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Wave Energy Convertors in 

Tropical Seas

Tay provides a comprehensive description of the state of the art for recent 

conceptual designs on the integration of wave energy convertor (WEC) sys-

tems with floating structures in tropical seas, discusses the unique environ-

mental challenges, and provides a guide for readers to develop WECs that 

are optimised for both wave patterns and the structures to which they are 

attached. 

Through this book, readers will gain a deep understanding of the unique 

environmental characteristics of tropical climates, discover how WECs can 

be integrated into various floating structures, and learn how WECs can be 

adapted and optimised for use in tropical climates. This book also focuses 

on the hydroelasticity of large floating structures and how the structural 

deformation under wave action affects the energy generation of the WEC. 

Tay provides the theoretical formulation and numerical framework for 

the modelling of WEC systems when integrated with large floating struc-

tures. Different wave models and mathematical optimisation schemes are 

presented to enable readers to determine the best design and application 

parameters depending on requirements. In the book, Tay includes case stud-

ies to illustrate how power generation of the integrated WEC arrays can be 

enhanced. This includes power enhancement via sloshing resonance, wave 

run- up, structural deformation, and various optimisation schemes. These 

case studies offer reader practical guidance on applying the information in 

this book to real- world scenarios. 

The combination of presented case studies, discussion of the challenges 

of tropical seas, and design optimisation parameters make this book invalu-

able to researchers and industry players working on the concepts of power 

enhancement and integrated WECs on floating structures. 

Zhi Yung Tay is an Associate Professor at Singapore Institute of Technology. 

Previously, he was a Postdoctoral Research Associate at the Institute for 

Energy Systems, University of Edinburgh and a Research Fellow at National 

University of Singapore (NUS). Dr Tay also held a Senior Research Engineer 
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 How Can We Make WECS Feasible in 

 Tropical Climates? 

Renewable energy such as wave energy has gained popularity as a means 

of reducing greenhouse gases (GHGs). However, the high cost and lack of 

available sea space in some countries have hindered the deployment of wave 

energy converters (WECs) as an alternative means of sustainable energy pro-

duction. By combining WECs with infrastructures such as floating break-

waters or piers, the idea of electricity generated from WECs will be more 

appealing. This chapter considers some of the concepts of the integration of 

WECs with floating structures as a means to generate electricity and attenu-

ate wave force in tropical seas. The state of the art of such a concept proposed 

by various academician and industry players will be presented to demon-

strate the potential of tapping wave energy as alternative sources for the 

achieving of a sustainable solution. This includes the proposed concept of 

integrating WECs with oil and gas platform and seafront land infrastructure 

such as coastal defence structures. The chapter will present the various 

applications of floating solution ideas with the aim of achieving the United 

Nations (UN) Sustainable Development Goals (SDGs) and will explain how 

renewable energy, especially various types of WEC (i.e., point absorber, 

attenuator, terminator, and oscillating water column WECs) could be used 

in extracting energy. Novel methodologies to enhance the WEC arrays when 

integrated with floating infrastructure will be presented. 

1.1   Tropical  Zone

1.1.1   Tropical  Climate

The tropical zone is located at the equator and is defined as the region 

of Earth located between the Tropic of Cancer in the north (at 23.5° north 

latitude) and the Tropic of Capricorn in the south (at 23.5° south latitude). 

It receives a fairly constant amount of sunlight throughout the year, with a 

mean temperature of between 25° C to 28° C. The tropical zone encompasses 

parts of North America, South America, Africa, Asia, and Australia, cover-

ing about 36% of Earth’s landmass and housing about a third of the world’s 

DOI: 10.1201/9781003387855-1
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population.1 About 63% of the countries in the worlds are located or partially located at the tropics, amount to 122 countries, with 95 countries located at 

the tropics and 27 partially in the tropics as shown in Figure 1.1. 2

According to the Köppen Climate Classification,3 the tropical climate can be further classified into the tropical rainforest climate (Af), tropical monsoon 

climate (Am) and tropical savannas climate (Aw) as shown in Figure 1.2. 

The partially tropical countries are close to the temperate zone, thus having a 

tropical savannas climate with a lower mean temperature greater than 18  C 

and annual precipitation between 762 mm (30 inch) to 1,016 mm (40 inch). 4 

Fully tropical countries, on the other hand, are closer to the equator and have 

either rainforest or monsoon climate. The tropical rainforest climate has an 

average annual precipitation exceeds about 1,800–2,500 mm with no distinct 

wet or dry season due to the high rainfall throughout the months,5 whereas the tropical monsoon climate is characterised with an abundant annual 

precipitation during the rainy/monsoon season and may have seasonal 

dryness during the dry season. As compared to temperate countries such as 

the United Kingdom, the annual precipitation is in the range of 1,000mm to 

1,400mm according to the statistics compiled from 2014 to 2022.6

The tropical climate has significant economic, ecological and cultural 

importance, and plays a crucial role in the functioning of the planet’s 

ecosystems and weather patterns. The tropical climate contributes to the 

biodiversity of the ecosystem due to its warm and humid conditions, which 

support a high diversity of plant and animal species, many of which are 

found nowhere else on Earth. It also has importance for the global food and 

commodity market by providing ideal conditions for crops such as coffee, 

cocoa, banana, rubber, and palm oil. As the tropical zone is home to rainforest 

in the world, the rainforest serves as major carbon sinks, helping to regulate 

Earth’s climate, and also contains valuable natural resources such as timbers 

and minerals. The ideal warm and humid weather for mangroves is able to 

store five times more carbon than rainforest, whereas seagrasses can capture 

carbon up to 35 times faster than rainforest. 7 These are important ecosystems found in the tropical climate as means to fight against climate change. Also, 

the tropical climate plays a crucial role in global weather patterns, as it is 

home to the Intertropical Convergence Zone (ITCZ) – a low- pressure zone 

generally encircles Earth near the thermal equator where its specific posi-

tion varies seasonally. 8 The ITCZ appears as a band of clouds consisting of showers, with occasional thunderstorms. The ITCZ creates a band of low 

pressure where trade winds from the northern and southern hemispheres 

converge and produce heavy rainfall; it is thereby responsible for the dry and 

wet seasons in the tropics.9
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FIGURE 1.1

Countries in the tropical zone. 2
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FIGURE 1.2

Tropical climate from 1991 to 2020 according to the Köppen Climate Classification System. 3
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1.1.2   Human Migration to Coastal Cities

According to historical records, coastal cities are situated on the bound-

ary or interface between land and sea, which also encompasses extensive 

interior lakes. The migration of the human population towards coastal 

cities has a rich history, and it has taken place over several thousands of 

years in different parts of the world. People with different backgrounds, 

races, and religions have been drawn to coastal areas for various reasons, 

such as greater economic prospects, improved quality of life, and cultural 

diversity. During ancient times, cities like Palembang of the Srivijaya Empire 

and Malacca under the Malacca Sultanate emerged as coastal city- states and 

became significant trade, cultural, and political centres. Additionally, the sea 

has been instrumental in supporting the cities, offering water, food, employ-

ment, recreational opportunities, and access to the world through maritime 

transportation. The onset of industrialisation in the 18th and 19th centuries 

marked a significant change in human migration to coastal cities. People 

flocked to these cities in search of employment with the expansion of indus-

trialisation and the growth of factory jobs, leading to the swift urbanisation 

of many coastal cities, such as Batavia, Ho Chi Minh City, Calcutta, Mumbai, 

Rio de Janeiro, and Buenos Aires. 

The 21st century has seen the migration of people to coastal cities due to 

economic opportunities, improved social and educational prospects, and 

better infrastructure. Coastal cities are centres of trade and industry, offering 

jobs in tourism, shipping, and other sectors. They also provide a diverse cul-

tural scene, educational institutions, and improved public services, leading 

to an increase in population. According to a study by the UN, by 2030, the 

urban areas will house around 60% of the world’s population, and that num-

ber is expected to increase to 68% by 2050. It is thus not surprising to see that 

six out of the ten largest cities in the world are coastal cities (see Figure 1.3). 

Countries located in tropical climates are particularly susceptible to the 

risk of rising sea levels and overpopulation issues. Despite these risks, tropi-

cal coastal cities continue to attract a significant portion of the population due 

to their warm climate, easy access to the sea and its resources, and opportu-

nities for trade and commerce. The increasing vulnerability of coastal cities 

to flooding due to sea- level rise and overcrowding issues has gained atten-

tion from various parties such as the UN in recent decades. Figure 1.4 shows the world population growth from 1950 and the projection to 2035, in accordance with different climate zones. Most of the cities are located along the 

coastal area with their coastal cities projected to grow larger by 2035 with 

more than half of the cities located in the tropical zone, as shaded in Table 1.1. 

The tropical coastal cities such as Delhi, Kinshasa, and Dhaka have a high 

absolute growth exceeding ten million from 2015 to 2035. 

[image: Image 6]
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FIGURE 1.3

Largest cities worldwide in 2022, by population. 

Source: Wendell Cox Consultancy@Statista 2022. 

1.2   Floating Solutions/Issues Faced by Tropical Coastal 

Cities

In April 2019, the success of the first UN Roundtable on Sustainable Coastal 

Cities led to the signing of a Memorandum of Understanding (MoU) between 

the Metropolitan City of Busan of the Republic of Korea, UN- Habitat, and 

OCEANIX to build the world’s first sustainable floating city (see Figure 1.5).  

This was followed by the second UN Roundtable in April 2022 to share cutting- 

edge ideas, collaboration models, and research in this frontier space. 11 The design of the floating city prototype incorporates the UN SDGs where they 

envisage a sustainable floating city powered by renewable as an extension of 

existing coastal cities. This initiative is a bold step to transition to more resilient 

and sustainable cities to counter the threat of seawater level rise impacting on 

cities especially the coastal cities and small island development states (SIDS). 

According to the statistics provided by the World Population Review, 

most countries located at the tropical climate zone are developing countries, 

thereby making them relatively slow in seeking solutions adaptive to cli-

mate change. Figure 1.6 shows the list of developed versus developing coun-

tries categorised according to the Human Development Index (HDI) with 

HDI greater than 0.8 classified as developed countries. The figure shows 
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FIGURE 1.4

World population growth by climate zone, data: UN (2018).10
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TABLE 1.1

Top Largest Cities in 2035 by Population, UN (2018)10

Absolute Growth 

Ranking

City

Population

from 2015 to 2035

1

Delhi

43.3 million

17.5 million

2

Tokyo

36.0 million

−1.2 million

3

Shanghai

34.3 million

10.9 million

4

Dhaka

31.2 million

13.6 million

5

Cairo

28.5 million

9.7 million

6

Mumbai

27.3 million

8.3 million

7

Kinshasa

26.7 million

15.1 million

8

Mexico City

25.4 million

4.1 million

9

Beijing

25.3 million

7.0 million

10

Sao Paulo

24.5 million

3.6 million

FIGURE 1.5

OCEANIX Busan, world’s first prototype floating city.11
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FIGURE 1.6

Classification of developed vs developing countries by HDI. 12

9

10  

 Wave Energy Convertors in Tropical Seas

that almost all the tropical countries are developing countries, and when 

compared to developed countries such as the Netherlands, Japan, or Korea, 

which are also prone to the risk of flooding due to seawater level rise, the 

latter has carried out extensive research and technology development to seek 

innovative and adaptive solutions to counter the rise of seawater levels via 

the utilisation of floating solutions. 

Nevertheless, there are also plans proposed to counter the rise of sea-

water level, such as the development of the Maldives floating city (source: 

 www. waterstudio. nl) modelled in the form of a brain coral by the Dutch and the government of Maldives for a next- generation, sea- level, rise- proof floating island consisting of 5,000 housing units. 13 Floating solutions can have a range of applications, including housing, transportation, coastal protection, and energy production. Floating structures, like floating breakwaters 

and wave barriers, can play a role in reducing wave energy and protecting 

coastal communities from flooding, as well as improving water quality and 

supporting fish and bird populations. In terms of coastal protection, float-

ing solutions such as floating breakwaters and wave barriers are considered 

effective in reducing erosion, wave damage, and flood risks to coastal infra-

structure. The use of natural materials and processes can be used in place 

of, or in conjunction with, the floating structures as nature- based solutions. 

These  interventions can provide multiple benefits beyond coastal protec-

tion, such as supporting tourism and fisheries, and promoting biodiversity. 

Therefore, floating solutions have been gaining attention recently due to the 

benefits they bring economically, socially, and environmentally, such as the 

following:

•  It is resilient to sea- level rise caused by climate change as the floating 

module rises and falls with seawater level. 

•  It does not permanently take up precious sea space, as the floating 

structure can be easily dismantled and towed away. 

•  It allows for expansion should a larger platform footprint be needed. 

• It can be integrated into existing and future infrastructures, as 

the structure can be transported and moored close to coastal 

infrastructure easily. 

•  It can double up as a coastal breakwater. 

•  It provides habitats for fishes and birds. 

•  It is lower in environmental impact than bottom- founded infrastructure, 

as it does not disrupt the current flows or damage the seabed. 

• It adapts easily to the varying nearshore water depth and seabed 

bathymetry. 

It is important to note that there are also some limitations and challenges 

associated with floating solutions. For example, floating homes and structures 
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can be expensive to construct and maintain, and they may not be suitable for 

areas with high wave or wind conditions. Additionally, the effectiveness of 

floating solutions in protecting against rising sea levels will depend on fac-

tors such as the specific design and location of the structures, as well as the 

rate and magnitude of sea- level rise. 

Floating solutions could therefore be used to address some of the issues 

faced by the SIDS. The three major problems pertaining to human migration 

to SIDS are overpopulation and urbanisation, land- scarcity problems, and 

climate change that leads to the rise of seawater levels. Details of these issues 

are described in the subsequent sections. 

1.2.1   Overpopulation and Urbanisation

Urbanisation is caused by a combination of factors, including population 

growth, economic development, and migration. As more and more people 

move into cities, urban areas are becoming larger and more complex, leading 

to increased energy consumption, GHG emissions, and land- use changes. 

The world’s cities ranked by population is shown in Figure 1.7, where out of the top 20 countries, 75% are coastal cities, and half are located in the tropical 

regions. It is projected that more than two- thirds of the world population will 

be living in urban areas by 205014 – that is, the equivalence of seven billion 

people14 – and 50% of the largest cities will be tropical coastal cities. 10 It is 

reported that tropical cities grew by 80,000 people every day compared with 

50,000 people outside the tropics over the past 5 years. 15 By 2030, Delhi will 

overtake Tokyo to be the world’s most populous city, and India will add two 

more megacities – Hyderabad and Ahmedabad – joining Mumbai, Kolkata, 

Bangalore, and Chennai as megacities status.10, 16 This is a continuous trend in tropical cities, where the size of the cities grows larger over time. By 2030, 

more megacities will be located along the coastal areas in the tropical regions 

(see Figure 1.7). 

Human migration to these cities has also caused overpopulation problems, 

as well as strained land usage for housing, infrastructure, and urbanisation. 

For example, overpopulation in Jakarta has caused it to sink due to heavy 

groundwater extraction and land subsidence caused by natural soil compac-

tion. These urban areas are particularly vulnerable to the impacts of climate 

change, such as heat waves, flooding, and air pollution. Urban heat island 

effect, which is caused by the concentration of buildings and paved surfaces 

in urban areas, can exacerbate heatwaves and make cities unbearable in sum-

mertime. Urban flooding, on the other hand, can cause damage to infrastruc-

ture and property, and disrupt the lives of residents. Urban air pollution also 

has serious health impacts and is becoming a major public health concern. 

1.2.2   Land- Scarcity  Problems

The current top four cities with population density above 8,000 per square 

kilometres are Monaco, Macao, Singapore, and Hong Kong (see Figure 1.8). 
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FIGURE 1.8 

Countries/cities with highest population density worldwide in 2021 (in inhabitants per 

square km).23

These are land- scarce coastal cities that require more lands for development 

to catch up with urbanisation and human migration. In addition, some of the 

top ten countries/cities with highest population density shown in Figure 1.8 

are islandic cities, i.e., Bahrain, Maldives, Malta, Sint Marten, and Bermuda, 

facing high risk of flooding due to seawater level rise. Various innova-

tive methods are sought to tackle the land- scarcity problem. For example, 

Singapore explores the use of underground spaces (i.e., the Jurong Rock 

Cavern for oil storage17) or subway stations, or developing these spaces for 

a district cooling system (Marina Bay District Cooling Network18). Besides developing underground spaces, high- rise buildings are mushrooming in 

these land- scarce cities for residential and commercial purposes. To cater 

for the food security problem, vertical farming techniques are used where 

plants are grown vertically in stacked layers indoors, typically using artifi-

cial lighting and climate control.19 In addition, rooftop gardens are also used where plants are grown on underutilised rooftops or carparks. 20 For the past 

decades, the most commonly used method to augment the land mass was via 

land reclamation. Singapore, for example, has increased its land size by 25% 

over the past two centuries, 21 and 25% of the land in Hong Kong has been 
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reclaimed.22 While land reclamation can provide new land for development, it can also have negative impacts, such as the following:

•  Loss of natural habitats: Land reclamation can destroy habitats for 

plants and animals, leading to a loss of biodiversity. 

•  Loss of coastal ecosystems: Wetlands and other coastal ecosystems 

can be destroyed during land reclamation, impacting the services 

these ecosystems provide, such as storm protection, water filtration, 

and carbon sequestration. 

• Disruption of coastal processes: Land reclamation can change the 

natural coastal processes, such as wave action, sediment transport, 

and water circulation, which can lead to erosion and flooding. 

•  Displacement of local communities: Land reclamation can result in 

the displacement of local communities that have lived on the land 

for generations. 

• Increased air and water pollution: Land reclamation can lead to 

increased air and water pollution due to the use of heavy equipment 

and the potential for chemicals used in construction to leach into the 

surrounding area. 

• Increased soil erosion: Land reclamation can make the soil more 

susceptible to erosion, thus increasing the rate of sedimentation. 

• Impacting navigation and navigation safety: Land reclamation 

can impact navigation and navigation safety by altering the water 

depths and currents. 

The negative impacts on the environment, safety, and ecosystem have 

highlighted the advantages of floating solutions, which are attractive due 

to their environmental friendliness, flexibility for expansion, and ability to 

withstand and adapt to rising seawater levels. 

1.2.3   Rise of Seawater Levels

The increase in Earth’s atmospheric temperature, driven by escalating GHG, 

is a contributing factor to climate change. This increase leads to a rise in 

seawater levels because of a global temperature increase, causing ice sheets 

and glaciers to melt and causing seawater to expand thermally. According 

to research conducted by the Intergovernmental Panel on Climate Change 

(IPCC),24 the average global sea level has risen by about 1.8 mm per year from 1901 to 2010, with the majority of this increase happening after the 1950s. 

Human migration to cities and overpopulation are having a direct effect on 

climate change, as they contribute to global warming, causing a rise in sea 

levels, and result in more frequent and intense, extreme weather events. 
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The impacts of sea- level rise on coastal communities and ecosystems can 

be severe. They can exacerbate existing coastal hazards, such as coastal ero-

sion, storm surges and flooding, which can damage infrastructure, homes, 

and businesses. A rapid rise in seawater level can also lead to the loss of 

valuable coastal ecosystems, such as marshes and mangroves, which pro-

vide important ecological services, such as storm protection and habitats for 

wildlife. Rising sea levels and increased frequency of coastal flooding due 

to climate change have led to population displacement24 and loss of hous-

ing in low- lying coastal areas, particularly in coastal cities and SIDS such as 

Mumbai, Jakarta, Lagos, and Quito, which coincidently are located in the 

tropics. It is expected that by 2050, many cities by the sea will face severe dis-

ruption to their coastal ecosystems as a result of heat waves, droughts, plu-

vial floods, tropical cyclones, and marine and coastal erosion. 25 In fact, some of the Maldives Islands and the Indonesia Archipelago have disappeared as 

a result of rising sea levels caused by global warming. 

The Organisation for Economic Co- operation and Development (OECD) 

has published a list of the largest cities that will be most exposed to coastal 

flooding in 2070, in terms of population and assets, in which more than half 

of the top 20 cities are located at tropical climates, contributing to a popula-

tion of around 76 million people. Out of the top 20 cities ranked in terms 

of assets exposed to coastal flooding in 2070, the tropical coastal cities con-

tribute to approximately $5.3 trillion of asset exposure in 2070. A compari-

son between the present- day and future (2070) exposure shows that a 36% 

increase is projected when taking into account the adverse impact of climate 

change and socio- economic change. 26

As floating structures fall and rise with the water level, the floating cities 

naturally become an enticing alternative solution that is adaptable to seawater 

level rise. Proposed floating cities, such as those by OCEANIX, the Maldives 

floating cities, and the Blue- 21 Floating Cities ( www. blue21. nl), are designed to be self- sustainable such that they are equipped with desalination plants to 

provide fresh water and renewable energy systems to reduce reliance on fossil 

fuels, as well as to be flexible for future expansion and relocation. 

1.3   Renewable Energy: Wave Energy

A way for a floating city to become self- sufficient is to use renewable sources 

like wave, tidal, wind, solar, and ocean thermal energy. This book focuses on 

wave energy, which is a promising form of renewable energy with a great 

potential sustainable energy source. The ocean has vast energy potential 

with wave energy estimated at 2.11 TW, tidal energy at 3 TW, and ocean 

thermal energy around 30 to 90 PWh. 27 Among these ocean energies, wave 
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energy lags in commercialisation compared to its marine energy counter-

parts but has an estimated total potential of 32 PWh/yr, nearly double the 

global electricity supply in 2008 of 17 PWh/yr. 27 Experts believe that wave 

energy is where wind energy was 30 years ago, and the challenges posed 

by WECs, such as high deployment and operational costs, can be addressed 

through ongoing research to understand their behaviour in rough seas and to 

reach optimal design. Wave energy has several advantages, including greater 

predictability and consistency compared to wind and solar. While all renew-

able sources are influenced by weather, wave energy tends to be more stable 

because ocean waves can persist even after winds have calmed, allowing 

for more reliable energy generation in suitable coastal regions. Additionally, 

wave energy harvesting technology has a relatively small footprint, causing 

no damage to land and can be used in offshore locations. 

The WEC’s development began during the 1970s global oil crisis when 

extensive work was done on the Salter’s duck WEC due to oil short-

ages. 28 However, the project was abandoned after the oil prices recovered, and there was an underestimation of wave energy’s economic 

viability. Renewable energy, particularly wave energy, regained atten-

tion in recent decades due to rising oil prices and concerns about climate 

change. Extensive research and development on the utilisation of wave 

energy have been carried out in recent decades, especially for developed 

countries.29–34 Several encouraging developments in wave energy farms 

have shown promising progress recently, such as the WaveRoller WEC 

deployed  by  AW- Energy, 35 a new generation of high- efficiency WEC 

launched by CorPower, 36 and the wave energy farm demonstrated by 

MOCEAN and AWS Ocean Energy. 37

There are three common types of WECs operating by oscillatory 

motion – i.e., the point absorber, terminator, and attenuator WECs, as shown 

in Figure 1.9, where the performance of each of these WECs differs from one another.31 The point absorber is the simplest type of WEC that usually utilises 

its heaving motion in generating energy such as the CETO WEC or heaving 

WECs. 38,  39 On the other hand, the terminator WEC (also known as the flap or 

FIGURE 1.9

Oscillatory type of WECs: (a) point absorber, (b) terminator, (c) attenuator. 
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the oscillating wave surge converter (OWSC)40), such as the Oyster WEC, is usually hinged at its bottom to a foundation and pitches with the oscillatory 

motion of the waves. The attenuator is made of two or more elongated floating 

bodies connected by hinges, such as the Pelamis WEC or raft- type WEC.41, 42 

It generates energy via the pitching and yawing motion when waves hit on 

it. These technologies convert the kinetic energy of waves into electricity via 

the power take- off (PTO) system, which can then be fed into the power grid. 

The development of WECs has reached the test- bedding stage; however, 

the adoption of WECs in developing countries is not as widespread as in 

developed countries. One common misconception is that wave resources 

in tropical seas are too moderate to be economical. However, wave energy 

resources available in tropical climates have been shown to be of vast poten-

tial for the deployment of wave farms, and there is an increase in energy 

demand in tropical countries due to urbanisation. The wave energy resources 

in major oceans in the tropical zone will be presented in Section 1.3.1 and the 

energy demand in tropical countries in Section 1.3.2. 

1.3.1   Wave Energy Resource

Tropical oceans are characterised by relatively warm water temperatures that 

exceed 20 °C and remain constant throughout the year. This warmth is due 

to intense solar radiation directly over the equator, which evaporates sea-

water and creates a mass of warm, humid tropical air that rises and cools as 

it flows north and south. The Pacific, Atlantic, and Indian Oceans, as well 

as the South China Sea, which lie in the tropical zones, serve as important 

ecosystems for the economies, cultures, and societies of about 120 countries. 

The tropical seas are considered to be some of the most resource- rich regions 

for wave energy generation. They are characterised by large swell waves and 

consistent sea states, which provide ideal conditions for wave energy genera-

tion. In particular, the Indian Ocean, the Pacific Ocean, and the Caribbean 

Sea are known to have high wave energy resources. Figure 1.10 shows the global wave energy resource for the wave front of the coastal zone. Wave 

energy flux could reach up to 30 kW/m at certain regions, such as the east 

and west coast of South America and India. The Pacific Islands, which are 

close to the Tropic of Capricorn, and Southern China cities, which are closer 

to the Tropic of Cancer, enjoy a higher wave energy resource up to 45 kW/m 

and wave height of 3 m. 

A review on the wave energy resources in the tropical regions by the 

National Council of Science and Technology in Mexico44 revealed that 

although the annual wave power (kW/m) between the Tropics of Cancer 

and Capricorn is not as higher as their higher latitude counterparts, it is com-

mon to find up to 20 kW/m of wave energy resources near the coast and 

20–30 kW/m in the intermediate and deep waters. The mean power estima-

tions in the tropical regions were summarised as follows: North- East Brazil 

[image: Image 13]
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FIGURE 1.10

Global wave energy resource at wave front. 43

(~2 to 14 kW/m45), South China Sea (~5.32kW/m45), Indian Coast (~5 to 10 

kW/m46), and Peninsulas of Malaysia (~6.5 kW/m47). The WECs developed 

for the sub- tropical zone are usually ideal for wave energy resources greater 

than 15kW/m. However, some of these WECs, as listed in Babarit,48 could be 

applicable to the tropical zone with further optimisation of its geometry and 

PTO control system. 

Figures 1.11(a) and 1.11(b) show the yearly percentage in time of power equal or greater than 10 kW/m and 20 kW/m wave energy in the tropical 

regions. 44 Wave farms could be deployed in regions close to the Pacific and Indian Oceans, which receive high wave energy where the wave power is 

greater than 10 kW/m at 80% of the time yearly in the Indian and Pacific 

Oceans. In addition, the wave energy could reach greater than 20 kW/m 50% 

of the time in regions with increasing power when closer to the southern sub- 

tropical zone. India has thus begun to explore the use of wave energy as an 

alternative to fossil fuel. Wave energy resources in the Indian Ocean show a 

clear seasonal pattern, with the most energetic monsoon (> 20 kW/m) along 

the Indian coast. 49 A study by the National Institute of Oceanography50 in India showed that the annual mean wave power is the highest (15 to 20 kW/m) in 

the southern Bay of Bengal (see Figure 1.12). The annual mean wave power is relatively high (~12 kW/m) in the central Arabian Sea and off the southern 

tip of India. The wave power off the south- east coast of India is the lowest (< 

5 kW/m) due to the presence of Sri Lanka. The estimated total annual mean 

wave power could reach 19.5 GW (171 TWh/y) along the western shelf seas of 

India and around 8.7 GW (75.5 TWh/y) along the eastern shelf seas.50 In addition to that, the total incident wave energy resource in India is estimated to be 
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FIGURE 1.11

Yearly percentage in time of power equal or greater than (a) 10 kW/m and (b) 20 kW/m.44

FIGURE 1.12

Distribution of annual mean wave power in the Arabian Sea and Bay of Bengal. The unit of wave 

power is kW/m.50

[image: Image 16]
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FIGURE 1.13

(a) Multi- year average wave power density and (b) predicted wave power density, in 2015, 

unit: kW/m.53

around 40–60 GW, with attractive locations along the south- west and southern 

coasts in Maharashtra, Kerala, Karnataka, and Tamil Nadu.51

The wave energy resources assessment in the South China Sea car-

ried out by the National Ocean Technology Center in Tianjin showed that 

the annual average wave energy flux could reach 18 kW/m between the 

Luzon Strait and south- east of the Indo- China Peninsula. 52 These regions are shared by the Philippines, China, and Vietnam, thus presenting a stra-tegic location with sufficient wave energy potential to house wave farms53 

(see Figure 1.13). However, wave energy close to the shore in certain tropical countries or in the South China Sea could drop below 10kW/h; e.g., the 

average wave energy density of Malaysian seas facing the South China Sea 

could be as low as 1.41 kW/m, thereby making wave energy as an alternative 

source to fossil fuels unattractive.54 In Section 1.4, the integration of WECs with infrastructure is thus proposed to encourage the utilisation of wave 

energy in these regions. 

1.3.2   Increase of World Energy Demand

World energy demand has been steadily increasing in recent years, driven 

by population growth and economic development. According to the 

International Energy Agency (IEA), global energy demand grew by 2.3% in 

201855,  56 and is projected to continue growing at an average rate of 1.3% per year through 2040. 57 The growth of energy demand directly increases the utilisation of fossil fuels such as oil and natural gas, which are still the primary sources of energy supply for most countries. The BP Statistical Review58 

reported that fossil fuels accounted for around 84% of the world’s primary 

energy demand in 2020. Specifically, oil remains the largest source of primary 
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energy, representing around 36% of the total, followed by coal (27%) and 

natural gas (24%). 

The utilisation of these hydrocarbons (particularly coal, oil, and natural gas) 

are major contributors to climate change. The burning of fossil fuels releases 

carbon dioxide (CO2) and other GHGs (methane, nitrogen oxide (NOx), 

sulphur oxide (SOx), and other industrial chemicals), which trap heat, and 

contribute to global warming. According to the Netherland Environmental 

Assessment Agency59 and the US Environmental Protection Agency, 60 the 

burning of fossil fuels is the largest source of anthropogenic CO2 emissions, 

accounting for about 73% of the total GHG emissions in 2020, in which the 

IEA61 estimates that the burning of coal is the largest single source of CO2 

emissions, accounting for around 40% of the total in 2021. This is followed by 

oil for around 28% and natural gas for around 19.6% of the total. It is worth 

noting that the production and transportation of hydrocarbons also contrib-

ute to emissions. In addition, fugitive emissions of methane (a potent GHG) 

associated with fossil fuel extraction and transport can represent a significant 

share of the overall emissions related to fossil fuels. 

To mitigate the effects of climate change, it is important to reduce the use of 

hydrocarbons and transition to cleaner energy sources. Many countries have 

set targets to reduce their GHG emissions, and there are efforts to develop 

technologies to capture and store carbon emissions from fossil fuel power 

plants. One of the UN SGDs,62  UN SDG7 Affordable and Clean Energy, is to ensure everyone has access to affordable, reliable, sustainable, and mod-ern energy. This is further driven by the adverse impact of climate change 

and government policies, technological advancement, and increasing con-

cern about the environmental impact of fossil fuels. As a result, there is an 

increased focus on renewable energy and energy transition. Other sources 

of renewable and sustainable energy have been sought, in line with the UN 

SDG, such as nuclear power, hydroelectric, wind, solar, and geothermal. The 

share of renewable energy in total energy consumption has been increas-

ing, particularly for solar and wind power, which are the fastest- growing 

renewable energy sources. 

1.3.3   Challenges

There are however several challenges that need to be addressed to fully 

realise the potential of wave energy in tropical seas. One of the main chal-

lenges is the lack of detailed data and information on wave energy resources 

in these regions, which limits the ability to accurately assess the potential 

of wave energy. Additionally, the deployment and maintenance of wave 

energy devices in tropical seas are challenging; they can be affected by 

severe weather conditions and ocean currents. The deployment of a large- 

scale array of WECs could also have a significant impact on the environ-

ment, as these areas have a high biodiversity of flora and fauna, such as 
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mangroves, seagrasses, corals, and marine mammals, as well as on the aes-

thetic value of coastal areas if not designed and installed properly. While 

extensive research and test- bedding have been carried out on wave energy 

devices in the developed country, which are targeted for the sub- tropic envi-

ronment, wave energy technology in the tropical region is still relatively 

new. Wave energy converters, such as Oyster or Pelamis WECs, developed 

for the sub- tropical climate might not be efficient to be used for the tropical 

region. Therefore, more research and development are needed to improve 

the efficiency and reliability of wave energy systems. Commercial wise, the 

tropical seas and oceans are important maritime route for shipping activi-

ties; hence, the deployment of wave farms in these areas requires proper 

planning so as not to disturb the economic benefits of the countries. One 

way to encourage the utilisation of WECs is via the co- location with existing 

infrastructure that will be described in Section 1.4. 

1.4   Integration of WECs with Floating Infrastructure

There are numerous technical and environmental challenges to the 

deployment of WECs in the tropical region. One main challenge is the high 

cost of wave energy technology, contributed from the installation, station 

keeping, and maintenance, which makes it less competitive with other forms 

of renewable energy. This challenge is coupled with the overpopulation 

in some of the tropical countries, such as Singapore, the Philippines, and 

Indonesia. By taking a tiny nation such as Singapore as an example, proper 

development planning of the city and sea space is needed due to its land- 

scarcity and urbanisation problems. As Singapore is a global maritime port, 

thereby making the sea surrounding this island city an important global 

shipping route, the deployment of WECs in these regions is affected by sea 

space constraint and marine traffic congestion. 

However, the adverse effect of global warming resulting in the rise of 

seawater level pushes the need for all countries to play a role in mitigating 

the effect of climate change as described earlier. Therefore, a more efficient 

way of ocean space utilisation has to be devised to achieve the interests of 

various stakeholders. Over the years, integrated floating structure with WEC 

has been proposed to utilise the ocean space more efficiently. By integrating 

the floating structure with WEC, such a solution is cost- effective and is effi-

cient in resource management, as it optimises usage of the sea space. 

1.4.1   Advantages

Proper design planning is necessary when integrating WECs with floating 

structures to ensure the safety and stability of the integrated systems while 
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optimising the energy output. Some of the benefits of integrating WECs with 

floating structures are as follows:

i. Increased efficiency: Integrating WECs with coastal infrastructure 

can increase the overall efficiency of the WECs by using the exist-

ing infrastructure as a foundation and by providing a more stable 

environment for the WECs to operate in. 

ii. Reduced costs: Using existing coastal infrastructure as a foundation 

for WECs can also reduce the cost of building and deploying the 

WECs. The cost of constructing new foundations can be a significant 

portion of the total cost of a WEC project. 

iii. Additional sources of revenue: Integrating WECs with coastal 

infrastructure such as ports can provide an additional source of rev-

enue for the ports through the sale of electricity generated by the 

WECs. 

iv. Increase output of grid: Integrating WECs with offshore wind 

turbines can increase the overall energy output of the combined 

system. 

v. Reducing the environmental impact of wave energy: Integrating 

WECs with coastal infrastructure can reduce the environmental 

impact of wave energy, e.g., by reducing the number of materi-

als required to construct the WECs foundation or by reducing the 

amount of seafloor that needs to be disturbed during installation. 

vi.  Facilitating the development of wave energy: Integrating WECs with 

coastal infrastructure can facilitate the development of wave energy 

by providing a ready- made infrastructure for the WECs. 

1.4.2   Examples of Integration of WECs with Floating Structures

There are various concepts of integration of WECs with floating structures. 

One example is the integration of WECs with breakwaters, which are struc-

tures such as ports built along coastlines. Examples of projects for WECs 

integrated into ports are the SE@Ports63 and the Eco Wave64 Projects. 

Besides breakwaters, WECs could also be integrated with oil and gas 

platforms, such as semi- submersibles in order to produce sustainable green 

energy to power the platform. As such offshore structures are located in off-

shore deepwater, they are subjected to high sea state with a great amount of 

wave energy resources, thereby making it feasible for wave farm deployment. 

The power generation could be further enhanced by using a combination of 

OWSC and point absorber due to the combination of different resonant peri-

ods for the two different WECs.65 There are also proposal to install WECs to the supporting platform of offshore wind turbines66, such as by combining spar- type offshore wind turbine (inspired by Hywind) and a WEC (inspired 

by Wavestar) to increase the energy output form the farm.67

[image: Image 17]
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As UN@Habitat is considering floating cities as means of adaptation to 

the rise of seawater level, the world will see more floating solutions being 

used for human dwelling in the future. A European Union Horizon 2020–

funded project, Space@Sea,68 involving 17 European partners, including engineers, architects, researchers, and industry experts, has been carried out 

since 2017 to develop a standardised and cost- efficient modular island with 

low ecological impact. The conceptual design of the floating city is given in 

Figure 1.14. 

FIGURE 1.14

Conceptual design of a floating city for the Space@Sea Project.69

As floating cities must be self- sustainable, energy generation from the 

offshore marine environment has to be sought out. One way is to generate 

energy via WECs attached to the floating structures. A comprehensive review 

study on the integration of WECs with floating platforms were carried out to 

study the feasibility of WECs attached to floating cities. 69 The WECs not only served as devices to generate energy but could also mitigate the response of 

the platforms arising from structural deformation. 70 Other innovative ways of generating energy for floating cities are, for example, using embedded 

oscillating water columns (OWCs)70 (see Figure 1.15a), articulated OWCs 

(Figure 1.15b), and OWC floating breakwaters (Figure 1.15c). 

1.4.3   Challenges

Building floating structures in tropical seas poses a number of challenges 

that must be considered in order to ensure the safety and functionality 

[image: Image 18]
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FIGURE 1.15

(a) Embedded OWC, (b) articulated OWC, and (c) OWC floating breakwater attached to floating 

platforms. 69

of the structures. These challenges include weather conditions, material 

degradation, anchoring systems, maintenance, biofouling and environmen-

tal impacts. 

Weather conditions are one of the main challenges facing the construction 

of floating structures in tropical seas. Tropical seas are characterised by high 

winds, waves, and storms that can cause significant damage to floating struc-

tures. These conditions also make it difficult to construct and maintain the 

structures, as high winds and waves can impede the progress of construction 

and maintenance work, and storms can cause unexpected damage to struc-

tures. The design of the floating breakwaters in tropical seas should consider 

the combined effects of waves, currents, and environmental loads, such as 

temperature and humidity. The use of durable materials and proper design 

can greatly improve the structural performance of floating breakwaters in 

tropical seas. 

Material degradation is another major challenge of building floating 

structures in tropical seas. Floating structures are exposed to a variety of 

environmental factors in tropical seas, such as high temperatures, humid-

ity, and saltwater, which can lead to accelerated material degradation. This 

can impact the durability and lifespan of the structure, potentially requiring 

costly repairs or replacements. To minimise the effects of material degrada-

tion, it is important to use materials that are resistant to the corrosion, such 

as marine- grade steel or concrete. 

Anchoring systems also pose a significant challenge for floating structures 

in tropical seas. The strong currents and waves in tropical seas can make it 

difficult to anchor floating structures securely. This can increase the risk of 

structural damage and the potential for a structure to drift away. To address 
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this issue, it is important to use anchoring systems that are specifically 

designed to withstand the forces exerted by waves and currents in tropi-

cal seas. Additionally, regular inspections and maintenance of the anchoring 

system are essential to ensure that it remains in good condition and able to 

secure the structure in place. 

Biofouling poses a significant challenge for floating structures in tropical 

climates, where warm, nutrient- rich waters accelerate the growth of marine 

organisms. The accumulation of biofouling increases weight, affects buoy-

ancy, and accelerates material degradation, particularly through microbio-

logically influenced corrosion (MIC). Additionally, the roughened surface 

caused by biofouling increases drag, thereby reducing the hydrodynamic 

efficiency of WECs. Frequent maintenance and biofouling removal could 

drive up operational costs and downtime. To mitigate these risks, antifoul-

ing coatings can help prevent organism attachment. In addition, ultrasonic 

and ultra- violet (UV) treatment technologies can be used to disrupt biofilm 

formation. Regular cleaning and monitoring are therefore essential to pre-

vent excessive accumulation and maintain performance. 

Lastly, it is important to consider the environmental impacts of building 

floating structures in tropical seas. Floating structures in tropical seas can 

have negative impacts on the surrounding marine ecosystems, such as the 

destruction of coral reefs and displacement of marine species. It is therefore 

important to conduct environmental assessments and impact studies prior 

to construction, and to take steps to minimise the environmental impacts 

of the structure during construction and operation. The design of floating 

breakwaters should consider the use of eco- friendly materials in construc-

tion to minimise the impact on the environment. 

2

 Environmental Loads

This chapter focuses on the nature of environmental loading in the tropical 

sea for the deployment of floating structures and WECs. Three subchapters 

are introduced:

(i) Understanding water waves: Various types of water waves, 

essential for understanding ocean dynamics, are introduced. Wind- 

generated waves, arising from wind- water interactions, and swells, 

which are long- period waves carrying energy across oceans, are 

covered. Tsunamis, triggered by underwater earthquakes or vol-

canic eruptions, are presented, along with tidal waves driven by 

the gravitational pull of the moon and sun. Breaking waves and 

their impact on coastal areas are also examined, as well as seiche 

waves, which are oscillations in enclosed water bodies caused by 

atmospheric or seismic activity. 

(ii)  Potential wave theory: Potential wave theory is explored, focusing 

on key concepts in fluid dynamics and ocean engineering. The Stokes 

expansion is introduced as a perturbation method for approximating 

wave motion solutions. Small amplitude wave theory, providing a 

linear approximation for wave behaviour in shallow water, is cov-

ered, followed by Stokes wave theory, which accounts for nonlinear 

effects in steep waves. 

(iii)  Wave model: The random wave model for short- term wave analysis 

is examined. Statistical methods are used to analyse wave height 

and wave period distributions, with an emphasis on zero- crossing 

analysis. Spectral analysis is introduced to understand how energy 

is distributed across different frequencies in the wave spectrum. The 

complexities of multidirectional seas, where waves approach from 

various directions, are also addressed. 

2.1   Understanding Water Waves

The movement of water waves, shaped by both terrestrial and celestial 

forces, provides valuable insight into the complex dynamics of the oceans. 

This chapter explores the wide range of wave phenomena that characterise 
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marine environments. It examines wind- generated waves, which form 

the everyday patterns on the ocean’s surface, as well as swells that carry 

energy across vast ocean basins, each revealing distinctive behaviours of the 

marine system. The chapter also discusses the immense energy of tsunamis, 

triggered by underwater earthquakes or volcanic activity, and the cyclical 

nature of tidal waves, governed by the gravitational interactions between 

the moon and the sun. Additionally, the chapter investigates the impact of 

breaking waves on coastal landscapes, and the occurrence of seiche waves 

within enclosed bodies of water, induced by atmospheric or seismic distur-

bances. Through this analysis, a thorough understanding of wave dynam-

ics is developed, offering deeper insight into the natural forces that shape 

oceanic environments. 

2.1.1   Description of Waves in Tropical Climate

A tropical wave is a type of weather disturbance that is characterised by a 

trough or low- pressure area in the atmosphere that moves across the tropics. 

The movement of a tropical wave is accompanied by a shift in wind direction, 

an increase in humidity, and the development of widespread showers and thun-

derstorms. The coastal regions in the tropical zone are exposed to a combina-

tion of various wave systems, mainly swell and wind- generated water waves. 

A swell is a type of ocean wave that travels far from its point of origin and 

can have a relatively long wavelength. Swells are known for their broad lines 

and large gaps between each crest, and they can have enough energy to reach 

heights of over ten metres, as shown in Figure 2.1. 

On the other hand, wind- generated waves, also known as surface waves, 

are due to the friction between the wind and the water, thus creating a wave 

crest. Wind- generated waves are formed gradually from ripples and grow 

larger as the friction between air and water stretches the surface, causing 

FIGURE 2.1

Wind- generated waves and swell. 

[image: Image 20]
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waves to form. The amount of energy transferred from the air to the water 

is proportional to the strength of the wind, so the harder the wind blows, 

the larger the waves become. 

As waves approach the shallow water regions, the velocity of the bottom 

water particle is slowed down due to friction with the seabed, resulting in 

a differential velocity between the top and bottom water particle. The wave 

diverts from the sinusoidal wave profile as the velocity at the top of the water 

particle increases and finally breaks when it becomes unstable (shown in 

Figure 2.2). The wave breaks when the wave steepness, defined as the ratio H

of wave height to wavelength, 

exceeds 1/7. 

λ

FIGURE 2.2

Waves under different wave depth. 

The coastal along the tropical zone are important not only for recreational 

activities, which are mostly subjected to swell and wind wave, but also impor-

tant for marina and ports. For the latter, hard structures are built to create 

sheltered areas for shipping activities. Similarly, coastal protection structures 

such as breakwaters are also built to protect the shore from further erosion. 

The construction of marinas, ports and breakwaters creates an enclosed or 

semi- enclosed zone that is subjected to the occurrence of standing waves, also 

known as seiche waves (Figure 2.3a). Seiches may disturb shipping by interfering with tides and generating strong reversible currents at the entrances 

to harbours, or by causing moored vessels to oscillate against their mooring 

cables and break free. Another phenomenon that may occur is the occurrence 

of capillary waves (Figure 2.3b). These waves closely resemble ripples in their structure, and the restoring force involved is capillarity, which is the binding 

force that holds together the water molecules on the ocean’s surface. 

The characteristics for various waves are summarised in Table 2.1. In 

the subsequent sections, the formulation for these wave types will be 

presented. 

[image: Image 21]
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FIGURE 2.3

(a) Seiche and (b) capillary waves. 

TABLE 2.1

Characteristics for Different Wave Systems

Wave Type

Typical Wavelength

Disturbing Forces

Restoring Force

Wind- Generated 

60–150 m

Ocean Wind

Surface Tension

Waves

Swell

Energy below ocean’s 

Gravity

surface

Tsunamis

200 km

Faulting of sea floor, 

Gravity

volcanic eruption, 

landslide

Tides

Half the circumference 

Gravitational attraction, 

Gravity

of Earth

Earth’s rotation

Breaking Waves

Seiche

Changes according to 

Change in atmospheric 

Gravity

size of basin/lake/

pressure, storm surge

marina

Capillary Waves

< 2 cm

Wind

Surface tension

2.1.2   Wind- Generated  Waves  or  Surface  Waves

The wind- generated waves, also called surface waves, water waves, or wind 

waves, are gravity waves, where gravity is the main restoring force. They occur 

as a result of wind blowing over the water’s surface. In order to generate wind 

waves, the wind must be blowing at a distance on an uninterrupted open water, 

where the distance is known as  fetch, without significant change in the direction 

(see Figure 2.4). As the wind blows over the water surface, the speed must be greater than the speed of the wave crest to generate sufficient energy. 

As surface waves are wind- driven, they depend significantly on the wind 

direction and fetch. Wind- generated waves occur in various sizes depending 

on the wind speed, fetch, duration, and water depth. Figure 2.5 shows an example of the fetch diagram to display the relationship between the wave 

height with the fetch length. The significant wave height   Hs  depends on the 
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FIGURE 2.4

Generation of wind wave and fetch. 

FIGURE 2.5

Fetch diagram. 

[image: Image 24]
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fetch. The   Hs  increases with the increase of the fetch and wind speed. The 

fetch duration also has a significant effect on   Hs  where longer fetch duration 

will result in higher  Hs. 

The mean significant wave height around the globe is shown in Figure 2.6. 

The   Hs  in tropical regions is relatively lower as compared to their temperate 

counterparts and has a mean   Hs  below 2m. 

FIGURE 2.6

Global mean significant wave height. 

Source: Global Climate Observing System and www.aviso.com. 

 2.1.2.1   Different Forms of Surface Waves

Depending on water depth and location, the surface waves can appear in 

different forms, such as breaking waves or seiche waves, that vary depending 

on the wave period. Another type of wave that has surface tension as the restor-

ing force is the capillary wave. Figure 2.7 shows the various types of waves depending on the wave period. When the waves move out of the fetch area, 

the wind waves travel thousands of kilometres and are known as swells. Thus, 

the swells are not affected by the local wind, as they are generated and arrived 

from elsewhere. The description of swells will be presented in Section 2.1.3. 

 2.1.2.2   Developing and Fully Developed Sea

The sea can be classified into a developing sea and a fully developed sea. 

A developing sea refers to the state of the sea with the waves continue to grow 

larger when energy is continuously supplied to the waves. Up to a point when 

[image: Image 25]
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FIGURE 2.7

Classification of spectrum of ocean waves by wave period. 

the sea stops growing, the sea state is described as fully developed. The fully 

developed sea is a state in which the energy input from the local wind to the 

waves is in balance with the energy transfer among different wave compo-

nents and with the dissipation of energy caused by wave breaking. The sea 

state is often reported on the Beaufort scale (see Table 2.2), which ranges from 0 to 12, with the Beaufort Number 0 indicating calm, windless, and waveless 

conditions, while the Beaufort Number 12 represents a hurricane. 

TABLE 2.2

Beaufort Scale

Beaufort  Wind Speed 

Number

(Knots)

Description

0

<1

Calm

1

1–3

Light Air

2

4–6

Light Breeze

3

7–12

Gentle Breeze

4

11–16

Moderate Breeze

5

17–21

Fresh Breeze

6

22–27

Strong Breeze

7

28–33

Near Gale

8

34–40

Gale

9

41–47

Strong Gale

10

48–55

Storm

11

56–63

Violent Storm

12

>64

Hurricane

[image: Image 26]

34  

 Wave Energy Convertors in Tropical Seas

A fully developed sea is reached when the waves have stopped growing 

and reached their maximum size for the existing wind speed, duration, and 

fetch. This state is reached when the energy supplied by the wind is equal to 

the energy lost in breaking waves. The developing and fully developed sea 

can be modelled with various random wave model, such as the JONSWAP, 

Pierson and Moskowitz (PM), and Bretschneider described in Section 2.3.5. 

2.1.3   Swells

Swells are long waves created by wind- generated waves that have travelled 

thousands of kilometres of distance before they break on the shore. Swells 

may consist of a series of waves with different wavelengths, where the dis-

sipation of wave energy reduces with the increase of wavelengths. Therefore, 

most swells that arrive at the shore are uniform long waves having the 

same speed and travel in groups. The distance travelled by the swell can be 

obtained from the time   t  of propagation of swells from the source and the 

wave period  T:

 gT

 X swell =

⋅ t, 

(2.1)



π

4



where   g  is the gravitational acceleration. 

Through numerical simulation using WAVEWATCH III, Zheng et al.71 has 

identified two pure swell regions with a frequency of occurrence of over 

90% found in nearby regions of Indonesia and Cape Verde in the east of the 

African continent, as shown in Figure 2.8. Figure 2.8 shows that the swell 

dominated areas (coast waters off Indonesia, the northern Indian Ocean, in 

the west of central America and Africa, and the western boundary of central 

South America) are located at tropical regions. 

FIGURE 2.8

Pure swell region from WAVEWATCH III simulation. 71
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 2.1.3.1   Application of Swells

Swells are important surface waves for surfing activities, as they allow 

surfers to catch more waves and perform more tricks. Larger and more 

consistent swells produce better surfing conditions. Very large swells can 

also be dangerous and challenging, even for experienced surfers. Therefore, 

it is important for surfers to monitor swell conditions before surfing activi-

ties take place. Surfing websites such as Surfline (www.surfline.com) were created to provides surf reports, forecasts, live camera feeds, and other 

related content for surfers and ocean enthusiasts around the world. An 

example of a swell travelling from the southern Indian Ocean to Southern 

California obtained from Surfline is shown in Figure 2.9. The distance 

travelled by the swell is 10,000 nautical miles (18,520 km, almost half the 

circumference of Earth!), and the swell travels at a wave period of 20 s. 

By using Equation (2.1), the swell would take one week to travel from 

the southern Indian Ocean to Southern California. Along the route, the 

swell plays an important role in the marine ecosystem by stirring up nutri-

ents and increasing water circulation when passing through Australia, the 

Indonesian Islands, and the Pacific archipelagos along the route to reach 

its final destination. Proper understanding of the swell is therefore impor-

tant, as meteorologists also use data on swell height and frequency to pre-

dict the behaviour of weather patterns and make more accurate forecasts, 

whereas coastal engineers use swell data to make long- term predictions 

about coastal erosion. 

2.1.4   Tsunamis

Tsunamis are a series of ocean waves caused by various underwater geological 

activities, most commonly earthquakes with a magnitude of 6.5 or above to 

trigger tsunamis. 72 Tsunamis can also be triggered by volcanic eruptions, ice-bergs calving, and, in rare cases, meteorites hitting the ocean. Tsunamis form 

when there is a large, abrupt disturbance at the sea surface, which creates a 

set of ocean waves which then radiate from the point of origin, as shown in 

Figure 2.10. Tsunami waves usually start in deep water with a height of less than 1 metre and travel at speeds of 100 kilometres per hour but increase in 

wave height as they reach shallower waters. The friction between the waves 

and seabed slows the waves and eventually forces them to increase in height, 

thereby increasing the energy in the wave and causing detrimental damages 

to the land. 

Some of the notable tsunamis over the past three centuries are listed in 

Figure 2.11. 

[image: Image 27]
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FIGURE 2.9

Swell travelling from the southern Indian Ocean to Southern California. 

Source: www.surfline.com. 

[image: Image 28]

 Environmental Loads 

37

FIGURE 2.10

Formation of tsunamis. 

2.1.5   Tides

Tides are the regular rise and fall of ocean waters along coasts where the 

formation of tides is primarily caused by the gravitational pull of the moon 

and the sun on Earth (see Figure 2.12). The magnitude and nature of tides vary from place to place and are influenced by factors such as the movement of the moon and changes in the position of the sun and moon relative 

to Earth. 

 2.1.5.1   High and Low Tides

As shown in Figure 2.12, the gravitational pull of the moon on Earth causes 

the oceans to bulge, thus creating high tides. At the same time, the centrifu-

gal force caused by the rotation of Earth raises the water level on the opposite 

side of the Earth, creating another high tide. The low points between these 

high tides are where low tides occur. 

 2.1.5.2   Diurnal, Semi- diurnal, and Mixed Tides

These tides contribute to the diurnal tide in the equator, which occurs when 

there is only one high tide and one low tide each day. Far away from the 

equator, there are two high tides and two low tides each day, also known as 

the semi- diurnal tides. For coastal areas with complex coastlines, there are 

mixed tides which are similar to the semi- diurnal tides but with the tidal 

heights varying significantly. 

 2.1.5.3   Spring and Neap Tides

In addition to the moon, the gravitation pull from the sun will cause the tidal 

range to change every fortnight. The gravitation pull from the sun causes 

[image: Image 29]
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FIGURE 2.11

Notable tsunamis in the past two centuries. 

[image: Image 30]
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FIGURE 2.12

Gravitation pulls from sun and moon resulting in various tides. 
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spring tide during the full and new moon and neap tide during the first and 

third quarter moon, as shown in Figure 2.12. These tides occur due to the gravitational pull from the sun and moon, resulting in large tidal currents 

which affect the wave propagation energy. 

2.1.6   Breaking  Waves

Breaking waves are formed when a swell reaches shallow water and slows 

down, causing the period between the waves to shorten and increase in height. 

As the waters’ depth decreases, the waves get higher and eventually break 

at roughly 0.7 times the water depth. Breaking waves can be powerful and 

destructive, eroding shorelines and causing flooding in low- lying areas. They 

also have significant impact on structures, vessels, seabed sediment move-

ment and facilitate exchanges across the air- sea interface.73 Breaking waves also produce bubbles, spray, and other effects that can affect marine life. For 

example, the bubbles generated by breaking waves can help to oxygenate the 

water, which is important for the survival of fish and other aquatic organisms. 

Additionally, the turbulence and mixing caused by breaking waves can cre-

ate nutrient- rich upwelling zones, which support the growth of phytoplank-

ton and other primary producers in the ocean food chain.74 The type of wave depends on how it breaks, affected by the shape of the sea floor, the size and 

shape of the wave, and the angle of the approach of the wave. As travelling 

waves approach the coastal water region, their interaction with the seabed 

causes the waves to steepen, thereby forming a bulge on the forward face near 

the crest and capillary waves on the water surface ahead of the toe of the bulge. 

The waves break when the toe of the bulge moves rapidly down the forward 

face of the waves.75 Figure 2.13 shows the various types of breaking waves:

•  Spilling Waves: These are the most common type of breaking waves 

and occur when the wave crest spills down the front of the wave. 

They typically occur in areas with a gently sloping sea floor. 

• Plunging Waves: These waves break suddenly and dramatically, 

with the crest of the wave curling over and crashing down into the 

trough. They are often seen at beach breaks and other areas with a 

steep sea floor. 

•  Collapsing Waves: These waves occur when a wave breaks on a near- 

vertical sea wall or another obstacle, causing the wave to collapse in 

on itself. 

• Surging Waves: These waves break without the dramatic curl of 

plunging waves, instead surging forward with a powerful rush of 

water. They are typically seen in areas with a very gradual slope. 

[image: Image 31]
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FIGURE 2.13

Types of breaking waves. 

• Surging/Spilling Waves: These are a combination of surging and 

spilling waves, with the front of the wave surging forward while 

the back spills down the front of the wave. They are typically seen in 

areas with a moderate slope. 

2.1.7   Seiche  Waves

Seiche waves are standing waves with longer periods of water- 

level 

oscillations, ranging from tens of seconds to several hours depending on the 

basin’s geometry and depth.76 Seiche waves are formed in partially or fully enclosed basins such as lakes, bays, harbours, caves, and seas with the existence of strong winds or rapid changes in atmospheric pressure to displace 

the water. The oscillation of seiche waves is simply harmonic where the height 

of seiche waves depends on the strength of wind and air pressure contrast. 

Seiche waves have been observed in different water bodies worldwide, such 

as Lake Erie and Nagasaki Bay. Seiche waves can also be triggered by earth-

quakes, e.g., the 1959 Hebgen Lake earthquake in Montana triggered seiches 

in Montana, Wyoming, Idaho, and Alberta, Canada, with the most distant 

seiche being 545 kilometres from the epicentre.77 The occurrence of seiche waves as a result of resonance can be useful as a means to enhance the energy 

generation from wave energy converters. This is shown in detail in Chapter 6. 

For a rectangular basin, the longest natural period   N

 T  can be quickly 

estimated using Merian’s formula:78

λ

= 2

 N

 T

 . 

(2.2)



 gD  

where  λ  and   D  are the basin length and water depth, respectively. 

[image: Image 32]
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2.2   Potential Wave Theory

There are various types of wave theory that exist for modelling ocean 

waves.10 The most common being the small amplitude linear wave theory 

(SAWT), Stokes waves, cnoidal waves, and shallow water waves, where 

their applicability depends on two ratios, i.e.,  H /  λ  and   D /  λ ,  as given in 

Figure 2.14. In this book, the focus is on SAWT in the assessment of fluid-structure interactions of WECs as described later in Chapter 3. A comparison of the wave profile for the various wave theories is shown in Figure 2.15. 

2.2.1   Description

In the modelling of waves, it is commonly assumed that the fluid is an ideal 

fluid which is inviscid and incompressible with its motion irrotational. For 

an ideal fluid, a velocity potential  Φ( x, y,z,t)  exists such that the derivative of the velocity potential would yield the velocity  v  of the fluid in the  x-,  y-, and  z-axes given respectively in (2.3a–2.3c), and satisfy the Laplace equation. The potential wave theory is a powerful model in the fluid- structure 

FIGURE 2.14

Applicability of various wave theories.79,80

[image: Image 33]
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FIGURE 2.15

Wave profile for various wave theories. 

modelling that will be presented in Chapter 3. Here, the governing equation and boundary conditions associated with the ideal fluid are presented:

∂Φ ( x, y, z,t)

 vx =

 , 

(2.3a)



∂ x



∂Φ ( x, y, z,t)

 vy =

 , 

(2.3b)



∂ y



∂Φ ( x, y, z,t)

 vz =

 , 

(2.3c)



∂ z



where   vx ,  vy  and   vz  are the velocity in the   x ,  y,  and   z  directions and v = ( vx,vy,vz ) .  It is further assumed that the ideal fluid satisfies the continuity equation given as

ρ

∂ +∇⋅(ρv) = 0 , 

(2.4)



∂ t



 ∂

∂

∂ 

where ∇ = 

+

+

 . Equation (2.4) describes the conservation of mass, 

∂ x ∂ y ∂



 z 

i.e., the mass that enters the system is equal to the rate at which it leaves the 

system plus the accumulation of mass within the system. Under incompress-

ible fluid conditions, the mass does not change with respect to the time  t, i.e., 

the first term vanishes. Therefore, the continuity equation becomes



∇ ⋅Φ = 0 .  

(2.5)

When we substitute Equations (2.3a) to (2.3b) into Equation (2.5), we arrive 

at the Laplace equation:
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

2

∂2

∂2 ∂2 

∇ Φ = 

+

+

Φ = 0 . 

(2.6)

∂ x ∂ y ∂ z









In addition to the Laplace equation, the velocity potential  Φ  must also satisfy 

the boundary conditions at the seabed and the fluid free surface. For simplicity, 

a two- dimensional wave in the   x −  z  plane will be considered hereafter for the subsequent derivative. The linear assumption is made, i.e.,  H  λ and   H   D . 

The Bernoulli equation for the inviscid fluid with irrotational flow is first 

considered. By equating the pressure just beneath the free surface to the atmo-

spheric pressure 

 ˆ

 atm

 P , we have the Bernoulli equation at the free surface  z = η:

 atm

 P

1

2

∂Φ

−

+ ∇Φ +  gz +

= 0 ,  at  z =η ˆ. 

(2.7)



ρ

2

∂ t



By rearranging Equation (2.7), the wave elevation η ˆ  can be expressed as

η

1  ∂Φ 1

2 

 ˆ = − 

+ ∇Φ  ,  at  z =η ˆ. 

(2.8)



 g  ∂ t

2





At the free surface, the linearised vertical velocity   vz  of the water surface, 

according to Equation (2.3c), is given as

∂Φ

η

∂  ˆ ∂Φ η

∂  ˆ ∂Φ η

∂  ˆ

 v

 ˆ

 z =

=

+

+

 ,  where  z = η . 

(2.9)



∂ z

∂ t

∂ x ∂ x

∂ y ∂ y



Equations (2.8) and (2.9) are, respectively, the dynamic and kinematic bound-

ary conditions of the free surface. These two boundary conditions can be 

combined by omitting the free surface wave elevation η ˆ  term to arrive at the 

free surface boundary condition:

∂2Φ

∂Φ  ∂

2

1

2

 g

v

v

v

0 at  z

 ˆ, 

(2.10)

2

 (

)

( )

+

+

+

⋅∇

=

= η





∂ t

∂ z ∂ t

2





 ∂Φ ∂Φ ∂Φ

where 



v = 

 , 

 , 

 . Lastly, the boundary conditions at the seabed are 

 ∂ x ∂ z ∂ z 

given as

∂Φ = 0 ,  at  z = − D. 

(2.11)



∂ z



2.2.2   Stokes  Expansion

The SAWT is used to model linear waves where the wave height- to- wavelength 

ratio is significantly large and oscillates in a sinusoidal form. In conditions 
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where the water depth is in intermediate to deepwater condition, following 

the two ratios   H /  λ  and  D /  λ  given in Figure 2.14, the waves do not oscillate in a sinusoidal form. Rather, the waves are nonlinear and have a steep 

crest with a flat trough (see Figure 2.15). 

The SAWT can be derived by using the Stokes expansion method. 

Sir George Gabriel Stokes (1819–1903), an Irish physicist and mathemati-

cian, has derived a nonlinear representation of these plane waves by using 

a perturbation series approach, a method now known as the Stokes expan-

sion. In the Stokes expansion technique, the velocity potential Φ and wave 

elevation  η ˆ  are expressed as the perturbation series, which involves some 

“small” parameters that quantify the deviation from the exact solution. In 

Stokes expansion, the perturbation parameter is  ϵ and the perturbation series 

for Φ and η ˆ  are

( x,y,z,t)

( )

1

2

(2)

Φ

= Φ +  Φ +



 ,  

(2.12)

 ˆ

η ( x, y,z,t)

( )

1

2 (2)

=   ˆ η +  ˆ η +



 .  

(2.13)

Here, the derivative of SAWT and Stokes wave theory based on the Stokes 

expansion will be presented. 

 2.2.2.1   Derivative of Laplace Equation

Substituting Equation (2.12) into the Laplace equation (2.6) yields

2

( )

1

2

(2)

2

( )

1

2

(2)

 ∂ Φ

2 ∂ Φ

  ∂ Φ

2 ∂ Φ



 

+

+





2

2

 + 

+

+

2

2





 



∂ x

∂ x

∂ y

∂



 

 y



(2.14)

2

(1)

2

(2)

 ∂ Φ

2 ∂ Φ



+  

+

+

0 . 

2

2

 =





∂ z

∂ z









Collecting the terms associated with    and  2

  , 

2

( )

(∇ Φ 1 ) 2

(2)

+ (∇Φ ) +…= 0 . 

(2.15)





This gives us the governing equation, i.e., Laplace equation pertaining to the 

 n  th order, expressed as

2

( n)

2

( n)

2

( n)

 ∂ Φ

∂ Φ

∂ Φ 



+

+

 =

th

0 for  n  order Φ



 . 

(2.16)

2

2

2



∂ x

∂ y

∂ z






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 2.2.2.2   Derivative of Boundary Conditions at the Seabed

Similarly, by substituting Equation (2.12) into the boundary condition at the 

seabed, Equation (2.11) will give us

( n)

∂Φ

=  , 

 z = −

th

0

at

 D  for the  n  order Φ . 

(2.17)



∂ z



 2.2.2.3   Derivative of the Kinematic Free Surface Boundary Condition

We then apply Taylor’s theorem to the kinematic free surface boundary condition 

of (Equation (2.9)) and evaluate at   z = 0 .  The Maclaurin series expansion for the boundary condition expressed up to the second order is given as

 η

∂  ˆ ∂Φ η

∂  ˆ ∂Φ η

∂  ˆ ∂Φ 

 ∂  η

∂  ˆ ∂Φ η

∂  ˆ ∂Φ η

∂  ˆ ∂Φ 



+

+

−



η

+  ˆ  

+

+

−



+=0 , 

∂ t

∂ x ∂ x

∂ y ∂ y

∂ z

∂ z ∂ t

∂ x ∂ x

∂ y ∂ y

∂ z



 z=0

 

 z=0



(2.18)

where η ˆ  is the wave elevation. 

Then, by using the perturbation series approach, we substitute Equations 

(2.12) and (2.13) into Equation (2.18):



( )

1

( )

1

(2)

( )

1

(1)

(1)

(1)

(2)

 η

∂  ˆ

∂Φ 

  ˆ

 ˆ

 ˆ

2

η

∂

∂Φ

η

∂

∂Φ

η

∂

∂Φ 

 

−

 +  

+

+

−

 + = 0 . 

(2.19)

 ∂ t

∂



 z 

 ∂ t

∂ x

∂ x

∂ y

∂ y

∂



 z 



 2.2.2.4   Derivative of the Dynamic Free Surface Boundary Condition

Lastly, we apply Taylor’s theorem to the dynamic free surface boundary 

condition (Equation (2.8)) and evaluate at   z = 0 .  The Maclaurin series expansion for the boundary condition expressed up to the second order is given as

 ∂Φ 1



 ∂2

2

Φ 1 ∂

2 



+ ∇Φ + η

 g ˆ  +η ˆ

+



(∇Φ ) +=



0 . 

(2.20)



 ∂ t

2



∂ z∂

 z

 t  2 ∂

=0



 z

 z=0



Then, by applying the perturbation series approach to Equation (2.20), 

we substitute Equations (2.12) and (2.13) into Equation (2.20):

( )

1

(2)

 ∂Φ

( ) 



1

2 ∂Φ

1

( ) 2

 

+  g ˆ  +  

+ ∇(Φ 1 )

(2) 

η

+ η

 g ˆ  + = 0 . 

(2.21)

 ∂



 t



 ∂ t

2






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 2.2.2.5   Derivative of the Combined (Kinematic  +  Dynamic) Free Surface 

 Boundary Condition

Similarly, the Maclaurin series expansion can be applied to the free surface 

boundary condition (2.10). By taking the series up to   n = 2 :

 ∂2Φ

∂Φ

∂

2

1

2



 g

 ˆ

 g

0 . 

2

( )

( ) η ∂  ∂Φ

+

+

∇Φ + ∇Φ ⋅∇ ∇Φ

+







+ =



∂ t

∂ z ∂ t

2

∂





 z  ∂ z  z=

 z=

0

0



(2.22)

By using the perturbation series approach, we substitute Equations (2.12) 

and (2.13) into Equation (2.22) to obtain

2

( )

1

(1)

2

(2)

(2)

 ∂ Φ

∂Φ 



2 ∂ Φ

∂Φ

∂ 

( ) 2 

1



 

+  g

 +  

+  g

+

 ∇Φ

 +  O( 3



0 ,  at  z  0 . 

2

2

) =

=

 ∂ t

∂



 z 

 ∂ t

∂ z

∂ t 











(2.23)

 2.2.2.6   Summary of the Governing Equation and Boundary Conditions

Equations (2.16)–(2.23) give us the Laplace equation, the boundary 

conditions at the seabed, the dynamic free surface boundary condition, and 

the combined free surface boundary condition, respectively, for first- order 

and second- order wave theories. First- order wave theory is also known as 

SAWT, whereas second- order wave theory is known as second- order non-

linear Stokes waves. The terms related to  ( )1

  give us the terms related to the 

SAWT, whereas those related to  (2)

  correspond to the second- order Stokes 

waves. The governing equation and boundary conditions involved in these 

two wave theories are given as follows:

 2.2.2.6.1   Small Amplitude Wave Theory

2

( )

1

2

( )

1

2

( )

∂ Φ

∂ Φ

∂ Φ 1

Laplace Equation:

+

+

= 0 ,  in fluid domain Ω

(2.24a)

∂ 2

 x

∂ 2

 y

∂ 2

 z



( )

∂Φ 1

BC on Seabed:

= 0 ,  at  z = − D

(2.24b)

∂ z



( )

1

( )

∂Φ

η

∂ 1

 ˆ

Kinematic Free Surface BC:

=

 ,  at  z = 0

(2.24c)

∂ z

∂ t
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( )

1  ∂Φ 1 

Dynamic Free Surface BC:η ˆ 1 = 

  ,  at  z =





0

(2.24d)

 g

∂


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2

( )

1

(1)

∂ Φ

∂Φ

Free Surface BC:

+  g

= 0 ,  at  z = 0 . 

∂ 2

 t

∂ z

(2.24e)



 2.2.2.6.2   Second- Order  Stokes  Waves

2

(2)

2

(2)

2

(2)

∂ Φ

∂ Φ

∂ Φ

Laplace Equation:

+

+

= 0 ,  in fluid domain Ω

(2.25a)

∂ 2

 x

∂ 2

 y

∂ 2

 z



(2)

∂Φ

Seabed BC:

= 0 ,  at  z = − D

(2.25b)

∂ z



Kinematic Free Surface BC  :

(2)

(2)

( )

1

(1)

(1)

(1)

∂Φ

η

∂  ˆ

∂Φ

η

∂  ˆ

∂Φ

η

∂  ˆ

=

+

+

 ,  at  z = 0

(2.25c)
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∂ x
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∂ y
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Dynamic Free Surface BC  :

(2)

(2)

1  ∂Φ

1

( ) 2 

η ˆ = − 

+ ∇(Φ 1 )   ,  at  z =η ˆ

(2.25d)
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

 t

2


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Combined Free Surface BC  :

2

(2)

(2)

∂ Φ

∂Φ

∂ 

( ) 2

1



+  g

+

0 ,  at  z  0 . 

(2.25e)

2

 ∇Φ

 =

=



∂ t

∂ z
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2.2.3   Small Amplitude Wave Theory

The SAWT or airy wave theory is the simplest wave theory commonly used 

to model waves. This theory assumes that the wave as a linear sinusoidal 

wave (also known as a regular wave) with small wave steepness such that 

there is no wave breaking, as shown in Figure 2.16, and can be used to model 

both the surface waves and swells. 

[image: Image 34]
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FIGURE 2.16

Regular wave. 

Figure 2.16 shows the regular sinusoidal wave in right- 

hand system 

coordinates where the wave is propagating in the positive horizontal axis direc-

tion (  x  direction). The surface elevation η ˆ  measured from the still water level (SWL), is defined as positive upward therefore the bottom seabed is at  z = − D.  

From Figure 2.16, The regular wave has an amplitude of   A , wavelength  λ , and oscillates with a wave frequency ω  for every cycle, which is defined as

π

ω = 2  , 

(2.26)



 T  

where   T  is the wave period or duration to make one cycle. The propagation 

of the surface wave elevation can be written as

( )

η 1

 ˆ =  H  sin(k x −ω t) , 

(2.27)



2



where   H  is the wave height, k the wave number given as  k = 2π ,  x  is the λ

distance measure along the horizontal axis and   t  is the time. As waves are 

made up of a series of wave components, each has a different wave frequency 

and phase speed. Each wave moves with speed that depends on the wave-

length where the wavelength  λ  is related to the wave frequency  ω  via the 

dispersion equation given as

ω =



 g k tanh k D.  

(2.28)

The waves according to Equation (2.28) will move forward with a velocity

λ

 C =

 . 

(2.29)



 T  

By representing Equation (2.29) with  ω  and  k  and by using the wave 

dispersion relation (Equation (2.28)), the velocity of propagation (known as 

celerity   C ) can also be written as
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ω

λ

=

=  g

 gT

 C

tanh k D =

tanh k D. 

(2.30)



k

2π

2π



Thus, the relationship between  λ  with the wave period   T  and water depth 

 D  can be expressed as

2

λ =

=  gT

 CT

tanh  D. 

(2.31)



2π

k



 2.2.3.1   Group Velocity and Phase Velocity

When the waves move in group, the effect of dispersion causes the waves to 

move in packets at different speeds. Under such circumstances, the waves 

move in a distinct phase velocity and group velocity, instead of the wave 

velocity that is observed in the propagation of individual regular waves. 

The group velocity   Cg  is defined as the changes of wave frequency with 

respect to the wave number:

∂ω

 Cg ≡

 , 

(2.32)



∂k  

whereas the phase velocity, which is the rate at which the wave propagates, 

is given as

ω

 Cp =  . 

(2.33)



k  

Equation (2.28) indicates that the longer waves (longer periods) travel faster 

than shorter waves (shorter periods). Therefore, when groups of waves with 

different wave frequencies travel together, waves with longer periods, i.e., 

wavelengths, will lead ahead with time and distance while the shorter wave-

lengths will lag behind. Due to the interference effect, waves of the same 

period will group and travel together, while waves with different frequencies 

may cancel out each other. This results in the formation of wave groups. 

By referring to the dispersion equation (2.28), the group velocity is

∂ω

 C 

 p

2k D 

 Cg =

=

1+

 . 

∂

(2.34)

k

2

sinh 2k D





  

The relationship between the   Cg  and   C  differs depending on the water 

depth   D , i.e., for deepwater   kD  1, the deepwater group velocity   Cg 0  is given by

1

 Cp

1   g 

 Cg ≅

≅

2

0

   . 

(2.35)



2

2  k   

[image: Image 35]
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For shallow water  k D  1 , the shallow water group velocity   Cgs  is given by 1



 C ≅  C ≅ ( gD)2

 gs

 .  

(2.36)

Equations (2.35) and (2.36) show that the group wave can never be faster than 

the carrier wave, with an energy half that of the carrier wave at deep water and 

equal to the carrier wave at shallow water. As an example, the interference of 

two waves of different  k  and ω  is shown in Figure 2.17. Each wave is repre-

sented by (2.27) as shown in Figure 2.17, where the subscripts 1 and 2 denote the first and second waves, respectively. By superimposing these two equations 

and representing the equation with the sum- to- product trigonometry identity 

for cosine function, the wave group equations for elevation η ˆg  are given as



 ( 1 + 2) x + ( 1

ω +ω2 ) t 

 ( 1 − 2) x −( 1

ω −ω2 ) t 

 ˆ

η

k

k

k

k

 g = 2 A cos 

⋅cos 









  , (2.37)



2

2













  

η ˆg = 2 A⋅   fc ( x,t)⋅



 fe ( x,t)  , 

(2.38)



  

where   A  is the wave amplitude. As such, the propagation of the wave group 

comprises the envelope wave (modulation) and carrier wave (ripple) as 

shown in Figure 2.17. The envelope wave or wave group is presented by the function   fe  in (2.38) that moves in a lower velocity:

ω1 −ω2

ω

∆

ω

∂

 Cg =

=

=

 , 

(2.39)



k1 − k2

∆k

∂k  

FIGURE 2.17

Wave group. 

Note: Wave group elevation is represented by Equation (2.38). 
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whereas the carrier wave is described by the function   fc that travels in a 

higher velocity:

1

ω +ω

 Cp =

2  . 

(2.40)



k1 + k2  

Equation (2.39) shows that the phase velocity for the envelope wave is the 

group velocity under continuous differential case, i.e., when  k1 → k2 . As the 

1

ω −ω2

1

ω +ω

group velocity is smaller than phase velocity, i.e., 

< 

2 , the enve-

k1 − k2

k1 + k2

lope wave will be seen moving slower than the carrier wave when travelling 

in a group, confirming the observation in Equation (2.34). 

 2.2.3.2   Wave Power in an Irregular Wave (Random Wave)

There are two types of energy contained in a propagating regular wave 

train, i.e., the kinetic energy   E

 T  and potential energy   UE . Both energies are 

given as

 E

 T =  UE = 1 ρ

2

 gH . 

(2.41)



16



The sum of both energies thus produces the energy density in a period wave 

train, i.e., 

 E = 1 ρ

2

 gH , 

(2.42)



8



where   E  is the wave energy, and the unit is in Joule per metre, J/ 2

m . 

The formulation of the rate of power flux across one unit length of wavefront 

is given from the product of the wave energy   E  and the group velocity  Cg: 1

2

1

2

ω

k D

 res

 P

 E ECg

ρ  g A Cg

ρ



2



= =

=

=

 gH ×

1+

 . 

(2.43)



2

8

2k 

sinh 2k D   

Equation (2.43) has a unit of Watt/m. The wave power   res

 P  is usually 

measured in offshore deepwater condition as

1

1

 g

 res

 P

 E

 ECg

ρ

1  

=

=

=

 gH ×

2

2

|0

0

0

   . 

(2.44)



8

2  k   

With the help of the dispersion relation Equation (2.28), the wave number 

at deep water given as  k = ω2/ g  is then substituted into Equation (2.44) to 

obtain the common expression of the wave energy:

 res

 P | =  E =  ECg = 1 ρ 2

2

0

0

0

 g TH . 

(2.45)



π

32
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Note that Equation (2.45) is for wave power in a regular wave. For random 

wave conditions in deep water, the wave power 

( irr)

 res

 P  0

 |

is given by

( )

( irr

 irr

)

 res

 P | =  E

= 1 ρ 2

2

0

0

 g p

 T Hs . 

(2.46)



π

64



where   p

 T  is the peak wave period and   Hs  the significant wave height. 

 2.2.3.3   Deep Water, Intermediate Water, and Shallow Water

The wave systems can be categorised into deepwater and shallow water 

waves, which depend on the ratio of wave height- to- wavelength   H /  λ . The 

categorisation of the waves is given in Figure 2.2 where the deepwater wave occurs when  H /  λ > 0 5

 . , intermediate water 0 0

 .  5 <  H /  λ < 0 5

 . , and shallow 

water   H /  λ > 0 05

 . . 

As waves such as tsunamis and tides have a relatively longer wavelength 

λ  as compared to the water depth  D, they are categorised as shallow water 

waves. The shape of the wave particle orbital depends on   D  where a per-

fectly sinusoidal wave has a circular wave particle (see Figure 2.2) with its horizontal displacement  ξ ˆ  and vertical displacement  ζ ˆ  given as

 H  cosh k ( z +  D) 

ξ ˆ = −



 cos (k x −ω t)  , 

(2.47)

2

sinh k D









 H  sinh k ( z +  D) 

ζ ˆ =



 sin ( k x −ω t) . 

(2.48)

2

sinh k D









The horizontal orbital speed  v x and vertical orbital speed  v z can be obtained by taking the derivatives of Equations (2.47) and (2.48) with respect to the 

time  t, respectively. 

(

 H

k  z D

 vx )

π cosh  ( + ) 

= −

k x

 t

(2.49)

 orbital



 sin ( 

−ω )

 T

sinh k D









(

 H

k  z D

 vz )

π sinh  ( + ) 

=

k x

 t

(2.50)

 orbital



 co (

s 

−ω )

 T

sinh k D









Similarly, the acceleration along the   x - and  y-axes can also be obtained by taking the derivatives of Equations (2.49) and (2.50) with respect to time  t, 

respectively. 

The wave will maintain a perfect sinusoidal shape as long as it is in the 

deepwater zone, where the seabed has no effect on the wave particle. Under 

such conditions, the term  k D  1 , so  tanh  k D ≈ 1 .  0 .  Similarly, in the shallow water condition,  k D  1 0

 .  and  tanh  k D ≈ k D  or  sinh  k D ≈ k D. The wave 
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frequency, velocity of propagation, orbital velocities, pressure and energy 

terms under deep water, intermediate water and shallow water conditions 

are summarised in Table 2.3. 

 2.2.3.4   Solutions to the Laplace Equation

There are several methods to solve the Laplace equation, and one well- known 

method is the method of separable equations. We shall demonstrate the 

method of separable equations by considering the   x −  z  plane, i.e, the velocity potential is Φ2 D ( x, z,t). The solution for the counterpart in the  y-axis can be derived easily once the function in the   x -axis is solved. 

The method of separable equations assumes that the velocity potential 

Φ2 D ( x, z,t)  is a product of four different functions; each depends only on the independent variable, i.e.,  x,  z  or   t . Here, the Φ  is written as 2 D



Φ2 D ( x, z,t) =  X ( x)⋅ Z( z)⋅ T ( t) , (2.51)

where   X ( x) ,  Z(z) ,  and   T ( t)  are functions that depend only on   x, z,  and t, respectively. As the wave is propagating, the function   T ( t)  can be easily obtained as

 T ( t) = sin ω



 t.  

(2.52)

 2.2.3.5   Solution  to  Z ( z)

The function Z( z) in Equation (2.51) can be solved from the boundary 

condition at the seabed (Equation (2.24b)) by assuming a general solution 

with Z( z) = cosh k ( z +  D); i.e., 



Φ2 D ( x, z,t) =  X ( x)⋅ B  cosh k ( z +  D)⋅

sin ω



 t.  

(2.53)

The dynamic free surface boundary condition (Equation (2.8)) is then used 

to solve for the unknown   B  by substituting Equations (2.27) and (2.53) into 

Equation (2.8) at the free surface  z = 0, where   a

 P = 0, to get

= −  gA

 B

⋅

1

 . 

(2.54)



ω cosh k D  

Therefore, the incident velocity potential (2.53) is now

Φ

 gA  cosh k  z D

2 D (  x, z, t ) = − X (  x )

( + )

⋅

⋅

⋅sin ω t. 

(2.55)



ω

cosh k D



By substituting Equation (2.55) into a two- dimensional Laplace equation, 

we obtain the Helmholtz equation:

TABLE 2.3

 Environmental Loads

Summary of Progressive Waves Terms Under Various Water Depth

Deepwater   D/λ > 0.5

Intermediate Water  0 0

 . 5 <  D/λ < 0 5

 . 

Shallow Water   D / λ > 0 . 05

 H

Wave Elevation

η ˆ = 2cos(k x−ω t)

 gT

 g λ

 gT

 g λ

Velocity of Propagation

 C 0 =

=

 C =

tanh k D, 

tanh k D

2π

2π

 C =  gD

2π

2π

  

2

 gT

2

 gT

Wavelength

λ0 =

λ =  CT =

tanh k D

2π

2π

 H  cosh k ( z +  D) 

Horizontal Orbital Displacement

ξ ˆ = −



  cos(k x −ω t)

2  sinh k D 



ˆ

 H  sinh k ( z +  D) 

Vertical Orbital Displacement

ζ =



sin(k x −ω t)

2  sinh k D 



π H  cosh k ( z +  D) 

π H  cosh k ( z +  D) 

Horizontal Orbital Speed

 vx = −



sin(k x −ω t)

 vx = −



 sin(k x −ω t)

 T 

k D



 T  sinh k D 



π H  sinh k ( z +  h) 

π H  sinh k ( z +  D) 

Vertical Orbital Speed

 v

 vz =



 cos(k x −ω t)

 z =



 cos(k x −ω t)

 T 

kD



 T  sinh k D 

1

 C

1   g 

1

2

Group Velocity

 C 

2k D 

 C

 C

 Cg ≈  C ≈ ( gD)2

 g =

1 +

 g 0 ≈

≈  

2

2





 k 

2 

sinh2k D 

Energy Density

1

2

 E = ρ  gH

8

Wave Power

 res

 P  0 =  ECg 0

 res

 P =  ECg
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∂2Φ2 D + 2kΦ2 D = 0 . 

(2.56)



∂ x



 2.2.3.6   Helmholtz  Equations

The Helmholtz equation (2.56) only involves modelling the plane waves 

in the   x  direction. Substitute the function  Φ2D ( x, z,t)  in the Helmholtz equation (2.56) to get

 X′′( x) − 2

k  X ( x) =



0 .  

(2.57)

Equation (2.57) is a homogeneous second- order linear ordinary differential 

equation which can be solved by first expressing it in a characteristic equation, 

2

2



r + k = 0 ,  

(2.58)

where  r  are the roots for the ordinary differential equation (ODE) given as

r

i

1 ,  2 = ±



k .  

(2.59)

where i = (-1) is the imaginary number the general solution for the second- 

order non- homogeneous partial differential equation (PDE) with two com-

plex roots is given as

 X ( x) = 1

 B  c

os k x +



2

 B  si  

n k x.  

(2.60)

 2.2.3.7   General Solution to Helmholtz Equation

With the angular and radial equation solved, the general solution to the 

Helmholtz equation (2.56) can be obtained by substituting Equations (2.60) 

into (2.55):

Φ

 gA  cosh k  z D

2 D (  x, z, t )

( + )

=

⋅

⋅(co k x +

s sin k x)⋅

 sin ω t. 

(2.61)



ω

cosh  k D



However, Equation (2.61) represents a static wave. For waves to be 

progressive, the  Φ2 D  has to be written as

Φ

 gA  cosh k  z D

2 D (  x, z, t )

( + )

=

⋅

⋅(sin s

k x  in ω t −

cos c

k x  o ω t)

s 

ω

cosh k D

 gA  cosh k ( z +  D)

(2.62)

=

⋅

⋅sin(k x −ω t) . 



ω

cosh k D



For the three- dimensional propagation waves, the velocity potential can be 

obtained by adding the special function   Y ( y)  in the   y  direction, which has a similar form to   X ( x) ; i.e., 
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Φ (

k

 x, y, z,t)  gA  cosh  ( z +  D)

=


⋅

⋅sin  k ( x +  y)−ω t . 

(2.63)



ω

cosh k D



The dispersion equation (2.28) can be obtained by substituting Equations 

(2.8) and (2.27) into the first- order kinematic boundary condition (simplified 

from Equation (2.9)):

∂Φ

η

∂  ˆ

 vz =

= −

 . 

(2.64)



∂ z

∂ t  

By substituting Equations (2.27) and (2.62) into Equation (2.64), we obtain

 H g k sinh k ( z +  D)

⋅

⋅

⋅

 H

sin (k x −ω t) =

⋅ω ⋅

sin (k x −ω t)



 , 

(2.65)



2 ω

cosh 

k D

2



where  H = 2 A. 

Upon simplification and evaluation of   z  at the free surface, i.e.,  z = 0, the wave dispersion (2.28) can be derived as

 g k ⋅tanh k D⋅

sin (k x −

ω t) = ω ⋅cos (k x −

ω t) . 

(2.66)



ω



2.2.4   Stokes  Wave  Theory

The velocity potential for the Stokes waves can be obtained directly from 

the combined free surface boundary condition (Equation (2.25e)), which also 

depends on the velocity potential for the SAWT (Equation (2.63)). Substituting 

Equation (2.63) into (2.25e), we have

2

(2)

(2)

∂ Φ

∂Φ

+  g

=

2

ω g k A D⋅sin 2(k x −ω t) , 

(2.67)



∂ 2

 t

∂ z



where

 g k cosh 2k D + 5 g k − 2

ω

=

si

nh 2k D

 D

 . 

2

2

ω

(2.68)



4  cosh k D



 D  can be further expressed as

=  g k cosh 2k D +

5 g k

− sinh 2k D

 D

 . 

2

2

2

2

2

ω

k

ω

(2.69)



4

cosh  D  4

c

osh k D  4 cosh k D  

We can use the wave dispersion relationship  2

ω =  g k  tanh  k D  where the water 

depth   D  can be written as

=

1

− tanh k D

 D

−

1

+

5

 . (2.70)



2 tanh k D

2

4 sinh c

k D  osh 

k D  4 cosh s

k D  inh 

k D  
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Upon further simplification, and by expressing   D  as PDE with  sinh 2k D =

2 sinh c

k D  osh 

k D  as the common denominator, we have

1 

6



 D =

=

3





 . 

(2.71)



2  sinh 2k D  sinh 2k D  

Equation (2.67) is thus given as

2

(2)

(2)

∂ Φ

∂Φ

3 g k A  ω

2

+  g

=

⋅sin2(k x −ω t) . 

(2.72)



∂ 2

 t

∂ z

sinh 2k D



By assuming a trial function that satisfies the Laplace equation and boundary 

condition at the seabed, we have

(2)

Φ =  B⋅cosh 2k ( z +  D)⋅sin2(k x −ω t)



 .  

(2.73)

By substituting Equation (2.73) into Equation (2.72), 

2ω

= − 3  A

 B

 . 

(2.74)



4

8 sinh k D  

Substituting Equation (2.74) into Equation (2.73), 

2

(2)

3 A  ω cosh 2k ( z +  D)

Φ = −

⋅

⋅sin2(k x −ω t) . 

(2.75)

4



8

sinh k D



The second- order wave elevation can be derived by substituting Equations 

(2.62) and (2.75) into Equation (2.25d):

2

2

 A  k cosh k D

 A

 ˆ

η

k

2 = −

⋅

⋅ 2 cosh 2k D  cosh 2 k z  ω t

 . 

3

( +

)⋅

( − ) −

(2.76)



4

sinh k D

2 sinh 2k D  

The first term in Equation (2.76) is the oscillatory component of the wave ele-

vation, whereas the second term on the right- hand side is the mean value, 

which is time independent. The difference between SAWT and Stokes wave is 

shown in Figure 2.15, modelled using Equations (2.27) and (2.76), respectively. 

2.3   Random Wave Model (Short- Term Wave Model)

The SAWT and second- order nonlinear Stoke waves were presented in the 

previous sections to describe the regular wave in an open sea. Often, in 

actual sea conditions, the sea is a complex network of waves composed of 

varying wave frequencies and wave directions. These random waves can be 

computed by taking the superposition of regular waves of different wave 

frequencies and phase angles, as modelled in Equation (2.27). 

[image: Image 36]

[image: Image 37]
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2.3.1   Mean and Standard Deviation

A typical random wave recorded from the sea is shown in Figure 2.18. The characteristic of the random waves can be obtained from the sea state, which involves 

two important parameters: the significant wave height   Hs  and the peak wave 

period   p

 T . The derivatives of the wave height and wave period will be presented 

in Sections 2.3.2 and 2.3.3, respectively. In order to obtain the wave sample, as shown in Figure 2.18, sensors can be used to record the wave elevation η ˆ  in the actual sea. Post- processing, such as zeroing, has to be carried out before further 

analysis in order to eliminate any tidal variation. Figure 2.18 thus represents a wave record without tidal effect; i.e., the mean water level is zero. 

In the analysis of a single random wave train in a limited duration, the 

statistical parameters can be used to describe the characteristics of the 

waves. This group of random wave trains is an independent system where 

it is assumed that the wave train bears the same characteristic as the average 

statistic properties of the entire sea, a process known as ergodic. Take for 

example the unidirectional random waves for a duration of 300 s, as shown 

in Figure 2.19. The waves can be described using the mean η ˆ  and standard deviation σ  j  given as

FIGURE 2.18

Typical random wave. 

FIGURE 2.19

Unidirectional random waves. 

[image: Image 38]
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η ˆ = 1

 N  η ˆ , 

(2.77)

 N ∑

 j



 j=1



and

2

σ =  S = 1

 N (  ˆ η  ˆ

 j −η

(2.78)

 N ∑

)  , 



 j=1



where   S  is the variance of η ˆ . 

2.3.2   Wave Height Distribution

 2.3.2.1   Probability Density Function, Gaussian and Rayleigh Distributions

When a continuous random variable such as wave elevation η ˆ  is recorded, 

the probability of occurrence for the variable can be described using the prob-

ability distribution function (PDF). According to the central limit theorem, the 

probability of occurrence for a large random sample will follow a special type 

of PDF with a bell curve, known as the normal distribution or Gaussian, where 

the highest probability occurs at its mean value, as shown in Figure 2.20. 

The Gaussian function can be expressed in the base form



x − 2 

q (x )

( b )

= a exp−

  , 

(2.79)



σ 2



2





  

FIGURE 2.20

Gaussian distribution. 
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where a is the height of the curve’s peak given as  a = 1  /  σ

 (

π

2 ), b  the mean 

value, and σ  the standard deviation. By further taking η ˆ′ = η ˆ −η ˆ, i.e., the difference between the wave elevation η ˆ  with the mean water level η ˆ , we have the Gaussian distribution for the wave given as

p (

  ˆ′2

1



η ˆ′)

η

=

exp −

 . 

(2.80)

σ

π



2



σ 2 

2



  

The standard deviation σ , also known as the shape parameter, plays a role 

in controlling the shape of the bell curve; i.e., a large σ  produces a wide 

band and flat bell curve, whereas a smaller σ  results in a narrow band and 

steep bell curve. 

The exponential terms in Equation (2.80) gives the probability of occur-

rence for any individual wave η ˆ′ that is greater than a specific wave elevation 

η ˆ q  defined in the Gaussian distribution; i.e., the probability of occurrence of any individual wave elevation η ˆ′ greater than a specific wave elevation η ˆ q defined in the Gaussian distribution is known as the probability of exceedance 

q η

 ( ˆ′ > η ˆ) :

 η2

 ˆ 

q η

 ( ˆ′ > η ˆ ) = ex 

p  − q

q

 . 

(2.81)

σ 2 

2




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The probability of the occurrence of η ˆ′ not greater than η ˆ q  is thus given as

 η2

 ˆ 

p η

 ( ˆ′ <η ˆ ) = 1− q η

 ( ˆ′ >η ˆ ) = 1− ex 

p  − q

(2.82)
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q
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 2.3.2.2   Rayleigh  Distribution

In most situations, the wave period of localised wind wave in deep water 

does not vary significantly. In such cases, the waves are of a narrow frequency 

band; i.e., energy is confined to a relatively narrow band frequency. Instead 

of following a normally distributed curve, the distribution of the wave eleva-

tion is skewed and can be described by a Rayleigh distribution. The shape of 

a Rayleigh distribution is given in Figure 2.21. 

The Rayleigh distribution can be expressed in the base form

2

p ( x)

x

 1 x 

=

exp  −

 . 

(2.83)

2



2 

σ

2 σ





  
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FIGURE 2.21

Rayleigh distribution. 

Similar to Equation (2.80), the standard deviation/shape parameter σ  

controls the shape of the skewed curve where the distribution gets narrower 

and steeper with a smaller σ . 

In an ocean wave, it is common to express the wave elevation in terms of 

wave height   H , i.e.,  x =  H  in Equation (2.83). The Rayleigh distribution of the wave height is thus given as

2

p ( H)

 H

  H 

=

exp  −

 . 

(2.84)
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4σ

8σ




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The probability of exceedance for individual wave height   H′  that is 

greater than a specific wave height   H q  ,  for the Rayleigh distribution can be written as



2

 H 

q (H′ >  H ) = ex 

p  −

q

q

 , 

(2.85)
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and the probability of occurrence for the Rayleigh distribution can be  written as



2

 H 

p (H′ <  H ) = 1−  ex −

 p , 

q

q

(2.86)

σ 2 

8





  

where   P(H′ <  H q  )  is also known as the cumulative distribution function (CDF). 

 Environmental Loads 

63

 2.3.2.3   Significant  Wave  Height

Here, we introduce the significant wave height  H q, which is the mean wave 

height of the highest  q th of the waves. Traditionally, the   H q  can be obtained from first sorting the wave height record in descending order and then taking the average of the highest  q th of the wave record. Mathematically, it can 

be obtained by

∞

∞



2

 H 

 H  p (H′ >  H q  )⋅

2

 dH

 H  ex 

p  −

 dH

2  ⋅

∫

σ

 Q

 H

1 ∫  Q

 H

 8



 H q =

=

∞

 , 

(2.87)
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 Q(H′ > 

p

′ > q ⋅

∫

 H q  )

 (H

 H ) dH



 Q

 H



where the   H q , the value that any individual wave height   H′  that would exceed in the probability of exceedance  q  is obtained from Equation (2.86) as

 1 

 1 

 H q = 2 2 0

m ln   = σ

2

2ln 

 

  . 

(2.88)
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The most common  q  in (2.87) is  q = 1 , which, when substituted into the 

3

equation, is given as   H 1 , also commonly referred to as the significant wave 

3

height   Hs . Numerical evaluation of Equation (2.87) gives us

 Hs =  H 1 ≈ σ

4 ≈ 4

0

m  . 

(2.89)



3



Mathematically, this shows that   Hs  is about  four times the standard devia-

 tion  σ   of the surface elevation – or equivalently  four times the square root of the zeroth- order  moment  m0   of the wave spectrum. The zeroth- order moment  m0  

is obtained by taking the area under the curve of a wave spectrum. Other 

significant   H q  are

 H  1 ≅ 5 .  σ

09 ≅ 1 27

 . Hs

 H  1 ≅ 6 .  σ

67 ≅ 1 .  67 Hs

10

100

2

 . 

(2.90)

 H 1 ≅ 3 .  σ

55 ≅ 0 .  63 Hs

 Hrms ≅ 2 σ

2 ≅



2

2 Hs  

Using the relationship of σ =

0

m  in Equation (2.86) and   Hrms = 2 σ

2  in 

Equation (2.90), the Rayleigh distribution in (2.84) can also be written as

 H

  H 



2

2



p ( H)

2 H

  H 

=

ex
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(2.91)
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where   Hrms  is the root mean square wave height, which is related to the aver-

age wave energy  0

 E :
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∞

2

 H

=

p ( H)⋅ 2

 H ⋅  dH =

∫

8

 rms

0

 E , 

(2.92)

ρ



0

 g



Returning to Equation (2.91), the shape of the Rayleigh distribution depends 

on  0

m , i.e., the area under the curve of a wave spectrum or the   Hrms . 

A narrow- banded wave spectrum will have a smaller  0

m ; therefore, it pro-

duces a smaller   Hrms,  resulting in a narrower and steeper wave distribution. 

2.3.3   Wave  Period  (Zero- Crossing  Analysis)

Besides the wave height   Hs  presented in Section 2.3.2, the wave period is 

also essential in order to define a sea state. From a typical wave record with 

zero mean water level shown in Figure 2.19, it is possible to group the waves in accordance with their wave height and wave period. The wave period 

 T is defined as the duration required for one wave to make a full cycle. As 

shown in Figure 2.22, five different waves are recorded, where each wave can be described by the   H  and   T . However, sometimes small waves such 

as ripples which are insignificant to the response of floating bodies are also 

recorded (see Figure 2.22a). In order to record only the significant waves, the zero- crossing method must be applied. 

The zero- crossing method only records a wave that has crossed the mean 

water level, which is zero in the wave sample considered in Figure 2.19. There are two ways the zero- crossing analysis can be performed, i.e., the zero down-crossing (Figure 2.22b) and the zero up- crossing (Figure 2.22c) wave height  H.  

The former takes the wave height as the vertical distance between the maxi-

mum and minimum water levels that lie between two subsequent zero down- 

crossings, whereas the latter is for two subsequent zero up- crossings. 

2.3.4   Spectral  Analysis

As mentioned in the beginning of Section 2.3, the periodic random waves, assumed to be stationary and ergodic, can be expressed mathematically as 

the superposing of regular waves, where each wave has its own amplitude 

and wave frequency, as shown in Figure 2.23. 

Therefore, it is possible to use the Discrete Fourier Transform (DFT) to 

break the finite random waveform into an alternate representation charac-

terised by the sum of sine and cosine functions. The DFT allows the trans-

formation of the waves in the time domain to the frequency domain. This 

reveals some of the important characteristics of the wave through frequency 

components and can be used for filtering out unwanted noise in the wave. 

If there are   N  number of samples in the finite random wave, then the   j  th individual wave component in frequency domain η ˆj (ω)  that makes up the 

time- series random waves can be expressed as

[image: Image 40]
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FIGURE 2.22

Various methods to measure wave height and wave period. 
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(2.93)
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   N    

where   ˆn

 n  is the wave elevation recorded for each sample in the time domain. 

Conversely, the time- series random wave can be obtained from η ˆj (ω)  by 

using the inverse Discrete Fourier Transform (iDFT). 

 ˆ

 ˆ
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 N −

= 1

(2.94)

 N ∑ 1  j ( )
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η ω
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⋅ex 
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   N    

Equations (2.93) and (2.94) represent the DFT pair. 
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FIGURE 2.23

Superposition of waves (reproduced from Faltinsen81). 

It should be noted here that η j (ω)  obtained from Equation (2.93) is a 

complex number due to the Euler term:

  π
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Therefore, η ˆj (ω)  can also be written as
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The magnitude of η j (ω)  for each   n  is thus

η ˆj (ω) =

2

 Aj + 2

 B , 

(2.97)
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and the phase angle is given as

  B 

θ
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=

1
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



 . 

(2.98)
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The wave components obtained from Equation (2.93) can be plotted on the 

frequency spectrum, as shown in Figure 2.24. The dominant wave frequencies can be observed from the frequency spectrum, thereby allowing us to filter out 

frequencies which are insignificant to the design. Once the frequencies are fil-

tered, they can be transformed back into the time- series waves by using iDFT. 

FIGURE 2.24

Frequency spectrum of waves. 

The wave energy distribution can be calculated from

∞

 E(  f ) = ρ  g S(  f )⋅  df , 

∫

(2.99)



0



where   f  is the frequency of the wave in Hertz (Hz) and   S(  f )  is the wave spectrum to be described in the next section. 

2.3.5   Wave Spectrum (Unidirectional Sea)

When time- series wave records are unavailable, it is useful to represent the 

sea state by using the wave spectrum. A comprehensive wave spectrum for 

the random sea is covered by Goda.82 There are various types of wave spectra, depending on when the sea is a fully developed or developing sea. 

 2.3.5.1   Fully Developed Sea

One of the earliest wave spectra for the fully developed sea was proposed by 

Phillips (1958), where the spectral shape   P

 S (ω)  is a function of ω−5  given as

( ) α

ω

 P

 P

 S

 g  ω−

=

2

5  , 

(2.100)



π 4

2
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where α p  is the Phillip constant given as α p = 0 0074

 . 

. 

Pierson and Moskowitz83 extended the Phillips wave spectrum by adding 

a low- frequency filter over the complete frequency range:

 PM

 S (ω) =

⋅



 Sp PM

 E ,  

(2.101)

where
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
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Therefore, (2.101) can be written as
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where α PM  is commonly taken as α PM = 0 0081

 . 

. 

Another type of wave spectrum that can be used to describe tropical storm 

waves is the one- sided Bretschneider (BS) wave spectrum, also known as the 

two- parameter PM wave spectrum, given as

2

4

 H
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 S (

 s

1



4

20π

1 

ω) = 5π

⋅

⋅exp
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(2.104)
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 2.3.5.2   Fetch- Limited  Developing  Sea

A team of researchers in the Joint North Sea Wave Observation Project 

(JONSWAP) realised that the wave spectrum is never fully developed. 84 

The waves continue to develop through nonlinear wave- wave interactions, 

even for very long times and distances. In view of this, an extra artificial 

factor was added to the PM spectrum to improve the fit to their measure-

ments. The JONSWAP spectrum is thus a PM spectrum multiplied by an 

extra peak enhancement factor given as

 SJONSWAP (ω) =  PM

 S (ω)⋅γ c



 PM ,  

(2.105)

where the peak enhancement factor  γ c PM  ranging from 1 to 7 depending on 

weather conditions and ocean region. The typical  γ c PM  value is around 3.3 for 

most applications and  c  depends on the parameter  σ given as82

[image: Image 43]
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(2.106)
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 p  

The JONSWAP wave spectrum can be adjusted to represent waves in 

West Africa and offshore Brazil. Compared to the BS spectrum shown in 

Figure 2.25, the latter has a greater frequency bandwidth to represent the characteristics of waves in the tropical sea. 

FIGURE 2.25

Comparison of JONSWAP, PM, and BS spectrum. 

 2.3.5.3   Double- Peaked  Wave  Spectrum

The Ochi- Hubble (OH), double- peaked wave spectrum85 is given by a 

combination of two unidirectional wave spectra of low and high frequencies 

denoted, respectively, by subscript  j = 1 and 2:

λ
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[image: Image 44]

70  

 Wave Energy Convertors in Tropical Seas

where  Γ(λ j )  is the gamma function of the spectral shape parameter  λ j.  

The OH can be used to represent the sea state in the tropical climate, which 

comprises the swell and wind wave. Here, a smaller value of  λ1 = 1  cor-

responds to a wider spectrum (swell), whereas a larger value of  λ2 = 2  cor-

responds to a narrower spectrum (developing sea), as shown in Figure 2.26. 

FIGURE 2.26

OH wave spectrum. 

2.3.6   Multidirectional  Sea

The aforementioned wave spectrum is unidirectional, assuming that waves 

approach from one direction. The actual sea is made of a combination of 

waves coming from varying directions. To model the sea state correctly, 

the multidirectional wave spectrum   S(ω ,  θ )  can be derived by multiply-

ing the wave spectrum   S(ω)  with a spreading function  d (θ )  as given in 

Equation (2.110):

 N

 I

 S (ω ,  θ ) =

 S(ω)⋅ d j (θ ) ,  where  I =

∑

PM ,  BS ,  JS or OH , 

(2.109)



 j=1



where the spreading function  d (θ )  is given by Duarte et al.:86
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where θ  is the mean wave direction, 

 j

s  the wave spreading parameter, and 

θmax = π  /  2  (2.111). Note that the subscript   j  in (2.111) depends on the upper bound of the summation  N  in (2.110), where  N = 1 for BS or JS and  N = 2 for OH. The gamma function  Γ  ensures that

π

2

d (θ )⋅ θ

 d =

∫

1 . 

(2.111)

π

−



2
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 Principles of WEC Arrays

This chapter begins by exploring the fundamental concept of simple har-

monic motion and its solution, establishing a foundation for understanding 

wave energy converter’s (WEC) dynamics. It progresses to the motion of a 

WEC, presenting the optimal power take- off (PTO) damping and power cap-

ture under regular waves, as well as in unidirectional and multidirectional 

seas. The performance of a WEC deployed in an array configuration is anal-

ysed, with a focus on its interaction factor, known as the  q-factor. The chap-

ter delves into advanced methods for solving the velocity potential, utilising 

model expansion and the boundary element method (BEM). These solutions 

are critical for accurately predicting wave- structure interactions and optimis-

ing the design and performance of WEC systems. Through a detailed exami-

nation of these topics, the chapter provides a comprehensive understanding 

of WEC technology and its application in harnessing ocean energy. 

3.1   Rigid Body Motion Versus Hydroelastic Response

The design of a floating structure requires a special branch of engineering 

known as naval architecture that traditionally involves the design, devel-

opment, and construction of boats and ships to meet the requirements of 

prospective owners and operators. During the 20th century, naval architec-

ture continued to evolve with the development of new technologies such 

as computer- aided design (CAD), computational fluid dynamics (CFD), and 

finite element analysis (FEA). These technologies enabled naval architects to 

design and construct ships and offshore structures with greater accuracy and 

efficiency than ever before. 

In the design stage, it is always important to determine the motion of the 

floating body under the influence of environmental loadings such as wind, 

wave, and current, as mentioned in Chapter 2, in order to measure how well the structure responds under different sea states, where the analysis objective is to minimise the motion to a reasonable threshold under the various 

sea states as stipulated in the classification requirement. The solutions to 

the motion of floating bodies can be obtained analytically or numerically 

depending on the complexity of the structure’s geometry. The BEM is by 
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far the most commonly used numerical technique in assessing the motion 

of floating bodies due to its computational efficiency and ability to predict 

the motion with reasonable accuracy. The earliest solution from using the 

BEM was given by John,87,88 in which he used the Green’s function within a boundary integral formulation to solve for the wave scattering from floating bodies. A detail description of the linear wave theory was published by 

Wehausen and Laiton89 in their remarkable review article “Surface Waves”. 

This review article contains benchmark solutions for wave- structure interac-

tion problems90–95. 

However, earlier works by these researchers only considered the floating 

structure as a rigid body. Over the centuries, ships have increased in size tre-

mendously due to military and commercial needs. For example, the size of 

a container ship has grown steadily in recent years, with many vessels now 

capable of carrying more than 20,000 twenty- foot equivalent units (TEUs). 

The motion of ships with increasing length should no longer be considered 

as rigid because the structure deforms significantly under wave action. Such 

flexible motion of a floating body under hydrodynamic force is termed  hydro-

 elasticity and has a significant effect on the structural design. One of the earliest documentations on hydroelasticity was published by Bishop and Price96 

specifically for ship- like structure. 

As mentioned in Chapter 1, the very large floating structure (VLFS) has gained tremendous interest in recent decades as one of the future solutions 

to creating land for land- scarce countries. This encouraged a new research 

area in hydroelasticity in the early 1990s. Among the pioneers working on 

the hydroelastic theory of VLFS are Ertekin and Riggs,97 Suzuki et al.,98, 99 

Yago and Endo,100 Kashiwagi,101, 102 Utsunomiya et al.,103 and Ohmatsu, 104,105 

to name a few. The development of hydroelastic theory should also be attrib-

uted to Meylan and Squires106 and Meylan107,108 who studied ice- flow problems, but these problems were similar to VLFS problems. 

The global energy demand has indirectly influenced the advancement of 

floating structures since the exploration of offshore oil and gas began in the 

late 19th century in the United States. As the exploration went deeper and 

further from the shore, floating oil and gas platforms were built to cater for 

the environmental changes, thereby seeing new types of floating structure 

such as semi- submersible, spar, mobile offshore drilling unit (MODU), ten-

sion leg platform (TLP), and drillship being built. As the world is ventur-

ing into the 21st century, the demand for energy continues to rise, and at 

the same time, a more sustainable energy has to be sought to phase out the 

dependency on fossil fuels. This causes the popularity of WECs such as the 

Pelamis and Oyster WECs. The design of WECs is however different from 

the conventional ship and offshore structures, as the WECs are usually 

designed for maximum motion under wave action in order to optimise the 

wave energy generation. 
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In this chapter, the mathematical formulation for the hydrodynamic 

responses of WECs and the hydroelastic response of VLFS will be presented. 

Section 3.2 presents the various motions of the floating body, focusing on 

generic harmonic motion; Section 3.3 covers the governing equation for solv-

ing the WEC motion, followed by Section 3.4 on the WECs in array; Section 

3.5 presents the solution to the velocity potential, and Section 3.6 shows 

the BEM for solving the governing equation. Lastly, Section 3.7 shows some examples of WECs in regular and irregular waves in the tropical climate. 

3.2   Harmonic  Motion

3.2.1   Simple  Oscillator

The motion of a floating body can be described by a simple harmonic motion 

oscillating at a frequency ω and can be modelled by a simple spring- mass- 

damper (SMD) system, as shown in Figure 3.1. The mass  m of the SMD is supported by a spring system with a constant  k and a damping  c. We will 

be showing the derivative of the equation of motion of the simple oscillator 

using two methods, i.e., the direct equilibrium method and the principle of 

virtual work. The latter can be used to derive the governing equation of a 

complex structure, as will be shown later for the VLFS. 

3.2.2   Direct Equilibrium Method (D’Alembert’s Principle)

The equation of motion for the SMD system with one degree of freedom (dof) 

is given by



 ma +  cv +  kx =  F,  

(3.1)

where  F is the external force acting on the mass  m,  a the acceleration,  v the velocity, and  x the displacement of the mass from the equilibrium position, 

as shown in Figure 3.1. 

FIGURE 3.1

Simple SMD system. 
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By expressing the acceleration  a and velocity  v in terms of displacement  x, Equation (3.1) reduces to a second- order linear univariate equation

2

 d x

 dx

 m

+  c

+  kx =  F. 

(3.2)



2

 dt

 dt



3.2.3   Principle  of  Virtual  Work

The direct equilibrium method is suitable for less complex structures such 

as the simple SMD system shown in Figure 3.1. For complex structures, 

the principle of virtual work (PVW) can be utilised to obtain the governing 

equation, as well as the boundary conditions associated with the system. The 

PVW as described in Appendix A is used to derive the equation of motion (Equation (3.2)) of the same SMD in Section 3.2.2. The action functional for the PVW according to Hamilton’s principle is given as

 t f

 t f

δ Π = δ (  E

 T − UE ) dt + (δ  nc

 W ) dt =

∫

∫

0 , 

(3.3)



 i

 t

 i

 t



where   E

 T  is the total kinetic energy of the system,  UE the potential energy 

(including strain energy and potential of conservative external force),  nc

 W  the 

work done by nonconservative forces, and δ  the variation taken during the 

indicated time interval. For the SMD given in Figure 3.1, the kinetic energy, potential energy, and work done are given by

1   dx 2

 E

 T =  m

  , 

(3.4a)



2   dt   

1

2

 U =  kx , 

(3.4b)



 E

2



 dx

δ W =  F δ  x −  c

δ  x. 

(3.4c)



 nc

 dt



Substituting Equation (3.4a–c) into Equation (3.3), we obtain the action 

function

 t f



2



 t f

δ

δ 1   dx 

1

2



 dx

  m



 kx   dt

 δ

 F x c

δ 

Π =

−

⋅ +

−

 x ⋅ dt =

∫ 



 . 

 dt

2

∫

0

2 





 dt



(3.5)







 i

 t

 i

 t



Applying the variation to the velocity and displacement, 
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 t f   dx d(δ x)

 dx



δ Π =  m

−  k  δ

 x x + δ

 F x −  c

δ  x⋅ dt =

∫

0 . 

(3.6)



 dt

 dt

 dt





 i

 t



Equation (3.6) can now be solved by using integration by parts:

 t f

 t



 dx

 dx



  d x   f

δ Π =

− m

−  c

−  kx +  F ⋅δ  x ⋅  dt +  m

=

∫

2







0 , 

2 



 dt

 dt



  dt 



 i

 t

 i

 t

 t f

δ



 dx

 dx



Π =

−

−

−

+

⋅δ ⋅ +

 d

 m

 c

 kx F

 x dt m

 xtf xti

0 . 

2 (

− ) =

∫





 dt

 dt



 dt

(3.7)



 i

 t



According to Hamilton’s principle, the variation δ  x in the first term vanishes 

at the limits of integration:

 t f   dx dx



− m

−  c

−  kx +  F ⋅δ  x ⋅  dt = 0 ,  δ  x →

∫



0 . 



 dt

 dt



(3.8)



 i

 t



Therefore, we arrive at the equation of motion of the SMD system:

 dx

 dx

− m

−  c

−  kx +  F = 0 , 

(3.9)



 dt

 dt



which upon arranging, is the same as Equation (3.2). 

3.2.4   Solutions to the Free Oscillation System

We first consider the free oscillation of the SMD system where the force  F 

in the right- hand side of Equation (3.2) is disregarded. Therefore, we arrive 

2

 d x

 dx

with a homogeneous equation; i.e.,  m

+  c

+  kx = 0. Here, we introduce 

2

 dt

 dt

the critical damping parameter   c

 c = 2  km = 2 m ω N, which is the damping 

value that results in the quickest possible return to equilibrium without oscil-

lation after disturbance. Note that ω N is the natural frequency of the system. 

By taking the ratio of the actual damping  c to the critical damping   c

 c , we 

 c

have the damping ratio ζ  c = . The damping ratio ζ c can be used to classify c

 c

whether the system is underdamped, critically damped, or overdamped, as 

will be explained later. 

The homogeneous Equation (3.9) can then be written as
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2

 d x + ζ

 dx

2  c  ω N

+ ω2 Nx = 0 . 

(3.10)



2

 dt

 dt



The homogeneous Equation (3.10) can be solved by first obtaining the roots 

1

r  ,  2  of its characteristic equation (refer to the method of characteristic equa-

tion shown in solving the Helmholtz equation in Chapter 2). The roots for the characteristic equation are thus given by

r  , = ω

−  N (ζ c ± ζ 2

1 2

 c − 1 )  , 

(3.11)





where the natural frequency ω N of the floating body is given by

1

 k

ω N =

 . 

(3.12)



2π  m  

For homogeneous second- order ODE, the solution for  r  can take three differ-

ent forms depending on the discriminant ( 2

ζ c −1) or the square of the damping 

ratio  2

ζ c  value, as shown in Table 3.1. The plots for the oscillator under different ζ c values are provided in Figure 3.2. The normalised amplitude is used in Figure 

3.2 by dividing the amplitude  x with the maximum of the oscillator so that the oscillation has a maximum amplitude of 1.0. As the damping ratio expresses 

the relationship between the actual damping  c with the critical damping   c

 c , 

where  c =  c

 c  (i.e.,  2

ζ c = 1), it can be seen in Figure 3.2 that the displacement  x(t) returns to its equilibrium without any oscillation at the shortest time. For  c >  c c  

TABLE 3.1

Solution to Homogeneous Equation for SMD

Roots 

System 

Characteristics

Solution x ( t )

Classification

ζ 2

Two real and 

Overdamped 

 c > 1



2





2



−  N  c−  c −1  t

−  N  c+  c −1  t

distinct

 x ( t)

ω ζ

ζ

ω ζ

ζ









= 1

 B e

+ 2

 B e

system

ζ 2

One real

−

 c > 1

( ) = (

 c Nt

 x t

1

 B + 2

 B t) ζ ω

 e

Critically 

damped 

system

< ζ 2

0

Two complex 





Underdamped 

2

 

 c < 1

 B  sin

1

 t

system

 t  1

( −ζ c )

and distinct

ω N  

 x( t)

−ω N ζ

 

=

 c

 e

+

2

 B  cos

1

 t



2





(





−ζ  c )ω 

 N 

Special 

Two complex 

 x ( t) =

Undamped 

1

 B  sin (ω Nt) + 2

 B  cos(ω Nt)

case: 

and distinct

system

ζ 2 c = 0

 Note:  1

 B  and  2

 B  are the unknown coefficients to be solved from the boundary conditions. 

[image: Image 46]
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FIGURE 3.2

Oscillator with different damping system. 

(i.e.,  2

ζ c > 1), the system has a similar characteristic as the critically damped 

system but with its  x ( t) approaching equilibrium over a longer period of time, whereas an underdamped system with 0 <  c <  c

 c  (i.e., 

2

0 < ζ  c < 1) will oscillate 

with a gradually decreasing amplitude until it eventually comes to a rest. For 

the purpose of practicality,  2

ζ c  or   cc is taken to be positive (i.e., greater than or 

equal to 0). In a special case where  2

ζ c = 0 or   cc = 0, we have the undamped 

system where the displacement will oscillate indefinitely. 

3.2.5   Solutions to Forced Oscillation

A floating body on water under wave action can be assumed to be a forced 

oscillation system where the wave exciting force  F ( x,t) is taken to be oscillating at the wave frequency ω; i.e., 



 F ( x,t) =  f ( x)co ω

s  t,  

(3.13)

where   f ( x) is the force in the spatial domain. Substituting Equation (3.13) into Equation (3.2) and expressing it in terms of ζ  c and ω N, we have

2

 d x + ζ

 dx

2 ω

 c N

+ ω2 Nx =  f  co ω

s  t. 

(3.14)



2

 dt

 dt



Equation (3.14) is a second- order non- homogeneous equation where the 

solution can be decomposed into the complimentary solution  xc and the par-

ticular solution  xp:



x =  xc +  xp  

(3.15)

The complimentary solution  x c can be obtained by first solving the homoge-

neous solution for Equation (3.15), i.e., solving Equation (3.10), and will not 

be repeated here. The complimentary solution  xc given in Table 3.1 depends 
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on the damping ratio  2

ζ c . The practical real engineering problem for floating 

bodies has an oscillating motion that decays with time; i.e.,  2

ζ c > 0. Therefore, 

the complimentary solution  xc, as a function of time, is also known as the 

transient response. 

The particular solution  xp, on the other hand, requires an assumption of a 

general particular solution given as



 xp = 3

 B  co ω

s  t + 4

 B  si ω

n  t,  

(3.16)

where  3

 B  and  4

 B  are the unknown coefficients. By substituting Equation (3.16) 

into Equation (3.14), we thus arrive with



2

 3

 B ( ω

−

+ ω N ) + 2 B  ω

4 ω N ζ 

 c  c

ω

 os  t

(3.17)



+ 

2

 4

 B ( ω

−

+ ω N ) − 2 B  ω

3 ω N ζ 

 c  si ω

n  t =  f  co ω



s  t.  

Comparing the left- hand side (LHS) and right- hand side (RHS) of Equation (3.17), 

two equations can be obtained; i.e., 

 B ( 2

2

3

ω

−

+ ω N )



+ 2 4

 B  ωω N ζ  c =  f , 

 B ( 2

2

4

ω

−

+ ω N )



− 2 3

 B  ωω N ζ  c = 0 .  

(3.18)

By solving Equation (3.18), simultaneously,  3

 B  and  4

 B  are given as

 f ( 2

2

ω N −ω )

3

 B =

 , 

4

2

2

ω +ω n + ω ω N (

2

2

1

− + 2ω n ζ c )



2  f  ωω N ζ  c

4

 B =

 . 

(3.19)

4

2

2

ω +ω N + 2ω ω N (

2

1

− + 2ω N ζ c )





Upon substituting Equation (3.19) into Equation (3.16), the particular solu-

tion is given as

(ω2 N −ω2)



ω

2 ω N ζ



 x =  f

cos  t +

 c

 p

sin  t

(

 . 

(3.20)

ω2 −ω2 N )

ω

ω

2 + ( ω

2 ω N ζ  c )2 

2



(ω N −ω )





  

Here, we note that the terms in the square brackets are a trigonometry 

equation in the form of



1

 B  co ω

s  t + 2

 B  si ω

n  t = Acos(ω t −φ ) ,  

(3.21)
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 A

where the magnitude 

2

2

A =

1

2

1

 A + 2

 A  and phase angle φ

− 



= tan 

  with 

 1

 A 

1

 A  and  2

 A  being constants. Using this identity, the square bracket terms in 

Figure (3.20) are thus



ω

2 ω N ζ



co ω

s  t +

 c

sin  t

A cos  t

 , 

(3.22)



2



(

 = ⋅

−

ω

−

+ ω N )

ω

(ω φ)









where

(ω2 N  ω2)2 ( ω

2 ω N ζ  c )2 

−

+

−1  ω

2 ω N ζ  c 





A =

(

and

tan

 . 

(3.23)

−

+

2

2

2



 N )

φ =





 ω N −ω 



ω

ω









The particular solution (3.20) is thus given as

 f cos(ω t −φ )

 xp =

 . 

(3.24)

( 2 2

ω −ω N )2 + (2ωω N ζ c)2





By manipulating Equation (3.24), the particular solution can be written as

 f

 xp = Λ (ω N )⋅ cos(ω t −φ ) , 

(3.25)



ω



where the magnitude Λ (ω N ), also known as the dynamic amplification fac-

tor, is given as

Λ (ω N ) =

1

 . 

(3.26)



2

ω 2

  N 

 ω N 2

1− 

  + 4

 ζ 2 c



 ω 





 ω









The particular solution  xp has an oscillating motion that does not decay with 

time. Such motion is said to be in steady state, and its magnitude depends 

on the term  Λ(ω n ) . Plotting only the magnitude term  Λ(ω n )  in Figure 3.3, 

 ω

the magnitude depends on the ratio 

 N 



  ,  where the amplification of the 

 ω 

maximum  Λ (ω N )  occurs when (ω N /  ω ) = 1. This is when the wave frequency ω coincides with the natural frequency ω N of the system, a phenomenon 

[image: Image 47]
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FIGURE 3.3

Dynamic amplification factor Λ . 

known as resonance. For marine and offshore structures, the main objective 

is to design the structure such that the ω N is away from the wave frequency 

of the sea state to avoid amplification of the magnitude. However, for some 

WECs, the amplification of the magnitude of the displacement is required in 

order to maximise the wave energy generation. This also poses some struc-

tural issues for WECs that are designed to generate energy via resonance 

effect. Figure 3.3 shows that inclusion of damping ζ  c in the model results in a change in the natural frequency ω N of a floating body where ω N reduces 

with the increase of ζ  c. Therefore, it is important to include the damping in 

assessing the performance of the floating structure. The damping  c can be 

obtained from Equation (3.27) via free decay motion in an experimental test 

or by using the numerical method (e.g., using CFD for obtaining the viscous 

damping for floating body). 

2κ k

c =

 , 

(3.27)



ω n  

where the non- dimensional damping, known as the logarithmic decrement 

κ  ,  is given by the natural logarithm of the ratio of the amplitudes of any two 

successive peaks, given as109

κ

1

 zk −  zk+

=

1

ln

 . 

(3.28)



2π

 zk+2 +  zk+3  

 c

Note that ζ  c =  where   c

 c = 2 m ω N. 

 c

 c

[image: Image 48]
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3.3   Motion of WEC

In this chapter, the governing equation for a generic WEC subjected to regu-

lar and irregular waves is derived. The WEC has a relatively simple geometry 

where its equation of motion can be obtained by using the direct equilibrium 

method described in Section 3.2.2, whereas the water is modelled as an ideal fluid by assuming irrotational motion. 

Before delving into the governing equation, it is necessary to define the 

degrees of freedom (dofs) of a freely floating body. For a freely floating 

body in a three- dimensional space defined by the cartesian coordinate, 

as shown in Figure 3.4, there exists six dofs, i.e., surge, sway, heave, roll, pitch, and yaw. The surge, sway and heave are the translation motions 

along the  x- ,  y- , and  z-  axes, respectively, whereas the roll, pitch and yaw are the rotational motions along the  x- ,  y- , and  z-  axes, respectively. 

However, for seakeeping, the significant dofs only involve the heave w, 

roll θx, and pitch θz. 

3.3.1   Water  Equation

Figure 3.5 shows a floating body with the origin of the global cartesian coor-

dinate system ( x- y- z axes) located at the free surface  z = 0 .  The floating body is surrounded by fluid domain  Ω . The coordinate system follows the right-hand rule with the  z-axis pointing upwards. The surface boundary at the sea-

bed, free surface, wetted surface of floating body, and infinity is represented 

by   B

 S ,  F

 S ,  W

 S ,  and  S±∞, respectively. 

FIGURE 3.4

Six dofs for a freely floating body. 

[image: Image 49]
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FIGURE 3.5

Mathematical domain. 

The SAWT is assumed. As presented in Section 2.2, the fluid motion can be 

represented by a velocity potential Φ ( x, y, z,t) such that Φ( x, y, z,t) satisfies the Laplace Equation (2.25a), together with the boundary conditions on the 

seabed Equation (2.25b) and on the free surface (2.25e). For simplicity, the 

velocity potential for the SAWT in this chapter will simply be denoted as  Φ  

instead of  ( )

Φ 1 . 

In addition to these boundary conditions, the velocities of the fluid and 

floating body have to satisfy the following boundary conditions:

∂Φ ∂

= W  ,  on

 W

 S , 

(3.29)



 n

∂

 t

∂



where W ( x, y, z,t) = (w θx θy ). It is to note that Equation (3.29) implies that the floating body is always in contact with the water such that it obeys the 

non- wave breaking condition. 

3.3.2   Complex  Plane

As summarised in Table 3.1, there are situations where the roots to the solution of the second- order ODE that governs the motion of a harmonic oscilla-

tor are complex numbers. In fact, most of the real oscillation systems in real 

life application, such as WEC or VLFS, are underdamped systems. Therefore, 

it would be easier to express the motion of a WEC in complex plane. With 

this, it is thus assumed that the velocity potential Φ ( x, y, z,t), floating body 

motion W ( x, y, z,t) and external force F( x, y, z,t) can be represented in the complex domain as

Φ (

) = Re{ (

) iω

ϕ

 t

 x, y, z,t

 x, y, z e }



 ,  

(3.30)

W (

)

{ (

) iω

= Re

 t

 x, y, z,t

 W x, y, z e }



 ,  

(3.31)

F(

)

{ (

) iω

= Re

 t

 x, y, z,t

 F x, y, z e }



 ,  

(3.32)
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where  ϕ and  W  are the spatial velocity potential and floating body 

response, respectively, and  ω

i  t

 e

= (co ω

s  t + isi ω

n  t) is the Euler formula. 

 W ( x, y, z) = ( w,  θ x,  θ y )  with  w, θ x,  and θ y represent the spatial motion corresponding to heave, roll, and pitch, respectively. It should be noted that the Φ, 

W ,  and F follow the same time function, i.e.,  ω t

 e i  due to the assumption made 

in the boundary condition Equation (3.29). 

By using Equations (3.30) and (3.31), the Laplace equation and boundary 

conditions are summarised as follows:

2



Laplace Equation  : ∇ ϕ = 0 ,  in fluid domain Ω ,  

(3.33a)

ϕ

∂

BConSeabed  :

= 0 ,  at  z = − D, 

(3.33b)



 z

∂



2

ϕ

Free SurfaceBC ω

:  ϕ

∂

+  g

= 0 ,  at  z = 0 , 

(3.33c)



∂ z



ϕ

∂

BCon Wetted Surface  :

= iω W,  on

 w

 S , 

(3.33d)



∂n



where n = ( nx,ny,nz,nx′ ,ny′ ,nz′ ) is the unit vector normal to the body boundary for the six dofs.  ( n ,n ,n =  ˆ i , ˆ ˆ

 x

 y

 z )

( j ,  k )=nt  and ( nx′ ,ny′ ,nz′) = x×nt = nr ,  

where x = ( x, y, z)  ;    ˆ i,  ˆ j, and   ˆ k are the unit vectors in the  x-,  y-, and  z-axes, respectively. Thus, for seakeeping motion with heave, roll, and pitch, 

 nr = x ×  t

 n = (

 ˆ

 n

 n

 n

 y  k  z ˆ j , 

 z ˆ

 ˆ

i

 x  k  , 

 x ˆ j  y ˆ

 z

 x′

 y′ ) = ( ⋅ − ⋅

⋅ − ⋅

⋅ + ⋅ i ) . (3.34)



The scattered and radiated potential must also satisfy the radiation 

condition, 

ϕ

∂  k = ikϕ k,  k r → ∞ for  k =  D  or  S, 

(3.35)



∂ r



where  D is the diffracted waves and  S the scattered waves introduced later 

in Section 3.3.4. The radiation condition requires that as the ϕ S and ϕ R propagate away from the source, its value will approach zero as  r → ±∞. Therefore, 

ϕ → ϕ I as  r → ±∞. 

3.3.3   Hydrostatic  Coefficients

The equation of motion of the floating body can be derived by using the 

direct equilibrium method described in Section 3.2.2. By using Equations 

(3.30)–(3.32), the equation of motion (3.2) of the WEC with mass  m and mass 

moment of inertia about  x-axis  Ix and mass moment of inertia about  y-axis  Iy for the heave, roll, and pitch can be written as below. 
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( ω

− 2 m + iω cz +  kz )



⋅  w =  z

 F ,  

(3.36a)

( ω

− 2 I

i

 x + ω cx′ +  kx′ )



⋅θ y =  Mx,  

(3.36b)

( ω

− 2 I

i

 y + ω cy′ +  ky′ )



⋅θ y =  My ,  

(3.36c)

where  c and  k are the viscous damping and hydrostatic stiffness, respectively. 

Here, the subscripts  x,  y,  and  z associated with  c and  k are used to denote values corresponding to their translational motions, whereas subscripts  x′,  y , ′ 

and   z′ are used to denote values related to their corresponding rotational 

motions. The vertical external force, external moment about the  x-axis, and 

external moment about the  y-axis acting on the floating body are given by   z

 F , 

 Mx,  and  My; i.e.,  F = (  z

 F , Mx, My ). 

When a body with mass  m is floating on a water surface, its weight is sup-

ported by the buoyancy force, which is analogous to a spring system with 

linear constant  kz given as



 kz = ρ

 wp

 gA ,  

(3.37)

where   wp

 A  is the free surface water plane area of the floating body. For exam-

ple, a vertically floating cylindrical body with radius   ar and length   a

 L  has 

 A = π 2

 wp

 a

 r ,  whereas the same cylinder placed horizontally with draft   a

 d  has 

 wp

 A = 2  a

 L ar. It should be noted that Equation (3.37) has the same unit of a 

 N

spring constant, i.e.,  . This buoyancy force acts as a linear restoring force 

 m

for the floating body to return it to its equilibrium position when any linear 

external forces are removed. 

Similarly, when a rotating floating body is subjected to a moment regard-

ing the  x-axis  Mx or  y-axis  My, the rotational restoring force due to the rotational spring stiffness about the  x-axis  kx′ and about the  y-axis  ky′ will return the floating body to its equilibrium position; i.e., 



 kx′ = ρ ∇

 g ⋅ GMxx,  

(3.38a)



 ky′ = ρ  g∇ ⋅ GMyy ,  

(3.38b)

where  GMxx and  GMyy are the metacentric height of the floating body about 

the  x-axis and  y-axis, respectively. ∇ is the volume displaced by the floating body. Here, the rotational motion is affected by the mass moment of inertia 

 Ix and  Iy instead of the mass  m. For all cases, the viscous damping due to the fluid viscosity that affects the heave, roll, and pitch motions can be modelled 

by   cz,   cx′ ,  and  cy′, respectively. 
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3.3.4   Hydrodynamic Force and Components of Velocity Potential

Besides the hydrostatic force  k, a floating body under wave action is sub-

jected to hydrodynamic force F. Mathematically, this force can be derived 

from hydrodynamic pressure by integrating the pressure P ρ ∂Φ

=

over the 

 t

∂

wetted surface   w

 S  of the floating body:

F(

∂Φ

 x, y, z,t)

( x,y,z,t)

= ρ

⋅  W

 dS , 

∫

(3.39)

 t

∂



 w

 S



or

i



F(

)

(

) ω

=

⋅

 t

 x, y, z,t

 F x, y, z e ,  

(3.40)

where

F( x, y, z) = iωρ ϕ ( x, y, z)⋅

∫

 d W

 S . 

(3.41)



 W

 S



The hydrodynamic forces can be decomposed into three components, i.e., 

the exciting force due to incident wave, the forces due to scattered wave, and 

the radiated force. 110 Therefore, the velocity potential can be further decomposed as

ϕ ( x, y,z) = ϕ I ( x, y,z) +ϕ S ( x, y,z) +ϕ R ( x, y,z)



 ,  

(3.42)

or



ϕ ( x, y,z) = ϕ D ( x, y,z) +ϕ R ( x, y,z) ,  

(3.43)

where ϕ D = ϕ I +ϕ S  is the diffracted velocity potential, ϕ I the incident velocity potential and ϕ R the radiated velocity potential. It is noted that ϕ I is already derived in Equation (2.55). The three- dimensional ϕ I  expressed in complex 

plane is89

 gA cosh  k  z +

ϕ

 D

i

 I (  x, y, z)

(

)

=

⋅

⋅exp  k ( x co θ

s +  y  si θ

n )  . 

(3.44)



ω



 cosh  k D



The scattered wave ϕ S is the wave that is being diverted away from the direc-

tion of the incident wave. It is usually accompanied by a change in wave 

amplitude when the incident wave ϕ I  encounters some disturbance such as 

hitting on a floating object or when there is a change of seabed bathymetry. 
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The scattered wave has to satisfy the condition that

ϕ

∂  I

ϕ

∂

= −

 S . 

(3.45)



∂n

∂n  

Following the boundary conditions of Equations (3.33d) and (3.45) and using 

Equation (3.29), the boundary condition for the ϕ D and ϕ R on   w

 S  is thus

ϕ

∂

iω W

for ϕ

= 

 R . 

(3.46)



∂n

0

for ϕ



 D  

Substituting Equation (3.43) into the hydrodynamic force  F (3.40), 

F( x, y, z) = iωρ ϕ

i

(3.47)

 D ⋅ n ⋅  dS + ωρ

ϕ R ⋅n⋅

∫

∫

 dS. 



 w

 S

 w

 S



The first term in the RHS of Equation (3.47) is the excitation force:

i

(3.48)

 E

 F = ωρ ϕ D ⋅n ⋅

∫

 dS, 



 w

 S



whereas the second term is the force contribute to the added mass  and 

radiated damping . 

3.3.5   Equation of Motion with PTO Damping Force

As the WEC generates energy from the oscillating motion, a PTO system 

is thus needed to transform the kinetic energy into electricity. This PTO is 

commonly modelled using a damping coefficient   p

 B to as an external restoring 

force:



i

 p

 F to = − ω  p

 B toW,  

(3.49)

where the negative sign indicates that the   p

 F to is a restoring force acting in the 

opposite direction of the hydrodynamic force. 

By using Equations (3.30) and (3.31), Equations (3.36a) to (3.36c) can be 

written in a more compact form with three additional terms – the added 

mass  (ω), radiated damping  (ω), and PTO damping   p

 B to:

 ω

− 2 ( M + ) + iω



( C + +  p

 B to ) +  K ⋅ W =





 E

 F ,  

(3.50)
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where  W ( x, y, z) = { w  θ θ }T

 x

 y

,  M =  diag ( m Ix Iy ) ,  C = diag( cz cx′  cy′) , and   K = diag( kz kx′  ky′ ) . The excitation force   E

 F  comprises the forces in the 

 z-direction and moment about the  x- and  y-axes. Here, the viscous damping C is ignored due to the inviscid fluid assumption. 

The floating body response is thus

 F

W =

 E

 , 

(3.51)

2



ω

−

( M + ) +iω( +  p

 B to ) +  K  

or

 F

W =

 E

(

 . 

(3.52)

 M + )( ω

− 2 + ω2

i

 N ) + ω ( +  p

 B to )





In order for the WEC to have the maximum heave response (to generate the 

most energy), the determinator in Equation (3.51) has to be zero; i.e., 

ω

− 2 ( M + ) + iω ( +  p

 B to )



+  K = 0 .  

(3.53)

3.3.6   Optimal PTO Damping

The optimal PTO damping (  p

 B to )  can be obtained by solving 

 opt

Equation (3.53):

(

ω  M +  −  K

 p

 B to )

2 (

)

=

−  . 

(3.54)



 opt

 i ω



The magnitude of the (  p

 B to )  is thus

 opt

(

ω

+  − 

 B )

( M

)

2

2

 K

 pto

= 

 +   , 

(3.55)

 opt

ω









or



−

+



(

ω

ω

 M 

= 



 p

 B to )

(  n

)(

) 2

2

2

2

+   . 

(3.56)

 opt



ω








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The value for (  p

 B to )  depends on the  (ω) and  (ω) values that change with 

 opt

the frequency ω. This means that the optimal values of the PTO damping are 

different for various wave frequencies. For a complex structure, modelling a 

WEC with varying   p

 B to value for different wave frequencies is not practical. 

Therefore, a constant (  p

 B to )  is usually assumed to enhance the computa-

 opt

tional time in the simulation. It is common to take the  and  at small wave 

frequency, i.e., large wave period, as the constant (  p

 B to ) . An example of the 

 opt

performance of a generic WEC by using the aforementioned constant (  p

 B to )  

 opt

is given in Section 3.7. 

3.3.7   Power  Capture

The captured power or absorbed power   a

 P  of a WEC can be calculated from 

the WEC responses  W  given by

1 2

2

 P = ω ⋅ B ⋅  W . 

(3.57)



 a

2

 pto



Substituting Equations (3.52) and (3.55) into Equation (3.57), 

2

= 1 ω2 ⋅

 F

 P

 p

 B to ⋅

 E

 a

 . 

(3.58)

2

( M + )( ω

− 2 + ω2 N ) + iω ( +  p

 B to )





Dividing the power   a

 P  with the rate of power flux given in Equation (3.58) 

gives us the capture width  CW  in unit length:

2

2

ω

 a

 P

 p

 B to

 E

 F

 CW =

=

⋅

 . 

(3.59)

2

 E

ρ  g A  g ( M + )2 ( 2 2

ω

−

+ ω N )2

2

+ ω ( +  p

 B to )2





By multiplying Equation (3.59) with the wave number  k , we have the cap-

ture width ratio ( CWR) given as

k ω

2

2

 CWR =

 p

 B to ⋅

 E

 F

 . 



(3.60)

 g  ρ

2

 g A

( M + )2 ( ω

− 2 + ω2 N )2 +ω2 ( +  p

 B to )2





The  CW  is maximum when the denominator is small. This can be achieved 

when resonance occurs, i.e., ω n = ω, and assuming that  =  p

 B to, 

2

(

)

1

k

 E

 F

 CWR

=

⋅

 . 

 max

2

4 ρ

(3.61)

 g  A





 g
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Therefore, the maximum power (  a

 P )  is given by

 max

2

( P )

1

 E

 F

 a

= ⋅

(3.62)



 max

8   

Example 3.1 

The equation of motion (3.50) can be solved analytically for 

simple geometry like a cylindrical point absorber using the 

equation shown in Section 3.3.7 for the   a

 P ,  CW  and  CWR.  

Consider a cylindrical point absorber WEC (PA- WEC) with a 

diameter ∅ = 5 m and a draft   we

 d c = 0 25

 .  m floating in a water 

depth  D = 25 m. 

The added mass   is assumed to be a constant value; i.e., 

ρ g π∅2

 =

 , 

(3.63)



4



and the radiated damping  can be derived from Haskind’s 

relation:

2π

 =

k

 F

 d , 

2

 D (θ ) 2 ⋅ θ

(3.64)

8

 g  A ∫

ρ

π



 g

0



where the evaluation of the integral in (3.64) is

π

2

 D

 F (θ ) 2 ⋅ θ

 d = 2π×  D

 F (θ )

∫

2  . 

(3.65)



0



Substituting Equations (3.63) and (3.64) into Equation (3.61), we 

obtain the ( CWR)

:

max



( CWR) = 1 . 

ma x



(3.66)

The maximum power  (  a

 P )  is given by

 max

(  aP)

1

2

=

⋅ ρ  g g A . 

(3.67)



max

2k
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3.3.8   Unidirectional and Multidirectional Sea

For unidirectional irregular wave, the average heave response  w generated 

over the range of wave frequency ω considered can be obtained from the 

response spectrum expressed by111

 res

 S (ω) I|=  w(ω) ⋅  I

 S (ω)⋅ ω

 d

 I =

∫

2

for

PM ,  BS ,  JS or OH . 

(3.68)



ω



The average heave  w is thus given by

 w (ω)



 I

 |= 4

 res

 S

for  I = PM ,  BS ,  JS or OH . 

 I



(3.69)

The response spectrum of the absorbed power can be written as

 a

 P

 res

 S

(ω) =

 a

 P (ω) ⋅  I

 S (ω)⋅ ω

 d

 I =

 , 

 , 

 , 

(3.70)

 I

∫

2

( )

for

PM BS JS or OH



ω



and the average power   a

 P  is thus given by

 a

 P (ω) I|=

(  a

 P )

4

 res

 S

 I

 |  for  I =



PM ,  BS ,  JS ,  or OH .  

(3.71)

Similarly,  a

 P  over multidirectional sea is given as

 a

 P (ω ,  θ )  I|=

 a

 P (ω) ⋅  I

 S (ω ,  θ )⋅ ω

 d

θ


 d

 I =

∫∫

2

2

for

PM ,  BS ,  JS or OH . 

(3.72)

θ ω



Similarly,  I

 S (ω ,  θ ) is the multidirectional wave spectrum given in 

Section 2.3.6. 

3.4   WECs in Array

The WECs are commonly arranged in an array in order to enhance the energy 

generation from the wave farm. It is necessary to quantify the influence of 

one WEC to another when assessing the performance of the WEC array. 

3.4.1   Equation of Motion

For different numbers  Nwec of WECs, the equation of the motion of the body 

 a due to the body  b is written as31, 112
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{

 Nwec

ω

− 2 [ M + 

i

i

 aa ] + ω   p

 B to +  aa  +  K}⋅  a

 W −

ω

 2 ba − ω 

 ab ⋅

 b

 W =





∑

(  E

 F )





 . (3.73)

 a

 b=1

 b≠ a



3.4.2   Interaction Factor ( q-Factor) in a Regular Wave

In order to quantify the interaction between devices, Budal113 defines the q-  factor to facilitate the discussion on the performance of the array. For regular waves, this is written as

 Nwec

∑ (  aP)

 T

 P

 n=1

 n

 q =

=

 , 

(3.74)



 Nwec ×(  a

 P )

 Nwec ×(  a

 P )

0

0



where   T

 P  is the total absorbed power, (  a

 P )  is the absorbed power by the  

 n

 n th number of WEC, and (  a

 P )  the absorbed power of an isolated WEC in the 

0

open sea. 

Equation (3.74) is used as a performance evaluator for the array where a 

constructive interaction is denoted by a value greater than 1.0 and a destruc-

tive interaction when smaller than 1.0. Thus, a constructive interaction 

informs the engineers that the wave interaction due to wave diffraction and 

radiation has a positive effect to the wave arrays in terms of energy gen-

eration, whereas a destructive interference implies that there is cancellation 

of waves due to wave superposing which results in low energy generation. 

Thus, it is the job of the engineers to ensure that the constructive interference 

can be achieved, and this can be done via optimisation, as will be explain in 

Chapter 7. 

3.4.3   Interaction Factor ( q-Factor) in Irregular Wave

Similar to the regular wave, the  q-  factor for irregular wave can be com-

puted by

(

∑

 a

 P )

 Nwec (  aP)

 q

(3.75)

×( T

=

=

=

 , 

 Nwec

 a

 P )

 n  1

 Nwec ×(  a

 P )  n



0

0



where (  a

 P )  is the total average power,  a

 P  the average power as given in 

 T

Equations (3.71) and (3.72) for unidirectional wave and multidirectional sea, 

respectively. Similarly, the subscript  n denotes the power for the  n th WEC 

and subscript 0 denotes power for an isolated WEC in the open sea. 
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3.5   Solution to Velocity Potential

The evaluation of  CWR,  CW  and   a

 P  requires the knowledge of diffracted 

and radiated potentials. In this section, evaluation of diffracted and radi-

ated potential using Green’s identity, which results in the boundary 

integral equation (BIE), will be presented. This is followed by the intro-

duction of Haskind’s relation, which allows the evaluation of exciting 

force from the radiated potential. Lastly, the numerical scheme based on 

the BEM used to solve for the boundary integral in the boundary value 

problem (BVP) will be presented. In order to derive the BIE, we first pres-

ent the modal expansion method and free surface Green’s function in 

Sections 3.5.1 and 3.5.2. 

3.5.1   Modal Expansion Method

Equation (3.46) for the radiated wave shows that the velocity potential ϕ 

and the floating body motion  W  depend on each other, and therefore we 

have a coupled problem. This is to say that if boundary condition Equation 

(3.46) is imposed on the equation of motions (Equation (3.36)) via the force 

 F on the RHS of the equation, we will end up with two unknows for each 

equation, which is unsolvable. In order to solve such a coupled problem, 

the equation of motion can be decoupled by using the modal expansion 

method. 

According to the modal expansion method proposed by Newman,90 the 

radiated velocity potential ϕ R ( x, y, z) can be expanded by a series of the products of the complex amplitudes of the body oscillatory motion in its 

three dofs   l

 W  and the corresponding unit- amplitude radiation potentials ϕ l, 

given by

ϕ

i

 R = ω

 l

 W ⋅ϕ l

 l =  z, ′

 x

 y′

∑

for

and  , 

(3.76)



 l



where the complex motion of the floating body   l

 W  can be written in unit vec-

tor form:

 l

 W =  W ⋅n =  l

 n = ( w ⋅ nz

θ x ⋅ nx′

θ y ⋅ ny′ )for l =  z, ′ x  and  y′ . 





(3.77)

Therefore, the alternative form of Equation (3.76) is

ϕ

i

 R = ω

 l

 W ⋅ϕ l ⋅n = iω

 l

 W ⋅ϕ l ⋅  l

 n

 l =  z, ′

 x

 y′

∑

∑

for

and  . 

(3.78)



 l

 l
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3.5.2   Free Surface Green’s Function

Green’s function was first developed by the British mathematician George 

Green (1793–1841), 114,115 where he derived a function that is taken to be the fundamental solution of the Laplace equation. 

Green’s function  G has a property that it satisfies the Laplace equation, 116

2



∇  G(x ,  ξ) = δ (x − ξ) ,  in Ω ,  

(3.79)

where δ (x − ξ) is the Dirac delta function which denotes solution exists when 

x ≠ ξ .  The solution to the second- order PDE for Green’s function Equation (3.79) has a fundamental solution in the form of

(x ξ) = − 1 = − 1

G  , 

 , 

(3.80)



x − ξ

 R  

where x = ( x, y, z)  is the location of the field and ξ  = (ξ η

 , ,  ζ ) is the location 

of the source point.  R = x − ξ  is the distance between the source and field points. The objective of  x − ξ  is to evaluate the influence of the sources ξ, 

when distributed on surfaces, has on its field x. 

Linton117 has derived a Green function, known as the free surface Green’s function, which satisfies the boundary conditions

∂ G(x ,  ξ) = 0 ,  at  z = − D, 

(3.81a)



∂ z



∂ G(x ,  ξ) ω2

=

 G(x ,  ξ) ,  at  z = 0 . 

(3.81b)



∂ z

 g



The free surface Green’s function is given as117

∞  K (  j k x − )

G(x , ) = −

cos 

∑

ξ

ξ

0

k j ( z +  D) cos k j (ζ +  D)  ,  at  z =









0 , (3.82)

2π C



=0

 j

 j



where  K

k

0 is the second kind Bessel function of order zero and   j  the positive 

ω2

real roots of the dispersion equation −  j

k tan  j

k  D =

, where  j ≤ 0. The zeroth 

 g

root  0

k  is related to the wavenumber k by  0

k = − i k, and the constant  Cj is given 

by

 D 

sin2k  D 

 C =

1+

 j

 j





 . 

(3.83)



2 

2k j k   
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3.5.3   Green’s Theorem: Green’s Second Identity

Green’s second identity states that for two scalar functions  1

φ  and  2

φ  defined 

on some region  Ω , where both functions are twice differentiable, 

( 2

2

1

2

2

1 )



φ

∂

φ

φ φ φ

φ  d

φ

∂

1

φ 

∇

− ∇

Ω =

−

2 

∫

∫ 2 1  dS

(3.84)



∂n

∂n





Ω

 s



where  S is the surface of the domain  Ω . 

3.5.4   Boundary Integral Equation

Referring to Figure 3.5,  S encompasses the surface at the seabed   B

 S , the free 

water surface   F

 S , the wetted surface of the floating body   W

 S ,  and the surface 

at infinite boundary  S±∞. We have to define the function  1

φ  equals to the free 

surface Green’s function  G(x ,  ξ) and by replacing  2

φ  with the velocity poten-

tial ϕ, the BIE for the Laplace equation is given by

( 2

2

)

 ∂

 G

∂

 G

 G d

 G



∇ − ∇

⋅ Ω =

−

⋅  dS. 

∫

∫

ϕ

ϕ ϕ

ϕ

(3.85)

 ∂n ∂n 



Ω

 S⊃{  B

 S +  F

 S + S±∞ +  W

 S }



It is easy to proof that by substituting the boundary conditions for ϕ 

and  G(x ,  ξ ), i.e., Equations (3.33b), (3.33c), (3.33d), (3.81a), and (3.81b), we have



ϕ

∂

 G

∂

0

 G

ϕ 

=

−

⋅  dS. 

∫

(3.86)

 ∂n ∂n 



 S⊃{  B

 S +  F

 S + S±∞ +  W

 S }



As described by the Dirac delta function δ (x ,  ξ) in Equation (3.79), the 

solution for  G does not exist when x = ξ due to singularity. Therefore, we 

can decompose the surface  S into   W

 S ′ and  

 S , where  

 S  is a small circular of 

radius   around the source point x ,  and   W

 S ′ is the surface of the domain 

without  

 S . This is shown in Figure 3.6, where, for simplicity, the surface   w S ′ 

will be denoted as   w

 S . With this, Equation (3.86) can be re- written as



ϕ

∂

∂ G 



ϕ

∂

∂ G 



ϕ

 G

0

 G

ϕ   W

 dS

 G

ϕ

∂

∂



=

−

⋅

+

−

 ⋅ ±

 dS ∞ +  G

−

ϕ ⋅

∫ n n

∫ n n

∫

 dS . 

 ∂

∂



 ∂

∂



 ∂n ∂n 



 w

 S

±∞

 S

 S



(3.87)

1

If we substitute the fundamental solution for  G from (3.80), i.e.,  G = −  , R

into (3.87), this yields

[image: Image 50]
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FIGURE 3.6

Discretisation of  Ω  into   W

 S ∪ 

 S . 



ϕ

∂

∂ G 

 1 ϕ

1

0

 G

ϕ

∂

∂ 



=

−

⋅  dS +

−

−

∫

(3.88)

n

n

∫

 − ϕ ⋅

  dS

 ∂

∂





  R ∂n ∂n   R 





 w

 S + ±∞

 S



 S



and



ϕ

∂

∂ G 

1 

ϕ

0

 G

ϕ

∂

  dS

 R

 dS . 

2 

ϕ 

=

−

⋅

+

− ⋅

∫

n

n

∫

 ∂

∂



 R  ∂n



(3.89)



 w

 S + ±∞

 S

 S



∫  dS

The term 



2

θ

 R  in Equation (3.89) is the solid angle  C ( ), therefore giving us

 ϕ

∂





ϕ

∂

 G

∂

0 

ϕ   C



=

−

⋅ θ (θ ) +

 G

−

ϕ ⋅ dS

n

∫

 ∂



 ∂n ∂n 

(3.90a)



 W

 S + S±∞



or

ϕ

∂

ϕ



ϕ

∂

 G

∂

0 

 C



=

−

θ (θ ) 2

 +

 G

−

ϕ ⋅ dS. 

2

∂n 

∫  ∂n ∂n 

(3.90b)



 W

 S + S±∞



Upon simplification and taking the small circular radius  to be an infinitesi-

mal small value, i.e.,  → 0, Equation (3.90b) becomes



ϕ

∂  k x

∂ G x , 



θ

 C (θ )⋅ϕ k (x) =

 G(x , )

( )

( )

−

ϕ k (x) ⋅  W

 dS , k =





∫

ξ

ξ

 R or  D, (3.91)

∂n

∂n







 w

 S



where  R represents the radiated wave and  D the diffracted wave. 

The solid angle  C θ (θ ) is a three- dimensional angular volume that mea-

sures the amount of field of view covered by an object from a particular 

point of observation. It is defined analogously to a plane angle in two 

dimensions and is measured in steradians (sr)114–116. Therefore,  C θ (θ ) has a 
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value of 4π steradian when the source point is located in the fluid domain 

Ω and a value of 2π steradian when located at the wetted surface of a float-

ing body, i.e., 

4π

in Ω

θ

 C (θ ) = 

 . 

2π

on  S

(3.92)





 W  

3.5.5   Solution  to  ϕ D and ϕ R

By substituting Equations (3.76) and (3.77) into Equation (3.91) and imposing 

the boundary condition Equation (3.46) on the wetted surface   W

 S , 

 

∂ G x ,  ξ





iω ⋅



 G(x ,  ξ)⋅ W (x)

( )

⋅n −

⋅ϕ k (x) ⋅ dS

for  k =



∫

 R

∂

 

n



ϕ (x) 

=   wS

 k

 . (3.93)





x

 G(x ,  ξ) ϕ

∂  k ( )  ⋅ dS

for  k =







∫

 D

∂



n 





 w

 S + ±∞

 S



Note that the term on RHS in Equation (3.93) for ϕ R is evaluated only over   w

 S , 

as the radiated potential satisfies the radiated boundary condition Equation 

(3.35) at  S±∞. 

To evaluate the RHS term in Equation (3.93) for ϕ D over  S±∞, it can be re- 

written as



ϕ

∂  D ∂ G





ϕ

∂  I ∂ G 



ϕ

 G

 G

ϕ D   dS

 G

ϕ

∂  S ∂

 I   dS

 G

ϕ 

−

⋅

=

−

⋅

+

−

 S  ⋅

∫

n

n

∫ n n

∫

 dS



∂

∂



 ∂

∂





∂n

∂n



±∞

 S

±∞

 S

±∞

 S



(3.94)

As the scattered potential satisfies the radiated boundary condition Equation 

(3.86), Equation (3.94) becomes



ϕ

∂  D

 G

∂





ϕ

∂  I

 G

∂



 G

−

ϕ D ⋅ dS =  G

−

ϕ In ⋅ dS. 

∫

(3.95)

n

n

∫



∂

∂



 ∂n

∂n





 S±∞

 S±∞



Using the same technique as in Equation (3.87), i.e., by assuming a small cir-

cular   S  of radius    around the source point x and upon evaluation, 



ϕ

∂  D ∂ G

 G

ϕ 

−

 D  ⋅  dS = θ

 C (θ )⋅ϕ I , 

θ

 C (θ ) = π

∫

where

4  . 

(3.96)



∂n

∂n





±∞

 S



The solid angle  θ

 C (θ ) = 4π because ϕ I is evaluated at the fluid domain Ω. 

Therefore, Equation (3.93) becomes
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 

∂ G x ,  ξ



 iω ⋅ G(x ,  ξ)⋅ W (x)

( )

⋅n −

ϕ k (x)⋅ dS

for  k =

∫

 R

∂

 

n



C(θ ) ϕ (x) 

⋅

=   wS

 k

 , 

 

 k x

 G x ,  ξ

 G(x ,  ξ) ϕ

∂ ( ) ∂ (

)



−

ϕ k (x)⋅ dS + 4 ϕ

π  I (x) for  k =

 ∫

 D

∂n

∂



n





  w

 S

where  C(θ ) = 2π



 .  

(3.97)

By rearranging Equation (3.97) and imposing the boundary condition 

Equation (3.46) on   w

 S  for ϕ S and ϕ D, we have





∂ (

i

x ξ)



ω  G(x ,  ξ)⋅ W (x)⋅n⋅ dS  for  k =





∫

 R

 G , 

2π + 

 ⋅  dS ⋅ϕ k (x) 





= 



∫ ∂n







 S



 w



 w

 S



4 ϕ

π  I (x)

for  k =



 D 

(3.98)

or

−1







iω  G x ,  ξ ⋅ W x ⋅n⋅ dS  for  k =

 ∂ G x ,  ξ 

∫

 R

ϕ k (x)

( )

( ) ( )



= 2π + 

 ⋅



 dS

× 

 . 



∫ ∂n







 S



 w





 w

 S



4 ϕ

π  I (x)

for  k =



 D  

(3.99)

The diffracted potential ϕ D allows the evaluation of excitation force   E

 F  in 

Equation (3.48), and the radiated potential ϕ R contributes to the added mass 

and radiated damping described in the Section 3.5.7. 

With that, we have successfully decoupled the equation of motion (Equation 

(3.50)), which now only has one unknown  W . The complex amplitude for the 

motion can thus be solved easily for this algebraic equation. 

3.5.6   Haskind’s  Relation

Equation (3.48) shows that in order to derive the excitation force   E

 F , the 

knowledge of the scattered potential is necessary. By substitute ϕ D = ϕ I +ϕ S 

into (3.48), we have

i

 E

 F = iωρ ϕ D ⋅n ⋅  dS = ωρ (ϕ I +ϕ S )⋅n ⋅

∫

∫

 dS. 

(3.100)



 w

 S

 w

 S



Haskind118 has formulated an equation that relates the hydrodynamic 

radiated damping of the body to the excitation force   E

 F , now known as the 
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Haskind’s relation, which allows the solution to the excitation force from 

the radiated potential without needing to solve the scattered potential. 

We know that the unit- normal vector to a surface is given by

∇ϕ l

ϕ

∂  l

n =

=

 . 

(3.101)



∇ϕ l

∂n  

Substituting Equation (3.101) into Equation (3.100) gives us

i

i

 E

 F

(  I S) ϕ

∂  l



ϕ

∂  l

ϕ

ωρ

ϕ ϕ

 dS

ωρ ϕ I

ϕ ∂  l 

=

+

⋅

⋅

=

⋅

+  S ⋅

⋅

∫

 dS

(3.102)

∂n

∫ ∂n

∂n 



 w

 S

 w

 S



Imposing Green’s second identity for ϕ S and ϕ l in the form of (3.84) gives us



ϕ

∂

ϕ

∂





ϕ

∂ 

 ϕ

∂

0

 l

 S

 l

 S

ϕ



=

 S ⋅

−

⋅ϕ l  dS → ϕ S ⋅

⋅  dS = 

⋅ϕ l  . 

∫

(3.103)

n

n

∫

n

∫



∂

∂





∂ 

 ∂n





 w

 S

 w

 S

 w

 S



With the boundary condition Equation (3.45), Equation (3.102) becomes



ϕ

∂  l

ϕ

∂  I 



ϕ

i

i

 E

 F

ωρ ϕ I

ϕ l

  dS

ωρ ϕ I n ϕ ∂  I 

=

⋅

− ⋅

⋅

=

⋅ −  l

⋅

∫

(3.104)

n

n

∫

 dS, 



∂

∂ 



∂n 



 w

 S

 w

 S



which is the well- known Haskind’s relation that allows the evaluation of   E

 F  

from the incident and radiated potentials. 

3.5.7   Added Mass and Radiated Damping

 3.5.7.1   Added  Mass  

Added mass refers to the inertia added to a system due to the acceleration or 

deceleration of a body. In such a situation, some of the volume surrounding 

the floating body has to be moved to allow the body movement. This phe-

nomenon occurs because the object and surrounding fluid cannot occupy the 

same physical space simultaneously. The added mass is modelled similar to 

the mass and results in additional force/inertia acting in the opposite direc-

tion of the excitation force/moment   E

 F  (i.e., Newton’s third law of motion). 

Therefore, this additional term is significant, as it has a profound effect on 

the motion of the floating body, i.e., larger added mass/inertia may reduce 

the seakeeping motion. In addition, added mass/inertia can also change the 

natural frequency of the floating body, i.e., 

(

 k

ρ  g A

ω

⋅

 N )

 z

 wp

=

=

 , 

(3.105a)

 z

 m + ( ma )

 m + ( ma )



 z

 z  
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(

 k

ρ  g∇ ⋅ GM

ω

′

 N )

 x

 xx

=

=

 , 

(3.105b)

 x′

 Ix + ( Ia )

 Ix + ( Ia )



 x

 x



(ω )

 ky′

ρ  g∇ ⋅ GMyy

 N

=

=

 , 

(3.105b)

 y′

 Iy + ( Ia )

 Iy + ( Ia )



 y

 y



where are 





( ma ) ( Ia ) ( Ia ) 

= 

The added mass for a relatively simple 



 . 

 z

 x

 y 

geometry can be obtained analytically, as shown in Table 3.2. 

 3.5.7.2   Radiated  Damping  

Under the absent of incident wave, when a floating body is being pushed 

down into the water or rotated to a certain angle and released, waves will 

be created as the floating body oscillates and eventually returns to its equi-

librium position. The waves are observed to radiate away from the source, 

i.e., the floating body, as shown in Figure 3.7. This radiated wave can be said to dissipate the energy created from the source and damp the motion of the 

floating body, thereby is termed the radiated damping, or added damping. 

The numerical solution to potential wave theory can be used to solve for 

the radiated damping (and added mass), as will be shown in Section 3.6.3. It 

is to be noted that when comparing radiated damping with viscous damp-

ing, the former has a stronger influence over the motion of the structure, as 

viscous damping can be negligible small when the structure gets bigger, i.e., 

large structure length- to- wavelength ratio, which is the case for most WEC 

and VLFS. Having said that, the disregard of viscous damping may cause 

unrealistic motion during the occurrence of resonance. 

TABLE 3.2

List of Added Mass for Simple Geometry

Circle

Ellipse

Square

( m

(  a)

 a ) = ( ma ) = ρ 2

4  r

= ρπ 2

 m

 b

 x

 y

 x

( ma) = ( ma) =  .  ρ

π 2

1 51  a

(

 x

 y

 ma ) = ρπ 2

(

 a

 I

 y

 a ) =

′ 0

4

 z

(

( Ia) = 0 .  234 ρ

π  a

 a ) = ρ

′

 z

( 2 a− 2

 I

′

 b )

 z

[image: Image 54]
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FIGURE 3.7

Radiated wave. 

   and    from  ϕ R

The added mass and radiated damping for floating body of complex geom-

etry can be determined from the radiated potential ϕ R (3.99). By using the 

expression for ϕ R in (3.78), we have



ϕ

i

 R = ω ∑ l

 l

 W ⋅ϕ l  for  l =  z, ′

 x  and  y′ 

(3.106)

The unit- amplitude radiated potential ϕ l has a unit metre and is given by

−



 1

ϕ

∂ G

 l = 2π +

⋅



 W

 dS

⋅  G ⋅n ⋅  dS . 



∫ ∂n  ∫

 W

(3.107)





 w

 S



 w

 S



The added mass  and radiated damping  is related to ϕ R by the following 

relationship. 

1

 −  = ρ

⋅ϕ l ⋅ dS

(3.108)

ω

∫n



 w

 S



or







 Re ρ n ϕ



=

⋅  l ⋅ dS 

∫

(3.109a)







  w

 S

  





 Im ω

 ρ n ϕ



=

⋅  l ⋅ dS 

∫

(3.109b)









 w

 S

  

3.5.8   Wave  Elevation

The wave elevation surrounding the floating body can be derived from 

Equation (2.8) for the SAWT, re- written as

1  ϕ

η

∂

1

2

 ˆ



ϕ 

= −

+ ∇

  ,  at  z = η ˆ, 

(3.110)



 g  ∂ t

2


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where  ϕ = ϕ D +ϕ R, which can be derived from Equation (3.97) by taking 

 C (θ ) = 4π, 

 

∂ G x ,  ξ





iω ⋅



 G(x ,  ξ)⋅ W (ξ)

( )

⋅n −

ϕ k (ξ) ⋅ dS

for  k =



∫

 R

∂

 

n



  w

 S

θ

 C (θ) ⋅ϕ k (x) = 

 . 

 

x

 G(x ,  ξ) ϕ

∂  k (ξ) ∂ G(  ,  ξ)



−

ϕ k (ξ) ⋅ dS + 4 ϕ

π  I (x) for  k =

 



∫

 D

∂n

∂



n



  w

 S



(3.111)

Rearranging Equation (3.111), 

iω 

 G x ,  ξ



 G(x ,  ξ)⋅ W (ξ)

∂ (

)



⋅n −

ϕ k (ξ) ⋅ dS

for  k =



 R

4π ∫

∂





n



ϕ (x) 

= 

 w

 S

 k

 , 

(3.112)



1

 ∂ G x ,  ξ



ϕ I (x)

( )

−

−

ϕ k (ξ) ⋅ dS

for  k =







 D

4π ∫

∂



n





 w

 S



where ϕ R (ξ ) and ϕ D (ξ ) are the velocity potential on   W

 S  obtained from (3.99). 

Example 3.2

Consider a generic cylindrical PA- WEC with a diameter ∅ and draft 

 we

 d c as shown in Figure 1.10(a). The added mass and radiated damping of the PA- WEC in the heave direction are plotted in Figure 3.8. 

Here, five different PA- WECs of different dimensions are further 

considered to study the effect of diameter and draft has on the added 

mass and radiated damping:



∅ = 2m and  we

 d c = 0 25

 . 

m



∅ = 3m and  we

 d c = 0 .  25 m



∅ = 4m and  we

 d c = 0 .  25 m



∅ = 2m and  we

 d c = 0 25

 . 

m



∅ = 2m and  we

 d c = 0 25

 . 

m

Figure 3.8 shows  and  increase with the diameter ∅ and draft   we d c of the 

WEC. In other words, the increase in the mass will result in the increase of  and 

, which in turn will have a profound effect on the motion of the WEC. Also, 

the inclusion of  of the WEC reduces the natural frequency ω N of the WEC, as 

described in Equation (3.12), where ω N decreases with the increase of . 

[image: Image 55]
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FIGURE 3.8

Comparison of (a) added mass  (b) radiated damping  for PA- WEC under different diameter 

∅ and draft   we

 d c. 

FIGURE 3.9

Radiated waves from PA- WECs for wave period (a)  T = 2s (b)  T = 4s (c)  T = 8s. ∅ = 4m and 

 we

 d c = 1 00

 .  m. 

According to Equation (3.108),  and  depend on the unit- amplitude 

radiated velocity potential ϕ l of the fluid. The radiated potential measures 

how energy in a floating body is dissipated via the wave radiated away from 

the floating body, as shown in Figure 3.7. The rate of wave dissipation varies with wavelength (i.e., wave periods or wave frequencies), as shown in 

Figure 3.9, where the radiated wave elevation computed from ϕ l according to Equation (3.109) is plotted. As the radiated wave is generated when a floating body is being pushed down into the water or rotated to a certain angle 

and released under the absent of incident wave, the radiated potential and 

thus  and  are independent of the wave direction. 

[image: Image 57]
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Next, the radiated waves from three different types of WECs, namely the 

point absorber, the terminator and attenuator, are investigated. The sche-

matic diagrams of the terminator and attenuator are shown in Figure 3.10(b) 

and (c), respectively. 

FIGURE 3.10

Radiated Waves from (a) point absorber (b) terminator and (c) attenuator WECs. 

Figure 3.10 presents the radiated waves of the same wavelength generated from the three different types of WECs. The terminator considered here is a 

rectangular flap- type WEC with a width of 4 m operating in a water depth of 

5 m, whereas the attenuator is two interconnected raft- type modules, where 

each module has a length of 4 m and floating in a water depth of 10 m. 

The radiated waves from different types of WECs are obviously different; 

thus, the  and  changes with the geometry of the floating body. In view 

of this, in the design of WEC, it is important to optimise the geometry of 

the floating body in order to obtain  and  that can maximise the energy 

generation. In cases where WEC has to be tuned to its natural frequencies to 

maximise the energy production, the geometry of the WEC plays an impor-

tant role such that the ω N can be tuned to the dominant encountering wave 

frequencies of the sea state. 

3.6   Boundary Element Method

While analytical or semi- analytical method can be used to solve for float-

ing bodies of simple geometry, such as a cylindrical point absorber or the 

flat- type OWSC, the performance of floating bodies of complex geometry 

or multiple- WECs in array may be easier to be evaluated numerically. As 

shown in the evaluation of the velocity potential ϕ D and ϕ R in (3.99), the BIE 
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only involves the evaluation over the wetted surface of the floating bodies 

 w

 S . Thus, a special kind of numerical method, known as the BEM or the con-

stant panel method, can be used in evaluating the BIE. The BEM is a power-

ful tool, as it requires only the modelling of the wetted surface of the floating 

body, thus requires significantly smaller computation resources as compared 

to other CFD methods. In addition, it has the capability to predict the perfor-

mance of floating bodies with relatively good accuracy for first- order and up 

to second- order linear motion. 

Writing (3.99) for ϕ l and ϕ D separately in the form of

−



 1

1

1

 ∂ G x ,  ξ 

ϕ l (x)

( )

=

1+





  dS

×  G(x ,  ξ)⋅n⋅ dS, 

(3.113a)

2π 

2π ∫

∂n



∫









 w

 S



 w

 S



−



 1

1

 ∂ G x , 

ϕ D (x)

( )

= 

2 1+





  dS

×ϕ I (x) . 

(3.113b)



2π ∫

ξ

∂n











 w

 S





The lower- order constant panel method or the higher- order panel method 

can be used to evaluate Green’s function, as shown hereafter. In both cases, 

the floating body is discretised into  Ne number of elements, also called 

panels. 

3.6.1   Lower- Order Constant Panel Method

In the lower- order constant panel method (or simply the constant panel 

method), the evaluation of Green’s function over the panel’s area is executed 

by using the Gauss quadrature method as described in Appendix E. The constant panel method assumes that there is only one Gauss integration point in 

the centre of the panel, and therefore the integral is evaluated at (ξ  ,  η ) = (0 ,  0) with weight  wk = 1 (please refer to Appendix E). 

The evaluation of the free surface Green’s function can be described in 

matrix form. Referring to Figure 3.11, the surface   W

 S  is discretised into  Ne 

number of panels, where each panel is a quadrilateral rectangular element. 

The evaluation of  G(x ,  ξ) =  ij

 G  requires the distribution of source points ξ 

at all the panels and evaluate their influences on the field points x. In matrix 

form, this can be written as



11

 G

12

 G



1

 G ,Ne 







21

 G

22

 G



2

 G ,Ne 

g N

 G

 , 

(3.114)

 e × N

=  ij =

 e

 





 







  N

 G

 G

 G

 e ,  1

 Ne ,  2



 Ne ,Ne   
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FIGURE 3.11

Discretisation of wetted surface into  Ne number of panel and evaluation of  G(x ,  ξ) for low- order 

constant panel method. 

where the first subscript for  G(x ,  ξ) in Equation (3.114) represents the source point x, whereas the second subscript represents the field point ξ. For example,  11

 G  means the evaluation of source in source point 1 (or panel 1) on 

field point 1 (or panel point 1),  12

 G  means the evaluation of source in source 

point 1 on field point 2, so on and so forth. The matrix g has a dimension 

of   Ne ×  Ne. From here onwards, the subscript of the matrix variable when 

indicated represents the size of the matrix, i.e., g N

as in Equation (3.115). 

 e × Ne

The evaluation of  G(x ,  ξ ) over the integral is simply computed by multiplying g with the area matrix , i.e., 

 Ne Ne

 G(x , )⋅n ⋅  dS =

g

 ij

 G ∆  ia =  =

∫ ξ

∑∑

 , 

(3.115)



 i=1  j=1

 w

 S



where  ∆  ij

 a  is the area for each panel ( i, j) in the surface   w

 S . 

Similarly, the evaluation of the derivative of the free surface Green’s func-

tion following the steps in Appendix D is given as

 ∂ G(x , ) 

 Ne Ne ∂  ij

 G

∂



 ⋅  dS =

∆  ia =

∫

ξ

(3.116)

n

∑∑

 . 

∂

∂n

∂n







 i=1  j=1

 w

 S



[image: Image 59]

 Principles of WEC Arrays 

107

3.6.2   Higher- Order  Panel  Method

The higher- order panel method on the other hand evaluates the free sur-

face Green’s function over each element by taking several Gauss integration 

points. For example, for the same quadrilateral element, if ( Ng )  Gauss inte-

 s

gration points are used for the source panels and ( Ng )  Gauss integration 

 f

points are used for the field panels, the evaluation of Green’s function over 

the panels’ area would produce a Green’s function matrix g of size ( Ns ×  N f ) , where  Ns =  Ne ×( Ng )  and  N f =  Ne ×( Ng ) . For instance, if two- by- two inte-s

 f

gration points (( Ng) s = 4) are taken for the source points and three- by- three ( ( N

for the field points (shown in Figure 3.12), this would produce a 

 g )  f = )

9

g matrix with size of 4 Ne ×9 Ne, i.e., 

  ˆ g

 ˆ g

 ˆ g

1

 p

1

 ,p

1

 p ,p 2



1

 p ,pN 



 e 

  ˆ g p

 ˆ g

 ˆ g

2 1

 ,p

1

 p ,p 2



 p 2  ,pNe 

g

(3.117)

 N

 , 

 s× N

=

 f

 





 





 ˆ g p ,p

 ˆ g p ,p

…

 ˆ g



  Ne  1

 Ne  2

 pNe ,pNe   

where   ˆ g(ξ  , x) is the free surface Green’s function matrix for each panel where ξ and x are the source and field points taken at the Gauss integration 

points. Therefore, each  ˆ g is a ( Ng ) ×( Ng )  matrix. The subscript for each s

 f

 ˆ g denotes the influence of source panels (denoted by the first subscript) 

on the field panels (denoted by the second subscript). For example,  ˆ g p 1  2

 ,p

implies the influence of sources at the Gauss integration points of panels  1

 p  

has on the field points at Gauss integration point of panels  p 2. In general, 

the   ˆ g for the influence of the source panel denoted as  ps and field panel denoted as  pf is given as

FIGURE 3.12

Evaluation of  ˆ g

 for HOBEM. 

 s

 p ,p f
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We can first evaluate the integration of  ˆ g over the area of one panel ∆ a by using the Gauss quadrature as presented in Appendix E. Writing Equation (3.115) for the evaluation of Green’s function over the area of one panel, 

expressed in its natural coordinate (ξ -η -coordinate) and using Equation (E.4) 

in Appendix E, 

1 1

 Np

 p

 G(

 s N f

x ,  ξ )⋅n⋅ ∆

 d a =

 G(x , )⋅ ξ

 d  η

 d =

 wj ⋅

∫

∫∫ ξ

 G(x j,  ξ j )⋅

∑∑

 wk , 

(3.119)



 j=1  k=

∆ a

− −

1

1 1



where  x = ( x, y) and ξ  = (ξ η

 , ) are the natural coordinates at the field and 

source, respectively, in a single panel. 

Writing Equation (3.119) in matrix form gives us

 ˆ

w

 ˆ g

w

1 1 = 

 p 

× 



×

 p ,p

× 





(3.120)

 s  ×

1 (

)

  s f 

 p

 N

 N

 N

 N

 S

(  g ) ×(  g )



 f

 g

(  g) ×1



 S

 f

 f



where w  is a 1×( Ng )  row vector with value equals to the Gauss quadrature 

 s

 p

 S

weight  w

w

 j used for the source panel, whereas 

 f  is a (  Ng ) × 1 row vector 

 f

with value equals to the weight  wk used for the field panel. 

FIGURE 3.13

Higher- order panel method numerical scheme. 
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After obtaining   ˆ for each panel, Green’s function matrix is then assem-

bled to yield

  ˆ

 ˆ

 ˆ

11

12

…







1 ,Ne 

  ˆ

 ˆ

 ˆ

21

22

…







2 ,Ne

 N

 , 

(3.121)

 e × N

=

 e





 





 

  ˆ

 ˆ

 ˆ





 Ne,  1

 Ne,  2 …



 Ne,Ne   

in which  in Equation (3.121) has the same size as  in Equation (3.115) for 

the constant panel method. 

3.6.3   Evaluation of Excitation Force and Added Mass, Radiated Damping

With the free surface Green’s function evaluated, either using the constant panel 

method or higher- order panel method,  can then be used to obtain the radiated 

and diffracted potential, ϕ l and ϕ D, respectively, given in matrix form as

−

{

1

ϕ



 l ( x )}

1 

1 ∂ 

=

 +

×





 , 

(3.122a)



2π 

2π ∂n 



−

{

1

ϕ D (x)}



1 ∂ 

= 2  +

×{ϕ I}





 , 

(3.122b)





2π ∂n 



where the curl bracket { }

  denotes the vector variable. 

The excitation force matrix can be obtained from Equation (3.100) as

−

 

1 ∂

1



 i

 E = ωρ

 



2  +
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



 . 

(3.123)
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The added mass and radiated damping are

 ρ
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Similarly, the global matrices for mass and stiffness are given as


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where (  gr )  and (  gr )  are the radius of gyration 

 x

 y

 g

 r  in the  x- and  y-axes, respec-

tively, given as

 n m

∑ ( r )2

 n

 j

 x

 mj

∑ (  yr

 j

)2

( r )

=1

=

and  r

=

=

 , 

(3.126)

 n

( )

1

 j

 j

 j

 g

 g

 n

 x

 y

 mj

 mj

∑

∑



 j=1

 j=1



where  m is the mass,  xr the  x-distance measured from the centre of gravity and   y

 r  the  y-distance measured from the centre of gravity. 

Therefore, we have the displacement solved using the equation of motion:

{ } =





 E

 , 

(3.127)

2



ω

−

( + 

i

 ) + ω ( +  pto ) +   

where , , , and  pto are the global matrix for mass, damping, stiffness 

and PTO damping. 

3.7   Case  Example

To demonstrate the performance of the WEC, we consider a generic 

cylindrical WEC with a diameter ∅ = 4 m and draft   we

 d c = 1 m similar to 

Figure 1.9(a). The WEC is subjected to regular and irregular wave analyses. A constant water depth  D = 10 m is considered. The BEM described in 

Section 3.6 is used to assess the performance of the WEC. The following 

sections present the key assessment parameters, i.e., response amplitude 

operator (RAO), absorbed power   a

 P , capture width  CW , and  q-factor, used 

to assess the performance of the WECs. The wave elevation surrounding 

the WECs will also be presented. 

3.7.1   Performance of Single WEC

 3.7.1.1   Optimal PTO Damping

According to Equation (3.55), the optimal damping of the PTO (  p

 B to )  

 opt

depends on the added mass   and radiated damping , which change 

with different wave periods (i.e., wave frequencies). The (  p

 B to )  for the 

 opt

cylindrical PA- WEC with different diameter ∅ and draft   we

 d c is presented 

in Figure 3.14. 

[image: Image 61]
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FIGURE 3.14

Optimal damping (  pt

 B o) opt for cylindrical PA- WEC with different diameter ∅ and draft   we

 d c. 

 3.7.1.2   RAO, Absorbed Power, and Capture Width

As using a variable (  p

 B to )  is time- consuming, a constant (  p

 B to )  is assumed 

 opt

 opt

for the WEC. The heave RAO is presented in Figure 3.15(a). Once the RAO is 

obtained, the corresponding   a

 P  can be derived by using (3.57) and presented 

in Figure 3.15(b). In Figure 3.15, the (  p

 B to )  evaluated at  T = 0, 2s, 4s, 6s, 8s 

 opt

and at large  T (i.e.,  T = ∞ )  is considered to study its effect on the heave RAO 

and   a

 P . It can be seen that the heave RAO increases when a smaller (  p

 B to )  

 opt

is used where the (  p

 B to )  reduces with the decrease in the wave period. 

 opt

However, this does not translate to a corresponding larger   a

 P , as the absorbed 

power according to (3.55) depends on the (  p

 B to ) . For example, the heave 

 opt

RAO for a constant (  p

 B to )  taken at  T close to zero may be the largest, but 

 opt

this corresponds to   a

 P = 0 as (  p

 B to ) = 0 .  Similarly, the 

 B



 opt

 a

 P  with constant (  pto ) opt

taken at  T = 2s is the largest when the wave period is smaller than 12s but 

reduces when  T exceeds 12s. 

The (  p

 B to )  as mentioned earlier depends on  and , which in turn are 

 opt

affected by the geometry of the WEC. Figure 3.16 shows the heave RAO and 

 a

 P  for the cylindrical PA- WEC with various diameter ∅ and draft   we

 d c when 

the (  p

 B to )  is taken at  T = 4s. Figure 3.16(a) shows that the increase/decrease opt

[image: Image 62]
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FIGURE 3.15

(a) Heave RAO and (b) Absorbed power of PA- WEC for different (  pt

 B o) opt.  ∅ = 4m and  

 we

 d c = 0 .  5m. 

FIGURE 3.16

RAO and absorbed power for PA- WECs with different diameter  ∅  and draft   we

 d c. ( B

 

 pto ) opt

obtained at   T ≈ 4s . 

of the heave RAO has a direct correlation with the (  p

 B to )  similar to that 

 opt

presented in Figure 3.15. However, there is no direct correlation between the RAO with the geometry of the WEC, as the computation of (  p

 B to )  depends 

 opt

on Equation (3.55), which varies unpredictably with  and . For exam-

ple, the increase in ∅ for   we

 d c = 0 25

 .  m does not result in a direct increase or 

decrease in (  p

 B to ) , i.e., (  p

 B to )  for ∅ = 4 m is higher for the counterpart for 

 opt

 opt

∅ = 3 m but lower than the counterpart for ∅ = 2 m, as presented in Figure 

3.14. Similarly, a higher heave RAO does not translate directly to a greater   a P  

according to Equation (3.57), as shown in Figure 3.16(b). Therefore, the choice 

[image: Image 64]
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of the constant (  p

 B to )  depends on the operational sea state where the WEC 

 opt

is operating so that the power generation can be optimised. Alternatively, a 

variable (  p

 B to )  as given in Figure 3.14, can be incorporated in the WEC by 

 opt

using a control system to maximise the power generation at various wave 

periods. 

A means to measure the effectiveness of the WEC in wave energy extrac-

tion is via the capture width  CW  measurement. The  CW  expresses the 

wave power in terms of the width of wave fronts that is captured by the 

device and has a length unit (usually in metre). The  CW  of the WEC can be 

measured by using Equation (3.59), which expresses the ratio of the wave 

power to the wave resource. The corresponding  CW  of the same point 

absorber considered in Figure 3.16 is presented in Figure 3.17(a), which 

shows a similar trend as the   a

 P  presented in Figure 3.16(b). By selecting an 

appropriate (  p

 B to ) ,  CW  of greater than 0.5 m can be achieved at certain 

 opt

wave periods. Note that the  CW  can be converted to capture width ratio 

 CWR by dividing  CW  with the characteristic length of the WEC, which 

is the diameter ∅ of the WEC. Also, the  CW  can be used to quantify the 

wave energy extraction bandwidth of the WEC, e.g., WEC with ∅ = 2 m 

and   we

 d c = 1 00

 . 

m may have a higher  CW  at lower wave periods but the 

 CW  decreases with the increase in wave periods. On the other hand, WEC 

with ∅ = 4 m and   we

 d c = 0 25

 . 

m has a wider energy absorption bandwidth 

as compared to its counterpart. 

The   CWR can be expressed in ratio or percentage, as shown in 

Figure 3.17(b), which quantifies the effectiveness of the WEC in extracting wave energy, i.e., how much energy is being absorbed by the WEC from 

FIGURE 3.17

(a) Capture width and (b) capture width ratio for PA- WECs with different diameter ∅ and draft 

 dwec. 

[image: Image 65]
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one wave front. By comparing Figures 3.17(a) and (b), the maximum  CW  

for ∅ = 2 m and   we

 d c = 1 00

 . 

m, as well as ∅ = 4 m and   we

 d c = 0 25

 . 

m may be 

comparable, but the  CWR shows that the former is more effective in extract-

ing energy from the wave front. 

 3.7.1.3   Wave  Elevation

The wave elevation surrounding the WEC can be computed using Equation 

(3.110), as shown in Figure 3.18. The wave climate can be used to study the 

impact of wave disturbances by the WEC has on the environment. Figure 3.18. 

shows the wave climate surrounding the three different types of WECs, i.e., 

point absorber, terminator, and attenuator. As can be seen from the figures, 

various types of WECs with different power generation mechanisms cause 

different wave disturbances. The wave elevation upstream of the WEC is 

generally higher due to the wave reflection from the WEC, whereas the wave 

elevation downstream is smaller due to the attenuation of wave force. The 

wave diffraction on the other hand varies according to the geometry and 

energy generation mechanism of the WEC. 

 3.7.1.4   Irregular  Wave  Analysis

By using the short- term wave analysis as presented in Sections 2.3 and 

3.3.8, the performance of the WEC under irregular wave condition can be assessed. Figure 3.19(a) shows the response spectrum of the WEC computed from Equation (3.69) under the developing sea modelled using the 

JONSWAP wave spectrum. The developing sea corresponds to the local 

wind wave generated sea that is relevant to the tropical climate. The corre-

sponding average  w for different peak period   p

 T  is summarised in the legend. 

The response spectrum presents a means to analyse the energy absorption 

FIGURE 3.18

Wave elevation η ˆ surrounding (a) point absorber, (b) terminator, and (c) attenuator WECs. 
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FIGURE 3.19

Comparison of (a) average heave response  w and (b) average absorbed power   a

 P  for PA- WECs 

under JONSWAP (developing sea) wave spectrum. ∅ = 2m and   we

 d c = 1m.  Hs = 2m. 

bandwidth of the WEC under irregular wave conditions. For example, the 

peak in   res

 S  represents the wave frequencies when the response of the WEC 

is maximum. For conventional floating structures, such as ship, oil plat-

form, or VLFS (which will be presented in Chapter 4), the coincidence of 

floating bodies’ natural frequencies with the dominant wave frequencies of 

the sea state is undesirable, as this would cause magnification of the ampli-

tude due to resonance, thus the floating structures have to be designed with 

ω N further away from these wave frequencies. The ω N of some WECs, on 

the other hand, have to be tuned to the dominant wave frequencies of the 

sea state so that maximum wave energy can be generated. However, the 

structure integrity of the WEC has be taken into consideration at these sea 

states due to the amplification of the response during resonance. A wider 

bandwidth is also preferable as it indicates that the WEC has the capability 

to generate energy at a wider range of wave frequency. 

By using Equation (3.70), the response spectrum of   a

 P  for the same sea 

states considered in Figure 3.19(a) can be computed and presented in Figure 

3.19(b). The corresponding average power of Equation (3.71) is shown in the legend of the figure. This allows us to quantify   a

 P  that can be gener-

ated at a particular sea state. Figure 3.19(b) shows that although the peaks 

of   p

 T = 8s, 10s, and 12s are similar, the   a

 P  for   p

 T = 12s is the highest due to the 

wider power absorption bandwidth. 

Figure 3.20 compares the   res

 S  and (  res

 S )  for the same WEC as considered in 

 P

Figure 3.19 under the fully developed sea (modelled using the BS wave spectrum). The fully developed sea usually has a longer wavelength but lower 

wave height, such as a swell that has been travelling thousands of kilometres 

before reaching the shore. The average   a

 P  in a fully developed sea state (mod-

elled by the BS wave spectrum) is lower as compared to its counterparts of a 

[image: Image 67]
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FIGURE 3.20

Comparison of (a) average heave response  w and (b) average absorbed power   a

 P  for PA- WECs 

under BS wave spectrum. ∅ = 2 m and   we

 d c = 1 m.  Hs = 1m . 

developing sea (modelled by the JONSWAP wave spectrum) at lower wave 

peak periods. However, as the   p

 T  increases, the average   a

 P  under the BS spec-

trum is higher than that under the JONSWAP because of the wider power 

absorption bandwidth. 

For the tropical climate, it is common that there exists the occurrence of 

swell (fully developed sea) and localised wind wave (developing sea) at the 

same time for the same coastal region. The Ochi- Hubble (OH) wave spec-

trum introduced in Section 2.3.6 can be used to model this sea state where there is a superposition of swell and wind wave. Figure 3.21 shows the average   a

 P  (i.e.,  a

 P  in Equation (3.71)) and average  w (i.e.,  w in Equation (3.69)) 

of the same WEC considered in the previous figure under the OH wave 

spectrum. It is assumed here that the swell has a wave height  Hs 1 = 4 m and 

 p

 T  1 = 10 s, whereas the wind wave has a wave height  Hs 2 = 2 m and   p T  2 = 2 s. 

The   a

 P  and  w under the OH wave spectrum are higher, as compared to the 

WEC under single peak wave spectrum (refer to Figures 3.19 and 3.20) as the wave energy is higher due to the superposition of swell and wind wave. 

3.7.2   Performance of WEC Array

The WEC is usually deployed in array in order to increase the energy 

output at the allocated deployment sea space. However, it is important to 

ensure that the energy generation for the wave farm is optimised from the 

selected array configuration, as the wave reflection and diffraction from 

the WEC array may result in destructive or constructive interferences. 

The latter is preferred, as this indicates that the interaction between WEC 

in array results in greater energy generation, as compared to when they 

[image: Image 68]
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FIGURE 3.21

Comparison of absorbed power for PA- WECs under OH double peaked wave spectrum. ∅ = 2m 

and   we

 d c = 1m. 

FIGURE 3.22

Comparison of  q- factor for PA- WECs with different spacing under regular wave. 

are deployed in isolation. The  q-factor presented in Section 3.4.2 can be 

used to quantify the effectiveness of the array configuration in energy 

generation. 

Figure 3.22 shows the  q-factor for the PA- WEC array under different wave frequencies. Four different spacings are considered, i.e., spacing = 

2, 4, 6, and 15 m in Figure 3.22(a) to (d), respectively. The  q-factor greater than 1.0 is desirable as it implies that the average power generation from 

the array is greater than a single WEC at the same wave frequencies. Figure 

3.22 shows that the  q-factor of the WEC array varies significantly when the 

[image: Image 70]
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spacing is small but approaches 1.0 when the spacing is large, i.e., when 

spacing = 15 m, as shown in Figure 3.22(d). The  q-factor at smaller wave frequencies is almost 1.0 for all case as the WECs in the array heave at the 

same amplitude and phase as the incoming waves, thereby causing little 

wave disturbances and interactions between the WECs. The investigation 

of the optimal spacing and array configuration is therefore important in 

the deployment of the wave farm in order to ensure that maximum wave 

energy can be extracted from the wave farm. 

Similarly, the wave elevation surrounding the WEC arrays can also be 

computed using the same equation (3.110). The wave elevations downstream 

from the WEC arrays are a lot smaller as compared to their counterparts 

of a single WEC (see Figure 3.18) due to the shielding effect of the arrays. 

However, the wave elevations downstream of the attenuator WEC arrays are 

not as small as their counterparts for the point absorber and terminator. This 

is because the attenuator is always weathervane with the incoming wave 

direction. 

FIGURE 3.23

Wave elevation η ˆ surrounding arrays of point absorber, terminator, attenuator WECs. 

Note: The hat in   ˆ

η  is omitted in the figures. 

4

 Hydroelasticity of VLFS and Integration 

 with WEC

This chapter first presents the mathematical formulation of hydroelastic 

response of a VLFS, followed by the numerical solution scheme using the 

coupled finite element boundary element (FE- BE) method. The state- of- the- 

art validation of the numerical code is then presented. This is followed by 

the evaluation of the performance of WEC when integrated with the float-

ing structures. Two types of floating structures are considered here, i.e., 

floating breakwater and VLFS, where the vertical and horizontal type raft- 

type WECs are hinge connected to the structures. The integrated WEC and 

VLFS allow the conversion of wave energy into electricity while protect-

ing the coast from erosion due to the wave impact. The effects of varying 

dimensions of WEC, mooring system, wave periods, and wave direction 

are studied to suggest the optimal design of the WEC to be most effective in 

generating energy and attenuating the wave force. Both regular and irregu-

lar waves of a tropical climate are considered. The  q-  factor and  CWR of the WEC arrays are presented. In addition, the wave climate surrounding the 

floating structures are studied. 

4.1   State of the Art

The motion of a VLFS differs from conventional floating bodies such as 

boats and WECs because the structural deformation of the former has to be 

considered in the hydrodynamic analysis.119 The structure thus “deflects” 

under wave action, and such elastic deformation under hydrodynamic 

loading is termed “hydroelasticity.” In this chapter, the mathematical mod-

elling and numerical scheme for solving the hydroelastic response of VLFS 

are presented. The wave theory outlined in Chapter 2 and relevant hydrodynamics in Chapter 3 will be referred to when presenting the theory of hydroelasticity. 

Similar to the hydrodynamic response of a rigid body presented 

in Chapter 3, the deformation of a VLFS could be assumed to be harmonic and oscillating with the wave frequency ω such that a steady- state response 

DOI: 10.1201/9781003387855-4
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FIGURE 4.1

Definition of VLFS according to Suzuki et al.123

can be assumed to allow the solution of the hydroelastic analysis using the 

frequency domain approach. The frequency domain approach is computa-

tionally efficient and proven to predict good results particularly for long 

term response.94 Usually, the frequency domain approach is used instead of the time domain when determining the hydroelastic response of the 

VLFS because of its simplicity and ability to capture the pertinent response 

parameters in a steady- state condition. Nevertheless, interested readers on 

transient response of VLFS such as motion due to aircraft landing or wave 

impact problems may refer to Kim and Webster, 120 Watanabe et al.,121 and 

Kashiwagi102, 122 who have investigated the transient response using the time domain approach. 

According to Suzuki et al.’s123 definition of a VLFS, the hydroelas-

tic response is only dominant when the following two ratios are larger 

than 1.0:



i. Ratio (i): Structural length/Wavelength ( L /  λ )

ii. Ratio (ii): Structural length/Characteristic length ( L / c

λ )

The characteristic length λ c is given as

2

λ =



4

 c

4π

 , 

(4.1)



 k  

3

 d

where  is the flexural rigidity given as 

 p

= 



and  k is the spring constant 

12

of the hydrostatic restoring f  is the Young’s modulus and  dp is the thickness 

of the VLFS modelled as plate. 
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4.2   Mathematical Formulation for Hydroelasticity

In modelling the hydroelastic response, the water and the structure are 

assumed to oscillate in a steady- state harmonic motion with the circular 

frequency ω. The water is modelled using the linear potential theory and the 

VLFS is assumed to be a pontoon- type (or mat- like) VLFS commonly mod-

elled as a solid plate by using the plate theory. The detailed numerical model 

and mathematical formulations for the equation of motions of the fluid and 

plate are shown in the subsequent sections. 

4.2.1   Pictorial Description of VLFS Model

Consider a pontoon- type VLFS with a waterplane area   wp

 A  and thickness  dp 

as shown in Figure 4.2. The VLFS is commonly modelled as an equivalent solid plate with thickness  dp for the hydroelastic analysis. The VLFS is subjected to an incoming wave of wave period  T and a wave height  H = 2 A that impacts the structure at a wave angle θ with respect to the negative  x-axis. 

The seabed is assumed to be levelled and the water depth is   D. 

The symbol ∆ denotes the plate domain, whereas the water domain is denoted 

by Ω. The plates are assumed to be perfectly flat with free edges. Similar to the 

notations used in Chapter 3, the symbols   F

 S ,  B

 S

 W

 ,S ,  and  S±∞ are used to repre-

sent the free surface, the seabed, the wetted surface of the VLFS and the artifi-

cial boundary at infinity, respectively. Here, the wetted surface is further split 

into the bottom wetted surface   WB

 S  and the side wetted surface   WS

 S  of the VLFS, 

i.e.,  W

 S   WB

 S ∪  WS

 S . The free and undisturbed water surface is at  z = 0. 

As the body deformation has to be taken into consideration, a rigid body 

motion should not be assumed for the VLFS. Instead, the VLFS will deform as 

shown in Figure 4.3. The equivalent plate will deform by the plate displacement 

FIGURE 4.2

Figure depicting elevated view of arbitrary- shape VLFS. 
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FIGURE 4.3

Deflection of VLFS. 

 ˆ

 W , which includes the vertical deflection   ˆw( x, y), the rotation about the  y-axis x

ψ ( x,y) ,  and the rotation about the  x-axis   y

ψ ( x,y), i.e.,  Wˆ = (

 x

 y

 wˆ,  ψ  ,  ψ ) (more 

details in Section 4.2.2, please refer to Appendix A for the schematic diagram). 

Note that   ˆ

 W and   ˆw are used for the hydroelastic response formulation to dif-

ferentiate from the rigid body motion of a floating body, i.e.,  W  and  w. 

4.2.2   Structure  Motion

The box- like VLFS in Figure 4.2 is modelled as an equivalent solid plate. 

The equivalent plate has a Young’s modulus   and Poisson’s ratio ν  ,  and 

is assumed to be perfectly flat with free edges. The plate has a thick-

ness  dp,  and its material is commonly assumed to be isotropic or ortho-

tropic and obeys Hooke’s law. In the hydroelastic analysis, the plate is 

assumed to be restrained in the  x – y plane by the station keeping system 

and the plate can only deform in the vertical direction (i.e.,  z-direction). 

Thus, when one uses the finite element method (FEM) for the plate anal-

ysis, the nodes of the elements are constrained from moving in the  x- y 

direction (i.e., surge and sway) and are only allowed to move in the 

vertical  z-direction. 

For the hydroelastic analysis, it is common to model the plate according 

to the classical thin plate theory, where the plate motion is described solely 

by the vertical plate deflection   ˆw( x, y) and the plate rotation about  x- and y-axes, i.e., θ x and θ y, are derived from   ˆw. The vertical deflection   ˆw is measured from the free and undisturbed water surface, as shown in Figure 4.3. 

More recently, the adoption of the Mindlin plate theory for equivalent float-

ing plate is getting popular due to the theory’s ability to provide a better pre-

diction of the stress resultants and its allowance for the effects of transverse 

shear deformation and rotary inertia, unlike the classical thin plate theory 

where the equations of motion are described solely by the vertical deflec-

tion   ˆw( x, y), the rotation about the  x-axis   y

ψ ( x,y) ,  and the rotation about the 

 y-axis   x

ψ ( x,y). The additional rotation variables allow for the effect of trans-

verse shear deformation and also reduce the order of derivatives needed for 

computation of the stress resultants. 
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The thin plate and thick plate theory are presented in the subsequent 

chapters. 

 4.2.2.1   Thin  Plate  Theory

Kirchhoff- Love plate theory is a mathematical theory that describes the 

bending of thin plates. It is also known as the classical thin plate theory 

(CPT) devised by British mathematician Augustus Edward Hough Love 

(1863–1940) and developed based on assumption by German physicist 

Gustav Kirchhoff (1824–1887). 

The governing equation of the CPT is given in Appendix A as

 ∂4 wˆ

∂4 wˆ

∂4 wˆ 

 

+ 2

+

 d

 wˆ  i

 gwˆ, 

(4.2)

4

2

2

4  = −ρ p

ω2

 p

+ ρ ω

 p  ϕ + ρ



∂ x

∂ x ∂ y

∂



 y 



3

 d

where  (



 x, y)∈ ∆,   =

is the shear modulus, 

 p

 =

the 

2

 (1+ν )

 ( 2

12 1−ν )

flexural rigidity,  dp the thickness of the plate, and ρ p the mass density of the plate. 

The rotation about the  x- and  y-axes can be derived from   ˆw, 

 ˆ

 y

 w

θ

∂

=

 , 

(4.3a)



 x

∂  

 ˆ

 x

 w

θ

∂

=

 . 

(4.3b)



 y

∂  

The stress resultants for the CPT are given as

2

∂  ˆw

 M = 

 , 

(4.4a)



 xx

2

 x

∂



2

∂  ˆw

 Myy = 

 , 

(4.4b)

2




 y

∂



2

∂  ˆw

 Mxy = 

 , 

(4.4c)



 x

∂  y

∂  

 M

∂

∂

 xx

 Mxy

 Qx =

+

 , 

(4.4d)



 x

∂

 y

∂



 M

∂  yy

 M

∂  xy

 Qy =

+

 , 

(4.4e)



 y

∂

 x

∂



where  Mxx and  Myy are the bending moment about the  x- and  y-axes,  Mxy the twisting moment,  Qx and  Qy the shear forces in the  x- and  y-directions. 
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 4.2.2.2   Thick  Plate  Theory

Mindlin (1951)124 used the variational approach for deriving the governing equation of motion for the first- order shear deformable plate (or commonly 

known as Mindlin plate or the first- order shear deformation plate theory 

(FSDT)), which includes the effect of rotary inertia. The detailed mathemati-

cal formulation of the governing equation is given in Appendix B. The governing equations in time- harmonic motion for an isotropic plate are125,126



 x

 y

 ˆ

 ˆ

2

∂2 w ∂2 w   ψ

∂

ψ

∂



κ  d

 ˆ

i

 ˆ

 p 

+

 h w

 gw, (4.5a)

2

2  + 

+

 = ω

− 2ρ p p + ωρϕ + ρ



 ∂ x
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∂ x

∂



 

 y 



 (1−ν )  ∂ ψ

2

 x

∂ ψ

2

 x   (1+ν )  ∂ ψ

2

 x

∂ ψ

2

 y 


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2

2  +



+

2



2

∂ x

∂ y

2

∂ x

∂ x∂






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(4.5b)
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  x ∂ w 

ρ 3

− κ  d
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= ω
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
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2

 y

∂ ψ
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 y   (1+ν )  ∂ ψ
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(4.5c)





 ˆ

2

 y

∂ w 

ρ 3

− κ  d



ψ

 d





+

 = ω

− 2  p p  ψ  y

 p
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∂



 y 

12

The RHS of Equation (4.5a) to Equation (4.5c) are the rotary inertia terms, 

whereas the shear correction factor  2

κ  (usually taken as 5/6) is introduced 

to compensate for the error due to the assumption of a constant shear strain 

(and thus constant shear stress) through the plate thickness that violates 

the zero shear stress condition at the free surface. 125. 

Equation (4.5) may be expressed in the following compact matrix 

equation:

( +  )

2

+ ω ρ   ⋅ w =  ˆ

1

2

 p  3

{ ˆ }





{f} , 

(4.6)





where 

{ ˆ }

w = {

 x

 ˆw  ψ ψ }T

 y

are the displacement vectors and 

{ ˆ f}={iωρ

the forcing vectors; where ρ  is the fluid mass 

 f ϕ + ρ  f gw

 ˆ

0

}

0

 f

density. The differential operators  1

  and 2 are given by

2

2

 ∂

∂

∂

∂ 

+

 2

2

 x

 y

 x

 y 

∂

∂

∂

∂





2

6κ (1−ν ) 

∂



1

 =

 −

1

−

0   , 

(4.7a)
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
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(4.7b)

and finally, 3 is the matrix of constant multiplier





 dp

0

0 





3
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 dp
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(4.8)
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

12   

Based on the strain- displacement relation and assuming a plane- stress distri-

bution in accordance with Hooke’s law, the boundary conditions at the free 

edges are given by125

 x

 y

 ψ

∂

ψ

∂


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

  

4.2.3   Water  Motion

 4.2.3.1   Governing Equation and Boundary Conditions

Similar to the hydrodynamic analysis in Chapter 3, the water is assumed to be a perfect fluid with no viscosity and incompressible, and the fluid motion 

to be irrotational. Based on these assumptions, the fluid motion may be 
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represented by a velocity potential ϕ ( x, y,z). Therefore ϕ must satisfy the 

Laplace equation116, 89

2



∇ ϕ = 0 in Ω .  

(4.10)

The boundary conditions on the seabed and free surface for the VLFS are the 

same as that of a floating body in rigid body motion, as presented in Equations 

(3.33b) and (3.33c). For ease of reference, they are reproduced as follows. 

ϕ

∂

BC on Seabed:

= 0 ,  at  z = − D

(4.11a)



 z

∂



ϕ

2

Free Surface BC: ω ϕ

∂

+  g

= 0 ,  at  z = 0

(4.11b)



 z

∂



However, there is a slight difference in the boundary conditions on the wet-

ted surface. Following the boundary condition (3.33d), the boundary condi-

tion on the wetted surface   W

 S  is

ϕ

∂

iω  ˆ

=

 W

on  S

BC on Wetted Surface:



 WB , 

(4.12)



∂n 0

on  WS

 S



where   ˆ = (  ˆ  θ ,  y  θ  x

 W

 w, 

)  for CPT and   ˆ = (  ˆ  ψ  y  ψ  x

 W

 w, , 

) for FSDT. 

The boundary condition Equation (4.12) implies that the velocity of the 

wave particles at the bottom wetted surface of the floating body must be 

equivalent to the vertical velocity of the structure motion. This also means 

that the VLFS must always be in contact with the water, i.e., no air gap exists 

between the VLFS and the water. 

Similar to the case of the rigid body motion, the velocity potential must also 

satisfy the radiation condition, which in our case for the three- dimensional 

domain uses the Sommerfeld radiation condition127 at the artificial fluid boundary at infinity  S±∞:

 ∂



lim x 

− ik  ϕ



(4.13)

x



  ( x, y, z) −ϕ I ( x, y, z) =

 0 , 



→∞

∂

 x





where x = ( x, y) and i = −1. The wave number  k  satisfies the dispersion 

relationship Equation (2.28) and ϕ I is the incident velocity potential given in 

Equation (3.44). 

 4.2.3.2   Hydrostatic and Hydrodynamic Pressure

The hydrostatic and hydrodynamic pressure  P( x, y,z) acting on the bottom 

of the structure (i.e.,  z = 0) are given by the linearised Bernoulli equation, i.e., P ( x, y, − D) = ω

i ρ

 y, D

 ˆ

 f ϕ (  x, 

− ) + ρ f gw( x, y) .  

(4.14)
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4.2.4   Decoupling of Governing Equations Using Modal Expansion Method

The plate governing Equations (4.2) and (4.5) indicate that the response of the 

plate   ˆw is coupled with the fluid motion (or velocity potential ϕ ( x, y,z)). On the other hand, the fluid motion can only be obtained when the plate deflection   ˆw( x, y) is specified in the boundary condition Equation (4.12). In order to decouple this interaction problem into a hydrodynamic problem in terms 

of the velocity potential and a plate vibration problem in terms of the gener-

alised displacement, we shall adopt the modal expansion method as proposed 

by Newman, 92 which has been introduced in Section 3.5.1. In this method, the 

deflection of the plate   ˆ

 W ( x, y) is expanded by a series of the products of the 

modal functions   l

  and their corresponding complex amplitudes ζ  l ( x, y):

 N

 Wˆ ( x, y)

 m

=

 l

∑ ( x,y)⋅ζ l( x,y) , 

(4.15)



 l  1

=



where   Nm denotes the total number of modes taken in the plate analysis. 

 = (
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 x

 w

θ

θ

 y

 x

 w

θ

θ

 y

 x

 w

ψ

ψ

 l

 l

  , l

  , l

 ) and ζ l = (ζ l ,  ζ l ,  ζ l ) for CPT and   l

 = (  l

  , l

  , l

 ) and 

= (

 y

 x

 w

ψ

ψ

ζ l

ζ l ,  ζ

ζ

 l

 , l ) for FSDT. 

As the problem is linear, the total velocity potential can be represented 

by a linear superposition of the diffracted part ϕ D ( x, y,z) and the radiated part ϕ R ( x, y,z), where ϕ D ( x, y,z) is computed from the sum of the incident wave ϕ I ( x, y, z) and scattered wave ϕ S ( x, y,z) shown in Section 3.3.4. By using the modal expansion method, the total velocity potential ϕ ( x, y,z) 

in Equation (3.42) may be expressed as128

 Nm

ϕ ( x, y,z) = ϕ

i

 D (  x, y, z) + ϕ R (  x, y, z) = ϕ D (  x, y, z) + ω∑ l ( x, y)⋅ϕ l ( x, y) .  (4.16) l=1

Here,  ϕ l  1

=  ,  2 , N

…

is the radiated potential corresponding to the unit- 

 m

amplitude motion of the  l-th modal function. Note that the complex 

amplitudes   l

  in Equation (4.16) are assumed to be the same values as 

 l

  in (4.15).92

By substituting Equations (4.15) and (4.16) into the Laplace Equation (4.10) 

and the fluid boundary conditions Equations (4.11) to (4.13), we arrive at the 

following decoupled governing equation and boundary conditions for each 

of the unit- amplitude radiation potentials (i.e., for  l = 1 ,  2 , … , Nm) and the diffraction potential (i.e., for  l =  D). 

2



∇ ϕ l = 0 ,  in Ω  

(4.17a)

ϕ

∂  l = 0 ,  on  BS

(4.17b)



∂ z
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(4.17d)



∂ z
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= ω

− ϕ

2  l,  on  WB
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(4.17e)



∂ z



 ∂
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lim x 

− ik  ϕ



(4.17f)

x



   l ( x, y, z) −ϕ I ( x, y, z) = 0 ,  on ±

 S ∞
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→∞

∂

 x





The BVP for the diffracted potential and each of the unit- amplitude radiation 

potential are defined by Equations (4.17b) to (4.17f) in an uncoupled form. 

This BVP could be solved by using the BEM as presented in Section 3.6 in order to compute the velocity potential. The water- plate Equation (4.2) for 

CPT and Equation (4.5) for FSDT can then be solved by using the FEM once 

the velocity potential is obtained. 

4.3   Numerical Scheme: BE- FE Method

4.3.1   Overview

Recall in the previous chapter that we first described the equation of motion 

of the water using the linear wave theory while the equation of motion for 

the plate by using either the CPT or the FSDT in a coupled form. We then 

employed the modal expansion method to decouple the plate deflections 

and water motions so that the BVP for the diffracted potentials and each of 

the unit- amplitude radiation can be represented in an uncoupled form. 

The problem at hand is to devise numerical techniques to solve these decou-

pled equations of motion for the plate deflections and water motions (i.e., the 

velocity potential). There are several methods for solving the equations of 

motions. To name a few, Mamidupudi and Webster129 have used the finite difference method for solving the governing equations of the plate (modelling of a pontoon- type floating airport) and Green’s function for solving the 

fluid’s Laplace equation. The eigenfunctions method (analytical method) has 

also been employed by researchers such as Wu et al.,130 Nagata et al., 131 and 

Ohmatsu104 for determining the hydroelastic response of a VLFS. However, such analytical methods are only applicable for VLFSs with simple geometries such as circular and rectangular shapes. 

[image: Image 74]
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In this chapter, the hybrid FE- BE method for solving the equations of 

motion for the water and plate is presented. The details on the FEM could be 

found in books by Petyt132 and Cook et al., 133 whereas details on BEM appear in books by Brebbia134 and Becker.135 The flow chart describing the algorithm 

of this numerical method is given in Figure 4.4. The FEM is used to solve the governing equations of motion for the plate because of its versatility in handling complicated plate geometries. 

FIGURE 4.4

Flow chart describing algorithm for hybrid FE- BE method. 

[image: Image 75]

130  

 Wave Energy Convertors in Tropical Seas

On the other hand, for determining the fluid motion, the BEM is adopted 

to transform the Laplace Equation (4.17a) together with the boundary condi-

tions Equations (4.17b) to (4.17f) into a BIE. This means that only the bound-

aries of the computational fluid domain need to be discretised. The free 

surface Green’s function derived by Linton136 that automatically satisfies the boundary conditions of the fluid domain at the seabed, free surface and the 

Sommerfeld condition is used. So, the remaining unknown parameters to 

be determined for the fluid part are only those associated with the wetted 

surface of the floating body. The BEM thus significantly reduces the compu-

tational time needed for the hydroelastic analysis. The velocity potential of 

the water is obtained by solving the BIE. The computed velocity potentials 

are used to derive the exciting force as well as the added mass and added 

damping for the water- plate equations. By using the FEM, the modal ampli-

tudes ζ  l can then be obtained. Together with the modal functions   l

 , these 

modal amplitudes can be used to derive the plate deflections   ˆ

 W  as given in 

Equation (4.15). 

In the sequel, we will present the method of solutions for the plate deflec-

tion and the flow field surrounding the VLFSs. 

4.3.2   Discretisation of Plate

In order to use the FE- BE method, the solid plate has to be first discretised 

into  Ne number of quadrilateral elements, with each element having  Nd num-

ber of nodes thereby producing a total of  ND number of nodes in the model. 

The number of elements for the plate domain ∆ and wetted surface   W

 S  are 

being kept the same but with different integration points to solve the integral 

equations for the FEM and BEM. An example of the solid plate discretised 

into  Ne number of elements is shown in Figure 4.5. 

FIGURE 4.5

Discretisation of solid plate (VLFS) into a different number of quadrilateral elements of different 

sizes. 
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4.3.3   BEM for Solving Boundary Integral Equation

The solution to the velocity potential ϕ ( x, y,z) follows the same BEM 

scheme as shown in Section 3.5.5 and Section 3.6 where the Laplace equation is transformed into a BIE by imposing the Green’s theorem. By substi-

tuting the boundary conditions Equation (4.17c) into Equation (3.98), we 

obtain
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Here, it is assumed that the floating body is discretised into  Ne number of 

elements, also called as panels (as in the constant panel method). Writing 

Equation (3.99) for ϕ l and ϕ D separately in the form

−



 1

1

1
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(4.19a)
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Note here that ϕ l is the unit- amplitude radiated potential having a unit 

of metre where the radiated potential ϕ R has a unit of metre- square- per- 

second. Therefore, the complex amplitude ζ  l  is omitted in the integral 

for ϕ l in Equation (3.113a). It is to note that the BEM can easily handle the 

Sommerfeld radiation condition by using the free surface Green’s function  G 

Equation (3.82). For details on the transformation of the Laplace equation 

into a BIE using the free surface Green’s function, please refer Section 3.5.4. 

Similarly, by using Equations (3.113a) and (3.112b) in Section 3.6, the radiated and diffracted potentials, i.e., ϕ l and ϕ D, can then be re- written in the matrix form as

−

{

1

ϕ l (x)} 1 

1 ∂ 

=

 +

× ⋅  l

  ,  for  l = 1 ,  2 , …





 , Nm, 

(4.20a)



2π 

2π ∂n 



−

{

1

ϕ D (x)}



1 ∂ 

= 2  +

× {ϕ I}





 , 

(4.20b)





2π ∂n 



where    is the global matrix for the free surface Green’s function given 

in Equation (3.120),  is the identity matrix, and   l

  the mode shapes 

(eigenvectors) obtained by performing a free vibration analysis on the plate. 
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4.3.4   FEM for Solving Plate Equation

The FEM is a powerful numerical method for solving differential equations 

in various fields of engineering and mathematical modelling. It involves 

breaking down a structure into smaller elements and then reconnecting them 

at nodes to simulate physical phenomena. The discretised model shown in 

Section 4.3.2 will be used to demonstrate the methodology. The generic displacement in an element could be represented by a summation of nodal dis-

placement as

 Nd

{u

n

u

 e}

= (ξ η

 , )⋅{  d} =

 Nj (ξ η

 , )⋅  u , 

(4.21)

3

 d

 Nd  3

∑

( )

×

 j



 j=1



where u

u

 e is the displacement for each element and   d the displacement vec-

tor at each node. n is the basis function given in Appendix D which could be of a four- node or eight- node quadrilateral elements for our case study.137 

Note here that the vector {u d} is given as

{u d}T = ({  du) (  du)  (  du)  . 

1

2

 Nd }





(4.22)

For the plate theory, each   d

 u  comprises the plate deflection, rotation about 

 x-  axis, and rotation about  y-  axis, i.e., 

 ˆ

 u =  W = (

 y

 x

 ˆ

 d

 w,  θ  ,  θ )



for CPT ,  

(4.23a)

=  ˆ = (  ˆ  ψ  y  ψ  x

 d

 u

 W

 w, 

 , 

)for FSDT . 





(4.23b)

Therefore, the elemental matrix size will be 12×12 and 24× 24 for a four- node 

quadrilateral and an eight- node quadrilateral element, respectively. The n 

for element with  Nd number of nodes is thus

n = diag  N 1  N 1  N 1  N 2  N 2  N 2   NN N

 N

 , 

 d

 Nd

 Nd 





3 Nd×3 Nd   (4.24)

where  N 1,  N 2 , … ,NN  are the basis functions for each node. 

 d

The displacement vectors are given as

{u }T = {

 y

 x

 y

 x

 y

 x

 ˆw

 ˆw

 ˆ

 d

1 θ

θ

1

1

2 θ

θ

2

2

  wN  θ

θ

 , (4.25a)

 d

 Nd

 Nd }

for CPT

×

1 3 Nd



{u }T = {

 y

 x

 y

 x

 y

 x

 ˆ

 ˆ

 ˆ

 d

1

 w  ψ ψ

1

1

 w 2 ψ ψ

2

2   wN

ψ

ψ

 . 

(4.25b)

 d

 Nd

 Nd }

for FSDT

×

1 3 Nd



The global displacement u is then given as

[u]

= []

⋅{u d}



 , 

3 ND×3

3 ND×3 ND

3 ND×3  

(4.26)

where  is the basis function arranged in global matrix. 
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The following chapters demonstrate the used of these basis functions 

in expanding the plate motion to obtain the elemental stiffness and mass 

matrices. 

 4.3.4.1   Classical Thin Plate Theory

 4.3.4.1.1   Energy Functional in Matrices

The FEM requires the transformation of the energy functional involved in 

the plate theory (i.e., the potential energy functional  UE, kinetic energy func-

tional   E

 T  and work done by the forces on an element   nc

 W ) into the matrix 

form. The evaluation of  UE and   E

 T  will produce the structural and mass stiff-

nesses, respectively. Here we will demonstrate the transformation of energy 

functional into the matrices for the CPT and FSDT plate theory. 

The generic formulation for  UE,  E

 T  and   nc

 W  are given as



2

2

2

2

2

2



1

 ∂  wˆ 

 ∂  wˆ   ∂  wˆ 

 UE =  

2

 d , 

(4.27a)

2  +



 +





2 

⋅ ∆

2 ∫  ∂ x

∂ x∂ y

∂









  y  



∆ 





ω2

 E

 T = −

ρ pdp ( wˆ)2 ⋅ d∆ , 

(4.27b)

2 ∫



∆



i

 g

 ˆ

 nc

 W = ( ρ ω

 p  ϕ + ρ p w

 ˆ )⋅ w⋅ d∆

∫

 , 

(4.27c)



∆



where the definition of the variables is given in Appendix A. The derivative 

of the energy functional can also be found in Appendix A. 

 4.3.4.1.1.1  Potential Energy Functional   The potential energy functional  UE 

can be written in the matrix form as



 T

 T

 T



1

 ∂  wˆ   ∂  wˆ 

 ∂  wˆ   ∂  wˆ   ∂  wˆ   ∂  wˆ 

 UE =

 

2

 d . 

2  

2  +



 

 +





2  

2  ⋅ ∆

2 ∫

2

2

2

2

2

2

 ∂ x

∂ x

∂ x∂ y

∂ x∂ y

∂ y

∂



 





 

 

   y 



∆





(4.28)

 4.3.4.1.1.2 Kinetic Energy Functional   Similarly, the kinetic energy func-

tional can be written in matrix form as

ω2

 E

 T = −

ρ p ⋅ dp ⋅( wˆ)2 ⋅ d∆ , 

2 ∫



∆

(4.29)

ω2ρ

 T = −

 p

 T

 ˆ

 d ˆ

 E

 w ⋅  p ⋅  w ⋅  d∆ . 

2 ∫



∆
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 4.3.4.1.1.3  Non- conservative  Work  Done   Lastly, the work done in matrix 

form:

 W = iρ ω

 T

 wˆ ⋅ϕ ⋅  d∆ + ρ

 T

 ˆ

 ˆ

 nc

 p

 g w ⋅  w ⋅  d∆

∫

∫

 , 

(4.30)



∆

∆



where the first integral contributes to the excitation force   E

 F , added mass 

 and radiated damping  whereas the second integral contributes to the 

hydrostatic stiffness  K. 

 4.3.4.1.2   Evaluation of Integral

We first evaluate the integration over the elemental area for  UE 

in Equation (4.28) where the approximate integration method as mentioned 

for the CPT in Appendix A will be used. However, instead of using the full integration method, the selective integration method is employed, where 

the full integration method (using the 3× 3 Gauss quadrature method) is 

used to evaluate the first integral for  UE and the reduced integration method 

(using the 2× 2 Gauss quadrature) for the second integral for  UE. The evalu-

ation of integral using the Gauss quadrature is given in Appendix E where the evaluation of the integral for a function   f (ξ  ,  η ) in its natural coordinate (ξ  ,  η ) is given as

1 1

 Ng

 f ( x, y) d Γ =

 f (ξ  ,  η )⋅  J (ξ k,  η k ) ⋅ d ξ  d η =

 f

∫

∫∫

∑ (ξ k,  η k)⋅  J(ξ k,  η k) ⋅ wk, (4.31)

Γ

 k  1

1 1

=

− −



where   J (ξ  ,  η )  is the Jacobian given as

∂ x

∂ x

ξ

∂

η

∂

det  J =

 . 

(4.32)

∂ y

∂ y

ξ

∂

η

∂





The Jacobian is used to transform the coordinate of the element from the 

cartesian coordinate into the natural coordinate. Cook et al. 133 have demonstrated that the use of the selective integration method is able to display 

the correct bending behaviour of the element (no shear locking phenomena) 

while at the same time having the contribution of normal strain in the bend-

ing modes to resist nodal loads (no spurious modes). 

On the other hand, the integral for   E

 T  will be evaluated using the full 

integration method. The evaluation of integral of the energy function will 

produce the elemental matrices for the finite element analysis. In order 

to obtain the elemental matrix for each functional, we need to represent 

the displacement involved in Equations (4.28)–(4.30) by the summation of 

nodal displacement using (4.21) as shown in the subsequent sub- sections. 
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 4.3.4.1.2.1 Stiffness  Matrices   The stiffness matrix of the CPT can be 

derived from  UE in Equation (4.28). By using the shape function as described 

in Equation (4.21),  UE in Equation (4.28) expressed in the matrix from in its 

natural coordinates yields



1 1 

2

 T

2

2

 T

2

2

 T

2





 ∂ n   ∂ n 

 ∂ n   ∂ n   ∂ n   ∂ n 





 T 



2

2  

2  +



 

 +





2  

2 

 U

 wˆ

2 ∫∫



=

⋅ 

 ∂ x

∂ x

∂ x∂ y

∂ x∂ y

∂ y

∂



 





 

 

   y ⋅  T

 ˆ

 E

 w . 

−1−1 





 J (



⋅

ξ k  η

 , k ) ⋅ ξ

 d  η

 d











(4.33)

Please refer to Appendix E on the transformation from cartesian coordinates to natural coordinates. The integral for  UE can then be evaluated using the 

Gauss quadrature method given in the Appendix E as, 





 T

∂2

2



n(ξ

n

 k ,  η k )   ∂



(ξ k,  η k)













 







ξ

∂ 2

 

ξ

∂ 2











 









 T

 Ng



 ∂2n(ξ

n

 k  η

 , k )   ∂



2

(ξ k  η ,k

 T

) 



 U

 ˆ . 

. 

. 

.  ˆ

 E =  w



+ 2

 



∑

 J (ξ k  η

 , k )







 w

 w, 

2



ξ

∂ η

∂

 

ξ

∂ η

 k 



∂



  k=1



 













 T



∂2n(





ξ

n

 k ,  η k )   ∂2 (ξ k ,  η k )  



+ 

 

 





η

∂ 2

η 2





 

∂

 





 

















(4.34)

where the terms in the curl bracket give the elemental bending stiffness matrices, 



 T

∂2n(ξ

n

 k ,  η k )

∂2



(ξ k,  η k)





 







 





ξ

∂ 2

 

ξ

∂ 2







 





 T

 Ng



 ∂



2n(ξ

n

 k  η

 , k )   ∂2 (ξ k  η

 , k

 b

) 





 =

+ 2

 



∑

.  J (ξ

(4.35)

 k ,  η k ) .  w , 

2 



ξ

∂ η

∂

 

ξ

∂ η

∂



 k

 k=1



 







 

 T

∂2n(ξ

n

 k ,  η k )   ∂2 (ξ k ,  η k )  

+ 

 

 

 

η

∂ 2

 

η

∂ 2

 



 







where  Ng is the number of Gauss interpolation points. 

 4.3.4.1.2.2  Mass Matrix   The mass matrix can be derived from the kinetic 

energy functional   E

 T  Equation (4.29). By representing the displacement using 

Equation (4.21),  E

 T  can be written in the natural coordinates as
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ω ρ

1 1

2

 T

 d

 T

 wˆ 

 p p

 T

n n

 ˆ

 E

 J (





ξ k  η

 , k ) ξ

 d

η 

= −

⋅

⋅ ⋅

⋅

 d ⋅  w. 

(4.36)

2

∫∫









−1−1





The integral can then be solved using the Gauss quadrature method which 

yields



 Ng

2

 T  ρ



 d

 ˆ

n

n

 ˆ

 E

 T

ω

 T

 w   p p

 , 

 , 

 J

 , 

 w

 w. 

(4.37)

2 ∑ (ξ k  η k )

(ξ k  η k) (ξ k  η k) 

= −

⋅

⋅

⋅

⋅

⋅  k ⋅





 k=



1

  

The elemental mass matrix is given by the terms in the curl bracket, i.e., 

ω2ρ

 Ng

m =

 h

n(ξ η , ) T

 p p

n

 k

 k

⋅ (ξ k  η

 , k )⋅  J (ξ k  η

 , k ) ⋅ w . 

(4.38)

2

∑

 k



 k=1



 4.3.4.2   First- Order Shear Deformation Plate Theory

 4.3.4.2.1   Energy Functional in Matrices

Following similar procedures, the potential energy functional  UE, kinetic 

energy function   E

 T  and non- conservative work done   nc

 W  for FSDT are 

given as

  ψ

∂  x

ψ

∂  y 2  ψ

∂  y

ψ 2

 x



∂



 

+ν

 + 

+ν





  ∂ x

∂ y

∂ y

∂







 x  











2

1   (1−ν )  ∂  x ∂  y 





ψ

ψ

 U

(4.39a)
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+



+


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2 ∫
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∂ y

∂




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

∆ 



2

2 
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 ˆ

2

  x ∂ w    y ∂ w 
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+ ψ







+




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



∂ x 

∂


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








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ω2ρ
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
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 d

2

2

 d ( wˆ)

 p 

+

(



ψ  x

 E

 p

) +  y

 d , 

2 ∫

(ψ ) ⋅ ∆



(4.39b)



12 











∆



i

 g

 ˆ

 nc

 W = ( ρ ω

 p

⋅ϕ + ρ p ⋅ wˆ)⋅ w ⋅ d∆

∫

 , 

(4.39c)



∆



where the definition of the variables is given in Appendix B. The derivative of the energy functional can also be found in Appendix B. 
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 4.3.4.2.2   Potential Energy Functional

The potential energy function  UE Equation (4.39a) can be written in the 

matrix form as

3

= 1  d

 U

⋅(χ ) T ⋅ ⋅(χ )⋅ d∆ + 1 κ2 h ⋅(χ ) T

 p

 f

 f

 f

 s

⋅  s

 ⋅(χ s

 E

 p

)⋅ d∆ , 

2 ∫ 12

2 ∫

(4.40)
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∆
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 Nd
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∂
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∂

∂
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0
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
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∂ x 


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(4.42)
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 Nd
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(4.43)
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
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 4.3.4.2.3   Kinetic Energy Functional

Similarly, the kinetic energy functional Equation (4.39b) can be written in 

matrix form as

ω2ρ

 T = −

 p

{u } T ⋅  m  u

 E

 e

⋅{  e}⋅ d∆ , 

(4.44)

2 ∫





∆



where u e is given in Equation (4.21), and
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
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 dp
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 0
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

12 3×3  

 4.3.4.2.4   Non- conservative  Work  Done

Lastly, the work done in Equation (4.39c) in matrix form is

 T

 T



i

u

u

u

 nc

 W = ρ ω

 p

{  e} ⋅ϕ ⋅ d∆ + ρ pg {  e} ⋅{  e}⋅ d∆

∫

∫

 ,  (4.46)

∆

∆

where the first integral contributes to the excitation force   E

 F , added mass 

 ,  and radiated damping  ,  whereas the second integral contributes to the hydrostatic stiffness  K. 

 4.3.4.2.5   Evaluation of Integral

 4.3.4.2.5.1 Stiffness  Matrices   The stiffness matrix of the FSDT can be 

derived from  U

 f

 s

 E in Equation (4.40). The vector {χ } and {χ } in Equations 

(4.41) and (4.42), respectively, can be represented by the summation of nodal 

displacement as
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∂
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ξ

∂

ξ

∂

χ





= 

…



×diag   

 . 

 ∂ N 1

∂ N 1









0  N 1

0  N 1

 ˆw

 η

∂

η



∂

  Nd 

 ×

2 3 Nd

ψ

  xN 



 d 

ψ  y



  Nd 3 Nd×3 Nd  

(4.48)
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Substituting Equations (4.47) and (4.48) into Equation (4.40),  UE can be repre-

sented in natural coordinate as

1 1

3

 T

 U = 1

 dp ⋅  f

 f

 f

 E

 , 



 , 

 J

 , 

 d d

2 ∫∫

{χ (ξ k  η k)} ⋅ ⋅{χ (ξ k  η k)}⋅ (ξ k  η k) ξ η

12



−1−1

(4.49)

1 1

+ 1

κ 2 dp ⋅  T

 s

 s

 , 



 , 

 J

 , 

 d d . 

2 ∫∫

{χ (ξ k  η k)}⋅ ⋅{χ (ξ k  η k)}⋅ (ξ k  η k) ξ η

−1−1

By evaluating the integral using the Gauss quadrature method (4.31), 

 Ng

3

 T

 U = 1 ⋅

 dp ⋅χ  f

 f

 f

 E

 , 



 , 

 J

 , 

 w

2 ∑

(ξ k  η k) ⋅ ⋅χ (ξ k  η k)⋅ (ξ k  η k) ⋅









12

 k



 k=1

(4.50)

 Ng

 T

+ 1

κ 2 ⋅  dp ⋅ χ s

 s

 s

 , 



 , 

 J

 , 

 w . 

2 ∑

(ξ k  η k) ⋅ ⋅χ (ξ k  η k)⋅ (ξ k  η k) ⋅









 k

 k=1

Equation (4.50) can be further written as

  Ng  3



 d

 U

u

u

 E = 1 ⋅{  d} T 

⋅ 

 p ⋅

∑

 f

 T

 f

 f

 (ξ k  η

 , k ) ⋅ ⋅



 (ξ k  η

 , k )⋅  J (ξ k  η

 , k )







⋅  wk ⋅{  d}



2



12

 k=

 1



  Np

 T



+ 1 {u

u

 d} T 

⋅  κ 2 ⋅ dp ⋅  s

 s

 s

 , 

 , 

 J

 , 

 w

2

∑

 (ξ k  η k ) ⋅ ⋅



 (ξ k  η k )⋅ (ξ k  η k )







⋅  k ⋅{  d}



  k=

 1





(4.51)

where the terms in the curl bracket are the flexural stiffness   f

  and shear 

stiffness   s

  matrices:

 Ng

3

 f

 d

 f

 =



∑  (ξ  ,  η )  T

 p

 f

 f



 k

 k

⋅ ⋅



 (ξ k,  η k )⋅  J(ξ k,  η k ) ⋅ wk, 



12

 k  1

=

 Ng

 T

 s

2

 s

 =

κ ⋅  d 

∑

 (ξ  ,  η )

 s

 s



 p

 k

 k

⋅ ⋅



 (ξ k,  η k )⋅  J(ξ k,  η k ) ⋅ wk, 

(4.52)



 k  1

=



and   f

  and   s

  in full matrices are given as



∂ N 1

∂ NN



0

0

   0

 d

0

ξ

ξ



∂

∂





 f



∂ N 1

∂ NN 

 = 0 0

   0

0

 d

η

η 

∂

∂

(4.53a)







∂ N 1 ∂ N 1

∂ NN

∂ N

 d

 Nd 

0

   0



η

ξ

η

ξ 

∂

∂

∂

∂



3×3 Nd  
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  N

∂ 1

 N

∂  N



 d

 N 1

0

  

 NNd

0

 ξ

ξ



∂

∂

 s

 = 



  N

∂ 1

 N

∂

0

 N



 d

 N 1

  

0

 NNd

 η

η



∂

∂

2×3 Nd (4.53b)

The total stiffness matrix   t

  is thus given as



 t

 f

 s

 =  +   .  (4.54)

 4.3.4.2.5.2  Mass Matrix   The mass matrix can be derived from the kinetic 

energy functional 

u

 E

 T  Equation (4.44). By representing   e as summation of 

nodal displacement Equation (4.21) in Equation (4.44),  E

 T  can be written in 

the natural coordinates as



1 1

2



 T

{u } T ω ρ



 p

 T

 m

n

n

u

 E

 d

 J (ξ k  η

 , k ) ξ

 d  η 

= −

⋅

⋅

⋅ ⋅

⋅

 d ⋅{  d} . 

(4.55)

2 ∫∫











−1−1





The integral can then be solved using the Gauss quadrature method, which yields



 Ng



2

 T

{u }  ρ

ω

 T

 T   p

 m

n

n

u

 E

 d

 , 

 , 

 J

 , 

 w

 . 

(4.56)

2 ∑ (ξ k  η k ) 

(ξ k  η k) (ξ k  η k) 

= −

⋅

⋅

⋅

⋅

⋅

⋅  k ⋅{  d}



 k=



1





The mass matrix is given by the terms in the curl bracket, i.e., 

ρ  Ng

m =

n(ξ  ,  η ) T

 p

⋅  m  n

 k

 k

⋅ (ξ k,  η k )⋅  J (ξ k,  η k ) ⋅ w . 

(4.57)

2 ∑



 k



 k=1



 4.3.4.2.5.3 Excitation Force, Added Mass, Radiated Damping and 

 Hydrostatic Stiffness Matrices   By substituting {u e}  in Equation (4.21) into the Work Done   nc

 W  Equation (4.46), we have the   nc

 W  expressed in its natural 

coordinate as



1 1



 W

{u } 

 T

 T

i

n

 nc

 d

 ρω

(ξ k,  η k) ϕ  J(ξ k,  η k) ξ d  η 

=

⋅

⋅ ⋅

⋅

 d 

∫∫







−1−1



(4.58)



1 1



{u } 

 T

 T

n

n

u  

 d

ρ  g

(ξ k,  η k) (ξ k,  η k)  J(ξ k,  η k) ξ d  η 

+

⋅

⋅

⋅

⋅

 d {  d}

∫∫

 . 







−1−1



Upon evaluation using the Gauss quadrature method, Equation (4.58) 

becomes
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

 Ng



 W

{u } 

 T

 T

i

n

 nc

 d

 ωρ p∑ (ξ k,  η k ) ϕ (ξ k,  η k )  J (ξ k,  η k )



=

⋅

⋅

⋅

⋅  wk 



 k=



1



(4.59)



 Ng





{u } 

 T

 T

n

n



 d

ρ pg∑ (ξ k,  η k )

(ξ k,  η k)  J(ξ k,  η k) 

+

⋅

⋅

⋅

⋅  wk  . 



 k=1



The second term in the RHS of Equation (4.59) is the hydrostatic stiffness :

 Ng

 = ρ  g

(ξ  ,  η ) T

 p

 k

 k

⋅ (ξ k,  η k )⋅  J (ξ

  

n

n

 k ,  η k ) ⋅  wk = ρ pg ⋅ ∆

∑

 a. 

(4.60)



 k=1



Note that the summation terms yield the area of one element  ∆ a . 

On the other hand, the velocity potential ϕ (ξ  ,  η ) in (4.59) is made up of 

the diffracted and radiated part (see Equation (4.16)). The diffracted veloc-

ity potential contributes to the excitation force, i.e., 




 Ng



 {u } 

 T

 T iωρ ∑n(ξ  ,  η ) ϕ (ξ  ,  η )  J(ξ  ,  η ) 

=

⋅

⋅

⋅

⋅  w  = {u } T

 E

 d

 f

 k

 k

 D

 k

 k

 k

 k

 k

 d

⋅  E, 



 k=



1



(4.61)

where the evaluation of ϕ D in Equation (4.61) is the same as presented in 

Section 3.6, i.e., 

−

{

1

ϕ D (x)}



1 ∂ 

= 2  +

×{ϕ In}





 . 

(4.62)





2π ∂n 



The velocity potential ϕ (ξ  ,  η ) in Equation (4.59), when replaced with the radiated potential, will contribute to the added mass   c

 and radiated damping 

c

 given as

 c

 ρ

−

  f 

1 ∂

1



 



 = Re

 +

×  





 , 

(4.63a)



2π





2π ∂n 



  

 c

ωρ

−



 f 

1 ∂

1



 



 = Im 

 +

×  





 . 

(4.63b)



2π





2π ∂n 



  

The superscript  c in   c



 c

 and    denotes that the global matrix for these 

added mass and radiated damping is evaluated at the centroid of each panel, 

resulting in  N

 c

 e ×  Ne matrices, instead of 3 ND × 3 ND matrices. 

 c

 and   can 

be transformed into 3 Ne × 3 Ne matrices by using a transformation matrix 

shown later in Equation (4.69). 
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∂

The evaluation of  and 

in Equation (3.124) are given in Section 3.6. It is 

∂n

∂

however noted here that, according to Equation (3.81b), 

can be further sim-

∂n

plified as Equation (4.64) for a VLFS due to the small thickness to length ratio. 

2

∂ ω

=



(4.64)



∂n

 g



 4.3.4.3   Haskind- Hanoaka  Relations

According to Haskind’s relation in Section 3.5.6, the excitation force   E

  can be 

expressed in terms of unit- amplitude radiated potential ϕ l and the incident 

potential ϕ I, thereby eliminating the need to solve for the scattered potential 

ϕ S. Hanoaka extends the Haskind’s relation and applied it to compute the 

excitation force for hydroelasticity. 

By using the Haskind’s relation to express the excitation force Equation (4.61) 

in integral from as in Equation (3.102), the excitation force can be written as



ϕ

∂  l

ϕ

 E

 F

iωρ  f ϕ I

ϕ ∂  I 

=

−  l

⋅

∫

 dS. 

(4.65)



∂n

∂n 



 w

 S



By substituting the bottom wetted surface boundary condition for the unit- 

amplitude radiated potential Equation (4.17c) into Equation (3.102), the exci-

tation force can be written as



ϕ

 E

 F

iωρ  f

iωϕ I l  ϕ ∂  I 

=

⋅

−  l

⋅

∫

 dS



∂n 

 w

 S

(4.66)

2



ϕ

∂



ω ρ  f

(ϕ I l

 )  dS  iωρ  f ϕ

 I 

= −

⋅

⋅

⋅

+

 l

 ⋅

∫

∫

 dS.  



∂n 

 w

 S

 w

 S

The exciting force expression Equation (4.66), in terms of the unit- amplitude 

radiated and incident potential, is referred to as the Haskind- Hanaoka 

relation. 118

 4.3.4.4   Global Matrices for Mass and Stiffness

The FSDT shall be used to demonstrate the assembly of elemental matrix into 

global matrix. The elemental matrix involves in the FSDT are the flexural stiff-

ness, shear stiffness, mass stiffness and hydrostatic stiffness, denoted by   f

 , 

 s

 , m and  ,  respectively. Each of these matrices has a dimension of  Nd ×  Nd, where  Nd is the size of the quadrilateral element. 

Consider, for example, an irregular rectangular plate discretised into four 

elements of four- node quadrilateral plate elements ( Ne = 4 ,Nd = 4) with a total of nine nodes ( ND = 9 ), as shown in Figure 4.6. It is noted here that the numbers 

[image: Image 76]
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outside the nodes (labelled in red) represent the node number for each quadri-

lateral panel, whereas the numbers inside the nodes denote the node number 

when the quadrilateral panels are merged/assembled. Each node contains 

three dofs. Elements 1, 2, 3 and 4 are represented by e1, e2, e3, and e4. 

For each element, the elemental matrix has a size of 3 Nd × 3 Nd = 12×12 .  

Taking mass as an example, the elemental mass matrix is thus given as

  ˆ m

0

0

0 

 1



 0

 ˆ m2

0

0 

m = 



 , 

(4.67)

0

0

 ˆ m

0



3



 0

0

0

 ˆ m4



×

12 12  

where   ˆ

m denotes the matrix associated with each node where the subscript 

denotes the node number. Therefore, the elemental matrices can be assem-

bled according to Figure 4.6, which yields the global mass matrix given as



 e 1



 ˆ m



1

0

0

0

0

0

0

0

0 


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0  ˆ

m  ˆ m
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
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0 


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
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
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 ˆ m 

4  

(4.68)

FIGURE 4.6

Rectangular plate discretised into four quadrilateral elements. 
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where the superscript denotes the element number, i.e., e1 for element 1, e2 

for element 2, so on and so forth. Similarly, the global matrices for flexural 

stiffness   f

 , shear stiffness   s

  ,  and hydrostatic stiffnes  can be assembled 

using the same method. 

However, the added mass  and radiated damping  are  Ne ×  Ne matri-

ces as they are derived from  which is an  Ne ×  Ne matrix with its field point located at the centroid of each element. Therefore, the  and  have to be 

distributed to the node of the element using a transformation matrix [o]:



 T

 c

o

o

 = [ ]

 



[ ]

 , 

(4.69a)



 Ne ×3 ND 



 Ne ×

×

3 N

 N N

 D

 e

 e





 T

 c

o

o

 = [ ]

 



[ ]

 , 

(4.69b)



 Ne ×3 ND 



 Ne ×

×

3 N

 N N

 D

 e

 e



where [o] is a relation matrix that maps the centroid of the element to its 

node. E.g., by referring to Figure 4.6, the following relations could be established to map the  from the centroid of each element to the nodes:

(i)  Centroid of e1 is related to node 1, node 2, node 4, and node 5. 

(ii)  Centroid of e2 is related to node 2, node 3, node 5, and node 6. 

(iii)  Centroid of e3 is related to node 4, node 5, node 7, and node 8. 

(iv)  Centroid of e4 is related to node 5, node 6, node 8, and node 9. 

As each node has three dofs, [o] has to map the centroid of the element 

denoted by the row of the matrix to the nodes denoted by matrix q where 

q = 1 1







1 . [o] is thus given as

q

q

q

q

1

2

0

4

5

0

0

0

0 





[o]  0

q

q

q

q

2

3

0

5

6

0

0

0 

= 

(4.70)

0
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0

q
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5

7
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

 0

0

0

0

q

q

q

q

5

6

0

8

9  Ne×3 ND 

 4.3.4.5   Solving Equation of Motion

The equation of motion for the plate can be written in the global form as

 T

2

 f

 s

 T

{u

u

u

 d} ⋅{ ω

− [ +  a]+ iω ( +  pto ) +  +  + }

 ⋅{  d} = {  d} ⋅ E,  

(4.71)

which can be further simplified as

{ ω

− 2 [ +  ]+ iω (

 f

 s

u

 a

 +  pto ) +  +  +

}

 ⋅{  d} =



 E.  

(4.72)

By using the modal expansion method, the displacement vector {u d} may be 

expanded in an appropriate set of modes following Equation (4.15), i.e., 
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{u

c

 d} =  ⋅{ }  ,  

(4.73)

where  is the matrix containing the eigenvectors of the plate

 ( 1

 )

( 1

 )



( 1

 )

( 1

 )



1

2

 Nm −1

 Nm

 (





2

 )

( 2
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

( 2
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( 2

 )



1

2

 Nm −1

 Nm

 = 



(4.74)
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


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

 N
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(  ND )

(  ND )

(  N



−

 D )



1

2

 Nm  1

 Nm 3 Nd× Nm  

 T

where ( ) = (

 y

 x

 W

ψ

ψ

 i

 i



 i



 i



is  j th mode at node  i.  has a dimension of 

 j

)

3 Nd ×  Nm, and c is a 3 Nd × 3 matrix, whereas  Nm is the number of modes taken in the free vibration analysis. The eigenvalue and eigenvector can be solved from



[ −ω n]⋅ = 0 .  

(4.75)

By substituting Equation (4.73) into Equation (4.72) and upon multiplying 

both side by   T

 , we have

 T ⋅{ ω

− 2 [ +  ]+ iω (

 f

 s

 T

 a

 +  pto ) +  +  +

}

 ⋅{⋅ }

c =  ⋅



 E.   (4.76)

The multiplication of   T

 ⋅[ ]

 ⋅  , where [ ]

  is any 3 Nd × 3 Nd global matrices, 

will produce the generalised matrix with dimension  Nm ×  Nm. This reduces 

the computation time required to solve the equation of motion significantly, 

as  Nm is smaller than  Nd. 

Equation (4.76) can now be solved algebraically for the complex ampli-

tude c. This complex amplitude matrix is then back substituted into Equation 

(4.73) to obtain the plate deflection. The stress resultants may be readily 

obtained from taking appropriate derivatives of the deflection and bending 

rotations, as given in Equation (4.9). 

4.4   Case Study I: Generic VLFS

A generic rectangular pontoon- type VLFS with a length 300 m, width 60 m, 

and draft 2 m as shown in Figure 4.7. The VLFS is subjected to an incoming wave of wave period  T and a wave height  H = 2 A that impacts the structure at a wave angle θ with respect to the negative  x-axis. The seabed is assumed 

to be levelled, and the water depth is   D = 120 m. 

Figure 4.7(b) shows the VLFS modelled as an equivalent solid plate. The Young’s module of the VLFS is  = 11 9

 .  GPa, and ρ p = 256 25

 .  kg/m3. 

[image: Image 77]
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FIGURE 4.7

Schematic diagram of VLFS (a) plan view and (b) elevation view. 

FIGURE 4.8

Hydroelastic response of VLFS under (a) λ /  L = 0.2, (b) λ /  L = 0.4,and (c) λ /  L = 0.6 (d) λ /  L = 1.0. 

4.4.1   Hydroelastic  Response

The hydroelastic response of the VLFS is shown in Figure 4.8. The results show that the response predicted by the FE- BE method is in good agreement 

with their counterparts obtained from experimental test.100 It is also important to include the structural deformation evidenced from Figure 4.8, where the results of the rigid body motion assumption differ significantly from the 

experimental test. The hydroelastic response of the VLFS is profound when the 

λ  / L is small and approaching an average value of 1.0 when the λ  / L is large. 
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4.4.2   Stress  Resultants

The stress resultants can be obtained for the CPT and FSDT given in Equations 

(4.4) and (4.9). Comparing the governing equation for CPT and FSDT, the for-

mer involves the fourth derivative of the vertical plate deflection Equation 

(A.21) in Appendix A, whereas the latter only involves the second derivative 

of the plate deflection Equation (B.14) in Appendix B. This means that in solving the governing equation, the assumed plate displacement must have 

a functional that is a fourth derivative for the CPT and second derivative for 

the FSDT. The requirement for a higher- order derivative will increase the 

computational time in the finite element computational analysis. 

The CPT also assumes that there is no transverse shear deformation in the 

plate and considers only in- plane displacements and rotations. This assump-

tion implies that the transverse shear stresses are zero, and the thickness of the 

plate remains constant before and after deformation. The rotation of the plate 

is derived from the plate deflection, i.e., Equation (A.1a). Also, according to 

the equilibrium condition, a pair of shear forces has to exist, and these shear 

forces  Qx,Qy are derived from the twisting moment  Mxy, i.e., Equation (A.6). 

This results in the stress resultants involving the second- order derivative of 

the plate deflection Equation (A.5). 

On the other hand, FSDT considers the transverse shear deformation by 

relaxing the assumption of normality between the transverse normal and 

the plate’s mid- surface. Thus, the transverse shear strain and shear stresses 

are included in the theory. As a result, the governing equation and stress 

resultants only involve up to first- order derivative, and this improves the 

stress resultants significantly, especially for the shear forces. 

4.5   Case Study II: Hinged- Connected VLFS

The VLFS, due to its large size, is usually constructed in multiple modular 

units and connected during the assembly stage. The assembled VLFS is con-

sidered to be a continuous plate during the modelling for hydroelasticity 

analysis. In some cases, hinge connections are used to connect two or more 

modular units. 234 Such scenarios can happen during the installation stage of the VLFS, where the modular units are held together temporarily by a hinge 

or semi- rigid connector before being welded together to form a continuous 

unit. 

At the node where two modules are connected, only the vertical deflection 

of the plate   ˆw has to be merged so that there are five dofs at this node, i.e., 

vertical deflection, rotation about  x- and  y-axes for Module 1 (see Figure 4.9), and rotation about  x- and  y-axes for Module 2. 

[image: Image 79]
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FIGURE 4.9

Schematic diagram of module 1 connected to module 2. 

4.5.1   Anti- Motion  Device

Figure 4.10 shows the hydroelastic response of the VLFS when two modular units are hinge connected at  x = 0. The wavelength is under λ  / L = 0 .  2 .  Note that the connected modular unit has a total length of 300 m, width of 60 m, 

and thickness of 2 m with  = 11 9

 .  GPa, and ρ p = 256 25

 .  kg/m3, similar to the 

generic VLFS considered in Case Study I. 

The hydroelastic response of a VLFS with hinge connections is compared 

to those with rigid and semi- rigid connectors. The results indicate that using 

hinge or semi- rigid connectors can help reduce the hydroelastic response 

FIGURE 4.10

Hydroelastic response of VLFS with hinge, semi- rigid, and rigid connectors. λ /  L = 0.2. 

[image: Image 81]
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of the VLFS. Specifically, Module 2 experiences a smaller response com-

pared to a continuous VLFS. Thus, if Module 1 functions as an articulated 

plate for an anti- motion device, it can act as a sacrificial plate, absorbing 

most of the energy from incoming waves to reduce the forces impacting 

the main structure (Module 2). Similarly, the comparison of the VLFS with 

rigid, semi- rigid, and hinge connectors under λ  / L = 0 .  4 is presented in 

Figure 4.11. The hinged-  and semi- rigid connected articulated plate are shown to mitigate the motion of the main VLFS. A comparison between 

Figure 4.10 and Figure 4.11 shows that the articulated plate is more effective as an anti- motion device in reducing the hydroelastic response when 

subjected to a smaller wavelength λ  / L. 

The connector can also be placed at different locations in order to effec-

tively mitigate the hydroelastic response. Figures 4.12(a) and 4.12(b) show 

the hydroelastic response of the VLFS when subjected to λ  / L = 0 .  2 and 

0.4. The location of the connector is α a = 15 m, 30 m, 45 m, and 60 m. As the 

energy is absorbed by the articulated plate, there is therefore a reduction 

FIGURE 4.11

Hydroelastic response of VLFS with hinge, semi- rigid, and rigid connectors. λ /  L = 0.4. 

[image: Image 82]
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FIGURE 4.12

Hydroelastic response of VLFS with different articulated plate lengths for (a) λ /  L = 0.2 and

(b) λ /  L = 0.4. 

in the hydroelastic response of the main VLFS. The articulated plate with 

 a

 L = 60 m is found to be most effective in mitigating the hydroelastic response 

of the VLFS in this case. 

The dimensions of the articulated plate could also vary, and this could 

have a profound effect on its effectiveness in mitigating the hydroelastic 

response of the main VLFS (Module 2). Figure 4.13 shows the VLFS with 

length   L = 300 m connected with articulated plate with length   a

 L = 15 m, 

30 m, 45 m, and 60 m. The results indicate that the articulated plate exhibits 

a very high response due to the incoming wave impacting the structure. The 

deflection in the main VLFS is significantly diminished by the presence of 

the articulated plate, with the longest plate proving to be the most effective 

in reducing the hydroelastic response. 

4.5.2   Integrated  Anti- Motion  Device  and  WEC

The results from Figures 4.10 to 4.12 show that when an articulated plate is connected to a VLFS via a rigid or semi- rigid connector, it is possible to 

reduce the hydroelastic response of the VLFS. The articulated plate behaves 

like a sacrificial plate that absorbs the energy from the wave before hitting 

on the VLFS. If a PTO system is connected to the connector of the articulated 

plate, it is then possible to convert the kinetic energy arising from the motion 

of the articulated plate into electricity. Here, the articulated plate is analo-

gous to a raft- type WEC. 

[image: Image 83]
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FIGURE 4.13

Hydroelastic response of VLFS with hinges at different articulate plate lengths  La  for 

(a) λ /  L = 0.2 and (b) λ /  L = 0.4. 

The typical   p

 B to matrix of an interconnected node in the hinge connector is 

presented as follow:

 wˆ 0

0

0

0

0 





(ψ  x)− 



0

0

0

0

0 

 B = (





ψ  y

 pto

)− 0 0 0

0

0   . 





(4.77)

(





ψ  x )+ 0 0 0 +  p

 B to

−  p

 B to 





(ψ  y)+ 



0

0

0

−  p

 B to

+ B





 pto   

It is noted here that for each node along the line connector, there will be five 

−

−

+

+

dofs – namely,  ˆw, (  x

ψ ) , (  y

ψ ) , (  x

ψ ) , (  y

ψ ) . The positive (+) and negative (−) 

signs denote the RHS and LHS of the node in the line connector. 

In order to quantify the effectiveness of the flexible line connector in miti-

gating the hydroelastic response, the non- dimensional compliance param-

eter  χ is introduced, which is defined as

χ =  ˆ ⋅ ∆

∫ w d . 

(4.78)



∆
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The efficiency of the VLFS compliance with and without the articulated 

plate, i.e., χ with 

 articulated 

 plate  and χ w/ o articulated  plate, respectively, can be computed as, χ w/o articulated plate − χwith articulated plate

ηχ =

 %. 

(4.79)



χ w/o articulated plate



It is observed that a positive ηχ value signifies that the articulated plate 

anti- motion device is effective in reducing the hydroelastic response, and 

the opposite holds true for a negative value. Four different articulated plate 

lengths,  a

 L  of 15 m, 30 m, 45 m, and 60 m, along with   p

 B to values ranging from 

0 to 0.2 MN in increment of 75 kN.m.s for wavelengths λ  / L = 0.4, 0.6, 0.8, and 

1.0, are considered. Hydroelastic analyses are conducted using these param-

eters, and the results for the different λ  / L ratios are shown in Figure 4.14. 

Each sub- figure in Figure 4.14 displays four lines representing the hydroelastic response of the VLFS under four different extreme conditions (EC):

(i)  Solid Line – VLFS without articulated plate

(ii) Dotted Line – VLFS with hinge- connected articulated plate but 

without   p

 B to

(iii)  Dash- Dot Line – VLFS with hinge- connected articulated plate with 

 p

 B to that generates the most energy

FIGURE 4.14

Performance of raft- type WEC with VLFS under different wavelength. 
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(iv)  Dash line – VLFS with hinge- connected articulated plate with   p

 B to 

that is most effective in mitigating the hydroelastic response

 4.5.2.1   Hydroelastic  Response

Figure 4.14 shows that the hydroelastic response of the VLFS without the articulated plate, i.e., EC (i), is the largest, while the response with the articulated plate, i.e., EC (ii), is the smallest, indicating that the articulated plate 

anti- motion device is highly effective at reducing wave forces. However, 

its effectiveness diminishes as the wavelength increases. Furthermore, the 

figure demonstrates that in EC (iii), where the settings of   a

 L  and   p

 B to  maxi-

mise energy generation from the hinge connector, the articulated plate is 

generally ineffective in mitigating the hydroelastic response due to the large 

 p

 B to value (i.e., 0.2 MN). A large   p

 B to at the connector is similar to having a 

rigid or welded joint, which fails to adequately reduce wave forces. In fact, 

for λ  / L = 0.4 and 0.6, the η x value is negative, meaning that the hydroelastic response of the VLFS increases due to the anti- motion device. However, 

under EC (iv), where   a

 L  and   p

 B to are optimised for reducing the hydroelastic 

response, a significant amount of wave energy can still be extracted from 

the hinge’s rotational motion when the wavelength is small, i.e., λ  / L = 0.4 

and 0.6. 

 4.5.2.1.1   Capture Width and Compliance Efficiency

The capture width ( CW ) and plate compliance efficiency (ηχ) of the VLFS for 

the given   a

 L  and   p

 B to are shown side by side in Figure 4.14. Generally, it can 

be observed that  CW  (i.e., the power generated) decreases as λ  / L increases. 

This is because the VLFS, when exposed to longer wavelengths, tends to 

oscillate in phase with the wave orbital motion, resulting in reduced rota-

tional movement at the hinge connector. Similarly, ηχ decreases with increas-

ing λ  / L, as the hydroelastic response can only be effectively mitigated when 

energy is dissipated through radiated wave damping produced by the rota-

tional motion of the anti- motion device. 

4.6   Case Study III: Power Enhancement via Elastic 

Deformation

The energy generation from the attenuator WEC attached to a VLFS can 

be enhanced by using the elastic properties of the material, e.g., the Wave 

Carpet, 138 Anaconda WEC,139 SBM S3 WEC, 140 Bombora WEC,141 Water Level Carpet (WLC) WEC, 142 and flexible runway supported by an array of circular buoy. 143

[image: Image 85]
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A pontoon- type WEC, comprising a grid of  N fm  interconnected float-

ing modules, is examined here. Each module is connected to the others by 

( Nfm −1) line hinge connectors (refer to Figure 4.15). For instance, Figure 

4.15(a) shows Type- A  with   N fm = 12 (11 hinges), Figure 4.15(b) illustrates Type- B  with   N fm = 6 (5 hinges), Figure 4.15(c) depicts Type- C with  N fm = 4 (3 

hinges), and Figure 4.15(d) displays Type- D with  N fm = 1 (0 hinges). When assembled, the total length of the pontoon- type WEC is  L =  N fm ×  lfm represents the length of each module. The PTO system is positioned at equal inter-

vals of  L /  12 along the horizontal axis ( x-axis) and  B /  8 along the transverse axis ( y-axis), as illustrated in Figure 4.15, resulting in a total of  Npto = 99 PTO 

systems, as shown in Figure 4.15(a) to (d). 

Three groups of pontoon- type WECs with varying  L values are exam-

ined: Group I with  L = 100 m, Group II with  L = 200 m, and Group III with 

 L = 300 m. For each group, four types of WECs (Type- A, -B, -C, and -D), 

each featuring  N fm, different numbers of modules, are analysed, as shown in 

Figure 4.15(a) to 4.15(d). It should be highlighted that Type- A has the most 

line hinge connectors, while Type- B and Type- C have fewer. The Type- D 

pontoon- type WEC is a single module system, resembling a continuous mat- 

like VLFS. These WECs exhibit different elastic deformation behaviours due 

to variations in module length ( lfm) and Young’s modulus (), facilitating an 

FIGURE 4.15

Pontoon- type WEC with (a) Type- A:   N fb = 12 modules, (b) Type- B:  N fb = 6 modules, (c) Type- C: 

 N fm = 4 modules, and (d) Type- D:  N fb = 1 module. 

[image: Image 86]
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investigation of how structural rigidity affects power generation. To explore 

this, the WECs are modelled using six different  values:  = 0 2

 .  GPa, 2 GPa, 

20 GPa, 200 GPa, 2,000 GPa, and 20,000 GPa. It is also important to note that 

the total number of PTO systems ( Npto = 99) is maintained consistently across 

all WECs to ensure a fair performance comparison. 

4.6.1   Capture  Width

Figure 4.16 illustrates the  CW  of the pontoon- type WEC for Groups I, II, and III, all with  N fm = 1. The figure demonstrates that the pontoon- type WEC 

is highly efficient at harnessing wave energy when the structure is flexible, 

i.e., the  is low ( = 0 2

 .  GPa). As  increases, both the  CW  and   a

 P  decrease 

and become less responsive to changes in structural stiffness, signifying that 

the VLFS becomes more rigid. Additionally, when the pontoon- type WEC 

lengthens, with  L equal to 200 m and 300 m, the energy generation increases, 

with the highest energy yield occurring when the structure is most flexible 

(i.e.,  = 0.2 GPa). 

4.6.2   Hydroelastic  Response

Figure 4.17 shows the comparison of the hydroelastic response of the 

Group I pontoon- type WEC for varying numbers of hinges: Type- A with 

11 hinges, Type- B with 5 hinges, Type- C with 3 hinges, and Type- D with no 

hinges. The deflection is recorded along the WEC’s centreline under head 

FIGURE 4.16

 CW  for Groups I, II, and III Pontoon- type WECs under different Young’s modulus  .  N fm = 1. 

[image: Image 87]
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sea conditions. The results indicate that the effect of Young’s modulus is 

minimal for WECs with a greater number of hinges, such as Type- A and 

Type- B, but its impact becomes more significant when fewer hinges are 

used, as in Type- C and Type- D. Additionally, it is evident that a continu-

ous pontoon- type WEC (Type- D) can generate more energy than one with 

connectors. 

FIGURE 4.17

Hydroelastic response for (a) Group I ( L = 100 m), (b) Group II ( L = 200  m), (c) Group III 

( L = 100 m) pontoon- type WEC with  = G. 

5

 Integration of WECS with Floating 

 Breakwater

This chapter explores the integration of WEC with floating breakwater 

(FB) as a means to extract energy from the wave and attenuate the wave 

force. The integrated horizontal- raft WECs with a floating breakwater (iHR- 

WEC- FB) and the integrated vertical- flap WECs with a floating breakwater 

(iVP- WEC- FB) are considered. The iHR- WEC- FB and iVR- WEC- FB allow the 

conversion of wave energy into electricity while protecting the coast from 

erosion due to wave impact. A numerical model based on the FE- BE method 

presented in Chapter 4 is used to investigate the performance of the iHR-WEC- FB and iVP- WEC- FB. The case study examines how variations in WEC 

dimensions, mooring stiffness, wave periods, and wave directions affect the 

optimal design of the iHR-WEC-FB and iVP-WEC-FB, with the goal of maxi-

mizing energy generation and enhancing coastal protection. 

5.1   Introduction

In Chapter 4, the feasibility of integrating WEC with a floating platform has been described and demonstrated via a few case studies. In this chapter, 

focus will be on the integration of WECs with FB for the tropical climate. 

Tropical countries like Singapore, the Maldives, and Indonesia, even though 

experiencing relatively mild sea conditions compared to their sub- tropical 

counterparts, are still vulnerable to coastal erosion. Over time, waves grad-

ually remove sediments and rocks from their shorelines. Data shows that 

Indonesia, the world’s largest archipelagic nation, has lost 29,261 hectares 

of coastal land—an area equivalent to the size of its capital, Jakarta—over 

the past 15 years due to erosion.144 The effects of coastal erosion, exacerbated by rising sea levels, have underscored the importance of developing technologies to mitigate this damage. Conventionally, the strategies to manage 

coastal erosion are by retreating or relocating to regions that are higher, such 

as the highland, or by preserving the shoreline with hard structures, such as 

dikes and shore protection materials. 145–147 Although shore protection materials such as geotextile146,147 provide a considerable advantage due to their relatively easy deployment, they may be more expensive compared to the use of 
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hard construction structures such as breakwater.150 While bottom- mounted breakwater is commonly used, floating breakwater151–154 has been proposed and built due to its cheaper construction costs, environmental friendliness, 

and greater adaptability to the rise of seawater level. 155 Sun et al.156 provide a comprehensive review of the prospect of integrating WEC with FB. Floating 

breakwater made of polyethylene is also proposed – the Wavebrake and 

WhiprWave. For e.g., the Wavebrake ( www. wavebrake. com) is a novel FB 

with multiple grooves to attenuate wave force and at the same time equipped 

with PTO to produce electricity. Another design, the WhiprWave, 156 is a high- 

density polyethylene (HDPE) float that exhibits low wave transmittance with 

a unique porous groove design to dissipate wave energy. 

To maximise the use of sea space, WECs like the OWC WEC, point absorber 

WEC, and raft- type (attenuator) WEC are suggested for integration into break-

waters, serving the dual purpose of generating energy and reducing wave 

forces.157–160 The idea of combining WECs with structures157,161,162 like piers, breakwaters, or floating platforms offers a way to optimise ocean space and 

makes wave energy a more attractive and cost- effective renewable energy 

source. Several approaches have been developed to keep WECs competitive in 

energy generation, such as improving power efficiency with a trilinear- damper 

system163 and integrating oscillating buoy- type WECs with vertical pile-restrained floating breakwaters. 160 There are also numerous efforts to merge WECs with floating breakwaters by placing the WECs on the exposed side of 

the breakwater.161,164 A comprehensive review of the integration of WECs with FBs was provided by Mustapa et al.165 Michailides and Angelides166 explored the feasibility of using a flexible floating breakwater for both shoreline protection and wave energy conversion. They found that it is possible to meet 

the functional requirements of both the FB and WEC. Attenuator- type WECs, 

also called raft- type or flap WECs, which generate energy through pitching 

motions, have also been proposed. For example, the raft- type WEC attached to 

a VLFS,167,168 as discussed in Chapter 4, showed that power generation was significantly influenced by the length of the plate- like WEC and PTO damping. 

The performance of the raft- type WEC could be further improved by using a 

modular system, as suggested by Wilkinson et al. 169 This modular approach allows for greater energy extraction from waves approaching from multiple 

directions. Noad and Porter170 proposed a new model for the interaction of waves with an articulated raft, demonstrating that the capture factor increases 

in proportion to the number of pontoons, with shorter rafts generating more 

energy. A summary of the different types of WECs integrated into infrastruc-

ture is shown in the schematic diagram in Figure 5.1. 

For the iHR- WEC- FB, the FB could be very large in size in the order of 

hundred metres, thereby making its elastic deformation significant in the 

assessment of the performance of WEC. The raft- type WEC could be of 

horizontal- raft type or vertical- raft type (known as flap)30, 168, 171,172 and generates energy via its pitch motion as waves hit on it. A PTO system is used 

[image: Image 88]
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FIGURE 5.1

Schematic diagram for (a) raft- type (attenuator- type) WEC (b) point absorber WEC (c) OWC 

WEC, integrated to FB. 

to convert mechanical motion into electricity. Two case studies will be pre-

sented in Sections 5.3 and 5.4, based on the findings found by the authors in the previous studies.173,174 Case Study I considers horizontal- raft type attenuator WECs, whereas Case Study II uses vertical- raft type attenuator WECs, 

attached to FB. 

5.2   Existing  Prototype

There are numerous prototypes of WECs integrated into existing infrastructure 

available around the globe. Most of the prototypes available as of date are 

installed on harbour to demonstrate the feasibility of the wave energy as a 

sustainable source of energy for the port. As mentioned in Section 1.4, the SE@Ports and the EcoWave Power Projects were executed in the Spanish 

Mediterranean Port and Israel’s Jaffar Port to study the feasibility of integrat-

ing WECs with port infrastructure. The Seahorse system,175 depicted in Figure 

5.2(a), was installed at the Port of Pecem, Brazil, in 2012, with a production capacity of 50 kW. It consists of two large mechanical arms mounted on the 

port’s pier, with their kinetic movement powered by waves acting on circular 

buoys. In 2015, a new type of overtopping WEC, the Overtopping BReakwater 

for Energy Conversion (OBREC),176 was built at the Port of Naples by incorporating it into a traditional rubble mound breakwater. Illustrated in Figure 

5.3(b), the OBREC is expected to generate 3,500 MWh of energy when installed on a 500-metre breakwater. SINN Power177 technology has installed five- 

point absorber WECs along the port wall of Heraklion in Greece, as shown in 

Figure 5.2(c). These WECs are designed to be lightweight for easy transport and installation on a frame attached to the port wall. Another notable OWC is 

the PICO178 integrated into the coastline at the Azores (Portugal). 

Figure 5.3(a) shows the Mutriku power plant175 in Spain, known as the 

REWEC, integrate the OWC system, which comprises 16 capture chambers 
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FIGURE 5.2

Example of WEC integrated with (a) port (Seahorse system175), (b) sea wall (Overtopping 

BReakwater for Energy Conversion, OBREC176), and (c) port wall (PINN Power177). 

FIGURE 5.3

Example of WEC integrated with (a) breakwater at Mutriku power plant (REWEC)175 and (b) breakwater in Reggio Calabria, Italy.179

[image: Image 91]
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with the FB and has the capability to produce a total of 296 kW of energy. 

An OWC is also installed to a multi- caisson breakwater in Reggio Calabria, 

Italy,179 as shown in Figure 5.3(b). 

5.3   Case Study I: Horizontal- Raft Type WEC173

The first case study considers the iHR- WEC- FB, which comprises a series of 

an equally spaced horizontal- raft type WECs hinged to the seafront of a FB. 

5.3.1   Problem  Definition

Figure 5.4 illustrates the schematic of the iHR- WEC- FB. The FB is designed as a rectangular box- like structure, with its four corners anchored to the seabed 

via mooring lines modelled as springs with stiffness  k mooring. There is a total of Nwec WEC units evenly spaced at intervals  sp, which equals the width of each WEC ( sp =  we

 W c). The WECs are connected to the FB with hinge connectors, 

allowing them to pitch in response to incoming waves. The PTO system is 

located at these hinge connections to convert mechanical motion into electri-

cal energy. The floating breakwater has a length of  Lfb and a constant width 

of  Wfb, while the raft- type WEC is modelled as a rectangular solid plate with 

dimensions   we

 L c and   we

 W c. The thicknesses of the FB and WEC are  dfb and   we

 d c,  

respectively. 

The wave and structural characteristics of the iHR- WEC- FB are detailed in 

Table 5.1. The iHR- WEC- FB is positioned on water at a consistent depth of 

FIGURE 5.4

Schematic diagram showing iHR- WEC- FB in (a) plan view and (b) elevated view. 
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TABLE 5.1

  

Principal Dimensions and Properties for iHR- WEC- FB

Type

Property Symbols

Unit

A

B**

C

D

 Lfb

m

99

98

99

95

 k

−

0, 2 (Default), 10

 mooring

 kmooring (ρ ∗

=

2

/  gL )

FB

 Wfb

m

2

 dfb

m

2

 fb

GPa

11.9

ρ  fb

kg/m3

256.25

 Nwec

−

50

25

10

 W

m

1

2

5

 ave Energy Convertors in 

 sp

Structure Properties

 we

 W c

m

1

2

5

WEC

 we

 L c

m

1, 2 (Default), 4

 type 

 we

 d c

m

2

Raft-

 p

 B to

N.m.s

0 to 25,000 (100 interval)

 wec

GPa

11.9

ρ wec

kg/m3

256.25

ω

rad/s

0.52 to 2.09

 T

θ

degree

0 (head sea), 60

 ropical Seas

 A

m

1.0

ave 

Regular 

W

Properties

 d

m

10

 Note:  ∗

 L =  we

 L c +  Wfb, **Default
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 D = 10 m. To examine its fundamental hydrodynamic properties, the impact 

of regular waves is analysed, assuming a wave period  T varying from 3 to 

12 s and a wave amplitude  A = 1 m. The waves strike the iHR- WEC- FB at 

angles θ of 0°, 30°, 45°, and 60° relative to the negative  x-axis, as illustrated 

in Figure 5.4. 

Conversely, both the WEC and FB are modelled as solid, thick plates using 

Mindlin plate theory, taking into account their structural deformation under 

wave action. The dimensions of the rectangular iHR- WEC- FB are detailed 

in Table 5.1, where both the FB and WEC have a uniform thickness of 2 m, a Young’s modulus of 11.9 GPa, and a mass density of 256.25 kg/m3. The 

thicknesses of the FB and WEC are kept constant because the FB’s effective-

ness in attenuating wave forces is more significantly influenced by its width 

than its thickness. 180 The length of the FB is fixed at approximately 100 m for all four types of WECs: Type A, B, C, and D. Parametric studies are conducted by examining the four types of raft- type WECs attached to the FB to 

explore the impact of varying   we

 W c and  Nwec. It is crucial to note that the total 

waterplane area for all four WEC types is kept constant at   wp

 A = 100 m2. This 

ensures a fair comparison of the performance of the different iHR- WEC- FBs, 

as the exciting and restoring forces are influenced by   wp

 A . The performance 

of the WEC and FB will be evaluated using the BEM method, as described 

in Chapters 3 and 4, where the WEC is considered a rigid body, and the FB’s elastic deformation is taken into account. Interest readers may refer to these 

chapters for details on the coupled FE- BE method approach. For simplicity, 

wave elevation   ˆ

η  will be referred to as η in this chapter. 

5.3.2   Performance Under Regular Waves

The performance of the iHR- WEC- FB under regular waves is first assessed. 

To do so, the parametric investigation of the optimal   p

 B to that produces the 

maximum energy is investigated. The optimal   p

 B to obtained from the para-

metric studies is then used to investigate the effects that various parameters 

such as   we

 W c,  kmooring,  Wfb,  T,  and  sp have on the energy generation of the WEC 

and the effectiveness of the breakwater in attenuating the wave forces. 

 5.3.2.1   Optimal  PT

 B O

The iHR- WEC- FB produces energy through a hydraulic PTO system, where 

mechanical energy from the pitch motion is transformed into electricity. The 

force generated by the PTO is directly proportional to the   p

 B to value, which 

varies with different ω (i.e.,  T). Using the box- like Type- B iHR- WEC- FB as the reference model—comprising 25 units of WECs positioned 2 m apart, each 

with dimensions of  Lfb =  Wfb =  dfb = 2 m—a parametric study was conducted 
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with   p

 B to values ranging from 0 to 25 kN.m.s. This study aims to identify the 

optimal   p

 B to value that yields the maximum wave energy (i.e., maximum  CW ). 

Tay173 found that the optimal damping for the cases discussed in this section 

is 9 kN.m.s. The findings are summarised as follows:

(a) Generally, the iHR- WEC- FB generates significantly more energy 

when waves approach at an oblique angle. This is due to the fact that 

each raft- type WEC pitches with varying magnitudes and phases 

under oblique waves, unlike under head sea conditions, allowing it 

to produce more energy across a broader range of wave periods. 

(b)  Under oblique wave conditions, the wave power output reaches 

its peak when θ = 45 , but begins to decrease as θ increases 

(e.g.,  θ = 60 ). This decrease occurs because the WECs exhibit 

smaller pitching motions when waves come from directions closer 

to the beam sea (θ = 90 ). 

(c)  The energy output from the iHR- WEC- FB increases as  T decreases, 

which corresponds to a smaller  λ . This is because raft- type WECs 

pitch more significantly with smaller  λ , whereas with larger  λ , they 

oscillate in phase with the wave orbital motion, leading to lower 

energy generation at longer λ. 

 5.3.2.2   Effect of Varying WEC Widths

The impact of varying   we

 W c on the performance (energy generation) of 

the WEC is illustrated in Figure  5.5. The   a

 P  of the iHR- WEC- FB for three 

 we

 W c values—1, 2 (default), and 5 m—is plotted for two different direc-

tions: θ = 0° and 60°. Generally, both plots in Figure  5.5 indicate that   a P  

increases or decreases with the increase in ω. Since the performance of the 

iHR- WEC- FB is influenced by the relative pitching angle between the WECs, 

it is evident that the iHR- WEC- FB can produce more power under oblique 

waves compared to head sea conditions. However, if the iHR- WEC- FB oper-

ates in head sea conditions at a sea state with ω close to its natural periods ω N, it can generate more power due to resonance. 

A detailed analysis of the impact of   we

 W c reveals that the iHR- WEC- FB 

generates more power with a smaller   we

 W c. This is because a smaller   we

 W c 

has lower mass inertia, allowing it to pitch in larger magnitude when waves 

hit the structure. However, for the iHR- WEC- FB under head sea conditions, 

power production increases as   we

 W c increases. This can be attributed to the 

relative pitching angles between the WECs. Under head sea conditions, all 

the WECs pitch with nearly the same magnitude and phase, resulting in zero 

relative pitching angles between them. In this scenario, increasing the   we

 W c 

allows the WECs to better capture incoming waves, thus generating more 

power for the iHR- WEC- FB. 

[image: Image 92]
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FIGURE 5.5

Power absorption of iHR- WEC- FB for varying 



 we

 W c under (a)  θ = 0  and (b)  θ = 

60 . Regular 

wave with   A =  1.0 m. 

 5.3.2.3   Effect of Varying Mooring Stiffnesses

Figure 5.4(a) shows that the FB is moored at its four corners by mooring lines k

with the non- dimensional mooring stiffness, defined as 

 mooring

 kmooring =

, 

ρ g( L∗)2

where  L∗ is the characteristic length taken as  ∗

 L =  we

 L c +  W bf. The effect of vary-

ing mooring stiffnesses has on the performance of the iHR- WEC- FB is inves-

tigated in Figure 5.6. Three mooring stiffnesses  kmooring are investigated, i.e., kmooring = 0 ,  2 ,  10. It can be seen from Figure  5.6 that more energy could be generated when the breakwater is moored by stiffer mooring lines. This is 

because the FB is more stable and has a smaller motion when the mooring 

stiffness is large, i.e.,  kmooring = 10, thus resulting in the larger relative average pitch motion between the WECs and FB. It is noted that  kmooring = 0 indicates 

that the FB is not moored. Under such a condition, the relative average pitch 

motion is found to be small due to the cancelling effect between the motion 

of the WECs and FB. 

 5.3.2.4   Effect of Varying WEC Lengths

The   CW  derived from Equation (3.59) has a length unit, making it 

significantly influenced by the   we

 L c. Figure 5.7 illustrates how varying   we

 L c 

impacts the power absorption of the Type- B iHR- WEC- FB under an oblique 

wave at θ = 30°. The   a

 P  peaks when   we

 L c = 2 m but decreases when   we

 L c is 

either too small (i.e.,  we

 L c = 1 m) or too large (i.e.,  we

 L c = 4 m). Notably, a WEC 

can generate more energy through elastic deformation when the characteris-

tic length λ c of the structure (see Equation (4.1)) is larger. However, a larger 

[image: Image 93]
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FIGURE 5.6

Power absorption of iHR- WEC- FB for varying mooring stiffness under θ = 

0 .  we

 W c = 2 m and 

 Nwec = 25. Regular wave with  A = 10 m. 

FIGURE 5.7

Power absorption of iHR- WEC- FB for varying breakwater widths under  θ = 30 .  we

 W c = 2 m,  

 N

 k

 A

 wec = 25,  mooring =  2.0. Regular wave with 

=  1.0 m. 
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length also means a heavier structure, which dampens the WEC’s motion. 

Consequently, the optimal length for the iHR- WEC- FB to maximise energy 

generation is between 2 m and 3 m, as depicted in Figure 5.7. 

5.3.3   Effectiveness of iHR- WEC- FB as a Breakwater

The effectiveness of the iHR- WEC- FB as a breakwater in attenuating the 

wave forces is investigated. The influences of three parameters, i.e.,  T,  sp,  and we

 W c,  are being investigated in the subsequent sections. Note that for all cases, 

the Type- B iHR- WEC- FB is considered, i.e.  Nwec = 25,  we

 W c = 2 m,  we

 L c = 2 m, 

 Wfb = 2 m, and  Lfb = 98 m . 

 5.3.3.1   Effect of Varying Wave Periods

According to the dispersion Equation (2.28), the wavelength  λ  increases 

with an increase in the wave period  T, and vice versa. Figures 5.8(a)–5.8(c) 

show the wave elevations  η around the iHR- WEC- FB for regular waves with 

periods of  T = 3.5, 4.0, and 5.0 s, respectively. 

It is evident from Figure 5.8 that wave diffraction is particularly pronounced at the corners of the iHR- WEC- FB. Additionally, the iHR- WEC- FB reflects 

the waves, causing higher wave elevations upstream of the structure. The 

wave elevation is notably high near the iHR- WEC- FB due to the interference 

between the incident and reflected waves, leading to standing waves in that 

area. Conversely, wave elevations decrease downstream of the iHR- WEC- FB. 

Figure 5.8 also indicates that the reflected wave elevation is greater when the iHR- WEC- FB is exposed to waves with shorter λ, i.e., smaller  T, compared to waves with longer λ. Moreover, the FB proves to be more effective in 

reducing wave force when  λ  is shorter. These observations align with wave 

diffraction theory,181 which explains that shorter  λ  waves lead to increased reflection and diffraction, causing greater wave interference. It should be 

noted that the FB is less effective with longer  λ  because the structure moves 

in phase with the incoming waves. 

 5.3.3.2   Effect of Varying Spacings Between WECs

Figure 5.9 illustrates how different spacings between the WECs impact the wave climate around the iHR- WEC- FB when it is exposed to regular waves 

with a period of  T = 3 5

 .  s. The iHR- WEC- FB is minimally influenced by the 

spacing of the WECs when the incoming wave approaches from the head sea. 

This indicates that the wave disturbances around the iHR- WEC- FB are not 

significantly affected by the number of WECs, provided that the total   wp

 A  and 

 Wfb remain unchanged. This is because the difference in power absorption for 

head sea is relatively minor compared to the oblique sea (refer to Figure 5.5), 

[image: Image 95]

168  

 Wave Energy Convertors in Tropical Seas

FIGURE 5.8

Wave amplitude surrounding iHR- WEC- FB with   we

 W c = 2 m and  Nwec = 25 under regular wave. 

(a)   T = 3 5

 .  s , (b)   T = 4 0

 .  s ,  and (c)   T = 5 0

 .  s . θ

°

= 0  . we

 L c = 2 m. 

leading to smaller wave disturbances around the iHR- WEC- FB with varying 

 we

 W c. Furthermore, the transmitted wave downstream of the iHR- WEC- FB is 

strongly influenced by the  Wfb, while the reflected wave upstream is primar-

ily affected by the WEC’s motion. Since the  Wfb, which impacts wave force 

attenuation, and the   wp

 A  of the WEC, which affects power absorption, are 

kept constant in this case study, the variations in wave climate are minimal 

across the different scenarios shown in Figure 5.9. 

[image: Image 96]
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FIGURE 5.9

Wave amplitude surrounding iHR- 

WEC- 

FB with (a)   we

 W c = 1m and  Nwec = 50   

(b)   we

 W c = 2 m and  Nwec = 25 (c)   we

 W c = 5 m and  Nwec = 10 under regular wave.  T = 3 5

 .  s ,  

θ = 

0 ,  we

 L c = 2m. 

 5.3.3.3   Effect of Varying WEC Lengths

The performance of the iHR- WEC- FB is greatly influenced by its length 

in the  x-axis direction, specifically the  Wfb and   we

 L c.  182–184 Figure 5.11 illus-

trates the wave elevation around the iHR- WEC- FB under regular waves 

with a period of  T = 3.5 s. This analysis focuses on oblique waves to eval-

uate the impact of varying   we

 L c. Compared to the previous wave climate 

[image: Image 97]
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FIGURE 5.10

Wave amplitude surrounding iHR- WEC- FB with (a)   we

 L c = 1m and (b)   we

 L c = 2 m   we

 L c = 4 m under 

regular wave.  T = 3 5

 .  s, θ =



30 ,  we

 W c = 2 m,  Nwec = 25. 

results, there is a noticeable difference in the wave disturbance around 

the iHR- WEC- FB with different WEC lengths. From the minimum wave 

elevation η shown in Figure  5.10, it can be inferred that a longer WEC 

length is more effective in reducing wave forces, as it dampens more 

wave energy. Consequently, the iHR- WEC- FB with a larger   we

 L c reflects 

[image: Image 98]
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FIGURE 5.11

Wave amplitude surrounding iHR- WEC- FB with (a)   we

 L c = 1m and (b)   we

 L c = 2 m (c)   we

 L c = 4 m 

under regular wave.  T = 5 0

 .  s, θ =



30 ,  we

 W c = 2 m,  Nwec = 25. 

more waves, as evidenced by the increased wave elevation upstream of 

the floating structure in Figure 5.10. Conversely, Figure 5.11 reveals that the effect of   we

 L c is minimal under  T = 5 s, as the iHR- WEC- FB proves inef-

fective against longer incoming waves with higher energy, which pass the 

floating structure with minimal diffraction and reflection. 
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5.4   Case Study II: Vertical- Flap Type WEC

The second case study considers a series of vertical- flap type WECs integrated 

into a FB, termed the integrated vertical- flap WEC- floating breakwater (iVF- 

WEC- FB). Similar to iHR- WEC- FB, the iVF- WEC- FB is also made of a series 

of equally spaced vertical WECs hinged at the seafront of a FB. 

5.4.1   Problem  Definition

The iVF- WEC- FB comprises an array of equally spaced vertical flaps (VFs) 

hinged on supporting frames attached to the box- like FB as shown in 

Figure 5.12. The VF operates following the same mechanism as the OWSC, except that it is an inverted OWSC. As waves hit on the VF, the VF rotates 

at an angle  Θ y  about the hinge (rotation about the local  y-axis, see Figure 

5.12) where the PTO system is used to convert the mechanical motion into electricity. Twenty- five VFs are considered in the 50-m long iVF- WEC- FB, 

where each VF has a length   we

 L c, width   we

 W c,  and thickness   we

 d c. The dimen-

sion and properties of the VF summarised in Table 5.2 are the optimal 

value obtained following the approach in Section 3.3.6. The FB is allowed 

to move vertically (heave motion) but with its horizontal motions (sway 

and surge) constrained. 

The iVF- WEC- FB is subjected to both regular and irregular waves. For both 

the regular wave and irregular wave analyses, a constant water depth of 

 D = 10 m is considered. A parametric study is first performed where a single 

VF attached to a short FB under a regular wave is considered. The objective 

of the parametric study is to determine the suitable mooring system of the 

FB, as well as the optimal length and width of the VF. The regular wave and 

unidirectional irregular wave, modelled using the BS wave spectrum, are 

used to study the performance of the iVF- WEC- FB and wave climate sur-

rounding the structure. The regular wave frequency ω ranges from 1.0 to 

6.0 rad/s, whereas the peak wave period   p

 T  ranges from 3 to 6 s. 

Both FB and VF are designed as hollow boxes to allow for sufficient buoy-

ancy, and their outer hulls are made of thin- shell structures. The buoyancy 

force in the VF must be sufficient to ensure sufficient restoring moment for 

continuous pitching motion under surging force. It is to be noted that the  Lfb 

is adjusted according to the optimal width of the VF with equal spacing  sp 

obtained from the parametric study. Also, the length of the supporting frame 

is determined according to the optimal length of the VF to allow for the VF 

to pitch without clashing with the FB. The inputs for the numerical study of 

the full- scale iVF- WEC- FB are summarised in Table 5.2. 

The performance of the iVF- WEC- FB is assessed using the ANSYS AQWA 

software, which also adopts the BEM. Here, the FB and WEC are modelled 

as rigid body motion where only the wetted surfaces of the structure need to 
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FIGURE 5.12

Schematic diagram showing iVF- WEC- FB in (a) plan view and (b) elevated view. 

be modelled. The VF is hinged connected to the FB, and the PTO systems are 

modelled as damping in the software. 

5.4.2   Performance of Single Vertical Flap

Parametric studies are conducted on a single VF to obtain the optimal VF’s 

dimensions in maximising the performance of the WEC. The single VF 

attached to a FB is considered under regular waves. The effect the mooring 

system of the FB, width and length of the WECs, has on the performance of 

the WEC is presented hereafter. 
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TABLE 5.2

Dimensions and Properties of iVF- WEC- FB

Components

Symbols

Value

Floating 

Length,  Lfb (m)

50.00

Breakwater

Width,  Wfb (m)

3.00

Draft,  dfb (m)

2.00

Wave 

Number,  N

25

 wec

Energy 

Converter

Length,  we

 L c (m)

2.00

Thickness,  we

 d c (m)

0.40

Width,  we

 W c (m)

1.25

PTO damping   p

 B to (N.m.s/rad)

5,913

Regular 

Wave frequency, ω (rad/s)

1.0 to 6.0

Wave

Wave direction, θ (  )

180, −135

Water depth,  H (m)

10

Irregular 

Peak Period,  p

 T  (s)

3,4,5,6

Wave

Significant wave height,  Hs (m)

2.0

 5.4.2.1   Effect of Motion of Floating Breakwater

The box- like FB, as shown in Figure 5.12, is moored by mooring lines by assuming that only the heave motion of the FB is allowed. In this analysis, 

the energy generation from the iVF- WEC- FB when the FB is free to heave 

(termed heave- free) is compared with its counterpart when it is heave- 

constrained. The heave- constraint is applied in ANSYS AQWA by imposing 

fixed motion to the heave dof. This is analogous to having the FB moored 

by mooring lines with very high stiffness. The pitch RAO of the single VF 

when it is hinged to the heave- constrained and heave- free FBs is shown in 

Figure 5.13. The length and width of the VF are   we

 L c =  we

 W c = 1 m. The result 

shows that the effect of the motion of the FB is negligible towards the pitch 

RAO when subjected to regular waves of high frequency. While the iVF- 

WEC- FB shows a slightly greater pitch RAO at a low ω between 1.0 rad/s 

to 1.7 rad/s, the heave- constrained FB results in a higher pitch RAO for the 

ω  between 1.7 and 2.0 rad/s, i.e., wave period  T~ 3 to 4 s, which is close 

to a typical tropical sea state in Singapore. This is in agreement with the 

results for the iHR- WEC- FB in Section 5.3.2, where the heave- constrained FB allows the greater energy generation from a raft- type WEC due to the 

greater relative pitching motion when attached to a heave- constrained 

FB. Figure 5.13 also shows that the pitch RAO of the VF reduces with the increase of ω. This is because the  λ  is short at high ω, thus resulting in 
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FIGURE 5.13

Pitch RAO for VF when integrated to heave- constrained and heave- free FB.  we

 W c = 1m,  

 we

 L c = 1m . 

smaller wave energy resources. The pitch RAO is also found to peak when 

the ω is around 2.0 rad/s, which coincides with the most occurrence sea 

state of the Singapore sea at around  T ~  2 to 4 s. 

Figure  5.14 shows   a

 P  and  CWR of the single VF with   we

 L c =  we

 W c = 1 m 

when subjected to regular wave. The   a

 P  is represented by the solid 



line (—), whereas the  CWR  is represented by the broken line (- - - -). The 

absorbed power is found to increase with the increase of ω and maintains an 

almost constant peak power absorption when the wave frequency is around 

ω  ~  2 0

 . –3 5

 .  rad/s, corresponding to the wave period  T ~  2 to 3 s. The   a

 P  then 

reduces with the increase in ω due to the short λ – i.e., smaller wave energy 

resource. Figure 5.14 also shows that the single VF can achieve  CWR above 15% for a range of wave frequency between 2.0 and 5.0 rad/s, and reaches a 

peak of 30% at ω = 4 0

 .  rad/s. The comparison of the performance of the VF 

with heave- free and heave- constrained FB shows that the motion of the FB 

does not significantly affect the power absorption and  CWR of the WEC. 

However, the heave- constrained FB shall be taken in the subsequent analyses 

due to its relatively better performance when operating at the sea condition of 

the tropical sea by taking Singapore as a case study. A FB with minimal motion 

is important to ensure the safety and comfortability of the crew working on the 

structure besides generating fewer radiated waves under wave action. 

[image: Image 101]
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FIGURE 5.14

Absorbed power for single VF when integrated to heave- constrained and heave- free FB. 

 we

 W c = 1m,  w

 L ec = 1m  p

 ,B to = 164 N.m.s/rad. 

 5.4.2.2   Effect of Width of WEC

By assuming a heave- constrained FB, five different VF with varying widths, 

i.e.,  we

 W c = 1 00

 . ,  1 .  25 ,  1 .  50 ,  1 .  75 ,  and 2 00

 .  m, are considered to study the effect 

the width has on the power generation of the WEC. The pitch RAO of the 

five different VFs, when attached to the heave- constrained FB under head 

sea condition, is presented in Figure 5.15. The length of the VF is taken to be 

 we

 L c = 1 00

 . 

m. Figure 5.15 shows that the pitch RAO for all the considered VFs has the same trend as the VF with   we

 W c = 1 .  00 m considered in Figure 5.13, 

i.e., the pitch RAO increases with ω and decreases after reaching a peak at 

ω = 2 0

 .  rad/s. It can be seen that the pitch RAO increases significantly with 

the increase in the width of the WEC with   we

 W c = 2 .  00 m producing a rela-

tively larger pitching motion for all the wave frequencies considered. It 

should be noted that the peak pitch RAO is about 90°/m, indicating that 

the VF can swipe a wide angle of 45° from its vertical neutral position (see 

Figure 5.12b) as the wave hits on the structure. 

The   a

 P  derived from Equation (3.57) is plotted in Figure 5.16(a). It is noted 

that   a

 P  depends on the   p

 B to,  which differs for various geometries of the VF 

(varying   we

 W c and   we

 L c), as optimal   p

 B to depends on the added inertia  A, radi-

ated damping  B, and hydrostatic stiffness  ky′ which are distinct for VF of different geometries. The corresponding optimal   p

 B to for the VF with different 

 we

 W c is labelled in Figure 5.16(a). It shows that the   p B to is the largest for VF with 

 we

 W c = 1 .  25 m. The value of   p

 B to has a profound effect on the power absorption, 
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FIGURE 5.15

Pitch RAO for single iVF- WEC- FB with different   we

 W c.  we

 L c = 1m ,  heave- constrained FB. 

FIGURE 5.16

(a) Absorbed power   a

 P  and (b)  CWR for single iVF- WEC- FB with varying width   we

 W c.  we

 L c = 1 00

 . 

m, heave- constrained FB. 

as shown in Figure 5.16(a), where the largest   a

 P  is produced by the VF with 

 we

 W c = 1 .  25 m. It is interesting to see that VF with   we

 W c = 2 .  00 m generates the 

smallest   a

 P  due to the small optimal   p

 B to = 64 N.m.s/rad, even though its 

pitch RAO is the highest, as shown in Figure 5.15. Figure 5.16(a) shows that 

the   a

 P  increases as the   we

 W c increases from 1.00 to 1.50 m with   we

 W c = 1 .  25 m 

[image: Image 104]

178  

 Wave Energy Convertors in Tropical Seas

generating the highest power. However, the power generated significantly 

decreases for   we

 W c larger than 1.50 m. This phenomenon can be explained by 

referring to the effect of   p

 B to where it can be seen from Figure 5.16(a) that the 

optimal   p

 B to for   we

 W c ≤ 1 50

 .  m is larger than its counterpart for   we

 W c > 1 .  50 m, 

thus generating more energy according to Equation (3.57). 

In the parametric study to investigate the effect of   we

 W c, Figure 5.16(b) 

shows that under optimal   we

 W c = 1 .  25 m, a  CWR up to 40% could be achieved 

at ω = 4.0 rad/s, and the  CWR  is above 20% for wave frequency ranging 

from 2 0

 .  to 5.0 rad/s, i.e., higher than the  CWR presented in Figure 5.14, 

thereby suggesting a wider bandwidth for VF with   we

 W c = 1 .  25 m could be 

achieved. 

 5.4.2.3   Effect of Length of WEC

The effect of   we

 L c has on the pitch motion, power absorption, and  CWR is 

studied when the   we

 W c = 1 .  25 m and FB are heave- constrained. Five differ-

ent   we

 L c are considered, i.e.,  we

 L c = 1 00

 . , 1 25

 . , 1 50

 . , 1 75

 . , and 2 00

 . 

m. The pitch 

RAO is first presented in Figure 5.17 for the varying   we

 L c, where the pitch 

RAO is found to increase with the decrease of the   we

 L c. This phenomenon 

can be explained by referring to the moment of inertia of the VF where a 

shorter VF has a smaller  Iy, as compared to the longer VF. As a result, the VF 

FIGURE 5.17

Pitch RAO for single iVF- WEC- FB with different length    we

 L c we

 .W c = 1 .  25 m,  heave- constrained FB. 

[image: Image 105]
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with a smaller  Iy pitches with a larger θ y ,  and therefore the θ y for the largest we

 L c = 2 00

 . 

m is significantly small, as shown in Figure 5.17. 

Similar to the effect of varying   we

 W c studied in Figure 5.16(a), the power 

absorption also depends on the optimal   p

 B to of the VF, which varies for 

VF with different   we

 L c. The   a

 P  of the VF with varying   we

 L c is plotted in 

Figure 5.18(a). The effect of length has a greater influence compared to the 

width of the VF (plotted in Figure 5.16a), where the   a

 P  differs with a larger 

magnitude for varying   we

 L c as compared to the influence of varying   we

 W c. 

Also, when keeping the WEC width at its optimal value of   we

 W c = 1 .  25 m, 

Figure 5.18(a) shows that the   a

 P  of the VF could be further increased by 

increasing the   we

 L c,  where the   a

 P  for   we

 L c = 2 00

 .  m is twice the value when 

 we

 L c = 1 00

 .  m, as considered in Figure 5.16(a). The  CWR of the VF for varying   we

 L c is also given in Figure 5.18(b), where it can be seen that the  CWR  

is greater than 20% for ω ranging from 2.0 to 5.0 rad/s, and maximum 

 CWR = 60%. The overall energy absorption bandwidth increases with the 

increase of   we

 L c. 

5.4.3   iFB- WEC  Under  Regular  Wave

A full- 

scale iVF- 

WEC- 

FB is considered, where 25 VFs with opti-

mal   we

 W c = 1 .  25 m and   we

 L c = 2 00

 . 

m are hinged connected to the 50-m 

heave- constrained FB. The   p

 B to is 5,913 Nms/rad, taken from Figure 5.18 for 

FIGURE 5.18

(a) Absorbed power   a

 P  and (b)   CWR  for single iVF- 

WEC- 

FB with different   we

 L c. 

 we

 W c = 1 25

 .  m, heave- constrained FB. 

Note: Legend and   p

 B to  are the same for Figures 3.9(a) and 3.9(b)

[image: Image 106]
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FIGURE 5.19

Total absorbed power of full- 

scale iVF- 

WEC- 

FB ( Nwec = 25) under head sea and oblique 

sea conditions. Regular waves.  we

 W c = 1 25

 .  m,  we

 L c = 2 00

 .  m,  p

 B to = 5 ,  913 Nms  /  rad ,  heave- 

 

constrained FB. 

 we

 L c = 2 00

 . 

m. The iVF- WEC- FB is subjected to regular and irregular waves 

under head sea and oblique sea to study the power generation of the VF and 

wave attenuation effectiveness of the FB. The total absorbed power   T

 P  (see 

Equation (3.74)) of the 25 VFs under the head sea is presented in Figure 5.19. 

Figure 5.19 shows that the iVF- WEC- FB has a wide energy generation bandwidth where it can generate a substantial amount of energy for a wide range 

of frequencies. The iVF- WEC- FB under head sea is more effective at a smaller 

wave frequency, i.e., ω ≤ 1 75

 . 

rad/s, whereas iVF- WEC- FB under the oblique 

sea could generate more energy at ω > 1 75

 . 

rad/s. The largest   T

 P  occurs when 

the wave period is between  T = 2 to 4 s. 

Figure  5.20 shows the wave climate surrounding the iVF- WEC- FB 

under head sea. Four different wave periods are considered, i.e.,  T = 3, 4, 

5, and 6 s and plotted in the sub- figure (a), (b), (c), and (d), respectively. 

Figure  5.20 shows that the FB is very effective in attenuating the wave force when the λ is short, i.e.,  T = 3 s, where the wave amplitude downstream of the FB is negligibly small. This is due to the relatively small 

wavelength to FB width ratio, i.e., λ  / Wfb = 4 .  68, as compared to its counterpart with higher λ  / Wfb. 
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FIGURE 5.20

Wave elevation amplitude surrounding full- 

scale iVF- 

WEC- 

FB for wave period (a) 

 T = 3 s,  λ  / Wfb = 4 .  68,  (b)  T = 4 s ,  λ  / Wfb = 8 23

 . , (c)  T = 5 s,  λ  / Wfb = 12 .  20,  and (d) 

 T = 6 s,  λ  / Wfb = 16 .  14. Head sea.  we

 W c = 1 25

 .  m,  we

 L c = 2 00

 . 

m,  p

 B to = 5 ,  913 Nms  /  rad ,  heave- 

constrained FB. 

5.4.4   iVF- WEC- FB  under  Unidirectional  Irregular  Wave

The performance of the iVF- WEC- FB in terms of power generation under 

irregular waves is studied next. The BS wave spectrum given in Equation 

(2.104) is used to model the unidirectional waves, by taking the significant 

wave height as  HS = 2 m and peak wave period   p

 T  ranging from 3 to 6 s, with 

an interval of 1 s. 

[image: Image 108]
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The power response spectrum can be computed from (3.70) and is denoted 

as   R

 S (ω) here. The total average power (  a

 P )  for the head sea can be com-

 T

puted from Equation (3.75) and is presented in Figure 5.21. Figure 5.21 shows that the   R

 S (ω) is larger when the wave frequency is small, which agrees with 

the finding on the   T

 P  (under regular wave) presented in Figure 5.19, where the   T

 P  has a greater value when the ω ≤ 1 75

 . 

s (i.e.,  T ≥ 3 .  6 s) and gradually 

reduces when ω > 1 75

 .  rad/s (i.e.,  T < 3 6

 .  s). The iVF- WEC- FB under head sea 

has the highest  (  a

 P )  when subjected to irregular waves with   p

 T = 4 and 5 s. 

 T

FIGURE 5.21

Power response spectrum   R

 S (ω) for full- scale iVF- WEC- FB subjected to irregular wave  under 

(a) head sea (b) oblique sea.  Hs = 3 m.  we

 W c = 1 25

 .  m , we

 L c = 2 00

 . ,    p

 B to = 5 ,  913 Nms/rad ,  heave- 

constrained FB. 

The   R

 S (ω) under the oblique sea plotted in Figure 5.22 has a different trend as compared to the head sea. It can be seen that the iVF- WEC- FB generates 

the most energy when   p

 T = 3 s, influenced significantly by the behaviour of 

the   T

 P  (see Figure 5.19), where   T

 P  is the largest when ω ≈ 2 0

 .  rad/s (i.e., 3.1 s) 

and gradually decreases when ω < 2 0

 .  rad/s and ω > 2 0

 .  rad/s. 

The (  a

 P )  for the head sea and oblique sea is summarised in Figure 5.23. 

 T

It can be seen that the iVF- WEC- FB produces more energy when waves 

approach from the head sea but the difference between the head sea and 

oblique is not significant. Also, the overall largest (  a

 P )  occurs when   p

 T = 4 s. 

 T

The (  a

 P )  for all   p

 T  is substantially large, i.e., (  a

 P ) > 100 kW implying that 

 T

 T

the iVF- WEC- FB has a wide absorption bandwidth from   p

 T = 3–6 s. 
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FIGURE 5.22

Power response spectrum   R

 S (ω) for full- scale iVF- WEC- FB under varying peak wave   p

 T . 

Oblique sea (θ

°

= 45 ),  HS = 2 m. 

 we

 W c = 1 25

 .  m ,    we

 L c = 2 00

 .  m,  p

 B to = 5 ,  913 Nms  /  rad ,  heave- 

constrained FB. 

FIGURE 5.23

The total average power of full- 

scale iVF- 

WEC- 

FB under irregular waves.  HS = 2 m. 

 we

 W c = 1 25

 .  m ,    we

 L c = 2 00

 . 

m,  p

 B to = 5 ,  913 Nms  /  rad ,  heave- constrained FB. 

6

 Power Enhancement of WEC Arrays via 

 Sloshing Resonance and Wave Run- Up

This chapter explores the advanced methods to enhance the performance of 

point absorber wave energy converters (PA- WECs) through integration with 

floating platforms. Specifically, it investigates the deployment of WEC arrays 

within moonpool configurations and stepped channel platforms to maximise 

energy generation. The resonance effects within moonpools and the hydrody-

namic interactions between WECs are shown to significantly amplify power 

output, particularly under optimal design conditions. Furthermore, the 

chapter examines the semi- enclosed moonpool platform, where wave ampli-

fication due to resonance and reflection from the moonpool’s wall improve 

the efficiency of WEC arrays, while also serving as a floating breakwater. 

Another key focus is the stepped channel floating platform, which leverages 

wave run- up effects to enhance energy capture. The analysis demonstrates 

that varying the channel’s width and depth optimise energy absorption, with 

the potential for significant increases in power output. 

6.1   Background

Chapter 3 highlights the performance of WECs by evaluating their energy generation capabilities in both regular and irregular wave conditions. It has 

been shown that the energy output of WECs can be increased when deployed 

in arrays.29, 31 However, the 2015 Quadrennial Technology Review185 noted a 

point of diminishing returns for WEC arrays, where adding more rows of 

WECs results in only slight gains in energy absorption. Despite this, several 

commercial- scale wave energy farms are making promising advancements 

such as the WaveRoller WEC, as well as the wave energy farms demon-

strated by MOCEAN and AWS Ocean Energy. 

As described in Chapter 4, wave energy farms can be made more cost- 

effective by integrating the WEC array into existing or new infrastructure 

such as coastal protection structures, floating breakwaters, 173,174 or floating 

platforms. 167, 168, 186 This integration can help to optimise the utilisation of sea space, especially when sea spaces are scarce and need to co- exist with other 

functionalities such as maritime traffic routes, recreation, or tourism. There 
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are several advantages of having a floating platform to support the WEC 

array, among them are the following:

(i)  The floating platform could be used to support the energy storage sys-

tem and substation before the electricity is transmitted to the shore. 

(ii)  Having a floating platform in a remote area also allows for ease of 

maintenance of the WECs. 

(iii)  The WEC array could be deployed easily by towing the platform 

without the need for cable mooring removal. 

(iv)  Utilisation of the floating platform causes minimal destruction to the 

seabed as compared to an array of WECs moored to the seabed. 

(v)  The floating platform provides shelter for marine mammals, birds, 

and fish. 

(vi) The floating platform supports an integrated hybrid renewable 

energy farm with wind turbines or tidal turbines. Instead of operat-

ing as a stand- alone floating energy farm, the proposed design con-

cept could also be integrated into an FB or floating pier, or attached 

to another floating platform utilised as a floating city. The integrated 

concept could utilise sea space efficiently and reduce the overall cost 

of the floating system. 

In this chapter, two new means of wave power enhancement are proposed 

via the following:

(i)  Power enhancement via resonance effect in moonpool

(ii)  Power enhancement via wave run- up in channel

The moonpool and channel could be located in infrastructure such as FBs 

and platforms, as shown in Figure 6.1. 

Various researchers have proposed this concept, including Zhao et al. 159 

who work on OWC integrated with breakwaters, Zhang et al. 187,188 who 

considered WECs integrated into FBs, and Liu et al., 189 who also discussed the integration of WECs into floating platforms. The impact of resonance 

within the moonpool and channel on the WEC array has been found to be 

significant.190, 235 The deployment site of the WEC array can be optimised by positioning it at the anti- node of the sloshing modes corresponding 

to the array’s exciting natural frequency. Maximising energy output from 

the WEC array in the moonpool could be achieved by considering the 

resonance frequencies and anti- node locations of both the moonpool and 

channel. These resonance frequencies and anti- node positions can be 

determined analytically, while the array’s performance in its optimised 

position can be evaluated numerically using the panel method. 

[image: Image 111]
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FIGURE 6.1

Schematic diagram of deployment of WECs in (a) enclosed moonpool, (b) semi- enclosed moon-

pool, and (c) channel. 

The BEM as presented in Chapter 3 is used to assess the performance of the WECs and obtain the wave elevation. Here, the higher- order panel method 

in WAMIT ( www. wamit. com) is used due to its higher computational efficiency and requirement for coarser meshes in the modelling. 191 In the next 

chapter, we shall present the analytical method to obtain the natural frequen-

cies and modes for a circular moonpool and rectangular channel. The analyt-

ical method will be used to first validate the model in WAMIT before further 

studies are carried out. 

6.2   Natural Frequencies and Modes (Analytical Method)

6.2.1   Circular  Moonpool

The natural modes and natural frequencies inside a circular moonpool are 

presented here. A moonpool with radius   mp

 r  and draft   mp

 d  floating in a water 

depth of  D is considered in Figure 6.2. 

The velocity potential  inside the circular moonpool (  mp

ϕ ) can be decom-

posed as a Fourier series in the azimuthal angle ϑ, expressed in the  r −  z −ϑ 

cylindrical coordinate axis as

∞

ϕ mp ( r, z,  ϑ) =

ϕ

∑ m( r,z) , 

(6.1)



m=0



where the discrete set of natural modes are associated with each m value in 

Equation (6.1). It is noted that the lowest natural frequencies encountered by 

the heave, surge, and pitch motions occur when m = 0 and m = 1 according to 

Molin et al.192

The natural modes mn can be categorised into the axisymmetric modes, 

i.e., m = 0, and the antisymmetric modes, i.e., m ≥ 1. The natural frequencies 

of the modes are given as ωmn = π

2  / T mn  ,  where  T mn is the natural period with 

[image: Image 112]

 Power Enhancement of WEC Arrays 

187

FIGURE 6.2

(a) Plan view of moonpool and (b) elevated view of moonpool. 

the subscript m representing the nodal line (also known as the nodal diam-

eter) and n the nodal circle of the vibration mode. 

The axisymmetric mode mn is given as

0n ∝  J 0 ( n

k  r)



 ,  

(6.2)

where  J 0 is the Bessel function of the first kind of order 0 ,  whereas the antisymmetric modes are given as



1n ∝  J 1 (µn r) ,  

(6.3)

where  k

′

 n are the roots of  J 0 ( k nr ) = − J 1 ( k nr ) = 0 ,  i.e.,  1

k  r = 3 8317

 . 

 ;  

k

′

 J 1 µn r =

2 r = 7 0156

 . 

,  k3 r = 10 1735

 . 

, etc.; and µn are the roots of  (

) 0, i.e., 

1

µ  r = 1 .  8412 ,  µ2 r = 5 .  3314 ,  µ3 r = 8 .  5363 ,  etc. 

 6.2.1.1   Axisymmetric  Modes  mn  ( m = 0 )

The axisymmetric modes could be decomposed into the piston (P) mode and 

the symmetric (S) sloshing mode. 192 In axisymmetric mode, the indices (m ,  n) in ωmn indicate that there are m number of nodal lines and n number of nodal 

circles, respectively. 

 6.2.1.1.1   Piston  Mode  00  (m = 0 ,  n = 0 )

The natural frequency of the piston mode of the circular moonpool is given as,192

(ω

 g

 N )2 ≅

 , 

00

(6.4)

∞

2

 J 1 (λ qr)

 mp

 d + 4∑ q= λ3 2

 q b  tanh (λ qD) ⋅ 2

1

 J 1 (λ qb)
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where  g is the gravitational acceleration,  J γ  the Bessel function of the first kind of order γ .  q

λ  are the roots of  J 0 (  q

λ  b) = 0, i.e.,  1

λ  b = 2 4048

 . 

,  2

λ  b = 5 5201

 . 

, 

3

λ  b = 8 6537

 . 

, etc. The radius of the moonpool is ( r = ∅ mp )  /  2,  D =  D −  mp d  is the 

clearance between the moonpool platform and the seabed,  mp

 L =  mp

 l +  r is the 

distance measured from the centre of the moonpool to the outer boundary of 

the moonpool platform. 

 6.2.1.1.2   Symmetric Sloshing Mode 0n  ( m = 0 ,  n ≥ 1 )

The natural frequencies of the sloshing modes are given as192

( )2

1+α

ω

≅

ntanh  n

k  mp

 d

 N

 g  n

k

for n ≥ 1

(6.5)



0n

αn + tanh  n

k  mp

 d



with

∞

4k

λ

n

 q J (λ qr )

αn =

(6.6)

2

 L ∑

2

1

2

2

2

2

 mp q=1 (λ q − n

k ) tanh(λ qH)⋅  J 1 (λ qb)





 6.2.1.2   Antisymmetric  Modes 

1

 n   ( m = 1 ,  n ≥ 1 )

The natural frequency (ω N )  of the single- mode approximation (m = 1) for 

mn

the antisymmetric (AS) sloshing mode is given as192

( )2

1+ βn

ν

ω

≅

tanh n  mp

 d

 N

 g µn

for n ≥ 1

1n

β

(6.7)

n

ν



+ tanh n  mp

 d



with

2

4µn J 1 (µn r)

βn = − 2 L  2

 mp J 1 ( µn r ) −  J 0 ( µn r ) ⋅  J 2 ( µn r )





∞

′2

ν

(6.8)

 q J 1 (ν  qr )

× ∑

 , 

2



2

2

 q=1 (ν  q − µn ) tanh (ν  qD) ⋅  J 0 (ν  q mp

 L )⋅  J 2 (ν q mp

 L )

where ν q are the roots of  J 1 (ν q mp

 L ) = 0 ,  i.e., ν1  mp

 L = 3 .  8317, ν2  mp

 L = 7 0156

 . 

, 

ν3  mp

 L = 10 .  1735, etc. 

It is noted here that the S mode represents the mode which is symmetrical 

about the vertical and horizontal axes of the circular moonpool whereas AS 

mode represents the mode which is antisymmetric about the vertical axis 

and symmetrical about the horizontal axis of the moonpool. In AS mode, the 

indices (m ,  n) in ω

n −

mn indicate that there are m number of nodal lines and (

1) 

number of nodal circles, respectively. 191

6.2.2   Rectangular  Channel

Figure 6.3 illustrates the point absorber WEC arrays arranged in a channel 

with  constant- depth   ch

 d n and width   ch

 W n . The global coordinate system ( x, y,z) 
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FIGURE 6.3

Array of PA- WECs deployed in floating platform shown in (a) elevation view ( x −  z) and (b) side 

view ( y −  z).  do = 5, 10, and 15 m are considered. 

defines the position, with the centre of the arrays located at (0, 0, 0), and the 

free surface at  z = 0. The channel consists of two vertical walls on a floating 

platform with length  Lpf , width   pf

 W  and draft  dpf . The wave farm is considered 

to be nearshore, where the water depth is a constant  D = 25 m. The coordinate 

( x,y,z) defines the local positions of individual WEC, while ( x,y,z) defines the global system coordinate. Each WEC encounters an incoming wave with 

period  T and wave height 2 A, striking the structure at an angle θ relative to the negative  x-axis (as shown in Figure 6.3). The PA- WEC has a cylindrical shape with a diameter ∅ and draft   we

 d c , and is connected to a power take- 

off (PTO) system with damping   p

 B to . The floating platform is turret- moored, 

allowing it to rotate and align with varying metocean conditions so that only 

the head- sea scenario is considered in this context. 

The natural frequency along the channel is obtained by solving an eigen-

value problem. The velocity potential   chn

ϕ  inside the gap formed by two ver-

tical walls can be decomposed as a Fourier series expansion of displacement 

functions given by Molin et al. 194,195

∞

 chn

ϕ ( x, y,z) =

( A mcoshνm z +  B msinhνm z)⋅

∑

 cos  µm z, 

(6.9)



m=1



where µ

2m = 2

 k + 2

m =

π

m / Lpf  and ν

µm. The expression in Equation (6.9) ensures 

that the Laplace equation and the no- flow condition, i.e.,  chn

ϕ

= 0 at the ver-

tical wall, are fulfilled. By using Garett’s method194 to match the velocity 

potentials on the boundary between the subdomain defined by the gap and 

its surrounding, Molin et al.192, 193 arrived at an eigenvalue problem where the eigenfrequencies (ω N )  and the associated eigenmodes  A

m

m and  B m  describe 

waves that are both travelling along the channel and reflected by the side 
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walls. The eigenvectors are restricted to the dominant  0

 A  and  0

 B , where the 

waves appear as propagating waves in the longitudinal direction (with some 

amplitude modulation in the transverse direction). 

Molin et al.194, 195 show that the natural frequencies in the gap by single-mode approximations as

(ω )2

1+

≅

 J mtanh m

k  dpf

 N

 g  m

k

 , 

m



tanh m

k  dpf +  J m  (6.10)

with

 1

2



 r

 +  u+( u+ ) (nπ u)− 3

1 2

1 cos

sin(nπ  u)



 du

2

∫ 2 2 2 



 J

n

m (  r )

  u u +  r 

π





=

 , 

nπ  0

2



 r 

1

 1+ co θ

s 0 



−

+ 1+



2 r  ln

si θ





n 0

 1 co θ 



− s 0 



(6.11)

where 

=

m

k = π

m  / Lpf ,  r

 c

 W hn / Lpf  and t θ

−

an = 1

0

 r . The natural period is given 

as (  N

 T ) = π

2  / (ω N ) . 

m

m

6.3   Case Study I: Deployment of WECs in Moonpool

6.3.1   Problem  Definition

Consider an arrangement of WECs placed inside the closed and semi- 

enclosed moonpools, which are built into a FB, as illustrated in Figure 6.4(a) 

and (b). Each WEC is a standard cylindrical PA- WEC functioning at a constant water depth,  D. 

Two types of moonpools – a fully enclosed circular moonpool and a semi- 

enclosed moonpool – are analysed to investigate how sloshing resonance 

affects the power output of the WEC array, as illustrated in Figure 6.4. The 

semi- enclosed moonpool’s opening ( o) allows incident waves to enter, which 

is expected to increase power generation due to wave reflections from the 

moonpool walls. The moonpool has a diameter ∅ mp and a draft   mp

 d =  dfb, with 

 Nwec cylindrical PA- WECs arranged inside. The WECs in the array are spaced 

by a distance  sp, measured from the centre- to- centre of the WEC. 

6.3.2   Optimal Dimensions of Moonpool

The natural frequencies of a moonpool are influenced by its size, making it 

a crucial factor for optimising power output in WEC arrays. When deciding 

the moonpool’s diameter, the available sea space at the deployment site and 

[image: Image 114]

 Power Enhancement of WEC Arrays 

191

FIGURE 6.4

An array of  Nwec WEC in (a) closed moonpool and (b) semi- enclosed moonpool. 

the number of WECs  Nwec to be installed must be considered. A larger moon-

pool increases the width of the breakwater, consuming valuable sea space 

and adding cost, while a smaller moonpool may not efficiently reduce wave 

forces and restricts the number of WECs that can be deployed. In this con-

text, we aim to optimise the WEC array configuration by treating the moon-

pool diameter as the main constraint. A diameter range of 2 m ≤ ∅ mp ≤ 5 m, 

drafts of   mp

 d = 2, 5, and 10 m, and water depths between 15 and 25 m are 

examined, as outlined in Table 6.1. The moonpool’s resonance frequencies are calculated using the equations from Section 6.2.1, which helps identify 

TABLE 6.1

Limiting Factors Considered in Determining 

WEC Array Configurations

Values

Floating 

Length  Lfb

50 m

Breakwater

Width  Wfb

4 m ≤  Wfb ≤ 7 m

Draft  dfb

5 m

Moonpool

Diameter ∅

2 m ≤ ∅ mp ≤ 5 m

 mp

Draft   m

 d p

5 m

Regular Wave

Water Depth  D

≥ 15 m

Wave Amplitude  A

1 m
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the optimal moonpool dimensions based on the sea conditions at the deploy-

ment site. The sloshing modes of the moonpool will define the feasible con-

figuration of the WEC array within it. 

6.3.3   Natural Frequencies and Sloshing Modes

Following the formulation in Section 6.2.1, the natural sloshing periods for the moonpool are calculated and displayed in Tables 6.2–6.4 for   mp d = 2, 5, 

and 10 m, respectively. The sloshing modes are categorised into symmetric 

(S) and antisymmetric (AS) in the tables. As per Equations (6.4), (6.6), and 

TABLE 6.2

Resonance Period (  N

 T )  in a Moonpool for Moonpool Depth 

 

 mp

 d = 2 m:

mn

Water Depth  D ≥ 15 m

Resonance Period (  N

 T )  (s)

mn

∅ mp =

2m

3m

4m

5m

Mode n

S

AS

S

AS

S

AS

S

AS

1 (P)

3.32

1.47

3.32

1.79

3.7

2.06

3.87

2.28

2

1.02

0.87

1.02

1.06

1.45

1.23

1.62

1.37

3

0.76

0.69

0.76

0.84

1.07

0.97

1.2

1.09

4

0.63

0.59

0.63

0.72

0.89

0.83

0.99

0.93

5

0.55

0.52

0.55

0.64

0.78

0.74

0.87

0.82

6

0.49

0.47

0.49

0.58

0.7

0.67

0.78

0.75

7

0.45

0.44

0.45

0.53

0.64

0.62

0.72

0.69

 Notes: S denotes Symmetric Mode (m = 0), AS denotes Antisymmetric Mode (m = 1), 

 P  denotes Piston Mode. 

TABLE 6.3

Resonance Period (  N

 T )  in a Moonpool for Moonpool Depth   m

 d p = 5 m: Water 

mn

Depth  D ≥ 15 m

Resonance Period (  N

 T )  (s)

mn

∅ mp =

2m

3m

4m

5m

Mode  n

S

AS

S

AS

S

AS

S

AS

1 (P)

4.81

1.48

4.94

1.81

5.08

2.09

5.2

2.34

2

1.02

0.87

1.26

1.06

1.45

1.23

1.62

1.37

3

0.76

0.69

0.93

0.84

1.07

0.97

1.2

1.09

4

0.63

0.59

0.77

0.72

0.89

0.83

0.99

0.93

5

0.55

0.52

0.67

0.64

0.78

0.74

0.87

0.82

6

0.49

0.47

0.61

0.58

0.7

0.67

0.78

0.75

7

0.45

0.44

0.55

0.53

0.64

0.62

0.72

0.69

 Notes: S denotes Symmetric Mode (m = 0), AS denotes Antisymmetric Mode (m = 1), 

 P  denotes Piston Mode. 
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TABLE 6.4

Resonance Period (  N

 T )  in a Moonpool for Moonpool Depth   m

 d p = 10 m: Water 

mn

Depth  D ≥ 15 m

Resonance Period (  N

 T )  (s)

mn

∅  mp =

2m

3m

4m

5m

Mode n

S

AS

S

AS

S

AS

S

AS

1 (P)

6.57

1.48

6.68

1.81

6.78

2.09

6.89

2.34

2

1.02

0.87

1.26

1.06

1.45

1.23

1.62

1.37

3

0.76

0.69

0.93

0.84

1.07

0.97

1.2

1.09

4


0.63

0.59

0.77

0.72

0.89

0.83

0.99

0.93

5

0.55

0.52

0.67

0.64

0.78

0.74

0.87

0.82

6

0.49

0.47

0.61

0.58

0.7

0.67

0.78

0.75

7

0.45

0.44

0.55

0.53

0.64

0.62

0.72

0.69

 Notes: S denotes Symmetric Mode (m = 0), AS denotes Antisymmetric Mode (m = 1), 

 P  denotes Piston Mode. 

(6.8), the influence of water depth is linked to the hyperbolic tangent func-

tion, i.e., tanh (λ qD) ≈ 1 0

 .  when   q

λ  D ≥ 7 .  6. Therefore, the natural periods 

remain fairly stable for intermediate water depths considered, i.e.,  D ≥ 15 m, 

where tanh (λ qD) ≈ 1 0

 . . 

The resonance periods in Tables 6.2–6.4 are divided into three categories, distinguished by different colour codes: red for (  N

 T ) < 1 00

 . 

s, green for 

mn

1 00

 .  s ≤ (  N

 T ) ≤ 3 00

 .  s and blue for (  N

 T ) > 3 s. Red indicates that (  N

 T )  val-

mn

mn

mn

ues are too short to be effective in energy generation for the considered sea 

state. Green and blue represent suitable sea state wave periods, with green 

indicating sloshing modes and blue for the piston mode. The piston mode 

has the highest (  N

 T ) , followed by the 1st AS mode and 1st S mode. 

mn

Figure 6.5 illustrates how the ∅ mp and   mp

 d  impact the (  N

 T )  for P, S, 

mn

and AS modes. For the P mode, Figure 6.5(a) demonstrates that increas-

ing the   mp

 d  is the most effective way to raise the (  N

 T ) , while changes in 

mn

the ∅ mp have minimal influence. On the other hand, the sloshing mode 

resonance frequencies (S and AS modes), as seen in Figure 6.5(b) and 

6.5(c), are heavily affected by the ∅ mp but remain largely unaffected by changes in   mp

 d . Additionally, the concept of placing the WEC array in a 

moonpool is only beneficial in low sea state conditions, as the maximum 

(  N

 T )  for a moonpool with a ∅ = 5 m and 

mn

 mp

 d = 10 m is about 7 seconds. 

This suggests that the resonance mode will not be triggered by  T > 7 s. 

A larger ∅ mp is required for higher sea states with longer   T , implying a need for a wider breakwater. 

The sloshing modes in the moonpool for different (m ,  n) values are shown 

in Figure 6.6. Practically, the most efficient way to boost energy generation in the WEC array is by leveraging the P mode (0, 0), first AS mode (1, 0), and 

[image: Image 115]
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FIGURE 6.5

Moonpool natural frequencies for different modes. 

first S mode (0,1). This is because the (  N

 T )  for n ≥ 2 are small and may not 

mn

match the wave period of the given sea state. 

The anti- node position during moonpool resonance for various (  N

 T )  can 

mn

be determined by finding the roots of the first derivative of Equations (6.2) 

and (6.3) for the S and AS modes, respectively. The first derivative repre-

sents the slope, which must be zero at the anti- node. By differentiating 

Equation (6.2), the slope of the S mode,  S

 m , is obtained. 

(  S

 m ) = − n

k  J 1 n

k  r

0

( )



n



(6.12)

And taking the derivative of Equation (6.3), the slope for AS mode  mAS is

( mAS) = 1 k 

n

 J 0 (µn r) −  J  µn r . 

1n



2 (

)

(6.13)



2



By setting Equations (6.12) and (6.13) to zero, we can find the values for 

 S

 m  and  mAS. To determine the anti- node positions from the moonpool’s 

centre, divide these values by the  n

k  and µn for the nth S and AS modes, 

respectively. These positions are then normalised using the moonpool 

radius,  r, resulting in the normalised radial position  r. Figure 6.4 displays 
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FIGURE 6.6

Elevation (absolute value) of sloshing mode in moonpool. 

these  r values. Figure 6.6 illustrates that for S mode (0,1), the anti- nodes are at the centre ( r = 0) and the moonpool boundary ( r = 1 .  00). For S mode (0,2), the anti- nodes are at  r = 0 ,  0 55

 . , and 1.00. In AS mode, anti- nodes 

vary with the mode (m ,  n) but are all located at the moonpool boundary 

( r = 1 00

 . ). Since placing point absorber WECs at the boundary is imprac-

tical, it is better to position them closer to the boundary to leverage the 

resonance effect for the next highest  T

m ,  n =

mn, i.e., (

) (1 ,  1). 

6.3.4   Optimal  Array  Configuration

To assess how different WEC array configurations perform in a moon-

pool under resonance, we examine several setups. For this study, we 

use a wave period of  T = 6 s in regular wave conditions. As shown in 

Figure 6.5(a), the potential ∅ mp is 5 m, and   mp

 d  is 7.2 m. Four PA- WEC 

array configurations are analysed, as illustrated in Figure 6.7. These 

[image: Image 117]
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FIGURE 6.7

Plan view of PA- WEC array arranged in configuration (a) configuration 1 (C1),  Nwec = 1, 

∅

 Nwec = ∅ wec =

 wec = 2.40 m; (b) configuration 2 (C2), 

5, 

1.00m; (c) configuration 3 (C3),  Nwec = 5 ,  

∅ wec =1.00m; and (d) configuration 4 (C4)  Nwec = 9, ∅ wec = 0.75m, and  dmp = 7.2 m. 

configurations are based on significant resonance modes in the moon-

pool, as detailed in Figure 6.6:

•  C1 for P mode

•  C2 for P and first AS mode

•  C3 for P and first S Mode

•  C4 for P, first AS, and first S Mode. 

To ensure a fair comparison, the total   wp

 A  of the WECs within the moon-

pool is maintained at approximately 1.25π m2. Since the number  Nwec varies 

across configurations C1 to C4, the ∅ wec differs accordingly: ∅ wec = 2 70

 .  m for 

 Nwec = 1 (C1), ∅ wec = 0 .  75 m for  Nwec = 13 (C2), ∅ wec = 0 .  66 m for  N = 17 (C3), and ∅ wec = 0 .  59 m for  Nwec = 21 (C4). 
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6.3.5   Performance of WEC Arrays

The performance of the WEC array in the moonpool is assessed by using 

WAMIT, which utilises the panel method, as described in Section 2.2. The 

WEC array deployed in a moonpool is first considered, followed by a line 

array of moonpools embedded in a floating breakwater. A moonpool with an 

opening is then considered to further enhance the effect of resonance. 

 6.3.5.1   Closed  Moonpool

Figure 6.8 shows the P mode, the first S mode, and the first AS mode in the moonpool computed from WAMIT. The results show that the (  N

 T )  and 

mn

mode shapes agree well with the analytical solution, thereby validating the 

numerical model in software. 

The performance of the WEC array in the closed moonpool was examined, 

with the average heave RAO displayed in Figure 6.9 for different modes: P mode, P- AS mode, P- S mode, and P- AS- S mode, corresponding to C1 

through C4. Figure 6.9 reveals that the piston mode is the most effective in boosting power generation, especially when a single cylindrical PA- WEC 

with a larger   wp

 A  (C1) or an array near the anti- node of P mode and the first 

S mode (C3) is used. Conversely, C2 and C4, where some WECs are at the 

anti- node of the AS mode, are less effective in increasing energy generation. 

Additionally, the resonance of the floating platform around 4 s significantly 

improves energy generation for the WEC array. It is worth noting that this 

resonance mode of the moonpool due to the floating platform’s resonance is 

similar to the P mode. 

The  CW  of the array can be easily calculated from the heave RAO using 

Equation (3.59). Figure 6.10 illustrates the  CW  for configurations C1 

through C4. The  CW  indicates that resonance effects in both the moonpool 

and the floating platform can boost energy generation, with  CW  values 

FIGURE 6.8

Mode shape for (a) (  N

 T ) = 6 04

 .  s, P mode; (b) (  N

 T ) = 2 34

 .  s, first AS mode; and 

mn

mn

(c) (  N

 T ) = 1 62

 .  s, first S mode. 

mn
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FIGURE 6.9

Average heave RAO for WEC array in moonpool. 

FIGURE 6.10

Average  CW for WEC array in moonpool. 

much higher compared to scenarios without resonance. Between the two 

most effective configurations for energy production, C3 is preferred over 

C1 because the WECs in C3 capture additional energy from the first AS 

mode and first S mode. 
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 6.3.5.2   Semi- Enclosed  Moonpool

The performance of the WEC array placed in a semi- enclosed moonpool, 

as illustrated in Figure 6.4(b), is next examined. The  CW  values for the four configurations under regular wave conditions are shown in Figure 6.7 and depicted in Figure 6.11. According to Figure 6.11, the C2 configuration, where the WECs are positioned at the anti- node of the first AS mode, performs 

better than those in the P mode and S mode configurations. Specifically, the 

 CW  for the semi- enclosed moonpool in the C2 set- up is notably higher than 

the highest  CW  observed in the closed moonpool under configurations C1 

and C3. This indicates that the semi- enclosed moonpool’s openings, which 

allow incident waves to enter, positively impact WEC power generation 

by enhancing wave reflection from the moonpool’s walls. Additionally, 

Figure 6.11 shows that the influence of the P mode is minimal, likely due to the wave interference effects when the incident wave aligns with the 

P mode. 

 6.3.5.3   Large Array of Moonpools in Floating Breakwater

A case study with a large array of closed and semi- enclosed moonpools inte-

grated with an FB is considered here, as shown in Figure 6.12. The FB has a length  Lfb = 49 m and width of  Wfb = 7m. 

Figure 6.13 illustrates the  CW  for the optimal set- up derived from a single moonpool: C3 for a closed moonpool and C2 for a semi- enclosed moonpool 

FIGURE 6.11

Average capture width for WEC array in moonpool with opening. 

[image: Image 122]
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FIGURE 6.12

FB with (a) closed moonpools and (b) semi- enclosed moonpools. C2 and C3 are considered 

(WECs not shown in figures). 

FIGURE 6.13

Average capture width for moonpool with opening breakwater. 

in irregular wave conditions. The data show that C3 performs well for energy 

generation at higher wave periods, while C2 is more effective at lower wave 

periods. Thus, choosing the type of moonpool should be based on the pre-

vailing sea conditions at the site of the FB. 

Figure 6.14 examines how well the integrated FB combined with the 

WEC array reduces wave forces. Figure 6.14 shows a notable decrease in 
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FIGURE 6.14

Wave elevation surrounding FB. Wave direction from right to left. 

wave height behind the FB. Conversely, there is a constructive interference 

between incoming waves and those reflected by the breakwater, leading to 

an increased wave height in front of the breakwater. Additionally, the wave 

heights for the semi- enclosed moonpool counterparts are lower, indicating 

that the FB with a semi- enclosed moonpool is more effective at reducing 

waves compared to the closed moonpool counterparts. 

6.4   Case Study II: Deployment of WECs in Channel

6.4.1   Problem  Definition

In this case study, it is assumed that an array of PA- WEC is deployed in a 

platform with channel formed by two vertical walls, as shown in Figure 6.3. 

The channel in the floating platform has constant- depth   ch

 d n and width   ch

 W n. 

Three   ch

 d n are considered, i.e.,  ch

 d n = 5, 10, and 15 m. The PA- WEC has a cylin-

drical geometry with ∅ wec = 5 m and   we

 d c = 0 .  25 m. Two problem analyses are 

considered, and the principal dimensions of the WEC and floating platforms 

are summarised in Table 6.5. 

6.4.2   Channel Resonance Properties

According to Equation (6.10), wave run- up is analysed for waves travelling in 

a channel between two side walls, similar to the set- up between two barges. 

[image: Image 125]
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TABLE 6.5

Principal Dimensions and Properties for Point Absorber WEC and Floating Platform

 Nwec

5

13

23

Point 

Diameter ∅ wec

5 m

Absorber 

Draft  d

0.25 m

WEC

 wec

Mass  m

4  Metric- Tonne

Mass Moment of Inertia   I

6,770.8 kg.m2

PTO Damping   p

 B

29,150 N.m.s

 to

Floating 

 Lpf

50 m

Platform 

 w

Default 

 pf

 W

 o + 4 m

Dimensions

 ch

 W n

35 m

 dpf

 o

 d + 2 m

1st Problem 

 dchn

5, 10 15 m

Analysis

2nd Problem 

 ch

 W n

55 m

35 m

55 m

Analysis

Water

Water Depth  D

25 m

Wave Period  T

2 to 22 s (0.2 s interval)

FIGURE 6.15

Validation of natural frequencies of wave run- up along channel formed by two barges. θ = 

0 . 
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Figure 6.15 illustrates the natural frequencies of the first seven modes in such a channel, with barges measuring 50 m in length, 30 m in width, and a draft 

of 5 m, separated by a 5 m gap. The theoretical natural frequencies (eigen-

values) from Equation (6.10) are represented by a dashed blue line, while the 

natural frequencies from the BEM are shown by a solid black line. Figure 6.15 

demonstrates that wave run- up at these natural frequencies decreases as the 

wave frequency increases. 

The number of waves along the channel, denoted as  Nwave ,  is determined 

by the mode mn, with  Nwave equalling  /2

m . It is important to note that for 

odd m, the wave elevation is symmetric about  x = 0, while for even m, it is 

axisymmetric. According to the theoretical natural frequencies provided in 

Equation (6.10), these frequencies along the channel increase as the channel 

width   ch

 W n,  length  Lpf ,  and depth   ch

 d n decrease. This information can help in 

designing the channel dimensions to align with the sea state where the wave 

farm will be set up, aiming to optimise wave energy production. 

6.4.3   Constant- Depth Channel Floating Platform

For the problem analysis, we consider the constant- depth channel floating 

platform as presented in Table 6.5. Two problem analyses will be considered: i. Problem Analysis 1: Effect of varying channel depth

ii. Problem Analysis 2: Effect of varying channel width

In the first problem analysis, three depths—  ch

 d n = 5, 10, and 15 m – are exam-

ined, with the channel width kept constant at   ch

 W n = 15 m. In the second 

problem analysis, various channel widths are explored to assess their 

impact on wave farm energy production. The schematic for this analysis 

is shown in Figure 6.16, where the WECs are arranged in a staggered pattern with spacing  sp = ∅ wec. As channel width increases, so does the  Nwec deployed along the channel. Specifically, for channel widths of   ch

 W n = 15, 

35, and 55 m, the corresponding  Nwec values are 5, 13, and 23, respectively. 

 6.4.3.1   Resonance Frequencies of Wave Run- Up in Channel

The resonance wave frequencies and periods for wave run- up in the chan-

nel of the floating platform are initially determined using BEM. It should 

be noted that the frequencies obtained through this numerical approach are 

approximation and not as precise as those calculated from Equation (6.10). 

Table 6.6 provides a summary of the first three near- resonance wave periods in the channel without the WEC. Generally, the resonance wave period 

increases with   ch

 W n and   ch

 d n, aligning well with the trend predicted by the 

analytical solution in Equation (6.10). 
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FIGURE 6.16

Array of PA- WECs arranged in floating platform with different   ch

 W n.  ch

 d n = 10 m. 

TABLE 6.6

Natural Period  (  N

 T )  in the Channel 

m

in the Floating Platform

(  N

 T )  (s)

m

 d

 m =

 chn

 ch

 W n

1

2

3

5 m

15 m

6.8

5.9

3.9

35 m

7.2

6.1

5.3

55 m

7.9

7.5

6.1

10 m

15 m

7.3

6.1

4.2

35 m

7.0

6.5

5.0

55 m

8.5

7.0

6.2

15 m

15 m

8.1

6.3

4.8

35 m

9.1

6.9

5.0

55 m

10.5

7.0

5.8

Figure 6.17 illustrates the wave run- up along the channel (without WECs) for different channel depths – namely,  ch

 d n = 5, 10, and 15 m (as analysed in 

Problem Analysis 1), under wave periods of  T = 4.0 and 6.5 s. It is impor-

tant to note that  T ≈ 6.5 s represents the natural period for wave run- up in 

the channel. The wave elevation   ˆ

η along the channel, considering both the 

effects of resonance (i.e.,  T = 6.5 s) and no resonance, increases with decreas-

ing channel depth. This occurs because a smaller depth leads to a greater 
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FIGURE 6.17

Normalised wave elevation η ˆ surrounding floating platform with different   ch

 d n under wave 

period  T = 6 5

 .  and 4.0 s.  ch

 W n = 15 m. 

water volume surge, with the wave having less room to dissipate compared 

to when the channel depth is lar



ger. 

Figure 6.18 illustrates wave run- up along the channel in the platform (without WECs) for different channel widths:   ch

 W n = 15, 35, and 55 m 

(refer to Figure 6.16 for the platform used in Problem Analysis 2) with wave periods  T = 4.0 and 6.5 s ( T ≈ 6.5 s is the channel’s natural wave 

run- up period). The wave elevation   ˆ

η  along cross- section A in each case 

shows that   ˆ

η decreases as the   ch

 W n increases. This is because wider chan-

nels dissipate more wave energy. For   ch

 W n = 55 m, standing waves become 

more prominent due to wave reflections from the sidewalls, compared to 

a narrower channel like   ch

 W n = 15 m. Results for   ch

 W n = 55 m also reveal 

that the resonance mode includes both symmetric and axisymmetric pat-

terns along the  x- and  y-axes, which is a result of the increased channel 

width (as opposed to the 5 m narrow channel), causing resonance in two- 

dimensional directions. 
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FIGURE 6.18

Normalised wave elevation η ˆ surrounding floating platform with different  wo under wave 

period  T = 6 5

 .  and 4.0 s.  ch

 d n = 10 m. 

It should be noted here that the wave elevation along the channel 

increases with the wavelength, i.e., wave periods, due to increasing 

energy in longer wavelength, as shown in Figure 6.19. The floating plat-

form considered has a width   ch

 W n = 15 m and a depth   ch

 d n = 10 m for dem-

onstration purpose. 

An array of  Nwec number of PA- WECs arranged in staggered configuration 

is then deployed in the floating platform for Problem Analyses 1 and 2, pre-

sented in the subsequent chapters. 

 6.4.3.2   Problem Analysis 1: Effect of Varying Channel Depth dchn

In the first problem analysis, the impact of different depths (  ch

 d n = 5, 10, 

and 15 m) on the wave run- up along the channel and its effect on array 

performance are examined. Figure 6.20 compares the average heave RAO 

( RAO), which relates to absorbed power via Equation (3.57), for the three 
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FIGURE 6.19

Normalised wave elevation ηˆ surrounding floating platform under different wave period  T. 

 wchn = 15 m and   ch

 d n = 10 m. 

FIGURE 6.20

Comparison of average heave RAO of PA array deployed in floating platform with different 

 ch

 d n = 5, 10, and 15 m when (a)   ch

 W n = 15 m and (b)   ch

 W n = 35 m (c)   ch

 W n = 55 m. 

 ch

 d n with constant   ch

 W n = 15 m (Figure 6.20a), 35 m (Figure 6.20b), and 55 m (Figure 6.20c). Since the number of deployed  Nwec varies with different ch

 W n values (refer to Table 6.1), the  RAO, which normalises the total heave RAO by the  Nwec in the array, is used to assess the array’s performance. 

The  RAO is calculated as follows:

 Nwec





 RAO = 

 R

 n

 AO   / Nwec. 

∑



(6.14)



  n  1

=


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FIGURE 6.21

Wave elevation (η r /  η nr) surrounding WEC array deployed in floating platform for (a)   ch

 d n = 5 m , 

(b)   ch

 d n = 10 m ,  and (c)   ch

 d n = 15 m.  ch

 W n = 35 m, θ

°

= 0 ,  T = 6 5

 .  s (near- resonance wave period). Two 

grey dash lines represent boundaries of channel. 

Figure 6.20 illustrates that the array performs best when the channel depth, ch

 d n , is at its minimum. This is evident from Figure 6.21, which depicts wave run- up along a 35-m- wide channel for various   ch

 d n  values under resonance 

conditions, specifically when  T = 6 5

 .  s. The run- up for   ch

 d n = 5 m is much 

higher compared to   ch

 d n = 10 and 15 m. This increase in fluid volume as waves 

enter the shallower channel results in a higher wave elevation ratio (η r /  η nr), as shown in Figure 6.21(a). Here, η r represents wave elevation in the channel due to run- up, while η nr is the elevation in the open sea with the same sea 

space as the channel. Conversely, for a deeper channel such as   ch

 d n = 15 m, the 

wave run- up is closer to the incident wave amplitude of  A = 1 0

 .  m, resulting 

in an  RAO near 1.0. This is because the WECs oscillate in phase with the 

wave’s orbital motion. Figure 6.20 also indicates that the first and second 

mode resonance occurs with wave periods around  T ≈ 6 s (refer to Table 6.6 

for resonance periods), leading to an increased in power absorption in this 

period range. 

A modified interaction factor, known as  qarray-factor, is introduced and can 

be calculated using Equation (6.15). It is derived by comparing the total power 

harvested from the array on the floating platform with that from the open sea. 

If the  qarray-factor is greater than 1.0, it indicates that the wave run- up in the channel enhances energy harvesting for the array compared to the open sea. 

 Nwec

 Nwec

 qarray = ∑(  aP)  / ∑(  oPpensea , 

(6.15)

 n

) n



 n  1

=

 n  1

=



where   o

 P pensea is the absorbed power of the WECs in the open sea. 

Figure 6.22 shows that the array’s performance in the channel improves when  the wave period exceeds  T = 6 s. The   ch

 d n = 5 m yields the 



highest   qarray-factor, followed by   ch

 d n = 10 and 15 m. Additionally, the  qarray

-factor remains nearly constant at 1.0 for a wide channel (  ch

 W n = 55 m), indi-

cating that the wide channel does not significantly enhance the array’s per-

formance compared to deployment in open sea. 
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FIGURE 6.22

Comparison of  qarray-factor of PA array deployed in floating platform with different 

 ch

 d n = 5 ,  10 ,  and 15 m when (a)   ch

 W n = 15 m, (b)   ch

 W n = 35 m, and (c)   ch

 W n = 55 m. 

 6.4.3.3   Problem Analysis 2: Effect of Varying Channel Width  o

 w

Figure 6.23 illustrates how  Wchn affects the  qarray-factor for three different depths:   ch

 W n = 15, 35, and 55 m. It shows that with a channel depth of 

 ch

 W n = 10 m, the average heave  RAO is higher in narrower channels due 

to increased wave run- up. This is supported by Figure 6.24, which indi-

cates that η r /  η nr > 1 0

 .  means higher wave elevation in the channel com-

pared to open sea conditions. Figure 6.24 also reveals that the maximum wave run- up occurs at   ch

 W n = 55-m-wide, aligning with the findings of 

the resonance mode in wider channels in Figure 6.18. However, when 23 

WECs are placed in the 55-m- wide channel, some of the WECs encounter 

waves of very low wave elevation. In contrast, in a 15-m- wide channel, 

five WECs encounter higher average wave elevations compared to those 

in the 35-m and 55-m channels. Therefore, when designing a channel, 

one must balance between a narrower channel that offers better wave 

farm performance but limited space for a large array and a wider chan-

nel that can accommodate more WECs but provides lower average wave 

elevations. 

FIGURE 6.23

Comparison of  qarray-factor of PA array deployed in floating platform with different 

 ch

 W n = 15 ,  35 ,  and 55 m when (a)   ch

 d n = 5 m ,  (b)   ch

 d n = 10 m ,  and (c)   ch

 d n = 15 m. 
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FIGURE 6.24

 η 

Wave elevation   r  surrounding WEC array deployed in the floating platform for (a) 

η 

  nr 

 ch

 W n = 15 m ,  (b)   ch

 W n = 35 m ,  and (c)   ch

 W n = 55 m.  ch

 d n = 10 m,  θ

°

= 0 ,  T = 6 .  5 s (resonance wave 

period). Two grey dash lines represent boundaries of channel. 

7

 Optimisation Scheme for Power 

 Enhancement of WEC

This chapter presents the enhancement of power generation from the WEC 

via optimisation of the WEC designs and layout configuration. The genetic 

algorithm optimisation technique is used to demonstrate the enhancement 

of the energy generation from two case studies – namely (i) power enhance-

ment via spacing optimisation for point absorber, attenuator, and terminator 

type WECs and (ii) power enhancement via variable PTO. 

7.1   Genetic Optimisation Scheme

Genetic algorithm (GA) is a class of optimisation algorithm inspired by the 

principle of natural selection and genetics. Since their introduction by John 

Holland in the 1970s,197 GA has become a popular optimisation tool due to their flexibility and robustness in solving complex problems. The GA uses 

the search heuristic approach which is inspired by the process of natural 

selection. It is used to solve optimisation and search problems by iteratively 

improving a set of candidate solutions. The framework of a general GA opti-

misation scheme is given in Figure 7.1 and starts with the initial population followed by an iteration process of fitness function, selection, crossover, 

mutation, replacement and finally termination when stopping criteria is met. 

Below is the mathematical framework for a GA. 

7.1.1   Step 1: Initial Population

The GA starts with an initial population of potential solutions. Each solution, 

called an individual or chromosome, is typically represented as a string of 

numbers (binary, real, or other types). 

 (0) = {x1 (0) ,  x2 (0) , … ,  x N

(7.1)

 ( 0 )}  , 





where   (0)  is the initial population,  x i (0)  represents the   i -th individual at generation 0, and   N  is the population size. 
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FIGURE 7.1

GA optimisation scheme framework. 

7.1.2   Step 2: Fitness Function

Each individual in the population is evaluated using a fitness function, which 

measures the quality of the solution with respect to the optimisation objective. 

( )  n

 f x :  →



 ,  

(7.2)

where   n

  represents an   n -dimensional real- valued vector space (the solu-

tion space) and    represents the real numbers (the fitness value). The fitness 

function   f (x )  is to be maximised (or minimised). 

7.1.3   Step 3: Selection

Selection is the process of choosing individuals from the current population 

to create offspring for the next generation. Individuals with higher fitness are 

more likely to be selected. Common selection methods include the following:

•  Roulette Wheel Selection: Probability of selection is proportional to 

fitness. 

•  Tournament Selection: Randomly select a subset of individuals and 

choose the best among them. 

•  Rank Selection: Rank individuals by fitness and assign selection 

probabilities based on rank. 

7.1.4   Step 4: Crossover (Recombination)

Crossover combines two parent individuals to produce offspring. The goal 

is to mix the parents’ genetic material to create potentially better solutions. 

Common crossover methods include the following:

•  Single- Point  Crossover: A single crossover point is chosen, and the 

genetic material is swapped between the two parents. 

•  Multi- point  Crossover: Multiple crossover points are chosen, and 

genetic material is swapped at each point. 

•  Uniform Crossover: Each gene is chosen randomly from one of the 

parents with equal probability. 
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Mathematically, if x i and x  j are two parents, the offspring x k and x l might be x

( 1 2

c

c+

= x  ,  x  , …

1

 ,  x  ,  x  , …  n

 k

 i

 i

 i

 j

 ,  x j )



 , 

x

( 1 2

c

c+

= x  ,  x  , …

1

 ,  x  ,  x  , …  n

 l

 j

 j

 j

 i

 ,  x i ) , 

(7.3)





where  c  is the crossover point and   n  the number of crossover points. 

7.1.5   Step 5: Mutation

Mutation introduces random variations into the offspring to maintain genetic 

diversity within the population and to explore new solutions. Each gene in 

the offspring is altered with a small probability   m

p  . Note that for a binary rep-

resentation, if  x = ( 1 2

x  ,  x  , …  n

 i

 k

 k

 k

 , k

x ) , a mutation might change from   ik x  to  (1−  k x )  

with probability   m

p . 

7.1.6   Step 6: Replacement

The new generation is formed by replacing some or all individuals in the 

current population with offspring. Common replacement strategies include:

•  Generational Replacement: The entire population is replaced by the 

offspring. 

•  Steady- State  Replacement: Only a few individuals are replaced in 

each generation. 

7.1.7   Step  7:  Termination

The algorithm terminates when a stopping criterion is met. Common stop-

ping criteria include the following:

•  A fixed number of generations is reached. 

•  A solution with a satisfactory fitness level is found. 

• The population has converged (i.e., little or no improvement over 

generations). 

7.2   Case Study I: Power Enhancement of OWSC from 

Spacing Optimisation

To maximise power generation from an array of oscillating wave surge con-

verters (OWSC), it is important to arrange the devices at their ideal distances. 

In the GA optimisation method, the spacing between the WECs is treated as 

[image: Image 136]
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a variable, with the goal of maximising the  q-factor as the objective function. 

This study examines three array configurations: single, double, and triple 

arrays. The hydrodynamic software WAMIT, an industry standard, is used to 

assess the pitch   RAO  of each device in the array from which the power out-

put and  q-factor are calculated. The effect of varying wave periods and their 

directions on the optimal spacing and  q-factor of the arrays is also analysed. 

7.2.1   Problem  Definition

Figure 7.2 displays three configurations of OWSC arrays. Each layout features 12 OWSCs arranged differently: in a single row (single-array, Figure 7.2(a)), 

two rows (double-array, Figure 7.2(b)), and three rows (triple-array, Figure 

7.2(c)). In the double- array set- up, the 12 OWSCs are evenly split into two rows of six devices each. In the triple- array set- up, there are four devices 

per row. The arrays use three spacing variables:  1 y

 s

 y

 p ,  x

 sp , and  2

 sp , as shown 

in Figure 7.2, which are applied in the GA optimisation process to maximise the  q-factor. Each OWSC features a rectangular flap hinged at the bottom to 

a fixed foundation, allowing only pitching motion about the hinge (refer to 

FIGURE 7.2

Array layout for OWSCs arranged in (a) single-array, (b) double-array, and (c) triple-array. 

[image: Image 137]
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FIGURE 7.3

Schematic diagram of OWSC. 

Figure 7.3) for waves of amplitude  A. This flap is linked to a PTO to convert kinetic energy into electricity. 

7.2.2   GA Optimisation Scheme

The modified GA optimisation method for this problem is shown in Figure 

7.4. To achieve the highest  q-factor, which results in the maximum power generation from the wave array, the horizontal and vertical distances between 

OWSCs are kept constant at  1 y

 s

 y

 p  and   x

 sp , respectively. The variable  2

 sp  repre-

sents the offset of the device’s centre of gravity in the second row (for dou-

ble-  and triple-arrays) relative to  1 y

 s

 y 2

 p . When   sp = 0 , the layout is staggered. 

It is important to limit the range of these variables during optimisation since 

placing devices too far apart would use more sea space, while keeping them 

too close could complicate the installation process. Therefore, the dimension-

less spacing variables  1 y

 s

 y

 p ,  x

 sp, and  2

 sp  must fall within specific ranges:

1

1

 y

≤  sp ≤ 2

(7.4a)



2

 a



 x

 s

1 ≤  p ≤ 2

(7.4b)



 a



 y 2

1

 y

≤  sp ≤  sp + 1

0

(7.4c)



 a

 a

2  

The total number of possible combinations for the three variables specified 

in Equations (7.4a) to (7.4c) is represented as  NT. Initially, a population of 

size  N 1 / 10, which is 1/10 of  NT, is generated using a biased distribution and processed in WAMIT. From this initial population,  N individuals with the 

[image: Image 138]
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Flow chart of GA optimisation scheme for Case Study I. 
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highest fitness values based on the  q-factor are selected using the roulette 

wheel sampling method. Two parents are then chosen from these   N  indi-

viduals to perform crossover and mutation, and this is repeated   N  times to 

produce   N  offspring for the next generation. The individual with the high-

est fitness value, known as the elite child, is retained for the next generation. 

This cycle of crossover, mutation, and elitism continues until the objective 

function is achieved, i.e., the maximum  q-factor has converged. Convergence 

is defined as the change in the maximum  q-factor from one generation to the 

next being less than 0.01%. Note that increasing   N  will lengthen computa-

tion time but lead to faster convergence, and vice versa. For this study,  N  is 

set to 40. The crossover   c p and mutation   m

p  probabilities are taken as 1.000 

and 0.015, respectively. 

The crossover processes are performed by using three random distribu-

tions that add up to   c

p , i.e.  1r + r2 + r3 =  c

p = 1 000

 . 

according to the following 

formulation. 

( crossover

1

 y

 s )

= ( 1 y

 s ) −

 y

 y

 p

 p

1

r ( 1

 sp ) −( 1

 sp )

(7.5a)



1

2

2

1  

(  xs)crossover = (  xs) +

 x

 p

 p

r2 2 a − ( sp )

(7.5b)



1

1

1  

( crossover

 y 2

 s )

= (  y 2

 s ) −

 y

 p

 p

r2 ( 2

 sp )

(7.5c)



1

2

1  

and

( crossover

1

 y

 s )

= ( 1 y

 s ) +

 y

 p

 p

1

r 2 a − ( 1

 sp )

(7.6a)



2

1

1  

(  xs)crossover = (  xs) −  x

 x

 p

 p

r2 ( sp ) − ( sp )

(7.6b)



2

2

2

1  

crossover

 y

( crossover

 sp

 W

 y

 wec

2

 s )

(  y 2

 s )

( 1)

+

=

+

1

 y

(7.6c)

 p

 p

r3

− ( 2

 sp )  , 

2

1

1

2





where the two initial populations are, respectively, denoted by 

( 1 y

 s )  , (  x

 1 y

 x

 y 2



 p

 sp )  , (  y 2

 sp ) 



and  ( sp )  , ( sp )  , ( sp )  ,  whereas the two cross-1

1

1 



2

2

2 

crossover

crossover

crossover

over populations are, respectively,  ( 1 y

 s )

 , (  x

 p

 sp )

 , (  y 2

 sp )





and 



1

1

1



( crossover

crossover

crossover

1

 y

 s )

 , (  x

 p

 sp )

 , (  y 2

 sp )





. The crossover populations (in decimal 



2

2

2



numbers) are then converted into binary numbers represented in terms of 

“1s” and “0s” where the mutation process is then performed. The crossover 

and mutation processes are depicted in the GA flow chart (Figure 7.4). It is 
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noted here that the crossover process is performed in the decimal format 

following Equations (7.5a) to (7.5c) as the spacings with decimal place could 

not be expressed in the binary format. The formulation in the modulus   of 

Equations (7.5a) to (7.5c) will ensure that the crossover populations generated 

are in the range stipulated in Equations (7.4a) to (7.4c). 

7.2.3   Results and Discussions

The performance of the OWSC is obtained from WAMIT and the GA is devel-

oped in MATLAB®. Validation of the numerical model and GA code is given 

in paper by Tay.29 The results are plotted against the scattering parameter k  we

 W c ranging from 1.00 to 3.05, which corresponds to the wave frequency 

ranging 0.42 to 0.90 rad/s for the OWSC (  we

 W c = 26 m). 

 7.2.3.1   Optimal  Spacing

Figure 7.5 illustrates an example of the optimal spacing for the OWSC triple-array under head sea conditions with a wave period   T = 10  s. Figures 7.5(a) 

to 7.5(c) display the  q-factors for all possible optimal spacings  1 y

 sp ,  x

 sp ,  and 

 y 2

 sp   determined through the GA optimisation method. These spacings are 

normalised by the OWSC width   we

 W c . For this case, the optimal spacings are 

1

 y

 s

 x

 y 2

 p =  2

 we

 W c,  sp =  1.27  we

 W c and   sp =  0. The optimal layout based on these 

spacings is shown in Figure 7.5(d). 

Figures 7.6(a) to 7.6(c) show the results for optimal spacings in single- , 

double- , and triple-arrays, respectively. For the single-array, both   x

 s

 y

 p  and 

2

 sp  

are set to 0, while for the double- and triple-arrays, only   y 2

 sp  is 0. The optimal 

spacings are found to be closely related to the scattering parameter k  we

 W c. 

This suggests that the optimal spacings indicated in Figure 7.6 can be applied to OWSC arrays with varying widths   we

 W c.  The key observations regarding 

these spacings are as follows:

For spacing  1 y

 sp :



i.  In general, the spacing  1 y

 sp  is determined to be 2  we

 W c (at its maximum 

allowable spacing) when the scattering parameter is low, which 

occurs under long wavelength conditions. 

ii. For a single array,  1 y

 sp  decreases as k  we

 W c increases (see Figure 7.6(a)).  

However, in the case of double- and triple-arrays,  1 y

 sp   ranges from 

2  we

 W c to 1 5

 . 

 we

 W c when the scattering parameter is between 1.80 and 

2.60 (see Figures 7.6(b) and 7.6(c)). 

[image: Image 139]

 Optimisation Scheme for Power Enhancement of WEC 

219

FIGURE 7.5

Example of   q -factor for OWSC triple-array with respect to (a)   y 1

 sp , (b)   x

 sp, (c)  2 y

 sp , and (d) triple- 

array layout with optimal spacing.  T = 10 s ,  A = 1 m ,  θ 0°

=

. 

For spacing   x

 sp:



i.  The ideal spacing   x

 sp varies between 1 0

 . 

 we

 W c and 1 5

 . 

 we

 W c for k  we

 W c ≤ 2 0

 .  

in the double-  and triple- array configurations, as illustrated in 

Figures 7.6(b) and 7.6(c). 

ii. For higher values of k  we

 W c, the optimal spacing   x

 sp    is seen to exceed 

1 5

 . 

 we

 W c. 

A noticeable increase in the magnitude of  1 y

 sp  and   x

 sp  is seen when k  we

 W c 

exceeds 2.0, i.e., for when wavelength is short. This implies that the optimal 

array spacings are heavily influenced by the diffracted and radiated waves. 

In every case,  y 2

 sp   must be zero, indicating that the best arrangement (i.e., the 

highest   q -factor) is achieved with a staggered layout. This layout results in 

constructive hydrodynamic interactions when   q > 1 0

 .  and minimal destruc-

tive interactions when   q ≤ 1 0

 . . 

 7.2.3.2   Pitch  RAO

The power output of the OWSC is greatly influenced by the pitch  RAO, as 

described in Equation (3.57). Figure 7.7 shows the average pitch  RAO for 

[image: Image 140]
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FIGURE 7.6

Optimal spacing for (a) single-array   x

 s

 y

 y

 p = 0  and 

2

 sp = 0 , (b) double-array  2

 sp = 0 , and (c) triple- 

array   y 2

 s

°

 p = 0  under regular wave.  θ = 0 . 

each row in the single- , double- , and triple- array set- ups, considering the 

optimal spacing and wave direction θ

°

= 0 . It also includes the average pitch 

 RAO  for arrays with spacings that yield the lowest  q-factor (referred to as worst spacing), obtained through a GA optimisation scheme aimed at minimising the  q-factor. The mean pitch RAOs for each row are calculated as 

the average of  



∑ NR i

 AO   / N , where   N  represents the total number of 





 d

 d

 i

devices in the row. 

 7.2.3.3  q -Factor

The   q -factor, obtained using Equation (3.74) for the single- , double- , and 

triple-arrays are presented in Figure 7.8. Comparing the   q -factors shows that only the single-array demonstrates constructive interference for the 

range of k  we

 W c considered while the  q-factors for the double-  and triple 

arrays are below 1.0 when the k  we

 W c is lesser than approximately 1.25 and 

1.75, respectively. 

[image: Image 141]
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FIGURE 7.7

Comparison of average pitch RAO for (a) single-array, (b) double-array, and (c) triple-array with 

and without optimal spacing under  θ = 0°. 

FIGURE 7.8

Comparison of  q- factor between single-array, double-array, and triple-array for OWSC. 

[image: Image 143]
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 7.2.3.4   Wave  Elevations

The wave elevation surrounding the single array under optimal spacing con-

dition is compared with their counterpart under worst spacing conditions in 

Figure 7.9. The comparison shows that the value for the former case is always lower than that of the latter case for most of scattering parameters k  we

 W c con-

sidered. It can be deduced that in the process of seeking the optimal spacing, 

the OWSC should be arranged such that it allows the waves to propagate or 

pass through the array without resulting in a large reflection or trapping of 

waves. 

FIGURE 7.9

Comparison of wave elevation surrounding OWSC single-array under optimal and worst spac-

ing conditions. 
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7.3   Case Study II: Power Enhancement from Hinged- 

Connected Modular Units

7.3.1   Problem  Definition

The pontoon- type WEC shown in Figure 4.15 is used to demonstrate the 

power enhancement of the hinged- connected WEC by using the GA optimi-

sation method. The descriptions of the interconnected modules have been 

presented in Chapter 4. The properties of the different pontoon- type WECs and wave conditions can be found in Section 4.6. 

The GA optimisation technique will be applied to seek for the optimal PTO 

damping following the scheme presented in Section 7.1. Two cases are considered in the GA optimisation to seek the optimal variable  pt

 B  o , i.e., 

•  Case 1: The GA optimisation scheme is applied to all the   p

 B to  in the 

pontoon- type  WEC. 

•  Case 2: The GA optimisation scheme is applied to the   p

 B to  attached 

to the line hinge connector only. 

It is noted here that for the variable PTO system, the   p

 B to  are assumed to 

vary along the   x -axis direction but are kept constant for each line connector 

(along the   y -axis direction) in order to reduce the computation time. 

The pontoon- type WEC is subjected to a series of regular waves with a 

constant wave amplitude  2 A . The wave frequencies ω  range from 0.1 to 1.6 

rad/s with an interval of 0.025 rad/s where the regular waves approach the 

WEC at the head sea direction. The WEC is assumed to operate in a deepwa-

ter condition where the effect of seabed on the structural motion is negligible. 

7.3.2   GA Optimisation Scheme

The ideal constant and variable PTO damping for the pontoon- type WEC are 

determined using a custom GA optimisation code in MATLAB®. The goal 

is to maximise the absorbed power   a

 P  (Equation (3.57)) or   CW  (Equation 

(3.59)), which represents the highest power capture from the waves. The opti-

2

misation involves adjusting the   p

 B to , which ranges from 0 MN.s/m to 66  

3

MN.s/m with 40 intervals, allowing for 41 possible values for each PTO sys-

2

tem. The upper limit of  66  MN.s/m is chosen because beyond this point, 

3

the effect of   p

 B to  on the hydroelastic response is minimal. 
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Without the GA optimisation scheme, the total possible combination of the 

 p

 B to is denoted by   NT , where   NT  is given as

 (  p

 B to )

− (  p

 B to )

 Npto

 N = 

 max

 min

 T



(

 , 

(7.7)

 p

 B to )

+ 1





interval





where   Npto  represents the number of PTOs in the pontoon- type WEC, with 

 Npto = 99 . Equation (7.7) would result in  99

41  potential PTO damping com-

binations for this WEC, which is computationally impractical due to its vast 

number of possibilities. To simplify the optimisation,  p

 B to  is varied along the 

 y -axis but kept fixed along the   x -axis, reducing   Npto  in Equation (7.7) to 11 

for the pontoon- type WEC being examined. 

In order to reduce the computational time to seek for the optimal   p

 B to , 

the GA optimisation scheme is utilised where it is divided into two steps as 

depicted in Figure 7.4:

(i)  Step 1: Generating an initial population of   N 0

(ii)  Step 2: Applying GA optimisation scheme to the initial population to 

seek the optimal   p

 B to

In Step 1, a starting population of   N 0 = 500 ,  000  different   p

 B to  combina-

tions are generated using a bias distribution. Step 2 involves selecting   Ni  

individuals with the highest fitness values based on   a

 P  or  CW , using the 

roulette wheel sampling method. 198 These top   Ni  individuals are then randomly paired as parents for crossover and mutation operations to produce   Ni  offspring for the next generation. The individual with the best 

fitness in the current generation, known as the elite child, is retained for 

the next generation. This process of crossover, mutation, and elitism con-

tinues until the objective function is met, which means the maximum   a

 P  

or   CW  has converged. The convergence threshold for the maximum   a

 P  

or   CW  is set at 0.01%. It is important to note that while increasing   Ni  

lengthens computational time, it speeds up convergence for   a

 P  or  CW . 

For the case study,  Ni = 50 is chosen as it provides a good balance for 

faster convergence with reasonable accuracy. Additionally, in the GA 

optimisation scheme, parents are referred to as DNA, and the  Npto num-

bers of   p

 B to  are called chromosomes. 

The chromosomes will be converted into binary numbers of 20 bits for the 

crossover and mutation processes. The crossover   c

p  and mutation   m

p  probabili-

ties are taken as 0.2 and 1.0, respectively. This implies that the crossover process 

between the two DNAs applies only to 20% of the chromosomes whereas the 

mutation process only applies to all the chromosomes of the best fit. 

[image: Image 144]
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7.3.3   Results and Discussion: Effect of Non- uniform Optimised PTO 

Damping for VLFS

The power output of the pontoon- type WEC can be improved by allowing 

some structural deformation, as detailed in Chapter 4. Additionally, energy production can be further increased by applying an optimal, non- uniform 

PTO damping, also known as a variable PTO system. To find the best PTO 

damping, the GA optimisation method described in Section 7.3.2 is employed. 

This is demonstrated using the Group III (  L = 300  m) pontoon- type WEC 

with two different wavelength- to- structural length ratios,  λ  / L = 0 2

 .  and 

0.4. 199 An initial population of  N 0 = 500 ,  000,  c p = 0 .  2 and   m

p = 1.0 is used. The 

evolution of   p

 B to  for Group III pontoon- type WEC to achieve the optimal 

 p

 B to  is plotted in Figure 7.10. 

Figures 7.10(a) and 7.10(b) represent the WEC connected by different numbers of connection joints and subjected to regular waves of  λ  / L =  0.2. The 

optimal damping value at each PTO system that results in the maximum 

 CW  is presented in each subfigure. It can be seen that by using the GA opti-

misation scheme, the optimal non- uniform distributed PTO damping at each 

line connector that produces the maximum power could be obtained. 

Figure 7.10 indicates that for a pontoon- type WEC, the combination of the 2

minimum   p

 B to  (0 MN.s/m) and the maximum   p

 B to  ( 66  MN.s/m) can help 

3

achieve the highest   CW . However, the best   p

 B to  might fall between these 

extremes, as seen in the Type- A pontoon- type WEC, which has multiple 

FIGURE 7.10

Evolution of PTO damping   p

 B to for Group III ( L = 300 m) pontoon- type WEC under GA optimisa-

tion scheme (a) Type- A: 11 Hinges ( N = 12) (b) Type- B: 5 Hinges ( N = 6). 

[image: Image 145]
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FIGURE 7.11

Evolution of PTO damping   p

 B to for Group III ( L = 300 m) Type- A (  N = 12  modules) pontoon- type 

WEC under GA optimisation scheme. 

connection joints. Focusing on the Group III Type- A pontoon- type WEC, 

Figure 7.11 shows how   p

 B to  changes for different  λ  / L  values, specifically 

λ  / L = 0 2

 .  and  0 4

 . . Figure 7.11(a) reveals that the highest  CW  can be reached with various   p

 B to  combinations, where the optimal   p

 B to  is not necessarily 

the minimum or maximum value. The optimal   p

 B to  might be a mix of both 

extremes to maximise power generation under large wavelengths. Figure 

7.12 illustrates the hydroelastic response of Group III pontoon- type WECs with uniform and non- uniform optimal   p

 B to . It shows that the   CW  with 

non- uniform  optimal   p

 B to  is generally higher than with uniform   p

 B to , espe-

cially for Type- A due to its greater rotational motion. This implies that a 

variable PTO system works better for waves with longer wavelength due to 

the increased hydroelastic response. Additionally,  CW  also increases with 

the wavelength. Figure 7.13 compares the hydroelastic responses of Type- A pontoon- type WECs to that of a continuous pontoon- type WEC (Type- D) 

across different  λ  / L  values from 0.2 to 0.8. Notably, the continuous pontoon- 

type WEC is the most effective in generating wave energy with an optimal 

variable PTO system, consistent with Chapter 4 results. The optimal   p B to  for 

maximum   CW , as determined by GA optimisation, is in the higher range. 

It is to note that the computation of the GA optimisation scheme to seek for 

the optimal non- uniform PTO required large computation time thereby may 

limit the range of   p

 B to  considered in the study. One way to overcome this is 

to consider a surrogate model developed using neural network method to 

predict the hydroelastic analysis as presented by Tay. 236
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FIGURE 7.12

λ

λ

Hydroelastic response for Group III pontoon- type WEC under (a) 

= 0 2

 .  (b)  = 0 6

 .  (c) 

λ

 L

 L

= 0 8

 .  with uniform and non- uniform optimised PTO damping. 

 L

FIGURE 7.13

Comparison of hydroelastic response for Group III continuous (Type- D) pontoon- type WEC 

λ

and 12-connected modules (Type- A) under their respective optimised   p

 B to  for (a)  = 0 2

 .  and  

λ

λ

λ

 L

(b) 

= 0 4

 . (c) 

= 0 6

 .  (d) 

= 0 8

 . . 

 L

 L

 L

8

 Offshore Floating Solar Photovoltaic Farm

This chapter focuses on the hydroelasticity of offshore floating solar photo-

voltaic (OFPV) farm and the mitigation techniques by using floating break-

water and hinged- connected articulated plate as an antimotion device. PTO 

system can also be attached to the floating breakwater and OFPV farm to 

convert the mechanical motion into electricity. Four case studies will be pre-

sented, starting with understanding the motion performance of the OFPV, 

followed by energy generation from the integrated floating breakwater with 

WECs and mitigation methods using an antimotion device. The final case 

study will investigate the performance of integrated OFPV with WECs. 

Power absorption and compliance are used to quantify the performance of 

the WECs and an antimotion device. For simplicity, the deflection of the plate 

 ˆw is denoted by  w. Other symbols used in this chapter follows those that 

appear in the previous chapters unless otherwise specified. 

8.1   Hydroelastic Response of Offshore Floating Solar 

Photovoltaic Farm

8.1.1   State- of- the- Art  Review

The increasing global demand for energy highlights the urgent need to 

explore alternative, more sustainable sources to reduce the environmen-

tal impacts of fossil fuel- based electricity production. 200–203 Floating photovoltaic (FPV) systems, which place solar panels on platforms floating on 

water bodies such as oceans, lakes, reservoirs, and canals, have emerged 

as a viable solution to address land scarcity problems.204–206 Over the years, 

the total installed capacity of FPV systems has grown steadily, with proj-

ects being implemented in oceans, lakes, estuaries, and natural basins.207,208 

FPV systems offer several advantages, including unobstructed sunlight, 

ease of installation, enhanced energy and power generation efficiency, and 

decreased water evaporation.209, 210 However, deploying these systems in marine environments, particularly in open seas, presents challenges such as 

higher environmental loadings due to wind and wave forces as well as corro-

sion and biofouling, which differ significantly from onshore conditions. 205,211

The continuous reduction in the cost of solar photovoltaic (PV) panels has 

driven a global expansion of solar energy installations, playing a critical role 
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in decreasing dependence on hydrocarbons. Some of the largest FPV sys-

tems are situated in lakes and reservoirs across Asia. For example, Thailand’s 

Sirindhorn Reservoir hosts an FPV system that covers an area comparable to 

70 soccer fields, with a power generation capacity of 45 megawatts (MW). 

China houses three of the world’s largest FPV installations: the Dingzhuang 

system in Dezhou (320 MW), the Three Gorges FPV system (150 MW), and 

the China Energy Conservation and Environmental Protection Group’s 

(CECEP) FPV project (70 MW) in Anhui. In 2021, Singapore introduced one 

of the world’s most extensive FPV projects, spanning an area equal to 45 

football fields on a western reservoir, with a capacity of 60 megawatt- peak 

(MWp). Meanwhile, South Korea is developing the Saemangeum floating 

solar project, which will become the largest floating solar farm in the world 

upon its completion in 2024, with a capacity of 2.1 gigawatts (GW). 

With the encouraging energy yields from FPV panels installed on water 

bodies, energy companies are now investigating the potential of offshore FPV 

farms (OFPVs) for deployment in open ocean environments. The ocean offers 

a compelling opportunity, with a theoretical global PV capacity estimated at 

approximately 4,000 gigawatts.212 Studies show that solar panels floating at sea outperform land- based systems by nearly 13% on average, with some 

months showing energy production increases of up to 18%, thanks to cooler 

temperatures and less cloud cover. 213 In recent years, OFPVs have grown substantially, now spanning areas measured in hectares. A prominent example is Singapore’s Sunseap OFPV, with a 5 MWp capacity, recognised as one 

of the largest offshore solar projects globally (Figure 8.1(a)). Covering an area of five hectares, it is projected to generate up to six megawatt- hours (MWh) 

of electricity annually. In Europe, energy provider like SolarDuck, a Dutch- 

Norwegian company, is partnering with German energy firm Rheinisch- 

Westfälisches Elektrizitätswerk (RWE) to create a floating solar facility with a 

raised deck at the North Sea wind farm (Figure 8.1(b)). Moreover, Norway’s Ocean Sun (Figure 8.1(c)) has introduced a floating platform where solar panels are mounted on a flexible surface that adapts to wave movements. 

8.1.2   Problem  Definition

A modular OFPV comprises universal units is proposed, classified as 

a mat- like or pontoon- type VLFS, which is buoyancy- supported with 

a large surface area. The structure consists of modular units connected 

in a grid layout, as illustrated in Figure 8.2. This configuration reduces the structural rigidity, allowing the OFPV to deform flexibly under wave 

forces. 214 The grid layout has a total length   x

 L  in the  x-direction,  Ly in the 

 y-direction, and depth  d. Each modular unit in the platform has dimen-

sions   lx or  ly for length and  wm for width, forming a uniform grid, as depicted in Figure 8.2. All grid units are of the same size due to the uniformity of the solar PV panels. Symbols for wave and plate properties are 

[image: Image 148]
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FIGURE 8.1

Offshore floating solar PV (a) Sunseap, (b) Solar duck, and (c) OceanSun. 

FIGURE 8.2

Schematic diagram showing (a) elevated view and (b) plan view of OFPV. Grey modules indi-

cate that the OFPV could be expanded or reduced in size using integrated modular units. 

[image: Image 150]
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FIGURE 8.3

Example of OFPV arranged in a 5 × 5 grid configuration. 

consistent with previous chapters unless otherwise specified. For visuali-

sation, Figure 8.3 shows a three- dimensional representation of the OFPV 

in a five- by- five grid arrangement. 

Figures 8.4(a)–8.4(c) are broken down into smaller solar farms, resulting in the layouts presented in Figures 8.4(d)–8.4(f). This segmentation facilitates the study of wave interactions between the OFPVs and their effect on 

reducing the hydroelastic response. The separated solar farms are placed at 

varying distances, denoted as  sp. In this analysis, three spacings are consid-

ered:  sp = 1, 5, and 10 m. Evaluating these different configurations helps to 

understand the influence of varying stiffness, which is characterised by the 

stiffness coefficient β . This coefficient is defined as  β =   / (ρ 4 , where 

 f gL )

 = ( 3

 d )  /  (

2

12 1−ν )  represents flexural rigidity. Here,  is set to 534 MPa, 

ρ  f = 1 ,  000 kg/m3 is the water density,  g = 9.81 m/s2 is gravitational acceleration, and  L is taken as  L =  x

 L . Table 8.1 provides the detailed dimensions, 

properties, and parameters for the case studies. 

For simplicity, Figures 8.4(a)–8.4(c) are referred to as OFPV- IA, OFPV- IB, and OFPV- IC, respectively, while Figures 8.3(d)–8.4(f) are termed OFPV- IIA, OFPV- IIB, and OFPV- IIC, respectively. The grid layout dimensions are indicated in the sub- captions of Figure 8.4, such as OFPV- IA having a 73 × 73 grid layout, similar to Figure 8.3. 

8.1.3   Model  Validation

The OFPV modelled by using the thin plate theory (see Appendix A) is first 

validated with its counterparts obtained from the finite element software 

ABAQUS. The natural frequencies are determined through free vibration 

analysis of the OFPV with free edge boundary conditions, accomplished by 

solving the eigenvalue problem described in Equation (4.75). 

[image: Image 151]
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FIGURE 8.4

Layout configurations considered in case studies: (a) OFPV- IA: α = 1.00, (b) OFPV- IB: α = 0.80, 

(c)  OFPV- IC:  α = 0.50, (d) OFPV- IIA: α = 1.00, (e) OFPV- IIB: α = 1.62, and (f) OFPV- IIC: α = 1.01. 

Note that α is for each separated OFPV. 

Five different module depths are considered, as presented in Table 8.1, 

i.e.,  d = 0 600

 . 

 ,  0 200

 . 

 ,  0 .  060 ,  0 .  030 ,  and 0 .  006 m ,  to study the convergence of the present numerical model for the thin plate theory. The comparisons of the 

natural frequencies   fN of OFPV- IA, OFPV- IB, and OFPV- IC are presented in 

Table 8.2, respectively, where   fN is given by

 ω 2

=

 g

 f

  N

 N

 ⋅  ,  unit in Hertz (hz) . 

(8.1)



2π



  L
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TABLE 8.1

Principal Dimensions, Properties, and Parameters Considered in Case Studies

Regular 

OFPV Properties

Waves

 x

 L ×  y

 L  

α

 d (m)

(m×m)

 T (s)

λ ( m)

θ  (° )

OFPV- IA

1.00

101 2

 . ×101 2

 . 

OFPV- I

OFPV- IB

0.800

112 4

 . × 90 0

 . 

OFPV- IC

0.500

141 8

 . × 71 8

 . 

14, 

0, 30, 45, 

0.2 m

3, 4, 5

25, 

OFPV- IIA

1.00

50 8

 . × 50 .  8

60, 90

37

OFPV- II†

OFPV- IIB

1.62

56 4

 . × 90 0

 . 

OFPV- IIC

1.01

70 4

 . × 71 8

 . 

†  spacing   sp = 1, 5, and 10 m; Young’s modulus  = 534 MPa; mass density ρ p =

3

960 kg/m ; and 

water depth  D = 10 m. 

TABLE 8.2

Comparison of Natural Frequency Between Present Model with ABAQUS for 

OFPV- I  ( h = 0 2000

 . 

m, ∆ e = 0 .  2 m)

OFPV- IA

OFPV- IB

OFPV- IC

 L

101.2 m

112.5 m

141.8 m

 h

 h = L

1.9763 

−3

 ×10

1.7778 

−3

 ×10

1.4104 

−3

 ×10

 f

 f

 fN (hz)

 N (hz)

 N (hz)

Mode

PM

ABQ

PM

ABQ

PM

ABQ

1 (RBM*)

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

2 (RBM*)

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

3 (RBM*)

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

4

0.0101

0.0094

0.0098

0.0093

0.0062

0.0060

5

0.0120

0.0120

0.0102

0.0095

0.0101

0.0092

6

0.0122

0.0121

0.0153

0.0148

0.0171

0.0165

7

0.0232

0.0224

0.0226

0.0209

0.0211

0.0193

8

0.0235

0.0224

0.0255

0.0237

0.0240

0.0232

9

0.0334

0.0332

0.0271

0.0262

0.0314

0.0296

10

0.0334

0.0332

0.0407

0.0381

0.0335

0.0320

11

0.0434

0.0411

0.0422

0.0408

0.0346

0.0323

*RBM: Rigid body motion, PM: Present Method, ABQ: ABAQUS. 

The depth  d is normalised with the length  L in this study, where the nondimensional depth is defined as  d =  d / L. 

Table 8.2 presents the natural frequencies of OFPV- I as obtained from the present method (PM)1 and ABAQUS (ABQ). The results indicate that the 

natural frequencies derived from the PM are in good agreement with those 

[image: Image 152]
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FIGURE 8.5

Vibration model for OFPV- IA, OFPV- IB, and OFPV- IC. 

predicted by ABAQUS. Figure 8.5 illustrates the comparisons of vibration 

modes for OFPV- IA, OFPV- IB, and OFPV- IC between the two models. The 

similarities observed in the vibration modes further validate the accuracy of 

the present model. 

8.1.4   Results and Discussion

The hydroelastic response of the OFPV is solved using the FE- BE method 

presented in Chapter 4. The deflection of the OFPV is denoted as  w instead of   ˆw for simplification. 

 8.1.4.1   OFPV- I

 8.1.4.1.1   Effect of Wave Direction

Figure 8.6 presents the hydroelastic response under regular wave 

conditions for OFPV- IA, OFPV- IB, and OFPV- IC. The wave periods con-

sidered range from  T = 3–5 s, reflecting typical conditions in tropical 

regions like Singapore. Generally, the results indicate that the hydroelas-

tic response of OFPV- I increases with longer wavelengths (larger wave 

periods) and decreases with shorter wavelengths (smaller wave periods). 

[image: Image 153]
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FIGURE 8.6

Hydroelastic response of OFPV- IA, OFPV- IB, and OFPV- IC under head sea and various wave 

periods. 

Note: Wave direction is indicated by the red arrow. Small contour figure represents plan view 

and large contour figure represents isometric view of the OFPV. 

Notably, the elastic deformation of OFPV- I is more pronounced when the 

λ  / L is small. Additionally, the hydroelastic response is typically greater 

under head sea conditions (θ = °

0 ). The data in Figure 8.6 illustrate that the 

hydroelastic response is highest at the forefront of the OFPVs, where inci-

dent waves first impact the structure. As the response travels towards the 

end of the structure, it diminishes due to energy absorption. To mitigate 

the hydroelastic response, it is recommended that the forefronts of OFPVs 

be constructed from materials with higher rigidity, functioning as wave 

attenuation devices. When comparing OFPV- I with varying aspect ratios 

α  in Figure 8.6, it is observed that the maximum hydroelastic response, defined in Equation (8.2), decreases as α  reduces, with OFPV- IC exhibit-ing the smallest response. However, the elastic deformation is greater for 

the longer structures due to reduced flexural rigidity in the longitudinal 

direction ( x-axis) as the layout elongates. 

[image: Image 154]
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 w

 w max =

 , 

(8.2)



 A  

where  w is the hydroelastic response of the structure. 

In comparison to the square OFPV- IA floating farm, the hydroelastic 

response of the elongated OFPV- IC farm dampens more quickly, resulting 

in lower overall hydroelastic responses. This trend is clearly illustrated in 

Figure 8.7, which presents the elevated view of the hydroelastic response along the centreline of OFPV- IA, OFPV- IB, and OFPV- IC under head sea conditions. While the elongated OFPVs (OFPV- IB and OFPV- IC) exhibit greater 

elastic deformation, the magnitude of this deformation is smaller compared 

to the square OFPV- IA. This discrepancy leads to a reduced overall hydro-

elastic response for the elongated configurations. The compliance χ  for 

OFPV- IA, OFPV- IB, and OFPV- IC, as shown in Figure 8.6, further supports 

this observation. 

FIGURE 8.7

Elevated view of hydroelastic response along centreline of OFPV- IA, OFPV- IB, and OFPV- IC 

under (a)  T = 3 s, (b)   T = 4 s, and  (c)  T = 5 s. Incoming waves travel from right to left. 

[image: Image 155]
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 8.1.4.1.2   Effect of Layout Configuration

The hydroelastic response of the OFPV can be further reduced by using shorter 

modular units to enhance the overall structural stiffness. In this study, modu-

lar units with lengths of  lx = 1 .  0 m and  ly = 0 .  5 m are utilised to create OFPV- I, maintaining the same overall footprint of 10,000 m2 as indicated in Table 8.1, where both  lx and  ly were originally 1.0 m. By using shorter  ly modular units, the longitudinal (flexural) stiffness in the  x-direction of the modified OFPV- I’ 

increases. The prime symbol (′) distinguishes this enhanced version from the 

original OFPV- I, with OFPV- I’, OFPV- IA’, OFPV- IB’, and OFPV- IC’ referring 

to the variants with greater longitudinal stiffness. 

Figure 8.8 illustrates the hydroelastic response along the centreline of OFPV- I’ and OFPV- I under a wave period of  T = 5 s and head sea direction 

(θ 0°

= ). The reduction in hydroelastic response is significant for OFPV- IA’, 

with the maximum response being halved compared to OFPV- IA. While 

OFPV- IB’ and OFPV- IC’ show minimal reduction in maximum responses, 

FIGURE 8.8

Elevated view of hydroelastic response along centreline of (a) OFPV- IA’, (b) OFPV- IB’, and (c) 

OFPV- 1C’,  under   T = 5 s and head sea direction. Incoming waves travel from right to left. 

[image: Image 156]
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they experience less elastic deformation due to their larger modular units in the 

 y-direction, which enhance the longitudinal rigidity of the OFPV. Consequently, 

the overall hydroelastic response of OFPV- I’ is lower than that of OFPV- I. 

Additionally, increasing the number of rows in the grid layout adds mass to 

the OFPV, further contributing to the reduction in hydroelastic response. 

 8.1.4.1.3   Compliances

To quantify the deformation of the OFPV, the parameter compliance χ  is 

introduced:

χ =  w ⋅

∫

 HB

 dS . 

(8.3)



 HB

 S



The compliance χ  in Equation (8.3) represents the total volume under 

the hydroelastic response  w, where a higher χ  indicates a higher overall 

response of the OFPV, and vice versa. The χ  values for OFPV- IA, OFPV- IB, 

and OFPV- IC are presented in Figure 8.9, which shows that OFPV- IC has the smallest χ  values among the three configurations considered. Thus, this 

implies that the long- ish layout configuration (small α  ) for the OFPV is desir-

able, as it has a smaller hydroelastic response. 

 8.1.4.2   OFPV- II

This section discusses the division of OFPV- I into multiple layouts, referred 

to as OFPV- II in Table 8.1. The OFPVs are spaced apart at distances of  sp = 1 m, 

FIGURE 8.9

Compliance χ  for (a) OFPV- IA, (b) OFPV- IB, and (c) OFPV- IC. 

[image: Image 157]
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5m, and 10 m to examine the impact of gap spacing on hydroelastic response. 

Figure 8.10 presents a comparison of compliance χ  between OFPV- II and OFPV- I at wave periods of  T = 3, 4, and 5 s. The results indicate that breaking OFPV- I into smaller modules does not reduce the overall hydroelastic 

response. The χ  value for OFPV- I (the interconnected floating farm shown 

by the black bar in Figure 8.10) is significantly lower under wave action compared to the separated layouts. Generally, among the three OFPV- II configu-

rations, dividing the OFPV into more modules, such as OFPV- IIA, leads to 

higher compliance due to increased interference between the four separate 

OFPVs. Furthermore, the reduced mass of the separated farm in OFPV- II 

results in a greater hydroelastic response compared to OFPV- I. The findings 

also reveal that the hydroelastic response for the square OFPV- IIA increases 

with larger gap spacing  sp , while the response for the elongated OFPV- II 

(OFPV- IIC) decreases as  sp increases. Interested readers can refer to the pub-

lication by Tay215 for more information on the deflection of OFPV- II. 

FIGURE 8.10

Comparison of compliance χ  between OFPV- I and OFPV- II under (a)  T = 3 s, (b)  T = 4 s,and 

(c)  T = 5 s. 

8.2   OFPV Protected by Integrated Floating Breakwater 

and WECs

8.2.1   State- of- the- Art  Review

As OFPVs are placed in the open sea, they face intense random waves, neces-

sitating designs that consider these cyclic loads. These floating platforms are 

generally large but have a minimal thickness, leading to low structural stiff-

ness.216 As a result, when the platform is subjected to wave action, it deforms flexibly under hydroelastic response. Various strategies can help reduce the 

hydroelastic response of floating solar farms. A traditional method involves 

[image: Image 158]
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using breakwaters.217, 218 However, as the floating solar farm moves further offshore and the water depth increases, fixed breakwaters may become 

impractical. Additionally, these breakwaters can harm the environment by 

damaging the seafloor, destroying marine habitats, and taking up more sea 

space. 70,154, 180 This makes FBs a more appealing option. 

Floating breakwaters can be divided into seven main types154:  box- type, pontoon- type, frame- type, mat- type, tethered float- type, horizontal plate-type, and other specialised designs. Each type has distinct features and bene-

fits in terms of wave reduction and stability. The box- type is the most widely 

used reflective FB, having been effectively implemented in various locations 

worldwide for many years. 154 These box- type breakwaters are specifically designed to reduce wave force in calm conditions, with their effectiveness 

increases with the increase in the width of the structure. 167, 173, 190 Examples of FBs globally include the Holy Loch breakwater (Figure 8.11(a)), Fezzano 

FB (Figure 8.11(b)), Kan- on floating composite breakwater (Figure 8.11(c)), 

and the SF Marine FB (Figure 8.11(d)). Many of these breakwaters have been operational for decades, proving their ability to protect ports, marinas, and 

coastal areas from strong waves and erosion. 

A significant example is the FB used in the Monaco Pier Hercules exten-

sion project, 219 which features a counter- jetty to improve the port’s ability to 

FIGURE 8.11

Examples of floating breakwater (a) Holy Loch breakwater, (b) Fezzano floating breakwater, (c) 

Ujina Pier and Kan- on composite breakwater, and (d) SF Marine floating breakwater. 
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receive cruise ships and large yachts. In 2000, a FB was constructed next to 

the Mega- Float to shield the prototype floating runway from strong waves.220 

Researchers have also explored hybrid FBs combined with attenuator- type 

WEC systems, as they can both protect the coast and harness wave energy. 

Additionally, innovative designs such as hybrid FBs with point absorber 

WECs221,222 and OWC WECs223 have been suggested. Placing WECs along-side FBs could optimise the use of ocean space and lower deployment costs, 

making WECs more cost- effective. 

This section considers a hybrid FB- WEC system that serves dual purposes: 

as a wave attenuator and a wave energy extractor. The effect of the FB on 

mitigating the hydroelastic response of the OFPV will be investigated. The I- , 

L- , U-  and box- shape breakwaters will be considered,237 and its effectiveness in wave attenuation under monochromatic waves arriving from different 

directions will be studied. Additionally, due to the long structure length- to- 

wavelength ratio of the OFPV and FB, the hydroelastic response of the struc-

tures will be taken into consideration. 

8.2.2   Problem  Definition

An integrated floating breakwater, known as FB- 

WEC, incorporates 

attenuator- type WECs to safeguard a OFPV array, as shown in Figure 8.12. 

The OFPV comprises modular units that create a large mat- like formation, 

while the FB is elongated, exceeding the dimensions of the OFPV. Both 

structures are categorised as VLFS due to their significant horizontal area 

compared to their vertical size, which results in their movements being pre-

dominantly affected by hydroelastic responses (see Suzuki et al.’s122 defini-

tion of VLFS in Equation (4.1)). The attenuator- type WECs are attached to 

the FB with hinges, where PTO systems on these hinges transform rotational 

motion into electricity. The OFPV is organised in a grid layout with dimen-

sions, length   O

 L FPV ,  width   O

 W FPV , and depth   O

 d FPV. This OFPV is symmetric 

along the  x- and  y-axes. In contrast, the FB has a box- like shape with dimensions, length  Lfb ,  width   Wfb , and depth  dfb . Each WEC also has a box- like form, with dimensions, length   we

 L c, width   we

 W c, and depth   we

 d c . The break-

water is positioned a distance ( sp )

away from the OFPV, and the WECs 

 OFPV

are spaced by ( sp )  . A regular wave with amplitude  A, period  T, and wave-wec

length λ  / L approaches the floating farm at an angle θ measured counter-

clockwise from the positive  x-axis. The water depth  D is assumed to remain constant. 

The study examines the OFPV when it is protected by a FB and an inte-

grated FB with a WEC, referred to as FB- WEC, as illustrated in Figure 8.13. 

The OFPV has a square configuration with dimensions   O

 L FPV = 101 2

 .  m, depth 

and occupies an area of 1 hectare, similar to the OFPV- IA dis-

 O

 d FPV = 0 .  4m

cussed in Section 8.1. The structural characteristics of the OFPV are detailed in  Table 8.3. In contrast, the FB has a length  Lfb =  OF

 L PV + 2 sp ,  where 

[image: Image 159]
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FIGURE 8.12

Schematic diagram showing (a) elevated view and (b) plan view of OFPV surrounding by float-

ing breakwater. 

 sp  represents the distance between the FB and the OFPV, as shown in Figure 

8.12. The  FB has a  dfb = 2 m, with its structural properties also listed in 

Table 8.3. The dimensions, along with the structural and water properties for the cases analysed, are summarised in Table 8.3. To facilitate the discussion, FB- WEC- I,  FB- WEC- L,  FB- WEC- U,  and  FB- WEC- BOX  refer  to  the  I- shape, 

L- shape, U- shape, and box- shape FB- WEC, respectively. 

8.2.3   Model  Validation

Table 8.4 presents the comparison of the natural frequencies of FB- WEC- I, FB- WEC- L, FB- WEC- U, and FB- WEC- BOX obtained from the PM with ABQ. 
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TABLE 8.3

Principal Dimensions, Properties, and Parameters of Case Studies

Structural Parameters

Water Properties

Principal Dimensions



ν

ρ p

 T(s)

θ °

( )

OFPV

 O

 L FPV ×  O

 L FPV = 70 m ×70 m

534 

0

960  

 O

 d FPV =

MPa

kg/m3

0 .  2 m

FB

 Lfb =  Lfb +

3, 

0, 

2 sp

 Wfb = 1m, 2 m, 5 m

4, 

-30, 

 sp = 1m

11.9 

256.25 

5

-45

0.2

GPa

kg/m3

WEC

 we

 L c = 1, 2, 3 m

 we

 W c = 1, 2, 3 m

 we

 d c = 0 .  2, 0.4, 0.6 m

TABLE 8.4

Comparison of Vibration Frequency of FB- WEC Between PM with ABAQUS (ABQ)

FB- WEC- I

FB- WEC- L

FB- WEC- U

FB- WEC- BOX

Mode

PM

ABQ

PM

ABQ

PM

ABQ

PM

ABQ

RBM*

0

0

0

0

1

1.25

1.24

0.85

0.84

0.21

0.15

0.35

0.26

2

3.45

3.40

1.22

1.21

0.69

0.68

0.54

0.53

3

6.76

6.65

2.74

2.70

1.17

1.08

1.13

0.98

4

11.17

10.94

3.36

3.31

1.22

1.20

1.15

1.00

5

16.69

16.25

5.70

5.57

2.44

2.40

1.22

1.21

6

23.31

22.53

6.55

6.32

3.02

2.98

2.44

2.26

7

31.03

29.77

9.71

9.86

3.52

3.38

2.71

2.66

8

39.86

37.90

10.74

10.99

5.23

5.10

2.78

2.73

9

43.91

46.88

14.64

14.60

6.32

6.11

3.86

3.56

10

49.79

56.67

15.38

15.96

6.53

6.33

4.86

4.77

*Number of rigid body mode (RBM) = Number of WECs + 3. 

Table 8.4 shows that the natural frequencies obtained from PM is in good agreement with that obtained from ABQ except for Mode 1 of FB- WEC- I and 

FB- WEC- BOX where the accuracy differs by a little. 

8.2.4   Results and Discussion

The performance of the four types of FB- WEC summarised in Figure 8.13 in 

mitigating the hydroelastic response under varying wave periods (i.e., vary-

ing wavelength) is first investigated. The effectiveness of the FB- WEC in miti-

gating the hydroelastic response of the OFPV is studied where compliance of 

the OFPV χ OFPV is used to quantify the effectiveness of the breakwater. The 

power generation of the WECs integrated in the FB- WEC is then computed. 
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FIGURE 8.13

OFPV protected by (a) I- shape FB- WEC, (b) L- shape FB- WEC, (c) U- shape FB- WEC, and (d) 

box- shape  FB- WEC. 

 8.2.4.1   Performance  of  FB- WEC

 8.2.4.1.1   Compliance

The hydroelastic response of the OFPV protected by the integrated FB- WEC 

is presented in Figure 8.14. In general, the FB- WECs show a consistent trend in its performance at  T = 5 s where it is not effective in mitigating the hydroelastic response for larger wavelength due to the longer wavelength- to- 

structural length ratio, i.e., λ  / O

 L FPV. However, there is no clear trend in the 

performance of the FB- WEC when  T = 3 and 4 s due to the complex hydro-

dynamic interaction between the WECs, FB, and OFPV where the χ OFPV of 

the OFPV is higher for FB- WEC- I, FB- WEC- L, and FB- WEC- BOX when  T = 3

s whereas χ OFPV is higher for FB- WEC- I when  T = 4 s. 

A comparison of the χ OFPV of the OFPV protected by FB- WEC is summarised 

in Figure 8.15. In general, the hydroelastic response of the OFPVs under  T = 3 

and 4 s are significantly smaller compared to their counterparts when  T = 5 s 
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FIGURE 8.14

Hydroelastic response of OFPV protected by various FB- WEC under varying wave periods. 

Regular waves. Head sea. 

when waves arrive from the head sea. However, the FB is not effective in 

mitigating the response when waves arrive from the oblique direction, i.e., 

θ 45°

=

, where the χ OFPV are almost similar. While most of the hydroelastic 

responses of the OFPV are higher under head sea, this is not true for the 

case of FB- WEC- U and FB- WEC- BOX where the χ OFPV is significantly greater 

when waves arrived from θ 45°

=

. This could be due to the greater interac-

tion effect occurring at the gap formed between the OFPV and FB- WECs as 

[image: Image 162]
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FIGURE 8.15

Comparison of compliance of OFPV protected by various FB and FB- WEC under regular waves. 

a result of the interference between the WECs, FB, and OFPV. Nevertheless, 

the integration of WECs and FB could be used to extract marine energy from 

the sea to enhance the energy generation for OFPV. The energy generation 

for the FB- WECs will be presented in the next section. 

 8.2.4.1.2   Absorbed  Power

As the FB- WECs are subjected to the regular waves of varying wave periods 

and wave directions, each WEC rotates about an angle Θ y about the  x-axis 

and  Θ x  about the  y-axis. 

The power extracted/absorbed from the WECs could be computed from 

the rotations by using Equation (3.57). Figures 8.16 and 8.17 show the com-

parisons of the absorbed power of the four FB- WECs under head sea and 

oblique sea (θ

ο

= 45 ), respectively. To study the effect of PTO damping 

has on the energy generation of the WECs in Figures 8.16 and 8.17, five 

PTO damping are considered, i.e.,  p

 B to = 15, 150, 1,500, 15,000, and 150,000 

N.s/m. The results show that for FB- WEC- I, the   a

 P  is the highest when the 

largest PTO damping, i.e.,  p

 B to = 150 ,  000 N s

 . /  m, is employed. However, for 

FB- WEC- L, FB- WEC- U, and FB- WEC- BOX, the largest energy generation 

occurs when   p

 B to = 15 ,  000 N s

 . /  m. Considering the head sea direction in 

Figure 8.16, the FB- WEC- I generates the most energy at  T = 3 s followed by FB- WEC- BOX  at   T = 4s. This can be shown clearly in Figure 8.14 where the WECs have the highest rotations/deflections when the maximum power 

absorption occurs. 

To compare the maximum energy extraction from the FB- WEC, the 

absorbed power under head sea and oblique sea is placed side by side 

in  Figure 8.18 for wave period 3, 4, and 5 s. Energy extraction from the 

[image: Image 163]
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FIGURE 8.16

Comparison of absorbed power of various FB- WEC under regular waves. Head sea. 

FIGURE 8.17

Comparison of absorbed power of various FB- WEC under regular waves. Oblique sea θ

°

= 45 . 

oblique sea for FB- WEC- U and FB- WEC- BOX is significantly larger than 

their counterparts of the head sea and at the same time, both FB- WECs 

have the capability to mitigate the hydroelastic response of the OFPV as 

evidenced by the values summarised in Figure 8.15. Therefore, to choose 

[image: Image 165]
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FIGURE 8.18

Comparison of absorbed power of various FB- WEC under regular waves. 

the appropriate FB- WEC, a sweet spot has to be achieved between the 

maximising the   a

 P  and minimising the χ OFPV values. 

The absorbed power   a

 P  under oblique sea shown in Figure 8.17 shows 

that energy generation by the WECs in oblique sea is generally higher when 

compared to their counterparts under head sea in Figure 8.16. This is due to 

greater energy extractions by the WECs moving at different phases when 

waves arrive from the oblique direction. The maximum energy generation 

from the WECs occurs when the wave periods is small at  T = 3 s because of 

the greater wave interaction between the WECs that results in constructive 

interferences. 

 8.2.4.1.3   Average Capture Width

The   CW  for the WECs computed from Equation (3.59) for head sea and 

oblique sea is plotted in Figure 8.19. The  CW  indicates the capability of each WEC in extracting the energy from the incoming regular wave train. The 

 CW  of the WEC for FB- WEC- I is significantly high when  T = 3 s, denoting the effectiveness of the FB- WEC- I configuration in extracting energy when 

wavelength is small. Despite the smaller  CW  for FB- WEC- U and FB- WEC- 

BOX, both configurations allow a significantly large energy generation from 

the oblique sea. 

[image: Image 166]
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FIGURE 8.19

Comparison of average capture width  CW  of various FB- WEC under regular waves. 

8.3   Integrated OFPV with AMDs

8.3.1   State- of- the- Art  Review

An antimotion device (AMD) consisting of a multi-modular articulated 

plate could be attached to the OFPV. This solution could also reduce the 

footprint occupied by the OFPV compared to the FB solution for mitigat-

ing hydroelastic response. Khabakhpasheva and Korobkin222 demonstrated 

that the hydroelastic response of a floating elastic beam could be effectively 

reduced using rigid, semi- rigid, and hinge connectors that connect the aux-

iliary beam to the elastic beam. They found that the semi- rigid mechanical 

joint is more effective in reducing hydroelastic responses compared to the 

rigid or simple hinge mechanical joints. Kim et al.223 also examined the effects of hinged- connected auxiliary plates with varying stiffnesses and shapes on 

reducing the hydroelastic responses of VLFS. They discovered that a single 

hinged- connected auxiliary plate with a rounded shape and two hinged- 

connected auxiliary plates with rectangular shapes are the most effective in 

minimising the hydroelastic responses of the VLFS. Wang et al. 224 proposed a novel approach to reduce the hydroelastic response of an elongated VLFS 

by attaching auxiliary beams with appropriate rotational stiffness and stra-

tegically placing mechanical joints along the beam. They found that employ-

ing a semi- rigid connector at optimal locations in the floating beam system 

significantly reduces the hydroelastic responses of the main floating beam. 
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A comprehensive review of AMDs for VLFSs has been conducted. 70 

Takagi et al. 225 proposed a simple box- shaped body attached to the edge of a VLFS as an AMD. The device’s performance was investigated both 

theoretically and experimentally, showing good antimotion capabilities, 

including reducing deformation, shear force, and bending moment of the 

platform. The device performed well in beam sea and oblique sea condi-

tions. Another proposed AMD is a submerged plate attached to the fore- 

end of the VLFS, designed to dissipate incident wave energy and reduce 

the incident wavelength by generating breaking waves, wave fission, and 

vortices. Ohta et al. 226 proposed a submerged vertical plate, which is found to significantly decrease hydroelastic response with decreasing wavelength. Masanobu et al. 227 proposed an innovative submerged AMD 

attached to the VLFS using a curtain wall (a submerged vertical plate with 

slits) and an inverted- L type AMD to reduce the hydroelastic response. 

They found that the wave energy could be dissipated via eddies generated 

from the slits of the curtain wall. Hybrid- type AMDs, such as the inte-

grated submerged AMD and oscillating water chamber, have also been 

considered for better reduction in hydroelastic response of the VLFS under 

wave action. Fujikubo et al.228 proposed a framing system with an antimotion heaving plate hinged to the VLFS. Their investigation showed that the 

framing breakwater system has sufficient wave dissipating capacity, with 

performance depending significantly on its submerged depth. Ikoma 

et al. 229 suggested using a combination of submerged vertical plates with a wave energy- absorbing air chamber to reduce the elastic deformation of 

the VLFS. They found that the wave drifting force could be reduced if 

wave energy is effectively absorbed by the OWC system. 

A submerged horizontal AMD attached to the floating solar PV farms is 

considered to mitigate the hydroelastic response of the floating structure. 

The effect of rigidity of the hinged modules in mitigating the response of the 

OFPV is to be investigated by varying the thickness of the AMD. 

8.3.2   Problem  Definition

Figures 8.20(a) and 8.20(b) show the schematic diagram of the OFPV in elevated 

and plan views, respectively. Articulated plates with length   am

 L d are connected 

to the four sides of the OFPV. The articulated plates are connected to the OFPV 

with two types of connectors, i.e., the hinge and the rigid connectors where 

the latter is analogous to a welded AMD to the OFPV. As waves hit on the 

OFPV and AMDs, the OFPV deflects with amplitude  w, whereas the hinged- 

connected AMD rotates at an angle Θ y about the  x-axis and Θ x about the  y-axis. 

The considered OFPV in this study occupies an area of approximately 

8,100 m2 and form a 57 × 57 (number of rows × number of columns) grid lay-

out. The total length of the OFPV is thus   O

 L FPV = 90 m. The structural proper-

ties of the OFPV made of high- density polyethylene (HDPE) modular units 
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FIGURE 8.20

Schematic diagram showing (a) elevated view (b) plan view of OFPV connected to AMD. 

are considered in Table 8.5. Three varying AMD length, i.e.,  am

 L d = 1 ,  2 ,  and 5 m, 

and three different AMD thicknesses, i.e.,  am

 d d = 0 .  2 ,  0 .  4 ,  and 0 .  6 m will be considered to investigate the effect the AMD length and AMD thickness has on 

the hydroelastic response of the OFPV. 

8.3.3   Model  Validation

Table 8.6 summarises the vibration frequency of the OFPV with AMDs, 

obtained from the PM and ABQ. For validation purposes, two OFPVs with 

different dimensions are considered, i.e., the 5× 5  and 57 × 57 OFPVs. Each 

OFPV is rigidly and hinged- connected with AMD. The comparison between 

results predicted by PM with ABQ shows that the eigenvalue obtained 
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TABLE 8.5

Principal Dimensions, Properties, and Parameters of Case Studies

Structural 

Water 

Parameters

Properties

Principal Dimensions



ν

ρ p

 T(s)

θ ( )

°

OFPV

 O

 L FPV ×  O

 L FPV = 90 m × 90 m

534 

960 

0

3, 

0, 

 O

 d FPV =

MPa

kg/m3

0 .  2 m

4, 

–30, 

AMD

 am

 L d = 1 ,  2 ,  5 m

11.9 

256.25 

0.2

5

–45

 am

 d d

 . , 0.4, 0.6 m

GPa

kg/m3

= 0 2

TABLE 8.6

Comparison of Vibration Frequency (in rad/s) of OFPV with Hinged- 

Connected AMD between PM with ABAQUS (ABQ)

5   × 5 OFPV

57  × 57 OFPV

 a

 d md = 0.2m

 a

 d md = 0.4m

Rigid- connected 

Hinged- 

Rigid- connected 

Hinged- 

AMD

connected AMD

AMD

connected AMD

Mode

PM

ABQ

PM

ABQ

PM

ABQ

PM

ABQ

RBM

0*

0**

0*

0**

1

10.6160 10.3810

8.7886

8.3898

0.1062

0.0835

0.1055

0.0814

2

12.0603 12.7510 21.4276 20.9950

0.1311

0.1285

0.1358

0.1320

3

16.6509 16.8230 22.8637 22.0810

0.1341

0.1321

0.1401

0.1354

4

27.5259 27.8580 28.0795 27.3240

0.2515

0.2136

0.2505

0.2091

5

27.5320 27.8600 28.0797 27.2280

0.2515

0.2136

0.2505

0.2091

6

41.3579 41.8090 47.7833 46.2320

0.3659

0.3595

0.3805

0.3686

7

41.3579 41.9010 48.3629 49.6140

0.3659

0.3595

0.3805

0.3686

8

49.5542 49.8690 61.3563 58.5740

0.4637

0.3854

0.4615

0.37’55

9

50.4402 51.3960 63.1836 58.7450

0.4846

0.4384

0.4838

0.4321

10

71.5497 70.4330 68.7374 66.5370

0.4894

0.4444

0.4911

0.4387

* Number of rigid body mode (RBM) = 3

** Number of rigid body mode (RBM) = 7. 

from present numerical scheme is in good agreement with its counterparts 

obtained from ABQ. The vibration frequency for the hinged- connected AMD 

is observed to be smaller when compared to the rigid- connected AMD. Also, 

when the AMD is connected to OFPV with larger dimensions, i.e., the 57 × 57 

OFPV, the vibration frequencies are found to be significantly reduced. 

8.3.4   Results and Discussion

The effect of rigid and hinge connectors on mitigating the hydroelastic 

response of the OFPV is studied, where the influence of varying   am

 L d and   am

 d d 

is considered. 
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 8.3.4.1   Rigid- Connected  AMD

The performance of the AMD rigidly connected to the OFPV is first con-

sidered. The study considers rigidly connected AMD with varying   am

 L d 

and   am

 d d. The summary of the χ OFPV for head sea is given in Figure 8.21. 

The effect of AMD with varying   am

 L d is studied. The hydroelastic responses 

of the OFPV for different   am

 L d, i.e.,  am

 L d = 1, 2, and 5 m and subjected to 

wave period  T = 3 ,  4 ,  and 5 s  under head sea are presented in Figure 8.22. 

In general, the hydroelastic response of the OFPV shows similar charac-

teristics where the side exposed to the wavefront has a higher response 

followed by a reduction in the response in the mid- body and an increase 

in the response at the rear end. The χ OFPV value associates with each image 

in  Figure 8.22 shows that the longer AMD is more effective in mitigating the hydroelastic response of the OFPV where   am

 L d = 5 m has a smaller 

χ OFPV compared to its counterpart for   am

 L d = 1and 2 m . When comparing 

the effect of different wave periods, i.e., wavelength λ, the χ OFPV reveals 

that the effectiveness of the AMD in mitigating the hydroelastic response 

of the OFPV diminishes with the increase of wavelength, i.e., higher wave 

period. For better clarity, the comparison of the deflection of the OFPV 

along  x / L = 0 for different   am

 L d is presented in Figure 8.23. A reduction in 

hydroelastic response of the OFPV could be clearly observed when χ OFPV 

given in Figure 8.21 is small. 

 8.3.4.2   Hinged- Connected  AMD

The effect of the hinged- connected AMD on the hydroelastic response of the 

OFPV is studied. The wave periods considered is increased to  T = 8 s in study-

ing the effect of the three different AMD lengths, i.e.,  am

 L d = 1 ,  2 ,  and 5 m.The 

χ OFPV of the OFPV under the influence of hinged- connected AMD for head 

FIGURE 8.21

Comparison of compliance of OFPV rigidly connected with AMD for different AMD lengths. 

Head sea. 

[image: Image 169]
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FIGURE 8.22

Hydroelastic response of OFPV rigidly connected with AMD for different AMD length  Lamd . 

 damd = 0.2 m. Head sea. 

sea and oblique sea conditions are presented in Figure 8.24 for the three varying   am

 L d, i.e.,  am

 L d = 1 ,  2 ,  and 5 m. In general, it can be seen that the effec-

tiveness of the AMD in mitigating the hydroelastic response reduces with 

the increase of the wave period, evidenced from the increasing χ OFPV as the 

wave periods get larger. This is because the AMD is more effective in atten-

uating the wave force when the ratio of the wavelength to AMD length is 

small as more radiated and diffracted waves will be generated from the 

AMD as compared to its counterpart of the larger ratio. It can be seen that 

the shorter AMD is more effective in reducing the hydroelastic response. 

The deflection of the OFPV along  x / L = 0 under head sea is presented 

in Figure 8.25 for wave period  T = 3 ,  4 ,  5 ,  6 ,  7 ,  and 8 s. The results show that a significant reduction in the hydroelastic response, when waves approach 

from the head sea, could be achieved by using a shorter AMD, where the 

deflection of the OFPV with   am

 L d = 1m is relatively smaller as compared to its 

counterparts for   am

 L d =  2 and 5 m. 

[image: Image 170]
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FIGURE 8.23

Comparison of hydroelastic response for OFPV with rigid- connected AMD for different AMD 

length  Lamd  along / L = 0.  damd = 0.2m. Head sea. Waves travel from right to left. 

FIGURE 8.24

Comparison of compliance of OFPV hinge connected with AMD for different AMD lengths. 

[image: Image 172]
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FIGURE 8.25

Comparison of hydroelastic response for OFPV with hinged- connected AMD for different AMD 

length   am

 L d along  / L = 0.  am

 d d = 0 .  2 m. Head sea. Waves travel from right to left. 

8.4   Integrated OFPV with WECs

8.4.1   State- of- the- Art  Review

To be cost- effective, the offshore floating solar PV farms have to be 

deployed in large scale in the order of hectares. One of the means for effi-

cient sea space utilisation is via the co- location of OFPV with WECs. This 

integrated approach allows for the simultaneous generation of electricity 

 Offshore Floating Solar Photovoltaic Farm 
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from solar radiation and wave motion. For example, the German company 

Sinn Power has developed a floating platform that combines wave, wind, 

and solar energy where the platform offers a flexible and expandable 

design, allowing for various combinations of energy conversion meth-

ods.175 The integration of solar and wave energy offers vast benefits such as space- sharing and cost- sharing in which the floating solar platforms 

can create artificial space on the sea for ease of installation and mainte-

nance of the WEC and additional renewable energy can be generated via 

the WECs. 

A detail review of hybrid solar plant has been proposed204,  230, 231 where concepts such as integration of floating PV farm with wind farm, hydropower, 

hydro energy storage, micro- hydrokinetic turbines, ocean energy system 

have been proposed. This paper is motivated by the co- location of WEC with 

OFPV following the various examples, as given by Nguyen et al., 69 Tay, 165,166 

and Nguyen,169 where they proposed multi- modular articulated plates that are hinged attached to the OFPV. These articulated plates function both as an 

AMD and WEC, where the former mitigates the hydroelastic response arises 

in the large platform due to wave action, whereas the latter converts the 

kinetic energy from the plate rotational motion into electricity via PTO sys-

tem. Appropriate PTO damping value has to be designed properly as having 

a large PTO damping does not effectively mitigate the hydroelastic response. 

This chapter looks into the performance of raft- type WECs attached to float-

ing solar PV farm. 

8.4.2   Problem  Definition

Figure 8.26 shows the articulated- type WECs attached to the OFPV. The details of the OFPV are similar to that presented in Section 8.3. Each WEC 

has a length   we

 L c, width 

 d . The WECs are hinged- 

 we

 W  and thickness 

 c

 wec

connected to the OFPV and PTO system is used to convert the mechani-

cal motion into electricity. The effect of   we

 L c on the power generation of 

the WECs is studied where two   we

 L c are considered, i.e.,  we

 L c = 0.4 m and 

 we

 L c = 0.8 m. 

8.4.3   Model  Validation

Table 8.7 summarises the vibration frequency of the OFPV with WECs, 

obtained from the PM and ABQ. Similar to validation of the OFPV integrated 

with AMD in Table 8.6, two OFPVs with different dimensions are consid-

ered, i.e., the 5×5 and 57×57 OFPVs. Each OFPV is rigidly and hinged con-

nected with WEC. The comparison between the results predicted by PM and 

ABQ indicates that the eigenvalues obtained from the present numerical 

scheme closely match those obtained from ABQ. 

[image: Image 173]
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FIGURE 8.26

Schematic diagram showing (a) elevated view and (b) plan view of OFPV connected with AMD. 

8.4.4   Results and Discussion

 8.4.4.1   Hydroelastic  Response

Figure 8.27 shows the hydroelastic response plotted along the centreline of the OFPV when connected with the WECs (  we

 L c = 0 .  8 m) under six 

wave periods, i.e.,  T = 3 ,  4 ,  5 ,  6 ,  7 ,  and 8s. It can be seen that the hydroelastic response of the OFPV increases with the wave period. However, the 

motion at the fore- end of the OFPV for the OFPV at small wave period, 

i.e.,  T = 3 and 4 s increases. This shows that energy is absorbed by the fore- 

end of the OFPV, similar to the findings of the OFPV integrated with AMD 

presented in Section 8.3. 

[image: Image 174]
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TABLE 8.7

Comparison of Vibration Frequency (in rad/s) of OFPV with 

Hinged- Connected WECs between PM with ABAQUS (ABQ)

5  × 5 OFPV,  we

 L c = 1 m

57  × 57 OFPV,  we

 L c = 0.4m

 dwec = 0.2m

 dwec = 0.2m

Hinged- connected  AMD

Hinged- connected  AMD

Mode

PM

ABQ

PM

ABQ

RBM

0*

0**

1

10.4899

9.8841

0.1094

0.0989

2

14.1794

13.6020

0.1350

0.1306

3

15.1729

14.8230

0.1396

0.1345

4

25.8778

24.4760

0.2587

0.2383

5

25.9673

24.7490

0.2587

0.2390

6

40.7873

39.1370

0.3785

0.3644

7

41.1305

40.0080

0.3797

0.3665

8

47.2400

44.4930

0.4767

0.4375

9

50.7801

48.0260

0.4967

0.4674

10

54.2572


52.3470

0.5037

0.4738

  * Number of rigid body mode (RBM) = 3

**  Number of rigid body mode (RBM) = 3 + number of hinged- 

connected AMD. 

FIGURE 8.27

Hydroelastic response along  y / L = 0 for OFPV with hinged- connected WEC under different 

wave periods.  we

 d c = 0 .  2 m and   we

 L c = 0 .  8 m. Head sea. 

The effect of two different WEC lengths is investigated in Figure 8.28, where   we

 L c = 0 .  4 and 0.8 m are considered. The results show that the longer 

WEC has the capability to generate more energy when  T = 3s but the perfor-

mance reduces with the increase of wave periods, which may be due to the 

increase of mass inertia, therefore resulting in the WECs pitching in a smaller 

[image: Image 175]

[image: Image 176]
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FIGURE 8.28

Comparison of absorbed power of OFPV with hinged- connected WEC for different   we

 L c.  we

 d c = 0 .  2 m. 

FIGURE 8.29

Hydroelastic response for OFPV with hinge- connected WEC for different   we

 L c.  we

 d c = 0 .  2 m and 

 p

 B to = 150 kN m

 . /  s. Head sea

amplitude. The comparison of the hydroelastic response for the OFPV when 

connected with WEC of   we

 L c = 0 .  4 and 0 .  8 m is presented in Figure 8.29. The 

corresponding hydroelastic response along the centreline of the OFPV is also 

presented in Figure 8.30. 

[image: Image 177]
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FIGURE 8.30

Comparison of hydroelastic response for OFPV with hinge- connected WEC for different WEC 

length   we

 L c along  / L = 0.  we

 d c = 0 .  2 m. Head sea. Waves travel from right to left. 

 8.4.4.2   Absorbed  Power

The energy extraction of the WECs for different   p

 B to is presented in 

Figure 8.31. In general, the   a

 P  reduces with increase wave periods due to 

the WECs pitching at smaller amplitude when the wavelength λ is long. 

The energy generation of the WECs also increases when waves arrive from 

[image: Image 178]
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FIGURE 8.31

Comparison of absorbed power of OFPV with hinged- connected WEC for different θ.  we

 d c = 0 .  2 m 

and   we

 L c = 0 .  8 m. 

FIGURE 8.32

Comparison of hydroelastic response for OFPV with hinge- connected WEC for different   p

 B to  

along   / L = 0 .  we

 d c = 0 .  2 m and   we

 L c = 0 .  8 m. Head sea. 
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the oblique wave, achieving maximum value when θ is greater than θ =

°

45 . 

The hydroelastic response along the centreline of the OFPV is presented in 

Figure 8.32 where it shows that greater   p

 B to results in smaller deflection of 

the OFPV. 

Note

1  PM represents the present method in the chapter instead of the Pierson Moskowitz (PM) spectrum. 

 Appendix A: Classical Thin Plate Theory

The derivative of the governing equation for the classical thin plate theory 

(CPT), also known as the Kirchhoff- Love plate theory, is shown here. 

A.1   Displacement  Components

The deformation of the plate according to the CPT is shown in Figure A.1. 

By assuming the mid- surface plane to represent a three- dimensional plate 

in two- dimensional form, the following kinematic assumptions are made in 

this theory:

• Straight lines normal to the mid- 

surface remain straight after 

deformation. 

•  Straight lines normal to the mid- surface remain normal to the mid- 

surface after deformation. 

•  The thickness of the plate does not change during a deformation. 

The plane stress assumption is made by considering that the transverse stress 

σ zz  and out- of- plane shear stress τ xz  and τ yz  are negligibly small compared to the in- plane stress. By assuming harmonic motion, the displacement components are thus given by

i  t



 Ux ( x, y, z,t) = −  x

 z ( x, y) ω

θ

 e ,  

(A.1a)

 U

i

 y (  x, y, z, t) = −

 y

 z ( x, y) ω

θ

 t



 e ,  

(A.1b)

 U ( x, y, z,t)

 t

 ˆ

 z

 w 0 ( x, y) ω

=



 e i  ,  

(A.1c)

where   t  is the time variable,  Ux,  Uy the in- plane displacements and  Uz the transverse displacement.  ˆw 0  is the transverse deflection of a point on a midplane (i.e.,  z = 0 ), and θ  x , θ  y are the bending rotations of a transverse normal about the  y- and  x-axes, respectively, given as

θ

 ˆ

 x ( x, y) ∂

=  w 0  , 

(A.2a)



∂ x  

 264

[image: Image 180]

 Appendix A: Classical Thin Plate Theory 

265

FIGURE A.1

Deformation of thin plate. 

θ

 ˆ

 y ( x, y) ∂

=  w 0  , 

(A.2b)



∂ y  

Equation (A.1) shows that the rotations (A.2) result in a negative in- plane 

displacement, as shown in Figure A.1. 

A.2   Strain- Displacement  (Compatibility)  Relations

In view of Equations (A.1a)–(A.1c) and plane stress assumption, the linear 

components of the engineering strains can be expressed as

 x

2

θ

∂

∂  w

 xx

 = − z

= − z

 , 

(A.3a)



2

 x

∂

 x

∂



 y

2

θ

∂

∂  w

 yy

 = − z

=  z

 , 

(A.3b)

2



 y

∂

 y

∂
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

θ

∂  x

θ

∂  y 

 ∂2 w 

γ  xy =  z−

−

 = −2 z

  , 

(A.3c)

∂ y

∂ x

∂ x∂ y









  

where   xx

 ,  yy

  are the normal strains and  γ  xy  the shearing strain. 

A.3   Hooke’s  Law

The plate is assumed to be an isotropic material that obeys the Hooke’s law. 

Under plane stress conditions, Hooke’s law takes the form

σ



 xx =

 +ν  , 

(A.4a)

2 (  xx

 yy )



1−ν



σ



 yy =

ν +   , 

(A.4b)

2 (

 xx

 yy )



1−ν



τ xy = γ



  xy ,  

(A.4c)

where  σ xx ,  σ  yy  are the normal stresses and τ xy  the shear stresses. 

=





is the shear modulus,    the Young’s modulus, and ν  the 

2(1+ν )

Poisson ratio. 

A.4   Stress  Resultant- Displacement  Relations

By using the Hooke’s law (A.4) and strain- displacement relations (A.3), the 

stress resultant- displacement relations are given by

 dp

 dp

2

2

 Mxx =

σ xxz ⋅ dz =

 xx +ν  yy ⋅  dz

 d

∫

∫   

 p

 dp

2 (

)

−

−

1−ν

2

2

 x

 y

2

2

 θ

∂

θ

∂



 ∂  wˆ

∂  wˆ 

=  

+ν

 =  

+ν

  , 

(A.5a)

2
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∂

 y

∂

 x

∂

 y

∂













 dp

 dp

 Myy = 2 σ  yyz ⋅  dz = 2

 yy

 xx

 dz

 p

 D

 dp

2 (

+ν

)⋅

∫

∫   

−

−

1−ν

2

2

 θ

∂  y

θ

∂  x 

 ∂2 wˆ

∂2 wˆ 

= 

+ν

 = 

+ν

 , 

(A.5b)
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 dp

 dp

 x

 y

2

2

(1−ν )  θ

∂

θ

∂



 Mxy =

τ xyz ⋅ dz =

γ  xyz ⋅ dz =

 d

 d



+



∫  p

∫





−

−  p

2

∂ y

∂



 x 

2

2

2  ˆ

=

 w

 (

 ∂



1−ν )

  , 

(A.5c)

∂ x∂ y









where   Mxx ,  Myy  are the bending moments per unit length of plate,  Mxy the twisting moment per unit length of plate,    the modulus of elasticity, ν  

the Poisson ratio,   =

3

 d ) / 

 p

12(1−ν  ^  2 )  the flexural rigidity, and   dp  the 

thickness of the plate. 

In addition, a pair of shear forces exists for the moment to be equilibrium. 

The shear stresses are derived from the moment equilibrium, given as

∂ M

∂

 ˆ

 ˆ

 xx

 Mxy

∂  ∂2 w ∂2 w 

 Qx =

+

= 



+

 , 

(A.6a)

2

2 

∂ x

∂ y

∂ x ∂ x

∂ y





  

∂ Mxy ∂ Myy

∂  ∂2 wˆ ∂2 wˆ 

 Qy =

+

= 



+

 , 

(A.6b)

2

2 

∂ y

∂ y

∂ y ∂ x

∂ y





  

where  Qx and  Qy are the transverse shear forces per unit length of plate in the x - and   y -axes. 

A.5   Governing  Equation

The governing equation of the CPT could be derived by using the variational 

approach or equilibrium approach. 

A.5.1   Variational  Approach

 A.5.1.1   Energy  Functionals

There are three types of energy functional involve in the derivative of the 

governing equation of CPT, i.e., the strain energy functional   UE,  kinetic 

energy functional   E

 T ,  and the work done   nc

 W . 

We first define the total strain energy functional  U 0  during deformation 

of the plate as

1

1

 f

 T

 U 0 = (σ xx xx

 +σ  yy yy

 +τ xy γ  xy ) = ⋅ ⋅{ }

  , 

(A.7)



2

2



where { }

  T = { xx  yy  γ  xy}, and   f

  is the material property matrix for an iso-

tropic plate given as
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1

ν

0 

 f





ν



1

0 

=

 . 

(A.8)

2

1 ν 



−



1−ν 

0

0







2   

The strain energy functional   UE  (or the strain energy density) due to bend-

ing of the thin plate is then given by the integration of  U 0  over the plate 

volume  ∇  124,125:

 U =

1

 T

 f

 E

 U 0 ⋅ ∇

 d =

{ }

 ⋅

⋅{ }

 ⋅ ∇

∫

 d . 

(A.9)

2 ∫





∇

∇



The substitution of Equations (A.7) and (A.8) into Equation (A.9) and after 

the integration over the plate thickness, yields, 

2

 2

2

2

∂  wˆ

∂  wˆ ∂  wˆ









 + 2ν



2

2

2

1

  x

∂



 x

∂

 y

∂



 UE = 

⋅ ∆

∫ 

2

2

 d , 



2

2

∆

 ∂  wˆ 

 ∂



 wˆ 





2(1 ν )

2



+

+

−

(A.10)
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 



where  ∆  is the plate domain. The kinetic energy functional   E

 T  of the vibrat-

ing Mindlin plate is given by

 U

 E

 T

ρ

 ∂  z 

=

 p



 ⋅ ∇

 d , 

(A.11)

2

∫

2

1



∇  ∂ t 



where  ρ p  is the mass density (per unit volume) of the plate. Similarly, by 

substituting Equation (A.1) into Equation (A.11) and integrating through the 

thickness dimension, the kinetic energy   E

 T  may be expressed as

ω2

(A.12)

 E

 T = −

ρ

2

 pdp

 wˆ ⋅ ∆

 d . 

2

∫



∆



Lastly, the work done,  nc

 W ,  by the non- conservative forces is given by

P

i

 ˆ

(A.13)

 nc

 W

 Uz d

ρ

 ∂Φ



=

⋅

⋅ ∇ =  f



+  gUz  Uz ⋅ ∇

 d =

( ωϕ +  gwˆ)⋅ w⋅ ∆

∫

∫

 d , 

 t

∫

∇

∇  ∂



∆



where  P  is the pressure distribution on the bottom of the plate made up 

of hydrodynamic pressure ρ  f ∂Φ  / ∂ t and hydrostatic pressure ρ  f gUz. The Lagrangian  Π  (known also as action functional) is thus given by



Π =  E

 T − UE −  nc

 W .  

(A.14)
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 A.5.1.2   Principle of Virtual Work (PVW)

The principle of virtual work states that the work done by external forces 

(external energy) on a mechanical system in equilibrium is equal to the work 

done by internal forces for any virtual displacement (internal energy) of the 

system that satisfies its constraints. The formulation for PVW could be done 

by using Hamilton’s principle introduced by William Rowan Hamilton238, 239 

in the 19th century. 

Hamiltons principle is a powerful tool in classical mechanics that 

describes the motion of a system in terms of a single scalar function called 

action functional ( Π ). It states that the actual path taken by a system has a 

stationary action (i.e., δ Π = 0) under small changes in the configuration of 

the system. As the virtual work quantities are scalar values, the quantities 

thus can be added algebraically. Algebraic equations allow complex math-

ematical problems to be solved numerically using computational meth-

ods that would be difficult or impossible to solve using purely analytical 

method. 

Hamilton’s principle requires that the variation of the action functional 

equals to zero, i.e., 

 t f

δ

Π ⋅  dt, 

∫

(A.15)



 i

 t



where   it  denotes initial time,  tf  the final time, and δ  the variational operator. The principle implies that the system’s trajectory is the one that makes 

the action functional stationary. In practical terms, this means the path is 

such that any small deviation would not lead to a decrease in the action. 

By substituting Equations (A.10), (A.12), and (A.13) into Equation (A.15) 

yields
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(A.16)

By performing integration by parts on Equation (A.16) and grouping with 

respect to the variation terms, this results in
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
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∂ ∂



 x y 

(A.17)

where Γ is the boundary path. 

 A.5.1.3   Governing Equation for Kirchhoff Plate

The governing equation for the CPT is thus given as



 ˆ

4

∂4 w 

 ∇  wˆ − ν

2

 d

 wˆ  i

 gwˆ, 

(A.18)
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





where  ∇4 (⋅)  is the biharmonic operator given as ∇2 ⋅∇2 (⋅) = 

 ∂4

∂4

∂4 



+ 2

+

 . 

4

2

2

4 

∂ x

∂ x ∂ y

∂



 y 

A.5.2   Direct Equilibrium Method

The derivative of governing equation using the direct equilibrium method 

works by summation of moments and shear forces acting on the plate (shown 

in Figure A.2) given as

∂ Q

∂

 x +  Qy + q = 0 , 

(A.19a)



∂ x

∂ y



∂ M

∂

 xx +  Mxy =  Qx, 

(A.19b)



∂ x

∂ y



∂ Myx ∂

+  Myy =  Qy. 

(A.19c)



∂ x
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where q  is the distributed load on the plate. By substituting Equations (A.5) 

and (A.6) into Equation (A.19), the equilibrium equation becomes

∂  ∂  ∂2 wˆ ∂2 wˆ  ∂ 
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FIGURE A.2 

Moment and shear force on plate. 
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Solving the simultaneous Equation (A.20) yields the governing equation:

 ∂4  ˆw

∂4  ˆw

∂4 wˆ 
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+ 2
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q
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(A.21)
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which is the same as Equation (A.18), where q = ω

− 2ρ

 ˆ

i

 ˆ

 pdpw + ρ  f ( ωϕ +  gw). 

 Appendix B: First- Order  Shear 

 Deformation Plate Theory

The governing equation for the first- order shear deformation plate theory 

(FSDT; or the Mindlin plate theory) is derived here. 

B.1   Displacement  Components

The displacement of a Mindlin plate is shown in Figure B.1. 

In FSDT, the displacement component can be expressed in a similar way 

as for the CPT, whereby assuming that the normal to the undeformed mid-

plane remains straight and unstretched in length but not necessarily nor-

mal to the deformed midplane, the displacement components are given by 

Equation (B.1.):

 U

ω

i

 x (  x, y, z, t)

 x

= − z ψ ( x, y)  t



 e ,  

(B.1a)

 U

ω

i

 y (  x, y, z, t)

 y

= − z ψ ( x, y)  t



 e ,  

(B.1b)

 U x, y, z,t =  ˆ

ω

i

 z (

)  w( x,y)  t



 e .  

(B.1c)

The variables are the same as in Appendix A for CPT unless otherwise 

stated. Here, ψ x, ψ y  are the bending rotations of a transverse normal about 

the   y - and   x -axes, respectively, given as

ψ

 ˆ

 x (

) ∂

=  w

 x, y

+φ x, 

(B.2a)



∂ x



ψ

 ˆ

 x (

) ∂

=  w

 x, y

+φ  y. 

(B.2b)



∂ y



As compared to the CPT, the bending rotations contains the additional φ x, φ  y, which are the additional rotations due to transverse shear deformation about 

the   y - and   x -axes.  φ x  and φ  y  exist due to the lack of orthogonality of the normal with the middle plane after deformation. 
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FIGURE B.1

Deformation of Mindlin plate. 

B.2   Strain- Displacement  Relations

The strain- displacement relations are the same as in CPT but with additional 

shearing strains  γ  xz  and  γ  yz :
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 , 

(B.3a)



∂ x  

ψ

∂  y

 yy

 = − z

 , 

(B.3b)



∂ y  

 ψ

∂  x

ψ

∂  y 

γ  xy = − z

+

  , 

(B.3c)
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where  xx,  yy are the normal strains and γ  xy,  γ  xz,  γ  yz  the shearing strains. 
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B.3   Hooke’s  Law

The plate is assumed to be an isotropic material that obeys the Hooke’s law. 

Under plane stress condition, Hooke’s law takes the form

σ
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  , 

(B.4a)
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  yz.  

(B.4e)

B.4   Stress  Resultant- Displacement  Relations

By using Hooke’s law (B.4) and strain- displacement  relations (B.3), the stress 

resultant- displacement relations are given by
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The transverse shear forces   Qx ,  Qy  per unit length are derived from the shear stresses τ xz,  τ yz , instead of from the shear moment   Mxy  as in the CPT. 

The stress resultant according to Equation (B.5a–e) only involves up to the 

first- order derivative of the plate deflection, thus contributing to the term 

‘first- order shear deformation plate theory‘. This has great advantage when 

solving the plate equation as the deflection only needs to be first- order differ-

entiable and thus improve the accuracy in the stress- resultants. A shear cor-

rection factor  κ 2 , typically around 5/6, is introduced to compensate for the 

error due to the assumption of a constant shear strain (and hence constant 

shear stress) throughout the plate thickness. 

B.5   Governing  Equation

B.5.1   Variational  Approach

 B.5.1.1   Energy  Functionals

The total strain energy   U 0  during deformation of the plate is given as

1

1

 FSDT

 T

 U 0 =

σ

  xx xx

 +σ  yy yy

 +τ xy γ  xy +τ xz γ  xz +τ yz γ  yz  = ⋅

⋅
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{ }

  , 

(B.6)
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 =   xx



 yy

 γ  xy  γ  xz  γ  yz 



  and   FSDT



is the material property matrix 

for an isotropic plate given as
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  

The strain energy functional   UE  (or the strain energy density) due to bend-

ing of the Mindlin plate is then given by the integration of  U 0  over the plate 

volume  ∇  124, 125:

1

 T

 UE =

 U 0 ⋅  d∇ =

{ } ⋅⋅{ }⋅ d∇ . 

∫

∫ 



(B.8)
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The substitution of Equations (B.6) and (B.7) into Equation (B.8) and after the 

integration over the plate thickness yields
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The kinetic energy functional   E

 T  of the vibrating Mindlin plate is given by
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where  ρ p  is the mass density (per unit volume) of the plate. Similarly, by 

substituting Equation (B.1) into Equation (B.10) and integrating through the 

thickness dimension, the kinetic energy   E

 T  may be expressed as
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The work done,  nc

 W ,  by the non- conservative forces is the same as for CPT, 

i.e., Equation (A.13). 

 B.5.1.2   Principle of Virtual Work (PVW)

Substituting Equations (B.9), (B.11), (A.13), and (A.14) into Equation (A.15) 

and writing the partial derivative in subscript notation yields
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 x

ψ

∂ x

where the subscript denotes partial derivative, e.g., ψ =

ψ  x

 x
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, so on and so forth. By  performing  integra-
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tion by parts on Equation (B.12) and grouping with respect to the variation 

terms, this results in
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where  Γ  is the boundary path. 

 B.5.1.3   Governing Equation for Mindlin Plate

The following three governing equations of motion are obtained after omit-

ting the factor 
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B.5.2   Direct  Equilibrium  Approach

The derivative of the governing equation using the direct equilibrium method 

can be expressed as the summation of moments and shear forces acting on 

the plate (shown in Figure A.2) given as
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i
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 pd  ω 2

 p
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(B.15a)
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By substituting Equation (B.5a–e) into Equation (B.15a–c), we obtain the 

same governing equation as Equation (B.14a–c). 
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The approximation method such as the FEM, finite difference method (FDM), 

or BEM could be used to solve a complex function that has no analytical solu-

tion or is difficult to solve analytically. The details presented here should be 

taken as a reference to facilitate the derivatives of equations in this book. 

Readers interested in FEM, FDM, or BEM should refer to reference books 

targeting these topics specifically. 

Consider a function

 f ( x 0 ) = b →  R Ω =  f ( x 0 ) − b =



0 .  

(C.1)

The residual   R Ω  can be written as

 R Ω =  f ( x 0 ) − b =



0 ,  

(C.2)

where the residual   R Ω = 0  if the exact solution  x 0 is evaluated for the function f ( x). 

The function   f ( x) also satisfies the boundary conditions



 S( x 0 ) =  s onΓ1 ,  

(C.3)



 G( x 0 ) =  g  onΓ2 ,  

(C.4)

where  S and  G are the essential and natural boundary conditions on surface Γ1  and  Γ2 , respectively, with Γ  (Γ1 ∪ Γ2). 

The residuals   R

 R

Γ  and  Γ  are given as

1

Γ  and 

Γ  on boundary 

2

1

2



Γ

 R =  S( x ) − s = 0 on Γ  , 

1

0

1  

(C.5a)



Γ

 R =  G( x ) − g = 0 on Γ  . 

2

0

2  

(C.5b)

As the exact solution  x 0 usually does not exist or is difficult to obtain ana-

lytically, we can use an approximate solution  x,  defined as a polynomial 

function:

p

 x = φ = 0

φ +

α k k

φ  , 

∑

(C.6)



 k=1
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where  0

φ  is a known function that satisfies the essential boundary condi-

tion on  Γ ,  k

φ  the  p  sets of a linearly independent set of known analytical 

functions that satisfies the natural boundary condition, and α k the unknown 

constants to be determined. 

If we substitute  x in Equation (C.6) into Equation (C.1), we may realise that 

Ω

 R ≠ 0 ,  but a more accurate result could be obtained by selecting an approximate solution  x that produces a residual close to zero – i.e.,  R Ω → 0 .  Often, the condition that   R Ω = 0  is hard to achieve. Therefore, the weighted residual 

method is introduced in the next appendix. The residuals at the boundary, 

i.e.,  R Γ =  R Γ = 0  as the selected function satisfies the boundary conditions 1

2

on the surface  Γ . 

C.1   Method of Weighted Residual

The weighted residual method, also known as the Rayleigh- Ritz method, 

could be applied to Equation (C.1) by multiplying a weighted function  w to 

the residual  R and integrating over the domain Ω:

 w ⋅  R Ω ⋅  d Ω +  w ⋅  R Γ ⋅  d Ω = 0 . 

∫

∫

(C.7)



Ω

Γ



If we use the same approximate function  x  in Equation (C.6) that satis-

fies the boundary conditions, i.e.,  R Γ = 0 , we will have Equation (C.8). 

Therefore, we have Equation (C.8) upon substituting Equation (C.2) into 

Equation (C.7):

 w ⋅  R Ω ⋅  d Ω =  w ⋅   f

∫

∫  ( x)−b⋅ d Ω =0 . 



(C.8)



Ω

Ω



To impose the condition that   R Ω = 0  would over- enforce the condition result-

ing in an indeterminate system, i.e., a system of simultaneous equations 

which has more than one solution. Instead, we could impose the condition 

 R Ω ≈ 0  such that Equation (C.8) is satisfied. Hence, the weighted function  w is applied to the residual   R Ω  so that the average residual is zero. 

This could be done by substituting Equation (C.6) into Equation (C.8):

 

p







 p





 wj ⋅   f φ0 +

α φ 

 k k

− 

b ⋅ Ω

 d =  wj ⋅ 

∫

∑

 f (φ0 ) +  f 

α φ 

 k k

− 

b ⋅ Ω

 d =

∫

∑

0 , 

 















 k=1

 k=

Ω

 





Ω



 1







(C.9)
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which upon arrangement can also be written as

p

α k ⋅  wj ⋅  f (φ k )⋅ Ω

 d =  wj ⋅b ⋅ Ω

 d −  wj ⋅  f (φ0 )⋅ Ω

∑ ∫
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∫

 d , 

(C.10)



 k=1

Ω

Ω

Ω



where the term   w ⋅  f (φ )⋅ Ω

 d =

∫  j k

 Kij , which is an important function for 

Ω

formulating matrices in FEM:

 Kjk =  wj ⋅  f (  k

φ )⋅ d . 
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∫

(C.11)
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It should be noted that the number of weighted functions   wj  is the same as 

the number of  p  in Equation (C.6). This is to say, by taking different   wj  up 

to  w p, there will be p sets of simultaneous equations to be solved for the p  

numbers of unknowns α

 j

 w

 x

 k. The choice of 

−

 j =

1 . 

C.2   Collocation  Method

The collocation method is also a form of weighted residual method, but 

instead of taking 

 j−

 wj =

1

 x

, the collocation method imposes the condition 

such that the residual at a certain location is zero, and the solution at that 

particular point is exact. 

In the collocation method, the weighted function  wj is defined as

 wj = δ ( x −  xj )



 ,  

(C.12)

where the Dirac delta function has a property such that
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The integration of the Dirac delta function over a domain will give us
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which is a useful function when evaluating the integral of the weighted 

residual function. 
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By applying Equation (C.12) into Equation (C.10) and applying the condi-

tion given by Equation (D.15), this gives us

p

α k ⋅ δ ( x −  xj )⋅  f (φ k )⋅ Ω

 d = δ ( x −  xj )⋅ b ⋅ Ω

 d − δ ( x −  xj )⋅  f (φ0 )⋅ Ω

∑ ∫
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(C.15)
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where, similarly,  K =
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By choosing a specific location  xj and imposing the condition such that 

Ω

 R ( xj ) = 0, the solutions will be exact at  xj. 

C.3   Bubnov- Garlekin  Method

The Bubnov- Garlekin method, known simply as the Garlekin method, uses 

a combination of an orthogonal trial and weighted functions based on varia-

tional formulation (weak formulation by Bubnov) and the weighted integral 

(strong formulation by Garlerkin) where the weighted functions need not be 

orthogonal. 

The weighted function is assumed to be

∂

 wj =

φ ( x) , 

(C.18)
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where φ ( x) is taken to be the same as in Equation (C.6), i.e., 
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0 0 +

α φ
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φ j must satisfy the boundary conditions  G( x) and  S( x), whereas  wj must be linearly independent. On top of that,  wj ( x) and φ j ( x) must be chosen from the first  P function of a complete set of functions. 
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If we substitute Equation (C.19) into Equation (C.10):

p

α k ⋅ φ j ⋅  f (  k

φ )⋅ d Ω = φ j ⋅b ⋅ d Ω − φ j ⋅  f ( 0

φ )⋅ d . 

Ω

∑ ∫

∫

∫

(C.20)



 k=1

Ω

Ω

Ω



and taking

 Kjk = φ j ⋅  f (  k

φ )⋅ d Ω , 

∫

(C.21)



Ω



b j = φ j ⋅b ⋅  d Ω − φ j ⋅  f ( 0

φ )⋅ d Ω , 

∫

∫

(C.22)



Ω

Ω



where Equation (C.21) involves the integral of sets of orthogonal 

functions in which Equation (C20) can be written in the same form as 

Equation (C.17). 

C.3.1   Example C.1: Exact Solution

Consider a simple second- order ODE

2

 d u( x) + u( x) =1for 0 ≤  x ≤1 , 

(C.23)



2

 dx



with the boundary conditions  u(0) = 0 and  u(1) = 0. 

The second- 

order ODE is a linear non- 

homogeneous ODE and has 

complementary and particular solutions. 

 C.3.1.1   Complementary  Solution

The complementary solution is obtained by solving the homogeneous part of 

2

 d u( x)

the equation given as 

+  u( x) = 0. 

2

 dx

By solving the characteristic equation

2



r + 1 = 0 .  

(C.24)

We have the roots  r  given as,  r = ± 1

−  .  The complementary solution for 

imaginary roots  ±r  is given by

 c

 u =  A  cos( x) +  B sin( x)



 .  

(C.25)
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 C.3.1.2   Particular  Solution

As the RHS of Equation (C.23) is zero, the particular solution is assumed to 

be a constant   C :



 up ( x) =  C.  

(C.26)

Substituting Equation (C.26) into Equation (C.23),  C = 1. Thus, the particular 

solution is given as



 up ( x) = 1 .  

(C.27)

 C.3.1.3   General  Solution

The general solution is given as

 u( x) =  c

 u ( x) +  up ( x) =  A cos( x) +  B sin( x) +



1 .  

(C.28)

The unknown constants  A and  B can be solved by using the boundary 

conditions:

Boundary condition (i): u(0) = 0, 




A ⋅1+ B ⋅0 + 1 = 0 → A = 1

−  ,  

(C.29)

Boundary condition (ii): u(1) = 0, 

( )

−

− ⋅

+  B⋅

( )

cos(1) 1

1 cos 1

sin 1 + 1 = 0 →  B =

 . 

sin(1)

(C.30)





Substituting Equations (C.29) and (C.30) into Equation (C.28), the general 

solution yields



− 

 u( x) = −

( x) cos(1) 1

cos

+ 

(C.31)



( ) ⋅sin( x) +1 . 

sin 1







C.3.2   Example C.2: Method of Weighted Residual (MWR)

To solve using the MWR, assume a trial function



 uapprox ( x) = 1

 c x (1−  x) .  

(C.32)

Substituting the trial function  uapprox ( x) into the ODE (C.23) yields the residual  R:
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 R( x) = 2

− 1

 c + 1

 c x (1−  x) − 1 .  

(C.33)

In the weighted residual method, we choose a weight function. For simplic-

ity, we take  w ( x) =  x(1−  x) and apply the MWR as in Equation (C.8): 1

1

 w ⋅  R( x)⋅  dx =  x

∫

∫ (1− x)⋅ 2− 1 c+ 1 cx

 

(1−  x) −1⋅ dx. 



(C.34)



0

0



Upon evaluation, this yields

2

 c =  . 

(C.35)



1

3  

The approximate solution using MWR is

 uapprox ( x) 2

=  x(1−  x) . 

(C.36)



3



C.3.3   Example C.3: Collocation Method

In the collocation method, we enforce that the residual Equation (C.33) is 

zero at selected collocation points. Typically, these collocation points are cho-

sen within the domain. For demonstration, we select the collocation point at 

 x = 0 5

 . .   R(0 .  5), thus becoming



 R(0 .  5) = 2

− 1

 c + 1

 c (0 .  5)(1− 0 .  5) − 1 = 0 .  

(C.37)

This yields

4

 c = −  . 

(C.38)



1

7  

The approximate solution is thus

 uapprox ( x)

4

= − ( x)(1−  x) . 

(C.39)



7



C.3.4   Example C.4: Bubnov- Galerkin Method

In the Galerkin method, we require that the residual be orthogonal to the 

weight function  w ( x), which is chosen as the same function as the basis function used in the trial function of Equation (C.32):



 w ( x) = ( x)(1−  x) .  

(C.40)
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The Galerkin condition is given by

1

 w ( x)⋅  R( x)⋅  dx = 0 . 

∫

(C.41)



0



Substitute  R( x) into the integral gives us the same as Equation (C.34). 

Equation (C.34) can be expanded as

1

1

1

− 2 1

 c ⋅  x

∫

 (1−  x) ⋅  dx + 1

 c x



(1−  x)⋅ x

∫

 (1−  x) ⋅  dx −  x



(1−  x)⋅ dx. 

∫

(C.42)



0

0

0



Upon evaluation, 

1

 c

1

1

5

−

+ 1

 c ⋅

− = 0 → 1

 c = −  . 

(C.43)



3

30 6

9  

Substitute Equation (C.43) into Equation (C.32):

 uapprox ( x)

5

= −  x(1−  x) . 

(C.44)



9



 C.3.4.1   Summary and Comparison of Results

Exact solutions:



− 

 u( x) = −

( x) cos(1) 1

cos

+ 

(C.45)



( ) ⋅sin( x) +1

sin 1







MWRs:

 uapprox ( x)

2

= −  x(1−  x)

(C.46)



3



Collocation method:

 uapprox ( x)

4

= − ( x)(1−  x)

(C.47)



7



Bubnov- Galerkin  method:

 uapprox ( x)

5

= −  x(1−  x)

(C.48)



9



The comparison of  uapprox ( x) with exact solution  u( x) are given in Table C.1 

and Figure C.1. The percentage error in the table is computed from

[image: Image 183]
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 u

 x −  u x

Absolute Error( %)

 approx ( )

( )

=

 %. 

(C.49)



 u( x)



TABLE C.1

Comparison of Approximate Solution with Exact Solution and Their Percentage 

Errors

Method of Weighted 

Collocation Method

Galerkin Method

Exact 

Residual

Solution 

Absolute 

Absolute 

Absolute 

 x

 u( x)

 appr

 u

 ox (  x )

Error

 appr

 u

 ox (  x )

Error

 appr

 u

 ox (  x )

Error

0.00

0.0000

0.0000

0.00%

0.0000

0.00%

0.0000

0.00%

0.10

−0.0495

0.0600

10.95%

−0.0514

0.19%

−0.0500

0.05%

0.20

−0.0886

0.1067

19.53%

−0.0914

0.28%

−0.0889

0.03%

0.30

−0.1168

0.1400

25.68%

−0.1200

0.32%

−0.1167

0.01%

0.40

−0.1338

0.1600

29.38%

−0.1371

0.33%

−0.1333

0.05%

0.50

−0.1395

0.1667

30.62%

−0.1429

0.34%

−0.1389

0.06%

0.60

−0.1338

0.1600

29.38%

−0.1371

0.33%

−0.1333

0.05%

0.70

−0.1168

0.1400

25.68%

−0.1200

0.32%

−0.1167

0.01%

0.80

−0.0886

0.1067

19.53%

−0.0914

0.28%

−0.0889

0.03%

0.90

−0.0495

0.0600

10.95%

−0.0514

0.19%

−0.0500

0.05%

1.00

0.0000

0.0000

0.00%

0.0000

0.00%

0.0000

0.00%

FIGURE C.1

Exact solution and approximate solution to ODE. 
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It can be seen that the  uapprox ( x) predicted by the Galerkin method has 

the smaller percentage error, followed by the collocation method. The 

 uapprox ( x) predicted by MWR is completely off when compared with the exact solution  u( x). 

 C.3.4.2   Residual

The residual  R( x) for the three approximate solutions summarised as

 2 for weighted residual method

 3



 R( x)

4

= 2

− 1

 c + 1

 c x (1−  x) − 1 ,  wherec1 = 

− for collocation method

 . 

7

 5

− for Bubnov − Galerkin method





 9





(C.50)

Table C.2 shows the residual  R( x) of the three approximation methods. A comparison of  R( x) for the collocation and Bubnov- Galerkin method is plotted 

in Figure C.1. It can be seen that, for the collocation method, the  R( x) is zero at  x = 0 5

 .  due to the imposed condition in (C.37). The figure also shows that 

the Galerkin method has a higher accuracy as compared to the collocation 

method. 

TABLE C.2

Residual of Approximation Methods

Collocation  Bubnov- Galerkin 

 x

MWR

Method

Method

0.00

−2.3333

0.1429

0.1111

0.10

−2.2733

0.0914

0.0611

0.20

−2.2267

0.0514

0.0222

0.30

−2.1933

0.0229

−0.0056

0.40

−2.1733

0.0057

−0.0222

0.50

−2.1667

0.0000

−0.0278

0.60

−2.1733

0.0057

−0.0222

0.70

−2.1933

0.0229

−0.0056

0.80

−2.2267

0.0514

0.0222

0.90

−2.2733

0.0914

0.0611

1.00

−2.3333

0.1429

0.1111

[image: Image 184]
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FIGURE C.2

Residual for collocation and Bubnov- Galerkin methods. 

 Appendix D: Shape Function

The numerical method requires the discretisation of domain  Ω  or surface  Γ  

into   Ne  elements with   Nd  number of nodes in each element. The displacement at its nodes (known as nodal displacement) is denoted by  ud ,  whereas at the element by  ue . The geometry of the element could be of various 

shapes depending on the model being built and accuracy of the simulation 

required for the analysis. A three- dimensional element would require more 

computational time compared to a two- dimensional element. In this book, 

the model is represented in two dimensions, such as the VLFS modelled as 

plate structure in the FEM or the consideration of surface domain  Γ  in the 

BEM. Therefore, focus is given to element in two dimensions here. 

D.1   Four- Node Quadrilateral Rectangular Element

We consider a four- node quadrilateral rectangular element. Here, we define 

the local coordinate system for an element in reference to the global coordi-

nate system for the entire structure. By using polynomial interpolation, the 

element displacement is expressed as a summation of nodal displacement:

 Nd

ue =

 Nj ( x, y, z)⋅(  d

 u ) = n( x, y, z)⋅

∑

{ud} , 

(D.1)



=1

 j

 j



where  n  is the shape function given as

 N 1

0

0

0 

 0

 N



2

0

0





n =

 , 



(D.2)

0

0



0 





 0

0

0

 N



 Nd   

and the nodal displacement is given as

{ud}

 T

= (

{  du) (  du)  (  du)  . 

(D.3)

1

2

 Nd }
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FIGURE D.1

Four- node quadrilateral element. 

The construction of the shape function requires that   Ni  only has a value of 

1  in node   i  and zero at other nodes, as shown in Figure D.1. The polyno-

mial function could be used as interpolation functions. Two different well- 

known polynomials are presented here, i.e., the Lagrange polynomial and 

serendipity polynomial. 

D.2   Lagrange  Polynomial

The easiest way to construct the shape function from the Langrage polyno-

mial is by using Pascal’s triangle. 

Assuming that the element displacement  ue  can be written as an expan-

sion of polynomial φ  written in the same form as Equation (B.4), 

p

ue = φ =

α j φ j , 

∑

(D.4)



 j



where  φ  can be represented by the binomial expansion of order  p  and has 

to be complete, i.e., including all the terms required for binomial expansion 

up to order  p . Pascal’s triangle is shown in Figure D.2. 

Say, for example, that a binomial quadratic expansion or order  p = 1   is 

used for constructing the interpolation function. For completeness, the 

number of terms required according to Pascal’s triangle is 4 or given as 



 d

 n = ( p + )2

1  .  Therefore, the polynomial φ  is given as



ue = φ = α1 +α ξ

2

+  a  η

3

+α ξη

4

 ,  

(D.5)

[image: Image 186]
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FIGURE D.2

Pascal’s triangle for square and triangle element, which are complete. 

or in matrix form, 

ue = 1

ξ

η

ξη  α



 T

1

α2

α3

α4  . 

(D.6)





 

  

If we assume a quadrilateral rectangular plate having   d

 n = 4 , where the 

nodes are located at  (ξ  ,  η ) = (1 ,  1) , (−1 ,  1) , (−1 , −1)  and  (1 , −1) , we can form four equations as follows:

φ (1 ,  1) = α1 +α2 + 3

 a +α



4  , 

φ (−1 ,  1) = α1 −α2 + 3

 a −α



4  , 



(D.7)

φ (−1 , −1) = α1 −α2 − 3

 a +α



4  , 

(  d

 u ) = φ (1 , −1) = α1 +α2 − 3

 a −α



4  . 

1

Writing in matrix form, 

φ1  1

1

1

1  α1 

φ

  



2

1

1

1

1 α

 

−

−

  

  2 

=

φ

  

 . 

(D.8)

3

1

−1

−1

1  α

 

3

φ

  



4

1

1

1

1 α

 

−

−



  

  4   
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Solving for α  gives us

α1 

1

1

1

1  φ1 

α

 





2

1 1

1

1

1 φ

 

−

−

 



  2 

=

α

 

 . 

(D.9)

4 

3

1

1

−1

− 

1 φ

 

3

α

 





4

1

1

1

1 φ

 

−

−



 



  4   

Substituting Equation (D.8) back into Equation (D.6) and taking φ =  d

 u  gives 

us

1

1

1

1  (  d

 u ) 



 

1

1

1

−1

−1

1

(  d

 u ) 

ue = 1

ξ

η

ξη  

 

2 





 . 

(D.10)

4

1

1

−1

− 

1 (  d

 u ) 



 

3

1

−1

1

−





1 (  d

 u ) 



4 



  

which upon expansion gives us

(1+ξ +η +ξη )

(1−ξ +η −ξη )

(1−ξ −η +ξη )

ue =

(  d

 u ) +

(  d

 u ) +

(  d

 u )

1

2

3

4

4

4

(1+ξ −η −ξη )

(D.11)

−

(  d

 u ) =  ξ  ,  η ⋅ud . 

4

( )

4



Therefore, we have the interpolation function, which upon simplification 

gives us

1

 N 1 = (1+ξ )(1+η ) , 



4

1

 N 2 = (1−ξ )(1+η ) , 



4

1

 N 3 = (1−ξ )(1−η ) , 



4

1

 N 4 = (1+ξ )(1−η ) . 

(D.12)



4
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D.3   Nine- Node Quadrilateral Rectangular Element

Similarly, the interpolation function for polynomial is a nine- node quadrilat-

eral plate that can be obtained by the method mentioned earlier, presented 

here as

ue = φ = α +α ξ +  a  η +α ξη +α ξ 2 +α η 2 +α ξ η

2

+α ξη 2 +α ξ η

2 2

1

2

3

4

5

6

7

8

9

 .   (D.13)

The quadrilateral rectangular plate with   d

 n = 9  in Equation (D.13), where the 

nodes are located at  (ξ  ,  η ) = (1 ,  1) , (−1 ,  1) , (−1 , −1) , (1 , −1) , (0 ,  1) , (−1 ,  0) , (0 , −1) , (1,0), and  (0 ,  0) , forms nine equations as follows:

φ (1 ,  1) = α1 +α2 + 3

 a +α4 +α5 +α6 +α7 +α8 +α



9  , 

φ (−1 ,  1) = α1 −α2 +  a 3 −α4 +α5 +α6 +α7 −α8 +α



9  , 

φ (−1 , −1) = α1 −α2 − 3

 a +α4 +α5 +α6 −α7 −α8 +α



9  , 

φ (1

(D.14)

 , −1) = α1 +α2 − 3

 a −α4 +α5 +α6 −α7 +α8 +α



9  ,  

φ (0 ,  1) = α1 + 3

 a +α6 ,  φ (−1 ,  0) = α1 −α2 +α



5  , 

φ (0 , −1) = α1 − 3

 a +α6 ,  φ (1 ,  0) = α1 +α2 +α5 ,  φ (0 ,  0) = α



1 . 

Writing in matrix form, 

φ1  1

1

1

1

1

1

1

1

1 α1 

φ

  





2

1

1

1

1

1

1

1

1

1 α



−

−

−

  

  2 

φ

  



3

1

−1

−1

1

1

1

−1

−1

1 α

 3

φ

  





4

1

1

1

1

1

1

1

1

1 α



−

−

−

  

  4 

φ

 



5

= 



1

0

1

0

0

1

0

0

0 α



 . 

(D.15)

  

  5 

φ

 6  1

−1

0

0

1

0

0

0

0 α

 6 

φ

  





7

1

0

1

0

0

1

0

0

0 α



−

  

  7 

φ

 8  1

1

0

0

1

0

0

0

0 α

 8 

φ

  





9

1

0

0

0

0

0

0

0

0 α





  

  9   

Solving for α  gives us
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α1 

0

0

0

0

0

0

0

0

1  (  d

 u ) 

1

α

 



 



2

0

0

0

0

0

−2

0

2

0

(  d

 u )

 



 

2 

α

 







3

0

0

0

0

2

0

−2

0

0  (  d

 u )3





α

 





4

1

−1

1

−

 



1

0

0

0

0

0  (  d

 u )4

α

  1





5

= 0

0

0

0

0

2

0

2

− 

1 (  d

 u )  . (D.16)

  4 



5





α

 6 

0

0

0

0

2

0

2

0

− 

1 (  d

 u ) 

6

α

 



 



7

1

1

−1

−1

−2

0

2

0

0

(  d

 u )

 



 

7 

α







8 

1

−1

−1

1

0

2

0

−2

0  (  d

 u )8

α

 



 



 9 

1

0

0

0

0

0

0

0

0  (  d

 u )





9 

  

Substituting Equation (D.8) back into Equation (D.6) gives us

1

2

2

2

2

2 2

ue =

1



ξ

η

ξη

ξ

η

ξ η

ξη
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which upon expansion gives us
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Therefore, we have the interpolation function, which upon simplification 

gives us

1

 N 1 = ξ (1+ξ )(1+η )η  , 



4

1

 N 2 = − ξ (1−ξ )(1+η )η  , 



4

1

 N 3 = ξ (1−ξ )(1−η )η  , 



4

1

(D.19)

 N 4 = − ξ (1+ξ )(1+η )η  , 



4



1

 N 5 = (1+ξ )(1−ξ )η  , 



2

1

 N 6 = − ξ (1−ξ )(1−η )η  , 



2

1

 N 7 = − (1+ξ )(1−ξ )(1−η )η  , 



2

1

 N 8 = ξ (1+ξ )(1−η )η  , 



2

 N = ( −ξ 2 )( −η 2

9

1

1

) . 



The nine- node quadrilateral plate element is shown in Figure D.3. 

FIGURE D.3

Nine- node quadrilateral element. 
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D.4   Eight- Node Serendipity Rectangular Element

The serendipity element is similar to the nine- node quadrilateral element 

except for the internal element that is being removed from the element. This 

could reduce the computational time as the size of the matrix is reduced and 

does not compromise the accuracy of the results. Using the same method, the 

interpolation function is given as

1

1

 N 1 = (1+ξ )(1+η ) − ( N 5 +  N 8 ) , 



4

2

1

1

 N 2 = (1−ξ )(1+η ) − ( N 5 +  N 6 ) , 



4

2

1

1

 N 3 = (1−ξ )(1−η ) − ( N 6 +  N 7 ) , 



4

2

1

1

(D.20)

 N 4 = (1+ξ )(1−η ) − ( N 7 +  N 8 ) , 



4

2



 N = 1 (1−ξ 2

5

)(1+η ) , 



2

 N = 1 (1−ξ )(1−η 2

6

) , 



2

 N = 1 (1−ξ 2

7

)(1−η ) , 



2

 N = 1 (1+ξ )(1−η 2

8

) . 



2

The eight- node serendipity rectangular element is given in Figure D.4. 

FIGURE D.4

Eight- node serendipity rectangular element. 

 Appendix E: Evaluation of Integral

The formulation of FEM or BEM requires the evaluation of an integral over 

a domain or surface as it is derived based on the weighted integral methods 

as outlined in Appendix C. Here, some common integrals that involve the interpolation function are described. 

As shown in Figure E.1, an element in the   x -  y  coordinate system is represented by element in the ξ -η  coordinates, therefore it requires the transfor-

mation from the   x -axis to the  ξ -η -axis. Taking a four- node quadrilateral 

element as an example, 

 N 1

0

0

0   1

 x 

 N 1

0

0

0   y 1 
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
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 0

 N 2
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0   x 2

 0

 N 2
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E.1   Jacobian  Matrix

In order to transform from the actual coordinate system to natural coordinate 

system, we need to use the Jacobian matrix, defined as

∂ x

∂ x

ξ

∂

η

∂

det  J =

 . 

(E.2)

∂ y

∂ y

ξ

∂

η

∂





The determinant   J  denotes how much the element in the actual coordinates 

is stretched when transform to the natural coordinates. Now we can use the 

determinant   J  to evaluate the integral. The integration of function   f ( x) over a surface  Γ  can be written as

 f (ξ  ,  η )

1

1

⋅  d Γ =

 f (ξ  ,  η )⋅  J ⋅ d ξ ⋅ d η  . 

∫

∫ ∫

(E.3)



Γ

1

−

1

−
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FIGURE E.1

Transformation of element from   x -  y  Cartesian coordinate system to  ξ -η  natural coordinate 

system. 

E.2   Gauss  Quadrature

Now, we introduce the Gauss quadrature to evaluate the integral, i.e., 

area under curve or volume under surface. For a generic integral given as 

follows

1

1  g(ξ  ,  η )

 Ng

⋅  d ξ ⋅  d η =

 g

∫ ∫

∑ (ξ k,  η k)⋅ wk, 

(E.4)



 k=

−

−

1

1

1



where   wk  is the weight of the Gauss quadrature and (ξ k ,  η k ) the interpolation points for the Gauss quadrature.  Ng  is the number of interpolation 

points for the Gauss quadrature. The list of   wk  and (ξ k ,  η k ) for different elements are given in Table E.1. The evaluation of the integral has been approximated using the Gauss quadrature as shown in the RHS of Equation (E.4). 

Similarly, by using the Gaussian quadrature, Equation (E.3) can be 

evaluated as follows:

1

1  f (ξ  ,  η )

 Ng

⋅  J ⋅  d ξ ⋅  d η =

 f

∫ ∫

∑ (ξ k,  η k)⋅  J(ξ k,  η k) ⋅ wk. 

(E.5)



 k=

−

−

1

1

1



To evaluate only the area for an element  ∆  e , 

 Ng

∆  e=

 J

∑ (ξ k,  η k) ⋅ wk. 

(E.6)



 k=1
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TABLE E.1

Gauss Quadrature Weights and Integration Points

Number 

of Points

Points, ξ

η

Weights,  w

 k  or   k

 k

1

0

2

2

1

±

= 0

± 5774

 . 

1

3

3

0

8 = 0 8889

 . 

9

3

5

±

= 0

± 7746

 . 

= 0 5556

 . 

5

9

3 2 6

18 + 30

4

±

−

= 0

± 3400

 . 

= 0 6522

 . 

5 7 5

36

18 − 30

± 3 + 2 6 = ±0.8611

= 0 .  3479

7

7 5

36

0

128 = 0 .  5689

225

1

10

322 + 13 70

5

±3 5 − 2

= ±1.3767

= 0 .  4786

7

900

1

10

±

322 − 13 70

3 5 + 2

= 1

± 9479

 . 

=

7

0 2369

 . 

900

E.2.1   Example  E.1

A trapezoid shown in Figure E.1 is to be transformed into its natural coordinates in a four- node quadrilateral element. The coordinate for the trapezoid 

is given by

( 1 x,y 1) = (3 ,  3) , ( x 2 ,y 2) = (−1 ,  3) , ( x 3 ,y 3) = (−6 , −3) , ( x 4 ,y 4) = (1 , −3)



 .   (E.7)



1

1 

The Gauss quadrature interpolation points are  (ξ k,  η k ) = ±

 , ±



  and 



3

3 

the weights   wk = 1 . 

We know that   x  and   y  can be written as



 x =  N 1 1

 x +  N 2 x 2 +  N 3 x 3 +  N 4 x 4 ,  

(E.8a)



 y =  N 1 y 1 +  N 2 y 2 +  N 3 y 3 +  N 4 y 4 , (E.8b)

 Appendix E: Evaluation of Integral 

301

where the shape function   N 1 , N 2 , N 3 , and   N 4  are given in Equation (D.12). 

Substituting Equation (E.7) into Equation (E.8), 

 x = − 3 ( −η )( −ξ ) − 1 ( +η )( −ξ ) + 1 ( −η )( +ξ ) + 3

1

1

1

1

1

1

(1+η )(1+ξ ) , 



2

4

4

4

(E.9a)

 y = − 3 ( −η )( −ξ ) + 3 ( +η )( −ξ ) − 3 ( −η )( +ξ ) + 3

1

1

1

1

1

1

(1+η )(1+ξ ) . 



4

4

4

4

(E.9b)

The area from (E.6) can be expanded as

 Area =  J (ξ1 η

 ,  1) 1

 w +  J (ξ2 η

 ,  2 )  w 2 +  J (ξ3 η

 ,  3 )  w 3 +  J (ξ4 η

 ,  4 )  w 4


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
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(E.10)

E.3   Global  Matrices

The area for the rest of the elements could be computed the same way and 

assembled into a global matrix:

∆  e

0

0

0

1







0

∆



 e

0

0

2



∆ = 

 . 

(E.11)
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The mass matrix given in Equation (E.11) has a lump- sum mass for each ele-

ment and is useful for evaluating Green’s function over the surface using 

the constant panel method. For the finite element method, the mass matrices 

have to be distributed to each node. 
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