
micro:bit Projects
with Python
and Single Board
Computers

MAKER
INNOVAT IONS
SER I ES

Building STEAM Projects with
Code Club and Kids’ Maker Groups
 —
Martin Tan

micro:bit Projects
with Python and

Single Board
Computers

Building STEAM Projects
with Code Club and Kids’

Maker Groups

Martin Tan

micro:bit Projects with Python and Single Board Computers: Building

STEAM Projects with Code Club and Kids’ Maker Groups

ISBN-13 (pbk): 978-1-4842-9196-2		 ISBN-13 (electronic): 978-1-4842-9197-9
https://doi.org/10.1007/978-1-4842-9197-9

Copyright © 2023 by Martin Tan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/micro:bit-Projects-
with-Python-and-Single-Board-Computers. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Martin Tan
Doncaster Heights, VIC, Australia

https://doi.org/10.1007/978-1-4842-9197-9

iii

Table of Contents

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Chapter 1: ��Getting Started���1

A Quick Tale: Several Years of Mistakes – Numbers, Passwords, Computers,
Accountability, and More��5

What Is Your Baseline – Where Are You Starting From?���7

Tasks for Establishing a Baseline���8

Work Out Your Initial Scope: What Are Your First Milestones?������������������������11

Equipment and Initial Setup���14

Computers/Laptops��14

Optimizing Your Environment���15

Onboarding at the Start of Each Year���15

Computers and IT Support��16

Login and Password Basics��17

Another Alternative – Make Your Space Portable���18

The Tech Stuff: Learn by Applying��19

Summary���26

Chapter 1: Cheat Sheet��29

Sources for Free Content and Support���29

Short-Term Goal/Milestone Examples��29

iv

Long-Term Goal Examples��29

Questions to Ask When Helping Kids Troubleshoot Their Code�����������������������30

Other Useful Tips for Troubleshooting���31

Checklist for Volunteer Onboarding��31

Checklist for Participants and Guardians���31

Chapter 2: ��Getting Our Hands Dirty with MicroPython������������������������33

A Quick Tale: Jumping In with Our Code Club��34

Tracking Progress��37

What Can We Do in One Hour?���39

Introducing the BBC micro:bit��40

Setting Up an Editor��41

Scaling Up: Adding Challenges���62

Challenge Discussion and Solution��63

Ideas for Even More Features���64

Going Further: Adding External Components��65

Summary���70

Chapter 2: Cheat Sheet��72

Introduction to the micro:bit���72

Completing Initial Learning Projects���73

Creating New Projects��73

Add Features with Challenges��73

Chapter 3: ��General Python Programming��75

A Quick Tale: Answers to Common Questions – Weaning Off Blocks and
Tablets��78

Python Program Structure���84

A Friendly Python Environment on Your Computer���84

Mu Editor��86

Table of Contents

v

Test Our Environment���86

Installing Python Libraries in Thonny��87

Python Script Structure��91

Going Further: Internet and Other Devices���109

Summary���110

Chapter 3: Cheat Sheet��113

Chapter 4: ��Getting Tactile with Python��115

A Quick Tale: Keeping It Simple to Build Bigger���115

E-textiles: Building Circuits on Fabric and Cardboard��117

Starting with a Simple Circuit���118

Considerations for E-textile Projects��119

Summary���151

Chapter 4: Cheat Sheet��152

Chapter 5: Freestyling with Python: Going Off Map and
Applying Skills���155

A Quick Tale: When Progress Levels Diverge���155

Finding Your Own Project – From Start to Finish���161

Beginning with Diagrams: The Self-Watering Plant Project�������������������������������162

Scaling Up Our Project: Understanding How Things Work and Adding
One Thing at a Time���168

Pros and Cons of Simplifying Projects���170

Cost��170

Perception of Difficulty���171

Reducing Challenges Can Limit What We Learn���171

Continuity���172

Scaling Even Further��173

Code Club Alumni���177

Table of Contents

vi

Adapting Our Skills: An API Project in Python with Trinket.io�����������������������������179

Summary���185

Chapter 5: Cheat Sheet��186

Chapter 6: ��Collaboration: Working with Others���������������������������������189

A Quick Tale: Devs and Testers���189

What Is Open Source Software?���196

Working Online: Collaborating with Online Tools��199

Code Collaboration Tools��199

Using Programming Terminology to Communicate When Collaborating���������204

Testing Yourself: Creating Your Own Game Writing Workshops with
What You’ve Learned��205

Communications���208

Security and Privacy When Working Online��211

Chapter 6: Cheat Sheet��215

Devs and Testers Activity (2 x 1-Hour Blocks)��215

Open Source Software��215

Security and Privacy When Working Online��217

Code Collaboration Terminology���217

Creating Your Own Workshops���218

Chapter 7: ��Electronics: Basic Skills and Tools�����������������������������������219

A Quick Tale: Getting the Burn for Electronic Projects���������������������������������������220

Basic Electronic Component Primer��222

Electronic Schematics and Datasheets��223

Breadboards and Circuit Boards���223

Through-Hole vs. Surface-Mount Components��223

Resistors���224

Transistors��226

Table of Contents

vii

Capacitors��228

Diodes���229

Light-Emitting Diodes (LEDs)��230

Integrated Circuit (IC) Chips��231

Soldering!���231

Tools You Will Need for Soldering���232

Other Useful Things to Have���235

How to Solder���236

Teaching Kids to Solder��237

Handy Software Tools���237

Embedded Programming���242

Some Useful Concepts to Understand��242

Approaching a New Microcontroller Electronic Project (Digital)������������������������244

Software and Hardware Support for Proposed Components������������������������245

Support for Languages We Are Proficient In���245

Availability of Parts to Scale Things Up��246

Draw a Diagram, Create a Schematic���246

Breadboard Prototype���246

Going Further��247

Introducing the Raspberry Pi Pico��247

Next Steps��276

Summary���279

Chapter 7: Cheat Sheet��279

Electronic Components���279

Chapter 8: ��Putting It All Together��283

Planning a Year of a School Maker Space/Code Club with Python��������������������283

Deciding on Communication Channels��284

Table of Contents

viii

Communicating with Parents/Guardians��284

Communicating with Volunteers/Teachers���285

Communicating with IT Staff��286

Setting Expectations��287

Expectations for Participating Kids��287

Setting Expectations for Volunteers���289

A Note About Qualifying/Filtering Volunteers��290

Get a Benchmark of Skills Across the Group for Kids and Volunteers���������������291

Build Some Basic Skills to Equip Kids to Go the Distance���������������������������������292

Group Activities��295

Develop and Deliver Workshops with Scalable Projects������������������������������������297

Club Excursions/Events, Community/School Events��302

Demos��304

Contribute Back���305

Encouraging Alumni to Volunteer���307

Learning from Mistakes and Learning More��310

Keeping Yourself Motivated and Kids Engaged��311

Preparation���312

Scaling Things Up���313

My Experience Highlights��314

It’s Up to You, Now!��315

Chapter 8: Cheat Sheet���316

��Appendix A�: Traffic Light Workshops���323

Index��339

Table of Contents

ix

About the Author

Martin Tan wrote the first Code Club Moonhack projects in Scratch and

Python, used by over 10,000 kids in Australia. He has taken kids to demo

robots and coding projects in parliament, delivered training to Code Club

Australia, and contributes to various Maker communities online. Martin

blogs on Maker topics, runs a Maker store, and works in IT security,

contributing to various open source projects and community conferences.

Most of his endeavors feed into his hobbies, which also include music,

locksport, and various techy pursuits.

xi

About the Technical Reviewer

Ioana Culic is currently a PhD candidate in the field of Internet of Things

and the cofounder of Wyliodrin, a company that offers educational and

industrial IoT solutions. She is a Teaching Assistant at the Politehnica

University of Bucharest and has also been teaching IoT technologies to

high school and university students at different events for the last five

years. Despite the technical background, writing has always been Ioana’s

passion, and she managed to mix the two. She has published several

articles in magazines such as The MagPi and Make and books on Internet

of Things technologies. Ioana has been porting JavaScript to TockOS.

xiii

Acknowledgments

During our journey helping kids to learn programming (coding) and

other maker skills, there were many people who helped as we strived to

empower kids to push themselves further and leverage their newfound

skills to express their imagination and ideas. Whether it be donating time,

knowledge, or even just being supportive when I would excitedly rant

about how proud we were of the kids, it made a lasting difference to the

kids, and for that we are thankful. In this section, I also wanted to mention

some specific contributions.

Firstly, thanks to David Mander at Milgate Primary School for taking

the initiative and leap of faith to register a code club and for the many

hours spent after school making sure that the code club would run and

helping with all our extra excursions and events and dealing with the

anxiety of all the administrative requirements that came with these.

Thanks for your support in the face of much frustration at trying to prepare

things and push our club to eventually embrace text-based coding and

electronics.

From the early days: Thanks to Jay for your consistent presence in the

early years of our code club and starting the trend of alumni school kid

volunteers. And thanks to Ryan for lighting a fire under everyone in that

first year and onward with your unique game demos, and in later years,

Jamie for breaking out your super fun multilevel games.

To all the parents who volunteered their time over the years, especially

Glen and Rula who stuck around for multiple years and provided great

support and belief, which made such a difference, and helped us fumble

through some frustrating times.

xiv

Some special people from Code Club Australia were instrumental in

providing such powerful encouragement, support, and feedback to myself

and our club over the years. Thanks to Kelly Tagalan for all your belief

and enthusiasm and trusting me with presenting our club’s demos and

to write all those projects, including the first Moonhack to get 10,000 kids

coding. Thanks also to Nicola and Tom for your support, encouragement,

and feedback. To Rik from Code Club UK, thanks for your help, feedback,

and very knowledgeable tips and all the work you put into writing all those

code club curriculum projects over the years.

Without the advice and inspiration from other authors, including

Michael Rash, Al Sweigart, and many other technical authors, I would not

even have considered contributing a book – thanks for paving the way with

your inspiring writing and experience!

I would also like to thank those who made podcasts that encouraged

me when driving to work, especially Michael from “Talk Python to Me,”

Kelly and Sean from “Teaching Python,” and Chris from “The Real Python

Podcast.” And also, thanks to Michael from Kitronik for supporting our

club with various samples and keyrings. Thanks to micro:mag and Code

Club World for publishing my articles.

In addition to Jay, all the other alumni students who came back as

volunteers over the years – thank you so much for just turning up and

making such a fantastic difference to our code club kids. You are the best

inspiration because you have done what they are doing and continue to

do so. Some extra special thanks must go to Ethan, Emily, Thom, Noah,

Yasmine, and Yamen for the extra consistency, time, and effort you

invested. You helped our code club to persist over the years and made sure

that so many got the help and support when they needed it!

Huge thanks to my family for putting up with all my ranting, stress, and

frustration during the writing of this book, especially my kids for coming to

code club week after week, year after year. This book would not be possible

without all your love and support.

Acknowledgments

xv

Introduction

Although programming (coding) was once a skill for a very specific role,

nowadays, computers or microcontroller chips are ubiquitous; when

coupled with today’s human-friendly modern coding languages, the scope

for applying this skill is now much broader. However, in the same way that

reading or writing is useful for recreational and personal interests rather

than relegated to purely academic applications, coding and creating with

technology is now much more accessible to everyone. By embracing these

skills for creative and artistic pursuits or just to help simplify the way we

interact with our tools, the areas that once took us away from enjoying life

can now free us from the restrictions that technology previously placed on

us. For kids, this is realized through maker groups and code clubs, which

meld a previously academic skillset to apply for our own recreation or to

express our ideas into something tangible to others. Sadly, we often hear

of a disconnect between people who want to learn and the more technical

folk – the latter explaining things in their own context, without realizing

their use of jargon and what seems like abstract terminology for those that

bridge into other disciplines such as teaching. When listening to teachers,

I’ve often heard things like, “IT people don’t get it when they try to explain

to us” or “How do I implement this for a class or group?” Similarly, our

code club kids ask for project examples within their life environment, so

they could see how maker skills could be immediately useful.

Over several years, a group of volunteers and I have muddled our way

through adventures with our Australian code club, hosted at the local

primary school. This has taken us to conferences, Parliament, and our code

club kids were featured on TV and online media; had begun to incorporate

their code club skills into their social lives and school projects. Along the

way, we struggled with logistical and IT-related challenges and the quest

xvi

to make sure kids were engaged and constantly challenged to grow, rather

than just occupied. We sought to give kids ownership of these skills so

that these would not just be something they “learned about at school” but

rather something that empowered them to use across other aspects of their

lives, rather than just an academic topic. Sometimes, we failed or ran out of

time, but the net effect was that we gradually progressed over the years. As I

looked back and had my memory jogged by others as we tried to remember

the details, we realized that we had come a long way from that first day of

code club. When David, one of the school teachers; Jay, a former student

recently graduated to high school; and myself initially shuffled into a room

with a small group of kids and some computers, we wondered whether we

could even get a working program to run – now, almost a decade later, we’re

seeing kids using these skills at home and able to interact with AI interfaces,

hopefully more seamlessly and with a little less trepidation.

�The Purpose of This Book
Although there are many books filled with activities for a lone person, or

replicated for many working individually, there were not many that showed

how to take a project and scale it for pairs or groups of kids. Most books

show projects created in isolation rather than tested with class groups.

Rather than providing deep technical discussions or a technical reference,

this book aims to give a relatable context to the technical things while

pointing you in the right direction for the deep technical information.

Projects are also included and have been developed in the context of a

club limited to one-hour sessions at a time. From a school perspective,

I’m not a teacher, so I’ve provided the how-tos so you can paste these

into handouts, but they may require assessment tasks to be added. From

a social and maker group perspective, these can be run as provided. All

the materials and tools are specified at the start of each project, and many

are made to be scaled to allow group collaboration. Some will run for

Introduction

xvii

multiple sessions but have been designed to easily be continued in one-

hour chunks. Through my recollections of our mistakes and successes

with real anecdotes peppered throughout, the book also aims to help the

reader with the logistics of preparation, providing a structured approach

to learning the basic skills and explanations of useful tools and where to

find the deep details. Most projects also have a challenge with some hints,

to accommodate a range of kids’ skills and experience so no one is left

behind, ahead, or idle for too long! You’ll learn the useful concepts and

skills for running a maker group or code club, in a way that gives more of a

meaningful real-life creative context rather than being purely academic.

I hope that the platform and skills we provide with will go some

way toward giving kids the skills, freedom, and drive to explore and do

that which we do not yet think is possible. We only need to look into the

Demoscene’s1 origins and history to realize how much can be achieved

with just a bit of curiosity and collaboration, to do things previously

deemed impossible with electronic hardware limitations of the time.

�Intended Audience
The intended audience for this book is teachers, parents, and volunteers

who are running or looking to run a maker group or code club for kids

aged from eight years old to those beginning high school (in Australia, the

latter is generally around 13 years old). If you’re a school-aged kid, you

can also enjoy digging through this book for the projects and find ideas for

getting your own maker group happening – all it takes is a few friends to

get together! A maker group or code club is in essence two or more people

getting together to learn and create. The book does not assume any technical

experience, as I have aimed to explain terminology in layperson’s terms

before applying it – so you will both learn and be able to talk about the

1 https://chipflip.wordpress.com/category/demoscene/

Introduction

https://chipflip.wordpress.com/category/demoscene/

xviii

concepts as a universal way of collaborating then use the included references

to go as far as you want with learning more. Since part of the book’s objective

is to help you keep kids engaged at all experience and skill levels, there are

also some components that will introduce more experienced kids to more

advanced concepts. However, I’ve also aimed to provide practical stepping

stones to allow you to reach useful levels of skill and fluency in coding,

before progressing to applying these in more challenging and rewarding

contexts; for example, in Chapter 3, pointing to Code Club Australia lessons

on simple web pages and basic Python concepts before looking at writing a

“web application” that uses Python logic to create an interactive web page.

�Overview of Chapters
The chapters of this book are structured as follows:

Chapter 1: Initial considerations for your code club or maker group,

support resources, initial curriculums to use, logistical solutions to

common problems, and how we improved over time, in practice.

Chapter 2: Finding IT resources and help for your code club and

how to have the required software tools and IT infrastructure set up on

computers and in your space.

Chapter 3: This covers general Python programming concepts

and program structure and how to get the right Python programming

environments to suit your requirements and any location limitations.

Chapter 4: I talk about using more tactile approaches with e-textiles

starting from a basic electronic circuit to a programmed digital e-textile

project with readily available materials, for example, a baseball cap.

Chapter 5: Going “off map” and creating your own project; included is

a self-watering plant project created at our code club.

Chapter 6: Introducing collaboration with others, including a group

project we tested and used and systems you can use to collaborate with

volunteers or other coders. Contributing to community projects is also

discussed.

Introduction

xix

Chapter 7: Introduction to some basic electronic components and

electronic circuit concepts and analog vs. digital approaches. This chapter

includes building an electronic badge, adding various features, and how to

extend it further.

Chapter 8: Finally, we put what we’ve learned, together, by walking

through planning a year of a code club or kids’ maker group starting with a

Python curriculum progressing through to workshops and next steps.

A bonus appendix is also included with a couple of projects for

creating micro:bit traffic lights.

�Conventions Used in This Book
In the included projects, existing code is shown for context, with the

code to be added shown in bold. Explanations of concepts are included

as breakouts to separate them from the main text. Any links with further

information are referenced as footnotes. Python code that wraps to the

next line is denoted with a “\” (slash). Although two-character indents

are used, four-character indents are fine and accepted in Python, if the

indentation is consistent throughout the program. All indents are spaces,

although some editors will automatically convert tabs to spaces. The

phrase “code club” is used interchangeably with “maker group” and refers

to an extracurricular maker club based around coding and electronics that

may be set up on its own or in conjunction with a school.

�Prerequisites
The only prerequisites are enthusiasm and a few kids that want to learn. If

you are already teaching kids how to code and have access to computers,

even better! However, this book will outline how to access what you need

and where to find help. When we started our local code club, we only

had a handful of kids, a teacher, an older student, and one person (me)

Introduction

xx

with programming experience. We used free resources and the school’s

computers to get started. During the book, I will outline how we ended up

building up more electronic hardware and attracted more volunteers over

the years. Although one of us had programming experience, this is not

necessary as many of our volunteers learned as they progressed. Most of

the free projects from Code Club Australia and Code Club World were able

to be completed by adults in 20 minutes before each session.

�Other Resources
Throughout this book, I’ve included footnotes with various online

resources, including groups that publish free tools and materials for the

community. I also explain where to start getting involved in contributing

to community projects and how kids can also start collaborating to such

projects or even methods they can use to work collaboratively with one

another.

As you progress through this book, you’ll find that it is equally divided

into three main areas of knowledge:

•	 Getting started, running, and growing your own code

club or maker group

•	 Prewritten projects and resources to use with

groups of kids

•	 Anecdotes and learnings taken from building our

own code club, attending some fabulous events, and

contributing to the community – drawn from my own

experience doing these things

Introduction

1

CHAPTER 1

Getting Started
Expectations is the place you must always go to before you get
to where you’re going.

—The Phantom Tollbooth by Norton Juster

This chapter covers the initial considerations for getting started with

your code club or maker space. I have included examples from the

experiences from our earlier code club years with challenges faced and

give an overview of our strategies to address these. Chapter 8 will dive into

exploring these strategies in detail, using specific how-to examples and

useful templates. As you’ve probably guessed, there’s no technical content

in this chapter, but rather it is a way of outlining some of the more essential

lessons we learned after several years of running a code club.

Note  Throughout this book, I refer to code club or maker group
participants as “kids,” whereas older school student alumni will be
referred to as “volunteers,” as are adult volunteers.

So, let’s get started! One of the things to consider when starting a code

club or maker space is roughly what your short-term and long-term goals

are. I say “roughly” as any progress is a reasonable achievement, providing

that the kids stay eager and keep coming back for more. Goals will change

and develop as you progress. For example, an achievable goal can be as

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_1

https://doi.org/10.1007/978-1-4842-9197-9_1

2

simple as making sure every kid who attends for a year learns to write a

working program. Another goal may be to equip kids with a new skill –

allowing them to implement or prototype their ideas to a level previously

inaccessible to them. At our local club, the point at which kids became so

engrossed in what they were doing, and keen to complete something, felt

like a definite indicator that something good had “clicked.” We almost had

to drag them away from the activity so that their waiting parents could take

them home.

Once your initial, and long-term, goals are established, you’ll start to

develop a clearer picture of the requirements for those goals. The simpler

your initial goals are, the easier the requirements will be to procure – you

can easily, and probably will, refine and add to your goals as you progress!

Unsurprisingly, one of the main requirements when starting off is

volunteers to help run your code club or maker group sessions. Since

our code club is a school-based extracurricular activity, our three initial

volunteers were drawn from these three groups:

•	 Teachers

•	 Parents

•	 Ex-students from the school

When talking to other code club volunteers, they all mentioned

challenges in finding enough volunteers to get started.

Some reasons for this are as follows:

	 1.	 People are working during the time when your code

club or maker group is scheduled (typically after

school or weekends).

	 2.	 Concern that they do not possess the skills required.

	 3.	 Not interested or only see a limited scope.

	 4.	 Not enough time due to existing responsibilities

outside of work.

Chapter 1 Getting Started

3

Issue 1 is becoming less of an issue as more people work flexible hours

and work from home. As our local code club muddled its way through

half-finished coding projects, some of the kids stood up in school assembly

to show what they had made and learned. After that, some awareness and

understanding started to grow that we were doing something positive for

the kids. One kid explained that, while he had originally expected just

games, he had learned that there was much more that he could do with

the skills gained, including creating things that helped people and made a

difference to the world.

Although issue 2 has not really been a problem, with some parents

volunteering to learn themselves, to prevent stagnation at least one

member of your team needs some vision, enthusiasm, and a thirst to learn

or implement ideas. I will aim to provide some of these in this book, in

the form of working projects and simple explanations of concepts, with

summaries and cheat sheets that you can reference. I’ve included lots

of snippets of anecdotes and experiences, as people often recount such

stories as adding to their learning.

Issue 3 often stems from ill-informed ideas that programming or

technical pursuits are only for those who want to work in “IT” or some

sort of stereotype who doesn’t engage in anything except for typing at a

computer. An analogy I often mention is that although we don’t all aspire

to become professional writers or editors, learning to read and write is

very useful and enriching for our lives. The idea that programming is only

for those who wish to become software developers, and that all these jobs

are now performed offshore, is sometimes touted as a reason for ignoring

programming, electronics, or other maker skills. Many successful products

have been launched through kickstarter sites, and typically work is not

offshored until more cost-effective mass-production is required. In short,

a very broad range of people can benefit from learning computational

thinking, automating something that may prevent them from having

more time in their lives, or even just for the sheer enjoyment of creating

something.

Chapter 1 Getting Started

4

Finally, issue 4 may be a valid blocker, although we still do see

some great support from families that have lots of projects and activities

going on. Understanding the reasons why issue 3 is not valid, or was

misunderstood, can often change priorities here.

Note  With our code club, we never charged any money and just
allowed kids to apply at the start of each year. This is part of the
mission of Code Club Australia to “Get kids coding.” I did initially
donate a couple of old Raspberry Pis (Model 1B) that I had lying
around, with the school buying some accessories for these later. In a
subsequent year, the school committee asked me to write up some
workshops for a school open night and bought ten BBC micro:bits1 for
this. Along the way, we were lucky enough to have some hardware
gifted to us; it became apparent that some hardware was useful for
teachers at the school as well. Generally, most costs (outside of the
computers and network) were not excessive. When we did sometimes
have a play with some of the school’s more expensive robots, those
seemed to be nowhere near as useful or reliable as the cheaper,
simpler hardware.

1 https://microbit.org/

Chapter 1 Getting Started

https://microbit.org/

5

�A Quick Tale: Several Years of Mistakes –
Numbers, Passwords, Computers,
Accountability, and More
When a high school student, a teacher, and I decided to start our code

club, we began with

•	 A small room at the local primary school

•	 A class set of laptops connected to the Internet

•	 Some prewritten Scratch programming activities

•	 A group of about 20 excited 11–12-year-old kids

At least we had the foresight to read through and try the first

programming exercise prior to our first session, but soon ran into some

unforeseen challenges. All the kids were facing either against the wall or

toward a desk partition in the center of the room.

That day, our short-term goal was simply to make our way through

our first code club session. Only three kids out of the group of 20 ended up

completing their projects – each had learned programming before and had

also used Scratch. A benefit of this was the other kids seeing a glimpse of

the possibilities. Meanwhile, much of our time was spent frantically racing

to each kid with their hand raised and asking for help, before they got

distracted or frustrated. The kids’ idle time was quite high at this stage, as

we had to work through each previous problem before we got to them.

At this early stage, all the kids used a shared login since they had only

used tablets during school, and classes weren’t utilizing their computer

lab time – this meant they didn’t yet have logins and us having to help each

kid log in. Projects were often not saved consistently or in a safe place. In

subsequent weeks, this work had to be repeated, making the experience

less rewarding. One week, my son brought in a game he had written and

showed the group – for a couple of weeks, there was a renewed energy and

enthusiasm in our club. Another of our code club kids, Tim, wrote a game

Chapter 1 Getting Started

6

where the player had to set everything on fire. Our other experienced kid,

Darren, wrote a game where the player controlled a fish that ate smaller

fish – at my suggestion, he later ended up adding a scoring system.

So, after our initial excitement and a slight spike a bit later, kids

were still turning up, but we still had wasted sessions, which increased

in frequency as we tried to add new activities. Although everyone had

started with a variety of different skill levels, we still weren’t seeing much

measurable progression at any level, and those initial speed bumps from

lack of good processes and fuzzy expectations began to wear thin.

In hindsight, the causes of increased delays in those early sessions can

be summarized as follows:

A failure to anticipate logistical problems: We had limited

contingency plans in place for computer or Internet problems. Credentials

to gain access to computers and online services were often forgotten

or shared, or kids/guardians lacked accountability for managing their

credentials from week to week.

Underestimating the impact of most problems: Failing to manage

login credentials to retrieve the previous week’s work, working inefficiently

by repeating ourselves, and a general lack of continuity or expectations of

acceptable behavior in code club were to take up many weeks of our time

and worked against us to stifle enthusiasm and slow down progress for

kids. A side effect of this was that the more advanced kids ended up being

less engaged and progressing slower.

Using processes that were not scalable or just not using processes:

With only a few volunteers, it was easy to communicate, but onboarding

more volunteers made it hard to be consistent. Sometimes, new volunteers

would repeat our old mistakes or raise issues that we had already resolved.

Not resolving a login problem or saving projects in a different place would

often just repeat themselves during the next week.

A lack of experience of what did and did not work in the club
environment: The idea of a club or space implies that everyone will be

at different stages of learning, albeit within a chosen path. This extends

Chapter 1 Getting Started

7

to kids working on different projects to their peers at different time.

Accommodating these different learning stages within a club took us a

while to figure out. Using older styles of having all the kids continually

being called back to the floor or trying to keep everyone on the same

project just resulted in frustration.

Failing to discuss or improve our approach: Making time to regularly

reflect on our sessions in a focused way resulted in ongoing improvement

in our approach. To prevent us from reinventing the wheel, these included

only our teacher representatives, with a small subset of longer-term

volunteers. By regularly reviewing, we were able to reduce the amount

of wasted session time while presenting a more unified interface for the

kids. We also gained the agility to be able to accommodate unforeseen

interruptions from other school events and changes in schedule,

developing contingencies for these, such as bringing in a three-week

activity or adjusting our calendar to suit.

A lack of accountability for guardians and kids: There was no

accountability from kids or their families, and they would essentially

turn up each week and wait for us to notice them not doing anything.

In later years, we solved these issues by clearly stating expectations and

requirements in acceptance forms.

�What Is Your Baseline – Where Are You
Starting From?
In the beginning weeks of our code club, we never considered whether we

would have kids who had never written code before or whether anyone

would find it harder because they didn’t have access to a computer. We

tried to talk about “drop-down menus” and “left-clicking” and were met

with blank stares from kids brought up on mobile devices. It became

obvious that we had underestimated some of these challenges.

Chapter 1 Getting Started

8

Ideally, everyone participating should get something out of your code

club or maker group, both in the long and short terms. It is reasonable to

expect different skill and experience levels and think about how to keep

kids who are between both extremes progressing at a measurable rate,

achieving milestones, and of course staying engaged.

Remember  Being occupied is not the same as being engaged.
Staying occupied may look like someone is busy, but they’re not
necessarily staying hungry to learn, satisfying their curiosity, or
becoming empowered to create.

Although it can be easy to have kids turn up each week and have them

copy some code into a computer or chase expensive remote-controlled

robots around, ask yourself, “How much will their capabilities have

progressed after six months?”

�Tasks for Establishing a Baseline
Here are the first tasks to help you establish a baseline for your group.

�Identify Some Prewritten Content to Start With

This could be a free series of online coding lessons or activities. I would

suggest something like Code Club, Grok Learning, or Code.org as they

are free and well structured. These are usually written so they can be

completed in a set timeframe, which can be particularly useful for setting

expectations, for example, “Look – this is just three steps, with four tasks

in each.” It is also one less thing to worry about when beginning. In later

chapters, we’ll talk about how to get a bit more creative, but for now

prewritten content provides a solid structure for everyone involved.

Chapter 1 Getting Started

9

�Sit Down with Other Teachers and Volunteers
to Discuss What You All Want to Achieve

This includes writing down some short- and long-term goals. A good

short-term goal might be to have each kid complete one lesson or activity

+ challenge per weekly session. A good long-term goal might be to cover

enough concepts to enable everyone to participate in a larger project by

six months.

�Work Out How Many Kids Your Team of Volunteers Can
Comfortably Handle

If you have too many kids in your sessions, you won’t get to all of them in

time, leaving everyone frustrated and no one progressing to a measurable

level. And then there’s the other challenges to consider. A measurable

level of progression lets you show kids that they are learning and what this

means in terms of the greater opportunities available to them such as more

complex projects. If progress is too slow, kids may lose interest, become

distracted, and disrupt others from learning. Over the years, we found a

sweet spot of two volunteers and a teacher for 20 kids that worked well for

us, with maybe an extra volunteer handy for the more involved workshops.

�Resist the Temptation to Accept Too Many Kids at First

You will always have someone who has another activity that clashes with

the time, moves too far away, or even regrettably loses interest. A waiting

list can be a good idea, as it also puts some value on the opportunity,

and word will soon get around about how valuable a spot in your club is.

Having a manageable number of kids improves the experience for the kids

involved, and you will have less kids getting distracted because you can

get to everyone in time. As we continue, I’ll talk a bit more about how to

optimize helping kids and keeping them engaged.

Chapter 1 Getting Started

10

�Discuss How to Manage the Expectations of the Kids
and Their Guardians

This is not to say you’re limiting what can be achieved, but rather

explaining what kids can expect to achieve in your club or group. It is

prudent to also talk about what constitutes unacceptable behavior, to

ensure everyone gets the most out of your code club. This could include

no playing of games on mobile devices and other personal conduct

expectations. In our club, we found it necessary to remind kids that there

was a waiting list and that adhering to the rules was necessary to keep

your place in the club. We also introduced some required actions such

as creating accounts and managing passwords, which we’ll cover later in

this chapter. Stating these ground rules up front means that everyone’s

expectations are set, thereby reducing later problems.

Guardians also need to understand the expectations for them and

their kids. This includes having guardians understand that setting up and

securely managing account passwords is a requirement of participation. It

also gives them an idea of what content you will be covering and that effort

is required from their kids in order to get the most out of the club or group.

It also goes a long way toward reducing the misuse of the club as free after-

school care or if their kid fails to put in the effort required.

Finally, make some simple notes, and check back on the preceding

points, and consider the resources you will need. These will include

•	 Computers, Internet, support.

•	 A good place away from distractions.

•	 Checks that volunteers will require in your area to work

with children – this is not negotiable and should be

stated as such.

•	 Any facilities required for any kids with disabilities or

special needs.

Chapter 1 Getting Started

11

�Health and Discipline Issues

If possible, the easiest option is to have a teacher to deal with this

and make it clear where the boundaries of volunteers’ (nonteachers)

responsibilities are. These include understanding first aid, allergies, and

processes for toilet breaks and generally keeping kids safe when arriving or

leaving the session. Alternatively, if one of your volunteers has previously

handled these things for a scout group or club, they will be able to guide

your code club in this area.

�Work Out What You Want the Code Club or Maker
Group to Be

For our local code club, we wanted kids to feel empowered to realize their

ideas in working projects and for them to own the skills for themselves;

this means that they would recognize that skills they learn will belong to

them rather than being relegated to something they did at school or had

thrust upon them. My own experience is that as soon as a personal hobby

or interest becomes solely work, you don’t benefit from it, and it ceases

to be yours. This is what makes a club or group different from school and

lessons – kids need to want to participate and get something out of it.

�Work Out Your Initial Scope: What Are Your
First Milestones?
Once you have written down what you want to achieve, it’s easy enough

to work back from those goals to find out what needs to be done. This

is where some logistics will come into play as you take your ideas and

implement them in a practical sense!

Up until now, we have primarily been talking about coding, as that is a

common place to begin at. For our school’s code club, this was where we

started. For you, it may vary, depending on the skills in your own team of

Chapter 1 Getting Started

12

volunteers and teachers. For the sake of showing a club’s progression and

processes for that, I will be using our school’s code club for most of the

examples in this book. Sometimes, it may not be immediately evident what

your longer-term goals are, until you go further with your club – this was

exactly the case for our school’s code club. Whatever the case, be ready to

acknowledge these and embrace them when you see them!

A good example of a short-term milestone is to have everyone complete

their first project. Working back from this, ask yourself, “what do we need

to do to make this happen?” Remember when I mentioned that everyone

might be at a different skill level or progress differently? This is what keeps

everything fun and challenging when you try to have everyone engaged all

the time! Be prepared to have multiple activity threads and even split into

subgroups in order to manage everyone’s diverging milestones.

A long-term goal might be to be able to run a workshop that applies

coding with a new skill, such as 3D design or electronics. As you may have

guessed, there can be multiple workshops based on different interests

and skills running in your club. Once you have an idea of this long-term

goal, look at what skills would be required and how you will equip the kids

with these.

This is where your prewritten content becomes invaluable – often,

such content will also include a list of concepts or a skills matrix that

explains what kids will learn from each project or lesson. If you have this,

you can simply look at these and determine a list of projects required for

kids to obtain the skills for your first long-term goal.

Explain to everyone roughly how long the first project will take

to complete. This sets expectations and sets kids’ expectations for a

reasonably quick and easy first task. Before your first session, go through

the project and write down any tricky parts or problems with the project

code – then you can address these with the entire group at various points

during the first session. This helps everyone in parallel, leaving you to help

those that may have typed something incorrectly or need help debugging

their programming.

Chapter 1 Getting Started

13

One milestone that I personally love, and is super handy to achieve,

is to teach everyone learn how to debug their own errors. You’ll know this

has been achieved when they ask you a question and, after a few minutes,

say something like, “oh, it’s OK – I worked it out myself.” At this point, just

make a mental note of the milestone, smile to yourself, and go help the

next person!

A nice milestone that builds skills in other areas can involve having

kids show some leadership by sharing a tip or solution they have worked

out either to the group or a friend. This might involve having certain kids

stand up in front of the group to explain one of the trickier parts of the

project and how they solved it.

Your very first milestone should be to get everyone to log on to their

computer and into the chosen programming environment, for example,

Scratch or Trinket.io. The next could be to have everyone save their

work so they aren’t redoing the same things each week without learning.

Easy, you might be thinking, “I can just run through these lessons and

then do my workshop at the end of that.” Remember how I mentioned

that we had a variety of skill levels and experience? If we are ever short of

volunteers each year, Code Club Australia sends us volunteers to help with

our registered club.2 One time, a volunteer turned up after going through

a training program. After a few sessions at our code club, she commented

that it was nothing like what they had trained for, because we had such a

diverse range of skill levels after a few years of code club that everyone was

already working on different projects! So, the key idea here is that even

though everyone doesn’t progress at the same rate, that is alright. Often,

I would have someone become worried if they missed a session or were

2 https://account.codeclubau.org/register-a-club/

Chapter 1 Getting Started

https://account.codeclubau.org/register-a-club/

14

not progressing as fast as others. I would often sit down with them, letting

them know that maybe next week someone else would be sick or not able

to attend and that it didn’t really matter as long as they were learning

and enjoying themselves. Later in this chapter, I will cover some tips and

strategies we learned to address some of the issues we ran into.

�Equipment and Initial Setup
Now that you know what activities your club will initially involve, you will

likely be starting to consider what equipment and other resources you

may need.

Using a fairly common scenario and set of requirements, these could be:

Room that is reasonably private and comfortable, where you can

regularly run your code club and physically help everyone easily. Running

your code club after school at the same school is a great way to do this,

since school computers can be freed up after classes, and most rooms

will be empty for splitting into smaller groups. Staff are often around just

before the club starts, making it easier for kids to have a snack and get

to the room and settle. Ensure that heating and cooling are acceptable,

since these will affect the ability of people to concentrate and could even

introduce health issues if not managed adequately. Expect some tiredness

or lower concentration at the start or end of the term. Other location

options include libraries, or if you can borrow a free space somewhere, this

may work. Just be aware of any health and safety requirements, or other

groups that may be nearby or sharing the space, and could conflict with

you having a safe and quiet environment for kids to learn and create in.

�Computers/Laptops
Will these be owned by the participants or at a school or other locations,

such as a library? The answer to this question will determine the best way

to ensure that everyone has the correct computer environment set up to

Chapter 1 Getting Started

15

participate. You may need support staff. Be aware that, although many

kids have access to mobile devices, the ability to learn to look under the

covers of things and pull them apart is an integral part of the coding and

maker mindset. With a mobile device, most things are abstracted away

from the user, which tends to be counterintuitive as your group’s quest for

knowledge and understanding progresses.

�Optimizing Your Environment
Whiteboards, projectors, TV screens, monitors, and other accessories that

let you show things to the entire group are very useful and often available

at schools and libraries. However, with regard to the core activities, you’ll

want to try and get the kids learning the basics as soon as possible, since

building a reasonable skills base will prevent stagnation or reaching a

plateau later. With our local code club, failing to get kids learning the basics

limited our choices in earlier years, since we didn’t have enough kids with

the required skills for the fun and more advanced activities. Kids ended up

stagnating and doing the same old scratch games all year. They would just

turn up but not really progress or say they were bored because we couldn’t

move them onto the more interesting projects. This is one of the main

reasons for optimizing the running of your code club so that kids can focus

on learning rather than getting bogged down with administrative issues.

�Onboarding at the Start of Each Year
When sending out an email acceptance to guardians, outline the

requirements clearly, including how to create accounts for the

required services online and how to store credentials. Have a checklist

that guardians must tick for the tasks, with a signature to indicate

understanding. This is a good time to stipulate conditions for participation,

which would include the usual school or venue requirements, in addition

to any other distractions, such as playing games or not participating.

Chapter 1 Getting Started

16

�Computers and IT Support
If you have browser-based programming projects, these are the easiest

to get started with. We used trinket.io to do most of the Python3 Code

Club Australia projects. Once we started on hardware-based workshops

that included robots and required specific software to be installed, we

had to leverage IT support people to ensure things were prepared. This

is not straightforward at all; even if you are technically skilled, the time

constraints and a locked-down environment can be challenging to deal

with for the small window of time you may have access to the computers.

As our local Code Club began to evolve and requirements grew, I

managed to get the IT folk to install Python on the school computers. This

involved running through the install myself and then sending the links to

download the required installation to the school IT person. Initially, we

were using Apple Macs, and somehow we managed to also get a working

Python setup when the school decided to move to Windows laptops.

Something worth considering is that for some projects, you will likely want

to start installing additional Python libraries on laptops to give you more

functionality – this will require setting up Python to work with the school’s

proxy and firewall, through which they must access the Internet. Some of

the challenges and details of how we overcame them in this area can be

found in Chapter 8. The important takeaway at this point is to make sure

you arrange a time to come in earlier with the school IT person present, so

you can test things. Make sure this is a long time before you plan to use any

installed software, since it is likely to not work. Speaking directly to the IT

person allows you to determine how much information they will require

to set things up. At this point, I digress, since this won’t be required until

3 www.python.org/about/

Chapter 1 Getting Started

http://www.python.org/about/

17

you have done a bit more learning and want to do extra workshops. There

are often a few smart kids that will get extremely excited and work through

all the learning content at home. This is part of the “at some point you will

find that everyone is at a different stage of their learning journey,” so be

prepared to be surprised with additional activities being required a little

earlier than expected.

Also, consider that if your content is online, kids know how to Google

for things and may just copy and paste, the net effect being that they feel

like they achieved more, but it effectively prevents them from learning

anything. Our local code club ran into the problem of kids working

ahead, which is great, and other kids copying finished projects so they

could move on to other activities – the side effect of the latter was that the

kids who copied projects did not have the skills for the other activities

and sometimes prevented others from participating, due to number

limitations. As a solution, we have used a few different systems to track

progress. At a midway point during the school year, we allocated a few

weeks dedicated to helping kids complete projects they might have got

stuck with or forgotten to complete. We also set up a requirement for

kids to have their projects checked by a volunteer, where we would ask

questions about how the code worked and ask the kids to verbally describe

some of the challenges they had run into and how these were solved.

In addition to sorting out the cheaters from the hard workers, this also

provides some recognition to those who have worked hard.

�Login and Password Basics
A significant obstacle to kids getting started, saving their work each

week, and generally staying engaged ended up being login problems

on laptops and online services such as Scratch or Trinket.io. As a quick

starter tip, I have included the flowchart (Figure 1-1) that was the result of

multiple attempts to solve this problem. Feel free to adapt this to your own

situation!

Chapter 1 Getting Started

18

Figure 1-1.  Flowchart for login problems

�Another Alternative – Make Your Space Portable
If you have access to a small fleet of computers or are in an area where

kids can bring one along, you can run your code club offline. This requires

providing instructions to parents and guardians beforehand, so they can

install any required software. You can provide learning materials in a file

format such as PDF, which can be accessed on a mobile device.

Chapter 1 Getting Started

19

A more modern method of running your code club or maker group

can be online – since COVID-19, this is a real requirement that needs to be

fulfilled. This involves using an online collaborative conferencing service,

such as Zoom, Microsoft Teams, or Google Hangouts, where you can

ideally share your screen. The same requirements apply for accountability

and setup as I’ve previously described. Also, be aware of requirements for

security and privacy when hosting sessions online. In short, you’ll need to

make sure that the conference isn’t public and that personal details are not

shared. Some volunteers with online-only clubs mentioned a challenge

in knowing who is genuinely working – however, the method of checking

completed projects could work online just as easily.

�The Tech Stuff: Learn by Applying
Let’s talk about the actual content we will be taking the kids through – this

can often be slightly scary for some volunteers, but an important point is

to be careful not to pass some of this apprehension on to the kids. I have

seen volunteers openly complaining that it is impossible to work without

a mouse when kids were happily using trackpads or imply that text-based

programming is harder than it really is. Setting a “can-do” attitude helps

kids feel empowered to complete the content and overcome any obstacles

within reason. Weaning kids off block-based programming to accept the

more powerful Python projects took a while for our code club. Much of this

was due to some initial apprehension from volunteers, but as soon as we

approached text-based Python programming in a matter-of-fact way, the

kids just accepted it as being easy.

Whether you have a highly technical background or minimal technical

experience, spending 15–20 minutes working through a project prior to

a session increases the speed at which you can help kids solve problems.

Since the projects are designed for kids, highly technical skills are not

required at this time. But spending this small amount of time beforehand

Chapter 1 Getting Started

20

means you can attend to kids quicker, reducing idle or waiting time for kids

and keeping them more engaged while learning and progressing and less

likely to be distracted.

Examples of issues that come up during a project can include

•	 Ambiguities in the project text that may be challenging

to interpret

•	 Bugs or quirks in software tools

•	 Skipping or mistyping lines of code

•	 Problems peculiar to the computer or network

environment

We can introduce programming terminology and concepts while

we learn – later, this will be useful for kids that may be interested in

collaborating or talking to other programmers or makers.

�Two Examples of Problems and Solutions

During your maker or code club sessions, some kids will put their hands

up for help, some will prefer to try on their own before asking, and others

may try for a short time before giving up and becoming distracted. The

approaches we take to helping our kids depend on whether the issue is a

common issue, such as a known bug or problem with the project, or an

issue specific to the individual’s own project, like a typo or leaving out a

section of code. A good way of reducing the first category is to write it up

for everyone to see and talk about it to draw attention to it. For the latter

category, a more individual troubleshooting approach can be applied.

�Troubleshooting and Debugging

As mentioned earlier, a good milestone to achieve is when our kids start to

solve their own programming problems. By solving their own problems,

kids stay engaged and can progress faster in their learning journey.

Chapter 1 Getting Started

21

Here are some tips for troubleshooting with kids.

Start by asking some questions:

•	 “What is your program supposed to do?”

•	 “What is going wrong?”

•	 If there are error messages, “What do the error

messages say?”

•	 “Which line of the code controls the part that isn’t

working?”

The last question will give you a place to start looking. To keep our kid

programmer engaged, verbalize your thought processes.

Some useful phrases for this might be

•	 “OK, let’s start by checking for typos or missing

brackets.”

•	 “Hmm, what should this variable be at this point?”

•	 “Where does this get set?”

•	 “OK, so it looks like we’re using a loop to get each line

of the information we read in earlier.”

Once our young programmer works out the solution to the problem,

check their understanding by asking some questions or by having them

explain it back, for example, “So…what were we missing there?”

The Posse effect  Year after year, we often see a more experienced,
louder kid develop a small group who sit near them every week. This
group of kids will often progress slowly, if at all, and when pulled
aside to chat, they will sheepishly admit they haven’t done anything
or got “stuck” and never progressed past a single roadblock and
didn’t ask for help. Separating the posse or sitting down with them

Chapter 1 Getting Started

22

individually for ten minutes can sometimes identify where they got
stuck or get them back on track. Other times, we have found that
rewarding these kids when they contribute to troubleshooting can
empower them to get more involved. Again, if you have enough
people running your code club or maker group, you’ll be able to spot
and address such issues earlier.

�Strategies for Volunteer Collaboration

Online collaboration can sometimes be useful for discussing systemic

logistical issues or sharing fixes that may not have been discussed during

a live session. Establishing this central place to collaborate early on can

help newer or less technical volunteers feel less isolated. There is less of

a requirement for instant responses, but over the duration of a week, it

allows volunteers to communicate without being too intrusive.

There are many ways to collaborate online. In the early days of our

local code club, email worked well, but soon became difficult at times

when we had a larger group of volunteers and were running more than

one group of kids per week. Once we introduced additional workshops

and ran these in parallel, we really need a chat system that offered

individual channels to keep track of everything we talked about and also

as a central source of information. For us, we tried Slack initially, but due

to it being designed more for commercial developers, we soon started to

hit limitations and moved onto Discord. Discord offers a good solution

since it is free to run a server and can be accessed on both mobile devices

and computers. If you need to have meetings online, Discord also offers

quite clear group video and audio conferencing. Keep in mind that some

volunteers may not be used to all collaborative platforms and will tend to

forget to log in or just not participate. In those cases, a summary email can

be useful to communicate key information.

Chapter 1 Getting Started

23

A shared file folder such as a Google Drive can also be useful for

sharing information to kids and distributing documentation between

volunteers. Just remember to set permissions so that each is separate.

�Graphical vs. Text-Based Programming

I’ve talked about how our local code club began with Scratch

programming. We did it because that’s what the Code Club Australia

projects started with. It turned out that a lot of Code Clubs in Australia

were also predominantly using Scratch. The limitations of a graphical

language will only let you go so far, though.

Scratch is a great place for kids to start coding and leads nicely into

Microsoft MakeCode and MakeCode Arcade, the former used on the

micro:bit and the latter on some specifically designed consoles.4 One of

our earlier Code Club kids would write multilevel games and in later years

became a volunteer. Others ended up writing some simple programs

that they used for school projects. However, once we started to look at

more advanced programming and tried to model various solutions to

problems, Scratch became limited and required overly complex and less

readable code and in other cases just could not easily interface with things

we wanted to control. At our local Code Clubs and at other code clubs, it

became challenging to wean kids off block-based languages and to learn

more advanced concepts, such as object-oriented programming. These

days, some great bridging platforms exist for this, including BlockPy5 and

EduBlocks.6 You might be interested to know that EduBlocks was written

by a 15-year-old student, Joshua Lowe,7 and runs on computers and

4 https://arcade.makecode.com/hardware
5 https://think.cs.vt.edu/blockpy/
6 https://app.edublocks.org
7 www.tech4goodawards.com/finalist/joshua-lowe/

Chapter 1 Getting Started

https://arcade.makecode.com/hardware
https://think.cs.vt.edu/blockpy/
https://app.edublocks.org
http://www.tech4goodawards.com/finalist/joshua-lowe/

24

microcontroller boards like the BBC micro:bit. Here’s a screenshot of some

Python code written using EduBlocks in a web browser (Figure 1-2). The

resulting code will be run on https://trinket.io.

Figure 1-2.  EduBlocks Python program

A quick explanation of object-oriented programming  In a
nutshell, object-oriented programming allows defining objects
that can represent real-world concepts or things. This makes
modeling the solution to a problem in code easier to write and read.
Objects can have specific attributes and actions (methods) that
can be performed. An example of an object could be an animal,
with attributes such as fur color, age, or weight. Examples of
methods that could be written include sit(), stand(), walk(),
and bark().

Chapter 1 Getting Started

https://trinket.io

25

Python is much faster than Scratch and is both simple and powerful,

but it also has over 137,000 libraries that contain Python functions to

extend its capabilities while keeping the code easy to read. For example,

some uses for Python are

•	 Controlling machines

•	 Interacting with things on the Internet to store or

retrieve information

•	 Speech recognition, tracking or adding objects in video

and photos, and automating many more tasks that

save us time

This makes Python an easy way to show kids the scope of

programming while also giving them some insight into how to integrate

across hardware. Python is now one of the most popular languages and

is taught at a university level. For these reasons, I really wanted to show

kids how easy it was to program in Python and show them how it opened

a gateway to so many possibilities! Our first efforts failed miserably,

due to issues with having it installed on the school computers or the

misconception that typing was hard and Python was hard. We never gave

up, and I ended up running a trial group with some of the kids who we had

identified as having finished the most projects. As previously mentioned,

it is much easier to start with a manageable group before scaling things

up. As we progressed, the kids in this group worked through the Code

Club Australia Python projects, with speed of progress varying at different

times. This didn’t seem to matter too much as eventually everyone had a

reasonable coverage of the main concepts taught in those projects.

The breakthrough moment was when I drew a diagram of a water

sensor and a micro:bit on the whiteboard. Immediately, the kids’ minds

started to tick – someone even suggested using a pump! I explained how

the sensor worked and told them to use Google to search for the code to

read a value from the sensor wire connected to the micro:bit. Within ten

minutes, we had some working code, and our group was deciding what

Chapter 1 Getting Started

26

value indicated that there was enough moisture in the soil. I showed our

teacher volunteer, David, and we knew we had finally reached a significant

milestone.

We knew that if we could get a small group of 11–12-year-olds to this

level, we could potentially open the gateway to potentially thousands of

projects. For that reason, this book will use Python or the embedded (used

on hardware) versions of MicroPython and CircuitPython for examples.

�Summary

	 1.	 Determine your initial long- and short-term goals

and start with a small group before scaling to larger

or multiple groups.

	 2.	 Initial number of volunteers may be low, but

will grow as you progress, and people start to

understand and recognize what you are doing.

	 3.	 You don’t need money to get started with content

from one of many groups that support teaching kids

about STEAM-related areas, some even provide

volunteers.

	 4.	 Don’t be discouraged – my own local Code Club

started with a teacher, an ex-student of the school,

myself, and some super-keen kids.

	 5.	 The initial first few Code Club sessions are not too

hard, but later it is important to deal with stumbling

blocks before they become ongoing problems.

Ongoing problems can sap kids’ enthusiasm and

can result in them becoming disengaged due to lack

of progress and them having to repeat things that do

not contribute to learning.

Chapter 1 Getting Started

27

	 6.	 Know your baseline in terms of volunteer and kids’

skills and experience and work from that.

	 7.	 Keep the volunteer/teacher to kid participant ratio

at a workable level, especially when starting out.

The kids will get more out of the experience, and it

gives you a chance to find your way without being

overwhelmed.

	 8.	 Keep communications open between you and

participant guardians and between volunteers/

teachers – the latter can be free online collaboration

systems.

	 9.	 Set some milestones – work back from these and set

yourself up for easy wins at first.

	 10.	 Anticipate that eventually everyone will be at a

different level – this is fine, when everyone gets

something out of it. Make sure kids work through

and complete each project before moving on to the

next – establish this as a standard so no one feels

like they are falling behind, just because they spend

more time on something.

	 11.	 Spend a few minutes to go through the content

before each session – you’ll be happy you did, and

things will run smoother if you know where the

tricky parts are likely to be, identifying any bugs that

cause a project to fail. This will help you get to more

kids during a session.

Chapter 1 Getting Started

28

	 12.	 Set expectations with regard to acceptable behavior

and accountability for both the participating kids

and guardians. Volunteers can also benefit from

understanding how things are run when they join.

	 13.	 Have processes for likely issues that will come up,

such as password/account issues. This helps you

deal with things quicker so that everything keeps

on moving.

	 14.	 Learn the technical things by applying them. Do the

exercises and help kids to debug by verbalizing your

thought process as you work through problems.

Keep the kids involved throughout debugging and

problem solving.

	 15.	 Beware of the “Posse effect” around some more

advanced kids.

	 16.	 Python can describe the real world. Scratch only has

one data structure – lists – but Python has many data

structures to describe real things:

•	 Dictionaries: Lists that have an index and can be

ordered.

•	 Arrays: These are like a grid of variables.

•	 Customizable: We can also make our own data

structures to describe things and their attributes.

•	 Things: People, animals, data to be sent over a

network, audio, video, pictures, and files.

•	 Attributes: Hair color, number of legs, type of

hair, size, weight, and so on.

Chapter 1 Getting Started

29

�Chapter 1: Cheat Sheet
�Sources for Free Content and Support

Code Club: https://codeclub.org

Code.org: https://code.org

CoderDojo: https://coderdojo.com/

�Short-Term Goal/Milestone Examples
•	 Kids log in consistently to laptop and online platforms,

for example, Scratch, Trinket.io.

•	 Kids complete the first project.

•	 Kids debug with help.

•	 Kids debug unassisted.

•	 Stage an event, which can be an incursion or

excursion of some sort to break things up and generate

enthusiasm.

�Long-Term Goal Examples
•	 Complete a module or group of projects and have a

volunteer/teacher ask questions to confirm legitimate

understanding and completion of each project.

•	 Improve efficiency so that sessions run smoother,

and kids are so engrossed in what they are doing that

you have to almost tear them away at the end of each

session.

Chapter 1 Getting Started

https://codeclub.org
https://code.org
https://coderdojo.com/

30

•	 Grow awareness and understanding outside of your

Code Club by having kids talk about experiences and

showcase their projects to wider school or community

or offer short introductory workshops during

open nights.

•	 Move on to applying skills in more advanced

workshops and collaborative projects.

•	 Get more volunteers and teachers involved to cover

more age groups or create a second Code Club that

runs parallel or during another time of the year.

•	 Get some additional hardware donated or bought,

for example, microcontroller boards such as BBC

micro:bits or CircuitPython boards, single-board

computers (SBC) such as the Raspberry Pi, and

electronic kits and accessories.

•	 Run multiple workshops in parallel.

•	 Add additional elements such as fabric (e-textiles) or

cardboard circuits or 3D design.

�Questions to Ask When Helping Kids
Troubleshoot Their Code

•	 What should the program do?

•	 What is going wrong?

•	 What do the error messages mean?

•	 Which part of the code controls the problematic

behavior?

Chapter 1 Getting Started

31

�Other Useful Tips for Troubleshooting
•	 Verbalize your troubleshooting with kids.

•	 Keep them involved while solving the problem.

•	 Ask them to explain what the problem was.

�Checklist for Volunteer Onboarding
•	 Relevant requirements for working with children

(mandatory).

•	 Give a brief so they know the history and how you are

doing things.

•	 Onboard them to whatever agreed communication

channel you are using.

•	 Find out any strengths or skills they may have and see

how these can be incorporated into what you are doing.

•	 Explain the expectations for participating kids.

•	 Give them access to projects before sessions.

•	 Explain the process to confirm completion of projects.

�Checklist for Participants and Guardians
•	 Signed up to required online services.

•	 Passwords managed appropriately so kids learn how to

manage these and always can participate.

•	 Distribute expectations and have these signed and

returned either physically or digitally.

Chapter 1 Getting Started

32

•	 Ensure health and safety requirements and other

housekeeping information such as disabilities, health

conditions, and any other special requirements are

communicated in writing and handled by the qualified

volunteer or teacher.

Chapter 1 Getting Started

33

CHAPTER 2

Getting Our Hands
Dirty with
MicroPython
Some of my best projects began life with me staring at some materials and

tools until an idea finally took shape in my mind. Only then could I take

the first step to start building. Although the time spent staring at things

seemed pointless, the project would not have been completed without it.

Likewise, even though establishing goals and finding content may seem

tedious, eventually it will be time for you and your band of volunteers to

host your first Code Club or maker group session. A little bit of thought and

preparation can make all the difference, especially in saving time once you

are up and running!

Your initial content will give you a chance to establish a good routine. Be

aware though that even though it feels nice when everyone progresses at the

same rate and is working on the same projects, the nature of a club or maker

group is that, sooner or later, things start to diverge. This is where being able

to write workshops and develop other activities from week to week becomes

very handy. One of the aims of this book is to help you along with some

examples of projects and workshops that we developed for our clubs. You

should work through these projects to get an idea of how they run and what

information to include – they may also have the side effect of being…fun!

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_2

https://doi.org/10.1007/978-1-4842-9197-9_2

34

An important consideration is how projects can be scaled, so that they

can be run as collaborative group workshops rather than staying with

individual projects. This can contribute to keeping kids staying engaged

more consistently; sometimes, breaking into subgroups can offer certain

advantages. In our code club, we were able to run multiple workshops

in parallel, depending on how many volunteers we had that year. More

engaged kids mean less distracted kids. Finally, one of the most important

things to remember is to always enjoy the journey, by striving to learn and

having fun. Half the battle is showing kids how enthusiastic and excited

you are; keep them keen to attend and hesitant to leave!

�A Quick Tale: Jumping In with Our
Code Club
As mentioned earlier, some kids will race ahead or have prior experience

and will finish our initial base training content earlier than others. Of

course, we could ask them to help others for weeks until they catch up, but

ultimately this would prevent them from progressing or learning as quickly

as they probably could. Remember that a club or maker space should not

be something that kids feel is mandatory but that they want to be involved

with because it is interesting and exciting for them personally. Having

worked with some reasonably smart hackers and coders in the past, my

inner nerd felt that we should encourage kids to push ahead as much as

they wanted, assuming they were prepared to put in the effort – this got me

thinking about how I could facilitate this more efficiently and before kids

lost interest!

Our first idea was to find some new content, take a smaller group of

kids who had progressed faster, and look at how we could extend our Code

Club scope to accommodate them. How far you manage to get with most

of the kids using the initial content you started with will determine how

far you can go in the next part of your creative journey. Some years we

Chapter 2 Getting Our Hands Dirty with MicroPython

35

didn’t get as far as we’d like, and this meant not being able to do as many

workshops or extended activities. Other times, we would have a small

group of budding makers and coders who were content to work away on

harder projects, while the rest of the club did 3D design in TinkerCAD.1

That particular project was planned after one meeting after which we

delivered a very short five-slide presentation to the kids about building a

“smart” city.

The idea of “jumping in” relates to testing small components of our

projects or ideas as we go – it’s easy to conceive a very elaborate idea only

to find that it doesn’t work. So testing often and tracing through a small,

isolated component can be quicker and easier than searching through

large amounts of code or circuitry to find out which part(s) caused the

problem. Because Python also has an interactive “shell” that allows us

to try out Python code snippets live, kids can test how commands work

before incorporating them into a larger program. Then, by testing often

after each section of code is added, it becomes much easier to isolate any

problem code or unanticipated behavior at runtime. In short, starting with

something simple that works reduces the chances of problems becoming

overwhelming or code becoming overly complex.

Taking this approach of testing often before a project becomes

overwhelming means that kids feel more empowered by learning to break

solutions down into bite-size chunks. They also gain better visualization

into how the overall system works and will later be more able to implement

additional enhancements. As we progress with more projects, we can also

introduce concepts such as “don’t repeat yourself” (DRY) and learn how to

communicate clearly with some technical terminology.

1 www.tinkercad.com/

Chapter 2 Getting Our Hands Dirty with MicroPython

http://www.tinkercad.com/

36

INTRODUCING SOME TERMINOLOGY

While you work your way through your initial content, it can be useful to

introduce programming terminology. This helps establish a consistent way of

communicating when collaborating or while debugging something that isn’t

working as expected. These skills will come in handy for more challenging

projects. Some examples of this could be as follows:

•	 “So, this project is using a list structure to store the team

members’ names?”

•	 “Here’s our main loop, and it repeats these commands – we

call that iteration.”

•	 “How does our script make a decision?” (assuming someone

recalls a correct example; otherwise give more clues or explain

the answer), “…yes, and ‘if..then..else’ is a conditional
statement because it branches to a different place based on

this condition.”

•	 “Is this…a variable or a list?”

•	 “Remember that setting up all these variables at the start of

your program is called initialization.”

•	 “This variable never changes – so it’s called a constant.” There

are limits though, because calling something immutable (not

changeable) or mutable (can be changed) can be confusing for

kids, so it’s worth waiting for the object-oriented discussion to

bring these in.

Chapter 2 Getting Our Hands Dirty with MicroPython

37

�Tracking Progress
Knowing what level of skills each participant has reached is helpful when

selecting which kids are suited to which workshops. This is especially

beneficial when running these the first time and really helps stack the odds

in your favor. It can be frustrating for both you and kids if they go into a

workshop without enough skills to participate or contribute.

Often, when it comes to code clubs and maker groups, we learned

that the loudest kids aren’t necessarily the most prolific. Our experience

has been that it is important to know who has completed which projects

as the year progresses. Another frustrating problem came up with kids

who would look up solutions online and copy and paste them, but would

struggle or be negatively disruptive in the more advanced workshops

where they couldn’t get by just by copying the finished project.

This brings us to a question that I’m often asked, “How do you

keep track of everyone’s progress?” For our school-based code club, we

tried to leverage resources that the school already had – one platform

allowed kids to keep a diary of what they had done and take videos of

completed projects. However, this still lacked confirmation that kids were

understanding the code or had legitimately put in the effort rather than

copying and pasting the project code.

The solution we ended up having most success with keeps things

simple and efficient while ensuring that kids are understanding the code

and have indeed completed the project themselves.

After a few tries, here’s the process we found worked well for tracking

progress:

•	 Use a shared Google sheet to record progress of set

projects.

•	 Have kids demonstrate that their code works, “Can you

show me the working code?”

Chapter 2 Getting Our Hands Dirty with MicroPython

38

•	 Require volunteers to approve completion of projects

by asking the following questions:

•	 “How does the code work for (specific features)?”

•	 “What did you find challenging, or what parts did

you get stuck on, and how did you resolve the

problem or error?”

•	 Ask about concepts that were used, for example,

“So you used a dictionary data structure here, can

you explain how a dictionary is different to a list?”

Two positive side effects of having a volunteer verify completion

of projects are that we get to know individuals better and they receive

acknowledgment for their efforts from volunteers. Over the years, we had

seen kids who appeared to be quite distracted but knew the content and

really started to focus more once we gave them some recognition. It’s also

a chance for the kids to get to know your volunteers, and sometimes even

a quick conversation can show kids what we know, which instills more

enthusiasm after seeing that we get excited and know our stuff too. One

conversation I do often have relates to some of the challenges I personally

had when learning. I found that sometimes it was difficult to understand

something when it was explained the first time. Usually, I had to have it

explained another way or experiment with things myself. It may also be that

kids are wary of asking questions – sometimes in a school environment, they

may feel that this shows that they weren’t listening. I try to let them know

that we are committed to helping them succeed and encourage them to feel

comfortable with letting us know if they don’t understand something, so that

we can explain it in a different way that may make more sense to them.

The included projects in this book can be used without many or any

changes – however, I do encourage you to improvise and improve these or

customize them to your needs. I’ve also included various notes to explain

some concepts for you – you may want to remove these before using the

project in your own code club or maker group.

Chapter 2 Getting Our Hands Dirty with MicroPython

39

�What Can We Do in One Hour?
During our early attempts at weaning kids off Scratch, I tried to take a

group through some online Python resources. Although some of these

exercises had really appealed to me, for the kids rewards seemed low in

value compared to the effort required to complete them. Not everything

worked on the computers or network we had. We weren’t always using our

time efficiently, and the path to completion was fuzzy at best. One time,

one of the kids declared, “I don’t like Python because Python means I have

to type, and I don’t want to type.”

Later, we started kids off using Code Club Australia’s Python curriculum –

we worked hard to progress kids through the curriculum and to complete each

lesson before moving on. Following along with written steps made it easier for

kids to stay engaged without relying on someone to tell them what to do. This

freed us up to help when needed, while everyone else continued working.

Although running through Python lessons is useful, understanding is

another thing altogether. The important elements that translate from those

coding lessons to more blended hardware projects are as follows:

•	 Create easy wins for each session

•	 Show the final goal and make it cool

•	 Keep instructions simple

•	 Only provide essential information

Creating easy wins means setting your kids up for success. This

includes removing distractions, making tasks achievable, and making

sure things work. Showing the goal, whether it is a thing that kids will

make or an online interactive program, helps kids know that the effort will

be worthwhile. For this reason, the goal needs to be cool, and it doesn’t

hurt to get excited about it yourself, either. Simple instructions keep kids

progressing, and progressing is rewarding. The last element comes back to

my love of cheat sheets – this is empowering for kids, because it screams

“these are all the things you need to succeed!”

Chapter 2 Getting Our Hands Dirty with MicroPython

40

One of the best ways to emphasize value is to get things working

quickly. Given that so many things last for roughly an hour, for example,

TV shows and lunch breaks, writing projects that hit valuable milestones

or complete within an hour really demonstrates value. In other words, it

says, “In an hour, we will have done all this and learned tons!” The time

investment then appears very much more worthwhile, especially to kids.

This also builds enthusiasm when they go home and exclaim to their

families, “Look what we did today!”

While we initially used some of the fancier educational tech toys

that the school had access to, it turned out that some of the simpler tools

gave us easier rewards while providing the learning that promoted kids

to increasingly interesting projects. From some of the work I’d done in

preparing the Moonhack project for Code Club Australia in 2016, I had

heard about a fabulous device known as the BBC micro:bit from Rik of the

UK branch of Code Club. These helped kids learn to code while allowing

them to delve into electronics as well and were given out to school kids

across the UK. Unfortunately, these weren’t available for under $50 in

Australia at the time, so I started importing these to sell at a more reasonable

price. I started an online store to help kids get access to these. Eventually,

everyone caught on and micro:bits are now readily available in Australia.

�Introducing the BBC micro:bit
The BBC micro:bit is a pocket-sized computer that introduces
you to how software and hardware work together. It has an
LED light display, buttons, sensors and many input/output
features that, when programmed, let it interact with you and
your world.

Micro:bit Educational Foundation, 20212

2 https://microbit.org/get-started/first-steps/introduction/

Chapter 2 Getting Our Hands Dirty with MicroPython

https://microbit.org/get-started/first-steps/introduction/

41

The BBC micro:bit is a microcontroller board that doesn’t run a heavy

operating system like Windows, Linux, or MacOS. At the time of writing,

there have been two main versions of the micro:bit released – version 1

(V1) and version 2 (V2). If you’re unsure, you can find the version in the

lower-right corner on the back of your micro:bit.3

It does run a small blob of software called firmware which, among

other things, allows it to appear as a USB device when plugged into

your computer. When we write programs for the micro:bit, your code is

converted to a .hex file and transferred to the micro:bit’s memory where it

runs. For the micro:bit version of MicroPython, the .hex file also includes

the version of MicroPython that is used to run your program.

Tip  Be careful about laying the micro:bit down on a conductive
surface when it’s powered up, especially if you have aluminum
MacBooks, since it is really easy for kids to place the micro:bit on the
MacBook, which will short out the micro:bit and kill it.

�Setting Up an Editor
When programming Python on the micro:bit, we can edit our code using

the online editor or in an editor that is installed on a computer. Each editor

will also need to convert the MicroPython code into a .hex file that will be

copied onto the micro:bit’s storage, then run. The .hex file includes the

version of MicroPython supported by the editor.

Programming in an online editor is useful when a suitable editor cannot

be installed on the computers you are using. Installing a Python editor is

preferable to using an online editor, as it allows programming more than

just one device – once installed and set up, you can use it to program other

3 https://support.microbit.org/support/solutions/articles/19000119162-
how-to-identify-the-version-number-of-your-micro-bit

Chapter 2 Getting Our Hands Dirty with MicroPython

https://support.microbit.org/support/solutions/articles/19000119162-how-to-identify-the-version-number-of-your-micro-bit
https://support.microbit.org/support/solutions/articles/19000119162-how-to-identify-the-version-number-of-your-micro-bit

42

devices such as the range of Adafruit CircuitPython microcontroller boards.

Although there are many other editors you can use, I have limited our scope

to the editors that work “out of the box,” that is, they don’t require extra

plugins or multiple changes to do what we want.

The online MicroPython editor for the micro:bit can be found at

https://python.microbit.org/v/2 as shown in Figure 2-1.

Figure 2-1.  micro:bit Python web browser editor

The Mu and Thonny editors are quite easy to install, downloadable

from https://codewith.mu/en/download and https://thonny.org,

respectively. Both editors are available for Windows, MacOS, and Linux;

Thonny comes already installed on the Raspberry Pi operating system.

Both Mu and Thonny editors are integrated developer environments

(IDEs) that are designed to be easy for kids and beginners to use. This

means that they have basic features, but don’t complicate the interface

with any advanced features. Features such as syntax highlighting, which

colors the text to make it easier to see mistakes, command completion,

and automatic indenting are included. All three editors make it easy to

send the completed code and other files directly to the micro:bit or save

them for editing later; they also allow easy troubleshooting, by displaying

Chapter 2 Getting Our Hands Dirty with MicroPython

https://python.microbit.org/v/2
https://codewith.mu/en/download
https://thonny.org

43

code errors that occur when running with the micro:bit plugged into the

computer. Another useful debugging tool is a Python shell console or the

read-eval-print loop (REPL). The former lets you try Python commands

live before adding them to your code, and the latter allows you to see

error messages. The Mu editor REPL is shown at the bottom of Figure 2-2.

In contrast, the Mu editor is more visual, with large icons, whereas the

Thonny editor is menu based, with drop-down options.

Figure 2-2.  The Mu editor with the interactive shell and REPL
interfaces

Both editors support a range of devices and Python libraries. If you

want to work with microcontroller boards other than the micro:bit or

Adafruit CircuitPython boards, at the time of writing Thonny offers support

for a few more devices than the Mu editor. From the View menu, select

Chapter 2 Getting Our Hands Dirty with MicroPython

44

Files to show a tree view that will let you navigate the folders4 on your

computer for upload to your device. This is shown in Figure 2-3.

Figure 2-3.  Thonny Files view

The Mu editor typically only allows uploading from the working

directory that is set in its configuration file – if using the Mu editor,

remember to ask your IT person to set the working directory to a place

where you will save your files, for example, the Documents directory or a

home directory on your network. The latter is especially important when

your computers are shared, that is, people get a different computer for

each Code Club or maker group session.

4 Although this can be controversial, file folders are sometimes called “directories”
and vice versa

Chapter 2 Getting Our Hands Dirty with MicroPython

45

Figure 2-4.  The Thonny editor with the options window open

Tip I f the computers you are using have restricted access to the
Internet, your editor may need to be set up to access a proxy server
that allows access to download required programming libraries. For
Mu, you can point your IT person to this information page that explains
where to find the settings.json file that needs the proxy server
added. Your IT person will know the proxy server URL. For the Thonny
editor, this information will need to be added under Tools ➤ General
➤ Environment labeled as “Environment variables” in Figure 2-4.

Chapter 2 Getting Our Hands Dirty with MicroPython

46

The initial project I am going through was also published on my blog

in a more simple format and later in micro:mag magazine. The challenge is

something I’ve added for this book and was adapted from other micro:bit

projects we used at our code club. We have used this successfully on

Windows, Mac, and Linux operating systems.

A FIRST PROJECT: BBC MICRO:BIT EMOTICON SWITCHER USING BUTTONS

Here’s a simple MicroPython script that lets multiple micro:bits wirelessly send

emoticons to each other!

What you will learn

•	 How to use a dictionary structure to store multiple emoticon

images on the micro:bit

•	 How to structure our code to make it easier to add more

features

•	 How to retrieve indexed images from a dictionary

•	 How to use radio to send information to a group of micro:bits

listening on a specific channel

•	 How to use separate channels to group micro:bits

What you will need

•	 At least one or more BBC micro:bit microcontroller boards

•	 Micro USB cables and battery cages for each micro:bit (you’ll

need a USB hub or adapter to connect a USB-A cable if your

computer only has USB-C)

Chapter 2 Getting Our Hands Dirty with MicroPython

47

•	 A computer running Windows, MacOS, or Linux

•	 An installed editor for MicroPython (preferable) or a web browser

Let’s get started!

Displaying an image on the micro:bit can really be done in two lines of

Python code:

from microbit import *

display.show(Image.HEART)

That’s great to test that your micro:bit is working, but let’s write our code so

that it is scalable. This means making our code easy to add more features

to and build into larger projects. We will also learn more about structuring

our code to keep it manageable and readable, even once we add more

features to it.

Step 1: In our editor, we will begin by writing a new script and importing the

required micro:bit library module. This will let us call microbit functions

(commands) in our code. Click New (icon in the Mu editor and in

Thonny), and a new editor tab will appear. Clear out any code that is in there,

and type in the Python code listed as follows:

from microbit import *

This will import all the functions from the microbit library for us to use.

Note W hen importing library modules, the * means we don’t
need the microbit. prefix in front of each function we will
call – this makes typing a bit easier. In other words, if we type
import microbit, we would need to type the library name
before any function is called, for example, microbit.display.
scroll("hello") rather than just display.scroll("hello").

Chapter 2 Getting Our Hands Dirty with MicroPython

48

Step 2: Put the emoticons into a dictionary.

The micro:bit’s image class has built-in images that we can associate with

numerical keys in a dictionary structure. We’ll create a dictionary called

images right below the previous code. You’ll notice that I will include some of

the other Python code so you know where the new lines go; I will be bolding

the new code so that you know which lines to add. The gray lines are existing

lines and show where to add your new lines.

from microbit import *

images = {

 1: Image.HEART,

 2: Image.HEART_SMALL,

 3: Image.HAPPY,

 4: Image.SAD,

 5: Image.SURPRISED,

 6: Image.ANGRY,

 7: Image.ASLEEP,

 8: Image.BUTTERFLY,

 9: Image.DIAMOND,

 10: Image.CONFUSED,

 11: Image.COW,

 12: Image.PACMAN,

}

Tip  Indentation, that is, moving our text in from the left four spaces,
is a way to show that commands are inside of a loop or conditional
statement. You can use the tab key since all the editors we are using
convert tabs to four spaces. However, this is not always the case, so
be careful as it can cause errors if used in other editors.

Chapter 2 Getting Our Hands Dirty with MicroPython

49

If you are using the Mu editor, you have a few extra features:

You can click the Check icon to check that your code is indented and

formatted correctly. It will display errors so that you can fix them.

You can click the Tidy icon to arrange your code in a more readable way.

It will show you when your code is indented correctly by displaying a vertical

dotted line.

Step 3: Create an index.

We’ll use a variable to keep track of which emoticon image we have

“selected” and set this to 1. Add this line under the last one:

images = {

 1: Image.HEART,

 2: Image.HEART_SMALL,

 3: Image.HAPPY,

 4: Image.SAD,

 5: Image.SURPRISED,

 6: Image.ANGRY,

 7: Image.ASLEEP,

 8: Image.BUTTERFLY,

 9: Image.DIAMOND,

 10: Image.CONFUSED,

 11: Image.COW,

 12: Image.PACMAN,

}

index_num = 1

Step 4: Main loop and receive radio data.

Now we come to the main loop that keeps repeating while the script is

running. We add True so that it will run forever or until there is an error:

index_num = 1

while True:

Chapter 2 Getting Our Hands Dirty with MicroPython

50

Step 5: Do things when events occur.

The rest of the script is essentially saying “if something happens, do this,”

followed by displaying the selected image.

We will check for single button presses and increase or decrease the index_

num value using += and -=. Since the if statements are inside the while

loop, we need to make sure they are indented (moved four spaces to the right)

so they line up with the incoming line above:

while True:

 if button_b.is_pressed():

 index_num += 1

 if button_a.is_pressed():

 index_num -= 1

We need to make sure that index_num stays within the key values for the

images dictionary. Checking index_num will make sure that we don’t get

an error when we try to display our image from the dictionary. In this case, if

index_num is too high, we set it back to the first image, and if it gets too low,

we set it to the highest image index.

Reading the more structured Python code might make this clearer:

 if button_a.is_pressed():

 index_num -= 1

 if index_num > 12:

 index_num = 1

 elif index_num < 1:

 index_num = 12

Finally, display the currently selected image from images and wait for half

a second. Remember that we indent these last two lines four spaces only,

so that they’re only inside the while loop, but not inside the if..elif

commands.

Again, remember to only add the bolded lines of code – the other lines are

there to show the position of your new code:

Chapter 2 Getting Our Hands Dirty with MicroPython

51

 elif index_num < 1:

 index_num = 12

 display.show(images[index_num])

 sleep(500)

Let’s stop and look at how we tell our code which image to select, using

images[index_num]. Remember that images is the dictionary we

defined earlier. We also added our emoticon image names paired with a

number, for example, 1: Image.HEART is a key of 1 and a value of Image.

HEART. We then tell our program which image name to choose by putting the

number that is paired with our chosen emoticon in square brackets. In this

case, we have a number value stored in index_num, so we put it in square

brackets. We use sleep(500) to make our script wait long enough that the

image can be seen by a human.

Your code should now look like this:

from microbit import *

images = {

 1: Image.HEART,

 2: Image.HEART_SMALL,

 3: Image.HAPPY,

 4: Image.SAD,

 5: Image.SURPRISED,

 6: Image.ANGRY,

 7: Image.ASLEEP,

 8: Image.BUTTERFLY,

 9: Image.DIAMOND,

 10: Image.CONFUSED,

 11: Image.COW,

 12: Image.PACMAN,

}

index_num = 1

Chapter 2 Getting Our Hands Dirty with MicroPython

52

while True:

 if button_b.is_pressed():

 index_num += 1

 if button_a.is_pressed():

 index_num -= 1

 if index_num > 12:

 index_num = 1

 elif index_num < 1:

 index_num = 12

 display.show(images[index_num])

 sleep(500)

Save and flash your code to the micro:bit

On the Mu editor

	1.	 Click Save to save the Python code to your computer.

	2.	� Click Flash to create a .hex file and send it to a micro:bit

connected to your computer’s USB port. For a new micro:bit,

you may need to click the REPL icon twice to make the

Flash icon clickable.

If these buttons are not visible at the top of your Mu editor, click the Mode

button and select “BBC micro:bit.”

On the Thonny editor

	1.	A t the top of the Thonny window, click the File menu and select

“Save As” to save the Python code to your computer.

	2.	 Click the Run menu and select “Run current script” to flash the

.hex file to a micro:bit connected to your computer’s USB port.

If it doesn’t say “MicroPython (BBC micro:bit)” in the bottom-right corner, click

the Run menu, and choose “Select Interpreter” to select “BBC micro:bit.”

Chapter 2 Getting Our Hands Dirty with MicroPython

53

Using a web browser

If you are using a browser with WebUSB, connect your micro:bit to your

computer’s USB port and click the Connect icon. You will be prompted to

allow your micro:bit to connect (Figure 2-5).

Once this is done, you can send your code to the connected micro:bit by

clicking the Flash icon. The micro:bit light-emitting diode (LED) will flash

while your code is being…uh, flashed.

If you have an older browser or one that just doesn’t have WebUSB or just

doesn’t work, don’t worry because you can just download your .hex file and

copy it to your micro:bit. Your micro:bit will show up in your file manager, that

is, Explorer on Windows, Finder on MacOS, and File Manager or whatever you

have loaded on Linux.

Figure 2-5.  Connecting the micro:bit to the web editor

Chapter 2 Getting Our Hands Dirty with MicroPython

54

Click the Save icon , then you can select whether to save your Python

code to your computer or as a .hex file (Figure 2-6).

Figure 2-6.  Save your code as .py or.hex

The Python (.py) file will be loadable into other editors later, but the micro:bit

will need the .hex file. To copy this to your micro:bit, you should be able to

plug it into your computer and see a USB storage device. Then you can copy

the .hex file to the micro:bit.

Test your code!

Once you have sent your code to the micro:bit, it will restart and run your code.

If you have a battery pack, you can connect it after disconnecting your USB

cable. You should now be able to press the front buttons individually to change

the emoticon displayed on the front LED matrix (the square grid of LEDs on

the front of the micro:bit). If it works, that’s great and you can continue to the

section “Python Code Structure” and learn more about the code you just used.

What if my code doesn’t work?

Don’t worry – first, try the following steps:

	1.	 Check your code against the code listing.

	 a.	 Check for typing mistakes (typos) or missing symbols such as colons.

	 b.	 Make sure that the indenting is correct, that is, the lines “inside” of

your while (iterative loop) or if..then..elif (conditional) should

be indented two characters to the right.

Chapter 2 Getting Our Hands Dirty with MicroPython

55

	2.	 Make sure that there were no errors when you flashed the

code onto your micro:bit. If you have spares, try changing to a

different USB cable, or micro:bit, and try again.

	3.	Y ou can also see error messages from your code by accessing

the Python console (sometimes called a “shell”) while your

micro:bit is connected to your computer. Otherwise, reading the

error messages as they scroll across the micro:bit screen can

be more difficult!

Accessing the MicroPython REPL for Debugging

In the web browser Python editor

•	 You should be using a reasonably modern browser that

supports WebUSB.5

•	 Make sure your micro:bit is connected to your computer.

•	 Click the Serial icon.

•	 Hold down the control key and press the C key (Ctrl+C).

You should see the Python read-eval-print loop (REPL) console start up

(Figure 2-7). It will show you the version of MicroPython that you are running,

including some other details about your micro:bit. If you wanted to try out

some Python code, we could type it in here to see the results. At this stage, we

are just looking at checking for any errors in our running program, so we will

restart the program.

5 https://caniuse.com/webusb

Chapter 2 Getting Our Hands Dirty with MicroPython

https://caniuse.com/webusb

56

Figure 2-7.  Python REPL console on a web editor

To restart your code on the micro:bit, hold down Ctrl+D. If there’s any errors

when it runs, you’ll be able to see them, along with anything you decide to

print() in your program. Printing variables at specific times can be handy

to determine what might be going wrong. An example of an error is shown in

Figure 2-8.

Figure 2-8.  Example of a program error visible in the REPL

In the Mu editor

Click the REPL icon, and you’ll see the REPL console open below.

Use Ctrl+D to restart your program on the micro:bit and Ctrl+C to get back

to the interactive Python prompt (also known as the shell). You can try out

commands here, just like in the web editor REPL. Remember, you’ll need to

import the microbit library module to run micro:bit commands. To flash new

code to your micro:bit, you will need to exit the REPL by clicking the REPL

icon again.

Chapter 2 Getting Our Hands Dirty with MicroPython

57

In the Thonny editor
Go to the View menu and select Shell.

The REPL window will open below and give the same options as in the web

and Mu editors; use Ctrl+D to restart and Ctrl+C for an interactive Python

prompt. To exit the REPL, just untick Shell in the View menu.

Python code structure

Congratulations! You’ve just set up a way to continuously select emoticons

using an index from a dictionary! The basic structure of our program is as

follows:

	1.	 Initialization: Set up variables and data structure

	2.	 Main loop: Make our program continue to run until

something happens

Now let’s build some more features into our code!

Talking to other micro:bits over radio

Step 1: Configure and enable the radio.

First, we need to add the radio functions under our earlier import for the

microbit module:

from microbit import *

import radio

To configure the radio, we need to set the radio channel to 10 and turn the

radio on. We will use the .config() and .on() radio functions. Add the

following commands in our initialization section, just under the line that

creates our index_num variable and sets it to 1:

index_num = 1

radio.config(channel=10)

radio.on()

Chapter 2 Getting Our Hands Dirty with MicroPython

58

Note  The .config() function has a parameter called channel
passed to it, inside the brackets. The argument for that channel is 10.

Step 2: Receive radio messages.

Every time our while loop repeats, we want to store incoming radio

messages in a variable called incoming using the .receive() function. So

put this under the while True: line and indent it so that it is inside the loop:

while True:

 incoming = radio.receive()

 if button_b.is_pressed():

 index_num += 1

 if button_a.is_pressed():

 index_num -= 1

Note T o keep things simple, we haven’t done any validation on
the incoming radio data – you should be aware that this is reading
unchecked radio data into a variable, and a rogue radio transmission
could potentially exploit this, make your program crash, or do
something unexpected. However, for the sake of this exercise, let’s
assume you’re well away from such transmissions and possibly in a
Faraday cage or bunker of your choice.

If we receive an incoming radio broadcast, we are going to display the TARGET

image, wait for half a second, then convert the incoming data back to a

number using the int() function. Then we can use the display.show()

and sleep() functions to display the received image long enough to be seen:

 incoming = radio.receive()

 if button_b.is_pressed():

 index_num += 1

Chapter 2 Getting Our Hands Dirty with MicroPython

59

 if button_a.is_pressed():

 index_num -= 1

 if incoming:

 display.show(Image.TARGET)

 sleep(500)

 display.show(images[int(incoming)])

 sleep(2000)

Step 3: Send radio messages.

Our while loop repeats over and over, letting us change the index_num to

point to a different emoticon in our dictionary. To send our index_num value

to another micro:bit, we’ll need another button. How can we do this if we’ve

already used both the button_a and button_b? Luckily, we can detect

whether buttons A and B are pressed together by using if button_a.

is_pressed() and button_b.is_pressed():.

Make sure that you type this as one line up to the colon (:).
The str() function converts the number into a character that we can send.

Then we display the text “sending” so that we know that our emoticon has

been sent via radio:

 if button_b.is_pressed():

 index_num += 1

 if button_a.is_pressed():

 index_num -= 1

 if button_a.is_pressed() and button_b.is_pressed():

 radio.send(str(index_num))

 display.show('sending...')

 if incoming:

 display.show(Image.TARGET)

 sleep(500)

After waiting for a couple of seconds, our code will go back to displaying the

emoticon that we have selected. This is already in our code.

Chapter 2 Getting Our Hands Dirty with MicroPython

60

The entire script

To get a better idea of how this works, the whole script is listed as follows.

I have added comments – these lines begin with a hash #, and they are not

treated as commands. Comments are useful to make your code easier to read,

especially if someone else is trying to understand it.

from microbit import *

import radio

Create a dictonary of our emoticon images

images = {

 1: Image.HEART,

 2: Image.HEART_SMALL,

 3: Image.HAPPY,

 4: Image.SAD,

 5: Image.SURPRISED,

 6: Image.ANGRY,

 7: Image.ASLEEP,

 8: Image.BUTTERFLY,

 9: Image.DIAMOND,

 10: Image.CONFUSED,

 11: Image.COW,

 12: Image.PACMAN,

}

index_num = 1

Set the radio channel to 10

radio.config(channel=10)

radio.on()

while True:

 # Capture received radio data

 incoming = radio.receive()

 if button_b.is_pressed():

 index_num += 1

Chapter 2 Getting Our Hands Dirty with MicroPython

61

 if button_a.is_pressed():

 index_num -= 1

 # if both buttons pressed together then send

 if button_a.is_pressed() and button_b.is_pressed():

 radio.send(str(index_num))

 display.show("sending...")

 �# If there's incoming data, show the emoticon that's been

received

 if incoming:

 display.show(Image.TARGET)

 sleep(500)

 display.show(images[int(incoming)])

 sleep(2000)

 # Keep the index_num within the valid key range

 if index_num > 12:

 index_num = 1

 elif index_num < 1:

 index_num = 12

 # Show the current image

 display.show(images[index_num])

 sleep(500)

Save and flash the code onto a few micro:bits and try sending and receiving

emoticons; use the a and b buttons separately to select an emoticon, and press both

together to send. The sending micro:bit will scroll “sending…,” on its LED display,

and the chosen emoticon will appear on any other micro:bits on radio channel 10.

The code we have produced will both receive and send radio messages to other

micro:bits that are using the same radio channel – this means you can flash the

same code onto multiple micro:bits to send messages between a group on the

same channel! Change the channel argument to another number between 1 and

255, then you can have multiple groups of micro:bits receiving and sending to/

from one another, without interference with those on other channels.

Chapter 2 Getting Our Hands Dirty with MicroPython

62

�Scaling Up: Adding Challenges
Something I learned from writing various projects over the years for Code

Club Australia events is to always include at least one challenge at the end.

This serves two purposes; it makes the basic project an achievable goal

for everyone and then provides something extra for those who finish a bit

earlier. A challenge must be difficult enough to push kids to think about

the problem and break it down into small parts to formulate a working

solution, but it should also be within their capabilities. No one likes to put

effort into something that isn’t possible. Some of the feedback that Rik

from Code Club UK gave me was to include a hint for all challenges, to give

kids a basic idea of what is required.

Here’s a challenge for the preceding project. As a guide, the main

ingredients for a good challenge are as follows:

•	 It should help with understanding of the initial project.

•	 It should be achievable, yet require some thought and

understanding, and introduce something new.

•	 The hint should give enough information to set the

programmer in the right direction.

•	 It should be fun and interesting enough to

impress others.

CHALLENGE: TILT MICRO:BIT EMOTICON SWITCHER

Let’s look at how we can detect when the micro:bit is tilted left and right. The

micro:bit’s movement sensor is called an accelerometer. We can read the

movement of the micro:bit in the left/right (x axis), forward/back (y axis), and

up/down (z axis). For our left/right tilting, we can use the following function

call: accelerometer.get_x().

Chapter 2 Getting Our Hands Dirty with MicroPython

63

Challenge

Can you upgrade your program to use left and right tilting to replace the a and

b button controls?

Hints

You can check the tilt value of the micro:bit using this code:

x_tilt = accelerometer.get_x()

To check if a value is tilted to the right, you can use

If x_tilt > 400:

�Challenge Discussion and Solution
This challenge example requires kids to understand how their program

detects what button has been pressed and how it acts upon that event.

The following code from the previous project does this:

 if button_b.is_pressed():

 index_num += 1

 if button_a.is_pressed():

 index_num -= 1

We have given the hint that they need to capture the x axis value, so

we can put this right at the start of the loop, just after we capture the radio

message:

while True:

 # Capture received radio data

 incoming = radio.receive()

 x_tilt = accelerometer.get_x()

Chapter 2 Getting Our Hands Dirty with MicroPython

64

For the tilt controls, the values higher than 400 and lower than -400

indicate right and left tilting, respectively. So we can replace the if

button_a.is_pressed(): and if button_b.is_pressed(): sections with

the following code:

 if x_tilt > 400:

 index_num += 1

 if x_tilt < -400:

 index_num -= 1

This will let us use tilting instead of the buttons to select an emoticon.

The sleep() commands slow things down enough to prevent the

emoticons from changing too quickly. The latest micro:bit MicroPython

has what is called a debounce built into the buttons, which implements

a delay to allow them to be read cleanly. Otherwise, one press would

potentially be easily mistaken for multiple presses. The extra sleep()

commands make this more pronounced with the side effect of enabling a

more usable (stable) tilt response.

�Ideas for Even More Features
In addition to the two buttons on the front, our humble micro:bit also has

a bunch of other sensors that we can use. If you’ve got the micro:bit V1,

you’ll have the movement, light, temperature sensors, and resistive touch.

Resistive touch works by sensing when pins 1, 2, and 3 connect to the

ground (GND) pin. If you have the newer micro:bit V2, then you also have

a capacitive touch sensor on the logo, which can sense when you touch the

logo on the front.

Later in the book, we’ll look at more of these features. This initial

introduction should at least get you thinking about how to keep adding

more and more features to your projects. It is much easier to write projects

by first building a working program and working backward to break it

Chapter 2 Getting Our Hands Dirty with MicroPython

65

down into steps. Make sure you test every time you add a new feature.

We ran the project outlined in this chapter and had kids able to complete

it within an hour. If you’re running a workshop, try not to go over more

than ten kids per volunteer/teacher. This allows you time to be able to

help everyone. I have intentionally added more information than I would

ordinarily add, in order to explain more concepts. Ideally, it is easier to

only provide what is required to do the project and discuss more concepts

in the additional challenges. Try not to give everything away until kids have

made a good attempt at the challenge. I’ve had good results by just going

to a whiteboard and drawing up ideas to expand on things – this gives kids

a chance to collaborate and brainstorm. Then you can go in the direction

they choose as a group.

�Going Further: Adding External Components
So far, we’ve gone through how to scale up a project to go from a single

micro:bit to using multiple micro:bits for a group and included a challenge

to add features to the existing project. This should give you some ideas

about how to go about putting together more activities to cater for

diverging skillsets.

Our challenge utilized a feature that already existed on the micro:bit

hardware – but what about interacting with the world? How can we

demonstrate the incredible scope that Python opens up for us? Although,

on the surface, it looks like the micro:bit only has 3 pins, a 3.3V power

pin, and the GND pin, there’s actually 25 pins that we can use to connect

to! Although there’s a lot of pins that we can use, we’ll start simply. The

diagrams from the Micro:bit Foundation6 for the micro:bit V1 and V2

models show the pins more clearly in Figures 2-9 and 2-10.

6 https://tech.microbit.org/hardware/edgeconnector/

Chapter 2 Getting Our Hands Dirty with MicroPython

https://tech.microbit.org/hardware/edgeconnector/

66

Figure 2-9.  micro:bit V2 input/output pins

Chapter 2 Getting Our Hands Dirty with MicroPython

67

Figure 2-10.  micro:bit V1 input/output pins

There are a few methods of connecting wires to the larger pins by

using screws or crocodile clips or by using an edge connector. The edge

connector is the easiest way to connect to the micro:bit pins and is also

often the method used to interface accessory boards that allow connection

of larger numbers of motors, sensors, power, screens, and speaker

amplifiers. To make things simpler, we will start by adding a feature that

connects to the larger pins with power and GND.

Chapter 2 Getting Our Hands Dirty with MicroPython

68

Adding an amplified speaker

The micro:bit V1 does not have a speaker, but on the V2 there is a small

piezo speaker built in. The code to use the V2 speaker is the same as the

code used to play sounds through a speaker or headphone connected

to Pin 0 and GND. These solutions will not be very loud, so we’ll add an

amplified speaker. The Python code to make the micro:bit speak is quite

similar to displaying emoticons. The following code will play a HELLO

sound that comes in the microbit library module:

from microbit import *

audio.play(Sound.HELLO)

An amplified speaker board, such as the MonkMakes amplified

speaker for the micro:bit or the Kitronik speaker, uses 3.3V power from the

micro:bit’s 3.3V pin. You can see the three crocodile clip connections in

Figure 2-11.

The wire connected to input on the amplified speaker is used to send

data, with the other two wires sending power and acting as a ground

(GND). Even without an amplifier, you would still require input and

GND to make a complete circuit for a speaker or headphones. I have

intentionally chosen a very simple accessory to illustrate the way these can

gradually be used to make our projects more interesting. The easiest way

to write tutorials is to start simple and add one feature at a time, always

testing each step.

Chapter 2 Getting Our Hands Dirty with MicroPython

69

Figure 2-11.  Amplified speaker

As you write up your project, it can be useful to keep programming

concepts in mind – as you explain each section, feel free to describe

the functions and concepts that you are using. The aim is to empower

young makers to start getting creative with the skills they are learning.

Later, you can simply reference previous projects that your code club

kids have experienced, to give them confidence to combine what they

know to make something new and interesting. Once there is a working

prototype, they can start to add on extra features, one by one, just like

the challenge we added.Now it’s time for you to think about how you

can incorporate audio into your project that already includes radio and

tilt features! In the example project, we used the same code for all the

micro:bits – be prepared to run out of memory to load in all the required

functions into the micro:bit, at some point. When you do, you can simply

spread operations across multiple micro:bits by using radio to send the

required information between them!As you progress through this book,

Chapter 2 Getting Our Hands Dirty with MicroPython

70

we will delve into combining more components into projects. We’ll walk

you through some of the workshops we have developed over our code

club years.

�Summary
•	 Aim to keep kids engaged rather than just busy – this

means working on activities that are building their

skills and understanding when they start at your

code club.

•	 Understand that some kids will progress faster or

have prior knowledge – although they should at least

do the initial work to establish a consistent baseline

of knowledge, it’s OK for them to work ahead and

finish faster. Just make sure everyone completes each

exercise before moving to the next one and keep them

accountable by asking questions. Track progress, so

you know what stage everyone is at.

•	 You can use the web Python editor for the micro:bit,

Mu editor, or Thonny editor. These all work “out of the

box” and are simple by design but support the most

relevant functions for kids to learn with. Your IT person

may need to set the proxy as an environment variable

in a configuration file for the Mu editor and in the

general environment tab in Thonny. The web editor

can use WebUSB to flash your micro:bit directly or save

a .hex file to copy to the micro:bit in your file manager.

•	 Start preparing your code club volunteers for the point

where some kids will finish the base-level activities.

This will ensure that you’re ready to get them working

Chapter 2 Getting Our Hands Dirty with MicroPython

71

on more advanced tasks or even workshops if you have

enough kids completing the initial tutorials after a

few months.

•	 Let everyone know that they will all be at different

stages and that it’s OK. We had kids who worried that

they were “falling behind” because they missed a week

of code club – I mentioned that everyone would be

away at least one or two weeks over the whole year, so

it didn’t really matter, and they got back in and later

worked on some great projects!

•	 As you prepare a project, make that the initial basic

part can be completed easily – congratulate the kids

on making something that works. This will give kids

confidence to keep going. Start by showing the goal to

set expectations and keep kids interested.

•	 Write up your workshops so that kids can progress

while you are helping others. This lets you leverage

your time and still keep kids engaged and not 100%

dependent on you.

•	 Add challenges that introduce a new but similar

concept to what they’ve just learned. Give enough of a

hint that they have everything they need but must think

to put it together. Congratulate them on each additional

feature they add.

•	 Once you have learned about and used all the features

on the basic micro:bit, look at accessories that connect

through the input/output pins. In later chapters, we will

show how to expand more on this.

Chapter 2 Getting Our Hands Dirty with MicroPython

72

�Chapter 2: Cheat Sheet
�Introduction to the micro:bit
Table 2-1 summarises the main differences between the major micro:bit

versions.

�Editors/Integrated Development
Environments (IDEs)
Table 2-2 summarises the main differences between three popular editor types.

Table 2-1.  Feature comparison between micro:bit versions 1 and 2

micro:bit
Version

Audio Sensors General-Purpose I/O
Pins

Radio

1.x External

speaker

Temperature, LED as

brightness, accelerometer,

magnometer, resistive touch

25 with shared pins that

prevent use of certain

functions concurrently

Yes

2.0 Built-in

piezo

speaker

As before but include

microphone, capacitive

touch on logo

25 without shared pins Yes

Table 2-2.  Table of Python editors

Editor Installed? Works
with Other
Devices

Autocomplete
and Suggest
Commands

Supports
External Library
Modules

Web Just needs a browser micro:bit only Yes Yes

Thonny Yes Yes Yes Yes

Mu Yes and has a portable

version which still needs

admin rights on laptop

Yes Yes Yes

Chapter 2 Getting Our Hands Dirty with MicroPython

73

•	 Talk to IT staff and test installed programs.

•	 Explain where to configure network proxy access.

�Completing Initial Learning Projects
•	 Track progress.

•	 Ask questions to check for understanding.

•	 Help kids complete projects by discovering blocks.

•	 Give recognition.

•	 Set expectations of what you are trying to achieve.

�Creating New Projects
•	 Set expectations and requirements.

•	 Give an overview of the structure of the program to

help with understanding the design.

•	 Once you have a working project, break it down into

instructions.

•	 Keep introducing terminology to encourage

collaboration.

•	 Test and save at each milestone.

�Add Features with Challenges
•	 Increase understanding of the initial project by adding

a feature.

•	 Make it achievable.

•	 Provide a good hint.

•	 Make the feature worthwhile for the effort required.

Chapter 2 Getting Our Hands Dirty with MicroPython

74

�Terminology

•	 A dictionary is a data structure that consists of sets

of unique keys and associated values; the values can

contain various other structures such as lists. The keys

are used to look up the corresponding values so the

dictionary does not need a specific order. Dictionaries

are mutable (changeable).

•	 List: A list is a data structure that stores elements in a

specific order and is also mutable.

•	 Main loop: This is the main section of the program that

repeats. One repetition is called an iteration.

•	 Conditional statements: A decision-making statement

such as if..elif..else.

•	 Initialization: Setting up data and defining variables

and constants (mutable and immutable variables).

•	 Saving: Storing your Python code on your computer so

you can reload it for editing later, usually as a .py file.

•	 Flashing code to the device: Converting your code into

a binary file that can be loaded onto your micro:bit

device through your USB port. Although editors can

flash the file directly, this is often a .hex file.

Chapter 2 Getting Our Hands Dirty with MicroPython

75

CHAPTER 3

General Python
Programming
Although this chapter is called “General Python,” if you expected a generic

and detailed rundown on “how to program in Python,” then you may

be sorely disappointed. Years ago, information was sparse and learning

something often meant searching for multiple books or people who

could explain the same thing in lots of different ways, one of which would

hopefully make sense. These days, where we are practically drowning in

information overload, it is very much the opposite case, that is, sometimes

it can be easier to filter everything down to only the essential information

we need. More specifically, in this chapter the “General” part of the title

refers more to using Python on a computer that is running an operating

system (OS) than on a small microcontroller board that only runs a small

blob of firmware.

In our Code Club, we are teaching kids text-based programming in an

after-school time slot. This means keeping kids engaged to apply concepts

quickly and keep learning after a tiring day, which generally means getting

straight to the guts of how things work.

This is much more a hacker-style approach, which means

•	 Decide which are the most relevant concepts required

•	 Work out the quickest path to gain skills and

understand context of what we are doing

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_3

https://doi.org/10.1007/978-1-4842-9197-9_3

76

Rather than laboriously documenting every concept and detail, it’s

probably more useful to share some of the things that worked.

The strategy we ended up with is

•	 Give kids just enough information to be able to do

cool things

•	 Outline what they’ve learned to keep it fresh in

their minds

•	 Get them to apply these to their own projects as soon as

possible

This meant getting them through the initial chosen “curriculum” at

a reasonably fast rate before things became too tedious. Initially, kids

would jump ahead to new lessons each week, leaving a list of incomplete

lessons/projects in their wake. By abandoning projects rather than

pushing through or asking for help, they were missing valuable skills

gained from struggling through debugging and resolving our own code. So,

although it is important to progress, it is just as important to support kids

in completing projects while letting them know that it’s OK to progress at

their own rate because they are learning. Working through problems while

verbalizing a consistent thought process is a good way to encourage self-

sufficiency with debugging. We choose this as a structured way to learn

basic Python skills before progressing into workshops and applying them

to more advanced projects. In this case, we used the Code Club Australia

Python lessons, but as mentioned earlier, there’s lots of other alternatives,

depending on what works best for you.

Once we have helped kids to make their way through the initial learning,

we take the group through a summary of what they’ve learned. Even though

everyone does end up at a slightly different level of skill, outlining the basic

minimum concepts really empowers everyone to realize their capability at

this point. Most kids don’t realize how much they have learned; so, I simply

map the completed lessons to concepts learned. This boosts confidence and

empowers them with the understanding that they are now able to program.

Chapter 3 General Python Programming

77

I’ve included answers to some common questions about Python asked

by kids from our code clubs, volunteers, and primary school teachers

over the years. Being a star club meant that we would sometimes have

visiting secondary school teachers at some sessions, including code club

volunteers who would spend a few semesters helping. Some of the main

benefits of using Python are also included. Next, we look at a few ways a

Python program can be structured and follow up with some key concepts.

These are what I’ve found to be most useful to get started. For those who

wish to dig deeper, links to useful online resources are provided. The

aim is not to rewrite all the good information available online, but rather

point out the most useful things to know if you want to get started quickly

and easily. My hope is that if you are considering introducing Python at

your code club or maker space, you can avoid some of the mistakes we

made and benefit from the lessons we learned. Perhaps this will also help

to accelerate your journey and get you hitting more advanced activities

earlier.

Finally, an example project is included to create a bare-bones Python

web application to provide a user interface that can be accessed in a

web browser. Part of my choice to include this is that it always frustrated

me throughout high school when we were taught concepts without

context – this project aims to put some real-world context into some of

the skills kids have learned with Python, that is, you can use Python to

make something that can be accessed from a web browser. Although

this is not a beginner project, we have successfully given this to kids who

have completed a Python curriculum that covers all the concepts I talk

about in this chapter. This means that they have already worked through

practical lessons where they apply all these concepts. I designed the

web application project to show kids that what they have learned can be

applied in a way that interacts with the real world – a web application. By

completing this project, they learn that they can now apply their Python

knowledge with a web interface accessible from a browser! Note that

although this simple web application is initially only accessible on your

Chapter 3 General Python Programming

78

computer, the concepts learned are easily transferrable for a more widely

accessible version. Additionally, adding web interfaces to your projects

opens many possibilities, including access from mobile devices without

the need to build a dedicated mobile app. Some object-oriented concepts

are introduced within the concept of the project.

�A Quick Tale: Answers to Common
Questions – Weaning Off Blocks and Tablets
Block-based coding is an easy way for kids to get started coding. It’s big

and colorful – these days, most young kids have been exposed to digital

tablets, so dragging shapes around a screen leverages those existing skills.

Block coding can be analogous to how we start reading; we begin with

large letters and pictures, and the words we use are nice and simple with

few syllables. Once we can read more confidently, we move on to more

complex books with smaller letters and longer, more descriptive words

and phrasing. The result is a richer and more interesting experience. When

our Code Club consisted solely of Scratch block-based programming, we

noticed a plateau point where our Scratch programming became quite

complicated when compared to the equivalent Python. When we first

started our code club, the block-based programming was nice and easy for

us to teach, but in later years I assisted some younger school classes and

realized that kids straight out of kindergarten were now already learning

block-based coding!

Once kids can use blocks to code visually, understand various

programming constructs, and can think programmatically, we can push

the boundaries by making more elaborate programs to do more complex

operations. While not being as full featured as text-based languages, online

block-based programming languages such as MakeCode also help bridge

the gap between computers and electronic circuits. When we first started

looking at introducing Python to our code club kids, we noticed some

Chapter 3 General Python Programming

79

hesitancy after having used block-based programming until we explained

things a bit more. Since it’s inevitable that you’ll be asked similar questions

at your maker space or code club, I’ve included answers to some questions

that you may encounter.

A few common questions from kids, and sometimes teachers, include

	 1.	 Why are we using Python instead of Scratch/

MakeCode?

	 2.	 Why is Python so hard?

	 3.	 Why is Python so boring?

	 4.	 Why can’t we keep programming in Scratch/

MakeCode?

In case you’re wondering, some answers to these questions could be as

follows:

	 1.	 Python is more powerful than Scratch when

modeling solutions to real-world problems.

Scratch can really only let us do simple things, and

MakeCode can interact with some microcontroller

boards such as the BBC micro:bit, but Python has

thousands of libraries full of new commands and

can interact with many more electronic boards and

devices and talk to systems, for example, connecting

to computer networks, manipulation of complex

data structures, and interaction with other systems

at a very granular level, when required. Python also

has many more ways of handling data than simple

variables and lists that we have used in block-based

programming. Although there are cases where

Python is not fast enough, the concepts it teaches

can ultimately take us further than block-based

Chapter 3 General Python Programming

80

coding, and there is also the ability to embed lower-

level (more granular) languages within Python or

import this functionality as a module.

	 2.	 Python is reasonably simple but has a lot of features

that make it much easier than most other text-

based programming languages. It still has a visual

component due to the way indentation is enforced

to describe program structure; this encourages more

structured and therefore readable code. Python may

have seemed a lot harder with the old Idle editor1

and shell environment that came with it. These days,

we have some great editors that are simple enough

for kids to use while also allowing us to program

electronic devices. As you program more in Python,

you’ll see that there’s many tasks that are much

easier in Python than in block-based programming.

	 3.	 Python can seem boring if we are only thinking of

the visual aspect of block-based coding – making

monkeys move around our screen or sounds come

out of a drum icon can be easy wins that come from

block-based coding. What about if we wanted to

make something to talk to devices in our house

and make them accessible from a web browser?

What about all those devices or computers where

your block-based code can’t run? It’s more than

likely that something like Python will be more

useful in those cases. What about if we wanted to

connect to computers on the Internet and process

1 https://docs.python.org/3/library/idle.html

Chapter 3 General Python Programming

https://docs.python.org/3/library/idle.html

81

live information that comes from them? What if we

wanted to use Google Maps to track a device on a

vehicle? All these things are possible with Python.

Once we shift out of the limitations of just moving

objects around our own screen, Python is very much

more exciting than block-based coding!

	 4.	 It is completely possible to continue programming

in Scratch/MakeCode since these block-based

languages can be used on some robots and a

handful of electronic microcontroller boards and

accessories, including the PIC microcontroller

boards2 – however, this is still not as far-reaching

as Python’s large library of modules and does

not allow programming on the many electronic

microcontroller boards that support embedded

versions of Python, for example, Adafruit boards,

espresso boards such as the ESP8266 and ESP32,

RP2040, STM32, and other reasonably inexpensive

ARM-based processor boards. And since Python is

also a scripting language, it allows automation in

software tools, including 3D design tools such as

Blender and OpenSCAD.

I’ve mentioned that there’s a tipping point where programming starts

to become difficult with block-based systems and easier with a text-based

language like Python. If you never hit this point, then perhaps it’s fine to

keep using block-based programming, or perhaps it’s worth pushing the

boundaries until this happens. In some cases, kids may stagnate from

swimming only in the Scratch/MakeCode pool, without ever venturing into

2 https://en.wikipedia.org/wiki/PIC_microcontrollers

Chapter 3 General Python Programming

https://en.wikipedia.org/wiki/PIC_microcontrollers

82

the wider scope of a language such as Python. Python is one of the most

popular languages to learn since it is less wordy or complicated to use

and can automatically figure out what data types3 your variables or data

structures require. When I say “types,” this refers to how information can

be stored, for example, integer, floating-point decimal, words, or a larger

structure of these types, such as a list or array. It is also an interpreted

language for most uses, which means you can make changes and rerun

code immediately rather than waiting for the process of compiling your

code into a form that can run. The former is less intimidating and falls

nicely into our strategy of learning the basic concepts quickly. Python is

quite efficient to write as it doesn’t require encapsulating code sections

between matching brackets as often as other languages and uses a simple

format, a.k.a. “syntax.” This means that there are less symbols such as

trailing semicolons, curly brackets, and other things to worry about. Even

on devices, running a cut-down version of Python known as MicroPython4

allows us to debug quite easily and in a readable fashion.

Another reason for using Python early on is that kids just get used to

it. When we apprehensively approached it as “hard” for kids to learn, they

progressed much slower because of our attitudes.

When we encouraged kids to persevere and push toward completion

on the Code Club lessons, we had them record their progress and have a

volunteer or teacher ask them questions to confirm that they had indeed

completed the projects. When we neglected to confirm completion or kids

were allowed to stop and move on if they got “stuck,” they would ultimately

get much more frustrated in later workshops; so, this became something

we worked hard to enforce and let them get the most out of more advanced

projects. This was also a reason for ensuring kids have just enough help

to make timely progress so they would not get discouraged or bored. In

3 https://en.wikipedia.org/wiki/Data_type
4 https://micropython.org

Chapter 3 General Python Programming

https://en.wikipedia.org/wiki/Data_type
https://micropython.org

83

almost every year, there would be one or two kids who thought it was

smart to look up solutions and cut and paste them. This always proved to

be a pointless pursuit since they would invariably struggle to understand

anything as we progressed to more advanced or hybrid projects that

required a specific level of programming skills.

Tip  When going through the initial projects/lesson curriculum,
encourage kids to complete each one before moving on to the next.
It’s OK for everyone to be at different stages, and it’s OK to ask for
someone to explain something again in a different way.

In practice, the quickest way to get started was using an online

environment, such as https://trinket.io – this is used by the Code Club

Australia projects, and after a few false starts, we learned that this was a

good idea. This allows programming in the browser, but with the same

debugging capabilities as we would have on the computer. On trinket.io,

we can interact with online resources with enough scope to learn

the basics.

For the project included in this chapter, I have used the Thonny editor,

which runs on Mac, Windows, or Linux and comes already installed

on Raspberry Pi OS. This gives us a nicely contained environment to

use Python’s Flask module for web application programming, which is

not available on trinket.io at the time of writing. You can also use the

Mu editor in much the same way, apart from the initial differences in

configuration. In this chapter, we won’t be programming any devices.

At some point, it may also be useful to install Python on your

computers. To use the Python functionality in additional modules, you will

need to be able to download these using Python’s own pip installer – this

will require some configuration if your Internet access is filtered through

a proxy.

Chapter 3 General Python Programming

https://trinket.io

84

Note A proxy is an intermediary computer through which schools
route their Internet access. A proxy server holds a “cache” of
previously requested online data to speed up access to commonly
accessed information. Proxy servers can also protect us by filtering
potentially dangerous content on the Internet. Although this is
often invisibly set up on computers on a school or private network,
sometimes certain software may require specific settings to use the
proxy server and access the Internet.

�Python Program Structure
�A Friendly Python Environment on Your Computer
Trinket.io provides a beautifully simple environment to learn to write

Python and learn the basics. The Code Club lessons manage to do a

fine job of doing this with https://trinket.io (trinket), making all the

lessons accessible to anyone with a browser. However, a free account has

limitations, the main one being the restriction of not being able to import

some built-in Python modules that include some very useful features. The

point at which you will outgrow trinket.io is when you either want to run

code that runs on and interacts with hardware devices or when you want

to import modules that do not come built-in with Python. For example, the

project in this chapter uses the Flask module, which is typically not a built-

in module, but happens to come with certain Python editors.

Although it’s not so hard to install Python to your computer, finding

that elusive programming environment editor that satisfies our strategy to

supply only what is required was previously difficult. There’s a multitude

of code editors and environments that cater for the more advanced

programmers/developers, but until recent years, there was not really a very

kid- or beginner-friendly editor.

Chapter 3 General Python Programming

https://trinket.io

85

The main issues with many editors, when teaching kids, were

•	 Too many distracting features that they would not need yet

•	 Confusing interfaces that did not distinguish between

live programming and an editor

•	 Variations between operating systems

•	 Difficulty in maintaining the environment for less

technical teachers or volunteers

The answers to these issues have been solved with the Thonny and

Mu editors that were introduced in the last chapter. You will recall that we

used the device programming mode for the BBC micro:bit microcontroller

board. You’ll be happy to hear that there is also another mode that allows

you to run code on your computer – and yes, this solves all the preceding

problems for us! All we require is a simple mode change. The initial

configuration required for both editors is shown, after which only the

Thonny screenshots are shown for brevity.

�Thonny

To set up the Thonny editor for running Python on your computer, from the

top menu go to Tools ➤ Options. In the Interpreter tab, select The same

interpreter which runs Thonny (default), as shown in Figure 3-1.

Figure 3-1.  Setting Python mode in Thonny

Chapter 3 General Python Programming

86

�Mu Editor

In the Mu editor, click the Mode button in the top-left corner, and

select Python 3, as shown in Figure 3-2.

Figure 3-2.  Setting Python mode in the Mu editor

Now that we’ve set our mode to Python 3, let’s get coding (again)!

�Test Our Environment
As with most languages, the simplest and first program anyone learns

is often called “hello world.” It essentially prints “hello world” on your

screen. In Python, this can be done with one line (Listing 3-1).

Chapter 3 General Python Programming

87

Listing 3-1.  Printing “hello world” using Python

print("hello world")

Open a new tab and type this into your editor. In both Thonny and Mu

editors, when you click the run arrow button you’ll see a save file

window asking you where you want to save your script. Find somewhere

logical such as “documents” and use the rather boring filename of hello_

world.py. Once this is done, your program will run, and you’ll see “hello

world” printed out in your editor’s console. Congratulations, this means

your Python environment is set up correctly!

Since you can quite easily go through the Code Club or equivalent

lessons, I’m not going to bore you too much with all the Python commands

and rules. However, something that might be helpful now is to understand

some common structures of Python scripts.

�Installing Python Libraries in Thonny
You may recall my mentioning of the large number of Python modules or

libraries that extend its capabilities. Although the Mu editor does come

with Flask and few other useful libraries installed, Thonny does not – so it’s

worth showing you how to install these.

Note A s of version 1.0.2, the Mu editor does not easily allow adding
of external Python libraries – however, it does include some libraries
that fortunately cover those used in this chapter’s project.

Run your Thonny editor and select Manage packages from the Tools

drop-down menu (Figure 3-3).

Chapter 3 General Python Programming

88

Figure 3-3.  “Manage packages” from the Tools drop-down menu

From here, a window will open: Manage packages for <the location

of your Python3>. You can now type in the name of any library and click

Search on PyPi to find and click Install (Figure 3-4).

Figure 3-4.  Install package in Thonny

Although the Mu editor already has the required packages needed for

this chapter’s project, adding packages in Mu is a similar process: click

the cog in the bottom-right corner of the Mu editor, then type the package

name under the Third-Party Packages tab.5

5 https://codewith.mu/en/tutorials/1.1/pypi

Chapter 3 General Python Programming

https://codewith.mu/en/tutorials/1.1/pypi

89

MORE PROGRAMMING TERMINOLOGY AND CONCEPTS

Variables
Variables provide ways of storing data and should have meaningful names, for

example, counter, name, address. Variables can be of a variety of types, for

example, integers (int), decimal (float), words (string), etc.

Immutable/mutable
Variables can be mutable (changeable) or immutable (nonchangeable, also

known as constants, e.g., PI=3.142 or GRAVITY=9.8). Constants often use

uppercase names to differentiate from mutable variables in Python.

Data structures
We can store data in structures that make it easier to manipulate and retrieve;

these include the following:

•	 Lists: A list can contain a series of variables or other data

structures and is mutable. We denote a list by separating its

members with commas and surrounding a list with square

brackets, that is, [and]. In addition to performing additions and

deletions, we can also select sorted members or subgroups.

•	 Sets: Sets are like lists but only hold unique members. Set

members are separated by commas and surrounded by curly

brackets, that is, { and }. It can be useful to remove duplicates

in a list by converting it to a set, for example, mylist =

set(oldlist).

•	 Dictionaries: This structure consists of associated keys and

values and is immutable. Dictionary keys and values are

separated with a colon, with each value pair being separated

by a comma and the dictionary surrounded with curly brackets,

that is, { and }. As with lists, the value part of the pair can hold

other structures.

Chapter 3 General Python Programming

90

Loops/iteration
While loops are commonly used to repeat tasks until a condition is no longer

set, for example, the following code will continue until a random value of x is

generated that is larger than 4, whereas you can use while True: to repeat

until an error occurs.

while x>4:

 print(x)

 x = randint(0,8)

For loops can set specific values to iterate (count) through and can also be

useful to perform operations on each member of a data structure or from a

file, for example:

mylist = ["a", "n", "d"]

for c in mylist:

 print(c)

This will print and vertically.

In some cases, for loops can also be used within other expressions.

Conditionals
If..then..else can use conditions, for example, x>1, to perform different

commands depending on whether the condition is True or False.

Functions
Python has built-in functions such as print(), set(), or ord(). You can

pass information to them via parameters that are variables or data structures

in brackets (parentheses). One of the most powerful features of Python is

being able to define our own functions.

Note A function is defined by the form def <function
name>(<parameters separated by commas>): followed by the
code “inside” the function, indented. To return information back, you can
use the return command followed by the information to be returned.

Chapter 3 General Python Programming

91

An example of defining a custom function is

def add_num(number_one, number_two):

 answer = number_one + number_two

 return answer

We could then call our function inside print(), for example, print(add_

num(5,6)) to print 11.

Local and global variables
This can get complicated, but it is easy enough to think of a global variable as

being one that is able to be referenced from anywhere in your code, whereas

a local variable is only used within a function. This can be confusing, but to

prevent problems, you should pass values to functions via parameters rather

than referencing a variable globally.

Object oriented
The way I describe this concept to primary-aged kids is that we have objects

in Python to describe real-life things. These objects can have attributes, for

example, an object type of animal could have an attribute called legs. Then

methods are actions or functions that we can perform on instances of these

object types. Although this is not something we have delved into in our code

club, it has been useful to explain the idea when kids go through a project

called “Turtles” from Code Club Australia’s Python curriculum, because we

create instances of turtles that are racing against one another.

�Python Script Structure
Each year, our code club kids would work through their curriculums and

then find themselves stuck when asked to write a script to solve a problem.

To get them started, I would often describe a very simple program structure:

•	 Variables (a way to store values that we can modify,

“mutable”)

•	 Constants (variables that won’t change, “immutable”)

Chapter 3 General Python Programming

92

•	 Functions (custom commands that we define)

•	 Initialization (some code that we want to run once)

•	 Main loop or main function (where we put our code

that we want to keep running repeatedly)

•	 Any code we want to run after our main loop ends

That is essentially the same basic program structure that can be used

for most of your maker space or code club project scripts and is especially

common for projects that use microcontroller boards such as the BBC

micro:bit or even small single-board computers like the Raspberry Pi that

run an operating system. The next project uses a similar repeating program

structure and can be run as a workshop – typically, we have used this in

our code club as two one-hour sessions.

WRITING A PYTHON FLASK WEB APPLICATION

In this project, we will build a website that uses Python to perform tasks in the

background. Instead of displaying information with a text interface, we can send

our output to the user’s web browser. This kind of website is known as a web

application because it can process information rather than just displaying it.

We typically refer to the person using our web application as a “user.” You may

hear web programmers (developers) speaking about the user experience, which

relates to how a user experiences a web application through their browser, for

example, is it a smooth and flowing experience, or is it confusing and abrupt?

When the user visits the web application URL in their web browser, they will

see the form in Figure 3-5, where they can enter a temperature in degrees

Celsius and click Submit.

Chapter 3 General Python Programming

93

Figure 3-5.  Temperature input form in a web browser

Figure 3-6.  Web application result in a web browser

The application will then convert the temperature to degrees Fahrenheit

as shown in Figure 3-6.

The temperature link allows the user to go back to the start and calculate

another temperature.

What you will learn

•	 How to use the Python Flask module to create a website

•	 How to use web templates

•	 How to add web application pages (routes) with forms to allow

data input, processing, and output in a web browser

Chapter 3 General Python Programming

94

What you will need

•	 A computer with a Thonny or Mu editor set to Python 3 mode.

•	 Another computer connected to the same network (optional for

extended challenges).

•	 A basic understanding of HyperText Markup Language (HTML) –

don’t worry too much since I’ve included a cheat sheet.

Let’s get started!

As described earlier, our environment is already set up by installing a Thonny

or Mu editor and selecting Python 3 mode. We will save our script on the

computer and run the script inside our editor environment.

From this point, the project tasks are exactly the same in both editors – so only

Thonny screenshots have been included to keep things simple.

Step 1: Create some text in a website.

First, we need to create a flask object called app. You’ll notice that this is like

creating a variable, except that app will be a flask object.

In Python, just like how functions are used to perform actions on variables,

methods perform actions on objects. Objects can also have attributes.

Technically, in Python, all variables are actually objects and have types, for

example, a variable of string type can hold the characters “fred” and an

instance of a string that has this value could be first_name. A string attribute

could be its length, and functions (which are actually methods) such as

capitalize() or lower() can be performed on an instance of a string to change

the capitalization of its value.

The Flask() object has a run() method. We can run our app by adding

app.run() to the bottom of our program, as shown in Listing 3-2.

Chapter 3 General Python Programming

95

Listing 3-2.  Our first Python Flask program

from flask import Flask

app = Flask(__name__)

app.run()

If we ran our script now, we would not see anything, but we have created an

instance of a Flask() object called app. Our Flask() object has an attribute

called route(). When we define routes in app, it tells our web application

what code to run when a web browser requests a path, for example, in the

URL https://mypage.com/about, “about” would be the path. Add these

lines (bolded in Listing 3-3 for clarity) just above the app.run() line. The

@ symbol indicates that app.route(‘/’) is a decorator for the following

function. We say that the route decorator is wrapping the first_page()

function. This means that it extends extra functionality to that function,

allowing the returned data to be sent to your web browser.

Listing 3-3.  Adding a route at the path of ‘/’

from flask import Flask

app = Flask(__name__)

@app.route('/')

def first_page():

 return 'This is my first Flask page!'

app.run()

Save and run your project

You’ll be prompted to save your web application program after clicking the run

 arrow button. Save it as myapp-v1.py.

If all goes well and your web application is running without errors, you should

see the console output shown in Figure 3-7. If there’s any errors, check that

you have typed everything in correctly and try again. Note that the address in

the URL is 127.0.0.1, which is our computer’s loopback IP address. Although

Chapter 3 General Python Programming

https://mypage.com/about

96

it is possible to allow other computers on your network by changing the app.

run() command to app.run(‘0.0.0.0’), you should only do this if you’re

sure that you are on a closed network since this is just a test web server and

not safe enough to expose it to the Internet directly.

Figure 3-7.  Console output when running myapp-v1.py

There is now a web server running on your computer. Open a web browser

and type this URL in the address bar to visit your web application on port 5000

of your computer’s loopback network interface: http://127.0.0.1:5000/.

Alternatively, you could also type http://localhost:5000/, which is just

another name for the loopback address.

Note T he loopback interface is not a physical network interface, but
a separate virtual network interface which only allows your computer
to connect to itself.

As shown in Figure 3-8, you should now see “This is my first Flask page” in

your browser!

Figure 3-8.  Viewing the web application output in your web browser

Chapter 3 General Python Programming

97

Back in your editor, you’ll be able to see the raw requests that your browser is

making to your Python web application in the console just below your program

code, as shown in Figure 3-9.

The request made by your browser can be broken down as shown in Table 3-1.

In this book, we will mostly be using GET and POST requests, the latter often

being used for submitting data from a form on a web page. The response code

is a number that is sent back to your browser. 200 means that the request was

successful. If the browser requested a page that our web application did not

recognize, it would have returned a 404 – not found response code.

Table 3-1.  Browser request components

Type of Request Path Response Code

GET / 200

Figure 3-9.  Thonny console output

Chapter 3 General Python Programming

98

Step 2: Create a form.

In this step, you’ll learn how to create a form in HyperText Markup Language

(HTML) and use it to send information to your web application, so it can be

processed.

So far, we’ve just sent text back to our browser. It’s rather plain, so we can

use HTML to add some markup (formatting) tags to make it look better when

displayed in your browser. HTML alone is static, meaning that it doesn’t

change, but by using Python with the Flask module, we can do tasks such as

calculate or retrieve data from other locations, based on the information sent

to our web application.

Press Ctrl+C in your editor to stop your Python script from running. Now

try adding the <h1> HTML heading tags to the return line in your code

(Listing 3-4).

Listing 3-4.  Adding heading1 tags

from flask import Flask

app = Flask(__name__)

@app.route('/')

def first_page():

 return '<h1>This is my first Flask page!</h1>'

app.run()

Rerun your script and go to the same URL in your browser. You’ll notice that

your text is now a heading (Figure 3-10).

Figure 3-10.  Heading text displayed in your web browser

Chapter 3 General Python Programming

99

We could send a whole HTML web page to the web browser – however, rather

than adding lots of HTML tags and text to our script, we can use something

called a template!

NAVIGATING YOUR COMPUTER’S FILESYSTEM

Your computer’s operating system has a graphical file manager. In macOS, this

is Finder; in Windows, it is File Explorer; and in Linux or Raspberry Pi

OS, it can vary depending on which window manager you are using. However,

in keeping with the theme of being a curious maker/hacker, I would really

encourage you to explore using text-based command-line interfaces that

exist on most desktop and laptop operating systems. There are many ways to

access these interfaces, but on Windows you can press Windows Key + x;

on macOS, you can search for “terminal” after pressing Cmd + space; and

on Linux or Raspberry Pi, there are multiple ways, but often control + alt

+ t will open a command-line interface.

While running workshops, it’s useful to include a cheat sheet limited to only

the commands required. Here’s one for some command-line interface (CLI)

commands with the operating system listed in the left column (Table 3-2).

Chapter 3 General Python Programming

100

Table 3-2.  Some common command-line commands

Operating System Command Usage Example Description

macOS, Linux,

including Raspberry

Pi OS

ls ls Documents List contents of a

directory

cd cd Documents Change to directory

mkdir mkdir test Create a directory

Windows dir dir Documents List contents of a

directory

cd cd Documents Change to a directory

mkdir mkdir test Create a directory

OK – back to creating our templates directory! Create a new directory

where your myapp-v1.py file is saved and call it templates (all lowercase).

In this directory, we will store our HTML templates for our application.

We are going to create .html files inside the templates directory. These

files are going to include special tags that will allow us to populate them

with our data and return them to the user’s browser.

The eventual structure of our directory and files is shown in the

screenshot in Figure 3-11. I’ve shown you this before we have created all

the files because it’s more useful to show you what we are going to do than

to reveal it later.

Figure 3-11.  Our directory structure

Chapter 3 General Python Programming

101

Now let’s create an HTML form to read in a temperature value to

be converted. Our Python editor likes to use .py files, so we will use the

default text editor on our computer.

YOUR OPERATING SYSTEM’S DEFAULT TEXT EDITOR

Every operating system has at least one basic text editor that we can use to

edit an .html file. Table 3-3 shows these for each operating system.

Again, I would encourage you to investigate the command-line interface (CLI)

options, but notepad can easily be found in the Windows program menu.

Create a new file in your operating system’s text editor with the HTML

content in Listing 3-5.

Listing 3-5.  HTML template contents

<html>

 <body>

 �<p>Enter a temperature in degrees celsius to convert to

fahrenheit:</p>

 <form action = "/convert_result" method = "POST">

Table 3-3.  Table of text editors included in common

operating systems

Operating System Editor Name Location

macOS textedit.app /Applications/

Utilities/

Windows notepad.exe C:\Windows\system32\

Linux, Raspberry Pi OS nano Type nano from the CLI

Chapter 3 General Python Programming

102

 <input type="text" name="value_entered">

 <input type="submit" value="Submit">

 </form>

 </body>

</html>

HTML CHEAT SHEET

HTML allows us to add markup to our text displayed in the browser. To get

you started, I’ve included descriptions for the tags we are using (Table 3-4).

The double dots indicate where we place our text that is to be marked up by

the tags.

Save your template

Save your template into your previously created templates directory as

convert.html.

Table 3-4.  Some HTML tags and what they do

HTML Tags Description

<html>..</html> The start and end of our web page. This can include other

parts of our page, such as title, headings, body, and more

<body>..</body> The main body of the web page to be displayed

<h1>..</h1> Set the text to boldness and size for the top level, Heading 1

<form>..</form> This creates a form and will include form elements such as

buttons and areas where users can enter text input. This

HTML element usually has added attributes in the first tag,

which change the form’s behavior

Chapter 3 General Python Programming

103

Step 3: Add another route.

Now that we’ve made our HTML template file, let’s add another route in our

application to display the form we just created. You can think of routes as the

paths that are at the end of URLs, for example:

http://application.com/convert_temp

Now we need to use the render_template function from Flask. Add this to

the import statement at the top of your myapp-v1.py script (Listing 3-6).

Listing 3-6.  Add the render_template import from the

flask library

from flask import Flask, render_template

Add another route to your myapp-v1.py script just above the app.run()

line (Listing 3-7).

Listing 3-7.  Add another route at ‘/convert_temp’

from flask import Flask

app = Flask(__name__)

@app.route('/')

def first_page():

 return 'This is my first Flask page!'

@app.route('/convert_temp')

def convert_temp():

 return render_template('convert.html')

app.run()

Save your Python script

Save your myapp-v1.py script. You will notice that instead of returning text to

the browser, we’re telling our script to show our template by using render_

template('convert.html').

Chapter 3 General Python Programming

104

Test your project

Run your web application, then view the /convert_temp path in your

browser.

The URL will now be http://localhost:5000/convert_temp.

You should see our new form and a submit button. However, clicking Submit

won’t work until we tell our script where to send the form information!

Step 4: Collect the form data.

In this step, we will create a destination to send the information entered in our

HTML form. The action attribute in our HTML for template will point to a route/

path called /convert_result. This will be a page where our calculated

temperature will be displayed in the browser.

We will be using the request function from the Flask module, so add this to

the first import line of your myapp-v1.py script (Listing 3-8).

Listing 3-8.  Add the request import from the flask library

from flask import Flask, render_template, request

When we visit a URL in a web browser, a GET request is made by the browser

to retrieve the web page. When we submit data in an HTML form, this creates

a POST request that sends information to our Python script. In your script

above the last route and above app.run(), add another route that allows

POST and GET requests (Listing 3-9)

Figure 3-12.  Temperature conversion form in a browser

Chapter 3 General Python Programming

105

Listing 3-9.  Add another route at ‘/convert_result’

@app.route('/convert_result', methods = ['POST', 'GET'])

Let’s write a function to perform a calculation if data has been POSTed to our

form (Listing 3-10). The data from our form needs to be converted to a float

type of variable, because it will be a decimal number. We use a float()

function to do this and store it in the value variable. Note that the backslash “\”

indicates that the line continues, so you can leave it out and have a continuous

line up to the closing bracket.

Listing 3-10.  Defining a function to calculate a value for the ‘/

convert_result’ path

def converted():

 if request.method == 'POST':

 value = float(request.form['value_entered'])

 answer = (value * 1.8) + 32

 return render_template('conversion_result.html', \

value = value, answer = answer)

Make sure that the last return is all in one line. Again, a backslash is included

to remind us, but you shouldn’t need to include it. The answer is calculated

and sent to a new HTML template called conversion_result.html

(Listing 3-11).

Listing 3-11.  Contents of conversion_result.html

<!doctype html>

<html>

 <body>

 �<p>{{ value }} degrees celsius is {{ answer }} degrees in

fahrenheit.</p>

 �<p>Calculate another temperature?</p>

 </body>

</html>

Chapter 3 General Python Programming

106

Save your project

Click the save icon in your editor to save changes made to your file:

myapp-v1.py.

Listing 3-12 shows what our script should now look like with all three routes

defined.

Listing 3-12.  Three routes added

from flask import Flask, render_template, request

app = Flask(__name__)

@app.route('/')

def mypage():

 return 'This is my first flask app'

@app.route('/convert_temp')

def convert_temp():

 return render_template('convert.html')

@app.route('/convert_result', methods = ['POST', 'GET'])

def converted():

 if request.method == 'POST':

 value = float(request.form['value_entered'])

 answer = (value * 1.8) + 32

 return render_template('conversion_result.html', value =

value, answer = answer)

app.run

Notice that we send the conversion_result.html template to the browser

to display the converted temperature – we need to write that next, but first we

need to test that everything works as expected!

Chapter 3 General Python Programming

107

Test your project

Run your Python Flask project, then visit the URL http://localhost:5000/

convert_temp in your web browser.

You should now be able to type in a temperature in degrees Celsius and hit

submit to be taken to the /convert_result page, where the calculated

Fahrenheit temperature will be displayed (Figure 3-13).

Troubleshooting

If your code doesn’t work as expected, you can add app.debug = True

above app.run(). This is OK to do since our web application is not exposed

to the Internet.

Note Y ou should understand that anything that is exposed to the
Internet is available to everyone worldwide. The Python Flask server
we are using for testing is not suitably strengthened (hardened) to be
exposed to the Internet.

Congratulations! You just wrote your first web application in Python!

Figure 3-13.  Convert_result page showing calculated temperature

Chapter 3 General Python Programming

108

CHALLENGE: CREATE A DROP-DOWN SELECTOR TO CONVERT
FAHRENHEIT TO CELSIUS

For this challenge, you need to add an option to allow the user to choose

between “Celsius to Fahrenheit” and “Fahrenheit to Celsius.” The user can

use a drop-down selector to choose between the two calculation types in the

form. You’ll also need to assign the value entered in the form to a variable.

Use if..elif to perform a different calculation depending on the selection

in the form. An example of the changes you’ll need in the form template, to

add the selection box HTML, is included (Listing 3-13).

Listing 3-13.  HTML template with a form to allow selection of

two calculations

<html>

 <body>

 <p>Select units and a value to convert.</p>

 <form action = "/convert_result" id= "conversion_type" \

 method = "POST">

 <select name="conversion">

 <option value="c2f">Celsius to fahrenheit</option>

 <option value="f2c">Fahrenheit to celsius</option>

 </select>

 <input type="text" name="value_entered">

 <input type="submit" value="Submit">

 </form>

 </body>

</html>

Now add some code to the /convert_result route in your Python script.

You can use if..elif again to perform different calculations based on the

user’s selection.

Chapter 3 General Python Programming

109

Just like how we got the value from the earlier form, you can get the

conversion option using the following code:

calculation = request.form['conversion']

The other information you will need is the formula for calculating Fahrenheit to

Celsius: answer = (value = 32)/1.8.

Happy coding!

�Going Further: Internet and Other Devices
The Flask server we have been using is the easiest and safest way for you to

immediately test your web application script. It restricts everything to the

loopback interface and doesn’t let anyone else connect.

�On Your Private Network

Changing the app.run() command to include all interfaces with app.

run(‘0.0.0.0’) is only safe if you are on your own private network and

you trust the other people on that network.

�Using Your Mobile Device

Another variation on the local network scenario would be connecting your

computer to your mobile phone’s Wi-Fi access point – as long as this is the

only network you are connected to at the time, this puts you on the internal

network shared by your phone and your computer. Find your computer’s IP

address by looking at the network properties on your computer. In keeping

with also using the CLI, you can also go into your terminal and type:

•	 ipconfig /all on Windows

•	 ip a on Linux or a Raspberry Pi

•	 ifconfig on macOS

Chapter 3 General Python Programming

110

You can then run your script and view your web application from your

phone’s web browser using http://<your IP address>:5000/.

�The Internet

The obvious question would be, “How can we make our web application

available to friends on the Internet?” Our little Flask web server will not

handle more than one connection easily and is also not suitably hardened

for exposure to somewhere as hostile as the Internet. The best way is

therefore to use a web server such as NGINX (sounds like “engine-X”)

using something called uWSGI (sounds like “you whisky”). Technically,

this is a topic itself, so rather than try to explain this here, I will point you

to the page within the official online uWSGI documentation at https://

uwsgi-docs.readthedocs.io/en/latest/WSGIquickstart.html. Note

that although this is a step-by-step set of instructions, this is the time to

leverage your technical support people and see if they can set up a server

for you to host your scripts. Another online service can be found at www.

pythonanywhere.com/, although at the time of writing, this does not

allow members under the age of 13 years old but does offer a free plan.

A good alternative may be that they can set up a server within your own

network, for example, where other students at the school could see your

applications, rather than everyone in the world.

�Summary
•	 Programming with block-based languages, for

example, Scratch and MakeCode, can reach a plateau

due to limitations in data handling capabilities. The

extensibility and more advanced data structures

and commands supported by Python make it a

viable alternative to block-based programming; it is

Chapter 3 General Python Programming

https://uwsgi-docs.readthedocs.io/en/latest/WSGIquickstart.html
https://uwsgi-docs.readthedocs.io/en/latest/WSGIquickstart.html
https://www.pythonanywhere.com/
https://www.pythonanywhere.com/

111

supported on a wider range of microcontroller boards

suitable for maker space and code club projects.

•	 Basic Python skills can be learned initially with

browser-based platforms such as https://trinket.io.

Using a set online curriculum such as code club or

similar gave us an easy path to learning those skills

on Trinket (around eight projects). Making the effort

to see each project through to completion helped our

code club kids to obtain invaluable debugging skills.

This required active support from our teachers and

volunteers, ensuring that our kids had everything they

needed. The aim was to be efficient while keeping a

focus on learning and seeing each project through to

completion. To capitalize on learning, we applied these

skills in small group workshops.

•	 The next step is to set up a convenient programming

environment that allows us to extend Python further

than Trinket.io. Thonny and Mu editors come with a

Python 3 mode in addition to allowing programming

on microcontroller boards (also known as embedded

programming). The Mu editor comes with some

additional libraries already installed and also allows

adding of more. Thonny has a couple of advantages

compared to the Mu editor:

•	 It supports a wider range of embedded platforms.

•	 It comes installed by default on the Raspberry Pi

operating system (OS).

Chapter 3 General Python Programming

https://trinket.io

112

Note L everage your IT support people to ensure you have the
required Internet access; this may need a proxy server configured in
the environment variables https_proxy and http_proxy for your
operating system. Another useful setting for schools includes setting
a network home drive as the working directory:

 In Thonny, set this in the configuration.ini file.6

 In Mu, set this in the settings.json file.7

•	 Outlining common Python program structure is useful

when kids are tasked with creating their own scripts

to solve a problem. An included project incorporates

the Flask library to create a working web application

to convert temperature from Celsius to Fahrenheit. We

have a challenge to add the option for the user to select

between the original functionality and from Fahrenheit

to Celsius. This project includes relevant cheat sheets

for limited HTML and operating system commands.

The concepts we learn will allow us to create web

interfaces for our programs, which can allow our

Python programs to be used in browsers on computers

and mobile devices. Interesting concepts learned from

this project include

•	 Creating an instance of a Flask object (object-

oriented programming or OOP)

6 https://github.com/thonny/thonny/wiki/MicroPython
7 https://codewith.mu/en/tutorials/1.1/configuration

Chapter 3 General Python Programming

https://github.com/thonny/thonny/wiki/MicroPython
https://codewith.mu/en/tutorials/1.1/configuration

113

•	 Using HTML templates for input/output

•	 Adding debugging in a test environment and why

this is not appropriate for exposure to the Internet

•	 Defining our own custom commands, known as

functions

•	 Using Python decorators to add features to our

defined functions

•	 Understanding the directory structure required for

a Flask web application and how to edit .html files

with common text editors

•	 Testing web applications on a mobile device

�Chapter 3: Cheat Sheet
I have included cheat sheets throughout this chapter at the points where

they are most relevant. These may be cut out and printed on a separate

page if you are using these for a workshop at your own code club or

maker space.

In summary

•	 Browser request types and browser response codes

(Table 3-1)

•	 Common command-line commands (Table 3-2)

•	 Text editors found in common operating systems

(Table 3-3)

•	 HTML tags used in our project (Table 3-4)

Chapter 3 General Python Programming

115

CHAPTER 4

Getting Tactile
with Python

Creativity is a wild mind and a disciplined eye.

—Dorothy Parker

Making things with your hands is engaging – one way to stop someone

from fidgeting is to give them something to hold and play with. In this

chapter, we add some crafty skills to the mix and leverage our other skills

to tie everything together.

�A Quick Tale: Keeping It Simple
to Build Bigger
One of the earlier workshops we ran at our code club leveraged a couple of

JoyLabz’ Makey Makey1 boards that we’d been given. By shorting copper

arrows and circles on the Makey Makey circuit board to the ground, kids

can trigger keypresses via a USB cable connected to a computer. At that

point, we were still using Scratch, but I felt it was worth a mention as some

valuable lessons were learned during that activity.

1 https://makeymakey.com/

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_4

https://makeymakey.com/
https://doi.org/10.1007/978-1-4842-9197-9_4

116

The initial objective was for our kids to draw an idea that would utilize

the Makey Makey in creative and interesting ways. We provided some

sticky tape, aluminum foil, corrugated cardboard, and some crocodile clip

wires. After explaining how the Makey Makey worked, I suggested that the

kids should draw a rectangle to represent the screen and then design a

real-world object with cardboard and foil.

The first mistake we made when initially selecting participants was

to let a few of the louder but not necessarily hardest-working kids do

the activity. As they had not completed much of the Scratch curriculum

activities, their grasp of programming was limited, resulting in them

struggling to come up with viable ideas or a way to implement them. From

this, we learned to qualify those who were ready to participate in the more

freeform and complex workshops. We were to later discover that some of

the louder kids were getting through just by copying projects from their

friends or online. Intervening with these situations earlier turned out to

be a better strategy as we could find where or why things went astray, and

by reengaging many of the kids, this discouraged time wasting before it

became a problem.

Another mistake was more nuanced – I suggested that the kids start

off by keeping things simple, that is, design only the essential gameplay,

but they ultimately overengineered their ideas and soon became

overwhelmed. To kickstart things a bit, I hinted at a Whack-a-Mole game or

musical instrument concept – due to our poor choices earlier, the latter did

not materialize because we selected those without all the required skills.

Luckily, a code club kid named Ajay had a go at the Whack-a-Mole

game. Checking in with him, it was clear that he was quite eager but like

some of the others had rushed ahead and been overcome by complexity.

Bringing things back to first principles, we took him aside and drew a

rectangle on some paper. In the rectangle, Ajay drew a very basic concept

of what the game would look like, that is, a circle to represent a hole and

a small creature popping their head up. We then drew a hammer, and I

started asking questions. Pointing to each item on the paper, I would ask

Chapter 4 Getting Tactile with Python

117

simply, “what does this need to do?” and “when does this happen?” This

established the basic events, and Ajay was then able to describe each event

in simple terms. At that point, his eyes lit up, and he realized that he could

visualize how the code would work. Every step of the way, we tested, and

then he made foil-covered cardboard circles on a board and a foil-covered

“hammer” with a wire to complete the circuit (pressing a key) when

touched to the circles. From this rather clumsy foray into workshops, we

learned to first qualify kids for future workshops and teach them to break

down ideas into simple tasks. This allowed them to still think creatively but

be able to produce something that worked, within time constraints. It also

meant that kids started to get increased.

�E-textiles: Building Circuits on Fabric
and Cardboard
Growing up in Australia, my visual media was restricted to a limited diet of

shows broadcast across five or so TV channels. While most of these served

only to encourage passive consumption, one standout was The Curiosity

Show. Comprised of science- and craft-related projects that could be

made from everyday materials and objects available around the house,

The Curiosity Show seemed to have that extra spark that got me thinking;

luckily, much of this still exists on YouTube.2 I fondly recall how the hosts,

Dean and Rob, had a knack for inspiring me to start building things with

everyday items, which I would not have otherwise considered. Similarly,

there’s a certain appeal with e-textiles and cardboard circuits that makes

us look that little bit harder at how we can combine some common

materials with inexpensive accessories to create some wonderfully

interactive projects.

2 www.youtube.com/@CuriosityShow

Chapter 4 Getting Tactile with Python

http://www.youtube.com/@CuriosityShow

118

�Starting with a Simple Circuit
Enough reminiscing! Here’s a simple circuit (Figure 4-1). We have power

flowing from the positive terminal (+) of our 3V power supply to its ground

terminal. There is a light-emitting diode (LED), a resistor, and a switch.

Resistors can reduce current flow and divide the voltage of the circuit so

that other components will receive less power.

Figure 4-1.  A simple circuit

Later, we can add sensor inputs, some microcontroller programming,

and other outputs and many more things, but for now let’s look at

implementing our simple circuit in an e-textiles context – a wearable cap!

As I mentioned, the circuit in Figure 4-1 shows a resistor – this is

because a standard circuit built with wires and a larger power supply

will require a lower voltage to prevent damage to the LED. In practice, a

conductive thread and copper tape that we will use have more resistance

than copper wire, and this resistance increases with length. Some LEDs

are also designed specifically for e-textile use and come with integrated

resistors and larger holes for sewn connections (Figure 4-2).

Chapter 4 Getting Tactile with Python

119

Figure 4-2.  An e-textile LED with a built-in resistor on the left

While we are on the topic of power, coin cell batteries were previously

used to power e-textile and paper circuits; however, due to dangers to

small children when swallowed, legislation in Australia now prevents the

sale of coin cell devices without robust battery compartments and captive

screws. After speaking with teachers, we agreed that we now require a safe

and readily available alternative – so we will be working only with safer,

cheaper, and longer-lasting dry cell batteries in this chapter.

�Considerations for E-textile Projects
�Washability

The first question I asked about e-textiles was, “Can I wash circuits?”

The answer is “yes, but it depends.” If your materials resist corrosion

and moisture damage, your project will last for many washes. Stainless

steel is the best – it won’t rust or go black and lose its conductivity. How

you wash and dry your projects will also make a difference. If you have

less moisture-resistant materials, you will need to wash less and dry as

quickly as possible to prevent corrosion. This is assuming that you make

any nonwaterproof components such as batteries and circuit boards

removable for washing – those components will generally not even survive

one single wash without being damaged! The physical action of a washing

machine can also damage parts, so hand washing is also a better way to

look after delicate e-textiles.

Chapter 4 Getting Tactile with Python

120

E-textile components such as thread and crocodile clips will be labelled

to indicate whether they are stainless steel – if they don’t state that on the

packaging or description, they will likely be tin-plated or similar and not

last long. For large projects that are required to last over time, always go for

stainless steel threads and components. If in doubt, ask or test them yourself.

There’s nothing worse than spending hours creating an awesome costume

only for the thread to corrode and your circuit to stop working. If you’re just

doing a proof of concept to see if something works, or display something for

a finite amount of time, then the cheapest components will do fine.

An easy way to increase the washability of your creations is to make

some components removable. Metal press studs and conductive Velcro

are a few ways to do this. I have even heard of people sewing conductive

thread into standard Velcro to make it conductive. Possibly related, the

same method works with sewing conductive thread into gloves so they can

be used to operate mobile device touch screens!

�Tools

The tools needed to get started with e-textiles are relatively simple and

inexpensive.

Scissors: These just need to be sharp enough to cut accurately, but not

necessarily of “the good scissors” standard.

Side cutters: These are just snips that will cut thin wire, like the wire in

LEDs. They are readily available for under $10 AUD. Although you won’t

typically need these for all e-textiles or paper circuit projects, they are often

useful if you have some solid wires that need to be trimmed.

Needles: It helps if the needles you use are slightly larger than the fine

needles used for hand sewing, as fraying of conductive thread can make it

more difficult to thread into a needle. Just make sure they are not so large

that the thread pulls out of the holes your needle makes in the fabric. I

have found that cheap hair wax or pomade from the supermarket works

well to make the ends easier to thread. You can then just wipe it through

Chapter 4 Getting Tactile with Python

121

your hair instead of on your clothes, as I would normally do. The best

way I have found to thread these over and over again is by using a needle

threader, which is a thin metal tool (shaped much like a soft drink can tab)

and commonly comes with inexpensive sewing kits (Figure 4-3).

Figure 4-3.  Needle kits like this, with threaders, are available for less
than $3 at Kmart

Long-nose pliers: These are good for curling up the ends of LED wire

legs to make them easier to sew onto fabric. They’re not 100% essential,

and if you’re not using any components with wire legs, you probably won’t

miss not having this tool. Having said this, the first exercise in this chapter

does require these!

Embroidery hoop: These are relatively cheap, that is, starting at

around $5 AUD, and can be bought at $2 stores, sewing supply stores,

Kmart, or even some supermarkets. The hoop stretches the fabric out

giving you something solid to hold, making it easier to sew accurately and

evenly (Figure 4-4).

Chapter 4 Getting Tactile with Python

122

Figure 4-4.  Fabric tensioned in a medium-sized embroidery hoop

�Threading Your Needle

Conductive thread can be finicky to thread as it unravels easier than

standard threads. Put a very small amount of cheap hair wax or pomade

on the tip of the thread to keep the strands together for threading. Wipe

the rest through your hair or, alternatively, a hairier relative. A quicker and

more reliable method is to use a needle threader to pull the thread through

the needle (Figure 4-5); this also allows you to use a slightly smaller needle,

which will make your stitches a bit more robust.

Chapter 4 Getting Tactile with Python

123

Figure 4-5.  Another style of needle threader

�What Type of Stitches Are Best?

Since not everyone will immediately have access to a class set or even

a single sewing machine, it will be easier to get started by hand sewing

e-textiles. Using a running stitch (over, under, over, under as shown in

Figure 4-6) is the easiest but also can look quite plain with a dotted-line

appearance. It is a great stitch if you are impatient, though.

Figure 4-6.  Running stitch (over, under, over, under)

Backstitching (Figure 4-7) involves looping back and gives a neater

appearance while using more thread. A variation on the backstitch

is a zigzag stitch which is useful for allowing stretch fabric to stretch

without breaking the stitches. To keep your e-textile projects accessible

to even those without sewing experience, we can use a running stitch to

demonstrate initially. Those with more sewing skills will undoubtedly end

up making their own variations anyway.

Figure 4-7.  Backstitch (over, under, loop back)

Chapter 4 Getting Tactile with Python

124

�Fixing Sewing Mistakes

Sometimes, you will make mistakes and need to undo stitches. You can get

an unpicking tool from sewing shops or with a sewing kit. This is simply a

small tool that you can slide under stitches to pull them out.

�Knots and Attaching Components

When you start sewing, you will need a knot to anchor the end of your

thread in the fabric. The easiest way is to just form a loop at the end of the

thread furthest from the needle and wind the thread through the loop a

few times (Figure 4-8). Pull the knot tight (Figure 4-9) and snip the tail of

the thread off as close as possible to the knot to prevent short circuits.

Figure 4-8.  Creating a knot to anchor your thread before you sew

Figure 4-9.  Pull the knot tight and remember to trim the tail later

Chapter 4 Getting Tactile with Python

125

When you finish sewing or need to keep stitches tight around

components, leave a loop on one side of the fabric, and wind the thread

around the needle a few times before pulling it through (Figure 4-10). The

photo explains this much better (Figure 4-11). I usually do this twice so that

you have thread tying against itself to prevent your sewing loosening. When

attaching components to fabric, your thread should loop through the holes at

least three times to ensure a good electrical connection - Figure 4-12 shows

a socket for a battery holder, attached to fabric with conductive thread.

Figure 4-10.  Winding the thread around the needle to create a knot
that stays put

Figure 4-11.  Tying off, ready to tighten

Chapter 4 Getting Tactile with Python

126

Figure 4-12.  Securing a component to the fabric with
conductive thread

Another consideration when sewing with conductive thread is the tails left

from tying off your thread. Tying off is usually a matter of sewing three loops

and making sure you run the thread underneath subsequent loops to make a

knot (like the start of tying your shoelaces). Try to snip off the thread as close to

the knot as possible without letting the thread come undone. Keeping the tail

as short as possible will prevent short circuits – a dab of fabric glue can keep

unruly tails secured and prevent knots from unravelling. Since this type of glue

is designed to be washed, it can be more reliable than standard hot glue which

melts easily. Alternatively, nail polish may be easier to come by than fabric

glue, is washable, and works well to insulate conductive thread and prevent

stray tails from connecting to other components accidentally (Figure 4-13).

Figure 4-13.  Tie off your sewing and snip any tails to prevent them
from touching other parts of the circuit, then use nail polish or glue to
insulate them further

Chapter 4 Getting Tactile with Python

127

OK – now that you have some basic guidelines for working with

e-textiles, let’s continue with the first project of the chapter!

A SIMPLE E-TEXTILE LED CIRCUIT

In this project, we will look at implementing a basic circuit that consists of a

power supply, an LED, and a switch. This will consist of creating a test circuit

in some fabric.

Things you will need

The materials you have available may vary; however, most online stores

should have some sort of reference available to let you know how much power

is required, for example, Kitronik has charts for LED power3 or a calculator4

to determine which resistors might be required in general circuits (not

considering the extra resistance from longer runs of conductive thread). Note

that LEDs designed specifically for e-textiles5 will often have contacts shaped

better for sewing, and for simplicity, this exercise uses e-textile LEDs with

built-in resistors.

Materials

•	 A 50cm x 50cm square of nonstretch fabric, preferably the type

that is reasonably easy to sew.

•	 Conductive thread – although stainless steel thread is

recommended for long-lasting projects, you won’t need it for

this exercise, since we are just learning the basics.

3 https://resources.kitronik.co.uk/pdf/leds.pdf
4 https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator
5 https://kitronik.co.uk/collections/leds-for-e-textiles

Chapter 4 Getting Tactile with Python

https://resources.kitronik.co.uk/pdf/leds.pdf
https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator
https://kitronik.co.uk/collections/leds-for-e-textiles

128

•	 A 2xAAA or 2xAAAA battery holder with the wire ends stripped

to expose the copper or alternatively a sewable JST PH 2.0

socket and matching battery holder with a matching plug.

•	 5mm LED (sewable or standard) – try and get ones with built-in

resistors (for this exercise, we will use built-in resistors with

e-textile LEDs, but you can easily use standard through-hole

LEDs with wire legs wound into loops to sew through).

Tools

•	 Needle-nose pliers to bend the wire legs if you are using

standard through-hole LEDs.

•	 Scissors.

•	 Sewing needle suitable for your thread (you can use a slightly

smaller needle if you have a needle threader, and this will make

your stitches more stable in the fabric).

•	 Needle threader or some hair wax/pomade – hint: the needle

threader makes life much easier!

•	 An embroidery ring to tension your fabric and make it

easier to sew.

•	 An erasable fabric pen to mark your circuit; the ones that

disappear in 48 hours or with a damp wipe are easiest.

•	 Some clear nail polish to seal the ends of your circuit and

prevent short circuits from breaking your circuit (optional).

Chapter 4 Getting Tactile with Python

129

Threading the needle

Since you’ll be repeatedly sewing, tying off, and rethreading your needle for

e-textile circuits, a needle threader is highly recommended. These are a small

flat metal tool with either a hook or wire loop that pushes through the eye of

the sewing needle and pulls the conductive thread through, thereby threading

your needle. An alternative is to use a small dab of hair pomade or wax to

smooth the tip of the thread, so you can thread it easier. But since a needle

threader is much cheaper than hair wax or pomade and comes with most

sewing kits, for example, the ones available at department stores like Kmart,

you’ll save some frustration by getting one of these.

Step 1: Create a simple e-textile circuit.

In this step, we will create a circuit that connects the terminals of a light-

emitting diode (LED) to a battery. We’ll start off with an LED, a battery, and

switch (optional) – the idea is to keep things simple so we can focus on our

sewing skills.

You’ll find it easier to sew the components into place first. Later, we can draw

connections between components and sew along these lines to complete the

circuit. Instead of using wires, we will be using conductive thread to connect

our components. Your battery holder will have negative (–) and positive

terminals (+) that can be attached to your fabric with conductive thread;

alternatively, you can use an e-textile socket that allows a battery cage to be

unplugged for washing (not critical since we are just doing a proof of concept,

i.e., just making it work). The thread will also connect power to the LED.

•	 Start by clamping some fabric and stretching it tightly and

uniformly in your embroidery hoop. Plan out the positions where

you will to place your components and mark these with your fabric

marker. The positive leg of the LED is the longer one and is called

the anode, while the negative leg is called the cathode. Make sure

that the negative leg of the LED is positioned so that you can sew

a line back to the negative terminal of the battery holder.

Chapter 4 Getting Tactile with Python

130

•	 Thread your needle and tie a knot in one end of a 30cm length

of conductive thread. Hold your battery holder against the top of

the fabric and sew from underneath, threading upward through

the positive hole of the battery holder. Repeat three to five loops

tightly around the battery holder positive hole. You can add an

extra loop across all the loops to hold things tighter. Do the

same for each component of your circuit by following the circuit

diagram. If you’re including a switch, this should be on the

positive side of your circuit (+).

Tip I f part of your circuit connects to another part of your circuit
that it shouldn’t, you may risk short-circuiting your battery which
could damage it or in some cases make it burst. You can reduce the
likelihood of this happening by keeping the tails from your knots short
and covering the knots with a nonconductive glue or nail polish. This
is known as insulation.

Step 2: Connect the LED.

We are now going to continue sewing with a running stitch (over-under-

over-under) from the battery holder positive terminal to the positive leg of

the LED. Your completed circuit should look something like the photo in

Figure 4-14; the socket on the left is connected to a 2xAAA battery holder.

Chapter 4 Getting Tactile with Python

131

Figure 4-14.  The completed e-textile circuit with the positive
terminal at the top

Testing your project

	1.	T ie off the thread connecting the negative battery holder hole

to the anode (–) of the LED. Remember to pass the thread

underneath itself at least once. Snip off the tail as close to the

knot as possible, then seal and insulate it with nail polish.

	2.	N ow insert the battery into the battery holder and turn the switch

on (Figure 4-15). Your LED should light up. Congratulations – you

have created your first e-textile circuit! As you’ve seen, e-textile

circuits are slightly different to standard circuits just due to

requirements for flexibility, fit, and resistance of conductive thread.

Latching vs. momentary switches A latching switch will stay on
until you switch it off, whereas a momentary switch will only keep
the circuit connected while it is being pressed, for example, a button
switch that does not “click” or touch pads. You can use both: with
a latching switch used to connect the battery to your circuit and a
momentary switch to trigger a function quickly, for example, turning
on or changing a light to a specific color when a section of clothing is
touched.

Chapter 4 Getting Tactile with Python

132

Figure 4-15.  Our circuit with the connected battery holder

If your LED doesn’t light up, check that your connections are sewn tight

enough for a solid connection and that the battery is inserted correctly, that

is, the positive side of the coin cell battery should line up with the positive

side of the holder. Be careful that you don’t wrinkle or fold the fabric as this

can cause parts of the circuit to connect and create a short circuit – these

can damage the batteries and if left too long could start heating up or

catch fire!

Chapter 4 Getting Tactile with Python

133

BUILD A PROGRAMMABLE TOUCH CAP WITH LIGHTS

In this project, we will use our sewing skills to create a circuit around a piece

of clothing – a cap. This project uses the Adafruit Gemma M0 microcontroller

board, which allows us to use our Python skills and design some more

complex functionality. To start, we will have some multicolored red-green-blue

(RGB) LEDs turn different colors depending on where we touch our cap.

The LEDs each require three connections:

•	 Power

•	 Ground

•	 A data connection

We can then daisy-chain the LEDs and individually control each using

CircuitPython running on the Gemma M0 board. A cap is our chosen clothing

platform since plain caps are cheap and readily available, and you may even

have an old one you can use.

Materials required

•	 A cheap sports cap or hat like the ones available at Kmart.

•	 A computer running MacOS, Linux, or Windows, with a Thonny

IDE installed.

•	 An Adafruit Gemma M0 board and suitable micro USB cable

with the other end that can connect to your computer’s

USB port.

Chapter 4 Getting Tactile with Python

134

•	 Two e-textile RGB LEDs – most electronics hobby stores will

have these with built-in resistors and big holes for sewing them

into your project. I used the Kitronik ZIP Hex RGB LEDs.6

•	 About 6 meters or more of conductive thread; buy the stainless

steel type if you want it to last longer.

•	 Two squares of conductive fabric.

•	 Fabric glue.

•	 Some clear nail polish to insulate your circuit and prevent short

circuits.

•	 A portable rechargeable battery like the type you would use to

charge your phone.

•	 Six metal press stud button pairs (optional – to make the

Gemma removable for washing).

Tools required

•	 A sewing needle large enough to thread your conductive thread.

•	 A needle threader.

•	 An unpicking tool to unpick sewing mistakes (optional – you

can improvise with a needle and stitches if required, but it will

be slower).

•	 Scissors.

6 https://kitronik.co.uk/products/35140-zip-hex-led-pack-of-5

Chapter 4 Getting Tactile with Python

https://kitronik.co.uk/products/35140-zip-hex-led-pack-of-5

135

•	 An embroidery hoop that is at least three times as big as the

Gemma M0 board.

•	 8 x 20cm long wires with crocodile clips on each end – we will

use this for testing parts of our circuit.

Step 1: Prepare the Gemma M0 board (Figure 4-16) with CircuitPython.

First, we should install the latest stable version of CircuitPython on our Gemma

M0 microcontroller board (Figure 4-17). This is easy to do by loading up the

latest version of the Thonny IDE on your computer and connecting the Gemma

M0 via USB. From the bottom-right corner, click configure interpreter

and select Install or Update CircuitPython. Check that the Target

volume and version are correct, then press RESET on the Gemma M0 and

click Install to update CircuitPython.

Figure 4-16.  The Adafruit Gemma M0 microcontroller board

Chapter 4 Getting Tactile with Python

136

Figure 4-17.  Update CircuitPython on the Gemma M0 from Thonny

Alternatively, for any Adafruit board, you can go to the CircuitPython

page7 and click your board to get the right firmware, press RESET

twice, and drag the .U2F file across the GEMMABOOT folder that

appears.

•	 Once CircuitPython is updated and restarted (disconnect

and then reconnect the USB cable), you can use some

simple Python code to flash the onboard LED and check that

everything is working. Type the Python code from Listing 4-1

into Thonny and run it to make sure the LED blinks. As this is

just to test that you can run Python code on the Gemma M0,

don’t bother saving it on your computer.

7 https://circuitpython.org/downloads

Chapter 4 Getting Tactile with Python

https://circuitpython.org/downloads

137

Listing 4-1.  Blink the onboard LED on the Gemma M0

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Step 2: Create a test circuit and program.

Before we create an e-textile circuit, we will connect our circuit (Figure 4-18)

using wires with crocodile clips and write some code to control individual

RGB LEDs.

Figure 4-18.  Diagram showing connection from the Gemma M0 to
RGB LEDs

Chapter 4 Getting Tactile with Python

138

•	 Making sure power is disconnected from your Gemma M0 (you

can move the slider switch to off), connect the crocodile clips

to the RGB LEDs and the Gemma M0 as shown in Figures 4-19,

4-20, and 4-21. The second LED should have its in connected

to the first LED’s out terminal and the GND and +V to their

corresponding terminals.

Figure 4-19.  Gemma crocodile clip connections

Figure 4-20.  First RGB LED crocodile clip connections

Chapter 4 Getting Tactile with Python

139

8 https://github.com/adafruit/Adafruit_CircuitPython_Bundle/
releases/latest

Figure 4-21.  Adding a second RGB LED to the first

•	 We will also need to download the CircuitPython libraries8–

make sure you select the libraries that match the version of

CircuitPython that you installed on your Gemma M0

(Figure 4-22). Because the Gemma M0 storage is not huge,

we will only copy across the NeoPixel libraries that we might

need to control our RGB LEDs. This is as simple as unarchiving

the .ZIP file (double-clicking will usually do this) and copying

across the required files.

Chapter 4 Getting Tactile with Python

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

140

Figure 4-22.  Downloading the CircuitPython library .ZIP file

You will need to drag the library files across the lib folder of the

CircuitPython drive on the Gemma M0 (Figure 4-23).

Figure 4-23.  Required NeoPixel (RGB LED) library files

•	 Now connect the Gemma to your computer using the USB cable

and type in the new code shown in Listing 4-2.

Listing 4-2.  RGB LED color-changing Python code

import board

import neopixel

import time

pixel_pin = board.A1

num_of_pixels = 2

pixels = neopixel.NeoPixel(pixel_pin, num_of_pixels)

Chapter 4 Getting Tactile with Python

141

while True:

 pixels[0] = (0,0,255) # red

 pixels[1] = (0,255,255)

 print("red")

 time.sleep(1)

 pixels[0] = (0,255,255) # blue

 pixels[1] = (0,0,255)

 print("blue")

 time.sleep(1)

Run the code and you should see the LEDs change as the code loops.

Step 3: Add capacitive touch.

Now that we have two LEDs controlled independently, we can add capacitive

touch, which is supported by the Gemma M0. Since we have two spare

capacitive terminals or pins, we will be able to connect these to two pieces

of conductive fabric on either side of our cap. Update your code as shown in

Listing 4-3.

Listing 4-3.  Python to control LEDs using two capacitive

touch pads

import board

import neopixel

import time

import touchio

pixel_pin = board.A1

num_of_pixels = 2

pixels = neopixel.NeoPixel(pixel_pin, num_of_pixels)

touch_pad_left = board.A0

touch_pad_right = board.A2

touch_left = touchio.TouchIn(touch_pad_left)

touch_right = touchio.TouchIn(touch_pad_right)

Chapter 4 Getting Tactile with Python

142

while True:

 if touch_left.value:

 pixels[0] = (0,0,255)

 pixels[1] = (0,0,255)

 elif touch_right.value:

 pixels[0] = (255,0,0)

 pixels[1] = (255,0,0)

 else:

 pixels[0] = (0,0,0) # off

 pixels[1] = (0,0,0)

Check your connections before connecting power and run your code with the

Gemma M0 connected to the computer. Even without anything connected to

A0 and A2, the Gemma will automatically adjust sensitivity when these are

enabled – you can then touch the A0 or A2 terminal to control the LEDs, which

will be turned off. Recheck your connections and code if it doesn’t work. Once

your code is working, we can transfer our circuit to the cap.

Step 4: Position and attach the two RGB LEDs.

•	 Decide where you want to locate your LEDs near the front of

your cap with one on either side. Mark these with your fabric

pen, then hold them in place and connect them using separate

pieces of thread for the in and out pins. For the first LED,

ensure that the out pin is angled along a seam and up to the

top of the cap (Figure 4-24). The other LED should have the in

pin angled toward the cap top (Figure 4-25). In the next step,

we will be sewing along the inside of the cap to connect the

out pin from the first LED to the in pin of the second LED.

Chapter 4 Getting Tactile with Python

143

Figure 4-24.  Positioning and orientation of the first LED on
cap seam

Figure 4-25.  Positioning and orientation of both LEDs

Step 5: Connect the LEDs with conductive thread.

We will use a simple running stitch for all the connections in this project.

Make sure that the connections to components are nice and tight. As with our

previous circuit, every connection must be separate from other connections

and not short circuit between positive and negative in the wrong places.

Chapter 4 Getting Tactile with Python

144

•	 Sew around the out pin on the first LED and then sew

along one of the inside seams to the in pin on the second

LED (Figure 4-26). This will allow us to control both LEDs

individually.

Figure 4-26.  Internal connection between LEDs (out to in)

•	 Now use your fabric pen to draw some lines on the outside

of the cap, connecting the ground (negative, “–”) terminal

to the ground terminal on the other LED, then sew along the

line (Figure 4-27). Do the same for the positive (“+”) power

terminals and make sure that these do not cross (Figure 4-28).

If they must cross, we can simply sew underneath the other

connection, so that they do not short-circuit. Sew on the outside

of the cap for these. Since these will be visible on the outside

of our cap, you should make sure your lines look nice – so feel

free to be a bit creative without making things too complicated.

Chapter 4 Getting Tactile with Python

145

Figure 4-27.  LED connection on the outside of a cap (gnd to gnd)

Figure 4-28.  Both LEDs connected (two external connections and
one internal connection)

Note A “short circuit” occurs when parts of a circuit are connected
incorrectly due to one component accidentally touching another; this
can sometimes result in damage to components or power supplies
due to the resulting increase in electrical current.

Chapter 4 Getting Tactile with Python

146

•	 Now test your work by connecting three crocodile clips

from the first LED to the Gemma M0 as we did previously

(Figure 4-29). You can now also connect some conductive

fabric to the conductive pins with a crocodile clip. Rerun your

script from Thonny again and make sure that everything works

as expected, that is, the LEDs should light up the same way

they did previously when you touched the capacitive pins of

the Gemma M0 board. If they don’t, check that your sewing is

secure and there are no short circuits and try again.

Figure 4-29.  Test your sewing, using crocodile wires to connect
the Gemma

Step 6: Position the Gemma M0 on the cap.

To make our cap washable, we are going to use metal press studs to connect

the Gemma to our cap. This will let us remove the Gemma from the cap while

still allowing connectivity to our circuit. Alternatively, to simplify this project,

you can skip this step and sew the Gemma directly to the cap and skip ahead

gluing on the conductive fabric squares.

•	 Put a new piece of fabric in your embroidery hoop and

sew each pin of the Gemma board with separate pieces of

conductive thread.

Chapter 4 Getting Tactile with Python

147

•	 Using running stitch, sew a line out for each pin and tie off as

shown in Figure 4-30.

Figure 4-30.  Sewing the Gemma

•	 Cut a square out of the fabric and sew press studs on the back of

each tied off connection to the Gemma. Sew the opposite press

studs to the back of your cap (Figure 4-31) so that they line up

and you can connect your Gemma to the cap (Figure 4-32).

Figure 4-31.  Press studs also sewn to the cap

Chapter 4 Getting Tactile with Python

148

Figure 4-32.  Gemma connected to the cap via press studs

•	 Using fabric glue sparingly, attach the conductive fabric squares

to the sides of the cap (Figure 4-33). Take care to position them

so that your ears won’t accidentally touch them. Once the glue

has dried, sew in all the connections to replace the crocodile

clips from your earlier testing – where your sewing lines cross

over, you will need to sew under existing lines (Figure 4-34),

being careful that the thread does not touch (Figure 4-35).

Figure 4-33.  Conductive fabric square glued in place with conductive
thread connection to Gemma

Chapter 4 Getting Tactile with Python

149

Figure 4-34.  Sewing under another line to prevent short circuits

Figure 4-35.  The finished sewn lines, crossing without shorting

•	 Once all the crocodile clips are replaced with sewn lines

(Figure 4-36) and securely connected to the press studs

(Figure 4-37) (or directly to the Gemma if you opted to connect

the Gemma directly to the cap), double-check that your

connections are correct, and with the Gemma connected to

the cap, plug it into your computer to make sure everything

works as expected. The lights should turn on when you touch

Chapter 4 Getting Tactile with Python

150

the conductive fabric squares. Fix any loose connections with

tighter stitches. Be sure to save a copy of your Python code

onto your computer as well. Now you can use a portable phone

charging battery to power your cap – you may need a longer

cable so that you can put the battery in a pocket.

Figure 4-36.  All the connections replaced with sewn lines

Figure 4-37.  Connecting to the press studs

Chapter 4 Getting Tactile with Python

151

Step 7: Insulate internal sewing and next steps.

Congratulations, your cap is working with your code! Before you wear your

cap, we will need to insulate all the internal stitches so that they don’t short-

circuit when they touch your head (remember, your skin and any moisture

from sweat is conductive and will connect any parts of the circuit it touches!).

•	 Using some clear nail polish, take your time and carefully

cover all the exposed conductive thread inside your cap. You

can also do this on the outside, but keep in mind that if the

metal parts get wet, your cap won’t work. For a working cap

in bad weather, you will need to work out a way to seal all the

components from moisture, for example, it is possible that a

water-proofing such as Scotchgard or similar may work, but I

have not tested this.

•	 You can modify your code to perform more complex operations

when both conductive fabric squares are touched together,

trigger on double taps, etc.

�Summary
E-textiles and copper adhesive tape circuits are a great way to mix in more

creative crafts with your coding and electronics. For e-textile projects,

start by isolating basic skillsets to reduce the number of variables when

learning. This increases the likelihood of things working and prevents

fault finding from becoming too complex and overwhelming. Later, you

can design a circuit and test that it works with wires before transferring it

to an e-textile environment. Once your circuit and code are working, only

then should you push these to an e-textile environment. As with any other

project, build separate parts and test as you go to make it easier to identify

any issues. Fix any identified issues before progressing to the next step.

Chapter 4 Getting Tactile with Python

152

Trim any hanging conductive threads to prevent short circuits. Once

your project is working correctly, your last step should be to insulate any

exposed threads that may be touched. Microcontrollers using Python

variants, for example, CircuitPython or MicroPython, can be incorporated

into e-textiles to allow more complex functionality and interactivity. The

programmable cap is a relatively inexpensive project which should help

make e-textiles more accessible and is a good way to get kids started on the

road to larger and more complex projects in the future.

�Chapter 4: Cheat Sheet
Use stainless steel thread and parts for longer-lasting e-textile projects.

E-textiles can be a safe alternative to soldering circuits but may take

slightly longer to implement.

Useful tools for e-textiles

•	 Scissors

•	 Needle and conductive thread

•	 Embroidery hoop

•	 Needle threader

•	 Unpicking tool

•	 Erasable fabric pen for marking where components go

and where to sew

Workflow when building e-textile projects

•	 Design your circuit and test with crocodile clips first.

•	 Transfer to e-textile format.

•	 Position components first.

•	 Draw and sew connections.

Chapter 4 Getting Tactile with Python

153

•	 Test as you go.

•	 Make nonwashable components removable

Other tips

•	 Sew under conductive thread to cross lines.

•	 Use glue or nail polish to insulate bare

conductive thread.

•	 Larger sections can be lined with material.

•	 RGB LEDs can be daisy-chained but operated

independently.

•	 Try and use LEDs with built-in resistors to simplify your

circuits and protect components.

•	 Consider differences between parallel and serial LEDs,

the latter being like Christmas tree lights, where one

defective component can prevent all the others from

working.

Chapter 4 Getting Tactile with Python

155

CHAPTER 5

Freestyling with
Python: Going Off
Map and Applying
Skills

�A Quick Tale: When Progress Levels Diverge
Something we learned over the year with our Code Club is that everyone

finds their own pace and direction, but as volunteers, it’s part of our

job to try and stack the odds in the kids’ favor by ensuring they collect

enough skills and experience to make it worth their while. When the

perceived return doesn’t justify the investment of time and effort, kids get

discouraged and lose interest.

The idea of having a curriculum for initial skill acquisition gives us

some structure while we are running together – the reason this worked

for us is that it is more efficient and almost guarantees that kids will gain

some skills providing that they go to the effort of completing the lessons.

This chapter will take you through some of the challenges we faced while

trying to equip our code club kids with enough skills to prevent them

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_5

https://doi.org/10.1007/978-1-4842-9197-9_5

156

from plateauing, that is, so that they could continue to be challenged

as the years progressed. You’ll see how our students and volunteers

graduated from simply following prepared lessons and began to develop

our own projects using Python and other components. I’ve also included

information on how a group of kids progressed from a simple drawing on

a whiteboard to implementing a working project and ways in which you

can then build on that project, scaling one feature at a time. The goal is to

empower you to make this leap in your code club or maker space and push

your skills further. During my journey with our code club, I’ve come across

many parents and teachers who have enthusiastically jumped into similar

pursuits only to find that kids soon lose interest or run into difficulties.

Although there’s lots of coding and electronic resources online, there’s

less information about keeping kids engaged and developing skills as an

extracurricular activity outside of the classroom environment. For this

reason, this chapter focuses on how we progressed our code club kids and

overcame many of these challenges over the years and increased the value

for everyone involved.

Since our code club was registered with Code Club Australia,1 our first

port of call was their Python curriculum (Figure 5-1) – these days, we aim

to support the kids through at least most of the lessons in modules 1 and

2 and further, depending on progress. Code Club Australia’s projects are

built on the original Code Club UK2 curriculum, which grew from Open

Source3 principles and encourages contributions from volunteers. Code

Club World4 represents the global link between these countries. These are

backed by the Raspberry Pi Foundation. Having had firsthand experience

at contributing to the curriculum and having had Code Club Australia

1 www.codeclubau.org
2 https://codeclub.org/en/regions/uk
3 https://opensource.org/faq
4 https://codeclub.org/en/

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

http://www.codeclubau.org
https://codeclub.org/en/regions/uk
https://opensource.org/faq
https://codeclub.org/en/

157

adopt some of my projects, I can highly recommend getting involved.

Learning to code is great, and learning to help others is even better.

For simplicity, I have referenced Code Club, since that is our personal

experience – however, these references should be taken as pertaining

to any of the available support resources that you deem suitable for

your needs.

While we were looking at ways to wean kids off Scratch, using the

default command-line tools that came with Python was initially a little

confusing for kids. The native editor that came with Python looked very

similar to the runtime environment, and not everyone was familiar with

interacting with the command line. While I do encourage everyone to

jump into the command-line interface rather than just sticking with point

and click user interfaces, it can be distracting to have so much power

accessible to them, rather than being inside a dedicated editor like Mu or

Figure 5-1.  Code Club Australia’s Python curriculum

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

158

Thonny. Earlier on, we had various challenges with getting any editors

installed on the school computers, and since the Code Club exercises

utilize https://Trinket.io, we found it to be a really good way to get

kids started in Python. All you need is a modern browser, an Internet

connection, and a free account. As part of each year’s communications, we

now send out an email to parents before code club commences, detailing

how to set up required accounts online, one of which is Trinket.io. This

puts the responsibility back to the parents and helps them understand

what their kids will be doing. Doing this reduced the number of kids who

would “forget” their Trinket credentials and opened communications,

making it easier to keep parents aware of how things are going at code

club. The Trinket.io Hour of Python also has some interesting starter

tutorials, although we found that some guidance is required, and these

were not as in depth as the Code Club Australia curriculum.

Figure 5-2.  Hour of Python, part of https://trinket.io

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://trinket.io
https://trinket.io

159

Another useful resource that is used by many Australian schools is

Grok Learning (Figure 5-3). This includes Python lessons and is also free

for Australian school students from grades 5 to 12. CoderDojo5 provides

project-based learning for kids aged 7–17. Code.org6 also has some great

exercises; however, you’ll need to pay for a subscription to use all of them.

All the listed curriculums are reasonably accessible due to the low

or zero cost and are aligned with programming requirements in the

Australian school curriculum.7

5 https://coderdojo.com
6 https://code.org
7 https://v9.australiancurriculum.edu.au

Figure 5-3.  Grok Learning Python curriculum

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://coderdojo.com
https://code.org
https://v9.australiancurriculum.edu.au

160

In our earliest Code Club iterations, kids were putting in lots of time for

a lower reward, that is, for all the time they spent, they would eventually

plateau with their skills. Back then, one of our critical mistakes was that

we kept kids engaged but didn’t make sure that they were learning enough

to empower them with any sort of vision that compelled them to continue

pursuing programming as part of their future endeavors.

Once we managed to smooth out various bumps along the road, and

kids were building momentum and completing each set project, it was

natural to see some kids settling into a faster or slower pace. This presents

some issues when there’s only a few volunteers trying to help a group of

around 20–30 kids to progress in learning so that they can have the tools to

convert their ideas into real projects:

•	 How do we continue to reward those who put in extra

work and legitimately complete the curriculum earlier?

•	 How do we also encourage those who are progressing

slower but are working steadily and consistently?

As we fine-tuned our approach over the years, some of the solutions to

the preceding two challenges include

•	 Obtaining a small number of micro:bit add-on kits that

included Python components so that those who were

able to complete initial curriculum lessons earlier were

able to apply what they learned in a new context

•	 Writing some of our own projects to accommodate a

variety of durations, from a single-hour session to a

number of hours, that is, weekly sessions

•	 Continuously acknowledging progress by tracking

completion of projects and seating those working on

the same activities together, so they could compare

notes and felt that they had some fellow travellers along

for the journey

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

161

�Finding Your Own Project – From Start
to Finish
In 2018 Python, we selected a small group of kids from the main group

that had been working with Scratch. It took a few tries to realize that those

who were most vocal were not always the hardest workers of the group;

we used a few methods of tracking progress, with initial results telling us

who was best suited to moving on to Python programming. We ended up

with a group of kids that understood programming concepts from Scratch,

which we could then build on to learn additional features of the Python

language. This was one of our first breakthroughs where we had a small

group of kids who really started to understand Python and, as we were to

find out, had gained some fluency! The previous groups we had selected

often consisted of some fairly proficient programmers, but we also ended

up with some of the louder yet less hardworking students; these kids would

struggle with concepts that they had skipped over or not completed in

the earlier curriculum. In contrast, our 2018 group consisted of only those

who had been working hard to complete the earlier lessons, rather than

those who were simply louder or said the projects were “too easy.” This

later led us to focus more on completion of projects, which meant that

more kids could move on to the more interesting activities. Eventually,

this included the whole group! But in 2018, we were still testing the waters,

slightly apprehensive about transitioning to a text-based language after

introducing the simple yet very limited drag-and-drop programming with

Scratch. It is really all in the approach – if teachers and volunteers act like

something is hard, then the kids will assume that it is!

Given that we’d brought across our group of Python learners, midway

through the year, we had to leverage some efficiencies to give them a

greater breadth of knowledge. I ended up leveraging a matrix from Code

Club UK that cross-referenced lessons with the Python programming

concepts to fill any skills gaps. This way, I was able to steer each code club

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

162

kid through their own path to get good coverage of the concepts. This

process would run something like this: once we looked at the lessons

that had been completed, I would say, “OK, so it looks like you might like

this one – it covers dictionaries, and you’ve already looked at lists, and

dictionaries are pretty useful.” Another volunteer and I would then work

hard to answer any questions to help the kids keep up the momentum,

and eventually they completed a good selection of the Code Club

Python modules 1 and 2. They were eventually able to debug their code

themselves after we verbalized our fault-finding thought processes with

them, as we helped them through each lesson.

�Beginning with Diagrams:
The Self-Watering Plant Project
With our budding group of Pythoneers, we spent a couple of sessions

playing with some robots and a Raspberry Pi with a Sense HAT. Although

previous groups had been quite interested in making a robot move using

Scratch, this group seemed much more interested in multicolored red-

green-blue (RGB) LEDs than driving motors or creating autonomous

robots. This was interesting and may have been hinting at a more

sophisticated approach; rather than “move something left, right, forward,”

it was more about tweaking numbers to create different effects with an

array of RGB LEDs. We had already completed a few projects, including

the micro:bit Python emoticon communicator, so one day I brought in a

moisture sensor for the micro:bit. I was interested to see how this group of

Python kids would react to it – would they see the potential now that they

had some computational skills?

The soil moisture sensor (Figure 5-4) that I’d brought along was

inexpensive (around $6 AUD) and had three pins, two for power and

ground which were + and -, respectively. The other pin sends a numeric

value based on conductivity of anything touching both prongs. These are

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

163

available online for under $10 and even cheaper if you look around online.

At this price point, these sensors will corrode at some point, so if this is a

concern you can spend a bit more for a longer-lasting version. Later, we

did move to a different model that had some additional benefits – but I’ll

get to that soon.

Figure 5-4.  Moisture sensor

On the whiteboard, I drew up a rough sketch to explain how the

sensor was powered and how data was sent back to the micro:bit. It looked

something like Figure 5-5.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

164

Figure 5-5.  Rough diagram of micro:bit and moisture sensor

Once I had explained the drawing, I could tell from the expressions

on their faces that these kids were now processing the possibilities.

Straightaway someone saw how it worked and suggested, “ooh, we could

have a water pump!” The essential information that I had provided was

that the micro:bit pin1 was connected to the S pin on the sensor. So, to

read the moisture content, they just needed to read this number from pin1.

Using Google searches, they quickly found the Python command to read

an analog value from a micro:bit pin.

As a quick recap, some important concepts that I had been repeating

through the group’s Python journey included

–– Initialization: Setting up variables and structures.

–– �A main loop that processes events: This was typically a while True:

loop that would always repeat and contained if..then conditions

to manage events that occurred.

Once they understood the diagram I had drawn, it took around ten

minutes for the kids to search for the command they needed and write

their code.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

165

To make things a little easier to connect, we also used an edge

connector for the micro:bit and a mini breadboard that we could plug our

wire ends into (Figure 5-6).

Figure 5-6.  Edge connector and breadboard mounted on an
acrylic board

This allowed us to use breadboard jumper wires to connect any of

the 25 pins on the micro:bit to the breadboard. The breadboard holes

are all connected vertically, allowing up to five wires to be connected on

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

166

the top or bottom halves of the mini breadboard. In hindsight, this setup

provided a more stable connection than alligator clips, because it reduced

the movement of the micro:bit and the connected wires. In later iterations

of this project, we were able to use improved sensors, but this did make

our connections more precarious and prone to disconnecting or shorting;

either would break our circuit and introduced more issues.

The initial script to check the moisture sensor was very simple

(Listing 5-1).

Listing 5-1.  Early moisture sensor code

from microbit import *

while True:

 soil = pin1.read_analog()

 print(soil)

Every time the while loop repeats, it reads the analog value on pin1. Our

group had to compare the values of soil to determine the value that indicated

the soil was sufficiently wet and which value range indicated that the soil was

too dry. When using an editor such as Mu or Thonny, the print() statement

will repeatedly print to the REPL console as the script runs.

Understanding the values at which the soil is too dry or too wet then

allowed if..then to be used to perform appropriate actions. Initially, it

was easiest to display a sad face on the micro:bit to indicate whether more

water was required. If no water was required, the micro:bit would display a

happy face (Listing 5-2).

Listing 5-2.  Adding events

from microbit import *

while True:

 soil = pin1.read_analog()

 print(soil)

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

167

 if soil > 500:

 display.show(Image.HAPPY)

 else:

 display.show(Image.SAD)

Note S ometimes, it can be helpful to have multiple pot plants
on hand to allow an easy comparison between dry and sufficiently
wet soil.

Our proud Python coders were then tasked with writing up a simple

explanation of how their code worked, and the plant was displayed at the

front of the school (Figure 5-7).

Figure 5-7.  The first micro:bit plant project from our Code Club

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

168

This was a proud moment for both the kids and our volunteers – we

had finally applied our knowledge to design our own project! We also

showed that our coding skills could be used for something outside in the

real world, outside of the computer.

You’ll notice that this project was not written as a ready-made project

as the earlier ones were – this hopefully remains true to the spirit of

creating something from Scratch…I mean, in Python. As a small reward,

I also bought a quantity of Python stickers from the “Talk Python to Me”

podcast.8 Each kid who completed all the Python modules got a sticker.

I thought this was an appropriate thing to do as a percentage of the

proceeds were being given to the Python Software Foundation9 at the time.

In terms of Python programming and hardware projects, this was a definite

turning point for our code club.

�Scaling Up Our Project: Understanding
How Things Work and Adding One Thing
at a Time
After completing this project, Code Club Australia invited my store to

have a stand at a local library for Kid Inventor’s Day. We took along some

of our Code Club kids and did some demos. For the plant demo, I ended

up implementing the pump idea and then explained it to the kids. It was

basically just a simple extension of the micro:bit happy/sad display. We

included a printout of the source code with a brief explanation and placed

it next to the plant on the table. This was something we later implemented

in the next year as one of our workshops in our code club.

For reference, I have included the source code, in Listing 5-3.

8 https://talkpython.fm/home
9 www.python.org/psf/

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://talkpython.fm/home
http://www.python.org/psf/

169

Listing 5-3.  Adding a pump to the initial project

from microbit import *

pin16.write_digital(0) # start with the pump off

while True:

 soil = pin1.read_analog() # read moisture

 if soil > 500:

 display.show(Image.HAPPY)

 pin16.write_digital(0) # turn off the pump

 else:

 display.show(Image.SAD)

 pin16.write_digital(1) # turn on the pump

We connected pin16 to a relay, which is an electronic switch that

controlled a submersible pump by sending a 1 (on) or 0 (off) from pin16

on the micro:bit. Later, this was simplified to use a directly connected

moisture sensor and a relay switch connected to one of the micro:bit pins

that is accessible without an edge connector (Figure 5-8).

Figure 5-8.  Direct connection bolt-on moisture sensor

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

170

Our code club students’ happy plant ended up the most popular

project at Kid Inventor’s Day, even more popular than the robot arena and

fruit drum demos we had there for the store. Eventually, I was approached

by Code Club Australia to write up the plant project for use in some New

Zealand events. To make this more accessible, a version without the relay

was used, which resulted in simpler project albeit less stable. Fortunately,

I was asked to supply the relay and pump parts of my original project for a

later public blog post by Code Club Australia.10

�Pros and Cons of Simplifying Projects
As we have seen, sometimes simplifying a project can make it more

difficult to successfully complete. This is not to say that we shouldn’t

optimize a design – just that there are other elements to consider.

�Cost
By reducing the costs of materials and equipment, we can make a project

accessible to a wider range of people and communities. In the first few years

of our code club, we tried to leverage some of the existing equipment that the

school had available. These included some educational robots, Sphero robots,

drones, and a Lego Mindstorms set. Although some of these are potentially

great for teaching, they are less likely to allow kids to create something unique

and did not teach programming to a practical or useful skill level.

We ended up acquiring our first micro:bit microcontroller boards by

contributing to a handful of 15-minute coding intro workshops for the

school’s open day. This was paid for by one of the parent groups tasked

with setting up some activities for the day. Purchasing some low-cost

10 https://medium.com/code-club-australia/micro-bit-for-moonhack-
1f9626d94f47

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://medium.com/code-club-australia/micro-bit-for-moonhack-1f9626d94f47
https://medium.com/code-club-australia/micro-bit-for-moonhack-1f9626d94f47

171

microcontroller boards that supported Python and were very adaptable

allowed us to create multiple workshops in the coming years and made a

huge difference in productivity of our club. In this case, we were able to get

more kids to try out programming and gained inexpensive tools to be used

by more kids than a single expensive robot. In the case of the initial self-

watering plant project designed for Code Club Australia, the lowest cost

option was not as practical and made the project more complex.

�Perception of Difficulty
Oftentimes, we would hesitate with seemingly “complex” or “difficult”

ideas because one or more of the volunteers or teachers felt that

something was difficult. What we didn’t consider is that kids these days are

quite adaptable and learn how to play new video games quickly and often.

Something that may seem difficult or different to what we as adults might

be used to may not be the same for kids. It may also discourage kids from

attempting something if they have the expectation that it might be hard.

When we began teaching Python from the start with new clubs, the kids

would just accept that this was what programming was. We didn’t hear any

of the excuses that we encountered previously when we approached text-

based programming this way. Keep in mind that I’m talking about a club

or maker space, rather than formal teaching – our main goal for learning

is to equip kids with immediate skills that they can apply and keep them

engaged so they persist with their projects.

�Reducing Challenges Can Limit What We Learn
When we started our code club, we were after easy wins – we would try

to stack the cards in our favor so that kids could make something. As

things began to plateau, we regretted not taking more risks and wished

we had been more ambitious earlier. By the time we reached that plateau,

the reward vs. time invested seemed less enticing to the kids. Once we

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

172

attempted to be more effective in helping kids acquire practical skills, they

were able to participate in more challenging workshops and activities much

sooner. When I incorporated a relay switch into the self-watering plant

project, I was thinking of the other uses of a relay switch. Removing that

component limited the types of future projects that kids were prepared for.

�Continuity
Limiting the scope of projects can make them easier to complete, but

limiting things too much can also result in one-off projects that don’t build

on one another. Given the limitations of time that may impact your code

club or maker group, you may be tempted to limit the scope of projects.

However, having made this mistake previously resulted in kids being able

to sample different activities but never gaining enough skills in any one

area to be able to go beyond the basics. In contrast, when we started to

set expectations and plan out a flexible but slightly ambitious path, these

empowered kids to create. Journeying through an initial curriculum and

then branching into multiple workshops and related activities equipped

kids with a basic understanding with enough scope to be able to then

apply their programming. This gave them a better chance at eventually

becoming fluent in at least one programming language, which later can

become transferrable. Our earlier efforts jumped around to different

programming platforms for fear of kids becoming bored, but instead failed

to increase their fluency in a single language. Through lack of planning,

the kids in our earlier years also lacked a clear path or objectives. Once

we set clear expectations of objectives and the path to those objectives,

there was more of an understanding and vision about what we were trying

to achieve, that is, working hard to gain some grasp of a single language

that could be applied to workshops and other more advanced projects.

Eventually, this led to some kids becoming self-reliant and progressing

further than before and being able to debug and learn about other Python

features or modules and apply them to their own projects.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

173

�Scaling Even Further
One of the weaknesses of the earlier v1.5 micro:bit models was a lack of

storage and memory. This restricted the size of programs that could be

stored and the amount of memory that could be used while running.

Although the newer v2 micro:bit does have more memory and storage

space, there are still limitations in the amount of pins that can be used

and processing power. The micro:bit does support some communication

standards (protocols) that can be used to talk to expansion boards and

offload the work. These protocols include Inter-Integrated Circuit (I2C)

and Serial Peripheral Interface (SPI). We’ll look at these more in Chapter 7.

An easy way to expand your project with an existing fleet of micro:bits

is to leverage the wireless abilities to make them work together. We looked

at this functionality in the earlier micro:bit emoticon project, where we

used code that would listen and send data to communicate by displaying

different images on the LED array. For our plant project, one way to

expand is to change the roles of half of your micro:bits, for example, if

you have a class set or group; this way, you are using the same number

of micro:bits but have different code running on some. So, in addition to

having the sensor-connected micro:bit send signals to pins, it will send

wireless data to another micro:bit.

There are a few different ways to leverage small microcontroller boards

like the micro:bit to work together:

•	 Connect many-to-one to display activities of multiple

units to one micro:bit and display results. This can put

higher demands on that one micro:bit because it has to

handle data from multiple micro:bits and may be slow

to update information from each, or you can switch

between monitoring each one.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

174

•	 Add multiple peripherals to one micro:bit – you may

run into limitations with storage space and memory,

and connecting multiple components to one micro:bit

will need additional electrical power and possibly

custom wiring.

•	 Add expansion boards to a second micro:bit to take the

load off one and keep programming simple. This is the

same as programming a single micro:bit to work with a

single expansion board but sending data wirelessly to

the other.

As you can see, the last option is the easiest and most efficient use of

the micro:bit’s resources. When you’re designing a project, it is often the

case that you would look at your requirements and, based on those, pick a

suitable microcontroller board to use. In this case, I’m looking at how we

would get the most value out of a group or class set of micro:bits for kids. It

also adds some variety since not every micro:bit will be programmed with

the same code.

SCALING YOUR PROJECT: USE WIRELESS TO SPREAD THE LOAD

In this quick exercise, we will look at adding some lines to allow us to spread

the load of our code across two or more micro:bits. This works by reading data

from a sensor and sharing that data across more than one micro:bit so that

you can implement other components as easily as you would on one micro:bit,

for example, using a board that fits on the micro:bit pins for lighting up

multicolored LEDs, driving motors or actuators, or simply displaying something

on a second micro:bit display.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

175

Radio code refresher

Taking the previous example of sending wireless data from a micro:bit, on a

specific channel, you will recall these code lines to import the radio module

and set the wireless channel to 10 (Listing 5-4).

Listing 5-4.  Initializing radio communications on the sending

micro:bit

import radio

radio.config(channel=10)

radio.on()

Adding this to a project such as our self-watering plant, we can send the

moisture information wirelessly (Listing 5-5). Note that we are using str() to

convert it into a string type for sending.

Listing 5-5.  Sending moisture data to another micro:bit

while True:

 moisture = pin1.read_analog()

 radio.send(str(moisture))

...

Now that we’ve sent data wirelessly on channel 10, we need to receive it at the

other end. We will also need to convert it back from a string type (characters)

into an integer type (whole numbers). I’ve shown this in Listing 5-6 with

bolded lines showing how to receive data into the received_data variable

and convert it back to an integer type with int().

Listing 5-6.  Receiving moisture data on another micro:bit

from microbit import *

import radio

radio.config(channel=1)

radio.on()

while True:

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

176

 received_data = radio.receive()

 if received_data:

 print(int(received_data))

...

The print() statement is just there for checking that it works, using the

REPL console. You can replace that with an action, which could be to display

an icon on the micro:bit LED display, light up an external LED display, play

a sound, or even operate a servo motor to lift a flag. Remember to reset it

to something else when data is not received; you may also need to add a

sleep() delay to prevent it from double triggering, a.k.a. “debouncing.”

So, in plain English, this would be described as follows:

	1.	 Collect the moisture data on the first micro:bit.

	2.	S end the moisture data wirelessly.

	3.	I f the moisture is under or over a certain threshold, or within

certain bounds, do something on any of the micro:bits.

	4.	R epeat.

There are multiple online resources with examples showing how to run a servo11

or LED12 connected directly to a micro:bit. Look at brands such as Adafruit,

Kitronik, MonkMakes, and Pimoroni for add-on boards that can scale up even

more and operate multiple servo motors or lights. These boards typically use I2C

or SPI protocols I mentioned earlier but provide you with prewritten modules and

code examples to make them easier to operate. Because you’re not sharing your

micro:bit with any other hardware, using wireless communications to share data

makes it easy to connect and control additional hardware to your original project.

11 https://support.microbit.org/support/solutions/articles/19000101864-
using-a-servo-with-the-micro-bit
12 https://support.microbit.org/support/solutions/articles/19000101863-
connecting-an-led-to-the-micro-bit

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://support.microbit.org/support/solutions/articles/19000101864-using-a-servo-with-the-micro-bit
https://support.microbit.org/support/solutions/articles/19000101864-using-a-servo-with-the-micro-bit
https://support.microbit.org/support/solutions/articles/19000101863-connecting-an-led-to-the-micro-bit
https://support.microbit.org/support/solutions/articles/19000101863-connecting-an-led-to-the-micro-bit

177

The challenge here was finding a way to scale up a simple project

within the confines of the hardware that we used. Trying to connect and

power more than two components would ordinarily have resulted in

running out of storage and memory on our humble micro:bit – however,

due to leveraging one of the features, that is, wireless, we were able to

easily expand our project much further!

�Code Club Alumni
As you may recall, our first code club consisted of David (a teacher at the

school who initially registered the club), Jay (a previous school student),

and myself. Once our club began to grow, we were lucky enough to have

parents of kids at the school volunteer to support the club. As with most

school extracurricular activities, there are sometimes biases where parents

may try to “fix” or steer these activities, which unfortunately can spoil

things for kids. In the past years, we had parents come in, and rather than

learning to code themselves, they would raise issues such as “the kids

need mice instead of trackpads” or “we should teach them <insert other

programming language here>” or would proceed to tell us why everything

was “too difficult.” We also had the parent who worked in the video game

industry and would suggest that everything else was “boring” for kids

except, of course, video games, which prompted other volunteers to point

out the reasons that had led to the choices we had made. Funnily enough,

many of these issues are solved when the kids themselves volunteered

more in later years. Currently, there’s three students from multiple years

back at our code club. The fact that kids are enthusiastic enough to come

back and help others learn gives me hope that this will help our code club

persist for at least several more years!

Typically, we would have younger kids attending when a parent or

sibling volunteered for code club. My son ended up attending in grade one

and seemed to light a bit of a fire under our code club back in the first year

when he showed the club a game that we had been working on. Later on,

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

178

he would get involved with some of the things I was prototyping for code

club workshops and also create his own variations on code club projects.

One that was particularly memorable was “Draw your own adventure”

which took elements from the prewritten code club Scratch project called

“Paintbox”13 and mixed these with a platform-style game, where a cat

character would be able to run and jump on levels drawn by the player.

Ethan, one of current volunteers, came into our club early on because

his sister had attended code club and ended up pushing herself a bit

further with Python. Eventually, she came back for a few years as a

volunteer and would bring her younger brother. In some ways, Ethan is a

second-generation code club volunteer – he ended up becoming one of

the school leaders for his contributions to our code club. While attending

code club, Ethan worked hard to finish every prewritten module we had,

including all the workshops. This was a great effort as he was also quite

busy with sports, such as field hockey, in his personal life. He also attended

a bunch of code club events such as Moonhack.

After I was asked to write the first Moonhack projects back in 2014,

our club was able to have some kids attend the live Moonhack event for

a few years. Although one of the teachers at code club pointed out that

it might be hard for parents to get into the Melbourne CBD on a school

night – talking to other parents revealed that they would often drive their

kids across town for sports – what they said was, “Why should code club be

any different?” Thinking about this, it made a lot of sense, and hopefully

it made a difference to some of these kids with some good memories of

those times. So, we ended up getting kids and parents to the event, and

no one complained and many mentioned that they were thrilled to have

the opportunity. A couple of days before Moonhack one year, Nicola from

Code Club Australia called about an opportunity to be on That Startup

Show – unfortunately, most families had already shuffled around activities

13 www.codeclubau.org/projects/paint-box/

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

http://www.codeclubau.org/projects/paint-box/

179

to be able to attend the live Moonhack event that week, including myself.

However, as luck would have it, Ethan and his sister were happy to be

involved, and their parents managed to shuttle them down to be in the

filming. They did a great job after having to wait around the set quite a bit,

and it was yet another exciting event to discuss at code club that week.

�Adapting Our Skills: An API Project
in Python with Trinket.io
During various code clubs, I would try to regularly remind the kids that

it was good to ask questions after first attempting to solve any problems

on their own. I would say that the ideal situation is that they work hard

enough that it would push us to struggle to come up with more and

more interesting things to do. Prior to becoming a returning volunteer,

Ethan found himself having completed all the workshops and all the

projects from the existing two Python modules from Code Club Australia

(currently, there are three in addition to a bunch of extra projects related to

various events run by Code Club Australia).

What were we to do? After some pondering as to what we could do,

it occurred to me that it should be possible for someone like Ethan to

leverage skills from the previous projects and perhaps write his own

project. From the prewritten code club projects and workshops, a few of

the Python/programming concepts we could draw from included

•	 Application programming interfaces (APIs): An online

interface that allows programmatic retrieval and

submission of stored data

•	 Dictionary structures: Storing values indexed with keys

•	 JavaScript Object Notation (JSON): A way of serializing

data when retrieved from APIs

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

180

One of the Code Club projects involves retrieving the current

coordinates of the NASA International Space Station (ISS) and plotting

them on a world map.14 I remembered how much some of the kids

enjoyed this project, so this and other projects that involved the preceding

concepts were what we drew on to create Ethan’s new project.

Since this chapter is focused on the process of taking skills learned

and applying them to create something new, I will include insight into the

thought process and actions we used to develop the project. The objective

is to allow you to follow this process and apply our learnings to create your

own projects, hopefully accelerating the growth of your own code club or

maker group for kids. Although this project is not as scalable as the self-

watering plant, it is solely Python and runs on a computer, interacting

with free Internet resources – so I felt it was worth including as a second

example of the process of building something from the bottom up using

skills gained from prewritten examples. This exercise documents the rough

steps performed by a grade 6 student at the time. Although I’ve included

some code, it is more the discovery process and application of learned

concepts that is important here.

CREATE A PROJECT THAT USES API DATA

Background

Using their own accounts on https://trinket.io, the kids at our club had

worked through the Code Club Australia Python modules prior to this process.

This allowed them to reference working code that they had written, which

helped reinforce their prior learning and improve Python fluency by applying

the code in slightly different contexts.

14 https://codeclubau.org/projects/where-is-the-iss/

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://trinket.io
https://codeclubau.org/projects/where-is-the-iss/

181

Objectives

Start with an objective that can be broken down into steps. For this example,

we decided to get online content from an API and present it to the end user in

a question/answer format that was displayed on the screen.

For example, breaking this description into smaller steps gave us

•	 Search for a suitable public API

•	 Requirements for the API

•	 Free

•	 Must be kid-friendly

•	 Does not require authentication

•	 Interesting and entertaining information

•	 Read and understand documentation and examples for the

chosen API

•	 Make live requests the same way we did with the Code Club

ISS project and break the information into components

•	 Write code to present this to the end user and give feedback

•	 Repeat this multiple times using a loop

Find a suitable API

Search online for free APIs and pick a few to try. Typically, the API information

page will supply example requests and show the expected format of the

returned information. We wanted to use a data in JSON format because that

format was used in a prewritten project that we had completed earlier.

After looking through a few APIs, the Open Trivia API was selected due to these

features:

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

182

•	 Easy to interact with without authentication.

•	 Free to use.

•	 Data was in a familiar format for us, and the multiple-choice

format suited our objective well.

The information about using The Trivia API was found at https://the-

trivia-api.com/docs/ and uses a Creative Commons attribution license:

https://creativecommons.org/licenses/by-sa/4.0/.

Make some live requests

Using the documentation, we generated a URL required to retrieve a single

question with multiple-choice answers in JSON format (Figure 5-9).

Figure 5-9.  The Trivia API URL generator

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://the-trivia-api.com/docs/
https://the-trivia-api.com/docs/
https://creativecommons.org/licenses/by-sa/4.0/

183

Referring to the Python documentation for the requests module, we can

usually find example code. Use knowledge from projects that you have already

completed. Saving all your previous code is useful here because it can make

it easier to program next time. You can also create snippets of generic code to

reuse – this is known as boilerplate code. Here is some simple code that was

written to make a GET request to the API endpoint (Listing 5-7) in our example.

Listing 5-7.  Requesting data from the API endpoint

#!/bin/python3

import urllib.request as ur

import json

url = 'https://the-trivia-\

api.com/api/questions?limit=1’

response = ur.urlopen(url).read()

print(response)

Response:

[{"category":"Film & TV","id":"625fd6f3dc0dd3b72da64d17","correc

tAnswer":"1989","incorrectAnswers":["1977","1981","1985"],"ques

tion":"Indiana Jones and the Last Crusade was released in which

year?","tags":["film","film_and_tv"],"type":"Multiple Choice","d

ifficulty":"hard","regions":[]}]

Indiana Jones and the Last Crusade was released in which year?

OK – this works! The next step will be to extract information from the returned

JSON format.

Extract the information

Looking through earlier working projects and doing online searches such as

“python3 list shuffle” can help us understand how to extract some of the

information we will need.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

184

For example, we can comment out the print(response) command by

placing a hash (#) in front. This is a handy way to delete the command

without deleting it, so we can remove the # and add the bolded lines shown in

Listing 5-8.

Listing 5-8.  Extracting the question from the JSON data

#!/bin/python3

import urllib.request as ur

import json

url = 'https://the-trivia-\

api.com/api/questions?limit=1'

response = ur.urlopen(url).read()

print(response)

json_response = json.loads(response)

print(json_response[0]['question'])

We will also need to extract incorrect and correct answers from our JSON

array and into a list. Then we need to use random.shuffle() so that we can

later display a multiple-choice question to the user (Listing 5-9).

Listing 5-9.  Extracting the multiple-choice answers and shuffling

#!/bin/python3

import urllib.request as ur

import json

from random import shuffle

url = 'https://the-trivia-\

api.com/api/questions?limit=1'

response = ur.urlopen(url).read()

print(response)

json_response = json.loads(response)

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

185

print(json_response[0]['question'])

mylist = json_response[0]['incorrectAnswers']

mylist.append(json_response[0]['correctAnswer'])

shuffle(mylist)

print(mylist)

This nicely pulls out the required information that can be presented to the end

user and have them input an answer. We would then compare the answer to

correctAnswer. This can be repeated in a loop – I recall that in this example

the end user had the option to answer with “q” to quit out of the program.

From that point, things were straightforward, and Ethan was able to

carry on and implement those last few features quite easily.

�Summary
Developing a new project can potentially be a natural progression from

guided projects for those able to implement basic Python concepts without

help. Once an idea is put forward, and objectives determined, all that

remains is learning to consult and interpret the documentation relevant

to required hardware and extra Python functions or modules. For an extra

challenge, kids with the appropriate communication skills could learn to

document such a project to be reused as a workshop or even contributed

as a community project. Open source contributions are a great way for

kids to learn about coding and collaborating15 with more experienced

developers; it also provides a much broader perception of the value of

resources than simply profit.

15 https://opensource.guide/how-to-contribute/

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

https://opensource.guide/how-to-contribute/

186

�Chapter 5: Cheat Sheet
–– Show context of creating own project (hand-drawn if possible).

–– �Curriculums to use include Code Club, Grok Learning, Code.org,

Trinket.

–– �Completion of lessons/prewritten projects helps to standardize a

minimum skill level required to progress to more advanced

activities.

–– �A higher cost vs. reward over time can discourage kids, so prepare

adequately to maximize efficiency from the beginning and mini-

mize time spent waiting around.

–– Find your own project (start to finish):

•	 Diagrams are a quick way of showing projects that

use hardware.

•	 Leverage known event-driven iterative structures as

a start.

•	 Breadboards with edge connectors (for micro:bits)

can offer more stability than alligator clips for more

complex designs.

•	 Understand, then add one element at a time.

–– Beware of oversimplification or cost-cutting:

•	 Perception of difficulty: Sometimes, we need to

lead with confidence and enthusiasm, rather than

aprehension, to instil confidence in others.

•	 Reducing challenges can introduce needless

complexity and limit useful learning.

•	 Continuity lets us build upon our previous triumphs.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

187

–– Scale up:

•	 Know the limitations of your hardware.

•	 Spread the load of resources across multiple

micro:bits.

•	 Many-to-one: Display output of many micro:bits on

one micro:bit.

•	 Add multiple peripherals to one micro:bit; it might be

more difficult, and there are resource limits.

•	 Use additional micro:bits for simpler code and wiring.

–– �Code club alumni: Leverage participants to give back by

volunteering.

•	 Lots of benefits with the preceding model

–– Adapt our skills:

•	 Build on previous prewritten projects.

•	 Reuse code and create boilerplate snippets.

•	 Add another level after prewritten projects and

workshops and apply learned skills and concept

knowledge.

•	 Look at improving more by applying coding skills

to help with contributions and collaboration on

community open source projects, or volunteering to

give back by providing materials or time to code

club/maker groups.

Chapter 5 Freestyling with Python: Going Off Map and Applying Skills

189

CHAPTER 6

Collaboration:
Working with Others

�A Quick Tale: Devs and Testers
One year, when we were still doing Scratch programming, we ended up

with a couple of weeks where there was a group of kids who had already

finished their projects. I had been considering an idea for collaboration, so

we took a small group of kids through this activity which I called “Devs and

Testers.” This is short for “Developers and Testers” – since programmers

are referred to as “developers” or “devs” in commercial software teams.

Before this point, everybody had been working independently of one

another. The only collaboration had been to have the kids walk around the

room and look at what their peers had created. Sometimes, they would

play various games and ask questions or suggest improvements, but that

was it. The Devs and Testers activity takes this quite a bit further, teaching

kids about collaborating with a team on an existing project. This can

easily be applied to any type of project, regardless of whether it involves

hardware, and using any programming language. The workshop activity I

have outlined here is adapted from that earlier activity.

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_6

https://doi.org/10.1007/978-1-4842-9197-9_6

190

DEVS AND TESTERS

Introduction

This is a group activity where two teams will be working together to improve

some software.

These teams are

•	 Testers: They run the software and test it for things that don’t

work properly (bugs) and suggest improvements (features).

•	 Developers: They change the code to fix bugs and write code to

add features.

Prerequisites

You should have at least done some coding projects or have written your own

programs.

You will also need one large whiteboard and some cards (20 or more) to write

on, or you could use large butcher’s paper stuck to the wall. Of course, you’ll

need some whiteboard markers for the whiteboard, normal pens for the cards

or butcher’s paper, and tape or magnets to stick cards to the whiteboard

or a wall.

Step 1: Choose teams and a project.

In this step, we will choose a Python project and decide who is on the

Developers team and who is on the Testers team.

Activity Checklist

•	 Decide who will be in the Developers team. It doesn’t matter

who goes first as people can swap teams later. If you are using

a project written by a student in your Code Club, they should be

on this team.

Chapter 6 Collaboration: Working with Others

191

•	 Now decide who will be in the Testers team. The testers need to

be able to test the project, find bugs, and suggest new features

to improve the project. There must be at least two people in the

Testers team, with more people in the Developers team.

•	 Your teams must first pick a project to use. Make sure it is one

that everyone knows well enough to add to. It could be a Code

Club project, like Clone Wars or Create Your Own World, or one

that a student/maker has written.

Step 2: Share the code.

In this step, we need to make sure that both teams have the same version of

the code.

Activity Checklist

•	 Once your teams have decided which project to use, members

of both teams will need a copy of the code. If you have an

online Trinket.io account, just share your project and tell

the rest of the team the link, so they can remix. To do this, log in

and click the Remix button in the upper top-right

corner of the Trinket page.

•	 If your Code Club or Maker group uses Python offline, you’ll

need to share the .py file(s) and folders with your other

team members. If you work off a shared drive or a cloud-

based shared drive, decide on a folder to use, copy your code

there, and invite your team to access that folder with read/

write access.

Step 3: Prepare the issue tracker board.

In this step, we need to set up a way to keep track of bugs that the Testers

team find and features that they suggest. The Developers will need a way to

record the changes they made to the code and allow the Testers to test any

changes before they are marked as completed.

Chapter 6 Collaboration: Working with Others

192

Activity Checklist

Draw two lines down the whiteboard, so that it is divided into three columns.

At the top of the board, label the first column from the left TO DO, label the

middle column WORK IN PROGRESS, and label the last column COMPLETED. It

should look like the image in Figure 6-1.

Figure 6-1.  Issue tracker board example

Take the cards and put them near the Testers team. The Testers team will use

these to let the Developers team know when they have found a bug or have

a new feature suggestion. This method of tracking progress and managing

workflow is called Kanban, and the board is called a Kanban board. Years

ago, I did some work at Toyota and remember that they ran Kanban servers –

interestingly, this was because the Kanban system actually originated from the

Toyota Production System (TPS).1

Ready to start

With your teams chosen and your Kanban board set up, you are ready to begin

improving your project!

1 https://global.toyota/en/company/vision-and-philosophy/
production-system/

Chapter 6 Collaboration: Working with Others

https://global.toyota/en/company/vision-and-philosophy/production-system/
https://global.toyota/en/company/vision-and-philosophy/production-system/

193

Step 4: Begin the process.

This is where the real fun begins. The Testers team get to test the project and

start giving the Developers bugs to fix and features to add. Remember to use

one card per bug or feature.

Activity Checklist

•	 The Testers should run the project by pressing the green flag

and start looking for bugs. When a tester finds a bug, they will

need to grab a card and write a description of the bug and their

name. The description should include how to find the bug and

what is going wrong. It should be as clear as possible for the

Developers to understand.

	A n example bug card could be

BUG:

The sprites end up in the wrong places when the game

restarts

How to See the Bug:

Re-start the game and after the first run, the balloon

sprite is always stuck at the right side of the screen.

The position of the balloon stops the player from being

able to play the game without using the mouse to move it

back before running.

FIX:

Set the sprite position at the start of every game.

•	 The Testers should also look for ways that the project can be

improved with new features. When they think of a good feature,

they should grab a card and write a description of the new

feature, adding their name to the card. If they know how, they

can suggest how it could be done.

Chapter 6 Collaboration: Working with Others

194

An example of a feature card could be

FEATURE:

Convert a single player game to double player

DESCRIPTION:

Add another balloon with different controls, so 2 players

can race each other at the same time.

HOW TO IMPLEMENT IT:

Duplicate the balloon sprite and scripts, then change the

keys to control the second sprite. Change the 2nd sprite

to another color. If player 1 gets to the end first, end

the game and display "Player 1 wins!" or if player 2 gets

to the end first display "Player 2 wins!".

•	 Once a bug or a feature card is written up, stick it in the TO DO

column. The Developers choose a card each and move it to the

WORK IN PROGRESS column. They should talk to the Tester

who created the card to get more information. The developer

should take notes in point form.

•	 Then the developer needs to work on fixing the bug or adding

the feature. Before moving the card to the COMPLETED column,

it must be tested by the tester. If the tester is happy, then the

card is completed, and the developer can grab another card to

work with. The whole process is shown in Figure 6-2.

Chapter 6 Collaboration: Working with Others

195

Figure 6-2.  Bugfix/feature workflow

Chapter 6 Collaboration: Working with Others

196

Challenge: Release the new version of your software

Once a few bugs and features have been completed, create a new version of

the project, and add all the fixes and features. You can call it “version 2” if the

first was version 1. Once this is done and the Testers team is happy with it, try

swapping people across to different teams and do it again!

If you are interested in using a more realistic versioning system, you can use

minor versions for the nonstable, more buggy versions, for example, 0.1, 0.2,

0.3, etc., and use major versions for the stable releases of your software, for

example, 1.0, 2.0, 3.0, and so on.

Other options

While running this activity, we organically came up with some variations, which

included implementing a team leader role to develop a criterion for triaging

bugs/enhancements to reject or accept them and prioritize the more important

items. The team leader could also assign developers with the appropriate skills

to specific issues. Other options included rotating kids through each team to give

them an opportunity to try different roles and challenges.

�What Is Open Source Software?
According to Red Hat, Inc.,2 “The term ‘open source’ refers to something

people can modify and share because its design is publicly accessible.” As

outlined on the Open Source Initiative website, open source also refers to

licensing and distribution, and these licenses can flow down to derivative

works, too.3 There are many different open source licenses,4 and these vary

2 https://opensource.com/resources/what-open-source
3 https://opensource.org/osd
4 https://opensource.org/licenses

Chapter 6 Collaboration: Working with Others

https://opensource.com/resources/what-open-source
https://opensource.org/osd
https://opensource.org/licenses

197

broadly in the areas of attribution, distribution, collaboration, and the way they

affect derivative works. From its early beginnings in the late 1990s, open source

has now become widespread with millions of open source projects today.5

No discussion of collaboration is complete without talking about open

source software, which encourages collaboration and contributions in the

form of feedback, bugs/fixes, and code enhancements. I originally became

interested in contributing to open source after using open source software

and working with friends who were developers on some significant

open source projects. What struck me about these people was that they

mentioned improving their programming skills and learned from others

while contributing fixes to issues opened by users.

My own initial open source contributions started with the Fwknop

project, which was created by Michael Rash. The Fwknop project uses Single

Packet Authorization to use a network packet with an encrypted payload to

modify firewall rules to allow specific connections to an online server. While

using the software with some friends, we needed some additional features,

one of which included allowing access to some online web applications

that included a wiki, pastebin, and bug tracker. This feature would maintain

access to a user only while they were connected to an online chat server.

Part of my contributions required that I understood more about the Perl

language. After talking to other friends who initially said they “knew a bit of

Perl,” I found that they didn’t know enough to help me – so I went through

the original code and taught myself what I needed to know with the help

of the Internet. The other aspect of contributing code was to look at the

programming style used by the original programmer and contributors as Perl

is less strict in how things are done than a more structured language like Java.

Although slightly more involved than our simplified workflow we

used with the Devs and Testers activity, open source projects have their

own preferred workflow for opening an issue on their bug tracker website,

5 www.statista.com/statistics/1268650/worldwide-open-source-projects-
versions-ecosystems/

Chapter 6 Collaboration: Working with Others

http://www.statista.com/statistics/1268650/worldwide-open-source-projects-versions-ecosystems/
http://www.statista.com/statistics/1268650/worldwide-open-source-projects-versions-ecosystems/

198

engaging in discussion about the bug or enhancement, and eventually

creating a patch to implement the update to the software. A patch for

collaborating is typically created by comparing versions of the source code

with and without your code updates. Examples of tools that will generate

a patch like this are diff (Mac and Linux) and fc (Windows), which are run

from a command-line interface, for example, diff file1 file2 > file.

patch will output a patch file called file.patch.

Another reason for applying an open source license to a project is to

prevent a profit-focused company from “owning” a project and restricting

future development or access to it, when it fails to meet profit targets. In

contrast, an open source project can be passed over to new volunteers and

will often persist where closed source proprietary may not. The result of

applying an open source license can be much more long-lived innovation

than might be seen in a more limited closed source product. A license

that is attached to a software project dictates the conditions under which

the software can be used, modified, and distributed. The benefits vary

depending on the type of software, and there are pros and cons to be

considered with each license. You should always take the time to ensure

that the license you choose is appropriate for the requirements of the

software and userbase. It should also be noted that many commercial

companies also contribute to community- and volunteer-based open

source projects to give back, or demonstrate good will, to the community.

Examples of some well-known companies that contribute to open source

include Adafruit,6 Pimoroni,7 IBM,8 and Microsoft.9 Contributing to open

source is also a great way for kids and volunteers to gain more experience

in collaboration on software and hardware projects.

6 https://blog.adafruit.com/2022/02/07/500-adafruit-projects-have-been-
certified-as-open-source-by-oshwa/
7 https://github.com/pimoroni
8 www.ibm.com/opensource/
9 https://opensource.microsoft.com

Chapter 6 Collaboration: Working with Others

https://blog.adafruit.com/2022/02/07/500-adafruit-projects-have-been-certified-as-open-source-by-oshwa/
https://blog.adafruit.com/2022/02/07/500-adafruit-projects-have-been-certified-as-open-source-by-oshwa/
https://github.com/pimoroni
http://www.ibm.com/opensource/
https://opensource.microsoft.com

199

�Working Online: Collaborating
with Online Tools
Online tools can be used for everything from communicating with your

teammates and friends to implementing workflows for tracking code

changes and issues and even brainstorming on a virtual whiteboard. In

our code club, we used several different tools to facilitate communications

between volunteers and teachers, create and distribute resources for kids

to reference, track progress, and even keep parents updated on code club

happenings.

�Code Collaboration Tools
Although we never utilized code collaboration tools with the code club

kids, I would often use these when submitting updates to the code club

curriculum during the earlier years of volunteering. Nonetheless, I’m

adding some explanation of such tools in the hopes that your code club

or maker space will progress further due to standing on our shoulders,

or you are lucky enough to have a professional developer as one of your

volunteers. I also regularly utilize code repositories whenever any code I

write progresses past the point of being run a few times and needs to be

maintained in a controlled way. Understanding the basics of collaboration

with these tools is useful if you or your code club/maker group volunteers

or kids want to contribute to any public open source projects.

The idea here is to simply give you a simplified overview of how these

tools are used by developers and how they might be useful for your code

club or maker space. It is also useful to understand the workflow and

tools so that you can collaborate and learn from other developers online –

since one of the best ways to encourage kids to learn and build is to do it

yourself!

Chapter 6 Collaboration: Working with Others

200

�Code Collaboration Terminology

In the spirit of teaching kids to collaborate, we should learn some

universal terminology regardless of which languages or programming

frameworks we are using. These code collaboration tools can also be used

to collaborate on open source electronic hardware projects and supporting

software libraries. This section is intended to give you a simplified

understanding of what these tools do and some basic terminology to get

started interacting with open source projects and their maintainers. I’ve

included some footnotes with links to tutorials that will get you started.

Issue Tracker: An issue tracker is a web application that helps us

raise issues such as code bugs or enhancements, just like in our Devs and

Testers activity. Opening an issue in an issue tracker is the first step to

contributing to open source – this can be in the form of a bug report or a

suggested enhancement. Most online code repository services also include

an issue tracker that you can use for your project or when contributing

to other people’s projects. It is important to read through existing issues

to ensure that you don’t create duplicate issues or issues that waste the

developers’ time, especially on very large public open source projects.

Projects will often have some rules or a code of conduct to follow, and

failing to follow these can sometimes get your issues closed or ignored.

Code Repository: A code repository is a place to store your code,

either online or on your computer. The advantages of storing your code in

a code repository include the following:

•	 It is easier to collaborate with others, control, track, and

reverse changes.

•	 You can make use of more secure authentication

(people identifying who they are) and authorization

(what they can do).

Chapter 6 Collaboration: Working with Others

201

•	 If you use an online repository, it is easier to make your

code available to people in remote geographic locations.

•	 Often, you can manage your code using software tools

such as the open source tool, git.

Examples of online code repository services include GitHub,10

Bitbucket,11 and GitLab.12 Most of these have pricing that starts with

free plans up to subscriptions for more features and scale. Online code

repositories can be private where only people you specify can read and

write or public where anyone online can see your code. You can also set up

git repositories using software on your own computer.

Branch: A branch is a separate version of a repository that is still treated

as a part of the repository. By default, we will have a main branch which

is often called…main. A branch can be maintained in parallel and then

merged back into the main branch. Sometimes, other branches are used to

denote when code is not stable, for example, a branch called dev or test.

Fork: A fork is a copy of a whole code repository that we can create

and work on without affecting the original project. Depending on the

licensing of the original project, we may still be bound by some restrictions

that the original programmer (developer, or dev) has specified. The time

when we would create a fork is if we wanted to add our own updates that

may or may not be submitted back to the original project as a potential

contribution. Other times, we might want to privately use our own version

and develop some features that would not be useful to others. However, if

you make something that may be useful for the community, it is good form

to contribute back, especially when dealing with open source. Even if your

additions aren’t ready for direct integration with the original project, it’s

worth talking to the devs about whether it would be appropriate, or they

10 https://docs.github.com/en/get-started/quickstart/hello-world
11 www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud
12 https://docs.gitlab.com/ee/tutorials/

Chapter 6 Collaboration: Working with Others

https://docs.github.com/en/get-started/quickstart/hello-world
http://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud
https://docs.gitlab.com/ee/tutorials/

202

might be able to modify your changes to make it viable for adding to the

project. If we only forked a project to create a patch, then we would usually

destroy the fork once the patch has been approved and merged into the

original project.

Merge: Merging some new code into a repository will require that any

conflict with existing code is resolved. For this reason, it is important to try

and work with the most up-to-date version of the repository possible.

Clone: Cloning a repository is where you make a copy of it on your

computer. This is known as a local repository. Often, you’ll do this after

making a fork of a code repository and want to add or make your own

modifications to the code.

Add: Adding a file or folder to a repository means that it will be recognized

and controlled to record changes to that file or folder. You need to be careful

about what files you add to a repository, especially when it is public.

Commit: Once you have added or modified files in your local

repository, you can create a commit, which prepares the files to be merged

to the original project.

Push/Pull: Merging your locally edited code to your repository is

usually done with a push, for example, you can push a commit to your

online repository branch. A pull request is a request to have your code

updates merged into a repository. You can also do a pull from the online

repository to update your cloned local repository, to keep your local

repository up to date with the online repository. You should do this before

creating a commit so that you are always working with the latest version of

the code.

Readme: Most online public code repositories will include a file

named README.md e.g., Figure 6-3. This is a text file written in Markdown,13

providing a simple way of documenting information about a code repository;

including how to use it, how to install any required libraries that it depends

13 https://www.markdownguide.org/

Chapter 6 Collaboration: Working with Others

https://www.markdownguide.org/

203

on (dependencies), and sometimes information about how to contribute or

if they welcome contributions at all. For example, some projects will say “pull

requests welcome,” which means that they want contributions to help the

project grow.

Although these are the basic operations used for when collaborating

with code online, this only just scrapes the surface of what can be done

with these tools – there are complete books dedicated to documenting

code collaboration tools. As with any online communication medium,

it is important for kids to take precautions by not revealing any personal

or identifying information to others when collaborating online. Use

pseudonyms and be careful to ensure that no sensitive information,

such as passwords, is put into any public repositories. Currently, all code

repositories are continually scanned by third parties – this means that as

Figure 6-3.  The Code Club UK Python Curriculum Readme.md file

Chapter 6 Collaboration: Working with Others

204

soon as any credentials or sensitive personal information is uploaded, it

will be copied and so should be treated as compromised.

�Other Collaborative Tools

If the Kanban approach to managing tasks appealed to you, Trello14 is a

tool which allows a similar style of collaboration to be used online. It has

a free option that you can use straightaway, and in conjunction with a

private video conference, it would allow you to run an online version of

the Devs and Testers activity. As mentioned earlier, remember to state the

code of conduct expectations right at the start for any communication

platforms you use for your code club or maker group.

�Using Programming Terminology
to Communicate When Collaborating
In Chapter 3, we talked about introducing programming terminology

while learning Python. This becomes valuable as kids progress and need

to describe the techniques and features that they are using when writing

code. One important objective is to eventually become fluent enough with

a single programming language to enable kids to prototype their creative

ideas. Another bonus of using correct terminology is that it enables

collaboration as their skills grow. Being able to suggest a well-known data

structure or specific way of doing something and providing solid reasoning

to justify decisions in code or when building hardware projects is of great

benefit to facilitate rapid progress in larger projects. By learning the correct

terminology, your code club or maker group can scale their projects more

easily since they can then understand online documentation. Essentially,

being able to debug their projects, they will also be able to teach

themselves to learn on their own, using online resources and books.

14 https://trello.com/home

Chapter 6 Collaboration: Working with Others

https://trello.com/home

205

One of the best ways to develop this type of collaborative skillset is for

kids to work on a project with a programming partner. In our club, we used

a prewritten micro:bit traffic light lesson programmed in MicroPython,

which the kids would follow. The second part of the traffic light lesson was

to modify the code and set up another traffic light to have a specific state,

depending on the first one. This required referencing a state table – this

proved complex enough that I found myself referring to the table while I

was writing the project myself! Writing code that would make two devices

work together required communications and a way of managing who was

using which wireless channel.

�Testing Yourself: Creating Your Own Game
Writing Workshops with What You’ve Learned
Over the years, we had some students who would excel in code club,

creating interesting projects that they could scale, for example, a game with

an increasingly large number of levels. One of our code club kids, Jamie,

eventually came back as a volunteer for a few years and was particularly

persistent at writing games in Scratch that he would scale up quite well.

What we’ll look at now is how to break this down into components and

create a workshop that will teach others how to design a scalable rather

than closed-ended game.

CREATE A WORKSHOP FOR WRITING SCALABLE GAMES

Objective

The objective of this exercise is to analyze the thought process and workflow

used to build scalable games and attempt to create a workshop that allows

others to replicate the skill, for example, so participants can write their own

scalable games. We will use the game idea for this exercise.

Chapter 6 Collaboration: Working with Others

206

Analysis

Sometimes, we see prodigious kids in code club who can create something

great but may not yet have the skills to show others how to replicate their

efforts. By asking questions about their methodology, we can help piece

together the information and present it in a form that others can learn from.

Questions can include the following:

	1.	 What happens when the player reaches the next level? This will
tell you how the game scales.

	2.	 What are the basic elements of your game engine that control

gameplay? This will give you an idea of how the gameplay is
controlled (usually a loop that updates variables, based on events).

	3.	H ow do you keep track of score, number of lives, health,

or player inventory? This will show you some of the event
functions that are called from the main loop.

	4.	 What is the process used when you create a new game? This
will reveal the methodology used to design games and should
be communicated as a point of difference, since most beginner
programmers don’t consider the scalability of their software
until later in the writing process. By that time, they have
probably already written their code in such a way that makes
scaling more difficult.

Structure of workshop instructions

Once the main elements are described, we can provide a lesson/workshop

template using something that you are familiar with, for example, Word, LibreOffice,

or if you have something else that you like to use to present for training.

Chapter 6 Collaboration: Working with Others

207

The structure that I use is something like this:

Introduction: State the objectives and what everyone will achieve by the end

of the workshop. In the game example, this could be “Create a multilevel game

that is scalable.”

What you will learn: This will be a breakdown of the main skill components

that will translate into steps. Later, we will break these down further into

individual tasks under each step. Mentally, this is a good way to make the

overall project less overwhelming for the participants, structuring the project

logically. A logical structure makes things easier to remember and visualize.

What you need: Put any requirements in this section, especially if specific

hardware or tools are required. In the game writing example, we could

talk about the software that needs to be installed, including any software

dependencies such as code libraries that may need to be downloaded

beforehand.

Steps and tasks: A good number of steps would be three to four, and then you

can have four to five tasks under each step. Use screenshots or pictures when

you need to show something visually, and make sure that it is clear which part

of the picture is important. Crop out anything that is not relevant. If you can

describe something in one line more effectively than three screenshots, just

use the line of text.

Challenges and stretch goals: Always include a challenge to keep those

who finish early busy. For the game example, this could be to create additional

features once the main game is finished and tested. For a micro:bit activity,

it could be to scale up the project to allow the use of multiple micro:bits

simultaneously.

Troubleshooting: It can be helpful to show what to do if things don’t work and

give participants an idea of where to start looking and give them a checklist

for reducing things that can create confusion when trying to fix something that

isn’t working.

Chapter 6 Collaboration: Working with Others

208

The next steps here would be to list preparation steps to deliver the new

workshop. If the original author or volunteer is a bit nervous, offer to assist

them with delivering the workshop, just to get comfortable with things the first

time. If all goes smoothly, you will have helped someone create a workshop

that can help others create bigger and better projects – and maybe even

create their own workshops.

That’s it for this chapter – we’ve covered some of the key concepts

in collaboration and creating your own workshops and helping others

take that extra step toward sharing their skills with others. Although I’ve

covered the tools that we have found useful over the years, there’s plenty

more out there, and these change over time – this chapter should at least

give you an idea of what features may be useful for your group and give you

some ideas of how to evaluate what you need. The security and privacy

areas were topics that I feel go hand in hand with collaboration and

sharing, and hopefully this should give you an idea of what principles to

apply when setting up your tools.

�Communications
Email was the first method of communication we used, since the school

where our code club was using email to communicate to parents. This was

fine at the beginning of our code club since communications were limited

to the following:

•	 What are we doing this week?

•	 Whether there has been a room change for code club.

•	 When someone will be away sick.

Soon enough, our email started to branch into other threads, with such

topics as

Chapter 6 Collaboration: Working with Others

209

•	 Hardware purchases

•	 Discussion of using school-owned items such as

Sphero15 and Lego Mindstorms16

•	 Discussing potential solutions to issues of forgotten

passwords, where to save work, and so on

In subsequent years, we also ended up with more volunteers, and

keeping everyone updated resulted in larger numbers of emails. Coming

from a background of using communications recreationally and for

community projects, I eventually created a Slack space (Figure 6-4), which

is typically used by developers to chat online.

Figure 6-4.  Chatting in Slack for volunteers

15 https://edu.sphero.com
16 http://hackeducation.com/2015/04/10/mindstorms

Chapter 6 Collaboration: Working with Others

https://edu.sphero.com
http://hackeducation.com/2015/04/10/mindstorms

210

This allowed us to organize communications into separate channels that

reflected various activities and subjects. We could also look at code snippets

and images, and everyone could respond whenever they had a spare

moment, without it being overly intrusive to our busy day-to-day routines

outside of code club. One of the limitations of Slack is that for long-term

storage of chats, it requires a subscription. Since the idea of code club is that

it is free, anything we used was due to donations or fundraising or resources

that were also used by the school. I later migrated our chats to Discord,

which is like Slack in appearance but essentially free and lets us keep track of

past chats more easily. Discord was more familiar to our alumni volunteers,

so this worked well. It also offers voice and video chat, but we never ended

up having everyone online at the same time to utilize these. Our planning

meetings at the start of each semester were typically just a smaller subset of

the volunteers and teachers, which made sense since many were happy to

just turn up and help with whatever we needed at the time.

Another useful tool when you need to extrapolate reference

information from your chats is a wiki. This is like your own private website

with all the information easily available for new volunteers, for example,

code of conduct, processes for doing things, notes on workshops, and

other useful information required to get started quickly and consistently.

Ensuring that your wiki supports Markdown17 can make it much easier to

edit. For the reasons discussed in the next section, I would recommend

that you refrain from storing anything sensitive in a wiki. Wikis can be

run on a server that is on your private network or online – if you are doing

the former, your IT person can likely set this up for you, and for the latter,

please read the section in this chapter on security and privacy.

The advantages of a live chat were that we could discuss more things

in depth and organize our topics in an easily searchable fashion. This was

also a good way to send nonsensitive information that we might need

17 www.markdownguide.org

Chapter 6 Collaboration: Working with Others

http://www.markdownguide.org

211

urgently for an upcoming session. There were multiple instances where

documentation sent in our chat a few minutes before code club was able

to be received by volunteers on their mobile devices, while at code club.

As mentioned earlier, we never graduated to holding full meetings over

Discord, but I can’t help but think it would have been great if we had

been able to get everyone free at the same time. One thing that did work

was to be able to organize multiple workshops in parallel, by sending the

required information into each workshop channel. This was convenient

for volunteers to just look in the relevant channel for any discussion or

documentation that they needed. As things quietened down during the

early pandemic years, we stopped using Discord as we seemed to settle

into what we knew worked and just focused on discussing the scheduling

for these during the year. With more volunteers in the future, we may use

Discord again.

�Security and Privacy When Working Online
When we started to collaborate online, we had a mix of parents and high

school–aged volunteers, most of whom were already on the same or

similar chat systems that I set up for our code club. For our code club kids,

earlier Scratch accounts always used a pseudonym, and they practiced

online safety rules that they learned at school regarding no personal

information online. As we graduated to Trinket.io and TinkerCAD, the

same rules applied, except that we had parents more involved in preparing

their accounts and making sure that kids knew how to log in. This reduced

a lot of time that was wasted in earlier years when kids would frequently

forget passwords and lose saved or unsaved work repeatedly.

So that sounds all fine, right? I once tried to turn my back on security,

and it turns out that you can’t do that. If you’re online at all, you run

into scammers, dodgy folk will try and trick you, and even from an

opportunistic perspective, people will just try and get your things. It’s just

Chapter 6 Collaboration: Working with Others

212

how things are on the Internet. At the end of the day, having one thing in

place to protect you just doesn’t work – a single point of failure is just that

one point where failure means everything is compromised, for example,

just have a look at the haveIbeenpwned.com list of websites18 that have

been compromised at least once. There’s a whole lot there, right?

Yes, the tone here has changed slightly – that’s because this is just me

talking to you, frankly, because this part is important, not just for your code

club or maker group, but in general. It is also now part of the Australian

curriculum for schools. Security does not mean “use this specific antivirus”

or “subscribe to this service because it is the best,” it really means that

you need to increase the cost for someone attacking you and reducing the

reward vs. the effort required. Sometimes, this just means you should not

put the information out there in the first place, if you don’t need to or it is

avoidable.

So now that we understand that we need to be careful, how do we do

that? When I am asked about this by family and friends, instead of just

saying “yes, this is secure and this isn’t,” I also talk about principles to

apply. Here are some principles for you to apply.

�Separate Your Things

•	 Use different passwords for each service you sign up to.

You can use a password manager that is appropriate for

what you want to do. Look at the features for different

password managers. An important feature is being able

to generate strong passwords or, as they should be now,

passphrases.

18 https://haveibeenpwned.com/PwnedWebsites

Chapter 6 Collaboration: Working with Others

https://haveibeenpwned.com/PwnedWebsites

213

•	 If you can use different emails for some things, do that.

Some services offer a pseudonym feature. Be aware that

some of these do not hide the real email address to a

human but might fool an automated system, so you can

at least track down which service might be responsible

for a compromised account or putting you on an

annoying email list.

•	 Don’t use your work email for your social or code

club communications or online accounts. This limits

cross-contamination. Likewise, don’t use your work

computer for social or code club things, and vice versa.

Even having a cheap computer for home use is better

than risking problems.

�Use Layered Defenses

Layered defenses include turning on disk encryption on your computer,

using multifactor authentication whenever it is available, and making

your computer autolock in case you forget when working at a café.

There’s a trick to making these things work for you – you need to consider

context. So, if you are somewhere that you might be observed putting in

a password, use biometric logins such as fingerprints or face recognition.

Use multifactor authentication (MFA) in a way that works for you, for

example, most services let you use an app on your phone with a one-time

code that you can put in every so often rather than every time (checking

“trust this device” usually does this). Use your chosen login method as an

extra layer, where you can. This might mean that you use facial recognition

authentication to get your multifactor code from your phone. Although

these can be frustrating if used incorrectly, a little bit of thought can tell

you which method is most appropriate for a given context in which you use

your devices.

Chapter 6 Collaboration: Working with Others

214

�Be Careful with What Software You Use

Do some effective research on how secure something might be. Be aware

that anyone can post on the Internet. So, finding one comment on a forum

may not mean much, but reputable sources have a lot more clout. And

although you might not be able to tell whether a service is safe or not, it’s still

possible to do some research. An easy way to do this can be to search for the

service or software followed by the word “vulnerability.” This will show you

vulnerabilities rated as a combination of impact and likelihood. You will also

see how the vendor or author of the software has responded to vulnerabilities.

Did they fix them, did they ignore them, and how long did they take? If there’s

no information on these, sometimes you will at least see whether the vendor

addresses security problems in their product at all because there will be a

notice detailing the process for when people find security issues.

�Be Careful What You Trust

Does this mean you shouldn’t trust anything? In a way, yes. However, a

good way to put it would be as in the old proverb, “Trust but verify.” For

instance, if you receive communications from someone you don’t know

or over a channel where you can’t verify that it is from a particular person,

check on another communication channel. Although there’s a lot of attacks

and scams out there, just taking a minute to verify something can often

reduce your chances of getting scammed. Even checking the Australian

government scamwatch.gov.au19 website takes just a minute but might

prevent a lot of stress later. Other useful resources include esafety.gov.

au20 in Australia, cert.nz in New Zealand, or for a more global and more

detailed source, www.cisa.gov.21

19 www.scamwatch.gov.au
20 www.esafety.gov.au
21 www.cisa.gov/uscert/ncas/current-activity

Chapter 6 Collaboration: Working with Others

http://www.cisa.gov
http://www.scamwatch.gov.au
http://www.esafety.gov.au
http://www.cisa.gov/uscert/ncas/current-activity

215

These principles should be a good start for you to investigate being

careful online, in addition to policies and processes that may be in place at

the school, library, or wherever you host your code club or maker group.

Please do not take this as discouraging hacking – hacking to break things

with permission or innovate and create has been an important way of

learning, creating new things, and discovering serious problems in the

technology we use.

�Chapter 6: Cheat Sheet
�Devs and Testers Activity (2 x 1-Hour Blocks)

•	 Choose two teams – developers (programmers) and

testers (find bugs and suggest improvements).

•	 You will need a whiteboard and sticky notes for tracking

your bugs and enhancements with a Kanban board.

See Figure 6-2 for the activity workflow.

•	 Work out a method for sharing code within the teams.

The workshop can also be performed online with

collaborative tools.

�Open Source Software
•	 Open source software has source code available

and allows you to collaborate with modifying and

improving the software, for example, bug reports,

feedback, fixes, and even becoming a permanent team

member in some cases.

Chapter 6 Collaboration: Working with Others

216

•	 Licensing is important for open source software as

it helps keep it accessible for all and can also affect

derivative works. There are many different licenses –

all with their own requirements for attribution,

commercial or noncommercial use, and contribution.

•	 Open source can also apply to hardware designs

with many companies embracing both, for example,

Adafruit, Pimoroni, IBM, and Microsoft.

�Collaborating with Online Tools

•	 Online tools are available for communications between

your volunteers.

•	 Email is fine to get started but can get unwieldy quickly

and make it hard to find things.

•	 Using a collaborative tool like Discord is free, and you

can easily set up a private server and include voice,

video, and audio chat in addition to text-based chat

with images. These types of tools have the advantage of

allowing multiple channels/rooms so you can manage

information for multiple activities in parallel while

having it more easily accessible.

•	 To make things even easier to reference for new and

existing volunteers, you can also have a wiki. Some

overhead is required to add content, but if you choose

a wiki that is easy to edit, it can be worth a bit of extra

time compared to that saved by having easily accessible

content.

Chapter 6 Collaboration: Working with Others

217

�Security and Privacy When Working Online
The main principles to remember in this area are as follows:

•	 Separate things, for example, use different emails for

work vs. private.

•	 Layered defenses, for example, use MFA and add controls

on mobile devices that are contextually appropriate, that

is, biometrics can be easier if you are in a public place.

•	 Be careful with software that you use – look at the big

picture and determine what the vendor’s focus is; are

they actively fixing security and privacy issues?

•	 Be careful what you trust – double-check with a trusted

source when dealing with communications from

unknown sources.

�Code Collaboration Terminology
•	 Issue tracker: A web application that tracks code issues

raised for a project.

•	 Code repository: An online repository to track

versioning and changes to your code.

•	 Branch: A separate version of a repository stored with

the repository.

•	 Fork: A copy of the whole code repository that is

separate from the original; used to work on the code

without affecting the main repository, for example, for

contributing code patches.

•	 Merge: Adding new code to a repository.

•	 Add: Add code or files to be later merged into the

repository.

Chapter 6 Collaboration: Working with Others

218

•	 Commit: An update that contains files and a comment

to be merged into a repository for tracking.

•	 Push/pull: A pull request is a request to have your code

merged to a project; a push is when you send a commit

from a local repository to the online repository.

•	 Readme: A file, usually formatted with Markdown, that

has information for a repository that includes how to

install and use the software and how to contribute to

the project.

�Creating Your Own Workshops
•	 Creating a workshop is a good way to enable others

to achieve more by leveraging their existing skills and

applying them in a smart way.

•	 Helping one of your volunteers or code club kids to

create a workshop can be that next step from being a

solo programmer to enabling a group to learn how to

do something.

•	 Using a template can make creating a workshop easier

by helping to structure the information. The main parts

of a template could include

•	 Introduction

•	 What you will learn

•	 What you need

•	 Steps and tasks

•	 Challenges for once you have completed the

main steps

•	 Troubleshooting

Chapter 6 Collaboration: Working with Others

219

CHAPTER 7

Electronics: Basic
Skills and Tools
With the introduction of microcontroller boards, it is possible to program

a large portion of the logic for projects in high-level languages such as

Python or Arduino. These languages use modules and libraries that

can make it easier to program hardware. Low-level languages such as

the assembly language can be embedded in higher-level languages like

MicroPython. Libraries can sometimes be used to offload heavy lifting

tasks while keeping the main logic readable and easy to update. This

chapter is an introduction to the skills required to get started with kits and

prototyping your own projects.

In this chapter, we will look at designing hardware projects, starting

with an idea and selecting the hardware and parts, and incorporating

a microcontroller board that can be programmed with a version of

MicroPython. We will cover some of the concepts and skills involved when

integrating additional components and building the required circuitry in

an electronic badge prototype built on a reusable circuit board known as a

breadboard.

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_7

https://doi.org/10.1007/978-1-4842-9197-9_7

220

�A Quick Tale: Getting the Burn for
Electronic Projects
As a kid, I remember a friend, Andrew, showing me small speaker amps

and other electronic kits that he had made. Given my fascination with

music, radio, and audio, the fact that he had made these really impressed

me at the time. He also showed me an FM bug and some other kits that

came from a local magazine called Talking Electronics written by Colin

Mitchell. Incidently, I recently came across an online interview with Colin,

found his website, and ended up buying a bunch of the original kits from

him.1 Just prior to being introduced to Talking Electronics, a school friend

and I had been catching the tram down to a local Dick Smith electronics

store in Richmond, Victoria, to buy some of their kits – although they

were good for learning to solder and how not to solder, they just weren’t

up to the standard of the clear explanations and elegance of the Talking

Electronics designs. My dad’s unwieldy fixed temperature soldering iron

seemed too clumsy for the work, and eventually I bought a tiny, pencil-

sized 12-volt soldering iron. The smaller soldering iron, although cheap

and still not adjustable, seemed to be closer to the right temperature and

was much more forgiving for the small kits I was building. Eventually,

I started reading more of the Talking Electronics articles and began to

understand a bit more about why the circuits worked better and even got

better at the “how” part, too. In later years, I built a bunch of kits from

various sources, including a karaoke box, small stereo amplifiers, FM bugs,

and various LED-based projects that would light up to sounds or play

simple games. Eventually, we did a very short electronics subject at school,

and I recall it as memorable as one of a few rare times where a personal

interest had intersected with a school topic.

1 www.talkingelectronics.com

Chapter 7 Electronics: Basic Skills and Tools

http://www.talkingelectronics.com

221

These days, most of the logic can be programmed onto microcontroller

chips which can also control other smaller expansion boards and breakout

boards to perform tasks such as reading input from sensors or sending

commands to motors and output to small screens or arrays of light-

emitting diodes (LEDs). In contrast to the older circuits that still exist,

microcontrollers and their circuits are mostly digital these days. However,

you’ll still need to understand a few basics about electronic components

and what they are used for. I’ve included a primer to get you started – we’ll

talk about some basic electronic components and how they are used when

programming microcontroller boards like the micro:bit and others. Given

that we will be looking at using some components with microcontroller

boards, we will primarily be looking at digital circuits that use high and low

values to represent binary 1s and 0s and chips composed of logic gates. In

contrast, analog circuits rely on variances in voltage. Within the context

of microcontrollers, analog signals may come from sensors, for example,

measuring heat, light, sound, and other variations in the environment. To

allow microcontrollers to process these signals, they are first converted

into digital forms using an analog-to-digital converter, which may be part

of a microcontroller chip. To output analog signals, for example, sound,

these are converted from digital into analog signals or sometimes use

digital signals to mimic something that looks analog, for example, flashing

LEDs very quickly to make them seem less bright, or apply the same

principles to change the speed of motors. At the time of writing this, there’s

a global chip shortage with some components no longer being made and

the factories that produced them closing during the COVID-19 pandemic.

Some effects of this are finite lives for certain equipment and what seems

like an increase in perceived value of some.

Chapter 7 Electronics: Basic Skills and Tools

222

�Basic Electronic Component Primer
This primer will provide an introduction to some of the electronic

components which you may come across in soldering kits and when

integrating with various microcontroller boards like the micro:bit and

Adafruit’s CircuitPython boards. These are all based around electrical

current – electrons are negatively charged subatomic particles, which

travel from the negative terminal to the positive terminal of an electrical

source, that is, electrons move in the opposite direction to the electrical

current. I like to think of this as “Negative is attracted to positive.” I

proudly recall my school physics teacher saying, “you did pretty well for

someone who didn’t do any work.” I like to think that he was referring to

my keen interest in electronics outside of school, but he was probably

just saying something akin to “you could have done much better (in the

specific curriculum topics, if I had focused more on them).” You can find

the electronic symbols used in this chapter at https://github.com/

PanderMusubi/inkscape-open-symbols. These symbols are under a GNU

General Public License (GPLv3).2 As there are too many different types

of each component to cover in a single chapter, we will only cover some

common uses for various forms of these components – to give you an idea

of what you can use when creating projects. This information, although

far from complete, should at least get you started. And something I have

learned as someone who is paid to hack things is that sometimes you

must take the most efficient path to what you want to achieve within a

given time.

2 www.gnu.org/licenses/gpl-3.0.en.html

Chapter 7 Electronics: Basic Skills and Tools

https://github.com/PanderMusubi/inkscape-open-symbols
https://github.com/PanderMusubi/inkscape-open-symbols
http://www.gnu.org/licenses/gpl-3.0.en.html

223

�Electronic Schematics and Datasheets
A schematic is a diagram used to document an electronic circuit,

representing connected components with symbols. By reading an electronic

schematic, you should be able to recreate the same circuit. Datasheets are

documents that detail the feature requirements of an electronic component

or integrated circuit chip in your circuit. These include information such as

the expected voltages and current required to power components or chips

and how to program more complex chips, including microcontroller chips.

Any areas that need to be considered are included in a datasheet, including

security and environmental considerations.

�Breadboards and Circuit Boards
Breadboards allow you to create an easily modifiable circuit by allowing

components and connecting wire to be placed on a board with holes

connected in rows. Some breadboards also have sections that run

alongside the main circuit to allow power to be connected. Once your

circuit is working as expected, you can either transfer it to a printed

prototype circuit board (sometimes called protoboard) or design a custom

printed circuit board. The latter will allow you to reduce the size of your

finished circuit since it can use multiple layers of circuitry and optimize

the positioning of components and the copper tracks that connect them.

This will result in a more compact footprint.

�Through-Hole vs. Surface-Mount Components
Many components come in both through-hole and surface-mount

versions. Surface-mount components are smaller and attach to the surface

of a circuit board (PCB), whereas through-hole components have legs that

are seating in holes and soldered to the circuit board.

Chapter 7 Electronics: Basic Skills and Tools

224

�Resistors
Resistors create electrical resistance in a circuit and are the most common

component we will use in a circuit because their main job is to prevent

too much power from being absorbed by other components. Through-

hole resistors are identified using the International Electrotechnical

Commission (IEC) standard 60062 RKM codes; these read from left to

right with three or two bands of color codes, another optional band to

the right is a multiplier, and a metallic-colored band on the rightmost

end indicates tolerance as a percentage. The way I remember the number

of the color codes is starting with black (0) and brown (1), then going

through red (2), orange (3), yellow (4), green (5), blue (6), violet (7), and

then gray (8) and white (9). Put simply, you have black (0) and brown (1)

and then the colors of the rainbow less indigo, ROYGBIV, then gray (8)

and white (9). The multiplier band uses the same order of colors to

represent the multiplier as 0, 10, 100, 1k (1000), 10k, 100k, 1M (1,000,000),

10M. Using these codes, you can calculate the value of a through-hole

resistor by reading the color codes from left to right, then applying the

multiplier band to the right (see Figure 7-1).

Chapter 7 Electronics: Basic Skills and Tools

225

Figure 7-1.  Resistor color codes3

�Ohm’s Law

I like to think of voltage as being the size of an electrical charge, with

current being how fast it is moving, and resistance being an amount that

both decrease when traveling through something. You can find more

accurate descriptions in any number of technical websites or textbooks,

but hopefully my description will help you enough to get started.

As I recall from my high school days, the equation for Ohm’s law as it

relates to electrical circuits is

V = I x R

3 This image is from https://openclipart.org and reproduced under a CC0 1.0
license: https://creativecommons.org/publicdomain/zero/1.0/

Chapter 7 Electronics: Basic Skills and Tools

https://openclipart.org
https://creativecommons.org/publicdomain/zero/1.0/

226

or

I = V/R

where V = voltage, I = current, and R = resistance.

This means that when electricity travels through a resistor, it can

affect the voltage or current as shown in the equation. For an easier

method to calculating the required resistor for LEDs, there are multiple

online calculators, for example, the Kitronik online store provides such a

calculator to match up resistors with the LEDs that they stock.4

�Symbol for Resistors

The symbols for a resistor are shown in Figure 7-2. For the record, I’ve seen

both used in Australia. The Ohm value is usually written above the symbol,

and a variable resistor, also known as a potentiometer (pot), is similar with

an additional vertical arrow pointing to, and touching, the symbol.

Figure 7-2.  Resistor symbols (EU version on the left, US/Japan
version on the right)

�Transistors
Transistors come in many different types and forms – two very useful

circuit applications for transistors include amplifying a signal and acting

as a switch. In digital circuits, they are predominantly used as a switch.

Amplification may still be relevant for raising a signal to a required level for

4 https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator

Chapter 7 Electronics: Basic Skills and Tools

https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator

227

digital processing or if you would like to make analog circuits for e-textile

and analog audio projects. These types of circuits are also great fun when

learning the basics of soldering. Personally, I remember learning about

transistors being heat sensitive while learning to solder them (badly) in

FM bug projects that converted sound from a microphone and amplified it

for broadcasting, using variations in radio frequency, hence the “FM” part,

which stands for “frequency modulation.” One type of transistor used in

analog amplification circuits is the PNP transistor, so-called because of the

order of the layers of silicon that they are constructed from.

A commonly used switching type of transistor is known as NPN. Both

types of transistors have three legs to connect to circuits, known as the

collector, emitter, and base. These are typically labeled as C, E, and B,

respectively. Other types of transistors vary in how much power they can

handle and how various environmental factors affect their performance.

Transistors can also be found in chips, which makes them much smaller,

and sometimes are used in pairs, for example, “Darlington pairs.” For

switching, an electrical current is applied to the base, which then allows

electrical current to flow from the collector through to the emitter wire.

�Symbols for Transistors

The symbols for NPN and PNP transistors are shown in Figure 7-3. You will

notice the base wire on the left of each symbol, with the emitter having an

arrow and the collector being the wire without the arrow. These symbols

are sometimes shown with a circle around them, with the base, collector,

and emitter denoted by B, C, E, respectively.

Chapter 7 Electronics: Basic Skills and Tools

228

Figure 7-3.  Transistor symbols (NPN on the left, PNP on the right)

�Capacitors
Capacitors store electrical charge between two plates, which is then

released. This has the effect of buffering current and is used to keep power

supplied to components, such as microcontroller chips, cleaner and more

constant, preventing power interruptions or spikes that could result in

less consistent behavior. Capacitors come in a variety of different sizes,

shapes, tolerances, and ratings; they also vary in the type of material they

are constructed from, depending on the qualities required, for example,

guitar effects pedals typically use film capacitors because other types of

capacitors exhibit increased microphonic properties that can color the

audio signal. Ceramic capacitors are often used to smooth power supplied

to microcontroller and other chips, and additional features include less

electromagnetic or radiofrequency leakages – such side-channel leakage

may be exploited to compromise data in circuits with a requirement

for confidentiality of data. There are also polarized and nonpolarized

capacitors available, the former usable only for current flowing a specific

direction.

�Symbol for Capacitor

The symbol for a capacitor is shown in Figure 7-4.

Chapter 7 Electronics: Basic Skills and Tools

229

Figure 7-4.  Capacitor symbols (polarized on the left, nonpolarized
on the right)

�Diodes
Diodes only allow electrical current to flow in one direction. Although

there are many reasons why we might require directional flow, one of

the simplest reasons why a diode might be used is to protect circuitry or

components that may otherwise be damaged if electrical current were to

be delivered to them. Diodes are also arranged specifically in logic circuits

to set specific pins as being either high (1) or low (0) based on the state of

other wires supplying current.

�Symbol for Diode

The symbol for a diode is shown in Figure 7-5. Notice that the arrow points

toward the negative end of the diode, which is the same direction that the

diode allows the current to flow.

Figure 7-5.  Diode symbol (anode “+” on the left, cathode “-” on
the right)

Chapter 7 Electronics: Basic Skills and Tools

230

�Light-Emitting Diodes (LEDs)
LEDs are like diodes in that they only allow current to flow from the

anode to the cathode, but also give off light when current flows through

them. The color of light depends on the material used. RGB LEDs can

generate 16.7 million colors because they contain three smaller LEDs

which can each be adjusted in brightness in increments from 0 to 255.

RGB LEDs have two wires for power (positive and negative) and one for

data. Although a single-color LED can be lit by simply supplying the right

amount of power by using resistors to limit the supplied voltage, RGB LEDs

require a microcontroller to send the right signal to change color, and they

can be addressable, allowing individual RGB LEDs to be controlled.

�Symbol for LED

The symbol for a single LED is shown in Figure 7-6.

Figure 7-6.  Symbol for a light-emitting diode (LED)

RGB LEDs can be represented as three LEDs, sometimes labeled with

red (R), green (G), and blue (B) – these are often pictured as a block that

also encloses a driver chip that is connected to each of the individual

LEDs. Brand names for RGB LEDs are NeoPixel and ZIP LEDs, and these

usually have four external pins, that is, DC power in, ground, control data

input, and control data output. The output lets you chain multiple RGB

LEDs, for example, in a strip, ring, or matrix. Single-color addressable

LEDs also come in these types of arrangements.

Chapter 7 Electronics: Basic Skills and Tools

231

�Integrated Circuit (IC) Chips
In addition to the smaller footprint of surface-mount technology (SMT)

components, complete complex circuits are also available in miniature

form on a chip. This reduces the number of larger components that need

to be included in a circuit that involves chips. It is not uncommon for a

project to consist of a chip that comes premounted on a printed circuit

board (PCB) which in turn is connected to a “breakout board,” which

allows easy connection of external components or boards. Something to

remember when using integrated circuit (IC) chips is that the first of the

number pins is typically marked with an indicator, for example, a dot.

�Soldering!
Soldering involves melting solder to create a robust conductive connection

between components and a circuit board or even to one another. This

is useful when you want to make your breadboard circuit permanent,

portable, and more compact. You may even want to mount it inside a

case so you can attach other operating controls such as buttons, knobs,

sockets, and so on. With the right precautions and equipment, your

code club or maker group kids can begin soldering from around the age

of 11. Supervision will be required since the tip of the soldering iron is

hot enough to melt fingers and other flesh at the 450 degrees Celsius

temperature required for lead-free solder. If you’ve never soldered

before, or not soldered circuits, we will be looking at that basics so you

can also teach your maker kids! Keeping with the theme of eventually

scaling up our activities, these instructions intentionally consider budget

and practicality, rather than recommending the highest quality or most

expensive top end gear.

Chapter 7 Electronics: Basic Skills and Tools

232

�Tools You Will Need for Soldering
This section outlines a minimal set of tools required to get started

putting together electronic kits or prototyping your circuits on printed

circuit boards.

�Soldering Iron/Station

The essential features for circuit board soldering are stable temperature

control and the ability to change tips. If you don’t want to spend money on

digital temperature control, you can figure out the best temperature by trial

and error and make a mark on the dial to remind you. For lead-free solder,

look for around 450 degrees Celsius and around 400 degrees Celsius for

leaded solder. Bonus points for a soldering station that also has a holder

for your soldering iron so that you don’t burn yourself while it is sitting on

the bench. A pen-like but usable quality soldering iron is the Miniware

TS80P5 which runs from a USB-C power supply, like the type used to

charge a laptop. The Pinecil6 is a similar and slightly cheaper version of the

TS80P, and both can be reprogrammed with custom open source firmware,

for example, IronOS,7 allowing you the option to modify and enable

features in the future.

�Solder

Solder is a thin wire that is melted by the soldering iron to create a solid

and conductive connection between electronic components and small

copper circles (pads) on the printed circuit board (PCB). As mentioned

earlier, solder comes in a nonleaded and leaded form with the latter

5 www.miniware.com.cn/product/ts80p-soldering-iron-main/
6 www.pine64.org/pinecil/
7 https://github.com/Ralim/IronOS

Chapter 7 Electronics: Basic Skills and Tools

http://www.miniware.com.cn/product/ts80p-soldering-iron-main/
http://www.pine64.org/pinecil/
https://github.com/Ralim/IronOS

233

melting a little easier. However, I’ve talked to tradespeople who need to

use nonleaded for work, and they have no complaints. The thicker the

solder wire, the faster the rate of solder flowing, and the thinner it is, the

more accurate you can be but at a slower rate. A good place to start could

be 0.5mm for through-hole components. Surface-mount components

usually use a paste with a lower melting temperature and a special oven or

plate, but for a small one-off quantity, they can be soldered in small with

reasonably fine solder and a hand soldering iron. A core of flux that comes

with most solder is a paste that will help the solder flow to the right places

as it melts.

�Tip Cleaner

Before soldering, I’ve learned to always poke the hot tip of the soldering

iron into what resembles as curly steel wool scouring pad, also known as

a soldering iron tip cleaner. It will keep contaminants out of your solder

joints which will result in better conductivity and a stronger solder joint.

�Helping Hands/Mini Vise

Helping hands are simply sets of crocodile clips mounted on bendy wire or

interlocking plastic arms that are anchored in a metal or timber base. They

are handy for holding things in place while you solder. As I discovered

early on when I accidentally destroyed transistors with too much heat,

the crocodile clips can assist with soldering components that are more

sensitive to heat, for example, transistors, by acting as a heat sink to draw

away the heat during soldering. If you’re reasonably quick with your

soldering, this shouldn’t be too much of an issue – or at least after some

practice! Another method I use quite often is to just grab a piece of Blu

Tack, which can hold components while you’re soldering – often, this is

a much more flexible method of holding things, except that you can only

hold things to a surface (or like me, a small piece of timber), and it won’t

act as a heat sink. A mini hobby vise consists of a pair of jaws coated with a

Chapter 7 Electronics: Basic Skills and Tools

234

soft rubber or similar material to protect your PCBs. Vises either come with

a clamp to mount on the edge of a bench or have a flat base that sits on

the table. You can pick up some inexpensive vises from hardware, hobby,

or electronics stores. The Panavise junior is a nice smooth vise with an

articulating head that may be worth looking into.

�Cutters/Side Cutters

Cutters are basically a scissor-type tool that resemble pliers – you use

them to cut wires or trim the legs of through-hole components after they

are soldered to the PCB. At a pinch, you can also use them to strip the

insulation off flexible wires instead of using wire strippers.

�Wire Strippers

These are like cutters but have an indentation to allow a more controlled

way of stripping the insulation off wires to expose the copper below, so you

can solder it. They’re convenient to have, but you can get away with using

a hobby knife, scissors, or cutters. One of the handiest tools I managed

to get is the Leatherman Squirt ES4 Electrician’s tool – it folds up small

enough to put on your keyring and has wire strippers for a range of wire

thicknesses. Sadly, the ES4 has now been discontinued. If this looks good

to you, I suggest looking for it secondhand or trying to find an equivalent

“electrician’s” mini multitool.

�Heat-Proof Mat

For this one, you can just use an old piece of timber, heat-resistant cutting

board. Otherwise, for a reasonably low price, for example, $20 AUD, you

can get flexible heat-proof mats, many with built-in areas where you can

organize small components or tiny screws as you build or tear down your

projects.

Chapter 7 Electronics: Basic Skills and Tools

235

�Solder Sucker/Desoldering Braid

At some point after either soldering the wrong component or needing to

change a component value or even just when grabbing components from

old equipment, you will likely find yourself needing to remove solder. The

key to this is to add some solder first and then use either some braid to

absorb the solder from the PCB or use a suction pump, known as a solder

sucker, to remove the solder quickly. Although you may not need this tool

at first, at some point you will – it’s up to you whether you buy it now or

at a later stage. Just remember that when you need it, you’ll be glad if you

bought the tool beforehand, rather than having to go off to the store in the

middle of building something!

�Other Useful Things to Have
Protective safety equipment: Protective eyeglasses should always be used

to prevent any solder from spitting into eyes.

Soldering fan with carbon filter: An inexpensive fan which can house

some carbon impregnated foam can be purchased. The purpose of this

is to draw any solder fumes away from you with toxins absorbed by the

carbon in the foam. The foam can be changed once it no longer works.

Magnifying light: I’ve seen these for much more than a simple lamp

but also found a cheaper and lighter version that runs off a USB port. Put

simply, these are made of a ring of bright LEDs with a magnifying glass

in the middle, mounted on a flexible arm, allowing you to illuminate and

magnify whatever you’re soldering or desoldering, with the bonus of

being hands-free. Sometimes, you may find these with a clamp for a desk

or bench.

Veroboard: This is simply a board made from the same material as

PCBs, lined with small holes and copper strips or pads. I’ve mentioned this

as it is a great way to practice your soldering of through-hole components.

Also, grab a bunch of resistors or LEDs to solder.

Chapter 7 Electronics: Basic Skills and Tools

236

�How to Solder
The main idea when soldering is to melt the solder to both the component

wire and circuit board. This requires heating both quickly and evenly, then

applying solder at the intersection of the component and the board until it

becomes shiny. A good solder joint will look shiny and be slightly convex,

with no cracks. A great way to practice is to use a type of generic circuit

board known as Veroboard – this is just a rectangular printed circuit board

with copper pads for soldering, which are connected in strips; Veroboard is

inexpensive and comes in both surface-mount and through-hole versions.

Now for the how-to part: Making sure you are in a well-ventilated

area, plug in your soldering iron and set the temperature to 450 degrees

Celsius for lead-free solder or 400 for leaded solder. You can adjust this

as you go, so that the solder flows quickly and smoothly. While you’re

waiting for the soldering iron to heat up, make sure you have some

Veroboard, a few through-hole components to practice, and some Blutak8

or helping hands. If you happen to have a small vise handy, you can put

your Veroboard between the jaws, with the edges against the jaws. Place

your practice component legs in neighboring holes in the Veroboard, with

the component body on the opposite side to the copper tracks. Bend the

legs out slightly so that the component stays in the holes and have your

Veroboard with the copper side facing toward you. This is where you will

be soldering the component legs to the copper pads.

Depending on which soldering iron you bought, it is probably now

heated to the set temperature, so clean the tip of the soldering iron and

grab the handle, being very careful to ignore those weird stock photos that

show people holding the hot part. This is serious – soldering irons can melt

skin, so make sure you hold the handle correctly. In your nondominant

hand, grab your solder, making sure that at least 10cm of solder wire

is protruding. Now, place the hot tip of your soldering iron so that it is

8 https://diy.bostik.com/en-AU/products/stationery/blu-tack

Chapter 7 Electronics: Basic Skills and Tools

https://diy.bostik.com/en-AU/products/stationery/blu-tack

237

touching and heating both the copper pad and the leg of the component,

on the side where the end of the component leg sticks out. Count to one

and touch the end of the solder to where the component leg touches the

copper pad; it should melt onto both the component and the pad. Feed the

solder until the solder flows into the pad and count to two. Pull the solder

wire away and then the soldering iron. If you’ve done everything right,

your solder joint should look shiny and uniform and be slightly dip inward

rather than bulging outward. A good way to learn the timing and amount

of solder required is to watch a video.

�Teaching Kids to Solder
Given the dangers involved, the youngest age for soldering should at

least be 11 years with supervision. Have kids well separated and ensure

that there is somewhere safe to place the hot tip of the soldering iron. Set

up a bench and have kids stand rather than sit, to reduce the chances of

dropping a hot soldering iron in their laps. If a soldering iron drops, they

can step back to avoid it.

To be safe, assign one volunteer to at most two kids, when they are

learning. Ensure that you are familiar with first aid processes for the

location before starting, so that you know who to call for and where to go

if any accidents occur. In the event of an accident, no kids should be left

alone with hot soldering irons. Set up strict rules and processes and have

these displayed where they are easily visible at the soldering bench.

�Handy Software Tools
There’s a variety of software tools available for all manner of electronic

design, calculation, and simulation. Both old and new, they vary in

usability and features. I’ve included some that have been useful both in my

experience and that primary and secondary school teachers who visited

our code club have mentioned were useful.

Chapter 7 Electronics: Basic Skills and Tools

238

�TinkerCAD

Although we predominantly used this online web-based tool over the years

to give our code club kids an easy platform to get started with 3D design, it

now has a drag-and-drop interface for building and simulating circuits for

the Arduino microcontroller board and the BBC micro:bit. It also supports

a version of Python on the micro:bit. Although the coding aspect is geared

around initially using a drag-and-drop interface, you can toggle between

block-based coding and the C programming language (Arduino) and

MicroPython (micro:bit). If you write a program using the drag-and-drop

interface, the resulting text-based interpretation will often be slightly less

readable and is structured differently than if you started out text based.

That said, during the COVID-19 lockdown, TinkerCAD (Figure 7-7) was

a useful way for primary and secondary students to learn about circuits

and programming microcontrollers, when working remotely. TinkerCAD

is made by Autodesk, the same company that makes more advanced

professional 3D design software like (in order of difficulty) Fusion 360

(Figure 7-8), Inventor, and AutoCAD; however, be aware that, due to the

difference in interfaces, jumping from TinkerCAD to Fusion 360 will be a

much steeper learning curve than going from Fusion 360 to Inventor. The

key here is that once kids reach the point where TinkerCAD starts making

it harder to do something than Fusion 360, for example, fillets (rounding

on edges or adjacent surfaces), then it is time to move to Fusion 360 or

a similar tool with a more CAD-based interface. Delaying the move can

either create frustration or result in a learning plateau. Moving to Fusion

360 presents the following challenges:

•	 Licensing is costly for primary schools, but high schools

have an educational license available. There is a free

startup license that may work for clubs and maker

groups not affiliated with a school.

•	 Fusion 360 requires software to be installed, so it

depends on your IT support and environment.

Chapter 7 Electronics: Basic Skills and Tools

239

Once you outgrow TinkerCAD, there are more options out there.

FreeCAD is less intuitive but does allow Python scripting to automate

building which may appeal to those who wishing to apply their Python

skills, or want to create designs that lend themselves to this approach.

Blender is free and open source but focuses more on modeling than

structural design. It is also covered in the Code Club curriculum and other

tutorial series, so it might be another viable option, depending on your

requirements.

Figure 7-7.  TinkerCAD runs in a web browser, making it easy to get
started designing

Chapter 7 Electronics: Basic Skills and Tools

240

Figure 7-8.  Fusion 360 requires software to be installed on a
computer, but is easier once designs become more complex

To get started in TinkerCAD, we include it in the list of online services

for which code club parents need to register accounts for their kids. The

other advantage of this is that kids can continue working on their projects

outside of a code club or maker group. This reinforces the idea of ownership

of maker skills rather than something learned and then immediately

discarded. As with programming skills, the easiest way to get started in the

3D design aspect has been to let kids progress through the initial dozen

lessons that you are presented with upon creating a TinkerCAD account.

Our code club kids ramped their skills up much faster when we put them

through the introductory lessons, rather than letting them loose to find their

own way. Some of the 3D prints designed by our code club kids for a city

Chapter 7 Electronics: Basic Skills and Tools

241

project are shown in Figure 7-9. For the circuit-building and microcontroller

programming component, the same is true; going through the initial

exercises lets kids reach a practical fluency level much quicker and is less

frustrating. Written instructions to get started in the basics are also available

through TinkerCAD’s documentation and blog posts.9

Figure 7-9.  3D prints designed by our Code Club kids in TinkerCAD
for our city project

If you’re keen on looking at how analog circuits work, tools like

CircuitLab10 (online) and the slightly dated LTspice11 (installable for Mac,

Windows, and Linux) can be useful to show how signals are modified

by circuitry, for example, if you are interested in looking at audio effects

circuits such as amplifiers or waveform modifiers such as distortion or

signal modulation.

9 www.tinkercad.com/blog/official-guide-to-tinkercad-circuits
10 www.circuitlab.com/
11 www.analog.com/en/design-center/design-tools-and-calculators/
ltspice-simulator.html

Chapter 7 Electronics: Basic Skills and Tools

http://www.tinkercad.com/blog/official-guide-to-tinkercad-circuits
http://www.circuitlab.com/
http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

242

�Embedded Programming
So how does all this talk of electronics tie in with our investment into

Python? A growing number of microcontroller boards (also known as

“embedded devices”) are now using a compact version of Python known

as MicroPython that can be loaded on the device and runs when the

board is switched on (booted up). MicroPython is an easy way to get

started for programming microcontrollers (also known as embedded

programming). Other variants of MicroPython include the cut-down

version of MicroPython we used on the micro:bit and Adafruit’s fork of

MicroPython (CircuitPython) that runs on their boards and also some

other manufacturer’s boards. CircuitPython12 was a way to provide support

for Adafruit boards without increasing the load on the MicroPython

developers at the time and has now evolved into a well-supported and

capable option for supported microcontrollers. Although the Raspberry

Pi Pico W is supported at the time of writing, there were a few features

being worked on which made MicroPython an easier choice at this

time. However, you should be aware that some modules for Adafruit

components have stopped continuing development (deprecated) to allow

for better continued support in CircuitPython – so you will need to look at

the support for the hardware components you are using to decide which

type of embedded Python is best for your projects.

�Some Useful Concepts to Understand
As this is not a textbook, or anything even close to a complete reference

source, you’ll notice that I’m zeroing in on the most important and useful

concepts with directions on where to find further information. I believe

that this approach of determining which skills are most relevant to your

objectives is the quickest and easiest way to get active with making things.

12 https://learn.adafruit.com/welcome-to-circuitpython/what-is-
circuitpython

Chapter 7 Electronics: Basic Skills and Tools

https://learn.adafruit.com/welcome-to-circuitpython/what-is-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/what-is-circuitpython

243

�Microcontroller Breakout Board

A breakout board allows programmable microcontroller circuits on a

silicon chip to be connected to external interfaces, for example, organic

light-emitting diode (OLED) screens for output and sensors or buttons for

input. These boards come with a programmable microcontroller soldered

to them and include various component circuitry with the required diodes

and capacitors to ensure a smooth and safe power supply is provided to the

microcontroller. Often, ground and power pins are present to draw from the

board’s power supply to power external components, in addition to general-

purpose input/output (GPIO) connections and other specialized connectors

that allow the use of interface features in the microcontroller.

�Common Communication Protocols

To communicate with components that are connected to the microcontroller

board, rules are used for communications, known as protocols. Three

common protocols used include Inter-Integrated Circuit (I2C), Serial

Peripheral Interface (SPI), and Inter-IC Sound (I2S), for example. In digital

microcontroller systems, support for various protocols and mathematical

functions e.g., encryption to protect data that is being stored or transferred,

can be implemented using code that is built-in to microcontrollers, or

alternatively by using firmware which can be updated and modified

(bit banging). The latter method allows better upgradeability and flexibility

at the cost of being slower. From a security perspective, this can be an

issue since it may be difficult to ensure that electronic hardware built to

a specific cost can be upgraded when built-in protocol support becomes

outdated. In this chapter, we will be using the implementations supported

by MicroPython on the microcontroller we choose. From a practical

perspective, I2C is slower but simpler to get started with than SPI; so, we will

Chapter 7 Electronics: Basic Skills and Tools

244

start by using I2C. Although you don’t yet need to understand the very

low-level details of these protocols when using MicroPython, you can read

more about how to use SPI and I2C in the MicroPython documentation.13,14

�Approaching a New Microcontroller
Electronic Project (Digital)
Let’s look at building our own electronic badge project, which will give us

plenty of flexibility and can be as simple or complex as we like. For this,

we’ll use the Raspberry Pi Pico W, since it supports MicroPython which

is familiar to us. The Pico W also incorporates wireless and Bluetooth

features for communicating with other devices, and allows loading

our code via USB. The Pico W supports the I2C and SPI protocols and is

compatible with the Thonny IDE with which we are already familiar. At the

time of writing, a search on https://digikey.com.au, a popular parts store,

reveals the rp2040 microcontroller to be one of the most readily available

and cheapest. This ticks most boxes for us:

•	 Supports a programming language that we are familiar with

•	 Has good community support which makes integration

with other components easier

•	 Supports features that we require

•	 Has an easy method for loading our code

•	 Is readily available and more likely to be available in

the future

•	 Is not overly expensive to buy which allows us to spend

more money on add-ons

13 https://docs.micropython.org/en/latest/library/machine.SPI.html
14 https://docs.micropython.org/en/latest/library/machine.I2C.html

Chapter 7 Electronics: Basic Skills and Tools

https://digikey.com.au
https://docs.micropython.org/en/latest/library/machine.SPI.html
https://docs.micropython.org/en/latest/library/machine.I2C.html

245

You can read about the technical details and find descriptions for

input/output pins in the Raspberry Pi Pico W datasheet.15

�Software and Hardware Support
for Proposed Components
Initially, it would be good to support some sort of display, some buttons,

LEDs, and an interface for some other add-ons. With I2C, SPI, and GPIO

support, we should be able to find common components that use these

protocols. Electronic supply companies such as Adafruit and SparkFun

are known to contribute to open source and provide active support which

will make it easier to make things do the tasks we require. I do still love

that I can go online and talk to Lady Ada, the CEO of Adafruit, and she will

often have written some of the supporting code for the products herself

or employ dedicated and helpful people who contribute to open source,

whether that be their own CircuitPython, Arduino, or MicroPython.

Cheaper parts can be sourced from marketplaces such as AliExpress but

are less likely to have as good support from the seller – in this case, it is

important to check whether a part is widely used by the community, as this

will be a more reliable source of support outside of the basic examples that

the seller may provide, if any.

�Support for Languages We Are Proficient In
Since we are already getting familiar with MicroPython or close variants,

we’ll be looking for support for this language in the microcontrollers

and parts from which we will be building our project. Depending on the

bootloader, we may need to use some programmer hardware to connect to

our device, or it may be as simple as being able to drag files to a filesystem

accessible over USB. For the latter, the Raspberry Pi RP2040 Pico W allows

15 https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf

Chapter 7 Electronics: Basic Skills and Tools

https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf

246

this, which means we don’t need separate programmer hardware. If you’re

using Windows, Mac, or Linux, this microcontroller board won’t require

additional driver software, which simplifies things even more.

�Availability of Parts to Scale Things Up
Given the good availability of the RP2040 chip used in the Raspberry Pi

Pico boards and corresponding cheaper cost (around $10 AUD or less),

we know that buying a bulk order will be easier for our code club or

maker group. Since this chip is so readily available, it is also used in other

microcontroller boards, which is great in case the Raspberry Pi version is

ever out of stock. This will also allow us to improve and repeat our project

for successive years, which means we can spend less time and effort

in rewriting for a different platform and spend more time adding near

features and fine-tuning our existing project.

�Draw a Diagram, Create a Schematic
To conceptualize our project, we can draw up a simple schematic and start

designing before we even spend any money at all. We can research the

required components and add-on boards until we find those which are

best suited for our project. You can either draw the schematic physically

on some graph paper or use free software such as Fritzing or something

similar. Since most components have datasheets available online, we can

study these to ensure that they are likely to work with our project.

�Breadboard Prototype
Once we have our design roughed out with a schematic and know that

our components are compatible with one another, we need to build a

prototype. A prototype is a test version of our project that will enable us

to test whether our design works in the real world. Using a breadboard for

Chapter 7 Electronics: Basic Skills and Tools

247

this allows us flexibility to swap out parts until everything works when our

code is loaded. As this is a predominantly digital project that is driven by

our code, it will be somewhat easier to see what is happening. However,

we may still need our multimeter or perhaps even a logic analyzer to

troubleshoot at this stage. A multimeter allows us to check voltages and

current at various stages – this lets us check that our electrical circuit is

working as expected. A logic analyzer can connect into our digital circuit to

capture the numbers that represent our I2C or SPI instructions and convert

these back into something that will be readable to us.

�Going Further
Once we have our project working in a breadboard prototype, we can

go even further and have our own custom printed circuit board (PCB)

fabricated. This is a way of converting our breadboard prototype into a

more robust prototype. Since all the features we require are in the Pico

board, the easiest way to incorporate this will be to add sockets for the

header pins, so that the microcontroller board will be connected into the

circuits. Although it is possible to obtain the raw RP2040 chip and mount

it directly onto a PCB, this will require additional components to both

protect the microcontroller and supply the required power. So, to start off,

it makes sense to connect the Pico board to our PCB.

�Introducing the Raspberry Pi Pico
The Raspberry Pi Pico is a reasonably bare-bone microcontroller

board that can run Python scripts to interact with devices using various

communication methods (protocols). Unlike previous Raspberry Pi single-

board computers, the Pico does not run a fully fledged operating system.

Although most datasheets can be very detailed because they need to

Chapter 7 Electronics: Basic Skills and Tools

248

communicate all the features of a microcontroller or device, the Raspberry

Pi Pico W is refreshingly simple in comparison.16 Don’t worry about

reading this completely, as I will be giving you the necessary details as we

progress. From there, you can read about specific areas in the datasheet,

as required, for example, when selecting the GPIO pins we will be using or

which pins we use for I2C and powering our components.

UPDATING MICROPYTHON ON THE RASPBERRY PI PICO

To make sure you have the best compatibility with devices, it’s useful to have

the latest firmware on your Raspberry Pi Pico. Thankfully, the bootloader on

the Pico provides two very easy ways to do this. First, you’ll need to put the

Pico into update mode by holding down the bootsel button on the Pico while

plugging it into your computer via the micro USB cable.

Updating firmware via the USB filesystem

The first way to update the firmware is by dragging the .u2f file to a USB

drive that will appear in your computer’s file manager. The drive should come

up named as RPI-RP2 in your file manager (Finder on Mac, Explorer on

Windows, and whichever file manager you may be using on Linux/Raspberry

Desktop).

Updating firmware over USB with Thonny

The second method of updating the firmware is from within the Thonny editor.

From the Thonny menu, select Tools ➤ Options ➤ Install Firmware,

or click in the bottom corner to access the same options (Figure 7-10).

16 https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf

Chapter 7 Electronics: Basic Skills and Tools

https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf

249

17 www.raspberrypi.com/documentation/microcontrollers/micropython.html

Figure 7-10.  Thonny MicroPython firmware install

For more details about updating firmware on the Pico, there’s also instructions

on the official Raspberry Pi site.17 Do not disconnect the Pico while the

firmware is writing as there is a slight chance of making the Pico unbootable.

Once complete, you can restart the Pico and check the Python version in the

Thonny REPL.

Chapter 7 Electronics: Basic Skills and Tools

http://www.raspberrypi.com/documentation/microcontrollers/micropython.html

250

The Raspberry Pi Pico comes in a few different forms, designated by

“H,” “W,” and “WH”; these indicate soldered headers, wireless+Bluetooth,

and wireless+Bluetooth with soldered headers, respectively. The

Raspberry Pi Pico microcontroller board supports the I2C and SPI

protocols in addition to UART, pulse-width modulation (PWM), and GPIO

pins. Although we will be debugging our Python code in Thonny’s REPL,

there is also the option to use an Serial Wire Debug (SWD) interface to

debug at the much lower microcontroller level.

A major difference to other microcontrollers is that the Pico is designed

with education in mind, so it does not have extensive security features

that, for example, the STM32Fx microcontrollers have. This is something to

keep in mind if someone in your code club or maker group wants to design

a project that requires controls to prevent tampering or other security

requirements. For such an application, you will need to look at a different

microcontroller. But for now, let’s move on to this chapter’s project which

uses libraries to integrate external devices with a Raspberry Pi Pico!

Note I used the SparkFun tool, Fritzing, to draw the breadboard
diagrams in this chapter’s project. You can use this tool to design your
circuit as a schematic diagram and then display it as a breadboard
diagram like the ones I have included. Fritzing is an open source
software, but you can pay a small fee to get the precompiled version
that is ready to install on your computer. This is a handy tool that may
be useful when explaining things in your Code Club or Maker group,
so I’d recommend considering it. Fritzing also allows you to add more
third-party parts as they become available.

Chapter 7 Electronics: Basic Skills and Tools

251

PROJECT: PROTOTYPING AN ELECTRONIC BADGE

Here’s an electronic badge project that includes a display, some buttons, a

sensor, and LEDs. This should give you a good base to continue adding to and

runs MicroPython code written in our Thonny IDE that we used previously. The

badge is based around the Raspberry Pi Pico board, driven by the RP2040

microcontroller.

What you will learn

•	 How to use the Raspberry Pi Pico bootloader to upload firmware

and Python code

•	 How to program a more feature-filled version of MicroPython on

a more powerful microcontroller

•	 How to set up MicroPython libraries to easily enable multiple

I2C and GPIO input and output devices

•	 How to use a breadboard for prototyping

What you will need

•	 A computer with the latest version of Thonny IDE installed.

This could also be a Raspberry Pi 3B or 4B+ model running

a current version of Raspberry Pi operating system18 (OS) or

another Ubuntu-based OS. Note: The Raspberry Pi Pico that

we will be programming does not run an OS but only runs a

MicroPython firmware that interprets our MicroPython code.

18 Instructions for installing Raspberry Pi OS: www.raspberrypi.com/software/

Chapter 7 Electronics: Basic Skills and Tools

http://www.raspberrypi.com/software/

252

•	 A Raspberry Pi Pico (a base version is fine but will require

soldering of header pins to connect to your breadboard – the

“H” version includes these presoldered. The “W” version

includes wireless capability – this is optional but will give you

the ability to expand your project later to connect to wireless

networks).

•	 A ¾-sized breadboard and a mini-sized breadboard.

•	 Some breadboard jumper wires and small connector wires with

pin ends rather than socket ends. You may also find it useful to

have some solid wire U-shaped jumpers19 as these will make

it simpler to make small connections on the breadboard, for

example, connecting ground or 3.3V to the breadboard power

rails, marked as “–” and “+”.

•	 A micro USB cable to connect from your computer to the Pico

board. Make sure the other end has a compatible plug to fit

your computer.

•	 An SSD1306 OLED 128x32 display (these come in larger sizes

which will be fine too, e.g., 128x64, 128x128 pixels).

•	 A DHT11 temperature and humidity sensor with a 10K resistor

(it usually comes with this resistor).

•	 Some standard low voltage 3.3V LEDs.

•	 Soldering tools if you need to solder the GPIO header pins, that

is, temperature-adjustable soldering iron set to around 450

degrees Celsius and lead-free solder as a minimum.

19 https://au.rs-online.com/web/p/breadboard-jumper-wires/6348651

Chapter 7 Electronics: Basic Skills and Tools

https://au.rs-online.com/web/p/breadboard-jumper-wires/6348651

253

Let’s get started!

Let’s get our development/programming environment set up first. Ensure

that you have the very latest version of Thonny that is available. Version

4.0.120 was the latest at the time of writing. This will be more important for

compatibility with the “W” model of the Raspberry Pi Pico, and it also pulls in

newer MicroPython firmware versions if you need to update the Pico.

Step 1: Run Thonny and plug your Pico into your computer via the micro USB

cable. Click in the bottom-right corner and select Configure Interpreter

(Figure 7-11).

Figure 7-11.  Thonny options pop-up

20 https://github.com/thonny/thonny/releases/tag/v4.0.1

Chapter 7 Electronics: Basic Skills and Tools

https://github.com/thonny/thonny/releases/tag/v4.0.1

254

You should see the Thonny options pop-up – use the drop-downs to select the

following:

•	 Interpreter as MicroPython (Raspberry Pi Pico)

•	 The Port – on my Mac, it comes up as /dev/cu.usbmodem2101,

but on Windows you would see “Com1” or similar. A hint is that

it will come up when your Pico is plugged in.

If you’ve just received your Pico or updated the firmware, you should see the

Python prompt, showing the MicroPython version in the REPL window at the

bottom of Thonny (Figure 7-12).

Figure 7-12.  Pico MicroPython version displayed in Thonny REPL

Test that you can run code by typing in a simple while loop (Listing 7-1); you

should see “hello” printed repeatedly in the REPL (Figure 7-13).

Listing 7-1.  “Hello” loop

while True:

 print("hello")

Chapter 7 Electronics: Basic Skills and Tools

255

Figure 7-13.  "Hello" printed in Thonny REPL

I decided not to do the usual “Blink” code since the design of the Raspberry

Pi Pico and the “W” models vary, that is, the “W” version has the built-in LED

connected to the wireless chip, whereas the standard model is connected to

an internal pin.

This way, there was just one piece of code for everyone!

Step 2: Since we missed out on some bright lights in the first step, let’s set

up the OLED display. To connect the display easily and not have it wobbling

around everywhere, we’ll use a breadboard with some jumper wires

(Figure 7-14).

Chapter 7 Electronics: Basic Skills and Tools

256

Figure 7-14.  128x32 OLED connected to I2C pins, power, and ground

Note  With the breadboard held sideways as shown in Figure 7-14,
the holes are connected vertically. They do not connect across the
middle gap which is why the vertically aligned Pico GPIO pins are
not shorting together. The two rows at the top of the breadboard
are power rails that are connected horizontally, so you can connect
ground (GND) and 3.3V to the + and – rails, respectively, to make
power connections simpler and cleaner for your prototype circuit.

Chapter 7 Electronics: Basic Skills and Tools

257

This makes more sense after seeing the Pico pins from the Raspberry Pi Pico

W datasheet (Figure 7-15).

Figure 7-15.  Raspberry Pi Pico W pinout from https://
datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf

If you have a Raspberry Pi Pico standard or H model, you can find an

equivalent datasheet on the Raspberry Pi site.21 Connect your OLED display to

the Raspberry Pi Pico as shown in Table 7-1.

21 https://datasheets.raspberrypi.com/pico/Pico-R3-A4-Pinout.pdf

Chapter 7 Electronics: Basic Skills and Tools

https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf
https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf
https://datasheets.raspberrypi.com/pico/Pico-R3-A4-Pinout.pdf

258

Note A s the OLED device can use 3.3V and that is also the Pico’s
GPIO input/output level, the device is compatible – if they were
different, we would need to use a signal level converter board
between the Pico and the device to convert signals from 5V to 3.3V
and back again.

Table 7-1.  Connections between the Pico and OLED display

Raspberry Pi Pico Pin 128x32 OLED Display Pin

SDA(GP16) SDA

SCL(GP17) SCL

3.3V(OUT) VIN

GND GND

Check your connections, making sure that you’re using the GP numbers on the

Pico. Because we are programming in MicroPython, connecting to the OLED

display is easy – we just need to install a module onto our Pico and write some

test code.

Installing a MicroPython library from Thonny

Our 128x32 OLED display uses the SSD1306 chip – we will need both the

SSD1306 and OLED MicroPython modules for our project. These will abstract

us from some of the low-level code that does all the I2C communications. To

search for modules, go to the Thonny menu: Tools ➤ Manage Packages.

Chapter 7 Electronics: Basic Skills and Tools

259

Now you can type in “ssd1306” and click Search on PyPi22 (Figure 7-16).

Figure 7-16.  Searching for a module on PyPi in Thonny

Since we’re using MicroPython, we need to click the first result,

micropython-ssd1306, and then click Install to install it on our Pico.

You will then see that the module name will appear under <INSTALL>

(Figure 7-17).

Figure 7-17.  ssd1306 module is installed on the Pico

22 https://pypi.org

Chapter 7 Electronics: Basic Skills and Tools

https://pypi.org

260

Now repeat this process to install the oled driver. Once both modules are

installed, you’ll see both listed (Figure 7-18).

Figure 7-18.  MicroPython oled and ssd1306 modules installed

Click Close and you’ll see the module files in Thonny’s bottom-left corner

(Figure 7-19) – yes, the modules are also written in Python! This means you

can click on them to view the code so you can understand how they work.

I highly recommend doing this, as it will make it easier to understand when

something is not working as expected – it’s also a great way to learn more

about how things work.

Figure 7-19.  Module files and folders on the Pico, displayed in
Thonny file manager

Phew! OK, now that we know how to install MicroPython modules in Thonny,

we can do this for any device with a chip that is supported. Now let’s

write some code – under the Thonny programming tab, start entering your

Python code.

First, let’s import the built-in machine module so that we can access the GPIO

pins and I2C capabilities on the Pico (Listing 7-2).

Chapter 7 Electronics: Basic Skills and Tools

261

Listing 7-2.  Importing Pin and I2C support from a built-in module

from machine import Pin, I2C

We will need to import the required functions from the external modules that

we installed (Listing 7-3) and call them to set the pins for our I2C display

device. I’ve commented the code to show what each section of code does –

comment lines are denoted by a hash (#) at the start of the line.

Listing 7-3.  Add function imports and set up the OLED display

from machine import Pin, I2C

from ssd1306 import SSD1306_I2C

from oled import Write, GFX, SSD1306_I2C

set up I2C pins connected to OLED

i2c = I2C(0, sda=Pin(16), scl=Pin(17), freq=200000)

create OLED object

oled = SSD1306_I2C(128, 32, i2c)

Looking at the code, you can see that we specify the device number 0, the

pins we are using, and which frequency to use when communicating. This

creates an i2c Python object, and we use that to create an oled object that

specifies the resolution of our screen, that is, 128 pixels wide by 32 pixels

high. I included some extra OLED functionality just in case we want to get a bit

fancy later.

Now we can use the .text() method on the oled object to tell it where we

want to write text, that is, at position 0 pixels across and 20 down, then use

the .show() method to write it to the display (Listing 7-4). A method is just a

function for an object.

Chapter 7 Electronics: Basic Skills and Tools

262

Listing 7-4.  Adding text to the display with .text() and

.show() methods

from machine import Pin, I2C

from ssd1306 import SSD1306_I2C

from oled import Write, GFX, SSD1306_I2C

set up I2C pins connected to OLED

i2c = I2C(0, sda=Pin(16), scl=Pin(17), freq=200000)

create OLED object

oled = SSD1306_I2C(128, 32, i2c)

write something on the OLED and wait 1 second

oled.text("It works!", 0, 20)

oled.show()

time.sleep(1)

Run your code on the Pico by clicking the run button in Thonny. You

should see the text displayed on the OLED screen (Figure 7-20). Notice the

way that the U-shaped solid jumper wires really clean up the breadboard

circuit. If your code doesn’t work, look in the REPL for an error and check your

code, working upward from the last line number referenced.

Chapter 7 Electronics: Basic Skills and Tools

263

Figure 7-20.  Text displayed on the OLED display

Congratulations! You have successfully set up and written code to interact with

an I2C device. At this point, you should also save your working MicroPython

code to your computer. Use the Save option from the File menu or click the

save icon in Thonny. You can then select whether to save to your

computer or the Pico.

Step 3: Now that we have the beginnings of an electronic badge circuit, it’s

time to add some button switches! You can think of a switch as completing

a circuit. For our Pico microcontroller board, we will simply be connecting an

input pin to a ground, that is, setting it to low or 0 (both low and 0 are the

same). Fortunately, the Pico board has a built-in resistor, so we don’t need

Chapter 7 Electronics: Basic Skills and Tools

264

to add one to adjust voltages and only require a wire to connect the right

pins. If we were to connect the pin to 3.3V, then we would be setting it to

high or 1. Here is the circuit – I have shown the jumper wires connecting

to the breadboard as this is how it will really be set up (Figure 7-21). You’ll

see that there is a common ground wire for all of the buttons. Whenever you

have a ground in your circuits, they should all be a common ground, that is,

connected to one another and to the ground.

Figure 7-21.  Connecting four buttons to the Pico

Buttons are simple, so we can leverage Pin() from the built-in machine

module to set up a pin and pull it high (make it 1 by default and do something

when it connects to the ground). Here is a photo of how your circuit should

look with the buttons connected on the second breadboard (Figure 7-22).

Chapter 7 Electronics: Basic Skills and Tools

265

Figure 7-22.  Our circuit with buttons connected

This is an example of the type of code we will use to create a button object,

named button, in Python (don’t add it to your code just yet as we’ll use a

more elegant way to set up all four buttons). The Pin() function uses three

parameters in the brackets here; the pin number (e.g., 5), the pin mode (i.e.,

INput or OUTput), and the default state (e.g., PULL_UP) mean that it is set to

high by default:

button = Pin(5, Pin.IN, Pin.PULL_UP)

Chapter 7 Electronics: Basic Skills and Tools

266

To check whether the button has been pressed, we use an if..then

command within a loop, as shown in Listing 7-5 (still don’t add this yet).

Listing 7-5.  Print “button pressed” when pin 5 connects to the

ground (low)

while True:

 if button.value() == 0:

 print("button pressed")

endif

We will also need to “debounce” the button, so that we don’t accidentally

detect multiple presses each time it is pressed. Since humans are not very

precise, a single press duration can vary, and so “debouncing” makes it easier

for the machine to identify varying durations as one press. To do this, we just

use a time.sleep(1) command to wait for a second. OK, now add these

lines to your code (Listing 7-6).

Listing 7-6.  Adding four buttons and a debounce

from machine import Pin, I2C

from ssd1306 import SSD1306_I2C

from oled import Write, GFX, SSD1306_I2C

import time

write something on the OLED and wait 1 second

oled.text("It works!", 0, 0)

oled.show()

time.sleep(1)

create dictionary to set up pins

buttons = {

 "button1": Pin(5, Pin.IN, Pin.PULL_UP),

 "button2": Pin(4, Pin.IN, Pin.PULL_UP),

 "button3": Pin(3, Pin.IN, Pin.PULL_UP),

Chapter 7 Electronics: Basic Skills and Tools

267

 "button4": Pin(2, Pin.IN, Pin.PULL_UP)

 }

while True:

 # Clear the screen

 oled.fill(0)

 if buttons['button1'].value() == 0:

 oled.text("Button 1 pressed", 0, 0)

 elif buttons['button2'].value() == 0:

 oled.text("Button 2 pressed", 0, 0)

 elif buttons["button3"].value() == 0:

 oled.text("Button 3 pressed", 0,0)

 elif buttons['button4'].value() == 0:

 oled.text('Button 4 pressed', 0, 0)

 # update the display

 oled.show()

 time.sleep(1)

Run and save your code, then click each button to see the button shown

on the display. So now we have input and output devices connected to our

electronic badge.

A reminder about Python dictionaries D ictionaries are like
a list of key and value pairs. You can reference a key by using
<dictionary name>["<key>"] so in the code we are just
creating a dictionary of Pin objects to make our code more efficient
and elegant.

Step 4: The DHT11 is a reasonably inexpensive temperature and humidity

sensor. It’s not super accurate but is an easy example to add to our project.

The sensor has four pins but only uses three. Those we will use are 3.3V, GND,

and data. We can read information from the data pin at one-second intervals.

Chapter 7 Electronics: Basic Skills and Tools

268

If we try to read any faster, it will fail – that’s just a quirk of this sensor we

must consider and teach our code to account for it. The DHT11 comes with a

resistor that needs to connect between the data pin and 3.3V. Let’s connect it

to our circuit (Figure 7-23).

Figure 7-23.  Connecting the DHT11 sensor

We also need to install another module. In Tools ➤ Manage Packages,

search for “dht” and select the MicroPython DHT12 module (Figure 7-24).

Figure 7-24.  Installed DHT12 module

Chapter 7 Electronics: Basic Skills and Tools

269

You will notice that there are URLs with documentation displayed when you

install a module in Thonny – usually, I scroll to the bottom to get the examples

because they seem to help me get it working quicker. Although I have tried

to make it easier to build this circuit with pictures, it is important to see how

this circuit is represented as a schematic diagram with symbols, which I used

in Fritzing to generate these images. Although our circuit is digital and mostly

boxes connected with wires (or tracks on a PCB), you will at least recognize

the wiggly line as the resistor symbol (Figure 7-25).

Figure 7-25.  Our badge circuit as a schematic diagram

Now, here’s the code.

Import the module with import dht.

Create a DHT11 object called dsensor on GPIO pin 18: dsensor = dht.

DHT11(Pin(18)).

Chapter 7 Electronics: Basic Skills and Tools

270

Read the sensor values (only once every second) with dsensor.measure().

Get the individual temperature and humidity values using dsensor.

temperature() and dsensor.humidity().

Here’s the code listing with the new code added to our original program

to display temperature and humidity when we press buttons 1 and 2,

respectively. It also displays a menu. Remember that pesky one second wait

time? It turns out that it’s a little unreliable and kept on crashing the program

when it failed – so we have a try..except command around it to let our

program continue even if the sensor read fails.

from machine import Pin, I2C

from ssd1306 import SSD1306_I2C

from oled import Write, GFX, SSD1306_I2C

import time, dht

create dictionary to set up pins

buttons = {

 "button1": Pin(5, Pin.IN, Pin.PULL_UP),

 "button2": Pin(4, Pin.IN, Pin.PULL_UP),

 "button3": Pin(3, Pin.IN, Pin.PULL_UP),

 "button4": Pin(2, Pin.IN, Pin.PULL_UP)

 }

set up DHT11 data pin

dsensor = dht.DHT11(Pin(18))

set up I2C pins connected to OLED

i2c = I2C(0, sda=Pin(16), scl=Pin(17), freq=200000)

create OLED object

oled = SSD1306_I2C(128, 32, i2c)

write something on the OLED and wait 2 secs.

oled.text("It works!", 0, 0)

oled.show()

Chapter 7 Electronics: Basic Skills and Tools

271

time.sleep(1)

while True:

 oled.fill(0)

 try:

 dsensor.measure()

 except:

 �print('error reading') # in case reading fails

keep running

 if buttons['button1'].value() == 0:

 oled.text("Button 1 pressed", 0, 0)

 �oled.text("Temperature: "+str(dsensor.

temperature())+"C", 0, 20)

 elif buttons['button2'].value() == 0:

 oled.text("Button 2 pressed", 0, 0)

 �oled.text("Humidity: "+str(dsensor.

humidity())+"%", 0, 20)

 elif buttons["button3"].value() == 0:

 oled.text("Button 3 pressed", 0,0)

 elif buttons['button4'].value() == 0:

 oled.text('Button 4 pressed', 0, 0)

 else:

 oled.text("-Menu-", 0, 0)

 oled.text("1. Temperature", 0, 7)

 oled.text("2. Humidity", 0, 16)

 # update the display

 oled.show()

 time.sleep(1)

Again, test and save a backup of your working code on your computer. If

something doesn’t quite work, check your connections on the breadboard and

try again. Pressing a button corresponding to a menu item should display the

appropriate text (Figure 7-26).

Chapter 7 Electronics: Basic Skills and Tools

272

Figure 7-26.  Displaying humidity

Step 5: Our badge project now has a menu with buttons and a display. The

obvious way to add more “bling” is to add LEDs – since we still have buttons

3 and 4 free, we can use them to set a pin connected to an LED to high or low.

At this point, I added the breadboards to a piece of plywood to keep everything

together. Since the LED is just connected to a pin and ground, with a resistor to

prevent it burning out, we don’t need to load any modules or do anything fancy

this time. If you can get hold of a datasheet for the LED or know the resistance

of it, you can use Ohm’s law to calculate the value of the resistor you require.

Alternatively, there are plenty of calculators online, for example, the Kitronik

online store has such a calculator for the LEDs that they carry.23 As I used a

random LED that I happened to have, a 220 ohm resistor was enough to bring

the voltage down to under 2V.

The code is quite simple with the LED positive anode (longer wire) connected

to GPIO pin 0: led1 = Pin(0, Pin.OUT)

To turn the LED on: led.high() or led.value(1)

To turn the LED off: led.low() or led.value(0)

23 https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator

Chapter 7 Electronics: Basic Skills and Tools

https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator

273

The complete code uses buttons 3 and 4 to turn the LED on and off,

respectively, and this option has been added to the menu. As before, our

debouncing is taken care of with the time.sleep(1) at the end of our code.

from machine import Pin, I2C

from ssd1306 import SSD1306_I2C

from oled import Write, GFX, SSD1306_I2C

import time, dht

create dictionary to set up pins

buttons = {

 "button1": Pin(5, Pin.IN, Pin.PULL_UP),

 "button2": Pin(4, Pin.IN, Pin.PULL_UP),

 "button3": Pin(3, Pin.IN, Pin.PULL_UP),

 "button4": Pin(2, Pin.IN, Pin.PULL_UP)

 }

set up DHT11 data pin

dsensor = dht.DHT11(Pin(18))

set up LED output pin and switch off

led1 = Pin(0, Pin.OUT)

led1.low()

set up I2C pins connected to OLED

i2c = I2C(0, sda=Pin(16), scl=Pin(17), freq=200000)

create OLED object

oled = SSD1306_I2C(128, 32, i2c)

write something on the OLED and wait 2 secs.

oled.text("It works!", 0, 0)

oled.show()

time.sleep(1)

Chapter 7 Electronics: Basic Skills and Tools

274

while True:

 oled.fill(0)

 try:

 dsensor.measure()

 except:

 �print('error reading') # in case reading fails

keep running

 if buttons['button1'].value() == 0:

 oled.text("Button 1 pressed", 0, 0)

 �oled.text("Temperature: "+str(dsensor.

temperature())+"C", 0, 20)

 elif buttons['button2'].value() == 0:

 oled.text("Button 2 pressed", 0, 0)

 �oled.text("Humidity: "+str(dsensor.

humidity())+"%", 0, 20)

 elif buttons["button3"].value() == 0:

 oled.text("Button 3 pressed", 0,0)

 oled.text('LED switched ON!', 0, 20)

 led1.high()

 elif buttons['button4'].value() == 0:

 oled.text('Button 4 pressed', 0, 0)

 oled.text('LED switched OFF!', 0, 20)

 led1.low()

 else:

 oled.text("-Menu-", 0, 0)

 oled.text("1. Temperature", 0, 7)

 oled.text("2. Humidity", 0, 16)

 oled.text("3/4. LED switch", 0, 25)

 # update the display

 oled.show()

 time.sleep(1)

Chapter 7 Electronics: Basic Skills and Tools

275

Here is the breadboard prototype with display, DHT11 sensor, buttons,

and LED (Figure 7-27).

Figure 7-27.  Completed breadboard badge prototype

Something I should add here is that one advantage of I2C devices is

that each has its own address in hexadecimal (base16).

Note O ur decimal system uses base-10 where each column is a
power of 10, that is, 234 in base-10 is 2x102 + 3x101 + 4x100.
Where base-10 uses numbers from 0 to 9, base-16 (hexadecimal)
uses 0-F, that is, 0-9, then A-F. So, 234 in decimal is equivalent
to EA in hexadecimal, that is, 15x161 + 10x160. Hexadecimal
is used for representing numbers such as memory addresses in
microcontrollers.

Chapter 7 Electronics: Basic Skills and Tools

276

�Next Steps
To take this project further, we could add more I2C devices easily

because modules will usually know the correct hexadecimal address

to automatically send commands to the correct device. To replace our

breadboard with something more permanent, we can use a protoboard

(Figure 7-28), which is just a solderable breadboard in the form of a

PCB. But what if we didn’t want to leave our Raspberry Pi Pico connected

permanently? We would just solder in socket headers (Figure 7-29) to our

protoboard. These would allow us to remove the Pico when the project is

not in use and use it for other projects.

Figure 7-28.  An example of a protoboard; the Adafruit-branded
Perma-Proto boards come in a variety of sizes (from Adafruit)

Chapter 7 Electronics: Basic Skills and Tools

277

24 www.kicad.org/download/

Figure 7-29.  Socket headers to fit GPIO header pins from a
Raspberry Pi Pico H (photo from Adafruit)

If we really wanted to make a truly fancy badge, we could transfer our

schematic into a custom PCB that we could send away for fabrication.

Although Fritzing does technically possess the functionality to produce

the files required by PCB fabrication shops, I would recommend using

KiCad.24 KiCad is an open source software. If you would like a precompiled

version, you can download it directly for a small fee that supports the

project. Although technically out of scope for this book, transferring our

circuit’s schematic to KiCad (Figure 7-30) would allow us to map the

electronic symbols to real components (represented by “footprints”). From

this point, you can make your own custom PCB design to produce the files

required for a fabrication service to produce your PCB. These files include

Gerber files that describe the PCB, bill of materials (BOM) to describe the

required components, and a drill file which specifies any holes that need to

Chapter 7 Electronics: Basic Skills and Tools

http://www.kicad.org/download/

278

be drilled. These days, obtaining a quotation is simple once you have these

files, and if you’re prepared to wait for cheaper postage, small runs can be

quite affordable for your code club or maker group.

A passionate electronic badge community has grown up around the

hacker conference scene – these are as much about making as breaking

with conferences such as Hackers on Planet Earth (HOPE) and Defcon

being prime examples of places where many unofficial badges can be

seen.25 The difference between a commercial vendor conference and these

more grassroots conferences is that people attending are more about being

passionate about their hobbies rather than only wanting to make money.

25 https://hackaday.com/2019/09/19/pictorial-guide-to-the-unofficial-
electronic-badges-of-def-con-27/

Figure 7-30.  Badge circuit schematic shown loaded into the Kicad
PCB design software

Chapter 7 Electronics: Basic Skills and Tools

https://hackaday.com/2019/09/19/pictorial-guide-to-the-unofficial-electronic-badges-of-def-con-27/
https://hackaday.com/2019/09/19/pictorial-guide-to-the-unofficial-electronic-badges-of-def-con-27/

279

�Summary
In this chapter, we have gained a basic understanding of some common

component types and learned which features to consider when designing a

digital electronic circuit. We have written embedded code in MicroPython

and ran this on our own electronic badge prototype. This should be within

the reach of your code club and maker group once they can program basic

Python scripts with loops and dictionaries and leverage modules for more

functionality.

�Chapter 7: Cheat Sheet
�Electronic Components
�Concepts

•	 Schematics and datasheets

•	 Breadboards and circuit boards

•	 Through-hole vs. surface-mount components

�Components

•	 Resistors

•	 Transistors

•	 Capacitors

•	 Diodes

•	 Light-emitting diodes (LEDs)

•	 Integrated circuit (IC) chips

Chapter 7 Electronics: Basic Skills and Tools

280

�Soldering Tools

•	 Soldering iron/station

•	 Adjustable temperature, digital if possible

•	 Solder

•	 Leaded and nonleaded

•	 Flux core helps solder go where you want it

•	 Helping hands/mini vise

•	 Cutters

•	 Wire strippers

•	 Heat-proof mat or board

•	 Solder sucker/desoldering braid

�Soldering

•	 Heat both the copper pad and component leg, then

apply solder to both.

•	 Primary-aged kids should be standing and supervised.

•	 Practice with Veroboard.

•	 A good solder joint is shiny and concave.

�Software Tools

•	 TinkerCAD

•	 Thonny IDE

•	 Fritzing

Chapter 7 Electronics: Basic Skills and Tools

281

�Other Useful Concepts

•	 Microcontroller breakout boards

•	 Communication protocols

�Approaching a New Electronic Project (Digital)

•	 Compatible with our skills

•	 Good support

•	 Features match

•	 Within budget

�Badge Project

•	 Raspberry Pi Pico W supports MicroPython and

CircuitPython.

•	 Modules loading with Thonny to support components.

•	 Remember the common ground.

•	 Display: I2C (easy to daisy chain more).

•	 Buttons: GPIO.

•	 DHT11: GPIO.

•	 LED: GPIO.

�Next Steps

•	 Read the Python module to learn more.

•	 Replace the breadboard with a protoboard.

•	 Look into KiCad and fabrication.

Chapter 7 Electronics: Basic Skills and Tools

283

CHAPTER 8

Putting It All Together

�Planning a Year of a School Maker
Space/Code Club with Python

I guess you could call it a “failure”, but I prefer the term
“learning experience.”

—Andy Weir, The Martian

In this final chapter, we’ll walk through planning a year of activities,

referencing what we’ve learned in previous chapters and putting these into

the context of a kid’s code club or maker group. Since we’ve already dived

into these topics, I won’t go too deep here, but the objective is to show

where these fit into a real working schedule over a year. Although you may

end up with kids staying at the code club for multiple years or even just a

couple, I’ve chosen a year as a good sample for starting off. Rather than

trying to add everything the first time, feel free to take your time and build

things up – for this reason, I’ve included a range of ideas, including how

to create your own workshops and other projects. This should give you a

living plan that grows as you and your club progress over the years, limited

only by your, and your maker kids’, imaginations and skills.

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9_8

https://doi.org/10.1007/978-1-4842-9197-9_8

284

The information here does not include any business advice, as this will

vary depending on your circumstances. To prevent any conflicts, I have

only covered the requirements of a nonprofit code club or maker space, as

these have a clear objective to educate and facilitate creative pursuits.

�Deciding on Communication Channels
To effectively coordinate both participants and volunteers for your code

club or school maker space, you’ll need to first establish communication

channels for each type of communication. You can have an immediate

communication channel and another for event notifications to parents/

guardians; you may even find that it is helpful to have a way to distribute

read-only information for kids.

�Communicating with Parents/Guardians
These communications will often be at regular intervals, for updates,

when information and permission slips are required for certain events and

when tasks like account creation for online services need to be performed.

There are paid subscription and free services, but when transmitting any

personally identifiable information (PII), you will need to follow specific

rules in your area, regarding transmitting and handling such information.

In Australia and New Zealand, there are privacy acts.1,2 You should avoid

dealing with any of this information unless it is required – realistically, you

will only need a contact email and phone number. If your code club or

maker group is working in conjunction with a library or school, you may

already have access to a suitable existing communication mechanism, for

1 www.ag.gov.au/rights-and-protections/privacy
2 www.legislation.govt.nz/act/public/2020/0031/latest/LMS23223.html

Chapter 8 Putting It All Together

http://www.ag.gov.au/rights-and-protections/privacy
http://www.legislation.govt.nz/act/public/2020/0031/latest/LMS23223.html

285

example, schools may already be using Compass3 and others may already

be sending out some information via email.

Although specific recommendations for your area will vary, it is

important to understand the limitations and required setup of whichever

communication mechanism you use for collection and storage of

various forms of data, for example, Google Forms provides encrypted

communications to connect to resources, but requires that you have the

right settings to ensure that documents or form responses are not made

public or inadvertently shared to those without a requirement. If you

are in Europe, GDPR requirements will mean that you cannot keep data

longer than it is needed and only request what is needed. Consent will

also be required for some activities and events you may run in conjunction

with your code club or maker group, for example, in Australia there are

government requirements for information related to minors.4

�Communicating with Volunteers/Teachers
For keeping in touch with volunteers/teachers, you can use the same

mechanism that you are using with parents/guardians – this will be

fine for the occasional email or note about whether your session has

been canceled or moved for a week, but for organizing details relating

to workshops, changes in processes, or just to discuss a new project or

common error that kids are seeing, you will generate a high volume

of chatter, quickly. The best way of keeping these high volumes of

information in some sort of order is to have a chat system that allows

separate channels and file storage. Again, find out about any privacy

requirements before making a choice on what you will use.

3 www.compass.education/
4 www.oaic.gov.au/privacy/your-privacy-rights/children-and-young-people

Chapter 8 Putting It All Together

http://www.compass.education/
http://www.oaic.gov.au/privacy/your-privacy-rights/children-and-young-people

286

For our code club, Discord5 offered the features we needed; this

included the ability to paste screenshots, photos, and link or transfer

documents. It works on mobile devices and was friendly for the younger

alumni volunteers who were mostly already using it at the time. For this,

we set up our own free server and were able to limit access. If you have

a large group of volunteers, you may consider implementing a code of

conduct to maintain a welcoming environment and prevent any ugly

conflicts. Online communities will often require reading and acceptance

of a code of conduct before access to chat channels is granted. When we

had a smaller number of volunteers for a given year and already had most

of our content retained from previous years, we would often revert to email

for these communications due to the lower volume of information needing

to be transferred.

�Communicating with IT Staff
In Chapter 1, we learned about the importance of setting up good relations

with your IT staff. You should also understand the best way to engage

them, for example, opening a ticket on one of their systems or however

they prefer you to request something. Once you have established what

the required processes are, a minimal list of requirements should be

communicated:

•	 List any software that needs to be installed for your

sessions.

•	 Understand any limitations of Internet access, that is,

is anything blocked? This may be a limitation in school

in some Australian states, where only an allowed list of

websites can be used.

5 https://discord.com/blog/starting-your-first-discord-server

Chapter 8 Putting It All Together

https://discord.com/blog/starting-your-first-discord-server

287

•	 What the process is for logging in to laptops and where

kids’ projects are best stored.

•	 Whether they can stay for the start of your sessions, to

help with any teething problems that may arise.

�Setting Expectations
Setting expectations is important for participating kids, their guardians,

and your volunteers. This also includes any new volunteers that may

have been starting that year; in addition to parents/guardians and alumni

volunteers, we also have had volunteers referred from Code Club Australia.

�Expectations for Participating Kids
At the start of each year, our code club sends out a notice on Compass to

inform parents/guardians about Code Club. Once submissions come in,

a response is sent to advise when kids have secured a place in that year’s

code club and announce the dates and times of commencement.

�Accounts Required

The response provides a list of accounts that parents need to set up, for

example:

•	 Trinket.io for Python

•	 TinkerCAD for 3D design

Since our code club was an extracurricular activity for the school, some

iPad apps would also be listed, but they were rarely used and ultimately

were more as a distraction than any real maker-related activities. Dropbox

was useful for delivering files, and grade 6 kids also had their own email,

which helped for setting up accounts. Earlier on in the book, we went

Chapter 8 Putting It All Together

288

through the requirements to have your IT people set up Thonny and Mu

editors on the computers. If you have kids bringing their own laptops, you

can include this information as well.

Asking parents/guardians to set these up greatly reduced the instances

of kids “forgetting” or otherwise not having accounts set up. This put the

responsibility on the guardians and set an expectation that these were

required for participation. It also increased value and continuity for kids

as they would learn to save their work and were responsible for logging

in. Previously, we were trying to help kids set up their accounts, and this

would waste multiple weeks, with some years where kids could still not log

in at the end of the semester.

If kids are bringing a mobile device, you may want to encourage the

use of a local password bank for storing any account passwords required

for your sessions. KeePass and Bitwarden are good examples of open

source and free password managers that are widely used, with other

solutions like 1Password also having good reputations at the time of

writing.

�Display of Projects, Photos, Blog Posts

In addition to the required accounts and other information, you will

want to let guardians know that projects may be shared and displayed on

various online media and allow opt-outs for these. This should include

a statement that no PII would be shared online. Since our code club was

associated with a school, it made it much easier to do these. Libraries and

other institutions will have similar existing policies already in place, too.

�Expectations of Behavior and Conditions of Attendance

As our code club evolved, we came across various challenges related to

disruptive behavior, exploiting the club for free childcare, and refusal to

participate (this was mostly related to instances that would preclude kids

from being able to move forward to more advanced activities and often

Chapter 8 Putting It All Together

289

resulted in disruptive behavior). So, a clause that outlines expectations of

behavior and consequences after “three strikes” was brought in to ensure

a healthy and productive environment for those who valued our free code

club activities. We never ended up having anyone with three strikes, but

setting the expectation that attendance was a privilege and that we had

eager kids on a waiting list was enough to put things in perspective (most

years we did have a waiting list which meant that when kids decided not to

attend, we could give someone else an opportunity to participate).

The other expectation we included was that code club wasn’t the time

to be playing video games. This was based on previous issues where one

kid would start playing a game and others would become distracted, and

soon the whole group was mostly unfocused. And so, we added to our

expectations that disruptive behavior included playing games on iPads. A

clear distinction was made that these were different to games that may be

part of code club activities.

�Setting Expectations for Volunteers
New volunteers will benefit from some history of your club, a list of

objectives, and an understanding of the requirements of their role. Firstly,

you will need any documentation required by law in your location – for

Australia, you will need records of any required vetting for volunteers

to work with children, which varies from state to state. Although the

information we include has changed over the years, we also typically talk

about the approach we use and give a summary of the expectations we

make of the participating kids. As the year proceeds, we learn more about

the strengths, weaknesses, and interests of our volunteers – this lets us

customize how we leverage their help, as we progress through the year.

Any information about the venue such as first aid, evacuation processes,

and anything else relevant will need to be included. For any other

requirements, you should reference the relevant government department.

Chapter 8 Putting It All Together

290

We were lucky that we were able to tell Code Club Australia that

we were after volunteers with Python skills. It was really nice to have a

volunteer who ran her own team of developers at work, come into our

code club, and be able to help our kids find their way.

�A Note About Qualifying/Filtering Volunteers
Volunteers can be parents/guardians, your code club’s alumni, or external

sources. We also reached out to Code Club Australia at one stage which

resulted in a couple of excellent volunteers who had already received

training. It was interesting to hear comparisons between ours and

other clubs that other volunteers they knew were attending. The initial

expectation seemed to be that of leadership, but due to our club being

more established than most, it changed into support, which worked well

and even extended their stay for a bit longer.

Based on some of our experiences, here’s some things to be wary of

when assessing volunteers:

•	 Affiliations with groups that might be looking to recruit

kids/parents

•	 An agenda that might not be in line with your code club

or school maker space’s interests/objectives

•	 Putting self-promotion before the best interests of

the club

•	 Any misunderstanding of what your code club or

school maker group is

•	 Disregard for what you’ve already established and built

Examples that come to mind include a prospective volunteer that

appeared to be affiliated with a church that seemed to have an overly strong

recruitment drive, one who said that all our activities were bad and boring

Chapter 8 Putting It All Together

291

and that kids just wanted to make games and a range of others relating

to “we should sponsor the club” or “look at using X language instead.”

Although it is great to have input and enthusiasm, there’s a point at which

this can become overly aggressive or misguided. For instance, it would

make more sense to first understand club objectives and the reasoning

behind choosing specific programming languages and other choices.

On the positive side, we also had some great input to workshops and

support for the things we were already doing. We had a university lecturer

who worked with artificial intelligence (AI) and machine learning (ML)

who was able to simply these into a short workshop for the kids. We had

some great support from the school parent committee that allowed us to

get our first set of BBC micro:bit boards.

�Get a Benchmark of Skills Across the Group
for Kids and Volunteers
Each year with a new group tends to give you a different spread of kids, all

with their own individual experiences of technology and programming.

Finding out where those levels of experience sit at the start of the year is

important as it helps you to ensure that everyone is dealing with content

that they understand and challenges them enough to keep them engaged.

It doesn’t take long to identify the kids who have been playing with

micro:bits before, or have some Scratch programming experience, or have

even just been teaching themselves programming using Minecraft mods or

plugins.6

An easy way to start finding out what the skill levels are in a group is

just to ask. You’ll often get slightly subjective responses and mostly from

the louder kids. However, something we learned as we progressed is that

prior experience does not necessarily mean someone will excel in your

6 www.idtech.com/blog/what-are-minecraft-mods

Chapter 8 Putting It All Together

http://www.idtech.com/blog/what-are-minecraft-mods

292

code club or maker group. It seems to come down to a combination of

how kids approach the club and how they relate to you, and sometimes it

takes a while for them to actually realize that they can do it. As I mentioned

previously, the “posse” that may develop around a skilled kid may

sometimes prevent other kids from struggling enough to push themselves

to learn.

Another way to determine your benchmark is to just interact with

each of the kids. Ask them what they are doing and what they are finding

interesting, easy, or difficult. Talk to them about coding concepts and

their ideas and look at how they work. This is another area where tracking

progress as we initially skill up our group can tell us lots about how your

club deals with challenges and solves problems.

I usually prepare some sort of refresher presentation at the start of each

semester, both to see how much everyone has learned and to show the kids

how much they have really learned. This helps to empower them when

they realize that their time has been well spent and that they understand

concepts that they didn’t before. Pairing what they know with the correct

terminology will mean that they can talk about their coding in a way that

other coders would understand; often, kids will go home and talk to their

parents/guardians about what they have learned, and we hear some great

feedback from this.

�Build Some Basic Skills to Equip Kids
to Go the Distance
As we talked about in Chapter 1, getting kids to work in a structured

way can help them quickly acquire some good skills that will enable

them to move on to more advanced activities before they stagnate; this

is preferable to letting kids plateau later, when it is difficult to get them

learning anything more because they have invested too much time to see

value. Make sure you check yourself when kids progress, by making sure

Chapter 8 Putting It All Together

293

that they understand the projects and can articulate these to you. It is all

too easy for kids to say “oh, I finished this, it was really easy” but then not

be able to tell you what was challenging or how they worked through errors

or even how their program works.

It can become easier to persevere when you know what you’re working

toward. For this reason, it helps to outline some of the concepts and

subject matter that kids will work through; they can then understand

where they are going and what to expect. This can also prevent that feeling

that they are coming in week after week to simply work on the Python

lessons. It will feel like they are working toward something and give more

of a useful context to the activity. I will often reiterate this by talking about

something our code club kids might be working on and adding relevance

such as “this racing game uses lists, which we can use later on for….” It also

helps to show kids some of the real-world uses for Python at the start, for

example, websites that are built on Python, scripts that do useful things

such as automate downloading lots of images from a website or updating

products on an ecommerce store. A Space Station (Figure 8-1) lesson from

Code Club shows how to interact with application programming interfaces

(APIs) online, and we were able to apply this to have one of our kids write

their own interface to a different API. A quick online search for Python

projects should uncover some good examples!

Chapter 8 Putting It All Together

294

Figure 8-1.  This ISS Space Station lesson from Code Club plots the
location of the International Space Station on a Google map

Once kids are working well, I try to find some sort of small reward

that is relevant to coding and technology. Getting a bunch of Python

stickers that gave part of the proceeds to Python and helped a Python

podcast was a good example of this. Other times, getting a roll of stickers

from Code Club Australia really helped reinforce that they had achieved

something. Other rewards have included drink bottles and t-shirts that

came from Code Club Australia when we supported some of their events

or contributed projects.

The period when you’re just coming in each week and working on

continuing lessons/projects can sometimes feel a little long at the start.

But the focus you put into this time and those little debugging tips that

kids will learn as they find solutions to errors that inevitably crop up as

Chapter 8 Putting It All Together

295

they program will pay you back once you get into group activities and

workshops later in the year. The trick is to be efficient at this time, so that

kids are getting things done, but without rushing past the important bits,

which include completing each lesson/project; if you find that everyone

gets a bit behind, it doesn’t hurt to just put aside another couple of weeks

where you encourage kids to finish any unfinished lessons and can

seek volunteer help if they may have missed out earlier on. One of our

volunteers, Glenn, suggested this one year – it made a huge difference as

kids felt less pressure and could ask any questions or for help needed to

complete their projects.

�Group Activities
Even before everyone completes many Python lessons/projects, group

activities can come in handy. Oftentimes, we find ourselves with a

group tapping away with Python and several kids who have gone home,

completed all the projects a couple of weeks earlier, and are chomping at

the bit for something to do. Although we can have them talk to the group

about some of the challenges they came across and how they solved

them, it helps to have some smaller group workshops up your sleeve for

these kids.

This is a good time to bring out the Devs and Testers project that

I described earlier in the book – it runs for two weeks and can be an

interesting way to change the pace of things and allow kids a bit of leeway

to start coding creatively. It also helps develop skills in collaborating with

others on code. In the book Coders by Clive Thompson,7 he talks about

codebases that were initially written by single programmers (developers)

that end up being improved and much easier to maintain after being

rewritten by a team of developers.

7 www.goodreads.com/en/book/show/40406806-coders

Chapter 8 Putting It All Together

http://www.goodreads.com/en/book/show/40406806-coders

296

A small group project can also cater to some niche interests within

subgroups of your code club and maker group. This may be a good

opportunity to explore an area that may not be of interest to everyone, but

might attract several kids, for example, 2D game programming principles

can be taught in Pygame Zero within the Mu editor, or interested kids can

purchase a programmable console such as the many MakeCode Arcade–

compatible ones.8 MakeCode Arcade has a Python tab that allows the code

to be represented as Python, allowing Python kids to implement game

design concepts using a language they understand without getting too low

level at the start.

Group activities can also be a more engaging way to bring some

skill parity to your code club by identifying those feeling challenged by

a specific concept; you can revisit this in a way that might be easier to

understand for a small group. I built a “capture the flag” game in Python

(Figure 8-2) which has been great fun for groups who have completed a

majority of the Code Club Python modules. I haven’t published the code

for this online to discourage some kids who may have been tempted to

look up the solutions rather than collaborate with their peers to solve the

levels - at the time of writing I have been talking to Code Club Australia to

hopefully find a home for this project so others can contribute.

8 https://arcade.makecode.com/hardware

Chapter 8 Putting It All Together

https://arcade.makecode.com/hardware

297

Figure 8-2.  A Python “capture the flag” group challenge I wrote,
based on the Code Club Python curriculum

�Develop and Deliver Workshops
with Scalable Projects
Once everyone has at least a basic understanding of programming, the

best thing to do is capitalize on that knowledge by applying it. When the

timing has been such that there is a school holiday gap, I’ll normally just

do the quick presentation recap thing. This reminds people of what they’ve

done, and sometimes we will even do a single short lesson from Trinket.io

just to get everyone back into things. It can help to reiterate some of the

advantages of Python by picking a set project that leverages a module

to apply Python to something; whether this be a built-in module or an

external module depends on whether you are using a Mu or Thonny editor

or are in Trinket.io on a free account.

Chapter 8 Putting It All Together

298

At this point, it helps to plan multiple workshops and present them in

a short slide deck – these can be run in series or parallel, depending on

the number of kids and volunteers attending. Letting the kids know up

front what they will be doing helps them understand that they are into the

next phase of their code club/maker group journey. It is also a great way to

show that the time they invested was well worth it because now they can

create fun and interesting projects using what they’ve learned. As you cycle

through a few iterations of workshops, be sure to take photos and videos

as these can be incorporated into future slide decks when introducing

workshops. Running through the guided workshops is also a nice way to

ease yourself into a more hands-on phase of the maker journey. At this

stage, it will be easier doing this as groups and getting that computational

thinking happening but without so much freedom that the kids feel

overwhelmed. A good number of workshops to have here is four to five

before taking the next step into a more design-orientated freeform phase.

A cost-effective solution for hardware is the micro:bit. Although these

have had some supply chain issues, the Microbit Foundation appears to

have swapped out a component that was proving difficult to source, and

these are available at the time of writing. A class set of micro:bits can be a

cost-effective way of applying Python skills and integrating a more tactile

approach that can prove refreshing after initial curriculum–style lessons/

projects. The micro:bit emoticon switcher project from Chapter 2 is a good

way to get started with your workshops – this project can be completed

in around an hour. This project scales nicely since kids who put their

micro:bits on the same wireless channel can enjoy seeing their emoticons

displayed on their friends’ micro:bits. The next workshop (or one run in

parallel with rotating groups) could be the self-watering plant. Depending

on how many micro:bits you have, you can choose to display this one

somewhere as it is quite visual. Even displaying it to others between code

club sessions can prove interesting for outsiders to see some output from

Chapter 8 Putting It All Together

299

the club. Other workshops could include e-textiles and TinkerCAD with a

conductive tape (use the introductory lessons, shown when you sign up, to

get started) – these can also be adapted to any microcontroller board that

supports MicroPython or CircuitPython.

We had some great successes when we combined these workshops

to build a smart city. By presenting the smart city idea and breaking it

down into multiple workshops, kids felt that they were working together

to contribute to a larger project (Figure 8-5). This created a great

feeling of building something big and incorporated 3D-printed houses

(Figure 8-4) and trees, self-watering plants (Figure 8-3), and traffic light

pairs on a paper city map. We also had a banner made of three squares of

multicolored (RGB) LED tiles9 controlled by a micro:bit.

9 https://kitronik.co.uk/products/5645-zip-tile

Figure 8-3.  Python self-watering plants ready for adding to the
city project

Chapter 8 Putting It All Together

https://kitronik.co.uk/products/5645-zip-tile

300

Figure 8-4.  3D-printed houses and trees ready for the city project

Figure 8-5.  A view of the city being populated

Once you have run a few of these prepared workshops, you should

have a reasonable idea of how to write your own. Just like the exercises I’ve

included for you in this book, the rough structure goes something like this:

Chapter 8 Putting It All Together

301

•	 State what your audience will learn.

•	 State what is required in terms of skills, electronic

hardware, installed software, and other parts.

•	 Include a photo or working example of the finished

project, so your audience understand what they are

working to.

•	 Break your project down into numbered steps, explain

any concepts involved with examples if required, and

within each step list the required tasks.

•	 If what you are explaining can be better explained with

a screenshot or image, use that and make sure what you

are communicating or referring to is clear (crop your

image if required). If you can better explain something

with one line of text, use that instead, and save the

screenshots for when they are best suited.

•	 After each step, remind your audience to test and

save, giving hints for debugging and troubleshooting if

something goes wrong.

•	 Remember to show examples of the results of each

step, so that your audience can check their work.

•	 And finally, include a challenge with a few clues for

those who finish early.

If this goes smoothly, and there’s time left in the year, you can look

at more freeform development of ideas. At this point, you can help

kids to brainstorm for problems for which they can provide solutions.

Alternatively, look at improving on existing solutions. A whiteboard

can come in very handy or something similar that allows whiteboard

collaboration online.

Chapter 8 Putting It All Together

302

Remember that depending on the scope of your code club or maker

group, you may end up having kids staying for multiple years, in which

case you can dive more deeply into topics and projects if you keep kids

engaged. Don’t forget to suggest the opportunity for older kids to return

as volunteers – they are often the best candidates as they understand

how things work and often can relate well to the code club participants,

including their doubts and challenges.

�Club Excursions/Events, Community/
School Events
As your club starts to gather momentum, and kids talk about what they are

learning, more people will become interested in what you are doing. Our

first exposure of this sort is when some of our first group of code club kids

spoke in a school assembly. One of the comments that has stuck with me

was, “At first I thought code club was just going to be about games – but

we learned that coding can be used to solve real-life problems and create

useful software.” We felt quite proud that these kids were actually gaining

some benefit from our then bumbling way of helping them to learn. We

had a few of the kids demonstrate Scratch programs that they had made,

and soon we had more people lining up for the next year’s group.

There is often some overlap with school projects from code club/

maker group projects, where kids can use some of the skills that they

learned for their school projects. My son collaborated with Tom, one of

our earlier code club volunteers, to create a walkaround tour of the school;

although this was at a point when we were only using Scratch, it is possible

to do the same exercise with Python and Flask, a module that facilitates

creating website applications (web applications). Other projects served

as promotional material for the school – such as the smart city being

displayed in the main school office, where prospective students and school

tours would pass.

Chapter 8 Putting It All Together

303

Open nights were also a time when kids would show off various

projects they made, both for their parents and prospective students looking

to attend. Sometimes, these projects had been used to communicate

concepts or in augment artwork as part of school assignments. One year

we were lucky enough to have an art teacher with a keen interest in paper

circuits, who helped kids use these with their art projects to include

lighting effects with switches. Another year we were asked to do a series of

small 15-minute introductory projects which I wrote for the BBC micro:bit.

Kids could sign up for a workshop and create working code quite quickly –

since this was for the school committee, we ended up having the purchase

of ten micro:bits funded, which helped to fuel our journey using these in

code club. With working models to show how these could be leveraged by

teachers for computing topics in their classes, we gained a few more, with

some add-ons such as traffic lights and moisture sensors. Two electronic

kits for the micro:bit also came in handy when we had a couple of kids

pulling ahead in code club. These were some of Simon Monk’s kits for the

micro:bit – if you’re interested in more projects for these, I highly suggest

checking out some of Simon’s books, too.

One of the major events each year has been Code Club Australia’s

Moonhack event. This initiative started in 2016 to get over 10,000 kids

coding at one time to break a world record, where I was asked to put

together Scratch and Python projects. Later, this led to our code club kids

attending a few live events, including two being featured on That Startup

Show, both of whom became volunteers, programming in Python – Emily

and Ethan. For us, it was not so much networking at a business level, but

rather showing enthusiasm to help out and volunteer to create educational

content. Sometimes, it may not even be content aimed at kids – another

time, I was flown to Code Club Australia’s office, which was in Sydney at

the time, to deliver a Python Flask project to help volunteers.

Above all, one of the best ways I’ve found to help kids understand the

benefit of being able to code is by doing it myself. Being able to show kids

that you are using Python to solve problems and automate tasks is one of

Chapter 8 Putting It All Together

304

the easiest examples to demonstrate how programming can be useful even

if you’re not a professional software developer. If you’re a teacher, one of

the best ways to encourage kids with programming is to use it for everyday

automation, for example, grabbing data from websites and transferring it

into a spreadsheet or automating a task to create a visual representation,

such as with our self-watering plant project where you can add wireless

communications to turn on the light, display a picture on some LED tiles,

or even move a servo motor to make a clown wave back and forth when

the plant is being watered.

�Demos
If your code club is affiliated with Code Club Australia, or another group,

they will often ask for clubs to test some material they have written or

attend their own workshops or volunteer training sessions. These can

be an easy way to get to know people in the same community and share

ideas and get advice or support. You may even get asked to take some kids

to demonstrate at an event – you can read about some of the events we

attended in a blog post I wrote for Code Club World.10

As time went on, we were eventually asked to become a star club –

which meant that Code Club Australia could send people to attend our

weekly session and see how they were run, ask questions, and consider

running their own. This also involved a few fun visits from Code Club

Australia and some fun pizza days. Of course, we would also set these up

some years and invite parents/guardians to help celebrate a successful year.

Some of the other events we were asked to attend included Parliament

in Victoria for several demos, the Future School Conference where the kids

demoed Makey Makeys and Python in the micro:bit emoticon switchers,

10 https://blog.codeclub.org/2018/04/27/practicing-real-world-
programming-in-a-code-club/

Chapter 8 Putting It All Together

https://blog.codeclub.org/2018/04/27/practicing-real-world-programming-in-a-code-club/
https://blog.codeclub.org/2018/04/27/practicing-real-world-programming-in-a-code-club/

305

and Kid Inventor’s Day at one of the local libraries where we created a

robot arena and talked about the self-watering plant project that the kids

had built and some capacitive touch drums with a Circuit Playground

Express board. As you can probably see, progressing with workshops

can easily morph into helping your code club and maker group kids to

eventually create their own projects – and with a bit of luck, these projects

can be leveraged to open doors to lots of events both locally and external

to your group.

�Contribute Back
Contributing to Code Club was initially made possible due to early efforts

to make the content open source. Early on, I got the opportunity to

brainstorm some ideas with Rik from Code Club UK. Back then, all their

projects were written in text, using Markdown11 formatting to represent

code blocks and headings which would call some open source software

called Pandoc12 to create a .pdf file of the lesson. These days, things seem

to have changed although I personally still do use a similar method to

create projects. Back then, contributing to Code Club projects was similar

to how you would contribute to any other open source project; you would

open an issue, discuss what your enhancement or idea was, then do a “pull

request” which is essentially submitting a request to have your change

merged with the project. These days, I suspect most of the work is done

using something as mundane as Microsoft Office, which makes it even

easier if you were to contribute. However, even if you’re not contributing

to a group such as Code Club, you may just want to contribute to the

community; there’s many teachers out there who welcome projects that

they can use to teach with and other code clubs or maker groups that

11 www.markdownguide.org/
12 https://pandoc.org/

Chapter 8 Putting It All Together

http://www.markdownguide.org/
https://pandoc.org/

306

welcome extra projects. A good way to get involved is to first look around

for what is available. Find something for which there is a gap and see if

you can make something to fit. Test it out with your maker group kids and

make a few changes, and I also usually get other volunteers to have a read

through if they have the time. If your project requires it, you may like to

add some teacher/volunteer notes, which help those running the project

to understand it in more depth. Once you have something written up and

you are confident that it provides enough information for someone you’ve

never met to successfully reproduce your project, socialize it around

and maybe even get other groups to try it out. If you use a Raspberry

Pi or Raspberry Pi Pico, you can even talk to someone at Raspberry Pi,

CoderDojo, or Code Club to have it included in their resources.

These days, it is still possible to collaborate with many nonprofit

groups, and all it takes is to ask. Behind the scenes, I was lucky enough

to create projects for some businesses that were working with Code Club

Australia, Moonhack, and some other Code Club Australia events and

be the technical editor for a couple of awesome books for kids, one of

which was a revision of the book that my son first used to learn to code!

As one of the group projects, I developed a Python Capture the Flag game

that kids can play online, based on the Code Club Python curriculum –

hopefully, that will be something I can hand over to Code Club Australia

to host, since I had one of their staff play it a few years back, giving some

positive feedback on it. Time will tell whether this happens – otherwise, it’s

possible that I may just open source it or find somewhere cheaper to host

it. The side effect of making the source public will be that the solutions will

be searchable by kids, and they would also just be able to grab the URLs for

the next level quite easily which would remove the challenge of the game.

Sometimes, I have been paid for contributions. This happened when

we needed something that was quite time-intensive for a specifically tight

timeline or if there was travel required. As Code Club Australia gained

more resources, this was not required as much. When I’ve been asked

to work as a technical editor on books, these were also paid, and these

Chapter 8 Putting It All Together

307

may vary depending on the publisher you are working for. Blog posts or

interviews have not usually been paid although there are many online

publications that do pay per word for these. Open source contributions

are typically not something anyone pays for, although there are companies

that employ people who contribute code to major projects and pay their

employees a salary.

�Encouraging Alumni to Volunteer
Our code club volunteers originally consisted of myself and an alumni

student from the school where our code club is based. We worked with

David, the teacher who originally registered the club, and muddled our

way through. Even with the three of us, we did manage to somehow

cultivate a small group of kids working with an adapted Lego Mindstorms

robot programmed with Scratch, while the other kids forged forward

with basic Scratch lessons. Fast-forward a couple of years and we had

moved into a much larger space, with a handful of parent volunteers.

Although having parents help is great, we only really retained a couple

of parent volunteers for more than two years. Some had kids that didn’t

really manage to persist at that early stage – I’m a bit surprised that many

of the kids persisted through those early days with our fumbling around

trying to get passwords reset and working out where to save things. Often,

kids would leave without saving their projects only to return the next

week and need to redo all the work they did the previous week. When

we tried to move kids on to Python at first, we had many false starts and

frustrations, too.

Somewhere along the way, we somehow figured things out with

volunteers and the way we planned, communicated, and documented

things for them and the kids. Much of it seemed to come down to planning,

and that helped us work out ways to strategically stack things in our favor,

so that we could keep everyone engaged and having fun while learning.

Chapter 8 Putting It All Together

308

There were times when our numbers were high enough that I really

wondered how it did not all fall apart – at peak numbers, we had two code

clubs each with different year levels, and we tried running these both in

parallel and in series, that is, the latter being one group per semester and

the former with two groups on the same day or separate days. I’ve done my

best to outline many of the things we found worked for us in this chapter

and the rest of the book. You will likely find that there are still challenges

specific to your setup, but at least these should reduce the number of

variables so that you can focus on the hard parts.

The good thing was that we always had kids coming back year after

year. Although it varied with whatever configuration we were running at

the time, we generally had a new group of kids come in at least every two

if not each year when we were running dual clubs. Even with two clubs,

and lots of kids learning, there was still something great about having a

slightly smaller group with enough volunteers to make sure more kids got

their heads around Python better. Having a waiting list seemed to increase

the perception of value that our code club had. Eventually, our first kid

volunteer moved on as he got a part-time job, and we even wrote him a

decent reference reflecting on his positive time at code club. By then, we

already had a few other alumni kid volunteers, and when I think back, I

can roughly pinpoint the time that I noticed their enthusiasm rise while

they were in code club as participants. After that, it was simply a matter of

suggesting to them and their parents/guardians that they were welcome to

come back each week as a volunteer. At this point, most of the volunteers

had departed for different high schools, and so it was something of a mini

reunion every time they came back for code club sessions. There was a

certain persistence when working through debugging their programs that

I’ve noticed in every kid who came back as a volunteer. They each had a

time when we would almost have to kick them out at the end because they

were trying to get something finished in one of their projects. It always

brought a smile to my face when we got to that point where we had to

forcefully tell kids to finish up at the end of the session because they were

Chapter 8 Putting It All Together

309

so focused and wanted to keep building things. That persistence seems

to be something that helped those keen volunteers keep pushing younger

kids to get through things. Of course, there were those days when some

volunteers were visibly tired or unmotivated, but they kept turning up.

Eventually, we knew when someone’s time was up at code club, and we

would thank them, and new volunteers would walk in to fill their places

the next year.

Our parent volunteers varied in experience and attitude. Some would

want to change everything without understanding why we were doing

things a specific way that had evolved over a few years. Others would find

things difficult which tends to pass this onto the kids. The longer-lasting

volunteers would generally ask how we did things and roll their sleeves

up and just help. Later, they would suggest improvements based on what

they had observed and understood about our reasoning for things – this

was the most valuable help for us. Other volunteers were just happy to turn

up and do whatever we needed them to do, which was great too. When

we got Python-trained volunteers from Code Club Australia, we felt very

lucky, and it was also sad to see them go at the end of their allotted time.

Throughout all this, I should mention that we also had most of the local

high school teachers come along to visit our code club. It surprised me that

they were keen to see what we were doing and later found that some had

taken on some of what they saw us doing in their own formal classes that

they were teaching at a high school level.

The other category of volunteer we had over the years was student

teachers and other teachers keen on digital technology areas. This was

also a wonderful addition to our body of expertise – I recall that one of

our teachers, Noam, would put a huge QR code on the projector screen.

Kids were then able to scan the code from their seats using their iPads and

access the documentation. It always impressed me how well our teacher

volunteers would dispatch any behavior problems or grab control of the

group so quickly. It helps to learn whatever techniques the kids are familiar

with for getting their attention, especially when their teachers are helping.

Chapter 8 Putting It All Together

310

I would say that sometimes the kids who struggle a bit at the start

and eventually learn some good skills can often make the best alumni

volunteers – so make sure you leave that door open for them to come

back. Even those who you might not expect to volunteer should still be

encouraged as they will understand the kids and the content well. If you

can get pre-trained or experienced volunteers as we did from Code Club

Australia, they are worth their weight in gold, so leverage that to both

give yourself a reference point to compare against and free your other

volunteers up to do as much planning as you can.

�Learning from Mistakes and Learning More
One of the recurring things in our journey with a code club was probably

frustration. It was frustrating when we discovered someone who still didn’t

know their login after six months of attending. It was frustrating when I

spent hours of time preparing something and then a small detail prevented

it from working during code club. It was frustrating when the laptops had

issues at the school and frustrating when robots were not able to connect

to the Wi-Fi. It was also frustrating when problems prevented kids from

staying engaged and they started playing games on their iPads.

Out of each one of these frustrations were born strategies that we used

to improve how our code club ran and increase the value that participating

kids would get from attendance. We could explain why and how things

worked and the advantages of using Python. Once we just approached it

from the perspective of a more scalable language, which allowed us to get

out of just doing things on a screen, kids would just treat it as the thing we

did. We gradually took our club from something kids would come to and

expect the same thing each week to something that was working toward

bigger things.

Chapter 8 Putting It All Together

311

�Keeping Yourself Motivated and Kids Engaged
Based on one session per week, it can be challenging to make sure that

everyone has something to do each week. Kids need to stay engaged and

challenged sufficiently to persevere over time. Much of this is driven by

our own excitement and journeys as volunteers and teachers. Speaking to

some of our volunteers, many told me that one of the reasons they started

volunteering was to learn and challenge themselves, in addition to helping

kids learn. With alumni code club kids, some said that they really enjoyed

code club and the doors it opened for them, and they wanted to give back

to help others do the same. For me, I wanted kids to feel empowered to

make their ideas real – to prove to others that their ideas really worked and

show them how they worked. To do this, we first needed to equip them

with the required skills, including the most important skill – teaching

yourself to learn, so that boundaries become limitless. In pursuing these

goals, one of the biggest challenges was trying to show teachers why

coding was useful to anyone, not just professional developers of software;

it turns out that this last one was the biggest challenge of all.

In the long term, we learned that solving most of our issues hinged

around a failure to plan. Of course, we also had many lessons to learn

before we could plan things. The better we planned, the less we failed,

both in the long and short terms. Planning allowed us to run workshops

and know what we would be doing weeks and months ahead, opening

more time for creating more interesting activities and making sure we the

time available to us as effectively as possible. We were able to consider

events such as the yearly Moonhack and attend the occasional field trip

when we were invited to these.

Eventually, collaborating online allowed us to leverage our time and

made us more efficient at planning. I could distribute workshop notes,

we could keep our ideas in separate channels, and it made it a little

bit easier to catch up with our different timetables when our team of

volunteers grew. When people were going to be absent one week, they

Chapter 8 Putting It All Together

312

could let everyone know easily. Over several years, we leveraged various

other tools for various tasks, for example, kids tracking their progress,

explaining concepts, and exhibiting their finished projects. Many of the

tools worked on mobile devices as well, making it even easier for everyone

to collaborate.

�Preparation
Many of our failed sessions can be attributed to time wasted trying to

set things up once the session had already commenced. This left the

kids waiting around, and often we would discover we were missing a

cable, or the Wi-Fi network would not connect, which only added to the

frustrations. The IT people were not available to help with laptop and

network problems, and there was just not enough time to accommodate

any problems. We found that we had to have everything ready to go prior

to each session. All the volunteers needed to know what their role would

be, whether that be hosting a workshop, supporting the code club lesson

curriculum, or any other activity.

It wasn’t enough to “wing it” anymore, we needed to make sure that

everything we required was in the room and ready. This meant messaging

teachers ahead to ensure someone knew where the required equipment

was and brought it to the room before we started. Because of the tight

timeframe, we needed to make sure that everything was prepared so we

could start each session as soon as the kids were seated and ready. We

also needed to consider the most effective way for kids to save their work

and retrieve it to maintain continuity. Later, we also managed to have an

IT person from the school stay a bit later to help with any problems. This

offloaded any school-related technical issues and ensured that everything

was up and running most of the time. For our workshops, I would have

handouts ready, and we would leverage some freed-up time to ensure

that the right quantities of required hardware were ready beforehand.

For any activities that required parental/guardian support, we would

Chapter 8 Putting It All Together

313

communicate these over a previously agreed communication channel;

this started off as email, but eventually the school got their own tools that

we were able to use. We had to ensure that kids had their logins ready and

developed processes to accommodate any contingencies that we had dealt

with over the years.

�Scaling Things Up
As our numbers grew, we employed the strategies described earlier in this

chapter to address the following areas:

•	 Varying skill levels in both the kids and volunteers

•	 Consistency in our approach based on our previous

collective experience

•	 How to effectively run workshops so that most

volunteers could run them

•	 Communicating to a larger group of participants and

volunteers

•	 Setting expectations for parents, kids, and volunteers

•	 Ways of building up club hardware and tools

When you start seeing these, they are very good problems to have

because it means that your code club is growing and evolving. Be prepared

to adapt as you go and try to anticipate as much as possible. Obviously,

you will encounter surprises, but being prepared to adapt quickly and

manage these changes across your team of volunteers will increase the

likelihood of a good long-term outcome.

Chapter 8 Putting It All Together

314

�My Experience Highlights
For me, highlights that come to mind include all the breakthroughs

whenever one of our kids “got it” – the point where they realized that they

knew something before I needed to tell them or getting to the point where

they figured out how to debug something by following the steps before

I needed to say anything. Or the times when one of our kids, who later

became a volunteer, almost gave up on Python because he missed a week

of code club, and I reminded him that everyone misses a week here and

there, and he persisted and completed his Python modules and helped

create the self-watering plant project with us. Sometimes, we were able to

identify kids that appeared to be unfocused, having more understanding of

programming concepts than we expected. In some of these cases, we were

able to call upon them to solve bugs and eventually have them reengaged

with their coding.

For many highlights, I ended up not being present, for example, for

Moonhack, I ended up being in New Zealand for work and only saw that

10,000 kids had built my projects after the event occurred; for the filming

of That Startup Show, I was also not able to attend; and there were other

Moonhack events that I helped arranged but was not able to attend. Even

though I couldn’t be present to see the results of these events live, these

will remain as highlights of our code club!

As part of volunteering for code club, I also started a blog.13 Our code

club kids would ask some of the same questions, and it seemed like a good

way to answer some of the questions. As it turned out, and as David our

teacher volunteer had warned me, the kids didn’t really read the blog. I

found that other people running code clubs and maker groups did though

and would sometimes reach out on social media to ask questions.

13 http://jafine.github.io

Chapter 8 Putting It All Together

http://jafine.github.io

315

�It’s Up to You, Now!
There you have it – a year of activities that you can run for a kid’s code club

or maker group – although not everything will come together immediately

as every club will have their own unique challenges, requirements,

and goals. However, this should at least give you an idea of how to get

started and some ideas of what to aim for. You can use some of the linked

resources to get kids skilled up and prepare your own workshops from the

prepared ones that I’ve supplied in this book. You will have some guidance

on setting expectations for the participating kids and your volunteers

and setting up your communication channels from the start. Feel free to

change things up as required and adapt what I’ve suggested to fill your

group’s requirements and interests. Once you have a solid way to skill

kids up and keep them engaged, then you will be able to look at some of

the more advanced workshops, such as the electronic badge prototype or

a smart city. Soldering may or may not be something you want to tackle

in your first year, but I’ve provided scope for this for when you are ready.

If you have access to a 3D printer or laser cutter, you may also decide to

get started with some copper tape circuits or even investigate building a

digital circuit within a 3D-printed case. There are really no limits if you are

careful to maximize the value that kids get from your sessions by planning

ahead and preparing effectively. From this point, it’s up to you, and I wish

you all the best. If you’ve got this far, I’d like to thank you for reading my

book and hope you got some good ideas from it. It has been interesting to

brain dump what people have been asking me about, but hopefully I have

covered most of it. Please do reach out if you have any questions or want to

share some of your code club or maker group’s achievements – I’d love to

hear about them!

Chapter 8 Putting It All Together

316

�Chapter 8: Cheat Sheet

�Communications

•	 Choose appropriate or available communication

channels and set these up for volunteers, parents/

guardians, and IT staff. Look at different channels for

immediate vs. nontime-sensitive communications.

�Expectations

•	 Set expectations for volunteers, participants, and

their guardians regarding goals, the year’s road map,

volunteer roles, and behavior.

•	 Create accountability by having guardians sign up for

required services.

�Setup

•	 Ensure that computers are set up and charged before

each session.

•	 Arrange for an IT support person to be present for

at least some of your earlier session to sort out any

problems with the network or computers.

�Skill Building

•	 Use a curriculum of lessons/projects that will equip

participating kids with programming skills in Python.

•	 Check for completion and assist where required; do

quick refresher presentations to reinforce and remind

people of what they can do.

Chapter 8 Putting It All Together

317

•	 Have a way of tracking capabilities during this time, so

kids are ready for moving into workshops.

�Interim Group Projects for Those Ahead

•	 Use small workshops for those who might finish the

curriculum modules a bit earlier.

•	 Let others complete their curriculum before moving

into larger workshops.

�Workshops

•	 Use prepared projects for workshops to get started.

•	 You can either run these in series or parallel rotation

of subgroups, depending on volunteer to participant

ratios and available hardware.

•	 Leverage workshops for demos and displays to

promote your code club or maker group.

�Events

•	 Sign up to newsletters and mailing lists to stay in touch

with relevant local events and keep your ears open for

any school or events, or events related to where you run

your code club or maker group.

•	 Schedule in events like Moonhack or similar and reach

out to organizers in case there are opportunities to

contribute/collaborate and attend live events.

•	 Look for competitions or conferences that may be

relevant to your code club or maker group objectives.

Chapter 8 Putting It All Together

318

�Start Making Your Own Projects

•	 Once you have done some written workshops, look at

making your own.

•	 Help kids work from basic ideas and keep adding and

scaling these up.

•	 Write about them to communicate back to parents/

guardians and any community around your code club

or maker group.

�Contribute to Community Projects

•	 Provide feedback and other updates to community

projects you might be leveraging.

•	 Encourage kids to contribute where feasible or at least

understand the opportunities.

•	 If you or your participants make something cool in your

code club or maker group, consider writing it up for

others to use.

•	 Be open to contributing blog posts and sharing

tutorials with communities that you have found useful.

�Encourage Alumni to Come Back As Volunteers

•	 Look for those kids that have overcome challenges and

are good at sharing.

•	 Don’t forget the quiet kids as many do really well

without saying much and can be relatable to similar

kids in future code clubs.

Chapter 8 Putting It All Together

319

EXAMPLE VOLUNTEER HANDOUT TEMPLATE

Code Club volunteers handout

Thanks for volunteering for our Code Club this year! Your efforts make a huge

difference to our student coders, and we have a lot of fun along the way. To

make things work a bit smoother, we have put together some information for

this year’s club.

General structure of each meet

Code Club starts at 3:45 PM and runs through until 4:45 PM, so this gives

students time to go to the bathroom, have a snack, and relax a bit before

starting. Sometimes, some students decide to voluntarily use this time to work

on their projects, especially if there’s areas they want to push through and

get finished by a certain time. At the start of Code Club, students are required

to gather on the floor, where we briefly explain what will be happening that

session and mention any good achievements. Then each student must go get

a computer and take a seat and continue with their activities.

As we have a variety of skill and experience levels at Code Club, students are

often working on a variety of different projects at any given time. In order to keep

track of progress, we are tracking this through an application called <insert

communication app>, which will house the activity documents and where

students can record their progress. To enable students to collaborate easier, and to

make it easier to assist, most students working on the same project will be seated

together. Occasionally, there are exceptions, for example, if a student needs a

quiet space to focus, they can go into one of the classrooms set aside for this.

Before students move on to other activities, we need to confirm that they’ve

updated <insert communication app> and have completed their current

activity with a screenshot and description. Any challenges they had could also

be added in here. With each activity completed, we’ll be giving out a small

achievement certificate to acknowledge progress.

Chapter 8 Putting It All Together

320

Responsibilities

As volunteers, we collaborate with <insert volunteer communication app>.

If you don’t already have access, please provide your email address, and we

can add you. <insert volunteer communication app> is a chat system that

also allows storage of files and information. No personal student or school

information is to be stored there, but we use it to share the upcoming week’s

learning material or tricks and tips for various activities. It is arranged by

subject, in channels. This is also a good place to ask for help or share a

problem or interesting solution that may have come up during Code Club.

Often, it can be hard to get time to have in-depth discussions during Code

Club, so this gives us a way to have these while being flexible since it works

both in a browser and using software on your computer and phone.

Helping to troubleshoot

A good way to show students how to troubleshoot their code is to first ask

what it is supposed to do and have them explain any problems they are

having. As you walk through the code, it helps to verbalize your thoughts,

for example, “OK, so we’re increasing X when this key is pressed…,” so

students can understand the process. At some point, they may even stop you

if they work out what the issue is. Also, look out for a potential root cause of

the issue, or if there’s a skill gap, sometimes it can help to suggest an easier

activity be completed first.

If we see a common issue that is recurring, we can discuss on <insert

volunteer communication app>, and sometimes I can do a blog post, or

as with bugs we’ve found in the Code Club activities themselves, we can

contribute the fix back to Code Club themselves. Please talk to me about how

to do that if that is something that sounds interesting to you, and I’m happy to

assist or walk you through the process.

Chapter 8 Putting It All Together

321

Participants working on their own game/program

<add any cases where some kids may be working on more advanced projects

or other activities>

Acceptable and unacceptable behavior

If students engage in unacceptable behavior, we now have a three-strike rule

to reduce the impact to others’ experience at Code Club. It is important to

report any unacceptable behavior to attending teachers/staff.

Unacceptable behavior includes

•	 Interfering with other students’ computers in a way that

prevents them from participating

•	 Ball games or other games indoors that are disruptive or could

damage equipment or result in injuries

•	 Anything deemed unacceptable under school rules

•	 Continuous playing of games or other activities unrelated to

Code Club

•	 Anything disruptive to others

•	 Not participating and progressing in Code Club activities: In

this case, it is important to ask some questions to determine

whether the student is new to Code Club or whether there is

something they need explained, and if you need help, please

feel free to ask another volunteer to assist.

Volunteers’ kids

<details for volunteers’ kids to come along to sessions>

Chapter 8 Putting It All Together

323

APPENDIX A

�Traffic Light
Workshops
I developed a variation on these micro:bit traffic light projects for our

Code Club workshops and also incorporated this into our city project.

Given there are sufficient numbers of participants, we usually run these in

parallel with other workshops, using one hour per week for two to three

weeks, which adds up to two to three hours overall.

Since our workshops were always quite popular and really got kids

engaged, I wanted to include this project. We use the Kitronik STOP:bit

board with the micro:bit, but I’ve also included an alternative (Figure A-1)

if you’d like to make your own traffic lights – it uses 220 ohm resistors to

reduce how much power goes to each LED, but you can use the resistor

calculator on Kitronik’s site1 to calculate what you need for your LEDs.

1 https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9

https://kitronik.co.uk/blogs/resources/led-resistor-value-calculator
https://doi.org/10.1007/978-1-4842-9197-9

324

Figure A-1.  LED and resistor connections as an alternative to the
STOP:bit

With regard to running the workshop yourself, we typically have

kids working in pairs, and then they would coordinate with the group to

ensure that they all had their traffic lights on different radio channels.

Part of this project is the introduction of truth tables to help kids manage

the increased complexity as they add a second traffic light to run in

conjunction with the first traffic light.

appendix A Traffic Light Workshops

325

PROGRAM A MICRO:BIT TRAFFIC LIGHT WITH PYTHON

We see traffic lights all the time, but we don’t think all that much about the

logic behind their changing lights – this project lets you create a traffic light

model using a BBC micro:bit and some Python code (Figure A-2). Later, we will

make things a little more interesting and add a second traffic light!

Figure A-2.  micro:bit with a battery holder and Kitronik
STOP:bit fitted

In this project, you will learn

•	 How to create structured data state tables to help model events

and logic

•	 Write a function to turn on individual traffic light LEDs

•	 Call the function in your main loop

appendix A Traffic Light Workshops

326

You will need

•	 One Kitronik STOP:bit, assembled with a micro:bit, or your own

LEDs and resistors connected to micro:bit pins 0, 1, and 2

•	 Micro USB cable for programming the micro:bit

•	 Battery pack (2x AAA batteries) for the micro:bit

•	 Mu editor2 installed on your laptop

Step 1: Launch the Mu editor and enable micro:bit mode.

•	 Go to Applications in Mac, or the Programs menu in Windows,

and launch the Mu editor by clicking the icon that looks like

this: .

•	 Once the editor is running, click the Mode button .

•	 Click BBC micro:bit so it is highlighted, then click OK

(Figure A-3)

2 https://codewith.mu/

appendix A Traffic Light Workshops

https://codewith.mu/

327

Figure A-3.  Select “BBC micro:bit” mode in the Mu editor

Step 2: Write your code.

Each traffic light is made up of three colored light-emitting diodes (LEDs). Each

LED has two wires; one connects to the ground (GND) and the other to pin 0, 1,

or 2 on the micro:bit.

•	 Type in the code from Listing A-1 into the Mu editor, then

connect your micro:bit USB cable, and click the Flash

button to download the code onto the micro:bit.

Listing A-1.  Set pin 2 on the micro:bit to 1

from microbit import *

pin2.write_digital(1)

appendix A Traffic Light Workshops

328

•	 If all went well, the green LED connected to pin 2 should be lit!

Try changing pin2 to pin1 and the amber LED connected to

pin 1 should now be lit.

•	 Change the 1 in .write_digital(1) to 0 and it should turn

the LED off.

•	 Now click the save button on the Mu editor to save a copy

of your code as “stopbit.py” on your computer.

What our code does

•	 The LEDs have one wire connected to the ground, and one

connects to a pin 0, 1, or 2. We switch the power from low (0)

to high (1) with our digital_write(1).

•	 By sending to a different pin, we can turn on a different LED.

•	 Writing zero to the pin will set it to low and turn off the LED.

Step 3: Write a function to turn one LED on and the others off.

We can reduce the amount of code we need to write by creating a function in

Python. Then, instead of rewriting all our code again, we just call the function

by typing its name and customizing what it does by giving it extra information

in a parameter inside the brackets.

•	 First, delete the line pin2.write_digital(1) from your

code in the Mu editor (leave the import line there). Now that

we know how to turn LEDs on and off, we’ll make a function to

turn on an individual LED and turn the others off.

•	 To start defining our stopBit() function, we add the following

line and add a parameter called color. The parameter will let us

tell our function which color LED to turn on when we later call

our function.

def stopBit(color):

appendix A Traffic Light Workshops

https://www.w3schools.com/python/python_functions.asp
https://www.w3schools.com/python/python_functions.asp

329

•	 To put code in our function, we’ll indent3 it by four spaces

(the Mu editor will do this for us automatically). We indent it

again to put it inside an if statement. So now our code should

look like Listing A-2. (Note: The new lines you need to add are

always in bold.)

Listing A-2.  Turn off all LEDs except for the green one connected

to pin 2

from microbit import *

def stopBit(color):

 if color == "green":

 pin0.write_digital(0)

 pin1.write_digital(0)

 pin2.write_digital(1)

•	 Now that we have our function defined, we can call it and tell

it what color we want lit. Add the next line under your function

and make sure it isn’t indented, so it’s outside of the function

definition:

stopBit("green")

Now save your updated code in your mu_code directory

again, then click the flash button to send it to your

connected micro:bit. Only the green LED should turn on.

•	 We still need to add two more if statements to let us turn on the

amber and green LEDs – you can extend your code to use elif
to add amber and red colors to your function.

3 “Indent” means to move text four spaces to the right – the tab key will work as
well in Mu (although there’s huge arguments between using tabs and spaces)

appendix A Traffic Light Workshops

330

•	 Once your function can handle “green,” “amber,” and “red”

colors, make them loop forever in a while loop. In your

loop, make sure to tell the traffic lights to wait for some time

between changes!

•	 Test your code by flashing it to the micro:bit. It should

cycle through green, amber, then red, waiting about 5000

milliseconds between each. Hint: Use sleep(5000) for that.

What our code does

•	 Defines a function that accepts a color parameter, which can

accept three different arguments: “green,” “amber,” and “red.”

•	 An endless loop calls our function to change the traffic light

between three different states, shown in the truth table

(Table A-1).

Table A-1.  Truth table for one traffic light, showing LED

State Red LED Amber LED Green LED

green off off on

amber off on off

red on off off

Congratulations! You’ve successfully programmed a single Australian traffic

light!

appendix A Traffic Light Workshops

331

MAKING TWO TRAFFIC LIGHTS WORK TOGETHER

One traffic light is simple – we just have three colored lights that light up for

a given time in sequence. But what happens when we want another traffic

light to coordinate with our traffic light, that is, if we had two traffic lights

controlling traffic at the intersection of two roads? Now things become a bit

more interesting! In this project, we’ll add another traffic light and make them

work together - you can see a photo of these in Figure A-4.

Figure A-4.  Two traffic lights controlling traffic at an intersection

In this project, you will learn

•	 How to extend our truth table to represent the different changes

between two traffic lights

•	 How to reuse our function to save time

•	 How to coordinate our light changes with another traffic light or

radio, representing all the states in our truth table

appendix A Traffic Light Workshops

332

You will need

•	 To have completed Project 1: Single Traffic Light first

•	 2 x STOP:bits and micro:bits with USB cables

•	 2 x battery packs for our micro:bits

•	 Mu editor installed on your laptop

Step 1: Extend our truth table to use two traffic lights.

Here is our previous truth table that shows three states with one traffic light

(Table A-2).

Table A-2.  Our original truth table for one traffic light

State Red LED Amber LED Green LED

1 off off on

2 off on off

3 on off off

We can add another traffic light to our truth table – T1 is the first traffic light,

and T2 is the second traffic light (Table A-3). These traffic lights are arranged

on different streets at an intersection (they need to work together to make sure

traffic runs smoothly).

Table A-3.  Truth table for two traffic lights working together

T1 T1 T1 T2 T2 T2

State Red LED Amber LED Green LED Red LED Amber LED Green LED

1 off off on on off off

2 off on off on off off

3 on off off off off on

4 on off off off on off

appendix A Traffic Light Workshops

333

Note  When one traffic light changes to amber, the other traffic light
stays red – this gives the traffic enough time and warning to stop
before the traffic from the other street gets the green light to go.

Step 2: Reuse our code.

We need to remove the main while loop from our previous code, so that we

can make it into a module that we can import.

Launch the Mu editor as we did in Step 1 of the Single Traffic Light project.

Click the load button in Mu to load our stopbit.py script. Delete the

while loop from the bottom of the script so it looks like Listing A-3.

Listing A-3.  Reusing previous code

from microbit import *

def stopBit(color):

 if color == "green":

 pin0.write_digital(0)

 pin1.write_digital(0)

 pin2.write_digital(1)

 elif color == "amber":

 pin0.write_digital(0)

 pin1.write_digital(1)

 pin2.write_digital(0)

 elif color == "red":

 pin0.write_digital(1)

 pin1.write_digital(0)

 pin2.write_digital(0)

appendix A Traffic Light Workshops

334

•	 Save your script to your computer.

Congratulations, you just made a module that can be

imported into other scripts!

Step 3: Copy our module onto the micro:bit.

•	 Connect the first micro:bit and click the Files button in Mu.

You’ll see two boxes open up at the bottom of Mu. Find your

stopbit.py module file in the right box, and drag it to the box

labeled Files on your micro:bit (Figure A-5). If you’ve

already got some code Flashed on your micro:bit, you’ll see a

main.py file there, too.

Figure A-5.  Copy stopbit.py file to the micro:bit filesystem

•	 Repeat the process by plugging in the second micro:bit and

clicking Files again to drag the stopbit.py module to that

micro:bit too.

Step 4: Write code for the first micro:bit.

Now we can convert the new truth table into our main loop on the first

micro:bit (Table A-4).

appendix A Traffic Light Workshops

335

Table A-4.  Truth table for two traffic lights working together

T1 T1 T1 T2 T2 T2

State Red LED Amber LED Green LED Red LED Amber LED Green LED

1 off off on on off off

2 off on off on off off

3 on off off off off on

4 on off off off on off

It looks like a lot of work, but don’t worry because the stopBit() function in

our module does most of the work for us!

•	 Click New in the Mu editor to open a new tab and add these two

lines of code at the top:

from microbit import *

from stopbit import stopBit

•	 Add the main while loop below that – this time, we have the

red and amber function calls too in Listing A-4 (Remember:
The new lines you need to add are the bolded ones.)

Listing A-4.  Add additional states to your code

from microbit import *

from stopbit import stopBit

while True:

 stopBit("green") # state 1

 sleep(5000)

 stopBit("amber") # state 2

 sleep(2500)

 stopBit("red") # state 3

appendix A Traffic Light Workshops

336

 sleep(2500)

 stopBit("red") # state 4

 sleep(2500)

Flash the updated code to the first micro:bit and check that it cycles through

the different colors. The comments help us remember that each stopBit()

call corresponds to each of our states.

Step 5: Use radio to send signals (first micro:bit).

•	 We need the radio module to be able to send our signals from

the first traffic light. Add import radio and code to set up

the radio under that. If you’re near other micro:bits using radio,

make sure to set a different channel (Listing A-5).

Listing A-5.  Add radio commands

from microbit import *

from stopbit import stopBit

import radio

radio.on()

radio.config(channel=7)

To send a message to the second micro:bit, use the radio.send() function.

For example, to send the message “green,” use radio.send("green").

In our truth table, when Traffic Light 1 has “red” lit, Traffic Light 2 has “green” lit.

Looking at the truth table, send the corresponding message for Traffic Light 2

under each stopBit() function call. The code for the first micro:bit should

now look like Listing A-6.

appendix A Traffic Light Workshops

337

Listing A-6.  Listing with additional states and radio

from microbit import *

from stopbit import stopBit

import radio

radio.on()

radio.config(channel=7)

while True:

 stopBit("green") # state 1

 radio.send("red")

 sleep(5000)

 stopBit("amber") # state 2

 radio.send("red")

 sleep(2500)

 stopBit("red") # state 3

 radio.send("green")

 sleep(2500)

 stopBit("red") # state 4

 radio.send("amber")

 sleep(2500)

�Save this code in your mu_code directory as t1.py and then flash it to

the first micro:bit.

Step 6: Write code to receive radio (second micro:bit).

The only difference in the second micro:bit is in the main while loop. This

time, we just need to call stopBit() whenever we receive a radio message.

•	 Connect the second micro:bit to your computer, and click the

New button in the Mu editor to open a new tab and copy over

the code from t1.py. Now, remove everything after the while

True: line in this new tab. The code in the new tab should look

like Listing A-7.

appendix A Traffic Light Workshops

338

Listing A-7.  Code for the second micro:bit

from microbit import *

from stopbit import stopBit

import radio

radio.on()

radio.config(channel=7)

while True:

•	 Now just add three lines to receive and set the LEDs on the

second micro:bit, as shown in Listing A-8.

Listing A-8.  Add code to receive incoming radio messages

from microbit import *

from stopbit import stopBit

import radio

radio.on()

radio.config(channel=7)

while True:

 incoming = radio.receive()

 if incoming:

 stopBit(incoming)

Save the tab with the preceding code in the mu_code directory as t2.py.

Flash the code onto the second micro:bit and use the Files button to drag the

stopbit.py module on.

With the STOP:bits connected to each micro:bit, you can now attach a battery

pack to each and draw a mini intersection on a piece of paper and watch the

lights work!

Congratulations, you’ve just made a working set of Australian traffic lights!

appendix A Traffic Light Workshops

339

Index

A
Application programming

interfaces (APIs), 293
accounts, 180
concepts, 179
data requests module, 183
description, 181
dictionary structures, 179
features, 181
JSON data, 184
modules, 179
objectives, 180, 181
random.shuffle(), 184
search online, 181
shuffling code, 184
Trinket.io, 179
URL generator, 182

B
BBC micro\:bit

amplified speaker, 69
challenges, 62
edge connector, 67
editor option, 41
emoticon switcher

dictionary, 48

events, 50
features, 47
.hex file, 54
indentation, 48
index creation, 49
learning process, 46
library modules, 47
light-emitting diode

(LED), 53
loop/receive data, 49
Mu editor, 52
Python code, 47
Python source code, 50, 51
testing code, 54
Thonny editor, 52
web browser, 53
working process, 54, 55

external components, 65–70
features, 64
firmware, 41
ground (GND), 68
.hex file, 41
input/output pins, 66, 67
library module, 68
MicroPython

Mu editor, 56
radio module, 57–59

© Martin Tan 2023
M. Tan, micro:bit Projects with Python and Single Board Computers,
https://doi.org/10.1007/978-1-4842-9197-9

https://doi.org/10.1007/978-1-4842-9197-9

340

read-eval-print loop
(REPL), 55

scripting process, 60, 61
show() and sleep()

functions, 58
str() function, 59
structure program, 57
Thonny editor, 57
web browser, 55
web editor, 56

Mu and Thonny editors, 42
REPL interfaces, 43
sleep() commands, 64
solution/discussion, 63
Thonny files view, 44, 45
web browser editor, 42

Bill of materials (BOM), 277
Boilerplate code, 183

C
Breadboard, 219
Code club/maker space, 1

accountability, 7
activities, 315
alumni volunteers, 310
baseline

expectations, 10
health/discipline issues, 11
measurable level, 9
milestone, 12–14
overview, 7
resources, 10

short/long-term goals, 9
task establishment, 8

benchmark skills, 291, 292
blocker validation, 4
anticipate logistical problems, 6
club excursion/events, 302–304
code club plots, 294
communication channels

(see Communication
channels)

community projects, 318
community/school

events, 302–304
contributing option, 305–307
demos, 304, 305
develop/deliver

workshops, 297–302
encouraging alumni/

volunteer, 307–310
equip learning, 292–295
equipment/initial setup

computers/laptops, 14
environment, 15
flowchart, 18
IT support, 16, 17
login/password, 17, 18
requirements, 15, 19
resources, 14

events/workshops, 317
expectations, 287, 316

accounts requirement,
287, 288

behavior/conditions, 288
disruptive behavior, 289

BBC micro\:bit (cont.)

INDEX

341

projects/photos/blog
posts, 288

qualifying/filtering
volunteers, 290, 291

volunteers, 289, 290
goals, 2
group activities, 295–297
highlights, 314
high school student project, 5–7
interim group projects, 317
issues, 3
learning process

frustration, 310
motivation, 311, 312
preparation, 312, 313
scaling process, 313
strategies, 310

participants/guardians, 31
requirements, 2
responsibilities, 320
setup, 316
skill building, 316
technical learning

EduBlocks, 23
graphical vs. text-based

programming, 23–26
issues, 20
problems/solutions, 20
text-based programming, 19
troubleshooting/debugging

process, 20–22
volunteer collaboration, 22, 23

technical pursuits, 3
troubleshoot, 320

unacceptable behavior, 321
unique challenges/

requirements/goals, 315
volunteer configuration, 308
volunteer handout

template, 319
volunteer onboarding, 31

Code collaboration
advantages, 210
email/communications,

 208–211
Kanban approach, 204
online tools, 199, 216
programming terminology,

204, 205
security/privacy

communication
channel, 214

features, 212
layered defenses, 213
multifactor authentication

(MFA), 213
online process, 211
principles, 215
software, 214
vulnerability, 214

Slack space projects, 209, 210
testing project, 205

analysis, 206
key concepts, 208
objective, 205
structure elements, 206–208

tools, 199
universal terminology

INDEX

342

branch, 201
cloning/adding, 202
commit, 202
fork, 201
issue tracker, 200
merging code, 202
push/pull requests, 202
readme, 202, 203
repository, 200

Command-line interface (CLI),
99, 101, 157, 198

Communication channels
event notifications, 284
IT staff, 286, 287
parents/guardians, 284, 285
volunteers/teachers, 285, 286

D
Developers (devs)/Testers

bugfix/feature workflow, 195
buggy versions, 196
collaboration (see Code

collaboration)
definition, 189
open source initiative

website, 196–198
open source software, 215
options, 196
principles, 217
process setup, 193–196
share code, 191
teams/project, 190, 191

terminology, 217
tracker board, 191, 192
working process, 190
workshop creation, 218

Digital electronic project
availability, 246
breadboard prototype, 246, 247
languages/proficient, 245
microcontroller, 244
Pico W, 244
Raspberry Pi Pico, 247–275
schematic creation, 246
software/hardware

components, 245
stages, 247
technical details, 245

E, F
Directories, 44
Electronic projects

breadboards/circuit boards, 223
capacitors

components, 228
electromagnetic/

radiofrequency
leakages, 228

LEDs, 230
symbols, 228

components, 222, 279
concepts, 279, 281
designing hardware projects, 219
digital badge project, 244–275
digital projects, 281

Code collaboration (cont.)

INDEX

343

diode symbol, 229
embedded devices, 242–244
integrated circuit (IC) chips, 231
microcontroller chips, 221
protoboard, 223
resistors

color codes, 224, 225
components, 224
Ohm’s law, 225, 226
symbols, 226

schematics/data sheets, 223
sensors/components, 221
software tools, 280
soldering, 231–241
soldering tools, 280
talking electronics designs, 220
through-hole vs. surface-mount

versions, 223
transistors

collector/emitter/base, 227
frequency modulation, 227
symbols (NPN/PNP), 227, 228
types/forms, 226

Embedded programming
CircuitPython, 242
communication protocols, 243
concepts, 242
microcontroller breakout

board, 243
MicroPython, 242

E-textiles
backstitch, 123
circuits, 118, 119
components, 120

conductive thread, 126
embroidery hoop, 121, 122
fabric/cardboard, 117
knots/components, 124–127
LED circuit, 127–151
longer-lasting projects, 152
long-nose pliers, 121
needles, 120
scissors/side cutters, 120
sewing kit, 124
soldering circuits, 152
stitches, 123
threads, 122, 123
tools, 120
washability, 119, 120

G
General-purpose input/output

(GPIO), 243

H
Hackers on Planet Earth (HOPE), 278
HyperText Markup Language

(HTML), 98, 101–107

I
Insulation, 130
Integrated circuit (IC) chips, 173,

223, 231, 279
Integrated developer environments

(IDEs), 42, 72–73

INDEX

344

Inter-IC Sound (I2S), 243
Inter-Integrated Circuit (I2C),

173, 243
communication protocols, 243

International Electrotechnical
Commission (IEC), 224

Initialization, 36

J, K
JavaScript Object Notation (JSON),

179, 181–184

L
Light-emitting diode (LED), 53,

118, 129, 221, 230, 243, 327
battery holder, 132
cap programming

capacitive touch, 141, 142
CircuitPython, 136
color-changing code, 140
conductive fabric square, 148
conductive thread, 143
connection, 133, 137, 145
crocodile clip

connections, 138
crocodile wires, 146
external connections, 145
Gemma connection, 146
Gemma M0, 137
insulate internal sewing, 151
internal connection, 144
materials, 133

microcontroller board, 135
NeoPixel library files, 140
positioning and

orientation, 143
press studs, 147, 148, 150
prevent short circuits, 149
RGB, 139
sewing connection, 147
sewn lines, 150
short circuit, 145
tools requirement, 134, 135
.ZIP file, 140

circuit creation, 127
components, 129
electronic projects, 230
insulation, 130
latching/momentary

switches, 131
materials, 127
positive terminal code, 131
testing, 131
threading creation, 129
tools, 128

Local repository, 202

M
MicroPython

BBC micro:bit (see BBC
micro\:bit)

blended hardware
projects, 39, 40

components, 35
editors/IDEs, 72

INDEX

345

feature comparison, 72
features, 73
frustrating problem, 37
hackers and coders, 34
learning projects, 73
overwhelming project, 35
project creation, 73
terminology, 35, 36, 74
TinkerCAD, 35
tracking progress, 37, 38
training content, 34

N
NPN transistor, 227

O
Ohm’s law, 225, 226, 272
Operating system (OS), 41, 42, 46,

75, 92, 99–101, 112, 247
Organic light-emitting diode

(OLED), 243, 258, 261

P, Q
Pandoc, 305
Personally identifiable information

(PII), 284
Potentiometer (pot), 226
Printed circuit board (PCB), 223,

232, 234–236, 247
breakout board, 231
Gerber files, 277

protoboard, 276
solder sucker, 235
soldering process, 232

Project simplification (advantages/
disadvantages)

code club alumni, 177–179
complex/difficult ideas, 171
continuity, 172
costs, 170
preception, 171
reduce challenges, 172
scaling project

microcontroller boards, 173
moisture data, 175
Moonhack projects, 178
online resources, 176
Paintbox, 178
protocols, 173
radio communications, 175
storage/memory, 173
wireless spread, 174

Protocols, 243
Pulse-width modulation

(PWM), 250
Python programming

activities, 116
API project, 179–185
bare-bones creation, 77
block-based coding

data types, 82
descriptive words and

phrasing, 78
electronic microcontroller

boards, 81

INDEX

346

features, 80
MakeCode, 78
MicroPython, 82
modeling solutions, 79
online environment, 83
Thonny editor, 83
visual aspect, 80

bolt-on moisture sensor, 169
browser-based platforms, 111
capabilities, 25
code club volunteers, 77
computer’s file system

command-line
commands, 100

directory structure, 100
navigation, 99

concepts, 112
debugging, 76
EduBlocks, 24
embedded programming, 111
environment learning

editors, 85
elusive programming, 84
Thonny editor, 85
Trinket.io, 84

e-textiles (see E-textiles)
Fahrenheit to Celsius

conversion, 108, 109
flask web application

browser request
components, 97

console output, 96
definition, 92

editors, 94
HTML heading tags, 98
learning process, 93
objects, 94
project creation, 95
route() method, 95
run() method, 94
temperature input form, 93
Thonny console output, 97
web browser, 93, 96

foil-covered cardboard
circles, 117

hacker-style approach, 75
hypertext markup

language (HTML)
Convert_result page, 107
flask library, 103
function definition, 105
POST/GET requests, 104
request import, 104
save option, 106
script browser, 103
tags, 102
temperature conversion, 104
template contents, 101
template file, 102
testing project, 104
troubleshooting, 107
URL project, 107

Internet/devices
mobile device, 109
private network, 109
uWSGI, 110
web application, 110

Python programming (cont.)

INDEX

347

libraries installation
built-in functions, 90, 91
conditionals, 90
data structures, 89
dictionaries, 89
drop-down menu, 88
loops/iteration, 90
mutable/immutable, 89
object-oriented, 91
package information, 88
Thonny, 87
variables, 89

Makey Makey circuit board, 115
Mu editor, 86
natural progression, 185
objectives, 116
oversimplification/cost-

cutting, 186
progress levels diverge

challenges, 160
Code Club Australia’s

projects, 156, 157
command-line interface, 157
Grok learning, 159
skill acquisition, 155, 156
Trinket credentials, 158

scaling project, 168, 169
script structure, 91
self-watering plant

project, 162–168
simplifying project (see Project

simplification (advantages/
disadvantages))

strategies, 76

testing environment, 86, 87
text editor/operating system,

101, 102
tracking progress, 161, 162
Whack-a-Mole game, 116

R
Raspberry Pi Pico

communication methods
(protocols), 247

electronic badge
breadboard badge

prototype, 275
button connections, 264, 265
connections, 258
datasheet, 257
decimal system, 275
DHT11 sensor, 267, 268
DHT12 module, 268
dictionaries, 267
function imports, 261
GPIO header pins, 252
Hello loop, 254
hexadecimal address, 276
humidity display, 272
KiCad, 277
learning process, 251
LED positive anode, 272–274
built-in machine

module, 260
MicroPython firmware, 251
MicroPython modules, 258
module files, 260

INDEX

348

OLED device, 257
OLED display, 255, 262, 263
Pico MicroPython

version, 254
schematic diagram, 269
scoket headers, 277
source code, 266,

267, 270–272
text() and show()

methods, 262
Thonny module, 259
Thonny options pop-up, 253
U-shaped jumpers, 252
wireless capability, 252

firmware, 248
I2C and SPI protocols, 250
STM32Fx microcontrollers, 250
Thonny editor, 248, 249
USB file system, 248

Read-eval-print loop (REPL), 43,
52, 55–57, 166, 176, 250,
254, 255, 262

S
Scalable projects

advantages, 297
cost-effective solution, 298
develop/deliver workshops, 297
MicroPython/

CircuitPython, 299
multicolored (RGB), 299
rough structure, 300, 301

self-watering plants, 298, 299
short slide deck, 298
3D-printed houses and trees,

299, 300
Self-watering plant project

acrylic board, 165
events, 166
moisture sensor, 163
moisture sensor code, 166
plant project, 167
processes events, 164
RGB LEDs, 162
rough diagram, 164
soil moisture sensor, 162

Serial Peripheral Interface (SPI),
173, 176, 243–245, 247, 250

Shell, 56
Soldering process

component, 237
components/circuit board, 231
cutters/side cutters, 234
heat-proof mats, 234
helping hands/mini vise, 233
iron/station, 232
learning, 237
magnifying glass, 235
operating controls, 231
printed circuit boards, 232
protective safety

equipment, 235
software tools, 237
solder, 232
solder sucker/desoldering

braid, 235

Raspberry Pi Pico (cont.)

INDEX

349

TinkerCAD, 238–241
tip cleaner, 233
Veroboard, 236
wire strippers, 234

Surface-mount technology
(SMT), 231

T, U
TinkerCAD

block-based coding, 238
challenges, 238
requirements, 239
3D design aspect, 240, 241
3D design software, 238
web browser, 239

Traffic light projects, 323
LED/resistor connections,

323, 324
Python code

arguments, 330

battery holder, 325
filesystem, 334
function definition, 329
intersection, 331
light-emitting diodes,

327, 328
module, 333
Mu editor mode, 326, 327
radio commands, 336, 338
source code, 338
stopBit() function, 328,

335, 336
truth table, 332, 335

V
Veroboard, 235, 236

W, X, Y, Z
Web application, 92

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	A Quick Tale: Several Years of Mistakes – Numbers, Passwords, Computers, Accountability, and More
	What Is Your Baseline – Where Are You Starting From?
	Tasks for Establishing a Baseline
	Identify Some Prewritten Content to Start With
	Sit Down with Other Teachers and Volunteers to Discuss What You All Want to Achieve
	Work Out How Many Kids Your Team of Volunteers Can Comfortably Handle
	Resist the Temptation to Accept Too Many Kids at First
	Discuss How to Manage the Expectations of the Kids and Their Guardians
	Health and Discipline Issues
	Work Out What You Want the Code Club or Maker Group to Be

	Work Out Your Initial Scope: What Are Your First Milestones?

	Equipment and Initial Setup
	Computers/Laptops
	Optimizing Your Environment
	Onboarding at the Start of Each Year
	Computers and IT Support
	Login and Password Basics
	Another Alternative – Make Your Space Portable
	The Tech Stuff: Learn by Applying
	Two Examples of Problems and Solutions
	Troubleshooting and Debugging
	Strategies for Volunteer Collaboration
	Graphical vs. Text-Based Programming

	Summary
	Chapter 1: Cheat Sheet
	Sources for Free Content and Support
	Short-Term Goal/Milestone Examples
	Long-Term Goal Examples
	Questions to Ask When Helping Kids Troubleshoot Their Code
	Other Useful Tips for Troubleshooting
	Checklist for Volunteer Onboarding
	Checklist for Participants and Guardians

	Chapter 2: Getting Our Hands Dirty with MicroPython
	A Quick Tale: Jumping In with Our Code Club
	Tracking Progress
	What Can We Do in One Hour?
	Introducing the BBC micro:bit
	Setting Up an Editor
	Scaling Up: Adding Challenges
	Challenge Discussion and Solution
	Ideas for Even More Features
	Going Further: Adding External Components
	Adding an amplified speaker

	Summary
	Chapter 2: Cheat Sheet
	Introduction to the micro:bit
	Editors/Integrated Development Environments (IDEs)

	Completing Initial Learning Projects
	Creating New Projects
	Add Features with Challenges
	Terminology

	Chapter 3: General Python Programming
	A Quick Tale: Answers to Common Questions – Weaning Off Blocks and Tablets
	Python Program Structure
	A Friendly Python Environment on Your Computer
	Thonny

	Mu Editor
	Test Our Environment
	Installing Python Libraries in Thonny
	Python Script Structure
	Going Further: Internet and Other Devices
	On Your Private Network
	Using Your Mobile Device
	The Internet

	Summary
	Chapter 3: Cheat Sheet

	Chapter 4: Getting Tactile with Python
	A Quick Tale: Keeping It Simple to Build Bigger
	E-textiles: Building Circuits on Fabric and Cardboard
	Starting with a Simple Circuit
	Considerations for E-textile Projects
	Washability
	Tools
	Threading Your Needle
	What Type of Stitches Are Best?
	Fixing Sewing Mistakes
	Knots and Attaching Components

	Summary
	Chapter 4: Cheat Sheet

	Chapter 5: Freestyling with Python: Going Off Map and Applying Skills
	A Quick Tale: When Progress Levels Diverge
	Finding Your Own Project – From Start to Finish
	Beginning with Diagrams: The Self-Watering Plant Project
	Scaling Up Our Project: Understanding How Things Work and Adding One Thing at a Time
	Pros and Cons of Simplifying Projects
	Cost
	Perception of Difficulty
	Reducing Challenges Can Limit What We Learn
	Continuity
	Scaling Even Further
	Code Club Alumni

	Adapting Our Skills: An API Project in Python with Trinket.io
	Summary
	Chapter 5: Cheat Sheet

	Chapter 6: Collaboration: Working with Others
	A Quick Tale: Devs and Testers
	What Is Open Source Software?

	Working Online: Collaborating with Online Tools
	Code Collaboration Tools
	Code Collaboration Terminology
	Other Collaborative Tools

	Using Programming Terminology to Communicate When Collaborating
	Testing Yourself: Creating Your Own Game Writing Workshops with What You’ve Learned
	Communications
	Security and Privacy When Working Online
	Separate Your Things
	Use Layered Defenses
	Be Careful with What Software You Use
	Be Careful What You Trust

	Chapter 6: Cheat Sheet
	Devs and Testers Activity (2 x 1-Hour Blocks)
	Open Source Software
	Collaborating with Online Tools

	Security and Privacy When Working Online
	Code Collaboration Terminology
	Creating Your Own Workshops

	Chapter 7: Electronics: Basic Skills and Tools
	A Quick Tale: Getting the Burn for Electronic Projects
	Basic Electronic Component Primer
	Electronic Schematics and Datasheets
	Breadboards and Circuit Boards
	Through-Hole vs. Surface-Mount Components
	Resistors
	Ohm’s Law
	Symbol for Resistors

	Transistors
	Symbols for Transistors

	Capacitors
	Symbol for Capacitor

	Diodes
	Symbol for Diode

	Light-Emitting Diodes (LEDs)
	Symbol for LED

	Integrated Circuit (IC) Chips

	Soldering!
	Tools You Will Need for Soldering
	Soldering Iron/Station
	Solder
	Tip Cleaner
	Helping Hands/Mini Vise
	Cutters/Side Cutters
	Wire Strippers
	Heat-Proof Mat
	Solder Sucker/Desoldering Braid

	Other Useful Things to Have
	How to Solder
	Teaching Kids to Solder
	Handy Software Tools
	TinkerCAD

	Embedded Programming
	Some Useful Concepts to Understand
	Microcontroller Breakout Board
	Common Communication Protocols

	Approaching a New Microcontroller Electronic Project (Digital)
	Software and Hardware Support for Proposed Components
	Support for Languages We Are Proficient In
	Availability of Parts to Scale Things Up
	Draw a Diagram, Create a Schematic
	Breadboard Prototype
	Going Further
	Introducing the Raspberry Pi Pico

	Next Steps
	Summary
	Chapter 7: Cheat Sheet
	Electronic Components
	Concepts
	Components
	Soldering Tools
	Soldering
	Software Tools
	Other Useful Concepts
	Approaching a New Electronic Project (Digital)
	Badge Project
	Next Steps

	Chapter 8: Putting It All Together
	Planning a Year of a School Maker Space/Code Club with Python
	Deciding on Communication Channels
	Communicating with Parents/Guardians
	Communicating with Volunteers/Teachers
	Communicating with IT Staff

	Setting Expectations
	Expectations for Participating Kids
	Accounts Required
	Display of Projects, Photos, Blog Posts
	Expectations of Behavior and Conditions of Attendance

	Setting Expectations for Volunteers
	A Note About Qualifying/Filtering Volunteers

	Get a Benchmark of Skills Across the Group for Kids and Volunteers
	Build Some Basic Skills to Equip Kids to Go the Distance
	Group Activities
	Develop and Deliver Workshops with Scalable Projects
	Club Excursions/Events, Community/School Events
	Demos
	Contribute Back
	Encouraging Alumni to Volunteer
	Learning from Mistakes and Learning More
	Keeping Yourself Motivated and Kids Engaged
	Preparation
	Scaling Things Up

	My Experience Highlights
	It’s Up to You, Now!
	Chapter 8: Cheat Sheet
	Communications
	Expectations
	Setup
	Skill Building
	Interim Group Projects for Those Ahead
	Workshops
	Events
	Start Making Your Own Projects
	Contribute to Community Projects
	Encourage Alumni to Come Back As Volunteers

	Appendix A: Traffic Light Workshops
	Index

