

Android Programming: The Big Nerd Ranch Guide
by Bryan Sills, Brian Gardner, Kristin Marsicano and Chris Stewart

Copyright © 2022 Big Nerd Ranch, LLC.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC.
750 Glenwood Ave SE, Suite 200
Atlanta, GA 30316
(770) 817-6373
https://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat logo is a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0137645635
ISBN-13 978-0137645633

Fifth edition, second printing, February 2023
Release D.5.2.1

iii

Dedication

To my friends and family, for all of the love, support, and
encouragement throughout my life.

— B.S.

To my wife, Carley, for supporting me in all that I do and reminding
me of what’s important along the way.

— B.G.

To Phil, Noah, and Sam for loving and supporting me through multiple
editions of this book.

— K.M.

To my dad, David, for teaching me the value of hard work. To my mom,
Lisa, for pushing me to always do the right thing.

— C.S.

v

Acknowledgments
With this being our fifth edition, we find ourselves used to saying this. It always needs to be said,
though: Books are not created by authors alone. They are shepherded into existence by a community
of collaborators, risk-takers, and other supporters, without whom the burden of comprehending and
writing all this material would be overwhelming.

• Brian Hardy, who, along with Bill Phillips, had the gusto to bring the very first edition of this
book into the world.

• Andrew Bailey, the most intelligent rubber duck we have ever met. You deserve a spot on the
list of authors. In addition to writing all the chapters on Jetpack Compose, you were always the
first person we reached out to to talk through tough conceptual decisions and figure out the most
effective way to explain new concepts. Your architecture and teaching expertise was invaluable in
crafting the solutions presented in this book. Your impact is felt throughout its pages.

• Mark Duran, for proposing the updated solution for PhotoGallery and for feedback throughout the
process.

• Dave Severns, for his eagle eyes and for providing updated screenshots and solutions for all the
projects.

• Anthony Kiniyalocts, Bryan Lindsey, Brandon Himes, Ben Zweber, Ben Bradley, Daniel Cook,
Donovan LaDuke, Christian Keur, Michael Yotive, Tony Kazanjian, and Max McKinley. All
y’all lent your time and expertise to make this the best resource for anyone to learn Android
development.

• Desirée Johnson, one of our fantastically talented Big Nerd Ranch designers, who whipped
together the nifty cheat sheet attached to this book.

• Kar Loong Wang, another of our amazing designers, for his illustrations of pizza and toppings for
Coda Pizza and the handcuffs icon for CriminalIntent.

• Eric Maxwell, David Greenhalgh, Josh Skeen, Jeremy Sherman, Jamie Lee, Andrew Marshall,
Zack Simon, Jeremy Kliphouse, Lixin Wang, Brett McCormick, and everyone else who has made
a contribution to this book over its many editions.

• Our editor, Elizabeth Holaday. The famous beat author William S. Burroughs sometimes wrote by
cutting up his work into little pieces, throwing them in the air, and publishing the rearrangement.
Without a strong editor like Liz, our confusion and simpleminded excitement may have caused
us to resort to such techniques. We are thankful that she was there to impose focus, precision, and
clarity on our drafts.

• Ellie Volckhausen, who designed our cover.

• Simone Payment, our proofreader. Thank you for sanding away the remaining rough edges of this
book.

• Chris Loper at IntelligentEnglish.com, who designed and produced the print and eBook versions
of the book. His DocBook toolchain made life much easier, too.

Acknowledgments

vi

• Thanks to Aaron Hillegass and the leadership team at Big Nerd Ranch. As a practical matter, it is
not possible to do this work without Big Nerd Ranch, the company Aaron founded. Thank you.

Finally, thanks to our students. There is a feedback loop between us and our students: We teach them
out of these materials, and they respond to them. Without that loop, this book could never have existed,
nor could it be maintained. If Big Nerd Ranch books are special (and we hope they are), it is that
feedback loop that makes them so. Thank you.

vii

Table of Contents
Learning Android .. xv

Prerequisites ... xv
What’s New in the Fifth Edition? .. xvi
Kotlin vs Java .. xvi
How to Use This Book ... xvii
How This Book Is Organized .. xvii

Challenges ... xviii
Are you more curious? .. xviii

Typographical Conventions ... xviii
Android Versions .. xviii

The Necessary Tools ... xix
Downloading and Installing Android Studio .. xix
Downloading Earlier SDK Versions ... xix
A Hardware Device ... xx

1. Your First Android Application .. 1
App Basics ... 3
Creating an Android Project .. 4
Navigating in Android Studio .. 7
Laying Out the UI ... 9

The view hierarchy .. 14
View attributes .. 15
Creating string resources ... 16
Previewing the layout ... 17

From Layout XML to View Objects ... 19
Resources and resource IDs ... 20

Wiring Up Views ... 21
Getting references to views ... 22
Setting listeners ... 23

Making Toasts ... 24
Running on the Emulator .. 26
For the More Curious: The Android Build Process .. 30

Android build tools .. 31
Challenges .. 32
Challenge: Switching Your Toast for a Snackbar ... 32

2. Interactive User Interfaces ... 33
Creating a New Class ... 34
Updating the Layout .. 36
Wiring Up the User Interface ... 39
Adding an Icon ... 45

Referencing resources in XML .. 47
Screen Pixel Densities .. 48
Running on a Device ... 50
Challenge: Add a Listener to the TextView .. 52
Challenge: Add a Previous Button .. 52

3. The Activity Lifecycle .. 53

Android Programming

viii

Rotating GeoQuiz .. 53
Activity States and Lifecycle Callbacks ... 55
Logging the Activity Lifecycle .. 57

Making log messages ... 57
Using Logcat .. 59

Exploring How the Activity Lifecycle Responds to User Actions 60
Temporarily leaving an activity .. 60
Finishing an activity ... 63
Rotating an activity .. 64

Device Configuration Changes and the Activity Lifecycle ... 65
For the More Curious: Creating a Landscape Layout ... 66
For the More Curious: UI Updates and Multi-Window Mode ... 67
For the More Curious: Log Levels .. 68
Challenge: Preventing Repeat Answers .. 68
Challenge: Graded Quiz .. 68

4. Persisting UI State ... 69
Including the ViewModel Dependency .. 70
Adding a ViewModel ... 71

ViewModel lifecycle .. 72
Add data to your ViewModel .. 75

Saving Data Across Process Death ... 78
For the More Curious: Jetpack, AndroidX, and Architecture Components 81
For the More Curious: Avoiding a Half-Baked Solution .. 81
For the More Curious: Activity and Instance State ... 82

5. Debugging Android Apps .. 83
Exceptions and Stack Traces ... 85

Diagnosing misbehaviors .. 86
Logging stack traces .. 87
Setting breakpoints .. 88

Android-Specific Debugging .. 93
Using Android Lint .. 93
Build issues .. 96

Challenge: Using Conditional Breakpoints ... 97
Challenge: Exploring the Layout Inspector ... 97
Challenge: Exploring the Profiler ... 97

6. Testing ... 99
Two Types of Tests .. 99
JVM Tests .. 101
Instrumented Tests with Espresso and ActivityScenario .. 106
Challenge: Asserting Yourself .. 112

7. Your Second Activity .. 113
Setting Up a Second Activity ... 115

Creating a new activity ... 116
A new activity subclass ... 119
Declaring activities in the manifest ... 120
Adding a cheat button to MainActivity .. 121

Starting an Activity .. 122
Communicating with intents .. 122

Android Programming

ix

Passing Data Between Activities ... 123
Using intent extras ... 124
Getting a result back from a child activity .. 127

How Android Sees Your Activities .. 132
For the More Curious: startActivityForResult .. 136
For the More Curious: The Back Button and the Activity Lifecycle 137
Challenge: Closing Loopholes for Cheaters .. 138
Challenge: Tracking Cheat Status by Question .. 138

8. Android SDK Versions and Compatibility ... 139
Android SDK Versions ... 139

A sane minimum ... 140
Minimum SDK version ... 141
Target SDK version .. 142
Compile SDK version ... 142

Compatibility and Android Programming ... 142
Jetpack libraries ... 143
Safely adding code from later APIs ... 143

Using the Android Developer Documentation ... 147
Challenge: Reporting the Device’s Android Version ... 149
Challenge: Limited Cheats ... 149

9. Fragments ... 151
The Need for UI Flexibility ... 152
Introducing Fragments .. 153
Starting CriminalIntent .. 154

Creating a new project .. 156
Creating a Data Class ... 159
Creating a Fragment ... 160

Defining CrimeDetailFragment’s layout ... 160
Creating the CrimeDetailFragment class .. 162

Hosting a Fragment .. 169
Defining a FragmentContainerView ... 169
The FragmentManager .. 171
The fragment lifecycle .. 173
Fragments and memory management ... 174

Challenge: Testing with FragmentScenario ... 176
10. Displaying Lists with RecyclerView ... 177

Adding a New Fragment and ViewModel ... 178
ViewModel lifecycle with fragments ... 179

Adding a RecyclerView .. 181
Implementing a LayoutManager ... 183
Creating an Item View Layout ... 184
Implementing a ViewHolder .. 186
Implementing an Adapter to Populate the RecyclerView ... 188

Setting the RecyclerView’s adapter ... 191
Recycling Views .. 193
Cleaning Up Binding List Items ... 194
Responding to Presses .. 195
Lists and Grids: Past, Present, and Future .. 196

Android Programming

x

For the More Curious: A Smarter Adapter with ListAdapter .. 197
Challenge: RecyclerView View Types .. 198

11. Creating User Interfaces with Layouts and Views ... 199
Introducing ConstraintLayout ... 201
Introducing the Layout Editor .. 202
Using ConstraintLayout .. 206

Making room .. 207
Adding views .. 209
ConstraintLayout’s inner workings .. 214
Editing properties ... 215
Making list items dynamic .. 221

Styles, Themes, and Theme Attributes ... 223
For the More Curious: Margins vs Padding .. 226
For the More Curious: Advanced Features in ConstraintLayout 227
Challenge: Formatting the Date .. 227

12. Coroutines and Databases .. 229
An Introduction to Asynchronous Code on Android ... 230

Using coroutines .. 231
Consuming data from coroutines .. 235

Creating a Database ... 240
Room architecture component library .. 240
Defining entities .. 242
Creating a database class ... 243
Creating a type converter .. 243
Defining a Data Access Object ... 245

Accessing the Database Using the Repository Pattern ... 247
Importing Prepopulated Data ... 250
Querying the Database .. 252
Keeping the Changes Flowing .. 253
Challenge: Addressing the Schema Warning ... 257
For the More Curious: Singletons ... 258

13. Fragment Navigation ... 259
Performing Navigation .. 260

Implementing the Navigation component library .. 261
Navigating to the detail screen ... 266
Passing data to a fragment ... 273

Unidirectional Data Flow .. 279
Updating the Database .. 285
For the More Curious: A Better List Preview .. 288
Challenge: No Untitled Crimes ... 289

14. Dialogs and DialogFragment .. 291
Creating a DialogFragment .. 292

Showing a DialogFragment .. 293
Passing Data Between Two Fragments ... 297

Passing data to DatePickerFragment .. 298
Returning data to CrimeDetailFragment ... 300

Challenge: More Dialogs ... 302
15. The App Bar ... 303

Android Programming

xi

The Default App Bar .. 304
Menus .. 305

Defining a menu in XML .. 307
Creating the menu .. 309
Responding to menu selections ... 312

For the More Curious: App Bar vs Action Bar vs Toolbar ... 318
For the More Curious: Accessing the AppCompat App Bar ... 319
Challenge: An Empty View for the RecyclerView .. 320
Challenge: Deleting Crimes ... 320

16. Implicit Intents ... 321
Adding Buttons ... 322
Adding a Suspect Property .. 323
Using a Format String .. 325
Using Implicit Intents ... 327

Parts of an implicit intent .. 327
Sending a crime report .. 329
Asking Android for a contact ... 334
Checking for responding activities .. 340

Challenge: Another Implicit Intent .. 344
17. Taking Pictures with Intents ... 345

A Place for Your Photo ... 346
File Storage .. 350

Using FileProvider ... 351
Designating a picture location .. 353

Using a Camera Intent .. 354
Scaling and Displaying Bitmaps ... 358
Declaring Features ... 362
Challenge: Detail Display .. 362

18. Localization ... 363
Localizing Resources .. 364

Default resources ... 367
Checking string coverage using the Translations Editor ... 368
Targeting a region .. 369

Configuration Qualifiers .. 370
Prioritizing alternative resources ... 371
Multiple qualifiers .. 373
Finding the best-matching resources .. 374

Testing Alternative Resources .. 375
For the More Curious: More on Determining Device Size ... 376
Challenge: Localizing Dates .. 376

19. Accessibility .. 377
TalkBack .. 378

Explore by Touch .. 382
Linear navigation by swiping ... 382

Making Non-Text Elements Readable by TalkBack .. 385
Adding content descriptions ... 385
Making a view focusable ... 388

Creating a Comparable Experience ... 389

Android Programming

xii

For the More Curious: Using TalkBack with an Emulator .. 392
For the More Curious: Using Accessibility Scanner ... 394
Challenge: Improving the List .. 399
Challenge: Providing Enough Context for Data Entry ... 399
Challenge: Announcing Events ... 400

20. Making Network Requests and Displaying Images .. 401
Creating PhotoGallery .. 403
Networking Basics with Retrofit ... 406

Defining an API interface .. 407
Building the Retrofit object and creating an API instance 408
Executing a web request ... 410
Asking permission to network .. 411
Moving toward the repository pattern .. 412

Fetching JSON from Flickr ... 414
Deserializing JSON text into model objects .. 418
Handling errors .. 424

Networking Across Configuration Changes .. 426
Displaying Results in RecyclerView .. 429

Displaying images .. 431
For the More Curious: Managing Dependencies .. 435
Challenge: Paging .. 436

21. SearchView and DataStore ... 437
Searching Flickr .. 438
Using SearchView .. 442

Responding to SearchView user interactions ... 445
Simple Persistence with DataStore .. 448
Defining UI State ... 454
Challenge: Polishing Your App Some More .. 458

22. WorkManager .. 459
Creating a Worker .. 461
Scheduling Work ... 462
Checking for New Photos .. 465
Notifying the User ... 468
Providing User Control over Polling .. 474

23. Browsing the Web and WebView ... 481
One Last Bit of Flickr Data ... 482
The Easy Way: Implicit Intents .. 484
The Harder Way: WebView ... 486

WebChromeClient .. 491
WebView vs a Custom UI ... 495
For the More Curious: WebView Updates .. 495
For the More Curious: Chrome Custom Tabs (Another Easy Way) 496
Challenge: Using the Back Button for Browser History .. 498

24. Custom Views and Touch Events ... 499
Setting Up the DragAndDraw Project .. 500
Creating a Custom View ... 500

Creating BoxDrawingView .. 501
Handling Touch Events ... 502

Android Programming

xiii

Tracking across motion events .. 504
Rendering Inside onDraw(Canvas) .. 506
For the More Curious: Detecting Gestures .. 509
Challenge: Saving State .. 509
Challenge: Rotating Boxes .. 510
Challenge: Accessibility Support .. 510

25. Property Animation ... 511
Building the Scene ... 511
Simple Property Animation ... 515

View transformation properties ... 518
Using different interpolators .. 520
Color evaluation .. 521

Playing Animators Together ... 523
For the More Curious: Other Animation APIs ... 525

Legacy animation tools ... 525
Transitions .. 525

Challenges .. 526
26. Introduction to Jetpack Compose ... 527

Creating a Compose Project ... 529
Composing Your First UI .. 532
Layouts in Compose ... 534
Composable Functions .. 536
Previewing Composables ... 539
Customizing Composables ... 542

Declaring inputs on a composable function ... 542
Aligning elements in a row .. 548
Specifying text styles .. 550

The Compose Modifier ... 552
The padding modifier ... 552
Chaining modifiers and modifier ordering .. 553
The clickable modifier .. 557
Sizing composables .. 559
Specifying a modifier parameter ... 561

Building Screens with Composables .. 561
Scrollable Lists with LazyColumn .. 565
For the More Curious: Live Literals .. 568

27. UI State in Jetpack Compose .. 569
Philosophies of State .. 570
Defining Your UI State ... 571
Updating UIs with MutableState ... 572
Recomposition ... 578
remember ... 580
State Hoisting .. 581
State and Configuration Changes .. 586

Parcelable and Parcelize .. 587
For the More Curious: Coroutines, Flow, and Compose .. 589
For the More Curious: Scrolling State ... 591
For the More Curious: Inspecting Compose Layouts .. 592

Android Programming

xiv

28. Showing Dialogs with Jetpack Compose ... 593
Your First Dialog in Compose .. 595
Dismissing the Dialog .. 598
Setting the Dialog’s Content .. 600
Sending Results from a Dialog ... 606
Challenge: Pizza Sizes and Drop-Down Menus ... 609

29. Theming Compose UIs .. 611
Images ... 613

Image’s contentDescription .. 615
Adding more images .. 616
Customizing the Image composable .. 618
Adding a header to LazyColumn .. 627

MaterialTheme .. 628
Scaffold and TopAppBar ... 633
CompositionLocal .. 635
Removing AppCompat .. 640
For the More Curious: Accompanist .. 644
For the More Curious: Creating Your Own CompositionLocals 645
Challenge: Animations .. 646

30. Afterword .. 647
The Final Challenge ... 647
Shameless Plugs .. 647
Thank You .. 648

Index ... 649

Learning Android
As a beginning Android programmer, you face a steep learning curve. Learning Android is like moving
to a foreign city: Even if you speak the language, it will not feel like home at first. Everyone around
you seems to understand things that you are missing. Things you already knew turn out to be dead
wrong in this new context.

Android has a culture. That culture speaks Kotlin or Java (or a bit of both), but knowing Kotlin or Java
is not enough. Getting your head around Android requires learning many new ideas and techniques. It
helps to have a guide through unfamiliar territory.

That is where we come in. At Big Nerd Ranch, we believe that to be an Android programmer, you
must:

• write Android applications
• understand what you are writing

This guide will help you do both. We have trained thousands of professional Android programmers
using it. We will lead you through writing several Android applications, introducing concepts and
techniques as needed. When there are rough spots, or when some things are tricky or obscure, you will
face them head on, and we will do our best to explain why things are the way they are.

This approach allows you to put what you have learned into practice in a working app right away
rather than learning a lot of theory and then having to figure out how to apply it all later. You will
come away with the experience and understanding you need to get going as an Android developer.

Prerequisites
To use this book, you need to be familiar with Kotlin, including classes and objects, interfaces,
listeners, packages, inner classes, object expressions, and generic classes.

If these concepts do not ring a bell, you will be in the weeds by page 2. Start instead with an
introductory Kotlin book and return to this book afterward. There are many excellent introductory
books available, so you can choose one based on your programming experience and learning style.
May we recommend Kotlin Programming: The Big Nerd Ranch Guide?

If you are comfortable with object-oriented programming concepts, but your Kotlin is a little shaky,
you will probably be OK. We will provide some brief explanations about Kotlin specifics throughout
the book. But keep a Kotlin reference handy in case you need more support.

What’s New in the Fifth Edition?
The last edition of Android Programming: The Big Nerd Ranch Guide was released in October 2019.
A lot has changed since then.

In 2019, reactive programming was gaining popularity as a way to architect Android code into
maintainable and extensible structures. With the release of Jetpack Compose in 2021, Google poured
gasoline onto that flame, supercharging the reactive programming movement. Reactive programming
and Jetpack Compose’s declarative framework fit together seamlessly and provide an excellent
foundation to build modern Android apps.

xv

Learning Android

Jetpack Compose is the future of Android development, and the fifth edition of this book is intended
to prepare readers for that future. In addition to four new chapters introducing readers to Jetpack
Compose, changes throughout the book are intended to ease the transition from developing apps
with Android’s existing UI toolkit to developing apps with Jetpack Compose. For example, there are
many ways to write asynchronous code on Android, but this book exclusively uses Kotlin coroutines
to perform asynchronous operations. Coroutines are baked directly into Jetpack Compose’s API
as well as being excellent tools to interact with UI written with Android’s existing UI toolkit. We
also reworked many of our projects to follow the unidirectional data flow architecture pattern. The
unidirectional data flow pattern is essential to building apps with Jetpack Compose – and it also helps
organize code when building apps with Android’s existing UI toolkit.

Other changes in this fifth edition go beyond Jetpack Compose. For example, testing is an integral part
of building modern Android apps, and we have rewritten the content around testing from the ground
up with practical examples. Also, to reflect how modern Android applications are developed, this
book now leans on libraries from Google and third parties. Apps in this book now use the Navigation
component library to manage navigation between screens and libraries like Retrofit, Moshi, and Coil –
as well as the Jetpack libraries – to handle other core features. We use libraries like these daily in our
lives as Android developers.

For the second printing of this edition, we addressed some typos in Chapter 9, including the name of
the variable used to inflate Fragment layouts. Also, in Chapter 17, we changed an argument passed to
the createIntent function in Listing 17.12 from null to an empty Uri. Passing null works with certain
versions of the Jetpack libraries, but is technically incorrect and causes crashes with newer library
versions. The createIntent function needs some non-null input, even if the input is not used for any
functionality.

Kotlin vs Java
Official support for Kotlin for Android development was announced at Google I/O in 2017. Before
that, there was an underground movement of Android developers using Kotlin even though it was
not officially supported. Since 2017, Kotlin has become widely adopted, and it is most developers’
preferred language for Android development. At Big Nerd Ranch, we use Kotlin for all our app
development projects – even legacy projects that are mostly Java.

In the years following Google’s announcement, Kotlin has become even more essential as a tool in the
modern Android developer’s toolbox. Going beyond mere compatibility with the existing platform,
there are now tools and features on the Android platform that can only be used with Kotlin – including
Jetpack Compose. You cannot write apps in Jetpack Compose with Java.

The Android framework was originally written in Java. This means most of the Android classes you
interact with are Java. Luckily, Kotlin is interoperable with Java, so you should not run into any issues.

But even though you can still write apps in Java, the future of Android as a platform is with Kotlin.
Google and the entire Android developer ecosystem are investing heavily into making Kotlin
development easier and more useful on Android. It is not a fad, and it is not going away. Join the party;
we think it is quite nice here.

xvi

How to Use This Book

xvii

How to Use This Book
This book is not a reference book. Its goal is to get you over the initial hump to where you can get
the most out of the reference and recipe books available. It is based on our five-day class at Big Nerd
Ranch. As such, it is meant to be worked through from the beginning. Chapters build on each other,
and skipping around is unproductive.

In our classes, students work through these materials, but they also benefit from the right environment
– a dedicated classroom, good food and comfortable board, a group of motivated peers, and an
instructor to answer questions.

As a reader, you want your environment to be similar. That means getting a good night’s rest and
finding a quiet place to work. These things can help, too:

• Start a reading group with your friends or coworkers.

• Arrange to have blocks of focused time to work on chapters.

• Participate in the forum for this book at forums.bignerdranch.com.

• Find someone who knows Android to help you out.

How This Book Is Organized
As you work through this book, you will write six Android apps. A couple are very simple and take
only a chapter to create. Others are more complex. The longest app spans 11 chapters. All are designed
to teach you important concepts and techniques and give you direct experience using them.

GeoQuiz In your first app, you will explore the fundamentals of Android projects,
activities, layouts, and explicit intents. You will also learn how to handle
configuration changes seamlessly.

CriminalIntent The largest app in the book, CriminalIntent lets you keep a record of your
colleagues’ lapses around the office. You will learn to use fragments, list-
backed interfaces, databases, menus, the camera, implicit intents, and more.

PhotoGallery A Flickr client that downloads and displays photos from Flickr’s public feed,
this app will take you through scheduling background work, multi-threading,
accessing web services, and more.

DragAndDraw In this simple drawing app, you will learn about handling touch events and
creating custom views.

Sunset In this toy app, you will create a beautiful representation of a sunset over
open water while learning about animations.

Coda Pizza This app will introduce you to Jetpack Compose, the newest way to create
Android UIs. You will learn how to manage application state and how to use
the declarative framework to describe how your UI should render itself.

https://forums.bignerdranch.com

Learning Android

xviii

Challenges
Most chapters have a section at the end with exercises for you to work through. This is your
opportunity to use what you have learned, explore the documentation, and do some problem-solving on
your own. We strongly recommend that you do the challenges. Going off the beaten path and finding
your way will solidify your learning and give you confidence with your own projects. If you get lost,
you can always visit forums.bignerdranch.com for some assistance.

Are you more curious?
Many chapters also have a section at the end labeled “For the More Curious.” These sections offer
deeper explanations or additional information about topics presented in the chapter. The information in
these sections is not absolutely essential, but we hope you will find it interesting and useful.

Typographical Conventions
All code and XML listings are in a fixed-width font. Code or XML that you need to type in is always
bold. Code or XML that should be deleted is struck through. For example, in the following function
implementation, you are deleting the call to Toast.makeText(…).show() and adding the call to
checkAnswer(true).

trueButton.setOnClickListener { view: View ->
 Toast.makeText(
 this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT
)
 .show()
 checkAnswer(true)
}

Android Versions
This book teaches Android development for the versions of Android in wide use at the time of writing.
For this edition, that is Android 7.0 Nougat (N, API level 24) – Android 12L (Sv2, API level 32). That
being said, since Google has invested heavily in providing backward-compatible solutions for Android,
most of the code in this book will still work on older versions of Android – often supporting versions
as old as Android 5.0 Lollipop (L, API level 21).

While there is still limited use of older versions of Android, we find that for many developers the
amount of effort required to support those versions is not worth the reward. You will learn more about
Android versions and how to pick the right version for your application in Chapter 8.

As new versions of Android and Android Studio are released, the techniques you learn in this book will
continue to work, thanks to Android’s backward compatibility support (discussed in Chapter 8). We
will keep track of changes at forums.bignerdranch.com and offer notes on using this book with the
latest versions. We may also make minor changes to this book in subsequent printings to account for
any changes, such as updating screenshots or button names.

https://forums.bignerdranch.com
https://forums.bignerdranch.com

xix

The Necessary Tools
To get started with this book, you will need Android Studio. Android Studio is an integrated
development environment used for Android development that is based on the popular IntelliJ IDEA.

An install of Android Studio includes:

Android SDK

the latest version of the Android SDK

Android SDK tools and platform tools

tools for debugging and testing your apps

A system image for the Android emulator

a tool for creating and testing your apps on different virtual devices

As of this writing, Android Studio is under active development and is frequently updated. Be aware
that you may find differences between your version of Android Studio and what you see in this book.
Visit forums.bignerdranch.com for help with these differences.

Downloading and Installing Android Studio
Android Studio is available from Android’s developer site at developer.android.com/studio. It
includes everything you need to build and run Android applications, including a built-in installation of
the Java Development Kit.

If you want to build and compile Android apps from somewhere outside Android Studio, such as from
the command line, you need to have a local installation of the Java Development Kit. The latest version
of the Android Gradle plugin, which is the tool that builds and compiles Android apps, requires Java
11. More recent versions of the Java Development Kit should also work just fine. If you are having
problems, return to developer.android.com/studio for more information.

Downloading Earlier SDK Versions
Android Studio provides the SDK and the emulator system image from the latest platform. However,
you may want to test your apps on earlier versions of Android.

You can get components for each platform using the Android SDK Manager. In Android Studio, select
Tools → SDK Manager. (You will only see the Tools menu if you have a project open. If you have not
created a project yet, you can instead access the SDK Manager from the Android Welcome dialog.
Click the three-dot overflow menu in the dialog’s toolbar and select SDK Manager.)

https://forums.bignerdranch.com
https://developer.android.com/studio
https://developer.android.com/studio

The Necessary Tools

xx

The SDK Manager is shown in Figure 1.

Figure 1 Android SDK Manager

Select and install each version of Android that you want to test with. Note that downloading these
components may take a while.

The Android SDK Manager is also how you can get Android’s latest releases, like a new platform or an
update of the tools.

A Hardware Device
The emulator is useful for testing apps. However, it is no substitute for an actual Android device when
measuring performance. If you have a hardware device, we recommend using it at times when working
through this book. You will learn how to connect your device in Chapter 2.

1

1
Your First Android Application

This first chapter is full of the new concepts and moving parts required to build an Android application.
It is OK if you do not understand everything by the end of this chapter. You will be revisiting these
ideas in greater detail as you proceed through the book.

The application you are going to create is called GeoQuiz. GeoQuiz tests the user’s knowledge of
geography. The user presses TRUE or FALSE to answer the question onscreen, and GeoQuiz provides
instant feedback.

Chapter 1 Your First Android Application

2

Figure 1.1 shows the result of a user pressing the TRUE button.

Figure 1.1 Do you come from a land down under?

App Basics

3

App Basics
Your GeoQuiz application will consist of an activity and a layout:

• An activity is an instance of Activity, a class in the Android SDK. An activity is an entry
point into your application and is responsible for managing user interaction with a screen of
information.

You write subclasses of Activity to implement the functionality your app requires. A simple
application may need only one subclass; a complex application may have many.

GeoQuiz is a simple app and will start off with a single Activity subclass named MainActivity.
MainActivity will manage the user interface, or UI, shown in Figure 1.1.

• A layout defines a set of UI objects and the objects’ positions on the screen. A layout is made up
of definitions written in XML. Each definition is used to create an object that appears onscreen,
like a button or some text.

GeoQuiz will include a layout file named activity_main.xml. The XML in this file will define
the UI shown in Figure 1.1.

With those ideas in mind, let’s build an app.

Chapter 1 Your First Android Application

4

Creating an Android Project
The first step is to create an Android project. An Android project contains the files that make up an
application. To create a new project, first open Android Studio.

If this is your first time running Android Studio, you should see the Welcome dialog, as in Figure 1.2.
If this is not the first time you have opened Android Studio since installing it, you may be brought
directly to the last project you had open. To get back to the Welcome screen, close the project using
File → Close Project.

Figure 1.2 Welcome to Android Studio

From the welcome screen, you can create your first Android Studio project. A quick disclaimer: We
have written these instructions for Android Studio 2021.1.1 Patch 2 (Bumblebee). As Android Studio
updates, the steps to create a project tend to change slightly (and sometimes they change a lot). Google
often tweaks the New Project wizard and the templates it uses to generate new projects.

If you are using a newer version of Android Studio and are finding that these steps no longer match the
latest wizards, check out our forums at forums.bignerdranch.com. We will post updates if there are
different steps you need to follow to create your projects.

https://forums.bignerdranch.com

Creating an Android Project

5

Now, back to business. In the Welcome dialog, choose New Project. If you do not see the dialog,
choose File → New → New Project....

Welcome to the New Project wizard (Figure 1.3). Make sure Phone and Tablet is selected on the left.
Pick Empty Activity and click Next.

Figure 1.3 Choosing a project template

You should now see a dialog with fields for various project settings (Figure 1.4). Enter GeoQuiz as
the application name. For the package name, enter com.bignerdranch.android.geoquiz. For the project
location, use any location on your filesystem that you want.

Chapter 1 Your First Android Application

6

Select Kotlin from the Language drop-down menu. Last, select a Minimum SDK of API 24: Android 7.0
(Nougat). You will learn about the different versions of Android in Chapter 8. Your screen should look
like Figure 1.4.

Figure 1.4 Configuring your new project

Notice that the package name uses a “reverse DNS” convention: The domain name of your
organization is reversed and suffixed with further identifiers. This convention keeps package names
unique and distinguishes applications from each other on a device and in the Google Play Store.

Selecting Kotlin as the language tells Android Studio to include the dependencies necessary to write
and build Kotlin code for your app. In the early years of Android development, Java was the only
officially supported development language. But since 2017, the Android team has officially supported
Kotlin for Android development. These days, Kotlin is preferred by most developers, ourselves
included, which is why this book uses Kotlin.

At this point, most of the Android platform is still in Java, and you can still choose to use Java in
your projects outside of this book – but we do not recommend it for most projects. Most of the
Android concepts and content you will learn here will still be applicable, but there are certain tools and
libraries that only support Kotlin – such as Jetpack Compose, which you will learn about beginning in
Chapter 26.

Click Finish. Android Studio will create and open your new project.

Navigating in Android Studio

7

Navigating in Android Studio
Android Studio opens your project in a window like the one shown in Figure 1.5. If you have launched
Android Studio before, your window configuration might look a little different.

Figure 1.5 A fresh project window

The different panes of the project window are called tool windows.

The lefthand view is the project tool window. From here, you can view and manage the files associated
with your project.

By default, Android Studio displays the Android project view in the project tool window. This view
hides the true directory structure of your Android project so that you can focus on the files and folders
that you need most often. To see the files and folders in your project as they actually are, locate the
dropdown at the top of the project tool window and click to expand it. Select the Project view to see the
difference (Figure 1.6).

Figure 1.6 Project tool window: Android view vs Project view

Chapter 1 Your First Android Application

8

Feel free to use the Project view if it feels more natural to you, but throughout this book, we will use
the Android view.

The view across the bottom of Android Studio is the build tool window. Here you can view details
about the compilation process and the status of the build. When you created the project, Android
Studio automatically built it. You should see in the build tool window that the process completed
successfully. (If the build tool window did not open automatically, do not worry.)

On the righthand side of Android Studio, you might see the assistant tool window (shown in
Figure 1.5). This view tells you about new features in Android Studio. If it is open, close it by clicking
the hide button, which has a horizontal bar icon, in the top-right corner.

Android Studio automatically opens the files activity_main.xml and MainActivity.kt in
the main view, called the editor tool window or just the editor (Figure 1.7). (If the editor is
not visible or MainActivity.kt is not open, click the disclosure arrows to expand app/java/
com.bignerdranch.android.geoquiz/ in the project tool window. Double-click MainActivity.kt to
open the file.)

Figure 1.7 Editor engaged

Notice the Activity suffix on the class name. This is not required, but it is an excellent convention to
follow.

You can toggle the visibility of the various tool windows by clicking their names in the strips of tool
window bars on the left, right, and bottom of the screen. There are keyboard shortcuts for many of
these as well. If you do not see the tool window bars, click the gray square button in the lower-left
corner of the main window or choose View → Appearance → Tool Window Bars. Tool windows and
other panes can also be closed by clicking the hide button in their top-right corner.

Laying Out the UI

9

Laying Out the UI
Click the editor tab for the layout file, activity_main.xml. This will open the layout editor in the
editor tool window (Figure 1.8). (If you do not see a tab for activity_main.xml, click the disclosure
arrows to expand app/res/layout/ in the project tool window. Double-click activity_main.xml
to open the file. If activity_main.xml opens but shows XML instead of the layout editor, click the
Design tab near the top-right corner of the editor tool window.)

Figure 1.8 Layout editor

By convention, a layout file is named based on the activity it is associated with: Its name begins
with activity_, and the rest of the activity name follows in all lowercase, using underscores
to separate words (a style called “snake_case”). So, for example, your layout file’s name is
activity_main.xml, and the layout file for an activity called SplashScreenActivity would be named
activity_splash_screen. This naming style is recommended for layouts as well as other resources
that you will learn about later.

The layout editor shows a graphical preview of the file. Select the Code tab at the top right to see the
backing XML.

Chapter 1 Your First Android Application

10

Currently, activity_main.xml holds the default activity layout template. The template changes
frequently, but the XML will look something like this:

 <?xml version="1.0" encoding="utf-8"?>
 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 </androidx.constraintlayout.widget.ConstraintLayout>

The default activity layout defines two Views: a ConstraintLayout and a TextView.

For most of this book, views will be the building blocks you will use to create a UI. (Starting in
Chapter 26, you will see a new way to create UIs.) Some views show text. Some views show graphics.
Others, like buttons, do things when touched. (You will sometimes see views that the user can see or
interact with called “widgets,” but we prefer to call them all “views.”)

The Android SDK includes many views that you can configure to get the appearance and behavior you
want. Each is an instance of the View class or one of its subclasses (such as TextView or Button).

Something has to tell the views where they belong onscreen. A ViewGroup is a kind of View that
contains and arranges other views. A ViewGroup does not display content itself. Rather, it orchestrates
where other views’ content is displayed. ViewGroups are often referred to as “layouts.”

In the default activity layout, ConstraintLayout is the ViewGroup responsible for laying out its sole
child, a TextView. You will learn more about layouts and views and about using ConstraintLayout in
Chapter 11.

Laying Out the UI

11

Figure 1.9 shows how the ConstraintLayout and TextView defined in the default XML would appear
onscreen.

Figure 1.9 Default views as seen onscreen

But these are not the views you are looking for. The interface for MainActivity requires five views:

• a vertical LinearLayout

• a TextView

• a horizontal LinearLayout

• two Buttons

Chapter 1 Your First Android Application

12

Figure 1.10 shows how these views compose MainActivity’s interface.

Figure 1.10 Planned views as seen onscreen

Now you need to define these views in your layout XML. Edit the text contents of activity_main.xml
to match Listing 1.1. The XML that you need to delete is struck through, and the XML that you need to
add is in bold font. This is the pattern we will use throughout this book.

Do not worry about understanding what you are typing; you will learn how it works next. However, do
be careful. Layout XML is not validated, and typos will cause problems sooner or later.

You will see that the three android:text values are red, indicating that there is a problem with them.
Ignore these errors for now; you will fix them soon.

Laying Out the UI

13

Listing 1.1 Defining views in XML (res/layout/activity_main.xml)
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

</androidx.constraintlayout.widget.ConstraintLayout>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/true_button" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/false_button" />

 </LinearLayout>

</LinearLayout>

Compare your XML with the UI shown in Figure 1.10. Every view has a corresponding XML element,
and the name of the element is the type of the view.

Chapter 1 Your First Android Application

14

Each element has a set of XML attributes. Each attribute is an instruction about how the view should
be configured.

To understand how the elements and attributes work, it helps to look at the layout from a hierarchical
perspective.

The view hierarchy
Your views exist in a hierarchy of View objects called the view hierarchy. Figure 1.11 shows the view
hierarchy that corresponds to the XML in Listing 1.1.

Figure 1.11 Hierarchical layout of views and attributes

The root element of this layout’s view hierarchy is a LinearLayout. As the root element, the
LinearLayout must specify the Android resource XML namespace at http://schemas.android.com/
apk/res/android.

LinearLayout inherits from ViewGroup, which, as we said earlier, is a subclass of View that contains
and arranges other views. You use a LinearLayout when you want views arranged in a single
column or row. Other ViewGroup subclasses that you will meet later include ConstraintLayout and
FrameLayout.

When a view is contained by a ViewGroup, that view is said to be a child of the ViewGroup. The root
LinearLayout has two children: a TextView and another LinearLayout. The child LinearLayout has
two Button children of its own.

View attributes

15

View attributes
Let’s go over some of the attributes you used to configure your views.

android:layout_width and android:layout_height
The android:layout_width and android:layout_height attributes are required for almost every type
of view. The most common values for these attributes are either match_parent or wrap_content. They
behave the following ways:

match_parent view will be as big as its parent

wrap_content view will be as big as its contents require

For the root LinearLayout, the value of both the height and width attributes is match_parent. The
LinearLayout is the root element, but it still has a parent – the view that Android provides for your
app’s view hierarchy to live in.

The other views in your layout have their widths and heights set to wrap_content. You can see in
Figure 1.10 how this determines their sizes.

The TextView is slightly larger than the text it contains due to its android:padding="24dp" attribute.
This attribute tells the view to add the specified amount of space to its contents when determining its
size. You are using it to get a little breathing room between the question and the buttons. (Wondering
about the dp units? These are density-independent pixels, which you will learn about in Chapter 11.)

android:orientation
The android:orientation attribute on the two LinearLayout views determines whether their children
will appear vertically or horizontally. The root LinearLayout is vertical; its child LinearLayout is
horizontal.

The order in which children are defined determines the order they appear onscreen. In a vertical
LinearLayout, the first child defined will appear topmost. In a horizontal LinearLayout, the first child
defined will be leftmost. (Unless the device is set to a language that runs right to left, such as Arabic or
Hebrew. In that case, the first child will be rightmost.)

android:text
The TextView and Button views have android:text attributes. This attribute tells the view what text
to display.

Notice that the values of these attributes are not literal strings. They are references to string resources,
as denoted by the @string/ syntax.

A string resource is a string that lives in a separate XML file called a strings file. You can give a view
a hardcoded string, like android:text="True", but it is usually not a good idea. Placing strings into
a separate file and then referencing them is better because it makes localization (which you will learn
about in Chapter 18) easy.

The string resources you are referencing in activity_main.xml do not exist yet, which is why you
have errors in your project. Let’s fix that.

Chapter 1 Your First Android Application

16

Creating string resources
Every project includes a default strings file named res/values/strings.xml. Expand res/values in
the project tool window to locate this file, then double-click its name to open it.

The template has already added one string resource for you. Add the three new strings that your layout
requires.

Listing 1.2 Adding string resources (res/values/strings.xml)
<resources>
 <string name="app_name">GeoQuiz</string>
 <string name="question_text">Canberra is the capital of Australia.</string>
 <string name="true_button">True</string>
 <string name="false_button">False</string>
</resources>

(Depending on your version of Android Studio, you may have additional strings. Do not delete them.
Deleting them could cause cascading errors in other files.)

Now, when you refer to @string/false_button in any XML file in the GeoQuiz project, you will get
the literal string “False” at runtime.

The errors in activity_main.xml about the missing string resources should now be gone. (If you still
have errors, check both files for typos.)

Although the default strings file is named strings.xml, you can name a strings file anything you want.
You can also have multiple strings files in a project. As long as the file is located in res/values/, has a
resources root element, and contains child string elements, your strings will be found and used.

Previewing the layout

17

Previewing the layout
Your layout is now complete. Switch back to activity_main.xml and preview the layout in the design
view by clicking the Design tab near the top-right corner of the editor (Figure 1.12).

Figure 1.12 Previewing activity_main.xml in the design view

Figure 1.12 shows the two kinds of preview available. You can select from the preview types using a
menu that drops down from the blue diamond button leftmost in the top toolbar. You can show either
kind of preview individually or both together, as shown here.

The preview on the left is the Design preview. This shows how the layout would look on a device,
including theming.

The preview on the right is the Blueprint preview. This preview focuses on the size of views and the
relationships between them.

The design view also allows you to see how your layout looks on different device configurations. At
the top of the preview window, you can specify the type of device, the version of Android to simulate,
the device theme, and the locale to use when rendering your layout. You can even rotate the preview to
see how a layout looks in landscape or pretend your current locale uses right-to-left text.

Chapter 1 Your First Android Application

18

In addition to previewing, you can also build your layouts using the layout editor. In the top left of
the design view, there is a palette that contains all the built-in views (Figure 1.13). You can drag these
views from the palette and drop them into your view. You can also drop them into the component tree
in the bottom left to have more control over where the view is placed.

Figure 1.13 shows the preview with layout decorations – the device status bar, app bar with GeoQuiz
label, and virtual device button bar. To see these decorations, click the eye-shaped button in the toolbar
just above the preview and select Show System UI.

Figure 1.13 Layout editor

You will find this graphical editor especially valuable when working with ConstraintLayout, as you
will see in Chapter 11.

From Layout XML to View Objects

19

From Layout XML to View Objects
How do XML elements in activity_main.xml become View objects? The answer starts in the
MainActivity class.

When you created the GeoQuiz project, a subclass of Activity named MainActivity was created for
you. The class file for MainActivity is in the app/java directory of your project.

A quick aside about the directory name before we get into how layouts become views: This directory
is called java because Android originally supported only Java code. In your project, because you
configured it to use Kotlin (and Kotlin is fully interoperable with Java), the java directory is where
the Kotlin code lives. You could create a kotlin directory and place your Kotlin files there, but that
would provide no real benefits and requires additional configuration, so most developers just place
their Kotlin files in the java directory.

Return to the MainActivity.kt file and take a look at its contents:

 package com.bignerdranch.android.geoquiz

 import androidx.appcompat.app.AppCompatActivity
 import android.os.Bundle

 class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }
 }

(Wondering what AppCompatActivity is? It is a subclass of Android’s Activity class that
provides compatibility support for older versions of Android. You will learn much more about
AppCompatActivity in Chapter 15.)

If you are not seeing all of the import statements, click the ... next to the word import to reveal them.

This file has one Activity function: onCreate(Bundle?).

The onCreate(Bundle?) function is called when an instance of the activity subclass is created.
When an activity is created, it needs a UI to manage. To give the activity its UI, you call
Activity.setContentView(layoutResID: Int).

This function inflates a layout and puts it onscreen. When a layout is inflated, each view in the layout
file is instantiated as defined by its attributes. You specify which layout to inflate by passing in the
layout’s resource ID.

Chapter 1 Your First Android Application

20

Resources and resource IDs
A layout is a resource. A resource is a piece of your application that is not code – things like image
files, audio files, and XML files.

Resources for your project live in a subdirectory of the app/res directory. In the project tool window,
you can see that activity_main.xml lives in res/layout/. Your strings file, which contains string
resources, lives in res/values/.

To access a resource in code, you use its resource ID. The resource ID for your layout is
R.layout.activity_main.

You did not define R.layout.activity_main yourself. As a part of compiling your app, the build
process automatically generates that resource ID for you. In fact, the build process generates resource
IDs for all the resources in your project.

During the compilation and packaging of your app, the build tools generate a class known as the
R class. This class contains a long list of IDs as integer constants, allowing you to access and use
your resources in your application. When referencing R.layout.activity_main, you are actually
referencing an integer constant named activity_main within the layout inner class of R.

As you add, remove, and change resources, the build process will automatically update the file in order
to maintain the correct mapping between resources and their IDs. Here is an example of what your R
class looks like in Java:

 package com.bignerdranch.android.geoquiz;

 public final class R {
 public static final class anim {
 ...
 }
 ...
 public static final class id {
 ...
 }
 public static final class layout {
 ...
 public static final Int activity_main=0x7f030017;
 }
 public static final class mipmap {
 public static final Int ic_launcher=0x7f030000;
 }
 public static final class string {
 ...
 public static final Int app_name=0x7f0a0010;
 public static final Int false_button=0x7f0a0012;
 public static final Int question_text=0x7f0a0014;
 public static final Int true_button=0x7f0a0015;
 }
 }

Wiring Up Views

21

Your strings also have resource IDs. You have not yet referred to a string in code, but if you did, it
would look like this:

 setTitle(R.string.app_name)

Android generated a resource ID for the entire layout and for each string, but it did not generate
resource IDs for the individual views in activity_main.xml. Not every view needs a resource ID. In
this chapter, you will only interact with the two buttons in code, so only they need resource IDs.

To generate a resource ID for a view, you include an android:id attribute in the view’s definition. In
activity_main.xml, add an android:id attribute to each button. (You will need to switch to the Code
tab to do this.)

Listing 1.3 Adding IDs to Buttons (res/layout/activity_main.xml)
<LinearLayout ... >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <Button
 android:id="@+id/true_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/true_button" />

 <Button
 android:id="@+id/false_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/false_button" />

 </LinearLayout>

</LinearLayout>

Notice that there is a + sign in the values for android:id but not in the values for android:text. This
is because you are creating the resource IDs and only referencing the strings.

Wiring Up Views
You are ready to wire up your button views. This is a two-step process:

• get references to the inflated View objects

• set listeners on those objects to respond to user actions

Chapter 1 Your First Android Application

22

Getting references to views
Now that the buttons have resource IDs, you can access them in MainActivity. Type the following
code into MainActivity.kt (Listing 1.4). (Do not use code completion; type it in yourself.) After you
enter each line, it will report an error.

Listing 1.4 Accessing view objects by ID (MainActivity.kt)
class MainActivity : AppCompatActivity() {

 private lateinit var trueButton: Button
 private lateinit var falseButton: Button

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 trueButton = findViewById(R.id.true_button)
 falseButton = findViewById(R.id.false_button)
 }
}

In an activity, you can get a reference to an inflated view by calling Activity.findViewById(Int).
This function returns the corresponding view. Specifically, rather than return it as a View, it casts the
view to the expected subtype of View. Here, that type is Button.

In the code above, you use the resource IDs of your buttons to retrieve the inflated objects and assign
them to your view properties. Since the view objects are not inflated into and available in memory until
after setContentView(…) is called in onCreate(…), you use lateinit on your property declarations
to indicate to the compiler that you will provide a non-null View value before you attempt to use the
contents of the property.

Then, in onCreate(…), you look up and assign the view objects the appropriate properties. You will
learn more about onCreate(…) and the activity lifecycle in Chapter 3.

Now let’s get rid of those pesky errors. Mouse over one of the red Button type declarations. It reports:
Unresolved reference: Button.

This error is telling you that you need to import the android.widget.Button class into
MainActivity.kt. You could type the following import statement at the top of the file:

 import android.widget.Button

Or you can do it the easy way and let Android Studio do it for you. Just press Option-Return (or Alt-
Enter) to let the IntelliJ magic under the hood amaze you. The new import statement now appears with
the others at the top of the file. This shortcut is generally useful when something is not correct with
your code. Try it often!

This should get rid of all the errors, because the errors for findViewById had to do with not being able
to locate the button instances. (If you still have errors, check for typos in your code and XML.) Once
your code is error free, it is time to make your app interactive.

Setting listeners

23

Setting listeners
Android applications are typically event driven. Unlike command-line programs or scripts, event-
driven applications start and then wait for an event, such as the user pressing a button. (Events can also
be initiated by the OS or another application, but user-initiated events are the most obvious.)

When your application is waiting for a specific event, we say that it is “listening for” that event. The
object that you create to respond to an event is called a listener, and the listener implements a listener
interface for that event.

The Android SDK comes with listener interfaces for various events, so you do not have to write your
own. In this case, the event you want to listen for is a button being pressed (or “clicked”), so your
listener will implement the View.OnClickListener interface.

Start with the TRUE button. In MainActivity.kt, set a listener on the button in onCreate(Bundle?),
just after the variable assignments.

Listing 1.5 Setting a listener for the TRUE button (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 trueButton = findViewById(R.id.true_button)
 falseButton = findViewById(R.id.false_button)

 trueButton.setOnClickListener { view: View ->
 // Do something in response to the click here
 }
}

(If you have an Unresolved reference: View error, try using Option-Return [Alt-Enter] to import the
View class.)

In Listing 1.5, you set a listener to inform you when the Button known as trueButton has been
pressed. The Android framework defines View.OnClickListener as a Java interface with a single
method, onClick(View). Interfaces with a single abstract method are common enough in Java that the
pattern has a pet name, SAM.

Kotlin has special support for this pattern as part of its Java interoperability layer. It lets you write a
function literal, and it takes care of turning that into an object implementing the interface. This behind-
the-scenes process is called SAM conversion.

Your on-click listener is implemented using a lambda expression. Set a similar listener for the FALSE
button.

Listing 1.6 Setting a listener for the FALSE button (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 ...
 trueButton.setOnClickListener { view: View ->
 // Do something in response to the click here
 }

 falseButton.setOnClickListener { view: View ->
 // Do something in response to the click here
 }
}

Chapter 1 Your First Android Application

24

Making Toasts
Now to make the buttons fully armed and operational. You are going to have a press of each button
trigger a pop-up message called a toast. A toast is a short message that informs the user of something
but does not require any input or action. You are going to make toasts that announce whether the user
answered correctly or incorrectly (Figure 1.14).

Figure 1.14 A toast providing feedback

First, return to strings.xml and add the string resources that your toasts will display.

Listing 1.7 Adding toast strings (res/values/strings.xml)
<resources>
 <string name="app_name">GeoQuiz</string>
 <string name="question_text">Canberra is the capital of Australia.</string>
 <string name="true_button">True</string>
 <string name="false_button">False</string>
 <string name="correct_toast">Correct!</string>
 <string name="incorrect_toast">Incorrect!</string>
</resources>

Making Toasts

25

Next, update your click listeners to create and show a toast. Use code completion to help you fill in the
listener code. Code completion can save you a lot of time, so it is good to become familiar with it early.

Start typing the code shown in Listing 1.8 in MainActivity.kt. When you get to the period after the
Toast class, a pop-up window will appear with a list of suggested functions and constants from the
Toast class.

To choose one of the suggestions, use the up and down arrow keys to select it. (If you wanted to ignore
code completion, you could just keep typing. It will not complete anything for you if you do not press
the Tab key, press the Return key, or click the pop-up window.)

From the list of suggestions, select makeText(context: Context, resId: Int, duration: Int).
Code completion will add the function call for you.

Fill in the parameters for the makeText(…) function until you have added the code shown in Listing
1.8.

Listing 1.8 Making toasts (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 ...
 trueButton.setOnClickListener { view: View ->
 // Do something in response to the click here
 Toast.makeText(
 this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT
).show()
 }

 falseButton.setOnClickListener { view: View ->
 // Do something in response to the click here
 Toast.makeText(
 this,
 R.string.incorrect_toast,
 Toast.LENGTH_SHORT
).show()
 }
}

To create a toast, you call the static function Toast.makeText(Context, Int, Int). This function
creates and configures a Toast object. The Context parameter is typically an instance of Activity
(and Activity is a subclass of Context). Here you pass the instance of MainActivity as the Context
argument.

The second parameter is the resource ID of the string that the toast should display. The Context is
needed by the Toast class to be able to find and use the string’s resource ID. The third parameter is one
of two Toast constants that specify how long the toast should be visible.

After you have created a toast, you call Toast.show() on it to get it onscreen.

Because you used code completion, you do not have to do anything to import the Toast class. When
you accept a code completion suggestion, the necessary classes are imported automatically.

Now, let’s see your app in action.

Chapter 1 Your First Android Application

26

Running on the Emulator
To run an Android application, you need a device – either a hardware device or a virtual device. Virtual
devices are powered by the Android emulator, which ships with the developer tools.

To create an Android virtual device (or AVD), choose Tools → AVD Manager. When the AVD
Manager appears, click the + Create Virtual Device... button in the middle of the window.

In the dialog that appears, you are offered many options for configuring a virtual device. For your first
AVD, choose to emulate a Pixel 4, as shown in Figure 1.15. Click Next.

Figure 1.15 Choosing a virtual device

Running on the Emulator

27

On the next screen, choose a system image for your emulator. For this emulator, select an API 32
emulator from the Recommended tab and select Next (Figure 1.16). (You may need to follow the steps
to download the emulator’s components before you can click Next.)

Figure 1.16 Choosing a system image

Chapter 1 Your First Android Application

28

Finally, you can review and tweak properties of the emulator. You can also edit the properties of an
existing emulator later. For now, accept the default name, which includes the device type and the API,
and click Finish (Figure 1.17).

Figure 1.17 Updating emulator properties

Once you have an AVD, you can run GeoQuiz on it. From the Android Studio toolbar, click the run
button (it looks like a green “play” symbol) or press Control-R (Ctrl-R). Android Studio will start your
virtual device, install the application package on it, and run the app.

Starting up the emulator can take a while, but eventually your GeoQuiz app will launch on the AVD
that you created. Press buttons and admire your toasts.

Running on the Emulator

29

If GeoQuiz crashes when launching or when you press a button, useful information will appear in the
Logcat tool window. (If Logcat did not open automatically when you ran GeoQuiz, you can open it
by clicking the Logcat button at the bottom of the Android Studio window.) Type MainActivity into the
search box at the top of the Logcat tool window to filter the log messages. Look for exceptions in the
log; they will be an eye-catching red color (Figure 1.18).

Figure 1.18 An example UninitializedPropertyAccessException

Compare your code to the code in the book to try to find the cause of the problem. Then try running
again. (You will learn more about using Logcat in Chapter 3 and about debugging in Chapter 5.)

Keep the emulator running – you do not want to wait for it to launch on every run.

You can stop the app by pressing the Back button at the bottom of the emulator. (The Back button is
shaped like a left-pointing triangle.) Then rerun the app from Android Studio to test changes.

The emulator is useful, but testing on a real device gives more accurate results. In Chapter 2, you will
run GeoQuiz on a hardware device. You will also give GeoQuiz more geography questions with which
to test the user.

Chapter 1 Your First Android Application

30

For the More Curious: The Android Build Process
By now, you probably have some burning questions about how the Android build process works.
You have already seen that Android Studio builds your project automatically as you modify it,
rather than on command. During the build process, the Android tools take your resources, code, and
AndroidManifest.xml file (which contains metadata about the application) and turn them into an .apk
file. This file is then signed with a debug key, which allows it to run on the emulator. (To distribute
your .apk to the masses, you have to sign it with a release key. There is more information about this
process in the Android developer documentation at developer.android.com/tools/publishing/
preparing.html.)

How do the contents of activity_main.xml turn into View objects in an application? As part of
the build process, aapt2 (the Android Asset Packaging Tool) compiles layout file resources into
a more compact format. These compiled resources are packaged into the .apk file. Then, when
setContentView(…) is called in MainActivity’s onCreate(Bundle?) function, MainActivity uses the
LayoutInflater class to instantiate each of the View objects as defined in the layout file (Figure 1.19).

Figure 1.19 Inflating activity_main.xml

(You can also create your view classes programmatically in the activity instead of defining them in
XML. But there are benefits to separating your presentation from the logic of the application. The main
one is taking advantage of configuration changes built into the SDK, which you will learn more about
in Chapter 3.)

You will learn more details of how the different XML attributes work and how views display
themselves on the screen in Chapter 11.

https://developer.android.com/tools/publishing/preparing.html
https://developer.android.com/tools/publishing/preparing.html

Android build tools

31

Android build tools
All the builds you have seen so far have been executed from within Android Studio. This build is
integrated into the IDE – it invokes standard Android build tools like aapt2, but the build process itself
is managed by Android Studio.

You may, for your own reasons, want to perform builds from outside of Android Studio. The easiest
way to do this is to use a command-line build tool. The Android build system uses a tool called Gradle.

(You will know if this section applies to you. If it does not, feel free to read along but do not be
concerned if you are not sure why you might want to do this or if the commands below do not seem to
work. Coverage of the ins and outs of using the command line is beyond the scope of this book.)

To use Gradle from the command line, navigate to your project’s directory and run the following
command:

 $./gradlew tasks

On Windows, your command will look a little different:

 > gradlew.bat tasks

This will show you a list of available tasks you can execute. The one you want is called installDebug.
Make it so with a command like this:

 $./gradlew installDebug

Or, on Windows:

 > gradlew.bat installDebug

This will install your app on whatever device is connected. However, it will not run the app. For that,
you will need to pull up the launcher and launch the app by hand.

Chapter 1 Your First Android Application

32

Challenges
Challenges are exercises at the end of the chapter for you to do on your own. Some are easy and
provide practice doing the same thing you have done in the chapter. Other challenges are harder and
require more problem-solving.

We cannot encourage you enough to take on these challenges. Tackling them cements what you
have learned, builds confidence in your skills, and bridges the gap between us teaching you Android
programming and you being able to do Android programming on your own.

If you get stuck while working on a challenge, take a break and come back to try again fresh. If that
does not help, check out the forum for this book at forums.bignerdranch.com. In the forum, you
can review questions and solutions that other readers have posted as well as ask questions and post
solutions of your own.

To protect the integrity of your current project, we recommend you make a copy and work on
challenges in the new copy.

In your computer’s file explorer, navigate to the root directory of your project. Copy the GeoQuiz
folder and paste a new copy next to the original (on macOS, use the Duplicate feature). Rename
the new folder something like GeoQuiz Chapter1 Challenge. Back in Android Studio, select File →
Open.... Navigate to your new challenge file and select OK, then New Window. The copied project will
then appear in a new window ready for work.

Challenge: Switching Your Toast for a Snackbar
For this challenge, customize the toast by using a Snackbar instead of a Toast. While using a Toast
is a convenient way to display UI, we recommend using a Snackbar in your applications because they
are more configurable in both their appearance and behavior. Refer to the developer documentation at
developer.android.com/reference/com/google/android/material/snackbar/Snackbar for more
details. (Hint: Take a look at the make and show functions.)

https://forums.bignerdranch.com
https://developer.android.com/reference/com/google/android/material/snackbar/Snackbar

33

2
Interactive User Interfaces

In this chapter, you are going to upgrade GeoQuiz to present more than one question, as shown in
Figure 2.1.

Figure 2.1 Next!

To make this happen, you are going to add a data class named Question to the GeoQuiz project. An
instance of this class will encapsulate a single true/false question.

Then, you will create a collection of Question objects for MainActivity to manage.

Chapter 2 Interactive User Interfaces

34

Creating a New Class
In the project tool window, right-click the com.bignerdranch.android.geoquiz package and select
New → Kotlin Class/File. Enter Question for the name. Double-click Class in the list of options
(Figure 2.2).

Figure 2.2 Creating the Question class

Android Studio will create and open a file called Question.kt. In this file, add two properties and a
constructor.

Listing 2.1 Adding to the Question class (Question.kt)
class Question {
}
import androidx.annotation.StringRes

data class Question(@StringRes val textResId: Int, val answer: Boolean)

A common through-line of many software architecture patterns (such as Model-View-Controller,
Model-View-Presenter, Model-View-ViewModel, and so on) is the concept of the model. In these
architecture patterns, models are classes that contain information that the UI will display.

We recommend that you create these classes using the data keyword, as you did here. Doing so clearly
indicates that the class is meant to hold model data. Also, the compiler does extra work for data classes
that makes your life easier, such as defining useful functions like equals(), hashCode(), and a nicely
formatted toString().

The Question class holds two pieces of data: a resource ID for the question text and the question
answer (true or false).

The @StringRes annotation is not required, but we recommend you include it for two reasons. First,
the annotation helps the code inspector built into Android Studio (named Lint) verify at compile time
that constructor calls provide a valid string resource ID. This prevents runtime crashes where the
constructor is used with an invalid resource ID (such as an ID that points to some resource other than a
string). Second, the annotation makes your code more readable for other developers.

Creating a New Class

35

To use the @StringRes annotation, you need to import it into your project. You can do that by entering
the import statement manually or with the Option-Return (Alt-Enter) keyboard shortcut you learned in
the last chapter.

Why is textResId an Int and not a String? Even though you will eventually display text to the user,
the textResId variable will hold the resource ID (always an Int) of the string resource for a question.

Your Question class is now complete. In a moment, you will modify MainActivity to work with
Question. First, let’s take a look at how the pieces of GeoQuiz will work together.

You are going to have MainActivity create a list of Question objects. It will then interact with the
TextView and the three Buttons to display questions and provide feedback. Figure 2.3 diagrams these
relationships.

Figure 2.3 Object diagram for GeoQuiz

Chapter 2 Interactive User Interfaces

36

Updating the Layout
Now that you have defined the Question class, you are going to update GeoQuiz’s UI to include a
NEXT button.

In Android, UI is typically inflated from XML within a layout file. The sole layout in GeoQuiz is
defined in activity_main.xml. This layout needs to be updated as shown in Figure 2.4. (Note that to
save space we are not showing the attributes of unchanged views.)

Figure 2.4 New button!

Updating the Layout

37

So the changes you need to make to the layout are:

• Give the TextView an android:id attribute. This view will need a resource ID so that you can set
its text in MainActivity’s code.

• Position the TextView’s text in the center of the text view by setting gravity to "center".

• Replace the android:text attribute of the TextView with the tools:text attribute and point
it to a string resource representing a question using @string/. You will also need to add the
tools namespace to the root tag of your layout so that Android Studio can make sense of the
tools:text attribute.

You no longer want a hardcoded question to be part of the TextView’s definition. Instead, you
will set the question text dynamically as the user clicks through the questions. However, if you
only removed the android:text line, the layout preview in Android Studio would look like it is
missing text. It is helpful to have the layout preview reflect what the end user will see on their
device.

The tools namespace allows you to override any attribute on a view for the purpose of displaying
it in the Android Studio preview. The tools attributes are ignored when rendering the views on a
device at runtime. You could also use android:text and just overwrite the value at runtime, but
using tools:text instead makes it clear that the value you provide is for preview purposes only.

• Add the new Button view as a child of the root LinearLayout.

Return to activity_main.xml and make it happen.

Listing 2.2 New button … and changes to the text view
(res/layout/activity_main.xml)
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 ... >

 <TextView
 android:id="@+id/question_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:padding="24dp"
 android:text="@string/question_text"
 tools:text="@string/question_australia" />

 <LinearLayout ... >
 ...
 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button" />

</LinearLayout>

Chapter 2 Interactive User Interfaces

38

You will see familiar errors alerting you about missing string resources.

Return to res/values/strings.xml. Rename question_text and add a string for the new button.

Listing 2.3 Updating strings (res/values/strings.xml)
<string name="app_name">GeoQuiz</string>
<string name="question_text">Canberra is the capital of Australia.</string>
<string name="question_australia">Canberra is the capital of Australia.</string>
<string name="true_button">True</string>
<string name="false_button">False</string>
<string name="next_button">Next</string>
...

While you have strings.xml open, go ahead and add the strings for the rest of the geography
questions that will be shown to the user.

Listing 2.4 Adding question strings (res/values/strings.xml)
<string name="question_australia">Canberra is the capital of Australia.</string>
<string name="question_oceans">The Pacific Ocean is larger than
 the Atlantic Ocean.</string>
<string name="question_mideast">The Suez Canal connects the Red Sea
 and the Indian Ocean.</string>
<string name="question_africa">The source of the Nile River is in Egypt.</string>
<string name="question_americas">The Amazon River is the longest river
 in the Americas.</string>
<string name="question_asia">Lake Baikal is the world\'s oldest and deepest
 freshwater lake.</string>
...

Notice that you use the escape sequence \' in the last value to get an apostrophe in your string. You
can use all the usual escape sequences in your string resources, such as \n for a new line.

Return to activity_main.xml and preview your layout changes in the graphical layout tool. It should
look like Figure 2.1.

That is all for now for GeoQuiz’s UI. Time to wire everything up in MainActivity.

Wiring Up the User Interface

39

Wiring Up the User Interface
First, create a list of Question objects in MainActivity, along with an index for the list.

Listing 2.5 Adding a Question list (MainActivity.kt)

class MainActivity : AppCompatActivity() {

 private lateinit var trueButton: Button
 private lateinit var falseButton: Button

 private val questionBank = listOf(
 Question(R.string.question_australia, true),
 Question(R.string.question_oceans, true),
 Question(R.string.question_mideast, false),
 Question(R.string.question_africa, false),
 Question(R.string.question_americas, true),
 Question(R.string.question_asia, true))

 private var currentIndex = 0
 ...
}

Here you call the Question constructor several times and create a list of Question objects.

(In a more complex project, this list would be created and stored elsewhere. In later apps, you will
see better options for storing model data. For now, you are keeping it simple and just creating the list
within MainActivity.)

You are going to use questionBank, currentIndex, and the properties in Question to get a parade of
questions onscreen.

In the previous chapter, there was not much happening in GeoQuiz’s MainActivity. It displayed the
layout defined in activity_main.xml. Using Activity.findViewById(id: Int), it got references to
two buttons. Then, it set listeners on the buttons and wired them to make toasts.

Now that you have multiple questions to retrieve and display, MainActivity will have to work harder
to respond to user input and update the UI. You could continue to use Activity.findViewById(…) and
obtain references to your new views, but that is boring code that you would probably prefer not to write
yourself.

Thankfully, there is View Binding, a feature of the build process that generates that boilerplate code for
you and allows you to safely and easily interact with your UI elements. You will use View Binding to
write less code and manage the complexity of even this relatively simple app.

Much like the R class (which you read about in Chapter 1), View Binding works by generating code
during the build process for your app. However, View Binding is not enabled by default, so you must
enable it yourself.

In the project tool window, under Gradle Scripts, locate and open the build.gradle file labeled
(Module: GeoQuiz.app). (This file is actually located within the app module, but the Android view
collects your project’s Gradle files to make them easier to find.)

Chapter 2 Interactive User Interfaces

40

Listing 2.6 Enabling View Binding (app/build.gradle)
plugins {
 id 'com.android.application'
 id 'kotlin-android'
}

android {
 ...
 kotlinOptions {
 jvmTarget = '1.8'
 }
 buildFeatures {
 viewBinding true
 }
}
...

After making this change, a banner will appear at the top of the file prompting you to sync the file
(Figure 2.5).

Figure 2.5 Gradle sync prompt

Whenever you make changes in a .gradle file, you must sync the changes so the build process for
your app is up to date. Click Sync Now in the banner or select File → Sync Project with Gradle Files.

Now that View Binding is enabled, open MainActivity.kt and start using this build feature. Make the
changes in Listing 2.7, and we will explain them afterward.

Listing 2.7 Initializing ActivityMainBinding (MainActivity.kt)
 package com.bignerdranch.android.geoquiz

 import android.os.Bundle
 import android.view.View
 ...
 import com.bignerdranch.android.geoquiz.databinding.ActivityMainBinding

 class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private lateinit var trueButton: Button
 private lateinit var falseButton: Button
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)
 ...
 }
 ...
 }

Wiring Up the User Interface

41

(Like the R class, View Binding generates code within your package structure, which is why
the import statement includes your package name. If you gave your package a name other than
com.bignerdranch.android.geoquiz, your import statement will look different.)

View Binding does require a little bit of setup within your MainActivity, so let’s break down what is
happening here.

Much like Activity.findViewById(…) allows you to get references to your individual UI elements,
ActivityMainBinding allows you to get references to each UI element in your activity_main.xml
layout. (View Binding generates classes based on the layout file’s name; so, for example, it would
generate an ActivityCheatBinding for a layout named activity_cheat.xml.)

In Chapter 1, you passed R.layout.activity_main into Activity.setContentView(layoutResID:
Int) to display your UI. That function performed two actions: First, it inflated your
activity_main.xml layout; then, it put the UI onscreen. Here, when you initialize binding you are
obtaining a reference to the layout and inflating it in the same line.

You pass layoutInflater, a property inherited from the Activity class, into the
ActivityMainBinding.inflate() call. As its name implies, layoutInflater is responsible for
inflating your XML layouts into UI elements.

When you previously called Activity.setContentView(layoutResID: Int), your MainActivity
internally used its layoutInflater to display your UI. Now, using a different implementation of
setContentView(), you pass a reference to the root UI element in your layout to display your UI.

Now that View Binding is set up within MainActivity, use it to wire up your UI. Start with the TRUE
and FALSE buttons:

Listing 2.8 Using ActivityMainBinding (MainActivity.kt)
 class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private lateinit var trueButton: Button
 private lateinit var falseButton: Button
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)

 trueButton = findViewById(R.id.true_button)
 falseButton = findViewById(R.id.false_button)

 trueButton.setOnClickListener { view: View ->
 binding.trueButton.setOnClickListener { view: View ->
 ...
 }
 falseButton.setOnClickListener { view: View ->
 binding.falseButton.setOnClickListener { view: View ->
 ...
 }
 }
 ...
 }

Chapter 2 Interactive User Interfaces

42

For each view with the android:id attribute defined in its layout XML, View Binding will generate a
property on a corresponding ViewBinding class. Even better, View Binding automatically declares the
type of the property to match the type of the view in your XML. So, for example, binding.trueButton
is of type Button, because the view with the ID true_button is a <Button>.

Unlike a findViewById(…) call, this has the benefit of keeping your XML layouts and activities in sync
if you change the kinds of views in your UI.

Next, using questionBank and currentIndex, retrieve the resource ID for the question text of the
current question. Use the binding property to set the text for the question’s TextView.

Listing 2.9 Wiring up the TextView (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.falseButton.setOnClickListener { view: View ->
 ...
 }

 val questionTextResId = questionBank[currentIndex].textResId
 binding.questionTextView.setText(questionTextResId)
}

Save your files and check for any errors. Then run GeoQuiz. You should see the first question in the
array appear in the TextView, as before.

Now, make the NEXT button functional by setting a View.OnClickListener on it. This listener will
increment the index and update the TextView’s text.

Listing 2.10 Wiring up the new button (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.falseButton.setOnClickListener { view: View ->
 ...
 }

 binding.nextButton.setOnClickListener {
 currentIndex = (currentIndex + 1) % questionBank.size
 val questionTextResId = questionBank[currentIndex].textResId
 binding.questionTextView.setText(questionTextResId)

 }

 val questionTextResId = questionBank[currentIndex].textResId
 binding.questionTextView.setText(questionTextResId)
}

Wiring Up the User Interface

43

You now have the same code in two places that updates the text displayed in
binding.questionTextView. Take a moment to put this code into a function instead, as
shown in Listing 2.11. Then invoke that function in the nextButton’s listener and at the end of
onCreate(Bundle?) to initially set the text in the activity’s view.

Listing 2.11 Encapsulating with a function (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.nextButton.setOnClickListener {
 currentIndex = (currentIndex + 1) % questionBank.size
 val questionTextResId = questionBank[currentIndex].textResId
 binding.questionTextView.setText(questionTextResId)
 updateQuestion()
 }

 val questionTextResId = questionBank[currentIndex].textResId
 binding.questionTextView.setText(questionTextResId)
 updateQuestion()
 }

 private fun updateQuestion() {
 val questionTextResId = questionBank[currentIndex].textResId
 binding.questionTextView.setText(questionTextResId)
 }
}

Run GeoQuiz and test your NEXT button.

Now that you have the questions behaving appropriately, it is time to turn to the answers. At the
moment, GeoQuiz thinks that the answer to every question is “true.” Let’s rectify that. You will add a
private named function to MainActivity to encapsulate code rather than writing similar code in two
places:

 private fun checkAnswer(userAnswer: Boolean)

This function will accept a Boolean variable that identifies whether the user pressed TRUE or FALSE.
Then, it will check the user’s answer against the answer in the current Question object. Finally, after
determining whether the user answered correctly, it will make a Toast that displays the appropriate
message to the user.

Chapter 2 Interactive User Interfaces

44

In MainActivity.kt, add the implementation of checkAnswer(Boolean) shown in Listing 2.12.

Listing 2.12 Adding checkAnswer(Boolean) (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 private fun updateQuestion() {
 ...
 }

 private fun checkAnswer(userAnswer: Boolean) {
 val correctAnswer = questionBank[currentIndex].answer

 val messageResId = if (userAnswer == correctAnswer) {
 R.string.correct_toast
 } else {
 R.string.incorrect_toast
 }

 Toast.makeText(this, messageResId, Toast.LENGTH_SHORT)
 .show()
 }
}

Within the buttons’ listeners, call checkAnswer(Boolean), as shown in Listing 2.13.

Listing 2.13 Calling checkAnswer(Boolean) (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.trueButton.setOnClickListener { view: View ->
 Toast.makeText(
 this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT
)
 .show()
 checkAnswer(true)
 }

 binding.falseButton.setOnClickListener { view: View ->
 Toast.makeText(
 this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT
)
 .show()
 checkAnswer(false)
 }
 ...
}

Run GeoQuiz. Verify that the toasts display the right message based on the answer to the current
question and the button you press.

Adding an Icon

45

Adding an Icon
GeoQuiz is up and running, but the UI would be spiffier if the NEXT button also displayed a right-
pointing arrow icon.

Since Android 5.0 (Lollipop, API level 21), the Android platform has provided support for vector
graphics using the VectorDrawable class. Whenever possible, we recommend that you use vector
drawables to display vector graphics in your apps. Vector drawables are scalable without any loss of
visual quality, so they always look crisp and free of image artifacts. And they are more space efficient
than traditional bitmap images, resulting in a smaller final application.

Add a vector drawable to the project for the right-pointing arrow icon. First, select File → New →
Vector Asset from the menu bar to bring up the Asset Studio (Figure 2.6).

Figure 2.6 The Vector Asset Studio

You can import common file formats for vector graphics (SVG, PSD), but you are going to use an icon
from Google’s Material icons library. They are free to use and licensed under Apache license 2.0.

Chapter 2 Interactive User Interfaces

46

For the Asset Type at the top of the Configure Vector Asset dialog, make sure the Clip Art radio button
is selected. Then, click the button to the right of the Clip Art: label. The Select Icon window will pop up
(Figure 2.7).

Figure 2.7 The Vector Asset Studio library

Search for “arrow right,” select the icon with that name, and click OK. The name that the Asset Studio
generates for you on the configuration dialog is verbose; rename the asset arrow_right. Those are all
the changes you need to make, so click Next, and then Finish on the following screen.

Referencing resources in XML

47

Now, expand the app/res/drawable folder in the project window and open up arrow_right.xml.
Click the Split tab at the top of the editor to see the XML for your vector drawable on the left and its
preview image on the right (Figure 2.8).

Figure 2.8 Your vectorized right arrow

You will learn more about how the Android resource system works starting in Chapter 3. For now, let’s
put that right arrow to work.

Referencing resources in XML
You use resource IDs to reference resources in code. But you want to configure the NEXT button to
display the arrow in the layout definition. How do you reference a resource from XML?

Answer: with a slightly different syntax. Open activity_main.xml. Add the app namespace in the root
element (you will learn more about this namespace in Chapter 15). Then add two attributes to the third
Button view’s definition.

Chapter 2 Interactive User Interfaces

48

Listing 2.14 Adding an icon to the NEXT button
(res/layout/activity_main.xml)
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical">
 ...
 <LinearLayout ... >
 ...
 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button"
 app:icon="@drawable/arrow_right"
 app:iconGravity="end" />

</LinearLayout>

In an XML resource, you refer to another resource by its resource type and name. A reference to a
string resource begins with @string/. A reference to a drawable resource begins with @drawable/. For
this situation, you reference your icon with @drawable/arrow_right.

You will learn more about naming resources and working in the res directory structure starting in
Chapter 3.

Run GeoQuiz and admire your button’s new appearance. Then test it to make sure it still works as
before.

Screen Pixel Densities
In activity_main.xml, you specified attribute values in terms of dp units. Now it is time to learn what
they are.

Sometimes you need to specify values for view attributes in terms of specific sizes (usually in pixels,
but sometimes points, millimeters, or inches). You see this most commonly with attributes for text size,
margins, and padding. Text size is the pixel height of the text on the device’s screen. Margins specify
the distances between views, and padding specifies the distance between a view’s outside edges and its
content.

Android devices come in a wide variety of shapes and sizes. Even just among phones, specifications
such as screen size and resolution vary widely. Modern phones have pixel densities ranging from less
than 300 pixels per inch to more than 800 pixels per inch.

What happens when you want to display the same UI on different density screens? Or when the user
configures a larger-than-default text size? It would be a very frustrating user experience if your button
were tiny on one device and massive on another.

Screen Pixel Densities

49

To provide a consistent experience on all devices, Android provides density-independent dimension
units that you can use to get the same size on different screen densities. Android translates these units
using the device’s defined density bucket to pixels at runtime, so there is no tricky math for you to
do. These density buckets range from low density (LDPI) to medium density (MDPI) to high density
(HDPI) and all the way up to extra-extra-extra-high density (XXXHDPI) (Figure 2.9).

Figure 2.9 Dimension units in action on TextView

px Short for pixel. One pixel corresponds to one onscreen pixel, regardless of the display
density. Because pixels do not scale appropriately with device display density, their
use is not recommended.

dp Short for density-independent pixel and usually pronounced “dip.” You typically use
this for margins, padding, or anything else for which you would otherwise specify
size with a pixel value. One dp is always 1/160 of an inch on a device’s screen. You
get the same size regardless of screen density: When your display is a higher density,
density-independent pixels will fill a larger number of screen pixels.

sp Short for scale-independent pixel. Scale-independent pixels are density-independent
pixels that also take into account the user’s font size preference. You will almost
always use sp to set display text size.

pt, mm, in These are scaled units, like dp, that allow you to specify interface sizes in points
(1/72 of an inch), millimeters, or inches. However, we do not recommend using them:
Not all devices are correctly configured for these units to scale correctly.

In practice and in this book, you will use dp and sp almost exclusively. Android will translate these
values into pixels at runtime.

Chapter 2 Interactive User Interfaces

50

Running on a Device
It is fun to interact with your app on an emulator. It is even more fun to interact with your app on
physical Android device. In this section, you will set up your system, device, and application to get
GeoQuiz running on your hardware device.

First, plug the device into your computer. If you are developing on a Mac, your system should
recognize the device right away. On Windows, you may need to install the adb (Android Debug
Bridge) driver. If Windows cannot find the adb driver, then download one from the device
manufacturer’s website.

Second, enable USB debugging on your Android device. To do this, you need to access the developer
options settings menu, which is not visible by default. To enable developer options, open the Settings
app and press the search icon in the top-right corner. Search for “Build number” and select the first
search result. The Settings app will navigate you to the Build number row.

Press Build number seven times in quick succession. After several presses, you will see a message
telling you how many “steps” (presses of the build number) you are from being a developer. When you
see You are now a developer!, you can stop. Then you can return to Settings, search for “Developer
options,” and enable USB debugging.

The steps to enable USB debugging vary considerably across devices and versions of Android. If you
are having problems enabling your device, visit https://developer.android.com/studio/debug/
dev-options#enable for more help.

Finally, confirm that your device is recognized by finding it in the dropdown to the left of Android
Studio’s run icon. The text in the dropdown should display the name of your device. If your device is
not selected, open the dropdown and select it from the options under the Running devices section.

Figure 2.10 Viewing connected devices

https://developer.android.com/studio/debug/dev-options#enable
https://developer.android.com/studio/debug/dev-options#enable

Running on a Device

51

If you are having trouble getting your device recognized, verify that your device is turned on and that
the USB debugging option is enabled.

If you are still unable to see your device in the devices view, you can find more help on the Android
developers’ site. Start at developer.android.com/tools/device.html. You can also visit this book’s
forum at forums.bignerdranch.com for more troubleshooting help.

Run GeoQuiz as before. This time, GeoQuiz will launch on your real device.

https://developer.android.com/tools/device.html
https://forums.bignerdranch.com

Chapter 2 Interactive User Interfaces

52

Challenge: Add a Listener to the TextView
Your NEXT button is nice, but you could also make it so that a user could press the TextView itself to
see the next question.

Hint: You can use the same View.OnClickListener for the TextView that you have used with the
Buttons, because TextView also inherits from View.

Challenge: Add a Previous Button
Add a button that the user can press to go back one question. The UI should look something like
Figure 2.11.

Figure 2.11 Now with a previous button!

This is a great challenge. It requires you to retrace many of the steps in these first two chapters.

53

3
The Activity Lifecycle

At this point, you have an app with some functionality. Unfortunately, there is a bug in your app. In this
chapter, you will learn about the underlying mechanics that created this bug and how they affect other
parts of your application.

Rotating GeoQuiz
GeoQuiz works great … until you rotate the device. While the app is running, press the NEXT button to
show another question. Then rotate the device. If you are running on the emulator, click the rotate left
or rotate right button in the floating toolbar to rotate (Figure 3.1).

Figure 3.1 Control the roll

Chapter 3 The Activity Lifecycle

54

If the emulator does not show GeoQuiz in landscape orientation after you press one of the rotate
buttons, turn auto-rotate on. Swipe down from the top of the screen to open Quick Settings. Press the
auto-rotate icon (Figure 3.2).

Figure 3.2 Quick Setting for auto-rotate

After you rotate, you will see the first question again. How and why did this happen? The answers to
these questions have to do with the activity lifecycle.

You will learn how to fix this problem in Chapter 4. But first, it is important to understand the root of
the problem so you can avoid related bugs that might creep up.

Activity States and Lifecycle Callbacks

55

Activity States and Lifecycle Callbacks
Every instance of Activity has a lifecycle. During this lifecycle, an activity transitions between four
states: resumed, started, created, and nonexistent. For each transition, there is an Activity function
that notifies the activity of the change in its state. Figure 3.3 shows the activity lifecycle, states, and
functions.

Figure 3.3 Activity state diagram

Chapter 3 The Activity Lifecycle

56

Figure 3.3 indicates for each state whether the activity has an instance in memory, is visible to the user,
or is active in the foreground (accepting user input). Table 3.1 summarizes this information.

Table 3.1 Activity states
State In memory? Visible to user? In foreground?

nonexistent no no no

created yes no no

started yes yes/partially* no

resumed yes yes yes

(* Depending on the circumstances, a started activity may be fully or partially visible.)

Nonexistent represents an activity that has not been launched yet or an activity that was destroyed (by
the user completely killing the app, for example). For that reason, this state is sometimes referred to as
the “destroyed” state. There is no instance in memory, and there is no associated view for the user to
see or interact with.

Created represents an activity that has an instance in memory but whose view is not visible on the
screen. This state occurs in passing when the activity is first spinning up and reoccurs any time the
view is fully out of view (such as when the user launches another full-screen activity to the foreground,
navigates to the Home screen, or uses the overview screen to switch tasks).

Started represents an activity that has lost focus but whose view is visible or partially visible.
An activity would be partially visible, for example, if the user launched a new dialog-themed or
transparent activity on top of it. An activity could also be fully visible but not in the foreground if the
user is viewing two activities in multi-window mode (also called “split-screen mode”).

Resumed represents an activity that is in memory, fully visible, and in the foreground. It is usually the
state of the activity the user is currently interacting with.

Subclasses of Activity can take advantage of the functions named in Figure 3.3 to get work done at
critical transitions in the activity’s lifecycle. These functions are often called lifecycle callbacks.

You are already acquainted with one of these lifecycle callback functions – onCreate(Bundle?). The
OS calls this function after the activity instance is created but before it is put onscreen.

Typically, an activity overrides onCreate(Bundle?) to prepare the specifics of its UI:

• inflating views and putting them onscreen (in the call to setContentView())

• getting references to inflated views (via View Binding or findViewById())

• setting listeners on views to handle user interaction

• connecting to external model data

It is important to understand that you never call onCreate(Bundle?) or any of the other Activity
lifecycle functions yourself. You simply override the callbacks in your activity subclass. Then Android
calls the lifecycle callbacks at the appropriate time (in relation to what the user is doing and what is
happening across the rest of the system) to notify the activity that its state is changing.

Logging the Activity Lifecycle

57

Logging the Activity Lifecycle
In this section, you are going to override lifecycle functions to eavesdrop on MainActivity’s lifecycle.
Each implementation will simply log a message informing you that the function has been called. This
will help you see how MainActivity’s state changes at runtime in relation to what the user is doing.

Making log messages
In Android, the android.util.Log class sends log messages to a shared system-level log. Log has
several functions for logging messages. The one that you will use most often in this book is d(…),
which stands for “debug.” (There are many levels of logging; you can learn more about them in the
section called For the More Curious: Log Levels near the end of this chapter.)

This function takes two parameters, both Strings. The first parameter identifies the source of the
message, and the second is the contents of the message.

The first string is typically a TAG constant with the class name as its value. This makes it easy to
determine the source of a particular message.

Open MainActivity.kt and add a TAG constant:

Listing 3.1 Adding a TAG constant (MainActivity.kt)
import ...

private const val TAG = "MainActivity"

class MainActivity : AppCompatActivity() {
 ...
}

Next, in onCreate(Bundle?), call Log.d(…) to log a message.

Listing 3.2 Adding a log statement to onCreate(Bundle?) (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 Log.d(TAG, "onCreate(Bundle?) called")
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)
 ...
}

Chapter 3 The Activity Lifecycle

58

Now override five more lifecycle functions in MainActivity after onCreate(Bundle?):

Listing 3.3 Overriding more lifecycle functions (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }

 override fun onStart() {
 super.onStart()
 Log.d(TAG, "onStart() called")
 }

 override fun onResume() {
 super.onResume()
 Log.d(TAG, "onResume() called")
 }

 override fun onPause() {
 super.onPause()
 Log.d(TAG, "onPause() called")
 }

 override fun onStop() {
 super.onStop()
 Log.d(TAG, "onStop() called")
 }

 override fun onDestroy() {
 super.onDestroy()
 Log.d(TAG, "onDestroy() called")
 }

 private fun updateQuestion() {
 ...
 }
 ...
}

Notice that you call the superclass implementations before you log your messages. These superclass
calls are required. Calling the superclass implementation should be the first line of each callback
function override implementation.

You may have been wondering about the override keyword. This asks the compiler to ensure that the
class actually has the function that you want to override. For example, the compiler would alert you to
the following misspelled function name:

 override fun onCreat(savedInstanceState: Bundle?) {
 ...
 }

The parent AppCompatActivity class does not have an onCreat(Bundle?) function, so the compiler
will complain. This way you can fix the typo right away, rather than waiting until you run the app and
see strange behavior to discover the error.

Using Logcat

59

Using Logcat
Rerun GeoQuiz, and messages will start materializing in the Logcat tool window at the bottom of
Android Studio, as shown in Figure 3.4. If Logcat does not open automatically when you run GeoQuiz,
you can open it by clicking the Logcat tool window bar at the bottom of the Android Studio window.

Figure 3.4 Android Studio with Logcat

You will see your own messages along with some system output. To make your messages easier
to find, you can filter the output using the value you set for the TAG constant. In Logcat, click the
dropdown in the top right that reads Show only selected application. This is the filter dropdown, which
is currently set to show messages from only your app.

In the filter dropdown, select Edit Filter Configuration to create a new filter. Name the filter MainActivity
and enter MainActivity in the Log Tag field (Figure 3.5).

Figure 3.5 Creating a filter in Logcat

Chapter 3 The Activity Lifecycle

60

Click OK. Now, only messages tagged MainActivity will be visible in Logcat (Figure 3.6).

Figure 3.6 Launching GeoQuiz creates, starts, and resumes an activity

Three lifecycle functions were called after GeoQuiz was launched and the initial instance of
MainActivity was created: onCreate(Bundle?), onStart(), and onResume(). Your MainActivity
instance is now in the resumed state (in memory, visible, and active in the foreground).

Exploring How the Activity Lifecycle Responds to User
Actions
As you continue through this book, you will override the different activity lifecycle functions to do
real things for your application. When you do, you will learn more about the uses of each function. For
now, have some fun familiarizing yourself with how the lifecycle behaves in common usage scenarios
by interacting with your app and checking out the logs in Logcat.

Temporarily leaving an activity
Navigate to your emulator or device’s Home screen with the Home gesture – swiping up from the
gesture navigation interface at the bottom of the screen (Figure 3.7).

Figure 3.7 Gesture navigation interface

Temporarily leaving an activity

61

If your device does not use gesture navigation, you may have Back, Home, and Recents buttons at the
bottom of the screen (Figure 3.8). (The emulator has these three buttons in the toolbar at the top of its
tool window, and it also shows them on the emulated device when appropriate.) In this case, press the
Home button to get to the Home screen. If neither of these approaches works on your device, consult
the device manufacturer’s user guide.

Figure 3.8 Back, Home, and Recents buttons

When the Home screen displays, MainActivity moves completely out of view. What state is
MainActivity in now? Check Logcat to see. Your activity received calls to onPause() and onStop(),
but not onDestroy() (Figure 3.9).

Figure 3.9 Navigating Home stops the activity

By navigating Home, the user is telling Android, “I’m going to go look at something else, but I might
come back. I’m not really done with this screen yet.” Android pauses and ultimately stops the activity.

So after you navigate Home from GeoQuiz, your instance of MainActivity hangs out in the created
state (in memory, not visible, and not active in the foreground). Android does this so it can quickly and
easily restart MainActivity where you left off when you come back to GeoQuiz later.

(This is not the whole story about navigating to the Home screen. Applications in the created state can
be destroyed at the discretion of the OS. See Chapter 4 for the rest of the story.)

Go back to GeoQuiz by selecting the GeoQuiz task card from the overview screen. To do this, use the
Recents button or gesture (swiping up from the bottom and holding, then releasing).

Chapter 3 The Activity Lifecycle

62

Each card in the overview screen represents an app the user has interacted with (Figure 3.10). (By the
way, the overview screen is often called the “recents screen” or “task manager” by users. We defer to
the developer documentation, which calls it the “overview screen.”)

Figure 3.10 Overview screen

Click the GeoQuiz task card in the overview screen. MainActivity will fill the screen.

A quick look at Logcat shows that your activity got calls to onStart() and onResume(). Note that
onCreate(…) was not called. This is because MainActivity was in the created state after the user
navigated to the Home screen. Because the activity instance was still in memory, it did not need to
be created. Instead, the activity only had to be started (moved to the started/visible state) and then
resumed (moved to the resumed/foreground state).

Finishing an activity

63

Finishing an activity
Open the overview screen again, then swipe up on the app’s card so that it goes offscreen. Check
Logcat. Your activity received calls to onPause(), onStop(), and onDestroy() (Figure 3.11). Your
MainActivity instance is now in the nonexistent state (not in memory and thus not visible – and
certainly not active in the foreground).

Figure 3.11 Closing the app destroys the activity

When you swiped away GeoQuiz’s card, you as the user of the app finished the activity. You told
Android, “I’m done with this activity, and I won’t need it anymore.” Android then destroyed your
activity’s view and removed all traces of the activity from memory. This is Android’s way of being
frugal with your device’s limited resources.

As a developer, you can programmatically finish an activity by calling Activity.finish(). In
Chapter 7, you will learn about another way to finish an activity by navigating Back.

Chapter 3 The Activity Lifecycle

64

Rotating an activity
Now it is time to get back to the bug you found at the beginning of this chapter. Run GeoQuiz, press
the NEXT button to reveal the second question, and then rotate the device.

After rotating, GeoQuiz will display the first question again. Check Logcat to see what has happened.
Your output should look like Figure 3.12.

Figure 3.12 MainActivity is dead. Long live MainActivity!

When you rotated the device, the instance of MainActivity that you were looking at was destroyed
and a new one was created. Rotate the device again to witness another round of destruction and rebirth.

This is the source of your GeoQuiz bug. Each time you rotate the device, the current MainActivity
instance is completely destroyed. The value that was stored in currentIndex in that instance is wiped
from memory. This means that when you rotate, GeoQuiz forgets which question you were looking at.
As rotation finishes, Android creates a new instance of MainActivity from scratch. currentIndex is
re-initialized to 0, and the user starts over at the first question.

You will fix this bug in Chapter 4.

Device Configuration Changes and the Activity Lifecycle

65

Device Configuration Changes and the Activity
Lifecycle
Rotating the device changes the device configuration. The device configuration is a set of
characteristics that describe the current state of an individual device. The characteristics that make up
the configuration include screen orientation, screen density, screen size, keyboard type, dock mode,
language, and more.

Applications can provide alternative resources to match device configurations. When a runtime
configuration change occurs, there may be resources that are a better match for the new configuration.
So Android destroys the activity, looks for resources that are the best fit for the new configuration, and
then rebuilds a new instance of the activity with those resources.

You can try providing specific resources in the section called For the More Curious: Creating a
Landscape Layout below or wait until Chapter 18.

Chapter 3 The Activity Lifecycle

66

For the More Curious: Creating a Landscape Layout
One of the core considerations around device configuration is the desire to provide appropriate
resources based on the configuration. When the user’s language is German, your Activity should
display German text. When the user enables night mode, your color scheme should adjust to be easier
on the eyes.

You enable this functionality by providing configuration-specific resources in your app. Another
configuration-specific attribute you can provide different resources for is the orientation of the device’s
screen: You can create a landscape-only layout so that when the user rotates their device to landscape,
they see a layout specifically designed for landscape screens. For example, you could define an entirely
new layout for MainActivity, moving the NEXT button to the bottom-right corner of the screen so that
it is easier to reach in landscape mode (Figure 3.13):

Figure 3.13 MainActivity in landscape orientation

Landscape screen orientation is one of many configuration qualifiers available on Android. You will
learn more about configuration qualifiers and how they can be used to provide the correct resources in
Chapter 18.

For the More Curious: UI Updates and Multi-Window Mode

67

For the More Curious: UI Updates and Multi-Window
Mode
Prior to Android 7.0 Nougat, most activities spent very little time in the started state. Instead, activities
passed through the started state quickly on their way to either the resumed state or the created state.
Because of this, many developers assumed they only needed to update their UI when their activity was
in the resumed state. It was common practice to use onResume() and onPause() to start or stop any
ongoing updates related to the UI (such as animations or data refreshes).

When multi-window mode was introduced in Nougat, it broke the assumption that resumed activities
were the only fully visible activities. This, in turn, broke the intended behavior of many apps. Now,
started activities can be fully visible for extended periods of time when the user is in multi-window
mode. And users will expect those started activities to behave as if they were resumed.

Consider video, for example. Suppose you had a pre-Nougat app that provided simple video playback.
You started (or resumed) video playback in onResume() and paused playback in onPause(). But
then multi-window mode comes along, and your app stops playback when it is started but users are
interacting with another app in the second window. Users start complaining, because they want to
watch their videos while they send a text message in a separate window.

Luckily, the fix is relatively simple: Move your playback resuming and pausing to onStart() and
onStop(). This goes for any live-updating data, like a photo gallery app that refreshes to show new
images as they are pushed to a Flickr stream (as you will see later in this book).

In short, your activities should update the UI during their entire visible lifecycle, from onStart() to
onStop().

Unfortunately, not everyone got the memo, and many apps still misbehave in multi-window mode.
To fix this, the Android team introduced multi-resume for multi-window mode in Android 10. Multi-
resume means that the fully visible activity in each of the windows will be in the resumed state when
the device is in multi-window mode, regardless of which window the user last touched.

Still, until multi-resume becomes a readily available standard across most devices in the marketplace,
use your knowledge of the activity lifecycle to reason about where to place UI update code. You will
get a lot of practice doing so throughout this book.

Chapter 3 The Activity Lifecycle

68

For the More Curious: Log Levels
When you use the android.util.Log class to send log messages, you control not only the content of
the message but also a level that specifies how important the message is. Android supports five log
levels, shown in Table 3.2. Each level has a corresponding function in the Log class. Sending output to
the log is as simple as calling the corresponding Log function.

Table 3.2 Log levels and functions
Log level Function Used for

ERROR Log.e(…) errors

WARNING Log.w(…) warnings

INFO Log.i(…) informational messages

DEBUG Log.d(…) debug output
(may be filtered out)

VERBOSE Log.v(…) development only

In addition, each of the logging functions has two signatures: one that takes a TAG string and a message
string, and a second that takes those two arguments plus an instance of Throwable, which makes it
easy to log information about a particular exception that your application might throw. Here are some
sample log function signatures:

 // Log a message at DEBUG log level
 Log.d(TAG, "Current question index: $currentIndex")

 try {
 val question = questionBank[currentIndex]
 } catch (ex: ArrayIndexOutOfBoundsException) {
 // Log a message at ERROR log level along with an exception stack trace
 Log.e(TAG, "Index was out of bounds", ex)
 }

Challenge: Preventing Repeat Answers
Once a user provides an answer for a particular question, disable the buttons for that question to
prevent multiple answers being entered.

Challenge: Graded Quiz
After the user provides answers for all the quiz questions, display a Toast with a percentage score for
the quiz. Good luck!

69

4
Persisting UI State

Destroying and re-creating activities on rotation can cause headaches, such as GeoQuiz’s bug
of reverting to the first question when the device is rotated. To fix this bug, the post-rotation
MainActivity instance needs to retain the old value of currentIndex. You need a way to save this data
across a runtime configuration change, like rotation.

Luckily, there is a class that survives rotation that you can use to store your state. In this chapter, you
will fix GeoQuiz’s UI state loss on rotation bug by storing its UI data in a ViewModel.

A ViewModel is the perfect complement to an Activity because of its simple lifecycle and ability to
persist data across configuration changes. It is usually scoped to a single screen and is a useful place
to put logic involved in formatting the data to display on that screen. Using a ViewModel aggregates all
the data the screen needs in one place, formats the data, and makes it easy to access the end result.

You will also address a bug that is harder to discover, but equally problematic – UI state loss on
process death – using a SavedStateHandle. This class allows you to temporarily store simple data
outside the lifecycle of your app’s process.

Chapter 4 Persisting UI State

70

Including the ViewModel Dependency
Before you can write a ViewModel class, you need to include two libraries in your project. The
ViewModel class comes from an Android Jetpack library called androidx.lifecycle, one of many
libraries that you will use throughout this book. (You will learn more about Jetpack later in this
chapter.) You will also include the androidx.activity library, which adds some functionality to your
MainActivity.

To include libraries in your project, you add them to the list of dependencies. Like the configuration for
View Binding you did back in Chapter 2, your project’s dependencies live in the app/build.gradle
file. Under Gradle Scripts in the project tool window, open the build.gradle file labeled Module:
GeoQuiz.app so you can add our new dependencies. You should see something like:

 plugins {
 id 'com.android.application'
 id 'kotlin-android'
 }

 android {
 ...
 }

 dependencies {
 implementation 'androidx.core:core-ktx:1.7.0'
 implementation 'androidx.appcompat:appcompat:1.4.1'
 ...
 }

The dependencies section already includes some libraries that your project requires. You might
recognize a few of them, such as Espresso or Kotlin. Gradle also allows you to specify new
dependencies. When your app is compiled, Gradle will find, download, and include the dependencies
for you. All you have to do is specify an exact string incantation, and Gradle will do the rest.

Add the androidx.lifecycle:lifecycle-viewmodel-ktx and androidx.activity:activity-ktx
dependencies to your app/build.gradle file, as shown in Listing 4.1. Their exact placement in the
dependencies section does not matter, but to keep things tidy it is good to put new dependencies under
the last existing implementation dependency.

Listing 4.1 Adding dependencies (app/build.gradle)
dependencies {
 ...
 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
 implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.4.1'
 implementation 'androidx.activity:activity-ktx:1.4.0'
 ...
}

As it did when you made the change to enable View Binding, Android Studio will prompt you to
sync the file. Either click Sync Now in the prompt or select File → Sync Project with Gradle Files, and
Gradle will take care of the rest.

Adding a ViewModel

71

Adding a ViewModel
You are ready to create your ViewModel subclass, QuizViewModel. In the project tool window, right-
click the com.bignerdranch.android.geoquiz package and select New → Kotlin Class/File. Enter
QuizViewModel for the name and double-click Class in the list of options below.

In QuizViewModel.kt, add an init block and override onCleared(). Log the creation and destruction
of the QuizViewModel instance, as shown in Listing 4.2.

Listing 4.2 Creating a ViewModel class (QuizViewModel.kt)
private const val TAG = "QuizViewModel"

class QuizViewModel : ViewModel() {

 init {
 Log.d(TAG, "ViewModel instance created")
 }

 override fun onCleared() {
 super.onCleared()
 Log.d(TAG, "ViewModel instance about to be destroyed")
 }
}

The onCleared() function is called just before a ViewModel is destroyed. This is a useful place to
perform any cleanup, such as un-observing a data source. For now, you simply log the fact that the
ViewModel is about to be destroyed so that you can explore its lifecycle, the same way you explored the
lifecycle of MainActivity in Chapter 3.

Now, open MainActivity.kt and associate the activity with an instance of QuizViewModel by invoking
the viewModels() property delegate.

Listing 4.3 Accessing the ViewModel (MainActivity.kt)
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private val quizViewModel: QuizViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 setContentView(binding.root)

 Log.d(TAG, "Got a QuizViewModel: $quizViewModel")

 binding.trueButton.setOnClickListener { view: View ->
 checkAnswer(true)
 }
 ...
 }
 ...
}

Chapter 4 Persisting UI State

72

The by keyword indicates that a property is implemented using a property delegate. In Kotlin, a
property delegate is, as the name suggests, a way to delegate the functionality of a property to an
external unit of code. A very common property delegate in Kotlin is lazy. The lazy property delegate
allows developers to save resources by waiting to initialize the property only when it is accessed.

The viewModels() property delegate works the same way: Your QuizViewModel will not be initialized
unless you access it. By referencing it in a logging message, you can initialize it and log the value on
the same line.

Under the hood, the viewModels() property delegate handles many things for you. When the activity
queries for a QuizViewModel for the first time, viewModels() creates and returns a new QuizViewModel
instance. When the activity queries for the QuizViewModel after a configuration change, the instance
that was first created is returned. When the activity is finished (such as when the user closes the app
from the overview screen), the ViewModel–Activity pair is removed from memory.

You should not directly instantiate the QuizViewModel within your Activity. Instead, rely on the
viewModels() property delegate. It might seem like instantiating the ViewModel yourself would work
just the same, but you would lose the benefit of the same instance being returned after your Activity’s
configuration change.

ViewModel lifecycle
You learned in Chapter 3 that activities transition between four states: resumed, started, created, and
nonexistent. You also learned about different ways an activity can be destroyed: either by the user
finishing the activity or by the system destroying it as a result of a configuration change.

When the user finishes an activity, they expect their UI state to be reset. When the user rotates an
activity, they expect their UI state to be the same after rotation. ViewModel offers a way to keep
an activity’s UI state data in memory across configuration changes. Its lifecycle mirrors the user’s
expectations: It survives configuration changes and is destroyed only when its associated activity is
finished.

When you associate a ViewModel instance with an activity’s lifecycle, as you did in Listing 4.3, the
ViewModel is said to be scoped to that activity’s lifecycle. This means the ViewModel will remain in
memory, regardless of the activity’s state, until the activity is finished. Once the activity is finished
(such as by the user closing the app from the overview screen), the ViewModel instance is destroyed.

ViewModel lifecycle

73

This means that the ViewModel stays in memory during a configuration change, such as rotation.
During the configuration change, the activity instance is destroyed and re-created, but any ViewModels
scoped to the activity stay in memory. This is depicted in Figure 4.1, using MainActivity and
QuizViewModel.

Figure 4.1 MainActivity and QuizViewModel across rotation

To see this in action, run GeoQuiz. In Logcat, select Edit Filter Configuration in the dropdown to create
a new filter. In the Log Tag box, enter QuizViewModel|MainActivity (the two class names with the
pipe character “|” between them) to show only logs tagged with either class name. Name the filter
ViewModelAndActivity (or another name that makes sense to you) and click OK (Figure 4.2).

Figure 4.2 Filtering QuizViewModel and MainActivity logs

Chapter 4 Persisting UI State

74

Now look at the logs. When MainActivity first launches and logs the ViewModel in onCreate(…), a
new QuizViewModel instance is created. This is reflected in the logs (Figure 4.3).

Figure 4.3 QuizViewModel instance created

Rotate the device. The logs show the activity is destroyed (Figure 4.4). The QuizViewModel is not.
When the new instance of MainActivity is created after rotation, it requests a QuizViewModel. Since
the original QuizViewModel is still in memory, viewModels() returns that instance rather than creating
a new one.

Figure 4.4 MainActivity is destroyed and re-created; QuizViewModel persists

Finally, open the overview screen and close the application. QuizViewModel.onCleared() is called,
indicating that the QuizViewModel instance is about to be destroyed, as the logs show (Figure 4.5). The
QuizViewModel is destroyed, along with the MainActivity instance.

Figure 4.5 MainActivity and QuizViewModel destroyed

Add data to your ViewModel

75

The relationship between MainActivity and QuizViewModel is unidirectional. The activity references
the ViewModel, but the ViewModel does not access the activity. Your ViewModel should never hold a
reference to an activity or a view, otherwise you will introduce a memory leak.

A memory leak occurs when one object holds a strong reference to another object that should be
destroyed. The strong reference prevents the garbage collector from clearing the object from memory.
Memory leaks due to a configuration change are common bugs. (The details of strong reference and
garbage collection are outside the scope of this book. If you are not sure about these concepts, we
recommend reading up on them in a Kotlin or Java reference.)

Your ViewModel instance stays in memory across rotation, while your original activity instance gets
destroyed. If the ViewModel held a strong reference to the original activity instance, two problems
would occur: First, the original activity instance would not be removed from memory, and thus the
activity would be leaked. Second, the ViewModel would hold a reference to a stale activity. If the
ViewModel tried to update the view of the stale activity, it would trigger an IllegalStateException.

Add data to your ViewModel
Now it is finally time to fix GeoQuiz’s rotation bug. QuizViewModel is not destroyed on rotation the
way MainActivity is, so you can stash the activity’s UI state data in the QuizViewModel instance and
it, too, will survive rotation.

You are going to cut the question and current index data from your activity and paste them in
your ViewModel, along with all the logic related to them. Begin by cutting the currentIndex and
questionBank properties from MainActivity (Listing 4.4).

Listing 4.4 Cutting model data from activity (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 private val questionBank = listOf(
 Question(R.string.question_australia, true),
 Question(R.string.question_oceans, true),
 Question(R.string.question_mideast, false),
 Question(R.string.question_africa, false),
 Question(R.string.question_americas, true),
 Question(R.string.question_asia, true)
)

 private var currentIndex = 0
 ...
}

Chapter 4 Persisting UI State

76

Now, paste the currentIndex and questionBank properties into QuizViewModel, as shown in Listing
4.5. While you are editing QuizViewModel, delete the init and onCleared() logging, as you will not
use them again.

Listing 4.5 Pasting model data into QuizViewModel (QuizViewModel.kt)
class QuizViewModel : ViewModel() {

 init {
 Log.d(TAG, "ViewModel instance created")
 }

 override fun onCleared() {
 super.onCleared()
 Log.d(TAG, "ViewModel instance about to be destroyed")
 }

 private val questionBank = listOf(
 Question(R.string.question_australia, true),
 Question(R.string.question_oceans, true),
 Question(R.string.question_mideast, false),
 Question(R.string.question_africa, false),
 Question(R.string.question_americas, true),
 Question(R.string.question_asia, true)
)

 private var currentIndex = 0
}

Next, add a function to QuizViewModel to advance to the next question. Also, add computed properties
to return the text and answer for the current question.

Listing 4.6 Adding business logic to QuizViewModel (QuizViewModel.kt)
class QuizViewModel : ViewModel() {

 private val questionBank = listOf(
 ...
)

 private var currentIndex: Int = 0

 val currentQuestionAnswer: Boolean
 get() = questionBank[currentIndex].answer

 val currentQuestionText: Int
 get() = questionBank[currentIndex].textResId

 fun moveToNext() {
 currentIndex = (currentIndex + 1) % questionBank.size
 }
}

Add data to your ViewModel

77

Earlier, we said that a ViewModel stores all the data that its associated screen needs, formats it, and
makes it easy to access. This allows you to remove presentation logic code, such as the current index,
from the activity – which in turn keeps your activity simpler. And keeping activities as simple as
possible is a good thing: Any logic you put in your activity might be unintentionally affected by
the activity’s lifecycle. Also, removing presentation logic means the activity is only responsible for
handling what appears on the screen, not the logic behind determining the data to display.

Next, finish cleaning up MainActivity. You are ready to delete the old computation of
currentIndex, and you will also make a couple other changes. Since you do not want to directly
access MainActivity from within your ViewModel, you will leave the updateQuestion() and
checkAnswer(Boolean)functions in MainActivity – but you will update them to call through to the
new, smarter computed properties in QuizViewModel.

Listing 4.7 Updating question through QuizViewModel (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.nextButton.setOnClickListener {
 currentIndex = (currentIndex + 1) % questionBank.size
 quizViewModel.moveToNext()
 updateQuestion()
 }
 ...
 }
 ...
 private fun updateQuestion() {
 val questionTextResId = questionBank[currentIndex].textResId
 val questionTextResId = quizViewModel.currentQuestionText
 binding.questionTextView.setText(questionTextResId)
 }

 private fun checkAnswer(userAnswer: Boolean) {
 val correctAnswer = questionBank[currentIndex].answer
 val correctAnswer = quizViewModel.currentQuestionAnswer
 ...
 }

Run GeoQuiz, press NEXT, and rotate the device or emulator. No matter how many times you rotate,
the newly minted MainActivity will “remember” what question you were on. Do a happy dance to
celebrate solving the UI state loss on rotation bug.

But do not dance too long. There is another, less easily discoverable bug to squash.

Chapter 4 Persisting UI State

78

Saving Data Across Process Death
Configuration changes are not the only time the OS can destroy an activity even though the user does
not intend it to.

Each app gets its own process (more specifically, a Linux process) containing a single thread to execute
UI-related work on and a piece of memory to store objects in. An app’s process can be destroyed by
the OS if the user navigates away for a while and Android needs to reclaim memory. When an app’s
process is destroyed, all the objects stored in that process’s memory are destroyed.

Processes containing resumed or started activities get higher priority than other processes. When
the OS needs to free up resources, it will select lower-priority processes first. Practically speaking,
a process containing a visible activity will not be reclaimed by the OS. If a foreground process does
get reclaimed, that means something is horribly wrong with the device (and your app being killed is
probably the least of the user’s concerns).

But processes that do not have any activities in the started or resumed state are fair game to be killed.
So, for example, if the user navigates to the Home screen and then goes and watches a video or plays a
game, your app’s process might be killed.

Activities themselves are not individually destroyed in low-memory situations. Instead, Android clears
an entire app process from memory, taking any of the app’s in-memory activities with it.

When the OS destroys the app’s process, any of the app’s activities and ViewModels stored in memory
will be wiped away. And the OS will not be nice about the destruction. There is no guarantee that it
will call any of the activity or ViewModel lifecycle callback functions.

So how can you save UI state data and use it to reconstruct the activity so that the user never even
knows the activity was destroyed? One way to do this is to store data in saved instance state. Saved
instance state is data the OS temporarily stores outside of the activity. You can add values to saved
instance state by using a SavedStateHandle.

Back in the early days of Android, you would be responsible for handling saved instance state like it
was a lifecycle callback. Now, you can pass a SavedStateHandle into your ViewModel through the
constructor. You can use the SavedStateHandle like a key-value map, storing simple pieces of data
like integers and strings. This slides very cleanly into the code you have already written; all you will
need to change is to make currentIndex a computed property.

Make it happen in QuizViewModel.kt.

Listing 4.8 Storing data in the SavedStateHandle (QuizViewModel.kt)
private const val TAG = "QuizViewModel"
const val CURRENT_INDEX_KEY = "CURRENT_INDEX_KEY"

class QuizViewModel(private val savedStateHandle: SavedStateHandle) : ViewModel() {
 ...
 private var currentIndex: Int = 0
 get() = savedStateHandle.get(CURRENT_INDEX_KEY) ?: 0
 set(value) = savedStateHandle.set(CURRENT_INDEX_KEY, value)
 ...
}

When you first launch the activity, the value for currentIndex in the SavedStateHandle map is null,
so for currentIndex’s getter, you provide a default value of 0. This replicates the existing behavior of
initializing currentIndex to 0.

Saving Data Across Process Death

79

Rotation is easy to test. And, luckily, so is the low-memory situation. Try it out now to see for yourself.

Connect your hardware device and open up Developer options in its Settings app. (If you do not see
Developer options, follow the steps back in Chapter 2 to enable them.) Within Developer options, scroll
down to the Apps section and turn on the setting labeled Don’t keep activities, as shown in Figure 4.6.

Figure 4.6 Don’t keep activities

Now run GeoQuiz on the device, press NEXT to move to another question, and navigate to the Home
screen. Returning to the Home screen causes the activity to receive calls to onPause() and onStop(),
as you know. The logs tell you that the activity has also been destroyed, just as if the Android OS had
reclaimed it for its memory.

Restore the app (using the list of apps on the device) to see whether your state was saved as you
expected. Pat yourself on the back when GeoQuiz opens to the question you last saw.

Be sure to turn Don’t keep activities off when you are done testing, as it will cause a performance
decrease.

Chapter 4 Persisting UI State

80

That is all you have to do to correctly handle process death. You might note that you store
currentIndex within the SavedStateHandle and not, say, questionBank. SavedStateHandle has its
limitations. The data within SavedStateHandle is serialized and written to disk, so you should avoid
stashing any large or complex objects. You should only use SavedStateHandle to store the minimal
amount of information necessary to re-create the UI state (for example, the current question index).

Neither ViewModel nor SavedStateHandle is a solution for long-term storage. If your app needs to
store data that should live as long as the app is installed on the device, regardless of your activity’s
state, use a persistent storage alternative. You will learn about two local persistent storage options in
this book: databases, in Chapter 12, and shared preferences, in Chapter 21. In addition to local storage,
you could store data on a remote server somewhere. You will learn how to access data from a web
server in Chapter 20.

In this chapter, you squashed GeoQuiz’s state-loss bugs by correctly accounting for configuration
changes and process death. In the next two chapters, you will learn how to use Android Studio’s
debugging and testing tools to troubleshoot other, more app-specific bugs that might arise and to test
your app’s functionality. In Chapter 7, you will add a new feature to GeoQuiz: cheating.

For the More Curious: Jetpack, AndroidX, and Architecture Components

81

For the More Curious: Jetpack, AndroidX, and
Architecture Components
The androidx.lifecycle library containing ViewModel is part of Android Jetpack Components.
Android Jetpack Components, called Jetpack for short, is a set of libraries created by Google to
make various aspects of Android development easier. You can see a list of the Jetpack libraries at
developer.android.com/jetpack. You can include any of these libraries in your project by adding the
corresponding dependency to your app/build.gradle file, as you did in this chapter.

Each Jetpack library is located in a package that starts with androidx. For this reason, you will
sometimes hear the terms “AndroidX” and “Jetpack” used interchangeably.

Jetpack libraries make up the backbone of most modern Android apps. When you generated GeoQuiz,
Android Studio included a few of them by default. As you continue in this book, you will encounter
several Jetpack libraries, such as Fragments (Chapter 9), Room (Chapter 12), and WorkManager
(Chapter 22).

Some of the Jetpack components are entirely new. Others have been around for a while but were
previously lumped into a handful of much larger libraries collectively called the Support Library. If you
hear or see anything about the Support Library, know that you should now use the Jetpack (AndroidX)
version of that library instead.

For the More Curious: Avoiding a Half-Baked Solution
Some people try to address the UI state loss on configuration change bug in their app by disabling
rotation. If the user cannot rotate the app, they never lose their UI state, right? That is true – but, sadly,
this approach leaves your app prone to other bugs. While this smooths over the rough edge of rotation,
it leaves other lifecycle bugs that users will surely encounter, but that will not necessarily present
themselves during development and testing.

First, there are other configuration changes that can occur at runtime, such as window resizing and
night mode changes. And yes, you could also capture and ignore or handle those changes. But this is
a bad practice – it disables a feature of the system, which is to automatically select the right resources
based on the runtime configuration.

Second, disabling rotation does not solve the process death issue.

If you want to lock your app into portrait or landscape mode because it makes sense for your app, you
should still program defensively against configuration changes and process death. And you are now
equipped to do so with your newfound knowledge of ViewModel and saved instance state.

In short, dealing with UI state loss by blocking configuration changes is bad form. We are only
mentioning it so that you will recognize it as such if you see it out in the wild.

https://developer.android.com/jetpack

Chapter 4 Persisting UI State

82

For the More Curious: Activity and Instance State
SavedStateHandle is an easy-to-use API that allows you to safely store and retrieve instance state
and persist that information even if your process is killed. But it has not always been around. Before
SavedStateHandle was released in 2020, developers were expected to use APIs within Activity.

To store instance state, developers used the Activity.onSaveInstanceState(Bundle) function.
Similar to Activity.onPause() and Activity.onStop(), Activity.onSaveInstanceState(Bundle)
is like a lifecycle callback called during the teardown of an activity. To retrieve instance state,
developers used an API you are already familiar with: Activity.onCreate(Bundle?). The Bundle?
passed in as a parameter is the saved instance state.

With the adoption of the ViewModel library throughout the Android ecosystem, using these old APIs
became awkward and resulted in confusing code. There were multiple places where you had to pass
data between your ViewModel and Activity, and keeping state consistent between the two was error
prone.

With the SavedStateHandle and ViewModel classes, you can keep all the instance state business logic
within your ViewModel. That means you can avoid the awkward dance between your ViewModel and
Activity – and also make your Activity simpler. So if you have an old codebase and see the old
Activity APIs used to store and retrieve instance state, consider refactoring to use SavedStateHandle
instead.

83

5
Debugging Android Apps

In this chapter, you will find out what to do when apps get buggy. You will learn how to use Logcat,
Android Lint, and the debugger that comes with Android Studio.

To practice debugging, the first step is to break something. In MainActivity.kt, comment out the code
in onCreate(Bundle?) where you initialize binding.

Listing 5.1 Commenting out a crucial line (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 Log.d(TAG, "onCreate(Bundle?) called")
 // binding = ActivityMainBinding.inflate(layoutInflater)
 ...
}

Run GeoQuiz and see what happens. The app will crash and burn almost immediately.

Chapter 5 Debugging Android Apps

84

If you watch the screen, you may see the app appear for a brief moment before vanishing without a
word. On older versions of Android, you might see a dialog pop up. If you do not, launch the app again
by pressing the GeoQuiz icon on the launcher screen. This time, when the app crashes you will see a
message like the one shown in Figure 5.1.

Figure 5.1 GeoQuiz is about to E.X.P.L.O.D.E.

Of course, you know exactly what is wrong with your app. But if you did not, it might help to look at
your app from a new perspective.

Exceptions and Stack Traces

85

Exceptions and Stack Traces
Expand the Logcat tool window so that you can see what has happened. If you scroll up and down in
Logcat, you should find an expanse of red, as shown in Figure 5.2. This is a standard AndroidRuntime
exception report.

If you do not see much in Logcat and cannot find the exception, you may need to select the Show only
selected application or No Filters option in the filter dropdown. On the other hand, if you see too much
in Logcat, you can adjust the log level from Verbose to Error, which will show only the most severe
log messages. You can also search for the text fatal exception, which will bring you straight to the
exception that caused the app to crash.

Figure 5.2 Exception and stack trace in Logcat

The report tells you the top-level exception and its stack trace, then the exception that caused that
exception and its stack trace, and so on until it finds an exception with no cause.

It may seem strange to see a java.lang exception in the stack trace, since you are writing
Kotlin code. When building for Android, Kotlin code is compiled to the same kind of low-level
bytecode Java code is compiled to. During that process, many Kotlin exceptions are mapped to
java.lang exception classes through type-aliasing. kotlin.RuntimeException is the superclass of
kotlin.UninitializedPropertyAccessException, and it is aliased to java.lang.RuntimeException
when running on Android.

In most of the code you will write, the last exception in the Logcat report – the
one with no cause – is the interesting one. Here, the exception without a cause is a
kotlin.UninitializedPropertyAccessException. The line just below this exception is the first line
in its stack trace. This line tells you the class and function where the exception occurred as well as
what file and line number the exception occurred on. Click the blue link, and Android Studio will take
you to that line in your source code.

The line you are taken to is the first use of the binding variable, inside onCreate(Bundle?). The name
UninitializedPropertyAccessException gives you a hint to the problem: This variable was not
initialized.

Chapter 5 Debugging Android Apps

86

Uncomment the line initializing binding to fix the bug.

Listing 5.2 Uncommenting a crucial line (MainActivity.kt)
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 Log.d(TAG, "onCreate(Bundle?) called")
 // binding = ActivityMainBinding.inflate(layoutInflater)
 ...
}

When you encounter runtime exceptions, remember to look for the last exception in Logcat and the
first line in its stack trace that refers to code that you have written. That is where the problem occurred,
and it is the best place to start looking for answers.

If a crash occurs while a device is not plugged in, all is not lost. The device will store the latest lines
written to the log. The length and expiration of the stored log depends on the device, but you can
usually count on retrieving log results within 10 minutes. Just plug in the device and select it in the
Devices view. Logcat will fill itself with the stored log.

Diagnosing misbehaviors
Problems with your apps will not always be crashes. In some cases, they will be misbehaviors. For
example, suppose that nothing happened any time you pressed the NEXT button. That would be a
noncrashing, misbehaving bug.

In QuizViewModel.kt, comment out the code in the moveToNext() function that increments the current
question index.

Listing 5.3 Forgetting a critical line of code (QuizViewModel.kt)
fun moveToNext() {
 // currentIndex = (currentIndex + 1) % questionBank.size
}

Run GeoQuiz and press the NEXT button. You should see no effect.

This bug is trickier than the last bug. It is not throwing an exception, so fixing the bug is not a simple
matter of making the exception go away. On top of that, this misbehavior could be caused in two
different ways: The index might not be changed, or code to update the UI might not be called.

You know what caused this bug, because you just introduced it intentionally. But if this type of bug
popped up on its own and you had no idea what was causing the problem, you would need to track
down the culprit. In the next few sections, you will see two ways to do this: diagnostic logging of a
stack trace and using the debugger to set a breakpoint.

Logging stack traces

87

Logging stack traces
In QuizViewModel, add a log statement to moveToNext().

Listing 5.4 Exception for fun and profit (QuizViewModel.kt)
fun moveToNext() {
 Log.d(TAG, "Updating question text", Exception())
 // currentIndex = (currentIndex + 1) % questionBank.size
}

The Log.d(String, String, Throwable) version of Log.d logs the entire stack trace, like the
UninitializedPropertyAccessException you saw earlier. The stack trace will tell you where the call
to moveToNext() was made.

The exception that you pass to Log.d(String, String, Throwable) does not have to be a thrown
exception that you caught. You can create a brand new Exception and pass it to the function without
ever throwing it, and you will get a report of where the exception was created.

Run GeoQuiz, press the NEXT button, and then check the output in Logcat (Figure 5.3).

Figure 5.3 The results

The top line in the stack trace is the line where you logged out the Exception. On the next line, you
can see where moveToNext() was called from within your MainActivity. Click the link on this line,
and you will be taken to where you commented out the line to increment your question index. But do
not get rid of the bug; you are going to use the debugger to find it again in a moment.

Logging out stack traces is a powerful tool, but it is also a verbose one. Leave a bunch of these hanging
around, and soon Logcat will be an unmanageable mess. Also, a competitor might steal your ideas by
reading your stack traces to understand what your code is doing.

On the other hand, sometimes a stack trace showing what your code does is exactly what you need. If
you are seeking help with a problem at stackoverflow.com or forums.bignerdranch.com, it often
helps to include a stack trace. You can copy and paste lines directly from Logcat.

https://stackoverflow.com
https://forums.bignerdranch.com

Chapter 5 Debugging Android Apps

88

Setting breakpoints
Now you will use the debugger that comes with Android Studio to track down the same bug. You will
set a breakpoint in moveToNext() to see whether it was called. A breakpoint pauses execution before
the line executes and allows you to examine line by line what happens next.

In QuizViewModel.kt, return to the moveToNext() function. Next to the first line of this function, click
the gray gutter area in the lefthand margin. You should see a red circle in the gutter like the one shown
in Figure 5.4. This is a breakpoint.

Figure 5.4 A breakpoint

To engage the debugger and trigger your breakpoint, you need to debug your app instead of running it.
To debug your app, click the Debug 'app' button (Figure 5.5). You can also navigate to Run → Debug
'app' in the menu bar. Your device will report that it is waiting for the debugger to attach, and then it
will proceed normally.

Figure 5.5 Debug app buttons

In some circumstances, you may want to debug a running app without relaunching it. You can attach
the debugger to a running application by clicking the Attach Debugger to Android Process button
shown in Figure 5.5 or by navigating to Run → Attach to process.... Choose your app’s process on the
dialog that appears and click OK, and the debugger will attach. Note that breakpoints are only active
when the debugger is attached, so any breakpoints that are hit before you attach the debugger will be
ignored.

Setting breakpoints

89

Click the NEXT button. In Figure 5.6, you can see that QuizViewModel.kt is now open in the editor
and that the line with the breakpoint where execution has paused is highlighted. The debug tool
window at the bottom of the screen is now visible. It contains the Frames and Variables views. (If the
debug tool window did not open automatically, you can open it by clicking the Debug tool window bar
at the bottom of the Android Studio window.)

Figure 5.6 Stop right there!

Chapter 5 Debugging Android Apps

90

You can use the arrow buttons at the top of the debug tool window (Figure 5.7) to step through your
program. You can use the Evaluate Expression button to execute simple Kotlin statements on demand
during debugging, which is a powerful tool.

Figure 5.7 Debug tool window controls

Now that you are stopped at an interesting point of execution, you can take a look around. The
Variables view allows you to examine the values of the objects in your program. At the top, you should
see the value this (the QuizViewModel instance itself).

Expand the this variable to see all the variables declared in QuizViewModel and in QuizViewModel’s
superclass (ViewModel). For now, focus on the variables that you created.

You are only interested in one value – currentIndex – but it is not here. That is because
currentIndex is a computed property. Note that you also do not see currentQuestionAnswer or
currentQuestionText. But questionBank is there. Expand it and look at each one of its Questions
(Figure 5.8).

Figure 5.8 Inspecting variable values at runtime

Setting breakpoints

91

Even though you do not see currentIndex, you can still access it. Click the Evaluate Expression
button within the debug tool window. In the Expression: text field, enter currentIndex and press the
Evaluate button (Figure 5.9).

Figure 5.9 Evaluating the current index

The debugger will evaluate and print the current value of currentIndex. You pressed the NEXT button,
which should have resulted in currentIndex being incremented from 0 to 1. So you would expect
currentIndex to have a value of 1. However, as shown in Figure 5.9, currentIndex still has a value of
0.

Close the Evaluate window. As you already knew, the problematic behavior results from the code
within QuizViewModel.moveToNext() never being called (because you commented it out). You will
want to fix this implementation – but before you make any changes to code, you should stop debugging
your app. If you edit your code while debugging, the code running with the debugger attached will
be out of date compared to what is in the editor tool window, so the debugger can show misleading
information compared to the updated code.

Chapter 5 Debugging Android Apps

92

You can stop debugging in two ways: You can stop the program, or you can simply disconnect the
debugger. To stop the program, click the Stop button shown in Figure 5.7.

Now return your QuizViewModel to its former glory. You are done with the log message (and the TAG
constant), so delete them to keep your file tidy. Also, remove the breakpoint you set by clicking it in
the gutter.

Listing 5.5 Returning to normalcy (QuizViewModel.kt)
const val CURRENT_INDEX_KEY = "CURRENT_INDEX_KEY"
private const val TAG = "QuizViewModel"

class QuizViewModel(private val savedStateHandle: SavedStateHandle) : ViewModel() {
 ...
 fun moveToNext() {
 Log.d(TAG, "Updating question text", Exception())
 // currentIndex = (currentIndex + 1) % questionBank.size
 }
}

You have tried two ways of tracking down a misbehaving line of code: stack trace logging and setting
a breakpoint in the debugger. Which is better? Each has its uses, and one or the other will probably end
up being your favorite.

Logging stack traces has the advantage that you can see stack traces from multiple places in one log.
The downside is that to learn something new you have to add new log statements, rebuild, deploy, and
navigate through your app to see what happened.

The debugger is more convenient. If you run your app with the debugger attached (or attach the
debugger to the application’s process after it has started), then you can set a breakpoint while the
application is running and poke around to get information about multiple issues.

Android-Specific Debugging

93

Android-Specific Debugging
Most Android debugging is just like Kotlin debugging. However, you will sometimes run into issues
with Android-specific parts, such as resources, that the Kotlin compiler knows nothing about. In this
section, you will learn about Android Lint and issues with the build system.

Using Android Lint
Android Lint (or just “Lint”) is a static analyzer for Android code. A static analyzer is a program
that examines your code to find defects without running it. Lint uses its knowledge of the Android
frameworks to look deeper into your code and find problems that the compiler cannot. In many cases,
Lint’s advice is worth taking.

In Chapter 8, you will see Lint warn you about compatibility problems. Lint can also perform type-
checking for objects that are defined in XML.

You can manually run Lint to see all the potential issues in your project, including those that are less
serious. In fact, let’s add a small issue to the project. Suppose you did not like the question text being
centered, so you decided to left-align it. Open activity_main.xml and make that change.

Listing 5.6 Shifting the text left (activity_main.xml)
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 ...>

 <TextView
 android:id="@+id/question_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:gravity="left"
 android:padding="24dp"
 tools:text="@string/question_australia"/>

 ...
</LinearLayout>

Once you have made that change, select Analyze → Inspect Code... from the menu bar. You will be
asked which parts of your project you would like to inspect. Choose Whole project and click OK.
Android Studio will run Android Lint as well as a few other static analyzers on your code, such as
spelling and Kotlin checks.

Chapter 5 Debugging Android Apps

94

When the scan is complete, you will see categories of potential issues in the inspection tool window.
Expand the Android and Lint categories to see Lint’s information about your project (Figure 5.10).

Figure 5.10 Lint warnings

(Do not be concerned if you see a different number of Lint warnings. The Android toolchain is
constantly evolving, and new checks may have been added to Lint, new restrictions may have been
added to the Android framework, and newer versions of tools and dependencies may have become
available.)

Expand Internationalization and then, under it, expand Bidirectional Text to see more detailed
information on this issue in your project. Click Using left/right instead of start/end attributes to learn
about this particular warning (Figure 5.11).

Figure 5.11 Lint warning description

Lint is warning you that using right and left values for layout attributes could be problematic if your
app is used on a device set to a language that reads from right to left instead of left to right. (You will
learn about making your app ready for international use in Chapter 18.)

Using Android Lint

95

Dig further to see which file and line or lines of code caused the warning. Expand Using left/right
instead of start/end attributes. Click the offending file, activity_main.xml, to see the snippet of code
with the problem (Figure 5.12).

Figure 5.12 Viewing the code that caused the warning

Double-click the warning description that appears under the filename. This will open
activity_main.xml in the editor tool window and place the cursor on the line causing the warning
(which, not coincidentally, is the change you just made).

Undo the change you made and rerun Lint to confirm that the bidirectional text issue you just fixed
is no longer listed in the Lint results. For the most part, your app will execute just fine even if you do
not address the things Lint warns you about. Often, though, addressing Lint warnings can help prevent
problems in the future or make your users’ experience better.

We recommend you take all Lint warnings seriously, even if you ultimately decide not to address them.
Otherwise you could get used to ignoring Lint and miss a serious problem.

The Lint tool provides detailed information about each issue it finds and provides suggestions for
how to address it. We leave it to you as an exercise to review the other issues Lint found in GeoQuiz.
You can ignore the issues, fix them as Lint recommends, or use the Suppress button in the problem
description pane to suppress the warnings in the future. For the remainder of the GeoQuiz chapters, we
will assume you left the remaining Lint issues unaddressed.

Chapter 5 Debugging Android Apps

96

Build issues
Everyone will eventually make a mistake while coding: a forgotten piece of punctuation here, a typo
there. It is very common to have a build error happen while you are trying to run your app. Sometimes
these build errors will persist or appear seemingly out of nowhere. If this happens to you, here are
some things you can try:

Recheck the validity of the XML in your resource files

Gradle does a good job of surfacing errors to developers in an actionable way. However, there
are times when your app will not compile but Gradle gives you nothing to work with. Often, this
is caused by a typo in one of your XML files. Layout XML is not always validated, so typos in
these files may not be pointedly brought to your attention. Finding the typo and resaving the file
should fix the issue.

Clean your build

Select Build → Clean Project. Android Studio will rebuild the project from scratch, which often
results in an error-free build. We can all use a deep clean every now and then.

Sync your project with Gradle

If you make changes to your build.gradle files, you will need to sync those changes to update
your project’s build settings. Select File → Sync Project with Gradle Files. Android Studio will
rebuild the project from scratch with the correct project settings, which can help to resolve
issues after changing your Gradle configuration.

Run Android Lint

Pay close attention to the warnings from Lint. With this tool, you will often discover unexpected
issues.

Clean your project

If you have gotten this far down the debugging trail, things are not good. On very rare
occasions, clearing out the caches that Android Studio uses could help solve your problem.
Select File → Invalidate Caches/Restart.... Android Studio will perform some maintenance on
the project and restart itself when it is done.

If you are still having problems with resources (or are having different problems), give the error
messages and your layout files a fresh look. It is easy to overlook mistakes in the heat of the moment.
Check out any Lint errors and warnings as well. A cool-headed reconsideration of the error messages
may turn up a bug or typo.

Finally, if you are stuck or having other issues with Android Studio, check the archives at
stackoverflow.com or visit the forum for this book at forums.bignerdranch.com.

https://stackoverflow.com
https://forums.bignerdranch.com

Challenge: Using Conditional Breakpoints

97

Challenge: Using Conditional Breakpoints
Breakpoints are a very useful tool in debugging, but sometimes you hit your breakpoints too often
during execution and they become a burden rather than benefit. In these instances, you can use a
conditional breakpoint to limit the number of times execution pauses. You can access the dialog to
set up a conditional breakpoint by right-clicking an existing breakpoint. Try pausing execution within
the updateQuestion() function within MainActivity only when the answer to the current question is
“true.”

Challenge: Exploring the Layout Inspector
For support debugging layout file issues, the layout inspector can be used to interactively inspect how
a layout file is rendered to the screen. To use the layout inspector, make sure GeoQuiz is running in the
emulator and select Tools → Layout Inspector from the menu bar. Once the inspector is activated, you
can explore the properties of your layout by clicking the elements within the layout inspector view.

Challenge: Exploring the Profiler
The profiler tool window creates detailed reports for how your application is using an Android device’s
resources, such as CPU and memory. It is useful when assessing and tuning the performance of your
app.

To view the profiler tool window, run your app on a connected Android device or emulator and select
View → Tool Windows → Profiler from the menu bar. Once the profiler is open, you can see a timeline
with sections for CPU, memory, network, and energy.

Click into a section to see more details about your app’s usage of that resource. On the CPU view,
make sure to hit the Record button to capture more information about CPU usage. After you have
performed any interactions with your app that you would like to record, hit the Stop button to stop the
recording.

99

6
Testing

Up to this point, whenever you have made a change in GeoQuiz, you have been forced to compile and
deploy an updated version of your app. After waiting for the updated app to install on your device, you
can finally interact with the app and observe the new changes. This is a relatively slow process, even
for a small app, and it will only get slower as your app becomes more complex.

Unit testing is the practice of writing and using small programs to verify the standalone behavior of a
unit of code within your app. It can speed up the cycle of developing new features and then verifying
that they work as expected. And as your app gains more functionality, unit testing can give you more
confidence that your existing functionality remains intact, preventing regressions in behavior – bugs
where features that previously worked stop working.

In this chapter, you will get your feet wet by writing some tests to validate existing functionality within
GeoQuiz.

Two Types of Tests
Unit tests on Android fall into two buckets: JVM tests and instrumented tests. JVM tests execute on
your development machine (that is, your laptop or desktop) through a JVM. Instrumented tests execute
directly on an Android device. Each type of test has benefits and downsides, so you will find that you
use both depending on what you need at a particular point in development.

JVM tests can complete execution in milliseconds, while instrumented tests are orders of magnitude
slower and can take seconds to complete. On the flip side, since instrumented tests execute directly on
the device that runs your app, you can be confident that the tests accurately represent what will happen
when users interact with your app. Additionally, without workarounds, you can only interact with the
Android SDK (classes like Activity, TextView, and so on) through instrumented tests.

The different test types reside in different source sets in the codebase. With Gradle, different groups of
code – source sets – are compiled for different situations.

Chapter 6 Testing

100

In Android Studio, switch your project tool window to the Project view so you can see GeoQuiz’s
directory structure. Expand the GeoQuiz/app/src/ directory. It has three subdirectories: androidTest,
main, and test [unitTest].

Figure 6.1 A look at the src subdirectories

These three subdirectories are source sets. So far, you have been writing code in the main source set.
It holds the code that is compiled and packaged when you install the app on an Android device. JVM
tests are located in the test source set. Instrumented tests are located in the androidTest source set.

Switch back to the Android view. The three source sets are still there, under the java
directory, but they are labeled differently. The directory with just your package name,
com.bignerdranch.android.geoquiz, is the main source set. The two testing source
sets are highlighted green and have their names in parentheses after the package name:
com.bignerdranch.android.geoquiz (androidTest) for instrumented tests and
com.bignerdranch.android.geoquiz (test) for JVM tests.

JVM Tests

101

JVM Tests
Let’s look at a JVM test to see how it is structured. When Android Studio generated GeoQuiz’s project
files, it also generated some unit tests for you. In com.bignerdranch.android.geoquiz (test), find
and open ExampleUnitTest.kt:

 class ExampleUnitTest {
 @Test
 fun addition_isCorrect() {
 assertEquals(4, 2 + 2)
 }
 }

Both JVM and instrumented tests are executed using the JUnit testing framework. JUnit is the most
popular way of unit testing code in Java and Kotlin and is widely supported on Android.

JUnit tests are encapsulated by classes. Within these classes, individual tests are functions marked by
the @Test annotation, which you can see in the example. When running your tests, JUnit finds and
executes the annotated functions.

The normal rules for naming functions do not apply to test functions. In fact, names for test functions
should be descriptive and verbose. We generally prefer names that describe the behavior we are trying
to verify. The name of the example test, addition_isCorrect(), clearly shows what it is designed to
check. It is a simple test that checks an expected value against an operation – here, 4 and 2 + 2.

To perform this check, addition_isCorrect uses the assertEquals() assertion. With JUnit, you can
assert that two values are equal, as in this example, or that one value is true, or any of several other
conditions. You can also perform multiple assertions within a single test.

JUnit uses these assertions to determine whether your test passes or fails: If any of the assertions fails,
then the entire test fails. Here, assertEquals() function takes in two parameters: 4 and 2 + 2. Since
those expressions evaluate to the same value, the assertion passes – and, as a result, the test passes.

On the left side of the editor tool window, in the gray area known as the gutter, you should see a

 icon on the same line as the class definition. Click that icon and then, in the pop-up, click Run
'ExampleUnitTest' (Figure 6.2).

Chapter 6 Testing

102

Figure 6.2 Running your unit test

After compiling your code, Android Studio will open the run tool window and execute the unit tests for
the class. When the work is complete, you will see that your test passed (Figure 6.3).

Figure 6.3 The results of running your unit test

The Tests passed: 1 result in the lower-left corner of the Android Studio window indicates the test’s
successful result. To see what a failing test looks like, try changing the 4 to a 5. Run the test again.
Make sure to revert your changes before moving on.

Unit tests can be quick and easy ways to verify that your code is behaving the way you expect. And
JVM tests like addition_isCorrect() execute very quickly: The time required will vary based on
the horsepower of your development machine, but it could take as little as a millisecond to complete
execution.

JVM Tests

103

Now it is time for you to write your own test. A common pattern is to group and name tests based
on the class that they are testing, so, for example, MainActivity would have its associated tests in
a class called MainActivityTest. The first tests you are going to write will verify the behavior of
QuizViewModel.

You could create a new class file within the test source set and set up a QuizViewModelTest class
definition yourself, but Android Studio can help you with this common task. In the project tool
window, find and open QuizViewModel.kt. Now, in the editor tool window, place your cursor
anywhere in the class definition and press Command-Shift-T (Ctrl-Shift-T). In the pop-up, select
Create New Test... (Figure 6.4).

Figure 6.4 Creating a new test

This opens the Create Test dialog (Figure 6.5). The defaults for the name (the class name plus “Test”)
and the destination package are fine, and you will not be using any of the checkbox options. But there
is one field you do need to change: Select JUnit4 from the Testing library dropdown. (JUnit4 is the
testing framework Google supports for Android.)

Figure 6.5 Creating your own unit test

Chapter 6 Testing

104

(If you see JUnit4 library not found in the module, click the Fix button and wait a moment for the library
to be added and synced.)

Click OK. The next dialog asks you to choose a directory for your new test file. Since the code you are
testing does not interact with the core Android SDK, you can create a JVM test. Select the folder with
/test/ in its path and click OK (Figure 6.6).

Figure 6.6 The test directory for JVM tests

Your new QuizViewModelTest.kt file will open in the editor:

 package com.bignerdranch.android.geoquiz

 import org.junit.Assert.*

 class QuizViewModelTest

JVM Tests

105

As in ExampleUnitTest, you are going to write functions with the @Test annotation. However, your
functions will be slightly more complex than the addition_isCorrect() example.

Within a unit test, code is normally organized in three distinct phases: first, you set up your testing
environment, then you test a specific unit of code, and finally you verify that the unit of code behaves
the way you expect. (You will sometimes see this pattern expressed as given, when, then.)

addition_isCorrect() is a very basic test. It requires no setup, and it tests and verifies behavior on
a single line. Your tests will set up by directly initializing a QuizViewModel, test by performing some
action on your QuizViewModel, and then verify by confirming that the output is what you expect.

The first test you will write will verify that your QuizViewModel provides the correct question text for
the first question just after it is initialized.

Recall that QuizViewModel’s only constructor parameter is the SavedStateHandle. You will first
need to initialize a saved instance state, which you can do with just an empty constructor, so that you
can initialize a QuizViewModel. Then you can use the same assertEquals() function you saw in
the example to verify that the currentQuestionText property on your QuizViewModel provides the
expected value.

Write your test, using the descriptive name providesExpectedQuestionText():

Listing 6.1 Writing your first JVM test (QuizViewModelTest.kt)
import androidx.lifecycle.SavedStateHandle
import org.junit.Assert.assertEquals
import org.junit.Test

class QuizViewModelTest {
 @Test
 fun providesExpectedQuestionText() {
 val savedStateHandle = SavedStateHandle()
 val quizViewModel = QuizViewModel(savedStateHandle)
 assertEquals(R.string.question_australia, quizViewModel.currentQuestionText)
 }
}

Run the test by clicking the icon next to QuizViewModelTest and verify that it passes. Note that this
test includes set-up and verify phases, but no test behavior. Your next test will include all three phases.

The empty constructor is not the only one available to SavedStateHandle. You can also pass an
initial saved instance state as a map of key-value pairs into the SavedStateHandle constructor. Take
advantage of this functionality to write a test verifying the expected behavior when you are at the end
of the question bank and move to the next question: It should wrap around to the first question.

Listing 6.2 Passing input to your QuizViewModel (QuizViewModelTest.kt)
class QuizViewModelTest {
 ...
 @Test
 fun wrapsAroundQuestionBank() {
 val savedStateHandle = SavedStateHandle(mapOf(CURRENT_INDEX_KEY to 5))
 val quizViewModel = QuizViewModel(savedStateHandle)
 assertEquals(R.string.question_asia, quizViewModel.currentQuestionText)
 quizViewModel.moveToNext()
 assertEquals(R.string.question_australia, quizViewModel.currentQuestionText)
 }
}

Chapter 6 Testing

106

Run both your tests and verify that they pass.

The ability to create instances of a ViewModel and pass data in as constructor parameters allows you to
write useful and reliable unit tests. This is one of the many reasons we recommend keeping business
logic in ViewModels rather than Android components like Activity.

Instrumented Tests with Espresso and
ActivityScenario
Let’s move on to instrumented tests. Begin by checking out the example that Android
Studio created. In com.bignerdranch.android.geoquiz (androidTest), find and open
ExampleInstrumentedTest.kt:

 @RunWith(AndroidJUnit4::class)
 class ExampleInstrumentedTest {
 @Test
 fun useAppContext() {
 // Context of the app under test.
 val appContext = InstrumentationRegistry.getInstrumentation().targetContext
 assertEquals("com.bignerdranch.android.geoquiz", appContext.packageName)
 }
 }

Much of this code is similar to the tests you have seen so far: You have a class containing a function
annotated with @Test, and within that function there is an assertion to verify some behavior. But there
are also some differences: First, the class itself has an annotation, @RunWith(AndroidJUnit4::class),
which signals to JUnit that this test should be executed on an Android device. And the test function
relies on the Android SDK, specifically to verify that the app’s package name is the same as the value
you set when you created the app.

You are about to run ExampleInstrumentedTest, but you have some housekeeping to take care of
first. Since instrumented tests run on an Android device, not your development machine, you need to
either connect an Android device, as you did in Chapter 2, or run an emulator. Make sure the device
dropdown at the top of the Android Studio window shows the device or emulator you want to use, then

click the icon in the gutter next to ExampleInstrumentedTest to run the test. Your test will execute,
and the successful result should display in the lower-left corner of the Android Studio window.

Now that you have seen how instrumented tests work, you will write a few tests of your own to cover
the functionality in MainActivity. You are going to use an API called ActivityScenario to set up
your testing environment, and you will use the Espresso library to test and verify the behavior within
MainActivity.

Create your test class file using the same Android Studio shortcut you used for QuizViewModelTest: In
the project tool window, find and open MainActivity.kt. Place your cursor inside the class definition
in the editor and press Command-Shift-T (Ctrl-Shift-T). Select Create New Test... in the pop-up.

Instrumented Tests with Espresso and ActivityScenario

107

In the Create Test dialog, there are two fields you want to change this time. First, select JUnit4 from
the Testing library dropdown. (As before, click the Fix button if you see JUnit4 library not found
in the module.) Second, check both setUp/@Before and teardown/@After for the Generate option
(Figure 6.7).

Figure 6.7 Creating your own instrumented test

Chapter 6 Testing

108

Click OK. The final dialog asks you to choose the destination directory of the test. Since the code you
are testing interacts directly with the Android SDK, you need to create an instrumented test. Select the
folder containing /androidTest/ in its path and click OK (Figure 6.8).

Figure 6.8 The androidTest directory selection

Instrumented Tests with Espresso and ActivityScenario

109

Android Studio will generate and open a fresh MainActivityTest.kt:

 package com.bignerdranch.android.geoquiz

 import org.junit.After
 import org.junit.Before

 class MainActivityTest {

 @Before
 fun setUp() {
 }

 @After
 fun tearDown() {
 }
 }

Tests usually require a consistent environment to run in. The setUp() function, as the name suggests,
allows you to set up that environment. The @Before annotation ensures that JUnit executes the setUp()
function before every test. Similarly, the @After annotation ensures that tearDown(), where you can
take care of any needed clean-up, executes after each test. (These annotations are also available for
JVM tests.)

Since you cannot directly create an instance of MainActivity, you will use ActivityScenario. It will
handle creating an instance for you and will provide an isolated environment in which you can test the
instance. Set up the ActivityScenario as shown:

Listing 6.3 Setting up your tests for MainActivity (MainActivityTest.kt)
package com.bignerdranch.android.geoquiz

import androidx.test.core.app.ActivityScenario
import androidx.test.core.app.ActivityScenario.launch
import androidx.test.ext.junit.runners.AndroidJUnit4
import org.junit.After
import org.junit.Before
import org.junit.runner.RunWith

@RunWith(AndroidJUnit4::class)
class MainActivityTest {

 private lateinit var scenario: ActivityScenario<MainActivity>

 @Before
 fun setUp() {
 scenario = launch(MainActivity::class.java)
 }

 @After
 fun tearDown() {
 scenario.close()
 }
}

(Do not forget the @RunWith(AndroidJUnit4::class) annotation.)

Chapter 6 Testing

110

Now, setUp() will provide a fresh MainActivity before every test. At this point, you have your
MainActivity in the resumed lifecycle state, meaning it is fully visible and capable of user interaction.
This is the perfect environment to test its behavior.

The first behavior you are going to verify with a test is that when MainActivity is launched, the first
quiz question should be displayed. Enter the code below; we will walk you through what is happening
after you enter it.

Listing 6.4 Writing your first MainActivity test (MainActivityTest.kt)
...
import androidx.test.core.app.ActivityScenario.launch
import androidx.test.espresso.Espresso.onView
import androidx.test.espresso.assertion.ViewAssertions.matches
import androidx.test.espresso.matcher.ViewMatchers.withId
import androidx.test.espresso.matcher.ViewMatchers.withText
import androidx.test.ext.junit.runners.AndroidJUnit4
...
@RunWith(AndroidJUnit4::class)
class MainActivityTest {
 ...
 @After
 fun tearDown() {
 scenario.close()
 }

 @Test
 fun showsFirstQuestionOnLaunch() {
 onView(withId(R.id.question_text_view))
 .check(matches(withText(R.string.question_australia)))
 }
}

The position of your new showsFirstQuestionOnLaunch() function in the file does not matter, but it is
convention for the @Before and @After functions to come first. Note that you are using the same @Test
annotation that you used in your JVM tests.

This test shows off your first Espresso test. Espresso’s API is built as a fluent interface, meaning it
relies heavily on chaining methods together to perform complicated actions. This expression can be
broken into two pieces (Figure 6.9).

Figure 6.9 Breaking down an Espresso assertion

The first half, called the view matcher, finds the particular view you are interested in. In this case, that
is the TextView that displays the question text. The second half, called the view assertion, verifies the
behavior you are interested in. Here, that is displaying the question about Australia.

Fluent interfaces are meant to be easily readable. A simple translation of your test into English
would be: “On the view with the ID R.id.question_text_view, check that it matches the text from
R.string.question_australia.”

Instrumented Tests with Espresso and ActivityScenario

111

Use the icon in the gutter next to MainActivityTest to run the test you just wrote. After compiling
and eventually executing, you should see the test pass.

(If your test fails and gives you a cryptic error containing the message “lateinit property scenario has
not been initialized,” make sure you have disabled the “Don’t keep activities” setting on your device
that you enabled back in the section called Saving Data Across Process Death in Chapter 4.)

If you kept a close eye on your Android device while the test was running, you might have noticed
something: There were brief flashes where your MainActivity was displayed on the device.
ActivityScenario launched MainActivity, Espresso did its checks, and then your MainActivity was
closed.

Espresso is not limited to only observing UI. It can also perform actions (such as clicking buttons
or inputting text) on that UI. Write a second instrumented test to verify that when the user clicks the
NEXT button, they see the second question in the quiz. In addition to checking that your view matches
assertions, you will perform a click on your view:

Listing 6.5 Writing your second MainActivity test (MainActivityTest.kt)
...
import androidx.test.espresso.Espresso.onView
import androidx.test.espresso.action.ViewActions.click
import androidx.test.espresso.assertion.ViewAssertions.matches
...
@RunWith(AndroidJUnit4::class)
class MainActivityTest {
 ...
 @Test
 fun showsFirstQuestionOnLaunch() {
 onView(withId(R.id.question_text_view))
 .check(matches(withText(R.string.question_australia)))
 }

 @Test
 fun showsSecondQuestionAfterNextPress() {
 onView(withId(R.id.next_button)).perform(click())
 onView(withId(R.id.question_text_view))
 .check(matches(withText(R.string.question_oceans)))
 }
}

Run the tests. You should see that they both pass.

Chapter 6 Testing

112

The last test you are going to write will verify that you fixed the UI state loss on rotation bug
introduced back in Chapter 3.

ActivityScenario is a container for your MainActivity, and it gives you many ways to poke and
prod MainActivity. One of those tools is the ability to tear down and rebuild your Activity at will.
The function you are about to use, recreate(), will produce the same situation as when you rotate the
device. Thankfully, you have already fixed the state loss bug using SavedStateHandle. Your new test
will verify that.

Listing 6.6 Checking that re-creation is handled (MainActivityTest.kt)
@RunWith(AndroidJUnit4::class)
class MainActivityTest {
 ...
 @Test
 fun showsSecondQuestionAfterNextPress() {
 onView(withId(R.id.next_button)).perform(click())
 onView(withId(R.id.question_text_view))
 .check(matches(withText(R.string.question_oceans)))
 }

 @Test
 fun handlesActivityRecreation() {
 onView(withId(R.id.next_button)).perform(click())
 scenario.recreate()
 onView(withId(R.id.question_text_view))
 .check(matches(withText(R.string.question_oceans)))
 }
}

Run all three tests and confirm that they all pass.

Instrumented tests for Activitys are important – and they are also more complicated to write and
slower to run than JVM tests on ViewModel. Plus, ViewModel tests allow you to fairly easily control
the input and output of a unit of code, which is the foundation for a well-written test. This difference
in “testability” is one of the many reasons we recommend keeping business logic in ViewModels rather
than Android components like Activity.

You now have the fundamentals of testing on Android down. But there is still so much more to learn.
There are entire books written on how to test software.

The best advice we can give here is to keep trying out new techniques during testing. Testing is a skill
that must be honed over time. As you gain more experience writing Android code and writing tests to
validate behavior, you will write better tests. And with better tests, you will release better apps.

Challenge: Asserting Yourself
In this chapter, you used assertEquals() to make assertions on your QuizViewModel. Checking
for equality is not the only assertion you can make in JUnit tests. You can also check whether
something is null (using assertNull()) or is true or false (using assertTrue() or assertFalse(),
respectively), among others. Try using assertTrue() or assertFalse() to verify that
QuizViewModel.currentQuestionAnswer behaves the way you expect it to.

113

7
Your Second Activity

In this chapter, you will add a second activity to GeoQuiz. An activity controls a screen of information,
and your new activity will add a second screen that offers users a chance to cheat on the current
question by showing the answer. Figure 7.1 shows the new activity.

Figure 7.1 CheatActivity offers the chance to peek at the answer

Chapter 7 Your Second Activity

114

If users choose to view the answer and then return to the MainActivity and answer the question, they
will get a new message, shown in Figure 7.2.

Figure 7.2 MainActivity knows if you’ve been cheating

Why is this a good Android programming exercise? Because you will learn how to:

• Create a new activity and a new layout for it.

• Start an activity from another activity. Starting an activity means asking the OS to create an
activity instance and call its onCreate(Bundle?) function.

• Pass data between the parent (starting) activity and the child (started) activity.

Setting Up a Second Activity

115

Setting Up a Second Activity
There is a lot to do in this chapter. Fortunately, some of the grunt work can be done for you by Android
Studio’s New Android Activity wizard.

Before you invoke the magic, open res/values/strings.xml and add all the strings you will need for
this chapter.

Listing 7.1 Adding strings (res/values/strings.xml)
<resources>
 ...
 <string name="incorrect_toast">Incorrect!</string>
 <string name="warning_text">Are you sure you want to do this?</string>
 <string name="show_answer_button">Show Answer</string>
 <string name="cheat_button">Cheat!</string>
 <string name="judgment_toast">Cheating is wrong.</string>
</resources>

Chapter 7 Your Second Activity

116

Creating a new activity
Creating an activity typically involves touching at least three files: the Kotlin class file, an XML layout
file, and the application manifest. If you touch those files in the wrong ways, Android can get mad. To
ensure that you do it right, you can use Android Studio’s New Android Activity wizard.

Launch the New Android Activity wizard by right-clicking the app/java folder in the project tool
window. Choose New → Activity → Empty Activity, as shown in Figure 7.3.

Figure 7.3 The New Activity menu

Creating a new activity

117

You should see a dialog like Figure 7.4. Set Activity Name to CheatActivity. This is the name of your
Activity subclass. Layout Name will be automatically set to activity_cheat. This is the base name of
the layout file the wizard creates.

Figure 7.4 The New Empty Activity wizard

Check that the package name is com.bignerdranch.android.geoquiz. This determines where
CheatActivity.kt will live on the filesystem. The defaults for the remaining fields are fine. Click the
Finish button to make the magic happen.

Chapter 7 Your Second Activity

118

Now it is time to make the UI look good. The screenshot at the beginning of the chapter shows you
what CheatActivity’s view should look like. Figure 7.5 shows the view definitions.

Figure 7.5 Diagram of layout for CheatActivity

Open res/layout/activity_cheat.xml and switch to the Code view.

Try creating the XML for the layout using Figure 7.5 as a guide. Replace the sample layout with a new
LinearLayout and so on down the tree. You can check your work against Listing 7.2.

Listing 7.2 Filling out the second activity’s layout
(res/layout/activity_cheat.xml)

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical"
 tools:context="com.bignerdranch.android.geoquiz.CheatActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/warning_text"/>

 <TextView
 android:id="@+id/answer_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 tools:text="Answer"/>

 <Button
 android:id="@+id/show_answer_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/show_answer_button"/>

</LinearLayout>

A new activity subclass

119

Switch to the Design tab of the editor tool window to preview the layout. If it looks like Figure 7.5, you
are ready to move on.

A new activity subclass
CheatActivity.kt may have opened automatically in the editor tool window. If it did not, open it from
the project tool window.

The CheatActivity class already includes a basic implementation of onCreate(Bundle?) that passes
the resource ID of the layout defined in activity_cheat.xml to setContentView(…). To match your
first activity, update your new activity to use View Binding. Since your layout for CheatActivity is
named activity_cheat.xml, View Binding will generate a class named ActivityCheatBinding.

Listing 7.3 Using View Binding in CheatActivity (CheatActivity.kt)
class CheatActivity : AppCompatActivity() {
 private lateinit var binding: ActivityCheatBinding

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_cheat)
 binding = ActivityCheatBinding.inflate(layoutInflater)
 setContentView(binding.root)
 }
}

CheatActivity will eventually do more in its onCreate(Bundle?) function. For now, let’s take a
look at another thing the New Android Activity wizard did for you: declaring CheatActivity in the
application’s manifest.

Chapter 7 Your Second Activity

120

Declaring activities in the manifest
 The manifest is an XML file containing metadata that describes your application to the Android OS.
The file is always named AndroidManifest.xml, and it lives in the app/manifests directory of your
project.

In the project tool window, find and open manifests/AndroidManifest.xml. You can also use
Android Studio’s Find File dialog by pressing Command-Shift-O (Ctrl-Shift-N) and starting to type the
filename. Once it has guessed the right file, press Return to open it.

Every activity in an application must be declared in the manifest so that the OS can access it.

When you used the New Project wizard to create MainActivity, the wizard declared the activity
for you. Likewise, the New Android Activity wizard declared CheatActivity by adding the XML
highlighted below:

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.geoquiz">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.GeoQuiz">
 <activity
 android:name=".CheatActivity"
 android:exported="false" />
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

 </manifest>

The android:name attribute is required, and the dot at the start of this attribute’s value tells the OS that
this activity’s class is in the package specified in the package attribute in the manifest element at the
top of the file.

You will sometimes see a fully qualified android:name attribute, like
android:name="com.bignerdranch.android.geoquiz.CheatActivity". The long-form notation is
identical to the version above.

There are many interesting things in the manifest, but for now, let’s stay focused on getting
CheatActivity up and running. You will learn about the different parts of the manifest as you work
through this book.

Adding a cheat button to MainActivity

121

Adding a cheat button to MainActivity
The plan is for the user to press a button in MainActivity to get an instance of CheatActivity
onscreen. So you need a new button in res/layout/activity_main.xml.

You can see in Figure 7.2 that the new CHEAT! button is positioned above the NEXT button. In the
layout, define the new button as a direct child of the root LinearLayout, right before the definition of
the NEXT button.

Listing 7.4 Adding a cheat button to the layout
(res/layout/activity_main.xml)
 ...
 </LinearLayout>

 <Button
 android:id="@+id/cheat_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="24dp"
 android:text="@string/cheat_button" />

 <Button
 android:id="@+id/next_button"
 .../>

</LinearLayout>

Now, in MainActivity.kt, set a View.OnClickListener stub for the CHEAT! button.

Listing 7.5 Wiring up the cheat button (MainActivity.kt)
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private val quizViewModel: QuizViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.nextButton.setOnClickListener {
 quizViewModel.moveToNext()
 updateQuestion()
 }

 binding.cheatButton.setOnClickListener {
 // Start CheatActivity
 }

 updateQuestion()
 }
 ...
}

Now you can get to the business of starting CheatActivity.

Chapter 7 Your Second Activity

122

Starting an Activity
The simplest way one activity can start another is with the startActivity(Intent) function.

If you are coming from other programming languages and platforms, your first instinct might be to call
the constructor on the activity you want to start. Unfortunately, that will not work. Instead you have to
call startActivity(Intent), and the OS will manage creating your activity for you.

In particular, your call is sent to a part of the OS called the ActivityManager. The ActivityManager
then creates the Activity instance and calls its onCreate(Bundle?) function, as shown in Figure 7.6.

Figure 7.6 Starting an activity

How does the ActivityManager know which Activity to start? That information is in the Intent
parameter.

Communicating with intents
An intent is an object that a component can use to communicate with the OS. The only components
you have seen so far are activities, but there are also services, broadcast receivers, and content
providers.

Intents are multipurpose communication tools, and the Intent class provides different constructors
depending on what you are using the intent to do.

In this case, you are using an intent to tell the ActivityManager which activity to start, so you will use
a constructor that allows you to pass in a Context and a reference to the CheatActivity class.

Within cheatButton’s listener, create an Intent that includes the CheatActivity class. Then pass the
intent into startActivity(Intent).

Listing 7.6 Starting CheatActivity (MainActivity.kt)
binding.cheatButton.setOnClickListener {
 // Start CheatActivity
 val intent = Intent(this, CheatActivity::class.java)
 startActivity(intent)
}

The Class argument you pass to the Intent constructor specifies the activity class that the
ActivityManager should start. The Context argument tells the ActivityManager which application
package the activity class can be found in.

Passing Data Between Activities

123

Before starting the activity, the ActivityManager checks the package’s manifest for a declaration with
the same name as the specified Class. If it finds a declaration, it starts the activity, and all is well. If
it does not, you get a nasty ActivityNotFoundException, which will crash your app. This is why all
your activities must be declared in the manifest.

Run GeoQuiz. Press the CHEAT! button, and an instance of your new activity will appear onscreen.
Now press the Back button. This will destroy the CheatActivity and return you to the MainActivity.

Explicit and implicit intents
When you create an Intent with a Context and a Class object, you are creating an explicit intent. You
use explicit intents to start specific activities, most often within your own application.

It may seem strange that two activities within your application must communicate via the
ActivityManager, which is outside your application. However, this pattern makes it easy for an
activity in one application to work with an activity in another application.

When an activity in your application wants to start an activity in another application, you create an
implicit intent. You will use implicit intents in Chapter 16.

Passing Data Between Activities
Now that you have a MainActivity and a CheatActivity, you can think about passing data between
them. Figure 7.7 shows what data you will pass between the two activities.

Figure 7.7 The conversation between MainActivity and CheatActivity

The MainActivity will inform the CheatActivity of the answer to the current question when the
CheatActivity is started.

When the user presses the Back button to return to the MainActivity, the CheatActivity will be
destroyed. In its last gasp, it will send data to the MainActivity about whether the user cheated.

You will start with passing data from MainActivity to CheatActivity.

Chapter 7 Your Second Activity

124

Using intent extras
To inform the CheatActivity of the answer to the current question, you will pass it the value of:

 quizViewModel.currentQuestionAnswer

You will send this value as an extra on the Intent that is passed into startActivity(Intent).

Extras are arbitrary data that the calling activity can include with an intent. You can think of them like
constructor arguments, even though you cannot use a custom constructor with an activity subclass.
(Android creates activity instances and is responsible for their lifecycle.) The OS forwards the intent to
the recipient activity, which can then access the extras and retrieve the data, as shown in Figure 7.8.

Figure 7.8 Intent extras: communicating with other activities

An extra is structured as a key-value pair, like the one you used to save out the value of currentIndex
in QuizViewModel.

To add an extra to an intent, you use Intent.putExtra(…). In particular, you will be calling
putExtra(name: String, value: Boolean).

Intent.putExtra(…) comes in many flavors, but it always has two arguments. The first argument is
always a String key, and the second argument is the value, whose type will vary. It returns the Intent
itself, so you can chain multiple calls if you need to.

In CheatActivity.kt, add a key for the extra. (We have broken the new line of code to fit on the
printed page. You can enter it on one line.)

Listing 7.7 Adding an extra constant (CheatActivity.kt)
private const val EXTRA_ANSWER_IS_TRUE =
 "com.bignerdranch.android.geoquiz.answer_is_true"

class CheatActivity : AppCompatActivity() {
 ...
}

An activity may be started from several different places, so you should define keys for extras on the
activities that retrieve and use them. Using your package name as a qualifier for your extra, as shown in
Listing 7.7, prevents name collisions with extras from other apps.

Using intent extras

125

Now you could return to MainActivity and put the extra on the intent, but there is a better approach.
There is no reason for MainActivity, or any other code in your app, to know the implementation
details of what CheatActivity expects as extras on its Intent. Instead, you can encapsulate that work
into a newIntent(…) function.

Create this function in CheatActivity now. Place the function inside a companion object.

Listing 7.8 A newIntent(…) function for CheatActivity (CheatActivity.kt)
class CheatActivity : AppCompatActivity() {

 private lateinit var binding: ActivityCheatBinding

 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }

 companion object {
 fun newIntent(packageContext: Context, answerIsTrue: Boolean): Intent {
 return Intent(packageContext, CheatActivity::class.java).apply {
 putExtra(EXTRA_ANSWER_IS_TRUE, answerIsTrue)
 }
 }
 }
}

This function allows you to create an Intent properly configured with the extras CheatActivity will
need. The answerIsTrue argument, a Boolean, is put into the intent with a private name using the
EXTRA_ANSWER_IS_TRUE constant. You will extract this value momentarily.

A companion object allows you to access functions without having an instance of a class, similar to
static functions in Java. Using a newIntent(…) function inside a companion object like this for your
activity subclasses will make it easy for other code to properly configure its launching intents.

Speaking of other code, use this new function in MainActivity’s cheat button listener now.

Listing 7.9 Launching CheatActivity with an extra (MainActivity.kt)
binding.cheatButton.setOnClickListener {
 // Start CheatActivity
 val intent = Intent(this, CheatActivity::class.java)
 val answerIsTrue = quizViewModel.currentQuestionAnswer
 val intent = CheatActivity.newIntent(this@MainActivity, answerIsTrue)
 startActivity(intent)
}

You only need one extra in this case, but you can put multiple extras on an Intent if you need to. If
you do, add more arguments to your newIntent(…) function to stay consistent with the pattern.

To retrieve the value from the extra, you will use Intent.getBooleanExtra(String, Boolean).

The first argument of getBooleanExtra(…) is the name of the extra. The second argument is a default
answer to use if the key is not found.

Chapter 7 Your Second Activity

126

In CheatActivity, retrieve the value from the extra in onCreate(Bundle?) and store it in a member
variable.

Listing 7.10 Using an extra (CheatActivity.kt)
class CheatActivity : AppCompatActivity() {

 private lateinit var binding: ActivityCheatBinding

 private var answerIsTrue = false

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 binding = ActivityCheatBinding.inflate(layoutInflater)
 setContentView(binding.root)

 answerIsTrue = intent.getBooleanExtra(EXTRA_ANSWER_IS_TRUE, false)
 }
 ...
}

Note that Activity.getIntent() always returns the Intent that started the activity. This is what you
sent when calling startActivity(Intent).

Finally, wire up the answer TextView and the SHOW ANSWER button to use the retrieved value.

Listing 7.11 Enabling cheating (CheatActivity.kt)
class CheatActivity : AppCompatActivity() {

 private lateinit var binding: ActivityCheatBinding

 private var answerIsTrue = false

 override fun onCreate(savedInstanceState: Bundle?) {
 ...

 answerIsTrue = intent.getBooleanExtra(EXTRA_ANSWER_IS_TRUE, false)

 binding.showAnswerButton.setOnClickListener {
 val answerText = when {
 answerIsTrue -> R.string.true_button
 else -> R.string.false_button
 }
 binding.answerTextView.setText(answerText)
 }
 }
 ...
}

This code is pretty straightforward. You set the TextView’s text using TextView.setText(Int).
TextView.setText(…) has many variations, and here you use the one that accepts the resource ID of a
string resource.

Run GeoQuiz. Press CHEAT! to get to CheatActivity. Then press SHOW ANSWER to reveal the
answer to the current question.

Getting a result back from a child activity

127

Getting a result back from a child activity
At this point, the user can cheat with impunity. Let’s fix that by having the CheatActivity tell the
MainActivity whether the user chose to view the answer.

When you want to hear back from the child activity, you register your MainActivity for an
ActivityResult using the Activity Results API.

The Activity Results API is different from other APIs you have interacted with so far within the
Activity class. Instead of overriding a lifecycle method, you will initialize a class property within
your MainActivity using the registerForActivityResult() function. That function takes in two
parameters: The first is a contract that defines the input and output of the Activity you are trying to
start. And the second is a lambda in which you parse the output that is returned.

In MainActivity, initialize a property named cheatLauncher using registerForActivityResult().

Listing 7.12 Creating cheatLauncher (MainActivity.kt)
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private val quizViewModel: QuizViewModel by viewModels()

 private val cheatLauncher = registerForActivityResult(
 ActivityResultContracts.StartActivityForResult()
) { result ->
 // Handle the result
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }
 ...
}

The contract you are using is ActivityResultContracts.StartActivityForResult. It is a basic
contract that takes in an Intent as input and provides an ActivityResult as output. There are
many other contracts you can use to accomplish other tasks (such as capturing video or requesting
permissions). You can even define your own custom contract. In Chapter 16, you will use a different
contract to allow the user to select a contact from their contacts list.

For now, you will do nothing with the result, but you will get back to this in a bit.

Chapter 7 Your Second Activity

128

To use your cheatLauncher, call the launch(Intent) function, which takes in the Intent you already
created.

Listing 7.13 Launching cheatLauncher (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.cheatButton.setOnClickListener {
 // Start CheatActivity
 val answerIsTrue = quizViewModel.currentQuestionAnswer
 val intent = CheatActivity.newIntent(this@MainActivity, answerIsTrue)
 startActivity(intent)
 cheatLauncher.launch(intent)
 }

 updateQuestion()
 }
 ...
}

Setting a result
There are two functions you can call in the child activity to send data back to the parent:

 setResult(resultCode: Int)
 setResult(resultCode: Int, data: Intent)

Typically, the result code is one of two predefined constants: Activity.RESULT_OK or
Activity.RESULT_CANCELED. (You can use another constant, RESULT_FIRST_USER, as an offset when
defining your own result codes.)

Setting result codes is useful when the parent needs to take different action depending on how the child
activity finished.

For example, if a child activity had an OK button and a Cancel button, the child activity would set a
different result code depending on which button was pressed. Then the parent activity would take a
different action depending on the result code.

Calling setResult(…) is not required of the child activity. If you do not need to distinguish
between results or receive arbitrary data on an intent, then you can let the OS send a default
result code. A result code is always returned to the parent if the child activity was started with
startActivityForResult(…). If setResult(…) is not called, then when the user presses the Back
button, the parent will receive Activity.RESULT_CANCELED.

Getting a result back from a child activity

129

Sending back an intent
In this implementation, you are interested in passing some specific data back to MainActivity. So you
are going to create an Intent, put an extra on it, and then call Activity.setResult(Int, Intent) to
get that data into MainActivity’s hands.

In CheatActivity, add a constant for the extra’s key and a private function that does this work. Then
call this function in the SHOW ANSWER button’s listener.

Listing 7.14 Setting a result (CheatActivity.kt)
const val EXTRA_ANSWER_SHOWN = "com.bignerdranch.android.geoquiz.answer_shown"
private const val EXTRA_ANSWER_IS_TRUE =
 "com.bignerdranch.android.geoquiz.answer_is_true"

class CheatActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.showAnswerButton.setOnClickListener {
 ...
 binding.answerTextView.setText(answerText)
 setAnswerShownResult(true)
 }
 }

 private fun setAnswerShownResult(isAnswerShown: Boolean) {
 val data = Intent().apply {
 putExtra(EXTRA_ANSWER_SHOWN, isAnswerShown)
 }
 setResult(Activity.RESULT_OK, data)
 }
 ...
}

When the user presses the SHOW ANSWER button, the CheatActivity packages up the result code
and the intent in the call to setResult(Int, Intent).

Then, when the user presses the Back button to return to the MainActivity, the ActivityManager
invokes the lambda defined within cheatLauncher on the parent activity. The parameters are the
original request code from MainActivity and the result code and intent passed into setResult(Int,
Intent).

Chapter 7 Your Second Activity

130

Figure 7.9 shows this sequence of interactions.

Figure 7.9 Sequence diagram for GeoQuiz

Getting a result back from a child activity

131

The final step is to extract the data returned in the lambda of cheatLauncher in MainActivity.

Handling a result
In QuizViewModel.kt, add a new property to hold the value that CheatActivity is passing back.
The user’s cheat status is part of the UI state. Stashing the value in QuizViewModel and using
SavedStateHandle means the value will persist across configuration changes and process death rather
than being destroyed with the activity, as discussed in Chapter 4.

Listing 7.15 Tracking cheating in QuizViewModel (QuizViewModel.kt)
...
const val IS_CHEATER_KEY = "IS_CHEATER_KEY"

class QuizViewModel(private val savedStateHandle: SavedStateHandle) : ViewModel() {
 ...
 private val questionBank = listOf(
 ...
)

 var isCheater: Boolean
 get() = savedStateHandle.get(IS_CHEATER_KEY) ?: false
 set(value) = savedStateHandle.set(IS_CHEATER_KEY, value)
 ...
}

Next, in MainActivity.kt, add the following lines in the lambda of cheatLauncher to pull the value
out of the result sent back from CheatActivity. You do not want to accidentally mark the user as a
cheater, so check whether the result code is Activity.RESULT_OK first.

Listing 7.16 Pulling out the data in cheatLauncher (MainActivity.kt)
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private val quizViewModel: QuizViewModel by viewModels()

 private val cheatLauncher = registerForActivityResult(
 ActivityResultContracts.StartActivityForResult()
) { result ->
 // Handle the result
 if (result.resultCode == Activity.RESULT_OK) {
 quizViewModel.isCheater =
 result.data?.getBooleanExtra(EXTRA_ANSWER_SHOWN, false) ?: false
 }
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }
 ...
}

Chapter 7 Your Second Activity

132

Finally, modify the checkAnswer(Boolean) function in MainActivity to check whether the user
cheated and respond appropriately.

Listing 7.17 Changing toast message based on value of isCheater
(MainActivity.kt)

class MainActivity : AppCompatActivity() {
 ...
 private fun checkAnswer(userAnswer: Boolean) {
 val correctAnswer: Boolean = quizViewModel.currentQuestionAnswer

 val messageResId = if (userAnswer == correctAnswer) {
 R.string.correct_toast
 } else {
 R.string.incorrect_toast
 }
 val messageResId = when {
 quizViewModel.isCheater -> R.string.judgment_toast
 userAnswer == correctAnswer -> R.string.correct_toast
 else -> R.string.incorrect_toast
 }
 Toast.makeText(this, messageResId, Toast.LENGTH_SHORT)
 .show()
 }
}

Run GeoQuiz. Press CHEAT!, then press SHOW ANSWER on the cheat screen. Once you cheat, press
the Back button. Try answering the current question. You should see the judgment toast appear.

What happens if you go to the next question? Still a cheater. If you wish to relax your rules around
cheating, try your hand at the challenge outlined in the section called Challenge: Tracking Cheat Status
by Question.

At this point, GeoQuiz is feature complete. In the next chapter, you will learn how to include the
newest Android features available while still supporting older versions of Android in the same
application.

How Android Sees Your Activities
Let’s look at what is going on OS-wise as you move between activities. First, when you click
the GeoQuiz app in the launcher, the OS does not start the application; it starts an activity in the
application. More specifically, it starts the application’s launcher activity. For GeoQuiz, MainActivity
is the launcher activity.

When the New Project wizard created the GeoQuiz application and MainActivity, it made
MainActivity the launcher activity by default. Launcher activity status is specified in the manifest by
the intent-filter element in MainActivity’s declaration:

How Android Sees Your Activities

133

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ... >

 <application
 ... >
 <activity
 android:name=".CheatActivity"
 android:exported="true" />
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

 </manifest>

After the instance of MainActivity is onscreen, the user can press the CHEAT! button. When this
happens, an instance of CheatActivity is started – on top of the MainActivity. These activities exist
in a stack (Figure 7.10).

Pressing the Back button in CheatActivity pops this instance off the stack, and the MainActivity
resumes its position at the top, as shown in Figure 7.10.

Figure 7.10 GeoQuiz’s back stack

A call to Activity.finish() in CheatActivity would also pop the CheatActivity off the stack.

Chapter 7 Your Second Activity

134

If you run GeoQuiz and press the Back button from the MainActivity, the MainActivity will be
moved to the background in its created state and you will return to the last screen you were viewing
before running GeoQuiz (Figure 7.11). For a little more detail on the difference in behavior when
navigating Back from MainActivity versus what happens in CheatActivity, check out the section
called For the More Curious: The Back Button and the Activity Lifecycle near the end of this chapter.

Figure 7.11 Looking at the Home screen

How Android Sees Your Activities

135

If you start GeoQuiz from the launcher application, pressing the Back button from MainActivity will
return you to the launcher (Figure 7.12).

Figure 7.12 Running GeoQuiz from the launcher

Pressing the Back button from the launcher will return you to the screen you were looking at before
you opened the launcher.

What you are seeing here is that the ActivityManager maintains a back stack and that this back stack
is not just for your application’s activities. Activities for all applications share the back stack, which is
one reason the ActivityManager is involved in starting your activities and lives with the OS and not
your application. The stack represents the use of the OS and device as a whole rather than the use of a
single application.

Chapter 7 Your Second Activity

136

For the More Curious: startActivityForResult
This chapter uses the Activity Result APIs to start and pass information back from CheatActivity.
These APIs are a relatively recent addition to Android. They were actually built on top of existing
APIs: the startActivityForResult() function and onActivityResult() callback. We recommend
using the Activity Result APIs, as they enable you to consume type-safe results and they encourage
developers to write more modular code – but you might see applications that call the older, lower-level
APIs directly.

There are many parallels between these two approaches.

The startActivityForResult() function is analogous to the launch(Intent) function you used
on cheatLauncher. The one additional parameter necessary for startActivityForResult() is a
requestCode that uniquely identifies your request for a result.

On the result side, the onActivityResult() callback maps closely to the lambda invoked on
cheatLauncher. You have access to the data and the result code and also the requestCode you passed
into startActivityForResult(). Since you can start many different activities for results, using the
legacy APIs means many requests could invoke the onActivityResult() callback. This is where your
requestCode comes in handy, as you can choose to perform certain actions only for certain requests.

If you see an application using the legacy startActivityForResult() and onActivityResult()
methods, consider migrating to the Activity Result APIs. These new APIs are easier to use and make it
easier to see how data is moving between activities in your application.

For the More Curious: The Back Button and the Activity Lifecycle

137

For the More Curious: The Back Button and the
Activity Lifecycle
In this chapter, you added CheatActivity and learned how the Android OS manages your activities
through ActivityManager. You also saw what happens to each of your activities when you press the
Back button while they are in the foreground: When you press Back from CheatActivity, it is popped
off the back stack and removed from system memory. But when you press Back from MainActivity,
it is only moved to the background – it still exists in memory, though it is not visible in its created
state. The same happens with MainActivity when you press the Home button to temporarily leave the
activity, as you did in the section called Temporarily leaving an activity in Chapter 3.

You may be wondering why Android treats your two activities differently with the same interaction.
The answer is because MainActivity is declared as the launcher activity in AndroidManifest.xml.
This declaration not only lets Android know this is the activity to start when users first launch the
app but also tells it to treat this entry point specially when popping it off the back stack. Keeping the
launcher activity in memory allows users to quickly resume using the app in a “warm state” after
navigating back instead of having to completely restart the application.

This is a fairly new behavior on Android, introduced with Android 12 (API 31). In previous Android
versions, your launcher activity would mirror the behavior of CheatActivity and be popped off
the back stack and removed from memory when the user navigated back. You will learn more about
Android versions and how they introduce new behaviors for the system and applications in Chapter 8.
For now, be aware that users will see subtly different behaviors when they press the Back button on
your launcher activity depending on which version of Android they are using.

If you would like to see this difference in action, we encourage you play around with different versions
of Android (either on an emulator or your physical device) and observe the Logcat statements you
added in MainActivity. Pay attention to when onDestroy() is called and when it is not.

Chapter 7 Your Second Activity

138

Challenge: Closing Loopholes for Cheaters
Cheaters never win. Unless, of course, they persistently circumvent your anticheating measures. Which
they probably will. Because they are cheaters.

GeoQuiz has a major loophole: Users can rotate CheatActivity after they cheat to clear out the
cheating result. When they go back to MainActivity, it is as if they never cheated at all.

Fix this bug by persisting CheatActivity’s UI state across rotation and process death using the
techniques you learned in Chapter 4.

Challenge: Tracking Cheat Status by Question
Currently, when the user cheats on a single question, they are considered a cheater on all the questions.
Update GeoQuiz to track whether the user cheated on a question-by-question basis. When the user
cheats on a given question, present them with the judgment toast any time they attempt to answer that
question. When a user answers a question they have not cheated on yet, show the correct or incorrect
toast accordingly.

139

8
Android SDK Versions and

Compatibility

Now that you have gotten your feet wet with GeoQuiz, let’s review some background information
about the different versions of Android. The information in this chapter is important to have under your
belt as you continue with the book and develop more complex and realistic apps.

Android SDK Versions
The Android operating system has been around for many years, starting with its first public release in
fall 2008. From a developer’s perspective, there have been 32 releases of Android – and counting.

Each update is referred to by a variety of names. The most familiar to users is the marketing name.
For years, Google named all releases for tasty treats (such as Donut, Jelly Bean, and Pie – the last
one to get that kind of name) in alphabetical order. Beginning with Android 10, released in 2019, the
marketing names for major releases use an incrementing number.

For each release, there are often additional names, such as a version number or a version code – but the
“name” most useful to developers is the API level. The first update was API level 1, and that number
has incremented by 1 for each subsequent update. The 32nd and latest release has the marketing name
Android 12L, version number 12, version code Sv2, and API level 32. Table 8.1 shows the information
for several recent releases.

Table 8.1 Recent Android versions
Marketing name Version number Version code API level

Android Nougat 7.0 N 24

Android Nougat 7.1 – 7.1.2 N_MR1 25

Android Oreo 8.0 O 26

Android Oreo 8.1.0 O_MR1 27

Android Pie 9 P 28

Android 10 10 Q 29

Android 11 11 R 30

Android 12 12 S 31

Android 12L 12 Sv2 32

Chapter 8 Android SDK Versions and Compatibility

140

Because there have been so many updates to Android over the years, it is very common for a device
to be running an older version of Android. The percentage of devices using each version changes
continuously, but one constant is that only around 5% of users adopt the newest version of Android
right away. Google has worked hard to improve the adoption rates (through efforts like Project
Mainline and Project Treble), but there are still many devices on older versions.

Why do so many devices still run older versions of Android? This is mostly due to heavy competition
among Android device manufacturers and US carriers. Carriers want features and phones that no other
network has. Device manufacturers feel this pressure, too – all their phones are based on the same OS,
but they want to stand out from the competition. The combination of pressures from the market and the
carriers means that there is a bewildering array of devices with proprietary, one-off modifications of
Android.

A device with a proprietary version of Android is not able to run a new version of Android released
by Google. Instead, it must wait for a compatible proprietary upgrade. That upgrade might not be
available until months after Google releases its version, if it is ever available. Manufacturers often
choose to spend resources on newer devices rather than keeping older ones up to date.

A sane minimum
The oldest version of Android that the exercises in this book support is API level 24. There are
references to legacy versions of Android, but the focus is on what we consider to be modern versions
(API level 24 and up). With the distribution of older releases dropping month by month, the amount of
work required to support those older versions eclipses the value supporting them can provide.

When you created the GeoQuiz project, you set a minimum SDK version within the New
Project wizard (Figure 8.1). (Note that Android uses the terms “SDK version” and “API level”
interchangeably.)

Minimum SDK version

141

Figure 8.1 Remember me?

In addition to the minimum supported version, you can also set the target version and the compile
version. Let’s take a look at the default choices and how to change them.

All these values are set in your build environment, so open the build.gradle file labeled Module
(GeoQuiz.app). Notice the values for compileSdk, minSdk, and targetSdk:

 ...
 compileSdk 32

 defaultConfig {
 applicationId "com.bignerdranch.android.geoquiz"
 minSdk 24
 targetSdk 32
 ...
 }
 ...

Minimum SDK version
The minSdk value is a hard floor below which the OS should refuse to install the app.

By setting this version to API level 24, you give Android permission to install GeoQuiz on devices
running API level 24 or higher. Android will refuse to install GeoQuiz on a device running anything
lower than API level 24.

Chapter 8 Android SDK Versions and Compatibility

142

Target SDK version
The targetSdk value tells Android which API level your app is designed to run on. Most often this
will be the latest Android release.

When would you lower the target SDK? New SDK releases can change how your app appears
on a device or even how the OS behaves behind the scenes. If you have already developed
an app, you should confirm that it works and looks as expected on new releases. Check the
documentation at developer.android.com/reference/android/os/Build.VERSION_CODES.html and
developer.android.com/about/versions to see where problems might arise.

If your app will have issues with a new release of Android, you can modify your app to work with
the new behavior and update the target SDK – or you can leave the codebase and target SDK as they
were. Not increasing the target SDK means that your app will continue running with the appearance
and behavior of the targeted version on which it worked well. This provides compatibility with newer
versions of Android, as changes in subsequent releases are ignored until the targetSdk is increased.

However, you cannot ignore new Android releases forever by keeping your target SDK low. Google
has restrictions on how low an app’s target SDK can be and still ship on the Google Play Store. As of
this writing, any new apps or app updates must have a target SDK of at least API level 30 – or they will
be rejected by the Play Store. This ensures that users can benefit from the performance and security
improvements in recent versions of Android. These version requirements will increase over time, as
new versions of Android are released, so make sure you keep an eye on the documentation to know
when you need to update your target version.

Compile SDK version
The last SDK setting is the compileSdk. While the minimum and target SDK versions are placed in the
AndroidManifest.xml when you build your app, to advertise those values to the OS, the compile SDK
version is private information between you and the compiler.

Android’s features are exposed through the classes and functions in the SDK. The compile SDK
version specifies which version to use when building your code. When Android Studio is looking to
find the classes and functions you refer to in your imports, the compile SDK version determines which
SDK version it checks against.

The best choice for a compile SDK version is the latest API level available. Later versions of the
compile SDK provide bug fixes, more compilation checks, and new APIs that you can use. There are
instances where incrementing the compile SDK version will cause build issues, but they are extremely
rare and can often be worked around. Unlike your target SDK version, changing your compile SDK
version will not change any runtime behavior of your app.

You can modify the minimum SDK version, target SDK version, and compile SDK version in your
app/build.gradle file. Remember that you must sync your project with the Gradle changes before
they will be reflected.

Compatibility and Android Programming
The delay in upgrades combined with regular new releases makes compatibility an important issue in
Android programming. To reach a broad market, Android developers must create apps that perform
well on devices running the most current version of Android plus previous versions – as well as on
different device form factors.

https://developer.android.com/reference/android/os/Build.VERSION_CODES.html
https://developer.android.com/about/versions/

Jetpack libraries

143

Jetpack libraries
In Chapter 4, you learned about the Jetpack libraries and AndroidX. In addition to offering new
features (like ViewModel), the Jetpack libraries offer backward compatibility for new features on
older devices and provide (or attempt to provide) consistent behavior across Android versions. Some
libraries, such as AppCompat (which you will learn about in Chapter 11), ensure that your app has a
consistent look and feel across all modern versions of Android. Other libraries, such as WorkManager
(which you will use in Chapter 22), provide a consistent environment to perform essential tasks within
your app.

Many of the AndroidX libraries in Jetpack are modifications of previous support libraries. You should
strive to use these libraries any time you can. This makes your life as a developer easier, because you
no longer have to worry about different results on different API versions. Your users also benefit,
because they will have the same experience no matter what version their device is running.

Unfortunately, the Jetpack libraries are not a compatibility cure-all, because not all the features you
will want to use are available in them. The Android team does a good job of adding new APIs to the
Jetpack libraries as time goes on, but you will still find cases where a certain API is unavailable. In this
case, you will need to use explicit version checks until a Jetpack version of the feature is added.

Safely adding code from later APIs
The difference between GeoQuiz’s minimum SDK version and compile SDK version leaves you with
a compatibility gap to manage. For example, what happens if you call code from an API later than the
minimum of API level 24? When your app is installed and run on a device running API level 24, it will
crash.

This used to be a testing nightmare. However, thanks to improvements in Android Lint, potential
problems caused by calling newer code on older devices can be caught at compile time. If you use code
from a higher version than your minimum SDK, Android Lint will report build errors.

Right now, all of GeoQuiz’s simple code was introduced in API level 24 or earlier. Let’s add some code
from after API level 24 and see what happens.

Open MainActivity.kt. At the bottom of the class, add a function that will blur the cheat button when
called.

Listing 8.1 Blurring the cheat button (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 private fun checkAnswer(userAnswer: Boolean) {
 ...
 }

 private fun blurCheatButton() {
 val effect = RenderEffect.createBlurEffect(
 10.0f,
 10.0f,
 Shader.TileMode.CLAMP
)
 binding.cheatButton.setRenderEffect(effect)
 }
}

Chapter 8 Android SDK Versions and Compatibility

144

Notice that a Lint error appears on the lines where you call RenderEffect.createBlurEffect(…) and
View.setRenderEffect(…), in the form of a red squiggly under the function name and, when you click
on the function, a red light bulb icon. These functions were added to the Android SDK in API level 31,
so this code would crash on a device running API level 30 or lower.

Because your compile SDK version is API level 32, the compiler has no problem with this code.
Android Lint, on the other hand, knows about your minimum SDK version, so it complains.

The error message reads something like Call requires API level 31 (Current min is 24). You can still run
the code with this warning (try it and see), but Lint knows it is not safe.

How do you get rid of this error? One option is to raise the minimum SDK version to 31. However, that
means your app can only be run on a select few devices. Plus, raising the minimum SDK version is not
really dealing with this compatibility problem as much as ducking it.

The way to appease Android Lint is to add an annotation declaring that the code you just wrote can
only run on devices running API level 31.

Listing 8.2 Making Android Lint happy (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 private fun checkAnswer(userAnswer: Boolean) {
 ...
 }

 @RequiresApi(Build.VERSION_CODES.S)
 private fun blurCheatButton() {
 val effect = RenderEffect.createBlurEffect(
 10.0f,
 10.0f,
 Shader.TileMode.CLAMP
)
 binding.cheatButton.setRenderEffect(effect)
 }
}

Now, invoke blurCheatButton() in onCreate(Bundle?):

Listing 8.3 Blurring the cheat button (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.cheatButton.setOnClickListener {
 ...
 }

 updateQuestion()

 blurCheatButton()
 }
 ...
}

The same Android Lint error appears (Figure 8.2). (If you do not see it right away, try rebuilding your
project with Build → Rebuild Project.)

Safely adding code from later APIs

145

Figure 8.2 Android Lint suggestions

Chapter 8 Android SDK Versions and Compatibility

146

The @RequiresApi annotation by itself does not resolve the compatibility issue – it makes callers
responsible for ensuring compatibility. To safely call your new function, you need to wrap the higher
API code in a conditional statement that checks the device’s version of Android.

Listing 8.4 Checking the device’s Android version first (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 binding.cheatButton.setOnClickListener {
 ...
 }

 updateQuestion()

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.S) {
 blurCheatButton()
 }
 }
 ...
}

The Build.VERSION.SDK_INT constant contains the API level for the version of Android used
by the device. You compare that version with the constant that stands for the S (API level
31) release. (Version codes are listed at developer.android.com/reference/android/os/
Build.VERSION_CODES.html.)

Now, your blurring code will only be called when the app is running on a device with API level 31 or
higher. You have made your code safe for API level 24, and Android Lint should now be content.

Run GeoQuiz on a device running API level 31 and check out your new blurred cheat button, then run
it on a device running a lower API level to ensure that it works as before.

https://developer.android.com/reference/android/os/Build.VERSION_CODES.html
https://developer.android.com/reference/android/os/Build.VERSION_CODES.html

Using the Android Developer Documentation

147

Using the Android Developer Documentation
Android Lint errors will tell you what API level your incompatible code is from. But you can also find
out which API level particular classes and functions belong to in Android’s developer documentation.

It is a good idea to get comfortable using the developer documentation right away. There is far too
much in the Android SDKs to keep in your head. And with new versions appearing regularly, you will
often need to find out what is new and how to use it.

The main page of the documentation is developer.android.com. It is split into seven parts: Platform,
Android Studio, Google Play, Jetpack, Kotlin, Docs, and Games. It is all worth perusing when you get
a chance. Each section outlines a different aspect of Android development, from just getting started to
deploying your app to the Play Store.

Platform Information on the basic platform, focusing on the supported form factors
and the different Android versions.

Android Studio Articles on the IDE to help you learn tools and workflows to make your life
as a developer easier.

Google Play Tips and tricks for deploying your apps as well as making your apps more
successful with users.

Jetpack Information about the Jetpack libraries and how the Android team is striving
to improve the app development experience. Some of the Jetpack libraries are
used in this book, but you should explore this section for the full list.

Kotlin Documentation on how to develop Android apps with Kotlin.

Docs The main page for the developer documentation. Here you will find
information on individual classes as well as a trove of tutorials and codelabs
that you can work through to improve your skills.

Games Documentation for making games that run on Android.

Open the developer documentation website and click the Docs tab. In the search bar at the top right,
enter RenderEffect.createBlurEffect to determine what API level the function belongs to. Select the
RenderEffect result (which is likely the first search result), and you will be taken to the class reference
page (Figure 8.3). On the right side of this page are links to its different sections.

https://developer.android.com

Chapter 8 Android SDK Versions and Compatibility

148

Figure 8.3 RenderEffect reference page

Find the createBlurEffect(…) function in the list on the right and click the function name to see
a description. To the right of the function signature, you can see that createBlurEffect(…) was
introduced in API level 31.

Figure 8.4 createBlurEffect(…) documentation

As you continue through this book, visit the developer documentation often. You will certainly need
the documentation to tackle the challenge exercises, but you should also explore it whenever you
get curious about particular classes, functions, or other topics. Android is constantly updating and
improving the documentation, so there is always something new to learn.

Challenge: Reporting the Device’s Android Version

149

Challenge: Reporting the Device’s Android Version
Add a TextView to the GeoQuiz layout that reports to the user what API level the device is running.
Figure 8.5 shows what the final result should look like.

Figure 8.5 Finished challenge

You cannot set this TextView’s text in the layout, because you will not know the device’s Android
version until runtime. Find the TextView function for setting text in the TextView reference page in
Android’s documentation. You are looking for a function that accepts a single argument – a string (or a
CharSequence).

Use other XML attributes listed in the TextView reference to adjust the size or typeface of the text.

Challenge: Limited Cheats
Allow the user to cheat a maximum of three times. Keep track of the user’s cheat occurrences and
display the number of remaining cheat tokens below the cheat button. If no tokens remain, disable the
cheat button.

151

9
Fragments

In this chapter, you will start building an application named CriminalIntent. CriminalIntent records
the details of “office crimes” – things like leaving dirty dishes in the break room sink or walking away
from an empty shared printer after documents have printed.

With CriminalIntent, you can make a record of a crime including a title, a date, and a photo. You
can also identify a suspect from your contacts and lodge a complaint via email, Twitter, Facebook,
or another app. After documenting and reporting a crime, you can proceed with your work free of
resentment and ready to focus on the business at hand.

CriminalIntent is a complex app that will take 11 chapters to complete. It will have a list-detail
interface: The main screen will display a list of recorded crimes, and users will be able to add new
crimes or select an existing crime to view and edit its details (Figure 9.1).

Figure 9.1 CriminalIntent, a list-detail app

Chapter 9 Fragments

152

The Need for UI Flexibility
You might imagine that a list-detail application consists of two activities: one managing the list and the
other managing the detail view. Pressing a crime in the list would start an instance of the detail activity.
Pressing the Back button would destroy the detail activity and return you to the list, where you could
select another crime.

That would work, but what if you wanted more sophisticated presentation and navigation between
screens?

Consider the possibility of CriminalIntent running on a large device. Some devices have screens large
enough to show the list and detail at the same time – at least in landscape orientation (Figure 9.2).

Figure 9.2 Ideal list-detail interface for varying screen widths

Or imagine a user is viewing a crime and wants to see the next crime in the list. It would be better if
they could select a different crime from the list without navigating back to the previous screen first.
Going beyond the CriminalIntent app, common UI elements such as navigation drawers and bottom tab
bars keep users on one “screen” while child views are swapped in and out.

What these scenarios have in common is UI flexibility: the ability to compose and recompose an
activity’s view at runtime depending on what the user or the device requires.

Activities were not designed with this level of flexibility in mind. Activities control an entire window
of your application, so one activity should be able to render everything your app needs to show
onscreen at a time. As a result, activities are tightly coupled to the particular screen being used. So you
could continue to keep all your UI code within activities, but as your apps and the screens within them
become more complicated, this approach will become more confusing and less maintainable.

Introducing Fragments

153

Introducing Fragments
You can make your app’s UI more flexible by moving UI management from the activity to one or more
fragments.

Similar to how you have used your activities so far, a Fragment has a view of its own, often defined in
a separate layout file. The fragment’s view contains the interesting UI elements that the user wants to
see and interact with.

Instead of containing the UI, the activity acts as a container for the fragment. The fragment’s view is
inserted into the container once it is initialized. In this chapter, the activity will host a single fragment,
but an activity can have multiple containers in its view for different fragments.

Fragments are designed to hold reusable chunks of the UI. You can use the fragment (or fragments)
associated with the activity to compose and recompose the screen as your app and users require. There
is only one Activity class responsible for displaying your app’s content, but it hands control over parts
of the screen to its Fragments. Because of this, your activity will be much simpler and will not violate
any Android laws.

Let’s see how this would work in a list-detail application to display the list and detail together. You
would compose the activity’s view from a list fragment and a detail fragment. The detail view would
show the details of the selected list item.

Selecting another item should display a new detail view. This is easy with fragments: Your app would
replace the detail fragment with another detail fragment (Figure 9.3). No activities need to die for this
major view change to happen.

Figure 9.3 Swapping out a detail fragment

Using fragments separates the UI of your app into building blocks, which is useful for more than
just list-detail applications. Working with individual blocks, it is easy to build tab interfaces, tack
on animated sidebars, and more. Additionally, some of the new Android Jetpack APIs, such as the
navigation controller, work best with fragments. So using fragments sets you up to integrate nicely
with Jetpack APIs.

Chapter 9 Fragments

154

Starting CriminalIntent
In this chapter, you are going to start on the detail part of CriminalIntent. Figure 9.4 shows you what
CriminalIntent will look like at the end of this chapter.

Figure 9.4 CriminalIntent at the end of this chapter

The screen shown in Figure 9.4 will be managed by a fragment named CrimeDetailFragment. An
instance of CrimeDetailFragment will be hosted by an activity named MainActivity.

Starting CriminalIntent

155

For now, think of hosting as the activity providing a spot in its view hierarchy to contain the fragment
and its view (Figure 9.5). A fragment is incapable of getting a view onscreen itself. Only when it is
inserted in an activity’s hierarchy will its view appear.

Figure 9.5 MainActivity hosting a CrimeDetailFragment

By the end of the project, CriminalIntent will be a large codebase, but you will begin much
like the way you built GeoQuiz. After some build setup, you will define the Crime class, which
will model the data you are displaying. Next, you will create the UI in an XML layout in
fragment_crime_detail.xml. Once that is complete, you will create a CrimeDetailFragment to hook
up the data to the view.

Those steps will feel familiar to the work you did back in GeoQuiz, even if the names are different this
time. Since you are now working with fragments, you will also have to take care of one other step: You
will add the CrimeDetailFragment to a container within MainActivity.

Let’s get started.

Chapter 9 Fragments

156

Creating a new project
Create a new Android application (File → New → New Project...). Select the Empty Activity template
(Figure 9.6). Click Next.

Figure 9.6 Creating the CriminalIntent application

Creating a new project

157

Configure your project as shown in Figure 9.7: Name the application CriminalIntent. Make sure the
Package name is com.bignerdranch.android.criminalintent and the Language is Kotlin. Select API 24:
Android 7.0 (Nougat) from the Minimum SDK dropdown.

Figure 9.7 Configuring the CriminalIntent project

Click Finish to generate the project.

Chapter 9 Fragments

158

Before writing code, you need to make two changes to your Gradle build files. Open the build.gradle
file labeled (Module: CriminalIntent.app). Like the ViewModel library you used in GeoQuiz, the
Fragment library must be added as a dependency on your project. Also, enable View Binding, as you
did for GeoQuiz. View Binding integrates seamlessly with fragments, and you will be using it in this
project as well.

Listing 9.1 Setting up your project’s build (app/build.gradle)
...
android {
 ...
 kotlinOptions {
 jvmTarget = '1.8'
 }
 buildFeatures {
 viewBinding true
 }
}

dependencies {
 ...
 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
 implementation 'androidx.fragment:fragment-ktx:1.4.1'
 testImplementation 'junit:junit:4.13.2'
 ...
}

Do not forget to click the Sync Project with Gradle Files button or the Sync Now button after you
have made these changes. Now, on to the code.

Creating a Data Class

159

Creating a Data Class
In the project tool window, right-click the com.bignerdranch.android.criminalintent package and
select New → Kotlin Class/File. Name the file Crime and, since this class will be used to store data,
make it a Data Class.

For this project, an instance of Crime will represent a single office crime. To begin with, a Crime will
have four properties:

• an ID to uniquely identify the instance

• a descriptive title, like “Toxic sink dump” or “Someone stole my yogurt!”

• a date

• a Boolean indication of whether the crime has been solved

In Crime.kt, add these four properties to Crime’s constructor.

Listing 9.2 Adding the Crime data class (Crime.kt)
data class Crime(
 val id: UUID,
 val title: String,
 val date: Date,
 val isSolved: Boolean
)

When importing Date, you will be presented with multiple options. Make sure to import
java.util.Date.

That is all you need for the Crime class for this chapter. Now that the data is set up, let’s move on to the
CrimeDetailFragment.

Chapter 9 Fragments

160

Creating a Fragment
The steps to create a fragment are the same as those you followed to create an activity:

• compose a UI by defining views in a layout file

• create the class and set its view to be the layout that you defined

• wire up the views inflated from the layout in code

Defining CrimeDetailFragment’s layout
CrimeDetailFragment’s view will display the information contained in an instance of Crime.

First, define the strings that the user will see in res/values/strings.xml.

Listing 9.3 Adding strings (res/values/strings.xml)
<resources>
 <string name="app_name">CriminalIntent</string>
 <string name="crime_title_hint">Enter a title for the crime.</string>
 <string name="crime_title_label">Title</string>
 <string name="crime_details_label">Details</string>
 <string name="crime_solved_label">Solved</string>
</resources>

Next, you will define the UI. The layout for CrimeDetailFragment will consist of a vertical
LinearLayout that contains two TextViews, an EditText, a Button, and a CheckBox.

To create a layout file, right-click the res/layout folder in the project tool window and select New
→ Layout resource file. Name this file fragment_crime_detail.xml and enter LinearLayout as the root
element.

Defining CrimeDetailFragment’s layout

161

Android Studio creates the file and adds the LinearLayout for you. Add the views that make up the
fragment’s layout to res/layout/fragment_crime_detail.xml.

Listing 9.4 Layout file for fragment’s view (res/layout/
fragment_crime_detail.xml)
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="16dp">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?attr/textAppearanceHeadline5"
 android:text="@string/crime_title_label" />

 <EditText
 android:id="@+id/crime_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/crime_title_hint"
 android:importantForAutofill="no"
 android:inputType="text" />

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?attr/textAppearanceHeadline5"
 android:text="@string/crime_details_label" />

 <Button
 android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 tools:text="Wed May 11 11:56 EST 2022" />

 <CheckBox
 android:id="@+id/crime_solved"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_solved_label" />
</LinearLayout>

(The TextViews’ definitions include some new syntax related to view style: textAppearance="?attr/
textAppearanceHeadline5". This theme attribute applies the Headline 5 typography settings to the
text as specified by Google’s Material Design library. [It can also be customized in your application
theme, if you want.] You will learn more about this syntax in the section called Styles, Themes, and
Theme Attributes in Chapter 11.)

Chapter 9 Fragments

162

Recall that the tools namespace allows you to provide information that the preview is able to display.
In this case, you are adding text to the date button so that it will not be empty in the preview. Check the
Design tab to see a preview of your fragment’s view (Figure 9.8).

Figure 9.8 Previewing updated crime fragment layout

Creating the CrimeDetailFragment class
Create a Kotlin file for the CrimeDetailFragment class. This time, select Class for the file type, and
Android Studio will stub out the class definition for you. Turn the class into a fragment by subclassing
the Fragment class.

Listing 9.5 Subclassing Fragment (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
}

Creating the CrimeDetailFragment class

163

As you subclass the Fragment class, you will notice that Android Studio finds two classes with the
Fragment name. You will see android.app.Fragment and androidx.fragment.app.Fragment. The
android.app.Fragment is the version of fragments built into the Android OS. You will use the Jetpack
version, so be sure to select androidx.fragment.app.Fragment, as shown in Figure 9.9. (Recall that
the Jetpack libraries are in packages that begin with androidx.)

Figure 9.9 Choosing the Jetpack Fragment class

If you do not see this dialog, try clicking the Fragment class name. If the dialog still does not appear,
you can manually import the correct class: Add the line import androidx.fragment.app.Fragment at
the top of the file.

If, on the other hand, you have an import for android.app.Fragment, remove that line of code. Then
import the correct Fragment class with Option-Return (Alt-Enter).

Different types of fragments
New Android apps should always be built using the Jetpack (androidx) version of fragments. If you
maintain older apps, you may see two other versions of fragments being used: the framework version
and the v4 support library version. These are legacy versions of the Fragment class, and you should
migrate apps that use them to the current Jetpack version.

Fragments were introduced in API level 11, when the first Android tablets created the need for UI
flexibility. The framework implementation of fragments was built into devices running API level 11
or higher. Shortly afterward, a Fragment implementation was added to the v4 support library to enable
fragment support on older devices. With each new version of Android, both of these fragment versions
were updated with new features and security patches.

But as of Android 9.0 (API 28), the framework version of fragments is deprecated and the earlier
support library fragments have been moved to the Jetpack libraries. No further updates will be made
to either of those versions, so you should not use them for new projects. All future updates will apply
only to the Jetpack version.

Bottom line: Always use the Jetpack fragments in your new projects, and migrate existing projects to
ensure they stay current with new features and bug fixes.

Chapter 9 Fragments

164

Implementing fragment lifecycle functions
CrimeDetailFragment is the class that interacts with model and view objects. Its job is to present the
details of a specific crime and update those details as the user changes them.

In GeoQuiz, your activities did most of that work in activity lifecycle functions. In CriminalIntent, this
work will be done by fragments in fragment lifecycle functions. Many of these functions correspond to
the Activity functions you already know, such as onCreate(Bundle?). (You will learn more about the
fragment lifecycle in the section called The fragment lifecycle later in this chapter.)

In CrimeDetailFragment.kt, add a property for the Crime instance and an implementation of
Fragment.onCreate(Bundle?).

Android Studio can provide some assistance when overriding functions. Begin typing
onCreate(Bundle?); Android Studio will provide a list of suggestions, as shown in Figure 9.10.

Figure 9.10 Overriding the onCreate(Bundle?) function

Creating the CrimeDetailFragment class

165

Press Return to select the option to override the onCreate(Bundle?) function, and Android Studio will
create the declaration for you, including the call to the superclass implementation. Update your code to
create a new Crime, matching Listing 9.6.

Listing 9.6 Overriding Fragment.onCreate(Bundle?)
(CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {

 private lateinit var crime: Crime

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 crime = Crime(
 id = UUID.randomUUID(),
 title = "",
 date = Date(),
 isSolved = false
)
 }
}

Much like activities, fragments are re-created on configuration changes by default, so they are not good
places to hold state. In Chapter 13, you will use a ViewModel to hold this state, but this will work for
now.

Kotlin functions default to public when no visibility modifier is included in the definition. So
Fragment.onCreate(Bundle?), which has no visibility modifier, is public. This differs from the
Activity.onCreate(Bundle?) function, which is protected. Fragment.onCreate(Bundle?) and other
Fragment lifecycle functions must be public, because they will be called by whichever activity is
hosting the fragment.

Also, note what does not happen in Fragment.onCreate(Bundle?): You do not inflate the fragment’s
view. You configure the fragment instance in Fragment.onCreate(Bundle?), but you create and
configure the fragment’s view in another fragment lifecycle function: onCreateView(LayoutInflater,
ViewGroup?, Bundle?).

This function is where you inflate and bind the layout for the fragment’s view and return the inflated
View to the hosting activity. The LayoutInflater and ViewGroup parameters are necessary to inflate
and bind the layout. The Bundle will contain data that this function can use to re-create the view from a
saved state.

Chapter 9 Fragments

In CrimeDetailFragment.kt, add an implementation of onCreateView(…) that inflates and binds
fragment_crime_detail.xml. You can use the same trick from Figure 9.10 to fill out the function
declaration.

Listing 9.7 Overriding onCreateView(…) (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {

 private lateinit var binding: FragmentCrimeDetailBinding

 private lateinit var crime: Crime

 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 binding =
 FragmentCrimeDetailBinding.inflate(inflater, container, false)
 return binding.root
 }
}

Much like in GeoQuiz, View Binding will generate a binding class that you can use to inflate and bind
your layout. This time it is called FragmentCrimeDetailBinding.

As before, you call the inflate(…) function to accomplish the task. However, this time you call a
slightly different version of the function – one that takes in three parameters instead of one. The first
parameter is the same LayoutInflater you used before. The second parameter is your view’s parent,
which is usually needed to configure the views properly.

The third parameter tells the layout inflater whether to immediately add the inflated view to the view’s
parent. You pass in false because the fragment’s view will be hosted in the activity’s container view.
The fragment’s view does not need to be added to the parent view immediately – the activity will
handle adding the view later.

Once you return the root view within the binding, you are ready to start wiring up the views.

166

Creating the CrimeDetailFragment class

167

Wiring up views in a fragment
You are now going to hook up the EditText, CheckBox, and Button in your fragment. Your first
instinct might be to add some code to onCreateView(…), but it is best if you keep onCreateView(…)
simple and do not do much more there than bind and inflate your view. The onViewCreated(…)
lifecycle callback is invoked immediately after onCreateView(…), and it is the perfect spot to wire up
your views.

Start by adding a listener to the EditText in the onViewCreated(…) lifecycle callback.

Listing 9.8 Adding a listener to the EditText view (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 ...
 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 crimeTitle.doOnTextChanged { text, _, _, _ ->
 crime = crime.copy(title = text.toString())
 }
 }
 }
}

Setting listeners in a fragment works exactly the same as in an activity. Here, you add a listener
that will be invoked whenever the text in the EditText is changed. The lambda is invoked with four
parameters, but you only care about the first one, text. The text is provided as a CharSequence, so to
set the Crime’s title, you call toString() on it.

(The doOnTextChanged() function is actually a Kotlin extension function on the EditText class. Do
not forget to import it from the androidx.core.widget package.)

When you are not using a parameter, like the remaining lambda parameters here, you name it _.
Lambda arguments named _ are ignored, which removes unnecessary variables and can help keep your
code tidy.

Chapter 9 Fragments

168

Next, connect the Button to display the date of the crime.

Listing 9.9 Setting Button text (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 crimeTitle.doOnTextChanged { text, _, _, _ ->
 crime = crime.copy(title = text.toString())
 }

 crimeDate.apply {
 text = crime.date.toString()
 isEnabled = false
 }
 }
 }
}

Disabling the button ensures that it will not respond to the user pressing it. It also changes its
appearance to advertise its disabled state. In Chapter 14, you will enable the button and allow the user
to choose the date of the crime.

The last change you need to make within this class is to set a listener on the CheckBox that will update
the isSolved property of the Crime, as shown in Listing 9.10.

Listing 9.10 Listening for CheckBox changes (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 crimeTitle.doOnTextChanged { text, _, _, _ ->
 crime = crime.copy(title = text.toString())
 }

 crimeDate.apply {
 text = crime.date.toString()
 isEnabled = false
 }

 crimeSolved.setOnCheckedChangeListener { _, isChecked ->
 crime = crime.copy(isSolved = isChecked)
 }
 }
 }
}

It would be great if you could run CriminalIntent and play with the code you have written. But you
cannot – yet. Remember, fragments cannot put their views onscreen on their own. To realize your
efforts, you first have to add a CrimeDetailFragment to MainActivity.

Hosting a Fragment

169

Hosting a Fragment
When fragments were first introduced, developers had to jump through numerous hoops to display
them. In 2019, Google introduced the FragmentContainerView, which makes it easier to create
host containers for a fragment. In this section, you will use a FragmentContainerView to host your
CrimeDetailFragment. Then you will learn about the FragmentManager and the fragment lifecycle.
Finally, you will tie up one loose end in CrimeDetailFragment.

Defining a FragmentContainerView
FragmentContainerView is, as its name suggests, built to contain fragments. Fragments have changed
significantly over the years, so FragmentContainerView helps provide a consistent environment for
fragments to operate in. Much like the views you have used so far, the FragmentContainerView has
common XML attributes to define its ID and its size.

Locate and open MainActivity’s layout in res/layout/activity_main.xml. Replace the default
layout with a FragmentContainerView, as shown in Listing 9.11.

Listing 9.11 Creating the fragment container layout
(res/layout/activity_main.xml)
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

</androidx.constraintlayout.widget.ConstraintLayout>
<androidx.fragment.app.FragmentContainerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/fragment_container"
 android:name="com.bignerdranch.android.criminalintent.CrimeDetailFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" />

FragmentContainerView has one XML attribute that you have not seen on other views:
android:name, whose value here is the full package name for CrimeDetailFragment. With that, the
FragmentContainerView will manage creating your CrimeDetailFragment and inserting it in the
activity’s layout.

Chapter 9 Fragments

170

At last, it is time to run CriminalIntent to check your code. You will see your CrimeDetailFragment
below an app bar that shows CriminalIntent’s name (Figure 9.11). (The app bar – the toolbar at the top
of your app – is included automatically because of the way you configured your activity. You will learn
more about the app bar in Chapter 15.)

Figure 9.11 CrimeDetailFragment’s view hosted by MainActivity

Now that you have seen the results of your work, let’s go behind the scenes and discuss how fragments
and their lifecycles are managed.

The FragmentManager

171

The FragmentManager
When the Fragment class was introduced in Honeycomb, the Activity class was changed to include
a piece called the FragmentManager. The FragmentManager is responsible for adding the fragments’
views to the activity’s view hierarchy and driving the fragments’ lifecycles. It handles two things:
a list of fragments and a back stack of fragment transactions (which you will learn about shortly)
(Figure 9.12).

Figure 9.12 The FragmentManager

Right now, your FragmentContainerView interacts with the FragmentManager to display your
CrimeDetailFragment. The FragmentContainerView uses the FragmentManager to create and host the
fragment you specified in the android:name XML attribute.

As an alternative to using the android:name XML attribute, you can attach fragments to your activities
in code with the FragmentManager. Also, in addition to the basic functionality provided by your
FragmentContainerView, you can use the FragmentManager to remove a fragment from view, replace
it with another, and even alter the navigation backstack.

To add a fragment to an activity in code, you make explicit calls to the activity’s FragmentManager.
You can access the activity’s fragment manager using the supportFragmentManager property. You use
supportFragmentManager because you are using the Jetpack library and the AppCompatActivity class.
(The name is prefixed with “support” because the property originated in the v4 support library, but the
support library has since been repackaged as an androidx library within Jetpack.)

Actions such as adding, removing, or replacing fragments are accomplished using fragment
transactions. They allow you to group multiple operations, such as adding multiple fragments to
different containers at the same time. They are the heart of how you use fragments to compose and
recompose screens at runtime.

Chapter 9 Fragments

172

The FragmentManager maintains a back stack of fragment transactions that you can navigate. If your
fragment transaction includes multiple operations, they are reversed when the transaction is removed
from the back stack. This provides more control over your UI state when you group your fragment
operations into a single transaction.

 val fragment = CrimeDetailFragment()
 supportFragmentManager
 .beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit()

In this example, the FragmentManager.beginTransaction() function creates and returns an instance
of FragmentTransaction. The FragmentTransaction class uses a fluent interface – functions that
configure FragmentTransaction return a FragmentTransaction instead of Unit, which allows you to
chain them together. So the code highlighted above says, “Create a new fragment transaction, include
one add operation in it, and then commit it.”

The add(…) function is the meat of the transaction. It has two parameters: a container view ID and the
newly created CrimeDetailFragment. The container view ID should look familiar. It is the resource ID
of the FragmentContainerView that you would define in an activity’s layout.

A container view ID serves two purposes:

• It tells the FragmentManager where in the activity’s view the fragment’s view should appear.

• It is used as a unique identifier for a fragment in the FragmentManager’s list.

The fragment lifecycle

173

The fragment lifecycle
As we mentioned, another responsibility of the FragmentManager is driving the fragment lifecycle,
which is shown in Figure 9.13. The fragment lifecycle is similar to the activity lifecycle: It has created,
started, and resumed states, and it has functions you can override to get things done at critical points –
many of which correspond to activity lifecycle functions.

Figure 9.13 Fragment lifecycle diagram

The correspondence is important. Because a fragment works on behalf of an activity, its state should
reflect the activity’s state. Thus, it needs corresponding lifecycle functions to handle the activity’s
work.

One critical difference between the fragment lifecycle and the activity lifecycle is that fragment
lifecycle functions are called by the FragmentManager of the hosting activity, not the OS. The OS
knows nothing about the fragments that an activity is using to manage things. Fragments are the
activity’s internal business. The onAttach(Context?), onCreate(Bundle?), onCreateView(…), and
onViewCreated(…) functions are called when you add the fragment to the FragmentManager.

The onActivityCreated(Bundle?) function is called after the hosting activity’s
onCreate(Bundle?) function has executed. You are adding the CrimeDetailFragment in
MainActivity.onCreate(Bundle?), so this function will be called after the fragment has been added.

Chapter 9 Fragments

174

What happens if you add a fragment while the activity is already resumed? In that case, the
FragmentManager immediately walks the fragment through whatever steps are necessary to get it
caught up to the activity’s state. For example, as a fragment is added to an activity that is already
resumed, that fragment gets calls to onAttach(Context?), onCreate(Bundle?), onCreateView(…),
onViewCreated(…), onActivityCreated(Bundle?), onStart(), and then onResume().

Once the fragment’s state is caught up to the activity’s state, the hosting activity’s FragmentManager
will call further lifecycle functions around the same time that it receives the corresponding calls from
the OS to keep the fragment’s state aligned with that of the activity.

Fragments and memory management
Fragments can be swapped in and out as the user navigates your app. For CriminalIntent, you will
make another Fragment in Chapter 10 that displays a list of crimes. By the time you have completed
developing the app, you will be able to navigate from the list fragment to the detail fragment, and
your list will disappear from the user’s view. Because the user can navigate back to the list screen, the
fragment is retained in memory so it is ready to be used when the user presses the Back button.

But what about its view? Because the previous fragment is not being displayed, the system does not
need to keep its view in memory. And, in fact, Fragment has a lifecycle method to destroy its view
when it is no longer needed. This method is called onDestroyView(). When the Fragment becomes
visible again, its onCreateView(…) method will be called again to re-create the view.

And here we come to the loose end we mentioned earlier: Although you have an onCreateView(…)
callback in CriminalIntent, your view is not currently being freed from memory, because you are
holding a reference to it via the binding property. The system sees that there is a chance you might
access the view later and prevents the system from clearing its memory.

This wastes resources, since the view is being held in memory even though it is not used – and even
though the view will be re-created when the Fragment becomes visible again. With your current
implementation, the system cannot free the memory associated with your old view until either the view
is re-created by calling onCreateView(…) again or the entire Fragment is destroyed.

The good news is that there is a straightforward solution to this problem: Null out any references to
views in the onDestroyView() lifecycle callback. As long as you make sure to clean up any references
to your views in onDestroyView(), you will be safe from the issues associated with this second
lifecycle – and you benefit from a performance boost by freeing up unused resources.

Listing 9.12 Nulling out references to your view (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 ...
 }

 override fun onDestroyView() {
 super.onDestroyView()
 binding = null
 }
}

Fragments and memory management

After you make those changes, Android Studio will start complaining. Currently, your binding is not
nullable. But with a few small changes, you can null out your references and have easy access to your
binding. Create a nullable backing property, named _binding, and change the binding property to
become a computed property. By using the checkNotNull() precondition, Kotlin will be able to smart
cast the binding property to be non-null.

Listing 9.13 Having the best of both worlds (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {

 private lateinit var binding: FragmentCrimeDetailBinding
 private var _binding: FragmentCrimeDetailBinding? = null
 private val binding
 get() = checkNotNull(_binding) {
 "Cannot access binding because it is null. Is the view visible?"
 }
 ...
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 binding =
 FragmentCrimeDetailBinding.inflate(inflater, container, false)
 _binding =
 FragmentCrimeDetailBinding.inflate(inflater, container, false)
 ...
 }
 ...
 override fun onDestroyView() {
 super.onDestroyView()
 binding = null
 _binding = null
 }
}

When accessing binding, you still have the benefit of a non-nullable property, but now you also have
the backing _binding property that you can null out in onDestroyView().

In this chapter, you used fragments to display an individual screen free of the limitations associated
with activities. In the next chapter, you will create another fragment and leverage a RecyclerView to
display your crimes in a list.

175

Chapter 9 Fragments

176

Challenge: Testing with FragmentScenario
Much like the ActivityScenario class you used back in Chapter 6, Google has a corresponding
FragmentScenario to test fragments in isolation. Built on the same infrastructure as
ActivityScenario, FragmentScenario behaves in a similar fashion and uses a similar API. Try
writing a test for your CrimeDetailFragment using a FragmentScenario with Espresso.

For example, you could test and verify that the CheckBox and EditText are hooked up to your
fragment and update the Crime. By removing the private visibility modifier on the property and
using the FragmentScenario.onFragment(…) function, you can get access to a Crime and perform the
appropriate assertions.

FragmentScenario exists in a separate library, so do not forget to add the line below to your
dependencies in the build.gradle file labeled (Module: CriminalIntent.app). Note the usage of
debugImplementation – the FragmentScenario class works a little differently than other testing
libraries you have used so far. Under the hood, the library inserts an activity into your app and uses it to
host your fragment in a container it can control.

 dependencies {
 ...
 debugImplementation "androidx.fragment:fragment-testing:1.4.1"
 }

177

10
Displaying Lists with

RecyclerView

Currently, CriminalIntent can only display information about a single instance of Crime. In this
chapter, you will update CriminalIntent to work with a list of crimes. The list will display each Crime’s
title and date, as shown in Figure 10.1.

Figure 10.1 A list of crimes

Chapter 10 Displaying Lists with RecyclerView

178

Many aspects of the work you will complete in this chapter will feel familiar from the work you did
in previous chapters. For example, much like you did in GeoQuiz, you will create a new ViewModel to
encapsulate the data for the new screen. CrimeListViewModel will store a list of Crime objects.

Since this data will be displayed on a new screen, you will also create a new fragment, called
CrimeListFragment. Your MainActivity will host an instance of CrimeListFragment, which in turn
will display the list of crimes on the screen.

The activity’s view will still consist of a single FragmentContainerView. The fragment’s view will
consist of a RecyclerView, a class that allows you to efficiently recycle views.

For now, the list and detail parts of CriminalIntent will lead separate lives. In Chapter 13, you will
connect them.

Adding a New Fragment and ViewModel
The first step is to add a ViewModel to store the List of Crime objects you will eventually display on
the screen. As you learned in Chapter 4, the ViewModel class is part of the lifecycle-viewmodel-ktx
library. So begin by adding the lifecycle-viewmodel-ktx dependency to your app/build.gradle file
(that is, the build.gradle file labeled Module: CriminalIntent.app).

Listing 10.1 Adding lifecycle-viewmodel-ktx dependency (app/
build.gradle)
dependencies {
 ...
 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
 implementation 'androidx.fragment:fragment-ktx:1.4.1'
 implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.4.1'
 ...
}

Do not forget to sync your Gradle files after making this change.

Next, create a Kotlin class called CrimeListViewModel. Update the new CrimeListViewModel class
to extend from ViewModel. Add a property to store a list of Crimes. In the init block, populate the list
with dummy data.

Listing 10.2 Generating crimes (CrimeListViewModel.kt)
class CrimeListViewModel : ViewModel() {

 val crimes = mutableListOf<Crime>()

 init {
 for (i in 0 until 100) {
 val crime = Crime(
 id = UUID.randomUUID(),
 title ="Crime #$i",
 date = Date(),
 isSolved = i % 2 == 0
)

 crimes += crime
 }
 }
}

ViewModel lifecycle with fragments

179

Eventually, the List will contain user-created Crimes that can be saved and reloaded. For now, you
populate the List with 100 boring Crime objects.

The CrimeListViewModel is not a solution for long-term storage of data, but it does encapsulate all the
data necessary to populate CrimeListFragment’s view. In Chapter 12, you will learn more about long-
term data storage when you update CriminalIntent to store the crime list in a database.

Next, create the CrimeListFragment class and associate it with CrimeListViewModel. Make it a
subclass of androidx.fragment.app.Fragment.

Listing 10.3 Implementing CrimeListFragment (CrimeListFragment.kt)
private const val TAG = "CrimeListFragment"

class CrimeListFragment : Fragment() {

 private val crimeListViewModel: CrimeListViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 Log.d(TAG, "Total crimes: ${crimeListViewModel.crimes.size}")
 }
}

For now, CrimeListFragment is an empty shell of a fragment. It does not even have a UI to display; it
just logs the number of crimes found in CrimeListViewModel. You will flesh the fragment out later in
this chapter.

ViewModel lifecycle with fragments
In Chapter 4, you learned about the ViewModel lifecycle when used with an activity. This lifecycle is
slightly different when the ViewModel is used with a fragment. It still only has two states, created or
destroyed/nonexistent, but it is now tied to the lifecycle of the fragment instead of the activity.

The ViewModel will remain active as long as the fragment’s view is onscreen. This means the
ViewModel will persist across rotation (even though the fragment instance will not) and be accessible to
the new fragment instance.

The ViewModel will be destroyed when the fragment is destroyed. This can happen when the hosting
activity replaces the fragment with a different one. Even though the same activity is on the screen, both
the fragment and its associated ViewModel will be destroyed, since they are no longer needed.

One special case is when you add the fragment transaction to the back stack. When the activity
replaces the current fragment with a different one, if the transaction is added to the back stack, the
fragment instance and its ViewModel will not be destroyed. This maintains your state: If the user
presses the Back button, the fragment transaction is reversed. The original fragment instance is put
back on the screen, and all the data in the ViewModel is preserved.

Chapter 10 Displaying Lists with RecyclerView

180

Next, update activity_main.xml to host an instance of CrimeListFragment instead of
CrimeDetailFragment.

Listing 10.4 Adding CrimeListFragment (activity_main.xml)
<?xml version="1.0" encoding="utf-8"?>
<androidx.fragment.app.FragmentContainerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/fragment_container"
 android:name="com.bignerdranch.android.criminalintent.CrimeDetailFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeListFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" />

For now, you have hardcoded MainActivity to always display a CrimeListFragment. In Chapter 13,
you will update MainActivity to use the Fragment Navigation library to navigate between
CrimeListFragment and CrimeDetailFragment as the user moves through the app.

Run CriminalIntent, and you will see MainActivity’s FragmentContainerView hosting an empty
CrimeListFragment, as shown in Figure 10.2.

Figure 10.2 Blank MainActivity screen

Adding a RecyclerView

181

Search the Logcat output for CrimeListFragment. You will see a log statement showing the total
number of crimes:

 2022-02-25 15:19:39.950 26140-26140/com.bignerdranch.android.criminalintent
 D/CrimeListFragment: Total crimes: 100

Adding a RecyclerView
You want CrimeListFragment to display a list of crimes to the user. To do this, you will use a
RecyclerView.

The RecyclerView class lives in another Jetpack library. So the first step to using a RecyclerView is to
add the RecyclerView library as a dependency.

Listing 10.5 Adding RecyclerView dependency (app/build.gradle)
dependencies {
 ...
 implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.4.1'
 implementation 'androidx.recyclerview:recyclerview:1.2.1'
 ...
}

Again, sync your Gradle files before moving on.

Your RecyclerView will live in CrimeListFragment’s layout file. To create the layout file, right-click
the res/layout directory in the project tool window and choose New → Layout resource file. Name the
new file fragment_crime_list. For the Root element, specify androidx.recyclerview.widget.RecyclerView
(Figure 10.3).

Figure 10.3 Adding CrimeListFragment’s layout file

Chapter 10 Displaying Lists with RecyclerView

182

In the new layout/fragment_crime_list.xml file, add an ID attribute to the RecyclerView. Collapse
the close tag into the opening tag, since you will not add any children to the RecyclerView.

Listing 10.6 Adding RecyclerView to a layout file
(layout/fragment_crime_list.xml)
<androidx.recyclerview.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/crime_recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 android:layout_height="match_parent"/>

</androidx.recyclerview.widget.RecyclerView>

Now that CrimeListFragment’s view is set up, hook up the view to the fragment in
CrimeListFragment.kt. Inflate and bind your layout – and do not forget to null out your binding in
onDestroyView().

Listing 10.7 Hooking up the view for CrimeListFragment
(CrimeListFragment.kt)
class CrimeListFragment : Fragment() {

 private var _binding: FragmentCrimeListBinding? = null
 private val binding
 get() = checkNotNull(_binding) {
 "Cannot access binding because it is null. Is the view visible?"
 }

 private val crimeListViewModel: CrimeListViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 Log.d(TAG, "Total crimes: ${crimeListViewModel.crimes.size}")
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 _binding = FragmentCrimeListBinding.inflate(inflater, container, false)
 return binding.root
 }

 override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
 }
 ...
}

Implementing a LayoutManager

183

Implementing a LayoutManager
RecyclerView is a view with a narrow focus, and on its own it does not do much. All it does is
“recycle,” or reuse, views to display a list of data. It delegates all the other responsibilities of
displaying that list of data to other components: LayoutManager, ViewHolder, and Adapter. We will
walk you through these pieces one at a time.

The RecyclerView delegates the responsibility for positioning items on the screen to the
LayoutManager. The LayoutManager positions each item and also defines how scrolling works. So if
RecyclerView wants to display items but the LayoutManager is not there, it will give up and display
nothing.

There are a few built-in LayoutManagers to choose from, and you can find more as third-party libraries.
Set a LinearLayoutManager as the LayoutManager for your RecyclerView. It will position the items in
the list vertically, one after the other, like a LinearLayout.

Listing 10.8 Setting up the LayoutManager (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 _binding = FragmentCrimeListBinding.inflate(inflater, container, false)

 binding.crimeRecyclerView.layoutManager = LinearLayoutManager(context)

 return binding.root
 }
 ...
}

Run the app again. You will still see a blank screen, but now you are looking at an empty
RecyclerView.

Chapter 10 Displaying Lists with RecyclerView

184

Creating an Item View Layout
RecyclerView is a subclass of ViewGroup. It displays a list of child View objects, called item views.
Each item view represents a single object from the list of data backing the recycler view (in your case,
a single crime from the crime list). Depending on the complexity of what you need to display, these
child Views could be complex or very simple.

For your first implementation, each item in the list will display the title and date of a Crime, as shown
in Figure 10.4.

Figure 10.4 A RecyclerView with child Views

Each item displayed on the RecyclerView will have its own view hierarchy, exactly the way
CrimeDetailFragment has a view hierarchy for the entire screen. Specifically, the View object on each
row will be a LinearLayout containing two TextViews.

Creating an Item View Layout

185

You create a new layout for a list item view the same way you do for the view of an activity or
a fragment. Create a new layout resource file called list_item_crime and set the root element to
LinearLayout.

Update your layout file to add padding to the LinearLayout and to add the two TextViews, as shown in
Listing 10.9.

Listing 10.9 Updating the list item layout file (layout/list_item_crime.xml)
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 android:layout_height="wrap_content"
 android:padding="8dp">

 <TextView
 android:id="@+id/crime_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Crime Title"/>

 <TextView
 android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Crime Date"/>

</LinearLayout>

Take a look at the design preview, and you will see that you have laid out exactly one row of the
completed product. In a moment, you will see how RecyclerView will create those rows for you.

Chapter 10 Displaying Lists with RecyclerView

186

Implementing a ViewHolder
The RecyclerView expects an item view to be wrapped in an instance of ViewHolder. A ViewHolder
stores a reference to an item’s view. But, as usual, you are not going to interact directly with the View.
You are going to use View Binding.

Create a new file named CrimeListAdapter.kt. In it, define a view holder by adding a CrimeHolder
class that extends from RecyclerView.ViewHolder.

Listing 10.10 The beginnings of a ViewHolder (CrimeListAdapter.kt)
class CrimeHolder(
 val binding: ListItemCrimeBinding
) : RecyclerView.ViewHolder(binding.root) {

}

In CrimeHolder’s constructor, you take in the binding to hold on to. Immediately, you pass its root
view as the argument to the RecyclerView.ViewHolder constructor. The base ViewHolder class will
then hold on to the view in a property named itemView (Figure 10.5).

Figure 10.5 The ViewHolder and its itemView

Implementing a ViewHolder

187

A RecyclerView never creates Views by themselves. It always creates ViewHolders, which bring their
itemViews along for the ride (Figure 10.6).

Figure 10.6 The ViewHolder visualized

When the View for each item is simple, ViewHolder has few responsibilities. For more complicated
Views, the ViewHolder makes wiring up the different parts of a binding to a Crime simpler and more
efficient. (For example, you do not need to search through the item view hierarchy to get a handle for
the title text view every time you need to set the title.)

The updated view holder now holds a reference to the binding so you can easily change the value
displayed. Note that the CrimeHolder assumes that the binding you pass to its constructor has the type
ListItemCrimeBinding. You may be wondering, “What creates crime holder instances, and where do I
get the ListItemCrimeBinding?” You will learn the answer to these questions in just a moment.

Chapter 10 Displaying Lists with RecyclerView

188

Implementing an Adapter to Populate the
RecyclerView
Figure 10.6 is somewhat simplified. RecyclerView does not create ViewHolders itself. Instead, it asks
an adapter. An adapter is a controller object that sits between the RecyclerView and the data set that
the RecyclerView should display.

The adapter is responsible for:

• creating the necessary ViewHolders when asked

• binding data to ViewHolders from the model layer when asked

The recycler view is responsible for:

• asking the adapter to create a new ViewHolder

• asking the adapter to bind a ViewHolder to the item from the backing data at a given position

Time to create your adapter. Add a new class named CrimeListAdapter in CrimeListAdapter.kt.
Add a primary constructor that expects a list of crimes as input and stores the passed-in crime list in a
property, as shown in Listing 10.11.

In your new CrimeListAdapter, you are also going to override three functions:
onCreateViewHolder(…), onBindViewHolder(…), and getItemCount(). To save you typing (and
typos), Android Studio can generate these overrides for you. Once you have added the constructor,
put your cursor on CrimeListAdapter and press Option-Return (Alt-Enter) (Figure 10.7). Select
Implement members from the pop-up. In the Implement members dialog, select all three function
names and click OK. Then you only need to fill in the bodies as shown.

Figure 10.7 Extending the RecyclerView.Adapter class

Implementing an Adapter to Populate the RecyclerView

189

Listing 10.11 Creating CrimeListAdapter (CrimeListAdapter.kt)
class CrimeHolder(
 val binding: ListItemCrimeBinding
) : RecyclerView.ViewHolder(binding.root) {

}

class CrimeListAdapter(
 private val crimes: List<Crime>
) : RecyclerView.Adapter<CrimeHolder>() {

 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
) : CrimeHolder {
 val inflater = LayoutInflater.from(parent.context)
 val binding = ListItemCrimeBinding.inflate(inflater, parent, false)
 return CrimeHolder(binding)
 }

 override fun onBindViewHolder(holder: CrimeHolder, position: Int) {
 val crime = crimes[position]
 holder.apply {
 binding.crimeTitle.text = crime.title
 binding.crimeDate.text = crime.date.toString()
 }
 }

 override fun getItemCount() = crimes.size
}

Adapter.onCreateViewHolder(…) is responsible for creating a binding to display, wrapping the view
in a view holder, and returning the result. In this case, you inflate and bind a ListItemCrimeBinding
and pass the resulting binding to a new instance of CrimeHolder.

(For now, you can ignore onCreateViewHolder(…)’s parameters. You only need these values if you are
doing something fancy, like displaying different types of views within the same recycler view. See the
section called Challenge: RecyclerView View Types at the end of this chapter for more information.)

Adapter.onBindViewHolder(…) is responsible for populating a given holder with the crime from a
given position. In this case, you get the crime from the crime list at the requested position. You then
use the title and date from that crime to set the text in the corresponding text views.

When the recycler view needs to know how many items are in the data set backing it (such as when
the recycler view first spins up), it will ask its adapter by calling Adapter.getItemCount(). Here,
getItemCount() returns the number of items in the list of crimes to answer the recycler view’s request.

Chapter 10 Displaying Lists with RecyclerView

190

The RecyclerView itself does not know anything about the Crime object or the list of Crime objects to
be displayed. Instead, the CrimeListAdapter knows all of a Crime’s intimate and personal details. The
adapter also knows about the list of crimes that backs the recycler view (Figure 10.8).

Figure 10.8 Adapter sits between recycler view and data set

When the RecyclerView needs a view object to display, it will have a conversation with its adapter.
Figure 10.9 shows an example of a conversation that a RecyclerView might initiate.

Figure 10.9 A scintillating RecyclerView–Adapter conversation

The RecyclerView calls the adapter’s onCreateViewHolder(ViewGroup, Int) function to create a
new ViewHolder, along with its juicy payload: a View to display. The ViewHolder that the adapter
creates and hands back to the RecyclerView (along with its binding) has not yet been populated with
data from a specific item in the data set.

Next, the RecyclerView calls onBindViewHolder(ViewHolder, Int), passing a ViewHolder into this
function along with the position. The adapter looks up the model data for that position and binds it to
the ViewHolder’s View. To bind it, the adapter fills in the View to reflect the data in the model object.

After this process is complete, RecyclerView places the list item on the screen.

Setting the RecyclerView’s adapter

191

Setting the RecyclerView’s adapter
Now that you have an Adapter, all you need to do is instantiate an instance with your crime data and
connect it to your RecyclerView.

Listing 10.12 Setting an Adapter (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 _binding = FragmentCrimeListBinding.inflate(inflater, container, false)

 binding.crimeRecyclerView.layoutManager = LinearLayoutManager(context)

 val crimes = crimeListViewModel.crimes
 val adapter = CrimeListAdapter(crimes)
 binding.crimeRecyclerView.adapter = adapter

 return binding.root
 }
 ...
}

Chapter 10 Displaying Lists with RecyclerView

192

Run CriminalIntent and scroll through your RecyclerView, which should now look like Figure 10.10.

Figure 10.10 RecyclerView populated with Crimes

Swipe or drag down and you will see even more views scroll across your screen. Every visible
CrimeHolder should display a distinct Crime. (If your rows are much taller than these, or if you only
see one row on the screen, double-check that the layout_height on your row’s LinearLayout is set to
wrap_content.)

When you fling the view up, the scrolling animation should feel as smooth as warm butter. This effect
is a direct result of keeping onBindViewHolder(…) small and efficient, doing only the minimum
amount of work necessary. Take heed: Always be efficient in your onBindViewHolder(…). Otherwise,
your scroll animation could feel as chunky as cold Parmesan.

Recycling Views

193

Recycling Views
Figure 10.10 shows 13 (and a half) rows of Views. You can swipe to scroll through 100 Views to
see all of your Crimes. Does that mean that you have 100 View objects in memory? Thanks to your
RecyclerView, no.

Creating a View for every item in the list all at once could easily become unworkable. As you might
imagine, a list can have far more than 100 items, and your list items can be much more involved than
your simple implementation here. Also, a Crime only needs a View when it is onscreen, so there is no
need to have 100 Views ready and waiting. It would make far more sense to create view objects only as
you need them.

RecyclerView does just that. Instead of creating 100 Views, it creates just enough to fill the screen.
When a view is scrolled off the screen, RecyclerView reuses it rather than throwing it away. In short, it
lives up to its name: It recycles views over and over.

Because of this, onCreateViewHolder(…) will happen a lot less often than onBindViewHolder(…):
Once enough ViewHolders have been created, RecyclerView stops calling onCreateViewHolder(…).
Instead, it saves time and memory by recycling old ViewHolders and passing those into
onBindViewHolder(…).

Chapter 10 Displaying Lists with RecyclerView

194

Cleaning Up Binding List Items
Right now, the Adapter binds crime data directly to a crime holder’s text views in
Adapter.onBindViewHolder(…). This works fine, but it is better to more cleanly separate concerns
between the view holder and the adapter. The adapter should know as little as possible about the inner
workings and details of the view holder.

Instead, place all the code that will do the real work of binding inside your CrimeHolder. Start by
adding a bind(Crime) function to CrimeHolder. In this new function, cache the crime being bound
into a property and set the text values on crimeTitle and crimeDate. While you are at it, make the
existing binding property private.

Listing 10.13 Writing a bind(Crime) function (CrimeListAdapter.kt)
class CrimeHolder(
 private val binding: ListItemCrimeBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(crime: Crime) {
 binding.crimeTitle.text = crime.title
 binding.crimeDate.text = crime.date.toString()
 }
}
...

When given a Crime to bind, CrimeHolder will now update the title TextView and date TextView to
reflect the state of the Crime.

Next, call your newly minted bind(Crime) function each time the RecyclerView requests that a given
CrimeHolder be bound to a particular crime.

Listing 10.14 Calling bind(Crime) (CrimeListAdapter.kt)
...
class CrimeListAdapter(
 private val crimes: List<Crime>
) : RecyclerView.Adapter<CrimeHolder>() {

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): CrimeHolder {
 ...
 }

 override fun onBindViewHolder(holder: CrimeHolder, position: Int) {
 val crime = crimes[position]
 holder.apply {
 binding.crimeTitle.text = crime.title
 binding.crimeDate.text = crime.date.toString()
 }
 holder.bind(crime)
 }

 override fun getItemCount() = crimes.size
}

Run CriminalIntent one more time. The result should look the same as it did in Figure 10.10.

Responding to Presses

195

Responding to Presses
As icing on the RecyclerView cake, CriminalIntent should also respond to a press on these list items.
In Chapter 13, you will launch the detail view for a Crime when the user presses that Crime in the list.
For now, show a Toast when the user takes action on a Crime.

As you may have noticed, RecyclerView, while powerful and capable, has precious few real
responsibilities. (May it be an example to us all.) The same goes here: Handling touch events is mostly
up to you. If you need them, RecyclerView can forward along raw touch events. But most of the time
this is not necessary.

Instead, you can handle them like you normally do: by setting an OnClickListener. Because you want
the entire row to be clickable, set the OnClickListener on the root property of the binding.

Listing 10.15 Detecting presses in CrimeHolder (CrimeListAdapter.kt)
class CrimeHolder(
 private val binding: ListItemCrimeBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(crime: Crime) {
 binding.crimeTitle.text = crime.title
 binding.crimeDate.text = crime.date.toString()

 binding.root.setOnClickListener {
 Toast.makeText(
 binding.root.context,
 "${crime.title} clicked!",
 Toast.LENGTH_SHORT
).show()
 }
 }
}
...

Run CriminalIntent and press an item in the list. You should see a Toast indicating that the item was
pressed.

Chapter 10 Displaying Lists with RecyclerView

196

Lists and Grids: Past, Present, and Future
The core Android OS includes ListView, GridView, and Adapter classes. Until the release of Android
5.0, these were the preferred ways to create lists or grids of items.

The API for these components is very similar to RecyclerView’s. The ListView or GridView class is
responsible for scrolling a collection of items, but it does not know much about each of those items.
The Adapter is responsible for creating each of the Views in the list. However, ListView and GridView
do not enforce that you use the ViewHolder pattern (though you can – and should – use it).

These old implementations are replaced by the RecyclerView implementation because of the
complexity required to alter the behavior of a ListView or GridView.

Creating a horizontally scrolling ListView, for example, is not included in the ListView API and
requires a lot of work. Creating custom layout and scrolling behavior with a RecyclerView is still a lot
of work, but RecyclerView was built to be extended, so it is not quite so bad. And, as you will see in
Chapter 20, RecyclerView can be used with a GridLayoutManager to arrange items in a grid.

Another key feature of RecyclerView is the animation of items in the list. Animating the addition or
removal of items in a ListView or GridView is a complex and error-prone task. RecyclerView makes
this much easier; it includes a few built-in animations and allows for easy customization of these
animations.

For example, if you found out that the crime at position 0 moved to position 5, you could animate that
change like so:

 recyclerView.adapter.notifyItemMoved(0, 5)

RecyclerView is powerful and extensible, but it is also complex and requires a lot of setup for even
simple UIs. With Jetpack Compose, which you will start learning about in Chapter 26, you have access
to the LazyColumn and LazyRow composables. These composables have all the customizability and
performance of RecyclerView, but they can be created with a fraction of the code.

For the More Curious: A Smarter Adapter with ListAdapter

197

For the More Curious: A Smarter Adapter with
ListAdapter
As the backing data changes, RecyclerView provides all the tools needed to perform animations to
reflect those changes. As in the example above, you could call APIs like RecyclerView.Adapter
.notifyItemMoved(…) or RecyclerView.Adapter.notifyItemInserted(…) to tell the RecyclerView
to animate those changes in. However, you do not usually have visibility on specific changes to your
data, so you cannot easily call those functions on the individual changes in the list.

Instead, it is much more common to be presented with a copy of the list of data, with the changes
embedded in it. Unless you manually calculate all the changes between the old list of data and the new
list of data, the best you can do is reassign the backing list of data of your RecyclerView.Adapter and
force it to re-render every element in the list. That calculation of changes is difficult, so developers
often rely on RecyclerView.Adapter.notifyDataSetChanged(…), which will redraw and rebind all
the items in the RecyclerView’s layout.

A key aspect of RecyclerView’s design is that it tries to be efficient, avoiding unnecessary work. The
benefit of APIs such as RecyclerView.Adapter.notifyItemMoved(…) and RecyclerView.Adapter
.notifyItemInserted(…) is that they will only update or alter the relevant views to perform those
animations. All the other views in the list will remain untouched. In comparison, RecyclerView
.Adapter.notifyDataSetChanged(…) is a blunt instrument that often does a lot of unnecessary work.

When you are presented with an entirely new list of (very similar) data, it would be convenient to
have a tool that calculates the differences between the new and old lists and then calls the appropriate
RecyclerView.Adapter.notifyItem…() functions to animate those changes in. That is where
ListAdapter comes in.

ListAdapter extends the regular RecyclerView.Adapter, bringing with it extra goodies to help you
efficiently display and update lists of data. By using ListAdapter instead of RecyclerView.Adapter,
you can have the library calculate the individual insert/move/remove/update operations to efficiently
update the views in your RecyclerView.

This calculation does not happen magically. ListAdapter uses a class called DiffUtil, which is
included in the RecyclerView library. DiffUtil can detect which items have changed between your
original list and your updated list, but it needs a bit of help. The key component that makes this process
work is an instance of a class you define that extends DiffUtil.ItemCallback.

The DiffUtil.ItemCallback class has two functions that you must implement
(areContentsTheSame(…) and areItemsTheSame(…)), which ListAdapter uses internally to determine
the differences between the lists and then call the appropriate APIs.

With that set up, whenever you have a new list of data to display in your RecyclerView, all you have
to do is call ListAdapter.submitList(…), passing in the new list of data, and your RecyclerView will
beautifully and efficiently animate the new data onscreen.

Chapter 10 Displaying Lists with RecyclerView

198

Challenge: RecyclerView View Types
For this advanced challenge, create two types of rows in your RecyclerView: a normal row and a row
for more serious crimes. To implement this, you will need to work with the view type feature available
in RecyclerView.Adapter.

Add a new property, requiresPolice, to the Crime object and use it to determine which
view to load on the CrimeListAdapter by implementing the getItemViewType(Int)
function (developer.android.com/reference/androidx/recyclerview/widget/
RecyclerView.Adapter#getItemViewType(int)).

In the onCreateViewHolder(ViewGroup, Int) function, you will also need to add logic that returns a
different ViewHolder based on the new viewType value returned by getItemViewType(Int). Use the
original layout for crimes that do not require police intervention and a new layout with a streamlined
interface containing a button that says “contact police” for crimes that do.

https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.Adapter#getItemViewType(int)
https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.Adapter#getItemViewType(int)

199

11
Creating User Interfaces with

Layouts and Views

In this chapter, you will learn more about layouts and views while adding some style to your list
items in the RecyclerView. You will also learn how to use the layout editor to arrange views within a
ConstraintLayout.

Chapter 11 Creating User Interfaces with Layouts and Views

200

Figure 11.1 shows what CrimeListFragment’s view will look like once you build up your masterpiece.

Figure 11.1 CriminalIntent, now with beautiful pictures

In previous chapters, you used nested layout hierarchies to arrange your views. For example, the
layout/activity_main.xml file you created for GeoQuiz in Chapter 1 nested a LinearLayout within
another LinearLayout. This nesting is hard for you and other developers to read and edit. Worse,
nesting can degrade your app’s performance. Nested layouts can take a long time for the Android
OS to measure and lay out, meaning your users might experience a delay before they see your views
onscreen.

Flat, or non-nested, layouts take less time for the OS to measure and lay out. And this is one of the
areas where ConstraintLayout really shines. You can create beautifully intricate layouts without using
nesting.

Introducing ConstraintLayout

201

Before you start learning about ConstraintLayout, you need to take care of one task: You need
a copy of that fancy handcuff image from Figure 11.1 in your project. Open the solutions file
(www.bignerdranch.com/android-5e-solutions) and find the solution for this chapter in 11.
Creating User Interfaces with Layouts and Views/Solution/CriminalIntent. From the app/
src/main/res/drawable directory, copy the ic_solved.xml file into the drawable/ folder in your
project.

Introducing ConstraintLayout
With ConstraintLayout, instead of using nested layouts you add a series of constraints to your
layout. A constraint is like a rubber band: It pulls two things toward each other. So, for example, if you
have an ImageView, you can attach a constraint from its right edge to the right edge of its parent (the
ConstraintLayout itself), as shown in Figure 11.2. The constraint will hold the ImageView to the right.

Figure 11.2 ImageView with a constraint on the right edge

You can create a constraint from all four edges of your ImageView (left, top, right, and bottom). If you
have opposing constraints, they will equal out, and your ImageView will be in the center of the two
constraints (Figure 11.3).

Figure 11.3 ImageView with opposing constraints

So that is the big picture: To place views where you want them to go in a ConstraintLayout, you give
them constraints.

What about sizing views? For that, you have three options: Let the view decide (your old friend
wrap_content), decide for yourself, or let your view expand to fit your constraints.

With those tools, you can achieve a great many layouts with a single ConstraintLayout, no
nesting required. As you go through this chapter, you will see how to use constraints with your
list_item_crime.xml layout file.

https://www.bignerdranch.com/android-5e-solutions

Chapter 11 Creating User Interfaces with Layouts and Views

202

Introducing the Layout Editor
So far, you have created layouts by typing XML. In this section, you will use Android Studio’s layout
editor.

Open layout/list_item_crime.xml and select the Design tab near the top-right corner of the editor
tool window to open the design view (Figure 11.4).

Figure 11.4 Views in the layout editor

In the middle of the layout editor is the preview you have seen before. To the right of the preview is
the blueprint, which, as you saw in Chapter 1, is like the preview but shows the outline of each of your
views. This can be useful when you need to see how big each view is, not just what it is displaying.

In the top-left area of the screen is the palette, which contains all the views you could wish for,
organized by category. The component tree is in the bottom left. The tree shows how the views are
organized in the layout. If you do not see the palette or component tree, click the tabs on the left side of
the preview to open the tool windows.

On the right side of the screen is the attributes tool window. Here, you can view and edit the attributes
of the view selected in the component tree.

Introducing the Layout Editor

203

The first thing you need to do is convert list_item_crime.xml to use a ConstraintLayout. Right-
click the root LinearLayout in the component tree and select Convert LinearLayout to ConstraintLayout
(Figure 11.5).

Figure 11.5 Converting the root view to a ConstraintLayout

Android Studio will ask you in a pop-up how aggressive you would like this conversion process to
be (Figure 11.6). Since list_item_crime.xml is a simple layout file, there is not much that Android
Studio can optimize. Leave the default values checked and select OK.

Figure 11.6 Converting with the default configuration

Chapter 11 Creating User Interfaces with Layouts and Views

204

Be patient. The conversion process might take a little while. But when it is complete, you will have a
fine, new ConstraintLayout to work with (Figure 11.7).

Figure 11.7 Life as a ConstraintLayout

(Wondering why the component tree says you have a linearLayout? We will get to that in a moment.)

Introducing the Layout Editor

205

The toolbar above the preview has a few editing controls (Figure 11.8). You may need to click into the
preview to see all the controls.

Figure 11.8 Constraint controls

View Options View Options → Show All Constraints reveals the constraints that
are set up in the preview and blueprint views. You will find this
option helpful at times and unhelpful at others. If you have many
constraints, this setting will trigger an overwhelming amount of
information.

The view options menu includes other useful options, such as
Show System UI. Selecting Show System UI displays the app bar
as well as some system UI (such as the status bar) the user sees at
runtime. You will learn more about the app bar in Chapter 15.

Toggle Autoconnect When autoconnect is enabled, constraints will be automatically
configured as you drag views into the preview. Android Studio
will guess the constraints that you want a view to have and make
those connections automatically.

Clear All Constraints This button removes all existing constraints in the layout file. You
will use this shortly.

Infer Constraints This option is similar to autoconnect in that Android Studio will
automatically create constraints for you, but it is only triggered
when you select this button. Autoconnect is active any time you
add a view to your layout file.

Chapter 11 Creating User Interfaces with Layouts and Views

206

Using ConstraintLayout
When you converted list_item_crime.xml to use ConstraintLayout, Android Studio automatically
added the constraints it thinks will replicate the behavior of your old layout. However, to learn how
constraints work you are going to start from scratch.

Select the top-level view in the component tree, labeled linearLayout. Why does it say linearLayout,
when you converted your view to a ConstraintLayout? That is the ID the ConstraintLayout
converter supplied. linearLayout is, in fact, your ConstraintLayout. You can check the XML version
of your layout if you want to confirm this.

With linearLayout selected in the component tree, click the Clear All Constraints button (shown in
Figure 11.8) and confirm your intentions in the pop-up. You will immediately see red warning flags,
including one at the top right of the screen. Click it to see what that is all about (Figure 11.9).

Figure 11.9 ConstraintLayout warnings

When views do not have enough constraints, ConstraintLayout cannot know exactly where to put
them. Your TextViews have no constraints at all, so they each have a warning that says they will not
appear in the right place at runtime.

In the preview, the views look the same as they did when you were using a LinearLayout. But – as the
errors indicate – the positioning you see in the preview is not what you would see if you ran the app.
The preview allows you to position your views anywhere on the canvas to make it easier to add your
constraints, but these positions are only valid in the preview, not at runtime.

As you go through the chapter, you will add constraints to fix those warnings. In your own work, keep
an eye on that warning indicator to avoid unexpected behavior at runtime.

Making room

207

Making room
You need to make some room to work in the layout editor. Your two TextViews are taking up the entire
area, which will make it hard to wire up anything else. Time to shrink those two views.

Select crime_title in the component tree and look at the attributes window on the right (Figure 11.10). If
this window is not open for you, click the Attributes tab on the right to open it.

Figure 11.10 Title TextView’s attributes

The vertical and horizontal sizes of your TextView are governed by the height setting and width
setting, respectively. There are three setting types for height and width (shown in Figure 11.11 and
summarized in Table 11.1), each of which corresponds to a value for layout_height or layout_width.

Figure 11.11 Three view size settings

Chapter 11 Creating User Interfaces with Layouts and Views

208

Table 11.1 View size setting types
Setting
type

Setting
value

Usage

fixed Xdp Specifies an explicit size (that will not change) for the view. The
size is specified in dp units and should be a positive number. (If
you need a refresher on dp units, see the section called Screen Pixel
Densities in Chapter 2.)

wrap
content

wrap_content Assigns the view its “desired” size. For a TextView, this means that
the size will be just big enough to show its contents.

match
constraint

0dp Allows the view to stretch to meet the specified constraints.

Both the title and date TextViews are set to a large fixed width, which is why they are taking up
the whole screen. Adjust the width and height of both views. With crime_title still selected in the
component tree, click the width setting until it cycles around to the wrap content setting (or use the
drop-down menu to choose the setting). If necessary, adjust the height setting until the height is also set
to wrap content (Figure 11.12).

Figure 11.12 Adjusting the title width and height

Repeat the process with the crime_date view to set its width and height.

Adding views

209

Now the two views are the correct size (Figure 11.13).

Figure 11.13 Correctly sized TextViews

This change has not fixed the errors in your layout, because your views still have no constraints. You
will add constraints to correctly position your TextViews and get rid of the errors later. First, you will
add the third view you need in your layout.

Adding views
With your other views out of the way, you can add the handcuffs image to your layout. Add an
ImageView to your layout file. In the palette, find ImageView in the Common category (Figure 11.14).
Drag it into your component tree as a child of the ConstraintLayout, just underneath crime_date.

Figure 11.14 Finding the ImageView

Chapter 11 Creating User Interfaces with Layouts and Views

210

In the dialog that pops up, scroll to the CriminalIntent.app.main section and choose ic_solved as the
resource for the ImageView (Figure 11.15). This image will be used to indicate which crimes have been
solved. Click OK.

Figure 11.15 Choosing the ImageView’s resource

(The “ic” is short for “icon,” by the way. Just as fragment layout files begin with the “fragment_”
prefix and activity layout files begin with the “activity_” prefix, it is a convention to prefix your icons
with the “ic_” prefix. That allows you to easily organize your various drawables.)

The ImageView is now a part of your layout, but it has no constraints. So while the layout editor gives it
a position, that position does not really mean anything.

Adding views

211

Click your ImageView in the preview. (You may want to zoom the preview in to get a better look. The
zoom controls are in the toolbar in the lower right of the canvas.) You will see circles on each side of
the ImageView (Figure 11.16). Each of these circles represents a constraint handle.

Figure 11.16 ImageView’s constraint handles

You want the ImageView to be anchored on the right side of the view and centered vertically. To
accomplish this, you need to create constraints from the top, right, and bottom edges of the ImageView.

Before adding constraints, drag the ImageView to the right and down to move it away from the
TextViews (Figure 11.17). Do not worry about where you place the ImageView. This placement will be
ignored once you get your constraints in place.

Figure 11.17 Moving a view temporarily

Chapter 11 Creating User Interfaces with Layouts and Views

212

Time to add some constraints. First, you are going to set a constraint between the top of the ImageView
and the top of the ConstraintLayout. In the preview, drag the top constraint handle from the
ImageView to the top of the ConstraintLayout. The handle will display an arrow and turn solid blue
(Figure 11.18).

Figure 11.18 Part of the way through creating a top constraint

Watch for the constraint handle to turn blue, then release the mouse to create the constraint
(Figure 11.19).

Figure 11.19 Creating a top constraint

Be careful to avoid dragging one of the square handles in the corner of the image view – this will resize
it instead. Also, make sure you do not inadvertently attach the constraint to one of your TextViews. If
you do, click the constraint handle to delete the bad constraint, then try again.

When you let go and set the constraint, the view will snap into position to account for the presence
of the new constraint. This is how you move views around in a ConstraintLayout – by setting and
removing constraints.

Adding views

213

Verify that your ImageView has a top constraint connected to the top of the ConstraintLayout by
hovering over the top constraint handle with your mouse. You should see an animated box around
the constraint layout, with the top edge blue to show where the constraint handle is connected
(Figure 11.20).

Figure 11.20 ImageView with a top constraint

Do the same for the bottom constraint handle, dragging it from the ImageView to the bottom of the root
view (Figure 11.21), again taking care to avoid attaching it to the TextViews.

Figure 11.21 ImageView with top and bottom constraints

(The squiggly lines you see in the preview represent constraints that are stretching.)

Finally, drag the right constraint handle from the ImageView to the right side of the root view. That
should set all the constraints for the image view. Your constraints should look like Figure 11.22.

Figure 11.22 ImageView’s three constraints

Chapter 11 Creating User Interfaces with Layouts and Views

214

ConstraintLayout’s inner workings
Any edits that you make to constraints with the layout editor are reflected in the XML behind the
scenes. You can still edit the raw ConstraintLayout XML, but the layout editor will often be easier
for adding the initial constraints. ConstraintLayout is more verbose than other ViewGroups, so adding
the initial constraints manually can be a lot of work. On the other hand, working directly with the XML
can be more useful when you need to make smaller changes to the layout.

Switch to the code view to see what happened to the XML when you created the three constraints on
your ImageView:

 <androidx.constraintlayout.widget.ConstraintLayout
 ... >
 ...
 <ImageView
 android:id="@+id/imageView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:srcCompat="@drawable/ic_solved" />

 </androidx.constraintlayout.widget.ConstraintLayout>

(You will still see errors related to the two TextViews. Do not worry – you will fix them shortly.)

All the views are direct children of the single ConstraintLayout – there are no nested layouts. If you
had created the same layout using LinearLayout, you would have had to nest one inside another. As
we said earlier, reducing nesting also reduces the time needed to render the layout, and that results in a
quicker, more seamless user experience.

Take a closer look at the top constraint on the ImageView:

 app:layout_constraintTop_toTopOf="parent"

This attribute begins with layout_. All attributes that begin with layout_ are known as layout
parameters. Unlike other attributes, layout parameters are directions to that view’s parent, not the view
itself. They tell the parent layout how to arrange the child element within itself. You have seen a few
layout parameters so far, like layout_width and layout_height.

The name of the constraint is constraintTop. This means that this is the top constraint on your
ImageView.

Finally, the attribute ends with toTopOf="parent". This means that this constraint is connected to the
top edge of the parent. The parent here is the ConstraintLayout.

Whew, what a mouthful. Time to leave the raw XML behind and return to the layout editor.

(The layout editor’s tools are useful, especially with ConstraintLayout. But not everyone is a fan.
You do not have to choose sides – you can switch back and forth between the layout editor and directly
editing XML. After this chapter, use whatever approach you prefer to create the layouts in this book –
XML, layout editor, or some of each.)

Editing properties

215

Editing properties
Your ImageView is almost positioned correctly. Since the parent view is larger than the image and the
image is centered vertically, it looks good on the vertical axis. However, the image is flush against the
right side of the parent view. This looks a little off.

With the image still selected in the preview, check out the attributes window to the right. Because you
added constraints to the top, bottom, and right of the ImageView, drop-down menus appear to allow
you to select the margin for each constraint (Figure 11.23). You do not need to add margins to the top
or bottom, but select 16dp for the right margin.

Figure 11.23 Adding a margin to the end of the ImageView

Notice that Android Studio offers you margin values in increments of 8dp. These values
follow Android’s material design guidelines. You can find all the Android design guidelines at
developer.android.com/design/index.html. Your Android apps should follow these guidelines as
closely as possible.

https://developer.android.com/design/index.html

Chapter 11 Creating User Interfaces with Layouts and Views

216

With that taken care of, let’s move on to the text. Start with the position and size of the title TextView.

First, select Crime Date in the preview and drag it out of the way (Figure 11.24). Remember that any
changes you make to the position in the preview will not be represented when the app is running. At
runtime, only constraints remain.

Figure 11.24 Get out of here, date

Now, select crime_title in the component tree. This will also highlight Crime Title in the preview.

You want Crime Title to be at the top left of your layout, positioned to the left of your ImageView. That
requires three constraints:

• from the left side of your view to the left side of the parent

• from the top of your view to the top of the parent

• from the right of your view to the left side of the ImageView

Modify your layout so that all these constraints are in place (Figure 11.25). If a constraint does not
work as you expected, press Command-Z (Ctrl-Z) to undo and try again.

Figure 11.25 TextView constraints

Editing properties

217

Now you are going to add margins to the constraints on your TextView. With Crime Title still selected
in the preview, check out the attributes window to the right. Because you added constraints to the top,
left, and right of the TextView, drop-down menus appear to allow you to select the margin for each
constraint (Figure 11.26). Select 16dp for the left and top margins and 8dp for the right margin.

Figure 11.26 Adding margins to the TextView

Verify that your constraints look like Figure 11.27.

Figure 11.27 Title TextView’s constraints

Chapter 11 Creating User Interfaces with Layouts and Views

218

Now that the constraints are set up, you can restore the width of the title TextView to its full glory.
Adjust its horizontal view setting to 0 dp (match constraint) to allow the TextView to fill all the space
available within its constraints. Make the vertical view setting wrap_content, if it is not already, so
that the TextView will be just tall enough to show the title of the crime. Verify that your settings match
those shown in Figure 11.28.

Figure 11.28 crime_title view settings

Now, add constraints to the date TextView. Select crime_date in the component tree. Repeat the steps
from the title TextView to add three constraints:

• from the left side of your view to the left side of the parent, with a 16dp margin

• from the top of your view to the bottom of the crime title, with an 8dp margin

• from the right of your view to the left side of the ImageView, with an 8dp margin

Editing properties

219

After adding the constraints, adjust the properties of the TextView. You want the width of your date
TextView to be match_constraint and the height to be wrap_content, just like the title TextView. Verify
that your settings match those shown in Figure 11.29.

Figure 11.29 crime_date view settings

Your layout in the preview should look similar to Figure 11.1, at the beginning of the chapter. Up close,
your preview should match Figure 11.30.

Figure 11.30 Final constraints up close

Switch to the code view in the editor tool window to review the XML resulting from the changes you
made in the layout editor. Red underlines no longer appear under the TextView tags. This is because
the TextView views are now adequately constrained, so the ConstraintLayout that contains them can
figure out where to properly position the views at runtime.

Chapter 11 Creating User Interfaces with Layouts and Views

220

Two yellow warning indicators remain related to the TextViews, and if you explore them you will
see that the warnings have to do with their hardcoded strings. These warnings would be important for
a production application, but for CriminalIntent you can disregard them. (If you prefer, feel free to
follow the advice to extract the hardcoded text into string resources. This will resolve the warnings.)

Additionally, one warning remains on the ImageView, indicating that it does not have a content
description. For now, you can disregard this warning as well. You will address this issue when you
learn about accessibility in Chapter 19. In the meantime, your app will function, although the image
will not be accessible to users utilizing a screen reader.

Run CriminalIntent and verify that you see all three components lined up nicely in each row of your
RecyclerView (Figure 11.31).

Figure 11.31 Now with three views per row

Making list items dynamic

221

Making list items dynamic
Now that the layout includes the correct constraints, update the ImageView so that the handcuffs are
only shown on crimes that have been solved.

First, update the ID of your ImageView. When you added the ImageView to your ConstraintLayout, it
was given a default name. That name is not very descriptive. In the design view, select your ImageView
and, in the attributes window, update the ID attribute to crime_solved (Figure 11.32).

Figure 11.32 Updating the image ID

You will be asked whether Android Studio should update all usages of the ID; select Refactor. Next,
Android Studio will warn you that you are already using the ID crime_solved (Figure 11.33).

Figure 11.33 Reusing an ID

The crime_solved ID is used in both the list_item_crime.xml and fragment_crime_detail.xml
layouts. You might think that reusing an ID would be a problem, but in this case it is not. Layout IDs
only need to be unique in the same layout. Since your IDs are defined in different layout files, there is
no problem using the same ID in both. Click Continue to ignore this warning.

Chapter 11 Creating User Interfaces with Layouts and Views

222

With a proper ID in place, you are ready to update your code. Open CrimeListAdapter.kt. In
CrimeHolder, add an ImageView instance variable and toggle its visibility based on the solved status of
the crime.

Listing 11.1 Updating handcuff visibility (CrimeListAdapter.kt)
class CrimeHolder(
 private val binding: ListItemCrimeBinding
) : RecyclerView.ViewHolder(binding.root) {
 ...
 fun bind(crime: Crime) {
 ...
 binding.root.setOnClickListener {
 Toast.makeText(
 binding.root.context,
 "${crime.title} clicked!",
 Toast.LENGTH_SHORT
).show()
 }

 binding.crimeSolved.visibility = if (crime.isSolved) {
 View.VISIBLE
 } else {
 View.GONE
 }
 }
 ...
}

Run CriminalIntent and verify that the handcuffs now appear on every other row. (Check
CrimeListViewModel if you do not recall why this would be the case.)

Styles, Themes, and Theme Attributes

223

Styles, Themes, and Theme Attributes
Now you are going to add a few more tweaks to the design in list_item_crime.xml and, in the
process, answer some lingering questions you might have about views and attributes.

In previous chapters, you used XML attributes to define various aspects of your views, such as the text
within a TextView or the padding on a LinearLayout. You can also use XML attributes to set the size
or color of text within a TextView.

Navigate back to the design view of list_item_crime.xml. Select crime_title and, in the attributes
window, expand the textAppearance section under Common Attributes.

You could style your text by setting the individual attributes in this section, such as textSize and
textColor – but that is not a sustainable approach for large applications. If you wanted to apply the same
styling to other text in other layouts, you would have to copy those settings to the appropriate places.
As your app gets more complex and your text’s appearance becomes more stylized, duplicating settings
all over your codebase quickly becomes unmaintainable.

A step in the right direction would be to define a custom style and reference it when setting your text’s
appearance. This might look like:

 <style name="FancyListItemText">
 <item name="android:textSize">20sp</item>
 <item name="android:textColor">@color/black</item>
 </style>

You can define a custom style much like you define string resources in XML. These styles reside
in a themes.xml file in the /res/values/ directory. In your layout, you reference your style
using the @style/ prefix and whatever name you gave the style. Then, wherever you want to use
that custom style, you only have to set a single attribute: android:textAppearance="@style/
FancyListItemText".

However, since you are already using the Material Design library to theme your app, it would be better
to lean on that library to provide appropriate styling for your text. When you created CriminalIntent,
the wizard set up a theme for the app that is referenced on the application tag in the manifest. By
default, that theme extends a theme provided by the Material Design library.

 <style name="Theme.CriminalIntent"
 parent="Theme.MaterialComponents.DayNight.DarkActionBar">
 <!-- Primary brand color. -->
 <item name="colorPrimary">@color/purple_500</item>
 ...
 </style>

A theme is a collection of styles, and it defines theme attributes to reference those styles. Structurally, a
theme is itself a style resource whose attributes point to other style resources.

The theme attribute you will use here is a reference to a custom style defined by the Material Design
library. The Material Design library uses theme attributes heavily to provide access to different aspects
of the design system, like color, shape, and typographic style. The AppCompat library and even the
Android platform also offer theme attributes to allow you to hook into their provided themes.

Chapter 11 Creating User Interfaces with Layouts and Views

224

Unlike other resource types, which are referenced with the @ character followed by the resource
type (like @string/ or @drawable/), theme attributes use the ?attr/ prefix. You saw this syntax in
Chapter 9 when you styled the TextView labels for CrimeDetailFragment. Now, you want to use the
Headline 6 typographic style for your title text, so enter ?attr/textAppearanceHeadline6 for the
textAppearance attribute (Figure 11.34).

Figure 11.34 Updating the title color and size

Styles, Themes, and Theme Attributes

225

Run CriminalIntent and be amazed at how much better everything looks with a fresh coat of paint
(Figure 11.35).

Figure 11.35 Fresh paint

Chapter 11 Creating User Interfaces with Layouts and Views

226

For the More Curious: Margins vs Padding
In both GeoQuiz and CriminalIntent, you have given views margin and padding attributes. Beginning
developers sometimes get confused about these two. Now that you understand what a layout parameter
is, the difference is easier to explain.

Margin attributes are layout parameters. They determine the distance between views. Because a view
can only know about itself, margins must be the responsibility of the view’s parent.

Padding, on the other hand, is not a layout parameter. The android:padding attribute tells a view how
much bigger than its contents it should draw itself. For example, say you wanted the date button to be
spectacularly large without changing its text size (Figure 11.36).

Figure 11.36 I like big buttons and I cannot lie…

You could add the following attribute to the Button:

 <Button
 android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="80dp"
 tools:text="Wed May 11 11:56 EST 2022"/>

Alas, you should probably remove this attribute before continuing.

For the More Curious: Advanced Features in ConstraintLayout

227

For the More Curious: Advanced Features in
ConstraintLayout
ConstraintLayout has additional capabilities to help arrange its child views. In this chapter
you positioned views by constraining them to the parent as well as to other, sibling views.
ConstraintLayout also includes helper views, such as Guidelines, that simplify arranging views on
the screen.

Guidelines do not display on the app screen; they are just a tool to help you position views. There are
both horizontal and vertical guidelines, and they can be placed at a specific location on the screen using
dp values or by setting them to be a percentage of the screen. Other views can be constrained to the
guideline to ensure that they appear at the same location, even if the screen size is different.

Figure 11.37 shows an example of a vertical Guideline. It is positioned at 20% of the width of the
parent. Both the crime title and date have a left constraint to the Guideline instead of to the parent.

Figure 11.37 Using a Guideline

Another tool offered by ConstraintLayout is MotionLayout. MotionLayout is an extension of
ConstraintLayout that simplifies adding animations to your views. To use MotionLayout, you create a
MotionScene file that describes how the animations should be performed and which views map to each
other in the starting and ending layouts. You can also set Keyframes that provide intermediary views in
the animation. MotionLayout can animate from the starting view through the various keyframes you
provide, then ensure that the view animates to the ending layout appropriately.

Challenge: Formatting the Date
The Date object is more of a timestamp than a conventional date. A timestamp is what you see
when you call toString() on a Date, so that is what you have in each of your RecyclerView
rows. While timestamps make for good documentation, it might be nicer if the rows just displayed
the date as humans think of it – like “May 11, 2022.” You can do this with an instance of the
android.text.format.DateFormat class. The place to start is the reference page for this class in the
Android documentation.

You can use functions in the DateFormat class to get a common format. Or you can prepare your own
format string. For a more advanced challenge, create a format string that will display the day of the
week as well – like “Wednesday, May 11, 2022.”

229

12
Coroutines and Databases

Almost every application needs a place to save data for the long term. In this chapter you will
implement a database for CriminalIntent and seed it with dummy data. However, reading and writing
to a database is a slow process (in the scale at which computers operate), so first you will learn how to
perform operations asynchronously – allowing multiple tasks to run at the same time.

Once you understand the basics of working with asynchronous code on Android and you have
implemented the database, you will update the app to pull crime data from the database and display it
in the crime list (Figure 12.1).

Figure 12.1 Displaying crimes from the database

Chapter 12 Coroutines and Databases

230

An Introduction to Asynchronous Code on Android
Many programming languages rely on the concept of a thread for work that runs in the background
– or, as it is often called, asynchronously. Threads are responsible for managing execution of your
program. A thread has a sequence of instructions that it executes, performing them in the order they are
declared in.

An individual thread can only do so much work in a set period of time, so to keep the system
responsive to the user while also performing complicated tasks, developers distribute work across
many threads. On an individual device, the system can have multiple threads, and each of those threads
can execute their instructions simultaneously.

The primary thread, which manages the work the user interacts with directly, is called the main thread
or UI thread. Up until now, all the code that you have written has executed on the main thread. In fact,
on Android all the code that directly interacts with the UI must be executed on the main thread.

On the other hand, Android forbids code that makes network requests or interacts with a database
on the main thread. These kinds of operations can take a long time to execute, so they can block the
thread. When a thread is blocked, it is unable to respond to user input, making your application appear
frozen. Thankfully, you have access to many threads to perform various types of work. For the database
work in this chapter, you will offload that execution to a background thread.

By using a background thread, you will be able to execute long-running work while the main thread
continues without pause. Once you have successfully queried the database for the list of crimes on the
background thread, you will pass that list back over to the main thread, where you can update your
RecyclerView.

Unfortunately, threads are a fairly low-level API, making them difficult to work with. There is an
implementation of threads on the Java platform, and you can create threads directly on Android, but
it is very easy to make mistakes when doing so – mistakes that can lead to the application wasting
resources or crashing unexpectedly.

This is where coroutines come in. Coroutines are Kotlin’s first-party solution for defining work that
will run asynchronously and are fully supported on Android. They are based on the idea of functions
being able to suspend, meaning that a function can be paused until a long-running operation completes.
When the code running in a coroutine is suspended, the thread that the coroutine was executing on
is free to work on other things, like drawing your UI, responding to touch events, or making more
expensive calculations.

Coroutines provide a high-level and safer set of tools to help you build asynchronous code. Under the
hood, Kotlin’s coroutines use threads to perform work in parallel, but you often do not have to worry
about this detail. Coroutines make it easy to start work on the main thread, hop over to a background
thread to perform asynchronous work, and then return the result back to the main thread.

To keep this book at a reasonable length, we cannot explain Kotlin coroutines in full. If coroutines are
entirely new to you, JetBrains has excellent documentation on how to use them (kotlinlang.org/
docs/coroutines-overview.html). Also, there is a little book written by some very cool folks titled
“Kotlin Programming: The Big Nerd Ranch Guide.” That book does an excellent job explaining the
basics of coroutines and how to use them, as well as other Kotlin topics. We highly recommend that
book.

In this chapter and throughout this book, we will primarily focus on how to use coroutines in the
context of an Android app.

https://kotlinlang.org/docs/coroutines-overview.html
https://kotlinlang.org/docs/coroutines-overview.html

Using coroutines

231

Using coroutines
Your work will begin with the familiar step of adding dependencies to your build.gradle file. You
need to add the core Coroutines library, a library to hook up the main thread in Android to your
coroutines, and a library to enable you to safely consume data coming from a coroutine inside your
Fragment. Open the build.gradle file labeled (Module: CriminalIntent.app) and add those three
dependencies:

Listing 12.1 Adding coroutines to your project’s build (app/build.gradle)
...
dependencies {
 ...
 implementation 'androidx.recyclerview:recyclerview:1.2.1'
 implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.0'
 implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0'
 implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.4.1'
 testImplementation 'junit:junit:4.13.2'
 ...
}

Do not forget to click the Sync Project with Gradle Files button or the Sync Now button after you
have made these changes.

Before you get into using coroutines with a database, let’s take a quick tour of coroutines using the
existing hardcoded data. To run your code in a coroutine, you use a coroutine builder. A coroutine
builder is a function that creates a new coroutine. Most coroutine builders also start executing the code
within the coroutine immediately after creating it.

Several builders are defined for you in the Coroutines library. The most commonly used coroutine
builder is launch, a function that is defined as an extension to a class called CoroutineScope.

Every coroutine builder launches its coroutines inside a coroutine scope. A coroutine’s scope has
control over how the coroutine’s code executes. This includes setting up the coroutine, canceling the
coroutine, and choosing which thread will be used to run the code.

On Android, this idea of scopes maps neatly onto the various lifecycles you have encountered so far.
The Activity, Fragment, and ViewModel classes have unique lifecycles and coroutine scopes to match.
For ViewModels, you have access to the viewModelScope class property. This viewModelScope is
available from the time your ViewModel is initialized, and it cancels any coroutine work still running
when the ViewModel is cleared out from memory.

Chapter 12 Coroutines and Databases

232

Open CrimeListViewModel.kt and launch a coroutine using the viewModelScope property, wrapping
the initialization of your list of crimes inside the new coroutine.

Listing 12.2 Launching your first coroutine (CrimeListViewModel.kt)
class CrimeListViewModel : ViewModel() {

 val crimes = mutableListOf<Crime>()

 init {
 viewModelScope.launch {
 for (i in 0 until 100) {
 val crime = Crime(
 id = UUID.randomUUID(),
 title ="Crime #$i",
 date = Date(),
 isSolved = i % 2 == 0
)

 crimes += crime
 }
 }
 }
}

On its own, that code does not do much. But now that you have launched a coroutine, you can invoke
suspending functions within it. A suspending function is a function that can be paused until a long-
running operation can be completed. This may sound similar to long-running functions that block a
thread; the big difference is that coroutines are able to be much more resource friendly.

Behind the scenes, Kotlin saves and restores the function state between suspending function calls. This
allows the original function call to be temporarily freed from memory until it is ready to be resumed.
Because of these optimizations, coroutines are considerably more resource efficient than native threads.

Using coroutines

233

One of the most basic suspending functions is delay(timeMillis: Long). As the name suggests, this
function delays a coroutine – without blocking a thread – for a specified number of milliseconds. Add a
call to this function, as well as some logging calls, to your initialization block.

Listing 12.3 Delaying work (CrimeListViewModel.kt)
private const val TAG = "CrimeListViewModel"

class CrimeListViewModel : ViewModel() {

 val crimes = mutableListOf<Crime>()

 init {
 Log.d(TAG, "init starting")
 viewModelScope.launch {
 Log.d(TAG, "coroutine launched")
 delay(5000)
 for (i in 0 until 100) {
 val crime = Crime(
 id = UUID.randomUUID(),
 title ="Crime #$i",
 date = Date(),
 isSolved = i % 2 == 0
)

 crimes += crime
 }
 Log.d(TAG, "Loading crimes finished")
 }
 }
}

Open Logcat and search for CrimeListViewModel, then run your app. You should see the two
initialization messages print out and then, five seconds later, “Loading crimes finished” should print
out.

Because delay is running inside a coroutine, during the five seconds that the function is counting
milliseconds your UI is still capable of drawing any new updates and can instantly respond to
user input (Figure 12.2). (If this were not the case, your users would see a system dialog saying
“CriminalIntent isn’t responding” with the options to kill the app or wait for it to respond.)

Figure 12.2 A timeline of the coroutine work done in CrimeListViewModel

Coroutines allow you to perform asynchronous code in a resource- and performance-friendly way.
If you were using a thread directly, you would need to do more setup to accomplish the same result
correctly and without wasting system resources.

Chapter 12 Coroutines and Databases

234

(If you took a peek at your Android device when running this new code, you might have noticed that
the crimes no longer display in your RecyclerView. You might already know why that is happening,
and you will learn how to solve that problem shortly.)

You can also define your own suspending functions. Suspending functions can take in parameters, use
visibility modifiers, and return values, just like regular functions. All you need to do to convert one of
your regular functions to a suspending function is add the suspend modifier to the function definition.

Marking a function as a suspending function does limit the number of places where you can invoke it,
because you need a coroutine scope to invoke a suspending function. But when you make a function
a suspending function, you can then call other suspending functions within it. To see this, move your
crime loading code into its own suspending function. Within the new loadCrimes() suspending
function, you can call the delay() suspending function.

Listing 12.4 Defining your own suspending function (CrimeListViewModel.kt)
private const val TAG = "CrimeListViewModel"

class CrimeListViewModel : ViewModel() {
 ...
 init {
 Log.d(TAG, "init starting")
 viewModelScope.launch {
 Log.d(TAG, "coroutine launched")
 delay(5000)
 for (i in 0 until 100) {
 val crime = Crime(
 id = UUID.randomUUID(),
 title = "Crime #$i",
 date = Date(),
 isSolved = i % 2 == 0
)

 crimes += crime
 }
 crimes += loadCrimes()
 Log.d(TAG, "Loading crimes finished")
 }
 }

 suspend fun loadCrimes(): List<Crime> {
 val result = mutableListOf<Crime>()
 delay(5000)
 for (i in 0 until 100) {
 val crime = Crime(
 id = UUID.randomUUID(),
 title = "Crime #$i",
 date = Date(),
 isSolved = i % 2 == 0
)

 result += crime
 }
 return result
 }
}

Run your app again to confirm that the behavior is the same.

Consuming data from coroutines

235

Consuming data from coroutines
Right now, you access the crimes property from your CrimeListViewModel in the onCreateView(…)
callback within your CrimeListFragment. This callback is invoked right after the fragment is created.
But with the changes you have made in this chapter, you do not add the list of crimes to the crimes
property until five seconds have passed. That is why your RecyclerView is no longer showing the list
of crimes.

This is a textbook example of a race condition, a common problem in multithreaded code where the
timing of independent events affects the output of the code. In this case, it is extremely unlikely that the
crimes property can be properly loaded with data before the onCreateView(…) function is invoked.

Instead of trying to access your asynchronously loaded data in an error-prone way, you should
instead reach for a more reliable approach. As we mentioned earlier, the Fragment and Activity
classes have properties to access coroutine scopes for their respective lifecycles. Both classes have a
lifecycleScope property, but you should prefer the viewLifecycleScope when using coroutines with
Fragments.

(The reasons for using viewLifecycleScope in a Fragment go back to the same subtle detail about
memory management with Fragments we discussed in the section called Fragments and memory
management in Chapter 9. It is wasteful and potentially dangerous to execute coroutine code when
your Fragment does not have a view.)

Chapter 12 Coroutines and Databases

236

Figure 12.3 shows the fragment lifecycle.

Figure 12.3 Fragment lifecycle diagram

viewLifecycleScope is active for as long as the view is in memory (in other words, after
onViewCreated() but before onDestroyView()). After the view is destroyed, the coroutine scope – and
all work within it – is canceled. But you should only update the UI while the Fragment is in the started
lifecycle state or higher. It does not make sense to update the UI when it is not visible.

To do this, you will ensure that you only load crimes when the view is running. Instead of relying
on the coroutine scope to only run during the appropriate time, you will have to manage that work
yourself. The way you manage coroutine work is via the Job class. When you launch a new coroutine,
a Job instance is returned to you, and you can use it to cancel the work at the appropriate time.

Consuming data from coroutines

237

Launch your work in the onStart() callback and then cancel it in the onStop() callback.

Listing 12.5 Calling coroutines from your CrimeListFragment
(CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 private val crimeListViewModel: CrimeListViewModel by viewModels()

 private var job: Job? = null
 ...
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 ...
 }

 override fun onStart() {
 super.onStart()

 job = viewLifecycleOwner.lifecycleScope.launch {
 val crimes = crimeListViewModel.loadCrimes()
 binding.crimeRecyclerView.adapter = CrimeListAdapter(crimes)
 }
 }

 override fun onStop() {
 super.onStop()
 job?.cancel()
 }
 ...
}

This approach will work, but it is annoying to keep a reference to a Job and to make sure you cancel
the work when the fragment goes in the background. That is where the repeatOnLifecycle(…)
function comes into play.

With the repeatOnLifecycle(…) function, you can execute coroutine code while your fragment
is in a specified lifecycle state. For example, you only want this coroutine code to execute while
your fragment is in the started or resumed state. Also, repeatOnLifecycle is itself a suspending
function. You will launch it in your view lifecycle scope, which will cause your work to be canceled
permanently when your view is destroyed.

Chapter 12 Coroutines and Databases

238

You are not required to call the repeatOnLifecycle(…) function in the onStart() callback. Normally,
you use the onViewCreated(…) callback to hook up listeners to views and to set the data within those
views. This is the perfect spot to handle your coroutine code, too. Change your implementation to use
repeatOnLifecycle(…):

Listing 12.6 Using repeatOnLifecycle(…) (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 private var job: Job? = null
 ...
 override fun onStart() {
 super.onStart()

 job = viewLifecycleOwner.lifecycleScope.launch {
 val crimes = crimeListViewModel.loadCrimes()
 binding.crimeRecyclerView.adapter = CrimeListAdapter(crimes)
 }
 }

 override fun onStop() {
 super.onStop()
 job?.cancel()
 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 val crimes = crimeListViewModel.loadCrimes()
 binding.crimeRecyclerView.adapter =
 CrimeListAdapter(crimes)
 }
 }
 }
 ...
}

Your code will behave exactly as it did with onStart() and onStop(), but now there are fewer
lifecycle methods to override and you will not have to worry about forgetting to cancel your Job.
repeatOnLifecycle(…) handles all that for you.

repeatOnLifecycle(…) will begin executing your coroutine code when your fragment enters the
started state and will continue running in the resumed state. But if your app is backgrounded and your
fragment is no longer visible, repeatOnLifecycle(…) will cancel the work once the fragment falls
from the started state to the created state. If your lifecycle re-enters the started state without fully being
destroyed, your coroutine will be restarted from the beginning, repeating its work. (This explains the
function’s name.)

Consuming data from coroutines

239

Before running your app, clean up some unneeded code. Remove your onCreate(…) implementation
that logs the number of crimes; you do not need it anymore. Also, delete the code that tries to initialize
your CrimeListAdapter with missing data.

Listing 12.7 Cleaning up (CrimeListFragment.kt)
private const val TAG = "CrimeListFragment"

class CrimeListFragment : Fragment() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 Log.d(TAG, "Total crimes: ${crimeListViewModel.crimes.size}")
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 _binding = FragmentCrimeListBinding.inflate(inflater, container, false)

 binding.crimeRecyclerView.layoutManager = LinearLayoutManager(context)

 val crimes = crimeListViewModel.crimes
 val adapter = CrimeListAdapter(crimes)
 binding.crimeRecyclerView.adapter = adapter

 return binding.root
 }
 ...
}

Run CriminalIntent. When the fragment is created, there is a five second delay, and then the crimes
load and display in your RecyclerView. That is good! But now try rotating your device.

Another five second delay. Unfortunately, your list of crimes is being recalculated every time your
fragment is re-created. In GeoQuiz, you used a ViewModel to store state across configuration changes.
It is also an excellent place to perform expensive calculations that would be painful to do every time
your fragment is created. You will learn how to do this by the end of this chapter.

First, let’s implement your database.

Chapter 12 Coroutines and Databases

240

Creating a Database
On Android, there are many ways to create and access a database. In this book, we will use the Room
library from Google. Room is a Jetpack architecture component library that simplifies database setup
and access. It allows you to define your database structure and queries using annotated Kotlin classes.

Room architecture component library
Room is composed of an API, annotations, and a compiler. The API contains classes you extend
to define your database and build an instance of it. You use the annotations to indicate things like
which classes need to be stored in the database, which class represents your database, and which class
specifies the accessor functions to your database tables. The compiler processes the annotated classes
and generates the implementation of your database.

To use Room, you first need to add the dependencies it requires. Add the room-runtime, room-ktx, and
room-compiler dependencies to your app/build.gradle file.

Listing 12.8 Adding dependencies (app/build.gradle)
plugins {
 id 'com.android.application'
 id 'org.jetbrains.kotlin.android'
 id 'org.jetbrains.kotlin.kapt'
}

android {
 ...
}
...
dependencies {
 ...
 implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.4.1'
 implementation 'androidx.room:room-runtime:2.4.2'
 implementation 'androidx.room:room-ktx:2.4.2'
 kapt 'androidx.room:room-compiler:2.4.2'
 ...
}

Near the top of the file, you added a new plugin. Plugins are a way to add functionality and features to
the configuration of a project.

kapt stands for “Kotlin annotation processing tool.” kapt enables your project to generate code for
you when compiling your app. You have already used two tools that generate code: the R class and
View Binding. Those two tools are bundled in the Android Gradle plugin; when using other libraries
to generate code, you will often rely on kapt to handle the code generation for you. kapt can generate
code during the build process, and it makes that generated code accessible throughout the rest of your
project.

The first dependency you added, room-runtime, is for the Room API, containing all the classes and
annotations you will need to define your database. The second dependency, room-ktx, adds Kotlin-
specific functionality and support for coroutines. And the third dependency, room-compiler, is for
the Room compiler, which will generate your database implementation based on the annotations you
specify. The compiler uses the kapt keyword, instead of implementation, so that the generated classes
from the compiler are visible to Android Studio, thanks to the kotlin-kapt plugin.

Room architecture component library

241

There is one last change you need to make in your build setup. Much like how you declared which
version of a particular library you want in your build (such as 2.4.0 for room-runtime), you need to
declare which version of the kapt plugin you want to use. This is defined at the project level, in the
build.gradle file labeled (Project: CriminalIntent):

Listing 12.9 Defining plugin versions (build.gradle)
// Top-level build file where you can add configuration options common to all
 sub-projects/modules.
plugins {
 id 'com.android.application' version '7.1.2' apply false
 id 'com.android.library' version '7.1.2' apply false
 id 'org.jetbrains.kotlin.android' version '1.6.10' apply false
 id 'org.jetbrains.kotlin.kapt' version '1.6.10' apply false
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

If your org.jetbrains.kotlin.android version is older than 1.6.10, update it to match the kapt
plugin.

Do not forget to sync your Gradle files. With your dependencies in place, you can move on to
preparing your model layer for storage in the database.

There are three steps to creating a database with Room:

• annotating your model class to make it a database entity

• creating the class that will represent the database itself

• creating a type converter so that your database can handle your model data

Room makes each of these steps straightforward, as you are about to see.

Chapter 12 Coroutines and Databases

242

Defining entities
Room structures the database tables for your application based on the entities you define. Entities are
model classes you create and annotate with @Entity. Room will create a database table for any class
with that annotation that is associated with a database.

Since you want to store crime objects in your database, update Crime to be a Room entity. Open
Crime.kt and add two annotations:

Listing 12.10 Making Crime an entity (Crime.kt)
@Entity
data class Crime(
 @PrimaryKey val id: UUID,
 val title: String,
 val date: Date,
 val isSolved: Boolean
)

The first annotation, @Entity, is applied at the class level. This entity annotation indicates that the class
defines the structure of a table, or set of tables, in the database. In this case, each row in the table will
represent an individual Crime. Each property defined on the class will be a column in the table, with
the name of the property as the name of the column. The table that stores your crimes will have four
columns: id, title, date, and isSolved.

The other annotation you added is @PrimaryKey, which you added to the id property. The primary key
in a database is a column that holds data that is unique for each entry, or row, so that it can be used to
look up individual entries. The id property is unique for every Crime, so by adding @PrimaryKey to this
property you will be able to query a single crime from the database using its id.

Now that your Crime class is annotated, you can move on to creating your database class.

Creating a database class

243

Creating a database class
Entity classes define the structure of database tables. A single entity class could be used across
multiple databases, should your app have more than one database. That case is not common, but it is
possible. For this reason, an entity class is not used by Room to create a table unless you explicitly
associate it with a database, which you will do shortly.

First, create a new package called database for your database-specific code. In the project tool
window, right-click the com.bignerdranch.android.criminalintent folder and choose New →
Package. Name your new package database.

Now, create a new class called CrimeDatabase in the database package and define the class as shown
below.

Listing 12.11 Initial CrimeDatabase class (database/CrimeDatabase.kt)

@Database(entities = [Crime::class], version=1)
abstract class CrimeDatabase : RoomDatabase() {
}

The @Database annotation tells Room that this class represents a database in your app. The annotation
itself requires two parameters. The first parameter is a list of entity classes, which tells Room which
entity classes to use when creating and managing tables for this database. In this case, you only pass
the Crime class, since it is the only entity in the app.

The second parameter is the version of the database. When you first create a database, the version
should be 1. As you develop your app in the future, you may add new entities and new properties to
existing entities. When this happens, you will need to modify your entities list and increment your
database version to tell Room something has changed. (You will do this in Chapter 16.)

The database class itself is empty at this point. CrimeDatabase extends from RoomDatabase and is
marked as abstract, so you cannot make an instance of it directly. You will learn how to use Room to
get a database instance you can use later in this chapter.

Creating a type converter
Room uses SQLite under the hood. SQLite is an open-source relational database, like MySQL or
PostgreSQL. (SQL, short for Structured Query Language, is a standard language used for interacting
with databases. People pronounce “SQL” as either “sequel” or as an initialism, “S-Q-L.”) Unlike
other databases, SQLite stores its data in simple files you can read and write using the SQLite library.
Android includes this SQLite library in its standard library, along with some additional helper classes.

Room makes using SQLite even easier and cleaner, serving as an object-relational mapping (or
ORM) layer between your Kotlin objects and database implementation. For the most part, you do not
need to know or care about SQLite when using Room, but if you want to learn more you can visit
www.sqlite.org, which has complete SQLite documentation.

https://www.sqlite.org

Chapter 12 Coroutines and Databases

244

Room is able to store primitive types, enum classes, and the UUID type with ease in the underlying
SQLite database tables, but other types will cause issues. Your Crime class contains a property of the
type Date, which Room does not know how to store by default. You need to give the database a hand
so it knows how to store that type and how to pull it out of the database table correctly.

To tell Room how to convert your data type, you specify a type converter. A type converter tells
Room how to convert a specific type to the format it needs to store in the database. You will need two
functions, which you will annotate with @TypeConverter. One will tell Room how to convert the type
to store it in the database, and the other will tell Room how to convert from the database representation
back to the original type.

Create a class called CrimeTypeConverters in the database package and add two functions to convert
the Date type.

Listing 12.12 Adding TypeConverter functions
(database/CrimeTypeConverters.kt)

class CrimeTypeConverters {
 @TypeConverter
 fun fromDate(date: Date): Long {
 return date.time
 }

 @TypeConverter
 fun toDate(millisSinceEpoch: Long): Date {
 return Date(millisSinceEpoch)
 }
}

Make sure you import the java.util.Date version of the Date class.

Declaring the converter functions does not enable your database to use them. You must explicitly add
the converters to your database class.

Listing 12.13 Enabling TypeConverters (database/CrimeDatabase.kt)
@Database(entities = [Crime::class], version=1)
@TypeConverters(CrimeTypeConverters::class)
abstract class CrimeDatabase : RoomDatabase() {
}

By adding the @TypeConverters annotation and passing in your CrimeTypeConverters class, you tell
your database to use the functions in that class when converting your types.

With that, your database and table definitions are complete.

Defining a Data Access Object

245

Defining a Data Access Object
A database table does not do much good if you cannot edit or access its contents. The first step to
interacting with your database tables is to create a data access object, or DAO (pronounced either to
rhyme with “cow” or as an initialism). A DAO is an interface that contains functions for each database
operation you want to perform. In this chapter, CriminalIntent’s DAO needs two query functions: one
to return a list of all crimes in the database and another to return a single crime matching a given UUID.

Add a file named CrimeDao.kt to the database package. In it, define an empty interface named
CrimeDao annotated with Room’s @Dao annotation.

Listing 12.14 Creating an empty DAO (database/CrimeDao.kt)

@Dao
interface CrimeDao {
}

The @Dao annotation lets Room know that CrimeDao is one of your data access objects. When you hook
CrimeDao up to your database class, Room will generate implementations of the functions you add to
this interface.

Speaking of adding functions, now is the time. Add two query functions to CrimeDao.

Listing 12.15 Adding database query functions (database/CrimeDao.kt)
@Dao
interface CrimeDao {
 @Query("SELECT * FROM crime")
 suspend fun getCrimes(): List<Crime>

 @Query("SELECT * FROM crime WHERE id=(:id)")
 suspend fun getCrime(id: UUID): Crime
}

The @Query annotation indicates that getCrimes() and getCrime(UUID) are meant to pull information
out of the database, rather than inserting, updating, or deleting items from the database. The return type
of each query function in the DAO interface reflects the type of result the query will return.

The @Query annotation expects a string containing a SQL command as input. In most cases you only
need to know minimal SQL to use Room, but if you are interested in learning more check out the SQL
Syntax section at www.sqlite.org.

SELECT * FROM crime asks Room to pull all columns for all rows in the crime database table. SELECT
* FROM crime WHERE id=(:id) asks Room to pull all columns from only the row whose id matches
the ID value provided.

You might have noticed that you included the suspend modifier on these functions. Because you
already added the room-ktx library to your project as a dependency, Room can implement these
functions as suspending functions. Now, you can asynchronously call these functions within a
coroutine.

With that, the CrimeDao is complete, at least for now. In Chapter 13 you will add a function to update
an existing crime. In Chapter 15 you will add a function to insert a new crime and – if you choose to
complete a challenge – another to delete a crime.

https://www.sqlite.org

Chapter 12 Coroutines and Databases

246

Next, you need to register your DAO class with your database class. Since the CrimeDao is an interface,
Room will handle generating the concrete version of the class for you. But for that to work, you need
to tell your database class to generate an instance of the DAO.

To hook up your DAO, open CrimeDatabase.kt and add an abstract function that has CrimeDao as the
return type.

Listing 12.16 Registering the DAO in the database
(database/CrimeDatabase.kt)
@Database(entities = [Crime::class], version = 1)
@TypeConverters(CrimeTypeConverters::class)
abstract class CrimeDatabase : RoomDatabase() {
 abstract fun crimeDao(): CrimeDao
}

Now, when the database is created, Room will generate a concrete implementation of the DAO that you
can access. Once you have a reference to the DAO, you can call any of the functions defined on it to
interact with your database.

Accessing the Database Using the Repository Pattern

247

Accessing the Database Using the Repository Pattern
To access your database, you will use the repository pattern recommended by Google in its Guide to
App Architecture (developer.android.com/jetpack/guide).

A repository class encapsulates the logic for accessing data from a single source or a set of sources.
It determines how to fetch and store a particular set of data, whether locally in a database or from a
remote server. Your UI code will request all the data from the repository, because the UI does not care
how the data is actually stored or fetched. Those are implementation details of the repository itself.

Because CriminalIntent is a simpler app, the repository will only handle fetching data from the
database.

Create a class called CrimeRepository in the com.bignerdranch.android.criminalintent package
and define a companion object in the class.

Listing 12.17 Implementing a repository (CrimeRepository.kt)

class CrimeRepository private constructor(context: Context) {

 companion object {
 private var INSTANCE: CrimeRepository? = null

 fun initialize(context: Context) {
 if (INSTANCE == null) {
 INSTANCE = CrimeRepository(context)
 }
 }

 fun get(): CrimeRepository {
 return INSTANCE ?:
 throw IllegalStateException("CrimeRepository must be initialized")
 }
 }
}

CrimeRepository is a singleton. This means there will only ever be one instance of it in your app
process.

A singleton exists as long as the application stays in memory, so storing any properties on the singleton
will keep them available throughout any lifecycle changes in your activities and fragments. Be careful
with singleton classes, as they are destroyed when Android removes your application from memory.
The CrimeRepository singleton is not a solution for long-term storage of data. Instead, it gives the app
an owner for the crime data and provides a way to easily pass that data between components.

To make CrimeRepository a singleton, you add two functions to its companion object. One initializes
a new instance of the repository, and the other accesses the repository. You also mark the constructor as
private to ensure no components can go rogue and create their own instance.

https://developer.android.com/jetpack/guide

Chapter 12 Coroutines and Databases

248

The getter function is not very nice if you have not called initialize() before it. It will throw an
IllegalStateException, so you need to make sure that you initialize your repository when your
application is starting.

To do work as soon as your application is ready, you can create an Application subclass. This
allows you to access lifecycle information about the application itself. Create a class called
CriminalIntentApplication that extends Application, and override Application.onCreate() to set
up the repository initialization.

Listing 12.18 Creating an application subclass
(CriminalIntentApplication.kt)

class CriminalIntentApplication : Application() {
 override fun onCreate() {
 super.onCreate()
 CrimeRepository.initialize(this)
 }
}

Similar to Activity.onCreate(…), Application.onCreate() is called by the system when
your application is first loaded into memory. What makes it different is the fact that your
CriminalIntentApplication is not re-created on configuration changes. It is created when the app
launches and destroyed when your app process is destroyed. That makes it a good place to do any kind
of one-time initialization operations. The only lifecycle function you will override in CriminalIntent is
onCreate().

In a moment, you are going to pass the application instance to your repository as a Context object.
This object is valid as long as your application process is in memory, so it is safe to hold a reference to
it in the repository class.

Accessing the Database Using the Repository Pattern

249

But in order for your application class to be used by the system, you need to register it in your
manifest. Open manifests/AndroidManifest.xml and specify the android:name property to set up
your application.

Listing 12.19 Hooking up the application subclass
(manifests/AndroidManifest.xml)
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.criminalintent">

 <application
 android:name=".CriminalIntentApplication"
 android:allowBackup="true"
 ... >
 ...
 </application>

</manifest>

With the application class registered in the manifest, the OS will create an instance of
CriminalIntentApplication when launching your app. The OS will then call onCreate() on the
CriminalIntentApplication instance. Your CrimeRepository will be initialized, and you can access
it from your other components.

Next, add a private property on your CrimeRepository to store a reference to your database.

Listing 12.20 Setting up repository properties (CrimeRepository.kt)
private const val DATABASE_NAME = "crime-database"

class CrimeRepository private constructor(context: Context) {

 private val database: CrimeDatabase = Room
 .databaseBuilder(
 context.applicationContext,
 CrimeDatabase::class.java,
 DATABASE_NAME
)
 .build()

 companion object {
 ...
 }
}

Room.databaseBuilder() creates a concrete implementation of your abstract CrimeDatabase using
three parameters. It first needs a Context object, since the database is accessing the filesystem. You
pass in the application context because, as discussed above, the singleton will most likely live longer
than any of your activity classes.

The second parameter is the database class that you want Room to create. The third is the name of the
database file you want Room to create for you. You are using a private string constant defined in the
same file, since no other components need to access it.

Chapter 12 Coroutines and Databases

250

Next, fill out your CrimeRepository so your other components can perform any operations they need
to on your database. Add a function to your repository for each function in your DAO.

Listing 12.21 Adding repository functions (CrimeRepository.kt)
class CrimeRepository private constructor(context: Context) {

 private val database: CrimeDatabase = Room
 .databaseBuilder(
 context.applicationContext,
 CrimeDatabase::class.java,
 DATABASE_NAME
)
 .build()

 suspend fun getCrimes(): List<Crime> = database.crimeDao().getCrimes()

 suspend fun getCrime(id: UUID): Crime = database.crimeDao().getCrime(id)

 companion object {
 ...
 }
}

Since Room provides the query implementations in the DAO, you call through to those
implementations from your repository. This helps keep your repository code short and easy to
understand.

This may seem like a lot of work for little gain, since the repository is just calling through to functions
on your CrimeDao. But fear not; you will be adding functionality soon to encapsulate additional work
the repository needs to handle.

Importing Prepopulated Data
With your repository in place, there is one last step before you can test your query functions. Currently,
your database is empty, because you have not added any crimes to it. To speed things up, you will
package a prepopulated database with your app that Room can import when your app is launched
for the first time. The database file has been provided for you in the solutions file for this chapter
(www.bignerdranch.com/android-5e-solutions).

You could programmatically generate and insert dummy data into the database, like the 100 dummy
crimes you have been using. However, you have not yet implemented a DAO function to insert new
database entries (you will do so in Chapter 15). Packaging a preexisting database file with your
application allows you to easily seed the database without altering your app’s code unnecessarily.

First, you need to add the database file to your project so your code can use it at runtime. Rather than
use the resources system for this job, you will use raw assets. You can think of assets as stripped-
down resources: They are packaged into your APK like resources, but without any of the configuration
system tooling that goes on top of resources.

https://www.bignerdranch.com/android-5e-solutions

Importing Prepopulated Data

251

In some ways, that is good. Because there is no configuration system, you can name assets whatever
you want and organize them with your own folder structure. But there are some drawbacks. Without
a configuration system, you cannot automatically respond to changes in pixel density, language, or
orientation, nor can you automatically use the assets in layout files or other resources.

Usually, resources are the better deal. However, in cases where you only access files programmatically,
assets can come out ahead. Most games use assets for graphics and sound, for example.

Create an assets folder inside your project by right-clicking your app module and selecting New
→ Folder → Assets Folder. In the dialog that pops up, leave the Change Folder Location checkbox
unchecked and leave the Target Source Set set to main (Figure 12.4). Click Finish.

Figure 12.4 Creating the assets folder

Everything in the assets/ folder will be deployed with your app. Copy or move the database file from
the downloaded solutions into the assets/ folder (Figure 12.5).

Figure 12.5 Imported assets

(Make sure the file is named exactly crime-database. There is no file extension.)

Chapter 12 Coroutines and Databases

252

Once the database file is properly situated, configuring Room to use it for prepopulation is a snap. In
CrimeRepository.kt, call createFromAsset(databaseFilePath) where you initialize your database
property. Since the file has the same name as the DATABASE_NAME constant value, you can reuse it here.

Listing 12.22 Prepopulating your database (CrimeRepository.kt)
private const val DATABASE_NAME = "crime-database"

class CrimeRepository private constructor(context: Context) {

 private val database: CrimeDatabase = Room
 .databaseBuilder(
 context.applicationContext,
 CrimeDatabase::class.java,
 DATABASE_NAME
)
 .createFromAsset(DATABASE_NAME)
 .build()
 ...
}

Querying the Database
Now that CrimeRepository is set up to pull data from a populated database, update
CrimeListViewModel to access the database when loading crimes instead of using the dummy data.

Listing 12.23 Accessing your database (CrimeListViewModel.kt)
class CrimeListViewModel : ViewModel() {
 private val crimeRepository = CrimeRepository.get()

 val crimes = mutableListOf<Crime>()
 ...
 suspend fun loadCrimes(): List<Crime> {
 val result = mutableListOf<Crime>()
 delay(5000)
 for (i in 0 until 100) {
 val crime = Crime(
 id = UUID.randomUUID(),
 title = "Crime #$i",
 date = Date(),
 isSolved = i % 2 == 0
)

 result += crime
 }
 return result
 return crimeRepository.getCrimes()
 }
}

Run the app and see the prepopulated crimes display onscreen.

Keeping the Changes Flowing

253

Keeping the Changes Flowing
At this point, your database has been fully set up and connected to your UI. However, your current
code is only suited to query the database once. Eventually, you will be able to add and update
individual crimes – but at the moment, if other parts of your app tried to update the database,
CrimeListFragment would be oblivious to the changes and would happily present stale data.

While you could add code to manually reconcile updates from specific parts of your app, it would be
better to “observe” the database so that CrimeListFragment automatically receives all updates to the
database, regardless of where they come from.

Which brings us back to coroutines, along with two new classes: Flow and StateFlow.

Built into the Coroutines library, a flow represents an asynchronous stream of data. Throughout their
lifetime, flows emit a sequence of values over an indefinite period of time that get sent to a collector.
The collector will observe the flow and will be notified every time a new value is emitted in the flow.

Flows are a great tool for observing changes to a database. In a moment, you will create a flow that
contains all the Crime objects in your database. If a crime is added, removed, or updated, the flow will
automatically emit the updated set of crimes to its collectors, keeping them in sync with the database.
This all ties in nicely with the end goal of this chapter: to have CrimeListFragment display the freshest
data from your database.

Refactoring your code to use a Flow will touch a handful of files in your project:

• your CrimeDao, to make it emit a flow of crimes

• your CrimeRepository, to pass that flow of crimes along

• your CrimeListViewModel, to get rid of loadCrimes() and instead present that flow of crimes in
an efficient way to its consumers

• your CrimeListFragment, to collect the crimes from the flow and update its UI

You will start making your changes at the database level and work up the layers until you get to your
CrimeListFragment.

Refactoring the database to provide you with a Flow of crimes is relatively straightforward. Room has
built-in support to query a database and receive the results in a Flow.

Since you are not making any changes to the structure of the database, you do not need to make
any changes in the Crime and CrimeDatabase classes. In CrimeDao, update getCrimes() to return a
Flow<List<Crime>> instead of a List<Crime>. Also, you do not need a coroutine scope to handle a
reference to a Flow, so remove the suspend modifier. (You will need a coroutine scope when trying to
read from the stream of values within the Flow, but you will handle that in just a second.)

Listing 12.24 Creating a Flow from your database (CrimeDao.kt)
@Dao
interface CrimeDao {
 @Query("SELECT * FROM crime")
 suspend fun getCrimes(): List<Crime> Flow<List<Crime>>

 @Query("SELECT * FROM crime WHERE id=(:id)")
 suspend fun getCrime(id: UUID): Crime
}

Chapter 12 Coroutines and Databases

254

Make sure you import the kotlinx.coroutines.flow version of Flow.

Since you access the CrimeDatabase through the CrimeRepository, make the same changes there:

Listing 12.25 Refactoring a level higher (CrimeRepository.kt)
class CrimeRepository private constructor(context: Context) {
 ...
 suspend fun getCrimes(): List<Crime> Flow<List<Crime>>
 = database.crimeDao().getCrimes()
 ...
}

Next, clean up your CrimeListViewModel. You will no longer be using the loadCrimes() function, and
you can get rid of the logging statements. Also, update the crimes property to pass the Flow along.

Listing 12.26 Clearing the slate (CrimeListViewModel.kt)
class CrimeListViewModel : ViewModel() {
 private val crimeRepository = CrimeRepository.get()

 val crimes = mutableListOf<Crime>() crimeRepository.getCrimes()

 init {
 Log.d(TAG, "init starting")
 viewModelScope.launch {
 Log.d(TAG, "coroutine launched")
 crimes += loadCrimes()
 Log.d(TAG, "Loading crimes finished")
 }
 }

 suspend fun loadCrimes(): List<Crime> {
 return crimeRepository.getCrimes()
 }
}

You have reached the layer where you display UI. To access the values within the Flow, you must
observe it using the collect {} function.

collect {} is a suspending function, so you need to call it within a coroutine scope. Thankfully, you
already set up a coroutine scope within CrimeListFragment’s onViewCreated() callback.

Keeping the Changes Flowing

255

In that callback, replace your call to loadCrimes() (whose definition you just deleted) with a collect
{} function call on the crimes property from CrimeListViewModel. The lambda you pass into the
collect {} function will be invoked every time there is a new value in the Flow, so that is the perfect
place to set the adapter on your RecyclerView.

Listing 12.27 Collecting your StateFlow from CrimeListFragment
(CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 val crimes = crimeListViewModel.loadCrimes()
 crimeListViewModel.crimes.collect { crimes ->
 binding.crimeRecyclerView.adapter =
 CrimeListAdapter(crimes)
 }
 }
 }
 }
 ...
}

(Make sure you import kotlinx.coroutines.flow.collect.)

Compile and run the app. Once again, you should see the prepopulated crimes from the database.
However, you are not done. If you rotate your device and initiate a configuration change, you might
notice a brief moment when the screen is blank, waiting to load the crimes from the database. You are
still performing a new database query on each configuration change.

Earlier in this chapter, we talked about how you can use a ViewModel to perform expensive calculations
and cache results across configuration changes. Every time you collect values from the crimes
property within your CrimeListFragment, you are creating a new Flow and performing a new database
query for that Flow. That is an inefficient use of resources, and if your database query takes a long time
to execute, your users will see a blank screen while the data is being loaded.

It would be better to maintain a single stream of data from your database and cache the results so they
can quickly be displayed to the user. And that is where StateFlow comes in.

StateFlow is a specialized version of Flow that is designed specifically to share application state.
StateFlow always has a value that observers can collect from its stream. It starts with an initial
value and caches the latest value that was emitted into the stream. It is the perfect companion to the
ViewModel class, because a StateFlow will always have a value to provide to fragments and activities
as they get re-created.

The first step in setting up a StateFlow is to create an instance of a MutableStateFlow. Analogous to
List and MutableList, StateFlow is a read-only Flow while MutableStateFlow allows you to update
the value within the stream. When creating a MutableStateFlow, you must provide an initial value, so
in this situation you will provide an empty list. This is the value that collectors will receive before any
other values are put in the stream.

Chapter 12 Coroutines and Databases

256

Using a viewModelScope in the init block of your CrimeListViewModel, you can collect values from
your CrimeRepository. Once you have your value from the database Flow, you can set the value on
your MutableStateFlow.

To keep your code maintainable and the stream of data flowing in one direction from the database
all the way to the UI, you need to be careful about how you provide your data to consumers. If you
provide your data in the form of a MutableStateFlow, then you are giving the fragments and activities
that collect from it the ability to put values directly into the stream. Normally, you want to protect
access to the stream, so it is a common practice to keep your MutableStateFlow private to the class
and only expose it to collectors as a read-only StateFlow.

Add the following code to implement your StateFlow in CrimeListViewModel.kt:

Listing 12.28 Efficiently caching the database results
(CrimeListViewModel.kt)
class CrimeListViewModel : ViewModel() {
 private val crimeRepository = CrimeRepository.get()

 val crimes = crimeRepository.getCrimes()
 private val _crimes: MutableStateFlow<List<Crime>> = MutableStateFlow(emptyList())
 val crimes: StateFlow<List<Crime>>
 get() = _crimes.asStateFlow()

 init {
 viewModelScope.launch {
 crimeRepository.getCrimes().collect {
 _crimes.value = it
 }
 }
 }
}

Run the app again to make sure everything works as expected. Now, you efficiently access the data
within your database, and your UI will always display the latest data. In the next chapter, you will
connect the crime list and crime detail screens and populate the crime detail screen with data for the
crime you click in the database.

Challenge: Addressing the Schema Warning

257

Challenge: Addressing the Schema Warning
If you look through the logs in the build window, you will find a warning about your app not providing
a schema export directory:

 warning: Schema export directory is not provided to the annotation processor
 so we cannot export the schema. You can either provide `room.schemaLocation`
 annotation processor argument OR set exportSchema to false.

(If the build window does not open automatically when you run the app, you can open it with the Build
tab at the bottom of the Android Studio window.)

A database schema represents the structure of the database, including what tables are in the database,
what columns are in those tables, and any constraints on and relationships between those tables. Room
supports exporting your database schema into a file so you can store it in a source control. Exporting
your schema is often useful so that you have a versioned history of your database.

The warning you see means that you are not providing a file location where Room can save your
database schema. You can either provide a schema location to the @Database annotation, or you can
disable the export to remove the warning. For this challenge, resolve the schema warning by choosing
one of these options.

To provide a location for the export, you provide a path for the annotation processor’s
room.schemaLocation property. To do this, add the following javaCompileOptions{} block to your
app/build.gradle file:

 ...
 android {
 ...
 defaultConfig {
 ...
 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

 javaCompileOptions {
 annotationProcessorOptions {
 arguments += [
 "room.schemaLocation": "$projectDir/schemas".toString(),
]
 }
 }
 }
 }
 ...

To disable the export, set exportSchema to false:

 @Database(entities = [Crime::class], version=1, exportSchema = false)
 @TypeConverters(CrimeTypeConverters::class)
 abstract class CrimeDatabase : RoomDatabase() {
 abstract fun crimeDao(): CrimeDao
 }

Chapter 12 Coroutines and Databases

258

For the More Curious: Singletons
The singleton pattern, as used in the CrimeRepository, is very common in Android. But singletons get
a bad rap because they can be misused in a way that makes an app hard to maintain.

Singletons are often used in Android because they outlive a single fragment or activity. A singleton
will still exist across rotation and as you move between activities and fragments in your application.

Singletons also make a convenient owner for your model objects. Imagine a more complex
CriminalIntent application with many activities and fragments modifying crimes. When one
component modifies a crime, how would you make sure that updated crime was sent over to the other
components?

If the CrimeRepository is the owner of crimes and all modifications to crimes pass through it,
propagating changes is much easier. As you transition between components, you can pass the crime
ID as an identifier for a particular crime and have each component pull the full crime object from the
CrimeRepository using that ID.

However, singletons do have a few downsides. For example, while they allow for an easy place to stash
data with a longer lifetime than other components, singletons do have a lifetime. Singletons will be
destroyed, along with all their instance variables, as Android reclaims memory at some point after you
switch out of an application. Singletons are not a long-term storage solution. (Writing the files to disk
or sending them to a web server is.)

Singletons can also make your code hard to unit test. For example, there is not a great way to replace
the CrimeRepository instance with a mock version of itself. In practice, Android developers usually
solve this problem using a tool called a dependency injector. This tool allows for objects to be
shared as singletons while still making it possible to replace them when needed. To learn more about
dependency injection, read the section called For the More Curious: Managing Dependencies in
Chapter 20.

And, as we said, singletons have the potential to be misused. It might be tempting to use singletons for
everything, because they are convenient – you can get to them wherever you are, and you can store in
them whatever information you need to get at later. But when you do that, you are avoiding answering
important questions: Where is this data used? Where is this function important?

A singleton does not answer those questions. So whoever comes after you will open up your singleton
and find something that looks like somebody’s disorganized junk drawer. Batteries, zip ties, old
photographs? What is all this here for? Make sure that anything in your singleton is truly global and
has a strong reason for being there.

On balance, singletons are a key component of a well-architected Android app – when used correctly.

259

13
Fragment Navigation

In this chapter, you will get the list and the detail parts of CriminalIntent working together. Using the
Navigation Jetpack library, you will define the screens your users will be able to see and how your
users can move between them.

When a user presses an item in the list of crimes, the Navigation library will swap out
CrimeListFragment with a new instance of CrimeDetailFragment displaying the details for the crime
that was pressed (Figure 13.1).

Figure 13.1 Swapping CrimeListFragment for CrimeDetailFragment

To get this working, you will learn how to implement navigation using the Jetpack Navigation library.
You will also learn how to pass data to a fragment instance using the Safe Args Gradle plugin. Finally,
you will learn how to use the unidirectional data flow architecture to manage and mutate state in
response to UI changes.

Chapter 13 Fragment Navigation

260

Performing Navigation
Few apps are composed of a single screen. As apps add new features, developers create new screens to
house those features. And managing how users navigate through an individual app is a difficult task.
There might be many paths a user could take as they navigate deeper into your app.

The Navigation component in the Jetpack libraries helps you define screens and paths between them
and then gives you the tools to perform that navigation. At its core, the library relies on a navigation
graph, which defines a group of screen destinations as well as the paths between destinations. The
navigation graph is contained in an XML file, and Android Studio provides a handy graphical tool for
editing it.

At the end of this chapter, you will have a navigation graph including your two screens,
CrimeListFragment and CrimeDetailFragment, as well as a single path defining the navigation from
the list screen to the detail screen. In Chapter 15, you will add a destination for a dialog – a modal pop-
up – and that will complete your navigation graph for CriminalIntent.

Historically, navigation in Android apps was done using FragmentTransactions, which we briefly
mentioned back in Chapter 9. That API, while powerful and expressive, is difficult to use and prone
to errors. Under the hood, the Navigation library still uses those APIs to perform navigation, but it
provides that functionality in a safer and easier-to-use form.

In GeoQuiz, you had one activity (MainActivity) start another activity (CheatActivity). In
CriminalIntent, you are instead going to use a single activity architecture. An app that uses single
activity architecture has one activity and multiple fragments. Each fragment acts as its own screen. The
activity is solely used as a container for whatever fragment is currently being displayed.

By keeping everything in the same activity, you ensure that your app is in control of everything
being rendered onscreen. If you use multiple activities, the system will take control of navigation
and animations – sometimes adding behaviors that you do not want, without options to effectively
customize those behaviors. When you use the single activity architecture, you maintain more control
and flexibility over how your app behaves.

The Navigation library is agnostic to the type of destination used in your app – activities or fragments.
Google provides first-party support for fragments, but you can define other destinations if you want to.

Implementing the Navigation component library

261

Implementing the Navigation component library
As usual, the first thing you need to do to use the Navigation library is to include it in your Gradle
dependencies. You will need to include two separate modules: one that handles the core functionality
(navigation-ui-ktx) and one that enables support for fragments (navigation-fragment-ktx). Open
the app/build.gradle file (the one labeled (Module: CriminalIntent.app)) add the dependencies:

Listing 13.1 Adding the Navigation dependencies (app/build.gradle)
dependencies {
 ...
 kapt 'androidx.room:room-compiler:2.4.2'
 implementation "androidx.navigation:navigation-fragment-ktx:2.4.1"
 implementation "androidx.navigation:navigation-ui-ktx:2.4.1"
 testImplementation 'junit:junit:4.13.2'
}

Do not forget to click the Sync Project with Gradle Files button or the Sync Now button after you
have made these changes.

Once Gradle finishes syncing, you will create the file that will house your navigation graph. In the
project tool window, right-click the res directory and choose New → Android Resource file. Name the
file nav_graph, set the Resource type to Navigation, and click OK (Figure 13.2).

Figure 13.2 Creating your navigation graph

Chapter 13 Fragment Navigation

262

Android Studio opens your new nav_graph.xml in the editor. Like the layout editor, this graphical
editor has tabs in the top-right corner for the three view options: Code, Split, and Design. Make sure the
design view is selected (Figure 13.3).

Figure 13.3 An empty navigation graph

Currently, this navigation graph is empty – it has no screens that it can present to your user or navigate
between. To make your navigation graph more useful, you need to add a destination to the graph,
which will define a screen that can be presented to your users. As the text in the middle of the editor

indicates, click the Add Destination icon located in the top-left corner of the editor. In the pop-up,
select CrimeListFragment from the list of possible destinations (Figure 13.4).

Implementing the Navigation component library

263

Figure 13.4 Adding your first destination

You have just added a destination to your navigation graph. And because it is the first destination you
added, it will also be the first page that your user sees – once you connect this navigation graph to your
application, which you will do in a moment.

In the navigation graph, the destination is labeled crimeListFragment, but the screen it depicts just says
Preview Unavailable. It would be better if it showed a small preview of the screen, so other developers
looking at your navigation graph could quickly understand how users move through your app. You can
make this happen with a couple of changes in the XML.

Switch over to the code view by clicking the Code tab in the top right and add a tools:layout
attribute to your CrimeListFragment destination:

Listing 13.2 Enabling previews (nav_graph.xml)
<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/nav_graph"
 app:startDestination="@id/crimeListFragment">

 <fragment
 android:id="@+id/crimeListFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeListFragment"
 android:label="CrimeListFragment"
 tools:layout="@layout/fragment_crime_list" />
</navigation>

Chapter 13 Fragment Navigation

264

In Chapter 2, you used the tools namespace to improve the layout preview for GeoQuiz’s
MainActivity. You use it here to improve the appearance of your navigation graph in the design view.
By using the tools:layout attribute on a navigation destination, you can provide a preview of how
that destination will look to users by referencing the XML layout.

Take a peek at the design view to see your improved destination preview (Figure 13.5).

Figure 13.5 A prettier preview

Implementing the Navigation component library

265

Switch back to the code view.

Notice that in the root <navigation> element, you have an ID for the entire navigation graph and a
starting destination. You will use the ID to reference this navigation graph in your layout.

The starting destination defines the screen that will first appear when you start your activity. In an
inner element, CrimeListFragment is also defined as a possible destination. The ID of the starting
destination matches CrimeListFragment’s ID, so CrimeListFragment will appear when MainActivity
starts.

The navigation graph on its own defines the screens your app can navigate between. To make use of
these definitions, you must also connect the graph to your UI. You can accomplish this by defining a
container in your Activity to host your navigation graph. The container is responsible for swapping
out fragments as the user navigates between different screens.

The easiest way to define a container is using a NavHostFragment inside a FragmentContainerView.
You are already using a FragmentContainerView in the activity_main.xml layout to host your
CrimeListFragment. Add the following code to inflate a NavHostFragment in your MainActivity and
set it up to load up your navigation graph.

Listing 13.3 Hooking up the NavHostFragment (activity_main.xml)
<androidx.fragment.app.FragmentContainerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/fragment_container"
 android:name="com.bignerdranch.android.criminalintent.CrimeListFragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:defaultNavHost="true"
 app:navGraph="@navigation/nav_graph"
 tools:context=".MainActivity" />

With that, you have done all the work needed to display your starting destination onscreen. Run your
app and confirm that CrimeListFragment appears onscreen, as before.

Chapter 13 Fragment Navigation

266

Navigating to the detail screen
With your navigation foundation set up, you can now add a second destination to your navigation

graph. Return to nav_graph.xml’s design view. Click the Add Destination button again, this time
selecting CrimeDetailFragment. You will see CrimeDetailFragment added to the canvas as a second
destination (Figure 13.6).

Figure 13.6 Two destinations

Navigating to the detail screen

267

You will set up the preview for your new destination in a moment. To enable navigation between the
two screens, you need to define an action that specifies the screen you start from and the screen you
end at when navigating. With the crimeListFragment destination selected, click and drag from the circle
on its right edge to the crimeDetailFragment destination. The action you are defining is shown first as a
line (Figure 13.7), then, when you release the mouse, as an arrow between the two destinations.

Figure 13.7 Connecting the two destinations

In large projects, as developers add more and more destinations in a navigation graph, it can be difficult
to organize them on the design preview’s canvas so that the path between destinations is clear and
visible. The positioning of screens in the design preview is entirely up to you and does not affect how
navigation in your application behaves.

You can manually rearrange your destinations into an orderly presentation, but that can be time
consuming and tedious. Thankfully, Android Studio provides functionality to rearrange the items on

the canvas and put each destination into a reasonable spot. Click the Auto Arrange button (to the
right of the Add Destination button). With that, Android Studio will arrange your two destinations
neatly in the preview (Figure 13.8).

Chapter 13 Fragment Navigation

268

Figure 13.8 Your two destinations, looking good

Switch over to the code view. You will see your new CrimeDetailFragment destination added
as an element. You will also see an action defined in the CrimeListFragment destination (shown
shaded in Listing 13.4). Since the action is within the CrimeListFragment destination, it starts
at CrimeListFragment. Within the action, you can see that it defines the ID associated with the
CrimeDetailFragment destination as its destination.

Add the tools:layout attribute to your new destination to enable its preview.

Listing 13.4 Enabling the detail view’s preview (nav_graph.xml)
<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/nav_graph"
 app:startDestination="@id/crimeListFragment">

 <fragment
 android:id="@+id/crimeListFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeListFragment"
 android:label="CrimeListFragment"
 tools:layout="@layout/fragment_crime_list" >
 <action
 android:id="@+id/action_crimeListFragment_to_crimeDetailFragment"
 app:destination="@id/crimeDetailFragment" />
 </fragment>
 <fragment
 android:id="@+id/crimeDetailFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeDetailFragment"
 android:label="CrimeDetailFragment"
 tools:layout="@layout/fragment_crime_detail" />
</navigation>

Navigating to the detail screen

269

When performing a navigation action in your Kotlin code, you reference the ID for the action.
The ID that was automatically provided for your action,
action_crimeListFragment_to_crimeDetailFragment, is accurate, but it is also a little verbose.
Rename it show_crime_detail, which is just as clear but much more concise.

Listing 13.5 Renaming the action (nav_graph.xml)
<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/nav_graph"
 app:startDestination="@id/crimeListFragment">

 <fragment
 android:id="@+id/crimeListFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeListFragment"
 android:label="CrimeListFragment"
 tools:layout="@layout/fragment_crime_list" >
 <action
 android:id="@+id/action_crimeListFragment_to_crimeDetailFragment"
 android:id="@+id/show_crime_detail"
 app:destination="@id/crimeDetailFragment" />
 </fragment>
 <fragment
 android:id="@+id/crimeDetailFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeDetailFragment"
 android:label="CrimeDetailFragment"
 tools:layout="@layout/fragment_crime_detail" />
</navigation>

Before you can perform the navigation from your Kotlin code, you need to do some refactoring. The
goal, remember, is that when the user presses an item in the list of crimes, they will navigate to the
detail screen for that crime. You may recall that you set an OnClickListener on the root view for the
CrimeHolder back in Chapter 10. But that OnClickListener does not do much. Right now, it just
prints the title of the crime that was pressed in a toast message.

Chapter 13 Fragment Navigation

270

You could swap out the toast printing code for some code that navigates the user to the detail
screen. However, that would tightly couple CrimeHolder and CrimeListAdapter to being used in
CrimeListFragment. That is not a good approach for building a maintainable codebase.

A better approach would be to pass a lambda expression into the CrimeHolder and CrimeListAdapter
classes to allow whatever class creates instances of those classes to configure what happens when the
user presses a list item. That is the approach you will take here.

First, pass a lambda expression named onCrimeClicked into the bind function in CrimeHolder. This
will be the lambda that is invoked when the user presses the root view for that particular CrimeHolder.

Listing 13.6 Passing in a lambda expression (CrimeListAdapter.kt)
class CrimeHolder(
 private val binding: ListItemCrimeBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(crime: Crime, onCrimeClicked: () -> Unit) {
 binding.crimeTitle.text = crime.title
 binding.crimeDate.text = crime.date.toString()

 binding.root.setOnClickListener {
 Toast.makeText(
 binding.root.context,
 "${crime.title} clicked!",
 Toast.LENGTH_SHORT
).show()
 onCrimeClicked()
 }

 binding.crimeSolved.visibility = if (crime.isSolved) {
 View.VISIBLE
 } else {
 View.GONE
 }
 }
}
...

Navigating to the detail screen

271

Now, in CrimeListAdapter, include that same lambda as a constructor parameter and pass it along to
the bind function on the CrimeHolder class.

Listing 13.7 Hooking up the adapter (CrimeListAdapter.kt)
class CrimeListAdapter(
 private val crimes: List<Crime>,
 private val onCrimeClicked: () -> Unit
) : RecyclerView.Adapter<CrimeHolder>() {
 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
): CrimeHolder {
 val inflater = LayoutInflater.from(parent.context)
 val binding = ListItemCrimeBinding.inflate(inflater, parent, false)
 return CrimeHolder(binding)
 }

 override fun onBindViewHolder(holder: CrimeHolder, position: Int) {
 val crime = crimes[position]
 holder.bind(crime, onCrimeClicked)
 }

 override fun getItemCount() = crimes.size
}

With the new and improved CrimeListAdapter, you can finally perform the navigation from your
CrimeListFragment. Using the Navigation library, you perform navigations through a class called
NavController. With this class, you can navigate to new screens, implement the Back button to return
to previous screens, and much more.

You do not have to create your own instance of this class. With the NavHostFragment specified in your
activity_main.xml layout file, you already have access to an instance. All you need to do is find it.

The way you do that is through the findNavController extension function. This function will search
the view hierarchy and fragment for the NavController and return it to you. Because navigation
is a crucial part of your application, findNavController is available for several components in the
Android framework, including both activities and fragments.

Chapter 13 Fragment Navigation

272

Once you get the NavController, you call the navigate function on it, passing in a resource ID for
either a destination or a navigation action. Here, you are going to use the R.id.show_crime_detail
resource ID that you just defined for the action of navigating from the list to the detail view. Do this
where you bind the CrimeListAdapter, using the trailing lambda syntax for the CrimeListAdapter
constructor.

Listing 13.8 Performing the navigation (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 crimeListViewModel.crimes.collect { crimes ->
 binding.crimeRecyclerView.adapter =
 CrimeListAdapter(crimes) {
 findNavController().navigate(
 R.id.show_crime_detail
)
 }
 }
 }
 }
 }
 ...
}

Be sure to import the fragment version of findNavController().

Run your app and press or click a crime. Presto! It will navigate you to an empty detail screen. Press
the Back button, and you will return to the list screen.

Passing data to a fragment

273

Passing data to a fragment
So far, so good. But you do not want pressing a crime to take you to a blank crime page. You want a
CrimeDetailFragment populated with the selected crime’s details. The process of passing data to your
fragment is much like the process you used back in Chapter 7 to pass data to an activity.

In your current setup, the Navigation library and the framework are responsible for instantiating your
fragments, just as your activities are instantiated by the Android OS. The classic approach to passing
values to a Fragment involves using a Bundle to store key-value pairs for your arguments – much like
you saw with the Intent system. However, this approach falls victim to the same limitations activities
pose: You rely on convention and boilerplate code that can cause your app to crash if done incorrectly.
And it is all too easy to make a mistake with that boilerplate code or forget to use the conventional
function or constant value.

Good news: As a part of the Navigation library, Google has developed a Gradle plugin to help you
safely pass data between navigation destinations. Similar to how View Binding and the Room library
generate code for their own purposes, the Safe Args plugin generates code for you to package up data
when performing navigation and unpackage data once at the destination.

The plugin is included in at the project level, so open the build.gradle file labeled (Project:
CriminalIntent) and include Safe Args in the list of plugins for the project:

Listing 13.9 Including the Safe Args plugin in your project (build.gradle)
plugins {
 id 'com.android.application' version '7.1.2' apply false
 id 'com.android.library' version '7.1.2' apply false
 id 'org.jetbrains.kotlin.android' version '1.6.10' apply false
 id 'org.jetbrains.kotlin.kapt' version '1.6.10' apply false
 id 'androidx.navigation.safeargs.kotlin' version '2.4.1' apply false
}
...

Once that is done, open the app/build.gradle file and enable the plugin for your application. The
Safe Args plugin does not require any additional libraries be added as dependencies.

Listing 13.10 Adding the Safe Args plugin to your app (app/build.gradle)
plugins {
 id 'com.android.application'
 id 'org.jetbrains.kotlin.android'
 id 'org.jetbrains.kotlin.kapt'
 id 'androidx.navigation.safeargs'
}
...

As always, sync your Gradle files before moving on.

Chapter 13 Fragment Navigation

274

Currently, you are performing navigation by referencing the resource ID of an action that you defined
in nav_graph.xml. The Safe Args plugin works by generating classes based on the contents of your
navigation graph. When navigating, you will use these generated classes instead of using resource IDs.

Direction classes contain all the information needed to perform navigation, including the ID of
the action. For fragment destinations, Safe Args names the classes it generates with the fragment’s
name plus “Directions.” So for CrimeListFragment, the Safe Args plugin generates a class named
CrimeListFragmentDirections.

The Safe Args plugin also generates functions within its destination classes for each possible action
within the destination. Since you only have one action for CrimeListFragment’s destination, the Safe
Args plugin only generates one function for you to use. The function name is based on the resource ID
you declared for that action, so your usage of R.id.show_crime_detail will become a function call to
CrimeListFragmentDirections.showCrimeDetail().

Make use of the Safe Args plugin in CrimeListFragment by swapping in the generated
CrimeListFragmentDirections class.

Listing 13.11 Asking for directions (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 crimeListViewModel.crimes.collect { crimes ->
 binding.crimeRecyclerView.adapter =
 CrimeListAdapter(crimes) {
 findNavController().navigate(
 R.id.show_crime_detail
 CrimeListFragmentDirections.showCrimeDetail()
)
 }
 }
 }
 }
 }
 ...
}

Run the app and select one of the crimes in the list. You will still see it navigate to a blank
CrimeDetailFragment. It does not show the details for the crime you selected because you have not
specified which crime it should display.

To wire this up, you need to pass an argument specifying the crime to display. Back in nav_graph.xml,
view your navigation graph in the design view. Click the crimeDetailFragment. In the attributes window
to the right of the editor, click the plus icon next to the Arguments section header. A window will pop
up.

Although you could pass in the entire Crime to your CrimeDetailFragment, this would add more
complexity to your app. Instead, you can pass the ID of the crime and have the CrimeDetailFragment
query the crime information from your database.

Passing data to a fragment

275

In the Add Argument dialog, name your argument crimeId. The UUID class implements the
Serializable interface, so for the Type select Custom Serializable..., then search for and select UUID
in the window that pops up. Leave the rest of the options alone and click Add to add the argument to
your navigation graph (Figure 13.9).

Figure 13.9 Adding an argument to CrimeDetailFragment

Switch over to the code view and note the addition to the CrimeDetailFragment destination entry:

 <?xml version="1.0" encoding="utf-8"?>
 <navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/nav_graph"
 app:startDestination="@id/crimeListFragment">

 <fragment
 android:id="@+id/crimeListFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeListFragment"
 android:label="CrimeListFragment"
 tools:layout="@layout/fragment_crime_list" >
 <action
 android:id="@+id/show_crime_detail"
 app:destination="@id/crimeDetailFragment" />
 </fragment>
 <fragment
 android:id="@+id/crimeDetailFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeDetailFragment"
 android:label="CrimeDetailFragment"
 tools:layout="@layout/fragment_crime_detail" >
 <argument
 android:name="crimeId"
 app:argType="java.util.UUID" />
 </fragment>
 </navigation>

Chapter 13 Fragment Navigation

276

Go back to CrimeListFragment.kt. You will see that you have an error where you are trying to
perform navigation. The showCrimeDetails() function now expects a UUID as a parameter. Before you
can fix this error, you need to access the ID of the crime that was pressed.

A crime’s ID is known when setting the View.OnClickListener for the CrimeHolder root view. What
you need to do is pass that ID back up to the CrimeListFragment.

You are already passing a lambda expression into the bind function for CrimeHolder. Since you also
have access to the crime within that function, update the onCrimeClicked parameter to accept a UUID
argument. When invoking that onCrimeClicked lambda expression, pass in the ID for the crime.
Finally, update the lambda expression passed into CrimeListAdapter.

Listing 13.12 Passing the ID back from the adapter (CrimeListAdapter)
class CrimeHolder(
 private val binding: ListItemCrimeBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(crime: Crime, onCrimeClicked: (crimeId: UUID) -> Unit) {
 binding.crimeTitle.text = crime.title
 binding.crimeDate.text = crime.date.toString()

 binding.root.setOnClickListener {
 onCrimeClicked(crime.id)
 }

 binding.crimeSolved.visibility = if (crime.isSolved) {
 View.VISIBLE
 } else {
 View.GONE
 }
 }
}

class CrimeListAdapter(
 private val crimes: List<Crime>,
 private val onCrimeClicked: (crimeId: UUID) -> Unit
) : RecyclerView.Adapter<CrimeHolder>() {
 ...
}

Passing data to a fragment

277

Now you have access to the crime’s ID back in CrimeListFragment. Using that, along with the
CrimeListFragmentDirections class generated by the Safe Args plugin, pass the crime’s ID along
while performing navigation.

Listing 13.13 Performing the navigation (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 crimeListViewModel.crimes.collect { crimes ->
 binding.crimeRecyclerView.adapter =
 CrimeListAdapter(crimes) { crimeId ->
 findNavController().navigate(
 CrimeListFragmentDirections.showCrimeDetail(crimeId)
)
 }
 }
 }
 }
 }
 ...
}

The Safe Args plugin not only generates code to perform type-safe navigation but also allows you to
safely access navigation arguments once the user is at their destination. By using the navArgs property
delegate, you can access the navigation arguments for a particular destination in a type-safe manner.
The Safe Args plugin generates classes that hold all the arguments for a destination, naming them with
the name of the destination plus “Args.” So the navigation arguments for the CrimeDetailFragment
class are accessed using the CrimeDetailFragmentArgs class.

Chapter 13 Fragment Navigation

278

In CrimeDetailFragment, create a class property called args using the navArgs property delegate. In
a little bit, you will use the crime ID to implement the behavior you want in CrimeDetailFragment,
but you have some additional work to do before you can wrap that up. For now, just log the crime ID to
confirm that it is being passed along correctly.

Listing 13.14 Accessing the arguments in CrimeDetailFragment
(CrimeDetailFragment.kt)
private const val TAG = "CrimeDetailFragment"

class CrimeDetailFragment : Fragment() {
 ...
 private lateinit var crime: Crime

 private val args: CrimeDetailFragmentArgs by navArgs()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 crime = Crime(
 id = UUID.randomUUID(),
 title = "",
 date = Date(),
 isSolved = false
)

 Log.d(TAG, "The crime ID is: ${args.crimeId}")
 }
 ...
}

Run the app, select a crime from the list, and look at Logcat. You will see the crime’s ID logged by
CrimeDetailFragment:

 D/CrimeDetailFragment: The crime ID is: 4f916c0c-faa1-486b-b9a9-0d55922fd2e1

With that, you have done all the setup you need for navigation. You are moving between
CrimeListFragment and CrimeDetailFragment, passing along the relevant ID for the crime you want
to display. Now, you need to get that crime from the database and let your users modify it.

Unidirectional Data Flow

279

Unidirectional Data Flow
Applications must respond to input from multiple sources: data being loaded from the back end as well
as inputs from the user. If you do not have a plan in place to combine these sources, you could code
yourself into a mess of complex logic that is difficult to maintain.

Unidirectional data flow is an architecture pattern that has risen to prominence and that plays nicely
with the reactive patterns you have been using with Flow and StateFlow. Unidirectional data flow tries
to simplify application architecture by encapsulating these two forces – data from the back end and
input from the user – and clarifying their responsibilities.

Data comes from a variety of sources, such as the network, a database, or a local file. It is often
generated as part of a transformation of application state, such as the user’s authentication state or the
contents of their shopping cart. These sources of state send the data down to the UI, where the UI can
render it.

Once data is displayed as UI, the user can interact with it through various forms of input. The user
can check boxes, press buttons, enter text – and all that input is sent back up to those sources of state,
mutating them in response to the user’s actions. These two streams travel in opposite directions,
forming a circular stream of information (Figure 13.10).

Figure 13.10 Unidirectional data flow

Chapter 13 Fragment Navigation

280

You are going to implement the business logic in CrimeDetailFragment using the unidirectional
data flow pattern. The source of state for CrimeDetailFragment will be a ViewModel. It will hold a
reference to a StateFlow, which will hold the latest version of the particular crime the user is viewing.
The CrimeDetailFragment will observe that StateFlow, updating its UI whenever the crime updates.

As the user edits the details of the current crime, the CrimeDetailFragment will send that user input up
to its ViewModel. After updating the crime’s data, the ViewModel will send the updated crime back to
the CrimeDetailFragment. Looping and looping, the state and the UI will always remain in sync.

Before adding new code to implement this pattern, clear the decks by deleting some code you no
longer need. Delete the plain, boring crime class property in CrimeDetailFragment, as well as any
lines of code that reference it. Also, delete the onCreate code.

Listing 13.15 Deleting references to the old crime (CrimeDetailFragment.kt)
private const val TAG = "CrimeDetailFragment"

class CrimeDetailFragment : Fragment() {
 ...
 private lateinit var crime: Crime

 private val args: CrimeDetailFragmentArgs by navArgs()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 crime = Crime(
 id = UUID.randomUUID(),
 title = "",
 date = Date(),
 isSolved = false
)

 Log.d(TAG, "The crime ID is: ${args.crimeId}")
 }
 ...

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 crimeTitle.doOnTextChanged { text, _, _, _ ->
 crime = crime.copy(title = text.toString())
 }

 crimeDate.apply {
 text = crime.date.toString()
 isEnabled = false
 }

 crimeSolved.setOnCheckedChangeListener { _, isChecked ->
 crime = crime.copy(isSolved = isChecked)
 }
 }
 }
 ...
}

Unidirectional Data Flow

281

As you have seen before, fragments are not well suited for handling state, because they are re-created
during configuration changes. Create a CrimeDetailViewModel, extending the ViewModel class.
Expose the state of the detail screen as a StateFlow holding a Crime. As you saw in Chapter 12, the
StateFlow class does a good job of providing consumers with the freshest data. As you update the
StateFlow, those changes will be pushed out to the CrimeDetailFragment.

Listing 13.16 Bare skeleton for CrimeDetailViewModel
(CrimeDetailViewModel.kt)
class CrimeDetailViewModel : ViewModel() {
 private val crimeRepository = CrimeRepository.get()

 private val _crime: MutableStateFlow<Crime?> = MutableStateFlow(null)
 val crime: StateFlow<Crime?> = _crime.asStateFlow()
}

Recall from Chapter 12 that you want to expose your data as a StateFlow and not a
MutableStateFlow. This will help reinforce your unidirectional data flow: The source of data cannot
be directly mutated by its consumers. And, as you will see, this also allows you to expose functions in
a more deliberate fashion that gives consumers ways to send up user input.

Keeping the properties within the Crime as read-only vals instead of read/write vars also helps
reinforce unidirectional data flow. While it does not truly make the Crime class “immutable,” it does
push consumers to create copies of data instead of directly mutating an instance. All of this works
together to keep the flow of data streaming in one direction.

Your CrimeDetailViewModel will need to know the ID of the crime to load when it is created. There
are a few ways to go about getting it this ID, but the most effective is to declare the ID as a constructor
parameter so that your CrimeDetailViewModel can start loading the data as soon as it is created.

Previously, you have not used the constructor when creating an instance of your various ViewModels.
Instead, you have used the viewModels property delegate to obtain an instance, so that you get
the same instance across configuration changes. By default, when using the viewModels property
delegate, your ViewModel can only have a constructor with either no arguments or with a single
SavedStateHandle argument.

But there is a way to add additional arguments to a ViewModel: creating a class that implements the
ViewModelProvider.Factory interface. This interface allows you to control how a ViewModel is
created and provided to fragments and activities. The ViewModelProvider.Factory interface is an
example of the factory software design pattern: as a real-life car factory knows how to make cars,
ViewModelProvider.Factory knows how to make ViewModel instances.

For CriminalIntent, you will create a CrimeDetailViewModelFactory, and it will know how to create
CrimeDetailViewModel instances. Unlike the ViewModel subclasses you have seen so far, classes that
implement the ViewModelProvider.Factory interface can take in constructor parameters.

Chapter 13 Fragment Navigation

282

In CrimeDetailViewModel.kt, create the CrimeDetailViewModelFactory class. Then pass in the
crime’s ID through its constructor and use it to load the crime from the database into the crime
StateFlow class property.

Listing 13.17 Building a factory for CrimeDetailViewModel
(CrimeDetailViewModel.kt)
class CrimeDetailViewModel(crimeId: UUID) : ViewModel() {
 private val crimeRepository = CrimeRepository.get()

 private val _crime: MutableStateFlow<Crime?> = MutableStateFlow(null)
 val crime: StateFlow<Crime?> = _crime.asStateFlow()

 init {
 viewModelScope.launch {
 _crime.value = crimeRepository.getCrime(crimeId)
 }
 }
}

class CrimeDetailViewModelFactory(
 private val crimeId: UUID
) : ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass: Class<T>): T {
 return CrimeDetailViewModel(crimeId) as T
 }
}

Here, you create an instance of your CrimeDetailViewModelFactory by invoking its
constructor, passing in the crime’s ID in as a constructor parameter. Once you have the
crime’s ID as a class property for CrimeDetailViewModelFactory, you use it when creating
instances of CrimeDetailViewModel. That is how you will be able to pass in the crime ID to
CrimeDetailViewModel through its constructor.

The last part of this work uses the new CrimeDetailViewModelFactory class to access the
CrimeDetailViewModel in CrimeDetailFragment. Under the hood, the viewModels property delegate
is a function. This function has two parameters, each of them a lambda with a default value.

Override the default value for the last parameter and have viewModels return an instance of your new
CrimeDetailViewModelFactory.

Listing 13.18 Accessing your CrimeDetailViewModel
(CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private val args: CrimeDetailFragmentArgs by navArgs()

 private val crimeDetailViewModel: CrimeDetailViewModel by viewModels {
 CrimeDetailViewModelFactory(args.crimeId)
 }
 ...
}

Unidirectional Data Flow

283

With that, you have everything set up to start displaying crime information. As you did back in
Chapter 12 with CrimeListFragment, you will use repeatOnLifecycle to collect from the crime’s
StateFlow. To make things a little more readable, update your UI in a private function called
updateUi.

Most of the updateUi function will look similar to the code you had before. The one piece that is
a little different is where you set the text on the EditText. There, you need to check whether the
existing value and the new value being passed in are different. If they are different, then you update
the EditText. If they are the same, you do nothing. This will prevent an infinite loop when you start
listening to changes on the EditText.

Listing 13.19 Updating your UI (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 ...
 }

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.lifecycle.repeatOnLifecycle(Lifecycle.State.STARTED) {
 crimeDetailViewModel.crime.collect { crime ->
 crime?.let { updateUi(it) }
 }
 }
 }
 }

 override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
 }

 private fun updateUi(crime: Crime) {
 binding.apply {
 if (crimeTitle.text.toString() != crime.title) {
 crimeTitle.setText(crime.title)
 }
 crimeDate.text = crime.date.toString()
 crimeSolved.isChecked = crime.isSolved
 }
 }
}

Run the app and select a crime. You will see the crime’s details displayed onscreen.

Now that you have the UI displaying the crime’s data, you need a way to send user input back up to the
CrimeDetailViewModel. You could create individual functions to update each property on the crime
(for example, a setTitle to update the crime’s title and a setIsSolved to update the solved status), but
that would be tedious.

Chapter 13 Fragment Navigation

284

Instead, write one function that takes in a lambda expression as a parameter. In the lambda expression,
have the CrimeDetailViewModel provide the latest crime available and the CrimeDetailFragment
update it in a safe manner. This will allow you to safely expose the crime as a StateFlow (instead of a
MutableStateFlow) while still being able to easily update the crime as the user inputs data.

Listing 13.20 Updating your crime (CrimeDetailViewModel.kt)
class CrimeDetailViewModel(crimeId: UUID) : ViewModel() {
 ...
 init {
 viewModelScope.launch {
 _crime.value = crimeRepository.getCrime(crimeId)
 }
 }

 fun updateCrime(onUpdate: (Crime) -> Crime) {
 _crime.update { oldCrime ->
 oldCrime?.let { onUpdate(it) }
 }
 }
}

Finally, hook the UI up to your new function. This will complete the loop of your unidirectional data
flow.

Listing 13.21 Responding to user input (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 crimeTitle.doOnTextChanged { text, _, _, _ ->
 crimeDetailViewModel.updateCrime { oldCrime ->
 oldCrime.copy(title = text.toString())
 }
 }

 crimeDate.apply {
 isEnabled = false
 }

 crimeSolved.setOnCheckedChangeListener { _, isChecked ->
 crimeDetailViewModel.updateCrime { oldCrime ->
 oldCrime.copy(isSolved = isChecked)
 }
 }
 }
 ...
 }
 ...
}

Run the app one more time. Select a crime and edit the title or toggle the checkbox. You will see your
UI update. Now, your UI and your CrimeDetailViewModel will always stay in sync.

Updating the Database

285

Updating the Database
You can now modify a crime’s details – but when you navigate away from the detail screen, all your
changes are wiped away. Your last task in this chapter will be to save those changes to the database.

To accomplish this task, you will start at the database layer and work your way up. To begin, open
CrimeDao.kt. Previously, you used the @Query annotation to write functions that query the database.
Other annotations allow you to create functions that add, delete, or update records in the database.

Since the crime you are altering already exists in the database, write a function to update the entry.
Annotate your function with @Update and use the suspend modifier so that you can call it from a
coroutine scope.

Listing 13.22 Adding a way to update the database (CrimeDao.kt)
@Dao
interface CrimeDao {
 @Query("SELECT * FROM crime")
 fun getCrimes(): Flow<List<Crime>>

 @Query("SELECT * FROM crime WHERE id=(:id)")
 suspend fun getCrime(id: UUID): Crime

 @Update
 suspend fun updateCrime(crime: Crime)
}

Expose that new function through your CrimeRepository.

Listing 13.23 Updating CrimeRepository (CrimeRepository.kt)
class CrimeRepository private constructor(context: Context) {
 ...
 suspend fun getCrime(id: UUID): Crime = database.crimeDao().getCrime(id)

 suspend fun updateCrime(crime: Crime) {
 database.crimeDao().updateCrime(crime)
 }

 companion object {
 ...
 }
}

As you learned in Chapter 4, the ViewModel class has a very simple lifecycle. Unlike fragments and
activities, which have many states, the ViewModel class only has two: It is either alive or dead. During
the destruction of an instance, such as when you navigate away from a fragment, the onCleared()
function is invoked on the ViewModel. This is the perfect place to save your changes to the crime.

Chapter 13 Fragment Navigation

286

In onCleared(), use the viewModelScope class property to launch a coroutine. Within that coroutine,
access the latest value from the crime StateFlow and save it to the database.

Listing 13.24 Updating the database when CrimeDetailViewModel is cleared
(CrimeDetailViewModel.kt)
class CrimeDetailViewModel(crimeId: UUID) : ViewModel() {
 ...
 fun updateCrime(onUpdate: (Crime) -> Crime) {
 _crime.update { oldCrime ->
 oldCrime?.let { onUpdate(it) }
 }
 }

 override fun onCleared() {
 super.onCleared()

 viewModelScope.launch {
 crime.value?.let { crimeRepository.updateCrime(it) }
 }
 }
}

Run the app, select a crime, and edit it. Then back out of the detail screen. You would expect the
changes to be reflected on the list screen – but, unfortunately, that is not happening.

As we mentioned in Chapter 12, coroutine scopes are tied to the lifecycles of the components they are
associated to. For ViewModel, the viewModelScope property is alive and active as long as its associated
ViewModel is. Once the ViewModel is destroyed, all the work running within the viewModelScope scope
is canceled.

To save your changes, you will need a coroutine scope that outlives your CrimeDetailFragment and
CrimeDetailViewModel.

One such scope is GlobalScope. As its name suggests, GlobalScope is a coroutine scope that is
available globally and operates throughout the entire application lifecycle.

The work that is launched within GlobalScope is never canceled. However, work running inside
GlobalScope cannot keep your application running. If your application is in the process of being
stopped, the work within the GlobalScope will be unceremoniously stopped as well.

With many of the safety features of coroutines removed, GlobalScope can be dangerous if it is not
used correctly. If work hangs within GlobalScope, it can needlessly consume resources.

However, for your purposes here, GlobalScope is a useful tool. GlobalScope lives longer than a
viewModelScope, so you can use it to update your database in the background once the user moves
away from CrimeDetailFragment.

Updating the Database

287

Pass in GlobalScope as the default parameter for a new coroutineScope constructor property on the
CrimeRepository class. You will have easy access to it while also having the flexibility to provide a
new coroutine scope to CrimeRepository if functionality needs to change in the future. Use the new
coroutineScope property to save the updated crime to the database. Also, since CrimeRepository
handles managing the work of interacting with coroutine scopes, you no longer need the updateCrime
function in CrimeRepository to be a suspending function, so remove the suspend modifier.

Listing 13.25 Using GlobalScope (CrimeRepository.kt)
class CrimeRepository private constructor(
 context: Context,
 private val coroutineScope: CoroutineScope = GlobalScope
) {
 ...
 suspend fun getCrime(id: UUID): Crime = database.crimeDao().getCrime(id)

 suspend fun updateCrime(crime: Crime) {
 coroutineScope.launch {
 database.crimeDao().updateCrime(crime)
 }
 }
 ...
}

Finally, call your updated function from outside a coroutine scope in CrimeDetailViewModel.

Listing 13.26 Making the final touches (CrimeDetailViewModel.kt)
class CrimeDetailViewModel(crimeId: UUID) : ViewModel() {
 ...
 override fun onCleared() {
 super.onCleared()

 viewModelScope.launch {
 crime.value?.let { crimeRepository.updateCrime(it) }
 }
 }
}

Run your app. You can now navigate between screens, update a crime’s details, and see those details
saved when you return to the list view. You now have a real, functional app. Congratulations! Over the
next six chapters, you will refine CriminalIntent, building on this solid foundation.

Chapter 13 Fragment Navigation

288

For the More Curious: A Better List Preview
In this chapter, you used the tools namespace to enable previews for the destinations in your
navigation graph. But the preview for CrimeListFragment might not look the way you would expect.
Each list item is a single, generic line of text, not the wonderful layout that you have built.

Thankfully, Android Studio also gives you tooling to preview the layout of a list item in a
RecyclerView. Open up fragment_crime_list.xml and use the tools:listitem attribute to help the
preview use the right layout for each list item.

Listing 13.27 Providing previews for your list items
(fragment_crime_list.xml)
<?xml version="1.0" encoding="utf-8"?>
<androidx.recyclerview.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/crime_recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:listitem="@layout/list_item_crime" />

With that, your preview in nav_graph.xml is looking a lot better (Figure 13.11).

Figure 13.11 Your navigation graph with previews

Challenge: No Untitled Crimes

289

Challenge: No Untitled Crimes
It is impossible to solve a crime if you do not know what crime occurred. But if you open the detail
view for a crime, erase its title, and navigate back to the list view, you will save a crime with no name.

For this challenge, while in CrimeDetailFragment, prevent the user from navigating back to the list
if the selected crime’s title is blank. Using an OnBackPressedCallback, you can override the default
Back button behavior. If the title is blank, give the user a hint that they should provide a description of
the crime.

Some developer documentation that will be helpful for this challenge is at developer.android.com/
guide/navigation/navigation-custom-back.

When using an OnBackPressedCallback, no navigation will happen unless you say so. So if there is a
title, do not forget to use the NavController to pop off the CrimeDetailFragment from the navigation
back stack.

https://developer.android.com/guide/navigation/navigation-custom-back
https://developer.android.com/guide/navigation/navigation-custom-back

291

14
Dialogs and DialogFragment

Dialogs demand attention and input from the user. They are useful for presenting a choice or important
information. In this chapter, you will add a dialog in which users can change the date of a crime.
Pressing the date button in CrimeDetailFragment will present this dialog (Figure 14.1).

Figure 14.1 A dialog for picking the date of a crime

The dialog in Figure 14.1 is an instance of DatePickerDialog, a subclass of AlertDialog.
DatePickerDialog displays a date selection prompt to the user and provides a listener interface you
can implement to capture the selection. For creating more custom dialogs, AlertDialog is the all-
purpose Dialog subclass that you will use most often.

Chapter 14 Dialogs and DialogFragment

292

Creating a DialogFragment
When displaying a DatePickerDialog, it is a good idea to wrap it in an instance of DialogFragment, a
subclass of Fragment. It is possible to display a DatePickerDialog without a DialogFragment, but it is
not recommended. Having the DatePickerDialog managed by the FragmentManager gives you more
options for presenting the dialog.

In addition, a bare DatePickerDialog will vanish if the device is rotated. If the DatePickerDialog is
wrapped in a fragment, then the dialog will be re-created and put back onscreen after rotation.

For CriminalIntent, you are going to create a DialogFragment subclass named DatePickerFragment.
Within DatePickerFragment, you will create and configure an instance of DatePickerDialog. Then
you will add the new fragment to your navigation graph and navigate to it using the Navigation library.

Your first tasks are:

• creating the DatePickerFragment class

• building a DatePickerFragment

• getting the dialog onscreen using the Navigation library

Later in this chapter, you will pass the necessary data between CrimeDetailFragment and
DatePickerFragment.

Create a new class named DatePickerFragment and make its superclass DialogFragment. Be sure to
choose the Jetpack version of DialogFragment, which is androidx.fragment.app.DialogFragment.

Instead of overriding the onCreateView lifecycle function to display your UI, as you usually do,
override the onCreateDialog lifecycle function to build a DatePickerDialog initialized with the
current date. We will explain why after you make these changes.

Listing 14.1 Creating a DialogFragment class (DatePickerFragment.kt)
class DatePickerFragment : DialogFragment() {

 override fun onCreateDialog(savedInstanceState: Bundle?): Dialog {
 val calendar = Calendar.getInstance()
 val initialYear = calendar.get(Calendar.YEAR)
 val initialMonth = calendar.get(Calendar.MONTH)
 val initialDay = calendar.get(Calendar.DAY_OF_MONTH)

 return DatePickerDialog(
 requireContext(),
 null,
 initialYear,
 initialMonth,
 initialDay
)
 }
}

Showing a DialogFragment

293

DialogFragment’s responsibility is to manage the dialog you want to display. The dialog itself does
all the rendering to present itself onscreen. Because of this, your DialogFragment will not have a view
of its own, like your other fragments have. If you need to customize the appearance or content of the
dialog, you will do that by picking the dialog most appropriate for what you want to display – and
modifying it if customizations are needed.

The DatePickerDialog constructor takes in several parameters. The first is a context object, which is
required to access the necessary resources for the view. The second parameter is for the date listener,
which you will add later in this chapter. The last three parameters are the year, month, and day that the
date picker should be initialized to. Until you know the date of the crime, you can just initialize it to the
current date.

Showing a DialogFragment
You can integrate a DialogFragment into a navigation graph like any other fragment. Open up the

nav_graph.xml file and switch to the design view. Click the Add destination button and select
DatePickerFragment from the list of destinations. Since you will be navigating to this destination from
CrimeDetailFragment, add a navigation action connecting the two destinations together.

Your updated navigation graph will look like Figure 14.2.

Figure 14.2 An updated navigation graph

Chapter 14 Dialogs and DialogFragment

294

When generating the navigation action for you, the tools gave it a verbose ID. In the code view, rename
it select_date.

Listing 14.2 Renaming a navigation action (nav_graph.xml)
<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/nav_graph"
 app:startDestination="@id/crimeListFragment">

 <fragment
 android:id="@+id/crimeListFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeListFragment"
 android:label="CrimeListFragment"
 tools:layout="@layout/fragment_crime_list" >
 <action
 android:id="@+id/show_crime_detail"
 app:destination="@id/crimeDetailFragment" />
 </fragment>
 <fragment
 android:id="@+id/crimeDetailFragment"
 android:name="com.bignerdranch.android.criminalintent.CrimeDetailFragment"
 android:label="CrimeDetailFragment"
 tools:layout="@layout/fragment_crime_detail" >
 <argument
 android:name="crimeId"
 app:argType="java.util.UUID" />
 <action
 android:id="@+id/action_crimeDetailFragment_to_datePickerFragment"
 android:id="@+id/select_date"
 app:destination="@id/datePickerFragment" />
 </fragment>
 <dialog
 android:id="@+id/datePickerFragment"
 android:name="com.bignerdranch.android.criminalintent.DatePickerFragment"
 android:label="DatePickerFragment" />
</navigation>

Showing a DialogFragment

295

With that set up, you can go back to the Kotlin code. Open up CrimeDetailFragment and, in
onViewCreated(…), remove the code that disables the date button.

Listing 14.3 Enabling your button (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 crimeTitle.doOnTextChanged { text, _, _, _ ->
 crimeDetailViewModel.updateCrime { oldCrime ->
 oldCrime.copy(title = text.toString())
 }
 }

 crimeDate.apply {
 isEnabled = false
 }

 crimeSolved.setOnCheckedChangeListener { _, isChecked ->
 crimeDetailViewModel.updateCrime { oldCrime ->
 oldCrime.copy(isSolved = isChecked)
 }
 }
 }
 ...
 }
 ...
}

Next, in the updateUi function, set a View.OnClickListener that navigates to your
DatePickerFragment when the date button is pressed. This might seem like a strange place to set a
View.OnClickListener, but the updateUi function is the only place where you have access to the
latest crime, and you will soon need that access.

Listing 14.4 Showing your DialogFragment (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun updateUi(crime: Crime) {
 binding.apply {
 if (crimeTitle.text.toString() != crime.title) {
 crimeTitle.setText(crime.title)
 }
 crimeDate.text = crime.date.toString()
 crimeDate.setOnClickListener {
 findNavController().navigate(
 CrimeDetailFragmentDirections.selectDate()
)
 }

 crimeSolved.isChecked = crime.isSolved
 }
 }
}

Chapter 14 Dialogs and DialogFragment

296

Run CriminalIntent, select a crime, and press the date button in the detail view to see the dialog
(Figure 14.3).

Figure 14.3 A configured dialog

Your dialog is onscreen and looks good. In the next section, you will wire it up to present the Crime’s
date and allow the user to change it.

Passing Data Between Two Fragments

297

Passing Data Between Two Fragments
In Chapter 13, you passed a crime’s ID from CrimeListFragment to CrimeDetailFragment. Passing
data to DialogFragment destinations works just the same.

What is different this time is that you are also passing a result back to CrimeDetailFragment: When
the user selects a new date, CrimeDetailFragment needs the date to update its UI. Instead of using
the Navigation library to handle that communication, this time you will rely on the Fragment Results
API. Its usage is slightly different than the Activity Results API you used back in Chapter 7, but the
concepts are the same, so you should feel right at home.

The conversation between your fragments will look like Figure 14.4. When the DatePickerFragment
is started, the current date will be passed to it as an argument with the help of the Navigation library.
Once the user chooses a date to set on the crime, it will be passed back to CrimeDetailFragment using
the Fragment Results API. If the user does not choose a date and cancels their action, no result will be
sent back.

Figure 14.4 Conversation between CrimeDetailFragment and
DatePickerFragment

Chapter 14 Dialogs and DialogFragment

298

Passing data to DatePickerFragment
Back in nav_graph.xml, view your navigation graph in the design view. Click the datePickerFragment.
You want to add an argument to this destination, so click the + icon to the right of the Arguments
section header in the attributes window. The Add Argument pop-up will appear.

In the pop-up, name your argument crimeDate. The Date class implements the Serializable interface,
so select Custom Serializable... in the Type dropdown and then search for and select Date in the
window that pops up (Figure 14.5). Leave the rest of the options alone and click Add to add the
argument to your navigation graph.

Figure 14.5 Adding an argument to DatePickerFragment

Recall from Chapter 13 that the Safe Args plug-in bases the classes and functions it generates on
your navigation graph. Since you have changed the required arguments for the DatePickerFragment
destination, all the generated navigation actions to that class will be updated as well.

This means you now need to pass in a date when performing navigation with the
CrimeDetailFragmentDirections.selectDate(date) function. Back in CrimeDetailFragment,
update the code that performs the dialog navigation.

Passing data to DatePickerFragment

299

Listing 14.5 Passing along the date (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun updateUi(crime: Crime) {
 binding.apply {
 if (crimeTitle.text.toString() != crime.title) {
 crimeTitle.setText(crime.title)
 }
 crimeDate.text = crime.date.toString()
 crimeDate.setOnClickListener {
 findNavController().navigate(
 CrimeDetailFragmentDirections.selectDate(crime.date)
)
 }

 crimeSolved.isChecked = crime.isSolved
 }
 }
}

DatePickerFragment needs to initialize the DatePickerDialog using the information held in the Date.
However, initializing the DatePickerDialog requires Ints for the month, day, and year. Date is more
of a timestamp and cannot provide Ints like this directly.

To get the Ints you need, you provide the Date to DatePickerFragment’s Calendar object. Then you
can retrieve the required information from the Calendar.

In DatePickerFragment’s onCreateDialog(Bundle?), get the Date from the navigation arguments and
use it and the Calendar to initialize the DatePickerDialog.

Listing 14.6 Extracting the date and initializing DatePickerDialog
(DatePickerFragment.kt)
class DatePickerFragment : DialogFragment() {

 private val args: DatePickerFragmentArgs by navArgs()

 override fun onCreateDialog(savedInstanceState: Bundle?): Dialog {
 val calendar = Calendar.getInstance()
 calendar.time = args.crimeDate
 val initialYear = calendar.get(Calendar.YEAR)
 val initialMonth = calendar.get(Calendar.MONTH)
 val initialDate = calendar.get(Calendar.DAY_OF_MONTH)

 return DatePickerDialog(
 requireContext(),
 null,
 initialYear,
 initialMonth,
 initialDate
)
 }
 ...
}

Now CrimeDetailFragment is successfully telling DatePickerFragment what date to show. Run your
app and confirm this by selecting a crime and pressing the date button.

Chapter 14 Dialogs and DialogFragment

300

Returning data to CrimeDetailFragment
To have CrimeDetailFragment receive the date back from DatePickerFragment, you need a way to
keep track of the relationship between the two fragments.

With activities, you use the Activity Result APIs, and the ActivityManager keeps track of the parent-
child activity relationship. When the child activity dies, the ActivityManager knows which activity
should receive the result.

Setting a fragment result

You can create a similar connection by making CrimeDetailFragment listen to results
from the DatePickerFragment. This connection is automatically re-established after both
CrimeDetailFragment and DatePickerFragment are destroyed and re-created by the OS. To create this
relationship, you call the following Fragment function:

 setFragmentResultListener(
 requestKey: String,
 listener: ((requestKey: String, bundle: Bundle) -> Unit)
)

This function uses a requestKey that will be shared between the two fragments and a lambda
expression that will be invoked when CrimeDetailFragment is in the started lifecycle state with a
result to consume. Under the hood, the FragmentManager keeps track of the listener.

In DatePickerFragment, define the requestKey in a companion object. That way, the constant will be
easily accessible to both fragments.

Listing 14.7 Defining a constant (DatePickerFragment.kt)

class DatePickerFragment : DialogFragment() {

 private val args: DatePickerFragmentArgs by navArgs()

 override fun onCreateDialog(savedInstanceState: Bundle?): Dialog {
 ...
 }

 companion object {
 const val REQUEST_KEY_DATE = "REQUEST_KEY_DATE"
 }
}

Back in CrimeDetailFragment, use the new constant to call the setFragmentResultListener function
in the onViewCreated() lifecycle function. Leave the lambda expression empty for now – you will get
back to it shortly.

Returning data to CrimeDetailFragment

301

Listing 14.8 Setting a listener (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 ...
 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.lifecycle.repeatOnLifecycle(Lifecycle.State.STARTED) {
 crimeDetailViewModel.crime.collect { crime ->
 crime?.let { updateUi(it) }
 }
 }
 }

 setFragmentResultListener(
 DatePickerFragment.REQUEST_KEY_DATE
) { requestKey, bundle ->
 // TODO
 }
 }

Back in DatePickerFragment, you need to set the fragment result once the user selects a new date.
Add a listener to the DatePickerDialog that sends the date back to CrimeDetailFragment.

Listing 14.9 Sending back the date (DatePickerFragment.kt)
class DatePickerFragment : DialogFragment() {

 private val args: DatePickerFragmentArgs by navArgs()

 override fun onCreateDialog(savedInstanceState: Bundle?): Dialog {
 val dateListener = DatePickerDialog.OnDateSetListener {
 _: DatePicker, year: Int, month: Int, day: Int ->

 val resultDate = GregorianCalendar(year, month, day).time

 setFragmentResult(REQUEST_KEY_DATE,
 bundleOf(BUNDLE_KEY_DATE to resultDate))
 }

 val calendar = Calendar.getInstance()
 ...

 return DatePickerDialog(
 requireContext(),
 null,
 dateListener,
 initialYear,
 initialMonth,
 initialDate
)
 }

 companion object {
 const val REQUEST_KEY_DATE = "REQUEST_KEY_DATE"
 const val BUNDLE_KEY_DATE = "BUNDLE_KEY_DATE"
 }
}

Chapter 14 Dialogs and DialogFragment

302

The OnDateSetListener is used to receive the date the user selects. The first parameter is for the
DatePicker the result is coming from. Remember that when you are not using a parameter, you name
it _ so it will be ignored.

The selected date is provided in year, month, and day format, but you need a Date to send back to
CrimeDetailFragment. You pass these values to the GregorianCalendar and access the time property
to get a Date object.

Once you have the date, it needs to be sent back to CrimeDetailFragment. To pass data between
fragments, you need to package your results inside a key-value Bundle.

With the work in DatePickerFragment complete, the last thing you need to do is access the
date from the Bundle passed back to CrimeDetailFragment and use it to update the crime in
CrimeDetailViewModel. This lambda expression is only invoked when the user tries to save their
changes, so you can be confident that the new data is in the Bundle. If the user dismisses the dialog or
cancels their request to update the date, the lambda expression will not be invoked.

Listing 14.10 Handling a result (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 ...
 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.lifecycle.repeatOnLifecycle(Lifecycle.State.STARTED) {
 crimeDetailViewModel.crime.collect { crime ->
 crime?.let { updateUi(it) }
 }
 }
 }

 setFragmentResultListener(
 DatePickerFragment.REQUEST_KEY_DATE
) { requestKey _, bundle ->
 // TODO
 val newDate =
 bundle.getSerializable(DatePickerFragment.BUNDLE_KEY_DATE) as Date
 crimeDetailViewModel.updateCrime { it.copy(date = newDate) }
 }
 }

Now the circle is complete. The dates must flow. Those who control the dates control time itself.
Run CriminalIntent to ensure that you can, in fact, control the dates. Change the date of a Crime and
confirm that the new date appears in CrimeDetailFragment’s view. Then return to the list of crimes
and check the Crime’s date to ensure that the database was updated.

In the next chapter, you will allow CriminalIntent’s users to create a new crime (and get rid of the
boring default crimes). And later in this book, in Chapter 28, you will see how dialogs are created in
Jetpack Compose.

Challenge: More Dialogs
Write another dialog fragment named TimePickerFragment that allows the user to select the time
of day the crime occurred using a TimePicker. Add another button to CrimeFragment to display the
TimePickerFragment.

303

15
The App Bar

A key component of any well-designed Android app is the app bar. The app bar presents actions that
the user can take, provides an additional mechanism for navigation, and also offers design consistency
and branding.

In this chapter, you will add a menu option to the app bar that lets users add a new crime (Figure 15.1).

Figure 15.1 CriminalIntent’s app bar

The app bar is often referred to as either the action bar or toolbar, depending on who you ask. You
will learn more about these overlapping terms in the section called For the More Curious: App Bar vs
Action Bar vs Toolbar near the end of this chapter.

Chapter 15 The App Bar

304

The Default App Bar
CriminalIntent already has a simple app bar in place (Figure 15.2).

Figure 15.2 The app bar

This is because Android Studio sets up all new projects with activities that extend from
AppCompatActivity to include an app bar by default. It does this by:

• adding the Jetpack AppCompat and Material Components library dependencies
• applying one of the themes that includes an app bar

Open your app/build.gradle file (the one labeled (Module: CriminalIntent.app)) to see the
AppCompat and Material Components dependencies:

 dependencies {
 ...
 implementation 'androidx.appcompat:appcompat:1.4.1'
 implementation 'com.google.android.material:material:1.5.0'
 ...

“AppCompat” is short for “application compatibility.” The Jetpack AppCompat foundation library
contains classes and resources that are core to providing a consistent-looking UI across different
versions of Android.

Menus

305

Android Studio automatically defines your app’s theme when it creates your project. By default, this
theme extends from Theme.MaterialComponents.DayNight.DarkActionBar. This theme is a part of
the Material Components library, which brings the latest Material Design features (Google’s design
language) to your app. The Material Components library builds on AppCompat to make its design
touches work across different versions.

Your app’s theme, which specifies default styling for the entire app, is set in res/values/themes.xml:

 <resources xmlns:tools="http://schemas.android.com/tools">
 <!-- Base application theme. -->
 <style name="Theme.CriminalIntent"
 parent="Theme.MaterialComponents.DayNight.DarkActionBar">
 <!-- Primary brand color. -->
 <item name="colorPrimary">@color/purple_500</item>
 ...
 </style>
 </resources>

The theme for your application is specified at the application level and optionally per activity in your
manifest. Open manifests/AndroidManifest.xml and look at the <application> tag. Check out the
android:theme attribute. You should see something similar to this:

 <manifest ... >
 <application
 ...
 android:theme="@style/Theme.CriminalIntent" >
 ...
 </application>
 </manifest>

OK, enough background. It is time to add an action to the app bar.

Menus
The top-right area of the app bar is reserved for the app bar’s menu. The menu consists of action items
(sometimes referred to as menu items), which can perform an action on the current screen or on the app
as a whole. You will add an action item to allow the user to create a new crime.

Your new action item will need a string resource for its label. Open res/values/strings.xml and add
a string label describing your new action.

Listing 15.1 Adding a string for menu (res/values/strings.xml)
<resources>
 ...
 <string name="crime_solved_label">Solved</string>
 <string name="new_crime">New Crime</string>
</resources>

The action item also needs an icon. Just like when you added a right arrow icon back in Chapter 2, you
will use the Vector Asset Studio to add a vector drawable to your project. Select File → New → Vector
Asset from the menu bar to bring up the Asset Studio. Click the button to the right of the Clip Art: label.

Chapter 15 The App Bar

306

Within the Select Icon window, search for add and select the plus-shaped icon. Back on the Configure
Vector Asset window, rename the asset ic_menu_add. The system will automatically tint the icon to the
correct color, so you can leave its color set to the default black (Figure 15.3). With that done, you can
click Next and then click Finish on the following screen to add the icon to your project.

Figure 15.3 Your new menu icon

Defining a menu in XML

307

Defining a menu in XML
Menus are a type of resource, similar to layouts. You create an XML description of a menu and place
the file in the res/menu directory of your project. Android generates a resource ID for the menu file
that you then use to inflate the menu in code.

In the project tool window, right-click the res directory and select New → Android resource file. Name
the menu resource fragment_crime_list, change the Resource type to Menu, and click OK (Figure 15.4).

Figure 15.4 Creating a menu file

Here, you use the same naming convention for menu files as you do for layout files. Android
Studio will generate res/menu/fragment_crime_list.xml, which has the same name as your
CrimeListFragment’s layout file but lives in the menu folder. In the new file, switch to the code view
and add an item element, as shown in Listing 15.2.

Listing 15.2 Creating a menu resource for CrimeListFragment
(res/menu/fragment_crime_list.xml)
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/new_crime"
 android:icon="@drawable/ic_menu_add"
 android:title="@string/new_crime"
 app:showAsAction="ifRoom|withText"/>
</menu>

The showAsAction attribute refers to whether the item will appear in the app bar itself or in the
overflow menu. You have piped together two values, ifRoom and withText, so the item’s icon and text
will appear in the app bar if there is room. If there is room for the icon but not the text, then only the
icon will be visible. If there is no room for either, then the item will be relegated to the overflow menu.

Chapter 15 The App Bar

308

If you have items in the overflow menu, those items will be represented by the three dots on the far-
right side of the app bar, as shown in Figure 15.5.

Figure 15.5 Overflow menu in the app bar

Other options for showAsAction include always and never. Using always is not recommended; it is
better to use ifRoom and let the OS decide. Using never is a good choice for less-common actions.
In general, you should only put action items that users will access frequently in the app bar to avoid
cluttering the screen.

The app namespace
Notice that fragment_crime_list.xml uses the xmlns tag to define a namespace, app, which is
separate from the usual android namespace declaration. This app namespace is then used to specify
the showAsAction attribute.

You have used this namespace a few times already, such as for the Navigation library and
ConstraintLayout. Libraries can use this namespace to declare custom attributes specific to their
function. The app:navGraph attribute is an attribute that the Navigation library knows how to handle.
The app:layout_constraintEnd_toStartOf attribute is specific to the ConstraintLayout library.

There is an android:showAsAction attribute built into the OS, but the AppCompat library defines a
custom app:showAsAction to provide a consistent experience for all versions of Android. That is what
you are using here.

Creating the menu

309

Creating the menu
In code, menus are managed by callbacks from the Activity class. When the menu is needed, Android
calls the Activity function onCreateOptionsMenu(Menu).

However, your design calls for code to be implemented in a fragment, not an activity. Fragment comes
with its own set of menu callbacks, which you will implement in CrimeListFragment. The functions
for creating the menu and responding to the selection of an action item are:

 onCreateOptionsMenu(menu: Menu, inflater: MenuInflater)
 onOptionsItemSelected(item: MenuItem): Boolean

In CrimeListFragment.kt, override onCreateOptionsMenu(Menu, MenuInflater) to inflate the menu
defined in fragment_crime_list.xml.

Listing 15.3 Inflating a menu resource (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 super.onCreateOptionsMenu(menu, inflater)
 inflater.inflate(R.menu.fragment_crime_list, menu)
 }
 ...
}

Within this function, you call MenuInflater.inflate(Int, Menu) and pass in the resource ID of your
menu file. This populates the Menu instance with the items defined in your file.

Notice that you call through to the superclass implementation of onCreateOptionsMenu(…). This
is not required, but we recommend calling through as a matter of convention. That way, any menu
functionality defined by the superclass will still work. However, it is only a convention – the base
Fragment implementation of this function does nothing.

By default, your overridden onCreateOptionsMenu(…) will not be invoked when your fragment
is created. You must explicitly tell the system that your fragment should receive a call to
onCreateOptionsMenu(…). You do this by calling the following Fragment function:

 setHasOptionsMenu(hasMenu: Boolean)

Chapter 15 The App Bar

310

Override CrimeListFragment.onCreate(Bundle?) and let the system know that CrimeListFragment
needs to receive menu callbacks.

Listing 15.4 Receiving menu callbacks (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 private val crimeListViewModel: CrimeListViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setHasOptionsMenu(true)
 }
 ...
}

You can run CriminalIntent now to see your menu (Figure 15.6).

Figure 15.6 Icon for the New Crime action item in the app bar

Creating the menu

311

Where is the action item’s text? Most phones only have enough room for the icon in portrait
orientation. You can long-press an icon in the app bar to reveal its title (Figure 15.7).

Figure 15.7 Long-pressing an icon in the app bar shows the title

In landscape orientation, there is room in the app bar for the icon and the text (Figure 15.8).

Figure 15.8 Icon and text in the landscape app bar

Chapter 15 The App Bar

312

Responding to menu selections
To respond to the user pressing the new crime action item, you need a way for CrimeListFragment
to add a new crime to the database. As before, you will build this new functionality from the database
level up to the UI.

Starting all the way down at the CrimeDao interface, add a function to insert a crime into the database.
Similar to the @Query and @Update annotations, the @Insert annotation will tell Room to generate code
to enable you to insert a crime into the database.

Listing 15.5 Adding a new crime to the database (CrimeDao.kt)

@Dao
interface CrimeDao {
 ...
 @Update
 suspend fun updateCrime(crime: Crime)

 @Insert
 suspend fun addCrime(crime: Crime)
}

Next, expose that function through the CrimeRepository class.

Listing 15.6 Passing it through another layer (CrimeRepository.kt)

class CrimeRepository private constructor(
 context: Context,
 private val coroutineScope: CoroutineScope = GlobalScope
) {
 ...
 fun updateCrime(crime: Crime) {
 coroutineScope.launch {
 database.crimeDao().updateCrime(crime)
 }
 }

 suspend fun addCrime(crime: Crime) {
 database.crimeDao().addCrime(crime)
 }
 ...
}

Now, add a function to CrimeListViewModel to wrap a call to the repository’s addCrime(Crime)
function. Unlike other functions you have created within various ViewModel implementations, here you
do want to expose this function as a suspending function. In your CrimeListFragment, you will want
to navigate to CrimeDetailFragment after completing the insert into the database, and handling the
asynchronous work within CrimeListFragment will be the simplest approach.

Responding to menu selections

313

Listing 15.7 Adding a new crime (CrimeListViewModel.kt)
class CrimeListViewModel : ViewModel() {
 ...
 init {
 ...
 }

 suspend fun addCrime(crime: Crime) {
 crimeRepository.addCrime(crime)
 }
}

When the user presses an action item, your fragment receives a callback to the function
onOptionsItemSelected(MenuItem). This function receives an instance of MenuItem that describes the
user’s selection.

Although your menu only contains one action item, menus often have more than one. You can
determine which action item has been selected by checking the ID of the MenuItem and then respond
appropriately. This ID corresponds to the ID you assigned to the MenuItem in your menu file.

In CrimeListFragment.kt, implement onOptionsItemSelected(MenuItem) to respond to
MenuItem selection by creating a new Crime, saving it to the database, and then navigating to
CrimeDetailFragment.

Listing 15.8 Responding to menu selection (CrimeListFragment.kt)
class CrimeListFragment : Fragment() {
 ...
 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 super.onCreateOptionsMenu(menu, inflater)
 inflater.inflate(R.menu.fragment_crime_list, menu)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 return when (item.itemId) {
 R.id.new_crime -> {
 showNewCrime()
 true
 }
 else -> super.onOptionsItemSelected(item)
 }
 }

 private fun showNewCrime() {
 viewLifecycleOwner.lifecycleScope.launch {
 val newCrime = Crime(
 id = UUID.randomUUID(),
 title = "",
 date = Date(),
 isSolved = false
)
 crimeListViewModel.addCrime(newCrime)
 findNavController().navigate(
 CrimeListFragmentDirections.showCrimeDetail(newCrime.id)
)
 }
 }
}

Chapter 15 The App Bar

314

This function returns a Boolean value. Once you have handled the MenuItem, you should return true
to indicate that no further processing is necessary. If you return false, menu processing will continue
by calling the hosting activity’s onOptionsItemSelected(MenuItem) function (or, if the activity hosts
other fragments, the onOptionsItemSelected function will get called on those fragments). The default
case calls the superclass implementation if the item ID is not in your implementation.

In this brave new world where you can add crimes yourself, the seed database data you packaged
within the app is no longer necessary. In CrimeRepository, remove the line including the prepackaged
database from the assets/ folder.

Listing 15.9 Excluding the prepopulated database (CrimeRepository.kt)
class CrimeRepository private constructor(
 context: Context,
 private val coroutineScope: CoroutineScope = GlobalScope
) {

 private val database: CrimeDatabase = Room
 .databaseBuilder(
 context.applicationContext,
 CrimeDatabase::class.java,
 DATABASE_NAME
)
 .createFromAsset(DATABASE_NAME)
 .build()
 ...
}

Also, delete the crime-database file from your assets folder. It served you well. (If you use Android
Studio’s safe delete option, which is a good idea, it will warn you that there is a remaining usage
of crime-database. The usage it has found is actually the database name, which you can verify for
yourself before choosing Delete Anyway.)

Responding to menu selections

315

To get rid of the database loaded with the app on your device or emulator, you will need to clear the
app’s cache. Run the app and, while it is running, go to the overview screen on the device or emulator.
Long-press the launcher icon for CriminalIntent. Press the App info option in the dropdown that
appears (Figure 15.9).

Figure 15.9 Opening the app info for CriminalIntent

Chapter 15 The App Bar

316

On the App info screen, select Storage. Next, select Clear storage and confirm your action on the
dialog that appears (Figure 15.10).

Figure 15.10 Deleting CriminalIntent’s data

Responding to menu selections

317

Now, compile and run CriminalIntent. You should see an empty list to start with. Try out your new
menu item to add a new crime. You should see the new crime appear in the crime list (Figure 15.11).

Figure 15.11 New crime flow

The empty list that you see before you add any crimes might be disconcerting. If you tackle the
challenge in the section called Challenge: An Empty View for the RecyclerView at the end of this
chapter, you will present a helpful clue when the list is empty.

Chapter 15 The App Bar

318

For the More Curious: App Bar vs Action Bar vs
Toolbar
You will often hear people refer to the app bar as the “toolbar” or the “action bar.” And the official
Android documentation uses these terms interchangeably. But are the app bar, action bar, and toolbar
really the same thing? In short, no. The terms are related, but they are not exactly equivalent.

The UI design element itself is called an app bar. Prior to Android 5.0 (Lollipop, API level 21), the
app bar was implemented using the ActionBar class. The terms action bar and app bar came to be
treated as one and the same. Then, starting with Android 5.0, the Toolbar class was introduced as the
preferred method for implementing the app bar. And, to keep things interesting, in Jetpack Compose,
the newest way to create Android UIs, the app bar is implemented with a composable element called
TopAppBar. (You will see this in Chapter 29.)

As of this writing, AppCompat uses the Jetpack Toolbar view to implement the app bar
(Figure 15.12).

Figure 15.12 Layout inspector view of app bar

The ActionBar and Toolbar are very similar components. In fact, the toolbar builds on top of the
action bar. It has a tweaked UI and is more flexible in the ways that you can use it.

The action bar has many constraints. It will always appear at the top of the screen. There can only be
one action bar. The size of the action bar is fixed and should not be changed. The toolbar does not have
these constraints.

In this chapter, you used a toolbar that was provided by one of the AppCompat themes. Alternatively,
you can manually include a toolbar as a normal view in your activity or fragment’s layout file. You can
place this toolbar anywhere you like, and you can even include multiple toolbars on the screen at the
same time.

This flexibility allows for interesting designs; for example, imagine if each fragment that you use
maintained its own toolbar. When you host multiple fragments on the screen at the same time, each of
them could bring along its own toolbar instead of sharing a single toolbar at the top of the screen.

For the More Curious: Accessing the AppCompat App Bar

319

If you are using the single activity architecture recommended by Google – as you are for
CriminalIntent – you should strongly consider taking the approach of having each fragment provide
its own app bar. Having your fragments messing with a shared app bar maintained by a single activity
is a recipe for disaster. Taking this approach will keep all the functionality for an individual fragment
encapsulated within that fragment. It will also enable you to improve and refactor individual fragments
without worrying about breaking functionality for other fragments.

Equipped with this bit of history about the app bar-related APIs, you are now armed to more easily
navigate the official developer documentation about this topic. And perhaps you can even spread the
love and help clarify the overlap in these terms to future Android developers, since it is very confusing
without the historical perspective.

For the More Curious: Accessing the AppCompat App
Bar
As you saw in this chapter, you can change the contents of the app bar by adding menu items. You can
also change other attributes of the app bar at runtime, such as the title it displays.

To access the AppCompat app bar, you reference your AppCompatActivity’s
supportFragmentManager property. From CrimeFragment, it would look something like this:

 val appCompatActivity = activity as AppCompatActivity
 val appBar = appCompatActivity.supportActionBar as Toolbar

The activity that is hosting the fragment is cast to an AppCompatActivity. Recall that because
CriminalIntent uses the AppCompat library, you made your MainActivity a subclass of
AppCompatActivity, which allows you to access the app bar.

Casting supportActionBar to a Toolbar allows you to call any Toolbar functions. (Remember,
AppCompat uses a Toolbar to implement the app bar. But it used to use an ActionBar, as you just
read, hence the somewhat-confusing name of the property to access the app bar.)

Once you have a reference to the app bar, you can apply changes like so:

 appBar.setTitle(R.string.some_cool_title)

See the Toolbar API reference page for a list of other functions you can apply to alter the app bar
(assuming your app bar is a Toolbar) at developer.android.com/reference/androidx/appcompat/
widget/Toolbar.

Note that if you need to alter the contents of the app bar’s menu while the activity is still displayed,
you can trigger the onCreateOptionsMenu(Menu, MenuInflater) callback by calling the
invalidateOptionsMenu() function. You can change the contents of the menu programmatically in
the onCreateOptionsMenu callback, and those changes will appear once the callback is complete.

https://developer.android.com/reference/androidx/appcompat/widget/Toolbar
https://developer.android.com/reference/androidx/appcompat/widget/Toolbar

Chapter 15 The App Bar

320

Challenge: An Empty View for the RecyclerView
Currently, when CriminalIntent launches it displays an empty RecyclerView – a big white void. You
should give users something to interact with when there are no items in the list.

For this challenge, display a message like There are no crimes and add a button to the view that will
trigger the creation of a new crime.

Use the visibility property that exists on any View class to show and hide this new placeholder view
when appropriate.

Challenge: Deleting Crimes
Right now, you have the ability to add and update crimes in your database. But once the crime has been
solved and justice has been served, it is often best to forgive and forget.

For this challenge, add the ability to delete a selected crime in CrimeDetailFragment. You can add an
icon to CrimeDetailFragment’s app bar and hook it up the same way you did in this chapter.

In addition to the @Query, @Insert, and @Update annotations you have used in your CrimeDao, there is
one more annotation that might come in handy: @Delete.

321

16
Implicit Intents

In Android, you can start an activity in another application on the device using an intent. In an explicit
intent, you specify the class of the activity to start, and the OS will start it. In an implicit intent, you
describe the job that you need done, and the OS will start an activity in an appropriate application for
you.

In CriminalIntent, you will use implicit intents to enable picking a suspect for a Crime from the
user’s list of contacts and sending a text-based report of a crime. The user will choose a suspect from
whatever contacts app is installed on the device and will be offered a choice of apps to send the crime
report (Figure 16.1).

Figure 16.1 Opening contacts and text-sending apps

Chapter 16 Implicit Intents

322

Using implicit intents to harness other applications is far easier than writing your own implementations
for common tasks. Users also appreciate being able to use apps they already know and like in
conjunction with your app.

Before you can create these implicit intents, there is some setup to do in CriminalIntent:

• add CHOOSE SUSPECT and SEND CRIME REPORT buttons to CrimeDetailFragment’s layouts

• add a suspect property to the Crime class that will hold the name of a suspect

• create a crime report using a set of format strings

Adding Buttons
Update CrimeDetailFragment’s layout to include new buttons for accusation and tattling: namely, a
suspect button and a report button. First, add the strings that these buttons will display.

Listing 16.1 Adding button strings (res/values/strings.xml)
<resources>
 ...
 <string name="new_crime">New Crime</string>
 <string name="crime_suspect_text">Choose Suspect</string>
 <string name="crime_report_text">Send Crime Report</string>
</resources>

In res/layout/fragment_crime_detail.xml, add two buttons, as shown in Listing 16.2.

Listing 16.2 Adding CHOOSE SUSPECT and SEND CRIME REPORT buttons
(res/layout/fragment_crime_detail.xml)
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 ... >
 ...
 <CheckBox
 android:id="@+id/crime_solved"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_solved_label"/>

 <Button
 android:id="@+id/crime_suspect"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_suspect_text"/>

 <Button
 android:id="@+id/crime_report"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_report_text"/>
</LinearLayout>

Preview the updated layout or run CriminalIntent to confirm that your new buttons are in place.

Adding a Suspect Property

323

Adding a Suspect Property
Next, open Crime.kt and give Crime a property to hold the name of a suspect. Provide a default value
– an empty string – so that you do not have to update places in your codebase where you create a
Crime.

Listing 16.3 Adding a suspect property (Crime.kt)
@Entity
data class Crime(
 @PrimaryKey val id: UUID,
 val title: String,
 val date: Date,
 val isSolved: Boolean,
 val suspect: String = ""
)

Since you updated your Crime class, and Room uses that class to create database tables for you, you
need to make some changes to your database as well. Specifically, you need to increment the version of
your CrimeDatabase class and tell Room how to migrate your database between the versions.

Room uses a versioning system to manage how data is structured within a database. Databases are
intended as long-term storage for data, but as your app grows and adds new features, your model
classes – and, by extension, your database – might change. You might need to add a new property to
one of your entities, as you just did, which would cause a new column to be added to your database.
Or you might need to change the type of one of your entity’s properties, or perhaps remove a property
altogether.

In all these cases, Room needs to know how to manage the change so that the structure of your
database stays in sync with your database entity classes.

Room tracks the version of your database with the version property inside the @Database annotation
on your CrimeDatabase class. When you first created the CrimeDatabase class, you set that value to
1. As you make changes to the structure of your database, such as adding the suspect property on the
Crime class, you increment that value. Since your initial database version is set to 1, you need to bump
it up to 2 now.

When your app launches and Room builds the database, it will first check the version of the existing
database on the device. If this version does not match the one you define in the @Database annotation,
Room will begin the process to migrate that database to the latest version.

Room offers you two ways to handle migrations. The easy way is to call the
fallbackToDestructiveMigration() function when building your CrimeDatabase instance. But, as
the name hints, when this function is invoked Room will delete all the data within the database and re-
create a new version. This means that all the data will be lost, leading to very unhappy users.

The better way to handle migrations is to define Migration classes. The Migration class constructor
takes in two parameters. The first is the database version you are migrating from, and the second is the
version you are migrating to. In this case, you will provide the version numbers 1 and 2.

Chapter 16 Implicit Intents

324

The only function you need to implement in your Migration object is
migrate(SupportSQLiteDatabase). You use the database parameter to execute any SQL commands
necessary to upgrade your tables. (Room uses SQLite under the hood, as you read about in
Chapter 12.) The ALTER TABLE and ADD COLUMN commands will add the new suspect column to the
crime table.

Open CrimeDatabase.kt, increment the version, and add a migration. Between versions 1 and 2 of
CriminalIntent’s database, a new property was added to Crime: a String property named suspect. The
corresponding migration will include a single instruction to add a suspect column to the table that
stores your crimes.

Listing 16.4 Adding database migration (database/CrimeDatabase.kt)
@Database(entities = [Crime::class], version = 1 version = 2)
@TypeConverters(CrimeTypeConverters::class)
abstract class CrimeDatabase : RoomDatabase() {
 abstract fun crimeDao(): CrimeDao
}

val migration_1_2 = object : Migration(1, 2) {
 override fun migrate(database: SupportSQLiteDatabase) {
 database.execSQL(
 "ALTER TABLE Crime ADD COLUMN suspect TEXT NOT NULL DEFAULT ''"
)
 }
}

After you create your Migration, you need to provide it to your database when it is created. Open
CrimeRepository.kt and provide the migration to Room when creating your CrimeDatabase instance.
Call addMigrations(…) before calling the build() function. addMigrations() takes in a variable
number of Migration objects, so you can pass all your migrations in when you declare them.

Listing 16.5 Providing migration to Room (CrimeRepository.kt)
class CrimeRepository private constructor(
 context: Context,
 private val coroutineScope: CoroutineScope = GlobalScope
) {

 private val database: CrimeDatabase = Room
 .databaseBuilder(
 context.applicationContext,
 CrimeDatabase::class.java,
 DATABASE_NAME
)
 .addMigrations(migration_1_2)
 .build()
 ...
}

Once your migration is in place, run CriminalIntent to make sure everything builds correctly. The app
behavior should be the same as before you applied the migration, and you should see the crime you
added in Chapter 15. You will make use of the newly added column shortly.

Using a Format String

325

Using a Format String
The last preliminary step is to create a template crime report that can be configured with the specific
crime’s details. Because you will not know a crime’s details until runtime, you must use a format string
with placeholders that can be replaced at runtime. Here is the format string you will use:

 %1$s! The crime was discovered on %2$s. %3$s, and %4$s

%1$s, %2$s, etc. are placeholders that expect string arguments. In code, you will call getString(…)
and pass in the format string and four other strings in the order in which they should replace the
placeholders. The result will be a report along the lines of, “Stolen yogurt! The crime was discovered
on Wed., May 11. The case is not solved, and there is no suspect.”

First, in strings.xml, add the strings shown in Listing 16.6.

Listing 16.6 Adding string resources (res/values/strings.xml)
<resources>
 ...
 <string name="crime_suspect_text">Choose Suspect</string>
 <string name="crime_report_text">Send Crime Report</string>
 <string name="crime_report">%1$s!
 The crime was discovered on %2$s. %3$s, and %4$s
 </string>
 <string name="crime_report_solved">The case is solved</string>
 <string name="crime_report_unsolved">The case is not solved</string>
 <string name="crime_report_no_suspect">there is no suspect.</string>
 <string name="crime_report_suspect">the suspect is %s.</string>
 <string name="crime_report_subject">CriminalIntent Crime Report</string>
 <string name="send_report">Send crime report via</string>
</resources>

Chapter 16 Implicit Intents

326

In CrimeDetailFragment.kt, add a function that creates four strings and then pieces them together and
returns a complete report.

Listing 16.7 Adding a getCrimeReport(crime: Crime) function
(CrimeDetailFragment.kt)
private const val DATE_FORMAT = "EEE, MMM, dd"

class CrimeDetailFragment : Fragment() {
 ...
 private fun updateUi(crime: Crime) {
 ...
 }

 private fun getCrimeReport(crime: Crime): String {
 val solvedString = if (crime.isSolved) {
 getString(R.string.crime_report_solved)
 } else {
 getString(R.string.crime_report_unsolved)
 }

 val dateString = DateFormat.format(DATE_FORMAT, crime.date).toString()
 val suspectText = if (crime.suspect.isBlank()) {
 getString(R.string.crime_report_no_suspect)
 } else {
 getString(R.string.crime_report_suspect, crime.suspect)
 }

 return getString(
 R.string.crime_report,
 crime.title, dateString, solvedString, suspectText
)
 }
}

(There are multiple DateFormat classes. Make sure you import android.text.format.DateFormat.)

Now the preliminaries are complete, and you can turn to implicit intents.

Using Implicit Intents

327

Using Implicit Intents
An Intent is an object that describes to the OS something that you want it to do. With the explicit
intents that you have created thus far, you explicitly name the activity that you want the OS to start,
like:

 val intent = Intent(this, CheatActivity::class.java)
 startActivity(intent)

With an implicit intent, you describe to the OS the job that you want done. The OS then starts the
activity that has advertised itself as capable of doing that job. If the OS finds more than one capable
activity, then the user is offered a choice.

Parts of an implicit intent
Here are the critical parts of an intent that you can use to define the job you want done:

the action that you are trying to perform

Actions are typically constants from the Intent class. For example, if you want to view
a URL, you can use Intent.ACTION_VIEW for your action. To send something, you use
Intent.ACTION_SEND.

the location of any data

The data can be something outside the device, like the URL of a web page, but it can also be a
URI to a file or a content URI pointing to a record in a ContentProvider.

the type of data that the action is for

This is a MIME type, like text/html or audio/mpeg3. If an intent includes a location for data,
then the type can usually be inferred from that data.

optional categories

If the action is used to describe what to do, the category usually describes
where, when, or how you are trying to use an activity. Android uses the category
android.intent.category.LAUNCHER to indicate that an activity should be displayed in the top-
level app launcher. The android.intent.category.INFO category, on the other hand, indicates
an activity that shows information about a package to the user but should not show up in the
launcher.

So, for example, a simple implicit intent for viewing a website would include an action of
Intent.ACTION_VIEW and a data Uri that is the URL of a website.

Based on this information, the OS will launch the appropriate activity of an appropriate application.
(Or, if it finds more than one candidate, present the user with a choice.)

Chapter 16 Implicit Intents

328

An activity advertises itself as an appropriate activity for ACTION_VIEW via an intent filter in the
manifest. If you wanted to write a browser app, for instance, you would include the following intent
filter in the declaration of the activity that should respond to ACTION_VIEW:

 <activity
 android:name=".BrowserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http" android:host="www.bignerdranch.com" />
 </intent-filter>
 </activity>

To respond to implicit intents, an activity must have the android:exported attribute set to true and,
in an intent filter, the DEFAULT category explicitly included. The action element in the intent filter tells
the OS that the activity is capable of performing the job, and the DEFAULT category tells the OS that this
activity should be considered for the job when the OS is asking for volunteers. This DEFAULT category
is implicitly added to every implicit intent.

Implicit intents can also include extras, just like explicit intents. But any extras on an implicit intent
are not used by the OS to find an appropriate activity. The action and data parts of an intent can also be
used in conjunction with an explicit intent. That would be the equivalent of telling a particular activity
to do something specific.

Sending a crime report

329

Sending a crime report
Let’s see how this works by creating an implicit intent to send a crime report in CriminalIntent. The
job you want done is sending plain text; the crime report is a string. So the implicit intent’s action will
be ACTION_SEND. It will not point to any data or have any categories, but it will specify a type of text/
plain.

In CrimeDetailFragment’s updateUi() method, set a listener on your new crime report button. Within
the listener’s implementation, create an implicit intent and pass it into startActivity(Intent).

Listing 16.8 Sending a crime report (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun updateUi(crime: Crime) {
 binding.apply {
 ...
 crimeSolved.isChecked = crime.isSolved

 crimeReport.setOnClickListener {
 val reportIntent = Intent(Intent.ACTION_SEND).apply {
 type = "text/plain"
 putExtra(Intent.EXTRA_TEXT, getCrimeReport(crime))
 putExtra(
 Intent.EXTRA_SUBJECT,
 getString(R.string.crime_report_subject)
)
 }

 startActivity(reportIntent)
 }
 }
 }
 ...
}

Here you use the Intent constructor that accepts a string that is a constant defining the action. There
are other constructors that you can use depending on what kind of implicit intent you need to create.
You can find them all on the Intent reference page in the documentation. There is no constructor that
accepts a type, so you set it explicitly.

You include the text of the report and the string for the subject of the report as extras. Note that these
extras use constants defined in the Intent class. Any activity responding to this intent will know these
constants and what to do with the associated values.

Starting an activity from a fragment works nearly the same as starting an activity from another activity.
You call Fragment’s startActivity(Intent) function, which calls the corresponding Activity
function behind the scenes.

Chapter 16 Implicit Intents

330

Run CriminalIntent and press the SEND CRIME REPORT button. Because this intent will likely
match many activities on the device, you will probably see a list of activities presented in a chooser
(Figure 16.2). You may need to scroll down in the list to see all of the activities.

Figure 16.2 Activities volunteering to send your crime report

If you are offered a choice, make a selection. You will see your crime report loaded into the app that
you chose. All you have to do is address and send it.

Sending a crime report

331

Apps like Gmail and Google Drive require you to log in with a Google account. It is simpler to choose
the Messages app, which does not require you to log in. Press New message in the Select conversation
dialog window, type any phone number in the To field, and press the Send to phone number label that
appears (Figure 16.3). You will see the crime report in the body of the message.

Figure 16.3 Sending a crime report with the Messages app

If, on the other hand, you do not see a chooser, that means one of two things. Either you have already
set a default app for an identical implicit intent, or your device has only a single activity that can
respond to this intent.

Often, it is best to go with the user’s default app for an action. But in this situation, that is not ideal.
It is very common for people to use different messaging apps for different groups of people. The user
might use WhatsApp with their family, Slack with their coworkers, and Discord with their friends.
Here, it would be best to present the user with all of their options for sending a message so they can
choose which app to use each time.

Chapter 16 Implicit Intents

332

With a little extra configuration, you can create a chooser to be shown every time an implicit
intent is used to start an activity. After you create your implicit intent as before, you call the
Intent.createChooser(Intent, String) function and pass in the implicit intent and a string for the
chooser’s title.

Then you pass the intent returned from createChooser(…) into startActivity(…).

In CrimeDetailFragment.kt, create a chooser to display the activities that respond to your implicit
intent.

Listing 16.9 Using a chooser (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun updateUi(crime: Crime) {
 binding.apply {
 ...
 crimeReport.setOnClickListener {
 val reportIntent = Intent(Intent.ACTION_SEND).apply {
 type = "text/plain"
 putExtra(Intent.EXTRA_TEXT, getCrimeReport(crime))
 putExtra(
 Intent.EXTRA_SUBJECT,
 getString(R.string.crime_report_subject)
)
 }

 startActivity(reportIntent)
 val chooserIntent = Intent.createChooser(
 reportIntent,
 getString(R.string.send_report)
)
 startActivity(chooserIntent)
 }
 }
 }
 ...
}

Sending a crime report

333

Run CriminalIntent again and press the SEND CRIME REPORT button. As long as you have more than
one activity that can handle your intent, you will be offered a list to choose from (Figure 16.4).

This chooser has changed many times over the various versions of Android. On older versions of
Android, you might see the title you passed in when creating the chooserIntent on the chooser. On
newer versions of Android, you might be presented with the people in your contacts for various apps to
select.

Figure 16.4 Sending text with a chooser

Chapter 16 Implicit Intents

334

Asking Android for a contact
Now you are going to create another implicit intent that enables users to choose a suspect from their
contacts. You could set up the Intent by hand, but it is easier to use the Activity Results APIs that you
used in GeoQuiz.

In Chapter 7, you learned about classes that define a contract between you and the
Activity you are starting. This contract defines the input you provide to start the
Activity and the output you expect to receive as a result. There, you used the contract
ActivityResultContracts.StartActivityForResult() – a basic contract that takes in an Intent
and provides an ActivityResult as output.

You could use ActivityResultContracts.StartActivityForResult() again. But instead, you will
use the more specific ActivityResultContracts.PickContact() class. It is a better option here
because, as its name indicates, it is specifically designed for this use case.

ActivityResultContracts.PickContact() will send the user to an activity where they can select a
contact. Once the user selects a contact, you will receive a Uri back as the result. You will see how to
read the contact data from this Uri later in this chapter.

You expect a result back from the started activity, so you will use registerForActivityResult(…)
again. In CrimeDetailFragment.kt, add the following:

Listing 16.10 Registering for a result (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private val crimeDetailViewModel: CrimeDetailViewModel by viewModels {
 CrimeDetailViewModelFactory(args.crimeId)
 }

 private val selectSuspect = registerForActivityResult(
 ActivityResultContracts.PickContact()
) { uri: Uri? ->
 // Handle the result
 }
 ...
}

Asking Android for a contact

335

In onViewCreated(), set a click listener on the crimeSuspect button. Inside the listener, call the
launch() function on your selectSuspect property. Unlike the work you did in Chapter 7, selecting a
contact requires no input, so pass null into the launch() function.

Listing 16.11 Sending an implicit intent (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 ...
 crimeSolved.setOnCheckedChangeListener { _, isChecked ->
 crimeDetailViewModel.updateCrime { oldCrime ->
 oldCrime.copy(isSolved = isChecked)
 }
 }

 crimeSuspect.setOnClickListener {
 selectSuspect.launch(null)
 }
 }
 }
 ...
}

Next, modify updateUi(crime: Crime) to set the text on the CHOOSE SUSPECT button if the crime
has a suspect. Use the String.ifEmpty() extension function to provide default text if there is no
current suspect.

Listing 16.12 Setting CHOOSE SUSPECT button text
(CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun updateUi(crime: Crime) {
 binding.apply {
 ...
 crimeReport.setOnClickListener {
 ...
 }

 crimeSuspect.text = crime.suspect.ifEmpty {
 getString(R.string.crime_suspect_text)
 }
 }
 }
 ...
}

Chapter 16 Implicit Intents

336

Run CriminalIntent on a device that has a contacts app – use the emulator if your Android device does
not have one. If you are using the emulator, add a few contacts using its Contacts app before you run
CriminalIntent. Then run your app.

Press the CHOOSE SUSPECT button. You should see a list of contacts (Figure 16.5).

Figure 16.5 A list of possible suspects

If you have a different contacts app installed, your screen will look different. Again, this is one of the
benefits of implicit intents. You do not have to know the name of the contacts application to use it from
your app. Users can install whatever app they like best, and the OS will find and launch it.

Asking Android for a contact

337

Getting data from the contacts list
Now you need to get a result back from the contacts application. Contacts information is shared
by many applications, so Android provides an in-depth API for working with contacts information
through a ContentProvider. Instances of this class wrap databases and make the data available to
other applications. You can access a ContentProvider through a ContentResolver.

(The contacts database is a large topic in itself. We will not cover it here. If you would like to know
more, read the Content Provider API guide at developer.android.com/guide/topics/providers/
content-provider-basics.)

Because you started the activity with the ActivityResultContracts.PickContact() class, you might
receive a data Uri as output. (We say “might” here because if the user cancels and does not select a
suspect, your output will be null.) The Uri is not your suspect’s name or any data about them; rather,
it points at a resource you can query for that information.

In CrimeDetailFragment.kt, add a function to retrieve the contact’s name from the contacts
application. This is a lot of new code; we will explain it step by step after you enter it.

Listing 16.13 Pulling the contact’s name out (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment(), DatePickerFragment.Callbacks {
 ...
 private fun getCrimeReport(crime: Crime): String {
 ...
 }

 private fun parseContactSelection(contactUri: Uri) {
 val queryFields = arrayOf(ContactsContract.Contacts.DISPLAY_NAME)

 val queryCursor = requireActivity().contentResolver
 .query(contactUri, queryFields, null, null, null)

 queryCursor?.use { cursor ->
 if (cursor.moveToFirst()) {
 val suspect = cursor.getString(0)
 crimeDetailViewModel.updateCrime { oldCrime ->
 oldCrime.copy(suspect = suspect)
 }
 }
 }
 }
 ...
}

In Listing 16.13, you create a query that asks for all the display names of the contacts in the returned
data. Then you query the contacts database and get a Cursor object to work with. The Cursor points to
a database table containing a single row and a single column. The row represents the contact the user
selected, and the specified column has the contact’s name.

The Cursor.moveToFirst() function accomplishes two things for you: It moves the cursor to the first
row, and it returns a Boolean you use to determine whether there is data to read from. To extract the
suspect’s name, you call Cursor.getString(Int), passing in 0, to pull the contents of the first column
in that first row as a string. Finally, you update the crime within your CrimeDetailViewModel.

Now, the suspect information is stored in the CrimeDetailViewModel, and your UI will update as it
observes the StateFlow’s changes.

https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/guide/topics/providers/content-provider-basics

Chapter 16 Implicit Intents

338

But there is one more step: You need to call parseContactSelection(Uri) when you get a result
back. Invoke it when calling registerForActivityResult(…).

Listing 16.14 Invoking your function (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private val selectSuspect = registerForActivityResult(
 ActivityResultContracts.PickContact()
) { uri: Uri? ->
 // Handle the result
 uri?.let { parseContactSelection(it) }
 }
 ...
}

Run your app, select a crime, and pick a suspect. The name of the suspect you chose should appear on
the CHOOSE SUSPECT button. Then send a crime report. The suspect’s name should appear in the
crime report (Figure 16.6).

Figure 16.6 Suspect name on button and in crime report

Asking Android for a contact

339

Contacts permissions
You might be wondering how you are getting permission to read from the contacts database. The
contacts app is extending its permissions to you.

The contacts app has full permissions to the contacts database. When the contacts app returns a data
URI as the result, it also adds the flag Intent.FLAG_GRANT_READ_URI_PERMISSION. This flag signals to
Android that CriminalIntent should be allowed to use this data one time. This works well, because you
do not really need access to the entire contacts database. You only need access to one contact inside
that database.

Chapter 16 Implicit Intents

340

Checking for responding activities
The first implicit intent you created in this chapter will always be responded to in some way – there
may be no way to send a report, but the chooser will still display properly. However, that is not the case
for the second example: Some devices or users may not have a contacts app. This is a problem, because
if the OS cannot find a matching activity, then the app will crash.

To determine whether your user has an appropriate contacts application, you will need to query the
system to determine which activities will respond to your implicit intent. If one or more activities are
returned, then your user is all set to pick a contact. If no activities come back, then the user does not
have an appropriate contact picker and the functionality should be disabled in CriminalIntent.

Disclosing queries
To successfully make that query, you must first disclose that you are going to make it. This provides
extra security for users, because apps have to declare what types of external requests they make to the
system. In the past, scummy apps would abuse the ability to query for apps in order to “fingerprint,”
or uniquely identify, the device. Those apps could then use that fingerprint to track that device across
apps.

To prevent this invasion of privacy, you provide this disclosure within your AndroidManifest.xml.
Open the file and make the following updates:

Listing 16.15 Adding external queries to manifest (AndroidManifest.xml)
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.criminalintent">

 <application ...>
 ...
 </application>
 <queries>
 <intent>
 <action android:name="android.intent.action.PICK" />
 <data android:mimeType="vnd.android.cursor.dir/contact" />
 </intent>
 </queries>
</manifest>

The queries block at the end of the manifest includes all the external intents the app is going to
look up. Because CriminalIntent wants to check for a contacts app, the relevant intent information
is provided so the system is aware. If you do not provide this disclosure, then on newer versions of
Android the system will always tell you that no activities can handle your request.

Checking for responding activities

341

Querying the PackageManager
Now that you have provided your disclosure, you can determine whether the OS can handle your
request through the PackageManager class. PackageManager knows about all the components installed
on an Android device, including all its activities. By calling resolveActivity(Intent, Int), you can
ask it to find an activity that matches the Intent you gave it. The MATCH_DEFAULT_ONLY flag restricts
this search to activities with the CATEGORY_DEFAULT flag, just like startActivity(Intent) does.

If this search is successful, it will return an instance of ResolveInfo telling you all about which
activity it found. On the other hand, if the search returns null, the game is up – no app can handle your
Intent. You can use this knowledge to enable or disable features, such as selecting a suspect from the
list of contacts, based on whether the system can handle the request.

Add the canResolveIntent() function to the bottom of CrimeDetailFragment. It will take in an
Intent and return a Boolean indicating whether that Intent can be resolved.

Listing 16.16 Resolving Intents (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun parseContactSelection(contactUri: Uri) {
 ...
 }

 private fun canResolveIntent(intent: Intent): Boolean {
 val packageManager: PackageManager = requireActivity().packageManager
 val resolvedActivity: ResolveInfo? =
 packageManager.resolveActivity(
 intent,
 PackageManager.MATCH_DEFAULT_ONLY
)
 return resolvedActivity != null
 }
}

Chapter 16 Implicit Intents

342

Under the hood, the Activity Results API uses Intents to perform its actions. You can create an
instance of those Intents by invoking createIntent() on the launcher’s contract property. Use your
new canResolveIntent() function with the Intent backing the selectSuspect property to enable or
disable the suspect button in onViewCreated(…). That way, the device will not crash if the user tries to
select a suspect when the device does not have a contacts app.

Listing 16.17 Guarding against no contacts app (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 ...
 crimeSuspect.setOnClickListener {
 selectSuspect.launch(null)
 }

 val selectSuspectIntent = selectSuspect.contract.createIntent(
 requireContext(),
 null
)
 crimeSuspect.isEnabled = canResolveIntent(selectSuspectIntent)
 }
 }
 ...
}

If you would like to verify that your filter works, but you do not have a device without a contacts
application, temporarily add an additional category to the intent trying to be resolved. This category
does nothing, but it will prevent any contacts applications from matching your intent.

Listing 16.18 Adding dummy code to verify filter (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun canResolveIntent(intent: Intent): Boolean {
 intent.addCategory(Intent.CATEGORY_HOME)
 val packageManager: PackageManager = requireActivity().packageManager
 val resolvedActivity: ResolveInfo? =
 packageManager.resolveActivity(
 intent,
 PackageManager.MATCH_DEFAULT_ONLY
)
 return resolvedActivity != null
 }
}

Checking for responding activities

343

Run CriminalIntent again, and you should see the CHOOSE SUSPECT button disabled (Figure 16.7).

Figure 16.7 Disabled CHOOSE SUSPECT button

Delete the dummy code once you are done verifying this behavior.

Listing 16.19 Deleting dummy code (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun canResolveIntent(intent: Intent): Boolean {
 intent.addCategory(Intent.CATEGORY_HOME)
 val packageManager: PackageManager = requireActivity().packageManager
 val resolvedActivity: ResolveInfo? =
 packageManager.resolveActivity(
 intent,
 PackageManager.MATCH_DEFAULT_ONLY
)
 return resolvedActivity != null
 }
}

Chapter 16 Implicit Intents

344

Challenge: Another Implicit Intent
Instead of sending a crime report, an angry user may prefer a phone confrontation with the suspect.
Add a new button that calls the named suspect.

You will need the phone number from the contacts database. This will require you to query another
table in the ContactsContract database called CommonDataKinds.Phone. Check out the documentation
for ContactsContract and ContactsContract.CommonDataKinds.Phone for more information on how
to query for this information.

A couple of tips: To query for additional data, you can use the android.permission.READ_CONTACTS
permission. This is a runtime permission, so you need to explicitly ask the user’s permission to
access their contacts. If you would like to know more, read the Request App Permissions guide at
developer.android.com/training/permissions/requesting.

With that permission in hand, you can read the ContactsContract.Contacts._ID to get a contact ID
on your original query. You can then use that ID to query the CommonDataKinds.Phone table.

Once you have the phone number, you can create an implicit intent with a telephone URI:

 Uri number = Uri.parse("tel:5551234");

The action can be Intent.ACTION_DIAL or Intent.ACTION_CALL. What is the difference? ACTION_CALL
pulls up the phone app and immediately calls the number sent in the intent; ACTION_DIAL just enters the
number and waits for the user to initiate the call.

We recommend using ACTION_DIAL. It is the kinder, gentler option. ACTION_CALL may be restricted
and will definitely require a permission. Your user may also appreciate the chance to cool down before
starting the call.

https://developer.android.com/training/permissions/requesting

345

17
Taking Pictures with Intents

Now that you know how to work with implicit intents, you can document crimes in even more detail.
With a picture of the crime, you can share the gory details with everyone. Taking a picture will involve
a couple of new tools used in combination with a tool you recently got to know: the implicit intent.

An implicit intent can be used to start up the user’s favorite camera application and receive a new
picture from it. But where do you put the picture the camera takes? And once the picture comes in,
how do you display it? In this chapter, you will answer both of those questions.

Chapter 17 Taking Pictures with Intents

346

A Place for Your Photo
The first step for this chapter is to build out a place for your photo to live on the crime detail screen.
You will need two new View objects: an ImageView to display the photo and a Button to press to take a
new photo (Figure 17.1).

Figure 17.1 New UI

Dedicating an entire row to a thumbnail and a button would make your app look clunky and
unprofessional. You do not want that, so you will arrange things nicely. You will put the picture of the
crime and the button to take the photo alongside the title.

Instead of using text to label your new button, this time you will label it with an icon. As with previous
icons you have used for buttons and the app bar, you will use a vector asset. Select File → New →
Vector Asset from Android Studio’s menu bar to bring up the Asset Studio. Click the + button to the
right of the Clip Art: label.

A Place for Your Photo

347

Within the Select Icon window, search for photo camera and select the first icon. Rename the asset to
ic_camera (Figure 17.2). With that done, click Next, and then Finish on the following screen to add the
icon to your project.

Figure 17.2 Your camera icon

Chapter 17 Taking Pictures with Intents

348

With the icon now in the project, add new views to res/layout/fragment_crime_detail.xml to build
out this new area. Start with the lefthand side, adding an ImageView for the picture and an ImageButton
to take a picture.

Listing 17.1 Adding an image and camera button to the layout
(res/layout/fragment_crime_detail.xml)
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 ... >
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:layout_marginEnd="16dp">

 <ImageView
 android:id="@+id/crime_photo"
 android:layout_width="80dp"
 android:layout_height="80dp"
 android:scaleType="centerInside"
 android:cropToPadding="true"
 android:background="@color/black"/>

 <ImageButton
 android:id="@+id/crime_camera"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_camera"/>
 </LinearLayout>
 </LinearLayout>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?attr/textAppearanceHeadline5"
 android:text="@string/crime_title_label" />
 ...
</LinearLayout>

A Place for Your Photo

349

Now set up the righthand side, moving your title TextView and EditText into a new LinearLayout
child to the LinearLayout you just built.

Listing 17.2 Updating the title layout (res/layout/fragment_crime.xml)
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 ... >
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:layout_marginEnd="16dp">
 ...
 </LinearLayout>
 </LinearLayout>

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?attr/textAppearanceHeadline5"
 android:text="@string/crime_title_label" />

 <EditText
 android:id="@+id/crime_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:importantForAutofill="no"
 android:hint="@string/crime_title_hint"
 android:inputType="text" />
 </LinearLayout>
 </LinearLayout>
 ...
</LinearLayout>

Run CriminalIntent and press a crime to see its details. You should see your new UI looking just like
Figure 17.1.

And with that, you are done with the UI for the time being. (You will wire those buttons up in a minute
or two.)

Chapter 17 Taking Pictures with Intents

350

File Storage
Your photo needs more than a place on the screen. Full-size pictures are too large to stick inside a
SQLite database, much less an Intent. They will need a place to live on your device’s filesystem.

Luckily, you have a place to stash these files: your private storage. Each application on an Android
device has a directory in the device’s sandbox. Keeping files in the sandbox protects them from being
accessed by other applications or even the prying eyes of users (unless the device has been rooted, in
which case the user can get to whatever they like).

Your crime database is actually a file within this private sandbox. The Room library knows how to
find and access this file to provide you with a working database that persists across app launches. With
functions like Context.getFileStreamPath(String) and Context.getFilesDir(), you can do the
same thing with regular files, too (which will live in a subfolder adjacent to the databases subfolder
your database lives in).

These are the basic file and directory functions in the Context class:

getFilesDir(): File

returns a handle to the directory for private application files

openFileInput(name: String): FileInputStream

opens an existing file in the files directory for input

openFileOutput(name: String, mode: Int): FileOutputStream

opens a file in the files directory for output, possibly creating it

getDir(name: String, mode: Int): File

gets (and possibly creates) a subdirectory within the files directory

fileList(…): Array<String>

gets a list of filenames in the main files directory, such as for use with openFileInput(String)

getCacheDir(): File

returns a handle to a directory you can use specifically for storing cache files; you should take
care to keep this directory tidy and use as little space as possible

There is a catch. Because these files are private, only your own application can read or write to them.
As long as no other app needs to access those files, these functions are sufficient.

However, they are not sufficient if another application needs to write to your files. This is the case for
CriminalIntent, because the external camera app will need to save the picture it takes as a file in your
app.

In those cases, the functions above do not go far enough: While there is a
Context.MODE_WORLD_READABLE flag you can pass into openFileOutput(…), it is deprecated and not
completely reliable in its effects on newer devices. Once upon a time you could also transfer files using
publicly accessible external storage, but this has been locked down in recent versions of Android for
security reasons.

Using FileProvider

351

If you need to share files with or receive files from other apps, you need to expose those files through
a ContentProvider. A ContentProvider allows you to expose content URIs to other apps. They can
then download from or write to those content URIs. Either way, you are in control and always have the
option to deny those reads or writes if you so choose.

Using FileProvider
When all you need to do is receive a file from another application, implementing an entire
ContentProvider is overkill. Fortunately, Google provides a convenience class called FileProvider.
FileProvider extends the ContentProvider class and is designed to easily and securely share files
between apps. Instead of implementing all the methods required for the ContentProvider class, you
can just configure a FileProvider and have it do the rest of the work.

The first step is to declare FileProvider as a ContentProvider hooked up to a specific authority. Do
this by adding a content provider declaration to your Android manifest.

Listing 17.3 Adding a FileProvider declaration
(manifests/AndroidManifest.xml)
<activity android:name=".MainActivity">
 ...
</activity>
<provider
 android:name="androidx.core.content.FileProvider"
 android:authorities="com.bignerdranch.android.criminalintent.fileprovider"
 android:exported="false"
 android:grantUriPermissions="true">
</provider>
...

The authority is a location – a place that files will be saved to. The string you choose for
android:authorities must be unique across the entire OS. To help ensure this, the convention
is to prepend the authority string with your package name. (We show the package name
com.bignerdranch.android.criminalintent above. If your app’s package name is different, use
your package name instead.)

Classes that extend the ContentProvider class are often used to share content between apps. But you
need to be careful about what you share. Your users place a lot of trust in you with their information.
You do not want to inadvertently expose their data to the entire world.

The FileProvider class helps you carefully and intentionally share data with other apps. It
requires a certain configuration so that you only expose content when you intend to. By using the
exported="false" attribute, you keep it from being publicly visible to random applications querying
the system.

When you do want to expose some content to the larger system, the grantUriPermissions attribute
gives you the ability to temporarily grant other apps permission to write to URIs on this authority when
you send them out in an intent.

Chapter 17 Taking Pictures with Intents

352

Now that you have told Android where your FileProvider is, you also need to tell your FileProvider
which files it is exposing. This bit of configuration is done with an XML resource file. Right-click your
app/res folder in the project tool window and select New → Android resource file. Enter files for the
name, and for Resource type select XML. Click OK, and Android Studio will add and open the new
resource file.

In the code view of your new res/xml/files.xml, replace the boilerplate code with details about the
file path (Listing 17.4).

Listing 17.4 Filling out the paths description (res/xml/files.xml)
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

</PreferenceScreen>
<paths>
 <files-path name="crime_photos" path="."/>
</paths>

This XML file says, “Map the root path of my private storage as crime_photos.” You will not use the
crime_photos name – FileProvider uses that internally.

Now, hook up files.xml to your FileProvider by adding a meta-data tag in your
AndroidManifest.xml.

Listing 17.5 Hooking up the paths description
(manifests/AndroidManifest.xml)
<provider
 android:name="androidx.core.content.FileProvider"
 android:authorities="com.bignerdranch.android.criminalintent.fileprovider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/files"/>
</provider>

Designating a picture location

353

Designating a picture location
Now you have a place to store photos on the device. Next, you need to add a place to store the photo’s
filename within a Crime. Start by adding a new property to Crime to store the photo’s filename.

Listing 17.6 Adding the filename property (Crime.kt)
@Entity
data class Crime(
 @PrimaryKey val id: UUID,
 val title: String,
 val date: Date,
 val isSolved: Boolean,
 val suspect: String = "",
 val photoFileName: String? = null
)

Next, since you have added a new property to your Crime class, create a migration for this new
property in the database and increment the version.

Listing 17.7 Migrating the database (CrimeDatabase.kt)
@Database(entities = [Crime::class], version = 2 version = 3)
@TypeConverters(CrimeTypeConverters::class)
abstract class CrimeDatabase : RoomDatabase() {
 abstract fun crimeDao(): CrimeDao
}

val migration_1_2 = object : Migration(1, 2) {
 ...
}

val migration_2_3 = object : Migration(2, 3) {
 override fun migrate(database: SupportSQLiteDatabase) {
 database.execSQL(
 "ALTER TABLE Crime ADD COLUMN photoFileName TEXT"
)
 }
}

Finally, include that migration when creating the database in CrimeRepository.

Listing 17.8 Including the migration (CrimeRepository.kt)
class CrimeRepository private constructor(
 context: Context,
 private val coroutineScope: CoroutineScope = GlobalScope
) {

 private val database: CrimeDatabase = Room
 .databaseBuilder(
 context.applicationContext,
 CrimeDatabase::class.java,
 DATABASE_NAME
)
 .addMigrations(migration_1_2, migration_2_3)
 .build()
}

Chapter 17 Taking Pictures with Intents

354

Using a Camera Intent
The basic process to take a photo is relatively straightforward: You launch an external camera app, the
user takes a photo, and then you update the crime with the path to the new file. To implement this, you
are once again going to rely on the Activity Results API.

This time you are going to use the ActivityResultContracts.TakePicture() contract. It takes in a
Uri, which will be generated by the FileProvider class using a File you will create. Once the user
is finished taking the photo, the contract does not return that same Uri. Instead, it returns a Boolean
telling you whether an image was saved to the file.

Create a class property on CrimeDetailFragment named takePhoto and initialize it using the Activity
Results API. Leave the lambda expression that is invoked once there is a result empty for now.

Listing 17.9 Setting up your activity result (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private val selectSuspect = registerForActivityResult(
 ActivityResultContracts.PickContact()
) { uri: Uri? ->
 uri?.let { parseContactSelection(it) }
 }

 private val takePhoto = registerForActivityResult(
 ActivityResultContracts.TakePicture()
) { didTakePhoto: Boolean ->
 // Handle the result
 }
}

To invoke the takePhoto launcher, you need to create a shareable Uri. Creating this variable takes a
few steps. First, you create a string that holds the filename where the photo will be stored. Because you
do not want to accidentally overwrite an existing file, the string will include a timestamp representing
when the photo was taken.

With that filename, you create a File that is stored within the app’s internal storage. Finally, you call
the FileProvider.getUriForFile(…) function, and that will translate your local file path into a Uri
the camera app can see. The function takes in your activity, provider authority, and photo file to create
the URI that points to the file. The authority string you pass to FileProvider.getUriForFile(…) must
match the authority string you defined in the manifest in Listing 17.3.

Using a Camera Intent

355

Create these variables and launch the takePhoto property with the new Uri inside the click listener for
the ImageButton.

Listing 17.10 Launching the camera app (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 ...
 crimeSuspect.isEnabled = canResolveIntent(selectSuspectIntent)

 crimeCamera.setOnClickListener {
 val photoName = "IMG_${Date()}.JPG"
 val photoFile = File(requireContext().applicationContext.filesDir,
 photoName)
 val photoUri = FileProvider.getUriForFile(
 requireContext(),
 "com.bignerdranch.android.criminalintent.fileprovider",
 photoFile
)

 takePhoto.launch(photoUri)
 }
 }
 }
 ...
}

Run the app and try to take a photo. You should be able to launch a camera app from your crime detail
screen. (The emulator has a photo app, so you can try it even if you are not connected to a device.) This
is progress! But you are not yet updating the crime or displaying the photo. Let’s update the crime first.

Chapter 17 Taking Pictures with Intents

356

In the lambda expression of the takePhoto property, update your crime for a successful picture
capture. You only want to update the crime when the photo is taken, so you will use the Boolean that is
passed into your lambda expression to check this.

The photoName string you defined when launching the camera app is the value you want to update your
crime with. Since you need access to it after taking the photo, make it a class property instead of just a
variable. Also, make it nullable, so that when the property is set you can be confident that the user took
a photo.

Listing 17.11 Handling the result (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private val takePhoto = registerForActivityResult(
 ActivityResultContracts.TakePicture()
) { didTakePhoto ->
 // Handle the result
 if (didTakePhoto && photoName != null) {
 crimeDetailViewModel.updateCrime { oldCrime ->
 oldCrime.copy(photoFileName = photoName)
 }
 }
 }

 private var photoName: String? = null

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 ...
 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 ...
 crimeCamera.setOnClickListener {
 val photoName = "IMG_${Date()}.JPG"
 val photoFile = File(requireContext().applicationContext.filesDir,
 photoName)
 ...
 }
 }
 }
}

Using a Camera Intent

There is one small piece of housekeeping you need to take care of before you can display that photo.
Just as you cannot be sure a device has a contacts app, you cannot guarantee a device has a camera
app. So, similar to what you did in Chapter 16, you need to disable the camera button if your implicit
intent cannot be resolved.

This time, you will generate an Intent based on the contract for the takePhoto property. Since you
are not going to launch an activity with this Intent, you can pass an empty Uri as the input. Reuse the
canResolveIntent() function to disable the camera button if there is no activity on the system that
can take a picture for you.

Listing 17.12 Disabling the camera button (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.apply {
 ...
 crimeCamera.setOnClickListener {
 ...
 }

 val captureImageIntent = takePhoto.contract.createIntent(
 requireContext(),
 Uri.parse("")
)
 crimeCamera.isEnabled = canResolveIntent(captureImageIntent)
 }
 }
}

You also need to add a query intent to the manifest to allow CriminalIntent to query for camera
applications.

Listing 17.13 Adding another query declaration (AndroidManifest.xml)
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.criminalintent">

 <application ...>
 ...
 </application>
 <queries>
 <intent>
 <action android:name="android.intent.action.PICK" />
 <data android:mimeType="vnd.android.cursor.dir/contact" />
 </intent>
 <intent>
 <action android:name="android.media.action.IMAGE_CAPTURE" />
 </intent>
 </queries>
</manifest>

357

Chapter 17 Taking Pictures with Intents

358

Run CriminalIntent and press the camera button to run your camera app (Figure 17.3). You can now
take a picture, but you still have some work to do to display it.

Figure 17.3 [Insert your camera app here]

Scaling and Displaying Bitmaps
You are successfully taking pictures, and your image will be saved to a file on the filesystem for you to
use.

Your next step is to take this file, load it, and show it to the user. To do this, you need to load it
into a reasonably sized Bitmap object. To get a Bitmap from a file, all you need to do is use the
BitmapFactory class:

 val bitmap = BitmapFactory.decodeFile(photoFile.getPath())

Scaling and Displaying Bitmaps

359

There has to be a catch, right? Otherwise we would have put that in bold, you would have typed it in,
and you would be done.

Here is the catch: When we say “reasonably sized,” we mean it. A Bitmap is a simple object that
stores literal pixel data. That means that even if the original file were compressed, there would be no
compression in the Bitmap. So a 16-megapixel, 24-bit camera image – which might only be a 5 MB
JPG – would blow up to 48 MB loaded into a Bitmap object (!).

You can get around this, but it does mean that you will need to scale the bitmap down by hand. You
will first scan the file to see how big it is, next figure out how much you need to scale it by to fit it in a
given area, and finally reread the file to create a scaled-down Bitmap object.

Create a new file called PictureUtils.kt and add a file-level function to it called
getScaledBitmap(String, Int, Int):

Listing 17.14 Creating getScaledBitmap(…) (PictureUtils.kt)
fun getScaledBitmap(path: String, destWidth: Int, destHeight: Int): Bitmap {
 // Read in the dimensions of the image on disk
 val options = BitmapFactory.Options()
 options.inJustDecodeBounds = true
 BitmapFactory.decodeFile(path, options)

 val srcWidth = options.outWidth.toFloat()
 val srcHeight = options.outHeight.toFloat()

 // Figure out how much to scale down by
 val sampleSize = if (srcHeight <= destHeight && srcWidth <= destWidth) {
 1
 } else {
 val heightScale = srcHeight / destHeight
 val widthScale = srcWidth / destWidth

 minOf(heightScale, widthScale).roundToInt()
 }

 // Read in and create final bitmap
 return BitmapFactory.decodeFile(path, BitmapFactory.Options().apply {
 inSampleSize = sampleSize
 })
}

The key parameter in this code is sampleSize. This determines how big the “sample” should be for
each pixel – a sample size of 1 has one final horizontal pixel for each horizontal pixel in the original
file, and a sample size of 2 has one horizontal pixel for every two horizontal pixels in the original file.
So when sampleSize is 2, the pixel count in the image is one-quarter of the pixel count in the original.

But when your fragment initially starts up, you will not know how big the PhotoView is. Until a layout
pass happens, views do not have dimensions onscreen. This used to be a difficult problem to solve, but
now, with the doOnLayout() extension function, you can easily wait for a View to be measured and laid
out so you can do delicate UI work using exact layout measurements.

Chapter 17 Taking Pictures with Intents

360

Add a function named updatePhoto() to CrimeDetailFragment that uses doOnLayout() to display
your image at a reasonable resolution.

Listing 17.15 Updating crimePhoto (CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun canResolveIntent(intent: Intent): Boolean {
 ...
 }

 private fun updatePhoto(photoFileName: String?) {
 if (binding.crimePhoto.tag != photoFileName) {
 val photoFile = photoFileName?.let {
 File(requireContext().applicationContext.filesDir, it)
 }

 if (photoFile?.exists() == true) {
 binding.crimePhoto.doOnLayout { measuredView ->
 val scaledBitmap = getScaledBitmap(
 photoFile.path,
 measuredView.width,
 measuredView.height
)
 binding.crimePhoto.setImageBitmap(scaledBitmap)
 binding.crimePhoto.tag = photoFileName
 }
 } else {
 binding.crimePhoto.setImageBitmap(null)
 binding.crimePhoto.tag = null
 }
 }
 }
}

This updatePhoto() function will be invoked every time you get a new emission from the crime
StateFlow from your CrimeDetailViewModel. But you do not want to read the photo from disk
every time the user adds a character into the crime’s title! That would be wildly inefficient and would
probably lead to a stuttering UI.

To update the ImageView only when necessary, you set the tag property on the view. The tag property
allows you to store simple information on a particular view. Here, you set the filename of the photo.
If the tag property and the crime’s photo filename match, then you know the ImageView is already
displaying the correct photo.

Call the new updatePhoto() function when you have access to the latest value from the crime
StateFlow. That way your ImageView will always display the latest photo from the crime scene.

Scaling and Displaying Bitmaps

361

Listing 17.16 Updating the Crime with the latest photo
(CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun updateUi(crime: Crime) {
 binding.apply {
 ...
 crimeSuspect.text = crime.suspect.ifEmpty {
 getString(R.string.crime_suspect_text)
 }

 updatePhoto(crime.photoFileName)
 }
 }
 ...
}

Run CriminalIntent again. Open a crime’s detail screen and use the camera button to take a photo. You
should see your image displayed in the thumbnail view (Figure 17.4).

Figure 17.4 Thumbnail proudly appearing on the crime detail screen

Chapter 17 Taking Pictures with Intents

362

Declaring Features
Your camera implementation works great now. One more task remains: Tell potential users about it.
When your app uses a feature like the camera – or near-field communication, or any other feature
that may vary from device to device – it is strongly recommended that you tell Android about it. This
allows other apps (like the Play Store) to refuse to install your app if it uses a feature the device does
not support.

To declare that you use the camera, add a <uses-feature> tag to your manifest.

Listing 17.17 Adding a <uses-feature> tag
(manifests/AndroidManifest.xml)
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.criminalintent" >

 <uses-feature android:name="android.hardware.camera"
 android:required="false"/>
 ...
</manifest>

You include the optional attribute android:required here. Why? By default, declaring that you use
a feature means that your app will not work correctly without that feature. This is not the case for
CriminalIntent. You call resolveActivity(…) to check for a working camera app, then gracefully
disable the camera button if you do not find one.

Passing in android:required="false" handles this situation correctly. You tell Android that your app
can work fine without the camera, but that some parts will be disabled as a result.

Challenge: Detail Display
While you can certainly see the image you display here, you cannot see it very well.

For this challenge, create a new DialogFragment that displays a zoomed-in version of your crime
scene photo. When you press the thumbnail, it should pull up the zoomed-in DialogFragment.

363

18
Localization

Knowing that CriminalIntent is going to be a wildly popular app, you have decided to make it
accessible to a larger audience. Your first step is to localize all the user-facing text so your app can be
read in Spanish or English.

Localization is the process of providing the appropriate resources for your app based on the user’s
language setting. In this chapter, you will provide a Spanish version of res/values/strings.xml.
When a device’s language is set to Spanish, Android will automatically find and use the Spanish
strings at runtime (Figure 18.1).

Figure 18.1 IntentoCriminal

Chapter 18 Localization

364

Localizing Resources
Language settings are part of the device’s configuration, like the screen orientation configuration
you have encountered. Android provides qualifiers for different languages just as it does for screen
orientation, screen size, and other configuration factors. This makes localization straightforward: You
create resource subdirectories with the desired language configuration qualifier and put the alternative
resources in them. The Android resource system does the rest.

In your CriminalIntent project, create a new values resource file: In the project tool window, right-click
res/values/ and select New → Values resource file. Enter strings for the File name. Leave the Source
set option set to main and make sure Directory name is set to values.

Next, select Locale in the Available qualifiers list and click the >> button to move Locale to the Chosen
qualifiers section. Select es: Spanish in the Language list. Any Region will be automatically selected in
the Specific Region Only list – which is just what you want, so leave that selection be.

The resulting New Resource File window should look similar to Figure 18.2.

Figure 18.2 Adding a qualified strings resource file

Android Studio automatically changes the Directory name field to values-es. The language
configuration qualifiers are taken from ISO 639-1 codes, and each consists of two characters. For
Spanish, the qualifier is -es.

Localizing Resources

365

Click OK. The new strings.xml file will be listed under res/values, with (es) after its name. The
strings files are grouped in the project tool window’s Android view (Figure 18.3).

Figure 18.3 Viewing new strings.xml in Android view

However, if you explore the directory structure, you will see that your project now contains an
additional values directory: res/values-es. The newly generated strings.xml is in this new directory
(Figure 18.4).

Figure 18.4 Viewing new strings.xml in Project view

Chapter 18 Localization

366

Now it is time to make the magic happen. Add Spanish versions of all your strings to res/values-es/
strings.xml. (If you do not want to type these strings in, copy the contents from the solutions file at
www.bignerdranch.com/android-5e-solutions.)

Listing 18.1 Adding Spanish alternatives for string resources
(res/values-es/strings.xml)
<resources>
 <string name="app_name">IntentoCriminal</string>
 <string name="crime_title_hint">Introduzca un título para el crimen.</string>
 <string name="crime_title_label">Título</string>
 <string name="crime_details_label">Detalles</string>
 <string name="crime_solved_label">Solucionado</string>
 <string name="new_crime">Crimen Nuevo</string>
 <string name="crime_suspect_text">Elegir Sospechoso</string>
 <string name="crime_report_text">Enviar el Informe del Crimen</string>
 <string name="crime_report">%1$s!
 El crimen fue descubierto el %2$s. %3$s, y %4$s
 </string>
 <string name="crime_report_solved">El caso está resuelto</string>
 <string name="crime_report_unsolved">El caso no está resuelto</string>
 <string name="crime_report_no_suspect">no hay sospechoso.</string>
 <string name="crime_report_suspect">el/la sospechoso/a es %s.</string>
 <string name="crime_report_subject">IntentoCriminal Informe del Crimen</string>
 <string name="send_report">Enviar el informe del crimen a través de</string>
</resources>

That is all you have to do to provide localized string resources for your app. To confirm, change your
device’s settings to Spanish by opening Settings and finding the language settings. Depending on your
version of Android, these settings will be labeled Language and input, Language and Keyboard, or
something similar. On the Pixel 4 emulator, the Languages & input settings are within the System
section.

When you get to a list of language options, choose a setting for Español. The region (España or
Estados Unidos) will not matter, because the qualification -es matches both. (On newer versions of
Android, users can select multiple languages and assign a priority order. If you are on a newer device,
make sure Español appears first in your language settings list.)

Now run CriminalIntent and bask in the glory of your newly localized app. When you are done
basking, return your device’s language setting to English. Look for Ajustes or Configuración (Settings)
in the launcher and find the setting that includes Idioma (Language).

https://www.bignerdranch.com/android-5e-solutions

Default resources

367

Default resources
The configuration qualifier for English is -en. In a fit of localization, you might think to rename your
existing values directory to values-en. This is not a good idea, but pretend for a moment you did just
that: Your hypothetical update means your app now has an English strings.xml in values-en and a
Spanish strings.xml in values-es.

As you might expect, the app would run just fine on devices with the language set to Spanish or
English. But what happens if the user’s device language is set to Italian? Bad things. Very bad things.
If the app is allowed to run, Android will not find string resources that match the current configuration.
This will cause your app to crash with a Resources.NotFoundException.

Android Studio takes steps to save you from this fate. The Android Asset Packaging Tool (AAPT) does
many checks while packaging up your resources. If AAPT finds that you are using resources that are
not included in the default resource files, it will throw an error at compile time:

 Android resource linking failed

 warn: removing resource
 com.bignerdranch.android.criminalintent:string/crime_title_label
 without required default value.

 AAPT: error: resource string/crime_title_label
 (aka com.bignerdranch.android.criminalintent:string/crime_title_label)
 not found.

 error: failed linking file resources.

The moral of the story is this: Provide a default resource for each of your resources. Resources in
unqualified resource directories are your default resources. Default resources will be used if no match
for the current device configuration is found. Your app will misbehave if Android looks for a resource
and cannot find either one that matches the device configuration or a default.

Chapter 18 Localization

368

Checking string coverage using the Translations Editor
As the number of languages you support grows, making sure you provide a version of each string for
each language becomes more difficult. Luckily, Android Studio provides a handy Translations Editor
to see all your translations in one place. Before starting, create some “missing” strings by opening your
default strings.xml and commenting out crime_title_label and crime_details_label (Listing
18.2).

Listing 18.2 Commenting out strings (res/values/strings.xml)
<resources>
 <string name="app_name">CriminalIntent</string>
 <string name="crime_title_hint">Enter a title for the crime.</string>
 <!--<string name="crime_title_label">Title</string>-->
 <!--<string name="crime_details_label">Details</string>-->
 <string name="crime_solved_label">Solved</string>
 ...
</resources>

To launch the Translations Editor, right-click one of the strings.xml files in the project tool window
and select Open Translations Editor. The Translations Editor displays all the app’s strings and the
translation status for each of the languages for which your app provides any qualified string values.
Since crime_title_label and crime_details_label are commented out, you will see those field
names in red (Figure 18.5).

Figure 18.5 Using the Translations Editor to check your string coverage

This provides an easy way to identify resources that are missing from any locale configuration and add
them to the related strings file.

Although you can add strings right in the Translations Editor, in your case you only need to
uncomment crime_title_label and crime_details_label. Do that before moving on.

Targeting a region

369

Targeting a region
You can qualify a resource directory with a language-plus-region qualifier that targets resources even
more specifically. For instance, the qualifier for Spanish spoken in Spain is -es-rES, where the r
denotes a region qualifier and ES is the ISO 3166-1-alpha-2 code for Spain. The qualifier for Spanish
spoken in Mexico is -es-rMX. (Configuration qualifiers are not case sensitive, but it is good to follow
Android’s convention here: Use a lowercase language code and an uppercase region code prefixed with
a lowercase r.)

Note that a language-region qualifier, such as -es-rES, may look like two distinct configuration
qualifiers that have been combined, but it is just one. The region is not a valid qualifier on its own.

A resource qualified with both a locale and region has two opportunities for matching a user’s locale.
An exact match occurs when both the language and region qualifiers match the user’s locale. If no
exact match is found, the system will strip off the region qualifier and look for an exact match for the
language only.

Which brings us to an important point: Always provide strings in as general a context as possible,
using language-only qualified directories as much as possible and region-qualified directories only
when necessary. For example, if the differences between European and North or South American
Spanish are an issue, it is better to store most of the Spanish strings in a language-only qualified
values-es directory and provide region-qualified strings only for words and phrases that are different
in the different regional dialects.

(For more about supporting languages and regions, check out developer.android.com/guide/
topics/resources/multilingual-support.)

In fact, this advice goes for all types of alternative resources in the values directories: Provide shared
resources in more general directories and only include those resources that need to be tailored in more
specifically qualified directories.

https://developer.android.com/guide/topics/resources/multilingual-support
https://developer.android.com/guide/topics/resources/multilingual-support

Chapter 18 Localization

370

Configuration Qualifiers
In the section called For the More Curious: Creating a Landscape Layout in Chapter 3, you saw the
configuration qualifier layout-land, for landscape screen orientation. The device configurations for
which Android provides configuration qualifiers to target resources are:

1. mobile country code (MCC), optionally followed by mobile network code (MNC)
2. language code, optionally followed by region code
3. layout direction
4. smallest width
5. available width
6. available height
7. screen size
8. screen aspect
9. round screen
10. wide color gamut
11. high dynamic range
12. screen orientation
13. UI mode
14. night mode
15. screen density (dpi)
16. touchscreen type
17. keyboard availability
18. primary text input method
19. navigation key availability
20. primary non-touch navigation method
21. API level

You can find descriptions of these characteristics and examples of specific configuration
qualifiers at developer.android.com/guide/topics/resources/providing-
resources.html#AlternativeResources.

Not all qualifiers are supported by earlier versions of Android. Luckily, the system implicitly adds
a platform version qualifier to qualifiers that were introduced after Android 1.0. For example, if
you use the highhdr qualifier, Android will automatically include the v26 qualifier, because high
dynamic range screen qualifiers were added in API level 26. This means you do not have to worry
about problems on older devices when you introduce resources qualified for newer devices.

https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Prioritizing alternative resources

371

Prioritizing alternative resources
Given the many types of configuration qualifiers for targeting resources, there may be times when the
device configuration will match more than one alternative resource. When this happens, qualifiers are
given precedence in the order shown in the list above.

To see this prioritizing in action, add another alternative resource to CriminalIntent – a longer English
version of the crime_title_hint string resource – to be displayed when the current configuration’s
width is at least 600dp. The crime_title_hint resource is displayed in the crime title text box before
the user enters any text. When CriminalIntent is running on a screen that is at least 600dp (such as on a
tablet, or perhaps in landscape mode on a smaller device), this change will display a more descriptive,
engaging hint for the title field.

Create a new values resource file called strings. Follow the steps from the section called Localizing
Resources earlier in this chapter to create the resource file, but select Screen Width in the Available
qualifiers list and click the >> button to move Screen Width to the Chosen qualifiers section. In the
Screen width box that appears, enter 600.

The directory name will automatically be set to values-w600dp; -w600dp will match any device with
a current screen width of 600dp or more, meaning a device could match when in landscape mode but
not in portrait mode. (To learn more about screen size qualifiers, read the section called For the More
Curious: More on Determining Device Size near the end of this chapter.)

Your dialog should look like Figure 18.6.

Figure 18.6 Adding strings for a wider screen

Chapter 18 Localization

372

Now, add a longer value for crime_title_hint to res/values-w600dp/strings.xml.

Listing 18.3 Creating an alternative string resource for a wider screen
(res/values-w600dp/strings.xml)
<resources>
 <string name="crime_title_hint">
 Enter a meaningful, memorable title for the crime.
 </string>
</resources>

The only string resource you want to be different on wider screens is crime_title_hint, so that is
the only string you specify in values-w600dp. As we said earlier, you should provide alternatives for
only those resources that will be different based on some configuration qualification. You do not need
to duplicate strings when they are the same. More than that, you should not: Those duplicated strings
would only end up being a maintenance hassle down the road.

Now you have three versions of crime_title_hint: a default version in res/values/strings.xml,
a Spanish alternative in res/values-es/strings.xml, and a wide-screen alternative in res/values-
w600dp/strings.xml.

With your device’s language set to Spanish, run CriminalIntent, press the + button to open a blank
crime detail screen, and rotate to landscape (Figure 18.7). The Spanish language alternative has
precedence, so you see the string from res/values-es/strings.xml instead of res/values-w600dp/
strings.xml.

Figure 18.7 Android prioritizes language over available screen width

Change your settings back to English and check the app again to confirm that the alternative wide-
screen string appears as expected.

Multiple qualifiers

373

Multiple qualifiers
You may have noticed that the New Resource File dialog has many available qualifiers. You can put
more than one qualifier on a resource directory. When using multiple qualifiers on directories, you
must put them in the order of their precedence. Thus, values-es-w600dp is a valid directory name,
but values-w600dp-es is not. (When you use the New Resource File dialog, it correctly configures the
directory name for you.)

Create a directory for a wide-screen Spanish string by selecting both Locale and Screen Width in the
New Resource File dialog. It should be named values-es-w600dp and have a file named strings.xml.
Add a string resource for crime_title_hint to values-es-w600dp/strings.xml:

Listing 18.4 Creating a wide-screen Spanish string resource
(res/values-es-w600dp/strings.xml)
<resources>
 <string name="crime_title_hint">
 Introduzca un título significativo y memorable para el crimen.
 </string>
</resources>

Now, with your language set to Spanish, run CriminalIntent to confirm that your new alternative
resource appears on cue (Figure 18.8).

Figure 18.8 Spanish wide-screen string resource

Chapter 18 Localization

374

Finding the best-matching resources
Let’s walk through how Android determined which version of crime_title_hint to display in this
run. First, consider the four alternatives for the string resource named crime_title_hint and an
example landscape device configuration for a Pixel 4 set to Spanish language and with an available
screen width greater than 600dp:

Device configuration App values for crime_title_hint

• Language: es (Spanish) • values

• Available height: 393dp • values-es

• Available width: 830dp • values-es-w600dp

• (etc.) • values-w600dp

The first step that Android takes to find the best resource is to rule out any resource directory that is
incompatible with the current configuration.

None of the four choices is incompatible with the current configuration. (If you rotated the device to
portrait, the available width would become 393dp, and the resource directories values-w600dp/ and
values-es-w600dp/ would be incompatible and thus ruled out.)

After the incompatible resource directories have been ruled out, Android starts working through the
precedence list shown in the section called Configuration Qualifiers earlier in this chapter, starting
with the highest priority qualifier: MCC. If there is a resource directory with an MCC qualifier, then all
resource directories that do not have an MCC qualifier are ruled out.

If there is still more than one matching directory, then Android considers the next-highest precedence
qualifier and continues until only one directory remains.

In our example, no directories contain an MCC qualifier, so no directories are ruled out, and Android
moves down the list to the language qualifier. Two directories (values-es and values-es-w600dp)
contain the matching language qualifier -es. The values and values-w600dp directories do not contain
a language qualifier and thus are ruled out.

(However, as you read earlier in this chapter, the unqualified values directory serves as the default
resource, or fallback. So while it is ruled out for now due to lack of a language qualifier, values could
still end up being the best match if the other values directories have a mismatch in one or more of the
lower-order qualifiers.)

Device configuration App values for crime_title_hint

• Language: es (Spanish) • values (not language specific)

• Available height: 393dp • values-es

• Available width: 830dp • values-es-w600dp

• (etc.) • values-w600dp (not language specific)

Testing Alternative Resources

375

Because there are multiple values still in the running, Android keeps stepping down the qualifier
list. When it reaches available width, it finds one directory with an available width qualifier and one
without. It rules out values-es, leaving only values-es-w600dp:

Device configuration App values for crime_title_hint

• Language: es (Spanish) • values (not language or width specific)

• Available height: 393dp • values-es (not width specific)

• Available width: 830dp • values-es-w600dp (best match)

• (etc.) • values-w600dp (not language specific)

Thus, Android uses the resource in values-es-w600dp.

Testing Alternative Resources
It is important to test your app on different device configurations to see how your layouts and other
resources look on those configurations. You can test on both real and virtual devices. You can also use
the layout editor.

The layout editor has many options for previewing how a layout will appear in different configurations.
You can preview the layout on different screen sizes, device types, API levels, languages, and more.

To see these options, open res/layout/fragment_crime_detail.xml in the layout editor. Then try
some of the settings in the toolbar shown in Figure 18.9.

Figure 18.9 Using the layout editor to preview various device configurations

The layout editor lets you try different device orientations and device locales based on the
configurations you have provided. To see your default resources in action, set a device or emulator to a
language that you have not localized any resources for. Run your app and put it through its paces. Visit
all the views and rotate them.

Before continuing to the next chapter, you will probably want to set your device’s language back to
English.

Congratulations! Now your CriminalIntent app can be enjoyed fully in both Spanish and English.
Crimes will be logged. Los casos se resolverán. And all in the comfort of your user’s native language
(so long as that is either Spanish or English). And adding support for more languages is simply a
matter of including additional qualified strings files.

Chapter 18 Localization

376

For the More Curious: More on Determining Device
Size
Android provides three qualifiers that allow you to test for the dimensions of the device. Table 18.1
shows these new qualifiers.

Table 18.1 Discrete screen dimension qualifiers
Qualifier
format

Description

wXXXdp available width: width greater than or equal to XXX dp

hXXXdp available height: height greater than or equal to XXX dp

swXXXdp smallest width: width or height (whichever is smaller) greater than or equal to XXX dp

Let’s say that you wanted to specify a layout that would only be used if the display were at least 300dp
wide. In that case, you could use an available width qualifier and put your layout file in res/layout-
w300dp (the “w” is for “width”). You can do the same thing for height by using an “h” (for “height”).

However, the height and width may swap depending on the orientation of the device. To detect a
particular size of screen, you can use sw, which stands for smallest width. This specifies the smallest
dimension of your screen. Depending on the device’s orientation, this can be either width or height. If
the screen is 1024x800, then sw is 800. If the screen is 800x1024, sw is still 800.

Challenge: Localizing Dates
You may have noticed that, regardless of the device’s locale, the dates displayed in CriminalIntent are
always formatted in the default US style, with the month before the day. Take your localization a step
further by formatting the dates according to the locale configuration. It is easier than you might think.

Check out the developer documentation on the DateFormat class, which is provided as part of the
Android framework. DateFormat provides a date-time formatter that will take into consideration
the current locale. You can control the output further by using configuration constants built into
DateFormat.

377

19
Accessibility

In this chapter, you will finish your work on CriminalIntent by making it more accessible. An
accessible app is usable by anyone, regardless of any impairments in vision, mobility, or hearing. These
impairments may be permanent, but they could also be temporary or situational: Dilated eyes after
an eye exam might make focusing difficult. Greasy hands while cooking may mean you do not want
to touch the screen. And if you are at a loud concert, the music drowns out any sounds made by your
device. The more accessible an app is, the more pleasant it is to use for everyone.

Making an app fully accessible is a tall order. But that is no excuse not to try. In this chapter you will
take some steps toward making CriminalIntent more usable for people with a visual impairment. This
is a good place to begin learning about accessibility issues and accessible app design.

For this chapter, we recommend that you work through the exercise with a physical device instead of
the emulator. It is possible to work through this chapter with an emulator, but some of the user input
required is awkward and difficult to execute on an emulator. It is much easier on a physical device.
If you do not have access to a physical device, please read through the section called For the More
Curious: Using TalkBack with an Emulator in this chapter before starting the exercise.

The changes you make in this chapter will not alter the appearance of the app. Instead, the changes will
make your app easier to explore with TalkBack.

Chapter 19 Accessibility

378

TalkBack
TalkBack is an Android screen reader made by Google. It speaks out the contents of a screen based on
what the user is doing.

TalkBack works because it is an accessibility service, which is a special component that can read
information from the screen (no matter which app you are using). Anyone can write their own
accessibility service, but TalkBack is the most popular.

To use TalkBack, install the Android Accessibility Suite through the Google Play Store on your device
(Figure 19.1).

Figure 19.1 Android Accessibility Suite

TalkBack

379

Next, make sure the device’s sound output is not muted – but you may want to grab headphones,
because once TalkBack is enabled the device will do a lot of “talking.”

To enable TalkBack, launch Settings and press Accessibility. Press TalkBack under the Screen readers
heading. Then press the Use TalkBack (or Use service) switch to turn TalkBack on (Figure 19.2).

Figure 19.2 TalkBack settings screen

Chapter 19 Accessibility

380

If this is your first time using TalkBack on the device, you will be presented with a tutorial. Go through
the tutorial to learn the basic ways to navigate the system. Once the tutorial is done, TalkBack may
request additional permissions. Press Allow.

Figure 19.3 Walking through the TalkBack tutorial

TalkBack

381

You will notice something different right away. A green outline appears around the Up button
(Figure 19.4) and the device speaks: “Navigate Up button. Double-tap to activate.”

Figure 19.4 TalkBack enabled

(Although “press” is the usual terminology for Android devices, TalkBack uses “tap.” Also, TalkBack
uses double-taps, which are not commonly used in Android.)

The green outline indicates which UI element has accessibility focus. Only one UI element can have
accessibility focus at a time. When a UI element receives focus, TalkBack will provide information
about that element.

When TalkBack is enabled, a single press (or “tap”) gives an element accessibility focus. Double-
tapping anywhere on the screen activates the element that has focus. So double-tapping anywhere
when the Up button has focus navigates up, double-tapping when a checkbox has focus toggles its
check state, and so on. (Also, if your device locks, you can unlock it by pressing the lock icon and then
double-tapping anywhere on the screen.)

Chapter 19 Accessibility

382

Explore by Touch
By turning TalkBack on, you have also enabled TalkBack’s Explore by Touch mode. This means the
device will speak information about an item immediately after it is pressed. (This assumes that the item
pressed specifies information TalkBack can read, which you will learn more about shortly.)

Leave the Up button selected with accessibility focus. Double-tap anywhere on the screen. The device
returns you to the Accessibility menu, and TalkBack announces information about what is showing and
what has accessibility focus: “Accessibility. Navigate Up button. Double-tap to activate.”

Android framework views, such as Toolbar, RecyclerView, and Button, have basic TalkBack support
built in. You should use framework views as much as possible so you can leverage the accessibility
work that has already been done for them. It is possible to properly respond to accessibility events for
custom views, but that is beyond the scope of this book.

(In Chapter 26 through Chapter 29, you will learn about a new way to build layouts on Android called
Jetpack Compose. Compose’s built-in UI elements also support TalkBack and behave very similarly to
what you will see in this chapter.)

Linear navigation by swiping
Imagine what it would be like to explore an app by touch for the first time. You would not know
where things are located. What if the only way to learn what was on the screen was to press all around
until you landed on an element that TalkBack could read? You might end up pressing the same thing
multiple times – worse, you might miss elements altogether.

Luckily, there is a way to explore the UI linearly, and in fact this is the more common way to use
TalkBack: Swiping right moves accessibility focus to the next item on the screen. Swiping left moves
accessibility focus to the previous item on the screen. This allows the user to walk through each item
on the screen in a linear fashion, rather than trial-and-error poking around in hopes of landing on
something meaningful.

Navigate around the Accessibility settings page using the swiping gestures. (If you are using the
emulator, you can mimic this behavior with the keyboard’s arrow keys.)

Navigating between apps and screens with the swipe system navigation behaves differently when
TalkBack is enabled. When TalkBack is not enabled, you navigate to the Home screen by swiping with
one finger from the bottom of the device. With TalkBack enabled, you navigate using the same gesture,
but with two fingers. Likewise for Back navigation, you need a two finger swipe from the left or right
edge of the device when TalkBack is enabled. Without TalkBack, you use a single finger. You also use
two fingers to scroll when TalkBack is enabled.

Linear navigation by swiping

383

Now, try out TalkBack in CriminalIntent. Compile and launch the app. When you open it, accessibility
focus will be given to the + action item in the app bar by default. (If it is not, press the + to
give it accessibility focus.) The device reads out, “CriminalIntent. New Crime. Double-tap to
activate” (Figure 19.5).

Figure 19.5 New Crime action item selected

For framework views, such as menu items and buttons, TalkBack will read the visible text content
displayed on the view by default. But the New Crime menu item is just an icon and does not have any
visible text. In this case, TalkBack looks for other information in the view. You specified a title in
your menu XML, and that is what TalkBack reads to the user. TalkBack will also provide details about
actions the user can take on the view and sometimes information about what kind of view it is.

Chapter 19 Accessibility

384

Now swipe left. Accessibility focus moves to the CriminalIntent title in the app bar. TalkBack
announces, “CriminalIntent” (Figure 19.6).

Figure 19.6 App bar title selected

Swipe right, and TalkBack reads information about the + (New Crime) menu button again. Swipe right
a second time; accessibility focus moves to the first crime in the list. Swipe left, and focus moves back
to the + menu button. Android does its best to move accessibility focus in an order that makes sense.

Making Non-Text Elements Readable by TalkBack

385

Making Non-Text Elements Readable by TalkBack
With the New Crime button selected, double-tap anywhere on the screen to launch the crime details
screen.

Adding content descriptions
On the crime details screen, press the image capture button to give it accessibility focus (Figure 19.7).
TalkBack announces, “Unlabeled button. Double-tap to activate.” (You may get slightly different
results depending on the version of Android you are using.)

Figure 19.7 Image capture button selected

The camera button does not display any text, so TalkBack describes the button as well as it can. While
this is TalkBack’s best effort, the information is not very helpful to a user with a vision impairment.

Chapter 19 Accessibility

386

This problem is very easy to fix. You can specify details for TalkBack to read by adding a content
description to the ImageButton. A content description is a piece of text that describes the view and is
read by TalkBack. (While you are at it, you are going to add a content description for the ImageView
that displays the selected picture, too.)

You can set a view’s content description in the XML layout file by setting a value for the attribute
android:contentDescription. That is what you are going to do next. You can also set it in your UI
setup code, using someView.contentDescription = someString, which you will do later in this
chapter.

The text you set should be meaningful without being overly wordy. Remember, TalkBack users will be
listening to the audio, which can be slow. They can speed up the pace of TalkBack’s speech output, but
even so you want to avoid adding extraneous information and wasting users’ time. For example, if you
are setting the description for a framework view, avoid including information about what kind of view
it is (like “a button”), because TalkBack already knows and includes that information.

First, some housekeeping. Add the content description strings to the unqualified res/values/
strings.xml.

Listing 19.1 Adding content description strings (res/values/strings.xml)
<resources>
 ...
 <string name="crime_details_label">Details</string>
 <string name="crime_solved_label">Solved</string>
 <string name="crime_photo_button_description">Take photo of crime scene</string>
 <string name="crime_photo_no_image_description">
 Crime scene photo (not set)
 </string>
 <string name="crime_photo_image_description">Crime scene photo (set)</string>
 ...
</resources>

Adding content descriptions

387

Android Studio will underline the newly added strings in red, warning you that you have not defined
the Spanish version of these new strings. To fix this, add the content description strings to res/values-
es/strings.xml.

Listing 19.2 Adding Spanish content description strings
(res/values-es/strings.xml)
<resources>
 ...
 <string name="crime_details_label">Detalles</string>
 <string name="crime_solved_label">Solucionado</string>
 <string name="crime_photo_button_description">
 Tomar foto de la escena del crimen
 </string>
 <string name="crime_photo_no_image_description">
 Foto de la escena del crimen (no establecida)
 </string>
 <string name="crime_photo_image_description">
 Foto de la escena del crimen (establecida)
 </string>
 ...
</resources>

Next, open res/layout/fragment_crime_detail.xml and set the content description for the
ImageButton.

Listing 19.3 Setting the content description for ImageButton
(res/layout/fragment_crime_detail.xml)
...
<ImageButton
 android:id="@+id/crime_camera"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_camera"
 android:contentDescription="@string/crime_photo_button_description"/>
...

Run CriminalIntent again and press the camera button. TalkBack helpfully announces, “Take photo
of crime scene button. Double-tap to activate.” This spoken information is much more helpful than
“unlabeled button.”

Next, press the crime scene image (which at the moment is just the black placeholder). You might
expect the accessibility focus to move to the ImageView, but the green border does not appear.
TalkBack remains silent rather than announcing information about the ImageView. What gives?

Chapter 19 Accessibility

388

Making a view focusable
The problem is that the ImageView is not registered to receive focus. Some views, such as Buttons,
are focusable by default. Other views, such ImageViews, are not. You can make a view focusable by
setting its android:focusable attribute to true or by adding a click listener. You can also make a view
focusable by adding an android:contentDescription.

Make the crime photo’s ImageView focusable by giving it a content description.

Listing 19.4 Making the photo ImageView focusable with a content description
(res/layout/fragment_crime_detail.xml)
...
<ImageView
 android:id="@+id/crime_photo"
 ...
 android:background="@color/black"
 android:contentDescription="@string/crime_photo_no_image_description" />
...

Run CriminalIntent again and press the crime photo. The ImageView now accepts focus, and TalkBack
announces, “Crime scene photo (not set)” (Figure 19.8).

Figure 19.8 Focusable ImageView

Creating a Comparable Experience

389

Creating a Comparable Experience
You should specify a content description for any UI view that provides information to the
user but does not use text to do it (such as an image). If there is a view that does not provide
any value other than decoration, you should explicitly tell TalkBack to ignore it by setting the
android:importantForAccessibility attribute to no.

You might think, “If a user cannot see, why do they need to know whether there is an image?” But you
should not make assumptions about your users. More importantly, you should make sure a user with
a visual impairment gets the same amount of information and functionality as a user without one. The
overall experience and flow may be different, but all users should be able to get the same functionality
from the app.

Good accessibility design is not about reading out every single thing on the screen. Instead, it focuses
on comparable experiences. Which pieces of information and context are important?

Right now, the user experience related to the crime photo is limited. TalkBack will always announce
that the image is not set, even if an image is indeed set. To see this for yourself, press the camera
button and then double-tap anywhere on the screen to activate it. The camera app launches, and
TalkBack announces, “Camera.” Capture a photo by pressing the shutter button and then double-
tapping anywhere on the screen.

Accept the photo. (The steps will be different depending on which camera app you are using, but
remember that you will need to press to select a button and then double-tap anywhere to activate it.)
The crime details screen will appear with the updated photo. Press the photo to give it accessibility
focus. TalkBack announces, “Crime scene photo (not set).”

Chapter 19 Accessibility

390

To provide more relevant information to TalkBack users, dynamically set the content description of the
ImageView in updatePhoto().

Listing 19.5 Dynamically setting the content description
(CrimeDetailFragment.kt)
class CrimeDetailFragment : Fragment() {
 ...
 private fun updatePhoto(photoFileName: String?) {
 if (binding.crimePhoto.tag != photoFileName) {
 val photoFile = photoFileName?.let {
 File(requireContext().applicationContext.filesDir, it)
 }

 if (photoFile?.exists() == true) {
 binding.crimePhoto.doOnLayout { measuredView ->
 val scaledBitmap = getScaledBitmap(
 photoFile.path,
 measuredView.width,
 measuredView.height
)
 binding.crimePhoto.setImageBitmap(scaledBitmap)
 binding.crimePhoto.tag = photoFileName
 binding.crimePhoto.contentDescription =
 getString(R.string.crime_photo_image_description)
 }
 } else {
 binding.crimePhoto.setImageBitmap(null)
 binding.crimePhoto.tag = null
 binding.crimePhoto.contentDescription =
 getString(R.string.crime_photo_no_image_description)
 }
 }
 }
}

Now, whenever the photo view is updated, updatePhoto() will update the content description. If the
photo does not exist, it will set the content description to indicate that there is no photo. Otherwise, it
will set the content description to indicate that a photo is present.

Creating a Comparable Experience

391

Run CriminalIntent. View the crime detail screen for the crime you just added a photo to. Press the
photo of the crime scene (Figure 19.9). TalkBack proudly announces, “Crime scene photo (set).”

Figure 19.9 Focusable ImageView with a dynamic description

Congratulations on making your app more accessible. One of the most common reasons developers
cite for not making their apps more accessible is lack of awareness about the topic. You are now
aware and can see how easy it is to make your apps more usable to TalkBack users. And, as a bonus,
improving your app’s TalkBack support means it will also be more likely to support other accessibility
services, such as BrailleBack.

Designing and implementing an accessible app may seem overwhelming. People make entire careers
out of being accessibility engineers. But rather than forgoing accessibility altogether because you fear
you will not do it right, start with the basics: Make sure every meaningful piece of content is reachable
and readable by TalkBack. Make sure TalkBack users get enough context to understand what is going
on in your app – without having to listen to extraneous information that wastes their time. And, most
importantly, listen to your users and learn from them.

With that, you have reached the end of your time with CriminalIntent. In 11 chapters, you have created
a complex application that uses fragments, talks to other apps, takes pictures, stores data, and even
speaks Spanish. Why not celebrate with a piece of cake?

Just be sure to clean up after yourself. You never know who might be watching.

Chapter 19 Accessibility

392

For the More Curious: Using TalkBack with an
Emulator
If you do not have access to a physical Android device, it is possible to work through this chapter on an
emulator. TalkBack is not intended to work in conjunction with keyboard and mouse input from your
computer, but the emulator does provide some workarounds to help you get by.

First, you will need an emulator image that has the Play Store installed, so that you can download the
Android Accessibility Suite. Not all emulators include the Play Store in the device image, so look for
the Play Store icon when creating your emulator. (Back in Chapter 1, you created a Pixel 4 emulator,
which does have the Play Store.) You will need to log in to a Google account to use the Play Store.

To scroll on an emulator, hold down the Control button on the keyboard, click one of the two
semitransparent circles that appear, and drag up or down with your mouse or trackpad (Figure 19.10).
This gesture can also be used on the emulator to perform a “pinch” gesture.

Figure 19.10 Scrolling on the emulator

For the More Curious: Using TalkBack with an Emulator

393

Navigating between apps and screens with the swipe system navigation is different when TalkBack
is enabled. Many actions, such as navigating to the Home screen or switching between apps, are
accomplished with a single finger swipe when TalkBack is not enabled. With TalkBack, you perform
the same gesture, but with two fingers.

However, performing these two-finger gestures is easy on a real device, but not on an emulator. If you
are using the emulator, use the three system buttons in the emulator’s control toolbar (Figure 19.11) or
on the emulated device to navigate between apps and screens.

Figure 19.11 Using three button navigation on the emulator

Chapter 19 Accessibility

394

For the More Curious: Using Accessibility Scanner
In this chapter you focused on making your app more accessible using TalkBack. But this is not the
whole story. Accommodating people with visual impairments is just one subset of accessibility.

Testing your application for accessibility ideally involves user tests by people who actually use
accessibility services on a regular basis. If this is not possible, you should still do your best to make
your app accessible.

Google’s Accessibility Scanner analyzes apps and evaluates how accessible they are. It provides
suggestions based on its findings. Try it out on CriminalIntent.

Begin by installing the Accessibility Scanner app on your device (Figure 19.12).

Figure 19.12 Installing Accessibility Scanner

For the More Curious: Using Accessibility Scanner

395

Run Accessibility Scanner, and it will walk you through several setup steps. When you have it
running and you see a large blue check mark icon hovering over your screen, the real fun can begin.
Launch CriminalIntent from the app launcher or overview screen, leaving the check mark alone. Once
CriminalIntent appears, make sure it is displaying a crime details screen (Figure 19.13).

Figure 19.13 Launching CriminalIntent for analysis

Chapter 19 Accessibility

396

Press the check mark. If Accessibility Scanner asks for more permissions, grant them. With the
check mark button expanded, you will see two options: Record and Snapshot. Select Snapshot and
Accessibility Scanner will go to work.

You will see a progress spinner while the analysis happens. Once the analysis is complete, the app bar
at the top of the screen will indicate how many suggestions Accessibility Scanner has for you, and
some UI elements will have orange outlines around them (Figure 19.14).

Figure 19.14 Accessibility Scanner results summary

For the More Curious: Using Accessibility Scanner

397

The ImageButton and EditText have outlines around them. This indicates that the scanner found
potential accessibility problems with those views. Press the ImageButton to view accessibility
suggestions for that view. Press the down arrow in the bottom sheet to drill into the details
(Figure 19.15).

Figure 19.15 Accessibility Scanner ImageButton recommendations

Accessibility Scanner suggests you increase the size of the ImageButton. The recommended minimum
size for all touch targets is 48dp. The ImageButton’s height is smaller, which you can easily fix by
specifying an android:minHeight attribute for the view.

You can learn more about Accessibility Scanner’s recommendation by pressing Learn more: Touch
target.

Chapter 19 Accessibility

398

To turn Accessibility Scanner off, go back to Settings. Press Accessibility, then Accessibility Scanner.
Press the toggle to turn the scanner off (Figure 19.16).

Figure 19.16 Turning Accessibility Scanner off

Challenge: Improving the List

399

Challenge: Improving the List
On the crime list screen, TalkBack reads the title and date of each item. However, it does not indicate
whether the crime is solved. Fix this problem by giving the handcuff icon a content description.

Note that the readout is a bit lengthy, given the date format, and that the solved status is read at the very
end – or not at all, if the crime is not solved. To take this challenge one step further, instead of having
TalkBack read off the contents of the two TextViews and the content description of the icon (if the
icon is present), add a dynamic content description to each row in the recycler view. In the description,
summarize the data the user sees in the row.

Challenge: Providing Enough Context for Data Entry
The date button and CHOOSE SUSPECT button both suffer from a similar problem. Users, whether
using TalkBack or not, are not explicitly told what the button with the date on it is for. Similarly, once
users select a contact as the suspect, they are no longer told or shown what the button represents. Users
can probably infer the meaning of the buttons and the text on those buttons, but should they have to?

This is one of the nuances of UI design. It is up to you (or your design team) to figure out what makes
the most sense for your application – to balance simplicity of the UI with ease of use.

For this challenge, update the implementation of the details screen so that users do not lose context
about what the data they have chosen means. This could be as simple as adding labels for each field.
To do this, you could add a TextView label for each button. Then you would tell TalkBack that the
TextView is a label for the Button using the android:labelFor attribute.

 <TextView
 android:id="@+id/crime_date_label"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Date"
 <shd>android:labelFor="@+id/crime_date"/></shd>
 <Button
 android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 tools:text="Wed May 11 11:56 EST 2022"/>

The android:labelFor attribute tells TalkBack that the TextView serves as a label to the view
specified by the ID value. labelFor is defined on the View class, so you can associate any view as
the label for any other view. Note that you must use the @+id syntax here because you are referring
to an ID that has not been defined at that point in the file. You could now remove the + from the
android:id="@+id/crime_date" line in the TextView’s definition, but it is not necessary to do so.

Chapter 19 Accessibility

400

Challenge: Announcing Events
By adding dynamic content descriptions to the crime scene photo ImageView, you improved the crime
scene photo experience. But the onus is on the TalkBack user to press the ImageView to check its
status. A sighted user has the benefit of seeing the image change (or not) when returning from the
camera app.

You can provide a similar experience via TalkBack by announcing what happened as a result of
the camera app closing. Read up on the View.announceForAccessibility(…) function in the
documentation and use it in CriminalIntent at the appropriate time.

You might consider making the announcement when you get a result back from taking a photo. If
you do, there will be some timing issues related to the activity lifecycle. You can get around these by
delaying the announcement. Posting a Runnable allows you to execute some code after a small amount
of time. It might look something like this:

 someView.postDelayed(Runnable {
 // code for making announcements here
 }, SOME_DURATION_IN_MILLIS)

Or you could avoid using a Runnable by instead using some other mechanism for knowing when to
announce the change. For example, you might consider making the announcement in onResume()
instead – though you would then need to keep track of whether the user has just returned from the
camera app.

401

20
Making Network Requests and

Displaying Images

The apps that dominate the brains of users are networked apps. Those people fiddling with their phones
instead of talking to each other at dinner? They are maniacally checking their newsfeeds, responding to
text messages, or playing networked games.

To get started with networking in Android, you are going to create a new app called PhotoGallery.
PhotoGallery is a client for the photo-sharing site Flickr. It will fetch and display the most interesting
public photos of the day according to Flickr. Figure 20.1 gives you an idea of what the app will look
like.

Figure 20.1 Complete PhotoGallery

Chapter 20 Making Network Requests and Displaying Images

402

(We have added a filter to our PhotoGallery implementation to show only photos listed on Flickr
as having no known copyright restrictions. Visit flickr.com/commons/usage/ to learn more about
unrestricted images. All other photos on Flickr are the property of the person who posted them and
are subject to usage restrictions depending on the license specified by the owner. To read more about
permissions for using images that you retrieve from Flickr, visit flickr.com/creativecommons/.)

You will spend several chapters with PhotoGallery. In this chapter, you will learn how to use the
Retrofit library to make web requests to REST APIs and the Moshi library to deserialize the response
to these requests from JSON into Kotlin objects. Almost all day-to-day programming of web services
these days is based on the HTTP networking protocol. Retrofit provides a type-safe way to access
HTTP and HTTP/2 web services easily from Android apps.

In addition, you will be downloading and displaying photos using URLs generated from the data in
the network response. Instead of doing this part by hand, you will rely on the Coil library, developed
by Instacart to perform all the tricky work of efficiently displaying those images from within a
RecyclerView. By the end of the chapter, you will be fetching, parsing, and displaying photos from
Flickr (Figure 20.2).

Figure 20.2 PhotoGallery at the end of the chapter

https://www.flickr.com/commons/usage/
https://www.flickr.com/creativecommons/

Creating PhotoGallery

403

Creating PhotoGallery
Create a new Android application (File → New → New Project...). Select the Empty Activity template
and click Next.

Configure your project as shown in Figure 20.3: Name the application PhotoGallery. Make sure the
Package name is com.bignerdranch.android.photogallery and the Language is Kotlin. Select API 24:
Android 7.0 (Nougat) from the Minimum SDK dropdown.

Figure 20.3 Configuring the PhotoGallery project

Click Finish to generate the project.

Chapter 20 Making Network Requests and Displaying Images

404

Many of the initial steps to set up this project will look familiar from your earlier projects. Once
again, you will use libraries and tools like the Fragment class, the ViewModel class, the RecyclerView
component, and View Binding. Start by opening the app/build.gradle file (the one labeled (Module:
PhotoGallery.app)) to add the dependencies you will need and to enable View Binding.

Listing 20.1 Setting up your project’s build (app/build.gradle)
...
android {
 ...
 kotlinOptions {
 jvmTarget = '1.8'
 }
 buildFeatures {
 viewBinding true
 }
}

dependencies {
 ...
 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
 implementation 'androidx.fragment:fragment-ktx:1.4.1'
 implementation 'androidx.recyclerview:recyclerview:1.2.1'
 implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.4.1'
 implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.4.1'
 testImplementation 'junit:junit:4.13.2'
 ...
}

Do not forget to sync your files after you have made these changes. Now, on to the code.

Create the fragment that will display when the app launches. PhotoGallery will display its results in a
RecyclerView, using the built-in GridLayoutManager to arrange the items in a grid. The Kotlin class
will be named PhotoGalleryFragment, so first right-click the res/layout folder in the project tool
window and select New → Layout resource file. Name this file fragment_photo_gallery.xml and enter
androidx.recyclerview.widget.RecyclerView as the root element.

Click OK. The generated file is mostly correct. Just add an ID so that you can reference the
RecyclerView within your Kotlin code.

Listing 20.2 Adding an ID (res/layout/fragment_photo_gallery.xml)
<?xml version="1.0" encoding="utf-8"?>
<androidx.recyclerview.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/photo_grid"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

</androidx.recyclerview.widget.RecyclerView>

Next, create a Kotlin file for the PhotoGalleryFragment class. In the project tool window, right-click
the com.bignerdranch.android.photogallery package and select New → Kotlin Class/File.

Subclass the Fragment class and inflate and bind your layout using View Binding. While you are at it,
set the recycler view’s layoutManager to a new instance of GridLayoutManager. Hardcode the number
of columns to 3.

Creating PhotoGallery

405

Listing 20.3 Setting up the fragment (PhotoGalleryActivity.kt)
class PhotoGalleryFragment : Fragment() {
 private var _binding: FragmentPhotoGalleryBinding? = null
 private val binding
 get() = checkNotNull(_binding) {
 "Cannot access binding because it is null. Is the view visible?"
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View {
 _binding =
 FragmentPhotoGalleryBinding.inflate(inflater, container, false)
 binding.photoGrid.layoutManager = GridLayoutManager(context, 3)
 return binding.root
 }

 override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
 }
}

With the skeleton of your PhotoGalleryFragment class complete, include it in the MainActivity using
a FragmentContainerView.

Listing 20.4 Adding a fragment container
(res/layout/activity_main.xml)
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>
<androidx.fragment.app.FragmentContainerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:name="com.bignerdranch.android.photogallery.PhotoGalleryFragment"
 tools:context=".MainActivity" />

Chapter 20 Making Network Requests and Displaying Images

406

Run PhotoGallery to make sure everything is wired up correctly before moving on. If all is well, you
will have a very nice blank screen.

Networking Basics with Retrofit
Although it is not developed by Google, Retrofit is the de facto official way to communicate with
an HTTP API on Android. Retrofit is an open-source library created and maintained by Square
(square.github.io/retrofit). It is highly configurable and extendable, allowing you to easily and
safely communicate with a remote web server. It is organized into components that serve a specific
purpose, and you can swap out individual components as you need.

Retrofit is meant to define the contracts for many different types of network requests. Similar to using
the Room database library, you write an interface with annotated instance methods, and Retrofit
creates the implementation. Under the hood, Retrofit’s implementation uses OkHttp, another library by
Square, to handle making an HTTP request and parsing the HTTP response.

Head back to your app/build.gradle file and add the Retrofit and OkHttp dependencies. Retrofit
integrates seamlessly with Kotlin coroutines, so add those dependencies as well. Sync your Gradle file
after you make these changes.

Listing 20.5 Adding the Retrofit dependency (app/build.gradle)
dependencies {
 ...
 implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.4.1'
 implementation 'com.squareup.retrofit2:retrofit:2.9.0'
 implementation 'com.squareup.okhttp3:okhttp:4.9.3'
 implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.0'
 implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0'
 ...
}

Before implementing the Flickr REST API, you need to configure Retrofit to fetch and log the contents
of a web page URL – specifically, Flickr’s home page.

Using Retrofit involves a bunch of moving parts. Starting simple will allow you to see the foundations.
Later, you will build on this basic implementation to create your Flickr requests and deserialize the
responses – meaning convert the linear, serialized data into non-serial pieces of data. That non-serial
data will be your model objects.

https://square.github.io/retrofit/

Defining an API interface

407

Defining an API interface
It is time to define the API calls you want your app to make. First, create a new package for your
API-specific code. In the project tool window, right-click the com.bignerdranch.android.photogallery
package and choose New → Package. Name your new package api.

Next, add a Retrofit API interface to your new package. A Retrofit API interface is a standard Kotlin
interface that uses Retrofit annotations to define API calls. Right-click the api package in the project
tool window. Choose New → Kotlin Class/File and name the file FlickrApi. In the new file, define an
interface named FlickrApi and add a single function representing a GET request.

Listing 20.6 Adding a Retrofit API interface (api/FlickrApi.kt)
interface FlickrApi {
 @GET("/")
 suspend fun fetchContents(): String
}

Since network requests are inherently asynchronous operations, Retrofit naturally supports Kotlin
coroutines. If you mark a function with the suspend modifier, Retrofit will be able to perform
networking requests within a coroutine scope and suspend while waiting for a server response. It
has support for many other asynchronous libraries, but in this book we focus on using coroutines for
network requests.

Each function in the interface maps to a specific HTTP request and must be annotated with an HTTP
request method annotation. This annotation tells Retrofit the HTTP request type (also known as an
“HTTP verb”) that the function in your API interface maps to. The most common request types are
@GET, @POST, @PUT, @DELETE, and @HEAD. (For an exhaustive list of available types, see the API docs at
square.github.io/retrofit/2.x/retrofit.)

The @GET("/") annotation in the code above configures the HTTP request used by fetchContents()
to perform a GET request. The "/" is the relative path – a path string representing the relative URL
from the base URL of your API endpoint. Most HTTP request method annotations include a relative
path. In this case, the relative path of "/" means the request will be sent to the base URL, which you
will provide shortly.

The type you use as the return type specifies the data type you would like Retrofit to deserialize the
HTTP response into. Every API request you define in your Retrofit API should include a return type. A
general response type called OkHttp.ResponseBody is provided with Retrofit, which you can use to get
the raw response from the server. Specifying String tells Retrofit that you want the response parsed
into a String object instead.

https://square.github.io/retrofit/2.x/retrofit/

Chapter 20 Making Network Requests and Displaying Images

408

Building the Retrofit object and creating an API instance
The Retrofit instance is responsible for implementing and creating instances of your API interface.
To make web requests based on the API interface you defined, you need Retrofit to implement and
instantiate your FlickrApi interface.

First, build and configure a Retrofit instance. Open PhotoGalleryFragment.kt. In onViewCreated(…),
build a Retrofit object and use it to create a concrete implementation of your FlickrApi interface.

Listing 20.7 Using the Retrofit object to create an instance of the API
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View {
 ...
 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://www.flickr.com/")
 .build()

 val flickrApi: FlickrApi = retrofit.create<FlickrApi>()
 }
 ...
}

Retrofit.Builder() is a fluent interface that makes it easy to configure and build your Retrofit
instance. You provide a base URL for your endpoint using the baseUrl(…) function. Here, you provide
the Flickr home page: "https://www.flickr.com/". Make sure to include the appropriate protocol
with the URL (here, https://). Also, always include a trailing / to ensure Retrofit correctly appends
the relative paths you provide in your API interface onto the base URL.

Calling build() returns a Retrofit instance, configured based on the settings you specified using the
builder object. Once you have a Retrofit object, you use it to create an instance of your API interface.

Unlike the Room library, Retrofit does not generate any code at compile time – instead, it does all the
work at runtime. When you call retrofit.create(), Retrofit uses the information in the API interface
you specify, along with the information you specified when building the Retrofit instance, to create and
instantiate an anonymous class that implements the interface on the fly.

Adding a String converter
Retrofit is not actually handling the nitty-gritty aspects of performing network requests for you.
Under the hood, it uses the OkHttp library as its HTTP client (square.github.io/okhttp).
When getting a response back from the server, by default, Retrofit deserializes web responses into
okhttp3.ResponseBody objects. But for logging the contents of a web page, it is much easier to work
with a plain ol’ String.

https://square.github.io/okhttp/

Building the Retrofit object and creating an API instance

409

To get Retrofit to deserialize the response into strings instead, you will specify a converter when
building your Retrofit object.

A converter knows how to decode a ResponseBody object into some other object type. You could create
a custom converter, but you do not have to. Lucky for you, Square created an open-source converter,
called the scalars converter, that can convert the response into a string. You will use it to deserialize
Flickr responses into string objects.

To use the scalars converter, first add the dependency to your app/build.gradle file.

Listing 20.8 Adding the scalars converter dependency (app/build.gradle)
dependencies {
 ...
 implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0'
 implementation 'com.squareup.retrofit2:converter-scalars:2.9.0'
 ...
}

Once your Gradle files sync, create an instance of the scalars converter factory and add it to your
Retrofit object.

Listing 20.9 Adding the converter to the Retrofit object
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://www.flickr.com/")
 .addConverterFactory(ScalarsConverterFactory.create())
 .build()

 val flickrApi: FlickrApi = retrofit.create<FlickrApi>()
 }
 ...
}

Retrofit.Builder’s addConverterFactory(…) function expects an instance of Converter.Factory.
A converter factory knows how to create and return instances of a particular converter.
ScalarsConverterFactory.create() returns an instance of the scalars converter factory
(retrofit2.converter.scalars.ScalarsConverterFactory), which in turn will provide instances of
a scalars converter when Retrofit needs it.

More specifically, since you specified String as the return type for FlickrApi.fetchContents(),
the scalars converter factory will provide an instance of the string converter
(retrofit2.converter.scalars.StringResponseBodyConverter). Your Retrofit object will use the
string converter to convert the ResponseBody object into a String before returning the result.

Square provides other handy open-source converters for Retrofit. Later in this chapter, you will use the
Moshi converter. You can see the other available converters, and information about creating your own
custom converter, at square.github.io/retrofit.

https://square.github.io/retrofit/

Chapter 20 Making Network Requests and Displaying Images

410

Executing a web request
Up to this point, you have been writing code to configure your network request. You are very close to
the moment you have been waiting for: executing a web request and logging the result. Your next step
is to launch a coroutine using the viewLifecycleOwner.lifecycleScope property and then call your
fetchContents() function. Do that and log out the result.

Listing 20.10 Making a network request (PhotoGalleryFragment.kt)
private const val TAG = "PhotoGalleryFragment"

class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://www.flickr.com/")
 .addConverterFactory(ScalarsConverterFactory.create())
 .build()

 val flickrApi: FlickrApi = retrofit.create<FlickrApi>()

 viewLifecycleOwner.lifecycleScope.launch {
 val response = flickrApi.fetchContents()
 Log.d(TAG, "Response received: $response")
 }
 }
 ...
}

Retrofit makes it easy to respect the two most important Android threading rules:

1. Execute long-running operations only on a background thread, never on the main thread.

2. Update the UI only from the main thread, never from a background thread.

When you call fetchContents(), Retrofit automatically executes the request on a background thread.
Retrofit manages the background thread for you, so you do not have to worry about it. When it receives
a response, thanks to coroutines, it will pass the result back on the thread where it was first invoked,
which in this case is the UI thread.

Asking permission to network

411

Asking permission to network
The last thing that is required to get networking up and running is to ask permission. Just as users
would not want you secretly taking their pictures, they also would not want you secretly downloading
ASCII pictures of cats.

To ask permission to network, add the following permission to your manifests/AndroidManifest.xml
file.

Listing 20.11 Adding networking permission to the manifest
(manifests/AndroidManifest.xml)
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.photogallery" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application>
 ...
 </application>

</manifest>

Android treats the INTERNET permission as “normal,” since so many apps require it. As a result, all you
need to do to use this permission is declare it in your manifest. More dangerous permissions (like the
one allowing you to know the device’s location) also require a runtime request.

Run your code, and you should see the amazing Flickr home page HTML in Logcat, as shown in
Figure 20.4. (Use your TAG constant to search or filter Logcat for PhotoGalleryFragment, as shown.)

Figure 20.4 Flickr.com HTML in Logcat

Chapter 20 Making Network Requests and Displaying Images

412

Moving toward the repository pattern
Right now, your networking code is embedded in your fragment. It would be better if the Retrofit
configuration code and API direct access were in a separate class.

Create a new Kotlin file named PhotoRepository.kt. Add a property to stash a FlickrApi instance.
Cut the Retrofit configuration code and API interface instantiation code from PhotoGalleryFragment
and paste it into an init block in the new class. (These are the two lines that start with val retrofit:
Retrofit = ... and val flickrApi = ... in Listing 20.12.)

Split the flickrApi declaration and assignment onto two lines to declare flickrApi as a private
property on PhotoRepository. This will allow you to access it elsewhere in the class (outside the init
block) – but not outside the class.

When you are done, PhotoRepository should match Listing 20.12.

Listing 20.12 Creating PhotoRepository (PhotoRepository.kt)
class PhotoRepository {
 private val flickrApi: FlickrApi

 init {
 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://www.flickr.com/")
 .addConverterFactory(ScalarsConverterFactory.create())
 .build()
 flickrApi = retrofit.create()
 }
}

If you have not already, cut the redundant Retrofit configuration code from PhotoGalleryFragment
(Listing 20.13). This will cause an error, which you will fix once you finish fleshing out
PhotoRepository.

Listing 20.13 Cutting Retrofit setup from the fragment
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://www.flickr.com/")
 .addConverterFactory(ScalarsConverterFactory.create())
 .build()

 val flickrApi: FlickrApi = retrofit.create<FlickrApi>()

 viewLifecycleOwner.lifecycleScope.launch {
 val response = flickrApi.fetchContents()
 Log.d(TAG, "Response received: $response")
 }
 }
 ...
}

Moving toward the repository pattern

413

Next, add a function named fetchContents() to PhotoRepository to wrap the Retrofit API function
you defined for fetching the Flickr home page.

Listing 20.14 Adding fetchContents() to PhotoRepository
(PhotoRepository.kt)
class PhotoRepository {

 private val flickrApi: FlickrApi

 init {
 ...
 }

 suspend fun fetchContents() = flickrApi.fetchContents()
}

PhotoRepository will wrap most of the networking code in PhotoGallery (right now it is small and
simple, but it will grow over the next several chapters). Now other components in your app, such as
PhotoGalleryFragment (or some ViewModel, activity, or other component), can create an instance of
PhotoRepository and request photo data without having to know about Retrofit or the source the data
is coming from.

Update PhotoGalleryFragment to use PhotoRepository to see this magic in action (Listing 20.15).

Listing 20.15 Using PhotoRepository in PhotoGalleryFragment
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 val response = flickrApi PhotoRepository().fetchContents()
 Log.d(TAG, "Response received: $response")
 }
 }
 ...
}

This refactor moves your app closer to following the repository pattern you learned about in
Chapter 12. PhotoRepository serves as a very basic repository, encapsulating the logic for accessing
data from a single source. It determines how to fetch and store a particular set of data – currently
HTML, but later photos. Your UI code will request all the data from the repository, because the UI
does not care how the data is actually stored or fetched. Those are implementation details of the
repository itself.

Right now, all of your app’s data comes directly from the Flickr web server. However, in the future you
might decide to cache that data in a local database. In that case, the repository would manage getting
the data from the right place. Other components in your app can use the repository to get data without
having to know where the data is coming from.

Take a moment to run your app and verify that it still works correctly. You should see the contents of
the Flickr home page print to Logcat again, as shown in Figure 20.4.

Chapter 20 Making Network Requests and Displaying Images

414

Fetching JSON from Flickr
JSON stands for JavaScript Object Notation. It is a popular data format, particularly for web services.
You can get more information about JSON as a format at json.org.

Flickr offers a fine JSON API. All the details you need are available in the documentation at
flickr.com/services/api. Pull it up in your favorite web browser and find the list of Request
Formats. You will be using the simplest – REST. The REST API endpoint is api.flickr.com/
services/rest, and you can invoke the methods Flickr provides on this endpoint.

Back on the main page of the API documentation, find the list of API Methods. Scroll down to the
interestingness section and click flickr.interestingness.getList. The documentation will report that this
method “returns the list of interesting photos for the most recent day or a user-specified date.” That is
exactly what you want for PhotoGallery.

The only required parameter for the getList method is an API key. To get an API key, return to
flickr.com/services/api and follow the link for API Keys. You will need a Flickr ID to log in. Once
you are logged in, request a new, noncommercial API key. This usually only takes a moment.

Your API key will look something like 4f721bgafa75bf6d2cb9be54f937bb71. (That is a fake key
we made up as an example – you will need to obtain your own Flickr API key.) You do not need the
“Secret,” which is only used when an app will access user-specific information or images.

With your shiny new key, you can make a request to the Flickr web service. Your GET request URL
will look something like this:

 https://api.flickr.com/services/rest/?method=flickr.interestingness.getList
 &api_key=yourApiKeyHere&format=json&nojsoncallback=1&extras=url_s

The Flickr response is in XML format by default. To get a valid JSON response, you need to specify
values for both the format and nojsoncallback parameters. Setting nojsoncallback to 1 tells Flickr
to exclude the enclosing method name and parentheses from the response it sends back. This lets your
Kotlin code more easily parse the response.

Specifying the parameter called extras with the value url_s tells Flickr to include the URL for the
small version of the picture if it is available.

https://json.org
https://www.flickr.com/services/api
https://api.flickr.com/services/rest/
https://api.flickr.com/services/rest/
https://www.flickr.com/services/api/

Fetching JSON from Flickr

415

Copy the example URL into your browser, replacing yourApiKeyHere with your actual API key. This
will allow you to see an example of what the response data will look like, as shown in Figure 20.5.
(Your results may be formatted differently, depending on your browser. But however it is laid out, you
should see text like “photos,” “page,” “pages,” and so on.)

Figure 20.5 Sample JSON output

Chapter 20 Making Network Requests and Displaying Images

416

Time to update your existing networking code to request data for recent interesting photos from the
Flickr REST API instead of requesting the contents of Flickr’s home page. First, add a function to your
FlickrApi API interface. Again, replace yourApiKeyHere with your API key. For now, hardcode the
URL query parameters in the relative path string. (Later, you will abstract these query parameters out
and add them in programmatically.)

Listing 20.16 Defining the “fetch recent interesting photos” request
(api/FlickrApi.kt)
private const val API_KEY = "yourApiKeyHere"

interface FlickrApi {
 @GET("/")
 suspend fun fetchContents() : String
 @GET(
 "services/rest/?method=flickr.interestingness.getList" +
 "&api_key=$API_KEY" +
 "&format=json" +
 "&nojsoncallback=1" +
 "&extras=url_s"
)
 suspend fun fetchPhotos(): String
}

Notice that you added values for the method, api_key, format, nojsoncallback, and extras
parameters.

Next, update the Retrofit instance configuration code in PhotoRepository. Change the base URL
from Flickr’s home page to the base API endpoint. Rename the fetchContents() function to
fetchPhotos() and call through to the new fetchPhotos() function on the API interface.

Listing 20.17 Updating the base URL (PhotoRepository.kt)
class PhotoRepository {
 private val flickrApi: FlickrApi

 init {
 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://wwwapi.flickr.com/")
 .addConverterFactory(ScalarsConverterFactory.create())
 .build()
 flickrApi = retrofit.create()
 }

 suspend fun fetchContent() = flickrApi.fetchContent()
 suspend fun fetchPhotos() = flickrApi.fetchPhotos()
}

The base URL you set is api.flickr.com/, but the endpoints you want to hit are at api.flickr.com/
services/rest. This is because you specified the services and rest parts of the path in your @GET
annotation in FlickrApi. The path and other information you included in the @GET annotation will be
appended onto the URL by Retrofit before it issues the web request.

Fetching JSON from Flickr

417

Finally, update PhotoGalleryFragment to execute the web request so that it fetches recent interesting
photos instead of the contents of Flickr’s home page. Replace the fetchContents() call with a call to
the new fetchPhotos() function. For now, serialize the response into a string, as you did previously.

Listing 20.18 Executing the “fetch recent interesting photos” request
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 val response = PhotoRepository().fetchContent()
 val response = PhotoRepository().fetchPhotos()
 Log.d(TAG, "Response received: $response")
 }
 }
 ...
}

Making these few tweaks to your existing code renders your app ready to fetch and log Flickr data.
Run PhotoGallery, and you should see rich, fertile Flickr JSON in Logcat, like Figure 20.6. (It will
help to search for PhotoGalleryFragment in the Logcat search box.)

Figure 20.6 Flickr JSON in Logcat

(Logcat can be finicky. Do not panic if you do not get results like ours. Sometimes the connection to
the emulator is not quite right and the log messages do not get printed out. Usually it clears up over
time, but sometimes you have to rerun your application or even restart your emulator.)

As of this writing, the Android Studio Logcat window does not automatically wrap the output the way
Figure 20.6 shows. Scroll to the right to see more of the extremely long JSON response string. Or wrap

the Logcat contents by clicking the button on Logcat’s left side, shown in Figure 20.6.

Chapter 20 Making Network Requests and Displaying Images

418

Now that you have such fine JSON data from Flickr, what should you do with it? You will do what
you do with all data – put it in one or more model objects. The model class you are going to create
for PhotoGallery is called GalleryItem. A gallery item holds meta information for a single photo,
including the title, the ID, and the URL to download the image from.

Create the GalleryItem data class within the api subpackage and add the following code:

Listing 20.19 Creating a model object class (GalleryItem.kt)
data class GalleryItem(
 val title: String,
 val id: String,
 val url: String,
)

Now that you have defined a model object, it is time to create and populate instances of that object with
data from the JSON output you got from Flickr.

Deserializing JSON text into model objects
The JSON response displayed in your browser and Logcat window is hard to read. If you pretty print
the response (format it with white space), it looks something like the text on the left in Figure 20.7.

Figure 20.7 JSON text, JSON hierarchy, and corresponding model objects

Deserializing JSON text into model objects

419

A JSON object is a set of name-value pairs enclosed between curly braces, { }. A JSON array is a
comma-separated list of JSON objects enclosed in square brackets, []. And JSON objects can be
nested within each other, resulting in a hierarchy like the one in the middle column of Figure 20.7.
(The right side of Figure 20.7 shows the GalleryItem and the other model objects you will create
shortly to represent this data.)

Android includes the standard org.json package, which has classes that provide access to creating and
parsing JSON text (such as JSONObject and JSONArray). However, lots of smart people have created
libraries to simplify the process of converting JSON text to Kotlin objects and back again.

One such library is Moshi (github.com/square/moshi). Another library from Square, Moshi maps
JSON data to Kotlin objects for you automatically. This means you do not need to write any parsing
code. Instead, you define Kotlin classes that map to the JSON hierarchy of objects and let Moshi do the
rest.

Using Moshi is similar to using the Room database library’s @Entity data classes. Moshi uses code
generation to map JSON to Kotlin classes for you. You will annotate your relevant code, and Moshi
will generate code that adapts JSON strings into instances of Kotlin classes. Moshi also has the
functionality to parse strings into Kotlin classes dynamically at runtime, but the code generation
approach is more performant and easier to set up.

To configure Moshi to do all those things for you, first enable the same kapt plugin you used with
Room. It is defined at the project level, so add the following line to the build.gradle file labeled
(Project: PhotoGallery):

Listing 20.20 Enabling kapt (build.gradle)
plugins {
 id 'com.android.application' version '7.1.2' apply false
 id 'com.android.library' version '7.1.2' apply false
 id 'org.jetbrains.kotlin.android' version '1.6.10' apply false
 id 'org.jetbrains.kotlin.kapt' version '1.6.10' apply false
}
...

https://github.com/square/moshi

Chapter 20 Making Network Requests and Displaying Images

420

Once you have enabled the plugin, apply it to your app’s build process in app/build.gradle. Include
the core library as well as the library that performs the code generation in your dependencies. Finally,
Square created a Moshi converter for Retrofit that makes it easy to plug Moshi into your Retrofit
implementation. Add the Retrofit Moshi converter library dependencies as well. As always, be sure to
sync the file when you are done.

Listing 20.21 Adding Moshi dependencies (app/build.gradle)
plugins {
 id 'com.android.application'
 id 'org.jetbrains.kotlin.android'
 id 'org.jetbrains.kotlin.kapt'
}

android {
 ...
}

dependencies {
 ...
 implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0'
 implementation 'com.squareup.retrofit2:converter-scalars:2.9.0'
 implementation 'com.squareup.moshi:moshi:1.13.0'
 kapt 'com.squareup.moshi:moshi-kotlin-codegen:1.13.0'
 implementation 'com.squareup.retrofit2:converter-moshi:2.9.0'
 ...
}

With your dependencies in place, create model objects that map to the JSON data in the Flickr
response. You already have GalleryItem, which maps almost directly to an individual object in the
"photo" JSON array. By default, Moshi maps JSON object names to property names. If your property
names match the JSON object names, you can leave them as is.

But your property names do not need to match the JSON object names. Take your GalleryItem.url
property, versus the "url_s" field in the JSON data. GalleryItem.url is more meaningful in the
context of your codebase, so it is better to keep it. In this case, you can add a @Json annotation to the
property to tell Moshi which JSON field the property maps to.

To generate the code to adapt the JSON string into a GalleryItem, you need to annotate the class
with the @JsonClass annotation. This will tell Moshi to perform its code generation work during
compilation. Update GalleryItem with these annotations now.

Listing 20.22 Integrating Moshi (GalleryItem.kt)
@JsonClass(generateAdapter = true)
data class GalleryItem(
 val title: String,
 val id: String,
 @Json(name = "url_s") val url: String,
)

Deserializing JSON text into model objects

421

Now, create a PhotoResponse class to map to the "photos" object in the JSON data. Place the new
class in the api package as well.

Include a property called galleryItems to store a list of gallery items and annotate it with @Json(name
= "photo"). Moshi will automatically create a list and populate it with gallery item objects based on
the JSON array named "photo".

Listing 20.23 Adding PhotoResponse (PhotoResponse.kt)
@JsonClass(generateAdapter = true)
data class PhotoResponse(
 @Json(name = "photo") val galleryItems: List<GalleryItem>
)

Right now, the only data you care about in this particular object is the array of photo data in the
"photo" JSON object. Later in this chapter, you will want to capture the paging data if you choose to
do the challenge in the section called Challenge: Paging.

Finally, add a class named FlickrResponse to the api package. This class will map to the outermost
object in the JSON data (the one at the top of the JSON object hierarchy, denoted by the outermost
{ }). Add a property to map to the "photos" field.

Listing 20.24 Adding FlickrResponse (FlickrResponse.kt)
@JsonClass(generateAdapter = true)
data class FlickrResponse(
 val photos: PhotoResponse
)

Chapter 20 Making Network Requests and Displaying Images

422

Take another look at the diagram comparing the JSON text to model objects (copied below in
Figure 20.8) and notice how the objects you created map to the JSON data.

Figure 20.8 PhotoGallery data and model objects

Now it is time to make the magic happen: to configure Retrofit to use Moshi to deserialize your data
into the model objects you just defined. First, update the return type specified in the Retrofit API
interface to FlickrResponse – the model object you defined to map to the outermost JSON object.
This indicates to Moshi that it should use the FlickrResponse to deserialize the JSON response data.

Listing 20.25 Updating fetchPhoto()’s return type (FlickrApi.kt)
interface FlickrApi {
 @GET(...)
 fun fetchPhotos(): StringFlickrResponse
}

Deserializing JSON text into model objects

423

Next, update PhotoRepository. Swap out the scalars converter factory for a Moshi converter factory
and update fetchPhotos() to return the list of gallery items.

Listing 20.26 Updating PhotoRepository for Moshi (PhotoRepository.kt)
class PhotoRepository {
 private val flickrApi: FlickrApi

 init {
 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://api.flickr.com/")
 .addConverterFactory(ScalarsConverterFactory.create())
 .addConverterFactory(MoshiConverterFactory.create())
 .build()
 flickrApi = retrofit.create()
 }

 suspend fun fetchPhotos() = flickrApi.fetchPhotos()
 suspend fun fetchPhotos(): List<GalleryItem> =
 flickrApi.fetchPhotos().photos.galleryItems
}

Now that you are no longer using the scalars converter factory, you do not need the
retrofit2.converter.scalars imports in PhotoRepository.kt and PhotoGalleryFragment.kt.
They might disappear on their own, but if not you should delete them, because they may cause errors.

You do not need to make any changes to the PhotoGalleryFragment class, since you are only logging
out the result. Run PhotoGallery to test your JSON parsing code. You should see the logging output of
the gallery item list printed to Logcat. If you want explore the results further, set a breakpoint on the
logging line in the lambda and use the debugger to drill down through galleryItems (Figure 20.9).

Figure 20.9 Exploring the Flickr response

If you run into any issues, make sure that your web request is properly formatted. In some cases (such
as when the API key is invalid), the Flickr API will return an error response and Moshi will fail to
initialize your models. In the next section, you will handle situations where things do not go according
to plan.

Chapter 20 Making Network Requests and Displaying Images

424

Handling errors
There are hundreds of ways in which a network request can go wrong. The device might not be
connected to the internet. The server might be down and fail to respond to the request. There might be
an issue with the contents of your request or the server’s response.

In those cases, you will not have an easy-to-use FlickrResponse to mess with in your code. You will
need to handle errors related to these situations yourself.

To model a common network issue, turn off internet access on your device or emulator: Swipe down
from the top of the screen to open Quick Settings. Press the Internet icon, and toggle off the mobile
data and WiFi options (Figure 20.10). Press Done.

Figure 20.10 Turning off the internet

(The steps to disable internet access might vary, depending on the version of Android. For example,
you might instead need to look for separate WiFi and mobile data settings to disable.)

Handling errors

425

Next, navigate to the overview screen and kill PhotoGallery, if it is running. Finally, try relaunching
PhotoGallery. You will see it display briefly – and then crash when it makes a network request that
cannot be successfully completed.

There are many ways to handle network request errors through Retrofit, depending on the source of
the error and the experience you want to provide to users. But at a minimum, your app should avoid
crashing when there is an error with networking.

To prevent a crash in PhotoGallery, you will use Kotlin’s try/catch syntax. In
PhotoGalleryFragment, wrap your network request in a try/catch block and log out the error if an
exception is thrown.

Listing 20.27 Handling network errors (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 try {
 val response = PhotoRepository().fetchPhotos()
 Log.d(TAG, "Response received: $response")
 } catch (ex: Exception) {
 Log.e(TAG, "Failed to fetch gallery items", ex)
 }
 }
 }
 ...
}

Compile and run your app again. If you look at Logcat, you will see an error logged, but the app will
keep running.

Re-enable internet access on your device or emulator before moving on.

Chapter 20 Making Network Requests and Displaying Images

426

Networking Across Configuration Changes
Now that you have your app deserializing JSON into model objects, take a closer look at how your
implementation behaves across a configuration change. Run your app, make sure auto-rotate is turned
on for your device or emulator, and then rotate the device quickly five or so times in a row. Inspect the
Logcat output, filtering by PhotoGalleryFragment and turning soft wraps off.

 15:49:07.304 D/PhotoGalleryFragment: Response received: [GalleryItem(...
 15:49:16.794 D/PhotoGalleryFragment: Response received: [GalleryItem(...
 15:49:20.098 D/PhotoGalleryFragment: Response received: [GalleryItem(...
 15:49:23.565 D/PhotoGalleryFragment: Response received: [GalleryItem(...
 15:49:27.043 D/PhotoGalleryFragment: Response received: [GalleryItem(...
 15:49:30.099 D/PhotoGalleryFragment: Response received: [GalleryItem(...
 ...

What is going on here? A new network request is made every time you rotate the device. This is
because you kick off the request in onViewCreated(…). Since the fragment is destroyed and re-created
every time you rotate, a new request is issued to (unnecessarily) re-download the data.

This is problematic because you are doing duplicate work – you should instead issue a download
request when the fragment is first created. That same request (and the resulting data) should persist
across rotation to ensure a speedy user experience (and to avoid unnecessarily using up the user’s data
if they are not on WiFi).

Instead of launching a new web request every time a configuration change occurs, you need to fetch
the photo data once, when the fragment is initially created and displayed onscreen. Then you can allow
the web request to continue to execute when a configuration change occurs by caching the results
in memory for the perceived life of the fragment, across any and all configuration changes (such as
rotation). Finally, you can use these cached results when available rather than making a new request.

ViewModel is the right tool to help you with this job.

Networking Across Configuration Changes

427

You already added the ViewModel dependency to the project, so go ahead and create a ViewModel
class named PhotoGalleryViewModel. This ViewModel will look very similar to the ViewModels in
CriminalIntent. Use a StateFlow to expose a list of gallery items to the fragment. Kick off a web
request to fetch photo data when the ViewModel is first initialized, and stash the resulting data in the
property you created. Use a try/catch block to handle any errors.

When you are done, your code should match Listing 20.28.

Listing 20.28 Shiny new ViewModel (PhotoGalleryViewModel.kt)
private const val TAG = "PhotoGalleryViewModel"

class PhotoGalleryViewModel : ViewModel() {
 private val photoRepository = PhotoRepository()

 private val _galleryItems: MutableStateFlow<List<GalleryItem>> =
 MutableStateFlow(emptyList())
 val galleryItems: StateFlow<List<GalleryItem>>
 get() = _galleryItems.asStateFlow()

 init {
 viewModelScope.launch {
 try {
 val items = photoRepository.fetchPhotos()
 Log.d(TAG, "Items received: $items")
 _galleryItems.value = items
 } catch (ex: Exception) {
 Log.e(TAG, "Failed to fetch gallery items", ex)
 }
 }
 }
}

Recall that the first time a ViewModel is requested for a given lifecycle owner, a new instance of
the ViewModel is created. Successive requests for the ViewModel return the same instance that was
originally created.

You call PhotoRepository().fetchPhotos() in PhotoGalleryViewModel’s init{} block. This kicks
off the request for photo data when the ViewModel is first created. Since the ViewModel is only created
once in the lifecycle owner’s lifetime (when queried from the ViewModelProvider class for the first
time), the request will only be made once (when the user launches PhotoGalleryFragment).

When the user rotates the device or some other configuration change occurs, the ViewModel will
remain in memory, and the re-created version of the fragment will be able to access the results of the
original request through the ViewModel.

Thanks to coroutines, when the viewModelScope is canceled, your network request will also be
canceled. But in a production app, you might cache the results in a database or some other local
storage, so it would make sense to let the fetch continue to completion.

Chapter 20 Making Network Requests and Displaying Images

428

Update PhotoGalleryFragment to get access to the PhotoGalleryViewModel. Remove the existing
code that interacts with PhotoRepository, since PhotoGalleryViewModel handles that now.

Also, update PhotoGalleryFragment to observe PhotoGalleryViewModel’s StateFlow once the
fragment’s view is created. For now, log a statement indicating the data was received. Eventually you
will use these results to update your recycler view contents.

Listing 20.29 Getting a ViewModel instance from the provider
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 private var _binding: FragmentPhotoGalleryBinding? = null
 private val binding
 get() = checkNotNull(_binding) {
 "Cannot access binding because it is null. Is the view visible?"
 }

 private val photoGalleryViewModel: PhotoGalleryViewModel by viewModels()
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 try {
 val response = PhotoRepository().fetchPhotos()
 Log.d(TAG, "Response received: $response")
 } catch (ex: Exception) {
 Log.e(TAG, "Failed to fetch gallery items", ex)
 }
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 photoGalleryViewModel.galleryItems.collect { items ->
 Log.d(TAG, "Response received: $items")
 }
 }
 }
 }
 ...
}

Eventually you will update UI-related things (such as the recycler view adapter) in response to data
changes. Starting the observation in onViewCreated(…) ensures that the UI views and other related
objects will be ready. It also ensures that you properly handle the situation where the fragment
becomes detached and its view is destroyed. In this scenario, the view will be re-created when the
fragment is reattached, and the subscription will be added to the new view once it is created.

Run your app. Filter Logcat by PhotoGalleryViewModel. Rotate the emulator multiple times. You
should only see PhotoGalleryViewModel: Items received printed to the Logcat window one time,
no matter how many times you rotate.

Displaying Results in RecyclerView

429

Displaying Results in RecyclerView
For your last task in this chapter, you will switch to the view layer and get PhotoGalleryFragment’s
RecyclerView to display some images.

Start by creating a layout for an individual list item. In the project tool window, right-click the res/
layout directory and choose New → Layout Resource File. Name the file list_item_gallery, set the root
element to ImageView, and click OK.

Within the layout, update and add a few XML attributes. The RecyclerView will provide the list item
with an appropriate width, so keep the android:layout_width set to match_parent. But limit the
height to 120dp. That will allow the user to see multiple rows of images within your RecyclerView
onscreen at once.

Flickr does not standardize photo sizing, so you cannot be fully sure of the dimensions of the image.
There are two attributes you can use to provide a good experience regardless of any particular image’s
dimensions.

First, set android:scaleType to centerCrop. This will make the image spread its contents all the way
to the edges of the ImageView, while maintaining its aspect ratio. That means that both of the image’s
dimensions will be equal to or larger than the dimensions of the ImageView. Any part of the image that
goes beyond the dimensions of the ImageView will be cropped off.

Also, set the android:layout_gravity attribute to center. This will center the image both vertically
and horizontally within the dimensions of the ImageView.

Listing 20.30 Updating the list item layout file (layout/
list_item_gallery.xml)
<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/item_image_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_height="120dp"
 android:layout_gravity="center"
 android:scaleType="centerCrop" />

</ImageView>

With the layout defined, you can start on the Kotlin code. As you may recall from Chapter 10, you will
need to create two Kotlin classes: one that will extend RecyclerView.ViewHolder and another that will
extend RecyclerView.Adapter.

First, you will create PhotoViewHolder, which extends RecyclerView.ViewHolder. It will
be responsible for holding onto an instance of the view for the layout you just created and
binding a GalleryItem to that view. Next, you will create PhotoListAdapter, which extends
RecyclerView.Adapter. It will manage the communication between the RecyclerView and the
backing data, providing PhotoViewHolder instances to the RecyclerView and binding those instances
with a GalleryItem at the correct position.

Chapter 20 Making Network Requests and Displaying Images

430

Let’s get started. Create a new file named PhotoListAdapter.kt. Define a PhotoViewHolder class
in your new file. It should take in a ListItemGalleryBinding as a constructor parameter and have a
bind(galleryItem: GalleryItem) function to update itself with the data from a GalleryItem. You
will fill out the body of this function shortly.

Listing 20.31 Adding a ViewHolder implementation (PhotoListAdapter.kt)
class PhotoViewHolder(
 private val binding: ListItemGalleryBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(galleryItem: GalleryItem) {
 // TODO
 }
}

Next, add a RecyclerView.Adapter to provide PhotoViewHolders as needed, based on a list of
GalleryItems.

Listing 20.32 Adding a RecyclerView.Adapter implementation
(PhotoListAdapter.kt)
class PhotoViewHolder(
 private val binding: ListItemGalleryBinding
) : RecyclerView.ViewHolder(binding.root) {
 ...
}

class PhotoListAdapter(
 private val galleryItems: List<GalleryItem>
) : RecyclerView.Adapter<PhotoViewHolder>() {
 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
): PhotoViewHolder {
 val inflater = LayoutInflater.from(parent.context)
 val binding = ListItemGalleryBinding.inflate(inflater, parent, false)
 return PhotoViewHolder(binding)
 }

 override fun onBindViewHolder(holder: PhotoViewHolder, position: Int) {
 val item = galleryItems[position]
 holder.bind(item)
 }

 override fun getItemCount() = galleryItems.size
}

Displaying images

431

Now that you have the appropriate nuts and bolts in place for RecyclerView, attach an adapter with
updated gallery item data when the StateFlow emits a new value.

Listing 20.33 Adding an adapter to the recycler view when data is available or
changed (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 photoGalleryViewModel.galleryItems.collect { items ->
 Log.d(TAG, "Response received: $items")
 binding.photoGrid.adapter = PhotoListAdapter(items)
 }
 }
 }
 }
 ...
}

Displaying images
All the infrastructure is in place to display the images. Unfortunately, you cannot reuse your code from
CriminalIntent to display the images this time. For starters, the images are not saved to the device –
they will be coming from the internet.

Also, it is more important than ever to efficiently perform this work. You are no longer displaying a
single image, like you did in CriminalIntent. This time, you are displaying more than 20. And if the
user scrolls down the grid, you will need to load dozens more. This will lead to a significant amount of
computing power and memory usage for a seemingly straightforward task. So you need to accomplish
as much of that work as possible off the UI thread, because the UI needs to be responsive even while
loading all the images.

Efficient image loading is a hard problem. You need to worry about network connections, juggling
images across threads, caching images, resizing images to fit their containers, canceling requests when
images are no longer needed, and much more. Still, if you wanted to, you could manually write the
image loading code you need. In fact, in previous editions of this book, we dedicated an entire chapter
to accomplishing this task.

But you should not write this code yourself if you do not have to. And – thanks to modern Android
tooling – you do not.

Today, just as there are many libraries for parsing JSON or performing network requests, there are
many libraries to help you download and display images on Android. Commonly used ones include
Picasso (which is also from Square) and Glide.

In PhotoGallery, you will use Coil, originally developed at Instacart. Coil leverages all the convenient
features of the modern Kotlin language and integrates seamlessly with coroutines to manage
performing work in the background.

Chapter 20 Making Network Requests and Displaying Images

432

To include Coil as a dependency, add it to app/build.gradle.

Listing 20.34 Adding Coil (app/build.gradle)
...
dependencies {
 ...
 implementation 'com.squareup.retrofit2:converter-moshi:2.9.0'
 implementation 'io.coil-kt:coil:2.0.0-rc02'
 testImplementation 'junit:junit:4.13.2'
 ...
}

Do not forget to sync your Gradle files.

Coil is a highly customizable library, but the basic usage is simple: When binding data to the
PhotoViewHolder, call the load() extension function that Coil provides for the ImageView. Pass in the
url property from the GalleryItem, and Coil will handle the rest.

Listing 20.35 Loading the image (PhotoListAdapter.kt)
class PhotoViewHolder(
 private val binding: ListItemGalleryBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(galleryItem: GalleryItem) {
 // TODO
 binding.itemImageView.load(galleryItem.url)
 }
}
...

Displaying images

433

That is it! Run PhotoGallery and admire the interesting photos it displays (Figure 20.11):

Figure 20.11 Interestingness

Coil also has some fun features that go beyond the basics. You can automatically crop images into a
circle. You can cross-fade them as they come in from the network. You can also display a placeholder
image while the real image is being downloaded from the internet.

Chapter 20 Making Network Requests and Displaying Images

434

All these customizations can be configured within a lambda expression that is an optional parameter
on the load() function you just used. To see how this works, add a placeholder image so your users do
not have to look at a blank screen while they wait for photos to load. Find bill_up_close.png in the
solutions file (www.bignerdranch.com/android-5e-solutions) and put it in res/drawable. Use it as
a placeholder while images download from Flickr.

Listing 20.36 Loading the image (PhotoListAdapter.kt)
class PhotoViewHolder(
 private val binding: ListItemGalleryBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(galleryItem: GalleryItem) {
 binding.itemImageView.load(galleryItem.url) {
 placeholder(R.drawable.bill_up_close)
 }
 }
}
...

Run your app again and watch for the placeholder image to fill the recycler view and then disappear as
the images from Flickr arrive (Figure 20.12).

Figure 20.12 A Billsplosion

https://www.bignerdranch.com/android-5e-solutions

For the More Curious: Managing Dependencies

435

For the More Curious: Managing Dependencies
PhotoRepository provides a layer of abstraction over the source of Flickr photo metadata. Other
components (such as PhotoGalleryFragment) use this abstraction to fetch Flickr data without
worrying about where the data is coming from.

PhotoRepository itself does not know how to download JSON data from Flickr. Instead,
PhotoRepository relies on FlickrApi to know the endpoint URL, to connect to that endpoint,
and to perform the actual work of downloading the JSON data. PhotoRepository is said to have a
dependency on FlickrApi.

You are initializing FlickrApi inside the PhotoRepository init block:

 class PhotoRepository {
 ...
 init {
 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://api.flickr.com/")
 .addConverterFactory(MoshiConverterFactory.create())
 .build()
 flickrApi = retrofit.create()
 }
 ...
 }

This works well for a simple application, but there are a few potential issues to consider.

First, it is difficult to unit test PhotoRepository. Recall from Chapter 6 that the goal of a unit
test is to verify the behavior of a class and its interactions with other classes. To properly unit test
PhotoRepository, you need to isolate it from the real FlickrApi. But this is a difficult – if not
impossible – task, because FlickrApi is initialized inside the PhotoRepository init block.

Hence, there is no way to provide a mock instance of FlickrApi to PhotoRepository for testing
purposes. This is problematic, because any test you run against fetchPhotos() will result in a network
request. The success of your tests would be dependent on network state and the availability of the
Flickr back-end API at the time of running the test.

Another issue is that FlickrApi is tedious to instantiate. You must build and configure an instance
of Retrofit before you can build an instance of FlickrApi. This implementation requires you to
duplicate five lines of Retrofit configuration code anywhere you want to create a FlickrApi instance.

Finally, creating a new instance of FlickrApi everywhere you want to use it results in unnecessary
object creation. Object creation is expensive relative to the scarce resources available on a mobile
device. Whenever practical, you should share instances of a class across your app and avoid needless
object allocation. FlickrApi is a perfect candidate for sharing, since there is no variable instance state.

Chapter 20 Making Network Requests and Displaying Images

436

Dependency injection (or DI) is a design pattern that addresses these issues by centralizing the logic
for creating dependencies, such as FlickrApi, and supplying the dependencies to the classes that
need them. By applying DI to PhotoGallery, you could easily pass an instance of FlickrApi into
PhotoRepository each time a new instance of PhotoRepository was constructed. Using DI would
allow you to:

• encapsulate the initialization logic of FlickrApi into a common place outside of
PhotoRepository

• use a singleton instance of FlickrApi throughout the app

• substitute a mock version of FlickrApi when unit testing

Applying the DI pattern to PhotoRepository might look something like this:

 class PhotoRepository(private val flickrApi: FlickrApi) {
 suspend fun fetchPhotos(): List<GalleryItem> =
 flickrApi.fetchPhotos().photos.galleryItems
 }

Note that DI does not enforce the singleton pattern for all dependencies. PhotoRepository is passed an
instance of FlickrApi on construction. This mechanism for constructing PhotoRepository gives you
the flexibility to provide a new instance or a shared instance of FlickrApi based on your use case.

DI is a broad topic with many facets that extend well beyond Android. This section just scratches the
surface. There are entire books dedicated to the concept of DI and many libraries to make DI easier
to implement. If you want to use DI in your app, you should consider using one of these libraries. It
will help guide you through the process of DI and reduce the amount of code you need to write to
implement the pattern.

At the time of this writing, Dagger 2 and its companion Hilt are the official Google-recommended
libraries for implementing DI on Android. You can find detailed documentation, code samples, and
tutorials about DI on Android at dagger.dev/hilt.

Challenge: Paging
By default, getList returns one page of 100 results. There is an additional parameter you can use
called page that will let you return page two, page three, and so on.

For this challenge, research the Jetpack Paging Library (developer.android.com/topic/libraries/
architecture/paging) and use it to implement paging for PhotoGallery. This library provides a
framework for loading your app’s data when it is needed. While you could implement this functionality
manually, the paging library will be less work and less prone to error.

https://dagger.dev/hilt/
https://developer.android.com/topic/libraries/architecture/paging
https://developer.android.com/topic/libraries/architecture/paging

437

21
SearchView and DataStore

Your next task with PhotoGallery is to search photos on Flickr. You will learn how to integrate search
into your app using SearchView. SearchView is an action view class – a view that can be embedded
right in your app bar. You will also learn how to easily store data to the device’s filesystem using the
AndroidX DataStore library.

By the end of this chapter, the user will be able to press the SearchView, type in a query, and submit it.
Submitting the query will send the query string to Flickr’s search API and populate the RecyclerView
with the search results (Figure 21.1). The query string will also be persisted to the filesystem. This
means the user’s last query will be accessible across restarts of the app and even the device.

Figure 21.1 App preview

Chapter 21 SearchView and DataStore

438

Searching Flickr
Let’s begin with the Flickr side of things. To search Flickr, you call the flickr.photos.search
method. Here is what a GET request to search for the text “cat” looks like:

 https://api.flickr.com/services/rest/?method=flickr.photos.search
 &api_key=xxx&format=json&nojsoncallback=1&extras=url_s&safe_search=1&text=cat

The method is set to flickr.photos.search. The text parameter is set to whatever string you are
searching for (“cat,” in this case). Setting safesearch to 1 filters potentially offensive results from the
search data sent back.

Some of the parameter-value pairs, such as format=json, are constant across both the
flickr.photos.search and flickr.interestingness.getList request URLs. You are going to
abstract these shared parameter-value pairs out into an interceptor.

An interceptor does what you might expect, based on the name – it intercepts a request or response and
allows you to manipulate the contents or take some action before the request or response completes.
The Interceptor interface is a part of the OkHttp library, which – as you might remember from
Chapter 20 – is the library actually responsible for performing the network requests for Retrofit.

Create a new Interceptor class named PhotoInterceptor in your api folder. Override
intercept(chain) to access a request, add the shared parameter-value pairs to it, and overwrite the
original URL with the newly built URL. (Do not neglect to include your API key, which you created in
Chapter 20, in place of yourApiKeyHere. You can copy it from api/FlickrApi.kt.)

Listing 21.1 Adding an interceptor to insert URL constants
(api/PhotoInterceptor.kt)
private const val API_KEY = "yourApiKeyHere"

class PhotoInterceptor : Interceptor {
 override fun intercept(chain: Interceptor.Chain): Response {
 val originalRequest: Request = chain.request()

 val newUrl: HttpUrl = originalRequest.url.newBuilder()
 .addQueryParameter("api_key", API_KEY)
 .addQueryParameter("format", "json")
 .addQueryParameter("nojsoncallback", "1")
 .addQueryParameter("extras", "url_s")
 .addQueryParameter("safesearch", "1")
 .build()

 val newRequest: Request = originalRequest.newBuilder()
 .url(newUrl)
 .build()

 return chain.proceed(newRequest)
 }
}

Searching Flickr

439

Android Studio presents you with multiple options when importing Request and Response. Select the
okhttp3 options for both.

Here, you call chain.request() to access the original request. The originalRequest.url property
contains the original URL from the request, and you use HttpUrl.Builder to add the query parameters
to it. HttpUrl.Builder creates a new Request based on the original request and overwrites the original
URL with the new one.

Finally, you call chain.proceed(newRequest) to produce a Response. If you did not call
chain.proceed(…), the network request would not happen.

Now, open PhotoRepository.kt and add the interceptor to your Retrofit configuration. Create an
OkHttpClient instance and add PhotoInterceptor as an interceptor. Then set the newly configured
client on your Retrofit instance. This will replace the default client that was being used; Retrofit will
now use the client you provided and apply PhotoInterceptor.intercept(…) to any requests that are
made.

Listing 21.2 Adding an interceptor to your Retrofit configuration
(PhotoRepository.kt)
class PhotoRepository {
 private val flickrApi: FlickrApi

 init {
 val okHttpClient = OkHttpClient.Builder()
 .addInterceptor(PhotoInterceptor())
 .build()

 val retrofit: Retrofit = Retrofit.Builder()
 .baseUrl("https://api.flickr.com/")
 .addConverterFactory(MoshiConverterFactory.create())
 .client(okHttpClient)
 .build()
 flickrApi = retrofit.create()
 }
 ...
}

Chapter 21 SearchView and DataStore

440

You no longer need the flickr.interestingness.getList URL specified in FlickrApi. Clean
that up and, instead, add a searchPhotos() function to define a search request for your Retrofit API
configuration.

Listing 21.3 Adding a search function to FlickrApi (api/FlickrApi.kt)
private const val API_KEY = "yourApiKeyHere"

interface FlickrApi {
 @GET(
 "services/rest/?method=flickr.interestingness.getList" +
 "&api_key=$API_KEY" +
 "&format=json" +
 "&nojsoncallback=1" +
 "&extras=url_s"
)
 @GET("services/rest/?method=flickr.interestingness.getList")
 suspend fun fetchPhotos(): FlickrResponse

 @GET("services/rest?method=flickr.photos.search")
 suspend fun searchPhotos(@Query("text") query: String): FlickrResponse
}

The @Query annotation allows you to dynamically append a query parameter appended to the URL.
Here you append a query parameter named text. The value assigned to text depends on the argument
passed into searchPhotos(String). For example, calling searchPhotos("robot") would add
text=robot to the URL.

Add a search function to PhotoRepository to wrap the newly added FlickrApi.searchPhotos
(String) function.

Listing 21.4 Adding a search function to PhotoRepository
(PhotoRepository.kt)
class PhotoRepository {
 ...
 suspend fun fetchPhotos(): List<GalleryItem> =
 flickrApi.fetchPhotos().photos.galleryItems

 suspend fun searchPhotos(query: String): List<GalleryItem> =
 flickrApi.searchPhotos(query).photos.galleryItems
}

Searching Flickr

441

Finally, update PhotoGalleryViewModel to kick off a Flickr search. For now, hardcode the search term
to be “planets.” Hardcoding the query allows you to test your new search code even though you have
not yet provided a way to enter a query through the UI. While you are there, delete the debugging log
statement. You do not need it anymore.

Listing 21.5 Kicking off a search request (PhotoGalleryViewModel.kt)
class PhotoGalleryViewModel : ViewModel() {
 ...
 init {
 viewModelScope.launch {
 try {
 val items = photoRepository.fetchPhotos() searchPhotos("planets")
 Log.d(TAG, "Items received: $items")
 _galleryItems.value = items
 } catch (ex: Exception) {
 Log.e(TAG, "Failed to fetch gallery items", ex)
 }
 }
 }
}

While the search request URL differs from the one you used to request interesting photos, the format
of the JSON data returned remains the same. This is good news, because it means you can use the same
Moshi configuration and model mapping code you already wrote.

Run PhotoGallery to ensure your search query works correctly. Hopefully, you will see a cool photo
or two of Earth. (If you do not get results obviously related to planets, it does not mean your query is
not working. Try a different search term – such as “bicycle” or “llama” – and run your app again to
confirm that you are indeed seeing search results.)

Chapter 21 SearchView and DataStore

442

Using SearchView
Now that PhotoRepository supports searching, it is time to add a way for the user to enter a query and
initiate a search. Do this by adding a SearchView.

As we said at the beginning of the chapter, SearchView is an action view, meaning your entire search
interface can live in your application’s app bar.

Create a new menu XML file for PhotoGalleryFragment called res/menu/
fragment_photo_gallery.xml. This file will specify the items that should appear in the app bar. (See
Chapter 15 for detailed steps on adding the menu XML file if you need a reminder.)

Listing 21.6 Adding a menu XML file
(res/menu/fragment_photo_gallery.xml)

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item android:id="@+id/menu_item_search"
 android:title="@string/search"
 app:actionViewClass="androidx.appcompat.widget.SearchView"
 app:showAsAction="ifRoom" />

 <item android:id="@+id/menu_item_clear"
 android:title="@string/clear_search"
 app:showAsAction="never" />
</menu>

You will see a couple of errors in the new XML complaining that you have not yet defined the strings
you are referencing for the android:title attributes. Ignore those for now. You will fix them in a bit.

The first item entry in Listing 21.6 tells the app bar to display a SearchView by specifying the value
androidx.appcompat.widget.SearchView for the app:actionViewClass attribute. (Notice the usage
of the app namespace for the showAsAction and actionViewClass attributes. Refer back to Chapter 15
if you are not sure why this is used.)

The second item in Listing 21.6 will add a “Clear Search” option. This option will always display in
the overflow menu, because you set app:showAsAction to never. Later, you will configure this item so
that, when pressed, the user’s stored query will be erased from the disk.

Using SearchView

443

Now it is time to address the errors in your menu XML. Open res/values/strings.xml and add the
missing strings.

Listing 21.7 Adding search strings (res/values/strings.xml)
<resources>
 ...
 <string name="search">Search</string>
 <string name="clear_search">Clear Search</string>

</resources>

Finally, open PhotoGalleryFragment.kt. Add a call to setHasOptionsMenu(true) in onCreate(…)
to register the fragment to receive menu callbacks. Override onCreateOptionsMenu(…) and inflate the
menu XML file you created. If you forget to call setHasOptionsMenu(true) in onCreate(…), then
onCreateOptionsMenu(…) will never be called and your menu will not appear onscreen. Doing all this
will add the items listed in your menu XML to the app bar.

Listing 21.8 Overriding onCreateOptionsMenu(…)
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 private val photoGalleryViewModel: PhotoGalleryViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setHasOptionsMenu(true)
 }
 ...
 override fun onDestroyView() {
 ...
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 super.onCreateOptionsMenu(menu, inflater)
 inflater.inflate(R.menu.fragment_photo_gallery, menu)
 }
}

Chapter 21 SearchView and DataStore

444

Fire up PhotoGallery and see what the SearchView looks like. Pressing the search icon expands the
view to display a text box where you can enter a query (Figure 21.2).

Figure 21.2 SearchView collapsed and expanded

When the SearchView is expanded, an x icon appears on the right. Pressing the x one time clears out
what you typed. Pressing the x again collapses the SearchView back to a single search icon.

If you try submitting a query, it will not do anything yet. Not to worry. You will make your SearchView
more useful in just a moment.

Responding to SearchView user interactions

445

Responding to SearchView user interactions
When the user submits a query, your app should execute a search against the Flickr web service and
refresh the images the user sees with the search results. First, update PhotoGalleryViewModel to fire
off a network request and update the search results when the query changes. It does not make sense
to search for an empty string, so fall back to fetching the most interesting photos when the query is
empty. Since the code to make a network request is now appearing in two locations, extract it into its
own private function.

Listing 21.9 Searching in PhotoGalleryViewModel
(PhotoGalleryViewModel.kt)
class PhotoGalleryViewModel : ViewModel() {
 ...
 init {
 viewModelScope.launch {
 try {
 val items = photoRepository.searchPhotos("planets")
 val items = fetchGalleryItems("planets")

 _galleryItems.value = items
 } catch (ex: Exception) {
 Log.e(TAG, "Failed to fetch gallery items", ex)
 }
 }
 }

 fun setQuery(query: String) {
 viewModelScope.launch { _galleryItems.value = fetchGalleryItems(query) }
 }

 private suspend fun fetchGalleryItems(query: String): List<GalleryItem> {
 return if (query.isNotEmpty()) {
 photoRepository.searchPhotos(query)
 } else {
 photoRepository.fetchPhotos()
 }
 }
}

Chapter 21 SearchView and DataStore

446

Next, update PhotoGalleryFragment to use PhotoGalleryViewModel.setQuery() whenever the user
submits a new query through the SearchView. Fortunately, the SearchView.OnQueryTextListener
interface provides a way to receive a callback when a query is submitted.

Update onCreateOptionsMenu(…) to add a SearchView.OnQueryTextListener to your SearchView.

Listing 21.10 Logging SearchView.OnQueryTextListener events
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 super.onCreateOptionsMenu(menu, inflater)
 inflater.inflate(R.menu.fragment_photo_gallery, menu)

 val searchItem: MenuItem = menu.findItem(R.id.menu_item_search)
 val searchView = searchItem.actionView as? SearchView

 searchView?.setOnQueryTextListener(object : SearchView.OnQueryTextListener {
 override fun onQueryTextSubmit(query: String?): Boolean {
 Log.d(TAG, "QueryTextSubmit: $query")
 photoGalleryViewModel.setQuery(query ?: "")
 return true
 }

 override fun onQueryTextChange(newText: String?): Boolean {
 Log.d(TAG, "QueryTextChange: $newText")
 return false
 }
 })
 }
}

When importing SearchView, select the androidx.appcompat.widget.SearchView option from the
choices presented.

In onCreateOptionsMenu(…), you pull the MenuItem representing the search box from the menu and
store it in searchItem. Then you pull the SearchView object from searchItem using the actionView
property.

Once you have a reference to the SearchView, you are able to set a SearchView.OnQueryTextListener
using setOnQueryTextListener(…). You must override two functions in the
SearchView.OnQueryTextListener implementation: onQueryTextSubmit(String) and
onQueryTextChange(String).

The onQueryTextChange(String) callback is executed any time text in the SearchView text box
changes. This means that it is called every time a single character changes. You will not do anything
inside this callback for this app except log the input string and return false. Returning false indicates
to the system that your callback override did not handle the text change. This cues the system to
perform SearchView’s default action (which is to show relevant suggestions, if available).

The onQueryTextSubmit(String) callback is executed when the user submits a query. The query
the user submitted is passed as input. Returning true signifies to the system that the search request
has been handled. This callback is where you call into PhotoGalleryViewModel to trigger the photo
download for your search query.

Responding to SearchView user interactions

447

Run your app and submit a query. You should see log statements reflecting the execution of your
SearchView.OnQueryTextListener callback functions. You should also see the images displayed
change based on the search term you enter (Figure 21.3).

Figure 21.3 Working SearchView

Note that if you use the hardware keyboard to submit your search query on an emulator (versus the
emulator’s onscreen keyboard), you may see the search executed two times, one after the other. This is
because there is a small bug in SearchView. You can ignore this behavior; it is a side effect of using the
emulator and will not affect your app when it runs on a real Android device.

Chapter 21 SearchView and DataStore

448

Simple Persistence with DataStore
In your app, there will only be one active query at a time. PhotoGalleryViewModel persists the query
for the user’s perceived life of the fragment. But the query should also be persisted between restarts of
the app (even if the user turns off the device).

You will achieve this using the DataStore AndroidX library. DataStore is a library that helps you
interact with shared preferences, files stored on the filesystem that your app can use to store key-
value pairs. Any time the user submits a query, you will write the search term to shared preferences,
overwriting whatever query was there before. When the application first launches, you will pull the
stored query from shared preferences and use it to execute a Flickr search.

Shared preferences supports the same basic types that you have seen elsewhere throughout the
book: String, Int, Boolean, etc. It is built into the Android OS and has been available since the
first release. Prior to DataStore, it was common to access shared preferences directly, but DataStore
provides stronger guarantees around data consistency and improved APIs to access and store your
data asynchronously and on background threads. Naturally, it supports coroutines to perform this
asynchronous work.

In addition to interacting with shared preferences, DataStore also supports interacting with protocol
buffers for storing complex objects. Protocol buffers are fast and space efficient, but require some
additional setup and add some complexity to the code, so you will stick with shared preferences here.

Open app/build.gradle and add the DataStore dependency:

Listing 21.11 Adding your dependency (app/build.gradle)
...
dependencies {
 ...
 implementation 'io.coil-kt:coil:2.0.0-rc02'
 implementation 'androidx.datastore:datastore-preferences:1.0.0'
 ...
}

Do not forget to sync your Gradle file after you have made these changes.

In CriminalIntent, you used CrimeRepository to wrap your usage of the Room library. In
PhotoGallery, you are using PhotoRepository to wrap your usage of Retrofit. Similarly, you will
create a PreferencesRepository to wrap your usage of the DataStore library.

The DataStore library is built with Kotlin in mind, so it uses some more advanced features of Kotlin to
perform some neat tricks. Some of the setup you will do in PreferencesRepository may seem strange
compared to what you have seen so far. But do not worry, once you have completed the setup, using
PreferencesRepository will be straightforward. Similar to what you have seen with other libraries,
you will interact with the DataStore library through a class property – this time an instance of the
DataStore<Preferences> interface.

You will use a key any time you read or write the query value. DataStore’s method of defining keys is
a little unique. Rather than simple string keys, with DataStore you create keys using a function in the
library based on the type of value being stored.

The function name is prefixed with the type, so if you want to create a key to store a string, you call the
stringPreferencesKey() function. If you want to store an integer, you call the intPreferencesKey()
function.

Simple Persistence with DataStore

449

These functions still require a unique string as a parameter. You do not want to create
multiple instances of these keys, so you will keep a reference in the companion object for
PreferencesRepository.

Once you have the key defined, you can use it to access the stored query. DataStore exposes its
data through a coroutine Flow. You want to expose the stored query as a Flow<String>, so that
callers can easily access the latest stored query. You will map over the data property on your
DataStore<Preferences> property, extracting the value for the key. To prevent multiple emissions of
the same value on the Flow, use the distinctUntilChanged() function.

Make it all happen in a new PreferencesRepository.kt.

Listing 21.12 Accessing a stored query (PreferencesRepository.kt)
class PreferencesRepository(
 private val dataStore: DataStore<Preferences>
) {
 val storedQuery: Flow<String> = dataStore.data.map {
 it[SEARCH_QUERY_KEY] ?: ""
 }.distinctUntilChanged()

 companion object {
 private val SEARCH_QUERY_KEY = stringPreferencesKey("search_query")
 }
}

The DataStore library also uses coroutines to write values to the filesystem. By using the edit()
function on the data property, you have access to a lambda expression to make changes to the data.
All the changes in the lambda expression will be treated as a single transaction, so you can edit many
values in one write operation to disk. Using your key for the stored query, you can update it as the user
submits new queries.

Listing 21.13 Setting a stored query (PreferencesRepository.kt)
class PreferencesRepository(
 private val dataStore: DataStore<Preferences>
) {
 val storedQuery: Flow<String> = dataStore.data.map {
 it[SEARCH_QUERY_KEY] ?: ""
 }.distinctUntilChanged()

 suspend fun setStoredQuery(query: String) {
 dataStore.edit {
 it[SEARCH_QUERY_KEY] = query
 }
 }

 companion object {
 private val SEARCH_QUERY_KEY = stringPreferencesKey("search_query")
 }
}

Chapter 21 SearchView and DataStore

450

Your app only ever needs one instance of PreferencesRepository, which can be shared
across all other components. As you did with CrimeRepository, create a singleton instance
of PreferencesRepository within the companion object, passing in an instance of the
DataStore<Preferences> class.

Let the PreferenceDataStoreFactory class create the DataStore<Preferences> instance for you.
The only piece you need to provide is the File where your data will be saved. Do this by calling the
preferencesDataStoreFile() extension function on your Context, passing in the name of that File.

Also, since you do not want other classes creating instances of your PreferencesRepository, mark its
constructor as private.

Listing 21.14 Creating a singleton (PreferencesRepository.kt)
class PreferencesRepository private constructor(
 private val dataStore: DataStore<Preferences>
) {
 ...
 companion object {
 private val SEARCH_QUERY_KEY = stringPreferencesKey("search_query")
 private var INSTANCE: PreferencesRepository? = null

 fun initialize(context: Context) {
 if (INSTANCE == null) {
 val dataStore = PreferenceDataStoreFactory.create {
 context.preferencesDataStoreFile("settings")
 }

 INSTANCE = PreferencesRepository(dataStore)
 }
 }

 fun get(): PreferencesRepository {
 return INSTANCE ?: throw IllegalStateException(
 "PreferencesRepository must be initialized"
)
 }
 }
}

With the PreferencesRepository class set up, your next steps will repeat some of what you did with
CrimeRepository in CriminalIntent: subclassing the Application class and referencing the new
subclass in the manifest.

Simple Persistence with DataStore

451

Create a new class called PhotoGalleryApplication and have it extend the Application class.
Initialize the PreferencesRepository in the onCreate() method.

Listing 21.15 Creating PhotoGalleryApplication
(PhotoGalleryApplication.kt)
class PhotoGalleryApplication : Application() {
 override fun onCreate() {
 super.onCreate()
 PreferencesRepository.initialize(this)
 }
}

Now, register PhotoGalleryApplication in AndroidManifest.xml.

Listing 21.16 Registering PhotoGalleryApplication
(AndroidManifest.xml)

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.photogallery">

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:name=".PhotoGalleryApplication"
 android:allowBackup="true"
 ...>
 ...
 </application>

</manifest>

PreferencesRepository is your entire persistence engine for PhotoGallery. Now that you have a way
to easily store and access the user’s most recent query, update PhotoGalleryViewModel to read and
write the query from disk as necessary.

As in CriminalIntent, you will use the unidirectional data flow pattern to simplify the business logic.
Here in PhotoGallery, your source of state will be the data stored on the filesystem.

In CriminalIntent, the source of the state was slightly different. Yes, CriminalIntent did
load a crime from the database into CrimeDetailViewModel. But once that crime was
loaded in, CrimeDetailViewModel was free to mutate it as the user interacted with the UI.
CrimeDetailViewModel was the source of state.

Chapter 21 SearchView and DataStore

452

PhotoGalleryViewModel will not alter the search query. When taking in user input, it will simply
pass the query along to the PreferencesRepository. When sending the stream of data down to
PhotoGalleryFragment, PhotoGalleryViewModel will perform a network request using the latest
search query provided by PreferencesRepository and provide the gallery items through that stream.
The stream of data will still be flowing in one direction – you will just change the shape of that data
(Figure 21.4).

Figure 21.4 The flow of data in PhotoGallery

Simple Persistence with DataStore

453

Update PhotoGalleryViewModel to use the storedQuery.

Listing 21.17 Persisting the query (PhotoGalleryViewModel.kt)
class PhotoGalleryViewModel : ViewModel() {
 private val photoRepository = PhotoRepository()
 private val preferencesRepository = PreferencesRepository.get()
 ...
 init {
 viewModelScope.launch {
 preferencesRepository.storedQuery.collectLatest { storedQuery ->
 try {
 val items = fetchGalleryItems("planets" storedQuery)

 _galleryItems.value = items
 } catch (ex: Exception) {
 Log.e(TAG, "Failed to fetch gallery items", ex)
 }
 }
 }
 }

 fun setQuery(query: String) {
 viewModelScope.launch { _galleryItems.value = fetchGalleryItems(query) }
 viewModelScope.launch { preferencesRepository.setStoredQuery(query) }
 }
 ...
}

Since the user can submit many queries in the time that it takes to perform a single network request,
you will use collectLatest() instead of collect(). If your lambda expression is in the middle of
processing the last emission from a Flow and a new emission arrives, the current work will be canceled
and your lambda expression will restart, executing on the new emission.

This suits your use case well. You do not want to continue processing a network request for an
outdated search query if the user has submitted a new one.

Next, clear the stored query (set it to "") when the user selects the Clear Search item from the overflow
menu.

Listing 21.18 Clearing a stored query (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 ...
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 return when (item.itemId) {
 R.id.menu_item_clear -> {
 photoGalleryViewModel.setQuery("")
 true
 }
 else -> super.onOptionsItemSelected(item)
 }
 }
}

Chapter 21 SearchView and DataStore

454

Search should now work like a charm. Run PhotoGallery and try searching for something fun like
“unicycle.” See what results you get. Then fully exit the app using the Back button. Heck, even reboot
your phone. When you relaunch your app, you should see the results for the same search term.

Defining UI State
For a little bit of polish, pre-populate the search text box with the saved query when the user presses
the search icon to expand the search view.

Unfortunately, there is not a great way for you to access your stored query at the same time that you
initialize your search view. Since DataStore exposes its data asynchronously, there is no good way to
access its value during the creation of a fragment. In Chapter 12, you read from your on-disk databases
asynchronously to avoid blocking the main thread. Because DataStore is backed by on-disk storage,
these same performance concerns apply – and mean that you need coroutines once more.

You have already seen how to send asynchronous values to your UI by leveraging StateFlow
and ViewModel. If you wanted to, you could create a StateFlow<String> property in
PhotoGalleryViewModel to track the search query. This would work, but you would then have two
flows to collect from and juggle in your PhotoGalleryFragment. This might be OK if you only had
those two flows, but as your application grows, having more and more flows becomes difficult to
maintain.

Instead, you can combine the list of photos and the search query into a single value that gets sent to
PhotoGalleryFragment. You can do this by defining a new data class to track your UI state. UI state
objects contain all the data required to show a section or the entirety of a screen in your app.

The two pieces of data that describe what is being displayed in PhotoGalleryFragment are
the list of gallery items and the value in the search text box. Create a new data class named
PhotoGalleryUiState at the bottom of PhotoGalleryViewModel.kt. It will hold those two pieces of
data.

Listing 21.19 Creating PhotoGalleryUiState (PhotoGalleryViewModel.kt)
class PhotoGalleryViewModel : ViewModel() {
 ...
}

data class PhotoGalleryUiState(
 val images: List<GalleryItem> = listOf(),
 val query: String = "",
)

Defining UI State

455

Next, update the PhotoGalleryViewModel to expose a StateFlow<PhotoGalleryUiState> instead of a
StateFlow<List<GalleryItem>>.

Listing 21.20 Exposing the search term from PhotoGalleryViewModel
(PhotoGalleryViewModel.kt)
class PhotoGalleryViewModel : ViewModel() {
 ...
 private val _galleryItems: MutableStateFlow<List<GalleryItem>> =
 MutableStateFlow(listOf())
 val galleryItems: StateFlow<List<GalleryItem>>
 get() = _galleryItems.asStateFlow()
 private val _uiState: MutableStateFlow<PhotoGalleryUiState> =
 MutableStateFlow(PhotoGalleryUiState())
 val uiState: StateFlow<PhotoGalleryUiState>
 get() = _uiState.asStateFlow()

 init {
 viewModelScope.launch {
 preferencesRepository.storedQuery.collectLatest { storedQuery ->
 try {
 val items = fetchGalleryItems(storedQuery)

 _galleryItems.value = items
 _uiState.update { oldState ->
 oldState.copy(
 images = items,
 query = storedQuery
)
 }
 } catch (ex: Exception) {
 Log.e(TAG, "Failed to fetch gallery items", ex)
 }
 }
 }
 }
 ...
}
...

Chapter 21 SearchView and DataStore

456

To update the SearchView with the saved query, you will have to maintain a reference to it. Add a
class property to PhotoGalleryFragment for that reference. Similar to your _binding property, you do
not want to hold a reference to this new property longer than needed. So – just as you de-referenced
the _binding property in the onDestroyView() function – you will de-reference this new property in
onDestroyOptionsMenu().

Listing 21.21 Holding a reference to your SearchView
(PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 private var searchView: SearchView? = null

 private val photoGalleryViewModel: PhotoGalleryViewModel by viewModels()
 ...
 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 ...
 val searchItem: MenuItem = menu.findItem(R.id.menu_item_search)
 val searchView = searchItem.actionView as? SearchView
 pollingMenuItem = menu.findItem(R.id.menu_item_toggle_polling)
 ...
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 ...
 }

 override fun onDestroyOptionsMenu() {
 super.onDestroyOptionsMenu()
 searchView = null
 }
}

Defining UI State

457

Now, update PhotoGalleryFragment to use the new StateFlow<PhotoGalleryUiState>. Set your
RecyclerView.Adapter like before and call the setQuery() function on the search view to populate it
with your latest query.

Listing 21.22 Pre-populating SearchView (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 photoGalleryViewModel.galleryItems.collect { items ->
 binding.photoGrid.adapter = PhotoListAdapter(items)
 }
 photoGalleryViewModel.uiState.collect { state ->
 binding.photoGrid.adapter = PhotoListAdapter(state.images)
 searchView?.setQuery(state.query, false)
 }
 }
 }
 }
 ...
}

Run your app and play around with submitting a few searches. Revel at the polish your last bit of code
added. Of course, there is always more polish you could add…

Chapter 21 SearchView and DataStore

458

Challenge: Polishing Your App Some More
With your search feature now working, you might notice little defects or shortcomings of your
implementation. Modern, high-quality apps do many subtle things to improve the user experience when
searching for content. See if you can implement a few of these changes:

• As soon as a query is submitted, hide the soft keyboard.

• While the network request is executing, display a loading indicator (indeterminate progress bar).

• Your current search implementation has a slight problem: If you start typing a new query while a
search is ongoing, it will be reset when the search finishes. Let the user start typing in a new query
(or disable text input on the SearchView entirely) while a query is executing.

• Many apps show search suggestions or previous searches to help users enter queries faster. Keep
track of queries that have been submitted previously, and show them onscreen when the user is
typing into the SearchView. (You will need a second RecyclerView) to show search suggestions
which will appear in place of the gallery when the search field is active.)

Some of these tasks can be accomplished on their own. Others might require you to make changes to
the state of your UI and how you represent that data.

459

22
WorkManager

PhotoGallery can now download interesting images from Flickr, find images based on a user’s search
query, and remember the query when the user leaves the app. In this chapter, you will add functionality
to poll Flickr and determine whether there are new photos the user has not seen yet.

This work will happen in the background, meaning it will execute even if the user is not actively using
your app. If there are new photos, the app will display a notification prompting the user to return to the
app and see the new content.

Chapter 22 WorkManager

460

Tools from the Jetpack WorkManager architecture component library will handle the periodic work
of checking Flickr for new photos. You will create a Worker class to perform the actual work, then
schedule it to execute on an interval. When new photos are found, you will post a Notification to the
user with the NotificationManager (Figure 22.1).

Figure 22.1 The end result

Creating a Worker

461

Creating a Worker
The Worker class is where you will put the logic you want to perform in the background. Once your
worker is in place, you will create a WorkRequest that tells the system when you would like your work
to execute.

Before you can add your worker, you first need to add the appropriate dependency in app/
build.gradle.

Listing 22.1 Adding the WorkManager dependency (app/build.gradle)
dependencies {
 ...
 implementation "androidx.datastore:datastore-preferences:1.0.0"
 implementation 'androidx.work:work-runtime-ktx:2.7.1'
 ...
}

Do not forget to sync your files after you add the dependency.

With your new library in place, set up your Worker. Like several of the libraries you have used so
far, the WorkManager library integrates with coroutines. Create a new class called PollWorker that
extends the CoroutineWorker base class. Your PollWorker will need two parameters, a Context and a
WorkerParameters object. Both of these will be passed to the superclass constructor. For now, override
the doWork() function and log a message to the console.

Listing 22.2 Creating the worker (PollWorker.kt)

private const val TAG = "PollWorker"

class PollWorker(
 private val context: Context,
 workerParameters: WorkerParameters
) : CoroutineWorker(context, workerParameters) {
 override suspend fun doWork(): Result {
 Log.i(TAG, "Work request triggered")
 return Result.success()
 }
}

The doWork() function is called from a background thread, so you can do any long-running tasks you
need there. The return values for the function indicate the status of your operation. In this case, you
return success, since the function just prints a log to the console.

doWork() can return a failure result if the work cannot be completed. In that case, the work request
would not run again. It can also return a retry result if a temporary error was encountered and you want
the work to run again in the future.

The PollWorker only knows how to execute the background work. You need another component to
schedule the work.

Chapter 22 WorkManager

462

Scheduling Work
To schedule a Worker to execute, you need a WorkRequest. The WorkRequest class itself is abstract, so
you need to use one of its subclasses depending on the type of work you need to execute. If you have
something that only needs to execute once, use a OneTimeWorkRequest. If your work is something that
must execute periodically, use a PeriodicWorkRequest.

For now, you are going to use the OneTimeWorkRequest. This will let you learn more about creating
and controlling the requests and verify that your PollWorker is functioning correctly. Later you will
update your app to use a PeriodicWorkRequest.

Open PhotoGalleryFragment.kt, create a work request, and schedule it for execution.

Listing 22.3 Scheduling a WorkRequest (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setHasOptionsMenu(true)

 val workRequest = OneTimeWorkRequest
 .Builder(PollWorker::class.java)
 .build()
 WorkManager.getInstance(requireContext())
 .enqueue(workRequest)
 }
 ...
}

The OneTimeWorkRequest class uses a builder to construct an instance. You provide the Worker class
to the builder that the work request will fire. Once your work request is ready, you schedule it with
the WorkManager class. You call the getInstance(Context) function to access the WorkManager, then
call enqueue(…) with the work request as a parameter. This will schedule your work request to execute
based on the request type and any constraints you add to the request.

Run your app and search for PollWorker in Logcat. You should see your log statement soon after your
app starts up:

 19:58:39.415 I/PollWorker: Work request triggered
 19:58:39.420 I/WM-WorkerWrapper: Worker result SUCCESS for Work [id=896...

Scheduling Work

463

In many cases, the work you want to execute in the background is tied to the network. Maybe you
are polling for new information the user has not seen yet, or you are pushing updates from the local
database to save them on a remote server. While this work is important, you should make sure you are
not needlessly using costly data. The best time for these requests is when the device is connected to an
unmetered network.

You can use the Constraints class to add this information to your work requests. With this class, you
can require that certain conditions be met before your work can execute. Requiring a certain network
type is one case. You can also require conditions like sufficient battery charge or that the device is
charging.

Edit your OneTimeWorkRequest in PhotoGalleryFragment to add constraints to the request.

Listing 22.4 Adding work constraints (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setHasOptionsMenu(true)

 val constraints = Constraints.Builder()
 .setRequiredNetworkType(NetworkType.UNMETERED)
 .build()
 val workRequest = OneTimeWorkRequest
 .Builder(PollWorker::class.java)
 .setConstraints(constraints)
 .build()
 WorkManager.getInstance(requireContext())
 .enqueue(workRequest)
 }
 ...
}

Be sure to choose the import for androidx.work.Constraints.

Similar to the work request, the Constraints object uses a builder to configure a new instance. In this
case, you specify that the device must be on an unmetered network for the work request to execute.

To test this functionality, you will need to simulate different network types on your emulator. By
default, an emulator connects to a simulated WiFi network. Since WiFi is an unmetered network, if you
run your app now, with the constraints in place, you should see the log message from your PollWorker.

Chapter 22 WorkManager

464

To verify that the work request does not execute when the device is on a metered network, you
will need to modify the network settings for your emulator. Quit PhotoGallery and pull down on
the notification shade to expose the device’s Quick Settings. Click the Internet icon. Within the
internet quick settings, toggle off the WiFi option (Figure 22.2). This will force the emulator to use its
(simulated) cellular network, which is metered.

Figure 22.2 Turning off WiFi

With the WiFi disabled, rerun PhotoGallery from Android Studio and verify that the log from
PollWorker does not appear. Before moving on, return to the Quick Settings and re-enable the WiFi
network.

Checking for New Photos

465

Checking for New Photos
Now that your worker is executing, you can add the logic to check for new photos. There are a couple
pieces needed for this functionality. You will first need a way to save the ID of the most recent photo
the user has seen, then you will need to update your worker class to pull the new photos and compare
the stored ID with the newest one from the server.

The first change you will make is to update PreferencesRepository to store and retrieve the latest
photo ID from shared preferences.

Listing 22.5 Saving the latest photo ID (PreferencesRepository.kt)
class PreferencesRepository private constructor(
 private val dataStore: DataStore<Preferences>
) {
 ...
 suspend fun setStoredQuery(query: String) {
 dataStore.edit {
 it[SEARCH_QUERY_KEY] = query
 }
 }

 val lastResultId: Flow<String> = dataStore.data.map {
 it[PREF_LAST_RESULT_ID] ?: ""
 }.distinctUntilChanged()

 suspend fun setLastResultId(lastResultId: String) {
 dataStore.edit {
 it[PREF_LAST_RESULT_ID] = lastResultId
 }
 }

 companion object {
 private val SEARCH_QUERY_KEY = stringPreferencesKey("search_query")
 private val PREF_LAST_RESULT_ID = stringPreferencesKey("lastResultId")
 private var INSTANCE: PreferencesRepository? = null
 ...
 }
}

Chapter 22 WorkManager

466

With your preferences set up, you can start the work in PollWorker. You will need access to both
PreferencesRepository and PhotoRepository to perform your work. You can get a single value out
of each of the Flow properties on PreferencesRepository by calling the first() function on them.
If the user has not searched for anything yet, you do not have a search term to look for new content. In
that case, you can finish your work early.

Listing 22.6 Starting your work (PollWorker.kt)
class PollWorker(
 private val context: Context,
 workerParameters: WorkerParameters
) : CoroutineWorker(context, workerParameters) {
 override suspend fun doWork(): Result {
 Log.i(TAG, "Work request triggered")
 val preferencesRepository = PreferencesRepository.get()
 val photoRepository = PhotoRepository()

 val query = preferencesRepository.storedQuery.first()
 val lastId = preferencesRepository.lastResultId.first()

 if (query.isEmpty()) {
 Log.i(TAG, "No saved query, finishing early.")
 return Result.success()
 }

 return Result.success()
 }
}

Checking for New Photos

467

When your user does have a stored query, you want to try to make a request to get the gallery items for
that query. If the network request fails for any reason, have the PollWorker return Result.failure().
It is OK to fail sometimes. There are many reasons the network request could fail, and in most
situations, there is nothing you can do to fix it.

If the network request does succeed, then you want to check whether the most recent photo ID matches
the one you have saved. If they do not match, then you will show the user a notification. Whether or
not the photo IDs match, you will return Result.success().

Listing 22.7 Getting the work done (PollWorker.kt)
class PollWorker(
 private val context: Context,
 workerParameters: WorkerParameters
) : CoroutineWorker(context, workerParameters) {
 override suspend fun doWork(): Result {
 val preferencesRepository = PreferencesRepository.get()
 val photoRepository = PhotoRepository()

 val query = preferencesRepository.storedQuery.first()
 val lastId = preferencesRepository.lastResultId.first()

 if (query.isEmpty()) {
 Log.i(TAG, "No saved query, finishing early.")
 return Result.success()
 }

 return Result.success()
 return try {
 val items = photoRepository.searchPhotos(query)

 if (items.isNotEmpty()) {
 val newResultId = items.first().id
 if (newResultId == lastId) {
 Log.i(TAG, "Still have the same result: $newResultId")
 } else {
 Log.i(TAG, "Got a new result: $newResultId")
 preferencesRepository.setLastResultId(newResultId)
 }
 }

 Result.success()
 } catch (ex: Exception) {
 Log.e(TAG, "Background update failed", ex)
 Result.failure()
 }
 }
}

Run your app on a device or emulator. The first time you run it, there will not be a last result ID saved
in QueryPreferences, so you should see the log statement indicating that PollWorker found a new
result. If you quickly run the app again, you should see that your worker finds the same ID.

 20:08:05.930 I/PollWorker: Got a new result: 51873395252
 20:08:05.987 I/WM-WorkerWrapper: Worker result SUCCESS for Work [id=988...
 20:08:35.189 I/PollWorker: Still have the same result: 51873395252
 20:08:35.192 I/WM-WorkerWrapper: Worker result SUCCESS for Work [id=88b...

Chapter 22 WorkManager

468

Notifying the User
Your worker is now running and checking for new photos in the background, but the user does not
know anything about it. When PhotoGallery finds new photos the user has not seen yet, it should
prompt the user to open the app and see the new content.

When your app needs to communicate something to the user, the proper tool is almost always a
notification. Notifications are items that appear in the notifications drawer, which the user can access
by dragging down from the top of the screen.

Before you can create notifications on Android devices running Android Oreo (API level 26) and
higher, you must create a Channel. A Channel categorizes notifications and gives the user fine-grained
control over notification preferences. Rather than only having the option to turn off notifications for
your entire app, the user can choose to turn off certain categories of notifications within your app. The
user can also customize muting, vibration, and other notification settings channel by channel.

For example, suppose you wanted PhotoGallery to send three categories of notifications when new
cute animal pictures were fetched: New Kitten Pics, New Puppy Pics, and Totes Adorbs! (for all
adorable animal pictures, regardless of species). You would create three channels, one for each of the
notification categories, and the user could configure them independently (Figure 22.3).

Figure 22.3 Fine-grained notification configuration for channels

Notifying the User

469

Your application must create at least one channel to support Android Oreo and higher. There is no
documented upper limit on the number of channels an app can create. But be reasonable – keep the
number small and meaningful for the user. Remember that the goal is to allow the user to configure
notifications in your app. Adding too many channels would ultimately confuse the user and make for a
poor user experience.

Update PhotoGalleryApplication to create and add a channel if the device is running Android Oreo
or higher.

Listing 22.8 Creating a notification channel (PhotoGalleryApplication.kt)
const val NOTIFICATION_CHANNEL_ID = "flickr_poll"

class PhotoGalleryApplication : Application() {
 override fun onCreate() {
 super.onCreate()
 PreferencesRepository.initialize(this)

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 val name = getString(R.string.notification_channel_name)
 val importance = NotificationManager.IMPORTANCE_DEFAULT
 val channel =
 NotificationChannel(NOTIFICATION_CHANNEL_ID, name, importance)
 val notificationManager: NotificationManager =
 getSystemService(NotificationManager::class.java)
 notificationManager.createNotificationChannel(channel)
 }
 }
}

The channel name is a user-facing string, displayed in the notification settings screen for your app
(shown in Figure 22.3). Add a string resource to res/values/strings.xml to store the channel name.
While you are there, go ahead and add the other strings needed for your notification.

Listing 22.9 Adding strings (res/values/strings.xml)
<resources>
 <string name="clear_search">Clear Search</string>
 <string name="notification_channel_name">Background updates</string>
 <string name="new_pictures_title">New PhotoGallery Pictures</string>
 <string name="new_pictures_text">You have new pictures in PhotoGallery.</string>
</resources>

Chapter 22 WorkManager

470

To post a notification, you create a Notification object. Notifications are created with a builder
object, much like the AlertDialog that you used in Chapter 14. At a minimum, your Notification
should have:

• an icon to show in the status bar

• a view to show in the notification drawer to represent the notification itself

• a PendingIntent to fire when the user presses the notification in the drawer

• a NotificationChannel to apply styling and provide user control over the notification

You will also add ticker text to the notification. This text does not display when the notification shows,
but it is sent to the accessibility services to support screen readers.

Once you have created a Notification object, you can post it by calling notify(Int, Notification)
on the NotificationManager system service. The Int is the ID of the notification from your app.

First you need to add some plumbing code. Open MainActivity.kt and add a newIntent(Context)
function. This function will return an Intent instance that can be used to start MainActivity.
(Eventually, PollWorker will call MainActivity.newIntent(…), wrap the resulting intent in a
PendingIntent, and set that PendingIntent on a notification.)

Listing 22.10 Adding newIntent(…) to MainActivity (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }

 companion object {
 fun newIntent(context: Context): Intent {
 return Intent(context, MainActivity::class.java)
 }
 }
}

Notifying the User

471

Now make PollWorker notify the user that a new result is ready by creating a Notification and
calling NotificationManager.notify(Int, Notification).

Listing 22.11 Adding a notification (PollWorker.kt)
class PollWorker(
 private val context: Context,
 workerParameters: WorkerParameters
) : CoroutineWorker(context, workerParameters) {
 override suspend fun doWork(): Result {
 ...
 return try {
 val items = photoRepository.searchPhotos(query)

 if (items.isNotEmpty()) {
 val newResultId = items.first().id
 if (newResultId == lastId) {
 Log.i(TAG, "Still have the same result: $newResultId")
 } else {
 Log.i(TAG, "Got a new result: $newResultId")
 preferencesRepository.setLastResultId(newResultId)
 notifyUser()
 }
 }

 Result.success()
 } catch (ex: Exception) {
 ...
 }
 }

 private fun notifyUser() {
 val intent = MainActivity.newIntent(context)
 val pendingIntent = PendingIntent.getActivity(
 context,
 0,
 intent,
 PendingIntent.FLAG_IMMUTABLE
)
 val resources = context.resources

 val notification = NotificationCompat
 .Builder(context, NOTIFICATION_CHANNEL_ID)
 .setTicker(resources.getString(R.string.new_pictures_title))
 .setSmallIcon(android.R.drawable.ic_menu_report_image)
 .setContentTitle(resources.getString(R.string.new_pictures_title))
 .setContentText(resources.getString(R.string.new_pictures_text))
 .setContentIntent(pendingIntent)
 .setAutoCancel(true)
 .build()

 NotificationManagerCompat.from(context).notify(0, notification)
 }
}

Let’s go over this from top to bottom.

Chapter 22 WorkManager

472

You use the NotificationCompat class to easily support notifications on both pre-Oreo and Oreo-
and-above devices. NotificationCompat.Builder accepts a channel ID and uses the ID to set the
notification’s channel if the user is running Oreo or above. If the user is running a pre-Oreo version of
Android, NotificationCompat.Builder ignores the channel. (Note that the channel ID you pass here
comes from the NOTIFICATION_CHANNEL_ID constant you added to PhotoGalleryApplication.)

In Listing 22.8, you checked the build version SDK before you created the channel, because there is no
AndroidX API for creating a channel. You do not need to do that here, because NotificationCompat
checks the build version for you, keeping your code clean and spiffy. This is one reason you should use
AndroidX’s version of the Android APIs whenever available.

Next you configure the ticker text and small icon by calling setTicker(CharSequence) and
setSmallIcon(Int). (The icon resource you are using is provided as part of the Android framework,
denoted by the package name qualifier android in android.R.drawable.ic_menu_report_image, so
you do not have to pull the icon image into your resource folder.)

After that, you configure the appearance of your Notification in the drawer itself. It is possible to
customize your notification, but it is easier to use the standard look, which features an icon, a title, and
a text area. The value from setSmallIcon(Int) will be used for the icon. To set the title and text, you
call setContentTitle(CharSequence) and setContentText(CharSequence).

Next, you specify what happens when the user presses your Notification. This is done using a
PendingIntent object. The PendingIntent you pass into setContentIntent(PendingIntent) will be
fired when the user presses your Notification in the drawer. Calling setAutoCancel(true) tweaks
that behavior a little bit: The notification will also be deleted from the notification drawer when the
user presses it.

Finally, you get an instance of NotificationManager from the current context
(NotificationManagerCompat.from) and call NotificationManager.notify(…) to post your
notification.

The integer parameter you pass to notify(…) is an identifier for your notification. It should be unique
across your application, but it is reusable. A notification will replace another notification with the same
ID that is still in the notification drawer. If there is no existing notification with the ID, the system will
show a new notification. This is how you would implement a progress bar or other dynamic visuals.

Notifying the User

473

And that is it. Run your app, and you should eventually see a notification icon appear in the status bar
(Figure 22.4). (You will want to clear any search terms to speed things along.)

Figure 22.4 New photos notification

Chapter 22 WorkManager

474

Providing User Control over Polling
Some users may not want your app to run in the background. An important control to provide users is
the ability to enable and disable background polling.

For PhotoGallery, you will add a menu item to the app bar that will toggle your worker when selected.
You will also update your work request to run your worker periodically instead of just once.

To toggle your worker, you first need to determine whether the worker is currently running. To do this,
supplement your PreferencesRepository to store a flag indicating whether the worker is enabled.

Listing 22.12 Saving Worker state (PreferencesRepository.kt)
class PreferencesRepository private constructor(
 private val dataStore: DataStore<Preferences>
) {
 ...
 suspend fun setLastResultId(lastResultId: String) {
 dataStore.edit {
 it[PREF_LAST_RESULT_ID] = lastResultId
 }
 }

 val isPolling: Flow<Boolean> = dataStore.data.map {
 it[PREF_IS_POLLING] ?: false
 }.distinctUntilChanged()

 suspend fun setPolling(isPolling: Boolean) {
 dataStore.edit {
 it[PREF_IS_POLLING] = isPolling
 }
 }

 companion object {
 private val SEARCH_QUERY_KEY = stringPreferencesKey("search_query")
 private val PREF_LAST_RESULT_ID = stringPreferencesKey("lastResultId")
 private val PREF_IS_POLLING = booleanPreferencesKey("isPolling")
 private var INSTANCE: PreferencesRepository? = null
 ...
 }
}

Next, add the string resources your options menu item needs. You will need two strings, one to prompt
the user to enable polling and one to prompt them to disable it.

Listing 22.13 Adding poll-toggling resources (res/values/strings.xml)
<resources>
 ...
 <string name="new_pictures_text">You have new pictures in PhotoGallery.</string>
 <string name="start_polling">Start polling</string>
 <string name="stop_polling">Stop polling</string>
</resources>

Providing User Control over Polling

475

With your strings in place, open up your res/menu/fragment_photo_gallery.xml menu file and add a
new item for your polling toggle.

Listing 22.14 Adding a poll-toggling item
(res/menu/fragment_photo_gallery.xml)
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 ...
 <item android:id="@+id/menu_item_clear"
 android:title="@string/clear_search"
 app:showAsAction="never" />

 <item android:id="@+id/menu_item_toggle_polling"
 android:title="@string/start_polling"
 app:showAsAction="ifRoom|withText"/>
</menu>

The default text for this item is the start_polling string. You will need to update this
text if the worker is already running. Start by getting a reference to your new menu item in
PhotoGalleryFragment.

Listing 22.15 Accessing the menu item (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 private var searchView: SearchView? = null
 private var pollingMenuItem: MenuItem? = null
 ...
 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 super.onCreateOptionsMenu(menu, inflater)
 inflater.inflate(R.menu.fragment_photo_gallery, menu)

 val searchItem: MenuItem = menu.findItem(R.id.menu_item_search)
 searchView = searchItem.actionView as? SearchView
 pollingMenuItem = menu.findItem(R.id.menu_item_toggle_polling)

 searchView?.setOnQueryTextListener(object : SearchView.OnQueryTextListener {
 ...
 })
 }
 ...
 override fun onDestroyOptionsMenu() {
 super.onDestroyOptionsMenu()
 searchView = null
 pollingMenuItem = null
 }
 ...
}

Chapter 22 WorkManager

476

Next, include whether the worker is running in your PhotoGalleryUiState by collecting the latest
value from the isPolling property on the PreferencesRepository class. Also, add a function to
toggle the property.

Listing 22.16 Adding more data to PhotoGalleryUiState
(PhotoGalleryViewModel.kt)
class PhotoGalleryViewModel : ViewModel() {
 ...
 init {
 viewModelScope.launch {
 preferencesRepository.storedQuery.collectLatest { storedQuery ->
 ...
 }
 }

 viewModelScope.launch {
 preferencesRepository.isPolling.collect { isPolling ->
 _uiState.update { it.copy(isPolling = isPolling) }
 }
 }
 }

 fun setQuery(query: String) {
 viewModelScope.launch { preferencesRepository.setStoredQuery(query) }
 }

 fun toggleIsPolling() {
 viewModelScope.launch {
 preferencesRepository.setPolling(!uiState.value.isPolling)
 }
 }
 ...
}

data class PhotoGalleryUiState(
 val images: List<GalleryItem> = listOf(),
 val query: String = "",
 val isPolling: Boolean = false,
)

Providing User Control over Polling

477

Open PhotoGalleryFragment.kt and update your menu item text whenever you receive
a new PhotoGalleryUiState value. Do that work in a separate private function named
updatePollingState(). You will add some more code to that function in just a second.

Listing 22.17 Setting correct menu item text (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 photoGalleryViewModel.uiState.collect { state ->
 binding.photoGrid.adapter = PhotoListAdapter(state.images)
 searchView?.setQuery(state.query, false)
 updatePollingState(state.isPolling)
 }
 }
 }
 }
 ...
 override fun onDestroyOptionsMenu() {
 ...
 }

 private fun updatePollingState(isPolling: Boolean) {
 val toggleItemTitle = if (isPolling) {
 R.string.stop_polling
 } else {
 R.string.start_polling
 }
 pollingMenuItem?.setTitle(toggleItemTitle)
 }
}

Now, call the newly created toggleIsPolling() on your PhotoGalleryViewModel whenever your
menu item is pressed.

Listing 22.18 Handling menu item presses (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 return when (item.itemId) {
 R.id.menu_item_clear -> {
 photoGalleryViewModel.setQuery("")
 true
 }
 R.id.menu_item_toggle_polling -> {
 photoGalleryViewModel.toggleIsPolling()
 true
 }
 else -> super.onOptionsItemSelected(item)
 }
 }
 ...
}

Chapter 22 WorkManager

478

Finally, delete the OneTimeWorkRequest logic from the onCreate(…) function, since it is no longer
needed. Instead, add code to the new updatePollingState() to update the background work. If the
worker is not running, create a new PeriodicWorkRequest and schedule it with the WorkManager. If
the worker is running, stop it.

Listing 22.19 Handling poll-toggling item clicks (PhotoGalleryFragment.kt)
private const val TAG = "PhotoGalleryFragment"
private const val POLL_WORK = "POLL_WORK"

class PhotoGalleryFragment : Fragment() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setHasOptionsMenu(true)

 val constraints = Constraints.Builder()
 .setRequiredNetworkType(NetworkType.UNMETERED)
 .build()
 val workRequest = OneTimeWorkRequest
 .Builder(PollWorker::class.java)
 .setConstraints(constraints)
 .build()
 WorkManager.getInstance(requireContext())
 .enqueue(workRequest)
 }
 ...
 private fun updatePollingState(isPolling: Boolean) {
 val toggleItemTitle = if (isPolling) {
 R.string.stop_polling
 } else {
 R.string.start_polling
 }
 pollingMenuItem?.setTitle(toggleItemTitle)

 if (isPolling) {
 val constraints = Constraints.Builder()
 .setRequiredNetworkType(NetworkType.UNMETERED)
 .build()
 val periodicRequest =
 PeriodicWorkRequestBuilder<PollWorker>(15, TimeUnit.MINUTES)
 .setConstraints(constraints)
 .build()
 WorkManager.getInstance(requireContext()).enqueueUniquePeriodicWork(
 POLL_WORK,
 ExistingPeriodicWorkPolicy.KEEP,
 periodicRequest
)
 } else {
 WorkManager.getInstance(requireContext()).cancelUniqueWork(POLL_WORK)
 }
 }
}

If you are given a choice when importing TimeUnit, select java.util.concurrent.TimeUnit.

Providing User Control over Polling

479

Focus first on the else block you added here. If the worker is currently not running, then you schedule
a new work request with the WorkManager. In this case, you are using the PeriodicWorkRequest
class to make your worker reschedule itself on an interval. The work request uses a builder, like the
OneTimeWorkRequest you used previously. The builder needs the worker class to run as well as the
interval it should use to execute the worker.

If you are thinking that 15 minutes is a long time for an interval, you are right. However, if you tried to
enter a smaller interval value, you would find that your worker still executes on a 15-minute interval.
This is the minimum interval allowed for a PeriodicWorkRequest so that the system is not tied up
running the same work request all the time. This saves system resources – and the user’s battery life.

The PeriodicWorkRequest builder accepts constraints, just like the one-time request, so you add the
unmetered network requirement. To schedule the work request, you use the WorkManager class, but this
time you use the enqueueUniquePeriodicWork(…) function. This function takes in a String name, a
policy, and your work request. The name allows you to uniquely identify the request, which is useful
when you want to cancel it.

The existing work policy tells the work manager what to do if you have already scheduled a work
request with a particular name. In this case you use the KEEP option, which discards your new request
in favor of the one that already exists. The other option is REPLACE, which, as the name implies, will
replace the existing work request with the new one.

If the worker is already running, then you need to tell the WorkManager to cancel the work request.
In this case, you call the cancelUniqueWork(…) function with the "POLL_WORK" name to remove the
periodic work request.

Run the application. You should see your new menu item to toggle polling. If you do not want to wait
for the 15-minute interval, you can disable the polling, wait a few seconds, then enable polling to rerun
the work request.

Chapter 22 WorkManager

480

PhotoGallery can now keep the user up to date with the latest images automatically, even when the app
is not running (Figure 22.5).

Figure 22.5 The end result

In the next chapter, you will finish your work on PhotoGallery by allowing users to open a photo’s
page on Flickr.

481

23
Browsing the Web and WebView

Each photo you get from Flickr has a page associated with it. In this chapter, you will finish your work
on PhotoGallery by updating it so that users can press a photo to see its Flickr page. You will learn two
different ways to integrate web content into your apps, shown in Figure 23.1. The first works with the
device’s browser app (left), and the second uses a WebView to display web content within PhotoGallery
(right).

Figure 23.1 Web content: two different approaches

Chapter 23 Browsing the Web and WebView

482

One Last Bit of Flickr Data
No matter how you choose to open Flickr’s photo page, you need to get its URL first. If you look at
the JSON data you are currently receiving for each photo, you can see that the photo page is not part of
those results.

 {
 "photos": {
 ...,
 "photo": [
 {
 "id": "9452133594",
 "owner": "44494372@N05",
 "secret": "d6d20af93e",
 "server": "7365",
 "farm": 8,
 "title": "Low and Wisoff at Work",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0,
 "url_s":"https://farm8.staticflickr.com/7365/9452133594_d6d20af93e_m.jpg"
 }, ...
]
 },
 "stat": "ok"
 }

(Recall that url_s is the URL for the small version of the photo, not the full-size photo.)

You might think that you are in for some more JSON request writing. Fortunately, that is not the case.
If you look at the Web Page URLs section of Flickr’s documentation at flickr.com/services/api/
misc.urls.html, you will see that you can create the URL for an individual photo’s page like so:

 https://www.flickr.com/photos/user-id/photo-id

The photo-id in the URL is the same as the value of the id attribute from your JSON data. You
are already stashing that in id in GalleryItem. What about user-id? If you poke around the
documentation, you will find that the owner attribute in your JSON data is the user ID. So if you pull
out the owner attribute, you should be able to build the URL from your photo JSON data:

 https://www.flickr.com/photos/owner/id

https://flickr.com/services/api/misc.urls.html
https://flickr.com/services/api/misc.urls.html

One Last Bit of Flickr Data

483

Update GalleryItem to put this plan into action.

Listing 23.1 Adding code for the photo page (GalleryItem.kt)
@JsonClass(generateAdapter = true)
data class GalleryItem(
 val title: String,
 val id: String,
 @Json(name = "url_s") val url: String,
 val owner: String
) {
 val photoPageUri: Uri
 get() = Uri.parse("https://www.flickr.com/photos/")
 .buildUpon()
 .appendPath(owner)
 .appendPath(id)
 .build()
}

To determine the photo URL, you create a new owner property and add a computed property called
photoPageUri to generate photo page URLs as discussed above. Because Moshi is translating your
JSON responses into GalleryItems on your behalf, you can start using the photoPageUri property
immediately, without any other code changes.

Chapter 23 Browsing the Web and WebView

484

The Easy Way: Implicit Intents
You will browse to this URL first by using your old friend the implicit intent. This intent will start up
the browser with your photo URL.

The first step is to make your app listen for presses on an item in the RecyclerView. Update
PhotoViewHolder to pass in a lambda expression that will be invoked with the Crime’s new
photoPageUri property being passed in. Invoke the lambda expression when the root view is clicked.

Listing 23.2 Firing an implicit intent when an item is pressed
(PhotoListAdapter.kt)
class PhotoViewHolder(
 private val binding: ListItemGalleryBinding
) : RecyclerView.ViewHolder(binding.root) {
 fun bind(galleryItem: GalleryItem, onItemClicked: (Uri) -> Unit) {
 binding.itemImageView.load(galleryItem.url) {
 placeholder(R.drawable.bill_up_close)
 }
 binding.root.setOnClickListener { onItemClicked(galleryItem.photoPageUri) }
 }
}

Next, pass that same lambda expression into PhotoListAdapter as a constructor parameter and use it
when binding a PhotoViewHolder in onBindViewHolder().

Listing 23.3 Binding PhotoViewHolder (PhotoListAdapter.kt)
class PhotoListAdapter(
 private val galleryItems: List<GalleryItem>,
 private val onItemClicked: (Uri) -> Unit
) : RecyclerView.Adapter<PhotoViewHolder>() {
 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
): PhotoViewHolder {
 ...
 }

 override fun onBindViewHolder(holder: PhotoViewHolder, position: Int) {
 val item = galleryItems[position]
 holder.bind(item, onItemClicked)
 }

 override fun getItemCount() = galleryItems.size
}

The Easy Way: Implicit Intents

485

Finally, in PhotoGalleryFragment, pass in a lambda expression when creating an instance of
PhotoListAdapter. Within that lambda expression, start an activity using an Intent containing that
URL.

Listing 23.4 Starting your implicit intent (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 photoGalleryViewModel.uiState.collect { state ->
 binding.photoGrid.adapter = PhotoListAdapter(state.images)
 binding.photoGrid.adapter = PhotoListAdapter(
 state.images
) { photoPageUri ->
 val intent = Intent(Intent.ACTION_VIEW, photoPageUri)
 startActivity(intent)
 }
 searchView?.setQuery(state.query, false)
 updatePollingState(state.isPolling)
 }
 }
 }
 }
 ...
}

That is it. Start up PhotoGallery and press a photo. Your browser app should pop up and load the photo
page for the item you pressed (similar to the image on the left in Figure 23.1).

Chapter 23 Browsing the Web and WebView

486

The Harder Way: WebView
Using an implicit intent to display the photo page is easy and effective. But what if you do not want
your app to open the browser?

Often, you want to display web content within your own activities instead of heading off to the
browser. You may want to display HTML that you generate yourself, or you may want to lock down
the browser somehow. For apps that include help documentation, it is common to implement it as
a web page so that it is easy to update. Opening a web browser to a help web page does not look
professional, and it prevents you from customizing behavior or integrating that web page into your own
UI.

When you want to present web content within your own UI, you use the WebView class. We are calling
this the “harder” way here, but it is pretty darned easy. (Anything is hard compared to using implicit
intents.)

The first step is to create a new activity and fragment to display the WebView. Start, as usual, by
defining a layout file: res/layout/fragment_photo_page.xml. Make ConstraintLayout the top-
level layout. In the design view, drag a WebView into the ConstraintLayout as a child. (You will find
WebView under the Widgets section.)

Once the WebView is added, add a constraint for every side to its parent. That gives you the following
constraints:

• from the top of the WebView to the top of its parent

• from the bottom of the WebView to the bottom of its parent

• from the left of the WebView to the left of its parent

• from the right of the WebView to the right of its parent

Finally, change the height and width to 0 dp (match constraint) and change all the margins to 0. Oh, and
give your WebView an ID: web_view.

You may be thinking, “That ConstraintLayout is not useful.” True enough – for the moment. You will
fill it out later in the chapter with additional “chrome.”

The Harder Way: WebView

487

Next, get the rudiments of your fragment set up. Create PhotoPageFragment. You will need to inflate
and bind your layout. All the work that this fragment does will occur in the onCreateView() function,
so you do not need to hold on to a reference to the binding this time.

Listing 23.5 Setting up your web browser fragment (PhotoPageFragment.kt)
class PhotoPageFragment : Fragment() {
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View {
 val binding = FragmentPhotoPageBinding.inflate(
 inflater,
 container,
 false
)

 return binding.root
 }
}

For now, this is little more than a skeleton. You will fill it out a bit more in a moment. But first, you
need to set up the framework to navigate between fragments.

You will follow the same steps you used back in Chapter 13. We will walk you through the process
quickly here; refer to that chapter if you need a refresher on any of the steps.

Start by setting up your Gradle build settings. You will use the Safe Args plugin again, so open up the
build.gradle file labeled (Project: PhotoGallery) and include Safe Args in the list of plugins:

Listing 23.6 Including the Safe Args plugin (build.gradle)
plugins {
 id 'com.android.application' version '7.1.2' apply false
 id 'com.android.library' version '7.1.2' apply false
 id 'org.jetbrains.kotlin.android' version '1.6.10' apply false
 id 'org.jetbrains.kotlin.kapt' version '1.6.10' apply false
 id 'androidx.navigation.safeargs.kotlin' version '2.4.1' apply false
}
...

Chapter 23 Browsing the Web and WebView

488

Next, open the app/build.gradle file and enable the plugin. Also, include the two dependencies you
need to enable fragment navigation.

Listing 23.7 Configuring your app’s build settings (app/build.gradle)
plugins {
 id 'com.android.application'
 id 'org.jetbrains.kotlin.android'
 id 'org.jetbrains.kotlin.kapt'
 id 'androidx.navigation.safeargs'
}
...
dependencies {
 ...
 implementation 'androidx.work:work-runtime-ktx:2.7.1'
 implementation 'androidx.navigation:navigation-fragment-ktx:2.4.1'
 implementation 'androidx.navigation:navigation-ui-ktx:2.4.1'
 ...
}

Sync your Gradle files. With the dependencies set up, create your nav_graph.xml file. In your
navigation graph, you will need to handle a few tasks:

• Add both PhotoGalleryFragment and PhotoPageFragment as destinations.
PhotoGalleryFragment will be your starting destination.

• Define a navigation action from PhotoGalleryFragment to PhotoPageFragment. Name the ID for
this action @+id/show_photo.

• Add an argument for the PhotoPageFragment destination. Its name will be photoPageUri, and its
type will be android.net.Uri (which is parcelable).

After you have completed those three steps, the code for your nav_graph.xml file will look like this:

 <?xml version="1.0" encoding="utf-8"?>
 <navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph"
 app:startDestination="@id/photoGalleryFragment">

 <fragment
 android:id="@+id/photoGalleryFragment"
 android:name="com.bignerdranch.android.photogallery.PhotoGalleryFragment"
 android:label="PhotoGalleryFragment" >
 <action
 android:id="@+id/show_photo"
 app:destination="@id/photoPageFragment" />
 </fragment>
 <fragment
 android:id="@+id/photoPageFragment"
 android:name="com.bignerdranch.android.photogallery.PhotoPageFragment"
 android:label="PhotoPageFragment" >
 <argument
 android:name="photoPageUri"
 app:argType="android.net.Uri" />
 </fragment>
 </navigation>

The Harder Way: WebView

489

The last step to complete the navigation setup is to add a NavHostFragment inside the
FragmentContainerView within your activity_main.xml file. Configure the same XML attributes as
before.

Listing 23.8 Adding a NavHostFragment (activity_main.xml)
<?xml version="1.0" encoding="utf-8"?>
<androidx.fragment.app.FragmentContainerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:name="com.bignerdranch.android.photogallery.PhotoGalleryFragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 app:defaultNavHost="true"
 app:navGraph="@navigation/nav_graph"
 tools:context=".MainActivity" />

With that, navigation is set up. Now, switch up your code in PhotoGalleryFragment to navigate to
your new fragment instead of the implicit intent.

Listing 23.9 Switching to launch your activity (PhotoGalleryFragment.kt)
class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 photoGalleryViewModel.uiState.collect { state ->
 binding.photoGrid.adapter = PhotoListAdapter(
 state.images
) { photoPageUri ->
 val intent = Intent(Intent.ACTION_VIEW, photoPageUri)
 startActivity(intent)
 findNavController().navigate(
 PhotoGalleryFragmentDirections.showPhoto(
 photoPageUri
)
)
 }
 searchView?.setQuery(state.query, false)
 updatePollingState(state.isPolling)
 }
 }
 }
 }
 ...
}

Run PhotoGallery and press a picture. You should see a new empty screen pop up.

Chapter 23 Browsing the Web and WebView

490

OK, now to get to the meat and make your fragment actually do something. You need to do three
things to get your WebView to successfully display a Flickr photo page. The first one is straightforward
– you need to tell it what URL to load.

The second thing you need to do is enable JavaScript. By default, JavaScript is off. You do not always
need to have it on, but for Flickr, you do. (If you run Android Lint, it gives you a warning for doing
this. It is worried about cross-site scripting attacks. You can suppress this Lint warning by annotating
onCreateView(…) with @SuppressLint("SetJavaScriptEnabled").)

Finally, you need to provide a default implementation of a class called WebViewClient. WebViewClient
is used to respond to rendering events on a WebView. We will discuss this class a bit more after you
enter the code.

Make these changes in PhotoPageFragment.

Listing 23.10 Loading the URL into WebView (PhotoPageFragment.kt)
class PhotoPageFragment : Fragment() {
 private val args: PhotoPageFragmentArgs by navArgs()

 @SuppressLint("SetJavaScriptEnabled")
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View {
 val binding = FragmentPhotoPageBinding.inflate(
 inflater,
 container,
 false
)

 binding.apply {
 webView.apply {
 settings.javaScriptEnabled = true
 webViewClient = WebViewClient()
 loadUrl(args.photoPageUri.toString())
 }
 }

 return binding.root
 }
 ...
}

Loading the URL has to be done after configuring the WebView, so you do that last. Before that, you
turn JavaScript on by accessing the settings property to get an instance of WebSettings and then
setting WebSettings.javaScriptEnabled = true. WebSettings is the first of the three ways you can
modify your WebView. It has various properties you can set, like the user agent string and text size.

After that, you add a WebViewClient to your WebView. To find out why, let’s first address what happens
without a WebViewClient.

WebChromeClient

491

A new URL can be loaded in a couple of different ways: The page can tell you to go to another URL
on its own (a redirect), or the user can click a link. Without a WebViewClient, WebView will ask the
activity manager to find an appropriate activity to load the new URL.

This is not what you want to have happen. Many sites (including Flickr’s photo pages) immediately
redirect to a mobile version of the same site when you load them from a phone browser. There is not
much point to making your own view of the page if it is going to fire an implicit intent anyway when
that happens.

If, on the other hand, you provide your own WebViewClient to your WebView, the process works
differently. Instead of asking the activity manager what to do, WebView asks your WebViewClient. And
in the default WebViewClient implementation, it says, “Go load the URL yourself!” So the page will
appear in your WebView.

Run PhotoGallery, press an item, and you should see the item’s photo page displayed in the WebView
(like the image on the right in Figure 23.1).

WebChromeClient
Since you are taking the time to create your own WebView, spruce it up a bit by adding a progress
bar and updating the app bar’s subtitle with the title of the loaded page. These decorations and the
UI outside the WebView are referred to as chrome (not to be confused with the Google Chrome web
browser). Crack open fragment_photo_page.xml once again.

In the design view, drag in a ProgressBar as a second child for your ConstraintLayout. Use the
ProgressBar (Horizontal) version of ProgressBar. Delete the WebView’s top constraint, and then make
its height fixed so that you can easily work with its constraint handles.

With that done, create the following constraints:

• from the ProgressBar to the top, right, and left of its parent

• from the WebView’s top to the bottom of the ProgressBar

Now, in the attributes window, change the height of the WebView back to 0 dp (match constraint) and
change the ProgressBar’s height to wrap_content and width to 0 dp (match constraint).

With the ProgressBar selected, notice the two settings below layout_width and layout_height in
the attributes window. They are both labeled visibility, but the second one has a wrench icon next to
it. Change the first visibility to gone, and change the tool visibility (with the wrench icon) to visible.
The first of these settings will hide the ProgressBar once the app is running on a device, and the
second makes the progress bar visible in the layout preview. Finally, rename the ProgressBar’s ID to
progress_bar.

Chapter 23 Browsing the Web and WebView

492

Your result will look like Figure 23.2.

Figure 23.2 Adding a progress bar

To hook up the ProgressBar, you will use the second callback on WebView, which is
WebChromeClient. WebViewClient is an interface for responding to rendering events;
WebChromeClient is an interface for reacting to events that should change elements of chrome around
the browser. This includes JavaScript alerts, favicons – and updates for loading progress and the title of
the current page.

WebChromeClient

493

Hook it up in onCreateView(…).

Listing 23.11 Using WebChromeClient (PhotoPageFragment.kt)
class PhotoPageFragment : Fragment() {
 ...
 @SuppressLint("SetJavaScriptEnabled")
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 ...
 binding.apply {
 progressBar.max = 100

 webView.apply {
 settings.javaScriptEnabled = true
 webViewClient = WebViewClient()
 loadUrl(args.photoPageUri.toString())

 webChromeClient = object : WebChromeClient() {
 override fun onProgressChanged(
 webView: WebView,
 newProgress: Int
) {
 if (newProgress == 100) {
 progressBar.visibility = View.GONE
 } else {
 progressBar.visibility = View.VISIBLE
 progressBar.progress = newProgress
 }
 }

 override fun onReceivedTitle(
 view: WebView?,
 title: String?
) {
 val parent = requireActivity() as AppCompatActivity
 parent.supportActionBar?.subtitle = title
 }
 }
 }
 }

 return binding.root
 }
 ...
}

Progress updates and title updates each have their own callback function,
onProgressChanged(WebView, Int) and onReceivedTitle(WebView, String). The progress you
receive from onProgressChanged(WebView, Int) is an integer from 0 to 100. If it is 100, you know
that the page is done loading, so you hide the ProgressBar by setting its visibility to View.GONE.

Chapter 23 Browsing the Web and WebView

494

Run PhotoGallery to test your changes. It should look like Figure 23.3.

Figure 23.3 Fancy WebView

When you press a photo, PhotoPageFragment pops up. A progress bar displays as the page loads, and
a subtitle reflecting the title received in onReceivedTitle(…) appears in the app bar. Once the page is
loaded, the progress bar disappears.

WebView vs a Custom UI

495

WebView vs a Custom UI
So there you have two ways to handle opening a photo’s Flickr page from your app. There is, of
course, a third option: You could create a custom UI to display the photo and its description.

A UI built natively (without WebView) would give you full control over how your app looks and
behaves. Also, native UIs often feel more responsive and consistent to users. But there are a number of
advantages to displaying web content instead of rolling out your own custom UI.

Displaying Flickr’s site in a WebView lets you integrate a large feature much more quickly. You do not
need to worry about fetching image descriptions, user account names, or other photo metadata to build
out this UI. You can simply leverage what Flickr has already made available.

Another advantage to displaying web content is that the web content can change without you having
to update your application. For example, if you need to display a privacy policy or terms of service in
your app, you can choose to show a website instead of hardcoding the document into your application.
That way, any changes can simply be pushed to a website instead of as an app update.

PhotoGallery is now complete. In the next two chapters, you will build two small apps as you learn
about responding to touch events and creating animations.

For the More Curious: WebView Updates
WebView is based on the Chromium open-source project. It shares the same rendering engine used
by the Chrome for Android app, meaning pages should look and behave consistently across the two.
(However, WebView does not have all the features Chrome for Android does. You can see a table
comparing them at https://developer.chrome.com/docs/multidevice/webview/.)

Because it is based on Chromium, WebView stays up to date on web standards and JavaScript.
From a development perspective, one of the most exciting features is the support for
remote debugging of WebView using Chrome DevTools (which can be enabled by calling
WebView.setWebContentsDebuggingEnabled()).

The Chromium layer of WebView is updated automatically from the Google Play Store. Users no longer
have to wait for new releases of Android to receive security updates (and new features). So you can rest
easy, knowing that Google works to keep the WebView components up to date.

https://developer.chrome.com/docs/multidevice/webview/

Chapter 23 Browsing the Web and WebView

496

For the More Curious: Chrome Custom Tabs (Another
Easy Way)
There is yet another way to display web content that is a hybrid of the two methods you used in
this chapter. Chrome Custom Tabs (developer.chrome.com/docs/android/custom-tabs/) let you
launch the Chrome web browser in a way that feels native to your application. You can configure its
appearance to make it look like part of your app and feel like the user has never left your app.

Figure 23.4 shows an example of a custom tab. You can see that the result looks like a mix of Google
Chrome and your PhotoPageActivity.

Figure 23.4 A Chrome custom tab

https://developer.chrome.com/docs/android/custom-tabs/

For the More Curious: Chrome Custom Tabs (Another Easy Way)

497

When you use a custom tab, it behaves very similar to launching Chrome. The browser instance even
has access to information like the user’s saved passwords, browser cache, and cookies from the full
Chrome browser. This means that if the user had logged into Flickr in Chrome, then they would also
be logged into Flickr in every custom tab. With WebView, the user would have to log into Flickr in both
Chrome and PhotoGallery.

The downside to using a custom tab instead of a WebView is that you do not have as much control over
the content you are displaying. For example, you cannot choose to use custom tabs in only the top half
of your screen or to add navigation buttons to the bottom of a custom tab.

To start using Chrome Custom Tabs, you add this dependency:

 implementation 'androidx.browser:browser:1.3.0'

You can then launch a custom tab. For example, in PhotoGallery you could launch a custom tab instead
of PhotoPageFragment:

 class PhotoGalleryFragment : Fragment() {
 ...
 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {
 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
 photoGalleryViewModel.uiState.collect { state ->
 binding.photoGrid.adapter = PhotoListAdapter(
 state.images
) { photoPageUri ->
 findNavController().navigate(
 PhotoGalleryFragmentDirections.showPhoto(
 photoPageUri
)
)

 CustomTabsIntent.Builder()
 .setToolbarColor(ContextCompat.getColor(
 requireContext(), R.color.colorPrimary))
 .setShowTitle(true)
 .build()
 .launchUrl(requireContext(), photoPageUri)
 }
 searchView?.setQuery(state.query, false)
 updatePollingState(state.isPolling)
 }
 }
 }
 }
 ...
 }

With this change, a user who clicks a photo would see a custom tab like the one shown in Figure 23.4.
(If the user did not have Chrome version 45 or higher installed, then PhotoGallery would fall back
to using the system browser. The result would be just like when you used an implicit intent at the
beginning of this chapter.)

Chapter 23 Browsing the Web and WebView

498

Challenge: Using the Back Button for Browser History
You may have noticed that you can follow other links within the WebView once you launch
PhotoPageFragment. However, no matter how many links you follow, the Back button always brings
you immediately back to PhotoGalleryFragment. What if you instead want the Back button to bring
users through their browsing history within the WebView?

Implement this behavior by adding a callback to the activity’s onBackPressedDispatcher
property. Within that callback, use a combination of WebView’s browsing history functions
(WebView.canGoBack() and WebView.goBack()) to do the right thing. If there are items in the
WebView’s browsing history, go back to the previous item. Otherwise, allow the Back button to behave
as it usually does by calling through to activity?.onBackPressed().

499

24
Custom Views and Touch Events

In this chapter, you will learn how to handle touch events by writing a custom subclass of View named
BoxDrawingView. The BoxDrawingView class will be the star of a new project named DragAndDraw
and will draw boxes in response to the user touching the screen and dragging. The finished product will
look like Figure 24.1.

Figure 24.1 Boxes drawn in many shapes and sizes

Chapter 24 Custom Views and Touch Events

500

Setting Up the DragAndDraw Project
Create a new project named DragAndDraw and select API 24: Android 7.0 (Nougat) from the Minimum
SDK dropdown.

Your newly generated MainActivity will host a BoxDrawingView, the custom view that you are going
to write. All the drawing and touch-event handling will be implemented in BoxDrawingView.

Creating a Custom View
Android provides many excellent standard views, but sometimes you need a custom view that presents
visuals that are unique to your app.

While there are all kinds of custom views, you can shoehorn them into two broad categories:

simple A simple view may be complicated inside; what makes it “simple” is that it has no
child views. A simple view will almost always perform custom rendering.

composite Composite views are composed of other view objects. Composite views typically
manage child views but do not perform custom rendering. Instead, rendering is
delegated to each child view.

There are three steps to follow when creating a custom view:

1. Pick a superclass. For a simple custom view, View is a blank canvas, so it is the most common
choice. For a composite custom view, choose an appropriate layout class, such as FrameLayout.

2. Subclass this class and override the constructors from the superclass.

3. Override other key functions to customize behavior.

Creating BoxDrawingView

501

Creating BoxDrawingView
BoxDrawingView will be a simple view and a direct subclass of View.

Create a new class named BoxDrawingView and make View its superclass. In BoxDrawingView.kt, add
a constructor that takes in a Context object and a nullable AttributeSet with a default of null.

Listing 24.1 Initial implementation for BoxDrawingView (BoxDrawingView.kt)
class BoxDrawingView(
 context: Context,
 attrs: AttributeSet? = null
) : View(context, attrs) {

}

Providing the null default value for the attribute set effectively provides two constructors for your
view. Two constructors are needed, because your view could be instantiated in code or from a layout
file. Views instantiated from a layout file receive an instance of AttributeSet containing the XML
attributes that were specified in XML. Even if you do not plan on using both constructors, it is good
practice to include them.

Next, update your res/layout/activity_main.xml layout file to use your new view.

Listing 24.2 Adding BoxDrawingView to the layout
(res/layout/activity_main.xml)

<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.bignerdranch.android.draganddraw.MainActivity">
</androidx.constraintlayout.widget.ConstraintLayout>
<com.bignerdranch.android.draganddraw.BoxDrawingView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

You must use BoxDrawingView’s fully qualified class name so that the layout inflater can find it. The
inflater works through a layout file creating View instances. If the element name is an unqualified class
name, then the inflater looks for a class with that name in the android.view and android.widget
packages. If the class lives somewhere else, then the layout inflater will not find it, and your app will
crash.

So, for custom classes and other classes that live outside of android.view and android.widget, you
must always specify the fully qualified class name.

Chapter 24 Custom Views and Touch Events

502

Run DragAndDraw to confirm that all the connections are correct. All you will see is an empty view
(Figure 24.2).

Figure 24.2 BoxDrawingView with no boxes

The next step is to get BoxDrawingView listening for touch events and using the information from them
to draw boxes on the screen.

Handling Touch Events
One way to listen for touch events is to set a touch event listener using the following View function:

 fun setOnTouchListener(l: View.OnTouchListener)

This function works the same way as setOnClickListener(View.OnClickListener). You provide an
implementation of View.OnTouchListener, and your listener will be called every time a touch event
happens.

However, because you are subclassing View, you can take a shortcut and override this View function
instead:

 override fun onTouchEvent(event: MotionEvent): Boolean

Handling Touch Events

503

This function receives an instance of MotionEvent, a class that describes the touch event, including its
location and its action. The action describes the stage of the event:

Action constants Description

ACTION_DOWN user’s finger touches the screen

ACTION_MOVE user’s finger moves on the screen

ACTION_UP user’s finger lifts off the screen

ACTION_CANCEL a parent view intercepts the touch event

In your implementation of onTouchEvent(MotionEvent), you can check the value by accessing the
action class property on the event.

Let’s get to it. In BoxDrawingView.kt, add a log tag and then an implementation of
onTouchEvent(MotionEvent) that logs a message for each of the four actions.

Listing 24.3 Implementing BoxDrawingView (BoxDrawingView.kt)
private const val TAG = "BoxDrawingView"

class BoxDrawingView(
 context: Context,
 attrs: AttributeSet? = null
) : View(context, attrs) {

 override fun onTouchEvent(event: MotionEvent): Boolean {
 val current = PointF(event.x, event.y)
 var action = ""
 when (event.action) {
 MotionEvent.ACTION_DOWN -> {
 action = "ACTION_DOWN"
 }
 MotionEvent.ACTION_MOVE -> {
 action = "ACTION_MOVE"
 }
 MotionEvent.ACTION_UP -> {
 action = "ACTION_UP"
 }
 MotionEvent.ACTION_CANCEL -> {
 action = "ACTION_CANCEL"
 }
 }

 Log.i(TAG, "$action at x=${current.x}, y=${current.y}")

 return true
 }
}

Notice that you package your X and Y coordinates in a PointF object. You want to pass these two
values together as you go through the rest of the chapter. PointF is a container class provided by
Android that does this for you.

Run DragAndDraw again and pull up Logcat. Touch the screen and drag your finger. (On the emulator,
click and drag.) You should see a report of the X and Y coordinates of every touch action that
BoxDrawingView receives.

Chapter 24 Custom Views and Touch Events

504

Tracking across motion events
BoxDrawingView is intended to draw boxes on the screen, not just log coordinates. There are a few
problems to solve to get there.

First, to define a box, you need two points: the start point (where the finger was initially placed) and
the end point (where the finger currently is). So defining a box requires keeping track of data from
more than one MotionEvent. You will store this data in a Box object.

Create a class named Box to represent the data that defines a single box.

Listing 24.4 Adding Box (Box.kt)
data class Box(val start: PointF) {

 var end: PointF = start

 val left: Float
 get() = Math.min(start.x, end.x)

 val right: Float
 get() = Math.max(start.x, end.x)

 val top: Float
 get() = Math.min(start.y, end.y)

 val bottom: Float
 get() = Math.max(start.y, end.y)

}

When the user touches BoxDrawingView, a new Box will be created and added to a list of existing boxes
(Figure 24.3).

Figure 24.3 Objects in DragAndDraw

Tracking across motion events

505

Back in BoxDrawingView, use your new Box object to track your drawing state.

Listing 24.5 Tracking Boxes (BoxDrawingView.kt)
class BoxDrawingView(
 context: Context,
 attrs: AttributeSet? = null
) : View(context, attrs) {

 private var currentBox: Box? = null
 private val boxes = mutableListOf<Box>()

 override fun onTouchEvent(event: MotionEvent): Boolean {
 val current = PointF(event.x, event.y)
 var action = ""
 when (event.action) {
 MotionEvent.ACTION_DOWN -> {
 action = "ACTION_DOWN"
 // Reset drawing state
 currentBox = Box(current).also {
 boxes.add(it)
 }
 }
 MotionEvent.ACTION_MOVE -> {
 action = "ACTION_MOVE"
 updateCurrentBox(current)
 }
 MotionEvent.ACTION_UP -> {
 action = "ACTION_UP"
 updateCurrentBox(current)
 currentBox = null
 }
 MotionEvent.ACTION_CANCEL -> {
 action = "ACTION_CANCEL"
 currentBox = null
 }
 }

 Log.i(TAG, "$action at x=${current.x}, y=${current.y}")

 return true
 }

 private fun updateCurrentBox(current: PointF) {
 currentBox?.let {
 it.end = current
 invalidate()
 }
 }
}

Any time an ACTION_DOWN motion event is received, you set currentBox to be a new Box with its
origin as the event’s location. This new Box is added to the list of boxes. (In the next section, when you
implement custom drawing, BoxDrawingView will draw every Box within this list to the screen.)

Chapter 24 Custom Views and Touch Events

506

As the user’s finger moves around the screen, you update currentBox.end. Then, when the touch is
canceled or when the user’s finger leaves the screen, you update the current box with the final reported
location and null out currentBox to end your draw motion. The Box is complete; it is stored safely in
the list but will no longer be updated about motion events.

The call to invalidate() in the updateCurrentBox() function forces BoxDrawingView to redraw itself
so that the user can see the box while dragging across the screen. Which brings you to the next step:
drawing the boxes to the screen.

Rendering Inside onDraw(Canvas)
When your application is launched, all its views are invalid. This means that they have not drawn
anything to the screen. To fix this situation, Android calls the top-level View’s draw() function. This
causes that view to draw itself, which causes its children to draw themselves. Those children’s children
then draw themselves, and so on down the hierarchy. When all the views in the hierarchy have drawn
themselves, the top-level View is no longer invalid.

You can also manually specify that a view is invalid, even if it is currently onscreen. This will cause the
system to redraw the view with any necessary updates. You will mark the BoxDrawingView as invalid
any time the user creates a new box or resizes a box by moving their finger. This will ensure that users
can see what their boxes look like as they create them.

To hook into this drawing, you override the following View function:

 protected fun onDraw(canvas: Canvas)

The call to invalidate() that you make in response to ACTION_MOVE in onTouchEvent(MotionEvent)
makes the BoxDrawingView invalid again. This causes it to redraw itself and will cause
onDraw(Canvas) to be called again.

Now, consider the Canvas parameter. Canvas and Paint are the two main drawing classes in Android:

• The Canvas class has all the drawing operations you perform. The functions you call on Canvas
determine where and what you draw – a line, a circle, a word, or a rectangle.

• The Paint class determines how these operations are done. The functions you call on Paint
specify characteristics – whether shapes are filled, which font text is drawn in, and what color
lines are.

Rendering Inside onDraw(Canvas)

507

In BoxDrawingView.kt, create two Paint objects when the BoxDrawingView is initialized.

Listing 24.6 Creating your paint (BoxDrawingView.kt)
class BoxDrawingView(
 context: Context,
 attrs: AttributeSet? = null
) : View(context, attrs) {

 private var currentBox: Box? = null
 private val boxes = mutableListOf<Box>()
 private val boxPaint = Paint().apply {
 color = 0x22ff0000.toInt()
 }
 private val backgroundPaint = Paint().apply {
 color = 0xfff8efe0.toInt()
 }
 ...
}

Armed with paint, you can now draw your boxes to the screen.

Listing 24.7 Overriding onDraw(Canvas) (BoxDrawingView.kt)
class BoxDrawingView(context: Context, attrs: AttributeSet? = null) :
 View(context, attrs)
 ...
 override fun onDraw(canvas: Canvas) {
 // Fill the background
 canvas.drawPaint(backgroundPaint)

 boxes.forEach { box ->
 canvas.drawRect(box.left, box.top, box.right, box.bottom, boxPaint)
 }
 }
}

The first part of this code is straightforward: Using your off-white background paint, you fill the canvas
with a backdrop for your boxes.

Then, for each box in your list of boxes, you determine what the left, right, top, and bottom of the box
should be by looking at the two points for the box. On Android, the origin is the top-left corner, so the
left and top values will be the minimum values, and the bottom and right values will be the maximum
values.

After calculating these values, you call Canvas.drawRect(…) to draw a red rectangle onto the screen.

Chapter 24 Custom Views and Touch Events

508

Run DragAndDraw and draw some red rectangles (Figure 24.4).

Figure 24.4 An expression of programmerly emotion

And that is it. You have now created a view that captures its own touch events and performs its own
drawing.

For the More Curious: Detecting Gestures

509

For the More Curious: Detecting Gestures
Another option for handling touch events is to use a GestureDetectorCompat object
(developer.android.com/reference/androidx/core/view/GestureDetectorCompat). Instead of
adding logic to detect events like a swipe or a fling, the GestureDetectorCompat has listeners that do
the heavy lifting and notify you when a particular event occurs.

Many cases do not require the full control provided by overriding the onTouch function, so using the
GestureDetectorCompat instead is a great choice.

Challenge: Saving State
Figure out how to persist your boxes across orientation changes from within your View. This can be
done with the following View functions:

 protected fun onSaveInstanceState(): Parcelable
 protected fun onRestoreInstanceState(state: Parcelable)

These functions work like Activity and Fragment’s onSaveInstanceState(Bundle) and ViewModel’s
SavedStateHandle, but with a few key differences. First, they will only be called if your View has
an ID. Second, instead of taking in a Bundle, they return and process an object that implements the
Parcelable interface.

Since Bundle implements the Parcelable interface, you can still use that here. You could store your
boxes’ data by storing them within a Bundle.

You could also try out the Parcelize Kotlin compiler plugin to help you generate code that implements
the Parcelable for you. Parcelize is used in Chapter 27; you can flip ahead to see how to incorporate
and use it.

Finally, you must also maintain the saved state of BoxDrawingView’s parent, the View class. Save the
result of super.onSaveInstanceState() in your new Bundle and send that result to the superclass
when calling super.onRestoreInstanceState(Parcelable).

https://developer.android.com/reference/androidx/core/view/GestureDetectorCompat

Chapter 24 Custom Views and Touch Events

510

Challenge: Rotating Boxes
For a harder challenge, make it so that you can use a second finger to rotate your rectangles. To do this,
you will need to handle multiple pointers in your MotionEvent handling code. You will also need to
rotate your canvas.

When dealing with multiple touches, you need these extra ideas:

pointer index tells you which pointer in the current set of pointers the event is for

pointer ID gives you a unique ID for a specific finger in a gesture

The pointer index may change, but the pointer ID will not.

For more details, check out the documentation for the following MotionEvent functions:

 final fun getActionMasked(): Int
 final fun getActionIndex(): Int
 final fun getPointerId(pointerIndex: Int): Int
 final fun getX(pointerIndex: Int): Float
 final fun getY(pointerIndex: Int): Float

Also look at the documentation for the ACTION_POINTER_UP and ACTION_POINTER_DOWN constants.

Challenge: Accessibility Support
Built-in views provide support for accessibility options like TalkBack and Switch Access. Creating
your own views places the responsibility on you as the developer to make sure your app is accessible.
As a final challenge for this chapter, make your BoxDrawingView describable with TalkBack for screen
readers.

There are several ways you can approach this. You could provide an overall summary of the view and
tell the user how much of the view is covered in boxes. Alternatively, you could also make each box an
accessible element and have it describe its location on the screen to the user. Refer to Chapter 19 for
more information on making your apps accessible.

511

25
Property Animation

For an app to be functional, all you need to do is write your code correctly so that it does not crash. For
an app to be a joy to use, though, you need to give it more love than that. You need to make it feel like
a real, physical phenomenon playing out on a phone or tablet’s screen.

Real things move. To make your UI move, you animate its elements into new positions.

In this chapter, you will write an app called Sunset that shows a scene of the sun in the sky. When you
press the scene, the sun will slide down below the horizon and the sky will change colors, like a sunset.

Building the Scene
The first step is to build the scene that will be animated. Create a new project called Sunset. Make sure
that your minimum API level is set to 24.

Before setting up anything else, open the app/build.gradle file. As in other apps, you are going to
use View Binding to help you out in Sunset.

Listing 25.1 Setting up View Binding (app/build.gradle)
 ...
 android {
 ...
 kotlinOptions {
 jvmTarget = '1.8'
 }
 buildFeatures {
 viewBinding true
 }
 }

Do not forget to sync your changes with Gradle.

Chapter 25 Property Animation

512

A sunset by the sea should be colorful, so it will help to start by naming a few colors. Open the
colors.xml file in your res/values folder and add the following values to it.

Listing 25.2 Adding sunset colors (res/values/colors.xml)
<resources>
 ...
 <color name="teal_700">#FF018786</color>
 <color name="black">#FF000000</color>
 <color name="white">#FFFFFFFF</color>

 <color name="bright_sun">#fcfcb7</color>
 <color name="blue_sky">#1e7ac7</color>
 <color name="sunset_sky">#ec8100</color>
 <color name="night_sky">#05192e</color>
 <color name="sea">#224869</color>
</resources>

Rectangular views will make for a fine impression of the sky and the sea. But, outside of Minecraft,
people will not buy a rectangular sun, no matter how much you argue in favor of its technical
simplicity. So, in the res/drawable/ folder, add an oval shape drawable for a circular sun called
sun.xml.

Listing 25.3 Adding a sun XML drawable (res/drawable/sun.xml)
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="oval">
 <solid android:color="@color/bright_sun" />
</shape>

When you display this oval in a square view, you will get a circle. People will nod their heads in
approval and then think about the real sun up in the sky.

Building the Scene

513

Next, build the entire scene out in a layout file. Open res/layout/activity_main.xml, delete the
current contents, and add the following.

Listing 25.4 Setting up the layout (res/layout/activity_main.xml)

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/scene"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <FrameLayout
 android:id="@+id/sky"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="0.61"
 android:background="@color/blue_sky">
 <ImageView
 android:id="@+id/sun"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:layout_gravity="center"
 android:src="@drawable/sun" />
 </FrameLayout>
 <View
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="0.39"
 android:background="@color/sea" />
</LinearLayout>

Chapter 25 Property Animation

514

Check out the preview. You should see a daytime scene of the sun in a blue sky over a dark blue sea.
Take a moment to run Sunset to make sure everything is hooked up correctly before moving on. It
should look like Figure 25.1. Ahhh.

Figure 25.1 Before sunset

Simple Property Animation

515

Simple Property Animation
Before you start animating, you will want to inflate and bind your layout in MainActivity, in the
onCreate(…) function.

Listing 25.5 Inflating and binding the layout (MainActivity.kt)
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)
 }
}

Now, it is time to animate the sun down below the horizon. Here is the plan: Smoothly move
binding.sun so that its top is right at the edge of the bottom of the sky. Since the bottom of the sky
and the top of the sea are the same, the sun will be hidden behind the sea view. You will do this by
translating the location of the top of binding.sun to the bottom of its parent.

The reason the sun view moves behind the sea is not immediately apparent. This has to do with the
draw order of the views. Views are drawn in the order in which they are declared in the layout, so
views declared later in the layout are drawn on top of those further up.

In this case, since the sun view is declared before the sea view, the sea view is on top of the sun view.
When the sun animates past the sea, it will appear to go behind the sea.

The first step is to find where the animation should start and end. Write this first step in a new function
called startAnimation().

Listing 25.6 Getting the start and end values (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 ...
 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }

 private fun startAnimation() {
 val sunYStart = binding.sun.top.toFloat()
 val sunYEnd = binding.sky.height.toFloat()
 }
}

Chapter 25 Property Animation

516

The top property is one of four properties on View that return the local layout rect for that view: top,
bottom, right, and left. A rect (short for rectangle) is the rectangular bounding box for the view,
which is specified by those four properties. A view’s local layout rect specifies the position and size of
that view in relation to its parent, as determined when the view was laid out.

It is possible to change the location of the view onscreen by modifying these values, but it is not
recommended. They are reset every time a layout pass occurs, so they tend not to hold their value.

In any event, the animation will start with the top of the view at its current location. It needs to end
with the top at the bottom of binding.sun’s parent, binding.sky. To get it there, it should be as far
down as binding.sky is tall, which you find by calling height.toFloat(). The height property’s
value is the same as bottom minus top.

Now that you know where the animation should start and end, create and run an ObjectAnimator to
perform it.

Listing 25.7 Creating a sun animator (MainActivity.kt)
...
private fun startAnimation() {
 val sunYStart = binding.sun.top.toFloat()
 val sunYEnd = binding.sky.height.toFloat()

 val heightAnimator = ObjectAnimator
 .ofFloat(binding.sun, "y", sunYStart, sunYEnd)
 .setDuration(3000)

 heightAnimator.start()
}
...

We will come back to how ObjectAnimator works in a moment. First, hook up startAnimation() so
that it is called every time the user presses anywhere in the scene.

Listing 25.8 Starting animation on press (MainActivity.kt)
...
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)

 binding.scene.setOnClickListener {
 startAnimation()
 }
}
...

Run Sunset and press anywhere in the scene to run the animation (Figure 25.2).

Simple Property Animation

517

Figure 25.2 Setting sun

You should see the sun move below the horizon.

Here is how it works: ObjectAnimator is a property animator. Instead of knowing specifically about
how to move a view around the screen, a property animator repeatedly calls property setter functions
with different values.

For example, imagine the Y coordinate of the top of the sun is 120.00 and the Y coordinate of
the bottom of the sky is 360.00. The code that you just wrote would create an ObjectAnimator
in the call to ObjectAnimator.ofFloat(binding.sun, "y", sunYStart, sunYEnd). When that
ObjectAnimator is started, it would repeatedly call binding.sun.setY(Float) with values starting at
120.00 and moving up. Like this:

 binding.sun.setY(120.00)
 binding.sun.setY(121.33)
 binding.sun.setY(122.67)
 binding.sun.setY(124.00)
 binding.sun.setY(125.33)
 ...

… and so on, until it finally calls binding.sun.setY(360.00). This process of finding values between
a starting and ending point is called interpolation. Between each interpolated value, a little time passes,
which makes it look like the view is moving.

Chapter 25 Property Animation

518

View transformation properties
Property animators are great, but with them alone it would be impossible to animate a view as easily as
you just did. Modern Android property animation works in concert with transformation properties.

We said earlier that your view has a local layout rect, which is the position and size it is assigned in the
layout process. You can move the view around after that by setting additional properties on the view,
called transformation properties.

You have three properties to rotate the view (rotation, pivotX, and pivotY, shown in Figure 25.3),
two properties to scale the view vertically and horizontally (scaleX and scaleY, shown in Figure 25.4),
and two properties to move the view around the screen (translationX and translationY, shown in
Figure 25.5).

Figure 25.3 View rotation

View transformation properties

519

Figure 25.4 View scaling

Figure 25.5 View translation

All these properties can be fetched and modified. For example, if you wanted to know the current value
of translationX, you would invoke view.translationX. If you wanted to set it, you would invoke
view.translationX = Float.

So what does the y property do? The x and y properties are conveniences built on top of local layout
coordinates and the transformation properties. They allow you to write code that simply says, “Put
this view at this X coordinate and this Y coordinate.” Under the hood, these properties will modify
translationX or translationY to put the view where you want it to be. That means that setting
binding.sun.y = 50 really means this:

 binding.sun.translationY = 50 - binding.sun.top

Chapter 25 Property Animation

520

Using different interpolators
Your animation, while pretty, is abrupt. If the sun was really sitting there perfectly still in the sky,
it would take a moment for it to accelerate into the animation you see. To add this sensation of
acceleration, all you need to do is use a TimeInterpolator. TimeInterpolator has one role: to change
the way your animation goes from point A to point B.

Use an AccelerateInterpolator in startAnimation() to make your sun speed up a bit at the
beginning.

Listing 25.9 Adding acceleration (MainActivity.kt)
private fun startAnimation() {
 val sunYStart = binding.sun.top.toFloat()
 val sunYEnd = binding.sky.height.toFloat()

 val heightAnimator = ObjectAnimator
 .ofFloat(binding.sun, "y", sunYStart, sunYEnd)
 .setDuration(3000)
 heightAnimator.interpolator = AccelerateInterpolator()

 heightAnimator.start()
}

Run Sunset one more time and press to see your animation. Your sun should now start moving slowly
and accelerate to a quicker pace as it moves toward the horizon.

There are a lot of styles of motion you might want to use in your app, so there are a lot of different
TimeInterpolators. To see all the interpolators that ship with Android, look at the Known indirect
subclasses section in the reference documentation for TimeInterpolator.

Color evaluation

521

Color evaluation
Now that your sun is animating down, let’s animate the sky to a sunset-appropriate color. Pull the
colors you defined in colors.xml into properties using a lazy delegate.

Listing 25.10 Pulling out sunset colors (MainActivity.kt)
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private val blueSkyColor: Int by lazy {
 ContextCompat.getColor(this, R.color.blue_sky)
 }
 private val sunsetSkyColor: Int by lazy {
 ContextCompat.getColor(this, R.color.sunset_sky)
 }
 private val nightSkyColor: Int by lazy {
 ContextCompat.getColor(this, R.color.night_sky)
 }
 ...
}

Now add an animation to startAnimation() to animate the sky from blueSkyColor to
sunsetSkyColor.

Listing 25.11 Animating sky colors (MainActivity.kt)
private fun startAnimation() {
 val sunYStart = binding.sun.top.toFloat()
 val sunYEnd = binding.sky.height.toFloat()

 val heightAnimator = ObjectAnimator
 .ofFloat(binding.sun, "y", sunYStart, sunYEnd)
 .setDuration(3000)
 heightAnimator.interpolator = AccelerateInterpolator()

 val sunsetSkyAnimator = ObjectAnimator
 .ofInt(binding.sky, "backgroundColor", blueSkyColor, sunsetSkyColor)
 .setDuration(3000)

 heightAnimator.start()
 sunsetSkyAnimator.start()
}

This seems like it is headed in the right direction, but if you run it you will see that something is amiss.
Instead of moving smoothly from blue to orange, the colors will kaleidoscope wildly.

The reason this happens is that a color integer is not a simple number. It is four smaller numbers
schlupped together into one Int. So for ObjectAnimator to properly evaluate which color is halfway
between blue and orange, it needs to know how that works.

Chapter 25 Property Animation

522

When ObjectAnimator’s normal understanding of how to find values between the start and end is
insufficient, you can provide a subclass of TypeEvaluator to fix things. A TypeEvaluator is an object
that tells ObjectAnimator what value is, say, a quarter of the way between a start value and an end
value. Android provides a subclass of TypeEvaluator called ArgbEvaluator that will do the trick here.

Listing 25.12 Providing ArgbEvaluator (MainActivity.kt)
private fun startAnimation() {
 val sunYStart = binding.sun.top.toFloat()
 val sunYEnd = binding.sky.height.toFloat()

 val heightAnimator = ObjectAnimator
 .ofFloat(binding.sun, "y", sunYStart, sunYEnd)
 .setDuration(3000)
 heightAnimator.interpolator = AccelerateInterpolator()

 val sunsetSkyAnimator = ObjectAnimator
 .ofInt(binding.sky, "backgroundColor", blueSkyColor, sunsetSkyColor)
 .setDuration(3000)
 sunsetSkyAnimator.setEvaluator(ArgbEvaluator())

 heightAnimator.start()
 sunsetSkyAnimator.start()
}

(There are multiple versions of ArgbEvaluator; import the android.animation version.)

Playing Animators Together

523

Run your animation once again, and you should see the sky fade to a beautiful orange color
(Figure 25.6).

Figure 25.6 Sunset color

Playing Animators Together
If all you need to do is kick off a few animations at the same time, then your job is simple: Call
start() on them all at the same time. They will all animate in sync with one another.

For more sophisticated animation choreography, this will not do the trick. For example, to complete the
illusion of a sunset, it would be nice to show the sky turning from orange to a midnight blue after the
sun goes down.

This can be done by using an AnimatorListener, which tells you when an animation completes. So
you could write a listener that waits until the end of the first animation, at which time you can start the
second night sky animation. But that is a huge hassle and requires a lot of listeners. It is much easier to
use an AnimatorSet.

Chapter 25 Property Animation

524

First, build out the night sky animation and delete your old animation start code.

Listing 25.13 Building the night animation (MainActivity.kt)
private fun startAnimation() {
 val sunYStart = binding.sun.top.toFloat()
 val sunYEnd = binding.sky.height.toFloat()

 val heightAnimator = ObjectAnimator
 .ofFloat(binding.sun, "y", sunYStart, sunYEnd)
 .setDuration(3000)
 heightAnimator.interpolator = AccelerateInterpolator()

 val sunsetSkyAnimator = ObjectAnimator
 .ofInt(binding.sky, "backgroundColor", blueSkyColor, sunsetSkyColor)
 .setDuration(3000)
 sunsetSkyAnimator.setEvaluator(ArgbEvaluator())

 val nightSkyAnimator = ObjectAnimator
 .ofInt(binding.sky, "backgroundColor", sunsetSkyColor, nightSkyColor)
 .setDuration(1500)
 nightSkyAnimator.setEvaluator(ArgbEvaluator())

 heightAnimator.start()
 sunsetSkyAnimator.start()
}

And then build and run an AnimatorSet.

Listing 25.14 Building an animator set (MainActivity.kt)
private fun startAnimation() {
 ...
 val nightSkyAnimator = ObjectAnimator
 .ofInt(binding.sky, "backgroundColor", sunsetSkyColor, nightSkyColor)
 .setDuration(1500)
 nightSkyAnimator.setEvaluator(ArgbEvaluator())

 val animatorSet = AnimatorSet()
 animatorSet.play(heightAnimator)
 .with(sunsetSkyAnimator)
 .before(nightSkyAnimator)
 animatorSet.start()
}

An AnimatorSet is nothing more than a set of animations that can be played together. There are a few
ways to build one, but the easiest way is to use the play(Animator) function you are using here.

When you call play(Animator), you get an AnimatorSet.Builder, which allows you to build a chain
of instructions. The Animator passed into play(Animator) is the “subject” of the chain. So the chain
of calls you wrote here could be described as, “Play heightAnimator with sunsetSkyAnimator; also,
play heightAnimator before nightSkyAnimator.” For complicated AnimatorSets, you may find it
necessary to call play(Animator) a few times, which is perfectly fine.

Run your app one more time and savor the soothing sunset you have created. Magic.

For the More Curious: Other Animation APIs

525

For the More Curious: Other Animation APIs
While property animation is the most broadly useful tool in the animation toolbox, it is not the only
one. Whether or not you are using them, it is a good idea to know about the other tools out there.

Legacy animation tools
One set of tools is the classes living in the android.view.animation package. This should not be
confused with the newer android.animation package, which was introduced in Honeycomb.

This is the legacy animation framework, which you should mainly know about so that you can ignore
it. If you see the word “animaTION” in the class name instead of “animaTOR”, that is a good sign that
it is a legacy tool you should ignore.

Transitions
Android 4.4 introduced the transitions framework, which enables fancy transitions between view
hierarchies. For example, you might define a transition that explodes a small view in one activity into a
zoomed-in version of that view in another activity.

The basic idea of the transitions framework is that you can define scenes, which represent the state of a
view hierarchy at some point, and transitions between those scenes. Scenes can be described in layout
XML files, and transitions can be described in animation XML files.

When an activity is already running, as in this chapter, the transitions framework is not that useful. This
is where the property animation framework shines. However, the property animation framework is not
good at animating a layout as it is coming onscreen.

Take CriminalIntent’s crime pictures as an example. If you were to try to implement a “zoom”
animation to the zoomed-in dialog of an image, you would have to figure out where the original image
was and where the new image would be on the dialog. ObjectAnimator cannot achieve an effect like
that without a lot of work. In that case, you would want to use the transitions framework instead.

Chapter 25 Property Animation

526

Challenges
For the first challenge, add the ability to reverse the sunset after it is completed, so your user can press
for a sunset, and then press a second time to get a sunrise. You will need to build another AnimatorSet
to do this – AnimatorSets cannot be run in reverse.

For a second challenge, add a continuing animation to the sun. Make it pulsate with heat, or give it a
spinning halo of rays. (You can use the setRepeatCount(Int) function on ObjectAnimator to make
your animation repeat itself.)

Another good challenge would be to have a reflection of the sun in the water.

Your final challenge is to add the ability to press to reverse the sunset scene while it is still happening.
So if your user presses the scene while the sun is halfway down, it will go right back up again
seamlessly. Likewise, if your user presses the scene while transitioning to night, it will smoothly
transition right back to a sunrise.

527

26
Introduction to Jetpack Compose

Throughout this book, you have built UIs using View classes and XML layout files. These APIs are
provided by the Android OS and are part of the Android framework UI toolkit. Colloquially, we refer
to these APIs as “framework views.”

Building UIs with framework views has been the standard for making an Android app since the
first release of the OS. But in recent times, the framework view system has left much to be desired.
For starters, it is built into the OS itself. This means that getting the latest features requires users to
update their entire OS, which is not always an option. It also requires developers to bump their apps’
minimum SDK level, leaving behind users who are not able to upgrade.

Also, Android’s framework UI toolkit is based around ideas like the view hierarchy, view classes that
extend from one another, and updating the state of your view manually, line by line. Meanwhile, many
front-end UI frameworks have moved on to more modern approaches that make building UIs easier and
more streamlined.

To address both of these issues, Google has created a new UI toolkit called Jetpack Compose. Jetpack
Compose replaces the built-in framework UI toolkit. It is part of the Jetpack suite of libraries, so a UI
built with Compose is entirely separate from the Android OS. And because it is separate, you can get
updates to Compose just as you would any external library.

Compose is designed in Kotlin (and, in fact, is exclusively available in Kotlin) and is a declarative UI
framework. The benefits of a declarative UI toolkit will become apparent in the next chapter, when you
learn about UI state in Compose. To give you a teaser, though: Compose automatically updates your UI
when your application state changes. You declare your UI how you want it to appear at all times, and
Compose will make it so.

This marks a radical departure from what you are used to. Jetpack Compose does not let you store
a reference to any of your UI elements, which means no View Binding, no imperative UI updates –
even the time-honored findViewById() function is not available in Compose. Initially, you might find
Compose a bit tricky to reason about, since it requires you to think about your UI differently. However,
as you will see in the next chapter, Compose plays well with the modern Android programming
paradigms you have used throughout this book like making your UI state observable and updating UI
elements reactively.

Chapter 26 Introduction to Jetpack Compose

528

In our opinion, Jetpack Compose offers a more elegant and concise set of tools to build UIs than what
is available in the framework UI toolkit. Google is also emphasizing Jetpack Compose, and we expect
that many apps in the future will exclusively use Compose and leave framework views behind.

You may be wondering, “If Compose is the latest and greatest, why bother learning about the
framework UI toolkit as well?” We are glad you asked.

Jetpack Compose hit version 1.0 and went stable in the summer of 2021. Since then, the Android
development community has begun to transition to Compose – but a transition of this size takes time.
If you are just starting your journey as an Android developer, you likely need to be familiar with both
UI frameworks, as many existing apps, libraries, code snippets, and examples still rely on framework
views and will for some time.

Over the next four chapters, we will walk you through the basics of building UIs in Compose. We will
not be able to cover every feature Compose offers, but you will end with a solid foundation to build
UIs in Compose. You can find more information about Jetpack Compose on its documentation page,
developer.android.com/jetpack/compose/documentation.

Although the UI code in this project will be different than what you have been seeing, fear not. You are
still working on Android – everything you have learned so far will be helpful as you venture into this
new territory. Let’s get started.

https://developer.android.com/jetpack/compose/documentation

Creating a Compose Project

529

Creating a Compose Project
To get your feet wet with Compose, you will be creating an app for a pizza delivery service that allows
users to customize their pizzas’ toppings. This app will be called Coda Pizza. (In music, a coda brings
a piece to an end, just as your study of Jetpack Compose will conclude your journey through this
book.) The finished product will look like Figure 26.1. In this chapter, you will focus on building out
the scrollable list of toppings.

Figure 26.1 The finished product

Chapter 26 Introduction to Jetpack Compose

530

Android Studio offers a template to create an empty Compose app, but you will not use it for Coda
Pizza. The Compose templates in Android Studio include a fair amount of code that would just get in
your way – plus they are likely to change as Compose evolves.

Instead, we will walk you through setting up a new project and then adding Jetpack Compose. This
will allow you to explore Compose in more detail, and the steps involved in setting Compose up will
be helpful if you find yourself migrating an existing app away from framework views. (Outside of
this book, we encourage you to use the Compose templates for new apps once you have mastered the
basics.)

Create a new Android Studio project with the name Coda Pizza and the package name
com.bignerdranch.android.codapizza. Be sure to use the Empty Activity template, as you have done
before. Set the Minimum SDK to 24, and save the project wherever you would like.

With your new project open, your first task is to add Jetpack Compose. This is a multistep process.
Compose is enabled in the buildFeatures block, like View Binding, but you also have to specify the
Compose compiler version and add several dependencies. Delve into your app/build.gradle file (the
one labeled (Module: Coda_Pizza.app)) and make these changes now.

Listing 26.1 Becoming a composer (app/build.gradle)
...
android {
 ...
 buildTypes {
 ...
 }

 buildFeatures {
 compose true
 }

 composeOptions {
 kotlinCompilerExtensionVersion '1.1.1'
 }

 compileOptions {
 ...
 }
 ...
}

dependencies {
 ...
 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'

 implementation 'androidx.compose.foundation:foundation:1.1.1'
 implementation 'androidx.compose.runtime:runtime:1.1.1'
 implementation 'androidx.compose.ui:ui:1.1.1'
 implementation 'androidx.compose.ui:ui-tooling:1.1.1'
 implementation 'androidx.compose.material:material:1.1.1'
 implementation 'androidx.activity:activity-compose:1.4.0'

 testImplementation 'junit:junit:4.13.2'
 ...
}

Creating a Compose Project

531

Because Compose is built on the latest features in Kotlin, it has specific requirements about which
version of Kotlin it supports. Compose 1.1.1 requires Kotlin 1.6.10 – exactly. Double-check that your
project’s build.gradle file (the one labeled (Project: Coda_Pizza)) specifies this version, otherwise
you will run into build errors.

Listing 26.2 Matching the Kotlin compiler version (build.gradle)
plugins {
 id 'com.android.application' version '7.1.2' apply false
 id 'com.android.library' version '7.1.2' apply false
 id 'org.jetbrains.kotlin.android' version '1.6.10' apply false
}
...

When you are done, sync your Gradle files to apply these changes.

Next, it is time to delete some code. Coda Pizza will be 100% Compose, so spend a moment to remove
the current layout code. Start by removing the call to setContentView in MainActivity.

Listing 26.3 Removing the content view (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }
}

Then, delete the activity_main.xml file from your layout resources folder.

Chapter 26 Introduction to Jetpack Compose

532

Composing Your First UI
With your framework views out of the way, you are ready to write your first Compose UI. The default
layout in the Empty Activity project template you have used throughout this book includes an empty
Activity with the text “Hello World!” For your first Compose UI, you will remake this layout without
any framework views. (Printing “Hello World!” to the screen is a time-honored coding tradition.)

To populate an activity with a Compose UI, you use a function called setContent. This function
accepts a lambda expression, which is where you have access to Compose UI elements, called
composables. Use the Text composable to show the text “Hello World!”

Listing 26.4 Writing a Compose UI (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Text(text = "Hello World!")
 }
 }
}

You will need to add two import statements for the code you just entered. For setContent, add an
import for androidx.activity.compose.setContent, since you are setting an activity’s content. For
the Text composable, add an import for androidx.compose.material.Text.

When using Jetpack Compose, you will find that there are many import statements to juggle, and it is
not always obvious which you should choose from Android Studio’s list of suggestions. In general,
your Compose imports will start with the androidx.compose package. Also, if you are looking to
import a composable function, you can quickly identify them by looking closely at the icon in Android

Studio’s list of suggested imports. Imports for composables will be marked with .

Composing Your First UI

533

Run Coda Pizza and confirm that your text appears as shown in Figure 26.2.

(Coda Pizza is not yet set up to handle dark mode, so be sure to disable the dark theme if you are using
it on your test device. If you do not, Coda Pizza will show black text against a black background,
making your text appear invisible. After Chapter 29, Coda Pizza will be legible in both modes.)

Figure 26.2 Hello, Compose!

Although this example is rudimentary, notice how concise it is compared to the old fashioned way of
building UIs. Putting text onscreen took only a line of code, and all your view code is in Kotlin – no
more jumping in and out of XML.

Chapter 26 Introduction to Jetpack Compose

534

Layouts in Compose
Time to begin building out the views that Coda Pizza will present to its users. Let’s focus on the
scrollable list of toppings. First, as you did for your RecyclerView in CriminalIntent, you will
construct a cell that will appear for each topping choice. You will come back to the actual scrolling
behavior at the end of this chapter.

The cell will have three elements: the name of the topping, a checkbox indicating whether the topping
is on the pizza, and a description of where the topping will appear on the pizza (the left half, the right
half, or the whole pizza). Start with the two Text elements.

In Chapter 2, we told you that flat (non-nested) layouts are faster for the OS to measure and lay
out. That is true for framework views, but Compose’s efficiency makes it no longer a concern.
Composables can be nested to create layouts as complex as you want. For example, to arrange
elements vertically from top to bottom, you can place them inside a Column composable.

Column is analogous to a LinearLayout with the vertical orientation. It accepts a lambda, and the
composables added to the lambda will be arranged from top to bottom. Try it out now.

Listing 26.5 The Column composable (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Text(text = "Hello World!")
 Column {
 Text(
 text = "Pineapple"
)

 Text(
 text = "Whole pizza"
)
 }
 }
 }
}

Run the app after making this change. You should see Pineapple at the top left of the screen, with the
text Whole pizza underneath it.

Layouts in Compose

535

Next, shift your attention to the checkbox. The checkbox will appear to the left of the two text
elements. You can accomplish this using a Row, which behaves like a Column but lays its content out
from left to right (or, if the user’s device is set to a right-to-left language, from right to left).

Your Row will contain the Column of text plus a Checkbox composable. You will leave the behavior of
the checkbox unimplemented for now, and we will revisit it in the next chapter.

Listing 26.6 The Row composable (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Row {
 Checkbox(
 checked = true,
 onCheckedChange = { /* TODO */ }
)

 Column {
 Text(
 text = "Pineapple"
)

 Text(
 text = "Whole pizza"
)
 }
 }
 }
 }
}

Run the app again. You should now see that a checked checkbox appears in the top-left corner of the
app with the text to its right (Figure 26.3). (If you press the checkbox, its state will not change. This is
expected, and we will explain why in the next chapter when we talk about state in Jetpack Compose.)

Figure 26.3 Rows and columns

Chapter 26 Introduction to Jetpack Compose

536

Composable Functions
Before you create the scrollable list of toppings, there is a bit of housekeeping to take care of. Right
now, your entire UI is defined in your Activity. This can get unwieldy quickly, especially for large
applications. You can break your UI into smaller chunks by refactoring your Compose code into
functions.

Composables’ names, like Row and Column, begin with capital letters – just like the names of
framework views like Button and ImageView. But composables are not classes, like views: They are
functions.

Remember when we said you cannot get a reference to a Compose UI element or call findViewById
on one? No classes means there is nothing that can be referenced. At runtime, with some help from the
Compose compiler, composable functions effectively turn into draw commands.

Compose comes with many prefab composables for basic components like buttons, switches, and
text input fields (in addition to the ones you have already seen), but you can also write your own
composable functions. Although the built-in composables are often simple, your own composables can
combine other composables and be as simple or as complex as you want.

Try writing your own composable now by converting the content inside your setContent function
into its own composable. You can make this change manually, or you can use Android Studio’s built-
in refactoring tools to make the change automatically. Start by highlighting the code in setContent’s
lambda:

 class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Row {
 Checkbox(
 checked = true,
 onCheckedChange = { /* TODO */ }
)

 Column {
 Text(
 text = "Pineapple"
)

 Text(
 text = "Whole pizza"
)
 }
 }
 }
 }
 }

Next, right-click the code and select Refactor → Function.... The Extract Function dialog will appear.
Set the function’s visibility to public and name the new function ToppingCell (Figure 26.4).

Composable Functions

537

Figure 26.4 Extracting a composable function

Click OK to perform the refactor. Android Studio will extract the highlighted code into its own
function. Your updated code should match the following:

 class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ToppingCell()
 }
 }

 @Composable
 fun ToppingCell() {
 Row {
 Checkbox(
 checked = true,
 onCheckedChange = { /* TODO */ }
)

 Column {
 Text(
 text = "Pineapple"
)

 Text(
 text = "Whole pizza"
)
 }
 }
 }
 }

Chapter 26 Introduction to Jetpack Compose

538

The new ToppingCell function looks almost identical to any Kotlin function. In fact, there is only one
difference: the @Composable annotation. When a function is annotated with @Composable, it becomes a
composable function. Composable functions can call other composable functions and can add elements
onscreen when invoked. Composable functions can also call regular functions, but regular functions
cannot call a composable function. (setContent is an exception to this rule. It can use composable
functions because it is responsible for creating the composition itself.)

Notice that you named your composable ToppingCell, not toppingCell. As you have seen, it is
conventional for the names of composable functions to start with a capital letter, and we recommend
following this pattern.

Run the app and confirm that nothing has changed after your refactor. You should still see a checkbox
and two lines of text in the top-left corner.

There is one more bit of cleanup to take care of before moving on. Although you have organized your
UI into a smaller function, it is still a function on your MainActivity class. The composable does not
access any information in your activity, so it can be declared in its own file to keep your activity small.

Create a new package called ui under the com.bignerdranch.android.codapizza package. Inside
your new package, create a new file called ToppingCell.kt, then copy and paste your ToppingCell
function into this file.

Listing 26.7 Putting ToppingCell in its own file (ToppingCell.kt)
@Composable
fun ToppingCell() {
 Row {
 Checkbox(
 checked = true,
 onCheckedChange = { /* TODO */ }
)
 Column {
 Text(
 text = "Pineapple"
)

 Text(
 text = "Whole pizza"
)
 }
 }
}

Previewing Composables

539

Now you can delete the implementation of ToppingCell from MainActivity. You will need to add
an import for your relocated ToppingCell function after making this change. (Remember, it is in the
com.bignerdranch.android.codapizza.ui package.)

Listing 26.8 Using a composable defined in another file (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ToppingCell()
 }
 }

 @Composable
 fun ToppingCell() {
 Row {
 Checkbox(
 checked = true,
 onCheckedChange = { /* TODO */ }
)
 Column {
 Text(
 text = "Pineapple"
)

 Text(
 text = "Whole pizza"
)
 }
 }
 }
}

Previewing Composables
If you are a fan of Android Studio’s design view for XML layouts, you may be wondering if you can
preview your Compose layouts the same way. Preview functionality is available for Compose, but
Android Studio needs a little help: You must opt in to previews for each composable. Do this now for
your ToppingCell composable by annotating it with the @Preview annotation.

Listing 26.9 Enabling previews on a composable (ToppingCell.kt)
@Preview
@Composable
fun ToppingCell() {
 ...
}

Android Studio uses your project’s compiled code to generate previews of composables. This means
that your project must be built to show changes you have made in the preview. Build your project now

by pressing the Build icon in Android Studio’s toolbar.

Chapter 26 Introduction to Jetpack Compose

540

When the build finishes, click the Split tab with ToppingCell.kt open in the editor. You should see the
preview in the right side of the editor (Figure 26.5). (If you do not, check that your project has built
successfully, with no errors.)

Figure 26.5 Previewing a composable

As you saw with XML layouts, the preview matches what the user will see when your composable is
placed onscreen. Remember that Android Studio needs to recompile your code before it can update the
preview, so your changes will not appear instantly the way they did with XML layouts.

Previewing Composables

541

The @Preview annotation has one very noteworthy limitation: By default, it is not able to show
previews for composables that have parameters (unless each parameter has a default value). When this
happens, you need to specify the values to use for those arguments. There is a mechanism for doing
this with the @Preview annotation, but we find it to be cumbersome to set up. Instead, many developers
create a separate preview function. This dedicated preview function can pass the desired inputs to the
composable being previewed while specifying no inputs of its own.

In just a moment, you are going to add parameters to your ToppingCell composable. To avoid
breaking its preview, preemptively add a separate preview function in the same file:

Listing 26.10 A dedicated preview composable (ToppingCell.kt)
@Preview
@Composable
private fun ToppingCellPreview() {
 ToppingCell()
}

@Preview
@Composable
fun ToppingCell() {
 ...
}

This preview composable uses the private visibility modifier, allowing you to define the preview
without exposing it for use in your production code. Refresh the preview by rebuilding the project or

by clicking the Build Refresh button in the preview window. The preview should look identical
except for being labeled ToppingCellPreview instead of ToppingCell.

Chapter 26 Introduction to Jetpack Compose

542

Customizing Composables
Coda Pizza is off to a great start. You are ready to start making your composables look just the way
you want them to. Previously, you accomplished this using XML attributes. In Compose, function
parameters take the place of the attributes that you are accustomed to in XML.

You have already seen a few parameters on the built-in composables you have been using: text for
the Text composable and checked and onCheckedChange for Checkbox. You are also free to add
parameters to your own composables.

Declaring inputs on a composable function
Think about the ToppingCell composable. It will need to take in three pieces of information: the name
of the topping, the placement of the topping, and what to do when the topping is clicked. Currently,
these values are hardcoded – the topping is always pineapple, it is placed on the whole pizza, and
nothing happens when you try to edit the topping. This will upset opponents of pineapple on pizza, so
it is time to make your toppings more flexible.

The set of toppings and the options for the position of toppings will both have a fixed set of values.
Instead of representing these using Strings, enums are a better fit. Also, the hardcoded strings you
have been using would not be easy to localize. Jetpack Compose supports loading from your string
resources, and it is a good idea to use them.

So start by defining some string resources:

Listing 26.11 Adding string resources (strings.xml)
<resources>
 <string name="app_name">Coda Pizza</string>

 <string name="placement_none">None</string>
 <string name="placement_left">Left half</string>
 <string name="placement_right">Right half</string>
 <string name="placement_all">Whole pizza</string>

 <string name="topping_basil">Basil</string>
 <string name="topping_mushroom">Mushrooms</string>
 <string name="topping_olive">Olives</string>
 <string name="topping_peppers">Peppers</string>
 <string name="topping_pepperoni">Pepperoni</string>
 <string name="topping_pineapple">Pineapple</string>
</resources>

Declaring inputs on a composable function

543

Next, create a new package called com.bignerdranch.android.codapizza.model to store the
model classes you will use to define and represent a pizza. Create a new file in this package called
ToppingPlacement.kt and define an enum to specify which part of a pizza a topping is present on.

Give the enum three cases: the whole pizza, the left half of the pizza, and the right half of the pizza. If
a topping is not present on the pizza, you can represent that with a null value instead.

Listing 26.12 Specifying topping locations (ToppingPlacement.kt)
enum class ToppingPlacement(
 @StringRes val label: Int
) {
 Left(R.string.placement_left),
 Right(R.string.placement_right),
 All(R.string.placement_all)
}

(The @StringRes annotation is not required, but it helps Android Lint verify at compile time that
constructor calls provide a valid string resource ID.)

Next, define another enum to specify all the toppings that a customer can add to their pizza. Place this
enum in a new file called Topping.kt in the model package, and populate it as shown:

Listing 26.13 Specifying toppings (Topping.kt)
enum class Topping(
 @StringRes val toppingName: Int
) {
 Basil(
 toppingName = R.string.topping_basil
),

 Mushroom(
 toppingName = R.string.topping_mushroom
),

 Olive(
 toppingName = R.string.topping_olive
),

 Peppers(
 toppingName = R.string.topping_peppers
),

 Pepperoni(
 toppingName = R.string.topping_pepperoni
),

 Pineapple(
 toppingName = R.string.topping_pineapple
)
}

Chapter 26 Introduction to Jetpack Compose

544

With the models in place, you are ready to add parameters to ToppingCell. You will add three
parameters: a topping, a nullable placement, and an onClickTopping callback. Be sure to provide
values for these parameters in your preview composable, otherwise you will get a compiler error.

Listing 26.14 Adding parameters to a composable (ToppingCell.kt)
@Preview
@Composable
private fun ToppingCellPreview() {
 ToppingCell(
 topping = Topping.Pepperoni,
 placement = ToppingPlacement.Left,
 onClickTopping = {}
)
}

@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 ...
}

You will also need to update MainActivity to provide these arguments when it calls ToppingCell.
Currently, MainActivity has a compiler error, which will prevent the preview from updating. Fix
this now by specifying the required arguments for ToppingCell. You will revisit the onClickTopping
callback later. For now, implement it with an empty lambda.

Listing 26.15 Fixing the compiler error (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ToppingCell(
 topping = Topping.Pepperoni,
 placement = ToppingPlacement.Left,
 onClickTopping = {}
)
 }
 }
}

Return to ToppingCell.kt and build the project to update the preview. Thanks to the changes you just
made to ToppingCellPreview, you might expect the preview to show pepperoni on just the left side of
the pizza. However, it still shows pineapple on the whole pizza. This is because you have not yet used
the new inputs in your ToppingCell. Let’s change that.

Declaring inputs on a composable function

545

Resources in Compose
Start with the name of the topping. With the framework views you have seen before, you used the
Context.getString(Int) function to turn a string resource into a String object you could show
onscreen. In Compose, you can accomplish the same thing using the stringResource(Int) function.
Take it for a spin.

Listing 26.16 Using string resources in Compose (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row {
 Checkbox(
 checked = true,
 onCheckedChange = { /* TODO */ }
)

 Column {
 Text(
 text = "Pineapple"
 text = stringResource(topping.toppingName)
)

 Text(
 text = "Whole pizza"
)
 }
 }
}

Build and refresh the preview. You should see that the topping name changes from the hardcoded
Pineapple string to the Pepperoni string from your string resources. (If you wanted, you could also
specify a specific string resource instead of accessing it in a variable. The same string lookup you just
wrote could also be written as stringResource(R.string.pepperoni), but you instead read it from
the topping parameter to keep your composable dynamic.)

Chapter 26 Introduction to Jetpack Compose

546

Control flow in a composable
Next, shift your attention to the placement text. This is a bit trickier because the placement input is
nullable. A null value indicates that the topping is not on the pizza. In that case, the second text should
not be visible and the Checkbox should not be checked.

To add this null check, you can wrap the second Text in an if statement. If the topping is present, this
if statement will execute and add the label to the UI. Otherwise, the if statement will be skipped, and
only one Text will end up onscreen.

Go ahead and make this change now. While you are at it, update the checked input to Checkbox to
check whether the topping is present on the pizza.

Listing 26.17 if statements in a composable (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row {
 Checkbox(
 checked = true,
 checked = (placement != null),
 onCheckedChange = { /* TODO */ }
)

 Column {
 Text(
 text = stringResource(topping.toppingName)
)

 if (placement != null) {
 Text(
 text = "Whole pizza"
 text = stringResource(placement.label)
)
 }
 }
 }
}

Refresh the preview once more and confirm that the placement text has updated to Left half, matching
the value specified in ToppingCellPreview.

Declaring inputs on a composable function

547

To confirm that your ToppingCell is appearing as expected when the topping is not present, you will
need to update your preview function to specify a null input for the placement. You could adjust your
existing preview to change the placement argument, but it can be helpful to preview several versions of
a composable at the same time.

Create a second preview function to show what ToppingCell looks like when the topping is not added
to the pizza. Give your two preview functions distinct names to clarify what they are previewing.

Listing 26.18 Adding another preview (ToppingCell.kt)
@Preview
@Composable
private fun ToppingCellPreviewNotOnPizza() {
 ToppingCell(
 topping = Topping.Pepperoni,
 placement = null,
 onClickTopping = {}
)
}

@Preview
@Composable
private fun ToppingCellPreviewOnLeftHalf() {
 ToppingCell(
 topping = Topping.Pepperoni,
 placement = ToppingPlacement.Left,
 onClickTopping = {}
)
}
...

Refresh the preview. You will now see two previews. In the one labeled
ToppingCellPreviewNotOnPizza, only the “Pepperoni” label appears in the cell and the checkbox is
unchecked (Figure 26.6).

Figure 26.6 No pepperoni, please

Chapter 26 Introduction to Jetpack Compose

548

You have just observed the effects of control flow inside a composable. Because composables are
functions, you can call them however you would like – including conditionally. Here, the Text
composable was not invoked, so it is not drawn onscreen.

You can accomplish something similar with framework views by setting their visibility to gone. But
with a framework view, the View itself would still be there, just not contributing to what is drawn
onscreen. In Compose, the composable is simply not invoked. It does not exist at all.

if statements are not the only control flows you can use in a composable function. Composable
functions are, at their core, merely Kotlin functions, so any syntax you can use in other functions
can appear in a composable. when expressions, for loops, and while loops are all fair game in your
composables, to name a few examples.

Aligning elements in a row
Take another look at the preview of your topping cell. You may have noticed that in the unselected
state, it looks a bit awkward because the checkbox and the text are not vertically aligned. Worry not,
there is another parameter you can specify to beautify this layout.

The Row and Column composables specify their own parameters that you can use to adjust the layout of
their children. For a Row, you can use the Alignment parameter to adjust how its children are positioned
vertically. (A Column’s Alignment will adjust the horizontal positioning of its children.)

By default, Row’s vertical alignment is set to Alignment.Top, meaning that the top of each
composable will be at the top of the row. To center all items in the composable, set its alignment to
Alignment.CenterVertically.

Listing 26.19 Specifying alignment (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row(
 verticalAlignment = Alignment.CenterVertically
) {
 ...
 }
}

Be sure to import androidx.compose.ui.Alignment from the options provided.

By the way: Do not confuse the Alignment parameter with the Arrangement parameter, which specifies
how the extra horizontal space of a Row (or vertical space, for a Column) should be placed relative to its
children.

Aligning elements in a row

549

Refresh the preview again and confirm that the topping name and checkbox are vertically aligned
(Figure 26.7).

Figure 26.7 Aligning the contents of a row

Chapter 26 Introduction to Jetpack Compose

550

Specifying text styles
Composable parameters are useful for arranging your content and setting values to display. They also
serve an important role in styling your UI.

In Chapter 9, you set the android:textAppearance attribute to ?attr/textAppearanceHeadline5 to
apply built-in styling to text elements in XML. In Compose, you can accomplish the same thing by
setting the style parameter of the Text composable. Like the framework toolkit, Compose also has
built-in text styles accessible through the MaterialTheme object. Take them for a spin now, applying
the body1 style to the name of the topping and body2 to the placement of the topping.

When entering this code, be sure to choose the MaterialTheme object when prompted, not the
MaterialTheme composable function. Their imports are the same, so no need to worry if you choose
the wrong one initially – just note that Android Studio will autocomplete different code. You will see
how the MaterialTheme function works in Chapter 29.

Listing 26.20 Setting text styles (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 ...
) {
 Row(
 verticalAlignment = Alignment.CenterVertically
) {
 ...
 Column {
 Text(
 text = stringResource(topping.toppingName),
 style = MaterialTheme.typography.body1
)

 if (placement != null) {
 Text(
 text = stringResource(placement.label),
 style = MaterialTheme.typography.body2
)
 }
 }
 }
}

Specifying text styles

551

Update the previews by pressing the Build & Refresh label in the banner that says The preview is
out of date or by building the project. You will see that the first line of text is larger than the second
(Figure 26.8). The difference is subtle, but we promise – they are different sizes.

Figure 26.8 Text with style

Chapter 26 Introduction to Jetpack Compose

552

The Compose Modifier
What about attributes like background color, margins, padding, and click listeners? In the framework
view system, these attributes are inherited, making them accessible on every subclass of View. But
composable functions do not have the luxury of inheritance.

Instead, Compose defines a separate type called Modifier where it defines general-purpose
customizations that can be set on any composable. Modifiers can be chained and combined as desired.
Between modifiers and a composable’s function parameters, you can perform all the customizations
you have used so far with framework views.

To modify a composable, pass a Modifier into the composable’s modifier parameter. You can obtain
an empty modifier to build on by referencing the Modifier object first. Then, you can chain a sequence
of modifiers together to create a final Modifier object to set on the composable.

The padding modifier
Start by adding padding to the entire cell with the padding modifier. Set the vertical padding to 4dp
and the horizontal padding to 16dp.

Listing 26.21 Adding padding (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row(
 verticalAlignment = Alignment.CenterVertically,
 modifier = Modifier
 .padding(vertical = 4.dp, horizontal = 16.dp)
) {
 ...
 }
}

When prompted, be sure to choose the import for androidx.compose.ui.Modifier.

In case you are curious, there are a few other ways of specifying padding amounts. Some commonly
used overloads allow you to specify the same padding amount on all sides (Modifier.padding(all
= 16.dp)), or for all four sides independently (Modifier.padding(top = 4.dp, bottom = 4.dp,
start = 16.dp, end = 16.dp)).

Recall from Chapter 11 that dp units are ideal for specifying margins and padding. Composables and
modifiers specify which unit they expect a dimension to be specified in. The .dp extension property
you are using returns a Dp object, which adds additional type safety to make sure you are using the
correct units. There is also an .sp extension to specify an Sp value for text sizes.

Unlike framework views, these units are not interchangeable – if a Compose API needs a text size, it
requests an Sp instance specifically. This also means that if you do not specify a unit, you will see a
compiler error, because Int cannot be converted to Dp or Sp automatically.

Chaining modifiers and modifier ordering

553

Build and refresh your preview. You should see some additional spacing around your composable
(Figure 26.9).

Figure 26.9 Room to breathe

By the way, you may also see borders around elements in your composable previews. These represent
the bounds of objects in your composables, and can help you visualize how and why items are being
positioned as they are. You can hover over a preview to reveal these bounds and click one of the items
to navigate to the composable corresponding to that element.

Chaining modifiers and modifier ordering
If you want to further customize the appearance of your composables, you can chain modifiers. But
beware: The order of modifiers matters. To see why, try adding a background to the ToppingCell.
Place the background modifier after the padding.

Listing 26.22 Adding a background (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row(
 verticalAlignment = Alignment.CenterVertically,
 modifier = Modifier
 .padding(vertical = 4.dp, horizontal = 16.dp)
 .background(Color.Cyan)
) {
 ...
 }
}

When using the Color class, be sure to choose the import for androidx.compose.ui.graphics.
Compose specifies its own class for colors (much like it does for Dp and Sp) and includes constants for
a few colors as a convenience.

Chapter 26 Introduction to Jetpack Compose

554

Where do you think the background will appear? Build and refresh your composable preview to see for
yourself (Figure 26.10). Does this match your expectation?

Figure 26.10 Padding the background

With this code, the background appeared inside the padding. Why?

As we said: In Compose, the order of modifiers matters. Modifiers are invoked from top to bottom.
Each makes its contribution to the appearance of the composable, and then the next modifier is applied
inside it. Once all modifiers have been applied, the content of the composable is placed inside the final
modifier.

Looking at your current code, this means that the padding is added first, and then the background
is added inside the padding. Finally, the Row and its contents are placed inside the background.
Figure 26.11 illustrates how Compose is treating your Row and the two modifiers.

Figure 26.11 How Compose sees your modifiers

Chaining modifiers and modifier ordering

555

Now try moving the background modifier so that it comes before the padding modifier.

Listing 26.23 Reordering the background modifier (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row(
 verticalAlignment = Alignment.CenterVertically,
 modifier = Modifier
 .background(Color.Cyan)
 .padding(vertical = 4.dp, horizontal = 16.dp)
 .background(Color.Cyan)
) {
 ...
 }
}

Build and refresh the preview. You will now see that the background fills the entire composable –
padding included – and the rest of the content remains inside the padding (Figure 26.12).

Figure 26.12 Backgrounds with padding

Chapter 26 Introduction to Jetpack Compose

556

The padding is placed inside the background now because the background is added first and the
padding is added second (Figure 26.13).

Figure 26.13 How Compose sees your reordered modifiers

Sometimes, the order of your modifiers does not matter. For example, if you had several instances of
the padding modifier to specify the padding amounts for the top, bottom, and sides of a composable, it
would not matter what order you declared them in. But for many combinations of modifiers, you need
to be careful about ordering.

If you ever find that one of your composables is not appearing as expected, think about the order of
your modifiers and make sure they are not incorrectly affecting one another.

Remove the background, as it is a bit garish and will not be part of the final UI.

Listing 26.24 Removing the background (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row(
 verticalAlignment = Alignment.CenterVertically,
 modifier = Modifier
 .background(Color.Cyan)
 .padding(vertical = 4.dp, horizontal = 16.dp)
) {
 ...
 }
}

The clickable modifier

557

The clickable modifier
Another crucial modifier is clickable, which is analogous to the venerable setOnClickListener
method. The clickable modifier makes a composable clickable, and it accepts a lambda expression
to define what to do when the view is pressed. Try it out now to make pressing the Row invoke the
onClickTopping callback.

Be sure to add the clickable modifier as the first modifier. You want the entire composable (padding
included) to be clickable. Also, besides defining click behavior, the clickable modifier darkens the
background of the composable when it is pressed to indicate that it is being selected. You want this
effect to extend through the padding, which is another reason to put the modifier first.

Listing 26.25 Making a composable clickable (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row(
 verticalAlignment = Alignment.CenterVertically,
 modifier = Modifier
 .clickable { onClickTopping() }
 .padding(vertical = 4.dp, horizontal = 16.dp)
) {
 ...
 }
}

Chapter 26 Introduction to Jetpack Compose

558

Run Coda Pizza in an emulator. You will see the pepperoni topping displayed in the top-left corner of
your activity, matching the preview. Try clicking the topping. (Be sure to click near the text Pepperoni.)
You have not specified any behavior to take place after the click, but you will see the background
darken, indicating that the click was recognized (Figure 26.14).

Figure 26.14 Interacting with a clickable composable

Sizing composables

559

Sizing composables
Currently, the only clickable area is near the label of the topping. If you try to click to the right of
the topping cell, nothing will happen. (Try it for yourself.) This probably does not match your users’
expectations – you should be able to click anywhere along the width of the screen to interact with the
cell.

The reason that the clickable area does not fill the width of the screen is that your ToppingCell
composable is only taking up as much space as it needs to to display its content. Effectively, its
dimensions are implicitly set to wrap its content.

One way to make your composable consume all the available width is to make your Column take up all
the remaining width in its container. You can do this with the weight modifier.

The weight modifier is a bit special in that it can only be used when your composable is placed
inside another composable that supports weights – like Row and Column. The weight modifier behaves
the same as the layout_weight attribute on a LinearLayout: Any extra space will be divvied up
proportionally to views in the layout based on their weight. If only one of the composables specifies a
weight, all the extra space will go to that composable.

Try it out now. While you are adding a modifier to your Column, include some padding, which will give
your checkbox and text some more breathing room.

Listing 26.26 Using the weight modifier (ToppingCell.kt)

...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit
) {
 Row(
 ...
) {
 ...
 Column(
 modifier = Modifier.weight(1f, fill = true)
 .padding(start = 4.dp)
) {
 ...
 }
 }
}

Rerun Coda Pizza in the emulator to see the changes. Press the right half of the screen next to the
Pepperoni text. You should see that the touch indication appears for the topping cell, even though you
are clicking the empty space next to it. You should also see that the touch indication fills the full width
of the screen (Figure 26.15).

Chapter 26 Introduction to Jetpack Compose

560

Figure 26.15 Interacting with a weighted clickable composable

We have just scratched the surface of what is available with the Modifier API. For example, you can
more explicitly tell a composable how much space to take up with modifiers like wrapContentHeight
and fillParentWidth. You can also specify dimension with modifiers like size, and you can get more
creative about how to constrain a composable’s size with modifiers like aspectRatio and sizeIn.

You can find a list of all the built-in modifiers at developer.android.com/jetpack/compose/
modifiers-list. We encourage you to experiment and combine modifiers to build more complex UIs.
You will likely find that modifiers are more predictable, flexible, and concise than what is available in
the framework view classes.

https://developer.android.com/jetpack/compose/modifiers-list
https://developer.android.com/jetpack/compose/modifiers-list

Specifying a modifier parameter

561

Specifying a modifier parameter
Modifiers are a crucial part of customizing a composable, and they allow you to specify many common
customizations for your UI elements. They are so important, in fact, that we recommend that every
composable UI element that you define accept an optional Modifier input.

Even if you do not think you need to specify any modifiers on a composable, it is better to have
the option readily available than to have to add it later if you change your mind. For ToppingCell,
you may decide later that you want to add a background, change its padding, or set a size for the
composable. In fact, later in this chapter, you will need to tell your ToppingCell how wide it should
be.

Currently, the only way to change these attributes is to modify ToppingCell itself. But any changes
made to the composable directly will appear everywhere you use ToppingCell in your app, which
is not ideal. What if ToppingCell is used in multiple places and needs to be a different size in each
place? To open the door to future customizations, you will add a Modifier parameter to ToppingCell.

To avoid requiring a Modifier instance for every single usage, give this parameter a default value of
Modifier – the Modifier object that you have been building off of so far that represents an empty set
of modifications. The official convention for the modifier parameter is to place it after your required
parameters and before any other optional parameters.

To use the modifier parameter, pass it to your outer composable – your Row, in this case. Make these
changes now (and be sure to change the capitalized Modifier to the lowercase modifier):

Listing 26.27 Allowing modifications (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 modifier: Modifier = Modifier,
 onClickTopping: () -> Unit
) {
 Row(
 verticalAlignment = Alignment.CenterVertically,
 modifier = Modifier modifier
 .clickable { onClickTopping() }
 .padding(vertical = 4.dp, horizontal = 16.dp)
) {
 ...
 }
}

And that is it! We will revisit your lingering TODO in the next chapter when we discuss state, but for
now you have finished implementing ToppingCell. It is ready to be used in your application – say, in a
scrollable list.

Building Screens with Composables
You have seen a number of composables up to this point, with a range of complexity. On the simple
end, you have seen atomic components like Row and Text. And you have built ToppingCell, a more
complex composable that is built on top of other composables.

Chapter 26 Introduction to Jetpack Compose

562

It is also possible to create a composable that renders the entire screen. In fact, the setContent
function you called in MainActivity is a lambda that does just that. Because there are no limitations
about what a single composable can do, you do not need another component like a Fragment to
perform navigation. (You can, however, enlist the help of the AndroidX Navigation library, which has a
Jetpack Compose flavor.)

Under Jetpack Compose, composables of all sizes are the building blocks of your UIs.

Right now, Coda Pizza only displays a single topping. Eventually, you will display several toppings,
but you will not want to be constantly opening your activity’s code to modify its UI. Instead, you can
extract its content into a separate file. The result of this change will be that your MainActivity will
call a single content composable, leaving the activity itself sparse with code.

To get started, define a new file called PizzaBuilderScreen.kt in the
com.bignerdranch.android.codapizza.ui package. Define a new composable function called
PizzaBuilderScreen in this file. PizzaBuilderScreen will be a composable that draws all of the
main content inside the activity. If your code had navigation or other logic, you could place it in this
composable.

Remember to give your new composable a Modifier parameter. Also, add the @Preview annotation
to add a quick preview to the function. (You will not add any arguments to this function, so a separate
preview function is not necessary.)

Listing 26.28 Defining a screen (PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {

}

Here, we are using the convention of ending the composable’s name with “Screen” to indicate that it
fills the entire viewport of the window and represents a distinct portion of the app’s UI. Apps can have
many screens if they need to display several different UIs and navigate between them.

Your PizzaBuilderScreen will display several elements by the time Coda Pizza is complete: the app
bar, the pizza customization preview, the list of toppings, and the PLACE ORDER button. For now, you
will focus on two of these elements: the list of toppings and the PLACE ORDER button.

Before adding any new composables, take a brief detour to your strings.xml file to add the string
resource you will use for the PLACE ORDER button.

Listing 26.29 The “place order” label (strings.xml)
<resources>
 <string name="app_name">Coda Pizza</string>

 <string name="place_order_button">Place Order</string>

 <string name="placement_none">None</string>
 ...
</resources>

Building Screens with Composables

563

Next, create two new private composables inside PizzaBuilderScreen.kt: one for the toppings list
and one for the PLACE ORDER button. For the toppings list composable, call ToppingCell once
for the time being. You will implement the scrolling list behavior in the next section. For the PLACE
ORDER button, use the Button composable.

The Button composable takes in two required inputs: an onClick callback and a set of composable
children to place inside the button. If you wanted to, you could add an icon or any other composables
to spice up your button, but for now you will stick to just the Text composable.

It is conventional for button labels on Android to appear in all caps. This happens by default when
using the framework Button view, but does not happen automatically in Compose. To respect this
convention, manually capitalize your string using the toUpperCase function.

Listing 26.30 Defining content to put onscreen (PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {

}

@Composable
private fun ToppingsList(
 modifier: Modifier = Modifier
) {
 ToppingCell(
 topping = Topping.Pepperoni,
 placement = ToppingPlacement.Left,
 onClickTopping = {},
 modifier = modifier
)
}

@Composable
private fun OrderButton(
 modifier: Modifier = Modifier
) {
 Button(
 modifier = modifier,
 onClick = {
 // TODO
 }
) {
 Text(
 text = stringResource(R.string.place_order_button)
 .toUpperCase(Locale.current)
)
 }
}

If prompted, be sure to choose the import for androidx.compose.material.Button
as well as the imports for androidx.compose.ui.text.toUpperCase and
androidx.compose.ui.text.intl.Locale.

Chapter 26 Introduction to Jetpack Compose

564

Now you can place these composables in your PizzaBuilderScreen to set their position onscreen.
Add a Column to PizzaBuilderScreen to place the ToppingsList at the top of the screen and the
OrderButton at the bottom of the screen. The ToppingsList should fill all of the available height, so
set its weight to 1 via its modifier. Also, make the OrderButton take up the full width of the screen,
with 16dp of padding around it.

Listing 26.31 Placing content in the PizzaBuilderScreen
(PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {
 Column(
 modifier = modifier
) {
 ToppingsList(
 modifier = Modifier
 .fillMaxWidth()
 .weight(1f, fill = true)
)

 OrderButton(
 modifier = Modifier
 .fillMaxWidth()
 .padding(16.dp)
)
 }
}
...

With PizzaBuilderScreen ready, you can now update your MainActivity’s setContent block to
delegate to this function instead of creating the UI itself.

Listing 26.32 Using the PizzaBuilderScreen composable (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ToppingCell(
 topping = Topping.Pepperoni,
 placement = ToppingPlacement.Left
)
 PizzaBuilderScreen()
 }
 }
}

Run Coda Pizza. The app should look like Figure 26.16, with the PLACE ORDER at the bottom of
the screen and the topping information in the center of the screen. The topping cell is centered on
the screen because you have set it to fill the height of the screen and it is arranging its content to be
centered within its bounds. Although the centering behavior is a bit awkward, your ToppingsList
composable is being correctly placed to take up the leftover height of the screen for when you give it a
final implementation.

Scrollable Lists with LazyColumn

565

Figure 26.16 PizzaBuilderScreen in action

Scrollable Lists with LazyColumn
The last step in the major scaffolding for Coda Pizza is to turn your ToppingsList composable into,
well, a list. Right now it displays a single topping, but you want it to show all the available toppings
in Coda Pizza’s menu. Previously, you would use RecyclerView to achieve this goal, which generally
involves a ritual of creating an adapter, view holder, and layout manager for even the most basic of
lists.

In Compose, scrollable lists of items are created using LazyColumn (or LazyRow, if you want to scroll
horizontally instead of vertically). At a very high level, LazyColumn behaves like RecyclerView: It
only does work for the composables that will be drawn onscreen, and it can scroll through enormous
lists with high efficiency. Unlike RecyclerView, a LazyColumn can be created with just a few lines of
code.

Chapter 26 Introduction to Jetpack Compose

566

Because you do not have the overhead of view objects or the ability to store references to composables,
there is no ViewHolder class to create. And because you have the power of Compose’s layout engine,
an adapter is not necessary. The adapter’s role is to turn indices into views and to recycle those views
with new information, but Compose can spin up and tear down composables so efficiently on its own
that LazyColumn only needs to know what to display at a given position. It will take care of the rest.

LazyColumn has one required parameter: a lambda expression to specify the contents of the list.
Beware, though – unlike most of the other lambdas you have seen in this chapter, the lambda you
pass to LazyColumn is not a @Composable function, meaning that you cannot directly add composable
content to the list.

Instead, you add elements to the list by calling functions like item, items, or itemsIndexed inside
LazyColumn’s lambda. Each of these builder functions accepts its own lambda to create a composable
that defines what will be drawn for its position or positions in the list. You can add as many or as few
items as you want, and you can easily combine datasets if desired.

For Coda Pizza, you will use a LazyColumn to display all the values of the Topping enum. Inside the
LazyColumn, use the items function and pass a list of the Topping values to specify that they should
appear in the list. In the lambda for the items builder, take the topping passed to the lambda and use it
to create a row for that topping by calling your ToppingCell.

Make this change in PizzaBuilderScreen.kt now, deleting the ToppingCell you added as a
placeholder.

Listing 26.33 Using LazyColumn to show the list of toppings
(PizzaBuilderScreen.kt)
...
@Composable
private fun ToppingsList(
 modifier: Modifier = Modifier
) {
 ToppingCell(
 topping = Topping.Pepperoni,
 placement = ToppingPlacement.Left,
 onClickTopping = {},
 modifier = modifier
)
 LazyColumn(
 modifier = modifier
) {
 items(Topping.values()) { topping ->
 ToppingCell(
 topping = topping,
 placement = ToppingPlacement.Left,
 onClickTopping = {
 // TODO
 }
)
 }
 }
}
...

When entering this code, be sure to import the items function, if Android Studio does not do so
automatically. The import for this function is androidx.compose.foundation.lazy.items. You may
see an error about a type mismatch if you do not have this import statement.

Scrollable Lists with LazyColumn

567

Run Coda Pizza. You will see all the toppings listed in the order that they are declared in your Topping
enum. They will all be set to appear on the left half of the pizza (Figure 26.17).

Figure 26.17 LazyColumn in action

The list still needs a bit of work – it is not possible to change the placement of a topping, for example
– but spend a moment to marvel at your code. These few lines of code are all it takes to implement the
ToppingsList composable, and your code can easily be adapted to add more content to the list or to
change the appearance of its contents. Achieving this level of conciseness with RecyclerView is simply
not possible. This is a testament to how Jetpack Compose makes it easier to build Android apps.

You have accomplished quite a bit in this chapter, from making your way through the fundamentals of
Compose’s layout system through giving Coda Pizza a solid foundation to build on as you continue to
explore Jetpack Compose. In the next chapter, you will make your UI elements interactive, update your
composables to react to user input, and explore how Jetpack Compose handles application state.

Chapter 26 Introduction to Jetpack Compose

568

For the More Curious: Live Literals
In addition to previews, Jetpack Compose has several tricks up its sleeve to let you quickly iterate on
UI designs. One of these is a feature called live literals. When live literals are enabled and you run your
Compose app through Android Studio, any changes you make to hardcoded values (“literals”) in your
Compose UI will automatically be pushed to the app as it is running. Your UI will refresh with new
values as they are typed, letting you preview changes instantly, without recompiling.

Live literals only work for simple hardcoded values like Int, Boolean, and String. They also must
be enabled in the IDE. To check if you have live literals enabled, open Android Studio’s preferences
with Android Studio → Preferences.... The option for live literals is under the Editor section in the left
half of the preferences window, on a page called Live Edit of literals. Navigate to this page and ensure
Enable Live Edit of literals is checked to turn on live literals. Then re-launch your app to enable the
feature.

Try out live literals by changing your padding values while Coda Pizza is running. Use larger and
smaller values and watch as your content instantly shifts to match the new measurements you define.

Any other code you modify – like adding or removing modifiers entirely – will not update your UI
until you rebuild and run Coda Pizza again; only your literals get updated automatically. Despite this
limitation, the instantaneous nature of these updates makes live literals a great tool for putting the
finishing touches on your UI’s appearance.

When you are finished experimenting with live literals, make sure to revert any changes you made to
Coda Pizza before proceeding to the next chapter.

569

27
UI State in Jetpack Compose

Coda Pizza is off to a good start. In the last chapter, you built out a scrollable list, created a composable
to act as the cell for toppings, and set up the screen’s layout, including an order button at the bottom of
the page. But your app is missing something: Users cannot interact with it (other than scrolling the list
of toppings). If users press a checkbox, it does not change from checked to unchecked or vice versa.

This is not what you are used to with framework views. Think back to CriminalIntent, where you used
a CheckBox view to track whether a crime was solved. As soon as you added the checkbox to your UI,
it responded to click events by toggling its state, with no additional code needed.

In this chapter, you will learn why your current code does not respond to user inputs, and you will
see how to incorporate UI state into your composables. By the end of this chapter, Coda Pizza will let
users place and remove toppings on their pizzas. Pressing either the checkbox or the topping’s cell will
toggle whether the topping is on the pizza. You will also update the PLACE ORDER button to include
the price for the pizza based on the number of toppings.

Chapter 27 UI State in Jetpack Compose

570

When you finish with this chapter, Coda Pizza will look like Figure 27.1.

Figure 27.1 Coda Pizza, now with state

In the next chapter, you will go a step further and display a dialog to ask the user where they want their
topping to be placed.

Philosophies of State
Let’s start by discussing how framework views approach state. The apps you worked on earlier in this
book actually had two representations of UI state. The first was built by you, generally defined with
data classes and managed by ViewModels. This kind of state is often called application state or app
state, because this state controls the behavior of your app as a whole and is how your app sees the
world. Your Compose app will also have app state, and it will be defined similarly.

The second representation of UI state in framework views lived inside the Views themselves. Think
about the framework CheckBox and EditText views. When the user presses a CheckBox or enters new
text in an EditText, that input immediately updates the UI, whether you want it to or not.

Defining Your UI State

571

The fragmentation of state with framework views means that one of the important responsibilities
of your UI code so far has been keeping your app state and View state in sync. If you are using a
unidirectional data flow architecture, for example, your app will take in events, update its model,
generate new UI values, and then update the UI. But when views have their own state, it is possible for
events to short-circuit this flow and update the UI without your consent – possibly incorrectly.

So, when using framework views, you have to ensure that your UI updates as expected, which
sometimes means immediately undoing state changes the view makes on itself. This back and forth
shuffling of data is hard to manage and is the cause of many UI bugs in Android apps.

Compose is different. In an app created with Compose, UI state is stored in only one place. In fact,
Compose does not store any UI state of its own. Instead, you are in complete control of your UI state.
Take the Checkbox composable you are using in Coda Pizza:

 Checkbox(
 checked = true,
 onCheckedChange = { /* TODO */ }
)

If this were a framework view, you would likely expect checked to set the initial checked state of the
checkbox and onCheckedChange to be called whenever it changes between states. But in Compose, the
semantics are a little different.

The checked parameter defines whether the Checkbox is currently checked. You hardcoded this value
to true, so the checkbox is permanently in the checked state – unless you change your code. As you
might guess, this is not really how developers design their checkbox composables. Later in this chapter,
you will instead set this parameter to a variable, allowing your composable to update when the variable
providing its value is reassigned.

Meanwhile, onCheckedChange is called whenever the Checkbox requests that its checked state change.
In practice, this means that onCheckedChange is called each time the user interacts with the Checkbox,
indicating that the user wants to toggle the box’s checked state.

Generally, this lambda is defined so that it updates the input for checked with the new state – but it
does not have to. Which is good, because in the finished Coda Pizza, you want the user to pick where
the topping goes – you do not want to immediately toggle the state of the Checkbox.

All of this explains why your checkboxes are currently ignoring user input: Right now, you do nothing
when the component requests that its state change, so the checked state of the boxes never changes.

By the way, this philosophy of state is why Compose is referred to as a declarative UI toolkit. You
declare how you want your UI to appear; Compose does the heavy lifting of not only setting your UI
up the first time but also keeping it up to date as its state changes. Your composables will have a live
connection to any state they reference, and changes to their state will update any consumers of that
state object with no extra effort on your part.

Defining Your UI State
The first step in adding state to a Compose application is to define the models you will use to store it.
For Coda Pizza, you need a place to hold the state of which toppings are selected. Create a new file
called Pizza.kt in the com.bignerdranch.android.codapizza.model package. In this file, create a
new data class called Pizza.

Chapter 27 UI State in Jetpack Compose

572

Give your data class one property: the toppings on the pizza, a Map<Topping, ToppingPlacement>. If
a topping is present on the pizza, it will be added to this map as a key. The value will be the topping’s
position on the pizza. If a topping is not on the pizza, it will not have an entry in this map.

Listing 27.1 The Pizza class (Pizza.kt)
data class Pizza(
 val toppings: Map<Topping, ToppingPlacement> = emptyMap()
)

Representing your pizza this way makes it easy to determine whether and where a topping is on the
pizza. It also prevents you from making unsupported combinations, like adding two instances of
pepperoni to the entire pizza. (Coda Pizza does not have an option to change the quantity of a topping,
only its placement.)

Updating UIs with MutableState
With your Pizza model ready for use, you can begin incorporating UI state into your application.
To get your bearings with how state behaves in Jetpack Compose, define a file-level property in
PizzaBuilderScreen.kt to track selected toppings. Assign the pizza property’s initial value to
include some toppings by default: pepperoni and pineapple on the whole pizza. After defining your
pizza state, also update your ToppingsList composable to determine the placement of a topping based
on the pizza property.

Listing 27.2 Declaring state (PizzaBuilderScreen.kt)
private var pizza =
 Pizza(
 toppings = mapOf(
 Topping.Pepperoni to ToppingPlacement.All,
 Topping.Pineapple to ToppingPlacement.All
)
)
...
@Composable
private fun ToppingsList(
 modifier: Modifier = Modifier
) {
 LazyColumn(
 modifier = modifier
) {
 items(Topping.values()) { topping ->
 ToppingCell(
 topping = topping,
 placement = ToppingPlacement.Left,
 placement = pizza.toppings[topping],
 onClickTopping = {
 // TODO
 }
)
 }
 }
}
...

Updating UIs with MutableState

573

Run Coda Pizza. You will see the list of toppings, as before, but only the rows for pepperoni and
pineapple will be checked, matching the values you specified in the pizza property. If you click a
topping, it still will not change anything onscreen, because you have not reassigned the state.

In a moment, you will update the onClickTopping lambda in your ToppingsList composable so that
topping selections can be changed. First, add a function to the Pizza class to make it easier to add and
remove toppings.

Define a function called withTopping that returns a copy of the pizza with a given topping. The
function should also accept a ToppingPlacement to indicate where the topping is being placed. If a
null value is sent for the placement, the new pizza should have that topping removed. Use the copy
function to make the updated Pizza instance:

Listing 27.3 Easy pizza changes (Pizza.kt)
data class Pizza(
 val toppings: Map<Topping, ToppingPlacement> = emptyMap()
) {
 fun withTopping(topping: Topping, placement: ToppingPlacement?): Pizza {
 return copy(
 toppings = if (placement == null) {
 toppings - topping
 } else {
 toppings + (topping to placement)
 }
)
 }
}

Why create copies of your Pizza objects instead of making the toppings parameter a var or a
MutableMap? As you will see shortly, Compose is aware of changes to your UI state – but only when
your state object itself is reassigned. If a property of a UI state object changes, the UI will not update
as expected. This can cause problems in your application. For this reason, we recommend making UI
state classes only contain val properties.

Chapter 27 UI State in Jetpack Compose

574

With this helper function in place, you can implement your onClickTopping lambda. Do so now,
setting the pizza property to an updated pizza. For now, keep the implementation simple: If the
topping is on the whole pizza, your lambda should remove it; otherwise, it should be added to the
whole pizza. To watch as your pizza is modified, also add a custom setter to the pizza property to
print a log message each time your pizza’s state is reassigned.

Listing 27.4 Updating UI state (PizzaBuilderScreen.kt)
private var pizza =
 Pizza(
 toppings = mapOf(
 Topping.Pepperoni to ToppingPlacement.All,
 Topping.Pineapple to ToppingPlacement.Left
)
)
 set(value) {
 Log.d("PizzaBuilderScreen", "Reassigned pizza to $value")
 field = value
 }
...
@Composable
private fun ToppingsList(
 modifier: Modifier = Modifier
) {
 LazyColumn(
 modifier = modifier
) {
 items(Topping.values()) { topping ->
 ToppingCell(
 topping = topping,
 placement = pizza.toppings[topping],
 onClickTopping = {
 // TODO
 val isOnPizza = pizza.toppings[topping] != null
 pizza = pizza.withTopping(
 topping = topping,
 placement = if (isOnPizza) {
 null
 } else {
 ToppingPlacement.All
 }
)
 }
)
 }
 }
}
...

Updating UIs with MutableState

575

Run Coda Pizza and press the cell labeled Pineapple to remove pineapple from your pizza. (You will
need to press the cell itself – not the checkbox.) In Logcat, you should see the message reporting that
the state has changed along with the new value of your pizza property:

 D/PizzaBuilderScreen: Reassigned pizza to Pizza(toppings={Pepperoni=All})

But despite the pizza state having changed, as the log shows, your UI did not update. It still shows
pineapple as being on the whole pizza. This is in line with what you might expect based on your
experience with framework UIs: Updating your application state without telling the UI it needs to
update results in a stale UI. However, as you will see shortly, Jetpack Compose can be made aware of
this reassignment so that it updates your UI automatically.

Before you wire up Compose to update your UIs automatically, do another quick test to confirm that
your application state has correctly changed. With Coda Pizza still running, rotate your emulator or
device to trigger a configuration change. This will cause your activity to be re-created, as you have
seen before, which in turn means that your Compose UI will get rebuilt. Because your state is defined
as a global variable, it will survive this configuration change and be used when your UI is redrawn.
You will see that after rotating, the list of toppings updates to match your pizza state – no more
pineapple.

Currently, your composable functions only know how to set up their initial state. The variables that
define your UI state can change all they want, but your UI does not yet have a way to know about these
changes, so your composables never update with fresh data. To fix this issue, you need a mechanism to
tell your composable functions when and how to update.

In your time with the framework UI toolkit, you have been responsible for figuring out when changes
to your application state should cause updates in your UI. But Compose updates your UI state by
observing your application state. To allow this observation to happen, you need a MutableState.

MutableState (like its read-only sibling, State) is a wrapper object that keeps track of a single value.
Whenever the value inside one of these state objects is reassigned, Compose is immediately notified
of the change. Every composable that accesses the state object will then automatically update with the
new value held in the state object.

Because your pizza state is not tracked with a state object, Compose cannot do anything in response
to its value changing. Fix this by storing your pizza inside a MutableState instance. To create a
MutableState object, use the mutableStateOf function, which requires an initial value. Pass an empty
Pizza for this parameter to ensure that users start customizing their pizza from a clean slate. Also,
remove the custom setter you added, as you no longer need the log message.

You can make this change without altering any of your usages of pizza by delegating your property
to the mutable state value with the by keyword you have seen before. Delegation using by makes
the property look like a normal property syntactically – but reads and writes will go through the
MutableState so that Compose can keep track of state changes.

Chapter 27 UI State in Jetpack Compose

576

Type slowly when entering the delegation syntax. There are two functions you need to import to allow
this syntax, which Android Studio can sometimes be finicky about. The full import statements for these
two functions are shown in Listing 27.5.

Listing 27.5 Storing values in a MutableState (PizzaBuilderScreen.kt)
...
import androidx.compose.runtime.getValue
import androidx.compose.runtime.setValue

private var pizza =
 Pizza(
 toppings = mapOf(
 Topping.Pepperoni to ToppingPlacement.All,
 Topping.Pineapple to ToppingPlacement.Left
)
)
 set(value) {
 Log.d("PizzaBuilderScreen", "Reassigned pizza to $value")
 field = value
 }

private var pizza by mutableStateOf(Pizza())
...

Run Coda Pizza. Initially, all your toppings will be deselected, matching the empty Pizza state you use
when initializing your application. Try clicking the cell for any of your toppings (again – click the cell
itself, not the checkbox).

You will see that the topping you click is toggled: Its checkbox will become ticked and the label Whole
pizza will appear under the topping name. Click it again, and the check mark and placement text will
disappear.

Now click a checkbox. You will see that it registers the click with a visual touch indication (a dark
circle), but it will not change from checked to unchecked or vice versa. Time to fix that.

Updating UIs with MutableState

577

The click behavior for the checkbox will be the same as the behavior for the cell itself: It will toggle
the presence of the topping on the pizza. In Chapter 28, when you add a dialog to ask where on the
pizza the topping should be placed, the two will still behave identically – both will show the dialog.

ToppingCell already has everything it needs to implement this behavior. Implement the
onCheckedChange lambda for its Checkbox by calling the same onClickTopping lambda you used for
your clickable modifier.

Listing 27.6 Implementing the Checkbox (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit,
 modifier: Modifier = Modifier
) {
 Row(
 verticalAlignment = Alignment.CenterVertically,
 modifier = modifier
 .clickable { onClickTopping() }
 .padding(vertical = 4.dp, horizontal = 16.dp)
) {
 Checkbox(
 checked = (placement != null),
 onCheckedChange = { /* TODO */ }
 onCheckedChange = { onClickTopping() }
)
 ...
 }
}

Run Coda Pizza again and click a checkbox. This time, you will notice that the checkbox toggles the
presence of the topping, just like the cell does. And no matter where you click, the checkbox or the
topping cell, both elements of the UI update at once. There is no intermediate step where you need to
remember to update the placement text when the checkbox changes state, and the two will never be out
of sync.

Chapter 27 UI State in Jetpack Compose

578

Recomposition
Compared to your work in the framework UI toolkit to keep your app state and UI state in sync,
Compose’s automatic UI updates could seem a bit magical. Allow us to dispel some of the magic.

To see how Compose updates your UI firsthand, add a log statement to your ToppingCell composable
to print a message each time the function is invoked.

Listing 27.7 Pulling back the curtain (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit,
 modifier: Modifier = Modifier
) {
 Log.d("ToppingCell", "Called ToppingCell for $topping")
 Row(
 ...
) {
 ...
 }
}

Run Coda Pizza and open Logcat. Right after Coda Pizza starts, you will see that your new log
message has printed several times – once for each topping that the LazyColumn placed onscreen.
(You might see these logs print again as your UI settles. That is OK. The important thing is that
ToppingCell gets called for each of your toppings when the list is rendered.)

 D/ToppingCell: Called ToppingCell for Basil
 D/ToppingCell: Called ToppingCell for Mushroom
 D/ToppingCell: Called ToppingCell for Olive
 D/ToppingCell: Called ToppingCell for Peppers
 D/ToppingCell: Called ToppingCell for Pepperoni
 D/ToppingCell: Called ToppingCell for Pineapple

Toggle the pepperoni topping by clicking its checkbox or name and take a close look at Logcat:

 D/ToppingCell: Called ToppingCell for Basil
 D/ToppingCell: Called ToppingCell for Mushroom
 D/ToppingCell: Called ToppingCell for Olive
 D/ToppingCell: Called ToppingCell for Peppers
 D/ToppingCell: Called ToppingCell for Pepperoni
 D/ToppingCell: Called ToppingCell for Pineapple
 D/ToppingCell: Called ToppingCell for Pepperoni

You have just witnessed recomposition in action. Recomposition is the technique that Compose uses to
update your UI when your state changes.

Compose keeps track of which composables are using which state. When a composable’s state or
any of its inputs change, Compose needs to update the composable for its new state. It does this by
recomposing the composable.

When a composable is recomposed, the Compose runtime invokes the function again with its new
inputs. The function is executed from the beginning, and whatever UI is created by this recomposition
will replace whatever the composable had shown previously. Every expression in a function being
recomposed gets called again – including your log expressions, in this case.

Recomposition

579

Here, Compose knows that the ToppingCell for pepperoni uses the pizza state to set both its checkbox
and its topping placement label. Clicking the checkbox or cell modifies your pizza property with a
new value that has an updated toppings map. Compose sees this reassignment, determines that this
change affects the ToppingCell composable for pepperoni, and invokes the function again.

Compose has many tricks up its sleeve to avoid unnecessary work when your UI is recomposed. Here,
only the inputs to the ToppingCell for pepperoni changed, so it will be the only function that gets
recomposed. None of the other ToppingCells were recomposed, nor were your PizzaBuilderScreen
and OrderButton composables, so they are not called again.

Because your composables can be invoked at any time, you need to be careful about what you do
inside a composable. A composable should be a pure function, meaning that it should have no side
effects during its composition. A side effect is any operation that causes a change somewhere outside
the function in question. For example, writing a value to a database or to a variable defined outside of
the function itself would be side effects, because these operations impact the behavior of other parts of
your application.

Side effects are dangerous in composables. Because you never know when your composable will be
recomposed, you cannot control when or how many times an operation happens. If you are not careful,
you could easily get into a situation where composition triggers recomposition – possibly in an endless
cycle.

It is OK – and expected – to have side effects in a callback, like a click listener in response to user
input. But a side effect should never appear inside the composition itself.

(Having said that, Compose does offer mechanisms to safely host side effects inside a composable. The
details are outside the scope of this book, but if you are interested you can find more information at
developer.android.com/jetpack/compose/side-effects.)

Recomposition is a crucial part of how Compose works: Any time a Compose UI changes, there is a
corresponding recomposition.

Recomposition can also happen without changing the UI. If any of the inputs to your composables
change, they will always recompose – even if the UI they present is not affected. In this case,
recomposition will be imperceptible to users.

Now that you have uncovered some of Compose’s magic, you can remove the log that prints when
ToppingCell is called.

Listing 27.8 Ending the magic show (ToppingCell.kt)
...
@Composable
fun ToppingCell(
 topping: Topping,
 placement: ToppingPlacement?,
 onClickTopping: () -> Unit,
 modifier: Modifier = Modifier
) {
 Log.d("ToppingCell", "Called ToppingCell for $topping")
 Row(
 ...
) {
 ...
 }
}

https://developer.android.com/jetpack/compose/side-effects

Chapter 27 UI State in Jetpack Compose

580

remember
Currently, the pizza state is defined as a global variable. This is not ideal, since global variables in
general can become tricky to manage and maintain. It would be better if the state were owned by the
composable itself. Because composables are nothing more than functions, the only place to encapsulate
state is inside the function itself.

This presents an issue: Because Compose will call your entire composable function from the ground up
every time it recomposes your UI, any local variables you declare inside a composable function will be
lost between compositions. If you tried to store state inside a composable, it would reset each time the
composable is invoked – which is not an ideal mechanism for storing UI state.

To address this issue, you will use a function called remember. remember takes in a lambda expression
as its argument. On the first composition, the lambda is invoked to generate the remembered value,
which the function then returns.

On subsequent compositions, remember immediately returns the value from the previous composition.
This allows you to persist information across compositions, which is imperative for any information
that cannot be derived from the composable’s inputs.

Composables can have any number of remembered values. Also, Compose keeps track of which
instances of a composable have remembered which values. If you have several instances of the same
composable, they will each remember their own values.

remember is frequently used with mutableStateOf to define state for a composable. In fact, Android
Studio will flag your code with an error if you attempt to call mutableStateOf inside a composable
without wrapping it in a remember block.

Armed with this knowledge, you are ready to move your pizza property. Right now, the only
composable that needs your pizza state is the ToppingsList, making it an ideal candidate to store this
state.

This will not be the final place that your pizza state is stored – in fact, you will find yourself needing to
store this state in a different composable very soon. However, it is fairly common as your application
evolves to move where your state is defined – so much so that it is a rite of passage for new Compose
developers. Luckily, this kind of refactoring is straightforward in Compose.

Relocate your pizza state into your ToppingsList composable (but do not let it get too comfortable).

Listing 27.9 Storing state inside a composable (PizzaBuilderScreen.kt)
private var pizza by mutableStateOf(Pizza())
...
@Composable
private fun ToppingsList(
 modifier: Modifier = Modifier
) {
 var pizza by remember { mutableStateOf(Pizza()) }

 LazyColumn(
 modifier = modifier
) {
 ...
 }
}

State Hoisting

581

Although this code might look like you are delegating onto the remember function, keep in mind that
remember will be returning a MutableState<Pizza>. This is the value that the pizza variable will
delegate to, and it behaves exactly the same as the state delegation you set up before.

Run Coda Pizza again. You should see the same behavior as before, but now you have rid
PizzaBuilderScreen.kt of a global variable that could add complications later.

State Hoisting
For your Coda Pizza app, you want the PLACE ORDER button to display the price of a pizza based
on its toppings: A plain cheese pizza costs $9.99, and each topping adds $1.00 for the whole pizza or
$0.50 for half the pizza. Define a computed property called price on your Pizza class to keep track of
this price information.

Listing 27.10 Pricing pizzas (Pizza.kt)
import com.bignerdranch.android.codapizza.model.ToppingPlacement.*

data class Pizza(
 val toppings: Map<Topping, ToppingPlacement> = emptyMap()
) {
 val price: Double
 get() = 9.99 + toppings.asSequence()
 .sumOf { (_, toppingPlacement) ->
 when (toppingPlacement) {
 Left, Right -> 0.5
 All -> 1.0
 }
 }
 ...
}

Make sure you import your Left, Right, and All ToppingPlacements, not the Compose constants with
the same names.

Now, you need to make the pizza state accessible in your OrderButton composable.

Currently, this state is held by ToppingsList, and there is not a great way to share information
with OrderButton, because the two composables are siblings within PizzaBuilderScreen. From
Compose’s perspective, these two composables are entirely unrelated; they cannot communicate with
one another directly.

You need to move the state where both ToppingsList and OrderButton can access it – like their
shared parent, PizzaBuilderScreen. (We did warn you this was coming.)

The need to move state out of a composable and up to the composable’s caller is so common in
development with Compose that it has a name: state hoisting. The pattern for hoisting state involves
removing state from a composable and defining it instead as a parameter of the composable. If the
composable also needs to update the state, it should take in a lambda expression that will be called with
information about the change being made.

Chapter 27 UI State in Jetpack Compose

582

Think about your Checkbox. It does not hold any state itself; instead, it accesses the same pizza state
that is currently held in ToppingsList. This, remember, is how your UI elements stay so effortlessly in
sync.

In fact, Checkbox follows the state hoisting pattern. The same is true of the other commonly used
built-in composables that change appearance in response to user input (like TextField, Switch, and
Slider). This lets composables that depend on these components maintain complete control of their
children’s behavior. By hoisting state out of a composable, you end up with a flexible component
whose behavior can be customized.

By the way, although state hoisting is a great tool for making more generalized components, do not
stress about ensuring that all your composables are stateless. Many composables can effectively hold
their own state, and you are free to decide where your UI state is held. And if you change your mind,
you can easily refactor your code to incorporate state hoisting – as you will see momentarily.

To hoist the pizza state out of ToppingsList, you will make three changes: First, you will move the
declaration of the pizza state into PizzaBuilderScreen. Second, you will define two new parameters
on ToppingsList: a Pizza object to display in the list and a lambda expression that will be called when
the pizza is modified to supply a new value for the pizza. With these arguments in place, you will then
update any writes to the pizza property with calls to your lambda.

State Hoisting

583

Make these changes now to hoist your pizza state (Listing 27.11).

Listing 27.11 Pizza hoisting (PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {
 var pizza by remember { mutableStateOf(Pizza()) }

 Column(
 modifier = modifier
) {
 ToppingsList(
 pizza = pizza,
 onEditPizza = { pizza = it },
 modifier = Modifier
 .fillMaxWidth()
 .weight(1f, fill = true)
)
 ...
 }
}

@Composable
private fun ToppingsList(
 pizza: Pizza,
 onEditPizza: (Pizza) -> Unit,
 modifier: Modifier = Modifier
) {
 var pizza by remember { mutableStateOf(Pizza()) }

 LazyColumn(
 modifier = modifier
) {
 items(Topping.values()) { topping ->
 ToppingCell(
 topping = topping,
 placement = pizza.toppings[topping],
 onClickTopping = {
 val isOnPizza = pizza.toppings[topping] != null
 pizza = onEditPizza(pizza.withTopping(
 topping = topping,
 placement = if (isOnPizza) {
 null
 } else {
 ToppingPlacement.All
 }
))
 }
)
 }
 }
}
...

Run Coda Pizza and confirm that its behavior has not changed.

Chapter 27 UI State in Jetpack Compose

584

With the pizza state now owned by PizzaBuilderScreen, you are ready to show price information in
your OrderButton. Start by updating your string resource file to include a spot for the price to appear,
using a format string placeholder.

Listing 27.12 Adding a price tag (strings.xml)
<resources>
 ...
 <string name="place_order_button">Place Order (%1$s)</string>
 ...
</resources>

Next, pass a pizza instance from PizzaBuilderScreen to OrderButton and use an instance of
NumberFormat to convert the price property to a formatted string that you can display.

Listing 27.13 Showing pizza prices (PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {
 ...
 Column(
 modifier = modifier
) {
 ...
 OrderButton(
 pizza = pizza,
 modifier = Modifier
 .fillMaxWidth()
 .padding(16.dp)
)
 }
}
...
@Composable
private fun OrderButton(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Button(
 modifier = modifier,
 onClick = {
 // TODO
 }
) {
 val currencyFormatter = NumberFormat.getCurrencyInstance()
 val price = currencyFormatter.format(pizza.price)
 Text(
 text = stringResource(R.string.place_order_button, price)
 .toUpperCase(Locale.current)
)
 }
}

State Hoisting

585

Run Coda Pizza and test your new feature: When no toppings are added, the order button’s text should
read PLACE ORDER ($9.99). For each topping you add to the pizza, the price will increase by $1, the
price of a topping placed on the entire pizza.

Notice that your ToppingsList composable can automatically update the OrderButton composable.
By simply editing the state that backs the UI, every consumer of the UI state instantly receives its latest
value. There is no extra effort on your part to track down all the reasons a certain UI element might
need to be updated.

By the way, NumberFormat objects are slightly expensive to allocate, so discarding them between
compositions is a bit wasteful. This is another practical application of remember, which you can use to
keep resources available between recompositions. Wrap your NumberFormat in a remember block to try
this out for yourself.

Listing 27.14 remembering a NumberFormatter (PizzaBuilderScreen.kt)
...
@Composable
private fun OrderButton(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Button(
 modifier = modifier,
 onClick = {
 // TODO
 }
) {
 val currencyFormatter = remember { NumberFormat.getCurrencyInstance() }
 val price = currencyFormatter.format(pizza.price)
 Text(
 text = stringResource(R.string.place_order_button, price)
 .toUpperCase(Locale.current)
)
 }
}

Run Coda Pizza again. The behavior of your app will not change – and because this overhead is fairly
small and modern phones are very fast, the performance difference should be imperceptible. But you
can now rest easy knowing that you are not unnecessarily throwing out work that you will need to redo
on the next composition.

Chapter 27 UI State in Jetpack Compose

586

State and Configuration Changes
Currently, Coda Pizza has a small problem, and it will instantly be familiar to you. Run Coda Pizza and
add a topping or two to the pizza. Then rotate your device or emulator.

Yep. The topping selections are lost after the configuration change. remember persists state across
recompositions, but it has its limits: When your Activity is destroyed and re-created, so is your
composition. Because the composition is discarded, it will restart from a blank slate when your
Activity is re-created and calls setContent.

This was not an issue when you declared the pizza state as a global variable. But now, because your
state is associated with your composition hierarchy – and, by extension, your activity – it must obey the
rules of the activity lifecycle. Every variable stored using remember will be lost after a configuration
change (and process death), just like values stored in your Activity.

In your time with the framework UI toolkit, you saw two approaches to solve this problem: the
savedInstanceState bundle and ViewModel. Although ViewModels can be a great tool for managing
UI state and can be used in Jetpack Compose, they require more setup than is warranted for your needs
in Coda Pizza. savedInstanceState will be your solution, and you will access it using a variation of
remember called rememberSaveable.

The “saveable” portion of this function’s name refers to the fact that any remembered value is
also automatically written to your Activity’s savedInstanceState bundle when it is destroyed.
Remembered values that were saved can be restored when your composition is re-created, so values
remembered in this way also survive configuration changes.

rememberSaveable is called in the same way as remember, using a lambda to perform its initialization.
Try it out now. (This change will introduce a problem in your code, which we will explain next.)

Listing 27.15 Remembering and saving (PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {
 var pizza by rememberSaveable { mutableStateOf(Pizza()) }
 ...
}
...

Run Coda Pizza. It will crash with the following exception:

 IllegalArgumentException: MutableState containing Pizza(toppings={}) cannot
 be saved using the current SaveableStateRegistry. The default implementation
 only supports types which can be stored inside the Bundle. Please consider
 implementing a custom Saver for this class and pass it as a stateSaver
 parameter to rememberSaveable().

Coda Pizza has crashed because it is attempting to write a Pizza to a Bundle. But Bundles are
restricted in the types they can store: Only instances of Serializable, Parcelable, and basic types
like String, Int, Long, Float, and Double are allowed in a Bundle. To fix this crash, you need to
convert Pizza into a type that can be added to a Bundle.

Parcelable and Parcelize

587

Parcelable and Parcelize
The most effective way to let a Pizza fit into a Bundle is to make it a Parcelable class. Parcelable
is an interface provided by the Android OS that allows a class to be converted into and read out of a
Parcel object. Parcels allow for compact storage of objects and are ideal for use in a Bundle.

The process of manually implementing the Parcelable interface is a bit complex – plus there are
limitations about which data types can appear in the Parcel. Luckily, there is a plugin to help. With a
bit of setup, you can have a Parcelable implementation automatically generated for you.

To do this, you will need to add a new plugin to your project called Parcelize, which takes care of
generating Parcelable implementations for you at build time. Because Parcelize is a compiler plugin,
your Parcelable implementations will always stay up to date with your class definitions, preventing
errors when converting a Parcel back into the original object.

To add the Parcelize plugin, first register it with your project by adding its plugin ID and version to
your build.gradle file labeled (Project: Coda_Pizza).

Listing 27.16 Adding the Parcelize plugin (build.gradle)
plugins {
 id 'com.android.application' version '7.1.2' apply false
 id 'com.android.library' version '7.1.2' apply false
 id 'org.jetbrains.kotlin.android' version '1.6.10' apply false
 id 'org.jetbrains.kotlin.plugin.parcelize' version '1.6.10' apply false
}
...

Next, apply this plugin to your application by registering it in the app/build.gradle file.

Listing 27.17 Enabling the Parcelize plugin (app/build.gradle)
plugins {
 id 'com.android.application'
 id 'org.jetbrains.kotlin.android'
 id 'org.jetbrains.kotlin.plugin.parcelize'
}
...

After making these changes to your build configuration files, do not forget to click the Sync Now
button to make Android Studio aware of your changes.

Chapter 27 UI State in Jetpack Compose

588

After the sync completes, you are ready to make your Pizza class implement the Parcelable interface.
With the help of Parcelize, you can accomplish this with two small changes. First, annotate the Pizza
class with @Parcelize. Second, make Pizza implement the Parcelable interface.

Listing 27.18 Parcelizing pizza (Pizza.kt)
@Parcelize
data class Pizza(
 val toppings: Map<Topping, ToppingPlacement> = emptyMap()
) : Parcelable {
 ...
}

(If prompted, be sure to choose the import for kotlinx.parcelize.Parcelize instead of
kotlinx.android.parcel.Parcelize. The kotlinx.android package is a relic of the now deprecated
Kotlin Android Extensions plugin.)

Parcelable contains a few functions that all implementers must define. As you type this code, you
may notice that errors about missing function overrides disappear as soon as you annotate the class
with @Parcelize. Parcelize will automatically provide the entire implementation for this interface with
no extra effort on your part.

Run Coda Pizza. This time, it will not crash, and you will be presented with the familiar list of
toppings. Add some toppings to the pizza and rotate the emulator or device. The state should survive
the configuration change, and you should see the same selection of toppings – no matter how many
times you rotate the phone or what other configuration changes Coda Pizza encounters (Figure 27.2).
And because your state is stored in the savedInstanceState bundle, it will even survive process death.

Figure 27.2 Saving pizzas across configuration changes

State is a crucial part of any application, and in the world of Compose, it is entirely in your hands. But
the discussion of state does not end there. In the next chapter, you will incorporate a dialog into Coda
Pizza and see how Compose’s philosophy of state lets you achieve a wide variety of app behaviors.

For the More Curious: Coroutines, Flow, and Compose

589

For the More Curious: Coroutines, Flow, and Compose
Coda Pizza is a small application to get your feet wet with Compose. But what about bigger apps that
need to store data or access a web service?

The Kotlin coroutines you met in Chapter 12 are a great fit for Compose, thanks to a few APIs that
translate between the declarative and asynchronous worlds. In fact, Compose itself uses coroutines in a
few of its APIs. You can see an example of one of these APIs in the next section (the section called For
the More Curious: Scrolling State).

In Chapter 12, you also explored using StateFlow to manage UI state. At a high level, StateFlow and
Compose’s State classes do roughly the same thing: They emit a sequence of values over time and can
be observed. With StateFlow, the observation is explicit – you call collect and specify what to do
with each emission. Compose’s State class works in a similar way, but the observation is implicit. Any
time the value changes, all consumers are recomposed to get the update.

The easiest way to use values from a Flow inside a composable is to first convert the flow into a State
object. You can do this with the collectAsState function. collectAsState will collect all the items
from a flow and relay them to a State that can be used for composition. collectAsState does not
need to be called from a coroutine scope and is itself a composable function. If you used the repository
pattern in Coda Pizza, your PizzaBuilderScreen composable might obtain the pizza state like this:

 @Composable
 fun PizzaBuilderScreen(
 repository: PizzaRepository,
 modifier: Modifier = Modifier
) {
 val pizzaFlow: Flow <Pizza> = repository.getCustomizedPizza()
 val pizza: Pizza by pizzaFlow.collectAsState()
 ...
 }

collectAsState returns a State, not a MutableState, so you cannot write values back to the flow.
(This is also why pizza is declared as a val instead of a var in this example.) If you need to send
updates back to the repository, you will need to call into it.

Chapter 27 UI State in Jetpack Compose

590

Chances are, any functions on PizzaRepository that update the pizza will be suspending functions.
Your composables are not currently set up to launch coroutines, since they are not associated with a
coroutine scope. To fix this, you would need to obtain a coroutine scope to launch coroutines from,
which you can do using the rememberCoroutineScope function.

rememberCoroutineScope creates a coroutine scope and remembers it for future compositions. If
the composable is removed from the composition in the future, the coroutine scope will be canceled.
(By the way, composable functions cannot also be suspending functions, so you will always have an
explicit coroutine scope when using a coroutine from a composable.)

One way to set up ToppingCell with a suspending call into a repository might look like this:

 val coroutineScope = rememberCoroutineScope()
 ToppingsList(
 pizza = pizza,
 onEditPizza = { updatedPizza ->
 coroutineScope.launch {
 pizzaRepository.setPizza(updatedPizza)
 }
 }
)

Notice that the call to launch happens inside the callback, not the composable itself. Although the
coroutine scope will be remembered, composition still behaves as normal, meaning that calling launch
during composition will cause the coroutine to be re-launched on each composition. Because of this,
you should never call launch inside a composable directly; instead, remember the coroutine for use
elsewhere in the composable.

With these integrations between Compose and coroutines, you can drive your front end with a robust
data back end, like you did in CriminalIntent and PhotoGallery. Compose also has integrations for
popular reactive libraries, including RxJava and LiveData. We encourage you to experiment with these
integrations to apply some of the patterns you have seen previously to the world of Compose.

For the More Curious: Scrolling State

591

For the More Curious: Scrolling State
Jetpack Compose’s ideas about state and recomposition are woven throughout the framework. In fact,
Coda Pizza was leveraging these two concepts even before you added state of your own.

Think about your LazyColumn. It needs to keep track of its scroll position, which it does automatically.
But it also uses the state hoisting pattern to allow its parent to manage the scrollable state. How does it
do this? To see for yourself, take a look at its signature:

 @Composable
 fun LazyColumn(
 modifier: Modifier = Modifier,
 state: LazyListState = rememberLazyListState(),
 ...
)

rememberLazyListState does two things: It creates a LazyListState object with an initial position at
the beginning of the list, and it remembers that state via the remember function. For many lists, you do
not need to think about this behavior – the default, automatically managed scrolling state will simply
do the right thing. But if you ever need to read or control the scroll position of the LazyColumn, the
option is always available.

To take the scroll state into your own hands, you can create your own LazyListState and pass it in as
the state parameter. The code to do so might look like this:

 val listState = rememberLazyListState()
 LazyColumn(
 state = listState
) {
 // Add items to the LazyColumn
 }

This code effectively does the same thing as the default, automatically managed state parameter, but
you now have a reference to the state being used. This lets you both read the scroll state and modify it,
if desired, which you can do like this:

 // Determine whether the user is currently scrolled to the top of the list
 val isAtTopOfList = (listState.firstVisibleItemIndex == 0) &&
 (listState.firstVisibleItemScrollOffset == 0)

 // Scroll to the top of the list from the current scroll position
 coroutineScope.launch {
 // Suspends until the scroll animation finishes
 listState.scrollToItem(index = 0, scrollOffset = 0)
 }

The LazyListState backs its scroll position properties with State objects, meaning that the scroll
position can be observed and trigger recompositions just as you have seen for other state. Most of
the built-in composables will explicitly require state, but other composables that have an implicit
or self-managed state will still offer some mechanism to read and control the state, as you saw with
LazyColumn.

These design paradigms make the built-in composables highly flexible, and you can apply the same
ideas to your own composables if you need to make flexible, reusable components like the ones
included with Compose.

Chapter 27 UI State in Jetpack Compose

592

For the More Curious: Inspecting Compose Layouts
Sometimes you will need to debug your Compose UIs just as you have debugged traditional UIs
using the framework view system. In a challenge near the end of Chapter 5, you explored the layout
inspector. The layout inspector allows you to see the configuration of your views, including their
nesting, attributes, and position. You can also break the view into layers to see exactly what is being
rendered by a given view.

The layout inspector (as well as many other Android UI debugging tools) fully supports Jetpack
Compose. Try it out for yourself by opening the layout inspector with its menu option, Tools →
Layout Inspector, then running Coda Pizza. The layout inspector will open in the bottom of the IDE
(Figure 27.3).

Figure 27.3 Inspecting your Compose UI

Explore the component tree on the left side of the layout inspector. You will see all of the composables
in your layout, represented as a hierarchy of nodes. Double-clicking a node will take you to the
composable call that contributed the element to your UI.

Find and select your OrderButton composable in the tree. The screen preview in the center of the
layout inspector will be marked with the bounding box of the button, and the attributes window on the
right will update to show the composable’s attributes. In the Parameters section, you will see all the
inputs that were passed to the composable.

You cannot use the layout inspector to edit the attributes of a composable (nor the attributes of a View),
but getting a better understanding of your layout can be invaluable for debugging.

Try experimenting with the other techniques you have learned to debug your apps. You will find that
many or all of them still work in the declarative world of Jetpack Compose.

593

28
Showing Dialogs with Jetpack

Compose

Understanding how Jetpack Compose treats state and recomposition are crucial to effectively using
Compose. The ramifications of state changes in your code being the trigger for UI updates extend
throughout the framework. A great example of this is how Compose handles dialogs.

When you want to display a dialog in the framework UI toolkit, you use a class like AlertDialog or
DatePickerDialog – ideally, wrapped in a DialogFragment. To display one of these dialogs, you call
the appropriate show function. The dialog then does whatever it wants to do and dismisses itself. If
there is a result it needs to send back to whatever component summoned it, it needs to safely transfer
the data back to that location – often with a fair amount of orchestration.

In Compose, dialogs follow the same rule of declarative UIs that you have seen before: If you say that
a dialog should be shown, it will be shown. You are in control of when the dialog disappears – the
dialog can request that it be dismissed, but the call site gets the final say.

Because the state of whether the dialog is visible is known by the composable that hosts the dialog,
there is no need to wrap the dialog in another container to manage its lifecycle. And because the dialog
is directly managed by another composable, transferring data between the two is as simple as declaring
a lambda expression to serve as a callback – no need to set up a finicky line of communication between
two components.

Chapter 28 Showing Dialogs with Jetpack Compose

594

In Coda Pizza, you will use a dialog to ask your users where they would like a topping to be placed on
their pizza. The finished dialog will look like Figure 28.1, and it will appear any time the user selects a
topping from the list.

Figure 28.1 The final dialog

Your First Dialog in Compose

595

Your First Dialog in Compose
There are several types of dialogs available in Compose, including an AlertDialog composable that
mimics the appearance of its framework counterpart. You will be using Dialog, which is more agnostic
about its content and will let you build a more custom UI. Regardless of which dialog flavor you
choose, the semantics are largely the same – especially when it comes to how the dialog’s state is
managed.

On its own, the Dialog function renders an empty window, so you will need to create a new
composable that builds off of Dialog and provides the dialog’s view. Building this UI will require a
fair amount of code, so your composable for this dialog should be in its own file to keep your code
organized.

Create a new file in the ui package called ToppingPlacementDialog.kt. In your new file, define a
composable function called ToppingPlacementDialog that calls the Dialog function.

Dialog requires two inputs: an onDismissRequest lambda and a content lambda. We will revisit the
role of onDismissRequest later – for now, leave it empty. To begin your work on the content, create
a placeholder UI to show in the dialog: a boring red box. You will use this to make sure you have
everything set up before adding more functionality. Use a Box composable and make it visible by
setting its background color to Color.Red and its width and height to 64dp:

Listing 28.1 Painting the dialog red (ToppingPlacementDialog.kt)
@Composable
fun ToppingPlacementDialog() {
 Dialog(onDismissRequest = { /* TODO */ }) {
 Box(
 modifier = Modifier
 .background(Color.Red)
 .size(64.dp)
)
 }
}

(Be sure to add the import for androidx.compose.ui.window.Dialog instead of
android.app.Dialog.)

To see your dialog in action, you need to call ToppingPlacementDialog. Because Dialog appears in
its own window, it does not matter where in your composition this function call appears. The result
will always be the same: a fullscreen dialog with the specified content. In this case, we recommend
showing the dialog from ToppingsList.

ToppingsList is a good candidate for managing the dialog because it is a convenient place to manage
the dialog’s state. When any of the ToppingCells in its LazyColumn are clicked, the dialog should be
shown. ToppingsList already has visibility into how ToppingCells are created, making this a small
change.

Chapter 28 Showing Dialogs with Jetpack Compose

596

You do not want to store this state too far up your composition hierarchy, since each level above
ToppingsList means that you need another pair of parameters to access and change the state. No other
component in Coda Pizza will need to be aware of this state, so managing it directly in ToppingsList
will prevent unnecessary clutter in your code and make it easier to read.

Add a call to ToppingPlacementDialog in ToppingsList.

Listing 28.2 Showing a dialog (PizzaBuilderScreen.kt)
...
@Composable
private fun ToppingsList(
 pizza: Pizza,
 onEditPizza: (Pizza) -> Unit,
 modifier: Modifier = Modifier
) {
 ToppingPlacementDialog()

 LazyColumn(
 modifier = modifier
) {
 ...
 }
 }
 ...

Your First Dialog in Compose

597

What do you think will happen when this code executes? To find out, run Coda Pizza. When the app
launches, you will see your familiar list of toppings behind a dark overlay with a red square in the
center of the window (Figure 28.2).

Figure 28.2 A test dialog

The red square is your dialog, and the dark overlay is being added by the system (the same overlay
appears behind dialogs in the framework UI toolkit, as you may have noticed). With the dialog open,
try dismissing it – either with the Back button or by clicking outside the dialog (on the dark backdrop).
Despite your efforts, you will be unable to dismiss it.

Chapter 28 Showing Dialogs with Jetpack Compose

598

Dismissing the Dialog
Whenever a dialog is part of your composition, it will be shown onscreen. You have not told your
ToppingPlacementDialog when it should stop being displayed, so attempts to dismiss it will do
nothing. And none of Compose’s dialog functions has a parameter to set the dialog’s visibility, so you
will need another way to dismiss your dialog.

In Chapter 26, you made another UI element that was visible only some of the time: the placement
label in your ToppingCell. You use an if statement so that the Text composable is only invoked when
you want it to be visible. You will use the same approach to show and hide the dialog.

With the dialog’s visibility controlled by an if statement, the job of the onDismissRequest lambda
will be to update the condition set by the if statement so that the Dialog function will not be invoked
again when your UI is recomposed. This means that, for your dialog’s visibility to be managed
correctly, ToppingPlacementDialog will need to forward its requests to be dismissed.

Declare a new parameter called onDismissRequest, mirroring the parameter from the base Dialog
composable, and pass it to your Dialog.

Listing 28.3 Forwarding dismiss requests (ToppingPlacementDialog.kt)

@Composable
fun ToppingPlacementDialog(
 onDismissRequest: () -> Unit
) {
 Dialog(onDismissRequest = { /* TODO */ } onDismissRequest) {
 Box(
 modifier = Modifier
 .background(Color.Red)
 .size(64.dp)
)
 }
}

With this parameter in place, ToppingPlacementDialog now has everything it needs to have its
visibility managed. To track whether the dialog should be visible, define a new MutableState property
and surround your call to ToppingPlacementDialog in an if statement that checks this state. You will
want the dialog state to persist across configurations, so use rememberSaveable instead of remember.

Your new state will be driven by two events: When a topping is clicked, the dialog should be shown.
When the dialog requests to be dismissed, it should be hidden. Drive this state by setting your
onClickTopping and onDismissRequest callback implementations with an update to your state.

Dismissing the Dialog

599

Listing 28.4 Managing your dialog’s state (PizzaBuilderScreen.kt)
...
@Composable
private fun ToppingsList(
 pizza: Pizza,
 onEditPizza: (Pizza) -> Unit,
 modifier: Modifier = Modifier
) {
 var showToppingPlacementDialog by rememberSaveable { mutableStateOf(false) }

 if (showToppingPlacementDialog) {
 ToppingPlacementDialog(
 onDismissRequest = {
 showToppingPlacementDialog = false
 }
)
 }

 LazyColumn(
 modifier = modifier
) {
 items(Topping.values()) { topping ->
 ToppingCell(
 topping = topping,
 placement = pizza.toppings[topping],
 onClickTopping = {
 val isOnPizza = pizza.toppings[topping] != null
 onEditPizza(pizza.withTopping(
 topping = topping,
 placement = if (isOnPizza) {
 null
 } else {
 ToppingPlacement.All
 }
))
 showToppingPlacementDialog = true
 }
)
 }
 }
 }
 ...

By the way, although you could technically use Kotlin’s trailing lambda syntax to omit the parameter
name and parentheses after ToppingPlacementDialog, we do not recommend it. Callbacks for
composables are most effectively identified by their name, and it can be difficult to determine what a
lambda does in Compose when used with the trailing lambda syntax.

We recommend only using the trailing lambda syntax with a composable when you are passing in
its main content. If the parameter name is anything besides content, the conventional name for the
“primary” content of a composable, the trailing lambda syntax can remove a label that is important in
understanding how your UI will appear.

Run Coda Pizza. Now, the app displays the toppings list, as before. Clicking a topping shows the
placeholder dialog, which can now be dismissed by clicking outside the dialog or by pressing the Back
button. The dialog is not dismissed if the user presses the red square itself, which lets the user interact
with the dialog without dismissing it.

Chapter 28 Showing Dialogs with Jetpack Compose

600

Setting the Dialog’s Content
Now that the dialog can show and hide itself, you can focus on its content. Start by adding a string
resource to show in the dialog.

Listing 28.5 Asking important questions (strings.xml)
<resources>
 ...
 <string name="place_order_button">Place order (%1$s)</string>

 <string name="placement_prompt">Where do you want %1$s on your pizza?</string>
 <string name="placement_none">None</string>
 <string name="placement_left">Left half</string>
 <string name="placement_right">Right half</string>
 <string name="placement_all">Whole pizza</string>
 ...
</resources>

Now you are ready to start building the real UI to appear in the dialog. Remove the temporary Box and
replace it with a Card. Card includes a background, drop shadow, and rounded corners – exactly what
you need for your dialog. Its children are stacked on top of one another (like a FrameLayout’s), so you
will only include one direct child in the Card.

In your Card, add a Text with the prompt you just declared. Place the Text in a Column, because you
will need to add buttons underneath the prompt shortly. You will also need to add a new parameter to
accept the name of the topping being added to the pizza.

Listing 28.6 Asking the right question (ToppingPlacementDialog.kt)
@Composable
fun ToppingPlacementDialog(
 topping: Topping,
 onDismissRequest: () -> Unit
) {
 Dialog(onDismissRequest = onDismissRequest) {
 Box(
 modifier = Modifier
 .background(Color.Red)
 .size(64.dp)
)
 Card {
 Column {
 val toppingName = stringResource(topping.toppingName)
 Text(
 text = stringResource(R.string.placement_prompt, toppingName),
 style = MaterialTheme.typography.subtitle1,
 textAlign = TextAlign.Center,
 modifier = Modifier.padding(24.dp)
)
 }
 }
 }
}

Setting the Dialog’s Content

601

Because you have added a new parameter to ToppingPlacementDialog, ToppingsList will now have a
compiler error. Your dialog needs to know not only whether it should be visible but also what content it
should show. More specifically, your dialog needs to know which topping was selected, not just that a
topping was selected.

To keep track of this information, you will need to be a bit more clever about the dialog state you
store. Instead of keeping track of whether the dialog should appear, your state can instead track which
topping you are in the process of putting on the pizza.

If the user has not selected a topping, this state should be null to indicate that no topping was selected.
Otherwise, the most recently selected topping can be remembered and shown in the dialog. Make this
change now, replacing your current showToppingPlacementDialog state.

Listing 28.7 Smarter state (PizzaBuilderScreen.kt)
...
@Composable
private fun ToppingsList(
 pizza: Pizza,
 onEditPizza: (Pizza) -> Unit,
 modifier: Modifier = Modifier
) {
 var showToppingPlacementDialog by rememberSaveable { mutableStateOf(false) }
 var toppingBeingAdded by rememberSaveable { mutableStateOf<Topping?>(null) }

 if (showToppingPlacementDialog) {
 toppingBeingAdded?.let { topping ->
 ToppingPlacementDialog(
 topping = topping,
 onDismissRequest = {
 showToppingPlacementDialog = false
 toppingBeingAdded = null
 }
)
 }

 LazyColumn(
 modifier = modifier
) {
 items(Topping.values()) { topping ->
 ToppingCell(
 topping = topping,
 placement = pizza.toppings[topping],
 onClickTopping = {
 showToppingPlacementDialog = true
 toppingBeingAdded = topping
 }
)
 }
 }
}
...

Chapter 28 Showing Dialogs with Jetpack Compose

602

Run Coda Pizza once again and select any of the toppings. You will now see a dialog – one that
actually looks more like a dialog this time – asking the user about the topping they just selected
(Figure 28.3). Dismissal will work as it has before, but because there are no placement options yet,
your users are still confined to the dullness of cheese pizzas.

Figure 28.3 The beginning of a dialog

Setting the Dialog’s Content

603

Time to add those topping placement options. You will add four options to this dialog: Whole pizza,
Left half, Right half, and None. There are several composables you could use to create these options, but
TextButton is a great fit for your needs.

Each of the buttons you will add to this dialog will require a similar set of customizations. They will
all need to fill the width of the dialog, they will all have 8dp of padding, and they will all pull their
labels from the topping’s string resource. To make these buttons a bit easier to add, start by declaring a
ToppingPlacementOption composable in ToppingPlacementDialog.kt. You will use this composable
to add the choices to your dialog.

Listing 28.8 Defining a reusable button (ToppingPlacementDialog.kt)
@Composable
fun ToppingPlacementDialog(
 topping: Topping,
 onDismissRequest: () -> Unit
) {
 ...
}

@Composable
private fun ToppingPlacementOption(
 @StringRes placementName: Int,
 onClick: () -> Unit,
 modifier: Modifier = Modifier
) {
 TextButton(
 onClick = onClick,
 modifier = modifier.fillMaxWidth()
) {
 Text(
 text = stringResource(placementName),
 modifier = Modifier.padding(8.dp)
)
 }
}

Chapter 28 Showing Dialogs with Jetpack Compose

604

Much like Button, TextButton accepts a lambda to define the label of the button. This means that,
despite its name, it is possible to place something like an icon inside a TextButton. TextButton
simply has a few optimizations that make it ideal for hosting Text, like automatically setting the
text color with an appropriate button color. But even with these handy default customizations, you
do not want to duplicate this hierarchy for each button you want to add to the dialog. With your
ToppingPlacementOption composable, adding a button to the dialog is a single function call away.

Next, you can declare the four buttons in the dialog. You could declare them one by one – but
remember that you have control flow at your disposal: You can use a loop to add several items
onscreen at once. Try it out now by iterating over all values of ToppingPlacement. (Leave each
button’s onClick callback blank for now.) Remember that you did not add the “none” option as a case
to ToppingPlacement, so you will need to manually add the fourth option to this dialog.

Listing 28.9 Adding options (ToppingPlacementDialog.kt)
@Composable
fun ToppingPlacementDialog(
 topping: Topping,
 onDismissRequest: () -> Unit
) {
 Dialog(onDismissRequest = onDismissRequest) {
 Card {
 Column {
 val toppingName = stringResource(topping.toppingName)
 Text(
 ...
)

 ToppingPlacement.values().forEach { placement ->
 ToppingPlacementOption(
 placementName = placement.label,
 onClick = { /* TODO */ }
)
 }

 ToppingPlacementOption(
 placementName = R.string.placement_none,
 onClick = { /* TODO */ }
)
 }
 }
 }
}
...

Setting the Dialog’s Content

605

Run Coda Pizza. When you click a topping, you will now be presented with the full list of options for
placing the topping (Figure 28.4).

Figure 28.4 Do you want to build a pizza?

Chapter 28 Showing Dialogs with Jetpack Compose

606

Sending Results from a Dialog
Your final task is to wire up all the buttons in your dialog so they can correctly update the user’s pizza.
Currently, the options in this dialog do nothing more than offer confirmation that they were, in fact,
pressed.

Each of the options in this dialog should do two things when pressed: It should notify the creator of
the dialog which choice was selected, and it should dismiss the dialog. You already have everything
you need to make the options dismiss the dialog. The onDismissRequest callback can be reused after
selecting an option to indicate that the dialog is requesting to be dismissed.

Update your two empty onClick callbacks with this behavior.

Listing 28.10 Dismissing the dialog (ToppingPlacementDialog.kt)
@Composable
fun ToppingPlacementDialog(
 topping: Topping,
 onDismissRequest: () -> Unit
) {
 Dialog(onDismissRequest = onDismissRequest) {
 Card {
 Column {
 ...
 ToppingPlacement.values().forEach { placement ->
 ToppingPlacementOption(
 placementName = placement.label,
 onClick = { /* TODO */ }
 onDismissRequest()
 }
)
 }

 ToppingPlacementOption(
 placementName = R.string.placement_none,
 onClick = { /* TODO */ }
 onDismissRequest()
 }
)
 }
 }
 }
}
...

Sending Results from a Dialog

607

Run Coda Pizza. Click any of the toppings and select any of the four placements. Although the pizza
itself will not change, notice that the dialog is dismissed.

To update the pizza, you will again use the state hoisting pattern you used in the ToppingsList.
ToppingPlacementDialog is not in control of the pizza state, but its parent is. To modify the state,
ToppingPlacementDialog will need to take in another lambda to request a change to the pizza.

Add a function parameter called onSetToppingPlacement. This parameter will be a lambda that passes
the selected ToppingPlacement value (or a null value, if None was selected). After you have this
parameter in place, invoke it in each button’s onClick callback before dismissing the dialog.

Listing 28.11 Sending results back (ToppingPlacementDialog.kt)
@Composable
fun ToppingPlacementDialog(
 topping: Topping,
 onSetToppingPlacement: (placement: ToppingPlacement?) -> Unit,
 onDismissRequest: () -> Unit
) {
 Dialog(onDismissRequest = onDismissRequest) {
 Card {
 Column {
 ...
 ToppingPlacement.values().forEach { placement ->
 ToppingPlacementOption(
 placementName = placement.label,
 onClick = {
 onSetToppingPlacement(placement)
 onDismissRequest()
 }
)
 }

 ToppingPlacementOption(
 placementName = R.string.placement_none,
 onClick = {
 onSetToppingPlacement(null)
 onDismissRequest()
 }
)
 }
 }
 }
}
...

Chapter 28 Showing Dialogs with Jetpack Compose

608

To use this returned value, you will also need to update ToppingsList to handle the topping placement
selection. ToppingsList will then delegate to its onEditPizza callback so that PizzaBuilderScreen
can commit the change.

Listing 28.12 Handling the result (PizzaBuilderScreen.kt)
...
@Composable
private fun ToppingsList(
 pizza: Pizza,
 onEditPizza: (Pizza) -> Unit,
 modifier: Modifier = Modifier
) {
 var toppingBeingAdded by rememberSaveable { mutableStateOf<Topping?>(null) }

 toppingBeingAdded?.let { topping ->
 ToppingPlacementDialog(
 topping = topping,
 onSetToppingPlacement = { placement ->
 onEditPizza(pizza.withTopping(topping, placement))
 },
 onDismissRequest = {
 toppingBeingAdded = null
 }
)
 }
 ...
}
...

Your dialog is now complete. Run Coda Pizza and customize a pizza to your heart’s content. Spend a
moment admiring the power of choice, and notice that your UI – including the PLACE ORDER button
– automatically updates, all at once, for each topping you change.

This is the power of declarative programming in Jetpack Compose: You did nothing to tell any
component onscreen to update, nor did you specify where a change would be coming from. But
because you wrapped your values in State objects, Compose takes care of your UI updates, regardless
of how or why the UI needs to change. And because dialogs are simply composables, you have the full
flexibility to communicate directly to them without jumping through any hoops.

In the next chapter, you will finish your work on Coda Pizza by adding a pizza preview image and
customizing some of the app’s visual elements.

Challenge: Pizza Sizes and Drop-Down Menus

609

Challenge: Pizza Sizes and Drop-Down Menus
For this challenge, you will expand the customization options available in Coda Pizza. Currently, it is
only possible to order a pizza in a single size. You will change that by adding another UI element to
prompt the user to choose a pizza size.

For some UI interactions, a dialog can be a bit intrusive. It forces your users to interact with a specific
message and hides the rest of your application’s UI. As an alternative, you can use a drop-down menu
to show a set of options that blocks a much smaller portion of your UI. You saw a drop-down menu in
Chapter 15 when menu items in your app bar were relegated into an overflow menu.

Creating a drop-down menu in Compose is similar to how you created a Dialog. A dropdown can be
shown using the DropdownMenu composable. We have copied its signature below, and you can find its
full documentation with the rest of the Material composables at developer.android.com/reference/
kotlin/androidx/compose/material/package-summary.

 @Composable
 fun DropdownMenu(
 expanded: Boolean,
 onDismissRequest: () -> Unit,
 modifier: Modifier = Modifier,
 offset: DpOffset = DpOffset(0.dp, 0.dp),
 properties: PopupProperties = PopupProperties(focusable = true),
 content: @Composable ColumnScope.() -> Unit
)

There are two notable differences between how you use a DropdownMenu and how you use a Dialog.
First, DropdownMenu specifies an expanded parameter, which controls whether the menu is expanded
(visible) or collapsed (hidden). This means that you do not need to wrap your usage of DropdownMenu
in an if statement, like you did with Dialog.

Second, where the DropdownMenu is drawn onscreen is directly affected by where it is placed in
your composition hierarchy. A Dialog always fills the full size of your app and draws over all other
composables. But DropdownMenu is anchored to its parent composable, meaning that it will appear in
the same area of your screen as the composable that hosts the menu. It is conventional for menus on
Android to expand outward from and on top of the UI element that caused the menu to appear. Keep
this in mind when you are deciding where to nest your DropdownMenu.

Take DropdownMenu for a spin by adding a dropdown near the top of the screen that lets the user change
their pizza’s size. You will also find the DropdownMenuItem composable handy, for adding choices into
your drop-down menu. Give your customers four size options: small, medium, large, and extra large.
Smaller pizza sizes should be less expensive than larger pizzas, and your pizzas should be large by
default. (You are free to decide Coda Pizza’s exact prices for this challenge.)

You will need to define new UI state to track the selected size as part of this challenge. We recommend
defining a new enum called Size to declare the size options and adding a size property to your Pizza
data class to track the user’s size selection.

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary

611

29
Theming Compose UIs

Coda Pizza’s users can now customize their pizzas, but the app itself is still the equivalent of plain
cheese: It gets the job done, but it has no particular personality. In the last chapter of this series on the
basics of Jetpack Compose, you will spend some time polishing Coda Pizza and adding some visual
flair.

You will start by adding a preview of the user’s customized pizza. It will be placed above your list
of toppings and will automatically update every time the user changes the toppings on their pizza.
You will also learn how to specify a theme in Compose, which works differently than the application
themes you have seen in a themes.xml file.

Finally, you will wrap up your journey through Jetpack Compose by reflecting on what Coda Pizza
does not have compared to the other apps you have built in the past – and what Compose means for the
future of Android development.

Chapter 29 Theming Compose UIs

612

When you finish, Coda Pizza will look like Figure 29.1.

Figure 29.1 Coda Pizza’s final form

Images

613

Images
Coda Pizza offers 4,096 combinations of toppings for your users to select. Creating a preview image
for each combination is not feasible, so you will need to generate the preview for the user’s pizza on
the fly. You will do this by combining several images, layering them on top of each other to get the
final result.

The preview will start with an image of a plain cheese pizza. For each topping the user adds, you will
overlay an image of that topping on the base image. If a topping is only on half of the pizza, you will
crop the image so that it only appears on the correct half.

Start by importing the images you will use to build your pizza previews. If you do not already have
them, download the solutions to the exercises in this book from www.bignerdranch.com/android-5e-
solutions. Unzip this archive and locate the solution for Coda Pizza in the 28. Theming Compose
UIs/Solution/CodaPizza folder. Navigate to app/src/main/res/drawable and copy the .webp files
in that folder into the app/src/main/res/drawable folder of your project.

The images you just copied to your project are .webps instead of .xml vectors, like you have used
before. Vectors are a great choice for UI elements and simple designs, but not all images can be
effectively expressed as a vector. Complex images and photographs, in particular, are either impossible
to represent as vectors or can lead to performance issues if they are used as vectors.

Your pizza preview images fall into this category, so you need another format, like .webp. By the way,
Android also supports other image formats in your resources, including .png and .jpeg files. (You
might recall that you used a .png for PhotoGallery’s placeholder image.) We have chosen .webp here
because it offers smaller file sizes.

With your assets in place, you can begin to create the composable that will show pizza previews.
Initially, you will only show the base image. Later, you will programmatically draw other toppings on
top of this image.

To display images in Compose, you use the Image composable. When calling Image, you provide a
Painter to specify the image you want to display. Painter is analogous to the Drawable class you
have used before. It declares something that can be “painted” to the screen, like a vector image, bitmap
image, solid color, or gradient.

You can obtain a Painter for one of your drawable resources by calling painterResource. Much like
the stringResource function you saw earlier, painterResource will trigger Compose to take care of
querying your resources, loading the right image, and converting it into a Painter that can be used
with your Image.

https://www.bignerdranch.com/android-5e-solutions
https://www.bignerdranch.com/android-5e-solutions

Chapter 29 Theming Compose UIs

614

Create a new file in the ui package called PizzaHeroImage.kt. (A hero image is a large image placed
prominently at the top of a page.) Define a new composable called PizzaHeroImage that will show
pizza previews. The PizzaHeroImage should have two arguments: a Pizza and the compulsory
Modifier argument. Use Image to show the image of a plain pizza, and give your new composable a
preview function to see your changes in Android Studio.

Listing 29.1 Let me imagine it… (PizzaHeroImage.kt)
@Preview
@Composable
private fun PizzaHeroImagePreview() {
 PizzaHeroImage(
 pizza = Pizza(
 toppings = mapOf(
 Topping.Pineapple to ToppingPlacement.All,
 Topping.Pepperoni to ToppingPlacement.Left,
 Topping.Basil to ToppingPlacement.Right
)
)
)
}

@Composable
fun PizzaHeroImage(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Image(
 painter = painterResource(R.drawable.pizza_crust),
 contentDescription = null,
 modifier = modifier
)
}

Be sure to import Image from the androidx.compose.foundation package.

Change to the split view in your editor and build your project to update the preview. When the build
completes, you should see the image of a plain pizza in the preview (Figure 29.2).

Figure 29.2 Plain pizza

Image’s contentDescription

615

Image’s contentDescription
When you added your Image, you also had to specify a contentDescription. Like the
android:contentDescription XML attribute you learned about in Chapter 19, this argument is used
for accessibility: It gives screen readers text to read out. But unlike android:contentDescription,
this parameter is mandatory and must always be provided.

You set the contentDescription to null initially. But you should respect this parameter’s purpose and
provide a content description for your image. Start by adding a string resource to describe the image.

Listing 29.2 Defining a content description (strings.xml)
<resources>
 ...
 <string name="pizza_preview">Pizza preview</string>
</resources>

With the string resource in place, you can specify the content description of the Image.

Listing 29.3 Describing the content (PizzaHeroImage.kt)
@Composable
fun PizzaHeroImage(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Image(
 painter = painterResource(R.drawable.pizza_crust),
 contentDescription = null,
 contentDescription = stringResource(R.string.pizza_preview),
 modifier = modifier
)
}

Having a content description in place will not change your app’s appearance, but it does make your app
more accessible to users who rely on screen readers.

Chapter 29 Theming Compose UIs

616

Adding more images
Next, you will work on stacking toppings on the base pizza to form the final preview. The first step is
to track which image to draw when a topping is placed on a pizza.

Add a new property to your Topping enum called pizzaOverlayImage. This will keep track of which
image to use for each topping. After you add the property, give each case of the enum a value to
associate the toppings with their images.

Listing 29.4 Associating the preview images (Topping.kt)
enum class Topping(
 @StringRes val toppingName: Int,
 @DrawableRes val pizzaOverlayImage: Int
) {
 Basil(
 toppingName = R.string.topping_basil,
 pizzaOverlayImage = R.drawable.topping_basil
),

 Mushroom(
 toppingName = R.string.topping_mushroom,
 pizzaOverlayImage = R.drawable.topping_mushroom
),

 Olive(
 toppingName = R.string.topping_olive,
 pizzaOverlayImage = R.drawable.topping_olive
),

 Peppers(
 toppingName = R.string.topping_peppers,
 pizzaOverlayImage = R.drawable.topping_peppers
),

 Pepperoni(
 toppingName = R.string.topping_pepperoni,
 pizzaOverlayImage = R.drawable.topping_pepperoni
),

 Pineapple(
 toppingName = R.string.topping_pineapple,
 pizzaOverlayImage = R.drawable.topping_pineapple
)
}

Adding more images

617

You are now ready to add toppings to your pizza previews. Ultimately, your layout preview will
show toppings matching what you specified in PizzaHeroImagePreview: pepperoni on the left half,
pineapple on the whole pizza, and basil on the right half (Figure 29.3).

Figure 29.3 Pizza preview goal

To do this, you will layer more Image composables – one for each topping on the pizza – on top of the
base pizza Image.

Start by wrapping your base Image in a Box. Unlike the Column and Row composables, which place their
content one after the other, the Box composable stacks its content. Then, use a for loop to add a new
Image for each topping. For now, make each topping appear on the whole pizza.

Listing 29.5 An image for each topping (PizzaHeroImage.kt)
...
@Composable
fun PizzaHeroImage(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Box(
 modifier = modifier
) {
 Image(
 painter = painterResource(R.drawable.pizza_crust),
 contentDescription = stringResource(R.string.pizza_preview),
 modifier = modifier
)

 pizza.toppings.forEach { (topping, placement) ->
 Image(
 painter = painterResource(topping.pizzaOverlayImage),
 contentDescription = null,
 modifier = Modifier.focusable(false)
)
 }
 }
}

Chapter 29 Theming Compose UIs

618

For your new Image composables, you use the focusable modifier to disable focus. This tells
screen readers to ignore your topping images so that they do not see the pizza preview as multiple
components. Because you disable focus, there is no need to specify a contentDescription.

Refresh your previews. You should see pepperoni, pineapple, and basil, all on the whole pizza,
centered on top of the cheese. So far, so good.

Customizing the Image composable
Your topping Images are all contained in the same Box. Because they are the same size, they are stacked
on top of one another, resulting in what appears to be a single pizza image with the desired toppings.
This setup works perfectly if your toppings are all placed on the entire pizza – but Coda Pizza does
not limit users to full-pizza toppings. Your next task is to show only half of a topping layer when the
topping is on half of the pizza.

Before you tackle this task, think about the structure of your topping images: Each image that is
presented onscreen is drawn by a Painter and is hosted in an Image composable. The Image has its
own bounds, as does the Painter. And, remember, the Painter is the topping image you display in
your UI.

Figure 29.4 shows the relationship between your topping images and your Image composables. Keep
this in mind as you tackle Coda Pizza’s next feature, which will require customizing how your Image
composables display their images.

Figure 29.4 Layers of pizza

Customizing the Image composable

619

Although the topping image’s bounds are currently the same as its Image container’s, this will need to
change soon.

With the theory out of the way, it is time to make your previews accurately show toppings that are on
only half of the pizza. At a high level, this will require four steps:

• Set the Image composable’s size to the full height of the pizza and half of its width.

• Crop the image of your topping inside the Image’s bounds so that only half of the topping layer is
visible.

• Align the topping image in the bounds of the crop to ensure that the correct half of the topping is
visible.

• Arrange the Image composable so that it appears on the correct half of the pizza.

Chapter 29 Theming Compose UIs

620

aspectRatio
Start by setting the size of the topping Image. By default, an Image’s size is determined by the image
being displayed. If you want to display an Image at a different size, you can use a modifier to alter its
size. There are several modifiers that will do this, including the size modifier to set an exact size for
the image.

But the size of the pizza preview will be dynamic, as it will fit the width of the user’s device. So you
do not want to hardcode the size of the image. Instead, you need to set the size of each topping layer
relative to the size of its container. One way to accomplish this is with the help of aspect ratios.

Aspect ratio compares a rectangle’s width to its height. The pizza preview has an aspect ratio of 1:1 –
it is a perfect square, as wide as it is tall. Toppings that appear on half of the pizza will have the same
height as the preview, but half of the width. This means that a topping image’s aspect ratio should be
1:2 when it is on half of the pizza – it will be twice as tall as it is wide.

To set a composable’s aspect ratio, use the aspectRatio modifier. If a topping is on half of the pizza,
set its aspect ratio to 1:2. Aspect ratios are passed as floating point values instead of ratios, so the 1:2
aspect ratio is specified as 0.5. For toppings placed on the entire pizza, set the aspect ratio to 1:1 by
passing in 1.0. To ensure your base pizza is always a perfect square, set its aspect ratio to 1:1 as well.
Finally, make sure that the pizza crust always fills the full bounds of the PizzaHeroImage by adding the
fillMaxSize modifier.

Listing 29.6 Setting aspect ratios (PizzaHeroImage.kt)
...
@Composable
fun PizzaHeroImage(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Box(
 modifier = modifier
 .aspectRatio(1f)
) {
 Image(
 painter = painterResource(R.drawable.pizza_crust),
 contentDescription = stringResource(R.string.pizza_preview),
 modifier = Modifier.fillMaxSize()
)

 pizza.toppings.forEach { (topping, placement) ->
 Image(
 painter = painterResource(topping.pizzaOverlayImage),
 contentDescription = null,
 modifier = Modifier.focusable(false)
 .aspectRatio(when (placement) {
 Left, Right -> 0.5f
 All -> 1.0f
 })
)
 }
 }
}

(To use your ToppingAlignment enum values without the ToppingAlignment. prefix, add an import
for com.bignerdranch.android.codapizza.model.ToppingPlacement.* at the top of the file.)

Customizing the Image composable

621

Build your project to get an updated preview for PizzaHeroImagePreview. You will see that the
pepperoni and basil toppings now appear at half of their original size, vertically centered and on the left
half of the pizza (Figure 29.5).

Figure 29.5 Small toppings

Although the pepperoni and basil Image composables are, correctly, half their original size, they are
scaling down their contents so that the entire image can be displayed. You will fix that next.

contentScale
When the image you are displaying and the container that holds it do not have matching aspect ratios,
Compose needs some strategy to handle the discrepancy. Here, the pepperoni and basil Images have a
ratio of 1:2, but the Box that contains them has a ratio of 1:1.

To tell Compose how to handle this difference, you set the Image’s contentScale. The default content
scale is Fit, which scales the entire content image to fit the Image’s bounds, while preserving its
original aspect ratio. This is not what you want, as you need to show the left or right half of the
topping’s image.

Chapter 29 Theming Compose UIs

622

To change this behavior, you can add a contentScale argument when calling Image. Specifying the
Crop behavior will scale the image to fit the bounds of the Image, cropping any excess that extends
beyond the composable’s bounds.

Listing 29.7 Specifying a content scale (PizzaHeroImage.kt)
...
@Composable
fun PizzaHeroImage(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Box(
 ...
) {
 ...
 pizza.toppings.forEach { (topping, placement) ->
 Image(
 painter = painterResource(topping.pizzaOverlayImage),
 contentDescription = null,
 contentScale = ContentScale.Crop,
 modifier = Modifier.focusable(false)
 ...
)
 }
 }
}

Refresh the preview of PizzaHeroImagePreview. Now, the pepperoni and basil fill the height of
the pizza preview – but they also extend off the edge of the pizza. Although your topping images
are being cropped, you are not seeing their left halves – you are seeing their centers (Figure 29.6).
This is because the images themselves (the Painters) are centered within the bounds of their Image
composables.

Figure 29.6 Cropped toppings

Customizing the Image composable

623

Image alignment
To change which portion of the image is shown and which portion gets cropped, you can set the
alignment property on your Image. When a topping is placed on the left half of the pizza, you want
to align the topping image’s left edge with the left edge of the Image. You can do this by setting the
Image’s alignment to TopStart, which aligns the top-left corner of its content with the top-left corner
of the composable itself. Similarly, if a topping is on the right half of the pizza, you can use the TopEnd
alignment to show the right half of the topping. If the topping is on both sides of the pizza, you can use
the default Center alignment.

Listing 29.8 Aligning the image (PizzaHeroImage.kt)
...
@Composable
fun PizzaHeroImage(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Box(
 ...
) {
 ...
 pizza.toppings.forEach { (topping, placement) ->
 Image(
 painter = painterResource(topping.pizzaOverlayImage),
 contentDescription = null,
 contentScale = ContentScale.Crop,
 alignment = when (placement) {
 Left -> Alignment.TopStart
 Right -> Alignment.TopEnd
 All -> Alignment.Center
 },
 modifier = Modifier.focusable(false)
 ...
)
 }
 }
}

Chapter 29 Theming Compose UIs

624

Refresh the preview once again. The pepperoni is now properly placed on the pizza: It covers the left
half of the pizza, without spilling over. But the basil is still misplaced. Although it is the correct size
and shape to fill the right half, it is positioned over the left half of the pizza, spilling off the left edge of
the crust (Figure 29.7).

Figure 29.7 Partially aligned toppings

Customizing the Image composable

625

The align modifier
To place toppings on the right half of the pizza preview, you need to make one last change to your
PizzaHeroImage. By setting the alignment parameter, you specified where you wanted the topping
image to be painted inside the bounds of the Image composable. But the Image composable itself is
always aligned to the top-left corner of its container, the Box.

To position the Image composable, you will need another tool: the align modifier. This modifier
can be used to align the composable children of a Box. Much like the weight modifier you have used
before, the align modifier is contextually available only when your content appears in a Box.

Set the alignment of your topping Image so that toppings on the right half of the pizza are aligned to
the right edge of the Box, using the CenterEnd alignment. This will causes the image to appear at the
end (right) of the Box and vertically centered. Although the toppings are already aligned correctly when
placed on the left half or entire pizza, specify alignments for those cases as well – CenterStart and
Center, respectively. This will allow you to build your modifier with a single fluent chain of function
calls.

Listing 29.9 Aligning the toppings (PizzaHeroImage.kt)
...
@Composable
fun PizzaHeroImage(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 Box(
 ...
) {
 ...
 pizza.toppings.forEach { (topping, placement) ->
 Image(
 painter = painterResource(topping.pizzaOverlayImage),
 contentDescription = null,
 contentScale = ContentScale.Crop,
 alignment = when (placement) {
 Left -> Alignment.TopStart
 Right -> Alignment.TopEnd
 All -> Alignment.Center
 },
 modifier = Modifier.focusable(false)
 .aspectRatio(when (placement) {
 Left, Right -> 0.5f
 All -> 1.0f
 })
 .align(when (placement) {
 Left -> Alignment.CenterStart
 Right -> Alignment.CenterEnd
 All -> Alignment.Center
 })
)
 }
 }
}

Chapter 29 Theming Compose UIs

626

Refresh your preview again. At last, the toppings on your pizza are accurately placed in the preview.
You should see pineapple on the entire pizza, pepperoni on the left half, and basil on the right half. All
the toppings should be correctly sized and vertically centered, and nothing should be outside of the
crust (Figure 29.8).

Figure 29.8 The final preview

Adding a header to LazyColumn

627

Adding a header to LazyColumn
Your PizzaHeroImage is now complete, but you will not yet see the fruits of your labor if you
run Coda Pizza. Allow your efforts to pay off by adding PizzaHeroImage as an item in your
ToppingsList’s LazyColumn.

Listing 29.10 Adding more items to a LazyColumn (PizzaBuilderScreen.kt)

...
@Composable
private fun ToppingsList(
 pizza: Pizza,
 onEditPizza: (Pizza) -> Unit,
 modifier: Modifier = Modifier
) {
 ...
 LazyColumn(
 modifier = modifier
) {
 item {
 PizzaHeroImage(
 pizza = pizza,
 modifier = Modifier.padding(16.dp)
)
 }

 items(Topping.values()) { topping ->
 ToppingCell(
 topping = topping,
 placement = pizza.toppings[topping],
 onClickTopping = {
 toppingBeingAdded = topping
 }
)
 }
 }
}
...

Run Coda Pizza. You will now see the pizza’s preview proudly presented above your list of toppings.
Add any toppings you want to the pizza. Because you have already tracked your Pizza object using
the State class, your preview will automatically update, with no additional effort on your part
(Figure 29.9). As you scroll through the list of toppings, the pizza preview will scroll with the other
content.

Chapter 29 Theming Compose UIs

628

Figure 29.9 Pizza preview in action

MaterialTheme
With your pizza preview in place, it is time to add a fresh coat of paint to Coda Pizza. Currently, Coda
Pizza is using the default theme, but you can add your own customizations to specify your application’s
colors, typographic styles, and shapes for various components like Buttons and Cards. For Coda Pizza,
you will stick to changing your app’s colors, although the steps are similar for other customizations.

You saw themes for the first time in Chapter 11. The themes that you are familiar with were defined in
XML and were used by your framework views for styling. But Compose has its own theming system
that does not leverage XML styles or the theming system used by framework views.

MaterialTheme

629

Themes are stored in an object called MaterialTheme, which you used in Chapter 26 to set Text styles.
Currently, you are using a default theme, which is where your application colors are coming from.
Let’s change that.

To change the values in your MaterialTheme object, you will use the MaterialTheme composable
function. This function accepts parameters to change your theme’s colors, typographic styles, and
component shapes. The MaterialTheme composable also accepts a lambda expression, which is where
your content will be placed. Any theme configuration you specify only affects content placed inside
this lambda. This means that your theme should be specified very early in your composition.

Create a new file in your ui package called AppTheme.kt. This is where all of your theme information
will be stored. In this file, create a new composable called AppTheme. This function will call
MaterialTheme, passing all the theme attributes you want to use to customize Coda Pizza’s
appearance.

Listing 29.11 Declaring a theme (AppTheme.kt)
@Composable
fun AppTheme(
 content: @Composable () -> Unit
) = MaterialTheme(
 colors = lightColors(
 primary = Color(0xFFB72A33),
 primaryVariant = Color(0xFFA6262E),
 secondary = Color(0xFF03C4DD),
 secondaryVariant = Color(0xFF03B2C9),
)
) {
 content()
}

You set the colors property of your theme to be a palette with a light background and a few specific
colors for Coda Pizza. There are several other colors you can specify, but you will rely on the
defaults provided by lightColors. You also did not provide other styling information for your app’s
typography, so the defaults will be used.

For your theme to be used, you must wrap your application content in an AppTheme composable. Do
so in MainActivity, right inside the setContent call, to ensure that the theme is applied to your entire
application.

Listing 29.12 Applying a theme (MainActivity.kt)
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 AppTheme {
 PizzaBuilderScreen()
 }
 }
 }
}

With that change, many UI elements in Compose are made aware of your theme. But you can also
manually access these values in your composition through the MaterialTheme object. For example, to
access your theme’s primary color, you can call MaterialTheme.colors.primary.

Chapter 29 Theming Compose UIs

630

Run Coda Pizza. Your PLACE ORDER button is now red, matching the value specified in your theme,
but the app bar and status bar are still stubbornly purple, as shown in Figure 29.10. (We promise, the
app bar and the button are different colors!)

Figure 29.10 A partially themed Coda Pizza

What gives?

Recall from Chapter 15 that your activities are automatically given an app bar when they extend from
AppCompatActivity and use a style with a built-in app bar. Your MainActivity is doing just that. And
because this app bar is provided as a framework view, it is unaware of any themes you created in your
Compose code.

Although you could manually keep your Compose themes and framework themes in sync with one
another, it would be better if your Compose theme were the source of truth for your application.
Luckily, you can take the app bar into your own hands and render it using a composable. But before
you can make this change, you need to remove the built-in app bar.

MaterialTheme

631

Speaking of removing things from your theme, there are a number of things in your project that you no
longer need now that Compose is managing your styles. First, because your app’s theme is defined in
Compose, you do not need to specify theme attributes to define the same customizations. There are a
few circumstances where you will still need to edit themes, even in 100% Compose apps – such as if
you need to customize the color of system bars or set a custom splash screen for your app. But these
issues will not come up for Coda Pizza.

Also, because your colors are defined entirely in your Compose code, Coda Pizza will not need its
colors.xml file. Last, you do not need the Material Components library, since it only provides styling
for framework views.

Start by tidying up your application theme. The project template you used to create Coda Pizza
includes themes for both light mode and night mode. Jetpack Compose is in complete control of your
application theme, so you do not need to provide a separate night mode theme for your application.
Remove this theme variation by deleting the res/values/themes/themes.xml file labeled (night) in
Android Studio.

Next, you need to remove the default app bar from your activity. To do this, you can change your
theme to use a theme with the NoActionBar suffix. Use the AppCompat-provided Theme.AppCompat
theme to remove your dependence on the Material Components library. At the same time, remove all
the style declarations from your theme, which are unnecessary because these values are now set in your
Compose theme.

Listing 29.13 Removing framework styles (themes.xml)
<resources xmlns:tools="http://schemas.android.com/tools">
 <!-- Base application theme. -->
 <style name="Theme.CodaPizza"
 parent="Theme.MaterialComponents.DayNight.DarkActionBar">
 <style name="Theme.CodaPizza" parent="Theme.AppCompat.Light.NoActionBar">
 <!-- Primary brand color. -->
 <item name="colorPrimary">@color/purple_500</item>
 <item name="colorPrimaryVariant">@color/purple_700</item>
 <item name="colorOnPrimary">@color/white</item>
 <!-- Secondary brand color. -->
 <item name="colorSecondary">@color/teal_200</item>
 <item name="colorSecondaryVariant">@color/teal_700</item>
 <item name="colorOnSecondary">@color/black</item>
 <!-- Status bar color. -->
 <item name="android:statusBarColor" tools:targetApi="l">
 ?attr/colorPrimaryVariant</item>
 <!-- Customize your theme here. -->
 </style>
</resources>

Next, delete your colors.xml resource file. You will not need to access these colors, and you removed
the only reference to them when you deleted your theme attributes.

Chapter 29 Theming Compose UIs

632

You no longer reference the Material Components library, so now you can remove it from your project.
Removing unused dependencies reduces your application size, gets rid of unnecessary classes that
clutter your IDE’s autocompletion suggestions, and can improve compilation performance. Delete this
dependency by taking a trip to your app/build.gradle file.

Listing 29.14 Removing Material Components (app/build.gradle)
...
dependencies {
 implementation 'androidx.core:core-ktx:1.7.0'
 implementation 'androidx.appcompat:appcompat:1.4.1'
 implementation 'com.google.android.material:material:1.5.0'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
 ...
}

Remember to perform a Gradle sync after making these changes. When the sync completes, run Coda
Pizza. The app bar has disappeared, and your composable content is now the only content that appears
onscreen (Figure 29.11).

Figure 29.11 A full-screen composable

Scaffold and TopAppBar

633

Scaffold and TopAppBar
App bars are an important part of your app, both visually and for navigation and menus. It is a good
idea for Coda Pizza to include an app bar, even if it is just to show a title.

To reinstate your app bar, you will use the TopAppBar composable. TopAppBar accepts several
composables as inputs, each of which can add content in a specific region of the app bar. You will
only set the title parameter to show the application name, matching the default behavior of the
automatically provided app bar – but with the benefit of using your Compose theme.

If you wanted, you could also provide a parameter for a navigationIcon to add an element to be the
Up button. There is also a parameter called actions, which takes on the role of adding items to the
right side of the app bar – like what you accomplished with a menu in the framework-provided app bar.

This pattern of accepting several composable lambdas as inputs is called slotting, as each of the
components slots into a specific area of the app bar. Slotting makes composables much more flexible
about what they can display than most framework views. You can pass any composable into any slot,
which gives you complete control over what appears in each slot.

In the framework UI toolkit, you were limited to displaying a string as the title. And when you add a
TopAppBar, you will typically pass a Text in for the title slot. But because the title argument takes
in a composable, you have the power to use elements like an image, loading spinner, drop-down menu,
or checkbox within that space – to name a few examples.

Take the TopAppBar composable for a spin, placing it at the top of your PizzaBuilderScreen
composable.

Listing 29.15 Adding an app bar (PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {
 var pizza by rememberSaveable { mutableStateOf(Pizza()) }

 Column(
 modifier = modifier
) {
 TopAppBar(
 title = { Text(stringResource(R.string.app_name)) }
)

 ToppingsList(
 ...
)
 ...
 }
}
...

Run Coda Pizza. An app bar is back at the top of the screen – much like the one you previously had in
Coda Pizza and the ones you have seen in the other apps you have built. But this time, the app bar is
red, matching the color you set in your AppTheme composable (Figure 29.12).

Chapter 29 Theming Compose UIs

634

Figure 29.12 TopAppBar and AppTheme in action

Your app bar is now functional, which is good. What is not so good is that PizzaBuilderScreen’s
Column now has several elements in it. As your application grows in complexity, it can become harder
to work with these large building blocks for your application’s UI. Take the TopAppBar, for example.
It must come first in this column if it is to be drawn at the top of the screen. If you accidentally add
another composable before it, your app bar will appear toward the middle of the screen.

You can make the components in your UI easier to manage using another composable called Scaffold.
Scaffold is designed to help lay out your application – it effectively acts as a skeleton for your
app’s layout. It uses the slotting pattern to define regions of your application where content can be
labeled and consistently placed. There are two main slots you are interested in: the topBar slot and the
content slot.

The topBar slot is designed for components like your TopAppBar. Composables placed in this slot
always appear at the top of the screen, above your main content. The content slot, meanwhile, is for
your app’s primary content. There are other slots for elements like bottom bars and snackbars, each of
which will always appear appropriately around your content.

CompositionLocal

635

Update PizzaBuilderScreen to use a Scaffold. You will still use a Column to lay out your toppings
list and order button, but the Scaffold will separate the app bar from the content.

Listing 29.16 Using a scaffold (PizzaBuilderScreen.kt)
@Preview
@Composable
fun PizzaBuilderScreen(
 modifier: Modifier = Modifier
) {
 var pizza by rememberSaveable { mutableStateOf(Pizza()) }

 Column(
 modifier = modifier
) {
 Scaffold(
 modifier = modifier,
 topBar = {
 TopAppBar(
 title = { Text(stringResource(R.string.app_name)) }
)
 },
 content = {
 Column {
 TopAppBar(
 title = { Text(stringResource(R.string.app_name)) }
)

 ToppingsList(
 ...
)

 OrderButton(
 ...
)
 }
 }
)
}

Run Coda Pizza again. The app will look and behave the same, but your TopAppBar now has a
guaranteed, designated space. Scaffold follows its own blueprints to position the content of its slots,
so it does not matter how you specify the content of a slot or what order you put them in. The argument
you provide for topBar appears at the top of the screen – always.

CompositionLocal
In this chapter, you have seen a few examples where nesting one composable inside another causes the
inner composable’s appearance to change. Using the MaterialTheme composable, for example, causes
all components nested within it to be aware of your theme and use its colors.

When you added the Text to your TopAppBar, you might have noticed something interesting. Despite
the fact that you did not specify any parameters besides the text itself, the Text was appropriately
styled with the correct font size and color to appear in your app bar. How did this happen?

Chapter 29 Theming Compose UIs

636

When you build a UI using Jetpack Compose, a composition hierarchy is created at runtime for all
your composables – much like the view hierarchy for framework UIs. Whenever you call a composable
function to add a UI element to your app, a corresponding node is added to this composition hierarchy.
You cannot get a reference to this hierarchy or its nodes, but they are still there to organize your
composables. (Whereas View objects are themselves the nodes in a framework UI’s hierarchy, and you
can get direct access to them whenever you like.)

For Coda Pizza, the top of the composition hierarchy looks something like Figure 29.13:

Figure 29.13 Coda Pizza’s UI hierarchy

And ToppingsList and OrderButton have their own children, down to the Texts and Checkbox seen
onscreen.

In Chapter 11, we warned you that nesting view hierarchies too deeply could degrade an app’s
performance. But although Coda Pizza’s UI hierarchy is many layers deep, fear not. Jetpack Compose
is substantially more efficient than Android’s framework UI toolkit when it comes to managing, laying
out, and drawing UI elements. Deeply nested layouts are not a performance concern with Compose
in the way they were for the other apps you built – which is also why you did not reach for a tool like
ConstraintLayout in Coda Pizza.

CompositionLocal

637

The top of this hierarchy is your MaterialTheme composable. As you have seen in this chapter, using
the MaterialTheme composable sets the values that will be returned by the MaterialTheme object. And
these values have a scope.

When you call the MaterialTheme composable, the theme values are stored and made accessible for
all its children. Whenever a component needs to access a theme attribute, you use the MaterialTheme
object and access the colors, shapes, or typography with code like MaterialTheme.colors.primary.
Values referenced in this way are tracked by instances of a class called CompositionLocal so that
every composable that is a child of the MaterialTheme node can access your theme information.

You placed the MaterialTheme composable at the root of your composition because you want the
theme to affect everything you display in your composition. If you added a composable as a sibling
to the MaterialTheme, it would be unaware of the themes you set elsewhere in the UI hierarchy and
would use the default material theme.

If for some reason you want to have different themes for different parts of your composition, you
can also nest one MaterialTheme composable inside another. The inner theme will override the
theme values from the outer MaterialTheme composable, but only for the children of the inner
MaterialTheme.

Back to the question of where the style of the Text in your TopAppBar is coming from. In addition to
the theme attributes set in the themes.xml resource file and AppTheme composable (if you have one),
some composables also specify preferred theme attributes that Compose will take into account. (These
are officially termed current theme attributes, but we find that term unnecessarily confusing.)

For example, while your application has text color specifications, the TextButton composable you are
using for the topping placement options in your dialog overrides this color specification, setting a style
that works with the overall theme but is specific to its own environment. When the Text child of your
TextButtons asks for a text color, it gets this overridden value, not the value from your theme.

TopAppBar does the same thing to its text, setting a color that works with the background color
set by the app theme. In this way, “current” theme attributes like the ones set by TextButton and
TopAppBar provide automatic localized theming that coordinates with the app’s overall theme. The
Text composable determines its styles by first looking at the text size, color, and so on set by its parent
(or another direct ancestor) and then falling back to the theme for any styles that are not set.

Behind the scenes, these behaviors are all driven by the same CompositionLocal class we mentioned
earlier.

CompositionLocals are variables that are defined for a part of your composition hierarchy. When a
CompositionLocal is defined, it is accessible to all of its composable children – and can be overridden
deeper in the hierarchy if the same CompositionLocal is set again. Theme information is often defined
this way – many children need to share and access theme information, and CompositionLocals make
that sharing easy.

Instances of CompositionLocal propagate theme information automatically. But you can also access
CompositionLocal variables yourself to get many more values and resources associated with your
composition. To see this in action, it is time to implement one last feature in Coda Pizza: the PLACE
ORDER button.

Unfortunately, Coda Pizza will not result in a pizza being delivered to your address. But it can present
you with a Toast (which, arguably, has many similarities to pizza). To set one up, you will replace your
final TODO, which is lingering in OrderButton’s onClick callback.

Chapter 29 Theming Compose UIs

638

First, prepare Coda Pizza to display a toast by adding a string resource for the message that will appear
when the order is placed.

Listing 29.17 A consolation toast’s message (strings.xml)
<resources>
 <string name="app_name">Coda Pizza</string>

 <string name="place_order_button">Place Order (%1$s)</string>
 <string name="order_placed_toast">Order submitted!</string>
 ...
</resources>

To show the toast, you need to obtain a Context. You could accomplish this by adding a context
parameter to OrderButton and passing your activity context all the way down your composition
hierarchy, but that would be messy and would not scale well if you needed to access many properties.

Instead, Compose includes a CompositionLocal out of the box that stores the context that hosts your
composable UI. You can use this CompositionLocal to access the context regardless of where you are
in the composition.

To read the value of a CompositionLocal variable, you first obtain a reference to the corresponding
CompositionLocal class itself. Then you can get the value of the variable for the current position in
the composition hierarchy via its current property. The convention for naming a CompositionLocal
is to use the prefix “Local” followed by the name or type of the variable being provided. So the
composition’s local context is stored in LocalContext.

Using the LocalContext property, obtain a Context. Then, implement your OrderButton’s onClick
lambda to show a toast. Because CompositionLocals give you the current value of the variable, they
can only be read inside the composition itself. This means that you must obtain the context outside the
click listener, because your click listener cannot access the composition hierarchy.

Listing 29.18 Using a Context inside a composable (PizzaBuilderScreen.kt)
...
@Composable
private fun OrderButton(
 pizza: Pizza,
 modifier: Modifier = Modifier
) {
 val context = LocalContext.current
 Button(
 modifier = modifier,
 onClick = {
 // TODO
 Toast.makeText(context, R.string.order_placed_toast, Toast.LENGTH_LONG)
 .show()
 }
) {
 val currencyFormatter = remember { NumberFormat.getCurrencyInstance() }
 val price = currencyFormatter.format(pizza.price)
 Text(text = stringResource(R.string.place_order_button, price))
 }
}

CompositionLocal

639

Run Coda Pizza and press the PLACE ORDER button. You should see a toast with the message Order
submitted! near the bottom of the screen (Figure 29.14).

Figure 29.14 A toast to pizza

CompositionLocals are a convenient way to get more information about your composition.
Many CompositionLocals are predefined and readily available should you need them. Some of
these values, like your theme, allow you to easily customize portions of your UI hierarchy. Other
CompositionLocals, meanwhile, have values that do not change in the composition hierarchy and can
give you information about the composition itself.

Using the built-in CompositionLocals, you can access values including the Lifecycle of the
component hosting your composition, the clipboard, and the size of the display. And because
CompositionLocals are tracked by Compose itself, you can access all these values without declaring
new parameters. This flexibility makes CompositionLocals a great choice for storing information you
need to access sporadically throughout your UI.

You can also define your own CompositionLocals, if you need to. This is not something you will do
for Coda Pizza, but if you want to know more about this process, take a look at the section called For
the More Curious: Creating Your Own CompositionLocals near the end of this chapter.

Chapter 29 Theming Compose UIs

640

Removing AppCompat
Coda Pizza is now fully operational, but there is one more change you can make to look toward the
future. Every app you have built so far has relied on several Jetpack libraries, the most fundamental
being the AppCompat library.

AppCompat back-ports many important UI behaviors to ensure consistency across versions of
Android. It acts as the building block for many other Jetpack libraries, including ConstraintLayout
and the Material Design Components. It also brings along many other tools you have used, including
Fragments.

Despite the importance of these components in the other apps you have built, these dependencies
are designed for the world of the framework UI toolkit. Compose does not depend on AppCompat;
it reinvents so many APIs that AppCompat does not provide the same value as it does for apps with
framework views. In fact, AppCompat arguably does not provide any value if your UI exclusively uses
Compose.

But AppCompat is still present in your application, increasing its size and adding more dependencies
to download when your project builds. You can reclaim these resources and part ways with the
framework views entirely by removing AppCompat from your project.

But do not jump straight to your build.gradle file to delete the dependency. There are still a few
references to AppCompat you must remove first.

The first reference to AppCompat that you need to remove is in your MainActivity. Your
MainActivity extends from AppCompatActivity, following the recommendation for all apps
using the framework UI toolkit. In addition to back-porting behaviors to older versions of Android,
AppCompatActivity also provides hooks that other Jetpack libraries, like ViewModel, require.

If you replace AppCompatActivity with the platform-provided Activity class, you will lose the ability
to use several other Jetpack libraries, which is not ideal. Instead, you can use ComponentActivity,
which exists in the middle ground between the base Activity class and the full-fledged
AppCompatActivity class.

ComponentActivity exists outside AppCompat and provides hooks so that other libraries that need
deeper access to your activity, such as the AndroidX Lifecycle library and ViewModel, can do what
they need to do. Using ComponentActivity allows these integrations to continue working, while
removing your dependence on the AppCompat library.

To migrate to ComponentActivity, update your MainActivity class to change which variation of
Activity it extends from. Also, delete the import statement for AppCompatActivity.

Listing 29.19 Removing AppCompatActivity (MainActivity.kt)
import androidx.appcompat.app.AppCompatActivity
...
class MainActivity : AppCompatActivity() ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 AppTheme {
 PizzaBuilderScreen()
 }
 }
 }
}

Removing AppCompat

641

There is one final usage of AppCompat lingering in your project. It is in the application theme
you specify for Coda Pizza. To remove this reference, you will need to change the theme that your
application theme, Theme.CodaPizza, is based on.

AppCompat themes provide many customizations to the built-in themes provided by the platform to
ensure consistency and to bring new features to the views you can use. But these benefits only apply to
framework views, which are nowhere to be found in Coda Pizza.

Because these customizations are unnecessary, you can safely remove the reference to
Theme.AppCompat and replace it with a reference to the Theme.Material theme that ships with the
platform. Although there may be discrepancies in this theme’s appearance across versions, nothing in
the theme will affect your Compose UI, making the differences negligible.

Listing 29.20 Using a platform theme (themes.xml)
<resources xmlns:tools="http://schemas.android.com/tools">
 <!-- Base application theme. -->
 <style name="Theme.CodaPizza" parent="Theme.AppCompat.Light.NoActionBar">
 <style name="Theme.CodaPizza" parent="android:Theme.Material.NoActionBar">
 </style>
</resources>

Chapter 29 Theming Compose UIs

642

At this point, Coda Pizza no longer references anything from the AppCompat library. To confirm this,
open the Find in Files dialog by pressing Command-Shift-F (Ctrl-Shift-F). In the dialog, enter the
query appcompat to search every file in your project for this term (Figure 29.15).

Figure 29.15 Looking for AppCompat

You will see one hit in your Gradle build file, but none of your Kotlin files should contain references.
If you see any Kotlin files in these results, double-check that the code in these files matches the code
in this book exactly, with no leftover references to AppCompat. You may also need to delete a few
lingering import statements in your project if Android Studio did not automatically remove them.

Removing AppCompat

643

After cleaning up any rogue references to AppCompat, your last step is to remove the venerable
dependency from your project. While you are removing AppCompat’s dependency, also remove the
dependency for ConstraintLayout, which was automatically added with the blank project template.

Listing 29.21 Saying goodbye to AppCompat (app/build.gradle)
...
dependencies {
 implementation 'androidx.core:core-ktx:1.7.0'
 implementation 'androidx.appcompat:appcompat:1.4.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
 ...
}

Sync your changes, then run Coda Pizza one last time. It should behave exactly as it did before – but
now, Android Studio can build your project ever so slightly faster, and your application size will be
smaller.

Although the benefits of removing AppCompat are somewhat small, this change signifies the start of
a major paradigm shift powered by Jetpack Compose. Under Jetpack Compose, many of the tools you
have become familiar with are no longer necessary. Components like RecyclerView and Fragment can
be big sources of complexity in an Android app, but you do not need them in Compose.

We love Jetpack Compose for its ease of use and effectiveness at building UIs in Android apps. You
have only scratched the surface of what Jetpack Compose can do, and we encourage you to experiment
with it in your own apps. You will almost certainly encounter and create many framework views in
your time as an Android developer, because they have been the only way to build UIs for more than a
decade. But we expect that you will see fewer and fewer framework UIs over time as Compose brings
about a renaissance in the world of Android development.

Chapter 29 Theming Compose UIs

644

For the More Curious: Accompanist
Jetpack Compose is stable, but still in its early days. For many apps, the Compose dependencies you
used with Coda Pizza offer every component and API you need to build the UI of your dreams. For
other apps, though, you might find that the Compose libraries do not quite have all the features you
need.

Jetpack Compose version 1.1, for example, does not offer a built-in way to change the status bar or
navigation bar colors, request permissions from a composable, or make your UI respond to display
cutouts and notches, to name a few examples. But fear not: In addition to the mainstream Compose
APIs, Google also offers a set of libraries to provide this functionality and more.

Accompanist is a constantly evolving set of libraries that offer functionality that is not yet built into the
mainstream Compose dependencies. They offer a quick way for developers to access these features in
their Compose apps. The goal for most Accompanist libraries is that they will eventually graduate out
of Accompanist and into the official library they are part of.

For example, Accompanist previously included support for loading images with Coil in Compose,
but that functionality has since been moved into Coil itself. Developing features this way allows the
Compose team to more effectively design and experiment with these APIs.

Because of these evolutions, Accompanist leans toward being an experimental library. Regardless,
we encourage you to take a look at Accompanist and see which of its features are useful for your
app. These features are ready to go, and – despite the “experimental” designation – ready for use in
production apps.

If you do choose to incorporate Accompanist, keep in mind that its APIs are likely to change over time.
Features in Accompanist that make their way into the official Compose dependencies will eventually
be removed, which will require you to make updates in your application.

It is too early to tell what the future of Compose looks like, but it looks like Accompanist will
be a useful breeding ground for supporting a larger set of features within Compose. For more
information on Accompanist, including its latest version and which features it can offer, see its official
documentation at google.github.io/accompanist.

https://google.github.io/accompanist/

For the More Curious: Creating Your Own CompositionLocals

645

For the More Curious: Creating Your Own
CompositionLocals
In this chapter, you learned about several built-in CompositionLocals and used the LocalContext to
obtain a Context in your composable. If you want, you can also define your own CompositionLocals.

Declaring a CompositionLocal is particularly useful when you want to give your composables access
to new values without introducing an additional parameter. This works best when the information being
provided applies to many composables and can be shared across an entire section of your composition
hierarchy. Much like global variables, CompositionLocals can be dangerous if used haphazardly. If a
value should only be available to one composable, we recommend sticking to parameters.

Suppose your application needed to track analytics to see what features your users rely on most.
You could create a class called AnalyticsManager to implement the analytics logging yourself. But
many composables would likely need to report analytics, and you do not want to concern yourself
with passing instances of AnalyticsManager through layer after layer of composables. That is where
CompositionLocals come in.

Making a CompositionLocal is a two-step process. First, you need to define the CompositionLocal.
Second, you need to set the value of the CompositionLocal in your UI hierarchy.

CompositionLocals are defined by creating a public, file-level property of type CompositionLocal –
like, say, a LocalAnalyticsManager. This value basically acts as a key to get hold of the corresponding
value. You can assign a value for this property using the compositionLocalOf function.

This function takes in a lambda to provide a default value for the CompositionLocal. For many
CompositionLocals, including your hypothetical LocalAnalyticsManager, there is no default value –
a value must always be explicitly set in the composition itself. In these cases, you can simply throw an
exception indicating that the CompositionLocal was read before it was set.

 val LocalAnalyticsManager = compositionLocalOf<AnalyticsManager> {
 error("AnalyticsManager not set")
 }

With the CompositionLocal defined, you can then specify its value at runtime. You do this using
the CompositionLocalProvider composable. CompositionLocalProvider takes in a set of all the
CompositionLocals you want to specify, along with a value for each one. When a component requests
one of the CompositionLocals in the provider, the value you specify will be returned.

 @Composable
 fun PizzaBuilderScreen(
 analyticsManager: AnalyticsManager,
 modifier: Modifier = Modifier
) {
 CompositionLocalProvider(
 LocalAnalyticsManager provides analyticsManager
) {
 Scaffold(
 modifier = modifier,
 ...
)
 }
 }

Chapter 29 Theming Compose UIs

646

You may be asking, “OK, but how does PizzaBuilderScreen obtain its analyticsManager?” This
question has several answers, and in your own code, you will have to decide for yourself how to
answer this question. If AnalyticsManager is easy to create, you may be able to instantiate it directly
inside PizzaBuilderScreen. (If you do this, make sure to remember it!)

Alternatively, you could create this value elsewhere in your application – possibly as a singleton – and
pass it through your composition hierarchy as an argument. Either approach is valid, and it is up to you
and your team to decide how dependencies like analyticsManager should make their way through
your code.

With the CompositionLocal and its provider in place, LocalAnalyticsManager is ready to be used.
To obtain an AnalyticsManager, you call LocalAnalyticsManager.current inside a composable
function. The Compose runtime will look at your composition hierarchy to find an appropriate
provider for this value. Once a provider is found, the value that was set will be returned by the
CompositionLocal.

If several providers are found, the closest parent in the hierarchy will be chosen and its value will
be used. If no provider is found, the default value of the CompositionLocal (specified with the
compositionLocalOf) will be provided.

Storing values this way allows for easy access throughout your composition hierarchy, but we
recommend using CompositionLocals sparingly. They are great for accessing more general or widely
used dependencies. But you can find yourself getting into trouble if you hold your application state in a
CompositionLocal, as this makes it difficult to track down exactly where a value is coming from.

Challenge: Animations
Jetpack Compose has many animation APIs to add pizzazz to UIs. You can find the full list at
developer.android.com/jetpack/compose/animation. The same page also has tips to help you
decide which function you should use to achieve a certain type of animation.

For this challenge, add some grandeur to Coda Pizza by incorporating animations into your UI.
Currently, adding a topping to Coda Pizza causes your pizza’s preview to change abruptly. Make
this change more graceful by fading the topping onto the pizza. (Hint: Try using the Crossfade
composable.)

For more of a challenge, add some excitement when placing an order. When the user presses the
PLACE ORDER button, make their pizza preview spin in a complete circle.

This will require several changes to your code, including refactoring your OrderButton with a
new lambda parameter to be called when an order is placed. You will also need to update your
ToppingsList composable to accept information about the pizza preview’s rotation. The pizza can be
rotated using the Modifier.rotate(Float) modifier. There are several animation APIs that can drive
this animation, but we recommend using either animateFloatAsState or Animatable.

https://developer.android.com/jetpack/compose/animation

647

30
Afterword

Congratulations! You are at the end of this guide. Not everyone has the discipline to do what you have
done – and learn what you have learned. Take a moment to give yourself a pat on the back.

Your hard work has paid off: You are now an Android developer.

The Final Challenge
We have one last challenge for you: Become a good Android developer. Good developers are each
good in their own way, so you must find your own path from here on out.

Where might you start? Here are some places we recommend:

Write code. Now. You will quickly forget what you have learned here if you do not apply it. Contribute
to a project or write a simple application of your own. Whatever you do, waste no time: Write code.

Learn. You have learned a little bit about a lot of things in this book. Did any of them spark
your imagination? Write some code to play around with your favorite thing. Find and read more
documentation about it – or an entire book, if there is one. Also, check out the Android Developers
YouTube channel (youtube.com/user/androiddevelopers) and listen to the Android Developers
Backstage podcast (androidbackstage.blogspot.com) for Android updates from Google.

Meet people. Local meetups are a good place to meet like-minded developers. Lots of top-notch
Android developers are active on Twitter. Attend Android conferences to meet other Android
developers (like us!).

Explore the open-source community. Android development is exploding on github.com. When you
find a cool library, see what other projects its contributors are committing to. Share your own code,
too – you never know who will find it useful or interesting. We find the Android Weekly mailing list
(androidweekly.net) to be a great way to see what is happening in the Android community.

Shameless Plugs
You can find Bryan (@bryansills) and Big Nerd Ranch (@bignerdranch) on Twitter.

If you enjoyed this book, check out the other Big Nerd Ranch Guides at bignerdranch.com/books. We
also have weeklong courses for developers, where we can help you learn this amount of stuff in only a
week. And, of course, if you just need someone to write great code, we do contract programming, too.
For more information, go to our website at bignerdranch.com.

https://www.youtube.com/user/androiddevelopers
https://androidbackstage.blogspot.com/
https://github.com
https://androidweekly.net
https://www.bignerdranch.com/books
https://www.bignerdranch.com

Chapter 30 Afterword

648

Thank You
Without readers like you, our work would not exist. Thank you for buying and reading our book.

649

Index
Symbols
%1$s, %2$s, etc. syntax, 325
.apk file, 30
<meta-data> tag, 352
<uses-feature> tag, 362
?attr/ syntax, 224
@+id, 21
@After annotation (JUnit), 109
@Before annotation (JUnit), 109
@Composable annotation (Jetpack Compose), 538
@Dao annotation (Room), 245
@Database annotation (Room), 243
@drawable/ syntax, 48
@Entity annotation (Room), 242
@GET annotation (Retrofit), 407
@Insert annotation (Room), 312
@Json annotation (Moshi), 420
@JsonClass annotation (Moshi), 420
@Preview annotation (Jetpack Compose), 539
@PrimaryKey annotation (Room), 242
@Query annotation

in Retrofit, 440
in Room, 245

@RequiresApi annotation, 144
@RunWith(AndroidJUnit4::class) annotation
(JUnit), 106
@string/ syntax, 15
@StringRes annotation, 34
@style/ syntax, 223
@Test annotation (JUnit), 101
@TypeConverter annotation (Room), 244
@TypeConverters annotation (Room), 244
@Update annotation (Room), 285

A
aapt2 (Android Asset Packing tool), 30
abstract classes, 243
AccelerateInterpolator class, 520
accessibility

(see also TalkBack)
about, 377, 389
accessibility focus, 381
Accessibility Scanner, 394
accessibility services, 378

android:contentDescription attribute, 386
android:focusable attribute, 388
android:labelFor attribute, 399
contentDescription (Image) (Jetpack
Compose), 615
Explore by Touch, 382
focusable modifier (Jetpack Compose), 618
ticker text, 470
for touch targets, 397
View.contentDescription, 390

Accompanist library (Jetpack Compose), 644
action items (see menus)
action views, 442
ActionBar class, 318
ACTION_CALL category, 344
ACTION_DIAL category, 344
ACTION_PICK category, 334
ACTION_SEND category, 329
activities

(see also Activity class, fragments)
about, 3
adding to project, 5, 113-135
back stack, 135
child, 114, 127
configuration changes and, 64
creating, 116
declaring in manifest, 120
finishing, 63
hosting fragments, 154, 174
launcher, 132, 137
lifecycle, 55, 64
lifecycle, and hosted fragments, 174
overriding functions in, 56, 58
passing data between, 123-132
process death and, 78
rotation and, 64
stack, 133
starting, defined, 114
starting, in another application, 321
starting, with startActivity(Intent), 122
states, 55
UI flexibility and, 152

Activity class
about, 3
AppCompatActivity and ComponentActivity
vs, 640
as Context subclass, 25
findNavController, 271

Index

650

getIntent(), 126
lifecycle functions, 55-60
onCreate(Bundle?), 19, 55
onCreateOptionsMenu(Menu), 309
onDestroy(), 55
onPause(), 55
onResume(), 55
onSaveInstanceState(Bundle), 82
onStart(), 55
onStop(), 55
overriding superclass functions, 58
result codes, 128
setContentView(…), 19
setResult(…), 128
startActivity(Intent), 122, 329

ActivityManager class
back stack, 133, 135
starting activities, 122, 123, 129

ActivityNotFoundException class, 123
ActivityResultContracts class

about, 127
PickContact, 334
StartActivityForResult, 127
TakePicture, 354

ActivityScenario class, 109
Adapter class (RecyclerView)

about, 188
getItemCount(), 189
ListAdapter vs, 197
notifyDataSetChanged(…), 197
notifyItemInserted(…), 197
notifyItemMoved(…), 197
onBindViewHolder(…), 189
onCreateViewHolder(…), 189

adb (Android Debug Bridge) driver, 50
add(…) function (FragmentTransaction), 172
addMigrations(…) function (Room), 324
@After annotation (JUnit), 109
Alignment interface (Jetpack Compose)

.Center, 623

.TopEnd, 623

.TopStart, 623
Android Asset Packing tool (aapt), 30
Android Debug Bridge (adb) driver, 50
Android developer documentation, 147, 148
Android Lint

as code inspector, 34
as static analyzer, 93

compatibility and, 143-146
running, 93

Android manifest (see manifest)
Android SDK Manager, xviii
Android Studio

adding Gradle plugins, 240
Android Lint code inspector, 34
assets, 250
assistant tool window, 8
build process, 30
build tool window, 8
code completion, 25, 164
creating activities, 116
creating classes, 34
creating menu files, 307
creating packages, 243
creating projects, 4-6
creating values resource files, 364
debugger, 88, 90

(see also debugging)
devices view, 50
editor, 8
installing, xviii
layout editor, 202, 375

(see also layouts)
Logcat, 29

(see also Logcat, logging)
previewing layout decorations, 18
project tool window, 7
project window, 7
shortcut for creating test classes, 103
shortcut to override functions, 188
tool windows, 7
Translations Editor, 368
variables view, 90

Android Virtual Device Manager, 26
Android Virtual Devices (AVDs), creating, 26
Android XML namespace, 14
android.text.format.DateFormat class, 227
android.util.Log class (see Log class)
android.view.animation package, 525
android:authorities attribute, 351
android:contentDescription attribute, 386
android:exported attribute, 351
android:focusable attribute, 388
android:grantUriPermissions attribute, 351
android:id attribute, 21
android:labelFor attribute, 399

Index

651

android:layout_gravity attribute, 429
android:layout_height attribute, 15
android:layout_margin attribute, 226
android:layout_width attribute, 15
android:name attribute, 120, 169, 171
android:orientation attribute, 15
android:padding attribute, 226
android:required attribute, 362
android:scaleType attribute, 429
android:text attribute, 15
AndroidManifest.xml (see manifest)
AndroidX (see Jetpack libraries)
androidx.activity:activity-ktx architecture
component library (androidx.lifecycle), 70
androidx.lifecycle:lifecycle-viewmodel-
ktx architecture component library
(androidx.lifecycle), 70
animation

about, 511-526
android.view.animation package, 525
draw order of views, 515
interpolation, 517
property animation vs transitions framework,
525
property animators, 517
running multiple animators, 523, 524
simple property animation, 515-523
transformation properties, 518

(see also transformation properties)
transitions framework, 525
translation, 515

AnimatorListener class, 523
AnimatorSet class

about, 524
play(Animator), 524

.apk file, 30
app bar

about, 303
action views in, 442
app:showAsAction attribute, 307
AppCompat vs Jetpack Compose, 630
default from AppCompatActivity, 304
menu (see menus)
previewing, 18
terminology vs action bar, toolbar, 318
themes and, 304

app features, declaring in manifest, 362
app namespace, 308

app/build.gradle file, 70
app/java directory, 19
app:actionViewClass attribute, 442
app:showAsAction attribute, 307
AppCompat foundation library

about, 304
app namespace, 308
Jetpack Compose and, 640

AppCompatActivity class
about, 19
Activity and ComponentActivity vs, 640

application architecture
Google Guide to App Architecture, 247
single activity architecture, 260

Application class
onCreate(), 248
registering in manifest, 249
subclassing, 248

application lifecycle, accessing, 248
assertions, 101
assets, 250
assistant tool window (Android Studio), 8
asynchronous code

about, 230
Jetpack Compose and, 589

?attr/ syntax, 224
attributes, 14

(see also layout attributes, individual attribute
names)

AttributeSet class, 501
autocompletion, 25
AVDs (Android Virtual Devices), creating, 26

B
Back button, 137, 498
back stack, 133
background threads

(see also threads)
doWork() and, 461
for asynchronous network requests, 410
scheduling work on, 462, 478
Worker and, 461

@Before annotation (JUnit), 109
beginTransaction() function
(FragmentManager), 172
Bitmap class, 358

Index

652

BitmapFactory class, decodeFile(photoFil…

…e.getPath()), 358
bitmaps

(see also images)
resizing, 359
scaling and displaying, 358-361

bottom property (View), 516
Box composable (Jetpack Compose)

about, 617
aligning children, 625

breakpoints, setting, 88-92
(see also debugging)

build errors, 22, 96
(see also debugging)

build process, 30
build tool window (Android Studio), 8
Build.VERSION.SDK_INT, 146
Bundle class, 586
buttons

adding icons, 47
adding IDs, 21
Button class, 11
Button composable, 563, 637
ImageButton class, 348
TextButton composable, 603

by keyword, 575

C
Calendar class, 299
camera, 345-358
cancelUniqueWork(…) (WorkManager), 479
Canvas class, 506
Card composable (Jetpack Compose), 600
Channel class, 468
CheckBox class, 160
Checkbox composable (Jetpack Compose)

about, 535
implementing state changes, 573-577

choosers, creating, 332
Chrome Custom Tabs, 496
Class class, explicit intents and, 122
classes

(see also singletons)
abstract classes, 243
dependencies, 435
importing, 22

code completion, 25

Coil library, 431
color

ArgbEvaluator and, 522
resources, 512

Column composable (Jetpack Compose)
about, 534
Alignment parameter, 548
Arrangement parameter, 548

companion objects, 125
compatibility

Android Lint and, 143-146
configuration qualifiers and, 370
fragments and, 163
issues, 142
Jetpack libraries and, 163
minimum SDK version and, 141
using conditional code for, 144

compile SDK version, 142
ComponentActivity class, Activity and
AppCompatActivity vs, 640
components, 122
@Composable annotation, 538
composables

about, 532
@Composable annotation, 538
@Preview annotation, 539
accessing string resources in, 545
adding background, 553
adding padding, 552
aligning images in containers, 623
alignment in nested layouts, 548
alignment modifier, 625
as functions, 536
as pure functions, 579
aspectRatio modifier, 620
calling other functions, 538
composition hierarchy, 635
control flow in, 546
creating, 536
fillMaxSize modifier, 620
focusable modifier, 618
for app bars, 633
for checkboxes, 535
for column layouts, 534
for dialogs, 595, 600
for images, 613
for layering content, 617
for layouts, 634

Index

653

for row layouts, 535
for scrollable lists, 565
for text, 532
for text buttons, 603
making clickable, 557
modifier parameter, 552
modifiers (see Modifier type (Jetpack
Compose))
naming conventions, 536
nesting, 534
parameters for, 542-551
positioning within a Box, 625
previewing, 539
recomposition, 578, 579
remembering state, 580
scaling images to containers, 621
size modifier, 620
sizing, 559, 560
slotting, 633
state hoisting, 581
styles set by, 637
styling text, 550
trailing lambda syntax and, 599

Compose (see Jetpack Compose)
CompositionLocal class (Jetpack Compose)

about, 637-639
accessing CompositionLocal variables, 637
creating CompositionLocal variables, 645
LocalContext, 638
MaterialTheme and, 637

configuration changes
Application class and, 248
effect on activities, 64
effect on fragments, 165
networking and, 426
remember composable and, 586
state in Jetpack Compose and, 586
ViewModel and, 69

configuration qualifiers
Android versions and, 370
for language, 364
listed, 370
multiple, 373-375
order of precedence, 371-375
for screen size, 376

ConstraintLayout class
about, 201
converting layout to use, 203

Guideline, 227
MotionLayout, 227

constraints
about, 201
adding in layout editor, 211
in XML, 214
removing, 206
warnings when insufficient, 206

Constraints class, WorkRequest and, 463
contacts

getting data from, 337
permissions for, 339

container view IDs, 172
ContentProvider class

about, 337
FileProvider convenience class, 351, 352
for storing files shared among apps, 351

ContentResolver class, 337
ContentScale interface (Jetpack Compose)

.Crop, 621

.Fit, 621
Context class

explicit intents and, 122
fileList(…), 350
functions for private files and directories, 350
getCacheDir(…), 350
getDir(…), 350
getFilesDir(), 350
MODE_WORLD_READABLE, 350
openFileInput(…), 350
openFileOutput(…), 350
resource IDs and, 25

contracts, 127
(see also ActivityResultContracts class)

conventions (see naming conventions)
Converter.Factory class (Retrofit), 409
converters

converter factories, 409
scalars converter, 409

coroutines
(see also Flow class, flows)
about, 230-239
Activity class and, 231
builders, 231
Coroutines library, 231
CoroutineScope class, 231
enabling, 231
Fragment class and, 231, 235

Index

654

Jetpack Compose and, 589
launch function, 231
race conditions and, 235
Retrofit library and, 407
scope, 231
suspending functions, 230, 232
threads and, 230
ViewModel class and, 231

createChooser(…) function (Intent), 332
created activity state, 56
Cursor class, 337

D
d(…) function (Log), 57, 68, 87
@Dao annotation (Room), 245
data access objects (DAOs), 245
data classes, 34
data persistence

using saved instance state, 78
using ViewModel, 72
with shared preferences, 448-454

@Database annotation (Room), 243
databases

(see also Room architecture component
library)
accessing, 247
data access objects (DAOs), 245
database classes, 243
entities, 242
primary keys, 242
repository pattern, 247
saving changes to, 285-287
schemas, 257
Structured Query Language (SQL), 245
type conversion, 244

DataStore library, 448-451, 454
Date class, 299
DateFormat class, 227
DatePickerDialog class

about, 291, 299
configuration changes and, 292
wrapping in DialogFragment, 292

debug key, 30
debugging

(see also Android Lint, Android Studio)
about, 83
build errors, 96

crashes, 85, 86
logging stack traces vs setting breakpoints, 92
misbehaviors, 86
online help for, 96
running app with debugger, 88
stopping debugger, 91
using breakpoints, 88-92

declarative UI toolkit, defined, 571
default resources, 367
delegation, using by keyword, 575
density-independent pixel (dp), 49
dependencies

adding, 70
deleting, 632

dependency injection (DI) design pattern
about, 436
injectors, 258

design patterns
dependency injection (DI), 258, 436
factory software, 281
repository, 247, 413
unidirectional data flow pattern, 279

developer documentation, 147, 148
devices

configurations, 65
(see also configuration qualifiers)

configuring language settings, 364
enabling developer options, 79
hardware, 26
sandbox, 350
testing configurations, 375
virtual, 26

devices view (Android Studio), 50
Dialog class, 291
Dialog composable (Jetpack Compose), 595
DialogFragment class

about, 292
onCreateDialog(Bundle?), 293

dialogs
adding to navigation graphs, 293
in framework UI toolkit, 291-296
in Jetpack Compose, 593-608
passing data to, 297

DiffUtil class, 197
dip (density-independent pixel, dp), 49
documentation, 147
doOnLayout() function (View), 359
dp (density-independent pixel), 49

Index

655

draw() function (View), 506
@drawable/ syntax, 48
drawables, 48
drawing

Canvas, 506
in onDraw(Canvas), 506
Paint, 506

E
e(…) function (Log), 68
editor (Android Studio)

about, 8
layout editor, 202

EditText class, 160
emulator

creating a virtual device for, 26
enabling developer options, 79
installing, xviii
Quick Settings, 54
rotating, 48, 53
running on, 26
search queries on, 447
simulating network types, 463

enqueue(…) function (WorkManager), 462
enqueueUniquePeriodicWork(…) (WorkManager),
479
@Entity annotation (Room), 242
errors

(see also debugging, exceptions)
Android Studio indicators, 22
DEBUG log level, 68
ERROR log level, 68
INFO log level, 68
VERBOSE log level, 68
WARNING log level, 68

escape sequence (in strings), 38
event-driven applications, 23
Exception class, 87
exceptions

(see also debugging, errors)
about, 87
ActivityNotFoundException, 123
creating, 87
IllegalStateException, 75, 248
in Logcat, 29, 85
java.lang exceptions in Kotlin code, 85
kotlin.RuntimeException, 85

logging, 68
Resources.NotFoundException, 367
type-aliasing and, 85
UninitializedPropertyAccessException,
85, 423

explicit intents
about, 123, 321
creating, 122
implicit intents vs, 123, 321, 327

Explore by Touch, 382
extras

about, 124
as key-value pairs, 124
naming, 124
putting, 124, 125
retrieving, 125
structure, 124

F
factory software design pattern, 281
file storage

authorities, 351
granting write permission, 351
private, 350
shared between apps, 351

file types, for images, 613
fileList(…) function (Context), 350
FileProvider convenience class

about, 351, 352
getUriForFile(…), 354

findNavController function (Activity,
Fragment), 271
Flow class

(see also flows)
collect {} function, 254
MutableStateFlow, 255
StateFlow, 255

flows
about, 253
databases and, 253

fluent interface, defined, 172
format strings, 325
Fragment class

findNavController, 271
lifecycleScope, 235
onActivityCreated(Bundle?), 173
onAttach(Context?), 173

Index

656

onCreate(Bundle?), 165, 173
onCreateOptionsMenu(…), 309
onCreateView(…), 165, 173
onDestroy(), 173
onDestroyView(), 173
onDetach(), 173
onOptionsItemSelected(MenuItem), 309,
313
onPause(), 173
onResume(), 173
onStart(), 173
onStop(), 173
onViewCreated(…), 173
setFragmentResultListener, 300
setHasOptionsMenu(Boolean), 309
startActivity(Intent), 329
versions, 163
viewLifecycleScope, 235
visibility of lifecycle functions, 165

Fragment Results API, 297
fragment transactions, 172

(see also FragmentTransaction class)
FragmentContainerView class, 169
FragmentManager class

adding fragments, 171-174
beginTransaction(), 172
fragment lifecycle functions and, 173
responsibilities, 171

fragments
(see also Fragment class,
FragmentContainerView
class, FragmentManager class,
FragmentTransaction class)
activities vs, 152
activity lifecycle and, 174
adding a fragment to an activity, 172
adding to FragmentManager, 171-174
as composable units, 152
compatibility and, 163
container view IDs, 172
creating, 160
hosting, 154, 169
implementing lifecycle functions, 164, 165
inflating layouts for, 165
Jetpack libraries and, 163
lifecycle, 164, 173
lifecycle functions, 173
memory management and, 174

reasons for, 152, 153
setting listeners in, 167
transactions, 171
UI flexibility and, 152
using Jetpack (androidx) version, 163
views and, 167

FragmentTransaction class
about, 171
add(…), 172

functions
assertions, 101
pure, 579
side effects, 579
suspending with coroutines, 230, 232

G
GestureDetector class, 509
@GET annotation (Retrofit), 407
getAction() function (MotionEvent), 503
getBooleanExtra(…) function (Intent), 125
getCacheDir(…) function (Context), 350
getDir(…) function (Context), 350
getFilesDir() function (Context), 350
getIntent() function (Activity), 126
getUriForFile(…) function (FileProvider), 354
GlobalScope class, 286
Gradle source sets, 99
GridView class, 196
Guideline class, 227

H
hardware devices, 26
height property (View), 516
Home gesture, 61
HTTP networking (see networking)
HTTP request method annotations, 407

I
i(…) function (Log), 68
IllegalStateException class, 75, 248
Image composable (Jetpack Compose)

about, 613
alignment property, 623
contentDescription, 615
contentScale property, 621

ImageButton class, 348
images

Index

657

displaying with Coil library, 431
image types, 613
scaling and displaying bitmaps, 358-361

implicit intents
about, 123, 321
action, 327
ACTION_CALL category, 344
ACTION_DIAL category, 344
ACTION_PICK category, 334
ACTION_SEND category, 329
benefits of using, 322
categories, 327
data, 327
explicit intents vs, 123, 321, 327
extras, 328
FLAG_GRANT_READ_URI_PERMISSION flag, 339
for browsing web content, 484
LAUNCHER category, 132
MAIN category, 132
parts of, 327

inflating layouts, 19, 165
@Insert annotation (Room), 312
instrumented tests

about, 99
ActivityScenario, 109
creating, 106-112
JUnit framework, 101

Intent class
about, 327
constructors, 122, 329
createChooser(…), 332
getBooleanExtra(…), 125
putExtra(…), 124

intent filters
about, 132
explained, 328

Intent.FLAG_GRANT_READ_URI_PERMISSION flag,
339
intents

(see also explicit intents, extras, implicit
intents, Intent class, intent filters)
about, 122
checking for responding activities, 340
communicating with, 122, 123
companion objects and, 125
extras, 124
implicit vs explicit, 123, 321, 327
permissions and, 339

setting results, 128
Interceptor interface (OkHttp library), 438
interceptors, 438
interfaces, with a single abstract method (SAMs),
23
interpolators, 520
invalidate() function (View), 506

J
Java Virtual Machine (JVM) tests

about, 99
creating, 103-106
JUnit framework, 101

JavaScript Object Notation (JSON) (see JSON
(JavaScript Object Notation))
JavaScript, enabling, 490
javaScriptEnabled property (WebSettings), 490
Jetpack Compose

about, 527-533
@Composable annotation, 538
@Preview annotation, 539
accessibility in, 382, 615, 618
Accompanist library, 644
adding to a project, 530
AppCompat foundation library and, 640
AppCompat themes vs, 630
as a declarative toolkit, 571
asynchronous code and, 589
Checkbox composable, 535
Column composable, 534, 548
composable modifiers (see Modifier type
(Jetpack Compose))
composables (see composables, individual
composable names)
composition hierarchy, 635
CompositionLocal class, 637-639

(see also CompositionLocal class (Jetpack
Compose))

coroutines and, 589
displaying images, 613
Kotlin versions and, 531
LazyColumn composable, 565
LazyRow composable, 565
live literals, 568
MaterialTheme composable, 629
MaterialTheme object, 550, 629
Modifier type, 552-561

Index

658

(see also Modifier type (Jetpack
Compose))

previewing layouts, 539
recomposition, 578, 579
remember composable, 580
rememberSaveable composable, 586
Row composable, 535, 548
Scaffold composable, 634
scrollable lists in, 565
setContent, 532
sizing UI elements, 559, 560
state hoisting, 581
state in, 571-588, 593-608

(see also state in Jetpack Compose, state in
Jetpack Compose)

stringResource(Int), 545
styles set by composables, 637
Text composable, 532, 550
themes, 629-632
TopAppBar composable, 633
trailing lambda syntax and, 599

Jetpack libraries
(see also libraries, individual library names)
about, 81
androidx.activity package, 70
androidx.lifecycle package, 70
for backward compatibility, 143

Job class, 236
JSON (JavaScript Object Notation)

about, 414
arrays, 419
deserializing, 419
Moshi library and, 419
objects, 419

@Json annotation, 420
@JsonClass annotation, 420
JUnit testing framework (see testing,
instrumented tests, Java Virtual Machine (JVM)
tests)

K
Kotlin

coroutines (see coroutines)
enabling in an Android Studio project, 6
exceptions, compiled to java.lang exceptions,
85
functions public by default, 165

Kotlin annotation processing tool (kapt), 240
Kotlin files in java directory, 19
single abstract method interfaces (SAMs) and,
23

kotlin.RuntimeException class, 85

L
language qualifiers, 364
language settings, device, 364
language-region qualifiers, 369
launcher activities, 132
LAUNCHER category (Intent), 132
layout attributes

android:id, 21
android:layout_height, 15
android:layout_margin, 226
android:layout_width, 15
android:orientation, 15
android:padding, 226
android:text, 15

layout constraints (see constraints)
layout editor (Android Studio), 202, 375
layout parameters, 214
LayoutInflater class, 30
LayoutManager class, 183
layouts

(see also constraints, layout attributes, layout
editor (Android Studio))
about, 3
animating, 227
defining in XML, 12-15
design guidelines, 215
inflating, 19, 165
naming, 9
nested vs flat, 200
previewing (Jetpack Compose), 539
previewing (XML layouts), 17
previewing device configurations, 375
for property animation, 513
root element, 14
testing, 375
using guidelines, 227
view groups and, 10
view hierarchy and, 14

LazyColumn composable (Jetpack Compose)
about, 565
item, 566

Index

659

items, 566
itemsIndexed, 566
RecyclerView vs, 565
state in, 591

LazyRow composable (Jetpack Compose)
about, 565
item, 566
items, 566
itemsIndexed, 566
RecyclerView vs, 565

left property (View), 516
libraries

adding to projects, 70
removing from project, 632

lifecycle callbacks, 56
Lifecycle class, repeatOnLifecycle(…), 237
LinearLayout class, 11, 14
Lint (see Android Lint)
list-detail interfaces, 151
ListAdapter class

about, 197
DiffUtil and, 197

listeners
about, 23
as interfaces, 23
setting in fragments, 167
setting up, 23-25

lists
displaying, 177
getting item data, 188
in Jetpack Compose, 565

ListView class, 196
live literals, 568
local layout rect, 516
LocalContext property (CompositionLocal), 638
localization

about, 363
creating values resource files, 364
default resources and, 367
language qualifiers, 364
language-region qualifiers, 369
other configuration qualifiers and, 371
testing, 375
Translations Editor, 368

Log class
d(…), 57, 68, 87
e(…), 68
i(…), 68

levels, 68
logging messages, 57
v(…), 68
w(…), 68

Logcat
(see also logging)
about, 59, 60
filtering, 29, 59, 73
logging messages, 57
setting log level, 85
wrapping output, 417

logging
exceptions, 87
messages, 57
stack traces, 87
TAG constant, 57

M
MAIN category (Intent), 132
makeText(…) function (Toast), 25
manifest

about, 120
<meta-data> tag, 352
<uses-feature> tag, 362
adding network permissions, 411
adding uses-permission, 411
build process and, 30
declaring Activity in, 120
disclosing queries, 340

margins, 226
master-detail interfaces, 151
match_parent, 15
Material Components library, 305
MaterialTheme composable (Jetpack Compose)

about, 629
CompositionLocal and, 637
nested, 637
scope, 637

MaterialTheme object (Jetpack Compose)
about, 550, 629
text styles, 550

memory leaks, 75
MenuItem class, 313
menus

(see also app bar)
about, 305
action items, 305

Index

660

app:showAsAction attribute, 307
creating, 309
creating XML file for, 307
defining in XML, 307
determining selected item, 313
overflow menu, 307
populating with items, 309
as resources, 307
responding to selections, 312

<meta-data> tag, 352
Migration classes (Room), 323
model classes, using data keyword, 34
Modifier type (Jetpack Compose)

about, 552
alignment, 625
aspectRatio, 620
background, 553
clickable, 557
fillMaxSize, 620
focusable, 618
ordering modifiers, 553
padding, 552
size, 620
weight, 559

Moshi library
about, 419-423
@Json annotation, 420
@JsonClass annotation, 420

motion events, handling, 502-506
MotionEvent class

about, 503
actions, 503
getAction(), 503

MotionLayout class, 227
multi-window (split screen) mode

activity states and, 67
multi-resume support, 67

MutableState interface (Jetpack Compose)
about, 575
mutableStateOf, 575

mutableStateOf function (MutableState), 575

N
namespaces

Android resource XML, 14
app, 308
tools, 37, 264

naming conventions
classes, 8
composables, 536
extras, 124
file sharing authorities, 351
icons, 210
layouts, 9
menu files, 307
packages, 6
screens in Jetpack Compose, 562
test classes, 103
test functions, 101
unused parameters, 167

NavController class, 271
NavHostFragment class, 265, 271
navigation

(see also Navigation Jetpack component
library)
Activity lifecycle and, 137
Back button, 137

navigation graphs (Navigation Jetpack component
library)

about, 260
adding destinations, 262
adding dialogs, 293
creating, 261
defining actions, 267
hosting, 265
previews, 263, 288

Navigation Jetpack component library
about, 260
findNavController, 271
NavController, 271
NavHostFragment, 271
navigation graphs, 260

(see also navigation graphs (Navigation
Jetpack component library))

performing navigations, 271
Safe Args Gradle plugin and, 273

networking
about, 402
configuration changes and, 426
limiting by network type, 463
permissions, 411
providing user control, 474
scheduling, 462, 478

nonexistent activity state, 56
Notification class

Index

661

(see also notifications)
about, 470
NotificationManager and, 470

NotificationCompat class, 472
NotificationManager class

Notification and, 470
notify(…), 470

notifications
about, 468-473
configuring, 472
notification channels, 468

notify(…) function (NotificationManager), 470

O
ObjectAnimator class, 516
OkHttp HTTP client library, 408, 438
onActivityCreated(Bundle?) function
(Fragment), 173
onAttach(Context?) function (Fragment), 173
OnCheckedChangeListener interface, 168
onCleared() function (ViewModel), 71
OnClickListener interface, 23
onCreate() function (Application), overriding,
248
onCreate(Bundle?) function (Activity), 19, 55
onCreate(Bundle?) function (Fragment), 165,
173
onCreateDialog(Bundle?) function
(DialogFragment), 293
onCreateOptionsMenu(Menu) function
(Activity), 309
onCreateOptionsMenu(…) function (Fragment),
309
onCreateView(…) function (Fragment), 165, 173
onDestroy() function (Activity), 55
onDestroy() function (Fragment), 173
onDestroyView() function (Fragment), 173
onDetach() function (Fragment), 173
onDraw(Canvas) function (View), 506
OneTimeWorkRequest class (WorkRequest), 462
onOptionsItemSelected(MenuItem) function
(Fragment), 309, 313
onPause() function (Activity), 55
onPause() function (Fragment), 173
onProgressChanged(…) function
(WebChromeClient), 493

OnQueryTextListener(…) interface
(SearchView), 445
onReceivedTitle(…) function
(WebChromeClient), 493
onRestoreInstanceState(Parcelable) function
(View), 509
onResume() function (Activity), 55
onResume() function (Fragment), 173
onSaveInstanceState() function (View), 509
onSaveInstanceState(Bundle) function
(Activity), 82
onStart() function (Activity), 55
onStart() function (Fragment), 173
onStop() function (Activity), 55
onStop() function (Fragment), 173
onTouchEvent(MotionEvent) function (View),
502
OnTouchListener interface (View), 502
onViewCreated(…) function (Fragment), 173
openFileInput(…) function (Context), 350
openFileOutput(…) function (Context), 350
overflow menu, 307
override keyword, 58
overriding functions, Android Studio shortcut,
164
overview screen, 61, 63

P
PackageManager class

about, 341
resolveActivity(…), 341

packages
creating, 243
naming, 6

padding, 226
Paint class, 506
Painter class (Jetpack Compose)

about, 613
painterResource, 613

painterResource function (Painter), 613
parameters, _ to denote unused, 167
Parcelable interface

about, 509, 586
implementing with Parcelize plugin, 587

PeriodicWorkRequest class (WorkRequest), 462,
478
permissions

Index

662

adding to manifest, 411
android:authorities attribute, 351
android:exported attribute, 351
android:grantUriPermissions attribute, 351
for contacts database, 339
Intent.FLAG_GRANT_READ_URI_PERMISSION
flag, 339
INTERNET, 411
normal, 411
Request App Permissions guide, 344
runtime, 344

PhotoView class, 359
PickContact (ActivityResultContracts), 334
placeholders (in format strings), 325
play(Animator) function (AnimatorSet), 524
PointF class, 503
presses (see touch events)
@Preview annotation, 539
@PrimaryKey annotation (Room), 242
process death, 78
progress indicator, hiding, 493
ProgressBar class, 491
project tool window (Android Studio), 7
project window (Android Studio), 7
projects

adding dependencies, 70
adding resources, 45
app/java directory, 19
configuring, 5
creating, 4-6
deleting dependencies, 632
layout, 9
res/layout directory, 20
res/menu directory, 307
res/values directory, 20
setting package name, 5
setting project name, 5

property animation (see animation)
property delegates, 72
protocol buffers, 448

Q
queries

disclosing, 340
for apps, 340

@Query annotation
in Retrofit, 440

in Room, 245

R
race conditions, 235
Recents gesture, 61
recomposition, 578
RecyclerView class

about, 181-194
animations, 196
as a ViewGroup, 184
creating views, 193
item views, 184
LayoutManager and, 183
LazyColumn or LazyRow vs, 565
ListAdapter and, 197
ListView and GridView vs, 196
setOnItemClickListener(…), 484
ViewHolder and, 186

RecyclerView.Adapter class
about, 188
getItemCount(), 189
ListAdapter vs, 197
notifyDataSetChanged(…), 197
notifyItemInserted(…), 197
notifyItemMoved(…), 197
onBindViewHolder(…), 189
onCreateViewHolder(…), 189

release key, 30
remember composable (Jetpack Compose), 580
rememberSaveable composable (Jetpack
Compose), 586
repeatOnLifecycle(…) function (Lifecycle),
237
repositories, 247, 413
repository design pattern, 247, 413
@RequiresApi annotation, 144
res/layout directory, 20
res/menu directory, 307
res/values directory, 16, 20
resolveActivity(…) function
(PackageManager), 341
resource IDs

about, 20, 21
+ prefix in, 21

resources
(see also color, configuration qualifiers,
drawables, layouts, menus, string resources)

Index

663

about, 20
adding, 45
alternative, 371-375
assets vs, 250
default, 367
directories, 20
localizing, 363-366
referencing in XML, 47

Resources.NotFoundException class, 367
result code (Activity), 128
resumed activity state, 56, 67
Retrofit library

@GET annotation, 407
about, 406-413
baseUrl(…) function, 408
build() function, 408
Converter.Factory class, 409
coroutines and, 407
create() function, 408
defining an API interface, 407
HTTP request method annotations, 407
Retrofit.Builder() class, 408
scalars converter, 409

Retrofit.Builder() class (Retrofit)
about, 408
baseUrl(…), 408
build(), 408

right property (View), 516
Room architecture component library

@Dao annotation, 245
@Database annotation, 243
@Entity annotation, 242
@Insert annotation, 312
@PrimaryKey annotation, 242
@Query annotation, 245
@TypeConverter annotation, 244
@TypeConverters annotation, 244
@Update annotation, 285
accessing a database, 247
adding database properties, 323, 324
addMigrations(…), 324
defining a data access object (DAO), 245
defining a database class, 243
defining database entities, 242
defining database primary key, 242
instantiating a database, 249
Migration classes, 323
Room.databaseBuilder(), 249

setting up a database, 240-244
specifying type converters, 244
SQL commands, 245
SQLite in, 243
updating database version, 323, 324

rotation (see configuration changes)
Row composable (Jetpack Compose)

about, 535
Alignment parameter, 548
Arrangement parameter, 548

running on device, 50, 51
@RunWith(AndroidJUnit4::class) annotation
(JUnit), 106

S
Safe Args Gradle plugin, 273-278
SAMs (single abstract method interfaces), 23
sandbox, device, 350
saved instance state, 78
SavedStateHandle class, 78
Scaffold composable (Jetpack Compose)

about, 634
content, 634
topBar, 634

scale-independent pixel (sp), 49
scope, 72
screen pixel density, 48
screen size, determining, 376
SDK versions

(see also compatibility)
about, 142
configuration qualifiers and, 370
installing, xviii
updating, xix

search
about, 437-457
integrating into app, 437
user-initiated, 442-447

SearchView class
about, 442-447
bug, 447
OnQueryTextListener(…), 445
responding to user interactions, 445

setContent function (Jetpack Compose), 532
setContentView(…) function (Activity), 19
setFragmentResultListener function
(Fragment), 300

Index

664

setHasOptionsMenu(Boolean) function
(Fragment), 309
setOnClickListener(OnClickListener)
function (View), 23
setOnItemClickListener(…) function
(RecyclerView), 484
setOnTouchListener(…) function (View), 502
setResult(…) function (Activity), 128
setText(Int) function (TextView), 126
shared preferences, 448
shouldOverrideUrlLoading(…) function
(WebViewClient), 490
show() function (Toast), 25
simulator (see emulator)
single abstract method interfaces (SAMs), 23
single activity architecture, 260
singletons

about, 247
activity/fragment lifecycles and, 247
benefits and drawbacks, 258

source sets, 99
sp (scale-independent pixel), 49
stack traces

in Logcat, 85
logging, 87

startActivity(Intent) function (Activity),
122, 329
startActivity(Intent) function (Fragment),
329
StartActivityForResult
(ActivityResultContracts), 127
started activity state, 56, 67
state in Jetpack Compose

about, 571-588, 593-608
changes to state objects vs properties, 573
configuration changes and, 586
delegation and, 575
dialogs and UI state, 593-608
MutableState and, 575
responding to changes in application state, 575

@string/ syntax, 15
string resources

about, 15, 16
@StringRes annotation, 34
about, 15
creating, 16
referencing, 48
res/values/strings.xml, 16

@StringRes annotation, 34
stringResource(Int) function (Jetpack
Compose), 545
strings, format, 325
Structured Query Language (SQL), 245
@style/ syntax, 223
styles

/res/values/themes.xml file, 223
creating custom styles, 223
Material Design and, 223

suspend modifier, 234

T
TAG constant, 57
TakePicture (ActivityResultContracts), 354
TalkBack

about, 378
Android views’ inherent support, 382
enabling, 379
linear navigation by swiping, 382
non-text elements and, 385-388

target SDK version, 142
@Test annotation (JUnit), 101
testing

@After annotation (JUnit), 109
@Before annotation (JUnit), 109
@RunWith(AndroidJUnit4::class)
annotation (JUnit), 106
@Test annotation (JUnit), 101
creating tests, 103-112
instrumented, 99

(see also instrumented tests)
Java Virtual Machine (JVM), 99

(see also Java Virtual Machine (JVM) tests)
JUnit framework, 101
running tests, 101
setup, test, verify pattern, 105
unit, 99
using ActivityScenario, 109

Text composable (Jetpack Compose)
about, 532
style parameter, 550
styles set by, 637

TextButton composable (Jetpack Compose), 603
TextView class

example, 11
setText(Int), 126

Index

665

tools:text and, 37
themes

(see also styles)
about, 223
?attr/ syntax for attributes, 224
app bar and, 304
AppCompat vs Jetpack Compose, 630
default, 305
in Jetpack Compose, 629-632
referencing theme attributes, 224
theme attributes, 223

threads
about, 230
background, 230

(see also background threads)
blocking, 230
coroutines and, 230
main (UI), 230, 410

ticker text, 470
TimeInterpolator class, 520
Toast class

makeText(…), 25
show(), 25

toasts, 24, 25
tool windows (Android Studio), 7
toolbar (see app bar)
Toolbar class, 318
tools:layout attribute, 264
tools:listitem attribute, 288
tools:text attribute, 37
top property (View), 516
TopAppBar composable (Jetpack Compose), 633
touch events

action constants, 503
handling, 195, 502-506
handling with GestureDetectorCompat, 509
MotionEvent and, 503
recommended minimum size for touch targets,
397

transformation properties
pivotX, 518
pivotY, 518
rotation, 518
scaleX, 518
scaleY, 518
translationX, 518
translationY, 518

transitions framework, for animation, 525

Translations Editor, 368
@TypeConverter annotation (Room), 244
@TypeConverters annotation (Room), 244
TypeEvaluator class, 522

U
unidirectional data flow pattern, 279-284
UninitializedPropertyAccessException class,
85, 423
unit testing, 99
@Update annotation (Room), 285
Uri class

creating shareable instances, 354
FileProvider.getUriForFile(…) and, 354

user interfaces
activities vs fragments in, 152
declarative vs imperative, 527
defined by layout, 3
flexibility in, 152
framework UI toolkit vs Jetpack Compose,
527
laying out, 9-17

<uses-feature> tag, 362

V
v(…) function (Log), 68
variables view (Android Studio), 90
vector drawables, 45
VectorDrawable class, 45
View Binding

about, 39
memory management and, 174

View class
(see also views)
bottom, 516
Button, 11
CheckBox, 160
doOnLayout(), 359
draw(), 506
EditText, 160
height, 516
invalidate(), 506
left, 516
LinearLayout, 11, 14
OnClickListener interface, 23
onDraw(Canvas), 506
onRestoreInstanceState(Parcelable), 509

Index

666

onSaveInstanceState(), 509
onTouchEvent(MotionEvent), 502
OnTouchListener interface, 502
right, 516
setOnClickListener(OnClickListener), 23
setOnTouchListener(…), 502
subclasses, 10
tag property, 360
TextView, 11, 37
top, 516

ViewGroup class, 10, 14
ViewHolder class

about, 186
itemView property, 186

ViewModel class
about, 69-80
activity lifecycle and, 72
constructors, 281
fragment lifecycle and, 179, 426
onCleared(), 71
for storage, 179
ViewModelProvider.Factory interface, 281
viewModels() property delegate, 72
viewModelScope, 231

views
about, 10
action, 442
adding in layout editor, 209
attributes, 14
creating custom views, 500
creation by RecyclerView, 193
custom, 500-502
defining in XML, 12-15
downsides of framework UI toolkit, 527
draw order, 515
for buttons, 11
for checkboxes, 160
for displaying text, 11, 37
for laying out other views, 11
for text entry, 160
hierarchy, 14
invalid, 506
margins, 226
padding, 226
persisting, 509
references, 22
simple vs composite, 500
size settings, 207

TalkBack and, 382-388
title attribute and accessibility, 383
touch events and, 502-506
UI state in framework views, 570
using fully qualified name in layout, 501
view groups, 10
wiring up, 21
wiring up in fragments, 167

virtual devices (see emulator)

W
w(…) function (Log), 68
web content

browsing via implicit intent, 484
displaying within an activity, 486
enabling JavaScript, 490
in Chrome Custom Tabs, 496

web rendering events, responding to, 490
WebChromeClient interface

about, 492
for enhancing appearance of WebView, 491
onProgressChanged(…), 493
onReceivedTitle(…), 493

WebSettings class, 490
WebView class

custom UI vs, 495
for presenting web content, 486
WebViewClient and, 490

WebViewClient class
about, 490
shouldOverrideUrlLoading(…), 490
WebView and, 490

work requests
about, 462, 478
constraints for, 463

Worker class
about, 461
doWork(), 461
enabling and disabling, 474
scheduling with WorkRequest, 462, 478

WorkManager architecture component library
about, 460
Constraints, 463
Worker, 461
WorkRequest, 461

WorkManager class, enqueue(…), 462
WorkRequest class

Index

667

about, 461
Constraints and, 463
scheduling a Worker, 462, 478
subclasses, 462

wrap_content, 15

X
XML

Android namespace, 14
referencing resources in, 47

	Android Programming
	Table of Contents
	Learning Android
	Prerequisites
	What’s New in the Fifth Edition?
	Kotlin vs Java
	How to Use This Book
	How This Book Is Organized
	Challenges
	Are you more curious?

	Typographical Conventions
	Android Versions

	The Necessary Tools
	Downloading and Installing Android Studio
	Downloading Earlier SDK Versions
	A Hardware Device

	Chapter 1 Your First Android Application
	App Basics
	Creating an Android Project
	Navigating in Android Studio
	Laying Out the UI
	The view hierarchy
	View attributes
	android:layout_width and android:layout_height
	android:orientation
	android:text

	Creating string resources
	Previewing the layout

	From Layout XML to View Objects
	Resources and resource IDs

	Wiring Up Views
	Getting references to views
	Setting listeners

	Making Toasts
	Running on the Emulator
	For the More Curious: The Android Build Process
	Android build tools

	Challenges
	Challenge: Switching Your Toast for a Snackbar

	Chapter 2 Interactive User Interfaces
	Creating a New Class
	Updating the Layout
	Wiring Up the User Interface
	Adding an Icon
	Referencing resources in XML

	Screen Pixel Densities
	Running on a Device
	Challenge: Add a Listener to the TextView
	Challenge: Add a Previous Button

	Chapter 3 The Activity Lifecycle
	Rotating GeoQuiz
	Activity States and Lifecycle Callbacks
	Logging the Activity Lifecycle
	Making log messages
	Using Logcat

	Exploring How the Activity Lifecycle Responds to User Actions
	Temporarily leaving an activity
	Finishing an activity
	Rotating an activity

	Device Configuration Changes and the Activity Lifecycle
	For the More Curious: Creating a Landscape Layout
	For the More Curious: UI Updates and Multi-Window Mode
	For the More Curious: Log Levels
	Challenge: Preventing Repeat Answers
	Challenge: Graded Quiz

	Chapter 4 Persisting UI State
	Including the ViewModel Dependency
	Adding a ViewModel
	ViewModel lifecycle
	Add data to your ViewModel

	Saving Data Across Process Death
	For the More Curious: Jetpack, AndroidX, and Architecture Components
	For the More Curious: Avoiding a Half-Baked Solution
	For the More Curious: Activity and Instance State

	Chapter 5 Debugging Android Apps
	Exceptions and Stack Traces
	Diagnosing misbehaviors
	Logging stack traces
	Setting breakpoints

	Android-Specific Debugging
	Using Android Lint
	Build issues

	Challenge: Using Conditional Breakpoints
	Challenge: Exploring the Layout Inspector
	Challenge: Exploring the Profiler

	Chapter 6 Testing
	Two Types of Tests
	JVM Tests
	Instrumented Tests with Espresso and ActivityScenario
	Challenge: Asserting Yourself

	Chapter 7 Your Second Activity
	Setting Up a Second Activity
	Creating a new activity
	A new activity subclass
	Declaring activities in the manifest
	Adding a cheat button to MainActivity

	Starting an Activity
	Communicating with intents
	Explicit and implicit intents

	Passing Data Between Activities
	Using intent extras
	Getting a result back from a child activity
	Setting a result
	Sending back an intent
	Handling a result

	How Android Sees Your Activities
	For the More Curious: startActivityForResult
	For the More Curious: The Back Button and the Activity Lifecycle
	Challenge: Closing Loopholes for Cheaters
	Challenge: Tracking Cheat Status by Question

	Chapter 8 Android SDK Versions and Compatibility
	Android SDK Versions
	A sane minimum
	Minimum SDK version
	Target SDK version
	Compile SDK version

	Compatibility and Android Programming
	Jetpack libraries
	Safely adding code from later APIs

	Using the Android Developer Documentation
	Challenge: Reporting the Device’s Android Version
	Challenge: Limited Cheats

	Chapter 9 Fragments
	The Need for UI Flexibility
	Introducing Fragments
	Starting CriminalIntent
	Creating a new project

	Creating a Data Class
	Creating a Fragment
	Defining CrimeDetailFragment’s layout
	Creating the CrimeDetailFragment class
	Different types of fragments
	Implementing fragment lifecycle functions
	Wiring up views in a fragment

	Hosting a Fragment
	Defining a FragmentContainerView
	The FragmentManager
	The fragment lifecycle
	Fragments and memory management

	Challenge: Testing with FragmentScenario

	Chapter 10 Displaying Lists with RecyclerView
	Adding a New Fragment and ViewModel
	ViewModel lifecycle with fragments

	Adding a RecyclerView
	Implementing a LayoutManager
	Creating an Item View Layout
	Implementing a ViewHolder
	Implementing an Adapter to Populate the RecyclerView
	Setting the RecyclerView’s adapter

	Recycling Views
	Cleaning Up Binding List Items
	Responding to Presses
	Lists and Grids: Past, Present, and Future
	For the More Curious: A Smarter Adapter with ListAdapter
	Challenge: RecyclerView View Types

	Chapter 11 Creating User Interfaces with Layouts and Views
	Introducing ConstraintLayout
	Introducing the Layout Editor
	Using ConstraintLayout
	Making room
	Adding views
	ConstraintLayout’s inner workings
	Editing properties
	Making list items dynamic

	Styles, Themes, and Theme Attributes
	For the More Curious: Margins vs Padding
	For the More Curious: Advanced Features in ConstraintLayout
	Challenge: Formatting the Date

	Chapter 12 Coroutines and Databases
	An Introduction to Asynchronous Code on Android
	Using coroutines
	Consuming data from coroutines

	Creating a Database
	Room architecture component library
	Defining entities
	Creating a database class
	Creating a type converter
	Defining a Data Access Object

	Accessing the Database Using the Repository Pattern
	Importing Prepopulated Data
	Querying the Database
	Keeping the Changes Flowing
	Challenge: Addressing the Schema Warning
	For the More Curious: Singletons

	Chapter 13 Fragment Navigation
	Performing Navigation
	Implementing the Navigation component library
	Navigating to the detail screen
	Passing data to a fragment

	Unidirectional Data Flow
	Updating the Database
	For the More Curious: A Better List Preview
	Challenge: No Untitled Crimes

	Chapter 14 Dialogs and DialogFragment
	Creating a DialogFragment
	Showing a DialogFragment

	Passing Data Between Two Fragments
	Passing data to DatePickerFragment
	Returning data to CrimeDetailFragment
	Setting a fragment result

	Challenge: More Dialogs

	Chapter 15 The App Bar
	The Default App Bar
	Menus
	Defining a menu in XML
	The app namespace

	Creating the menu
	Responding to menu selections

	For the More Curious: App Bar vs Action Bar vs Toolbar
	For the More Curious: Accessing the AppCompat App Bar
	Challenge: An Empty View for the RecyclerView
	Challenge: Deleting Crimes

	Chapter 16 Implicit Intents
	Adding Buttons
	Adding a Suspect Property
	Using a Format String
	Using Implicit Intents
	Parts of an implicit intent
	Sending a crime report
	Asking Android for a contact
	Getting data from the contacts list
	Contacts permissions

	Checking for responding activities
	Disclosing queries
	Querying the PackageManager

	Challenge: Another Implicit Intent

	Chapter 17 Taking Pictures with Intents
	A Place for Your Photo
	File Storage
	Using FileProvider
	Designating a picture location

	Using a Camera Intent
	Scaling and Displaying Bitmaps
	Declaring Features
	Challenge: Detail Display

	Chapter 18 Localization
	Localizing Resources
	Default resources
	Checking string coverage using the Translations Editor
	Targeting a region

	Configuration Qualifiers
	Prioritizing alternative resources
	Multiple qualifiers
	Finding the best-matching resources

	Testing Alternative Resources
	For the More Curious: More on Determining Device Size
	Challenge: Localizing Dates

	Chapter 19 Accessibility
	TalkBack
	Explore by Touch
	Linear navigation by swiping

	Making Non-Text Elements Readable by TalkBack
	Adding content descriptions
	Making a view focusable

	Creating a Comparable Experience
	For the More Curious: Using TalkBack with an Emulator
	For the More Curious: Using Accessibility Scanner
	Challenge: Improving the List
	Challenge: Providing Enough Context for Data Entry
	Challenge: Announcing Events

	Chapter 20 Making Network Requests and Displaying Images
	Creating PhotoGallery
	Networking Basics with Retrofit
	Defining an API interface
	Building the Retrofit object and creating an API instance
	Adding a String converter

	Executing a web request
	Asking permission to network
	Moving toward the repository pattern

	Fetching JSON from Flickr
	Deserializing JSON text into model objects
	Handling errors

	Networking Across Configuration Changes
	Displaying Results in RecyclerView
	Displaying images

	For the More Curious: Managing Dependencies
	Challenge: Paging

	Chapter 21 SearchView and DataStore
	Searching Flickr
	Using SearchView
	Responding to SearchView user interactions

	Simple Persistence with DataStore
	Defining UI State
	Challenge: Polishing Your App Some More

	Chapter 22 WorkManager
	Creating a Worker
	Scheduling Work
	Checking for New Photos
	Notifying the User
	Providing User Control over Polling

	Chapter 23 Browsing the Web and WebView
	One Last Bit of Flickr Data
	The Easy Way: Implicit Intents
	The Harder Way: WebView
	WebChromeClient

	WebView vs a Custom UI
	For the More Curious: WebView Updates
	For the More Curious: Chrome Custom Tabs (Another Easy Way)
	Challenge: Using the Back Button for Browser History

	Chapter 24 Custom Views and Touch Events
	Setting Up the DragAndDraw Project
	Creating a Custom View
	Creating BoxDrawingView

	Handling Touch Events
	Tracking across motion events

	Rendering Inside onDraw(Canvas)
	For the More Curious: Detecting Gestures
	Challenge: Saving State
	Challenge: Rotating Boxes
	Challenge: Accessibility Support

	Chapter 25 Property Animation
	Building the Scene
	Simple Property Animation
	View transformation properties
	Using different interpolators
	Color evaluation

	Playing Animators Together
	For the More Curious: Other Animation APIs
	Legacy animation tools
	Transitions

	Challenges

	Chapter 26 Introduction to Jetpack Compose
	Creating a Compose Project
	Composing Your First UI
	Layouts in Compose
	Composable Functions
	Previewing Composables
	Customizing Composables
	Declaring inputs on a composable function
	Resources in Compose
	Control flow in a composable

	Aligning elements in a row
	Specifying text styles

	The Compose Modifier
	The padding modifier
	Chaining modifiers and modifier ordering
	The clickable modifier
	Sizing composables
	Specifying a modifier parameter

	Building Screens with Composables
	Scrollable Lists with LazyColumn
	For the More Curious: Live Literals

	Chapter 27 UI State in Jetpack Compose
	Philosophies of State
	Defining Your UI State
	Updating UIs with MutableState
	Recomposition
	remember
	State Hoisting
	State and Configuration Changes
	Parcelable and Parcelize

	For the More Curious: Coroutines, Flow, and Compose
	For the More Curious: Scrolling State
	For the More Curious: Inspecting Compose Layouts

	Chapter 28 Showing Dialogs with Jetpack Compose
	Your First Dialog in Compose
	Dismissing the Dialog
	Setting the Dialog’s Content
	Sending Results from a Dialog
	Challenge: Pizza Sizes and Drop-Down Menus

	Chapter 29 Theming Compose UIs
	Images
	Image’s contentDescription
	Adding more images
	Customizing the Image composable
	aspectRatio
	contentScale
	Image alignment
	The align modifier

	Adding a header to LazyColumn

	MaterialTheme
	Scaffold and TopAppBar
	CompositionLocal
	Removing AppCompat
	For the More Curious: Accompanist
	For the More Curious: Creating Your Own CompositionLocals
	Challenge: Animations

	Chapter 30 Afterword
	The Final Challenge
	Shameless Plugs
	Thank You

	Index

