory constrained if they had to limit us to just 26

single-letter variable names. 

8. A  Boolean expression is just two numeric expressions with a relational operator between them  ❼. Since

NanoBASIC doesn’t have and or or operators, there’s no

need for the * special form here as we needed for

arithmetic operations like addition and multiplication. 

This grammar provides a blueprint for implementing

our interpreter’s tokenizer and parser. If you recall from

Chapter 1 what those pieces are, you may now be able to see how the terminals in the grammar will become the

tokens that our tokenizer reads. And here’s something even

more useful: the production rules for the non-terminals will

end up each mapping to a function in our recursive descent

parser. We’ll return to that in a little bit. Ultimately, 

though, the grammar specifies the  syntax for a

programming language, but it doesn’t give each element of

the language  meaning. That will be the magic of our

interpreter. 

The NanoBASIC Implementation

Now that we’ve discussed NanoBASIC and how its syntax is

specified, it’s finally time to start writing our

implementation. You may recall from Chapter 1 that a basic interpreter has at least three parts:

A  tokenizer (sometimes known as a  lexer) that takes the original source code and divides it into the smallest

recognizable constructs allowed in the programming

language. These are known as  tokens. For the code a +

2, the tokens may be a, +, and 2. 

A  parser that takes tokens that are next to each other and figures out their meaning (that is, the expressions

or statements they form). Parsers typically produce a

tree of nodes representing the relative relationships

between expressions, statements, and literal values. 

This tree is called the  abstract syntax tree (AST). For example, if a Python interpreter saw the token a

followed by the token + followed by the token 2, it may

construct an arithmetic expression node and connect it

to nodes for the a and the 2. 

A  runtime environment that walks through the nodes of the AST and runs the appropriate operations to execute

the meaning inherent in them. For our a + 2 arithmetic

expression node, this would mean looking up the value

represented by a and adding 2 to it. 

We’ll build these three parts in order, but before we can

even get to the tokenizer, we need to be able to open a

NanoBASIC code file:

 NanoBASIC/__main__.py

from argparse import ArgumentParser

from NanoBASIC.executioner import execute

if __name__ == "__main__":

# Parse the file argument

file_parser = ArgumentParser("NanoBASIC")

file_parser.add_argument("basic_file", 

                             help="A text file containing Na noBASIC code.")

arguments = file_parser.parse_args()

execute(arguments.basic_file)

We load a source code file based on a command line

argument, much the same as we did in our Brainfuck

interpreter, and pass it a function called execute(). That

function lives in a separate file so that it’s easier to reach for our tests. It pulls together the tokenizer, parser, and

interpreter (runtime) components. The output of one is fed

as the input to another (source

codetokenizerparserinterpreter):

 NanoBASIC/executioner.py

from pathlib import Path

from NanoBASIC.tokenizer import tokenize

from NanoBASIC.parser import Parser

from NanoBASIC.interpreter import Interpreter

def execute(file_name: str | Path):

# Load the text file from the argument

# Tokenize, parse, and execute it

with open(file_name, "r") as text_file:

tokens = tokenize(text_file)

ast = Parser(tokens).parse()

Interpreter(ast).run()

Each line of code in execute() passes us from one major

section of the interpreter to the next. The result of the

tokenizer goes to the parser, and the result of the parser

goes to the runtime environment. For the rest of the

chapter, we’ll be building each of these components in

sequence. 

 The Tokenizer

The tokenizer takes a string of source code (the contents of

a text file) and turns it into tokens. The tokens represent all of the smallest individual chunks of a program that can be

processed. The valid tokens in NanoBASIC come directly

from the terminals in the NanoBASIC grammar described

in the prior section. 

We’ll use regular expression patterns to find tokens:

we’ll associate a regular expression pattern with each type

of token and then just search for them one at a time. The

difficulty with this setup is that we need to be careful about the order in which the searches occur. If two regular

expressions could match the same token, then the order

will matter. For instance, in our tokenizer the regular

expression for a variable name could also match the token

PRINT (or any other statement name), so the search for a

variable name token purposely comes last. 

We’ll start our tokenizer by defining all the different

types of tokens as enum cases. Each case will be attached

to a regular expression for finding it. Some tokens will also have user-specified values associated with them, indicated

by True or False at the end of each enum case. For example, 

a variable token will have the actual variable name

connected to it as an associated value. Here’s what our

TokenType enum looks like:

 NanoBASIC/tokenizer.py

from enum import Enum

from typing import TextIO

import re

from dataclasses import dataclass

class TokenType(Enum):

COMMENT = (r'rem.*', False)

WHITESPACE = (r'[\t\n\r]', False)

    PRINT = (r'print', False)

IF_T = (r'if', False)

THEN = (r'then', False)

LET = (r'let', False)

GOTO = (r'goto', False)

GOSUB = (r'gosub', False)

RETURN_T = (r'return', False)

COMMA = (r',', False)

EQUAL = (r'=', False)

NOT_EQUAL = (r'<>|><', False)

LESS_EQUAL = (r'<=', False)

GREATER_EQUAL = (r'>=', False)

LESS = (r'<', False)

GREATER = (r'>', False)

PLUS = (r'\+', False)

MINUS = (r'-', False)

MULTIPLY = (r'\*', False)

DIVIDE = (r'/', False)

OPEN_PAREN = (r'\(', False)

CLOSE_PAREN = (r'\)', False)

VARIABLE = (r'[A-Za-z_]+', True)

NUMBER = (r'-?[0-9]+', True)

STRING = (r'".*"', True)

def __init__(self, pattern: str, has_associated_value: b

ool):

self.pattern = pattern

self.has_associated_value = has_associated_value

def __repr__(self) -> str:

return self.name

The TokenType enum just describes the kind of token. 

Beyond a token’s kind, we also want to know where it

appeared in the source code file. This will be useful so that we can pinpoint the location of syntax errors and report

that information back to the programmer. We’ll encompass

all this information using Token, a composite type that

combines a token’s kind, location, and associated value if applicable:

@dataclass(frozen=True)

class Token:

kind: TokenType

line_num: int

col_start: int

col_end: int

associated_value: str | int | None

The type of the associated_value property, str | int |

None, uses enhanced type hint syntax that was introduced

with Python 3.10 via PEP 604.7 I mentioned it briefly in

Chapter 1,  and here we’ll discuss it a little more formally. 

It’s a way of creating a  union type. A variable that’s declared to be of a union type can refer to values that are

of any of the types composing the union. In versions of

Python prior to 3.10, you would need to import Union from

typing and the type hint would look like Union[str, int, 

None]. This new syntax is obviously much less verbose. In

short, it means that an associated_value can be a string, an

integer, or None. 

We’re ready to read a source code file and break it up

into its constituent tokens using a tokenize() function:

def tokenize(text_file: TextIO) -> list[Token]:

tokens: list[Token] = []

for line_num, line in enumerate(text_file.readlines(), s

tart=1):

col_start: int = 1

The function takes in a TextIO object, a type that

represents an object that can act as a text stream. We

initialize the tokens list, where we’ll collect all the tokens in the entire file. Then, we iterate through each line of the

file. Because we want to report line and column numbers back to the user as they may expect them to appear in their

text editor, we have both start at 1. Next, we extract all the tokens:

while len(line) > 0:

found: re.Match | None = None

for possibility in TokenType:

# Try each pattern from the beginning, case-

insensitive

# If it's found, store the match in *found*

❶ found = re.match(possibility.pattern, line, 

re.IGNORECASE)

if found:

col_end: int = col_start + found.end() - 

1

# Store tokens other than comments and w

hitespace

❷ if (possibility is not TokenType.WHITESP

ACE

and possibility is not TokenTyp

e.COMMENT):

associated_value: str | int | None = 

None

if possibility.has_associated_value:

if possibility is TokenType.NUMB

ER:

associated_value = int(foun

d.group(0))

elif possibility is TokenType.VA

RIABLE:

associated_value = found.gro

up()

elif possibility is TokenType.ST

RING:

# Remove quote characters

associated_value = found.gro

up(0)[1:-1]

❸ tokens.append(Token(possibility, lin

e_num, col_start, 

col_end, assoc

iated_value))

# Continue search from place in line aft

er token

line = line[found.end():]

col_start = col_end + 1

break # go around again for next token

# If we went through all the tokens and none of 

them were a match

# then this must be an invalid token

❹ if not found:

print(f"Syntax error on line {line_num} colu

mn {col_start}")

break

❺ return tokens

We scan through each line of the file from left to right, 

looking for a match of each possible token pattern in order

❶. When we find a match that isn’t whitespace or a

comment (those are ignored) ❷, we check if it’s a token

type with an associated value. If it is, we store the

associated value. We create a Token containing the matched

TokenType, where it was found, and any associated value, and

we add it to our tokens collection ❸. It really is as simple as doing that linear process. If we find a piece of text that

doesn’t match any known TokenType for NanoBASIC, that’s a

syntax error and we alert the user ❹. Finally, tokens is

returned ❺. 

The tokenizer is the simplest part of our interpreter. It’s

responsible for turning the original source code file into a

collection of valid tokens from the language. Those tokens

next get passed to the parser. But before we look at the

parser, let’s take a look at the building blocks that the

parser is going to generate for the interpreter’s runtime:

nodes. 

[image: Image 8]

 Nodes

Our parser is ultimately going to generate an AST that

contains nodes representing each of the meaningful pieces

of the program. For example, each IF statement will be a

node, and each time a variable’s value is retrieved, that will be a node too. Since it’s a tree, the AST links all the nodes together into a hierarchy of relationships. To illustrate this concept, let’s take a look at a real potential branch (using

the actual node names) of the AST from our interpreter. 

This branch will represent the IF statement IF A < 10 THEN

GOTO 40. 

The root node of the branch will be an IfStatement. That

IfStatement node will be linked to a BooleanExpression node (A

< 10) and a GoToStatement node (GOTO 40). The BooleanExpression node will have an internal variable to represent the

TokenType of its operator (<), a link to a VarRetrieve node (A), and a link to a NumberLiteral node (10). The GoToStatement

node will be linked to a single NumberLiteral node (40). 

Figure 2-1 illustrates this structure. Note that the labels on the arrows represent the actual names of the links between

nodes in the code. 

 Figure 2-1: The nodes for  IF A < 10  THEN  GOTO 40

The job of our parser is to turn collections of meaningfully adjacent tokens into AST nodes. In the final

phase of our interpreter, the AST nodes will be  walked, which involves completing whatever action each node is

connected to, in order. Every node that can appear in our

AST has its own class in  nodes.py. All nodes inherit from the Node class. Every Node keeps track of its location in the original source code file for debugging purposes:

 NanoBASIC/nodes.py

from dataclasses import dataclass

from NanoBASIC.tokenizer import TokenType

# For debug purposes, we'll need to know the locations of al

l Nodes

@dataclass(frozen=True)

class Node:

line_num: int

col_start: int

col_end: int

Now let’s define the Statement node:

# All statements in NanoBASIC have a line number identifier

# that the programmer puts in before the statement (*line_id

*). 

# This is a little confusing because there's also the "physi cal" 

# line number (*line_num*), that actual count of how many li

nes down

# in the file where the statement occurs. 

@dataclass(frozen=True)

class Statement(Node):

line_id: int

Every statement in NanoBASIC appears after a user-defined line number. This is for GOTO and GOSUB calls. We

shouldn’t confuse those line numbers with each Node

object’s line_num, the place where the Node appeared in the

source code file. For clarity, we call the user-defined line

number the line_id in the Statement class. For example, if

the first line of my source code file is 23 PRINT "HELLO", then the line_id is 23, but the line_num is 1. 

A NumericExpression is a type of Node that can produce a

single integer when it’s evaluated. It could be a binary

operation, a unary operation, a number literal, or a variable lookup, so we’ll declare all of those nodes as subclasses of

NumericExpression:

# A numeric expression is something that can be computed int

o a number. 

# This is a superclass of literals, variables & simple arith metic operations. 

@dataclass(frozen=True)

class NumericExpression(Node):

pass

# A numeric expression with two operands like 2 + 2 or 8 / 4

@dataclass(frozen=True)

class BinaryOperation(NumericExpression):

operator: TokenType

left_expr: NumericExpression

right_expr: NumericExpression

def __repr__(self) -> str:

return f"{self.left_expr} {self.operator} {self.righ

t_expr}" 

# A numeric expression with one operand, like -4

@dataclass(frozen=True)

class UnaryOperation(NumericExpression):

operator: TokenType

expr: NumericExpression

    def __repr__(self) -> str:

return f"{self.operator}{self.expr}" 

# An integer written out in NanoBASIC code

@dataclass(frozen=True)

class NumberLiteral(NumericExpression):

number: int

# A variable *name* that will have its value retrieved

@dataclass(frozen=True)

class VarRetrieve(NumericExpression):

name: str

In order to be evaluated, these different kinds of

numeric expression need to hold onto some information. 

For example, a VarRetrieve needs to have the name of the

variable that’s having its value looked up. Likewise, a

BinaryOperation, which can also be thought of as an

arithmetic operation, needs to store the actual arithmetic

operation that’s being done (addition, subtraction, 

multiplication, or division), so we store the operator token

with it. 

While a NumericExpression resolves to an integer, a

BooleanExpression is for producing a Boolean. It takes two

NumericExpression nodes and compares them using a Boolean

operator (stored as a token):

# A Boolean expression can be computed to a true or false va

lue. 

# It takes two numeric expressions, *left_expr* and *right_e

xpr*, and compares

# them using a Boolean *operator*. 

@dataclass(frozen=True)

class BooleanExpression(Node):

operator: TokenType

left_expr: NumericExpression

right_expr: NumericExpression

    def __repr__(self) -> str:

return f"{self.left_expr} {self.operator} {self.righ

t_expr}" 

The rest of the nodes are for representing the six types

of NanoBASIC statements:

# Represents a LET statement, setting *name* to *expr*

@dataclass(frozen=True)

class LetStatement(Statement):

name: str

expr: NumericExpression

# Represents a GOTO statement, transferring control to *line

_expr*

@dataclass(frozen=True)

class GoToStatement(Statement):

line_expr: NumericExpression

# Represents a GOSUB statement, transferring control to *lin

e_expr*

# Return line_id is not saved here, it will be maintained by 

a stack

@dataclass(frozen=True)

class GoSubStatement(Statement):

line_expr: NumericExpression

# Represents a RETURN statement, transferring control to the 

line after

# the last GOSUB statement

@dataclass(frozen=True)

class ReturnStatement(Statement):

pass

# A PRINT statement with all that it is meant to print (comm

a separated)

@dataclass(frozen=True)

class PrintStatement(Statement):

    printables: list[str | NumericExpression]

# An IF statement

# *then_statement* is what statement will be executed if the

# *boolean_expression* is true

@dataclass(frozen=True)

class IfStatement(Statement):

boolean_expr: BooleanExpression

then_statement: Statement

The properties of these nodes reflect the pieces of data

that each type of statement requires. For example, since a

LET statement assigns a value to a variable, a LetStatement

node needs a string variable name and a NumericExpression

representing the value. 

 Errors

Let’s take a quick detour to discuss error handling in our

interpreter. There’s nothing more annoying when you’re

programming than poor error messages. When you make a

mistake in your code, you want to know what happened and

where. As the creator of a programming language, you

have a responsibility to provide your user (the NanoBASIC

programmer) with good error messages. 

NanoBASIC is going to report two general types of

errors: parser errors and interpreter errors.  Parser errors can be thought of as syntax errors, such as when the tokens

are in the wrong order. For example, there needs to be a

numeric expression (representing a line number) after a

GOTO, but not after an IF statement.  Interpreter errors are semantic errors. They occur when the program tries to do

something that doesn’t make sense, such as trying to use a

variable before it’s initialized. We’ll define error classes for both kinds of errors:

 NanoBASIC/errors.py

from NanoBASIC.tokenizer import Token

from NanoBASIC.nodes import Node

class NanoBASICError(Exception):

def __init__(self, message: str, line_num: int, column: 

int):

super().__init__(message)

self.message = message

self.line_num = line_num

self.column = column

def __str__(self):

return (f"{self.message} Occurred at line {self.line

_num} " 

f"and column {self.column}")

class ParserError(NanoBASICError):

def __init__(self, message: str, token: Token):

super().__init__(message, token.line_num, token.col_

start)

class InterpreterError(NanoBASICError):

def __init__(self, message: str, node: Node):

super().__init__(message, node.line_num, node.col_st

art)

Both ParserError and InterpreterError are subclasses of

NanoBASICError, which in turn is a subclass of Exception, a

built-in Python class that you can override for creating

custom exceptions to throw in your program. The classes

report a message associated with an error and where it

occurred in the original program. For example, say we have

the following program:

10 PRINT(A)

This would lead to the following error being reported:

NanoBASIC.errors.InterpreterError: Var A used before initial ized. Occurred at

line 1 and column 10

This error occurs because the variable A was never

initialized using a LET statement. You’ll see many throws of

ParserError and InterpreterError in the sections that follow. 

 The Parser

The parser takes the tokens from the tokenizer and tries to

convert them into structures that are meaningful for

interpreting the program. Parsing is a heavily studied area

of computer science, and there are many different parsing

algorithms. There are even programs that will generate a

parser for you. Not surprisingly, they’re known as  parser generators. A parser generator can take a grammar in BNF

form and spit out a parser. 

We certainly could have used a parser generator here, 

but that wouldn’t be as educational as writing the parser

ourselves. And while there are many parsing algorithms, it

turns out that one of the simplest is also one of the most

effective, customizable, and widely used. It’s known as

 recursive descent, and it underlies the C/C++ parsers in the two most popular compilers in the world, GCC and

Clang.8 It was also the technique used in the original version of Tiny BASIC by Dennis Allison. 9

In recursive descent, generally each non-terminal

defined in the grammar becomes a function. That function

is responsible for checking that the sequence of tokens it’s

analyzing follows a production rule specified in the

grammar. The parser checks the tokens by looking at them

sequentially. If the token being analyzed is expected to be a part of another production rule, the recursive descent

parser just calls the function representing that other

production rule. The recursive descent functions return

respective nodes when they’re successful— success meaning the function did indeed find the tokens it

expected. 

Recursive descent is a  top-down parsing technique, 

meaning the parsing begins from the “start” of the

grammar (<line> in our case) and “descends” until reaching the most specific point necessary. That’s the  descent part, but the  recursive part requires a little more visualization. 

Imagine we’re parsing an IF statement. An IF statement is a

type of statement, and each non-terminal, including both

“statement” and “IF statement,” may get a corresponding

function in our recursive descent parser. An IF statement

has a THEN clause that’s also a statement. Therefore, when

we’re parsing an IF statement, we may again call our

function to parse a statement for the THEN clause—the same

function to parse a statement that called our function to

parse the IF statement! It’s a kind of recursion. We end up

calling the function that called the function we’re currently within. 

Both the  descent and the  recursion will become clearer as we dig into the code for the Parser class:

 NanoBASIC/parser.py

from NanoBASIC.tokenizer import Token

from typing import cast

from NanoBASIC.nodes import *

from NanoBASIC.errors import ParserError

class Parser:

def __init__(self, tokens: list[Token]):

self.tokens = tokens

self.token_index: int = 0

@property

def out_of_tokens(self) -> bool:

return self.token_index >= len(self.tokens)

    @property

def current(self) -> Token:

if self.out_of_tokens:

raise (ParserError(f"No tokens after " 

f"{self.previous.kind}", sel

f.previous))

return self.tokens[self.token_index]

@property

def previous(self) -> Token:

return self.tokens[self.token_index - 1]

The Parser class receives a collection of tokens from the

tokenizer. As parsing proceeds, an internal token_index

keeps track of which token we’re currently on. We also

define some convenience properties for retrieving the

current or previous token. 

The consume() helper method checks if the current token

is the expected token, increments token_index, and returns

the token that was checked. If the token is not the expected

token, we raise a ParserError:

def consume(self, kind: TokenType) -> Token:

if self.current.kind is kind:

self.token_index += 1

return self.previous

raise ParserError(f"Expected {kind} after {self.prev

ious}" 

f"but got {self.current}.", self.c

urrent)

A helper function like consume(), sometimes called eat()

or accept() instead, is common in parsers because checking

if a token is the expected token and moving on if it is, is a very common pattern. If we didn’t have consume(), you’d see

a lot of unnecessary duplicative code. 

The goal of our parser is to produce an AST that can be walked by the runtime to execute the NanoBASIC program. 

The root of the AST will be a list of statements. Another

way of thinking about it is that a NanoBASIC program is

just a list of statements, written in order, from the top to

the bottom of a source code file. Ultimately, our runtime

will execute these statements one at a time. Our recursive

descent parser therefore starts in parse(), which will

“descend” through the other parser methods and finally

return the list of statements:

def parse(self) -> list[Statement]:

statements: list[Statement] = []

while not self.out_of_tokens:

statement = self.parse_line()

statements.append(statement)

return statements

Each statement must be written on its own line, next to

a line identifier, so the first step in the descent is parsing a line:

def parse_line(self) -> Statement:

number = self.consume(TokenType.NUMBER)

return self.parse_statement(cast(int, number.associa

ted_value))

We expect the line identifier to be at the beginning of a

line. Therefore, parse_line() starts by trying to consume a

NUMBER token. If that’s successful, we continue parsing the

statement itself. The use of cast() here is for type checking. 

If you recall from the tokenizer’s code (go back and look, if it’s helpful), a token’s associated_value can be either an

integer, a string, or None. We know a NUMBER will only ever

have an integer as its associated_value, so it’s safe to cast to

int. A type checker like mypy or Pyright can make use of this cast. 

Notice how the parse_line() method corresponds to the

<line> non-terminal in the grammar. From this point

forward, many of our methods will be direct analogs of non-

terminals in the grammar or their respective production

rules (go back and look at the grammar as a guide). For

example, our next method, parse_statement(), corresponds to

the <statement> non-terminal:

def parse_statement(self, line_id: int) -> Statement:

match self.current.kind:

case TokenType.PRINT:

return self.parse_print(line_id)

case TokenType.IF_T:

return self.parse_if(line_id)

case TokenType.LET:

return self.parse_let(line_id)

case TokenType.GOTO:

return self.parse_goto(line_id)

case TokenType.GOSUB:

return self.parse_gosub(line_id)

case TokenType.RETURN_T:

return self.parse_return(line_id)

raise ParserError("Expected to find start of stateme

nt.", 

self.current)

This method is responsible for figuring out which of the

six statements in NanoBASIC appears in the next few

tokens. Luckily, every statement in NanoBASIC can be

identified by its single starting token (PRINT, IF, LET, GOTO, GOSUB, or RETURN), so we just need to match the current token against the six possibilities. 

For organizational purposes, I’ve broken up each

statement type into its own method, even though these

don’t directly correspond to non-terminals. Instead, you can

think of each of the production rules of <statement> as receiving its own method. We start with the PRINT

statement, which is one of the trickier statements to parse

because it can have multiple different comma-separated

types in its <expr-list>. 

# PRINT "COMMA",SEPARATED,7154

def parse_print(self, line_id: int) -> PrintStatement:

print_token = self.consume(TokenType.PRINT)

printables: list[str | NumericExpression] = []

last_col: int = print_token.col_end

while True: # keep finding things to print

if self.current.kind is TokenType.STRING: ❶

string = self.consume(TokenType.STRING)

printables.append(cast(str, string.associate

d_value))

last_col = string.col_end

elif (expression := self.parse_numeric_expressio

n()) is not None: ❷

printables.append(expression)

last_col = expression.col_end

else: ❸

raise ParserError("Only strings and numeric 

expressions " 

"allowed in print list.", 

self.current)

# Comma means there's more to print

if not self.out_of_tokens and self.current.kind 

is TokenType.COMMA: ❹

self.consume(TokenType.COMMA)

continue

break

return PrintStatement(line_id=line_id, line_num=prin

t_token.line_num, 

col_start=print_token.col_star

t, col_end=last_col, 

printables=printables)

We hold the items to be printed in the printables Python list. To gather them, we keep going forward (using a loop), 

token after token, checking for a string ❶ or a numeric

expression ❷. As long as we find one of these, followed by a

comma ❹, we keep looping. If we find something that isn’t

a string or a numeric expression ❸, we throw a ParserError. 

As we loop, we also keep track of the last item’s column

end for debug purposes. The ultimate PrintStatement node

that’s returned needs to know where it starts and where it

ends; it starts where the PRINT token starts and it ends at

the end of the last column of the last item in the expression list. 

Next, let’s look at parse_if(), which includes a nice

example of the recursive aspect of recursive descent:

# IF BOOLEAN_EXPRESSION THEN STATEMENT

def parse_if(self, line_id: int) -> IfStatement:

if_token = self.consume(TokenType.IF_T)

boolean_expression = self.parse_boolean_expression()

self.consume(TokenType.THEN)

statement = self.parse_statement(line_id)

return IfStatement(line_id=line_id, line_num=if_toke

n.line_num, 

col_start=if_token.col_start, col

_end=statement.col_end, 

boolean_expr=boolean_expression, 

then_statement=statement)

As we’ve discussed, the THEN clause of an IF statement is

another statement. To parse the THEN clause, we call

parse_statement(), the same method that higher up in the call chain led us to parse_if() in the first place. First, though, we parse the Boolean expression at the start of the IF

statement. We’ll look at how to do this shortly. 

In all of the parsing methods discussed so far, notice

how we call other parsing methods and assume they work. 

It’s up to the other methods to do their own error handling and continually move the token_index along, usually by

calling consume(). That pattern continues in the methods for

the other four kinds of statements:

# LET VARIABLE = VALUE

def parse_let(self, line_id: int) -> LetStatement:

let_token = self.consume(TokenType.LET)

variable = self.consume(TokenType.VARIABLE)

self.consume(TokenType.EQUAL)

expression = self.parse_numeric_expression()

return LetStatement(line_id=line_id, line_num=let_to

ken.line_num, 

col_start=let_token.col_start, c

ol_end=expression.col_end, 

name=cast(str, variable.associat

ed_value), expr=expression)

# GOTO NUMERIC_EXPRESSION

def parse_goto(self, line_id: int) -> GoToStatement:

goto_token = self.consume(TokenType.GOTO)

expression = self.parse_numeric_expression()

return GoToStatement(line_id=line_id, line_num=goto_

token.line_num, 

col_start=goto_token.col_start, 

col_end=expression.col_end, 

line_expr=expression)

# GOSUB NUMERIC_EXPRESSION

def parse_gosub(self, line_id: int) -> GoSubStatement:

gosub_token = self.consume(TokenType.GOSUB)

expression = self.parse_numeric_expression()

return GoSubStatement(line_id=line_id, line_num=gosu

b_token.line_num, 

col_start=gosub_token.col_star

t, 

col_end=expression.col_end, 

line_expr=expression)

    # RETURN

def parse_return(self, line_id: int) -> ReturnStatement:

return_token = self.consume(TokenType.RETURN_T)

return ReturnStatement(line_id=line_id, line_num=ret

urn_token.line_num, 

col_start=return_token.col_st

art, 

col_end=return_token.col_end)

These four parse methods are fairly similar to one

another. In each case, we expect a certain starting token

(LET or GOTO, for example), and then we parse some

information that we need to create a node for that type of

statement. For instance, we need a variable and a numeric

expression for a LET statement, and we need just a numeric

expression (what line to go to) for a GOTO statement. The

simplest statement to parse is RETURN because nothing

comes after a RETURN. 

As promised, here’s the parse_boolean_expression()

method:

# NUMERIC_EXPRESSION BOOLEAN_OPERATOR NUMERIC_EXPRESSION

def parse_boolean_expression(self) -> BooleanExpression:

left = self.parse_numeric_expression()

if self.current.kind in {TokenType.GREATER, TokenTyp

e.GREATER_EQUAL, TokenType.EQUAL, 

TokenType.LESS, TokenType.L

ESS_EQUAL, TokenType.NOT_EQUAL}:

operator = self.consume(self.current.kind)

right = self.parse_numeric_expression()

return BooleanExpression(line_num=left.line_num, 

col_start=left.col_star

t, col_end=right.col_end, 

operator=operator.kind, 

left_expr=left, right_expr=right)

raise ParserError(f"Expected boolean operator but fo

und " 

                          f"{self.current.kind}.", self.curr ent)

A Boolean expression must contain two numeric

expressions and one of the allowed operator tokens

between them. We call the numeric expression before the

token left and the numeric expression after the token right. 

The operator token is stored in the BooleanExpression node so that we can do the appropriate comparison in the runtime. 

Parsing numeric expressions closely follows the

hierarchy of non-terminals in the grammar, from

<expression> to <term> to <factor>, with a method for each. A

<factor> can include a <var> or a <number>, but these are handled directly in parse_factor() because their needed

information is already contained in their respective tokens:

def parse_numeric_expression(self) -> NumericExpression:

left = self.parse_term()

# Keep parsing +s and -s until there are no more

while True:

if self.out_of_tokens: # what if expression is e

nd of file? 

return left

if self.current.kind is TokenType.PLUS:

self.consume(TokenType.PLUS)

right = self.parse_term()

left = BinaryOperation(line_num=left.line_nu

m, col_start=left.col_start, 

col_end=right.col_en

d, operator=TokenType.PLUS, 

left_expr=left, right

_expr=right)

elif self.current.kind is TokenType.MINUS:

self.consume(TokenType.MINUS)

right = self.parse_term()

left = BinaryOperation(line_num=left.line_nu

m, col_start=left.col_start, 

col_end=right.col_en

d, operator=TokenType.MINUS, 

left_expr=left, right

_expr=right)

else:

break # no more, must be end of expression

return left

def parse_term(self) -> NumericExpression:

left = self.parse_factor()

# Keep parsing *s and /s until there are no more

while True:

if self.out_of_tokens: # what if expression is e

nd of file? 

return left

if self.current.kind is TokenType.MULTIPLY:

self.consume(TokenType.MULTIPLY)

right = self.parse_factor()

left = BinaryOperation(line_num=left.line_nu

m, col_start=left.col_start, 

col_end=right.col_en

d, operator=TokenType.MULTIPLY, 

left_expr=left, right

_expr=right)

elif self.current.kind is TokenType.DIVIDE:

self.consume(TokenType.DIVIDE)

right = self.parse_factor()

left = BinaryOperation(line_num=left.line_nu

m, col_start=left.col_start, 

col_end=right.col_en

d, operator=TokenType.DIVIDE, 

left_expr=left, right

_expr=right)

else:

break # no more, must be end of expression

return left

def parse_factor(self) -> NumericExpression:

if self.current.kind is TokenType.VARIABLE:

variable = self.consume(TokenType.VARIABLE)

return VarRetrieve(line_num=variable.line_num, 

                               col_start=variable.col_start, col_end=variable.col_end, 

name=cast(str, variable.assoc

iated_value))

elif self.current.kind is TokenType.NUMBER:

number = self.consume(TokenType.NUMBER)

return NumberLiteral(line_num=number.line_num, 

col_start=number.col_start, 

col_end=number.col_end, 

number=int(cast(str, numbe

r.associated_value)))

elif self.current.kind is TokenType.OPEN_PAREN:

self.consume(TokenType.OPEN_PAREN)

expression = self.parse_numeric_expression()

if self.current.kind is not TokenType.CLOSE_PARE

N:

raise ParserError("Expected matching close p

arenthesis.", self.current)

self.consume(TokenType.CLOSE_PAREN)

return expression

elif self.current.kind is TokenType.MINUS:

minus = self.consume(TokenType.MINUS)

expression = self.parse_factor()

return UnaryOperation(line_num=minus.line_num, 

col_start=minus.col_start, 

col_end=expression.col_end, 

operator=TokenType.MINUS, 

expr=expression)

raise ParserError("Unexpected token in numeric expre

ssion.", self.current)

Notice the order of precedence here. In arithmetic, we

expect division to have higher precedence than subtraction, 

and parentheses to have higher precedence than anything. 

As I hinted when we first discussed the NanoBASIC

grammar, this can be modeled in recursive descent by the

order in which non-terminals are parsed. The further you

descend, the higher the precedence. In this case, anything

handled in parse_term() will have higher precedence than anything in parse_numeric_expression(), and anything in

parse_factor() will have higher precedence than anything in

parse_numeric_expression() or parse_term(). This is also the

reason that - and + appear in the same production rule

while / and * appear “deeper.” 

Each time we need a left or right side of an expression

in parse_numeric _expression() or parse_term(), we descend. 

For example, parse_numeric_expression() never calls

parse_numeric_expression(). Instead, it calls parse_term(). This might seem counterintuitive, since you might be wondering

how multiple additions in a row are handled. The key is that

parse_numeric_expression() and parse_term() both use loops, 

much like we had in parse_print() to accommodate an

arbitrary amount of arithmetic (such as many addition

operations). One way of thinking about it is that we

descend and handle anything of higher precedence, and

then fall back up to continue looping in

parse_numeric_expression() if there are any more addition or

subtraction tokens. 

Let’s try working through an example. Say we’re

parsing the expression 2 + 3 * 4 + 5. The initialization of

left in parse_numeric_expression() calls parse_term(), which

calls parse_factor(), which returns a NumberLiteral for 2. 

Then, we end up returning the 2 all the way back up to

parse_numeric_expression(), which stores it in left. Next, a +

token is encountered and parse_term() is called. It parses 3 *

4 using multiple calls to parse_factor(). We end up back in

parse_numeric_expression() with a BinaryOperation node for 3 *

4 referred to as right. Then, left and right are combined

into a new BinaryOperation and associated with left (a new

binding for it). Finally, the last + token is encountered, and 5 is parsed in much the same way that 2 was (descending

all the way to parse_factor()) and associated with right. 

Once again, left and right are combined together into left

for the final return value of parse_numeric_expression(). 

Try working through some arithmetic examples of your own to better understand how operators at a deeper level

of descent have a higher precedence. You’ll probably want

to have the parser code open as you work. The combination

of loops and the reuse of variables for different nodes can

be hard to reason about, but once you work through a

couple examples, it starts to make sense. You can also try

adding some print() calls to the various methods to

illustrate a parsing progression. You can eliminate the calls to run the AST through the runtime in  executioner.py if you haven’t yet finished entering the whole program. 

NOTE

 There are more efficient ways to parse arithmetic

 expressions. One popular method discovered by Dijkstra is called the shunting yard algorithm . A more efficient algorithm like shunting yard is sometimes combined with a recursive descent parser for the arithmetic expression

 parts in a kind of hybrid model. 

 The Runtime

The end result of our parser will be a collection of AST

Statement nodes stored as a list that the runtime can step

through and execute. I’ve named the class that walks the

AST Interpreter, although I realize this can be a little

confusing since this whole chapter is about building an

interpreter. Yes, the tokenizer and the parser are parts of

the overall interpreter, but this Interpreter class is the place where the language is actually interpreted in the sense that

the tokens that became nodes are turned into something

meaningful—a program that executes with some output. 

Regardless of whether or not it’s a good name, the

Interpreter class provides a runtime environment and an

understanding of how to modify the environment or provide

output based on the statement and expression nodes that it encounters. 

The Interpreter class starts off similarly to Parser:

 NanoBASIC/interpreter.py

from NanoBASIC.nodes import *

from NanoBASIC.errors import InterpreterError

from collections import deque

class Interpreter:

def __init__(self, statements: list[Statement]):

self.statements = statements

self.variable_table: dict[str, int] = {}

self.statement_index: int = 0

self.subroutine_stack: deque[int] = deque()

@property

def current(self) -> Statement:

return self.statements[self.statement_index]

Instead of a list of tokens as we had in the Parser class, 

Interpreter receives a list of statements. There’s also a

current property for convenience, to access the current

statement. The runtime environment consists of the

statements, a statement_index, a variable_table to keep track of each variable’s value, and a subroutine_stack that will help us get to the right place after a GOSUB and RETURN pair. 

Next, we need a way to connect a line identifier to a

statement index. Consider the following NanoBASIC

program:

27 PRINT "HELLO" 

38 GOTO 50

45 PRINT "NEVER" 

50 PRINT "BYE" 

When GOTO 50 is executed, the interpreter will need to find the statement associated with line identifier 50 and

continue running from there. In NanoBASIC, the

programmer can arbitrarily choose any line identifier for

any line, as long as all of the line identifiers are integers in increasing order, so how can we find 50? We need to search

the list of statements for it. Since the lines have to be in

order, our find_line_index() method can perform a binary

search:

# Returns the index of a *line_id* using a binary searc

h, 

# or None if not found; assumes the statements list is s

orted

def find_line_index(self, line_id: int) -> int | None:

low: int = 0

high: int = len(self.statements) - 1

while low <= high:

mid: int = (low + high) // 2

if self.statements[mid].line_id < line_id:

low = mid + 1

elif self.statements[mid].line_id > line_id:

high = mid - 1

else:

return mid

return None

Next, the run() method sequentially executes the

statements in statements:

def run(self):

while self.statement_index < len(self.statements):

self.interpret(self.current)

Notice that we’re using a while loop controlled by

statement_index instead of a for...in loop. This is because we may in fact jump around and skip or repeat some

statements due to GOTO and GOSUB. In other words, as we interpret various statements within the loop, statement_index may be modified. 

The interpret() method is the heart of the interpreter. It

interprets Statement nodes and modifies the runtime

environment or creates some output depending on the

meaning of each particular statement:

def interpret(self, statement: Statement):

match statement:

case LetStatement(name=name, expr=expr):

value = self.evaluate_numeric(expr)

self.variable_table[name] = value

self.statement_index += 1

case GoToStatement(line_expr=line_expr):

go_to_line_id = self.evaluate_numeric(line_e

xpr)

if (line_index := self.find_line_index(go_to

_line_id)) is not None:

self.statement_index = line_index

else:

raise InterpreterError("No GOTO line i

d.", self.current)

case GoSubStatement(line_expr=line_expr):

go_sub_line_id = self.evaluate_numeric(line_

expr)

if (line_index := self.find_line_index(go_su

b_line_id)) is not None:

self.subroutine_stack.append(self.statem

ent_index + 1) # setup for RETURN

self.statement_index = line_index

else:

raise InterpreterError("No GOSUB line i

d.", self.current)

case ReturnStatement():

if not self.subroutine_stack: # check if the 

stack is empty

raise InterpreterError("RETURN without G

OSUB.", self.current)

                self.statement_index = self.subroutine_stac k.pop()

case PrintStatement(printables=printables):

accumulated_string: str = "" 

for index, printable in enumerate(printable

s):

if index > 0: # put tabs between items i

n the list

accumulated_string += "\t" 

if isinstance(printable, NumericExpressi

on):

accumulated_string += str(self.evalu

ate_numeric(printable))

else: # otherwise, it's a string

accumulated_string += str(printable)

print(accumulated_string)

self.statement_index += 1

case IfStatement(boolean_expr=boolean_expr, then

_statement=then_statement):

if self.evaluate_boolean(boolean_expr):

self.interpret(then_statement)

else:

self.statement_index += 1

case _:

raise InterpreterError(f"Unexpected item {se

lf.current} " 

f"in statement list.", s

elf.current)

Walking the AST turns out to be much easier than

constructing it, since we can make use of the structural

pattern matching that Python’s match statement provides. In

each case (except ReturnStatement, which has no properties), 

we capture some of the properties of the Statement subclass

that we are matching. For example, the line case

LetStatement(name=name, expr=expr): says that, assuming

statement is a LetStatement, statement.name will be stored in a

local name variable and statement.expr will be stored in a local expr variable. 

Three of the cases keep the interpreter moving along by

incrementing statement_index after they do their business. 

The GoToStatement, GoSubStatement, and ReturnStatement cases

don’t, because they’re jumping around the code by

modifying statement_index directly. Every time a

GoSubStatement is encountered, we need to know where to

come back to when a ReturnStatement is next executed—a

sort of bookmark, if you will. This is the purpose of

subroutine_stack. In the GoSubStatement case, we store

statement_index + 1 on the stack to avoid an infinite loop

(going back to the source of the GOSUB); then, in the

ReturnStatement case, we pop from the stack. 

Note how, if the IfStatement node’s boolean_expr evaluates

to True, interpret() is called recursively and the

statement_index isn’t incremented. This is because the

statement associated with the THEN clause will itself modify

statement_index. 

Evaluating numeric expressions is mostly just a matter

of executing the right Python operator to coincide with a

NanoBASIC arithmetic operator token, or retrieving a

variable from the variable_table:

def evaluate_numeric(self, numeric_expression: NumericExpr

ession) -> int:

match numeric_expression:

case NumberLiteral(number=number):

return number

case VarRetrieve(name=name):

if name in self.variable_table:

return self.variable_table[name]

else:

raise InterpreterError(f"Var {name} used 

" 

f"before initiali

zed.", numeric_expression)

            case UnaryOperation(operator=operator, expr=exp r):

if operator is TokenType.MINUS:

return -self.evaluate_numeric(expr)

else:

raise InterpreterError(f"Expected - " 

f"but got {operat

or}.", numeric_expression)

case BinaryOperation(operator=operator, left_exp

r=left, right_expr=right):

if operator is TokenType.PLUS:

return self.evaluate_numeric(left) + sel

f.evaluate_numeric(right)

elif operator is TokenType.MINUS:

return self.evaluate_numeric(left) - sel

f.evaluate_numeric(right)

elif operator is TokenType.MULTIPLY:

return self.evaluate_numeric(left) * sel

f.evaluate_numeric(right)

elif operator is TokenType.DIVIDE:

return self.evaluate_numeric(left) // se

lf.evaluate_numeric(right)

else:

raise InterpreterError(f"Unexpected bina

ry operator " 

f"{operator}.", n

umeric_expression)

case _:

raise InterpreterError("Expected numeric exp

ression.", 

numeric_expression)

Notice all of the recursive calls in evaluate_numeric(). 

When you’re first learning to program in an imperative

language like Python, recursion may seem like an esoteric

topic. As you then graduate to be an intermediate or

advanced programmer, you start to see its use. This project

is a good illustration. We’ve seen in both the Parser and

Interpreter classes how useful recursion can be to express ourselves algorithmically. 

Believe it or not, there are whole programming

languages (mostly in the functional paradigm) that have no

loops, just recursion. That may sound extreme, and using

only recursion would certainly be a terrible way to program

Python, since it would make your code a lot less readable to

other Python programmers and incur some performance

penalties. But it underscores what a powerful technique

recursion can be. Anything you can do with loops, you can

also do recursively, but the magic is when the recursion

actually helps you express yourself better, as is the case in this project. In particular, recursion can be really helpful

when working with hierarchical data structures like an

AST. 

Evaluating Boolean expressions is much the same as

evaluating numeric ones. It’s a conversion from

NanoBASIC operators to Python operators:

def evaluate_boolean(self, boolean_expression: BooleanEx

pression) -> bool:

left = self.evaluate_numeric(boolean_expression.left

_expr)

right = self.evaluate_numeric(boolean_expression.rig

ht_expr)

match boolean_expression.operator:

case TokenType.LESS:

return left < right

case TokenType.LESS_EQUAL:

return left <= right

case TokenType.GREATER:

return left > right

case TokenType.GREATER_EQUAL:

return left >= right

case TokenType.EQUAL:

return left == right

case TokenType.NOT_EQUAL:

                return left != right

case _:

raise InterpreterError(f"Unexpected boolean 

operator " 

f"{boolean_expression.op

erator}.", boolean_expression)

And that’s it! Running a NanoBASIC program is much

easier than parsing one. 

NOTE

 If this were a simple compiler and not a simple interpreter, instead of walking the AST and running some action, we

 would be generating machine code as we encounter each

 node. 

Running a Program

Now that our NanoBASIC interpreter is complete, we can

run some NanoBASIC programs. You can find Tiny BASIC

programs online that can be run in NanoBASIC (or

modified if they use INPUT or another feature that

NanoBASIC doesn’t have). You can also write your own

NanoBASIC programs, and that’s actually a great way to

test your interpreter. As mentioned, I’ve also provided

several simple NanoBASIC programs in the project’s

 Examples folder. For instance, we saw  fib.bas early in the chapter. Another one of the examples,  gcd.bas, finds the greatest common divisor of two numbers specified in the

source code. Here it is finding the greatest common divisor

of 350 and 539:

% python3 -m NanoBASIC NanoBASIC/Examples/gcd.bas

7

Again, as in Chapter 1,  the command to run the program assumes you’re in the main directory of the

repository. Don’t forget to run the program as a module

using the -m option. 

Testing NanoBASIC

Like with Brainfuck, it’s helpful to have some integration

tests that ensure our interpreter is running correctly. The

NanoBASIC tests are very similar to the Brainfuck tests. 

We hijack the standard output and ensure the expected

output is the same as the actual output for many of the

programs in the  Examples folder:

 tests/test_nano basic.py

import unittest

import sys

from pathlib import Path

from io import StringIO

from NanoBASIC.executioner import execute

# Tokenizes, parses, and interprets a NanoBASIC

# program; stores the output in a string and returns it

def run(file_name: str | Path) -> str:

output_holder = StringIO()

sys.stdout = output_holder

execute(file_name)

return output_holder.getvalue()

class NanoBASICTestCase(unittest.TestCase):

def setUp(self) -> None:

self.example_folder = (Path(__file__).resolve().pare

nt.parent

/ 'NanoBASIC' / 'Examples')

def test_print1(self):

program_output = run(self.example_folder / "print1.b

as")

expected = "Hello World\n" 

self.assertEqual(program_output, expected)

def test_print2(self):

program_output = run(self.example_folder / "print2.b

as")

expected = "4\n12\n30\n7\n100\t9\n" 

self.assertEqual(program_output, expected)

def test_print3(self):

program_output = run(self.example_folder / "print3.b

as")

expected = "E is\t-31\n" 

self.assertEqual(program_output, expected)

def test_variables(self):

program_output = run(self.example_folder / "variable

s.bas")

expected = "15\n" 

self.assertEqual(program_output, expected)

def test_goto(self):

program_output = run(self.example_folder / "goto.ba

s")

expected = "Josh\nDave\nNanoBASIC ROCKS\n" 

self.assertEqual(program_output, expected)

def test_gosub(self):

program_output = run(self.example_folder / "gosub.ba

s")

expected = "10\n" 

self.assertEqual(program_output, expected)

def test_if1(self):

program_output = run(self.example_folder / "if1.ba

s")

expected = "10\n40\n50\n60\n70\n100\n" 

self.assertEqual(program_output, expected)

    def test_if2(self):

program_output = run(self.example_folder / "if2.ba

s")

expected = "GOOD\n" 

self.assertEqual(program_output, expected)

def test_fib(self):

program_output = run(self.example_folder / "fib.ba

s")

expected = "0\n1\n1\n2\n3\n5\n8\n13\n21\n34\n55\n89

\n" 


self.assertEqual(program_output, expected)

def test_factorial(self):

program_output = run(self.example_folder / "factoria

l.bas")

expected = "120\n" 

self.assertEqual(program_output, expected)

def test_gcd(self):

program_output = run(self.example_folder / "gcd.ba

s")

expected = "7\n" 

self.assertEqual(program_output, expected)

if __name__ == "__main__":

unittest.main()

One additional feature of the NanoBASIC tests is that

many of them isolate a single statement type. For example, 

 print2.bas only uses PRINT statements and numeric

expressions, so if GOTO isn’t working correctly, test_print2() can still pass (but hopefully GOTO errors will be caught by

another test). This isolationist methodology provides more

granular testing results, but we still need more

comprehensive integration tests like  fib.bas to ensure the statements work correctly in concert. A more robust set of

unit tests would also include tests that check the tokenizer, parser, and interpreter independently. 

You should find that all of the tests pass. You can also

try adding a BASIC program of your own creation as an

additional test. 

CODE MEETS LIFE

My dad, Danny Kopec,10 who was a computer science professor, learned programming at Dartmouth College, where he took a course in BASIC with Dartmouth president John Kemeny, 11 one of the language’s creators. When I was first learning to program at about eight years old in the mid-1990s, he bought me a copy of True

BASIC,12 the “official” BASIC released by a company started by Kemeny and BASIC co-creator Thomas Kurtz. 13 BASIC was kind of anachronistic by 1995, but I didn’t know it. I spent a lot of time making games with True BASIC, though I don’t think I ever quite learned subroutines. I guess I was writing spaghetti code. 

Like my dad, I ended up going to Dartmouth for my undergraduate studies (as an economics major), and after briefly working in a job on Wall Street that I hated, I applied to graduate programs in computer science. The programming thread that started with BASIC was still in me. How can somebody without a computer science degree go to

graduate school in computer science? I took five computer science courses as an undergrad, most of which I did well in, and published some projects on my own time, and that was enough to get into a few programs. I ended up back at Dartmouth for a master’s degree. For anyone considering this route, let me say that not having a full undergraduate degree in computer science made the transition to the master’s program quite difficult. I wouldn’t recommend going into a very different field for a graduate degree without a lot of self-study. 

To keep doubling down on my mistakes, during the first semester of my master’s program, I decided to take a class in the thorny subject of compilers. It ended up being the lowest grade of my graduate career. The class involved a big project building a C compiler in C (with some missing features). I had a partner for the project, and we broke the work up into phases of the compiler, similar to the phases we went over in this chapter (tokenizer, parser, code

generator, and so on). The compiler would work only if all the phases worked. By the time the last week of the semester rolled around, I had written a couple thousand lines of code for my phases, while my partner had written fewer than 100 for his part, despite my consistent prodding. I think about that experience a lot today when I assign group projects to students: sometimes when they blame their partner, 

they’re telling the truth. No doubt my code wasn’t great either, but at least I wrote it. 

We worked in a mad dash with several all-nighters to get

something working, putting my partner’s pittance of code together with mine and writing a lot more to fill in all of the blanks. In the end, our compiler did some basic things correctly, but it failed the majority of the professor’s automated tests. 

How did someone who nearly flunked a compilers course end up

writing this chapter on interpreters? Eight years later, and a couple years into my career in computer science education, I remembered my experience with BASIC. I had also used a children’s programming language called Logo14 when I was growing up, and together the two languages were a really good way to learn to program as a kid. As a challenge to myself, I decided to build my own children’s

programming language that’s a cross between BASIC and Logo. It’s not a novel idea—many people have done similar projects—but I wanted to make something polished and prove to myself that the compilers class didn’t have to be the end of programming language development for me. 

The result was a product called SeaTurtle15 that sold hundreds of copies. Hundreds, not thousands. It’s not going to make me rich, but it proved to me that I could write a programming language that people would actually want to buy. A real programming language. Okay, a real “kid” programming language. 

That experience with SeaTurtle led me to create NanoBASIC as a Swift project for my Emerging Languages class (mentioned in the

“Code Meets Life” box in Chapter 1). And that experience led me to this chapter. NanoBASIC is very simple, but it’s real, and once you’ve built something real, you’re not that far from building something interesting. In the end, the perspective I gained from all of these experiences, including the painful compilers class, made me the right person to write this chapter. Now that you’ve read it, hopefully you don’t have to struggle the same way I did in that class. 

Real-World Applications

As previously discussed in “BASIC History” on page 22, BASIC was the standard language of the personal

computing revolution. Millions of programmers got their

start writing BASIC, and Tiny BASIC was a real and widely

used dialect of BASIC. Some of the progenitors of Tiny

BASIC pioneered the Free Software movement. Thanks to

their open licensing, Tiny BASIC was ported to a wide

variety of platforms where its simplicity was actually an advantage. It ran on machines with so little memory that

they couldn’t run languages much more sophisticated than

Tiny BASIC. 

It may not seem like much, but for an early personal

computer user with no other alternatives (due to cost or

availability) and limited memory, Tiny BASIC was a huge

improvement over having to write machine code. Because it

was freely licensed and ported to so many platforms, it also

offered a kind of portability for programs written in it. If a machine could run Tiny BASIC, then it could run your

program. 

Tiny BASIC is still in use today. Like Brainfuck, it serves

as an educational tool, but it’s also being used for more

than that. As of this writing, a German company ships

microcontrollers running a version of Tiny BASIC.16

The interpreters you’ll find running modern popular

programming languages are much more sophisticated than

the one we built in this chapter, yet they have the same

essential building blocks—a tokenizer, a parser, an

intermediate representation like an AST, and a runtime

environment. The added sophistication is generally there to

support additional features or performance, but the

relatively simple techniques from this chapter are sufficient to build a working prototype of a new language or even a

production-ready domain-specific language (DSL) for your

work. Generally, DSLs don’t require high performance. 

Many successful real-world programming languages

start out with quite simple implementations and evolve

over time. For example, Ruby was originally an AST-

walking interpreter like NanoBASIC. Ruby later compiled

to bytecode that executes on a virtual machine (more about

virtual machines in Chapter 5), and more recent versions of Ruby have incorporated a just-in-time (JIT) compiler. 

Whether a language implementation walks an AST, uses

bytecode, or has a JIT compiler, it needs the principles we

covered in this chapter. 

Exercises

1.  Make it possible for escaped double-quote characters to

appear in NanoBASIC strings. This will require learning

a bit about regular expressions. 

2.  Turn NanoBASIC into Tiny BASIC by implementing

INPUT statements, which allow the user to type a numeric

value that gets stored in a variable. This is enough to

implement the “baseline” Tiny BASIC (and to be able to

run Tiny BASIC programs you find online with your

interpreter), but many real-world versions also had

extensions, such as a way of generating random

numbers called RND(). 

3.  Tiny BASIC runs in an interactive mode that supports

the commands (seen as statements in the original

grammar) CLEAR, LIST, RUN, and END. Lines that start with a

line number are stored. That storage can be cleared, 

listed, or run. The program can also be terminated. 

Create an interactive mode (basically a REPL) for

NanoBASIC with these same four commands. I said

Exercise 2 would turn NanoBASIC into Tiny BASIC, but

with this interactive mode, you’ll have truly

implemented Tiny BASIC. 

4.  Add support for string interpolation to NanoBASIC. 

When a string contains a dollar sign before an

identifier, check if that identifier is defined in the

variable table and output its value in place of it. For

example, "The value of X is $X" would print The value of X

is 24 if the variable X has the value 24. This will require

modifying the tokenizer, the parser, and the runtime. 

5.  Write a NanoBASIC program that does something

interesting and tests every statement in the interpreter. 

Think of this as the final integration test. 
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COMPUTATIONAL ART

[image: Image 9]

3

RETRO IMAGE PROCESSING

What do you do when you need

to show an image on a display

with fewer colors than are in the image

itself? Solving that problem is the realm

of dithering algorithms, which

strategically use a limited color palette to

create the illusion of more colors. In this

chapter, we’ll write a program that can

take any modern photo and display it on a

classic monochrome Macintosh. It will

convert the photo to a dithered 1-bit

black-and-white version of itself and

export it to a format that an early

Macintosh can read: MacPaint. Along the

way, we’ll learn a dithering algorithm, a

compression algorithm, and a bit about

file formats. 
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What Is Dithering? 

 Dithering algorithms purposely introduce noise into an image in a specific way that makes the image appear to

have more color depth than it actually does. This trick on

the human eye has both practical and artistic applications. 

If you’ve ever seen full-motion graphics on an early 1990s

game console or computer, then you probably have a sense

of what dithering looks like. The technique is also prevalent in animated GIFs, since GIFs can only support 256 colors. 

(There’s a hacky way to get more than 256 colors in a GIF, 

but most export programs don’t support it.)

If you look at Figure 3-1,  you’ll see the same image in JPEG and GIF formats. The JPEG has 45,807 colors, while

the GIF has just 256. Thanks to dithering, it’s not as easy to see the difference as you might expect. (If you’re reading

this book in print, see the  figures directory of the book’s GitHub repository for color versions of the images.)

 Figure 3-1: A 45,807-color JPEG reduced to a 256-color GIF with dithering Another common use of dithering and techniques like it

is to make a black-and-white image appear to be grayscale. 

Newspapers have done something similar to dithering (a

technique called  halftone) for a long time to make their purely black-and-white printers reproduce photographs. On

computing devices, dithering allows for images that have

depth, even on a 1-bit screen that can only show two colors (typically black and white). It’s a technique that’s still

relevant today. For example, the Panic Playdate, a game

console released in 2022, has a 1-bit black-and-white

screen. Most Amazon Kindle devices support 16 levels of

grayscale, so many book covers and photographs displayed

on the Kindle must be approximated via dithering (albeit

not 1-bit dithering). 

The original 1984 Apple Macintosh had a 1-bit black-

and-white screen, as did several subsequent models. In

fact, Apple continued to sell 1-bit Macintoshes right up

until the Classic II was discontinued in 1993, and the

company only stopped providing user support for the

Classic II in 2001. During those 17 years of supported life, 

third-party developers created plenty of cool graphics for

monochrome Macintoshes, and they did this using

dithering algorithms. 

We’ll target those classic monochrome Macintoshes in

our project, along with a beloved graphics editor that they

ran, MacPaint. Figure 3-2 shows the end result: the image from Figure 3-1 displayed on MacPaint running on a Mac Plus emulator. (The 1986 Mac Plus was a slight evolution of

the original 1984 Macintosh but had the same screen

constraints.) The figure was created using the program

built in this chapter. 
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 Figure 3-2: The beach scene from Figure 3-1 , converted by our program to display in MacPaint

You may notice the beach scene is more “zoomed in” in

Figure 3-2 than it is in Figure 3-1. For Figure 3-1, I first scaled the scene to a lower resolution so that both versions

could fit next to each other in the same figure (I used

software to count the colors of the lower-resolution

versions). I ran the original full-resolution image through

our program to convert it to MacPaint for Figure 3-2. 

MacPaint is limited to documents that are 576 pixels wide

by 720 pixels tall, so as we’ll see, our program will always

first resize images to fit within that constraint. However, 

MacPaint’s display window on a Mac Plus is even smaller

because a Mac Plus display is only 512 pixels across and

some of those pixels are taken up by the toolbar. Therefore, 

we’re only seeing roughly 400 of the 576 pixels across in

Figure 3-2. The full height of the image is also obscured. 

Getting Started

The pipeline our project will follow is pretty

straightforward:

1. Read an image from disk. 

2. Resize it and convert it to grayscale. 

3. Dither it to black and white. 

4. Write it to disk in MacPaint format. 

The unique and interesting parts of the project are

steps 3 and 4, so we’ll use a library to complete steps 1 and 2. Probably the most popular imaging library in the Python

world is Pillow. Installing it should be as easy as pip install pillow. 

Pillow can read an image in any popular format in a

single line of code, and it’s just a few more lines to resize an image and convert it to grayscale. We’ll complete this

simple preparatory work right in our  __main__.py file, along with handling command line arguments as we’ve done in

the prior two projects. Let’s start with the code for resizing and converting to grayscale, which appears in a function

aptly called prepare():

# RetroDither/__main__.py

from PIL import Image

from argparse import ArgumentParser

from RetroDither.dither import dither

from RetroDither.macpaint import MAX_WIDTH, MAX_HEIGHT, writ

e_macpaint_file

def prepare(file_name: str) -> Image.Image:

with open(file_name, "rb") as fp:

image = Image.open(fp)

# Size to within the bounds of the maximum for MacPa

int

if image.width > MAX_WIDTH or image.height > MAX_HEI

GHT:

            desired_ratio = MAX_WIDTH / MAX_HEIGHT

ratio = image.width / image.height

if ratio >= desired_ratio:

new_size = (MAX_WIDTH, int(image.height * (M

AX_WIDTH / image.width)))

else:

new_size = (int(image.width * (MAX_HEIGHT / 

image.height)), MAX_HEIGHT)

image.thumbnail(new_size, Image.Resampling.LANCZ

OS)

# Convert to grayscale

return image.convert("L")

As noted earlier, MacPaint images are limited to a

resolution of 576 pixels wide by 720 pixels tall. We define

those values as constants in  macpaint.py. In prepare(), if the image is too large, we scale it proportionally. For that, we

figure out the ratio of the image’s width to its height and

compare it to the ratio of MacPaint’s maximum dimensions. 

By scaling one dimension to the maximum size allowed in

MacPaint and the other dimension according to the

appropriate ratio, we get a final image that’s as large as

possible in MacPaint without any part of it getting cut off. 

To figure out the resizing formula, I did some very simple

cross-multiplication algebra on pen and paper. I

recommend you do the same if you’re curious about how

this works. 

Like reading an image file, doing a resize in Pillow is an

easy one-liner with the image.thumbnail() method. It offers

multiple built-in algorithms for actually calculating what

colors each of the resized pixels will be; LANCZOS is perhaps the highest quality (at some performance cost). Finally, 

image.convert("L") converts the image to grayscale. The "L" 

for grayscale mode is short for  luminance, which in

computer graphics is also sometimes known as  luma. 

Now let’s handle the command line arguments:

if __name__ == "__main__":

argument_parser = ArgumentParser("RetroDither")

argument_parser.add_argument("image_file", help="Input i mage file.")

argument_parser.add_argument("output_file", help="Result ing MacPaint file.")

argument_parser.add_argument('-g', '--gif', default=Fals

e, action='store_true', 

help='Create an output gif 

as well.')

arguments = argument_parser.parse_args()

original = prepare(arguments.image_file)

dithered_data = dither(original)

if arguments.gif:

out_image = Image.frombytes('L', original.size, dith

ered_data.tobytes())

out_image.save(arguments.output_file + ".gif")

write_macpaint_file(dithered_data, arguments.output_fil

e, original.width, original.height)

At this point, on our third project, we’ve seen

ArgumentParser quite a bit. For Retro Dither, we have a

couple more command line options compared to the earlier

projects. One, output_file, is for the user to specify an

output filename and path for the results. The optional -g or

--gif parameter is for the user to specify if they want GIF

output in addition to MacPaint output. If the user requests

GIF output, we use Pillow to write a GIF version of the

dithered image. 

Pillow is a very full-featured and powerful library. We

won’t use many of its features in this chapter, but if you

need to do image manipulation in Python, it’s well worth

the invested time to learn it. We’ll also see it again in the next chapter. For more information, check out the Pillow

documentation at  https://pillow.readthedocs.io. 

The Dithering Algorithm

There are many different dithering algorithms, the most

popular class of which are known as  error-diffusion

algorithms. This type of algorithm takes some of the

difference between where a pixel ends up and where it

began (the  error) and spreads ( diffuses) it among nearby pixels. The most popular error-diffusion dithering algorithm

is known as Floyd-Steinberg dithering (invented by Robert

Floyd and Louis Steinberg in 1976). In fact, Pillow has

built-in support for Floyd-Steinberg dithering. 

Just using Pillow to do the dithering wouldn’t be any

fun, and we wouldn’t learn anything in the process. 

Instead, we’ll implement an algorithm that Pillow doesn’t

have: the Atkinson dithering algorithm. It was created by

Bill Atkinson in 1984 specifically for use with software on

the original Macintosh, like MacPaint, which Atkinson was

the author of. It’s therefore not a surprise that Atkinson

dithering was a popular technique on monochrome Macs. It

will make our results look more authentic. Like Floyd-

Steinberg, Atkinson dithering is an error-diffusion

algorithm. As we’ll see, it only takes a few changes to go

from one error-diffusion algorithm to another. 

Before we dive into the specifics of Atkinson dithering, 

let’s talk about error-diffusion dithering algorithms more

generally. Most of these algorithms look at an image’s

pixels one at a time from the top left through to the bottom

right. The movement is from left to right across each row, 

and then down one row after each row is complete. For

every pixel processed, the following steps occur:

1. Find which of the output colors it’s closest to. (In

dithering, the output colors are specified in advance, for

example, black and white.)

2. Find the difference between the output color and the

original color of the pixel. 

3. Add part of the difference to some of the pixels to the right and below the current pixel. 

Let’s take those general steps and apply them to our

specific scenario, where the pixels are being converted

from grayscale to black and white via Atkinson dithering:

1. Find whether black or white is closer to the gray in the

pixel. This will be based on some kind of threshold. For

instance, if the grays are stored as 8-bit unsigned

integers, there may be 256 shades of gray numbered 0

through 255, and our threshold could be 127. Any pixel

greater than 127 may be marked as white (255 in this

scheme), and any pixel less than or equal to 127 may be

marked as black (0). 

2. Subtract the difference between the new pixel color and

its original color. Imagine the original gray was 204. 

The difference would be 255 – 204 = 51. This is our

error. 

3. Add one-eighth of the error to six specific pixels close to the original pixel. This is the diffusion step. In this case, 51 // 8 = 6 (we need to do integer division). The pixels

adjusted are: one to the right, two to the right, one

diagonally down and left, one diagonally down and

right, one straight below, and one two below. 

Only step 3 is different between Floyd-Steinberg

dithering and Atkinson dithering. You’ll note that since

we’re distributing one-eighth of the error among six pixels, 

we’re only distributing a total of six-eighths or three-

quarters of the total error. In Floyd-Steinberg dithering,  all of the error is distributed among four nearby pixels. This

difference in how the error is distributed gives Atkinson

dithering a look that seems to emphasize changes in

contrast, whereas Floyd-Steinberg dithering can have a

smoother appearance. Figure 3-3 shows an original image
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(first panel), Atkinson dithering (second panel), and Floyd-

Steinberg dithering (third panel). 

 Figure 3-3: The author’s grandmother in a portrait that shows good contrast between various colors illustrating how edges appear in dithering

Tables 3-1 and 3-2 contain matrices representing the error diffusion in Atkinson dithering and Floyd-Steinberg

dithering, respectively. The  X indicates the original pixel location, and the column and row headers indicate

movement in columns or rows away from the original pixel. 

Table 3-1: Error Diffusion in Atkinson Dithering

Δ

–1

0

+1

+2

0

X

1/8

1/8

+1

1/8

1/8

1/8

+2

1/8

Table 3-2: Error Diffusion in Floyd-Steinberg Dithering Δ

–1

0

+1

0

X

7/16

Δ

–1

0

+1

+1

3/16

5/16

1/16

Although we’ll be implementing Atkinson dithering, 

we’ll keep the matrix separated in such a way that it will be easy for you to plug in a different matrix. For example, you

can easily change the code to Floyd-Steinberg dithering or

another error-diffusion variant, or you can try out your own

method. In fact, doing so is one of the exercises at the end

of the chapter. 

Our dithering code begins by defining some constants:

 RetroDither/dither.py

from PIL import Image

from array import array

from typing import NamedTuple

THRESHOLD = 127

class PatternPart(NamedTuple):

dc: int # change in column

dr: int # change in row

numerator: int

denominator: int

ATKINSON = [PatternPart(1, 0, 1, 8), PatternPart(2, 0, 1, 

8), 

PatternPart(-1, 1, 1, 8), PatternPart(0, 1, 1, 

8), 

PatternPart(1, 1, 1, 8), PatternPart(0, 2, 1, 

8)]

We set THRESHOLD to 127 (about the middle point between

0 and 255) as described in our algorithm. In ATKINSON, we

flatten the Atkinson dithering matrix into six PatternPart

named tuples, each of which specifies where one of the pixels being changed is located relative to the original pixel and what fraction of the error should be added to it. 

Next, we’ll start defining a dither() function, where the

dithering takes place:

# Assumes we are working with a grayscale image (Mode "L" in Pillow)

# Returns an array of dithered pixels (255 for white, 0 for 

black)

def dither(image: Image.Image) -> array:

# Distribute error among nearby pixels

def diffuse(c: int, r: int, error: int, pattern: list[Pa

tternPart]):

for part in pattern:

col = c + part.dc

row = r + part.dr

if col < 0 or col >= image.width or row >= imag

e.height:

continue

current_pixel: float = image.getpixel((col, ro

w)) # type: ignore

# Add *error_part* to the pixel at (*col*, *row

*) in *image*

error_part = (error * part.numerator) // part.de

nominator

image.putpixel((col, row), current_pixel + error

_part)

The dither() function begins with a diffuse() helper

function that takes the error and distributes it among

nearby pixels in portions specified by a pattern, which is

just a list of PatternPart tuples. We iterate through each

PatternPart in the pattern, find the pixel associated with that part, and add its fraction of the error to it. As discussed, 

the pattern is at the heart of what makes one error-

diffusion algorithm differ from another. Note that all the

arithmetic here is integer arithmetic. This is because pixel values are stored as integers. 

SOME INEFFICIENCIES

The Pillow documentation notes that the getpixel() and putpixel() methods are quite slow. Pillow includes more direct access to pixel data in an array as an alternative. In addition, iterating through all of the PatternPart tuples is less efficient than storing a raw array of locations. In fact, since every error_part is exactly one-eighth of the total error in Atkinson dithering, we could save a lot of calculations by just dividing error by 8 once. However, this code isn’t meant to be the most efficient possible, but instead as readable as possible for a chapter in a book that teaches the algorithm. We also want to be able to plug in different diffusion dithering algorithms where error_part may not always be the same. 

Despite these inefficiencies, since we first need to scale every image to fit within the constraints of MacPaint, the performance of the overall program is nearly instantaneous. If we were dithering larger images, the concessions made here may become a problem. 

In the rest of dither(), we go through every pixel in the

image, change it to black or white depending on THRESHOLD, 

calculate the difference from the original gray, and diffuse

the error among nearby pixels using the diffuse() helper

function:

result = array('B', [0] * (image.width * image.height))

for y in range(image.height):

for x in range(image.width):

old_pixel: float = image.getpixel((x, y)) # typ

e: ignore

# Every new pixel is either solid white or solid 

black

# since this is all that the original Macintosh 

supported

new_pixel = 255 if old_pixel > THRESHOLD else 0

result[y * image.width + x] = new_pixel

difference = int(old_pixel - new_pixel)

            # Disperse error among nearby upcoming pixels diffuse(x, y, difference, ATKINSON)

return result

The ATKINSON pattern is currently hardcoded, but there’s

an easy hook here to change to a different pattern. Note

that the result variable is actually an array of pixels, not

another Pillow Image. This is because we’ll need to further

process the raw pixel data of the dithered image in order to

save it in MacPaint format. In Python’s array type from the

standard library, an array defined using type code 'B' holds

unsigned bytes. Since we’ll be manipulating a lot of raw

bytes, we’ll see this array type repeatedly both in this

chapter and in the later chapters on emulators. 

Confusingly, Python provides at least three different

types for working with raw bytes: bytes, bytearray, and

array("B"). You could ultimately write your code using any of them. The array type is particularly geared toward

compact representation and working with files. 

The MacPaint File Format

There were painting programs before it, but for everything

that would come after it, MacPaint set the standard. It was

written by Bill Atkinson and released in 1984 by Apple

alongside the original Macintosh. Although preceded by the

Xerox Star and the Apple Lisa, the Macintosh was the first

widely available personal computer with a mouse and a

graphical user interface (GUI). MacPaint was one of the

showcase pieces of software that demonstrated how

powerful a mouse and GUI could be. A reviewer in the  New

 York Times said, “It is better than anything else of its kind offered on personal computers by a factor of 10.” 1 Many of the tools and graphical manipulation techniques that first

appeared in MacPaint are still with us today in modern graphics software. 

I encourage you to play around with MacPaint to get a

sense of it. There’s a live demo of it on the Internet

Archive, 2 but you may get the maximum level of fulfillment from this chapter by taking the time to download an

emulator so that you can load the actual images our

program will be outputting directly in MacPaint. You could

even go find an old Mac on eBay! I’ve collected far too

many myself. 

Despite being revolutionary, MacPaint was limited by

the hardware of its pioneering platform. Like the original

Macintosh, MacPaint only supported black and white. As

mentioned earlier, its documents were also limited to a

fixed size of 576 pixels wide by 720 pixels tall. The original Macintosh didn’t even have a hard drive; disk space was

limited because everything had to run off of a floppy disk. 

To accommodate this space constraint, MacPaint used a

simple compression scheme known as  run-length encoding. 

We’ll come back to some of these quirks shortly. 

The next step in our project will be to write code that

translates the dithered pixels of an image into the MacPaint

format. My experience has been that programming against

binary file formats is just a matter of very carefully

following a specification document. Unfortunately, the

MacPaint format is somewhat obscure today, so finding a

specification document requires a little bit of digging. 

Apple itself documented the format in Technical Note

PT24.3 However, the most accessible and comprehensive description I’ve found was on a site called FileFormat.info. 4

On the surface, a MacPaint file is pretty simple. It

consists of a 512-byte header followed by pixel data that’s

compressed using run-length encoding. Before being run-

length encoded, each pixel is stored as a bit, either a 1 for black or a 0 for white. That all sounds straightforward

enough. However, there’s a peculiarity: unlike almost any other operating system, the classic Mac operating system

stored files in two “forks.” We’ll dive into that more in a bit, but in short, MacPaint files that get transported or created

on operating systems other than the classic Mac OS should

be encoded in a special format called  MacBinary in order to have their metadata survive transfer. We’ll therefore need

to turn our output file into a MacBinary file too, by adding a special additional header. 

We’ll tackle this esoteric file format step by step. First, 

we’ll handle the pixel data. Then, we’ll implement run-

length encoding. And last, we’ll create the MacPaint and

MacBinary headers. As we work, we’ll need to use various

bitwise operations including shifts, ORs, and ANDs. If this

kind of low-level bit manipulation is new to you, or if you’re just a bit rusty, see the book’s appendix for an overview of bitwise operations in Python. 

 Translating Bytes to Bits

In "L" mode, our Pillow Image is encoded using 1 byte per pixel. However, in a MacPaint bitmap, pixels are encoded

with 1 bit per pixel, meaning each byte represents eight

pixels. This is a big savings for black and white, and it

makes total sense since we only need two values (1 and 0)

to represent two colors. After we define some constants, 

our first function in  macpaint.py is a converter that takes the byte array we got from dither() and converts it into a

“bit array”:

 RetroDither/macpaint.py

from array import array

from pathlib import Path

from datetime import datetime

MAX_WIDTH = 576

MAX_HEIGHT = 720

MACBINARY_LENGTH = 128

HEADER_LENGTH = 512

# Convert an array of bytes where each byte is 0 or 255

# to an array of bits where each byte that is 0 becomes a 1

# and each byte that is 255 becomes a 0

def bytes_to_bits(original: array) -> array:

bits_array = array('B')

for byte_index in range(0, len(original), 8):

next_byte = 0

for bit_index in range(8):

next_bit = 1 - (original[byte_index + bit_index] 

& 1)

next_byte = next_byte | (next_bit << (7 - bit_in

dex))

if (byte_index + bit_index + 1) >= len(origina

l):

break

bits_array.append(next_byte)

return bits_array

The loops here iterate through 8 bytes at a time from

the original array, checking whether each is a white (255)

or black (0) pixel. MacPaint’s bitmap format inverts this, 

making a white pixel 0 and a black pixel 1. The line next_bit

= 1 - (original[byte_index + bit_index] & 1) does the

inversion. Note that we don’t actually check values against

255, instead preferring to only check the first bit (& 1) because it makes the code more compact and more

performant. We know we only stored 255s and 0s in the

array before bytes_to_bits() was called, so there’s no reason to fear we’re accidentally capturing intermediate values; if

there’s a 1 anywhere in the byte, it must be 255. The 8 bits

are encoded in next_byte by putting each bit into the

appropriate place with an OR operation: next_byte =

next_byte | (next_bit << (7 - bit_index)). We then append next_byte to bits_array. 

We don’t call bytes_to_bits() on all of the pixel data at

once, because MacPaint bitmaps need to be padded with

white pixels (0s) on every row of the bitmap where the

pixel data doesn’t extend the full length. We handle the

padding with the prepare() function:

# Convert the array of bytes into bits using the helper func

tion. 

# Pad any missing spots with white bits due to the original

# image having a smaller size than 576x720. 

def prepare(data: array, width: int, height: int) -> array: bits_array = array('B')

for row in range(height):

image_location = row * width

image_bits = bytes_to_bits(data[image_location:(imag

e_location + width)])

bits_array += image_bits

remaining_width = MAX_WIDTH - width

white_width_bits = array('B', [0] * (remaining_width 

// 8))

bits_array += white_width_bits

remaining_height = MAX_HEIGHT - height

white_height_bits = array('B', [0] * ((remaining_height 

* MAX_WIDTH) // 8))

bits_array += white_height_bits

return bits_array

We look through the raw pixel data coming from

dither() one row at a time and convert the row to bits using

bytes_to_bits(). If the row doesn’t extend the full width of a MacPaint document, we add white pixels to the row. We do

the same for any full-length rows beneath the pixel data. 

 Implementing Run-Length Encoding

Storing pixels as individual bits rather than bytes saves a

significant amount of space, but it’s not enough. When

MacPaint launched in 1984, the original Macintosh had

floppy disks that supported just 400KB of data. There was

no hard drive, and a standard configuration had just one

floppy drive. Think about how big a MacPaint file would be

if it weren’t compressed. The 576 pixels in a row take up

576 bits, which is 72 bytes. There are 720 rows, so 720

multiplied by 72 bytes is 51,840 bytes. Adding in the 512-

byte header, a MacPaint file would be 52,352 bytes with no

compression. That would mean a floppy disk couldn’t even

store eight MacPaint files! 

To relieve this disk space problem, the MacPaint file

format incorporates a simple compression scheme called

run-length encoding. In this scheme, instead of repeating

the same thing, you say how many times it should repeat. 

For example, suppose we want to store the string

 AAAAAABCCCCCABBBB. If each character uses 1 byte, it

would be 17 bytes. Would it not be more efficient to say

seven  A s instead of repeating  A seven times? Or saying five C s? 

Suppose we use up to 1 byte before a character to store

its number of repetitions. The string could then be encoded

as  6AB5CA4B, which is 8 bytes. However, there’s a

problem with this scheme. Remember, in computer memory

these would be raw bytes. How do we know that  B is a

character and not a byte indicating a certain number of

repetitions of the next character? In other words,  B would likely be stored in memory using its ASCII/Unicode code, 

66. Our program would likely interpret it as indicating 66

of the next character, not a single letter  B. 

We could instead have a scheme where every character

is preceded by a number, even single characters. This

would change the encoded string to  6A1B5C1A4B. That’s

10 bytes, a 7-byte savings over the original, which is significant. 

This encoding scheme is a form of run-length encoding, 

but it breaks down pretty quickly: for many strings, it’s

actually less efficient than just storing the raw characters. 

For example, the string  ABC would be  1A1B1C. That’s double the size. 

There’s a compromise. You can have an encoding

scheme where each number indicates either a repetition or

a certain number of literal characters. Then,  ABC becomes 3ABC. That’s still longer, but this new scheme may be a good compromise for more complex cases. For instance, 

the string  AAAAABCBCAAAAAA would be  5A4BCBC6A. 

This version is close to the encoding scheme the

MacPaint file format uses, but there’s still a problem: How

would you know that the 5 means five  A s, but the 4 means a literal sequence of four characters ( BCBC) rather than four  B s? You may say, “Well, you could read ahead two characters and see that  C isn’t a number, so the 4 couldn’t mean four  B s,” but even that doesn’t work, because (again) in computer memory, the  C is stored as a number. We need another improvement. 

MacPaint eliminates the ambiguity between numbers

that indicate literal runs and numbers that indicate

repetition runs by representing both using signed 1-byte

integers. A number  n between 0 and 127 indicates  n + 1

literal bytes follow. A number  n between –1 and –127

indicates 1 –  n repetitions of the following byte. The number –128 isn’t used. This compression scheme is known

as  PackBits, 5 and it was used beyond just MacPaint in several other popular file formats. 

A PackBits function was actually built into classic

versions of Mac OS. According to Apple’s own technical

note on the subject, “typical MacPaint documents compress

to about 10K” with PackBits.6 Table 3-3 summarizes the PackBits encoding scheme. 

Table 3-3: The PackBits Encoding Scheme (Signed)

Value of  n

Meaning

0 to 127

 n + 1 literal bytes follow. 

–1 to –127

The next byte is repeated 1 –  n times. 

–128

Skip. 

We’ll be working with unsigned integers, so it’s

convenient to rewrite the table instead of doing

conversions on every byte from signed to unsigned (or

thinking about two’s complements). Table 3-4 is the encoding scheme with the bytes converted to unsigned

integers. 

Table 3-4: The PackBits Encoding Scheme (Unsigned)

Value of  n

Meaning

0 to 127

 n + 1 literal bytes follow. 

129 to 255

The next byte is repeated 257 –  n times. 

128

Skip. 

Have you thought of a limitation of this scheme? What if

there are more than 128 bytes in a run? Thankfully, we

won’t run into this problem when encoding MacPaint files, 

because they’re encoded one row at a time. A row in

MacPaint can only be 576 pixels, stored as 72 bytes. Since

72 is less than 128, we don’t need to worry about the limit. 

To check your understanding, try working with an

example that Apple provides in Technical Note TN1023. 

I’ve converted it from hexadecimal to decimal for your

convenience in Table 3-5.  One row is the unpacked data, and the other row is the packed data. Try to reformulate

the packed data from the unpacked data using Table 3-4 as a reference. Then, check your work against the packed data

in Table 3-5. 

Table 3-5: A PackBits Example

Type

Bytes

Unpacked 170, 170, 170, 128, 0, 42, 170, 170, 170, 170, 128, 0, 42, 34, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170

Packed

254, 170, 2, 128, 0, 42, 253, 170, 3, 128, 0, 42, 34, 247, 

170

Let’s implement a PackBits encoder. The function

run_length_encode() takes an array of bytes and returns a run length–encoded array of bytes using the PackBits scheme. 

It starts with an inner helper function, take_same(), that can find runs of repeated values and return their length:

# MacPaint expects RLE to happen on a per-line basis (MAX_WI

DTH). 

# In other words there are line boundaries. 

def run_length_encode(original_data: array) -> array:

# Find how many of the same bytes are in a row from *sta

rt*

def take_same(source: array, start: int) -> int:

count = 0

while (start + count + 1 < len(source)

and source[start + count] == source[start + c

ount + 1]):

count += 1

return count + 1 if count > 0 else 0

To find a run, take_same() just repeatedly looks at

whether the byte after the current byte is the same as it. 

It’s also careful to not run off the end of the source array. 

We increment count every time a match is found, but

because the first byte examined (the byte at start) isn’t

itself a match of a previous byte, count will always be one

less than the number of items in a run. Hence, count + 1 is

returned if any matches are found, or 0 otherwise. This

makes it impossible to have a repeated run with just one of

the same character: that would just be a lone character, 

which would be part of a literal since in PackBits there’s no way to “repeat once.” In other words, the domain of

take_same() is 0 and all integers greater than or equal to 2. 

The run_length_encode() function continues with a little

setup:

rle_data = array('B')

# Divide data into MAX_WIDTH size boundaries by line

for line_start in range(0, len(original_data), MAX_WIDTH 

// 8):

data = original_data[line_start:(line_start + (MAX_W

IDTH // 8))]

Output will be stored in rle_data. We iterate through the

original_data array one row at a time. The MacPaint file

format specifies that each row is individually run-length

encoded, instead of all the pixels being run-length encoded

at once. The data variable represents a single row of pixel

data ready for run-length encoding. The next step is to look

for repetitions and literal runs:

index = 0

while index < len(data):

not_same = 0

while (((same := take_same(data, index + not_sam

e)) == 0)

and (index + not_same < len(data))):

not_same += 1

We iterate through each row’s data 1 byte at a time, with index keeping track of the current byte that’s being

examined. Two counts are gathered: same (initialized on the

fly using the so-called walrus := operator) is the number of

items in a row that are the same, and not_same is the length

of a literal run. Here’s how they’re calculated in the while

loop:

1. We attempt to find a repeated run using take_same(). 

2. If the attempt fails (same is 0), then this must be a literal run, so not_same is incremented. 

3. Steps 1 and 2 repeat until a repeated run is found (same

is not equal to 0) or the byte being looked at (index +

not_same) is beyond the end of the row. 

There are three possibilities after this loop:

1. A repeated run is immediately found (same is then not

equal to 0) and not_same is never incremented, meaning

it equals 0. 

2. A literal run is initially found and not_same is

incremented until a repeated run is found, filling in same. 

3. A literal run is initially found that goes all the way to

the end of the row, and the loop exits because index +

not_same < len(data) doesn’t hold. 

Due to the second possibility, there can be a scenario

where both same and not_same are greater than 0. Keep that

in mind as we examine the remaining code for this

function:

if not_same > 0:

rle_data.append(not_same - 1)

rle_data += data[index:index + not_same]

index += not_same

if same > 0:

rle_data.append(257 - same)

rle_data.append(data[index])

                index += same

return rle_data

This is the part that writes the PackBits-encoded data to

the array. These patterns are directly from Table 3-4. 

Because of the possibility of finding both a not_same and a

same run in a single iteration of the loop, there are two if

statements here instead of an else clause. Further, because

of the way that the inner while loop is structured, not_same

runs will always be found prior to same runs. This is why the if statement for not_same appears first. If there’s one of each run, then index gets incremented the right amount by

not_same to be in the right place for the encoding of the same run. 

AN ALTERNATIVE IMPLEMENTATION

Do you find the run_length_encode() function elegant or too clever? I made several attempts to rewrite my original version in a more compact and readable form, and the end result is what you see here. I found centering the code on take_same() and just counting when it fails to be more readable than simultaneously trying to establish same and not_same runs. Yet it’s less efficient than my original version, which uses a lot more conditionals; is a bit longer; and has no inner function. 

If you don’t like this version, I left my original version as a comment at the bottom of the source file on GitHub. You can find that file at

 https://github.com/davecom/ComputerScienceFromScratch/blob/main

 /RetroDither/macpaint.py. 

 Testing Run-Length Encoding

As I tried rewriting run_length_encoding() a few different

ways to make it more readable, I realized I needed a quick

way of making sure my new implementations were correct, 

so I wrote some unit tests. Like all tests for the book, the

file for these appears in the  tests directory in the root of the source code repository. 

# tests/test_retrodither.py

import unittest

from array import array

from RetroDither.macpaint import run_length_encode

class RetroDitherTestCase(unittest.TestCase):

# Example from

# web.archive.org/web/20080705155158/http://developer.ap

ple.com/technotes/tn/tn1023.html

def test_apple_rle_example(self):

unpacked = array("B", [0xAA, 0xAA, 0xAA, 0x80, 0x00, 0x2A, 0xAA, 0xAA, 0xAA, 0xAA, 

0x80, 0x00, 0x2A, 0x22, 0xAA, 

0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 

0xAA, 0xAA, 0xAA, 0xAA])

packed = run_length_encode(unpacked)

expected = array("B", [0xFE, 0xAA, 0x02, 0x80, 0x00, 0x2A, 0xFD, 0xAA, 0x03, 0x80, 

0x00, 0x2A, 0x22, 0xF7, 0xA

A])

self.assertEqual(expected, packed)

# Example where packed data is longer than unpacked data

def test_longer_rle(self):

unpacked = array("B", [0x55, 0x55, 0xBB, 0xBB, 0x55, 0xBB, 0xBB, 0x55])

packed = run_length_encode(unpacked)

expected = array("B", [0xFF, 0x55, 0xFF, 0xBB, 0x00, 0x55, 0xFF, 0xBB, 0x00, 0x55])

self.assertEqual(expected, packed)

def test_simple_literal(self):

unpacked = array("B", [0x00, 0x01, 0x02, 0x03, 0x0

4])

packed = run_length_encode(unpacked)

expected = array("B", [0x04, 0x00, 0x01, 0x02, 0x03, 0x04])

self.assertEqual(expected, packed)

    def test_simple_literal2(self):

unpacked = array("B", [0x00])

packed = run_length_encode(unpacked)

expected = array("B", [0x00, 0x00])

self.assertEqual(expected, packed)

def test_simple_same(self):

unpacked = array("B", [0x11, 0x11, 0x11, 0x11])

packed = run_length_encode(unpacked)

expected = array("B", [0xFD, 0x11])

self.assertEqual(expected, packed)

def test_simple_same2(self):

unpacked = array("B", [0x11, 0x11, 0x11, 0x11, 0x22, 0x22, 0x22, 0x22])

packed = run_length_encode(unpacked)

expected = array("B", [0xFD, 0x11, 0xFD, 0x22])

self.assertEqual(expected, packed)

if __name__ == "__main__":

unittest.main()

These tests ensure run-length encoding is working

correctly and conclude our implementation of the MacPaint

file format. There’s just one more step to get our dithered

pictures ready to be usable on a retro Mac. 

 Converting to MacBinary

On most operating systems, a file is just a single blob of

data. The filesystem or the operating system may hold onto

some metadata about each file, but the file itself stands

alone. That wasn’t the case on the classic Mac OS, where

many files had two forks. The  data fork would hold the primary data of the file, while a  resource fork may hold ancillary data like bitmaps, sounds, or even executable

code. The resource fork could hold many different kinds of

data in one place, so it was kind of like a resource

database. This is one of the features of the operating system that allowed many applications to be completely

self-contained—a single executable that could be dragged

and dropped as a single icon, with no additional files. 

Unfortunately, since resource forks don’t exist on other

operating systems, classic Mac files often get messed up

when transferred to or from them. Care needs to be taken. 

This was a problem from the beginning, so “bundling” file

formats were quickly developed. One of the most popular

and well standardized is known as MacBinary. In a

MacBinary file, a special header is followed by the data fork and resource fork together. 

We need to bundle our MacPaint files as MacBinary

files in order for them to work properly on the classic Mac

OS and open by default in MacPaint. Ironically, a MacPaint

file doesn’t actually have a resource fork, it just has a data fork. But MacBinary files also bundle metadata that was

stored in the filesystem (MFS/HFS/HFS+) of the classic

Mac OS. The important bits are  type and  creator codes. 

The classic Mac OS doesn’t use file extensions to associate

a file with the program that should open it. Instead, it uses type and creator codes, which are largely transparent to

the user. This allows the user to name their files anything

they want and still have the files be “double-clickable.” 

After the MacBinary file our program creates is unbundled

by MacBinary (or another program like Stuffit) on the

classic Mac OS, the resulting MacPaint file should open

MacPaint when it’s double-clicked. 

Luckily, the MacBinary file format is fairly simple. To

comply with the MacBinary specification, our program

needs to:

1. Add the 128-byte MacBinary header before the rest of

the file (which is just the data fork since we have no

resource fork). 

2. Fill in the MacBinary header with the right values in several indicated places. 

3. Ensure the file ends in a multiple of 128 bytes by

padding the end of it if necessary. 

MacBinary has an official specification that was

approved by a committee of interested parties.7 However, we only need to fill out a few fields for our MacBinary file

to be properly recognized. (The rest of the header should

be 0s.) Table 3-6 lists these values, their lengths, and their respective offsets within the 128-byte header. 

Table 3-6: Required MacBinary Header Fields

Offset Length

Type

Value

1

1

Integer

Filename length (up to 63)

2

1 to 63

MacRoman

Filename

65

4

MacRoman

File type (should be “PNTG”)

69

4

MacRoman

File creator (should be “MPNT”)

83

4

Integer

Data fork length

91

4

Integer

Creation time as seconds since 1/1/1904

95

4

Integer

Modification time as seconds since 1/1/1904

Note that values are stored big-endian, since the classic

Mac OS ran on big-endian microprocessors. (If that doesn’t

mean anything to you, see the “Big-Endian vs. Little-

Endian” box.) MacRoman is a character encoding used on

the classic Mac OS. 8

The macbinary_header() function is a codification of Table

3-6:

def macbinary_header(outfile: str, data_size: int) -> array: macbinary = array('B', [0] * MACBINARY_LENGTH)

    filename = Path(outfile).stem

filename = filename[:63] if len(filename) > 63 else file

name # limit to 63 characters max

macbinary[1] = len(filename) # filename length

macbinary[2:(2 + len(filename))] = array("B", filename.e ncode("mac_roman")) # filename

macbinary[65:69] = array("B", "PNTG".encode("mac_roma n")) # file type

macbinary[69:73] = array("B", "MPNT".encode("mac_roma n")) # file creator

macbinary[83:87] = array("B", data_size.to_bytes(4, byte order='big')) # size of data fork

timestamp = int((datetime.now() - datetime(1904, 1, 1)). 

total_seconds()) # Mac timestamp

macbinary[91:95] = array("B", timestamp.to_bytes(4, byte order='big')) # creation stamp

macbinary[95:99] = array("B", timestamp.to_bytes(4, byte order='big')) # modification stamp

return macbinary

Any filenames that are more than 63 characters simply

have their ends chopped off. 

BIG-ENDIAN VS. LITTLE-ENDIAN

What order should the bytes representing a piece of data, such as a number, be stored in? This is a much-debated question, with the computer science world split between two camps: big-endian and little-endian. 

Think for a moment about how we represent numbers in everyday life. If you come from a culture that uses the Arabic numeral system, like the English-speaking world, you’re probably used to writing numbers from left to right starting with the digit representing the largest part of the number and decreasing from there. For example, the number 450 starts with the 4 representing the hundreds place, then the 5 representing the tens place, and then the 0 representing the ones place. The 4 represents the largest part of the number (400) and comes first. The decision to put the 4 first was made a long time ago and is largely arbitrary. In theory, we could have a numeral system that writes 450 from smallest to largest as 054, but obviously we don’t. 

The number 450 requires 2 bytes to represent in binary: 00000001

and 11000010. If you know binary, you know that each 1 represents a single power of 2 that, added with the other “on” powers of 2, gives us the final number. The first byte, 00000001, puts its lone 1 in the 28

place and represents 256. The second byte, 11000010, represents the number 194 because the 1s for 21 (2), 26 (64), and 27 (128) are turned on, and 128 + 64 + 2 = 194. We have bytes for 256 and 194, and 256 + 194 = 450. 

Since we write 450 from largest to smallest, you might assume that your computer would similarly store the byte representing the larger portion of 450 first, yielding 0000000111000010 when the bytes are put together. This is known as  big-endian order, but it’s not how most computers actually work nowadays. The typical modern computer is built with a microprocessor that uses one of two

architectures: x86-64 (Intel, AMD) or ARM64 (Apple, Qualcomm, and so on). For technical and historical reasons, those architectures store numbers in  little-endian order, where the byte representing the smallest end of the number comes first. In a little-endian system, the 2-byte number 450 is stored as 1100001000000001. It’s important to know which system is at play, since interpreting the little-endian 1100001000000001 as if it were in big-endian order would result in a completely different value. 

While little-endian order dominates today’s computer

architectures, certain systems, such as those that run on the 68K

microprocessor architecture (originally by Motorola)—including the original Macintosh—store their numbers in big-endian order. Yes, on the original Macintosh, 450 was stored “the right way” as

0000000111000010, but on the computer in front of you it’s probably stored as 1100001000000001. Further complicating matters, most data transmitted over the internet is sent in big-endian order. When you’re browsing the web on your x86-64 or ARM64 microprocessor, there’s endian conversion going on in the background. 

 Putting It All Together

To write our MacPaint file bundled as a MacBinary file, we

need to take our pixel array from dither() and:

1. Call prepare() to convert it from bytes to bits and pad it with 0s. 

2. Call run_length_encode() to run-length encode the bit

array. 

3. Call macbinary_header() to combine the result with a

MacBinary header. 

4. Add a 512-byte MacPaint header as well. 

5. Pad the end result with 0s up to a multiple of 128 bytes

to follow the MacBinary specification requiring this. 

This is mostly just a matter of calling functions we already

have:

# Writes array *data* to *out_file*

def write_macpaint_file(data: array, out_file: str, width: i

nt, height: int):

bits_array = prepare(data, width, height)

rle = run_length_encode(bits_array)

data_size = len(rle) + HEADER_LENGTH # header requires t

his

output = macbinary_header(out_file, data_size) + array

('B', [0] * HEADER_LENGTH) + rle

output[MACBINARY_LENGTH + 3] = 2 # Data Fork Header Sign

ature ❶

# MacBinary format requires that there be padding of 0s 

up to a

# multiple of 128 bytes for the data fork

padding = 128 - (data_size % 128)

if padding > 0:

output += array('B', [0] * padding)

with open(out_file + ".bin", "wb") as fp: output.tofile(fp)

The only part of this code we haven’t yet discussed is

the 512-byte MacPaint header. MacPaint mostly used this

header to store user-defined pattern data. Programs that

export to MacPaint don’t generally have any user-defined

patterns since they’re artifacts created by a user in

MacPaint. We can therefore leave the vast majority of the

MacPaint header as 0s. The only thing we must do is put a

little signature into the MacPaint header at byte 3, which is always set to 2 ❶. 
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The Results

To run the program, you need to specify both an input file

and an output file. For example:

% python3 -m RetroDither -g /Users/dave/Downloads/IMG_0892.j peg

/Users/dave/Downloads/AmericanFlag

The program adds the  .bin extension for the output file automatically. 

Figure 3-4 shows an image created using our program that I think has a nice artistic quality to it. 

 Figure 3-4: The space shuttle taking off

But how can you view your own results? On a vintage

Mac, of course! MacPaint runs on machines with System 1

all the way through Mac OS 9. You should be able to find a

real-life classic Mac running one of these OSes to display

your photos on. You’ll also need a program for unbundling

the MacBinary file. There’s a program aptly called MacBinary that you can download. Stuffit Expander, a very

popular decompression app for the classic Mac OS, can

also open MacBinary files. Both are distributed as

freeware. Most Macs you find out in the wild from the

1990s will have Stuffit Expander already installed. 

I realize that not everybody is going to be committed

enough to this project to go out and find an actual retro

computer. No problem—you can still experience the fruits

of your labor through emulation. Apple started freely

distributing early versions of the Mac OS as well as

MacPaint (by releasing the full MacPaint source code)

many years ago. It’s possible to obtain all of the software

you need, legally and at no charge, to create a true retro

Macintosh experience in an emulator. 

There are several emulators available, but probably the

most retro of all is Mini vMac,9 which I used to create some of the screenshots in this chapter. Setting up Mini vMac or

one of the several other popular classic Mac emulators

(Basilisk II, SheepShaver, and the like) is beyond the scope

of this book, but I think that, as a programmer, you’ll find it pretty easy to do. Each emulator has a different mechanism

for transferring files from your machine to the emulated

environment. Regardless of the specifics, it will probably be less of a hassle than getting an old Mac and getting that

Mac online or finding a floppy disk drive for your modern

machine. That said, old Macs are fun! Or maybe that fun is

just my nostalgia from growing up with them. 

CODE MEETS LIFE

I’ve been using MacPaint since my dad brought home a Macintosh LC

in 1990. I was just three years old, but apparently I became adept enough at using it that he brought me in to give a demonstration at a class he was teaching at the University of Maine. It was probably partially for the novelty factor, or maybe the idea was, “This is so

easy, a three-year-old can do it!” Whatever the case, he always believed in me. 

I still have some of my childhood drawings saved to disk, which is what got me interested in the file format more recently. Amazingly, I couldn’t find any programs on my modern Mac that could open the classic MacPaint format. I had to turn to LibreOffice or transfer the files to old Macs to view them. 

Then, I found some mysterious MacPaint files that further piqued my interest on a floppy disk that had belonged to my brother 30 years ago. They contained strange artwork, quite sophisticated for the late 1980s or early 1990s, mixing digitized (a 1980s word for scanned and dithered) real-world objects with purely digital drawings. I eventually concluded that they were likely either the work of a well-known American artist named Robert W. Fichter10 or the work of someone who admired him. They had some of the same motifs and the same exact words as some of Fichter’s published pieces. 

Was I in possession of a valuable digital art relict lost to time? How did my brother get ahold of these MacPaint files? I called him up. He hadn’t thought about them in decades, but he said he got them from some student at the University of Maine while he was still in high school. He didn’t know their exact provenance, but the student had told him they were very important and had a hidden meaning to them. It made sense that the disk came from a university. Perhaps Fichter had lectured there, or perhaps they were copied around the sneakernet (this was in an era before networking was widespread). I tried contacting Fichter himself, but to no avail. Unfortunately, he died in 2023. I still, at the time of writing, don’t know if those files are the original digital artwork of Robert W. Fichter. If you’re an expert on his work or knew him, please get in touch with me! 

Around the same time, I was thinking about doing a dithering

project for this book after coming across an article by John Earnest on Atkinson dithering on Hacker News.11 I decided that the dithering algorithm on its own was too simple for a book chapter, but then I had an idea: the MacPaint format that I had recently become so interested in was also a product of Bill Atkinson, and it includes another interesting algorithm, run-length encoding. Why don’t I combine the two into a single project? 

I didn’t stop there. After writing the code for this chapter, I decided I should make MacPaint more accessible to modern Mac users. I ported the code, plus some additional dithering algorithms, to Swift and created a nice AppKit-based user interface around it. I sell the software as Retro Dither on the Mac App Store. 12 As a technical author, usually things you do as professional or hobby projects turn into material for a book; it’s not that usual that things go the other way. 

Real-World Applications

Atkinson dithering and MacPaint were just a couple of the

technologies that Bill Atkinson used to make graphics on

the original Macintosh come alive. He was also the creator

of QuickDraw, which provided the graphics primitives on

all Lisa and classic Macintosh computers. His immense

contributions go far beyond graphics too. He made several

refinements to elements that we now consider as standard

widgets in a GUI. Atkinson was also the creator of

HyperCard, one of the first widely distributed hypertext

platforms. You can think about it as a non-networked

version of the web from the late 1980s. It was very

influential. 

You might be curious to know what Bill Atkinson

originally developed Atkinson dithering for. I was too, so I

obtained a copy of a rare book called  Inside MacPaint by Jeffrey S. Young and published by Microsoft Press in 1985. 

I didn’t exactly find my answer, but I found a probable

answer. It turns out Atkinson had worked on a digitizer for

the early Macintosh. It’s basically a kind of scanner that

allowed you to work with real-world images in MacPaint. 

While the book doesn’t explicitly say it used Atkinson

dithering, I can’t imagine that it’s a coincidence. It’s likely that the first real-world application of Atkinson dithering

was a digitizer. 

Dithering was a widely used technique on 1980s and

1990s game consoles and computers, which were powerful

enough to support digital images but often had a limited

color palette. And limited-palette devices like the Amazon

Kindle and the Panic Playdate continue to be dithering

strongholds. As mentioned earlier, dithering is also how

animated GIFs appear to show many more colors than they

naturally support. Without hacks, a GIF is limited to 256

colors. 

Run-length encoding isn’t limited to MacPaint, of course. It’s a widely used compression technique. Any kind

of data format that has a lot of repeated characters is a

candidate for run-length encoding. Beyond MacPaint, it

was used as the main compression technique in several

other bitmap image formats of the 1980s. It’s also

sometimes combined with other compression techniques to

formulate more sophisticated meta-algorithms. For

example, one component of DEFLATE, the algorithm used

in ZIP files, utilizes run-length encoding. 

I’ll leave you with a quote from Bill Atkinson, from an

interview he did in  Inside MacPaint. He was asked by

Jeffrey Young, “What do you consider essential for creating

a great program?” 

The whole trick to designing a good program is deciding what

things to kick out. I had some powerful features that I kicked out to make MacPaint cleaner, simpler, more approachable, and less frightening. I probably threw away more code than I left in. My goal was a lean, mean, and clean design. The typical

programming process is 95 percent debugging and only 5

percent real creation. A lot of the bugs are simple typos, or just things that a compiler program can really help you with. I like to keep my sights focused more on the overall algorithm, because that’s where I get the big wins. 

I compare programming to modeling with clay. When you’re

throwing a pot on the wheel, you want to keep it soft and flexible as long as you can before you fire it. Because after you fire it, the pot is a lot harder to scrape into shape. 13

Exercises

1.  Add a command line option that changes our program

to use Floyd-Steinberg dithering. 

2.  Try creating an error-diffusion dithering pattern of your own. 

3.  Write a program that can go the other way, converting

a MacPaint file into a GIF or PNG. 

  4.  If you completed Exercise 3, write integration tests that check that a MacPaint file converted to a GIF or PNG

retains the same pixel data as the original. 
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4

A STOCHASTIC PAINTING ALGORITHM

All the other chapters in this

book follow a specification

such as a programming language

grammar, a file format, or a machine

architecture. This chapter is different. In

this chapter, we’re going to create art. 

And it’s going to be subjective. Can a

simple stochastic algorithm use randomly

generated shapes to create drawings that

resemble human works of art? I think the

answer is yes, but you’ll have to judge for

yourself after you see some of the

program’s output. 

How It Works

This chapter’s program works by trying to redraw a

photograph from scratch. We begin with a blank canvas. 

We try drawing a single randomly sized and placed colored

shape. If the shape brings the canvas to look more similar to the photograph, then we keep it. Otherwise, we try a

different shape. We repeat this process for some specified

number of iterations. That’s the whole algorithm. 

If it sounds simple, that’s because it is. Of course, there

are many more complex details to fill in, but they don’t

change the overarching thrust of the program. How is

“looking similar” measured? Should a shape be modified to

try to improve its fit? How is the color of the shape

selected? What kinds of shapes should be used? 

That last question will lead to many different abstract

looks for our “paintings.” For example, Figure 4-1 utilizes ellipses to approximate a photograph of a hot air balloon. 

(For print readers, see the  figures directory of the

companion repository for color versions of the chapter’s

images.)
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 Figure 4-1: A hot air balloon with 540 ellipses

The figure shows both the original photograph and an

“impression” created by our program using 540 ellipses

over 100,000 iterations, which took 104 seconds to

complete on my laptop. I think it looks pretty good. Almost

impressionistic. 

In my opinion, ellipses give a kind of stained-glass look. 

It helps if the shape used somewhat resembles the contours

of the subject in the original photograph, like ellipses for

the hot air balloon.  Figure 4-2 shows the same photograph
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painted using 307 triangles over 100,000 iterations, taking

109 seconds on my laptop. In my subjective opinion, it

doesn’t look as good. 

 Figure 4-2: A hot air balloon with 307 triangles

While the hot air balloon’s curvaceous exterior doesn’t

get filled well by triangles, a butterfly does much better. 

Figure 4-3 is an impression of a photo of a butterfly, using 573 triangles generated with 1 million iterations over 4,512

seconds. 
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 Figure 4-3: A butterfly with 573 triangles

The butterfly image took a bit longer to generate than

the average million-iteration image because I used the

“most common color” method instead of the “average

color” method—more on that in a bit. The result is that the

colors in each shape are sharper and blend together less. 

The output can often be improved by utilizing more

shapes placed over more iterations, and hence more time. 

However, since this is based on a stochastic (randomly

determined) process, the results will vary greatly—even

with the same settings for the same picture. The examples

I’m presenting here are cherry-picked. 

Photographs with a lot of detail take the most time to

paint with a reasonable degree of accuracy. With a tool like

this, you have to strike a balance between abstraction and

recognizability. If an image is too abstract, it won’t be

recognizable. But if an image has so much detail that it’s

almost a perfect replica of the original, then it will lose its appeal as a “work of art.” This balance is particularly hard
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to achieve with images of people. For example,  Figure 4-4

is an image of two of my friends on a beach in Santa

Monica, California. It’s composed of 4,212 ellipses

generated with 10 million iterations over 8,262 seconds. 

My friends look only okay as abstract impressions, but the

beach looks great! 

 Figure 4-4: A Santa Monica scene with 4,212 ellipses

I’ve found that using a line shape works really well for

creating paintings of people. Because lines are so thin, 

many more of them are needed to draw an image. Figure 4-

5 shows a tiny public domain image of John F. Kennedy

giving his famous speech in Berlin, along with a painted

version using 16,633 lines generated with 10 million

iterations over 6,957 seconds. 
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 Figure 4-5: JFK’s Berlin speech with 16,633 lines

An interesting aspect of the JFK example is that the

program-produced abstract version actually has a higher

resolution than the original. This is possible because the

program is working in the world of vector graphics, where

math determines the output, not pixels. The algorithm isn’t

assiduously copying every pixel—it’s providing an

“impression” of the original with vector shapes. 

Lines produce some of the most stunning abstract

results. Figure 4-6 is a New York City skyline with the Manhattan Bridge in front via 12,303 lines generated with

1 million iterations over 909 seconds. 
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 Figure 4-6: The New York City skyline with 12,303 lines

The program developed in this chapter will take a long

time to run if you want it to utilize a high number of

shapes. For example, the JFK image took almost two hours

to run for me on my Apple M1–based laptop. Your mileage

will vary depending on your machine’s particular

microprocessor. You can generally leave the program

running in the background while you do your other work. 

Command Line Options

This is a very configurable program with many different

features and tweakable parameters. In addition to input

and output filepaths, our ArgumentParser needs to handle all

the command line options in Table 4-1. 

Table 4-1: Command Line Options for Impressionist

Option Extended Possibilities

Default Description

Option Extended Possibilities

Default Description

-t

--trials

Integer

10000

The number of trials to run

-m

--method

'random', 

'average' 

The method for

'average', 

determining shape colors

'common' 

-s

--shape

'ellipse', 

'ellipse' 

The shape type to use

'triangle', 

'quadrilateral', 

'line' 

-l

--length

Integer

256

The length (height) of the

final image in pixels

-v

--vector

Boolean

False

Create vector output? 

-a

--animate

Integer

0

If a number greater than 0

is provided, will create an

animated GIF with the

provided number of

milliseconds per frame, 

showing the image being

built up one shape at a

time

Our main file is just a codification of Table 4-1. All the options are passed to the constructor of the Impressionist

class, which we’ll come back to in a bit. 

# Impressionist/__main__.py

from argparse import ArgumentParser

from Impressionist.impressionist import Impressionist, Color

Method, ShapeType

if __name__ == "__main__":

# Parse the file argument

argument_parser = ArgumentParser("Impressionist")

argument_parser.add_argument("image_file", help="The inp ut image")

argument_parser.add_argument("output_file", help="The re

sulting abstract art")

argument_parser.add_argument('-t', '--trials', type=int, 

default=10000, 

help='The number of trials 

to run (default 10000).')

argument_parser.add_argument('-m', '--method', 

choices=['random', 'averag

e', 'common'], default='average', 

help='Shape color determina

tion method (default average).')

argument_parser.add_argument('-s', '--shape', choices=

['ellipse', 'triangle', 



'quadrilateral', 'line'], 

default='ellipse', help='Th

e shape type (default ellipse).')

argument_parser.add_argument('-l', '--length', type=int, 

default=256, 

help='The length of the fin

al image in pixels (default 256).')

argument_parser.add_argument('-v', '--vector', default=F

alse, action='store_true', 

help='Create vector output. 

A SVG file will also be output.')

argument_parser.add_argument('-a', '--animate', type=in

t, default=0, 

help='If greater than 0, wi

ll create an animated GIF ' 

'with the number of mil

liseconds per frame provided.')

arguments = argument_parser.parse_args()

method = ColorMethod[arguments.method.upper()]

shape_type = ShapeType[arguments.shape.upper()]

Impressionist(arguments.image_file, arguments.output_fil

e, arguments.trials, method, 

shape_type, arguments.length, arguments.vecto

r, arguments.animate)

The -v option instructs the program to output the result in a vector format. In our implementation, we’ll target an

SVG file. Before we get into the main algorithm of the

application, let’s take a little detour to see how we can

support this feature. 

The SVG Format

SVG stands for Scalable Vector Graphics. It’s an XML-

based format for specifying vector images. All modern

mainstream web browsers and vector drawing programs

support it. Instead of using a third-party library to write to SVG, we’ll write our own short class to do it. The SVG

specification is large, but we only need a small subset of it to support the shapes that our program will output, so the

task will be relatively easy. 

XML is a text-based format, and since we’re outputting

it, not parsing it, we don’t even need our program to really

understand XML’s structure. We just need to amalgamate a

string out of other strings representing the constituent

XML elements. While this approach limits the testability

and modularity of our SVG writer, the amount of the SVG

standard we’re implementing is so small that it’s almost

trivial to hand check for correctness. That said, this

approach isn’t production suitable. 

Before we get into the code, here’s an example of a

simple SVG file that our program can output. This one has

just one triangle built using the polygon element, plus the

background rectangle (I’ve slightly improved the

formatting with a couple of indentations for readability):

<?xml version="1.0" encoding="utf-8"?> 

<svg version="1.1" baseProfile="full" width="342" height="25

6" 

xmlns="http://www.w3.org/2000/svg"> 

<rect width="100%" height="100%" fill="rgb(108, 98, 91)" 

/> 

    <polygon points="201,3 24,9 162,182 " fill="rgb(128, 12

0, 112)" /> 

</svg> 

If you save this code in a text file with the  .svg

extension, you can open it using a web browser or vector

image editor to see the resulting triangle. As we walk

through creating our SVG class, keep this example in mind to

visualize how the different elements come together to form

a complete SVG file. 

An SVG file starts with a declaration that it’s an XML

file, and then the first element is an svg element that

describes the version of the SVG specification and the

width and height of the image. In addition, every image our

program generates is backed by a big rectangle containing

the average color of the image. This helps the algorithm

blend better. Our SVG file therefore also starts with a big

rect element:

# Impressionist/svg.py

class SVG:

def __init__(self, width: int, height: int, background_c

olor: tuple[int, int, int]):

self.content = '<?xml version="1.0" encoding="utf-8"?>\n' \

f'<svg version="1.1" baseProfile="ful

l" width="{width}" ' \

f'height="{height}" xmlns="http://ww

w.w3.org/2000/svg”>\n' \

f'<rect width="100%" height="100%" fi

ll="rgb{background_color}" />' 

As the background_color property in the constructor

indicates, colors are being represented using a tuple of

three integers. These are RGB color codes. Each element is

an integer between 0 and 255 representing the amount of

the respective primary color (red, green, or blue) in the

output. For example, a “pure” red color would be (255, 0, 0), and a purple would be something like (128, 0, 128), 

being a blend of red and blue. 

Drawing the three types of shapes that our program

supports (ellipses, lines, and polygons) is just a matter of

putting the respective ellipse, line, or polygon SVG elements into the output text file:

def draw_ellipse(self, x1: int, y1: int, x2: int, y2: in

t, color: tuple[int, int, int]):

self.content += f'<ellipse cx="{(x1 + x2) // 2}" cy

="{(y1 + y2) // 2}" ' \

f'rx="{abs(x1 - x2) // 2}" ry="{abs

(y1 - y2) // 2}" ' \

f'fill="rgb{color}" />\n' 

def draw_line(self, x1: int, y1: int, x2: int, y2: int, 

color: tuple[int, int, int]):

self.content += f'<line x1="{x1}" y1="{y1}" x2="{x 2}" y2="{y2}" stroke="rgb{color}" ' \

'stroke-width="1px" shape-rendering

="crispEdges" />\n' 

def draw_polygon(self, coordinates: list[int], color: tu

ple[int, int, int]):

points = "" 

for index in range(0, len(coordinates), 2):

points += f"{coordinates[index]},{coordinates[in

dex + 1]} " 

self.content += f'<polygon points="{points}" fill="r gb{color}" />\n' 

Finally, to output the SVG file, we close the svg element

begun in the constructor and write the amalgamated string

to disk:

def write(self, path: str):

self.content += '</svg>\n' 

        with open(path, 'w') as f:

f.write(self.content)

If you take a look at the official SVG specification, you

may find it overwhelming, but there’s no need to be

intimidated. As this section hopefully shows, it doesn’t

necessarily take much to get value out of a big standard

like SVG. In just 20 lines of code, we’ve written a very

limited, but useful, SVG creator. 

The Algorithm

The algorithm that produces these (sometimes) beautiful

abstract impressions of photographs is remarkably simple. 

In short, it tries drawing randomly sized and placed shapes, 

one shape at a time. If an added shape makes the abstract

image look more like the original photo, it’s kept. The

improvement is potentially further refined by resizing the

shape, which is a matter of moving each of its points. If the added shape makes the image look less like the original

photo, then it’s thrown away and a new shape is tried. 

Here’s a more detailed explanation of the algorithm in

steps:

1. Create a blank canvas with the same size as the original

photograph and a background color that’s the same as

the original photograph’s average color. 

2. Try drawing a shape on the canvas in a random location

and of a random size. Color the shape using the average

color of the corresponding region of the original

photograph, the most common color of that region, or

randomly. 

3. Compare the colors of the pixels of the canvas (with the

added shape) to the original photograph. If the added

shape has made the whole canvas’s pixels more similar

to the original photograph’s pixels, then keep the added shape. 

4. Try modifying the shape at each point (expanding or

contracting) one pixel at a time. Keep moving the points

in directions that further reduce the difference between

the whole canvas’s pixels and the original photograph’s

pixels. Stop when the movement no longer improves the

difference. 

5. Repeat steps 2, 3, and 4 trials number of times. 

6. Output the final image created on the canvas after

trials number of experiments. 

There are many configurable parameters of this

algorithm. What kind of shape should be used? How many

trials should be run? How should the color for each shape

be picked? And there are several subproblems to solve. 

How is the difference between two images calculated? How

do you find the pixels in a region that encompasses a

shape? 

The Main Implementation

Excluding comments, the main implementation of our

painting algorithm is less than 150 lines of Python. A lot of that succinctness is thanks to the powerful Pillow library, 

which was already discussed in Chapter 3. Pillow handles reading and writing various bitmap image formats. It also

has facilities for drawing simple primitives like the shapes

we need. Finally, Pillow has functions for computing

differences between images and computing the average

color in a region of an image. These will be critical helper

functions for our program, allowing us to concentrate on

the core algorithm while leaving the busywork to Pillow. 

That’s what a great library enables. 

 Setup

We begin with some basic imports, the definition of some

needed types, a constant, and a helper function:

 Impressionist/impressionist.py

from enum import Enum

from PIL import Image, ImageDraw

from PIL import ImageChops, ImageStat

import random

from math import trunc

from timeit import default_timer as timer

from Impressionist.svg import SVG

ColorMethod = Enum("ColorMethod", "RANDOM AVERAGE COMMON") ShapeType = Enum("ShapeType", "ELLIPSE TRIANGLE QUADRILATERA L LINE")

CoordList = list[int]

MAX_HEIGHT = 256

def get_most_common_color(image: Image.Image) -> tuple[int, int, int]:

colors = image.getcolors(image.width * image.height)

return max(colors, key=lambda item: item[0])[1]

The ColorMethod enum controls how we’ll calculate the

color in a region—that is, what color a shape will be filled

with. The ShapeType enum sets the shape we’ll be drawing. 

The current version of the program only draws one type of

shape in each painting, but it would be easy to modify the

code to enable more than one type of shape. I’ve left that

for an exercise. The CoordList type applies to the

coordinates that define one shape. 

When running the algorithm, for performance, we need

to work with a limited number of total pixels. The easiest

way to accomplish this is to scale the input image if it’s

taller than MAX_HEIGHT. In other words, MAX_HEIGHT is the

maximum height of the scaled image. Note that, technically, we should also define a maximum width, but in

practice, it’s very rare for an image’s aspect ratio to be

such that only capping one dimension will be insufficient

(there aren’t many images that are super wide but have

very little height). For simplicity, we just defined the one

maximum dimension. 

The get_most_common_color() method figures out the most

frequently occurring color in an image. It uses a Pillow

method, getcolors(), which returns all of the colors in an

image along with their counts. Then, it uses Python’s built-

in max() function to extract the most frequent. 

The Impressionist class’s constructor is responsible for

setting up the unique parameters of a particular run of the

algorithm, opening the input image file, scaling it, creating the initial background of the output image, calling methods

to run the actual iterations of the algorithm, and calling a

method to output the final file. That may sound like a lot, 

but the heart of the algorithm is in other methods. The

constructor is just a launching point that calls methods

from the Pillow library and other methods we’ll get to

shortly to do the actual work. Here’s the start of the

constructor:

class Impressionist:

def __init__(self, file_name: str, output_file: str, tri

als: int, method: ColorMethod, 

shape_type: ShapeType, length: int, vector: 

bool, animation_length: int):

self.method = method

self.shape_type = shape_type

self.shapes = []

# Open image file and store in instance variable, ex

ecute algorithm

with open(file_name, "rb") as fp:

self.original = Image.open(fp).convert('RGB')

# Scale down image so processing is faster, 256 

max height pixel dimension

width, height = self.original.size

aspect_ratio = width / height

new_size = (int(MAX_HEIGHT * aspect_ratio), MAX_

HEIGHT)

self.original.thumbnail(new_size, Image.Resampli

ng.LANCZOS)

The constructor starts by setting up some parameters

and scaling the input image. The resulting painting should

have the same aspect ratio as the original image, so the

aspect ratio is preserved. Pillow’s thumbnail() method is a

convenient way to do scaling. 

Here’s the next part of the constructor:

# Start the generated image with a background th

at is the

# average of all the original's pixels in color

average_color = tuple((round(n) for n in ImageSt

at.Stat(self.original).mean))

self.glass = Image.new("RGB", new_size, average_

color)

The Pillow ImageStat module can be used for finding the

average color in an image. It looks at the RGB values of

every pixel in the image and averages the red, green, and

blue components separately. We take the resulting average

color and set it as the background of our algorithm’s

working image (self.glass). In other words, the average

color of the original image will be the starting color of

every pixel in the working image. 

NOTE

 The variable for the working image is named  glass  because I originally called this program Stained Glass. After

 retitling it, I still feel that the name  glass  for the variable

 explains that this is a surface that’s providing a filtered impression of the original. 

The constructor continues:

# Keep track of how far along we are, our best r

esult so far, and

# how much time elapses as the processing takes 

place

self.best_difference = self.difference(self.glas

s)

last_percent = 0

start = timer()

for test in range(trials):

self.trial()

percent = trunc(test / trials * 100)

if percent > last_percent:

last_percent = percent

print(f"{percent}% Done, Best Difference 

{self.best_difference}")

end = timer()

print(f"{end-start} seconds elapsed. {len(self.s

hapes)} shapes created.")

self.create_output(output_file, length, vector, 

animation_length)

The heart of the algorithm is in the trial() method, 

which tries drawing a shape to see if the shape improves on

the similarity score between the working image and the

original image. Here, trial() is called trials number of

times. As the trials are executed, we keep track of how

close to done we are and how much time the program is

taking. Finally, the completed working image is output with

the help of create_output(). 

 Utility Methods

Before we get to trial(), we need some helper methods. A

key part of the painting algorithm is verifying that each

additional shape is bringing the working image closer to the original image. The difference() method calculates a

similarity score for two images, measuring how similar they

are to each other:

def difference(self, other_image: Image.Image) -> float:

diff = ImageChops.difference(self.original, other_im

age)

stat = ImageStat.Stat(diff)

diff_ratio = sum(stat.mean) / (len(stat.mean) * 255)

return diff_ratio

The ImageChops module from Pillow has a built-in

difference() method. It finds the difference on a pixel-by-

pixel level between two images. In other words, how are

two pixels in the same locations in the two images different

from each other? The difference is just the absolute values

of the subtraction of each of the color channels in each

pixel. For example, the difference between an RGB pixel

that’s colored (10, 100, 50) and another that’s (10, 40, 20)

would be (0, 60, 30). However, this isn’t enough for our

algorithm. We need a single number, a score, that

expresses how similar two images are. After finding the

difference pixel by pixel, we can compress this into a single number by averaging across all of the differences. We do

this using the same ImageStat module that did the averaging

for us to find the average color in the constructor. Finally, although not strictly necessary (pixel averages would work

as scores), we divide by the maximum difference possible

to get the score as a ratio. 

Each time we generate a new shape it’s placed in a

random location on the screen. We calculate these random

coordinates using random_coordinates():

def random_coordinates(self) -> CoordList:

num_coordinates = 4 # ellipse or line

        if self.shape_type == ShapeType.TRIANGLE: num_coordinates = 6

elif self.shape_type == ShapeType.QUADRILATERAL:

num_coordinates = 8

coordinates = []

for d in range(num_coordinates):

if d % 2 == 0: # x coordinates

coordinates.append(random.randint(0, self.or

iginal.width))

else: # y coordinates

coordinates.append(random.randint(0, self.or

iginal.height))

return coordinates

Different kinds of shapes need different numbers of

coordinates. For example, a triangle has six coordinates

because it has three points, and each point has one x-

coordinate and one y-coordinate. The coordinates must be

valid—that is, they must be somewhere on the surface of

the image. The method enforces this by ensuring that the

random coordinates can’t be below 0 or above the width or

height of the image. 

We also need a way to look at a “region” of the original

photograph corresponding to a shape in the working image, 

so we can analyze the color of that region. It would be

computationally expensive to find the exact pixels below an

arbitrary shape. Instead, we’ll use a bounding_box() static

method to identify a rectangular region that encompasses

the shape:

@staticmethod

def bounding_box(coordinates: CoordList) -> tuple[int, i

nt, int, int]:

xcoords = coordinates[::2]

ycoords = coordinates[1::2]

x1 = min(xcoords)

y1 = min(ycoords)

        x2 = max(xcoords)

y2 = max(ycoords)

return x1, y1, x2, y2

A  bounding box is an axis-aligned rectangle (meaning

its edges are parallel to the edges of the image) around a

given shape, determined based on that shape’s minimum

and maximum x- and y-coordinates. We’ll pass that

rectangle to Pillow’s built-in crop() method to crop the

original image down to just the desired region. We’ll leave

alternative techniques for extracting a more narrowly

defined region of the original image for the exercises. 

 Trials

The heart of the algorithm is the trial() method. Each trial

is an attempt to place one shape in the working image. If

the new shape brings the working image closer to the

original, it’s kept. If the difference score can be further

improved by nudging its coordinates, the coordinates of the

shape are nudged. The method begins by finding a place

for the new shape using random_coordinates() and finding the

backing region of those coordinates:

def trial(self):

while True:

coordinates = self.random_coordinates()

region = self.original.crop(self.bounding_box(co

ordinates))

if region.width > 0 and region.height > 0:

break

There’s an ugly while loop here to account for the

unlikely scenario where the random coordinates are all

aligned along either axis. In that case, we need to

regenerate the coordinates. There’s an exercise at the end

of the chapter to excise this loop. The next part of the method chooses a color for the shape:

if self.method == ColorMethod.AVERAGE:

color = tuple((round(n) for n in ImageStat.Stat

(region).mean))

elif self.method == ColorMethod.COMMON:

color = get_most_common_color(region)

else: # must be random

color = tuple(random.choices(range(256), k=3))

original = self.glass

Depending on the ColorMethod, we select the average

color in the backing region (once again using ImageStat), 

select the most common color in the backing region, or

simply choose a random color. Then, we preserve the

current state of the working image (self.glass) in a local

variable, original, to be reused in the case that coordinate

nudges are tried (we try redrawing the shape a little bigger

or a little smaller in various directions, so we need the

original canvas it was drawn on). Now we’re ready to try

drawing a shape:

def experiment() -> bool:

new_image = original.copy()

glass_draw = ImageDraw.Draw(new_image)

if self.shape_type == ShapeType.ELLIPSE:

glass_draw.ellipse(self.bounding_box(coordin

ates), fill=color)

else: # must be triangle or quadrilateral or lin

e

glass_draw.polygon(coordinates, fill=color)

new_difference = self.difference(new_image)

if new_difference < self.best_difference:

self.best_difference = new_difference

self.glass = new_image

                return True

return False

An inner function, experiment(), returns True if an

attempt to draw a new shape is successful in terms of

lowering the difference between the working image and the

original image. The ImageDraw module in Pillow takes care of

the actual drawing. The difference is calculated using the

previously defined difference() method and compared

against the best difference found so far. If the shape has

improved the image, the working image is replaced with

the image including the new shape. 

The last part of trial() tries to make incremental

improvements to each shape by nudging its coordinates. If

a nudge improves the difference score compared to the

version of the working image with the shape’s original

coordinates, then the nudge is kept and another nudge is

attempted in the same direction:

if experiment():

# Try expanding every direction, keep going in b

etter directions

for index in range(len(coordinates)):

for amount in (-1, 1):

while True:

old_coordinates = coordinates.copy()

coordinates[index] = coordinates[ind

ex] + amount

if not experiment():

coordinates = old_coordinates

break

self.shapes.append((coordinates, color))

This code is a kind of  hill climbing algorithm, where we keep going in the same direction to solve a problem (in this

case, optimizing for difference) as long as the solution

continues to improve. We stop when it stops improving. 

This may lead to a local maximum, but it’s a simple and effective way to improve on an existing solution. In this

instance, we have an existing solution because we only

keep shapes that improved on the difference to begin with

(indicated by experiment() returning True). See the “Hill

Climbing” box for more on how this type of algorithm

works. 

The overall algorithm would work without the nudging

process, but the nudging improves the fit of each shape. 

This, in turn, improves the overall look of the final painting and reduces the number of shapes necessary to get to a

reasonable result. 

Once the final shape is set after any nudging, we add its

coordinates and color to the shapes list. Maintaining this list, separate from drawing the shapes in the working image, is

necessary for generating the final output. 

HILL CLIMBING

 Hill climbing is a simple optimization technique that aims to find the maximum or minimum of a function by continually going in the same direction while the search seems to be “improving.” In the classic explanation of this technique, you’re asked to imagine that you’re wearing a blindfold and standing at the bottom of a hill that you want to climb. You can feel with your feet the gradient of the ground around you. With each step, whatever direction seems to yield the steepest upward slope will feel like the way that you should go if you want to get up the hill the fastest. You can keep choosing to go up in this direction as long as you can feel with your feet that you’re climbing. 

Eventually you’ll reach a point where you’re no longer climbing no matter the direction of your next step, and then you can stop. 

Will you have reached the top of the hill? It’s certainly possible, especially if the hill has a single peak. But it’s also possible the hill has multiple peaks and you just reached one of the smaller ones. That’s called getting caught in a  local maximum. Hill climbing will always find a local maximum, but it may not find a global maximum. 

Hill climbing is a popular technique in artificial intelligence because it is so simple. It’s a good starting point for many problems. 

In our program, we keep nudging coordinates in the same direction until the difference with the starting image is no longer improving. 

This is a type of hill climbing: we just keep going in the same direction

until things aren’t getting better. Of course, it’s possible the placement of the shape was a mistake to begin with compared to some other alternative placement, and our nudging is just leading us down a rabbit hole toward a local maximum. With such a simple algorithm, there’s no way to know for sure. 

 Output

The working image was scaled to MAX_HEIGHT, but the final

output image should have the user-specified height (again, 

for simplification, we let the user just set the height and not the width). We can’t simply “stretch” a bitmap without

pixelation. Instead, we redraw the working image using the

data in the shapes list, with each shape scaled appropriately. 

The method for outputting the image also incorporates

options for outputting a vector file (making use of the SVG

class from earlier) and outputting an animated GIF via

Pillow. This adds significantly to its length. Here’s the start of create_output():

def create_output(self, out_file: str, height: int, vect

or: bool, animation_length: int):

average_color = tuple((round(n) for n in ImageStat.S

tat(self.original).mean))

original_width, original_height = self.original.size

ratio = height / original_height

output_size = (int(original_width * ratio), int(orig

inal_height * ratio))

output_image = Image.new("RGB", output_size, average _color)

output_draw = ImageDraw.Draw(output_image)

We begin by creating a new image of the appropriate

size based on the user-specified height parameter. We fill

the initial output image with the average color of the

original image as was done for the working image. The

method continues:

        svg = SVG(*output_size, average_color) if vector els e None

animation_frames = [] if animation_length > 0 else N

one

for coordinate_list, color in self.shapes:

❶ coordinates = [int(x * ratio) for x in coordinat

e_list]

The output image will be generated by iteratively

reproducing each shape in the shapes list at the right scale

❶. To also create SVG or animated GIF output, as the

output image is generated, each step will be repeated on

the svg object or copied as a picture to a list of

animation_frames that make up the animated GIF “movie”:

if self.shape_type == ShapeType.ELLIPSE:

output_draw.ellipse(self.bounding_box(coordi

nates), fill=color)

if svg:

svg.draw_ellipse(*coordinates, color) # 

type: ignore

else: # must be triangle or quadrilateral or lin

e

output_draw.polygon(coordinates, fill=color)

if svg:

if self.shape_type == ShapeType.LINE:

svg.draw_line(*coordinates, color) # 

type: ignore

else:

svg.draw_polygon(coordinates, color)

if animation_frames is not None:

animation_frames.append(output_image.copy())

output_image.save(out_file)

if svg:

svg.write(out_file + ".svg")

if animation_frames is not None:

animation_frames[0].save(out_file + ".gif", save

_all=True, 

                                     append_images=animation _frames[1:], optimize=False, 

duration=animation_leng

th, loop=0, 

transparency=0, disposa

l=2)

The rest of the method is just drawing the shapes on the

output image(s) and writing the file(s) to disk. 

The Results

There’s a lot packed into those 150 lines of code. The

program features stochastic trials, a couple insights into

how to make an educated guess about the color of each

shape, a little bit of hill climbing, and the use of a good

library. Cool results in computer science are so much more

about the algorithm and the technique than the number of

lines of code. But this algorithm is also surprisingly simple

—yet extremely effective. No, the output isn’t quite as

impressive as the latest neural network, but it’s amazing

how far a simple technique can take a program. 

The main downside of this algorithm is that it’s slow

and random. You can try the same image multiple times

with the same parameters and get different results. And

you might wait a long time to get those varying, sometimes

bad results. 

However, I have some impressive, although admittedly

cherry-picked, results to share with you. The first are a

couple scenes from Touro Park in Newport, Rhode Island. I

like how the line shape gives almost an oil painting– like

feel to each of them. Figure 4-7 is a broad view of the park with the famous Newport Tower on the right. 

[image: Image 21]

 Figure 4-7: Touro Park with 19,578 lines

Figure 4-8 is a closer view of Newport Tower. 

[image: Image 22]

 Figure 4-8: Newport Tower with 11,409 lines

Figure 4-9 shows a cat that I found rolling on the pavement. The ellipse shape gives the cat a nice abstract

look. Could this be the work of an impressionist painter? 

[image: Image 23]

 Figure 4-9: A cat rolling on pavement with ellipses

Finally, I present a scene from Halloween in Figure 4-

10. 

[image: Image 24]

 Figure 4-10: A Halloween scene with ellipses

My son and I were running through a public display of

pumpkins. I like how the gourds and people in the

background came out using ellipses. 

CODE MEETS LIFE

In the mid-2010s, I first thought about creating a program like the one in this chapter using a genetic algorithm. I did a little research and found that multiple people had already beaten me to the punch. 

However, in doing that research, I also came across Michael

Fogleman’s Primitive project.1 He had created a program that produced abstract art, like the older programs that used genetic algorithms, but using a simpler technique called simulated annealing. 

[image: Image 25]

I want to take a moment to thank Michael for how influential he’s been on my programming career. Michael is a very talented

programmer, but beyond being talented, he also writes incredibly readable code. And he happens to create projects in many areas that interest me. You’ll hear more about another of Michael’s projects in the emulation section of this book. 

While this project shares no code with Michael’s Primitive, the fact that he could turn photos into abstract art using such a simple algorithm spurred me to believe that I could do the same using my own, even simpler technique. I went about trying to implement my algorithm as an iOS app. I was mostly successful, but unfortunately, 2017-era iPhones weren’t fast enough to run my program in a

reasonable amount of time. I tried optimizing it, but the issue was my algorithm, not the implementation. At the same time, interesting machine learning–based apps for artistic photo transformation were

starting to come out for iOS, and I realized my slower, simpler technique just couldn’t compete. It still made for a cool demo, however, and when I was coming up with the projects for this book, I remembered it. I think it’s a great illustration of the power of random algorithms and hill climbing. 

After I ported my Swift code to Python for this book, I decided to test it out on my friends by posting on Facebook a picture of my one-year-old son, Daniel, on a swing. 

My aunt, who has quite a trained artistic eye, thought I had taken up painting. That was when I knew the program was pretty good. 

Real-World Applications

Beyond looking kind of cool, the output of this program

doesn’t have a lot of practical applications. However, the

techniques that were used to build it certainly do. They fall under an umbrella term known as  stochastic optimization. 

Suppose you have an optimization problem you want to

solve, but you don’t know of a deterministic algorithm (an

algorithm that gives the same result every time by

following the same steps every time) to solve it. In that

case, a technique that involves random (stochastic) trials

may be warranted. 

It may not be abundantly clear, but the challenge in this

chapter is an example of an optimization problem. Our

program tries to optimize for a drawing that’s as close to

the original photograph as possible. The objective function

(the thing that checks if we’re going in the right direction) is the difference() method. The lower the difference, the

more optimal the potential solution to the problem that a

particular image represents. 

One famous practical area where stochastic

optimization algorithms are useful is the classic traveling

salesperson problem. The problem calls for a traveler to

visit every specified location on a map exactly once and

return to their starting point using the shortest route

possible. It’s what delivery trucks (think FedEx or UPS) do

every day, so it has a very practical application. 

Unfortunately, there’s no known deterministic algorithm for solving the traveling salesperson problem optimally for

a large number of locations in a reasonable amount of time. 

Instead, stochastic optimization techniques such as genetic

algorithms provide a useful way to solve the problem, but

their solutions may be suboptimal. A genetic algorithm may

not always yield a perfect solution to the traveling

salesperson problem, but it will almost always yield a

solution that’s good enough. 

Our program also utilized hill climbing. Although this is

one of the simplest local search procedures (just keep

going in the same direction if that direction is working), it’s a very common technique, and it performs as well as more

advanced techniques in many scenarios. Hill climbing also

forms the basis for other, more sophisticated algorithms. 

For example, the simplex algorithm for solving linear

programming problems utilizes hill climbing.2

Exercises

1.  Modify the program to draw more than one type of

shape in the same painting. For example, it could create

a drawing with both ellipses and triangles in the final

output. 

2.  Since the pixels used to calculate the color for a new

shape are based on a bounding box and not the exact

area underneath the shape, the results are inaccurate. 

Modify trial() to experiment with not only coordinate

nudges but also color nudges. This may lead to a better-

matching color. 

3.  Modify trial() to use the exact pixels underneath a

shape to determine that shape’s color. This is

challenging. One way to do it would be to use some

geometric calculations to determine the right pixels for

each type of shape. This will likely be much less

computationally efficient than simply cropping the

bounding box as the original program does. Consider instead using the mask facilities in Pillow. 

4.  The while True loop at the beginning of trial() feels like a code smell. Rewrite the beginning of trial() without

it. 

Notes

  1.  Michael Fogleman, “Primitive,” accessed January 9, 2023,   https://www.michaelfogleman.com/#primitive. 

  2.  Steven S. Skiena, “Combinatorial Search and Heuristic Methods,” in  Algorithm Design Manual, 2nd ed. 

(Springer, 2008), 252–253. 

PART III

EMULATORS
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5

BUILDING A CHIP-8 VIRTUAL MACHINE

In this chapter, we’re going to

develop a version of a virtual

machine known as CHIP-8, a platform

from the early days of personal computing

that was primarily used for playing

games. Although our program will be able

to play CHIP-8 games, it’s not the games

themselves that interest us—it’s what

building a CHIP-8 virtual machine can

teach us about low-level programming

and how a computer works at the register

and instruction levels. These insights

make building a CHIP-8 virtual machine a

popular first step into the world of

programming emulators. 

Virtual Machines

Think of a  virtual machine (VM) as a computer that’s

defined wholly in software. Programs that are designed to

run in a VM can run on any platform that has an

implementation of that VM. In this way, VMs enable truly

portable software. 

VMs are closely related to emulators. An  emulator is a piece of software that’s pretending to be a piece of

hardware. This enables programs that were written for that

hardware to run on other machines that lack the hardware. 

An emulator must follow the specification for the original

hardware carefully so that it re-creates all the functionality that the unknowing programs running on the emulator

expect. I say  unknowing because the software running on an emulator has no idea it isn’t running on the real

hardware; the emulator had better work exactly like the

original hardware if the program is going to function

correctly. 

A VM is also a piece of software that closely follows a

specification of an environment that software runs on top

of. The difference is that while an emulator follows a

hardware specification, a VM follows a specification that

may be wholly defined as an abstraction in software terms. 

Although one is a hardware specification and one is a

software specification, implementing a simple emulator is

quite similar to implementing a simple VM. In fact, they’re

so similar that while the project completed in this chapter

is technically a VM project, it’s very commonly suggested

as a first emulation project. If you’re a newcomer to the

emulator development community asking where you should

start, CHIP-8 is almost always the answer. 

Perhaps the most famous VM is the Java Virtual

Machine (JVM). When Java first came out in the mid-1990s, 

its “write once, run anywhere” philosophy was touted. 

JVMs were developed for all major operating systems

(Windows, Linux, Mac OS, and so on), and the same Java program could be compiled into the JVM’s native bytecode

format and run on any computer with a JVM unchanged, 

regardless of the underlying platform. That’s still true

today, but Java’s original write-once-run-anywhere niche

has largely been supplanted by web applications. 

The CHIP-8 VM comes from a much earlier era. In the

1970s, Joseph Weisbecker was a pioneering engineer who

developed one of the first 8-bit microprocessors, the RCA

1802. He and RCA built an early personal computer using

his invention.1 He wanted to have a way to program games for the machine in a higher-level language than machine

code, so he developed CHIP-8 (and its accompanying

opcode language). His daughter, Joyce Weisbecker, would

go on to use CHIP-8 to become the first published female

video game developer. 2 In the 1980s, CHIP-8 was ported to many other platforms, including many graphing

calculators. It therefore became a truly portable VM, 

analogous to an early form of how we think about VMs

today. 

The CHIP-8 Virtual Machine

The CHIP-8 VM was originally designed for the incredibly

resource-constrained personal computers of the late 1970s, 

like the COSMAC VIP. Released in 1977, the COSMAC VIP

had an RCA 1802 8-bit microprocessor running at less than

2 megahertz (MHz), 2KB of RAM (expandable to 4KB), and

a 512-byte ROM. It also had specialized chips for displaying

1-bit graphics at a resolution of up to 64×128, reading and

writing cassette tapes, and playing a beep.3

It’s amazing by today’s standards that anything of value

could have been programmed on a machine like the

COSMAC VIP, yet it was designed for video games. In fact, 

those games even ran through another layer of abstraction, 

the CHIP-8 VM. The most popular video game console of

the era, the Atari 2600, was also released in 1977 and had specifications that were in the same ballpark. These

limitations were simply par for the course. 

When programming a VM or an emulator, the

performance of the tools you’re using is a paramount

concern. The VM or emulator adds another layer of

abstraction between the program and the hardware, and

each layer of abstraction generally comes with some

performance cost. To achieve the intended speed of the

original system, overhead has to be kept to a minimum, and

some programming languages (or rather, some

programming languages’ primary runtime

implementations) get in the way. This is why it’s common to

see VMs and emulators programmed in low-level languages

like C, C++, and Rust. That said, considering how limited

CHIP-8’s original target hardware was, it’s not difficult to

create a performant CHIP-8 VM today on any modern

system. Even a relatively slow programming language

runtime like CPython is sufficient. You wouldn’t want to

program a cutting-edge game console emulator in Python, 

or a JVM. But CHIP-8? Python is more than fine for that. 

To understand CHIP-8, let’s start by discussing its

registers and memory layout. Then, I’ll provide a general

overview of the instructions that the VM can execute, 

before getting into the nitty-gritty details of an

implementation. 

 Registers and Memory

On a physical microprocessor,  registers are the absolute fastest memory available. They sit directly within the

microprocessor and don’t require the latency of accessing

another chip. Putting data in registers is often the only way to manipulate it, since most data manipulation instructions

(for example, arithmetic) that a microprocessor supports

operate on data within the registers. Separate load/store

instructions transfer data between the registers and external RAM. 

When it comes to registers, there’s a classic time-

versus-space trade-off: the registers are the fastest storage locations to hold data, but they’re extremely limited in size. 

For example, a typical 8-bit microprocessor of the late

1970s may only have had a few 8-bit registers (yes, each

can only hold a single byte), but it could address dozens of

kilobytes of external RAM. 

Most VMs, like the CHIP-8, also have registers, but

those registers don’t always map directly to physical

hardware registers on the microprocessor. As such, they’re

not necessarily any faster than RAM. That may seem odd, 

but the registers provide a substrate that the instructions

can operate on. There’s also nothing stopping a particular

implementation of the VM from mapping the virtual

registers to real hardware registers for a performance gain

—as long as the number of virtual registers doesn’t exceed

the number of physical registers. 

NOTE

 In the following discussion, the same names are used to

 refer to the CHIP-8 registers as will be used in the Python code for the implementation. 

The CHIP-8 VM has 16 general-purpose 8-bit registers, 

referred to as v[0] through v[15]. They can be used for any

kind of data, and all the main arithmetic and logic

instructions operate on these registers. Of these general-

purpose registers, v[15] (or v[0xF] in hexadecimal) is special in that it’s used for holding a flag. The index register, i, is for manipulations across multiple memory locations at once

and for indicating where data that needs to be drawn to the

screen exists in memory. The program counter, pc, is a

special register that keeps track of the memory address of the next instruction to be executed. 

The vs, i, and pc constitute the main registers, but

they’re backed up by a couple pseudo-registers for timing. 

These two bytes, delay_timer and sound_timer, are used for

implementing a pause in the game or indicating how long

the sound of a beep should be played. There are specialized

instructions for modifying these timers. All the registers

are listed in Table 5-1.  The registers were originally described in the RCA COSMAC VIP CDP18S711 Instruction

Manual.4

Table 5-1: CHIP-8 Registers and Pseudo-Registers

Register

Name

Description

v[0] to

General-

Each can hold any kind of 8-bit data. 

v[14]

purpose

registers

v[15]

Flag register

Stores a flag (1 or 0) after certain operations, like

a carry flag after addition. 

pc

Program

Keeps track of the 16-bit address in memory of

counter

the current instruction being executed. 

i

Memory

Stores a 16-bit address used for completing

index

instructions that span multiple contiguous places

register

in memory. 

delay_timer

Delay timer

Stores an 8-bit value that’s decremented 60 times

per second until it reaches 0. 

sound_timer

Sound timer

Stores an 8-bit value that’s decremented 60 times

per second until it reaches 0; while it’s above 0, a

beep is played by the computer speaker. 

A typical CHIP-8 VM has 4KB of general-purpose RAM. 

This is in line with the COSMAC VIP when loaded with

expansion memory. However, there’s a catch: on the VIP, 

the first 512 bytes of memory had to contain the code for

the actual CHIP-8 VM itself (yes, the whole VM fit into just 512 bytes of machine code—think about that as we write

our version). That left only 3.5KB of usable RAM. To be

backward compatible today, our VM must also reserve the

first 512 bytes of RAM. 

 Instructions

The CHIP-8 VM was largely used to program games, so it

includes specialized instructions for actions like moving

sprites and playing a beep. Those sit alongside all the

mundane, utilitarian instructions you’d find in any

microprocessor instruction set or low-level programming

language—instructions for manipulating memory, doing

arithmetic, overseeing control flow, handling timers, and

managing the display. In total, there are 35 instructions

that we’ll be implementing. All the instructions are

specified in hexadecimal— see the “Hexadecimal”  box for more on that numbering system. 

HEXADECIMAL

 Hexadecimal, or  base-16, is the number system typically used for working with low-level bytes on computing systems (RAM addresses, CPU instructions, and the like). It can more compactly and consistently refer to values in bytes than binary or standard decimal (base-10, the number system we’re used to). For instance, you can represent any 8-bit number using two hexadecimal digits, and helpfully, each of those two digits corresponds to exactly half of the byte when written out in binary (half of a byte is known as a  nibble). If you were a programmer in the 1970s or 1980s, you would work with hexadecimal often, but today the average Python developer seldom uses it outside of low-level programming. 

In hexadecimal, in addition to the 10 symbols 0–9, six further symbols are provided, A–F, corresponding to the decimal values 10–

15. In Python, hexadecimal literals start with the 0x prefix. For example, 0xFF is the same as the decimal number 255, or the binary number 0b11111111. One F in the hexadecimal version refers to the first half of the ones in the binary version (1111), and the other F refers to the second set of ones (1111). This is the maximum value of 1 byte. 

To illustrate the conversion more clearly, the hexadecimal number

0xF0 can be written in binary as 0b11110000, with the F for the 1111 and the 0 for the 0000. 

To convert from hexadecimal to decimal, multiply each hex digit from right to left by a power of 16, starting with 160. For example, 0xFF

can be rewritten as (15 × 160) + (15 × 161). The right digit (F) becomes 15 × 1 = 15, the left digit becomes 15 × 16 = 240, and 240

+ 15 = 255. Here’s another example: 0xA5B is (11 × 160) + (5 × 161)

+ (10 × 162). This is equivalent to 2,651 in decimal. 

The instructions are here as a quick reference and to

give you a sense of the “lay of the land.” We’ll get into the details of how each instruction works in the code, but the

reality is that most of the code is pretty self-explanatory

based on the instruction descriptions. The vast majority of

instructions can be implemented in just a couple lines of

Python. 

I spent a lot of time thinking about how to group the

instructions for this discussion. Ultimately, I decided to

order them numerically so that they appear in the same

order here as they do in the code. Every instruction in

CHIP-8 is 16 bits, or in other words, 2 bytes or 4 nibbles, so it translates to four hexadecimal digits. Any uppercase

hexadecimal digit 0–F in an instruction is a literal. Any

lowercase letter indicates a value that will be used as part

of the implementation of the instruction. An underscore (_)

indicates the nibble is arbitrary. The instructions were

originally described in the RCA COSMAC VIP CDP18S711

Instruction Manual. 5

NOTE

 A few instructions listed here weren’t present in the

 original CHIP-8 specification (for example,  8x_6  and  8x_E ). 

 Their functionality sometimes differs across varying CHIP-8

 implementations. 

Screen Clearing and Basic Jumps

The first set of instructions are used for cleaning up the

entire screen all at once and for moving from one part of

the program to another part of the program. 

00E0 Clear the screen. 

00EE Return from a subroutine. 

0nnn Call the program at nnn, reset the timers and

registers, and clear the screen. 

1nnn Jump to address nnn without resetting. 

2nnn Call the subroutine at nnn. 

Conditional Skips

The next set of instructions are for jumps to another part of the program if a particular condition is true. 

3xnn Skip the next instruction if v[x] equals nn. 

4xnn Skip the next instruction if v[x] doesn’t equal nn. 

5xy_ Skip the next instruction if v[x] equals v[y]. 

General-Purpose Register Adjustments, Arithmetic, 

and Bit Manipulation

Next come standard instructions that you would find in any

CPU or VM for actions like doing math, setting registers, 

and shifting bits. 

6xnn Set v[x] to nn. 

7xnn Add nn to v[x]. 

8xy0 Set v[x] to v[y]. 

8xy1 Set v[x] to v[x] | v[y] (bitwise OR). 

8xy2 Set v[x] to v[x] & v[y] (bitwise AND). 

8xy3 Set v[x] to v[x] ^ v[y] (bitwise XOR). 

8xy4 Add v[y] to v[x] and set the carry flag. 

8xy5 Subtract v[y] from v[x] and set the borrow flag. 

8x_6 Shift v[x] right one bit and set the flag to the

least-significant bit. 

8xy7 Subtract v[x] from v[y] and store the result in v[x]; set the borrow flag. 

8x_E Shift v[x] left one bit and set the flag to the most-significant bit. 

Miscellaneous Instructions

These instructions don’t quite have a unified subject area, 

but their opcodes are close to one another numerically. 

9xy0 Skip the next instruction if v[x] doesn’t equal v[y]. 

Annn Set i to nnn. 

Bnnn Jump to nnn + v[0]. 

Cxnn Set v[x] to a random integer (0–255) & nn (bitwise AND). 

Dxyn Draw a sprite that’s n high at (v[x], v[y]); set the flag on a collision. 

Key and Timer Instructions

The next batch of instructions are for manipulating the

VM’s timers and checking on the status of various keys or

waiting for a particular key to be pressed. 

Ex9E Skip the next instruction if key v[x] is set

(pressed). 

ExA1 Skip the next instruction if key v[x] is not set (not pressed). 

Fx07 Set v[x] to the delay timer. 

Fx0A Wait until the next key press, then store the key in v[x]. 

Fx15 Set the delay timer to v[x]. 

Fx18 Set the sound timer to v[x]. 

Register i Instructions

All the instructions in this last set are related to the

memory index register (i). 

Fx1E Add v[x] to i. 

Fx29 Set i to the location of character v[x] in the font set. 

Fx33 Store the binary-coded decimal (BCD) value in

v[x] at memory locations i, i + 1, and i + 2. (See the

“Binary-Coded Decimal”  box on page 122 for more on this.)

Fx55 Dump registers v[0] through v[x] in memory, 

starting at i. 

Fx65 Store memory from i through i + x in registers

v[0] through v[x]. 

Consider for a moment how mundane these instructions

sound. You really don’t need any sophisticated mechanisms

to have a working “computer.” Contrast the 35 CHIP-8

instructions described here with the 8 instructions in our

implementation of Brainfuck from Chapter 1. Both are memory-constrained Turing machines, and they aren’t as

different from each other as their superficial instruction

syntax may make it appear. 

BINARY-CODED DECIMAL

 Binary-coded decimal (BCD) is a way of storing decimal numbers in binary. It’s not widely used today, but it was common in early computers. For example, several microprocessors from the 1970s included explicit instructions for BCD arithmetic, which offered more precision when dealing with decimal rounding and to some extent made machine code more readable. For the average modern

programmer, there isn’t much value in learning BCD except as a curiosity. There were multiple different BCD schemes, and frankly I

don’t think that learning the particular scheme used in the CHIP-8 VM

is a valuable use of our space in this book. 

The Implementation

Now that we know the CHIP-8 architecture, we’re ready to

implement our VM. The file  __main__.py will contain the main run loop that handles user input, updates the display, 

manages timers, and most importantly, tells the VM to step

through the next instruction. This file is also where the

command line argument that specifies the ROM file is

parsed. Meanwhile,  vm.py is the actual VM. 

ROMS

Did you ever wonder why the files that hold games used in emulators are called ROMs?  ROM stands for  read-only memory. Most early video game systems used plastic cartridges that were glorified holders for ROM chips that directly plugged into the consoles. When the games were converted into files for emulators, someone would have to go and plug the ROM chip into a specialized device connected to their computer and “rip” the data from the ROM chip to store it in a file. The file would have an exact copy of the data on the ROM chip, perhaps with some extra header information depending on the emulation ecosystem. 

While the original ROM chips couldn’t have their data modified, these “ROM files” are just like any other files and can be modified to change the games. Hence, the subculture of  ROM hacking, in which developers change the graphics or gameplay of games meant to be run in emulators. 

We’ll utilize two external libraries in our

implementation. Pygame, a Python library designed for

game development, provides an easy way to get a window

on the screen, fill that window with the pixels from our

VM’s display, and handle keyboard input. NumPy, a

numerical computing library, can help create the two-

dimensional array used as the backing buffer for the

Pygame window’s pixels. This array will serve as the

“graphics RAM” of our VM. Pygame natively works with NumPy arrays, and NumPy arrays are more performant

than anything in the Python standard library for

representing this buffer. Make sure you’ve installed

Pygame and NumPy before running the program. 

Like replicating a file format in Chapter 3, implementing a VM or emulator requires a fair amount of

low-level bit manipulation. See the appendix to read up on Python’s bitwise operators. 

 The Run Loop

The run loop is responsible for advancing the VM by one

instruction, redrawing the screen, handling any events (key

presses to be passed to the VM), playing the beep sound, 

and updating CHIP-8’s two timers. Pygame makes drawing, 

playing sounds, and reading keyboard input almost trivial; 

it’s a very easy-to-use library. Let’s start with some

initialization code and continue through to the beginning of

the run loop:

 Chip8/__main__.py

import sys

from argparse import ArgumentParser

from Chip8.vm import VM, SCREEN_WIDTH, SCREEN_HEIGHT

from Chip8.vm import TIMER_DELAY, FRAME_TIME_EXPECTED, ALLOW

ED_KEYS

import pygame

from timeit import default_timer as timer

import os

def run(program_data: bytes, name: str):

# Startup Pygame, create the window, and load the sound

pygame.init()

screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_H

EIGHT), 

pygame.SCALED)

    pygame.display.set_caption(f"Chip8 - {os.path.basename(n ame)}")

bee_sound = pygame.mixer.Sound(os.path.dirname(os.path.r

ealpath(__file__))

+ "/bee.wav")

currently_playing_sound = False

vm = VM(program_data) # load the virtual machine with th

e program data

timer_accumulator = 0.0 # used to limit the timer to 60 

Hz

# Main virtual machine loop

while True:

frame_start = timer()

vm.step()

if vm.needs_redraw:

pygame.surfarray.blit_array(screen, vm.display_b

uffer)

pygame.display.flip()

At the beginning of the run loop, the time is recorded

with frame_start = timer() to measure the duration of each

iteration of the loop. This is because CHIP-8’s timers need

to be decremented 60 times per second (if they’re above

zero). The VM is then told to execute an instruction (and

therefore to move to the next instruction) via vm.step(). If

indicated by vm.needs_redraw, the display is then redrawn via two simple calls to Pygame. One copies the VM’s display

buffer to the screen, and the other shows it. 

Note that the code uses the term  frame a little

differently than is typical. In most programs, a frame is one full refresh of the entirety of the program’s graphical

output, but in this context, our run loop won’t necessarily

redraw the graphics every iteration, since vm.needs_redraw

may not always be True. 

What definitely  will happen every “frame” is that one instruction will be executed as a result of the call to

vm.step(). As such, I thought about using the word

 instruction rather than  frame in this section of the code, for example, instruction_start rather than frame_start. However, 

more than just the execution of an instruction is happening

in the run loop—there’s also graphical output, keyboard

handling, and sound output—so  instruction sounded too limited. But again,  frame isn’t quite accurate either. It’s true what they say: one of the hardest problems in

computer science is naming. 

The run loop finishes by handling keyboard events, 

playing a sound when the VM’s Boolean vm.play_sound

indicates, and handling timing:

# Handle keyboard events

for event in pygame.event.get():

if event.type == pygame.KEYDOWN:

key_name = pygame.key.name(event.key)

if key_name in ALLOWED_KEYS:

vm.keys[ALLOWED_KEYS.index(key_name)] = 

True

elif event.type == pygame.KEYUP:

key_name = pygame.key.name(event.key)

if key_name in ALLOWED_KEYS:

vm.keys[ALLOWED_KEYS.index(key_name)] = 

False

elif event.type == pygame.QUIT:

sys.exit()

# Sound

if vm.play_sound:

if not currently_playing_sound:

bee_sound.play(-1)

currently_playing_sound = True

else:

currently_playing_sound = False

bee_sound.stop()

# Handle timing

frame_end = timer()

        frame_time = frame_end - frame_start # time it took in seconds

timer_accumulator += frame_time

# Every 1/60 of a second decrement the timers

if timer_accumulator > TIMER_DELAY:

❶ vm.decrement_timers()

timer_accumulator = 0

# Limit the speed of the entire machine to 500 "fram

es" per second

if frame_time < FRAME_TIME_EXPECTED:

difference = FRAME_TIME_EXPECTED - frame_time

❷ pygame.time.delay(int(difference * 1000))

timer_accumulator += difference

Even though we aren’t using frames to measure

traditional frames per second (FPS), as you may be familiar

with from gaming, the timing of each iteration is still

important. We need to keep track of timing to ensure the

VM’s countdown timers are ticked every 1/60 of a second

as required by the CHIP-8 specification ❶, and to limit the

overall speed of the VM ❷. If the VM runs too fast, games

will be unplayable since they were designed for the slow

computers of the 1970s. You can adjust the speed of the

VM, and therefore any software running on it, by changing

the FRAME_TIME_EXPECTED constant in  vm.py. In testing, I found that 500 “frames” per second, or in other words, each

“frame” being approximately 1/500 of a second, to be a

solid speed for most games. 

 Command Line Arguments

As in previous programs, we use ArgumentParser to handle

command line arguments:

if __name__ == "__main__":

# Parse the file argument

file_parser = ArgumentParser("Chip8")

file_parser.add_argument("rom_file", 

                             help="A file containing a Chip8 game.")

arguments = file_parser.parse_args()

with open(arguments.rom_file, "rb") as fp:

file_data = fp.read()

run(file_data, arguments.rom_file)

In this case, we have just a single command line

argument—the name of the file containing the program

data for the CHIP-8 VM. The file’s raw bytes are read and

passed to run(), where they in turn are passed to the

constructor of the VM. 

 VM Setup and Helper Functions

We’re ready for the actual VM implementation. We start, as

we so often do, with some constants:

 Chip8/vm.py

from array import array

from random import randint

import numpy as np

import pygame

import sys

RAM_SIZE = 4096 # in bytes, aka 4 kilobytes

SCREEN_WIDTH = 64

SCREEN_HEIGHT = 32

SPRITE_WIDTH = 8

WHITE = 0xFFFFFFFF

BLACK = 0

TIMER_DELAY = 1/60 # in seconds... about 60 Hz

FRAME_TIME_EXPECTED = 1/500 # for limiting VM speed

ALLOWED_KEYS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", 

"9", 

"a", "b", "c", "d", "e", "f"]

# The font set, hardcoded

FONT_SET = [

0xF0, 0x90, 0x90, 0x90, 0xF0, # 0

0x20, 0x60, 0x20, 0x20, 0x70, # 1

0xF0, 0x10, 0xF0, 0x80, 0xF0, # 2

0xF0, 0x10, 0xF0, 0x10, 0xF0, # 3

0x90, 0x90, 0xF0, 0x10, 0x10, # 4

0xF0, 0x80, 0xF0, 0x10, 0xF0, # 5

0xF0, 0x80, 0xF0, 0x90, 0xF0, # 6

0xF0, 0x10, 0x20, 0x40, 0x40, # 7

0xF0, 0x90, 0xF0, 0x90, 0xF0, # 8

0xF0, 0x90, 0xF0, 0x10, 0xF0, # 9

0xF0, 0x90, 0xF0, 0x90, 0x90, # A

0xE0, 0x90, 0xE0, 0x90, 0xE0, # B

0xF0, 0x80, 0x80, 0x80, 0xF0, # C

0xE0, 0x90, 0x90, 0x90, 0xE0, # D

0xF0, 0x80, 0xF0, 0x80, 0xF0, # E

0xF0, 0x80, 0xF0, 0x80, 0x80 # F

]

Most of these constants are self-explanatory and in line

with the original CHIP-8 specifications. The VM has 4KB of

main memory. It specifies graphics in the form of a black-

and-white output picture with a 64×32 resolution. The

timers update 60 times per second. The original CHIP-8

systems had 16 keys you could press on the controller. We

could probably arrange them in a more ergonomic way for

gaming by mapping them to other keys, but in our

implementation, we’ll just leave the keys where they lie on

the keyboard. 

Probably the most unusual constant here is FONT_SET. 

This is 80 bytes of graphical data for displaying the digits

0–9 and the letters A–F. Each character is specified by bits

representing the pixels of the character should it be shown

on the screen. Think of it as a primitive font that only has

16 characters. Several games expect this data to live in the

first 80 bytes of memory so that they can write messages

on the screen to the user. 

Next, we have a helper function unrelated to the state of the VM:

def concat_nibbles(*args: int) -> int:

result = 0

for arg in args:

result = (result << 4) | arg

return result

The concat_nibbles() function takes an arbitrary number

of integers and concatenates one after another by shifting

each 4 bits to the left and bitwise OR-ing it with the next

one. This will only be useful if the integers themselves are 4

bits. Suppose we have the integer 0111. Shifting it 4 bits to the left will cause four zeros to follow the original 4 bits, as in 01110000. Now suppose we have another 4-bit integer, 

1010. If we OR it with 01110000, we obtain the result 01111010, the concatenation of the original two 4-bit integers. We can

keep doing this for an arbitrary number of 4-bit integers to

concatenate them together. 

Recall that a 4-bit integer is known as a  nibble. The 16-bit instructions in CHIP-8 are divided into four nibbles, and each nibble often has a separate meaning. By default, we’ll

divide each instruction into its four constituent nibbles, but for a few instructions, we’ll need to use the value of a few

combined nibbles. Hence, the utility of the concat_nibbles()

helper function. 

The VM class starts with a constructor that initializes all

of its mutable state including registers, RAM, the stack, the display buffer (what today we would call VRAM or video

RAM), the timers, and a couple other helper variables:

class VM:

def __init__(self, program_data: bytes):

# Initialized registers and memory constructs

# General Purpose Registers - CHIP-8 has 16 of these 

registers

self.v = array('B', [0] * 16)

# Index Register

self.i = 0

# Program Counter

# Starts at 0x200 because addresses below that were

# used for the VM itself in the original CHIP-8 mach

ines

self.pc = 0x200

# Memory - the standard 4k on the original CHIP-8 ma

chines

self.ram = array('B', [0] * RAM_SIZE)

# Load the font set into the first 80 bytes

self.ram[0:len(FONT_SET)] = array('B', FONT_SET)

# Copy program into RAM starting at byte 512 by conv

ention

self.ram[512:(512 + len(program_data))] = array('B', 

program_data)

# Stack - in real hardware this is typically limited 

to

# 12 or 16 PC addresses for jumps, but since we're o

n modern hardware, 

# ours can just be unlimited and expand/contract as 

needed

self.stack = []

# Graphics buffer for the screen - 64 x 32 pixels

self.display_buffer = np.zeros((SCREEN_WIDTH, SCREEN

_HEIGHT), 

dtype=np.uint32)

self.needs_redraw = False

# Timers - really simple registers that count down t

o 0 at 60 hertz

self.delay_timer = 0

self.sound_timer = 0

# These hold the status of whether the keys are down

# CHIP-8 has 16 keys

self.keys = [False] * 16

A few of these state variables have important default values. For example, the program counter (pc) should

always be set to location 0x200 (512 in decimal) since the

first 512 bytes of memory in CHIP-8 machines were

originally used for storing the CHIP-8 VM itself. This means

CHIP-8 programs couldn’t use that memory and had to

start at byte 512. I’ve extensively commented the

constructor to explain each variable as it’s declared. Notice that the vast majority of our VM just uses the Python

standard library for its implementation, except for

display_buffer, which is a NumPy array. This is the format

that Pygame expects. 

Next, we have a trivial helper method, 

decrement_timers(), and a simple dynamic property, 

play_sound:

def decrement_timers(self):

if self.delay_timer > 0:

self.delay_timer -= 1

if self.sound_timer > 0:

self.sound_timer -= 1

@property

def play_sound(self) -> bool:

return self.sound_timer > 0

Both decrement_timers() and play_sound were used in the

run loop we looked at earlier in  __main__.py. 

 Graphics

CHIP-8 sees the screen as a 64×32 pixel plane with a

cartesian coordinate system having the origin, location

(0,0), in the top left, and the y-axis oriented downward. In

other words, the x-coordinate increases as we travel from

left to right and the y-coordinate increases as we travel

from top to bottom. The bottom-right pixel is therefore at
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location (63,31). There are no negative coordinates, and it

isn’t possible to access pixel locations beyond the screen. 

Each pixel is represented in memory as a single bit. In

our implementation, a 1 represents a white pixel and a 0

represents a black pixel. The graphics memory (or “buffer”)

is separate from the main program memory and can only be

manipulated indirectly using CHIP-8 instructions. Pygame

uses 32-bit integers to represent pixels on the screen in

RGBA format (the  A is for  alpha, or transparency), so each of our 1-bit pixel values must become a 32-bit integer when

we store it in the display_buffer. 

CHIP-8 draws using  sprites, which are little bitmaps (or images, if you like) that can move around the screen. Every

sprite in CHIP-8 is 8 pixels wide and can be anywhere

between 1 and 15 pixels high. Figure 5-1 illustrates an 8×3

sprite representing the word  HI being drawn on the screen at location (28,15). 

 Figure 5-1: The word HI  as an 8×3 sprite

Since each row in a CHIP-8 sprite is exactly 8 pixels, it’s

represented using 8 bits. Since 8 bits is 1 byte, each row of a sprite can therefore be represented by a single byte. 

Since the  HI sprite is three rows high, it can be represented by 3 bytes. In binary, those 3 bytes would look

like this:

10100111

11100010

10100111

Notice how each 1 maps to a white pixel and each 0

maps to a black pixel. With this information, hopefully the

font set we defined earlier also makes more sense now:

each character in the font set is just an 8×5 sprite. 

Drawing sprites is the only way to modify the display

buffer, other than clearing it, so the CHIP-8 VM has a

single draw instruction, Dxyn. It draws a sprite of a specified height residing at the memory location specified by the i

register. The D in the instruction is a constant nibble, and

the x and y nibbles represent the indices into the v registers where the x- and y-coordinates for the top left of the sprite should be located. In other words, the x-coordinate is

retrieved from register v[x] and the y-coordinate from

register v[y]. The n nibble represents the height of the

sprite. This is why sprites can’t be taller than 15 pixels: a nibble is 4 bits, and 4 bits can maximally represent the

number 15. 

The nibbles of Dxyn correspond to the parameters of the

draw_sprite() helper method:

# Draw a sprite at *x*, *y* using data at *i* with a hei

ght of *height*

def draw_sprite(self, x: int, y: int, height: int):

flipped_black = False # did drawing this flip any pi

xels? 

for row in range(0, height):

row_bits = self.ram[self.i + row]

for col in range(0, SPRITE_WIDTH):

                px = x + col

py = y + row

if px >= SCREEN_WIDTH or py >= SCREEN_HEIGH

T:

continue # ignore off-screen pixels

new_bit = (row_bits >> (7 - col)) & 1

old_bit = self.display_buffer[px, py] & 1

if new_bit & old_bit: # if both set, flip wh

ite -> black

flipped_black = True

# CHIP-8 draws by XORing

new_pixel = new_bit ^ old_bit

self.display_buffer[px, py] = WHITE if new_p

ixel else BLACK

# Set flipped flag for collision detection

self.v[0xF] = 1 if flipped_black else 0

CHIP-8 draws sprites using XOR operations.  XOR, or

 exclusive or, is a bitwise operation that returns a 1 if two bits are different and a 0 if they’re the same. Python uses

the ^ operator for XOR.  Table 5-2 shows a truth table for XOR. 

Table 5-2: XOR Truth Table

0 ^ 0

0 ^ 1

1 ^ 0

1 ^ 1

0

1

1

0

The CHIP-8 draw instruction takes a sprite and XORs its

pixels with the pixels already on the screen at the location

specified. If this screen location is all black pixels, this will effectively just draw the sprite. However, if the screen

location contains some white pixels (1s), black pixels will

be drawn where the white pixels of the sprite overlap with

the white pixels of the screen. This is because 1 XOR 1 is 0. 

The CHIP-8 draw instruction tracks whether any of these

overlaps occur (a screen white pixel was turned to a black

pixel by drawing the sprite). If they do, it sets the flag register (v[0xF]). 

The draw_sprite() method is a codification of this

process. We iterate through all of the rows and columns of

a sprite that begins at the memory location specified by

register i, pulling out each pixel of the sprite using a right shift operation and storing it in new_bit. The & operation on the data going into new_bit ensures that only the single last bit of the shift operation is stored in new_bit. We compare

each new_bit to the bit already on the screen, old_bit, and if an old_bit will be flipped from white to black, we set the

flag register. We change the display buffer by taking the

XOR of new_bit and old_bit. 

Why do we need a flag to track whether drawing a

sprite causes a previously lit screen pixel to be turned off? 

It’s effectively a form of collision detection. If a sprite hits something that was already on the screen, that’s

particularly helpful to know in a game. For example, if you

are programming a tennis game, you would want to know

when the ball moves and hits a racket already on the

screen. 

 Instruction Execution

Now it’s time for the heart of the VM. We have one method

left, but it’s a big one: we need to implement all of the VM’s instructions. This isn’t dissimilar to executing the

statements in our interpreters in Chapters 1 and   2. 

Whether executing interpreter statements, VM

instructions, or microprocessor opcodes in an emulator, we

need to do something pretty simple: recognize what the

next instruction is and then execute a different few lines of code that manipulate the state of the VM based on its

intended operation. 

For example, if we see an add instruction, we should

add the two specified numbers together and store the

result in a specified location. If we see a jump instruction, 

we should move execution to a specified location in memory. It’s literally about recognizing what instruction is

being executed and changing a few state variables

representing memory, registers, and the like based on that

instruction. The simplest way to do this would be with a

large number of if statements. The pseudocode may look

like this:

if instruction == ADD:

add some numbers together and store the sum

elif instruction == JUMP:

jump to a location by changing the program counter

elif instruction == DRAW:

draw the sprite where specified by changing the display 

buffer

etc. 

Beyond using a bunch of if statements, there are three

common patterns for writing the code that executes the

instructions. The first is a giant switch statement, a

construct present in many languages but not quite in

Python in the same form. I assume most readers have seen

a switch statement before in a language like C or Java. If

you haven’t, you can think of it as a primitive form of

Python’s match statement like we used in Chapters 1 and   2. 

The case of the switch statement that executes is dependent

on the instruction. This is somewhat similar to the

pseudocode just shown. In fact, prior to the introduction of

the match statement in Python 3.10, the way you would

implement this pattern in Python was indeed with a ton of

if and elif clauses. This is the simplest way to implement

instruction execution, but it can become unwieldy for a

large instruction set. 

The next pattern is to use a  jump table, which consists of an array of function pointers. We index into the array

depending on the instruction and then execute the

appropriate function that’s returned. Instructions are just integers, which is why they can be used as array indices. If

the instructions were strings for some reason, we could

instead use a dictionary where the keys are instructions

and the values are function pointers, although this is a bit

less efficient. Because this pattern divides the work across

many helper functions, it generally results in cleaner code

than a giant switch statement and may be preferred for a

larger instruction set. 

The third pattern is to use  dynamic recompilation, 

where we translate each instruction into an instruction that

the underlying hardware understands (or something that

can further be translated into such). For example, if we

have an addition instruction in the VM running on an x86

microprocessor, we may translate the VM’s addition

instruction into the machine code for an equivalent x86

addition instruction. This is the most complicated pattern

to implement because it requires intimate knowledge of not

just the original instruction set but also the instruction set being translated into. It will, however, result in the fastest performance. 

In this program, we’ll use a giant match statement since

CHIP-8’s instruction set is relatively small. When we create

an NES emulator in the next chapter, we’ll use a jump table

because the 6502 microprocessor has an instruction set

that’s roughly double the size (although still much smaller

than almost any other microprocessor). Dynamic

recompilation is a significantly more complicated technique


and beyond the scope of this book. 

The step() method is responsible for executing

instructions, but first the method needs to retrieve the next instruction to execute:

def step(self):

# We look at the opcode in terms of its nibbles (4 b

it pieces)

        # Opcode is 16 bits made up of next two bytes in mem ory

first2 = self.ram[self.pc]

last2 = self.ram[self.pc + 1]

first = (first2 & 0xF0) >> 4

second = first2 & 0xF

third = (last2 & 0xF0) >> 4

fourth = last2 & 0xF

self.needs_redraw = False

jumped = False

The next instruction is located at the memory address

stored in the program counter (pc). Since instructions

consist of 16 bits, we retrieve the next 2 bytes at pc and

store them in first2 and last2. As discussed earlier, it’s

convenient to think about each CHIP-8 instruction as a

combination of four nibbles, since each individual nibble is

meaningful for many of the instructions. We store the

nibbles in first, second, third, and fourth. All of the pattern-matching around our instructions will be in terms of

nibbles. 

As we execute the instruction, we’ll also be keeping

track of whether it requires any redrawing through

needs_redraw and whether it modified pc through jumped. The

run loop uses needs_redraw as an optimization. Why do any

drawing when nothing changed? Keeping track of jumped

allows for some common code to be at the bottom of step(), 

reducing a little bit of code duplication. 

Now we arrive at the actual instructions. The giant match

statement is upon us. Our implementation utilizes Python’s

elegant match syntax to capture the nibbles that are

necessary for the execution of an instruction in temporary

variables. The details of each instruction’s execution follow directly from its description earlier in the chapter. Many of the instructions are able to be implemented in just a single

line of code. It would be exceedingly dry to write about

each of them in turn. Instead, what follows is a reproduction of the rest of step(), with comments providing

a bit of additional context. 

Before you look at the code, though, this is a good place

to stop and try to implement the instructions yourself. You

don’t have to use a match statement. You could use a series

of if...elif statements as I did in Python 3.9 before the

match statement existed. (I tested and there was virtually no performance difference between the two.) You already have

all the setup you need to be able to concentrate only on

what each instruction is supposed to do instead of

configuring the system’s memory or register

representation. You don’t need to think about loading the

ROM file or what some constants should be. Just think

about logic and how each operation would modify the VM’s

state. 

Some of the descriptions of the instructions earlier in

this chapter were fairly brief, but you can find more

detailed instructions in any of a myriad of CHIP-8

references online. Don’t spend too much time on a single

instruction, though. You can always look at the

implementation here if you get stuck. After you try writing

your own instruction implementations, you can return to

this book’s code to double-check your work. Doing this

work yourself first will give you a good idea of what goes

into writing a simple VM or emulator. Don’t be afraid: you’ll be amazed at how simple it is to implement many of the

instructions. Remember, the original CHIP-8 VM fit in just

512 bytes of memory! 

match (first, second, third, fourth):

case (0x0, 0x0, 0xE, 0x0): # display clear

self.display_buffer.fill(0)

self.needs_redraw = True

case (0x0, 0x0, 0xE, 0xE): # return from subrout

ine

                self.pc = self.stack.pop()

jumped = True

case (0x0, n1, n2, n3): # call program

self.pc = concat_nibbles(n1, n2, n3) # go to 

start

# Clear registers

self.delay_timer = 0

self.sound_timer = 0

self.v = array('B', [0] * 16)

self.i = 0

# Clear screen

self.display_buffer.fill(0)

self.needs_redraw = True

jumped = True

case (0x1, n1, n2, n3): # jump to address

self.pc = concat_nibbles(n1, n2, n3)

jumped = True

case (0x2, n1, n2, n3): # call subroutine

self.stack.append(self.pc + 2) # put return 

place on stack

self.pc = concat_nibbles(n1, n2, n3) # goto 

subroutine

jumped = True

case (0x3, x, _, _): # conditional skip v[x] equ

al last2

if self.v[x] == last2:

self.pc += 4

jumped = True

case (0x4, x, _, _): # conditional skip v[x] not 

equal last2

if self.v[x] != last2:

self.pc += 4

jumped = True

case (0x5, x, y, _): # conditional skip v[x] equ

al v[y]

if self.v[x] == self.v[y]:

self.pc += 4

jumped = True

case (0x6, x, _, _): # set v[x] to last2

self.v[x] = last2

            case (0x7, x, _, _): # add last2 to v[x]

self.v[x] = (self.v[x] + last2) % 256

case (0x8, x, y, 0x0): # set v[x] to v[y]

self.v[x] = self.v[y]

case (0x8, x, y, 0x1): # set v[x] to v[x] | v[y]

self.v[x] |= self.v[y]

case (0x8, x, y, 0x2): # set v[x] to v[x] & v[y]

self.v[x] &= self.v[y]

case (0x8, x, y, 0x3): # set v[x] to v[x] ^ v[y]

self.v[x] ^= self.v[y]

case (0x8, x, y, 0x4): # add with carry flag

try:

self.v[x] += self.v[y]

self.v[0xF] = 0 # indicate no carry flag

except OverflowError:

self.v[x] = (self.v[x] + self.v[y]) % 25
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self.v[0xF] = 1 # set carry flag

case (0x8, x, y, 0x5): # subtract with borrow fl

ag

try:

self.v[x] -= self.v[y]

self.v[0xF] = 1 # indicate no borrow (ye

s, weird it's 1)

except OverflowError:

self.v[x] = (self.v[x] - self.v[y]) % 25

6

self.v[0xF] = 0 # indicates there was a 

borrow

case (0x8, x, _, 0x6): # v[x] >> 1 v[f] = least 

significant bit

self.v[0xF] = self.v[x] & 0x1

self.v[x] >>= 1

case (0x8, x, y, 0x7): # subtract with borrow fl

ag (y - x in x)

try:

self.v[x] = self.v[y] - self.v[x]

self.v[0xF] = 1 # indicate no borrow (ye

s, weird it's 1)

except OverflowError:

                    self.v[x] = (self.v[y] - self.v[x]) % 25

6

self.v[0xF] = 0 # indicates there was a 

borrow

case (0x8, x, _, 0xE): # v[x] << 1 v[f] = most s

ignificant bit

self.v[0xF] = (self.v[x] & 0b10000000) >> 7

self.v[x] = (self.v[x] << 1) & 0xFF

case (0x9, x, y, 0x0): # conditional skip if v

[x] != v[y]

if self.v[x] != self.v[y]:

self.pc += 4

jumped = True

case (0xA, n1, n2, n3): # set i to address n1n2n

3

self.i = concat_nibbles(n1, n2, n3)

case (0xB, n1, n2, n3): # jump to n1n2n3 + v[0]

self.pc = concat_nibbles(n1, n2, n3) + self. 

v[0]

jumped = True

case (0xC, x, _, _): # v[x] = random number (0-2

55) & last2

self.v[x] = last2 & randint(0, 255)

case (0xD, x, y, n): # draw sprite at (vx, vy) t

hat's n high

self.draw_sprite(self.v[x], self.v[y], n)

self.needs_redraw = True

case (0xE, x, 0x9, 0xE): # conditional skip if k

eys(v[x])

if self.keys[self.v[x]]:

self.pc += 4

jumped = True

case (0xE, x, 0xA, 0x1): # conditional skip if n

ot keys(v[x])

if not self.keys[self.v[x]]:

self.pc += 4

jumped = True

case (0xF, x, 0x0, 0x7): # set v[x] to delay_tim

er

self.v[x] = self.delay_timer

            case (0xF, x, 0x0, 0xA): # wait until next key t hen store in v[x]

# Wait here for the next key then continue

while True:

event = pygame.event.wait()

if event.type == pygame.QUIT:

sys.exit()

if event.type == pygame.KEYDOWN:

key_name = pygame.key.name(event.ke

y)

if key_name in ALLOWED_KEYS:

self.v[x] = ALLOWED_KEYS.index(k

ey_name)

break

case (0xF, x, 0x1, 0x5): # set delay_timer to v

[x]

self.delay_timer = self.v[x]

case (0xF, x, 0x1, 0x8): # set sound_timer to v

[x]

self.sound_timer = self.v[x]

case (0xF, x, 0x1, 0xE): # add vx to i

self.i += self.v[x]

case (0xF, x, 0x2, 0x9): # set i to location of 

character v[x]

self.i = self.v[x] * 5 # built-in font set i

s 5 bytes apart

case (0xF, x, 0x3, 0x3): # store BCD at v[x] in 

i, i+1, i+2

self.ram[self.i] = self.v[x] // 100 # 100s d

igit

self.ram[self.i + 1] = (self.v[x] % 100) // 

10 # 10s digit

self.ram[self.i + 2] = (self.v[x] % 100) % 1

0 # 1s digit

case (0xF, x, 0x5, 0x5): # reg dump v0 to vx sta

rting at i

for r in range(0, x + 1):

self.ram[self.i + r] = self.v[r]

case (0xF, x, 0x6, 0x5): # store i through i+r i

n v0 through vr

                for r in range(0, x + 1):

self.v[r] = self.ram[self.i + r]

case _:

print(f"Unknown opcode {(hex(first), hex(sec

ond), 

hex(third), hex(fou

rth))}!")

if not jumped:

self.pc += 2 # increment program counter

At the end of step(), we increment the program counter

if we didn’t jump. This ensures that we’ll have moved on to

the next instruction the next time step() is called. Since

each CHIP-8 instruction is 2 bytes long, the program

counter is incremented by 2. If there was a jump, then

execution was directly moved to a specific different

instruction somewhere else in memory. 

Testing the VM

The most granular way to test the VM would be to write our

own unit tests for each of the instructions. For each test, 

we would try running an instruction and then verify that

the subsequent internal state of the VM was correct. While

this would be ideal, in the interests of time and space we’ll instead do something more akin to integration tests: we’ll

see how our VM performs running real CHIP-8 programs. 

Do they run correctly? 

As it happens, there are even test ROMs that offer a

kind of one-stop shop for testing a CHIP-8 VM. Two such

test ROMs are included in the  Chip8/Tests subdirectory of the book’s source code repository. Both test ROMs were

released under open licenses by their developers, and those

licenses are included in the subdirectories. Let’s run the

first test ROM from the repository’s home directory:
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% python3 -m Chip8 Chip8/Tests/chip8-test-rom/test_opcode.ch 8

If the VM is working correctly, you should see a screen

of OKs, as shown in Figure 5-2. 

 Figure 5-2: Running the first test ROM

Now let’s check our work with the second test ROM:

% python3 -m Chip8 Chip8/Tests/chip8-test-rom-2/chip8-test-r om.ch8

This one just displays OK a single time in the upper-left

corner (see Figure 5-3). 

 Figure 5-3: Running the second test ROM

These tests aren’t comprehensive, but they’re a good

starting point. Now it’s time for the ultimate integration

tests: Can our VM accurately play games? 
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Playing Games

The  Chip8/Games subdirectory of the book’s repository contains a selection of CHIP-8 ROMs that have been placed

into the public domain. If you find the control schemes of

some of them a bit unwieldy, consider changing the default

key bindings. Right now, ALLOWED_KEYS are read directly from

their respective keys, so an  A in the VM is the  A key on the keyboard. The systems these were played on could have

quite different key layouts, though, so a different scheme

might be better for some of the games. 

Most of the games are quite simple, which makes sense

given the constraints of the hardware the VM was

originally meant to run on. There are clones of popular

games for more capable systems. First we have  BLINKY, a kind of  Pac-Man clone (Figure 5-4). 

 Figure 5-4: The BLINKY  game running on the VM

 INVADERS is a clone of  Space Invaders (Figure 5-5). 

 Figure 5-5: The INVADERS  game running on the VM
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 VBRIX is a vertical form of  Breakout (Figure 5-6). 

 Figure 5-6: The VBRIX  game running on the VM

And then there’s  PONG (Figure 5-7). 

 Figure 5-7: The PONG  game running on the VM

There are several more games for you to check out

bundled with the source code repository. Note the file

sizes: most of these games are 500 bytes or less! The

largest,  BLINKY, is just 2KB. 

CODE MEETS LIFE

I was always interested in developing my own emulator, but I didn’t feel confident enough to build one until well into my programming life. 

When I started researching how to write an emulator, the standard advice I found was to first try writing a CHIP-8 VM since doing so is easier than writing almost any emulator but requires all the same elements (handling opcodes, simulating memory and registers, 

graphics, and so on). 

I found an online tutorial that was reasonably good. I decided that I wanted to make it a little more challenging, though, so I developed

my initial CHIP-8 VM in the then-new language Swift, which I was doing a lot of my professional work in at the time. It was a weekend project, the launching point that I needed to get started developing emulators. 

Real-World Applications

VMs are ubiquitous in both historical and modern software

development. Their chief advantage is portability. A

program written for a VM will run on any platform that has

an implementation of that VM. VMs also provide

infrastructure that reduces the burden on a language

author by eliminating the need to implement common

language runtime features like garbage collection. 

An early example was the compilation of Pascal by some

compilers in the 1970s and 1980s to so-called  p-code (a type of bytecode) that would run on a p-code VM. Two

prominent modern VM environments are the JVM, 

mentioned earlier in this chapter, and Microsoft’s

competing Common Language Runtime (CLR), which is

part of its .NET platform. Both the JVM and CLR are

targeted by multiple popular programming languages. For

example, C#, F#, and Visual Basic are languages that

commonly target the CLR, but there are also

implementations of popular languages like Python and

Swift for the CLR. 

Why do these language implementations compile into

bytecode for the CLR instead of machine code? Once

compiled, that bytecode can run on any platform that has

an installed CLR. That’s a kind of instant portability post-

compilation. In addition, a sophisticated VM like the CLR

will provide language services like garbage collection, 

multithreading, and security mechanisms. Finally, when a

VM like the CLR just-in-time (JIT) compiles intermediate

code into machine code, it will apply optimizations that the

language author doesn’t need to think about. 

Beyond abstract machines utilized as language runtimes, the term  virtual machine is also confusingly used to refer to a whole hardware implementation in software—

in other words, an emulator. Building an emulator is the

subject of the next chapter. 

Exercises

1.  Try measuring the performance of the main opcode

interpreter code using three different methodologies:

the already implemented match statement, a series of

if...elif statements, and a jump table. Determine

which method is fastest using either a profiler or a

simple timer. You may need to turn off the timing code

in the main run loop in order to do this, or you may do

this using a set of unit tests. 

2.  There’s a slightly extended version of CHIP-8, known as

SCHIP (Super-Chip). It requires implementing a few

more opcodes and changing a few elements of the

original CHIP-8 VM, such as its resolution. Look up

documentation for SCHIP and try turning our CHIP-8

VM into an SCHIP VM. Then, try playing some SCHIP

games! 

3.  Try writing a very simple game that just displays a

couple letters on the screen using CHIP-8’s machine

code instructions. You’ll need a hex editor to do this. It’s

gratifying to see binary code you wrote running in a VM

you understand. 

Notes

  1.  Joe Weisbecker, “A Practical, Low-Cost, Home/School Microprocessor System,”  Computer 7, no. 08 (August

1974): 20–31. 

  2.  Katianne Williams, “Joyce Weisbecker: The First Indie Game Developer,”  IEEE Women in Engineering

 Magazine 16, no. 2 (December 2022): 15–20, doi:10.1109/MWIE.2022.3203181. 

  3.  RCA COSMAC VIP CDP18S711 Instruction Manual (RCA Corporation, 1978). 

  4.  RCA COSMAC VIP CDP18S711 Instruction Manual (RCA Corporation, 1978). 

  5.  RCA COSMAC VIP CDP18S711 Instruction Manual (RCA Corporation, 1978). 
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EMULATING THE NES GAME CONSOLE

In this chapter, we’ll build a

limited emulator for a beloved

1980s video game console, the Nintendo

Entertainment System (NES). In other

words, we’ll create a piece of software

that pretends to be NES hardware so that

software written for the NES can be

“fooled” into running on a modern

platform. Building this project provides

experience with emulating a full

computer system. While the NES is a

relatively simple computer, it features all

the same basic components

(microprocessor, memory, graphics, and

so on) that more complex emulation

projects do. And unlike CHIP-8 in Chapter

5, we’ll be emulating more than just a

software specification—we’ll be

simulating real hardware! 

Our emulator won’t be a 100 percent accurate

reimplementation of the original hardware. We’ll make

several simplifications to make building the emulator

manageable in one book chapter. Despite these

simplifications, our emulator will still be capable of playing some basic NES games, including a few hobbyist free and

open source games that are included in the book’s source

code repository. We won’t be testing our emulator with any

commercial games, although it will be capable of playing

some simple ones. Our motivation is to learn about

emulators, not to achieve full game compatibility. I’ll leave it as an exercise for the reader to further enhance the

emulator’s game compatibility. 

We’ll build the emulator in pure Python, which at the

time of writing isn’t fast enough on a modern PC to emulate

the NES at full speed. The code we produce can be

enhanced with Cython, C extensions, or other kinds of

native-code layers to run at full speed. This, too, will be left as an exercise for the reader. 

This is the most challenging project in the book. I

assume in this chapter that you already have the

experience of completing the projects in Chapters 1,  2,  and especially 5. You should at least complete the CHIP-8

project from Chapter 5 before beginning this chapter, but concepts explained in almost all the prior chapters show up

in this project. 

WARNING

 If you have legal concerns about completing this project, research the laws where you live or consult a lawyer. Note that the information used to develop the NES emulator in

 this chapter isn’t based on any proprietary Nintendo

 documents. Keep in mind that most ROM files for commercial games are protected by copyright law. There’s

 no need to download any protected ROM files to test your

 emulator, as the book’s source code repository includes

 several noncommercial ROMs that are under open source

 licenses or released into the public domain. 

About the NES

The NES was one of the best-selling video game consoles of

all time. First released in Japan in 1983 as the Famicom, 

the NES captivated a global generation of gamers with its

1985 international release.1 At the time of its debut, the video game industry was only about a decade old. The

microprocessors and other hardware in video game

consoles were still quite primitive. Despite this, the NES

managed 60 FPS of colorful sprites and backgrounds, 

played catchy chip tune music, and was the host platform

for some of the most iconic games of all time. 

NOTE

 Many of the hardware specifications for the NES and much

 of the information about its functionality that I present in this chapter come from NesDev, a community of NES

 homebrew developers and emulator writers that exists at

https://www.nesdev.org .   While I think this chapter is the best overview and tutorial about how to write an NES

 emulator, I strongly recommend checking out the NesDev

 website for the details. In lieu of a large corpus of citations of the site, I’m presenting you with this prominent note. In addition, several of the images in this chapter also came from  NesDev and were released into the public domain, as noted on the copyright page of this book. Thank you to the folks at NesDev for being such a fantastic resource and

 releasing so much reference material into the public domain. 

 The Hardware

The central processing unit (CPU) in the NES was a clone

of the MOS Technology 6502 microprocessor, 

manufactured by Ricoh, running at just below 2 MHz. The

6502 is the same microprocessor that was in popular home

computers of the time, such as the Apple II and the

Commodore 64. Built out of around 3,500 transistors, the

6502 was a particularly simple microprocessor; for

example, it lacked instructions for multiplication and

division.2 Those arithmetic operations had to be implemented in software out of many simpler instructions

like addition, subtraction, and bit shifts. When you think

about just how slow and simple the 6502 was compared to

a modern microprocessor, it’s incredible what was

accomplished with it. 

The 6502 on the NES was combined with an audio chip

in the same package. In NES development parlance, this

chip is known as the  audio processing unit (APU). The APU

supported five different channels of sound. To keep things

simple, we won’t implement the APU in our emulator. When

implementing audio, timing is critical, and our emulator

won’t be timing accurate. 

The NES’s CPU could access 2KB of built-in RAM in the

machine. Yes, you read that correctly. The working memory

of the NES’s CPU was just 2KB, not even enough memory

to store the text of this section of this chapter. It’s also less RAM than CHIP-8 systems typically had, which came out in

the prior decade. Some cartridges included additional

RAM. 

The key to the NES’s performance was the  picture

 processing unit (PPU), manufactured by Ricoh as the 2C02, based on an earlier design by Texas Instruments. The PPU

not only could output tiled background graphics, but also had built-in support for sprites. It featured 2KB of memory

for background tile information, 256 bytes of memory for

keeping track of up to 64 sprites, and 28 bytes to hold color palette information. The NES supported 54 different colors, 

but only 25 could be used at the same time. The PPU even

had some primitive support for collision detection. 

The CPU communicated with the APU and PPU via

 memory-mapped hardware registers. These are particular memory addresses that, when written to, may modify the

operation of the other hardware chip or, when read, will

provide an update on the other chip’s current flags or

status. For instance, the CPU may write data to a PPU

register to change the location of a sprite. Later, it may

read from a different PPU register to see if the sprite

collided with anything. The CPU also has memory-mapped

registers for reading from the game controllers. 

Let me make this concept of a memory-mapped register

concrete with an example. When a game needs to check the

status of the first joypad (player 1’s controller), it uses a memory-mapped register. That register is at memory

address 0x4016. If the game reads from 0x4016, it gets

back 1 byte that indicates if a particular button on the

joypad is pressed. Memory address 0x4016 can’t be used

for anything else; it’s hooked up in hardware to lines

coming from the joypad. To work properly, our emulator

will need to do the right thing when several of these special memory addresses are either read or written to. Some are

read-only, some are write-only, and some can be read or

written. These are the memory-mapped hardware registers. 

The other key piece of NES hardware was the game

cartridges. Game cartridges, especially the early ones, 

mainly consisted of a large ROM chip containing the

graphics and program code for a game. Game cartridges

could also have RAM (sometimes backed by a battery so

that game states could be saved), simple logic chips, and even so-called bank switching to allow for more total

memory (RAM + ROM) than the 6502 could address in its

default configuration. That 2KB of RAM figure is therefore

slightly misleading because the program’s code would

reside on the ROM cartridge rather than in the game

console’s limited memory. Instead, that 2KB of memory

could be used almost exclusively for holding onto state. 

Early game cartridges typically consisted of 24KB to 40KB

of ROM, while later game cartridges may have had

something like 128KB of ROM and 8KB of RAM. The largest

mainstream cartridge for the NES featured 768KB of

memory. 3

 The Software

The NES had no BIOS or operating system. The bare NES

hardware had no software that came with it. All software

was provided by the game cartridges. The programs on the

game cartridges would directly control the CPU, PPU, and

APU, with no layers of abstraction between them and the

hardware. 

NES games were typically written in 6502 assembly

language. That may sound hardcore, but it was typical for

the era; most programs that needed to be high

performance on personal computers or gaming consoles

were programmed in assembly language through to the

early 1990s. Beyond an assembler, development tools were

often built in-house. There was no NES Game Maker that

one could download. 

In fact, this was an era before downloads were a thing

at all. The NES was a couple of console generations before

any kind of internet connectivity existed. The first

mainstream console with a built-in modem was the Sega

Dreamcast, which came out in the late 1990s. What

shipped on an NES cartridge was the final version of the

game; there would be no updates. If there was a bug, then

there was a bug, so games had to be near perfect for version 1.0. Contrast that with the typical game you

purchase today, where developers are often working on the

first major patch before the game has even been released. 

Back then, a whole other level of attention to detail was

required, but on the other hand, the games were much less

complex than they are today. 

It’s amazing to think that in this primitive environment, 

some of the most influential and genre-defining games of

all time were developed. The technical aptitude required of

the programmers on the teams was in a very different niche

than what game developers occupy today. Most games

today are built using prepacked frameworks or engines like

Unreal or Unity. Developers can spend most of their time

writing game-specific mechanics. NES developers had to

write their own engines in assembly. They had to directly

manage the APU to play every sound and the PPU to show

every graphic, and they had to squeeze every cycle out of

the CPU to get anything done. Larger companies built their

own internal frameworks and tooling that could be reused

from title to title, but programmers were still working at a

relatively low level. 

Building the Emulator

It’s time to write some code. Before we do, though, a note

about direction and managing expectations: the emulator

we’re writing has been simplified at every corner. As

mentioned earlier, it won’t be compatible with many

games, due to a very simplified PPU. It also won’t have any

sound, since we aren’t implementing the APU. And it won’t

run fast enough to play games at their intended speed. It

will, however, run real games, and they’ll be playable. Our

work here will also provide a firm foundation for making

improvements and adding more features if you so choose. 

 Planning the Structure

The general plan for the emulator’s execution isn’t

dissimilar to that of the CHIP-8 VM from Chapter 5.  Like with CHIP-8, we’ll read each instruction one at a time from

the ROM file and interpret it. Like with CHIP-8, we’ll use

Pygame to display graphics and handle user input. Like

with CHIP-8, we’ll have one big loop that fetches each

instruction and responds to each event. However, the

structure of the code will be more sophisticated. In

particular, we’ll divide the emulator into three classes, 

each representing one physical component of the

hardware. We’ll have classes for the CPU, the PPU, and the

cartridge. Here’s a breakdown of each file we’ll write and

its purpose:

 __main__.py Handles command line arguments and implements the main emulator loop, which dispatches

instructions, displays graphics, and responds to user

input. 

 rom.py Reads a ROM file and pretends to be a

cartridge. 

 cpu.py Maintains CPU state, interprets instructions, and handles main memory accesses. 

 ppu.py Manages PPU state and draws backgrounds and sprites. 

We’ll tackle these files in the order listed here. 

 Creating the Main Loop

Our main file ( __main__.py) is where the various

components of the system (CPU, PPU, cartridge) come

together. Its “run loop” gives the emulator life by keeping

everything moving forward and coordinating between the

different components, delegating to Pygame as needed to

display graphics and read user input. The run() function

receives a ROM object and the name of the ROM file as arguments. In our first snippet, we initialize Pygame, get a

window on the screen, and create CPU and PPU objects:

 NESEmulator/__main__.py

import sys

from argparse import ArgumentParser

from NESEmulator.rom import ROM

from NESEmulator.ppu import PPU, NES_WIDTH, NES_HEIGHT

from NESEmulator.cpu import CPU

import pygame

from timeit import default_timer as timer

import os

def run(rom: ROM, name: str):

pygame.init()

screen = pygame.display.set_mode((NES_WIDTH, NES_HEIGH

T), 0, 24)

pygame.display.set_caption(f"NES Emulator - {os.path.bas ename(name)}")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

ticks = 0

start = None

As the calls to their constructors indicate, both the PPU

and the CPU need to access the ROM. The CPU needs to

read program instructions, and the PPU needs to read

graphical data. The CPU also needs to access the PPU

because when certain memory addresses are read or

written, they’re really proxies for PPU registers. 

The ticks variable keeps track of how many cycles the

CPU has run. For every CPU cycle, the PPU runs exactly

three. In other words, the PPU is clocked three times faster

than the CPU, so while the CPU is about 1.8 MHz, the PPU

is about 5.4 MHz. Our code will need to simulate this, so in

the next snippet, which is the main game loop, we keep

track of how many cycles (or ticks) each CPU instruction takes (different instructions require different numbers of

cycles) and then run the PPU for three times that number

of cycles:

while True:

cpu.step()

new_ticks = cpu.cpu_ticks - ticks

# 3 PPU cycles for every CPU tick

for _ in range(new_ticks * 3):

ppu.step()

# Draw, once per frame, everything onto the screen

if (ppu.scanline == 240) and (ppu.cycle == 257): ❶

pygame.surfarray.blit_array(screen, ppu.display_

buffer)

pygame.display.flip()

end = timer()

if start is not None:

print(end - start)

start = timer()

if (ppu.scanline == 241) and (ppu.cycle == 2) and pp

u.generate_nmi:

cpu.trigger_NMI() ❷

ticks += new_ticks

At the end of every frame, the graphics that the user

sees are updated via the same Pygame methods that we

used in Chapter 5.  But how do we know a frame is over? 

The NES had a resolution of 256 pixels wide by 240 pixels

high. Each row of pixels is known as a  scanline, a term that comes from the cathode ray tube (CRT) televisions that the

NES would be hooked up to. On the real NES, a single pixel

would be updated with each PPU cycle. Because the PPU

runs at three times the speed of the CPU (5.4 MHz versus

1.8 MHz), for every CPU cycle, the PPU draws three dots. 

When we get to the 257th dot on the 240th scanline, we

should therefore be done with one frame ❶. 

Highly accurate NES emulators simulate the real hardware’s behavior by doing what the PPU is supposed to

do every cycle: figuring out the color of the next dot. We

use a much simpler technique of just drawing all the

correct tiles and sprites in the right places once per frame. 

In other words, instead of thinking about one dot every

cycle, we just think about what the whole screen is

supposed to look like once per frame. While this technique

is faster and doesn’t require us to emulate as many details

about the PPU’s internal workings, it won’t work with every

game. More advanced NES games will make changes to the

graphics even while a frame is being drawn to the screen

(that is, between scanlines or even between dots). 

Note that the PPU actually does additional processing

between scanlines. This period is known as  hblank. More important, the PPU has additional off-screen scanlines (it

goes all the way up to scanline 261, counting the first as

scanline 0). The time during the processing of these

additional not-rendered scanlines is known as  vblank. 

During vblank, it’s safe for the CPU to modify any of the

PPU’s memory, since the PPU’s memory isn’t actively being

accessed to render visible scanlines. The PPU sends a

signal to the CPU when vblank begins (after it’s done with

all the visible scanlines) for this purpose ❷. The signal is a type of  non-maskable interrupt (NMI). 

Think of an NMI as an interruption to a program that

can’t be stopped. In other words, it’s a signal that says to

the microprocessor, “Stop what you’re doing immediately, 

because we’re doing this other thing now.” In the case of

the NES, the other thing is updating the game’s graphical

display. Every NES game has an NMI handler that updates

the game’s graphics during vblank. 

The rest of the loop just handles events:

    for event in pygame.event.get():

if event.type == pygame.QUIT:

sys.exit()

# Handle keyboard events as joypad changes

if event.type not in {pygame.KEYDOWN, pygame.KEYUP}:

continue

is_keydown = event.type == pygame.KEYDOWN

match event.key:

case pygame.K_LEFT:

cpu.joypad1.left = is_keydown

case pygame.K_RIGHT:

cpu.joypad1.right = is_keydown

case pygame.K_UP:

cpu.joypad1.up = is_keydown

case pygame.K_DOWN:

cpu.joypad1.down = is_keydown

case pygame.K_x:

cpu.joypad1.a = is_keydown

case pygame.K_z:

cpu.joypad1.b = is_keydown

case pygame.K_s:

cpu.joypad1.start = is_keydown

case pygame.K_a:

cpu.joypad1.select = is_keydown

if __name__ == "__main__":

# Parse the file argument

file_parser = ArgumentParser("NESEmulator")

file_parser.add_argument("rom_file", 

help="An NES game file in iNES 

format.")

arguments = file_parser.parse_args()

game = ROM(arguments.rom_file)

run(game, arguments.rom_file)

We recognize certain keys being pressed as equivalents

of buttons on an NES joypad. We mark the buttons that are

pressed so that the CPU can read them. Our main file

finishes by handling a command line argument to read a ROM file. The actual reading is done by the ROM class, which

we’ll come to next. 

 Emulating the Cartridge

NES game cartridges were mainly composed of ROM chips

in a plastic shell. Those ROM chips held the game’s code

and graphical assets. The code was in a ROM chip known

as the PRG ROM, and the graphics were in a ROM chip

known as the CHR ROM. While cartridges were mainly

composed of ROM chips, they could also have quite a bit

more. As hinted earlier, one of the most common

enhancements were logic chips that enabled  bank

 switching, a technique for having more ROM than the NES

could typically address, but switched in a scheme so that

the program could access a particular memory-mapped

address and say, “I’m done with the first 8KB of CHR ROM, 

please switch my memory reads to be from the next 8KB.” 

Some cartridges went even further by providing

additional RAM to supplement the main CPU’s measly 2KB. 

This is known as PRG RAM. Some cartridges even had

batteries so that the RAM’s content wouldn’t get erased

when the console was turned off. There was no other way

to permanently store user data on the NES, since there was

no disk. Battery-backed RAM enabled longer games. 

Nobody wants to play a 40-hour game if their progress is

going to be erased after they shut down their console. 

The longer the NES was on the market, the more

sophisticated the cartridges got. The same advanced

cartridge designs would be manufactured for reuse across

many games. As an emulator author, to support all games

you need to support all of the different chipsets that

cartridges could contain. However, there were a few

particularly popular chipset designs that account for the

majority of all games. 

Each of these cartridge chipset designs is known in the NES emulator world as a  mapper because the main use of cartridge chipsets was for switching between different

memory banks, which in programming parlance can be

thought of as mapping an address to a bank. One of the

first NES emulators developed, iNES by Marat Fayzullin,4

defined a numbering scheme for the many mappers. In

addition, iNES defined a ROM file format that’s used by

almost all NES emulators today. 

Unlike CHIP-8, which has ROM files that just consist of

the raw game’s memory, the NES requires a more

sophisticated file format due to the variability of its game

cartridges. In particular, the iNES format defines a header

that we must pay attention to when reading a ROM file. 

Luckily, we have past experience with headers thanks to

our work with the MacBinary header in Chapter 3. The header of the iNES file format is defined in Table 6-1. 5

Table 6-1: iNES File Format Header

Bytes Description

0–3

Constant 0x4E45531A (ASCII “NES” followed by MS-DOS end-of-file) 4

Size of PRG ROM in 16KB units

5

Size of CHR ROM in 8KB units (value 0 means the board uses CHR

RAM)

6

Flags 6: mapper, mirroring, battery, trainer

7

Flags 7: mapper, VS/Playchoice, NES 2.0

8

Flags 8: PRG RAM size (rarely used extension)

9

Flags 9: TV system (rarely used extension)

10

Flags 10: TV system, PRG RAM presence (unofficial, rarely used extension)

Bytes Description

11–15 Unused padding (should be filled with zeros, but some rippers put their name here)

As you can see, part of the header defines the mapper

number of the game. Each flags byte can contain multiple

individual flag bits, which is why some of the descriptions

list multiple things. Our emulator won’t make use of any of

the information in flags 8, 9, or 10. 

NOTE

 The iNES file format has been extended by a newer format

 known as NES 2.0. Much of the iNES header fields are still valid in NES 2.0, with additional information in bytes 11

 through 15 and some changes to the flags bytes. 

The emulator we build in this chapter is only capable of

playing games using the simplest mapper, mapper 0, 

known as NROM. NROM cartridges feature no bank

switching, so they’re the easiest to emulate. An NROM

cartridge will always have either 16KB or 32KB of PRG

ROM and 8KB of CHR ROM. It can optionally have PRG

RAM. 

In our code, we define a namedtuple called Header to hold

the contents of the ROM file’s header, as well as declaring

some standard constants:

 NESEmulator/rom.py

from pathlib import Path

from struct import unpack

from collections import namedtuple

from array import array

Header = namedtuple("Header", "signature prg_rom_size chr_ro m_size " 

                              "flags6 flags7 flags8 flags9 f lags10 unused")

HEADER_SIZE = 16

TRAINER_SIZE = 512

PRG_ROM_BASE_UNIT_SIZE = 16384

CHR_ROM_BASE_UNIT_SIZE = 8192

PRG_RAM_SIZE = 8192

The constructor of the ROM class first utilizes the unpack()

function from the struct standard library module to read

the header from the ROM file and distribute it into

appropriately sized fields, specified by a format string:

class ROM:

def __init__(self, file_name: str | Path):

with open(file_name, "rb") as file:

# Read header and check signature "NES" 

self.header = Header._make(unpack("!LBBBBBBB5s", 

file.read(HEADER_S

IZE)))

The ._make() class method on namedtuple can be used to

construct an instance of that namedtuple out of an iterable, 

like the one we get back from unpack(). The specific item

types in the unpack() format string are listed in Table 6-2. 

Each item in the format string corresponds to a header

element from Table 6-1.  For more details on the format

string, see the struct module’s documentation at  https://

 docs.python.org/3/library/struct.html#struct-format-

 strings. 

Table 6-2: Format String Characters for the struct Module

# of

Python

Item bytes

C type

type

! 

N/A

Indicates what follows is in big-endian

N/A

format

# of

Python

Item bytes

C type

type

L

4

unsigned long

int

B

1

unsigned char

int

5s

5

char[]

bytes

After this wrangling, self.header contains the proper

pieces of the iNES header in nicely labeled segments. Next, 

we check a couple pieces of information from the header:

if self.header.signature != 0x4E45531A:

print("Invalid ROM Header Signature")

else:

print("Valid ROM Header Signature")

# Untangle Mapper - one nibble in flags6 and one nib

ble in flags7

self.mapper = (self.header.flags7 & 0xF0) | (

(self.header.flags6 & 0xF0) >> 4)

print(f"Mapper {self.mapper}")

if self.mapper != 0:

print("Invalid Mapper: Only Mapper 0 is Implemen

ted")

Every iNES header is supposed to begin with the same

4-byte signature. Meanwhile, the mapper number is

constructed from part of flags 7 and 8. Our emulator only

works with games that use mapper 0. 

Here’s the rest of the constructor:

self.read_cartridge = self.read_mapper0

self.write_cartridge = self.write_mapper0

# Check if there's a trainer (4th bit flags6) and re

ad it

self.has_trainer = bool(self.header.flags6 & 4)

if self.has_trainer:

            self.trainer_data = file.read(TRAINER_SIZE)

# Check mirroring from flags6 bit 0

self.vertical_mirroring = bool(self.header.flags6 & 

1)

print(f"Has vertical mirroring {self.vertical_mirror

ing}")

# Read PRG_ROM & CHR_ROM, in multiples of 16K and 8

K, respectively

self.prg_rom = file.read(PRG_ROM_BASE_UNIT_SIZE *

self.header.prg_rom_size)

self.chr_rom = file.read(CHR_ROM_BASE_UNIT_SIZE *

self.header.chr_rom_size)

self.prg_ram = array('B', [0] * PRG_RAM_SIZE) # RAM

This code is concerned with setting up other properties

of the game cartridge. How do we read and write from it

(this can differ by the mapper, although we only support

mapper 0)? Does it have a trainer (an esoteric feature that

we’ll ignore)? Does it utilize a particular type of mirroring for the graphics? Finally, based on sizes indicated by the

header, the appropriate amount of data for the PRG ROM, 

CHR ROM, and (optionally) PRG RAM is read. 

Notice how read_cartridge and write_cartridge are

assigned as aliases for the read_mapper0() and write_mapper0() methods. If we supported more than one mapper, we would

handle this differently. As it stands, here are the definitions for the mapper 0 methods:

def read_mapper0(self, address: int) -> int:

if address < 0x2000:

return self.chr_rom[address]

elif 0x6000 <= address < 0x8000:

return self.prg_ram[address % PRG_RAM_SIZE]

elif address >= 0x8000:

if self.header.prg_rom_size > 1:

return self.prg_rom[address - 0x8000]

else:

return self.prg_rom[(address - 0x8000) % PRG

_ROM_BASE_UNIT_SIZE]

else:

raise LookupError(f"Tried to read at invalid add

ress {address:X}")

def write_mapper0(self, address: int, value: int):

if address >= 0x6000:

self.prg_ram[address % PRG_RAM_SIZE] = value

Looking at read_mapper0() you’ll note three distinct areas

of memory on the cartridge. Addresses below 0x2000 are

mapped to CHR ROM, which is directly accessed by the

PPU. The CPU accesses PRG ROM with addresses greater

than or equal to 0x8000, and it can read or write to PRG

RAM (if the cartridge has any) with addresses greater than

or equal to 0x6000 but below 0x8000. 

That wraps up the cartridge portion of our code. In

short, a ROM file is converted into areas of CHR ROM and

PRG ROM that our PPU and CPU, respectively, can access. 

This is why both the PPU and CPU classes within our emulator

need to be able to access the ROM class. 

 Emulating the CPU

CPUs can ultimately be thought of as sophisticated finite

state machines. They maintain state in their registers and

the finite amount of memory they have access to. They

make state transitions via the instructions they can handle. 

This insight accounts for the key work our CPU emulator

needs to do: maintain registers, access memory, and modify

registers and memory correctly based on instructions. 

The 6502 is one of the simplest CPU cores that ever

found wide industry acceptance, and the version of the

6502 in the NES is even simpler than a standard 6502. It

lacks instructions for BCD that most 6502s had. There are

only 56 different types of instructions that we need to

implement in order to have a working NES CPU, and many

of them can be implemented in just a couple lines of code. 

In addition, the 6502 has just three main registers (A, X, and Y) along with a few specialized registers (SP, PC, and various flags). The only real complexity in the 6502 comes from the

multiple different memory access methods that the various

instructions can utilize, but we’ll abstract them away in a

helper function. 

The Setup

The code for our 6502 implementation begins by setting up

some helper constructs and constants:

 NESEmulator/cpu.py

from __future__ import annotations

from enum import Enum

from dataclasses import dataclass

from array import array

from typing import Callable

from NESEmulator.ppu import PPU, SPR_RAM_SIZE

from NESEmulator.rom import ROM

MemMode = Enum("MemMode", "DUMMY ABSOLUTE ABSOLUTE_X ABSOLUT

E_Y ACCUMULATOR " 

"IMMEDIATE IMPLIED INDEXED_INDIREC

T INDIRECT " 

"INDIRECT_INDEXED RELATIVE ZEROPAG

E ZEROPAGE_X " 

"ZEROPAGE_Y")

InstructionType = Enum("InstructionType", "ADC AHX ALR ANC A ND ARR ASL AXS " 

"BCC BCS BEQ BIT B

MI BNE BPL BRK " 

"BVC BVS CLC CLD C

LI CLV CMP CPX " 

"CPY DCP DEC DEX D

EY EOR INC INX " 

                                          "INY ISC JMP JSR K

IL LAS LAX LDA " 

"LDX LDY LSR NOP O

RA PHA PHP PLA " 

"PLP RLA ROL ROR R

RA RTI RTS SAX " 

"SBC SEC SED SEI S

HX SHY SLO SRE " 

"STA STX STY TAS T

AX TAY TSX TXA " 

"TXS TYA XAA")

@dataclass(frozen=True)

class Instruction:

type: InstructionType

method: Callable[[Instruction, int], None]

mode: MemMode

length: int

ticks: int

page_ticks: int

@dataclass

class Joypad:

strobe: bool = False

read_count: int = 0

a: bool = False

b: bool = False

select: bool = False

start: bool = False

up: bool = False

down: bool = False

left: bool = False

right: bool = False

STACK_POINTER_RESET = 0xFD

STACK_START = 0x100

RESET_VECTOR = 0xFFFC

NMI_VECTOR = 0xFFFA

IRQ_BRK_VECTOR = 0xFFFE

MEM_SIZE = 2048

The MemMode enum lists all the various different memory

access schemes in the 6502. On some basic

microprocessors, retrieving a byte from memory is as

simple as specifying an address and getting back the byte

stored there. For example, if I say “read 0x1940,” I get

back whatever byte is stored in memory at address 0x1940. 

The 6502 can do this with its ABSOLUTE memory mode, but it

has other memory modes that are helpful in certain

situations. Some of these modes access memory addresses

that are calculated on the fly instead of being specified

literally. For example, mode ABSOLUTE_X adds the value in the X register to the provided address and accesses the

resulting memory location. In this mode, if we were to

execute the same instruction again after incrementing X, 

we’d automatically read the next byte in memory. When

programming at a low level, this can be a real convenience

and even improve performance if the hardware is optimized

for certain modes of access. We’ll discuss the NES memory

modes in more detail later in the chapter—thankfully, many

of them are quite similar to one another. 

The InstructionType enum lists all the different kinds of

instructions that the 6502 can handle. Some of these

instruction types are for BCD operations that, as mentioned

earlier, the NES version of the 6502 didn’t have. Some of

them are “unofficial” instruction types that weren’t actually documented as part of the 6502 but were found to exist

through trial and error. Very few games use them. The

remaining 56 are the instruction types that we’ll actually

implement. We list all of the possible instruction types in

this enum—even the unimplemented ones—because we’ll

be using an auto-generated table of all 256 possible 6502

opcodes, and we want every entry in the table to have a

valid instruction type value. 

An Instruction refers to one of the 256 possible opcodes that the 6502 could understand. Every instruction has

information about its type (type), its associated function in our program that handles it (method), its memory access

mode (mode), its expected number of bytes (length), the

number of CPU cycles it takes to run (ticks), and the

additional number of cycles it takes to run if a memory

page is crossed while it executes (page_ticks). A  memory

 page is a portion of RAM that the memory controller can access any part of in quick succession to another part. In

the 6502, memory pages are 256 bytes. If an instruction

crosses those 256-byte boundaries, it may take longer to

execute. 

The fact that every instruction has an associated

function to handle it is a hint that we’ll be using quite a

different design than in the CHIP-8 project. For the CHIP-8

VM, we used a giant match statement to process each

instruction, but for the 6502 and its slightly more complex

set of instructions, we’ll utilize a cleaner design. Instead of switching on every instruction, we’ll look it up in an array

based on its opcode and then execute the associated

function. This kind of design is a variation on a common

pattern known as a  jump table. In essence, we index into an instructions array by opcode to find what function to jump

to. 

The Joypad class represents the state of a joypad during

program execution. The CPU can directly poll the joypad

through a couple memory-mapped registers, so it seemed

appropriate to put Joypad here in the cpu module. Recall that our main loop sets the joypad’s state based on events

detected by Pygame. 

Here’s a breakdown of the remaining helper constants

in the previous code listing:

STACK_POINTER_RESET The memory address that the CPU’s

stack pointer initially points to. 

STACK_START Where the stack starts in memory, which is interestingly a different address from

STACK_POINTER_RESET. 

RESET_VECTOR An address in memory that contains

another address in memory where program execution

starts. The PRG ROM of every NES game has some kind

of kickoff code to get things going at the address listed

at RESET_VECTOR. 

NMI_VECTOR The same thing as RESET_VECTOR but for NMIs and vblank. When a vblank hits, control will be moved

to the address in memory listed at NMI_VECTOR. 

IRQ_BRK_VECTOR An address for a less commonly used

type of interrupt that won’t factor into the games we

test with our program. It’s included here for

completeness. 

MEM_SIZE The size, in bytes, of the main RAM that the

NES CPU has access to. 

Next, let’s look at the beginning of our CPU class’s

constructor, which sets up its memory, registers, and

configurable state variables:

class CPU:

def __init__(self, ppu: PPU, rom: ROM):

# Connections to Other Parts of the Console

self.ppu: PPU = ppu

self.rom: ROM = rom

# Memory on the CPU

self.ram = array('B', [0] * MEM_SIZE)

# Registers

self.A: int = 0

self.X: int = 0

self.Y: int = 0

self.SP: int = STACK_POINTER_RESET

self.PC: int = self.read_memory(RESET_VECTOR, MemMode.AB

SOLUTE) | \

(self.read_memory(RESET_VECTOR + 1, 

                                      MemMode.ABSOLUTE) << 8)

# Flags

self.C: bool = False # Carry

self.Z: bool = False # Zero

self.I: bool = True # Interrupt disable

self.D: bool = False # Decimal mode

self.B: bool = False # Break command

self.V: bool = False # oVerflow

self.N: bool = False # Negative

# Miscellaneous State

self.jumped: bool = False

self.page_crossed: bool = False

self.cpu_ticks: int = 0

self.stall: int = 0 # number of cycles to stall

self.joypad1 = Joypad()

To better understand this setup code, let’s do a deep

dive on the 6502’s registers. Table 6-3 lists all of them. 

Table 6-3: 6502 Registers

Size (in

Name bytes)

Purpose

A

1

The main register used for arithmetic operations. 

Sometimes known as the  accumulator. 

X

1

An  index register, often used as a loop counter. It can also be used as a general-purpose register, although not all

instructions work with it as they do with A. 

Y

1

The same as X. 

PC

2

The  program counter, which keeps track of where in

memory the next instruction to execute resides. It’s 2 bytes

because the 6502 can address up to 64KB of memory

(without bank switching). 

SP

1

The  stack pointer, which keeps track of where on the stack the program currently is. Since it’s only 1 byte, the stack

can hold a maximum of 256 bytes. 

Size (in

Name bytes)

Purpose

P

1

The  status or  flags register. Its individual bits indicate different things, such as something about an arithmetic

operation (is the result zero, for example?) or whether a

break happened or the interrupt is enabled (IRQ). 

Since Python has only a single type for all integers

regardless of size, we represent all of these registers

except the flags with the int type. Instead of fiddling with

the individual bits for each of the flags in the status

register, we divide them into separate Booleans using the

lettered nomenclature common in 6502 documentation. 

These are the C, Z, I, D, B, V, and N member variables. Most

of them are set as a result of arithmetic operations, I is set when a program wants to not be interrupted by an IRQ

signal, and B is set when flags are pushed to the stack after a break instruction. The D flag, used for BCD code, isn’t

relevant to the NES, since the NES doesn’t have BCD

instructions. 

The jumped variable keeps track of whether a jump

instruction altered the PC register, and page_crossed is for

bookkeeping when accessing memory across a memory

page, which, as discussed, can be more expensive than

accessing memory close by. The NES CPU may need to

wait a certain number of cycles for some tasks to complete. 

This is the purpose of stall. In our emulator, it’s only used when a direct memory access (DMA) transfer occurs to

send a bunch of data from main memory to object attribute

memory (OAM), where the PPU stores information about

sprites. 

The Jump Table

Next, we’ll declare the jump table, the list containing all of the potential instructions that the 6502 can process. Since

the 6502 uses 1-byte opcodes, and there are 256 possible

values for a byte, there are potentially 256 different instructions. Later, in our step() method, we’ll index into

this list to get the specific instruction and its corresponding function for a given opcode that we decode. We won’t

actually implement every instruction (some are BCD or

unofficial), so some are attached to a self.unimplemented()

method. 

All 256 lines of the jump table are included here for

completeness:

self.instructions = [

Instruction(InstructionType.BRK, self.BRK, MemMode.IMPLI

ED, 1, 7, 0), # 00

Instruction(InstructionType.ORA, self.ORA, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.SLO, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE, 2, 3, 0), # 04

Instruction(InstructionType.ORA, self.ORA, MemMode.ZEROP

AGE, 2, 3, 0), # 05

Instruction(InstructionType.ASL, self.ASL, MemMode.ZEROP

AGE, 2, 5, 0), # 06

Instruction(InstructionType.SLO, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 5, 0), 

Instruction(InstructionType.PHP, self.PHP, MemMode.IMPLI

ED, 1, 3, 0), # 08

Instruction(InstructionType.ORA, self.ORA, MemMode.IMMED

IATE, 2, 2, 0), # 09

Instruction(InstructionType.ASL, self.ASL, MemMode.ACCUM

ULATOR, 1, 2, 0), # 0a

Instruction(InstructionType.ANC, self.unimplemented, Mem

Mode.IMMEDIATE, 0, 2, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL

UTE, 3, 4, 0), # 0c

Instruction(InstructionType.ORA, self.ORA, MemMode.ABSOL

UTE, 3, 4, 0), # 0d

Instruction(InstructionType.ASL, self.ASL, MemMode.ABSOL

UTE, 3, 6, 0), # 0e

Instruction(InstructionType.SLO, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 6, 0), 

Instruction(InstructionType.BPL, self.BPL, MemMode.RELAT

IVE, 2, 2, 1), # 10

Instruction(InstructionType.ORA, self.ORA, MemMode.INDIR

ECT_INDEXED, 2, 5, 1), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.SLO, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE_X, 2, 4, 0), # 14

Instruction(InstructionType.ORA, self.ORA, MemMode.ZEROP

AGE_X, 2, 4, 0), # 15

Instruction(InstructionType.ASL, self.ASL, MemMode.ZEROP

AGE_X, 2, 6, 0), # 16

Instruction(InstructionType.SLO, self.unimplemented, Mem

Mode.ZEROPAGE_X, 0, 6, 0), 

Instruction(InstructionType.CLC, self.CLC, MemMode.IMPLI

ED, 1, 2, 0), # 18

Instruction(InstructionType.ORA, self.ORA, MemMode.ABSOL

UTE_Y, 3, 4, 1), # 19

Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI

ED, 1, 2, 0), # 1a

Instruction(InstructionType.SLO, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 7, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL

UTE_X, 3, 4, 1), # 1c

Instruction(InstructionType.ORA, self.ORA, MemMode.ABSOL

UTE_X, 3, 4, 1), # 1d

Instruction(InstructionType.ASL, self.ASL, MemMode.ABSOL

UTE_X, 3, 7, 0), # 1e

Instruction(InstructionType.SLO, self.unimplemented, Mem

Mode.ABSOLUTE_X, 0, 7, 0), 

Instruction(InstructionType.JSR, self.JSR, MemMode.ABSOL

UTE, 3, 6, 0), # 20

Instruction(InstructionType.AND, self.AND, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.RLA, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 8, 0), 

Instruction(InstructionType.BIT, self.BIT, MemMode.ZEROP

AGE, 2, 3, 0), # 24

Instruction(InstructionType.AND, self.AND, MemMode.ZEROP

AGE, 2, 3, 0), # 25

Instruction(InstructionType.ROL, self.ROL, MemMode.ZEROP

AGE, 2, 5, 0), # 26

Instruction(InstructionType.RLA, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 5, 0), 

Instruction(InstructionType.PLP, self.PLP, MemMode.IMPLI

ED, 1, 4, 0), # 28

Instruction(InstructionType.AND, self.AND, MemMode.IMMED

IATE, 2, 2, 0), # 29

Instruction(InstructionType.ROL, self.ROL, MemMode.ACCUM

ULATOR, 1, 2, 0), # 2a

Instruction(InstructionType.ANC, self.unimplemented, Mem

Mode.IMMEDIATE, 0, 2, 0), 

Instruction(InstructionType.BIT, self.BIT, MemMode.ABSOL

UTE, 3, 4, 0), # 2c

Instruction(InstructionType.AND, self.AND, MemMode.ABSOL

UTE, 3, 4, 0), # 2d

Instruction(InstructionType.ROL, self.ROL, MemMode.ABSOL

UTE, 3, 6, 0), # 2e

Instruction(InstructionType.RLA, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 6, 0), 

Instruction(InstructionType.BMI, self.BMI, MemMode.RELAT

IVE, 2, 2, 1), # 30

Instruction(InstructionType.AND, self.AND, MemMode.INDIR

ECT_INDEXED, 2, 5, 1), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.RLA, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE_X, 2, 4, 0), # 34

Instruction(InstructionType.AND, self.AND, MemMode.ZEROP

AGE_X, 2, 4, 0), # 35

Instruction(InstructionType.ROL, self.ROL, MemMode.ZEROP

AGE_X, 2, 6, 0), # 36

Instruction(InstructionType.RLA, self.unimplemented, Mem

Mode.ZEROPAGE_X, 0, 6, 0), 

Instruction(InstructionType.SEC, self.SEC, MemMode.IMPLI

ED, 1, 2, 0), # 38

Instruction(InstructionType.AND, self.AND, MemMode.ABSOL

UTE_Y, 3, 4, 1), # 39

Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI

ED, 1, 2, 0), # 3a

Instruction(InstructionType.RLA, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 7, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL

UTE_X, 3, 4, 1), # 3c

Instruction(InstructionType.AND, self.AND, MemMode.ABSOL

UTE_X, 3, 4, 1), # 3d

Instruction(InstructionType.ROL, self.ROL, MemMode.ABSOL

UTE_X, 3, 7, 0), # 3e

Instruction(InstructionType.RLA, self.unimplemented, Mem

Mode.ABSOLUTE_X, 0, 7, 0), 

Instruction(InstructionType.RTI, self.RTI, MemMode.IMPLI

ED, 1, 6, 0), # 40

Instruction(InstructionType.EOR, self.EOR, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.SRE, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE, 2, 3, 0), # 44

Instruction(InstructionType.EOR, self.EOR, MemMode.ZEROP

AGE, 2, 3, 0), # 45

Instruction(InstructionType.LSR, self.LSR, MemMode.ZEROP

AGE, 2, 5, 0), # 46

Instruction(InstructionType.SRE, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 5, 0), 

Instruction(InstructionType.PHA, self.PHA, MemMode.IMPLI

ED, 1, 3, 0), # 48

Instruction(InstructionType.EOR, self.EOR, MemMode.IMMED

IATE, 2, 2, 0), # 49

Instruction(InstructionType.LSR, self.LSR, MemMode.ACCUM

ULATOR, 1, 2, 0), 

Instruction(InstructionType.ALR, self.unimplemented, Mem

Mode.IMMEDIATE, 0, 2, 0), 

Instruction(InstructionType.JMP, self.JMP, MemMode.ABSOL

UTE, 3, 3, 0), # 4c

Instruction(InstructionType.EOR, self.EOR, MemMode.ABSOL

UTE, 3, 4, 0), # 4d

Instruction(InstructionType.LSR, self.LSR, MemMode.ABSOL

UTE, 3, 6, 0), # 4e

Instruction(InstructionType.SRE, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 6, 0), 

Instruction(InstructionType.BVC, self.BVC, MemMode.RELAT

IVE, 2, 2, 1), # 50

Instruction(InstructionType.EOR, self.EOR, MemMode.INDIR

ECT_INDEXED, 2, 5, 1), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.SRE, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE_X, 2, 4, 0), # 54

Instruction(InstructionType.EOR, self.EOR, MemMode.ZEROP

AGE_X, 2, 4, 0), # 55

Instruction(InstructionType.LSR, self.LSR, MemMode.ZEROP

AGE_X, 2, 6, 0), # 56

Instruction(InstructionType.SRE, self.unimplemented, Mem

Mode.ZEROPAGE_X, 0, 6, 0), 

Instruction(InstructionType.CLI, self.CLI, MemMode.IMPLI

ED, 1, 2, 0), # 58

Instruction(InstructionType.EOR, self.EOR, MemMode.ABSOL

UTE_Y, 3, 4, 1), # 59

Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI

ED, 1, 2, 0), # 5a

Instruction(InstructionType.SRE, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 7, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL

UTE_X, 3, 4, 1), # 5c

Instruction(InstructionType.EOR, self.EOR, MemMode.ABSOL

UTE_X, 3, 4, 1), # 5d

Instruction(InstructionType.LSR, self.LSR, MemMode.ABSOL

UTE_X, 3, 7, 0), # 5e

Instruction(InstructionType.SRE, self.unimplemented, Mem

Mode.ABSOLUTE_X, 0, 7, 0), 

Instruction(InstructionType.RTS, self.RTS, MemMode.IMPLI

ED, 1, 6, 0), # 60

Instruction(InstructionType.ADC, self.ADC, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.RRA, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE, 2, 3, 0), # 64

Instruction(InstructionType.ADC, self.ADC, MemMode.ZEROP

AGE, 2, 3, 0), # 65

Instruction(InstructionType.ROR, self.ROR, MemMode.ZEROP

AGE, 2, 5, 0), # 66

Instruction(InstructionType.RRA, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 5, 0), 

Instruction(InstructionType.PLA, self.PLA, MemMode.IMPLI

ED, 1, 4, 0), # 68

Instruction(InstructionType.ADC, self.ADC, MemMode.IMMED

IATE, 2, 2, 0), # 69

Instruction(InstructionType.ROR, self.ROR, MemMode.ACCUM

ULATOR, 1, 2, 0), # 6a

Instruction(InstructionType.ARR, self.unimplemented, Mem

Mode.IMMEDIATE, 0, 2, 0), 

Instruction(InstructionType.JMP, self.JMP, MemMode.INDIR

ECT, 3, 5, 0), # 6c

Instruction(InstructionType.ADC, self.ADC, MemMode.ABSOL

UTE, 3, 4, 0), # 6d

Instruction(InstructionType.ROR, self.ROR, MemMode.ABSOL

UTE, 3, 6, 0), # 6e

Instruction(InstructionType.RRA, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 6, 0), 

Instruction(InstructionType.BVS, self.BVS, MemMode.RELAT

IVE, 2, 2, 1), # 70

Instruction(InstructionType.ADC, self.ADC, MemMode.INDIR

ECT_INDEXED, 2, 5, 1), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.RRA, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE_X, 2, 4, 0), # 74

Instruction(InstructionType.ADC, self.ADC, MemMode.ZEROP

AGE_X, 2, 4, 0), # 75

Instruction(InstructionType.ROR, self.ROR, MemMode.ZEROP

AGE_X, 2, 6, 0), # 76

Instruction(InstructionType.RRA, self.unimplemented, Mem

Mode.ZEROPAGE_X, 0, 6, 0), 

Instruction(InstructionType.SEI, self.SEI, MemMode.IMPLI

ED, 1, 2, 0), # 78

Instruction(InstructionType.ADC, self.ADC, MemMode.ABSOL

UTE_Y, 3, 4, 1), # 79

Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI

ED, 1, 2, 0), # 7a

Instruction(InstructionType.RRA, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 7, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL

UTE_X, 3, 4, 1), # 7c

Instruction(InstructionType.ADC, self.ADC, MemMode.ABSOL

UTE_X, 3, 4, 1), # 7d

Instruction(InstructionType.ROR, self.ROR, MemMode.ABSOL

UTE_X, 3, 7, 0), # 7e

Instruction(InstructionType.RRA, self.unimplemented, Mem

Mode.ABSOLUTE_X, 0, 7, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED

IATE, 2, 2, 0), # 80

Instruction(InstructionType.STA, self.STA, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED

IATE, 0, 2, 0), # 82

Instruction(InstructionType.SAX, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 6, 0), 

Instruction(InstructionType.STY, self.STY, MemMode.ZEROP

AGE, 2, 3, 0), # 84

Instruction(InstructionType.STA, self.STA, MemMode.ZEROP

AGE, 2, 3, 0), # 85

Instruction(InstructionType.STX, self.STX, MemMode.ZEROP

AGE, 2, 3, 0), # 86

Instruction(InstructionType.SAX, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 3, 0), 

Instruction(InstructionType.DEY, self.DEY, MemMode.IMPLI

ED, 1, 2, 0), # 88

Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED

IATE, 0, 2, 0), # 89

Instruction(InstructionType.TXA, self.TXA, MemMode.IMPLI

ED, 1, 2, 0), # 8a

Instruction(InstructionType.XAA, self.unimplemented, Mem

Mode.IMMEDIATE, 0, 2, 0), 

Instruction(InstructionType.STY, self.STY, MemMode.ABSOL

UTE, 3, 4, 0), # 8c

Instruction(InstructionType.STA, self.STA, MemMode.ABSOL

UTE, 3, 4, 0), # 8d

Instruction(InstructionType.STX, self.STX, MemMode.ABSOL

UTE, 3, 4, 0), # 8e

Instruction(InstructionType.SAX, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 4, 0), 

Instruction(InstructionType.BCC, self.BCC, MemMode.RELAT

IVE, 2, 2, 1), # 90

Instruction(InstructionType.STA, self.STA, MemMode.INDIR

ECT_INDEXED, 2, 6, 0), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.AHX, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 6, 0), 

Instruction(InstructionType.STY, self.STY, MemMode.ZEROP

AGE_X, 2, 4, 0), # 94

Instruction(InstructionType.STA, self.STA, MemMode.ZEROP

AGE_X, 2, 4, 0), # 95

Instruction(InstructionType.STX, self.STX, MemMode.ZEROP

AGE_Y, 2, 4, 0), # 96

Instruction(InstructionType.SAX, self.unimplemented, Mem

Mode.ZEROPAGE_Y, 0, 4, 0), 

Instruction(InstructionType.TYA, self.TYA, MemMode.IMPLI

ED, 1, 2, 0), # 98

Instruction(InstructionType.STA, self.STA, MemMode.ABSOL

UTE_Y, 3, 5, 0), # 99

Instruction(InstructionType.TXS, self.TXS, MemMode.IMPLI

ED, 1, 2, 0), # 9a

Instruction(InstructionType.TAS, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 5, 0), 

Instruction(InstructionType.SHY, self.unimplemented, Mem

Mode.ABSOLUTE_X, 0, 5, 0), 

Instruction(InstructionType.STA, self.STA, MemMode.ABSOL

UTE_X, 3, 5, 0), # 9d

Instruction(InstructionType.SHX, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 5, 0), 

Instruction(InstructionType.AHX, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 5, 0), 

Instruction(InstructionType.LDY, self.LDY, MemMode.IMMED

IATE, 2, 2, 0), # a0

Instruction(InstructionType.LDA, self.LDA, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.LDX, self.LDX, MemMode.IMMED

IATE, 2, 2, 0), # a2

Instruction(InstructionType.LAX, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 6, 0), 

Instruction(InstructionType.LDY, self.LDY, MemMode.ZEROP

AGE, 2, 3, 0), # a4

Instruction(InstructionType.LDA, self.LDA, MemMode.ZEROP

AGE, 2, 3, 0), # a5

Instruction(InstructionType.LDX, self.LDX, MemMode.ZEROP

AGE, 2, 3, 0), # a6

Instruction(InstructionType.LAX, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 3, 0), 

Instruction(InstructionType.TAY, self.TAY, MemMode.IMPLI

ED, 1, 2, 0), # a8

Instruction(InstructionType.LDA, self.LDA, MemMode.IMMED

IATE, 2, 2, 0), # a9

Instruction(InstructionType.TAX, self.TAX, MemMode.IMPLI

ED, 1, 2, 0), # aa

Instruction(InstructionType.LAX, self.unimplemented, Mem

Mode.IMMEDIATE, 0, 2, 0), 

Instruction(InstructionType.LDY, self.LDY, MemMode.ABSOL

UTE, 3, 4, 0), # ac

Instruction(InstructionType.LDA, self.LDA, MemMode.ABSOL

UTE, 3, 4, 0), # ad

Instruction(InstructionType.LDX, self.LDX, MemMode.ABSOL

UTE, 3, 4, 0), # ae

Instruction(InstructionType.LAX, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 4, 0), 

Instruction(InstructionType.BCS, self.BCS, MemMode.RELAT

IVE, 2, 2, 1), # b0

Instruction(InstructionType.LDA, self.LDA, MemMode.INDIR

ECT_INDEXED, 2, 5, 1), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.LAX, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 5, 1), 

Instruction(InstructionType.LDY, self.LDY, MemMode.ZEROP

AGE_X, 2, 4, 0), # b4

Instruction(InstructionType.LDA, self.LDA, MemMode.ZEROP

AGE_X, 2, 4, 0), # b5

Instruction(InstructionType.LDX, self.LDX, MemMode.ZEROP

AGE_Y, 2, 4, 0), # b6

Instruction(InstructionType.LAX, self.unimplemented, Mem

Mode.ZEROPAGE_Y, 0, 4, 0), 

Instruction(InstructionType.CLV, self.CLV, MemMode.IMPLI

ED, 1, 2, 0), # b8

Instruction(InstructionType.LDA, self.LDA, MemMode.ABSOL

UTE_Y, 3, 4, 1), # b9

Instruction(InstructionType.TSX, self.TSX, MemMode.IMPLI

ED, 1, 2, 0), # ba

Instruction(InstructionType.LAS, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 4, 1), 

Instruction(InstructionType.LDY, self.LDY, MemMode.ABSOL

UTE_X, 3, 4, 1), # bc

Instruction(InstructionType.LDA, self.LDA, MemMode.ABSOL

UTE_X, 3, 4, 1), # bd

Instruction(InstructionType.LDX, self.LDX, MemMode.ABSOL

UTE_Y, 3, 4, 1), # be

Instruction(InstructionType.LAX, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 4, 1), 

Instruction(InstructionType.CPY, self.CPY, MemMode.IMMED

IATE, 2, 2, 0), # c0

Instruction(InstructionType.CMP, self.CMP, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED

IATE, 0, 2, 0), # c2

Instruction(InstructionType.DCP, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 8, 0), 

Instruction(InstructionType.CPY, self.CPY, MemMode.ZEROP

AGE, 2, 3, 0), # c4

Instruction(InstructionType.CMP, self.CMP, MemMode.ZEROP

AGE, 2, 3, 0), # c5

Instruction(InstructionType.DEC, self.DEC, MemMode.ZEROP

AGE, 2, 5, 0), # c6

Instruction(InstructionType.DCP, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 5, 0), 

Instruction(InstructionType.INY, self.INY, MemMode.IMPLI

ED, 1, 2, 0), # c8

Instruction(InstructionType.CMP, self.CMP, MemMode.IMMED

IATE, 2, 2, 0), # c9

Instruction(InstructionType.DEX, self.DEX, MemMode.IMPLI

ED, 1, 2, 0), # ca

Instruction(InstructionType.AXS, self.unimplemented, Mem

Mode.IMMEDIATE, 0, 2, 0), 

Instruction(InstructionType.CPY, self.CPY, MemMode.ABSOL

UTE, 3, 4, 0), # cc

Instruction(InstructionType.CMP, self.CMP, MemMode.ABSOL

UTE, 3, 4, 0), # cd

Instruction(InstructionType.DEC, self.DEC, MemMode.ABSOL

UTE, 3, 6, 0), # ce

Instruction(InstructionType.DCP, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 6, 0), 

Instruction(InstructionType.BNE, self.BNE, MemMode.RELAT

IVE, 2, 2, 1), # d0

Instruction(InstructionType.CMP, self.CMP, MemMode.INDIR

ECT_INDEXED, 2, 5, 1), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.DCP, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE_X, 2, 4, 0), # d4

Instruction(InstructionType.CMP, self.CMP, MemMode.ZEROP

AGE_X, 2, 4, 0), # d5

Instruction(InstructionType.DEC, self.DEC, MemMode.ZEROP

AGE_X, 2, 6, 0), # d6

Instruction(InstructionType.DCP, self.unimplemented, Mem

Mode.ZEROPAGE_X, 0, 6, 0), 

Instruction(InstructionType.CLD, self.CLD, MemMode.IMPLI

ED, 1, 2, 0), # d8

Instruction(InstructionType.CMP, self.CMP, MemMode.ABSOL

UTE_Y, 3, 4, 1), # d9

Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI

ED, 1, 2, 0), # da

Instruction(InstructionType.DCP, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 7, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL

UTE_X, 3, 4, 1), # dc

Instruction(InstructionType.CMP, self.CMP, MemMode.ABSOL

UTE_X, 3, 4, 1), # dd

Instruction(InstructionType.DEC, self.DEC, MemMode.ABSOL

UTE_X, 3, 7, 0), # de

Instruction(InstructionType.DCP, self.unimplemented, Mem

Mode.ABSOLUTE_X, 0, 7, 0), 

Instruction(InstructionType.CPX, self.CPX, MemMode.IMMED

IATE, 2, 2, 0), # e0

Instruction(InstructionType.SBC, self.SBC, MemMode.INDEX

ED_INDIRECT, 2, 6, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED

IATE, 0, 2, 0), # e2

Instruction(InstructionType.ISC, self.unimplemented, Mem

Mode.INDEXED_INDIRECT, 0, 8, 0), 

Instruction(InstructionType.CPX, self.CPX, MemMode.ZEROP

AGE, 2, 3, 0), # e4

Instruction(InstructionType.SBC, self.SBC, MemMode.ZEROP

AGE, 2, 3, 0), # e5

Instruction(InstructionType.INC, self.INC, MemMode.ZEROP

AGE, 2, 5, 0), # e6

Instruction(InstructionType.ISC, self.unimplemented, Mem

Mode.ZEROPAGE, 0, 5, 0), 

Instruction(InstructionType.INX, self.INX, MemMode.IMPLI

ED, 1, 2, 0), # e8

Instruction(InstructionType.SBC, self.SBC, MemMode.IMMED

IATE, 2, 2, 0), # e9

Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI

ED, 1, 2, 0), # ea

Instruction(InstructionType.SBC, self.SBC, MemMode.IMMED

IATE, 0, 2, 0), # eb

Instruction(InstructionType.CPX, self.CPX, MemMode.ABSOL

UTE, 3, 4, 0), # ec

Instruction(InstructionType.SBC, self.SBC, MemMode.ABSOL

UTE, 3, 4, 0), # ed

Instruction(InstructionType.INC, self.INC, MemMode.ABSOL

UTE, 3, 6, 0), # ee

Instruction(InstructionType.ISC, self.unimplemented, Mem

Mode.ABSOLUTE, 0, 6, 0), 

Instruction(InstructionType.BEQ, self.BEQ, MemMode.RELAT

IVE, 2, 2, 1), # f0

Instruction(InstructionType.SBC, self.SBC, MemMode.INDIR

ECT_INDEXED, 2, 5, 1), 

Instruction(InstructionType.KIL, self.unimplemented, Mem

Mode.IMPLIED, 0, 2, 0), 

Instruction(InstructionType.ISC, self.unimplemented, Mem

Mode.INDIRECT_INDEXED, 0, 8, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP

AGE_X, 2, 4, 0), # f4

Instruction(InstructionType.SBC, self.SBC, MemMode.ZEROP

AGE_X, 2, 4, 0), # f5

Instruction(InstructionType.INC, self.INC, MemMode.ZEROP

AGE_X, 2, 6, 0), # f6

Instruction(InstructionType.ISC, self.unimplemented, Mem

Mode.ZEROPAGE_X, 0, 6, 0), 

Instruction(InstructionType.SED, self.SED, MemMode.IMPLI

ED, 1, 2, 0), # f8

Instruction(InstructionType.SBC, self.SBC, MemMode.ABSOL

UTE_Y, 3, 4, 1), # f9

Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI

ED, 1, 2, 0), # fa

Instruction(InstructionType.ISC, self.unimplemented, Mem

Mode.ABSOLUTE_Y, 0, 7, 0), 

Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL

UTE_X, 3, 4, 1), # fc

Instruction(InstructionType.SBC, self.SBC, MemMode.ABSOL

UTE_X, 3, 4, 1), # fd

Instruction(InstructionType.INC, self.INC, MemMode.ABSOL

UTE_X, 3, 7, 0), # fe

Instruction(InstructionType.ISC, self.unimplemented, Mem

Mode.ABSOLUTE_X, 0, 7, 0), 

]

Hand-coding this jump table would have been incredibly

tedious. Instead, I wrote an external script to automatically create the table from public sources. The script was a hack

I threw together to generate the table, so I didn’t include it in the repository. Sometimes those quick and dirty scripts

save you a lot of typing, though! 

The Instructions

Next, we need to declare all the methods that bring the

6502 instructions to life. As discussed, we have 56 unique

methods to implement, ranging alphabetically from ADC to

TYA, handling tasks such as arithmetic, control flow, and the like. 

As with the CHIP-8 project, this is a good place for you

to stop and try to write some of the methods on your own

before looking at the implementations here. In order to do

that, you’ll need a good 6502 instruction reference. There

are many available online, and the aforementioned  https://

 nesdev.org links to several. A good reference should

include the following:

The name of the instruction, including its common

mnemonic

The opcode for various forms of the instruction

The memory modes it supports

What flags, if any, the instruction affects

How many cycles it takes

What register(s) it operates on

An example of what it does

If you choose to implement the instructions yourself, 

you’ll first want to look through the rest of the CPU class to see what helper methods are available to you. There are

methods for modifying the stack, reading from memory, 

and writing to memory, and there are a couple other utility

methods as well. See “Memory Access”  on page 170 and

“Helper Methods” on page 175 for these methods. 

You’ll find that many of the instructions are quite

simple. For example, AND is exactly the logical AND

operation you’d expect. We take the accumulator (self.A), 

do a bitwise AND operation between it and whatever we

read from memory, and then store the result back in the

accumulator:

def AND(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

self.A = self.A & src

self.setZN(self.A)

Note how two things have been abstracted away. 

Reading from memory is done by another method, 

self.read_memory(), which is passed the instruction’s memory

mode. We’ll come back to that method’s implementation

later. Second, many different instructions affect flags, so

we have methods like self.setZN() to handle flag changes. 

This is the classic don’t repeat yourself (DRY) principle. 

What follows are implementations for all 56 needed

methods. We’re writing in Python what the 6502 would be

doing in hardware, and it’s really not rocket science. 

Python has operators for completing most tasks. The other

skill set that helps most with this sort of work is a strong

understanding of bitwise operators, as there are several

places where the instruction explicitly asks for them or we

need to cut off a result to make sure it’s still 8 bits so that it

fits in the register. We cover how these bitwise operators work in the appendix. 

# Add memory to accumulator with carry

def ADC(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

signed_result = src + self.A + self.C

self.V = bool(~(self.A ^ src) & (self.A ^ signed_result) 

& 0x80)

self.A = (self.A + src + self.C) % 256

self.C = signed_result > 0xFF

self.setZN(self.A)

# Bitwise AND with accumulator

def AND(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

self.A = self.A & src

self.setZN(self.A)

# Arithmetic shift left

def ASL(self, instruction: Instruction, data: int):

src = self.A if instruction.mode == MemMode.ACCUMULATOR 

else (

self.read_memory(data, instruction.mode))

self.C = bool(src >> 7) # carry is set to 7th bit

src = (src << 1) & 0xFF

self.setZN(src)

if instruction.mode == MemMode.ACCUMULATOR:

self.A = src

else:

self.write_memory(data, instruction.mode, src)

# Branch if carry clear

def BCC(self, instruction: Instruction, data: int):

if not self.C:

self.PC = self.address_for_mode(data, instruction.mo

de)

self.jumped = True

# Branch if carry set

def BCS(self, instruction: Instruction, data: int):

if self.C:

self.PC = self.address_for_mode(data, instruction.mo

de)

self.jumped = True

# Branch on result zero

def BEQ(self, instruction: Instruction, data: int):

if self.Z:

self.PC = self.address_for_mode(data, instruction.mo

de)

self.jumped = True

# Bit test bits in memory with accumulator

def BIT(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

self.V = bool((src >> 6) & 1)

self.Z = ((src & self.A) == 0)

self.N = ((src >> 7) == 1)

# Branch on result minus

def BMI(self, instruction: Instruction, data: int):

if self.N:

self.PC = self.address_for_mode(data, instruction.mo

de)

self.jumped = True

# Branch on result not zero

def BNE(self, instruction: Instruction, data: int):

if not self.Z:

self.PC = self.address_for_mode(data, instruction.mo

de)

self.jumped = True

# Branch on result plus

def BPL(self, instruction: Instruction, data: int):

if not self.N:

self.PC = self.address_for_mode(data, instruction.mo

de)

        self.jumped = True

# Force break

def BRK(self, instruction: Instruction, data: int):

self.PC += 2

# Push PC to stack

self.stack_push((self.PC >> 8) & 0xFF)

self.stack_push(self.PC & 0xFF)

# Push status to stack

self.B = True

self.stack_push(self.status)

self.B = False

self.I = True

# Set PC to reset vector

self.PC = (self.read_memory(IRQ_BRK_VECTOR, MemMode.ABSO

LUTE)) | \

(self.read_memory(IRQ_BRK_VECTOR + 1, MemMode. 

ABSOLUTE) << 8)

self.jumped = True

# Branch on overflow clear

def BVC(self, instruction: Instruction, data: int):

if not self.V:

self.PC = self.address_for_mode(data, instruction.mo

de)

self.jumped = True

# Branch on overflow set

def BVS(self, instruction: Instruction, data: int):

if self.V:

self.PC = self.address_for_mode(data, instruction.mo

de)

self.jumped = True

# Clear carry

def CLC(self, instruction: Instruction, data: int):

self.C = False

# Clear decimal

def CLD(self, instruction: Instruction, data: int):

    self.D = False

# Clear interrupt

def CLI(self, instruction: Instruction, data: int):

self.I = False

# Clear overflow

def CLV(self, instruction: Instruction, data: int):

self.V = False

# Compare accumulator

def CMP(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

self.C = self.A >= src

self.setZN(self.A - src)

# Compare X register

def CPX(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

self.C = self.X >= src

self.setZN(self.X - src)

# Compare Y register

def CPY(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

self.C = self.Y >= src

self.setZN(self.Y - src)

# Decrement memory

def DEC(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

src = (src - 1) & 0xFF

self.write_memory(data, instruction.mode, src)

self.setZN(src)

# Decrement X

def DEX(self, instruction: Instruction, data: int):

self.X = (self.X - 1) & 0xFF

self.setZN(self.X)

# Decrement Y

def DEY(self, instruction: Instruction, data: int):

self.Y = (self.Y - 1) & 0xFF

self.setZN(self.Y)

# Exclusive or memory with accumulator

def EOR(self, instruction: Instruction, data: int):

self.A ^= self.read_memory(data, instruction.mode)

self.setZN(self.A)

# Increment memory

def INC(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

src = (src + 1) & 0xFF

self.write_memory(data, instruction.mode, src)

self.setZN(src)

# Increment X

def INX(self, instruction: Instruction, data: int):

self.X = (self.X + 1) & 0xFF

self.setZN(self.X)

# Increment Y

def INY(self, instruction: Instruction, data: int):

self.Y = (self.Y + 1) & 0xFF

self.setZN(self.Y)

# Jump

def JMP(self, instruction: Instruction, data: int):

self.PC = self.address_for_mode(data, instruction.mode)

self.jumped = True

# Jump to subroutine

def JSR(self, instruction: Instruction, data: int):

self.PC += 2

# Push PC to stack

self.stack_push((self.PC >> 8) & 0xFF)

self.stack_push(self.PC & 0xFF)

# Jump to subroutine

self.PC = self.address_for_mode(data, instruction.mode)

    self.jumped = True

# Load accumulator with memory

def LDA(self, instruction: Instruction, data: int):

self.A = self.read_memory(data, instruction.mode)

self.setZN(self.A)

# Load X with memory

def LDX(self, instruction: Instruction, data: int):

self.X = self.read_memory(data, instruction.mode)

self.setZN(self.X)

# Load Y with memory

def LDY(self, instruction: Instruction, data: int):

self.Y = self.read_memory(data, instruction.mode)

self.setZN(self.Y)

# Logical shift right

def LSR(self, instruction: Instruction, data: int):

src = self.A if instruction.mode == MemMode.ACCUMULATOR 

else (

self.read_memory(data, instruction.mode))

self.C = bool(src & 1) # carry is set to 0th bit

src >>= 1

self.setZN(src)

if instruction.mode == MemMode.ACCUMULATOR:

self.A = src

else:

self.write_memory(data, instruction.mode, src)

# No op

def NOP(self, instruction: Instruction, data: int):

pass

# Or memory with accumulator

def ORA(self, instruction: Instruction, data: int):

self.A |= self.read_memory(data, instruction.mode)

self.setZN(self.A)

# Push accumulator

def PHA(self, instruction: Instruction, data: int): self.stack_push(self.A)

# Push status

def PHP(self, instruction: Instruction, data: int):

# https://nesdev.org/the%20’B’%20flag%20&%20BRK%20instru

ction.txt

self.B = True

self.stack_push(self.status)

self.B = False

# Pull accumulator

def PLA(self, instruction: Instruction, data: int):

self.A = self.stack_pop()

self.setZN(self.A)

# Pull status

def PLP(self, instruction: Instruction, data: int):

self.set_status(self.stack_pop())

# Rotate one bit left

def ROL(self, instruction: Instruction, data: int):

src = self.A if instruction.mode == MemMode.ACCUMULATOR 

else (

self.read_memory(data, instruction.mode))

old_c = self.C

self.C = bool((src >> 7) & 1) # carry is set to 7th bit src = ((src << 1) | old_c) & 0xFF

self.setZN(src)

if instruction.mode == MemMode.ACCUMULATOR:

self.A = src

else:

self.write_memory(data, instruction.mode, src)

# Rotate one bit right

def ROR(self, instruction: Instruction, data: int):

src = self.A if instruction.mode == MemMode.ACCUMULATOR 

else (

self.read_memory(data, instruction.mode))

old_c = self.C

    self.C = bool(src & 1) # carry is set to 0th bit src = ((src >> 1) | (old_c << 7)) & 0xFF

self.setZN(src)

if instruction.mode == MemMode.ACCUMULATOR:

self.A = src

else:

self.write_memory(data, instruction.mode, src)

# Return from interrupt

def RTI(self, instruction: Instruction, data: int):

# Pull status out

self.set_status(self.stack_pop())

# Pull PC out

lb = self.stack_pop()

hb = self.stack_pop()

self.PC = ((hb << 8) | lb)

self.jumped = True

# Return from subroutine

def RTS(self, instruction: Instruction, data: int):

# Pull PC out

lb = self.stack_pop()

hb = self.stack_pop()

self.PC = ((hb << 8) | lb) + 1 # 1 past last instruction self.jumped = True

# Subtract with carry

def SBC(self, instruction: Instruction, data: int):

src = self.read_memory(data, instruction.mode)

signed_result = self.A - src - (1 - self.C)

# Set overflow

self.V = bool((self.A ^ src) & (self.A ^ signed_result) 

& 0x80)

self.A = (self.A - src - (1 - self.C)) % 256

self.C = not (signed_result < 0) # set carry

self.setZN(self.A)

# Set carry

def SEC(self, instruction: Instruction, data: int):

self.C = True

# Set decimal

def SED(self, instruction: Instruction, data: int):

self.D = True

# Set interrupt

def SEI(self, instruction: Instruction, data: int):

self.I = True

# Store accumulator

def STA(self, instruction: Instruction, data: int):

self.write_memory(data, instruction.mode, self.A)

# Store X register

def STX(self, instruction: Instruction, data: int):

self.write_memory(data, instruction.mode, self.X)

# Store Y register

def STY(self, instruction: Instruction, data: int):

self.write_memory(data, instruction.mode, self.Y)

# Transfer A to X

def TAX(self, instruction: Instruction, data: int):

self.X = self.A

self.setZN(self.X)

# Transfer A to Y

def TAY(self, instruction: Instruction, data: int):

self.Y = self.A

self.setZN(self.Y)

# Transfer stack pointer to X

def TSX(self, instruction: Instruction, data: int):

self.X = self.SP

self.setZN(self.X)

# Transfer X to A

def TXA(self, instruction: Instruction, data: int):

self.A = self.X

self.setZN(self.A)

# Transfer X to SP

def TXS(self, instruction: Instruction, data: int):

self.SP = self.X

# Transfer Y to A

def TYA(self, instruction: Instruction, data: int):

self.A = self.Y

self.setZN(self.A)

def unimplemented(self, instruction: Instruction, data: in

t):

print(f"{instruction.type.name} is unimplemented.") While most instructions are fairly simple, I found

handling add with carry (ADC) and subtract with carry (SBC)

a little tricky. The 6502’s main registers are just 8 bits, so carries are going to happen a lot and you need to get the

flags right. But we have a trick: the Python int type isn’t

limited to 8 bits. We can therefore do the arithmetic as if

we’re working with normal int values and then just mod off

anything above 255. 

The step() Method

With implementations for all of the instructions in place, 

we’re ready to step through executing actual 6502 machine

code. The step() method reads the next opcode at PC and

pulls the instruction from the jump table. Here’s the start

of the method:

def step(self):

if self.stall > 0:

self.stall -= 1

self.cpu_ticks += 1

return

opcode = self.read_memory(self.PC, MemMode.ABSOLUTE)

self.page_crossed = False

    self.jumped = False

instruction = self.instructions[opcode]

data = 0

for i in range(1, instruction.length):

data |= (self.read_memory(self.PC + i, 

MemMode.ABSOLUTE) << ((i - 1) 

* 8))

Most 6502 instructions also have some data that comes

with them, and the number of bytes can vary. For example, 

the TAY instruction (transfer A to Y) takes no data, so it’s just 1 byte, but any instruction that reads from memory will

need additional data to specify the memory address. The

amount of data to be read is specified by instruction.length. 

The step() method continues as follows:

instruction.method(instruction, data)

if not self.jumped:

self.PC += instruction.length

elif instruction.type in {InstructionType.BCC, Instructi

onType.BCS, 

InstructionType.BEQ, Instructi

onType.BMI, 

InstructionType.BNE, Instructi

onType.BPL, 

InstructionType.BVC, Instructi

onType.BVS}:

# Branch instructions are +1 ticks if they succeeded

self.cpu_ticks += 1

self.cpu_ticks += instruction.ticks

if self.page_crossed:

self.cpu_ticks += instruction.page_ticks

We call the instruction’s actual method to execute the

instruction, then increment the program counter as

needed. We finish with some bookkeeping regarding ticks

(CPU cycles). 

Memory Access

The next few methods we’ll write help with reading and

writing to memory. Memory access is one of the more

complicated areas of the 6502 because it has a dozen

different memory access modes. The method

address_for_mode() is responsible for translating the data

associated with an instruction into a specific memory

address based on the instruction’s mode (MemMode):

def address_for_mode(self, data: int, mode: MemMode) -> int: def different_pages(address1: int, address2: int) -> boo

l:

return (address1 & 0xFF00) != (address2 & 0xFF00)

address = 0

match mode:

case MemMode.ABSOLUTE:

address = data

case MemMode.ABSOLUTE_X:

address = (data + self.X) & 0xFFFF

self.page_crossed = different_pages(address, address 

- self.X)

case MemMode.ABSOLUTE_Y:

address = (data + self.Y) & 0xFFFF

self.page_crossed = different_pages(address, address 

- self.Y)

case MemMode.INDEXED_INDIRECT:

# 0xFF for zero-page wrapping in next two lines

ls = self.ram[(data + self.X) & 0xFF]

ms = self.ram[(data + self.X + 1) & 0xFF]

address = (ms << 8) | ls

case MemMode.INDIRECT:

ls = self.ram[data]

ms = self.ram[data + 1]

if (data & 0xFF) == 0xFF:

ms = self.ram[data & 0xFF00]

address = (ms << 8) | ls

case MemMode.INDIRECT_INDEXED:

        # 0xFF for zero-page wrapping in next two lines ls = self.ram[data & 0xFF]

ms = self.ram[(data + 1) & 0xFF]

address = (ms << 8) | ls

address = (address + self.Y) & 0xFFFF

self.page_crossed = different_pages(address, address 

- self.Y)

case MemMode.RELATIVE:

address = (self.PC + 2 + data) & 0xFFFF if (data < 0

x80) \

else (self.PC + 2 + (data - 256)) & 0xFFFF # sig

ned

case MemMode.ZEROPAGE:

address = data

case MemMode.ZEROPAGE_X:

address = (data + self.X) & 0xFF

case MemMode.ZEROPAGE_Y:

address = (data + self.Y) & 0xFF

return address

To understand this code, here’s a breakdown of the

6502’s memory access modes and their relationship to the

data associated with the instruction:

ABSOLUTE The address is data. 

ABSOLUTE_X The X register is added to data to form the address. 

ABSOLUTE_Y The Y register is added to data to form the address. 

ACCUMULATOR The A register is being used, not memory. 

We handle this mode directly in the individual

instruction methods, so it doesn’t appear in

address_for_mode(). 

IMMEDIATE data is the final item; we’re not actually

accessing memory. We handle this mode directly in the

methods for reading and writing to memory. 

INDEXED_INDIRECT The 2-byte address is in RAM at data +

X. 

INDIRECT The 2-byte address is in RAM at data. 

INDIRECT_INDEXED The address at data in RAM is added to the Y register to form the final address. 

RELATIVE data is added to PC to form the address. 

ZEROPAGE This is like ABSOLUTE, but within the first 256

bytes of memory (the  zero page). 

ZEROPAGE_X This is like ABSOLUTE_X, but within the first 256 bytes of memory. 

ZEROPAGE_Y This is like ABSOLUTE_Y, but within the first 256 bytes of memory. 

The ZEROPAGE modes may seem redundant to the ABSOLUTE

modes, but there’s a nice optimization here: since the zero

page in memory is only 256 bytes, it requires only a single

data byte to specify an address within it. This saves a cycle of CPU time (a second address byte doesn’t need to be

fetched) when executing an instruction that utilizes the

zero page. Instructions in ZEROPAGE mode are therefore

faster than other instructions that access memory. In fact, 

6502 programmers sometimes treat the 256 memory slots

in the zero page like additional registers since they’re so

fast to read and write. This helps make up for how few

actual registers the 6502 has. 

Now that we can form memory addresses, we’re closer

to reading and writing memory, but we also need some

knowledge of the NES’s different memory regions—which

addresses map to RAM, which to the PPU, and so on. It’s

important to note that many NES memory regions contain

extensive mirroring. For example, the first 2KB in the

memory map, or addresses up to 0x800 in hexadecimal, are

mapped to the CPU’s RAM, but any address accessed below

0x2000 maps to that same RAM because the 2KB repeats

four times up until 0x2000. In other words, address 0x801

is the same as address 0x001, and so are addresses 0x1001

and 0x1801 (2 × 0x800 in hexadecimal is 0x1000, and 3 ×

0x800 is 0x1800). 

This mirroring was a result of hardware peculiarities of

the NES in order to cut costs. For example, not all of the

6502’s memory hardware lines, which you can think of as

wires, were needed to address that measly 2KB of RAM, so

some of the hardware lines were simply ignored. To

illustrate, 0x800 is 2,048 in decimal and 100000000000 in

binary. Each digit in the binary can be thought of as a

signal carried by a hardware line. To address the first

2,048 addresses, you only need 11 hardware lines, which

correspond to the 11 trailing 0s in our number. Those 11

hardware lines are enough for 2,048 different values, 

decimal values 0 through 2,047. The 12th hardware line, 

represented by the 1 in the binary, can just be ignored. In

other words, 0x800 maps to 12 hardware lines, but only 11

of those hardware lines actually existed, so 0x800 was

essentially the same as 0x0. 

Table 6-4 shows the NES CPU’s memory map, as seen by our emulator. It includes both regions and individual

memory-mapped addresses. Regions and addresses that

our emulator ignores or doesn’t implement aren’t shown. 

The table also indicates whether a region or address is

readable, writable, or both. Finally, it mentions if there’s

any mirroring. 

There are many addresses and details missing from

Table 6-4. For example, our simple emulator doesn’t have an APU, but a real NES has memory-mapped addresses in

the 0x4000 range for the APU and other I/O devices (like a

second joypad). We also don’t specify the individual PPU

registers between 0x2000 and 0x2007, which we’ll come

back to when we implement the PPU. The cartridge

memory space can vary quite a bit depending on the

mapper. That’s beyond the scope of this section; we

discussed some of the specifics of cartridge memory in

“Emulating the Cartridge”  on page 148. Finally, the CPU’s measly 2KB of RAM actually has two important subregions:

the fast zero page region from 0x0000 to 0x00FF already

discussed, and the space typically used for the stack from

0x0100 to 0x01FF. 

Table 6-4: A Simplified NES Memory Map

Address

or region

Length

Description

Read/write Mirroring? 

0x0000–

0x800

Main 2KB of

RW

Yes, first 0x800 is

0x1FFF

CPU memory

mirrored up to

0x2000

0x2000–

0x8

8 PPU registers

Varies

0x2000 through

0x3FFF

0x2007 are mirrored

every 8 bytes

0x4014

0x1

DMA transfer of W

No

sprite data

0x4016

0x1

Joypad 1 status

RW

No

0x6000–

Varies by

Cartridge

Varies

Varies

0xFFFF

cartridge

memory

Now that we have some understanding of how the

memory is divided, we can look at our methods for reading

and writing it. We’ll start with the read_memory() method. It takes a location to read and a memory mode, and returns a

byte (represented as an int in Python) from that location:

def read_memory(self, location: int, mode: MemMode) -> int: if mode == MemMode.IMMEDIATE:

return location # location is actually data in this 

case

address = self.address_for_mode(location, mode)

    # Memory map at https://wiki.nesdev.org/w/index.php/CPU_

memory_map

if address < 0x2000: # main RAM 2KB goes up to 0x800

return self.ram[address % 0x800] # mirrors for next 

6KB

elif address < 0x4000: # 2000-2007 is PPU, mirrors every 

8 bytes

temp = ((address % 8) | 0x2000) # get data from PPU 

register

return self.ppu.read_register(temp)

elif address == 0x4016: # joypad 1 status

if self.joypad1.strobe:

return self.joypad1.a

self.joypad1.read_count += 1

match self.joypad1.read_count:

case 1:

return 0x40 | self.joypad1.a

case 2:

return 0x40 | self.joypad1.b

case 3:

return 0x40 | self.joypad1.select

case 4:

return 0x40 | self.joypad1.start

case 5:

return 0x40 | self.joypad1.up

case 6:

return 0x40 | self.joypad1.down

case 7:

return 0x40 | self.joypad1.left

case 8:

return 0x40 | self.joypad1.right

case _:

return 0x41

elif address < 0x6000:

return 0 # unimplemented other kinds of IO

else: # addresses from 0x6000 to 0xFFFF are from the car

tridge

return self.rom.read_cartridge(address)

If the memory mode is IMMEDIATE, that means the actual data associated with the instruction is what’s meant to be

“read.” Remember, our code is abstracted to the point

where a method for a single instruction is supposed to work

with any memory mode. In the case of IMMEDIATE mode, we

don’t need to do any actual lookups, so we just return the

data associated with the instruction. (The name location is a little weird here, but it’s a good name for everything but

IMMEDIATE mode.) Otherwise, the location associated with the

instruction is converted to a memory address using

address_for_mode(). 

After obtaining the memory address, we use a series of

if statements to determine where the memory should

actually be read from, as per Table 6-4.  We account for mirroring by using a modulus. Depending on the region, 

the CPU, the PPU, the joypad, or the cartridge may be

accessed. The NES had a peculiar way of reading the

joypad. Every time address 0x4016 is read, the status of a

different button of the joypad is returned. You therefore

need to complete eight reads to know the status of every

button. 

Next, let’s look at writing to memory:

def write_memory(self, location: int, mode: MemMode, value: 

int):

if mode == MemMode.IMMEDIATE:

self.ram[location] = value

return

address = self.address_for_mode(location, mode)

# Memory map at https://wiki.nesdev.org/w/index.php/CPU_

memory_map

if address < 0x2000: # main RAM 2KB goes up to 0x800

self.ram[address % 0x800] = value # mirrors for next 

6KB

elif address < 0x3FFF: # 2000-2007 is PPU, mirrors every 

8 bytes

        temp = ((address % 8) | 0x2000) # write data to PPU 

register

self.ppu.write_register(temp, value)

elif address == 0x4014: # DMA transfer of sprite data

from_address = value * 0x100 # address to start copy

ing from

for i in range(SPR_RAM_SIZE): # copy all 256 bytes t

o sprite RAM

self.ppu.spr[i] = self.read_memory((from_address 

+ i), 

MemMode.ABSO

LUTE)

# Stall for 512 cycles while this completes

self.stall = 512

elif address == 0x4016: # joypad 1

if self.joypad1.strobe and (not bool(value & 1)):

self.joypad1.read_count = 0

self.joypad1.strobe = bool(value & 1)

return

elif address < 0x6000:

return # unimplemented other kinds of IO

else: # addresses from 0x6000 to 0xFFFF are from the car

tridge

# We haven't implemented support for cartridge RAM

return self.rom.write_cartridge(address, value)

The write_memory() method is quite similar to

read_memory(). It handles IMMEDIATE mode, then exchanges a

location for an address for the other modes and writes to the appropriate location. 

Helper Methods

We’ll round out the CPU class with a series of helper

methods, starting with these three:

def setZN(self, value: int):

self.Z = (value == 0)

self.N = bool(value & 0x80) or (value < 0)

def stack_push(self, value: int):

self.ram[(0x100 | self.SP)] = value

self.SP = (self.SP - 1) & 0xFF

def stack_pop(self) -> int:

self.SP = (self.SP + 1) & 0xFF

return self.ram[(0x100 | self.SP)]

Many instructions need to set the zero (Z) and negative

(N) flags. Instead of repeating those couple of lines in the

instruction methods, we have setZN(). The stack_push()

method puts a new value on the stack. This involves putting

the value on the stack at the write address and moving the

stack pointer. Similarly, stack_pop() gets a value back from

the stack pointer, moves the stack pointer, and returns the

value. 

For convenience, our CPU class stores the various status

flags in seven separate Boolean variables, but a real 6502

has one 8-bit status register where each flag is a single bit. 

The BRK, PHP, PLP, and RTI instructions need to work with the status register in its bit-centric format, so the methods that follow, status() and set_status(), use bitwise operations to

translate between the two formats:

@property

def status(self) -> int:

return (self.C | self.Z << 1 | self.I << 2 | self.D << 3 

|

self.B << 4 | 1 << 5 | self.V << 6 | self.N << 7)

def set_status(self, temp: int):

self.C = bool(temp & 0b00000001)

self.Z = bool(temp & 0b00000010)

self.I = bool(temp & 0b00000100)

self.D = bool(temp & 0b00001000)

    # https://nesdev.org/the%20’B’%20flag%20&%20BRK%20instru ction.txt

self.B = False

self.V = bool(temp & 0b01000000)

self.N = bool(temp & 0b10000000)

Finally, we have a method to handle what happens

when an NMI is triggered, and a log() method for

debugging:

def trigger_NMI(self):

self.stack_push((self.PC >> 8) & 0xFF)

self.stack_push(self.PC & 0xFF)

# https://nesdev.org/the%20’B’%20flag%20&%20BRK%20instru

ction.txt

self.B = True

self.stack_push(self.status)

self.B = False

self.I = True

# Set PC to NMI vector

self.PC = (self.read_memory(NMI_VECTOR, MemMode.ABSOLUT

E)) | \

(self.read_memory(NMI_VECTOR + 1, MemMode.ABSO

LUTE) << 8)

def log(self) -> str:

opcode = self.read_memory(self.PC, MemMode.ABSOLUTE)

instruction = self.instructions[opcode]

data1 = " " if instruction.length < 2 else f"{self.read_

memory(self.PC + 1, 



MemMode.ABSOLUTE):02X}" 

data2 = " " if instruction.length < 3 else f"{self.read_

memory(self.PC + 2, 



MemMode.ABSOLUTE):02X}" 

return f"{self.PC:04X} {opcode:02X} {data1} {data2} {ins truction.type.name}{29 * ' '}" \

           f"A:{self.A:02X} X:{self.X:02X} Y:{self.Y:02X} P:

{self.status:02X} SP:{self.SP:02X}" 

An NMI sends execution to a code block at the address

specified in NMI_VECTOR. When an NMI is triggered, similar to BRK and JSR instructions, we need to put a bookmark down

so that we can come back to where we were before the

NMI took us away. That’s the purpose of pushing PC and

status to the stack. 

Implementing the CPU involved writing a lot of code to

a specification— a specification that’s long but made of

many small, relatively easy-to-digest pieces. The last part of the emulator that we need to implement is the PPU, and it

will feel quite different. There’s still a specification with a lot of details, but those details come together to essentially do just two big things: draw background tiles and draw

sprites. 

 Understanding the PPU

Implementing the PPU is the most complex part of an NES

emulation project. The PPU is responsible for drawing the

graphics on the screen. For the purposes of our simple

emulator, we can think about the graphics as having two

aspects: the background and the sprites. 

The background is the back layer of the graphics where

the individual pieces typically either don’t move at all or

only scroll together as a group. The NES hardware draws

the background using  tiles. In a platform game, for

example, a tile might be a part of a platform, a part of an

artistic background (a mountain, perhaps), a ladder, or a

door. These elements typically can’t move on their own. 

By contrast,  sprites are individual game objects that can move anywhere on the screen independently. Think of the

player and enemies in a platform game. The NES has

specialized hardware for handling up to 64 8×8 or 8×16 (in

pixels) sprites on the screen at a time. 

There are many different ways to implement the PPU. 

The most accurate is to simulate what the real PPU does:

generate each pixel of the screen, one at a time. If this

implementation is done properly, any game written for the

NES should work correctly. This approach is also the most

performance intensive. A popular alternative is to

implement graphics one scanline at a time. Instead of doing

updates for every pixel, the updates occur when each

scanline’s processing is complete. 

We won’t be doing either of these. As discussed earlier, 

we’ll implement the PPU using the even simpler approach

of updating the entire screen one frame at a time. This is

the least accurate technique, because if the game somehow

changes the graphics between pixels or between scanlines, 

those updates won’t appear. Compatibility will still be

good, but it won’t extend to all games. 

While our method is the furthest away from how the

real PPU works, it’s the most performant technique, since it

requires the fewest updates per frame (just one big update

instead of many small updates). It’s also the least

conceptually difficult, since it doesn’t require

understanding all the details of how the real PPU works. 

Because our emulator is being written in a relatively slow

programming language, Python, and is intended to be as

simple as possible for demonstration purposes, per-frame

rendering is arguably the best choice. 

While we don’t need to understand every detail of the

PPU to implement our frame-by-frame approach, we still

need to understand some fundamentals about where the

data for the backgrounds and the sprites comes from. We’ll

dive into that in the coming sections. Some of the

information was already scattered throughout earlier parts

of the chapter, but here it’s all woven together with many

new ideas and details to cohesively explain how the PPU

operates. 

CHR ROM

The data for both the background tiles and the sprites is

initially located on the cartridge in a region of memory

known as CHR ROM. The size of this memory could range

quite a bit. Early games typically had just 8KB of CHR

ROM, but later games with mappers could have hundreds

of kilobytes, with the ability to swap in any other 8KB

region for the first so as to be compatible with the

expectations of the PPU hardware (which can only address

8KB of CHR ROM directly). 

Some games replaced CHR ROM with CHR RAM, which

is modifiable during game operation. However, most games

had fixed CHR ROM. If a game had CHR RAM, the game

had to load the graphics into the CHR RAM as needed from

the PRG ROM, instead of it just always being there. Some

rare games had both CHR ROM and CHR RAM in different

banks. 

Pattern Tables and Tiles

At any given time the PPU can be “hooked up” to either of

two 4KB portions of the CHR ROM on the cartridge. These

portions are known as  pattern tables. The NES pulls all of its graphics data for a given frame from the selected

pattern table. Note that some documentation refers to all

8KB of addressable CHR ROM as a single overall pattern

table rather than calling each 4KB section a separate

pattern table. 

Each pattern table is divided into 256 16-byte tiles, and

each tile defines potential graphics for an 8×8 pixel region

of the screen. Together, the predefined tiles in the pattern

tables represent all the different things you might see in

the game. For example,  Figure 6-1 shows the pattern tables for the open source game  BrickBreaker by Aleff Correa, which we’ll run in our emulator later in the chapter. 
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 Figure 6-1: The pattern tables of BrickBreaker , as displayed by the FCEUX

 emulator’s PPU Viewer

You can see how some of the tiles in the pattern tables

represent sprites, some represent text, and some represent

background patterns. Many of the tiles in the pattern tables

are blank because  BrickBreaker doesn’t have the need to use them (it has more space in CHR ROM for graphical

assets than it actually needs). 

NOTE

 Figure 6-1 was generated using the PP U Viewer feature of the FCEUX emulator, which allows you to see the contents

 of CHR ROM, separate from actual gameplay. Adding

 debug features like a pattern table viewer can be very

 helpful when writing an emulator. For example, you could

 compare the output of your PPU to that of an established

 emulator like FCEUX. 

As mentioned, each tile in a pattern table is 16 bytes. 

With 16 bytes defining 8 × 8 = 64 pixels, that leaves just 2

bits per pixel, and 2 bits can only represent four different

values (00, 01, 10, 11). The PPU therefore only supports

four colors within a given tile. In fact, one of those is always a preset background color or transparent (00), so

there are essentially only three programmer-selected colors

that can appear in a specific tile. This palette of colors is set for regions of four tiles at a time and is controlled in a separate part of memory from the pattern tables

themselves. This is why all of the tiles appear in grayscale

in Figure 6-1; the color palette of each tile isn’t determined by the pattern table. We’ll come back to how colors are

selected shortly. 

Unfortunately, the tiles get a little bit more

complicated: the 2-bit values that define each pixel aren’t

laid out sequentially. Instead, the zeroth bit of each pixel is laid out in the first 8 bytes of the tile, and the first bit of each pixel is laid out in the second 8 bytes of the tile. Each 8 bytes forms a  bit plane, and the two planes combine, two bits at a time, to determine each pixel’s color. 

Let me phrase that another way. The first 8 bytes (first

bit plane) of a tile can be thought of as 64 halves of the

color values for the 64 pixels in the 8×8 tile. They’re laid

out sequentially. The second 8-byte bit plane defines

another 64 halves of the color values for the same 64

pixels. They’re also laid out sequentially. The two planes

need to be combined to get the 64 final color values. As an

example, consider the following 16 bytes of tile data:6

   Bit Plane 1

Byte 1  01000001

Byte 2  11000010

Byte 3  01000100

Byte 4  01001000     Pixel Pattern

Byte 5  00010000

Byte 6  00100000       01000003

Byte 7  01000000       11000030

Byte 8  10000000 ===== 01000300

Bit Plane 2         01003000
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Byte 9  00000001 ===== 00030220

Byte 10 00000010       00300002

Byte 11 00000100       03000020

Byte 12 00001000       30000222

Byte 13 00010110

Byte 14 00100001

Byte 15 01000010

Byte 16 10000111

The matching bits from the two bit planes come

together to form the pixel pattern shown in the listing and

illustrated in Figure 6-2: an image of the fraction 1/2. 

 Figure 6-2: How a tile comes together from two bit planes Where there’s a 1 in the first bit plane and a 0 in the

second, the bits combine to form 01, or color 1 in the color

scheme. Likewise, a 0 from the first bit plane and a 1 from

the second form 10, or color 2, and a 1 in both bit planes

yields 11, or color 3. 

Nametables

 Nametables are where the actual tiles for the background of the screen are laid out. What does the background of the

screen look like right now? What tiles is it composed of, 

and what colors are used in each? That’s the job of a

nametable and its accompanying attribute table (discussed

next). 

Each nametable, representing a single screen of the

game, is 32 tiles wide and 30 tiles high. Each tile in the

nametable is specified by a single byte—the index of a tile in the current pattern table. In this way, the pattern table

tiles are directly mapped to the nametable, so you can think

of a nametable as just a specific ordering of tiles from a

pattern table. 

How big is a nametable? Well, 32 × 30 = 960, so there

are 960 locations in a nametable. And each location in the

table is occupied by a 1-byte index, so a nametable is 960

bytes. 

We now have enough information to understand why

the NES had a 256×240 resolution. Each tile is 8 pixels

wide and 8 pixels tall. If the nametable represents the

background of the screen and is 32 tiles wide, it follows

that 8 × 32 = 256. And the height of the screen in pixels is

found with 8 × 30 = 240. 

The PPU only has 2KB of memory, which is only enough

for two nametables (and their attribute tables). Those two

nametables can be mirrored, so there are a total of four

logical nametables. Figure 6-3 shows the nametables for the title screen of  BrickBreaker laid out. 
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 Figure 6-3: The nametables of the BrickBreaker  title screen Only one nametable is set with meaningful data in

Figure 6-3. You can observe  horizontal mirroring in the way the right half of the image is a copy of the left half. 

Color Palettes and Attribute Tables

The PPU has  palette memory for four different background color palettes. Recall from “Pattern Tables and Tiles” on page 178 that each tile is composed of pixels in one of four

colors, with one of those being the background color or

transparent. That means that only three colors are actually

specific to a tile. Each palette in the PPU’s palette memory

therefore defines a set of three colors. (We’ll discuss

palette memory further in the next section.)

To specify which color palette applies to which tile, 

each nametable is followed by an  attribute table. The attribute table is 8×8, and each entry in it is just 1 byte. 

How can there be 960 tiles and just 64 1-byte attribute table entries? Each entry actually defines the colors for a

2×2 set of  areas, and each of those areas represents a 2×2

grid of tiles. Therefore, each 1-byte entry in the attribute

table actually covers 16 tiles. How does that work out? 

Every 2 bits of that 1-byte entry is for one area, and 2

bits can represent up to four values. Each 2-bit value is a

selector between one of the four different background color

palettes. Every 2×2 region of tiles on the screen can

therefore have a single palette out of the four possible

background palettes. That means all four of the tiles in

each area must use the same three colors (and

background/transparent). 

That’s no easy feat. Artists working on graphics for the

NES had to paint significant areas of the screen (four-tile

areas) using just three non-background colors. And then

each of those areas using just three non- background colors

had to blend in with the adjacent areas that may be using

different three-color palettes. 

Figures 6-4, 6-5,  and 6-6,  created for  https://nesdev.org, 

showcase attribute tables in action. (If you’re reading this

in print, see the  figures directory of the companion

repository for color versions of the images.) First, Figure 6-

4 shows the background of a game ( Thwaite by Damian

Yerrick) broken up into the areas the attribute table can

select colors for. 
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 Figure 6-4: The attribute table layout across the screen in Thwaite

Figure 6-5 shows the actual palette selection (which background palette, 0–3) for each area from Figure 6-4. 

 Figure 6-5: The attribute table color palette mapping in Thwaite
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Finally, Figure 6-6 shows the four background palettes that can be selected. There’s some color overlap between

the palettes, which allows the different areas of the screen

to blend with each other. 

 Figure 6-6: The background color palettes in Thwaite

Each attribute table is 64 bytes, and each nametable is

960 bytes. One nametable and its corresponding attribute

table therefore take up 960 + 64 = 1,024 bytes, or 1KB. 

This is how the 2KB of RAM on the PPU fill up with two

pattern table/attribute table combinations. 

Palette Memory

The PPU’s palette memory has room for four background

palettes and four sprite palettes. As we’ve discussed, a

palette consists of three colors (along with the

background/transparent color). It can be used to paint a

four-tile background area of the screen (see the prior

section on attribute tables) or a sprite. In other words, each four-tile area of the background can be colored using one

out of four palettes, and each sprite can be colored using

one out of four palettes. 

A palette is defined using 3 bytes. Each byte specifies

one of the three colors of the palette, although only 6 bits

of each byte are actually used for selecting a color. Since 6

bits can select from among 64 values, this tells us that NES

artists only had 64 colors to work with. In practice, 10 of

these 64 possible colors amounted to essentially black, so

really the NES had 54 colors.  Figure 6-7 shows these colors for an NTSC NES. The colors differed a bit for PAL NES

machines. (Different countries used different video
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standards—NTSC in North America versus PAL in much of

Europe and Asia, for instance—which would affect how the

PPU of the NES operated.)

 Figure 6-7: The colors available on an NTSC NES

As an example, say your background area is painted

using background palette 1, and background palette 1

specifies the colors 0x11, 0x0A, and 0x3D. That means you

can paint that area using shades of blue, green, and gray, 

as well as the background color. 

Object Attribute Memory

OAM stores information about the sprites on the screen. 

Sprites are essentially the moving objects in a game—for

example, the player, the enemies, and the projectiles. The

NES supports 64 sprites at a time and uses 4 bytes to

describe each one, so there are 256 bytes of OAM. 

The images for sprites come from the same CHR ROM

on the cartridge as the background tiles—that is, the

pattern tables. Unlike the background, however, sprites

aren’t constrained to tile locations; they can be drawn at

any position on the screen. Each sprite can also be flipped

horizontally or vertically, placed in front of or behind the

background, and colored using any of four different

palettes. The 4 bytes for each sprite and what they do are

briefly described in Table 6-5. 

Table 6-5: Sprite Specification in OAM

Byte

#

Description

0

The y-axis position of the sprite

1

The index into the pattern table where the sprite’s graphical data is located

2

Sprite attributes including palette (bits 0–1), front or back (bit 5), horizontal flip (bit 6), and vertical flip (bit 7)

3

The x-axis position of the sprite

Why the bytes for the y-axis position and the x-axis

position aren’t next to each other is a question I have for

the NES’s creators. Perhaps it has to do with the physical

wiring order of the lines in the PPU. 

Frame Creation and Timing

The PPU in a real NES draws the screen from the top left to

the bottom right, one pixel at a time. This reflected the

“gun” in the CRT televisions that the NES would be hooked

up to. Its electron beam “shot” behind the screen from left

to right, one scanline at a time from top to bottom. The

NTSC NES draws the entire screen 60 times per second

(60 frames per second, or 60 FPS). A PAL NES draws at a

slower 50 FPS. A  frame is the gun completing its journey across the entire screen. As mentioned earlier in the

chapter, the gun would also sometimes be temporarily off-

screen during hblank (between scanlines) and vblank

(between frames) periods. These were therefore the safest

times for an NES program to change the memory that the

pixels were being read from. 

Since the NES resolution is 256×240, we know that

there must be at least 256 dots drawn per scanline and 240

scanlines in total. There’s a prerender scanline, which we’ll

call scanline 0. Then, scanlines 1 through 240 are the

“visible” scanlines that represent what the program

actually displays on the screen. Scanlines 241 through 261

are during the vblank phase. The NMI, mentioned earlier in

the chapter, is therefore triggered at the start of scanline

241 to tell the program it’s safe to change PPU memory. 

Dots 0 through 255 represent the 256 visible dots on each

scanline. Dots 256 through 340 are “silent” dots during

which the hblank phase between scanlines occurs. 

Each dot represents one PPU cycle. If you do the math, 

341 dots per scanline times 262 scanlines means it takes

89,342 PPU cycles to draw each frame. Recall that there


are 3 PPU cycles for every 1 CPU cycle. If we divide the

PPU cycles by 3 and round, we get 29,781 CPU cycles per

frame. The CPU in the NES runs at about 1.79 MHz, or

1,790,000 cycles per second. If you divide 1,790,000 by

29,781, you get a number close to 60. That’s the 60 frames

per second! 

To create a cycle-accurate NES emulator, it’s important

to understand the details of how the PPU figures out what

color to draw for each pixel, one pixel at a time. Since

we’re using the simpler but less accurate approach of

drawing one frame at a time, we can leave those details out

as beyond the scope of our project. What we do know based

on the timing just discussed is that at some point during

every 89,342 PPU cycles we need to draw the whole frame. 

To me, the logical time to do that is when the visible

scanlines are done. In the code we’ll look at shortly, you’ll therefore see all of the background and all of the sprites

being drawn at once at the timing of scanline 240, dot 256

(the last visible dot in the last visible scanline). Our

simplified renderer does no drawing except during that

PPU cycle, once per frame. 

 Implementing the PPU

Implementing our PPU starts with some important

constants, including various memory sizes, the screen

resolution, and the full palette of available colors:

 NESEmulator/ppu.py

from array import array

from NESEmulator.rom import ROM

import numpy as np

SPR_RAM_SIZE = 256

NAMETABLE_SIZE = 2048

PALETTE_SIZE = 32

NES_WIDTH = 256

NES_HEIGHT = 240

NES_PALETTE = [0x7C7C7C, 0x0000FC, 0x0000BC, 0x4428BC, 0x940

084, 0xA80020, 

0xA81000, 0x881400, 0x503000, 0x007800, 0x006

800, 0x005800, 

0x004058, 0x000000, 0x000000, 0x000000, 0xBCB

CBC, 0x0078F8, 

0x0058F8, 0x6844FC, 0xD800CC, 0xE40058, 0xF83

800, 0xE45C10, 

0xAC7C00, 0x00B800, 0x00A800, 0x00A844, 0x008

888, 0x000000, 

0x000000, 0x000000, 0xF8F8F8, 0x3CBCFC, 0x688

8FC, 0x9878F8, 

0xF878F8, 0xF85898, 0xF87858, 0xFCA044, 0xF8B

800, 0xB8F818, 

0x58D854, 0x58F898, 0x00E8D8, 0x787878, 0x000

000, 0x000000, 

0xFCFCFC, 0xA4E4FC, 0xB8B8F8, 0xD8B8F8, 0xF8B

8F8, 0xF8A4C0, 

0xF0D0B0, 0xFCE0A8, 0xF8D878, 0xD8F878, 0xB8F

8B8, 0xB8F8D8, 

0x00FCFC, 0xF8D8F8, 0x000000, 0x000000]

The colors are specified in hexadecimal RGB values. 

Different websites have slight variations on what the exact

color values should be, and there were real differences in

these colors between the different variations of the NES

hardware (NTSC versus PAL, for example). The same game

may therefore have slightly different colors when played on

different NES hardware or different emulators. 

The PPU class has instance variables for its sprite

memory (OAM), nametable memory, and palette memory:

class PPU:

def __init__(self, rom: ROM):

self.rom = rom

# PPU memory

self.spr = array('B', [0] * SPR_RAM_SIZE) # sprite R

AM

self.nametables = array('B', [0] * NAMETABLE_SIZE) # 

nametable RAM

self.palette = array('B', [0] * PALETTE_SIZE) # pale

tte RAM

The rest of the PPU class’s constructor sets up default

values for its various program-settable PPU registers and

many helper variables (we’ll go into more detail about what

some of these are for as our implementation progresses):

# Registers

self.addr = 0 # main PPU address register

self.addr_write_latch = False

self.status = 0

self.spr_address = 0

# Variables controlled by PPU control registers

self.nametable_address = 0

self.address_increment = 1

self.spr_pattern_table_address = 0

self.background_pattern_table_address = 0

self.generate_nmi = False

    self.show_background = False

self.show_sprites = False

self.left_8_sprite_show = False

self.left_8_background_show = False

# Internal helper variables

self.buffer2007 = 0

self.scanline = 0

self.cycle = 0

# Pixels for screen

self.display_buffer = np.zeros((NES_WIDTH, NES_HEIGHT), 

dtype=np.uint32)

Next, we have the rendering method, step():

def step(self):

# Our simplified PPU draws just once per frame

if (self.scanline == 240) and (self.cycle == 256):

if self.show_background:

self.draw_background()

if self.show_sprites:

self.draw_sprites(False)

if (self.scanline == 241) and (self.cycle == 1):

self.status |= 0b10000000 # set vblank

if (self.scanline == 261) and (self.cycle == 1):

# Vblank off, clear sprite zero, clear sprite overfl

ow

self.status |= 0b00011111

self.cycle += 1

if self.cycle > 340:

self.cycle = 0

self.scanline += 1

if self.scanline > 261:

self.scanline = 0

Each call to step() from the emulator’s main loop

represents one PPU cycle. Because our strategy is to draw

everything once per frame, and not to be pixel or scanline

accurate, step() is remarkably simple. It just draws the background and sprites all at once at the end of each

visible portion of a frame. It also sets the status register

when vblank starts and ends so that the CPU can

coordinate with the PPU. Finally, it does some bookkeeping

to keep track of the current scanline and current cycle on

each scanline. 

The heavy lifting is done by the draw_background() and

draw_sprites() methods, which are called by step(). We’ll

look at these methods next. 

Drawing the Background

We begin the draw_background() background method by

calculating the address of the attribute table:

def draw_background(self):

attribute_table_address = self.nametable_address + 960

The attribute table is always right after the nametable, 

and recall from earlier in the chapter that the nametable is

960 bytes. I also mentioned earlier in the chapter that the

nametable is composed of 960 bytes because it uses 1 byte

to represent the index of each of 960 tiles. The screen is 32

tiles wide and 30 tiles tall, with each tile representing an

8×8 pixel area. We draw these tiles from the top left to the

bottom right of the screen, one row at a time, going from

left to right:

for y in range(30):

for x in range(32):

tile_address = self.nametable_address + y * 32 + x

nametable_entry = self.read_memory(tile_address)

Each tile_address is calculated by adding the base

nametable_address to the current tile’s offset. Since each row is 32 tiles long, we multiple the row (y) by 32 and add the x

component, which can be thought of as the column. To get the actual index byte (nametable_entry) we read a byte of

memory at the tile_address. Later in the method we’ll use

nametable_entry to retrieve the tile’s pixel content from the pattern table. 

Next, we get the attribute table entry corresponding to

the current nametable entry:

attrx = x // 4

attry = y // 4

attribute_address = attribute_table_address + attry 

* 8 + attrx

attribute_entry = self.read_memory(attribute_addres

s)

Because each entry in the 8×8 attribute table is for 16

tiles, we divide both x and y by 4 to get the attribute entry

connected to the tile in question. (See “Color Palettes and

Attribute Tables” on page 181 to better make sense of this

code.) Since each attribute_entry is for four 2×2 tile areas

(hence 16 tiles in total), we need to drill down to the

specific tile area:

block = (y & 0x02) | ((x & 0x02) >> 1)

attribute_bits = 0

if block == 0:

attribute_bits = (attribute_entry & 0b00000011) 

<< 2

elif block == 1:

attribute_bits = (attribute_entry & 0b00001100)

elif block == 2:

attribute_bits = (attribute_entry & 0b00110000) 

>> 2

elif block == 3:

attribute_bits = (attribute_entry & 0b11000000) 

>> 4

        else:

print("Invalid block")

The attribute_entry is 1 byte, and every 2 bits of that

byte correspond to a different tile area. The variable block

represents the tile area for the current tile; it can be 0, 1, 2, or 3. Depending on the value of block, we use the

appropriate bitwise operations to retrieve the two specific

bits for that tile area from attribute_entry and store them in attribute_bits. 

Now we need to retrieve the individual pixels of each

tile from the pattern table:

for fine_y in range(8):

low_order = self.read_memory(self.background_pat

tern_table_address +

nametable_entry * 1

6 + fine_y)

high_order = self.read_memory(self.background_pa

ttern_table_address +

nametable_entry * 

16 + 8 + fine_y)

for fine_x in range(8):

pixel = ((low_order >> (7 - fine_x)) & 1) | 

(

((high_order >> (7 - fine_x)) & 

1) << 1) | attribute_bits

Recall from “Pattern Tables and Tiles”  on page 178 that each pattern table is composed of 16-byte tiles. Therefore, 

to calculate the address of a tile, we need to multiply its

index (nametable_entry) by 16 and add it to the

background_pattern_table_address. In addition, the pattern

table tiles are divided into two bit planes, with each color

being 2 bits and each of those 2 bits being 8 bytes apart in

the separate planes (see Figure 6-2). 

Our strategy is to read 2 bytes, one for the low_order plane and one for the high_order plane. Each byte holds half

of the pixel entries for one row of the tile. We use fine_y to represent each row of the tile, then zero in on the

individual bits using fine_x, which represents each column. 

The combination of the bits from each plane with the

attribute_bits produces an address in palette memory

where the color of the current pixel is stored. 

Finally, we draw each pixel from the tile one at a time in

the appropriate screen location using the predefined colors

in NES_PALETTE:

x_screen_loc = x * 8 + fine_x

y_screen_loc = y * 8 + fine_y

transparent = ((pixel & 3) == 0)

# If the background is transparent, use the first color 

in the palette

color = self.palette[0] if transparent else self.palette

[pixel]

self.display_buffer[x_screen_loc, y_screen_loc] = NES_PA

LETTE[color]

Setting pixels for the screen means setting values in

display_buffer, which is a NumPy array because that’s what

Pygame accepts. 

Drawing Sprites

Drawing sprites has some similarity to drawing background

tiles. However, instead of reading from a nametable, we

read from OAM (self.spr). Each sprite’s entry in memory is

4 bytes, representing the sprite’s y position, pattern table

index, attributes, and x position (see Table 6-5). There’s room for up to 64 sprite entries in OAM. If the y position is 0xFF, then the entry isn’t being used. We start

draw_sprites() by moving 4 bytes at a time through OAM to

find all of the valid entries:

def draw_sprites(self, background_transparent: bool): for i in range(SPR_RAM_SIZE - 4, -4, -4):

y_position = self.spr[i]

if y_position == 0xFF: # 0xFF is a marker for no sprite 

data

continue

background_sprite = bool((self.spr[i + 2] >> 5) & 1) x_position = self.spr[i + 3]

We retrieve each valid sprite’s y position and x position. 

We also look at bit 5 of its attributes to see if it’s a

background sprite. Background sprites are drawn only if

the background is transparent. Note that we are traversing

sprite memory backward because, as we’ll see at the end of

this section, the zeroth sprite has special significance. 

Just as we drew background tiles one pixel at a time, we

do the same for sprites:

for x in range(x_position, x_position + 8):

if x >= NES_WIDTH:

break

for y in range(y_position, y_position + 8):

if y >= NES_HEIGHT:

break

Here, x and y are analogous to fine_x and fine_y in

draw_background(). We’re careful not to draw any pixels that

are off-screen. 

Another attribute a sprite can have is the ability to be

flipped vertically (flip_y), which is determined by the

seventh bit in the sprite’s attribute byte:

flip_y = bool((self.spr[i + 2] >> 7) & 1)

sprite_line = y - y_position

if flip_y:

sprite_line = 7 - sprite_line

If a sprite is flipped vertically, we read its pixels in reverse vertical order. We use the magic number 7 because

every sprite is 8×8 pixels. 

Reading the actual pixel bits from the pattern table, 

based on the pattern table index, is very similar to the work done in draw_background():

index = self.spr[i + 1]

bit0s_address = self.spr_pattern_table_address + 

(index * 16) + sprite_line

bit1s_address = self.spr_pattern_table_address + 

(index * 16) + sprite_line + 8

bit0s = self.read_memory(bit0s_address)

bit1s = self.read_memory(bit1s_address)

bit3and2 = ((self.spr[i + 2]) & 3) << 2

I used some different terminology here (bit0s_address

and bit1s_address instead of low_order and high_order)

because I thought different naming might resonate with

different readers. The attribute color bits are bits 0 and 1

in the sprite’s attribute byte, and they’re stored in bit3and2

for the final color. 

Sprites can also be flipped horizontally based on bit 6 in

the attribute byte:

flip_x = bool((self.spr[i + 2] >> 6) & 1)

x_loc = x - x_position # position within sprite

if not flip_x:

x_loc = 7 - x_loc

We put the two bit planes together and skip over

drawing pixels that are transparent:

bit1and0 = (((bit1s >> x_loc) & 1) << 1) | (

((bit0s >> x_loc) & 1) << 0)

            if bit1and0 == 0: # transparent pixel... skip continue

The PPU keeps track of whether the zeroth sprite (the

first entry in OAM) is colliding with any non-transparent

background pixels. This is called a  sprite-zero hit. We implement this simple form of collision detection here:

# This is not transparent. Is it a sprite-zero hit there

fore? 

# Check that left 8 pixel clipping is not off. 

if (i == 0) and (not background_transparent) and (not (x 

< 8 and (

not self.left_8_sprite_show or not self.left_8_b

ackground_show))

and self.show_background and self.show_sprit

es):

self.status |= 0b01000000

# Need to do this after sprite-zero checking so we still 

count background

# sprites for sprite-zero checks

if background_sprite and not background_transparent:

continue # background sprite shouldn't draw over opa

que pixels

When a sprite-zero hit occurs, we mark it in the status

register. In this chunk of code, we also skip drawing

background sprites if the background isn’t transparent. 

There are flags that can be set in the PPU to clip the left 8

pixels of a background tile or sprite. That flag is also

checked in this section to ensure if it’s on that there aren’t erroneous sprite-zero hits. 

Finally, we retrieve the color of the individual pixel:

color = bit3and2 | bit1and0

color = self.read_memory(0x3F10 + color) # from 

palette

self.display_buffer[x, y] = NES_PALETTE[color]

To retrieve the color, we combine bit3and2 with bit1and0

and read from the appropriate location in palette memory. 

Then, we put this pixel on the screen. Instead of reading

from palette directly, we use read_memory() here because of

the need to incorporate address mirroring. 

Accessing Registers

The PPU has several memory-mapped registers, and there

are some technicalities and peculiarities when reading or

writing them. We’ll tackle these through the read_register()

and write_register() methods. In read_register(), we first

handle address 0x2002, which is for reading the status

register:

def read_register(self, address: int) -> int:

if address == 0x2002:

self.addr_write_latch = False

current = self.status

self.status &= 0b01111111 # clear vblank on read to 

0x2002

return current

When the status register is read, self.addr_write_latch is

set to False, which modifies how addresses are written to

0x2006 (coming up later). Also, vblank is cleared on reads

to the status register. Next, the current self.spr_address in OAM can be read through 0x2004:

elif address == 0x2004:

return self.spr[self.spr_address]

The PPU memory at self.addr can be read and written

through register 0x2007. But it’s read through a buffer

(self.buffer2007), with the details varying depending on what address is being read:

elif address == 0x2007:

if (self.addr % 0x4000) < 0x3F00:

value = self.buffer2007

self.buffer2007 = self.read_memory(self.addr)

else:

value = self.read_memory(self.addr)

self.buffer2007 = self.read_memory(self.addr - 0x100

0)

# Every read to 0x2007 there is an increment

self.addr += self.address_increment

return value

else:

raise LookupError(f"Error: Unrecognized PPU read {addres s:X}")

Notice how self.address_increment is added to self.addr

after every read. This allows for subsequent reads to

automatically get the next entry, either 1 byte or 32 bytes

further. 

In write_register(), we change the operation of the PPU

by writing to its various memory-mapped registers. First, 

registers 0x2000 and 0x2001 are called  control registers. 

They’re used for changing various internal values that

we’ve already seen in use throughout the rest of the PPU’s

implementation:

def write_register(self, address: int, value: int):

if address == 0x2000: # Control1

self.nametable_address = (0x2000 + (value & 0b000000

11) * 0x400)

self.address_increment = 32 if (value & 0b00000100) 

else 1

self.spr_pattern_table_address = (((value & 0b000010

00) >> 3) * 0x1000)

        self.background_pattern_table_address = (((value & 0

b00010000) >> 4) * 0x1000)

self.generate_nmi = bool(value & 0b10000000)

elif address == 0x2001: # Control2

self.show_background = bool(value & 0b00001000)

self.show_sprites = bool(value & 0b00010000)

self.left_8_background_show = bool(value & 0b0000001

0)

self.left_8_sprite_show = bool(value & 0b00000100)

Next, we handle registers 0x2003 through 0x2007:

elif address == 0x2003:

self.spr_address = value

elif address == 0x2004:

self.spr[self.spr_address] = value

self.spr_address += 1

elif address == 0x2005: # scroll

pass

elif address == 0x2006:

# Based on https://wiki.nesdev.org/w/index.php/PPU_s

crolling

if not self.addr_write_latch: # first write

self.addr = (self.addr & 0x00FF) | ((value & 0xF

F) << 8)

else: # second write

self.addr = (self.addr & 0xFF00) | (value & 0xF

F)

self.addr_write_latch = not self.addr_write_latch

elif address == 0x2007:

self.write_memory(self.addr, value)

self.addr += self.address_increment

else:

raise LookupError(f"Error: Unrecognized PPU write {a

ddress:X}")

Register 0x2003 sets self.spr_address. Register 0x2004

sets the value at self.spr_address and then increments

self.spr_address by 1. Register 0x2005 is a scroll register; we haven’t implemented it in our simple PPU, but a full

implementation would require it. As it stands, our emulator

won’t work with games that require scrolling. Register

0x2006 is for modifying self.addr. This is where

self.addr_write_latch comes in: we need the latch because

self .addr is 16 bits (2 bytes) but can only be written to 1

byte at a time. Finally, 0x2007 is for writing to self.addr. 

Accessing Memory

Our PPU implementation is basically done, but we need

helper methods for reading and writing to PPU memory. 

These read_memory() and write_memory() methods are quite

similar to their analogs in the CPU:

def read_memory(self, address: int) -> int:

address = address % 0x4000 # mirror >0x4000

if address < 0x2000: # pattern tables

return self.rom.read_cartridge(address)

elif address < 0x3F00: # nametables

address = (address - 0x2000) % 0x1000 # 3000-3EFF is 

a mirror

if self.rom.vertical_mirroring:

address = address % 0x0800

else: # horizontal mirroring

if (address >= 0x400) and (address < 0xC00):

address = address - 0x400

elif address >= 0xC00:

address = address - 0x800

return self.nametables[address]

elif address < 0x4000: # palette memory

address = (address - 0x3F00) % 0x20

if (address > 0x0F) and ((address % 0x04) == 0):

address = address - 0x10

return self.palette[address]

else:

raise LookupError(f"Error: Unrecognized PPU read at 

{address:X}")

def write_memory(self, address: int, value: int): address = address % 0x4000 # mirror >0x4000

if address < 0x2000: # pattern tables

return self.rom.write_cartridge(address, value)

elif address < 0x3F00: # nametables

address = (address - 0x2000) % 0x1000 # 3000-3EFF is 

a mirror

if self.rom.vertical_mirroring:

address = address % 0x0800

else: # horizontal mirroring

if (address >= 0x400) and (address < 0xC00):

address = address - 0x400

elif address >= 0xC00:

address = address - 0x800

self.nametables[address] = value

elif address < 0x4000: # palette memory

address = (address - 0x3F00) % 0x20

if (address > 0x0F) and ((address % 0x04) == 0):

address = address - 0x10

self.palette[address] = value

else:

raise LookupError(f"Error: Unrecognized PPU write at 

{address:X}")

In these methods, different memory regions are mapped

to their respective areas—the pattern tables (which are

actually on the cartridge), nametables, and the like. The

only complication is that the nametables and palette

memory can be mirrored. We handle this using the mod

operator (%), as we did in the CPU. 

Testing the Emulator

Many test ROMs have been created for folks developing

NES emulators. Some are included in the repository for this

book. These can test the 6502 CPU as well as the PPU. 

Thank you to Shay Green and Kevin Horton for developing these tests. 

Our 10 unit tests run these ROMs and then check that

certain values in the virtual NES’s memory are set

correctly, as specified by the test ROMs’ creators. Like all

tests for the book, the file for these unit tests appears in

the  tests directory in the root of the source code repository:

# tests/test_nesemulator.py

import unittest

from pathlib import Path

from NESEmulator.cpu import CPU

from NESEmulator.ppu import PPU

from NESEmulator.rom import ROM

class CPUTestCase(unittest.TestCase):

def setUp(self) -> None:

self.test_folder = (Path(__file__).resolve().parent. 

parent

/ 'NESEmulator' / 'Tests')

def test_nes_test(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "nestest" / "nestest.ne s")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Set up tests

cpu.PC = 0xC000 # special starting location for test

s

with open(self.test_folder / "nestest" / "nestest.lo g") as f:

correct_lines = f.readlines()

log_line = 1

# Check every line of the log against our own produc

ed logs

while log_line < 5260: # go until first unofficial o

pcode test

            our_line = cpu.log()

correct_line = correct_lines[log_line - 1]

self.assertEqual(correct_line[0:14], our_line[0:

14], 

f"PC/Opcode doesn't match at li

ne {log_line}")

self.assertEqual(correct_line[48:73], our_line[4

8:73], 

f"Registers don't match at line 

{log_line}")

cpu.step()

log_line += 1

def test_blargg_instr_test_v5_basics(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "01-basics.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of basics test is {ro

m.prg_ram[0]} not 0")

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

def test_blargg_instr_test_v5_implied(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "02-implied.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

        rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of implied test is {r

om.prg_ram[0]} not 0")

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

def test_blargg_instr_test_v5_branches(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "10-branches.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of branches test is 

{rom.prg_ram[0]} not 0")

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

def test_blargg_instr_test_v5_stack(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "11-stack.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of stack test is {ro

m.prg_ram[0]} not 0")

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

def test_blargg_instr_test_v5_jmp_jsr(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "12-jmp_jsr.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of jmp_jsr test is {r

om.prg_ram[0]} not 0")

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

def test_blargg_instr_test_v5_rts(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "13-rts.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

        self.assertEqual(0, rom.prg_ram[0], 

f"Result code of rts test is {rom.p

rg_ram[0]} not 0")

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

def test_blargg_instr_test_v5_rti(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "14-rti.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of rti test is {rom.p

rg_ram[0]} not 0")

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

def test_blargg_instr_test_v5_brk(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "15-brk.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends 

with null terminator

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of brk test is {rom.p

rg_ram[0]} not 0")

def test_blargg_instr_test_v5_special(self):

# Create machinery that we are testing

rom = ROM(self.test_folder / "instr_test-v5" / "rom_

singles" / "16-special.nes")

ppu = PPU(rom)

cpu = CPU(ppu, rom)

# Tests run as long as 0x6000 is 80, and then 0x6000 

is result code; 0 means success

rom.prg_ram[0] = 0x80

while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test

cpu.step()

message = bytes(rom.prg_ram[4:]).decode("utf-8")

print(message[0:message.index("\0")]) # message ends with null terminator

self.assertEqual(0, rom.prg_ram[0], 

f"Result code of special test is {r

om.prg_ram[0]} not 0")

if __name__ == "__main__":

unittest.main()

It’s important to have automated tests like this when

developing an emulator. Even when you think your CPU is

perfect, you may have missed a small bug that throws

whole programs off. You also need to know that changing

one part of your emulator doesn’t break another part of it. 

Playing Games

Unit tests are one thing, but the real test of our emulator is whether it can play actual NES software. For legal reasons, 

we won’t be testing any commercial software in our NES

emulator. Due to its simplicity, our emulator wouldn’t be
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capable of playing most of the NES library anyway. Instead, 

the book’s source code repository includes several open

source or public domain games that our emulator is

capable of running. These are real games in the sense that

they can run on a real NES console. 

Let’s start with  BrickBreaker, a  Breakout-like game by Aleff Correa that I mentioned earlier. Assuming you have

Pygame and NumPy installed, you can play this game by

just running this command from the repository’s home

directory:

% python3 -m NESEmulator NESEmulator/Games/brix.nes

It looks pretty good (see Figure 6-8). 

 Figure 6-8: BrickBreaker  by Aleff Correa

Next, let’s try  Chase by Shiru:

% python3 -m NESEmulator NESEmulator/Games/Chase.nes

Figure 6-9 shows the game. 
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 Figure 6-9: Chase  by Shiru

Finally, let’s try  Lan Master by Shiru:

% python3 -m NESEmulator NESEmulator/Games/LanMaster.nes

This one’s a puzzle game, shown in Figure 6-10. 
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 Figure 6-10: Lan Master  by Shiru

 Lan Master is very playable on our emulator, but the

other two are not. Why? Well, you may have noticed all of

them run pretty slowly. On my M1 MacBook Air running

CPython 3.13, for example, they run at approximately 14

FPS. That’s about one-quarter the speed of a real NES. Our

emulator is correctly running these games, just very slowly. 

What’s the lesson? Python, and in particular the

mainline version of Python, CPython, is slow. In recent

years there have been efforts to improve the performance

of CPython, but it’s still very slow compared to most other

programming language implementations and isn’t tuned

out of the box for writing low-level programs like

emulators. To write more performant programs, you need

to jump through some hoops: you can use particular

libraries that are implemented in a lower-level language, 

use Cython, write a C extension, or use an alternative

Python interpreter like PyPy. 

I’ll leave speeding up the emulator using something like

Cython as an exercise for the reader. I’m confident that

with the right solution you can get this NES emulator up to a real NES’s 60 FPS. 

CODE MEETS LIFE

When I started my emulator-programming journey by writing a CHIP-8

VM in Swift, my real dream was to write an emulator for the first game console I owned as a child, the NES. Two years later I got there, writing a basic NES emulator with no sound in C. While the CHIP-8 VM

took me a day or two, the NES emulator took me about 30 days, spread over a year of off-and-on research and programming time. I found writing the CPU portion quite straightforward, but writing a pixel-perfect background renderer was much more challenging. I ended up porting the background renderer of the PPU of Michael Fogleman’s excellent NES emulator7 from Go to C and combining it with my own sprite-rendering code. 

If the NES emulator took me about 30 days to write and the CHIP-8

VM took about two days, was the project 15 times harder? I don’t think so. My challenge in writing the PPU was keeping all of the technical details in my mind at once. I was too focused on writing a pixel-perfect renderer when I should have started with a per-frame renderer as we did in this chapter. At the time there were also no great tutorials, although the documentation at NesDev was

invaluable. I had first wanted to write an NES emulator as a teenager, so completing it was a dream come true, even if it was pretty basic and lacked sound. (I later added sound, as well as more mappers than just NROM.)

In this chapter, I tried to provide the tutorial that I wish I had when I was developing my NES emulator. I knew pixel-perfect rendering would be too complicated and too full of esoteric internal-register minutiae for a first-time emulator writer, so I went back and rewrote the PPU of my C NES emulator as simply as possible. That’s the renderer I ported to Python for this chapter. 

After finishing the NES emulator, I went on to write an emulator for the original IBM PC. That was a significantly more complicated project, largely because the Intel 8088/8086 is much more complicated than the MOS 6502. In that project, not writing automated tests very early on bit me. Eventually I got it working at a basic level, but I should have written the tests much earlier. The more complicated the microprocessor you’re emulating, the more you need automated tests as early as possible. 

Real-World Applications

Emulators are probably most commonly used to play video

games for systems that are no longer in production, but

they’ve also long been used at critical junctures in

computing history. For example, when Bill Gates and Paul

Allen started Microsoft in 1975 by writing a BASIC

interpreter for the Altair 8800, as was discussed in Chapter

2, they didn’t actually have an Altair 8800 available to

them. Instead, they wrote an emulator for the Altair’s Intel

8080 microprocessor on one of the minicomputers at

Harvard, where Gates was going to college. 8

Apple has transitioned the microprocessor family used

in its Macintosh line of computers three times: from the

Motorola 68K to the Motorola/IBM PowerPC, from the

PowerPC to the Intel x86, and finally from the Intel x86 to

Apple’s own ARM-derived Apple Silicon. Does that mean

Apple had to have developers recompile or rewrite all of

their software several times? In the long run, yes, but in the short term during the transitions, Apple provided

emulators. PowerPC Macs could run 68K Mac software, 

Intel Macs (at the beginning) could run PowerPC Mac

software, and Apple Silicon Macs can run Intel Mac

software too. Apple is an amazing emulator developer. In

fact, PowerPC Macs would run 68K software faster than

68K Macs. The same was sometimes true of Apple Silicon

Macs running Intel software. 

Emulators are also important for the preservation of

software. What happens when it’s very hard to obtain the

original hardware that a piece of software was written for? 

In those cases an emulator may be the only option. On the

other end of the spectrum, emulators are sometimes used

in the design phase of a new computing platform. Before

the platform exists, the designers may utilize an emulator

to simulate what it will be like and help flesh out its

features in a realistic environment. 

Finally, emulator writing is very educational. It’s one of the best ways to teach how computers work at a low level, 

as I hope you discovered in this chapter. 

Exercises

1.  Try to get the performance of our emulator up to that of

a real NES—in other words, 60 FPS. You’ll likely need

to use something like Cython, or Python in combination

with a low-level language like C or Rust through an

extension. It will be nearly impossible to get pure

Python to run at 60 FPS as of CPython 3.13 and 2025

era microprocessors. 

2.  Add support for scrolling to our emulator using the

documentation at  https://nesdev.org. 

3.  Implement another mapper. Right now our emulator

only implements NROM, the most basic mapper. Two

other popular mappers are MMC1 and UxROM. 

4.  And now for the largest challenge of all: try writing an

APU for our emulator so that you can play games with

sound. 
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PART IV

SUPER-SIMPLE MACHINE LEARNING
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7

CLASSIFICATION WITH K-NEAREST

NEIGHBORS

This chapter will introduce  k-

 nearest neighbors (KNN), an

extraordinarily simple machine learning

algorithm that can be highly effective for

some applications. First developed in the

1950s and 1960s, 1 KNN can be used for

both  classification (deciding what

category something belongs to) and

 regression (predicting a value). For

readers daunted by the complexities of

machine learning, KNN provides an

accessible yet real-world entry point into

the field. In this chapter, we’ll use KNN to

solve two classification problems with a

high degree of accuracy: distinguishing

between different types of fish and

recognizing handwritten digits. Then, in

Chapter 8, we’ll extend KNN to some

related regression problems. 

The Rise of Machine Learning

Going back to the 1950s, traditional artificial intelligence

(AI) research was chiefly concerned with utilizing

algorithms to model human intelligence. Starting in the

1990s, however, and especially since the advent of neural

networks backed by GPU computing in the 2000s, much of

the focus of AI research and productization has turned to

the subfield of machine learning, which uses large datasets

to train models that can make decisions without needing to

reference the human method of problem solving. To

understand this shift, think of the difference between a

chess program that evaluates a position based on well-

understood heuristics from grandmasters and a chess

program that evaluates a position based on auto-tuned

weights assimilated from statistically analyzing millions of

games. Indeed, machine learning is heavily based on

statistics. 

All the exciting machine learning applications we’re

familiar with, including LLMs, image recognition, and

digital assistants, are built using sophisticated multilayer

neural networks trained on GPUs or specialized neural

processors. This is known as  deep learning. To program a deep learning framework from scratch you would need a

significant understanding of both calculus and statistics. 

Even if you dodge some of that by using a library, you still

typically need a huge dataset, which is often hard to obtain, and powerful hardware. 

Because of these barriers, programmers interested in

getting started with machine learning are sometimes

intimidated. They’re afraid the math will be too hard or

they’ll lack the resources needed to develop the application they’re interested in. What’s more, some learning

programmers like to build their projects from the ground

up; they don’t want to just pip install their way to a

solution that offers them no understanding about how the

underlying process actually works. 

As you’ll see in this chapter, however, machine learning

can have a very approachable starting point if you don’t

jump right into the deep learning deep end. You can

program the KNN algorithm from scratch and use it to

solve real problems, and you don’t need a background in

mathematics beyond the middle school level to understand

what you’re doing. The only statistical concept required to

implement KNN is the idea of a mean (average), and the

only other formula you’ll need is the Pythagorean theorem

to find the Euclidean distance between two points. That’s

not asking much, right? 

NOTE

 If you want to learn more about neural networks, you can

 check out Chapter 7, “F airly Simple Neural Networks,” of my prior book Classic Computer Science Problems in

Python  (Manning, 2019). 

How KNN Works

The KNN algorithm makes a simple assumption: the

neighbors of a data point are likely to be the other data

points that have the most in common with it. For example, 

if I’m trying to figure out the disease that a patient has, 

perhaps other patients with the same symptoms and same

vital signs are the best clues. Incidentally, this is why you probably don’t want a doctor straight out of medical school. 

More experienced doctors can use the obvious heuristic of

“I’ve seen other patients like this before” to offer you better initial guidance. 

Another way of putting it is that the data points that are

closest to an unknown value are the likeliest ones to tell us what that unknown value is. Perhaps you’re a car dealer, 

and you want to know if you should spend more marketing

dollars trying to attract a potential repeat customer by

sending her further mailers. The customer has filled in a

customer satisfaction survey rating various aspects of your

business. You have a lot of data from prior customers filling in the same survey, and you know whether or not they

ended up buying another car with you. You can compare

this potential repeat customer’s survey ratings to the

ratings of prior customers to find the customers that are

the most similar to her in disposition. If those prior

customers with similar ratings ended up buying another

car, you know it’s probably worthwhile to spend the money

on sending her more marketing material. That’s essentially

the analysis that KNN does: it lets prior data “vote” on a

likely value associated with some new data. 

Let’s look at the last example visually along two

dimensions. Figure 7-1 is a fictionalized dataset of respondents’ ratings on the dealer survey for “Car

Happiness” and “Dealer Happiness.” Crosses are survey

respondents who purchased another car from the dealer, 

triangles are survey respondents who did not, and the

round dot is the new survey respondent. 
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 Figure 7-1: Car dealership survey respondents’ data

How would we classify our new survey respondent? Is

she likely to buy another car or not? Using KNN, we need

to first choose a value for  k, the  meta-heuristic. This is simply the number of neighbors we’ll look at. If we set  k to 1, then we look at just the data point that’s closest to our

unknown value. In Figure 7-1,  with our survey respondent at (6, 8), our next closest data point to compare is at (7, 8), and that’s someone who did buy another car. With  k set to 1, we would therefore conclude that it’s worth spending the

money to send our new respondent some more marketing material. 

But what if  k is set to a number greater than 1? The

typical solution in the KNN algorithm is to “vote.” For

example, if  k is 3 in our scenario, you can see that the three closest data points would be two that bought a new car and

one that didn’t. Since the majority bought another car, we

would still conclude it’s worth spending the money on

marketing to the new survey respondent. If  k is set to 2, we would have a problem since one decided to buy another car

and one didn’t. Then, we would have to have some kind of

tie-breaking criterion. 

And that’s it. That’s the whole KNN algorithm for

classification. We look at  k data points close to the data point in question, and we let them vote on what our

unknown should be. We can thus summarize the KNN

algorithm for classification as follows:

1. Choose  k, the number of neighbors to compare to an unclassified data point. 

2. Find the  k-nearest neighbors to the data point. 

3. Vote on the classification of the data point based on the

classes of the  k-nearest neighbors. 

This simple algorithm requires three clarifications:

What does it mean to be a “nearest” neighbor? How is the

winner of the vote determined? And what is the right value

for  k? All these questions may have different answers for different applications of KNN. 

“Nearest” is most commonly determined using

Euclidean distance. In other words, if we drew straight

lines on Figure 7-1 between our unclassified point (the round dot) and all the other data points on the graph, the

shortest lines would determine the neighbors. However, for

some applications that don’t have numerical data points, 

something like  Hamming distance (counting the

differences) may apply. Distance functions other than Euclidean distance are beyond the scope of this chapter. 

Voting usually means determining what class a plurality

of the nearest neighbors belongs to. You need some kind of

tie-breaking criterion, though, even if you stick to odd

numbers for  k. This is because many applications have more than two classes. For instance, what if you have three

classes and  k is set to 5? You may end up with two of the nearest neighbors belonging to class A, two belonging to

class B, and one belonging to class C. Should the data point

in question be classified as A or B? 

Determining the right value for  k is actually quite

straightforward. Unless we have some specific domain

knowledge to tell us otherwise, we should use the value

that has been found to be the most accurate in testing. We

can test KNN with several different values for  k with a particular dataset and set of test points and see which

value is the most useful. 

Those are the basics of classification with KNN. 

Obviously, there are a lot of options and enhancements that

can be made beyond this simple outline, but you already

know enough to implement KNN! 

Implementing Classification with KNN

Like the algorithm itself, our code to implement KNN will

be quite simple. But before we can get to the algorithm, we

need a generic type for representing a data point. We’ll

create a DataPoint class that’s a  protocol, meaning there will be no instances of this type itself, but only of its subclasses. 

It’s an abstract template outlining the functionality that a

more concrete data point type must have:

 KNN/knn.py

from pathlib import Path

import csv

from typing import Protocol, Self

from collections import Counter

import numpy as np

class DataPoint(Protocol):

kind: str

@classmethod

def from_string_data(cls, data: list[str]) -> Self: ... 

def distance(self, other: Self) -> float: ... 

Our protocol specifies that a data point should have a

kind attribute (or a  class in the words of classification), a from_string_data() method for converting a line from a CSV

(comma-separated values) file to an instance of the class, 

and distance() to find the distance between two of the same

kind of data points. We’ll create DataPoint subclasses for the two concrete datasets we work with in this chapter. 

Our main KNN implementation is via a class not

surprisingly called KNN:

class KNN[DP: DataPoint]:

def __init__(self, data_point_type: type[DP], file_path: 

str | Path, 

has_header: bool = True) -> None:

self.data_point_type = data_point_type

self.data_points = []

self._read_csv(file_path, has_header)

# Read a CSV file and return a list of data points

def _read_csv(self, file_path: str | Path, has_header: b

ool) -> None:

with open(file_path, 'r') as f:

reader = csv.reader(f)

if has_header:

                _ = next(reader)

for row in reader:

self.data_points.append(

self.data_point_type.from_string_data(ro

w))

The type hint syntax class KNN[DP: DataPoint]: says that a

generic type, DP, is associated with KNN and that a DP must be a subclass of DataPoint. We’ll be loading all our datasets

from CSV files. Our KNN class’s _read_csv() method utilizes

the built-in Python csv module to load these files. Each line in the CSV file is used to initialize one of our DataPoint

subclasses via its from_string_data() class method. We’ll

come back to the specifics of CSV files in a bit when we

look at our first dataset. 

Now that we have a dataset loaded in the KNN class, 

we’re ready to implement the actual KNN algorithm. Where

do we start? Given a point that we want to classify, the first thing we need is to identify its  k-nearest neighbors. All our data points have built-in distance() methods, so we can just

calculate the distance from our unclassified data point to

every data point in the dataset and find the  k nearest: def nearest(self, k: int, data_point: DP) -> list[DP]:

return sorted(self.data_points, key=data_point.dista

nce)[:k]

Yup, it is a one-liner. We just use the distance()

method’s results to sort all of the data points, and then we

keep the k lowest values (the points with the least distance

from data_point). The core of the KNN algorithm really is

that simple. 

Is this the most efficient way to find the nearest

neighbors? No. Sorting is an  O( n log  n) operation, where  n is the number of data points in the dataset. If the dataset is very large, this would be a significant bottleneck. We could

improve this a bit by writing code to manually evaluate the distances of all the data points utilizing an ancillary data

structure to only keep the k smallest. To take performance

even further, we may need a more sophisticated data

structure than an unsorted list for storing the dataset. In

short, there’s a trade-off here between algorithmic

performance and data structure complexity. 

Another alternative would be to not actually search the

entire dataset for neighbors each time. There are various

approaches to limit the search either through

precomputation of a more limited subset of data points that

are representative of the whole or sampling the dataset

during the search through a so-called  approximate search.2

That said, our simple sorting technique is fast enough for

our applications and is true to the title of this part of the book, “Super-Simple Machine Learning.” 

Next, we need to do the “voting.” That involves

counting how many of each class (or kind) there are in the

nearest neighbors and returning the class that there are

the most of:

def classify(self, k: int, data_point: DP) -> str:

neighbors = self.nearest(k, data_point)

return Counter(neighbor.kind for neighbor in neighbo

rs).most_common(1)[0][0]

First, we find the neighbors. Then, we use Python’s built-

in Counter collection type to find the most common kind

among the neighbors. The most_common(1) call returns the

single most common item in the Counter, and the [0][0] says

retrieve that first item from the collection and take its kind label. The Counter will internally be structured as key-value pairs that look something like [("amphibian", 3), ("reptile", 4), ("mammal", 1)]. In that example, the line would find the key-value pair with the highest value, ("reptile", 4), and return just its key, "reptile". We don’t handle tie-breakers

in any systematic way here—we just leave it up to the whim of Counter. Again, remember the part title. 

That’s it. Thanks to some nice Python standard library

routines, the actual algorithmic work behind KNN is

effectively just three lines of code between nearest() and

classify(). I told you it would be “super simple.” With the

algorithm in place, let’s now apply KNN to two

classification problems. 

 Classifying Fish

Suppose you work as a programmer for a company that

makes a fish-finding device for anglers. It consists of a

camera on the end of a pole that travels underneath a boat. 

It has image recognition built in, so when a fish passes by

the underwater camera, it can automatically take a picture

of it and recognize the rectangle within the photo that

contains the fish. It can also estimate the dimensions of the fish in the photo. Your task is to write a layer of software on top of this image recognition system that tells the angler

what type of fish it is. After all, not all fish are legal to catch. 

Luckily, we have a dataset in the public domain that will

help us with this fish classification task. It’s originally from a 1917 Finnish paper by Pekka Brofeldt that in English was

called “Contribution to the Knowledge of Fish Stocks in

Dangerous Lakes. ”3 It contains the dimensions and weights of 159 fish from a lake, classified by species (so our

program may only work in that one lake).  Figure 7-2 shows the fish in our dataset along just two dimensions, height

and width. 
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 Figure 7-2: Fish categorized by species and plotted along the height and width dimensions

As you may expect, fish of a similar species tend to be

close together when viewed in terms of height and width. 

That’s a good indicator that KNN may be a useful algorithm

for this problem. 

Let’s look at what the raw data looks like. Here’s a

sample of the first few lines of  fish.csv:

Species,Weight,Length1,Length2,Length3,Height,Width

Bream,242,23.2,25.4,30,11.52,4.02

Bream,290,24,26.3,31.2,12.48,4.3056

Bream,340,23.9,26.5,31.1,12.3778,4.6961

Bream,363,26.3,29,33.5,12.73,4.4555

The first row is a header that describes each column. 

The three length dimensions, which represent the distances

from the nose of each fish to various different body parts, are in centimeters, and the weight is in grams. There’s

some ambiguity in sources about the units of the height and

width. As long as the units are consistent between samples, 

however, the data is still useful, even if we don’t know if it’s centimeters, some kind of percentage, or otherwise. 

The Fish Class

To implement our fish classifier, we need to build a

subclass of DataPoint to represent a fish:

# KNN/fish.py

from dataclasses import dataclass

from KNN.knn import DataPoint

from typing import Self

@dataclass

class Fish(DataPoint):

kind: str

weight: float

length1: float

length2: float

length3: float

height: float

width: float

@classmethod

def from_string_data(cls, data: list[str]) -> Self:

return cls(kind=data[0], weight=float(data[1]), leng

th1=float(data[2]), 

length2=float(data[3]), length3=float(dat

a[4]), 

height=float(data[5]), width=float(data

[6]))

def distance(self, other: Self) -> float:

return ((self.length1 - other.length1) ** 2 +

(self.length2 - other.length2) ** 2 +

                (self.length3 - other.length3) ** 2 +

(self.height - other.height) ** 2 +

(self.width - other.width) ** 2) ** 0.5

Technically, we don’t need to explicitly make Fish a

subclass of DataPoint for protocol conformance in Python

type hints. By fulfilling all the requirements of the DataPoint protocol, a Fish can substitute for a DataPoint without even

subclassing it thanks to the concept of implicit subtypes. 4

Still, we declare Fish as a subclass of DataPoint explicitly

because it provides clarity to the reader of our code and

aids in type checking. 

Each line of a CSV is provided from the KNN class as a

list of strings for the Fish class to convert into a Fish

instance. The from_string_data() method does this

conversion. The distance() calculates the Euclidean distance

between the current instance and another Fish. We find the

differences between each dimension in the dataset, square

those differences, and sum them. Then, we return the

square root (** 0.5) of that sum. Note that we don’t

consider the weight attribute from the dataset as part of the comparison. This is because we’ll be using the dimensions

of a fish to predict its weight in the next chapter, so the

weight will be unknown for the fish in question. 

The Unit Tests

We have unit tests to make sure we’re getting the expected

results from our fish detector. We start with a test that

checks whether the fish nearest to a sample fish are the

expected ones:

# tests/test_knn.py

import unittest

from pathlib import Path

import csv

from KNN.knn import KNN

from KNN.fish import Fish

from KNN.digit import Digit

class FishTestCase(unittest.TestCase):

def setUp(self) -> None:

self.data_file = (Path(__file__).resolve().parent.pa

rent

/ "KNN" / "datasets" / "fish" / "f ish.csv")

def test_nearest(self):

k: int = 3

fish_knn = KNN(Fish, self.data_file)

test_fish: Fish = Fish("", 0.0, 30.0, 32.5, 38.0, 1

2.0, 5.0)

nearest_fish: list[Fish] = fish_knn.nearest(k, test_

fish)

self.assertEqual(len(nearest_fish), k)

expected_fish = [Fish('Bream', 340.0, 29.5, 32.0, 3

7.3, 13.9129, 5.0728), 

Fish('Bream', 500.0, 29.1, 31.5, 3

6.4, 13.7592, 4.368), 

Fish('Bream', 700.0, 30.4, 33.0, 3

8.3, 14.8604, 5.2854)]

self.assertEqual(nearest_fish, expected_fish)

Next, we try classifying a sample fish:

def test_classify(self):

k: int = 5

fish_knn = KNN(Fish, self.data_file)

test_fish: Fish = Fish("", 0.0, 20.0, 23.5, 24.0, 1

0.0, 4.0)

classify_fish: str = fish_knn.classify(k, test_fish)

self.assertEqual(classify_fish, "Parkki")

 --snip--

To run these unit tests we have our standard test-

running code:
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if __name__ == "__main__":

unittest.main()

Note that we’ve skipped over about 40 lines in the

 test_knn.py file containing further tests that will appear later in this chapter and the next. 

 Classifying Handwritten Digits

 Optical character recognition (OCR) is concerned with using computers to recognize the characters in images of

typed or handwritten text. For example, the post office has

sorting machines that use OCR to automatically read the

addresses written on envelopes. A wide variety of

techniques have been successfully deployed to perform

OCR, KNN among them. In this section, we’ll use KNN to

develop a handwritten digit recognizer that will achieve 98

percent accuracy on the samples in a significant test set. 

The dataset we’ll use was developed by Cenk Kaynak

and Ethem Alpaydin in 1998 at Bogazici University in

Istanbul, Turkey, and was later submitted to the UC Irvine

Machine Learning Repository under a Creative Commons

Attribution 4.0 International license. It consists of 5,620

bitmaps of handwritten digits (0–9) created by 43 different

people. 5 The digit images are downscaled to 8×8 pixels, with each pixel represented in a CSV file as an integer

between 0 and 16 indicating its grayscale level. Each line in the CSV consists of the 64 integers representing the 64

pixels in the handwritten digit image, plus a 65th integer

representing which digit (0–9) the image should be

classified as. Figure 7-3 shows a sampling of these digits. 

 Figure 7-3: Some 8×8 handwritten digit images from the OCR dataset

The digits are artificially enlarged a bit in the figure, but you can see that the downscaling to 8×8 results in some

loss of detail. That lower level of detail, and therefore a

lower dimensionality in the dataset, makes our program

faster to execute. Comparing 64 pixels between images is

obviously much faster than comparing 1,024 pixels

between images (they were originally 32×32 before being

downscaled). 

The Digit Class

To represent each digit, we define another subclass of

DataPoint:

 KNN/digit.py

from dataclasses import dataclass

from KNN.knn import DataPoint

from typing import Self

import numpy as np

@dataclass

class Digit(DataPoint):

kind: str

pixels: np.ndarray

@classmethod

def from_string_data(cls, data: list[str]) -> Self:

return cls(kind=data[64], 

pixels=np.array(data[:64], dtype=np.uint3

2))

def distance(self, other: Self) -> float:

tmp = self.pixels - other.pixels

return np.sqrt(np.dot(tmp.T, tmp))

We store the pixel data as a NumPy array. This is

convenient because in the next chapter, we’ll use Pygame

to work with our own handwritten digit scrawls, and

Pygame can interface directly with NumPy arrays. Since the distance() method is calculating across NumPy arrays, 

we use built-in NumPy functions to implement a form of

Euclidean distance. 

The Unit Test

The dataset is divided between 3,823 digit images in a

training set and 1,797 digit images in a test set. We’ll use

the training set as the dataset that our KNN

implementation makes predictions based on, and we’ll test

how many digits in the test set can be correctly identified

against it. Let’s define another test case in  test_knn.py for this, after the Fish test case but before the if __name__ ==

"__main__" line:

 tests/test_knn.py

class DigitsTestCase(unittest.TestCase):

def setUp(self) -> None:

self.data_file = (Path(__file__).resolve().parent.pa

rent

/ "KNN" / "datasets" / "digits" / 

"digits.csv")

self.test_file = (Path(__file__).resolve().parent.pa

rent

/ "KNN" / "datasets" / "digits" / 

"digits_test.csv")

def test_digits_test_set(self):

k: int = 1

digits_knn = KNN(Digit, self.data_file, has_header=F

alse)

test_data_points: list[Digit] = []

with open(self.test_file, 'r') as f:

reader = csv.reader(f)

for row in reader:

test_data_points.append(Digit.from_string_da

ta(row))

        correct_classifications = 0

for test_data_point in test_data_points:

predicted_digit: str = digits_knn.classify(k, te

st_data_point)

if predicted_digit == test_data_point.kind:

correct_classifications += 1

correct_percentage = (correct_classifications

/ len(test_data_points) * 100)

print(f"Correct Classifications: " 

f"{correct_classifications} of {len(test_data_

points)} " 

f"or {correct_percentage}%")

self.assertGreater(correct_percentage, 97.0)

This test loads the training dataset ( digits.csv) into an instance of the KNN class. It then opens the test set

( digits_test.csv) and turns the CSV data into a list of data points, test_data_points. Then, it tries classifying each of the data points one at a time and records how many

classifications it got right. Finally, it reports that

percentage and fails if the accuracy is below 97 percent. 

Let’s run all the tests to see how we did. With the fish

and OCR tests combined, this will take a little while. 

Classifying those 1,797 digit images takes about 11

seconds on my laptop:

% python3 -m tests.test_knn

Correct Classifications: 1761 out of 1797 or 97.996661101836

4%

.... 

------------------------------------------------------------

----------

Ran 4 tests in 10.826s

OK

From the documentation that came with the OCR

dataset (see the bottom of  KNN/datasets/digits/readme.txt), we know that the authors tested the accuracy of the

dataset themselves using KNN with various different values

of  k. They found the highest accuracy, 98 percent, with  k set to 1. The test output of our classifier matches that. That means it works! 

CODE MEETS LIFE

A couple years ago I found myself teaching an introductory course on artificial intelligence to a group of senior undergraduates. I split the course into two halves. The first half covered what we termed at the beginning of this chapter “traditional AI,” including algorithms like A*

and MiniMax (both of which you can find in my prior book  Classic Computer Science Problems in Python) and concepts like expert systems. The second half was dedicated to machine learning. I used KNN as the first example of a machine learning algorithm thanks to its extreme simplicity. It served as a great transition into the world of machine learning, which is why I came to believe it could do the same for the readers of this book. 

Since then, my department has used KNN as a teaching demo

presentation topic for candidates coming to campus to interview to become new computer science faculty. They’re told the presentation topic at least a week before they come to campus and have a chance to prepare. KNN works well as a topic for this purpose because, while there are many possible extensions and improvements to the core algorithm, the core algorithm itself shouldn’t take very long to explain, and even an audience of unfamiliar faculty or first-year students should be able to comprehend it. It’s a great gauge of whether someone is ready to be a good instructor. 

As an aside, you’d be amazed how many PhDs with a background

in machine learning aren’t able to give a good introductory lecture on a topic like KNN. It’s worth remembering that a PhD is a research degree, not a teaching degree. This is why, when you’re advising your child on where to go to college, you should consider a teaching college. At a large research university, the student may be taught by research faculty who don’t care about teaching, an adjunct for whom teaching is a part-time job, or in the worst case, a very inexperienced graduate student. Having a faculty full of PhDs doesn’t mean much for an undergraduate student’s experience in an introductory course when those faculty care more about research grants than teaching. By contrast, at a teaching college, you have an entire full-time faculty (most with PhDs anyway) who were hired because they’re fully

dedicated to the art of teaching and often actually like being in an introductory classroom. What you lose is a connection to cutting-edge research, but for an undergraduate, that connection generally isn’t what will make the biggest impact on their trajectory anyway. But take what I’m saying with a grain of salt, since I’ve worked at a teaching college for the past nine years. 

Real-World Applications

KNN has been widely used in the real world for everything

from optical character recognition to recommendation

systems and from text classification to financial modeling. 

Its simplicity and wide applicability make it universally

taught in machine learning. 

However, when utilizing KNN in practice, several issues

that have already been alluded to in this chapter must be

overcome. The first is finding the right value for  k. This is typically done via cross validation using a test dataset. 

What’s the value for  k that worked best with the test data? 

Using too small a value can lead to  overfitting, where the model is too close to one specific dataset. Meanwhile, too

large a value can lead to  under-fitting, where the model is too far away from being guided by the test data.6

The next challenge is the performance implications of

the basic algorithm with large datasets of high

dimensionality. As mentioned earlier in the chapter, two

ways of approaching this problem are designing a better

data structure for storing the dataset or using approximate

searching. One of the most popular data structures for

speeding up the finding of nearest neighbors is a k-d tree. 7

However, this is a fairly complex data structure and is only

worth the headache if performance is critical. 

Choosing the right distance function is also critical. 

Euclidean distance works for many applications, but

Hamming distance is appropriate for boolean dimensions, 

and other distance functions are well studied in the

research literature. The right distance function is

application specific; there’s no one-size-fits-all solution. 

Often, you also have to normalize the data to eliminate the

possibility of different units or magnitudes, influencing

results. We didn’t normalize the data in the fish example in

this chapter, and the data in the OCR example was all in

the same units and scales and thus didn’t require

normalization. 

While we saw that it’s borderline trivial to implement

KNN from scratch, many popular Python machine learning

libraries have highly optimized built-in KNN functions

anyway. For example, scikit-learn’s implementation is

widely used. 

Exercises

1.  Find another dataset of your own interest that our KNN

implementation can accurately classify. 

2.  Try to speed up the unit tests by improving the

performance of the Digit class’s distance() method while

retaining the 98 percent accuracy of the test. Feel free

to move away from using NumPy arrays if you’d like. 

You can even move away from using pure Euclidean

distance. Perhaps you don’t even need to compare every

pixel? 

3.  Reimplement our classifier using the scikit-learn

library. Compare the performance of our classifier to

the KNN classifier built into scikit-learn. 
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REGRESSION WITH K-NEAREST

NEIGHBORS

In this chapter, we’ll extend

our KNN implementation to

perform regression. For our purposes, 

 regression simply means predicting a

numeric value. With some small additions

to our code from Chapter 7, we can use

our same KNN class to not only classify but

also make predictions about any numeric

attribute value in our datasets. 

We’ll apply regression to the two KNN examples from

the preceding chapter. First, we’ll revisit the fish dataset

and use regression to predict the weight of a fish based on

its dimensions. Then, we’ll write a program that allows the

user to draw part of a digit and then predicts what the rest

of the drawing could look like. 

Unlike the other chapters in this book, this chapter

doesn’t stand alone. It builds off the prior chapter. Please

be sure you’ve worked through Chapter 7 before diving into this one. 

How KNN Regression Works

In KNN classification, we tried to predict the class or

category that a data point belongs to, selecting the

appropriate class from a limited set of options. In KNN

regression, instead of predicting a class, we’re trying to

predict an attribute value. These attribute values will

typically be numeric, meaning there’s potentially an infinite range of values that could be assigned. Of course, it would

make sense for the attribute value to be missing if it’s

something we want to predict. 

As an example, say we’re a hospital assigning patients

to rooms. We may want to know how many days the patient

will likely need to stay. We could look at past data from

patients with similar diagnoses, symptoms, and vital signs

to make the prediction. Let’s look at this example visually

with a scatterplot along two dimensions (Figure 8-1). 
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 Figure 8-1: Hospital stay length for flu based on body temperature and illness severity

Suppose the diamonds in Figure 8-1 represent past patients who were admitted to the hospital with flu. Their

illness was rated by a doctor on a severity scale from 1 to

10, and their temperature was noted at the time of

admission. We also have data about how long they ended

up staying at the hospital. 

The round dot represents a patient who was just

admitted. We have their severity rating and their body

temperature, and we’d like to predict how long they will

end up staying in the hospital so that we can put them in

the appropriate room. If we use KNN with Euclidean distance and set  k to 3, then we’ll look at the three patients in the past data that are closest on the scatterplot to the

new patient’s dot. The figure notes their stays as three, 

four, and five days, respectively. Estimating the new

patient’s hospital stay length using this method can be as

simple as averaging the three nearest neighbors. That

average (whether mean or median) would be four, so we

would predict that the new patient will stay in the hospital

for four days. 

More broadly, here are the steps for performing

regression with KNN:

1. Choose  k, the number of neighbors to compare to a data point with a missing attribute. 

2. Find the  k-nearest neighbors to the data point. 

3. Average the corresponding attribute value across the  k-

nearest neighbors to predict what that missing attribute

value should be for the data point in question. 

As you can see, using KNN for regression is very similar

to using KNN for classification. It’s really just the last step that differs. We have some of the same questions and

answers about this algorithm as we had in the prior chapter

too: What’s the right value for  k? How do we calculate distance? See Chapter 7 for a discussion of those questions. 

We also have a new question: What does it mean to take

the average? Typically this is either the mean or the

median. Like with the question of the right distance

function, the best way to take the average can be

application specific. It generally requires some domain

knowledge to make the best determination. 

Implementing Regression with KNN

To perform regression, we’ll need to add just two methods

to our KNN class from Chapter 7. One predicts a scalar

numeric attribute, and one predicts an attribute that’s an array of numbers. We’ll use the latter for the handwriting

example so that we can predict pixels. Here are the

updates:

# KNN/knn.py

# Predict a numeric property of a data point based on the k-

nearest neighbors. 

# Find the average of that property from the neighbors and r

eturn it. 

def predict(self, k: int, data_point: DP, property_name: st

r) -> float:

neighbors = self.nearest(k, data_point)

return (sum([getattr(neighbor, property_name) for neighb

or in neighbors])

/ len(neighbors))

# Predict a NumPy array property of a data point based on th

e k-nearest neighbors. 

# Find the average of that property from the neighbors and r

eturn it. 

def predict_array(self, k: int, data_point: DP, property_nam

e: str) -> np.ndarray:

neighbors = self.nearest(k, data_point)

return (np.sum([getattr(neighbor, property_name) for nei

ghbor in neighbors], axis=0)

/ len(neighbors))

Like classify() from the preceding chapter, these

methods start by finding the k nearest neighbors. Then, 

they calculate and return the mean of some property

among those neighbors. We take advantage of the dynamic

nature of Python here by allowing the caller to specify the

property as a string and then using getattr() to retrieve

that specified property (or  attribute) by name. 

The only real difference here between predict() and

predict_array() is that the latter uses the NumPy sum()

function instead of Python’s built-in sum() function. NumPy arrays will actually work with the built-in sum() function too since they implement the plus operator, but NumPy’s

version is a bit faster. 

That’s it. Essentially it takes just two more lines of code

(both functions are about the same) and we’re making

predictions. 

 Predicting Fish Weights

Let’s add a unit test to FishTestCase to make sure our new

predict() method is working. We want to answer the

question, “If we know the dimensions of a fish, can we

make an educated guess about what its weight could be?” 

The answer, of course, is yes:

 tests/test_knn.py

def test_predict(self):

k: int = 5

fish_knn = KNN(Fish, self.data_file)

test_fish: Fish = Fish("", 0.0, 20.0, 23.5, 24.0, 1

0.0, 4.0)

predict_fish: float = fish_knn.predict(k, test_fish, 

"weight")

self.assertEqual(predict_fish, 165.0)

In this method, we create a test_fish with no weight

specified (0.0), and we compare it to the five closest fish to it in terms of their anatomical dimensions—length1, length2, 

length3, width, and height. (Recall from the preceding

chapter that we don’t compare fish by weight in the

distance() method.) We then predict its weight by averaging

the weights of these five nearest neighbors. Run the unit

tests again, and you should find that the fish’s weight is

correctly predicted. To test if this prediction method is

accurate more generally, we could try running it across the
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entire fish dataset. Since the dataset includes the known

weights of each sample, we could measure how accurate

our KNN results are compared to the actual fish weights. 

 Predicting the Rest of a Handwritten Digit

In the preceding chapter, we correctly classified 98 percent

of a test set of images of handwritten digits against a

training set of the same kind of 8×8 pixel images using

KNN. In this final KNN example, we’ll classify an 8×8 digit

that the user draws and even predict what the rest of the

pixels of the image could look like. Instead of implementing

this as another set of unit tests, we’ll create a fun

interactive program using Pygame that allows the user to

draw in a window housing an 8×8 grid. 

Here’s a preview of what we’re building. Figure 8-2

shows the drawing window with a squiggly 7 that I tried to

draw. I pressed the C key and the program correctly

classified it as a 7 (that shows in the terminal, not

pictured). 

 Figure 8-2: Drawing a 7 in the digit recognizer program
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Figure 8-3 shows the window after pressing the P key, which triggers a prediction of what the rest of the digit’s

pixels may look like based on the average of the pixels of

the nine nearest neighbors. 

 Figure 8-3: The predicted digit’s pixels based on the nearest neighbors’ pixels In our simple program, we can only draw with white. 

The prediction yields a better-looking 7 since it can use

more levels of gray. We start our program with some

imports and constants:

 KNN/__main__.py

from KNN.knn import KNN

from KNN.digit import Digit

from pathlib import Path

import sys

import pygame

import numpy as np

PIXEL_WIDTH = 8

PIXEL_HEIGHT = 8

P_TO_D = 16 / 255 # pixel to digit scale factor D_TO_P = 255 / 16 # digit to pixel scale factor

K = 9

WHITE = (255, 255, 255)

The PIXEL_WIDTH and PIXEL_HEIGHT constants are the size of

one image. The P_TO_D constant converts between the 255

shades of gray in the pixel representation we’ll work with

and the 16 shades of gray in the source dataset; D_TO_P is its inverse. We set K, the number of neighbors KNN will

consider, to 9, and WHITE is a constant for the white color in the RGB pixel format. 

This is a short program. We have just one central run()

function that spends as much time handling the user

interface as it does running KNN. Here’s the start of the

function:

def run():

# Create a 2D array of pixels to represent the digit

digit_pixels = np.zeros((PIXEL_HEIGHT, PIXEL_WIDTH, 3), 

dtype=np.uint32)

# Load the training data

digits_file = (Path(__file__).resolve().parent

/ "datasets" / "digits" / "digits.csv") digits_knn = KNN(Digit, digits_file, has_header=False)

# Start up Pygame, create the window

pygame.init()

screen = pygame.display.set_mode(size=(PIXEL_WIDTH, PIXE

L_HEIGHT), 

flags=pygame.SCALED | p

ygame.RESIZABLE)

pygame.display.set_caption("Digit Recognizer")

In these first few lines, we create the pixel array, load

the dataset, and initialize Pygame. The main window is

initialized to be a “stretched out” 8×8 pixels. You can resize the window and it will maintain its 8×8 dimensions. This is

set via the set_mode() flags (flags=pygame.SCALED | pygame

.RESIZABLE). 

Next, we need to set up the main loop:

while True:

pygame.surfarray.blit_array(screen, digit_pixels)

pygame.display.flip()

Since this a GUI program using Pygame, we effectively

have an event loop. It listens for some action by the user

and then responds. This action could be a keyboard or

mouse event. To keep the screen in sync, we constantly blit

digit_pixels to the screen at the beginning of the loop. 

Then, we handle keyboard events:

for event in pygame.event.get():

if event.type == pygame.KEYDOWN:

key_name = pygame.key.name(event.key)

if key_name == "c": # classify the digit

pixels = digit_pixels.transpose((1, 0, 

2))[:, :, 0].flatten() * P_TO_D

classified_digit = digits_knn.classify

(K, Digit("", pixels))

print(f"Classified as {classified_digi

t}")

We start with the C key used for classification. This is

similar to the classification we did in the preceding

chapter. The result is printed to the console. The only tricky bit is the transformation of the pixels representing the

picture to a form that our classifier can use. In essence, 

we’re moving from a pixel format of 255 grays and multiple

dimensions to a flat array of 16 grays. The keyboard

handler continues:

elif key_name == "e": # erase the digit

digit_pixels.fill(0)

                elif key_name == "p": # predict what the dig it should look like

pixels = digit_pixels.transpose((1, 0, 

2))[:, :, 0].flatten() * P_TO_D

predicted_pixels = digits_knn.predict_ar

ray(K, Digit("", pixels), "pixels")

predicted_pixels = predicted_pixels.resh

ape((

PIXEL_HEIGHT, PIXEL_WIDTH)).transpos

e((1, 0)) * D_TO_P

digit_pixels = np.stack((predicted_pixel

s, predicted_pixels, 

predicted_pixel

s), axis=2)

The E key just erases the pixel array. The P key is the

prediction part. First, we again convert the pixel array to a form the KNN class can use, as before. Next, we use the

predict_array() method to get the predicted _pixels, which

are the average of the pixels from the nine closest entries

in our training set. We then convert those results back to a

form that can be displayed in Pygame. This involves not

only reshaping to a two-dimensional array but also

changing to RGB format, where the same gray level is

repeated in each of the three color channels. The reshape()

and transpose() chains go from one to two dimensions, and

the stack() call creates a third dimension that’s all the same value—for example, a gray level of 128 becomes (128, 128, 

128) for RGB. 

The rest of the code draws white pixels anywhere the

user clicks, exits when the user closes the window, and

calls the run() function when  __main__.py is executed: elif ((event.type == pygame.MOUSEBUTTONDOWN) or

(event.type == pygame.MOUSEMOTION and pyga

me.mouse.get_pressed()[0])):

x, y = event.pos

                if x < PIXEL_WIDTH and y < PIXEL_HEIGHT: digit_pixels[x][y] = WHITE

elif event.type == pygame.QUIT:

sys.exit()

if __name__ == "__main__":

run()

It only takes about 50 lines of actual code to create a

GUI-based handwritten digit recognizer using our existing

KNN class. Python is so succinct! Try it out: it’s not perfect, but it correctly recognizes the majority of my scrawls. 

CODE MEETS LIFE

In 2016 I worked on a simple educational project called

SwiftSimpleNeuralNetwork1 as preparation for a chapter about building neural networks from scratch in Swift for my second book, Classic Computer Science Problems in Swift. I implemented handwritten digit recognition using that framework, and it was extremely slow. To be fair, there were no optimizations at all, and the application was completely single threaded and CPU bound. 

Amazingly, the also unoptimized, but much simpler, KNN algorithm implementation in this chapter outperforms it in both speed and accuracy. 

This anecdote speaks to two important lessons: the more complex algorithm isn’t always the better algorithm for a particular application, and it’s important to do some research to be well informed about what algorithms are used for what applications. That’s why I’ve included a “Real-World Applications” section at the end of every chapter in this book. 

Knowing your algorithmic options is important across many

domains. To that end, one of the benefits of reading a survey book like this is that it introduces you to new algorithms and techniques that you may not have known about before. That way, when you

encounter a problem that they’re applicable to, you’ll be ready. 

Real-World Applications

KNN can be a great tool to start with when attempting to

do regression, because it’s so easy to use. There’s very

little tuning necessary, unlike with a neural network, and because there’s effectively no training involved, a KNN-based application is trivial to stand up. 

Researchers have really used KNN to predict hospital

stay lengths, as described in the beginning of the chapter. 

Pei, Lin, and Chen found that KNN was approximately as

accurate as more sophisticated techniques like logistic

regression or random forest for predicting COVID-19

patients’ hospital stay length.2 I was able to find multiple other studies in the same domain that used KNN. KNN

regression has also been used for applications in text

mining, agriculture, and financial markets.3 It makes intuitive sense—events or data points from the past that are

most similar to what’s currently happening are likely to be

the most helpful in making predictions. 

Due to performance issues, KNN doesn’t work well

when the data is noisy or the dataset is too large in terms

of number of points and dimensionality. For most

applications, however, it’s a reasonable starting point to

consider. 

Exercises

1.  Prove (or disprove) that KNN is effective for fish weight prediction by running it against the entire fish dataset

and comparing the KNN results to the known weights

from the dataset. On average, how accurate are the

KNN predictions? 

2.  Change our digit recognizer program to use a larger

grid, say 64×64 instead of 8×8. This will allow the user

to draw more fluid digits. You’ll need to find a way to

accurately downscale the 64×64 drawings to 8×8 to

utilize them with the training dataset. 

3.  Use either our implementation of KNN regression or

that from a library like scikit-learn to try to make

predictions using a dataset of your own interest. 

Notes

  1.   See  https://github.com/davecom

 /SwiftSimpleNeuralNetwork. 

  2.  Jianing Pei, Xin Lin, and Qixuan Chen, “Prediction of Patients’ Length of Stay at Hospital During COVID-19

Pandemic,”  Journal of Physics: Conference Series 1802

(March 2021):  https://doi.org/10.1088/1742-6596/1802

 /3/032038. 

  3.  Sadegh Bafandeh Imandoust and Mohammad Bolandraftar, “Application of K-Nearest Neighbor (KNN)

Approach for Predicting Economic Events: Theoretical

Background,”  Journal of Engineering Research and

 Applications 3, no. 5 (2013): 605–610,  https://www.ijera

 .com/papers/Vol3_issue5/DI35605610.pdf. 
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AFTERWORD

Thank you for reading

 Computer Science from

 Scratch. This afterword provides more

resources for you based on the four

themes of the book (interpreters, 

computational art, emulators, and

machine learning). I’ve chosen to

highlight nonacademic but highly

regarded resources that I’ve personally

found to be useful—there’s no ivory tower

here. But before we get to that, I have a

few thoughts I’d like to share with you on

what we’ve accomplished. 

What We Did and What’s Next

By working through the projects in this book, you were

exposed to a broad survey of several different areas in

computer science. Are you an expert on them now? Of

course not. But you know enough to get started on a

project of your own design in any of these four areas. More

importantly, you’re in a good position to learn more about these topics. 

The interpreters we completed in Part I were simple, but NanoBASIC had the constituent parts of any real-world

interpreter (tokenizer, parser, runtime environment). You

could go build an interpreter for a more sophisticated

language now without any further study. Where it gets

tricky is when you want to make that language more

performant. This may require more advanced techniques

like implementing a VM or a compiler, or adding built-in

runtime optimizations. 

I’ll share some more in-depth resources on interpreters

later in this afterword, but the point is you can get started immediately. Have you ever wanted to create your own

programming language? Now you can. I’m not necessarily

saying that you should, but you can. 

The computer art programs we developed in Part II

introduced a hodgepodge of interesting algorithmic

techniques, yet there wasn’t really a unifying theme other

than pixels. You know enough now to manipulate pixels. If

you have an idea about how you want to make pixels

change, you can probably do that. Computer graphics more

generally is filled with much broader ideas and would be

your next stop if you want to further explore manipulating

pixels. 

The NES emulator in Part III was by far the largest and most complex project in the book. A great next step would

be to either add more compatibility to the emulator (as

described in the Chapter 6 exercises) or try emulating another system. The Game Boy is of similar complexity, as

is the Sega Master System. As discussed in the chapter, 

writing emulators in Python is challenging from a

performance perspective. If you don’t know C or C++, 

writing your next emulator may be a great opportunity to

learn them. 

In Part IV we took baby steps into the world of machine learning. KNN is perhaps the simplest algorithm in all of

artificial intelligence. It works well for the right

applications, but you’ll want to learn several other

techniques to know which ones to reach for in a given

situation. Hopefully the super simple nature of Part IV

made this area, which can often seem intimidating, feel

more approachable to you. You don’t need to be an expert

on machine learning to use machine learning techniques. 

Today, everything is a library call away. You do, however, 

need to know which library call to make. 

I hope you feel like you got a great start in all four of

these areas by completing the projects in this book. Now

it’s up to you if you want to dive into your own projects or

complete more training. In the rest of this afterword, I’ve

suggested some more resources in each of these areas that

I think will follow this book well. All of them have been

vetted by me. I actually read the books that I’m

recommending to you. 

On Learning Computer Science

You don’t need a formal university education to learn

computer science. This book was a great start. Like almost

all subjects, everything you need is available for free in a

library and on the internet. It just requires perseverance

(study time, project time). 

I’m the type of person who likes to understand how

things work at a fundamental level as much as possible. 

I’ve met other people like this, and it may just be a

personality trait. Even if that’s not you, let me try to

convince you why there’s a real benefit to learning some

more computer science so that you can understand how

things work “under the hood.” 

First, as programmers, computer science is

fundamental to understanding the techniques we can use to

solve the problems that our programs need to solve. Sure, if we’re just building generic CRUD apps, it might not

prove very useful, but if you want to do something novel or

tricky, computer science really comes in handy. 

Second, even if we can think of a way to solve a

problem, is it the most efficient way? Does it create

performance problems? Understanding some computer

science fundamentals can really help you improve the

performance of your code. 

And finally, understanding computer science will help

you in your career. You’ll understand what your colleagues

are talking about. You’ll “get” software technology on a

much more fundamental level. You’ll become a better

technical communicator. And it will help you with technical

interviews. Unfortunately, far too many companies still

require candidates to solve data structure and algorithm

problems on a whiteboard. I don’t agree with this practice, 

but there’s no doubt that those who have studied computer

science have a leg up in these interviews. 

Computer science is a big subject. Don’t be intimidated. 

Here are a couple friendly books that I think complement

this book well if you’re interested in furthering a general

computer science education. 

 Grokking Algorithms, 2nd Edition, by Aditya Y. 

Bhargava

This is an eminently readable book on algorithms. It’s

much easier to consume than your average algorithms

textbook. It’s less math heavy and includes examples in

Python to illustrate each concept. I use it myself instead

of a traditional textbook when I teach a college-level

data structures and algorithms class. 

 Classic Computer Science Problems in Python by David Kopec

I wrote  Classic Computer Science Problems as a general overview of interesting algorithmic topics

taught in a code-first, tutorial-like fashion. It covers

everything from search algorithms to graph algorithms

to even some introductory AI material. It’s the perfect

accompaniment to this book and there is zero content

overlap between the two since they cover different

areas of computer science. Whereas this book is

composed of larger, entertaining projects,  Classic

 Computer Science Problems is more about the

algorithms themselves and the particular problems that

are appropriate for them. 

Interpreters

Ten years ago, there were very few nonacademic books

that could be recommended on writing interpreters for a

general programmer audience. Today, we’re fortunate to

have several great titles in this space, including two that I highly recommend:

 Crafting Interpreters by Robert Nystrom

This is an absolutely wonderful book, in terms of both

its pedagogy and its code. The older classic books on

interpreters and compilers are extremely academic and

even somewhat stuffy (like the so-called “Dragon

Book”).  Crafting Interpreters is a must-read book in this space if you want to write larger practical interpreters

after having your interest piqued by the Brainfuck and

NanoBASIC projects in this book. 

 Writing an Interpreter in Go by Thorsten Ball I read this book myself in preparation for writing an

interpreted programming language called SeaTurtle to

help kids learn to code (see the “Code Meets Life” box

in Chapter 2). It’s less comprehensive than  Crafting Interpreters and a little more niche, being written in

Go. If you’re interested in something more succinct or if you’re a Go programmer, however, it’s a great choice. 

It’s well written, and the accompanying code is great. 

Computational Art

I mostly learned about the techniques in the book’s two

computational art chapters from short online articles, so

unfortunately I don’t have any comprehensive resources to

share, but I do want to mention Michael Fogleman’s

Primitive project. It was the inspiration for the

Impressionist chapter (Chapter 4), although that program uses a different algorithm. The GitHub repository for

Primitive ( https://github.com/fogleman/primitive) has some easy-to-read Go source code, and Michael has a website for

the project as well ( https://www.michaelfogleman.com

 /#primitive). 

Emulators

There may be good texts out there on writing emulators, 

but I’m personally not aware of them. Instead, I’m sharing

a couple online resources that I’ve found to be helpful:

EmuDev

This subreddit ( https://www.reddit.com/r/EmuDev) is one of the most vibrant communities that I’ve come

across on emulator development, where folks building

every kind of emulator you can imagine go to share

their insights. There’s also an accompanying Discord

that can be useful for getting questions answered live. 

NesDev

The wiki documentation and forums at  https://www

 .nesdev.org were invaluable to me both when

developing my first NES emulator and when writing the

emulator for this book. Unfortunately, despite NES

emulation being a popular project, there are very few good tutorials or resources about it (which is part of

how I got the idea to write this book). NesDev is the

best resource that’s out there, and if you want to

further your NES development beyond what we did in

Chapter 6 (like adding more mappers or a more accurate PPU), this site will be your go-to resource. 

Machine Learning

There are so many resources on machine learning that it

can be overwhelming to even decide which one to start

with. That said, if you liked the simple algorithm presented

in Chapters 7 and   8 and you liked the way that we developed it from scratch, then I have two particularly

straightforward resources for learning about other machine

learning algorithms that you can implement:

 The Hundred-Page Machine Learning Book by Andriy Burkov

This book is straight to the point. You learn the

algorithm with just enough theory and other

information to implement it without any of the flowery

trappings of some technical books. While it doesn’t

feature a lot of code, it’s a great explainer that can be

furthered by good online courses or YouTube channels. 

 Classic Computer Science Problems in Python by David Kopec

Yes, I’m recommending my own book a second time. 

That’s a bit self-serving, but I wouldn’t have written it if

I didn’t think it was truly a great resource. In fact, five

of the nine chapters in the book could be said to be

about artificial intelligence, and two of the chapters are

specifically about machine learning. Do you want to

learn how to write a neural network from scratch in

Python (with no libraries)? Check out Chapter 7 of

 Classic Computer Science Problems in Python. You learned how to write a simple classifier and regressor

using KNN in this book. In Chapter 6 of  Classic Computer Science Problems in Python, you’ll also learn how to build a clustering program using another simple

algorithm, k-means. 

FOLLOW ME ON SOCIAL MEDIA

X:  https://x.com/davekopec

GitHub:  https://github.com/davecom

LinkedIn:  https://www.linkedin.com/in/dkopec

YouTube:  https://www.youtube.com/c/DavidKopec09

My website:  https://davekopec.com

 Kopec Explains Software, a podcast:  http://kopec.live
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APPENDIX

BITWISE OPERATIONS

Low-level manipulation of bits

is essential for half of the

projects in this book. If you have no

background in bitwise operations, this

appendix provides an overview, including

what the most essential bitwise

operations do, how to use them in Python, 

and some examples of what they’re used

for. 

A Review of Binary

I assume that most readers, as intermediate or advanced

programmers, are familiar with binary. If that’s you and

you just want a quick refresher on bitwise operations, you

can skip this section. However, if you’re not familiar with

binary, this section will get you started, although it’s not

comprehensive. 

All information in computers is stored as 1s and 0s. This

is convenient because the type of hardware used to build

computers can physically represent 1s and 0s quite readily. 

For instance, if electricity (or a “signal”) is present, we may say that represents a 1, while the absence of an electrical

signal represents a 0. Binary also manifests itself physically in the now outdated technology of CDs and DVDs. Their

readers have a laser that runs over the surface of the disc. 

When the laser doesn’t reflect back because the disc has a

microscopic pit, that represents a 0. If the laser does reflect back because there isn’t a pit, that represents a 1. One final physical example is QR codes. The presence of a black dot

can be a 1, and the absence can be a 0. There are many

convenient physical manifestations of binary. 

How are all those 1s and 0s converted into information? 

A sequence of 1s and 0s represents a number in binary. 

And once we have numbers, we can represent any other

kind of information. A specific number can represent a

specific letter in an electronic document. Or it can

represent a specific color. Another number can represent

where on the screen to place that color. Pretty soon we

have pixels. 

How does a sequence of 1s and 0s represent a number

beyond 1 or 0, though? That’s where the binary number

system, also called  base 2, comes into play. 

Typical numbers in everyday use are in  base 10, known as  decimal. That means each digit in the number can have 10 different values (0–9), and each digit itself represents a power of 10. For instance, the number 427 is actually (4 ×

102) + (2 × 101) + (7 × 100). Likewise, each digit in a binary number can have two different values (0 or 1), and each

digit itself represents a power of 2. The number 427 is

110101011 in binary, which is (1 × 28) + (1 × 27) + (0 × 26)

+ (1 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (1 ×

20). The 1s are powers of 2 that are “on” and the 0s are

powers of 2 that are “off.” 

To test your understanding, try converting a few

numbers from decimal to binary and vice versa. What’s 73

in binary? What’s 11000 in decimal? Try a few more that you pick. You can check your work with Python, where

binary numbers are represented as literals by using the 0b

prefix, as in 0b11 for the decimal number 3:

>>> value = 0b11

>>> value

3

Meanwhile, Python’s bin() function takes an integer and

returns a string formatted as the binary equivalent:

>>> bin(3)

'0b11' 

Each stored binary 1 or 0 is known in computing as a

 bit. And a standard  byte is 8 bits. All modern computers use the 8-bit byte as their standard unit of storage. The

maximum value a byte can hold (when representing an

unsigned integer) is 255 because eight 1s, or 11111111 in

binary, is 255 in decimal. That also means a byte can hold

256 different possible values (all the values from 0 to 255). 

When a byte is written out, the  least-significant bit—

that is, the bit representing the smallest power of 2—is

typically written all the way on the right (bit 0, 

representing 20). The  most-significant bit—the one

representing the largest power of 2—is typically written all

the way to the left (bit 7 representing 27). In 10000000, for example, the 1 represents 27 being turned on, so the byte

has a decimal value of 128. This assumes we’re working

with  unsigned integers—integers that can’t be negative. 

Signs are beyond the scope of this basic introduction to

binary. 

Some data types are represented using more than one

byte. For instance, on a 64-bit microprocessor like the one

probably powering your computer, integers are often stored using 64 bits (8 bytes). The maximum value of a 64-bit number in binary is:

111111111111111111111111111111111111111111111

1111111111111111111

That translates to 18,446,744,073,709,551,615 in decimal. 

For several projects in this book, we need to manipulate

bytes at the bit level. The rest of this appendix covers some common operations for doing so. 

Common Bitwise Operations

 Bitwise operations manipulate a value at the level of individual binary digits. This means working with 1s and

0s. All microprocessors include instructions for performing

bitwise operations, and Python has operators for tapping

into these microprocessor instructions.  Truth tables, which show the true/false outcome of logic functions based on

different combinations of inputs, can be helpful in

understanding bitwise operations. To make this more

practical and applicable to our Python use of these

operations, the tables accompanying each operation will

show binary values instead of true and false. 

 Left Shift (<<)

Instead of thinking about our binary data as a number, for

a minute just think about it as a collection of 1s and 0s. 

Imagine the 0s are empty spaces and the 1s are filled

spaces. What if we want to move all the 1s to the left by

one space? That’s the job of a  left shift, which in Python is represented with the << operator. 

A left shift leaves a gap in the least-significant bit (bit

position 0). With left shifts in Python, we fill that gap with a 0. Because Python integers are of arbitrary length (there’s

no maximum length), we can’t move 1s off the end by

moving them to the left. The number just grows by a digit. 

For example, 1010 shifted left by 1 becomes 10100, not 0100. 

We can also left shift by more than one place, so 1010

shifted to the left by three becomes 1010000. Table A-1

shows the results of some left shifts. 

Table A-1: Left-Shift Examples

A

A << 1

A << 3

0

0

0

1

10

1000

1010

10100

1010000

In the first row of the table, where 0 is being shifted, 

you may think that it would become 00 and 0000, but in

reality those are the same as 0. Instead, you can think of

left shift as just moving the 1s. If there are no 1s, then the shift is essentially not doing anything. 

Python’s left-shift operator is preceded by the thing

being shifted and followed by an integer indicating how

many places to shift. Here’s a quick example of using it:

>>> bin(0b1010 << 3)

'0b1010000' 

Shift operators are typically used to move a bit or bits

into alignment with another binary value in combination

with other bitwise operators that we’ll learn shortly. 

 Right Shift (>>)

A  right shift is much like a left shift, except the 1s move to the right rather than the left. If a 1 moves off the end (past the 0-bit position), then it’s “lost.” There’s no wrapping

around. For example, 1001 shifted right by one becomes 100, 

not 1100. We can also right shift by more than one place, so 1001 shifted right by three becomes 1. 

Python has the >> operator for performing right shifts. 

Table A-2 shows some example right shifts. 

Table A-2: Right-Shift Examples

A

A >> 1

A >> 3

0

0

0

1

0

0

1010

101

1

In the second row of the table, the 1 is shifted “off the

end” and there are no 1s left, so the result is 0. 

 OR (|)

With a  bitwise OR operation between two values, if either value is a 1, then the result will be a 1. If neither value is a 1, then the result will be a 0. The operation is performed on the binary digits that are in the same digit places between

the two values, one digit place at a time. Imagine the

numbers are lined up, one below the other. Then, the OR

operation is performed in each column, one column at a

time, like this:

1010

0110

----

1110

Try calculating the final line on the bottom yourself by

following the rules in the preceding paragraph. Those rules

are also summarized in Table A-3. 

Table A-3: OR Examples

A

B

A | B

0

0

0

0

1

1

1

0

1

1

1

1

1010

0110

1110

Python has the | operator for performing bitwise OR. 

Here’s a quick example of using it on a couple binary

numbers in Python:

>>> bin(0b1010 | 0b0110)

'0b1110' 

One common use of the bitwise OR operation in low-

level programming is to merge two values together in

combination with the shift operators. For example, say we

have one nibble (a  nibble is 4 bits) that represents one-half of a byte and another nibble that represents the other half

of the byte. We want to merge them together to produce

the full byte. Perhaps nibble A is 1001 and nibble B is 0110, and we want nibble A to be the first half and nibble B the

second half of the resulting byte. The code to merge them

may look like this:

>>> a = 0b1001

>>> b = 0b0110

>>> c = (a << 4) | b

>>> bin(c)

'0b10010110' 

With (a << 4) | b we shift a to the left 4 places and then OR its values with b. Remember that when we shift to the

left, 0s fill in from the right, so a shifted to the left by 4

becomes 10010000. Then, if we line a and b up and OR them, 

we get:

10010000

0110

--------

10010110

The resulting byte, 10010110, has the original a in the left

four digits and the original b in the right four digits. 

If you’re seeing this for the first time, it may seem a

little abstract. For instance, you may wonder why the

numbers are being stored in just 4 bits to begin with. To

give just one of several reasons, in the projects of this book we see several scenarios where we want to save space by

combining values that need fewer than 8 bits into the same

byte. For example, 8-bit microprocessors often had a 1-byte

flags register where each individual bit represented a

different flag that could be on or off. That’s much more

economical than using a separate byte for each flag. 

Likewise, some file formats store values that need less than

1 byte on the same byte to save disk space. 

 AND (&)

A  bitwise AND returns a 1 if both operands are 1s; 

otherwise, it returns a 0. Here’s an example using the same

operands we looked at with bitwise OR:

1010

0110

----

0010

Only the bit that was lined up with two 1s resulted in a 1.  Table A-4 summarizes how bitwise AND works. 

Table A-4: AND Examples

A

B

A & B

0

0

0

0

1

0

1

0

0

1

1

1

1010

0110

0010

Python has the & operator for performing bitwise AND. 

Here’s a quick example of using it on a couple binary

numbers:

>>> bin(0b1010 & 0b0110)

'0b10' 

Note that the output cuts off the leading 0s since they

aren’t needed to represent the resulting number (2 in

decimal). In other words, 0010 in binary is 2 in decimal just as 10 in binary is 2 in decimal. 

One common use of the bitwise AND operation in low-

level programming is to ensure a final result only includes

some of the bits from a prior result. For instance, suppose

we only care about the rightmost 4 bits in the byte 10011110. 

We can AND the byte with 1111 to ensure only the rightmost

4 bits are in the final result. The code may look like this:

>>> a = 0b10011110

>>> b = 0b1111

>>> c = a & b

>>> bin(c)

'0b1110' 

Let’s see this operation with the bits lined up:

10011110

1111

--------

1110

We often use this technique with a single bit in our

emulator projects when working with flags. We just need to

know the single flag and whether it’s 1 or 0 (true or false). 

 XOR (^)

A  bitwise XOR (“exclusive or”) returns a 1 if the operands are different (one 1 and one 0); otherwise, it returns a 0. 

Here’s an example using the same operands we looked at

with bitwise OR and AND:

1010

0110

----

1100

Table A-5 summarizes how XOR works. 

Table A-5: XOR Examples

A

B

A ^ B

0

0

0

0

1

1

1

0

1

1

1

0

A

B

A ^ B

1010

0110

1100

Python has the ^ operator for performing bitwise XOR. 

Here’s a quick example of using it on a couple binary

numbers in Python:

>>> bin(0b1010 ^ 0b0110)

'0b1100' 

XOR is a surprisingly powerful operation. It underlies

the unbreakable encryption scheme known as a  one-time

 pad. You can also flip bits by XOR-ing with 1: if you XOR a 1

with a 1, it becomes a 0, but if you XOR a 0 with a 1, it

becomes a 1. Any bit you XOR with a 1 becomes the

opposite of what it was before. This is how drawing on the

screen works in the CHIP-8 project in Chapter 5. 

 Complement (~)

 Complement is the simplest of all bitwise operations: it

switches all 1s with 0s and all 0s with 1s, as shown in Table

A-6. 

Table A-6: Complement Examples

A

~A

1

0

0

1

1010

0101

011010

100101

Python has the ~ operator for taking a binary complement. We don’t use complements much in this book, 

except for one small place in the NES emulator in Chapter

6. 
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