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Preface

Modern natural sciences (physics, chemistry, biology, ...) are based upon the understanding of nature through models. The validity of a model is in turn measured by its capacity to accurately describe and predict natural phenomena in the simplest manner possible. 

The experiments designed to test the validity of a given model must therefore be readily repro-ducible in different laboratories. To precisely define the results that will be observed in different laboratories, modern science is lead to express the results in numbers that represent the measured quantities of the experiments. Thus, two separate laboratories with identical experimental setups, can compare their results by simply comparing the numbers obtained by measuring the preestab-lished quantities associated with the experiments. 

In physics, the models with which we describe nature typically include calculus of real functions. 

Thus, calculus is used to calculate the predicted numbers that we will be measuring in an experiment to test the model. In turn, the foundation of calculus is limits and the properties of limits. From limits we build other fundamental calculus operations such as derivatives, partial derivatives, integrals, ... . 

Limits and derivatives of real functions become more than just useful tools, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

This book builds upon the previous four books “Logic for Physicists”, “Set Theory for Physicists”, “Real and Complex Numbers for Physicists”, “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists”. After presenting a brief review of logic, set theory, isomorphism, and natural numbers in the first chapter of this book, a brief review of integers, rational numbers, and real numbers in the second chapter, a brief review of convergent real number sequences and real exponentiation in the third chapter, and a brief review of trigonometric functions in the fourth chapter; working towards the application of limits and derivatives to trigonometric functions, we study additional properties of trigonometric functions in the fifth chapter. 

Working towards the study of limits and derivatives in general, we define intervals and regions in

in the sixth chapter. We will then proceed to define the limits of real functions, and to study R

fundamental properties of limits that will be applied to real functions in general, including properties specific to exponential and trigonometric functions. We will proceed to define continuous real functions, and building on the properties of limits, study the properties of continuous functions. 

We will then define the derivative of real functions and building from the properties of limits, we will study general properties of derivatives. We will study additional properties and general theorems of derivatives and define second order and nth order derivatives. We will then study the derivatives of exponential functions and logarithmic functions as well as derivatives of functions that contain the exponential operation of real numbers with real exponents. Building on the properties of trigonometric functions, of limits, and of derivatives, we will study the derivatives of trigonometric functions and of inverse trigonometric functions. Finally, we will study the application of derivatives to the analysis of real functions. 
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1 Review of Logic, Set

Theory, Isomorphism, and

Natural Numbers

1.1

INTRODUCTION

The natural sciences are unavoidably lead to incorporate numbers and therefore mathematics. Mathematics, in turn, is based upon the derivation or deduction of properties or propositions with respect to given objects or elements belonging to a given set. The process of derivation/deduction of properties/propositions is called logic. The general properties of elements and sets is called set theory. Two sets are considered isomorphic if one can establish a one-to-one relation between the two sets such that the corresponding operators and relations within each set are equivalent. In turn, real numbers can be defined and their general properties derived from the general properties of natural numbers through set theory and isomorphism. 

In this chapter, we will present basic elements of logic, basic elements of set theory, and basic elements of isomorphism that we will be applying in the study limits and derivatives of real functions. 

We will also introduce axioms and axiomatic definitions of natural numbers. We will review general properties of addition, subtraction, multiplication, division, exponentiation with natural number exponents, root of order n, and inequalities of natural numbers. 

1.2

LOGIC

As stated above, logic is the process of derivation/deduction of properties/propositions. For more detailed and thorough discussions of logic, the author directs the reader towards the book “Logic for Physicists” [1]. 

1.2.1

PROPOSITIONAL ALGEBRA

Propositional algebra is the subbranch of mathematical logic that studies propositions and logical operators. A proposition is any statement that can clearly be assigned a unique value of either “True” 

(T) or “False” (F). Propositions satisfy:

• The Law of Dichotomy: that is a proposition must have a logical value of either true (T) or false (F); 

• The Law of Excluded Middle: that is a proposition cannot be simultaneously true (T) and false (F). 

In propositional algebra, two propositions are said to be equal if and only if they have the same logical value. 

Following the discussion in “Logic for Physicists” [1], in studying logical operators, we can begin with the BOTH-FALSE operator “⊗”. Given two propositions A and B, the new proposition

“A ⊗ B ” is true (T) if and only if both A and B are false (F). 
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In turn, the NOT operator “¬”, the OR operator “∨”, the AND operator “∧”, the IMPLIES operator “=⇒”, and the EQUIVALENT operator “ ⇐⇒ ” may then be defined through the equations1:

¬A ≡ A ⊗ A ; 

A ∨ B ≡ ¬(A ⊗ B) ; 

A ∧ B ≡ ¬((¬A) ∨ (¬B)) ; 

A =⇒ B ≡ ¬(A ∧ (¬B)) ; 

A ⇐⇒ B ≡ (A =⇒ B) ∧ (B =⇒ A) . 

To simplify the propositional expressions, one may introduce notational priority to reduce the necessity of parentheses and thus simplify the written expressions. From highest to lowest priority, for the five standard logical operators, we have:

¬,∧,∨,=⇒, ⇐⇒ . 

For example:

A ∨ ¬B ∧C = A ∨ ((¬B) ∧C) ; 

¬(A ∨ B) ∧C = (¬(A ∨ B)) ∧C ; 

A ⇐⇒ B ∧C =⇒ D ∨ E = A ⇐⇒ ((B ∧C) =⇒ (D ∨ E)) ; 

A ⇐⇒ ¬B ∧C =⇒ D ∨ E = A ⇐⇒ (((¬B) ∧C) =⇒ (D ∨ E)) . 

Note that the BOTH-FALSE operator “⊗” is not a standard logical operator, and thus any propositional expression that includes this operator (except for the simple expression “A ⊗ B ”) should include parentheses. 

Another notation that may be used is the omitting of the symbol “∧” when implementing the AND operation. That is, when two propositions are placed next to each other without an explicit logical operator in between them, the “∧” operator is assumed. For example: AB = A ∧ B ; 

A ∨ BC = A ∨ (B ∧C) ; 

¬BC = (¬B) ∧C . 

We may also introduce two additional symbols: “ T ” and “F ” (i.e., the letters T and F in italic). 

Above, the roman letter “T” has been used to denote the logical value of true. In turn, the roman letter “F” has been used to denote the logical value of false. The italic letter “ T ” will be used to

1The mathematical symbol ‘≡’ denotes: is equal, by definition, to. 
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denote any proposition that always has a logical value of true, such a proposition will be said to be identically true. Similarly, the italic letter “F ” will be used to denote any proposition that always has a logical value of false, such a proposition will be said to be identically false. For example, one finds that:

A ∨ ¬A = T . 

Some useful properties of propositional algebra that can be derived from the above discussions:

¬(¬A) = A ; 

¬T = F ; 

¬F = T ; 

A ∨ B = B ∨ A ; 

A ∨ (B ∨C) = (A ∨ B) ∨C ; 

A ∨ A = A ; 

A ∨ T = T ; 

A ∨ F = A ; 

A ∧ B = B ∧ A ; 

A ∧ (B ∧C) = (A ∧ B) ∧C ; 

A ∧ A = A ; 

A ∧ T = A ; 

A ∧ F = F ; 

A ∨ ¬A = T ; 

A ∧ ¬A = F ; 

{A =⇒ A} = T ; 

{A =⇒ T } = T ; 
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{F =⇒ A} = T ; 

{T =⇒ F} = F ; 

{A =⇒ B} = {¬B =⇒ ¬A} . 

1.2.2

PREDICATE LOGIC

Predicate logic is the subbranch of mathematical logic that studies propositions that depend upon the elements of a given set. Predicate logic includes all of propositional algebra and the logical symbols “∀” (For-All) and “∃” (Exists). 

Predicate logic considers propositions “P(x)” that depend on the element “x” of a given set. That is, “P(x)” can be either “True” (T) or “False” (F) depending on the value of “x”. The For-All symbol

“∀” and the Exists symbol “∃” can be defined in the following manner:

∀x P(x) ≡ “For all possible values of x, P(x) is always True” ; 

∃xP(x) ≡ ¬{∀x ¬P(x)} . 

The For-All symbol “∀” indicates that the given proposition is always “True” (T) regardless of the specific value that we may assign to the given variable. The symbol “∃” indicates that there exists at least one value of the variable such that the given proposition has a logical value of “True” (T). 

Some general properties of predicate logic that can be derived from the above discussions:

{∀xP(x)} =⇒ P(a) ; 

P(a) =⇒ {∃xP(x)} ; 

{¬∀xP(x)} ⇐⇒ {∃x¬P(x)} ; 

{¬∃xP(x)} ⇐⇒ {∀x¬P(x)} ; 

{∀xP(x)} ∨ {∀xQ(x)} =⇒ {∀x [P(x) ∨ Q(x)]} ; 

{∀xP(x)} ∧ {∀xQ(x)} ⇐⇒ {∀x [P(x) ∧ Q(x)]} ; 

{∃xP(x)} ∨ {∃xQ(x)} ⇐⇒ {∃x [P(x) ∨ Q(x)]} ; 

{∃x[P(x) ∧ Q(x)]} =⇒ {∃xP(x)} ∧ {∃xQ(x)} . 

1.3

SET THEORY

As stated above, set theory is the study of the general properties of elements and sets. For more detailed and thorough discussions of set theory, the author directs the reader towards the book “Set Theory for Physicists” [2]. 
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1.3.1

GENERAL PROPERTIES OF SETS

A set is a well-defined group of elements. To state that a given element “x” belongs to a given set

“A ”, one may use the symbol “∈”:

x ∈ A ≡ “x is an element of set A ” . 

Given two sets “A ” and “B ”, the equality of the two sets is defined through the condition: A = B ⇐⇒ (x ∈ A ⇐⇒ x ∈ B) . 

One can define a set that contains elements that are sets themselves, that is a set can be an element of another set. However, a set cannot contain itself, that is, for any set “A ”, it will always hold that: A < A . 

A set can be such that it contains no elements. Such a set is said to be empty or to be a null set, and is denoted by the symbol “ /0”. That is, for any element “x”, it always holds that: x < /0 . 

Given two sets “A ” and “B ”, it will be stated that set “A ” is a subset of set “B ” (“A ⊂ B ”) through the following condition:

A ⊂ B ⇐⇒ (x ∈ A =⇒ x ∈ B) . 

Two properties that can be derived from the above discussion:

A ⊂ A ; 

/0 ⊂ A . 

1.3.2

SET OPERATORS

Given two sets “A ” and “B ”, the union of “A ” and “B ” is denoted by “A ∪ B ”, and defined through the condition:

x ∈ A ∪ B ⇐⇒ (x ∈ A) ∨ (x ∈ B) . 

In turn, given two sets “A ” and “B ”, the intersection of “A ” and “B ” is denoted by “A ∩ B ”, and defined through the condition:

x ∈ A ∩ B ⇐⇒ (x ∈ A) ∧ (x ∈ B) . 

Also, given two sets “A ” and “B ”, the set subtraction of “A ” and “B ” is denoted by “A \ B ”, and defined through the condition:

x ∈ A \ B ⇐⇒ (x ∈ A) ∧ (x < B) . 

A set operator that commonly appears implicitly or explicitly in many natural science applications is the Cartesian product. Given two sets “A ” and “B ”, the Cartesian product of “A ” and “B ” 

is denoted by “A × B ”, and it is a set of ordered pairs defined through the condition: (x, y) ∈ A × B ⇐⇒ (x ∈ A) ∧ (y ∈ B) . 
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Some general properties of set theory that can be derived from the above discussions: A ∪ A = A ; 

A ∪ B = B ∪ A ; 

A ∪ (B ∪C) = (A ∪ B) ∪C ; 

A ∪ /0 = A ; 

A ∩ A = A ; 

A ∩ B = B ∩ A ; 

A ∩ (B ∩C) = (A ∩ B) ∩C ; 

A ∩ /0 = /0 ; 

A \ A = /0 ; 

A \ /0 = A ; 

/0 \ A = /0 . 

1.3.3

RELATIONS AND FUNCTIONS

Given two sets “A ” and “B ”, a relation “R ” between “A ” and “B ” is a subset of the Cartesian product “A × B ”, that is:

R ⊂ A × B . 

Let “a” be an element of set “A ” and let “b” be an element of set “B ”, one states that “a” is related through “R ” to “b” (“aRb”) through the following condition: aRb ⇐⇒ (a, b) ∈ R . 

The domain of “R ” is the subset of “A ” defined through the condition: a ∈ domain of R ⇐⇒ ∃b aRb . 

In turn, the range of “R ” is the subset of “B ” defined through the condition: b ∈ range of R ⇐⇒ ∃a aRb . 

Also, a relation “R ” is said to be a “one-to-one relation” if and only if every element of set “A ” 

is related to one and only one element of set “B ” and in turn every element of set “B ” is related to one and only one element of set “A ”. 
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Given two sets “A ” and “B ”, a function “ f ” from “A ” to “B ” is a relation “R f ” between “A ” and

“B ” such that every element of “A is related to one and only one element of “B ”. Standard notations for denoting a function “ f ” from “A ” to “B ” are:

f : A → B ; 

A f

→ B ; 

b = f (a) . 

If a function “ f ” from “A ” to “B ” is also a one-to-one relation between “A ” and “B ”, then we can define the inverse function “ f −1 ” from “B ” to “A ” such that: bR f−1a ⇐⇒ aR f b . 

1.3.4

EQUIVALENCE RELATIONS AND CLASSES

Given a set “A ”, an equivalence relation “∼” in “A ” is a relation between “A ” and “A ” such that the following three conditions hold:

a ∼ a

(Reflexivity); 

a ∼ b ⇐⇒ b ∼ a

(Symmetry); 

(a ∼ b) ∧ (b ∼ c) =⇒ (a ∼ c)

(Transitivity). 

Given a set “A ” and an equivalence relation “∼” in “A ”, the equivalence relation will “partition” 

the set “A ” into a series of subsets of “A ” such that each subset contains elements of “A ” that are equivalent to each other. These subsets, containing equivalent elements, are called equivalent classes. 

Following the notation of the book “Set Theory for Physicists” [2], we will denote an equivalence class with an element contained in that class in between square brackets:

[a] . 

Given elements “x” and “y” of a set “A ”, and an equivalence relation “∼” in “A ”, it follows that:

[x] ⊂ A ∧ [y] ⊂ A ; 

x ∼ y ⇐⇒ [x] = [y] ; 

[x] ∩ [y] = /0 ⇐⇒ ¬(x ∼ y) . 
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1.4

ISOMORPHISM

As stated above, two sets are considered isomorphic if one can establish a one-to-one relation between the two sets such that the corresponding operators and relations within each set are equivalent. 

Given a set “A ” with a unary operator “−”, a binary operator “+”, and a relation “R∗” between

“A ” and “A ”; and also a second set “B ” with a unary operator “⊖”, a binary operator “⊕”, and a relation “R⊛” between “B ” and “B ”, we will state that:

(A, −,+,R∗) is isomorphic to (B,⊖,⊕,R⊛) ; 

if there exists a one-to-one relation “R f ” between “A ” and “B ”, such that: aR f b ⇐⇒ b = f (a) ; 

a2 = −a1 ⇐⇒ f (a2) = ⊖ f (a1) ; 

a3 = a1 + a2 ⇐⇒ f (a3) = f (a1) ⊕ f (a2) ; 

a1R∗a2 ⇐⇒ f (a1)R⊛ f (a2) . 

Note that once we prove that two sets with their corresponding operators are isomorphic, it will follow in general that the properties that we derive for one set (that are based on the isomorphic operators) will also correspondingly apply to the second isomorphic set. 

1.5

NATURAL NUMBERS

In this section we will introduce axioms and axiomatic definitions of natural numbers. We will review general properties of addition, subtraction, multiplication, division, exponentiation with natural number exponents, root of order n, and inequalities of natural numbers. For more detailed and thorough discussions of natural numbers, the author directs the reader towards the book “Real and Complex Numbers for Physicists” [3]. 

1.5.1

NOTATION

Following the notation used in the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4], in this section, and in chapters 2 and 3 (except for the “Examples” sections towards the end of each chapter):

• Lowercase letters “a”, “b”, “c”, ... will be used to denote natural numbers (except for the lowercase letter “e”); 

• Uppercase letter “N ” and uppercase letter “N ” with index “N1”, “N2’, ... will also be used to denote natural numbers. 

1.5.2

AXIOMS, ADDITION, AND MULTIPLICATION

The set “ ” of natural numbers can be described as:

N

= { 0,1,2,3,4,... } . 

(1.1)

N

In this book, we will take the definition of the set “ ” of natural numbers to be axiomatic; that is, N

we will take the existence of natural numbers to be self-evident. We will also consider the set that
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includes all natural numbers except “0” (zero). In this book, the set of nonzero natural numbers will be denoted by “ 1”, that is:

N

1 = { 1, 2, 3, 4, ... } . 

(1.2)

N

We will also take as self-evident (axiomatic definition) that for the set “ ” of natural numbers a N

binary addition operator “+” exists; that is that given two arbitrary natural numbers “a” and “b” we can always apply the addition operator “+” and obtain a third natural number “c”: a + b = c . 

We will take as self-evident (axiom) that the addition operator in natural numbers is commutative and associative, that is, respectively:

a + b = b + a ; 

(a + b) + c = a + (b + c) . 

We will also take as an axiom that “0” (zero) is the neutral element of addition, that is: a + 0 = a . 

Additionally, we will take as an axiom that any number “a”, that is not “0” (zero) and not “1” 

(one), is equal to “1” added with itself “a” times. That is:



a , 0  :

a = 1 + 1 + a times

a , 1

⌢

+ 1 . 

The binary subtraction operator “−” can be defined, by the addition operator, through the following condition:

a − b = c ⇐⇒ a = c + b . 

(1.3)

Note that given two arbitrary natural numbers “a” and “b”, the subtraction “a − b” may or may not exist (i.e., there may or may not exist a natural number “c” such that “c = a − b”). 

From the above discussions, we can prove the following two properties: (a + b) − b = a ; 

{(a − b) exists} =⇒ (a − b) + b = a . 

Given two natural numbers “a” and “b”, we will define the binary multiplication operator “·” 

through the following three equations:

0 · b ≡ 0 ; 

(1.4)

1 · b ≡ b ; 

(1.5)



a , 0  :

a · b ≡ b + b + a times

a , 1

⌢

+ b . 

(1.6)

[image: Image 15]
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From the above definition, we can prove the following properties: a · (b + c) = (a · b) + (a · c) ; 

{(b − c) exists} =⇒ a · (b − c) = (a · b) − (a · c) ; 

a · b = b · a ; 

(a · b) · c = a · (b · c) . 

The binary division operator “/ ” can be defined, by the multiplication operator, through the following condition:

b , 0 :

a/b = c ⇐⇒ a = c · b . 

(1.7)

Note that:

• The division by “0” (zero) is not defined; 

• Given two arbitrary natural numbers “a” and “b” (with b , 0), the division “a/b” may or may not exist (i.e., there may or may not exist a natural number “c” such that “c = a/b”). 

A notation that is commonly used is the omitting of the symbol “·” when implementing the multiplication operation. That is, when two natural numbers are placed next to each other without an explicit operator in between them, the multiplication operator “·” is assumed. For example: a b = a · b . 

Finally, the division operation “a/b” will also be denoted as indicated: a

denotes the expression:

a/b . 

b

1.5.3

EXPONENTIATION AND ROOT OF ORDER N

Exponentiation of natural numbers is a binary operation that given an ordered pair of natural numbers “b” (“ base ”) and “n” (“ exponent ”), returns a third number. The exponentiation operation is denoted by placing the exponent “n ”as a superindex of the base “b”, that is: “ bn ”. 

We will define the exponentiation of a base “b” to the power of an exponent “n” through the following three equations:

b , 0 :

b0 ≡ 1 ; 

b1 ≡ b ; 



n , 0  :

bn ≡ b b n times

n , 1

⌢

b . 

Note that the exponentiation of a base “b” to the power of “n” has been defined for any pair of values

“b” and “n” except for the case “b = 0 ∧ n = 0”. That is, exponentiation is defined for any pair of natural numbers except for the case “ 00 ”. “ 00 ” is not defined. 

The root of order “n” can be defined, by exponentiation, through the following expression:

√

n , 0 :

n a = b ⇐⇒ a = bn . 
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Note that:

• The root of order “0” (zero) is not defined; 

• Given two arbitrary natural numbers “a” and “n” (with n , 0), the root of order “n” of

“a” may or may not exist (i.e., there may or may not exist a natural number “b” such that

√

“b = n a ”). 

When denoting the root of a number “a”, without indicating the order of the root, it will be assumed that the root is of order “2” (two). That is:

√

√

a

denotes the expression:

2 a . 

1.5.4

NOTATIONAL PRIORITY

In order to reduce the use of parenthesis, and to further simplify written expressions, we may introduce notational priority. In an expression that contains several operators, the higher priority operators will be evaluated first. From highest to lowest notational priority we have:

• Parenthesis; 

• Exponentiation

(if two or more successive exponentiations are present, exponentiations will be evaluated on a “top-down” basis [from right to left]); 

• Multiplication/Division

(if two or more successive multiplication/divisions are present, multiplication/divisions will be evaluated on a “first-come-first-serve” basis [from left to right]); 

• Addition/Subtraction

(if two or more successive addition/subtractions are present, addition/subtractions will be evaluated on a “first-come-first-serve” basis [from left to right]). 

As a first example:

a + b − c

denotes the expression:

(a + b) − c ; 

(first-come-first-serve). If we wish to first apply the subtraction operator “−” to “b” and “c”, then we would write:

a + (b − c) . 

Equivalently:

a − b + c

denotes the expression:

(a − b) + c ; 

(first-come-first-serve). If we wish to first apply the addition operator “+” to “b” and “c”, then we would write:

a − (b + c) . 

As a second example:

a · b/c

denotes the expression:

(a · b)/c ; 

(“first-come-first-serve”). If we wish to first apply the division operator “/ ” to “b” and “c”, then we would write:

a · (b/c) . 
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Equivalently:

a/b · c

denotes the expression:

(a/b) · c ; 

(“first-come-first-serve”). If we wish to first apply the multiplication operator “·” to “b” and “c”, then we would write:

a/(b · c) . 

As a third example:

abc

denotes the expression:

a(bc) ; 

(“top-down”). If we wish to evaluate the exponentiation of “a” and “b” first, we would write: (ab)c . 

As a fourth example:

a · b + c · d

denotes the expression:

(a · b) + (c · d) ; 

(multiplication has a higher notational priority than addition). If we wish to first apply the addition operator to “b” and “c” we would write:

a · (b + c) · d . 

As a fifth example:

a b2

denotes the expression:

a (b2) ; 

(exponentiation has a higher notational priority than multiplication). If we wish to evaluate the product of “a” and “b” first, we would write:

(a b)2 . 

As a sixth example:

a + b2

denotes the expression:

a + (b2) ; 

(exponentiation has a higher notational priority than addition). If we wish to evaluate the sum of “a” 

and “b” first, we would write:

(a + b)2 . 

1.5.5

AXIOMS AND INEQUALITIES

In this book, we will take as self-evident (axiomatic definition) that in natural numbers the less than relation “<” exists, that is that given two arbitrary natural numbers “a” and “b” we can always determine whether or not “a < b” holds true. 

Additionally, we will take as an axiom that the transitivity property holds for the less than relation

“<”, that is:

(a < b) ∧ (b < c) =⇒ a < c . 
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We will also take as an axiom that given two arbitrary natural numbers “a” and “b”, one and only one of the following three conditions hold: either “a < b”, or “a = b”, or “b < a”. That is, the following four properties hold:

(a < b) ∨ (a = b) ∨ (b < a) ; 

(a < b) =⇒ (a , b) ∧ ¬(b < a) ; 

(a = b) =⇒ ¬(a < b) ∧ ¬(b < a) ; 

(b < a) =⇒ ¬(a < b) ∧ (a , b) . 

Also, we will take as an axiom that when adding an arbitrary natural number “a” with a second nonzero natural number “b”, the first number “a” is always less than the resulting sum, that is: b , 0 :

a < a + b . 

Additionally, we will take as an axiom the following property:

a < b =⇒ a + c < b + c . 

The less than or equal to relation “≤”, can be defined through the following expression: (a ≤ b) ⇐⇒ (a < b) ∨ (a = b) . 

In turn, the greater than relation “>”, can be defined through the following expression: a > b ⇐⇒ b < a . 

(1.8)

Additionally, the greater than or equal to relation “≥” can be defined through the following expression:

(a ≥ b) ⇐⇒ (a > b) ∨ (a = b) . 

1.6

EXAMPLES

Natural numbers are found throughout the natural sciences. In this section we will consider the case of an object that moves along a straight line. To describe the movement of the object that moves along a straight line, we are lead to consider the position “x” of the object on the line at different times “t”. In particular, the movement of the object is considered to be completely described if we can determine the position “x” for any time “t”. Thus, every possible position on the line must be represented by a number that we are denoting as “x”. 

As discussed in “Real and Complex Numbers for Physicists” [3], rational numbers cannot represent all the points on the line. However, as also discussed in “Real and Complex Numbers for Physicists” [3] real numbers can represent all the points on a line, thus giving a strong motivation for constructing real numbers. Real numbers thus become fundamental mathematical objects in physics. 

As discussed in “Real and Complex Numbers for Physicists” [3], real numbers can be constructed and their general properties derived from rational numbers and the general properties of rational numbers. In turn, as also discussed in “Real and Complex Numbers for Physicists” [3], rational numbers can be constructed and their general properties derived from integers and the general properties of integers. 
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Also, as discussed in “Real and Complex Numbers for Physicists” [3], integers can be constructed and their general properties derived from natural numbers and the general properties of natural numbers. Thus natural numbers become key mathematical objects in physics, since through them we may construct integers, and through integers we may construct rational numbers, and through rational numbers we may construct real numbers. 

In summary, real numbers are fundamental mathematical objects in modeling physics systems in general (including the relatively simple example of an object moving along a straight line). Real numbers can be constructed from, and their properties derived from, rational numbers (and their properties). In turn, rational numbers can be constructed from, and their properties derived from, integers; and integers can be constructed from, and their properties derived from, natural numbers (and their properties). Thus, natural numbers (and their properties) become fundamental mathematical objects in physics. 
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2 Review of Integers, 

Rational Numbers, and

Real Numbers

2.1

INTRODUCTION

In this chapter we will construct the set of integers from the set of natural numbers through equivalence classes. We will review the isomorphism between nonnegative integers and natural numbers. 

We will also construct the set of rational numbers from the set of integers through equivalence classes. We will review the isomorphism between whole rational numbers and integers. Additionally, we will construct the set of real numbers from the set of rational numbers through equivalence classes. We will review convergent rational number sequences and some of their properties that can be applied in the study of real numbers. We will review the isomorphism between fractional real numbers and rational numbers. 

We will review general properties of addition, subtraction, the negative operator, the identity operator, multiplication, division, exponentiation with natural number exponents, root of order n, inequalities, and absolute value of integers, rational numbers, and real numbers. Additionally, we will review the general properties of the reciprocal, and extend exponentiation to include negative integer exponents, for rational numbers and real numbers. For more detailed and thorough discussions of integers, rational numbers, and real numbers, the author directs the reader towards the book

“Real and Complex Numbers for Physicists” [3]. 

2.2

NOTATION

Following the notation used in the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4], in this chapter and in chapter 3 (except for the “Examples” sections towards the end of each chapter):

• Lowercase letters “a”, “b”, “c”, ... will be used to denote natural numbers (except for the lowercase letter “e”); 

• Uppercase letter “N ” and uppercase letter “N ” with index “N1”, “N2’, ... will also be used to denote natural numbers; 

• Uppercase letter “D” and uppercase letter “D” with index “D1”, “D2”, ... will be used to denote nonzero natural numbers; 

• Uppercase letter “Z ” and uppercase letter “Z ” with index “Z1”, “Z2”, ... will be used to denote integers; 

• Uppercase letter “Q” and uppercase letter “Q” with index “Q1”, “Q2”, ... will be used to denote rational numbers; 

• Greek letter “β ” or “β (n)”; and Greek letter “β ” with index “β1”, “β2”, ..., or “β1(n)”, 

“β2(n)”, ... ; are used to denote rational number sequences; 

• Greek letter “α” or “α(n)”; and Greek letter “α” with index “α1”, “α2”, ..., or “α1(n)”, 

“α2(n)”, ... ; are used to denote convergent rational number sequences; 

• Uppercase letter “R” and uppercase letter “R” with index “R1”, “R2”, ... are used to denote real numbers. 
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2.3

INTEGERS

In this section we will construct the set of integers from the set of natural numbers through equivalence classes. We will review the isomorphism between nonnegative integers and natural numbers. 

We will then review general properties of integers and integer operations: addition, subtraction, negative operator, identity operator, multiplication, division, exponentiation with natural number exponents, inequalities, and absolute value. For more detailed and thorough discussions of integers, the author directs the reader towards the book “Real and Complex Numbers for Physicists” [3]. 

2.3.1

DEFINITION AND PROPERTIES OF INTEGERS

Natural numbers represent “whole” quantities; however, natural numbers can also represent points on a straight line. 

Figure 2.1 Points on a straight line that are represented by natural numbers. 

Given a straight line, we can select a reference point on the line (“origin”), a given length (“unit”), and one of the two possible directions along the line from the origin (typically the direction towards the “right”); then “0” (zero) will represent the origin and every nonzero natural number “n” will represent a point that is to the right of the origin at a distance of “n” units (see figure 2.1). 

If we wish to also represent points on the left side of the origin, we can use ordered pairs of natural numbers “(m,n)”. The first natural number “m” would represent the number of units that we “move” towards the left (starting from the origin), while the second natural number “n” would represent the number of units that we would then “move” towards the right. By using ordered pairs of natural numbers we can represent the origin and both points to the right and to the left of the origin (as long as their distance to the origin are multiples of the unit; see figure 2.2). 

Figure 2.2 Points on a straight line that are represented by ordered pairs of natural numbers. 
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If we wish that a point of a line that is represented, be represented by a unique “number” (rather than by an infinite amount of ordered pairs of natural numbers), we are lead to consider equivalence classes of ordered pairs of natural numbers. 

We will define the following integer-equivalence relation “∼” between ordered pairs of natural numbers “(m, n)” and “(p, q)”:

(m, n) ∼ (p,q) ⇐⇒ m + q = p + n . 

(2.1)

We can prove that for the equivalence relation “∼” defined through equation (2.1) the three equivalence conditions hold: reflexivity, symmetry, and transitivity (see 1.3.4). 

An integer can be defined as an equivalence class of ordered pairs of natural numbers, based on the equivalence relation defined through equation (2.1). We will denote the set of all integers with the symbol “ ”. We will here also follow the notation of 1.3.4 and denote a given integer (given Z

that an integer is an equivalence class) with an element contained in that class in between square brackets. For example:

[ (0, 0) ] = { (0,0) , (1,1) , (2,2) , ... } . 

That is, the integer “ [ (0, 0) ] ” is the set of ordered pairs of natural numbers that are equivalent to the ordered pair “(0,0)”. 

As discussed in 2.2, in this chapter, we will also denote integers using the uppercase letter “Z ”, to distinguish them from natural numbers that will be denoted with lowercase letters “a”, “b”, “c”, and so on. We can thus consider a single integer “Z ” and write, for example: Z = [ (m, n) ] ; 

or we can consider two integers “Z1” and “Z2”, by writing:

Z1 = [ (m, n) ] ∧ Z2 = [ (p, q)] . 

From the above discussions, we can prove the following property:

[ (m, n) ] = [ (m + k, n + k) ] . 

(2.2)

Additionally, from the above discussion we can prove that any integer can be expressed through an ordered pair of natural numbers where at least one of the pair is “0” (zero). Also, from the above discussion we can prove that an integer always contains one and only one ordered pair of natural numbers such that at least one of the pair is “0” (zero). It then follows that we can express the set of integers

in the form:

Z

= {..., [(2,0)], [(1,0)], [(0,0)], [(0,1)], [(0,2)], ...} ; 

(2.3)

Z

and just as natural numbers can represent points on a line (the origin and points that are towards the right of the origin at distances that are multiples of the unit), integers can represent the origin and both points on right and on the left of the origin (that are at multiples distances of the unit) as illustrated in figure 2.3. 

In particular, we will refer to the integer “ [ (0, 0) ] ” as the “zero-integer”, and we will denote the zero-integer, in this section, with the symbol “∅”. That is:

∅ ≡ [ (0, 0) ] . 

Note that we are using the symbol “∅” for the zero-integer to distinguish it from the natural number zero “0”. 

[image: Image 23]
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Figure 2.3 Points on a straight line that are represented by integers. 

We will define a negative integer “Z ”, to be an integer that can be expressed in the form

“Z = [ (p, 0) ] ” (with p , 0). We will denote the set of negative integers with the symbol “ −”. 

Z

That is:

− = { ..., [(3,0)], [(2,0)], [(1,0)] } . 

(2.4)

Z

In turn, we will define a positive integer “Z ”, to be an integer that can be expressed in the form

“Z = [ (0, q) ] ” (with q , 0). We will denote the set of positive integers with the symbol “ +”. 

Z

That is:

+ = { [(0,1)], [(0,2)], [(0,3)], ... } . 

(2.5)

Z

Also, we will denote the set of nonnegative integers with the symbol “ ∗”. That is: Z

∗ = { [(0,0)], [(0,1)], [(0,2)], [(0,3)], ... } . 

(2.6)

Z

In order to simplify notation, we will denote negative integers of the form “ [ (p, 0) ] ” (with p , 0) with the symbol “−p”. That is:

p , 0 :

−p ≡ [(p,0)] . 

In turn, in order to simplify notation, we will denote positive integers of the form “ [ (0, q) ] ” (with q , 0) with the symbol “+q”. That is:

q , 0 :

+q ≡ [(0,q)] . 

Note that we are using the symbol “+a” (with a , 0) for the integer “[ (0, a) ] ” to distinguish it from the natural number “a”. Thus, we can express the set of integers “ ” in the form: Z

= { ..., −3, −2, −1, ∅, +1, +2, +3, ... } . 

(2.7)

Z

We will define the following one-to-one relation “R f ” between the set of natural numbers “ ” 

Z

N

and the set of nonnegative integers “ ∗ ”:

Z

aR f [ (0, b) ] ⇐⇒ a = b ; 

(2.8)

Z

thus, we can write:

[ (0, a) ] = fZ(a) ; 

(2.9)

a = f −1( [ (0, a) ] ) . 

(2.10)

Z

Through the one-to-one relation “R

∗

f ”, we can show that the set of nonnegative integers “

” and

Z

Z

the set of natural numbers “ ” are isomorphic (see 1.4). 

N
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2.3.2

ADDITION AND MULTIPLICATION OF INTEGERS

Given two arbitrary integers “Z1 = [ (m, n) ] ” and “Z2 = [ (p, q) ] ”, we will define the sum “Z1 ⊕ Z2” 

to be given by:

[ (m, n) ] ⊕ [(p,q)] ≡ [(m + p,n + q)] . 

(2.11)

Note that the integer sum operator is denoted by the symbol “⊕” to distinguish it from the natural number sum operator “+”. 

We can prove that equation (2.11) defines the integer binary sum operation such that the resulting integer sum is always the same regardless of the specific ordered pairs of natural numbers used to represent the first two integers that are adding. Also, we can prove that that the integer sum “⊕” is isomorphic to the natural number sum “+”. 

From the above discussions, we can prove the following properties: Z1 ⊕ Z2 = Z2 ⊕ Z1 ; 

(Z1 ⊕ Z2) ⊕ Z3 = Z1 ⊕ (Z2 ⊕ Z3) ; 

Z ⊕ ∅ = Z ; 

Z1 = Z2 ⇐⇒ Z1 ⊕ Z3 = Z2 ⊕ Z3 . 

The binary subtraction operator “⊖” for integers can be defined, equivalently to the subtraction of natural numbers, by the addition operator, through the following expression: Z1 ⊖ Z2 = Z3 ⇐⇒ Z1 = Z3 ⊕ Z2 . 

(2.12)

Given an arbitrary integer “Z1 = [ (m, n) ] ”, we will now define the unary negative operator “⊖” 

applied on the integer “⊖ Z1” through the following expression:

⊖[(m,n)] ≡ [(n,m)] . 

(2.13)

We can prove that equation (2.13) defines the integer unary negative operator such that the resulting integer is always the same regardless of the specific ordered pair of natural numbers used to represent the integer argument “Z1”. We will define the unary identity operator “⊕” through the following expression:

⊕Z ≡ Z . 

(2.14)

From the above discussions, we can prove the following properties: a , 0 :

⊖(−a) = +a ; 

⊖∅ = ∅ ; 

a , 0 :

⊖(+a) = −a ; 

Z1 = Z2 ⇐⇒ ⊖ Z1 = ⊖ Z2 ; 
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⊖(⊖Z ) = Z ; 

⊖(Z1 ⊕ Z2) = (⊖Z1 ) ⊕ (⊖Z2 ) ; 

Z ⊕ (⊖ Z) = ∅ ; 

Z1 ⊖ Z2 = Z1 ⊕ (⊖ Z2) . 

Note that considering the last equation, it follows that given two arbitrary integers “Z1” and “Z2”, the subtraction “Z1 ⊖ Z2” will always exist (unlike the case of subtraction in natural numbers). We can additionally prove that:

[ (m, n) ] = ( ⊖ fZ(m) ) ⊕ fZ(n) . 

(2.15)

Given two arbitrary integers “Z1 = [ (m, n) ] ” and “Z2 = [ (p, q) ] ”, we will define the product

“Z1 ⊙ Z2” to be given by:

[ (m, n) ] ⊙ [(p,q)] ≡ [(mq + pn,m p + nq)] . 

(2.16)

Note that the integer binary product operator is denoted by the symbol “⊙” to distinguish it from the natural number product operator “·”. We can prove that equation (2.16) defines the integer multiplication operation such that the resulting integer product is always the same regardless of the specific ordered pairs of natural numbers used to represent the first two integers that are multiplying. Also, we can prove that the integer product “⊙” is isomorphic to the natural number product “·”. 

Similar to the zero-integer “∅”, we will refer to the integer “ [ (0, 1) ] ” as the “one-integer”, and we will denote the one-integer with the symbol “ ”. That is:

1

≡ [(0,1)] . 

1

Note that we are using the symbol “ ” for the one-integer to distinguish it from the natural number 1

one “1”. 

From the above discussions, we can prove the following properties: Z1 ⊙ Z2 = Z2 ⊙ Z1 ; 

(Z1 ⊙ Z2) ⊙ Z3 = Z1 ⊙ (Z2 ⊙ Z3) ; 

∅ ⊙ Z = ∅ ; 

⊙ Z = Z ; 

1



a , 0  :

f

a , 1

Z (a) ⊙ Z = Z ⊕ Z ⊕ a times

⌢

⊕ Z ; 

(⊖Z1) ⊙ Z2 = ⊖(Z1 ⊙ Z2) ; 

(⊖Z1) ⊙ (⊖Z2) = Z1 ⊙ Z2 ; 
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Z3 , ∅ :

Z1 = Z2 ⇐⇒ Z3 ⊙ Z1 = Z3 ⊙ Z2 ; 



a , 0  :

(+a) ⊙ (+b) = +(ab) ; 

b , 0



a , 0  :

(−a) ⊙ (+b) = −(ab) ; 

b , 0



a , 0  :

(−a) ⊙ (−b) = +(ab) ; 

b , 0

Z1 ⊙ (Z2 ⊕ Z3) = (Z1 ⊙ Z2) ⊕ (Z1 ⊙ Z3) ; 

⊖Z = (−1) ⊙ Z . 

The binary division operator “⊘” can be defined, equivalently to the division of natural numbers, by the multiplication operator through the following expression:

Z2 , ∅ :

Z1 ⊘ Z2 = Z3 ⇐⇒ Z1 = Z3 ⊙ Z2 . 

(2.17)

Note that:

• The division by “∅” (zero-integer) is not defined; 

• Given two arbitrary integers “Z1” and “Z2” (with Z2 , ∅), the division “Z1 ⊘ Z2” may or may not exist (just like the case of natural numbers). 

2.3.3

EXPONENTIATION OF INTEGERS WITH

NATURAL NUMBER EXPONENTS

We will define the exponentiation of an integer base “Z ” to the power of a natural number “n”, equivalent to the case of natural number bases, to be equal to:

Z , ∅ :

Z 0 ≡ ; 

1

Z 1 ≡ Z ; 



n , 0  :

Z n ≡ Z Z n times

n , 1

⌢

Z . 

Note that the exponentiation of an integer base “Z ” to the power of a natural number “n” has been defined for any pair of values “Z ” and “n” except for the case “Z = ∅ ∧n = 0 ”. “ ∅0 ” is not defined. 

2.3.4

INEQUALITIES OF INTEGERS

Given two arbitrary integers “Z1 = [ (m, n) ] ” and “Z2 = [ (p, q) ] ”, we will define the less than relation “Z1 < Z2” by:

[ (m, n) ] < [ (p, q) ] ⇐⇒ p + n < m + q . 

(2.18)

We can prove that equation (2.18) defines the integer less than relation “Z1 < Z2” such that when comparing “Z1” and “Z2” with the integer less than relation we will obtain the same result regardless
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of the specific ordered pairs of natural numbers used to represent the two given integers. Also, we can prove that the integer less than relation is isomorphic with the natural number less than relation. 

Similar to what was done in 1.5.5 for natural numbers, we can define the integer greater than relation “>” by the integer less than relation through the following expression: Z1 > Z2 ⇐⇒ Z2 < Z1 . 

(2.19)

From the above discussions, we can prove the following properties: (Z1 < Z2) ∧ (Z2 < Z3) =⇒ Z1 < Z3 ; 

[ (m, n) ] > [ (p, q) ] ⇐⇒ p + n > m + q ; 

(Z1 < Z2) ∨ (Z1 = Z2) ∨ (Z1 > Z2) ; 

(Z1 < Z2) =⇒ (Z1 , Z2) ∧ ¬(Z1 > Z2) ; 

(Z1 = Z2) =⇒ ¬(Z1 < Z2) ∧ ¬(Z1 > Z2) ; 

(Z1 > Z2) =⇒ ¬(Z1 < Z2) ∧ (Z1 , Z2) ; 



a , 0  :

+a < +b ⇐⇒ a < b ; 

b , 0

a , 0 :

∅ < +a ; 

a , 0 :

−a < ∅ ; 



a , 0  :

−a < −b ⇐⇒ a > b . 

b , 0

It follows that given two arbitrary integers “Z1” and “Z2”, “Z1” is less than “Z2” if and only if “Z1” 

represents a point on the line that is towards the left of the point represented by “Z2” (see figure 2.4). 

Figure 2.4 Points on a straight line that are represented by integers (following the notation presented in 2.3.1). 

The absolute value of a given integer “ |Z|”, can be defined through the following three equations: Z < ∅ :

|Z| = ⊖Z ; 

Z = ∅ :

|Z| = ∅ ; 
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Z > ∅ :

|Z| = Z . 

2.3.5

ISOMORPHISM BETWEEN

∗ AND

Z

N

As we indicated in 2.3.1, the set of nonnegative integers “ ∗ ” and the set of natural numbers “ ” 

Z

N

are isomorphic. Thus, in general, properties that we derive for “ ∗ ” will hold for “ ” and vice Z

N

versa. Distinguishing between “ ” and “ ∗ ” was fundamental in the construction of integers and N

Z

in the derivation of the properties of integers. 

That said, however, in order to simplify further discussions, from this point on and in the following sections and chapters of this book, we will not distinguish between “ ∗ ” and “ ” given that the Z

N

two sets are isomorphic. Thus, rather than stating: “the set of natural numbers is isomorphic to

N

the set of nonnegative integers

∗, and in turn the set of nonnegative integers ∗ is a subset of the Z

Z

set of integers

”; we will simply state that: “the set of natural numbers

is a subset of the set of

Z

N

integers

”. 

Z

2.3.6

NOTATIONAL PRIORITY REVISTED

In order to further reduce the use of parenthesis, and simplify written expressions, we may extend the notational priority discussed in 1.5.4 to include the unary negative operator and the unary identity operator. In an expression that contains several operators, once again, the higher priority operators will be evaluated first. From highest to lowest notational priority we have:

• Parenthesis; 

• Exponentiation

(successive exponentiations will be evaluated on a “top-down” basis [from right to left]); 

• Multiplication/Division

(successive multiplication/divisions will be evaluated on a “first-come-first-serve” basis

[from left to right]); 

• Identity/Negative; 

• Addition/Subtraction

(successive addition/subtractions will be evaluated on a “first-come-first-serve” basis [from left to right]). 

Extending the discussion in 1.5.4, we will consider the example:

−Z1 + Z2 = (−Z1) + Z2 ; 

note that the negative operator has a higher notational priority than the addition operator. If we wish to first apply the addition operator, we would write:

−(Z1 + Z2) . 

Also, note that:

• In the previous two expressions we are using the standard symbol “+” for the integer addition operator, rather that the symbol “⊕” that we have been using for integer addition so far in this section. We have been previously using the symbol “⊕” for the integer addition operator in order to distinguish integer addition and natural number addition; 

• The reason we are now using the standard symbol “+” for the integer addition operator is that as discussed in 2.3.5, from this point on in this book, we will no longer distinguish between natural numbers and nonnegative integers. Thus the sum of two natural numbers will be treated as the sum of two nonnegative integers. 
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As an additional notational example:

−Z 21 = −(Z 21 ) ; 

note that the exponentiation operation has a higher notational priority than the negative operator. If we wish to first apply the negative operator, we would write:

(−Z1)2 . 

2.4

RATIONAL NUMBERS

In this section we will construct the set of rational numbers from the set of integers through equivalence classes. We will review the isomorphism between whole rational numbers and integers. We will then review general properties of rational numbers and rational number operations: addition, subtraction, negative operator, identity operator, multiplication, division, reciprocal, exponentiation with integer exponents, inequalities, and absolute value. For more detailed and thorough discussions of rational numbers, the author directs the reader towards the book “Real and Complex Numbers for Physicists” [3]. 

2.4.1

DEFINITION AND PROPERTIES OF RATIONAL NUMBERS

As discussed in 2.3.1, on a line, integers can represent the origin and both points on the right and on the left of the origin (that are multiples of the unit, see figure 2.4). If we wish to represent points that are at distances of “fractions” of the unit (rather the only multiples of the unit), we can use “ × 1” 

Z

N

pairs “(Z, D )”. Note that:

• As discussed in 1.5.2, in this book we will denote the set of nonzero natural numbers with the symbol “ 1”; 

N

• As discussed in 2.2, in this book nonzero natural numbers will denoted with the uppercase letter “D ”; 

• As discussed in 2.3.5, from this point on in this book we will treat natural numbers as nonnegative integers. Thus, nonzero natural numbers, from this point on in the book, will be treated as positive integers. 

When representing points on a line by a pair “(Z,D )”, the first element “Z ” will be referred to as the numerator and the second element “D ” will be referred to as the denominator. The denominator

“D ” represents in how many equal parts we are “dividing” the unit to obtain a fractional subunit. In turn, the numerator “Z ” represents the multiple of subunits that a point is from the origin. If “Z ” is positive then the point is towards the right of the origin; if “Z ” is negative then the point is towards the left of the origin; and if “Z ” is zero then the point is the origin. 

For example, the point represented by the integer “0” (the origin), would also be represented by the “ × 1” pairs:

Z

N

(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), ... ; 

in turn, the point that is towards the right of the origin at a distance of one-half of the unit (note that this point cannot be represented by an integer), would be represented by the “ × 1” pairs: Z

N

(+1, 2), (+2, 4), (+3, 6), (+4, 8), (+5, 10), ... ; 

also, the point that is towards the left of the origin at a distance of four-thirds of a unit (note that this point also cannot be represented by an integer), would be represented by the “ × 1” pairs: Z

N

(−4,3), (−8,6), (−12,9), (−16,12), (−20,15), ... . 
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If we wish that a point of a line that is represented, to be represented by a unique “number” 

(rather than by an infinite amount of “ × 1” pairs), we are lead to consider equivalence classes of Z

N

“ × 1” pairs. 

Z

N

We will define the following rational-equivalence relation “∼” between

“ × 1” pairs “(Z1,D1)” and “(Z2,D2)”:

Z

N

(Z1, D1) ∼ (Z2,D2) ⇐⇒ Z1D2 = Z2D1 . 

(2.20)

We can prove that for the equivalence relation “∼” defined through equation (2.20) the three equivalence conditions hold: reflexivity, symmetry, and transitivity (see 1.3.4). 

A rational number can be defined as an equivalence class of “ × 1” pairs based on the equiv-Z

N

alence relation defined through equation (2.20). We will denote the set of all rational numbers with the symbol “ ”. We will here also follow the notation of 1.3.4 and denote a given rational number Q

(given that a rational number is an equivalence class) with an element contained in that class in between square brackets. For example:

[ (−4,3)] = { (−4,3) , (−8,6) , (−12,9) , ... } . 

That is, the rational number “ [ (−4,3)]” is the set of “ × 1” pairs that are equivalent to the pair Z

N

“(−4,3)”. 

As discussed in 2.2, in this chapter, we will also denote rational numbers using the uppercase letter “Q ”, to distinguish them from integers that will be denoted with the uppercase letter “Z ”. 

Additionally, the uppercase letter “D ” will be used to denote positive integers (nonzero natural numbers) and lowercase letters “a”, “b”, “c”, and so on will be used to denote nonnegative integers (natural numbers). We can thus consider a single rational number “Q ” and write, for example: Q = [ (Z, D ) ] ; 

or we can consider two rational numbers “Q1” and “Q2”, by writing: Q1 = [ (Z1, D1) ] ∧ Q2 = [ (Z2, D2)] . 

Rational numbers that are represented by “ × 1” pairs with a negative numerator will be re-Z

N

ferred to as negative rational numbers. Rational numbers that are represented by “ × 1” pairs with Z

N

a positive numerator will be referred to as positive rational numbers. 

The rational number that is represented by “ × 1” pairs of the form “ [(0,D )]” will be referred Z

N

to as the zero-rational and will represented by the symbol “∅”. That is:

∅ ≡ [ (0, 1) ] ; 

thus:

∅ = { (0, 1) , (0, 2) , (0, 3) , (0, 4) , ... } ; 

[ (Z, D ) ] = ∅ ⇐⇒ Z = 0 . 

Note that we are using the symbol “∅” for the zero-rational to distinguish it from the integer zero

“0”. 

From the above discussions, we can prove the following property:

a , 0 :

[ (Z, D ) ] = [ (aZ, aD ) ] . 

(2.21)

Additionally, we can also prove the following property:

[ (Z1, 1)] = [ (Z2, 1)] ⇐⇒ Z1 = Z2 . 
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Note that from last equation, one finds that when considering rational numbers of the form

“ [ (Z, 1) ] ”, each different value of the integer “Z ” will correspond to a different rational number. 

We will refer to rational numbers that can be expressed in the form “ [ (Z, 1) ] ” as whole rational numbers. 

The set of whole rational numbers, in this book, will be denoted with the symbol “ ∗ ”. It follows Q

that we can express the set of whole rational numbers “ ∗ ” in the form: Q

∗ = {..., [(−2,1)], [(−1,1)], [(0,1)], [(+1,1)], [(+2,1)], ...} . 

(2.22)

Q

We will define the following one-to-one relation “R f ” between the set of integers “ ” and the Q

Z

set of whole rational numbers “ ∗ ”:

Q

Z1R f [ (Z

Q

2, 1) ] ⇐⇒ Z1 = Z2 ; 

(2.23)

thus, we can write:

[ (Z, 1) ] = fQ(Z) ; 

(2.24)

Z = f −1( [ (Z, 1) ] ) . 

(2.25)

Q

Through the one-to-one relation “R

∗

f ”, we can show that the set of whole rational numbers “

” 

Q

Q

and the set of integers “ ” are isomorphic (see 1.4). 

Z

2.4.2

ADDITION AND MULTIPLICATION OF RATIONAL NUMBERS

Given two arbitrary rational numbers “Q1 = [ (Z1, D1) ] ” and “Q2 = [ (Z2, D2) ] ”, we will define the sum “Q1 ⊕ Q2” to be given by:

[ (Z1, D1)] ⊕ [(Z2,D2)] ≡ [(Z1D2 + Z2D1,D1D2)] . 

(2.26)

Note that the rational number sum operator is denoted by the symbol “⊕” to distinguish it from the integer sum operator “+”. 

We can prove that equation (2.26) defines the rational number binary sum operation such that the resulting rational number sum is always the same regardless of the specific “ × 1” pairs used to Z

N

represent the first two rational numbers that are adding. Also, we can prove that the rational number sum “⊕” is isomorphic to the integer sum “+”. 

From the above discussions, we can prove the following properties: Q1 ⊕ Q2 = Q2 ⊕ Q1 ; 

(Q1 ⊕ Q2) ⊕ Q3 = Q1 ⊕ (Q2 ⊕ Q3) ; 

Q ⊕ ∅ = Q ; 

Q1 = Q2 ⇐⇒ Q1 ⊕ Q3 = Q2 ⊕ Q3 . 

The binary subtraction operator “⊖” for rational numbers can be defined, equivalently to the subtraction of integers, by the addition operator, through the following expression: Q1 ⊖ Q2 = Q3 ⇐⇒ Q1 = Q3 ⊕ Q2 . 

(2.27)
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Given an arbitrary rational number “Q1 = [ (Z1, D1) ] ”, we will now define the unary negative operator “⊖” applied on the rational number “⊖ Q1” through the following expression:

⊖[(Z1,D1)] ≡ [(−Z1,D1)] . 

(2.28)

We can prove that the equation (2.28) defines the rational number unary negative operator such that the resulting rational number is always the same regardless of the specific “ × 1” pair used to Z

N

represent the rational number argument “Q1”. We can also prove that the rational number negative operator “⊖” is isomorphic to the integer negative operator “−”. We will define the unary identity operator “⊕” through the following expression:

⊕Q ≡ Q . 

(2.29)

From the above discussions, we can prove the following properties: Q1 = Q2 ⇐⇒ ⊖ Q1 = ⊖ Q2 ; 

⊖(⊖Q) = Q ; 

⊖(Q1 ⊕ Q2) = (⊖Q1) ⊕ (⊖Q2) ; 

Q ⊕ (⊖ Q ) = ∅ ; 

Q1 ⊖ Q2 = Q1 ⊕ (⊖ Q2) . 

Note that considering the last equation, it follows that given two arbitrary rational numbers “Q1” 

and “Q2”, the subtraction “Q1 ⊖ Q2” will always exist (just like the case of subtraction in integers). 

We can also prove that:

[ (Z1, D )] ⊕ [(Z2,D)] = [(Z1 + Z2,D)] . 

(2.30)

Given two arbitrary rational numbers “Q1 = [ (Z1, D1) ] ” and “Q2 = [ (Z2, D2) ] ”, we will define the product “Q1 ⊙ Q2” to be given by:

[ (Z1, D1)] ⊙ [(Z2,D2)] ≡ [(Z1Z2,D1D2)] . 

(2.31)

Note that the rational number product operator is denoted by the symbol “⊙” to distinguish it from the integer product operator “·”. 

We can prove that equation (2.31) defines the rational number binary multiplication operation such that the resulting rational number product is always the same regardless of the specific “ × 1” 

Z

N

pairs used to represent the first two rational numbers that are multiplying. Also, we can prove that the rational number product “⊙” is isomorphic to the integer product “·”. 

Similar to the zero-rational “∅”, we will refer to the rational number “ [ (+1, 1) ] ” as the “one-rational”, and we will denote the one-rational with the symbol “ ”. That is: 1

≡ [(+1,1)] . 

1

Note that we are using the symbol “ ” for the one-rational to distinguish it from the integer one 1

“+1”. 

From the above discussions, we can prove the following properties: Q1 ⊙ Q2 = Q2 ⊙ Q1 ; 
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(Q1 ⊙ Q2) ⊙ Q3 = Q1 ⊙ (Q2 ⊙ Q3) ; 

∅ ⊙ Q = ∅ ; 

⊙ Q = Q ; 

1



a , 0  :

f

a , 1

Q(a) ⊙ Q = Q ⊕ Q ⊕ a times

⌢

⊕ Q ; 

(⊖Q1) ⊙ Q2 = ⊖(Q1 ⊙ Q2) ; 

(⊖Q1) ⊙ (⊖Q2) = Q1 ⊙ Q2 ; 

Q3 , ∅ :

Q1 = Q2 ⇐⇒ Q3 ⊙ Q1 = Q3 ⊙ Q2 ; 

Q1 ⊙ (Q2 ⊕ Q3) = (Q1 ⊙ Q2) ⊕ (Q1 ⊙ Q3) ; 

⊖Q = (⊖ ) ⊙ Q . 

1

The binary division operator “⊘” can be defined, equivalently to the division of integers, by the multiplication operator through the following expression:

Q2 , ∅ :

Q1 ⊘ Q2 = Q3 ⇐⇒ Q1 = Q3 ⊙ Q2 . 

(2.32)

Note that the division by “∅” (zero-rational) is not defined. 

Given an arbitrary nonzero-rational number “Q1” (Q1 , ∅), we will define the reciprocal “Q−1 ” 

1

through the following two expressions:

a , 0 :

[ (−a,D)]−1 ≡ [(−D,a)] ; 

(2.33)

a , 0 :

[ (+a, D ) ]−1 ≡ [(+D,a)] . 

(2.34)

Note that the reciprocal has been defined for any rational number except zero-rational “∅”. “ ∅−1 ” 

is not defined. 

We can prove that equations (2.33) and (2.34) define the rational number unary reciprocal operation such that the resulting rational number “ Q−1 ” is always the same regardless of the specific

“ × 1” pair used to represent the rational number argument “Q ”. 

Z

N

From the above discussions, we can prove the following properties: Q , ∅ :

(Q−1)−1 = Q ; 



Q



1 , ∅

:

Q

= Q−1 ; 

Q

1 = Q2 ⇐⇒ Q −1

1

2

2 , ∅

−1 = ; 

1

1
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Q , ∅ :

Q ⊙ (Q−1) = ; 

1

Q2 , ∅ :

Q1 ⊘ Q2 = Q1 ⊙ (Q−1) ; 

2

note that considering the last equation, it follows that given two arbitrary rational numbers “Q1” 

and “Q2” (with Q2 , ∅), the division “Q1 ⊘ Q2” will always exist (unlike the case of division in integers); 

Q , ∅ :

Q−1 = 1 ; 

Q



Q



1 , ∅

:

(Q

) ⊙ (Q−1) ; 

Q

1 ⊙ Q2)−1 = (Q −1

1

2

2 , ∅



Q











2 , ∅

Q1

Q3

Q1 ⊙ Q3

:

⊙

=

; 

Q4 , ∅

Q2

Q4

Q2 ⊙ Q4



Q





−1

1 , ∅

Q1

Q2

:

=

; 

Q2 , ∅

Q2

Q1

[ (Z, D ) ] = fQ(Z ) ⊘ fQ(D) . 

2.4.3

EXPONENTIATION OF RATIONAL NUMBERS

WITH INTEGER EXPONENTS

We will define the exponentiation of a rational number base “Q ” to the power of natural number

“n”, equivalent to the case of integer bases, to be equal to:

Q , ∅ :

Q0 ≡ ; 

1

Q1 ≡ Q ; 



n , 0  :

Qn ≡ Q Q n times Q . 

n , 1

⌢

In rational numbers, we can extend exponentiation to include negative integers exponents. We will define the exponentiation of any nonzero-rational base “Q ” to the power of a negative integer “−n” 

(with n , 0) to be given by:



Q , 



∅

:

Q−n ≡ 1 . 

n , 0

Qn

Note that:

• “∅0 ” is not defined; 

• “∅−n ” (with n , 0) is not defined. 
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2.4.4

INEQUALITIES OF RATIONAL NUMBERS

Given two arbitrary rational numbers “Q1 = [ (Z1, D1) ] ” and “Q2 = [ (Z2, D2) ] ”, we will define the less than relation “Q1 < Q2” by:

[ (Z1, D1)] < [ (Z2, D2)] ⇐⇒ Z1D2 < Z2D1 . 

(2.35)

We can prove that equation (2.35) defines the rational number less than relation “Q1 < Q2” such that when comparing “Q1” and “Q2” with the rational number less than relation we will obtain the same result regardless of the specific “ × 1” pairs used to represent the two given rational Z

N

numbers. Also, we can prove that the rational number less than relation is isomorphic with the integer less than relation. 

Note that for rational numbers being “less than” means representing a point on a line that is more towards the left (just like the case of integers). Similar to what was done in 2.3.4 for integers, we can define the rational number greater than relation “>” by the rational number less than relation through the following expression:

Q1 > Q2 ⇐⇒ Q2 < Q1 . 

(2.36)

From the above discussions, we can prove the following properties: (Q1 < Q2) ∧ (Q2 < Q3) =⇒ Q1 < Q3 ; 

[ (Z1, D1)] > [ (Z2, D2)] ⇐⇒ Z1D2 > Z2D1 ; 

(Q1 < Q2) ∨ (Q1 = Q2) ∨ (Q1 > Q2) ; 

(Q1 < Q2) =⇒ (Q1 , Q2) ∧ ¬(Q1 > Q2) ; 

(Q1 = Q2) =⇒ ¬(Q1 < Q2) ∧ ¬(Q1 > Q2) ; 

(Q1 > Q2) =⇒ ¬(Q1 < Q2) ∧ (Q1 , Q2) . 

The absolute value of a given rational number “ |Q |”, equivalently to the absolute value of an integer, can be defined through the following three equations:

Q < ∅ :

|Q| = ⊖Q ; 

Q = ∅ :

|Q| = ∅ ; 

Q > ∅ :

|Q| = Q . 

From the above discussions, we can prove the following property:

|[(Z,D)]| = [(|Z|,D)] . 

2.4.5

ISOMORPHISM BETWEEN

∗ AND

Q

Z

As we indicated in 2.4.1, the set of whole rational numbers “ ∗ ” and the set of integers “ ” are Q

Z

isomorphic. Thus in general, properties that we derive for “ ∗ ” will hold for “ ” and vice versa. 

Q

Z
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Distinguishing between “ ” and “ ∗ ” was fundamental in the construction of rational numbers and Z

Q

in the derivation of the properties of rational numbers. 

That said, however, in order to simplify further discussions, from this point on and in the following chapters of this book, we will not distinguish between “ ∗ ” and “ ” given that the two sets Q

Z

are isomorphic. Thus, rather than stating “the set of integers

is isomorphic to the set of whole

Z

rational numbers

∗, and in turn the set of whole rational numbers

∗ is a subset of the set of

Q

Q

rational numbers

”; we will simply state that “the set of integers

is a subset of the set of rational

Q

Z

numbers

”. 

Q

2.5

REAL NUMBERS

In this section we will construct the set of real numbers from the set of rational numbers through equivalence classes. We will review convergent rational number sequences and some of their properties that can be applied in the study of real numbers. We will review the isomorphism between fractional real numbers and rational numbers. We will review the general properties of real numbers and real number operations: addition, subtraction, negative operator, identity operator, multiplication, division, exponentiation with integer exponents, root of order n, inequalities, and absolute value. For more detailed and thorough discussions of real numbers, the author directs the reader towards the book “Real and Complex Numbers for Physicists” [3]. 

2.5.1

DEFINITION AND PROPERTIES OF REAL NUMBERS

As discussed in 2.4.1 on a line, rational numbers can represent the origin and both points on the right and on the left of the origin that are at distances of “fractions” of the unit (including whole multiples of the unit [integers]). 

As discussed in “Real and Complex Numbers for Physicists” [3], we can prove that given any point “P ” on the line, we can always find a point represented by a rational number that is arbitrarily close to point “P ”. However, as also discussed in “Real and Complex Numbers for Physicists” [3], we can prove that not every point on the line is represented by a rational number. Thus the need for a new set of “numbers” (real numbers) that can represent all points on the line. 

If we wish to represent all points on the line (rather than only points that are “fractions” of the unit) we are lead to consider rational number sequences. A rational number sequence can be defined as a function from “ ” to “ ”. As stated in 2.2, in this chapter, we will use the Greek letter “β ” to N

Q

denote rational number sequences. In turn, “β (n)” denotes the “nth ” value of the rational number sequence “β ”. If we wish to consider two rational number sequences we can write “β1, β2” or

“β1(n), β2(n)”. 

Given an arbitrary point “P ” on the line, we can always find a rational number sequence that

“converges” (becomes arbitrarily close for arbitrarily large values of n) to that point “P ” (regardless if that point can or cannot be represented by a rational number). Also note that there are infinite distinct rational number sequences (not just one rational number sequence) that can converge at a given point “P ”. Also, note that not all rational number sequences will converge at some point on the line (i.e., not all rational number sequences are “convergent”). Thus:

• We can represent any given point on the line through convergent rational number sequences (rather than rational number sequences in general); 

• A point on the line can be represented by an infinite amount of distinct convergent rational number sequences. 

If we wish that a point of a line that is represented, to be represented by a unique “number” 

(rather than by an infinite amount of convergent rational number sequences) we are lead to consider equivalence classes of convergent rational number sequences. The idea being that a point that is
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represented, would be represented by a single equivalence class (rather than by an infinite amount of convergent rational number sequences). 

Following “Real and Complex Numbers for Physicists” [3], we will define a convergent rational number sequence through the following expression:

β (n) is convergent ⇐⇒



n > N =⇒ Q



∀

A ≤ β (n) ≤ QB

Q

. 

(2.37)

ε >0 ∃N,Q

∀

A ,QB

n

QB − QA < Qε

Note that a convergent rational number sequence is such that the points on the line represented by its values will be arbitrarily close to a given point “P ” (QB − QA < Qε) for arbitrarily high values of “n” (n > N). 

In turn, a Cauchy rational number sequence can be defined by:

β (n) is Cauchy ⇐⇒

∀Qε>0 ∃N ∀m,n { m,n > N =⇒ |β (m) − β (n)| < Qε } . 

From the above discussions, we can prove that:

β (n) is convergent ⇐⇒ β (n) is Cauchy . 

As stated in 2.2, in this chapter, we will denote rational sequences that are convergent with the Greek letter “α” (rather than β that we use to denote rational sequences in general). In turn, “α(n)” 

denotes the “nth ” value of the convergent rational number sequence “α”. If we wish to consider two convergent rational number sequences we can write “α1, α2” or “α1(n), α2(n)”. 

We will define a convergent-negative rational sequence, a sequence that converges at a point to the left of the origin. Also, we will define a convergent-zero rational sequence, a sequence that converges at the origin. In turn, we will define a convergent-positive rational sequence, a sequence that converges at a point to the right of the origin. 

It follows that, therefore, the following three conditions will hold: α(n) is convergent-negative ⇐⇒

{ ∃N,Q ∀

B

n n > N =⇒ α (n) ≤ QB < 0 } ; 

α(n) is convergent-zero ⇐⇒

{ ∀Qε>0 ∃N ∀n n > N =⇒ |α(n)| < Qε } ; 

α(n) is convergent-positive ⇐⇒

{ ∃N,Q ∀

A

n n > N =⇒ 0 < QA ≤ α (n) } . 

Also, note that:

{ ∀Qε>0 ∃N ∀n n > N =⇒ |β (n)| < Qε } =⇒ β (n) is convergent ; that is, a rational number sequence “β (n)”, that is arbitrarily close to zero for arbitrarily high values of “n”, is convergent (and converges at the origin [convergent-zero]). 

We can define an upper-bounded rational number sequence through the following expression: β (n) is upper-bounded ⇐⇒ ∃Q ∀

M

n β (n) ≤ QM ; 
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a value of “QM” that satisfies the condition on the right will be referred to as an “upper-bound of β (n)”. In turn, we can define a lower-bounded rational number sequence through the following expression:

β (n) is lower-bounded ⇐⇒ ∃Q ∀

M

n QM ≤ β (n) ; 

a value of “QM” that satisfies the condition on the right will be referred to as a “lower-bound of β (n)”. Also, if a given rational number sequence is both upper-bounded and lower-bounded, will be referred to it as simply as a bounded rational number sequence. It follows that: β (n) is bounded ⇐⇒ ∃Q ∀

M

n |β (n)| ≤ QM . 

Note that:

α(n) is bounded ; 

that is, a convergent rational number sequence is always bounded. Also note that:

{ ∀n α(n) = Q } =⇒ { α(n) is convergent } ; 

that is, a constant rational number sequence is convergent. 

From the above discussions, we can prove that:



α



1(n) is convergent-zero

=⇒ α

α

1(n) + α2(n) is convergent-zero ; 

2(n) is convergent-zero

α1(n) + α2(n) is convergent ; 

α(n) is convergent-zero =⇒ −α(n) is convergent-zero ; 

−α(n) is convergent ; 

α1(n) − α2(n) is convergent ; 

|α(n)| is convergent ; 

α(n) is convergent-zero =⇒ |α(n)| is convergent-zero ; 

α1(n) is convergent-zero =⇒ α1(n)α2(n) is convergent-zero ; 

α1(n)α2(n) is convergent ; 



α



1(n) is convergent-positive





α1(n) = 0 =⇒ α2(n) = 0

=⇒ {α2(n) is convergent} ; 



α



1(n) , 0 =⇒ α2(n) = α −1(n)

1



α



1(n) is convergent-negative





α1(n) = 0 =⇒ α2(n) = 0

=⇒ {α2(n) is convergent} . 



α



1(n) , 0 =⇒ α2(n) = α −1(n)

1
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Given the above discussions we will define the following real-equivalence relation “∼” between convergent rational number sequences “α1(n)” and “α2(n)”:

α1(n) ∼ α2(n) ⇐⇒

{ ∀Qε>0 ∃N ∀n n > N =⇒ |α1(n) − α2(n)| < Qε } . 

(2.38)

Note that if two convergent rational number sequences are real-equivalent, then they will converge at the same point on a line. We can prove that for the equivalence relation defined through equation (2.38) the three equivalence conditions hold: reflexivity, symmetry, and transitivity (see 1.3.4). 

A real number can be defined as an equivalence class of convergent rational number sequences based on the equivalence relation defined through equation (2.38). We will denote the set of all real numbers with the symbol “ ”. We will here also follow the notation of 1.3.4 and denote a given real R

number (given that a real number is an equivalence class) with an element contained in that class in between square brackets. For example:



1 



1 



1





=

, (0) , 

, ... 

; 

n + 1

n + 1

(n + 1)2

note that in the right side of the equation, the three elements explicitly written are all convergent rational number sequences (that in this case converge at the origin). That is, the real number “ [ 1/(n + 1) ] ” is the set of all convergent rational number sequences that are equivalent to the convergent rational number sequence “α(n) = 1/(n + 1)”. 

As discussed in 2.2, in this chapter, we will also denote real numbers using the uppercase letter

“R ”, to distinguish them from rational numbers that will be denoted with the uppercase letter “Q ”. 

Additionally, the uppercase letter “Z ” will be used to denote integers, the uppercase letter “D ” will be used to denote positive integers (nonzero natural numbers), the uppercase letter “N ” will be used to denote natural numbers (nonnegative integers), and lowercase letters “a”, “b”, “c”, and so on will also be used to denote natural numbers (nonnegative integers). 

We can thus consider a single real number “R ” and write, for example: R = [α(n)] ; 

or we can consider two real numbers “R1” and “R2”, by writing:

R1 = [α1(n)] ∧ R2 = [α2(n)] . 

Real numbers that are represented by convergent-negative rational number sequences will be referred to as negative real numbers. Negative real numbers will represent points on a line that are to the left of the origin. In turn, real numbers that are represented by convergent-positive rational number sequences will be referred to as positive real numbers. Positive real numbers will represent points on a line that are to the right of the origin. 

Also, the real number that is represented by convergent-zero rational number sequences will be referred to as the zero-real and will represented by the symbol “∅”. That is:

∅ ≡ [0] ; 

thus:



1 



1





∅ =

, (0) , 

, ... 

. 

n + 1

(n + 1)2

The zero-real, on a line, represents the origin. Note that we are using the symbol “∅” for the zero-real to distinguish it from the rational number zero “0”. Also, note that every point on a line is represented by one and only one real number. 
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From the above discussions, we can prove the following property:

[Q1] = [Q2] ⇐⇒ Q1 = Q2 . 

Note that from the last equation, one finds that when considering real numbers of the form “ [Q] ” 

(i.e., constant rational number sequences), each constant rational number sequence “α(n) = Q ” 

will correspond to a different real number. In this book, we will refer to real numbers that can be expressed in the form “ [Q] ” as fractional real numbers. The set of fractional real numbers, in this book, will be denoted with the symbol “ ∗ ”. 

R

We will define the following one-to-one relation “R f ” between the set of rational numbers “ ” 

R

Q

and the set of fractional real numbers “ ∗ ”:

R

Q1R f [Q

R

2] ⇐⇒ Q1 = Q2 ; 

(2.39)

thus, we can write:

[Q ] = fR(Q) ; 

(2.40)

Q = f −1( [Q ] ) . 

(2.41)

R

Through the one-to-one relation “R

∗

f ”, we can show that the set of fractional real numbers “

” 

R

R

and the set of rational numbers “ ” are isomorphic (see 1.4). 

Q

2.5.2

ADDITION AND MULTIPLICATION OF REAL NUMBERS

Given two arbitrary real numbers “R1 = [α1(n)] ” and “R2 = [α2(n)] ”, we will define the sum

“R1 ⊕ R2” to be given by:

[α1(n)] ⊕ [α2(n)] ≡ [α1(n) + α2(n)] . 

(2.42)

Note that the real number sum operator is denoted by the symbol “⊕” to distinguish it from the rational number sum operator “+”. 

We can prove that equation (2.42) defines the real number sum operation such that the resulting real number sum is always the same regardless of the specific convergent rational number sequences used to represent the first two real numbers that are adding. Also, we can prove that the real number sum “⊕” is isomorphic to the rational number sum “+”. 

From the above discussions, we can prove the following properties: R1 ⊕ R2 = R2 ⊕ R1 ; 

(2.43)

(R1 ⊕ R2) ⊕ R3 = R1 ⊕ (R2 ⊕ R3) ; 

(2.44)

R ⊕ ∅ = R ; 

(2.45)

R1 = R2 ⇐⇒ R1 ⊕ R3 = R2 ⊕ R3 . 

(2.46)

The binary subtraction operator “⊖” for real numbers can be defined, equivalently to the subtraction of rational numbers, by the addition operator, through the following expression: R1 ⊖ R2 = R3 ⇐⇒ R1 = R3 ⊕ R2 . 

(2.47)
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Given an arbitrary real number “R1 = [α1(n)] ”, we will now define the unary negative operator

“⊖” applied on the real number “⊖ R1” through the following expression:

⊖[α1(n)] ≡ [−α1(n)] . 

(2.48)

We can prove that equation (2.48) defines the real number unary negative operator such that the resulting real number is always the same regardless of the specific convergent rational number sequence used to represent the real number argument “R1”. Also, we can prove that the unary real number negative operator “⊖” is isomorphic to the rational number negative operator “−”. We will define the unary identity operator “⊕” through the following expression:

⊕R ≡ R . 

(2.49)

From the above discussions, we can prove the following properties: R1 = R2 ⇐⇒ ⊖ R1 = ⊖ R2 ; 

(2.50)

⊖(⊖R) = R ; 

(2.51)

⊖(R1 ⊕ R2) = (⊖R1) ⊕ (⊖R2) ; 

(2.52)

R ⊕ (⊖ R ) = ∅ ; 

(2.53)

R1 ⊖ R2 = R1 ⊕ (⊖ R2) . 

(2.54)

Note that considering equation (2.54), it follows that given two arbitrary real numbers “R1” and

“R2”, the subtraction “R1 ⊖ R2” will always exist (just like the case of subtraction in rational numbers). 

Given two arbitrary real numbers “R1 = [α1(n)] ” and “R2 = [α2(n)] ”, we will define the product

“R1 ⊙ R2” to be given by:

[α1(n)] ⊙ [α2(n)] ≡ [α1(n)α2(n)] . 

(2.55)

Note that the real number product operator is denoted by the symbol “⊙” to distinguish it from the rational number product operator “·”. 

We can prove that equation (2.55) defines the real number product operation such that the resulting real number product is always the same regardless of the specific convergent rational number sequences used to represent the first two real numbers that are multiplying. Also, we can prove that the real number product “⊙” is isomorphic to the rational number product “·”. 

Similar to the zero-real “∅”, we will refer to the real number “ [1] ” as the “one-real”, and we will denote the one-real with the symbol “ ”. That is:

1

≡ [1] . 

1

Note that we are using the symbol “ ” for the one-real to distinguish it from the rational number 1

one “1”. 

From the above discussions, we can prove the following properties: R1 ⊙ R2 = R2 ⊙ R1 ; 

(2.56)

(R1 ⊙ R2) ⊙ R3 = R1 ⊙ (R2 ⊙ R3) ; 

(2.57)

Review of Integers, Rational Numbers, and Real Numbers 39

∅ ⊙ R = ∅ ; 

(2.58)

⊙ R = R ; 

(2.59)

1



a , 0  :

f

a , 1

R(a) ⊙ R = R ⊕ R ⊕ a times

⌢

⊕ R ; 

(2.60)

(⊖R1) ⊙ R2 = ⊖(R1 ⊙ R2) ; 

(2.61)

(⊖R1) ⊙ (⊖R2) = R1 ⊙ R2 ; 

(2.62)

R3 , ∅ :

R1 = R2 ⇐⇒ R3 ⊙ R1 = R3 ⊙ R2 ; 

(2.63)

R1 ⊙ (R2 ⊕ R3) = (R1 ⊙ R2) ⊕ (R1 ⊙ R3) ; 

(2.64)

⊖R = (⊖ ) ⊙ R . 

(2.65)

1

The division operator “⊘” can be defined, equivalently to the division of rational numbers, by the multiplication operator through the following expression:

R2 , ∅ :

R1 ⊘ R2 = R3 ⇐⇒ R1 = R3 ⊙ R2 . 

(2.66)

Note that the division by “∅” (zero-real) is not defined. 

Given an arbitrary nonzero-real number “R1” (R1 , ∅), we will define the reciprocal “R−1 ” 

1

through the following expression:



[α



1(n)] , ∅





α1(n) = 0 =⇒ α2(n) = 0

=⇒ [α1(n)]−1 = [α2(n)] . 

(2.67)



α



1(n) , 0 =⇒ α2(n) = α −1(n)

1

Note that the reciprocal has been defined for any real number except zero-real “∅”. “ ∅−1 ” is not defined. 

We can prove that equation (2.67) defines the reciprocal of a real number “R−1” such that the resulting real number “R−1 ” is always the same regardless of the specific convergent rational number sequence that is used to represent the real number argument “R ”. Also, we can prove that the real number reciprocal operation is isomorphic to the rational number reciprocal operation. 

From the above discussions, we can prove the following properties: R , ∅ :

(R−1)−1 = R ; 

(2.68)



R



1 , ∅

:

R

= R−1 ; 

(2.69)

R

1 = R2 ⇐⇒ R −1

1

2

2 , ∅

−1 = ; 

(2.70)

1

1

R , ∅ :

R ⊙ (R−1) = ; 

(2.71)

1

[image: Image 37]

[image: Image 38]

[image: Image 39]

[image: Image 40]

[image: Image 41]

[image: Image 42]

[image: Image 43]

40

Limits and Derivatives of Real Functions for Physicists

R2 , ∅ :

R1 ⊘ R2 = R1 ⊙ (R−1) ; 

(2.72)

2

note that considering equation (2.72), it follows that given two arbitrary real numbers “R1” and

“R2” (with R2 , ∅), the division “R1 ⊘ R2” will always exist (just like the case of division in rational numbers); 

R , ∅ :

R−1 = 1 ; 

(2.73)

R



R



1 , ∅

:

(R

) ⊙ (R−1) ; 

(2.74)

R

1 ⊙ R2)−1 = (R −1

1

2

2 , ∅



R











2 , ∅

R1

R3

R1 ⊙ R3

:

⊙

=

; 

(2.75)

R4 , ∅

R2

R4

R2 ⊙ R4



R





−1

1 , ∅

R1

R2

:

=

. 

(2.76)

R2 , ∅

R2

R1

2.5.3

EXPONENTIATION OF REAL NUMBERS

WITH INTEGER EXPONENTS

We will define the exponentiation of a real number base “R ” to the power of natural number “n”, equivalent to the case of rational number bases, to be equal to:

R , ∅ :

R0 ≡ ; 

(2.77)

1

R1 ≡ R ; 

(2.78)



n , 0  :

Rn ≡ R R n times

n , 1

⌢

R . 

(2.79)

We will define the exponentiation of any nonzero-real base “R ” to the power of a negative integer

“−n” (with n , 0), equivalent to the case of rational number bases, to be given by: R , 



∅

:

R−n ≡ 1 . 

(2.80)

n , 0

Rn

Note that:

• “∅0 ” is not defined; 

• “∅−n ” (with n , 0) is not defined. 

From the above discussions, we can prove the following properties: n , 0 :

∅ n = ∅ ; 

(2.81)

Z = ; 

(2.82)

1

1
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n , 0



:

(⊖R)n = Rn ; 

(2.83)

n is even

n is odd :

(⊖R)n = ⊖(Rn) ; 

(2.84)



m , 0  :

Rm Rn = Rm+n ; 

(2.85)

n , 0



m , 0  :

(Rm)n = Rmn ; 

(2.86)

n , 0

n , 0 :

(R1 R2)n = Rn1 Rn2 ; 

(2.87)

R , ∅ :

RZ1 RZ2 = RZ1+Z2 ; 

(2.88)

R , ∅ :

R−Z = 1 ; 

(2.89)

RZ

R , ∅ :

(RZ1)Z2 = RZ1Z2 ; 

(2.90)



R



1 , ∅

:

(R

R

1R2)Z = R Z

1 R Z

2 ; 

(2.91)

2 , ∅



Z

R

1

, ∅ :

= 1 ; 

(2.92)

R

RZ



R





Z

1 , ∅

R1

RZ

:

= 1 . 

(2.93)

R2 , ∅

R2

RZ

2

2.5.4

ROOT OF ORDER N

The root of order n for real numbers can be defined, by exponentiation, through the following two expressions:



n , 0



√

n

:

R

n is even

1 = R2 ⇐⇒ (R1 = R n

2 ) ∧ (R2 ≥ ∅) ; 

(2.94)



n , 0



√

n

:

R

n is odd

1 = R2 ⇐⇒ R1 = R n

2 . 

(2.95)

Note that:

• The root of order “0” (zero) is not defined; 

• If the root of order “n” (n , 0) “R2” exists and “n” is even, then “R2” is nonnegative. The reason that the root of order “n” is defined this way, is to ensure that if a root of order “n” 

exists it is unique; 

• Given an arbitrary even nonzero natural number “n”, the “nth ” root of a negative real number will never exist (i.e., there is no real number such that the exponentiation of that number to the power of an even nonzero natural number is negative [eq. (2.83)]). 

We can prove that given an arbitrary nonnegative real number “R1 ≥ ∅ ” and an arbitrary natural number “n” (with n , 0), the root of order “n” of “R1” will always exist. We can also prove that
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given an arbitrary real number “R1” and an arbitrary odd natural number, the root of order “n” of

“R1” will always exist. 

From the above discussions, we can prove the following properties:

√

1 R = R ; 

(2.96)



n



, 0





√

n

n

n is even

:

R

= R ; 

(2.97)



R ≥ ∅



√

n

n

n is odd :

R

= R ; 

(2.98)



n



, 0





√

√

n

n

m

n is even

:

Rm =

R

; 

(2.99)



R > ∅





n



, 0











n is even 

√

√

n

n

m

:

Rm =

R

; 

(2.100)

m , 0











R ≥ ∅





n is odd 

√

√

n

n

m

:

Rm =

R

; 

(2.101)

R , ∅



n is odd 

√

√

n

n

m

:

Rm =

R

; 

(2.102)

m , 0



n



, 0

q





m

√

√

n

m , 0

:

R = mn R ; 

(2.103)



R ≥ ∅ 



n is odd 

q

m

√

√

n

:

R = mn R ; 

(2.104)

m is odd



n



, 0











n is even 

√

√

√

n

:

n R

R

R

R

1 R2 = n

1

2 ; 

(2.105)

1 ≥ ∅











R



2 ≥ ∅

√

√

√

n

n is odd :

n R1 R2 = n R1 R2 ; 

(2.106)



n



, 0

s







n is even

:

n

1

= 1

√ ; 

(2.107)

R

n R



R > ∅


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s



n is odd 





:

n

1

= 1

√ ; 

(2.108)

R , ∅

R

n R



n



, 0





s

√









n



n is even 

R1

R

:

n

=

1

√

; 

(2.109)

R

n

1 ≥ ∅

R

R





2

2







R



2 > ∅

s

√



n

n is odd 

R 

1

R1

:

n

= √

. 

(2.110)

R

n

2 , ∅

R2

R2

2.5.5

INEQUALITIES OF REAL NUMBERS

Given two arbitrary real numbers “R1 = [α1(n)] ” and “R2 = [α2(n)] ”, we will define the less than relation “R1 < R2” by:

[α1(n)] < [α2(n)] ⇐⇒

{ ∃N,Q

∀

C ,QD

n n > N =⇒ α1(n) ≤ QC < QD ≤ α2(n) } . 

(2.111)

We can prove that equation (2.111) defines the real number less than relation such that when comparing “R1” and “R2” with the real number less than relation we will obtain the same result regardless of the specific convergent rational number sequences used to represent the two given real numbers. Also, we can prove that the real number less than relation is isomorphic with the rational number less than relation. 

Note that for real numbers being “less than” means representing a point that is more towards the left (just like the case of rational numbers). Similar to what was done in 2.4.4 for rational numbers, we can define the real number greater than relation “>” by the real number less than relation through the following expression:

R1 > R2 ⇐⇒ R2 < R1 . 

(2.112)

From the above discussions, we can prove the following properties:

[α1(n)] < [α2(n)] ⇐⇒

{ ∃N,Q ∀

B

n n > N =⇒ α1(n) − α2(n) ≤ QB < 0 } ; 

[α1(n)] > [α2(n)] ⇐⇒

{ ∃N,Q ∀

A

n n > N =⇒ 0 < QA ≤ α1(n) − α2(n) } . 

We can also prove the following properties:

(R1 < R2) ∧ (R2 < R3) =⇒ R1 < R3 ; 

(2.113)

(R1 < R2) ∨ (R1 = R2) ∨ (R1 > R2) ; 

(2.114)

(R1 < R2) =⇒ (R1 , R2) ∧ ¬(R1 > R2) ; 

(2.115)
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(R1 = R2) =⇒ ¬(R1 < R2) ∧ ¬(R1 > R2) ; 

(2.116)

(R1 > R2) =⇒ ¬(R1 < R2) ∧ (R1 , R2) ; 

(2.117)

R1 < R2 ⇐⇒ ⊖ R1 > ⊖ R2 ; 

(2.118)

R1 < R2 ⇐⇒ R1 ⊕ R3 < R2 ⊕ R3 ; 

(2.119)



R



1 < R2

=⇒ R

R

1 ⊕ R3 < R2 ⊕ R4 ; 

(2.120)

3 ≤ R4

R3 > ∅ :

R1 < R2 ⇐⇒ R3 ⊙ R1 < R3 ⊙ R2 ; 

(2.121)





∅ ≤ R1 < R2

=⇒ R3 ⊙ R1 < R4 ⊙ R2 ; 

(2.122)

∅ ≤ R3 < R4



R



1 > ∅

:

R

> R−1 . 

(2.123)

R

1 < R2 ⇐⇒ R −1

1

2

2 > ∅

The absolute value of a given real number “ |R |”, equivalently to the absolute value of a rational number, can be defined through the following three equations:

R < ∅ :

|R| = ⊖R ; 

(2.124)

R = ∅ :

|R| = ∅ ; 

(2.125)

R > ∅ :

|R| = R . 

(2.126)

From the above discussions, we can prove the following properties:

|[α(n)]| = [|α(n)|] ; 

(2.127)

| ⊖ R| = |R| ; 

(2.128)

|R1| < R2 ⇐⇒ ⊖R2 < R1 < R2 ; 

(2.129)

|R1 ⊕ R2| ≤ |R1| ⊕ |R2| ; 

(2.130)

|R1 ⊙ R2| = |R1| ⊙ |R2| ; 

(2.131)

R , ∅ :

|R−1| = |R|−1 ; 

(2.132)

R 

1

|R1|

R





2 , ∅ :



=

. 

(2.133)

R2 

|R2|
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2.5.6

ISOMORPHISM BETWEEN

∗ AND

R

Q

As we indicated in 2.5.1, the set of fractional real numbers “ ∗ ” and the set of rational numbers R

“ ” are isomorphic. Thus in general, properties that we derive for “ ∗ ” will hold for “ ” and vice Q

R

Q

versa. Distinguishing between “ ” and “ ∗ ” was fundamental in the construction of real numbers Q

R

and in the derivation of the properties of real numbers. 

That said, however, in order to simplify further discussions, from this point on and in the following chapters of this book, we will not distinguish between “ ∗ ” and “ ” given that the two sets R

Q

are isomorphic. Thus, rather than stating “the set of rational numbers is isomorphic to the set of

Q

fractional real numbers

∗, and in turn the set of fractional real numbers ∗ is a subset of the set of R

R

real numbers

”; we will simply state that “the set of rational numbers

is a subset of the set of

R

Q

real numbers

”. 

R

2.6

EXAMPLES

Real numbers, rational numbers, and integers are found throughout the natural sciences. In this section we will revisit the case of an object that moves along a straight line discussed in 1.6. To describe the movement of the object that moves along a straight line, once again, we are lead to consider the position “x” of the object on the line at different times “t”. In particular, the movement of the object is considered to be completely described if we can determine the position “x” for any time “t”. Thus, every possible position on the line must be represented by a number that we are denoting as “x”. 

As discussed in 2.5.1, rational numbers cannot represent all the points on the line. However, as also discussed in 2.5.1, real numbers can represent all the points on a line, thus giving a strong motivation for constructing real numbers. Real numbers thus become fundamental mathematical objects in physics. 

As discussed in 2.5, real numbers can be constructed and their general properties derived from rational numbers and the general properties of rational numbers. In turn, as discussed in 2.4, rational numbers can be constructed and their general properties derived from integers and the general properties of integers. 

In summary, real numbers are fundamental mathematical objects in modeling physics systems in general (including the relatively simple example of an object moving along a straight line). Real numbers can be constructed from, and their properties derived from, rational numbers (and their properties). In turn, rational numbers can be constructed from, and their properties derived from, integers. Thus, real numbers (and their properties), rational numbers (and their properties), and integers (and their properties) become fundamental mathematical objects in physics. 
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3 Review of Convergent

Real Number Sequences

and Real Exponentiation

3.1

INTRODUCTION

In this chapter we will review additional properties of the exponentiation of nonnegative real numbers with integer exponents (extending the properties presented in 2.5.3). We will then introduce the exponentiation of real numbers with rational number exponents. We will review general properties of the exponentiation operation with rational number exponents. 

We will review real number sequences and some of their general properties that we will be applying to the definition of the exponentiation operation with real number exponents. We will then review general properties of exponentiation operation with real number exponents. 

We will review the binomial theorem. We will then define the geometric series “θgeom(Rc, Rr, n)”. 

We will define the real sequences “θle(n)” and “θge(n)”. Then we will review some properties of real sequences “θle(n)” and “θge(n)”. We will then define the real number “e”, and define the exponential function “exp(R )”. Then we will review general properties of the exponential function. We will define logarithmic functions. We will then review general properties of logarithmic functions. Then we will define the natural logarithmic function. We will then review general properties of the natural logarithmic function. 

3.2

NOTATION

Following the notation used in the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4], in this chapter (except for the “Examples” sections towards the end of the chapter):

• Lowercase letters “a”, “b”, “c”, ... will be used to denote natural numbers (except for the lowercase letter “e”); 

• Uppercase letter “N ” and uppercase letter “N ” with index “N1”, “N2’, ... will also be used to denote natural numbers; 

• Uppercase letter “D” and uppercase letter “D” with index “D1”, “D2”, ... will be used to denote nonzero natural numbers; 

• Uppercase letter “Z ” and uppercase letter “Z ” with index “Z1”, “Z2”, ... will be used to denote integers; 

• Uppercase letter “Q” and uppercase letter “Q” with index “Q1”, “Q2”, ... will be used to denote rational numbers; 

• Greek letter “β ” or “β (n)”; and Greek letter “β ” with index “β1”, “β2”, ..., or “β1(n)”, 

“β2(n)”, ... ; are used to denote rational number sequences; 

• Greek letter “α” or “α(n)”; and Greek letter “α” with index “α1”, “α2”, ..., or “α1(n)”, 

“α2(n)”, ... ; are used to denote convergent rational number sequences; 47

48
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• Uppercase letter “R” and uppercase letter “R” with index “R1”, “R2”, ... are used to denote real numbers; 

• Uppercase letter “I ” and uppercase letter “I ” with index “I1”, “I2”, ... are used to denote irrational numbers (non-fractional real numbers); 

• Greek letter “θ ” or “θ (n)”; and Greek letter “θ ” with index “θ1”, “θ2”, ..., or “θ1(n)”, 

“θ2(n)”, ... ; are used to denote real number sequences. 

3.3

EXPONENTIATION WITH RATIONAL NUMBER EXPONENTS

In this section we will review additional properties of the exponentiation of nonnegative real numbers with integer exponents (extending the properties presented in 2.5.3). We will then introduce the exponentiation of real numbers with rational number exponents. We will review general properties of the exponentiation operation with rational number exponents. For more detailed and thorough discussions on the exponentiation of real numbers with integer exponents and rational number exponents, the author directs the reader towards the books: “Real and Complex Numbers for Physicists” 

[3] and “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4]. 

3.3.1

ADDITIONAL PROPERTIES OF THE EXPONENTIATION OF

NONNEGATIVE REAL NUMBERS WITH INTEGER EXPONENTS

In the definition and review of the properties of exponentiation with rational number exponents, we will apply properties of exponentiation of nonnegative real numbers with integer exponents. From the discussions in chapter 2, extending the properties presented in 2.5.3, we can additionally prove the following properties:



n



, 0





R1 ≥ 0

:

R1 < R2 ⇐⇒ Rn1 < Rn2 ; 



R



2 ≥ 0



n



, 0





R1 ≥ 0

:

R1 = R2 ⇐⇒ Rn1 = Rn2 ; 



R



2 ≥ 0



n



, 0





R1 > 0

:

R1 = R2 ⇐⇒ R−n = R−n ; 

1

2



R



2 > 0



n



, 0





R1 > 0

:

R1 < R2 ⇐⇒ R−n > R−n ; 

1

2



R



2 > 0
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

Z > 0 ⇐⇒ RZ > 1 





R > 1 :

Z = 0 ⇐⇒ RZ = 1

; 



Z < 0 ⇐⇒ RZ < 1 



Z > 0 ⇐⇒ RZ < 1 





0 < R < 1 :

Z = 0 ⇐⇒ RZ = 1

. 



Z < 0 ⇐⇒ RZ > 1 

We can also prove the following properties:

R > 1 :

Z1 = Z2 ⇐⇒ RZ1 = RZ2 ; 

(3.1)

R > 1 :

Z1 < Z2 ⇐⇒ RZ1 < RZ2 ; 

(3.2)

0 < R < 1 :

Z1 = Z2 ⇐⇒ RZ1 = RZ2 ; 

(3.3)

0 < R < 1 :

Z1 < Z2 ⇐⇒ RZ1 > RZ2 ; 

(3.4)



R > 0 

√

n

√

n

Z

:

RZ =

R

. 

(3.5)

n , 0

3.3.2

DEFINITION AND PROPERTIES OF EXPONENTIATION

WITH RATIONAL NUMBER EXPONENTS

We will define the exponentiation of real number “0” (zero) to the power of a positive rational number “Q” (Q > 0) to be equal to “0” (zero), that is:

Q > 0 :

0Q = 0 . 

(3.6)

Note that:

• “00 ” is not defined; 

• “0Q ” is not defined for negative values of “Q”; 

• Equation (3.6) defines “0” (zero) to the power of a positive rational number such that it is isomorphic with “0” to the power of a positive integer [see eq. (2.81)]. 

We will define the exponentiation of a positive real number “R ” (R > 0) to the power of a rational number “Q = [ (Z, D) ] ” to be given by:



R > 0



√

D

Z

:

RQ ≡

R

. 

(3.7)

Q = [ (Z, D) ]

50

Limits and Derivatives of Real Functions for Physicists

Note that:

• “D” is a nonzero natural number, thus the root of order “D” of a positive real number will always exist; 

• The root of order “D” of a negative real number may or may not exist (depending on whether “D ” is odd or even); 

• The exponentiation of a negative real number to the power of a non-whole rational number is not defined; 

• The exponentiation of a nonnegative real number “R1” (R1 ≥ 0) to the power of a positive rational number “Q ” (Q > 0) always exists. 

We can prove that equation (3.7) defines the exponentiation of a positive real number “R1” 

(R1 > 0) to the power of a rational number “Q ” (RQ ) such that the resulting real number “R

1

2” 

(R2 = RQ ) is always the same regardless of the specific “

1

× 1” pair used to represent the rational

Z

N

number exponent “Q ”. Also, we can prove that the exponentiation of a positive real number “R ” 

(R > 0) to the power of a rational number is isomorphic to the exponentiation of the positive real number “R ” to the power of an integer [see eqs. (2.96) and (3.7)]. 

From the above discussions, we can prove the following properties: R > 1 :

Q1 = Q2 ⇐⇒ RQ1 = RQ2 ; 

(3.8)

R > 1 :

Q1 < Q2 ⇐⇒ RQ1 < RQ2 ; 

(3.9)

0 < R < 1 :

Q1 = Q2 ⇐⇒ RQ1 = RQ2 ; 

(3.10)

0 < R < 1 :

Q1 < Q2 ⇐⇒ RQ1 > RQ2 . 

(3.11)

3.4

REAL NUMBER SEQUENCES

In this section we will review real number sequences and some of their general properties that we will be applying to the definition of the exponentiation operation of a real number to the power of a real number exponent. For more detailed and thorough discussions on real number sequences the author directs the reader towards the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4]. 

3.4.1

IRRATIONAL NUMBERS

As discussed in 2.5.1, we can prove that not every point on the line is represented by a rational number. Thus the need for the set of real numbers that can represent all points on the line. As discussed in 2.5.6, the set of fractional real numbers “ ∗ ” (real numbers that can be expressed in the R

form “ [Q] ” [i.e., constant rational number sequences]) is isomorphic to the set of rational numbers

“ ”. Thus, as of 2.5.6, and throughout the rest of this book, we will not distinguish between the set Q

of fractional real numbers “ ∗ ” and the set of rational numbers “ ”. 

R

Q

Since rational numbers (fractional real numbers) cannot represent all the points of a line, it follows that there are non-fractional real numbers. Non-fractional real numbers may be referred to as irrational numbers. Thus, given an arbitrary real number, either it is a fractional real number (rational number) or it is a non-fractional real number (irrational number). 

In this book we will denote the set of irrational numbers with the symbol “ ” ( =

\ ∗). Note

I

I

R

R

that, since “0” is a rational number (fractional real number), an irrational number has to be either positive or negative. 
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As discussed in 3.2, in this chapter, we will denote irrational numbers (non-fractional real numbers) using the uppercase letter “I ”; will denote real numbers in general with the uppercase letter

“R ”; and will denote rational numbers with the uppercase letter “Q ”. 

We can thus consider a single irrational number and simply write, for example: I ; 

or we can consider two irrational numbers, by writing:

I1 ∧ I2 . 

√

A specific example of an irrational number is “ 2 ”. As discussed in “Real and Complex Numbers for Physicists” [3], there does not exist a rational number whose square is equal to two, that is:

¬(∃Q Q2 = 2) . 

√

Since “

2 ” is real number, and it is not rational number (not a fractional real number), it follows

√

that “ 2 ” is an irrational number (non-fractional real number). Thus we can write:

√

I = 2 . 

(3.12)

From the above discussions, we can prove that the sum of an irrational number and a rational number is always an irrational number, that is:

I + Q ∈ ; 

(3.13)

I

and we can also prove that the product of a nonzero rational number and an irrational number is always an irrational number, that is:

Q , 0 :

Q I ∈ . 

(3.14)

I

Additionally, we can prove that, given an arbitrary point “P ” on the line we can always find an irrational number that is arbitrarily close to “P ” (just like the case of rational numbers). 

3.4.2

CONVERGENT REAL NUMBER SEQUENCES

A real number sequence can be defined as a function from “ ” to “ ”. As discussed in 3.2, in this N

R

chapter, we will use the Greek letter “θ ” to denote real number sequences. In turn, “θ (n)” denotes the “nth ” value of the real number sequence “θ ”. If we wish to consider two real number sequences, we can write:

θ1, θ2 ; 

or write:

θ1(n), θ2(n) . 

Similar to the case of rational number sequences [cf. eq. (2.37)], we will define a convergent real number sequence through the following expression:

θ (n) is convergent ⇐⇒



n > N =⇒ R



∀

A ≤ θ (n) ≤ RB

R

. 

(3.15)

ε >0 ∃N,R

∀

A ,RB

n

RB − RA < Rε
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Note that:

• Not all real number sequences will converge at a point (i.e., not all real number sequences are convergent); 

• A convergent real number sequence is such that the points on the line represented by its values will be arbitrarily close to a given point “P ” (RB − RA < Rε) for arbitrarily high values of “n” (n > N). That is, a convergent real number sequence will “converge” at a given point “P ” on the line; 

• Given a real number sequence “θ (n)”, such that the values of the sequence will be arbitrarily close to a given real number “RL” for arbitrarily high values of “n”, the values of the “θ (n)” 

will also get arbitrarily close to each other for arbitrarily high values of “n” and therefore

“θ (n)” will be convergent. 

It follows that:

θ (n) is convergent ⇐⇒

∃R ∀

L

Rε >0 ∃N ∀n { n > N =⇒ | θ (n) − RL | < Rε } . 

(3.16)

Note that:

• We could have used equation (3.16) to define a convergent real number sequence [rather the eq. (3.15)]; however we used equation (3.15) to define convergent real number sequences in consistency with the definition of convergent rational number sequences [eq. (2.37)]; 

• We could not use an equation similar to equation (3.16) to define convergent rational number sequences, because although a convergent rational number sequence will always “converge” at a point “P ” of the line, and thus will always “converge” to a real number “R ” (that represents the point P), the real number “R ” may or may not be a rational number (i.e., R

could be an irrational number). 

Equivalent to the case of rational number sequences, a Cauchy real number sequence can be defined by:

θ (n) is Cauchy ⇐⇒

∀Rε>0 ∃N ∀m,n { m,n > N =⇒ |θ (m) − θ (n)| < Rε } . 

(3.17)

From the above discussions, we can prove the following property:

θ (n) is convergent ⇐⇒ θ (n) is Cauchy . 

(3.18)

From equation (3.16), we have that given a convergent real number sequence “θ (n)”, there will exist a real number “RL” such that “θ (n)” will become arbitrarily close to “RL” for arbitrarily high values of “n”. The number “RL” is referred to has the limit of the converging real number sequence

“θ (n)”. We can express that “RL” is the limit of real sequence “θ (n)” through the following notation: lim θ (n) = RL ; 

n→∞

that is:

lim θ (n) = RL ⇐⇒ ∀R

n→∞

ε >0 ∃N ∀n { n > N =⇒ | θ (n) − RL | < Rε } ; 

(3.19)

thus from equation (3.16) it follows that:

θ (n) is convergent ⇐⇒ ∃R lim θ (n) = R

L

L . 

(3.20)

n→∞
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From the above discussions, we can prove the following properties:



lim θ (n) = R



L



n→∞

 =⇒ ∃N,R ∀

B

n {n > N =⇒ θ (n) < RB < 0} ; 



R



L < 0



lim θ (n) = R



L



n→∞

 =⇒ ∃N,R ∀

A

n {n > N =⇒ 0 < RA < θ (n)} ; 



R



L > 0

lim θ (n) = 0 ⇐⇒ ∀R

n→∞

ε >0 ∃N ∀n { n > N =⇒ |θ (n)| < Rε } . 

We can define an upper-bounded real number sequence through the following expression: θ (n) is upper-bounded ⇐⇒ ∃R ∀

M

n θ (n) ≤ RM ; 

a value of “RM” that satisfies the condition on the right will be referred to as an “upper-bound of θ (n)”. In turn, we can define a lower-bounded real number sequence through the following expression:

θ (n) is lower-bounded ⇐⇒ ∃R ∀

M

n RM ≤ θ (n) ; 

a value of “RM” that satisfies the condition on the right will be referred to as a “lower-bound of θ (n)”. Also, if a given real number sequence is both upper-bounded and lower-bounded, it will be referred to simply as a bounded real number sequence. It follows that: θ (n) is bounded ⇐⇒ ∃R ∀

M

n |θ (n)| ≤ RM . 

Finally, from the above discussions, we can prove the following property: θ (n) is convergent =⇒ θ (n) is bounded . 

3.4.3

PROPERTIES OF LIMITS OF REAL SEQUENCES

From the above discussions, we can prove the following properties: lim RC = RC ; 

(3.21)

n→∞



lim θ



1(n) = RL1







n→∞







=⇒ lim θ1(n) + θ2(n) = RL1 + RL2 ; 

(3.22)

n→∞







lim θ2(n) = RL2 

n→∞





lim θ (n) = RL =⇒ lim −θ (n) = −RL ; 

(3.23)

n→∞

n→∞



lim θ



1(n) = RL1







n→∞







=⇒ lim θ1(n) − θ2(n) = RL1 − RL2 ; 

(3.24)

n→∞







lim θ2(n) = RL2 

n→∞
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

lim θ



1(n) = RL1







n→∞







=⇒ lim θ1(n)θ2(n) = RL1 RL2 ; 

(3.25)

n→∞







lim θ2(n) = RL2 

n→∞



lim θ



1(n) = RL1



n→∞



















R

=

θ

; 

(3.26)

L1 , 0

⇒ lim 2(n) = R−1

n→∞

L1







θ





1(n) = 0 =⇒ θ2(n) = 0









θ



1(n) , 0 =⇒ θ2(n) = θ −1(n)

1



lim θ



1(n) = RL1







n→∞





























lim θ2(n) = RL2





n→∞

 =⇒ lim θ3(n) = RL1/RL2 ; 

n→∞











R





L2 , 0













θ





2(n) = 0 =⇒ θ3(n) = 0









θ



2(n) , 0 =⇒ θ3(n) = θ1(n)/θ2(n)

(3.27)



lim θ



1(n) = RL







n→∞



















lim θ2(n) = RL

=⇒ lim θ3(n) = RL ; 

(3.28)

n→∞

n→∞























∀



n θ1(n) ≤ θ3(n) ≤ θ2(n)



θ (n) is convergent



=⇒ lim θ (n) ≤ R

∃

B ; 

(3.29)

N ∀n n > N =⇒ θ (n) ≤ RB

n→∞



θ (n) is convergent



=⇒ R

θ (n) . 

(3.30)

∃

A ≤ lim

N ∀n n > N =⇒ RA ≤ θ (n)

n→∞

We can define a monotonically increasing real sequence to be a real sequence such that the following term of the sequence is always greater than or equal to the previous term. That is: θ (n) is monotonically increasing

⇐⇒

∀n θ (n + 1) ≥ θ (n) . 

In turn, we can define a monotonically decreasing real sequence to be a real sequence such that the following term of the sequence is always less than or equal to the previous term. That is: θ (n) is monotonically decreasing ⇐⇒ ∀n θ (n + 1) ≤ θ (n) . 

Also, we will define a monotonic real sequence to be a real sequence that is either monotonically increasing or monotonically decreasing. Note that a real sequence of the form “θ (n) = RC” (i.e., a constant real sequence) is both monotonically increasing and monotonically decreasing. 
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From the above discussions, we can prove the following property:



θ (n) is monotonically increasing  =⇒ θ(n) is convergent. 

(3.31)

θ (n) is upper-bounded

Finally, since rational numbers can be seen as a subset of real numbers, it follows that (see 2.5.1): lim α(n) = [α(n)] . 

(3.32)

n→∞

3.4.4

ADDITIONAL PROPERTIES OF CONVERGENT REAL SEQUENCES

Moving towards defining the exponentiation of a real number to the power of a real number, we can prove the following properties:

n ≥ 2 :

Rn

1 − R n

2 = (R1 − R2) (R n−1 + R n−2 R1

+ Rn−1) ; 

1

1

2 + ... + R1

1 R n−2

2

2

n ≥ 2 :

Rn − 1 = (R − 1)(Rn−1 + Rn−2 + ... + R1 + 1) ; 



n , 0 

Rn − 1

:

R − 1 ≤

; 


R > 1

n



n , 0



1 − Rn

:

1 − R < 

; 

0 < R < 1

n Rn



n , 0 

√

n

R − 1

:

R − 1 ≤

; 

R > 1

n



n , 0



√

1 − R

:

1 − n R < 

. 

0 < R < 1

n R

Additionally, we can also prove that:



R > 0







θ (0) = 0

√

:

lim θ (n) = 1 . 

(3.33)

n→∞



n , 0 =⇒ θ (n) = n R 

Note that:

• The zeroth root of a real number is not defined; thus the need in equation (3.33) to define

“θ (0)” (i.e., the value of θ for n = 0) separately from all the other values of “n”; 

• In equation (3.33), assigning “θ (0)” the value of zero is arbitrary (we could have assigned

√

θ (0) any real number value, and while keeping the condition “n , 0 =⇒ θ (n) = n R” the limit would remain the same). A specific value was assigned to “θ (0)” in order to have a well-defined real number sequence. 

We can also prove that a positive real number (R > 0) to the power of a convergent rational sequence “α(n)” is a convergent real sequence. That is:



R > 0



=⇒ θ (n) is convergent . 

(3.34)

θ (n) = Rα(n)
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Note that in order for “θ (n) = Rα(n) ” to be a well-defined real number sequence, the expression

“Rα(n) ” must be a well-defined real number for any value of “n” for any convergent rational sequence “α(n)” (i.e., R to the power of any rational number must be well-defined). Thus “R ” must, in general, be a positive real number. 

Finally, we can prove that given a positive real number (R > 0) and a convergent-zero rational number sequence “α(n)”, the limit of the real sequence “Rα(n) ” is equal to “1” (one). That is: R > 0



=⇒ lim Rα(n) = 1 . 

(3.35)

α(n) is convergent-zero

n→∞

3.5

EXPONENTIATION WITH REAL NUMBER EXPONENTS

In this section we will define the exponentiation of a real number base to the power of a real number exponent, and will review general properties of exponentiation operation of real numbers with real number exponents. For more detailed and thorough discussions on the exponentiation of real numbers with real number exponents, the author directs the reader towards the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4]. 

3.5.1

DEFINITION OF THE EXPONENTIATION WITH

REAL NUMBER EXPONENTS

We will define the exponentiation of real number “0” (zero) to the power of a positive irrational number “I ” (I > 0) to be equal to “0” (zero), that is:

I > 0 :

0I = 0 . 

Note that:

• “0I ” is not defined for negative values of “I ”; 

• “0R ” is not defined for negative values of “R” (see 3.3.2); 

• “00 ” is not defined (see 3.3.2); 

• “0R ” is now defined for any positive real number (R > 0) [see eq. (3.6)]; that is:

“R > 0 :

0R = 0”. 

We will define the exponentiation of a positive real number “Rb” (Rb > 0) to the power of a real number exponent “Re = [ α(n) ] ” to be given by:



R



b > 0

α(n)

:

RRe

R

. 

(3.36)

R

b

≡ lim b

e = [α (n)]

n→∞

Note that:

• “Rb” is a positive real number, and thus “RQ ” is a well-defined real number for any value b

α(n)

of “Q” (see 3.3.2) [i.e., “R

” is a well-defined real number sequence]; 

b

•

α(n)

Since “α(n)” is a convergent rational number sequence, it follows that “R

” is conver-

b

α(n)

gent real number sequence [eq. (3.34)], thus the limit of “R

” is a well-defined real

b

number [eq. (3.20)]; 

• The exponentiation of a negative real number to the power of an irrational number is not defined; 

• In the case of a fractional real number as exponent, through isomorphism, the exponent can be considered a rational number; 
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• The exponentiation of a nonnegative real number “Rb” (Rb ≥ 0) to the power of a positive real number “Re” (Re > 0) always exists. 

We can prove that equation (3.36) defines the exponentiation of a positive real number “Rb > 0” 

to the power of a real number exponent “Re = [α(n)] ” (i.e., RRe) such that the result of the expo-b

nentiation operation “R3” (i.e., R3 = RRe) is always the same regardless of the specific convergent b

rational sequence “α(n)” used to represent the real number exponent “Re”, that is:

[α

[α1(n)]

[α2(n)]

1(n)] = [α2(n)] =⇒ R

= R

. 

b

b

Also, we can prove that the exponentiation of a positive real number to a real number exponent is isomorphic to the exponentiation of a positive real number to the power of a rational number exponent, that is:

f



[Q ] 

R

R(Q)

1 > 0 :

R2 = RQ

i.e., RQ = R

. 

1

⇐⇒ R2 = R1

1

1

From the above discussions, we can prove the following properties: Re > 0 :

0Re = 0 ; 

(3.37)

1Re = 1 ; 

(3.38)

Rb > 0 :

RRe > 0 . 

(3.39)

b

3.5.2

PROPERTIES OF THE EXPONENTIATION WITH

REAL NUMBER EXPONENTS

From the above discussions, we can prove the following properties: Rb > 0 :

RRe1 RRe2 = RRe1+Re2 ; 

(3.40)

b

b

b

RRe1

R

b

b > 0 :

= RRe1−Re2 ; 

(3.41)

b

RRe2

b

1

Rb > 0 :

R−Re =

; 

(3.42)

b

RRe

b



R



b1 > 0

:

(R

RRe ; 

(3.43)

R

b1 Rb2)Re = R Re

b1

b2

b2 > 0

1 Re

1

Rb > 0 :

=

; 

(3.44)

Rb

RRe

b



R





Re

RRe

b1 > 0

R

:

b1

= b1 . 

(3.45)

Rb2 > 0

Rb2

RRe

b2
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Additionally, we can prove the following properties:



n

Rb > 0 :

RRe

= RRe n ; 

b

b



Z

Rb > 0 :

RRe

= RRe Z ; 

b

b



R



q

b > 0

n

R

:

RRe = R e/n ; 

n > 0

b

b



Q

Rb > 0 :

RRe

= RRe Q . 

b

b

We can also prove the following properties:

Rb > 1 :

R1 < R2 ⇐⇒ RR1 < RR2 ; 

(3.46)

b

b

Rb > 1 :

R1 = R2 ⇐⇒ RR1 = RR2 ; 

(3.47)

b

b

0 < Rb < 1 :

R1 < R2 ⇐⇒ RR1 > RR2 ; 

(3.48)

b

b

0 < Rb < 1 :

R1 = R2 ⇐⇒ RR1 = RR2 ; 

(3.49)

b

b

θ (n)

Rb > 0 :

lim θ (n) = 0 =⇒ lim R

= 1 ; 

(3.50)

n→∞

n→∞ b

θ (n)

Rb > 0 :

lim θ (n) = RL =⇒ lim R

= RRL ; 

(3.51)

n→∞

n→∞ b

b



Re2

Rb > 0 :

RRe1

= RRe1Re2 . 

(3.52)

b

b

3.6

“E” AND THE EXPONENTIAL FUNCTION

In this section we will review the binomial theorem. We will then define the geometric series

“θgeom(Rc, Rr, n)”. We will define the real sequences “θle(n) and θge(n)”. Then we will review some properties of real sequences “θle(n)” and “θge(n)”. We will then define the real number “e”, and define the exponential function “exp(R )”. Then will review general properties of the exponential function. For more detailed and thorough discussions on the binomial theorem, geometric series, real sequences “θle(n)” and “θge(n)”, the number “e”, and the exponential function “exp(R)”, the author directs the reader towards the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4]. 

3.6.1

THE BINOMIAL THEOREM

From the previous discussions, we can prove that (the binomial theorem): n ≥ 1 :

n

n(n − 1)

(Ra + Rb)n = Rna + Rn−1

Rn−2

1 a

R1b +

1 · 2

a

R2

b + ... 

n(n − 1)... (n − [m − 1])

+

Rn−m

+ ... 

1 · 2 · ... · m

a

Rm

b

n(n − 1)... 2

n(n − 1)... 1

+

R1

+

Rn . 

1 · 2 · ... · (n − 1) a Rn−1

b

1 · 2 · ... · n

b
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3.6.2

GEOMETRIC SERIES

A geometric series may be defined as a real number sequence “θ (n) = θgeom(Rc, Rr, n)” that depends on the two real number parameters “Rc” and “Rr”, such that:

θ (n) = θgeom(Rc, Rr, n) ⇐⇒

n = 0 :

θ (n) = R



c

(= θ (0))



; 



n ≥ 1 :

θ (n) = Rc + RcR1r + RcR2r + ... + RcRnr

where the real number “Rc” [ θ (0) ] is referred to as the “coefficient” of the geometric series and the real number “Rr” is referred to as the “ratio” of the geometric series. Note that:

• Given specific values of the two real parameters “Rc” and “Rr”, the symbol

“θgeom(Rc, Rr, n)” defines a unique geometric series (and thus defines a unique real sequence). 

From the above discussions, we can prove the following properties: θgeom(Rc, Rr, n) = Rc θgeom(1, Rr, n) ; 

θgeom(1, 1, n) = n + 1 ; 

1 − Rn+1

R

r

r , 1 :

θgeom(1, Rr, n) =

; 

1 − Rr

1

0 < Rr < 1 :

θgeom(1, Rr, n) < 

; 

1 − Rr

m

m ≥ 2 :

θgeom(1, 1/m, n) < 

. 

m − 1

3.6.3

REAL SEQUENCES θLE (N) AND θGE (N)

Following the notation used in the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4], we will define the real number sequence “θle(n)” through the following expression:

n = 0 :

θ



le(n) = 1







. 



1 n





n ≥ 1 :

θle(n) = 1 +



n

Note that:

θle(0) = 1 ; 
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1 1

θle(1) = 1 +

= 2 ; 

1



1 2

9

θle(2) = 1 +

=

( θle(2) = 2.25 ) ; 

2

4



1 3

64

θle(3) = 1 +

=

( 2.3703703 < θle(3) < 2.3703704 ) ; 

3

27



1 4

625

θle(4) = 1 +

=

( θle(4) = 2.44140625 ) ; 

4

256

and so on and so forth ... . 

From the above discussions, applying the binomial theorem (see 3.6.1), we can prove the following two properties:

n ≥ 1 :









1

1 1 − 1

1 1 − 1 ... 1 − (m−1)

n

n

θ

n

le(n) = 1 +

+

+ ... +

+ ... 

1

1 · 2

1 · 2 · ... · m









1 1 − 1 ... 1 − (n−2)

1 1 − 1  ... 1 − (n−1)

n

n

n

n

+

+

; 

1 · 2 · ... · (n − 1)

1 · 2 · ... · n

θle(n + 1) > θle(n) . 

Note that from the last equation, and considering 3.4.3, it follows that: θle(n) is monotonically increasing ; 

we can also prove the following property:

1

1

1

1

n ≥ 2 :

θle(n) < 1 + +

+ ... +

+ ... +

. 

1

1 · 2

1 · 2 · ... · m

1 · 2 · ... · n

Following the notation used in the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4], we will define the real number sequence “θge(n)” through the following expression:

n = 0 :

θge(n) = 4





















1

1 + 1





n = 1 :

θge(n) = 1 +





1

1







. 



1

1

1







+

+ ... +

n ≥ 2 :

θge(n) = 1 +





1

1 · 2

1 · 2 · ... · (n − 1)





















1

n + 1





+



1 · 2 · ... · n

n

Note that:

θge(0) = 4 ; 
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1  1 + 1 

θge(1) = 1 +

= 3 ; 

1

1

1

1  2 + 1

11

θge(2) = 1 + +

=

( θge(2) = 2.75 ) ; 

1

1 · 2

2

4

1

1

1

3 + 1

49

θge(3) = 1 + +

+

=

1

1 · 2

1 · 2 · 3

3

18

( 2.7222222 < θge(3) < 2.7222223 ) ; 

1

1

1

1

4 + 1

87

θge(4) = 1 + +

+

+

=

1

1 · 2

1 · 2 · 3

1 · 2 · 3 · 4

4

32

( θge(4) = 2.71875 ) ; 

and so on and so forth ... . 

From the above discussions, we can prove the following two properties: n > m :

θle(n) < θge(m) ; 

θle(n) < θge(m) . 

Note that from the last equation, one finds that [see 3.4.2)]: θle(n) is upper-bounded; 

also note that we can find an upper-bound of “θle(n)” by evaluating the real sequence “θge(m)” for any value of “m”. It then follows that [see eq. (3.31)]:

θle(n) is convergent . 

3.6.4

DEFINITION OF THE NUMBER “E” 

The real number “e” can be defined through the equation:

e ≡ lim θle(n) ; 

n→∞

that is (see 3.6.3):



1 n

e ≡ lim 1 +

. 

(3.53)

n→∞

n

Note that since the sequence “θle(n)” is convergent, it follows that the limit of “θle(n)” exists

[eq. (3.20)], and that therefore “e” is well-defined as a real number through the last equation. 

From the above discussions, we can prove the following property:

θle(n) ≤ e ≤ θge(m) ; 

and, in turn, we can also prove the following property:

2 ≤ e ≤ 3 . 

(3.54)
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3.6.5

DEFINITION AND PROPERTIES OF THE EXPONENTIAL FUNCTION

The exponential function “exp(R )” (exp :

→ +; with “ +” denoting the set of all positive real

R

R

R

numbers) may be defined by the following equation:

exp(R ) ≡ eR . 

(3.55)

Note that:

• The exponential function is defined through the real number exponentiation operation, with specifically the base “e” to the power of a real number exponent; 

• Any positive real number “Rb” can serve as the base of an exponential-type function

“ f (R ) = RR ”, and any positive real number other than “ 1” (one) can serve as the base b

of an exponential-type function with a well-defined inverse function; 

• A motivation for selecting the real number “e” as the base of the exponential function

“exp(R )”, is that when one applies differential calculus to exponential-type functions (we will study differential calculus [calculation of derivatives] in later chapters of this book) in general the simplest derivative properties of exponential-type functions “ f (R ) = RR ” are b

found when the base is the real number “e” (i.e., when Rb = e). 

From the above discussions, we can prove the following properties: R1 = R2 ⇐⇒ exp(R1) = exp(R2) ; 

(3.56)

R1 < R2 ⇐⇒ exp(R1) < exp(R2) ; 

(3.57)

exp(0) = 1 ; 

(3.58)

exp(1) = e ; 

(3.59)

exp(R1 + R2) = exp(R1) exp(R2) ; 

(3.60)

exp(R1)

exp(R1 − R2) =

; 

(3.61)

exp(R2)

1

exp(−R ) =

; 

(3.62)

exp(R )



R2

exp(R1)

= exp(R1R2) ; 

(3.63)

lim θ (n) = RL =⇒ lim exp(θ (n)) = exp(RL) . 

(3.64)

n→∞

n→∞

3.7

LOGARITHMIC FUNCTIONS

In this section we will define logarithmic functions. We will then review general properties of logarithmic functions. Then we will define the natural logarithmic function. We will then review general properties of the natural logarithmic function. 
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3.7.1

DEFINITION AND PROPERTIES OF LOGARITHMIC FUNCTIONS

Logarithmic functions “log

+

+

R (R )” (log

:

→ ; with “

” denoting the set of all positive real

R

R

R

b

Rb

numbers) may be defined through the following expression:



R



b > 0

:

log (R

. 

(3.65)

R

R

1) = R2 ⇐⇒ R1 = R R2

b

b , 1

b

Note the following:

• The logarithmic function of base “Rb” [logR (R)] is the inverse function of an exponential-b

type function of the same base “Rb” (i.e.,“logR (R )” is the inverse function of b

“ f (R ) = RR ”); 

b

• Since “1R = 1” [eq. (3.38)], it follows that the function “ f (R) = 1R ” does not have a well-defined inverse function (since “ 1R ” is constant); 

• Logarithmic functions are defined for any positive real base “Rb > 0” except for “Rb = 1” 

(one). “log1(R )” is not defined; 

• Since “RR > 0” [with R

b

b > 0 and Rb , 1; see eq. (3.39)], it follows from equation (3.65) that the value of the logarithmic function “logR (R1)” (with Rb > 0 and Rb , 1) for a nonpositive b

argument (R1 ≤ 0) never exists; 

• Considering equations (3.47) and (3.49), if the value of logarithmic function “log (

R

R1)” 

b

exists (with Rb > 0 and Rb , 1), it is unique. 

Additionally, we can also prove that the value of the logarithmic function “logR (R1)” (with Rb > 0

b

and Rb , 1) for a positive argument (R1 > 0) always exists. 

From the above discussions, we can prove the following properties:



R



b > 0





logR (R )

R

b

b , 1

:

R

= R ; 

(3.66)

b



R > 0 



R



b > 0

:

log

RR  = R ; 

(3.67)

R

R

b

b , 1

b



R



b > 0

:

log (1) = 0 ; 

(3.68)

R

R

b , 1

b



R



b > 0

:

log (R

R

R

b) = 1 ; 

(3.69)

b , 1

b



R



b > 0











R



b , 1

:

log (R

(R

(R

R

R

1R2) = logR

1) + logR

2) ; 

(3.70)

1 > 0

b

b

b











R



2 > 0



R



b > 0









1

Rb , 1

:

logR

= −log (R) ; 

(3.71)

b

R

Rb



R > 0 
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

R



b > 0











R



b , 1

:

log (R

(R

(R

R

R

1/R2) = logR

1) − logR

2) ; 

(3.72)

1 > 0

b

b

b











R



2 > 0



R



b > 0









Rb , 1

:

logR

RR2

= R2 log (R1) ; 

(3.73)

b

1

Rb



R



1 > 0



R



b > 0











R



b , 1

:

R

(R

(R

R

1 = R2 ⇐⇒ logR

1) = logR

2) ; 

(3.74)

1 > 0

b

b











R



2 > 0



R



b > 1





R1 > 0

:

R1 < R2 ⇐⇒ logR (R1) < log (R2) ; 

(3.75)

b

Rb



R



2 > 0



0 < R



b < 1





R1 > 0

:

R1 < R2 ⇐⇒ logR (R1) > log (R2) . 

(3.76)

b

Rb



R



2 > 0

Additionally, we can prove that:



R



b1 > 0















Rb1 , 1 





logR (R )

R

b1

b2 > 0

:

logR (R ) =

. 

b2

log

(R





R

b2)



Rb2 , 1 

b1











R > 0



3.7.2

DEFINITION AND PROPERTIES OF

THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function “ln(R )” (ln :

+ → ; with “ +” denoting the set of all positive

R

R

R

real numbers) may be defined through the following expression:

R > 0 :

ln(R ) ≡ loge(R ) . 

(3.77)

Note that:

• The natural logarithmic function “ln(R)” is well-defined for any positive real number argument “R > 0”; 

• The natural logarithmic function “ln(R)” is defined as the logarithmic function of specifically the base “e”; 
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• A motivation for denoting the function “ln(R)” as the natural logarithmic function is that on one hand it is the inverse function of the exponential function, and on the other hand, when one applies differential calculus to logarithmic functions (we will study differential calculus [calculation of derivatives] in later chapters of this book), in general the simplest derivative properties of logarithmic functions “ f (R ) = logR (R )” are found when the base b

is the real number “e” (i.e., when Rb = e). 

From the above discussions, we can prove the following properties: R > 0 :

exp(ln(R )) = R ; 

(3.78)

ln(exp(R )) = R ; 

(3.79)

ln(1) = 0 ; 

(3.80)

ln(e) = 1 ; 

(3.81)



R



1 > 0

:

ln(R

R

1R2) = ln(R1) + ln(R2) ; 

(3.82)

2 > 0

1 

R > 0 :

ln

= −ln(R) ; 

(3.83)

R



R







1 > 0

R1

:

ln

= ln(R

R

1) − ln(R2) ; 

(3.84)

2 > 0

R2





R1 > 0 :

ln

RR2

= R

1

2 ln(R1) ; 

(3.85)



R



1 > 0

:

R

R

1 = R2 ⇐⇒ ln(R1) = ln(R2) ; 

(3.86)

2 > 0



R



1 > 0

:

R

R

1 < R2 ⇐⇒ ln(R1) < ln(R2) ; 

(3.87)

2 > 0

Rb > 0 :

RR

b = exp(R ln(Rb)) ; 

(3.88)



R



b > 0





ln(R )

Rb , 1

:

logR (R ) =

. 

(3.89)

b

ln(R



R > 0 

b)
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Note that:

• From equation (3.88), it follows that any exponential-type function “ f (R) = RR ” (with b

Rb > 0), can be expressed in terms of the exponential function “exp(R )”; 

• From equation (3.89), it follows that any logarithmic function “logR (R)” (with Rb > 0 and b

Rb , 1), can be expressed in terms of the natural logarithmic function “ln(R )”. 

3.8

EXAMPLES

Exponentiation, real sequences, the exponential function “ exp(x) = ex ”, and its corresponding inverse function the natural logarithmic function “ln(x)” are found throughout physics. For example, in statistical mechanics, the entropy “S ” for a discrete system at equilibrium may be defined by: S = k ln(Ωeq) ; 

(3.90)

where “k” is a physical constant (the Boltzmann constant) and “Ωeq” is the number of possible microstates states of the system given the current thermodynamic macrostate of the system. Through mathematical analysis one finds that the entropy “S ”, as defined in statistical mechanics through equation (3.90), is equivalent to the entropy “S ” as defined through experimental observations in thermodynamics. This leads one to be able to derive, from first principles through statistical mechanics [and through eq. (3.90); and through the properties of the exponential and natural logarithmic functions] many thermodynamic properties that were initially found through experimental observations, significantly increasing our understanding of many physical systems. Therefore, the natural logarithmic function “ln(x)” becomes a fundamental mathematical object in physics. 

The natural logarithmic function may be defined as the inverse function of the exponential function. We thus are are lead to define the exponential function. In turn the exponential function may be defined as the real number “e” to the power of the argument (the real number x). We are then lead to define the real number “e” and also to define the exponentiation operation of a real number to the power of a real exponent. The real number “e” and the exponentiation of a real number to the power of real numbers may in turn be defined, and their properties derived, from real number sequences and from the exponentiation of a real to the power of rational numbers. 

Therefore, real number sequences and the exponentiation of a real number to the power of a rational number, in playing a key role in the definition and in the derivation of properties of the exponentiation operation of a real number with real number exponents, of the exponential function

“ exp(x) = ex ”, and of the natural logarithmic function “ln(x)”, may be key in the definition and analysis of fundamental physical quantities. 
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4 Review of Trigonometric

Functions

4.1

INTRODUCTION

Trigonometric functions are fundamental in physics and found throughout physics. Trigonometric functions in turn may be defined through the “trigonometric circle” in analytic planar geometry. 

Analytic planar geometry is the study of planar geometry through the application of coordinate systems. Planar geometry is the study of geometry when only points and geometric figures in a given plane are considered. We are thus lead to discuss geometry, planar geometry, analytic planar geometry, and trigonometry. 

In this chapter we will introduce the axioms and axiomatic definitions of geometry used in this book, we will discuss geometric properties of points and geometric figures in a plane (planar geometry). We will then introduce basic definitions in the analytic planar geometry. Through analytic planar geometry, we will then define the trigonometric functions “cos(x)”, “sin(x)”, and “tan(x)”, and review some general properties of trigonometric functions. 

4.2

NOTATION

In this chapter, and throughout the rest of the book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “P” and uppercase letter “P” with index “P1”, “P2”, ... are used to denote points in space; 

• Two points “P1P2”, “P3P4”, ... are used to denote the distance in between the two corresponding points; 

• Uppercase letter “G” and uppercase letter “G” with index “G1”, “G2”, ... are used to denote geometric figures (sets of points); 

• Uppercase letter “G” with index “Pl ”: “GPl”, “GPl1”, “GPl2”, ... are used to denote planes; 

• Uppercase letter “G” with index “Ln”: “GLn”, “GLn1”, “GLn2”, ... are used to denote lines (straight lines); 

←−−→

←−−→

• Two distinct points with a left-right-arrow accent: “ P1P2 ”, “ P3P4 ”, ... (with “P1 , P2”, 

“P3 , P4”, ...) are used to denote the lines that pass through the respective two distinct points; 

• Uppercase letter “G” with index “Ry”: “GRy”, “GRy1”, “GRy2”, ... are used to denote rays; 

−−−→

−−−→

• Two distinct ordered points with a right-arrow accent: “ P1P2 ”, “ P3P4 ”, ... (with “P1 , P2”, 

“P3 , P4”, ...) are used to denote the rays that start at the first point and that passes through the second point; 

• Symbol “∠” and symbol “∠” with index: “∠1”, “∠2”, ... are used to denote angles; 67
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• Symbol “∡” and symbol “∡” with index: “∡1”, “∡2”, ... are used to denote the measure of angles; 

• Greek letters “α”, “β ”, and “γ ” will be used to denote real numbers that correspond to angle measurements; 

• Uppercase letter “G” with index “Sg”: “GSg”, “GSg1”, “GSg2”, ... are used to denote segments; 

• Two distinct points with a bar accent: “P1P2 ”, “P3P4 ”, ... are used to denote the segments whose end points are the respective two points. 

4.3

ELEMENTS OF GEOMETRY

Geometry is the study of points and sets of points. In this book a set of points will be referred to as a geometric figure. In this section we will introduce the axioms and axiomatic definitions of geometry used in this book. 

4.3.1

POINTS AND GEOMETRIC FIGURES

In this book we will take the definition of points to be axiomatic; that is, we will take the existence of points to be self-evident. Intuitively, a point represents a “specific location in space” (see figure 4.1). 

We will denote, in this book, the set of all points with the symbol “ ”: S

is the set of all points ; 

(4.1)

S

and will refer to the set “ ” as space. In this book, we will also take as an axiom that there are S

infinite points in space, that is:

contains infinite points . 

S

Figure 4.1 Points in space. 

We will state that two points “P1” and “P2” are equal if and only if they are the same point, that is:

P1 = P2 ⇐⇒ P1 and P2 are the same point . 

We will state that two points “P1” and “P2” are distinct if they are two different points, that is: P1 and P2 are distinct ⇐⇒ P1 , P2 . 
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We will take as an axiomatic that given two distinct points “P1” and “P2”, we can always determine a positive real number that we will refer to as the distance in between the two points, and that we will denote with the expression “dist(P1,P2)”; that is:

P1 , P2 :

the distance between P1 and P2 = dist(P1, P2) ; 

P1 , P2 :

dist(P1, P2) > 0 . 

We will take as an axiom that:

P1 , P2 :

dist(P1, P2) = dist(P2, P1) . 

In this book, we will define the distance between a given point “P1” and itself to be “0” (zero), that is:

dist(P1, P1) ≡ 0 . 

From the previous paragraph, it follows that:

dist(P1, P2) ≥ 0 ; 

(4.2)

additionally, it also follows that:

dist(P1, P2) = dist(P2, P1) ; 

and it also follows that:

dist(P1, P2) = 0 ⇐⇒ P1 = P2 . 

(4.3)

To simplify notation, when considering the distance between two points “P1” and “P2” 

[i.e., “dist(P1,P2)”], we will more simply write “P1P2”; that is: P1P2 ≡ dist(P1, P2) . 

(4.4)

As stated above, in this book, we will define a geometric figure to be a set of points; and, as stated in 4.2, we will denote geometric figures with the uppercase letter “G ”. Similar to case of points, we will state that two geometric figures “G1” and “G2” are distinct if they are two different sets of points, that is:

G1 and G2 are distinct ⇐⇒ G1 , G2 . 

We will state that a point “P ” is in a geometric figure “G ” if and only if the point “P ” is an element of set “G ”, that is:

P is in G ⇐⇒ P ∈ G . 

If a point “P ” is in a geometric figure “G ”, then we will also state that the geometric figure “G ” 

passes through the point “P ”; that is:

G passes through P ⇐⇒ P ∈ G . 

We will state that two geometric figures “G1” and “G2” intersect if and only if there exists at least one point “P ” that is in both geometric figures, that is:

G1 and G2 intersect ⇐⇒ G1 ∩ G2 , /0 . 
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We will state that two geometric figures “G1” and “G2” intersect at point “P” if and only if the point

“P ” is in both geometric figures, that is:

G1 and G2 intersect at P ⇐⇒ (P ∈ G1) ∧ (P ∈ G2) . 

We will state that a geometric figure “G1” is in a geometric figure “G2” if and only if the geometric figure “G1” is a subset of geometric figure “G2”, that is: G1 is in G2 ⇐⇒ G1 ⊂ G2 . 

Additionally, we will state that a geometric figure “G2” contains a geometric figure “G1” if and only if the geometric figure “G1” is a subset geometric figure “G2”, that is: G2 contains G1 ⇐⇒ G1 ⊂ G2 . 

4.3.2

PLANES AND LINES

In this book we will take the definition of planes to be axiomatic; that is, we will take the existence of planes to be self-evident. Intuitively, a plane represents a “flat surface that extends indefinitely in all its directions” (see figure 4.2). We will take as an axiom that there are infinite planes in space, that is:

contains infinite planes ; 

S

we will also take as an axiom that:

a plane GPl contains infinite points . 

Figure 4.2 A point “P ” and a plane “GPl1” in space; additionally a second plane “GPl2” that passes through point “P ” and is parallel to plane “GPl1”. 

Given two distinct planes “GPl1” and “GPl2”, we will state that they are parallel to each other if and only if they do not intersect (see figure 4.2). We will denote that two planes “GPl1” and “GPl2” 

are parallel through the expression “GPl1 k GPl2”; that is:

GPl1 , GPl2 :

GPl1 k GPl2 ⇐⇒ GPl1 ∩ GPl2 = /0 . 
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Additionally, in this book, we will state by definition, that a given plane “GPl” is parallel to itself; that is:

GPl k GPl . 

Note that from the last two equations it follows that:

GPl1 k GPl2 ⇐⇒ (GPl1 = GPl2) ∨ (GPl1 ∩ GPl2 = /0) ; 

(4.5)

and also that:

GPl1 k GPl2 ⇐⇒ GPl2 k GPl1 . 

In this book, we will take as an axiom that the transitivity condition holds for the parallel relation

“k” for planes; that is:

(GPl1 k GPl2) ∧ (GPl2 k GPl3) =⇒ (GPl1 k GPl3) . 

(4.6)

We will also take as axiom that:

given a point P and a plane GPl1, 

there exists one and only one plane GPl2 such that

GPl2 passes through P and GPl2 is parallel to GPl1 ; 

(4.7)

(see figure 4.2). Note that if “P ” is in “GPl1”, the one and only one plane that passes through “P” 

and is parallel to “GPl1” is the plane “GPl1” itself. 

We will state that a collection of points “P1”, “P2”, ... , “Pn” are coplanar if there exists a plane

“GPl” such that all the points are in “GPl”; that is:

P1, P2, ... , Pn are coplanar ⇐⇒ ∃G P

Pl

1, P2, ..., Pn ∈ GPl . 

We will refer to a geometric figure “G1” as a “plane geometric figure” if there exists a plane “GPl” 

such that the geometric figure “G1” is in “GPl”; that is:

G1 is a plane geometric figure ⇐⇒ ∃G G

Pl

1 ⊂ GPl . 

We will state that a collection of plane geometric figures “G1”, “G2”, ..., “Gn” are coplanar if there exists a plane “GPl” such that all the plane geometric figures are subsets of “GPl”; that is: G1, G2, ... , Gn are coplanar ⇐⇒ ∃G G

Pl

1, G2, ..., Gn ⊂ GPl . 

Finally, we will state that a collection of points “P1”, “P2”, ... , “Pn” and a collection of plane geometric figures “G1”, “G2”, ... , “Gn” are coplanar if there exists a plane “GPl” such that all the points and all geometric figures are in the plane “GPl”; that is: P1, P2, ..., Pn and G1, G2, ... , Gm are coplanar ⇐⇒

∃G (P

Pl

1, P2, ..., Pn ∈ GPl ) ∧ (G1, G2, ..., Gm ⊂ GPl ) . 

In this book we will take the definition of lines to be axiomatic; that is, we will take the existence of lines to be self-evident. Intuitively, a line represents a “straight line that extends indefinitely in both directions” (see figure 4.3). We will take as an axiom that for any given plane “GPl”, the plane

“GPl” contains infinite lines; that is:

given a plane GPl, 

there are infinite lines that are in the plane GPl ; 
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←−−→

Figure 4.3 Two distinct points “P1” and “P2”; additionally line “GLn = P1P2 ” that passes through both “P1” 

and “P2”. 

we will also take as an axiom that:

a line GLn contains infinite points . 

In this book, we will take as an axiom that given two distinct points “P1” and “P2”, there exists one and only one line “GLn” that passes through both points “P1” and “P2”; that is: (∃G P1,P2 ∈ GLn

P

Ln

1 , P2 :

; 

(4.8)

(P1, P2 ∈ GLn1) ∧ (P1,P2 ∈ GLn2) =⇒ GLn1 = GLn2

(see figure 4.3). Note that it follows from equation (4.8) that if two distinct lines intersect, they will intersect at one and only one point (see figure 4.4), that is: GLn1 , GLn2 :

GLn1 ∩ GLn2 , /0 =⇒ ∃P GLn1 ∩ GLn2 = {P} . 

Figure 4.4 Two distinct intersecting lines “GLn1” and “GLn2”; additionally the point “P ” where “GLn1” and

“GLn2” intersect at. 

Given that two distinct points “P1” and “P2” determine a unique line [eq. (4.8)]; we will denote

←−−→

the line that passes through both points with the symbol “ P1P2 ”. That is:

←−−→

P1 , P2 :

P1, P2 ∈ GLn ⇐⇒ GLn = P1P2 ; 

(4.9)

(see figure 4.3). We will state that a collection of points “P1”, “P2”, ... , “Pn” are collinear if there exists a line “GLn” such that all the points are in “GLn”; that is: P1, P2, ... , Pn are collinear ⇐⇒ ∃G P

Ln

1, P2, ..., Pn ∈ GLn . 
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In this book, we will take as an axiom that given three non-collinear points “P1”, “P2”, and “P3”, there exists one and only one plane “GPl” that passes through all three points (see figure 4.5); that is:

P1, P2, P3 are non-collinear :

(∃G P

Pl

1, P2, P3 ∈ GPl

. 

(4.10)

(P1, P2, P3 ∈ GPl1) ∧ (P1,P2,P3 ∈ GPl2) =⇒ GPl1 = GPl2

Additionally, we will take as an axiom that the intersection of two non-parallel planes “GPl1” and

“GPl2” (¬[GPl1 k GPl2]) is a line “GLn” (see figure 4.6); that is:

¬(GPl1 k GPl2) =⇒ ∃G G

Ln

Pl1 ∩ GPl2 = GLn . 

(4.11)

Figure 4.5 A plane “GPl”; additionally three non-collinear points “P1”, “P2”, and “P3” that are in plane

“GPl”. 

Given two distinct lines “GLn1” and “GLn2”, we will state that they are parallel to each other if and only if they are coplanar and they do not intersect (see figure 4.7). We will denote that two lines

“GLn1” and “GLn2” are parallel through the expression “GLn1 k GLn2”; that is: GLn1 , GLn2 :

GLn1 k GLn2 ⇐⇒ (∃G G

Pl

Ln1, GLn2 ⊂ GPl ) ∧ (GLn1 ∩ GLn2 = /

0) . 

Additionally, in this book, we will state by definition, that a given line “GLn” is parallel to itself; that is:

GLn k GLn . 

Note that from the last two equations it follows that:

GLn1 k GLn2 ⇐⇒

(GLn1 = GLn2) ∨ ∃G G

Pl

Ln1, GLn2 ⊂ GPl ∧ GLn1 ∩ GLn2 = /

0 ; 

(4.12)

and also that:

GLn1 k GLn2 ⇐⇒ GLn2 k GLn1 . 

In this book, we will take as an axiom that:

given a point P and a line GLn1, 

there exists one and only one line GLn2 such that

GLn2 passes through P and GLn2 is parallel to GLn1 ; 

(4.13)
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Figure 4.6 Two non-parallel planes “GPl1” and “GPl2”; additionally line “GLn” that is the intersection of the two planes “GPl1” and “GPl2”. 

(see figure 4.7). Note that if “P ” is in “GLn1”, the one and only one line that passes through “P ” 

and is parallel to “GLn1” is the line “GLn1” itself. We will also take as an axiom that the transitivity condition holds for the parallel relation “k” for lines; that is: (GLn1 k GLn2) ∧ (GLn2 k GLn3) =⇒ (GLn1 k GLn3) . 

(4.14)

Note that “(GLn1 k GLn2) ∧ (GLn2 k GLn3)” does not necessarily imply that “GLn1,GLn2, and GLn3

are coplanar”. 

Figure 4.7 A point “P ” and a line “GLn1” in space; additionally a second line “GLn2” that passes through point “P ” and is parallel to line “GLn1”. 

4.3.3

RAYS AND ANGLES

In this book we will take the definition of rays to be axiomatic; that is, we will take the existence of rays to be self-evident. Intuitively, a ray represents a “part of a line that has a starting point and that extends indefinitely in one direction” (see figure 4.8). 

We will take as an axiom that:

a ray GRy contains infinite points . 
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−−−→

Figure 4.8 Four distinct points “P1”, “P2”, “P3”, and “P4”; additionally the two rays “GRy1 = P1P2 ” and

−−−→

“GRy4 = P4P3 ”. 

Additionally, we will take as an axiom that (see figure 4.8): given two distinct ordered points P1 and P2, 

there exists one and only one ray GRy such that

P1 is the starting point of GRy and GRy passes through point P2 . 

(4.15)

Given that two distinct ordered points “P1” and “P2” determine a unique ray [eq. (4.15)]; we will denote the ray that has as starting point “P1” and that passes through point “P2” with the symbol

−−−→

“ P1P2 ”. That is:

P1 , P2 :

−−−→

(P1 is the starting point of GRy) ∧ (P2 ∈ GRy) ⇐⇒ GRy = P1P2 . 

(4.16)

In this book we will also take as axiomatic that (see figure 4.8):

−−−→

−−−→

P1 , P2 :

P1P2 , P2P1 . 

(4.17)

In this book we will take the definition of angles to be axiomatic; that is, we will take the existence of angles to be self-evident. Intuitively, an angle represents “one of the two rotations in between two given rays that have the same starting point”. We will also take as axiomatic that (see

figure 4.9):

two rays that have the same starting point determine

two angles ∠1 and ∠2 . 

In this book we will take as axiomatic that every angle “∠ ” determines a nonnegative real number that we will refer to as the measure of the angle, and that we will denote it with the expression

“msr(∠)”; that is:

the measure of angle ∠ = msr(∠) ; 

msr(∠) ≥ 0 . 

In order to simplify notation, and as stated in 4.2, in this book we will denote the measure of an angle “∠ ” with the symbol “∡ ”; that is:

∡ = msr(∠) . 

(4.18)
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−−−→

−−−→

Figure 4.9 Two rays “ P0P1 ” and “ P0P2 ” that have the same starting point “P0”; additionally the two angles

“∠1” and “∠2” determined by the two rays. 

In this book we will take as an axiom that the two angles determined by a ray GRy and itself (see

figure 4.10) have respectively a measure of “0” (zero) and a measure equal to a positive real number that in this book we will refer to as “φ ft ” (φ ft > 0; φ ft is equal to the measure of one “full turn” or one “complete rotation”); that is:

(GRy and GRy determine angles ∠1 and ∠2) ∧ (∡1 ≤ ∡2) =⇒

(∡1 = 0) ∧ (∡2 = φft) . 

(4.19)

Figure 4.10 A ray “GRy” with starting point “P0”; additionally the angle “∠2” that is one of the two angles determined by the ray “GRy” and itself; note that “∡2 = φ ft ”. 

The specific value given to the positive real number “φ ft ” is arbitrary and it depends on the angular units used. The most commonly used value for “φ ft ” across different disciplines, and also used in physics, is “360” (i.e., three hundred and sixty degrees). In physics another commonly used angular unit is the radian. In this book we will use the angular units of radians. We will define the angular units of radians in 4.4.3. At this point, “φ ft ” (“full turn”) is a positive real number whose value will be established later in 4.4.3. 

In this book we will take as an axiom that the measure of an angle is always less than or equal to

“φ ft ”. Therefore, it follows that:

0 ≤ ∡ ≤ φft . 

(4.20)
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Considering the measures of angles, angles can be classified according to the following conditions:

∠ is a zero angle ⇐⇒ ∡ = 0 ; 

∠ is an acute angle ⇐⇒ 0 < ∡ < φ ft /4 ; 

∠ is a right angle ⇐⇒ ∡ = φ ft /4 ; 

∠ is an obtuse angle ⇐⇒ φ ft /4 < ∡ < φ ft /2 ; 

∠ is a straight angle ⇐⇒ ∡ = φ ft /2 ; 

∠ is a concave angle ⇐⇒ φ ft /2 < ∡ < φ ft ; 

∠ is a full angle ⇐⇒ ∡ = φ ft . 

Additionally, in this book, we will define a convex angle through the following condition:

∠ is a convex angle ⇐⇒ 0 < ∡ < φ ft /2 . 

Note that an angle “∠ ” is convex if and only if the angle is either an acute angle or a right angle or an obtuse angle. 

Also, given two angles “∠1” and “∠2”, we will state that:

∠1 and ∠2 are complementary ⇐⇒ ∡1 + ∡2 = φ ft /4 ; 

∠1 and ∠2 are supplementary ⇐⇒ ∡1 + ∡2 = φ ft /2 ; 

∠1 and ∠2 are explementary ⇐⇒ ∡1 + ∡2 = φ ft . 

In this book we will take as an axiom that given two distinct collinear rays “GRy1” and “GRy2” 

that have the same starting point, the two rays will determine two angles such that both angles have a measure equal to “φ ft /2” (see figure 4.11); that is: given two distinct collinear rays that have the same starting point and that determine two angles ∠1 and ∠2, 

it will follow that: ∡1 = ∡2 = φ ft /2 . 

(4.21)

In this book we will also take as an axiom that given two non-collinear rays “GRy1” and “GRy2” 

that have the same starting point, the two rays will determine two angles, a convex angle and a concave angle, such that the sum of the measures of both angles is equal to “φ ft ” (see figure 4.12); that is:

given two non-collinear rays that have the same starting point

and that determine two angles ∠1 and ∠2 such that ∡1 ≤ ∡2; 

it will follow that: ∠1 is convex, ∠2 is concave, and ∡1 + ∡2 = φ ft . 

(4.22)

In this book we will take as an axiom that (see figure 4.13): given three distinct coplanar rays GRy1, GRy2, and GRy3

that have a common starting point P0; 

given an angle ∠3 determined by the first two rays GRy1 and GRy2; if the third ray GRy3 divides ∠3 into two angles: ∠1 and ∠2

then ∡3 = ∡1 + ∡2 . 

(4.23)
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−−−→

−−−→

Figure 4.11 Two distinct collinear rays “GRy1 = P0P1 ” and “GRy2 = P0P2 ” that have the same starting point P0; additionally the two angles “∠1” and “∠2” determined by the two rays. Note that: “∡1 = ∡2 = φ ft /2”. Also note that: “GRy1 ∩ GRy2 = {P0}” and “GRy1 ∪ GRy2 = GLn”. 

In this book we will also take as an axiom that given two distinct lines “GLn1” and “GLn2” that intersect at a point “P ”, the two lines “GLn1” and “GLn2” will determine four angles, and the sum of the measures of the four angles will be equal to “φ ft ” (see figure 4.14), that is: given two distinct lines that intersect at a point P and that determine the four angles ∠1, ∠2, ∠3, and ∠4; 

it will follow that: ∡1 + ∡2 + ∡3 + ∡4 = φ ft . 

(4.24)

Figure 4.12 Two non-collinear rays “GRy1” and “GRy2” that have the same starting point “P0”; additionally the two angles “∠1” and “∠2” determined by the two rays. Note that: “∡1 + ∡2 = φ ft ”. Also note that: “∠1” is convex and “∠2” is concave. 
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We can prove the following two properties (see figure 4.14): given two distinct lines that intersect at a point P; 

two adjacent angles, 

from the four angles determined by the two lines, 

will always be supplementary; 

given two distinct lines that intersect at a point P; 

two opposite angles ∠1 and ∠3, 

from the four angles determined by the two lines, 

will always have the same measure (i.e., ∡1 = ∡3). 

Figure 4.13 Three distinct coplanar rays “GRy1”, “GRy2”, and “GRy3” that have a common starting point

“P0”; additionally the angles “∠3” (determined by rays “GRy1” and “GRy2”), “∠1” (determined by rays “GRy3” 

and “GRy1”), and “∠2” (determined by rays “GRy3” and “GRy2”). Note that “∡3 = ∡1 + ∡2”. 

In this book we will take as an axiom that (see figure 4.15): given two distinct parallel lines GLn1 and GLn2, 

and given a third line GLn3 that intersects the first two lines, 

and considering the four angles determined by the intersection of GLn3 and GLn1: ∠1, ∠2, ∠3, and ∠4, 

and considering the four angles determined by the intersection of GLn3 and GLn2: ∠5, ∠6, ∠7, and ∠8; 

it follows that two corresponding angles from the two intersections will always have the same measure

(i.e., ∡1 = ∡5; ∡2 = ∡6; ∡3 = ∡7; ∡4 = ∡8) . 

(4.25)
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Figure 4.14 Two distinct lines “GLn1” and “GLn2” that intersect at point “P ”. Additionally the four angles

“∠1”, “∠2”, “∠3”, and “∠4” determined by the two lines “GLn1” and “GLn2”. 

Also note that: “∡1 + ∡2 + ∡3 + ∡4 = φ ft ”. 

Given two distinct intersecting lines “GLn1” and “GLn2”, we will state that they are perpendicular to each other if and only if all four angles determined by the intersection have the same measure (see figure 4.16), that is:

given two distinct intersecting lines GLn1 and GLn2, 

and considering the four angles determined by the intersection of GLn2 and GLn1: ∠1, ∠2, ∠3, and ∠4; it follows that:

GLn1 ⊥ GLn2 ⇐⇒ ∡1 = ∡2 = ∡3 = ∡4 . 

We will denote that two lines “GLn1” and “Gln2” are perpendicular through the expression

“GLn1 ⊥ GLn2”. 

Finally, we can prove that (see figure 4.16): given two perpendicular lines GLn1 and GLn2, 

all four angles determined by the intersection of the two lines

will be right angles. 

4.3.4

SEGMENTS AND POLYGONS

In this book we will take the definition of segments to be axiomatic; that is, we will take the existence of segments to be self-evident. Intuitively, a segment represents a “part of a line that has two distinct end points” (see figure 4.17). 

We will take as an axiom that:

a segment GSg contains infinite points. 

Additionally, we will take as an axiom that (see figure 4.17): given two distinct points P1 and P2, 

there exists one and only one segment GSg such that

P1 and P2 are the end points. 

Given that two distinct points “P1” and “P2” determine a unique segment; we will denote the segment that has as end points “P1” and “P2” with the symbol “ P1P2 ” (see figure 4.17); that is: P1 , P2 :

(P1 and P2 are the end points of GSg) ⇐⇒ GSg = P1P2 . 

(4.26)
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Figure 4.15 Two distinct parallel lines “GLn1” and “GLn2”, and a third line “GLn3” that intersects the first two lines. Also shown are the four angles determined by the intersection of “GLn3” and “GLn1”: “∠1”, “∠2”, 

“∠3”, and “∠4”; and additionally the four angles determined by the intersection of “GLn3” and “GLn2”: “∠5”, 

“∠6”, “∠7”, and “∠8”. Note that: “∡1 = ∡5”; “∡2 = ∡6”; “∡3 = ∡7”; and “∡4 = ∡8”. 

Note that:

P1 , P2 :

P1P2 = P2P1 . 

We may define the length of a segment “GSg” to be the distance between its two end points, and we will denote it with the expression “len(GSg)”; that is:

length of segment GSg = len(GSg) . 

It follows that:

len P



1P2

=

dist(P1, P2) ; 

len P



1P2

=

P1P2 . 

Note that since the two end points of a segment are two distinct points, it follows that: len(GSg) > 0 . 

(4.27)

In this book we will take as an axiom that (see figure 4.17): P1 , P2 :

P3 ∈ P1P2 =⇒ P1P3 + P3P2 = P1P2 . 

(4.28)

Given that the distance between two points is always nonnegative, it follows that: (see figure 4.17): P1 , P2 :

P3 ∈ P1P2 =⇒ 0 ≤ P1P3 ≤ P1P2 . 
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Figure 4.16 Two perpendicular lines “GLn1” and “GLn2”. Also shown are the four angles determined by the intersection of “GLn1” and “GLn2”: “∠1”, “∠2”, “∠3”, and “∠4”. Note that: “∡1 = ∡2 = ∡3 = ∡4 = φ ft /4”. 

Figure 4.17 A segment “GSg = P1P2 ”; additionally shown are the end points “P1” and “P2” of the segment. 

Also shown is a third point “P3” that is in the segment. Note that: “P1P3 + P3P2 = P1P2”. 

We will also take as an axiom that:

given two distinct points P1 and P2, 

and considering the segment P1P2, 

and given any real number r such that “0 ≤ r ≤ 1”, 

there exists one and only one point P3 in segment P1P2 such that: P1P3 = r · P1P2 . 

(4.29)

In this book, we will define a polygon “Gpoly” to be a planar geometric figure obtained through an ordered sequence of distinct coplanar points “P1”, “P2”, ..., “Pn” such that three successive points are not collinear, through the expression (see figure 4.18): Gpoly ≡ P1P2 ∪ P2P3 ∪ ... ∪ Pn−1Pn ∪ PnP1 ; 

(4.30)

the points “P1”, “P2”, ..., “Pn” will be referred to as the vertices of the polygon; in turn the segments

“ P1P2 ”, “ P2P3 ”, ..., “ Pn−1Pn ”, “PnP1 ” will be referred to as the sides of the polygon. Note that since three successive points of the polygonal cannot be collinear, it follows that:

• A polygon must have at least three vertices; 

• All the vertices of the polygonal, when considering the corresponding previous vertex and following vertex, determines two angles: a convex angle and a concave angle (see fig-

ure 4.18). 
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Figure 4.18 A polygon “Gpoly” determined by the sequence of distinct coplanar points “P1”, “P2”, “P3”, and

“P4”. Note that “Gpoly = P1P2 ∪ P2P3 ∪ P3P4 ∪ P4P1 ”. Also shown are the two angles “∠1” and “∠2” determined by the vertex “P1” and the polygonal “Gpoly”. 

In this book, we will define a self-intersecting polygon (see figure 4.19) to be a polygon that has two non-successive sides that intersect. 

Figure 4.19 A self-intersecting polygon “Gpoly1” and a non-self-intersecting polygon “Gpoly2”. “Gpoly1” is determined by the sequence of distinct coplanar points “P1”, “P2”, “P3”, and “P4”. “Gpoly2” is determined by the sequence of distinct coplanar points “P5”, “P6”, “P7”, and “P8”. 

In this book we will take as an axiom that a non-self-intersecting polygon partitions the set of points in a plane into three subsets: 1) the polygon itself; 2) the points inside of the polygon; and 3) the points outside of the polygon. The subset of points inside the polygon will be referred to as the interior of the polygon, and the subset of points outside the polygon will be referred to as the exterior of the polygon (see figure 4.20). Note that stating that “a point P is in polygon Gpoly” (i.e., P ∈ Gpoly) is different from stating that “a point P is inside polygon Gpoly” (i.e., P ∈ interior of Gpoly). 

Note that given a non-self-intersecting polygon, each of its vertices will determine two angles, an interior angle that will “open” towards the interior of the polygon, and an exterior angle that will

“open” towards the exterior of the polygon. For example, in figure 4.18, “∠1” is an interior angle and “∠2” is an exterior angle. 

Given a non-self-intersecting polygon “Gpoly” obtained through the ordered sequence of points

“P1”, “P2”, ..., “Pn”, we will define the perimeter of the polygon “Gpoly” as the sum of lengths of its

“n” sides and will denote it with the expression “peri(Gpoly)”, that is: the perimeter of polygon Gpoly = peri(Gpoly) ; 
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thus:

peri(Gpoly) = P1P2 + P2P3 + ... + Pn−1Pn + PnP1 . 

(4.31)

Figure 4.20 A polygon “Gpoly”. Also shown is a point “Pinside” that is in the interior of “Gpoly”, a point

“Pin” that belongs to “Gpoly”, and a point “Poutside” that is in the exterior of “Gpoly”. 

We will take as an axiom that given a non-self-intersecting polygon “Gpoly” and its interior, the polygon “Gpoly” and its interior will always determine a positive real number that we will refer to as the area of the polygon and its interior (or more simply “the area of the polygon”) and that we will denote with the expression “area(Gpoly)”; that is:

the area of polygon Gpoly = area(Gpoly) ; 

therefore:

area(Gpoly) > 0 . 

(4.32)

Intuitively, the area of a polygon represents “the amount of unit squares that fit into the interior of the polygon”. 

In this book we will define a convex polygon to be a non-self-intersecting polygon whose interior angles are all convex angles (see figure 4.21). We will state that a non-self-intersecting polygon is equilateral if and only if all of its sides are of the same length. Finally, we will state that a non-self-intersecting polygon is equiangular if and only if all its interior angles have the same measure. 

4.4

ELEMENTS OF PLANAR GEOMETRY

In this section we will discuss properties of points and geometric figures in a plane (planar geometry). For more detailed and thorough discussions on elements of planar geometry the author directs the reader towards the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4]. 

4.4.1

TRIANGLES AND PYTHAGORAS’ THEOREM

A triangle is a polygonal with three vertices (see figure 4.22). Note that a triangle is always a convex polygonal. We can prove that:

∠1, ∠2, ∠3 are the interior angles of a triangle =⇒

∡1 + ∡2 + ∡3 = φ ft /2 . 

(4.33)
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Figure 4.21 A convex polygon “Gpoly1”. Also shown is a non-convex polygon “Gpoly2”. Note that the interior angle “∠7” of vertex “P7” of the polygon “Gpoly2” is a concave angle (and thus ∠7 is not convex). 

An isosceles triangle is a triangle that has two sides of equal length (see figure 4.23). In this book, we will take as an axiom that:

given an isosceles triangle, 

and given the two interior angles ∠1 and ∠2 that are opposite to

the sides of equal length, it follows that:

∡1 = ∡2 . 

An equilateral triangle is a triangle that has all of its three sides of equal length (see figure 4.24). 

We can prove that:

given an equilateral triangle, 

and given its three interior angles ∠1, ∠2, and ∠3, it follows that:

∡1 = ∡2 = ∡3 = φ ft /6 . 

A right triangle is a triangle that has one interior angle “∠c” that is a right angle (∡c = φ ft /4; see

figure 4.25). We can prove that:

given a right triangle, 

given its right angle ∠c (∡c = φ ft /4), 

and given its other two angles ∠a and ∠b, it follows that:

∠a and ∠b are complementary. 

In this book, we will state that two given triangles are similar if and only if the measures of their three interior angles are respectively equal (see figure 4.26). That is, given a first triangle “Gtriangle” 

′

whose interior angles are “∠1”, “∠2”, and “∠3”; and also given a second triangle “G

” whose

triangle

′

′

′

interior angles are “∠ ”, “∠ ”, and “∠ ”; we have that:

1

2

3

′

′

′

(∡1 = ∡1 ) ∧ (∡2 = ∡2 ) ∧ (∡3 = ∡3 ) =⇒

′

Gtriangle and G

are similar. 

triangle
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Figure 4.22 A triangle. Also shown are the three vertices: “P1”, “P2”, and “P3”; the three corresponding interior angles: “∠1”, “∠2”, and “∠3”; the three corresponding opposite sides: “ P2P3 ”, “ P3P1”, and “ P1P2”; and lengths of the three corresponding opposite sides: “r1”, “r2”, and “r3”. 

Figure 4.23 An isosceles triangle. Also shown are the three vertices: “P1”, “P2”, and “P3”; the two interior angles opposite to the sides of equal length: “∠1” and “∠2”; and the common length “rlength” of sides “ P2P3” 

and “ P3P1”. Note that “∡1 = ∡2”. 

In this book, we will take as an axiom that if two triangles are similar, the lengths of their respective sides are proportional. That is, we will take as an axiom that (see figure 4.26): given a first triangle Gtriangle with three interior angles:

∠1, ∠2, and ∠3, 

and with the three lengths of the corresponding opposite sides:

r1, r2, and r3; 

′

and given a second triangle G

with three interior angles:

triangle

′

′

′

∠ , ∠ , and ∠ , 

1

2

3

and with the three lengths of the corresponding opposite sides:

′

′

′

r , r , and r ; 

1

2

3

if it holds that:

′

′

′

∡1 = ∡

(i.e., the two triangle are similar)

1 ∧ ∡2 = ∡2 ∧ ∡3 = ∡3

then it will follow that:

′

′

′

r

r

r

1 = 2 = 3 . 

r1

r2

r3
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Figure 4.24 An equilateral triangle. Also shown are the three vertices: “P1”, “P2”, and “P3”; the three interior angles: “∠1”, “∠2”, and “∠3”; and the common length “rlength” of all three sides. Note that:

“∡1 = ∡2 = ∡3 = φ ft /6”. 

Figure 4.25 A right triangle. Also shown are the three vertices: “Pc”, “Pa”, and “Pb”; the corresponding right interior angle “∠c” and the other two corresponding angles “∠a” and “∠b”; the three corresponding opposite sides “ PaPb ”, “ PbPc ”, and “ PcPa ”; and lengths of the three corresponding opposite sides: “c”, “a”, and “b”. 

The side opposite to the right angle “ PaPb ” is referred to as the hypotenuse; the other two sides that form the right angle are referred to as the catheti. 

We can prove that (see figure 4.25):

given a right triangle, and

given the length of its hypotenuse “c”, and

given the two lengths of the catheti “a” and “b”; 

it will hold that:

c2 = a2 + b2 ; 

(4.34)

the last equation is known as Pythagoras’ theorem. Pythagoras’ theorem is a fundamental equation that appears throughout physics. 
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Figure 4.26

′

Two triangles “Gtriangle” and “G

” that are similar. That is, the measures of their three

triangle

′

′

′

interior angles are respectively equal ( ∡1 = ∡

). 

1 ∧ ∡2 = ∡2 ∧ ∡3 = ∡3

4.4.2

QUADRILATERALS AND AREAS OF POLYGONS

A quadrilateral is a polygonal with four vertices. A quadrilateral can be non-self-intersecting or self-intersecting (see figure 4.19). In turn, a non-self-intersecting quadrilateral can be either convex or non-convex (see figure 4.21). We can prove that:

∠1, ∠2, ∠3, ∠4 are the interior angles of a

non-self intersecting quadrilateral =⇒

∡1 + ∡2 + ∡3 + ∡4 = φ ft . 

A rectangle is a convex quadrilateral such that all four of its interior angles have the same measure (see figure 4.27). Thus:

given a rectangle, 

and given its four interior angles ∠1, ∠2, ∠3, and ∠4, it follows that:

∡1 = ∡2 = ∡3 = ∡4 . 

We can prove that:

given a rectangle, 

and given its four interior angles ∠1, ∠2, ∠3, and ∠4, it follows that:

∡1 = ∡2 = ∡3 = ∡4 = φ ft /4 . 

A square is a convex quadrilateral such that all four of its interior angles have the same measure and all sides have the same length (see figure 4.28). Note that, a square is a specific kind of rectangle, therefore:

given a square, 

and given its four interior angles ∠1, ∠2, ∠3, and ∠4, it follows that:

∡1 = ∡2 = ∡3 = ∡4 = φ ft /4 . 
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Figure 4.27 Rectangle Grectangle of vertices “P1”, “P2”, “P3”, and “P4”. Also shown are the corresponding interior angles and the corresponding lengths of the sides. Length “b” is referred to as the “base” of the rectangle and length “h” is referred to as the “height” of the rectangle. Note that all four interior angles are right angles. Also note that the opposites sides are of equal length. 

A parallelogram is a quadrilateral such that its opposite sides are parallel to each other (see

figure 4.29). Note that:

• A parallelogram is a convex quadrilateral; 

• The opposite sides of a parallelogram are of equal length; 

• A rectangle is a specific kind of parallelogram. 

Figure 4.28 Square “Gsquare” of vertices “P1”, “P2”, “P3”, and “P4”. Also shown are the corresponding interior angles and the corresponding lengths of the sides. Note that all four interior angles are right angles. 

Also note that all four sides are of equal length. 

We can prove that (see figure 4.29):

given a parallelogram, 

and given two of its interior angles that are opposite from each other:

∠1 and ∠3, it follows that:

∡1 = ∡3 . 

We can also prove that (see figure 4.29):

given a parallelogram, 

and given two of its interior angles that are adjacent:

∠1 and ∠2, it follows that:

∠1 and ∠2 are supplementary. 
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Figure 4.29 Parallelogram “Gparallelogram” of vertices “P1”, “P2”, “P3”, and “P4”. Also shown are the corresponding interior angles: “∠1”, “∠2”, “∠3”, and “∠4”; the corresponding lengths of the sides; and the corresponding lines to each side. Note that opposite sides are of equal length. Also note that opposite interior angles have the same measure. 

A trapezoid is a convex quadrilateral such that one pair of opposite sides are parallel to each other (see figure 4.30). Note that a parallelogram is a specific kind of trapezoid. 

Figure 4.30 Trapezoid “Gtrapezoid” of vertices “P1”, “P2”, “P3”, and “P4”. Also shown are the lengths of the two sides that are parallel. 

As discussed in 4.3.4 in this book will take as an axiom that given a non-self-intersecting polygon and its interior, the polygon “Gpoly” and its interior will always determine a positive real number that we will refer to as the area of the polygon [see eq. (4.32)]. 

In this book, we will take as an axiom that the area of a rectangle is equal to the product of the length of one side that is referred to as “the base of the rectangle” and the length of a corresponding adjacent side that is referred to as “the height of the rectangle” (see figure 4.31). That is: given a rectangle Grectangle, 

and given the length “b” of one of its sides, 

and given the length “h” of a corresponding adjacent side, 

it follows that:

area(Grectangle) = b h . 

(4.35)

We can prove that:

given a square Gsquare, 

and the length “b” of its sides, it follows that:

area(Gsquare) = b2 . 

(4.36)
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Figure 4.31 Rectangle “Grectangle” of vertices “P1”, “P2”, “P3”, and “P4”. Also shown is the base “b” and the height “h” of the rectangle. Note that the area of the rectangle is given by the product of base times height. 

We can also prove that (see figure 4.32):

given a parallelogram Gparallelogram of vertices

P1, P2, P3, and P4; 

and given the length “b” of the side P1P2; 

←−−→

←−−→

and given the distance “h” between parallel lines P1P2 and P4P3

(see figure 4.32); it follows that:

area(Gparallelogram) = b h ; 

(4.37)

that is, just like in the case of rectangles, the area of a parallelogram is equal the product of base times height. 

Figure 4.32 Parallelogram “Gparallelogram” of vertices “P1”, “P2”, “P3”, and “P4”. Also shown is the length

“b” of the segment “P1P2”; and additionally the length“h”. Note that “b” and “h” are referred to as respectively the base and the height of the parallelogram. 

We can prove that (see figure 4.33):

given a triangle Gtriangle of vertices: P1, P2, and P3; 

and given the length “b” of the side P1P2; 

←−−→

and given the distance “h” between the point P3 and the line P1P2

(see figure 4.33); it follows that:

b h

area(Gtriangle) =

. 

(4.38)

2
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Figure 4.33 Triangle “Gtriangle” of vertices “P1”, “P2”, and “P3”. Also shown is the length “b” of the segment

“P1P2”; and additionally the length “h”. Note that “b” and “h” are referred to as respectively the base and the height of the triangle. 

We can also prove that (see figure 4.34):

given a trapezoid Gtrapezoid of vertices: P1, P2, P3, and P4

←−−→ ←−−→

such that P1P2 k P4P3 ; 

and given the length “b1” of the side P1P2; 

and given the length “b2” of the side P3P4; 

←−−→

←−−→

and given the distance “h” between the parallel lines P1P2 and P4P3 ; (see figure 4.34); it follows that:

(b1 + b2)

area(Gtrapezoid) =

h . 

(4.39)

2

Figure 4.34 Trapezoid “Gtrapezoid” of vertices “P1”, “P2”, “P3”, and “P4”. Also shown are the lengths “b1” 

and “b2” of the two sides of “Gtrapezoid” that are parallel. Note that “b1” and “b2” are referred to as the bases of the trapezoid, and “h” is referred to as the height of the trapezoid. 

4.4.3

CIRCLES, π, RADIANS, AND THE AREA OF A CIRCLE

A circle may be defined as a planar geometric figure such that all its points are at a given distance

“ r ” (r > 0) called radius from a given point “PC” referred to as the center of the circle. We can
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define the diameter “ d ” of a circle to be the length of a segment whose end points are in the circle and that passes through the point “PC” (see figure 4.35). Note that: d = 2 r . 

(4.40)

In this book we will take as axiomatic that given a circle “Gcircle” we can obtain a positive real number that we will refer as the length of the circle, and that we will denote with the expression

“len(Gcircle)”. Intuitively, the length of a circle is the “distance covered by the circle in one full turn” 

(see figure 4.35). 

Given a circle “Gcircle”, that has a given length “l = len(Gcircle)” and has a given diameter “ d ”, we may define the real number “π” through the equation (see figure 4.35): l

π ≡

; 

(4.41)

d

note that the value of “π”, as defined by equation (4.41), is independent of the diameter of the circle; that is, any circle, regardless of its size, will produce the same value of “π”. 

From the above discussions, we can prove that:

given a circle Gcircle of radius “ r ”; 

and given the length of the circle “l = len(Gcircle)”; 

it follows that:

l = 2 π r . 

(4.42)

Figure 4.35 Circle “Gcircle” of center “PC” and of radius “r ”. Also shown is the diameter “d ” of the circle and the length of the circle “ l ”. Note that, given any circle, “π” may be defined as the division of “ l ” by “ d ”. 

In this book we will take the definition of circular arcs to be axiomatic; that is, we will take the existence of circular arcs to be self-evident. Intuitively, a circular arc represents a “part of a circle that has two distinct end points” (see figure 4.36). Note that given two distinct points “P1” and “P2”, there will be two distinct circular arcs in a circle that have “P1” and “P2” as end points (this is similar to two rays that have the same starting point determining two angles; see figure 4.9). 

In this book we will take as axiomatic that given a circular arc “Gcircular˙arc” we can obtain a positive real number that we will refer as the length of the circular arc, and that we will denote with the expression “len(Gcircular˙arc)”. Intuitively, the length of a circular arc is the “distance covered by the circular arc” (see figure 4.36). 

−−−→

−−−→

Given two rays “ PCP1 ” and “ PCP2 ”, and given an angle “∠ ” determined by the two rays, and considering a circular arc centered at point “PC” that corresponds to the angle “∠ ” (see figure 4.36), 
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we can define the measure of the angle “∡ ” in radians as the real number obtained by the length of the circular arc “larc = len(Gcircular˙arc)” divided by the radius of the circular arc “ r ”. That is: larc

∡ ≡

(in radians) . 

(4.43)

r

Figure 4.36 Circular arc “Gcircle˙arc”. Also shown are the two end points “P1” and “P2” of the circular arc. 

Note that the circular arc “Gcircle˙arc” is a subset of the circle of radius “ r ” centered at point “PC”. Additionally shown is the angle “∠ ” determined by the circular arc. Also note that the measure of the angle “∡ ” in radians is obtained by dividing the length of the arc by the corresponding radius (i.e., ∡ = larc/r). 

Note that:

• As discussed in 4.3.3 there are different angular units, and the exact real number given to the measure of an angle depends on the specific angular units used; 

• A commonly used angular unit in physics is radians. We have defined in this book the measure of an angle in radians through equation (4.43); 

• A motivation for using radians for angular units, is that when one applies differential calculus to trigonometric functions (we will study differential calculus [calculation of derivatives] in later chapters of this book), in general the simplest derivative properties of trigonometric functions are found when the angular units used are radians. In differential calculus, unless explicitly stated otherwise, it is assumed that the angular units used is radians; 

• As stated in 4.3.3, in this book we will use the angular units of radians. 

We can prove that (in radians):

φ ft = 2 π . 

(4.44)

Note that from equation (4.44), it follows that (considering the case of a straight angle): φ ft /2 = π ; 

and from equation (4.44) it also follows that (considering the case of a right angle): π

φ ft /4 =

. 

2

In this book, as in the case of non-self-intersecting polygons (see 4.3.4), we will take as an axiom that a circle partitions the set of points in a plane into three subsets: 1) the circle itself; 2) the points
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inside of the circle; and 3) the points outside of the circle. The subset of points inside the circle will be referred to as the interior of the circle, and the subset of points outside the circle will be referred to as the exterior of the circle (see figure 4.37). Note that, as in the case of non-self-intersecting polygons, stating that “a point P is in circle Gcircle” (i.e., P ∈ Gcircle) is different from stating that “a point P is inside circle Gcircle” (i.e., P ∈ interior of Gcircle). 

Figure 4.37 A circle “Gcircle”. Also shown is a point “Pinside” that is in the interior of “Gcircle”, a point “Pin” 

that belongs to “Gcircle”, and a point “Poutside” that is in the exterior of “Gcircle”. 

In this book, as in the case of non-self-intersecting polygons (see 4.3.4), we will take as an axiom that given a circle “Gcircle” and its interior, the circle “Gcircle” and its interior will always determine a positive real number that we will refer to as the area of the circle, and that we will denote with the expression “area(Gcircle)”; that is:

the area of circle Gcircle = area(Gcircle) ; 

area(Gcircle) > 0 . 

Intuitively, as in the case of non-self-intersecting polygons, the area of a circle represents “the amount of unit squares that fit into the interior of a circle”. 

From the above discussions, we can prove that:

given a circle Gcircle of radius “ r ”, it follows that:

area(Gcircle) = π r2 . 

(4.45)

4.5

ELEMENTS OF ANALYTIC PLANAR GEOMETRY

Analytic planar geometry is the study of planar geometry through the application of coordinate systems. In this section, we will discuss basic definitions in analytic planar geometry, and review some general properties of analytic planar geometry. For more detailed and thorough discussions on elements of analytic planar geometry the author directs the reader towards the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4]. 

4.5.1

CARTESIAN COORDINATES

The most common coordinate system used in analytic planar geometry is the Cartesian coordinate system. Given a plane, in the Cartesian coordinate system, in order to establish the relation between geometric points of the plane and ordered pairs of real numbers, one first selects an arbitrary line
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“GLn” and refers to it as the “x-axis”. In the x-axis, one selects an arbitrary point and refers to this point as the “origin”. In turn, the origin of the x-axis will be represented by the real number “0” 

(zero) [see figure 4.38]. 

One of the two directions on the x-axis from the origin will be referred to as the “positive x-direction” and the opposite direction will be referred to as the “negative x-direction”. Typically the direction “towards the right” of the origin is selected as the positive direction, and the direction

“towards the left” of the origin is selected as the negative direction (see figure 4.38). 

In turn, we can take a given length and call it the “unit”. The point on the x-axis that is at a distance of a unit from the origin and that is on the positive direction, will be represented by the real number “+1” (one) [see figure 4.38]. 

Figure 4.38 The x-axis, the origin, the real number “0” (zero), and the real number “+1” (one). 

Once we have identified the points on the x-axis represented by the real numbers “0” (zero) and

“+1” (one) respectively, as discussed in 2.5.1, and as proven in “Real and Complex Numbers for Physicists” [3], every point of the x-axis will be represented by one and only one real number (see

figure 4.39). 

Figure 4.39 The x-axis, the origin, and the real numbers. 

In Cartesian coordinates, once the x-axis has been selected, the line in the plane that is perpendicular to the x-axis and that passes through the origin, will be referred to as the “y-axis” (see

figure 4.40). The point that is the origin of the x-axis will also be the origin of the y-axis (the point on the y-axis represented by “0” [zero]). The point that serves as both the origin of the x-axis and origin of the y-axis will be in general referred to as “the origin of the coordinate system”. 

One of the two directions on the y-axis from the origin will be referred to as the “positive y-direction”, and the opposite direction will be referred to as the “negative y-direction”. Typically the “upwards” direction is selected as the positive y-direction, and the “downwards” direction is selected as the negative y-direction (see figure 4.40). 

In turn, taking the same unit-length that was applied to the x-axis, the point on the y-axis that is at a distance of a unit from the origin and that is on the positive y-direction, will be represented by the real number “+1” (one). Once we have identified the points on the y-axis represented by the real numbers “0” (zero) and “+1” (one) respectively, as discussed in 2.5.1, and as proven in “Real and Complex Numbers for Physicists” [3], every point of the y-axis will be represented by one and only one real number (see figure 4.40). 
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Figure 4.40 The x-axis, the origin, the y-axis, and real numbers. 

Given an arbitrary point “P ” in the plane, we can project the point “P ” on the x-axis; the real number “x” that represents the point where we reach the x-axis is referred to as the “x-coordinate of point P ”. We can also project the point “P ” on the y-axis; the real number “y” that represents the point where we reach the y-axis is referred to as the “y-coordinate of point P ”. Thus given any arbitrary point “P ”, it can be represented by an ordered pair of real numbers of the form “(x, y)” 

[see figure 4.41]. 

Therefore, we can represent any point “P ” on the plane by using ordered pairs of real numbers. In particular, note that the origin is represented by the ordered pair “(0, 0)”. Also, note that in Cartesian coordinates any given point “P ” is represented by one and only one ordered pair of real numbers. 

That is, in Cartesian coordinates, the relationship between points in the plane and ordered pairs of real numbers is a one-to-one relation (see figure 4.41). 

Figure 4.41 Points “P1”, “P2”, and “P3” in a plane represented by a Cartesian coordinate system. Note that the three points can also be referred to respectively as “(2, 1)”, “(3, −2)”, and “(−4, −1)”. Additionally shown is the origin that, in turn, can be referred to as the point “(0, 0)”. Also note that, once again, in Cartesian coordinates, the relationship between points in the plane and ordered pairs of real numbers is a one-to-one relation. 

[image: Image 272]
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When applying a Cartesian coordinate system to a plane, the respective x-axis and y-axis divides the plane into four regions referred to as “quadrants”. Following standard notation, the four quadrants are in turn referred to respectively as “Quadrant I”, “Quadrant II”, “Quadrant III”, and

“Quadrant IV”. A given point “(x, y)” belongs to a given quadrant according to the following conditions (see figure 4.42):

(x, y) ∈ Quadrant I ⇐⇒ x > 0 ∧ y > 0 ; 

(x, y) ∈ Quadrant II ⇐⇒ x < 0 ∧ y > 0 ; 

(x, y) ∈ Quadrant III ⇐⇒ x < 0 ∧ y < 0 ; 

(x, y) ∈ Quadrant IV ⇐⇒ x > 0 ∧ y < 0 . 

Note that:

• Every point in the plane (except for points in the x-axis and/or y-axis) is in one of the four quadrants; 

• Points that are in the x-axis and/or y-axis are not in any of the four quadrants. 

Figure 4.42 The four quadrants in a plane represented by a Cartesian coordinate system. 

4.5.2

EQUATION OF A PLANAR GEOMETRIC FIGURE

As defined in this book (see 4.3), a geometric figure is a set of points; and in particular a planar geometric figure is a set of points such that all points are in the same plane. In analytic planar geometry, once a Cartesian coordinate system is established, a planar geometric figure can also be seen as a set of ordered pairs of real numbers. 

By “equation of a planar geometric figure” we mean an equation of the form “ f (x, y) = 0”, where

“x” and “y” are the x-coordinates and y-coordinates of points in the plane. We will state that “the equation f (x, y) = 0 is the equation of geometric figure G ”, if it holds that: f (x, y) = 0 ⇐⇒ (x, y) ∈ G . 

Note that two different equations can have the same set of solutions; therefore a given geometric figure “G ”, in general, can be represented by more than one equation. 
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4.5.3

EQUATION OF LINES

Given a non-vertical line “GLn” (by “non-vertical” line in a plane, we mean a line that is not parallel to the y-axis), we can always find two distinct points in the line “(x1, y1)” and “(x2, y2)”. Given two distinct points in the line GLn, the slope “rm” of the line GLn can be defined as (see figure 4.43): y2 − y1

rm ≡

. 

(4.46)

x2 − x1

Note that:

• Given two distinct points “(x1,y1)” and “(x2,y2)” in a line that is not vertical, it follows that “x2 , x1” (see figure 4.43); and thus that “x2 − x1 , 0”. Therefore, given two distinct points “(x1, y1)” and “(x2, y2)” in a non-vertical line, equation (4.46) will alway result in a real number value for “rm”; 

• The slope of a vertical line is not defined; 

• The slope of a horizontal line is “0” (zero); 

• We can prove that the slope “rm” of a non-vertical line is a unique well-defined real number. 

In other words, we can prove that the resulting slope “rm” is the same regardless of the two specific points used to calculate the slope. 

Figure 4.43 The slope “rm” and the y-intercept “b” of a non-vertical line. 

A non-vertical line cannot be the y-axis, however a non-vertical will intersect the y-axis

[eq. (4.12)]. Additionally, a non-vertical line will intersect the y-axis at one and only one point (see 4.3.2). Therefore, given an arbitrary non-vertical line “GLn”:

• The non-vertical line “GLn” will intersect the y-axis in one and only one point; 

• Since the point “P” where the non-vertical line “GLn” and the y-axis intersect is necessarily in the y-axis, it follows that the intersection point “P ” can be referred to through the form

“(0, b)”. That is, there must exist one, and only one, real number “b” such that the intersection point “P ” is equal to “(0, b)”. The real number “b” is referred to as the “y-intercept of line GLn” (see figure 4.43). 

From the previous discusions, we can prove that:

given a non-vertical line GLn

with a slope “rm” and a y-intercept “b”, 

it will hold that:

y = rmx + b ⇐⇒ (x, y) ∈ GLn ; 

(4.47)
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that is, “y = rmx + b” is the equation of the non-vertical line “GLn” (where “rm” is the slope and “b” 

is the y-intercept). 

A vertical line cannot be the x-axis (by “vertical” line in a plane, we mean a line that is parallel to the y-axis), however a vertical line will intersect the x-axis [eq. (4.12)]. Additionally, a vertical line will intersect the x-axis at one and only one point (see 4.3.2). 

Therefore, given an arbitrary vertical line “GLn” (see figure 4.44):

• The vertical line “GLn” will intersect the x-axis in one and only one point; 

• Since the point “P” where the vertical line “GLn” and the x-axis intersect is necessarily in the x-axis, it follows that the intersection point “P ” can be referred to through the form “(h, 0)”. 

That is, there must exist one, and only one, real number “h” such that the intersection point

“P ” is equal to “(h, 0)”. The real number “h” is referred to as the “x-intercept of line GLn”; 

• Since the vertical line “GLn” is parallel to the y-axis, it follows that all points in “GLn” will have the same x-coordinate; 

• In turn, since the point “(h,0)” is in the vertical line “GLn”, it follows that all points in

“GLn” will have “h” as x-coordinate. That is, all points in “GLn” can be referred to through the form “(h, y)” [where “y” is the y-coordinate of the points; note that the value of the y-coordinate will vary from point to point on a vertical line]. 

It follows that (see figure 4.44):

given a vertical line GLn, with an x-intercept “h”, 

it will hold that:

x = h ⇐⇒ (x, y) ∈ GLn ; 

(4.48)

that is, “x = h” is the equation of the vertical line “GLn” (where “h” is the x-intercept). 

Figure 4.44 Vertical line “GLn”. Also shown is the point “P ” [“(h, 0)”] where the line “GLn” intersects with the x-axis. Note that “x = h” is the equation of vertical line “GLn”. 
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4.5.4

DISTANCE BETWEEN TWO POINTS IN CARTESIAN AND

THE EQUATION OF A CIRCLE

From the above discussions, we can prove that given two points in Cartesian coordinates “(x1, y1)” 

and “(x2, y2)” the distance “d ”, between the two points is given by (see figure 4.45): q

d =

(x2 − x1)2 + (y2 − y1)2 . 

(4.49)

We can also prove that:

given a circle Gcircle with a radius “r” and a center point “(h, rk)”, it will hold that:

(x − h)2 + (y − rk)2 = r2 ⇐⇒ (x,y) ∈ Gcircle ; 

(4.50)

that is, “ (x − h)2 + (y − rk)2 = r2 ” is the equation of the circle Gcircle [where “(h,rk)” is the center point and “r” is the radius]. 

Figure 4.45 Two distinct points “P1” [“(x1, y1)”] and “P2” [“(x2, y2)”]. Also shown is the distance “d ” 

between points “P1” and “P2”. Note that, following Pythagoras’ theorem: “ d2 = | x2 − x1 |2 + | y2 − y1 |2 ”. 

4.6

TRIGONOMETRY

In this section we will define the “trigonometric circle” and extend the concept of angles discussed in 4.3.3 to angles whose measurement can be any real number [rather than angles whose measurements have to be between “0” (zero) and “2 π” (φ ft )]. We will then define the trigonometric functions

“cos(x)”, “sin(x)”, and “tan(x)”. Then we will review some general properties of trigonometric functions. 

4.6.1

THE TRIGONOMETRIC CIRCLE

By “trigonometric circle”, we mean the circle of radius “ 1” (one) whose center is at the origin of the Cartesian coordinate system (see figure 4.46). Within the trigonometric circle, it is standard to measure the angles by taking the origin as a vertex, and by taking the positive x-direction as

“0 radians” (zero radians). It is also standard to take angles that are in the counter-clockwise direction as “positive angles” (angles whose measurements are a positive real number); and in turn to take angles that are in the clockwise direction as “negative angles” (angles whose measurements are a negative real number) [see figure 4.47]. 
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In the trigonometric circle, angles can also have measurements greater than “2π” (φ ft ) (rather than having to have measurements that are between “0” [zero] and “2π” [φ ft ] as in geometry [see 4.3.3 and eq. (4.20)]). For example, an angle of “4π” (2φ ft) corresponds to a rotation of two full turns in the counter-clockwise direction. Equivalently, in the trigonometric circle, angles can also have measurements less than “0” (zero); for example, an angle of “−6π” (−3φft) corresponds to a rotation of three full turns in the clockwise direction. 

Figure 4.46 The trigonometric circle. In this book, the trigonometric circle is the circle of radius “1” (one) that is centered at the origin [point “(0, 0)”]. 

Figure 4.47 The trigonometric circle, showing the positive angle of “π/4” (φ ft/8), and also the negative angle of “−π/4” (−φ ft/8). Note that in the figure “rad” stands for “radians”. 

Note that in trigonometry we have extended the concept of angles discussed in 4.3.3 to angles whose measurements can be any real number [rather than the measurement of an angle, once again, having to be between “0” (zero) and “2π” (φ ft )]. 

From the above discussions, we can prove that the equation of the trigonometric circle is

“x2 + y2 = 1”, that is:

x2 + y2 = 1 ⇐⇒ (x, y) ∈ GTrigCircle . 

(4.51)
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4.6.2

THE COSINE, SINE, AND TANGENT FUNCTIONS

The value of the cosine [“cos”] function for a given angle “α” can be obtained by considering the x-component of the position of the angle “α” in the trigonometric circle. Similarly, the value of the sine [“sin”] function for a given angle “α” can be obtained by considering the y-component of the position of the angle “α” in the trigonometric circle. Note that it follows that in Cartesian coordinates, the point (cos(α), sin(α)) will always be in the trigonometric circle, that is (see figure 4.48): (cos(α), sin(α)) ∈ GTrigCircle . 

Figure 4.48 The trigonometric circle, showing the cosine and sine function values for the angle “α”. Note that the value of “cos(α)” is obtained by considering the x-component of the position of the angle “α” in the trigonometric circle. Also note that the value of “sin(α)” is obtained by considering the y-component of the position of the angle “α” in the trigonometric circle. 

Note that, the cosine function “cos(x)” seen as a real function (i.e., cos :

→ ), depends on

R

R

the angular units used. To illustrate this point, from the above discussions, note that depending on the angular units used, we would state either that “cos(90) = 0” (considering degrees) or state that

“cos(π/2) = 0” (considering radians). From a real function standpoint, the equations “cos(90) = 0” 

and “cos(π/2) = 0” are describing two different real functions. The difference between the two functions is resulting from the use of two different angular units. 

Thus, when using cosine and sine functions (and trigonometric functions in general), one must carefully identify what angular units are used. Once again, in this book we will be using the units of radians. 

From the above discussions, we can prove that:

cos2(α) + sin2(α) = 1 . 

(4.52)

The value of the tangent [“tan”] function for a given angle “α” can be defined through the following expression:

sin(α)

cos(α) , 0 :

tan(α) ≡

. 

(4.53)

cos(α)

Note that the tangent function “tan(α)” is defined for all real number values of “α” except for those values of “α” such that “cos(α) = 0”. The tangent function “tan(α)” is not defined for values of

“α” such that “cos(α) = 0”. 
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4.6.3

RIGHT TRIANGLES AND TRIGONOMETRIC FUNCTIONS

From the above discussions, we can prove that (see figure 4.49): given a right triangle, 

given the measure of one of its non-right angles “α”, 

given the length of its hypotenuse “rhyp”, 

given the length “rad j” of the cathetus adjacent to the angle “α”, and given the length “ropp” of the cathetus opposite to the angle “α”, the following three equations will hold:

r





ad j

length of adjacent

cos(α) =

=

; 

(4.54)

rhyp

length of hypotenuse

r





opp

length of opposite

sin(α) =

=

; 

(4.55)

rhyp

length of hypotenuse

r





opp

length of opposite

tan(α) =

=

. 

(4.56)

rad j

length of adjacent

Figure 4.49 On the left, the trigonometric circle, showing the cosine and sine function values for the angle

“α”. On the right, a right triangle “Gtriangle” with an angle with the same measure “α”. 
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4.6.4

SOME VALUES OF TRIGONOMETRIC FUNCTIONS

From the above discussions, we can derive the following results:

cos(0) = 1

sin(0) = 0

tan(0) = 0

π 

π 

π 

cos

= 0

sin

= 1

tan

is not defined

2

2

2

√

√

π 

3

π 

1

π 

3

cos

=

sin

=

tan

=

6

2

6

2

6

3

. 

√

π 

1

π 

3

π 

√

cos

=

sin

=

tan

=

3

3

2

3

2

3

√

√

π 

2

π 

2

π 

cos

=

sin

=

tan

= 1

4

2

4

2

4

(4.57)

4.6.5

GENERAL PROPERTIES OF TRIGONOMETRIC FUNCTIONS

From the previous discussions, it follows that:

position of angle α is in quadrant I =⇒

cos(α) > 0 ∧ sin(α) > 0 ∧ tan(α) > 0 ; 

position of angle α is in quadrant II =⇒

cos(α) < 0 ∧ sin(α) > 0 ∧ tan(α) < 0 ; 

position of angle α is in quadrant III =⇒

cos(α) < 0 ∧ sin(α) < 0 ∧ tan(α) > 0 ; 

position of angle α is in quadrant IV =⇒

cos(α) > 0 ∧ sin(α) < 0 ; tan(α) < 0 . 

Additionally, it follows that:

cos(−α) = cos(α) ; 

(4.58)

sin(−α) = − sin(α) ; 

(4.59)

cos(α) , 0 :

tan(−α) = − tan(α) ; 

(4.60)



π 

cos α +

= −sin(α) ; 

(4.61)

2



π 

sin α +

= cos(α) ; 

(4.62)

2



cos(α) , 0 



π 

1

:

tan α +

= −

; 

(4.63)

sin(α) , 0

2

tan(α)
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π 

cos α −

= sin(α) ; 

(4.64)

2



π 

sin α −

= −cos(α) ; 

(4.65)

2



cos(α) , 0 



π 

1

:

tan α −

= −

; 

(4.66)

sin(α) , 0

2

tan(α)

cos (α + π) = − cos(α) ; 

(4.67)

sin (α + π) = − sin(α) ; 

(4.68)

cos(α) , 0 :

tan(α + π) = tan(α) ; 

(4.69)

cos(α + 2 π) = cos(α) ; 

(4.70)

sin(α + 2 π) = sin(α) ; 

(4.71)

cos(α) , 0 :

tan(α + 2 π) = tan(α) ; 

(4.72)

cos(α + β ) = cos(α) cos(β ) − sin(α) sin(β ) ; 

(4.73)

sin(α + β ) = sin(α) cos(β ) + sin(β ) cos(α) ; 

(4.74)



cos(α)



, 0





tan(α) + tan(β )

cos(β ) , 0

:

tan(α + β ) =

. 

(4.75)

1 − tan(α) tan(β )



cos(α + β ) , 0 

4.7

EXAMPLES

Geometric figures and trigonometric functions (and their properties) are fundamental in physics and found throughout physics. One example where geometry and trigonometry explicitly appear is in the description of the tension on two strings that are holding in place an object that is hanging from a ceiling (see figure 4.50). Since the object does not move, the forces exerted by the two strings on the object, tensions “~

T1 ” and “~T2 ”, plus the weight of the object “ ~

W ” must equal null (vector of

magnitude zero). 

Since the total force on the object is null, it follows that:

T1x + T2x + Wx = 0 ; 

(4.76)

T1y + T2y + Wy = 0 ; 

(4.77)

where “ T1x”, “ T2x”, and “Wx” are respectively the x-components of the two string tensions “~T1” 

and “~

T2”, and of the object weight “ ~

W ”; and where “ T1y”, “ T2y”, and “Wy” are respectively the

y-components of “~

T1 ”, “~T2 ”, and “ ~

W ” (see figure 4.50). 
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Figure 4.50 Object hanging from a ceiling, held in place by the tension of two strings “~T1 ” and “~T2 ”, with the weight (caused by the force of gravity) “ ~

W ” pulling downwards. The measures of the angles between the

ceiling and the two strings are respectively “∡1 = α” and “∡2 = β ”. “m” is the mass of the object and “g” is the acceleration of gravity. 

Considering that the weight of the object “ ~

W ” is given by the force of gravity, it follows that:

W = m g ; 

where “W ” is the magnitude of the weight “ ~

W ”, “m” is the mass of the object, and “g” is the

acceleration of gravity. Considering figure 4.50, it follows that: Wx = 0 ; 

(4.78)

Wy = − m g . 

(4.79)

Substituting equation (4.78) in equation (4.76):

T1x + T2x + 0 = 0 ; 

applying equation (2.45):

T1x + T2x = 0 . 

(4.80)

Substituting equation (4.79) in equation (4.77):

T1y + T2y + (− m g) = 0 ; 

therefore:

T1y + T2y + (− m g) + m g = 0 + m g ; 

applying equations (2.43) and (2.53):

T1y + T2y + 0 = m g + 0 ; 

applying equation (2.45):

T1y + T2y = m g . 

(4.81)
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From figure 4.50, and considering equation (4.55):

−T1x

T2x

sin(∡3) =

∧

sin(∡4) =

; 

T1

T2

where “ T1 ” and “ T2 ” are respectively the magnitudes of the string tensions “~T1 ” and “~T2 ”. Applying equations (2.56) and (2.66):

−T1x = T1 sin(∡3)

∧

T2x = T2 sin(∡4) ; 

applying equation (2.51):

−T1x = −[−T1 sin(∡3)]

∧

T2x = T2 sin(∡4) ; 

applying equation (2.50):

T1x = − T1 sin(∡3)

∧

T2x = T2 sin(∡4) ; 

substituting in equation (4.80):

−T1 sin(∡3) + T2 sin(∡4) = 0 ; 

applying equations (2.43) and (2.54):

T2 sin(∡4) − T1 sin(∡3) = 0 ; 

applying equations (2.43) and (2.47):

T2 sin(∡4) = T1 sin(∡3) + 0 ; 

applying equation (2.45):

T2 sin(∡4) = T1 sin(∡3) . 

(4.82)

From figure 4.50:

∠1 and ∠3 are complementary

∧

∠2 and ∠4 are complementary ; 

∡1 + ∡3 = φ ft /4

∧

∡2 + ∡4 = φ ft /4 ; 

π

π

∡1 + ∡3 =

∧

∡2 + ∡4 =

; 

2

2

taking “α = ∡1” and “β = ∡2” (see figure 4.50): π

π

α + ∡3 =

∧

β + ∡4 =

; 

2

2

applying equation (2.47):

π

π

∡3 =

− α

∧

∡4 =

− β ; 

2

2
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applying equation (2.54):

π

π

∡3 =

+ (−α)

∧

∡4 =

+ (−β ) ; 

2

2

applying equation (2.51):



h π

i 



h π

i 

∡3 = − −

+ (−α)

∧

∡4 = − −

+ (−β )

; 

2

2

applying equations (2.51) and (2.52):

h

π i



h

π i



∡3 = −

−

+ α

∧

∡4 = −

−

+ β

; 

2

2

applying equations (2.43) and (2.54):



π 



π 

∡3 = − α −

∧

∡4 = − β −

; 

(4.83)

2

2

substituting in equation (4.82):



h

π i 



h

π i 

T2 sin − β −

= T1 sin − α −

; 

2

2

applying equation (4.59):

" 

#

" 

#



π 



π 

T2 − sin β −

= T1 − sin α −

; 

2

2

applying equations (2.56) and (2.61):



π 



π 

−T2 sin β −

= −T1 sin α −

; 

2

2

applying equation (2.50):



π 



π 

T2 sin β −

= T1 sin α −

; 

2

2

applying equation (4.65):









T2 − cos(β ) = T1 − cos(α) ; 

applying equations (2.56) and (2.61):

−T2 cos(β ) = −T1 cos(α) ; 

applying equation (2.50):

T2 cos(β ) = T1 cos(α) ; 

applying equation (2.66):

T1 cos(α)

T2 =

; 

cos(β )

applying equations (2.56) and (2.72):

cos(α)

T2 =

T1 . 

(4.84)

cos(β )
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From figure 4.50:

T1y

T2y

cos(∡3) =

∧

cos(∡4) =

; 

T1

T2

applying equations (2.56) and (2.66):

T1y = T1 cos(∡3)

∧

T2y = T2 cos(∡4) ; 

substituting in equation (4.81):

T1 cos(∡3) + T2 cos(∡4) = m g ; 

considering equation (4.83):



h

π i 



h

π i 

T1 cos − α −

+ T2 cos − β −

= m g ; 

2

2

applying equation (4.58):



π 



π 

T1 cos α −

+ T2 cos β −

= m g ; 

2

2

applying equation (4.64):

T1 sin(α) + T2 sin(β ) = m g ; 

considering equation (4.84):

cos(α)

T1 sin(α) +

T1 sin(β ) = m g ; 

cos(β )

applying equations (2.59) and (2.66):

cos(α)

cos(α)

T1 sin(α) +

T1 sin(β ) = m g ; 

cos(α)

cos(β )

applying equations (2.56) and (2.72):

sin(α)

sin(β )

cos(α) T1

+ cos(α) T1

= m g ; 

cos(α)

cos(β )

applying equation (4.53):

cos(α) T1 tan(α) + cos(α) T1 tan(β ) = m g ; 

applying equations (2.56) and (2.64):

T1 cos(α) [ tan(α) + tan(β ) ] = m g ; 

applying equation (2.66):

m g

T1 =

. 

(4.85)

cos(α) [ tan(α) + tan(β ) ]

Through the last equation, given the mass of the object, and given the respective measures of the angles of the two strings with respect to the ceiling, we can calculate the magnitude of the tension

“ T1 ” of the first string. 

[image: Image 362]

[image: Image 363]

[image: Image 364]

[image: Image 365]

[image: Image 366]

Review of Trigonometric Functions

111

Substituting in equation (4.84):

cos(α)

m g

T2 =

; 

cos(β ) cos(α) [ tan(α) + tan(β ) ]

applying equations (2.72) and (2.74):

T2 = cos(α) [ cos(β ) ]−1 m g [ cos(α) ]−1 [ tan(α) + tan(β ) ]−1 ; applying equations (2.56) and (2.57):

T2 = cos(α) [ cos(α) ]−1 m g [ cos(β ) ]−1 [ tan(α) + tan(β ) ]−1 ; applying equations (2.72) and (2.74):

cos(α)

m g

T2 =

; 

cos(α) cos(β ) [ tan(α) + tan(β ) ]

applying equations (2.59) and (2.66):

m g

T2 =

. 

(4.86)

cos(β ) [ tan(α) + tan(β ) ]

Through the last equation, given the mass of the object, and given the respective measures of the angles of the two strings with respect to the ceiling, we can also calculate the magnitude of the tension “ T2 ” of the second string. 

In this section we have presented, as an example, a physics analysis of an object suspended from a ceiling by two strings, and in particular have derived expressions for the magnitude of the tensions for each of the two strings given the mass of the object and given the respective measures of the angles of the two strings with respect to the ceiling [eqs. (4.85) and (4.86)]. As can be clearly seen, geometry and trigonometric functions (and their properties) have played a key role in the physics analysis of this system. 
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5 Additional Properties of

Trigonometric Functions

5.1

INTRODUCTION

Trigonometric functions are fundamental in physics and found throughout physics. In this chapter, we will extend the discussions on trigonometric functions of the previous chapter. This chapter will include the secant, cosecant, and cotangent trigonometric functions as well as polar coordinates where trigonometric functions are applied. 

5.2

NOTATION

Extending the notation of chapter 4, in this chapter, and throughout the rest of the book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “P” and uppercase letter “P” with index “P1”, “P2”, ... are used to denote points in space; 

• Two points “P1P2”, “P3P4”, ... are used to denote the distance in between the two corresponding points; 

• Uppercase letter “G” and uppercase letter “G” with index “G1”, “G2”, ... are used to denote geometric figures (sets of points); 

• Uppercase letter “G” with index “Pl ”: “GPl”, “GPl1”, “GPl2”, ... are used to denote planes; 

• Uppercase letter “G” with index “Ln”: “GLn”, “GLn1”, “GLn2”, ... are used to denote lines (straight lines); 

←−−→

←−−→

• Two distinct points with a left-right-arrow accent: “ P1P2 ”, “ P3P4 ”, ... (with “P1 , P2”, 

“P3 , P4”, ...) are used to denote the lines that pass through the respective two distinct points; 

• Uppercase letter “G” with index “Ry”: “GRy”, “GRy1”, “GRy2”, ... are used to denote rays; 

−−−→

−−−→

• Two distinct ordered points with a right-arrow accent: “ P1P2 ”, “ P3P4 ”, ... (with “P1 , P2”, 

“P3 , P4”, ...) are used to denote the rays that start at the first point and that passes through the second point; 

• Symbol “∠” and symbol “∠” with index: “∠1”, “∠2”, ... are used to denote angles; 

• Symbol “∡” and symbol “∡” with index: “∡1”, “∡2”, ... are used to denote the measure of angles; 

• Greek letters “α”, “β ”, and “γ ” will be used to denote real numbers that correspond to angle measurements; 

• Uppercase letter “G” with index “Sg”: “GSg”, “GSg1”, “GSg2”, ... are used to denote segments; 
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• Two distinct points with a bar accent: “P1P2”, “P3P4”, ... are used to denote the segments whose end points are the respective two points; 

• Greek letters “ρ” and “φ” will be used to denote real numbers that correspond to polar coordinates. 

5.3

SECANT, COSECANT, AND COTANGENT FUNCTIONS

The value of the secant [“sec”] function for a given angle “α” can be defined through the following expression:

1

cos(α) , 0 :

sec(α) ≡

. 

(5.1)

cos(α)

Note that the secant function “sec(α)” is defined for all real number values of “α” except for those values of “α” such that “cos(α) = 0”. The secant function “sec(α)” is not defined for values of “α” 

such that “cos(α) = 0”. 

The value of the cosecant [“csc”] function for a given angle “α” can be defined through the following expression:

1

sin(α) , 0 :

csc(α) ≡

. 

(5.2)

sin(α)

Note that the cosecant function “csc(α)” is defined for all real number values of “α” except for those values of “α” such that “sin(α) = 0”. The cosecant function “csc(α)” is not defined for values of

“α” such that “sin(α) = 0”. 

The value of the cotangent [“cot”] function for a given angle “α” can be defined through the following expression:

cos(α)

sin(α) , 0 :

cot(α) ≡

. 

(5.3)

sin(α)

Note that the cotangent function “cot(α)” is defined for all real number values of “α” except for those values of “α” such that “sin(α) = 0”. The cotangent function “cot(α)” is not defined for values of “α” such that “sin(α) = 0”. 

We will now prove the following two properties:

cos(α) , 0 :

1 + tan2(α) = sec2(α) ; 

(5.4)

sin(α) , 0 :

cot2(α) + 1 = csc2(α) . 

(5.5)

Proof of the first property:

• Case: cos(α) , 0

cos2(α) + sin2(α) = 1

[eq. (4.52)] ; 

cos2(α) + sin2(α)

1

=

; 

cos2(α)

cos2(α)





1

[ cos2(α) ]−1

cos2(α) + sin2(α)

= cos2(α)

[eqs. (2.56) and (2.72)] ; 
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1

cos2(α) [ cos2(α) ]−1 + sin2(α) [ cos2(α) ]−1 = cos2(α)

[eqs. (2.56) and (2.64)] ; 

1

1 + sin2(α) [ cos2(α) ]−1 =

[eq. (2.71)] ; 

cos2(α)

sin2(α)

1

1 +

=

[eq. (2.72)] ; 

cos2(α)

cos2(α)

sin2(α)

12

1 +

=

[eq. (2.82)] ; 

cos2(α)

cos2(α)

sin(α) 2



1

2

1 +

=

[eq. (2.93)] ; 

cos(α)

cos(α)



1

2

1 + tan2(α) =

[eq. (4.53)] ; 

cos(α)

1 + tan2(α) = sec2(α)

[eq. (5.1)] . 

Proof of the second property:

• Case: sin(α) , 0

cos2(α) + sin2(α) = 1

[eq. (4.52)] ; 

cos2(α) + sin2(α)

1

=

; 

sin2(α)

sin2(α)





1

[ sin2(α) ]−1

cos2(α) + sin2(α)

= sin2(α)

[eqs. (2.56) and (2.72)] ; 

1

cos2(α) [ sin2(α) ]−1 + sin2(α) [ sin2(α) ]−1 = sin2(α)

[eqs. (2.56) and (2.64)] ; 

1

cos2(α) [ sin2(α) ]−1 + 1 =

[eq. (2.71)] ; 

sin2(α)

cos2(α)

1

+ 1 =

[eq. (2.72)] ; 

sin2(α)

sin2(α)

cos2(α)

12

+ 1 =

[eq. (2.82)] ; 

sin2(α)

sin2(α)

cos(α) 2



1

2

+ 1 =

[eq. (2.93)] ; 

sin(α)

sin(α)



1

2

cot2(α) + 1 =

[eq. (5.3)] ; 

sin(α)

cot2(α) + 1 = csc2(α)

[eq. (5.2)] . 
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We will also now prove the following three properties:



cos(α) , 0 

1

:

cot(α) =

; 

(5.6)

sin(α) , 0

tan α



cos(α) , 0 



π 

:

tan α +

= −cot(α) ; 

(5.7)

sin(α) , 0

2



cos(α) , 0 



π 

:

tan α −

= −cot(α) . 

(5.8)

sin(α) , 0

2

Proof of the first property:

• Case: { cos(α) , 0 } ∧ { sin(α) , 0 }

cos(α)

cot(α) =

[eq. (5.3)] ; 

sin(α)

sin(α) −1

cot(α) =

[eq. (2.76)] ; 

cos(α)



−1

cot(α) =

tan(α)

[eq. (4.53)] ; 

1

cot(α) =

[eq. (2.73)] . 

tan(α)

Proof of the second property:

• Case: { cos(α) , 0 } ∧ { sin(α) , 0 }



π 

1

tan

α +

= −

[eq. (4.63)] ; 

2

tan α



π 

tan

α +

= −cot(α)

[eq. (5.6)] . 

2

Proof of the third property:

• Case: { cos(α) , 0 } ∧ { sin(α) , 0 }



π 

1

tan

α −

= −

[eq. (4.66)] ; 

2

tan α



π 

tan

α −

= −cot(α)

[eq. (5.6)] . 

2
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We will now prove the following three properties:

cos(α) , 0 :

sec(α + π) = − sec(α) ; 

(5.9)

sin(α) , 0 :

csc(α + π) = − csc(α) ; 

(5.10)

sin(α) , 0 :

cot(α + π) = cot(α) . 

(5.11)

Proof of the first property:

• Case: cos(α) , 0

cos(α + π) , 0

[eq. (4.67)] ; 

1

sec(α + π) =

[eq. (5.1)] ; 

cos(α + π)

1

sec(α + π) =

[eq. (4.67)] ; 

−cos(α)

1

sec(α + π) =

[eq. (2.65)] ; 

(−1)cos(α)

1 · 1

sec(α + π) =

; 

(−1)cos(α)

1

1

sec(α + π) =

[eq. (2.75)] ; 

(−1) cos(α)

1

sec(α + π) = (−1)

; 

cos(α)

sec(α + π) = (−1) sec(α)

[eq. (5.1)] ; 

sec(α + π) = − sec(α)

[eq. (2.65)] . 

Proof of the second property:

• Case: sin(α) , 0

sin(α + π) , 0

[eq. (4.68)] ; 

1

csc(α + π) =

[eq. (5.2)] ; 

sin(α + π)

1

csc(α + π) =

[eq. (4.68)] ; 

−sin(α)

1

csc(α + π) =

[eq. (2.65)] ; 

(−1)sin(α)

1 · 1

csc(α + π) =

; 

(−1)sin(α)
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1

1

csc(α + π) =

[eq. (2.75)] ; 

(−1) sin(α)

1

csc(α + π) = (−1)

; 

sin(α)

csc(α + π) = (−1) csc(α)

[eq. (5.2)] ; 

csc(α + π) = − csc(α)

[eq. (2.65)] . 

Proof of the third property:

• Case: sin(α) , 0

sin(α + π) , 0

[eq. (4.68)] ; 

cos(α + π)

cot(α + π) =

[eq. (5.3)] ; 

sin(α + π)

−cos(α)

cot(α + π) =

[eq. (4.67)] ; 

sin(α + π)

−cos(α)

cot(α + π) =

[eq. (4.68)] ; 

−sin(α)

(−1)cos(α)

cot(α + π) =

[eq. (2.65)] ; 

(−1)sin(α)

(−1) cos(α)

cot(α + π) =

[eq. (2.75)] ; 

(−1) sin(α)

cos(α)

cot(α + π) = 1

; 

sin(α)

cos(α)

cot(α + π) =

[eq. (2.59)] ; 

sin(α)

cot(α + π) = cot(α)

[eq. (5.3)] . 

We will also now prove the following three properties:

cos(α) , 0 :

sec(α + 2 π) = sec(α) ; 

(5.12)

sin(α) , 0 :

csc(α + 2 π) = csc(α) ; 

(5.13)

sin(α) , 0 :

cot(α + 2 π) = cot(α) . 

(5.14)

Proof of the first property:

• Case: cos(α) , 0

cos(α + π) , 0

[eq. (4.67)] ; 
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cos(α + π + π) , 0

[eq. (4.67)] ; 

cos(α + 2 π) , 0

[eq. (2.60)] ; 

1

sec(α + 2 π) =

[eq. (5.1)] ; 

cos(α + 2 π)

1

sec(α + 2 π) =

[eq. (4.70)] ; 

cos(α)

sec(α + 2 π) = sec(α)

[eq. (5.1)] . 

Proof of the second property:

• Case: sin(α) , 0

sin(α + π) , 0

[eq. (4.68)] ; 

sin(α + π + π) , 0

[eq. (4.68)] ; 

sin(α + 2 π) , 0

[eq. (2.60)] ; 

1

csc(α + 2 π) =

[eq. (5.2)] ; 

sin(α + 2 π)

1

csc(α + 2 π) =

[eq. (4.71)] ; 

sin(α)

csc(α + 2 π) = csc(α)

[eq. (5.2)] . 

Proof of the third property:

• Case: sin(α) , 0

sin(α + π) , 0

[eq. (4.68)] ; 

sin(α + π + π) , 0

[eq. (4.68)] ; 

sin(α + 2 π) , 0

[eq. (2.60)] ; 

cos(α + 2 π)

cot(α + 2 π) =

[eq. (5.3)] ; 

sin(α + 2 π)

cos(α)

cot(α + 2 π) =

[eq. (4.70)] ; 

sin(α + 2 π)

cos(α)


cot(α + 2 π) =

[eq. (4.71)] ; 

sin(α)

cot(α + 2 π) = cot(α)

[eq. (5.3)] . 
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5.4

LAW OF SINES

We will now prove that (see figure 5.1):

given a triangle, 

and given the lengths of its sides “a”, “b”, and “c”, 

and given the measures of the respective opposite angles α, β , and γ; it will hold that:

sin(α)

sin(β )

sin(γ )

=

=

; 

(5.15)

a

b

c

this last equation is known as the “law of sines”. 

Figure 5.1 Triangle “Gtriangle” with lengths of sides “a”, “b”, and “c”; and with the opposite angles having the measures respectively of “α”, “β ”, and “γ ”. Also shown is the height “h” of the triangle (taking “c” as base). 

Proof:

• Case: figure 5.1

◦ First subcase: “α” and “β ” 

n

h o

n

h o

sin(α) =

∧ sin(β ) =

[eq. (4.55)] ; 

b

a

n

o

n

o

b sin(α) = h

∧ a sin(β ) = h

[eqs. (2.56) and (2.66)] ; 

b sin(α) = a sin(β ) ; 

a−1b−1b sin(α) = a−1b−1a sin(β ) ; 

b b−1a−1 sin(α) = a a−1b−1 sin(β )

[eqs. (2.56) and (2.57)] ; 

a−1 sin(α) = b−1 sin(β )

[eqs. (2.59) and (2.71)] ; 
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sin(α)

sin(β )

=

[eqs. (2.56) and (2.72)] ; 

a

b

◦ Second subcase: “α”, “β ”, and “γ ” 

sin(α)

sin(β )

=

[first subcase] ; 

a

b

sin(β )

sin(γ )

=

[first subcase] ; 

b

c

sin(α)

sin(β )

sin(γ )

=

=

. 

a

b

c

5.5

LAW OF COSINES

We will now prove that (see figure 5.2):

given a triangle, 

and given the lengths of its sides “a”, “b”, and “c”, 

and given the measure γ of the angle opposite to side “c”; 

it will hold that:

c2 = a2 + b2 − 2 a b cos(γ ) ; 

(5.16)

this last equation is known as the “law of cosines”. 

Figure 5.2 Triangle “Gtriangle” with lengths of sides “a”, “b”, and “c”; and with the opposite angle of side

“c” having the measure “γ ”. Also shown is the height “h” of the triangle (taking “b” as base). 

Proof:

• Case: figure 5.2

x + y = b

[eq. (4.28)] ; 

y = b − x

[eqs. (2.43) and (2.47)] ; 
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x

cos(γ ) =

[eq. (4.54)] ; 

a

x = a cos(γ )

[eqs. (2.56) and (2.66)] ; 

n

o

n

o

c2 = y2 + h2

∧ a2 = x2 + h2

[eq. (4.34)] ; 

n

o

n

o

c2 − y2 = h2 ∧ a2 − x2 = h2

[eqs. (2.43) and (2.47)] ; 

c2 − y2 = a2 − x2 ; 

Given that: y = b − x

h

i2

c2 − b − x

= a2 − x2 ; 

Given that: x = a cos(γ )

h

i2



2

c2 − b − a cos(γ )

= a2 − a cos(γ )

; 



2

h

i2

c2 = a2 − a cos(γ )

+ b − a cos(γ )

[eq. (2.47)] ; 

h



2 i

h



i2

c2 = a2 + − a cos(γ )

+ b + −a cos(γ )

[eq. (2.54)] ; 

h



2 i

c2 = a2 + − a cos(γ )

h



i h



i

+ b + −a cos(γ )

b + −a cos(γ )

[eq. (2.79)] ; 

h



2 i

c2 = a2 + − a cos(γ )

h



i

+ b b + −a cos(γ )



h



i

+ −a cos(γ )

b + −a cos(γ )

[eqs. (2.56) and (2.64)] ; 

h



2 i

c2 = a2 + − a cos(γ )





+ b b + b −a cos(γ )











+ b −a cos(γ ) + −a cos(γ )

−a cos(γ )

[eqs. (2.56) and (2.64)] ; 
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h



2 i

c2 = a2 + − a cos(γ )







2

+ b2 + 2 b −a cos(γ ) + −a cos(γ )

[eqs. (2.60) and (2.79)] ; 

h



2 i

c2 = a2 + − a cos(γ )







2

+ b2 + 2 b −a cos(γ ) + a cos(γ )

[eq. (2.83)] ; 





c2 = a2 + b2 + 2 b −a cos(γ )



2

h



2 i

+ a cos(γ )

+ − a cos(γ )

[eqs. (2.43) and (2.44)] ; 





c2 = a2 + b2 + 2 b −a cos(γ )

[eqs. (2.45) and (2.53)] ; 





c2 = a2 + b2 + −2 a b cos(γ )

[eqs. (2.56) and (2.61)] ; 

c2 = a2 + b2 − 2 a b cos(γ )

[eq. (2.54)] . 

5.6

POLAR COORDINATES

In analytic planar geometry, and physics, another commonly used coordinate system (in addition to the Cartesian coordinate system) is the polar coordinate system. 

Given a plane, we can always define a Cartesian coordinate system (see 4.5.1). Through the Cartesian coordinate system, any point “P ” of the plane can be represented by a unique ordered pair of real numbers “(x, y)”, and every ordered pair of real numbers “(x, y)” represents a unique point

“P ” on the plane. In the case of Cartesian coordinates, the relationship between points in the plane

“P ” and ordered pairs of real numbers “(x, y)” is a one-to-one relation (see figure 4.41). 

Given an ordered pair of real numbers “(ρ, φ )”, we can always calculate a second pair of real numbers “(x, y)” through the two equations:

x = ρ cos(φ ) ; 

(5.17)

y = ρ sin(φ ) . 

(5.18)

In turn, through a Cartesian coordinate system, the ordered pair of real numbers “(x, y)” [calculated through eqs. (5.17) and (5.18)] will represent a point “P ” on the plane. Thus, given an ordered pair of real numbers “(ρ, φ )”, the ordered pair “(ρ, φ )” will represent a unique point “P ” in the plane (see figure 5.3). When we relate an ordered pair of real numbers “(ρ, φ )” to points “P ” on a plane in this manner, we refer to the relationship as a polar coordinate system. Real number “ρ” will be referred to as the “radial-polar-coordinate of point P ” or more simply the “ρ-coordinate of point P ”; in turn, real number “φ ” will be referred to as the “angular-polar-coordinate of point P ” or more simply the “φ -coordinate of point P ”. 
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Figure 5.3 Polar coordinates. Note that given the polar coordinates “(ρ, φ )” for a given point “P ” on a plane, the corresponding Cartesian coordinates “(x, y)” for the point “P ” are obtained through the expressions

“x = ρ cos(φ )” and “y = ρ sin(φ )”. 

Note that:

• The origin of a polar coordinate system is the origin of the Cartesian system it is built upon (see figure 5.3); 

• In polar coordinates, the origin is represented by any real number pair of the form “(0,φ)” 

(i.e., ρ = 0); 

• Thus, in polar coordinates, there are infinite distinct ordered pairs of real numbers that represent the origin; 

• Given a point “P” that is represented by polar coordinates “(ρ1,φ1)”, the same point “P” 

will also be represented by the polar coordinates:

◦ (ρ1,φ1 + 2π), (ρ1,φ1 + 4π), (ρ1,φ1 + 6π), ... 

◦ (ρ1,φ1 − 2π), (ρ1,φ1 − 4π), (ρ1,φ1 − 6π), ... 

◦ (−ρ1,φ1 + π), (−ρ1,φ1 + 3π), (−ρ1,φ1 + 5π), ... 

◦ (−ρ1,φ1 − π), (−ρ1,φ1 − 3π), (−ρ1,φ1 − 5π), ... 

• Thus, in polar coordinates, given an arbitrary point “P”, there are infinite distinct ordered pairs of real numbers that represent the point “P ”; 

• Unlike the case of Cartesian coordinates in a plane, in polar coordinates the relationship between ordered pairs of real numbers and points in the plane is not a one-to-one relation; 

• That is, in polar coordinates, although each pair of real numbers “(ρ,φ)” represents a unique point “P ” in the plane, each point “P ” can be represented by infinite distinct pairs of real numbers. 

Also note that, given a point “P1” that is represented by an ordered pair of real numbers “(ρ1, φ1)”, it follows that (see figure 5.3):

• If “ρ1 > 0” then:

“ρ1” is the distance between point “P1” and the origin; and “φ1” corresponds to the angular position of point “P1” with respect to the corresponding positive x-direction; 

• If “ρ1 = 0” then:

point “P1” is the origin; 

• If “ρ1 < 0” then:

“−ρ1” is the distance between point “P1” and the origin; and “φ1” corresponds to the angular position, with respect to the corresponding positive x-direction, that is opposite to point

“P1”. 
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5.7

EQUATION OF GEOMETRIC FIGURES IN POLAR

COORDINATES

As defined in this book (see 4.3), a geometric figure is a set of points; and in particular a planar geometric figure is a set of points such that all points are in the same plane. By “equation of a planar geometric figure in polar coordinates” we mean an equation of the form “ f (ρ, φ ) = 0”, where “ρ” 

and “φ ” are the ρ-coordinates and φ -coordinates of points in the plane. We will state that “the equation f (ρ, φ ) = 0 is the equation in polar coordinates of geometric figure G ”, if it holds that:





f (ρ, φ ) = 0

 





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ G . 



y = ρ sin(φ ) 

Note that two different equations can have the same set of solutions; therefore a given geometric figure “G ”, in general, can be represented by more than one equation in polar coordinates. Also, note that two different sets of ordered real number pairs “(ρ, φ )” can represent the same geometric figure “G ” [since in polar coordinates a given point in the plane can be represented by different real number ordered pairs (ρ,φ )]; therefore, once again, a given geometric figure “G ”, in general, can be represented by more than one equation in polar coordinates. 

5.8

EQUATION OF A NON-VERTICAL LINE

We will now prove that the equation in polar coordinates of a non-vertical line “GLn” is: ρ sin(φ ) = rm ρ cos(φ ) + b ; 

(5.19)

where “rm” is the slope and “b” is the y-intercept. 

Proof:

• Case: non-vertical line GLn with a slope “rm” and a y-intercept “b” 

y = rm x + b ⇐⇒ (x, y) ∈ GLn

[eq. (4.47)] ; 





y = r

 

m x + b





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ GLn ; 



y = ρ sin(φ ) 





ρ sin(φ ) = r

 

m ρ cos(φ ) + b





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ GLn . 



y = ρ sin(φ )



5.9

EQUATION OF A VERTICAL LINE

We will also now prove that the equation in polar coordinates of a vertical line “GLn” is: ρ cos(φ ) = h ; 

(5.20)

where “h” is the x-intercept. 
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Proof:

• Case: vertical line GLn with an x-intercept “h” 

x = h ⇐⇒ (x, y) ∈ GLn

[eq. (4.48)] ; 





x = h

 





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ GLn ; 



y = ρ sin(φ ) 





ρ cos(φ ) = h  





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ GLn . 



y = ρ sin(φ ) 

5.10

DISTANCE BETWEEN TWO POINTS IN POLAR COORDINATES

We will now prove that given two points in polar coordinates “(ρ1, φ1)” and “(ρ2, φ2)”, the distance

“d ” between the two points is given by:

q

d =

ρ2 + ρ2

2

1 − 2 ρ2 ρ1 cos(φ2 − φ1) . 

(5.21)

Proof:

x1 = ρ1 cos(φ1)

[eq. (5.17)] ; 

y1 = ρ1 sin(φ1)

[eq. (5.18)] ; 

x2 = ρ2 cos(φ2)

[eq. (5.17)] ; 

y2 = ρ2 sin(φ2)

[eq. (5.18)] ; 

q

d =

( x2 − x1)2 + (y2 − y1)2

[eq. (4.49)] ; 

d2 = ( x2 − x1)2 + (y2 − y1)2

[eq. (2.94)] ; 



2



2

d2 = ρ2 cos(φ2) − ρ1 cos(φ1)

+ ρ2 sin(φ2) − ρ1 sin(φ1)

; 



2



2

d2 = ρ2 cos(φ2) + [ −ρ1 cos(φ1)]

+ ρ2 sin(φ2) + [ −ρ1 sin(φ1)]

[eq. (2.54)] ; 







d2 =

ρ2 cos(φ2) + [ −ρ1 cos(φ1)]

ρ2 cos(φ2) + [ −ρ1 cos(φ1)]







+ ρ2 sin(φ2) + [ −ρ1 sin(φ1)]

ρ2 sin(φ2) + [ −ρ1 sin(φ1)]

[eq. (2.79)] ; 





d2 = ρ2 cos(φ2) ρ2 cos(φ2) + [ −ρ1 cos(φ1)]





+ [ −ρ1 cos(φ1)] ρ2 cos(φ2) + [−ρ1 cos(φ1)]





+ ρ2 sin(φ2) ρ2 sin(φ2) + [ −ρ1 sin(φ1)]





+ [ −ρ1 sin(φ1)] ρ2 sin(φ2) + [−ρ1 sin(φ1)]

[eqs. (2.56) and (2.64)] ; 
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d2 = ρ2 cos(φ2) ρ2 cos(φ2) + ρ2 cos(φ2) [ −ρ1 cos(φ1)]

+ [ −ρ1 cos(φ1)]ρ2 cos(φ2) + [−ρ1 cos(φ1)][−ρ1 cos(φ1)]

+ ρ2 sin(φ2)ρ2 sin(φ2) + ρ2 sin(φ2)[ −ρ1 sin(φ1)]

+ [ −ρ1 sin(φ1)]ρ2 sin(φ2) + [−ρ1 sin(φ1)][−ρ1 sin(φ1)]

[eq. (2.64)] ; 

d2 = ρ2 cos(φ2) ρ2 cos(φ2) + ρ2 cos(φ2) [ −ρ1 cos(φ1)]

+ [ −ρ1 cos(φ1)]ρ2 cos(φ2) + ρ1 cos(φ1)ρ1 cos(φ1)

+ ρ2 sin(φ2)ρ2 sin(φ2) + ρ2 sin(φ2)[ −ρ1 sin(φ1)]

+ [ −ρ1 sin(φ1)]ρ2 sin(φ2) + ρ1 sin(φ1)ρ1 sin(φ1)

[eq. (2.62)] ; 

d2 = ρ2 cos(φ2) ρ2 cos(φ2) + [ −ρ2 cos(φ2)ρ1 cos(φ1)]

+ [ −ρ1 cos(φ1)ρ2 cos(φ2)] + ρ1 cos(φ1)ρ1 cos(φ1)

+ ρ2 sin(φ2)ρ2 sin(φ2) + [ −ρ2 sin(φ2)ρ1 sin(φ1)]

+ [ −ρ1 sin(φ1)ρ2 sin(φ2)] + ρ1 sin(φ1)ρ1 sin(φ1)

[eqs. (2.56) and (2.61)] ; 

d2 = ρ2 ρ2 cos(φ2) cos(φ2) + [ −ρ2 ρ1 cos(φ2) cos(φ1)]

+ [ −ρ2 ρ1 cos(φ2) cos(φ1)] + ρ1 ρ1 cos(φ1) cos(φ1)

+ ρ2 ρ2 sin(φ2) sin(φ2) + [ −ρ2 ρ1 sin(φ2) sin(φ1)]

+ [ −ρ2 ρ1 sin(φ2) sin(φ1)] + ρ1 ρ1 sin(φ1) sin(φ1)

[eqs. (2.56) and (2.57)] ; 

d2 = ρ22 cos2(φ2) + [−ρ2 ρ1 cos(φ2) cos(φ1)]

+ [ −ρ2 ρ1 cos(φ2) cos(φ1)] + ρ21 cos2(φ1)

+ ρ22 sin2(φ2) + [−ρ2 ρ1 sin(φ2) sin(φ1)]

+ [ −ρ2 ρ1 sin(φ2) sin(φ1)] + ρ21 sin2(φ1)

[eq. (2.79)] ; 

d2 = ρ22 cos2(φ2) + ρ22 sin2(φ2) + ρ21 cos2(φ1) + ρ21 sin2(φ1)

+ [ −ρ2 ρ1 cos(φ2) cos(φ1)] + [−ρ2 ρ1 cos(φ2) cos(φ1)]

+ [ −ρ2 ρ1 sin(φ2) sin(φ1)] + [−ρ2 ρ1 sin(φ2) sin(φ1)]

[eqs. (2.43) and (2.44)] ; 

d2 = ρ22 cos2(φ2) + ρ22 sin2(φ2) + ρ21 cos2(φ1) + ρ21 sin2(φ1)

+ 2 [ −ρ2 ρ1 cos(φ2) cos(φ1)] + 2[−ρ2 ρ1 sin(φ2) sin(φ1)]

[eq. (2.60)] ; 

d2 = ρ22 cos2(φ2) + ρ22 sin2(φ2) + ρ21 cos2(φ1) + ρ21 sin2(φ1)

+ [ −2ρ2 ρ1 ] cos(φ2) cos(φ1) + [−2ρ2 ρ1 ] sin(φ2) sin(φ1)

[eqs. (2.56) and (2.61)] ; 

[image: Image 461]

130

Limits and Derivatives of Real Functions for Physicists

d2 = ρ22 [cos2(φ2) + sin2(φ2)] + ρ21 [cos2(φ1) + sin2(φ1)]

+ [ −2ρ2 ρ1 ][cos(φ2) cos(φ1) + sin(φ2) sin(φ1)]

[eq. (2.64)] ; 

d2 = ρ22 · 1 + ρ21 · 1 + [−2 ρ2 ρ1 ][cos(φ2) cos(φ1) + sin(φ2) sin(φ1)]

[eq. (4.52)] ; 

d2 = ρ22 + ρ21 + [−2 ρ2 ρ1 ][cos(φ2) cos(φ1) + sin(φ2) sin(φ1)]

[eqs. (2.56) and (2.59)] ; 

d2 = ρ22 + ρ21 − 2 ρ2 ρ1 [cos(φ2) cos(φ1) + sin(φ2) sin(φ1)]

[eqs. (2.54) and (2.61)] ; 

d2 = ρ22 + ρ21 − 2 ρ2 ρ1 [cos(φ2) cos(−φ1) + sin(φ2) sin(φ1)]

[eq. (4.58)] ; 

h





i

d2 = ρ22 + ρ21 − 2 ρ2 ρ1 cos(φ2) cos(−φ1) + sin(φ2) − − sin(φ1)

[eq. (2.51)] ; 

h



i

d2 = ρ22 + ρ21 − 2 ρ2 ρ1 cos(φ2) cos(−φ1) + sin(φ2) − sin(−φ1)

[eq. (4.59)] ; 

h



i

d2 = ρ22 + ρ21 − 2 ρ2 ρ1 cos(φ2) cos(−φ1) + − sin(φ2) sin(−φ1)

[eqs. (2.56) and (2.61)] ; 

h

i

d2 = ρ22 + ρ21 − 2 ρ2 ρ1 cos(φ2) cos(−φ1) − sin(φ2) sin(−φ1)

[eq. (2.54)] ; 





d2 = ρ2

φ

2 + ρ 2

1 − 2 ρ2 ρ1 cos

2 + (−φ1)

[eq. (4.73)] ; 

d2 = ρ22 + ρ21 − 2 ρ2 ρ1 cos(φ2 − φ1)

[eq. (2.54)] ; 

q

d =

ρ2 + ρ2

2

1 − 2 ρ2 ρ1 cos(φ2 − φ1)

[eq. (2.94)] . 

5.11

EQUATION OF A CIRCLE

We will now prove that the equation in polar coordinates of a circle “Gcircle” is: ρ2 + ρ2c − 2ρ ρc cos(φ − φc) = r2 ; 

(5.22)

where “(ρc, φc)” is the center of the circle in polar coordinates and “r” is the radius of the circle. 
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Proof:

• Case: circle Gcircle with center of the circle in polar coordinates “(ρc,φc)” 

and radius of the circle “r” 







r = pρ2 + ρ2





c − 2 ρ ρc cos(φ − φc) 

 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (5.21)] ; 





r2 = ρ2 + ρ2

 



c − 2 ρ ρc cos(φ − φc) 

 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (2.94)] ; 





ρ2 + ρ2

 



c − 2 ρ ρc cos(φ − φc) = r2 

 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle . 

5.12

EQUATION OF A CIRCLE THAT PASSES THROUGH THE ORIGIN

We will now prove that the equation in polar coordinates of a circle “Gcircle” that passes through the origin is:

ρ = 2 ρc cos(φ − φc) ; 

(5.23)

where “(ρc, φc)” is the center of the circle in polar coordinates and “r” is the radius of the circle (note that in this case “r = |ρc|”). 

Proof:

• Case: circle Gcircle that passes through the origin with center of the circle in polar coordinates “(ρc, φc)” and radius of the circle “r” 

r = |ρc| ; 

r r = |ρc| |ρc| ; 

r r = |ρc ρc|

[eq. (2.131)] ; 

r2 = |ρ2c|

[eq. (2.79)] ; 

r2 = ρ2c

[eq. (2.83)] ; 

ρ2c = r2 ; 





ρ2 + ρ2

 



c − 2 ρ ρc cos(φ − φc) = r2 

 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (5.22)] ; 
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



ρ2 + r2 − 2ρ ρ

 

c cos(φ − φc) = r2





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle ; 





ρ2 − 2ρ ρ



c cos(φ − φc) + r2 = r2





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eqs. (2.43) and (2.54)] ; 





ρ2 − 2ρ ρ



c cos(φ − φc) + r2 = 0 + r2





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eqs. (2.43) and (2.45)] ; 





ρ2 − 2ρ ρ

 

c cos(φ − φc) = 0





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (2.46)] ; 





ρ2 = 0 + 2 ρ ρ

 

c cos(φ − φc)





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (2.47)] ; 





ρ2 = 2 ρ ρ

 

c cos(φ − φc)





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eqs. (2.43) and (2.45)] ; 





ρ ρ = ρ 2 ρ

 

c cos(φ − φc)





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eqs. (2.56) and (2.79)] ; 





{ρ = 0} ∨ {ρ



, 0 ∧ ρ ρ = ρ 2 ρ



c cos(φ − φc)}





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (2.58)] ; 





{ρ = 0} ∨ {ρ



, 0 ∧ ρ = 2 ρ



c cos(φ − φc)}





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (2.63)] ; 
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Given that “ρ = 0” represents the origin

(regardless of the value of “φ ”); and

that the equation “ρ = 2 ρc cos(φ − φc)” does have

solutions with “ρ = 0” for some values of “φ ” 

(e.g., for “φ = φc + π/2”); 

it follows that:





ρ = 2 ρ

 

c cos(φ − φc)





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ Gcircle . 



y = ρ sin(φ )



5.13

EQUATION OF A CIRCLE THAT IS CENTERED AT THE ORIGIN

We will now prove that the equation in polar coordinates of a circle “Gcircle” that is centered at the origin is:

ρ = r ; 

(5.24)

where “(ρc, φc)” is the center of the circle in polar coordinates and “r” is the radius of the circle (note that in this case “ρc = 0”). 

Proof:

• Case: circle Gcircle that is centered at the origin with center of the circle in polar coordinates “(ρc, φc)” and radius of the circle “r” 

ρc = 0 ; 





ρ2 + ρ2

 



c − 2 ρ ρc cos(φ − φc) = r2 

 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eq. (5.22)] ; 





ρ2 + 02 − 2ρ · 0 · cos(φ − φ



c) = r2





∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle ; 





ρ2 + 0 · 0 − 0 · 2ρ cos(φ − φ

 

c) = r2





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒



y = ρ sin(φ )



(x, y) ∈ Gcircle

[eqs. (2.56) and (2.79)] ; 





ρ2 + 0 + (−0) = r2  





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ Gcircle



y = ρ sin(φ )



[eqs. (2.54) and (2.58)] ; 
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



ρ2 = r2

 





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ Gcircle



y = ρ sin(φ ) 

[eq. (2.45)] ; 

√

√





ρ = −

 

r2 ∨ ρ =

r2





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ Gcircle



y = ρ sin(φ )



[eqs. (2.83) and (2.94)] ; 





ρ = −r ∨ ρ = r  





 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ Gcircle



y = ρ sin(φ )



[eqs. (2.97) and (2.99)] ; 

Given that the two equations “ρ = −r” and “ρ = r” represent

the same geometric figure [see eqs. (5.17) and (5.18)]; 

it follows that:





ρ = r







 ∃ρ,φ

x = ρ cos(φ )

 ⇐⇒ (x, y) ∈ Gcircle . 



y = ρ sin(φ ) 

Note that, from equation (5.24), it follows that the equation in polar coordinates of the trigonometric circle “GTrigCircle” (see figure 4.46) is: ρ = 1 . 

(5.25)

5.14

EXAMPLES

Trigonometric functions are fundamental in physics and found throughout physics. One example where trigonometric functions come into play is “general circular motion”. By “general circular motion” we mean here the motion of an object along a circular path with possibly its speed varying over time. 

An object in general circular motion is, thus, always in a given circle, and therefore in a plane. To describe a movement of an object in a plane, in general, one would establish a Cartesian coordinate in the plane (see 4.5.1), and then determine the functions “x(t)” and “y(t)” (the x and y coordinates of the object for any given time t; see figure 5.4). 

Since the object is moving in a circle, to describe the movement, we would [see eq. (4.50)]: need to determine functions: x(t) and y(t)

under the condition that: x2(t) + y2(t) = r2 . 

(5.26)

where “r” is the radius of the circle. 
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Figure 5.4 Position of an object in general circular motion. Note that the origin of the reference system has been placed at the center of the circle to simplify the mathematical description of the movement. 

To describe the general circular motion in polar coordinates (rather than Cartesian coordinates), we would [see eqs. (5.17) and (5.18)]:

need to determine functions: ρ(t) and φ (t)

under the condition that: [ ρ(t) cos(φ (t)) ]2 + [ ρ(t) sin(φ (t)) ]2 = r2 ; applying equation (2.87), we would:

need to determine functions: ρ(t) and φ (t)

under the condition that: ρ2(t) cos2(φ (t)) + ρ2(t) sin2(φ (t)) = r2 ; applying equation (2.64), we would:

need to determine functions: ρ(t) and φ (t)

under the condition that: ρ2(t) [ cos2(φ (t)) + sin2(φ (t)) ] = r2 ; applying equation (4.52), we would:

need to determine functions: ρ(t) and φ (t)

under the condition that: ρ2(t) · 1 = r2 ; 

applying equations (2.56) and (2.59), we would:

need to determine functions: ρ(t) and φ (t)

under the condition that: ρ2(t) = r2 . 

For any object moving in general circular motion, we can always satisfy the last condition by taking

“ρ(t) = r” (note that we could have could have mathematically also taken “ρ(t) = −r”, however, taking “ρ(t) = r” gives us a physically simpler interpretation of the polar coordinates for this case). 

136

Limits and Derivatives of Real Functions for Physicists

Therefore, taking once again “ρ(t) = r”, to describe the general circular motion in polar coordinates, we would:

need to only determine function: φ (t) . 

(5.27)

By introducing polar coordinates, and applying trigonometric functions, we have significantly sim-plified the mathematical description of the general circular motion; from initially having to determine two real functions “x(t)” and “y(t)”, that in in turn are functions constrained by an additional equation [see eq. (5.26)]; to having to determine a single real functions “φ (t)” with no additional initial constraints [see eq. (5.27)]. 

The general circular motion in polar coordinates can thus be described simply as: (r, φ (t)) ; 

where “ρ(t) = r” and “r” is a constant equal to the radius of the circle. If we wish to describe the general circular motion in terms of Cartesian coordinates, we can substitute the last expression into equations (5.17) and (5.18), and obtain:

x = r cos(φ (t)) ; 

(5.28)

y = r sin(φ (t)) . 

(5.29)

In particular, if we wish to consider the specific case of uniform circular motion; that is, the case of constant “angular rate” (i.e., constant angular velocity), one finds that: φ (t) = ω t + φ0 ; 

where “ω” is a constant equal to the angular velocity of the object and φ0 is a constant equal to the initial value of the φ -coordinate of the object. Substituting the last equation into equations (5.28) and (5.29), one finds that the equations of motion of an object in uniform circular motion, when the origin of the reference system is placed at the center of the circle, are: x(t) = r cos(ω t + φ0) ; 

(5.30)

y(t) = r sin(ω t + φ0) . 

(5.31)

In this section, we have presented as an example, an initial analysis of general circular motion that lead us to equations (5.28) and (5.29); and in the specific case of a constant angular velocity

“ω” to equations (5.30) and (5.31). As can be clearly seen, polar coordinates and trigonometric functions played a key role in the physics analysis of the system. 
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6 Intervals and Regions in R

6.1

INTRODUCTION

Limits appear explicitly or implicitly throughout physics. Limits and their properties are the foundation of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as limits. 

In turn, limits are defined based on intervals, regions in “ ”, and vicinities in “ ”. Intervals, R

R

regions, and vicinities, as well as their properties, become more than just useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present the definition and general properties of intervals, regions in “ ”, R

vicinities in “ ”, and related concepts. 

R

6.2

NOTATION

Extending the notation used in chapters 4 and 5, in this chapter, and throughout the rest of the book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”. 

R

6.3

INTERVALS

Intervals are a fundamental part of limits. In this book, we will define an interval “I ”, to be a subset of the real number set “ ” that fulfills the conditions described below. As discussed in “Real R

and Complex Numbers for Physicists” [3], one can establish a one-to-one relationship with points in a line and real numbers (this is one of the motivations for constructing real numbers). Thus, geometrically, an interval “I ” can also be seen as a set of points belonging to the number line. 

In this section, and in the next section, we will define intervals, open sets in “ ”, regions in “ ”, R

R

neighborhoods, vicinities, left-vicinities, and right-vicinities in “ ”, limiting points of a set in “ ”, R

R

closed sets in “ ”, the closure of a set in “ ”, interior and exterior points of a set in “ ”, and R

R

R

boundary points of a set in “ ”. 

R

6.3.1

OPEN INTERVALS

A bounded open interval “I ” is the subset of “ ” that contains the real numbers that are greater R

than a given real number “a” and less than another given real number “b”. “a” will be referred to as the left-boundary of the bounded open interval “I ” and “b” will be referred to as the right-boundary of the bounded open interval “I ”. In turn, the bounded open interval “I ” will be denoted by “(a, b)” 
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(the left-boundary and the right-boundary of the bounded open interval placed in parentheses). That is, given a subset “I ” of “ ”:

R

n

o

I is a bounded open interval ⇐⇒ ∃a,b

a < b ∧ { x ∈ I ⇐⇒ a < x < b }

. 

(6.1)

A left-unbounded open interval “I ” is the subset of “ ” that contains the real numbers that are R

less than a given real number “b”. “b” will be referred to as the right-boundary of the left-unbounded open interval “I ”. In turn, the left-unbounded open interval “I ” will be denoted by “(−∞,b)” (where

“b” is the right-boundary of the left-unbounded open interval). That is, given a subset “I ” of “ ”: R

n

o

I is a left-unbounded open interval ⇐⇒ ∃b

x ∈ I ⇐⇒ x < b

. 

(6.2)

Note that a left-unbounded open interval does not have a left-boundary. That said, we will state that

“the left-boundary of interval ‘(−∞,b)’ is minus infinity (−∞)”. Stating that the left-boundary of a given interval is “−∞” simply means that the points of the given interval extend indefinitely towards the left. 

A right-unbounded open interval “I ” is the subset of “ ” that contains the real numbers that R

are greater than a given real number “a”. “a” will be referred to as the left-boundary of the right-unbounded open interval “I ”. In turn, the right-unbounded open interval “I ” will be denoted by

“(a, +∞)” (where “a” is the left-boundary of the right-unbounded open interval). That is, given a subset “I ” of “ ”:

R

n

o

I is a right-unbounded open interval ⇐⇒ ∃a x ∈ I ⇐⇒ a < x . 

(6.3)

Note that a right-unbounded open interval does not have a right-boundary. That said, we will state that “the right-boundary of interval ‘(a, +∞)’ is plus infinity (+∞)”. Stating that the right-boundary of a given interval is “+∞” simply means that the points of the given interval extend indefinitely towards the right. 

An unbounded open interval is the set “ ” (set of all real numbers). The unbounded open interval R

will also be denoted by “(−∞,+∞)”. Note that:

(−∞,+∞) =

. 

(6.4)

R

Also note that an unbounded open interval has neither a left-boundary nor a right-boundary. That said, we will state that “the left-boundary of interval ‘(−∞,+∞)’ is minus infinity (−∞)” and also that “the right-boundary of interval ‘(−∞,+∞)’ is plus infinity (+∞)”. Stating that the left-boundary and the right-boundary of the interval “(−∞,+∞)” is respectively “−∞” and “+∞” simply means that the points of the interval “(−∞,+∞)” extend indefinitely in both directions. 

In this book, the term “open interval ” will denote a subset of “ ” that is either a “bounded R

open interval”, or a “left-unbounded open interval”, or a “right-unbounded open interval”, or an

“unbounded open interval”. 

6.3.2

CLOSED INTERVALS

A bounded closed interval “I ” is the subset of “ ” that contains the real numbers that are greater R

than or equal to a given real number “a” and less than or equal to another given real number “b”. “a” 

will be referred to as the left-boundary of the bounded closed interval “I ” and “b” will be referred to as the right-boundary of the bounded closed interval “I ”. In turn, the bounded closed interval “I ” 

will be denoted by “[ a, b ]” (the left-boundary and the right-boundary of the bounded closed interval placed in square brackets). That is, given a subset “I ” of “ ”:

R

n

o

I is a bounded closed interval ⇐⇒ ∃a,b a < b ∧ { x ∈ I ⇐⇒ a ≤ x ≤ b }

. 

(6.5)
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A left-unbounded closed interval “I ” is the subset of “ ” that contains the real numbers that are R

less than or equal to a given real number “b”. “b” will be referred to as the right-boundary of the left-unbounded closed interval “I ”. In turn, the left-unbounded closed interval “I ” will be denoted by “(−∞,b ]” (where “b” is the right-boundary of the left-unbounded closed interval). That is, given a subset “I ” of “ ”:

R

n

o

I is a left-unbounded closed interval ⇐⇒ ∃b x ∈ I ⇐⇒ x ≤ b . 

(6.6)

Note that a left-unbounded closed interval does not have a left-boundary. That said, we will state that “the left-boundary of interval ‘(−∞,b ]’ is minus infinity (−∞)”. Stating that the left-boundary of a given interval is “−∞” simply means that the points of the given interval extend indefinitely towards the left. 

A right-unbounded closed interval “I ” is the subset of “ ” that contains the real numbers that R

are greater than or equal to a given real number “a”. “a” will be referred to as the left-boundary of the right-unbounded closed interval “I ”. In turn, the right-unbounded closed interval “I ” will be denoted by “[a, +∞)” (where “a” is the left-boundary of the right-unbounded closed interval). That is, given a subset “I ” of “ ”:

R

n

o

I is a right-unbounded closed interval ⇐⇒ ∃a x ∈ I ⇐⇒ a ≤ x . 

(6.7)

An unbounded closed interval is the set “ ” (set of all real numbers). Note that the set “ ” is R

R

both an “unbounded open interval” and an “unbounded closed interval”. 

In this book, the term “closed interval ” will denote a subset of “ ” that is either a “bounded R

closed interval”, or a “left-unbounded closed interval”, or a “right-unbounded closed interval”, or an “unbounded closed interval”. 

6.3.3

HALF-OPEN INTERVALS

A left-half-open interval “I ” is the subset of “ ” that are greater than a given real number “a” and R

less than or equal to another given real number “b”. “a” will be referred to as the left-boundary of the left-half-open interval “I ” and “b” will be referred to as the right-boundary of the left-half-open interval “I ”. In turn, the left-half-open interval “I ” will be denoted by “( a, b ]” (the left-boundary and the right-boundary of the left-half-open interval placed in between a left-parenthesis and a right-square-bracket). That is, given a subset “I ” of “ ”:

R

n

o

I is a left-half-open interval ⇐⇒ ∃a,b

a < b ∧ { x ∈ I ⇐⇒ a < x ≤ b }

. 

(6.8)

A right-half-open interval “I ” is the subset of “ ” that are greater than or equal to a given R

real number “a” and less than another given real number “b”. “a” will be referred to as the left-boundary of the right-half-open interval “I ” and “b” will be referred to as the right-boundary of the right-half-open interval “I ”. In turn, the right-half-open interval “I ” will be denoted by “[ a, b )” 

(the left-boundary and the right-boundary of the right-half-open interval placed in between a left-square-bracket and a right-parenthesis). That is, given a subset “I ” of “ ”: R

n

o

I is a right-half-open interval ⇐⇒ ∃a,b

a < b ∧ { x ∈ I ⇐⇒ a ≤ x < b }

. 

(6.9)

In this book, the term “half-open interval ” will denote a subset of “ ” that is either a “left-R

half-open interval” or a “right-half-open interval”. Note that a half-open interval is neither an “open interval” nor a “closed interval”. 

Note that a half-open interval is always “bounded”. 
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6.3.4

INTERVALS

In this book, the term “interval ” will denote a subset of “ ” that is either an “open-interval”, or a R

“closed interval”, or a “half-open interval”. Once again, note that the set “ ” is both an “unbounded R

open interval” and an “unbounded closed interval”. 

6.4

REGIONS IN R

6.4.1

OPEN SETS IN R

An open set “S ” (of set

) is a subset of “ ” such that for every number “x1” belonging to “S ” 

R

R

there exists a positive real number “d ”, such that all numbers that are closer to “x1” than “d ” also belong to “S ”. That is, given a subset “S ” of “ ”:

R

n

o

S is open ⇐⇒

x1 ∈ S =⇒ ∃d>0 { |x1 − x2| < d =⇒ x2 ∈ S }

. 

(6.10)

Note that:

• The empty set “/0” is an open set; 

• The real number set “ ” is an open set; 

R

• An open interval is also an open set (whether bounded, left-unbounded, right-unbounded, or unbounded). 

6.4.2

REGIONS IN R

In this book, a region “R ” (of set

) is a nonempty open subset of “ ” that cannot be represented

R

R

as the union of two or more disjoint1 nonempty open subsets of “ ”. 

R

It follows that a region “R ” (of set

) is an open interval. That is, a region “R ” is either a

R

bounded open interval, or a left-unbounded open interval, or a right-unbounded open interval, or an unbounded open interval. Thus:

S is a region ⇐⇒ S is an open interval . 

(6.11)

Note that:

• The empty set “/0” is not a region (/0 is not nonempty); 

• The real number set “ ” is a region. 

R

6.4.3

NEIGHBORHOODS AND VICINITIES IN R

A neighborhood “SN” of a number “x” is a subset of “ ” such that “SN” is a region that includes R

“x”. That is, given a subset “SN” of “ ”:

R



S



S

N is a region

N is a neighborhood of x ⇐⇒

. 

(6.12)

x ∈ SN

Given a neighborhood “SN” of number “x”, in this book, we will refer to the set “SN” minus the set “{x}” (where “{x}” denotes the set that contains only the element x) as a “vicinity SV of x”. That is, given a subset “SV ” of “ ”:

R



S



S

N is a neighborhood of x

V is a vicinity of x ⇐⇒ ∃S

. 

(6.13)

N

SV = SN \ {x}

1Two sets “A” and “B” are disjoint if and only if “A ∩B = /0” (i.e., A and B are disjoint if and only if they have no element in common). 
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Given a vicinity “SV ” of number “x”, in this book, we will refer to the set “SV ” intersected with the set of real numbers less than “x” (“Sx−”) as a “left-vicinity SV− of x”. That is, given a subset

“SV ” of “ ”:

R

x1 ∈ Sx− ⇐⇒ x1 < x ; 

(6.14)



S



S

V is a vicinity of x

V − is a left-vicinity of x ⇐⇒ ∃S

. 

(6.15)

V

SV− = SV ∩ Sx−

Note that:

Sx− = (−∞, x) . 

(6.16)

Given a vicinity “SV ” of number “x”, in this book, we will refer to the set “SV ” intersected with the set of real numbers greater than “x” (“Sx+”) as a “right-vicinity SV+ of x”. That is, given a subset

“SV ” of “ ”:

R

x1 ∈ Sx+ ⇐⇒ x1 > x ; 

(6.17)



S



S

V is a vicinity of x

V + is a right-vicinity of x ⇐⇒ ∃S

. 

(6.18)

V

SV+ = SV ∩ Sx+

Note that:

Sx+ = (x, +∞) . 

(6.19)

6.4.4

LIMITING POINTS OF A SET S IN R

We will state that “x” is a limiting point of set “S ” (S ⊂ ), if given any vicinity “SV ” of “x”, “SV ” 

R

will always intersect with “S ” (i.e., SV ∩ S , /0; where /0 is the empty set). That is: n

o

x is a limiting point of S ⇐⇒ SV is a vicinity of x =⇒ S ∩ SV , /0 . 

(6.20)

In turn, given a set “S ”, the set that is composed of the limiting points of “S ” will be referred to as the “limiting of S ” and denoted by “lm(S)”. 

Note that given an open set “S ”, all the points in “S ” are also limiting points of “S ”, that is: S is open =⇒ S ⊂ lm(S) ; 

(6.21)

and therefore given a region “R ”:

R ⊂ lm(R) . 

(6.22)

6.4.5

CLOSED SETS IN R

A closed set “S ” is a subset of “ ” such that it includes all its limiting points. That is, given a subset R

“S ” of “ ”:

R

S is closed ⇐⇒ lm(S) ⊂ S . 

(6.23)

Note that:

• The empty set “/0” is a closed set; 

• The real number set “ ” is a closed set; 

R

• A closed interval is also a closed set (whether bounded, left-unbounded, right-unbounded, or unbounded). 
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6.4.6

CLOSURE OF A SET IN R

Given a subset “S ” of “ ”, the closure of the given subset “cl(S)” is the set composed of all the R

points of “S ” and all the limiting points of “S ”, that is:

cl(S) ≡ S ∪ lm(S) . 

(6.24)

Note that a set is closed if and only if it is equal to its closure, that is: S is closed ⇐⇒ cl(S) = S . 

(6.25)

6.4.7

INTERIOR AND EXTERIOR POINTS OF A SET S IN R

We will state that “x” is an interior point of set “S ” (S ⊂ ), if there exists a neighborhood “SN” of R

“x” such that “SN ⊂ S”. That is:



S



x is an interior point of S ⇐⇒ ∃

N is a neighborhood of x

S

. 

(6.26)

N

SN ⊂ S

In turn, given a set “S ”, the set that is composed of the interior points of “S ” will be referred to as the “interior of S ” and denoted by “int(S)”. Note that a set is open if and only if it is equal to its interior, that is:

S is open ⇐⇒ int(S) = S . 

(6.27)

We will state that “x” is an exterior point of set “S ” (S ⊂ ), if there exists a neighborhood “SN” 

R

of “x” such that “SN ∩ S = /0”. That is:



S



x is an exterior point of S ⇐⇒ ∃

N is a neighborhood of x

S

. 

(6.28)

N

SN ∩ S = /0

In turn, given a set “S ”, the set that is composed of the exterior points of “S ” will be referred to as the “exterior of S ” and denoted by “ext(S)”. 

6.4.8

BOUNDARY POINTS OF A SET S IN R

We will state that “x” is a boundary point of set “S ” (S ⊂ ), if “x” is in the closure of “S ” but not R

in the interior of “S ”. That is:

x is a boundary point of S ⇐⇒ x ∈ cl(S) \ int(S) . 

(6.29)

In turn, given a set “S ”, the set that is composed of the boundary points of “S ” will be referred to as the “boundary of S ” and denoted by “bd(S)”. Note that:

bd(S) = cl(S) \ int(S) . 

(6.30)

Also, note that:

bd( (a, b) ) = {a,b} ; 

(6.31)

that is, the boundary of the open interval “(a, b)” is equal to the set composed of the two points “a” 

and “b”. Note that the left-boundary point “a” and the right-boundary point “b” of the open interval

“(a, b)” are also the two boundary points of the open interval. 
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R

Additionally, one finds that:

cl( (a, b) ) = [a, b ] ; 

(6.32)

int( [a, b ] ) = (a, b) ; 

(6.33)

bd( [a, b ] ) = {a,b} ; 

(6.34)

bd( [a, b ] ) = bd( (a, b) ) ; 

(6.35)

bd( (a, +∞) ) = {a} ; 

(6.36)

bd( (−∞,b) ) = {b} ; 

(6.37)

bd( (−∞,+∞) ) = /0 . 

(6.38)

6.5

EXAMPLES

As an example, in this section we will revisit the case of an object that moves along a straight line discussed in 1.6 and 2.6. Considering an object moving along a straight line, we may wish to calculate the average velocity “vavg” of the object in between the times “t1” and “t2”, and thus apply the equation:

x(t2) − x(t1)

vavg =

; 

t2 − t1

where “x(t)” is the position of the object at a time “t”. Taking “∆t = t2 − t1”, we can rewrite the previous equation in the form:

x(t1 + ∆t) − x(t1)

vavg =

. 

∆t

If now we wish to calculate the velocity “v1x” at “t1” (i.e., the instantaneous velocity at t1, rather than the average velocity in a time interval that includes t1), then we would apply the equation: x(t1 + ∆t) − x(t1)

v1x = lim

. 

∆t→0

∆t

In turn, the application of the limit operation on the expression “(x(t1 + ∆t) − x(t1))/∆t” requires that the given expression be defined in a given vicinity of “∆t = 0”, while simultaneously requiring the position function “x(t)” to be defined in a neighborhood of “t = t1”. Thus, the concepts of vicinity in “ ” and neighborhood in “ ” become key in the determination of the value of “v1x” (the R

R

velocity of the object at time t1). 

Therefore, the concepts of vicinities in “ ” and neighborhoods in “ ”, in particular, and the R

R

concepts of intervals and regions in “ ”, in general, become fundamental in physics. 

R
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Limits
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7 Limit L of Real Functions

when x → a (or x → a− or

x → a+)

7.1

INTRODUCTION

Limits appear explicitly or implicitly throughout physics. Limits and their properties are the foundation of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as limits. 

Considering again the example discussed previously in 6.5, for an object moving in a straight line described by a position function “x(t)”, the velocity “v1x” at “t1” is given by: x(t1 + ∆t) − x(t1)

v1x = lim

. 

∆t→0

∆t

In order for velocity “v1x” to be a well-defined physical quantity, the limit must result in a well-defined real number that we can the compare with observations. Thus, it becomes key for the limit operation to be well-defined. Limits and their properties become more than just useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present the definition of:

• The limit “L” of a real function “ f (x)” when “x” tends to “a” (x → a); 

• The limit “L” of a real function “ f (x)” when “x” tends to “a” from the left (x → a−); 

• The limit “L” of a real function “ f (x)” when “x” tends to “a” from the right (x → a+); and we will discuss general properties of these limits. 

7.2

NOTATION

Extending the notation used in chapters 4-6, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 
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• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

7.3

LIMIT L OF F(X ) WHEN X → A

7.3.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a vicinity “SV ” of real number “a”, the limit “L” of the function “ f (x)” when “x” tends to “a”, is defined as the real number “L” that satisfies the equation:

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − L| < ε } ; 

to denote that the real number “L” is the limit of the real function “ f (x)” when “x” tends to “a”, the following notation is used:

lim f (x) = L ; 

x→a

that is:

lim f (x) = L ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − L| < ε } . 

(7.1)

x→a

The right side of equation (7.1) states that taking an arbitrarily small interval “(L − ε,L+ ε)” around

“L”, we can always find an interval around “a” [ (a − δ ,a + δ )], such that for every “x” different from “a” in the interval “(a − δ ,a + δ )” the value of the function at “x” [ f (x)] is in the interval

“(L − ε,L + ε)”. 

Intuitively, stating that “L” is the limit of the function “ f (x)” when “x” tends to “a” [eq. (7.1)], means that we can make the value of the function “ f (x)” be arbitrarily close to “L” by considering values of “x” (other than x = a) arbitrarily close to “a”. 

Equation (7.1) is fundamental in that it makes the limit “L” a mathematically well-defined value. 

Given a real function “ f (x)” that is defined in a vicinity “SV ” of a real number “a”, we can always consider a number “L” and substitute “L” in equation (7.1). Since equation (7.1) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (7.1) results True, then “L” is the limit; on other hand if the right side of equation (7.1) results False, then

“L” is not the limit. That is, we can, in principle, always determine whether a real number “L” is or is not a limit. Thus, once again, the limit “L” now becomes a well-defined mathematical value. 

Note that:

• For a limit “L” of a function “ f (x)” when “x” tends to “a” to exist, the function “ f (x)” must be defined in a vicinity “SV ” of real number “a” [i.e., the value of f (x) must exist for values of x in a vicinity SV of “a”]; 

• The limit “L” of a function “ f (x)” when “x” tends to “a” does not depend on the value of the function “ f (x)” at “x = a” [i.e., does not depend on f (a) ]. [Note the logical quantifier

∀x,a in eq. (7.1)]; 
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• In fact, the limit “L” of a function “ f (x)” when “x” tends to “a” may exist while the value of the function “ f (x)” at “x = a” may or may not exist [i.e., f (a) may or may not exist]. 

For example, consider the function:

x2

f (x) =

+ 1 ; 

x

the function “ f (x)” does not exist (is not defined) for “x = 0” (since we cannot divide by

“0” [zero]). Thus, it would be clearer to write:



x2

x , 0 :

f (x) =

+ 1





x

; 





x = 0 :

f (x) is not defined

note that since it holds in this case that “x , 0 :

f (x) = x + 1”, from equation (7.1) it follows

that:

lim f (x) = 1 ; 

x→0

yet, once again, in this case “ f (0)” does not exist [ f (0) is not defined]. Note once again that, in order for the limit “L” to exist, the function “ f (x)” must be defined in a vicinity of

“a” (not a neighborhood of “a”); 

• Given a real function “ f (x)” that is defined in a vicinity “SV ” of real number “a”, the limit

“L” of the function “ f (x)” when “x” tends to “a” may or may not exist (i.e., the limit L does not necessarily exist). For example, consider the function:

1

f (x) =

; 

x

since we cannot divide by “0” [zero], it would be clearer to write:



1

x , 0 :

f (x) =





x

; 





x = 0 :

f (x) is not defined

in this case, from equation (7.1) it follows that a limit “L” when “x” tends to “0” [zero] does not exist (although the function is defined in a vicinity of “0” [zero]), that is, in this case: lim f (x) does not exist . 

x→0

7.3.2

EXAMPLE

As an example of a limit, we will show, by definition, that:

lim(3x + 1) = 7 . 

x→2

Proof:

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |(3x + 1) − 7| < ε }

[eq. (7.1)] ; 
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lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |3x + 1 + (−7)| < ε }

[eqs. (2.44) and (2.54)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |3x + (−6)| < ε } ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |3x + 3(−2)| < ε } ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |3(x + (−2))| < ε }

[eq. (2.64)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |3| |x + (−2)| < ε }

[eq. (2.131)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ 3 |x + (−2)| < ε }

[eq. (2.126)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀



ε>0 ∃δ >0 ∀x,2

|x − 2| < δ =⇒ 3−1 · 3 |x + (−2)| < 3−1ε  

[eq. (2.121)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀



ε>0 ∃δ >0 ∀x,2

|x − 2| < δ =⇒ 3 · 3−1 |x + (−2)| < ε · 3−1  

[eq. (2.56)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀



ε>0 ∃δ >0 ∀x,2

|x − 2| < δ =⇒ |x + (−2)| < ε · 3−1  

[eqs. (2.59) and (2.71)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |x + (−2)| < ε/3 }

[eq. (2.72)] ; 

lim(3x + 1) = 7 ⇐⇒

x→2

∀ε>0 ∃δ>0 ∀x,2 { |x − 2| < δ =⇒ |x − 2| < ε/3 }

[eq. (2.54)] ; 
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for any “ε”, we can always select “δ = ε/3”; 

therefore, the proposition on the right holds true

lim(3x + 1) = 7 ⇐⇒ T ; 

x→2

lim(3x + 1) = 7 . 

x→2

7.3.3

UNIQUENESS OF LIMIT

We will now prove that given a real function “ f (x)” that is defined in a vicinity “SV ” of a real number

“a”, if a limit “L” of the function “ f (x)” when “x” tends to “a” exists, then the limit is unique. 

That is:



lim f (x) = L 

1







x→a

 =⇒ L1 = L2 . 

(7.2)







lim f (x) = L2 

x→a

Proof:

n

o

n

o

• Case:

lim f (x) = L1

∧

lim f (x) = L2

x→a

x→a

(∀ε1>0 ∃δ1>0 ∀x,a { |x−a| < δ1 =⇒ | f(x)−L1 | < ε1 }

∀ε2>0 ∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ | f (x) − L2 | < ε2 }

[eq. (7.1)] ; 

(∀ε1>0 ∃δ1>0 ∀x,a { |x−a| < δ1 =⇒ | f(x)+(−L1)| < ε1 }

∀ε2>0 ∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ | f (x) + (−L2)| < ε2 }

[eq. (2.54)] ; 

(∀ε1>0 ∃δ1>0 ∀x,a {|x−a| < δ1 =⇒ | f(x)+(−L1)| < ε1}

∀ε2>0 ∃δ2>0 ∀x,a {|x − a| < δ2 =⇒ | − ( f (x) + (−L2))| < ε2}

[eq. (2.128)] ; 

(∀ε1>0∃δ1>0∀x,a {|x−a| < δ1 =⇒| f(x)+(−L1)| < ε1}

∀ε2>0∃δ2>0∀x,a {|x − a| < δ2 =⇒|(− f (x)) + (−(−L2))| < ε2}

[eq. (2.52)] ; 

(∀ε1>0 ∃δ1>0 ∀x,a { |x−a| < δ1 =⇒ | f(x)+(−L1)| < ε1 }

∀ε2>0 ∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ |(− f (x)) + L2 | < ε2 }

[eq. (2.51)] ; 

(∀ε1>0 ∃δ1>0 ∀x,a {|x−a| < δ1 =⇒ −ε1 < f(x)+(−L1) < ε1}

∀ε2>0 ∃δ2>0 ∀x,a {|x − a| < δ2 =⇒ −ε2 < (− f (x)) + L2 < ε2}

[eq. (2.129)] ; 

∀ε1>0 ∀ε2>0 ∃δ1>0 ∃δ2>0 ∀x,a

({ |x− a| < δ1 =⇒ −ε1 < f(x)+ (−L1) < ε1 } ; 

{ |x − a| < δ2 =⇒ −ε2 < (− f (x)) + L2 < ε2 }
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taking: δ3 = min(δ1, δ2)

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a

({|x− a| < δ3 =⇒ −ε1 < f(x)+ (−L1) < ε1} ; 

{|x − a| < δ3 =⇒ −ε2 < (− f (x)) + L2 < ε2}

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

(−ε1 < f(x)+ (−L1) < ε1

; 

−ε2 < (− f (x)) + L2 < ε2

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < f (x) + (−L1) + (− f (x)) + L2 < ε1 + ε2

[eq. (2.120)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < L2 + (−L1) + f (x) + (− f (x)) < ε1 + ε2

[eqs. (2.43) and (2.44)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < L2 + (−L1) < ε1 + ε2

[eqs. (2.45) and (2.53)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < L2 − L1 < ε1 + ε2

[eq. (2.54)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

−(ε1 + ε2) < L2 − L1 < ε1 + ε2

[eq. (2.52)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒ |L2 − L1 | < ε1 + ε2

[eq. (2.129)] ; 

taking: ε1 = ε2 = 2−1ε3

(where ε3 is an arbitrary positive number)

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒ |L2 − L1 | < 2−1ε3 + 2−1ε3 ; 

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒ |L2 − L1 | < 2 · 2−1ε3

[eq. (2.60)] ; 

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒ |L2 − L1 | < ε3

[eqs. (2.59) and (2.71)] ; 
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noting that “|L2 − L1 |” is a nonnegative constant, one finds that the above proposition can only be true if “|L2 − L1 | = 0” 

(otherwise we could consider an “ε3” such that

“ε3 < |L2 − L1 |”); therefore:

|L2 − L1 | = 0 ; 

L2 − L1 = 0

[eqs. (2.124)-(2.126)] ; 

L2 = 0 + L1

[eq. (2.47)] ; 

L2 = L1

[eqs. (2.43) and (2.45)] ; 

L1 = L2 ; 

therefore:



lim f (x) = L 

1







x→a

 =⇒ L1 = L2 . 







lim f (x) = L2 

x→a

Equation (7.2) is important in physics. In particular, for example, the velocity of an object along a straight line is defined as the limit of the average velocity function when the variable “∆t” tends to “0” (zero). It therefore follows that the velocity of an object moving along a straight has a unique value for any given time “t”. That is, from equation (7.2) it follows that an object moving along a straight line cannot have two different values of velocity at the same instant of time. 

7.3.4

BASIC PROPERTIES

We will now prove that the limit of a constant function “ f (x) = C ” is the constant “C ” itself. That is, we will now prove that:

lim C = C . 

(7.3)

x→a

Proof:

• Case: f (x) = C

lim f (x) = C ⇐⇒

x→a

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) −C | < ε }

[eq. (7.1)] ; 

lim C = C ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a {|x − a | < δ =⇒ |C −C | < ε } ; x→a

lim C = C ⇐⇒

x→a

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ |C + (−C)| < ε }

[eq. (2.54)] ; 
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lim C = C ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a | < δ =⇒ |0| < ε }

x→a

[eq. (2.53)] ; 

lim C = C ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a | < δ =⇒ 0 < ε }

x→a

[eq. (2.125)] ; 

lim C = C ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a | < δ =⇒ T } ; 

x→a

lim C = C ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a T ; 

x→a

lim C = C ⇐⇒ T ; 

x→a

lim C = C . 

x→a

We will also now prove that:

lim x = a . 

(7.4)

x→a

Proof:

• Case: f (x) = x

lim f (x) = a ⇐⇒

x→a

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − a| < ε }

[eq. (7.1)] ; 

lim x = a ⇐⇒ ∀ε>0 ∃δ>0 ∀x,2 { |x − a | < δ =⇒ |x − a | < ε } ; x→a

for any “ε”, we can always select “δ = ε”; 

therefore, the proposition on the right holds true

lim x = a ⇐⇒ T ; 

x→a

lim x = a . 

x→a

7.3.5

LIMIT OF A SUM

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, if each of the functions “ f1(x)” and “ f2(x)” has a limit when “x” 

tends to “a”, then the sum of the two real functions “ f1(x) + f2(x)” also has a limit when “x” tends to “a”, and the limit of the sum “ f1(x) + f2(x)” is equal to the sum of the limits of “ f1(x)” and

“ f2(x)”. That is:



lim f



1(x) = L1







x→a







=⇒ lim f1(x) + f2(x) = L1 + L2 . 

(7.5)

x→a







lim f2(x) = L2 

x→a
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Proof:

n

o

n

o

• Case:

lim f1(x) = L1

∧

lim f2(x) = L2

x→a

x→a

(∀ε1>0 ∃δ1>0 ∀x,a { |x−a| < δ1 =⇒ | f1(x)−L1 | < ε1}

∀ε2>0 ∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ | f2(x) − L2 | < ε2 }

[eq. (7.1)] ; 

(|x− a| < δ

∀

1 =⇒ | f1(x) − L1 | < ε1

ε

; 

1>0 ∀ε2>0 ∃δ1 >0 ∃δ2>0 ∀x,a

|x − a| < δ2 =⇒ | f2(x) − L2 | < ε2

taking: δ3 = min(δ1, δ2)

(|x− a| < δ

∀

3 =⇒ | f1(x) − L1 | < ε1

ε

; 

1>0 ∀ε2>0 ∃δ3 >0 ∀x,a

|x − a| < δ3 =⇒ | f2(x) − L2 | < ε2

(| f

∀

1(x) − L1 | < ε1

ε

; 

1>0 ∀ε2>0 ∃δ3 >0 ∀x,a | x − a | < δ3 =⇒

| f2(x) − L2 | < ε2

taking: ε1 = ε2 = ε3

(where ε3 is an arbitrary positive number)

(| f

∀

1(x) − L1 | < ε3

ε

; 

3>0 ∃δ3>0 ∀x,a | x − a | < δ3 =⇒

| f2(x) − L2 | < ε3

(−ε

∀

3 < f1(x) − L1 < ε3

ε3>0 ∃δ3>0 ∀x,a | x − a | < δ3 =⇒

−ε3 < f2(x) − L2 < ε3

[eq. (2.129)] ; 

(−ε

∀

3 < f1(x) + (−L1) < ε3

ε3>0 ∃δ3>0 ∀x,a | x − a | < δ3 =⇒

−ε3 < f2(x) + (−L2) < ε3

[eq. (2.54)] ; 

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

(−ε3) + (−ε3) < f1(x) + (−L1) + f2(x) + (−L2) < ε3 + ε3

[eq. (2.120)] ; 

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

(−ε3) + (−ε3) < f1(x) + f2(x) + (−L1) + (−L2) < ε3 + ε3

[eq. (2.43)] ; 

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

−(ε3 + ε3) < f1(x) + f2(x) + (−(L1 + L2)) < ε3 + ε3

[eq. (2.52)] ; 

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f1(x) + f2(x) + (−(L1 + L2))| < ε3 + ε3

[eq. (2.129)] ; 
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∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f1(x) + f2(x) − (L1 + L2)| < ε3 + ε3

[eq. (2.54)] ; 

∀ε3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f1(x) + f2(x) − (L1 + L2)| < 2ε3

[eq. (2.60)] ; 

taking: ε3 = 2−1ε4

(where ε4 is an arbitrary positive number)

∀ε4>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f1(x) + f2(x) − (L1 + L2)| < 2 · 2−1 · ε4

[eq. (2.56)] ; 

∀ε4>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f1(x) + f2(x) − (L1 + L2)| < ε4

[eqs. (2.59) and (2.71)] ; 





lim

f1(x) + f2(x)

= L1 + L2

[eq. (7.1)] . 

x→a

We will also now prove that given a real function “ f (x)” that is defined in a vicinity of a real number

“a”, if the function “ f (x)” has a limit when “x” tends to “a”, then the negative of the real function

“− f (x)” also has a limit when “x” tends to “a”, and the limit of the negative function “− f (x)” is equal to the negative of the limit of “ f (x)”. That is:





lim f (x) = L =⇒ lim − f (x) = −L . 

(7.6)

x→a

x→a

Proof:

• Case: lim f (x) = L

x→a

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − L| < ε }

[eq. (7.1)] ; 

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | − ( f (x) − L)| < ε }

[eq. (2.128)] ; 

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | − ( f (x) + (−L))| < ε }

[eq. (2.54)] ; 

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ |(− f (x)) + (−(−L))| < ε }

[eq. (2.52)] ; 

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ |(− f (x)) − (−L)| < ε }

[eq. (2.54)] ; 





lim − f (x) = −L

[eq. (7.1)] . 

x→a
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We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, if each of the functions “ f1(x)” and “ f2(x) ” has a limit when “x” 

tends to “a”, then the difference of the two real functions “ f1(x) − f2(x)” also has a limit when “x” 

tends to “a”, and the limit of the difference “ f1(x) − f2(x)” is equal to the difference of the limits of

“ f1(x)” and “ f2(x)”. That is:



lim f



1(x) = L1







x→a







=⇒ lim f1(x) − f2(x) = L1 − L2 . 

(7.7)

x→a







lim f2(x) = L2 

x→a

Proof:

n

o

n

o

• Case:

lim f1(x) = L1

∧

lim f2(x) = L2

x→a

x→a





lim − f2(x) = −L2

[eq. (7.6)] ; 

x→a





lim

f1(x) + (− f2(x)) = L1 + (−L2)

[eq. (7.5)] ; 

x→a





lim

f1(x) − f2(x) = L1 − L2

[eq. (2.54)] . 

x→a

7.3.6

LIMIT OF A PRODUCT

We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, if each of the functions “ f1(x)” and “ f2(x)” has a limit when “x” 

tends to “a”, then the product of the two real functions “ f1(x)” and “ f2(x)” also has a limit when

“x” tends to “a”, and the limit of the product “ f1(x) f2(x)” is equal to the product of the limits of

“ f1(x)” and “ f2(x)”. That is:



lim f



1(x) = L1







x→a







=⇒ lim f1(x) f2(x) = L1 L2 . 

(7.8)

x→a







lim f2(x) = L2 

x→a

Proof:

n

o

n

o

• Case:

lim f1(x) = L1

∧

lim f2(x) = L2

x→a

x→a

(∀ε1>0 ∃δ1>0 ∀x,a { |x−a| < δ1 =⇒ | f1(x)−L1| < ε1 }

∀ε2>0 ∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ | f2(x) − L2 | < ε2 }

[eq. (7.1)] ; 

(|x− a| < δ

∀

1 =⇒ | f1(x) − L1 | < ε1

ε

; 

1>0 ∀ε2>0 ∃δ1>0,δ2>0 ∀x,a

|x − a| < δ2 =⇒ | f2(x) − L2 | < ε2
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∀ε1>0 ∀ε2>0 ∀ε3>0 ∀ε4>0 ∃δ1>0,δ2>0,δ3>0,δ4>0 ∀x,a

|x − a| < δ1 =⇒ | f1(x) − L1 | < ε1







| x − a | < δ2 =⇒ | f2(x) − L2 | < ε2

|x − a| < δ



3 ∧ L2 = 0 =⇒ |L2| | f1(x) − L1 | < ε3





|x − a | < δ4 ∧ L1 = 0 =⇒ |L1|| f2(x) − L2 | < ε4

[eq. (2.58)] ; 

∀ε1>0 ∀ε2>0 ∀ε3>0 ∀ε4>0 ∀ε5>0 ∀ε6>0 ∃δ1>0,δ2>0,δ3>0,δ4>0,δ5>0,δ6>0 ∀x,a

|x − a| < δ



1 =⇒ | f1(x) − L1 | < ε1







| x − a | < δ2 =⇒ | f2(x) − L2 | < ε2







| x − a | < δ3 ∧ L2 = 0 =⇒ |L2| | f1(n − L1 | < ε3

|x − a| < δ



5 ∧ L2 , 0 =⇒ |L2| | f1(x) − L1 | < |L2| ε5







| x − a | < δ



4 ∧ L1 = 0 =⇒ |L1| | f2(x) − L2 | < ε4





| x − a | < δ6 ∧ L1 , 0 =⇒ |L1| | f2(x) − L2 | < |L1| ε6

[eq. (2.121)] ; 

taking: δ7 = min(δ1, δ2, δ3, δ4, δ5, δ6)

∀ε1>0 ∀ε2>0 ∀ε3>0 ∀ε4>0 ∀ε5>0 ∀ε6>0 ∃δ7>0 ∀x,a

|x − a| < δ



7 =⇒ | f1(x) − L1 | < ε1







| x − a | < δ7 =⇒ | f2(x) − L2 | < ε2







| x − a | < δ7 ∧ L2 = 0 =⇒ |L2| | f1(x) − L1 | < ε3

; 

|x − a| < δ



7 ∧ L2 , 0 =⇒ |L2| | f1(x) − L1 | < |L2| ε5







| x − a | < δ



7 ∧ L1 = 0 =⇒ |L1| | f2(x) − L2 | < ε4





| x − a | < δ7 ∧ L1 , 0 =⇒ |L1| | f2(x) − L2 | < |L1| ε6

∀ε1>0 ∀ε2>0 ∀ε3>0 ∀ε4>0 ∀ε5>0 ∀ε6>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) − L1 | < ε1







| f2(x) − L2 | < ε2







L2 = 0 =⇒ |L2| | f1(x) − L1 | < ε3

; 

L



2 , 0 =⇒ |L2| | f1(x) − L1 | < |L2| ε5







L



1 = 0 =⇒ |L1| | f2(x) − L2 | < ε4





L1 , 0 =⇒ |L1| | f2(x) − L2 | < |L1| ε6
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taking: ε5 = |L2|−1ε7 (with L2 , 0) ∧

ε6 = |L1|−1ε8 (with L1 , 0)

(where ε7 and ε8 are arbitrary positive numbers)

∀ε1>0 ∀ε2>0 ∀ε3>0 ∀ε4>0 ∀ε7>0 ∀ε8>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) − L1 | < ε1







| f2(x) − L2 | < ε2







L2 = 0 =⇒ |L2| | f1(x) − L1 | < ε3

; 

L



2 , 0 =⇒ |L2| | f1(x) − L1 | < |L2| |L2|−1ε7







L



1 = 0 =⇒ |L1| | f2(x) − L2 | < ε4





L1 , 0 =⇒ |L1| | f2(x) − L2 | < |L1| |L1|−1ε8

∀ε1>0 ∀ε2>0 ∀ε3>0 ∀ε4>0 ∀ε7>0 ∀ε8>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) − L1 | < ε1







| f2(x) − L2 | < ε2







L2 = 0 =⇒ |L2| | f1(x) − L1 | < ε3

[eqs. (2.59) and (2.71)] ; 

L



2 , 0 =⇒ |L2| | f1(x) − L1 | < ε7







L



1 = 0 =⇒ |L1| | f2(x) − L2 | < ε4





L1 , 0 =⇒ |L1| | f2(x) − L2 | < ε8

taking: ε3 = ε7 = ε9 ∧ ε4 = ε8 = ε10

(where ε9 and ε10 are arbitrary positive numbers)

∀ε1>0 ∀ε2>0 ∀ε9>0 ∀ε10>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) − L1 | < ε1







| f2(x) − L2 | < ε2







L2 = 0 =⇒ |L2| | f1(x) − L1 | < ε9

; 

L



2 , 0 =⇒ |L2| | f1(x) − L1 | < ε9







L



1 = 0 =⇒ |L1| | f2(x) − L2 | < ε10





L1 , 0 =⇒ |L1| | f2(x) − L2 | < ε10

∀ε1>0 ∀ε2>0 ∀ε9>0 ∀ε10>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) − L1 | < ε1







| f2(x) − L2 | < ε2

; 

|L



2| | f1(x) − L1 | < ε9





|L1|| f2(x) − L2 | < ε10

∀ε1>0 ∀ε2>0 ∀ε9>0 ∀ε10>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) + (−L1)| < ε1







| f2(x) + (−L2) | < ε2

[eqs. (2.54) and (2.131)] ; 

|L



2 ( f1(x) + (−L1)) | < ε9





|L1 ( f2(x) + (−L2))| < ε10

[image: Image 482]
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∀ε1>0 ∀ε2>0 ∀ε9>0 ∀ε10>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) + (−L1)| < ε1







| f2(x) + (−L2) | < ε2

[eqs. (2.56) and (2.64)] ; 

|L



2 f1(x) + (−L1) L2 | < ε9





|L1 f2(x) + (−L2)L1 | < ε10

∀ε1>0 ∀ε2>0 ∀ε9>0 ∀ε10>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) + (−L1)| < ε1







| f2(x) + (−L2) | < ε2

[eqs. (2.56) and (2.61)] ; 

|L



2 f1(x) + (− L1 L2) | < ε9





|L1 f2(x) + (− L1 L2)| < ε10

∀ε1>0 ∀ε2>0 ∀ε9>0 ∀ε10>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) + (−L1) | | f2(x) + (−L2) | < ε1 ε2



|L2 f1(x) + (−L1 L2)| < ε9

[eq. (2.122)] ; 



| L1 f2(x) + (− L1 L2) | < ε10

√

taking: ε1 = ε2 = ε11

(where ε11 is an arbitrary positive number)

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒



√

√

| f

ε

ε



1(x) + (−L1) | | f2(x) + (−L2) | < 

11

11



|L2 f1(x) + (−L1 L2)| < ε9

; 



| L1 f2(x) + (− L1 L2) | < ε10

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) + (−L1) | | f2(x) + (−L2) | < ε11



|L2 f1(x) + (−L1 L2)| < ε9



| L1 f2(x) + (− L1 L2) | < ε10

[eqs. (2.79) and (2.97)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

|( f



1(x) + (−L1)) f2(x) + ( f1(x) + (−L1)) (−L2) | < ε11



|L2 f1(x) + (−L1 L2)| < ε9



| L1 f2(x) + (− L1 L2) | < ε10

[eqs. (2.64) and (2.131)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



2(x) f1(x) + f2(x)(−L1) + (−L2) f1(x) + (−L2)(−L1) | < ε11



|L2 f1(x) + (−L1 L2)| < ε9



| L1 f2(x) + (− L1 L2) | < ε10

[eqs. (2.56) and (2.64)] ; 
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∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) f2(x) + (− L1 f2(x)) + (− L2 f1(x)) + (−L1)(−L2) | < ε11



|L2 f1(x) + (−L1 L2)| < ε9



| L1 f2(x) + (− L1 L2) | < ε10

[eqs. (2.56) and (2.61)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f



1(x) f2(x) + (− L1 f2(x)) + (− L2 f1(x)) + L1 L2 | < ε11



|L2 f1(x) + (−L1 L2)| < ε9



| L1 f2(x) + (− L1 L2) | < ε10

[eq. (2.62)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒



| f



1(x) f2(x) + (− L1 f2(x)) + (− L2 f1(x)) + L1 L2 |



+ |L2 f1(x) + (−L1 L2)| + |L1 f2(x) + (−L1 L2)|





< ε11 + ε9 + ε10

[eq. (2.120)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

|

f



1(x) f2(x) + (− L1 f2(x)) + (− L2 f1(x)) + L1 L2



+ L2 f1(x) + (−L1 L2) + L1 f2(x) + (−L1 L2) |





< ε11 + ε9 + ε10

[eq. (2.130)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

|

f



1(x) f2(x) + (− L1 L2) + L1 L2 + (− L1 L2)



+ L1 f2(x) + (−L1 f2(x)) + L2 f1(x) + (−L2 f1(x)) |





< ε11 + ε9 + ε10

[eqs. (2.43) and (2.44)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) f2(x) + (−L1 L2)| < ε11 + ε9 + ε10

[eqs. (2.45) and (2.53)] ; 

∀ε9>0 ∀ε10>0 ∀ε11>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) f2(x) − L1 L2 | < ε11 + ε9 + ε10

[eq. (2.54)] ; 

taking: ε9 = ε10 = ε11 = 3−1ε12

(where ε12 is an arbitrary positive number)

∀ε12>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) f2(x) − L1 L2 | < 3−1ε12 + 3−1ε12 + 3−1ε12 ; 
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∀ε12>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒

| f1(x) f2(x) − L1 L2 | < 3 · 3−1 · ε12

[eq. (2.60)] ; 

∀ε12>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒ | f1(x) f2(x) − L1 L2 | < ε12

[eqs. (2.59) and (2.71)] ; 





lim

f1(x) f2(x)

= L1 L2

[eq. (7.1)] . 

x→a

We will now prove the following property:



lim f (x) = L 



x→a



=⇒∃δ

∀

2>0,M2

x,a { |x − a| < δ2 =⇒ f (x) < M2 < 0 } . 

(7.9)



Proof:

L < 0



n

o

n

o

• Case:

lim f (x) = L

∧

L < 0

x→a

∀ε>0 ∃δ2>0 ∀x,a |x − a| < δ2 =⇒ | f (x) − L| < ε

[eq. (7.1)] ; 

taking: ε = −2−1L

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ | f (x) − L| < −2−1L ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ −(−2−1L) < f (x) − L < −2−1L

[eq. (2.129)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) + (−L) < −2−1L

[eq. (2.54)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) + L + (−L) < −2−1L + L

[eqs. (2.43) and (2.119)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < −2−1L + L

[eqs. (2.45) and (2.53)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < −2−1 · L + 1 · L

[eqs. (2.59) and (2.61)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < L

−2−1 + 1 

[eqs. (2.56) and (2.64)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < L 1 − 2−1 

[eqs. (2.43) and (2.54)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < L ( 1 − 1/2 )

[eq. (2.73)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < L(1/2) ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < L/2

[eqs. (2.72) and (2.73)] ; 
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∃δ2>0 ∀x,a |x − a| < δ2 =⇒ f (x) < L/2 < 0 ; 

taking: M2 = L/2

∃δ

∀

2 >0,M2

x,a | x − a | < δ2 =⇒ f (x) < M2 < 0 . 

We will also now prove the following property:



lim f (x) = L 



x→a

 =⇒∃δ

∀

2>0,M2

x,a {|x − a| < δ2 =⇒ 0 < M2 < f (x)} . 

(7.10)



L > 0



Proof:

n

o

n

o

• Case:

lim f (x) = L

∧

L > 0

x→a

∀ε>0 ∃δ2>0 ∀x,a |x − a| < δ2 =⇒ | f (x) − L| < ε

[eq. (7.1)] ; 

taking: ε = 2−1L

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ | f (x) − L| < 2−1L ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ −2−1L < f (x) − L < 2−1L

[eq. (2.129)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ −2−1L < f (x) + (−L)

[eq. (2.54)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ −2−1L + L < f (x) + L + (−L)

[eqs. (2.43) and (2.119)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ −2−1L + L < f (x)

[eqs. (2.45) and (2.53)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ −2−1 · L + 1 · L < f (x)

[eqs. (2.59) and (2.61)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ L

−2−1 + 1  < f (x)

[eqs. (2.56) and (2.64)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ L 1 − 2−1  < f (x)

[eqs. (2.43) and (2.54)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ L ( 1 − 1/2 ) < f (x)

[eq. (2.73)] ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ L(1/2) < f (x) ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ L/2 < f (x)

[eqs. (2.72) and (2.73)] ; 
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∃δ2>0 ∀x,a |x − a| < δ2 =⇒ 0 < L/2 < f (x) ; 

taking: M2 = L/2

∃δ

∀

2 >0,M2

x,a | x − a | < δ2 =⇒ 0 < M2 < f (x) . 

We will now prove the following property:

lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a | < δ =⇒ | f (x)| < ε } . 

(7.11)

x→a

Proof:

lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a | < δ =⇒ | f (x) − 0 | < ε }

x→a

[eq. (7.1)] ; 

lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) + (−0)| < ε }

x→a

[eq. (2.54)] ; 

lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) + 0 | < ε } ; x→a

lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| < ε }

[eq. (2.45)]. 

x→a

We will also now prove that given a real function “ f1(x)” that is defined in a vicinity of a real number

“a”, if the function “ f1(x)” has a limit when “x” tends to “a” and its limit is nonzero “L1 , 0”, then the reciprocal of the real function “( f1(x))−1” also has a limit when “x” tends to “a”, and the limit of the reciprocal function “( f1(x))−1” is equal to the reciprocal of the limit of “ f1(x)”. That is:



lim f



1(x) = L1



x→a



















L

=

f

. 

(7.12)

1 , 0

⇒ lim 2(x) = L−1

x→a

1







f





1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined

Proof:





n

o

n

o

f

• Case:

lim f

1(x) , 0 :

f2(x) = ( f1(x))−1

1(x) = L1

∧

L1 , 0

∧

x→a

f1(x) = 0 :

f2(x) is not defined

∃δ

∀

2 >0,M2

x,a | x − a | < δ2 =⇒ 0 < M2 < | f1(x) |

[eqs. (7.9) and (7.10)] ; 

∀x,a |x − a| < δ2 =⇒ 0 < M2 < | f1(x)| ; 

( f

∀

1(x) , 0

x,a | x − a | < δ2 =⇒

[eqs. (2.112) and (2.123)] ; 

| f1(x)|−1 < M−1

2

∀ε1>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ | f1(x) − L1 | < ε1

[eq. (7.1)] ; 

∀ε1>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ | f1(x) + (−L1)| < ε1

[eq. (2.54)] ; 
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∀ε1>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ | − ( f1(x) + (−L1))| < ε1

[eq. (2.128)] ; 

∀ε1>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ |(− f1(x)) + L1 | < ε1

[eqs. (2.51) and (2.52)] ; 

∀ε1>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ |L1 + (− f1(x))| < ε1

[eq. (2.43)] ; 

∀ε1>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒

|L1|−1 |L1 + (− f1(x))| < |L1|−1 ε1

[eq. (2.121)] ; 

taking: δ3 = min(δ1, δ2)

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

 f

 2 (x) = ( f1 (x))−1



| f1(x)|−1 < M−1

; 

2



|L1|−1 | L1 + (− f1(x)) | < |L1|−1 ε1

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

( f2(x) = ( f1(x))−1

| f1(x)|−1 |L1|−1 |L1 + (− f1(x))| < |M2|−1 |L1|−1 ε1

[eqs. (2.122) and (2.126)] ; 

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

( f2(x) = ( f1(x))−1

|( f1(x))−1 L−1 (L

1

1 + (− f1(x))) | < |M2|−1 |L1|−1 ε1

[eqs. (2.131) and (2.132)] ; 

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

( f2(x) = ( f1(x))−1

|( f1(x))−1 L−1 L

(

1

1 + ( f1(x))−1 L−1

1

− f1(x))|<|M2|−1 |L1|−1ε1

[eq. (2.64)] ; 

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

( f2(x) = ( f1(x))−1

|L1 L−1 ( f

1

1(x))−1 + (− f1(x)) ( f1 (x))−1 L−1

1 | < |M2|−1 |L1|−1ε1

[eqs. (2.56) and (2.57)] ; 

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

( f2(x) = ( f1(x))−1

|L1 L−1 ( f

)

1

1(x))−1 + ( − f1(x) ( f1(x))−1 L−1

1

|<|M2|−1 |L1|−1ε1

[eq. (2.61)] ; 

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

( f2(x) = ( f1(x))−1

[eqs. (2.59) and (2.71)] ; 

|( f1(x))−1 + (−L−1)

1

| < |M2|−1 |L1|−1 ε1
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∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f2(x) + (−L−1)

1

| < |M2|−1 |L1|−1 ε1 ; 

∀ε1>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f2(x) − L−1

1

| < |M2|−1 |L1|−1 ε1

[eq. (2.54)] ; 

taking: ε1 = |L1||M2|ε2

(where ε2 is an arbitrary positive number)

∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒

| f2(x) − L−1

1

| < |M2|−1 |L1|−1 |L1||M2|ε2 ; 

∀ε2>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒ | f2(x) − L−1

1

| < ε2

[eqs. (2.59) and (2.71)] ; 

lim f2(x) = L−1

[eq. (7.1)] . 

x→a

1

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, if each of the functions “ f1(x)” and “ f2(x)” has a limit when “x” tends to “a” and the limit of the second function is nonzero “L2 , 0”, then the ratio of the two real functions

“ f1(x)/ f2(x)” also has a limit when “x” tends to “a”, and the limit of the ratio “ f1(x)/ f2(x)” is equal to the ratio of the limits of “ f1(x)” and “ f2(x)”. That is:



lim f



1(x) = L1







x→a





























lim f2(x) = L2





x→a



=⇒ lim f3(x) = L1/L2 . 

(7.13)

x→a











L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

Proof:

n

o

n

o

n

o

• Case:

lim f1(x) = L1

∧

lim f2(x) = L2

∧

L2 , 0

∧

x→a

x→a



f



2(x) , 0 :

f3(x) = f1(x)/ f2(x)

f2(x) = 0 :

f3(x) is not defined



f



taking: f

2(x) , 0 :

f4(x) = ( f2(x))−1

4(x)

such that

f2(x) = 0 :

f4(x) is not defined

lim f4(x) = L−1

[eq. (7.12)] ; 

x→a

2

f3(x) = f1(x) f4(x) ; 

[eq. (2.72)] ; 
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lim f3(x) = lim [ f1(x) f4(x) ] ; 

x→a

x→a







lim f3(x) =

lim f1(x)

lim f4(x)

[eq. (7.8)] ; 

x→a

x→a

x→a

lim f3(x) = L1 L−1 ; 

x→a

2

lim f3(x) = L1/L2

[eq. (2.72)] . 

x→a

7.3.7

EXAMPLE REVISITED

As an example of the application of the properties of limits discussed previously in this section, we will again show that:

lim(3x + 1) = 7 . 

x→2

Note that we already proved by definition the above equation at the beginning of this section (see

7.3.2); that said, we will now prove it again with a “simpler” more straight forward approach by applying properties of limits. 

Proof:

lim 3 = 3

; 

lim x = 2

; 

lim 1 = 1

[eqs. (7.3) and (7.4)] ; 

x→2

x→2

x→2











lim(3x + 1) =

lim 3

lim x

+

lim 1

[eqs. (7.5) and (7.8)] ; 

x→2

x→2

x→2

x→2

lim(3x + 1) = 3 · 2 + 1 ; 

x→2

lim(3x + 1) = 7 . 

x→2

7.4

LIMIT L OF F(X ) WHEN X → A−

7.4.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a left-vicinity “SV−” of real number “a”, the limit

“L” of the function “ f (x)” when x tends to “a” from the left, is defined as the real number “L” that satisfies the equation:

∀ε>0 ∃δ>0 ∀x<a { |x − a| < δ =⇒ | f (x) − L| < ε } ; to denote that the real number “L” is the limit of the real function “ f (x)” when “x” tends to “a” from the left, the following notation is used:

lim f (x) = L ; 

x→a−

that is:

lim f (x) = L ⇐⇒ ∀ε>0 ∃δ>0 ∀x<a { |x − a| < δ =⇒ | f (x) − L| < ε } . 

(7.14)

x→a−
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The right side of equation (7.14) states that taking an arbitrarily small interval “(L − ε,L + ε)” 

around “L”, we can always find an interval from the left of “a” [ (a − δ ,a)], such that for every “x” 

in the interval “(a − δ ,a)” the value of the function at “x” [ f (x)] is in the interval “(L − ε,L + ε)”. 

Intuitively, stating that “L” is the limit of the function “ f (x)” when “x” tends to “a” from the left

[eq. (7.14)], means that we can make the value of the function “ f (x)” be arbitrarily close to “L” by considering values of “x” left of and arbitrarily close to “a”. 

Equation (7.14) is fundamental in that it makes the limit “L” a mathematically well-defined value. 

Given a real function “ f (x)” that is defined in a left-vicinity “SV−” of a real number “a”, we can always consider a number “L” and substitute “L” in equation (7.14). Since equation (7.14) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (7.14) results True, then “L” is the limit; on other hand if the right side of equation (7.14) results False, then “L” is not the limit. That is, we can, in principle, always determine whether a real number “L” is or is not a limit. Thus, once again, the limit “L” now becomes a well-defined mathematical value. 

Note that:

• For a limit “L” of a function “ f (x)” when “x” tends to “a” from the left to exist, the function

“ f (x)” must be defined in a left-vicinity “SV−” of real number “a” [i.e., the value of f (x) must exist for values of x in a left-vicinity SV− of “a”]; 

• The limit “L” of a function “ f (x)” when “x” tends to “a” from the left does not depend on the value of the function “ f (x)” at “x = a” [i.e., does not depend on f (a) ] (note the logical quantifier ∀x<a in eq. (7.14)); 

• In fact, the limit “L” of a function “ f (x)” when “x” tends to “a” from the left may exist while the value of the function “ f (x)” at “x = a” may or may not exist [i.e., f (a) may or may not exist]; 

• Given a real function “ f (x)” that is defined in a left-vicinity “SV−” of real number “a”, the limit “L” of the function “ f (x)” when “x” tends to “a” from the left may or may not exist (i.e., the limit L does not necessarily exist). 

7.4.2

EXAMPLE

As an example of a limit, we will consider the following function:

x < 0 :

f (x) = −1 + x















x = 0 :

f (x) = 0

; 













x > 0 :

f (x) = 1 + x

from equation (7.14), in this case, it follows that:

lim f (x) = −1 . 

x→0−

Note that in this case:

• “ f (0) = 0” [not “−1”]; 

• “lim f (x) ” does not exist. 

x→0

Also note that, from equations (7.1) and (7.14), it follows that if the limit of a function “ f (x)” 

when “x” tends to “a” exists, then the limit of the function “ f (x)” when “x” tends to “a” from the left also exists, and both limits have the same value. That is:

lim f (x) = L =⇒ lim f (x) = L . 

(7.15)

x→a

x→a−
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7.4.3

UNIQUENESS OF LIMIT

We will now prove that given a real function “ f (x)” that is defined in a left-vicinity “SV−” of a real number “a”, if a limit “L” of the function “ f (x)” when “x” tends to “a” from the left exists, then the limit is unique. That is:



lim f (x) = L 

1







x→a−

 =⇒ L1 = L2 . 







lim f (x) = L2 

x→a−

Proof:









• Case:

lim f (x) = L1

∧

lim f (x) = L2

x→a−

x→a−

(∀ε1>0 ∃δ1>0 ∀x<a { |x−a| < δ1 =⇒ | f(x)−L1 | < ε1 }

∀ε2>0 ∃δ2>0 ∀x<a { |x − a| < δ2 =⇒ | f (x) − L2 | < ε2 }

[eq. (7.14)] ; 

(∀ε1>0 ∃δ1>0 ∀x<a { |x−a| < δ1 =⇒ | f(x)+(−L1)| < ε1 }

∀ε2>0 ∃δ2>0 ∀x<a { |x − a| < δ2 =⇒ | f (x) + (−L2)| < ε2 }

[eq. (2.54)] ; 

(∀ε1>0 ∃δ1>0 ∀x<a {|x−a|<δ1 =⇒ | f(x)+(−L1)|<ε1}

∀ε2>0 ∃δ2>0 ∀x<a {|x − a|<δ2 =⇒ | − ( f (x) + (−L2))|<ε2}

[eq. (2.128)] ; 

(∀ε1>0 ∃δ1>0 ∀x<a {|x−a|<δ1 =⇒ | f(x)+(−L1)|<ε1}

∀ε2>0 ∃δ2>0 ∀x<a {|x − a|<δ2 =⇒ |(− f (x)) + (−(−L2))|<ε2}

[eq. (2.52)] ; 

(∀ε1>0 ∃δ1>0 ∀x<a { |x−a| < δ1 =⇒ | f(x)+(−L1)| < ε1 }

∀ε2>0 ∃δ2>0 ∀x<a { |x − a| < δ2 =⇒ |(− f (x)) + L2 | < ε2 }

[eq. (2.51)] ; 

(∀ε1>0 ∃δ1>0 ∀x<a {|x−a| < δ1 =⇒ −ε1 < f(x)+(−L1) < ε1}

∀ε2>0 ∃δ2>0 ∀x<a {|x − a| < δ2 =⇒ −ε2 < (− f (x)) + L2 < ε2}

[eq. (2.129)] ; 

∀ε1>0 ∀ε2>0 ∃δ1>0 ∃δ2>0 ∀x<a

({ |x− a| < δ1 =⇒ −ε1 < f(x)+ (−L1) < ε1 } ; 

{ |x − a| < δ2 =⇒ −ε2 < (− f (x)) + L2 < ε2 }

taking: δ3 = min(δ1, δ2)

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a

({|x− a| < δ3 =⇒ −ε1 < f(x)+ (−L1) < ε1} ; 

{|x − a| < δ3 =⇒ −ε2 < (− f (x)) + L2 < ε2}
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∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒

(−ε1 < f(x)+ (−L1) < ε1

; 

−ε2 < (− f (x)) + L2 < ε2

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < f (x) + (−L1) + (− f (x)) + L2 < ε1 + ε2

[eq. (2.120)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < L2 + (−L1) + f (x) + (− f (x)) < ε1 + ε2

[eqs. (2.43) and (2.44)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < L2 + (−L1) < ε1 + ε2

[eqs. (2.45) and (2.53)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒

(−ε1) + (−ε2) < L2 − L1 < ε1 + ε2

[eq. (2.54)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒

−(ε1 + ε2) < L2 − L1 < ε1 + ε2

[eq. (2.52)] ; 

∀ε1>0 ∀ε2>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒ |L2 − L1 | < ε1 + ε2

[eq. (2.129)] ; 

taking: ε1 = ε2 = 2−1ε3

(where ε3 is an arbitrary positive number)

∀ε3>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒ |L2 − L1 | < 2−1ε3 + 2−1ε3 ; 

∀ε3>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒ |L2 − L1 | < 2 · 2−1ε3

[eq. (2.60)] ; 

∀ε3>0 ∃δ3>0 ∀x<a |x − a| < δ3 =⇒ |L2 − L1 | < ε3

[eqs. (2.59) and (2.71)] ; 

noting that “|L2 − L1 |” is a nonnegative constant, one finds that the above proposition can only be true if “|L2 − L1 | = 0” 

(otherwise we could consider an “ε3” such that

“ε3 < |L2 − L1 |”); therefore:

|L2 − L1 | = 0 ; 

L2 − L1 = 0

[eqs. (2.124)-(2.126)] ; 

L2 = 0 + L1

[eq. (2.47)] ; 
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L2 = L1

[eqs. (2.43) and (2.45)] ; 

L1 = L2 ; 

therefore:









lim f (x) = L1

∧

lim f (x) = L2

=⇒ L1 = L2 . 

x→a−

x→a−

7.4.4

GENERAL PROPERTIES

Comparing the proof of equation (7.2) [see 7.3.3] with the proof in 7.4.3, one finds that both proofs are very similar (except for use of the logical quantifier ∀x,a in the former proof and the use of the logical quantifier ∀x<a in the latter proof). 

Thus, in a very similar manner as we did in 7.3 (except for once again, in general, changing the logical quantifier ∀x,a for the logical quantifier ∀x<a ), one may also prove the following properties: lim C = C ; 

x→a−

lim x = a ; 

x→a−



lim f



1(x) = L1







x→a−







=⇒ lim

f1(x) + f2(x) = L1 + L2 ; 

x





→a−



lim f2(x) = L2 

x→a−





lim f (x) = L =⇒ lim − f (x) = −L ; 

x→a−

x→a−



lim f



1(x) = L1







x→a−







=⇒ lim

f1(x) − f2(x) = L1 − L2 ; 

x





→a−



lim f2(x) = L2 

x→a−



lim f



1(x) = L1







x→a−







=⇒ lim

f1(x) f2(x)

= L1 L2 ; 

x→a−







lim f2(x) = L2 

x→a−





lim f (x) = L





 x→a−

 =⇒∃δ

∀

2>0,M2

x<a {|x − a| < δ2 =⇒ f (x) < M2 < 0} ; 





 L < 0


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



lim f (x) = L





 x→a−



=⇒∃δ

∀

2>0,M2

x<a {|x − a| < δ2 =⇒ 0 < M2 < f (x)} ; 





 L > 0



lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x<a { |x − a | < δ =⇒ | f (x)| < ε } ; x→a−



lim f



1(x) = L1



x





→a−















L

=⇒ lim f

; 

1 , 0

2(x) = L−1

1

x





→a−







f1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined



lim f



1(x) = L1







x→a−





























lim f2(x) = L2





x→a−



=⇒ lim f3(x) = L1/L2 . 

x





→a−







L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

7.5

LIMIT L OF F(X ) WHEN X → A+

7.5.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a right-vicinity “SV+” of real number “a”, the limit

“L” of the function “ f (x)” when “x” tends to “a” from the right, is defined as the real number “L” 

that satisfies the equation:

∀ε>0 ∃δ>0 ∀x>a { |x − a| < δ =⇒ | f (x) − L| < ε } ; to denote that the real number “L” is the limit of the real function “ f (x)” when “x” tends to “a” from the right, the following notation is used:

lim f (x) = L ; 

x→a+

that is:

lim f (x) = L ⇐⇒ ∀ε>0 ∃δ>0 ∀x>a { |x − a| < δ =⇒ | f (x) − L| < ε } . 

(7.16)

x→a+

The right side of equation (7.16) states that taking an arbitrarily small interval “(L − ε,L + ε)” 

around “L”, we can always find an interval from the right of “a” [ (a, a + δ ) ], such that for every “x” 

in the interval “(a, a + δ )” the value of the function at “x” [ f (x) ] is in the interval “(L − ε,L + ε)”. 

Intuitively, stating that “L” is the limit of the function “ f (x)” when “x” tends to “a” from the right [eq. (7.16)], means that we can make the value of the function “ f (x)” be arbitrarily close to

“L” by considering values of “x” right of and arbitrarily close to “a”. 
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Equation (7.16) is fundamental in that it makes the limit “L” a mathematically well-defined value. 

Given a real function “ f (x)” that is defined in a right-vicinity “SV+” of a real number “a”, we can always consider a number “L” and substitute “L” in equation (7.16). Since equation (7.16) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (7.16) results True, then “L” is the limit; on other hand if the right side of equation (7.16) results False, then “L” is not the limit. That is, we can, in principle, always determine whether a real number “L” is or is not a limit. Thus, once again, the limit “L” now becomes a well-defined mathematical value. 

Note that:

• For a limit “L” of a function “ f (x)” when “x” tends to “a” from the right to exist, the function “ f (x)” must be defined in a right-vicinity “SV+” of real number “a” [i.e., the value of f (x) must exist for values of x in a right-vicinity SV+ of “a”]; 

• The limit “L” of a function “ f (x)” when “x” tends to “a” from the right does not depend on the value of the function “ f (x)” at “x = a” [i.e., does not depend on f (a) ] (note the logical quantifier ∀x>a in eq. (7.16)]; 

• In fact, the limit “L” of a function “ f (x)” when “x” tends to “a” from the right may exist while the value of the function “ f (x)” at “x = a” may or may not exist [i.e., f (a) may or may not exist]; 

• Given a real function “ f (x)” that is defined in a right-vicinity “SV+” of real number “a”, the limit “L” of the function “ f (x)” when “x” tends to “a” from the right may or may not exist (i.e., the limit L does not necessarily exist). 

7.5.2

EXAMPLE

As an example of a limit, we will consider again the function discussed in 7.4.2, that is, we will consider again the following function:

x < 0 :

f (x) = −1 + x















x = 0 :

f (x) = 0

; 













x > 0 :

f (x) = 1 + x

from equation (7.16), in this case, it follows that:

lim f (x) = 1 . 

x→0+

Note that in this case:

• “ f (0) = 0” [not “1”]; 

• “lim f (x) ” does not exist; 

x→0

•

lim f (x) = −1 . 

x→0−

7.5.3

BASIC PROPERTIES

From equations (7.1) and (7.16), it follows that if the limit of a function “ f (x)” when “x” tends to

“a” exists, then the limit of the function “ f (x)” when “x” tends to “a” from the right exists, and both limits have the same value. That is:

lim f (x) = L =⇒ lim f (x) = L . 

(7.17)

x→a

x→a+
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In turn, from equations (7.15) and (7.17), it follows that:



lim f (x) = L 







x→a−



lim f (x) = L =⇒

. 

(7.18)

x→a







lim f (x) = L 

x→a+

We will now prove that given a function “ f (x)” defined in a vicinity of a real number “a”, if the limit when “x” tends to “a” from the left exists with a value of “L” and the limit when “x” tends to

“a” from the right also exists with the same value “L”, then the limit when “x” tends to “a” will also exist and all three limits have the same value “L”. That is:



lim f (x) = L 







x→a−



=⇒ lim f (x) = L . 

(7.19)

x→a







lim f (x) = L 

x→a+

Proof:









• Case:

lim f (x) = L

∧

lim f (x) = L

x→a−

x→a+

(∀ε1>0 ∃δ1>0 ∀x<a { |x−a| < δ1 =⇒ | f(x)−L| < ε1 }

∀ε2>0 ∃δ2>0 ∀x>a { |x − a| < δ2 =⇒ | f (x) − L| < ε2 }

[eqs. (7.14) and (7.16)] ; 

∀ε1>0 ∀ε2>0 ∃δ1>0 ∃δ2>0

(∀x<a { |x− a| < δ1 =⇒ | f(x)− L| < ε1 } ; 

∀x>a { |x − a| < δ2 =⇒ | f (x) − L| < ε2 }

taking: δ3 = min(δ1, δ2)

(∀

∀

x<a { | x − a | < δ3 =⇒ | f (x) − L | < ε1 }

ε

; 

1>0 ∀ε2>0 ∃δ3>0

∀x>a { |x − a| < δ3 =⇒ | f (x) − L| < ε2 }

taking: ε1 = ε2 = ε3

(where ε3 is an arbitrary positive number)

(∀

∀

x<a { | x − a | < δ3 =⇒ | f (x) − L | < ε3 }

ε

; 

3>0 ∃δ3>0

∀x>a { |x − a| < δ3 =⇒ | f (x) − L| < ε3 }

∀ε3>0 ∃δ3>0 ∀x,a { |x − a| < δ3 =⇒ | f (x) − L| < ε3 } ; lim f (x) = L

[eq. (7.1)] . 

x→a

In turn, from equations (7.18) and (7.19), it follows that:



lim f (x) = L 







x→a−



lim f (x) = L ⇐⇒

. 

(7.20)

x→a







lim f (x) = L 

x→a+
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7.5.4

UNIQUENESS OF LIMIT AND GENERAL PROPERTIES

In a very similar manner as we did in 7.3 (except for in general changing the logical quantifier ∀x,a for the logical quantifier ∀x>a ; see 7.4), one may also prove the following properties:



lim f (x) = L 

1







x→a+



=⇒ L1 = L2 ; 







lim f (x) = L2 

x→a+

lim C = C ; 

x→a+

lim x = a ; 

x→a+



lim f



1(x) = L1







x→a+







=⇒ lim

f1(x) + f2(x)

= L1 + L2 ; 

x





→a+



lim f2(x) = L2 

x→a+





lim f (x) = L =⇒ lim − f (x) = −L ; 

x→a+

x→a+



lim f



1(x) = L1







x→a+







=⇒ lim f1(x) − f2(x) = L1 − L2 ; 

x





→a+



lim f2(x) = L2 

x→a+



lim f



1(x) = L1








x→a+







=⇒ lim

f1(x) f2(x)

= L1 L2 ; 

x





→a+



lim f2(x) = L2 

x→a+





lim f (x) = L





 x→a+



=⇒ ∃δ

∀

2 >0,M2

x>a {|x − a| < δ2 =⇒ f (x) < M2 < 0} ; 





 L < 0







lim f (x) = L





 x→a+

 =⇒ ∃δ

∀

2 >0,M2

x>a {|x − a| < δ2 =⇒ 0 < M2 < f (x)} ; 





 L > 0



lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x>a { |x − a | < δ =⇒ | f (x)| < ε } ; x→a+
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

lim f



1(x) = L1



x





→a+















L

=⇒ lim f

; 

1 , 0

2(x) = L−1

1

x→a+











f1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined



lim f



1(x) = L1







x→a+





























lim f2(x) = L2





x→a+

 =⇒ lim f3(x) = L1/L2 . 

x





→a+







L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

7.6

EXAMPLES

Consider an object moving along a straight line, and assuming that the position of the object “x” for a given time “t” is given by:

x(t) = b0 + b1t + b2t2 ; 

(7.21)

where “b0”, “b1”, and “b2” are real number constants. Knowing the position of the object at any given time “t” (i.e., knowing the equation of motion [eq. (7.21)]), we wish to calculate the velocity

“vx” and the acceleration “ax” of the object at any given time “t”. 

Note that we are using the standard physics notation of using the same letter for both the position of the object and the position function of the object. For example, in physics, it is common to write: x = x(t) ; 

(7.22)

where the letter “x” on the left is the position of the object (a real number), and the letter “x” on the right is the position function (a real function). From a mathematical standpoint, given that a real number and a real function are two different mathematical objects, we may be inclined to use two different letters (one for each mathematical object). Thus, mathematically we could write instead: x = fx(t) ; 

(7.23)

where the letter “x” is the position of the object, and the letter with subindex “ fx” is the position function of the object. 

Note that equation (7.22) and equation (7.23) are actually the same equation, it is just that they are using two different notations. When using the standard physics notation, as we do here [see eq. (7.22)], it is important to realize that the letter “x” can represent different mathematical objects depending on the context (although all the mathematical objects that would be represented by the letter “x” would be related to the position of the object). 

Taking the initial time to be zero (i.e., t0 = 0), the initial position “x0” is given by: x0 = x(0) ; 

substituting equation (7.21):

x0 = b0 + b1 · 0 + b2 · 02 ; 
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applying equations (2.56) and (2.79):

x0 = b0 + 0 · b1 + 0 · 0 · b2 ; 

applying equations (2.45) and (2.58):

x0 = b0 ; 

(7.24)

thus, one finds that the constant “b0” is equal to the initial position “x0”. Therefore, equation (7.21) can be rewritten as:

x(t) = x0 + b1t + b2t2 . 

(7.25)

As discussed in 6.5, given the position “x” of an object at any time “t” [i.e., given the position function x(t) ], the velocity “vx” of the object at any time “t” [i.e., the velocity function vx(t) ] is given by:

x(t + ∆t) − x(t)

vx(t) = lim

; 

(7.26)

∆t→0

∆t

substituting equation (7.25):









x0 + b1(t + ∆t) + b2(t + ∆t)2 − x0 + b1t + b2t2

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.52) and (2.54):









x0 + b1(t + ∆t) + b2(t + ∆t)2 + (−x0) + (−b1t) + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.43) and (2.44):

x0 + (−x0) + b1(t + ∆t) + (−b1t) + b2(t + ∆t)2 + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.45) and (2.53):

b1(t + ∆t) + (−b1t) + b2(t + ∆t)2 + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.43) and (2.64):

b1∆t + b1t + (−b1t) + b2(t + ∆t)2 + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.45) and (2.53):

b1∆t + b2(t + ∆t)2 + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.64) and (2.79):

b1∆t + b2(t t + t ∆t + ∆t t + ∆t ∆t) + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t
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applying equations (2.56) and (2.79):

b1∆t + b2(t2 + t ∆t + t ∆t + ∆t ∆t) + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equation (2.60):

b1∆t + b2(t2 + 2t ∆t + ∆t ∆t) + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.56) and (2.64):

b1∆t + b2t2 + 2 b2 t ∆t + b2 ∆t ∆t + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.43) and (2.44):

b1∆t + 2 b2 t ∆t + b2 ∆t ∆t + b2t2 + (−b2t2)

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.45) and (2.53):

b1∆t + 2 b2 t ∆t + b2 ∆t ∆t

vx(t) = lim

; 

∆t→0

∆t

applying equations (2.56) and (2.72):





vx(t) = lim

(∆t)−1( b1∆t + 2 b2 t ∆t + b2 ∆t ∆t ) ; 

∆t→0

applying equations (2.56) and (2.64):





vx(t) = lim

∆t (∆t)−1b1 + ∆t (∆t)−12 b2 t + ∆t (∆t)−1b2 ∆t

; 

∆t→0

applying equations (2.59) and (2.71):





vx(t) = lim

b1 + 2 b2 t + b2 ∆t

; 

∆t→0

applying equation (7.5):









vx(t) = lim

b1 + 2b2t + lim

b2 ∆t

; 

∆t→0

∆t→0

applying equation (7.8):











vx(t) = lim

b1 + 2b2t +

lim b2

lim ∆t

; 

∆t→0

∆t→0

∆t→0

applying equation (7.4):









vx(t) = lim

b1 + 2b2t

+

lim b2 · 0 ; 

∆t→0

∆t→0

applying equations (2.56) and (2.58):





vx(t) = lim

b1 + 2b2t + 0 ; 

∆t→0
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applying equation (2.45):





vx(t) = lim

b1 + 2b2t

; 

∆t→0

applying equation (7.3):

vx(t) = b1 + 2b2t ; 

(7.27)

this last equation is the velocity function of the object “vx(t)” (i.e., the velocity vx of the object for any time t). 

Since we are taking the initial time to be zero (i.e., t0 = 0), the initial velocity “v0x” is given by: v0x = vx(0) ; 

substituting equation (7.27):

v0x = b1 + 2b2 · 0 ; 

applying equations (2.56) and (2.58):

v0x = b1 + 0 ; 

applying equation (2.45):

v0x = b1 ; 

(7.28)

thus, one finds that the constant “b1” is equal to the initial velocity “v0x”. Therefore, equations (7.25) and (7.27), can be respectively rewritten as:

x(t) = x0 + v0xt + b2t2 ; 

(7.29)

vx(t) = v0x + 2b2t . 

(7.30)

In turn, the acceleration “ax” of the object is the rate of change of velocity of the object with respect to time “t”. Mathematically, this means that the acceleration “ax” of the object at any time

“t” [i.e., the acceleration function ax(t) ] is given by:

vx(t + ∆t) − vx(t)

ax(t) = lim

; 

∆t→0

∆t

substituting equation (7.30):









v0x + 2b2(t + ∆t) − v0x + 2b2t

ax(t) = lim

; 

∆t→0

∆t

applying equations (2.52) and (2.54):









v0x + 2b2(t + ∆t) + (−v0x) + (−2b2t)

ax(t) = lim

; 

∆t→0

∆t

applying equations (2.43) and (2.44):

v0x + (−v0x) + 2b2(t + ∆t) + (−2b2t)

ax(t) = lim

; 

∆t→0

∆t
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applying equations (2.45) and (2.53):

2b2(t + ∆t) + (−2b2t)

ax(t) = lim

; 

∆t→0

∆t

applying equations (2.43) and (2.64):

2b2∆t + 2b2t + (−2b2t)

ax(t) = lim

; 

∆t→0

∆t

applying equations (2.45) and (2.53):

2b2∆t

ax(t) = lim

; 

∆t→0

∆t

applying equations (2.57) and (2.72):





ax(t) = lim

2b2∆t(∆t)−1

; 

∆t→0

applying equation (2.71):





ax(t) = lim

2b2 · 1 ; 

∆t→0

applying equations (2.56) and (2.59):





ax(t) = lim

2b2

; 

∆t→0

applying equation (7.3):

ax(t) = 2b2 . 

Note that the acceleration function “ax(t)” is constant (i.e., the acceleration ax does not depend on time t). Thus we can more simply write:

ax = 2b2 ; 

(7.31)

where is acceleration “ax” is now a real number constant. 

Substituting the last equation into equation (7.30):

vx(t) = v0x + axt ; 

(7.32)

this last equation is the velocity function “vx(t)” of the object expressed in terms of the initial velocity “v0x” and the acceleration “ax” (note once again that we have found acceleration of the object to be constant, and thus ax is a unique number). 

Recalling equation (7.31), one finds that:

2−1ax = 2−12b2 ; 

applying equations (2.56) and (2.71):

2−1ax = 1b2 ; 

applying equations (2.59) and (2.73):

1 ax = b2 ; 

2
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substituting the last equation in equation (7.29):

1

x(t) = x0 + v0xt + axt2 ; 

(7.33)

2

this last equation is the position function “x(t)” of the object expressed in terms of the initial position

“x0”, the initial velocity “v0x”, and the acceleration “ax”. 

In this section we have thus, from the equation of motion of the object [eq. (7.21)], found the value of the initial position “x0” [eq. (7.24)]; found the value of the initial velocity “v0x” [eq. (7.28)]; found that the acceleration “ax” of the object is constant and obtained its value [eq. (7.31)]. We have obtained the velocity function “vx(t)” [eq. (7.32)] expressed in terms of the initial velocity “v0x” and the acceleration “ax”, and we have rewritten the equation of motion (position function) [eq. (7.33)]

in terms of the physics quantities of initial position “x0”, initial velocity “v0x”, and acceleration “ax”. 

As can be clearly seen, limits and the properties of limits, have played a fundamental and key role in the physics analysis of the system and in the derivation of the velocity function and the acceleration of the object. 
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8 Limit L of Real Functions

when x → ∞ (or x → −∞ or

x → +∞)

8.1

INTRODUCTION

Limits appear explicitly or implicitly throughout physics. Limits and their properties are the foundation of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as limits. 

Also, the analysis of physical quantities and physical systems in many cases require applying the limit when an independent variable goes towards infinity, or minus infinity, or plus infinity (not just applying the limit when the independent variable tends to a real number “a” [case studied in the previous chapter]). Once again, limits and their properties become more than just useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present the definition of:

• The limit of a real function “ f (x)” when “x” goes towards infinity (x → ∞); 

• The limit of a real function “ f (x)” when “x” goes towards minus infinity (x → −∞); 

• The limit of a real function “ f (x)” when “x” goes towards plus infinity (x → +∞); and we will discuss general properties of these limits. 

8.2

NOTATION

Following the notation used in chapters 4-7, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 
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• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

8.3

LIMIT L OF F(X ) WHEN X → ∞

8.3.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in the union of a left-unbounded open interval “I1” and a right-unbounded open interval “I2” (i.e., defined in I1 ∪I2; this includes the unbounded open interval

), the limit “L” of the function “ f (x)” when “x” goes towards infinity, is defined as the real number R

“L” that satisfies the equation:

∀ε>0 ∃M ∀x { |x| > M =⇒ | f (x) − L| < ε } ; 

to denote that the real number “L” is the limit of the real function “ f (x)” when “x” goes towards infinity, the following notation is used:

lim f (x) = L ; 

x→∞

that is:

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { |x| > M =⇒ | f (x) − L| < ε } . 

(8.1)

x→∞

The right side of equation (8.1) states that taking an arbitrarily small interval “(L − ε,L + ε)” 

around “L”, we can always find a real number “M ”, and the corresponding left-unbounded and right-unbounded intervals, “(−∞,−M)” and “(M,+∞)”, such that for every “x” in the union of both intervals “(−∞,−M) ∪ (M,+∞)”, the value of the function at “x” [ f (x)] is in the interval

“(L − ε,L + ε)”. 

Intuitively, stating that “L” is the limit of the function “ f (x)” when “x” goes towards infinity

[eq. (8.1)], means that we can make the value of the function “ f (x)” be arbitrarily close to “L” 

by considering values of “x” arbitrarily far away from the origin “0” of the number line (in either direction). 

Equation (8.1) is fundamental in that it makes the limit “L” a mathematically well-defined value. 

Given a real function “ f (x)” that is defined in the union of a left-unbounded open interval “I1” and a right-unbounded open interval “I2” (i.e., defined in I1 ∪ I2) we can always consider a number “L” 

and substitute “L” in equation (8.1). Since equation (8.1) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (8.1) results True, then

“L” is the limit; on other hand if the right side of equation (8.1) results False, then “L” is not the limit. That is, we can, in principle, always determine whether a real number “L” is or is not a limit. 

Thus, once again, the limit “L” now becomes a well-defined mathematical value. 

Note that:

• For a limit “L” of a function “ f (x)” when “x” goes towards infinity to exist, the function

“ f (x)” must be defined in the union of a left-unbounded open interval “I1” and a right-unbounded open interval “I2” (i.e., defined in I1 ∪ I2); 

• Given a real function “ f (x)” that is defined in the union of a left-unbounded open interval

“I1” and a right-unbounded open interval “I2” (i.e., defined in I1 ∪ I2), the limit “L” of the function “ f (x)” when “x” goes towards infinity may or may not exist (i.e., the limit L does not necessarily exist). 
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8.3.2

EXAMPLE

As an example of a limit, we will consider the function:

1

f (x) =

; 

x

or more clearly written as:



1

x , 0 :

f (x) =





x

; 





x = 0 :

f (x) is not defined

from equation (8.1), in this case, it follows that:

lim f (x) = 0 . 

x→∞

8.3.3

BASIC PROPERTY

We will now prove the following property:

1 

lim f (x) = L ⇐⇒ lim f

= L . 

(8.2)

x→∞

x→0

x

Proof:

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { |x| > M =⇒ | f (x) − L| < ε }

[eq. (8.1)] ; 

x→∞

taking: M2 = max(M, 1)

lim f (x) = L ⇐⇒

x→∞

∀ε>0 ∃M2>0 ∀x,0 { |x| > M2 =⇒ | f (x) − L| < ε } ; 

lim f (x) = L ⇐⇒

x→∞



1

1



∀ε>0 ∃M

< 

=⇒ | f (x) − L| < ε

[eq. (2.123)] ; 

2 >0 ∀x,0

|x|

M2

1

taking: δ = M2

lim f (x) = L ⇐⇒

x→∞



1



∀ε>0 ∃δ>0 ∀x,0

< δ =⇒ | f (x) − L| < ε

; 

|x|

lim f (x) = L ⇐⇒

x→∞

1 



∀





ε>0 ∃δ >0 ∀x,0



< δ =⇒ | f (x) − L | < ε

[eqs. (2.126) and (2.133)] ; 

x 
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lim f (x) = L ⇐⇒

x→∞

1





∀





ε>0 ∃δ >0 ∀x,0



− 0  < δ =⇒ | f (x) − L| < ε

[eqs. (2.45) and (2.54)] ; 

x



lim f (x) = L ⇐⇒

x→∞

(







)

1





−1 ! 



1



∀





ε> 





0 ∃δ >0 ∀x,0



− 0  < δ =⇒ f

− L < ε





x



x





[eqs. (2.68) and (2.73)] ; 

1

1

taking: x =

and noting that x2 =

[eqs. (2.68) and (2.73)]

x2

x

(where x2 is an arbitrary nonzero number)

lim f (x) = L ⇐⇒

x→∞

∀





ε>0 ∃δ >0 ∀x

| x

− L 

2 ,0

2 − 0 | < δ =⇒  f

x−1

2

< ε   ; 

lim f (x) = L ⇐⇒

x→∞







1 





∀





ε>0 ∃δ >0 ∀x

| x

f

− L < ε

[eq. (2.73)] ; 

2 ,0

2 − 0 | < δ =⇒ 





x2



lim f (x) = L ⇐⇒

x→∞





1 





∀





ε>0 ∃δ >0 ∀x,0

| x − 0 | < δ =⇒  f

− L  < ε

; 



x



1 

lim f (x) = L ⇐⇒ lim f

= L

[eq. (7.1)] . 

x→∞

x→0

x

8.3.4

UNIQUENESS OF LIMIT

We will now prove that given a real function “ f (x)” that is is defined in the union of a left-unbounded open interval “I1” and a right-unbounded open interval “I2” (i.e., defined in I1 ∪ I2), if a limit “L” of the function “ f (x)” when “x” goes towards infinity exists, then the limit is unique. That is:



lim f (x) = L 

1







x→∞

 =⇒ L1 = L2 . 

(8.3)







lim f (x) = L2 

x→∞

Proof:

n

o

n

o

• Case:

lim f (x) = L1

∧

lim f (x) = L2

x→∞

x→∞



1 





1 



lim f

= L1

∧

lim f

= L2

[eq. (8.2)] ; 

x→0

x

x→0

x
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L1 = L2

[eq. (7.2)] . 

8.3.5

GENERAL PROPERTIES

In a very similar manner as we did in 7.3 (except, in general, for changing logical quantifiers

“ ∃δ>0 ∀x,a ” for “ ∃M ∀x ”; and changing the condition “ |x − a | < δ ” for the condition “ |x| > M ”), one may also prove the following properties (many of the following properties may also be proven by applying eq. (8.2) and the properties already proven in 7.3 [as we did for the proof of eq. (8.3)]): lim C = C ; 

(8.4)

x→∞



lim f



1(x) = L1







x→∞







=⇒ lim f1(x) + f2(x) = L1 + L2 ; 

(8.5)

x→∞







lim f2(x) = L2 

x→∞





lim f (x) = L =⇒ lim − f (x) = −L ; 

(8.6)

x→∞

x→∞



lim f



1(x) = L1







x→∞







=⇒ lim f1(x) − f2(x) = L1 − L2 ; 

(8.7)

x→∞







lim f2(x) = L2 

x→∞



lim f



1(x) = L1







x→∞







=⇒ lim f1(x) f2(x) = L1 L2 ; 

(8.8)

x→∞







lim f2(x) = L2 

x→∞



lim f (x) = L 



x→∞



=⇒ ∃M

∀

2 ,M3

x { |x| > M2 =⇒ f (x) < M3 < 0 } ; 

(8.9)



L < 0





lim f (x) = L 



x→∞

 =⇒ ∃M

∀

2 ,M3

x { |x| > M2 =⇒ 0 < M3 < f (x) } ; 

(8.10)



L > 0



lim f (x) = 0 ⇐⇒ ∀ε>0 ∃M ∀x { |x| > M =⇒ | f (x)| < ε } ; (8.11)

x→∞
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

lim f



1(x) = L1



x→∞



















L

=

f

; 

(8.12)

1 , 0

⇒ lim 2(x) = L−1

x→∞

1







f





1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined



lim f



1(x) = L1







x→∞





























lim f2(x) = L2





x→∞



=⇒ lim f3(x) = L1/L2 . 

(8.13)

x→∞











L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

8.4

LIMIT L OF F(X ) WHEN X → −∞

8.4.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a left-unbounded open interval “I ” or defined in an unbounded open interval ( ), the limit “L” of the function “ f (x)” when “x” goes towards minus R

infinity, is defined as the real number “L” that satisfies the equation:

∀ε>0 ∃M ∀x { x < M =⇒ | f (x) − L| < ε } ; 

to denote that the real number “L” is the limit of the real function “ f (x)” when “x” goes towards minus infinity, the following notation is used:

lim f (x) = L ; 

x→−∞

that is:

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { x < M =⇒ | f (x) − L| < ε } . 

(8.14)

x→−∞

The right side of equation (8.14) states that taking an arbitrarily small interval “(L − ε,L + ε)” 

around “L”, we can always find a left-unbounded open interval “(−∞,M)”, such that for every “x” 

in the interval “(−∞,M)” the value of the function at “x” [ f (x)] is in the interval “(L − ε,L + ε)”. 

Intuitively, stating that “L” is the limit of the function “ f (x)” when “x” goes towards minus infinity [eq. (8.14)], means that we can make the value of the function “ f (x)” be arbitrarily close to

“L” by considering values of “x” arbitrarily towards the left of the number line. 

Equation (8.14) is fundamental in that it makes the limit “L” a mathematically well-defined value. 

Given a real function “ f (x)” that is defined in a left-unbounded interval “I ”, we can always consider a number “L” and substitute “L” in equation (8.14). Since equation (8.14) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (8.14) results True, then “L” is the limit; on other hand if the right side of equation (8.14) results False, then “L” is not the limit. That is, we can, in principle, always determine whether a real number “L” 

is or is not a limit. Thus, once again, the limit “L” now becomes a well-defined mathematical value. 
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Note that:

• For a limit “L” of a function “ f (x)” when “x” goes towards minus infinity to exist, the function “ f (x)” must be defined in a left-unbounded open interval “I ”; 

• Given a real function “ f (x)” that is defined in a left-unbounded interval “I ”, the limit “L” 

of the function “ f (x)” when “x” goes towards minus infinity may or may not exist (i.e., the limit L does not necessarily exist). 

8.4.2

EXAMPLE

As an example of a limit, we will consider the function:



1

x < 0 :

f (x) =



−1 +





x











x = 0 :

f (x) is not defined

; 













1





x > 0 :

f (x) = 1 + x

from equation (8.14), in this case, it follows that:

lim f (x) = −1 . 

x→−∞

Note that in this case:

• “ lim f (x)” 

does not exist. 

x→∞

8.4.3

BASIC PROPERTY

We will now prove the following property:

1 

lim f (x) = L ⇐⇒ lim f

= L . 

(8.15)

x→−∞

x→0−

x

Proof:

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { x < M =⇒ | f (x) − L| < ε }

[eq. (8.14)] ; 

x→−∞

taking: M2 = min(M, −1)

lim f (x) = L ⇐⇒

x→−∞

∀ε>0 ∃M2<0 ∀x<0 { x < M2 =⇒ | f (x) − L| < ε } ; 

lim f (x) = L ⇐⇒

x→−∞

∀ε>0 ∃M2<0 ∀x<0 { −M2 < −x =⇒ | f (x) − L| < ε }

[eqs. (2.112) and (2.118)] ; 

lim f (x) = L ⇐⇒

x→−∞

∀ε>0 ∃M2<0 ∀x<0 { −M2 < |x| =⇒ | f (x) − L| < ε }

[eq. (2.124)] ; 
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lim f (x) = L ⇐⇒

x→−∞



1

1



∀ε>0 ∃M

< 

=⇒ | f (x) − L| < ε

2<0 ∀x<0

|x|

(−M2)

[eqs. (2.112) and (2.123)] ; 

1

taking: δ = (−M2)

lim f (x) = L ⇐⇒

x→−∞



1



∀ε>0 ∃δ>0 ∀x<0

< δ =⇒ | f (x) − L| < ε

; 

|x|

lim f (x) = L ⇐⇒

x→−∞

1 



∀





ε>0 ∃δ >0 ∀x<0



< δ =⇒ | f (x) − L | < ε

[eqs. (2.126) and (2.133)] ; 

x 

lim f (x) = L ⇐⇒

x→−∞

1





∀





ε>0 ∃δ >0 ∀x<0



− 0  < δ =⇒ | f (x) − L| < ε

x



[eqs. (2.45) and (2.54)] ; 

lim f (x) = L ⇐⇒

x→−∞

(







)

1





−1 ! 



1



∀





ε> 





0 ∃δ >0 ∀x<0



− 0  < δ =⇒ f

− L < ε





x



x





[eqs. (2.68) and (2.73)] ; 

1

1

taking: x =

and noting that x2 =

[eqs. (2.68) and (2.73)]

x2

x

(where x2 is an arbitrary negative number)

lim f (x) = L ⇐⇒

x→−∞

∀





ε>0 ∃δ >0 ∀x

| x

− L 

2<0

2 − 0 | < δ =⇒  f

x−1

2

< ε   ; 

lim f (x) = L ⇐⇒

x→−∞







1 





∀





ε>0 ∃δ >0 ∀x

| x

f

− L < ε

[eq. (2.73)] ; 

2<0

2 − 0 | < δ =⇒ 





x2



lim f (x) = L ⇐⇒

x→−∞





1 





∀





ε>0 ∃δ >0 ∀x<0

| x − 0 | < δ =⇒  f

− L  < ε

; 



x



1 

lim f (x) = L ⇐⇒ lim f

= L . 

[eq. (7.14)] . 

x→−∞

x→0−

x
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8.4.4

UNIQUENESS OF LIMIT

We will also now prove that given a real function “ f (x)” that is defined in a left-unbounded interval

“I ”, if a limit “L” of the function “ f (x)” when “x” goes towards minus infinity exists, then the limit is unique. That is:



lim f (x) = L 

1







x→−∞



=⇒ L1 = L2 . 







lim f (x) = L2 

x→−∞

Proof:









• Case:

lim f (x) = L1

∧

lim f (x) = L2

x→−∞

x→−∞



1 





1 



lim f

= L1

∧

lim f

= L2

[eq. (8.15)] ; 

x→0−

x

x→0−

x

L1 = L2

[eqs. (7.2) and (7.14)] . 

8.4.5

GENERAL PROPERTIES

In a very similar manner as we did in 7.3 (except, in general, for changing logical quantifiers

“ ∃δ>0 ∀x,a ” for “ ∃M ∀x ”; and changing the condition “ |x − a | < δ ” for the condition “ x < M ”), one may also prove the following properties (many of the following properties may also be proven by applying eq. (8.15) and the properties already proven in 7.4 [as we did for the proof in 8.4.4]): lim C = C ; 

x→−∞



lim f



1(x) = L1







x→−∞







=⇒ lim

f1(x) + f2(x)

= L1 + L2 ; 

x→−∞







lim f2(x) = L2 

x→−∞





lim f (x) = L =⇒ lim − f (x) = −L ; 

x→−∞

x→−∞



lim f



1(x) = L1







x→−∞







=⇒ lim

f1(x) − f2(x) = L1 − L2 ; 

x→−∞







lim f2(x) = L2 

x→−∞



lim f



1(x) = L1







x→−∞







=⇒ lim

f1(x) f2(x)

= L1 L2 ; 

x→−∞







lim f2(x) = L2 

x→−∞
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



lim f (x) = L







x→−∞

 =⇒ ∃M

∀

2,M3

x { x < M2 =⇒ f (x) < M3 < 0 } ; 







L < 0







lim f (x) = L







x→−∞



=⇒ ∃M

∀

2,M3

x { x < M2 =⇒ 0 < M3 < f (x) } ; 







L > 0



lim f (x) = 0 ⇐⇒ ∀ε>0 ∃M ∀x { x < M =⇒ | f (x)| < ε } ; 

x→−∞



lim f



1(x) = L1



x→−∞



















L

=⇒ lim f

; 

1 , 0

2(x) = L−1

x→−∞

1







f





1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined



lim f



1(x) = L1







x→−∞





























lim f2(x) = L2





x→−∞



=⇒ lim f3(x) = L1/L2 . 

x→−∞











L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

8.5

LIMIT L OF F(X ) WHEN X → +∞

8.5.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a right-unbounded open interval “I ” or defined in an unbounded open interval ( ), the limit “L” of the function “ f (x)” when “x” goes towards plus R

infinity, is defined as the real number “L” that satisfies the equation:

∀ε>0 ∃M ∀x { x > M =⇒ | f (x) − L| < ε } ; 

to denote that the real number “L” is the limit of the real function “ f (x)” when “x” goes towards plus infinity, the following notation is used:

lim f (x) = L ; 

x→+∞

that is:

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { x > M =⇒ | f (x) − L| < ε } . 

(8.16)

x→+∞

The right side of equation (8.16) states that taking an arbitrarily small interval “(L − ε,L + ε)” 

around “L”, we can always find a right-unbounded open interval “(M, +∞)”, such that for every “x” 

in the interval “(M, +∞)” the value of the function at “x” [ f (x) ] is in the interval “(L − ε,L + ε)”. 
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Intuitively, stating that “L” is the limit of the function “ f (x)” when “x” goes towards plus infinity

[eq. (8.16)], means that we can make the value of the function “ f (x)” be arbitrarily close to “L” by considering values of “x” arbitrarily towards the right of the number line. 

Equation (8.16) is fundamental in that it makes the limit “L” a mathematically well-defined value. 

Given a real function “ f (x)” that is defined in a right-unbounded interval “I ”, we can always consider a number “L” and substitute “L” in equation (8.16). Since equation (8.16) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (8.16) results True, then “L” is the limit; on other hand if the right side of equation (8.16) results False, then “L” is not the limit. That is, we can, in principle, always determine whether a real number “L” 

is or is not a limit. Thus, once again, the limit “L” now becomes a well-defined mathematical value. 

Note that:

• For a limit “L” of a function “ f (x)” when “x” goes towards plus infinity to exist, the function

“ f (x)” must be defined in a right-unbounded open interval “I ”; 

• Given a real function “ f (x)” that is defined in a right-unbounded interval “I ”, the limit “L” 

of the function “ f (x)” when “x” goes towards plus infinity may or may not exist (i.e., the limit L does not necessarily exist). 

8.5.2

EXAMPLE

As an example of a limit, we will consider again the function:



1

x < 0 :

f (x) =



−1 +





x











x = 0 :

f (x)

is not defined

; 













1





x > 0 :

f (x) = 1 + x

from equation (8.16), in this case, it follows that:

lim f (x) = 1 . 

x→+∞

Note that in this case:

•

lim f (x) = −1; 

x→−∞

• “ lim f (x) ” does not exist. 

x→∞

8.5.3

BASIC PROPERTIES

We will now prove the following property:

1 

lim f (x) = L ⇐⇒ lim f

= L . 

(8.17)

x→+∞

x→0+

x

Proof:

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { x > M =⇒ | f (x) − L| < ε }

[eq. (8.16)] ; 

x→+∞
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taking: M2 = max(M, 1)

lim f (x) = L ⇐⇒

x→+∞

∀ε>0 ∃M2>0 ∀x>0 { x > M2 =⇒ | f (x) − L| < ε } ; 

lim f (x) = L ⇐⇒

x→+∞

∀ε>0 ∃M2>0 ∀x>0 { |x| > M2 =⇒ | f (x) − L| < ε }

[eq. (2.126)] ; 

lim f (x) = L ⇐⇒

x→+∞



1

1



∀ε>0 ∃M

< 

=⇒ | f (x) − L| < ε

[eqs. (2.112) and (2.123)] ; 

2 >0 ∀x>0

|x|

M2

1

taking: δ = M2

lim f (x) = L ⇐⇒

x→+∞



1



∀ε>0 ∃δ>0 ∀x>0

< δ =⇒ | f (x) − L| < ε

; 

|x|

lim f (x) = L ⇐⇒

x→+∞

1 



∀





ε>0 ∃δ >0 ∀x>0



< δ =⇒ | f (x) − L | < ε

[eqs. (2.126) and (2.133)] ; 

x 

lim f (x) = L ⇐⇒

x→+∞

1





∀





ε>0 ∃δ >0 ∀x>0



− 0  < δ =⇒ | f (x) − L| < ε

[eqs. (2.45) and (2.54)] ; 

x



lim f (x) = L ⇐⇒

x→+∞

(







)

1





−1 ! 



1



∀





ε> 





0 ∃δ >0 ∀x>0



− 0  < δ =⇒ f

− L < ε





x



x





[eqs. (2.68) and (2.73)] ; 

1

1

taking: x =

and noting that x2 =

[eqs. (2.68) and (2.73)]

x2

x

(where x2 is an arbitrary positive number)

lim f (x) = L ⇐⇒

x→+∞

∀





ε>0 ∃δ >0 ∀x

| x

− L 

2 >0

2 − 0 | < δ =⇒  f

x−1

2

< ε   ; 
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lim f (x) = L ⇐⇒

x→+∞







1 





∀





ε>0 ∃δ >0 ∀x

| x

f

− L < ε

[eq. (2.73)] ; 

2>0

2 − 0 | < δ =⇒ 





x2



lim f (x) = L ⇐⇒

x→+∞





1 





∀





ε>0 ∃δ >0 ∀x>0

| x − 0 | < δ =⇒  f

− L  < ε

; 



x



1 

lim f (x) = L ⇐⇒ lim f

= L

[eq. (7.16)] . 

x→+∞

x→0+

x

We will also now prove that:



lim f (x) = L 



x



n

o



→−∞



lim f (x) = L

⇐⇒

. 

(8.18)

x→∞







lim f (x) = L 

x→+∞

Proof:

1 

lim f (x) = L ⇐⇒ lim f

= L

[eq. (8.2)] ; 

x→∞

x→0

x









n

1

o

n

1

o

lim f (x) = L ⇐⇒

lim f

= L

∧

lim f

= L

[eq. (7.20)] ; 

x→∞

x→0−

x

x→0+

x

n

o

n

o

lim f (x) = L ⇐⇒

lim f (x) = L

∧

lim f (x) = L

x→∞

x→−∞

x→+∞

[eqs. (8.15) and (8.17)] . 

We will now prove that:

lim f (x) = L ⇐⇒ lim f (−x) = L . 

(8.19)

x→−∞

x→+∞

Proof:

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { x < M =⇒ | f (x) − L| < ε }

[eq. (8.14)] ; 

x→−∞

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { −x > −M =⇒ | f (x) − L| < ε }

[eq. (2.118)] ; 

x→−∞

taking: M2 = −M

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { −x > M2 =⇒ | f (x) − L| < ε } ; x→−∞

2

taking: x = −x2

(where x2 is an arbitrary number)

lim f (x) = L ⇐⇒

x→−∞

∀ε>0 ∃M ∀ { −(−x

2

x2

2) > M2 =⇒ | f (−x2) − L | < ε } ; 
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lim f (x) = L ⇐⇒

x→−∞

∀ε>0 ∃M ∀ { x

2

x2

2 > M2 =⇒ | f (−x2) − L | < ε }

[eq. (2.51)] ; 

lim f (x) = L ⇐⇒ lim f (−x) = L

[eq. (8.16)] . 

x→−∞

x→+∞

8.5.4

UNIQUENESS OF LIMIT

We will now prove that given a real function “ f (x)” that is defined in a right-unbounded interval

“I ”, if a limit “L” of the function “ f (x)” when “x” goes towards plus infinity exists, then the limit is unique. That is:



lim f (x) = L 

1







x→+∞



=⇒ L1 = L2 . 







lim f (x) = L2 

x→+∞

Proof:









• Case:

lim f (x) = L1

∧

lim f (x) = L2

x→+∞

x→+∞



1 





1 



lim f

= L1

∧

lim f

= L2

[eq. (8.17)] ; 

x→0+

x

x→0+

x

L1 = L2

[eqs. (7.2) and (7.16)] . 

8.5.5

GENERAL PROPERTIES

In a very similar manner as we did in 7.3 (except, in general, for changing logical quantifiers

“ ∃δ>0 ∀x,a ” for “ ∃M ∀x ”; and changing the condition “ |x − a | < δ ” for the condition “ x > M ”; see 8.4), one may also prove the following properties (many of the following properties may also be proven by applying eq. (8.17) and the properties already proven in 7.5 [as we did for the proof in

8.5.4]):

lim C = C ; 

x→+∞



lim f



1(x) = L1







x→+∞







=⇒ lim

f1(x) + f2(x)

= L1 + L2 ; 

x→+∞







lim f2(x) = L2 

x→+∞





lim f (x) = L =⇒ lim

− f (x) = −L ; 

x→+∞

x→+∞
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

lim f



1(x) = L1







x→+∞







=⇒ lim

f1(x) − f2(x) = L1 − L2 ; 

x→+∞







lim f2(x) = L2 

x→+∞



lim f



1(x) = L1







x→+∞







=⇒ lim

f1(x) f2(x)

= L1 L2 ; 

x→+∞







lim f2(x) = L2 

x→+∞





lim f (x) = L







x→+∞



=⇒ ∃M

∀

2 ,M3

x { x > M2 =⇒ f (x) < M3 < 0 } ; 







L < 0







lim f (x) = L







x→+∞

 =⇒ ∃M

∀

2 ,M3

x { x > M2 =⇒ 0 < M3 < f (x) } ; 







L > 0



lim f (x) = 0 ⇐⇒ ∀ε>0 ∃M ∀x { x > M =⇒ | f (x)| < ε } ; 

x→+∞



lim f



1(x) = L1



x→+∞



















L

=⇒ lim f

; 

1 , 0

2(x) = L−1

x→+∞

1







f





1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined



lim f



1(x) = L1







x→+∞





























lim f2(x) = L2





x→+∞



=⇒ lim f3(x) = L1/L2 . 

x→+∞











L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

8.6

EXAMPLES

The exponential function “ exp(x) = ex ” and its corresponding inverse function the natural logarithmic function “ln(x)” are found throughout physics. For example, as discussed in 3.8, in statistical mechanics, the entropy “S ” for a discrete system at equilibrium may be defined by: S = k ln(Ωeq) ; 

(8.20)

where “k” is a physical constant (the Boltzmann constant) and “Ωeq” is the number of possible microstates states of the system given the current thermodynamic macrostate of the system. Through

[image: Image 566]

[image: Image 567]

[image: Image 568]

[image: Image 569]

[image: Image 570]

200

Limits and Derivatives of Real Functions for Physicists

equation (8.20), and mathematical analysis one finds that the entropy “S ”, as defined in statistical mechanics through equation (8.20), is equivalent to the entropy “S ” as defined through experimental observations in thermodynamics. This leads one to be able to derive, from first principles through statistical mechanics [and through eq. (8.20); and through the properties of the exponential and natural logarithmic functions] many thermodynamic properties that were initially found through experimental observations, significantly increasing our understanding of many physical systems. 

In turn, the mathematical analysis that connects entropy “S ” as defined by equation (8.20) to the entropy “S ” as defined through experimental observations in thermodynamics, includes the calculation of rates of the change of entropy with respect to other physical variables. In other words, we are lead to evaluate limits of the form:

S(y + ∆y) − S(y)

lim

; 

(8.21)

∆y→0

∆y

where “S ” is entropy and “y” a given physical variable of the thermodynamic system. 

As we will discuss in a following chapter, given a real function “ f (x)” the limit of the form: f (x + ∆x) − f (x)

lim

; 

∆x→0

∆x

is referred to as the derivative of the function “ f (x)”. One of several common notations for the derivative is to use the prime symbol “ ′ ” and to denote the derivative of the function “ f (x)” in the form “( f (x)) ′ ”; that is:

f (x + ∆x) − f (x)

( f (x)) ′ ≡ lim

. 

∆x→0

∆x

Thus, considering the rate of change of entropy “S ” with respect to a physical variable “y”, we can write:

S(y + ∆y) − S(y)

(S(y)) ′ = lim

; 

(8.22)

∆y→0

∆y

and we would refer to “ (S(y)) ′ ” as the “derivative of entropy S with respect to physical variable y”. 

Note that:

• The derivative measures the rate of change of one variable (obtained through a given real function) with respect to a second variable that is the argument of the function [e.g., in eq. (8.22) the first variable is the entropy S and the second variable is the given physical variable y ]. 

In physics, a typical example of derivative is the velocity “vx” (see 6.5 and 7.6). The velocity “vx” 

is the rate of change of position “x” with respect to time “t”. Mathematically one states that “the velocity vx is the derivative of the position x with respect to time t ”. Recalling equation (7.26): x(t + ∆t) − x(t)

vx = lim

; 

∆t→0

∆t

the last equation can also be written as:

vx = (x(t)) ′ . 

Therefore, as discussed above, in statistical mechanics we are unavoidably lead to calculate the derivative of entropy “S ” with respect to other physical variables, while applying equation (8.20). 

Considering equation (8.20), we are, in turn, unavoidably lead to calculate the derivative of the
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natural logarithmic function “ (ln(x))′ ”. Aiming to calculate the derivative of the natural logarithmic function, we have that:

ln(x + ∆x) − ln(x)

(ln(x)) ′ = lim

; 

∆x→0

∆x

applying equations (2.56) and (2.72):

(



! )

(ln(x)) ′ = lim

(∆x)−1

ln(x + ∆x) − ln(x)

; 

∆x→0

applying equation (3.84):

(



! )

x + ∆x

(ln(x)) ′ = lim

(∆x)−1 ln

; 

∆x→0

x

applying equations (2.56) and (2.72):

(



! )

(ln(x)) ′ = lim

(∆x)−1 ln

x−1(x + ∆x)

; 

∆x→0

applying equations (2.56) and (2.64):

(



! )

(ln(x)) ′ = lim

(∆x)−1 ln

x x−1 + ∆x x−1

; 

∆x→0

applying equations (2.71) and (2.72):

(



! )

∆x

(ln(x)) ′ = lim

(∆x)−1 ln

1 +

; 

∆x→0

x

applying equations (2.59) and (2.71):

(



! )

∆x

(ln(x)) ′ = lim

x x−1 (∆x)−1 ln

1 +

; 

∆x→0

x

applying equation (2.56):

(



! )

∆x

(ln(x)) ′ = lim

x−1 x (∆x)−1 ln

1 +

; 

∆x→0

x

applying equations (2.72) and (2.73):

(



! )

1 x

∆x

(ln(x)) ′ = lim

ln

1 +

; 

∆x→0

x ∆x

x

applying equation (7.8):



(



! ) ! 



1  

x

∆x

(ln(x)) ′ =

lim

lim

ln

1 +

; 

∆x→0

x

∆x→0

∆x

x
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applying equation (7.3):

(



! )

1

x

∆x

(ln(x)) ′ =

lim

ln

1 +

; 

x ∆x→0

∆x

x

applying equation (3.85):





x  

1











∆x



(

∆x

ln(x)) ′ =

lim

ln 

1 +



; 

x ∆x→0



x











it is not obvious, but the natural logarithmic function “ln(x)” is a continuous function (we will define

“continuous function” in the following chapters), and applying properties of continuous functions (that will also prove in the following chapters) it follows that:





x  

1

 







∆x



(

∆x

ln(x)) ′ =

ln  lim

1 +

 ; 

x

 ∆x→0

x











applying equation (2.76):





∆x !−1  





1

 







∆x



(

x

ln(x)) ′ =

ln 





lim

1 +

 ; 

x

 ∆x→0

x















∆x

taking: u = x

1





n

(ln(x)) ′ =

ln

lim

( 1 + u )u−1 o

; 

x

u→0

applying equation (2.73):

1





n

1 o

(ln(x)) ′ =

ln

lim

( 1 + u ) u

; 

x

u→0

applying equation (2.68):

1





1  



(

u

ln(x)) ′ =

ln

lim

1 + u−1 −1 

; 

x

u→0

applying equation (2.73):





1  



1



−1 ! u



1



(ln(x)) ′ =

ln  lim

1 +

 ; 

x

u→0

u





applying equation (8.2):

1



n

(ln(x)) ′ =

ln

lim

1 + u−1 u o  ; 

x

u→∞
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applying equation (2.73):

1





1 u  

(ln(x)) ′ =

ln

lim

1 +

; 

(8.23)

x

u→∞

u

thus, in order to calculate the derivative of the natural logarithmic function, so that we may apply it to the analysis of entropy in statistical mechanics, we are lead to calculate the following limit: 1 u 

lim

1 +

; 

(8.24)

u→∞

u

where the independent variable “u” goes towards infinity. 

As discussed in “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” 

[4], the following real sequence converges to number “e” (the base of the exponential functional

“exp(x)”):



1 n 

e = lim

1 +

; 

(8.25)

n→∞

n

that is:





1 n





∀





ε>0 ∃N ∀n

n > N =⇒ 

1 +

− e  < ε

. 

(8.26)



n



Note that the variables “N” and “n” in equations (8.25) and (8.26) are natural numbers (not real numbers). Expression (8.24) corresponds to the limit (when real variable u goes towards infinity) of a real function; while the right side of equation (8.25) corresponds to the limit of a real sequence. 

That is, the limit in expression (8.24) and the limit of equation (8.25), are two different types of limits [the limit of expression (8.24) being one of the types of limits studied in this chapter]. 

It is not obvious, but as we will prove in the following chapters, the “real-number-variable version equivalent” of equation (8.25) holds true, and can be proven from real number properties and the equation (8.25) itself. That is, it also holds that:



1 u 

e = lim

1 +

; 

(8.27)

u→+∞

u

where “u” is a real variable. 

Note that expression (8.24) corresponds to the limit when “u” goes towards infinity; while the right side of equation (8.27) corresponds to the limit when “u” goes towards plus infinity. That is, the limit in expression (8.24) and the limit of equation (8.27), are two different limits. 

Also note that the limit when “u” goes towards infinity existing is equivalent to both the limit when “u” goes towards plus infinity and the limit when “u” goes towards minus infinity existing and being equal to each other [see eq. (8.18)]. We are thus lead to calculate the limit when “u” goes towards minus infinity; that is, we are lead to calculate:



1 u 

lim

1 +

. 

(8.28)

u→−∞

u

Aiming to calculate expression (8.28), and applying equation (8.19): (



1 u 



1

−u )

lim

1 +

= lim

1 +

; 

u→−∞

u

u→+∞

(−u)
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applying equation (2.73):

(  

!−u )



1 u 

lim

1 +

= lim

1 + (−u)−1

; 

u→−∞

u

u→+∞

applying equations (2.59) and (2.71):

(  

!−u )



1 u 

lim

1 +

= lim

(−u)(−u)−1 + 1 · (−u)−1

; 

u→−∞

u

u→+∞

applying equations (2.56) and (2.64):

(  

!−u )



1 u 





lim

1 +

= lim

(−u) + 1 (−u)−1

; 

u→−∞

u

u→+∞

applying equation (2.72):

(  

!−u )



1 u 

(−u) + 1

lim

1 +

= lim

; 

u→−∞

u

u→+∞

(−u)

applying equation (3.42):



















1 u 







1



lim

1 +

= lim

; 

u→−∞

u

u→+∞



!u



(−u) + 1

















(−u)



applying equation (3.44):

 

u 















1 u 

 







1



lim

1 +

= lim









; 

u→−∞

u

u→+∞



! 







(−u) + 1



 















(−u)



applying equations (2.73) and (2.76):



1 u 



(−u) u 

lim

1 +

= lim

; 

u→−∞

u

u→+∞

(−u) + 1

applying equations (2.45) and (2.53):



1 u 

(−u) + 1 + (−1) u 

lim

1 +

= lim

; 

u→−∞

u

u→+∞

(−u) + 1

applying equations (2.56) and (2.72):



1 u 

lim

1 +

=

u→−∞

u

(  

!u )

n

o−1 n

o

lim

(−u) + 1

(−u) + 1 + (−1)

; 

u→+∞
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applying equations (2.56) and (2.64):



1 u 

lim

1 +

=

u→−∞

u

(  

!u )

n

o n

o−1

n

o−1

lim

(−u) + 1

(−u) + 1

+ (−1) (−u) + 1

; 

u→+∞

applying equation (2.71):

(  

!u )



1 u 

n

o−1

lim

1 +

= lim

1 + (−1) (−u) + 1

; 

u→−∞

u

u→+∞

applying equation (2.51):

( 

!u )



1 u 

n

o−1

lim

1 +

= lim

1 + (−1) (−u) + (−(−1))

; 

u→−∞

u

u→+∞

applying equation (2.65):

( 

!u )



1 u 

n

o−1

lim

1 +

= lim

1 + (−1) (−1)u + (−1)(−1)

; 

u→−∞

u

u→+∞

applying equation (2.64):

(  

!u )



1 u

n

o−1

lim

1 +

= lim

1 + (−1) (−1)(u + (−1))

; 

u→−∞

u

u→+∞

applying equation (2.74):

(  

!u )



1 u

n

o−1

lim

1 +

= lim

1 + (−1)(−1)−1 u + (−1)

; 

u→−∞

u

u→+∞

applying equations (2.59) and (2.71):

(  

!u )



1 u 

n

o−1

lim

1 +

= lim

1 +

u + (−1)

; 

u→−∞

u

u→+∞

applying equation (2.73):

(  

!u )



1 u 

1

lim

1 +

= lim

1 +

; 

u→−∞

u

u→+∞

u + (−1)

applying equations (2.45) and (2.53):

  

!u+1+(−1) 



1 u 



1



lim

1 +

= lim

1 +

; 

u→−∞

u

u→+∞

u + (−1)





applying equation (2.43):

  

!u+(−1)+1 



1 u 



1



lim

1 +

= lim

1 +

; 

u→−∞

u

u→+∞

u + (−1)




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taking: v = u + (−1)

  

!v+1 



1 u 



1



lim

1 +

= lim

1 +

; 

u→−∞

u

v→+∞

v





applying equation (3.40):

  

!v  

!1 



1 u 



1

1



lim

1 +

= lim

1 +

1 +

; 

u→−∞

u

v→+∞

v

v





applying equation (2.78):

(  

!v 

! )



1 u 

1

1

lim

1 +

= lim

1 +

1 +

; 

u→−∞

u

v→+∞

v

v

applying equations (8.8) and (8.16):



1 u 

lim

1 +

=

u→−∞

u



(  

!v ) ! 

(  

! ) ! 

1

1

lim

1 +

lim

1 +

; 

v→+∞

v

v→+∞

v

substituting equation (8.27):



(  

! ) ! 



1 u 

1

lim

1 +

= e

lim

1 +

; 

u→−∞

u

v→+∞

v

applying equations (8.5) and (8.16):



(

)

! 



1 u 

1 

lim

1 +

= e

lim

1

+ lim

; 

u→−∞

u

v→+∞

v→+∞

v

applying equations (8.4) and (8.16):



1 u 



1  

lim

1 +

= e

1 + lim

; 

u→−∞

u

v→+∞

v

applying equation (2.73):



1 u 





lim

1 +

= e

1 + lim { v−1 }

; 

u→−∞

u

v→+∞

applying equation (8.17):



(



1 u 

1 −1 ) ! 

lim

1 +

= e

1 + lim

; 

u→−∞

u

v→0+

v

applying equations (2.68) and (2.73):



1 u 





lim

1 +

= e

1 + lim { v }

; 

u→−∞

u

v→0+
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applying equations (7.4) and (7.16):



1 u 

lim

1 +

= e (1 + 0) ; 

u→−∞

u

applying equations (2.45) and (2.56):



1 u 

lim

1 +

= 1 · e ; 

u→−∞

u

applying equation (2.59):



1 u 

lim

1 +

= e ; 

(8.29)

u→−∞

u

from equations (8.27) and (8.29):





1 u 







1 u 



lim

1 +

= e

∧

lim

1 +

= e

; 

u→−∞

u

u→+∞

u

applying equation (8.18):



1 u 

lim

1 +

= e ; 

(8.30)

u→∞

u

substituting into equation (8.23):

1

(ln(x)) ′ =

ln(e) ; 

x

applying equation (3.81):

1

(ln(x)) ′ =

· 1 ; 

x

applying equations (2.56) and (2.59):

1

(ln(x)) ′ =

. 

(8.31)

x

Applying the last equation, we can now calculate the rate of change of entropy “S ” with respect to a given variable “y” through the definition of entropy in statistical mechanics [eq. (8.20)], and proceed with mathematical analyses that will lead to finding that entropy “S ” as defined in statistical mechanics is equivalent to the entropy “S ” defined through experimental observations in thermodynamics; once again significantly increasing our understanding of many physical systems. 

In this section, in analyzing the mathematical processes that are needed to calculate the rate of change of entropy “S ” with respect to other physical variables, we found that the calculation of the derivative of the natural logarithmic function “ (ln(x))′ ” is fundamental. In turn, the limit of a real function when an independent variable goes to infinity, as well as when it goes to minus infinity and when it goes to plus infinity, played a key role in calculating the derivative of the natural logarithmic function “(ln(x))′ ”. 

As can be clearly seen in this section, the limit of a real function when an independent variable goes to infinity, as well as when it goes to minus infinity and when it goes to plus infinity, played a key role in the analysis of a discrete physical system in equilibrium. 
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9 When the Limit of Real

Functions is ∞ (or −∞ or

+∞)

9.1

INTRODUCTION

Limits appear explicitly or implicitly throughout physics. Limits and their properties are the foundation of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as limits. 

Also, the analysis of physical quantities and physical systems in many cases require applying the limit when a dependent variable goes towards infinity, or minus infinity, or plus infinity (not just applying the limit when the dependent variable tends to a real number “L” [cases studied in the previous two chapters]). Once again, limits and their properties become more than just useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present the definition of limit of a real function “ f (x)”:

• When the limit of a real function “ f (x)” is infinity (∞); 

• When the limit of a real function “ f (x)” is minus infinity (−∞); 

• When the limit of a real function “ f (x)” is plus infinity (+∞); and we will discuss general properties of these limits. 

9.2

NOTATION

Following the notation used in chapters 4-8, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 
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• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

9.3

BOUNDED REAL FUNCTIONS

In what follows, we will define an upper-bounded real function through the following equation: f (x) is upper-bounded ⇐⇒ ∃M f (x) ≤ M ; 

(9.1)

a value of “M ” that satisfies the condition on the right will be referred to as an “upper-bound of f (x)”. In turn, we will define a lower-bounded real function through the following equation: f (x) is lower-bounded ⇐⇒ ∃M M ≤ f (x) ; 

(9.2)

a value of “M ” that satisfies the condition on the right will be referred to as a “lower-bound of f (x)”. 

Also, if a given real function “ f (x)” is both upper-bounded and lower-bounded, it will be referred to as a bounded real function. It follows that:

f (x) is bounded ⇐⇒ ∃M | f (x)| ≤ M ; 

(9.3)

given a value of “M ” that satisfies the condition on the right, we will state that “ f (x) is bounded by M ”. 

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, if the limit of the first function “ f1(x)” has a limit of zero (“0”) when “x” tends to “a”, and the second function “ f2(x)” is bounded, then the product of the two real functions “ f1(x)” and “ f2(x)” also has a limit when “x” tends to “a”, and the limit of the product

“ f1(x) f2(x)” is equal to zero (“0”). That is:



lim f



1(x) = 0



x→a

 =⇒ lim [ f1(x) f2(x) ] = 0 . 

(9.4)

x→a



f



2(x) is bounded

Proof:

n

o

n

o

• Case:

lim f1(x) = 0

∧

f2(x) is bounded

x→a

(∀ε>0 ∃δ>0 ∀x,a { |x− a| < δ =⇒ | f1(x)− 0| < ε }

∃M | f2(x)| ≤ M

[eqs. (7.1) and (9.3)] ; 

(∀ε>0 ∃δ>0 ∀x,a { |x− a| < δ =⇒ |f1(x)| < ε }

∃M | f2(x)| ≤ M

[eqs. (2.45) and (2.54)] ; 

taking: M2 = max(M, 1)


(∀ε>0 ∃δ>0 ∀x,a { |x− a| < δ =⇒ |f1(x)| < ε } ; 

∃M2>0 { | f2(x)| ≤ M2 ∧ M2 > 0 }
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(∀ε>0 ∃δ>0 ∀x,a { |x− a| < δ =⇒ |f1(x)| < ε } ; 

| f2(x)| ≤ M2 ∧ M2 > 0

(∀ε>0 ∃δ>0 ∀x,a { |x− a| < δ =⇒ |f2(x)||f1(x)| < M2 ε }

M2 > 0

[eqs. (2.121) and (2.122)] ; 

(∀ε>0 ∃δ>0 ∀x,a { |x− a| < δ =⇒ |f1(x)||f2(x)| < M2 ε }

[eq. (2.56)] ; 

M2 > 0

taking: ε = M−1ε

2

2

(where ε2 is an arbitrary positive number)

(∀





ε

|x − a| < δ =⇒ | f

ε

2 >0 ∃δ >0 ∀x,a

1(x)| | f2(x)| < M2M−1

2

2

; 

M2 > 0

∀ε2>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f1(x)|| f2(x)| < ε2 }

[eqs. (2.59) and (2.71)] ; 

∀ε2>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f1(x) f2(x)| < ε2 }

[eq. (2.131)] ; 

∀ε2>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f1(x) f2(x) − 0| < ε2 }

[eqs. (2.45) and (2.54)] ; 

lim [ f1(x) f2(x) ] = 0

[eq. (7.1)] . 

x→a

Given two real functions “ f1(x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equation (9.4):





lim f



1(x) = 0





x→a−



=⇒ lim [ f1(x) f2(x) ] = 0 ; 

x→a−







f2(x) is bounded 





lim f



1(x) = 0





x→a+

 =⇒ lim [ f1(x) f2(x) ] = 0 ; 

x





→a+



f2(x) is bounded 



lim f



1(x) = 0



x→∞



=⇒ lim [ f1(x) f2(x) ] = 0 ; 

x→∞



f



2(x) is bounded
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



lim f



1(x) = 0





x→−∞



=⇒ lim [ f1(x) f2(x) ] = 0 ; 

x→−∞







f2(x) is bounded 





lim f



1(x) = 0





x→+∞

 =⇒ lim [ f1(x) f2(x) ] = 0 . 

x→+∞







f2(x) is bounded 

9.4

LIMIT OF F(X ) IS ∞

9.4.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a vicinity “SV ” of real number “a”, we will state that the limit of the function “ f (x)” is infinity when “x” tends to “a”, when the following equation is satisfied:

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| > M } ; 

to denote that the limit real of the real function “ f (x)” is infinity when “x” tends to “a”, the following notation is used:

lim f (x) is ∞ ; 

x→a

that is:

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| > M } . 

(9.5)

x→a

The right side of equation (9.5) states that taking a real number “M ” arbitrarily towards the right of the number line, we can always find an interval around “a” [ (a − δ ,a + δ )], such that for every “x” 

different from “a” in the interval “(a − δ ,a + δ )” the absolute value of the function at “x” [“ | f (x)|”]

is in the interval “(M, +∞)”. 

Intuitively, stating that limit of the function “ f (x)” is infinity when “x” tends to “a” [eq. (9.5)], means that we can make the value of the function “ f (x)” be arbitrarily far away form the origin “0” 

of the number line by considering values of “x” (other than x = a) arbitrarily close to “a”. 

Equation (9.5) is fundamental in that it makes the statement “the limit of a function is infinity” a well-defined mathematical statement. Given a real function “ f (x)” that is defined in a vicinity “SV ” 

of a real number “a”, we can always consider equation (9.5). Since equation (9.5) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (9.5) results True, then “the limit is infinity”; on other hand if the right side of equation (9.5) results False, then “the limit is not infinity”. Once again, the statement that the limit of a function is infinity, now becomes a well-defined mathematical statement. 

Note that:

• In equation (9.5) we did not state that the limit is equal to infinity (i.e., we did not state that “lim f (x) = ∞”), but rather we stated that “the limit is infinity” (i.e., we stated that x→a

“lim f (x) is ∞”); this is because infinity (“∞”) is not a real number (as would be implied by x→a

the statement “lim f (x) = ∞”); 

x→a
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• If the limit of a function “ f (x)” is infinity when “x” tends to “a”, then from a mathematical standpoint the limit of the function “ f (x)” does not exist. That is, there is no real number

“L” such that the function “ f (x)” gets arbitrarily close to “L”, as “x” gets arbitrarily close to “a”; 

• For the limit of a function “ f (x)” to be infinity when “x” tends to “a”, the function “ f (x)” 

must be defined in a vicinity “SV ” of real number “a” [i.e., the value of f (x) must exist for values of x in a vicinity SV of “a”]; 

• The limit of a function “ f (x)” may be infinity when “x” tends to “a”, while the function

“ f (x)” at “x = a” may or may not exist [i.e., f (a) may or may not exist]. 

9.4.2

EXAMPLE

For example, consider the function:

1

f (x) =

; 

x

the function “ f (x)” does not exist (is not defined) for “x = 0” (since we cannot divide by “0” [zero]). 

Thus, it would be clearer to write:



1

x , 0 :

f (x) =





x

; 





x = 0 :

f (x) is not defined

from equation (9.5) it follows that:

lim f (x) is ∞ ; 

x→0

note once again that, in order for the limit of the function “ f (x)” to be infinity when “x” tends to

“a”, the function “ f (x)” must be defined in a vicinity of “a” (not a neighborhood of “a”). 

9.4.3

ADDITIONAL DEFINITIONS

Given a real function “ f (x)”, we will state that the limit of the function “ f (x)′′ is infinity when “x” 

tends to “a” from the left (or x tends to “a” from the right, or x goes towards infinity, or x goes towards minus infinity, or x goes towards plus infinity) when the following corresponding equations are satisfied [equivalent to eq. (9.5), and consistent with the previous definitions of a real number limit L ]:

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x<a { |x − a| < δ =⇒ | f (x)| > M } ; (9.6)

x→a−

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x>a { |x − a| < δ =⇒ | f (x)| > M } ; (9.7)

x→a+

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ | f (x)| > M2 } ; 

(9.8)

x→∞

2

1

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ | f (x)| > M2 } ; 

(9.9)

x→−∞

2

1

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x > M1 =⇒ | f (x)| > M2 } . 

(9.10)

x→+∞

2

1
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9.4.4

BASIC PROPERTIES

From equations (9.5) and (9.6), it follows that if the limit of a function “ f (x)” is infinity when “x” 

tends to “a”, then the limit of the function “ f (x)” is also infinity when “x” tends to “a” from the left. 

That is:

lim f (x) is ∞ =⇒ lim f (x) is ∞ . 

(9.11)

x→a

x→a−

Also note that, from equations (9.5) and (9.7), it follows that if the limit of a function “ f (x)” is infinity when “x” tends to “a”, then the limit of the function “ f (x)” is also infinity when “x” tends to “a” from the right. That is:

lim f (x) is ∞ =⇒ lim f (x) is ∞ . 

(9.12)

x→a

x→a+

In turn, from equations (9.11) and (9.12), it follows that:



lim f (x) is ∞ 







x→a−



lim f (x) is ∞ =⇒

. 

(9.13)

x→a







lim f (x) is ∞ 

x→a+

We will now prove that given a real function “ f (x)” defined in a vicinity of a real number “a”, if the limit of the function “ f (x)” is infinity when “x” tends to “a” from the left, and the limit of the function “ f (x)” is infinity when “x” tends to “a” from the right, then the limit of the function “ f (x)” 

will also be infinity when “x” tends to “a”. That is:



lim f (x) is ∞ 







x→a−

 =⇒ lim f(x) is ∞ . 

(9.14)

x→a







lim f (x) is ∞ 

x→a+

Proof:









• Case:

lim f (x) is ∞

∧

lim f (x) is ∞

x→a−

x→a+

(∀M ∃

1

δ1>0 ∀x<a { | x − a | < δ1 =⇒ | f (x)| > M1 }

∀M ∃

2

δ2>0 ∀x>a { | x − a | < δ2 =⇒ | f (x)| > M2 }

[eqs. (9.6) and (9.7)] ; 

(∀

∀

x<a { | x − a | < δ1 =⇒ | f (x)| > M1 }

M ∀

∃

; 

1

M2

δ1>0 ∃δ2>0

∀x>a { |x − a| < δ2 =⇒ | f (x)| > M2 }

taking: δ3 = min(δ1, δ2)

(∀

∀

x<a { | x − a | < δ3 =⇒ | f (x)| > M1 }

M ∀

∃

; 

1

M2

δ3>0

∀x>a { |x − a| < δ3 =⇒ | f (x)| > M2 }
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taking: M1 = M2 = M3

(where M3 is an arbitrary number)

(∀

∀

x<a { | x − a | < δ3 =⇒ | f (x)| > M3 }

M ∃

; 

3

δ3>0

∀x>a { |x − a| < δ3 =⇒ | f (x)| > M3 }

∀M ∃

3

δ3>0 ∀x,a { | x − a | < δ3 =⇒ | f (x)| > M3 } ; 

lim f (x) is ∞

[eq. (9.5)] . 

x→a

In turn, from equations (9.13) and (9.14), it follows that:



lim f (x) is ∞ 







x→a−



lim f (x) is ∞ ⇐⇒

. 

(9.15)

x→a







lim f (x) is ∞ 

x→a+

We will now prove the following property:

1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞ . 

(9.16)

x→∞

x→0

x

Proof:

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ | f (x)| > M2 }

[eq. (9.8)] ; 

x→∞

2

1

taking: M3 = max(M1, 1)

lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→∞

2

3>0 ∀x,0 { |x| > M3 =⇒ | f (x)| > M2 } ; 

lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→∞

2

3>0 ∀x,0 { M3 < |x| =⇒ | f (x)| > M2 }

[eq. (2.112)] ; 



1

1



lim f (x) is ∞ ⇐⇒ ∀M ∃M

> 

=⇒ | f (x)| > M2

x→∞

2

3>0 ∀x,0

M3

|x|

[eqs. (2.73) and (2.123)] ; 



1

1



lim f (x) is ∞ ⇐⇒ ∀M ∃M

< 

=⇒ | f (x)| > M2

[eq. (2.112)] ; 

x→∞

2

3>0 ∀x,0

|x|

M3

1

taking: δ = M3



1



lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x,0

< δ =⇒ | f (x)| > M2

; 

x→∞

2

|x|
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1 



lim f (x) is ∞ ⇐⇒ ∀





M ∃δ >0 ∀x,0



< δ =⇒ | f (x)| > M2

x→∞

2

x 

[eqs. (2.126) and (2.133)] ; 

1





lim f (x) is ∞ ⇐⇒ ∀





M ∃δ >0 ∀x,0



− 0  < δ =⇒ | f (x)| > M2

x→∞

2

x



[eqs. (2.45) and (2.54)] ; 

lim f (x) is ∞ ⇐⇒

x→∞

(





)

1





−1 ! 



1



∀









M ∃

− 0 < δ =⇒ f

> M

2

δ >0 ∀x,0





2





x



x





[eqs. (2.68) and (2.73)] ; 

1

1

taking: x =

and noting that x2 =

[eqs. (2.68) and (2.73)]

x2

x

(where x2 is an arbitrary nonzero number)

lim f (x) is ∞ ⇐⇒

x→∞

∀







M ∃

| x

; 

2

δ >0 ∀x2,0

2 − 0 | < δ =⇒  f

x−1

2

> M2

lim f (x) is ∞ ⇐⇒

x→∞







1  



∀





M ∃

| x

f

> M

[eq. (2.73)] ; 

2

δ >0 ∀x2,0

2 − 0 | < δ =⇒ 



2



x2



lim f (x) is ∞ ⇐⇒

x→∞





1  



∀





M ∃

| x − 0 | < δ =⇒ f

> M

; 

2

δ >0 ∀x,0





2



x



1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞

[eq. (9.5)] . 

x→∞

x→0

x

We will also now prove the following property:

1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞ . 

(9.17)

x→−∞

x→0−

x

Proof:

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ | f (x)| > M2 }

[eq. (9.9)] ; 

x→−∞

2

1

taking: M3 = min(M1, −1)

lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→−∞

2

3<0 ∀x<0 { x < M3 =⇒ | f (x)| > M2 } ; 
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lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→−∞

2

3 <0 ∀x<0 { −M3 < −x =⇒ | f (x)| > M2 }

[eqs. (2.112) and (2.118)] ; 

lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→−∞

2

3 <0 ∀x<0 { −M3 < |x| =⇒ | f (x)| > M2 }

[eq. (2.124)] ; 

lim f (x) is ∞ ⇐⇒

x→−∞



1

1



∀M ∃

> 

=⇒ | f (x)| > M

[eqs. (2.73) and (2.123)] ; 

2

M3<0 ∀x<0

(−

2

M3)

|x|

lim f (x) is ∞ ⇐⇒

x→−∞



1

1



∀M ∃

< 

=⇒ | f (x)| > M

[eq. (2.112)] ; 

2

M3<0 ∀x<0

|

2

x|

(−M3)

1

taking: δ = (−M3)



1



lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x<0

< δ =⇒ | f (x)| > M2

; 

x→−∞

2

|x|

1 



lim f (x) is ∞ ⇐⇒ ∀





M ∃δ >0 ∀x<0



< δ =⇒ | f (x)| > M2

x→−∞

2

x 

[eqs. (2.126) and (2.133)] ; 

lim f (x) is ∞ ⇐⇒

x→−∞

1





∀





M ∃

− 0 < δ =⇒ | f (x)| > M

[eqs. (2.45) and (2.54)] ; 

2

δ >0 ∀x<0





2

x



lim f (x) is ∞ ⇐⇒

x→−∞

(





)

1





−1 ! 



1



∀









M ∃

− 0 < δ =⇒ f

> M

2

δ >0 ∀x<0





2





x



x





[eqs. (2.68) and (2.73)] ; 

1

1

taking: x =

and noting that x2 =

[eqs. (2.68) and (2.73)]

x2

x

(where x2 is an arbitrary negative number)

lim f (x) is ∞ ⇐⇒

x→−∞

∀







M ∃

| x

; 

2

δ >0 ∀x2<0

2 − 0 | < δ =⇒  f

x−1

2

> M2

lim f (x) is ∞ ⇐⇒

x→−∞







1  



∀





M ∃

| x

f

> M

[eq. (2.73)] ; 

2

δ >0 ∀x2<0

2 − 0 | < δ =⇒ 



2



x2
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lim f (x) is ∞ ⇐⇒

x→−∞





1  



∀





M ∃

| x − 0 | < δ =⇒ f

> M

; 

2

δ >0 ∀x<0





2



x



1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞

[eq. (9.6)] . 

x→−∞

x→0−

x

Additionally, we will now prove that:

1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞ . 

(9.18)

x→+∞

x→0+

x

Proof:

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x > M1 =⇒ | f (x)| > M2 }

[eq. (9.10)] ; 

x→+∞

2

1

taking: M3 = max(M1, 1)

lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→+∞

2

3 >0 ∀x>0 { x > M3 =⇒ | f (x)| > M2 } ; 

lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→+∞

2

3 >0 ∀x>0 { |x| > M3 =⇒ | f (x)| < M2 }

[eq. (2.126)] ; 

lim f (x) is ∞ ⇐⇒ ∀M ∃M

x→+∞

2

3 >0 ∀x>0 { M3 < |x| =⇒ | f (x)| < M2 }

[eq. (2.112)] ; 



1

1



lim f (x) is ∞ ⇐⇒ ∀M ∃M

> 

=⇒ | f (x)| > M2

x→+∞

2

3 >0 ∀x>0

M3

|x|

[eqs. (2.73) and (2.123)] ; 



1

1



lim f (x) is ∞ ⇐⇒ ∀M ∃M

< 

=⇒ | f (x)| > M2

x→+∞

2

3 >0 ∀x>0

|x|

M3

[eq. (2.112)] ; 

1

taking: δ = M3



1



lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x>0

< δ =⇒ | f (x)| > M2

; 

x→+∞

2

|x|

1 



lim f (x) is ∞ ⇐⇒ ∀





M ∃δ >0 ∀x>0



< δ =⇒ | f (x)| > M2

x→+∞

2

x 

[eqs. (2.126) and (2.133)] ; 

lim f (x) is ∞ ⇐⇒

x→+∞

1





∀





M ∃

− 0 < δ =⇒ | f (x)| > M

[eqs. (2.45) and (2.54)] ; 

2

δ >0 ∀x>0





2

x
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lim f (x) is ∞ ⇐⇒

x→+∞

(





)

1





−1 ! 



1



∀









M ∃

− 0 < δ =⇒ f

> M

2

δ >0 ∀x>0





2





x



x





[eqs. (2.68) and (2.73)] ; 

1

1

taking: x =

and noting that x2 =

[eqs. (2.68) and (2.73)]

x2

x

(where x2 is an arbitrary positive number)

lim f (x) is ∞ ⇐⇒

x→+∞

∀







M ∃

| x

; 

2

δ >0 ∀x2>0

2 − 0 | < δ =⇒  f

x−1

2

> M2

lim f (x) is ∞ ⇐⇒

x→+∞







1  



∀





M ∃

| x

f

> M

[eq. (2.73)] ; 

2

δ >0 ∀x2>0

2 − 0 | < δ =⇒ 



2



x2



lim f (x) is ∞ ⇐⇒

x→+∞





1  



∀





M ∃

| x − 0 | < δ =⇒ f

> M

; 

2

δ >0 ∀x>0





2



x



1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞

[eq. (9.7)] . 

x→+∞

x→0+

x

We will now prove that:



lim f (x) is ∞ 







x→−∞



lim f (x) is ∞ ⇐⇒

. 

(9.19)

x→∞







lim f (x) is ∞ 

x→+∞

Proof:

1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞

[eq. (9.16)] ; 

x→∞

x→0

x









n

1

o

n

1

o

lim f (x) is ∞ ⇐⇒

lim f

is ∞

∧

lim f

is ∞

x→∞

x→0−

x

x→0+

x

[eq. (9.15)] ; 

n

o

n

o

lim f (x) is ∞ ⇐⇒

lim f (x) is ∞

∧

lim f (x) is ∞

x→∞

x→−∞

x→+∞

[eqs. (9.17) and (9.18)] . 

We will also now prove that:

lim f (x) is ∞ ⇐⇒ lim f (−x) is ∞ . 

(9.20)

x→−∞

x→+∞
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Proof:

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ | f (x)| > M2 }

[eq. (9.9)] ; 

x→−∞

2

1

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { −x > −M1 =⇒ | f (x)| > M2 }

[eq. (2.118)] ; 

x→−∞

2

1

taking: M3 = −M1

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { −x > M3 =⇒ | f (x)| > M2 } ; 

x→−∞

2

3

taking: x = −x2

(where x2 is an arbitrary number)

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { −(−x2) > M3 =⇒ | f (−x2)| > M2 } ; x→−∞

2

3

2

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x2 > M3 =⇒ | f (−x2)| > M2 }

[eq. (2.51)] ; 

x→−∞

2

3

2

lim f (x) is ∞ ⇐⇒ lim f (−x) is ∞

[eq. (9.10)] . 

x→−∞

x→+∞

We will now prove that:

lim x is ∞ . 

(9.21)

x→∞

Proof:

• Case: f (x) = x

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ | f (x)| > M2 }

x→∞

2

1

[eq. (9.8)] ; 

lim x is ∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ |x| > M2 } ; 

x→∞

2

1

for any “M2”, we can always select “M1 = M2”; 

therefore, the proposition on the right holds true:

lim x is ∞ ⇐⇒ T ; 

x→∞

lim x is ∞ . 

x→∞

Note that, from equations (9.19) and (9.21), it follows that:

lim x is ∞ ; 

(9.22)

x→−∞

and also that:

lim x is ∞ . 

(9.23)

x→+∞
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9.4.5

LIMIT OF A SUM

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” is infinity when “x” 

tends to “a” and the second function “ f2(x)” is bounded, then the limit of the sum of the two real functions “ f1(x) + f2(x)” is infinity when “x” tends to “a”. That is:



lim f



1(x) is ∞



x→a







=⇒ lim f1(x) + f2(x) is ∞ . 

(9.24)

x→a



f



2(x) is bounded

Proof:

n

o

n

o

• Case:

lim f1(x) is ∞

∧

f2(x) is bounded

x→a

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

∃M { | f

2

2(x)| ≤ M2 }

[eqs. (9.3) and (9.5)] ; 



(f



1(x) ≥ 0 =⇒ | f1(x)| > M1

∀M ∃

1

δ1>0 ∀x,a |x − a| < δ1 =⇒

f1(x) < 0 =⇒| f1(x)| > M1

; 



| f2(x)| ≤ M2



(f



1(x) ≥ 0 =⇒ f1(x) > M1

∀M ∃

1

δ1>0 ∀x,a |x − a| < δ1 =⇒

f1(x) < 0 =⇒− f1(x) > M1



| f2(x)| ≤ M2

[eqs. (2.124)-(2.126)] ; 



(f



1(x) ≥ 0 =⇒ f1(x) > M1

∀M ∃

1

δ1>0 ∀x,a |x − a| < δ1 =⇒

f1(x) < 0 =⇒− f1(x) > M1



| f2(x)| ≤ M2 ∧ | − f2(x)| ≤ M2

[eq. (2.128)] ; 



(f



1(x) ≥ 0 =⇒ f1(x) > M1

∀M ∃

1

δ1>0 ∀x,a |x − a| < δ1 =⇒

f1(x) < 0 =⇒− f1(x) > M1



−M2 ≤ f2(x) ≤ M2 ∧ −M2 ≤ − f2(x) ≤ M2

[eq. (2.129)] ; 

∀M ∃

1

δ1>0 ∀x,a | x − a | < δ1 =⇒

(f1(x) ≥ 0=⇒ f1(x)+ f2(x) > M1 + (−M2)

f1(x) < 0 =⇒(− f1(x)) + (− f2(x)) > M1 + (−M2)

[eqs. (2.112) and (2.120)] ; 

∀M ∃

1

δ1>0 ∀x,a | x − a | < δ1 =⇒

( f1(x) ≥ 0 =⇒ f1(x)+ f2(x) > M1 + (−M2)

[eq. (2.52)] ; 

f1(x) < 0 =⇒ −( f1(x) + f2(x)) > M1 + (−M2)
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∀M

∃

1 >M2

δ1>0 ∀x,a | x − a | < δ1 =⇒

 f

 1 (x) ≥ 0 =⇒ f1 (x) + f2 (x) > M1 + (−M2)



f1(x) < 0 =⇒ −( f1(x) + f2(x)) > M1 + (−M2)

; 



M1 > M2

∀M

∃

1 >M2

δ1>0 ∀x,a | x − a | < δ1 =⇒

 f

 1 (x) ≥ 0 =⇒ f1 (x) + f2 (x) > M1 + (−M2)



f1(x) < 0 =⇒ −( f1(x) + f2(x)) > M1 + (−M2)



M1 + (−M2) > 0

[eqs. (2.53) and (2.119)] ; 

∀M

∃

1 >M2

δ1>0 ∀x,a | x − a | < δ1 =⇒

 f

 1 (x) ≥ 0 =⇒ | f1 (x) + f2 (x)| > M1 + (−M2)



f1(x) < 0 =⇒ | f1(x) + f2(x)| > M1 + (−M2)



M1 + (−M2) > 0

[eqs. (2.124)-(2.126)] ; 

∀M

∃

1 >M2

δ1>0 ∀x,a | x − a | < δ1 =⇒

(|f1(x)+ f2(x)| > M1 + (−M2) ; 

M1 + (−M2) > 0

taking: M1 = M3 + M2

and noting that M3 = M1 + (−M2) [eqs. (2.45) and (2.53)]

(where M3 is an arbitrary positive number)

∀M3>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ | f1(x) + f2(x)| > M3 ; 

∀M ∃

3

δ1>0 ∀x,a | x − a | < δ1 =⇒ | f1(x) + f2(x)| > M3 ; 





lim

f1(x) + f2(x)

is ∞

[eq. (9.5)] . 

x→a

We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” is infinity when “x” 

tends to “a” and the limit of the second function “ f2(x)” when “x” tends to “a” is the real number

“L”, then the limit of the sum of the two real functions “ f1(x) + f2(x)” is infinity when “x” tends to

“a”. That is:



lim f



1(x) is ∞







x→a







=⇒ lim f1(x) + f2(x) is ∞ . 

(9.25)

x→a







lim f2(x) = L



x→a
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Proof:

n

o

n

o

• Case:

lim f1(x) is ∞

∧

lim f2(x) = L

x→a

x→a

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

∀ε2>0 ∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ | f2(x) − L| < ε2 }

[eqs. (7.1) and (9.5)] ; 

∀M ∀

1

ε2>0 ∃δ1>0 ∃δ2>0 ∀x,a

({ |x− a| < δ1 =⇒ |f1(x)| > M1 }

; 

{ |x − a| < δ2 =⇒ | f2(x) − L| < ε2 }

taking: ε2 = 1

({ |x− a| < δ

∀

1 =⇒ | f1(x)| > M1 }

M ∃

; 

1

δ1>0 ∃δ2>0 ∀x,a

{ |x − a| < δ2 =⇒ | f2(x) − L| < 1 }

taking: δ3 = min(δ1, δ2)

({ |x− a| < δ

∀

3 =⇒ | f1(x)| > M1 }

M ∃

; 

1

δ3>0 ∀x,a

{ |x − a| < δ3 =⇒ | f2(x) − L| < 1 }

(|f

∀

1(x)| > M1

M ∃

; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

| f2(x) − L| < 1

(|f

∀

1(x)| > M1

M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

−1 < f2(x) + (−L) < 1

[eqs. (2.54) and (2.129)] ; 

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

(|f1(x)| > M1

L + (−1) < f2(x) + L + (−L) < L + 1

[eqs. (2.43) and (2.119)] ; 

(|f

∀

1(x)| > M1

M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

L + (−1) < f2(x) < L + 1

[eqs. (2.45) and (2.53)] ; 

taking: M2 = max(|L + (−1)|,|L + 1|)

(|f

∀

1(x)| > M1

M ∃

; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

−M2 < f2(x) < M2
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(|f

∀

1(x)| > M1

M ∃

[eq. (2.129)] ; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

| f2(x)| < M2

 f

 1 (x) ≥ 0 =⇒ | f1 (x)| > M1



∀M ∃

f

; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

1(x) < 0 =⇒ | f1(x)| > M1



| f2(x)| < M2

 f

 1 (x) ≥ 0 =⇒ f1 (x) > M1



∀M ∃

f

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

1(x) < 0 =⇒ − f1(x) > M1



| f2(x)| < M2

[eqs. (2.124)-(2.126)] ; 

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

 f

 1 (x) ≥ 0 =⇒ f1 (x) > M1



f1(x) < 0 =⇒ − f1(x) > M1

[eq. (2.128)] ; 



| f2(x)| < M2 ∧ | − f2(x)| < M2

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

 f

 1 (x) ≥ 0 =⇒ f1 (x) > M1



f1(x) < 0 =⇒ − f1(x) > M1

[eq. (2.129)] ; 



−M2 < f2(x) < M2 ∧ −M2 < − f2(x) < M2

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

( f1(x) ≥ 0 =⇒ f1(x)+ f2(x) > M1 + (−M2)

f1(x) < 0 =⇒ (− f1(x)) + (− f2(x)) > M1 + (−M2)

[eqs. (2.112) and (2.120)] ; 

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

( f1(x) ≥ 0 =⇒ f1(x)+ f2(x) > M1 + (−M2)

[eq. (2.52)] ; 

f1(x) < 0 =⇒ −( f1(x) + f2(x)) > M1 + (−M2)

∀M

∃

1 >M2

δ3>0 ∀x,a | x − a | < δ3 =⇒

 f

 1 (x) ≥ 0 =⇒ f1 (x) + f2(x) > M1 + (−M2)



f1(x) < 0 =⇒ −( f1(x) + f2(x)) > M1 + (−M2)

; 



M1 > M2
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∀M

∃

1>M2

δ3>0 ∀x,a | x − a | < δ3 =⇒

 f

 1 (x) ≥ 0 =⇒ f1 (x) + f2 (x) > M1 + (−M2)



f1(x) < 0 =⇒ −( f1(x) + f2(x)) > M1 + (−M2)



M1 + (−M2) > 0

[eqs. (2.53) and (2.119)] ; 

∀M

∃

1>M2

δ3>0 ∀x,a | x − a | < δ3 =⇒

 f

 1 (x) ≥ 0 =⇒ | f1 (x) + f2 (x)| > M1 + (−M2)



f1(x) < 0 =⇒ | f1(x) + f2(x)| > M1 + (−M2)



M1 + (−M2) > 0

[eqs. (2.124)-(2.126)] ; 

∀M

∃

1>M2

δ3>0 ∀x,a | x − a | < δ3 =⇒

(|f1(x)+ f2(x)| > M1 + (−M2) ; 

M1 + (−M2) > 0

taking: M1 = M3 + M2

and noting that M3 = M1 + (−M2) [eqs. (2.45) and (2.53)]

(where M3 is an arbitrary positive number)

∀M3>0 ∃δ3>0 ∀x,a |x − a| < δ3 =⇒ | f1(x) + f2(x)| > M3 ; 

∀M ∃

3

δ3>0 ∀x,a | x − a | < δ3 =⇒ | f1(x) + f2(x)| > M3 ; 





lim

f1(x) + f2(x)

is ∞

[eq. (9.5)] . 

x→a

Given two real functions “ f1(x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (9.24) and (9.25):





lim f



1(x) is ∞





x→a−







=⇒ lim

f1(x) + f2(x)

is ∞ ; 

x





→a−



f2(x) is bounded 



lim f



1(x) is ∞







x→a−







=⇒ lim

f1(x) + f2(x)

is ∞ ; 

x→a−







lim f2(x) = L 

x→a−





lim f



1(x) is ∞





x→a+







=⇒ lim

f1(x) + f2(x)

is ∞ ; 

x





→a+



f2(x) is bounded 
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

lim f



1(x) is ∞







x→a+







=⇒ lim

f1(x) + f2(x)

is ∞ ; 

x





→a+



lim f2(x) = L 

x→a+



lim f



1(x) is ∞



x→∞







=⇒ lim f1(x) + f2(x) is ∞ ; 

x→∞



f



2(x) is bounded



lim f



1(x) is ∞







x→∞







=⇒ lim f1(x) + f2(x) is ∞ ; 

x→∞







lim f2(x) = L 

x→∞





lim f



1(x) is ∞





x→−∞







=⇒ lim

f1(x) + f2(x)

is ∞ ; 

x→−∞







f2(x) is bounded 



lim f



1(x) is ∞







x→−∞







=⇒ lim

f1(x) + f2(x)

is ∞ ; 

x→−∞







lim f2(x) = L 

x→−∞





lim f



1(x) is ∞





x→+∞







=⇒ lim

f1(x) + f2(x)

is ∞ ; 

x→+∞







f2(x) is bounded 



lim f



1(x) is ∞







x→+∞







=⇒ lim

f1(x) + f2(x)

is ∞ . 

x→+∞







lim f2(x) = L 

x→+∞

We will now prove that given a real function “ f (x)” that is defined in a vicinity of a real number

“a”, the limit of the function “ f (x)” is infinity when “x” tends to “a” if and only if the limit of the negative of the real function “− f (x)” is infinity when “x” tends to “a”. That is: lim f (x) is ∞ ⇐⇒ lim − f (x) is ∞ . 

(9.26)

x→a

x→a

Proof:

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a | < δ =⇒ | f (x)| > M }

[eq. (9.5)] ; 

x→a

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a | < δ =⇒ | − f (x)| > M }

x→a

[eq. (2.128)] ; 
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lim f (x) is ∞ ⇐⇒ limx→a − f (x) is ∞

[eq. (9.5)] . 

x→a

Given a real function “ f (x)”, and considering the case when “x” tends to “a” from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equation (9.26):





lim f (x) is ∞ ⇐⇒ lim

− f (x) is ∞ ; 

x→a−

x→a−





lim f (x) is ∞ ⇐⇒ lim

− f (x) is ∞ ; 

x→a+

x→a+





lim f (x) is ∞ ⇐⇒ lim − f (x) is ∞ ; 

x→∞

x→∞





lim f (x) is ∞ ⇐⇒ lim

− f (x) is ∞ ; 

x→−∞

x→−∞





lim f (x) is ∞ ⇐⇒ lim

− f (x) is ∞ . 

x→+∞

x→+∞

9.4.6

LIMIT OF A PRODUCT

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” is infinity when “x” 

tends to “a” and the absolute value of the second function is lower-bounded by a positive value (i.e.,“ 0 < M2 ≤ | f2(x)|”), then the limit of the product of the two real functions “ f1(x) f2(x)” is infinity when “x” tends to “a”. That is:



lim f



1(x) is ∞



x→a







=⇒ lim f1(x) f2(x) is ∞ . 

(9.27)

x→a



∃



M 0 < M

2

2 ≤ | f2(x)|

Proof:

n

o

n

o

• Case:

lim f1(x) is ∞

∧

∃M 0 < M2 ≤ | f2(x)|

x→a

2

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

[eq. (9.5)] ; 

0 < M2 ≤ | f2(x)|

(|x− a| < δ

∀

1 =⇒ | f1(x)| > M1

M ∃

[eq. (2.112)] ; 

1

δ1>0 ∀x,a

| f2(x)| ≥ M2 > 0

(|x− a| < δ

∀

1 =⇒ | f2(x)| | f1(x)| > M2M1

M ∃

1

δ1>0 ∀x,a

M2 > 0

[eqs. (2.121) and (2.122)] ; 
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(|x− a| < δ

∀

1 =⇒ | f1(x) f2(x) | > M2M1

M ∃

1

δ1>0 ∀x,a

M2 > 0

[eqs. (2.56) and (2.131)] ; 

taking: M1 = M−1M

2

3

(where M3 is an arbitrary number)

(|x− a| < δ

M

∀

1 =⇒ | f1(x) f2(x) | > M2M−1

2

3

M ∃

; 

3

δ1>0 ∀x,a

M2 > 0

∀M ∃

3

δ1>0 ∀x,a | x − a | < δ1 =⇒ | f1(x) f2(x) | > M3

[eqs. (2.59) and (2.71)] ; 





lim

f1(x) f2(x)

is ∞

[eq. (9.5)] . 

x→a

We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” is infinity when

“x” tends to “a” and the limit of the second function “ f2(x)” when “x” tends to “a” is a nonzero real number “L” (i.e., L , 0) then the limit of the product of the two real functions “ f1(x) f2(x)” is infinity when “x” tends to “a”. That is:



lim f



1(x) is ∞







x→a























lim f2(x) = L

=⇒ lim f1(x) f2(x) is ∞ . 

(9.28)

x→a

x→a























L , 0



Proof:

n

o

n

o

n

o

• Case:

lim f1(x) is ∞

∧

lim f2(x) = L

∧

L , 0

x→a

x→a

∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

[eq. (9.5)] ; 

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

∃δ

∀

2 >0,M2

x,a { | x − a | < δ2 =⇒ 0 < M2 < | f2(x)| }

[eqs. (7.9) and (7.10)] ; 

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

; 

∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ 0 < M2 < | f2(x)| }

(∃

∀

δ1>0 ∀x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

M

; 

1

∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ 0 < M2 < | f2(x)| }

(∀

∀

x,a { | x − a | < δ1 =⇒ | f1(x)| > M1 }

M ∃

; 

1

δ1>0 ∃δ2>0

∀x,a { |x − a| < δ2 =⇒ 0 < M2 < | f2(x)| }
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taking: δ3 = min(δ1, δ2)

(∀

∀

x,a { | x − a | < δ3 =⇒ | f1(x)| > M1 }

M ∃

; 

1

δ3>0

∀x,a { |x − a| < δ3 =⇒ 0 < M2 < | f2(x)| }

(|x− a| < δ

∀

3 =⇒ | f1(x)| > M1

M ∃

; 

1

δ3>0 ∀x,a

|x − a| < δ3 =⇒ 0 < M2 < | f2(x)|

(|f

∀

1(x)| > M1

M ∃

; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

0 < M2 < | f2(x)|

(|f

∀

1(x)| > M1

M ∃

[eq. (2.112)] ; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

| f2(x)| > M2 > 0

(|f

∀

1(x)| | f2(x)| > M1M2

M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M2 > 0

[eqs. (2.112) and (2.122)] ; 

(| f

∀

1(x) f2(x) | > M2M1

M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M2 > 0

[eqs. (2.56) and (2.131)] ; 

taking: M1 = M−1M

2

3

(where M3 is an arbitrary number)

(| f

M

∀

1(x) f2(x) | > M2M−1

2

3

M ∃

; 

3

δ3>0 ∀x,a | x − a | < δ3 =⇒

M2 > 0

∀M ∃

3

δ3>0 ∀x,a | x − a | < δ3 =⇒ | f1(x) f2(x) | > M3

[eqs. (2.59) and (2.71)] ; 





lim

f1(x) f2(x)

is ∞

[eq. (9.5)] . 

x→a

Given two real functions “ f1(x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (9.27) and (9.28):





lim f



1(x) is ∞





x→a−







=⇒ lim

f1(x) f2(x)

is ∞ ; 

x





→a−



∃M 0 < M



2

2 ≤ | f2(x)|
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

lim f



1(x) is ∞







x→a−























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is ∞ ; 

x→a−

x→a−























L , 0







lim f



1(x) is ∞





x→a+







=⇒ lim

f1(x) f2(x)

is ∞ ; 

x→a+







∃M 0 < M



2

2 ≤ | f2(x)|



lim f



1(x) is ∞







x→a+























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is ∞ ; 

x→a+

x→a+























L , 0





lim f



1(x) is ∞



x→∞







=⇒ lim f1(x) f2(x) is ∞ ; 

x→∞



∃



M 0 < M

2

2 ≤ | f2(x)|



lim f



1(x) is ∞







x→∞























lim f2(x) = L

=⇒ lim f1(x) f2(x) is ∞ ; 

x→∞

x→∞























L , 0







lim f



1(x) is ∞





x→−∞







=⇒ lim

f1(x) f2(x)

is ∞ ; 

x→−∞







∃M 0 < M



2

2 ≤ | f2(x)|



lim f



1(x) is ∞







x→−∞























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is ∞ ; 

x→−∞

x→−∞























L , 0







lim f



1(x) is ∞





x→+∞







=⇒ lim

f1(x) f2(x)

is ∞ ; 

x→+∞







∃M 0 < M



2

2 ≤ | f2(x)|
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

lim f



1(x) is ∞







x→+∞























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is ∞ . 

x→+∞

x→+∞























L , 0



We will now prove that given a real function “ f (x)” that is defined in a vicinity of a real number

“a”, if the limit of the function “ f (x)” when “x” tends to “a” is zero (“0”) and in points other than “a” the function “ f (x)” is nonzero (i.e., “x , a =⇒ f (x) , 0”), then the limit of the function

“ 1/ f (x)” when “x” tends to “a” is infinity. That is:



lim f (x) = 0





x→a



1

=⇒ lim

is ∞ . 

(9.29)

x→a f (x)



x , a =⇒ f (x) , 0 

Proof:

n

o

n

o

• Case:

lim f (x) = 0

∧

x , a =⇒ f (x) , 0

x→a

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − 0| < ε }

[eq. (7.1)] ; 

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| < ε }

[eqs. (2.45) and (2.54)] ; 



1

1 

∀ε>0 ∃δ>0 ∀x,a

|x − a| < δ =⇒

> 

| f (x)|

ε

[eqs. (2.73) and (2.123)] ; 





1 

1 

∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> 

f (x) 

ε

[eqs. (2.126) and (2.133)] ; 

taking: ε = M−1

(where M is an arbitrary positive number)





1 

1



∀





M>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> 

; 

f (x) 

M−1





1 



∀





M>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> M

f (x) 

[eqs. (2.68) and (2.73)] ; 





1 



∀





M ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> M

; 

f (x) 

1

lim

is ∞

[eq. (9.5)] . 

x→a f (x)
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We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the absolute value of the first function “ | f1(x)|” has a positive lower-bound M1 (i.e., “0 < M1 ≤ | f1(x)|”), the limit of the second function “ f2(x)” when

“x” tends to “a” is zero (“0”), and in the points other than “a” the function “ f2(x)” is nonzero (i.e., 

“x , a =⇒ f2(x) , 0”), then the limit of the ratio of the two real functions “ f1(x)/ f2(x)” is infinity when “x” tends to “a”. That is:



∃



M 0 < M

1

1 ≤ | f1(x)|





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is ∞ . 

(9.30)

x→a

x→a f





2(x)















x , a =⇒ f



2(x) , 0

Proof:

n

o

n

o

n

o

• Case: ∃M 0 < M

∧

lim f

∧

x , a =⇒ f

1

1 ≤ | f1(x)|

2(x) = 0

2(x) , 0

x→a

1

lim

is ∞

[eq. (9.29)] ; 

x→a f2(x)



1



lim

f1(x)

is ∞

[eq. (9.27)] ; 

x→a

f2(x)





lim ( f2(x) )−1 f1(x)

is ∞

[eq. (2.73)] ; 

x→a





lim

f1(x) ( f2(x) )−1

is ∞

[eq. (2.56)] ; 

x→a

f1(x)

lim

is ∞

[eq. (2.72)] . 

x→a f2(x)

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” when “x” tends to

“a” is a nonzero real number “L” (i.e., L , 0) and the limit of the second function “ f2(x)” when

“x” tends to “a” is zero (“0”), and in the points other than “a” the function “ f2(x)” is nonzero (i.e., 

“x , a =⇒ f2(x) , 0”), then the limit of the ratio of the two real functions “ f1(x)/ f2(x)” is infinity when “x” tends to “a”. That is:



lim f



1(x) = L







x→a





























L , 0







f

=⇒

1(x)

lim

is ∞ . 

(9.31)

x→a f





2(x)



lim f2(x) = 0









x→a

























x , a =⇒ f



2(x) , 0
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Proof:

n

o

n

o

n

o

n

o

• Case:

lim f1(x) = L

∧

L , 0

∧

lim f2(x) = 0

∧

x , a =⇒ f2(x) , 0

x→a

x→a

1

lim

is ∞

[eq. (9.29)] ; 

x→a f2(x)



1



lim

f1(x)

is ∞

[eq. (9.28)] ; 

x→a

f2(x)





lim ( f2(x) )−1 f1(x)

is ∞

[eq. (2.73)] ; 

x→a





lim

f1(x) ( f2(x) )−1

is ∞

[eq. (2.56)] ; 

x→a

f1(x)

lim

is ∞

[eq. (2.72)] . 

x→a f2(x)

Given two real functions “ f1(x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (9.29)-(9.31):





lim f (x) = 0







x→a−



1

=⇒ lim

is ∞ ; 

x→a− f (x)







x < a =⇒ f (x) , 0 



∃



M 0 < M

1

1 ≤ | f1(x)|





















lim f

f1(x)

2(x) = 0

=⇒ lim

is ∞ ; 

x→a−

x

f





→a− 2(x)















x < a =⇒ f



2(x) , 0



lim f



1(x) = L







x→a−





























L , 0







f

=⇒

1(x)

lim

is ∞ ; 

x

f





→a− 2(x)



lim f2(x) = 0









x→a−

























x < a =⇒ f



2(x) , 0





lim f (x) = 0







x→a+



1

=⇒ lim

is ∞ ; 

x

f (x)





→a+



x > a =⇒ f (x) , 0 
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

∃



M 0 < M

1

1 ≤ | f1(x)|





















lim f

f1(x)

2(x) = 0

=⇒ lim

is ∞ ; 

x→a+

x

f





→a+ 2(x)















x > a =⇒ f



2(x) , 0



lim f



1(x) = L







x→a+





























L , 0







f

=⇒

1(x)

lim

is ∞ ; 

x

f





→a+ 2(x)



lim f2(x) = 0









x→a+

























x > a =⇒ f



2(x) , 0



lim f (x) = 0





x→∞



1

=⇒ lim

is ∞ ; 

x→∞ f (x)



f (x) , 0





∃



M 0 < M

1

1 ≤ | f1(x)|





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is ∞ ; 

x→∞

x→∞ f





2(x)















f



2(x) , 0



lim f



1(x) = L







x→∞





























L , 0







f

=⇒

1(x)

lim

is ∞ ; 

x→∞ f





2(x)



lim f2(x) = 0









x→∞

























f



2(x) , 0





lim f (x) = 0







x→−∞



1

=⇒ lim

is ∞ ; 

x→−∞ f (x)







f (x) , 0





∃



M 0 < M

1

1 ≤ | f1(x)|





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is ∞ ; 

x→−∞

x→−∞ f





2(x)















f



2(x) , 0
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

lim f



1(x) = L







x→−∞





























L , 0







f

=⇒

1(x)

lim

is ∞ ; 

x→−∞ f





2(x)



lim f2(x) = 0 







x→−∞

























f



2(x) , 0





lim f (x) = 0







x→+∞



1

=⇒ lim

is ∞ ; 

x→+∞ f (x)







f (x) , 0





∃



M 0 < M

1

1 ≤ | f1(x)|





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is ∞ ; 

x→+∞

x→+∞ f





2(x)















f



2(x) , 0



lim f



1(x) = L







x→+∞





























L , 0







f

=⇒

1(x)

lim

is ∞ . 

x→+∞ f





2(x)



lim f2(x) = 0 







x→+∞

























f



2(x) , 0

We will now prove that given a real function “ f (x)” that is defined in a vicinity of a real number

“a”, if the limit of the function “ f (x)” when “x” tends to “a” is infinity, and in points other than “a” 

the function “ f (x)” is nonzero (i.e., “x , a =⇒ f (x) , 0”), then the limit of the function “ 1/ f (x)” 

when “x” tends to “a” is zero (“0”). That is:

1

lim f (x) is ∞ =⇒ lim

= 0 . 

(9.32)

x→a

x→a f (x)

Proof:

• Case: lim f (x) is ∞

x→a

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| > M }

[eq. (9.5)] ; 

∀M>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| > M } ; 

∀M>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ M < | f (x)| }

[eq. (2.112)] ; 
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1

1



∀M>0 ∃δ>0 ∀x,a

|x − a| < δ =⇒

> 

M

| f (x)|

[eqs. (2.73) and (2.123)] ; 



1

1 

∀M>0 ∃δ>0 ∀x,a

|x − a| < δ =⇒

< 

[eq. (2.112)] ; 

| f (x)|

M

taking: M = ε−1

(where ε is an arbitrary positive number)



1

1 

∀ε>0 ∃δ>0 ∀x,a

|x − a| < δ =⇒

< 

; 

| f (x)|

ε−1



1



∀ε>0 ∃δ>0 ∀x,a

|x − a| < δ =⇒

< ε

| f (x)|

[eqs. (2.68) and (2.73)] ; 





1





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

< ε



f (x) 

[eqs. (2.126) and (2.133)] ; 





1





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− 0  < ε



f (x)



[eqs. (2.45) and (2.54)] ; 

1

lim

= 0

[eq. (7.1)] . 

x→a f (x)

We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the first function “ f1(x)” is bounded (i.e., “| f1(x)| ≤ M ”) and the limit of the second function “ f2(x)” when “x” tends to “a” is infinity, then the limit of the ratio of the two real functions “ f1(x)/ f2(x)” is zero (“0”) when “x” tends to “a”. That is:



f



1(x) is bounded





f

=⇒

1(x)

lim

= 0 . 

(9.33)

x→a f



lim f

2(x)

2(x) is ∞



x→a

Proof:

n

o

n

o

• Case:

f1(x) is bounded

∧

lim f2(x) is ∞

x→a

1

lim

= 0

[eq. (9.32)] ; 

x→a f2(x)



1



lim

f1(x) = 0

[eq. (9.4)] ; 

x→a

f2(x)
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h

lim

f1(x) ( f2(x))−1 i = 0

[eqs. (2.56) and (2.73)] ; 

x→a

f1(x)

lim

= 0

[eq. (2.72)] . 

x→a f2(x)

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit when “x” tends to “a” of the first function “ f1(x)” 

is a real number “L” and the limit of the second function “ f2(x)” when “x” tends to “a” is infinity, then the limit of the ratio of the two real functions “ f1(x)/ f2(x)” is zero (“0”) when “x” tends to

“a”. That is:



lim f



1(x) = L







x→a



f

=⇒

1(x)

lim

= 0 . 

(9.34)

x→a f





2(x)



lim f2(x) is ∞ 

x→a

Proof:

n

o

n

o

• Case:

lim f1(x) = L

∧

lim f2(x) is ∞

x→a

x→a

1

lim

= 0

[eq. (9.32)] ; 

x→a f2(x)



1



lim

f1(x) = 0 · L

[eq. (7.8)] ; 

x→a

f2(x)



1



lim

f1(x) = 0

[eq. (2.58)] ; 

x→a

f2(x)

h

lim

f1(x) ( f2(x))−1 i = 0

[eqs. (2.56) and (2.73)] ; 

x→a

f1(x)

lim

= 0

[eq. (2.72)] . 

x→a f2(x)

Given two real functions “ f (x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (9.32)-(9.34):

1

lim f (x) is ∞ =⇒ lim

= 0 ; 

x→a−

x→a− f (x)





f



1(x) is bounded 





f

=⇒

1(x)

lim

= 0 ; 

x→a− f



lim f



2(x)



2(x) is ∞



x→a−



lim f



1(x) = L







x→a−



f

=⇒

1(x)

lim

= 0 ; 

x

f





→a− 2(x)



lim f2(x) is ∞ 

x→a−
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1

lim f (x) is ∞ =⇒ lim

= 0 ; 

x→a+

x→a+ f (x)





f



1(x) is bounded 





f

=⇒

1(x)

lim

= 0 ; 

x→a+ f



lim f



2(x)



2(x) is ∞



x→a+



lim f



1(x) = L







x→a+



f

=⇒

1(x)

lim

= 0 ; 

x

f





→a+ 2(x)



lim f2(x) is ∞ 

x→a+

1

lim f (x) is ∞ =⇒ lim

= 0 ; 

x→∞

x→∞ f (x)



f



1(x) is bounded





f

=⇒

1(x)

lim

= 0 ; 

x→∞ f



lim f

2(x)

2(x) is ∞



x→∞



lim f



1(x) = L







x→∞



f

=⇒

1(x)

lim

= 0 ; 

x→∞ f





2(x)



lim f2(x) is ∞ 

x→∞

1

lim f (x) is ∞ =⇒ lim

= 0 ; 

x→−∞

x→−∞ f (x)





f



1(x) is bounded 





f

=⇒

1(x)

lim

= 0 ; 

x→−∞ f



lim f



2(x)



2(x) is ∞

x→−∞





lim f



1(x) = L







x→−∞



f

=⇒

1(x)

lim

= 0 ; 

x→−∞ f





2(x)



lim f2(x) is ∞ 

x→−∞

1

lim f (x) is ∞ =⇒ lim

= 0 ; 

x→+∞

x→+∞ f (x)
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



f



1(x) is bounded 





f

=⇒

1(x)

lim

= 0 ; 

x→+∞ f



lim f



2(x)



2(x) is ∞

x→+∞





lim f



1(x) = L







x→+∞



f

=⇒

1(x)

lim

= 0 . 

x→+∞ f





2(x)



lim f2(x) is ∞ 

x→+∞

9.5

LIMIT OF F(X ) IS −∞

9.5.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a vicinity “SV ” of real number “a”, we will state that the limit of the function “ f (x)” is minus infinity when “x” tends to “a”, when the following equation is satisfied:

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f (x) < M } ; 

to denote that the limit real of the real function “ f (x)” is minus infinity when “x” tends to “a”, the following notation is used:

lim f (x) is −∞ ; 

x→a

that is:

lim f (x) is −∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f (x) < M } . 

(9.35)

x→a

The right side of equation (9.35) states that taking a real number “M ” arbitrarily towards the left of the number line, we can always find an interval around “a” [ (a − δ ,a + δ )], such that for every “x” 

different from “a” in the interval “(a − δ ,a + δ )” the value of the function at “x” [ f (x)] is in the interval “(−∞,M)”. 

Intuitively, stating that limit of the function “ f (x)” is minus infinity when “x” tends to “a” 

[eq. (9.35)], means that we can make the value of the function “ f (x)” be arbitrarily towards the left of the number line, by considering values of “x” (other than x = a) arbitrarily close to “a”. 

Equation (9.35) is fundamental in that it makes the statement “the limit of a function is minus infinity” a well-defined mathematical statement. Given a real function “ f (x)” that is defined in a vicinity “SV ” of a real number “a”, we can always consider equation (9.35). Since equation (9.35) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (9.35) results True, then “the limit is minus infinity”; on other hand if the right side of equation (9.35) results False, then “the limit is not minus infinity”. Once again, the statement that the limit of a function is minus infinity, now becomes a well-defined mathematical statement. 

Note that:

• In equation (9.35) we did not state that the limit is equal to minus infinity (i.e., we did not state that “lim f (x) = −∞”), but rather we stated that “the limit is minus infinity” (i.e., we x→a

stated that “lim f (x) is −∞”); this is because minus infinity (“−∞”) is not a real number (as x→a

would be implied by the statement “lim f (x) = −∞”); 

x→a
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• If the limit of a function “ f (x)” is minus infinity when “x” tends to “a”, then from a mathematical standpoint the limit of the function “ f (x)” does not exist. That is, there is no real number “L” such that the function “ f (x)” gets arbitrarily close to “L”, as “x” gets arbitrarily close to “a”; 

• For the limit of a function “ f (x)” to be minus infinity when “x” tends to “a”, the function

“ f (x)” must be defined in a vicinity “SV ” of real number “a” [i.e., the value of f (x) must exist for values of x in a vicinity SV of “a”]; 

• The limit of a function “ f (x)” may be minus infinity when “x” tends to “a”, while the function “ f (x)” at “x = a” may or may not exist [i.e., f (a) may or may not exist]. 

9.5.2

EXAMPLE

For example, consider the function:

1

f (x) = −

; 

|x|

the function “ f (x)” does not exist (is not defined) for “x = 0” (since we cannot divide by “0” [zero]). 

Thus, it would be clearer to write:



1

x , 0 :

f (x) = −





|x|

; 





x = 0 :

f (x) is not defined

from equation (9.35) it follows that:

lim f (x) is −∞ ; 

x→0

note once again that, in order for the limit of the function “ f (x)” to be minus infinity when “x” tends to “a”, the function “ f (x)” must be defined in a vicinity of “a” (not a neighborhood of “a”). 

9.5.3

ADDITIONAL DEFINITIONS

Given a real function “ f (x)”, we will state that the limit of the function “ f (x)” is minus infinity when

“x” tends to “a” from the left (or x tends to “a” from the right, or x goes towards infinity, or x goes towards minus infinity, or x goes towards plus infinity) when the following corresponding equations are satisfied [equivalent to eq. (9.35), and consistent with the previous definitions of a real number limit L ]:

lim f (x) is −∞ ⇐⇒ ∀M ∃δ>0 ∀x<a { |x − a| < δ =⇒ f (x) < M } ; (9.36)

x→a−

lim f (x) is −∞ ⇐⇒ ∀M ∃δ>0 ∀x>a { |x − a| < δ =⇒ f (x) < M } ; (9.37)

x→a+

lim f (x) is −∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ f (x) < M2 } ; 

(9.38)

x→∞

2

1
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lim f (x) is −∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ f (x) < M2 } ; 

(9.39)

x→−∞

2

1

lim f (x) is −∞ ⇐⇒ ∀M ∃M ∀x { x > M1 =⇒ f (x) < M2 } . 

(9.40)

x→+∞

2

1

9.5.4

BASIC PROPERTIES

In a very similar manner as we did in 9.4.4 (except for changing the condition “| f (x)| > M ” in 9.4.4

for the condition “ f (x) < M ”), one may also prove the following properties:



lim f (x) is −∞ 







x→a−



lim f (x) is −∞ ⇐⇒

; 

(9.41)

x→a







lim f (x) is −∞ 

x→a+

1 

lim f (x) is −∞ ⇐⇒ lim f

is −∞ ; 

(9.42)

x→∞

x→0

x

1 

lim f (x) is −∞ ⇐⇒ lim f

is −∞ ; 

(9.43)

x→−∞

x→0−

x

1 

lim f (x) is −∞ ⇐⇒ lim f

is −∞ ; 

(9.44)

x→+∞

x→0+

x



lim f (x) is −∞ 







x→−∞



lim f (x) is −∞ ⇐⇒

; 

(9.45)

x→∞







lim f (x) is −∞ 

x→+∞

lim f (x) is −∞ ⇐⇒ lim f (−x) is −∞ ; 

(9.46)

x→−∞

x→+∞

lim x is −∞ . 

(9.47)

x→−∞

Note that, from equation (9.22), it also holds that: “ lim x is ∞”. 

x→−∞

We will now prove that given a real function “ f (x)” that is defined in a vicinity of a real number

“a”, such that the limit of the function “ f (x)” is minus infinity when “x” tends to “a”, then the limit of the function “ f (x)” is also infinity when “x” tends to “a”. That is: lim f (x) is −∞ =⇒ lim f (x) is ∞ . 

(9.48)

x→a

x→a
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Proof:

• Case: lim f (x) is −∞

x→a

∀M ∃

1

δ1>0 ∀x,a { |x − a| < δ1 =⇒ f (x) < M1 }

[eq. (9.35)] ; 

∀M2<0 ∃δ1>0 ∀x,a { |x − a| < δ1 =⇒ f (x) < M2 < 0 } ; ( f (x) < 0

∀M

[eq. (2.118)] ; 

2 <0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒

− f (x) > −M2 > 0

∀M2<0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ | f (x)| > −M2 > 0

[eq. (2.124)] ; 

taking: M2 = −M3

(where M3 is an arbitrary positive number)

∀M3>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ | f (x)| > −(−M3) > 0 ; 

∀M3>0 ∃δ1>0 ∀x,a |x − a| < δ1 =⇒ | f (x)| > M3 > 0

[eq. (2.51)] ; 

considering the value: M3 = 1

(∀M3>0 ∃δ1>0 ∀x,a |x−a| < δ1 =⇒ |f(x)| > M3 > 0 ; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ | f (x)| > 1 > 0

(∀M ∃

4

δ1>0 ∀x,a |x − a| < δ1 =⇒ { M4 > 0 =⇒ | f (x)| > M4 > 0 }

; 

∃δ2>0 ∀x,a |x − a| < δ2 =⇒ | f (x)| > 1 > 0

(|x− a| < δ

∀

1 =⇒ { M4 > 0 =⇒ | f (x)| > M4 > 0 }

M ∃

; 

4

δ1>0 ∃δ2>0 ∀x,a

|x − a| < δ2 =⇒ | f (x)| > 1 > 0

taking: δ3 = min(δ1, δ2)

(|x− a| < δ

∀

3 =⇒ { M4 > 0 =⇒ | f (x)| > M4 > 0 }

M ∃

; 

4

δ3>0 ∀x,a

|x − a| < δ3 =⇒ | f (x)| > 1 > 0

(M

∀

4 > 0 =⇒ | f (x)| > M4 > 0

M ∃

; 

4

δ3>0 ∀x,a |x − a| < δ3 =⇒

| f (x)| > 1 > 0

M



4 > 0 =⇒ | f (x)| > M4 > 0



∀M ∃

M

; 

4

δ3>0 ∀x,a |x − a| < δ3 =⇒

4 ≤ 0 =⇒ | f (x)| > M4



| f (x)| > 1 > 0
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(M

∀

4 > 0 =⇒ | f (x)| > M4

M ∃

; 

4

δ3>0 ∀x,a |x − a| < δ3 =⇒

M4 ≤ 0 =⇒ | f (x)| > M4

∀M ∃

4

δ3>0 ∀x,a |x − a| < δ3 =⇒ | f (x)| > M4 ; 

lim f (x) is ∞

[eq. (9.5)] . 

x→a

Given a real function “ f (x)”, and considering the case when “x” tends to “a” from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equation (9.48):

lim f (x) is −∞ =⇒ lim f (x) is ∞ ; 

x→a−

x→a−

lim f (x) is −∞ =⇒ lim f (x) is ∞ ; 

x→a+

x→a+

lim f (x) is −∞ =⇒ lim f (x) is ∞ ; 

x→∞

x→∞

lim f (x) is −∞ =⇒ lim f (x) is ∞ ; 

x→−∞

x→−∞

lim f (x) is −∞ =⇒ lim f (x) is ∞ . 

x→+∞

x→+∞

9.5.5

LIMIT OF A SUM

In a very similar manner as we did in 9.4.5 (except for changing the condition “| f (x)| > M ” in 9.4.5

for the condition “ f (x) < M ”), one may also prove the following two properties:



lim f



1(x) is −∞



x→a







=⇒ lim f1(x) + f2(x) is −∞ ; 

(9.49)

x→a



f



2(x) is bounded



lim f



1(x) is −∞







x→a







=⇒ lim f1(x) + f2(x) is −∞ . 

(9.50)

x→a







lim f2(x) = L



x→a

We can also prove the following properties:





lim f



1(x) is −∞ 



x→a−







=⇒ lim

f1(x) + f2(x)

is −∞ ; 

x





→a−



f2(x) is bounded 
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

lim f



1(x) is −∞







x→a−







=⇒ lim

f1(x) + f2(x)

is −∞ ; 

x





→a−



lim f2(x) = L



x→a−





lim f



1(x) is −∞ 



x→a+







=⇒ lim

f1(x) + f2(x)

is −∞ ; 

x





→a+



f2(x) is bounded 



lim f



1(x) is −∞







x→a+







=⇒ lim

f1(x) + f2(x)

is −∞ ; 

x→a+







lim f2(x) = L



x→a+



lim f



1(x) is −∞



x→∞







=⇒ lim f1(x) + f2(x) is −∞ ; 

x→∞



f



2(x) is bounded



lim f



1(x) is −∞







x→∞







=⇒ lim f1(x) + f2(x) is −∞ ; 

x→∞







lim f2(x) = L



x→∞





lim f



1(x) is −∞ 



x→−∞







=⇒ lim

f1(x) + f2(x)

is −∞ ; 

x→−∞







f2(x) is bounded 



lim f



1(x) is −∞







x→−∞







=⇒ lim

f1(x) + f2(x)

is −∞ ; 

x→−∞







lim f2(x) = L



x→−∞





lim f



1(x) is −∞ 



x→+∞







=⇒ lim

f1(x) + f2(x)

is −∞ ; 

x→+∞







f2(x) is bounded 



lim f



1(x) is −∞







x→+∞







=⇒ lim

f1(x) + f2(x)

is −∞ . 

x→+∞







lim f2(x) = L



x→+∞
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9.5.6

LIMIT OF A PRODUCT

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” is minus infinity when “x” tends to “a” and the second function is lower-bounded by a positive value (i.e., 

“ 0 < M2 ≤ f2(x)”), then the limit of the product of the two real functions “ f1(x) f2(x)” is minus infinity when “x” tends to “a”. That is:



lim f



1(x) is −∞



x→a







=⇒ lim f1(x) f2(x) is −∞ . 

(9.51)

x→a



∃



M 0 < M

2

2 ≤ f2(x)

Proof:

n

o

n

o

• Case:

lim f1(x) is −∞

∧

∃M 0 < M2 ≤ f2(x)

x→a

2

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ f1(x) < M1 }

[eq. (9.35)] ; 

0 < M2 ≤ f2(x)

considering the value: M1 = −1

∀ ∃



M1

δ



1 >0 ∀x,a { | x − a | < δ1 =⇒ f1 (x) < M1 }

∃δ

; 

2>0 ∀x,a { | x − a | < δ2 =⇒ f1(x) < −1 }



0 < M2 ≤ f2(x)

|x − a| < δ



1 =⇒ f1(x) < M1



∀M ∃

|x − a| < δ

; 

1

δ1>0 ∃δ2>0 ∀x,a

2 =⇒ f1(x) < −1



0 < M2 ≤ f2(x)

taking: δ3 = min(δ1, δ2)

|x − a| < δ



3 =⇒ f1(x) < M1



∀M ∃

|x − a| < δ

; 

1

δ3>0 ∀x,a

3 =⇒ f1(x) < −1



0 < M2 ≤ f2(x)

 f

 1 (x) < M1



∀M ∃

f

; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

1(x) < −1



0 < M2 ≤ f2(x)

M1 ≥ 0 =⇒ f1(x) < M1







M

∀

1 < 0 =⇒ f1(x) < M1 < 0

M ∃

; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

f

 1 (x) < −1 < 0





0 < M2 ≤ f2(x)
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∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M1 ≥ 0 =⇒ f1(x) f2(x) < 0 ≤ M1M2







M1 < 0 =⇒ f1(x) < M1 < 0

; 

f

 1 (x) < −1 < 0





0 < M2 ≤ f2(x)

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M1M2



M1 < 0 =⇒ f1(x) < M1 < 0

; 



0 < M2 ≤ f2(x)

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M1M2



M1 < 0 =⇒ 0 < −M1 < − f1(x)

[eqs. (2.112) and (2.118)] ; 



0 < M2 ≤ f2(x)

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M1M2



M1 < 0 =⇒ M2 (−M1) < f2(x)(− f1(x))

[eqs. (2.63) and (2.122)] ; 



0 < M2

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M2M1



M1 < 0 =⇒ −M2M1 < − f1(x) f2(x)

[eqs. (2.56) and (2.61)] ; 



0 < M2

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M2M1



M1 < 0 =⇒ M2M1 > f1(x) f2(x)

[eqs. (2.51) and (2.118)] ; 



0 < M2

∀M ∃

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M2M1



M1 < 0 =⇒ f1(x) f2(x) < M2M1

[eq. (2.112)] ; 



0 < M2

( f

∀

1(x) f2(x) < M2M1

M ∃

; 

1

δ3>0 ∀x,a | x − a | < δ3 =⇒

0 < M2

When the Limit of Real Functions is ∞ (or −∞ or +∞) 247

taking: M1 = M−1M

2

3

(where M3 is an arbitrary number)

( f

M

∀

1(x) f2(x) < M2M−1

2

3

M ∃

; 

3

δ3>0 ∀x,a | x − a | < δ3 =⇒

0 < M2

∀M ∃

3

δ3>0 ∀x,a | x − a | < δ3 =⇒ f1(x) f2(x) < M3

[eqs. (2.59) and (2.71)] ; 





lim

f1(x) f2(x)

is −∞

[eq. (9.35)] . 

x→a

We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” is minus infinity when

“x” tends to “a” and the limit of the second function “ f2(x)” when “x” tends to “a” is a positive real number “L” (i.e., L > 0) then the limit of the product of the two real functions “ f1(x) f2(x)” is minus infinity when “x” tends to “a”. That is:



lim f



1(x) is −∞







x→a























lim f2(x) = L

=⇒ lim f1(x) f2(x) is −∞ . 

(9.52)

x→a

x→a























L > 0



Proof:

n

o

n

o

n

o

• Case:

lim f1(x) is − ∞

∧

lim f2(x) = L

∧

L > 0

x→a

x→a

∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ f1(x) < M1 }

[eq. (9.35)] ; 

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ f1(x) < M1 }

[eq. (7.10)] ; 

∃δ

∀

2 >0,M2

x,a { | x − a | < δ2 =⇒ 0 < M2 < f2(x) }

(∀M ∃

1

δ1>0 ∀x,a { | x − a | < δ1 =⇒ f1(x) < M1 }

; 

∃δ2>0 ∀x,a { |x − a| < δ2 =⇒ 0 < M2 < f2(x) }

considering the value: M1 = −1

∀ ∃



M1

δ



1>0 ∀x,a { | x − a | < δ1 =⇒ f1(x) < M1 }

∃δ

; 

3 >0 ∀x,a { | x − a | < δ3 =⇒ f1 (x) < −1 }



∃δ2>0 ∀x,a { | x − a | < δ2 =⇒ 0 < M2 < f2(x) }

∃



δ



1>0 ∀x,a { | x − a | < δ1 =⇒ f1(x) < M1 }

∀M

∃

; 

1

δ3>0 ∀x,a { | x − a | < δ3 =⇒ f1(x) < −1 }



∃δ2>0 ∀x,a { | x − a | < δ2 =⇒ 0 < M2 < f2(x) }
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∀



x,a { | x − a | < δ1 =⇒ f1(x) < M1 }



∀M ∃

∀

; 

1

δ1>0,δ3>0,δ2>0

x,a { | x − a | < δ3 =⇒ f1(x) < −1 }



∀x,a { | x − a | < δ2 =⇒ 0 < M2 < f2(x) }

taking: δ4 = min(δ1, δ3, δ2)

∀



x,a { | x − a | < δ4 =⇒ f1(x) < M1 }



∀M ∃

∀

; 

1

δ4>0

x,a { | x − a | < δ4 =⇒ f1(x) < −1 }



∀x,a { | x − a | < δ4 =⇒ 0 < M2 < f2(x) }

|x − a| < δ



4 =⇒ f1(x) < M1



∀M ∃

|x − a| < δ

; 

1

δ4>0 ∀x,a

4 =⇒ f1(x) < −1



| x − a | < δ4 =⇒ 0 < M2 < f2(x)

 f

 1 (x) < M1



∀M ∃

f

; 

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

1(x) < −1



0 < M2 < f2(x)

M1 ≥ 0 =⇒ f1(x) < M1







M

∀

1 < 0 =⇒ f1(x) < M1 < 0

M ∃

; 

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

f

 1 (x) < −1 < 0





0 < M2 < f2(x)

∀M ∃

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

M1 ≥ 0 =⇒ f1(x) f2(x) < 0 ≤ M1M2







M1 < 0 =⇒ f1(x) < M1 < 0

; 

f

 1 (x) < −1 < 0





0 < M2 < f2(x)

∀M ∃

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M1M2



M1 < 0 =⇒ f1(x) < M1 < 0

; 



0 < M2 < f2(x)

∀M ∃

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M1M2



M1 < 0 =⇒ 0 < −M1 < − f1(x)

[eqs. (2.112) and (2.118)] ; 



0 < M2 < f2(x)

∀M ∃

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M1M2



M1 < 0 =⇒ (−M1)M2 < (− f1(x)) f2(x)

[eq. (2.122)] ; 



0 < M2
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∀M ∃

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M2M1



M1 < 0 =⇒ −M2M1 < − f1(x) f2(x)

[eqs. (2.56) and (2.61)] ; 



0 < M2

∀M ∃

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M2M1



M1 < 0 =⇒ M2M1 > f1(x) f2(x)

[eqs. (2.51) and (2.118)] ; 



0 < M2

∀M ∃

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

M



1 ≥ 0 =⇒ f1(x) f2(x) < M2M1



M1 < 0 =⇒ f1(x) f2(x) < M2M1

[eq. (2.112)] ; 



0 < M2

( f

∀

1(x) f2(x) < M2M1

M ∃

; 

1

δ4>0 ∀x,a | x − a | < δ4 =⇒

0 < M2

taking: M1 = M−1M

2

3

(where M3 is an arbitrary number)

( f

M

∀

1(x) f2(x) < M2M−1

2

3

M ∃

; 

3

δ4>0 ∀x,a | x − a | < δ4 =⇒

0 < M2

∀M ∃

3

δ4>0 ∀x,a | x − a | < δ4 =⇒ f1(x) f2(x) < M3

[eqs. (2.59) and (2.71)] ; 





lim

f1(x) f2(x)

is −∞

[eq. (9.35)] . 

x→a

Given two real functions “ f1(x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (9.51) and (9.52):





lim f



1(x) is −∞





x→a−







=⇒ lim

f1(x) f2(x)

is −∞ ; 

x





→a−



∃M 0 < M



2

2 ≤ f2(x)
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

lim f



1(x) is −∞







x→a−























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is −∞ ; 

x→a−

x→a−























L > 0







lim f



1(x) is −∞





x→a+







=⇒ lim

f1(x) f2(x)

is −∞ ; 

x→a+







∃M 0 < M



2

2 ≤ f2(x)



lim f



1(x) is −∞







x→a+























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is −∞ ; 

x→a+

x→a+























L > 0





lim f



1(x) is −∞



x→∞







=⇒ lim f1(x) f2(x) is −∞ ; 

x→∞



∃



M 0 < M

2

2 ≤ f2(x)



lim f



1(x) is −∞







x→∞























lim f2(x) = L

=⇒ lim f1(x) f2(x) is −∞ ; 

x→∞

x→∞























L > 0







lim f



1(x) is −∞





x→−∞







=⇒ lim

f1(x) f2(x)

is −∞ ; 

x→−∞







∃M 0 < M



2

2 ≤ f2(x)



lim f



1(x) is −∞







x→−∞























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is −∞ ; 

x→−∞

x→−∞























L > 0







lim f



1(x) is −∞





x→+∞







=⇒ lim

f1(x) f2(x)

is −∞ ; 

x→+∞







∃M 0 < M



2

2 ≤ f2(x)
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

lim f



1(x) is −∞







x→+∞























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is −∞ . 

x→+∞

x→+∞























L > 0



We will now prove that given a real function “ f (x)” that is defined in a vicinity of a real number

“a”, if the limit of the function “ f (x)” when “x” tends to “a” is zero (“0”) and in points other than “a” the function “ f (x)” is negative (i.e., “x , a =⇒ f (x) < 0”), then the limit of the function

“ 1/ f (x)” when “x” tends to “a” is minus infinity. That is:



lim f (x) = 0





x→a



1

=⇒ lim

is − ∞ . 

(9.53)

x→a f (x)



x , a =⇒ f (x) < 0 

Proof:

n

o

n

o

• Case:

lim f (x) = 0

∧

x , a =⇒ f (x) < 0

x→a

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − 0| < ε }

[eq. (7.1)] ; 

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| < ε }

[eqs. (2.45) and (2.54)] ; 



1

1 

∀ε>0 ∃δ>0 ∀x,a

|x − a| < δ =⇒

> 

| f (x)|

ε

[eqs. (2.73) and (2.123)] ; 





1 

1 

∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> 

f (x) 

ε

[eqs. (2.126) and (2.133)] ; 

taking: ε = M−1

(where M is an arbitrary positive number)





1 

1



∀





M>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> 

; 

f (x) 

M−1





1 



∀





M>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> M

f (x) 

[eqs. (2.68) and (2.73)] ; 





1 



∀





M ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

> M

; 

f (x) 



1



∀M ∃δ>0 ∀x,a

|x − a| < δ =⇒ −

> M

[eq. (2.124)] ; 

f (x)
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1



∀M ∃δ>0 ∀x,a

|x − a| < δ =⇒

< −M

f (x)

[eqs. (2.51) and (2.118)] ; 

taking: M = −M2

(where M2 is an arbitrary number)



1



∀M ∃

|x − a| < δ =⇒

< −(−M

; 

2

δ >0 ∀x,a

2)

f (x)



1



∀M ∃

|x − a| < δ =⇒

< M

[eq. (2.51)] ; 

2

δ >0 ∀x,a

2

f (x)

1

lim

is − ∞

[eq. (9.35)] . 

x→a f (x)

We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the first function “ f1(x)” is lower-bounded by positive value (i.e., “0 < M1 ≤ f1(x)”), the limit of the second function “ f2(x)” when “x” tends to “a” is zero (“0”), and in the points other than “a” the function “ f2(x)” is negative (i.e., “x , a =⇒ f2(x) < 0”), then the limit of the ratio of the two real functions “ f1(x)/ f2(x)” is minus infinity when “x” tends to “a”. 

That is:



∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is − ∞ . 

(9.54)

x→a

x→a f





2(x)















x , a =⇒ f



2(x) < 0

Proof:

n

o

n

o

n

o

• Case: ∃M 0 < M

∧

lim f

∧

x , a =⇒ f

1

1 ≤ f1(x)

2(x) = 0

2(x) < 0

x→a

1

lim

is − ∞

[eq. (9.53)] ; 

x→a f2(x)



1



lim

f1(x)

is − ∞

[eq. (9.51)] ; 

x→a

f2(x)





lim ( f2(x) )−1 f1(x)

is − ∞

[eq. (2.73)] ; 

x→a





lim

f1(x) ( f2(x) )−1

is − ∞

[eq. (2.56)] ; 

x→a

f1(x)

lim

is − ∞

[eq. (2.72)] . 

x→a f2(x)
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We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are both defined in a vicinity of a real number “a”, such that the limit of the first function “ f1(x)” when “x” tends to

“a” is a positive real number “L” (i.e., L > 0) and the limit of the second function “ f2(x)” when

“x” tends to “a” is zero (“0”), and in the points other than “a” the function “ f2(x)” is negative (i.e., 

“x , a =⇒ f2(x) < 0”), then the limit of the ratio of the two real functions “ f1(x)/ f2(x)” is minus infinity when “x” tends to “a”. That is:



lim f



1(x) = L







x→a





























L > 0







f

=⇒

1(x)

lim

is − ∞ . 

(9.55)

x→a f





2(x)



lim f2(x) = 0









x→a

























x , a =⇒ f



2(x) < 0

Proof:

n

o

n

o

n

o

n

o

• Case:

lim f1(x) = L

∧

L > 0

∧

lim f2(x) = 0

∧

x , a =⇒ f2(x) < 0

x→a

x→a

1

lim

is − ∞

[eq. (9.53)] ; 

x→a f2(x)



1



lim

f1(x)

is − ∞

[eq. (9.52)] ; 

x→a

f2(x)





lim ( f2(x) )−1 f1(x)

is − ∞

[eq. (2.73)] ; 

x→a





lim

f1(x) ( f2(x) )−1

is − ∞

[eq. (2.56)] ; 

x→a

f1(x)

lim

is − ∞

[eq. (2.72)] . 

x→a f2(x)

Given two real functions “ f1(x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (9.53)-(9.55):





lim f (x) = 0







x→a−



1

=⇒ lim

is − ∞ ; 

x

f (x)





→a−



x < a =⇒ f (x) < 0 



∃



M 0 < M

1

1 ≤ f1(x)





















lim f

f1(x)

2(x) = 0

=⇒ lim

is − ∞ ; 

x→a−

x

f





→a− 2(x)















x < a =⇒ f



2(x) < 0
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

lim f



1(x) = L







x→a−





























L > 0







f

=⇒

1(x)

lim

is − ∞ ; 

x

f





→a− 2(x)



lim f2(x) = 0









x→a−

























x < a =⇒ f



2(x) < 0





lim f (x) = 0







x→a+



1

=⇒ lim

is − ∞ ; 

x→a+ f (x)







x > a =⇒ f (x) < 0 



∃



M 0 < M

1

1 ≤ f1(x)





















lim f

f1(x)

2(x) = 0

=⇒ lim

is − ∞ ; 

x→a+

x→a+ f





2(x)















x > a =⇒ f



2(x) < 0



lim f



1(x) = L







x→a+





























L > 0







f

=⇒

1(x)

lim

is − ∞ ; 

x

f





→a+ 2(x)



lim f2(x) = 0









x→a+

























x > a =⇒ f



2(x) < 0



lim f (x) = 0 



x→∞



1

=⇒ lim

is − ∞ ; 

x→∞ f (x)



f (x) < 0





∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is − ∞ ; 

x→∞

x→∞ f





2(x)















f



2(x) < 0
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

lim f



1(x) = L







x→∞





























L > 0







f

=⇒

1(x)

lim

is − ∞ ; 

x→∞ f





2(x)



lim f2(x) = 0 







x→∞

























f



2(x) < 0





lim f (x) = 0







x→−∞



1

=⇒ lim

is − ∞ ; 

x→−∞ f (x)







f (x) < 0





∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is − ∞ ; 

x→−∞

x→−∞ f





2(x)















f



2(x) < 0



lim f



1(x) = L







x→−∞





























L > 0







f

=⇒

1(x)

lim

is − ∞ ; 

x→−∞ f





2(x)



lim f2(x) = 0 







x→−∞

























f



2(x) < 0





lim f (x) = 0







x→+∞



1

=⇒ lim

is − ∞ ; 

x→+∞ f (x)







f (x) < 0





∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is − ∞ ; 

x→+∞

x→+∞ f





2(x)















f



2(x) < 0



lim f



1(x) = L







x→+∞





























L > 0







f

=⇒

1(x)

lim

is − ∞ . 

x→+∞ f





2(x)



lim f2(x) = 0 







x→+∞

























f



2(x) < 0
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9.6

LIMIT OF F(X ) IS +∞

9.6.1

DEFINITION OF LIMIT

Given a real function “ f (x)” that is defined in a vicinity “SV ” of real number “a”, we will state that the limit of the function “ f (x)” is plus infinity when “x” tends to “a”, when the following equation is satisfied:

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f (x) > M } ; 

to denote that the limit real of the real function “ f (x)” is plus infinity when “x” tends to “a”, the following notation is used:

lim f (x) is +∞ ; 

x→a

that is:

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f (x) > M } . 

(9.56)

x→a

The right side of equation (9.56) states that taking a real number “M ” arbitrarily towards the right of the number line, we can always find an interval around “a” [ (a − δ ,a + δ )], such that for every

“x” different from “a” in the interval “(a − δ ,a + δ )” the value of the function at “x” [ f (x)] is in the interval “(M, +∞)”. 

Intuitively, stating that limit of the function “ f (x)” is plus infinity when “x” tends to “a” 

[eq. (9.56)], means that we can make the value of the function “ f (x)” be arbitrarily towards the right of the number line, by considering values of “x” (other than x = a) arbitrarily close to “a”. 

Equation (9.56) is fundamental in that it makes the statement “the limit of a function is plus infinity” a well-defined mathematical statement. Given a real function “ f (x)” that is defined in a vicinity “SV ” of a real number “a”, we can always consider equation (9.56). Since equation (9.56) is a well-defined logical expression, the right side will always be either True or False. If the right side of equation (9.56) results True, then “the limit is plus infinity”; on other hand if the right side of equation (9.56) results False, then “the limit is not plus infinity”. Once again, the statement that the limit of a function is plus infinity, now becomes a well-defined mathematical statement. 

Note that:

• In equation (9.56) we did not state that the limit is equal to plus infinity (i.e., we did not state that “lim f (x) = +∞”), but rather we stated that “the limit is plus infinity” (i.e., we x→a

stated that “lim f (x) is +∞”); this is because plus infinity (“+∞”) is not a real number (as x→a

would be implied by the statement “lim f (x) = +∞”); 

x→a

• If the limit of a function “ f (x)” is plus infinity when “x” tends to “a”, then from a mathematical standpoint the limit of the function “ f (x)” does not exist. That is, there is no real number “L” such that the function “ f (x)” gets arbitrarily close to “L”, as “x” gets arbitrarily close to “a”; 

• For the limit of a function “ f (x)” to be plus infinity when “x” tends to “a”, the function

“ f (x)” must be defined in a vicinity “SV ” of real number “a” [i.e., the value of f (x) must exist for values of x in a vicinity SV of “a”]; 

• The limit of a function “ f (x)” may be plus infinity when “x” tends to “a”, while the function

“ f (x)” at “x = a” may or may not exist [i.e., f (a) may or may not exist]. 

[image: Image 837]
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9.6.2

EXAMPLE

For example, consider the function:

1

f (x) =

; 

|x|

the function “ f (x)” does not exist (is not defined) for “x = 0” (since we cannot divide by “0” [zero]). 

Thus, it would be clearer to write:



1

x , 0 :

f (x) =





|x|

; 





x = 0 :

f (x) is not defined

from equation (9.56) it follows that:

lim f (x) is +∞ ; 

x→0

note once again that, in order for the limit of the function “ f (x)” to be plus infinity when “x” tends to “a”, the function “ f (x)” must be defined in a vicinity of “a” (not a neighborhood of “a”). 

9.6.3

ADDITIONAL DEFINITIONS

Given a real function “ f (x)”, we will state that the limit of the function “ f (x)′′ is plus infinity when

“x” tends to “a” from the left (or x tends to “a” from the right, or x goes towards infinity, or x goes towards minus infinity, or x goes towards plus infinity) when the following corresponding equations are satisfied [equivalent to eq. (9.56), and consistent with the previous definitions of a real number limit L ]:

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x<a { |x − a| < δ =⇒ f (x) > M } ; (9.57)

x→a−

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x>a { |x − a| < δ =⇒ f (x) > M } ; (9.58)

x→a+

lim f (x) is +∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ f (x) > M2 } ; 

(9.59)

x→∞

2

1

lim f (x) is +∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ f (x) > M2 } ; 

(9.60)

x→−∞

2

1

lim f (x) is +∞ ⇐⇒ ∀M ∃M ∀x { x > M1 =⇒ f (x) > M2 } . 

(9.61)

x→+∞

2

1

[image: Image 839]
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9.6.4

BASIC PROPERTIES

In a very similar manner as we did in 9.4.4 (except for changing the condition “| f (x)| > M ” in 9.4.4

for the condition “ f (x) > M ”), one may also prove the following properties:



lim f (x) is +∞ 







x→a−



lim f (x) is +∞ ⇐⇒

; 

(9.62)

x→a







lim f (x) is +∞ 

x→a+

1 

lim f (x) is +∞ ⇐⇒ lim f

is +∞ ; 

(9.63)

x→∞

x→0

x

1 

lim f (x) is +∞ ⇐⇒ lim f

is +∞ ; 

(9.64)

x→−∞

x→0−

x

1 

lim f (x) is +∞ ⇐⇒ lim f

is +∞ ; 

(9.65)

x→+∞

x→0+

x



lim f (x) is +∞ 







x→−∞



lim f (x) is +∞ ⇐⇒

; 

(9.66)

x→∞







lim f (x) is +∞ 

x→+∞

lim f (x) is +∞ ⇐⇒ lim f (−x) is +∞ ; 

(9.67)

x→−∞

x→+∞

lim x is +∞ . 

(9.68)

x→+∞

Note that, from equation (9.23), it also holds that: “ lim x is ∞”. 

x→+∞

In a very similar manner as we did in 9.5.4 (except for changing the condition “ f (x) < M ” in 9.5.4 for the condition “ f (x) > M ”), one may also prove the following property: lim f (x) is +∞ =⇒ lim f (x) is ∞ . 

(9.69)

x→a

x→a

We can also prove the following properties:

lim f (x) is +∞ =⇒ lim f (x) is ∞ ; 

x→a−

x→a−

lim f (x) is +∞ =⇒ lim f (x) is ∞ ; 

x→a+

x→a+

lim f (x) is +∞ =⇒ lim f (x) is ∞ ; 

x→∞

x→∞
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lim f (x) is +∞ =⇒ lim f (x) is ∞ ; 

x→−∞

x→−∞

lim f (x) is +∞ =⇒ lim f (x) is ∞ . 

x→+∞

x→+∞

9.6.5

LIMIT OF A SUM

In a very similar manner as we did in 9.4.5 (except for changing the condition “| f (x)| > M ” in 9.4.5

for the condition “ f (x) > M ”), one may also prove the following properties:



lim f



1(x) is +∞



x→a







=⇒ lim f1(x) + f2(x) is +∞ ; 

(9.70)

x→a



f



2(x) is bounded



lim f



1(x) is +∞







x→a







=⇒ lim f1(x) + f2(x) is +∞ . 

(9.71)

x→a







lim f2(x) = L



x→a

We can also prove the following properties:





lim f



1(x) is +∞ 



x→a−







=⇒ lim

f1(x) + f2(x)

is +∞ ; 

x





→a−



f2(x) is bounded 



lim f



1(x) is +∞







x→a−







=⇒ lim

f1(x) + f2(x)

is +∞ ; 

x→a−







lim f2(x) = L



x→a−





lim f



1(x) is +∞ 



x→a+







=⇒ lim

f1(x) + f2(x)

is +∞ ; 

x





→a+



f2(x) is bounded 



lim f



1(x) is +∞







x→a+







=⇒ lim

f1(x) + f2(x)

is +∞ ; 

x→a+







lim f2(x) = L



x→a+



lim f



1(x) is +∞



x→∞







=⇒ lim f1(x) + f2(x) is +∞ ; 

x→∞



f



2(x) is bounded
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

lim f



1(x) is +∞







x→∞







=⇒ lim f1(x) + f2(x) is +∞ ; 

x→∞







lim f2(x) = L



x→∞





lim f



1(x) is +∞ 



x→−∞







=⇒ lim

f1(x) + f2(x)

is +∞ ; 

x→−∞







f2(x) is bounded 



lim f



1(x) is +∞







x→−∞







=⇒ lim

f1(x) + f2(x)

is +∞ ; 

x→−∞







lim f2(x) = L



x→−∞





lim f



1(x) is +∞ 



x→+∞







=⇒ lim

f1(x) + f2(x)

is +∞ ; 

x→+∞







f2(x) is bounded 



lim f



1(x) is +∞







x→+∞







=⇒ lim

f1(x) + f2(x)

is +∞ . 

x→+∞







lim f2(x) = L



x→+∞

We will now prove that given a real function “ f (x)” that is defined in a vicinity of a real number

“a”, the limit of the function “ f (x)” is plus infinity when “x” tends to “a” if and only if the limit of the negative of the real function “− f (x)” is minus infinity when “x” tends to “a”. That is: lim f (x) is +∞ ⇐⇒ lim − f (x) is −∞ . 

(9.72)

x→a

x→a

Proof:

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f (x) > M }

[eq. (9.56)] ; 

x→a

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ − f (x) < −M }

x→a

[eqs. (2.51) and (2.118)] ; 

taking: M = −M2

(where M2 is an arbitrary number)

lim f (x) is +∞ ⇐⇒

x→a

∀M ∃

2

δ >0 ∀x,a { |x − a| < δ =⇒ − f (x) < −(−M2) } ; 

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ − f (x) < M2 }

x→a

2

[eq. (2.51)] ; 
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lim f (x) is +∞ ⇐⇒ lim − f (x) is −∞

[eq. (9.35)] . 

x→a

x→a

Given a real function “ f (x)”, and considering the case when “x” tends to “a” from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equation (9.72):





lim f (x) is +∞ ⇐⇒ lim − f (x) is −∞ ; 

x→a−

x→a−





lim f (x) is +∞ ⇐⇒ lim − f (x) is −∞ ; 

x→a+

x→a+





lim f (x) is +∞ ⇐⇒ lim − f (x) is −∞ ; 

x→∞

x→∞





lim f (x) is +∞ ⇐⇒ lim − f (x) is −∞ ; 

x→−∞

x→−∞





lim f (x) is +∞ ⇐⇒ lim − f (x) is −∞ . 

x→+∞

x→+∞

9.6.6

LIMIT OF A PRODUCT

In a very similar manner as we did in 9.5.6 (except for changing the condition “ f (x) < M ” in 9.5.6

for the condition “ f (x) > M ”), one may also prove the following properties:



lim f



1(x) is +∞



x→a







=⇒ lim f1(x) f2(x) is +∞ ; 

(9.73)

x→a



∃



M 0 < M

2

2 ≤ f2(x)



lim f



1(x) is +∞







x→a























lim f2(x) = L

=⇒ lim f1(x) f2(x) is +∞ . 

(9.74)

x→a

x→a























L > 0



We can also prove the following properties:





lim f



1(x) is +∞





x→a−







=⇒ lim

f1(x) f2(x)

is +∞ ; 

x





→a−



∃M 0 < M



2

2 ≤ f2(x)



lim f



1(x) is +∞







x→a−























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is +∞ ; 

x→a−

x→a−























L > 0


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



lim f



1(x) is +∞





x→a+







=⇒ lim

f1(x) f2(x)

is +∞ ; 

x





→a+



∃M 0 < M



2

2 ≤ f2(x)



lim f



1(x) is +∞







x→a+























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is +∞ ; 

x→a+

x





→a+



















L > 0





lim f



1(x) is +∞



x→∞







=⇒ lim f1(x) f2(x) is +∞ ; 

x→∞



∃



M 0 < M

2

2 ≤ f2(x)



lim f



1(x) is +∞







x→∞























lim f2(x) = L

=⇒ lim f1(x) f2(x) is +∞ ; 

x→∞

x→∞























L > 0







lim f



1(x) is +∞





x→−∞







=⇒ lim

f1(x) f2(x)

is +∞ ; 

x→−∞







∃M 0 < M



2

2 ≤ f2(x)



lim f



1(x) is +∞







x→−∞























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is +∞ ; 

x→−∞

x→−∞























L > 0







lim f



1(x) is +∞





x→+∞







=⇒ lim

f1(x) f2(x)

is +∞ ; 

x→+∞







∃M 0 < M




2

2 ≤ f2(x)



lim f



1(x) is +∞







x→+∞























lim f2(x) = L

=⇒ lim

f1(x) f2(x)

is +∞ . 

x→+∞

x→+∞























L > 0


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We can also prove the following properties:



lim f (x) = 0





x→a



1

=⇒ lim

is + ∞ ; 

(9.75)

x→a f (x)



x , a =⇒ f (x) > 0 



∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is + ∞ ; 

(9.76)

x→a

x→a f





2(x)















x , a =⇒ f



2(x) > 0



lim f



1(x) = L







x→a





























L > 0







f

=⇒

1(x)

lim

is + ∞ . 

(9.77)

x→a f





2(x)



lim f2(x) = 0









x→a

























x , a =⇒ f



2(x) > 0

We can also prove the following properties:





lim f (x) = 0







x→a−



1

=⇒ lim

is + ∞ ; 

x→a− f (x)







x < a =⇒ f (x) > 0 



∃



M 0 < M

1

1 ≤ f1(x)





















lim f

f1(x)

2(x) = 0

=⇒ lim

is + ∞ ; 

x→a−

x

f





→a− 2(x)















x < a =⇒ f



2(x) > 0



lim f



1(x) = L







x→a−





























L > 0







f

=⇒

1(x)

lim

is + ∞ ; 

x

f





→a− 2(x)



lim f2(x) = 0









x→a−

























x < a =⇒ f



2(x) > 0





lim f (x) = 0







x→a+



1

=⇒ lim

is + ∞ ; 

x

f (x)





→a+



x > a =⇒ f (x) > 0 
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

∃



M 0 < M

1

1 ≤ f1(x)





















lim f

f1(x)

2(x) = 0

=⇒ lim

is + ∞ ; 

x→a+

x

f





→a+ 2(x)















x > a =⇒ f



2(x) > 0



lim f



1(x) = L







x→a+





























L > 0







f

=⇒

1(x)

lim

is + ∞ ; 

x

f





→a+ 2(x)



lim f2(x) = 0









x→a+

























x > a =⇒ f



2(x) > 0



lim f (x) = 0 



x→∞



1

=⇒ lim

is + ∞ ; 

x→∞ f (x)



f (x) > 0





∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is + ∞ ; 

x→∞

x→∞ f





2(x)















f



2(x) > 0



lim f



1(x) = L







x→∞





























L > 0







f

=⇒

1(x)

lim

is + ∞ ; 

x→∞ f





2(x)



lim f2(x) = 0 







x→∞

























f



2(x) > 0





lim f (x) = 0







x→−∞



1

=⇒ lim

is + ∞ ; 

x→−∞ f (x)







f (x) > 0





∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is + ∞ ; 

x→−∞

x→−∞ f





2(x)















f



2(x) > 0
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

lim f



1(x) = L







x→−∞





























L > 0







f

=⇒

1(x)

lim

is + ∞ ; 

x→−∞ f





2(x)



lim f2(x) = 0 







x→−∞

























f



2(x) > 0





lim f (x) = 0







x→+∞



1

=⇒ lim

is + ∞ ; 

x→+∞ f (x)







f (x) > 0





∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is + ∞ ; 

x→+∞

x→+∞ f





2(x)















f



2(x) > 0



lim f



1(x) = L







x→+∞





























L > 0







f

=⇒

1(x)

lim

is + ∞ . 

x→+∞ f





2(x)



lim f2(x) = 0 







x→+∞

























f



2(x) > 0

9.7

EXAMPLES

As an example, we will consider the case of blackbody radiation. A blackbody is an ideal physical body that absorbs all incident radiation. By “blackbody radiation” we mean mean the specific intensity emitted by a blackbody that is in thermal equilibrium (at a given temperature T ). In turn, by

“specific intensity”, in this section, we mean the radiative energy traveling in a given direction per area per time per frequency per solid angle. 

Considering a blackbody in the shape of a hollow cube of side “L”, and taking the light inside the blackbody to be electromagnetic waves whose magnitudes are zero at the wall of the cube, and considering two possible polarization states for each electromagnetic wave, it is not obvious, but one finds that:

2ν2

B

¯

ν =

Eν ; 

(9.78)

c2

where “Bν” is the blackbody radiation, “ν” is the frequency, “c” is the speed of light, and “ ¯

Eν ” is

the average energy for electromagnetic waves at a frequency “ν”. 

Therefore, considering equation (9.78), to obtain a mathematical expression for the blackbody radiation (that depends explicitly on temperature T and frequency ν), we are thus lead to obtain an expression for the average energy at a given frequency “ ¯

Eν ”. 
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In the early 1900s, Lord Rayleigh, in order to obtain an expression for “ ¯

Eν ”, applied the Maxwell-

Boltzmann probability distribution (p ∝ e− E

kT ) from statistical mechanics while taking the “classi-

cal” assumption that the energy at a given frequency could have any nonnegative value. That is, Lord Rayleigh assumed:

p(E ) = A e− E

kT ; 

(9.79)

“Eν ” is the radiative energy for a given frequency, “p(Eν )” is the probability distribution per energy, 

“A” is a real constant to be mathematically determined by the condition that the total probability of the distribution be one (“ 1”), “k” is a physical constant (the Boltzmann constant), and “ T ” is the temperature (absolute temperature). 

Note that:

• In equation (9.79) the possible values of energy “E ” for a given frequency is any nonnegative real number; 

• In equation (9.79) the possible values of energy “E ” for a given frequency are the same for any frequency “ν”. 

From equation (9.79), it is not obvious, but one finds that:

¯

Eν = kT . 

Substituting the last equation into equation (9.78), one finds:

2ν2

BRJ

ν =

kT ; 

(9.80)

c2

where “BRJ

ν ” is the “Rayleigh-Jeans” blackbody radiation. 

Note that in equation (9.80) we are using the symbol “BRJ

ν ” (rather than “Bν ”) to emphasize that

equation (9.80) is the Rayleigh-Jeans law for blackbody radiation (first derived, as discussed above, by Lord Rayleigh). Equation (9.80) is consistent with observations of radiation at “low” frequencies; however, it is not only inconsistent with observations of radiation at “high” frequencies, but when applying equation (9.61), one finds that:

2ν2

lim

kT is + ∞ ; 

(9.81)

ν→+∞ c2

that is:

lim BRJ

ν is + ∞ ; 

(9.82)

ν→+∞

therefore, equation (9.80) simply cannot hold at arbitrarily high frequencies because it would imply that the total radiation energy emission of a blackbody would be higher than any value we would consider (at any given temperature) [eq. (9.82)]. This inconsistency at high frequencies of the Rayleigh-Jeans law for blackbody radiation (derived using “classical” arguments) is commonly known as the “UV Catastrophe”. 

Later in the early 1900s, Max Planck proposed an alternative derivation of the blackbody radiation using “quantum” arguments (rather than “classical” arguments). Planck applied equation (9.78) and also the Maxwell-Boltzmann probability distribution (p ∝ e− E

kT ) as Lord Rayleigh had pre-

viously done. However, rather than making the “classical” assumption that the possible value of radiative energy could have any nonnegative values at any frequency, Planck proposed that the possible energy levels for radiative energy at a given frequency were discrete values (i.e., the energy
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values were “quantized” rather than being “continuous”). Specifically, Planck proposed that at a given frequency “ν”, the possible radiative energy values were given by: En = nhν ; 

where “n” is a natural number value, and “h” is a positive real number physical constant to be determined through observations. In other words, Planck proposed that for a given frequency “ν” 

the possible radiative energy values were (and could only be) multiples of “hν”. Today, the physical constant “h” is known as Planck’s constant in honor of Max Planck. 

That is, Planck assumed that:

pn = A e− nhν

kT

; 

(9.83)

where “pn” is the probability of the “nth ” energy value and “A” [similar to eq. (9.79)] is a real constant to be mathematically determined by the condition that the total probability of all the energy values be one (“ 1”). 

Note that:

• Although both “p(E )” [eq. (9.79)] and “pn” [eq. (9.83)] result from applying the Maxwell-Boltzmann distribution (p ∝ e− E

kT ), mathematically they are two very different objects; 

• On one hand, “p(E )”, as a probability distribution, is a real function (i.e., “p(E ) :

→ ”); 

R

R

• On the other hand, “pn”, as a probability for discrete values of energy (En = nhν), is a real sequence (i.e., “pn :

→ ”). 

N

R

From equation (9.83), it is not obvious, but one finds that:

hν

¯

Eν =

. 

hν

e kT − 1

Substituting the last equation into equation (9.78), one finds:

2hν3/c2

Bν =

. 

(9.84)

hν

e kT − 1

It is not obvious, but applying equation (8.16), one finds that:

2hν3/c2

lim

= 0 ; 

(9.85)

ν→+∞

hν

e kT − 1

that is:

lim Bν = 0 . 

(9.86)

ν→+∞

Therefore, given that equation (9.84) does not imply arbitrarily high specific intensities for arbitrarily high values of frequency [eq. (9.86)], equation (9.84) is physically plausible, in that it will result in a finite total radiation energy emission of a blackbody (avoiding the “UV Catastrophe”). 

Equation (9.84) is not just “plausible”, but it reduces to the Rayleigh-Jeans law at “low” frequencies. Therefore, equation (9.84) is consistent with observations at “low” frequencies. Equation (9.84) is also consistent with observations at “mid” and “high” frequencies, accounting for observations across the electromagnetic spectrum. Equation (9.84) is referred to as “Planck’s law”, and is also referred to as “the blackbody radiation function”, and is a fundamental equation in physics. 

As discussed in this section, limits of real functions that tend to plus infinity [eqs. (9.81) and (9.82)], and limits in general [eqs. (9.85) and (9.86)], played an important role in the derivation of the blackbody radiation function, a fundamental equation in physics. Thus, limits in general, and limits that are infinity in particular (or minus infinity or plus infinity), are key mathematical objects in physics. 

[image: Image 874]

[image: Image 875]

10 Additional Properties of

Limits

10.1

INTRODUCTION

Limits appear explicitly or implicitly throughout physics. Limits and their properties are the foundation of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as limits. Once again, limits and their properties become more than just useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present additional theorems of limits that appear, explicitly or implicitly, in many physics problems. 

10.2

NOTATION

Following the notation used in chapters 4-9, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 
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10.3

LIMITS OF BOUNDED FUNCTIONS

We will now prove that given a real function “ f (x)” that is defined in a vicinity “Sv” of a real number

“a”, such that a real number “M ” is an upper-bound of “ f (x)” (i.e., f (x) ≤ M), if a limit “L” of the function “ f (x)” when “x” tends to “a” exists, then the limit is less than or equal to the upper-bound (i.e., L ≤ M). That is:



f (x) ≤ M







=⇒ L ≤ M . 

(10.1)



lim f (x) = L 

x→a

Proof:

n

o

n

o

• Case:

f (x) ≤ M

∧

lim f (x) = L

x→a

( f (x) ≤ M

[eq. (7.1)] ; 

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − L| < ε }

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a

; 

|x − a| < δ =⇒ | f (x) − L| < ε

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒

; 

| f (x) − L| < ε

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒

[eq. (2.129)] ; 

−ε < f (x) − L < ε

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒

[eq. (2.54)] ; 

−ε < f (x) + (−L)

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒ L+(−ε) < f(x)+L+(−L)

[eqs. (2.43) and (2.119)] ; 

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒ L+(−ε) < f(x)

[eqs. (2.45) and (2.53)] ; 

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒ −f(x) < −(L+(−ε))

[eqs. (2.112) and (2.118)] ; 

Additional Properties of Limits

271

( f (x) ≤ M

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒ −f(x) < (−L)+ε

[eqs. (2.51) and (2.52)] ; 

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒ f (x) + (− f (x)) < M + (−L) + ε

[eq. (2.120)] ; 

∀ε>0 ∃δ>0 ∀x,a |x − a| < δ =⇒ 0 < M + (−L) + ε

[eq. (2.53)] ; 

∀ε>0 ∃δ>0 0 < M + (−L) + ε ; 

∀ε>0 0 < M + (−L) + ε ; 

∀ε>0 0 + (−M) + L < M + (−M) + L + (−L) + ε

[eqs. (2.43) and (2.119)] ; 

∀ε>0 0 + (−M) + L < 0 + 0 + ε

[eq. (2.53)] ; 

∀ε>0 L + (−M) < ε

[eqs. (2.43) and (2.45)] ; 

L + (−M) ≤ 0 ; 

L + M + (−M) ≤ M + 0

[eqs. (2.43) and (2.119)] ; 

L ≤ M

[eqs. (2.45) and (2.53)] . 

We will also now prove that given a real function “ f (x)” that is defined in a vicinity “Sv” of a real number “a”, such that a real number “M ” is a lower-bound of “ f (x)” (i.e., M ≤ f (x)), if a limit “L” 

of the function “ f (x)” when “x” tends to “a” exists, then the lower-bound is less than or equal to the limit (i.e., M ≤ L). That is:



M ≤ f (x)





 =⇒ M ≤ L . 

(10.2)



lim f (x) = L 

x→a

Proof:

n

o

n

o

• Case: M ≤ f (x)

∧

lim f (x) = L

x→a

− f (x) ≤ −M





[eqs. (2.112) and (2.118)] ; 



 lim f (x) = L

x→a

272

Limits and Derivatives of Real Functions for Physicists



− f (x) ≤ −M





[eq. (7.6)] ; 







 lim

=



− f (x)

−L

x→a

−L ≤ −M

[eq. (10.1)] ; 

M ≤ L

[eqs. (2.112) and (2.118)] . 

Additionally, we will now prove that given a real function “ f (x)” that is defined in a vicinity “Sv” of a real number “a”, such that the function “ f (x)” is bounded by a real number “M ” (i.e., | f (x)| ≤ M), if a limit “L” of the function “ f (x)” when “x” tends to “a” exists, then the absolute value of the limit is less than or equal to “M ” (i.e., |L| ≤ M). That is:



| f (x)| ≤ M





 =⇒ |L| ≤ M . 

(10.3)



lim f (x) = L 

x→a

Proof:

n

o

n

o

• Case: | f (x)| ≤ M

∧

lim f (x) = L

x→a

−M ≤ f (x) ≤ M





[eq. (2.129)] ; 



 lim f (x) = L

x→a

−M ≤ f (x) ≤ M













 lim f (x) = L

[eq. (10.1)] ; 

x→a













L ≤ M

L ≤ M ∧ −M ≤ L

[eq. (10.2)] ; 

−M ≤ L ≤ M ; 

|L| ≤ M

[eq. (2.129)] . 

Given a real function “ f (x)”, and considering the case when “x” tends to “a” from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus
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infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (10.1)-(10.3):





f (x) ≤ M









=⇒ L ≤ M ; 



lim f (x) = L 





x→a−





M ≤ f (x)







 =⇒ M ≤ L ; 



lim f (x) = L 





x→a−



|



f (x)| ≤ M









=⇒ |L| ≤ M ; 



lim f (x) = L 





x→a−





f (x) ≤ M









=⇒ L ≤ M ; 



lim f (x) = L 





x→a+





M ≤ f (x)







 =⇒ M ≤ L ; 



lim f (x) = L 





x→a+



|



f (x)| ≤ M









=⇒ |L| ≤ M ; 



lim f (x) = L 





x→a+



f (x) ≤ M





 =⇒ L ≤ M ; 



lim f (x) = L 

x→∞



M ≤ f (x)







=⇒ M ≤ L ; 



lim f (x) = L 

x→∞



| f (x)| ≤ M







=⇒ |L| ≤ M ; 



lim f (x) = L 

x→∞
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



f (x) ≤ M









=⇒ L ≤ M ; 



lim f (x) = L 



x→−∞







M ≤ f (x)







 =⇒ M ≤ L ; 



lim f (x) = L 



x→−∞







| f (x)| ≤ M







 =⇒ |L| ≤ M ; 



lim f (x) = L 



x→−∞







f (x) ≤ M









=⇒ L ≤ M ; 



lim f (x) = L 



x→+∞







M ≤ f (x)







 =⇒ M ≤ L ; 



lim f (x) = L 



x→+∞







| f (x)| ≤ M







 =⇒ |L| ≤ M . 



lim f (x) = L 



x→+∞



10.4

SANDWICH THEOREM

We will now prove that given three real functions “ f1(x)”, “ f2(x)”, and “ f3(x)” that are defined in a vicinity “Sv” of a real number “a”, such that for any real number “x” the first function “ f1(x)” is less than or equal to the second function “ f2(x)” and in turn the second function “ f2(x)” is less than or equal to the third function “ f3(x)” [ i.e., f1(x) ≤ f2(x) ≤ f3(x)], if the limit of both the first function

“ f1(x)” and the third function “ f3(x)” when “x” tends to “a” exists and both limits are equal to same number “L” (i.e., lim f1(x) = lim f3(x) = L), then the limit of the second function “ f2(x)” when “x” 

x→a

x→a

tends to “a” also exists and the limit of the second function “ f2(x)” is equal to “L”. That is:



f



1(x) ≤ f2(x) ≤ f3(x)























lim f



1(x) = L

x→a

=⇒ lim f2(x) = L ; 

(10.4)

x→a























lim f3(x) = L



x→a

the last equation is commonly referred to as the “sandwich” theorem. 
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Proof of the sandwich theorem [eq. (10.4)]:

n

o

n

o

n

o

• Case:

f1(x) ≤ f2(x) ≤ f3(x)

∧

lim f1(x) = L

∧

lim f3(x) = L

x→a

x→a

∀



x f1(x) ≤ f2(x) ≤ f3(x)



∀ε

[eq. (7.1)] ; 

1>0 ∃δ1>0 ∀x,a { |x − a| < δ1 =⇒ | f1 (x) − L | < ε1 }



∀ε3>0 ∃δ3>0 ∀x,a { |x − a| < δ3 =⇒ | f3(x) − L | < ε3 }

∀



x f1(x) ≤ f2(x) ≤ f3(x)



∀ε

∃

; 

1>0 ∀ε3>0

δ1>0 ∀x,a { |x − a| < δ1 =⇒ | f1(x) − L | < ε1 }



∃δ3>0 ∀x,a { |x − a| < δ3 =⇒ | f3(x) − L | < ε3 }

taking: ε1 = ε3 = ε4

(where ε4 is an arbitrary positive number)

∀



x f1(x) ≤ f2(x) ≤ f3(x)



∀ε

∃

; 

4>0

δ1>0 ∀x,a { |x − a| < δ1 =⇒ | f1(x) − L | < ε4 }



∃δ3>0 ∀x,a { |x − a| < δ3 =⇒ | f3(x) − L | < ε4 }

∀



x f1(x) ≤ f2(x) ≤ f3(x)



∀ε

∀

; 

4>0 ∃δ1 >0 ∃δ3>0

x,a { |x − a| < δ1 =⇒ | f1(x) − L | < ε4 }



∀x,a { |x − a| < δ3 =⇒ | f3(x) − L | < ε4 }

taking: δ4 = min(δ1, δ3)

∀



x f1(x) ≤ f2(x) ≤ f3(x)



∀ε

∀

; 

4>0 ∃δ4 >0

x,a { |x − a| < δ4 =⇒ | f1(x) − L | < ε4 }



∀x,a { |x − a| < δ4 =⇒ | f3(x) − L | < ε4 }

 f

 1 (x) ≤ f2 (x) ≤ f3 (x)



∀ε

|x − a| < δ

; 

4>0 ∃δ4 >0 ∀x,a

4 =⇒ | f1(x) − L | < ε4



|x − a| < δ4 =⇒ | f3(x) − L | < ε4

 f

 1 (x) ≤ f2 (x) ≤ f3 (x)



∀ε

| f

; 

4>0 ∃δ4 >0 ∀x,a |x − a| < δ4 =⇒

1(x) − L | < ε4



| f3(x) − L | < ε4

 f

 1 (x) ≤ f2 (x) ≤ f3 (x)



∀ε

−ε

[eq. (2.129)] ; 

4>0 ∃δ4 >0 ∀x,a |x − a| < δ4 =⇒

4 < f1(x) − L < ε4



−ε4 < f3(x) − L < ε4
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 f

 1 (x) ≤ f2 (x) ≤ f3 (x)



∀ε

−ε

; 

4>0 ∃δ4 >0 ∀x,a |x − a| < δ4 =⇒

4 < f1(x) − L



 f3(x) − L < ε4

 f

 1 (x) ≤ f2 (x) ≤ f3 (x)



∀ε

−ε

[eq. (2.54)] ; 

4>0 ∃δ4 >0 ∀x,a |x − a| < δ4 =⇒

4 < f1(x) + (−L)



 f3(x) + (−L) < ε4

 f

 1 (x) ≤ f2 (x) ≤ f3 (x)



∀ε

L + (−ε

4>0∃δ4>0∀x,a |x − a| < δ4 =⇒

4) < f1(x) + L + (−L)



 f3(x) + L + (−L) < L + ε4

[eqs. (2.43) and (2.119)] ; 

 f

 1 (x) ≤ f2 (x) ≤ f3 (x)



∀ε

L + (−ε

4>0 ∃δ4 >0 ∀x,a |x − a| < δ4 =⇒

4) < f1(x)



 f3(x) < L + ε4

[eqs. (2.45) and (2.53)] ; 

(L + (−ε

∀

4) < f1(x) ≤ f2(x)

ε

; 

4>0 ∃δ4 >0 ∀x,a |x − a| < δ4 =⇒

f2(x) ≤ f3(x) < L + ε4

(L + (−ε

∀

4) < f2(x)

ε

; 

4>0 ∃δ4 >0 ∀x,a |x − a| < δ4 =⇒

f2(x) < L + ε4

((−ε

∀

4) + L + (−L) < f2(x) + (−L)

ε4>0 ∃δ4>0 ∀x,a |x − a| < δ4 =⇒

f2(x) + (−L) < ε4 + L + (−L)

[eqs. (2.43) and (2.119)] ; 

(−ε

∀

4 < f2(x) + (−L)

ε4>0 ∃δ4>0 ∀x,a |x − a| < δ4 =⇒

f2(x) + (−L) < ε4

[eqs. (2.45) and (2.53)] ; 

∀ε4>0 ∃δ4>0 ∀x,a { |x − a| < δ4 =⇒ −ε4 < f2(x) − L < ε4 }

[eq. (2.54)] ; 

∀ε4>0 ∃δ4>0 ∀x,a { |x − a| < δ4 =⇒ | f2(x) − L| < ε4 }

[eq. (2.129)] ; 

lim f2(x) = L

[eq. (7.1)] . 

x→a
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10.4.1

THEOREMS SIMILAR TO THE SANDWICH THEOREM

Given three real functions “ f1(x)”, “ f2(x)”, and “ f3(x)” and considering the case when “x” tends to

“a” from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equation (10.4):



f



1(x) ≤ f2(x) ≤ f3(x)























lim f



1(x) = L

x→a−

=⇒ lim f2(x) = L ; 

x→a−























lim f3(x) = L



x→a−



f



1(x) ≤ f2(x) ≤ f3(x)























lim f



1(x) = L

x→a+

=⇒ lim f2(x) = L ; 

x





→a+



















lim f3(x) = L



x→a+



f



1(x) ≤ f2(x) ≤ f3(x)























lim f



1(x) = L

x→∞

=⇒ lim f2(x) = L ; 

x→∞























lim f3(x) = L



x→∞



f



1(x) ≤ f2(x) ≤ f3(x)























lim f



1(x) = L

x→−∞

=⇒ lim f2(x) = L ; 

x→−∞























lim f3(x) = L



x→−∞



f



1(x) ≤ f2(x) ≤ f3(x)























lim f



1(x) = L

x→+∞

=⇒ lim f2(x) = L . 

x→+∞























lim f3(x) = L



x→+∞
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10.4.2

THEOREMS RELATED TO THE SANDWICH THEOREM

We will now prove that given two real functions “ f1(x)” and “ f2(x)” that are defined in a vicinity

“Sv” of a real number “a”, such that for any real number “x” the first function “ f1(x)” is less than or equal to the second function “ f2(x)” [ i.e., f1(x) ≤ f2(x)], if the limit of the first function “ f1(x)” 

is plus infinity when “x” tends to “a” (i.e., lim f1(x) is +∞) then the limit of the second function x→a

“ f2(x)” when “x” tends to “a” is also plus infinity. That is:



f



1(x) ≤ f2(x)



 =⇒ lim f2(x) is +∞ . 

(10.5)

x→a



lim f1(x) is +∞ 

x→a

Proof:

n

o

n

o

• Case:

f1(x) ≤ f2(x)

∧

lim f1(x) is +∞

x→a

(∀x f1(x) ≤ f2(x)

[eq. (9.56)] ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f1(x) > M }

(∀

∀

x f1(x) ≤ f2(x)

M ∃δ >0

; 

∀x,a { |x − a| < δ =⇒ f1(x) > M }

( f

∀

1(x) ≤ f2(x)

M ∃δ >0 ∀x,a

; 

|x − a| < δ =⇒ f1(x) > M

∀M ∃δ>0 ∀x,a {|x − a| < δ =⇒ f1(x) ≤ f2(x) ∧ f1(x) > M } ; 

∀M ∃δ>0 ∀x,a {|x − a| < δ =⇒ f1(x) ≤ f2(x) ∧ M < f1(x)}

[eq. (2.112)] ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ M < f1(x) ≤ f2(x) } ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ M < f2(x) } ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f2(x) > M }

[eq. (2.112)] ; 

lim f2(x) is +∞

[eq. (9.56)] . 

x→a

We will also now prove that given two real functions “ f1(x)” and “ f2(x)” that are defined in a vicinity “Sv” of a real number “a”, such that for any real number “x” the first function “ f1(x)” is less than or equal to the second function “ f2(x)” [ i.e., f1(x) ≤ f2(x)], if the limit of the second function “ f2(x)” is minus infinity when “x” tends to “a” (i.e., lim f2(x) is −∞) then the limit of the x→a

first function “ f1(x)” when “x” tends to “a” is also minus infinity. That is:



f



1(x) ≤ f2(x)



 =⇒ lim f1(x) is −∞ . 

(10.6)

x→a



lim f2(x) is −∞ 

x→a
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Proof:

n

o

n

o

• Case:

f1(x) ≤ f2(x)

∧

lim f2(x) is −∞

x→a



−(− f1(x)) ≤ −(− f2(x))





[eq. (2.51)] ; 







 lim

is



−(− f2(x))

−∞

x→a



− f2(x) ≤ − f1(x)





[eqs. (2.112) and (2.118)] ; 







 lim

is



−(− f2(x))

−∞

x→a



− f2(x) ≤ − f1(x)





[eq. (9.72)] ; 







 lim

is +∞



− f2(x)

x→a





lim − f1(x) is +∞

[eq. (10.5)] ; 

x→a





lim −(− f1(x)) is −∞

[eq. (9.72)] ; 

x→a

lim f1(x)) is −∞

[eq. (2.51)] . 

x→a

Additionally, we will now prove that given two real functions “ f1(x)” and “ f2(x)” that are defined in a vicinity “Sv” of a real number “a”, such that for any real number “x” the absolute value of the first function “ | f1(x)|” is less than or equal to the absolute value of the second function “ | f2(x)|” 

[ i.e., | f1(x)| ≤ | f2(x)|], if the limit of the first function “ f1(x)” is infinity when “x” tends to “a” 

(i.e., lim f1(x) is ∞) then the limit of the second function “ f2(x)” when “x” tends to “a” is also x→a

infinity. That is:



| f



1(x)| ≤ | f2(x)|



 =⇒ lim f2(x) is ∞ . 

(10.7)

x→a



lim f1(x) is ∞



x→a

Proof:

n

o

n

o

• Case: | f1(x)| ≤ | f2(x)|

∧

lim f1(x) is ∞

x→a

(∀x |f1(x)| ≤ |f2(x)|

[eq. (9.5)] ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f1(x)| > M }

(∀

∀

x | f1(x)| ≤ | f2(x)|

M ∃δ >0

; 

∀x,a { |x − a| < δ =⇒ | f1(x)| > M }
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(|f

∀

1(x)| ≤ | f2(x)|

M ∃δ >0 ∀x,a

; 

|x − a| < δ =⇒ | f1(x)| > M

∀M ∃δ>0 ∀x,a {|x − a| < δ =⇒ | f1(x)| ≤ | f2(x)| ∧ | f1(x)| > M } ; 

∀M ∃δ>0 ∀x,a {|x − a| < δ =⇒ | f1(x)| ≤ | f2(x)| ∧ M < | f1(x)|}

[eq. (2.112)] ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ M < | f1(x)| ≤ | f2(x)| } ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ M < | f2(x)| } ; 

∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f2(x)| > M }

[eq. (2.112)] ; 

lim f2(x) is ∞

[eq. (9.5)] . 

x→a

Given two real functions “ f1(x)” and “ f2(x)”, and considering the case when “x” tends to “a” 

from the left (or when x tends to “a” from the right, or when x goes towards infinity, or when x goes towards minus infinity, or when x goes towards plus infinity), the following equations can be proven in a similar manner as we did for equations (10.5)-(10.7):





f



1(x) ≤ f2(x)





 =⇒ lim f2(x) is +∞ ; 

x



lim f



→a−



1(x) is +∞ 

x→a−





f



1(x) ≤ f2(x)





 =⇒ lim f1(x) is −∞ ; 

x



lim f



→a−



2(x) is −∞ 

x→a−



|



f



1(x)| ≤ | f2(x)| 





=⇒ lim f2(x) is ∞ ; 

x→a−



lim f





1(x) is ∞



x→a−





f



1(x) ≤ f2(x)





 =⇒ lim f2(x) is +∞ ; 

x



lim f



→a+



1(x) is +∞ 

x→a+





f



1(x) ≤ f2(x)





 =⇒ lim f1(x) is −∞ ; 

x



lim f



→a+



2(x) is −∞ 

x→a+
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

|



f



1(x)| ≤ | f2(x)| 





=⇒ lim f2(x) is ∞ ; 

x→a+



lim f





1(x) is ∞



x→a+



f



1(x) ≤ f2(x)



 =⇒ lim f2(x) is +∞ ; 

x→∞



lim f1(x) is +∞ 

x→∞



f



1(x) ≤ f2(x)





=⇒ lim f1(x) is −∞ ; 

x→∞



lim f2(x) is −∞ 

x→∞



| f



1(x)| ≤ | f2(x)|





=⇒ lim f2(x) is ∞ ; 

x→∞



lim f1(x) is ∞



x→∞





f



1(x) ≤ f2(x)







=⇒ lim f2(x) is +∞ ; 

x→−∞



lim f





1(x) is +∞

x→−∞







f



1(x) ≤ f2(x)





 =⇒ lim f1(x) is −∞ ; 

x→−∞



lim f





2(x) is −∞

x→−∞







| f



1(x)| ≤ | f2(x)| 



 =⇒ lim f2(x) is ∞ ; 

x→−∞



lim f





1(x) is ∞

x→−∞







f



1(x) ≤ f2(x)







=⇒ lim f2(x) is +∞ ; 

x→+∞



lim f





1(x) is +∞

x→+∞







f



1(x) ≤ f2(x)





 =⇒ lim f1(x) is −∞ ; 

x→+∞



lim f





2(x) is −∞

x→+∞


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



| f



1(x)| ≤ | f2(x)| 





=⇒ lim f2(x) is ∞ . 

x→+∞



lim f





1(x) is ∞

x→+∞



10.5

LIMIT OF sin(X )/X WHEN X → 0

Once again, as discussed in 4.6.2, the trigonometric functions (including cosine, sine, and tangent) seen as real functions (i.e., f :

→ ) depend on the angular units used. As stated in 4.3.3 in this

R

R

book, we will use the angular units of radians (defined in 4.4.3). In the calculus of real functions, in general, unless explicitly stated otherwise, the angular units used are radians. 

We will now prove that the limit of the cosine function when “x” tends to zero (“0”) from the right is equal to one (“ 1”). That is:

lim cos(x) = 1 . 

(10.8)

x→0+

Figure 10.1 The trigonometric circle, showing the cosine and sine function values for the angle “x”. Note, once again, that the radius of the trigonometric circle is one (r = 1). Also note that in this figure we are using the symbol “x” to represent the angle (rather than the x-coordinate of a point in the plane). 

Proof:

• Case: figure 10.1

∀ε>0 ∃δ>0 ∀x>0 { |x| < δ =⇒ |cos(x) − 1| < ε } ; 

∀ε>0 ∃δ>0 ∀x>0 { |x − 0| < δ =⇒ |cos(x) − 1| < ε }

[eqs. (2.45) and (2.54)] ; 

lim cos(x) = 1

[eq. (7.16)] . 

x→0+

We will also now prove that the limit of the cosine function when “x” tends to zero (“0”) from the left is equal to one (“ 1”). That is:

lim cos(x) = 1 . 

(10.9)

x→0−
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Proof:

• Case: figure 10.1

∀ε>0 ∃δ>0 ∀x>0 { |x| < δ =⇒ |cos(x) − 1| < ε } ; 

taking: x = −x2

(where x2 is an arbitrary negative number)

∀ε>0 ∃δ>0 ∀x2<0 { | − x2| < δ =⇒ |cos(−x2) − 1| < ε } ; 

∀ε>0 ∃δ>0 ∀x<0 { | − x| < δ =⇒ |cos(−x) − 1| < ε } ; 

∀ε>0 ∃δ>0 ∀x<0 { |x| < δ =⇒ |cos(−x) − 1| < ε }

[eq. (2.128)] ; 

∀ε>0 ∃δ>0 ∀x<0 { |x| < δ =⇒ |cos(x) − 1| < ε }

[eq. (4.58)] ; 

∀ε>0 ∃δ>0 ∀x<0 { |x − 0| < δ =⇒ |cos(x) − 1| < ε }

[eqs. (2.45) and (2.54)] ; 

lim cos(x) = 1

[eq. (7.14)] . 

x→0−

From equations (10.8) and (10.9), and considering equation (7.20), it follows that: lim cos(x) = 1 . 

(10.10)

x→0

We will now prove that the limit of the sine function when “x” tends to zero (“0”) from the right is equal to zero (“0”). That is:

lim sin(x) = 0 . 

(10.11)

x→0+

Proof:

• Case: figure 10.1

∀ε>0 ∃δ>0 ∀x>0 { |x| < δ =⇒ |sin(x)| < ε } ; 

∀ε>0 ∃δ>0 ∀x>0 { |x − 0| < δ =⇒ |sin(x) − 0| < ε }

[eqs. (2.45) and (2.54)] ; 

lim sin(x) = 0

[eq. (7.16)] . 

x→0+

We will also now prove that the limit of the sine function when “x” tends to zero (“0”) from the left is equal to zero (“0”). That is:

lim sin(x) = 0 . 

(10.12)

x→0−
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Proof:

• Case: figure 10.1

∀ε>0 ∃δ>0 ∀x>0 { |x| < δ =⇒ |sin(x)| < ε } ; 

taking: x = −x2

(where x2 is an arbitrary negative number)

∀ε>0 ∃δ>0 ∀x2<0 { | − x2| < δ =⇒ |sin(−x2)| < ε } ; 

∀ε>0 ∃δ>0 ∀x<0 { | − x| < δ =⇒ |sin(−x)| < ε } ; 

∀ε>0 ∃δ>0 ∀x<0 { | − x| < δ =⇒ | − sin(x)| < ε }

[eq. (4.59)] ; 

∀ε>0 ∃δ>0 ∀x<0 { |x| < δ =⇒ |sin(x)| < ε }

[eq. (2.128)] ; 

∀ε>0 ∃δ>0 ∀x<0 { |x − 0| < δ =⇒ |sin(x) − 0| < ε }

[eqs. (2.45) and (2.54)] ; 

lim sin(x) = 0

[eq. (7.14)] . 

x→0−

From equations (10.11) and (10.12), and considering equation (7.20), it follows that: lim sin(x) = 0 . 

(10.13)

x→0

We will now prove that the limit of the tangent function when “x” tends to zero (“0”) is equal to zero (“0”). That is:

lim tan(x) = 0 . 

(10.14)

x→0

Proof:

lim sin(x) = 0

[eq. (10.13)] ; 

x→0

lim cos(x) = 1

[eq. (10.10)] ; 

x→0

sin(x)

0

lim

=

[eq. (7.13)] ; 

x→0 cos(x)

1

sin(x)

lim

= 0 ; 

x→0 cos(x)

lim tan(x) = 0

[eq. (4.53)] . 

x→0

We will now prove that given a positive real number “x” (i.e., x > 0), the value of the sine function evaluated at the real number “sin(x)” is less than the value of “x” [i.e., sin(x) < x]. That is: x > 0 =⇒ sin(x) < x . 

(10.15)
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Figure 10.2 On the left, the trigonometric circle, showing the cosine and sine function values for the angle

“x” with the area of the corresponding sector of a circle shaded. On the right, the sector of a circle extracted from the trigonometric circle (and enlarged for readability). Note that since the radius of the trigonometric circle is one (i.e., r = 1), it follows that the length of the arc of the sector of the circle “sarc” is equal to the angle “x” (in radians) [i.e., sarc = x]. 

Proof:

• Case: figure 10.2

x > 0 =⇒ sin(x) < sarc ; 

sin(x) < s



arc





x > 0 =⇒

[eq. (4.43)] ; 

s



arc

x =



r

considering that the radius of the trigonometric circle is one

(i.e., “r = 1”):

sin(x) < s



arc





x > 0 =⇒

; 

s



arc

x =



1

sin(x) < s



arc



x > 0 =⇒

[eqs. (2.56) and (2.72)] ; 



x = 1−1sarc

sin(x) < s



arc



x > 0 =⇒

[eqs. (2.59) and (2.70)] ; 



x = sarc

x > 0 =⇒ sin(x) < x . 
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Note that:

• Equation (10.15) holds true when the units of angle are radians; 

• In particular, to derive equation (10.15), we applied the definition of radians [eq. (4.43)]. 

Figure 10.3 On the left, the trigonometric circle, showing the cosine and sine function values for the angle

“x” with the area of the corresponding sector of a circle shaded. On the right, a right triangle and the sector of a circle extracted from the trigonometric circle (and enlarged for readability). Note that since the radius of the trigonometric circle is one (r = 1), it follows that the length of the arc of the sector of the circle “sarc” is equal to the angle “x” (in radians) [i.e., sarc = x]. Also note that base of the triangle is one [i.e., b = r = 1], and as we show in text, the height of the triangle is equal to the tangent of the angle [i.e., h = tan(x)]. 

We will also now prove that given a positive real number “x” less than “π/2” (i.e., 0 < x < π/2), the value of “x” is less than the value of the tangent function evaluated at the real number “tan(x)” 

[i.e., x < tan(x)]. That is:

0 < x < π/2 =⇒ x < tan(x) . 

(10.16)

Proof:

• Case: figure 10.3 and “0 < x < π/2” 

◦ First subcase: length of the circle “scircle” 

scircle = 2 π r

[eq. (4.42)] ; 

considering that the radius of the trigonometric circle is one

(i.e., r = 1):

scircle = 2 π · 1 ; 

scircle = 2 π

[eqs. (2.56) and (2.59)] ; 
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◦ Second subcase: area of the circle “acircle” 

acircle = π r2

[eq. (4.45)] ; 

considering that the radius of the trigonometric circle is one

(i.e., r = 1):

acircle = π · 12 ; 

acircle = 1 · π

[eqs. (2.56) and (2.79)] ; 

acircle = π

[eq. (2.59)] ; 

◦ Third subcase: length of the arc of the sector of the circle “sarc” 

sarc

x =

[eq. (4.43)] ; 

r

considering that the radius of the trigonometric circle is one

(i.e., “r = 1”):

sarc

x =

; 

1

x = 1−1sarc

[eqs. (2.56) and (2.72)] ; 

x = sarc

[eqs. (2.59) and (2.70)] ; 

sarc = x ; 

◦ Fourth subcase: area of the sector of the circle “asector” 

given that the area of the sector of the circle “asector” 

is proportional to the length of the arc of the sector of

the circle “sarc”, it follows that:

sarc

asector =

acircle ; 

scircle

sarc

asector =

acircle

[first subcase] ; 

2 π

sarc

asector =

π

[second subcase] ; 

2 π

x

asector =

π

[third subcase] ; 

2 π

x

asector =

π−1 π

[eqs. (2.72) and (2.74)] ; 

2

x

asector =

· 1

[eqs. (2.56) and (2.71)] ; 

2

x

asector =

[eqs. (2.56) and (2.59)] ; 

2
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◦ Fifth subcase: height of the triangle “h” 

considering figure 10.3:

h

tan(x) =

[eq. (4.56)] ; 

b

considering that in this case “b = r = 1” (see figure 10.3): h

tan(x) =

; 

1

tan(x) = 1−1 h

[eqs. (2.56) and (2.72)] ; 

tan(x) = h

[eqs. (2.59) and (2.70)] ; 

h = tan(x) ; 

◦ Sixth subcase: area of the triangle “atriangle” 

b h

atriangle =

[eq. (4.38)] ; 

2

considering that in this case “b = r = 1” (see figure 10.3): 1 · h

atriangle =

; 

2

h

atriangle =

[eq. (2.56)] ; 

2

tan(x)

atriangle =

[fifth subcase] ; 

2

considering figure 10.3:

asector < atriangle ; 

x < atriangle

[fourth subcase] ; 

2

x

tan(x)

< 

[sixth subcase] ; 

2

2

2−1x < 2−1 tan(x)

[eqs. (2.56) and (2.72)] ; 

x < tan(x)

[eq. (2.121)] ; 

0 < x < π/2 =⇒ x < tan(x) . 
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Note that:

• Equation (10.16) holds true when the units of angle are radians; 

• In particular, to derive equation (10.16), in the third subcase, we applied the definition of radians [eq. (4.43)]. 

We will now prove that the limit of the function “sin(x)/x” when “x” tends to zero (“0”) from the right is equal to one (“ 1”). That is:

sin(x)

lim

= 1 . 

(10.17)

x→0+

x

Proof:

• Case: 0 < x < π/2

sin(x) < x

[eq. (10.15)] ; 

sin(x) < x < tan(x)

[eq. (10.16)] ; 

sin(x)

sin(x) < x < 

[eq. (4.53)] ; 

cos(x)

sin(x) < x < sin(x) [ cos(x) ]−1

[eq. (2.72)] ; 

[ sin(x) ]−1 sin(x) < [ sin(x) ]−1x < [ sin(x) ]−1 sin(x) [ cos(x) ]−1

[eq. (2.121)] ; 

sin(x) [ sin(x) ]−1 < x [ sin(x) ]−1 < sin(x) [ sin(x) ]−1[ cos(x) ]−1

[eq. (2.56)] ; 

1 < x [ sin(x) ]−1 < [ cos(x) ]−1

[eqs. (2.59) and (2.71)] ; 

x

1 < 

< [ cos(x) ]−1

[eq. (2.72)] ; 

sin(x)

" 

#−1



x

−1

[ cos(x) ]−1

< 

< 1−1

[eqs. (2.112) and (2.123)] ; 

sin(x)



x

−1

cos(x) < 

< 1−1

[eq. (2.68)] ; 

sin(x)

sin(x)

cos(x) < 

< 1

[eqs. (2.70) and (2.76)] ; 

x

lim cos(x) = 1

[eq. (10.8)] ; 

x→0+

lim 1 = 1

[eqs. (7.3) and (7.16)] ; 

x→0+

sin(x)

lim

= 1

[eqs. (7.16) and (10.4)] . 

x→0+

x
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We will also now prove that the limit of the function “sin(x)/x” when “x” tends to zero (“0”) from the left is equal to one (“ 1”). That is:

sin(x)

lim

= 1 . 

(10.18)

x→0−

x

Proof:

sin(x)

lim

= 1

[eq. (10.17)] ; 

x→0+

x



sin(x)





∀





ε>0 ∃δ >0 ∀x>0

|x − 0| < δ =⇒ 

− 1  < ε

[eq. (7.16)] ; 



x





sin(x)





∀





ε>0 ∃δ >0 ∀x>0

|x| < δ =⇒ 

− 1  < ε

[eqs. (2.45) and (2.54)] ; 



x



taking: x = −x2

(where x2 is an arbitrary negative number)



sin(−x





∀



2)



ε>0 ∃δ >0 ∀x

| − x

− 1 < ε

; 

2<0

2| < δ =⇒ 





−x2





sin(−x)





∀





ε>0 ∃δ >0 ∀x<0

| − x| < δ =⇒ 

− 1  < ε

; 



−x





sin(−x)





∀





ε>0 ∃δ >0 ∀x<0

|x| < δ =⇒ 

− 1  < ε

[eq. (2.128)] ; 



−x





sin(−x)





∀





ε>0 ∃δ >0 ∀x<0

|x − 0| < δ =⇒ 

− 1  < ε



−x



[eqs. (2.45) and (2.54)] ; 



−sin(x)





∀





ε>0 ∃δ >0 ∀x<0

|x − 0| < δ =⇒ 

− 1  < ε

[eq. (4.59)] ; 



−x





(−1)sin(x)





∀





ε>0 ∃δ >0 ∀x<0

|x − 0| < δ =⇒ 

− 1  < ε

[eq. (2.65)] ; 



(−1)x





(−1) sin(x)





∀





ε>0 ∃δ >0 ∀x<0

|x − 0| < δ =⇒ 

− 1  < ε

[eq. (2.75)] ; 

(−1)

x







sin(x)





∀





ε>0 ∃δ >0 ∀x<0

|x − 0| < δ =⇒  1

− 1  < ε

; 



x
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sin(x)





∀





ε>0 ∃δ >0 ∀x<0

|x − 0| < δ =⇒ 

− 1  < ε

[eq. (2.59)] ; 



x



sin(x)

lim

= 1

[eq. (7.14)] . 

x→0−

x

From equations (10.17) and (10.18), and considering equation (7.20), it follows that: sin(x)

lim

= 1 . 

(10.19)

x→0

x

Note that the last equation holds for (and only for) the angular units of radians. 

10.6

LIMIT OF (1 + X )1/X WHEN X → 0

The “floor” function is a function from real numbers to integers (i.e., floor :

→ ). “floor(x)” is, 

R

Z

by definition, the greatest integer “i” that is less than or equal to real number “x”. For example, it follows that:

floor(7.35) = 7 ; 

floor(7.00) = 7 ; 

floor(−3.42) = −4 ; 

floor(−3.00) = −3 . 

A standard shorter notation for the floor function, is to place the real number argument in between the two symbols “⌊” and “⌋”. That is:

⌊x⌋ ≡ floor(x) ; 

thus we can, for example, write:

⌊7.35⌋ = 7 ; 

⌊7.00⌋ = 7 ; 

⌊−3.42⌋ = −4 ; 

⌊−3.00⌋ = −3 . 

It follows that:

⌊x⌋ ≤ x < ⌊x⌋ + 1 ; 

(10.20)

for an integer “i” it follows that:

⌊i⌋ = i . 

(10.21)

We will now prove that:

x > n + 1 =⇒ ⌊x⌋ > n . 

(10.22)

Proof:

x > n + 1 =⇒ n + 1 < x

[eq. (2.112)] ; 
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x > n + 1 =⇒ n + 1 < x < ⌊x⌋ + 1

[eq. (10.20)] ; 

x > n + 1 =⇒ n + 1 < ⌊x⌋ + 1 ; 

x > n + 1 =⇒ n < ⌊x⌋

[eq. (2.119)] ; 

x > n + 1 =⇒ ⌊x⌋ > n

[eq. (2.112)]. 

We will now prove that:



1 ⌊x⌋

lim

1 +

= e . 

(10.23)

x→+∞

⌊x⌋

Proof:

• Case: x ≥ 1



1 n

e = lim

1 +

[eq. (3.53)] ; 

n→∞

n





1 n





∀





ε>0 ∃N ∀n>0

n > N =⇒  1 +

− e  < ε

[eq. (3.19)] ; 



n



taking: n = ⌊x⌋

(where x is an arbitrary real number that is

greater than or equal to one [i.e., x ≥ 1])

(





)



⌊x⌋



1



∀ε> 





0 ∃N ∀x

⌊x⌋ > N =⇒

1 +

− e < ε

; 



⌊x⌋















⌊x⌋







1







⌊x⌋ > N =⇒

1 +

− e < ε









⌊x⌋

∀





ε>0 ∃N ∀x

[eq. (10.22)] ; 









x > N + 1 =⇒ ⌊x⌋ > N

(





)



⌊x⌋



1



∀ε> 





0 ∃N ∀x

x > N + 1 =⇒

1 +

− e < ε

; 



⌊x⌋







taking: M = N + 1

(





)



⌊x⌋



1



∀ε> 





0 ∃M ∀x

x > M =⇒

1 +

− e < ε

; 



⌊x⌋









1 ⌊x⌋

lim

1 +

= e

[eq. (8.16)] . 

x→+∞

⌊x⌋
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We will now prove the following two properties:



1

⌊x⌋

lim

1 +

= e ; 

(10.24)

x→+∞

⌊x⌋ + 1



1 ⌊x⌋+1

lim

1 +

= e . 

(10.25)

x→+∞

⌊x⌋

Proof of the first property:

1

lim

= 0

[eq. (8.16)] ; 

x→+∞ ⌊x⌋ + 1

lim 1 = 1

[eqs. (8.4) and (8.16)] ; 

x→+∞



1



lim

1 +

= 1 + 0

[eqs. (8.5) and (8.16)] ; 

x→+∞

⌊x⌋ + 1



1



lim

1 +

= 1 ; 

x→+∞

⌊x⌋ + 1



1

⌊x⌋+1

lim

1 +

= e

[eq. (10.23)] ; 

x→+∞

⌊x⌋ + 1

 

1

⌊x⌋+1 

1 +



⌊x⌋ + 1



e

lim 

 =

[eqs. (8.13) and (8.16)] ; 

x→+∞ 



1





1



1 +



⌊x⌋ + 1

 

1

⌊x⌋+1 

1 +



⌊x⌋ + 1



lim 

 = 1−1e

[eqs. (2.56) and (2.72)] ; 

x→+∞ 



1







1 +



⌊x⌋ + 1

 

1

⌊x⌋+1 

1 +



⌊x⌋ + 1



lim 

 = e

[eqs. (2.59) and (2.70)] ; 

x→+∞ 



1







1 +



⌊x⌋ + 1



1

⌊x⌋+1 

1

−1 ! 

lim

1 +

1 +

= e

[eq. (2.72)] ; 

x→+∞

⌊x⌋ + 1

⌊x⌋ + 1
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1

⌊x⌋+1+(−1)

lim

1 +

= e

[eq. (2.88)] ; 

x→+∞

⌊x⌋ + 1



1

⌊x⌋

lim

1 +

= e

[eqs. (2.45) and (2.53)] . 

x→+∞

⌊x⌋ + 1

Proof of the second property:

1

lim

= 0

[eq. (8.16)] ; 

x→+∞ ⌊x⌋

lim 1 = 1

[eqs. (8.4) and (8.16)] ; 

x→+∞



1 

lim

1 +

= 1 + 0

[eqs. (8.5) and (8.16)] ; 

x→+∞

⌊x⌋



1 

lim

1 +

= 1 ; 

x→+∞

⌊x⌋



1 ⌊x⌋

lim

1 +

= e

[eq. (10.23)] ; 

x→+∞

⌊x⌋



! 



1 ⌊x⌋ 

1 

lim

1 +

1 +

= e · 1

[eqs. (8.8) and (8.16)] ; 

x→+∞

⌊x⌋

⌊x⌋



! 



1 ⌊x⌋ 

1 

lim

1 +

1 +

= e

[eqs. (2.56) and (2.59)] ; 

x→+∞

⌊x⌋

⌊x⌋



1 ⌊x⌋ 

1 1 ! 

lim

1 +

1 +

= e

[eq. (2.78)] ; 

x→+∞

⌊x⌋

⌊x⌋



1 ⌊x⌋+1

lim

1 +

= e

[eq. (2.88)] . 

x→+∞

⌊x⌋

We will now prove that:



1 x

lim

1 +

= e . 

(10.26)

x→+∞

x

Proof:

• Case: x ≥ 1

⌊x⌋ ≤ x < ⌊x⌋ + 1

[eq. (10.20)] ; 
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1

1

1

≥

> 

[eqs. (2.73) and (2.123)] ; 

⌊x⌋

x

⌊x⌋ + 1

1

1

1

< 

≤

[eq. (2.112)] ; 

⌊x⌋ + 1

x

⌊x⌋

1

1

1

1 +

< 1 +

≤ 1 +

[eqs. (2.43) and (2.119)] ; 

⌊x⌋ + 1

x

⌊x⌋



1





1 



1 

ln 1 +

< ln 1 +

≤ ln 1 +

[eq. (3.87)] ; 

⌊x⌋ + 1

x

⌊x⌋



1





1 



1 

⌊x⌋ln 1 +

< x ln 1 +

< (⌊x⌋ + 1)ln 1 +

⌊x⌋ + 1

x

⌊x⌋

[eqs. (2.121) and (2.122)] ; 







1

⌊x⌋ ! 



1 x 



1 ⌊x⌋+1! 

ln

1 +

< ln

1 +

< ln

1 +

⌊x⌋ + 1

x

⌊x⌋

[eq. (3.85)] ; 



1

⌊x⌋



1 x



1 ⌊x⌋+1

1 +

< 1 +

< 1 +

[eq. (3.87)] ; 

⌊x⌋ + 1

x

⌊x⌋



1

⌊x⌋

lim

1 +

= e

[eq. (10.24)] ; 

x→+∞

⌊x⌋ + 1



1 ⌊x⌋+1

lim

1 +

= e

[eq. (10.25)] ; 

x→+∞

⌊x⌋



1 x

lim

1 +

= e

[eqs. (8.16) and (10.4)] . 

x→+∞

x

We will also now prove that:



1 x

lim

1 +

= e . 

(10.27)

x→−∞

x

Proof [see also 8.6, eqs. (8.28)-(8.29)]:

• Case: |x| > 1

1

lim

= 0

[eq. (8.16)] ; 

x→+∞ x − 1
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lim 1 = 1

[eqs. (8.4) and (8.16)] ; 

x→+∞



1



lim

1 +

= 1 + 0

[eqs. (8.5) and (8.16)] ; 

x→+∞

x − 1



1



lim

1 +

= 1 ; 

x→+∞

x − 1



1

x−1

lim

1 +

= e

[eq. (10.26)] ; 

x→+∞

x − 1



! 



1

x−1 

1




lim

1 +

1 +

= e · 1

x→+∞

x − 1

x − 1

[eqs. (8.8 and (8.16)] ; 



! 



1

x−1 

1



lim

1 +

1 +

= e

x→+∞

x − 1

x − 1

[eqs. (2.56) and (2.59)] ; 



1

x−1 

1

1 ! 

lim

1 +

1 +

= e

[eq. (2.78)] ; 

x→+∞

x − 1

x − 1



1

x−1+1

lim

1 +

= e

[eq. (3.40)] ; 

x→+∞

x − 1



1

x+1+(−1)

lim

1 +

= e

[eqs. (2.43) and (2.54)] ; 

x→+∞

x − 1



1

x

lim

1 +

= e

[eqs. (2.45) and (2.53)] ; 

x→+∞

x − 1

lim

(x − 1)(x − 1)−1 + (x − 1)−1 x = e

x→+∞

[eqs. (2.71) and (2.73)] ; 

lim

(x − 1)−1 (x − 1) + (x − 1)−1 · 1 x = e

x→+∞

[eqs. (2.56) and (2.59)] ; 





x

lim

(x − 1) + 1 (x − 1)−1

= e

x→+∞

[eqs. (2.56) and (2.64)] ; 





x

lim

x + 1 + (−1) (x − 1)−1

= e

x→+∞

[eqs. (2.43) and (2.54)] ; 

lim

x (x − 1)−1 x = e

[eqs. (2.45) and (2.53)] ; 

x→+∞



x

x

lim

= e

[eq. (2.72)] ; 

x→+∞

x − 1
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x − 1 −1 !x

lim

= e

[eq. (2.76)] ; 

x→+∞

x

x − 1 (−1)x

lim

= e

[eq. (3.52)] ; 

x→+∞

x

x − 1 −x

lim

= e

[eq. (2.65)] ; 

x→+∞

x



!−x





lim

x + (−1) x−1

= e

[eqs. (2.54) and (2.72)] ; 

x→+∞



!−x

lim

x x−1 + (−1)x−1

= e

[eqs. (2.56) and (2.64)] ; 

x→+∞



!−x

(−1)

lim

1 +

= e

[eqs. (2.71) and (2.72)] ; 

x→+∞

x



!−x

(−1)

lim

1 + 1

= e

[eq. (2.59)] ; 

x→+∞

x



!−x

(−1) (−1)

lim

1 +

= e ; 

x→+∞

(−1)

x



!−x

(−1)(−1)

lim

1 +

= e

[eq. (2.75)] ; 

x→+∞

(−1)x



!−x

1

lim

1 +

= e ; 

x→+∞

(−1)x



!−x

1

lim

1 +

= e

[eq. (2.65)] ; 

x→+∞

(−x)



!x

1

lim

1 +

= e

[eq. (8.19)] . 

x→−∞

x

From equations (10.26) and (10.27), and considering equation (8.18), it follows that:



!x

1

lim

1 +

= e . 

(10.28)

x→∞

x

We will now prove that:

lim (1 + x)1/x = e . 

(10.29)

x→0
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Proof:



!x

1

lim

1 +

= e

[eq. (10.28)] ; 

x→∞

x



!x

lim

1 + x−1

= e

[eq. (2.73)] ; 

x→∞



!1/x

lim

1 + (1/x)−1

= e

[eq. (8.2)] ; 

x→0



!1/x

lim

1 + x−1 −1

= e

[eq. (2.73)] ; 

x→0

lim (1 + x)1/x = e

[eq. (2.68)] . 

x→0

10.7

EXAMPLES

Revisiting the physics problem of general circular motion that we discussed in 5.14 (once again, by

“general circular motion” we mean here the motion of an object along a circular path with its speed possibly varying with time); and placing a Cartesian reference system with its origin at the center of the circle (see figure 5.4), one finds that the equations of motion are given by: x(t) = r cos(φ (t)) ; 

(10.30)

y(t) = r sin(φ (t)) ; 

(10.31)

where “r” is the radius of the circle (constant) and “φ ” is the angular position of the object. 

The velocity components “vx” and “vy” are the rate of change of the respective positions “x” 

and “y” with respect to time “t”. Mathematically one states that “the velocity component vx is the derivative of the position x with respect to time t ” and that “the velocity component vy is the derivative of the position y with respect to time t ”. Extending the discussion in 6.5 of an object with a single velocity component (in the case of a motion along a straight line), one finds that in the case of an object moving along a plane (including the case here of a general circular motion) the two velocity components are given by:

x(t + ∆t) − x(t)

vx(t) = lim

; 

∆t→0

∆t

y(t + ∆t) − y(t)

vy(t) = lim

; 

∆t→0

∆t

once again, one of several common notations for the derivative is to use the prime symbol “ ′ ” and to denote the derivative of the function “ f (x)” in the form “( f (x))′ ”; thus, the last two equations can also be written as:

vx(t) = (x(t))′ ; 

vy(t) = (y(t))′ . 
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Considering equations (10.30) and (10.31), we are, in turn, unavoidably lead to calculate the derivative of the cosine function “ (cos(x))′ ” and the derivative of the sine function “ (sin(x))′ ”. 

Aiming to calculate the derivative of the sine function (that in turn would lead to calculating “vy(t)”), we have that:

sin(x + ∆x) − sin(x)

(sin(x))′ = lim

; 

∆x→0

∆x

applying equations (2.56) and (2.72):

n



o

(sin(x))′ = lim

(∆x)−1 sin(x + ∆x) − sin(x)

; 

∆x→0

applying equations (2.54) and (2.65):

n



o

(sin(x))′ = lim

(∆x)−1 sin(x + ∆x) + (−1) sin(x)

; 

∆x→0

applying equation (4.74):

(sin(x))′ =

n



o

lim

(∆x)−1 sin(x) cos(∆x) + sin(∆x) cos(x) + (−1) sin(x)

; 

∆x→0

applying equation (2.43):

(sin(x))′ =

n



o

lim

(∆x)−1 sin(∆x) cos(x) + sin(x) cos(∆x) + (−1) sin(x)

; 

∆x→0

applying equation (2.64):

n

(sin(x))′ = lim

(∆x)−1 sin(∆x) cos(x)

∆x→0



o

+ (∆x)−1 sin(x) cos(∆x) + (−1) sin(x)

; 

applying equations (2.56) and (2.64):

(sin(x))′ =

n





o

lim

cos(x) sin(∆x) (∆x)−1 + sin(x) cos(∆x) + (−1) (∆x)−1

; 

∆x→0

applying equation (7.5):





n

o

(sin(x))′ =

lim

cos(x) sin(∆x) (∆x)−1

∆x→0





n





o

+

lim

sin(x) cos(∆x) + (−1) (∆x)−1

; 

∆x→0

applying equation (7.8):







n

o

(sin(x))′ =

lim cos(x)

lim

sin(∆x) (∆x)−1

∆x→0

∆x→0







n 



o

+

lim sin(x)

lim

cos(∆x) + (−1) (∆x)−1

; 

∆x→0

∆x→0

[image: Image 1020]
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applying equation (7.3):





n

o

(sin(x))′ = cos(x)

lim

sin(∆x) (∆x)−1

∆x→0





n 



o

+ sin(x)

lim

cos(∆x) + (−1) (∆x)−1

; 

∆x→0

applying equation (2.72):



sin(∆x) 

(sin(x))′ = cos(x)

lim

∆x→0

∆x





n 



o

+ sin(x)

lim

cos(∆x) + (−1) (∆x)−1

; 

∆x→0

applying equation (10.19):





n 



o

(sin(x))′ = cos(x) · 1 + sin(x) lim

cos(∆x) + (−1) (∆x)−1

; 

∆x→0

applying equations (2.56) and (2.59):





n 



o

(sin(x))′ = cos(x) + sin(x)

lim

cos(∆x) + (−1) (∆x)−1

; 

∆x→0

applying equations (2.59) and (2.71):

h

n 



−1

(sin(x))′ = cos(x) + sin(x) lim

cos(∆x) + 1

cos(∆x) + 1

∆x→0





o i

· cos(∆x) + (−1) (∆x)−1

; 

applying equations (2.56) and (2.57):

h

n 





(sin(x))′ = cos(x) + sin(x) lim

cos(∆x) + 1

cos(∆x) + (−1)

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

applying equations (2.56) and (2.64):

(sin(x))′ =

cos(x)

+ sin(x)

h

n 



·

lim

cos(∆x) cos(∆x) + (−1) cos(∆x) + 1 · cos(∆x) + 1 (−1)

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

applying equations (2.59) and (2.65):

(sin(x))′ =

cos(x)

+ sin(x)

h

n 



·

lim

cos(∆x) cos(∆x) + (− cos(∆x)) + cos(∆x) + (−1)

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 
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applying equations (2.43) and (2.53):

(sin(x))′ =

h

n 



cos(x) + sin(x)

lim

cos(∆x) cos(∆x) + 0 + (−1)

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

(sin(x))′ =

h

n 



cos(x) + sin(x)

lim

cos(∆x) cos(∆x) + (−1)

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

applying equation (2.79):

(sin(x))′ =

h

n 



cos(x) + sin(x)

lim

cos2(∆x) + (−1)

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

applying equation (4.52):

(sin(x))′ =

h

n 



cos(x) + sin(x)

lim

cos2(∆x) + (− [cos2(∆x) + sin2(∆x)])

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

applying equation (2.52):

(sin(x))′ =

h

n 



cos(x) + sin(x)

lim

cos2(∆x) + (− cos2(∆x)) + (− sin2(∆x))

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

applying equations (2.43) and (2.53):

(sin(x))′ =

h

n 



cos(x) + sin(x)

lim

(−sin2(∆x)) + 0

∆x→0



−1

o i

· cos(∆x) + 1

(∆x)−1

; 

applying equation (2.45):

(sin(x))′ =











−1

cos(x) + sin(x)

lim

−sin2(∆x)

cos(∆x) + 1

(∆x)−1

; 

∆x→0
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applying equations (2.61) and (2.79):

(sin(x))′ =

cos(x)









−1

+ sin(x)

lim

(−sin(∆x)) sin(∆x) cos(∆x) + 1

(∆x)−1

; 

∆x→0

applying equations (2.56) and (2.57):

(sin(x))′ =

cos(x)







−1  

+ sin(x)

lim

sin(∆x) (∆x)−1 (− sin(∆x)) cos(∆x) + 1

; 

∆x→0

applying equation (2.72):



sin(∆x) (−sin(∆x))  

(sin(x))′ = cos(x) + sin(x)

lim

; 

∆x→0

∆x

cos(∆x) + 1

applying equation (7.8):



sin(∆x)  

(−sin(∆x)) 

(sin(x))′ = cos(x) + sin(x)

lim

lim

; 

∆x→0

∆x

∆x→0 cos(∆x) + 1

applying equation (10.19):



(−sin(∆x)) 

(sin(x))′ = cos(x) + sin(x) · 1 · lim

; 

∆x→0 cos(∆x) + 1

applying equation (2.59):



(−sin(∆x)) 

(sin(x))′ = cos(x) + sin(x)

lim

; 

∆x→0 cos(∆x) + 1

applying equation (7.13):

lim {− sin(∆x)}

(sin(

∆

x))′ = cos(x) + sin(x)

x→0

; 

lim {cos(∆x) + 1}

∆x→0

applying equation (7.6):





− lim sin(∆x)

∆x→0

(sin(x))′ = cos(x) + sin(x)

; 

lim {cos(∆x) + 1}

∆x→0

applying equation (7.5):





− lim sin(∆x)

∆x→0

(sin(x))′ = cos(x) + sin(x)

; 









lim cos(∆x) +

lim 1

∆x→0

∆x→0
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applying equation (7.3):





− lim sin(∆x)

∆x→0

(sin(x))′ = cos(x) + sin(x)

; 





lim cos(∆x) + 1

∆x→0

applying equation (10.10):





− lim sin(∆x)

∆x→0

(sin(x))′ = cos(x) + sin(x)

; 

1 + 1

applying equation (10.13):

[ −0 ]

(sin(x))′ = cos(x) + sin(x)

; 

1 + 1

0

(sin(x))′ = cos(x) + sin(x)

; 

1 + 1

0

(sin(x))′ = cos(x) + sin(x)

; 

2

(sin(x))′ = cos(x) + sin(x) · 0 ; 

applying equations (2.56) and (2.58):

(sin(x))′ = cos(x) + 0 ; 

applying equation (2.45):

(sin(x))′ = cos(x) . 

(10.32)

Applying the last equation, we could now calculate the velocity component “vy” as the rate of change of position “y” with respect to time “t”. In a similar manner as we did in this section, we could also calculate the derivative of the cosine function “ (cos(x))′ ”, that in turn would also allow us to calculate the other velocity component “vx”. 

In this section, in analyzing the mathematical processes that are needed to calculate the velocity components “vx” and “vy” of an object in general circular motion, we found that the calculation of the derivative of the sine function “ (sin(x))′ ” and the calculation of the derivative of the cosine function “ (cos(x))′ ” are fundamental. In turn, as can be clearly seen in this section, the limit of

“sin(x)/x” when “x” tends to zero (“0”) played a key role in calculation of the derivative of the sine function “ (sin(x))′ ”. Additionally, the sandwich theorem [eq. (10.4)] played a key role in the calculation of the limit of “sin(x)/x” when “x” tends to zero (“0”) [see proof of eq. (10.17)]. 

As can be clearly seen in this section, the limit of “sin(x)/x” when “x” tends to zero (“0”), and in turn theorems similar to the sandwich theorem, played a key role in the analysis of an object in general circular motion. 
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11 Continuous Functions

11.1

INTRODUCTION

Limits appear explicitly or implicitly throughout physics. Limits and their properties are the foundation of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as limits. Once again, limits and their properties become more than just useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will define continuous functions through limits, and discuss properties of continuous functions that appear, explicitly or implicitly, throughout physics. 

11.2

NOTATION

Following the notation used in chapters 4-10, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

11.3

BOUNDED REAL SETS

Equivalent to the case of real sequences (see [4] and 3.4.2), and also equivalent to the case of real functions (see 9.3), we will define an upper-bounded real subset “S ” (S ⊂ ) through the following R

equation:



S



, /0





S is upper-bounded ⇐⇒

; 

(11.1)



∃



M ∀x∈S x ≤ M
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a value of “M ” that satisfies the condition on the right will be referred to as an “upper-bound of subset S ”. In turn, we will define a lower-bounded real subset “S ” (S ⊂ ) through the following R

equation:



S



, /0





S is lower-bounded ⇐⇒

; 

(11.2)



∃



M ∀x∈S M ≤ x

a value of “M ” that satisfies the condition on the right will be referred to as a “lower-bound of subset S ”. Also, if a given real subset “S” is both upper-bounded and lower-bounded, it will be referred to as a bounded real subset. It follows that:



S



, /0





S is bounded ⇐⇒

. 

(11.3)



∃



M ∀x∈S |x| ≤ M

Note that:

• For a real subset “S ” to be lower-bounded, upper-bound, or bounded, the subset “S ” must be nonempty (S , /0); 

• A real nonempty finite subset “S = {x1,x2,...,xn}” that contains “n” (n > 0) elements, will always be bounded. 

Given a nonempty subset “S ” (S , /0), we will denote greatest element in “S ” with the expression

“max(S)”. That is:

S , /0 :

xmax is the greatest element in S ⇐⇒ xmax = max(S) ; 

(11.4)

“max(S)” will also be referred to as the “maximum of S ”. Given a nonempty subset “S ” (S , /0), and assuming that the value “max(S)” exists, it follows that:

max(S) ∈ S ; 

(11.5)

x ∈ S =⇒ x ≤ max(S) . 

(11.6)

In particular, in the case of a nonempty finite subset “S = {x1,x2,...,xn}” that contains “n” (n > 0) elements, it follows that:

max(S) = max({x1,x2,...,xn}) = max(x1,x2,...,xn) . 

(11.7)

Note that:

• For a nonempty finite subset “S ” that contains “n” (n > 0) elements, the value “max(S)” 

always exists; 

• For a nonempty infinite subset “S ” the value “max(S)” may or may not exist. Consider the following three examples:

◦ “S = [0,1]”:

That is, consider subset “S ” equal to the bounded closed interval “[0,1] ”. This subset contains infinite elements (there are infinite real numbers that are greater than or equal to zero “0” and also less than or equal to one “ 1”). In this case, it is clear that “max(S) = 1” 

[thus “max(S)” exists]; 
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◦ “S = [0,+∞)”:

That is, consider subset “S ” equal to the right-unbounded closed interval “ [0, +∞)”. This subset contains infinite elements (there are infinite real numbers greater than or equal to zero “0”). However, in this case, “max(S)” does not exist (there is no real number in “S ” 

that is greater than or equal to all the numbers in “S ”); 

◦ “S = [0,1)”:

That is, consider subset “S ” equal to the right-half-open interval “ [0, 1)”. This subset contains infinite elements (there are infinite real numbers that are greater than or equal to zero “0” and also less than one “ 1”). However, in this case, “max(S)” does not exist (given any real number in S, we can always find a second real number in S that is greater than the first number; all the elements in S are less than one “ 1” and we can also find elements in S that are arbitrarily close to one “1”; however one “1” is not an element of S). 

In turn, given a nonempty subset “S ” (S , /0), we will denote the least element in “S ” with the expression “min(S)”. That is:

S , /0 :

xmin is the least element in S ⇐⇒ xmin = min(S) ; 

(11.8)

“min(S)” will also be referred to as the “minimum of S ”. Given a nonempty subset “S ” (S , /0), and assuming that the value “min(S)” exists, it follows that:

min(S) ∈ S ; 

(11.9)

x ∈ S =⇒ min(S) ≤ x . 

(11.10)

In particular, in the case of a nonempty finite subset “S = {x1,x2,...,xn}” that contains “n” (n > 0) elements, it follows that:

min(S) = min({x1,x2,...,xn}) = min(x1,x2,...,xn) . 

(11.11)

Note that:

• For a nonempty finite subset “S ” that contains “n” (n > 0) elements, the value “min(S)” 

always exists; 

• Similar to the case of “max(S)”, for a nonempty infinite subset “S ” the value “min(S)” may or may not exist. 

11.3.1

SUPREMUM AND INFIMUM

Given an upper-bounded subset “S ” (S ⊂ ), we will denote the least upper-bound of “S ” with the R

expression “sup(S)”. That is:

S is upper-bounded :

xsup is the least upper-bound of S ⇐⇒ xsup = sup(S) ; 

(11.12)

“sup(S)” will also be referred to as the “supremum of S ”. Given an upper-bounded subset “S ”, and assuming that the value “sup(S)” exists, it follows that:

x ∈ S =⇒ x ≤ sup(S) ; 

(11.13)

x2 < sup(S) =⇒ ∃x∈S x2 < x . 

(11.14)

[image: Image 1037]

308

Limits and Derivatives of Real Functions for Physicists

Additionally, it follows that if the maximum of subset “S ” exists, the supremum of “S ” is equal to the maximum of “S ”, that is:

max(S) exists =⇒ sup(S) = max(S) . 

(11.15)

Note that the supremum of subset “S ” [sup(S)] and the maximum of subset “S ” [max(S)] are two different concepts. For example, let us consider again the case where subset “S ” is equal to the right-half-open interval “ [0, 1)” (i.e.,“S = [0, 1)”). As discussed above, in this case, “max(S)” 

does not exist (once again, in this case, given any real number in S, we can always find a second real number in S that is greater than the first number). However, in this case, it is clear that the supremum is one [sup(S) = 1] (i.e., one “ 1” is the least upper bound of S ). Thus, we have found a subset “S ” 

where “max(S)” does not exist while “sup(S)” does exist [sup(S) = 1]. 

We will now prove that given an upper-bounded real subset “S ” the supremum of subset “S ” 

[sup(S)] will always exist. That is:

S is upper-bounded =⇒ sup(S) exists . 

(11.16)

Proof:

• Given an upper-bounded real subset “S ”, we can always find real number “M ” that is an upper-bound of set “S ” [eq. (11.1)]. That is:

x ∈ S =⇒ x ≤ M . 

We can assign to the real number “a0” the value of any given real number in “S ” minus one (“ 1”) (since S is upper-bounded, it is nonempty [eq. (11.1)]); that is:

∃x∈S a0 = x − 1 . 

In turn, we can assign to the real number “b0” the value of “M ”. That is: b0 = M . 

Note that:

a0 is not an upper-bound of S ; 

b0 is an upper-bound of S . 

We can then assign to the real number “c0” the value of the midpoint (average) of the real numbers “a0” and “b0”. That is:

a0 + b0

c0 =

. 

2

In turn, either “c0” is an upper-bound of subset “S ”, or “c0” is not an upper-bound of subset

“S ”. 

If “c0” is an upper-bound of subset “S ” we can assign to the real number “a1” the value of

“a0” and assign to the real number “b1” the value of “c0”. 

If, on the other hand, “c0” is not an upper-bound of subset “S ” we can assign to the real number “a1” the value of “c0” and assign to the real number “b1” the value of “b0”. 

[image: Image 1038]
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Thus, the values of “a1” and “b1” will be determined depending on whether or not “c0” is an upper-bound of subset “S ”. 

That is:

a



1 = a0



c0 is an upper-bound of S:

; 



b1 = c0

a



1 = c0



c0 is not an upper-bound of S:

. 



b1 = b0

Note that in either case it holds that:

a1 is not an upper-bound of S ; 

b1 is an upper-bound of S ; 

and it also holds that the distance between “a1”and “b1” is half the distance between

“a0”and “b0”. That is:

b0 − a0

b1 − a1 =

. 

2

Repeating the process of finding a midpoint “ci” (i ≥ 0), and the corresponding values of

“ai” and “bi”, indefinitely, we generate three real sequences, namely: “ai”, “bi”, and “ci” 

(i ≥ 0). 

From the above, it follows that the first two real sequences, “ai” and “bi”, have the following properties:

ai is not an upper bound of S ; 

real sequence ai is monotonically increasing ; 

ai < b0

(i.e., real sequence ai is upper-bounded) ; 

bi is an an upper bound of S ; 

real sequence bi is monotonically decreasing ; 

a0 < bi

(i.e., real sequence bi is lower-bounded) ; 

b0 − a0

bi − ai =

. 

2i

Considering equation (3.19) and considering the real sequence obtained by the difference

“bi − ai”, from the last equation it follows that:





lim bi − ai = 0 . 

i→∞
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Considering equation (3.31), from the above it follows that:

real sequence “ai” is convergent . 

Considering equations (2.118), (3.23), and (3.31), from the above it also follows that: real sequence “bi” is convergent . 

Considering equation (3.20):

lim ai exists ; 

i→∞

lim bi exists . 

i→∞





Noting, as we found above, that “lim bi − ai = 0 ”, and considering equation (3.24), it i→∞

follows that:

lim ai = lim bi . 

i→∞

i→∞

In turn, we can assign to the real number “d ” the value of “lim ai”. That is: i→∞

d = lim ai = lim bi . 

i→∞

i→∞

Now, since we can find upper-bounds of “S ” arbitrarily close to “d ” (the values of real sequence “bi”), it follows that “d ” must also be an upper-bound of “S ” (otherwise we could find an element “x” in “S ” greater than “d ”, and thus we would have found an the element “x” in “S ” that is greater than some upper-bound value “bi” [for some value of

“i”]). Therefore:

d is an upper-bound of subset S . 

On the other hand, since we can find non-upper-bounds of “S ” arbitrarily close to “d ” (the values of real sequence “ai”), it follows that any value “xless” less than“d ” cannot be an upper-bound of “S ” (otherwise we could find some non-upper-bound value “ai” [for some value of “i”] greater than upper-bound value “xless”). 

Since “d ” is an upper-bound of “S ”, and any value less than “d ” is not an upper-bound of

“S ”, it follows that “d ” is the least upper-bound. That is:

d = sup(S) . 

Therefore:

sup(S) exists ; 

S is upper-bounded =⇒ sup(S) exists . 
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Given a lower-bounded subset “S ” (S ⊂ ), we will denote the greatest lower-bound of “S ” with R

the expression “inf(S)”. That is:

S is lower-bounded :

xin f is the greatest lower-bound of S ⇐⇒ xin f = inf(S) ; 

(11.17)

“inf(S)” will also be referred to as the “infimum of S ”. Given a lower-bounded subset “S ”, and assuming that the value “inf(S)” exists, it follows that:

x ∈ S =⇒ inf(S) ≤ x ; 

(11.18)

inf(S) < x2 =⇒ ∃x∈S x < x2 . 

(11.19)

Additionally, it follows that if the minimum of subset “S ” exists, the infimum of “S ” is equal to the minimum of S , that is:

min(S) exists =⇒ inf(S) = min(S) . 

(11.20)

Note that the infimum of subset “S ” [inf(S)] and the minimum of subset “S ” [min(S)] are two different concepts. For example, let us consider the case where subset “S ” is equal to the left-half-open interval “ (0, 1]” (i.e., “S = (0, 1]”). In this case, “min(S)” does not exist (in this case, given any real number in S, we can always find a second real number in S that is less than the first number). 

However, in this case, it is clear that the infimum is zero [inf(S) = 0] (i.e., zero “0” is the greatest lower bound of S ). Thus, we have found a subset “S ” where “min(S)” does not exist while “inf(S)” 

does exist [inf(S) = 0]. 

In a very similar manner as we proved that given an upper-bounded real subset “S ”, its supremum

“sup(S)” always exists [eq. 11.16], we can also prove that given a lower-bounded real subset “S ” 

the infimum of subset “S ” [inf(S)] will always exist. That is:

S is lower-bounded =⇒ inf(S) exists . 

(11.21)

In turn, from equations (11.16) and (11.21), it follows that:



inf(S) exists 





S is bounded =⇒

. 

(11.22)



sup(S) exists 

11.4

DEFINITION OF CONTINUOUS FUNCTIONS AT A POINT

11.4.1

CONTINUOUS FUNCTIONS AT A POINT “A” 

Given a real function “ f (x)” that is defined in a neighborhood “SN” of real number “a”, we shall state that “the function f (x) is continuous at point x = a” (or more simply “ f (x) is continuous at x = a” or “ f (x) is continuous at a”), if and only if it holds that the limit of the function “ f (x)” when

“x” tends to “a” is equal to “ f (a)” (the function evaluated at x = a). That is: f (x) is continuous at “x = a” ⇐⇒ lim f (x) = f (a) . 

(11.23)

x→a

Note that:

• For a function to be continuous at a point “a”, the function must exist in a neighborhood of

“a” (i.e., the function must exist at “a” [ f (a) exists] and the function must also exist in a vicinity of “a”); 
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• Given a continuous function “ f (x)”, it not only holds that [eq. 7.1]:

∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − L| < ε } ; 

[where L = f (a)], but it also holds that:

∀ε>0 ∃δ>0 ∀x { |x − a| < δ =⇒ | f (x) − L| < ε } ; 

(note the logical predicate “∀x” rather than “∀x,a”). That is, for a continuous function, the value of the function not only comes “arbitrarily close to” the limit at points “close to but other than x = a”, but also at point “x = a” itself. 

Considering equation (7.1), it follows that:

f (x) is continuous at “x = a” ⇐⇒ lim f (a + ∆x) = f (a) . 

(11.24)

∆x→0

Intuitively, a continuous function “y = f (x)” is a function that when represented in a plane by the points “(x, y)” [i.e., by the points of the form “(x, f (x))”] through Cartesian coordinates (see 4.5.1), the result is a “continuous” curve. 

11.4.2

LEFT-CONTINUOUS FUNCTIONS AT A POINT “A” 

Given a real function “ f (x)” that is defined at a real number “a”, and also defined in a left-vicinity

“SV−” of real number “a”, we shall state that “the function f (x) is left-continuous at point x = a” 

(or more simply “ f (x) is left-continuous at x = a” or “ f (x) is left-continuous at a”), if and only if it holds that the limit of the function “ f (x)” when “x” tends to “a” from the left is equal to “ f (a)” (the function evaluated at x = a). That is:

f (x) is left-continuous at “x = a” ⇐⇒ lim f (x) = f (a) . 

(11.25)

x→a−

Note that:

• For a function to be left-continuous at a point “a”, the function must exist at “a” [ f (a) exists] and the function must also exist in a left-vicinity of “a”. 

Considering equation (7.14), it follows that:

f (x) is left-continuous at “x = a” ⇐⇒ lim f (a + ∆x) = f (a) . 

(11.26)

∆x→0−

11.4.3

RIGHT-CONTINUOUS FUNCTIONS AT A POINT “A” 

Given a real function “ f (x)” that is defined at a real number “a”, and also defined in a right-vicinity

“SV+” of real number “a”, we shall state that “the function f (x) is right-continuous at point x = a” 

(or more simply “ f (x) is right-continuous at x = a” or “ f (x) is right-continuous at a”), if and only if it holds that the limit of the function “ f (x)” when “x” tends to “a” from the right is equal to “ f (a)” 

(the function evaluated at x = a). That is:

f (x) is right-continuous at “x = a” ⇐⇒ lim f (x) = f (a) . 

(11.27)

x→a+

Note that:

• For a function to be right-continuous at a point “a”, the function must exist at “a” [ f (a) exists] and the function must also exist in a right-vicinity of “a”. 
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Considering equation (7.16), it follows that:

f (x) is right-continuous at “x = a” ⇐⇒ lim f (a + ∆x) = f (a) . 

(11.28)

∆x→0+

Considering equation (7.20), it follows that:



f (x) is left-continuous at “x = a” 







f (x) is continuous at “x = a” ⇐⇒

. 



f (x) is right-continuous at “x = a” 

(11.29)

11.5

DEFINITION OF CONTINUOUS FUNCTIONS IN A SET S

11.5.1

CONTINUOUS FUNCTIONS IN A NONEMPTY OPEN SET S

Given a real function “ f (x)” that is defined in a nonempty open set “S ”, we shall state that “the function f (x) is continuous in the open set S ”, if and only if it holds that the function “ f (x)” is continuous at every point “c” in the open set “S ”. That is:

n

o

f (x) is continuous in nonempty open set S ⇐⇒ ∀c∈S

lim f (x) = f (c)

. (11.30)

x→c

11.5.2

CONTINUOUS FUNCTIONS IN A NON-OPEN SET S WITH VICINITIES

In this book, by “non-open set with vicinities” we mean a set “S ” whose non-interior points all have either a left-vicinity in “S ” or a right vicinity in “S ”. Note that the non-interior points of set “S ” 

cannot have both a left-vicinity in “S ” and a right-vicinity in “S ” (otherwise they would be interior points). 

Given a real function “ f (x)” that is defined in a non-open set “S ” with vicinities, we shall state that “the function f (x) is continuous in the set S ”, if and only if three conditions hold: 1) the function

“ f (x)” is continuous at every interior point “c” in “S ”; 2) the function “ f (x)” is left-continuous at every non-interior point “b” with a left-vicinity in “S ”; and 3) the function “ f (x)” is right-continuous at every non-interior point “a” with a right-vicinity in “S ”. That is: f (x) is continuous in a non-open set S with vicinities ⇐⇒



n

o





∀

lim f (x) = f (c)





c∈int(S)





x→c

































∀



a∈S\int(S)

“a” has a right-vicinity in S =⇒ lim f (x) = f (a)

. 

x→a+







































∀

“b” has a left-vicinity in S =⇒ lim f (x) = f (b)





b∈S\int(S)



x→b−

(11.31)

11.5.3

CONTINUOUS FUNCTIONS IN THEIR DOMAIN

Given a real function “ f (x)”, if the function “ f (x)” is continuous in its own domain, then we shall simply state that “the function f (x) is continuous”. That is:

f (x) is continuous ⇐⇒ f (x) is continuous in its own domain . 

(11.32)
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11.6

CONTINUOUS FUNCTIONS IN AN INTERVAL I

11.6.1

OPEN INTERVAL I

Since an open interval “I ” is also a region [eq. (6.11)] (and thus that an open interval is also a nonempty open set), considering equation (11.30), it follows that given a real function “ f (x)” that is defined in an open interval “I ” (whether bounded, left-unbounded, right-unbounded, or unbounded), the function “ f (x)” is continuous in the open interval “I ” if and only if it holds that the function

“ f (x)” is continuous at every point “c” in the open interval “I ”. That is: n

o

f (x) is continuous in open interval I ⇐⇒ ∀c∈I

lim f (x) = f (c)

. 

(11.33)

x→c

11.6.2

CLOSED INTERVAL I

Since a bounded closed interval “I = [a, b ]” (with a < b) is also a non-open set with vicinities [ int(I) = (a, b); “a” has a right-vicinity in I; “b” has a left-vicinity in I ], considering equation (11.31), it follows that given a real function “ f (x)” that is defined in a bounded closed interval “I = [a, b ] ” (with a < b), the function “ f (x)” is continuous in the bounded closed interval

“I = [a, b ] ” if and only if the following three conditions hold: 1) that the function “ f (x)” is continuous in the open interval “(a, b)”; 2) that the function “ f (x)” is right-continuous at “x = a”; and 3) that the function “ f (x)” is left-continuous at “x = b”. That is: f (x) is continuous in a bounded closed interval [a, b ] ⇐⇒



a < c < b =⇒ lim f (x) = f (c) 







x→c





















lim f (x) = f (a)

 . 

(11.34)

x→a+























lim f (x) = f (b)







x→b−

In turn, since a left-unbounded closed interval “I = (−∞,b ]” is also a non-open set with vicinities

[ int(I) = (−∞,b); “b” has a left-vicinity in I ], considering equation (11.31), it follows that given a real function “ f (x)” that is defined in a left-unbounded closed interval “I = (−∞,b ]”, the function

“ f (x)” is continuous in the left-unbounded closed interval “I = (−∞,b ]” if and only if the following two conditions hold: 1) that the function “ f (x)” is continuous in the open interval “(−∞,b)”; and 2) that the function “ f (x)” is left-continuous at “x = b”. That is: f (x) is continuous in a left-unbounded closed interval (−∞, b ] ⇐⇒



c < b =⇒ lim f (x) = f (c) 







x→c



. 

(11.35)



lim f x) = f (b)







x→b−
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Similarly, since a right-unbounded closed interval “I = [a, +∞)” is also a non-open set with vicinities [ int(I) = (a, +∞); “a” has a right-vicinity in I ], considering equation (11.31), it follows that given a real function “ f (x)” that is defined in a right-unbounded closed interval “I = [a, +∞)”, the function “ f (x)” is continuous in the right-unbounded closed interval “I = [a, +∞)” if and only if the following two conditions hold: 1) that the function “ f (x)” is continuous in the open interval

“(a, +∞)”; and 2) that the function “ f (x)” is right-continuous at “x = a”. That is: f (x) is continuous in a right-unbounded closed interval [a, +∞) ⇐⇒



a < c =⇒ lim f (x) = f (c) 







x→c

 . 

(11.36)



lim f (x) = f (a)







x→a+

11.6.3

HALF-OPEN INTERVAL I

Since a left-half-open interval “I = (a, b ]” is also a non-open set with vicinities [ int(I) = (a, b); “b” 

has a left-vicinity in I ], considering equation (11.31), it follows that given a real function “ f (x)” 

that is defined in a left-half-open interval “I = (a, b ]”, the function “ f (x)” is continuous in the left-half-open interval “I = (a, b ]” if and only if the following two conditions hold: 1) that the function

“ f (x)” is continuous in the open interval “(a, b)”; and 2) that the function “ f (x)” is left-continuous at “x = b”. That is:

f (x) is continuous in a left-half-open interval (a, b ] ⇐⇒



a < c < b =⇒ lim f (x) = f (c) 



x





→c

 . 

(11.37)



lim f (x) = f (b)







x→b−

In turn, since a right-half-open interval “I = [a, b)” is also a non-open set with vicinities

[ int(I) = (a, b); “a” has a right-vicinity in I ], considering equation (11.31), it follows that given a real function “ f (x)” that is defined in a right-half-open interval “I = [a, b)”, the function “ f (x)” 

is continuous in the right-half-open interval “I = [a, b)” if and only if the following two conditions hold: 1) that the function “ f (x)” is continuous in the open interval “(a, b)”; and 2) that the function

“ f (x)” is right-continuous at “x = a”. That is:

f (x) is continuous in a right-half-open interval [a, b) ⇐⇒



a < c < b =⇒ lim f (x) = f (c) 







x→c



. 

(11.38)



lim f (x) = f (a)







x→a+

11.7

PROPERTIES OF CONTINUOUS FUNCTIONS

11.7.1

NOTATION

To simplify discussions, in this book, given a function “ f (x)”, and considering a nonempty set “S ” 

that is a subset of its domain [i.e., S , /0; S ⊂ domain of f (x)] the symbol “ fS(x)” (i.e., the function with the subset S as index) will denote a new function with new reduced domain “S ” that obtains the same values as the original function “ f (x)” (when evaluated at points in S). That is:



S







, /0

domain of fS(x) = S









=⇒

. 

(11.39)



S ⊂ domain of f (x) 



∀



x∈S fS(x) = f (x)
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Note that since the functions “ f (x)” and “ fS(x)” have in general different domains, it follows that “ f (x)” and “ fS(x)” are in general two different functions [the exception being the case

“S = domain of f (x)”]. 

For example, consider the function “ f (x) = x2 ”, we have in this case that: domain of f (x) = (−∞,+∞)

(=

) ; 

R

range of f (x) = [0, +∞) ; 

f (2) = 4 ; 

f (10) = 100 . 

Now, taking the bounded closed interval “I = [0, 3]” following the above notation, and considering the function “ fI(x)” (with once again f (x) = x2), we have that: domain of fI(x) = [0, 3] ; 

range of fI (x) = [0, 9] ; 

fI(2) = 4

(= f (2)) ; 

fI(10) does not exist . 

Note that “ f (x)” and “ fI(x)” are two different functions. 

11.7.2

MAXIMUM AND MINIMUM OF A FUNCTION IN A SET S

Given a function “ f (x)” defined in a subset “S ”, we shall state that “ f (x) has a maximum in S ”, if there exists a point “xmax” in “S ” such that the value of the function “ f (x)” at the point “xmax” [i.e., f (xmax)] is greater than or equal to the value of the function “ f (x)” evaluated at any point in subset

“S ” [i.e., “max(range of fS(x)) = f (xmax)”]. That is:

f (x) has a maximum in S ⇐⇒ ∃xmax∈S ∀x∈S f (x) ≤ f (xmax) ; 

(11.40)

the real number value “ f (xmax)” will be referred to as the “maximum value of f (x) in S ”, and we shall state that “ f (x) has the maximum value at x = xmax” or more simply “ f (x) has the maximum at xmax” . 

Note that, given a function “ f (x)” defined in a subset “S ”, the maximum of “ f (x)” in “S ” may or may not exist. For example, consider the function “ f (x) = x2 ”, we have in this case that:

• “ f (x)” does not have a maximum in

(its domain); 

R

given any real number “x1”, we can always find a second real number “x2” such that

“ f (x1) < f (x2)”; 

• “ f (x)” has a maximum in “[0,2]”; 

considering that in this case “ f (x) = x2 ”, it clearly follows that the maximum value of

“ f (x)” in “[0, 2]” is “4” (four), and also that “ f (x)” has the maximum at “x = 2” [i.e., 

“max(range of f[0,2](x)) = 4” and “ f (2) = 4”]; 

• “ f (x)” does not have a maximum in “[0,2)”; 

given any real number “x1 ∈ [0,2)”, we can always find a second real number “x2 ∈ [0,2)” 

such that “ f (x1) < f (x2)” (note that “2 < [0, 2)”). 

Also note that, if a function “ f (x)” has a maximum in subset “S ”, there can be more than one value of “xmax” in “S ” where “ f (x)” has the maximum value. For example, consider the function

“sin(x)”:

• The maximum of “sin(x)” in

(its domain) is clearly “ 1” (one); 

R

[image: Image 1040]
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• The function “sin(x)” has the maximum value at “x = π ”, however the function “sin(x)” 

2

also has the maximum at “x = 5π ” [in fact, there are infinite values of x where the sin(x) 2

function has the maximum value of one]. 

When considering a function “ f (x)” in its own domain, rather than stating “ f (x) has a maximum in its own domain”, we shall more simply state “ f (x) has a maximum”. In other words, when the subset “S ” being considered in a maximum is not explicitly indicated, it is assumed that the subset is the domain of the function. In particular, note that stating that “ f (x) has a maximum in subset S ” 

is the same as stating that “ fS(x) has a maximum” (see 11.7.1). 

Similarly, given a function “ f (x)” defined in a subset “S ”, we shall state that “ f (x) has a minimum in S ” if there exists a point “xmin” in “S ” such that the value of the function “ f (x)” at the point

“xmin” [i.e., f (xmin)] is less than or equal to the value of the function “ f (x)” evaluated at any point in subset “S ” [i.e., “min(range of fS(x)) = f (xmin)”]. That is: f (x) has a minimum in S ⇐⇒ ∃xmin∈S ∀x∈S f (xmin) ≤ f (x) ; 

(11.41)

the real number value “ f (xmin)” will be referred to as the “minimum value of f (x) in S ”, and we shall state that “ f (x) has the minimum value at x = xmin” or more simply “ f (x) has the minimum at xmin”. 

Note that, similar to the case of the maximum of a function “ f (x)” in subset “S ”, one finds that:

• Given a function “ f (x)” defined in a subset “S ”, the minimum of “ f (x)” in “S ” may or may not exist; 

• If a function “ f (x)” has a minimum in subset “S ”, there can be more than one value of

“xmin” in “S ” where “ f (x)” has the minimum value. 

When considering a function “ f (x)” in its own domain, rather than stating “ f (x) has a minimum in its own domain”, we shall more simply state “ f (x) has a minimum”. In other words, when the subset “S ” being considered in a minimum is not explicitly indicated, it is assumed that the subset is the domain of the function. In particular, note that stating that “ f (x) has a minimum in subset S ” 

is the same as stating that “ fS(x) has a minimum” (see 11.7.1). 

11.7.3

INCREASING AND DECREASING FUNCTIONS IN A SET S

Given a function “ f (x)” defined in a subset “S ”, we shall state that “ f (x) is an increasing function in S ”, if when considering two real numbers “x1” and “x2” in “S ” (x1 ∈ S ∧ x2 ∈ S), it follows that if “x1” is less than “x2” (x1 < x2) then the real number “ f (x1)” is less than “ f (x2)” [ f (x1) < f (x2)]. 

That is:

f (x) is an increasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 =⇒ f (x1) < f (x2) } . 

(11.42)

Considering the properties of inequalities of real numbers (see 2.5.5), it follows that: f (x) is an increasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x1) < f (x2) } . 

(11.43)

When considering a function “ f (x)” in its own domain, rather than stating “ f (x) is an increasing function in its own domain”, we shall more simply state “ f (x) is an increasing function”. In other words, when the subset “S ” being considered in an increasing function is not explicitly indicated, it is assumed that the subset is the domain of the function. In particular, note that stating that “ f (x) is
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an increasing function in subset S ” is the same as stating that “ fS(x) is an increasing function” (see

11.7.1). 

Similarly, given a function “ f (x)” defined in a subset “S ”, we shall state that “ f (x) is a decreasing function in S ”, if when considering two real numbers “x1” and “x2” in “S ” (x1 ∈ S ∧ x2 ∈ S), it follows that if “x1” is less than “x2” (x1 < x2) then the real number “ f (x2)” is less than “ f (x1)” 

[ f (x2) < f (x1)]. That is:

f (x) is a decreasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 =⇒ f (x2) < f (x1) } . 

(11.44)

Considering the properties of inequalities of real numbers (see 2.5.5), it follows that: f (x) is a decreasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x2) < f (x1) } . 

(11.45)

When considering a function “ f (x)” in its own domain, rather than stating “ f (x) is a decreasing function in its own domain”, we shall more simply state “ f (x) is a decreasing function”. In other words, when the subset “S ” being considered in a decreasing function is not explicitly indicated, it is assumed that the subset is the domain of the function. In particular, note that stating that “ f (x) is a decreasing function in subset S ” is the same as stating that “ fS(x) is a decreasing function” (see

11.7.1). 

11.7.4

GENERAL PROPERTIES

We will now prove that given a function “ f (x)” that is continuous in a bounded closed interval

“I = [a, b ]” (with a < b), the function will be bounded in the interval “I = [a, b ]” (with a < b). 

That is:

f (x) is continuous in [a, b ] =⇒ f (x) is bounded in [a, b ] ; 

(11.46)

in turn, that is:

f (x) is continuous in [a, b ] =⇒ ∃M ∀x∈[a,b] | f (x)| ≤ M . 

(11.47)

Note that equation (11.46) applies only to bounded closed intervals. In the case of a function “ f (x)” 

that is continuous in a bounded open interval (or a half-open interval or an unbounded interval), it does necessarily follow that that the function will be bounded in the given open interval (or a half-open interval or an unbounded interval). 

Proof:

• Case: { f (x) is continuous in [a,b]} ∧ { f (x) is unbounded in [a,b]}

∀M ∃x∈[a,b] | f (x)| > M . 

We can assign to the real number “c0” the value of “a”. That is:

c0 = a . 

In turn, we can assign to the real number “d0” the value of “b”. That is: d0 = b . 

[image: Image 1042]
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Note that it holds that:

f (x) is unbounded in [c0, d0] . 

We can then assign to the real number “h0” the value of the midpoint (average) of the real numbers “c0” and “d0”. That is:

c0 + d0

h0 =

. 

2

In turn, either the function “ f (x)” is unbounded in “[c0, h0]” or the function “ f (x)” is bounded in “[c0, h0]”. 

If the function “ f (x)” is unbounded in “[c0, h0]” we can assign to the real number “c1” the value of “c0” and assign to the real number “d1” the value of “h0”. 

If, on the other hand, “ f (x)” is bounded in “[c0, h0]”, then the function “ f (x)” must be unbounded in “[h0, d0]” (since f (x) is unbounded in “[c0, d0]”). 

In the case where “ f (x)” is bounded in “[c0, h0]” , we can assign to the real number “c1” the value of “h0” and assign to the real number “d1” the value of “d0”. 

Thus, the values of “c1” and “d1” will be determined depending on whether or not the function “ f (x)” is unbounded in “[c0, h0]”. 

That is:

c

 1 = c0



f (x) is unbounded in [c0, h0] :

; 



d1 = h0

c

 1 = h0



f (x) is bounded in [c0, h0] :

. 



d1 = d0

Note that in either case it holds that:

f (x) is unbounded in [c1, d1] ; 

and it also holds that the distance between “c1”and “d1” is half the distance between “c0”and

“d0”. That is:

d0 − c0

d1 − c1 =

. 

2

Repeating the process of finding a midpoint “hi” (i ≥ 0), and the corresponding values of

“ci” and “di”, indefinitely, we generate three real sequences, namely: “ci”, “di”, and “hi” 

(i ≥ 0). 

[image: Image 1044]
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From the above, it follows that the first two real sequences, “ci” and “di”, have the following properties:

ci ∈ [a, b ] ∧ di ∈ [a, b ] ; 

f (x) is unbounded in [ci, di] ; 

real sequence ci is monotonically increasing ; 

ci < b

(i.e., real sequence ci is upper-bounded) ; 

real sequence di is monotonically decreasing ; 

a < di

(i.e., real sequence di is lower-bounded) ; 

d0 − c0

di − ci =

. 

2i

Considering equation (3.19) and considering the real sequence obtained by the difference

“di − ci”, from the last equation it follows that:





lim di − ci = 0 . 

i→∞

Considering equation (3.31), from the above it follows that:

real sequence “ci” is convergent . 

Considering equations (2.118), (3.23), and (3.31), from the above it also follows that: real sequence “di” is convergent . 

Considering equation (3.20):

lim ci exists ; 

i→∞

lim di exists . 

i→∞





Noting, as we found above, that “lim di − ci = 0 ”, and considering equation (3.24), it i→∞

follows that:

lim ci = lim di . 

i→∞

i→∞

In turn, we can assign to the real number “p ” the value of “lim ci”. That is: i→∞

p = lim ci = lim di . 

i→∞

i→∞

Now, since “ci ∈ [a,b ]” and “di ∈ [a,b ]”, it follows that:

p ∈ [a, b ] ; 

(otherwise neither “ci” nor “di” could have gotten arbitrarily close to “p”). 
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◦ First subcase: p = a

Since “p ∈ [ci,di]” it follows that:

ci = a . 

Since “ f (x)” is unbounded in “[ci, di]”, it follows that “ f (x)” is unbounded in “[a, di]”, where “di” (beginning with the value “d0 = b”) gets arbitrarily close to “a”. 

It follows that “ f (x)” will be unbounded in any right-vicinity of “a”. 

On the other hand, f (x) is continuous in “[a, b ]”, thus from equation (11.34) it follows that:

lim f (x) = f (a) . 

x→a+

Considering equation (7.16), it follows that there exists a right-vicinity of “a” where

“ f (x)” is bounded. 

We have thus found that there exists a right-vicinity of “a” where “ f (x)” is both unbounded and bounded. Since this is a contradiction, it follows that the assumption in this subcase does not hold. Therefore:

p , a ; 

◦ Second subcase: a < p < b

Since “p ∈ [ci,di]” and “ f (x)” is unbounded in “[ci,di]”, where both “ci” and “di” (beginning with “c0 = a” and “d0 = b”) get arbitrarily close to “p”, it follows that f (x) will be unbounded in any neighborhood of “p”. 

On the other hand, f (x) is continuous in “[a, b ]”, thus from equation (11.34) it follows that:

lim f (x) = f (p) . 

x→p

Considering equation (7.1), it follows that there exists a neighborhood of “p” where

“ f (x)” is bounded. 

We have thus found that there exists a neighborhood of “p” where “ f (x)” is both unbounded and bounded. Since this is a contradiction, it follows that the assumption in this subcase does not hold. Therefore:

p < (a, b) ; 

◦ Third subcase: p = b

Since “p ∈ [ci,di]” it follows that:

di = b . 

Since “ f (x)” is unbounded in “[ci, di]”, it follows that “ f (x)” is unbounded in “[ci, b ]”, where “ci” (beginning with the value “c0 = a”) gets arbitrarily close to “b”. 
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It follows that “ f (x)” will be unbounded in any left-vicinity of “b”. 

On the other hand, f (x) is continuous in “[a, b ]”, thus from equation (11.34) it follows that:

lim f (x) = f (b) . 

x→b−

Considering equation (7.14), it follows that there exists a left-vicinity of “b” where “ f (x)” 

is bounded. 

We have thus found that there exists a left-vicinity of “b” where “ f (x)” is both unbounded and bounded. Since this is a contradiction, it follows that the assumption in this subcase does not hold. Therefore:

p , b ; 

From the three subcases, one finds that:

p , a ∧ p < (a, b) ∧ p , b ; 

that is:

p < [a, b ] . 

We have thus found that the real number “p” belongs to and does not belong to “[a, b ]”. 

Since this is a contradiction, it follows that the assumption in this case does not hold. Therefore:



f (x) is continuous in [a, b ] 





¬

; 



f (x) is unbounded in [a, b ] 

thus:

f (x) is continuous in [a, b ] =⇒ f (x) is bounded in [a, b ] ; 

f (x) is continuous in [a, b ] =⇒ ∃M ∀x∈[a,b] | f (x)| ≤ M . 

We will now prove that given a function “ f (x)” that is continuous in a bounded closed interval

“I = [a, b ]” (with a < b), the function “ f (x)” will have a maximum in the bounded closed interval

“I ” and the maximum value of “ f (x)” in “I ” will be equal to the supremum of the range of “ fI (x)”. 

That is:



I = [a, b ]



=⇒ max(range of f

f (x) is continuous in I

I (x)) = sup(range of fI (x)) . 

(11.48)

Note that “ f (x)” and “ fI (x)” are, in general, two different functions. As discussed in 11.7.1, “ f (x)” 

and “ fI(x)” have the same values when evaluated in “x ∈ I ”, but the domain of “ fI(x)” is reduced to

“I ” [I ⊂ domain of f (x)]. Since “ fI(x)” has a reduced domain (and in general a different domain) with respect to “ f (x)”, it follows that ” fI(x)” has a reduced range (and in general a different range) with respect to “ f (x)” (see 11.7.1). 
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Proof:

• Case: { I = [a,b] } ∧ { f (x) is continuous in I }

Since I is a bounded closed interval, it follows from equation (11.46) that: f (x) is bounded in I . 

Therefore (see 11.7.1):

fI (x) is bounded . 

Thus:

range of fI(x) is bounded . 

Considering equation (11.22):

sup(range of fI(x)) exists . 

We can assign to the real number “ysup” the value of “sup(range of fI (x))”. That is: ysup = sup(range of fI(x)) . 

Also, we can assign to the real number “c0” the value of “a”. That is: c0 = a . 

In turn, we can assign to the real number “d0” the value of “b”. That is: d0 = b . 

We can define the interval “I0” to be “[c0, d0]”. That is:

I0 = [c0, d0] . 

Note that:

I0 = I ; 

ysup = sup(range of fI (x)) . 

o

We can then assign to the real number “h0” the value of the midpoint (average) of the real numbers “c0” and “d0”. That is:

c0 + d0

h0 =

. 

2

Since the function “ f (x)” is continuous in “I0” ([c0, d0]), it follows that: f (x) is continuous in [c0, h0] ; 

f (x) is continuous in [h0, d0] . 
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Since both “[c0, h0]” and “[h0, d0]” are bounded closed intervals, it follows from equation (11.46) that:

f (x) is bounded in [c0, h0] ; 

f (x) is bounded in [h0, d0] . 

Therefore (see 11.7.1):

f[c0,h0](x) is bounded ; 

f[h0,d0](x) is bounded . 

Thus:

range of f[c0,h0](x) is bounded ; 

range of f[h0,d0](x) is bounded . 

Considering equation (11.22):

sup(range of f[c0,h0](x)) exists ; 

sup(range of f[h0,d0](x)) exists . 

Considering that “ysup = sup(range of f[c0,d0](x))”, it follows that: sup(range of f[c0,h0](x)) ≤ ysup ; 

sup(range of f[h0,d0](x)) ≤ ysup ; 

ysup = sup(range of f[c0,h0](x)) ∨ ysup = sup(range of f[h0,d0](x)) . 

In turn, either “sup(range of f[c0,h0](x))” is equal to “ysup” or “sup(range of f[c0,h0](x))” is not equal to “ysup”. 

If “sup(range of f[c0,h0](x))” is equal to “ysup” we can assign to the real number “c1” the value of “c0” and assign to the real number “d1” the value of “h0”. 

If, on the other hand, “sup(range of f[c0,h0](x))” is not equal to “ysup”, then “sup(range of f[h0,d0](x))” is equal to “ysup” [since ysup = sup(range of f[c0,d0](x))]. 

In the case where “sup(range of f[c0,h0](x))” is not equal to “ysup”, we can assign to the real number “c1” the value of “h0” and assign to the real number “d1” the value of “d0”. 

Thus, the values of of “c1” and “d1” will be determined depending on whether or not

“sup(range of f[c0,h0](x))” is equal to “ysup”. 

That is:

c

 1 = c0



ysup = sup(range of f[c

; 

0 ,h0](x)) :



d1 = h0

c

 1 = h0



ysup , sup(range of f[c

. 

0 ,h0](x)) :



d1 = d0
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Note that in either case it holds that:

ysup = sup(range of f[c1,d1](x)) ; 

and it also holds that the distance between “c1”and “d1” is half the distance between “c0”and

“d0”. That is:

d0 − c0

d1 − c1 =

. 

2

We can define the interval “I1” to be “[c1, d1]”. That is:

I1 = [c1, d1] . 

Therefore:

ysup = sup(range of fI (x)) . 

1

Repeating the process of finding a midpoint “hi” (i ≥ 0), and the corresponding values of

“ci” and “di”, indefinitely, we generate three real sequences, namely: “ci”, “di”, and “hi” 

(i ≥ 0). 

From the above, it follows that the first two real sequences, “ci” and “di”, have the following properties:

ci ∈ [a, b ] ∧ di ∈ [a, b ] ; 

Ii = [ci, di] ; 

ysup = sup(range of fI (x)) ; 

i

real sequence ci is monotonically increasing ; 

ci < b

(i.e., real sequence ci is upper-bounded) ; 

real sequence di is monotonically decreasing ; 

a < di

(i.e., real sequence di is lower-bounded) ; 

d0 − c0

di − ci =

. 

2i

Considering equation (3.19) and considering the real sequence obtained by the difference

“di − ci”, from the last equation it follows that:





lim di − ci = 0 . 

i→∞

Considering equation (3.31), from the above it follows that:

real sequence “ci” is convergent . 
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Considering equations (2.118), (3.23), and (3.31), from the above it also follows that: real sequence “di” is convergent . 

Considering equation (3.20):

lim ci exists ; 

i→∞

lim di exists . 

i→∞





Noting, as we found above, that “lim di − ci = 0 ”, and considering equation (3.24), it i→∞

follows that:

lim ci = lim di . 

i→∞

i→∞

In turn, we can assign to the real number “p ” the value of “lim ci”. That is: i→∞

p = lim ci = lim di . 

i→∞

i→∞

Now, since “ci ∈ [a,b ]” and “di ∈ [a,b ]”, it follows that:

p ∈ [a, b ] ; 

(otherwise neither “ci” nor “di” could have gotten arbitrarily close to “p”). 

◦ First subcase: p = a

Since “p ∈ Ii” (Ii = [ci,di]) it follows that:

ci = a . 

Since “sup(range of fI (x))” is equal to “y

i

sup”, it follows that “sup(range of f[a,di](x))” is

equal to “ysup”, where “di” (beginning with the value “d0 = b”) gets arbitrarily close to

“a”. 

It follows that the supremum of “range of fS

(x)”, in any right-vicinity “S

V +

V + ” of “a” (in

[a, b ]), is equal to “ysup”. 

On the other hand, “ f (x)” is continuous in “[a, b ]”, thus from equation (11.34) it follows that:

lim f (x) = f (a) . 

x→a+

Considering equation (7.16), and taking into account that “sup(range of f[a,di](x)) = ysup” 

it follows that “ f (a)” gets arbitrarily close to “ysup”. 

Since “ f (a)” is constant, it follows that:

f (a) = ysup . 
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In turn, since “a ∈ I ” (I = [a,b ]) and “ysup = sup(range of fI(x))”, it follows that: max(range of fI(x)) = f (a) ; 

max(range of fI(x)) = ysup ; 

max(range of fI(x)) = sup(range of fI(x)) ; 

◦ Second subcase: a < p < b

Since “sup(range of fI (x))” (I

i

i = [ci, di])

is equal to “ysup”, it follows that

“sup(range of f[ci,di](x))” is equal to “ysup”, where “ci” and “di” (beginning respectively with the values “c0 = a” and “d0 = b”) get arbitrarily close to “p”. 

Therefore the supremum of “range of fS (x)”, in any neighborhood “S

N

N ”of “ p” (in

[a, b ]), is equal to “ysup”. 

On the other hand, “ f (x)” is continuous in “[a, b ]”, thus from equation (11.34) it follows that:

lim f (x) = f (p) . 

x→p

Considering equation (7.1), and taking into account that “sup(range of f[ci,di](x)) = ysup” 

it follows that “ f (p)” gets arbitrarily close to “ysup”. 

Since “ f (p)” is constant, it follows that:

f (p) = ysup . 

In turn, since “p ∈ I ” (I = [a,b ]) and “ysup = sup(range of fI(x))”, it follows that: max(range of fI(x)) = f (p) ; 

max(range of fI(x)) = ysup ; 

max(range of fI(x)) = sup(range of fI(x)) ; 

◦ Third subcase: p = b

Since “p ∈ Ii” (Ii = [ci,di]) it follows that:

di = b . 

Since “sup(range of fI (x))” is equal to “y

i

sup”, it follows that “sup(range of f[ci,b ](x))” is

equal to “ysup”, where “ci” (beginning with the value “c0 = a”) gets arbitrarily close to

“b”. 

It follows that the supremum of “range of fS

(x)”, in any left-vicinity “S

V −

V − ” of “b” (in

[a, b ]), is equal to “ysup”. 
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On the other hand, “ f (x)” is continuous in “[a, b ]”, thus from equation (11.34) it follows that:

lim f (x) = f (b) . 

x→b−

Considering equation (7.14), and taking into account that “sup(range of f[ci,b](x)) = ysup” 

it follows that “ f (b)” gets arbitrarily close to “ysup”. 

Since “ f (b)” is constant, it follows that:

f (b) = ysup . 

In turn, since “b ∈ I ” (I = [a,b ]) and “ysup = sup(range of fI(x))”, it follows that: max(range of fI(x)) = f (b) ; 

max(range of fI(x)) = ysup ; 

max(range of fI(x)) = sup(range of fI(x)) ; 

From the three subcases, one finds that:

max(range of fI (x)) = sup(range of fI (x)) ; 

thus:



I = [a, b ]



=⇒

f (x) is continuous in I

max(range of fI (x)) = sup(range of fI (x)) . 

In a very similar manner as we proved equation (11.48), we can also prove that given a function

“ f (x)” that is continuous in a bounded closed interval “I = [a, b ]” (with a < b), the function “ f (x)” 

will have a minimum in the bounded closed interval “I ” and the minimum value of “ f (x)” in “I ” 

will be equal to the infimum of the range of “ fI (x)”. That is:



I = [a, b ]



=⇒ min(range of f

f (x) is continuous in I

I (x)) = inf(range of fI (x)) . 

(11.49)

In turn, from equations (11.48) and (11.49), it follows that:



I = [a, b ]





“max(range of f



=⇒

I (x))” exists

. 

(11.50)

f (x) is continuous in I

“min(range of fI(x))” exists

Note that equation (11.50) applies only to bounded closed intervals. In the case of a function “ f (x)” 

that is continuous in a bounded open interval (or a half-open interval or an unbounded interval), it does necessarily follow that that the function will have a maximum (or a minimum) in the given open interval (or a half-open interval or an unbounded interval). 
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We will now prove that given a function “ f (x)” that is continuous in a bounded closed interval

“I = [a, b ]” (with a < b), given the maximum value “ymax” of “ fI(x)”, given the minimum value

“ymin” of “ fI(x)”, for any real number “ym ∈ [ymax,ymin]” (i.e., ymin ≤ ym ≤ ymax), we can always find a real number “xm ∈ [a,b ]” such that “ym = f (xm)”. In other words the range of “ fI(x)” is

“[ymin, ymax]”. That is:



I = [a, b ]













f (x) is continuous in I

 =⇒ range of f

y

I (x) is [ymin, ymax] . 

(11.51)

max = max(range of fI (x))











y



min = min(range of fI (x))

Proof:

• Case: { I = [a,b] } ∧ { f (x) is continuous in I } ∧

{ ymax = max(range of fI(x)) } ∧

{ xmax ∈ I } ∧ { ymax = f (xmax) } ∧

{ ymin = min(range of fI(x)) } ∧

{ xmin ∈ I } ∧ { ymin = f (xmin) }

◦ First subcase: ym = ymin

ymin = f (xmin) ; 

ym = f (xmin) ; 

∃xm∈I ym = f (xm) ; 

◦ Second subcase: ym = ymax

ymax = f (xmax) ; 

ym = f (xmax) ; 

∃xm∈I ym = f (xm) ; 

◦ Third subcase: ymin < ym < ymax

ymin , ymax ; 

f (xmin) , f (xmax) ; 

xmin , xmax ; 

N

First subsubcase: xmin < xmax

We can assign to the real number “c0” the value of “xmin”. That is: c0 = xmin . 

In turn, we can assign to the real number “d0” the value of “xmax”. That is: d0 = xmax . 

We can define the interval “I0” to be “[c0, d0]”. That is:

I0 = [c0, d0] . 

[image: Image 1048]
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Note that:

f (c0) ≤ ym < f (d0) . 

We can then assign to the real number “h0” the value of the midpoint (average) of the real numbers “c0” and “d0”. That is:

c0 + d0

h0 =

. 

2

In turn, either “ f (h0)” is less than or equal to “ym” ( f (h0) ≤ ym) or “ f (h0)” is greater than “ym” ( f (h0) > ym). 

If “ f (h0)” is less than or equal to “ym” we can assign to the real number “c1” the value of “h0” and assign to the real number “d1” the value of “d0”. 

If, on the other hand, “ f (h0)” is greater than “ym” we can assign to the real number

“c1” the value of “c0” and assign to the real number “d1” the value of “h0”. 

That is:

c

 1 = h0



y(h0) ≤ ym :

; 



d1 = d0

c

 1 = c0



y(h0) > ym :

. 



d1 = h0

Note that in either case it holds that:

f (c1) ≤ ym < f (d1) ; 

and it also holds that the distance between “c1”and “d1” is half the distance between

“c0”and “d0”. That is:

d0 − c0

d1 − c1 =

. 

2

We can define the interval “I1” to be “[c1, d1]”. That is:

I1 = [c1, d1] . 

Repeating the process of finding a midpoint “hi” (i ≥ 0), and the corresponding values of “ci” and “di”, indefinitely, we generate three real sequences, namely: “ci”, “di”, and

“hi” (i ≥ 0). 

[image: Image 1050]
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From the above, it follows that the first two real sequences, “ci” and “di”, have the following properties:

ci ∈ [a, b ] ∧ di ∈ [a, b ] ; 

Ii = [ci, di] ; 

f (ci) ≤ ym < f (di) ; 

real sequence ci is monotonically increasing ; 

ci < b

(i.e., real sequence ci is upper-bounded) ; 

real sequence di is monotonically decreasing ; 

a < di

(i.e., real sequence di is lower-bounded) ; 

d0 − c0

di − ci =

. 

2i

Considering equation (3.19) and considering the real sequence obtained by the difference “di − ci”, from the last equation it follows that:





lim di − ci = 0 . 

i→∞

Considering equation (3.31), from the above it follows that:

real sequence “ci” is convergent . 

Considering equations (2.118), (3.23), and (3.31), from the above it also follows that: real sequence “di” is convergent . 

Considering equation (3.20):

lim ci exists ; 

i→∞

lim di exists . 

i→∞





Noting, as we found above, that “lim di −ci = 0 ”, and considering equation (3.24), i→∞

it follows that:

lim ci = lim di . 

i→∞

i→∞

In turn, we can assign to the real number “p ” the value of “lim ci”. That is: i→∞

p = lim ci = lim di . 

i→∞

i→∞

Now, since “ci ∈ [a,b ]” and “di ∈ [a,b ]”, it follows that:

p ∈ [a, b ] ; 

(otherwise neither “ci” nor “di” could have gotten arbitrarily close to “p”). 

[image: Image 1051]
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It follows that as we consider arbitrarily high values of “i”, both “ci” and “di” will get arbitrarily close to “p”. Considering that “p ∈ [a,b ]” and that the function “ f (x)” is continuous in “[a, b ]”, as we consider arbitrarily high values of “i”, both “ f (ci)” and

“ f (di)” will get arbitrarily close to “ f (p)”. That is:

lim f (ci) = f (p) = lim f (di) . 

i→∞

i→∞

Considering that “ f (ci) ≤ ym”, from equation (3.29) it follows that: lim f (ci) ≤ ym ; 

i→∞

f (p) ≤ ym . 

In turn, considering that “ym < f (di)”, from equation (3.30) it follows that: ym ≤ lim f (di) ; 

i→∞

ym ≤ f (p) . 

Since it holds that “ f (p) ≤ ym”, and also that “ym ≤ f (p)”, if follows that: ym = f (p) . 

Therefore, noting that “I = [a, b ]”:

∃xm∈I ym = f (xm) ; 

(namely: “xm = p”); 

N

Second subsubcase: xmax < xmin

We can assign to the real number “c0” the value of “xmax”. That is: c0 = xmax . 

In turn, we can assign to the real number “d0” the value of “xmin”. That is: d0 = xmin . 

We can define the interval “I0” to be “[c0, d0]”. That is:

I0 = [c0, d0] . 

Note that:

f (c0) ≥ ym > f (d0) . 

We can then assign to the real number “h0” the value of the midpoint (average) of the real numbers “c0” and “d0”. That is:

c0 + d0

h0 =

. 

2
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In turn, either “ f (h0)” is greater than or equal to “ym” ( f (h0) ≥ ym) or “ f (h0)” is less than “ym” ( f (h0) < ym). 

If “ f (h0)” is greater than or equal to “ym” we can assign to the real number “c1” the value of “h0” and assign to the real number “d1” the value of “d0”. 

If, on the other hand, “ f (h0)” is less than “ym” we can assign to the real number “c1” 

the value of “c0” and assign to the real number “d1” the value of “h0”. 

That is:

c

 1 = h0



y(h0) ≥ ym :

; 



d1 = d0

c

 1 = c0



y(h0) < ym :

. 



d1 = h0

Note that in either case it holds that:

f (c1) ≥ ym > f (d1) ; 

and it also holds that the distance between “c1”and “d1” is half the distance between

“c0”and “d0”. That is:

d0 − c0

d1 − c1 =

. 

2

We can define the interval “I1” to be “[c1, d1]”. That is:

I1 = [c1, d1] . 

Repeating the process of finding a midpoint “hi” (i ≥ 0), and the corresponding values of “ci” and “di”, indefinitely, we generate three real sequences, namely: “ci”, “di”, and

“hi” (i ≥ 0). 

From the above, it follows that the first two real sequences, “ci” and “di”, have the following properties:

ci ∈ [a, b ] ∧ di ∈ [a, b ] ; 

Ii = [ci, di] ; 

f (ci) ≥ ym > f (di) ; 

real sequence ci is monotonically increasing ; 

ci < b

(i.e., real sequence ci is upper-bounded) ; 

real sequence di is monotonically decreasing ; 

a < di

(i.e., real sequence di is lower-bounded) ; 

d0 − c0

di − ci =

. 

2i
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Considering equation (3.19) and considering the real sequence obtained by the difference “di − ci”, from the last equation it follows that:





lim di − ci = 0 . 

i→∞

Considering equation (3.31), from the above it follows that:

real sequence “ci” is convergent . 

Considering equations (2.118), (3.23), and (3.31), from the above it also follows that: real sequence “di” is convergent . 

Considering equation (3.20):

lim ci exists ; 

i→∞

lim di exists . 

i→∞





Noting, as we found above, that “lim di −ci = 0 ”, and considering equation (3.24), i→∞

it follows that:

lim ci = lim di . 

i→∞

i→∞

In turn, we can assign to the real number “p ” the value of “lim ci”. That is: i→∞

p = lim ci = lim di . 

i→∞

i→∞

Now, since “ci ∈ [a,b ]” and “di ∈ [a,b ]”, it follows that:

p ∈ [a, b ] ; 

(otherwise neither “ci” nor “di” could have gotten arbitrarily close to “p”). 

It follows that as we consider arbitrarily high values of “i”, both “ci” and “di” will get arbitrarily close to “p”. Considering that “p ∈ [a,b ]” and that the function “ f (x)” is continuous in “[a, b ]”, as we consider arbitrarily high values of “i”, both “ f (ci)” and

“ f (di)” will get arbitrarily close to “ f (p)”. That is:

lim f (ci) = f (p) = lim f (di) . 

i→∞

i→∞

Considering that “ f (ci) ≥ ym”, from equation (3.30) it follows that: lim f (ci) ≥ ym ; 

i→∞

f (p) ≥ ym . 
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In turn, considering that “ym > f (di)”, from equation (3.29) it follows that: ym ≥ lim f (di) ; 

i→∞

ym ≥ f (p) . 

Since it holds that “ f (p) ≥ ym”, and also that “ym ≥ f (p)”, if follows that: ym = f (p) . 

Therefore, noting that “I = [a, b ]”:

∃xm∈I ym = f (xm) ; 

(namely: “xm = p”); 

From the two subsubcases, it follows that:

ymin < ym < ymax =⇒ ∃xm∈I ym = f (xm) ; 

From the three subcases, one finds that:

ymin ≤ ym ≤ ymax =⇒ ∃xm∈I ym = f (xm) ; 

or equivalently:

range of fI (x) is [ymin, ymax] . 

We will now prove that given a function “ f (x)” defined in a bounded closed interval “I = [a, b ]”, if the function “ f (x)” is increasing in “I = [a, b ]” and the range of the function “ fI(x)” is

“[ f (a), f (b)]”, then the function “ f (x)” is continuous in the interval “I = [a, b ]”. In other words, if an increasing function “ f (x)” in a bounded closed interval “I = [a, b ]” can obtain any value between “ f (a)” and “ f (b)” for some value of “x ∈ I ”, then the function must be continuous in “I ”. 

That is:



I = [a, b ]







f (x) is an increasing function in I

=⇒ f (x) is continuous in I . 

(11.52)



range of f



I (x) is [ f (a), f (b)]

Proof:

• Case: { I = [a,b] } ∧ { f (x) is an increasing function in I } ∧

{ f (a) ≤ ym ≤ f (b) =⇒ ∃xm∈I ym = f (xm) }





◦ First subcase: ¬

lim = f (a)

x→a+

n

o

¬ ∀ε>0 ∃δ>0 ∀x>a |x − a| < δ =⇒ | f (x) − f (a)| < ε

[eq. (7.16)] ; 

n

o

∃ε>0 ∀δ>0 ∃x>a ¬ |x − a| < δ =⇒ | f (x) − f (a)| < ε

. 
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Noting that ε > 0:

n

o

∀δ>0 ∃x>a ¬ |x − a| < δ =⇒ | f (x) − f (a)| < ε

; 

n

o

∀δ>0 ∃x>a |x − a| < δ ∧ ¬ | f (x) − f (a)| < ε

; 

∀δ>0 ∃x>a |x − a| < δ ∧ | f (x) − f (a)| ≥ ε . 

Given that the function “ f (x)” is an increasing function, from the last equation it follows that for any value of “x > a” (in the interval I), the value of the function at that point

“ f (x)” must be greater than “ f (a) + ε”. 

In other words, there are values between “ f (a)” and f (b)” that are never obtained in the interval “I = [a, b ]”. 

This is a contradiction, since:

f (a) ≤ ym ≤ f (b) =⇒ ∃xm∈I ym = f (xm) . 

Given that we have found a contradiction, it follows that the assumption in the subcase does not hold. Therefore:

lim = f (a) ; 

x→a+

(i.e., the function f (x) is right-continuous at “x = a”); 









◦ Second subcase:

a < x1 < b

∧ ¬

lim = f (x1)

x→x1

Since “ f (x)” is an increasing function in “I = [a, b ]”, it follows that: f (a) < f (x1) < f (b) . 

Now:

n

o

¬ ∀ε>0 ∃δ>0 ∀x,x |x − x

[eq. (7.1)] ; 

1

1| < δ =⇒ | f (x) − f (x1)| < ε

n

o

∃ε>0 ∀δ>0 ∃x,x ¬ |x − x

. 

1

1| < δ =⇒ | f (x) − f (x1)| < ε

Noting that ε > 0:

n

o

∀δ>0 ∃x,x ¬ |x − x

; 

1

1| < δ =⇒ | f (x) − f (x1)| < ε

n

o

∀δ>0 ∃x,x |x − x

| f (x) − f (x

; 

1

1| < δ ∧ ¬

1)| < ε

∀δ>0 ∃x,x |x − x

1

1| < δ ∧ | f (x) − f (x1)| ≥ ε . 

Given that the function “ f (x)” is an increasing function, from the last equation it follows that for any value of “x < x1” (in the interval I), the value of the function at that point

“ f (x)” must be less than “ f (x1) − ε”; and in turn, from the last equation, it also follows that for any value of “x > x1” (in the interval I), the value of the function at that point

“ f (x)” must be greater than “ f (x1) + ε”. 
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In other words, since “ f (a) < f (x1) < f (b)”, there are values between “ f (a)” and f (b)” 

that are never obtained in the interval “I = [a, b ]”. 

This is a contradiction, since:

f (a) ≤ ym ≤ f (b) =⇒ ∃xm∈I ym = f (xm) . 

Given that we have found a contradiction, it follows that the assumption in the subcase does not hold. Therefore:

lim = f (x1) ; 

x→x1

where “a < x1 < b”. (i.e., the function f (x) is continuous at “x = x1” [a < x1 < b ]); 





◦ Third subcase: ¬

lim = f (b)

x→b−

n

o

¬ ∀ε>0 ∃δ>0 ∀x<b |x − b| < δ =⇒ | f (x) − f (b)| < ε

[eq. (7.14)] ; 

n

o

∃ε>0 ∀δ>0 ∃x<b ¬ |x − b| < δ =⇒ | f (x) − f (b)| < ε

. 

Noting that ε > 0:

n

o

∀δ>0 ∃x<b ¬ |x − b| < δ =⇒ | f (x) − f (b)| < ε

; 

n

o

∀δ>0 ∃x<b |x − b| < δ ∧ ¬ | f (x) − f (b)| < ε

; 

∀δ>0 ∃x<b |x − b| < δ ∧ | f (x) − f (b)| ≥ ε . 

Given that the function “ f (x)” is an increasing function, from the last equation it follows that for any value of “x < b” (in the interval I), the value of the function at that point

“ f (x)” must be less than “ f (b) − ε”. 

In other words, there are values between “ f (a)” and f (b)” that are never obtained in the interval “I = [a, b ]”. 

This is a contradiction, since:

f (a) ≤ ym ≤ f (b) =⇒ ∃xm∈I ym = f (xm) . 

Given that we have found a contradiction, it follows that the assumption in the subcase does not hold. Therefore:

lim = f (b) ; 

x→b−

(i.e., the function f (x) is left-continuous at “x = b”). 

From the above three subcases, and considering equation (11.34), one finds that: f (x) is continuous in I = [a, b ] . 
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In a very similar manner as we proved equation (11.52), we can also prove that given a function “ f (x)” defined in a bounded closed interval “I = [a, b ]”, if the function “ f (x)” is decreasing in

“I = [a, b ]” and the range of the function “ fI(x)” is “[ f (b), f (a)]”, then the function “ f (x)” is continuous in the interval “I = [a, b ]”. In other words, if a decreasing function “ f (x)” in a bounded closed interval “I = [a, b ]” can obtain any value between “ f (a)” and “ f (b)” for some value of “x ∈ I ”, then the function must be continuous in “I ”. That is:



I = [a, b ]







f (x) is a decreasing function in I

=⇒ f (x) is continuous in I . 

(11.53)



range of f



I (x) is [ f (b), f (a)]

We will now prove that given a function “ f (x)” that is continuous in a bounded closed interval

“I = [a, b ]”, if the function “ f (x)” is increasing in “I = [a, b ]”, then the inverse function “ f −1(x)” 

I

is continuous in the interval “[ f (a), f (b)]”. That is:



I = [a, b ]







f (x) is continuous in I

=⇒ f −1(x) is continuous . 

(11.54)

I



f (x) is an increasing function in I 

Note that:

• In equation (11.54), we are referring to the inverse function “ f −1(x)” [not the inverse func-I

tion f −1(x)]. In other words, we are considering the inverse function, after the domain of the original function “ f (x)” has been reduced to “I = [a, b ]” to generate the function “ fI (x)” 

(see 11.7.1); 

• In equation (11.54), when we state that “ f −1(x) is continuous”, we mean that “ f −1(x) is I

I

continuous in its domain” (see 11.5.3); in other words, in this case, we mean that “ f −1(x) I

is continuous in [ f (a), f (b)]”; 

• Since the function “ f (x)” is increasing in “I = [a,b]”, we know that the function “ f (x)” 

does not repeat values within the interval “I = [a, b ]”; therefore, we know that the inverse function “ f −1(x)” exists and is well-defined (see 1.3.3); I

• The inverse function “ f −1(x)” may or may not exist [i.e., considering the whole original domain of f (x)], depending on whether or not the function “ f (x)” repeats values when also considering points outside of the interval “I = [a, b ]” (see 1.3.3). 

Proof:

• Case: { I = [a,b] } ∧ { f (x) is continuous in I } ∧

{ f (x) is an increasing function in I }

domain of fI(x) is [a, b ] . 

Since “ fI (x)” is an increasing function, it follows that:

the maximum of fI(x) is f (b) ; 

the minimum of fI(x) is f (a) . 

Thus:

range of fI(x) is [ f (a), f (b)]

[eq. (11.51)] . 
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Since fI (x) is an increasing function:

f −1(x) exists ; 

I

f −1(x) is an increasing function . 

I

It follows that:

domain of f −1(x) is [ f (a), f (b) ] ; 

I

range of f −1(x) is [a, b ] ; 

I

f −1(x) is continuous in [ f (a), f (b)]

[eq. (11.52)] ; 

I

f −1(x) is continuous . 

I

We will also now prove that given a function “ f (x)” that is continuous in a bounded closed interval

“I = [a, b ]”, if the function “ f (x)” is decreasing in “I = [a, b ]”, then the inverse function “ f −1(x)” 

I

is continuous in the interval “[ f (b), f (a)]”. That is:



I = [a, b ]







f (x) is continuous in I

=⇒ f −1(x) is continuous . 

(11.55)

I



f (x) is a decreasing function in I 

Proof:

• Case: { I = [a,b] } ∧ { f (x) is continuous in I } ∧

{ f (x) is a decreasing function in I }

domain of fI(x) is [a, b ] . 

Since “ fI(x)” is a decreasing function, it follows that:

the maximum of fI(x) is f (a) ; 

the minimum of fI(x) is f (b) . 

Thus:

range of fI(x) is [ f (b), f (a)]

[eq. (11.51)] . 

Since fI (x) is a decreasing function:

f −1(x) exists ; 

I

f −1(x) is a decreasing function . 

I
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It follows that:

domain of f −1(x) is [ f (b), f (a) ] ; 

I

range of f −1(x) is [a, b ] ; 

I

f −1(x) is continuous in [ f (b), f (a)]

[eq. (11.53)] ; 

I

f −1(x) is continuous . 

I

We will now prove that a constant function is continuous, that is:

“ f (x) = C ” is continuous

(in

) . 

(11.56)

R

Proof:

• Case: f (x) = C

domain of f (x) is

; 

R

lim f (x) = lim C ; 

x→a

x→a

lim f (x) = C

[eq. (7.3)] ; 

x→a

lim f (x) = f (a) . 

x→a

Since “a” is an arbitrary real number, from equation (11.30), it follows that: f (x) is continuous ; 

“ f (x) = C ” is continuous . 

We will also now prove that the function “ f (x) = x” is continuous, that is:

“ f (x) = x” is continuous

(in

) . 

(11.57)

R

Proof:

• Case: f (x) = x

domain of f (x) is

; 

R

lim f (x) = lim x ; 

x→a

x→a

lim f (x) = a

[eq. (7.4)] ; 

x→a

lim f (x) = f (a) ; 

x→a

Since “a” is an arbitrary real number, from equation (11.30), it follows that: f (x) is continuous ; 

“ f (x) = x ” is continuous . 
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We will now prove that given two functions “ f (x)” and “g(x)” that are continuous at a point

“x = a”, the function of the sum “ f (x) + g(x)” is also continuous at point “x = a”. That is: f (x) is continuous at “x = a”  =⇒ “f(x)+g(x)” is continuous at “x = a” . 

g(x) is continuous at “x = a” 

(11.58)

Proof:

• Case: { f (x) is continuous at “x = a” } ∧ { g(x) is continuous at “x = a” } ∧

{ h(x) = f (x) + g(x) }

lim f (x) = f (a)

[eq. (11.23)] ; 

x→a

lim g(x) = g(a)

[eq. (11.23)] ; 

x→a





lim

f (x) + g(x)

= f (a) + g(a)

[eq. (7.5)] ; 

x→a

lim h(x) = f (a) + g(a) ; 

x→a

lim h(x) = h(a) ; 

x→a

h(x) is continuous at “x = a” 

[eq. (11.23)] ; 

“ f (x) + g(x)” is continuous at “x = a” . 

We will also now prove that given two functions “ f (x)” and “g(x)” that are left-continuous at a point “x = a”, the function of the sum “ f (x) + g(x)” is also left-continuous at point “x = a”. That is: f (x) is left-continuous at “x = a”  =⇒ “f(x)+g(x)” is left-continuous at “x = a” . 

g(x) is left-continuous at “x = a” 

Proof:

• Case: { f (x) is left-continuous at “x = a” } ∧ { g(x) is left-continuous at “x = a” } ∧

{ h(x) = f (x) + g(x) }

lim f (x) = f (a)

[eq. (11.25)] ; 

x→a−

lim g(x) = g(a)

[eq. (11.25)] ; 

x→a−
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lim

f (x) + g(x)

= f (a) + g(a)

[eqs. (7.5) and (7.14)] ; 

x→a−

lim h(x) = f (a) + g(a) ; 

x→a−

lim h(x) = h(a) ; 

x→a−

h(x) is left-continuous at “x = a” 

[eq. (11.25)] ; 

“ f (x) + g(x)” is left-continuous at “x = a” . 

We will additionally now prove that given two functions “ f (x)” and “g(x)” that are right-continuous at a point “x = a”, the function of the sum “ f (x) + g(x)” is also right-continuous at point “x = a”. 

That is:



f (x) is right-continuous at “x = a”  =⇒ “f(x)+g(x)” is right-continuous at “x = a” . 

g(x) is right-continuous at “x = a” 

Proof:

• Case: { f (x) is right-continuous at “x = a” } ∧ { g(x) is right-continuous at “x = a” } ∧

{ h(x) = f (x) + g(x) }

lim f (x) = f (a)

[eq. (11.27)] ; 

x→a+

lim g(x) = g(a)

[eq. (11.27)] ; 

x→a+





lim

f (x) + g(x)

= f (a) + g(a)

[eqs. (7.5) and (7.16)] ; 

x→a+

lim h(x) = f (a) + g(a) ; 

x→a+

lim h(x) = h(a) ; 

x→a+

h(x) is right-continuous at “x = a” 

[eq. (11.27)] ; 

“ f (x) + g(x)” is right-continuous at “x = a” . 

We will now prove that given a function “ f (x)” that is continuous at a point “x = a”, the negative of the function “− f (x)” is also continuous at point “x = a”. That is: f (x) is continuous at “x = a” =⇒ “− f (x)” is continuous at “x = a” . 

(11.59)
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Proof:

• Case: f (x) is continuous at “x = a” 

lim f (x) = f (a)

[eq. (11.23)] ; 

x→a





lim − f (x) = − f (a)

[eq. (7.6)] ; 

x→a

“− f (x)” is continuous at “x = a” 

[eq. (11.23)] . 

In a very similar manner as we proved equation (11.59), we can also prove the following two equations:

f (x) is left-continuous at “x = a” =⇒ “− f (x)” is left-continuous at “x = a” ; f (x) is right-continuous at “x = a” =⇒ “− f (x)” is right-continuous at “x = a” . 

We will now prove that given two functions “ f (x)” and “g(x)” that are continuous at a point

“x = a”, the function of the difference “ f (x) − g(x)” is also continuous at point “x = a”. That is: f (x) is continuous at “x = a”  =⇒ “f(x)−g(x)” is continuous at “x = a” . 

g(x) is continuous at “x = a” 

(11.60)

Proof:

• Case: { f (x) is continuous at “x = a” } ∧ { g(x) is continuous at “x = a” }

“−g(x)” is continuous at “x = a” 

[eq. (11.59)] ; 

“ f (x) + (−g(x))” is continuous at “x = a” 

[eq. (11.58)] ; 

“ f (x) − g(x))” is continuous at “x = a” 

[eq. (2.54)] . 

In a very similar manner as we proved equation (11.60), we can also prove the following two equations:



f (x) is left-continuous at “x = a”  =⇒

g(x) is left-continuous at “x = a” 

“ f (x) − g(x)” is left-continuous at “x = a” ; 



f (x) is right-continuous at “x = a”  =⇒

g(x) is right-continuous at “x = a” 

“ f (x) − g(x)” is right-continuous at “x = a” . 
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We will now prove that given two functions “ f (x)” and “g(x)” that are continuous at a point

“x = a”, the function of the product “ f (x) g(x)” is also continuous at point “x = a”. That is: f (x) is continuous at “x = a”  =⇒ “f(x)g(x)” is continuous at “x = a” . (11.61) g(x) is continuous at “x = a” 

Proof:

• Case: { f (x) is continuous at “x = a” } ∧ { g(x) is continuous at “x = a” }

lim f (x) = f (a)

[eq. (11.23)] ; 

x→a

lim g(x) = g(a)

[eq. (11.23)] ; 

x→a





lim

f (x) g(x)

= f (a) g(a)

[eq. (7.8)] ; 

x→a

“ f (x) g(x)” is continuous at “x = a” . 

In a very similar manner as we proved equation (11.61), we can also prove the following two equations:



f (x) is left-continuous at “x = a”  =⇒

g(x) is left-continuous at “x = a” 

“ f (x) g(x)” is left-continuous at “x = a” ; 



f (x) is right-continuous at “x = a”  =⇒

g(x) is right-continuous at “x = a” 

“ f (x) g(x)” is right-continuous at “x = a” . 

We will now prove that given a function “ f (x)” that is continuous at a point “x = a”, such that the function is nonzero at “x = a” [ f (a) , 0], the reciprocal of the function “( f (x))−1 ” is also continuous at point “x = a”. That is:



f (x) is continuous at “x = a”  =⇒ “(f(x))−1” is continuous at “x = a” . (11.62) f (a) , 0

Note that:

• If “ f (a) = 0” then the reciprocal of the function “( f (x))−1 ” cannot be continuous at “x = a” 

[even if the original function f (x) is continuous at “x = a”], because in that case “( f (a))−1 ” 

is not defined (since the reciprocal of zero “0” does not exist). 

Proof:

• Case: { f (x) is continuous at “x = a” } ∧ { f (a) , 0 }

lim f (x) = f (a)

[eq. (11.23)] ; 

x→a





lim ( f (x))−1

= ( f (a))−1

[eq. (7.12)] ; 

x→a

“( f (x))−1 ” is continuous at “x = a” 

[eq. (11.23)] . 
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In a very similar manner as we proved equation (11.62), we can also prove the following two equations:



f (x) is left-continuous at “x = a”  =⇒

f (a) , 0

“( f (x))−1 ” is left-continuous at “x = a” ; 



f (x) is right-continuous at “x = a”  =⇒

f (a) , 0

“( f (x))−1 ” is right-continuous at “x = a” . 

We will now prove that given two functions “ f (x)” and “g(x)” that are continuous at a point

“x = a”, such that the second function “g(x)” is nonzero at “x = a” [g(a) , 0], the function of the ratio “ f (x)/g(x)” is also continuous at point “x = a”. That is:



f (x) is continuous at “x = a” 





g(x) is continuous at “x = a” 

=⇒ “ f (x)/g(x)” is continuous at “x = a” . 



g(a) , 0



(11.63)

Proof:

• Case: { f (x) is continuous at “x = a” } ∧ { g(x) is continuous at “x = a” } ∧ { g(a) , 0 }

lim f (x) = f (a)

[eq. (11.23)] ; 

x→a

lim g(x) = g(a)

[eq. (11.23)] ; 

x→a





lim

f (x)/g(x)

= f (a)/g(a)

[eq. (7.13)] ; 

x→a

“ f (x)/g(x)” is continuous at “x = a” . 

In a very similar manner as we proved equation (11.63), we can also prove the following two equations:



f (x) is left-continuous at “x = a” 





g(x) is left-continuous at “x = a” 

=⇒



g(a) , 0



“ f (x)/g(x)” is left-continuous at “x = a” ; 



f (x) is right-continuous at “x = a” 





g(x) is right-continuous at “x = a” 

=⇒



g(a) , 0



“ f (x)/g(x)” is right-continuous at “x = a” . 

[image: Image 1054]

[image: Image 1055]
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Given that both a constant function and the the function “ f (x) = x” are continuous [eqs. (11.56) and (11.57)], and that any polynomial function “ fp(x) = anxn + an−1xn−1 + ... + a1x + a0” (with n ≥ 0) can be seen as sums and products of constant functions and the function “ f (x) = x”, from equations (11.58) and (11.61) it follows that polynomial functions are continuous. That is: n ≥ 0



=⇒ “ f

) . 

f

p(x)” is continuous

(in R

p(x) = anxn + an−1xn−1 + ... + a1x + a0

(11.64)

Note that in the case where “n = 0”, a polynomial function reduces to a constant function. 

In turn, since the function “ f (x) = xn ” (with n ≥ 1) is a polynomial function, it follows that the function “ f (x) = xn ” (with n ≥ 1) is continuous. That is:

n ≥ 1 :

“ f (x) = xn ” is continuous

(in

) . 

(11.65)

R

We will now prove that the function “ f (x) = x−n ” (with n ≥ 1) is continuous (in its domain). 

That is:

n ≥ 1 :

“ f (x) = x−n ” is continuous

(in

\{0}) . 

(11.66)

R

Proof:

• Case: { n ≥ 1 } ∧ { g(x) = xn }

domain of g(x) is

; 

R

g(0) = 0

[eq. (2.81)] ; 

x , 0 :

g(x) , 0

[eqs. (2.78) and (2.79)] ; 

taking: f (x) = (g(x))−1

domain of f (x) is

\{0} ; 

R

f (x) is continuous

[eq. (11.62)] ; 

“ f (x) = (xn)−1 ” is continuous ; 

“ f (x) = 1/xn ” is continuous

[eq. (2.73)] ; 

“ f (x) = x−n ” is continuous

[eq. (2.80)] ; 

“ f (x) = x−n ” is continuous

(in

\{0}) . 

R

√

We will now prove that the function “ f (x) = n x ” with “n” even (and n ≥ 1) is continuous (in its domain). That is:



n is even 

√

:

“ f (x) = n x ” is continuous

(in “[0, +∞)”) . 

(11.67)

n ≥ 1
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Proof:

• Case: { n is even } ∧ { n ≥ 1 } ∧ { g(x) = xn } ∧ { I = [0,+∞) }

domain of g(x) is

; 

R

domain of gI(x) is “[0, +∞)” ; 

g(x) is continuous

[eq. (11.65)] ; 

gI(x) is continuous ; 

gI(x) is an increasing function

[eq. (2.122)] ; 

g−1(x) is continuous

[eq. (11.54)] ; 

I

√

g−1(x) = n x

[eq. (2.94)] ; 

I

√

“ f (x) = n x ” is continuous ; 

√

“ f (x) = n x ” is continuous

(in “[0, +∞)”) . 

√

We will also now prove that the function “ f (x) = n x ” with “n” odd (and n ≥ 1) is continuous. 

That is:



n is odd 

√

:

“ f (x) = n x ” is continuous

(in

) . 

(11.68)

n ≥ 1

R

Proof:

• Case: { n is odd } ∧ { n ≥ 1 } ∧ { g(x) = xn }

domain of g(x) is

; 

R

g(x) is continuous

[eq. (11.65)] ; 

g(x) is an increasing function

[eqs. (2.84) and (2.122)] ; 

g−1(x) is continuous

[eq. (11.54)] ; 

√

g−1(x) = n x

[eq. (2.95)] ; 

√

“ f (x) = n x ” is continuous ; 

√

“ f (x) = n x ” is continuous

(in

) . 

R
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11.7.5

FUNCTIONS WITH EXPONENTIATION

We will now prove that:

a > 0 :

lim ax = 1 . 

(11.69)

x→0

Proof:

• First case: a > 1

√

lim n a = 1

[eq. (3.33)] ; 

n→∞



√

lim n a = 1



n→∞



[eq. (3.26)] ; 

√





 lim ( n a )−1 = 1−1

n→∞



√

lim n a = 1



n→∞



[eq. (2.70)] ; 

√





 lim ( n a )−1 = 1

n→∞



√

lim ( n a )1 = 1



n→∞



[eq. (2.78)] ; 

√





 lim ( n a )−1 = 1

n→∞



1

lim a n = 1



n→∞



[eq. (3.7)] ; 



(−1)



 lim a n

= 1

n→∞



1

lim a n = 1



n→∞



[eqs. (2.61) and (2.72)] ; 





 lim a− 1

n = 1

n→∞



n

1

o

n > N

n

∀ε

∀n

1 =⇒ | a − 1 | < ε1



1>0 ∃N1



[eq. (3.19)] ; 



n

o



∀ε

∀

n > N

2>0 ∃N2

n

2 =⇒ | a− 1n − 1 | < ε2
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

n

1

o

n > N

n

∃N

∀n

1 =⇒ | a − 1 | < ε1



1



∀ε

; 

1>0 ∀ε2>0



n

o



∃N ∀

n > N

2

n

2 =⇒ | a− 1n − 1 | < ε2



n

1

o

n > N

n

∀n

1 =⇒ | a − 1 | < ε1





∀ε

; 

1>0 ∀ε2>0 ∃N1 ,N2



n

o



∀n

n > N2 =⇒ | a− 1n − 1 | < ε2



1

n > N

n − 1 | < ε



1 =⇒ | a

1



∀ε

∀

; 

1>0 ∀ε2>0 ∃N1 ,N2

n



n > N2 =⇒ | a− 1n − 1 | < ε2

taking: ε1 = ε2 = ε3



1

n > N

n − 1 | < ε



1 =⇒ | a

3



∀ε

∀

; 

3>0 ∃N1 ,N2

n



n > N2 =⇒ | a− 1n − 1 | < ε3

taking: N3 = max(N1, N2)



1

n > N

n − 1 | < ε



3 =⇒ | a

3



∀ε

∀

; 

3>0 ∃N3

n



n > N3 =⇒ | a− 1n − 1 | < ε3



1

|an − 1| < ε



3



∀ε

∀

; 

3>0 ∃N3

n n > N3 =⇒



| a− 1n − 1 | < ε3



1

−ε

n − 1 < ε



3 < a

3



∀ε

∀

[eq. (2.129)] ; 

3>0 ∃N3

n n > N3 =⇒



−ε3 < a− 1n − 1 < ε3



1

a n − 1 < ε



3



∀ε

∀

; 

3>0 ∃N3

n n > N3 =⇒



−ε3 < a− 1n − 1
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

1

a n + (−1) < ε



3



∀ε

∀

[eq. (2.54)] ; 

3>0 ∃N3

n n > N3 =⇒



−ε3 < a− 1n + (−1)



1

a n + 1 + (−1) < 1 + ε



3



∀ε

∀

3>0 ∃N3

n n > N3 =⇒



1 + (−ε3) < a− 1n + 1 + (−1)

[eqs. (2.43) and (2.119)] ; 



1

a n < 1 + ε



3



∀ε

∀

3>0 ∃N3

n n > N3 =⇒



1 + (−ε3) < a− 1n

[eqs. (2.45) and (2.53)] ; 

taking: n = N3 + 1



1

a n < 1 + ε



3



∀ε

∃

; 

3>0 ∃N3

n>0



1 + (−ε3) < a− 1n



1

a n < 1 + ε



3



∀ε

; 

3>0 ∃n>0



1 + (−ε3) < a− 1n



1

|x| < 





n







1





∀

1

ε

=⇒

; 

3>0 ∃n>0 ∀x,0 |x| < n

a n < 1 + ε3















1 + (−ε3) < a− 1n



1

1

−

< x < 





n

n







1





∀

1

ε

=⇒

[eq. (2.129)] ; 

3>0 ∃n>0 ∀x,0 |x| < n

a n < 1 + ε3















1 + (−ε3) < a− 1n
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

1

a− 1n < ax < a n











1





∀

1

ε

=⇒ a n < 1 + ε

[eq. (3.46)] ; 

3>0 ∃n>0 ∀x,0 |x| < n

3













1 + (−ε3) < a− 1n

1

1

∀ε

=⇒1 + (−ε

n < 1 + ε

3>0 ∃n>0 ∀x,0 |x| < 

3) < a− 1n < ax < a

3 ; 

n

1

∀ε

=⇒ 1 + (−ε

3>0 ∃n>0 ∀x,0 |x| < 

3) < ax < 1 + ε3 ; 

n

1

taking: δ3 = n

∀ε3>0 ∃δ3>0 ∀x,0 |x| < δ3 =⇒ 1 + (−ε3) < ax < 1 + ε3 ; 

∀ε3>0 ∃δ3>0 ∀x,0 |x| < δ3 =⇒

(−ε3) + 1 + (−1) < ax + (−1) < ε3 + 1 + (−1)

[eqs. (2.43) and (2.119)] ; 

∀ε3>0 ∃δ3>0 ∀x,0 |x| < δ3 =⇒ −ε3 < ax + (−1) < ε3

[eqs. (2.45) and (2.53)] ; 

∀ε3>0 ∃δ3>0 ∀x,0 |x| < δ3 =⇒ |ax + (−1)| < ε3

[eq. (2.129)] ; 

∀ε3>0 ∃δ3>0 ∀x,0 |x − 0| < δ3 =⇒ |ax − 1| < ε3

[eqs. (2.45) and (2.54)] ; 

lim ax = 1

[eq. (7.1)] ; 

x→0

a > 1 :

lim ax = 1 ; 

x→0

• Second case: a = 1

lim 1 = 1

[eq. (7.3)] ; 

x→0

lim 1x = 1

[eq. (3.38)] ; 

x→0

lim ax = 1

[this case] ; 

x→0

a = 1 :

lim ax = 1 ; 

x→0
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• Third case: 0 < a < 1

a < 1 ; 

a−1 > 1−1

[eq. (2.123)] ; 

a−1 > 1

[eq. (2.70)] ; 

lim (a−1)x = 1

[first case] ; 

x→0

1 x

lim

= 1

[eq. (2.73)] ; 

x→0

a

1

lim

= 1

[eq. (3.44)] ; 

x→0 ax

lim (ax)−1 = 1

[eq. (2.73)] ; 

x→0



−1

lim

(ax)−1

= 1−1

[eq. (7.12)] ; 

x→0

lim ax = 1−1

[eq. (2.68)] ; 

x→0

lim ax = 1

[eq. (2.70)] ; 

x→0

0 < a < 1 :

lim ax = 1

[eq. (2.70)] . 

x→0

We will now prove that given an exponential function of the form “ f (x) = ax ” (with “a > 0”), the function is continuous. That is:

a > 0 :

“ f (x) = ax ” is continuous

(in

) . 

(11.70)

R

Proof:

• Case: { a > 0 } ∧ { f (x) = ax }

lim ax = ax

[eq. (7.3)] ; 

∆x→0

lim a∆x = 1

[eq. (11.69)] ; 

∆x→0





lim


ax a∆x

= ax · 1

[eq. (7.8)] ; 

∆x→0





lim

ax a∆x

= ax

[eqs. (2.56) and (2.59)] ; 

∆x→0

lim ax+∆x = ax

[eq. (3.40)] ; 

∆x→0

“ f (x) = ax ” is continuous

[eq. (11.24)] ; 

“ f (x) = ax ” is continuous

(in

) . 

R
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Now, noting that the exponential function “exp(x)” is an exponential function of the form

“ f (x) = ax ” with the base being “e” (i.e., “exp(x) = ex ” [eq. (3.55)]), from equation (11.70), it follows that the exponential function “exp(x)” is continuous. That is:

“exp(x)” is continuous

(in

) . 

(11.71)

R

Note that, once again, “exp(x) = ex ”, where “e” is a real number whose value is in between two and three (“2 ≤ e ≤ 3” [eq. (3.54)]). To obtain more precise estimates of the value of “e”, the author directs the reader towards the book “Real Exponential, Logarithmic, and Trigonometric Functions for Physicists” [4]. 

We will now prove that the logarithmic function “log (

b x)”, with the base greater than one “ 1” 

(i.e., b > 1), is a continuous function in its domain. That is: b > 1 :

“logb(x)” is continuous

(in “(0, +∞)”) . 

(11.72)

Proof:

• Case: { b > 1 } ∧ { g(x) = bx }

domain of g(x) is

; 

R

range of g(x) is (0, +∞) ; 

g(x) is continuous

[eq. (11.70)] ; 

g(x) is an increasing function

[eq. (3.46)] ; 

g−1(x) is continuous

[eq. (11.54)] ; 

domain of g−1(x) is (0, +∞) ; 

g−1(x) is continuous

(in “(0, +∞)”) ; 

g−1(x) = logb(x)

[eq. (3.65)] ; 

logb(x) is continuous

(in “(0, +∞)”) . 

We will also now prove that the logarithmic function “log (

b x)”, with the positive base less than one

“ 1” (i.e., 0 < b < 1), is a continuous function in its domain. That is: 0 < b < 1 :

“logb(x)” is continuous

(in “(0, +∞)”) . 

(11.73)

Proof:

• Case: { 0 < b < 1 } ∧ { g(x) = bx }

domain of g(x) is

; 

R

range of g(x) is (0, +∞) ; 
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g(x) is continuous

[eq. (11.70)] ; 

g(x) is a decreasing function

[eq. (3.48)] ; 

g−1(x) is continuous

[eq. (11.55)] ; 

domain of g−1(x) is (0, +∞) ; 

g−1(x) is continuous

(in “(0, +∞)”) ; 

g−1(x) = logb(x)

[eq. (3.65)] ; 

logb(x) is continuous

(in “(0, +∞)”) . 

Now, noting that the natural logarithmic function “ln(x)” is a logarithmic function with the base being “e” (i.e., “ln(x) = log (

e x)” [eq. (3.77)], and noting that “2 ≤ e ≤ 3” [eq. (3.54)]), from equation (11.72), it follows that the natural logarithmic function “ln(x)” is continuous in its domain. 

That is:

“ln(x)” is continuous

(in “(0, +∞)”) . 

(11.74)

11.7.6

TRIGONOMETRIC FUNCTIONS

We will now prove that the trigonometric function “sin(x)” is continuous. That is:

“sin(x)” is continuous

(in

) . 

(11.75)

R

Proof:

lim sin(x) = sin(x)

[eq. (7.3)] ; 

∆x→0

lim cos(∆x) = 1

[eq. (10.10)] ; 

∆x→0





lim

sin(x) cos(∆x)

= sin(x) · 1

[eq. (7.8)] ; 

∆x→0





lim

sin(x) cos(∆x)

= sin(x)

[eqs. (2.56) and (2.59)] ; 

∆x→0

lim sin(∆x) = 0

[eq. (10.13)] ; 

∆x→0

lim cos(x) = cos(x)

[eq. (7.3)] ; 

∆x→0





lim

sin(∆x) cos(x)

= 0 · cos(x)

[eq. (7.8)] ; 

∆x→0

[image: Image 1124]

[image: Image 1125]

[image: Image 1126]

[image: Image 1127]

[image: Image 1128]

[image: Image 1129]

[image: Image 1130]

[image: Image 1131]

[image: Image 1132]

Continuous Functions

355





lim

sin(∆x) cos(x)

= 0

[eq. (2.58)] ; 

∆x→0





lim

sin(x) cos(∆x) + sin(∆x) cos(x)

= sin(x) + 0

[eq. (7.5)] ; 

∆x→0





lim

sin(x) cos(∆x) + sin(∆x) cos(x)

= sin(x)

[eq. (2.45)] ; 

∆x→0

lim sin(x + ∆x) = sin(x)

[eq. (4.74)] ; 

∆x→0

“sin(x)” is continuous

[eq. (11.24)] ; 

“sin(x)” is continuous

(in

) . 

R

We will also now prove that the trigonometric function “cos(x)” is continuous. That is:

“cos(x)” is continuous

(in

) . 

(11.76)

R

Proof:



π 

lim cos(x + ∆x) = lim sin

x + ∆x +

[eq. (4.62)] ; 

∆x→0

∆x→0

2



π



lim cos(x + ∆x) = lim sin

x +

+ ∆x

[eq. (2.43)] ; 

∆x→0

∆x→0

2



π 

lim cos(x + ∆x) = sin x +

[eqs. (11.24) and (11.75)] ; 

∆x→0

2

lim cos(x + ∆x) = cos(x)

[eq. (4.62)] ; 

∆x→0

“cos(x)” is continuous

[eq. (11.24)] ; 

“cos(x)” is continuous

(in

) . 

R

Additionally, we will now prove that the trigonometric function “tan(x)” is continuous in its domain. 

That is:

“tan(x)” is continuous



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

(11.77)

R

2

2

2

2

2

2

Proof:

“sin(x)” is continuous

(in

)

[eq. (11.75)] ; 

R

“cos(x)” is continuous

(in

)

[eq. (11.76)] ; 

R
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sin(x)

cos(a) , 0 =⇒

is continuous at “x = a” 

[eq. (11.63)] ; 

cos(x)

cos(a) , 0 =⇒ tan(x) is continuous at “x = a” 

[eq. (4.53)] ; 

tan(x) is continuous in its domain

[eqs. (11.23) and (11.30)] ; 

“tan(x)” is continuous



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

R

2

2

2

2

2

2

We will now prove that the trigonometric function “sec(x)” is continuous in its domain. That is:

“sec(x)” is continuous



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

(11.78)

R

2

2

2

2

2

2

Proof:

“cos(x)” is continuous

(in

)

[eq. (11.76)] ; 

R

cos(a) , 0 =⇒ (cos(x))−1 is continuous at “x = a” 

[eq. (11.62)] ; 

1

cos(a) , 0 =⇒

is continuous at “x = a” 

[eq. (2.73)] ; 

cos(x)

cos(a) , 0 =⇒ sec(x) is continuous at “x = a” 

[eq. (5.1)] ; 

sec(x) is continuous in its domain

[eqs. (11.23) and (11.30)] ; 

“sec(x)” is continuous



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

R

2

2

2

2

2

2

We will also now prove that the trigonometric function “csc(x)” is continuous in its domain. 

That is:

“csc(x)” is continuous

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

(11.79)

R
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Proof:

“sin(x)” is continuous

(in

)

[eq. (11.75)] ; 

R

sin(a) , 0 =⇒ (sin(x))−1 is continuous at “x = a” 

[eq. (11.62)] ; 

1

sin(a) , 0 =⇒

is continuous at “x = a” 

[eq. (2.73)] ; 

sin(x)

sin(a) , 0 =⇒ csc(x) is continuous at “x = a” 

[eq. (5.2)] ; 

csc(x) is continuous in its domain

[eqs. (11.23) and (11.30)] ; 

“csc(x)” is continuous

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

R

Additionally, we will now prove that the trigonometric function “cot(x)” is continuous in its domain. 

That is:

“cot(x)” is continuous

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

(11.80)

R

Proof:

“sin(x)” is continuous

(in

)

[eq. (11.75)] ; 

R

“cos(x)” is continuous

(in

)

[eq. (11.76)] ; 

R

cos(x)

sin(a) , 0 =⇒

is continuous at “x = a” 

[eq. (11.63)] ; 

sin(x)

sin(a) , 0 =⇒ cot(x) is continuous at “x = a” 

[eq. (5.3)] ; 

cot(x) is continuous in its domain

[eqs. (11.23) and (11.30)] ; 

“cot(x)” is continuous

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

R

11.7.7

COMPOSITE FUNCTIONS

We will now prove that given a first function “g(x)” whose limit is “b” when “x” tends to “a” [i.e., lim g(x) = b ], and given a second function “ f (x)” that is continuous at “x = b ”, the limit of the x→a

composite function “ f (g(x))” when “x” tends to “a” is “ f (b)” [i.e., lim f (g(x)) = f (b)]. That is: x→a



lim g(x) = b





x→a



=⇒ lim f (g(x)) = f (b) . 

(11.81)

x→a



f (x) is continuous at “x = b” 
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Proof:

• Case: { lim g(x) = b } ∧ { f (x) is continuous at “x = b” }

x→a

∀ε1>0 ∃δ1>0 ∀x,a { |x − a| < δ1 =⇒ |g(x) − b| < ε1 }

[eq. (7.1)] ; 



∀ε



1 >0 ∃δ1>0 ∀x,a { |x − a| < δ1 =⇒ | g(x) − b | < ε1 }



[eq. (11.23)] ; 



 lim f (x) = f (b)

x→b

(∀ε1>0 ∃δ1>0 ∀x,a { |x−a| < δ1 =⇒ |g(x)−b| < ε1 }

[eq. (7.1)] ; 

∀ε2>0 ∃δ2>0 ∀x { |x − b| < δ2 =⇒ | f (x) − f (b)| < ε2 }

(∀ε1>0 ∃δ1>0 ∀x,a { |x−a| < δ1 =⇒ |g(x)−b| < ε1 }

; 

∀ε2>0 ∃δ2>0 ∀x { |g(x) − b| < δ2 =⇒ | f (g(x)) − f (b)| < ε2 }

(∀ε1>0 ∃δ1>0 ∀x,a {|x−a| < δ1 =⇒ |g(x)−b| < ε1 }

; 

∀ε2>0 ∃δ2>0 ∀x,a { |g(x) − b| < δ2 =⇒ | f (g(x)) − f (b)| < ε2 }

(∀

∀

ε1>0 ∃δ1>0 ∀x,a { |x − a| < δ1 =⇒ | g(x) − b | < ε1 }

ε

; 

2>0 ∃δ2>0

∀x,a {|g(x) − b| < δ2 =⇒ | f (g(x)) − f (b)| < ε2 }

(∃

∀

δ1>0∀x,a {|x − a| < δ1 =⇒ |g(x) − b | < ε1}

ε

; 

2>0∃δ2 >0∀ε1>0

∀x,a {|g(x) − b| < δ2 =⇒| f (g(x)) − f (b)| < ε2}

taking: ε1 = δ2

(∃

∀

δ1>0 ∀x,a { |x − a| < δ1 =⇒ |g(x) − b | < δ2 }

ε

; 

2>0 ∃δ2>0

∀x,a {|g(x) − b| < δ2 =⇒| f (g(x)) − f (b)| < ε2 }

(∀

∀

x,a {|x − a| < δ1 =⇒ |g(x) − b | < δ2}

ε

; 

2>0∃δ2 >0∃δ1>0

∀x,a {|g(x) − b| < δ2 =⇒| f (g(x)) − f (b)| < ε2}

(|x− a| < δ

∀

1 =⇒ |g(x) − b | < δ2

ε

; 

2>0∃δ2 >0∃δ1>0∀x,a

|g(x) − b| < δ2 =⇒| f (g(x)) − f (b)| < ε2

∀ε2>0 ∃δ2>0 ∃δ1>0 ∀x,a { |x − a| < δ1 =⇒ | f (g(x)) − f (b)| < ε2 } ; 
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∀ε2>0 ∃δ1>0 ∀x,a { |x − a| < δ1 =⇒ | f (g(x)) − f (b)| < ε2 } ; lim f (g(x)) = f (b)

[eq. (7.1)] . 

x→a

In a very similar manner as we proved equation (11.81), we can also prove the following two equations:





lim g(x) = b







x→a−



=⇒ lim f (g(x)) = f (b) ; 

x





→a−



f (x) is continuous at “x = b” 





lim g(x) = b







x→a+



=⇒ lim f (g(x)) = f (b) . 

x→a+







f (x) is continuous at “x = b” 

We will now prove that given a first function “g(x)” that is continuous at “x = a”, and given a second function “ f (x)” that is continuous at “x = g(a)”, then the composite function “ f (g(x))” is continuous at “x = a”. That is:



g(x) is continuous at “x = a” 



=⇒ f (g(x)) is continuous at “x = a” . (11.82)

f (x) is continuous at “x = g(a)” 

Proof:

• Case: { g(x) is continuous at “x = a” } ∧ { f (x) is continuous at “x = g(a)” }

lim g(x) = g(a)

[eq. (11.23)] ; 

x→a

lim f (g(x)) = f (g(a))

[eq. (11.81)] ; 

x→a

f (g(x)) is continuous at “x = a” 

[eq. (11.23)] . 

In a very similar manner as we proved equation (11.82), we can also prove the following two equations:



g(x) is left-continuous at “x = a”  =⇒

f (x) is continuous at “x = g(a)” 

f (g(x)) is left-continuous at “x = a” ; 



g(x) is right-continuous at “x = a”  =⇒

f (x) is continuous at “x = g(a)” 

f (g(x)) is right-continuous at “x = a” . 
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We will now prove that functions of the form “ f (x) = xa ” (where “a” is an arbitrary real number) is continuous in “(0, +∞)”. That is:

“ f (x) = xa ” is continuous in “(0, +∞)” . 

(11.83)

Note that we had already proven that functions of the form “ f (x) = xn ” (where “n” is an arbitrary integer) is continuous in “(0, +∞)” [n > 0: eq. (11.65); n = 0: eq. (11.56); n < 0: eq. (11.66)]. 

Equation (11.83) extends the property to constant real number exponents in general. 

Proof:

• Case: { domain of f (x) is “(0,+∞)” } ∧ { f (x) = xa }

“ln(x)” is continuous

(in “(0, +∞)”)

[eq. (11.74)] ; 

“g(x) = a” is continuous

(in

)

[eq. (11.56)] ; 

R

“a ln(x)” is continuous

(in “(0, +∞)”)

[eq. (11.61)] ; 

“ln(xa)” is continuous

(in “(0, +∞)”)

[eq. (3.85)] ; 

“exp(x)” is continuous

(in

)

[eq. (11.71)] ; 

R

“exp(ln(xa))” is continuous

(in “(0, +∞)”)

[eq. (11.82)] ; 

“xa ” is continuous

(in “(0, +∞)”)

[eq. (3.78)] ; 

“ f (x) = xa ” is continuous

(in “(0, +∞)”) . 

11.8

EXAMPLES

As an example, in this section we will revisit the case of an object that moves along a straight line discussed in 1.6, 2.6, and 6.5 (see also 7.6). The movement of the object can be represented by an equation of the form (the equation of motion):

x = fx(t) ; 

where “x” is the position, “t” is the time, and “ fx(t)” is the real function that gives the position “x” 

for a given time “t”. Solving the motion of the object, typically means determining the real function

“ fx(t)”. In turn, in general, the function “ fx(t)” describing the movement of a physical object is a continuous function. 

Continuous functions appear not just in the analysis of the movement of objects, but throughout physics in general. Thus the continuous functions, and their properties, become fundamental mathematical objects in physics. 
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12 Derivatives of Real

Functions

12.1

INTRODUCTION

Derivatives appear explicitly or implicitly throughout physics. Derivatives and their properties are a fundamental part of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as derivatives. 

Considering again the example discussed previously in 6.5, for an object moving in a straight line described by a position function “x(t)”, the velocity “v1x” at “t1” is given by: x(t1 + ∆t) − x(t1)

v1x = lim

. 

∆t→0

∆t

The term on the right of the last equation is the derivative of the function “x(t)” evaluated at “t = t1”. 

The last equation can be rewritten in the form:

dx 

v



1x =



; 

dt t1

where “dx/dt” is the derivative function of “x(t)”, and “dx/dt|t ” is the derivative function of “x(t)” 

1

evaluated at “t = t1”. 

In this chapter we will present the definition of derivatives and we will discuss general properties of derivatives. 

12.2

NOTATION

Following the notation used in chapters 4-11, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 
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• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

12.3

DERIVATIVE DEFINITIONS

12.3.1

NOTATION

A standard, and useful notation, used in calculus when evaluating a function at a given point, is to use a single pipe symbol “|” (at the right of the function) with the given point as a subindex. 

To evaluate a function “ f (x)” at a point “a”, the most common notation is to simply write “ f (a)”. 

However, to evaluate a function “ f (x)” at point “a” we can alternatively use the pipe symbol instead, and write:



f (a) = f (x) ; 

a

or equivalently write:



f (a) = f (x)

. 

x=a

12.3.2

DERIVATIVE

Given a real function “ f (x)” that is defined in a neighborhood “SN” of a real number “a”, the derivative of the function “ f (x)” at “x = a” is defined by the equation: f (a + ∆x) − f (a)

derivative of “ f (x)” at “x = a” ≡ lim

. 

∆x→0

∆x

Intuitively, the derivative of a real function “ f (x)” at “x = a” is the rate of change of the value of the function “ f (x)” with respect to the variable “x” at point “x = a” (rather than the average rate of change of the function “ f (x)” in the interval whose boundary points are “a” and “a + ∆x” [∆x , 0], that would be given by “[ f (a + ∆x) − f (a)]/∆x” [without the limit operation]). Note that:

• For a real function “ f (x)” to have a derivative at “x = a”, the function must be defined at

“x = a” (i.e., “ f (a)” must exist); 

• Given that the derivative of a real function “ f (x)” at “x = a” is a limit, it follows that, given a real function “ f (x)” that is defined in a neighborhood “SN” of a real number “a”, the derivative of a real function “ f (x)” at “x = a” may or may not exist. For example consider the function:

f (x) = |x| ; 

aiming to find the derivative at “x = 0”, we can consider the corresponding limits from the left and from the right:



f (0 + ∆x) − f (0)

|0 + ∆x| − |0|





lim

= lim



∆x→0−

∆x

∆x→0−

∆x



; 





f (0 + ∆x) − f (0)

|0 + ∆x| − |0|





lim

= lim

∆x→0+

∆x

∆x→0+

∆x
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

f (0 + ∆x) − f (0)

|∆x|





lim

= lim



∆x→0−

∆x

∆x→0− ∆x



; 





f (0 + ∆x) − f (0)

|∆x|





lim

= lim

∆x→0+

∆x

∆x→0+ ∆x



f (0 + ∆x) − f (0)





lim

= lim −1



∆x→0−

∆x

∆x→0−



; 





f (0 + ∆x) − f (0)





lim

= lim 1

∆x→0+

∆x

∆x→0+



f (0 + ∆x) − f (0)





lim

= −1



∆x→0−

∆x



; 





f (0 + ∆x) − f (0)





lim

= 1

∆x→0+

∆x

f (0 + ∆x) − f (0)

lim

does not exist ; 

∆x→0

∆x

derivative of “ f (x) = |x|” at “x = 0” does not exist ; 

• Given that the derivative of a real function “ f (x)” at “x = a” is a limit, it also follows that, given a real function “ f (x)” that is defined in a neighborhood “SN” of a real number “a”, if the derivative of the real function “ f (x)” at “x = a” exists, it is unique. 

Given a real function “ f (x)” that has a derivative at, at least one point, we will define the derivative function of “ f (x)” to be the real function that when evaluated at a given point, returns the value of the derivative of “ f (x)” at the given point, and we will denote the corresponding derivative function by “ d f (x)” or more simply “ d f ”. That is:

dx

dx

d f

a ∈ domain of

(x) ⇐⇒ derivative of “ f (x)” at “x = a” exists ; 

dx

d f

d f

f (a + ∆x) − f (a)

a ∈ domain of

(x) =⇒

(a) = lim

; 

dx

dx

∆x→0

∆x

or more simply stated:

d f

a ∈ domain of

⇐⇒ derivative of “ f (x)” at “x = a” exists ; 

dx

d f

d f 

f (a + ∆x) − f (a)

a ∈ domain of

=⇒





= lim

. 

dx

dx 

∆x

x=a

∆x→0
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Note that for the points “x” where a given real function “ f (x)” has a derivative, it follows that: d f

f (x + ∆x) − f (x)

(x) = lim

; 

dx

∆x→0

∆x

or more simply written:

d f

f (x + ∆x) − f (x)

= lim

. 

(12.1)

dx

∆x→0

∆x

12.3.3

LEFT-DERIVATIVE

Given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a left-vicinity

“SV−” of the real number “a”, the left-derivative of the function “ f (x)” at “x = a” is defined by the equation:

f (a + ∆x) − f (a)

left-derivative of “ f (x)” at “x = a” ≡ lim

. 

∆x→0−

∆x

Intuitively, the left-derivative of a real function “ f (x)” at “x = a” is the rate of change of the value of the function “ f (x)” with respect to the variable “x” at point “x = a” from the left. Note that:

• For a real function “ f (x)” to have a left-derivative at “x = a”, the function must be defined at “x = a” (i.e., “ f (a)” must exist); 

• Given that the left-derivative of a real function “ f (x)” at “x = a” is a limit from the left, it follows that, given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a left-vicinity “SV−” of the real number “a”, the left-derivative of a real function

“ f (x)” at “x = a” may or may not exist; 

• Given that the left-derivative of a real function “ f (x)” at “x = a” is a limit from the left, it follows that, given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a left-vicinity “SV−” of the real number “a”, if the left-derivative of the real function “ f (x)” at “x = a” exists, it is unique. 

Given a real function “ f (x)” that has a left-derivative at, at least one point, we will define the left-derivative function of “ f (x)” to be the real function that when evaluated at a given point, returns the value of the left-derivative of “ f (x)” at the given point. In this book, we will denote the corresponding left-derivative function by “ d f

dx− (x)” or more simply “ d f

dx− ”. That is:

d f

a ∈ domain of

(x) ⇐⇒ left-derivative of “ f (x)” at “x = a” exists ; 

dx−

d f

d f

f (a + ∆x) − f (a)

a ∈ domain of

(x) =⇒

(a) = lim

; 

dx−

dx−

∆x→0−

∆x

or more simply stated:

d f

a ∈ domain of

⇐⇒ left-derivative of “ f (x)” at “x = a” exists ; 

dx−

d f

d f 

f (a + ∆x) − f (a)

a ∈ domain of

=⇒





= lim

. 

dx−

dx− 

∆x

x=a

∆x→0−

Note that for the points “x” where a given real function “ f (x)” has a left-derivative, it follows that: d f

f (x + ∆x) − f (x)

(x) = lim

; 

dx−

∆x→0−

∆x
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or more simply written:

d f

f (x + ∆x) − f (x)

= lim

. 

(12.2)

dx−

∆x→0−

∆x

As an example of a left-derivative, we will consider again the function (discussed in 12.3.2): f (x) = |x| . 

Considering equation (12.2), we have that:

d f 

f (0 + ∆x)



− f (0)



= lim

; 

dx− 

∆x

x=0

∆x→0−

d f 

|0 + ∆x| − |0|



= lim

; 

dx− 

∆x

x=0

∆x→0−

d f 

|∆x|



= lim

; 

dx− 

∆x

x=0

∆x→0−

d f 



= lim −1 ; 

dx− x=0

∆x→0−

d f 



= −1 . 

dx− x=0

Note that, in case of the real function f (x) = |x|, the derivative at “x = 0” does not exist. That is, once again, in the case of f (x) = |x|:

d f 



= −1 ; 

dx− x=0

however (see 12.3.2):

d f 



does not exist . 

dx x=0

12.3.4

RIGHT-DERIVATIVE

Given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a right-vicinity

“SV+” of the real number “a”, the right-derivative of the function “ f (x)” at “x = a” is defined by the equation:

f (a + ∆x) − f (a)

right-derivative of “ f (x)” at “x = a” ≡ lim

. 

∆x→0+

∆x

Intuitively, the right-derivative of a real function “ f (x)” at “x = a” is the rate of change of the value of the function “ f (x)” with respect to the variable “x” at point “x = a” from the right. Note that:
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• For a real function “ f (x)” to have a right-derivative at “x = a”, the function must be defined at “x = a” (i.e., “ f (a)” must exist); 

• Given that the right-derivative of a real function “ f (x)” at “x = a” is a limit from the right, it follows that, given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a right-vicinity “SV+” of the real number “a”, the right-derivative of a real function “ f (x)” at “x = a” may or may not exist; 

• Given that the right-derivative of a real function “ f (x)” at “x = a” is a limit from the right, it follows that, given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a right-vicinity “SV+” of the real number “a”, if the right-derivative of the real function “ f (x)” at “x = a” exists, it is unique. 

Given a real function “ f (x)” that has a right-derivative at, at least one point, we will define the right-derivative function of “ f (x)” to be the real function that when evaluated at a given point, returns the value of the right-derivative of “ f (x)” at the given point. In this book, we will denote the corresponding right-derivative function by “ d f

dx+ (x)” or more simply “ d f

dx+ ”. That is:

d f

a ∈ domain of

(x) ⇐⇒ right-derivative of “ f (x)” at “x = a” exists; 

dx+

d f

d f

f (a + ∆x) − f (a)

a ∈ domain of

(x) =⇒

(a) = lim

; 

dx+

dx+

∆x→0+

∆x

or more simply stated:

d f

a ∈ domain of

⇐⇒ right-derivative of “ f (x)” at “x = a” exists ; 

dx+

d f

d f 

f (a + ∆x) − f (a)

a ∈ domain of

=⇒





= lim

. 

dx+

dx+ 

∆x

x=a

∆x→0+

Note that for the points “x” where a given real function “ f (x)” has a right-derivative, it follows that: d f

f (x + ∆x) − f (x)

(x) = lim

; 

dx+

∆x→0+

∆x

or more simply written:

d f

f (x + ∆x) − f (x)

= lim

. 

(12.3)

dx+

∆x→0+

∆x

As an example of a right-derivative, we will consider again the function (discussed in 12.3.2 and 12.3.3):

f (x) = |x| . 

Considering equation (12.3), we have that:

d f 

f (0 + ∆x)



− f (0)



= lim

; 

dx+ 

∆x

x=0

x→0+

d f 

|0 + ∆x| − |0|



= lim

; 

dx+ 

∆x

x=0

x→0+
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d f 

|∆x|



= lim

; 

dx+ 

∆x

x=0

x→0+

d f 



= lim 1 ; 

dx+ x=0

x→0−

d f 



= 1 . 

dx+ x=0

Note that, once again, in case of the real function f (x) = |x|:

d f 



= 1 ; 

dx+ x=0

(see 12.3.3):

d f 



= −1 ; 

dx− x=0

(see 12.3.2):

d f 



does not exist . 

dx x=0

12.3.5

DIFFERENTIABILITY AT A POINT “A” 

Given a real function “ f (x)” that is defined in a neighborhood “SN” of a real number “a”, we shall state that “the function f (x) is differentiable at point x = a” (or more simply “ f (x) is differentiable at x = a” or “ f (x) is differentiable at a”), if and only if the derivative of the function “ f (x)” at

“x = a” exists. That is:

d f 

f (x) is differentiable at “x = a” ⇐⇒





exists . 

(12.4)

dx x=a

Note that:

• For a function to be differentiable at a point “a”, the function must exist in a neighborhood of “a” (i.e., the function must exist at “a” [ f (a) exists] and the function must also exist in a vicinity of “a”). 

Intuitively, a differentiable function “y = f (x)” is a function that when represented in a plane by the points “(x, y)” [i.e., by the points of the form “(x, f (x))”] through Cartesian coordinates (see

4.5.1), the result is a “continuous” curve with “well-defined slopes” at points throughout the curve. 

12.3.6

LEFT-DIFFERENTIABILITY AT A POINT “A” 

Given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a left-vicinity

“SV−” of the real number “a”, we shall state that “the function f (x) is left-differentiable at point
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x = a” (or more simply “ f (x) is left-differentiable at x = a” or “ f (x) is left-differentiable at a”), if and only if the left-derivative of the function “ f (x)” at “x = a” exists. That is: d f 

f (x) is left-differentiable at “x = a” ⇐⇒





exists . 

(12.5)

dx− x=a

Note that:

• For a function to be left-differentiable at a point “a”, the function must exist at point “a” 

and in a left-vicinity of “a”. 

12.3.7

RIGHT-DIFFERENTIABILITY AT A POINT “A” 

Given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a right-vicinity “SV+” of the real number “a”, we shall state that “the function f (x) is right-differentiable at point x = a” (or more simply “ f (x) is right-differentiable at x = a” or “ f (x) is right-differentiable at a”), if and only if the right-derivative of the function “ f (x)” at “x = a” exists. That is: d f 

f (x) is right-differentiable at “x = a” ⇐⇒





exists . 

(12.6)

dx+ x=a

Note that:

• For a function to be right-differentiable at a point “a”, the function must exist at point “a” 

and in a right-vicinity of “a”. 

Considering equation (7.20), it follows that:



d f 













= LD 



dx−



d f 









x=a







= LD ⇐⇒

; 

(12.7)

dx x=a





d f

















= LD 



dx+



x=a

thus:

d f 

d f 

f (x) is differentiable at “x = a” ⇐⇒







=



. 

(12.8)

dx− 

dx+

x=a

x=a

12.3.8

DIFFERENTIABILITY IN A SET “S ”. 

Given a real function “ f (x)” that is defined in a nonempty open set “S ”, we shall state that “the function f (x) is differentiable in the open set S ”, if and only if it holds that the function “ f (x)” is differentiable at every point “c” in the open set “S ”. That is:



d f 



f (x) is differentiable in nonempty open set S ⇐⇒ ∀



c∈S



exists

. (12.9)

dx x=c

In this book, as already stated in 11.5.2, by “non-open set with vicinities” we mean a set “S ” 

whose non-interior points all have either a left-vicinity in “S ” or a right vicinity in “S ”. Note that the non-interior points of set “S ” cannot have both a left-vicinity in “S ” and a right-vicinity in “S ” 

(otherwise they would be interior points). 
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Given a real function “ f (x)” that is defined in a non-open set “S ” with vicinities, we shall state that “the function f (x) is differentiable in the set S ”, if and only if three conditions hold: 1) the function “ f (x)” is differentiable at every interior point “c” in “S ”; 2) the function “ f (x)” is left-differentiable at every non-interior point “b” with a left-vicinity in “S ”; and 3) the function “ f (x)” 

is right-differentiable at every non-interior point “a” with a right-vicinity in “S ”. That is: f (x) is differentiable in a non-open set S with vicinities ⇐⇒





d f 









exists





∀c







∈int(S)





dx 





x=c































d f



∀



a∈S\int(S)

“a” has a right-vicinity in S =⇒



exists

. 

(12.10)

dx+ 



x=a



































d f 









∀

“b” has a left-vicinity in S =⇒



exists





b∈S\int(S)

dx−



x=b

Given a real function “ f (x)”, if the function “ f (x)” is differentiable in its own domain, then we shall simply state that “the function f (x) is differentiable”. That is: f (x) is differentiable ⇐⇒ f (x) is differentiable in its own domain . 

(12.11)

12.3.9

DIFFERENTIABILITY IN AN INTERVAL “I ”. 

Since an open interval “I ” is also a region [eq. (6.11)] (and thus an open interval is also a nonempty open set), considering equation (12.9), it follows that given a real function “ f (x)” that is defined in an open interval “I ” (whether bounded, left-unbounded, right-unbounded, or unbounded), the function “ f (x)” is differentiable in the open interval “I ” if and only if it holds that the function

“ f (x)” is differentiable at every point “c” in the open interval “I ”. That is: d f 



f (x) is differentiable in open interval I ⇐⇒ ∀



c∈I



exists

. 

(12.12)

dx x=c

Since a bounded closed interval “I = [a, b ]” (with a < b) is also a non-open set with vicinities [ int(I) = (a, b); “a” has a right-vicinity in I; “b” has a left-vicinity in I ], considering equation (12.10), it follows that given a real function “ f (x)” that is defined in a bounded closed interval “I = [a, b ] ” (with a < b), the function “ f (x)” is differentiable in the bounded closed interval

“I = [a, b ] ” if and only if the following three conditions hold: 1) that the function “ f (x)” is differentiable in the open interval “(a, b)”; 2) that the function “ f (x)” is right-differentiable at “x = a”; and 3) that the function “ f (x)” is left-differentiable at “x = b”. That is: f (x) is differentiable in a bounded closed interval [a, b ] ⇐⇒



d f 







a < c < b =

exists 



⇒











dx 





x=c



























d f







exists

. 

(12.13)

dx+ 



x=a































d f 











exists





dx−



x=b
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In turn, since a left-unbounded closed interval “I = (−∞,b ]” is also a non-open set with vicinities [ int(I) = (−∞,b); “b” has a left-vicinity in I ], considering equation (12.10), it follows that given a real function “ f (x)” that is defined in a left-unbounded closed interval “I = (−∞,b ]”, the function “ f (x)” is differentiable in the left-unbounded closed interval “I = (−∞,b ]” if and only if the following two conditions hold: 1) that the function “ f (x)” is differentiable in the open interval

“(−∞,b)”; and 2) that the function “ f (x)” is left-differentiable at “x = b”. That is: f (x) is differentiable in a left-unbounded closed interval (−∞, b ] ⇐⇒



d f 











c < b =⇒



exists 







dx 





x=c



. 

(12.14)





d f

















exists





dx−



x=b

Similarly, since a right-unbounded closed interval “I = [a, +∞)” is also a non-open set with vicinities [ int(I) = (a, +∞); “a” has a right-vicinity in I ], considering equation (12.10), it follows that given a real function “ f (x)” that is defined in a right-unbounded closed interval “I = [a, +∞)”, the function “ f (x)” is differentiable in the right-unbounded closed interval “I = [a, +∞)” if and only if the following two conditions hold: 1) that the function “ f (x)” is differentiable in the open interval

“(a, +∞)”; and 2) that the function “ f (x)” is right-differentiable at “x = a”. That is: f (x) is differentiable in a right-unbounded closed interval [a, +∞) ⇐⇒



d f 











a < c =⇒



exists 







dx 





x=c

 . 

(12.15)





d f

















exists





dx+



x=a

Since a left-half-open interval “I = (a, b ]” is also a non-open set with vicinities [ int(I) = (a, b); 

“b” has a left-vicinity in I ], considering equation (12.10), it follows that given a real function “ f (x)” 

that is defined in a left-half-open interval “I = (a, b ]”, the function “ f (x)” is differentiable in the left-half-open interval “I = (a, b ]” if and only if the following two conditions hold: 1) that the function “ f (x)” is differentiable in the open interval “(a, b)”; and 2) that the function “ f (x)” is left-differentiable at “x = b”. That is:

f (x) is differentiable in a left-half-open interval (a, b ] ⇐⇒



d f 











a < c < b =⇒



exists 







dx 





x=c

 . 

(12.16)





d f

















exists





dx−



x=b

In turn, since a right-half-open interval “I = [a, b)” is also a non-open set with vicinities

[ int(I) = (a, b); “a” has a right-vicinity in I ], considering equation (12.10), it follows that given a real function “ f (x)” that is defined in a right-half-open interval “I = [a, b)”, the function “ f (x)” 

is differentiable in the right-half-open interval “I = [a, b)” if and only if the following two conditions hold: 1) that the function “ f (x)” is differentiable in the open interval “(a, b)”; and 2) that the function “ f (x)” is right-differentiable at “x = a”. That is:
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f (x) is differentiable in a right-half-open interval [a, b) ⇐⇒



d f 











a < c < b =⇒



exists 







dx 





x=c

 . 

(12.17)





d f

















exists





dx+



x=a

12.4

DERIVATIVE NOTATIONS

Similar to the division operation having more than one notation (e.g., “a” divided by “b” can be written as “a/b” or “ a ”), to denote derivative functions there are also several notations. Just like b

having more than one way to denote the division operation proves useful when writing different equations, having different notations for denoting derivative functions also proves useful. 

Given a real function “ f ”, expressed in the form “y = f (x)”, the two notations for the derivative function of “ f ” that we have used so far are (see 12.3.2): d f

d f

(x)

. 

dx

dx

Additional notations for a derivative of a function “ f ”, expressed in the form “y = f (x)”, are: f ′(x)

f ′

˙

f (x)

˙

f

d

[ f (x)] ′

[ f ] ′

d [ f(x)]

[ f ]

dx

dx

dy

dy

(x)

. 

dx

dx

y ′(x)

y ′

˙

y(x)

˙

y

d

[ y(x)] ′

[ y ] ′

d [y(x)]

[ y ]

dx

dx

Note that all twenty above notations denote exactly the same thing, they all denote the derivative function of the real function “ f (x)” [the derivative of the real function “ f ” expressed as “y = f (x)”]. 

12.5

BASIC PROPERTIES

We will now prove that given a real function “ f (x)” that is defined in a neighborhood “SN” of a real number “a”, if the function “ f (x)” is differentiable at point “x = a” then the function “ f (x)” is continuous in “x = a”. That is:

f (x) is differentiable at “x = a” =⇒ f (x) is continuous at “x = a” . 

(12.18)

Proof:

• Case: f (x) is differentiable at x = a

f ′(a) exists

[eq. (12.4)] ; 

[image: Image 1272]

[image: Image 1273]

[image: Image 1274]

[image: Image 1275]

[image: Image 1276]

374

Limits and Derivatives of Real Functions for Physicists

f (a + ∆x) − f (a)

lim

exists

[eq. (12.1)] ; 

∆x→0

∆x

taking: LD = f ′(a)

f (a + ∆x) − f (a)

lim

= LD ; 

∆x→0

∆x

∀ε>0 ∃δ>0 ∀∆x,0





f (a + ∆x) − f (a)





|∆x − 0| < δ =⇒ 





− LD  < ε

[eq. (7.1)] ; 



∆x



∀ε>0 ∃δ>0 ∀∆x,0





f (a + ∆x) − f (a)





|∆x| < δ =⇒ 





− LD  < ε



∆x



[eqs. (2.45) and (2.54)] ; 

∀ε>0 ∃δ>0 ∀∆x,0





f (a + ∆x) − f (a)





|∆x| < δ =⇒ 





− ∆x(∆x)−1LD  < ε



∆x



[eqs. (2.59) and (2.71)] ; 

∀ε>0 ∃δ>0 ∀∆x,0

|∆x|<δ =⇒ |(∆x)−1[ f (a + ∆x) − f (a)] − (∆x)−1∆xLD |<ε  

[eqs. (2.56) and (2.72)] ; 

∀ε>0 ∃δ>0 ∀∆x,0



|∆x| < δ =⇒



| (∆x)−1[ f (a + ∆x) + (− f (a))] + [−∆xLD (∆x)−1] | < ε

[eqs. (2.54) and (2.56)] ; 

∀ε>0 ∃δ>0 ∀∆x,0



|∆x| < δ =⇒



| (∆x)−1[ f (a + ∆x) + (− f (a))] + (∆x)−1[−∆xLD] | < ε

[eqs. (2.56) and (2.61)] ; 

∀ε>0 ∃δ>0 ∀∆x,0



|∆x| < δ =⇒





[ f (a + ∆x) + (− f (a)) + (−∆x LD)] (∆x)−1  < ε

[eqs. (2.56) and (2.64)] ; 
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∀ε>0 ∃δ>0 ∀∆x,0



|∆x| < δ =⇒



| f (a + ∆x) + (− f (a)) + (−∆xLD) | |∆x|−1 < ε

[eqs. (2.131) and (2.132)] ; 

∀ε>0 ∃δ>0 ∀∆x,0



|∆x| < δ =⇒



|∆x||∆x|−1 | f (a + ∆x) + (− f (a)) + (−∆xLD) | < |∆x|ε

[eqs. (2.56) and (2.121)] ; 

∀ε>0 ∃δ>0 ∀∆x,0



|∆x| < δ =⇒



| f (a + ∆x) + (− f (a)) + (−∆xLD) | < |∆x|ε

[eqs. (2.59) and (2.71)] ; 

taking: δ2 = min(δ , 1)

∀ε>0 ∃δ2>0 ∀∆x,0



|∆x| < δ



2 =⇒

| f (a + ∆x) + (− f (a)) + (−∆xLD) | < |∆x|ε < 1ε

[eqs. (2.56) and (2.121)] ; 

∀ε>0 ∃δ2>0 ∀∆x,0

{ |∆x| < δ2 =⇒ | f (a + ∆x) + (− f (a)) + (−∆xLD) | < ε }

[eq. (2.59)] ; 

∀ε>0 ∃δ2>0 ∀∆x,0

{ |∆x| < δ2 =⇒ | f (a + ∆x) + (−∆xLD) − f (a) | < ε }

[eqs. (2.43) and (2.54)] ; 

∀ε>0 ∃δ2>0 ∀∆x,0

{ |∆x − 0| < δ2 =⇒ | f (a + ∆x) + (−∆xLD) − f (a) | < ε }

[eqs. (2.45) and (2.54)] ; 





lim

f (a + ∆x) + (−∆x LD) = f (a)

[eq. (7.1)] ; 

∆x→0

now:

lim LD = LD

[eq. (7.3)] ; 

∆x→0
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lim ∆x = 0

[eq. (7.4)] ; 

∆x→0





lim ∆x LD = 0 · LD

[eq. (7.8)] ; 

∆x→0





lim ∆x LD = 0

[eq. (2.58)] ; 

∆x→0

therefore:









lim

f (a + ∆x) + (−∆x LD) + lim ∆x LD = f (a) + 0 ; 

∆x→0

∆x→0









lim

f (a + ∆x) + (−∆x LD) + lim ∆x LD = f (a)

[eq. (2.45)] ; 

∆x→0

∆x→0





lim

f (a + ∆x) + (−∆x LD) + ∆x LD = f (a)

[eq. (7.5)] ; 

∆x→0





lim

f (a + ∆x) + 0 = f (a)

[eqs. (2.43) and (2.53)] ; 

∆x→0

lim f (a + ∆x) = f (a)

[eq. (2.45)] ; 

∆x→0

f (x) is continuous at “x = a” 

[eq. (11.24)] . 

In a very similar manner as we did for equation (12.18), we can prove that given a real function

“ f (x)” that is defined at a real number “a”, and is also defined in a left-vicinity “SV−” of the real number “a”, if the function “ f (x)” is left-differentiable at point “x = a” then the function “ f (x)” is left-continuous at “x = a”. That is:

f (x) is left-differentiable at “x = a” =⇒ f (x) is left-continuous at “x = a” . 

(12.19)

Additionally, in a very similar manner as we did for equation (12.18), we can also prove that given a real function “ f (x)” that is defined at a real number “a”, and is also defined in a right-vicinity

“SV+” of the real number “a”, if the function “ f (x)” is right-differentiable at point “x = a” then the function “ f (x)” is right-continuous at “x = a”. That is:

f (x) is right-differentiable at “x = a” =⇒ f (x) is right-continuous at “x = a” . 

(12.20)
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12.6

GENERAL PROPERTIES

We will now prove that the derivative of a constant function (e.g., a function of the form “ f (x) = C ”) is zero “0”. That is:

[C ] ′ = 0

(in

) . 

(12.21)

R

Proof:

• Case: f (x) = C

f (x + ∆x) − f (x)

f ′(x) = lim

[eq. (12.1)] ; 

∆x→0

∆x

C −C

f ′(x) = lim

; 

∆x→0

∆x

0

f ′(x) = lim

[eqs. (2.53) and (2.54)] ; 

∆x→0 ∆x

f ′(x) = lim 0

[eqs. (2.58) and (2.72)] ; 

∆x→0

f ′(x) = 0

[eq. (7.3)] ; 

[ f (x)] ′ = 0 ; 

[C ] ′ = 0 . 

We will also now prove that the derivative of the function “ f (x) = x” is one “1”. That is:

[x] ′ = 1

(in

) . 

(12.22)

R

Proof:

• Case: f (x) = x

f (x + ∆x) − f (x)

f ′(x) = lim

[eq. (12.1)] ; 

∆x→0

∆x

x + ∆x − x

f ′(x) = lim

; 

∆x→0

∆x

∆x + x + (−x)

f ′(x) = lim

[eqs. (2.43) and (2.54)] ; 

∆x→0

∆x

∆x

f ′(x) = lim

[eqs. (2.45) and (2.53)] ; 

∆x→0 ∆x

f ′(x) = lim 1

[eqs. (2.71) and (2.72)] ; 

∆x→0

f ′(x) = 1

[eq. (7.3)] ; 
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[ f (x)] ′ = 1 ; 

[x] ′ = 1 . 

We will now prove that if the derivative of a real function “ f (x)” exists at a point “x = a”, then the derivative of the function “C f (x)” (where C is an arbitrary real constant) at “x = a” is equal to

“C f ′(a)”. That is:



f ′(a) exists =⇒ [C f (x)] ′ 

= C f ′(a) . 

(12.23)

x=a

Proof:

• Case: f ′(a) exists



C f (a + ∆x) −C f (a)

[C f (x)] ′ 

= lim

[eq. (12.1)] ; 

x=a

∆x→0

∆x



C f (a + ∆x) + (− f (a)C )

[C f (x)] ′ 

= lim

x=a

∆x→0

∆x

[eqs. (2.54) and (2.56)] ; 



C f (a + ∆x) + C (− f (a))

[C f (x)] ′ 

= lim

x=a

∆x→0

∆x

[eqs. (2.56) and (2.61)] ; 



C [ f (a + ∆x) − f (a)]

[C f (x)] ′ 

= lim

x=a

∆x→0

∆x

[eqs. (2.54) and (2.64)] ; 







f (a + ∆x) − f (a)

[C f (x)] ′ 

= lim

C

x=a

∆x→0

∆x

[eqs. (2.57) and (2.72)] ; 

now:

lim C = C

[eq. (7.3)] ; 

∆x→0

f (a + ∆x) − f (a)

f ′(a) = lim

[eq. (12.1)] ; 

∆x→0

∆x



f (a + ∆x) − f (a) 

lim

C

= C f ′(a)

[eq. (7.8)] ; 

∆x→0

∆x
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therefore:



[C f (x)] ′ 

= C f ′(a) . 

x=a

From equation (12.23), it follows that:

[C f (x)] ′ = C f ′(x)

[in domain of f ′(x)] . 

(12.24)

We will now prove that if the derivative of a real function “ f (x)” exists at a point “x = a”, then the derivative of the negative function “− f (x)” at “x = a” is equal to “− f ′(a)”. That is: f ′(a) exists =⇒ [ − f (x)] ′ 

= − f ′(a) . 

(12.25)

x=a

Proof:

• Case: f ′(a) exists



[ (−1) f (x)]′ 

= (−1) f ′(a)

[eq. (12.23)] ; 

x=a



[ − f (x)]′ 

= − f ′(a)

[eq. (2.65)] . 

x=a

From equation (12.25), it follows that:

[ − f (x)]′ = − f ′(x)

[in domain of f ′(x)] . 

(12.26)

We will now prove that if the derivative of both real functions “ f (x)” and “g(x)” exists at a point “x = a”, then the derivative of the function of the sum “ f (x) + g(x)” at “x = a” is equal to

“ f ′(a) + g ′(a)”. That is:



f ′(a) exists 



=⇒ [ f (x) + g(x)]′ 

= f ′(a) + g ′(a) . 

(12.27)

g ′(a) exists

x=a

Proof:

• Case: { f ′(a) exists } ∧ { g′(a) exists }

f (a + ∆x) − f (a)

f ′(a) = lim

[eq. (12.1)] ; 

∆x→0

∆x

g(a + ∆x) − g(a)

g ′(a) = lim

[eq. (12.1)] ; 

∆x→0

∆x



f (a + ∆x) − f (a)

g(a + ∆x) − g(a) 

lim

+

= f ′(a) + g ′(a)

∆x→0

∆x

∆x

[eq. (7.5)] ; 



[ f (a + ∆x) + (− f (a))](∆x)−1 

lim 

 = f ′(a) + g ′(a)

∆x→0

+ [ g(a + ∆x) + (−g(a))](∆x)−1

[eqs. (2.54) and (2.72)] ; 
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lim

(∆x)−1[ f (a + ∆x) + (− f (a)) + g(a + ∆x) + (−g(a))] = f ′(a) + g′(a)

∆x→0

[eqs. (2.56) and (2.64)] ; 



f (a + ∆x) + (− f (a)) + g(a + ∆x) + (−g(a)) 

lim

= f ′(a) + g ′(a)

∆x→0

∆x

[eqs. (2.56) and (2.72)] ; 



f (a + ∆x) + g(a + ∆x) + (− f (a)) + (−g(a)) 

lim

= f ′(a) + g ′(a)

∆x→0

∆x

[eqs. (2.43) and (2.44)] ; 



f (a + ∆x) + g(a + ∆x) − ( f (a) + g(a)) 

lim

= f ′(a) + g ′(a)

∆x→0

∆x

[eqs. (2.52) and (2.54)] ; 



[ f (x) + g(x)] ′ 

= f ′(a) + g ′(a)

[eq. (12.1)] . 

x=a

From equation (12.27), it follows that:

[ f (x) + g(x)] ′ = f ′(x) + g ′(x)

[in domain of f ′(x) ∩ domain of g ′(x)] . 

(12.28)

We will now prove that if the derivative of both real functions “ f (x)” and “g(x)” exists at a point

“x = a”, then the derivative of the function of the difference “ f (x) − g(x)” at “x = a” is equal to

“ f ′(a) − g ′(a)”. That is:



f ′(a) exists 



=⇒ [ f (x) − g(x)]′ 

= f ′(a) − g′(a) . 

(12.29)

g ′(a) exists

x=a

Proof:

• Case: { f ′(a) exists } ∧ { g′(a) exists }



[ −g(x)]′ 

= −g′(a)

[eq. (12.26)] ; 

x=a



[ f (x) + (−g(x))]′ 

= f ′(a) + (−g′(a))

[eq. (12.28)] ; 

x=a



[ f (x) − g(x)]′ 

= f ′(a) − g′(a)

[eq. (2.54)] . 

x=a

[image: Image 1298]

[image: Image 1299]

[image: Image 1300]

[image: Image 1301]

[image: Image 1302]

Derivatives of Real Functions

381

From equation (12.29), it follows that:

[ f (x) − g(x)]′ = f ′(x) − g′(x)

[in domain of f ′(x) ∩ domain of g ′(x)] . 

(12.30)

We will now prove that if the derivative of both real functions “ f (x)” and “g(x)” exists at a point “x = a”, then the derivative of the function of the product “ f (x) g(x)” at “x = a” is equal to

“ f ′(a) g(a) + f (a) g ′(a)”. That is:



f ′(a) exists 



=⇒ [ f (x)g(x)]′ 

= f ′(a) g(a) + f (a) g ′(a) . 

(12.31)

g ′(a) exists

x=a

Proof:

• Case: { f ′(a) exists } ∧ { g′(a) exists }

f (a + ∆x) − f (a)

f ′(a) = lim

[eq. (12.1)] ; 

∆x→0

∆x

g(a + ∆x) − g(a)

g ′(a) = lim

[eq. (12.1)] ; 

∆x→0

∆x

f (x) is continuous at “x = a” 

[eq. (12.18)] ; 

lim f (a + ∆x) = f (a)

[eq. (11.24)] ; 

∆x→0

now:





f ′(a) g(a) + f (a) g ′(a) = f ′(a) g(a) +

lim f (a + ∆x)

g ′(a) ; 

∆x→0

f ′(a) g(a) + f (a) g ′(a) =



f (a + ∆x) − f (a) 





lim

g(a) +

lim f (a + ∆x)

g ′(a) ; 

∆x→0

∆x

∆x→0

f ′(a) g(a) + f (a) g ′(a) =



f (a + ∆x) − f (a) 

lim

g(a)

∆x→0

∆x





g(a + ∆x) − g(a) 

+

lim f (a + ∆x)

lim

; 

∆x→0

∆x→0

∆x
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f ′(a) g(a) + f (a) g ′(a) =



f (a + ∆x) − f (a)  



lim

lim g(a)

∆x→0

∆x

∆x→0





g(a + ∆x) − g(a) 

+

lim f (a + ∆x)

lim

[eq. (7.3)] ; 

∆x→0

∆x→0

∆x

f ′(a) g(a) + f (a) g ′(a) =



f (a + ∆x) − f (a)



lim

g(a)

∆x→0

∆x



g(a + ∆x) − g(a) 

+ lim

f (a + ∆x)

[eq. (7.8)] ; 

∆x→0

∆x

f ′(a) g(a) + f (a) g ′(a) =



f (a + ∆x) − f (a)

g(a + ∆x) − g(a) 

lim

g(a) + f (a + ∆x)

∆x→0

∆x

∆x

[eq. (7.5)] ; 

f ′(a) g(a) + f (a) g ′(a) =



f (a + ∆x) − f (a) g(a)

f (a + ∆x) g(a + ∆x) − g(a) 

lim

+

∆x→0

∆x

1

1

∆x

[eqs. (2.59) and (2.66)] ; 

f ′(a) g(a) + f (a) g ′(a) =

g(a) [ f (a + ∆x) − f (a)]

f (a + ∆x) [ g(a + ∆x) − g(a)]

lim

+

∆x→0

1 · ∆x

1 · ∆x

[eqs. (2.56) and (2.75)] ; 

f ′(a) g(a) + f (a) g ′(a) =



g(a) [ f (a + ∆x) + (− f (a))]





∆x



lim 



∆x→0 





f (a + ∆x) [ g(a + ∆x) + (−g(a))] 

+

∆x

[eqs. (2.54) and (2.59)] ; 

f ′(a) g(a) + f (a) g ′(a) =



∆x−1g(a) [ f (a + ∆x) + (− f (a))]



lim 



∆x→0

+ ∆x−1 f (a + ∆x) [ g(a + ∆x) + (−g(a))]

[eqs. (2.56) and (2.72)] ; 
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f ′(a) g(a) + f (a) g ′(a) =



g(a) [ f (a + ∆x) + (− f (a))]





lim

∆x−1

∆x→0

+ f (a + ∆x) [ g(a + ∆x) + (−g(a))]

[eqs. (2.56) and (2.64)] ; 

f ′(a) g(a) + f (a) g ′(a) =



g(a) f (a + ∆x) + (− f (a))g(a)





lim

∆x−1

∆x→0

+ f (a + ∆x) g(a + ∆x) + (−g(a)) f (a + ∆x)

[eqs. (2.56) and (2.64)] ; 

f ′(a) g(a) + f (a) g ′(a) =



f (a + ∆x) g(a + ∆x) + [ − f (a)g(a)] 



lim

∆x−1

∆x→0

+ g(a) f (a + ∆x) + [ −g(a) f (a + ∆x)]

[eqs. (2.43) and (2.61)] ; 

f ′(a) g(a) + f (a) g ′(a) =

h 



i

lim

f (a + ∆x) g(a + ∆x) + [ − f (a)g(a)] ∆x−1

∆x→0

[eqs. (2.45) and (2.53)] ; 



f (a + ∆x) g(a + ∆x) − f (a)g(a) 

f ′(a) g(a) + f (a) g ′(a) = lim

∆x→0

∆x

[eqs. (2.54) and (2.72)] ; 



f ′(a) g(a) + f (a) g ′(a) = [ f (x) g(x) ] ′ 

[eq. (12.1)] ; 

x=a



[ f (x) g(x) ] ′ 

= f ′(a) g(a) + f (a) g ′(a) . 

x=a

From equation (12.31), it follows that:

[ f (x) g(x) ] ′ = f ′(x) g(x) + f (x) g ′(x)

[in domain of f ′(x) ∩ domain of g ′(x)] . 

(12.32)

We will now prove that the derivative of a real function of the form “ f (x) = xn ” (n ≥ 2) is

“n xn−1 ”. That is:

n ≥ 2 :

[ xn ] ′ = n xn−1

(in

) . 

(12.33)

R

Proof:

• First case: n = 2

[x] ′ = 1

[eq. (12.22)] ; 

[ x x ] ′ = [x] ′ x + x [x] ′

[eq. (12.32)] ; 
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[ x x ] ′ = 1 · x + x · 1 ; 

[ x x ] ′ = x + x

[eqs. (2.56) and (2.59)] ; 

[ x2 ] ′ = 2 x

[eqs. (2.60) and (2.79)] ; 

[ x2 ] ′ = 2 x1

[eq. (2.78)] ; 

[ x2 ] ′ = 2 x2−1 ; 

[ xn ] ′ = n xn−1 ; 

• Second case: property holds for n = k (k ≥ 2)

[ xk ] ′ = k xk−1 ; 

[x] ′ = 1

[eq. (12.22)] ; 

[ xk x ] ′ = [ xk ] ′ x + xk [x] ′

[eq. (12.32)] ; 

[ xk x ] ′ = k xk−1 x + xk [x] ′ ; 

[ xk x ] ′ = k xk−1 x + xk · 1

[eq. (12.22)] ; 

[ xk x1 ] ′ = k xk−1 x1 + xk · 1

[eq. (2.78)] ; 

[ xk+1 ] ′ = k x(k−1)+1 + xk · 1

[eq. (2.85)] ; 

[ xk+1 ] ′ = k xk + xk · 1 ; 

[ xk+1 ] ′ = (k + 1) xk

[eqs. (2.56) and (2.64)] ; 

[ xk+1 ] ′ = (k + 1) x(k+1)−1 ; 

property holds for n = k + 1 ; 

property holds for n = k =⇒ property holds for n = k + 1 ; 

Considering the first and second case and applying complete induction, one finds that the property holds for any value of “n” (n ≥ 2). 

[image: Image 1318]

[image: Image 1319]

[image: Image 1320]

[image: Image 1321]

[image: Image 1322]

[image: Image 1323]

[image: Image 1324]

[image: Image 1325]

[image: Image 1326]

[image: Image 1327]

[image: Image 1328]

Derivatives of Real Functions

385

We will now prove that if the derivative of a real function “ f (x)” exists at a point “x = a” and the value of the function at the given point “x = a” is not zero [ f (a) , 0 ], then the derivative of the reciprocal function “ 1/ f (x)” at “x = a” is equal to “− f ′(a)/ f 2(a)”. That is: f ′(a) exists 



1





f ′(a)

=⇒

′ 

= −

. 

(12.34)

f (a) , 0

f (x)



f 2(a)

x=a

Proof:

• Case: { f ′(a) exists } ∧ { f (a) , 0 }

f (a + ∆x) − f (a)

f ′(a) = lim

[eq. (12.1)] ; 

∆x→0

∆x

f (x) is continuous at “x = a” 

[eq. (12.18)] ; 

lim f (a + ∆x) = f (a)

[eq. (11.24)] ; 

∆x→0

now:

f ′(a)

−

= − f ′(a)[ f (a) f (a)]−1

[eqs. (2.72) and (2.79)] ; 

f 2(a)

f ′(a)





−1

−

= − f ′(a) f (a)

lim f (a + ∆x)

; 

f 2(a)

∆x→0

f ′(a)



f (a + ∆x) − f (a)  



−1

−

= −

lim

f (a)

lim f (a + ∆x)

; 

f 2(a)

∆x→0

∆x

∆x→0

f ′(a)

−

=

f 2(a)



f (a + ∆x) − f (a)



−1

− lim

lim f (a)

lim f (a + ∆x)

∆x→0

∆x

∆x→0

∆x→0

[eq. (7.3)] ; 

f ′(a)

−

=

f 2(a)



f (a + ∆x) − f (a) 

−1





−

lim

lim

f (a) f (a + ∆x)

∆x→0

∆x

∆x→0

[eq. (7.8)] ; 
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f ′(a)

−

=

f 2(a)



f (a + ∆x) − f (a)  



−1 

−

lim

lim

f (a) f (a + ∆x)

∆x→0

∆x

∆x→0

[eq. (7.12)] ; 

f ′(a)



f (a + ∆x) − f (a) 

−1 

−

= − lim

f (a) f (a + ∆x)

f 2(a)

∆x→0

∆x

[eq. (7.8)] ; 

f ′(a)



f (a + ∆x) − f (a) 

−1 

−

= lim

−

f (a) f (a + ∆x)

f 2(a)

∆x→0

∆x

[eq. (7.6)] ; 

f ′(a)

−

=

f 2(a)

" 

#

lim

−[ f (a + ∆x) − f (a)][∆x]−1 [ f (a)]−1[ f (a + ∆x)]−1

∆x→0

[eqs. (2.72) and (2.74)] ; 

f ′(a)

−

=

f 2(a)

" 

#

lim

−[ f (a)]−1[ f (a + ∆x)]−1[ f (a + ∆x) − f (a)][∆x]−1

∆x→0

[eqs. (2.56) and (2.57)] ; 

f ′(a)

−

=

f 2(a)





[ f (a)]−1[ f (a + ∆x)]−1 f (a + ∆x) 



lim  − 

 [ ∆x ] −1 

∆x→0

+ [ f (a)]−1[ f (a + ∆x)]−1[ − f (a)]

[eqs. (2.54) and (2.64)] ; 

f ′(a)

−

=

f 2(a)





f (a + ∆x) [ f (a + ∆x)]−1[ f (a)]−1 



lim  − 

 [ ∆x ] −1 

∆x→0

+ [ − f (a)][ f (a)]−1 [ f (a + ∆x)]−1

[eqs. (2.56) and (2.57)] ; 
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f ′(a)

−

=

f 2(a)





f (a + ∆x) [ f (a + ∆x)]−1[ f (a)]−1 



lim  − 

 [ ∆x ]−1 

∆x→0 











+

− f (a)[ f (a)]−1 [ f (a + ∆x)]−1

[eqs. (2.57) and (2.61)] ; 

" 



! 

#

f ′(a)





−

= lim

− [ f (a)]−1 + −[ f (a + ∆x)]−1

[ ∆x ]−1

f 2(a)

∆x→0

[eqs. (2.59) and (2.71)] ; 

" 

! 

#

f ′(a)





−

= lim

−[ f (a)]−1 + [ f (a + ∆x)]−1 [∆x]−1

f 2(a)

∆x→0

[eqs. (2.51) and (2.52)] ; 

" 

! 

#

f ′(a)

−

= lim

[ f (a + ∆x)]−1 − [ f (a)]−1

[ ∆x ]−1

f 2(a)

∆x→0

[eqs. (2.43) and (2.54)] ; 



1

1



−

f ′(a)

f (a + ∆x)

f (a)

−

= lim 







[eqs. (2.72) and (2.73)] ; 

f 2(a)

∆x→0 

∆x





f ′(a)



1





−

=

′ 

[eq. (12.1)] ; 

f 2(a)

f (x)



x=a





1





′

f ′(a)



= −

. 

f (x)



f 2(a)

x=a

From equation (12.34), it follows that:



1



f ′(x)

f (x) , 0 =⇒

′ = −

[in domain of f ′(x)] . 

(12.35)

f (x)

f 2(x)

We will now prove that the derivative of a real function of the form “ f (x) = x−n ” (n ≥ 1) is

“−n x−(n+1) ”. That is:

n ≥ 1 :

[ x−n ] ′ = − nx−(n+1)

(in

\{0}) . 

(12.36)

R

Proof:

• First case: { n = 1 } ∧ { x , 0 }

[x] ′ = 1

[eq. (12.22)] ; 
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1  ′

[x] ′

= −

[eq. (12.35)] ; 

x

x2

1  ′

1

= −

; 

x

x2

1  ′ = − 1x−2

[eqs. (2.59) and (2.80)] ; 

x

1  ′ = − 1x−(1+1) ; 

x

1  ′ = − nx−(n+1) ; 

x

• Second case: { n ≥ 2 } ∧ { x , 0 }

[ xn ] ′ = n xn−1

[eq. (12.33)] ; 



1  ′

n xn−1

= −

[eq. (12.35)] ; 

xn

(xn)2



1  ′

n xn−1

= −

[eqs. (2.56) and (2.86)] ; 

xn

x2n



1  ′ = − nxn−1 1

[eqs. (2.72) and (2.73)] ; 

xn

x2n



1  ′ = − nxn+(−1)x−2n

[eqs. (2.54) and (2.80)] ; 

xn



1  ′ = − nx(−2n)+n+(−1)

[eqs. (2.43) and (2.88)] ; 

xn



1  ′ = − nx(−2)n+1n+(−1)

[eqs. (2.59) and (2.61)] ; 

xn



1  ′ = − nx[(−2)+1]n+(−1)

[eqs. (2.56) and (2.64)] ; 

xn
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1  ′ = − nx(−1)n+(−1) ; 

xn



1  ′ = − nx(−1)n+(−1)·1

[eqs. (2.56) and (2.59)] ; 

xn



1  ′ = − nx−(n+1)

[eqs. (2.64) and (2.65)] . 

xn

We will now prove that if the derivative of both real functions “ f (x)” and “g(x)” exists at a point “x = a” and the value of the second function at the given point “x = a” is not zero

[ g(a) , 0 ], then the derivative of the function of the ratio “ f (x)/g(x)” at the point “x = a” is equal to “[ f ′(a) g(a) − f (a)g ′(a)]/g2(a)”. That is:



f ′(a) exists 









f (x)



f ′(a) g(a) − f (a)g ′(a)

g ′(a) exists

=⇒

′ 

=

. 

(12.37)

g(x)

x=a

g2(a)



g(a) , 0



Proof:

• Case: { f ′(a) exists } ∧ { g′(a) exists } ∧ { g(a) , 0 }





1





′

g ′(a)



= −

[eq. (12.35)] ; 

g(x)



g2(a)

x=a





1









1

g ′(a)

f (x)

′ 

= f ′(a)

+ f (a) −

[eq. (12.32)] ; 

g(x)



g(a)

g2(a)

x=a





f (x)  

′

h

i



= f ′(a) [ g(a)]−1 + f (a) −g′(a)[g2(a)]−1

g(x)



x=a

[eqs. (2.72) and (2.73)] ; 





f (x)  

′ 

= f ′(a) [ g(a)]−1 + f (a) [−g′(a)][g2(a)]−1

g(x)



x=a

[eqs. (2.57) and (2.61)] ; 





f (x)  

′ 

= f ′(a) [ g(a)]−1 + [ − f (a)g′(a)][g2(a)]−1

g(x)



x=a

[eqs. (2.56) and (2.61)] ; 
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f (x)  

′ 

=

g(x)



x=a

f ′(a) g(a) [ g(a)]−1[ g(a)]−1 + [ − f (a)g ′(a)] [ g2(a)]−1

[eqs. (2.59) and (2.71)] ; 





f (x)  

′ 

= f ′(a) g(a) [ g2(a)]−1 + [ − f (a)g′(a)][g2(a)]−1

g(x)



x=a

[eqs. (2.74) and (2.79)] ; 





f (x)  

′







=

f ′(a) g(a) + [ − f (a)g ′(a)] [ g2(a)]−1

g(x)



x=a

[eqs. (2.56) and (2.64)] ; 





f (x)  

′

f ′(a) g(a) − f (a)g ′(a)



=

g(x)



g2(a)

x=a

[eqs. (2.54) and (2.72)] . 

From equation (12.37), it follows that:



f (x) 

f ′(x) g(x) − f (x)g ′(x)

g(x) , 0 =⇒

′ =

g(x)

g2(x)

[in domain of f ′(x) ∩ domain of g ′(x)] . 

(12.38)

12.7

CHAIN RULE

We will now prove that if the derivative of a real function “ f (x)” exists at a point “x = a”, and for any vicinity SV of “a” there exists a value “x1” such that “ f (x1) = f (a)”, then the derivative of the function “ f (x)” at “x = a” is equal to zero [ f ′(a) = 0 ]. That is: f ′(a) exists



=⇒ f ′(a) = 0 . 

(12.39)

∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }

Proof:

n

o

n

o

• Case:

f ′(a) exists

∧

∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }



f (a + ∆x) − f (a)

 lim

= f ′(a)



∆x→0

∆x

[eq. (12.1)] ; 





∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }
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∀



ε>0 ∃δ >0 ∀∆x,0











f (a + ∆x) − f (a)







| ∆x − 0 | < δ =⇒ 

− f ′(a)  < ε



∆x



[eq. (7.1)] ; 











∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }

∀



ε>0 ∃δ >0 ∀∆x,0











f (a + ∆x) − f (a)







|∆x| < δ =⇒ 

− f ′(a)  < ε



∆x













∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }

[eqs. (2.45) and (2.54)] ; 

∃



δ >0 ∀∆x,0











f (a + ∆x) − f (a)







|∆x| < δ =⇒ 

− f ′(a)  < ε

∀ε>0



∆x



; 











∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }

∀



∆x,0











f (a + ∆x) − f (a)







|∆x| < δ =⇒ 

− f ′(a)  < ε

∀ε>0 ∃δ>0



∆x



; 











∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }

taking: δ1 = δ

∀



∆x,0











f (a + ∆x) − f (a)







|∆x| < δ =⇒ 

− f ′(a)  < ε

∀ε>0 ∃δ>0



∆x



; 











∃∆x1,0 { |∆x1| < δ ∧ f (a + ∆x1) = f (a) }

∀



∆x,0











f (a + ∆x) − f (a)







|∆x| < δ =⇒ 

− f ′(a) <ε

∀ε>0 ∃δ>0,∆x



∆x



; 

1,0











|∆x1| < δ ∧ f (a + ∆x1) = f (a)
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taking: ∆x = ∆x1

∀ε>0 ∃δ>0,∆x1,0







f (a + ∆x



1) − f (a)



|∆x



− f ′(a)  < ε



1| < δ =⇒





∆x1



; 





|∆x1| < δ ∧ f (a + ∆x1) = f (a)







f (a + ∆x



1) − f (a)





− f ′(a)  < ε





∆x1



∀ε>0 ∃δ>0,∆x

; 

1,0





|∆x1| < δ ∧ f (a + ∆x1) = f (a)







f (a + ∆x



1) − f (a)





− f ′(a)  < ε





∆x1



∀ε>0 ∃δ>0,∆x

; 

1,0





 f (a + ∆x1) = f (a)








f (a + ∆x



1) − f (a)





− f ′(a)  < ε





∆x1



∀ε>0 ∃∆x

; 

1,0





 f (a + ∆x1) = f (a)







f (a)



− f (a)





− f ′(a)  < ε





∆x1



∀ε>0 ∃∆x

; 

1,0





 f (a + ∆x1) = f (a)



f (a) − f (a)



∀





ε>0 ∃∆x

− f ′(a) < ε ; 

1,0 





∆x1





0



∀





ε>0 ∃∆x

− f ′(a) < ε

[eqs. (2.53) and (2.54)] ; 

1,0 



∆x1



∀ε>0 ∃∆x1,0 |0 − f ′(a)| < ε

[eqs. (2.58) and (2.72)] ; 

∀ε>0 |0 − f ′(a)| < ε ; 

∀ε>0 |(− f ′(a)) + 0| < ε

[eqs. (2.43) and (2.54)] ; 
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∀ε>0 | − f ′(a)| < ε

[eq. (2.45)] ; 

∀ε>0 | f ′(a)| < ε

[eq. (2.128)] ; 

f ′(a) = 0 . 

We will also now prove that given a first function “g(x)” that is differentiable at “x = a”, and given a second function “ f (x)” that is differentiable at “x = g(a)”, if the derivative of the first function at

“x = a” is zero [ g ′(a) = 0], then the derivative of the composite function “ f ( g(x))” at “x = a” is equal to zero [ ( f (g(x)) ′ |x=a = 0 ]. That is:



g ′(a) = 0





=⇒ [ f (g(x))]′ 

= 0 . 

(12.40)

f ′( g(a)) exists

x=a

Proof:

• Case: { g′(a) = 0 } ∧ { f ′(g(a)) exists }

g(x) is continuous at “x = a” 

[eq. (12.18)] ; 

lim g(a + ∆x) = g(a)

[eq. (11.24)] ; 

∆x→0

 lim g(a + ∆x) = g(a)



∆x→0

















g(a + ∆x1) − g(a)

lim

= 0

[eq. (12.1)] ; 

∆x1→0

∆x1















f (g(a) + ∆y) − f (g(a))



 lim

= f ′( g(a))

∆y→0

∆y

∀



ε>0 ∃δ >0 ∀∆x,0 { | ∆x − 0 | < δ =⇒ | g(a + ∆x) − g(a) | < ε }

















∀



ε1>0 ∃δ1>0 ∀∆x1,0











g(a + ∆x

|∆

1) − g(a)

x





1 − 0 | < δ1 =⇒ 

− 0  < ε1



∆x1

















∀ε



3>0 ∃δ3>0 ∀∆y,0









f (g(a) + ∆y)





− f (g(a))





|∆y − 0| < δ3 =⇒ 

− f ′(g(a))  < ε3





∆y



[eq. (7.1)] ; 
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∀ε>0 ∃δ> 



0 ∀∆x,0 { |∆x| < δ =⇒ | g(a + ∆x) − g(a) | < ε }























g(a + ∆x





1) − g(a) 



∀ε

|∆x1| < δ1 =⇒

< ε1



1>0∃δ1 >0∀∆x1,0



∆x1











∀



ε3>0 ∃δ



3 >0 ∀∆y,0









f (g(a) + ∆y) − f (g(a))









< ε

|∆y| < δ3 =⇒ 

− f ′(g(a)) 

3



∆y



[eqs. (2.45) and (2.54)] ; 

∀



ε>0∃δ >0∀∆x,0 { |∆x| < δ =⇒ | g(a + ∆x) − g(a) | < ε }

















∀



ε1>0 ∃δ1>0 ∀∆x1,0











g(a + ∆x





1) − g(a) 

∀

|∆x1| < δ1 =⇒ 

< ε1

ε

; 

3>0



∆x1

















∃δ



3>0 ∀∆y,0









f (g(a) + ∆y)





− f (g(a))





|∆y| < δ3 =⇒ 

− f ′(g(a)) < ε3





∆y



∀ε3>0 ∃δ3>0

∀



ε>0 ∃δ >0 ∀∆x,0 { |∆x| < δ =⇒ | g(a + ∆x) − g(a) | < ε }

















∀



ε1>0 ∃δ1>0 ∀∆x1,0











g(a + ∆x

|∆

1) − g(a)

x





1| < δ1 =⇒ 

< ε1

; 



∆x1

















∀∆y,0











f (g(a) + ∆y)





− f (g(a))





|∆y| < δ3 =⇒ 

− f ′(g(a))  < ε3





∆y



taking: ε = δ3 ∧ ε1 = 1

∀ε3>0 ∃δ3>0

∃δ> 



0 ∀∆x,0 { |∆x| < δ =⇒ | g(a + ∆x) − g(a) | < δ3 }























g(a + ∆x





1) − g(a) 



∃

|∆x1| < δ1 =⇒ 

< 1



δ1>0 ∀∆x1,0



∆x1



; 









∀



∆y,0











f (g(a) + ∆y) − f (g(a))









< ε

|∆y| < δ3 =⇒ 

− f ′(g(a)) 

3



∆y
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∀ε3>0 ∃δ3>0,δ>0,δ1>0

∀∆x,0 { |∆x| < δ =⇒ |g(a + ∆x) − g(a)| < δ3 }

























g(a + ∆x





1) − g(a) 



∀∆x

|∆x1| < δ1 =⇒ 

< 1



1,0



∆x1



; 









∀



∆y,0











f (g(a) + ∆y) − f (g(a))









< ε

|∆y| < δ3 =⇒ 

− f ′(g(a)) 

3



∆y



taking: δ2 = min(δ , δ1)

∀ε3>0 ∃δ3>0,δ2>0

∀∆x,0 { |∆x| < δ2 =⇒ |g(a + ∆x) − g(a)| < δ3 }

























g(a + ∆x





1) − g(a) 



∀∆x

|∆x1| < δ2 =⇒ 

< 1



1,0



∆x1



; 









∀



∆y,0











f (g(a) + ∆y) − f (g(a))









< ε

|∆y| < δ3 =⇒ 

− f ′(g(a)) 

3



∆y



∀ε3>0 ∃δ3>0,δ2>0 ∀∆x,0

|∆x| < δ2 =⇒ |g(a + ∆x) − g(a)| < δ3

























g(a + ∆x





1) − g(a) 



∀∆x

|∆x1| < δ2 =⇒ 

< 1



1,0



∆x1



; 









∀



∆y,0











f (g(a) + ∆y) − f (g(a))









< ε

|∆y| < δ3 =⇒ 

− f ′(g(a)) 

3



∆y



taking: ∆x1 = ∆x

∀ε3>0 ∃δ3>0,δ2>0 ∀∆x,0

|∆x| < δ2 =⇒ |g(a + ∆x) − g(a)| < δ3





















g(a + ∆x)





− g(a) 



|∆x| < δ2 =⇒ 

< 1





∆x



; 









∀



∆y,0











f (g(a) + ∆y) − f (g(a))









< ε

|∆y| < δ3 =⇒ 

− f ′(g(a)) 

3



∆y
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∀ε3>0 ∃δ3>0,δ2>0 ∀∆x,0 |∆x| < δ2 =⇒







g(a + ∆x)



− g(a) 

| g(a + ∆x) − g(a) | < δ



< 1



3 ∧





∆x











; 

∀



∆y,0











f (g(a) + ∆y) − f (g(a))









< ε

|∆y| < δ3 =⇒ 

− f ′(g(a)) 

3



∆y



∀ε3>0 ∃δ3>0,δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :















g(a + ∆x) − g(a)







| g(a + ∆x) − g(a) | < δ

< 1









3 ∧



∆x

























∀



∆y,0



; 









f (g(a) + ∆y) − f (g(a))











< ε

|∆y| < δ3 =⇒ 

− f ′(g(a))

3







∆y



















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

taking: ∆y = g(a + ∆x) − g(a)

∀ε3>0 ∃δ3>0,δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :















g(a + ∆x) − g(a)







| g(a + ∆x) − g(a) | < δ

< 1









3 ∧



∆x

























|g(a + ∆x) − g(a)| < δ



3 =⇒



; 







f (g(a) + [ g(a + ∆x) − g(a)]) − f (g(a))









< ε



− f ′(g(a))

3







g(a + ∆x) − g(a)



















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0
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∀ε3>0 ∃δ3>0,δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











g(a + ∆x) − g(a)









< 1









∆x



















f (g(a) + [ g(a + ∆x) − g(a)]) − f (g(a))

; 







− f ′(g(a)) <ε





3







g(a + ∆x) − g(a)



















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











g(a + ∆x) − g(a)









< 



1









∆x



















f (g(a) + [ g(a + ∆x) − g(a)]) − f (g(a))





; 



− f ′(g(a)) <ε





3







g(a + ∆x) − g(a)



















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











g(a + ∆x) − g(a)









< 



1









∆x



















f (g(a + ∆x) + g(a) + (−g(a))) − f (g(a))





; 



− f ′(g(a)) <ε





3







g(a + ∆x) − g(a)



















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

[eqs. (2.43) and (2.54)] ; 
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∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











g(a + ∆x) − g(a)









< 



1









∆x



















f (g(a + ∆x)) − f (g(a))







− f ′(g(a)) < ε





3







g(a + ∆x) − g(a)



















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

[eqs. (2.45) and (2.53)] ; 

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











 g(a + ∆x)

f (g(a + ∆x))



− g(a) 

− f (g(a))









− f ′(g(a))<ε



3



∆x



g(a + ∆x) − g(a)









g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

[eqs. (2.59) and (2.122)] ; 

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











g(a + ∆x) − g(a) f (g(a + ∆x)) − f (g(a))















∆x

g(a + ∆x)



− g(a)





< ε



3







g(a + ∆x) − g(a)



−

f ′(g(a))





∆x

















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

[eqs. (2.64) and (2.131)] ; 

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











[ g(a + ∆x) − g(a)][g(a + ∆x) − g(a)]−1× 















[∆x]−1[ f (g(a + ∆x)) − f (g(a))]

< ε



3











− [∆x]−1[g(a + ∆x) − g(a)] f ′(g(a))















g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

[eqs. (2.56) and (2.72)] ; 
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∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :















[∆x]−1[ f (g(a + ∆x)) − f (g(a))]







< ε



3







− [∆x]−1[g(a + ∆x) − g(a)] f ′(g(a))













g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

[eqs. (2.59) and (2.71)] ; 

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











f (g(a + ∆x))

g(a + ∆x)



− f (g(a))

− g(a)







−

f ′(g(a))  < ε



3



∆x

∆x









g(a + ∆x) = g(a) :







g(a + ∆x) − g(a) = 0 ∧ f (g(a + ∆x)) − f (g(a)) = 0

[eqs. (2.56) and (2.72)] ; 

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











f (g(a + ∆x))

g(a + ∆x)



− f (g(a))

− g(a)







−

f ′(g(a))  < ε3





∆x

∆x









g(a + ∆x) = g(a) :







 g(a + ∆x) − g(a)

f (g(a + ∆x)) − f (g(a))





f ′(g(a)) = 0 ∧

= 0

∆x

∆x

[eqs. (2.58) and (2.72)] ; 

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











f (g(a + ∆x))

g(a + ∆x)



− f (g(a))

− g(a)







−

f ′(g(a))  < ε3





∆x

∆x





; 





g(a + ∆x) = g(a) :







 f (g(a + ∆x)) − f (g(a))

g(a + ∆x) − g(a)





−

f ′(g(a)) = 0

∆x

∆x
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∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











f (g(a + ∆x)) − f (g(a))

g(a + ∆x) − g(a)







f ′(g(a)) < ε



−



3





∆x

∆x









g(a + ∆x) = g(a) :











f (g(a + ∆x))

g(a + ∆x)



− f (g(a))

− g(a)







−

f ′(g(a))  = 0



∆x

∆x



[eq. (2.125)] ; 

∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒

g(a + ∆x) , g(a) :











f (g(a + ∆x)) − f (g(a))

g(a + ∆x) − g(a)







f ′(g(a)) < ε



−



3





∆x

∆x





; 





g(a + ∆x) = g(a) :











f (g(a + ∆x))

g(a + ∆x)



− f (g(a))

− g(a)







−

f ′(g(a))  < ε



3



∆x

∆x



∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x| < δ2 =⇒



f (g(a + ∆x))

g(a + ∆x)





− f (g(a))

− g(a)





−

f ′(g(a))  < ε3 ; 



∆x

∆x



∀ε3>0 ∃δ2>0 ∀∆x,0 |∆x − 0| < δ2 =⇒



f (g(a + ∆x))

g(a + ∆x)





− f (g(a))

− g(a)





−

f ′(g(a)) − 0  < ε3



∆x

∆x



[eqs. (2.45) and (2.54)] ; 



f (g(a + ∆x)) − f (g(a))

g(a + ∆x) − g(a)



lim

−

f ′(g(a))

= 0

∆x→0

∆x

∆x

[eq. (7.1)] ; 



f (g(a+∆x))− f (g(a))

g(a+∆x)−g(a)



 lim

−

f ′(g(a)) = 0



∆x→0

∆x

∆x

; 





g ′(a) = 0
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

f (g(a+∆x))− f (g(a))

g(a+∆x)−g(a)





 lim

−

f ′(g(a)) = 0



∆x→0

∆x

∆x







g(a + ∆x) − g(a)



 lim

= 0

∆x→0

∆x

[eq. (12.1)] ; 



f (g(a+∆x))− f (g(a))

g(a+∆x)−g(a)





 lim

−

f ′(g(a)) = 0



∆x→0

∆x

∆x







g(a + ∆x) − g(a)



 lim

= 0

f ′(g(a)) = f ′(g(a))



∧ lim

∆x→0

∆x

∆x→0

[eq. (7.3)] ; 



f (g(a+∆x))− f (g(a))

g(a+∆x)−g(a)



 lim

f ′(g(a)) = 0



−



∆x→0

∆x

∆x











g(a + ∆x) − g(a)



 lim

f ′(g(a))

= 0 · f ′(g(a))

∆x→0

∆x

[eq. (7.8)] ; 



f (g(a+∆x))− f (g(a))

g(a+∆x)−g(a)



 lim

f ′(g(a)) = 0



−



∆x→0

∆x

∆x











g(a + ∆x) − g(a)



 lim

f ′(g(a))

= 0

∆x→0

∆x

[eq. (2.58)] ; 



f (g(a+∆x))− f (g(a))  g(a+∆x)−g(a)



 lim

+

f ′(g(a)) = 0



−



∆x→0

∆x

∆x











g(a + ∆x) − g(a)



 lim

f ′(g(a))

= 0

∆x→0

∆x

[eq. (2.54)] ; 



f (g(a+∆x))− f (g(a))  g(a+∆x)−g(a)



+ −

f ′(g(a))

lim

∆x

∆x



 = 0 + 0

∆x→0

g(a+∆x)−g(a)



+

f ′(g(a))

∆x

[eq. (7.5)] ; 



f (g(a + ∆x)) − f (g(a))



lim

+ 0 = 0

[eqs. (2.43) and (2.53)] ; 

∆x→0

∆x

f (g(a + ∆x)) − f (g(a))

lim

= 0

[eq. (2.45)] ; 

∆x→0

∆x



[ f ( g(x)) ] ′ 

= 0

[eq. (12.1)] . 

x=a
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We will now prove that given a first function “g(x)” that is differentiable at “x = a”, and given a second function “ f (x)” that is differentiable at “x = g(a)”, then the derivative of the composite function “ f ( g(x))” at “x = a” is equal to “ f ′( g(a)) g ′(a)”. That is: g ′(a) exists





=⇒ [ f (g(x))]′ 

= f ′( g(a)) g ′(a) ; 

(12.41)

f ′( g(a)) exists

x=a

the last equation is known as the “chain rule” and is widely applied throughout physics. 

Proof:

• Case: { g′(a) exists } ∧ { f ′(g(a)) exists }

◦ First subcase: ∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ g(a + ∆x1) = g(a) }

g ′(a) = 0

[eq. (12.39)] ; 



[ f ( g(x)) ] ′ 

= 0

[eq. (12.40)] ; 

x=a

now:

0 = f ′( g(a)) · 0

[eqs. (2.56) and (2.58)] ; 



[ f ( g(x)) ] ′ 

= f ′( g(a)) g ′(a) ; 

x=a

n

o

◦ Second subcase: ¬ ∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ g(a + ∆x1) = g(a) }

¬  ∀δ1>0 ∃∆x1,0 |∆x1| < δ1 ∧ g(a + ∆x1) + (−g(a)) = 0  

[eqs. (2.46) and (2.53)] ; 

¬  ∀δ1>0 ∃∆x1,0 |∆x1| < δ1 ∧ g(a + ∆x1) − g(a) = 0  

[eq. (2.54)] ; 

n

o

∃δ

∃

; 

1 >0 ¬

∆x1,0 { |∆x1| < δ1 ∧ g(a + ∆x1) − g(a) = 0 }

n

o

∃δ

|∆x

; 

1 >0 ∀∆x1,0 ¬

1| < δ1 ∧ g(a + ∆x1) − g(a) = 0

n

o

∃δ

|∆x

; 

1 >0∀∆x1,0¬

1| < δ1 ∧ ¬{¬{g(a + ∆x1) − g(a) = 0}}

n

o

∃δ

|∆x

; 

1 >0 ∀∆x1,0 ¬

1| < δ1 ∧ ¬ { g(a + ∆x1) − g(a) , 0}

n

o

∃δ

|∆x

; 

1 >0 ∀∆x1,0

1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0

(δ1 > 0

; 

∀∆x1,0 {|∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0}
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δ



1 > 0



∀∆x

[eq. (12.18)] ; 

1,0 { |∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0 }



 g(x) is continuous at “x = a” 

δ



1 > 0







∀∆x1,0 { |∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0 }

[eq. (11.24)] ; 









lim g(a + ∆x



2) = g(a)

∆x2→0

δ



1 > 0







∀



∆x1,0 { |∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0 }



[eq. (7.1)] ; 





∀ε



2>0 ∃δ2>0 ∀∆x2,0





|∆x2 − 0| < δ2 =⇒ | g(a + ∆x2) − g(a) | < ε2

δ



1 > 0







∀



∆x1,0 { |∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0 }







∀ε



2>0 ∃δ2>0 ∀∆x2,0





|∆x2| < δ2 =⇒ | g(a + ∆x2) − g(a) | < ε2

[eqs. (2.45) and (2.54)] ; 

δ



1 > 0







∀



∆x1,0 { |∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0 }



∀ε

; 

2>0





∃δ



2>0 ∀∆x2,0





|∆x2| < δ2 =⇒ | g(a + ∆x2) − g(a) | < ε2

∀ε2>0 ∃δ2>0

δ



1 > 0



∀∆x

; 

1,0 { |∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0 }



∀∆x2,0 { |∆x2| < δ2 =⇒ | g(a + ∆x2) − g(a) | < ε2 }

∀ε2>0 ∃δ2>0 ∀∆x2,0

δ



1 > 0



∀∆x

; 

1,0 { |∆x1| < δ1 =⇒ g(a + ∆x1) − g(a) , 0 }



|∆x2| < δ2 =⇒ | g(a + ∆x2) − g(a) | < ε2

[image: Image 1489]
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taking: ∆x1 = ∆x2

∀ε2>0 ∃δ2>0 ∀∆x2,0

δ



1 > 0



|∆x2| < δ1 =⇒ g(a + ∆x2) − g(a) , 0

; 



|∆x2| < δ2 =⇒ | g(a + ∆x2) − g(a) | < ε2

taking: δ3 = min(δ1, δ2)

∀ε2>0 ∃δ3>0 ∀∆x2,0

δ



1 > 0



|∆x2| < δ3 =⇒ g(a + ∆x2) − g(a) , 0

; 



|∆x2| < δ3 =⇒ | g(a + ∆x2) − g(a) | < ε2

∀ε2>0 ∃δ3>0 ∀∆x2,0

(|∆x2| < δ3 =⇒ g(a + ∆x2)− g(a) , 0

; 

|∆x2| < δ3 =⇒ |g(a + ∆x2) − g(a)| < ε2

∀ε2>0 ∃δ3>0 ∀∆x2,0

(g(a + ∆x

|∆

2) − g(a) , 0

x2| < δ3 =⇒

; 

|g(a + ∆x2) − g(a)| < ε2

∀ε2>0 ∃δ3>0 ∀∆x2,0

|∆x2| < δ3 =⇒ 0 < |g(a + ∆x2) − g(a)| < ε2 ; 

∀



ε2>0 ∃δ



3 >0 ∀∆x2,0





|∆x



2| < δ3 =⇒ 0 < | g(a + ∆x2) − g(a) | < ε2

[eq. (12.1)] ; 







f ( g(a) + ∆y) − f (g(a))



 f ′( g(a)) = lim



∆y→0

∆y
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∀ε



2>0 ∃δ3 >0 ∀∆x2,0







|∆x2| < δ3 =⇒ 0 < | g(a + ∆x2) − g(a) | < ε2







∀



ε4>0 ∃δ



4 >0 ∀∆y,0









f ( g(a)+∆y)− f (g(a))







|∆y−0| < δ

− f ′(g(a)) <ε



4 =⇒ 



4



∆y



[eq. (7.1)] ; 

∀ε



2>0 ∃δ3 >0 ∀∆x2,0







|∆x2| < δ3 =⇒ 0 < | g(a + ∆x2) − g(a) | < ε2







∀



ε4>0 ∃δ



4 >0 ∀∆y,0









f ( g(a)+∆y)− f (g(a))







|∆y| < δ

− f ′(g(a)) < ε



4 =⇒ 



4



∆y



[eqs. (2.45) and (2.54)] ; 

∀ε4>0 ∃δ4>0

∀ε



2>0 ∃δ3 >0 ∀∆x2,0







|∆x2| < δ3 =⇒ 0 < | g(a + ∆x2) − g(a) | < ε2







; 

∀



∆y,0











f ( g(a)+∆y)− f (g(a))







|∆y| < δ

− f ′(g(a)) < ε



4 =⇒ 



4



∆y



taking: ε2 = δ4

∀ε4>0 ∃δ4>0

∃δ



3 >0 ∀∆x2,0







|∆x2| < δ3 =⇒ 0 < | g(a + ∆x2) − g(a) | < δ4







; 

∀



∆y,0











f ( g(a)+∆y)− f (g(a))









< ε

|∆y| < δ4 =⇒ 

− f ′(g(a))

4



∆y



∀ε4>0 ∃δ4>0 ∃δ3>0

∀



∆x2,0 { |∆x2| < δ3 =⇒ 0 < | g(a + ∆x2) − g(a) | < δ4 }











∀

; 

∆y,0











f ( g(a+∆y)



− f (g(a))





|∆y| < δ



− f ′(g(a)) < ε



4 =⇒

4



∆y
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∀ε4>0 ∃δ4>0 ∃δ3>0 ∀∆x2,0

|∆x



2| < δ3 =⇒ 0 < | g(a + ∆x2) − g(a) | < δ4











∀

; 

∆y,0











f ( g(a)+∆y)



− f (g(a))





|∆y| < δ



− f ′(g(a)) < ε



4 =⇒

4



∆y



∀ε4>0 ∃δ4>0 ∃δ3>0 ∀∆x2,0 |∆x2| < δ3 =⇒

0 < |g(a + ∆x



2) − g(a) | < δ4











∀

; 

∆y,0











f ( g(a)+∆y)



− f (g(a))





|∆y| < δ



− f ′(g(a)) < ε



4 =⇒

4



∆y



taking: ∆y = g(a + ∆x2) − g(a)

∀ε4>0 ∃δ4>0 ∃δ3>0 ∀∆x2,0 |∆x2| < δ3 =⇒

f (g(a) + [ g(a + ∆x





2) − g(a)]) − f ( g(a))





− f ′(g(a)) < ε4 ; 



g(a + ∆x2) − g(a)



∀ε4>0 ∃δ3>0 ∀∆x2,0 |∆x2| < δ3 =⇒

f (g(a) + [ g(a + ∆x





2) − g(a)]) − f ( g(a))





− f ′(g(a)) < ε4 ; 



g(a + ∆x2) − g(a)



∀ε>0 ∃δ>0 ∀∆x,0 |∆x| < δ =⇒

f (g(a) + [ g(a + ∆x)





− g(a)]) − f (g(a))





− f ′(g(a)) < ε ; 



g(a + ∆x) − g(a)



∀ε>0 ∃δ>0 ∀∆x,0 |∆x| < δ =⇒

f (g(a + ∆x) + g(a) + [





−g(a)]) − f (g(a))





− f ′(g(a)) < ε



g(a + ∆x) − g(a)



[eqs. (2.43) and (2.54)] ; 

∀ε>0 ∃δ>0 ∀∆x,0 |∆x| < δ =⇒



f ( g(a + ∆x))





− f (g(a))





− f ′(g(a))  < ε



g(a + ∆x) − g(a)



[eqs. (2.45) and (2.53)] ; 

[image: Image 1502]

[image: Image 1503]

[image: Image 1504]

[image: Image 1505]

[image: Image 1506]

[image: Image 1507]

[image: Image 1508]

Derivatives of Real Functions

407

∀ε>0 ∃δ>0 ∀∆x,0 |∆x − 0| < δ =⇒



f ( g(a + ∆x))





− f (g(a))





− f ′(g(a))  < ε



g(a + ∆x) − g(a)



[eqs. (2.45) and (2.54)] ; 

f ( g(a + ∆x)) − f (g(a))

lim

= f ′( g(a))

[eq. (7.1)] ; 

∆x→0

g(a + ∆x) − g(a)



f ( g(a + ∆x)) − f (g(a))



 lim

= f ′( g(a))



∆x→0

g(a + ∆x) − g(a)



[eq. (12.1)] ; 





g(a + ∆x) − g(a)



 lim

= g ′(a)

∆x→0

∆x



f ( g(a + ∆x)) − f (g(a)) g(a + ∆x) − g(a) 

lim

= f ′( g(a)) g ′(a)

∆x→0

g(a + ∆x) − g(a)

∆x

[eq. (7.8)] ; 



[ g(a + ∆x) − g(a)][g(a + ∆x) − g(a)]−1 × 

lim 

 = f ′( g(a)) g ′(a)

∆x→0

[ f ( g(a + ∆x)) − f (g(a))][∆x]−1

[eqs. (2.56) and (2.72)] ; 

lim

[ f ( g(a + ∆x)) − f (g(a))][∆x]−1  = f ′(g(a))g′(a)

∆x→0

[eqs. (2.59) and (2.71)] ; 

f ( g(a + ∆x)) − f (g(a))

lim

= f ′( g(a)) g ′(a)

[eq. (2.72)] ; 

∆x→0

∆x



[ f ( g(x)) ] ′ 

= f ′( g(a)) g ′(a)

[eq. (12.1)] . 

x=a

Finally, from equation (12.41), it follows that:

[ f ( g(x)) ] ′ = f ′( g(x)) g ′(x)

[in domain of g ′(x) ∩ domain of f ′(g(x))] . 

(12.42)
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12.8

EXAMPLES

As an example, in this section we will revisit the case discussed in 7.6 of an object that moves along a straight line, assuming that the position of the object “x” for a given time “t” is given by: x(t) = b0 + b1t + b2t2 ; 

(12.43)

where “b0”, “b1”, and “b2” are real number constants. From the equation of motion (last equation), we wish to calculate the velocity “vx” and the acceleration “ax” of the object at any given time “t”. 

Taking the initial time to be zero (i.e., t0 = 0), the initial position “x0” is given by: x0 = x(0) ; 

substituting equation (12.43):

x0 = b0 + b1 · 0 + b2 · 02 ; 

applying equations (2.45), (2.56), (2.58), and (2.79):

x0 = b0 ; 

thus, one finds that the constant “b0” is equal to the initial position “x0”. Therefore, equation (12.43) can be rewritten as:

x(t) = x0 + b1t + b2t2 . 

(12.44)

As discussed in 6.5 and 7.6 [see eq. (12.1)], the velocity “vx” of the object at any time “t” is given by:

vx(t) = x ′(t) ; 

(12.45)

substituting equation (12.44):

vx(t) = [ x0 + b1t + b2t2 ] ′ ; 

applying equation (12.28):

vx(t) = [ x0 ] ′ + [ b1t ] ′ + [ b2t2 ] ′ ; 

applying equation (12.21):

vx(t) = 0 + [ b1t ] ′ + [ b2t2 ] ′ ; 

applying equation (12.24):

vx(t) = 0 + b1 [t ] ′ + b2 [t2 ] ′ ; 

applying equation (12.22):

vx(t) = 0 + b1 · 1 + b2 [t2 ] ′ ; 

applying equation (12.33):

vx(t) = 0 + b1 · 1 + b2 · 2 · t1 ; 

applying equations (2.43), (2.45), (2.56), (2.59), and (2.78):

vx(t) = b1 + 2b2t ; 

(12.46)

this last equation is the velocity function of the object “vx(t)”. 
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Since we are taking the initial time to be zero, the initial velocity “v0x” is given by: v0x = vx(0) ; 

substituting equation (12.46):

v0x = b1 + 2b2 · 0 ; 

applying equations (2.45), (2.56), and (2.58):

v0x = b1 ; 

thus, one finds that the constant “b1” is equal to the initial velocity “v0x”. Therefore, equations (12.44) and (12.46), can be respectively rewritten as:

x(t) = x0 + v0xt + b2t2 ; 

(12.47)

vx(t) = v0x + 2b2t . 

(12.48)

In turn, as discussed in 7.6, the acceleration “ax” of the object is the rate of change of velocity of the object with respect to time “t”. Therefore:

a

′

x(t ) = vx (t ) ; 

substituting equation (12.48):

ax(t) = [ v0x + 2b2t ] ′ ; 

applying equation (12.28):

ax(t) = [ v0x ] ′ + [ 2b2t ] ′ ; 

applying equation (12.21):

ax(t) = 0 + [ 2b2t ] ′ ; 

applying equation (12.24):

ax(t) = 0 + 2b2 [t ] ′ ; 

applying equation (12.22):

ax(t) = 0 + 2b2 · 1 ; 

applying equations (2.43), (2.45), (2.56), and (2.59):

ax(t) = 2b2 . 

Note that the acceleration function “ax(t)” is constant. Thus we can more simply write: ax = 2b2 ; 

(12.49)

where acceleration “ax” is now a real number constant. 
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Substituting the last equation into equation (12.48):

vx(t) = v0x + axt ; 

(12.50)

this last equation is the velocity function “vx(t)” of the object expressed in terms of the initial velocity “v0x” and the acceleration “ax”. 

Recalling equation (12.49), one finds that:

2−1ax = 2−12b2 ; 

applying equations (2.56), (2.59), (2.71), and (2.73):

1 ax = b2 ; 

2

substituting the last equation in equation (12.47):

1

x(t) = x0 + v0xt + axt2 ; 

(12.51)

2

this last equation is the position function “x(t)” of the object expressed in terms of the initial position

“x0”, the initial velocity “v0x” and the acceleration “ax”. 

In this section we have thus, from the equation of motion of the object [eq. (12.43)], obtained the velocity function “vx(t)” [eq. (12.50)] and rewritten the equation of motion [eq. (12.51)] in terms of the physics quantities. As can be clearly seen, derivatives and the properties of derivatives, have played a fundamental and key role in the physics analysis of the system. 
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13 Additional Properties of

Derivatives

13.1

INTRODUCTION

Derivatives appear explicitly or implicitly throughout physics. Derivatives and their properties are a fundamental part of calculus, that in turn is fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as derivatives. Derivatives and their properties become more than useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present additional properties of derivatives that appear, explicitly or implicitly, in many physics problems. 

13.2

NOTATION

Following the notation used in chapters 4-12, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 
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13.3

DERIVATIVE OF INVERSE FUNCTIONS

We will now prove that if the derivative of a real function “ f (x)” exists at a point “x = a” and it is not zero [ f ′(a) , 0], and the given function in a neighborhood of “x = a” has an inverse function

[i.e., f −1(x) exists in a neighborhood of “x = f (a)”], then the derivative of the inverse function at

“x = f (a)” is equal to “1/ f ′(a)”. That is:



f ′(a) exists









1

f ′(a) , 0

=⇒ [ f −1(x)]′ 

=

. 

x= f (a)

f ′(a)



f −1(x) exists in a neighborhood of “x = f (a)” 

(13.1)

Proof:

• Case: { f ′(a) exists} ∧ { f ′(a) , 0} ∧ { f −1(x) exists in a neighborhood of “x = f (a)”}

 f ′(a) , 0







[eq. (12.1)] ; 



f (a + ∆x) − f (a)



 lim

= f ′(a)

∆x→0

∆x

f (a + ∆x) − f(a) −1 ! 

lim

= [ f ′(a) ]−1

[eq. (7.12)] ; 

∆x→0

∆x

f (a + ∆x) − f(a) −1 ! 

1

lim

=

[eq. (2.73)] ; 

∆x→0

∆x

f ′(a)

considering that f −1(x) is a continuous function at “x = f (a)” 

[see equations (11.54) and (11.55)]; 

and taking: ∆x = f −1( f (a) + ∆y) − f −1( f (a))

 



−1

f a + f −1( f (a)+∆y) − f −1( f (a)) − f (a)





1

lim













=

∆y→0





f −1( f (a) + ∆y) − f −1( f (a))



f ′(a)





[eq. (7.1)] ; 

considering that: f −1( f (a)) = a

 





−1 

f

a + f −1( f (a) + ∆y) − a − f (a)





1

lim













=

; 

∆y→0 





f −1( f (a) + ∆y) − f −1( f (a))



f ′(a)




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



f −1( f (a) + ∆y) − f −1( f (a))

1

lim 





=







∆y→0 



f ′(a)

f

a + f −1( f (a) + ∆y) − a − f (a)

[eq. (2.76)] ; 





f −1( f (a) + ∆y) − f −1( f (a))

1

lim 





=







∆y→0 



f ′(a)

f

f −1( f (a) + ∆y) + a + [−a] + [− f (a)]

[eqs. (2.43) and (2.54)] ; 





f −1( f (a) + ∆y) − f −1( f (a))

1

lim 





=







∆y→0 



f ′(a)

f

f −1( f (a) + ∆y)

+ [− f (a)]

[eqs. (2.45) and (2.53)] ; 





considering that: f

f −1( f (a) + ∆y)

= f (a) + ∆y



f −1( f (a) + ∆y) − f −1( f (a)) 

1

lim

=

; 

∆y→0

f (a) + ∆y + [− f (a)]

f ′(a)



f −1( f (a) + ∆y) − f −1( f (a)) 

1

lim

=

∆y→0

∆y + 0

f ′(a)

[eqs. (2.43) and (2.53)] ; 

f −1( f (a) + ∆y) − f −1( f (a))

1

lim

=

[eq. (2.45)] ; 

∆y→0

∆y

f ′(a)



1

[ f −1(y) ] ′ 

=

[eq. (12.1)] ; 

y= f (a)

f ′(a)



1

[ f −1(x) ] ′ 

=

. 

x= f (a)

f ′(a)

[image: Image 1535]

[image: Image 1536]

[image: Image 1537]

[image: Image 1538]

[image: Image 1539]

[image: Image 1540]

[image: Image 1541]

[image: Image 1542]

[image: Image 1543]

[image: Image 1544]

[image: Image 1545]

[image: Image 1546]

[image: Image 1547]

[image: Image 1548]

[image: Image 1549]

414

Limits and Derivatives of Real Functions for Physicists

From equation (13.1), it follows that:



f ′(x) exists







1

f ′(x) , 0

=⇒ [ f −1(y)]′ =

. 

f ′( f −1(y))



f −1(y) exists in a neighborhood of “y = f (x)” 

(13.2)

13.3.1

DERIVATIVE OF NTH ROOT FUNCTIONS

We will now prove that given an integer “n” that is even and greater than zero, the derivative of the real function nth root of “x”, for positive values of “x” is given by the equation: n is even 

√

1

=⇒ [ n x ]′ =

√

[in

+] . 

(13.3)

n > 0

R

n ( n x )n−1

Proof:

• Case: {n is even} ∧ {n > 0} ∧ {x > 0} ∧ { f (x) = xn }

√

f −1(x) = n x

[eq. (2.94)] ; 

f ′(x) = n xn−1

[eq. (12.33)] ; 

1

[ f −1(x) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(x))

√

1

[ n x ] ′ =

√

; 

f ′( n x )

√

1

[ n x ] ′ =

√

. 

n ( n x )n−1

In a similar manner as we did for equation (13.3), we can also prove that: n is odd 

√

1

=⇒ [ n x ]′ =

√

[in

\{0}] . 

(13.4)

n > 2

R

n ( n x )n−1

13.4

DERIVATIVE THEOREMS

13.4.1

ROLLE’S THEOREM

We will now prove that given a real function “ f (x)” that is continuous in a closed interval “[a, b ]” 

(a < b) and differentiable in the open interval “(a, b)” such that the values of the function at the left-boundary and the right-boundary of the intervals are equal to each other [ f (a) = f (b)], there must exist a least one point “c” in the interior of the intervals (a < c < b) such that the derivative of the function at “x = c” is zero [ f ′(c) = 0]. That is:



f (x) is continuous in [a, b ]





a < c < b 









f (x) is differentiable in (a, b)

=⇒ ∃c

; 

(13.5)



f (a) = f (b)





f ′(c) = 0 

the last equation is known as Rolle’s theorem. 
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Proof:

• Case: { f (x) is continuous in [a,b]} ∧ { f (x) is differentiable in (a,b)} ∧ { f (a) = f (b)}

◦ First subcase: f (x) is constant in [a,b]

a < x < b =⇒ f ′(x) = 0

[eq. (12.21)] ; 



a < c < b 





∃c

; 



f ′(c) = 0 

◦ Second subcase: f (x) is not constant in [a,b]

f (x) is bounded in closed interval [a, b ]

[eq. (11.46)] ; 

inf(range of f[a,b](x)) exists

[eq. (11.21)] ; 

sup(range of f[a,b](x)) exists

[eq. (11.16)] ; 

given that in this subcase f (x) is not constant in [a, b ], 

it follows that at least one of the two conditions must hold:

1) inf(range of f[a,b](x)) < f (a) ; 

2) sup(range of f[a,b](x)) > f (a) ; 

N

First subsubcase: inf(range of f[a,b](x)) < f (a)

min(range of f[a,b](x)) = inf(range of f[a,b](x))

[eq. (11.49)] ; 

x

 min ∈ [a, b ]













∃x

f (x

; 

min

min) = min(range of f[a,b ](x))





 f (xmin ) < f (a)







 f (xmin) < f (b)

a < x



min < b



∃x

; 

min



 f (xmin) = min(range of f[a,b](x))

a < xmin < b









∃x

; 

min

f (x



min) = min(range of f[a,b ](x))





 f ′(xmin) exists
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a < x



min < b













∃x

f (x

[eq. (12.1)] ; 

min

min) = min(range of f[a,b ](x))





¬ { f ′(xmin) < 0 }







¬ { f ′(xmin) > 0 }

a < xmin < b









∃x

; 

min

f (x



min) = min(range of f[a,b ](x))





 f ′(xmin) = 0

a < x



min < b



∃x

; 

min



 f ′(xmin) = 0



a < c < b 





∃c

; 



f ′(c) = 0 

N

Second subsubcase: sup(range of f[a,b](x)) > f (a)

max(range of f[a,b](x)) = sup(range of f[a,b](x))

[eq. (11.48)] ; 

x

 max ∈ [a, b ]













∃x

f (x

; 

max

max) = max(range of f[a,b ](x))





 f (xmax) > f (a)







 f (xmax) > f (b)

a < x



max < b



∃x

; 

max



 f (xmax) = max(range of f[a,b](x))

a < xmax < b









∃x

; 

max

f (x



max) = max(range of f[a,b ](x))





 f ′(xmax) exists

a < x



max < b













∃x

f (x

[eq. (12.1)] ; 

max

max) = max(range of f[a,b ](x))





¬ { f ′(xmax) < 0 }







¬ { f ′(xmax) > 0 }
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a < xmax < b









∃x

; 

max

f (x



max ) = max(range of f[a,b ](x))





 f ′(xmax) = 0

a < x



max < b



∃x

; 

max



 f ′(xmax) = 0



a < c < b 





∃c

. 



f ′(c) = 0 

13.4.2

MEAN VALUE THEOREM

We will now prove that given a real function “ f (x)” that is continuous in a closed interval “[a, b ]” 

(a < b) and differentiable in the open interval “(a, b)”, there must exist a least one point “c” in the interior of the intervals (a < c < b) such that the derivative of the function at “x = c” is equal to

“[ f (b) − f (a)]/[b − a]”. That is:



a < c < b





f (x) is continuous in [a, b ]











=⇒ ∃

; 

(13.6)

f (x) is differentiable in (a, b)

c

f (b) − f (a)







f ′(c) =



b − a

the last equation is known as the mean value theorem. 

Proof:









• Case:

f (x) is continuous in [a, b ]

∧

f (x) is differentiable in (a, b)

∧



f (b) − f (a)



g(x) = f (x) −

(x − a)

b − a

◦ First subcase: continuity of g(x) in [a,b]

N

First subsubcase: continuity of g(x) in (a, b)

“x” is continuous in (a, b)

[eq. (11.57)] ; 

(“x” is continuous in (a,b)

[eq. (11.56)] ; 

“a” is continuous in (a, b)

“x − a” is continuous in (a,b)

[eq. (11.60)] ; 
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“x − a” is continuous in (a,b)







[eq. (11.56)] ; 



f (b) − f (a)



“

” is continuous in (a, b)

b − a

f (b) − f (a)

“

(x − a) ” is continuous in (a,b)

[eq. (11.61)] ; 

b − a

f (b) − f (a)

“ f (x) −

(x − a) ” is continuous in (a,b)

b − a

[eq. (11.60)] ; 

g(x) is continuous in (a, b) ; 

N

Second subsubcase: right-continuity of g(x) at “x = a” 

“x” is right-continuous at “x = a” 

[eqs. (11.28) and (11.57)] ; 

(“x” is right-continuous at “x = a” 

“a” is right-continuous at “x = a” 

[eqs. (11.28) and (11.56)] ; 

“x − a” is right-continuous at “x = a” 

[eqs. (11.28) and (11.60)] ; 

“x − a” is right-continuous at “x = a” 









f (b) − f (a)



“

” is right-continuous at “x = a” 

b − a

[eqs. (11.28) and (11.56)] ; 

f (b) − f (a)

“

(x − a) ” is right-continuous at “x = a” 

b − a

[eqs. (11.28) and (11.61)] ; 

f (b) − f (a)

“ f (x) −

(x − a)” is right-continuous at “x = a” 

b − a

[eqs. (11.28) and (11.60)] ; 

g(x) is right-continuous at “x = a” ; 

N

Third subsubcase: left-continuity of g(x) at “x = b” 

“x” is left-continuous at “x = b” 

[eqs. (11.26) and (11.57)] ; 

(“x” is left-continuous at “x = b” 

“a” is left-continuous at “x = b” 

[eqs. (11.26) and (11.56)] ; 
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“x − a” is left-continuous at “x = b” 

[eqs. (11.26) and (11.60)] ; 

“x − a” is left-continuous at “x = b” 









f (b) − f (a)



“

” is left-continuous at “x = b” 

b − a

[eqs. (11.26) and (11.56)] ; 

f (b) − f (a)

“

(x − a) ” is left-continuous at “x = b” 

b − a

[eqs. (11.26) and (11.61)] ; 

f (b) − f (a)

“ f (x) −

(x − a) ” is left-continuous at “x = b” 

b − a

[eqs. (11.26) and (11.60)] ; 

g(x) is left-continuous at “x = b” ; 

From the three above subsubcases, and considering equation (11.34), one finds that:

g(x) is continuous in [a, b ] ; 

◦ Second subcase: differentiability of g(x) in (a,b)

[x] ′ = 1

[eq. (12.22)] ; 

[x] ′ = 1 ∧ [a]′ = 0

[eq. (12.21)] ; 

[ x − a]′ = 1 − 0

[eq. (12.29)] ; 

[ x − a]′ = 1 ; 



f (b) − f (a)



f (b) − f (a)

(x − a) ′ =

· 1

[eq. (12.23)] ; 

b − a

b − a



f (b) − f (a)



f (b) − f (a)

(x − a) ′ =

b − a

b − a

[eqs. (2.56) and (2.59)] ; 



f (b) − f (a)



f (b) − f (a)

f (x) −

(x − a) ′ = f ′(x) −

b − a

b − a

[in (a, b)]

[eq. (12.30)] ; 
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f (b) − f (a)

g ′(x) = f ′(x) −

[in (a, b)] ; 

b − a

g(x) is differentiable in (a, b) ; 

◦ Third subcase: g(a) and g(b)

N

First subsubcase: g(a)



f (b) − f (a)



g(a) =

f (x) −

(x − a) 

; 

b − a

x=a

f (b) − f (a)

g(a) = f (a) −

(a − a) ; 

b − a

f (b) − f (a)

g(a) = f (a) −

· 0

[eqs. (2.53) and (2.54)] ; 

b − a

g(a) = f (a) − 0

[eqs. (2.56) and (2.58)] ; 

g(a) = f (a)

[eqs. (2.45) and (2.54)] ; 

N

Second subsubcase: g(b)



f (b) − f (a)



g(b) =

f (x) −

(x − a) 

; 

b − a

x=b

f (b) − f (a)

g(b) = f (b) −

(b − a) ; 

b − a

g(b) = f (b) − (b − a)(b − a)−1[ f (b) − f (a)]

[eqs. (2.56) and (2.72)] ; 

g(b) = f (b) − [ f (b) − f (a)]

[eqs. (2.59) and (2.71)] ; 





g(b) = f (b) + − [ f (b) + (− f (a))]

[eq. (2.54)] ; 





g(b) = f (b) + (− f (b)) + f (a)

[eqs. (2.51) and (2.52)] ; 

g(b) = f (a) + f (b) + (− f (b))

[eqs. (2.43) and (2.44)] ; 

g(b) = f (a)

[eqs. (2.45) and (2.53)] ; 

From the two above subsubcases, one finds that:

g(a) = g(b)

[= f (a)] ; 
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Considering the three above subcases:

g(x) is continuous in [a,b]





g(x) is differentiable in (a, b)

; 



g(a) = g(b)

[= f (a)]



a < c < b 





∃c

[eq. (13.5)] ; 



g ′(c) = 0 

taking: I = (a, b)

n

o

∃c∈I

g ′(c) = 0

; 

n



o

∃



c∈I

g ′(x)

= 0

; 

x=c



f (b) − f (a)  



∃



c∈I

f ′(x) −



= 0

[second subcase] ; 

b − a

x=c



f (b) − f (a)



∃c∈I

f ′(c) −

= 0

; 

b − a



f (b) − f (a)



∃c∈I

f ′(c) =

+ 0

[eqs. (2.43) and (2.47)] ; 

b − a



f (b) − f (a) 

∃c∈I

f ′(c) =

[eq. (2.45)] ; 

b − a



a < c < b











∃c

. 

f (b) − f (a)







f ′(c) =



b − a

We will now prove that given a real function “ f (x)” that is continuous in a closed interval “[a, b ]” 


(a < b), if the derivative of the function “ f (x)” is zero (0) in the open interval “(a, b)”, then the values of the function at the left-boundary and the right-boundary of the intervals must be equal to each other [ f (a) = f (b)]. That is:



f (x) is continuous in [a, b ] 





=⇒ f (a) = f (b) . 

(13.7)



a < x < b =⇒ f ′(x) = 0


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Proof:

• Case: { f (x) is continuous in [a,b]} ∧ {a < x < b =⇒ f ′(x) = 0}



f (b) − f (a) 

∃c

a < c < b ∧ f ′(c) =

[eq. (13.6)] ; 

b − a

f (b) − f (a)

a < c < b ∧ f ′(c) =

; 

b − a

f (b) − f (a)

a < c < b ∧ 0 =

; 

b − a

f (b) − f (a)

0 =

; 

b − a

0 = f (b) − f (a)

[eqs. (2.58) and (2.66)] ; 

f (a) + 0 = f (b)

[eqs. (2.43) and (2.47)] ; 

f (a) = f (b)

[eq. (2.45)] . 

We will also now prove that given a real function “ f (x)” that is continuous in a closed interval

“[a, b ]” (a < b), if the derivative of the function “ f (x)” is zero (0) in the open interval “(a, b)”, then the function “ f (x)” is constant in the closed interval “[a, b ]”. That is:



f (x) is continuous in [a, b ] 



 =⇒ ∃C {a ≤ x ≤ b =⇒ f(x) = C}. 

(13.8)



a < x < b =⇒ f ′(x) = 0



Proof:

• Case: { f (x) is continuous in [a,b]} ∧ {a < x < b =⇒ f ′(x) = 0}

taking: C = f (a) ; 

f (b) = f (a) = C

[eq. (13.7)] ; 



f (x) is continuous in [c, b ] 





a < c < b =⇒

[eq. (11.29)] ; 



c < x < b =⇒ f ′(x) = 0



a < c < b =⇒ f (c) = f (b)

[eq. (13.7)] ; 

a < c < b =⇒ f (c) = C ; 

 f (b) = f (a) = C





; 



a < c < b =⇒ f (c) = C
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a ≤ x ≤ b =⇒ f (x) = C ; 

∃C {a ≤ x ≤ b =⇒ f (x) = C }. 

13.4.3

CAUCHY’S THEOREM

We will now prove that given two real functions “ f (x)” and “g(x)” that are both continuous in a closed interval “[a, b ]” (a < b) and that are both differentiable in the open interval “(a, b)”, such that the derivative of the second function “g(x)” is not zero (0) in the open interval “(a, b)”, there must exist a least one point “c” in the interior of the intervals (a < c < b) such that the ratio of the derivatives of the two functions “ f ′(x)/g ′(x)” at “x = c” is equal to “[ f (b) − f (a)]/[g(b) − g(a)]”. 

That is:



f (x) is continuous in [a, b ]





















f (x) is differentiable in (a, b) 

a < c < b



















g(x) is continuous in [a, b ]







=⇒ ∃

; 

(13.9)

g(x) is differentiable in (a, b)

c

f ′(c)

f (b) − f (a)















=















g ′(c)

g(b) − g(a)











a < x < b =⇒ g′(x) , 0



the last equation is known as the Cauchy’s theorem. 

Proof:









• Case:

f (x) is continuous in [a, b ]

∧

f (x) is differentiable in (a, b)

∧









g(x) is continuous in [a, b ]

∧

g(x) is differentiable in (a, b)

∧







f (b) − f (a)



a < x < b =⇒ g′(x) , 0

∧

h(x) = f (x) −

[ g(x) − g(a)]

g(b) − g(a)

g(a) , g(b)

[eq. (13.5)] ; 



f (b) − f (a)





a ≤ x ≤ b =⇒

f (x) −

[ g(x) − g(a)]

exists

; 

g(b) − g(a)

a ≤ x ≤ b =⇒ { h(x) exists} ; 

◦ First subcase: continuity of h(x) in [a,b]

N

First subsubcase: continuity of h(x) in (a, b)

“g(a)” is continuous in (a, b)

[eq. (11.56)] ; 

“g(x) − g(a)” is continuous in (a,b)

[eq. (11.60)] ; 
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“g(x) − g(a)” is continuous in (a,b)







[eq. (11.56)] ; 

f (b) − f (a)



“

” is continuous in (a, b)



g(b) − g(a)

f (b) − f (a)

“

[ g(x) − g(a)] ” is continuous in (a,b)

g(b) − g(a)

[eq. (11.61)] ; 

f (b) − f (a)

“ f (x) −

[ g(x) − g(a)] ” is continuous in (a,b)

g(b) − g(a)

[eq. (11.60)] ; 

h(x) is continuous in (a, b) ; 

N

Second subsubcase: right-continuity of h(x) at “x = a” 

“g(x)” is right-continuous at “x = a” 

[eq. (11.34)] ; 

(“g(x)” is right-continuous at “x = a” 

“g(a)” is right-continuous at “x = a” 

[eqs. (11.28) and (11.56)] ; 

“g(x) − g(a)” is right-continuous at “x = a” 

[eqs. (11.28) and (11.60)] ; 

“g(x) − g(a)” is right-continuous at “x = a” 







f (b) − f (a)



“

” is right-continuous at “x = a” 



g(b) − g(a)

[eqs. (11.28) and (11.56)] ; 

f (b) − f (a)

“

[ g(x) − g(a)] ” is right-continuous at “x = a” 

g(b) − g(a)

[eqs. (11.28) and (11.61)] ; 

f (b) − f (a)

“ f (x) −

[ g(x) − g(a)]” is right-continuous at “x = a” 

g(b) − g(a)

[eqs. (11.28) and (11.60)] ; 

h(x) is right-continuous at “x = a” ; 
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N

Third subsubcase: left-continuity of h(x) at “x = b” 

“g(x)” is left-continuous at “x = b” 

[eq. (11.34)] ; 

(“g(x)” is left-continuous at “x = b” 

“g(a)” is left-continuous at “x = b” 

[eqs. (11.26) and (11.56)] ; 

“g(x) − g(a)” is left-continuous at “x = b” 

[eqs. (11.26) and (11.60)] ; 

“g(x) − g(a)” is left-continuous at “x = b” 







f (b) − f (a)



“

” is left-continuous at “x = b” 



g(b) − g(a)

[eqs. (11.26) and (11.56)] ; 

f (b) − f (a)

“

[ g(x) − g(a)] ” is left-continuous at “x = b” 

g(b) − g(a)

[eqs. (11.26) and (11.61)] ; 

f (b) − f (a)

“ f (x) −

[ g(x) − g(a)] ” is left-continuous at “x = b” 

g(b) − g(a)

[eqs. (11.26) and (11.60)] ; 

h(x) is left-continuous at “x = b” ; 

From the three above subsubcases, and considering equation (11.34), one finds that:

h(x) is continuous in [a, b ] ; 

◦ Second subcase: differentiability of h(x) in (a,b)

[ g(a)] ′ = 0

[eq. (12.21)] ; 

[ g(x) − g(a)]′ = g′(x) − 0

[eq. (12.30)] ; 

[ g(x) − g(a)]′ = g′(x)

[eqs. (2.45) and (2.54)] ; 



f (b) − f (a)



f (b) − f (a)

[ g(x) − g(a)] ′ =

g ′(x)

[eq. (12.23)] ; 

g(b) − g(a)

g(b) − g(a)
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f (b) − f (a)



f (b) − f (a)

f (x) −

[ g(x) − g(a)] ′ = f ′(x) −

g ′(x)

g(b) − g(a)

g(b) − g(a)

[in (a, b)]

[eq. (12.30)] ; 

f (b) − f (a)

h ′(x) = f ′(x) −

g ′(x)

[in (a, b)] ; 

g(b) − g(a)

h(x) is differentiable in (a, b) ; 

◦ Third subcase: h(a) and h(b)

N

First subsubcase: h(a)



f (b) − f (a)



h(a) =

f (x) −

[ g(x) − g(a)] 

; 

g(b) − g(a)

x=a

f (b) − f (a)

h(a) = f (a) −

[ g(a) − g(a)] ; 

g(b) − g(a)

f (b) − f (a)

h(a) = f (a) −

· 0

[eqs. (2.53) and (2.54)] ; 

g(b) − g(a)

h(a) = f (a) − 0

[eqs. (2.56) and (2.58)] ; 

h(a) = f (a)

[eqs. (2.45) and (2.54)] ; 

N

Second subsubcase: h(b)



f (b) − f (a)



h(b) =

f (x) −

[ g(x) − g(a)] 

; 

g(b) − g(a)

x=b

f (b) − f (a)

h(b) = f (b) −

[ g(b) − g(a)] ; 

g(b) − g(a)

h(b) = f (b) − [ g(b) − g(a)] [ g(b) − g(a)]−1[ f (b) − f (a)]

[eqs. (2.56) and (2.72)] ; 

h(b) = f (b) − [ f (b) − f (a)]

[eqs. (2.59) and (2.71)] ; 





h(b) = f (b) + − [ f (b) + (− f (a))]

[eq. (2.54)] ; 





h(b) = f (b) + (− f (b)) + f (a)

[eqs. (2.51) and (2.52)] ; 

h(b) = f (a) + f (b) + (− f (b))

[eqs. (2.43) and (2.44)] ; 

h(b) = f (a)

[eqs. (2.45) and (2.53)] ; 
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From the two above subsubcases, one finds that:

h(a) = h(b)

[= f (a)] ; 

Considering the three above subcases:

h(x) is continuous in [a,b]





h(x) is differentiable in (a, b)

; 



h(a) = h(b)

[= f (a)]



a < c < b 





∃c

[eq. (13.5)] ; 



h ′(c) = 0 

taking: I = (a, b)

n

o

∃c∈I

h ′(c) = 0

; 

n



o

∃



c∈I

h ′(x)

= 0

; 

x=c



f (b) − f (a)





∃



c∈I

f ′(x) −

g ′(x)



= 0

[second subcase] ; 

g(b) − g(a)

x=c



f (b) − f (a)



∃c∈I

f ′(c) −

g ′(c) = 0

; 

g(b) − g(a)



f (b) − f (a)



∃c∈I

f ′(c) =

g ′(c) + 0

[eqs. (2.43) and (2.47)] ; 

g(b) − g(a)



f ′(c)

f (b) − f (a) 

∃c∈I

=

[eqs. (2.45) and (2.66)] ; 

g ′(c)

g(b) − g(a)



a < c < b















∃c

. 

f ′(c)

f (b) − f (a)







=





g ′(c)

g(b) − g(a) 
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13.4.4

L’HOPITAL’S RULE

We will now prove that given two real functions “ f (x)” and “g(x)” that are both both continuous in a neighborhood SN of “x = a”, that are both differentiable in a vicinity SV of “x = a”, and that both functions evaluated at “x = a” are equal to zero [ f (a) = g(a) = 0], if the limit when “x” tends to “a” of the ratio of the derivatives exists [ lim f ′(x) exists], then the limit when “x” tends to “a” 

x→a g ′(x)

of the ratio of the functions “ f (x)” and “g(x)” is equal to the limit of the ratio of the derivatives

[ lim f (x) = lim f ′(x) ]. That is:

x→a g(x)

x→a g ′(x)



f (x) is continuous in a neighborhood of “x = a” 















g(x) is continuous in a neighborhood of “x = a” 















f (a) = 0







f (x)

f ′(x)

g(a) = 0

=⇒ lim

= lim

; 

x→a g(x)

x→a g ′(x)



















f ′(x)













lim

exists





x→a g ′(x)



(13.10)

the last equation is known as the L’Hopital’s rule. 

Proof:

n

o

• Case:

f (x) is continuous in a neighborhood of “x = a” 

∧





g(x) is continuous in a neighborhood of “x = a” 

∧











f ′(x)



f (a) = 0

∧

g(a) = 0

∧

lim

exists

x→a g ′(x)

f ′(x) exists in a vicinity of “x = a” 

[eq. (7.1)] ; 

g ′(x)

g ′(x) , 0 in a vicinity of “x = a” ; 

f ′(x)

taking: LD = lim

x→a g ′(x)

f ′(x)

lim

= LD ; 

x→a g ′(x)





f ′(x)





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD  < ε

[eq. (7.1)] ; 

g ′(x)
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

f ′(x)









< ε



− LD 



 g ′(x)















∀



ε>0 ∃δ >0 ∀x,a |x − a| < δ =⇒

x < c < a ∨ a < c < x













∃



c,a





f ′(c)

f (x) − f (a)









=



 g′(c)

g(x) − g(a)

[eq. (13.9)] ; 





f ′(x)













− LD  < ε





 g ′(x)





























∀



ε> 





0∃δ >0∀x,a

|x − a| < δ =⇒

|c − a| < |x − a|

; 

























∃





c,a









f ′(c)

f (x) − f (a)











=



 g ′(c)

g(x) − g(a)





f ′(x)













− LD  < ε





 g ′(x)





























∀



ε> 





0∃δ >0∀x,a

|x − a| < δ =⇒

|c − a| < δ

























∃





c,a









f ′(c)

f (x) − f (a)











=



 g ′(c)

g(x) − g(a)

[eq. (2.113)] ; 





f ′(x)











− L

< ε



D 



g ′(x)













































|c − a| < δ























∀



ε> 





0∃δ >0∀x,a

|x − a| < δ =⇒



; 







f ′(c)



















< ε







− LD 



∃





c,a

g ′(c)













































 f ′(c)

f (x) − f (a)











=





 g ′(c)

g(x) − g(a)
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

|



c − a | < δ

































f ′(c)









∀



− LD  < ε

ε> 





0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ ∃c,a

g ′(c)

; 



































 f ′(c)

f (x) − f (a)







=

 g ′(c)

g(x) − g(a)





f ′(c)











< ε



− LD 





 g ′ (c)







∀





ε>0 ∃δ >0 ∀x,a  |x − a| < δ =⇒ ∃c,a

 ; 









 f ′(c)

f (x) − f (a)







=

 g ′(c)

g(x) − g(a)





f (x)







− f (a)





< ε



− LD 





 g(x) − g(a)







∀





ε>0∃δ >0∀x,a  |x − a| < δ =⇒ ∃c,a

 ; 









 f ′(c)

f (x) − f (a)







=

 g ′(c)

g(x) − g(a)



f (x) − f (a)





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ ∃c,a 

− LD  < ε ; 

g(x) − g(a)







f (x) − f (a)





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD  < ε

; 

g(x) − g(a)







f (x) − 0





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD  < ε

; 

g(x) − 0







f (x)





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD  < ε

g(x)



[eqs. (2.45) and (2.54)] ; 

f (x)

lim

= LD

[eq. (7.1)] ; 

x→a g(x)

f (x)

f ′(x)

lim

= lim

. 

x→a g(x)

x→a g ′(x)
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13.4.5

LIMITS OF TYPE ∞/∞

We will now prove that given two real functions “ f (x)” and “g(x)” that are both differentiable in a vicinity SV of “x = a”, and such that the limit of both functions is infinity when “x” tends to “a”, if the limit when “x” tends to “a” of the ratio of the derivatives exists [ lim f ′(x) exists], then the limit x→a g ′(x)

when “x” tends to “a” of the ratio of the functions “ f (x)” and “g(x)” is equal to the limit of the ratio of the derivatives [ lim f (x) = lim f ′(x) ]. That is:

x→a g(x)

x→a g ′(x)



f (x) is differentiable in a vicinity of “x = a” 















g(x) is differentiable in a vicinity of “x = a” 































lim f (x) is infinity









x→a



f (x)

f ′(x)

=⇒ lim

= lim

. 

x→a g(x)

x→a g ′(x)







lim g(x) is infinity









x→a





























f ′(x)









lim

exists





x→a g ′(x)



(13.11)

Proof:





• Case:

f (x) is differentiable in a vicinity of “x = a” 

∧





g(x) is differentiable in a vicinity of “x = a” 

∧











f ′(x)



lim f (x) is infinity

∧

lim g(x) is infinity

∧

lim

exists

x→a

x→a

x→a g ′(x)

f ′(x) exists in a vicinity of “x = a” 

[eq. (7.1)] ; 

g ′(x)

g ′(x) , 0 in a vicinity of “x = a” ; 

f ′(x)

taking: LD = lim

x→a g ′(x)

f ′(x)

lim

= LD ; 

x→a g ′(x)





f ′(x)





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD  < ε

[eq. (7.1)] ; 

g ′(x)









f ′(x)











< ε

∀ε >0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD 





g ′(x)





; 













f ′(x)







∀

|x − a| < δ

− L

< ε



ε7>0 ∃δ





6>0 ∀x,a

6 =⇒

D

7

g ′(x)
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





f ′(x)











< ε

∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD 





g ′(x)





∀ε>0

; 













f ′(x)







∀

|x − a| < δ

− L

< ε



ε7>0 ∃δ





6>0 ∀x,a

6 =⇒

D

7

g ′(x)







f ′(x)











< ε

∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD 





g ′(x)





∀ε>0 ∀ε

; 

7>0













f ′(x)







∃

|x − a| < δ

− L

< ε



δ





6 >0 ∀x,a

6 =⇒

D

7

g ′(x)









f ′(x)











< ε

∀x,a

|x − a| < δ =⇒ 

− LD 





g ′(x)





∀ε>0 ∀ε

; 

7>0 ∃δ >0













f ′(x)







∃

|x − a| < δ

− L

< ε



δ





6 >0 ∀x,a

6 =⇒

D

7

g ′(x)









f ′(x)











< ε

∀x,a

|x − a| < δ =⇒ 

− LD 





g ′(x)





∀ε>0 ∀ε

; 

7>0 ∃δ >0 ∃δ6 >0













f ′(x)







∀

|x − a| < δ

− L

< ε



x,a

6 =⇒ 

D 

7

g ′(x)



taking: δ7 = min(δ , δ6)







f ′(x)









∀

|x − a| < δ

− L

< ε



x,a

7 =⇒ 

D 





g ′(x)





∀ε>0 ∀ε

; 

7>0 ∃δ7 >0













f ′(x)







∀

|x − a| < δ

− L

< ε



x,a

7 =⇒ 

D 

7

g ′(x)







f ′(x)







|x − a| < δ

− L

< ε



7 =⇒ 

D 





g ′(x)





∀ε>0 ∀ε

; 

7>0 ∃δ7 >0 ∀x,a









f ′(x)







|x − a| < δ

− L

< ε



7 =⇒ 

D 

7

g ′(x)
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∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒



f ′(x)





f ′(x)













− LD  < ε ∧ 

− LD  < ε7 ; 

g ′(x)



g ′(x)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒



f ′(x)



f ′(x)













− L

< ε ∧

− L

< ε



D 



D 

7



g ′(x)

g ′(x)























∀x2∈(x,a)or(a,x)

[eq. (13.9)] ; 

x < c < x



2 < a ∨ a < x2 < c < x

















∃c,a





f ′(c)

f (x





2) − f (x)





=



 g ′(c)

g(x2) − g(x)

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a |x − a| < δ7 =⇒



f ′(x)





f ′(x)















− LD  < ε ∧ 

− LD  < ε7



 g ′(x)



g ′(x)















∀



x

x < c < x

; 

2∈(x,a)or(a,x)

2 < a ∨ a < x2 < c < x













∃



c,a





f ′(c)

f (x2) − f (x)









=



 g ′(c)

g(x2) − g(x)

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒



f ′(x)





f ′(x)















− LD  < ε ∧ 

− LD  < ε7



 g ′(x)



g ′(x)















x < c < x2 < a ∨ a < x2 < c < x

; 













∃



c,a





f ′(c)

f (x2) − f (x)









=



 g ′(c)

g(x2) − g(x)

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒



f ′(x)





f ′(x)













< ε

< ε



− LD 

∧ 

− LD 

7



 g ′ (x)



g ′(x)





; 









f ′(c)

f (x



2) − f (x)

∃

|c − a| < |x − a| ∧

=



c,a

g ′(c)

g(x2) − g(x)
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∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒



f ′(x)





f ′(x)













< ε

< ε



− LD 

∧ 

− LD 

7



 g ′ (x)



g ′(x)





[eq. (2.113)] ; 









f ′(c)

f (x



2) − f (x)

∃

|c − a| < δ

=



c,a

7 ∧ g′(c)

g(x2) − g(x)

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒











f ′(x)

f ′(x)











− L  < ε ∧ 

− L  < ε



D

D

7

 g ′(x)



g ′(x)





















f ′(c)

f (x2) − f (x)



=

; 

| c − a | < δ7

∧



g ′(c)

g(x





2) − g(x)







∃



c,a

















f ′(c)

f ′(c)















< ε

< ε





− L

∧

− L



D 



D 

7

g ′(c)



g ′(c)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒



f ′(c)

f (x2) − f (x)



=

| c − a | < δ7

∧





g ′(c)

g(x2) − g(x)



∃c,a

; 











f ′(c)

f ′(c)











− L

< ε ∧

− L

< ε



D 



D 

7

g ′(c)



g ′(c)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒

 f ′(c)

f (x2) − f (x)



=





 g ′ (c)

g(x2) − g(x)



∃c,a

; 











f ′(c)

f ′(c)











− L

< ε ∧

− L

< ε



D 



D 

7

g ′(c)



g ′(c)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒

 f ′(c)

f (x2) − f (x)



=





 g ′ (c)

g(x2) − g(x)



∃c,a

; 











f (x

f (x



2) − f (x)





2) − f (x)





− L <ε ∧

− L <ε



D 



D 

7

g(x2) − g(x)



g(x2) − g(x)
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∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒



f (x





f (x



∃



2) − f (x)





2) − f (x)



c,a 

− LD  < ε ∧ 

− LD  < ε7 ; 

g(x2) − g(x)



g(x2) − g(x)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒



f (x





f (x





2) − f (x)





2) − f (x)





− LD  < ε ∧ 

− LD  < ε7 ; 

g(x2) − g(x)



g(x2) − g(x)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒



f (x





2) − f (x2) [ f (x2)]−1 f (x)





< ε



− LD 





g(x2) − g(x2)[ g(x2)]−1g(x)











f (x



2) − f (x2) [ f (x2)]−1 f (x)





< ε



− LD 

7



g(x2) − g(x2)[ g(x2)]−1g(x)



[eqs. (2.59) and (2.71)] ; 

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒











f (x





2) +

− f (x)[ f (x2)]−1 f (x2)









− L  < ε







D







g(x



−g(x)[g(x



2) +

2)]−1g(x2)



















f (x

− f (x)[ f (x





2) +

2 )]−1 f (x2)









− LD  < ε7













g(x

−g(x)[g(x



2) +

2)]−1g(x2)



[eqs. (2.54) and (2.56)] ; 

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒











f (x





2) + f (x2)

− f (x)[ f (x2)]−1









− L  < ε







D







g(x

−g(x)[g(x



2) + g(x2)

2)]−1



















f (x

− f (x)[ f (x





2) + f (x2)

2)]−1









− LD  < ε7













g(x

−g(x)[g(x



2) + g(x2)

2)]−1



[eqs. (2.56) and (2.61)] ; 
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∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒











f (x





2) · 1 + f (x2)

− f (x)[ f (x2)]−1









− L  < ε







D







g(x

−g(x)[g(x



2) · 1 + g(x2)

2)]−1



















f (x

− f (x)[ f (x





2) · 1 + f (x2)

2 )]−1









− LD  < ε7













g(x

−g(x)[g(x



2) · 1 + g(x2)

2)]−1



[eqs. (2.56) and (2.59)] ; 

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒











1 +





− f (x)[ f (x2)]−1



f (x



2)







− L  < ε







D

 g(x





2) 1 +



−g(x)[g(x



2)]−1



















1 +

− f (x)[ f (x





f (x

2)]−1



2)







− LD  < ε7







 g(x





2) 1 +

−g(x)[g(x



2)]−1



[eqs. (2.64) and (2.75)] ; 

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒











f (x

1 − f(x)





f (x

1 − f(x)





2)

f (x2)





2)

f (x2)





− LD  < ε ∧ 

− LD  < ε7

g(x2) 1 − g(x)



g(x2) 1 − g(x)





g(x2)





g(x2)



[eqs. (2.54) and (2.72)] ; 

∀ε>0 ∀ε



7>0 ∃δ7>0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2)

2)



− LD  < ε ∧ 

− LD  < ε7

 g(x2) 1 − g(x)



g(x2) 1 − g(x)





g(x2)





g(x2)



















f (x)

g(x)





=

=

∀x,a

lim

0 ∧ lim

0

x2→a f (x2)

x2→a g(x2)

[eq. (9.33)] ; 
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∀ε>0 ∀ε



7>0 ∃δ7 >0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2 )

2 )



− LD  < ε ∧ 

− LD  < ε7

 g(x2) 1 − g(x)



g(x2) 1 − g(x)





g(x2)





g(x2)



















f (x)

g(x)





=

=

∀x,a

lim

0 ∧ lim

0 ∧ lim 1 = 1

x2→a f (x2)

x2→a g(x2)

x2→a

[eq. (7.3)] ; 

∀



ε>0 ∀ε7>0 ∃δ



7 >0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒













1 − f(x)





1 − f(x)





f (x

f (x



2)

f (x2)





2)

f (x2)





< ε

< ε



− LD 

∧ 

− LD 

7



 g(x2) 1



g(x2) 1





− g(x)

− g(x)



g(x2)





g(x2)













f (x) 





 lim

1 −

= 1 − 0







x

f (x



 2 →a

2)









∀x,a

















g(x)







 lim

1 −

= 1 − 0



x2→a

g(x2)

[eq. (7.7)] ; 

∀ε>0 ∀ε



7>0 ∃δ7 >0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2 )

2 )



− LD  < ε ∧ 

− LD  < ε7

 g(x2) 1 − g(x)



g(x2) 1 − g(x)





g(x

; 

2)





g(x2)



























f (x)

g(x)





=

=

∀x,a

lim

1 −

1 ∧ lim

1 −

1

x2→a

f (x2)

x2→a

g(x2)

∀ε>0 ∀ε



7>0 ∃δ7 >0 ∀x,a ∀x2∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2 )

2 )



− LD  < ε ∧ 

− LD  < ε7



 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x2)





g(x2)





















1





− g(x)

1 



g(x2)



lim

∀x,a



 =





x

1



2 →a

1 − f(x)

f (x



2)

[eq. (7.13)] ; 
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∀ε>0 ∀ε



7>0 ∃δ7>0 ∀x,a ∀x2 ∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2)

2 )



− LD < ε ∧ 

− LD  < ε7



 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x2)





g(x2)



; 



















1





− g(x)





g(x2)



∀x,a

lim 

 = 1





x



2→a

1 − f(x)

f (x



2 )

∀ε>0 ∀ε



7>0 ∃δ7>0 ∀x,a ∀x2 ∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2)

2)



− LD  < ε ∧ 

− LD  < ε7



 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x2)





g(x2)





















1







− g(x)







g(x2)





< ε

∀x,a∀ε

|x2 − a| < δ2 =⇒ 

− 1

2



2>0∃δ2>0∀x2,a









1 − f(x)





f (x2)



[eq. (7.1)] ; 

∀ε>0 ∀ε7>0 ∃δ7>0

∀x,a ∀x



2 ∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2)

2)



− LD  < ε ∧ 

− LD  < ε7



 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x2)





g(x2)



; 



















1







− g(x)







g(x2)





< ε

∀x,a∀ε

|x2 − a| < δ2 =⇒ 

− 1

2



2>0∃δ2>0∀x2,a









1 − f(x)





f (x2)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a

∀x



2 ∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2)

2)



− LD  < ε ∧ 

− LD  < ε7



 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x2)





g(x2)



; 



















1







− g(x)







g(x2)





< ε

∀ε

|x2 − a| < δ2 =⇒ 

− 1 

2



2>0∃δ2 >0∀x2 ,a









1 − f(x)





f (x2)
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∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0

∀x



2 ∈(x,a)or(a,x) |x − a| < δ7 =⇒





















f (x

1 − f(x)

f (x

1 − f(x)



2)

f (x





2)

f (x





2 )

2 )



− LD  < ε ∧ 

− LD  < ε7



 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x2)





g(x2)



; 



















1







− g(x)







g(x2)





< ε

∃δ

|x2 − a| < δ2 =⇒ 

− 1 

2



2 >0∀x2 ,a









1 − f(x)





f (x2)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε3>0

∀



x



2 ∈(x,a)or(a,x) |x − a| < δ7 =⇒













1 − f(x)





1 − f(x)





f (x

f (x



2)

f (x2)





2)

f (x2)





< ε

< ε



− LD 

∧ 

− LD 

7



 g(x2) 1



g(x2) 1





− g(x)

− g(x)



g(x2)





g(x2)























1 − g(x)





; 





g(x2)



|x

− 1 < ε





2 − a| < δ2 =⇒ 



2









1 − f (x)













f (x2)











∃δ



2 >0∀x2 ,a













(

)









1 − g(x)





|x2 − a|<δ2



g(x







2)





=⇒ |L 

− 1<ε





D|

3





L









D = 0

1 − f(x)



f (x2)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε3>0 ∀ε4>0

∀



x2∈(x,a)or(a,x) |x − a| < δ7 =⇒





















1 − f(x)

1 − f(x)



f (x

f (x



2)

f (x





2)

f (x





2 )

2 )



− L  < ε ∧ 

− L  < ε



D

D

7

 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x





g(x





2)

2)





























1 − g(x)







g(x







2)



|x2 − a| < δ2 =⇒ 

− 1 < ε2

















1



− f(x)





f (x2)





∃



δ



2 >0∀x2 ,a









(

)





1







|x

− g(x)





2 − a| < δ2
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taking: δ5 = min(δ2, δ4)

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε3>0 ∀ε4>0 ∃δ5>0

∀



x2∈(x,a)or(a,x) |x − a| < δ7 =⇒





















1 − f(x)

1 − f(x)



f (x

f (x



2)

f (x





2)

f (x





2 )

2 )



− L  < ε ∧ 

− L  < ε



D

D

7

 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x





g(x





2)

2)





























1 − g(x)







g(x







2)



|x2 − a| < δ5 =⇒ 

− 1 < ε2

















1



− f(x)





f (x2)





; 

∀



x2,a











(

)





1







|x

− g(x)





2 − a| < δ5



g(x2)







=

< ε





⇒ |LD|

− 1

3









L









D = 0

1 − f(x)





f (x





2)





















(

)



1 − g(x)







|x



2 − a| < δ5



g(x2)





=

< 

∀x

⇒ |LD|

− 1

|LD|ε4



2,a



L







D , 0

1 − f(x)



f (x2)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε3>0 ∀ε4>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 =⇒























1 − f(x)

1 − f(x)



f (x

f (x



2)

f (x





2)

f (x





2 )

2 )



− L  < ε ∧ 

− L  < ε



D

D

7

 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x





g(x





2)

2)



























1 − g(x)





g(x





2)

|x2 − a| < δ5 =⇒ 

− 1  < ε2











1 − f(x)



f (x2)



; 











(

)



1





|x

− g(x)



2 − a| < δ5



g(x2)





=

< ε



⇒ |LD|

− 1 

3





L







D = 0

1 − f(x)





f (x





2 )

















(

)



1 − g(x)





|x



2 − a| < δ5



g(x2)





=⇒ |L

− 1 < |L



D| 



D| ε4





LD , 0

1 − f (x)





f (x2)



[image: Image 1947]

[image: Image 1948]

[image: Image 1949]

[image: Image 1950]

[image: Image 1951]

[image: Image 1952]

[image: Image 1953]

[image: Image 1954]

[image: Image 1955]

[image: Image 1956]

[image: Image 1957]

[image: Image 1958]

[image: Image 1959]

[image: Image 1960]

[image: Image 1961]

[image: Image 1962]

[image: Image 1963]

[image: Image 1964]

[image: Image 1965]

[image: Image 1966]

[image: Image 1967]

[image: Image 1968]

[image: Image 1969]

[image: Image 1970]

[image: Image 1971]

[image: Image 1972]

[image: Image 1973]

[image: Image 1974]

[image: Image 1975]

[image: Image 1976]

[image: Image 1977]

[image: Image 1978]

[image: Image 1979]

[image: Image 1980]

442

Limits and Derivatives of Real Functions for Physicists

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε3>0 ∀ε4>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒











1





1





f (x

− f(x)

f (x

− f(x)



2)

f (x2)





2)

f (x2)





< ε

< ε



− LD 

∧ 

− LD 

7



 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x





g(x





2)

2)

















 1 − g(x)







g(x2)





< ε



− 1 

2



 1





− f(x)



f (x2)





; 











1 − g(x)





g(x





2)



L

− 1 < ε



D = 0 =⇒ |LD| 



3





1 − f (x)









f (x2)





























1 − g(x)





g(x





2)

L



− 1  < |L



D , 0 =⇒ |LD|

D| ε4









1 − f(x)



f (x2)



taking: ε4 = |LD|−1ε5 (with LD , 0)

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε3>0 ∀ε5>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒











1 − f(x)





1 − f(x)





f (x

f (x



2)

f (x





2)

f (x





2)

2)



− L  < ε ∧ 

− L  < ε



D

D

7

 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x





g(x





2)

2)























1 − g(x)



g(x





2)



− 1  < ε2









1 − f(x)



f (x2)







; 







1 − g(x)





g(x





2)

LD = 0 =⇒ |LD| 

− 1  < ε3











1 − f(x)





f (x





2 )





















1





− g(x)





g(x2)





< 

LD , 0 =⇒ |LD| 

− 1 

|LD||LD|−1ε5





1 − f (x)





f (x2)



[image: Image 1981]

[image: Image 1982]

[image: Image 1983]

[image: Image 1984]

[image: Image 1985]

[image: Image 1986]

[image: Image 1987]

[image: Image 1988]

[image: Image 1989]

[image: Image 1990]

[image: Image 1991]

[image: Image 1992]

[image: Image 1993]

[image: Image 1994]

[image: Image 1995]

[image: Image 1996]

[image: Image 1997]

[image: Image 1998]

[image: Image 1999]

[image: Image 2000]

[image: Image 2001]

[image: Image 2002]

[image: Image 2003]

[image: Image 2004]

[image: Image 2005]

[image: Image 2006]

[image: Image 2007]

[image: Image 2008]

[image: Image 2009]

[image: Image 2010]

[image: Image 2011]

[image: Image 2012]

[image: Image 2013]

[image: Image 2014]

[image: Image 2015]

[image: Image 2016]

[image: Image 2017]

[image: Image 2018]

[image: Image 2019]

[image: Image 2020]

[image: Image 2021]

[image: Image 2022]

[image: Image 2023]

[image: Image 2024]

[image: Image 2025]

[image: Image 2026]

[image: Image 2027]

[image: Image 2028]

Additional Properties of Derivatives

443

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε3>0 ∀ε5>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒











1 − f(x)





1 − f(x)





f (x

f (x



2)

f (x





2)

f (x





2 )

2 )



− L  < ε ∧ 

− L  < ε



D

D

7

 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x





g(x





2)

2)























1 − g(x)



g(x





2)



− 1  < ε2









1 − f(x)



f (x2)













1 − g(x)





g(x





2)

LD = 0 =⇒ |LD| 

− 1  < ε3











1 − f(x)





f (x





2)





















1





− g(x)





g(x2)





< ε

LD , 0 =⇒ |LD| 

− 1 

5





1 − f (x)





f (x2)



[eqs. (2.59) and (2.71)] ; 

taking: ε5 = ε3 = ε6

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒











1 − f(x)





1 − f(x)





f (x

f (x



2)

f (x





2)

f (x





2 )

2 )



− L  < ε ∧ 

− L  < ε



D

D

7

 g(x



g(x





2) 1 − g(x)

2) 1 − g(x)



g(x





g(x





2)

2)























1 − g(x)



g(x





2)



− 1  < ε2









1 − f(x)



f (x2)







; 







1 − g(x)





g(x





2)

LD = 0 =⇒ |LD| 

− 1  < ε6











1 − f(x)





f (x





2)





















1





− g(x)





g(x2)





< ε

LD , 0 =⇒ |LD| 

− 1 

6





1 − f (x)





f (x2)



∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒











1 − f(x)





1 − f(x)





f (x

f (x



2)

f (x2)





2)

f (x2)





< ε

< ε



− LD 

∧ 

− LD 

7



 g(x2) 1



g(x2) 1





− g(x)

− g(x)



g(x2)





g(x2)





; 











 1 − g(x)



1 − g(x)





g(x

g(x



2)





2)





− 1 < ε

− 1 < ε





2 ∧ |LD| 



6



 1 − f (x)



1 − f (x)





f (x2)





f (x2)



[image: Image 2029]

[image: Image 2030]

[image: Image 2031]

[image: Image 2032]

[image: Image 2033]

[image: Image 2034]

[image: Image 2035]

[image: Image 2036]

[image: Image 2037]

[image: Image 2038]

[image: Image 2039]

[image: Image 2040]

[image: Image 2041]

[image: Image 2042]

[image: Image 2043]

[image: Image 2044]

[image: Image 2045]

[image: Image 2046]

[image: Image 2047]

[image: Image 2048]

[image: Image 2049]

[image: Image 2050]

[image: Image 2051]

[image: Image 2052]

[image: Image 2053]

[image: Image 2054]

[image: Image 2055]

[image: Image 2056]

[image: Image 2057]

[image: Image 2058]

[image: Image 2059]

[image: Image 2060]

[image: Image 2061]

[image: Image 2062]

[image: Image 2063]

[image: Image 2064]

[image: Image 2065]

[image: Image 2066]

[image: Image 2067]

[image: Image 2068]

[image: Image 2069]

[image: Image 2070]

[image: Image 2071]

[image: Image 2072]

[image: Image 2073]

[image: Image 2074]

[image: Image 2075]

[image: Image 2076]

[image: Image 2077]

[image: Image 2078]

[image: Image 2079]

[image: Image 2080]

[image: Image 2081]

[image: Image 2082]

[image: Image 2083]

[image: Image 2084]

444

Limits and Derivatives of Real Functions for Physicists

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒
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[eqs. (2.54) and (2.131)] ; 

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒


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[eqs. (2.56) and (2.64)] ; 

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε2>0 ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒


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[eq. (2.65)] ; 

taking: ε2 = ε

∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒


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∀ε>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒
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[eqs. (2.79) and (2.122)] ; 

√

taking: ε = ε8

∀ε8>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒
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∀ε8>0 ∀ε7>0 ∃δ7>0 ∀x,a ∀ε6>0 ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒
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[eq. (2.97)] ; 

taking: ε6 = ε7 = ε8

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒









1 − f(x)

1 − g(x)





f (x



2)

f (x2)



g(x2)





+ (−L

+ (−1) < ε



D)  



8



 g(x2) 1

1





− g(x)

− f(x)



g(x2)



f (x2)





; 













1 − f(x)





1 − g(x)





f (x

f (x

g(x



2)

2)





2)





+ (−L

< ε

L

+ (−L

< ε



D) 

8 ∧ 

D

D) 

8



g(x



2) 1 − g(x)





1 − f(x)





g(x2)





f (x2)



[image: Image 2143]

[image: Image 2144]

[image: Image 2145]

[image: Image 2146]

[image: Image 2147]

[image: Image 2148]

[image: Image 2149]

[image: Image 2150]

[image: Image 2151]

[image: Image 2152]

[image: Image 2153]

[image: Image 2154]

[image: Image 2155]

[image: Image 2156]

[image: Image 2157]

[image: Image 2158]

[image: Image 2159]

[image: Image 2160]

[image: Image 2161]

[image: Image 2162]

[image: Image 2163]

[image: Image 2164]

[image: Image 2165]

[image: Image 2166]

[image: Image 2167]

[image: Image 2168]

[image: Image 2169]

[image: Image 2170]

[image: Image 2171]

[image: Image 2172]

[image: Image 2173]

[image: Image 2174]

[image: Image 2175]

[image: Image 2176]

[image: Image 2177]

[image: Image 2178]

[image: Image 2179]

[image: Image 2180]

[image: Image 2181]

[image: Image 2182]

[image: Image 2183]

[image: Image 2184]

[image: Image 2185]

[image: Image 2186]

[image: Image 2187]

[image: Image 2188]

[image: Image 2189]

[image: Image 2190]

[image: Image 2191]

[image: Image 2192]

[image: Image 2193]

[image: Image 2194]

[image: Image 2195]

[image: Image 2196]

[image: Image 2197]

[image: Image 2198]

[image: Image 2199]

[image: Image 2200]

[image: Image 2201]

[image: Image 2202]

446

Limits and Derivatives of Real Functions for Physicists

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒
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[eqs. (2.64) and (2.131)] ; 

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒







1 − f(x) 1 − g(x)

1 − g(x)





f (x

g(x

f (x

g(x



2)

2)

2)

2)





+ (−L



D)





g(x



1 − g(x) 1 − f(x)

2)

1 − f(x)







g(x2)

f (x2)

f (x2)











< ε





8











1





− f(x)



f (x2)

f (x2)





+ (−1)

+ (−1)(−LD)





g(x





2) 1 − g(x)



g(x





2)























1 − f(x)





1 − g(x)





f (x

f (x

g(x



2)

2)





2)





+ (−L

< ε

L

+ (−L

< ε



D) 

8 ∧ 

D

D) 

8



g(x



2) 1 − g(x)





1 − f(x)





g(x2)





f (x2)



[eqs. (2.56) and (2.64)] ; 

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒
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[eqs. (2.51) and (2.65)] ; 
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∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒





−1









1 − f(x)

1 − f(x)

1 − g(x)





f (x



f (x2)

f (x2)

2)

g(x2)





+







 −LD









1

1

g(x2)

1





− g(x)

− g(x)

− f(x)



g(x2)

g(x2)

f (x2)











< ε





8



















1



f (x

− f(x)

2)

f (x



2 )



+



 −

 + LD



g(x





2) 1 − g(x)







g(x2)































1 − f(x)


1 − g(x)



f (x



2)

f (x





g(x





2)

2)



+ (−L

< ε

L

+ (−L

< ε



D)

8 ∧

D

D)

8

 g(x









2) 1 − g(x)

1 − f(x)



g(x2)





f (x2)



[eqs. (2.61) and (2.76)] ; 

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)
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[eqs. (2.59) and (2.71)] ; 

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒

















1 − g(x)

1 − f(x)





f (x

f (x





2)

g(x2)

2)

f (x2)





+





 −LD

 +  −

 + LD 





g(x2)

1

g(x2) 1





− f(x)

− g(x)





f (x2)

g(x2)





















1 − f(x)





1 − g(x)





f (x

f (x

g(x





2)

2)





2)



+

+ (−L

+ L

+ (−L

< 3 ε





D) 



D

D) 

8



g(x





2) 1 − g(x)





1 − f(x)





g(x2)





f (x2)



[eqs. (2.60) and (2.120)] ; 
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∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)

|x − a| < δ7 ∧ |x2 − a| < δ5 =⇒











1 − g(x)

1 − g(x)





f (x



2)

g(x2)

g(x2)





+ (

+



−LD) + LD

 −LD









g(x2)

1

1





− f(x)

− f(x)



f (x2)

f (x2)









< 3 ε8

















1 − f(x)

1 − f(x)



f (x

f (x

f (x

f (x





2)

2 )

2)

2)



+

+





 −

 + LD + (−LD)



g(x

g(x





2) 1 − g(x)

2) 1 − g(x)



g(x



2)

g(x2)

[eqs. (2.43) and (2.130)] ; 

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)



f (x



|

2)

x − a| < δ





7 ∧ |x2 − a| < δ5 =⇒ 

+ (−LD)  < 3ε8

g(x2)



[eqs. (2.45) and (2.53)] ; 

∀ε8>0 ∃δ7>0 ∀x,a ∃δ5>0 ∀x2∈(x,a)or(a,x)



f (x



|

2)

x





2 − a| < δ5 =⇒ 

+ (−LD)  < 3ε8 ; 

g(x2)





f (x



∀



2)



ε

+ (−L

< 3 ε

8>0 ∀x,a ∃δ





5>0 ∀x2∈(x,a)or(a,x) |x2 − a| < δ5 =⇒

D)

8 ; 

g(x2)





f (x





∀



2)



ε

|x

+ (−L

< 3 ε

; 

8>0 ∃δ





5 >0 ∀x2,a

2 − a| < δ5 =⇒

D)

8

g(x2)







f (x





∀



2)



ε

|x

− L

< 3 ε

8>0 ∃δ





5>0 ∀x2,a

2 − a| < δ5 =⇒

D

8

g(x2)



[eq. (2.54)] ; 

taking: ε8 = 3−1ε9



f (x





∀



2)



ε

|x

− L

< 3 · 3−1ε

; 

9>0 ∃δ





5>0 ∀x2 ,a

2 − a| < δ5 =⇒

D

9

g(x2)







f (x





∀



2)



ε

|x

− L

< ε

9>0 ∃δ





5>0 ∀x2,a

2 − a| < δ5 =⇒

D

9

g(x2)



[eqs. (2.59) and (2.71)] ; 





f (x)





∀





ε>0 ∃δ >0 ∀x,a

|x − a| < δ =⇒ 

− LD  < ε

; 

g(x)
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f (x)

lim

= LD

[eq. (7.1)] ; 

x→a g(x)

f (x)

f ′(x)

lim

= lim

. 

x→a g(x)

x→a g ′(x)

13.5

DERIVATIVE OF PARAMETRIC FUNCTIONS

By parametic functions, we here mean functions of the form “y = f (x)” expressed in terms of a third variable “t” such that there exists two additional functions “x = g(t)” and “y = h(t)” where the two functions “g(t)” and “h(t)” have the same domain and also where the function “g(t)” has an inverse function [i.e., g−1(x) exists], such that the domain of “ f (x)” is equal to the range of “g(t)” 

and such that f (x) = h( g−1(x)). That is:

y = f (x) = h( g−1(x)) . 

We will now prove that:



x = g(t) ∧ y = h(t)

















domain of g(t) = domain of h(t) 















y = f (x)









h′(a)

domain of f (x) = range of g(t)

=⇒ f ′(x)

=

. 

(13.12)

x=g(a)

g ′(a)







f (x) = h( g−1(x))

















g ′(a) exists ∧ g ′(a) , 0













h′(a) exists



Proof:

• Case: {x = g(t)} ∧ {y = h(t)} ∧ {domain of g(t) = domain of h(t)} ∧

{y = f (x)} ∧ {domain of f (x) = range of g(t)} ∧ { f (x) = h(g−1(x))} ∧

{g′(a) exists} ∧ {g′(a) , 0} ∧ {h′(a) exists}

d



1

[ g−1(x)]

=

[eq. (13.1)] ; 

dx

x=g(a)

g ′(a)

h′(a) = h′(g−1(g(a))) ; 



h′(a) = h′(g−1(x))

; 

x=g(a)



d



f ′(x)

=

[h( g−1(x))]

; 

x=g(a)

dx

x=g(a)
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d

f ′(x)





=

h′(g−1(x))

[ g−1(x)] 

[eq. (12.42)] ; 

x=g(a)

dx

x=g(a)



! 





d

f ′(x)





= h′(g−1(g(a)))

[ g−1(x)]

; 

x=g(a)

dx

x=g(a)



! 





d

f ′(x)





= h′(a)

[ g−1(x)]

; 

x=g(a)

dx

x=g(a)



1

f ′(x)

= h′(a)

; 

x=g(a)

g ′(a)



h′(a)

f ′(x)

=

[eqs. (2.72) and (2.73)] . 

x=g(a)

g ′(a)

Note that the right side of equation (13.12) can also be written as: dy 



dy 

dt



t=a



=

. 

dx





dx

x=g(a)





dt t=a

13.6

NTH ORDER DERIVATIVE

13.6.1

ZEROTH AND FIRST ORDER DERIVATIVES

In this book, we will define the zeroth order derivative of a real function “ f (x)” to be the function

“ f (x)” itself. That is:

0th order derivative of “ f (x)” is “ f (x)” . 

(13.13)

The first order derivative of a real function “ f (x)” is defined to be simply the derivative function of “ f (x)”. That is:

d f

1st order derivative of “ f (x)” is “

(x)” ; 

dx

or more simply:

d f

1st order derivative of “ f (x)” is “

” ; 

(13.14)

dx

or equivalently:

1st order derivative of “ f (x)” is “ f ′(x)” . 
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13.6.2

SECOND ORDER DERIVATIVE

The second order derivative of a real function “ f (x)” is defined to be the derivative function of the first order derivative of “ f (x)” (i.e., the derivative function of the derivative function). The second order derivative of a real function “ f (x)” will be denoted by “ d2 f (x)” or more simply “ d2 f ”. 

dx2

dx2

That is:

d2 f

d  d f



(x) ≡

(x)

; 

dx2

dx

dx

or more simply:

d2 f

d  d f 

≡

; 

(13.15)

dx2

dx

dx

or equivalently:

d2 f ≡ [ f ′(x)]′ . 

dx2

Note that:

• For a real function “ f (x)” to have a second order derivative at “x = a”, the function must be differentiable in a neighborhood of “x = a” [i.e., f ′(x) must exist in a neighborhood of

“x = a”]; 

• Given that the second order derivative of a real function “ f (x)” at “x = a” is the derivative function of f ′(x), it also follows that given a real function “ f (x)” that is differentiable in a neighborhood “SN” of a real number “a”, the second order derivative of “ f (x)” at “x = a” 

may or may not exist (see 12.3.2). 

Given a real function “ f ”, expressed in the form “y = f (x)”, the two notations for the second order derivative function of “ f ” that we have defined so far are: d2 f

d2 f

(x)

. 

dx2

dx2

Similar to the case of a first order derivative function (i.e., a derivative function; see 12.4), additional notations for a second order derivative of a function “ f ”, expressed in the form “y = f (x)”, are: f ′′(x)

f ′′

¨

f (x)

¨

f

d2

[ f (x)] ′′

[ f ] ′′

d2 [ f(x)]

[ f ]

dx2

dx2

d2y

d2y

(x)

. 

dx2

dx2

y ′′(x)

y ′′

¨

y(x)

¨

y

d2

[ y(x)] ′′

[ y ] ′′

d2 [y(x)]

[ y ]

dx2

dx2

Note that all twenty above notations denote exactly the same thing, they all denote the second order derivative function of the real function “ f (x)” [the second order derivative of the real function “ f ” 

expressed as “y = f (x)”]. 
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13.6.3

THIRD AND HIGHER ORDER DERIVATIVES

For n ≥ 3, the nth order derivative of a real function “ f (x)” is defined to be the derivative function of the (n − 1)th order derivative of “ f (x)”. The nth order derivative of a real function “ f (x)” will be denoted by “ dn f

dxn (x)” or more simply “ dn f

dxn ”. That is:

dn f

d  dn−1 f 

n ≥ 3 :

=

. 

(13.16)

dxn

dx

dxn−1

Note that:

• This more general definition is consistent with the first order derivative function, in that the first order derivative function is the derivative of the zeroth order derivative function (see

13.6.1); 

• Also, this more general definition is additionally consistent with the second order derivative function, in that the second order derivative function is the derivative of the first order derivative function, and also in that the second order derivative function is denoted by “ d2 f ” 

dx2

(see 13.6.2). 

For example, considering the third order derivative of a real function “ f (x)”, we can write: d3 f

d  d2 f 

=

; 

dx3

dx

dx2

or equivalently:

d3 f

d  d  d f  

=

; 

dx3

dx

dx

dx

in turn, considering the fourth order derivative of a real function “ f (x)”, we can write: d4 f

d  d3 f 

=

; 

dx4

dx

dx3

or equivalently:

d4 f

d  d  d  d f   

=

; 

dx4

dx

dx

dx

dx

and so on, and so forth. 

An additional notation for an nth order derivative of a real function “ f (x)” is to place “n”, surrounded by parenthesis as a superindex to the function “ f (n)(x)”. Thus, we can write: dn f

n ≥ 3 :

= f (n)(x) . 

dxn

For example, for the fourth and third order derivatives of a function “ f (x)”, we can respectively write:

d4 f = f(4)(x) ; 

dx4

d3 f = f(3)(x) . 

dx3
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Also, for the second, first, and zeroth order derivatives of a function “ f (x)”, we can respectively write:

d2 f = f(2)(x) ; 

dx2

d f = f(1)(x) ; 

dx

f (x) = f (0)(x) . 

Additionally, it follows that:

d

n ≥ 1 :

f (n)(x) =

[ f (n−1)(x) ] . 

(13.17)

dx

13.7

EXAMPLES

Derivatives and their properties are fundamental in physics. Many fundamental physical quantities (e.g., velocity, acceleration, ...) are defined as derivatives. Derivatives and their properties are more than useful tools in physics, they are an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

As an example, in this section we will revisit the case of an object that moves along a straight line discussed in 1.6, 2.6, 6.5, and 11.8 (see also 7.6 and 12.8). The movement of the object can be represented by an equation of the form (the equation of motion):

x = fx(t) ; 

where “x” is the position, “t” is the time, and “ fx(t)” is the real function that gives the position “x” 

for a given time “t”. Solving the motion of the object, typically means determining the real function

“ fx(t)”. In physics, it is common to write the position function as “x(t)” [rather than fx(t)], and thus the equation of motion would be written as:

x = x(t) . 

Note that in the last equation the letter “x” is used to represent two different mathematical objects: 1) on the left side the position “x” (a real number); and 2) on the right side the position function

“x(t)” (a real function). 

Once the position function is determined [i.e., x(t) is determined], as discussed in 6.5 and 7.6

[see eq. (12.1)], the velocity “vx” at a given time “t” is the derivative of the position function at the time “t”. That is, the velocity function is the derivative of the position function. Thus: vx(t) = x ′(t) ; 

or equivalently:

dx

vx(t) =

; 

(13.18)

dt

that can also be written in form:

vx(t) = ˙x . 
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Assuming that an object always has a velocity at any given time, it follows that that the position function must be differentiable, that is:

x(t) is differentiable . 

Considering equation (12.18), it follows that position function must be continuous, that is: x(t) is continuous . 

Thus when solving for the equation of motion of an object, we are aiming to determine a continuous function. 

In turn, once the velocity function is determined [i.e., vx(t) is determined], if we wish to calculate the acceleration of the object at any given time “t”, as discussed in 7.6 [see eq. (12.1)], the acceleration “ax” at a given time “t” is the derivative of the velocity function at the time “t”. That is, the acceleration function is the derivative of the velocity function. Thus:

′

ax(t) = vx(t) ; 

or equivalently:

dvx

ax(t) =

; 

dt

that can also be written in form:

ax(t) = ˙vx . 

Substituting equation (13.18), it follows that:

d  dx 

ax(t) =

; 

dt

dt

considering equation (13.15):

d2x

ax(t) =

; 

(13.19)

dt2

or equivalently:

ax(t) = x ′′(t) ; 

that can also be written in form:

ax(t) = ¨x . 

That is, from the position function “x(t)”, the acceleration function can be obtained as the second order derivative of the position function. 

Considering that the position function “x(t)” is continuous and differentiable, and that the derivative of the position function is the velocity function, applying equation (13.5), it follows that:



t



1 < tm < t2





x(t1) = x(t2) =⇒ ∃t

; 

m



v



x(tm) = 0
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that is, if an object moving along a straight line passes through the same position at two different times “t1” and “t2”, then there must exist at least one instant of time “tm” (after t1 and before t2) such that the velocity of the object at “t = tm” is zero [i.e., vx(tm) = 0]. 

Considering again that the position function “x(t)” is continuous and differentiable, that the derivative of the position function is the velocity function, and also considering now that the average velocity vavg of the object in between two different instants of time “t1” and “t2” is given by (see 6.5):

x(t2) − x(t1)

vavg =

; 

t2 − t1

applying equation (13.6), given two different instants of time “t1” and “t2” it follows that:



t



1 < tm < t2





∃t

; 

m



vx(tm) = vavg 

that is, given an object moving along a straight and considering two different instants of time “t1” 

and “t2”, there must exist at least one instant of time “tm” (after t1 and before t2) such that the velocity of the object at “t = tm” is equal to the average velocity in the given time interval [i.e., vx(tm) = vavg]. 

In this section we have discussed the movement of an object along a straight line, and derived several physics properties of the general movement. As can been clearly seen, properties of derivatives, including those discussed in this chapter, have played a fundamental and key role in the physics analysis of the system. 
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14 Derivatives of Exponential

and Logarithmic

Functions

14.1

INTRODUCTION

Exponential functions and logarithmic functions, particularly the exponential function and the natural logarithmic function, and their corresponding derivatives appear explicitly or implicitly throughout physics. Derivatives of the exponential function and of the natural logarithmic function become more than useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present properties of derivatives of exponential functions and logarithmic functions, that appear, explicitly or implicitly, in many physics problems. 

14.2

NOTATION

Following the notation used in chapters 4-13, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 
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14.3

DERIVATIVES OF LOGARITHMIC FUNCTIONS

We will now prove that the derivative of a logarithmic function “logb(x)” (b > 0 ∧ b , 1) is equal to

“log

+

b(e)/x” (in

). That is:

R



b > 0 

log

:

[ log

b(e)

[in

+] . 

(14.1)

b , 1

b(x) ] ′ =

R

x

Proof (see also 8.6):

• Case: {b > 0} ∧ {b , 1} ∧ {x > 0}

“logb(x)” is continuous

[eqs. (11.72) and (11.73)] ; 

h

i

lim

(1 + ∆x)1/∆x = e

[eq. (10.29)] ; 

∆x→0

h

lim

(1 + ∆x)[(∆x)−1] i = e

[eq. (2.73)] ; 

∆x→0

" 

∆x [(∆x/x)−1] #

lim

1 +

= e

[eq. (7.1)] ; 

∆x→0

x

" 

∆x x/∆x #

lim

1 +

= e

[eq. (2.76)] ; 

∆x→0

x

considering that “logb(x)” is continuous:



∆x x/∆x ! 

lim logb

1 +

= logb(e)

[eq. (11.81)] ; 

∆x→0

x



x



∆x  

lim

logb

1 +

= logb(e)

[eq. (3.73)] ; 

∆x→0

∆x

x





∆x  

lim

x (∆x)−1 logb

1 +

= logb(e)

[eq. (2.72)] ; 

∆x→0

x







∆x  

 lim

x (∆x)−1 log

1 +

= log



b

b(e)



∆x→0

x

[eq. (7.3)] ; 







 lim x−1 = x−1

∆x→0
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∆x  

lim x−1

lim

x (∆x)−1 logb 1 +

= x−1 logb(e) ; 

∆x→0

∆x→0

x





∆x  

lim

x−1x (∆x)−1 logb

1 +

= x−1 logb(e)

[eq. (7.8)] ; 

∆x→0

x





∆x  

lim

1 · (∆x)−1 logb

1 +

= x−1 logb(e)

[eqs. (2.56) and (2.71)] ; 

∆x→0

x





∆x  

lim

(∆x)−1 logb 1 +

= x−1 logb(e)

[eq. (2.59)] ; 

∆x→0

x





∆x  

log

lim

(∆x)−1 log

b(e)

b

1 +

=

∆x→0

x

x

[eqs. (2.56) and (2.72)] ; 





log

lim

(∆x)−1 log

b(e)

b

x x−1 + [∆x] x−1 

=

∆x→0

x

[eqs. (2.71) and (2.72)] ; 





log

lim

(∆x)−1 log

b(e)

b

x−1[x + ∆x] 

=

∆x→0

x

[eqs. (2.56) and (2.64)] ; 



x + ∆x  

log

lim

(∆x)−1 log

b(e)

b

=

∆x→0

x

x

[eqs. (2.56) and (2.72)] ; 





log

lim

(∆x)−1 [ log

b(e)

b(x + ∆x) − logb(x) ]

=

[eq. (3.72)] ; 

∆x→0

x

log

log

lim

b(x + ∆x) − logb(x) =

b(e)

[eqs. (2.56) and (2.72)] ; 

∆x→0

∆x

x

log

[ log

b(e)

b(x) ] ′ =

[eq. (12.1)] . 

x
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14.4

DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION

We will now prove that the derivative of the natural logarithmic function “ln(x)” is equal to “1/x” 

(in

+). That is:

R

1

[ ln(x) ] ′ =

[in

+] . 

(14.2)

R

x

Proof:

• Case: x > 0

log

[ log

e(e)

e(x) ] ′ =

[eq. (14.1)] ; 

x

ln(e)

[ ln(x) ] ′ =

[eq. (3.77)] ; 

x

1

[ ln(x) ] ′ =

[eq. (3.81)] . 

x

Note that, comparing equations (14.1) and (14.2), one finds that the logarithmic function with the simplest expression for its derivative function is the natural logarithm [ln(x) = loge(x)]. 

14.5

DERIVATIVE OF THE EXPONENTIAL FUNCTION

We will now prove that the derivative function of the exponential function “exp(x) = ex ” is equal to itself ([ex] ′ = ex [in

]). That is:

R

[ ex ] ′ = ex

[in

] . 

(14.3)

R

Proof:

• Case: f (x) = ln(x)

f (x) = ln(x) ; 

{domain of f (x) is + } ∧ {range of f (x) is

} ; 

R

R

 f (x) is differentiable



1

[eq. (14.2)] ; 

x > 0 =



⇒ f ′(x) = x

f −1(x) = ex

[eq. (3.65)] ; 

{domain of f −1(x) is

} ∧ {range of f −1(x) is + } ; 

R

R

1

[ f −1(x) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(x))
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1

[ ex ] ′ =

; 

f ′(ex)

[ ex ] ′ = [ f ′(ex) ]−1

[eq. (2.73)] ; 



1 −1

[ ex ] ′ =

; 

ex



−1

[ ex ] ′ = [ ex ]−1

[eq. (2.73)] ; 

[ ex ] ′ = ex

[eq. (2.68)] . 

14.6

DERIVATIVES OF EXPONENTIAL FUNCTIONS “BX ” 

We will now prove that the derivative function of an exponential function “ f (x) = bx ” (b > 0) is equal to “bx ln(b)”. That is:

b > 0 :

[ bx ] ′ = bx ln(b)

[in

] . 

(14.4)

R

Proof:

• Case: {b > 0} ∧ { f (x) = ex }

f (x) = ex ∧ f ′(x) = ex

[eq. (14.3)] ; 

[x] ′ = 1

[eq. (12.22)] ; 

[ ln(b) x ] ′ = ln(b) · 1

[eq. (12.24)] ; 

[ x ln(b) ] ′ = ln(b)

[eqs. (2.56) and (2.59)] ; 

[ ln(bx) ] ′ = ln(b)

[eq. (3.85)] ; 

[ f (ln(bx)) ] ′ = f ′(ln(bx)) [ ln(bx) ] ′

[eq. (12.42)] ; 

[ f (ln(bx)) ] ′ = f ′(ln(bx)) ln(b) ; 

[ exp(ln(bx)) ] ′ = f ′(ln(bx)) ln(b) ; 

[ exp(ln(bx)) ] ′ = exp(ln(bx)) ln(b) ; 

[ bx ] ′ = bx ln(b)

[eq. (3.78)] . 

Note that, comparing equations (14.3) and (14.4), one finds that the exponential function

[ f (x) = bx] with the simplest expression for its derivative function is the exponential function

[exp(x) = ex]. 
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14.7

DERIVATIVES OF FUNCTIONS OF THE FORM “X A ” 

We will now prove that the derivative function of a function of the form “ f (x) = xa ” (x > 0) is equal to “a xa−1”. That is:

[ xa ] ′ = a xa−1

[in

+] . 

(14.5)

R

Proof:

• Case: {x > 0} ∧ { f (x) = ex }

f (x) = ex ∧ f ′(x) = ex

[eq. (14.3)] ; 

1

[ ln(x)] ′ =

[eq. (14.2)] ; 

x

[ ln(x) ] ′ = x−1

[eq. (2.73)] ; 

[ a ln(x) ] ′ = a x−1

[eq. (12.24)] ; 

[ ln(xa) ] ′ = a x−1

[eq. (3.85)] ; 

[ f (ln(xa)) ] ′ = f ′(ln(xa)) [ ln(xa) ] ′

[eq. (12.42)] ; 

[ f (ln(xa)) ] ′ = f ′(ln(xa)) a x−1 ; 

[ exp(ln(xa)) ] ′ = f ′(ln(xa)) a x−1 ; 

[ exp(ln(xa)) ] ′ = exp(ln(xa)) a x−1 ; 

[ xa ] ′ = xaa x−1

[eq. (3.78)] ; 

[ xa ] ′ = a xa+(−1)

[eqs. (2.56) and (3.40)] ; 

[ xa ] ′ = a xa−1

[eq. (2.54)] . 

14.8

DERIVATIVES OF FUNCTIONS OF THE FORM “G(X )H(X) ” 

We will now prove that given two functions “g(x)” and “h(x)” that are differentiable such that the function “g(x)” always returns a positive value [ g(x) > 0], the derivative function of a function of the form “ f (x) = g(x)h(x) ” is given by “ f ′(x) = g(x)h(x) ln(g(x)) h ′(x) + h(x) g(x)h(x)−1g ′(x)”. 

That is:



g ′(x) exists 





h

h ′(x) exists

=⇒ g(x)h(x) i′ = g(x)h(x) ln(g(x))h′(x) + h(x)g(x)h(x)−1g′(x) . 



g(x) > 0



(14.6)
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Proof:

• Case: {g′(x) exists} ∧ {h′(x) exists} ∧ {g(x) > 0} ∧ { f (x) = ex }

f (x) = ex ∧ f ′(x) = ex

[eq. (14.3)] ; 

1

[ ln( g(x))] ′ =

g ′(x)

[eqs. (12.42) and (14.2)] ; 

g(x)

[ ln( g(x))] ′ = ( g(x))−1g ′(x)

[eq. (2.73)] ; 

[ h(x) ln( g(x))] ′ = h ′(x) ln( g(x)) + h(x) ( g(x))−1 g ′(x)

[eq. (12.32)] ; 

h



ln

g(x)h(x)  i ′ = h ′(x) ln( g(x)) + h(x) ( g(x))−1g ′(x)

[eq. (3.85)] ; 

h









f

ln

g(x)h(x)   i ′ = f ′  ln

g(x)h(x)   h ln

g(x)h(x)  i ′

[eq. (12.42)] ; 

h





f

ln

g(x)h(x)   i ′ =





f ′  ln

g(x)h(x)    h ′(x) ln( g(x)) + h(x) ( g(x))−1g ′(x)

; 

h





exp

ln

g(x)h(x)   i ′ =





f ′  ln

g(x)h(x)    h ′(x) ln( g(x)) + h(x) ( g(x))−1 g ′(x)

; 

h





exp

ln

g(x)h(x)   i ′ =







exp

ln

g(x)h(x)    h ′(x) ln( g(x)) + h(x) ( g(x))−1 g ′(x)

; 

h



g(x)h(x) i ′ = g(x)h(x)  h ′(x) ln( g(x)) + h(x) ( g(x))−1 g ′(x)

[eq. (3.78)] ; 

h

g(x)h(x) i ′ = g(x)h(x) ln( g(x)) h ′(x) + h(x) g(x)h(x)( g(x))−1g ′(x)

[eqs. (2.56) and (2.64)] ; 

h

g(x)h(x) i ′ = g(x)h(x) ln( g(x)) h ′(x) + h(x) g(x)h(x)−1g ′(x)

[eqs. (2.54) and (3.40)] . 
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14.9

EXAMPLES

Exponential functions and logarithmic functions, particularly the exponential function and the natural logarithmic function, and their corresponding derivatives are found throughout physics. In this section we will revisit the case of blackbody radiation discussed in 9.7. 

Once again, by “blackbody radiation” we mean mean the specific intensity emitted by a blackbody that is in thermal equilibrium (at a given absolute temperature T ). The “specific intensity” can be described “per unit frequency” (as we did in 9.7), or it can also be described “per unit wavelength”. 

By “specific intensity per unit frequency”, we mean the radiative energy traveling in a given direction per area per time per frequency per solid angle. In turn, by “specific intensity per unit wavelength”, we mean the radiative energy traveling in a given direction per area per time per wavelength per solid angle. 

As discussed in 9.7, the blackbody radiation per unit frequency “Bν ” is given by: 2hν3/c2

Bν =

. 

(14.7)

hν

e kT − 1

where “h” is Planck’s constant, “ν” is the frequency, “c” is the speed of light, “k” is Boltzmann’s constant, and “T ” is the absolute temperature. 

Aiming towards an expression for the blackbody radiation per unit wavelength “Bλ ”, we note that if we multiply the specific intensity per unit frequency by the absolute value of the rate of change of frequency with respect to wavelength, we will get the specific intensity per unit wavelength. That is, in the case of blackbody radiation:

dν 

B





λ = Bν 

; 

(14.8)

dλ 

where “λ ” is the wavelength. 

In a vacuum, all forms of light travel at the same speed regardless of frequency (and thus regardless of wavelength). This speed is known as the “speed of light”, and once again, it is denoted as

“c”. Thus, for light, as an electromagnetic wave, it follows that: λ ν = c ; 

applying equations (2.56) and (2.66):

c

ν =

; 

λ

applying equation (2.72):

ν = c λ −1 ; 

(14.9)

therefore:

dν

d

=

[ c λ −1 ] ; 

dλ

dλ

considering that “c” is constant, and applying equation (12.24):

dν

d

= c

[ λ −1 ] ; 

dλ

dλ
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applying equation (12.36):

dν



= c

−1 · λ −(1+1)  ; 

dλ

thus:

dν = c −1·λ−2  ; 

dλ

applying equation (2.59):

dν = c −λ−2  ; 

dλ

applying equations (2.56) and (2.61):

dν = −cλ−2 ; 

dλ

therefore:

dν 







= | − c λ −2 | ; 

dλ 

applying equations (2.126) and (2.128):

dν 







= c λ −2 ; 

dλ 

substituting in equation (14.8):

Bλ = Bν c λ −2 ; 

substituting equation (14.7):

2hν3/c2

Bλ =

c λ −2 ; 

hν

e kT − 1

applying equation (2.72):

2hν3(c2 )−1

Bλ =

c λ −2 ; 

hν

e kT − 1

applying equations (2.56) and (2.72):



hν

−1

Bλ = 2hν3 (c2 )−1c λ −2 e kT − 1

; 

applying equations (2.73) and (2.80):



hν

−1

Bλ = 2hν3 c−2c λ −2 e kT − 1

; 
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applying equation (2.78):



hν

−1

Bλ = 2hν3 c−2c1λ −2 e kT − 1

; 

applying equation (2.88):



hν

−1

Bλ = 2hν3 c−2+1λ −2 e kT − 1

; 

thus:



hν

−1

Bλ = 2hν3 c−1λ −2 e kT − 1

; 

substituting equation (14.9):



−1

hc λ −1

Bλ = 2h(c λ −1)3 c−1λ −2

e kT

− 1

; 

applying equation (2.72):



−1

Bλ = 2h(c λ −1)3 c−1λ −2 ehcλ−1(kT)−1 − 1

; 

applying equation (2.74):



−1

Bλ = 2h(c λ −1)3 c−1λ −2 ehc(λkT )−1 − 1

; 

applying equation (2.72):



hc

−1

Bλ = 2h(c λ −1)3 c−1λ −2 e λkT − 1

; 

applying equation (2.72):

2h(c λ −1)3 c−1λ −2

Bλ =

; 

hc

e λkT − 1

applying equation (2.87):

2hc3(λ −1)3 c−1λ −2

Bλ =

; 

hc

e λkT − 1

applying equations (2.65) and (2.90):

2hc3λ −3c−1λ −2

Bλ =

; 

hc

e λkT − 1

applying equation (2.56):

2hc3c−1λ −3λ −2

Bλ =

; 

hc

e λkT − 1
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applying equations (2.54) and (2.88):

2hc3−1λ −3−2

Bλ =

; 

hc

e λkT − 1

thus:

2hc2λ −5

Bλ =

; 

hc

e λkT − 1

applying equations (2.73) and (2.80):

2hc2(λ 5)−1

Bλ =

; 

hc

e λkT − 1

applying equation (2.72):

2hc2/λ 5

Bλ =

. 

(14.10)

hc

e λkT − 1

The last equation is referred to as “the blackbody radiation function per unit wavelength”. Note that on the right side of the equation there are only two variables: wavelength “λ ” and absolute temperature “T ”. Therefore, for a given absolute temperature “T ”, equation (14.10) allows us to calculate the specific intensity per unit wavelength for any given wavelength. 

It is not obvious, but applying the properties of limits and the properties of derivatives, discussed in this chapter and in previous chapters of this book, one finds that: 2hc2/λ 5

lim

= 0 ; 

hc

λ →0+ e λkT − 1

that is:

lim Bλ = 0 ; 

(14.11)

λ →0+

it is also not obvious, but applying again the properties of limits and the properties of derivatives, discussed in this chapter and in previous chapters of this book, one finds that: 2hc2/λ 5

lim

= 0 ; 

hc

λ →+∞ e λkT − 1

that is:

lim Bλ = 0 . 

(14.12)

λ →+∞

Considering that the blackbody radiation per unit wavelength, for a given absolute temperature

“T ”, is a continuous function with respect to wavelength “λ ” [λ > 0; see equation (14.10)]; considering equations (14.11) and (14.12); and noting that the values of Bλ are always positive [see equation (14.10)]; applying equation (11.48) it follows that the blackbody radiation per unit wavelength reaches a maximum value at, at least one wavelength, “λ = λmax” (λmax > 0). 
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Now, for a given absolute temperature “T ”, aiming now to find the wavelength(s) “λmax” where the blackbody radiation per unit wavelength reaches a maximum value, one finds that the rate of change of the blackbody radiation per unit wavelength with respect to wavelength at “λmax” cannot be positive [ ¬(dBλ /dλ |λ=λ

> 0 ); otherwise the blackbody radiation per unit wavelength

max

would be increasing at “λmax”]; also, the rate of change of blackbody radiation per unit wavelength with respect to wavelength at “λmax” cannot be negative [ ¬(dBλ /dλ |λ=λmax < 0 ); otherwise the blackbody radiation per unit wavelength would be decreasing at “λmax”]. Therefore, it follows that: dB 

λ 



= 0 ; 

dλ λ=λmax

once again, aiming to find the wavelength(s) “λmax”, substituting equation (14.10):

" 

# 

d

2hc2/λ 5





= 0 ; 

dλ

hc



e λkT − 1

λ =λmax

applying equation (2.72):

" 

# 

d

2hc2(λ 5)−1





= 0 ; 

dλ

hc



e λkT − 1

λ =λmax

applying equation (2.72):

d 



hc

−1  

2hc2(λ 5)−1

e



λ kT − 1



= 0 ; 

dλ

λ =λmax

applying equation (12.24):







hc

−1   

2hc2 d

(λ 5)−1 e



λ kT − 1



= 0 ; 

dλ

λ =λmax

therefore:

(

)

d 



hc

−1  

2hc2

(λ 5)−1 e



λ kT − 1



= 0 ; 

dλ

λ =λmax

applying equations (2.56) and (2.66):

d 



hc

−1  

0

(λ 5)−1 e



λ kT − 1



=

; 

dλ

λ =λ

2hc2

max

applying equations (2.58) and (2.72):

d 



hc

−1  

(λ 5)−1 e



λ kT − 1



= 0 ; 

dλ

λ =λmax

applying equations (2.73) and (2.74):



 

d

1







 

= 0 ; 

dλ



hc



λ 5

e λkT − 1



λ=λmax
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applying equation (12.35):



d h



hc

i

 





λ 5

e λkT − 1





 

− dλ



= 0 ; 

h



hc

i2





 



λ 5

e λkT − 1

 λ=λmax

thus:

d



h



hc

i

λ 5

e



λ kT − 1



dλ



−

λ =λmax

= 0 ; 

h



hc

i2

λ 5

λ

max

e maxkT − 1

therefore:

d



h



hc

i

λ 5

e



λ kT − 1



dλ

λ =λmax = 0 ; 

h



hc

i2

λ 5

λ

max

e maxkT − 1

applying equations (2.58) and (2.66):

d



h



hc

i

λ 5

e



λ kT − 1



= 0 ; 

dλ

λ =λmax

applying equation (12.32):



d





h

i



hc



h

hc

i

λ 5

e



λ kT − 1 + λ 5 d

e λkT − 1



= 0 ; 

dλ

dλ

λ =λmax

applying equation (12.33):







hc



h

hc

i

5λ 5−1

e



λ kT − 1 + λ 5 d

e λkT − 1



= 0 ; 

dλ

λ =λmax

thus:







hc



h

hc

i

5λ 4

e



λ kT − 1 + λ 5 d

e λkT − 1



= 0 ; 

dλ

λ =λmax

applying equation (12.30):











hc



d h

hc

i

d h i

5λ 4

e



λ kT − 1 + λ 5

e λkT

−

1



= 0 ; 

dλ

dλ

λ =λmax

applying equation (12.21):











hc



d h

hc

i

5λ 4

e



λ kT − 1 + λ 5

e λkT

− 0



= 0 ; 

dλ

λ =λmax

applying equations (2.45) and (2.54):







hc



h

hc

i

5λ 4

e



λ kT − 1 + λ 5 d

e λkT



= 0 ; 

dλ

λ =λmax
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applying equations (12.42) and (14.3):









hc



hc

d

hc

5λ 4

e



λ kT − 1 + λ 5 e λkT



= 0 ; 

dλ

λ kT

λ =λmax

applying equations (2.72) and (2.74):







hc



hc

d

5λ 4

e





λ kT − 1 + λ 5 e λkT

hcλ −1(kT )−1 



= 0 ; 

dλ

λ =λmax

applying equation (2.56):







hc



hc

d

5λ 4

e





λ kT − 1 + λ 5 e λkT

hc(kT )−1λ −1 



= 0 ; 

dλ

λ =λmax

applying equation (12.23):







hc



hc

5λ 4

e





λ kT − 1 + λ 5 e λkT hc(kT )−1 d

λ −1 



= 0 ; 

dλ

λ =λmax

applying equation (12.36):

n



hc



hc



5λ 4

e λkT − 1 + λ 5 e λkT hc(kT )−1

−1 · λ −(1+1)  o 

= 0 ; 

λ =λmax

applying equation (2.61):

n



hc



hc

5λ 4

e λkT − 1 + λ 5 e λkT hc(kT )−1 (−1)λ −(1+1) o 

= 0 ; 

λ =λmax

applying equation (2.52):

n



hc



hc

5λ 4

e λkT − 1 + λ 5 e λkT hc(kT )−1 (−1)λ (−1)+(−1) o 

= 0 ; 

λ =λmax

applying equation (2.88):

n



hc



hc

o 

5λ 4

e λkT − 1 + λ 5 e λkT hc(kT )−1 (−1)λ −1 λ −1



= 0 ; 

λ =λmax

applying equations (2.56) and (2.57):

n



hc



hc

o 

λ 4 5 e λkT − 1 + λ 5 λ −1 (−1)e λkT hcλ −1(kT )−1



= 0 ; 

λ =λmax

applying equation (2.88):

n



hc



hc

o 

λ 4 5 e λkT − 1 + λ 5+(−1) (−1)eλkT hcλ −1(kT )−1



= 0 ; 

λ =λmax

therefore:

n



hc



hc

o 

λ 4 5 e λkT − 1 + λ 4 (−1)eλkT hcλ −1(kT )−1



= 0 ; 

λ =λmax

applying equations (2.72) and (2.74):







hc



hc

hc

λ 4 5 e



λ kT − 1 + λ 4 (−1) e λkT



= 0 ; 

λ kT

λ =λmax
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applying equation (2.64):









hc



hc

hc

λ 4 5

e



λ kT − 1 + (−1) e λkT



= 0 ; 

λ kT

λ =λmax

thus:







hc



hc

hc

λ 4

λ

λ

max

5

e maxkT − 1 + (−1)e maxkT

= 0 ; 

λmaxkT

applying equations (2.56) and (2.66):



hc



hc

hc

0

5

e λmaxkT − 1 + (−1)e λmaxkT

=

; 

λmaxkT

λ 4

max

applying equations (2.58) and (2.72):



hc



hc

hc

5

e λmaxkT − 1 + (−1)eλmaxkT

= 0 ; 

λmaxkT

therefore:







hc



hc

hc

5

e λmaxkT − 1 + (−1)e λmaxkT

e−

hc

λmaxkT = 0 · e− hc

λmaxkT ; 

λmaxkT

applying equation (2.58):







hc



hc

hc

5

e λmaxkT − 1 + (−1)e λmaxkT

e−

hc

λmaxkT = 0 ; 

λmaxkT

applying equations (2.56) and (2.64):



hc



hc

hc

5

e λmaxkT − 1 e− hc

λmaxkT + (−1) eλmaxkT e− hc

λmaxkT

= 0 ; 

λmaxkT

applying equation (3.60):







hc



hc

+ −

hc

hc

5

e λmaxkT − 1 e− hc

λmaxkT + (−1) eλmaxkT

λmaxkT

= 0 ; 

λmaxkT

applying equation (2.53):



hc



5

e λmaxkT − 1 e− hc

λmaxkT + (−1) e0

hc

= 0 ; 

λmaxkT

applying equation (3.58):



hc



hc

5

e λmaxkT − 1 e− hc

λmaxkT + (−1) · 1 ·

= 0 ; 

λmaxkT

applying equation (2.59):



hc



hc

5

e λmaxkT − 1 e− hc

λmaxkT + (−1)

= 0 ; 

λmaxkT

applying equation (2.54):



hc



hc

5

e λmaxkT + (−1) e− hc

λmaxkT + (−1)

= 0 ; 

λmaxkT
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applying equations (2.56) and (2.64):



hc



hc

5

e λmaxkT e−

hc

λmaxkT + (−1) e− hc

λmaxkT

+ (−1)

= 0 ; 

λmaxkT

applying equation (3.60):



hc







+ −

hc

hc

5

e λmaxkT

λmaxkT

+ (−1) e− hc

λmaxkT

+ (−1)

= 0 ; 

λmaxkT

applying equation (2.53):





hc

5

e0 + (−1) e− hc

λmaxkT

+ (−1)

= 0 ; 

λmaxkT

applying equation (3.58):





hc

5

1 + (−1) e− hc

λmaxkT

+ (−1)

= 0 ; 

λmaxkT

applying equations (2.54) and (2.65):





hc

5

1 − e− hc

λmaxkT

−

= 0 ; 

λmaxkT

thus:

5( 1 − e−x ) − x = 0





. 

(14.13)



x =

hc

λmaxkT

Therefore, determining the wavelength(s) “λmax” reduces to finding the positive solution(s) to the top-equation (14.13) “ 5 ( 1 − e−x ) − x = 0 ”. Once the positive solution(s) “xsol” (xsol > 0) are found, they can be substituted in the bottom-equation (14.13) “ xsol = hc/(λmaxkT ) ” to obtain the wavelength(s) “λmax”. 

It is not obvious, but the equation “ 5 ( 1 − e−x )− x = 0 ” has only one positive solution; and that positive solution “xsol” is greater than four and less that five. That is: 5 1 − e−xsol  − xsol = 0 ; 

(14.14)

4 < xsol < 5 . 

(14.15)

Note that zero (x = 0) is also a solution of the equation “5 ( 1 − e−x ) − x = 0”, however zero is not positive. 

It follows that:

hc

xsol =

; 

λmaxkT

applying equations (2.72) and (2.74):

xsol = h c λ −1

max k−1 T −1 ; 

thus:

λmax T x−1 x

h c λ −1

sol

sol = λmax T x−1

sol

max k−1 T −1 ; 
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applying equations (2.56) and (2.57):

xsol x−1 λ

k−1 ; 

sol

max T = λmax λ −1

max T T −1 h c x−1

sol

applying equations (2.59) and (2.71):

λmax T = h c x−1 k−1 ; 

sol

applying equations (2.72) and (2.74):

hc

λmax T =

; 

(14.16)

xsolk

noting that the right side of the last equation is constant, we can define: hc

b ≡

; 

(14.17)

xsolk

where “b” is a constant. 

Substituting in equation (14.16):

λmax T = b . 

(14.18)

This last equation is known as “Wien’s displacement law” and the constant “b” is known as “Wien’s displacement constant”. Equation (14.18) describes how the wavelength “λmax” (wavelength where the blackbody radiation per unit wavelength reaches a maximum value) varies with absolute temperature. Equation (14.18) is a fundamental equation in physics that directly applies to blackbody radiation. 

As discussed in this section, the derivative of functions and in particular the derivative of the exponential function, played an important role in the derivation of Wien’s displacement law, a fundamental equation in physics. Thus, derivatives in general, and the derivatives of exponential functions in particular, are key mathematical objects in physics. 
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15 Derivatives of

Trigonometric Functions

15.1

INTRODUCTION

Trigonometric functions and inverse trigonometric functions, and their corresponding derivatives, appear explicitly or implicitly throughout physics. Derivatives of the trigonometric functions and of the inverse trigonometric functions, become more than useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present properties of derivatives of trigonometric functions and inverse trigonometric functions, that appear, explicitly or implicitly, in many physics problems. 

15.2

NOTATION

Following the notation used in chapters 4-14, in this chapter, and throughout the rest of book (except for the “Examples” section towards the end of each chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

15.3

RADIANS AS “THE NATURAL” ANGULAR UNITS

As previously discussed in 4.6.2, the trigonometric functions (including cosine, sine, and tangent) seen as real functions (i.e., f :

→ ) depend on the angular units used. As stated in 4.3.3, and

R

R

again in 10.5, in this book we will use the angular units of radians (defined in 4.4.3). 
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Since the trigonometric functions seen as real functions depend on the angular units used, it follows that the derivatives of the trigonometric functions also depend on the angular units used. 

As we will find in this chapter, the simplest forms of the derivatives of trigonometric functions are obtained when the angular units used are radians. 

Similar to taking the real number “e” as the base for the exponential function “exp(x) = ex ” 

[eq. (3.55)] and for the base of the the natural logarithmic function “ln(x) = loge(x)” [eq. (3.77)], radians can be taken as “the natural” angular units. In the calculus of real functions, in general, unless explicitly stated otherwise, the angular units are assumed to be radians. 

15.4

DERIVATIVES OF THE SINE, THE COSINE, AND

THE TANGENT FUNCTION

15.4.1

DERIVATIVE OF THE SINE FUNCTION

We will now prove that the derivative of the sine function “sin(x)” is equal to “cos(x)” (in

). 

R

That is:

[ sin(x) ] ′ = cos(x)

(in

) . 

(15.1)

R

Proof (see also 10.7):

lim 1 = 1

[eq. (7.3)] ; 

∆x→0

 lim 1 = 1



∆x→0



[eq. (10.10)] ; 





 lim cos(∆x) = 1

∆x→0









lim cos(∆x) +

lim 1

= 1 + 1 ; 

∆x→0

∆x→0









lim cos(∆x) +

lim 1

= 2 ; 

∆x→0

∆x→0

lim [ cos(∆x) + 1 ] = 2

[eq. (7.5)] ; 

∆x→0

 lim [ cos(∆x) + 1 ] = 2



∆x→0



[eq. (10.13)] ; 





 lim sin(∆x) = 0

∆x→0

 lim [ cos(∆x) + 1 ] = 2



∆x→0



[eq. (7.6)] ; 





 lim [ − sin(∆x) ] = −0

∆x→0
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 lim [ cos(∆x) + 1 ] = 2



∆x→0



; 





 lim [ − sin(∆x) ] = 0

∆x→0

lim [ − sin(∆x) ]

∆x→0

0

=

; 

lim [ cos(∆x) + 1 ]

2

∆x→0

lim [ − sin(∆x) ]

∆x→0

= 0 ; 

lim [ cos(∆x) + 1 ]

∆x→0

(−sin(∆x))

lim

= 0

[eq. (7.13)] ; 

∆x→0 cos(∆x) + 1



(−sin(∆x))



 lim

= 0



∆x→0 cos(∆x) + 1



[eq. (10.19)] ; 





sin(∆x)



 lim

= 1

∆x→0

∆x



sin(∆x)  

(−sin(∆x)) 

lim

lim

= 1 · 0 ; 

∆x→0

∆x

∆x→0 cos(∆x) + 1



sin(∆x)  

(−sin(∆x)) 

lim

lim

= 0 ; 

∆x→0

∆x

∆x→0 cos(∆x) + 1



sin(∆x)  

(−sin(∆x)) 



lim

lim

= 0







∆x→0

∆x

∆x→0 cos(∆x) + 1

[eq. (7.3)] ; 







 lim sin(x) = sin(x)

∆x→0





sin(∆x)  

(−sin(∆x)) 

lim sin(x)

lim

lim

= sin(x) · 0 ; 

∆x→0

∆x→0

∆x

∆x→0 cos(∆x) + 1





sin(∆x)  

(−sin(∆x)) 

lim sin(x)

lim

lim

= 0

∆x→0

∆x→0

∆x

∆x→0 cos(∆x) + 1

[eqs. (2.56) and (2.58)] ; 

[image: Image 2589]

[image: Image 2590]

478

Limits and Derivatives of Real Functions for Physicists



sin(∆x) (− sin(∆x)) 

lim

sin(x)

= 0

[eq. (7.8)] ; 

∆x→0

∆x

cos(∆x) + 1





−1 

lim

sin(x) sin(∆x) (∆x)−1 (− sin(∆x)) cos(∆x) + 1

= 0

[eq. (2.72)] ; 

∆x→0







−1

lim

sin(x) (− sin(∆x)) sin(∆x) cos(∆x) + 1

(∆x)−1

= 0

∆x→0

[eqs. (2.56) and (2.57)] ; 









−1

lim

sin(x) − sin2(∆x)

cos(∆x) + 1

(∆x)−1

= 0

∆x→0

[eqs. (2.61) and (2.79)] ; 









−1

lim

sin(x) − sin2(∆x) + 0

cos(∆x) + 1

(∆x)−1

= 0

[eq. (2.45)] ; 

∆x→0









sin(x) − sin2(∆x) + cos2(∆x) + (− cos2(∆x))

lim 



−1

 = 0

[eq. (2.53)] ; 

∆x→0

· cos(∆x) + 1

(∆x)−1









sin(x) cos2(∆x) + (− cos2(∆x)) + (− sin2(∆x))

lim 



−1

 = 0

∆x→0

· cos(∆x) + 1

(∆x)−1

[eqs. (2.43) and (2.44)] ; 









sin(x) cos2(∆x) + (− [cos2(∆x) + sin2(∆x)])

lim 



−1

 = 0

[eq. (2.52)] ; 

∆x→0

· cos(∆x) + 1

(∆x)−1









sin(x) cos2(∆x) + (−1)

lim 



−1

 = 0

[eq. (4.52)] ; 

∆x→0

· cos(∆x) + 1

(∆x)−1









sin(x) cos(∆x) cos(∆x) + (−1)

lim 



−1

 = 0

[eq. (2.79)] ; 

∆x→0

· cos(∆x) + 1

(∆x)−1
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







sin(x) cos(∆x) cos(∆x) + (−1) + 0

lim 



−1

 = 0

[eq. (2.45)] ; 

∆x→0

· cos(∆x) + 1

(∆x)−1



sin(x)







lim  ·

cos(∆x) cos(∆x) + (−1) + cos(∆x) + (− cos(∆x))





 = 0

∆x→0 



−1



· cos(∆x) + 1

(∆x)−1

[eq. (2.53)] ; 



sin(x)







lim  ·

cos(∆x) cos(∆x) + (− cos(∆x)) + cos(∆x) + (−1)





 = 0

∆x→0 



−1



· cos(∆x) + 1

(∆x)−1

[eqs. (2.43) and (2.44)] ; 

 sin(x)







lim  · cos(∆x) cos(∆x) + (−1) cos(∆x) + 1 cos(∆x) + 1(−1)





 = 0

∆x→0  

−1



· cos(∆x) + 1

(∆x)−1

[eqs. (2.59) and (2.65)] ; 











sin(x)

cos(∆x) + 1

cos(∆x) + (−1)

lim 



−1

 = 0

∆x→0

· cos(∆x) + 1

(∆x)−1

[eqs. (2.56) and (2.64)] ; 







−1



sin(x)

cos(∆x) + 1

cos(∆x) + 1

lim 





 = 0

∆x→0

· cos(∆x) + (−1) (∆x)−1

[eqs. (2.56) and (2.57)] ; 

h





i

lim

sin(x)

cos(∆x) + (−1) (∆x)−1

= 0

∆x→0

[eqs. (2.59) and (2.71)] ; 



h





i

lim

sin(x)

cos(∆x) + (−1) (∆x)−1

= 0



∆



x→0

[eq. (7.3)] ; 





 lim cos(x) = cos(x)

∆x→0
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

h





i

lim

sin(x)

cos(∆x) + (−1) (∆x)−1

= 0



∆x



→0











 lim cos(x) = cos(x)

[eq. (10.19)] ; 

∆x→0















sin(∆x)



 lim

= 1

∆x→0

∆x





sin(∆x) 

lim cos(x)

lim

∆x→0

∆x→0

∆x

h





i

+ lim

sin(x)

cos(∆x) + (−1) (∆x)−1

= cos(x) · 1 + 0 ; 

∆x→0





sin(∆x) 

lim cos(x)

lim

∆x→0

∆x→0

∆x

h





i

+ lim

sin(x)

cos(∆x) + (−1) (∆x)−1

= cos(x) + 0

∆x→0

[eqs. (2.56) and (2.59)] ; 





sin(∆x) 

lim cos(x)

lim

∆x→0

∆x→0

∆x

h





i

+ lim

sin(x)

cos(∆x) + (−1) (∆x)−1

= cos(x)

[eq. (2.45)] ; 

∆x→0



sin(∆x) 

lim

cos(x)

∆x→0

∆x

h





i

+ lim

sin(x)

cos(∆x) + (−1) (∆x)−1

= cos(x)

[eq. (7.8)] ; 

∆x→0



sin(∆x)







lim

cos(x)

+ sin(x)

cos(∆x) + (−1) (∆x)−1 = cos(x)

∆x→0

∆x

[eq. (7.5)] ; 

h





i

lim cos(x) sin(∆x)(∆x)−1 + sin(x) cos(∆x) + (−1) (∆x)−1 = cos(x)

∆x→0

[eq. (2.72)] ; 

n h



i

o

lim

cos(x) sin(∆x) + sin(x) cos(∆x) + (−1)


(∆x)−1

= cos(x)

∆x→0

[eqs. (2.56) and (2.64)] ; 





cos(x) sin(∆x) + sin(x) cos(∆x) + (−1)

lim

= cos(x)

[eq. (2.72)] ; 

∆x→0

∆x
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cos(x) sin(∆x) + sin(x) cos(∆x) + sin(x) (−1)

lim

= cos(x)

[eq. (2.64)] ; 

∆x→0

∆x

sin(x) cos(∆x) + cos(x) sin(∆x) + sin(x) (−1)

lim

= cos(x)

∆x→0

∆x

[eqs. (2.43) and (2.44)] ; 

sin(x) cos(∆x) + sin(∆x) cos(x) + (−1)sin(x)

lim

= cos(x)

[eq. (2.56)] ; 

∆x→0

∆x

sin(x + ∆x) + (−1)sin(x)

lim

= cos(x)

[eq. (4.74)] ; 

∆x→0

∆x

sin(x + ∆x) + (− sin(x))

lim

= cos(x)

[eq. (2.65)] ; 

∆x→0

∆x

sin(x + ∆x) − sin(x)

lim

= cos(x)

[eq. (2.54)] ; 

∆x→0

∆x

[ sin(x) ] ′ = cos(x)

[eq. (12.1)] . 

Note that in deriving equation (15.1) “[ sin(x) ] ′ = cos(x)” we applied equation (10.19)

“lim [ sin(x)/x ] = 1”. In turn, equation (10.19) applies for (and only for) the angular units of ra-x→0

dians. Therefore, equation (15.1) holds specifically for the angular units of radians. 

In order to find the derivative of the sine function under other angular units, we can denote trigonometric functions under an arbitrary angular unit “u” [rather than radians ] by writing the function with the unit “u” as a subindex. That is, to denote the sine function under an angular unit

“u” we can write “sinu(x)” [rather than simply “sin(x)” that denotes the sine function in units of radians ]. Thus we can write:

sin(x) = sinrad(x) ; 

where “sinrad(x)” is the sine function in angular units of radians. 

Considering arbitrary angular units “u”, we can write:

sinu(x) = sin(cux) ; 

where “sinu(x)” is the sine function in angular units of “u”, “sin(x)” is the sine function in angular units of radians, and “cu” is the constant factor that converts from angular units “u” to radians. For example, in the case of degrees, we can write:



π



sindeg(x) = sin

x

. 

180
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Considering again arbitrary angular units “u”, it follows that:

[ sinu(x) ] ′ = [ sin(cux) ] ′ ; 

applying equations (12.42) and (15.1):

[ sinu(x) ] ′ = cos(cux) [ cux ] ′ ; 

therefore:

[ sinu(x) ] ′ = cosu(x) [ cux ] ′ ; 

applying equation (12.24):

[ sinu(x) ] ′ = cosu(x) cu [ x ] ′ ; 

applying equation (12.22):

[ sinu(x) ] ′ = cosu(x) cu · 1 ; 

applying equations (2.56) and (2.59):

[ sinu(x) ] ′ = cu cosu(x) ; 

considering specifically, for example, the angular units of degrees: π

[ sindeg(x)] ′ =

cosdeg(x) . 

180

Note that, comparing the last two equations with equation (15.1), one finds that the sine function with the simplest expression for its derivative function, is the sine function under the angular units of radians. Once again, in the calculus of real functions, in general, unless explicitly stated otherwise, the angular units are assumed to be radians. 

15.4.2

DERIVATIVE OF THE COSINE FUNCTION

We will now prove that the derivative of the cosine function “cos(x)” is equal to “− sin(x)” (in

). 

R

That is:

[ cos(x) ] ′ = −sin(x)

(in

) . 

(15.2)

R

Proof:

[ sin(x) ] ′ = cos(x)

[eq. (15.1)] ; 

[sin(x)]′ = cos(x)







[eq. (12.21)] ; 

h π i





′ = 0



2

[sin(x)]′ = cos(x)













h π i ′ = 0

[eq. (12.22)] ; 

2













[x] ′ = 1
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[sin(x)]′ = cos(x)







[eq. (12.28)] ; 

h

π i





′ =



x +

1 + 0

2

[sin(x)]′ = cos(x)







; 

h

π i





x +

′ = 1



2

h



π  i



π 

sin

x +

′ = cos x +

· 1

[eq. (12.42)] ; 

2

2

h



π  i



π 

sin

x +

′ = cos x +

[eqs. (2.56) and (2.59)] ; 

2

2



π 

[ cos(x) ] ′ = cos x +

[eq. (4.62)] ; 

2

[ cos(x) ] ′ = −sin(x)

[eq. (4.61)] . 

15.4.3

DERIVATIVE OF THE TANGENT FUNCTION

We will now prove that the derivative of the tangent function “tan(x)” (in its domain) is equal to

“sec2(x)”. That is:

[ tan(x) ] ′ = sec2(x)



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

(15.3)

R

2

2

2

2

2

2

Proof:

[ sin(x) ] ′ = cos(x)

[eq. (15.1)] ; 

[ cos(x) ] ′ = −sin(x)

[eq. (15.2)] ; 

sin(x) 

[ sin(x) ] ′ cos(x) − sin(x) [cos(x)]′

cos(x) , 0 :

′ =

[eq. (12.38)] ; 

cos(x)

cos2(x)

[ sin(x) ] ′ cos(x) − sin(x) [cos(x)]′

cos(x) , 0 :

[ tan(x) ] ′ =

[eq. (4.53)] ; 

cos2(x)

cos(x) cos(x) − sin(x) [cos(x)]′

cos(x) , 0 :

[ tan(x) ] ′ =

; 

cos2(x)
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cos(x) cos(x) − sin(x)(− sin(x))

cos(x) , 0 :

[ tan(x) ] ′ =

; 

cos2(x)

cos(x) cos(x) + [ − (− sin(x)) sin(x)]

cos(x) , 0 :

[ tan(x) ] ′ =

cos2(x)

[eqs. (2.54) and (2.56)] ; 

cos(x) cos(x) + sin(x) sin(x)

cos(x) , 0 :

[ tan(x) ] ′ =

cos2(x)

[eqs. (2.51) and (2.61)] ; 

cos2(x) + sin2(x)

cos(x) , 0 :

[ tan(x) ] ′ =

[eq. (2.79)] ; 

cos2(x)

1

cos(x) , 0 :

[ tan(x) ] ′ =

[eq. (4.52)] ; 

cos2(x)



1

2

cos(x) , 0 :

[ tan(x) ] ′ =

[eq. (2.92)] ; 

cos(x)

cos(x) , 0 :

[ tan(x) ] ′ = sec2(x)

[eq. (5.1)] ; 

[ tan(x) ] ′ = sec2(x)



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

R

2

2

2

2

2

2

15.5

DERIVATIVES OF THE SECANT, THE COSECANT, AND

THE COTANGENT FUNCTION

15.5.1

DERIVATIVE OF THE SECANT FUNCTION

We will now prove that the derivative of the secant function “sec(x)” (in its domain) is equal to

“sec(x) tan(x)”. That is:

[ sec(x) ] ′ = sec(x) tan(x)



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

(15.4)

R

2

2

2

2

2

2
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Proof:

[ cos(x) ] ′ = −sin(x)

[eq. (15.2)] ; 



1



[ cos(x) ] ′

cos(x) , 0 :

′ = −

[eq. (12.35)] ; 

cos(x)

cos2(x)

[ cos(x) ] ′

cos(x) , 0 :

[ sec(x) ] ′ = −

[eq. (5.1)] ; 

cos2(x)

(−sin(x))

cos(x) , 0 :

[ sec(x) ] ′ = −

; 

cos2(x)

(−sin(x))

cos(x) , 0 :

[ sec(x) ] ′ = −

[eq. (2.79)] ; 

cos(x) cos(x)

cos(x) , 0 :

[ sec(x) ] ′ = − (−sin(x))(cos(x))−1 (cos(x))−1

[eqs. (2.72) and (2.74)] ; 

cos(x) , 0 :

[ sec(x) ] ′ = sin(x) (cos(x))−1 (cos(x))−1

[eqs. (2.51) and (2.61)] ; 

sin(x)

1

cos(x) , 0 :

[ sec(x) ] ′ = cos(x) cos(x)

[eqs. (2.72) and (2.73)] ; 

1

cos(x) , 0 :

[ sec(x) ] ′ = tan(x)

[eq. (4.53)] ; 

cos(x)

cos(x) , 0 :

[ sec(x) ] ′ = tan(x) sec(x)

[eq. (5.1)] ; 

cos(x) , 0 :

[ sec(x) ] ′ = sec(x) tan(x)

[eq. (2.56)] ; 

[ sec(x) ] ′ = sec(x) tan(x)



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

. 

R

2

2

2

2

2

2

[image: Image 2657]

[image: Image 2658]

[image: Image 2659]

[image: Image 2660]

[image: Image 2661]

[image: Image 2662]

[image: Image 2663]

[image: Image 2664]

486

Limits and Derivatives of Real Functions for Physicists

15.5.2

DERIVATIVE OF THE COSECANT FUNCTION

We will also now prove that the derivative of the cosecant function “csc(x)” (in its domain) is equal to “− csc(x)cot(x)”. That is:

[ csc(x) ] ′ = − csc(x)cot(x)

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

(15.5)

R

Proof:

[ sin(x) ] ′ = cos(x)

[eq. (15.1)] ; 



1



[ sin(x) ] ′

sin(x) , 0 :

′ = −

[eq. (12.35)] ; 

sin(x)

sin2(x)

[ sin(x) ] ′

sin(x) , 0 :

[ csc(x) ] ′ = −

[eq. (5.2)] ; 

sin2(x)

cos(x)

sin(x) , 0 :

[ csc(x) ] ′ = −

; 

sin2(x)

cos(x)

sin(x) , 0 :

[ csc(x) ] ′ = −

[eq. (2.79)] ; 

sin(x) sin(x)

sin(x) , 0 :

[ csc(x) ] ′ = − cos(x)(sin(x))−1 (sin(x))−1

[eqs. (2.72) and (2.74)] ; 

cos(x)

1

sin(x) , 0 :

[ csc(x) ] ′ = −

[eqs. (2.72) and (2.73)] ; 

sin(x) sin(x)

1

sin(x) , 0 :

[ csc(x) ] ′ = − cot(x)

[eq. (5.3)] ; 

sin(x)

sin(x) , 0 :

[ csc(x) ] ′ = − cot(x) csc(x)

[eq. (5.2)] ; 

sin(x) , 0 :

[ csc(x) ] ′ = − csc(x) cot(x)

[eq. (2.56)] ; 

[ csc(x) ] ′ = − csc(x) cot(x)

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

R
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15.5.3

DERIVATIVE OF THE COTANGENT FUNCTION

We will now prove that the derivative of the cotangent function “cot(x)” (in its domain) is equal to

“− csc2(x)”. That is:

[ cot(x) ] ′ = −csc2(x)

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

(15.6)

R

Proof:

[ sin(x) ] ′ = cos(x)

[eq. (15.1)] ; 

[ cos(x) ] ′ = −sin(x)

[eq. (15.2)] ; 

cos(x) 

[ cos(x) ] ′ sin(x) − cos(x) [sin(x)]′

sin(x) , 0 :

′ =

[eq. (12.38)] ; 

sin(x)

sin2(x)

[ cos(x) ] ′ sin(x) − cos(x) [sin(x)]′

sin(x) , 0 :

[ cot(x) ] ′ =

[eq. (5.3)] ; 

sin2(x)

[ cos(x) ] ′ sin(x) − cos(x)cos(x)

sin(x) , 0 :

[ cot(x) ] ′ =

; 

sin2(x)

(−sin(x))sin(x) − cos(x)cos(x)

sin(x) , 0 :

[ cot(x) ] ′ =

; 

sin2(x)

[ − sin(x)sin(x)] + [− cos(x)cos(x)]

sin(x) , 0 :

[ cot(x) ] ′ =

sin2(x)

[eqs. (2.54) and (2.61)] ; 

−[sin(x)sin(x) + cos(x)cos(x)]

sin(x) , 0 :

[ cot(x) ] ′ =

[eq. (2.52)] ; 

sin2(x)

−[sin2(x) + cos2(x)]

sin(x) , 0 :

[ cot(x) ] ′ =

[eq. (2.79)] ; 

sin2(x)

−1

sin(x) , 0 :

[ cot(x) ] ′ =

[eqs. (2.43) and (4.52)] ; 

sin2(x)

sin(x) , 0 :

[ cot(x) ] ′ = (−1)(sin2(x))−1

[eq. (2.72)] ; 
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sin(x) , 0 :

[ cot(x) ] ′ = −(sin2(x))−1

[eq. (2.65)] ; 

1

sin(x) , 0 :

[ cot(x) ] ′ = −

[eq. (2.73)] ; 

sin2(x)



1

2

sin(x) , 0 :

[ cot(x) ] ′ = −

[eq. (2.92)] ; 

sin(x)

sin(x) , 0 :

[ cot(x) ] ′ = −csc2(x)

[eq. (5.2)] ; 

[ cot(x) ] ′ = −csc2(x)

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ) . 

R

15.6

DERIVATIVES OF THE ARCSINE, THE ARCCOSINE, AND

THE ARCTANGENT FUNCTION

15.6.1

DERIVATIVE OF THE ARCSINE FUNCTION

The sine function “sin(x)” is periodic in “2π” [as are also the functions cos(x), tan(x), sec(x), csc(x), and cot(x)]; that is, the values returned by “sin(x)” repeat over and over every “2π” [eq. (4.71)]. 

Since the sine function “sin(x)” is periodic in “2π”, strictly, it follows that the “sin(x)” does not have an inverse function [i.e., sin−1(x) does not exist; see 1.3.3]. 

Insisting on working with an inverse-like function of “sin(x)”, we are lead to consider a reduced domain of “sin(x)” where each element of the reduced domain returns a different value. That is, we are lead to consider a function of the form “sinI(x)” (see 11.7.1). 

Considering the closed interval “I = [ −π/2,π/2 ]” as a reduced domain of the function “sin(x)”, the function “sin[−π/2,π/2](x)” has the same range as “sin(x)”, however “sin[−π/2,π/2](x)” obtains each value of its range only once (i.e., sin[−π/2,π/2](x) is also a one-to-one relation [unlike sin(x)]). 

Thus, the function “sin[−π/2,π/2](x)” has an inverse function [unlike sin(x)]. Note that: domain of sin(x) =

∧ range of sin(x) = [−1,1] ; 

R

h

π π i

domain of sin[

, 

− π , π ](x) = −

∧ range of sin[ ,π ](x) = [−1,1] . 

2 2

2 2

− π2 2

We will define the arcsine function “arcsin(x)” as the inverse function of “sin[−π/2,π/2](x)”. 

That is:

arcsin(x) ≡ sin−1

(x) . 

(15.7)

[ − π , π ]

2 2

Note that:

domain of arcsin(x) = [ −1,1 ] ; 

h

π π i

range of arcsin(x) = − , 

. 

2 2
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We will now prove that the derivative of the arcsine function “arcsin(x)” [in “(-1,1)”] is equal to

√

“1/

1 − x2 ”. That is:

1

[ arcsin(x) ] ′ = √

(in “(−1,1)”) . 

(15.8)

1 − x2

Proof:

• First case: cos(arcsin(x))

h

π π i

given that: range of arcsin(x) = − , 

2 2

cos(arcsin(x)) ≥ 0 ; 

cos2(arcsin(x)) + sin2(arcsin(x)) = 1

[eq. (4.52)] ; 

cos2(arcsin(x)) + sin2[− π ,π ](arcsin(x)) = 1 ; 

2 2

cos2(arcsin(x)) + x2 = 1 ; 

cos2(arcsin(x)) = 1 − x2

[eq. (2.47)] ; 

p

cos(arcsin(x)) =

1 − x2

[eq. (2.94)] ; 

• Second case: f (x) = sin[−π/2,π/2](x)

f (x) = sin[ − π ,π ](x) ; 

2 2

π

π

−

< x < 

:

f ′(x) = cos(x)

[eq. (15.1)] ; 

2

2

f −1(y) = arcsin(y)

[eq. (15.7)] ; 

1

−1 < y < 1 :

[ f −1(y) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(y))

1

−1 < x < 1 :

[ f −1(x) ] ′ =

; 

f ′( f −1(x))

1

−1 < x < 1 :

[ arcsin(x) ] ′ =

; 

f ′(arcsin(x))

1

−1 < x < 1 :

[ arcsin(x) ] ′ =

; 

cos(arcsin(x))

1

−1 < x < 1 :

[ arcsin(x) ] ′ = √

[first case] ; 

1 − x2

1

[ arcsin(x) ] ′ = √

(in “(−1,1)”) . 

1 − x2
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15.6.2

DERIVATIVE OF THE ARCCOSINE FUNCTION

Considering the closed interval “I = [ 0, π ]” as a reduced domain of the function “cos(x)”, the function “cos[0,π](x)” has the same range as “cos(x)”, however “cos[0,π](x)” obtains each value of its range only once (i.e., cos[0,π](x) is also a one-to-one relation [unlike cos(x)]). Thus, the function

“cos[0,π](x)” has an inverse function [unlike cos(x)]. Note that: domain of cos(x) =

∧ range of cos(x) = [−1,1] ; 

R

domain of cos[0,π](x) = [ 0, π ] ∧ range of cos[0,π](x) = [−1,1 ] . 

We will define the arccosine function “arccos(x)” as the inverse function of cos[0,π](x). That is: arccos(x) ≡ cos−1 (x) . 

(15.9)

[ 0,π ]

Note that:

domain of arccos(x) = [ −1,1 ] ; 

range of arccos(x) = [ 0, π ] . 

We will now prove that the derivative of the arccosine function “arccos(x)” [in “(-1,1)”] is equal

√

to “−1/ 1 − x2 ”. That is:

1

[ arccos(x) ] ′ = − √

(in “(−1,1)”) . 

(15.10)

1 − x2

Proof:

• First case: sin(arccos(x))

given that: range of arccos(x) = [ 0, π ]

sin(arccos(x)) ≥ 0 ; 

cos2(arccos(x)) + sin2(arccos(x)) = 1

[eq. (4.52)] ; 

cos2[0,π](arccos(x)) + sin2(arccos(x)) = 1 ; 

x2 + sin2(arccos(x)) = 1 ; 

sin2(arccos(x)) = 1 − x2

[eqs. (2.43 and (2.47)] ; 

p

sin(arccos(x)) =

1 − x2

[eq. (2.94)] ; 
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• Second case: f (x) = cos[0,π](x)

f (x) = cos[0,π ](x) ; 

0 < x < π :

f ′(x) = − sin(x)

[eq. (15.2)] ; 

f −1(y) = arccos(y)

[eq. (15.9)] ; 

1

−1 < y < 1 :

[ f −1(y) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(y))

1

−1 < x < 1 :

[ f −1(x) ] ′ =

; 

f ′( f −1(x))

1

−1 < x < 1 :

[ arccos(x) ] ′ =

; 

f ′(arccos(x))

1

−1 < x < 1 :

[ arccos(x) ] ′ =

; 

− sin(arccos(x))

1

−1 < x < 1 :

[ arccos(x) ] ′ =

√

[first case] ; 

− 1 − x2

1

−1 < x < 1 :

[ arccos(x) ] ′ =

√

[eq. (2.65)] ; 

(−1) 1 − x2

1 · 1

−1 < x < 1 :

[ arccos(x) ] ′ =

√

; 

(−1) 1 − x2

1

1

−1 < x < 1 :

[ arccos(x) ] ′ =

√

[eq. (2.75)] ; 

(−1)

1 − x2

1

−1 < x < 1 :

[ arccos(x) ] ′ = (−1) √

; 

1 − x2

1

−1 < x < 1 :

[ arccos(x) ] ′ = − √

[eq. (2.65)] ; 

1 − x2

1

[ arccos(x) ] ′ = − √

(in “(−1,1)”) . 

1 − x2

15.6.3

DERIVATIVE OF THE ARCTANGENT FUNCTION

Considering the open interval “I = (−π/2,π/2)” as a reduced domain of the function “tan(x)”, the function “tan(−π/2,π/2)(x)” has the same range as “tan(x)”, however “tan(−π/2,π/2)(x)” obtains each value of its range only once (i.e., tan(−π/2,π/2)(x) is also a one-to-one relation [unlike tan(x)]). Thus, the function “tan(−π/2,π/2)(x)” has an inverse function [unlike tan(x)]. Note that: (

)

5π

3π

π

π

3π

5π

domain of tan(x) =

\ ...,−

, −

, − ,+ ,+

, +

, ... 

; 

R

2

2

2

2

2

2

range of tan(x) =

; 

R
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π π 

domain of tan(

, 

; 

− π , π )(x) =

−

2 2

2 2

range of tan(

. 

− π , π )(x) = R

2 2

We will define the arctangent function “arctan(x)” as the inverse function of “tan(−π/2,π/2)(x)”. 

That is:

arctan(x) ≡ tan−1

(x) . 

(15.11)

( − π , π )

2 2

Note that:

domain of arctan(x) =

; 

R



π π 

range of arctan(x) =

− , 

. 

2 2

We will now prove that the derivative of the arctangent function “arctan(x)” is equal to

“1/(1 + x2)” (in

). That is:

R

1

[ arctan(x) ] ′ =

(in

) . 

(15.12)

R

1 + x2

Proof:

• First case: sec2(arctan(x))

1 + tan2(arctan(x)) = sec2(arctan(x))

[eq. (5.4)] ; 

1 + tan2( − π ,π )(arctan(x)) = sec2(arctan(x)) ; 

2 2

1 + x2 = sec2(arctan(x)) ; 

sec2(arctan(x)) = 1 + x2 ; 

• Second case: f (x) = tan(−π/2,π/2)(x)

f (x) = tan( − π ,π )(x) ; 

2 2

π

π

−

< x < 

:

f ′(x) = sec2(x)

[eq. (15.3)] ; 

2

2

f −1(y) = arctan(y)

[eq. (15.11)] ; 

1

[ f −1(y) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(y))

1

[ f −1(x) ] ′ =

; 

f ′( f −1(x))

1

[ arctan(x) ] ′ =

; 

f ′(arctan(x))

1

[ arctan(x) ] ′ =

; 

sec2(arctan(x))

1

[ arctan(x) ] ′ =

[first case] . 

1 + x2
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15.7

DERIVATIVES OF THE ARCSECANT, THE ARCCOSECANT, AND

THE ARCCOTANGENT FUNCTION

15.7.1

DERIVATIVE OF THE ARCSECANT FUNCTION

Considering the subset “S = [ 0, π/2) ∪ (π/2,π ]” as a reduced domain of the function “sec(x)”, the function “secS(x)” has the same range as “sec(x)”, however “secS(x)” obtains each value of its range only once (i.e., secS(x) is also a one-to-one relation [unlike sec(x)]). Thus, the function “secS(x)” 

has an inverse function [unlike sec(x)]. Note that:

(

)

5π

3π

π

π

3π

5π

domain of sec(x) =

\ ...,−

, −

, − ,+ ,+

, +

, ... 

; 

R

2

2

2

2

2

2

range of sec(x) = (−∞,−1 ] ∪ [1,+∞) ; 

h

π   π

i

domain of secS(x) = 0, 

∪

, π

; 

2

2

range of secS(x) = (−∞,−1 ] ∪ [1,+∞) . 

We will define the arcsecant function “arcsec(x)” as the inverse function of “secS(x)” (with

“S = [ 0, π/2) ∪ (π/2,π ]”). That is:

arcsec(x) ≡ sec−1

(x) . 

(15.13)

[ 0, π )

,π ]

2

∪( π2

Note that:

domain of arcsec(x) = (−∞,−1 ] ∪ [1,+∞) ; 

h

π   π

i

range of arcsec(x) = 0, 

∪

, π

. 

2

2

We will now prove that the derivative of the arcsecant function “arcsec(x)” 

√

(in “(−∞,−1 ) ∪ (1,+∞)”) is equal to “1/(|x|

x2 − 1)”. That is:

1

[ arcsec(x) ] ′ =

√

(in “(−∞,−1) ∪ (1,+∞)”) . 

(15.14)

|x| x2 − 1

Proof:

• First case: sec(arcsec(x))tan(arcsec(x))

1 + tan2(arcsec(x)) = sec2(arcsec(x))

[eq. (5.4)] ; 

taking: S = [ 0, π/2) ∪ (π/2,π ]

1 + tan2(arcsec(x)) = sec2S(arcsec(x)) ; 

1 + tan2(arcsec(x)) = x2 ; 

tan2(arcsec(x)) = x2 − 1

[eqs. (2.43) and (2.47)] ; 
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◦ First subcase: x ≤ −1

π < arcsec(x) ≤ π ; 

2

tan(arcsec(x)) ≤ 0 ; 

tan2(arcsec(x)) = x2 − 1 ; 

p

tan(arcsec(x)) = −

x2 − 1

[eq. (2.94)] ; 

p

sec(arcsec(x)) tan(arcsec(x)) = sec(arcsec(x)) (−

x2 − 1 ) ; 

p

sec(arcsec(x)) tan(arcsec(x)) = secS(arcsec(x)) (−

x2 − 1 ) ; 

p

sec(arcsec(x)) tan(arcsec(x)) = x (−

x2 − 1 ) ; 

p

sec(arcsec(x)) tan(arcsec(x)) = (−x)

x2 − 1

[eqs. (2.56) and (2.61)] ; 

p

sec(arcsec(x)) tan(arcsec(x)) = |x|

x2 − 1

[eq. (2.124)] ; 

◦ Second subcase: x ≥ 1

π

0 ≤ arcsec(x) < 

; 

2

tan(arcsec(x)) ≥ 0 ; 

tan2(arcsec(x)) = x2 − 1 ; 

p

tan(arcsec(x)) =

x2 − 1

[eq. (2.94)] ; 

p

sec(arcsec(x)) tan(arcsec(x)) = sec(arcsec(x))

x2 − 1 ; 

p

sec(arcsec(x)) tan(arcsec(x)) = secS(arcsec(x))

x2 − 1 ; 

p

sec(arcsec(x)) tan(arcsec(x)) = x

x2 − 1 ; 

p

sec(arcsec(x)) tan(arcsec(x)) = |x|

x2 − 1

[eq. (2.126)] ; 

considering the two subcases, one finds that:

p

sec(arcsec(x)) tan(arcsec(x)) = |x|

x2 − 1 ; 
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• Second case: f (x) = secS(x) ∧ S = [0,π/2) ∪ (π/2,π ]

f (x) = secS(x) ; 

π

π

0 < x < 

∨

< x < π :

f ′(x) = sec(x) tan(x)

[eq. (15.4)] ; 

2

2

f −1(y) = arcsec(y)

[eq. (15.13)] ; 

1

y < −1 ∨ y > 1 :

[ f −1(y) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(y))

1

x < −1 ∨ x > 1 :

[ f −1(x) ] ′ =

; 

f ′( f −1(x))

1

x < −1 ∨ x > 1 :

[ arcsec(x) ] ′ =

; 

f ′(arcsec(x))

1

x < −1 ∨ x > 1 : [ arcsec(x)] ′ =

; 

sec(arcsec(x)) tan(arcsec(x))

1

x < −1 ∨ x > 1 :

[ arcsec(x) ] ′ =

√

[first case] ; 

|x|

x2 − 1

1

[ arcsec(x) ] ′ =

√

(in “(−∞,−1) ∪ (1,+∞)”) . 

|x| x2 − 1

15.7.2

DERIVATIVE OF THE ARCCOSECANT FUNCTION

Considering the subset “S = [ −π/2,0) ∪ (0,π/2 ]” as a reduced domain of the function “csc(x)”, the function “cscS(x)” has the same range as “csc(x)”, however “cscS(x)” obtains each value of its range only once (i.e., cscS(x) is also a one-to-one relation [unlike csc(x)]). Thus, the function

“cscS(x)” has an inverse function [unlike csc(x)]. Note that:

domain of csc(x) =

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ; 

R

range of csc(x) = (−∞,−1 ] ∪ [1,+∞) ; 

domain of cscS(x) = [ −π/2,0) ∪ (0,π/2 ] ; 

range of cscS(x) = (−∞,−1 ] ∪ [1,+∞) . 

We will define the arccosecant function “arccsc(x)” as the inverse function of “cscS(x)” (with

“S = [ −π/2,0) ∪ (0,π/2 ]”). That is:

arccsc(x) ≡ csc−1

(x) . 

(15.15)

[− π ,0)

]

2

∪(0, π2
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Note that:

domain of arccsc(x) = (−∞,−1 ] ∪ [1,+∞) ; 

h

π





π i

range of arccsc(x) = − ,0 ∪ 0, 

. 

2

2

We will now prove that the derivative of the arccosecant function “arccsc(x)” 

√

(in “(−∞,−1 ) ∪ (1,+∞)”) is equal to “−1/(|x|

x2 − 1)”. That is:

1

[ arccsc(x) ] ′ = −

√

(in “(−∞,−1) ∪ (1,+∞)”) . 

(15.16)

|x| x2 − 1

Proof:

• First case: csc(arccsc(x))cot(arccsc(x))

cot2(arccsc(x)) + 1 = csc2(arccsc(x))

[eq. (5.5)] ; 

taking: S = [ −π/2,0) ∪ (0,π/2 ]

cot2(arccsc(x)) + 1 = csc2S(arccsc(x)) ; 

cot2(arccsc(x)) + 1 = x2 ; 

cot2(arccsc(x)) = x2 − 1

[eq. (2.47)] ; 

◦ First subcase: x ≤ −1

π

−

≤ arccsc(x) < 0 ; 

2

cot(arccsc(x)) ≤ 0 ; 

cot2(arccsc(x)) = x2 − 1 ; 

p

cot(arccsc(x)) = −

x2 − 1

[eq. (2.94)] ; 

p

csc(arccsc(x)) cot(arccsc(x)) = csc(arccsc(x)) (−

x2 − 1 ) ; 

p

csc(arccsc(x)) cot(arccsc(x)) = cscS(arccsc(x)) (−

x2 − 1 ) ; 

p

csc(arccsc(x)) cot(arccsc(x)) = x (−

x2 − 1 ) ; 

p

csc(arccsc(x)) cot(arccsc(x)) = (−x)

x2 − 1

[eqs. (2.56) and (2.61)] ; 

p

csc(arccsc(x)) cot(arccsc(x)) = |x|

x2 − 1

[eq. (2.124)] ; 
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◦ Second subcase: x ≥ 1

π

0 < arccsc(x) ≤

; 

2

cot(arccsc(x)) ≥ 0 ; 

cot2(arccsc(x)) = x2 − 1 ; 

p

cot(arccsc(x)) =

x2 − 1

[eq. (2.94)] ; 

p

csc(arccsc(x)) cot(arccsc(x)) = csc(arccsc(x))

x2 − 1 ; 

p

csc(arccsc(x)) cot(arccsc(x)) = cscS(arccsc(x))

x2 − 1 ; 

p

csc(arccsc(x)) cot(arccsc(x)) = x

x2 − 1 ; 

p

csc(arccsc(x)) cot(arccsc(x)) = |x|

x2 − 1

[eq. (2.126)] ; 

considering the two subcases, one finds that:

p

csc(arccsc(x)) cot(arccsc(x)) = |x|

x2 − 1 ; 

• Second case: f (x) = cscS(x) ∧ S = [−π/20) ∪ (0,π/2]

f (x) = cscS(x) ; 

π

π

−

< x < 0 ∨ 0 < x < 

:

f ′(x) = − csc(x)cot(x)

2

2

[eq. (15.5)] ; 

f −1(y) = arccsc(y)

[eq. (15.15)] ; 

1

y < −1 ∨ y > 1 :

[ f −1(y) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(y))

1

x < −1 ∨ x > 1 :

[ f −1(x) ] ′ =

; 

f ′( f −1(x))

1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ =

; 

f ′(arccsc(x))

1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ =

; 

−csc(arccsc(x))cot(arccsc(x))

1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ =

√

[first case] ; 

−|x|

x2 − 1
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1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ =

√

(−1) |x|

x2 − 1

[eq. (2.65)] ; 

1 · 1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ =

√

; 

(−1) |x|

x2 − 1

1

1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ =

√

(−1) |x| x2 − 1

[eq. (2.75)] ; 

1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ = (−1)

√

; 

|x|

x2 − 1

1

x < −1 ∨ x > 1 :

[ arccsc(x) ] ′ = −

√

[eq. (2.65)] ; 

|x|

x2 − 1

1

[ arccsc(x) ] ′ = −

√

(in “(−∞,−1) ∪ (1,+∞)”) . 

|x|

x2 − 1

15.7.3

DERIVATIVE OF THE ARCCOTANGENT FUNCTION

Considering the open interval “I = (0, π)” as a reduced domain of the function “cot(x)”, the function “cot(0,π)(x)” has the same range as “cot(x)”, however “cot(0,π)(x)” obtains each value of its range only once (i.e., cot(0,π)(x) is also a one-to-one relation [unlike cot(x)]). Thus, the function

“cot(0,π)(x)” has an inverse function [unlike cot(x)]. Note that: domain of cot(x) =

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} ; 

R

range of cot(x) =

; 

R

domain of cot(0,π)(x) = (0,π) ; 

range of cot(0,π)(x) =

. 

R

We will define the arccotangent function “arccot(x)” as the inverse function of “cot(0,π)(x)”. 

That is:

arccot(x) ≡ cot−1 (x) . 

(15.17)

(0,π)

Note that:

domain of arccot(x) =

; 

R

range of arccot(x) = (0, π) . 
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We will now prove that the derivative of the arccotangent function “arccot(x)” is equal to

“−1/(1 + x2)” (in

). That is:

R

1

[ arccot(x) ] ′ = −

(in

) . 

(15.18)

R

1 + x2

Proof:

• First case: csc2(arccot(x))

cot2(arccot(x)) + 1 = csc2(arccot(x))

[eq. (5.5)] ; 

cot2

(

(

arccot(x)) + 1 = csc2(arccot(x)) ; 

0,π)

x2 + 1 = csc2(arccot(x)) ; 

csc2(arccot(x)) = x2 + 1 ; 

csc2(arccot(x)) = 1 + x2

[eq. (2.43)] ; 

• Second case: f (x) = cot(0,π)(x)

f (x) = cot(0,π)(x) ; 

0 < x < π :

f ′(x) = − csc2(x)

[eq. (15.6)] ; 

f −1(y) = arccot(y)

[eq. (15.17)] ; 

1

[ f −1(y) ] ′ =

[eq. (13.2)] ; 

f ′( f −1(y))

1

[ f −1(x) ] ′ =

; 

f ′( f −1(x))

1

[ arccot(x) ] ′ =

; 

f ′(arccot(x))

1

[ arccot(x) ] ′ =

; 

−csc2(arccot(x))

1

[ arccot(x) ] ′ =

[first case] ; 

−(1 + x2)

1

[ arccot(x) ] ′ =

[eq. (2.65)] ; 

(−1)(1 + x2)

1 · 1

[ arccot(x) ] ′ =

; 

(−1)(1 + x2)
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1

1

[ arccot(x) ] ′ =

[eq. (2.75)] ; 

(−1) 1 + x2

1

[ arccot(x) ] ′ = (−1)

; 

1 + x2

1

[ arccot(x) ] ′ = −

[eq. (2.65)] . 

1 + x2

15.8

EXAMPLES

Trigonometric functions and inverse trigonometric functions, and their corresponding derivatives, appear explicitly or implicitly throughout physics. In this section we will revisit the case of circular motion discussed in 5.14 and 10.7, but in this section we will discuss specifically the case of uniform circular motion. 

As discussed in 5.14, by uniform circular motion we mean here the motion of an object in a circular path with a constant angular velocity. To simplify the mathematical description of the movement, we can place the origin of the reference system at the center of the circle (see figure 5.4). 

In the case of a uniform circular motion, the angular position “φ (t)” of the object is given by: φ (t) = ω t + φ0 ; 

where “ω” is a constant equal to the angular velocity of the object, “t” is the time, and “φ0” is a constant equal to the initial value of the angular position of the object. 

In turn, as discussed in 5.14, the equations of motion of an object in uniform circular motion, when the origin of the reference system is placed at the center of the circle, are:

x(t) = r cos(ω t + φ



0)



; 

(15.19)



y(t) = r sin(ω t + φ0)

where “x(t)” and “y(t)” are the x and y coordinates of the object for any time “t”; and “r” is the radius of the circular path. 

As discussed in 10.7, to calculate the velocity components “vx(t)” and “vy(t)” of the object, we need to calculate the derivatives of the respective position functions “x(t)” and “y(t)”. That is:

v

 x(t ) = x ′ (t )



. 



vy(t) = y ′(t)

Aiming to calculate the velocity components of the object, and substituting equation (15.19) into the last equation, we have that:

v

 x (t ) = [ r cos(ω t + φ0) ] ′



; 



vy(t) = [ r sin(ω t + φ0) ] ′
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applying equation (12.24):

v

 x(t ) = r [ cos(ω t + φ0) ] ′



; 



vy(t) = r [ sin(ω t + φ0) ] ′

applying equations (12.42) and (15.2):

v

 x (t ) = r (− sin(ω t + φ0)) [ ω t + φ0) ] ′



; 



vy(t) = r [ sin(ω t + φ0) ] ′

applying equations (12.42) and (15.1):

v

 x (t ) = r (− sin(ω t + φ0)) [ ω t + φ0) ] ′



; 



vy(t) = r cos(ω t + φ0) [ ω t + φ0 ] ′

applying equation (12.28):

v

 x(t ) = r (− sin(ω t + φ0)) ( [ ω t ] ′ + [ φ0 ] ′ )



; 



vy(t) = r cos(ω t + φ0) ( [ ω t ] ′ + [ φ0 ] ′ )

applying equation (12.21):

v

 x (t ) = r (− sin(ω t + φ0)) ( [ ω t ] ′ + 0 )



; 



vy(t) = r cos(ω t + φ0) ( [ ω t ] ′ + 0 )

applying equation (2.45):

v

 x (t ) = r (− sin(ω t + φ0)) [ ω t ] ′



; 



vy(t) = r cos(ω t + φ0) [ ω t ] ′

applying equation (12.24):

v

 x (t ) = r (− sin(ω t + φ0)) ω [ t ] ′



; 



vy(t) = r cos(ω t + φ0) ω [t ] ′

applying equation (12.22):

v

 x(t ) = r (− sin(ω t + φ0)) ω · 1



; 



vy(t) = r cos(ω t + φ0) ω · 1

applying equations (2.56) and (2.59):

v

 x(t ) = ω r (− sin(ω t + φ0))



; 

(15.20)



vy(t) = ω r cos(ω t + φ0)
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applying equations (4.61) and (4.62):





π 

v

ω t + φ

 x(t ) = ω r cos

0 +



2



. 

(15.21)





π 



vy(t) = ω r sin

ω t + φ0 + 2

Comparing equations (15.19) and (15.21), one finds that in a uniform circular motion [taking the center of the circle as the origin of the reference system and assuming that the angular velocity is positive (“ω > 0”)], that the angular phase of the velocity “ω t + φ0 + π/2” for any given time “t”, is always “π/2” (90 degrees) greater than the angular phase of the position “ω t + φ0”. Thus, in a uniform circular motion, taking the center of the circle as the origin of the reference system, the velocity is always perpendicular to the position. 

Recalling equation (15.20), and applying equations (2.56) and (2.61):

v

 x (t ) = − ω r sin(ω t + φ0)



; 

(15.22)



vy(t) = ω r cos(ω t + φ0)

the last equation, is the equation of velocity for an object in uniform circular motion. 

To calculate the speed “v(t)” for the object, one can apply the following equation for objects moving in a plane:

q

v(t) =

v2x(t) + v2y(t) ; 

substituting equation (15.22):

q

v(t) =

(−ω r sin(ω t + φ0))2 + (ω r cos(ω t + φ0))2 ; 

applying equation (2.83):

q

v(t) =

(ω r sin(ω t + φ0))2 + (ω r cos(ω t + φ0))2 ; 

applying equation (2.87):

q

v(t) =

(ω r)2 sin2(ω t + φ0) + (ω r)2 cos2(ω t + φ0) ; 

applying equations (2.43) and (2.64):

q

v(t) =

(ω r)2 [ cos2(ω t + φ0) + sin2(ω t + φ0)] ; 

applying equation (4.52):

q

v(t) =

(ω r)2 · 1 ; 

applying equations (2.56) and (2.59):

q

v(t) =

(ω r)2 ; 

assuming that the angular speed is positive (ω > 0), and applying equation (2.100):

√

v(t) =

ω r 2 ; 

[image: Image 2860]

[image: Image 2861]

Derivatives of Trigonometric Functions

503

applying equation (2.97):

v(t) = ω r ; 

since the angular speed “ω” and the radius “r” are both constant, it follows that the speed “v” is also constant. Thus, we can more simply write:

v = ω r . 

(15.23)

Note that, in uniform circular motion, the speed of the object is constant [eq. (15.23)] while the velocity of the object varies with time [eq. (15.22)]. 

Substituting the last equation in equation (15.21), the equation of velocity in a uniform circular motion, can be rewritten as:





π 

v

ω t + φ

 x(t ) = v cos

0 +



2



; 





π 



vy(t) = v sin

ω t + φ0 + 2

substituting equation (15.23) in equation (15.22), the equation of velocity in a uniform circular motion, can also be rewritten as:

v

 x (t ) = − v sin(ω t + φ0 )



. 



vy(t) = v cos(ω t + φ0)

Extending the discussion in 7.6 to a plane, to calculate the acceleration components “ax(t)” and

“ay(t)” of the object, we need to calculate the derivatives of the respective velocity component functions “vx(t)” and “vy(t)”. That is:

a

′(t)



x(t ) = vx



. 



a

′

y(t ) = vy (t )

Aiming to calculate the acceleration components of the object, and substituting equation (15.22) into the last equation, we have that:

a



x(t ) = [ − ω r sin(ω t + φ0) ] ′



; 



ay(t) = [ ω r cos(ω t + φ0) ] ′

applying equation (12.26):

a



x(t ) = − [ ω r sin(ω t + φ0) ] ′



; 



ay(t) = [ ω r cos(ω t + φ0) ] ′

applying equation (12.24):

a



x(t ) = − ω r [ sin(ω t + φ0) ] ′



; 



ay(t) = ω r [ cos(ω t + φ0) ] ′
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applying equations (12.42) and (15.1):

a



x(t ) = − ω r cos(ω t + φ0) [ ω t + φ0 ] ′



; 



ay(t) = ω r [ cos(ω t + φ0) ] ′

applying equations (12.42) and (15.2):

a



x(t ) = − ω r cos(ω t + φ0) [ ω t + φ0 ] ′



; 



ay(t) = ω r ( − sin(ω t + φ0) ) [ ω t + φ0 ] ′

applying equations (2.56) and (2.61):

a



x(t ) = ω r ( − cos(ω t + φ0) ) [ ω t + φ0 ] ′



; 



ay(t) = ω r ( − sin(ω t + φ0) ) [ ω t + φ0 ] ′

applying equation (12.28):

a



x(t ) = ω r ( − cos(ω t + φ0) ) ( [ ω t ] ′ + [ φ0 ] ′ )



; 



ay(t) = ω r ( − sin(ω t + φ0) ) ( [ ω t ] ′ + [ φ0 ] ′ )

applying equation (12.21):

a



x(t ) = ω r ( − cos(ω t + φ0) ) ( [ ω t ] ′ + 0 )



; 



ay(t) = ω r ( − sin(ω t + φ0) ) ( [ ω t ] ′ + 0 )

applying equation (2.45):

a



x(t ) = ω r ( − cos(ω t + φ0) ) [ ω t ] ′



; 



ay(t) = ω r ( − sin(ω t + φ0) ) [ ω t ] ′

applying equation (12.24):

a



x(t ) = ω r ( − cos(ω t + φ0) ) ω [ t ] ′



; 



ay(t) = ω r ( − sin(ω t + φ0) ) ω [t ] ′

applying equation (12.22):

a



x(t ) = ω r ( − cos(ω t + φ0) ) ω · 1



; 



ay(t) = ω r ( − sin(ω t + φ0) ) ω · 1

applying equations (2.56) and (2.59):

a



x(t ) = ω ω r ( − cos(ω t + φ0) )



; 



ay(t) = ω ω r ( − sin(ω t + φ0) )
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applying equation (2.79):

a



x(t ) = ω 2r ( − cos(ω t + φ0) )



; 

(15.24)



ay(t) = ω2r ( − sin(ω t + φ0) )

applying equations (4.67) and (4.68):

a



x(t ) = ω 2r cos(ω t + φ0 + π )



. 

(15.25)



ay(t) = ω2r sin(ω t + φ0 + π)

Comparing equations (15.19) and (15.25), one finds that in a uniform circular motion the angular phase of the acceleration “ω t + φ0 + π” for any given time “t”, is always “π” (180 degrees) greater than the angular phase of the position “ω t + φ0”. Thus, in a uniform circular motion, taking the center of the circle as the origin of the reference system, the acceleration is in the opposite direction to position. That is, in a uniform circular motion, the acceleration always points towards the center of the circle. 

Recalling equation (15.24), and applying equations (2.56) and (2.61):

a



x(t ) = − ω 2r cos(ω t + φ0)



; 

(15.26)



ay(t) = − ω2r sin(ω t + φ0)

the last equation, is the equation of acceleration for an object in uniform circular motion. 

To calculate the magnitude of the acceleration “a(t)” for the object, just as we previously did for velocity and speed, one can apply the following equation for objects moving in a plane: q

a(t) =

a2x(t) + a2y(t) ; 

substituting equation (15.26):

q

a(t) =

(−ω2r cos(ω t + φ0))2 + (−ω2r sin(ω t + φ0))2 ; 

applying equation (2.83):

q

a(t) =

(ω2r cos(ω t + φ0))2 + (ω2r sin(ω t + φ0))2 ; 

applying equation (2.87):

q

a(t) =

(ω2r)2 cos2(ω t + φ0) + (ω2r)2 sin2(ω t + φ0) ; 

applying equation (2.64):

q

a(t) =

(ω2r)2 [ cos2(ω t + φ0) + sin2(ω t + φ0)] ; 

applying equation (4.52):

q

a(t) =

(ω2r)2 · 1 ; 
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applying equations (2.56) and (2.59):

q

a(t) =

(ω2r)2 ; 

applying equation (2.100):

√

2

a(t) =

ω2r

; 

applying equation (2.97):

a(t) = ω2r ; 

since the angular speed “ω” and the radius “r” are both constant, it follows that the magnitude of the acceleration “a” is also constant. Thus, we can more simply write: a = ω2r . 

(15.27)

Note that, in uniform circular motion, the magnitude of the acceleration of the object is constant

[eq. (15.27)] while the acceleration of the object varies with time [eq. (15.26)]. 

Substituting the last equation in equation (15.25), the equation of acceleration in a uniform circular motion, can be rewritten as:

a



x(t ) = a cos ( ω t + φ0 + π )



; 



ay(t) = a sin ( ω t + φ0 + π )

substituting equation (15.27) in equation (15.26), the equation of acceleration in a uniform circular motion, can also be rewritten as:

a



x(t ) = − a cos(ω t + φ0)



. 



ay(t) = − a sin(ω t + φ0)

Aiming to find an equation for the magnitude of acceleration that does not explicitly depend on angular velocity “ω”, and recalling equations (15.23) and (15.27):

v = ω r





; 



a = ω 2r

applying equation (2.66):

 v



= ω



 r

; 





a = ω 2r

thus:



v

ω =





r

; 





a = ω 2r
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substituting:

v 2

a =

r ; 

r

applying equation (2.72):

a = (v r−1)2 r ; 

applying equation (2.87):

a = v2(r−1)2 r ; 

applying equation (2.90):

a = v2 r(−1)·2 r ; 

thus:

a = v2 r−2 r ; 

applying equation (2.78):

a = v2 r−2 r1 ; 

applying equation (2.88):

a = v2 r−2+1 ; 

thus:

a = v2 r−1 ; 

applying equation (2.72):

v2

a =

. 

(15.28)

r

The last equation, is the equation for the magnitude of acceleration of an object in uniform circular motion in terms of speed “v” and radius “r” (rather than in terms of angular velocity ω and radius r

[as in eq. (15.27)]). 

In this section, we have presented an analysis of uniform circular motion (object moving in a circular path at a constant angular speed). We have derived the equation of velocity of an object in uniform circular motion [eqs. (15.21) and (15.22)]. We derived the equations of acceleration of an object in uniform circular motion [eqs. (15.25) and (15.26)], and found the magnitude of the acceleration to be constant [eqs. (15.27) and (15.28)]. As can be clearly seen, properties of trigonometric functions, properties of derivatives, and in particular properties of the derivatives of trigonometric functions, played a key role in the physics analysis of the system. 
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16 Analysis of Differentiable

Functions

16.1

INTRODUCTION

Differentiable functions appear explicitly or implicitly throughout physics. Significant analysis of differentiable functions comes from the study of the properties of their derivatives. The analysis of differentiable functions, and in particular the study of the properties of their derivatives, become more than useful tools in physics, they become an essential intrinsic part of the models with which we describe, understand, and attempt to predict nature. 

In this chapter we will present analyses of differentiable functions through the study of their respective derivatives, that appear, explicitly or implicitly, throughout physics. 

16.2

NOTATION

Following the notation used in chapters 4-15, in this chapter (except for the “Examples” section towards the end of the chapter):

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 
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16.3

INCREASING FUNCTIONS

As discussed in 11.7.3, given a function “ f (x)” defined in a subset “S ”, we shall state that “ f (x) is an increasing function in S ”, if when considering two real numbers “x1” and “x2” in “S ” 

(x1 ∈ S ∧ x2 ∈ S), it follows that if “x1” is less than “x2” (x1 < x2) then the real number “ f (x1)” 

is less than “ f (x2)” [ f (x1) < f (x2)]. That is:

f (x) is an increasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x1) < f (x2) } . 

(16.1)

When considering a function “ f (x)” in its own domain, rather than stating “ f (x) is an increasing function in its own domain”, we shall more simply state “ f (x) is an increasing function”. In other words, when the subset “S ” being considered in an increasing function is not explicitly indicated, it is assumed that the subset is the domain of the function. That is: f (x) is an increasing function ⇐⇒

{ x1,x2 ∈ domain of f (x) :

x1 < x2 ⇐⇒ f (x1) < f (x2) } . 

(16.2)

Given a function “ f (x)” and a point “x = a”, we shall state that “ f (x) is an increasing function at point ‘a’ ”, if and only if there exists a neighborhood “SN” of “a” such that the function “ f (x)” is increasing in “SN”. That is:

f (x) is an increasing function at point “a” ⇐⇒

(S

∃

N is a neighborhood of “a” 

S

. 

(16.3)

N

f (x) is an increasing function in SN

Note that for a function “ f (x)” to be increasing at point “a”, the function must be defined in a neighborhood of point “a”. 

From the above definitions, it follows that:

a < b :

( n

o

)

a < c < b =⇒ f (x) is an increasing function at point “c” ⇐⇒

; 

(16.4)

f (x) is an increasing function in “(a, b)” 

{a < b ∧ f (x) is an increasing function in “(a,b)”} =⇒



maximum of f (x) in “(a, b)” does not exist  ; 

(16.5)

minimum of f (x) in “(a, b)” does not exist

{a < b ∧ f (x) is an increasing function in “(a,b]”} =⇒

{maximum of f (x) in “(a,b]” = f (b)} ; 

(16.6)

{a < b ∧ f (x) is an increasing function in “[a,b)”} =⇒

{minimum of f (x) in “[a,b)” = f (a)} . 

(16.7)
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From the properties of continuous functions in bounded closed intervals [eq. (11.50)], it also follows that:



a < b







f (x) is an increasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “(a, b ] ” 

{maximum of f (x) in “(a,b]” = f (b)} ; 

(16.8)



a < b







f (x) is an increasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “ [ a, b)” 

{minimum of f (x) in “[a,b)” = f (a)} . 

(16.9)

From the definition of the derivative [eq. (12.1)], it additionally follows that: f ′(c) > 0 =⇒ { f (x) is an increasing function at point “c” } ; (16.10)

in turn, from the last equation and equation (16.4), it also follows that:

{a < x < b =⇒ f ′(x) > 0} =⇒ { f (x) is an increasing function in “(a,b)”} . 

(16.11)

Note that, given an increasing differentiable function “ f (x)” in an open interval “(a, b)” (a < b), it does not necessarily follow that the derivative of “ f (x)” is positive in all points in “(a, b)”. For example, considering the function “ f (x) = x3 ”:

( f (x) = x3

; 

f (x) is an increasing differentiable function in “(−1, 1)” 

applying equation (12.33):

 f (x) = x3





f (x) is an increasing differentiable function in “(−1, 1)” 

; 



 f ′(x) = 3 x2

considering the point “x = 0” (zero):

 f (x) = x3





f (x) is an increasing differentiable function in “(−1, 1)” 

; 



 f ′(0) = 0 ∧ 0 ∈ (−1, 1)

thus:

 f (x) = x3





f (x) is an increasing differentiable function in “(−1, 1)” 

. 



¬ ( f ′(0) > 0) ∧ 0 ∈ (−1, 1)
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16.4

DECREASING FUNCTIONS

As discussed in 11.7.3, given a function “ f (x)” defined in a subset “S ”, we shall state that “ f (x) is a decreasing function in S ”, if when considering two real numbers “x1” and “x2” in “S ” 

(x1 ∈ S ∧ x2 ∈ S), it follows that if “x1” is less than “x2” (x1 < x2) then the real number “ f (x2)” 

is less than “ f (x1)” [ f (x2) < f (x1)]. That is:

f (x) is a decreasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x2) < f (x1) } . 

(16.12)

When considering a function “ f (x)” in its own domain, rather than stating “ f (x) is a decreasing function in its own domain”, we shall more simply state “ f (x) is a decreasing function”. In other words, when the subset “S ” being considered in a decreasing function is not explicitly indicated, it is assumed that the subset is the domain of the function. That is: f (x) is a decreasing function ⇐⇒

{ x1,x2 ∈ domain of f (x) :

x1 < x2 ⇐⇒ f (x2) < f (x1) } . 

(16.13)

Given a function “ f (x)” and a point “x = a”, we shall state that “ f (x) is a decreasing function at point ‘a’ ”, if and only if there exists a neighborhood “SN” of “a” such that the function “ f (x)” is decreasing in “SN”. That is:

f (x) is a decreasing function at point “a” ⇐⇒

(S

∃

N is a neighborhood of “a” 

S

. 

(16.14)

N

f (x) is a decreasing function in SN

Note that for a function “ f (x)” to be decreasing at point “a”, the function must be defined in a neighborhood of point “a”. 

From the above definitions, it follows that:

a < b :

( n

o

)

a < c < b =⇒ f (x) is a decreasing function at point “c” ⇐⇒

; 

(16.15)

f (x) is a decreasing function in “(a, b)” 

{a < b ∧ f (x) is a decreasing function in “(a,b)”} =⇒



maximum of f (x) in “(a, b)” does not exist  ; 

(16.16)

minimum of f (x) in “(a, b)” does not exist

{a < b ∧ f (x) is a decreasing function in “(a,b]”} =⇒

{minimum of f (x) in “(a,b]” = f (b)} ; 

(16.17)

{a < b ∧ f (x) is a decreasing function in “[a,b)”} =⇒

{maximum of f (x) in “[a,b)” = f (a)} . 

(16.18)
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From the properties of continuous functions in bounded closed intervals [eq. (11.50)], it also follows that:



a < b







f (x) is a decreasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “(a, b ] ” 

{minimum of f (x) in “(a,b]” = f (b)} ; 

(16.19)



a < b







f (x) is a decreasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “ [ a, b)” 

{maximum of f (x) in “[a,b)” = f (a)} . 

(16.20)

From the definition of the derivative [eq. (12.1)], it additionally follows that: f ′(c) < 0 =⇒ { f (x) is a decreasing function at point “c” } ; (16.21)

in turn, from the last equation and equation (16.15), it also follows that:

{a < x < b =⇒ f ′(x) < 0} =⇒ { f (x) is a decreasing function in “(a,b)”} . (16.22) Note that, given a decreasing differentiable function “ f (x)” in an open interval “(a, b)” (a < b), it does not necessarily follow that the derivative of “ f (x)” is negative in all points in “(a, b)”. 

16.5

MAXIMA AND MINIMA OF FUNCTIONS

In this section, we will extend the discussion of 11.7.2 and define “local maximum of a function at a point ‘a’ ” and “local minimum of a function at a point ‘a’ ” (rather than “maximum of a function in a set S ” and “minimum of a function in a set S ”). 

16.5.1

LOCAL MAXIMUM

Given a function “ f (x)” defined in a neighborhood of a point “x = a”, we shall state that “ f (x) has a local maximum at point ‘a’ ”, if there exists a neighborhood “SN” of “a” such that “ f (a)” is the maximum value of the function “ f (x)” in “SN”. That is:

f (x) has a local maximum at “a” ⇐⇒



S



∃

N is a neighborhood of “a” 

S

; 

(16.23)

N

maximum value of f (x) in SN = f (a)

the real number value “ f (a)” will be referred to as “a local maximum value of f (x)”, or more specifically “ f (a)” will be referred to as “the local maximum value of f (x) at ‘a’ ”. We shall also state that “ f (x) has a local maximum value at ‘x = a’ ” or more simply “ f (x) has a local maximum at ‘a’ ”. 

Note that:

• In order for a function “ f (x)” to have a local maximum at a point “a”, the function must be defined in a neighborhood of point “a”; 

• A given function “ f (x)” may or may not have a local maximum value; 

• If a given function “ f (x)” has a local maximum value, it may have more than one (unlike the maximum value of a function, in that if the maximum value of a function exists, it is unique). 
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Additionally note that if the maximum value of a function “ f (x)” exists, it may or may not be a local maximum value. For example, consider the function “ f (x)” such that: (domain of f (x) = [0,3]

; 

0 ≤ x ≤ 3 :

f (x) = 2 x + 1

it follows that:

domain of f (x) = [ 0, 3 ]







0 ≤ x ≤ 3 :

f (x) = 2 x + 1









maximum of f (x) = 7





f (x) has the maximum at “x = 3” 

. 





 f (x) is defined in a left-vicinity of “x = 3” 







 f (x) is not defined in a neighborhood of “x = 3” 







 f (x) does not have a local maximum at “x = 3” 

16.5.2

LOCAL MINIMUM

Given a function “ f (x)” defined in a neighborhood of a point “x = a”, we shall state that “ f (x) has a local minimum at point ‘a’ ”, if there exists a neighborhood “SN” of “a” such that “ f (a)” is the minimum value of the function “ f (x)” in “SN”. That is:

f (x) has a local minimum at “a” ⇐⇒



S



∃

N is a neighborhood of “a” 

S

; 

(16.24)

N

minimum value of f (x) in SN = f (a)

the real number value “ f (a)” will be referred to as “a local minimum value of f (x)”, or more specifically “ f (a)” will be referred to as “the local minimum value of f (x) at ‘a’ ”. We shall also state that “ f (x) has a local minimum value at ‘x = a’ ” or more simply “ f (x) has a local minimum at ‘a’ ”. 

Note that:

• In order for a function “ f (x)” to have a local minimum at a point “a”, the function must be defined in a neighborhood of point “a”; 

• A given function “ f (x)” may or may not have a local minimum value; 

• If a given function “ f (x)” has a local minimum value, it may have more than one (unlike the minimum value of a function, in that if the minimum value of a function exists, it is unique). 

Additionally note that if the minimum value of a function “ f (x)” exists, it may or may not be a local minimum value; given that having the minimum value of function “ f (x)” at a given point “x = a” 

does not imply that the function is defined in a neighborhood of “x = a”. 

16.6

FIRST ORDER DERIVATIVE

Given a differentiable function “ f (x)”, if the derivative of the function is positive “ f ′(x) > 0” in an open interval, then the function “ f (x)” will be increasing in the given open interval [eq. (16.11)]. In turn, given a differentiable function “ f (x)”, if the derivative of the function is negative “ f ′(x) < 0” in an open interval, then the function “ f (x)” will be decreasing in the given open interval [eq. (16.22)]. 
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It follows that, if a differentiable function “ f (x)” has a local maximum at a given point

“x = a”, since the derivative of the function “ f (x)” at “x = a” can be neither positive nor negative, the derivative of the function “ f (x)” at “x = a” must be “0” (zero). That is: f (x) is a differentiable function



=⇒ f ′(a) = 0 . 

(16.25)

f (x) has a local maximum at “x = a” 

Equivalently, it also follows that, if a differentiable function “ f (x)” has a local minimum at a given point “x = a”, since the derivative of the function “ f (x)” at “x = a” can be neither positive nor negative, the derivative of the function “ f (x)” at “x = a” must be “0” (zero). That is: f (x) is a differentiable function



=⇒ f ′(a) = 0 . 

(16.26)

f (x) has a local minimum at “x = a” 

Note that, given a differentiable function “ f (x)”, such that the derivative of the function is zero at a point “x = a” [ f ′(a) = 0 ], it does not necessarily follow that the “ f (x)” has either a local maximum or a local minimum at “x = a”. For example, considering again the function “ f (x) = x3 ”: ( f (x) = x3

; 

f (x) is an increasing differentiable function

applying equation (12.33):

 f (x) = x3





f (x) is an increasing differentiable function

; 



 f ′(x) = 3 x2

considering the point “x = 0” (zero):

 f (x) = x3





f (x) is an increasing differentiable function

; 



 f ′(0) = 0

thus:

 f (x) = x3









 f (x) is an increasing differentiable function





f ′(0) = 0

. 





 f (x) does not have a local maximum at “x = 0” 







 f (x) does not have a local minimum at “x = 0” 

16.7

SECOND ORDER DERIVATIVE

Given a differentiable function “ f (x)”, that is also second order differentiable [i.e., f ′′(x) exists], if the second order derivative of the function is positive in an open interval ( f ′′(x) > 0), then the derivative of the function “ f ′(x)” (the “slope”) will be increasing in the given open interval [eq. (16.11)]. 

In turn, given a differentiable function “ f (x)”, that is also second order differentiable (i.e., f ′′(x) exists), if the second order derivative of the function is negative in an open interval ( f ′′(x) < 0), then the derivative of the function “ f ′(x)” (the “slope”) will be decreasing in the given open interval

[eq. (16.22)]. 
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Note that given a function “ f (x)” whose derivative function “ f ′(x)” increases in a given open interval, it does not imply that the absolute value of the derivative is increasing “in size”, but rather that the value of the derivative function is “moving” towards the right of the number line (see 2.5.5; 

i.e., “becoming less negative” or “becoming more positive”). 

Equivalently, given a function “ f (x)” whose derivative function “ f ′(x)” decreases in a given open interval, it does not imply that the absolute value of the derivative is decreasing “in size”, but rather that the value of the derivative function is “moving” towards the left of the number line (see

2.5.5; i.e., “becoming more negative” or “becoming less positive”). 

We will now prove that given a differentiable function, that is also second order differentiable

[i.e., f ′′(x) exists], if at a given point “x = a” the derivative of the function is zero [ f ′(a) = 0 ] and the second order derivative of the function is positive [ f ′′(a) > 0 ], then the function “ f (x)” has a local minimum at “x = a”. That is:



f ′(a) = 0  =⇒ f(x) has a local minimum at “x = a” . 

(16.27)

f ′′(a) > 0

Proof:

• Case: f ′(a) = 0 ∧ f ′′(a) > 0



f ′′(x)

> 0 ; 

x=a



[ f ′(x) ] ′

> 0

[eq. (13.15)] ; 

x=a

f ′(x) is an increasing function at “x = a” 

[eq. (16.10)] ; 

(S

∃

N is a neighborhood of “a” 

S

[eq. (16.3)] ; 

N

f ′(x) is an increasing function in SN

S



N is a region



∃S

a ∈ S

[eq. (6.12)] ; 

N

N



 f ′(x) is an increasing function in SN

S



N is an open interval



∃S

a ∈ S

[eq. (6.11)] ; 

N

N



 f ′(x) is an increasing function in SN

(a

∃

L < a < aR

a

; 

L,aR

f ′(x) is an increasing function in “(aL, aR)” 

(aL < a < aR

; 

f ′(x) is an increasing function in “(aL, aR)” 
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a



L < a < aR



f ′(x) exists in “(aL, aR)” 

; 



 f ′(x) is an increasing function in “(aL, aR)” 

a



L < a < aR



f (x) is a continuous function in “(aL, aR)” 

[eq. (12.18)] ; 



 f ′(x) is an increasing function in “(aL, aR)” 

aL < a < aR







 f (x) is a continuous function in “(aL, aR)” 

[eq. (16.1)] ; 

a



L < x < a =⇒ f ′(x) < f ′(a)





a < x < aR =⇒ f ′(a) < f ′(x)

aL < a < aR







 f (x) is a continuous function in “(aL, aR)” 

; 

a



L < x < a =⇒ f ′(x) < 0





a < x < aR =⇒ 0 < f ′(x)

aL < a < aR







 f (x) is a continuous function in “(aL, aR)” 

[eq. (2.112)] ; 

a



L < x < a =⇒ f ′(x) < 0





a < x < aR =⇒ f ′(x) > 0

aL < a < aR







 f (x) is a continuous function in “(aL, aR)” 

[eq. (16.22)] ; 

f (x) is a decreasing function in “(a



L, a)” 





a < x < aR =⇒ f ′(x) > 0

aL < a < aR







 f (x) is a continuous function in “(aL, aR)” 

[eq. (16.11)] ; 

f (x) is a decreasing function in “(a



L, a)” 





 f (x) is an increasing function in “(a, aR)” 

aL < a < aR







 f (x) is a continuous function in “(aL, aR)” 

[eq. (16.19)] ; 

minimum of f (x) in “(a



L, a ] ” = f (a)





 f (x) is an increasing function in “(a, aR)” 
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aL < a < aR







 f (x) is a continuous function in “(aL, aR)” 

[eq. (16.9)] ; 

minimum of f (x) in “(a



L, a ] ” = f (a)





minimum of f (x) is in “ [ a, aR)” = f (a)

(aL < a < aR

; 

minimum of f (x) in “(aL, aR)” = f (a)

taking: SN2 = (aL, aR)

S



N2 is an open interval



∃S

a ∈ S

; 

N2

N2



minimum of f (x) in SN2 = f (a)

S



N2 is a region



∃S

a ∈ S

[eq. (6.11)] ; 

N2

N2



minimum of f (x) in SN2 = f (a)

(S

∃

N2 is a neighborhood of “a” 

S

[eq. (6.12)] ; 

N2

minimum of f (x) in SN2 = f (a)

f (x) has a local minimum at “x = a” 

[eq. (16.24)] . 

In a similar manner as we proved equation (16.27), we can additionally prove that given a differentiable function, that is also second order differentiable [i.e., f ′′(x) exists], if at a given point

“x = a” the derivative of the function is zero [ f ′(a) = 0 ] and the second order derivative of the function is negative [ f ′′(a) < 0 ], then the function “ f (x)” has a local maximum at “x = a”. That is: f ′(a) = 0  =⇒ f(x) has a local maximum at “x = a” . 

(16.28)

f ′′(a) < 0

16.8

EXAMPLES

The analysis of differentiable functions, including analysis through the study of their derivatives, appear throughout physics. In this section we will revisit the case of blackbody radiation discussed in 9.7 and 14.9. 

Once again, by “blackbody radiation” we mean mean the specific intensity emitted by a blackbody that is in thermal equilibrium (at a given absolute temperature T ). The “specific intensity” can be described “per unit frequency” (as we did in 9.7 and 14.9), or it can also be described “per unit wavelength” (as we did in 14.9). 

[image: Image 2876]

[image: Image 2877]

[image: Image 2878]

[image: Image 2879]
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By “specific intensity per unit frequency”, we mean the radiative energy traveling in a given direction per area per time per frequency per solid angle. In turn, by “specific intensity per unit wavelength”, we mean the radiative energy traveling in a given direction per area per time per wavelength per solid angle. 

As discussed in 14.9, the blackbody radiation per unit wavelength “Bλ ” is given by: 2hc2/λ 5

Bλ =

; 

(16.29)

hc

e λkT − 1

where “h” is Planck’s constant, “c” is the speed of light, “λ ” is the wavelength, “k” is Boltzmann’s constant, and “T ” is the absolute temperature. Note that on the right side of the last equation there are only two variables: wavelength “λ ” and absolute temperature “T ”. Therefore, for a given absolute temperature “T ”, equation (16.29) allows us to calculate the specific intensity per unit wavelength for any given wavelength. 

As also discussed in 14.9, given that:

•

lim Bλ = 0 ; 

λ →0+

•

lim Bλ = 0 ; 

λ →+∞

• Bλ is a continuous function with respect to wavelength “λ ”; 

• λ > 0 :

Bλ > 0 ; 

it follows that the blackbody radiation per unit wavelength “Bλ ” reaches a maximum value at, at least one wavelength, “λ = λmax” (λmax > 0). 

Now, for a given absolute temperature “T ”, aiming now to find the wavelength(s) “λmax” where the blackbody radiation per unit wavelength reaches a maximum value, from equation (16.25), it follows that:

dB



λ 



= 0 . 

dλ λ=λmax

As additionally discussed in 14.9, applying properties of derivatives, one finds that the last equation reduces to:

5( 1 − e−x )− x = 0





; 

(16.30)



x =

hc

λmaxkT

where “x” is a positive real number. Therefore, determining the wavelength(s) “λmax” reduces to finding the positive solution(s) to the last top-equation (16.30). Once the positive solution(s) “xsol” 

(xsol > 0) are found, they can be substituted in the last bottom-equation (16.30) to obtain the wavelength(s) “λmax”. Aiming to solve equation (16.30), we can define the function “ f (x)”: f (x) ≡ 5 1 − e−x  − x ; 

(16.31)

and thus we are lead to solve the equation:

 f (x) = 5( 1 − e−x ) − x





. 

(16.32)



 f (x) = 0 ∧ x > 0
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In turn, aiming to solve equation (16.32), and evaluating the function “ f (x)” at “x = 0” (zero), we have that recalling equation (16.31):

f (0) = 5 1 − e−0  − 0 ; 

applying equation (2.54):

f (0) = 5 1 − e−0  + (−0) ; 

thus:

f (0) = 5 1 − e0  + 0 ; 

applying equation (2.45):

f (0) = 5 1 − e0  ; 

applying equation (3.58):

f (0) = 5 (1 − 1) ; 

therefore:

f (0) = 5 · 0 ; 

thus:

f (0) = 0 . 

(16.33)

Note that, although it holds that “ f (0) = 0”, “x = 0” (zero) is not a solution of equation (16.32), because zero is not a positive number. 

Working towards solving equation (16.32), and evaluating the derivative “ f ′(x)”, we have that recalling again equation (16.31):

f ′(x) =  5 1 − e−x  − x  ′ ; 

applying equation (12.30):

f ′(x) =  5 1 − e−x   ′ − [x] ′ ; 

applying equation (12.22):

f ′(x) =  5 1 − e−x   ′ − 1 ; 

applying equation (12.23):

f ′(x) = 5  1 − e−x  ′ − 1 ; 

applying equation (12.30):

f ′(x) = 5 [1] ′ −  e−x  ′  − 1 ; 

applying equation (12.21):

f ′(x) = 5 0 −  e−x  ′  − 1 ; 
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applying equations (2.43) and (2.54):

f ′(x) = 5 −  e−x  ′ + 0  − 1 ; 

applying equation (2.45):

f ′(x) = 5 −  e−x  ′  − 1 ; 

applying equations (12.42) and (14.3):

f ′(x) = 5 − e−x [ −x ] ′  − 1 ; 

applying equation (12.26):

f ′(x) = 5 − e−x (− [x] ′ )  − 1 ; 

applying equation (12.22):

f ′(x) = 5 − e−x (−1)  − 1 ; 

applying equations (2.61) and (2.62):

f ′(x) = 5 e−x · 1 − 1 ; 

applying equations (2.56) and (2.59):

f ′(x) = 5 e−x − 1 ; 

(16.34)

evaluating the derivative “ f ′(x)” at “x = 0” (zero):

f ′(0) = 5 e−0 − 1 ; 

thus:

f ′(0) = 5 e0 − 1 ; 

applying equation (3.58):

f ′(0) = 5 · 1 − 1 ; 

therefore:

f ′(0) = 5 − 1 ; 

thus:

f ′(0) = 4 ; 

therefore:

f ′(0) > 0 ; 

(16.35)

applying equation (16.10):

f (x) is an increasing function at point “x = 0” ; 

[image: Image 2880]
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applying equation (16.3):



x



∃

a < 0 < xb

x

; 

a ,xb

f (x) is an increasing function in “(xa, xb)” 

applying equation (16.1):



x



∃

a < 0 < xb

x

; 

a ,xb

0 < x < xb =⇒ f (0) < f (x)

thus:

∃x {0 < x < x

b

b =⇒ f (0) < f (x) } ; 

applying equation (16.33):

∃x {0 < x < x

b

b =⇒ 0 < f (x) } ; 

applying equation (2.112):

∃x {0 < x < x

b

b =⇒ f (x) > 0 } ; 

therefore:



S



∃

V + is a right-vicinity of “x = 0” 

S

. 

(16.36)

V +

x ∈ SV+ =⇒ f (x) is positive

Continuing to work towards solving equation (16.32), and aiming to evaluate the limit

“ lim f (x)”, we have that applying equation (9.61):

x→+∞

lim ex is +∞ ; 

x→+∞

applying equation (9.69):

lim ex is ∞ ; 

x→+∞

applying equation (9.32):

1

lim

= 0 ; 

x→+∞ ex

applying equation (3.62):

lim e−x = 0 ; 

x→+∞

thus:

1 − lim e−x = 1 − 0 ; 

x→+∞

therefore:

1 − lim e−x = 1 ; 

x→+∞

applying equation (8.4):









lim 1 −

lim e−x

= 1 ; 

x→+∞

x→+∞
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applying equation (8.7):

lim  1 − e−x  = 1 ; 

x→+∞

thus:

5 lim  1 − e−x  = 5 · 1 ; 

x→+∞

therefore:

5 lim  1 − e−x  = 5 ; 

x→+∞

applying equation (8.4):







lim 5

lim  1 − e−x 

= 5 ; 

x→+∞

x→+∞

applying equation (8.8):

lim  5 1 − e−x   = 5 ; 

x→+∞

applying equation (9.68):

 lim [ 5( 1 − e−x ) ] = 5



x→+∞



; 





 lim

x is +∞

x→+∞

applying equation (9.72):

 lim [ 5( 1 − e−x ) ] = 5



x→+∞



; 





 lim [ −x ] is −∞

x→+∞

applying equation (9.50):

lim [ −x + 5 ( 1 − e−x ) ] is −∞ ; 

x→+∞

applying equations (2.43) and (2.54):

lim [ 5 ( 1 − e−x ) − x ] is −∞ ; 

x→+∞

recalling equation (16.31):

lim f (x) is −∞ ; 

x→+∞

recalling equations (16.33) and (16.36):

 f (0) = 0

















(

)





S

∃

V + is a right-vicinity of “x = 0” 

S

. 

(16.37)

V +

x ∈ S



V + =⇒ f (x) is positive

















 lim

f (x) is −∞

x→+∞
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From the last equation, it follows that the value of the function “ f (x)” at “x = 0” is “0” [ f (x) = 0 ], as we consider positive values of “x” to the right of zero, initially the values of the function “ f (x)” 

will be positive [x ∈ SV+ =⇒ f (x) is positive], and after a certain positive value of “x” the values of the function “ f (x)” will become and remain negative [ lim f (x) is −∞ ]. 

x→+∞

In turn, since the function “ f (x)” is continuous, it also follows that there must exist at least one positive value of “x = xsol” where the value of the function is zero [ xsol > 0 ∧ f (xsol) = 0; i.e., where the function goes from positive values to negative values, see eq. (11.51)]. That is, equation (16.32) has at least one solution; consistent with the blackbody radiation per unit wavelength “Bλ ” reaching a maximum value at, at least one wavelength, “λ = λmax”. 

Aiming towards determining the value(s) of “xsol” [ xsol > 0 ∧ f (xsol) = 0 ], and evaluating the second order derivative “ f ′′(x)”, we have that recalling equation (16.34), and applying equation (13.15):

f ′′(x) =  5 e−x − 1  ′ ; 

applying equation (12.30):

f ′′(x) =  5 e−x  ′ − [ 1 ] ′ ; 

applying equation (12.21):

f ′′(x) =  5 e−x  ′ − 0 ; 

applying equations (2.45) and (2.54):

f ′′(x) =  5 e−x  ′ ; 

applying equation (12.23):

f ′′(x) = 5  e−x  ′ ; 

applying equations (12.42) and (14.3):

f ′′(x) = 5 e−x [ −x ] ′ ; 

applying equation (12.26):

f ′′(x) = 5 e−x ( − [x] ′ ) ; 

applying equation (12.22):

f ′′(x) = 5 e−x (−1) ; 

applying equations (2.56) and (2.65):

f ′′(x) = − 5 e−x ; 

thus:

f ′′(x) < 0 ; 

(16.38)

applying equation (13.15):

[ f ′(x) ] ′ < 0 ; 

applying equation (16.22):

f ′(x) is a decreasing function ; 
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recalling equations (16.35), (16.37), and (16.38):

 f (0) = 0



















 lim

f (x) is −∞



x→+∞











f ′(0) > 0

. 















 f ′(x) is a decreasing function

















 f ′′(x) < 0

Therefore, since:

• The derivative function is initially positive at “x = 0” [ f ′(0) > 0]; 

• The derivative function is a decreasing function; 

• The derivative function must become negative at some point after “x = 0” (in order for the values of the function to go from zero at “x = 0” [ f (0) = 0 ] to arbitrarily negative values when “x” goes towards plus infinity [ lim f (x) is −∞] ); 

x→+∞

it follows that:

• The function “ f (x)” will be an increasing function [positive derivative; see eq. (16.11)] from

“x = 0” (zero) up to a given positive value of “x = xmax” when the value of the derivative function becomes zero [ f ′(xmax) = 0 ; as the derivative function is decreasing]; 

• The value of the function “ f (x)” at “x = xmax” will be a local maximum [eq. (16.28)], and also, in this case, the maximum of the function “ f (x)”. 

That is, recalling the last equation:

 f (0) = 0 ∧ f ′(0) > 0

















 lim f (x) is −∞



x

 →+∞















0 < x



max

















 f (x) is an increasing function in “(0, xmax)” 



. 

(16.39)





0 < x ≤ x



max =⇒ f (x) > 0

















 f (xmax) > 0 ∧ f ′(xmax) = 0

















maximum of f (x) = f (x



max)















 f ′(x) is a decreasing function
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Now, since:

• The derivative function is zero at “x = xmax” [ f ′(xmax) = 0]; 

• The derivative is a decreasing function; 

it follows that:

xmax < x =⇒ f ′(x) < 0 ; 

applying equation (16.22):

f (x) is a decreasing function in “(xmax, +∞)” ; 

recalling equation (16.39):

 f (0) = 0 ∧ lim f (x) is −∞





x→+∞















0 < x



max

















 f (xmax) > 0 ∧ f ′(xmax) = 0













f (x) is an increasing function in “(0, x

. 

max)” 















 f (x) is a decreasing function in “(x



max, +∞)” 

















0 < x ≤ xmax =⇒ f (x) > 0















maximum of f (x) = f (xmax)

Now, since:

• The function “ f (x)” at “x = xmax” is positive [ f (xmax) > 0]; 

• “ f (x)” is a decreasing function in “(xmax,+∞)”; 

• The values of the function goes to arbitrarily negative values when “x” goes towards plus infinity [ lim f (x) is −∞] ); 

x→+∞

• “ f (x)” is a continuous function; 

applying equation (11.51), it follows that:

• The value of the function “ f (x)” must be equal to zero at a given value “x = xsol” 

[ f (xsol) = 0 ]; 

• Where “xsol” is a positive number greater than “xmax” (xmax < xsol); 

• The value of the function “ f (x)” is positive in “[xmax,xsol)”; 

• The value of the function “ f (x)” is negative in “(xsol,+∞)”; 

[image: Image 2881]
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recalling the last equation:

 f (0) = 0 ∧ lim f (x) is −∞





x→+∞















0 < x



max < xsol

















 f (xmax ) > 0 ∧

f ′(xmax) = 0













f (x) is a decreasing function in “(x

. 

(16.40)

max, +∞)” 















0 < x < x



sol =⇒ f (x) > 0

















 f (xsol ) = 0















xsol < x =⇒ f (x) < 0

From equation (16.40), note that, with the exception of “x = xsol”, for all other positive values of “x”, the function “ f (x)” returns either a positive value or a negative value (i.e., a nonzero value). 

Thus the value of “xsol”, as a positive solution for the equation “ f (x) = 0” [eq. (16.32)], is unique. 

That is, there exists one, and only one, solution for equation (16.32). It therefore follows that, for a given absolute temperature “T ” there exists one, and only one, maximum for the blackbody radiation per unit wavelength “Bλ ” (i.e., for a given absolute temperature T , λmax exists and is unique). 

Aiming towards constraining the value of “xsol”, and considering the condition “xmax < xsol” 

[eq. (16.40)], we will proceed towards determining value of “xmax” by solving for the condition [see again eq. (16.40)]:

f ′(xmax) = 0 ; 

thus:



f ′(x)

= 0 ; 

x=xmax

substituting equation (16.34):



5 e−x − 1 

= 0 ; 

x=xmax

therefore:

5 e−xmax − 1 = 0 ; 

applying equation (2.47):

5 e−xmax = 0 + 1 ; 

thus:

5 e−xmax = 1 ; 

applying equations (2.56) and (2.66):

1

e−xmax =

; 

5
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therefore:

1 

ln e−xmax  = ln

; 

5

applying equation (3.79):

1 

−xmax = ln

; 

5

applying equation (3.83):

−xmax = −ln(5) ; 

applying equation (2.50):

xmax = ln(5)

(xmax ≈ 1.609438) ; 

(16.41)

applying equation (16.40):

ln(5) < xsol

(1.609437 < xsol) . 

Aiming to further constrain the value of “xsol”, and noting that the function “ f (x)” is decreasing in “(ln(5), +∞)” [eqs. (16.40) and (16.41)], we can evaluate the function “ f (x)” [eq. (16.31)] for different values of “x”, as indicated in the following table:

x

estimated x

f (x)

estimated f (x)

ln(5)

≈ 1.609438

4 − ln(5)

≈ 2.390562

2

—–

3 − 5e−2

≈ 2.323324

3

—–

2 − 5e−3

≈ 1.751065

4

—–

1 − 5e−4

≈ 0.9084218

5

—–

−5e−5

≈ −0.033689735

Noting again that the function “ f (x)” is decreasing in “(ln(5), +∞)”, it follows that:

 f (x



sol ) = 0



. 



4 < xsol < 5

Repeating systematically the steps taken to obtain the results of the previous table, one finds that: x

estimated f (x)

4.965114

≈ 2.236597 × 10−7

4.965115

≈ −7.414545 × 10−7

[image: Image 2897]
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Therefore:

 f (x



sol ) = 0



; 

(16.42)



4.965114 < xsol < 4.965115

thus one can state:

xsol ≈ 4.965114 ; 

(16.43)

repeating the process, one can obtain an estimate of “xsol” with an arbitrary accuracy. 

Recalling equation (16.42):

f (xsol) = 0 ; 

substituting equation (16.31):

5 1 − e−xsol  − xsol = 0 ; 

applying equation (16.30):

hc

xsol =

; 

λmaxkT


as discussed in 14.9, from the last equation it follows that:

hc

λmaxT =

; 

(16.44)

xsolk

noting, again, that the right side of the last equation is constant, we can define (as we did in 14.9): hc

b ≡

; 

(16.45)

xsolk

where “b” is a constant. 

Substituting in equation (16.44):

λmax T = b . 

(16.46)

As discussed in 14.9, this last equation is known as “Wien’s displacement law” and the constant

“b” is known as “Wien’s displacement constant”. Having in this section determined the value of

“xsol” [eq. (16.43)], we can now calculate the value of Wien’s displacement constant “b” through equation (16.45). In turn, with the value of “b” calculated, we can apply Wien’s displacement law

[eq. (16.46)] to calculate the wavelength “λmax” (wavelength where the blackbody radiation per unit wavelength reaches a maximum value) for any given absolute temperature “T ”. 

As discussed in this section, the analysis of differentiable functions, and in particular the analysis through the study of their derivatives, played an important role in the determination of “xsol”, that in turn is key for the calculation of Wien’s displacement constant, a fundamental constant in physics. 

Thus, the analysis of differentiable functions in general, and the analysis through the study of their derivatives in particular, are key mathematical objects in physics. 
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Appendix A - Initial Review

INTRODUCTION

In this appendix we present some general properties of natural numbers, integers, rational numbers, real numbers, exponentiation, and logarithms. 

NOTES ON NOTATION

In this Appendix, we note that:

• Lowercase letters “a”, “b”, “c”, ... will be used to denote natural numbers (except for the lowercase letter “e”); 

• Uppercase letter “N ” and uppercase letter “N ” with index “N1”, “N2’, ... will also be used to denote natural numbers; 

• Uppercase letter “D” and uppercase letter “D” with index “D1”, “D2”, ... will be used to denote nonzero natural numbers; 

• Uppercase letter “Z ” and uppercase letter “Z ” with index “Z1”, “Z2”, ... will be used to denote integers; 

• Uppercase letter “Q” and uppercase letter “Q” with index “Q1”, “Q2”, ... will be used to denote rational numbers; 

• Greek letter “β ” or “β (n)”; and Greek letter “β ” with index “β1”, “β2”, ..., or “β1(n)”, 

“β2(n)”, ... ; are used to denote rational number sequences; 

• Greek letter “α” or “α(n)”; and Greek letter “α” with index “α1”, “α2”, ..., or “α1(n)”, 

“α2(n)”, ... ; are used to denote convergent rational number sequences; 

• Uppercase letter “R” and uppercase letter “R” with index “R1”, “R2”, ... are used to denote real numbers; 

• Uppercase letter “I ” and uppercase letter “I ” with index “I1”, “I2”, ... are used to denote irrational numbers (non-fractional real numbers); 

• Greek letter “θ ” or “θ (n)”; and Greek letter “θ ” with index “θ1”, “θ2”, ..., or “θ1(n)”, 

“θ2(n)”, ... ; are used to denote real number sequences. 

PROPERTIES OF NUMBERS

PROPERTIES OF NATURAL NUMBERS

= { 0,1,2,3,4,... }

[eq. (1.1)]

N

1 = { 1, 2, 3, 4, ... }

[eq. (1.2)]

N

a − b = c ⇐⇒ a = c + b

[eq. (1.3)]

0 · b = 0

[eq. (1.4)]

1 · b = b

[eq. (1.5)]
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a , 0  :

a b = b + b + a times

a , 1

⌢

+ b

[eq. (1.6)]

b , 0 :

a/b = c ⇐⇒ a = c b

[eq. (1.7)]

a > b ⇐⇒ b < a

[eq. (1.8)]

PROPERTIES OF INTEGERS

Z = [ (m, n) ]

(m, n) ∼ (p,q) ⇐⇒ m + q = p + n

[eq. (2.1)]

[ (m, n) ] = [ (m + k, n + k) ]

[eq. (2.2)]

= {..., [(2,0)], [(1,0)], [(0,0)], [(0,1)], [(0,2)], ...}

[eq. (2.3)]

Z

− = { ..., [(3,0)], [(2,0)], [(1,0)] }

[eq. (2.4)]

Z

+ = { [(0,1)], [(0,2)], [(0,3)], ... }

[eq. (2.5)]

Z

∗ = { [(0,0)], [(0,1)], [(0,2)], [(0,3)], ... }

[eq. (2.6)]

Z

= { ..., −3, −2, −1, ∅, +1, +2, +3, ... }

[eq. (2.7)]

Z

aR f [ (0, b) ] ⇐⇒ a = b

[eq. (2.8)]

Z

[ (0, a) ] = fZ(a)

[eq. (2.9)]

a = f −1( [ (0, a) ] )

[eq. (2.10)]

Z

[ (m, n) ] + [ (p, q) ] = [ (m + p, n + q) ]

[eq. (2.11)]

Z1 − Z2 = Z3 ⇐⇒ Z1 = Z3 + Z2

[eq. (2.12)]

−[(m,n)] = [(n,m)]

[eq. (2.13)]

+ Z = Z

[eq. (2.14)]
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[ (m, n) ] = ( ⊖ fZ(m) ) ⊕ fZ(n)

[eq. (2.15)]

[ (m, n) ] [ (p, q) ] = [ (m q + p n, m p + n q) ]

[eq. (2.16)]

Z2 , 0 :

Z1/Z2 = Z3 ⇐⇒ Z1 = Z3 Z2

[eq. (2.17)]

[ (m, n) ] < [ (p, q) ] ⇐⇒ p + n < m + q

[eq. (2.18)]

Z1 > Z2 ⇐⇒ Z2 < Z1

[eq. (2.19)]

PROPERTIES OF RATIONAL NUMBERS

Q = [ (Z, D ) ]

(Z1, D1) ∼ (Z2,D2) ⇐⇒ Z1D2 = Z2D1

[eq. (2.20)]

a , 0 :

[ (Z, D ) ] = [ (aZ, aD ) ]

[eq. (2.21)]

∗ = {..., [(−2,1)], [(−1,1)], [(0,1)], [(+1,1)], [(+2,1)], ...}

Q

[eq. (2.22)]

Z1R f [ (Z

Q

2, 1) ] ⇐⇒ Z1 = Z2

[eq. (2.23)]

[ (Z, 1) ] = fQ(Z)

[eq. (2.24)]

Z = f −1( [ (Z, 1) ] )

[eq. (2.25)]

Q

[ (Z1, D1)] + [ (Z2, D2)] = [ (Z1D2 + Z2D1, D1D2)]

[eq. (2.26)]

Q1 − Q2 = Q3 ⇐⇒ Q1 = Q3 + Q2

[eq. (2.27)]

−[(Z1,D1)] = [(−Z1,D1)]

[eq. (2.28)]

+ Q = Q

[eq. (2.29)]

[ (Z1, D )] + [ (Z2, D )] = [ (Z1 + Z2, D )]

[eq. (2.30)]

[ (Z1, D1)] [ (Z2, D2)] = [ (Z1Z2, D1D2)]

[eq. (2.31)]
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Q2 , 0 :

Q1/Q2 = Q3 ⇐⇒ Q1 = Q3 Q2

[eq. (2.32)]

a , 0 :

[ (−a,D)]−1 = [(−D,a)]

[eq. (2.33)]

a , 0 :

[ (+a, D ) ]−1 = [ (+D, a) ]

[eq. (2.34)]

[ (Z1, D1)] < [ (Z2, D2)] ⇐⇒ Z1D2 < Z2D1

[eq. (2.35)]

Q1 > Q2 ⇐⇒ Q2 < Q1

[eq. (2.36)]

PROPERTIES OF REAL NUMBERS

R = [α(n)]

β (n) is convergent ⇐⇒



n > N =⇒ Q



∀

A ≤ β (n) ≤ QB

Q

[eq. (2.37)]

ε >0 ∃N,Q

∀

A ,QB

n

QB − QA < Qε

α1(n) ∼ α2(n) ⇐⇒

{∀Qε>0 ∃N ∀n n > N =⇒ |α1(n) − α2(n)| < Qε}

[eq. (2.38)]

Q1R f [Q

R

2] ⇐⇒ Q1 = Q2

[eq. (2.39)]

[Q ] = fR(Q)

[eq. (2.40)]

Q = f −1( [Q ] )

[eq. (2.41)]

R

[α1(n)] + [α2(n)] = [α1(n) + α2(n)]

[eq. (2.42)]

R1 + R2 = R2 + R1

[eq. (2.43)]

(R1 + R2) + R3 = R1 + (R2 + R3)

[eq. (2.44)]

R + 0 = R

[eq. (2.45)]

R1 = R2 ⇐⇒ R1 + R3 = R2 + R3

[eq. (2.46)]

R1 − R2 = R3 ⇐⇒ R1 = R3 + R2

[eq. (2.47)]
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−[α1(n)] = [−α1(n)]

[eq. (2.48)]

+ R = R

[eq. (2.49)]

R1 = R2 ⇐⇒ − R1 = − R2

[eq. (2.50)]

−(−R) = R

[eq. (2.51)]

−(R1 + R2) = (−R1) + (−R2)

[eq. (2.52)]

R + (− R ) = 0

[eq. (2.53)]

R1 − R2 = R1 + (− R2)

[eq. (2.54)]

[α1(n)] [α2(n)] = [α1(n)α2(n)]

[eq. (2.55)]

R1R2 = R2R1

[eq. (2.56)]

(R1R2)R3 = R1(R2R3)

[eq. (2.57)]

0 · R = 0

[eq. (2.58)]

1 · R = R

[eq. (2.59)]



a , 0  :

a · R = R + R + a times

a , 1

⌢

+ R

[eq. (2.60)]

(−R1)R2 = −(R1R2)

[eq. (2.61)]

(−R1)(−R2) = R1R2

[eq. (2.62)]

R3 , 0 :

R1 = R2 ⇐⇒ R3R1 = R3R2

[eq. (2.63)]

R1 (R2 + R3) = R1R2 + R1R3

[eq. (2.64)]

−R = (−1)R

[eq. (2.65)]

R2 , 0 :

R1/R2 = R3 ⇐⇒ R1 = R3R2

[eq. (2.66)]
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

[α



1(n)] , ∅





α1(n) = 0 =⇒ α2(n) = 0

=⇒ [α1(n)]−1 = [α2(n)]

[eq. (2.67)]



α



1(n) , 0 =⇒ α2(n) = α −1(n)

1

R , 0 :

(R−1)−1 = R

[eq. (2.68)]



R



1 , 0

:

R

= R−1

[eq. (2.69)]

R

1 = R2 ⇐⇒ R −1

1

2

2 , 0

1−1 = 1

[eq. (2.70)]

R , 0 :

R R−1 = 1

[eq. (2.71)]

R2 , 0 :

R1/R2 = R1R−1

[eq. (2.72)]

2

1

R , 0 :

R−1 =

[eq. (2.73)]

R



R



1 , 0

:

(R

R−1

[eq. (2.74)]

R

1R2)−1 = R −1

1

2

2 , 0



R









2 , 0

R1

R3

R1R3

:

=

[eq. (2.75)]

R4 , 0

R2

R4

R2R4



R





−1

1 , 0

R1

R2

:

=

[eq. (2.76)]

R2 , 0

R2

R1

PROPERTIES OF THE INTEGER NUMBER EXPONENTIATION

R , 0 :

R0 =

[eq. (2.77)]

1

R1 = R

[eq. (2.78)]



n , 0  :

Rn = R R n times

n , 1

⌢

R

[eq. (2.79)]



R , 0  :

R−n = 1

[eq. (2.80)]

n , 0

Rn

Note that:

“ 00 ” is not defined; 

“ 0−n ” (with n , 0) is not defined. 
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n , 0 :

0n = 0

[eq. (2.81)]

1Z = 1

[eq. (2.82)]



n , 0



:

(−R)n = Rn

[eq. (2.83)]

n is even

n is odd :

(−R)n = −Rn

[eq. (2.84)]



m , 0  :

Rm Rn = Rm+n

[eq. (2.85)]

n , 0



m , 0  :

(Rm)n = Rmn

[eq. (2.86)]

n , 0

n , 0 :

(R1 R2)n = Rn1 Rn2

[eq. (2.87)]

R , 0 :

RZ1 RZ2 = RZ1+Z2

[eq. (2.88)]

1

R , 0 :

R−Z =

[eq. (2.89)]

RZ

R , 0 :

(RZ1)Z2 = RZ1Z2

[eq. (2.90)]



R



1 , 0

:

(R

R

1R2)Z = R Z

1 R Z

2

[eq. (2.91)]

2 , 0

1 Z

1

R , 0 :

=

[eq. (2.92)]

R

RZ



R





Z

1 , 0

R1

RZ

:

= 1

[eq. (2.93)]

R2 , 0

R2

RZ

2

PROPERTIES OF ROOT OF ORDER N



n , 0



√

n

:

R

n is even

1 = R2 ⇐⇒ (R1 = R n

2 ) ∧ (R2 ≥ 0)

[eq. (2.94)]



n , 0



√

n

:

R

n is odd

1 = R2 ⇐⇒ R1 = R n

2

[eq. (2.95)]

√

1 R = R

[eq. (2.96)]
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

n



, 0





√

n

n

n is even

:

R

= R

[eq. (2.97)]



R ≥ 0



√

n

n

n is odd :

R

= R

[eq. (2.98)]



n



, 0





√

√

n

n

m

n is even

:

Rm =

R

[eq. (2.99)]



R > 0





n



, 0











n is even 

√

√

n

n

m

:

Rm =

R

[eq. (2.100)]

m , 0











R ≥ 0





n is odd 

√

√

n

n

m

:

Rm =

R

[eq. (2.101)]

R , 0



n is odd 

√

√

n

n

m

:

Rm =

R

[eq. (2.102)]

m , 0



n



, 0

q





m

√

√

n

m , 0

:

R = mn R

[eq. (2.103)]



R ≥ 0 



n is odd 

q

m

√

√

n

:

R = mn R

[eq. (2.104)]

m is odd



n



, 0











n is even 

√

√

√

n

:

n R

R

R

R

1 R2 = n

1

2

[eq. (2.105)]

1 ≥ 0











R



2 ≥ 0

√

√

√

n

n is odd :

n R1 R2 = n R1 R2

[eq. (2.106)]



n



, 0

s







1

1

n is even

:

n

= √

[eq. (2.107)]

R

n R



R > 0



s



n is odd 

1 

1

:

n

= √

[eq. (2.108)]

R , 0

R

n R
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

n



, 0





s

√









n



n is even 

R1

R

:

n

=

1

√

[eq. (2.109)]

R

n

1 ≥ 0

R

R





2

2







R



2 > 0

s

√



n

n is odd 

R 

1

R

:

n

=

1

√

[eq. (2.110)]

R

n

2 , 0

R2

R2

PROPERTIES OF INEQUALITIES IN REAL NUMBERS

[α1(n)] < [α2(n)] ⇐⇒

{ ∃N,Q

∀

C ,QD

n n > N =⇒ α1(n) ≤ QC < QD ≤ α2(n) }

[eq. (2.111)]

R1 > R2 ⇐⇒ R2 < R1

[eq. (2.112)]

(R1 < R2) ∧ (R2 < R3) =⇒ R1 < R3

[eq. (2.113)]

(R1 < R2) ∨ (R1 = R2) ∨ (R1 > R2)

[eq. (2.114)]

(R1 < R2) =⇒ (R1 , R2) ∧ ¬(R1 > R2)

[eq. (2.115)]

(R1 = R2) =⇒ ¬(R1 < R2) ∧ ¬(R1 > R2)

[eq. (2.116)]

(R1 > R2) =⇒ ¬(R1 < R2) ∧ (R1 , R2)

[eq. (2.117)]

R1 < R2 ⇐⇒ − R1 > − R2

[eq. (2.118)]

R1 < R2 ⇐⇒ R1 + R3 < R2 + R3

[eq. (2.119)]



R



1 < R2

=⇒ R

R

1 + R3 < R2 + R4

[eq. (2.120)]

3 ≤ R4

R3 > 0 :

R1 < R2 ⇐⇒ R3 R1 < R3 R2

[eq. (2.121)]



0 ≤ R



1 < R2

=⇒ R

0 ≤ R

3 R1 < R4 R2

[eq. (2.122)]

3 < R4



R



1 > 0

:

R

> R−1

[eq. (2.123)]

R

1 < R2 ⇐⇒ R −1

1

2

2 > 0
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R < 0 :

|R| = −R

[eq. (2.124)]

R = 0 :

|R| = 0

[eq. (2.125)]

R > 0 :

|R| = R

[eq. (2.126)]

|[α(n)]| = [|α(n)|]

[eq. (2.127)]

| − R| = |R|

[eq. (2.128)]

|R1| < R2 ⇐⇒ −R2 < R1 < R2

[eq. (2.129)]

|R1 + R2| ≤ |R1| + |R2|

[eq. (2.130)]

|R1 R2| = |R1||R2|

[eq. (2.131)]

R , 0 :

|R−1| = |R|−1

[eq. (2.132)]

R 

1

|R1|

R





2 , 0 :



=

[eq. (2.133)]

R2 

|R2|

PROPERTIES OF REAL NUMBER EXPONENTIATION WITH

REAL NUMBER EXPONENTS

ADDITIONAL PROPERTIES OF EXPONENTIATION WITH INTEGER

EXPONENTS (WITH NONNEGATIVE REAL NUMBER BASES)

R > 1 :

Z1 = Z2 ⇐⇒ RZ1 = RZ2

[eq. (3.1)]

R > 1 :

Z1 < Z2 ⇐⇒ RZ1 < RZ2

[eq. (3.2)]

0 < R < 1 :

Z1 = Z2 ⇐⇒ RZ1 = RZ2

[eq. (3.3)]

0 < R < 1 :

Z1 < Z2 ⇐⇒ RZ1 > RZ2

[eq. (3.4)]



R > 0 

√

n

√

n

Z

:

RZ =

R

[eq. (3.5)]

n , 0
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PROPERTIES OF EXPONENTIATION WITH RATIONAL NUMBER EXPONENTS

Q > 0 :

0Q = 0

[eq. (3.6)]



R > 0



√

D

Z

:

RQ =

R

[eq. (3.7)]

Q = [ (Z, D) ]

R > 1 :

Q1 = Q2 ⇐⇒ RQ1 = RQ2

[eq. (3.8)]

R > 1 :

Q1 < Q2 ⇐⇒ RQ1 < RQ2

[eq. (3.9)]

0 < R < 1 :

Q1 = Q2 ⇐⇒ RQ1 = RQ2

[eq. (3.10)]

0 < R < 1 :

Q1 < Q2 ⇐⇒ RQ1 > RQ2

[eq. (3.11)]

PROPERTIES OF REAL NUMBER SEQUENCES

√

I = 2

[eq. (3.12)]

I + Q ∈

[eq. (3.13)]

I

Q , 0 :

Q I ∈

[eq. (3.14)]

I

θ (n) is convergent ⇐⇒



n > N =⇒ R



∀

A ≤ θ (n) ≤ RB

R

[eq. (3.15)]

ε >0 ∃N,R

∀

A ,RB

n

RB − RA < Rε

θ (n) is convergent ⇐⇒

∃R ∀

L

Rε >0 ∃N ∀n { n > N =⇒ | θ (n) − RL | < Rε }

[eq. (3.16)]

θ (n) is Cauchy ⇐⇒

∀Rε>0 ∃N ∀m,n {m,n > N =⇒ |θ (m) − θ (n)| < Rε}

[eq. (3.17)]

θ (n) is convergent ⇐⇒ θ (n) is Cauchy

[eq. (3.18)]

lim θ (n) = RL ⇐⇒ ∀R

n→∞

ε >0 ∃N ∀n {n > N =⇒ | θ (n) − RL | < Rε }

[eq. (3.19)]

θ (n) is convergent ⇐⇒ ∃R lim θ (n) = R

L

L

[eq. (3.20)]

n→∞

lim RC = RC

[eq. (3.21)]

n→∞
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

lim θ



1(n) = RL1







n→∞







=⇒ lim θ1(n) + θ2(n) = RL1 + RL2

[eq. (3.22)]

n→∞







lim θ2(n) = RL2 

n→∞





lim θ (n) = RL =⇒ lim −θ (n) = −RL

[eq. (3.23)]

n→∞

n→∞



lim θ



1(n) = RL1







n→∞







=⇒ lim θ1(n) − θ2(n) = RL1 − RL2

[eq. (3.24)]

n→∞







lim θ2(n) = RL2 

n→∞



lim θ



1(n) = RL1







n→∞







=⇒ lim θ1(n)θ2(n) = RL1 RL2

[eq. (3.25)]

n→∞







lim θ2(n) = RL2 

n→∞



lim θ



1(n) = RL1



n→∞



















R

=

θ

[eq. (3.26)]

L1 , 0

⇒ lim 2(n) = R−1

n→∞

L1







θ





1(n) = 0 =⇒ θ2(n) = 0









θ



1(n) , 0 =⇒ θ2(n) = θ −1(n)

1



lim θ



1(n) = RL1







n→∞





























lim θ2(n) = RL2





n→∞

 =⇒ lim θ3(n) = RL1/RL2

n→∞











R





L2 , 0













θ





2(n) = 0 =⇒ θ3(n) = 0









θ



2(n) , 0 =⇒ θ3(n) = θ1(n)/θ2(n)

[eq. (3.27)]



lim θ



1(n) = RL







n→∞



















lim θ2(n) = RL

=⇒ lim θ3(n) = RL

[eq. (3.28)]

n→∞

n→∞























∀



n θ1(n) ≤ θ3(n) ≤ θ2(n)



θ (n) is convergent



=⇒ lim θ (n) ≤ R

∃

B

[eq. (3.29)]

N ∀n n > N =⇒ θ (n) ≤ RB

n→∞



θ (n) is convergent



=⇒ R

θ (n)

[eq. (3.30)]

∃

A ≤ lim

N ∀n n > N =⇒ RA ≤ θ (n)

n→∞
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θ (n) is monotonically increasing  =⇒ θ(n) is convergent

[eq. (3.31)]

θ (n) is upper-bounded

lim α(n) = [α(n)]

[eq. (3.32)]

n→∞



R > 0







θ (0) = 0

√

:

lim θ (n) = 1

[eq. (3.33)]

n→∞



n , 0 =⇒ θ (n) = n R 



R > 0



=⇒ θ (n) is convergent

[eq. (3.34)]

θ (n) = Rα(n)



R > 0



=⇒ lim Rα(n) = 1

[eq. (3.35)]

α(n) is convergent-zero

n→∞

PROPERTIES OF EXPONENTIATION WITH REAL NUMBER EXPONENTS



R



b > 0

α(n)

:

RRe = lim R

[eq. (3.36)]

R

b

b

e = [α (n)]

n→∞

Re > 0 :

0Re = 0

[eq. (3.37)]

1Re = 1

[eq. (3.38)]

Rb > 0 :

RRe > 0

[eq. (3.39)]

b

Rb > 0 :

RRe1 RRe2 = RRe1+Re2

[eq. (3.40)]

b

b

b

RRe1

R

b

b > 0 :

= RRe1−Re2

[eq. (3.41)]

b

RRe2

b

1

Rb > 0 :

R−Re =

[eq. (3.42)]

b

RRe

b



R



b1 > 0

:

(R

RRe

[eq. (3.43)]

R

b1 Rb2)Re = R Re

b1

b2

b2 > 0

1 Re

1

Rb > 0 :

=

[eq. (3.44)]

Rb

RRe

b



R





Re

RRe

b1 > 0

Rb1

:

= b1

[eq. (3.45)]

Rb2 > 0

Rb2

RRe

b2
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Rb > 1 :

R1 < R2 ⇐⇒ RR1 < RR2

[eq. (3.46)]

b

b

Rb > 1 :

R1 = R2 ⇐⇒ RR1 = RR2

[eq. (3.47)]

b

b

0 < Rb < 1 :

R1 < R2 ⇐⇒ RR1 > RR2

[eq. (3.48)]

b

b

0 < Rb < 1 :

R1 = R2 ⇐⇒ RR1 = RR2

[eq. (3.49)]

b

b

θ (n)

Rb > 0 :

lim θ (n) = 0 =⇒ lim R

= 1

[eq. (3.50)]

n→∞

n→∞ b

θ (n)

Rb > 0 :

lim θ (n) = RL =⇒ lim R

= RRL

[eq. (3.51)]

n→∞

n→∞ b

b



Re2

Rb > 0 :

RRe1

= RRe1Re2

[eq. (3.52)]

b

b

PROPERTIES OF “E” AND THE EXPONENTIAL FUNCTION



1 n

e = lim

1 +

[eq. (3.53)]

n→∞

n

2 ≤ e ≤ 3

[eq. (3.54)]

exp(R ) = eR

[eq. (3.55)]

R1 = R2 ⇐⇒ exp(R1) = exp(R2)

[eq. (3.56)]

R1 < R2 ⇐⇒ exp(R1) < exp(R2)

[eq. (3.57)]

exp(0) = 1

[eq. (3.58)]

exp(1) = e

[eq. (3.59)]

exp(R1 + R2) = exp(R1) exp(R2)

[eq. (3.60)]

exp(R1)

exp(R1 − R2) =

[eq. (3.61)]

exp(R2)

1

exp(−R ) =

[eq. (3.62)]

exp(R )



R2

exp(R1)

= exp(R1R2)

[eq. (3.63)]

lim θ (n) = RL =⇒ lim exp(θ (n)) = exp(RL)

[eq. (3.64)]

n→∞

n→∞

[image: Image 2973]
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PROPERTIES OF LOGARITHMIC FUNCTIONS



R



b > 0

:

log (R

[eq. (3.65)]

R

R

1) = R2 ⇐⇒ R1 = R R2

b

b , 1

b



R



b > 0





logR (R )

R

b

b , 1

:

R

= R

[eq. (3.66)]

b



R > 0 



R



b > 0

:

log

RR  = R

[eq. (3.67)]

R

R

b

b , 1

b



R



b > 0

:

log (1) = 0

[eq. (3.68)]

R

R

b , 1

b



R



b > 0

:

log (R

R

R

b) = 1

[eq. (3.69)]

b , 1

b



R



b > 0











R



b , 1

:

log (R

(R

(R

R

R

1R2) = logR

1) + logR

2)

[eq. (3.70)]

1 > 0

b

b

b











R



2 > 0



R



b > 0









1

Rb , 1

:

logR

= −log (R)

[eq. (3.71)]

b

R

Rb



R > 0 



R



b > 0











R



b , 1

:

log (R

(R

(R

R

R

1/R2) = logR

1) − logR

2)

[eq. (3.72)]

1 > 0

b

b

b











R



2 > 0



R



b > 0









Rb , 1

:

logR

RR2

= R2 log (R1)

[eq. (3.73)]

b

1

Rb



R



1 > 0



R



b > 0











R



b , 1

:

R

(R

(R

R

1 = R2 ⇐⇒ logR

1) = logR

2)

[eq. (3.74)]

1 > 0

b

b











R



2 > 0
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

R



b > 1





R1 > 0

:

R1 < R2 ⇐⇒ logR (R1) < log (R2)

[eq. (3.75)]

b

Rb



R



2 > 0



0 < R



b < 1





R1 > 0

:

R1 < R2 ⇐⇒ logR (R1) > log (R2)

[eq. (3.76)]

b

Rb



R



2 > 0

PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION

R > 0 :

ln(R ) = loge(R )

[eq. (3.77)]

R > 0 :

exp(ln(R )) = R

[eq. (3.78)]

ln(exp(R )) = R

[eq. (3.79)]

ln(1) = 0

[eq. (3.80)]

ln(e) = 1

[eq. (3.81)]



R



1 > 0

:

ln(R

R

1R2) = ln(R1) + ln(R2)

[eq. (3.82)]

2 > 0

1 

R > 0 :

ln

= −ln(R)

[eq. (3.83)]

R



R







1 > 0

R1

:

ln

= ln(R

R

1) − ln(R2)

[eq. (3.84)]

2 > 0

R2





R1 > 0 :

ln

RR2

= R

1

2 ln(R1)

[eq. (3.85)]



R



1 > 0

:

R

R

1 = R2 ⇐⇒ ln(R1) = ln(R2)

[eq. (3.86)]

2 > 0



R



1 > 0

:

R

R

1 < R2 ⇐⇒ ln(R1) < ln(R2)

[eq. (3.87)]

2 > 0

Rb > 0 :

RR

b = exp(R ln(Rb))

[eq. (3.88)]



R



b > 0





ln(R )

Rb , 1

:

logR (R ) =

[eq. (3.89)]

b

ln(R



R > 0 

b)
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Appendix B -

Geometry & Trigonometry

INTRODUCTION

In this appendix we present some general properties of Geometry, Planar Geometry, Analytic Geometry, and Trigonometric Functions. 

NOTES ON NOTATION

In this Appendix, we note that:

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “P” and uppercase letter “P” with index “P1”, “P2”, ... are used to denote points in space; 

• Two points “P1P2”, “P3P4”, ... are used to denote the distance in between the two corresponding points; 

• Uppercase letter “G” and uppercase letter “G” with index “G1”, “G2”, ... are used to denote geometric figures (sets of points); 

• Uppercase letter “G” with index “Pl ”: “GPl”, “GPl1”, “GPl2”, ... are used to denote planes; 

• Uppercase letter “G” with index “Ln”: “GLn”, “GLn1”, “GLn2”, ... are used to denote lines (straight lines); 

←−−→

←−−→

• Two distinct points with a left-right-arrow accent: “ P1P2 ”, “ P3P4 ”, ... (with “P1 , P2”, 

“P3 , P4”, ...) are used to denote the lines that pass through the respective two distinct points; 

• Uppercase letter “G” with index “Ry”: “GRy”, “GRy1”, “GRy2”, ... are used to denote rays; 

−−−→

−−−→

• Two distinct ordered points with a right-arrow accent: “ P1P2 ”, “ P3P4 ”, ... (with “P1 , P2”, 

“P3 , P4”, ...) are used to denote the rays that start at the first point and that passes through the second point; 

• Symbol “∠” and symbol “∠” with index: “∠1”, “∠2”, ... are used to denote angles; 

• Symbol “∡” and symbol “∡” with index: “∡1”, “∡2”, ... are used to denote the measure of angles; 

• Greek letters “α”, “β ”, and “γ ” will be used to denote real numbers that correspond to angle measurements; 

• Uppercase letter “G” with index “Sg”: “GSg”, “GSg1”, “GSg2”, ... are used to denote segments; 

• Two distinct points with a bar accent: “P1P2”, “P3P4 ”, ... are used to denote the segments whose end points are the respective two points; 

• Greek letters “ρ” and “φ” will be used to denote real numbers that correspond to polar coordinates. 
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is the set of all points

[eq. (4.1)]

S

dist(P1, P2) ≥ 0

[eq. (4.2)]

dist(P1, P2) = 0 ⇐⇒ P1 = P2

[eq. (4.3)]

P1P2 = dist(P1, P2)

[eq. (4.4)]

GPl1 k GPl2 ⇐⇒ (GPl1 = GPl2) ∨ (GPl1 ∩ GPl2 = /0)

[eq. (4.5)]

(GPl1 k GPl2) ∧ (GPl2 k GPl3) =⇒ (GPl1 k GPl3)

[eq. (4.6)]

given a point P and a plane GPl1, 

there exists one and only one plane GPl2 such that

GPl2 passes through P and GPl2 is parallel to GPl1

[eq. (4.7)]

(∃G P1,P2 ∈ GLn

P

Ln

1 , P2 :

[eq. (4.8)]

(P1, P2 ∈ GLn1) ∧ (P1,P2 ∈ GLn2) =⇒ GLn1 = GLn2

←−−→

P1 , P2 :

P1, P2 ∈ GLn ⇐⇒ GLn = P1P2

[eq. (4.9)]

P1, P2, P3 are non-collinear :

(∃G P

Pl

1, P2, P3 ∈ GPl

[eq. (4.10)]

(P1, P2, P3 ∈ GPl1) ∧ (P1,P2,P3 ∈ GPl2) =⇒ GPl1 = GPl2

¬(GPl1 k GPl2) =⇒ ∃G G

Ln

Pl1 ∩ GPl2 = GLn

[eq. (4.11)]

GLn1 k GLn2 ⇐⇒

(GLn1 = GLn2) ∨ ∃G G

Pl

Ln1, GLn2 ⊂ GPl ∧ GLn1 ∩ GLn2 = /

0

[eq. (4.12)]

given a point P and a line GLn1, 

there exists one and only one line GLn2 such that

GLn2 passes through P and GLn2 is parallel to GLn1

[eq. (4.13)]

(GLn1 k GLn2) ∧ (GLn2 k GLn3) =⇒ (GLn1 k GLn3)

[eq. (4.14)]

given two distinct ordered points P1 and P2, 

there exists one and only one ray GRy such that

P1 is the starting point of GRy and GRy passes through point P2

[eq. (4.15)]
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P1 , P2 :

−−−→

(P1 is the starting point of GRy) ∧ (P2 ∈ GRy) ⇐⇒ GRy = P1P2

[eq. (4.16)]

−−−→

−−−→

P1 , P2 :

P1P2 , P2P1

[eq. (4.17)]

∡ = msr(∠)

[eq. (4.18)]

(GRy and GRy determine angles ∠1 and ∠2) ∧ (∡1 ≤ ∡2) =⇒

(∡1 = 0) ∧ (∡2 = φft )

[eq. (4.19)]

0 ≤ ∡ ≤ φft

[eq. (4.20)]

given two distinct collinear rays that have the same starting point and that determine two angles ∠1 and ∠2, 

it will follow that: ∡1 = ∡2 = φ ft /2

[eq. (4.21)]

given two non-collinear rays that have the same starting point

and that determine two angles ∠1 and ∠2 such that ∡1 ≤ ∡2; 

it will follow that: ∠1 is convex, ∠2 is concave, and ∡1 + ∡2 = φ ft

[eq. (4.22)]

given three distinct coplanar rays GRy1, GRy2, and GRy3

that have a common starting point P0; 

given an angle ∠3 determined by the first two rays GRy1 and GRy2; if the third ray GRy3 divides ∠3 into two angles: ∠1 and ∠2

then ∡3 = ∡1 + ∡2

[eq. (4.23)]

given two distinct lines that intersect at a point P and that determine the four angles ∠1, ∠2, ∠3, and ∠4; 

it will follow that: ∡1 + ∡2 + ∡3 + ∡4 = φ ft

[eq. (4.24)]

given two distinct parallel lines GLn1 and GLn2, 

and given a third line GLn3 that intersects the first two lines, 

and considering the four angles determined by the intersection of GLn3 and GLn1: ∠1, ∠2, ∠3, and ∠4, 

and considering the four angles determined by the intersection of GLn3 and GLn2: ∠5, ∠6, ∠7, and ∠8; 

it follows that two corresponding angles from the two intersections will always have the same measure

(i.e., ∡1 = ∡5; ∡2 = ∡6; ∡3 = ∡7; ∡4 = ∡8)

[eq. (4.25)]
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P1 , P2 :

(P1 and P2 are the end points of GSg) ⇐⇒ GSg = P1P2

[eq. (4.26)]

len(GSg) > 0

[eq. (4.27)]

P1 , P2 :

P3 ∈ P1P2 =⇒ P1P3 + P3P2 = P1P2

[eq. (4.28)]

given two distinct points P1 and P2, 

and considering the segment P1P2, 

and given any real number r such that “0 ≤ r ≤ 1”, 

there exists one and only one point P3 in segment P1P2 such that: P1P3 = r · P1P2

[eq. (4.29)]

Gpoly = P1P2 ∪ P2P3 ∪ ... ∪ Pn−1Pn ∪ PnP1

(where P1, P2, ..., Pn are coplanar; 

[eq. (4.30)]

and three successive points are not collinear)

peri(Gpoly) = P1P2 + P2P3 + ... + Pn−1Pn + PnP1

[eq. (4.31)]

area(Gpoly) > 0

[eq. (4.32)]

ELEMENTS OF PLANAR GEOMETRY

∠1, ∠2, ∠3 are the interior angles of a triangle =⇒

∡1 + ∡2 + ∡3 = φ ft /2

[eq. (4.33)]

given a right triangle, and

given the length of its hypotenuse “c”, and

given the two lengths of the catheti “a” and “b”; 

it will hold that:

c2 = a2 + b2

[eq. (4.34)]

given a rectangle Grectangle, 

and given the length “b” of one of its sides, 

and given the length “h” of a corresponding adjacent side, 

it follows that:

area(Grectangle) = b h

[eq. (4.35)]
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given a square Gsquare, 

and the length “b” of its sides, it follows that:

area(Gsquare) = b2

[eq. (4.36)]

given a parallelogram Gparallelogram of vertices

P1, P2, P3, and P4; 

and given the length “b” of the side P1P2; 

←−−→

←−−→

and given the distance “h” between parallel lines P1P2 and P4P3 ; it follows that:

area(Gparallelogram) = b h

[eq. (4.37)]

given a triangle Gtriangle of vertices: P1, P2, and P3; 

and given the length “b” of the side P1P2; 

←−−→

and given the distance “h” between the point P3 and the line P1P2 ; it follows that:

b h

area(Gtriangle) =

[eq. (4.38)]

2

given a trapezoid Gtrapezoid of vertices: P1, P2, P3, and P4

←−−→ ←−−→

such that P1P2 k P4P3 ; 

and given the length “b1” of the side P1P2; 

and given the length “b2” of the side P3P4; 

←−−→

←−−→

and given the distance “h” between the parallel lines P1P2 and P4P3 ; it follows that:

(b1 + b2)

area(Gtrapezoid) =

h

[eq. (4.39)]

2

d = 2 r

[eq. (4.40)]

(where “d” and “r” are respectively the diameter and the radius of a circle) l

π =

[eq. (4.41)]

d

(where “l ” and “d” are respectively the length and the diameter of a circle) given a circle Gcircle of radius “ r ”; 

and given the length of the circle “l = len(Gcircle)”; 

it follows that:

l = 2 π r

[eq. (4.42)]
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larc

∡ =

(in radians)

[eq. (4.43)]

r

(where “∡”, “larc”, and “r” are respectively the measure of the angle

[in radians], the length, and the radius of a circular arc)

φ ft = 2 π

[eq. (4.44)]

given a circle Gcircle of radius “ r ”, it follows that:

area(Gcircle) = π r2

[eq. (4.45)]

ELEMENTS OF ANALYTIC PLANAR GEOMETRY

y2 − y1

rm =

[eq. (4.46)]

x2 − x1

(where “rm” is the slope of a non-vertical line; and

“(x1, y1)” and “(x2, y2)” are two distinct points on the non-vertical line) given a non-vertical line GLn

with a slope “rm” and a y-intercept “b”, 

it will hold that:

y = rmx + b ⇐⇒ (x, y) ∈ GLn

[eq. (4.47)]

given a vertical line GLn, with an x-intercept “h”, 

it will hold that:

x = h ⇐⇒ (x, y) ∈ GLn

[eq. (4.48)]

q

d =

(x2 − x1)2 + (y2 − y1)2

[eq. (4.49)]

[where “d ” is the distance between the two points “(x1, y1)” and “(x2, y2)”]

given a circle Gcircle with a radius “r” and a center point “(h, rk)”, it will hold that:

(x − h)2 + (y − rk)2 = r2 ⇐⇒ (x,y) ∈ Gcircle

[eq. (4.50)]
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TRIGONOMETRY

REVIEW

x2 + y2 = 1 ⇐⇒ (x, y) ∈ GTrigCircle

[eq. (4.51)]

cos2(α) + sin2(α) = 1

[eq. (4.52)]

sin(α)

cos(α) , 0 :

tan(α) =

[eq. (4.53)]

cos(α)

r





ad j

length of adjacent

cos(α) =

=

[eq. (4.54)]

rhyp

length of hypotenuse

r





opp

length of opposite

sin(α) =

=

[eq. (4.55)]

rhyp

length of hypotenuse

r





opp

length of opposite

tan(α) =

=

[eq. (4.56)]

rad j

length of adjacent

cos(0) = 1

sin(0) = 0

tan(0) = 0

π 

π 

π 

cos

= 0

sin

= 1

tan

is not defined

2

2

2

√

√

π 

3

π 

1

π 

3

cos

=

sin

=

tan

=

6

2

6

2

6

3

√

π 

1

π 

3

π 

√

cos

=

sin

=

tan

=

3

3

2

3

2

3

√

√

π 

2

π 

2

π 

cos

=

sin

=

tan

= 1

4

2

4

2

4

[eq. (4.57)]

cos(−α) = cos(α)

[eq. (4.58)]

sin(−α) = − sin(α)

[eq. (4.59)]

cos(α) , 0 :

tan(−α) = − tan(α)

[eq. (4.60)]



π 

cos α +

= −sin(α)

[eq. (4.61)]

2



π 

sin α +

= cos(α)

[eq. (4.62)]

2



cos(α) , 0 



π 

1

:

tan α +

= −

[eq. (4.63)]

sin(α) , 0

2

tan(α)
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π 

cos α −

= sin(α)

[eq. (4.64)]

2



π 

sin α −

= −cos(α)

[eq. (4.65)]

2



cos(α) , 0 



π 

1

:

tan α −

= −

[eq. (4.66)]

sin(α) , 0

2

tan(α)

cos (α + π) = − cos(α)

[eq. (4.67)]

sin (α + π) = − sin(α)

[eq. (4.68)]

cos(α) , 0 :

tan(α + π) = tan(α)

[eq. (4.69)]

cos(α + 2 π) = cos(α)

[eq. (4.70)]

sin(α + 2 π) = sin(α)

[eq. (4.71)]

cos(α) , 0 :

tan(α + 2 π) = tan(α)

[eq. (4.72)]

cos(α + β ) = cos(α) cos(β ) − sin(α) sin(β )

[eq. (4.73)]

sin(α + β ) = sin(α) cos(β ) + sin(β ) cos(α)

[eq. (4.74)]



cos(α)



, 0





tan(α) + tan(β )

cos(β ) , 0

:

tan(α + β ) =

[eq. (4.75)]

1 − tan(α) tan(β )



cos(α + β ) , 0 

ADDITIONAL PROPERTIES

1

cos(α) , 0 :

sec(α) =

[eq. (5.1)]

cos(α)

1

sin(α) , 0 :

csc(α) =

[eq. (5.2)]

sin(α)

cos(α)

sin(α) , 0 :

cot(α) =

[eq. (5.3)]

sin(α)

cos(α) , 0 :

1 + tan2(α) = sec2(α)

[eq. (5.4)]

sin(α) , 0 :

cot2(α) + 1 = csc2(α)

[eq. (5.5)]



cos(α) , 0 

1

:

cot(α) =

[eq. (5.6)]

sin(α) , 0

tan α
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cos(α) , 0 



π 

:

tan α +

= −cot(α)

[eq. (5.7)]

sin(α) , 0

2



cos(α) , 0 



π 

:

tan α −

= −cot(α)

[eq. (5.8)]

sin(α) , 0

2

cos(α) , 0 :

sec(α + π) = − sec(α)

[eq. (5.9)]

sin(α) , 0 :

csc(α + π) = − csc(α)

[eq. (5.10)]

sin(α) , 0 :

cot(α + π) = cot(α)

[eq. (5.11)]

cos(α) , 0 :

sec(α + 2 π) = sec(α)

[eq. (5.12)]

sin(α) , 0 :

csc(α + 2 π) = csc(α)

[eq. (5.13)]

sin(α) , 0 :

cot(α + 2 π) = cot(α)

[eq. (5.14)]

given a triangle, 

and given the lengths of its sides “a”, “b”, and “c”, 

and given the measures of the respective opposite angles α, β , and γ; it will hold that:

sin(α)

sin(β )

sin(γ )

=

=

[eq. (5.15)]

a

b

c

given a triangle, 

and given the lengths of its sides “a”, “b”, and “c”, 

and given the measure γ of the angle opposite to side “c”; 

it will hold that:

c2 = a2 + b2 − 2 a b cos(γ )

[eq. (5.16)]

to convert from polar coordinates “(ρ, φ )” 

to Cartesian coordinates “(x, y)”, the equations are:

x = ρ cos(φ )

[eq. (5.17)]

y = ρ sin(φ )

[eq. (5.18)]

[image: Image 3048]
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given a non-vertical GLn with the slope “rm” and the y-intercept “b”, the equation in polar coordinates of GLn is:

ρ sin(φ ) = rm ρ cos(φ ) + b

[eq. (5.19)]

given a vertical GLn with the x-intercept “h”, 

the equation in polar coordinates of GLn is:

ρ cos(φ ) = h

[eq. (5.20)]

given two points in polar coordinates “(ρ1, φ1)” and “(ρ2, φ2)”, 

the distance “d” between the two points is given by:

q

d =

ρ2 + ρ2

2

1 − 2 ρ2 ρ1 cos(φ2 − φ1)

[eq. (5.21)]

given a circle Gcircle with center in polar coordinates of “(ρc, φc)”, and radius “r”, the equation in polar coordinates of Gcircle is:

ρ2 + ρ2c − 2ρ ρc cos(φ − φc) = r2

[eq. (5.22)]

given a circle Gcircle with center in polar coordinates of “(ρc, φc)”, radius “r”, and that passes through the origin, 

the equation in polar coordinates of Gcircle is

(note that in this case “r = |ρc|”):

ρ = 2 ρc cos(φ − φc)

[eq. (5.23)]

given a circle Gcircle that is centered at the origin, with center in polar coordinates of “(ρc, φc)” and radius “r”, 

the equation in polar coordinates of Gcircle is

(note that in this case “ρc = 0”):

ρ = r

[eq. (5.24)]
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the equation in polar coordinates of the trigonometric circle

GTrigCircle is:

ρ = 1

[eq. (5.25)]
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Appendix C -

Intervals and Regions in R

INTRODUCTION

In this appendix we present some general properties of intervals and regions in that have been

R

studied in this book. 

NOTES ON NOTATION

In this Appendix, we note that:

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S” will be used to denote a subset of the real number set “ ”. 

R

INTERVALS

OPEN INTERVALS

n

o

I is a bounded open interval ⇐⇒ ∃a,b

a < b ∧ { x ∈ I ⇐⇒ a < x < b }

(notation: “I = (a, b)”)

[eq. (6.1)]

n

o

I is a left-unbounded open interval ⇐⇒ ∃b

x ∈ I ⇐⇒ x < b

[eq. (6.2)]

(notation: “I = (−∞,b)”)

n

o

I is a right-unbounded open interval ⇐⇒ ∃a

x ∈ I ⇐⇒ a < x

[eq. (6.3)]

(notation: “I = (a, +∞)”)

(−∞,+∞) =

[eq. (6.4)]

R
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CLOSED INTERVALS

n

o

I is a bounded closed interval ⇐⇒ ∃a,b a < b ∧ { x ∈ I ⇐⇒ a ≤ x ≤ b }

(notation: “I = [a, b ]”)

[eq. (6.5)]

n

o

I is a left-unbounded closed interval ⇐⇒ ∃b

x ∈ I ⇐⇒ x ≤ b

[eq. (6.6)]

(notation: “I = (−∞,b ]”)

n

o

I is a right-unbounded closed interval ⇐⇒ ∃a

x ∈ I ⇐⇒ a ≤ x

[eq. (6.7)]

(notation: “I = [a, +∞)”)

HALF-OPEN INTERVALS

n

o

I is a left-half-open interval ⇐⇒ ∃a,b

a < b ∧ { x ∈ I ⇐⇒ a < x ≤ b }

(notation: “I = (a, b ]”)

[eq. (6.8)]

n

o

I is a right-half-open interval ⇐⇒ ∃a,b

a < b ∧ { x ∈ I ⇐⇒ a ≤ x < b }

(notation: “I = [a, b)”)

[eq. (6.9)]

REGIONS IN R

OPEN SETS IN R

n

o

S is open ⇐⇒

x1 ∈ S =⇒ ∃d>0 { |x1 − x2| < d =⇒ x2 ∈ S }

[eq. (6.10)]

Note that:

• The empty set “/0” is an open set; 

• The real number set “ ” is an open set; 

R

• An open interval is also an open set (whether bounded, left-unbounded, right-unbounded, or unbounded). 

REGIONS IN R

S is a region ⇐⇒ S is an open interval

[eq. (6.11)]

Note that:

• The empty set “/0” is not a region; 

• The real number set “ ” is a region. 

R
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R

NEIGHBORHOODS AND VICINITIES IN R



S



S

N is a region

N is a neighborhood of x ⇐⇒

[eq. (6.12)]

x ∈ SN



S



S

N is a neighborhood of x

V is a vicinity of x ⇐⇒ ∃S

[eq. (6.13)]

N

SV = SN \ {x}



S



S

V is a vicinity of x

V − is a left-vicinity of x ⇐⇒ ∃S

[eq. (6.15)]

V

SV− = SV ∩ Sx−

Sx− = (−∞, x)

[eq. (6.16)]



S



S

V is a vicinity of x

V + is a right-vicinity of x ⇐⇒ ∃S

[eq. (6.18)]

V

SV+ = SV ∩ Sx+

Sx+ = (x, +∞)

[eq. (6.19)]

LIMITING POINTS OF A SET S IN R

n

o

x is a limiting point of S ⇐⇒

SV is a vicinity of x =⇒ S ∩ SV , /0

[eq. (6.20)]

S is open =⇒ S ⊂ lm(S)

[eq. (6.21)]

R ⊂ lm(R)

[eq. (6.22)]

CLOSED SETS IN R

S is closed ⇐⇒ lm(S) ⊂ S

[eq. (6.23)]

Note that:

• The empty set “/0” is a closed set; 

• The real number set “ ” is a closed set; 

R

• A closed interval is also a closed set

(whether bounded, left-unbounded, right-unbounded, or unbounded). 

CLOSURE OF A SET IN R

cl(S) = S ∪ lm(S)

[eq. (6.24)]

S is closed ⇐⇒ cl(S) = S

[eq. (6.25)]
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INTERIOR AND EXTERIOR POINTS OF A SET S IN R



S



x is an interior point of S ⇐⇒ ∃

N is a neighborhood of x

S

[eq. (6.26)]

N

SN ⊂ S

S is open ⇐⇒ int(S) = S

[eq. (6.27)]



S



x is an exterior point of S ⇐⇒ ∃

N is a neighborhood of x

S

[eq. (6.28)]

N

SN ∩ S = /0

BOUNDARY POINTS OF A SET S IN R

x is a boundary point of S ⇐⇒ x ∈ cl(S) \ int(S)

[eq. (6.29)]

bd(S) = cl(S) \ int(S)

[eq. (6.30)]

bd( (a, b) ) = {a,b}

[eq. (6.31)]

cl( (a, b) ) = [a, b ]

[eq. (6.32)]

int( [a, b ] ) = (a, b)

[eq. (6.33)]

bd( [a, b ] ) = {a,b}

[eq. (6.34)]

bd( [a, b ] ) = bd( (a, b) )

[eq. (6.35)]

bd( (a, +∞) ) = {a}

[eq. (6.36)]

bd( (−∞,b) ) = {b}

[eq. (6.37)]

bd( (−∞,+∞) ) = /0

[eq. (6.38)]
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INTRODUCTION

In this appendix we present some general properties of limits that have been studied in this book. 

NOTES ON NOTATION

In this Appendix, we note that:

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

LIMIT L WHEN X → A (OR X → A− OR X → A+) lim f (x) = L ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x) − L| < ε }

x→a

[eq. (7.1)]



lim f (x) = L 

1







x→a



=⇒ L1 = L2

[eq. (7.2)]







lim f (x) = L2 

x→a

lim C = C

[eq. (7.3)]

x→a

lim x = a

[eq. (7.4)]

x→a
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

lim f



1(x) = L1







x→a







=⇒ lim f1(x) + f2(x) = L1 + L2

[eq. (7.5)]

x→a







lim f2(x) = L2 

x→a





lim f (x) = L =⇒ lim − f (x) = −L

[eq. (7.6)]

x→a

x→a



lim f



1(x) = L1







x→a







=⇒ lim f1(x) − f2(x) = L1 − L2

[eq. (7.7)]

x→a







lim f2(x) = L2 

x→a



lim f



1(x) = L1







x→a







=⇒ lim f1(x) f2(x) = L1 L2

[eq. (7.8)]

x→a







lim f2(x) = L2 

x→a



lim f (x) = L 



x→a



=⇒∃δ

∀

2>0,M2

x,a {| x − a | < δ2 =⇒ f (x) < M2 < 0}



L < 0



[eq. (7.9)]



lim f (x) = L 



x→a

 =⇒∃δ

∀

2>0,M2

x,a {| x − a | < δ2 =⇒ 0 < M2 < f (x)}



L > 0



[eq. (7.10)]

lim f (x) = 0 ⇐⇒ ∀ε>0 ∃δ>0 ∀x,a { |x − a | < δ =⇒ | f (x)| < ε }

x→a

[eq. (7.11)]



lim f



1(x) = L1



x→a



















L

=

f

1 , 0

⇒ lim 2(x) = L−1

x→a

1







f





1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined

[eq. (7.12)]

[image: Image 3052]
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

lim f



1(x) = L1







x→a





























lim f2(x) = L2





x→a



=⇒ lim f3(x) = L1/L2

x→a











L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

[eq. (7.13)]

lim f (x) = L ⇐⇒ ∀ε>0 ∃δ>0 ∀x<a { |x − a| < δ =⇒ | f (x) − L| < ε }

x→a−

[eq. (7.14)]

lim f (x) = L ⇐⇒ ∀ε>0 ∃δ>0 ∀x>a { |x − a| < δ =⇒ | f (x) − L| < ε }

x→a+

[eq. (7.16)]



lim f (x) = L 







x→a−



lim f (x) = L ⇐⇒

[eq. (7.20)]

x→a







lim f (x) = L 

x→a+

LIMIT L WHEN X → ∞ (OR X → −∞ OR X → +∞) lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { |x| > M =⇒ | f (x) − L| < ε }

[eq. (8.1)]

x→∞

1 

lim f (x) = L ⇐⇒ lim f

= L

[eq. (8.2)]

x→∞

x→0

x



lim f (x) = L 

1







x→∞

 =⇒ L1 = L2

[eq. (8.3)]







lim f (x) = L2 

x→∞

lim C = C

[eq. (8.4)]

x→∞



lim f



1(x) = L1







x→∞







=⇒ lim f1(x) + f2(x) = L1 + L2

[eq. (8.5)]

x→∞







lim f2(x) = L2 

x→∞





lim f (x) = L =⇒ lim − f (x) = −L

[eq. (8.6)]

x→∞

x→∞

[image: Image 3053]
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

lim f



1(x) = L1







x→∞







=⇒ lim f1(x) − f2(x) = L1 − L2

[eq. (8.7)]

x→∞







lim f2(x) = L2 

x→∞



lim f



1(x) = L1







x→∞







=⇒ lim f1(x) f2(x) = L1 L2

[eq. (8.8)]

x→∞







lim f2(x) = L2 

x→∞



lim f (x) = L 



x→∞

 =⇒ ∃M

∀

2,M3

x { |x| > M2 =⇒ f (x) < M3 < 0 }



L < 0



[eq. (8.9)]



lim f (x) = L 



x→∞



=⇒ ∃M

∀

2 ,M3

x { |x| > M2 =⇒ 0 < M3 < f (x) }



L > 0



[eq. (8.10)]

lim f (x) = 0 ⇐⇒ ∀ε>0 ∃M ∀x { |x| > M =⇒ | f (x)| < ε }

[eq. (8.11)]

x→∞



lim f



1(x) = L1



x→∞



















L

=

f

1 , 0

⇒ lim 2(x) = L−1

x→∞

1







f





1(x) , 0 :

f2(x) = ( f1(x))−1









f



1(x) = 0 :

f2(x) is not defined

[eq. (8.12)]



lim f



1(x) = L1







x→∞





























lim f2(x) = L2





x→∞

 =⇒ lim f3(x) = L1/L2

x→∞











L





2 , 0













f





2(x) , 0 :

f3(x) = f1(x)/ f2(x) 







f



2(x) = 0 :

f3(x) is not defined

[eq. (8.13)]

lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { x < M =⇒ | f (x) − L| < ε }

[eq. (8.14)]

x→−∞

1 

lim f (x) = L ⇐⇒ lim f

= L

[eq. (8.15)]

x→−∞

x→0−

x

[image: Image 3054]
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lim f (x) = L ⇐⇒ ∀ε>0 ∃M ∀x { x > M =⇒ | f (x) − L| < ε }

[eq. (8.16)]

x→+∞

1 

lim f (x) = L ⇐⇒ lim f

= L

[eq. (8.17)]

x→+∞

x→0+

x



lim f (x) = L 



x



n

o



→−∞



lim f (x) = L

⇐⇒

[eq. (8.18)]

x→∞







lim f (x) = L 

x→+∞

lim f (x) = L ⇐⇒ lim f (−x) = L

[eq. (8.19)]

x→−∞

x→+∞

WHEN THE LIMIT IS ∞ (OR −∞ OR +∞)

f (x) is upper-bounded ⇐⇒ ∃M f (x) ≤ M

[eq. (9.1)]

f (x) is lower-bounded ⇐⇒ ∃M M ≤ f (x)

[eq. (9.2)]

f (x) is bounded ⇐⇒ ∃M | f (x)| ≤ M

[eq. (9.3)]



lim f



1(x) = 0



x→a



=⇒ lim [ f1(x) f2(x) ] = 0

[eq. (9.4)]

x→a



f



2(x) is bounded

WHEN THE LIMIT IS ∞

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ | f (x)| > M }

[eq. (9.5)]

x→a

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x<a { |x − a| < δ =⇒ | f (x)| > M }

[eq. (9.6)]

x→a−

lim f (x) is ∞ ⇐⇒ ∀M ∃δ>0 ∀x>a { |x − a| < δ =⇒ | f (x)| > M }

[eq. (9.7)]

x→a+
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lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ | f (x)| > M2 }

[eq. (9.8)]

x→∞

2

1

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ | f (x)| > M2 }

[eq. (9.9)]

x→−∞

2

1

lim f (x) is ∞ ⇐⇒ ∀M ∃M ∀x { x > M1 =⇒ | f (x)| > M2 }

[eq. (9.10)]

x→+∞

2

1



lim f (x) is ∞ 







x→a−



lim f (x) is ∞ ⇐⇒

[eq. (9.15)]

x→a







lim f (x) is ∞ 

x→a+

1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞

[eq. (9.16)]

x→∞

x→0

x

1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞

[eq. (9.17)]

x→−∞

x→0−

x

1 

lim f (x) is ∞ ⇐⇒ lim f

is ∞

[eq. (9.18)]

x→+∞

x→0+

x



lim f (x) is ∞ 







x→−∞



lim f (x) is ∞ ⇐⇒

[eq. (9.19)]

x→∞







lim f (x) is ∞ 

x→+∞

lim f (x) is ∞ ⇐⇒ lim f (−x) is ∞

[eq. (9.20)]

x→−∞

x→+∞

lim x is ∞

[eq. (9.21)]

x→∞

lim x is ∞

[eq. (9.22)]

x→−∞

lim x is ∞

[eq. (9.23)]

x→+∞
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

lim f



1(x) is ∞



x→a







=⇒ lim f1(x) + f2(x)

is ∞

[eq. (9.24)]

x→a



f



2(x) is bounded



lim f



1(x) is ∞







x→a







=⇒ lim f1(x) + f2(x) is ∞

[eq. (9.25)]

x→a







lim f2(x) = L 

x→a





lim f (x) is ∞ ⇐⇒ lim − f (x) is ∞

[eq. (9.26)]

x→a

x→a



lim f



1(x) is ∞



x→a







=⇒ lim f1(x) f2(x)

is ∞

[eq. (9.27)]

x→a



∃



M 0 < M

2

2 < | f2(x)|



lim f



1(x) is ∞







x→a
























lim f2(x) = L

=⇒ lim f1(x) f2(x)

is ∞

[eq. (9.28)]

x→a

x→a























L , 0





lim f (x) = 0





x→a



1

=⇒ lim

is ∞

[eq. (9.29)]

x→a f (x)



x , a =⇒ f (x) , 0 



∃



M 0 < M

1

1 ≤ | f1(x)|





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is ∞

[eq. (9.30)]

x→a

x→a f





2(x)















x , a =⇒ f



2(x) , 0



lim f



1(x) = L







x→a





























L , 0







f

=⇒

1(x)

lim

is ∞

[eq. (9.31)]

x→a f





2(x)



lim f2(x) = 0









x→a

























x , a =⇒ f



2(x) , 0

1

lim f (x) is ∞ =⇒ lim

= 0

[eq. (9.32)]

x→a

x→a f (x)
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

f



1(x) is bounded





f

=⇒

1(x)

lim

= 0

[eq. (9.33)]

x→a f



lim f

2(x)

2(x) is ∞



x→a



lim f



1(x) = L







x→a



f

=⇒

1(x)

lim

= 0

[eq. (9.34)]

x→a f





2(x)



lim f2(x) is ∞ 

x→a

WHEN THE LIMIT IS −∞

lim f (x) is −∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f (x) < M }

x→a

[eq. (9.35)]

lim f (x) is −∞ ⇐⇒ ∀M ∃δ>0 ∀x<a { |x − a| < δ =⇒ f (x) < M }

x→a−

[eq. (9.36)]

lim f (x) is −∞ ⇐⇒ ∀M ∃δ>0 ∀x>a { |x − a| < δ =⇒ f (x) < M }

x→a+

[eq. (9.37)]

lim f (x) is −∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ f (x) < M2 }

x→∞

2

1

[eq. (9.38)]

lim f (x) is −∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ f (x) < M2 }

x→−∞

2

1

[eq. (9.39)]

lim f (x) is −∞ ⇐⇒ ∀M ∃M ∀x { x > M1 =⇒ f (x) < M2 }

x→+∞

2

1

[eq. (9.40)]



lim f (x) is −∞ 







x→a−



lim f (x) is −∞ ⇐⇒

[eq. (9.41)]

x→a







lim f (x) is −∞ 

x→a+

1 

lim f (x) is −∞ ⇐⇒ lim f

is −∞

[eq. (9.42)]

x→∞

x→0

x

1 

lim f (x) is −∞ ⇐⇒ lim f

is −∞

[eq. (9.43)]

x→−∞

x→0−

x

1 

lim f (x) is −∞ ⇐⇒ lim f

is −∞

[eq. (9.44)]

x→+∞

x→0+

x

[image: Image 3067]
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

lim f (x) is −∞ 







x→−∞



lim f (x) is −∞ ⇐⇒

[eq. (9.45)]

x→∞







lim f (x) is −∞ 

x→+∞

lim f (x) is −∞ ⇐⇒ lim f (−x) is −∞

[eq. (9.46)]

x→−∞

x→+∞

lim x is −∞

[eq. (9.47)]

x→−∞

lim f (x) is −∞ =⇒ lim f (x) is ∞

[eq. (9.48)]

x→a

x→a



lim f



1(x) is −∞



x→a







=⇒ lim f1(x) + f2(x)

is −∞

[eq. (9.49)]

x→a



f



2(x) is bounded



lim f



1(x) is −∞







x→a







=⇒ lim f1(x) + f2(x) is −∞

[eq. (9.50)]

x→a







lim f2(x) = L



x→a



lim f



1(x) is −∞



x→a







=⇒ lim f1(x) f2(x)

is −∞

[eq. (9.51)]

x→a



∃



M 0 < M

2

2 ≤ f2(x)



lim f



1(x) is −∞







x→a























lim f2(x) = L

=⇒ lim f1(x) f2(x)

is −∞

[eq. (9.52)]

x→a

x→a























L > 0





lim f (x) = 0





x→a



1

=⇒ lim

is − ∞

[eq. (9.53)]

x→a f (x)



x , a =⇒ f (x) < 0 
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

∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is − ∞

[eq. (9.54)]

x→a

x→a f





2(x)















x , a =⇒ f



2(x) < 0



lim f



1(x) = L







x→a





























L > 0







f

=⇒

1(x)

lim

is − ∞

[eq. (9.55)]

x→a f





2(x)



lim f2(x) = 0









x→a

























x , a =⇒ f



2(x) < 0

WHEN THE LIMIT IS +∞

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x,a { |x − a| < δ =⇒ f (x) > M }

x→a

[eq. (9.56)]

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x<a { |x − a| < δ =⇒ f (x) > M }

x→a−

[eq. (9.57)]

lim f (x) is +∞ ⇐⇒ ∀M ∃δ>0 ∀x>a { |x − a| < δ =⇒ f (x) > M }

x→a+

[eq. (9.58)]

lim f (x) is +∞ ⇐⇒ ∀M ∃M ∀x { |x| > M1 =⇒ f (x) > M2 }

x→∞

2

1

[eq. (9.59)]

lim f (x) is +∞ ⇐⇒ ∀M ∃M ∀x { x < M1 =⇒ f (x) > M2 }

x→−∞

2

1

[eq. (9.60)]

lim f (x) is +∞ ⇐⇒ ∀M ∃M ∀x { x > M1 =⇒ f (x) > M2 }

x→+∞

2

1

[eq. (9.61)]



lim f (x) is +∞ 







x→a−



lim f (x) is +∞ ⇐⇒

[eq. (9.62)]

x→a







lim f (x) is +∞ 

x→a+
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1 

lim f (x) is +∞ ⇐⇒ lim f

is +∞

[eq. (9.63)]

x→∞

x→0

x

1 

lim f (x) is +∞ ⇐⇒ lim f

is +∞

[eq. (9.64)]

x→−∞

x→0−

x

1 

lim f (x) is +∞ ⇐⇒ lim f

is +∞

[eq. (9.65)]

x→+∞

x→0+

x



lim f (x) is +∞ 







x→−∞



lim f (x) is +∞ ⇐⇒

[eq. (9.66)]

x→∞







lim f (x) is +∞ 

x→+∞

lim f (x) is +∞ ⇐⇒ lim f (−x) is +∞

[eq. (9.67)]

x→−∞

x→+∞

lim x is +∞

[eq. (9.68)]

x→+∞

lim f (x) is +∞ =⇒ lim f (x) is ∞

[eq. (9.69)]

x→a

x→a



lim f



1(x) is +∞



x→a







=⇒ lim f1(x) + f2(x)

is +∞

[eq. (9.70)]

x→a



f



2(x) is bounded



lim f



1(x) is +∞







x→a







=⇒ lim f1(x) + f2(x) is +∞

[eq. (9.71)]

x→a







lim f2(x) = L



x→a





lim f (x) is +∞ ⇐⇒ lim − f (x)

is −∞

[eq. (9.72)]

x→a

x→a



lim f



1(x) is +∞



x→a







=⇒ lim f1(x) f2(x)

is +∞

[eq. (9.73)]

x→a



∃



M 0 < M

2

2 ≤ f2(x)
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

lim f



1(x) is +∞







x→a























lim f2(x) = L

=⇒ lim f1(x) f2(x)

is +∞

[eq. (9.74)]

x→a

x→a























L > 0





lim f (x) = 0





x→a



1

=⇒ lim

is + ∞

[eq. (9.75)]

x→a f (x)



x , a =⇒ f (x) > 0 



∃



M 0 < M

1

1 ≤ f1(x)





















f

lim f

1(x)

2(x) = 0

=⇒ lim

is + ∞

[eq. (9.76)]

x→a

x→a f





2(x)















x , a =⇒ f



2(x) > 0



lim f



1(x) = L







x→a





























L > 0







f

=⇒

1(x)

lim

is + ∞

[eq. (9.77)]

x→a f





2(x)



lim f2(x) = 0









x→a

























x , a =⇒ f



2(x) > 0

ADDITIONAL PROPERTIES OF LIMITS



f (x) ≤ M





 =⇒ L ≤ M

[eq. (10.1)]



lim f (x) = L 

x→a



M ≤ f (x)







=⇒ M ≤ L

[eq. (10.2)]



lim f (x) = L 

x→a



| f (x)| ≤ M







=⇒ |L| ≤ M

[eq. (10.3)]



lim f (x) = L 

x→a

[image: Image 3076]
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

f



1(x) ≤ f2(x) ≤ f3(x)























lim f



1(x) = L

x→a

=⇒ lim f2(x) = L

[eq. (10.4)]

x→a























lim f3(x) = L



x→a



f



1(x) ≤ f2(x)



 =⇒ lim f2(x) is +∞

[eq. (10.5)]

x→a



lim f1(x) is +∞ 

x→a



f



1(x) ≤ f2(x)



 =⇒ lim f1(x) is −∞

[eq. (10.6)]

x→a



lim f2(x) is −∞ 

x→a



| f



1(x)| ≤ | f2(x)|





=⇒ lim f2(x) is ∞

[eq. (10.7)]

x→a



lim f1(x) is ∞



x→a

lim cos(x) = 1

[eq. (10.10)]

x→0

lim sin(x) = 0

[eq. (10.13)]

x→0

lim tan(x) = 0

[eq. (10.14)]

x→0

x > 0 =⇒ sin(x) < x

[eq. (10.15)]

0 < x < π/2 =⇒ x < tan(x)

[eq. (10.16)]

sin(x)

lim

= 1

[eq. (10.19)]

x→0

x

⌊x⌋ ≤ x < ⌊x⌋ + 1

[eq. (10.20)]

⌊i⌋ = i

[eq. (10.21)]

x > n + 1 =⇒ ⌊x⌋ > n

[eq. (10.22)]

[image: Image 3077]
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!x

1

lim

1 +

= e

[eq. (10.28)]

x→∞

x

lim (1 + x)1/x = e

[eq. (10.29)]

x→0

CONTINUOUS FUNCTIONS

BOUNDED REAL SETS

max(S) ∈ S

[eq. (11.5)]

x ∈ S =⇒ x ≤ max(S)

[eq. (11.6)]

max({x1,x2,...,xn}) = max(x1,x2,...,xn)

[eq. (11.7)]

min(S) ∈ S

[eq. (11.9)]

x ∈ S =⇒ min(S) ≤ x

[eq. (11.10)]

min({x1,x2,...,xn}) = min(x1,x2,...,xn)

[eq. (11.11)]

x ∈ S =⇒ x ≤ sup(S)

[eq. (11.13)]

x2 < sup(S) =⇒ ∃x∈S x2 < x

[eq. (11.14)]

max(S) exists =⇒ sup(S) = max(S)

[eq. (11.15)]

S is upper-bounded =⇒ sup(S) exists

[eq. (11.16)]

x ∈ S =⇒ inf(S) ≤ x

[eq. (11.18)]

inf(S) < x2 =⇒ ∃x∈S x < x2

[eq. (11.19)]

min(S) exists =⇒ inf(S) = min(S)

[eq. (11.20)]

S is lower-bounded =⇒ inf(S) exists

[eq. (11.21)]



inf(S) exists 





S is bounded =⇒

[eq. (11.22)]



sup(S) exists 
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DEFINITION OF CONTINUOUS FUNCTIONS

f (x) is continuous at “x = a” ⇐⇒ lim f (x) = f (a)

[eq. (11.23)]

x→a

f (x) is continuous at “x = a” ⇐⇒ lim f (a + ∆x) = f (a)

[eq. (11.24)]

∆x→0

f (x) is left-continuous at “x = a” ⇐⇒ lim f (x) = f (a)

[eq. (11.25)]

x→a−

f (x) is left-continuous at “x = a” ⇐⇒ lim f (a + ∆x) = f (a)

[eq. (11.26)]

∆x→0−

f (x) is right-continuous at “x = a” ⇐⇒ lim f (x) = f (a)

[eq. (11.27)]

x→a+

f (x) is right-continuous at “x = a” ⇐⇒ lim f (a + ∆x) = f (a)

[eq. (11.28)]

∆x→0+



f (x) is left-continuous at “x = a” 







f (x) is continuous at “x = a” ⇐⇒



f (x) is right-continuous at “x = a” 

[eq. (11.29)]

n

o

f (x) is continuous in nonempty open set S ⇐⇒ ∀c∈S

lim f (x) = f (c)

x→c

[eq. (11.30)]

f (x) is continuous in a non-open set S with vicinities ⇐⇒



n

o





∀

lim f (x) = f (c)





c∈int(S)





x→c































∀



a∈S\int(S)

“a” has a right-vicinity in S =⇒ lim f (x) = f (a)

x→a+







































∀

“b” has a left-vicinity in S =⇒ lim f (x) = f (b)





b∈S\int(S)



x→b−

[eq. (11.31)]

f (x) is continuous ⇐⇒ f (x) is continuous in its own domain

[eq. (11.32)]

n

o

f (x) is continuous in open interval I ⇐⇒ ∀c∈I

lim f (x) = f (c)

[eq. (11.33)]

x→c
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f (x) is continuous in a bounded closed interval [a, b ] ⇐⇒



a < c < b =⇒ lim f (x) = f (c) 







x→c





















lim f (x) = f (a)



[eq. (11.34)]

x→a+























lim f (x) = f (b)







x→b−

f (x) is continuous in a left-unbounded closed interval (−∞, b ] ⇐⇒



c < b =⇒ lim f (x) = f (c) 



x





→c



[eq. (11.35)]



lim f x) = f (b)







x→b−

f (x) is continuous in a right-unbounded closed interval [a, +∞) ⇐⇒



a < c =⇒ lim f (x) = f (c) 







x→c



[eq. (11.36)]



lim f (x) = f (a)







x→a+

f (x) is continuous in a left-half-open interval (a, b ] ⇐⇒



a < c < b =⇒ lim f (x) = f (c) 







x→c



[eq. (11.37)]



lim f (x) = f (b)







x→b−

f (x) is continuous in a right-half-open interval [a, b) ⇐⇒



a < c < b =⇒ lim f (x) = f (c) 



x





→c



[eq. (11.38)]



lim f (x) = f (a)







x→a+

GENERAL PROPERTIES OF CONTINUOUS FUNCTIONS



S







, /0

domain of fS(x) = S









=⇒

[eq. (11.39)]



S ⊂ domain of f (x) 



∀



x∈S fS(x) = f (x)

f (x) has a maximum in S ⇐⇒ ∃xmax∈S ∀x∈S f (x) ≤ f (xmax)

[eq. (11.40)]

f (x) has a minimum in S ⇐⇒ ∃xmin∈S ∀x∈S f (xmin) ≤ f (x)

[eq. (11.41)]
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f (x) is an increasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x1) < f (x2) }

[eq. (11.43)]

f (x) is a decreasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x2) < f (x1) }

[eq. (11.45)]

f (x) is continuous in [a, b ] =⇒ f (x) is bounded in [a, b ]

[eq. (11.46)]



I = [a, b ]



=⇒ max(range of f

f (x) is continuous in I

I (x)) = sup(range of fI (x))

[eq. (11.48)]



I = [a, b ]



=⇒ min(range of f

f (x) is continuous in I

I (x)) = inf(range of fI (x))

[eq. (11.49)]



I = [a, b ]





“max(range of f



=⇒

I (x))” exists

f (x) is continuous in I

“min(range of fI (x))” exists

[eq. (11.50)]



I = [a, b ]













f (x) is continuous in I



=⇒ range of f

y

I (x) is [ymin, ymax]

max = max(range of fI (x))











ymin = min(range of fI(x)) 

[eq. (11.51)]



I = [a, b ]







f (x) is an increasing function in I

=⇒ f (x) is continuous in I



range of f



I (x) is [ f (a), f (b)]

[eq. (11.52)]



I = [a, b ]







f (x) is a decreasing function in I

=⇒ f (x) is continuous in I



range of f



I (x) is [ f (b), f (a)]

[eq. (11.53)]



I = [a, b ]







f (x) is continuous in I

=⇒ f −1(x) is continuous

I



f (x) is an increasing function in I 

[eq. (11.54)]
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

I = [a, b ]







f (x) is continuous in I

=⇒ f −1(x) is continuous

I



f (x) is a decreasing function in I 

[eq. (11.55)]

“ f (x) = C ” is continuous

(in

)

[eq. (11.56)]

R

“ f (x) = x” is continuous

(in

)

[eq. (11.57)]

R



f (x) is continuous at “x = a”  =⇒ “f(x)+g(x)” is continuous at “x = a” 

g(x) is continuous at “x = a” 

[eq. (11.58)]

f (x) is continuous at “x = a” =⇒ “− f (x)” is continuous at “x = a” 

[eq. (11.59)]



f (x) is continuous at “x = a”  =⇒ “f(x)−g(x)” is continuous at “x = a” 

g(x) is continuous at “x = a” 

[eq. (11.60)]



f (x) is continuous at “x = a”  =⇒ “f(x)g(x)” is continuous at “x = a” 

g(x) is continuous at “x = a” 

[eq. (11.61)]



f (x) is continuous at “x = a”  =⇒ “(f(x))−1” is continuous at “x = a” 

f (a) , 0

[eq. (11.62)]



f (x) is continuous at “x = a” 





g(x) is continuous at “x = a” 

=⇒ “ f (x)/g(x)” is continuous at “x = a” 



g(a) , 0



[eq. (11.63)]



n ≥ 0



=⇒ “ f

)

f

p(x)” is continuous

(in R

p(x) = anxn + an−1xn−1 + ... + a1x + a0

[eq. (11.64)]

n ≥ 1 :

“ f (x) = xn ” is continuous

(in

)

[eq. (11.65)]

R

n ≥ 1 :

“ f (x) = x−n ” is continuous

(in

\{0})

[eq. (11.66)]

R
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n is even 

√

:

“ f (x) = n x ” is continuous

(in “[0, +∞)”)

n ≥ 1

[eq. (11.67)]



n is odd 

√

:

“ f (x) = n x ” is continuous

(in

)

[eq. (11.68)]

n ≥ 1

R

a > 0 :

lim ax = 1

[eq. (11.69)]

x→0

a > 0 :

“ f (x) = ax ” is continuous

(in

)

[eq. (11.70)]

R

“exp(x)” is continuous

(in

)

[eq. (11.71)]

R

b > 1 :

“logb(x)” is continuous

(in “(0, +∞)”)

[eq. (11.72)]

0 < b < 1 :

“logb(x)” is continuous

(in “(0, +∞)”)

[eq. (11.73)]

“ln(x)” is continuous

(in “(0, +∞)”)

[eq. (11.74)]

“sin(x)” is continuous

(in

)

[eq. (11.75)]

R

“cos(x)” is continuous

(in

)

[eq. (11.76)]

R

“tan(x)” is continuous



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

[eq. (11.77)]

R

2

2

2

2

2

2

“sec(x)” is continuous



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

[eq. (11.78)]

R

2

2

2

2

2

2

“csc(x)” is continuous

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} )

[eq. (11.79)]

R

“cot(x)” is continuous

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} )

[eq. (11.80)]

R
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

lim g(x) = b





x→a

 =⇒ lim f(g(x)) = f(b)

[eq. (11.81)]

x→a



f (x) is continuous at “x = b” 



g(x) is continuous at “x = a” 



=⇒ f (g(x)) is continuous at “x = a” 

f (x) is continuous at “x = g(a)” 

[eq. (11.82)]

“ f (x) = xa ” is continuous in “(0, +∞)” 

[eq. (11.83)]
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INTRODUCTION

In this appendix we present some general properties of derivatives that have been studied in this book. 

NOTES ON NOTATION

In this Appendix, we note that:

• Uppercase letter “N ” will be used to denote natural numbers; 

• Lowercase letters “i” through “n” will be used to denote integers (i.e., “i”, “ j”, “k”, “l ”, 

“m”, “n” will be used to denote integers); 

• Lowercase letters (except the lowercase letters used for integers and the lowercase letter

“e”) will denote real numbers (i.e., “a”, “b”, “c”, “d ”, and “ f ”, “g”, “h”, and “o”, “p”, “q”, 

“r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, and “z” will be used to denote real numbers); 

• Uppercase letter “I ” will be used to denote an interval in the number line (i.e., “I ” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “R” will be used to denote a region in the number line (i.e., “R” will denote a subset of the real number set “ ”); 

R

• Uppercase letter “S ” will be used to denote a subset of the real number set “ ”; R

• Uppercase letter “T ” will denote propositions that are identically true, and uppercase letter

“F ” will denote propositions that are identically false; 

• Uppercase letters “L”, “M ”, and “C ” will also be used to denote real numbers; 

• Greek letters “ε” and “δ ” will be used to denote real numbers in the context of limit definitions; 

• Given a function “ f (x)”, we will denote the inverse function by placing “−1” as a superindex [i.e., “ f −1(x)” will denote the inverse function of “ f (x)”]; 

• Given a function“ f (x)”, we will denote the corresponding reciprocal function by placing

“−1” as a superindex after surrounding the function with parenthesis

[i.e., “( f (x))−1 = 1/ f (x)”]. 

DERIVATIVE DEFINITIONS

d f

f (x + ∆x) − f (x)

= lim

[eq. (12.1)]

dx

∆x→0

∆x

d f

f (x + ∆x) − f (x)

= lim

[eq. (12.2)]

dx−

∆x→0−

∆x

d f

f (x + ∆x) − f (x)

= lim

[eq. (12.3)]

dx+

∆x→0+

∆x
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d f 

f (x) is differentiable at “x = a” ⇐⇒





exists

[eq. (12.4)]

dx x=a

d f 

f (x) is left-differentiable at “x = a” ⇐⇒





exists

[eq. (12.5)]

dx− x=a

d f 

f (x) is right-differentiable at “x = a” ⇐⇒





exists

[eq. (12.6)]

dx+ x=a



d f 













= LD 



dx−



d f 









x=a







= LD ⇐⇒

[eq. (12.7)]

dx x=a





d f

















= LD 



dx+



x=a

d f 

d f 

f (x) is differentiable at “x = a” ⇐⇒







=



[eq. (12.8)]

dx− 

dx+

x=a

x=a



d f 



f (x) is differentiable in nonempty open set S ⇐⇒ ∀



c∈S



exists

dx x=c

[eq. (12.9)]

f (x) is differentiable in a non-open set S with vicinities ⇐⇒





d f 









exists





∀c







∈int(S)





dx 





x=c































d f



∀



a∈S\int(S)

“a” has a right-vicinity in S =⇒



exists

dx+ 



x=a



































d f 









∀

“b” has a left-vicinity in S =⇒



exists





b∈S\int(S)

dx−



x=b

[eq. (12.10)]

f (x) is differentiable ⇐⇒ f (x) is differentiable in its own domain

[eq. (12.11)]



d f 



f (x) is differentiable in open interval I ⇐⇒ ∀



c∈I



exists

[eq. (12.12)]

dx x=c
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f (x) is differentiable in a bounded closed interval [a, b ] ⇐⇒



d f 







a < c < b =

exists 



⇒











dx 





x=c



























d f







exists

[eq. (12.13)]

dx+ 



x=a































d f 











exists





dx−



x=b

f (x) is differentiable in a left-unbounded closed interval (−∞, b ] ⇐⇒



d f 











c < b =⇒



exists 







dx 





x=c



[eq. (12.14)]





d f

















exists





dx−



x=b

f (x) is differentiable in a right-unbounded closed interval [a, +∞) ⇐⇒



d f 











a < c =⇒



exists 







dx 





x=c



[eq. (12.15)]





d f

















exists





dx+



x=a

f (x) is differentiable in a left-half-open interval (a, b ] ⇐⇒



d f 











a < c < b =⇒



exists 







dx 





x=c



[eq. (12.16)]





d f

















exists





dx−



x=b

f (x) is differentiable in a right-half-open interval [a, b) ⇐⇒



d f 











a < c < b =⇒



exists 







dx 





x=c



[eq. (12.17)]





d f

















exists





dx+



x=a

f (x) is differentiable at “x = a” =⇒ f (x) is continuous at “x = a” 

[eq. (12.18)]
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f (x) is left-differentiable at “x = a” =⇒ f (x) is left-continuous at “x = a” 

[eq. (12.19)]

f (x) is right-differentiable at “x = a” =⇒ f (x) is right-continuous at “x = a” 

[eq. (12.20)]

GENERAL PROPERTIES OF DERIVATIVES

[C ] ′ = 0

(in

)

[eq. (12.21)]

R

[x] ′ = 1

(in

)

[eq. (12.22)]

R



f ′(a) exists =⇒ [C f (x)] ′ 

= C f ′(a)

[eq. (12.23)]

x=a

[C f (x)] ′ = C f ′(x)

[in domain of f ′(x)]

[eq. (12.24)]



f ′(a) exists =⇒ [ − f (x)] ′ 

= − f ′(a)

[eq. (12.25)]

x=a

[ − f (x)]′ = − f ′(x)

[in domain of f ′(x)]

[eq. (12.26)]



f ′(a) exists 



=⇒ [ f (x) + g(x)]′ 

= f ′(a) + g ′(a)

g ′(a) exists

x=a

[eq. (12.27)]

[ f (x) + g(x)] ′ = f ′(x) + g ′(x)

[in domain of f ′(x) ∩ domain of g ′(x)]

[eq. (12.28)]



f ′(a) exists 



=⇒ [ f (x) − g(x)]′ 

= f ′(a) − g′(a)

g ′(a) exists

x=a

[eq. (12.29)]

[ f (x) − g(x)]′ = f ′(x) − g′(x)

[in domain of f ′(x) ∩ domain of g ′(x)]

[eq. (12.30)]
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f ′(a) exists 



=⇒ [ f (x)g(x)]′ 

= f ′(a) g(a) + f (a) g ′(a)

g ′(a) exists

x=a

[eq. (12.31)]

[ f (x) g(x) ] ′ = f ′(x) g(x) + f (x) g ′(x)

[in domain of f ′(x) ∩ domain of g ′(x)]

[eq. (12.32)]

n ≥ 2 :

[ xn ] ′ = n xn−1

(in

)

[eq. (12.33)]

R





f ′(a) exists 



1





f ′(a)

=⇒

′ 

= −

[eq. (12.34)]

f (a) , 0

f (x)



f 2(a)

x=a



1



f ′(x)

f (x) , 0 =⇒

′ = −

[in domain of f ′(x)]

[eq. (12.35)]

f (x)

f 2(x)

n ≥ 1 :

[ x−n ] ′ = − nx−(n+1)

(in

\{0})

[eq. (12.36)]

R



f ′(a) exists 









f (x)



f ′(a) g(a) − f (a)g ′(a)

g ′(a) exists

=⇒

′ 

=

[eq. (12.37)]

g(x)

x=a

g2(a)



g(a) , 0





f (x) 

f ′(x) g(x) − f (x)g ′(x)

g(x) , 0 =⇒

′ =

g(x)

g2(x)

[in domain of f ′(x) ∩ domain of g ′(x)]

[eq. (12.38)]



f ′(a) exists



=⇒ f ′(a) = 0

∀δ1>0 ∃∆x1,0 { |∆x1| < δ1 ∧ f (a + ∆x1) = f (a) }

[eq. (12.39)]



g ′(a) = 0





=⇒ [ f (g(x))]′ 

= 0

[eq. (12.40)]

f ′( g(a)) exists

x=a

[image: Image 3131]
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g ′(a) exists





=⇒ [ f (g(x))]′ 

= f ′( g(a)) g ′(a)

[eq. (12.41)]

f ′( g(a)) exists

x=a

[ f ( g(x)) ] ′ = f ′( g(x)) g ′(x)

[in domain of g ′(x) ∩ domain of f ′(g(x))]

[eq. (12.42)]

ADDITIONAL PROPERTIES OF DERIVATIVES



f ′(a) exists









1

f ′(a) , 0

=⇒ [ f −1(x)]′ 

=

x= f (a)

f ′(a)



f −1(x) exists in a neighborhood of “x = f (a)” 

[eq. (13.1)]



f ′(x) exists







1

f ′(x) , 0

=⇒ [ f −1(y)]′ = f ′(f−1(y))



f −1(y) exists in a neighborhood of “y = f (x)” 

[eq. (13.2)]



n is even 

√

1

=⇒ [ n x ]′ =

√

[in

+]

[eq. (13.3)]

n > 0

R

n ( n x )n−1



n is odd 

√

1

=⇒ [ n x ]′ =

√

[in

\{0}]

[eq. (13.4)]

n > 2

R

n ( n x )n−1



f (x) is continuous in [a, b ]





a < c < b 









f (x) is differentiable in (a, b)

=⇒ ∃c

[eq. (13.5)]



f (a) = f (b)





f ′(c) = 0 



a < c < b





f (x) is continuous in [a, b ]











=⇒ ∃

f (x) is differentiable in (a, b)

c

f (b) − f (a)







f ′(c) =



b − a

[eq. (13.6)]



f (x) is continuous in [a, b ] 





=⇒ f (a) = f (b)

[eq. (13.7)]



a < x < b =⇒ f ′(x) = 0





f (x) is continuous in [a, b ] 





=⇒ ∃C {a ≤ x ≤ b =⇒ f (x) = C }



a < x < b =⇒ f ′(x) = 0



[eq. (13.8)]
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

f (x) is continuous in [a, b ]





















f (x) is differentiable in (a, b) 

a < c < b



















g(x) is continuous in [a, b ]







=⇒ ∃

g(x) is differentiable in (a, b)

c

f ′(c)

f (b) − f (a)















=















g ′(c)

g(b) − g(a)











a < x < b =⇒ g′(x) , 0



[eq. (13.9)]



f (x) is continuous in a neighborhood of “x = a” 















g(x) is continuous in a neighborhood of “x = a” 















f (a) = 0







f (x)

f ′(x)

g(a) = 0

=⇒ lim

= lim

x→a g(x)

x→a g ′(x)



















f ′(x)













lim

exists





x→a g ′(x)



[eq. (13.10)]



f (x) is differentiable in a vicinity of “x = a” 















g(x) is differentiable in a vicinity of “x = a” 































lim f (x) is infinity









x→a



f (x)

f ′(x)

=⇒ lim

= lim

x→a g(x)

x→a g ′(x)







lim g(x) is infinity









x→a





























f ′(x)









lim

exists





x→a g ′(x)



[eq. (13.11)]



x = g(t) ∧ y = h(t)

















domain of g(t) = domain of h(t) 















y = f (x)









h′(a)

domain of f (x) = range of g(t)

=⇒ f ′(x)

=

[eq. (13.12)]

x=g(a)

g ′(a)







f (x) = h( g−1(x))

















g ′(a) exists ∧ g ′(a) , 0













h′(a) exists



0th order derivative of “ f (x)” is “ f (x)” 

[eq. (13.13)]

d f

1st order derivative of “ f (x)” is “

” 

[eq. (13.14)]

dx
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[image: Image 3158]

590

Appendix E - Derivatives

d2 f

d  d f 

=

[eq. (13.15)]

dx2

dx

dx

dn f

d  dn−1 f 

n ≥ 3 :

=

[eq. (13.16)]

dxn

dx

dxn−1

d

n ≥ 1 :

f (n)(x) =

[ f (n−1)(x) ]

[eq. (13.17)]

dx

DERIVATIVES OF EXPONENTIAL AND

LOGARITHMIC FUNCTIONS



b > 0 

log

:

[ log

b(e)

[in

+]

[eq. (14.1)]

b , 1

b(x) ] ′ =

R

x

1

[ ln(x) ] ′ =

[in

+]

[eq. (14.2)]

R

x

[ ex ] ′ = ex

[in

]

[eq. (14.3)]

R

b > 0 :

[ bx ] ′ = bx ln(b)

[in

]

[eq. (14.4)]

R

[ xa ] ′ = a xa−1

[in

+]

[eq. (14.5)]

R



g ′(x) exists 





h ′(x) exists

=⇒



g(x) > 0



h

g(x)h(x) i ′ = g(x)h(x) ln(g(x)) h ′(x) + h(x) g(x)h(x)−1g ′(x)

[eq. (14.6)]

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

[ sin(x) ] ′ = cos(x)

(in

)

[eq. (15.1)]

R

[ cos(x) ] ′ = −sin(x)

(in

)

[eq. (15.2)]

R
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[ tan(x) ] ′ = sec2(x)



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

[eq. (15.3)]

R

2

2

2

2

2

2

[ sec(x) ] ′ = sec(x) tan(x)



(

) ! 

5π

3π

π

π

3π

5π

in

\ ...,−

, −

, − ,+ ,+

, +

, ... 

[eq. (15.4)]

R

2

2

2

2

2

2

[ csc(x) ] ′ = −csc(x)cot(x)

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} )

[eq. (15.5)]

R

[ cot(x) ] ′ = −csc2(x)

( in

\ {...,−3π,−2π,−π,0,+π,+2π,+3π,...} )

[eq. (15.6)]

R

arcsin(x) = sin−1

(x)

[eq. (15.7)]

[ − π , π ]

2 2

1

[ arcsin(x) ] ′ = √

(in “(−1,1)”)

[eq. (15.8)]

1 − x2

arccos(x) = cos−1 (x)

[eq. (15.9)]

[ 0,π ]

1

[ arccos(x) ] ′ = − √

(in “(−1,1)”)

[eq. (15.10)]

1 − x2

arctan(x) = tan−1

(x)

[eq. (15.11)]

( − π , π )

2 2

1

[ arctan(x) ] ′ =

(in

)

[eq. (15.12)]

R

1 + x2

[image: Image 3180]
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arcsec(x) = sec−1

(x)

[eq. (15.13)]

[ 0, π )

,π ]

2

∪( π2

1

[ arcsec(x) ] ′ =

√

(in “(−∞,−1) ∪ (1,+∞)”)

[eq. (15.14)]

|x| x2 − 1

arccsc(x) = csc−1

(x) . 

[eq. (15.15)]

[− π ,0)

]

2

∪(0, π2

1

[ arccsc(x) ] ′ = −

√

(in “(−∞,−1) ∪ (1,+∞)”)

[eq. (15.16)]

|x| x2 − 1

arccot(x) = cot−1 (x)

[eq. (15.17)]

(0,π)

1

[ arccot(x) ] ′ = −

(in

)

[eq. (15.18)]

R

1 + x2

ANALYSIS OF DIFFERENTIABLE FUNCTIONS

INCREASING FUNCTIONS

f (x) is an increasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x1) < f (x2) }

[eq. (16.1)]

f (x) is an increasing function ⇐⇒

{ x1,x2 ∈ domain of f (x) :

x1 < x2 ⇐⇒ f (x1) < f (x2) }

[eq. (16.2)]

f (x) is an increasing function at point “a” ⇐⇒

(S

∃

N is a neighborhood of “a” 

S

[eq. (16.3)]

N

f (x) is an increasing function in SN

a < b :

( n

o

)

a < c < b =⇒ f (x) is an increasing function at point “c” ⇐⇒

f (x) is an increasing function in “(a, b)” 

[eq. (16.4)]
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{a < b ∧ f (x) is an increasing function in “(a,b)”} =⇒



maximum of f (x) in “(a, b)” does not exist 

[eq. (16.5)]

minimum of f (x) in “(a, b)” does not exist

{a < b ∧ f (x) is an increasing function in “(a,b]”} =⇒

{maximum of f (x) in “(a,b]” = f (b) }

[eq. (16.6)]

{a < b ∧ f (x) is an increasing function in “[a,b)”} =⇒

{minimum of f (x) in “[a,b)” = f (a)}

[eq. (16.7)]



a < b







f (x) is an increasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “(a, b ] ” 

{maximum of f (x) in “(a,b]” = f (b)}

[eq. (16.8)]



a < b







f (x) is an increasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “ [ a, b)” 

{minimum of f (x) in “[a,b)” = f (a)}

[eq. (16.9)]

f ′(c) > 0 =⇒ { f (x) is an increasing function at point “c” }

[eq. (16.10)]

{a < x < b =⇒ f ′(x) > 0} =⇒ { f (x) is an increasing function in “(a,b)”} . 

[eq. (16.11)]

DECREASING FUNCTIONS

f (x) is a decreasing function in S ⇐⇒ { ∀x1,x2∈S x1 < x2 ⇐⇒ f (x2) < f (x1) }

[eq. (16.12)]

f (x) is a decreasing function ⇐⇒

{ x1,x2 ∈ domain of f (x) :

x1 < x2 ⇐⇒ f (x2) < f (x1) }

[eq. (16.13)]
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f (x) is a decreasing function at point “a” ⇐⇒

(S

∃

N is a neighborhood of “a” 

S

[eq. (16.14)]

N

f (x) is a decreasing function in SN

a < b :

( n

o

)

a < c < b =⇒ f (x) is a decreasing function at point “c” ⇐⇒

f (x) is a decreasing function in “(a, b)” 

[eq. (16.15)]

{a < b ∧ f (x) is a decreasing function in “(a,b)”} =⇒



maximum of f (x) in “(a, b)” does not exist 

[eq. (16.16)]

minimum of f (x) in “(a, b)” does not exist

{a < b ∧ f (x) is a decreasing function in “(a,b]”} =⇒

{minimum of f (x) in “(a,b]” = f (b)}

[eq. (16.17)]

{a < b ∧ f (x) is a decreasing function in “[a,b)”} =⇒

{maximum of f (x) in “[a,b)” = f (a)}

[eq. (16.18)]



a < b







f (x) is a decreasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “(a, b ] ” 

{minimum of f (x) in “(a,b]” = f (b)}

[eq. (16.19)]



a < b







f (x) is a decreasing function in “(a, b)” 

=⇒



f (x) is a continuous function in “ [ a, b)” 

{maximum of f (x) in “[a,b)” = f (a)}

[eq. (16.20)]

f ′(c) < 0 =⇒ { f (x) is a decreasing function at point “c” }

[eq. (16.21)]

{a < x < b =⇒ f ′(x) < 0} =⇒ { f (x) is a decreasing function in “(a,b)”}

[eq. (16.22)]
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LOCAL MAXIMA AND LOCAL MININA

f (x) has a local maximum at “a” ⇐⇒



S



∃

N is a neighborhood of “a” 

S

[eq. (16.23)]

N

maximum value of f (x) in SN = f (a)

f (x) has a local minimum at “a” ⇐⇒



S



∃

N is a neighborhood of “a” 

S

[eq. (16.24)]

N

minimum value of f (x) in SN = f (a)



f (x) is a differentiable function



=⇒ f ′(a) = 0

[eq. (16.25)]

f (x) has a local maximum at “x = a” 



f (x) is a differentiable function



=⇒ f ′(a) = 0

[eq. (16.26)]

f (x) has a local minimum at “x = a” 



f ′(a) = 0  =⇒ f(x) has a local minimum at “x = a” 

[eq. (16.27)]

f ′′(a) > 0



f ′(a) = 0  =⇒ f(x) has a local maximum at “x = a” 

[eq. (16.28)]

f ′′(a) < 0

[image: Image 3189]
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Absolute Value, 25, 32, 44

“tan(x)”, 355

Addition “+” 

Continuous Functions, Definition

in Integers, 21

at a Point, 311

in Natural Numbers, 11

Left-Continuous, 312

in Rational Numbers, 28

Right-Continuous, 312

in Real Numbers, 37

in a Closed Interval

Bounded, 314

Binomial Theorem, 58

Left-Unbounded, 314

Blackbody Radiation, 265–267, 464–473, 518–

Right-Unbounded, 315

529

in a Half-Open Interval

Cartesian Coordinates, 95

Left-Half-Open, 315

Distance, 101

Right-Half-Open, 315

Equation of a Circle, 101

in a Set

Equation of a Line

Non-Open Set with Vicinities, 313

Non-Vertical, 100

Nonempty Open Set, 313

Vertical, 100

their Domain, 313

Cauchy’s Theorem, 423

in an Open Interval, 314

Circular Motion, 134–136, 298–303, 500–507

Continuous Functions, Properties

Continuous Functions, Cases

Bounded, 318

Composite of, 359

Decreasing, 338

Exponential

Increasing, 335

“exp(x)”, 353

Inverse of, 338, 339

“ln(x)”, 354

Maximum, 322

“log

Minimum, 328

b(x)” (0 < b < 1), 353

“log

Range, 329

b(x)” (b > 1), 353

“ax ” (a > 0), 352

“xa ”, 360

Derivative, Cases

General

Composite of (Chain Rule), 402

“x”, 340

Exponential

“xn ” (n ≥ 1), 346

“exp(x)”, 460

“x−n ” (n ≥ 1), 346

“ln(x)”, 460

√

“ n x ”, 346, 347

“logb(x)”, 458

Constant, 340

“bx ”, 461

Division of, 345

“g(x)h(x) ”, 462

Negative of, 342

“xa ”, 462

Polynomials, 346

General

Product of, 344

“C f (x)”, 378

Reciprocal of, 344

“x”, 377

Subtraction of, 343

“xn ”, 383

Sum of, 341

“x−n ”, 387

√

Trigonometric

“ n x ”, 414

“cos(x)”, 355

Constant, 377

“cot(x)”, 357

Division, 389

“csc(x)”, 356

Negative, 379

“sec(x)”, 356

Product, 381

“sin(x)”, 354

Reciprocal, 385
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Subtraction, 380

in Rational Numbers, 27

Sum, 379

in Real Numbers, 36

Inverse of, 414

Exponential Functions

Parametric Functions, 449

“exp(x)”, 62

Trigonometric

“ln(x)”, 64

“arccos(x)”, 490

“logb(x)”, 63

“arccot(x)”, 499

“e”, 61

“arccsc(x)”, 496

Exponentiation

“arcsec(x)”, 493

Integer Exponents, 31, 40

“arcsin(x)”, 489

Natural Number Exponents, 12, 23, 31, 40

“arctan(x)”, 492

Rational Number Exponents, 49

“cos(x)”, 482

Real Number Exponents, 56

“cot(x)”, 487

“csc(x)”, 486

Geometric Series, 59

“sec(x)”, 484

Geometry, 68

“sin(x)”, 476

Angles, 75

“tan(x)”, 483

Radians, 94

Derivative, Definition, 364

Lines, 71

Left-Derivative, 366

Planes, 70

nth Order Derivative

Rays, 74

First Order, 450

Segments, 80

Second Order, 451

Space, 68

Third and Higher Order, 452

Greater Than “>”, 15, 24, 32, 43

Zeroth Order, 450

Right-Derivative, 367

Identity Operator “+”, 21, 29, 38

Differentiability

Integers “ ”, 18

Z

and Continuity, 373, 376

Negative Integers “ − ”, 20

Z

at a Point, 369

Nonnegative Integers “ ∗ ”, 20

Z

+

Left-Differentiability, 370

Positive Integers “

”, 20

Z

Right-Differentiability, 370

Intervals in

, 139, 142

R

in a Closed Interval

Closed, 140, 141

Bounded, 371

Bounded, 140

Left-Unbounded, 372

Left-Unbounded, 141

Right-Unbounded, 372

Right-Unbounded, 141

in a Half-Open Interval

Unbounded, 141

Left-Half-Open, 372

Half-Open, 141

Right-Half-Open, 373

Left, 141

in a Set

Right, 141

Non-Open Set with Vicinities, 371

Open, 139

Open Set, 370

Bounded, 140

in an Open Interval, 371

Left-Unbounded, 140

Differentiable Functions, 370–373

Right-Unbounded, 140

Decreasing, 513

Unbounded, 140

Increasing, 511

Isomorphism, 10

Local Maximum, 515, 518

∗ and , 32

Q

Z

Local Minimum, 515, 516

∗ and , 45

R

Q

Division “/ ”, 12, 23, 30, 39

∗ and , 25

Z

N

Entropy, 66, 199

L’Hopital’s Rule, 428

Equivalence Classes, 9

Law of Cosines, 123

in Integers, 19

Law of Sines, 122

Index
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Less Than “<” 

Movement along a Straight Line, 15, 45, 360, in Integers, 23

453

in Natural Numbers, 14

Acceleration, 181, 409, 454

in Rational Numbers, 32

Constant Acceleration, 178–183, 408–410

in Real Numbers, 43

Velocity, 145, 179, 408, 453–455

Limit L (x towards infinity), 185

Multiplication “·” 

x → +∞, 194, 195, 197

in Integers, 22

x → −∞, 190, 191, 197

in Natural Numbers, 11

x → ∞, 186, 187, 197

in Rational Numbers, 29

“(1 + 1/x)x ”), 297

in Real Numbers, 38

Bounded Function, 273

Constant, 189, 193, 198

Natural Numbers “

”, 10

N

Division, 190, 194, 199

Nonzero Natural Numbers “ 1”, 11

N

Negative, 189, 193, 198

Negative Operator “−” 

Product, 189, 193, 199

in Integers, 21

Reciprocal, 190, 194, 199

in Rational Numbers, 29

Subtraction, 189, 193, 199

in Real Numbers, 38

Sum, 189, 193, 198

Object hanging held by Two Strings, 106–111

Uniqueness of, 188, 193, 198

Limit L (at x = a), 149

Planar Geometry, 84

x → a, 150, 176

Circles, 93

x → a+, 174, 176

π, 93

x → a−, 169, 176

Area of, 95

“(1 + x)1/x ”, 297

Parallelograms, 89

“sin(x)/x”, 291

Area of, 91

“x”, 156, 173, 177

Polygons, 82

Bounded Function, 270–272

Rectangles, 88

Constant, 155, 173, 177

Area of, 90

Division, 168, 174, 178

Squares, 88

Negative, 158, 173, 177

Area of, 90

Product, 159, 173, 177

Trapezoids, 90

Reciprocal, 166, 174, 178

Area of, 92

Subtraction, 159, 173, 177

Triangles, 84

Sum, 156, 173, 177

Area of, 91

Uniqueness of, 153, 171, 177

Polar Coordinates, 125

Limit is Infinity, 209

Distance, 128

Division, 236

Equation of a Circle, 130, 131, 133

Limit is +∞, 256, 257

Equation of a Line

Limit is −∞, 239, 240

Non-Vertical, 127

Limit is ∞, 212, 213

Vertical, 127

Negative, 226, 260

Pythagoras’ Theorem, 87

Product, 227, 245, 261

Reciprocal, 235

Rational Number Sequences, 33

Sum, 221, 243, 259

Bounded, 35

Limits of Type ∞/∞, 431

Cauchy, 34

Logic, 3

Convergent, 34

Predicate Logic, 6

Rational Numbers “ ”, 26

Q

Propsitional Algebra, 3

Whole Rational Numbers “ ∗ ”, 28

Q

Real Functions

Mean Value Theorem, 417

Bounded, 210
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Decreasing, 318, 512

“arccsc(x)”, 495

Increasing, 317, 510

“arcsec(x)”, 493

Local Maximum of, 513

“arcsin(x)”, 488

Local Minimum of, 514

“arctan(x)”, 492

Maximum of, 316

“cos(x)”, 103

Minimum of, 317

“cot(x)”, 116

Real Number Sequences, 50

“csc(x)”, 116

θge(n), 60

“sec(x)”, 116

θle(n), 59

“sin(x)”, 103

Bounded, 53

“tan(x)”, 103

Cauchy, 52

Trigonometric Circle, 101

Convergent, 51

Limit of, 52

Real Numbers “ ”, 33

R

Fractional Real Numbers “ ∗ ”, 37

R

Irrational Numbers, 50

Reciprocal

in Rational Numbers, 30

in Real Numbers, 39

Rolle’s Theorem, 414

Root of Order n, 12, 41

Sandwich Theorem, 274

Related to, 278, 279

Similar to, 277

Set Theory, 6

Functions, 8

Relations, 8

Equivalence Relations “∼”, 9

Set Operators, 7

Subsets in R

Boundary Points of, 144

Bounded, 305

Infimum, 311

Supremum, 307

Closed, 143

Closure of, 144

Exterior Points of, 144

Interior Points of, 144

Limiting Points of, 143

Open, 142

Regions, 142

Neighborhoods, 142

Vicinities, 142

Left-Vicinities, 143

Right-Vicinities, 143

Subtraction “−”, 11, 21, 28, 37

Trigonometry, 101, 115, 488

“arccos(x)”, 490

“arccot(x)”, 498
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