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Table 4.3 The correspondence of three ADE sets at the level of root systems.
The first is the connection between root systems in 2D/3D and 2D/4D via the Clifford
spinor induction. The 4D root systems in turn are binary polyhedral groups related to
the ADE-type root systems of the (affine) ADE Lie algebras via the eponymous McKay
correspondence. Combining both correspondences thus extends to a correspondence
between 2D/3D root systems and ADE-type root systems. Now the Coxeter number h
of the ADE Lie algebras, the sum of the dimensions of the irreducible representations
of the binary polyhedral group G, ). d;, and the number of roots |®| in the 2D/3D root

systems are all tantalisingly the same.

Cay, which via the McKay correspondence is linked to the missing A, family.
The number of roots in Ir(n) is 2n, which matches with the Coxeter number 2n
of Aj,—1. This therefore seems like a plausible additional infinite family to in-
clude in the correspondence. Including this family in the correspondence also
matches Arnold’s observation above, linking the decomposed group (e.g., in
terms of Springer cones) with the exponents of the corresponding group (here
it’s just self-dual). This tentative connection is summarised in Table 4.3.

There seems to be some tension regarding only covering half of the A, cases.
This is because root systems are always even, whilst in the McKay correspon-
dence the odd-order cyclic groups also correspond to A-type Lie algebras with
even n which are therefore not covered. But for now let us assume that the
correct ADE set is indeed (I(n), A1 X I(n), As, B3, H3), which induces the root
systems (Ir(n), I(n) X L(n), Dy, F4, Hy).

Now we would like to use this to go directly from Platonic symmetries to
ADE diagrams without the detour via the spinor group intermediaries — can we
complete the observation from the Trinity in Section 4.1 about the rotational
orders of the polyhedral groups and the legs in the ADE diagrams to a fully-
fledged ADE correspondence?

Table 4.4 shows the diagrams one would get if one started with this set
of root systems (I>(n), A} X I»(n), As, B3, H3) and constructed diagrams in the
same way as in Section 4.1 where we went from (As, B3, Hs) to (Eg, E7, Eg)
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(4.22)

Thus, we sum over the columns of the above character tables and obtain
r X v matrices a;; from Equation (4.17). This was done in [3] and the matrices
a;; turn out to be precisely the adjacency matrices of the affine ADE Dynkin
diagrams! That is,

THEOREM 4.17 (McKay correspondence for SU(2)) The McKay quiver
Jor the ADE discrete finite subgroups of SU(2) are the Dynkin diagrams of the
corresponding affine ADE Lie algebra, in particular,

o The trivial one-dimensional irrep for the identity corresponds to the affine
node;

o The matrix m;; = 20;; — a;; is the Cartan matrix;

o The dimensions d; of the irreps are the Coxeter labels of the root system in
Section 3.2.1, and also the eigenvalues of the Smith graphs in Section 3.3.

This last comment on Coxeter labels and irreducible representations implies
that the Coxeter number of the ADE Lie algebra is equal to the sum of the
dimensions of the irreducible representations of the binary polyhedral group,
and that the sum of the squares of the labels is of course equal to the order of
the binary polyhedral group.

EZ: An Illustration
Let us illustrate with the binary tetrahedral group of order 24. Straight-away,
we see that the dimensions of the irreps (1,1, 1,2, 2, 2, 3) are the coeflicients
of expansion of the affine root for EZ in Table 3.1, as well as the cigenvalues of
the EZ graph in Table 3.2. The sum of their squares, of course, is 24, the size
of the binary group.
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the binary groups. This may be giving us some ideas for firstly completing an
ADE set, and secondly finding another ADE correspondence!

4.6.1 (24,60,120) and (12, 18, 30)

We saw from Section 4.5 that part of the McKay correspondence is that the
sizes (24, 60, 120) of the exceptional binary groups are the sums of the squares
of the labels of the affine ADE diagrams (likewise for the A- and D-types: viz.,
Y1 =nand4x 1+ Y722 = 4n). But what about just the sums themselves?
These are the Coxeter numbers of the (non-affine!) Lie Algebras and in the
classical SU(2) / affine ADE McKay correspondence they have no immediate
interpretation or direct connection.
As always, we could begin, as guided by the exceptionals:

12=1+1+1+2+2+3,
18=1+14+2+2+2+3+3+4,
30=1+2+2+3+3+4+4+5+6. 4.24)

We now note that (12, 18, 30) is also the number of roots in (As, B3, H3), which
hints at a direct correspondence between 3D root systems and ADE Lie al-
gebras, making the suggestive link in Section 4.1 more concrete. Could we
perhaps use this as guidance to extend the correspondence to a full ADE cor-
respondence?

The root system I(n) X I (n) is essentially the dicyclic (or binary dihedral)
eroup, which in the McKay correspondence is connected with the D, series
of Lie algebras. The sum of the dimensions of the irreps is 2n + 2, whilst the
Coxeter number of D, is 2(n+ 1). In addition, I>(n) X I;(n) in our root system
induction construction is linked with A; X I(n), suggesting a more direct link
between A X I(n) and D,,;». The number of roots in this A; X I>(n) root system
is also 2n + 2, matching the expected Coxeter number of D, and suggesting
that we are on the right track in extending the correspondence!

If we want to extend the root system correspondence even further, we there-
fore need one other countable family corresponding to A,,. This is in fact given
by the 2D root systems I,(n). We had not previously included these in the cor-
respondence, since 2D root systems are self-dual [60] as we discussed above
and thus did not appear to give new results: as we saw above in Sections 3.4.4
and 4.4.1, in the Clifford algebra of 2D the spaces of vectors and spinors are
both of dimension two and can be canonically mapped into each other. The
2D root systems are thus self-dual, i.e., just map L(n) to I(n). However, as
a complex/quaternionic group, I>(n) is precisely the cyclic group of order 2n,
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One then considers the following tensor product decomposition over all ir-
reducible representations r; of G:

20m =Pa, (4.12)
J
where a;; € Zp denote the multiplicity in the decomposition.
The astute observation of [3] is to construct a graph representing this tensor
product structure by performing the following:

e Let each irreducible representation denote a node;

o Let the multiplicity a;; of the decomposition be the adjacency matrix of the
finite graph;

o The result is the McKay quiver (a graph, see Section 3.3).

Of course, this can be done for any finite group with a chosen defining rep-
resentation. The key, as the reader would have expected, is that for discrete,
finite subgroups of SU(2) — the ADE binary polyhedral groups — something
miraculous happens.

Z/(2Z): A Warm-up Example
It is expedient to illustrate how to obtain the McKay quiver from (4.12) for a
simple case. Take, for example, C, = Z/(27Z), consisting explicitly of the 2 x 2

matrices
1 0 -1 0

We can check that this is an embedding of C, into SU(2) by checking the
determinant and the unitarity. One can think of these matrices as actions on C>
with complex coordinates (i, v). The defining (fundamental) representation of
this Z/(27Z) is thus the second e¢lement in Equation (4.13), i.e., the negative,
Iy, of the identity matrix.

Abstractly, the group itself has two elements, which we can denote as {1, —1}.
The irreducible representations of C; are, since it is abelian, all 1-dimensional.
There are two of them:

(i) the trivial representation 1 where all group elements are represented by 1
(every finite group has this representation); and

(ii) the representation 17 where where the two elements in Equation (4.13) are
represented by 1 and —1 respectively.

Subsequently, we have 2 nodes of the McKay quiver, which can be labelled 1
and 1’.

The fundamental 2 in this case? is a direct sum 1’ @1’ because it is the matrix
-, Again, we emphasise that of all the ADE polyhedral groups, only type

2 A non-SU(2) action such as (u, v) — (1, —v), for example, would correspond to 1 & 1’.
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walls of a given Weyl chamber decompose the plane into a cone containing
this Weyl chamber together with its backward cone, which also contains one
Weyl chamber, whilst the complementary cones contain the other n — 1 Weyl
chambers each. In the projective plane one therefore gets the decomposition
2n = 2(1 + (n — 1)). For A; X I,(n), one simply gets a doubling of this, since
the A, just creates two copies of the I(n) decomposition. One therefore gets
the decomposition 4n = 2(1 + (n — 1) + 1 + (n — 1)). This seems somewhat
needlessly complicated!

This decomposition therefore matches the correct exponents of the Cox-
eter element even for the countably infinite family in the root system corre-
spondence. Arnold’s original link therefore extends to the full correspondence
(A1 X I(n), As, B3, Hy) — (I(n) X I,(n), D4, F4, Hs) between root systems. In
the spirit of this book, we are halfway there to an ADE correspondence: we
have added one infinite family to a Trinity. We will advocate the inclusion of a
further infinite family in Section 4.6, using other connections in the ADE web
such as the McKay correspondence, in order to fully complete this into an ADE
set. Our hope with this book is that the readership will likewise be “snappers-
up of unconsidered trifles” [67]; and that they will start making conjectures and
proving new connections in this mathematical web for themselves, discovering
a wealth of exciting new mathematics in the process.

We therefore introduce the McKay correspondence now — the original and
mysterious link that opened the field of ADE.

4.5 The McKay Correspondence

We saw from Sections 3.4.2 and 3.4.3 that the discrete finite subgroups G of
SU(2) follow an ADE pattern; likewise, we saw from Section 3.2.1 that the
simply-laced root systems (i.e., those with simple roots at only 120-degree-
angles) also follow this classification pattern — and hence also the simply-laced
Lie algebras. A priori, these come from two different worlds, individually well-
known by the beginning of the twentieth century. Interestingly, it was not until
late in that century that a precise connection between the two was found [3].
Because G is a subgroup of SU(2), there is a distinguished complex (spino-
rial) representation (see Section 2.3), which we can denote as 2. These corre-
spond to the 2 X 2 matrix generators of the group as presented in Equations
(5.25) and (5.27). From an abstract point of view, when G is non-abelian, i.c.,
the D and E families, 2 is an irreducible representation. When G is abelian,
i.e., A-family, 2 is a reducible representation, decomposition into a direct sum
of a pair of conjugate one-dimensional irreducible representations: 2 = 1@ 1.
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A (the cyclics) has this split of the fundamental 2 because it is abelian; for the
others 2 is a faithful, irreducible, 2-dimensional defining representation.
Thus, for our present case (4.12) reads

TelHel=1el,
Tel)el =161. (4.14)

With the full decomposition information, we can now construct the McKay
quiver. There are two nodes, labelled by 1 and 1’. For the node 1, there are two
arrows to node 1’; likewise, for the node 1/, there are two arrows to node 1.
Letting the pairs of bi-directional arrows be represented by a single line, the
quiver looks like the diagram of an Oxygen molecule.

1 Ser

This is the Dynkin diagram for affine Ay
In general, for A, = Z/((n + 1)Z), one gets a necklace of n + 1 beads, which
is the Dynkin diagram for affine A,,.

Character Tables
In general, we would like a systematic way of extracting «;; given any finite
eroup. To do so, we recall a little character theory for finite groups (e.g., we
recall Definition 2.40 onwards).

DEFINITION 4.16 The character y of a group element g € G is the trace of
the d-dimensional matrix representation of g.

Thus we have the following properties (the first two are immediate):

e ) is constant over conjugacy classes of G since Tr(hgh™') = Tr(g); however,
it does depend on the representation, including its dimension. Hence, we can

denote the character as
X

class .

: the character of the ith irreducible representation r; for the conjugacy

As mentioned in Section 2.3, there are as many conjugacy classes as there
are irreducible representations, say r.

e We can therefore organise the characters into a square table called the char-
acter table of G with (i) indexing the rows/irreducible representations and
v indexing the columns/conjugacies (with one extra row keeping track of
the sizes of each conjugacy class); we denote the sizes of the yth conjugacy
class as r,.
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of commuting factors W = Wy ... W1 with W; = exp(zB;m/h) = cos(zm/h) +
sin(zzm/h)B;. That is they are bivector exponentials of bivectors B; describing
orthogonal planes. The following two propositions govern the actions of each
factor on vectors that are either in a plane or orthogonal to it.

PROPOSITION 4.11 (Vector orthogonal to the rotation plane) A vector v
that is orthogonal to a plane described by the bivector B; is invariant under
rotation in that plane W;.

Proof 1f a vector v is orthogonal to B; then it is also orthogonal to two vec-
tors that generate B; upon multiplication. Hence it anticommutes with both,
and thercefore it commutes with B;. So W; also commutes with v such that
v - WiawW; = W;W,v = v. Since W and W are inverses and cancel, the vector
is invariant under W;.

In contrast, when the vector lies in the rotation plane we recover our result
from Example 4.10:

PROPOSITION 4.12 (Vector in the rotation plane) If a vector v lies in the
plane B; then rotation leads to a complex eigenvalue equation

v — exp (£27m; B;/h)v.

Proof 1If v lies in the plane defined by B;, it will be orthogonal to one of the
vector factors but parallel to the other. Thus, v now anticommutes with B;.
Commuting W; through to the left now introduces a minus sign in the bivector
part (but not the scalar part, see e.g., Equation 4.11). This is again equivalent
to reversal W; and one therefore gets the usual complex eigenvector equation

v — WaW; = WWy = W'y = exp (£27m;Bi/h)v

without the need for complexification, because the complex structure simply
arises from the bivector describing the rotation plane.

THEOREM 4.13 (Coxeter elements and complex eigenvalue equations) Con-
sider a Coxeter pinor W factorising into orthogonal eigenspaces W = Wy ... W,
and a vector v lying in one of these planes B;. Then the action of the Coxeter

element wv reduces to the complex eigenvalue equation with respect to this

plane B;.

Proof Since they are orthogonal all the W;s commute with each other. Since
v is orthogonal to all of them apart from B; they therefore also commute with
v by Proposition 4.11. They therefore all commute through and cancel out.

V — WVWZ Wk...Wl\/Wl ...Wk = W1W1W2WZ...WGVW/,‘ = W,‘VW,‘.
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algebras there are many objects that square to —1 (but can have non-trivial
commutation relations).

EXAMPLE 4.10 (Complex eigenvalue equation in the plane) Let us look at
the above rotation again: WyW with W = a1, = — cos ~ + sin Zejer. We are
interested in eigenvectors, i.e., WyW = Av. So let us just look at the left-hand
expression for now, and try to use the commutation relations in the Clifford
algebra. We recall that the pseudoscalar in the plane e;e; = I anticommutes
with vectors in the plane v = ae; + bey:

vl = (ae; + ber)eier = aejeren + bererey = aer — bejerer = aey — bey

whilst

Iv = e1ex(aer + bey) = aejere; + bererey = —aejeren + bey = —aey + bey.

Therefore Iv = —vI. So in the above expression xW, if we want to commute
W = —cos? + sinZerey to the left of v, then the scalar part will commute,
whilst the bivector part will anticommute, i.¢., change sign. Thus W gets turned
into —cos & — sin Zeje;. Switching the sign on this bivector part is actually
exactly the same as reversal W so we have that commuting W past v gives
YW = Wy.

So overall we get that

WyW = WWy = Wy,

Plugging in the form of W = —exp (—meje2/n) now immediately gives a com-
plex eigenvalue-type equation

WyW = WWy = W2y = exp (—2mejey/n)y

with complex eigenvalue A = exp (—2neje,/n). Thus, the complex ¢igenvalue
equation arises automatically here by commuting W past the v. There is no
need to complexify this space to achieve this, as the complex structure is given
by the bivector, and the exponent/eigenvalue is just given algebraically. Note,
however, that this only holds when the vector lies in the rotation plane, which
here is trivially the case. We will get different behaviour when it doesn’t, as
discussed below.

The Coxeter plane geometry of more interesting root systems is fascinating,
and in particular the light that a Clifford algebra treatment sheds upon it. The
reader is referred to the literature for details [47, 63, 64], but we briefly describe
the construction relevant to the invariants involved in Arnold’s observation.

Consider the Coxeter pinor W = ¢ ..., which gives the action of the
Coxeter element as WvW. Assume that we can completely factorise it in terms
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h m; w
L(n) x L(n) n 1,I,n-1,n-1 exp(felez)exp(;—’%m)
Dy 6 1,3,3,5 exp (- ZBc) exp (§1Bc)
F, 12 1,5,7,11 exp(—%Bc)exp(f—’z’IBc)
H, 30 | 1.11,19,29 | exp(=%Bc)exp (-2 1Bc)

Table 4.2 Clifford factorisations of the 4D Coxeter versors giving rise to the
correct exponents (for a particular choice of simple roots).

The treatment for the other 4D root systems is analogous. D4 and F4 can
be shown to factorise in just the right way so as to give the correct exponents.
Table 4.2 shows the factorisation for those groups, giving the invariants that
Arnold noticed in his Springer cone decomposition. Dy, F4 and Hy were of
course induced from the root systems As, Bz and Hs above, via the even sub-
algebra. For simplicity when discussing the Coxeter plane geometry above,
rather than continuing to think of a 4D subspace of the 3D Clifford algebra, we
switched to a formulation just in terms of the usual four Euclidean dimensions.
But the whole Coxeter plane construction can also be explicitly performed in
the even subalgebra [47]. Further details can also be found in [63] where such
a factorisation has been performed for Eg (which as we saw above is linked to
H,) in [64] as well as for other 4D root systems such as A4 and By, and novel
Clifford invariants of the Coxeter element have been considered in [66].

These cover the Trinity-part D4, F4 and Hy. Returning to our infinite families
and extending Arnold’s observation to these:

EXAMPLE 4.15 (Exponents of I,(n) X I,(n)) The two copies of I,(n) in
I(n) X I(n) are orthogonal such that on¢ gets two setsof landa—1 =n—1,
ie., (1,1,n — 1,n — 1) as shown above. For example, take a;
—Cos Zep +8inZes, a3 = €3, @y = —COS Tes + sin Tey as simple roots, then

= é, m =

W = (—exp(—merea/m)(—exp (—meszes/n)) = WinWag
which is just two copies of the 2D case.

If we follow Arnold’s reasoning, the order of the binary polyhedral group
(here the dicyclic group coming from A; X I;(n)) should be decomposable in
terms of the exponents of the corresponding 4D root system (I>(n) X Ir(n)) as

D+ o

Indeed this matches the correct invariants. This also actually matches
Arnold’s original Springer cone decomposition: for I(n), the two bounding

dn=21+1+n 1)) = 4n.
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Only W; does not commute through since v lies in B;, i.e., the one that defines
the e¢igenplane that v lies in. But by Proposition 4.12 commuting W; through
is the same as reversal and therefore leads to the complex eigenvalue equation
with respect to W;

v — WivWi = Wiy = exp (+2mB; /h)v.

Note that now all the exponents arise purely algebraically from the factorisa-
tion of the product of simple roots in the Clifford algebra. W; and W; determine
righthanded and lefthanded rotations in the respective eigenplanes giving rise
to the pairs of exponents m; and i — m;.

EXAMPLE 4.14 (Exponents of H,) For example, ayayasay for Hy fac-
torises as exp (—%Bc) exp (—%8182838436') for the Coxeter plane bivector
Bc. This is constructed as described in Section 3.2.4 via the Perron—Frobenius
eigenvector giving rise to a white vector and a black vector which together de-
fine a plane. In Clifford algebra, this plane is defined by the bivector B¢ simply
as the outer/exterior product of the black and white vectors (thus defining the
plane they span). This gives exponents 1, 11, 19,29 directly from the simple
roots without the need for complexification.

The complex structure in each exponential is given by the bivector of the re-
spective plane. There are therefore several different complex structures, which
emerge purely algebraically from the factorisation of the Coxeter ¢lement.
Complex eigenvalues thus arise geometrically without the need to complex-
ify the whole real vector space. Clockwise and counterclockwise rotations in
the same plane trivially yield exponents m and 2 — m corresponding to W and
W, which are of course conjugate. This description in terms of Clifford algebra
therefore yields much deeper geometric insight, whilst avoiding ungeometric
and unmotivated complexification. One sees that the cigenvalues and eigenvec-
tors are not so much eigenvectors with complex eigenvalues, but rather eigen-
planes of the Coxeter element. The complex nature of the eigenvalue arises be-
cause bivector exponentials describe rotations in planes with the plane bivector
acting as an imaginary unit. Like for the 2D groups, the 3D and 4D geometry is
actually completely governed by the above 2D geometry in the Coxeter plane,
since the remaining normal vector (3D) or bivector (4D) are trivially fixed. The
Coxeter element acts as a rotation by +27/h (clockwise and counterclockwise)
in the Coxeter plane B¢, and in the plane defined by IB¢ as h-fold rotations
giving the remaining exponents algebraically.
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o For characters of direct sums and tensor products, one has that y(g ® h) =
x(g) + x(h) and x(g ® h) = x(g)y(h). The fancier way to say this is that y is
a ring homomorphism from representations to C, taking (®, ®) — (+, X).

¢ The most important thing about the character table is that it is — weighted by
conjugacy class sizes — orthogonal:

r

D =161 ; (4.15)
y=1

here, = is complex conjugation.

Thus armed, one can extract the matrix a;; by taking the character of Equa-
tion (4.12), giving us

r

) = ay (4.16)
=1

with )& being the character for the defining 2 representation.
The orthogonality (4.15) allows us to readily invert Equation (4.12) to yield

1 ¢ N (e
@i = G 2 (4.17)
y=1
which gives the entries of the adjacency matrix of the McKay quiver.

ADE McKay Quivers
Therefore, we need the r X r character tables of the discrete finite subgroups
of SU(2) (cf. also Section 3.4.3). These are classically well known and for
reference, we present them below. As customary, we add a first row which is
the size of the conjugacy classes and add a first column, the naming of the
irreducible representations:

Cydlic A, = Cyy1 = Z/((n + 1)Z)

111 1 1
I'i|1]1 1 1
Ibj1|el|é& || ¢€ )
Ll &| & | € =exp (}%) (4.18)
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4.4.3 Aside: Arnold’s Observation Holds for Our Additional Cases

This calculation for the 2D cases is somewhat trivial, but involves finding the
exponents (i.c., complex eigenvalues) of the Coxeter element (shown in Table
3.2). These additional cases turn out to have exactly the right exponents to
match the same decomposition in terms of Springer cones. Therefore, Arnold’s
observation extends from merely the Trinity to the wider 3D to 4D induction
case, i.¢., including A; X I,(n).

The actual calculation is simple, but it is instructive to look at the construc-
tion from Section 3.2.4 from a different point of view, using Clifford algebras
(Section 3.4.4). The usual procedure for finding exponents is to complexify the
vector space (which was assumed to be Euclidean in Section 3.2.1) and look for
complex eigenvalues of the Coxeter element. Complex eigenvalues of course
just mean that the vector is not an eigenvector at all, but gets rotated in some
plane and only returns back to itself after several applications. So it is more
natural to think of the plane as an eigenplane rather than of complex eigenvec-
tors. This is in fact unnecessary in the Clifford algebra setting and masks the
underlying geometry, as we will now show [64, 65]. In Clifford algebras, the
(double cover of the) Coxeter element decomposes into bivector exponentials,
with the bivectors giving different rotation planes, and the angle giving exactly
the correct exponents. We now see that this gives rise to the correct eigenvalue
equation.

EXAMPLE 4.9 (Clifford algebra rotations in the plane: I(n)) We look at the
simplest example in Clifford algebra for how rotations in planes are described
by bivector exponentials: we start by looking at the simplest root system exam-
ples, Ir(n). Let us choose the simple roots a1 = ey and ap = —cos Zep +sin Zes.
Successive reflections in these two vectors actually amount to an n-fold rota-
tion given by WxW with W given as

Vig Vig

W = ajay = —C0s — + sin —ejey = —exp(—mejey/n). “4.11)
n n

Taking the nth power of this simply yields + exp (£meje;) = +(—1) such that
double-sided application of this, as is usual for a spinor, gives +1, as expected
(this is because the Coxeter element has order # in I,(n)). Here the bivector in
the exponential is eje; — of course, describing the plane (it couldn’t be any-
thing else anyway). The angle in the exponential is +7/n, which gives n-fold
rotations clockwise and counterclockwise via W and W, i.e., exponents 1 and
n — 1, as expected.

Thus no complexification is necessary, as the bivector e; e, squares to —1 but
gives the rotation plane algebraically [64, 65]. As we saw above, in Clifford
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4.4 3D to 4D Root Systems

We have all the background that we need in order to prove that any 3D re-
flection group/root system yields a 4D reflection group/root system. The proof
uses the Clifford algebra approach above (see Sections 3.2.1 and 3.4.4). The
setting for a root system is a vector space with an inner product, so without
loss of generality, one can consider this Clifford algebra over that vector space
[16]. This induction theorem will give us something a bit more than a Trinity,
and a bit less than an ADE correspondence — it has only one infinite family.
We will motivate which infinite family could complete this to a full ADE cor-
respondence.

4.4.1 Root System Induction via Clifford Algebra

Multiplying root vectors together in the Clifford algebra (e.g., of 3D space)
generally yields pinors (‘multivectors’) in the full algebra (e.g., here 8D). Even
products will in fact stay within the even subalgebra (e.g., here 4D). The cor-
responding rotational polyhedral group (a discrete subgroup of the special or-
thogonal group SO(3)) acts on a vector x via RxR (a rotation). The spinors
R themselves give a (spin) double cover of this polyhedral group, as both R
and —R encode the same rotation. These spinors themselves therefore form a
eroup under multiplication R; R, in the algebra. This is of course the respec-
tive binary polyhedral group, which is a discrete subgroup of the spin group
Spin(3) = SU(2).
A general spinor in 3D thus has components in the even subalgebra

R =ay+ ai1eres + areze; + azeren (48)

which is a four-dimensional vector space. We saw above in Section 3.4.4 that
we can also endow this vector space with a Euclidean inner product by defin-
ing (R1,Ry) = 3(RiR> + RoRy) for two spinors Ry and R,. This induces the
Euclidean norm [RI> = RR = a3 + a? + a3 + 3. It is thus very natural to think
of spinors as living in Euclidean four-dimensional space (this is of course also
linked to the quaternions as explained in Section 3.4). One can of course con-
sider reflections in this 4D space, and the relevant scalar product is given by
the formula here.

In fact, not only can we think of each 3D spinor as a 4D vector, but a spinor
eroup actually yields a collection of such vectors in 4D. It is easy to show that
this collection of vectors actually satisfies the axioms of a root system (Section
3.2.1). Therefore there is a direct correspondence between 3D root systems and
4D root systems via the intermediary spinor groups.
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for the (simply-laced) ADE cases this yields uniquely the simply-laced affine
ADE cases.!

It is also worth noting that the somewhat miraculous collapse of the above
formula is perhaps not so miraculous in Clifford algebra. The affine reflection
formula there is

s;}f: v = —apgvayg + ag = —ag(y — ag)ay, 4.5)

whilst the usual compact reflection is
SH . Vb —agvag 4.6)
such that in combination they yield
Sgsg . v —ag(—apgvag)ag + ag = v + ay, “.7)

which is trivially a translation by the highest root. One could argue that Equa-
tion (4.2) amounts to translating the reflection plane, which already has a trans-
lation implicit anyway.

This constitutes our first relation between ADE sets: that of ADE diagrams
and that of affine ADE diagrams. The latter can be achieved from the former
via the affinisation procedure described above. The converse is rather simpler.

4.3.2 ADE from Affine ADE

Conversely, we have seen in Section 3.3 that the affine ADE diagrams have
largest eigenvalue 2. The diagrams with largest eigenvalue < 2 have to be sub-
graphs of these, i.e., the ADE diagrams. This is because an induced subgraph
has an adjacency matrix which is a principal submatrix of that of G, so its
greatest eigenvalue cannot exceed that of G (cf. Smith’s Theorem 3.9). Thus
one gets the ADE diagrams from the affine ADE diagrams.

Alternatively, going from affine ADE to ADE at the Coxeter group or root
system level is also straightforward: one simply considers the subgroup or sub
root system one gets by deleting the node corresponding to the (generator cor-
responding to) the affine root, i.e., one drops to considering just the compact
part. For crystallographic groups, the corresponding lattice is just achieved by
having infinitely many copies of the same repeating unit — one can thus simply
2o from the lattice (affine ADE) to the root system describing the symmetries
of the repeating unit (ADE).

' One can seek a suitable if obviously limited generalisation of the notion of affinisation to
include the non-crystallographic groups and suitably generalised, new algebraic structures.
More details are in [25, 57-59] for the interested reader.
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A‘l‘, and more generally the countably infinite family A; X I>(n) gives rise to
Iz(n) X Iz(n)

Examples of Induction
For illustrative purposes, we provide some more detailed examples here.

EXAMPLE 4.4 (Quaternion group: A3 to A7) The simplest root system A;
is just a root and its negative, so three copies of A; are just given by three or-
thogonal unit vectors as the simple roots such as a; = ej, a0 = er, a3 = es.
Free multiplication (essentially amounting to multiplying together reflections
in these simple roots) of these yields the eight elements in the 3D Clifford al-
ecbra from Section 3.4.4 and their negatives. Restricting to even products one
gets the unit elements in the even subalgebra 1, tejey, +eses, tese;. These
are essentially the quaternion group, and can be written as a collection of 4D
vectors as (x£1,0,0,0) and permutations thereof. When thought of as a collec-
tion of 4D vectors, on¢ sees that they are just the root system A‘l‘.

EXAMPLE 4.5 (Binary tetrahedral group, Az and D4) Starting with the
tetrahedral root system As by multiplying the simple roots, e.g., given by

1 1 1
ay = ——=(ezy —e1),an = —=(e3 —ez), a3 = —=(e1 + e2),

V2 V2 V2

one gets a group of 24 even products. This is the binary tetrahedral
group consisting of 8 elements of the form (+1,0,0,0) and 16 of the form
%(i 1,+1, 1, £1). As a collection of 4D vectors they form the D4 root system.

EXAMPLE 4.6 (Binary octahedral group, B; and F4) The octahedral root
system Bs, ¢.g2., with a choice of simple roots

1 1
a; =ey, ap = —=(ex—ez)and oz = —(e; — e2),

V2 V2
yields the root system F4 via even products of roots, which form the binary
octahedral group of order 48. They include the 24 spinors we just had for Dy
together with the 24 “dual” ones of the form %(i 1,+1,0,0).

EXAMPLE 4.7 (Binary icosahedral group, H3 and Hs) Finally, the icosahe-
dral root system Hj gives rise to Hy in 4D. Multiplying even numbers of root
vectors one gets 120 spinors that form the binary icosahedral group, doubly
covering the 60 rotations of As. For the choice of simple roots

1
a) = e, o = 2(781 tey+ (17— 1Des),az = e3,
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THEOREM 4.3 (Induction theorem) Any 3D root system gives rise to a
spinor group G which induces a root system in 4D.

Proof Even products of 3D root vectors yield a collection of spinors in the
even subalgebra (which has in fact a group structure). It was shown above that
one can think of this space of spinors effectively as a 4D vector space with the
inner product (R, R;) = $(Ri R, + RyR,). One can thus reinterpret a collection
of spinors (the spinor group) as a collection of 4D vectors. We now check the
two defining axioms of a root system (Definition 3.1) for this collection ® of
4D vectors R:

(i) By virtue of the standard Clifford algebra result, ® contains the negative
of a root R because both R and —R encode the same rotation (since spinors
provide a double cover). Thus if R is in @, then so is —R; other scalar
multiples do not arise because of normalisation to unity.

(ii) One can take reflections with respect to the inner product (R, R,) defined
above. Using the formula for the inner product in the reflection formula,
these reflections are given by R}, = Ry — 2(R1, Ro)/(R1, R)R) = —RiRoRy
(normalisation). But G is closed under group multiplication, multiplication
by —1 and reversal since —R encodes the same group transformation as R,
and R is its inverse. Thus —R1R;R; € G for R|,R, € G by closure of
the group under group multiplication, reversal and multiplication by —1.
Therefore ® is invariant under all reflections in the 4D vectors R and is
thus a root system.

This proof does not make reference to any specific root system in 3D, and
therefore allows one to construct a 4D root system for any 3D root system. This
goes some way towards explaining why four dimensions are particularly rich
for root systems because of additional, exceptional root systems such as Hy.
This can be though of as due to the accidentalness of this construction. If we
did not already know that they existed, this constructive proof could be used
to construct them. One can calculate each case explicitly showing how each
4D root system arises from the 3D root system; but it is also obvious from the
order of the 3D groups involved and the number of roots in the known 4D root
systems what the correspondences have to be (see Exercises):

(A3, B3, H3) give rise to (Dy, F4, Hy). 4.9)

Above are the “irreducible” 3D root systems, which give Arnold’s Trinity
(As, B3, H3), though other reducible root systems of course also exist in 3D and
can be used to construct corresponding 4D root systems. The case Af gives
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Both these crystallographic root systems and the affine root systems are of
course linked to the corresponding ADE and affine ADE Lie algebras.

4.3.1 Lattices from Root Systems

The reflections in a finite Coxeter group all leave the origin of V fixed and
hence essentially act on the surface of a sphere. This gave rise to a compact
reflection group in carlier sections, acting, ¢.g., on a polyhedron such as a
Platonic solid. Here we will consider affine reflections, i.c., reflections with
respect to more general hyperplanes not necessarily passing through the origin.
Note that successive reflections in two parallel hyperplanes with separation d
result in a translation of length 24 in the direction normal to the hyperplanes
(see Figure 4.1). Such group generators will make the group non-compact and
can build up a lattice structure, if certain compatibility conditions hold (i.e.,
the group is of crystallographic type and translating by just the right amount).

DEFINITION 4.1 (Affine hyperplane) Given a vector « in an n-dimensional
Euclidean space V and K € Z, we define an affine hyperplane as

Hox ={1eV | ) =K} “.1)

Note that therefore H, corresponds to a plane through the origin and per-
pendicular to a, i.e., corresponds to the original H,, of a finite Coxeter group.

DEFINITION 4.2 (Affine reflection) The reflection at H, k is called an affine
reflection and is given by

2(v - @)

(a-a)

—K)a/:v+Ka/— a. “4.2)

Note that this adds K« relative to the familiar reflection formula (3.5). With
this definition of an affine reflection, one can extend a Coxeter group using this
affine reflection as an additional generator. If one chooses just the right affine
reflection, this results in a nice mathematical structure that generates lattices
— otherwise it would just densely fill space. The extra generator one chooses
[56] is one corresponding to the affine root oy with oy := d — ay, where d is
a vector in a space of dimension corresponding to the number of root vectors
including the affine root such that

(dla;)y =0Vi=1,...,n, and oy the highest root. “4.3)

One often uses the vector d = 0 such that the affine root is just minus the
highest root.
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4.4.2 Arnold’s Connection: Degrees and Exponents

Arnold had actually found an indirect link between the trinities (A3, B3, H3)
and (D4, F4, Hy) [2, 61], about which he says, “Few years ago I had discovered
an operation transforming the last trinity [(As, Bs, H3)] into another trinity of
Coxeter groups (Dy, F 4, Hy). I shall describe this rather unexpected operation
later”

We shall follow this discussion cursorily here, though it is very roundabout:
but it will motivate the following simple construction. Arold decomposed the
groups (A3, B3, H3) in something he calls the Springer cone decomposition of
Weyl chambers. The number and types of Springer cones decompose the orders
of the polyhedral groups as

24=2(1+3+3+5),
48=2(1+5+7+11),
120=2(1+ 11+ 19+ 29). 4.10)

He then noticed that these coefficients happen to be one less than the quasi-
homogeneous weights of (D4, F4, Hy), which are (2,4,4,06), (2,6,8,12) and
(2, 12,20, 30), respectively.

There is one immediate simplification: these numbers are actually more di-
rectly the exponents m; of (Dy, F4, H,), which as we have seen in Section 3.2.4
are well known to be one less than the degrees of polynomial invariants [20].
That is, they are given by the complex eigenvalues exp(2zim;/h) of the Coxeter
element and

d,‘:mi+1

for degrees d;. This streamlines Armold’s observation somewhat, but is still not
much more than a suggestive link; in constrast, the above Clifford construction
made this connection very explicit [46, 60, 62, 63] (see previous section).

In fact, this construction also contained the other cases in addition to just
the Trinity, given by the infinite family A; X L (n). Via the induction theorem
these give I,(n) X I(n) on the other side of the correspondence. One can thus
wonder whether Arnold’s observation in terms of the decomposition of the
eroups and the exponents might extend to include these additional cases from
an infinite family. Indeed, it turns out that they do, which further establishes the
connection between (A1 X I,(n), As, B3, H3) and (Ir(n) X I,(n), D4, F4, Hy). We
will therefore look at the computations necessary to include this infinite family
in Arnold’s correspondence in the next subsection, which the reader may wish
to skip.
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there are 8, 16, and 96 respectively of the forms (1,0, 0, 0), %(i 1,1, £1,£1)
and 1(0, 1, £(1 - 1), +7), which form the H, root system.

One might think that this induction could be extended to arbitrary dimen-
sions. And while the closure property holds trivially (because of the general
spin double cover property in Clifford algebras), it is usually impossible to de-
fine a sensible inner product, and one loses associativity, etc., which makes it
impossible to show the second root system axiom. This construction is thus ac-
cidental to 3D, although one can prove some partial results for the full algebra
in 8D (though the result is pretty trivial), the octonions, as well as for 2D root
systems. These also seem somewhat trivial but we shall discuss them briefly
nonetheless for reasons that will become clear eventually [60]:

EXAMPLE 4.8 (2D root systems are self-dual) As we have seen above, the
Clifford algebra of two orthogonal unit vectors e; and e; is 4-dimensional,

{1} {er,ea} leren),
N — N — N —
1 scalar 2 vectors 1 bivector

with the spaces of vectors and spinors both being two-dimensional. There is
therefore a canonical mapping between vectors v = aje; + aze, and spinors
R = a; + aeier = a; + axl = ey via multiplication, e¢.g., with e;, which
is a bijection. Thus, for instance, for the choice of simple roots a@; = e; and
ay = —cos Tey +sin 7 ey one sees that taking the spinors of this root system is
essentially multiplication by e; and therefore the whole root system I, (n) gets
dualised to itself.

The space of spinors has a natural Euclidean structure given by RR = a7 +a3,
i.¢., a two-dimensional Euclidean vector space. This induces a rank-2 root sys-
tem from any rank-2 root system in a similar way to the 3D-to-4D construction
above, but is rather less interesting, as it does not yield any new root systems
but just maps I (n) to I(n).

One would thus conclude that this case is pretty dull! We shall see why it
was worth discussing it.

Thus the induction theorem relates the above sets (A1 X I, (n), Az, By, H3) and
(I(n) X I(n), D4, F4, Hy). They are not quite ADE sets — they are missing one
of the infinite families! In order to make the full connection, we first recon-
nect with Arnold and the Trinity part, and the McKay correspondence, which
motivate the inclusion of the other infinite family — which turns out to be the
self-dual ,(n) root systems we have just discussed.
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Table 3.2 The eigenvectors of the ADE and extended (affine) ADE diagram
adjacency matrix.

The integer labels for the affine ADE diagrams are the Coxeter numbers (see also
Sections 3.4.3, 4.3 and 4.5). For the ADE cases the eigenvectors are more complicated
and have to do with the sum of the fundamental weights. Further details to the labels
and coefficients of the highest root can be found in [34]. Simply put, the labels are
such that: (1) for the affine ADE diagrams on the right, the label of each node is half
of the sum of those adjacent to it; (2) for the ADE diagrams on the left, the label of
each node is half the sum of the labels of those adjacent to it, subtracted by 2. In the
D,.4 diagram, the two pitchfork nodes (the two extremal horizontal ones) have labels
n(n — 1)/2 and the others have 2(in — i(i — 1)/2) with i between I and n — 2. We will

return in Section 5.8.1 with some remarks about labelling graphs.
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Exercises 91

Prove that a positive semi-definite symmetric 7 X n matrix of rank r is the
matrix of inner products of a set of n vectors in R”. (See Theorem 5.4.)
Find the formula for the reflection of a vector x = x + x, in the hyper-
surface defined by its unit normal vector n, where x; is the component
of x parallel to n, and x, is the orthogonal component (you can assume
there is an inner product on the vector space), thus deriving formula 3.5.
Find the matrix that encodes such a reflection in the hyperplane with the
unit normal vector n = (11, na, n3)7 .

Consider the Clifford algebra with the new product ab given by
ab = a-b + a A b. Using the symmetry resp. antisymmetry of the usual
scalar product a - b resp. the wedge product a A b, show that the symmet-
ric resp. antisymmetric parts are related to these as a - b = %(ab + ba)
tesp. a A b = L(ab - ba).

Using the Clifford expression for the inner product, show that the re-
flection formula (3.5) simplifies to x — —nxn. How are the reflections
encoded in this way by » and —n related? What is the inverse operation
to such a reflection?

Show that Clifford products of unit vectors (where by “unit” we allow
+1) form a group under the algebra product. Is it commutative? What
are the inverses?

Consider the Clifford algebra of three-dimensional space, which is gen-
erated by the 3 orthogonal unit vectors e;, e; and es. List the 3D root
systems. What is the order of the Coxeter groups they generate? What is
the order of their rotational subgroups? What is the order of the corre-
sponding groups of products of (unit) root vectors in the Clifford alge-
bra? What is the order of the binary double cover of the rotations? List
the 4D root systems and identify which 3D root systems are related to
which 4D root systems via these respective orders of the binary polyhe-
dral groups.

Consider a set of bivectors A, B,... with the “commutator product”
AXB = %(AB — BA). Show that this product is antisymmetric and sat-
isfies the Jacobi identity (thus showing that this set of bivectors forms
a Lie algebra). For two successive rotations in planes B; and B, via a
rotor R; = e~ B/2 show that the resulting rotor R = e~5/? describing the
composite rotation has B = By X B, + higher-order terms.
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Having introduced various sets of algebraic objects that fall into ADE patterns
in the previous section, we now move onto the connections between these dif-
ferent patterns, called ADE correspondences. It is of course these connections
between different subjects (and the puzzling lack of connections between oth-
ers) that make this subject so rich and interesting. We start with perhaps the
most tantalising of connections: the one between the “Platonic” symmetries
and the ADE diagrams. It is perhaps also the most mysterious, in its sim-
ple suggestiveness, but lacking a very rigorous construction. We cover some
straightforward connections building up onto the perhaps best-known, and no
less mysterious, connection, the McKay correspondence in Section 4.5, and
also use this section to motivate new ADE correspondences. Woven through-
out this chapter — in the spirit of the creative process of mathematics — is a
recent example of a new ADE correspondence by one of the authors (PPD):
we will argue step by step how to complete a correspondence of Trinities —
via motivating the inclusion of suitable infinite families — to novel ADE corre-
spondences. We hope that readers of this book will be stimulated and inspired
to search for further novel ADE connections.

4.1 Trinity Revisited

We have already alluded to the “trinity” of exceptionals several times. Since
this is a small set, it can often serve as a good starting point for noticing a full
ADE-type of correspondence [55].

We saw that there is a mysterious suggestive link between the Trinities
(As, B3, H3) and (Eg, E7, Eg): the Platonic solids (A3, B3, H3) have correspond-
ing characteristic triples of orders of rotations (233,234, 235) generated by
pairs of generators of the Coxeter groups, or via the angles between the simple

93
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4.2 The Platonic Symmetries

The web of connections around the polytopes known as the Platonic solids and
various related objects seems pretty obvious, almost trivial. For example, we
have the links between the solids and their various symmetry groups: they have
rotational symmetries, which are subgroups of SO(3) and give sets (mostly
triples) of rotational symmetry orders (e.g., (2,3,5) for the icosahedron), as
well as the corresponding binary polyhedral groups in SU(2) (e.g., 2I) and
the full polyhedral groups/Coxeter groups in O(3) (e.g., H3). The latter are
in turn related to root systems and the coefficients of the highest root (e.g.,
(1,2,2,3,3,4,4,5,6)), as well as invariants such as exponents and degrees of
invariant polynomials. The former are related to the representation theory of
finite groups (e.g., (1,2,2,3,3,4,4, 5, 6)).

We can also think of the Platonic solids as regular tessellations of the sphere
in terms of regular polygons and the link with the Diophantine inequality and
triples of numbers. This then has the obvious analogue of the regular tessel-
lations of the plane and the connection with the Diophantine equality (e.g.,
(2,3,0)).

We have explained these sets and many of the connections in the preceding
sections as part and parcel of the development of the theory, rather than think-
ing of them as “mini-ADE correspondences”. But we will now see that various
members of this tightly connected cluster of ADE sets in turn have interest-
ing correspondences linking them to other areas of mathematics, such as finite
group theory and Lie theory.

4.3 ADE and Affine ADE

We have seen in Section 3.2.1 that crystallographic root systems are compati-
ble with lattices. We have also seen from a graph-theoretic point of view that
the graphs with eigenvalues equal to 2 and less than 2 are closely related and
are the ADE and affine ADE diagrams. Here we will quickly review the pro-
cedure of affinisation, of constructing the lattice from a crystallographic root
system — essentially by translating the root system. Note that the affine root is
usually minus the highest root, and is given as a linear combination of the sim-
ple roots with coefficients that might look familiar by now — they will reappear
in Section 4.5 on the McKay correspondence. For example, the affine root for
Eg is —Qp = 2&1 t 3&2 t 46!3 t 5614 F 6as 46!6 t 26!7 t 3&3. See Table 3.1 for
the other cases.






index-1_1.jpg





index-1_3.jpg





index-1_2.jpg





index-2_2.jpg





index-2_1.jpg





index-4_1.jpg





index-3_1.png





index-4_2.jpg





index-100_1.png
3.5 Lie Groups and Algebras 85

General linear gl(n; R) = Mat,(R),
Special linear sl(n;R) = {M € gl(n; R) : Tr(M) =0},
Special orthogonal so(n) = o(n) = {M calmR) : M+M' = 0},

Unitary w(n) = {M € Mat,(C) : M+ MT = 0},
Special unitary su(n) = {M € w(n) : Tr(M) = 0},
Symplectic sp(2n) := {M € Mat,(R) : QM = MTQ}, (3.22)

with Q as before. Note that on the algebra level, so(n) is the same as o(n)
because the traceless condition is automatically satisfied by the anti-symmetry.

EXAMPLE 3.34 The simplest example is the Lie group U(1). Topologically,
this is just S', a unit circle in the complex plane. We can parametrise the el-
ements as z = exp(if), with 6 € R (note that as a manifold the coordinates
are only defined locally, and the periodicity condition 6 € [0, 27) is global),
satisfying 7z = 1, in accord with the definition®* in (3.21).

The Lie algebra u(1) is likewise as in (3.22). Here, we have 1 X 1 matrices
over C, i.e., { € C such that £ + = 0. In other words, / = i6 is purely
imaginary, as it should. Thus, the exponentiation map takes the Lie algebra
u(1) > ¢ to the Lie group U(1) 3 z = exp({).

3.5.2 Simple Lie Algebras over C

Adhering to the theme of the book, let us delve directly into the classification
of Lie algebras (and thus, via the exponential map, that of Lie groups®).

As with any classification problem, we need to identify atomic elements,
such as the primes for the integers, or the simple groups for finite groups. Here,
the situation is no different and the fundamental building blocks are “simple
Lie algebras”. There are various Structure Theorems®® that decompose g into
simple Lie algebras, which are non-abelian and contain no nonzero proper
ideals, so that a semi-simple g is a direct sum of these, and any finite g is a

24 The “determinant” here is just the complex modulus, which is equal to 1; this degenerate case
we call U(1) instead of SU(1).

Hence, the classification of of I.ie groups reduces to that of Lie algebras, and a problem in
differential geometry is reduced to one in linear algebra.

We will not delve into the details of these. For example, Levi’s decomposition theorem gives
the building blocks of g: any finite dimensional Lie algebra is a semi-direct product of a
normal solvable ideal and a semisimple algebra. Similarly, Langland’s decomposition says
that a parabolic subgroup P of G is the product of semisimple, abelian, and nilpotent
subgroups.

25

26
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of classification of discrete, finite subgroups of SO(3). A key point is that in
addition to these infinite families of classical groups (judiciously called types
ABCD), there are also non-classical, or Exceptional Lie groups of type E, F,
G. We are beginning to see our familiar pattern!

The fancier way of saying the above is that a Lie group is a compact differen-
tial manifold G which also possess a continuous group structure. For instance,
our orthogonal group SO(3) is topologically (in fact diffeomorphically) the real
projective space RP* as a manifold, and so too, is SU(2), the three-sphere S3
as a manifold. The reader is referred to [51-53] for this vast subject.

Because G has a group multiplication law, there is a distinguished point I,
serving as identity. The tangent space g := 77,G at this point is a vector space,
further endowed with a bilinear product (an antisymmetric product known as
the commutator), rendering g an algebra. The group manifold G can be entirely
reconstructed from g (at least up to connected components). We recall that an
algebra is just a vector space together with a bilinear product. More formally,
we have

DEFINITION 3.33 A vector space g is a Lic algebra if there is a (non-
associative) bilinear form gxg — g called a Lie bracket [, ], with the properties

Anti-symmetry [A, B] + [B,A] = 0;
Jacobi identity [A,[B, C]] + [B, [C,Al]l + [C,[A,B]] =0

for elements A, B, C < q.

The Lie bracket behaves like a commutator; indeed, » X n matrices, with
operation [A, B] = AB — BA, form a Lic algebra. Thus, we say that a Lie
algebra is abelian if [A, B] = O for all A, B.

Remark: Any vector space is defined over a ground field. In this book, we
will exclusively consider the most common case of the Lie algebra as a vector
space over C.

For matrix groups, i.¢., for subgroups of GL(n; C), which is all that we con-
sider in this book, to go from g to G is simply matrix exponentiation.”®> Hence,
we have a correspondence between G (the group is usually written in upper-
case Italic, as in (3.21)) and the vector space g (the algebra is usually written in
lowercase Fraktur). One can casily check, using the exponentiation map (just
checking to linear order in the Taylor series suffices), that for some of our
above common Lie groups,

23 As with any analytic function and any finite square matrix M, we can compute, via the formal
Taylor series, exp(M) = >.>° Ly,

n=0 n!
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also fixes the angle between different roots automatically. This means that in
Dynkin diagrams it is customary to have directed edges indicating the relative
lengths, which because of the relation between lengths and angles gives the
angle and thus the label above the link in the Coxeter—Dynkin diagram. For
the crystallographic root systems and thus Lie algebras, we therefore have two
slightly different diagrammatic representations: the Coxeter—Dynkin diagrams
with labels, or the Dynkin diagrams with multiple edges (denoting the angles
indirectly).
These are the building blocks of the Dynkin diagrams.

90° @ o 1200 0—e0 15° e ® 135 &> ((3.24)

The classification of simple Lie algebras via Dynkin diagrams is shown in
Figure 3.9. Note the similarity as well as the differences between Coxeter—
Dynkin and Dynkin diagrams. When we do not allow double and triple lines,
the resulting Dynkin diagrams are called simply-laced, corresponding to Lie
algebras/Lic groups/root systems of type ADE as shown in the left of
Table 3.2.

Affine Lie Algebras: As with root systems, we can have an extended, or
affine version, by addition of an extra node in the Dynkin diagram. This has a
specific meaning on the algebra level.

A natural generalisation of Lie algebras g is the so-called affine Lie alge-
bra. This is an infinite dimensional algebra defined as the tensor product with
the algebra C[t, 111 of Laurent polynomials in a formal variable ¢, and then
centrally extended by a one-dimensional center ¢ € C:

§:=g®Clt, e Ce, (3.25)
together with an affine bracket

l[a®t" +ac,b &t + Bc] = [a,b] ® 7" + {alb)ndprupC ,
a,beg, mneZ, o,feC, (3.26)

where [a, b] is the usual bracket in g, (a|b) is the Killing form in g and & is the
Kronecker symbol enforcing m + n = 0.

The classification of affine Lie algebras proceeds as with the ordinary case,
with the extra caveat of the central extension. It turns out that all that is needed
is to place one extra node to the ordinary Dynkin diagrams, corresponding to
the affine (imaginary) root. Focusing again on the simply-laced cases, these are
the affine diagrams on the right of Table 3.2, where the affine node is marked
with a circle. These are the affine ADE algebras, usually denoted as ADE.
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semi-direct product of semi-simple Lie algebras and something called solvable
Lie algebras. In short, we only need to classify the simple Lie algebras over C.

The remarkable result of Cartan, Chevalley, Dynkin, Weyl, et al., is that the
“classical” (infinite families of) groups (called type ABCD) and 5 exceptional
cases (called type EFG) are all there is.

THEOREM 3.35 The simple Lie algebras g over C and their associated
compact Lie groups G are

Classical
Name q G Exceptional
A1 | Sy | SU@m+ 1) Esazg
Byzo | o001 | SOQ2n — 1) Fy
Cn23 5P2y SP(ZH) GZ
Dn24 502, SO(ZH)

Sketch proof: The heart of the proof (cf. [54]) of this theorem lies in Dynkin’s
and Cartan’s graphical representation of g and the subsequent reduction of the
classification to the Diophanting inequality (1.3). In brief, one starts with the
theorem of Cartan—Weyl which renders the vector space g into a convenient
basis consisting of (1) a maximal abelian subalgebra b C g within which all
elements commute and the dimension of which is called the rank (the “Cartan
subalgebra™); and (2) the complement vector space, ordered as the eigenspaces
of the eigenvalue problem

[H,T]=ayT, Heb, (3.23)

which give rise to root lattices. The eigenvalues oy are called roots and one
important part of the structure theorem is that these are precisely the abstract
roots described in Section 3.2.1, satisfying the axioms of crystallographic root
systems. Furthermore, the number of simple roots (once introducing a notion
of positivity) is precisely the rank of g. Classifying root lattices (and in par-
ticular the simple roots) for various ranks thus classifies the semi-simple Lie
algebras g over C.

Dynkin Diagrams: As with root systems where the diagrammatic approach
to the simple roots by Coxeter and Dynkin was highly conducive to further
work, so too, we can represent the table in Theorem 3.35 as Dynkin diagrams.
The difference from Figure 3.3 is that in the Lie context, we customarily use
multiple lines rather than labelled edges. This is because in the above Lie the-
ory setting (unlike in the root system context) the eigenspace problem (3.23)
leads to a restriction on the length of roots relative to one another. This then
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3.5 Lie Groups and Algebras

So far, we have encountered polyhedra, finite and continuous groups, root sys-
tems, finite graphs and binary polyhedral groups. As promised, we now in-
troduce some rudiments of Lie theory. While the concept of root systems and
Coxeter groups defined in Section 3.2.1 require no more than Euclidean geom-
etry, it is well known that the motivation for their emergence comes from the
study of Lie groups.

Now, such a topic as Lie groups is customarily reserved for a post-graduate
course in mathematics, after some introduction to continuous transformations
and differential geometry. We will here take an orthogonal approach and intro-
duce Lie algebras straight away and leave the advanced geometry untouched,
save for a few cursory remarks which we now make. Standard expositions of
differentiable manifolds via charts and atlases can be found in the introductory
pages of [48-50].

3.5.1 Lie Groups: A Lightning Introduction

Lie groups are simply continuous groups. Much like the finite, discrete rota-
tion groups which we studied in detail for the Platonic solids, we are already
familiar with a few Lie groups, but just perhaps not with a standardised nota-
tion. The most familiar is the set of rotational symmetries of R3, ie., the set of
orthogonal 3 x 3 real matrices. This casily generalises to R”:

o) == {MeMat,®) : M" - M=1, | (3.20)

Throughout, we will use Mat, () to mean » X n matrices over I, with F be-
ing R and C typically. We can also restrict to orientation-preserving rotations
by imposing that the determinant is positive, these are the special orthogonal
groups: SO(n) :={M € O(n) : det(M) = +1}.

Immediately, we have the so-called Classical Lie groups:

Special Orthogonal SO(n) := {M e Mat,[R) : MT -M =1,, det(M) = +1},

Special Unitary SU(n) := {M € Mat,(C) : MT -M =1, det(M) = +1},

Symplectic Sp(2n) := {M € Maty,(R) : M -Q-M = 11,,} (321

with Q := (—?1 %) We also mention, to set notation, the general lingar group
GL(#n;R) = {M € Mat,(R) : det(M) # 0} of invertible matrices, as well as
the special linear group SL(n;R) := {M € GL(2;R) : det(M) = +1}. We can
now say that finding the regular symmetries of R? in Section 3.1 is the problem
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1 1 1
ajas = (er —e1)—=(e1 + &) = =(ere1 —e1e1 + exer —e1ey) = —eyey,
V2 V2 2
a 2-fold rotation in the e;e;-plane. Conversely,
L er — e)——(es - e2)
a ) = ey — €] ) 2
v
1

= =(eze3 —e1e3 — exen + e1en)

2
1
2

( 1+ e1ey + éréy + 8381).

This generates a 3-fold rotation, as one would expect from the A5 diagram (like
@ as).

In the following table, the group is partitioned into conjugacy classes for
easy reference (compare with Section 3.4.3). In addition, including odd prod-
ucts of reflections would further yield the pin group of order 48, which doubly
covers the full Coxeter group As.

However, note that the inversion 7 is not among the group elements. There-
fore, no spinors are the I = eje;es-dual to a root vector. This inversion / send-
ing x — —IxI = —x is not contained in the group, which means that the
tetrahedron — unlike the other Platonic solids — is not inversion-invariant. Its
inversion is an upside-down tetrahedron, and not the original one. This makes
clear why the A; root system cannot have a representation in terms of pure
quaternions: the pseudoscalar is not available to dualise vectors to bivectors.

Conjugacy
class Group elements
1 1
1_ -1
1 1
4 (1 —e1ex + eze3 —e3e1), 5 (1 —e1ex — ezes + e3e1),
1 1
3 (1 +e1ey —epes — ezey), 3 (1 +ejex + eges + ezer)
1 , 1
4_ 5 (1 —erex + eres —ezer), —5 (1 —erez — exez + ezen),
1 . 1 . .
5(1 €1y — ere3 8381), 5(1 €167 + €263 8381)
-1 1 1
4 3 (1 +e1ey —epes + ezey), 3 (1 +ejey + eges —ezey),
1 1
(1 —e1eq + exes + e3e1), 5 (1 —ejeq —exes —e3eq)
-1 11, 1
4- 3 (1 €1y — ere3 8381),

(1 te1e) + ere3 8381),
(1 —e1ey — eres — ezer)

o2

(1 —eer + eres + ezey),

6 *eey, £eépes, teze
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Table 1.1 The ADE and extended (affine) ADE diagrams.
The integer labels are the so-called Coxeter labels. The two sets of diagrams only
differ in the addition of one node on the right. These affine nodes are circled explicitly.

We will explain what these words mean later.

appropriate and referred to the literature for exhaustive treatments. These top-
ics are opening up interesting areas and current research directions across a
broad range of mathematics, which can act as a source of interesting disserta-
tion projects for advanced students or inspire research projects for interested
readers.
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for polyhedra, but the above, purely elementary argument is perhaps the most
elegant.

What we have seen above, the classification of the perfect shapes in 3D, is
our first encounter with ADE-ology. We will return to this again in Section 3.1.

1.2 Dramatis Personz

Grouped in this judicious way as in Figure 1.2, we see 3 exceptional cases. Of
course, in addition to these there are 2 infinite families of objects: (i) the regular
n-gons and (ii) the n-prisms. This book is about a pattern which permeates
many different classification problems in seemingly utterly different branches
of mathematics: the pattern we have seen in Equation (1.1). This meta-pattern
is so universal that the reader is encouraged to bear in mind that firstly it might
be found in any field of study, and secondly, whenever one encounters it, one
should look for a potential underlying ADE structure.

Let us be more precise about the central character of our book. There will
in fact be a pair of protagonists, each a graph with integer labels on the nodes,
to which we shall refer, respectively as ADE and Extended ADE (also called
“Affine ADE”) diagrams. These are summarised in Table 1.1, with the stan-
dard notation that the affine case has a hat or tilde on top. We have also labelled
the nodes with integers called Coxeter labels. What all these words mean will
be be explained in the text, in particular in Sections 3.5 and 4.3.

1.3 Navigating This Book

After this invitation, we now present how this book can be used by different
readerships. We have tried to keep the key material at as far as possible an cle-
mentary level. Readers who have a good grounding in linear algebra and group
theory can skip Chapter 2 and directly proceed to the chapter on ADE sets and
classifications (Chapter 3). This is then followed by the chapter on links be-
tween these sets known as ADE correspondences (Chapter 4). Chapter 2 how-
ever can also be used either as a refresher of these foundational topics with a
plethora of relevant examples; or it can in fact also serve as an undergraduate
course in these standard topics, but set in a modern context of cutting-edge top-
ics of interest. Chapter 5 then goes far beyond elementary material to explore
a loosely connected collection of much more sophisticated advanced topics of
current interest, which the reader is of course at liberty to peruse or skip as
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We don’t attempt an exhaustive introduction to algebra here, though this sec-
tion can be used as a foundation for a standard undergraduate course motivated
by a contemporary perspective. We will introduce (or recall) central concepts
and results, and give high-level conceptual connections and examples that will
make an appearance again later. For those who already have some knowledge
of introductory algebra, it should be a leisurely read recalling basic facts and
concepts from algebra and group theory, so that we can recognise some of the
characters that we will see repeatedly later and can start relating them to each
other. Our introduction will be informal rather than pedantic, and we hope its
vivacious pace would serve to entertain the beginning student.

2.1 Vector Spaces

A vector space is defined over a field F (often, but not always, the real numbers
R or the complex numbers C), whose elements are called scalars; elements of
the vector space V are called vectors. Two vectors can be added, and a vector
can be multiplied by a scalar.

Vector spaces are defined by their linear structure, and are also often called
“linear spaces” for that reason. The linear maps on this space are closely linked
to the set of matrices known as GL(n; R), because linear transformations can
be — and are usually — expressed as matrices acting on vectors (though we will
see an alternative in Section 3.4.4). We will see GL(n; R) again below, because
these matrices actually have the structure of a group, so we will be seeing them
again in Section 2.3.
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Lie algebras are a vast subject. Simple and semi-simple as well as affine Lic
algebras are interesting classes within this; but the field is much wider with
various generalisations of the above such as the Kac—-Moody algebras, as well
as others. In short, these define more general Lie algebras through generators
and relations given by a generalised Cartan matrix, and many aspects of the
above algebraic structure theory — such as root systems and representation the-
ory — carry over to this Kac-Moody setting. The interested reader is directed
to the literature [26, 28, 53] for further details and comprehensive treatments.

r, —&>—0

G, €0

Figure 3.9 Classification of semi-simple Lie algebras via Dynkin diagrams. As is
standard, the arrows in for the multiply connected edges (in the BCFG cases) are
such that they point from longer to shorter roots. Since this is a book on ADE, we
will not delve much into a discussion on these multi-edges.
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Often vector spaces have structures in addition to just linearity:

Scalar product: One example is a scalar product (also called a dot or inner
product), denoted v - w, which defines a (bilinear) product of two vec-
tors v, w in the vector space, which yields a scalar.

Algebra: Another example is a (bilincar) product of vectors that yields an-
other vector in the same vector space, which turns this vector space
into an “algebra”. We will see some familiar examples such as R, C
and H (as the “normed division algebras™). Another perhaps familiar
example is the “exterior algebra™; and using a scalar product on a vec-
tor space allows one to define the corresponding “Clifford algebra™.

Multilinear maps are maps that are linear in several arguments and are also
referred to as “tensors”. A tensor can be specified in terms of components
which are the values of this multilinear map acting on complete sets of basis
vectors. This is often convenient for concrete calculations such as in theoretical
physics (especially in general relativity). A more abstract “frame-free” way of
thinking about these multilinear maps can however also be useful for shedding
light on the intrinsic geometry. This brings us to two operations which we will
use throughout the book:

Direct sum ®: Given vectors v in a vector space V and w in a vector space W,
the direct sum V@& W is a vector space made of ordered pairs (v, w). A
familiar example is the Cartesian plane R?> = R @ R. The dimension
of V@ W is the sum of those of V and W.

Tensor product ®: Let v; (respectively w;) be a basis of the vector space V
(respectively W). The basis of V @ W is composed of all possible
formal pairs (v;, w;). Thus the dimension of V ® W is the product of
those of V and W.

One can build larger vector spaces out of smaller vector spaces by considering
the direct sum @ or the tensor product ®.

EXAMPLE 2.1 2D Euclidean space) Consider R? with vectors of the form

a .. . . .
z= ( ) Addition of vectors is just given componentwise by

b
{1 ar\ fa1 T as
ares (bl) i (bZ) - (bl + bz)'
Let us define also a scalar multiplication of such vectors by

13 = (Zi) . (Zj) =aiay + b1by.
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3.5.3 Happy Accidents

Examining the Dynkin diagrams allows us to identify isomorphisms amongst
some low-lying cases. These are happy accidents (law of small numbers) which
can give very interesting properties (a part of so-called exceptional isomor-
phisms). It is worth tabulating them:

PROPOSITION 3.36 At the level of Lie algebras, the following are isomor-
phic:

Ay = By = Cj e, sy = suy ~ sp3 =~ spy,
By ~ Cj ie., 505 =~ spy,
Ay X AL = Dy e, sy @ slly = 50y,

A3 >~ D3 Le., SU4 = SDg.

We have now encountered various incarnations of ADE patterns in differ-
ent contexts: polyhedra, root systems, finite groups, graphs, Lie groups and
algebras, etc. The next step will be finding connections between these differ-
ent sets: the ADE correspondences. Some of these will seem straightforward,
or even trivial, whilst others expose profound connections between vastly dif-
ferent areas of mathematics. The links that are still missing from this web
of connections between ADE sets hint that there may be a lot more interest-
ing mathematics to be developed and understood, in the guise of novel ADE
correspondences. We hope that our readers are inspired to investigate these
fascinating possibilities of discovery.

Exercises

3.1 Consider the following sets of three simple roots aq, as, 3. Calculate
the Cartan matrix and draw the Coxeter—Dynkin diagram in each case.
According to the classification, which root systems do they represent?

@ a1 =(1,0,0)", a5 = (0,1,0)", a3 = (0,0, 1)7
(b) a) = %(_17 170)T7 an = %(07 _17 1)T7a3 = %(17 170)T
(C) a) = (07 170)T7az = _%(Tr 17 (T - 1))Tra3 = (07 07 l)T

3.2 The Es root system is given by the following Coxeter—Dynkin diagram.
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refers to the fact that each edge, if extended infinitely in both directions, must
have the entire polygon “to its one side”. For example, a rectangle is convex,
but a 5-pointed star is not. To put this more formally, a convex polytope P has
two equivalent definitions:

DEFINITION 2.3 (The Vertex Representation of a polytope) A polytope is
the convex hull of a set S of m points (vertices) p; € R”. In other words,

P = COHV(S) = {ialpi a2 0, ia,« = 1} .
i=1 i=1

DEFINITION 2.4 (The Half-hyperplane Representation of a polytope) A
polytope is the intersection of linear inequalities (hyperplanes) Hx > b, where
b and x are real n-vectors and H is some m X n matrix.

Since we will exclusively deal with convex polytopes, we will drop the ad-
jective “convex” liberally.

The term “polytope” was coined by Alicia Boole Stott [13] as a generali-
sation of the words polygon (Greek for “many-sided”) and polyhedron (Greek
for “many-faced”, or rather, “many-scated’).

DEFINITION 2.5 The extremal points of P are called vertices, extremal
lines, edges, and then 2-faces, 3-faces, etc., and the (n — 1)-faces of codimen-
sion 1 are called facets. In R?, P is called a polygon and in R* it is called a
polyhedron.

Let us see Definitions 2.3 and 2.4 in action for a concrete example.

EXAMPLE 2.6 (Polygon example) Consider the triangle given by the ver-
tices (0, 1), (1,0), and (-1, —1) (see Figure 2.1). This is the vertex representa-
tion. An equivalent representation in terms of half-planes is given by —x —y >

1,2x—y > —1,and —x+2y > —1. Note that one can also rewrite this in terms
of the scalar product, so that the edge equations can be written as

(x,y-=L-D=-1,

(x,y-2,-1)=-1,

(x,y)-(-1,2) = -L

The rotational symmetries of different polytopes P comprise finite groups
G, which act as rotations in R”, i.¢., (special) orthogonal transformations on the
n coordinates of R”: in other words, nxn real matrices M such that MTM = T,,.
The discrete nature of the polytope P necessarily means that G is finite. It is
therefore instructive to remind the reader of a little group theory.
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This product yields a scalar and gives the usual Euclidean notions of distance,
lengths, angles, etc. The distance from z; to z, is ||z; —z2||, where ||Z]| = (z-2)'/?,
and the cosine of the angle between vectors z; and z; is (z1 - 22)/1z11]-l1z2 |-

The symmetric or antisymmetric part of such tensor products is often of
particular interest. Given the tensor power V¥ = V@V ® --- ® V of a vector
space V of dimension n, the two subspaces of most interest are

Sym*‘V: The symmetric product is the subspace of V® whose basis is the
subset of the #* ordered k-tuples of the basis of V, but considering
any permutation to be equivalent. A simple example which illustrates
this is to take V to be the vector space whose basis is composed of
formal variables x and y. Then, the basis of Sym®V consists of all de-
gree 3 monomials in these two variables, namely, x*, x*y, xy?, v>. We
see that the identification under permutation symmetry is reflected by
the fact that ordinary multiplication of the variables is commutative
(unordered). Thus, dim (SymkV) = (””,Z_l). (The proof of this is a
non-trivial combinatorial exercise.)

A¥V: On the other extreme, the antisymmetric (or exterior, or wedge) power
of V has basis consisting of those of ordered k-tuples which have no
repeated indices in a completely antisymmetrised way. This means
that v A w = —w A v. For example, if V is dimension 3, with basis
{v1,v2, v3}, then /\3 V has basis v{ A vy A vy (which, due to total anti-
symmetry, is equal to sign(o)vyay A Vo) A Va3 for any permutation
o). In general, dim ( A V) = (Z)

EXAMPLE 2.2 (C as an algebra) Again, consider R? with vectors of the
form z = (‘b’) Addition of vectors is just as usual in R2, but let us now also
define a multiplication of vectors by

o = (B (32 _ (a2 - biby
ara= b by) \aiby + hiaa)’
Then this product is again in R? and thus furnishes an algebra. In fact, this is
equivalent to the usual notion of complex numbers C.

2.2 Polytopes

We used the Platonic solids as an initiation to ADE-ology. It is expedient to
discuss them in more detail and formality here. We all have familiarity with
a convex polygon, consisting of vertices and edges. The “convex” condition
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Poincaré dodecahedral space model/homology sphere (i.¢., the sphere modded
out by the binary icosahedral group, see Section 3.4.2) [11]. There was some
recent interest that the universe might actually be such a Poincaré dodecahedral
space, with the non-trivial global topology potentially leaving imprints in the
cosmic microwave background [12]. Whilst perhaps ultimately not being the
shape of the universe, it was nonetheless interesting to reconnect the universe
and Plato’s old dodecahedron idea in the twenty-first century.

Since the Platonic solids are so ubiquitous, it is therefore natural to let us
begin, as an invitation, with something which the reader might recall from
school:

THEOREM 1.1 There are 5 Platonic solids.

Proof First, we recall the definition that a Platonic solid is “perfect” in the
following sense: every face is an identical regular p-gon and every vertex has
the same number of edges, say ¢, meeting. Clearly, p, g are integers at least 3.

Consider, therefore, any vertex where 2 edges from each face meet. The
angle between these 2 edges is xp=2) being the internal angle of a regular
p-gon. Since g such edges meet, we must have

qﬂ(p -2)
P

since otherwise the edges would all be in a plane (when the RHS is 27) or bend
over (when then RHS > 27). In other words, the inequality is strict in order to
have a convex body.

The above inequality rearranges to the Diophantine inequality in Egyptian
fractions:

<2r, (1.2)

1 1 1
St > /e 1.3
p+q>2, D, q € Zx3 (1.3)

Now, if either p, g > 6, the other would be forced to be < 3. Thus we only need
to check p, g in the range {3, 4, 5} and find exactly 5 solutions:

(p,q) | Platonic solid
(3,3) | Tetrahedron
(3,4) | Octahedron
(3,5) | Icosahedron
4,3) Cube
(5,3) | Dodecahedron

These are the 5 in the diagram in (1.2). In particular, the aforementioned graph
duality corresponds to exchanging (p < ¢). There are more sophisticated
ways to show this, using, for instance, the Euler number and Schlifli symbols
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Advanced Miscellany

Show that a graph with least eigenvalue —2 which is represented by a
subset of the root system A, is the line graph of a bipartite graph.

Show that a regular generalised line graph is either a line graph or a
cocktail party graph.

Show that a line graph 1.(G) is regular if and only if either G is regular,
or G is a semiregular bipartite graph (that is, vertices in the same
bipartite block have the same valency).

5.5 Describe all subsets S of root systems such that {@|8) > Oforall o, € S.

5.6

5.7

5.8

If the root system is decomposable, then S is the disjoint union of
subsets of the indecomposable components, so it suffices to solve the
problem for these.

If the root system is of ADE type, then Theorem 5.9 describes such
sets: if the type is A,, then S is the line graph of a bipartite graph,; if
type Dy, then S is a generalised line graph; if type E,,, then the number
of possibilities is finite.

Consider types B, and C,.. The root system is the disjoint union of a
type D, root system and an orthonormal basis, on¢ of these scaled by
a factor V2. In the D, root system, we have a generalised line graph
(which may not span the whole space); we may add vectors from the
orthonormal basis if either they are not in the span of the generalised
line graph or they are of vertex type in the proof of Theorem 5.9.

In type I»(n), the set must be contained within a right-angled sector in
the plane.

The remaining cases, F4, H3 and Hy, contain only finitely many pos-
sibilities.

(Computing project) Determine the graphs represented by a subset of Eg
which are not generalised line graphs.

Show that a mutation is an involution (¢.g., doing it twice returns us to
the starting quiver).

Show that any orientation of the edges of a tree can be obtained from any
other by a sequence of mutations.
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The D, family corresponds to the binary dihedral groups (aka the dicyclic
groups), whilst the binary preimage of a cyclic group is a cyclic group of twice
the order. Since cyclic groups are abelian, each element is in a conjugacy class
on its own, and thus all the dimensions of the irreps and corresponding diagram
labels are 1, with the irreps given by the nth roots of unity.

This concludes our discussion of discrete subgroups of SU(2), the binary
polyhedral groups, with a view to making the connection with ADE via the
McKay correspondence in Section 4.5.

3.4.4 Clifford Algebras

Root systems are a useful paradigm for reflection groups. As hinted at the out-
set, Clifford algebras [36—40] are also very efficient at performing reflections
and are in fact very natural — perhaps the most natural — objects to consider
in this framework [16]: the definition of a root system only stipulated a vec-
tor space with an inner product (symmetric bilinear form). That is exactly the
structure one needs to define a Clifford algebra over this vector space. So with-
out loss of generality we can construct this Clifford algebra over the vector
space by using the inner product.
We therefore proceed to define an algebra as follows:

DEFINITION 3.22 (Clifford Algebra) We have a vector space of elements
X,V,...with

Product xy = x- v+ x Ay (the algebra product, or “geometric product™);

Inner Product This is the symmetric part of the algebra product, which is
given by the scalar product on the vector space: x -y = (x[y) = %(xy +
vyx) and produces scalar, which is given by the symmetric bilinear
form on the original vector space;

Exterior Product This is the antisymmetric part x Ay = %(xy — yx) of the
algebra product and is also called an outer product, with the resulting
product being called a bivector. This is also familiar from the exterior
algebra.

Remark: The exterior product denotes the oriented arca spanned by the two
constituent vectors, which gets reversed under interchange of x and y and de-
notes the plane spanned by them. These symmetry propertics mean that parallel
vectors commute whilst orthogonal vectors anticommute. The exterior product
is of course in three dimensions also related to the perhaps more familiar vector
cross product, since each plane (bivector) has a unique normal direction.
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5.11 Summarising OQutlook: A Rogues’ Gallery

We conclude this book with a list of ADE and affine ADE sets that we have
encountered, from elementary to highly advanced topics, and with various con-
nections amongst them;

(i) Platonic solids, prisms, polygons
(ii) Polyhedral groups
(iii) Coxeter groups / full polyhedral groups
(iv) Root systems
(v) Simply-laced diagrams / graphs (Smith)
(vi) Affine diagrams / graphs (Smith)
(vii) Tesselations of the plane
(viii) Binary polyhedral groups
(ix) ADE root systems
(x) ADE Lie algebras
(xi) Affine Lie algebras
(xii) Real Singularities (Arnold)
(xiii) Complex Singularities (du Val)
(xiv) Conformal field theory and modular invariants (WZW Models)
(xv) ALE spaces (Kronheimer)
(xvi) Elliptic fibrations (Kodaira)
(xvii) Quivers (Gabriel)
(xviii) Cluster algebras (Fomin and Zelevinsky)
(xix) Stringy Hodge numbers (Batyrev—Dais)
(xx) McKay Correspondence as Derived Equivalence (Bridgeland-King—
Reid)

We hope that readers of this book will populate this web of connections with
some of the missing links between different areas of mathematics.

Exercises

5.1 Calculate the possible Niemeier root systems so that their ADE root sys-
tem building blocks satisfy the rank 24 condition as well as all building
blocks having the same Coxeter number.

5.2 Find a representation of the graph of Figure 5.1 as a subset of the root
system D, for suitable n. Extend your construction to any generalised
line graph. (Hint: reverse engineer Theorem 5.9.)
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e We let d; denote the dimension of Irrep,(G), then d; also divides |G| and the
sum of the squares of the dimensions of these irreducible representations
add up to the order of the group

zn: & =G|
i=1

o Of course, the trivial representation is always one of Irrep,(G), so at least
one of the d; is 1.

EXAMPLE 3.19 (Icosahedral and binary icosahedral groups) For instance,
the icosahedral group I = As has five conjugacy classes: the identity, 15 2-fold
rotations, 20 3-fold rotations, and two sets of 12 5-fold rotations. It is of order
60, which implies that it has five irreducible representations of dimensions 1,
3, 3, 4 and 5. Its double cover, the binary icosahedral group 21, is of order
120 and has an additional 4 conjugacy classes, i.¢., 9 in total. It therefore has
a further four irreducible spinorial representations 2y, 2%, 4, and 6, (with 2% +
22 + 4% + 6> = 60 as required). This set of integers 1,2,3,4,5,6,4, 3,2 might
already look familiar, e.g., from Section 3.2.2.

This binary icosahedral group has a mysterious connection with Eg via the
so-called McKay correspondence [3]. This actually applies to all other binary
polyhedral groups and the root systems of ADE-type. This connection will be
discussed in Section 4.5, and as we hinted at previously is usually cast in the
language of (affine) Lie algebras. However, most of the structure is already
contained at the level of the root systems.

EXAMPLE 3.20 (Octahedral groups) The octahedral group O of order 24
consists of the identity, six 2-fold rotations, eight 3-fold rotations, six 4-fold
rotations and another class of three 2-fold rotations around those 4-fold axes.
The dimensions of the irreps are therefore 1, 1,2, 3, 3. The doubled binary oc-
tahedral group has another 3 conjugacy classes, giving further irreps 25, 2, and
4,. As expected, these are the same labels we have already encountered for E7.

EXAMPLE 3.21 (Tetrahedral groups) The four conjugacy classes of 7 of
order 12 (two quartets of 3-fold rotations and three 2-fold rotations) determine
that this group has four irreducible representations of dimensions 1, 17, 1”7 and
3. The seven conjugacy classes of 27 of order 24 mean that this acquires a fur-
ther three irreducible spinorial representations of dimensions 2, 2%, 2,”. The
dimensions of the irreps of the binary tetrahedral group are thus reminiscent of
the E; labels.
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This is actually a rotation by 7 counterclockwise! If we think about x7, we see
that one of e; and e, in e;e, will commute with the vector part whilst the other
anticommutes, so that overall Ix = —xI also anticommute.

This 2D case is actually somewhat misleading, as we will see below.

e1e; can thus play the roles of the usual imaginary unit i in complex num-
bers. But it has more geometric meaning. We will see more of these occur-
rences later where different unit imaginaries describe different planes. The
spaces of vectors and that of the spinors (the even subalgebra) are both of
dimension two, and can be mapped into each other, e.g., by multiplication by
e1if R = a1 + ape1er then Rey = ajeq — azen.

One can define the exponential of an element in this algebra in the usual
way via a series expansion. The finite 2”-dimensionality means that only 2"
algebraically different terms contribute, whilst the coefficients add up as series
expansions: one ends up with a spherical, Euclidean or hyperbolic trigonomet-
ric expansion, depending on whether the object one exponentiates squares to
something positive, null or negative. We will encounter examples of bivector
exponentials below in the context of the Coxeter plane.

EXAMPLE 3.27 (Spinors in 2D) A spinor @; + azeje; can be written as
a bivector exponential exp(¢eies) = cos¢ + eje; sing, via the usual Euler
formula. One here sees the usual vector and spinor-like aspects of complex
numbers disentangled, but related in a coherent framework. Transformation of
a vector x by double-sided action of a bivector exponential leads to

exp(gerer)x exp(—geiey)) = exp(Lee; e)x,

since in 2D e;e, anticommutes with a vector. That is, double-sided action of
a spinor with angle ¢ leads to a rotation of a vector?> by angle 2¢ (it is cus-
tomary to halve these angles and speak of a half-angle formula). This double-
sided action is the concept that generalises. It is only accidentally the same
as left-multiplication by a complex number in 2D, since in general the pseu-
doscalar/rotation plane bivector e;e; does not necessarily (anti)commute with
every vector.

Since a spinor exp(¢e;iey) leads to a rotation by twice the angle, if we take
¢ = =, then the overall rotation is one by 27. A vector x is thus returned to its
original state. However, the spinor itself is not!

exp(meier) = cOsSm + sinmej ey = —1 = exp(—meye;).

22 Of course, spinors multiply single-sidedly, and form a group under such multiplication.
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EXAMPLE 3.23 (Parallel vectors commute) We now show that parallel vec-
tors commute. Vectors being parallel means that y = ax for some scalar .
However, x A x = —x A x = 0, because the exterior product is antisymmetric.
So we have

XV=X-Y+XAY=X-V+AXAX=X-Y=Y-X=Y-X+YAX =YX

Thus parallel vectors commute simply because the scalar product is symmetric
and the two factors in it commute in the first place.

EXAMPLE 3.24 (Perpendicular vectors anticommute) Conversely, we now
show that perpendicular vectors anticommute. Vectors being perpendicular
means that x - y = 0. So we have

XV=X-Y+XxAY=04+XAY=-YAX=—-VAX—Y X=—VX

Thus perpendicular vectors anticommute simply because of the antisymmetry
of the exterior product.

We extend the algebra product via linearity and associativity. This enlarges
the algebra to a 2”-dimensional vector space, which is isomorphic to the fa-
miliar exterior algebra as a vector space, though they are not isomorphic as
algebras. In fact, the Clifford algebra is much richer, since the algebra product
is invertible (at least for non-null vectors).

EXAMPLE 3.25 (Clifford algebra of 2D) The Clifford algebra of two or-
thogonal unit vectors ¢; and e; (i.e., ¢ = €3 = 1 for 2D Euclidean space) is
4-dimensional,

{1} e, er} Hferen} .
N — N—_—— N —
1 scalar 2 vectors 1 bivector

The only new object here is eje; (often denoted by 7 in this context).?! This
bivector defines the plane given by e; and e,. It turns out to square to —1 and
describe rotations in this 2D plane:

(e162)” = (e1e2)(e1€2) = er(ezer)en
= ei(—e1e)er = —(e1)(er)” = —17 - 1> = —1.

EXAMPLE 3.26 (Rotations in 2D) If we have a vector x = xjeq + Xpes in
this plane then we have

Ix = ejex(x1e1 + xX2€7) = X1€1€281 + X2€1€%82
2
= x1e1(—e1ez) + xze1(eren)” = —x1e2 + xoeq.

2l Since ¢? = €2 = 1, multiplying with more e; s or e;s doesn’t actually lead to anything else.
1= plymg
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Arnold listed many examples of suggested Trinities and various connec-
tions between them in [2, 61], such as (tetrahedron, octahedron and icosahe-
dron), (Ag, Bg, Hg), (D4, F4, H4), (E67 E7, Eg) and many more. The tOpiCS and
connections that he mentions are closely related to topics that we have also
discussed, as his Trinity parts are the E-type exceptional cases in many of our
ADE sets. Some connections are straightforward, such as with the cluster of
trinities around Platonic solids, root systems, Coxeter groups, binary icosahe-
dral groups (27,20, 2I) and their orders (24,48, 120), as well as number of
roots in the root system (12, 18, 30), sum of the dimensions of the irreps of the
binary groups and triples of rotational symmetry orders (233, 234, 235) which
are all plausibly connected to each other. The connection between (A3, B3, Hz)
and (Dy, Fa, Hy) was only noted by Arnold very indirectly, and we have seen
above that it is indeed a non-trivial argument, and in fact encompasses a whole
ADE pattern.

We also saw above that there is another mysterious trinity which one can add
to the story. It is well-known that in the classification of finite simple groups
[71, 72], there are (1) the alternating groups Ajss; (2) the Lie groups defined
over finite fields; and (3) 26 exceptional cases called the Sporadics. Whilst this
is not in any obvious ADE pattern, it was an old speculation of McKay whether
the largest three, viz.,

(Monster, Baby Monster, Fischer’s Group) (5.37)

might furnish the trinity that relates to (Es, E7, Eg). It is not clear if this could
be extended to a full ADE pattern too.

A good way of thinking about Trinities is perhaps that it is easier to find three
exceptional examples in different areas of mathematics, which can serve as
inspiration and a bootstrap to try to uncover fuller ADE sets/correspondences
by including appropriate infinite families. It is not clear which Trinities may
form part of an ADE set and which don’t. We expect that investigations into
this mysterious web of correspondences will lead to a lot of very interesting
mathematics. What will bridge what now seem different areas of mathematics
will probably crystallise as beautiful and unifying objects in their own right.
We would like to encourage the readers of this book — and the next generation
of mathematicians and physicists — to use their creativity and start to forge
paths into this new Polymathematics terrain.
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double cover in Section 3.4.4 on Clifford algebras. Again, we emphasise that
this is a double cover, with the same order as but different from the groups
obtained by including reflections, which are subgroups of O(3).

We shall make important use of these binary groups when we discuss ADE
correspondences, and in particular the McKay correspondence, and thus sum-
marise them here:

Presentation of G |G|
Cyclic (R|R"=1) =~ Z/nZ n
Binary dihedral | (R,S |R" =S?, ST'TRSR=R>” =) | 4n
Binary tetrahedral (R,S,T|RST=R*=53=1% 24
Binary octahedral (R,S,T|RST=R2=5%=71% 48
Binary icosahedral | (R,S,T|RST =R*>=S°=T7>) 120

(3.18)

We see that all the non-abelian cases have the order doubled and the presenta-
tions differ from (3.1) merely by dropping the equality to the identity (RST =1
from Table 3.1). In fact, since there is a unique involution, this presentation can
also be taken as RST = —L. In particular, while R” = I for the cyclic case, this
is not so for the others. Furthermore, in the binary tetrahedral, octahedral and
icosahedral cases, the generator R is redundant — it being expressible in terms
of S and T — but we keep it for reference.

These binary polyhedral groups have various presentations. For example,
to many, they are known as discrete subgroups of SU(2), so just a finite set
of 2 X 2 complex matrices. When seen as discrete groups of unit quaternions,
the binary groups have the names of Hurwitz units, Lipschitz units and the
Icosians. We will also see another incarnation of the binary polyhedral groups
as multivector groups in Clifford algebras shortly.

3.4.3 A Bit of Polyhedral Group Theory

Since we will encounter these binary polyhedral groups again in greater detail
later, we quickly summarise their main propertics, as well as recalling some
standard results (see also Chapter 2).

First, we recall some standard (q.v. [14]) facts from representation theory of
a finite group G:

e The number » of irreducible representations (irreps) is given by the number
of conjugacy classes:

n = #H{Conj(G)} = #HIrrep(G)}.

e Clearly, |G| = Y |Conj,(G)|, the size of the group is the sum over the sizes
i=1
of the conjugacy classes. Moreover, each [Conj,(G)| divides |G].
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Fischer’s Group). This latter connection is actually more in the spirit of a trin-
ity than a full ADE correspondence. Arnold’s trinities would make one surmise
that the trinity (R, C, H) may be involved. There have also been other attempts
to generalise this connection between sporadic objects, e.g., the Freudenthal—
Tits magic square attempts to include the octonions. But for the moment let us
discuss the relationship between the Trinity and the countable families further.

In our first ADE example we have seen that sometimes the three exceptional
cases (the symmetries of the Platonic solids) seem quite different from the
infinite families (symmetries of the n-gons and prisms). In fact this is often the
case. As we have already mentioned above, these three exceptional cases on
their own have been termed by Arnold as a “Trinity” (i.c., they are the Trinity-
part of the ADE classification, though he does not seem to have advocated this
view), which he related to the three normed division algebras

(R,C, H). (5.35)

In fact, it may not always be obvious which countable families to include
in an ADE set. We have seen one incarnation of this earlier in the context of
Section 4.4 as well as the anecdote from one of the authors (PC) about two
of his collaborators, Jaap Seidel and Jean-Marie Goethals, in the 1970s, in the
context of working on graphs with smallest eigenvalue —2. Whilst it turned
out that they had found the same three sporadic examples, they had found
complementary families! That is, there were a total of two infinite families, and
all in all the cases assembled into a full ADE set. We have seen in Section 4.4
that this motivation to find an ADE pattern can lead one to include an infinite
family in formulating a conjecture that one might have excluded a priori.

But now that we have covered rather more advanced material over the course
of the book, we can go back to the Trinity part in more detail: Arnold noticed
patterns of three exceptional examples in many different areas of mathematics,
and sought to relate these back to the fundamental Trinity of normed division
algebras (R, C, H). For some of the other trinities this is rather obvious, such
as for the associated projective spaces

(RP",CP", HP") (5.36)

and in a related though less immediate way the spheres (RP! = S! CP! =
S2,HP! = S*) with their associated Hopf bundles (S' — S!, 8% — §2, 87 —
S#). For others, e.g., our example of the Platonic Solids, the connection to
(R, C,H) is less (or not) obvious, e.g., why the octahedron should be a com-
plexified version of the tetrahedron or the icosahedron a quaternionic analogue
of the tetrahedron.
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Nomenclature

The alternating group permuting » ¢lements, of size n!/2
=~ Z/nZ is the cyclic group of size n; sometimes this is also denoted
Z,, though we adhere to Z/nZ

I' = SL(2;Z) the modular group of linear fractional transformations of the in-
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crete subgroup of O(3)

Infinite family of Coxeter groups/root systems/Lie groups
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through the inner product (R, R2) = (R R, + R,R;) which gives |R* = RR =
@ + a3 + a3 + ai. We will use this in Section 4.4.

The double-sided action of a quaternion on a pure quaternion amounts to a
rotation; great significance is usually attached to this, but from Section 3.4.4
we recognise this as accidentally isomorphic to the general double-sided action
/ the simple reflection formula in Clifford algebras. Spin(4) is also accidentally
isomorphic to two copies of SU(2) such that in 4D a pair of quaternions can
describe a rotation. However, this is very backwards and does not generalise,
compared with the general Clifford versor formula. Many of the hallmarks
of why quaternions are seen as magical are thus actually completely general
properties in Clifford algebras.

We saw that the Platonic symmetries — i.e., the rotational symmetries as
discrete finite subgroups of SO(3), and hence, its double cover, SU(2) — follow
an ADE classification. Now, let us see this from the Clifford perspective.

3.4.5 Double Cover the Clifford Way

Concatenating reflections in the Clifford algebra is equivalent to multiplying
together root vectors, with double-sided application a la Section 3.4.4, giving
rise to binary double covers of the polyhedral groups. Rotations correspond
to an even number of reflections such that a rotation is doubly covered by a
general spinor R = ag + ayle; + arle; + asles, which acts on a vector as RxR.
The rotation matrix this corresponds to is

a+al-a-dl Qapas + 2a1ax  2a0ar + 2a1a3

5 2apa3 + 2aa; @i -al +di - a3 Danay + 2axas

—2apay +2a1as 2apar +2aas  al —ai - di+ a3

It is obvious that —R gives rise to the same rotation matrix, since all the en-
tries are quadratic in the spinor coefficients. So this gives the doubly covering
homomorphism in the Clifford guise. Conversely, multiplying together vec-
tors using the inner product to construct the Clifford algebra yields the double
cover.

EXAMPLE 3.32 As adetailed example, we look at 27 as a group of Clifford
multivectors. The following set of 24 spinors gives a Clifford realisation of
the binary tetrahedral group, where group multiplication is given by algebra
multiplication [47]. This particular set is based on the choice of the A3 simple
roots as a; = %(82 —e1), @ = %(83 —er)and az = %(81 + e5). The binary
polyhedral group is given by even products of these root vectors. For instance,
multiplying the two root vectors «; and a3 gives
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An Invitation

NASA'’s Pioneer Missions in the mid-1970s sent out probes Pioneer 10 & 11,
which have now left our solar system carrying a famous plaque. It depicts the
images of a man and woman to identify our species, the spin-flip transition of
hydrogen to set a length measurement, the position of the Sun to the centre of
the Galaxy and to 14 pulsars, as well as a diagram of the Solar System. These
images are to serve as a calling card of humanity to possible extra-terrestrial
civilisations. Professor Francis Buekenhout of Brussels suggested that the set
of diagrams shown in Figure 1.1 should be included, his view being that even
if an alien civilisation had very different mathematics to ours, chances are that
they would have come up with at least some of the areas in which such a figure,
called ADE Diagrams, should occur.

That these diagrams, or what Professor Terry Gannon [6] calls a “meta-
pattern”, consisting of 2 infinite series and 3 isolated — “exceptional” or “spo-
radic” — cases, should emerge in various branches ranging from algebraic ge-
ometry to representation theory to mathematical physics, places them in a cen-
tral and rather mysterious position in the very structure of mathematics. As
a tribute to Hilbert’s famous 23 problems at the turn of the twentieth century,
Professor Vladimir Arnold posed the understanding of the ubiquity of the ADE
diagrams as a key problem to modern mathematics [7]. Indeed, in his lecture
honouring the founding of the Clay Institute, whose Millennial Problems also
echo those of Hilbert, Professor Nigel Hitchin [8] chose the subject of the three
E-type diagrams.

Over the years, an increasing number of classification problems and corre-
spondences, at first curious, then uncovered to be profound, have resulted in
an ADE-type of meta-pattern:

2 infinite families
3 exceptional cases

(1.1)
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Coxeter group/root system, Oy, full octahedral group of size 48, dis-
crete subgroup of O(3)

Degree — invariant: degree of invariant polynomials of Coxeter groups
Infinite family of Coxeter groups/root systems/Lie groups

Es, E;, Eg Exceptional Coxeter groups/root systems/Lie groups of E-type

LHS
RHS

Coxeter number

Coxeter group/root system, I, full icosahedral group of size 120, dis-
crete subgroup of O(3)

Rotational icosahedral group of size 60, As, discrete subgroup of SO(3)
Klein’s j-invariant for an elliptic curve

Exponent — invariant: exponent in the complex eigenvalue of the Cox-
eter element w

Rotational octahedral group of size 24, S 4, discrete subgroup of SO(3)
Rotor/spinor: a (normalised) element of the even subalgebra of a Clif-
ford algebra

Rotational tetrahedral group of size 12, A4, discrete subgroup of SO(3)
Coxeter element

is the dihedral group of size 2n, which is the semi-direct product C;, :
(,, the cyclic symmetry of a regular n-gon, together with the 2-fold
symmetry of flipping the n-gon over.

Left-hand side

Right-hand side
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transformations, one therefore only needs to consider products of (root) vec-
tors in the Clifford algebra. This is therefore an extremely (if not completely)
general way of doing group theory.

EXAMPLE 3.29 (A rotation) Letus now consider a rotation such as a double-
reflection of a 2D vector x = xje; + xpe; in the hyperplanes (lines) defined by
first e; and then e;:

X' = —ejxe; = —e1(x1e1 + xae2)e; = —ere1(x1e] — x2e0) = —x1€1 + X2,

X' = —eyx’es = —x1€1 — X269 = —X.

That is, both the components now get reversed. This therefore amounts to a ro-
tation in the e e;-plane by 7. It is a simple exercise to translate this into matrix
language. Care, that in higher dimensions, only the 1- and 2-directions would
be reversed, still giving a rotation in the e e;-plane by nr, whilst other dimen-
sions would not be affected (since they anticommute with both e
and €2).

Since n and —n encode the same reflection (as we noted above), products
of unit vectors are double covers of the respective orthogonal transformation,
as A and —A encode the same transformation. We call even products R, i.c.,
products of an even number of vectors, spinors or rotors, and a general product
A versors or pinors. They form the Pin group and constitute a double cover
of the orthogonal group O(n), whilst the even products form the double cover
of the special orthogonal group SO(n), called the Spin group. Clifford algebra
therefore provides a particularly natural and simple construction of the Spin
groups.

In fact, the above extends to an even more general theorem on the Clifford
Algebra representation of orthogonal transformations. A versor is a multivec-
tor A = a1as...a; which is the product of k£ non-null vectors a; (af + 0).
These versors also form a multiplicative group under the geometric product,
called the versor group, where inverses are given by A, scaled by the magni-
tude |A]? := a1 Plasl? . . . |ax|> = £AA, where the sign depends on the signature
of the space. The inverse is simply A~ = i%. The Versor Theorem [41, 42]
then states that

THEOREM 3.30 (versor theorem) Every orthogonal transformation A of a
vector v can be expressed via unit versors in the canonical form

Arv =V = A() = +AVA, (3.19)

where the *-sign defines its parity.
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Figure 1.1 ADE diagrams — a universal pattern?

The 2 infinite families are called type A and D while the 3 exceptionals are
called type E. The diagrams above, the ones which ought to be on humanity’s
calling card, are clearly of this form. The elevation of the diagrams to almost
religious heights has suggested the usage of the word “ADE-ology”.

The purpose of this book is to introduce the reader to this vast and fasci-
nating topic of ADE-ology. Whilst there have been nice reviews in the past,
especially after the advent of the McKay Correspondence by the fourth author
in 1979 (cf. ¢.g., [3, 6, 9]), an up-to-date and pedagogical treatment, suited for
an advanced undergraduate or an early post-graduate, is somewhat lacking. It
is our hope that the present writing can help initiate those with an appetite for
webs of inter-connections into this fascinating field.

1.1 Origins

We could trace ADE-ology to as far back as the ancient Greeks” work on Pla-
tonic solids, or perhaps even earlier, if the Scottish solids are taken as indica-
tive of awareness of the Platonic solids [10]. What are the “perfect” shapes in
ordinary Euclidean space? They are the regular polygons in 2D and the five
Platonic solids, each of which is comprised of specific identical regular poly-
gons. The regular polygons in 2D are also related to the n-prisms in 3D (by
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It would require a rotation through 47 to return the spinor to its original state.
That is exactly why these objects are named spinors. Spinors are often thought
to be inherently quantum mechanical. But here we see them as a simple ques-
tion of geometry. Composition of rotations (given by double-sided action) is
achieved by composition of spinors by the geometric product.

Let us look at this curious double-sided transformation in more generality:

A General Treatment of Reflections
Using the above form x -y = (x]y) = %(xy + yx) for the inner product in the
(simple) reflection formula Equation (3.5) and assuming unit normalisation of
roots «; one gets the much simplified version for the reflection formula

Sit x — 5:(x) = —@ixa;

since

x’:x—2(x~n)n:x—2§(xn+nx)n:x x —nxn = —nxn = —(—n)x(-n)

since n® = 1. This is much simpler than the usual reflection formula in Section
3.2.1. The only alternative system that comes close to this efficiency are the
quaternions (see previous section), where it is seen as miraculous. However, for
some historic reason the same sense of wonder is not usually extended to the
Clifford version of this formula which holds in any dimension and signature,
and is only accidentally isomorphic to the quaternions in 3D.

EXAMPLE 3.28 (A reflection) Let us consider such a reflection of a 2D
vector X = x1e; + xpe; in the hyperplane (line) defined by e;:

X = —ejxe; = —ej(x1e1 + xae2)e; = —eqje1(x1e] — X2€2) = —X1€1 + X285,

That is, the component along e; gets reversed, whilst other directions are not
affected. It is a simple exercise to translate this into matrix language.

Moreover, since via the Cartan—Dieudonné theorem most “interesting” (at
least from a mathematical physics perspective: orthogonal, conformal, mod-
ular) groups can be written as products of reflections [16, 40], this formula
actually provides a completely general way of performing such transforma-
tions by successive multiplication with the unit vectors defining the reflection
hyperplanes

S182...8k: X — S182.. .sk(x) = (—l)kaqa/z L QEpXag ...y = iAxA.

A is defined as the product of the vectors which define the hyperplanes, so
A = mpay...q, and the tilde denotes the reversal of the order of the con-
stituent vectors in the product (an involution). In order to study the groups of
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vectors defines a plane (in any dimension) the bivectors are planes, whilst a
trivector is a volume (and so on), and the scalar a point/number. Thus one sees
that despite considering the geometry of three dimensions, there is actually a
natural eight-dimensional space associated with it. Furthermore, there is also a
four-dimensional subalgebra, the even subalgebra consisting of the scalar and
the bivectors (the one that satisfies quaternionic relations).

This subalgebra is in fact the 4D space that allows us to make a connection
between the geometries of 3D and 4D, namely to define 4D root systems from
3D root systems in Section 4.4.1. We have also used the full 8D algebra in other
work [21, 45], e.g., for constructing the root system Eg from the icosahedron
Hj or for defining representations. The presence of the pseudo-scalar allows us
to dualise the even and odd subalgebras; for instance, we can dualise vectors
into bivectors using I = ejeses, as shown in the equation above eje; = Ies.
The only other Clifford algebra we will consider here is that of 4D in Section
4.4.2, which is analogous with highest grade element (pseudoscalar) ejesesey.

But for now we go back to 3D to elucidate the relationship with the quater-
nions. As we have seen ejes, epe; and ese; are imaginary units, and in fact
since ejeyeres = ejey = —eze they are isomorphic to the quaternions. There
are thus many different instances in Clifford algebras where geometric objects
satisfy quaternionic relations, such as any three orthogonal planes, but there
are also other examples, such as {1, e,, exeye;, e;ereye;}) in the Clifford algebra
describing Minkowski spacetime (though this will concern us no further here).
There are thus many geometric objects that may satisfy quaternionic relations,
and treating them all the same (or assuming they commute with each other)
can lead to great confusion and loss of geometric insight.

In particular, it is easy to see how pure quaternions, i.¢., quaternions without
a scalar part, are essentially bivectors (€.g., eses) and thus casily dualised to
vectors if one has the pseudoscalar I at one’s disposal:

erey & leney = e1eneseqes = —eq.

(This is essentially the analogue of Hodge duality in the exterior algebra.) 3D
vectors in general and 3D root systems can thus have representations in terms
of pure quaternions. However, a cautionary tale that this is not always the case
when the inversion/pseudoscalar is not available is in [46]. For example, the
tetrahedral root system does not contain the inversion and thus has no repre-
sentation in terms of pure quaternions. We will look at the binary tetrahedral
group 27 as a group of elements of a Clifford algebra (multivectors) in detail
below, in particular this lack of the inversion.

For essentially the same reasons as for the quaternions one can define a 4D
Euclidean norm on the space of 3D spinors R = ag + a1e2e3 + azeze; + daejep
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Unit versors are thus double-valued representations of the respective orthog-
onal transformation.

In particular, we get the binary polyhedral groups, the double cover of the
rotational polyhedral groups, merely by multiplying together root vectors in
the Clifford algebra (see Section 4.4.1 for more details). Thus the remarkably
simple construction of the binary polyhedral groups (which are the spin double
covers of the polyhedral groups) in our context is not at all surprising from a
Clifford point of view.

Scalars, Bivectors, Trivectors, ...
Whilst the above discussion was completely general for orthogonal groups in
spaces of arbitrary dimension and signature (and via some isomorphisms also
the conformal and modular groups [16, 43, 44]), here we are particularly inter-
ested in 3D reflection groups. We will therefore only further consider 3D and
4D geometry here, extending our discussion of the 2D case above.

EXAMPLE 3.31 The Clifford algebra of 3D is generated, ¢.g., by three or-
thogonal unit vectors e, e; and es. This yields an cight-dimensional vector
space consisting of the clements

{1} fei,en,e3) lerenr = les,erez = ley,ezey = ley)  {I = ejees).

N — ——— —_—_—F,——— —_———
1 scalar 3 vectors 3 bivectors 1 trivector

Any of the bivectors or trivectors square to —1. Thus, one now gets several
different imaginary units based on a real vector space — without complexi-
fying the whole space. In fact, one needs to be careful with such imaginary
units since they do not necessarily (anti)commute. In fact, the scalar and the
three bivectors satisfy quaternionic relations (see preceding section). Often the
appearance of quaternions in mathematical physics just signals that the spin
eroup Spin(3) is involved. Similarly, these commutation relations of 3 orthog-
onal unit vectors ej, e; and e3 have a matrix representation that many readers
will be familiar with: the Pauli matrices. Therefore, the appearance of Pauli
matrices often just heralds the same involvement of the spin group Spin(3).
However, it is not inherently quantum mechanical, but purely arises from the
geometry of a vector space with a scalar product.

Thus, the other two normed division algebras € and H thus emerge naturally
within real Clifford algebras, without the need to complexify or quaternionify
the whole underlying vector space. We see in the context of the Coxeter plane
that this is actually much more natural and geometrically insightful (see Sec-
tions 3.2.4 and 4.4.2). The geometric interpretation of these elements of the
Clifford algebra is still as lines or directions for vectors; and since a pair of
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rotational symmetries in R>, something known to the ancient Greeks, to the
classification of continuous symmetries in arbitrary dimensions, the so-called
Lie groups that have been known since the last years of the nineteenth century
to the early part of the twentieth. That the discovery of this correspondence
had to wait so long is precisely because it spans two seemingly unrelated parts
of the mathematical canvas: a colourless skein has to traverse the land of rep-
resentation theory of Lie algebras, to that of the combinatorics of finite groups,
a skein provided by finite graph theory. A common ground seemed to be an
A-D-E pattern in the classification of both.

This pattern will turn out, over the decades since, to be ubiquitous across
disciplines, many of which are still rather mysterious. It, like modularity in the
Langlands Programme, or g-series in Generalised Moonshine, is a repeating
motif on the tapestry of mathematics. Speaking of Moonshine, another ob-
servation of the fourth author, in 1978, related the until-then utterly unrelated
fields of modular forms in analytic number theory to the representation theory
of finite simple groups. Though the proof of the formalised conjecture of Con-
way and Norton was given in 1992 by Borcherds in his Fields-Medal-winning
work for the so-called Monster Sporadic group, such correspondences for other
finite groups remain an active programme of research. Even more strikingly,
the A-D-E pattern emerges in Moonshine, giving us an evermore mysterious
connection amongst connections.

Readership and Scope: Since the A-D-E pattern touches upon so much
mathematics, spanning material which could be explained to a high-school
student to that which still bemuses the most sophisticated of contemporary
researchers, we see a duty incumbent upon ourselves to write a textbook to
introduce this fascinating subject. While there are such introductions as [4, 5],
aimed at a postgraduate-level mathematical audience, something which an ad-
vanced undergraduate in mathematics can understand and appreciate is, sadly,
missing from the literature.

The reason for the lack of such a book is simple: it is a daunting task
to explain so much mathematics, spanning so many centuries and different
branches, to a novice. However, we believe that this is not only possible but
also of great benefit to the young student. Indeed, what better subject matter
to entice and to initiate than one which starts with Platonic solids, and yet
erows rapidly to so many connections and still so filled with mystery?! Indeed,
while almost all undergraduate textbooks on mathematics fall into the routine
of “Introduction to X where X is “group theory”, “commutative algebra”, or
“algebraic geometry”, etc., how refreshing it would be to have a book which
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When we were first introduced to mathematics as children, we saw it as a
whole — a world of patterns, shapes and numbers — and marvelled, albeit at a
puerile level, at this wonderful tapestry that is mathematics. As we grow older
and delve more deeply into the matter, we slowly learn of the distinct regions
into which this tapestry is partitioned: algebra, geometry, combinatorics, . ...

The price of this maturation, however, is that while we can still exam-
ine the beauties of an individual problem, the ability to appreciate the inter-
connectivity between problems slowly fades. This is, of course, inevitable; the
vast growth of the corpus of knowledge so overpowers the human intellect
that compartmentalisation of expertise is a natural consequence. By the time
we are card-carrying mathematicians, we also carry a label: she is an analytic
number theorist, he is a computational algebraic geometer, etc., etc. Except for
the very greatest of mathematicians, the possibility of stepping back, even for a
elimpse of the full canvas, is hauntingly diminishing. The commonly acknowl-
edged “last universalist”, the great Henri Poincaré, died in 1912.

Of course, one should not be disheartened. Cross-links between different
branches still happen from time to time; whenever a new thread is woven
into the tapestry, especially when it provides an unexpected skein of thought,
deep and novel mathematics is generated. These “correspondences™ occur in-
frequently because they require either fortuitous accidents or insights far ahead
of contemporaries. They need visionaries and mystics. Vladimir Arnold, with
a breadth of knowledge typical of the Russian school, is one visionary who
has been a proponent of “Poly-mathematics™ [2], which seeks connections and
correspondences.

Poly-Mathematics: A prime example of an unexpected thread, from which
this book draws its inspiration, is the McKay Correspondence [3], discov-

ered by the fourth author in 1980. It relates the classification of the discrete

ix
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allows the neophyte to have a glimpse at a large segment of the tapestry of
mathematics all at once?!

Thus is the purpose of this book, to let the young students into the world of
poly-mathematics, to attempt to envision mathematics as a whole, through the
looking glass of the ADE pattern. We hope they will be enthralled and will one
day unravel some of the enigmas of the pattern’s ubiquity. We aim to have the
earlier parts of the book accessible to an advanced undergraduate student with
a foundation in linear algebra. We also provide a brief exposition of key results
and examples in group theory that will repeatedly come up. This book could
therefore also be used as a textbook that provides a contemporary take on some
standard algebra topics such that it can be taught as an algebra or mathemati-
cal physics module, or as food for thought and a source of potential topics for
student projects such as dissertations or honours theses. The latter parts can
be used — not exhaustively, but likewise as inspiration — by beginning graduate
students, to give them ideas about possible topics, problems and conjectures,
as well as a brief précis of some key ideas along with references for deeper pe-
rusal. Nobody can be an expert in all of these areas, but it is our hope to provide
a collection of signposts to different interesting areas and tantalising connec-
tions between them, and to inspire the next generation of mathematicians to
think in creative and collaborative ways, seeking to make new connections and
unify seemingly different areas of mathematics; in other words, to think like
poly-mathematicians.

Finally, a note of warning. The mathematician’s slogan is “Never apologise;
always explain”, and we have kept to this as far as we can. But we must apol-
ogise that, since some of this material is still mysterious, we cannot explain
everything. We hope that some of our readers will help to do so!
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The Molien series here is

mezpz - L L) 1P 5.3
CERD=S\a—n *a+0?) " a_ppy P

so that the Taylor coefficients are a; = 2i + 1 and ay-; = O for i € Z.g, in
agreement with the table above.

The above can be re-phrased geometrically, in the language of modem al-
gebraic geometry.!! The C? on which G acts is an affine (complex) algebraic
variety.”” We now see that the quotient C?/G is also an affine variety. This
quotient is not smooth because the origin (0, 0) is a fixed point. Such a singular
space is called a V-manifold or orbifold [155]. Note that such spaces are not
manifolds — the patch near the singularity is not homeomorphic to C” — but are
varieties. As such, they should be describable as vanishing loci of polynomials.

We illustrate how to obtain the polynomials by examining the ring of in-
variants: relations amongst the fundamental invariants will give the defining
equations. In our above Z /27 example, there are the three fundamental invari-
ants, coming from degree 2:

ui=x,vi=y, wi=xy s uy =w. (5.24)

These are fundamental in that all the other invariants can be written as poly-
nomials therein. Equation (5.24) tells us that the fundamental invariants obey
a single algebraic relation: uv = w?. Voild, this is the defining equation for
our C?/(Z/27Z) orbifold singularity, realised'® as an affine algebraic variety in
C? with complex coordinates (u, v, w). It is a hyper-surface (a single defining
polynomial) of complex dimension 2 (after all, it is a quotient of C?) living
inside C°.

In this geometrical avatar, the Molien series of G is the Hilbert series.'* In
geometry, the Hilbert series is a key characterisation of an algebraic variety

11
12

Introductions to algebraic geometry for the interested reader are, e.g., [153, 154].
Basically, an algebraic variety is the vanishing locus of a system of polynomials. Complex
affine means that all the variables are defined in C, rather than some projective space. Here,
2 is parametrised by (x,y) € €2 with no defining polynomial.

In fancier algebro-geometric language, this realisation is the standard
quotient-ring/algebraic-variety correspondence:

13

C2/(Z]2Z) =~ Spec ((C[u, v, wl/ <uv - w2>) ,

with the affine variety established as a maximal spectrum — set of maximal ideals — of the
polynomial ring in three variables.

We recall that for a variety X in C[xy, ..., x¢], the Hilbert series is the generating function for
the dimension of the graded pieces: H(t; X) = >,;°__ (dimg X)#, where X;, the ith graded
piece of X, can be thought of as the number of algebraically independent degree i polynomials

14
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Let G be a connected graph with vertex set {1,2,...,n}, and 1 a positive
real number. A A-labelling of G is an assignment of positive real numbers
X1, X2, ..., X, to the vertices such that the sum of the labels on the neighbours
of vertex i is A times the label of i.

If A is the adjacency matrix of G, then the condition for a A-labelling is sim-
ply the equation Ax = Ax, where x is the column vector with entries xp, . .., X;.
Now the Perron—Frobenius theorem tells us the following:

¢ For any connected graph G, there is a unique A for which G has a 2-1abelling;
moreover, A is the spectral radius of G, and the 2-labelling is unique up to
scalar multiple.

e The spectral radius of a proper connected induced subgraph of G is strictly
smaller than that of G.

Here are the proofs.

PROPOSITION 3.14 Let G be a connected graph which has a A-labelling
with respect to a and a p-labelling with respect to b. Then

[ ] /l = /’t’.
o a and b differ by a constant factor.

Proof We use the notation v ~ w to mean that v and w are joined by an edge
(adjacent) in the graph. Now we have

Z a(w) = Aa(v) (3.11)
for fixed v, and similarly
Z b(v) = pb(w) (3.12)

for fixed w. So

A ambey = awbe) = > a(wb(w)

veV() W~y weV(I)

where the middle sum is over all adjacent pairs (v, w). Since the values of a
and b are positive, this forces A = p.

For the second part, observe that ¢ = a — xb is also a A-labelling for any
real number x, as long as c¢(v) > O for all v. Let s be the supremum of all such
values of x. Then c¢(v) > O for all v, but there exists w such that c(w) = 0. Now
the sum of c¢(v) over the neighbours v of w is zero, so all such values c(v) are
zero. Using the connectedness of the graph, it now follows that c(v) = 0 for all
vertices v, so that @ = sb, as required.






index-167_1.png
152 Advanced Miscellany

Thus, summarising, in the transmission of a front in a manifold without
boundary the typical singularities are of ADE type. Though note that when go-
ing over to manifolds with boundary the list of typical singularities is widened
to all crystallographic types, and when including obstacles then in the context
of caustics the possible singularities also include those corresponding to the
non-crystallographic groups Hy, Hs, Hy [151].

5.8 Calabi-Yau: du Val Singularities

We now see that there is a complex version of the above Arnold story, which
is, in fact, the geometric version of McKay’s correspondence.

First, let us recall some key facts from invariant theory (cf. e.g., [152]), a
field started by Noether and Hilbert, originally motivated by the study of poly-
nomial invariants under finite group action (cf. degrees and exponents in Sec-
tion 3.2.4). As always, we will minimise formal theory, and emphasise exam-
ples and classification patterns.

Take the discrete finite subgroups of SU(2), on which we dwelt in Section
3.4.2: these can be thought of as complex 2 X 2 matrices acting on C* with
coordinates (x, y). Classical invariant theory then prescribes a standard way
to find the invariants under the group action explicitly as polynomials in (x, v)
of a given degree (see also Section 3.2.4). A theorem of A. Noether ensures
that the ring of invariants is finitely generated. To count the number g; of inde-
pendent invariants at degree i, the generating function is given by the Molien
series

1 ! S ai
MG = — Y — = s -
“6) =15 gze(:; det(@-1g) Zo: “ -

which is always a rational function in .

For example, take Z/2Z = (Diag(-1,-D) = {(, {).( 3 5 )} ¢
SU(2). The non-identity element takes (x,v) — (—x,—y). The independent
monomial invariants, in increasing degree, are obviously

Degree Invariants # Invariants
0 {1} 1
1 { 0
2 (o, xy, ¥} 3 (5.22)
3 { 0
C I A A S e e 5
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The two adjacency matrices differ only in the extremal principal oft-diagonal
entrics and yet differ drastically in their eigenvalues:

1
Eigenvalues(Ay,) = 3 {—1 —V5,1-V5,V5-1,1+ \/5} = +{r,0}

Eigenvalues(A;;) = {-2,0,0,2} . 3.10

Thus indeed the maximal eigenvalues are respectively < 2 and = 2, in agree-
ment with Theorem 3.9.
Another way to state Theorem 3.9 is via induced subgraphs:

DEFINITION 3.10 An induced subgraph of a graph G consists of a subset
of the vertex set together with all edges lying within this subset.

Indeed, the ADE graphs are induced subgraphs of the corresponding ex-
tended (affine) ADE graphs.
Thus, another way to state Smith’s theorem is that for G connected,

THEOREM 3.11 A,(G) < 2 if and only if G is an induced subgraph of an
extended (affine) ADE graph.

First, we note that

LEMMA 3.12 For connected graphs G & G, the spectral radius A1 is
strictly decreasing in the sense that 11(G") < 41(G).

This follows from the elementary fact that for non-negative matrices, the
Perron-Frobenius theorem (which we recall from Theorems 2.18 and 2.19)
euarantees the existence of 4, (&) with corresponding non-negative eigenvector
x (respectively 4,(G’) and corresponding x”). Thus

YTagHx  xTAGx x! AG)x

21(G) = < <max ———— =4 .
(G = ST < max N

In particular, for an induced subgraph of G, its adjacency matrix is a principal
submatrix of that of G, so its greatest cigenvalue does not exceed that of G.

Another useful result that follows from properties of non-negative matrices
is that

LEMMA 3.13 Let G be a connected graph and let d iy, dipax and d respec-

tively be the minimal, maximal and average valency (number of edges adjacent
to) of nodes, then

Aoin < d< A < dpax -

We can formulate part of the Perron—Frobenius theorem which we require
in terms of labellings, which we now define.





index-170_1.png
5.8 Calabi-Yau: du Val Singularities 155

G Molien/Hilbert seriesM(¢; G)

Ansy (L+7)/(1 = 2)(1 =17
Dyia (1+ 22y /(1 = (1 = 127)

— 5.26
Eg A-r*+/A-1*-1°+19 (5:26)
s (=15 +12)/(1 16 =18 + 114

— T+ -0 -8 -0 4 5146

Es 1172 _(6_48_40_,2 /6 4 18

In the above equations, remembering the table in Equation (3.18), where we
gave the abstract generators of the binary ADE groups, we here need the ex-
plicit 2x2 generators embedded in SU(2) in order to compute the Molien/Hilbert
series, which we list here (note that the generator for A/n: is R(n) rather than
R(2n) because the cyclic group is abelian and does not receive a non-trivial

27

double cover). Defining w, := e’» to be the primitive nth root of unity, we also
define

w, O
R(n):(o w_l), Sp=k;

Re=i, S :%(HZX2+£‘+Z+I_<), TG:%(HMHQ—&),

Ry = %(Z+ﬁ, T = %(Hzxz+£),
Ry =—(STe)™, Tg= %(SDHZXZ +o7li+ 1) (5.27)

where ¢ = %(1 + V/5) is the golden ratio and i, J» and k are the quaternion basis
(not the Pauli matrix basis)

C{i 0y . {0 1 (0 i
£‘(0 —i)’ 1‘(—1 0)’ k_(i 0)' (5.28)

The list of hypersurfaces in (5.25) is very special; they are known as du Val
singularities [158, 159], or Kleinian singularitics. These should be compared
to the Arnold singularities of Theorem 5.29.

Perhaps the easiest way to define du Val singularities is via Ricci-flatness.
Essentially, because G is a subgroup of SU(2), orbifolds are special in that
they are (locally) Calabi-Yau, using one of the many equivalent definitions of
Calabi—Yau manifolds, in particular, that they are Kihler [50] and admit SU(n)
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Finally we turn to the proof that the affine ADE graphs are the only graphs
with spectral radius 2. Let G be a graph with spectral radius 2. Then the sub-
graph obtained by deleting any vertex has spectral radius strictly less than 2,
and therefore is an ADE graph.

If G has a cycle, then it contains (and so is equal to) A:, Otherwise, it is a tree.
If it contains two different branchpoints, or a branchpoint with valency greater
than 3, then it contains (and so is equal to) l/); for some n. In the remaining
cases, the lengths of the three arms are easily found, and the graph is E, for
some .

Remark Hidden here is a remarkable property of spectral radius 2. Any graph
with spectral radius less than 2 can be embedded as an induced subgraph in a
graph with spectral radius 2.

Remark Part 1 of Theorem 3.9 implies that the ordinary ADE diagrams are
the only ones which admit labels so that twice the label of each node minus 2
is the sum of adjacent labels. Note that Gannon calls these PF2~ assignments,
reflecting that the eigenvalue less than 2 property and this modified labelling
are also closely related [4]). Note that Gannon suggested that all ADE pat-
terns might fundamentally reduce to these two ADFE/affine ADE or PF2~/PF2
multigraph classifications (but notes the notable potential exception of modular
invariants in Section 5.8.) These labels also appear in the half-sum of positive
roots as twice the coefficients in the simple roots [34] though it doesn’t seem
obvious what the significance of this is.

The fact that the ADE diagrams have greatest eigenvalue less than 2 while
the extended diagrams have greatest ¢igenvalue 2 means that the difference
21 -A between twice the identity matrix and the (symmetric) adjacency matrix
is positive definite for ADE and positive semi-definite for extended ADE. This
difference is none other than the Cartan matrix discussed in Section 3.2.1.

Now, a positive semi-definite real symmetric matrix is the Gram matrix of a
set {v1,...,v,} of vectors in a real inner product space, that is, its (i, j) entry is
the scalar product v! - v; :

T
QRI-A);=v; vj.

In our case, since (A has zero diagonal (there are no self-adjoining loops on any
node) and all entries are 0 and 1 (we do not have multigraphs), the diagonal
entries of 27 — A are all equal to 2, while the off-diagonal entries are O or —1.
This means that each vector v; has length V2, and any two vectors lie at an an-
gle of cos™!(0) = 90° or cos™!(~1 - (%)2) = 120°. We saw the significance of
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and its embedding into ambient space — a vast subject into which we sadly do
not have space to go in detail.'?

One can compute the defining polynomials — it turns out they are all hy-

persurfaces — for C2/G for our finite ADE subgroups G of SU(2). For ref-
erence, we also include the explicit 2 X 2 matrix generators as well as the
Molien/Hilbert series that were computed in Section 3.1.1 of [156] and Sec-
tion 3.1 of [157]:

15

G cSUQ) | |G| | Generators Equation
A, n (R(n)) uv = w"
Djfz 4n | (R2n), Spy | u? +viw = wit! (525)
Eg 24 | (Re,S,Tg) | > +v¥+w*=0
E 48 | (R7,8,T7) | B2 +v¥ +ww? =0
Eg 120 | (Rs,S.Ts) | u? +v  +w’ =0

on X. A useful property of H() is that it is a rational function in ¢ and can be written in two
ways:

Q0 Hilbert series of the first kind;

HeX)=1 44
(X) { (Ij% ,  Hilbert series of the second kind.

Importantly, both P(r) and Q(r) are polynomials with integer coeflicients. The powers of the
denominators are such that the leading pole captures the dimension of the embedding space
C* and of X, respectively.

One fun thing to do with Hilbert/Molien series is to apply the plethystic programme
[156, 157]. Now define, for some analytic function f(¢) which affords a Taylor series

2 o ant”, its plethystic exponential PE[f ()] := exp (Zoo w); then we have an

n=1

Euler-type product formula g(r) = PE[f(f)] = [1,,(1 — #*)~*. Furthermore, there is an

explicit inverse, the plethystic logarithm, such that f(7) = PE’I(g(t)) =2 % log(g(tk)),
where p(k) is the standard Mobius function for k£ € Z, which is O if & has repeated prime
factors and is (—1)" if k factorises into » distinct primes, together with the convention that
ply=1.

A curious fact is that given Hilbert series H(z; X) of an algebraic variety X, the plethystic
logarithm is of the form PE~[H(t; X)] = b1t +byf? + b3t +. .. where all b, € Z and a positive
b, corresponds to a generator in the coordinate ring of X and a negative b, to a relation. In
particular, if X is a complete intersection, then PE “L[H(; X)) is a finite polynomial. In our
running example of C2 /(Z/2Z), the plethystic logarithm gives 372 — * exactly. This is in
accord with the fact that the defining equation uv — w? = 0 in Equation (5.24) comes from 3
quadratic variables (, v, w) = (x2,3%, xy), obeying a single degree 4 relation as a hypersurface.
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PROPOSITION 3.15  Suppose that G’ and G are connected graphs, with
G’ a proper induced subgraph of G. Then G’ and G cannot both have a A-
labelling.

Proof Suppose for a contradiction that a is a A-labelling of G’, and b a A-
labelling of G. In what follows, summations are over vertices of G’ only. Equa-
tion (3.11) still holds; but in place of Equation (3.12) we have strict inequality:

Z b(v) > Ab(w) (3.13)
v~w
for fixed w. This is because we sum only over the neighbours of w in G’, and

at least one vertex of G’ has a neighbour outside G, since G’ is connected. So
we have

2 Z a(v)b(v):Za(w)b(v)>/l Z a(w)b(w),

veV(@) W~y weV(g’)

a contradiction.

With this in hand, we give the proof of Smith’s theorem. We have to show
the following:

e The spectral radius of an ADE graph is less than 2, and any connected graph
with spectral radius less than 2 is an ADE graph.

e The spectral radius of an affine ADE graph is 2, and any connected graph
with spectral radius 2 is an affine ADE graph.

We show that the spectral radius of an affine ADE graph is 2 by giving a 2-
labelling of c¢ach of these graphs. For A:, (an (n + 1)-cycle), we can label each
vertex by 1. The other cases are given in Table 3.2. For convenience, we give
the labelling of Ej here.

It follows from Proposition 3.15 that the spectral radius of an ADE graph is
strictly less than 2.

Now we give the proof of the converse. Suppose that G has spectral radius
strictly less than 2. Then G cannot contain any affine ADE graph. In particular,
it does not contain A:, (a cycle), for any 7; so it is a tree. It does not contain l/); ,
and so cannot have more than one branchpoint, or a branchpoint lying on more
than three edges. If it has no branchpoint, it is a path A,; otherwise, it doesn’t
contain E; so the lengths of the three arms are restricted to (2,2, n), (2,3, 3),
(2,3,4) or (2,3,5), giving us the D, and E, diagrams.
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Here, the neighbourhood depends on f. One can roughly think of a germ
as functions which share Taylor series up to some truncated order. One can
extend the variables from x; € R" to ; € R* and define

DEFINITION 5.27 A k-parameter unfolding (also called a k-parameter fam-
ily of germs based on f) of f: R” — R is a germ F: R x R” — R where
F(t;=0,x) = f(x).

There is clearly a notion of equivalence between unfoldings in that the vari-
ables ¢; are defined only up to coordinate change. Thom’s theorem gives the
classification for universal, stable k-unfoldings:

THEOREM 5.28 There are 7 stable, universal unfoldings with k < 4:

Germ k Catastrophe
x 1 Fold
+x* 2 Cusp
© 3 Swallow-tail
+x° 4 Butterfly
2 +xy*or x> +y} | 3 | Hyperbolic umbilic
- x° 3| Elliptic umbilic
(% +yh 4 | Parabolic umbilic

Arnold extends this to all simple singularitics, where simple means that all
neighbouring singularities (perturbations) fall into a finite number of equiva-
lent classes (again, finiteness is key):

THEOREM 5.29 Simple stable singularities of f: R" — R follow an ADE
classification:
Akzl XIIHI + x% + Z X%
i=3
Diss | 1152+ x3) + gé x?
Es o+ Y
i3

n
E; | n(f+x)+ Yt
=
n
Eq XN+ X
=

In particular [150], we see that the fold, cusp, swallow-tail and butterfly are
Ar=3 456 and the umbilics are Dy_45.
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2.4 Matrices and Groups

In linear algebra, we are often interested in simultaneous systems of equations
such as

x+3y+4z=10,
xX+2y+6z=12,
3x+ 3y + 8z=26,

which can be written more succinctly in matrix form as

1 3 4) (x) (10
1 2 6lx|yv]|=]12]. 2.5)
3 3 8) \z) {26

Linear algebra in a way is a systematic theory to solve such equations. One
often gets such sets of equations from linear maps or linear functions: we want
to map a vector, a point in space, to some transformed point, e.g., via a rotation.
The components of the original and transformed vector with respect to a basis
give exactly such a set of simultancous equations:

1 3 4 X X
1 2 o6|x|yl=|y]. 2.6)
3 3 8 z 7

Therefore, matrices are essentially encoding linear transformations (i.¢., the
eeneral linear group GL(n; R) above), although they can also have other pur-
poses. Conversely, lingar transformations can be written as matrices — although
there are also other possibilitics (we will encounter an example later, in the
context of Clifford algebras).

Diagonal matrices just act on the different components as rescalings. Diag-
onalisation is the next best thing: one finds a new basis (given by the eigen-
vector?), in which the linear transformation acts as a simple rescaling (given
by the eigenvalues). Eigendecomposition is essentially a similarity transforma-
tion (see below) that describes the change of basis to the basis of eigenvectors,
where the simple rescalings act. In many interesting application cases (e.g.,
symmetric or Hermitian matrices) the eigenvectors are orthogonal.

2 The terms “eigenvector” and “eigenvalue”, a mixture of English and German, used to be
translated into English as “characteristic vector/value” or “proper vector/value”. In older
books one sees the term “latent root”, indicating that the eigenvectors are hidden in the matrix
and can be brought out by applying a certain procedure, much as the latent image on a
photographic plate was revealed by developing the plate.
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These groups are simply continuous groups of which the finite, discrete ro-
tation groups that we studied above are subsets (and in fact, also subgroups).
The most familiar is the set of rotational symmetries of R3, i.e., the set of
orthogonal 3 x 3 real matrices. This readily generalises to R”:

o) := {M e Mat,[®) : M'M =1, } 2.3)

We will use Mat,(IF) to mean n X n matrices over a field F, with F typically
being R and C. Orthogonal matrices automatically have determinant +1. We
can also restrict to orientation-preserving rotations by imposing that the deter-
minant be positive. These are also the special orthogonal groups:

SO(n) :={M € O(n) : det(M) = +1}. 2.4)

We therefore have some typical continuous groups, the special orthogonal
and special unitary groups SO(n) and SU(n):

SOM) :={M e Mat,(R) : M"M =1,, deq(M) = +1},
SUG) = {M € Mat,(C) : M M=MM =1,, det(M) = +1}.
We also define the general linear group
GL(#n;R) := {M € Mat,(R : det(M) # 0}
of invertible matrices, as well as the special linear group
SLm;R) :={M € GL(2;R) : det(M) = +1}.

These are all easily seen to be continuous groups. In a wider context, we can
therefore recast the problem of finding the regular symmetries of R* in Section
3.1 as the problem of classification of discrete, finite, subgroups of O(3). These
types of matrix groups are continuous groups. In fact, the continuity gives them
a particularly nice “smooth” structure: that of a manifold. We won’t go into
manifolds here, but the idea is that manifolds are spaces that look locally like
R” but can be curved on a global scale. Think of the sphere, which looks locally
like R? — but the globe is topologically quite different from a flat earth!

Groups that also have such a nice manifold structure are called Lie groups.
We will encounter them again in Section 3.5, and they are also closely linked
to the so-called Lie algebras. A lot of the original ADE observations were his-
torically made in this Lie context. Many ADE-type structures to do with these
are however also hidden in the somewhat more clementary polyhedral groups
and root systems, so we will focus on these first, and introduce Lie theory a
little later. So we will stick with thinking about these objects as continuous
eroups for now, and defer thinking about the additional manifold structure that
also makes them into Lie groups till later.
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DEFINITION 2.20 (Equivalence relation) A binary relation ~ on a set X is
said to be an equivalence relation if and only if it is reflexive, symmetric and
transitive. That is, for all ¢, » and ¢ in X:

o Reflexivity: a ~ a
e Symmetry:ifa~Dbthenb ~a

e Transitivity: ifa~band b ~ cthena ~ c.

The job of an equivalence relation is to partition a set. (A partition of a set
X is a collection of non-empty, pairwise disjoint subsets of X whose union is
X; informally, a division of X into non-empty parts.) Let ~ be an equivalence
relation on X. We denote by [a] the equivalence class defined by a, that is,

[al={xeX:x~al.

Now by reflexivity, a € [a]; also [a] = [P] if and only if ¢ ~ b. Hence, if
celaln[b], thena ~ ¢ ~ b, and so a ~ b by transitivity, and [a] = [b]. This
proves that distinct equivalence classes are disjoint. Since every element a € X
lies in some equivalence class, namely [a], we have a partition. Conversely,
if we are given a partition of X, define a relation ~ by putting x ~ y if some
part of the partition contains x and y; this is an equivalence relation whose
equivalence classes form the given partition.

Let us return to our motivating example for this definition by defining a
concrete equivalence relation for the groups we are interested in. Here, this
equivalence relation is called “conjugation”, and the equivalence classes are
called “conjugacy classes™:

DEFINITION 2.21 (Conjugation) An element g’ € G is called conjugate to
another element g € G if there exists an element /2 € G such that

g =hgh™L.

EXAMPLE 2.22 (Conjugacy as an equivalence relation) Let us check the
three equivalence relation axioms in turn:

e Reflexivity (a ~ a): for the identity (i.e., h = ¢) we have ¢’ = hgh™! =
ege™! = ge = g. So g is indeed conjugate to itself.

o Symmetry (if a ~ b then b ~ a): If ¢’ is conjugate to g, i.e., g = hgh™', then
by left multiplying by 27! and right multiplying by (2~')~! = h (since k™! €
G), ¢ must conversely be conjugate to g’: g = (h")g’(h™)™! = (W hg'h
(conjugacy with respect to 271).
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We can check that the SU(2) conditions MTM = I and det(M) = 1 simply
translate to a®> + b> + ¢ + d*> = 1, which is a 3-sphere. In other words, as
mentioned earlier, SU(2) ~ S topologically.

There is thus a two-to-one homomorphism from the special unitary group
SU(2) to the rotation group SO(3).

Spin Groups: In general, SO(n) is doubly covered by Spin(n) (more on this
in the next section on Clifford algebras), whilst O(n) is doubly covered by
Pin(n)*"; the isomorphism of Spin(3) to SU(2) is accidental. Spin(3) is also
accidentally isomorphic to the quaternions or Sp(1), so all these are pretty in-
terchangeable in 3D. However, as we will see in the next section, in general it
is geometrically clearer to think in terms of Clifford algebras and Spin groups.
We now discuss the generic case of the spin groups, which are easily con-
structed in Clifford algebra, as these are the concepts that generalise straight-
forwardly, as opposed to accidental isomorphisms. But first, let us finish off
our discussion on the Platonic solids.

3.4.2 Discrete Finite Subgroups of SU(2)

We learnt that the regular discrete symmetries of SO(3) are the ADE poly-
hedral groups as finite rotation groups G. Due to Theorem 3.18, these lift to
their double covers G in SU(2), ie., a group with a centre Z of order 2 such
that G/Z = G, Note, incidentally, that Z contains the unique involution in G
(since —I is the only involution in SU(2)). These double covers of the rota-
tional polyhedral groups are called the binary polyhedral groups, and have
orders twice that of the rotational groups. They have the same order as the
corresponding Coxeter groups (the full polyhedral groups) but are of course
different groups, as the Coxeter goups live in O(3) and contain the polyhedral
groups with index 2 while the binary polyhedral goups are double covers of
then in Spin(3) = SU(2)).

The modern parlance of stating the classification problem in (3.1) is that we
are identifying the discrete finite subgroups of the continuous — and Lie — group
SO(3), the isometry group of R*. Theorem 3.18 (and the short exact sequence
(3.16)) implies that all the groups in (3.1) lift to finite subgroups of SU(2). In
the abelian case of the cyclic group Z/nZ, the lift is trivial, in all other cases,
the lift is non-trivial. We will encounter a simple construction of this binary

20 Note that this terminology is slightly tongue in cheek: since often the condition of determinant
being equal to 1 is denoted by the label S (e.g., in SL(3)), and the Spin group denoting
rotations (i.e., det 1), calling its double cover Pin encapsulates the idea of relaxing to det +1 in
a humorous way.
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A vanishes at 0, so the singular locus is the point {w = 0}, where the order of
vanishing of g; is 1, that of g3 is infinity, and that of A, 3. A simple transforma-
tion renders the equation to be (y/2)’> = x(x* — w/4), which, upon redefining
y/2 = s, u = xand v = x> — w/4 gives the equation s> = uv, which is the
surface singularity A; we saw in Section 5.8.

In general, massaging the Weierstra3 form into surface singularity types
is highly non-trivial and requires the so-called Tate—Nagell algorithm. The
insight of Kodaira is the classification of the complete singularity types of
the elliptic fibration. Defining Ord(f(w)) as the order of vanishing of a func-
tion f(w) at wy, i.e., the Taylor series of f(w) starts with O(w — w)Or ),
we have

THEOREM 5.31 (Kodaira) The elliptic fibration types are determined by
the order of vanishing of g2, g3, A at the singular locus A = 0, and are the
following

Ord(g:) | Ord(gsz) | Ord(A) | Kodaira notation | Singularity type
>0 >0 0 smooth -
0 0 n In An—l
>1 1 2 I none
>1 >2 3 I A
>2 2 4 1A% Ay
2 >3 n+6 r D,.4
>2 3 n+6 r D,.4
>3 4 8 v Es
3 >5 9 1r E;
>4 5 10 Ir Eg

Beautifully, we see another emergence of the ADE meta-pattern.'

5.10 Back to Arnold’s Trinities

At the end of our journey into the ADE web, let us take stock. We have seen
many ADE sets and connections between them. We have also seen individ-
ual cases of connections between exceptional cases such as Hs and Eg [21,
22], or the exceptionals (Eg, E7, Eg) and sporadic (Monster, Baby Monster,

19 In physics, this classification finds itself in the F-theory version of string theory. One can put
F-theory on elliptically fibred Calabi—Yau manifolds to construct even-dimensional quantum
field theories, and 7-branes correspond to different factors of the discriminant; cf. [194].
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Eigentheory is typically covered in an introductory linear algebra course,
and we will skip the details here. At this point, we just cover one theorem,
the Perron—Frobenius theorem, which will be of interest later. Earlier work by
Perron concerns positive matrices:

THEOREM 2.18 For an n X n positive matrix A, there is an eigenvalue r
whose absolute value is bigger than all others, whose corresponding eigen-
space is one-dimensional, and whose eigenvector vpp has all positive entries.

This can in fact be slightly generalised, e.g., to non-negative and positive
semidefinite matrices (Frobenius). (A matrix A is positive semidefinite if
v - Av > 0 for any vector v.)

THEOREM 2.19 For an n X n real symmetric, positive semidefinite and in-
decomposable matrix with non-positive off-diagonal entries A, the eigenvalues
are real and non-negative, the null space has dimension < 1 and the largest
eigenvalue r has a corresponding one-dimensional eigenspace and an eigen-
vector with all (strictly) positive entries.

These Perron—Frobenius results will be important in various contexts later,
in particular in the construction of the Coxeter plane in Section 3.2.4 and
Smith’s theorem, Theorem 3.9.

2.5 Equivalence Relations and Conjugacy Classes

As we have seen above with group multiplication tables, working with many
group elements can become very cumbersome. It would help if we could group
“similar” elements together in some way, so as to partition the group into more
manageable chunks. Conjugacy classes are one way of dividing up group el-
ements in a useful way. Often these have similar properties within each class,
which are characterised by invariants (or class functions). Simple invariants,
as we shall see, could be the trace, order or determinant of a matrix. That way,
e.g., rotations could be separated from reflections. Another common way of
partitioning a group is via cosets, although this requires a subgroup H as well
as the original group G.

Such a partition would have the following useful properties. It would par-
tition the group into non-intersecting pieces (“classes™), so that each group
element falls into exactly one class. And secondly, the elements in each such
“class” relate to each other in a sensible way. These ideas are formalised in the
notion of an “equivalence relation”.
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One can summarise these results as

e heh™ =eforallh € G, so e ~ e = {e} is a conjugacy class;

o hR1h™ = Ry forh € {e,R1,R,} and hRih™' = Ry for h € {S1, 52,53}, s0
R ~ R, and likewise hR,h™" = R, for h € {e, R1, R,} and hR,h~! = R, for
he{S1,52,53}, so of course also Ry ~ R1); so {R1, Ry} is a conjugacy class;

o hS1h' €{S1,S,,Sa)forallhe G,30S5; ~ Sy ~Sa,and so {S1,S2,S3} is
a conjugacy class.

Thus there are three conjugacy classes for the group S5 : {e}, {R1, R,} and
{S1,52,53}

EXAMPLE 2.26 (Quaternion group) {1} is always in a class on its own, and
{—1} is of course also in a class on its own since it commutes with everything.
i, j, k have inverses —i, —j, —k. Choosing j as the group clement to be “sand-
wiched” next we have —iji = —ki = —j, —jjj = jand —kjk = —ki = —j, i.e.,
{j, —J} is one class. Analogously, {i, —i} and {k, —k} are also conjugacy classes
(which can be expected because of the cyclic symmetry of i, j, k). Thus there
are 5 conjugacy classes in total, partitioning the group.

EXAMPLE 2.27 (Tetrahedral group) The tetrahedral group also has 4 con-
jugacy classes: the identity, two classes of rotations by 120 degrees, clockwise
and counterclockwise, around the vertices and faces, and the three rotations
by 180 degrees (around the edges of the tetrahedron) that we saw above in
the context of the quaternion double cover. One can see how these conjugacy
classes are grouped together by “geometric meaning”™.

Let us briefly summarise these conjugacy partition results and make a start
with identifying class invariants:

THEOREM 2.28 (Group decomposition into conjugacy classes) (i) Every
element of a group G is in a unique conjugacy class of G.
(ii) No element of G can be a member of two conjugacy classes of G, i.e.,
conjugacy classes are disjoint and the underlying set of group elements
is the disjoint union of the conjugacy classes.
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o Transitivity (ifa ~band b ~ ¢, thena ~ ¢): if g’ = highy' and g” = hag'h3"
for some /4, hy € G), then g is also conjugate to g’ since

g =hag'hy' = hohight'hy' = (hahy)g(hahy)™,

where we are using (hoh)™' = h7'h3! for inverses (the inversion map is an
anti-automorphism). Since ik, € G by group closure, g is conjugate to g”.

So there is a partition of a group into disjoint sets of mutually conjugate
elements.

DEFINITION 2.23 (Conjugacy class) A conjugacy class of a group G is
a set of mutually conjugate elements of G. It is an equivalence class of the
equivalence relation “conjugation”.

The partition into conjugacy classes can be found similar to the group multi-
plication table: by taking any element ¢ € G and forming the set {hgh~'|h € G}
for all other group elements. Efficient algorithms, however, use the transitivity
and partition properties of equivalence relations, so that one does not need to
do all such pairings in practice.

PROPOSITION 2.24 (Conjugacy class of the identity) The identity e is al-
ways in a conjugacy class on its own since g = heh™ =hh™ =esog = e
Jor all h.

We note that conjugacy classes do not need to be of the same size.

EXAMPLE 2.25 (Classes of the group 3 of symmetries of an equilateral tri-
angle) In order to form the pairwise combinations of the six group elements
{e,R1,R2, 51,52, 53} (akin to the group multiplication table), we first compute
the group multiplication table g; o g, and then use this to compute the combi-
nations hgh™':

o e R R | St S2 83
e e R1 Rz ! S1 Sz S3
R | Ri R e 1S, S3 S
Ry | Ry e R Ss S1 S
_Sl Sq _Sg_ S» e Ry K
S21S2 S1 S Ry e R

S3 1S3 S22 Si 'Ry Ry e

Now for the results of conjugation (g: rows, /: columns):
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While we are on algebraic geometry, it is curious to point out the famous
counter-cxample to Hilbert’s 14th Problem [177] (see also [178]). Briefly, this
was the question: given a field k and an intermediate field K between k and the
field of rational functions in n variables with coefficients in k, i.e.,
k ¢ K C k(xi,...,x,). Hilbert asked where the algebra of intersection
R := Knk[xy, ..., x,] is finitely generated over k. The original motivation came
from invariant theory over k = Cand K = C(xy, .. ., x,)C, the field of invariant
rational functions under a subgroup G C GL(n,C). The counter-cxample of
Nagata [179] and later generalised by Mukai [180] is as follows. Consider the

action x; — x; and y; — v; + t;x; by group GonClx1,..., X5 V1., Vsl Now,
G is a vector space of dimension n. Mukai’s generalisation — using T-shaped
root systems — is that the ring of invariants C[xy, ..., X4 Vi, .- ., y,1¢ for some

co-dimension r subspace G € G is not finitely generated if

1 1
-+
r n—r

1
<= 2
<5 (5.29)

This is certainly reminiscent of our central equation (1.3) and there should be
some underlying ADE story.

5.8.1 Some Modern Physics

When there is geometry, there is naturally physics. This geometric guise of
the McKay Correspondence, via the Calabi—Yau nature, finds its role in string
theory, in particular the AdS/CFT correspondence [128, 129, 181], in string
compactifications on K3 surfaces [182, 183], as well as — albeit more mysteri-
ously — conformal field theory [4, 24, 164, 181, 184-190].

Indeed, the canonical textbook [186] (based on [185], see a nice recent treat-
ment in [188] which gives a reduction into the bare mathematical problem, as
well as Theorem 6.2.2. in [4]) tells us the following (we will certainly not
delve into the details of CFTs, for whose induction the interested reader is
referred to the above references). Consider genus one partition functions of
two-dimensional conformal field theories associated to the affine SU(2) alge-
bra —ie., Xl Then, in terms of the characters y (indexed by a combination
of the highest weight and the central charge), the modular invariant partition
functions are:
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2.6 Normal Subgroups and Homomorphisms

Another important type of equivalence relation is given by the cosets. Let G be
a group and H a subgroup of G. A right coset of H in G is a set of the form

Hg ={hg:heH)
for some fixed g € G, while a left coset is a set of the form
gH ={gh:heH)

Right and left cosets are equivalence classes of the equivalence relations ~,
and ~; respectively, where

a~ b o (3he Hyha =b),
a~b o (3he Hyah = b).

PROPOSITION 2.32 et H be a subgroup of the group G.

(i) Any right or left coset of H has the same number of elements of H.
(ii) Any two distinct left cosets of H are disjoint, and similarly for right cosets.
(iii) If G is finite, then the size of H divides the size of G, the quotient is the
number of (left or right) cosets. This quotient is called the index of the
subgroup H in G.

The last part is the celebrated Lagrange Theorem.

The subgroup N of G is normal if the left and right cosets coincide: Ng = gN
for all g € G. If this is the case, then we can define a “multiplication” on the
set of (left or right) cosets by the rule

(Ng1)(Ng2) = N(g182).

It can be shown that this operation is well-defined (that is, independent of the
choices of g; and g, to represent the cosets), and makes the set of cosets into
a group. This group is called the quotient group or factor group of G by N,
written G/N.

Clearly, if G is an abelian group, then every subgroup of G is normal. But
other groups also have this property, for example, the quaternion group (see
the Exercises).

Thus the presence of a normal subgroup enables us to break the group G
down into two smaller groups N and G/N.

Normal subgroups and quotient groups have a natural connection with ho-
momorphisms. If ¢: G — H is a homomorphism, then the image of ¢ is
the subset H(G) = {¢#(g) : g € G} of H, while the kernel of ¢ is the set

ker(¢) = {g € G 1 ¢(g) = 1}.
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3.4 Binary Polyhedral Groups and SU(2)

Now, since we are armed with some knowledge of both finite and continuous
eroups from Chapter 2, we can move on to the subject of (discrete) finite sub-
groups of these continuous groups.'® This is an interesting and wide topic, but
once again, we will be interested in the classification thereof and the ADE pat-
tern which emerges. Furthermore, we will see how Clifford algebras provide a
simpler and more unified way of viewing some of these standard topics.

3.4.1 The Double Cover of SO(3):
Spin(3), SU(2), and Quaternions

Let us return to our familiar group SO(3), the rotations of R* which set the
scene for the Platonic solids. We now know that it is a continuous group, and
also a Lie group. It is connected as a manifold, but not simply connected (as
even O(3) is already not connected). The simply connected universal cover
of SO(3) is a manifold called Spin(3). It is a double cover and it is in fact
isomorphic to SU(2). We emphasise that these statements are on the level of
the group. At the level of the Lie algebra, su(2) = so(3), as on¢ can see from
the Dynkin diagrams: they share the Dynkin diagram of type A1, a single node.
To see the double cover at the group level, we first recall the quaternions.

The quaternions are a generalisation of the complex numbers, which are
generated by the unit imaginary i with i = —1 (though we will have some-
thing to say about this in later Clifford algebra Sections 3.4.4 and 4.4.2). In
the quaternions, there are three imaginary units i> = j> = k> = —1, and their
interplay is regulated by ij = k = —ji (and cyclic permutations thereof).

Willam Rowan Hamilton spent some time trying to construct a system with
two imaginary units. While walking by a canal in Dublin, he had the inspiration
to use three, and scrawled the equations on Brougham Bridge, which now has
a commemorative plaque to mark the occasion (Figure 3.8).

More formally,

DEFINITION 3.17 (Quaternions) The quaternions H are a 4-dimensional
algebra over R defined by

H=g=a+bi+cj+dk: a,b,c,deR

18 These are also Lie groups, i.e., also have a manifold structure. A lot of the concepts can be
understood by simply considering the continuous group structure without an in-depth
understanding of the manifold structure, which will be further discussed in the next part on
Lie theory, Section 3.5.
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holonomy [160]. We leave the reader to a modern introduction, especially in
the context of theoretical physics, to Calabi—Yau manifolds in [24].

It suffices to mention here that Calabi—Yau'® here means the metric is locally
flat. In particular, for the G = A, cyclic, cases, the metric is called ALE, for
asymptotically locally Euclidean [161]. In brief, a local or affine Calabi—Yau
variety of complex dimension » with orbifold singularity is of the form

(Ci’l/l"7

where I is a discrete, finite, subgroup of SU(n).

Now, dimension n = 2 is special, because all local Calabi—Yau varicties are
of orbifold type. In other words, the classification theorem is that local Calabi—
Yau 2-folds (also known as K3 surfaces),!” are all of the form above [9]:

THEOREM 5.30 All local singularities of Ricci-flat complex surfaces are du
Val, i.e., orbifolds of the form C*|G for G a discrete finite subgroup of SU(2),
with defining equations given in Equation (5.25) as hypersurfaces in C*.

How is this a geometric realisation of the McKay Correspondence? It turns
out that one can resolve a singularity by a process called blowup, where one
replaces the singular point at the origin with spheres (i.e., chains of P's). The
intersections amongst these spheres [9, 162] are encoded into intersection ma-
trices. Lo and behold, these intersection matrices are precisely the Cartan ma-
trices of the affine ADE algebras. In other words, local Calabi—Yau surface
singularities are encoded by the affine ADE Dynkin diagrams. The reader is
also referred to [22, 163] for getting Eg from the icosahedron using du Val
singularities.

Indeed, generalising the McKay Correspondence to n > 2 is still an active
area of research both in physics (as regards stringy Hodge numbers) [129, 164—
166] and in mathematics (especially in algebraic geometry around derived
equivalence) [167-176]; the next case of n = 3 is particularly interesting to
string theorists because a cornerstone to compactification of 10-dimensional
string theory is the set of Calabi—Yau threefolds (essentially because of the
indisputable fact that 10 =4 + 2 x 3).

16 purely algebro-geometrically, this means that the canonical sheaf on C2/G admits a crepant
resolution to a trivial canonical sheaf, and the singularity is called canonical Gorenstein.
Because we are in complex dimension 2, the Calabi—Yau manifolds to which the singularities
resolve are K3 surfaces.

17 This is certainly not true in higher dimensions. Already for Calabi—Yau threefolds, there is a
host of possible singular structures.
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(iii) The identity element e always forms a class on its own.
(iv) The order of group elements is an invariant of each conjugacy class.

Proof The first two parts follow from the correspondence between equiva-
lence relations and partitions, and the fact that conjugacy is an equivalence
relation.

(iii) For every h € G, heh™ = e 50 ¢ is in a class by itself.

(iv) We recall that the order » of an clement g is the smallest integer such
that g" = e. For any conjugate g’ of g (¢ = hgh™'), we have that

" = (hgh™Yhgh™) .. (hgh™) = hg"h™ = heh™ = hh™! = e,
g g g
—
7 times

so g’ is also of order n and thus all members of a conjugacy class are of the
same order, which is a class invariant.

THEOREM 2.29 [f G is an abelian (i.e., commutative) group, then every
element of G forms a class on its own.

Proof Any g,h € G commute, hg = gh. Thus hgh™' = ghh™ = ge = g.

That is, for any cyclic group, the number of conjugacy classes is always N =
|G| with C; = 1 foralli = 1,..., N. Note that the total number of conjugacy
classes of a group does not depend on the number of divisors of the order of
the group. For example, for the cyclic group Cy of order |G| = 9, there are 9
conjugacy classes but only 3 divisors, 1,3 and 9.

EXAMPLE 2.30 Conjugacy classes of the cyclic group C5 (rotational sym-
metries of the equilateral triangle): Since C; is abelian and of order 3, there are
three classes: {e}, {R;} and {R,}.

A straightforward consequence of the partition into disjoint union of conju-
gacy classes is the following:

THEOREM 2.31 Let |Cy] denote the cardinality of (i.e., number of elements
in) a conjugacy class C;, i = 1,...,N and N the total number of conjugacy
classes. Since each element of G is in one and only one conjugacy class, we

have that
Gl = ). [Cil

where i ranges over the number of distinct conjugacy classes of G.

Proof Follows from Theorem 2.28.

We will see that the conjugacy class structure of a group has important con-
sequences for the representation theory of groups.
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this when we encountered root systems, where we preferred the unit normali-
sation for simplicity with reflections. The above normalisation is customary in
Lie theory, however.

Having expounded upon 4;, what about the “dual” problem — connected
graphs whose adjacency matrix has least eigenvalue —2 or greater? In our no-
tation above, we need to consider graphs with 2, > —2. Whilst the statement
of this dual problem is intuitively easy and analogous to the above, this was a
topic of great interest in the 1960s with a more subtle answer [35]. We defer a
treatment till the more advanced Section 5.3.

3.3.2 Graph Laplacians

One can rephrase the above discussion in yet another way. First, the degree
matrix D of a graph G is the diagonal matrix recording the total degree of each
node (note that a loop on a node, should it exist, contributes 2). Then, we have
the definition (q.v. [32])

DEFINITION 3.16 The (graph or discrete) Laplacian A for a graph is the
difference between the degree matrix O and the adjacency matrix A:

A=D-A. (3.14)

Therefore, for a function ¢: V — R taking the vertices V to an appropri-
ate ring R, [A(®]1(v) = X, (¢(v) — ¢(w)) for all vertices w adjacent tov € V.
Theorem 3.9 can then be recast into the statement that the extended ADE dia-
erams are the only ones for which the eigenvalue-one problem for the discrete
Laplacian can be solved:

A =¢. (3.15)
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algebraic variety in C2, much like a circle S! is a real algebraic variety in R?
via the familiar {(x,y) € R* : x> + y> — 1 = 0}. In particular, the torus is a
so-called elliptic curve, given by the vanishing locus of a cubic in C?:

{(,y) e C* 1y = 4x° — gox — g3}, (5.32)

where g, and g3 are complex parameters that give the “shape” of the torus.
Every cubic in 2 complex variables can be, via appropriate coordinate trans-
formation, put into this canonical form, called the Weierstrafy form. Isomor-
phism classes of an elliptic curve are given by the j-invariant, which we saw
in Section 5.1.1. Explicitly in terms of the coefficients, j := g5/(g; — 27g3).

Next, let us consider an elliptic fibration. Topologically, this is a varicty
which is locally a torus sitting on each point of a base. The simplest exam-
ple, with which we will illustrate, is that of an elliptic surface (though the
situation is more generally applicable), which is a complex surface S (i.e., a
4-dimensional real manifold) consisting of a base, which we can locally take
to be the complex plane C (with coordinate w), on top of each point of which
isa T2, the fibre.

Algebraically,'® this means that we can write the equation of S in Weierstraf
form (5.32) as:

¥ =40 - ga(wx — ga(w) (5.33)

where g, and g3 are arbitrary polynomials in the base coordinate w.
Thus, for an elliptic surface, the j-invariant becomes a meromorphic func-
tion in w, as a map from C' to C':
aw?

jow) = A AW) = ga(w)® — 27g3(w)* . (5.34)

When the denominator A, called discriminant, vanishes, the curve (elliptic
fibre) becomes singular. This can be easily checked: consider the RHS of the
Weierstra form f = 4x® — gox — g3 and f = 12x° — g. The elliptic curve
becomes singular when f = f’ = 0, which upon eliminating x, gives the
condition A = 0.

Kodaira [193] classified all possible singularity types by considering what
happens to g, and g3 on the singular locus A(w) = 0. To give a trivial example,

suppose y° = 4x> — wx so that go = w, g3 = 0, and A = w>. The discriminant

18 One usually works on projective varieties, so that the base is a P! with projective coordinate
w, rather than C!. The Weierstral equation is then projectivised to be homogeneous cubic in
P2 with projective coordinates [x : y : z], as zy? = 4x° — goxz? — g32°. Globally, we really
should think of the complex coordinates (x, y,z) as being sections of the bundles (L#2, [93,1)

where L = Opi1 (2) is the anti-canonical bundle of P!, What we work with in this section is the
z = 1 affine patch for simplicity.
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homomorphism from G into the symmetric group S,. Hence we have Cayley’s
theorem:

THEOREM 2.36 Every group of order n can be embedded as a subgroup of
the symmetric group ©,.

EXAMPLE 2.37 The 4 x 4 matrix version of the quaterion group from Ex-
ample 2.12 is a faithful representation of the more abstract quaternion group
given in terms of generators and relations, whilst the 33 matrices from Exam-
ple 2.14 describing 180-degree rotations in the principal coordinate planes is
also a representation, but an unfaithful one (since the quaternions are a double
cover).

A basis transformation in a vector space “jumbles up” components of vec-
tors and matrices. Invariant quantities are therefore of particular interest. Any
invertible square matrix defines a basis transformation, which is a similarity
transformation:

DEFINITION 2.38 (Similarity, similarity transformations and equivalent rep-
resentations) An invertible matrix S defines a mapping of the matrix A to the
matrix A’ as

A= SASL.

This mapping is called a similarity transform, and A is said to be similar or
equivalent to A’. Representations related by similarity are called equivalent,
i.e., an equivalent representation I'” of G to a representation I' of G satisfies
;=S [,S~! for every g € G for some similarity transformation determined
by an invertible matrix S .

PROPOSITION 2.39  Similarity is an equivalence relation on the space of
square matrices.

Proof An exercise: follow the proof in Example 2.22.

Quantities that are invariant under such similarity transformations, i.c., that
do not depend on the choice of basis for a matrix representation, are there-
fore of particular interest! Determinant, trace and order of a group element are
easily seen to be invariant under similarity transformations. This motivates the
following definitions:

DEFINITION 2.40 (Characters and character systems) Tet I’ be a
d-dimensional representation of a group G. Then the character, y,, of a group
element g € G is simply the trace

Xe =T (Fg) .
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n—-1
Z(Am; nZS) = Z I)(a|2 >
a=1

n—1
Z(Dgu; z even) = Z)(a)(z_z »
a=1

Z(Dg+1;godd)= Koot + 3 + xnoalP + o+ 2 '-;Iz,
Z(Eg) = Xl + bys + xsl + s + il
Z(E7) = xul + s + xasl® + ey + xul
Fxolys + x15)" + (s + X + el
Z(Es) = y1 +xu +x19 +xol” + W7 +x13 +xi +xasl . (5.30)

These clearly fall under an ADE pattern, which are so labelled presciently.
This is the only ADE pattern that Terry Gannon did not consider reducible
to a graph-theoretic/Perron—Frobenius-like problem in [4]. Understanding this
phenomenon in more detail should lead to some interesting new mathematics
and physics.

In the same vein, the fundamental equation (and related trichotomies in
Equation (3.8) and Theorem 5.15, as well as the dichotomy in Theorem 3.9)
of the McKay Correspondence in (4.12) has found its place in physics. Recall
that, for a finite quiver with node labels »; and adjacency matrix a;;, we can
consider, more generally,

k=" agn; . (5.31)
J

It turns out that this is proportional to the so-called beta-function in supersym-
metric conformal field theories, especially those coming from string theory.
When k& = 2, the vanishing of Equation (5.31) gives the super-conformality
condition for N' = 2 quiver gauge theory in physics, and the affine ADE
Dynkin diagrams in mathematics. Implications of other values of k are dis-
cussed in [191] while [192] tri-partitions quiver theories as “good, bad, ugly”
accordingly.

5.9 Elliptic Fibrations

Whilst we are on the topic of algebraic geometry, one cannot resist but go into
Kodaira’s ADE classification of elliptic fibrations. First, let us recall that a
torus 72 = S' x §' (genus 1 Riemann surface) can be realised as a complex
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PROPOSITION 2.33  Let ¢ : G — H be a homomorphism. Then

(i) &(G) is a subgroup of H;
(ii) ker(¢) is a normal subgroup of G;
(iii) G/ ker(¢) is isomorphic to ¢(G).

PROPOSITION 2.34
If N is a normal subgroup of G, then the map g — Ng is a homomorphism
Sfrom G to G[N with image G N and kernel N.

We mention here one instance which will be important in the sequel. The
group G is a double cover of the group H if G has a normal subgroup Z of
order 2 such that G/Z is isomorphic to H.

2.7 Representations

We have seen that matrix groups can be convenient to work with. We will
also see abstract groups in terms of generators and relations, or multivector
eroups in Clifford algebras; we have seen homomorphisms between groups and
isomorphisms between groups that are “practically the same”. Matrix groups
can be particularly convenient, and mappings from groups to matrix groups are
clearly of particular interest, which motivates the following definition.

DEFINITION 2.35 (Representation) A homomorphism of a group G onto a
group of non-singular nxn matrices I',, g € G, is said to “represent” an abstract
group as a matrix group. The group of matrices I’y is called an n-dimensional
representation I' of G.

Faithful: A representation for which this mapping is in fact a bijection is
called a faithful representation,

Unfaithful: and one where it is a homomorphism but not an isomorphism is
called unfaithful.

Trivial: Mapping all elements to the identity is a representation, which is
called the identicalftrivial representation.

Regular: The representation of a group G by |G| X |G| permutation matrices
(defined by right multiplication) is called the regular representation.

We say a bit more about the regular representation. The Cayley table of a

finite group G = {g1, ..., 8.} is the n X n array whose rows and columns are
indexed by {1, ..., n}, with the element in row i and j being k if g;g; = gr. Now
column j represents a permutation of {1, ..., n}, carrying i to k if g;g; = gz. The

map taking the element g; to this permutation (for j = 1,...,n) is a faithful
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reverse to the above). Thus simple groups are the analogues to prime numbers
when it comes to building, and classifying, groups!

The endeavour to classify finite simple groups has been a monstrous effort
in the twentieth century, leading to classification results filling several large
tomes. These finite simple groups also come in several infinite families as well
as some 26 exceptional (“sporadic”) cases. We will briefly hint at these spo-
radic groups later in Section 5.1, but only in the context of a potential ADE
pattern in this field.

2.3.2 Continuous Groups

So far, we had finite sets of matrices that satisfied the group axioms. Having an
infinite set of matrices to work with may seem daunting, but is actually very
straightforward when there are continuous parameters to work with. (Indeed,
the most difficult group axiom to verify, the associative law, is automatically
satisfied by matrices.) The elementary example is just the circle: the unit com-
plex numbers, or rotations in the plane around the origin. We will formalise
some of the notation shortly.

As ahistorical note, the concept of finite groups appeared first, notably in the
work of Galois in studying the permutations of roots of polynomials. Decades
later, Sophus Lie started systematically studying continuous transformations,
giving rise to continuous groups, now called Lie groups in his honour.

EXAMPLE 2.17 (The group U(1)) Consider the group G consisting of unit
complex numbers, i.e., those forming a circle. By Euler’s formula we can write
these as ™. Group multiplication is therefore just e = /@192 Geomet-
rically they are just combinations of rotations in the plane.

We can take G as SO(2), the set of special orthogonal 2x 2 matrices O acting
on the plane R?, i.e., det O = 1 and OOT = 1,. We can also think of G as U(1),
the set of unitary 1 X 1 matrices U, i.¢., matrices U with complex entries such
that UUT = 1, where the dagger denotes complex conjugation combined with
transposition.

O and U have to be of the form O = (zflf g _C(S)isnf) and U = €. Both describe
rotations in the plane: one in the real plane and one in the complex plane. O
acts on a real 2D vector (x,y)?, whilst U acts on a complex 1D vector z, but
this is z = x + iy, so “essentially the same” preserving x - x = zz = x> + y°. This
is another example of a group isomorphism, this time for continuous groups:
SO®2) = U(1).





index-158_1.png
5.4 Quiver Representations 143

vector spaces and (2) arrows between them are assigned linear maps between
the corresponding vector spaces. They have turned out to be a powerful tool in
representation theory by “visualising” complicated morphisms between alge-
braic objects (see also [118-120]).

Formally, quivers (or the original German, Kécher) were introduced by Gabriel
[121, 122] because the nodes are reminiscent of holders of arrows. Specifically,
we have:

DEFINITION 5.13 A quiver is a pair 0 = (Qq, 1), where Oy is a set
of vertices (or nodes) and Q; a set of arrows. The arrows link vertices in the
sense that each element @ € (7 has a beginning s(«) and an end e(e) which
are vertices, i.e., {s(@) € Qo) — {e(@) € Qu}.

In graph-theoretical language, Q is a directed multi-graph (allowing multiple
arrows between nodes). Note that we do not require that either |Qg| or | Q1] be
finite.

So far, we have merely been introducing a graph. The key point is to as-
sociate with these the aforementioned algebraic objects such as vector spaces
and maps:

DEFINITION 5.14 The representation of a quiver rep(Q) of Q is the as-
signment: (1) to ecach vertex x € Qg of Q a vector space V;, and (2) to each
arrow x — v a linear transformation (morphism) between the corresponding
vector spaces Vy — V.

Finally, we can create an algebra from a quiver. Given a ground field k
(which, we can take to be C) and a quiver (, a path algebra kQ is an algebra
which as a vector space over & has its basis prescribed by the paths in Q. An
algebra needs a bilinear product; for kQ, it is the concatenation of paths if the
end of one is the beginning of the other, and 0 (the zero-vector) otherwise.
Note that kQ is a finite-dimensional algebra if @ is finite and acyclic (so that
we do not have infinite paths by going around cycles).

Finally, we recall a classic theorem [123] on finite-dimensional algebras A:

THEOREM 5.15  (Trichotomy theorem of representation type) Over an al-
gebraically closed field k, every finite-dimensional algebra A is one of the 3
types: finite, tame or wild.

Of course, the theorem requires a definition of the 3 types; these are as fol-
lows. An algebra A is of

(i) finite representation type if there are only finitely many isomorphism
classes of indecomposable A-modules, otherwise it is of infinite type.
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U, such that y is a positive combination of a and § [73, Theorem 5.2.2]. In the
ADE case, such vy exists only if @ -8 = —1. So the root subgroups U, for @ € S
generate an abelian group if and only if @ - 8 > O for all @, € S. Such sets
correspond to graphs with least eigenvalue —2 or greater.

As a footnote, we observe that Hoffman subsequently proved a different
strengthening of his original conjecture, in the paper [115]:

THEOREM 5.12 A connected graph whose smallest eigenvalue exceeds
—1 — V2 and whose minimum degree is sufficiently large is a generalised line
graph.

In other words, the lower bound —2 for the eigenvalues is replaced by the
smaller —1 — V2. It is not clear how to achieve this with the toot system tech-
nology.

Another area in which root systems play a role is an extension of a theo-
rem of Whitney [116], who showed that, with a single exception, if connected
graphs G and G, have isomorphic line graphs, then G; and G, are themselves
isomorphic (and, moreover, any isomorphism from L(G) to L(G>) is induced
by an isomorphism from G; to G,). The exception’ is the pair (K3, K1 3) of
eraphs (a triangle and a 3-star), which have isomorphic line graphs.

This result has been extended to Hoffman’s generalised line graphs in [117].
We outline the argument. Represent the graph in the root system D, as de-
scribed earlier. Then vertices can be represented by unit vectors making an
angle 45° or 90° with all the vectors representing the graph. The resulting set
is contained in a root system with roots of two lengths, 1 and V2. If n # 4, the
only possibility is B, and the vertices can be recovered uniquely. The excep-
tions arise from the exceptional root system F,, which is obtained from Dy by
adjoining three sets of eight vectors each consisting of an orthonormal basis
and the negatives of its vectors. All exceptions can be classified. For example,
CP(3) = L(Ky; 3) is isomorphic to L(K,).

Having thus revisited graphs and ADE connections, we now turn our atten-
tion to multigraphs, or quivers, and will in turn see an ADE pattern emerge.

5.4 Quiver Representations

Since we have already delved into finite graphs, it is perhaps easiest to begin
with quivers. These are simply directed graphs where (1) nodes are assigned

2 Recall the standard notation that K, is the complete graph on 7 nodes and Ky, , is the complete
bi-partite graph on 2 sets of nodes, of sizes m and n respectively, such that all nodes in one set
are connected to all nodes in the other set, but no connectivity within the nodes of either.
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THEOREM 5.16 (Gabriel [121, 122])  Given a finite quiver Q, its path al-
gebra kQ is of finite representation type if and only if it is a disjoint union of
Dynkin graphs of type A,, D, and Eg/E;/Es, i.e., the ordinary simply-laced
ADE Coxeter—Dynkin diagrams.

In parallel, we have

THEOREM 5.17 (Nazarova [124-127]) Let Q be a connected quiver with-
out oriented cycles, then k(Q is of tame (in fact domestic) representation type
if and only if Q is one of the graphs of type A,, D, and E\G/E\ﬂfg, i.e., the
affine ADE Coxeter—Dynkin diagrams.

Therefore, perhaps as surprising as the analogous theorems 3.9 of J. Smith
in 3.3 wherein a simple bound on eigenvalues of undirected graphs led to ADE
and affine ADF, representation type on directed graphs (quivers) likewise leads
to our protagonists.

Furthermore, due to the underlying representation theory of the McKay Cor-
respondence discussed in 4.5, the graphs constructed from the finite discrete
subgroups of SU(2) — or for that matter any analogous graphs constructed
from the irreducible representations of a finite group — have come to be called
McKay quivers.

As with all beautiful objects in mathematics, McKay quivers have found
their place in theoretical physics, especially in string theory [128, 129]. We
will see this again in Section 5.8. The role of the trichotomy theorem in the
context of quantum field theories discussed in [130].

5.5 Cluster Algebras

While we are on the subject of representation theory, one cannot resist but
to give an account of “cluster algebras” which have recently made a signifi-
cant impact across mathematics. The reader is referred to the original works
of Fomin and Zelevinsky [131, 132] as well as recent reviews and other work
[133-138] for a comprehensive treatment of the material.

We will introduce cluster algebras in their most elementary guise,> which
will entice the reader as to how something so fundamental (much like Theorem
3.9) could be discovered so late.

5 Cluster algebras originally came up in the theories of Poisson algebras and totally positive
matrices, and have connections with algebras of finite representation type, with critical points
of smooth functions, as well as algebraic geometry. Indeed, when Fomin and Zelevinsky
invented cluster algebras, they at first did not know that the finite-dimensional ones fitted the
ADE classification; this was discovered later.
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(ii) tame representation type if it is of infinite type and for any dimension #,
there is a finite set of A-k[X]-bimodules M; obeying the following:3

e M, are free as right k[X]-modules;

e For some i and some¢ indecomposable k[X]-module M all but finitely
many indecomposable A-modules of dimension n can be written as
M; Qix) M.

(iii) wild representation type if it is of infinite representation type and there
is a finitely generated A-k[X, Y]-bimodule M which is free as a right
k[X, Y]-module such that the functor M®yxy) from finite-dimensional
k[X, Y]-modules to finite-dimensional A-modules preserves indecompos-
ability and isomorphism classes.

These definitions are clearly overwhelmingly technical but details are not
relevant for our present discussions. We will only illustrate with a few exam-
ples. Consider the algebra A = C[x]/{x"), the algebra of complex polynomials
(under usual polynomial multiplication and addition) in a single variable x
such that x* = 0 for some integer n > 1. That is, A is the algebra of complex
polynomials up to degree n — 1. Any A-module M is a vector space together
with a linear map (matrix) ¢ ~ M such that ¢* = 0. Put ¢ in, say, Jordan
canonical form, then the indecomposables correspond to the Jordan blocks, of
which there is clearly a finite number.

On the other hand, consider A = C[x, y]/(x?,y*). Then M = C*” for some

integer n > 1 is an A-module with action by matrices X := (8 {)) and Y :=

(8 ]0") Here, I, is the n X n identity matrix and J, is an n X n matrix with

some fixed 4 € C on the diagonal and 1s on the upper off-diagonal (i.c.,
(Ju)ii = A and (J,)ii1 = 1 with O everywhere else). One easily checks that
X? = Y2 = XY - YX = 0 so that M is indeed an A-module. Moreover, M is
indecomposable. Clearly, for (the infinitely many possible) different values of
n and A, M are non-isomorphic. Thus, here A is of infinite representation type.

The point is that the definitions of the trichotomy seem completely unre-
lated to ADE-ology, but a pair of remarkable theorems* brings us back to our
familiar theme:

3 Therefore for the polynomial ring k[X], the indeterminate X furnishes a one-parameter family
and the indecomposable k[X]-modules are classified by powers of irreducible polynomials
over k. If the M; may be chosen independently of 7, then we say A is of domestic
representation type.

4 Here as usual, each edge of the Dynkin diagrams, as a quiver, can be taken as a bi-directional
arrow between associated nodes.
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The equilateral triangle (see Figure 2.2) doesn’t change (“is invariant’) un-
der rotations by 0, 120 or 240 degrees around its centre. The corresponding
symmetry operations can be denoted, e.g., e, Ry, R,. It also stays the same un-
der reflections in its three diagonals (denoted by S, S;, S3). Combining these
symmetry operations will yield another symmetry operation; in fact, it will
yield one that we have already identified amongst the 6. The property that one
can combine these symmetry operations and they stay within the set of all pos-
sible symmetry operations (“the set is closed” under combination) is one of the
main properties of the more formal definition of a group that is meant to cap-
ture this structure: A group G = (S, o) is aset S (e.g., of symmetry operations)
with a binary combination (or “multiplication”) operation o such that closure
as well as the following other properties are satisfied:

DEFINITION 2.7 (Group) A group (G,o) is a set G with a binary operation
o such that the following set of axioms is satisfied:

(i) Closure:1fa,be G=>aobeG,Ya,be G
(ii) Associativity: (aobyoc=ao(boc), Ya,b,ce G
(iii) Existence of an identity elemente: aoe=eca=a

(iv) Existence of inverse elements:Ya € G, Ja™' e G:aoal =aloa =e.

If G is a finite set, then the number of clements in G (i.e., the cardinality of
the set) is called the “order” of the group G (or simply the “size”). For a group
element g the smallest integer such that g” = e is called the “order” of the
group element g.

Sometimes one has concrete objects such as a set of matrices with a con-
crete multiplication like matrix multiplication to do group computations with.
A slightly more abstract approach is to only have certain group elements, called
generators that can generate the whole group via multiplication, subject to a
set of relations. Multiplying such generators together creates words in these
generators. Without any further information, this generates an infinite group,
called the free group in these generators. However, relations reduce this num-
ber of possible words, often to something finite, by telling us which words are
synonymous to each other, or to the identity.

EXAMPLE 2.8 (Quaternion group and icosahedral group) ILet us assume
that we have the generators 1, i, j, k. In principle, we could form infinitely many
words out of these. However, let us say that i, j, k are imaginary units (i.e.,
? = j2 = k¥ = —1) and that furthermore ij = k. This actually reduces the
number of possible words to only 8 words! This group of 8 elements is called
the quaternion group. We will see more concrete examples of this below.
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so that an arrow from node i to j corresponds to A;; = 1. The adjacency matrix
of a directed graph would not necessarily be symmetric.

The spectrum of a matrix, we recall, is the set of eigenvalues. The maximal
eigenvalue is customarily called the spectral radius. Tllustrative examples are
given in Equation (3.9).

Furthermore, we make the distinction that if between two nodes, there are
multiple edges (or arrows), then we would refer to the graph as a multigraph.
In such cases, A;; would equal the number of arrows from node i to node ;. In-
deed, since the subject of this book is ADE, the so-called simply-laced graphs,
we won’t be encountering multigraphs much at all. For a fairly self-contained
rapid introduction to the terminologies for finite graphs, especially in the con-
text of Al-assisted mathematics, the reader is referred to [32].

In summary, for us (A is a binary symmetric square matrix; so its ¢igenvalues
are real, which we can denote as

A=A =24

In particular, we will study 2; and 1, the largest and the smallest eigenvalues,
in this book.

A remarkable theorem characterises how the largest eigenvalue is related to
the (affine) ADE graphs:

THEOREM 3.9 (Smith [33]) Let G be a finite connected graph with adja-
cency matrix A, then

¢ 2; = max{Figenvalues(G)} < 2 © G is ADE;
¢ 2, = max{Figenvalues(G)} = 2 © G is Extended (affine) ADE.

Whilst this theorem is implicit in the classification of Lic algebras, upon
which we will expound shortly (see Section 3.5), the succinctness of its content
is made ever more impressive by the fact that it should appear in its present
form as late as 1969.

Let us give some illustrative examples to reify the above discussions. Con-
sider the diagrams A4 and A\g These, and their respective 4 x 4 adjacency
matrices are

01 0 0
1 0 1 0
Ay &—@—0—@ 7, [ 0 1 0 1 ]
000 1 0
3.9)
001 0 1
- 1 0 1 0
As ‘ﬂA3 :[ 01 0 1 ]
1 0 1 0
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Moreover, f is non-degenerate, or Morse, at p, if the Hessian matrix

o’ f
Gx,ﬁx,-

d’f|, = (

P

of second derivatives is non-singular there.
Then, we have that (shifting p to be the origin):

THEOREM 5.25 Let 0 be a non-degenerate singular point of f, then there
exist normal coordinates in the neighbourhood of 0 in R” such that

n

k
F@=rO -3+ > .
i=1

i=k+1

Here, k, the index of the quadratic form, is the number of negative eigenvalues
of d2f|x:0. Furthermore, for and only for a Morse function, the singularity is
stable, in the sense that a small perturbation of f has the same index k.

From now on, we will (by appropriate shift) take the singular point to be O.
Let us illustrate with a simple example. Consider f(x) = x*/3. At x = 0 (which
is a singular point since df(0) = 0), it is clearly not Morse since d” f(0) = 0.
Take a small perturbation g(x) = x*/3 — ex, where dg = x* — €. Thus, if € < 0,
there are no singular points at all. If € > 0, there are two singular points + Ve,
both of which are non-degenerate. Thus, the non-Morse f is not stable. By
contrast, consider f(x) = x>/2. It is Morse at p = 0, with index k = 0. Take a
perturbation g(x) = x>/2—e€x so that dg = x— €. At its singular point €, d’>g = 1
and the index remains k& = 0.

In some sense, catastrophe theory is about the study of singularities (critical
points) which are not Morse, and as with all subjects in this book, we are inter-
ested in the classification of how non-Morse (but still following some notion
of stability) singularitics can be.

We already saw that f(x) = x° is unstable. This belongs to an obvious
family originally noted by Thom and given very creative names. The case of
f = x is non-singular and that of f = x> + ax is a stable local quadratic min-
imum. Our example of f = x* + ax is called the fold. And the higher powers
f=x*+ax® +bx, f = X +ax’ +bx* +cx,and f = x° + ax* + bx® + cx® + dx for
real coefficients a, b, ¢, d are called the cusp, the swallowtail and the butterfly,
respectively. Moreover, there is f = x” + ... for integer n > 6. A more precise
statement of Thom’s theorem requires two definitions.

DEFINITION 5.26 A germ of a function f: R” — R at 0 is the equivalent
class of functions which are identical on a neighbourhood of 0.
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3.3 Graphs and Spectra

The previous sections saw the emergence of ADE-ology from the perspective
of polyhedra and root systems. We have seen that the previous mathematical
structures such as root systems, Cartan matrices, etc., can be conveniently rep-
resented in diagrammatic form. We will now discuss graphs in their own right.
As promised, we have kept the material at an undergraduate level to entice the
young. It is indeed surprising that traditionally introductions of root systems
and Coxeter groups are left to a graduate course on Lie theory, a tradition from
which we purposefully broke (we defer the discussion till we have completed
the more elementary material, that is, until Section 3.5).

Continuing in this vein, we now turn to some elementary graph theory,
whence the ADE and affine ADE diagrams of Section 3.2 arise rather sur-
prisingly and naturally. We see that they arise as the connected graphs with
eigenvalues less than and equal to 2, respectively. From such a graph theory
perspective, it should be absolutely clear that the diagrams are combinatorial
objects, and that their defining property (underlying their occurrence through-
out much of mathematics) is a simple fact of algebraic combinatorics.!” Terry
Gannon in [4] also considers these graphs as of fundamental importance, and
calls them graphs with PF2™ and PF2 assignments, respectively (Section 2.5.2
in [4]). We will see that in the context of the McKay correspondence in Section
4.5, these affine ADE/PF2 graphs arise very naturally precisely because of this

property.

3.3.1 Largest Eigenvalue 2 or Smaller

Take a finite, connected, graph G. We recall that this is a collection of nodes
with edges between some pairs of nodes. Here, we consider graphs which are
simple, meaning that there is only at most a single edge between any pair of
nodes, and undirected, meaning that we do not consider direction for the edges.
We will consider directed graphs and associated quiver representations later in
Section 5.4. For the graphs of our present concern, we first have that

DEFINITION 3.8 The adjacency matrix A of G is an n X n symmetric
matrix, where # is the number of nodes and \A;; = 1 if there is an edge between
nodes i and j and O otherwise. The spectrum of G is that of A (the multiset of
its eigenvalues).

Remark In this section and throughout most of the book, we will only con-
sider undirected graphs. In general, the edges in a graph could have direction

17 For an introduction, by one of the authors, please see [31].
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Similarly, the free group in the three generators R, S, 7T is infinite, but with
the below relations it reduces to a group of order 60

(R,S,T|RST=R*=S*=T°=¢).

This group is actually the group of rotational symmetries of the icosahedron,
and is called the icosahedral group.

The above notation of listing the generators and the relations amongst them
is called the presentation of a group, to whose discussion we shall soon turn.

2.3.1 Discrete Groups

Let us follow these two examples and begin with finite groups to warm up. A
simple way of thinking about these is to have a finite collection of matrices
that one can show to satisfy the group axioms. Matrix groups are very simple
to work with. We will get a bit of practice with them below, and see the link
with representation theory. But we will also see other examples of groups in
terms of generators and relations, or as Clifford multivectors under Clifford
multiplication. We start with the simplest non-trivial example.

EXAMPLE 2.9 Take G as the set {1, —1} under usual multiplication. This
gives the group multiplication table

1| -1
1 1| -1
-1]-1] 1

One could also consider the group H consisting of {0, 1} with addition mod-
ulo 2. This gives the group multiplication

011
001
1j1]0

The identity elements are multiplicative 1 in G and additive O in H. One can see
that these groups are “essentially the same”. If we had a mapping ® : G = H
that set ©(1) = 0 and ®(—1) = 1, this maps the group multiplication tables into
each other. We call the groups G and H isomorphic, and consider them just
different incarnations of the same abstract group Z;.

Even this simple example prompted thought about when groups are “essen-
tially the same”, and mappings between groups, i.e., mappings between the
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We can generate another cluster from a cluster we already have by “mutating
in the k-direction”. This just replaces x; in the original cluster by x;, where the
latter is given by the following exchange relation:

DEFINITION 5.19  An exchange relation between x; and x,, is given via the

B-matrix entries as
XeXf, = 1_[ xfik + 1_[ xi_bik.

bik>0 bik<0
1<i<m 1<i<m

It also mutates the corresponding exchange matrix in the following way. Let
B = (b;;) and B’ = (b)) be integer matrices. We say that B’ is obtained from B

via a matrix mutation% in the direction of k, if
—b;; ifk e i, ),
b;j = b,‘j + |bik|bkj if k ¢ {i, ]} and b,‘kbkj > 0,
by otherwise.

We write B’ = p(B); itis easy to show that such p; are involutions.

This prescription leads to a set of matrices related via mutation. In general,
mutations of clusters and matrices (i.¢., seeds) can generate infinite structures.
For cluster algebras there are therefore two types of finiteness: that of clusters
and that of matrices. If there are finitely many clusters (and thus seeds), then
the cluster algebra is said to be of finite type. There is then automatically a
finite number of matrices. However, even if there are infinitely many clusters,
it may still be the case that there are only finitely many matrices. These infinite
cluster algebras are called of finite mutation type.

One could think of mutation graphically, and we are back to the situation of
quivers. The exchange matrix B can be thought of as the anti-symmetrised ad-
jacency matrix of a finite directed graph (quiver). That is, we take B;; = a;;—a
for the ordinary adjacency matrix a;; which we have encountered throughout
the book. The anti-symmetry of B is so that the graph is without loops and 2-
cycles.® Thus, the quiver associated to (5.19) is the A, Dynkin diagram,” while
that associated to (5.20) is the oriented triangle. The mutation rule on B then
7 A complete surprise is that in the same year as [131] and completely unaware of each other’s

work, physicists stumbled on these mutation conditions when studying Seiberg Duality for

N =1 supersymmetric gauge theories [139]. It was only many years later at Oberwolfach

when the physicists met Fomin that it was realised everyone was working on the same

structure. This is yet another of the many instances why string theory is believed by pure
mathematicians to be ““on the right track”.
8 Inthe physics [139, 140], however, we do allow both.
But note that the period 5 in the first case seems to have nothing to do with the root system, or
reflection group, or anything else, traditionally associated with A,. There are groups here too,

which are not the Coxeter groups of the appropriate types. For the second example, we get the
group of rotations of the icosahedron.
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=i JjI k| k| T |1 =i i
k| k| k| j| 5] =i i|]-1] 1
k| k| k| =j| j| i|=i] 1]~

Table 2.1 Multiplication table for the quaternion group Q.

Our first example of a polyhedral group will be the rotational symmetry
group of a tetrahedron. This is a symmetry group of order 12. We will see
it again later in Section 3.1; we will see its close relative, the full tetrahedral
eroup (including reflections) of order 24 in Section 3.2; and we will meet its
binary version, the binary tetrahedral group, also of order 24, in the context of
spinors and rotations in Section 3.4, as well as in the McKay correspondence
in Section 4.5.

EXAMPLE 2.13 (Tetrahedral group) The following set of 12 matrices forms
a group under multiplication, the rotational tetrahedral group. One can simi-
larly produce a multiplication table, but for larger groups these get quite un-
wieldy.

1 00 0 0 1 0 0 -1 010
01 0ff1 001111 O O0f]0O0 1],
0 0 1 010 0 -1 O 1 00
1 0 O 0 1 0 -1 -1 0 0
60 -1 ol 00 -11,0]0 0 -11],] 01 ,
0 0 -1 -1 0 0 1 0 O 0 0 -1
0 -1 0 0 0 -1 0 01 -1 00
o o1|,/-1 o0 oO}J|-1 OO]] O -10
-1 00 01 O 0 -1 0 0 01

In fact, the quaternion group (in its guise as “something to do with rota-
tions”) is our first example of a binary double cover.
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Consider the sequence given by the (non-linear) recurrence

1+y,
Yora = 2T (5.19)

Y

where y, are formal variables. It is easy to see that it returns to its initial value
after five steps. For example, if the first two terms are yo = 1, y; = 1, then
the sequence runs as 1, 1,2, 3,2, 1, 1, .. .. More analytically, we can see that the

. _ Lty _ Iy 14y _ Ly _ 1tn
sequence plroceeds asiyL, . ¥s = 2y = = R ys = 8 = S
and y¢ = =5 = y;,.... In addition to the period 5 property, we also see a

Y4
“Laurent phenomenon”, that each term, despite being ratios of polynomials,

will always simplify so that the denominator is a single monomial, whereby
making each term a Laurent polynomial. In the numerical example, the Lau-
rent phenomenon exhibits itself as the sequence being all integers, despite hav-
ing a denominator in the recursion. Note that these two properties are highly
sensitive to the nature of the recurrence; changing the 1 to a 2 in (5.19) would
completely ruin both.

Now, take the related recurrence

14+ v,019,
Vira = I 7 (5.20)

y}’l
We can check that the Laurent phenomenon still holds, but the periodicity is
gone. For instance, starting 1, 1, 1, the sequence runs as 1, 1, 1, 2, 3, 7, 11, 26,
41,97, 153,362, 571,..., and grows forever.®
What is going on here? The insight of [131, 132] is that both above examples
are associated with an underlying algebraic structure called a cluster algebra:

DEFINITION 5.18 Let I := k(y1,...,¥,) be the field of rational functions
in variables y; over a ground field &, which we can take to be Q, for instance.
Then we define the following:

e A cluster of rank m is a set {x;};=1 __, of elements of F.

.....

o A seed is a cluster together with an m X m exchange matrix B = (b;}), typi-
cally taken to be antisymmetric.

Usually, algebras are given as generators with some relations, which gen-
erate the whole algebra. Cluster algebras are unusual in that we are given an
initial seed along with a prescription for how to generate the other generators.

6 This sequence has many interesting interpretations, including the denominators of the
continued fraction convergents to V3 (see OEIS sequence A140827.)
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sets that “respect the group multiplication law”. This motivates the following
definitions:

DEFINITION 2.10 (G, o1) and (G», o») are called homomorphic if there is
a map ® from (G, o1) to (G, op) that respects the group multiplication law,
i.e., such that

D(x 01 y) = D(x) 0, D(y); forall x,y € Gy. 2.1)

An antihomomorphism is analogous except that it reverses the order of the
multiplication on the RHS.

The particular case of groups being “essentially the same” is encapsulated
in the definition of an isomorphism as a special case when this homomorphic
mapping is bijective:

DEFINITION 2.11 (Gy,0;) and (G», oy) are called isomorphic if there is a
bijection (one-to-one map) © from (G, o1) to (G2, o2) such that

O(x 01 y) = D(x) 02 D(y); X,y € Gy (22)
holds. @ is then called a group isomorphism, and we write G1 = Gj.

Another small group that we saw above in Example 2.8 in terms of gener-
ators and relations (and shall encounter again soon) is that of the quaternions.
We will meet them in their guise as a normed division algebra in Section 3.1.3.
They also have a profound geometric interpretation as being related to rota-
tions in three dimensions (Section 3.4). But for now we are just interested in
their incarnation as a group.

EXAMPLE 2.12 (Quaternion group) Consider the group G generated by

01 0 0 0 01 0
-1 0 0 o 1o o 0 -1
=lo 0 o 1™ 00 of

0 0 -1 0 0 10 0

This means that one uses group multiplication (here matrix multiplication) to
generate more and more elements, until the set closes.

Concretely: define k = ij; then there are 8 different matrices (group cle-
ments) that can be generated by matrix multiplication, namely +1, +i, + j, £k,
as we asserted above. Their multiplication behaviour is summarised in the mul-
tiplication table, Table 2.1. The 8 matrices define a group of order 8, called the
quaternion group (.
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N of a II; factor M is a sub-*-algebra containing the identity and which is
itself II;. Finally, we are interested in ([142], see [143] for a comprehensive
account):

DEFINITION 5.22 A subfactor N C M is of finite index if M is a finitely
generated projective left N-module under (left) multiplication. The index
[M : N] is then the trace of some idempotent in a matrix algebra defining
M as a (left) N-module.

Remarkably, classification of von Neumann subfactors of II; for index less
than 4 reduces to that of graphs with ¢igenvalues less than 2. Hence,

THEOREM 5.23 von Neumann subfactors of index [M : N] < 4 are in
one-to-one correspondence with the (ordinary) ADE Dynkin diagrams.

Index greater than or equal to 4 becomes more subtle and the reader is re-
ferred to [143].

As aparting remark, before we venture away from the land of discrete math-
ematics, there is a notion of flat curvature for (locally finite) graphs, general-
ising that of Ricci-flatness for differential manifolds [144, 145]. One notices
[32] that for girth greater than or equal to 5, such flat graphs fall into somewhat
of an ADE pattern, while for smaller girth, they are infinite in number.

5.7 Catastrophes: Arnold Singularities

Initiated by Thom in the theory of dynamical stability in the 1960s [146] and
popularised by Zeeman [147], catastrophe theory has found applications to
vast areas, from dynamical systems to differential geometry to applied mathe-
matics, and leads to yet another ADE pattern. The classical introductions are
given in [148-150].

The protagonist here is something clearly ubiquitous: the multi-variate func-
tion f: R* — R. In particular, we are interested in its critical points. First, we
recall some rudiments of Morse theory.

DEFINITION 5.24 A singular point p € R” of a function f: R* — R is
one where the gradient vanishes:

=0.
p

y. .2

ox;” 7 Ox,

afl, = (
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e 3, is the symmetric group consisting of all permutations of the set {1, ..., n}
of n elements, of size n!;

o 9, is the alternating group consisting of all even permutations of n elements
(those for which the difference between n and the number of disjoint cycles
is even), of size n!/2;

e Dih, is the dihedral group of size 2n, which is generated by C, : C», the
cyclic symmetry of a regular n-gon, together with the 2-fold symmetry of
flipping the n-gon over.

When one has two groups, one can define a larger group using the smaller
ones as building blocks. There are two main ways to construct such a product
group:

DEFINITION 2.16 (Product groups) Given groups G (with operation og)
and H (with operation og), then the set for the product group is given by the
Cartesian product, G X H, i.e., the ordered pairs (g, #), for g eGand h € H. The
direct product G X H endows this set with the following group multiplication

(g1, M) 0 (g2, h2) = (g1 °G &2, 11 o ha).

If one has slightly more structure, one can also define the semi-direct prod-
uct G x H of two groups. Suppose ¢ : H — Aut(G) is a homomorphism
sending clements 2 € H to automorphisms ¢, of G (automorphisms are self-
isomorphisms, i.¢., isomorphisms from an algebraic object to itself). Then the
group G x4 H is the group generated via the twisted multiplication law given by

(g1,h1) 0 (g2, ) = (g1 o6 Pu(g2), I og ho).

Note that the direct product is essentially a trivial special case of this for an
untwisted product given by a trivial homomorphism.

This allows one to construct larger and larger groups out of building blocks.
Conversely, it allows a large group to be decomposed in terms of smaller build-
ing blocks, as we now describe.

The smallest building blocks here are called simple, which means groups
that have no non-trivial normal subgroups (normal subgroups are subgroups
invariant under conjugation'). This is because for a larger group one can some-
times use normal subgroups to decompose it as a semi-direct product (in

1" A subgroup N of a finite group G is called normal if it is a union of some of the conjugacy
classes of G; equivalently, if n € H, then the conjugacy class of N is contained in H. Normal
subgroups are important because of their connection with homomorphisms, and we will
introduce these shortly in Section 2.6.
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Type h m;

A, n+l 1,2,...,n
B/C, 2n 1,3,5,....2n-1
D, 2n—1) | 1,3,5,....2n-3,n—-1
Eg 12 1,4,5,7,8,11

J 18 1,5,7,9,11,13,17
Eg 30 1,7,11,13,17,19, 23,29
I, 12 1,5,7,11

G, 6 1,5

H, 5 1,4

H; 10 1,5,9

H, 30 1,11,19,29
L(n) n I,n-1

There is a close connection with other invariants of these groups, called
degrees (of polynomial invariants) d;, which are related to the above exponents
m; via

dizmi+1;

the proof involves the Coxeter plane [20]. Polynomial invariants are polyno-
mials that are invariant under the group action. Their degrees are then also an
invariant of the group. For instance, the symmetric group that exchanges x and
y has invariant polynomials such as xy or x* + y?, etc. The degrees of these
invariants are fundamental properties of the symmetry groups. For instance,
Ejs has invariant polynomials of degrees 2, 8, 12, 14, 18, 20, 24, 30, as expected
from the exponents we encountered above. We will mention invariants again
in Section 5.8 in the context of complex polynomials. Suffice here to point out
the close connection with exponents, as this will become important in Section
4.4.2. Tt is also interesting to mention that the product of the degrees is equal
to the order of the Coxeter group d; ...d, = |[W]and thatd; +---+d, = N+n,
where N is the number of (pure) reflections in the group, and n, the number
of invariants, is equal to the rank of the root system. The interested reader can
refer to [20] for further details.

This brief encounter with graphical representations of mathematical struc-
tures motivates the study of graphs in their own right, which we will now pro-
ceed to do.
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translates to the following graph move: (1) pick a node; (2) reverse all arrows
incident on the node; (3) complete the outgoing and incoming arrows to that
node by adding an arrow so as to form a loop; (4) erase pairs of antiparallel
edges (loops) that may have been created in the process.

In the spirit of our ADE theme — but still highly surprising — the cluster
algebras of finite type follow an ADE pattern. We will therefore finish our
discussion of cluster algebras here with the highlight theorem and defer the
interested reader to explore further details in the literature:

THEOREM 5.20 (Finite type classification) A cluster algebra A is of finite
type if and only if the exchange matrix B at some seed of A is the adjacency
matrix of an ADE diagram, i.e., B —2I is the Cartan matrix of an ADE Dynkin
diagram.

The finite type classification therefore follows the same ADE pattern as the
classification of simply-laced Lie algebras and the corresponding crystallo-
graphic root systems and Coxeter groups.

5.6 von Neumann Algebras and Subfactors

In another central idea in representation theory our diagrams take the stage.
We first recall that given a Banach =-algebra M with a unit (i.e., an associative
algebra over C which is also a complete metric space with metric induced by
anorm |||, where the unit has norm 1),

DEFINITION 5.21 A finite von Neumann algebra is such an M but also
with a trace Tr: M — C, satisfying, for any a,b € M,

() lla*all = llall*,
(ii) Tr(ab) = Tr(ba),
(i) Tr(1) = 1,
@iv) Tr(a+a) >0 Ya # 0,
(v) the metric is defined by {(a, b) = Tr(b*a) and is complete.

If M has only a trivial centre, i.e., consisting of only scalar operators, then M
is called a factor.

Remark: Interestingly, von Neumann was originally inspired by quantum
mechanics in order to axiomatically establish his algebra. Perhaps the most
important finite von Neumann algebra is when it is infinite-dimensional and
with one-dimensional center;'? this is called a Type II; factor. A subfactor

10 In physics, this algebra finds its place in observables for anti-de-Sitter space [141].
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EXAMPLE 2.14 (Binary double cover) Consider the group H consisting of

1 00 -1 0 0 -1 0 0 1 0 0
e=[0 1 of,i=l0 -1 0|,j=|0 1 Of,k=|0 -1 0],
0 0 1 0 0 1 0 0 -1 0 0 -1

the group of 180-degree rotations that we have seen as part of the tetrahedral
group above (it is easy to check that this is indeed a group). Let us try to find a
homomorphism from the quaternions to this group: Assign ®: +1 — 1, +i —
i,+j — j, +k — k. This is a homomorphism with i, j, k, etc. “doubly covering”
the 180-degree rotations. This property is associated with “spinors” — objects
which perform rotations — which are closely connected with quaternions in
3D, and which we shall encounter again a lot in that context. In general, then,
a double cover of a group G is a group H having a two-to-one homomorphism
onto G.

The rotational polyhedral symmetries are given by finite groups G, which
act as rotations in R”, i.e., orthogonal transformations on the n coordinates of
R”. (We will encounter orthogonal transformations in a different context again
shortly.) In other words, they are n x n real matrices M such that M7 M = 1,.
The discrete nature of P of course means that G is finite such that they are finite
eroups like the ones we have discussed above. Every finite group is finitely
eenerated with a finite number of relations and we denote it as follows:

DEFINITION 2.15 A finite group G with identity element e can be given by
a presentation

G=(Ri,Ry,.... Ry i(R) = o(R)) =+ = fyR;) = &)

if G is the “largest” or free-est group generated by m elements (generators)
any group generated by m elements S, . .., S, satisfying these relations, then
there is a homomorphism from G onto H carrying R; to S; fori=1,...,m.)

(We should add a cautionary note here. Presentations of groups are not al-
ways casy to work with, and indeed it is an undecidable problem whether a
group given by a presentation is the trivial group with one element. If you
need convincing, try the second exercise at the end of this chapter.)

Some of the most standard groups we will use in this book are the following:

e O, = Z/nZ is the cyclic group of size n (we will sometimes use “size” rather
than “order” for finite groups so as to avoid the proliferation of this overused
word);
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property, and so is null, a windmill, or one of the three exceptional graphs; and
accordingly, the entire root system is of type A, D or E.

The classification can be extended to all root systems satisfying the crystal-
lographic condition. This is based on two observations:

e In any root system, the roots of fixed length form a root system. This is
because the reflections in the hyperplanes orthogonal to the roots are length-
preserving, and so map roots of any given length to themselves.

¢ If @ and B are independent roots in a crystallographic root system, then both
2a|B)/{ala) and 2{a|B)/{B|B) are integers, SO § = 4<a/|,8)2 [{ala){B|B) is an
integer, which is at most 3 since (a|8)* < (ala){8|8). Thus this number, if
not zero, is 1, 2 or 3. So roots of different lengths have lengths in the ratio

V2:lorV3:1.

Thus a crystallographic root system which is not of ADE type is made up of
two root systems which are direct sums of ADE root systems, one scaled by a
factor V2 or V3. Further analysis gives only the following possibilities:

e Ratio V2, long roots form A,;, short roots form an orthonormal basis (a direct
sum of root systems A;): this is type Bj,.

e Ratio \/5, long roots form an orthonormal basis, short roots form A, this is
type C,.

e Ratio V2, long and short roots both form Dy: this is Fy.

e Ratio V3, long and short roots both form A,: this is G,.

5.2.3 The Triangle Property

Now we come to the result of Shult and Seidel, which contains a big sur-
prise. These authors define a triangle property of a graph, a weakening of the
strong triangle property already discussed. It turns out that the three excep-
tional graphs with the strong triangle property are cach the first member of an
infinite family of graphs with the triangle property.

This involves looking at particular polar spaces over the field F, with two
elements O and 1. A quadratic function or quadratic form on a vector space V
over [, is a function Q: V — T, satisfying two conditions:

e Q0)=0;
e the function B: V x V — F, defined by

B(x,y) = Q(x +y) - Q(x) — Q)

is bilinear, i.e., linear in each variable.
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00,01 ©,1,0,1) ©,1,00)
L 2 2 4 2 d
L 2 2 4 2 d
(1,0,0,1) 1.1L,LD 01,10
L 2 & *
(1,0,00) 1,0,1,0) 00,10

A graph G is said to have the triangle property if every edge {x, v} is con-
tained in a triangle {x, v, z} with the property that any further vertex is joined to
one or all of x,y, z. Now we can state the Shult-Seidel theorem:

THEOREM 5.3 Let G be a finite graph with the triangle property. Then one
of the following is true:

(i) G is a null graph (a graph with no edges);
(ii) G has a vertex which is joined to all others;
(iii) G is isomorphic to G,; for some r > 2 and i € {0, 1,2}.

So at least in this case of the ADE paradigm, the type E objects turn out not
to be isolated exceptions, but the start of three infinite families.

5.3 Graphs with Least Eigenvalue -2 or Greater

In Section 3.3 we saw the ADE and affine patterns arise in graph-theoretic
problems: as the graphs whose largest eigenvalue A; is 2 or smaller. What
about the “dual” problem: connected graphs whose adjacency matrix has least
eigenvalue -2 or greater. In our notation earlier, we need to consider graphs
with 2, > —2. This was a topic of great interest in the 1960s, especially in the
work of Alan Hoffman. We here discuss the solution obtained by [35].

First we observe that information about the smallest eigenvalue can tell a lot
about a graph, and that geometric methods can be useful.

The Gram matrix of aset {v1, ..., v,} of vectors in a real inner product space
is the n X n matrix whose (i, j) entry is v; - v;.

THEOREM 5.4 Let A be an n X n real symmetric matrix which is positive
semidefinite of rank r. Then A is the Gram matrix of a set of n vectors in R.
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The form is non-singular if the only vector v € V which satisfies Q(v) = 0 and
B(v,w) = 0 for all w € V is the zero vector.

There is a classification of non-singular quadratic forms over F,, which we
now outline. A subspace W of V is anisotropic if Q(w) # 0 for all w € W.
A hyperbolic plane is a 2-dimensional subspace spanned by two vectors v, w
with Q(v) = Q(w) = 0 and B(v,w) = 1. (The name comes from the fact that,
for any scalars x, v, we have Q(xv + yw) = xv.)

Now given a space V with a non-singular quadratic form, we can express
V as the orthogonal direct sum of an anisotropic space and a number r of
hyperbolic planes; the number r and the isomorphism type of the anisotropic
space are the same for any such decomposition. The number 7 is called the
Witt index. Now an anisotropic space over [, has dimension at most 2. (To
prove this, we simply have to show that the function on a 3-dimensional space
which is O at the origin and 1 everywhere else is not a quadratic form.) So any
non-singular quadratic space is isomorphic to V,.; where r > O and i € {0, 1,2};
here r is the Witt index and i the dimension of the anisotropic space. It can be
shown that the Witt index is equal to the maximum dimension of a space on
which the form is identically O.

The values = 0, 1,2 are related to the trinity we met briefly in Section 3.1.
The three types of quadric are called hyperbolic, parabolic and elliptic, respec-
tively.

Now there is a graph associated with such a space V, with vertex set
{v e V:v £ 0,0() = 0}, in which two vertices v and w are joined if and
only if B(v,w) = 0. We will call this graph G,;, where the indices have the
same meaning as above. Note that, if » = 0, then the space is anisotropic, and
the graph has no vertices. If r = 1, then the graph consists of 2, 3 or 5 isolated
vertices. For r = 2, the three graphs turn out to be exactly those in the strong
triangle property theorem. To illustrate, here is the graph G, o, with the vertices
labelled by vectors in F*. (The quadratic form is x1 x> + x3x4, and the associated
bilinear form is x1v; + x>y, + X34 + x4¥3. Check that the three points in a row
or column are singular points which are orthogonal with respect to the bilinear
form and sum to zero.)
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3.2.3 The ADE Root Systems

The crowning glory of the root system classification is of course the set of
ADE root systems. We already introduced them but it is worth to devote a
section to exalt their virtues. They are the simply-laced diagrams, and as we
have seen, they also have uniquely corresponding simply-laced affine versions.
They are crystallographic and thus can provide the backbone for Lie algebras
and groups, to which we will turn in Section 3.5.

These are therefore the very reason why we talk about ADE sets, correspon-
dences, and patterns, since historically the ADE Lie algebras were the first case
to be made explicit (although other sets had of course been known for much
longer). We will, as promised, return to introduce Lie theory in Section 3.5.

We have now discussed three different sets of root systems following ADE
patterns. We will see later in Section 4.6 that there are three correspondences
between pairs of these. We would like to stress here that the point of view of
this book of the root system as being fundamental is somewhat unconventional.
Traditionally, these three areas have been respectively considered as polytopes,
subgroups of SU(2) and Lie algebras, and in those guises they seem very dif-
ferent things.

We advocate here that this different point of view can achieve a conceptual
unification that might seem mysterious from a different perspective. In partic-
ular, much of Lic algebra theory — such as the root systems, Coxeter number
and labels — are determined by more e¢lementary concepts, which is lost in a
lot of the Lie-centric literature. After all, since this book is aimed towards the
beginning student, we think introducing root systems, which require only ele-
mentary linear algebra, is well justified. We will discuss some of these concepts
now.

3.2.4 Coxeter Plane: Degrees and Exponents

We have seen above that Coxeter—Dynkin diagrams provide a simple way of
visualising any root system. Most root systems can be somewhat unfamiliar,
e.g., the root system of icosahedral symmetry is the icosidodecahedron and
that of Hy is the 600-cell. In particular, in higher dimensions these are hard to
visualise.

However, somewhat surprisingly, there always exists a distinguished class of
planes into which one can project, and which thus provides another canonical

to consider two infinite families and three exceptional cases in 3D — these in turn of course
induce (determine) two infinite families and three exceptional cases in 4D: another ADE set.
We will explore the connection between these, and the next (the actual ADE set), in Part Il in
Section 4.6.
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We describe the various seemingly disparate classification problems, of per-
haps increasing sophistication. In the ensuing chapter, we will review how
some of these are, in fact, interrelated, via ADE-correspondences. There are
still many relations not yet clarified and it is expected that establishing their
correspondences will lead to new mathematics. We will discuss more advanced
ADE topics in the final chapter.

3.1 Polytopes

We first reintroduce the Platonic solids, but now in the language of polytopes
which we introduced in Definition 2.3.

3.1.1 The Platonic Solids Revisited

In our present language, a Platonic solid is a regular polyhedron: a polytope in
R? with identical faces, each of which is a regular n-gon. The classification of
these, part of which we already saw, is then that of (discrete, finite) rotational
symmetry groups.! The regular n-gon obviously has the rotational symmetry
of C,. It also has the additional reflection symmetry of Dihy,, because we can
allow it to be reflected along any major diagonal. A prism has Dihy, as its
rotational symmetries, because of the C, above along with an overall 2-fold
rotation (a flip), and thus also the name “dihedral”; a solid with two faces. We
can thus view Dih,, as a subgroup in either O(2) or SO(3).

1 We will later see these as discrete finite subgroups of the continuous group SO(3), which we
will encounter later also in its guise as a Lie group.

40
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and the group H consisting of

1 00 -1 0 0

e={0 1 0|, i=l0 -1 0],
0 0 1 0 0 1
-1 0 0 1 0 0
i=lo 1 o, k=0 -1 0
0 0 -1 0 0 -1

Show that G and H are both representations of the quaternion group Q.
Calculate the characters of G and H. Finally find the decomposition of
both G and H in terms of irreducible representations of Q.

Let A be an abelian group of order n. Show that A has » irreducble char-
acters, all of degree 1, and that these characters form a group (under
multiplication) which is isomorphic to A.

The “displacement representation” is a representation of a symmetric
physical object — for instance, 12 points denoting the vertices of an icosa-
hedron in space — and is useful, e.g., for describing normal modes (vibra-
tions) of such an object. The character for ecach conjugacy class is just
given by how many vertices are invariant under each conjugacy class.
So for instance, the identity class just counts the total number of ver-
tices, and in the above example, the two classes of 5-fold rotations leave
2 antipodal points invariant whilst moving the other 10, and all other
conjugacy classes have no fixed points. Calculate this representation as a
sum of irreducible representations of the icosahedral group. You can also
consider the decomposition for other icosahedral solids with vertices on
symmetry axes and that for solids with no vertices on symmetry axes.
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(ei +e;) - (ex + er) € {0, 1}, the value being 1 if and only if the edges {v;,v;}
and {v,v;} share a vertex. Thus, the Gram matrix of the set of vectors is
21 + AL(G)); so we see that the smallest eigenvalue of the adjacency matrix
AL(G)) is at least —2.

Another graph with smallest eigenvalue -2 is the so-called cocktail party
graph (see, e.g., [111])

DEFINITION 5.7 A cocktail party graph CP(m) is a connected (undirected)
finite graph with 2m vertices vi,..., vy, Wi, ..., Wy, such that all pairs are
joined except {v;, w;} fori=1,...,m.

In other words, we draw two rows of nodes, vi-;, |
each {v;, w;}. Then, we draw all possible edges, except for those which are
paired. Think of inviting m couples to a cocktail party and for best mixing
everyone is allowed to talk to anyone except their partner. Indeed, CP(m) can
be represented in Euclidean space by the vectors eg + e; fori = 1, ..., m. Thus
its adjacency matrix also has smallest eigenvalue —2.

In the 1960s, Alan Hoffman (q.v. [112]) combined these two above-mentioned
eraphs into the notion of a generalised line graph.

.....

DEFINITION 5.8 Start with a graph G, with a non-negative integer a; asso-
ciated with each vertex v;. The generalised line graph I(G; ay, . . ., a,) is built
as follows: (1) we take the disjoint union of (&) with cocktail party graphs
CP(ay),...,CP(a,), and (2) add edges joining vertices of CP(a;) to vertices of
L(G) corresponding to edges of G containing the vertex v;.

Figure 5.1 continues with our example, showing how the cocktail party
eraphs and the line graph associated to G combine to give the generalised
line graph 1(G;2,1,0,3). It is an exercise for the reader to find a collec-
tion of vectors in Euclidean space representing a generalised line graph. (See
Exercise 5.2.)

Hoffman guessed that all “sufficiently large” (in some sense) connected
eraphs with smallest eigenvalue —2 or greater are generalised line graphs. By
“sufficiently large”, he meant that the minimum degree of the graph should be
sufficiently large. The next theorem shows that Hoffman’s guess is correct, in
the much stronger sense that “sufficiently large” means “not represented in the
root system Eg”, so there are only finitely many exceptions.

THEOREM 5.9 et G be a connected graph with smallest eigenvalue =2 or
greater. Then either

e G is a generalised line graph; or
o G is represented by a subset of the root system Eg.
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3.1.2 Tessellations of the Plane

The polytopes above can also be viewed as regular tessellations of the sphere
(positive curvature). Since the sphere is compact, these tilings are necessarily
finite. For example, the icosahedron, octahedron and tetrahedron are different
tessellations of the sphere with triangles. Triangles are tiles around the 3-fold
symmetry axes, which all three symmetries possess. Other tilings can occur
with respect to other symmetry axes; ¢.g., the dodecahedron is a tiling with
pentagons centred around the 5-fold axes of icosahedral symmetry.*> The al-
lowed tessellations of the sphere have symmetry orders given by the above
triples (2, 3,3), (2,3,4) and (2, 3, 5). There is already an interesting parallel
emerging with the (Es, E7, Es) diagrams (count vertices on the three arms of
the diagrams), but we will defer discussion of correspondences between ADE
sets until later.

One could therefore also contemplate regular tessellations of the plane. This
will necessarily lead to infinite tilings and lattices, as the plane is not com-
pact like the sphere. The plane can be tiled with regular triangles, squares and
hexagons, corresponding to, e.g., the triangular, square and hexagonal lattice.
It is also possible for these tilings to be chiral, i.¢., not have reflection symme-
try. The crystallographic restriction theorem states 5-fold symmetry and »-fold
symmetry for n = 7 and above are incompatible with a lattice structure. It
states that only 2-, 3-, 4- and 6-fold symmetry is compatible with lattices.

The allowed 2D lattices/tessellations have symmetry axes with rotational
symmetry orders given by the triples (3, 3, 3), (2,4, 4), (2,3,6) [15]. In terms
of the Egyptian fraction problem from the angles meeting at each vertex, for
the plane the analogous equation is the following equality:

1 1 1
—+-+-=1 3.3)
p q 7

where p, g, r are positive integers. We can thus appreciate that these triples are
again the solutions to the corresponding Egyptian fraction problem. We note
here that they are related to the above triple by simply increasing one of the
integers by one. These triples also again have a tantalising connection with the
extended (Es, E7, Eg) diagrams. We will discuss the links between ADE and
affine ADE in various contexts such as Sections 3.3 and 4.3.

There are also tilings of the hyperbolic plane, but they won’t concern us
here. This division into three cases, however, is a phenomenon that occurs

3 Anicosahedral tiling with tiles centred around the 2-fold axes are also possible. One is given
by the rhombic triacontahedron, with a tile shape of a golden rhombus. This is not a regular
n-gon and the thombic triacontahedron is a Catalan solid. In fact it is dual to the
icosidodecahedron, which is a triangle-pentagon tiling, and thus an Archimedean solid. We

will encounter the icosidodecahedron again as the root system of Hz: its vertices lie exactly on
all the 2-fold axes.
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Now, let us move on to the 5 Platonic solids. Because of the graph-duality
(the tetrahedron is self-dual, the cube-octahedron pair, and the dodecahedron-
icosahedron pair) there are only 3 different symmetries. It is well-known
(q.v. [14]) that these are,’ respectively, (i) the tetrahedral group T = Uy, of
size 12, (ii) the octahedral group O =~ &4, of size 24, and (iii) the icosahedral
group I = s, of size 60.

Therefore, the symmetries of the regular shapes in R? fall into 2 infinite
families, and 3 exceptional cases:

Symmetry group G |G|
n-gon (R|R* =1)=Z/nZ n
n-prisms (R,S |R" = §? = (RS)* =) ~ Dih, 2n
Tetrahedron R,S,TIRST=R>=8*=7>=D=U, | 12 3.1)
Cube 5 an _ d N '
octahedron (R,S,TIRST=R*"=85"=T"=H=3, | 24
Dodecahedron
RS, TIRST=R>=8>=T>=T)~ U
icosahedron (RS, TIRS S ) 5| 60

Voila, our first ADE classification:

Infinite Family 1 : C,
Infinite Family2 : Dih,
3 Exceptionals o Wy, G4, s alsoknownas T, O, I

We note that the orders of rotational symmetries — given by the exponents in
the relations for the group generators — of the n-gons are n, of the n-prisms
(2,2, n) and for the Platonic solids (2, 3,3), (2,3,4) and (2, 3, 5), respectively.
The Platonic triples are the 3 denominators of the Egyptian fractions in the
Diophantine inequality (1.3) if we choose to rewrite it in the format

+—->1 3.2)

for r = 2 and p, g > 2. Note that, in fact, the n-prism triple (2, 2, n) satisfies the
inequality (3.2). These are not regular polyhedra but generalise the (degener-
ate) case of the regular n-gons (which give rise to the A-type family, the cyclic
eroups), to yield the D-type family (the dihedral groups), whilst the Platonic
symmetries are effectively the E-type cases.

2 Including the reflections for these Platonic solids yields groups twice as large, living inside
0O(3), which are generally referred to in Coxeter nomenclature (see later in Section 3.2.1) as
A3z = Sy (not to be confused with the alternating groups), Bz = O X Z and Hz = I X Z;.
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which turn up in different guises and hint at an extension to a full ADE corre-
spondences.

A good way of thinking about Trinities is perhaps that it is easy to find three
exceptional examples in different areas of mathematics, which can serve as a
bootstrap to uncover the fuller ADE sets and correspondence. As an anecdote,
in the 1970s, Jaap Seidel and Jean-Marie Goethals were working on graphs
with the smallest eigenvalue —2. Both reported that they had found one infinite
family and three sporadic cases. Upon comparing notes with one of the authors
(PC), it turned out they had found the same exceptional cases but different
infinite families, completing the picture to a full ADE pattern with rwo infinite
families. Later, we will give a similar example of a trinity giving an idea as to
which infinite families could complete a correspondence to a full ADE pattern.

Our hope with this book is that the many tantalising connections between
different areas of mathematics inspire the next generation of mathematicians
and lead to the formulation of new conjectures and the development of inter-
esting mathematics that bridges the divides between these different areas of
mathematics as we currently understand them.

3.2 Root Systems and Polyhedral Groups

Back to the symmetry groups of the Platonic solids. The symmetries we con-
sidered above are the rotational symmetries, which are subgroups of SO(3).
But these solids also have reflection symmetries. The symmetry groups of ro-
tations and reflections are contained in O(3), and have twice the size of the ro-
tation groups, containing the latter as subgroups of index 2. We will encounter
a non-trivial double cover in Spin(3) = SU(2) soon (Section 3.4). But for now
we focus on reflections, and the symmetry groups they generate.

We will examine them in a systematic manner and study them using root
systems. While this subject may seem advanced, it involves no more than lin-
ear algebra, and really ought to be taught at an early undergraduate level, rather
than leaving it, as is customarily done, to a post-graduate course on Lie alge-
bras (to which we will turn much later, in Section 3.5).

First, we recall, from elementary geometry of a vector space, the reflection
of a vector x in a hypersurface defined by its unit normal vector n (Figure 3.1).
We decompose x = xj+x, where x is the component of x parallel to », and x,
is the orthogonal component. The reflection* amounts to a reversal of x such

4 The last equality holds when there is also an inner product on the vector space such that one
can express the parallel component through the inner product.
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Proof (sketch) The theorem follows easily from our observations. Represent
the adjacency matrix of G as the Gram matrix of a set S of vectors, and enlarge
S to aroot system S . Since G is connected, S is indecomposable, so it is ADE.
Now to conclude the proof we note two further facts:

e A, CD,,;,and Es C E7 C Eg;
e a graph is represented by a subset of D,, if and only if it is a generalised line
eraph.

The first part is clear from our explicit representations of these root systems
given earlier. Here is an outline proof of the second. Recall that D, is repre-
sented by the vectors te; + e; for i # j. Now, if a basis vector occurs with the
same sign in all roots in the set, we can change its sign if necessary and assume
that it is positive. We call such basis vectors of vertex type; the roots involving
two of them correspond to edges of a graph G, and represent the line graph of
G. Any other basis vector e; occurs only in roots e; + ¢; and e; — e;, where e; is
of vertex type; for fixed i, these roots represent a cocktail party graph. So the
whole is a generalised line graph.

It is known that a graph represented in the root system of Eg has at most 36
vertices, and valencies at most 28. For regular graphs, these numbers can be
reduced to 28 and 16 respectively. Moreover, all regular graphs in Eg have
been explicitly found: see [113]. The following theorem uses the result of
Exercise 5.4.

THEOREM 5.10 A regular graph with smallest eigenvalue =2 or greater is
a line graph, a cocktail party graph, or one of a list of 187 explicitly known
exceptions (all these exceptions being represented in the root system Es).

A number of carlier results, by Hoffman, Ray-Chaudhuri, Seidel, Chang,
and others, are subsumed by these above theorems. We refer to [35, 110, 114]
for details. For an illustration, we give a theorem of Shrikhande.

THEOREM 5.11 Let G be a graph with the same spectrum as the line graph
of the complete bipartite graph K, . Then, if n £ 4, G is isomorphic to L(K, ,.
If n = 4, there is exactly one further graph with this spectrum (up to isomor-
phism).

The technique can also be applied to find abelian subgroups generated by
root groups. In a finite group of Lie type in characteristic p (or any Chevalley
eroup), the Sylow p-subgroup (or maximal unipotent subgroup) is generated
by root subgroups U,, which in the ADE case are isomorphic to the additive
group of the field. The commutator [U,, U] is generated by the root subgroups
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more widely throughout mathematics, e.g., that curvature can be positive, zero,
or negative (corresponding to sphere, plane, hyperbolic space or S, E, H). A
similar classification between spherical, Euclidean and hyperbolic occurs for
2D Coxeter groups (see Section 3.2.2), which is determined by whether the
determinant of the Cartan matrix is positive, zero, or negative.

3.1.3 The Exceptionals and Trinities

In our first ADE example we have already seen that sometimes the three excep-
tional cases (here the symmetries of the Platonic solids) share some similari-
ties amongst themselves but seem quite different from the two infinite families
(symmetries of the n-gons and prisms).

Indeed, Arnold [7] has also considered these three exceptionals on their own,
which he termed “Trinities”. Like ADE classifications, such sets of three ex-
ceptional cases turn up throughout mathematics. Of course, cach ADE set has
such exceptional cases, but there are also stand-alone “Trinities” where 2 in-
finite families do not exist or are not obvious. We have already seen some
examples as the symmetry groups of the Platonic solids (7', O, I) as well as the
E-type diagrams (Eg, E7, Eg). Fundamentally, his idea was to relate all such
trinities to the three normed division algebras of real numbers, complex num-
bers and the quaternions

(R,C, H). (3.4)

That trinities of exceptionals should relate to this perhaps the most funda-
mental trinity of division algebras (3.4) already suggests something profound.
A total of 25 trinities were observed in [2], ranging across the entire spectrum
of mathematics. We will leave a fuller discussion of Arnold’s trinities to the
concluding chapter. He thought of them as webs of connections across differ-
ent areas of mathematics. Some connections are more immediate and obvious
or at least plausible, whilst others are mysterious and hint at a deep, as-yet-
not-understood connection. In fact, using such conjectures about connections
between different areas fuelled his creativity, as did thinking of examples of
a “real” theory and attempting to “complexify” or “quaternionify” it. Such an
approach contributed to his highly creative and original insights into many dif-
ferent areas of mathematics.

The web of ADE connections and the creative search for ADE patterns is
very similar in many ways. As we proceed in this book, we will also suggest ad-
ditional trinities such as ((2, 3, 3), (2,3,4), (2,3,5)), (27,20,2D), (12,18, 30)
and (24,48, 120), as well as J. McKay’s old trio

(Monster, Baby Monster, Fischer’s Group),
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Proof There is an invertible matrix P such that

I. O
0 0}

()

where R is 7 X n, we see that A = RTR; so the required vectors are the columns
of R.

PTAP = (

Writing

Let G be a non-trivial graph whose adjacency matrix A has least eigenvalue
—A, with multiplicity » — r. Then A + A/ is positive semi-definite of rank r; so
there exist n vectors vy,...,v, € R” such that v; - v; = A, while for i # j we
have v; - v; = 1if i and j are joined, O otherwise. Thus the vectors vy, ..., v,
have squared length A, and make an angle cos™'(1/.4) if i and j are joined, or
n/2 otherwise.

So now let G be a graph with least eigenvalue —1 (or greater). Then this
process gives us a set of unit vectors with inner products 1 (if adjacent) or O
(otherwise). Since unit vectors with inner product 1 are equal, we see that the
eraph consists of a disjoint union of complete graphs.

We now turn to the case where the least eigenvalue is —2 (or greater), and
give the solution to Hoffman’s problem.

Suppose that G is a connected graph whose adjacency matrix A has smallest
eigenvalue -2 or greater. Then 27 + A is positive semi-definite and so is, by
the same reasoning as above, the Gram matrix of a set {v, ..., v,} of vectors in
a real inner product space. Since the diagonal is 2, every vector has length V2,
and any two vectors lie at an angle of cos™'(0) = 90° or cos‘l((%)z) = 60°,
since the off-diagonal elements are 0 and 1.

These angles immediately impose a severe constraint, as we see from

LEMMA 5.5 Let S be a set of vectors with length V2 in R, any two making
angles 60°, 90°, 120° or 180°.

(i) The set S is contained in a set § with this property, which contains the
negative of each of its members and contains all six vectors in the plane
spanned by two of its vectors at angle 60° or 120°.

(i) The set S just described is a simply-laced root system, i.e., an orthogonal
direct sum of root systems of type A, D or E.

Proof The first part of the lemma is proved by first adjoining the negatives
of all the vectors in S, and then adjoining +(v + w) for each pair v, w with
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n

/]

Figure 3.1 Reflection of a vector x in the hyperplane defined by the unit normal
vector .

that

i Refecon Xo =X =x=2x =x-2(x-nn. 3-5

The backbone of reflection groups is given by algebraic objects called root
systems. We will see later that some of them (the crystallographic root systems)
in turn provide the backbone of Lie algebras (Section 3.5). So whilst they only
involve some fairly intuitive geometry, they turn out to be rather fundamental.

3.2.1 Root Systems and Coxeter Groups

Prepared with the elementary result from (3.5), we now define’

DEFINITION 3.1 (Root system) A root system is a collection © of non-
zero vectors « (which are called “roots™) spanning an n-dimensional Euclidean

5 Other common definitions of root systems are more restrictive by also stipulating an axiom on
the (half-)integrality of inner products of root vectors. This stems from the traditional route of
starting with Lie algebras (which is the other way around from the one pursued here), which
has additional constraints and only yields certain types of root systems by construction
(namely the crystallographic ones).
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v -w = —1 (if these vectors are not already included). In this step we have to
show that no conflict is created. Suppose that z is another vector in the set; then
v-zand w - z belong to {—1,0, +1}, so the only problem would be if, say, both
these inner products were +1. But then v + w and z would be two vectors of
length V2 with inner product 2; so they are equal. In other words, the set of
lines is star-closed: that is, if two lines in the set make angle 60°, then the third
line in their plane at 60° to both is also in the set. The second part of the lemma
is clear from the definition of a root system. Thus, graphs with least ¢igenvalue
—2 are “contained” in a root system of type ADE.

L(G;2,1,0,3)

Figure 5.1 Example of a generalised line graph.

Next, we will need the notion of a line graph:

DEFINITION 5.6 Given a graph G with vertex set V and (undirected) edge
set E, the line graph of G (written L(G)) is the graph with vertex set E, in
which two edges are adjacent if and only if they share a vertex in V.

As an example, consider the LHS of Figure 5.1. For this graph G, the vertex
setis V = {1,2,3,4} and the edge set is £ = {E12, E13, E14, E23, E34}). So
the line graph L(G) would have 5 vertices, which we can denote by the pairs
{12,13,14,23,34}. Then, two nodes have an edge between if they share an
index because in the original G they would have shared a node. In particular,
the edges are 12-13, 12-14, 12-23, 13-14, 13-23, 13-34, 14-34, 23-34. These
8 edges are drawn in the center of the RHS of the figure.

In general, let V = {yy,. .., v,} be the vertex set of G, we can represent L(G)
by a subset of the space R” with standard orthonormal basis {e1, . .., e,}, where
the edge {v;,v;} is represented by the vector e; + e;. We see that
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The set of all |G| characters is called the character system of the representation
I of G.

THEOREM 2.41 (Characters as invariants) All the members of a conjugacy
class of a group G have the same character in a given representation I. Simi-
larly, elements in equivalent representations have the same character.

Proof 1f elements g and g’ of a group G are in the same conjugacy class then
by definition g’ = hgh™' for some element € G. Hence

Ty =Tt = Dl Dy = TTT !
by the homomorphism properties of representations. Thus
Xo = Tr(Ty) = Tl T = Tr(C T Ty) = Tr(T,) = x,

by the cyclic property of the trace.
Similarly, equivalent representations are related by similarity, i.e., by defini-
tionT, = ST,S !, and thus for any g € G we have

Xy = Te(T,) = Tr(STyS ™) = Tr(T,S™'S) = x4

Above we have seen how to construct larger groups from smaller building
blocks, e.g., via the (semi-)direct product. The simple groups are the analogue
of the prime numbers: the irreducible building blocks of group theory.

Similarly, given two representations one can construct a larger representa-
tion simply by taking the direct sum, i.e., by having block-diagonal matrices
where the small representations sit in the individual blocks I = Tt @ I'2. Of
course, such a block-diagonal form may not be obvious in an equivalent repre-
sentation, i.¢., once a similarity transformation has masked this block-diagonal
form! Similarly and conversely, one can thus wonder what the prime — the “ir-
reducible” — building blocks of representations of a group G are. This motivates
the following (slightly more general) definition:

DEFINITION 2.42 An (m + n)-dimensional representation I is reducible if
there exists an equivalent representation I'” such that

4 4

r
Srgs—lzr;:( el g’lz)\v’geG,

0 r;,zz

where Fig’n and Figm are mx m and n X n matrices, respectively, and irreducible
otherwise. It is said to be completely reducible if Fig’n = 0, i.e., if it can be fully
block-diagonalised
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As said above, by the Grand Orthogonality Theorem two such vectors are or-
thogonal if they differ in any of the indices i, j or &, since with our definitions
and the standard complex inner product

Z(r]gc)ij(r]gc/)? (V,k,, Vi ) |g|6ii’6jj’6kk’-
8

The |G| on the right-hand side essentially comes from summing over the
regular representation , which decomposes as the sum over all the irreducible
representations! In a |G|-dimensional space, there are at most |G| mutually or-
thogonal vectors. Let dq, d, . .., d; denote the dimensions of the irreducible
representations. Then for each representation with dimension d;, the entries of
the d; x d; matrices lead to d? mutually orthogonal vectors. Summing over the
regular representation, i.e., over all irreducible representations thus yields

Zd? = G).

Thus the squared dimensionalities of the irreducible representations total the or-
der of the group, i.e., one needs a set of integers whose squares sum to the
order of the group. Of course the trivial representation is always one of the
irreducible representations so one of these integers is always 1, but the other
integers — and how many of them — are trickier. A theorem below comes to the
rescue (at least, partially) in that the number of these irreps is given by the num-
ber of conjugacy classes. In order to prove this, we effectively take the trace of
the Grand Orthogonality Theorem and derive a similar character orthogonality
relation:

THEOREM 2.44 (Character Orthogonality Theorem) Consider the inequiv-
alent irreducible representations T* and T* of a group G, and in particular
their character systems )(’g‘ and )(’g‘/ (with g € G). Then one has the orthogonal-
ity relationship

X5) = D X0 = Gl
8

Proof Starting with the Grand Orthogonality Theorem ¥, (T%); (T o=
'%'&,vé ;0w and taking traces j = iand j/ = i’ one gets

G
z:(rlgc)ii(rlgc Yor = %61‘1‘/61&’7
g

then summing over i and i’ on the left-hand side produces

ZZZ(F )z Ztr(rk)tr(rk ngxg (b)) @8
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r 0
Srs—lzr':(gv11 , )VgeG
¢ £ 0 T,

The (m + n)-dimensional matrices are the direct sum of the m- and n-dimens-
ional matrices, which can be written as

v _ 11 2
r,=Tlerl?

or more generally
r,=pr,
i=1

for (not necessarily distinct) irreducible representations (“irreps’) 1";.

Irreducibility places exceedingly strong conditions on the entries that matri-
ces in representations can have. The result is beautifully simple, but we shall
omit the details of the argument here, as they are quite technical — as signaled
by two lemmata by Schur, Maschke’s theorem, defining a “group invariant”
inner product

1
X,y =— Z (ng, ng) 2.7
Gl £
ge

with respect to which the matrices I'; in our representation I' are unitary, and
then using the eigendecomposition of Hermitian matrices. Since eigenvectors
of Hermitian matrices are orthogonal, it is not surprising that the result relates
to a statement on orthogonality:

THEOREM 2.43 (Grand Orthogonality Theorem) Let T* and T* be inequiv-
alent irreducible representations of a group G with dimensions d and d’, re-
spectively. Then

Z(rlgc)ij(rlga);j/ = %51‘1‘/5;]51&/-
8

This profound theorem is thus a three-way orthogonality theorem: the right-
hand side is zero in three cases — when the representations are inequivalent, and
when the rows or columns of the respective representation matrices are differ-
ent. We will largely use this result in the simpler form where we have taken the
trace and work at the level of orthogonality of character vectors (see below).
But broadly, we can think of the matrix entries of irreducible representations
T'* as populating |G|-dimensional vectors

V,kj = ((r]f)ij, Tijs- s (r|k(;|)ij) .
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We give a sketch of the proof. Let G be such a graph; we may assume that
G is not a null graph. It is easy to see that, if G has a vertex which is joined to
all other vertices, then it is as described in the second case of the theorem; so
we may assume that this is not the case. Now any two non-adjacent vertices in
G have the same valency. For take a vertex v; its neighbourhood consists of a
number k& of triangles with common vertex v. If w is not joined to v, then w is
joined to one point in ¢ach of these triangles; and these &k neighbours of w lie in
k distinct triangles, so w has valency at least 2k. Reversing the argument shows
equality. Now it can be shown that, assuming the second case of the theorem
does not occur, all vertices have the same valency; thus G is a strongly regular
eraph with parameters (n, 2k, 1, k). (This means that it is regular with valency
2k, and two vertices have 1 or k common neighbours according as they are
joined or not.) So the adjacency matrix A satisfies A% = 2kI + A+ k(J — I — A),
where J is the all-1 matrix. From this, the eigenvalues and multiplicities can
be calculated. The fact that the multiplicities must be positive integers shows
that k = 2,3,5 or 11. An ad hoc argument excludes k = 11, and the remaining
cases give the numbers of vertices given.

For more on strongly regular graphs we refer to [110].

There is a unique graph in each case of part (iii). These can be described as
follows:

(i) For k = 2, the graph is the 3 x 3 grid graph: the vertices form a 3 x 3
array, with two vertices joined if they li¢ in the same row or column. The
distinguished triangles are the rows and columns.

(ii) For k = 3, the vertices are the 2-element subsets of a 6-clement set A,
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scalar product that takes into account the correct multiplicitics. Secondly, in
order to span that space there need to be N irreducible representations whose
character systems we can write as the above row vectors. These square grids
are called character tables. We will thus use the Character Orthogonality The-
orem to create such character tables below. For now, let us look at characters
for conjugacy classes of the rotational tetrahedral group considered in Exam-
ples 2.13 and 2.27.

EXAMPLE 2.46 (Characters for the rotational tetrahedral group in the faithful
3 x 3 rotation representation) Characters give a clue as to the geometric inter-
pretation of a group element. For instance, the identity matrix is the only one
with trace 3. Three matrices have trace —1, which turns out are just the 180-
degree rotations. The 120-degree rotations all have trace (and thus character) O
(both conjugacy classes).

EXAMPLE 247 For the group S5, we have |G| = 6, and we have seen in Ex-
ample 2.25 that there are three conjugacy classes: the identity, the two rotations
and the three reflections. Thus, we also have three irreducible representations
of some dimensions d; (of which one is the trivial representation with d = 1)
such that the squares sum to |G| = 6. The only solution is

Y& =1r+17+2 =6
k

Thus there is the trivial representation of dimension 1 we already know about,
and another one-dimensional irrep, as well as one of dimension two. The miss-
ing one-dimensional irrep turns out to be parity, or the determinant of the iden-
tity and two rotations (+1) and the three reflections (—1). The two-dimensional
representation is the faithful rotation/reflection representation in 2D acting on
an cquilateral triangle, as seen in Figure 2.2. From such an explicit set of 2 x 2
matrices acting on the vertices, one could read off the characters for the identity
(2 of course, as it is two-dimensional), the rotations (—1) and reflections (0).

To summarise, the three main relations regarding the number of irreducible
representations of a finite group G and their dimensions are thus

(i) The number of irreps is equal to the number of conjugacy classes.
(ii) The squared dimensions give the order of the group: X d,f =\Gl|.
(iii) Character vectors are orthogonal: (X’g‘ )(’g‘) = |G|6e -

We will encounter these again more concretely in the context of the repre-
sentation theory of the polyhedral groups and the McKay correspondence in
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preserving non-degenerate forms of various types (alternating bilinear forms,
Hermitian forms, or quadratic forms). The geometry associated with such a
form, called a polar space, consists of all the totally isotropic subspaces for
the form (those on which it is identically zero). In a major work, Tits [106]
gave an axiomatic description of polar spaces whose rank is at least 3; apart
from rank 3, these are just the geometries of the classical groups. This impor-
tant theorem found many applications; in particular, it aided in recognising the
classical groups in various parts of the Classification of Finite Simple Groups.

Independently, Ernie Shult in 1972 gave a characterisation of a class of
graphs associated with symplectic and orthogonal geometries over the 2-element
field [107]. His arguments were extended by Seidel, who weakened the hy-
pothesis. All these involved recognising the geometries directly. But a huge
extension was found by Buekenhout and Shult [108]; their theorem axioma-
tises the point-line geometries of arbitrary polar spaces, by showing that two
very simple axioms imply that Tits’ axioms for the entire polar space are sat-
isfied.

Our story will concentrate on the work of Shult and Seidel.

5.2.1 The Strong Triangle Property

A finite graph G is said to have the strong triangle property if the following is
true: every edge {x,y} is contained in a triangle {x, y, z} with the property that
any further vertex is joined to exactly one of x,y, z. Now the theorem of Shult
and Seidel is the following:

THEOREM 5.2 Let G be a graph with the strong triangle property. Then
one of the following holds:

(i) G is a null graph (a graph with no edges);

(ii) G consists of a number of triangles s haring a single common vertex, with
no other edges;

(iii) & is one of three exceptional graphs, on 9, 15 or 27 vertices.

The appearance of the ADE paradigm in this theorem is clear. The graphs
in the second case are sometimes called friendship graphs because of their
occurrence in the Friendship Theorem of Erd6s, Rényi and Sés [109]: in a
finite society in which any two people have exactly one common friend, there is
someone who is everyone else’s friend. The shape of such graphs, a windmill,
is shown below.
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Whilst summing over { and i’ on the right-hand side, we get

@dkk, ZZ(S”’ _ 5kk/ Zl = |Gl6we .

V
dy

This results in

i X )= DX = 1Glow

The character version of the orthogonality theorem effectively shows that
character systems of different irreducible representations are orthogonal. We
hinted above that the number of irreps is given via the following theorem:

THEOREM 2.45 (Number of irreducible representations) The number of
inequivalent irreducible representations is equal to the number of conjugacy
classes of the group G.

Proof We proved in Theorem 2.41 that characters are invariants within a
given conjugacy class C;. Denote by N the number of conjugacy classes of
a group G and by |Cy| their cardinality. Then the character system for an irrep
is simply given by the N class invariants y*. Summing over conjugacy classes,
the character orthogonality formula can be restated as

N

DG = Glowe,
i=1
where summation is now only over different conjugacy classes rather than over
all elements, as the cardinalities |C;| take into account the multiplicities.
Consider the class character sets x* and y* belonging to irreps T* and T'*
of the group G. We define the rescaled characters X¥ = V[Ci[y* as well as row
vectors containing these rescaled characters:

vE=(xb xk xRy and VF = (xF,xE LX),

We can thus view the character orthogonality theorem as a statement of or-
thogonality of these N-vectors. There can be at most N mutually orthogonal
such vectors, and in order to span the whole space, there need to be exactly N
such vectors and thus irreducible representations.

We can therefore write the following square (N x N) grid of characters of
irreducible representations: firstly, the |G| group elements can be grouped to-
gether as N conjugacy classes as long as orthogonality is with respect to a
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and two vertices are joined if the subsets are disjoint. The distinguished
triangles are the triples whose union is A.

(iii) For k = 5, the graph has 27 vertices, which occur in classical algebraic
geometry as the 27 lines on a general cubic surface; two lines are adjacent
if they intersect. Schlifli gave a combinatorial construction now called
Schlifli’s double-six, which goes as follows. Take a set A of size 6. The
vertices are the 2-element subsets of A together with two copies of A,
which we denote by A; and A,. The graph on the 15 pairs is the same as
in the previous case. A pair {a, b} is joined to the points a;,b; € A; and
as, by € A, corresponding to a and b.

They occur in many different contexts. For example, the points and triangles in
each graph form a generalised quadrangle; the proof shows that these are the
only generalised quadrangles which have three points on every line.

5.2.2 From the Strong Triangle Property to Root Systems

Now we describe briefly the construction of the ADE root systems from graphs
with the strong triangle property.
We take a connected root system © having two properties:

o all roots have the same length;

o the crystallographic condition holds, so that the angle between two roots is
0°, 60°, 90°, 120° or 180°.

We choose the lengths of the vectors to be V2, so that the inner product of two
rootsis 2, 1,0, —1 or —2.

A star consists of six vectors in a plane with angles 0°, 60°, 120° or 180°.
Call these vectors a, b, ¢ and their negatives, where a + b + ¢ = 0. Using a star,
we can decompose the remaining roots into four classes A, B, C, D, according
to their inner products with a, b, c:

e (0,1,-1)or(0,-1,1);
e (-1,0,1)or(1,0,-1);
e (1,-1,0) or (1,1,0);
e (0,0,0).

Now we show that A, B and C are isomorphic with respect to inner products,
and {a, b, c} U A determines the entire root system. Now take half the vertices
in A, those with inner product 1 with b, say, and construct a graph on this set
by joining two roots if they are orthogonal. This graph has the strong triangle
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G | 1| {R})|{S4)
1
G
2

We can immediately fill in the first row and column: that the trivial represen-
tation assigns 1 and thus character 1 to every conjugacy class and that the
character of the identity class in any dimension just gives the dimension:

G || 1| R} | (S
1 1 1 1
1 1

2 2

Now we need to use some of these orthogonality relations. The second row
vector would have to be orthogonal to the first row vector (taking into account
the multiplicities). But characters also need to satisfy the homomorphism prop-
erty so effectively this representation needs to assign —1 to the reflections and
+1 to the others:

G || 1| {R}| (S
1 1 1 1
1 1 1 -1
2 2

Now looking at the columns: we see that the first two columns determine
the character of the 2D rotations as —1 by orthogonality. Since the first two
columns only differ in the last row, the only way the reflection column can
be blind to that difference is if that corresponding entry is 0. This fixes our
completed character table as:

G || 1| R} | (S
1 1 1 1
1 1 1 -1
2 21 -1 0

Confirming the details of this is a good exercise.

EXAMPLE 2.53 (Character table for the Quaternion group) Let us find the
character table of O, with the given hints that both elements of the order two
subgroup in Q (our Z/27Z example from earlier) have the same character for
the one-dimensional irreducible representations, and that the one-dimensional
irreducible representations only have characters +1.
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Section 4.5. We now give some examples of finding just the dimensions before
discussing whole character tables.

EXAMPLE 2.48 (Number of irreps for the quaternion group) As we have
seen, there are 5 conjugacy classes in total, partitioning the group. The order is
|Q] = 8 and since 3, a’i2 = |Q)] the irreducible representations can at most be of
dimension two. In fact, since there are 5 of them (because of the 5 conjugacy
classes), the only solution is (1, 17,17, 1", 2).

EXAMPLE 2.49 (Number of irreps for the rotational and binary tetrahedral
group) The tetrahedral group has 4 conjugacy classes and its order is 12.
Similarly to the quaternion group, we therefore need to have irreps of dimen-
sions (1, 17,17, 3). It is interesting to note here (preempting Section 4.5) that
the binary tetrahedral group of order 24 has three further conjugacy classes to
account for the additional 12 elements, which leads to three 2-dimensional ir-
reps, bringing the total for the binary tetrahedral group to (1,17,17,2,2/,27,3).

EXAMPLE 2.50 (Number of irreps for the rotational and binary icosahedral
group) The icosahedral group has 5 conjugacy classes and order 60. The
only solution is (1,3,3”,4, 5). Similarly to above, going to the binary group
doubles the order to 120 and introduces a further 4 conjugacy classes, with
(2,2',4’,6) accounting for the additional 60 group elements. The total set of
(1,2,2/,3,37,4,4,5,06) is quite iconic and will make many mysterious ap-
pearances throughout this book!

Having shown how the characters of a representation work and how the
numbers of irreps, conjugacy classes and dimensions of the irreps interrelate,
we now discuss a whole character table, and in particular how orthogonality
relations can be used to fill in missing entries (a little like a Sudoku!).

DEFINITION 2.51 (Character table) As the number of conjugacy classes
is the same as the number of irreducible representations, we can construct an
N X N table of the character systems for a finite group G called the “character
table”.

EXAMPLE 2.52 We have seen earlier that in S5 we have three conjugacy
classes of identity, rotations and reflections (/, {R;} and {S;}), and that thus we
have two 1-dimensional irreducible representations and one 2-dimensional. We
construct the empty character table:
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Exercises 37

second barrier, . . ., after the last barrier. Deduce that, if dim(V) = n, then
dim (SymkV) = (’”i‘l).
Let G be a group satisfying the presentation

G=v, W, X,y uv =W, vyWw =X, WX =Y,Xy = U, YU = V).

Prove that G is isomorphic to the cyclic group of order 11.

Prove that, for any two nxn matrices A and B, we have Tr(AB) = Tr(BA).

True or false: for any three n X n matrices A, B, C, we have Tr(ABC) =

Tr(CBA).

Show that the size of a conjugacy class of a finite group G divides the

order of G. Deduce the theorem of Landau: given a positive integer N,

there are only finitely many finite groups with N conjugacy classes. Find

all groups with at most three conjugacy classes.

Show that the Cayley table of a finite group is a Latin square: that is, an

n X n array containing » different letters such that each letter occurs once

in each row and once in ¢ach column.

Let H be a subgroup of a group G. Show that the map Hx — x~'H is

a bijection between right and left cosets of H. Deduce that, even if G is

infinite, the numbers of right and left cosets of H are equal.

The centre of a group G is the set Z = {g € G : gh = hg for all h € G} of

elements which commute with every element in G. Show that the centre

of G is a normal subgroup of G and consists of all the elements of G

whose conjugacy class has size 1.

The cyclic group C3 has an automorphism =~ mapping each clement to its

inverse. This generates a group of automorphisms of C; isomorphic to

C». Show that the following groups are isomorphic:

o G3;

e Dihg;

¢ the semi-direct product of C3 by C», where the map ¢ : C; — Aut(Cs)
is an isomorphism.

¢ Show that any semi-direct product of G by H has a normal subgroup
of G with quotient isomorphic to H.

e The converse is false; show that C4 has a normal subgroup isomorphic
to C, with quotient also isomorphic to C,, but is not a semi-direct
product of these two groups.

2.10 Let I be a representation of G. Show that the map g — det(I,) is a

1-dimensional representation.

2.11 LetF be afield, and let 7, be the map from F to itself given by

Tap(X) = ax +b.
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The order two subgroup can only be +1. So with the trivial information in
the first row and column, this fixes also the second column entirely, as the —2
follows from orthogonality.

G

1
1/
1//
1///
2 2| -2

1| +i | £j | £k
1 1 1

— = = =] ==
—_ = = —_

Then there are 3 non-trivial one-dimensional irreps and the cyclic symmetry
between {j, —j}, {i, —i} and {k, —k} conjugacy classes. So using the information
that entries are only +1 it’s easy to find that they are mostly —1 with one +1
in each row, with the cyclic symmetry accounting for 1’, 1” and 1’”. The 2-
dimensional irrep has to be blind to the sign differences, so all other characters
have to be zero (22 + (-2)* = 8 already anyway).

G 1 1| &0 | £f | 2k
1 1] 1 1 1 1
i 1] 1 1| -1|-1
1] 1 (-1]1]-1
g1y 1| -1]-11
2 21210 0 0

The 4D representation above is 2 + 2 in terms of irreps.

Character tables will make an appearance again in the context of the epony-
mous McKay correspondence in Section 4.5, where we will review the charac-
ter tables of the binary polyhedral groups. Having reviewed some basics about
algebras, groups, representations and invariants, as well as encountering some
of the dramatis personae, we are now ready to encounter the first of our ADE
sets, before exploring the exciting connections between them.

Exercises

2.1 Show that the number of ways of selecting k objects from a set of size n,
where the order of the selection is not significant and selections may be

repeated, is (””,Z‘l). Hint: put n—k+ 1 boxes in arow; select n— 1 of them
and insert barriers. The multiplicity of the first, second, ..., nth object is

the number of empty boxes before the first barrier, between the first and
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forms that satisfy minimality properties akin to the Hauptmoduln condition
in Monstrous Moonshine (genus zero). The root systems allow one to con-
struct vector-valued theta series (so-called shadows, hence “umbral”) which —
because of the minimality properties — uniquely determine the mock modu-
lar forms. The Umbral Moonshine conjecture was proven in [104]. The special
case of the A?* lattice yields Mathieu Moonshine. However, the other Niemeier
cases do not currently have a geometric or physical interpretation, though there
is work relating Umbral Moonshine to du Val singularities on K3 surfaces (see
also Section 5.8) via relating the ADE building blocks in the Niemeier lat-
tices to the ADE-type du Val singularities that a K3 surface can have in K3
o-models [105].

Whilst not an ADE correspondence as such, these connections very much
carry on in the vein of binary polyhedral groups, ADE root systems, finite
groups, etc. ADE-ology is an exciting field with many interesting connections
yet to be discovered. We sincerely hope that this book will help stimulate
creative and collaborative new mathematics shedding light on this web of

connections. We will now move on to similar advanced topics within the
ADE web.

5.2 The Triangle Property

In this section, we will discuss another area of mathematics with strong links
to our theme. Indeed, we will see a problem whose solution fits the ADE
paradigm of two infinite families and three exceptions; and, moreover, this
solution gives rise to a second classification of the ADE root systems, quite
different from the approach using simple roots.

A significant figure in this discussion is Jaap Seidel, whom the first author
(PIC) regards as a significant mentor and friend. It may be appropriate to tell a
personal story here. PJC was at a meeting at the Mathematisches Forschungsin-
stitut Oberwolfach, in Germany, along with Seidel, the coding theorist Jessie
MacWilliams, and many others. The schedule allowed free time between lunch
and tea, so participants could discuss mathematics or walk in the forest or both.
One day, PJC and Scidel were walking along a track, deep in discussion, when
they passed a forester at work. A little later, MacWilliams came along the same
track. The forester pointed down the track and said to her, “Your husband and
your son went that way.” Seidel was delighted by this story.

The story begins with the work of Jacques Tits on geometries associated
with the classical groups. These groups act on finite-dimensional vector spaces,
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like for the Monstrous Moonshine module in Equation (5.8) and an analogue
of the McKay-Thompson series (5.10). A wealth of work followed exploring
this relationship between K3 geometry, mock modular forms and M», [86-95].
The elliptic genus for K3 is governed by an enumeration function (e.g., for BPS
states in a K3 non-linear o-model) given by a weight 1/2 mock modular form
with Fourier expansion

2713 (=1 + 45 + 23147 + 7704° + 2277¢* + 5796¢° . ..),

where 45, 231, 770, etc. are exactly dimensions of irreducible representations
of the sporadic Mathieu group Mos.

Umbral Moonshine and the Niemeier Lattices

Cheng and others then noticed that the Mathieu Moonshine phenomenon might
be an example of a more general phenomenon termed Umbral Moonshine,
which involved Niemeier lattice root systems. The Niemeier lattices are the 24
positive definite even unimodular lattices in dimension 24 [68, 96]. The Leech
lattice Aze..; is the only one of them that is not associated to a root lattice —
in fact, the other Niemeier lattices correspond to deep holes inside the Leech
lattice.

Each other Niemeier lattice can be constructed from its associated root lat-
tice in a certain “gluing” construction. The root lattices all have rank 24 and are
made of ADE building blocks such that all components have the same Coxeter
number. So now we are back to ADE! The list of Niemeier root systems is thus

24 A12 A8 46 44 43 42 6 Nt N3 n2 4 3
Al 7A2 7A37A47 A67A87A127A247D47D67D87 D127D247 E67 E87

AiDy, A2D2, ALDs, AisDo, Ay7E7, DioE3, DigEs, A1 D7Es.

The Leech lattice has an automorphism group that is a double cover of the finite
simple Conway group Cony, whilst the A?* and A}? lattices are acted on by the
Mathieu groups M4 and M5, respectively. So it is plausible that the Niemeier
lattices could provide a unified link between the representation theory of finite
simple groups and mock modular forms.

The idea behind Umbral Moonshine is the following [97-103]. For each
Niemeier root system one can define an umbral group, which is the quotient
of the automorphism group of the Niemeier lattice by the subgroup of reflec-
tions (they are the stabilisers of the deep holes in the Leech lattice). Each um-
bral group is conjectured to have an infinite-dimensional graded representa-
tion (or “module”, akin to the Monster module) such that characters (essen-
tially the McKay—Thompson series) are given by vector-valued mock modular
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Show that the set G = {r, : a, b € F, a # 0} is a group with the operation
of composition. Show that the set N = {r;;, : b € [F} is anormal subgroup
of G isomorphic to the additive group of ¥, and that G/N is isomorphic
to the multiplicative group of F.

2.12 Complete the details of filling in the character tables in Examples 2.52
and 2.53.

2.13 Explain the geometric meaning of each of the five conjugacy classes of
the icosahedral group As. Generators of the icosahedral group As are
given in a certain three-dimensional irreducible representation as

1 -1 T -1
Da(gZ):E T -1 1 N
-1 1 -7
1 1 T -1
Ds(g5)=§ - -1 1
-1 -1 T

These generators are given in another, four-dimensional, irreducible
representation as

1 1 -3 -5

D“(gZ):% :; i —11 _«}/55’
-V5 -V5 V5 -l

-1 1 -3 5

D“(gS):% _31 _13 1 ﬁ '
V5 -V5 -5 -1

Calculate the characters of g», g5 and g»gs in both representations.
Which of the five conjugacy classes can g,gs be in? As usual, 7 is the
golden ratio and you can assume that it has the properties 7 = %(1 +
V5) = 2cos £ and 7> = 7 + 1. Complete the character table of As.
2.14 Consider the group G generated by

01 0 0 0 01 0
10 0 0 0 00 -1
=1 0 o /™71 00 of
0 0 -1 0 0 10 0
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We do not have space here to discuss the myriad of interesting connections
in Moonshine but will only focus on its relations to ADE. For now, we only

mention in passing that the idea behind the extraordinary fact in (5.7) is that
there is an infinite-dimensional representation of M

V=VieVieV,&--- (5.8)

with Vo = p1, Vi = {0}, Vo = p1 ® p196333, V3 = p1 ©p19sssa © 0212068765 - - - » the
corresponding generating function (graded dimension) of which is

D" dim(V,) = 1+19688447+21493760q” = q(j(g)-744) = qjuu(q) . (5.9)
n=0

In general, one has the generating function for the characters, known as a
McKay-Thompson series, for each of the conjugacy classes of M,

Ty(g) =g ) chy,(g)g"
n=1

=g +0+hi(Qg+ (g + -, (5.10)

and they all turn out to be modular functions (Hauptmoduln) of some group
between PSL(2; Z) and PS L(2; R).

5.1.2 Monster and Eg

The initial observation that the j-function encodes the irreducible representa-
tions of M, was part of another observation:

i@ =q73 (1 +248¢ + 4124¢% + 34752¢° + -- ) (5.11)

encodes the irreducible representations of the Lie algebra Eg (starting with
{1,248, 3875,27000, 30380, 147250, .. .}) in a similar fashion (note that 248 =
744/3):

248 =248, 4124 =3875+248+1, 34752 =30380+3875+2-248+1...

(5.12)
This was in fact the first matter to be settled [76]: the unique level-1 highest-
weight representation of the affine Kac—-Moody algebra Eél) has graded di-
mension encoded by j(q)%. One should also be mindful of the fact that the
theta-series for the Eg root lattice A(Eg) is

Orm(@ = Y, @ = 14240 ) oa(mg” = Ealg),
xeA(Eg) n=1

Goddard-Thorn theorem to construct a Monster Lie algebra, which is a generalised
Kac—Moody algebra acted on by the Monster.
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notation in the caption of Figure 3.2 now becomes clear. For instance, 5(3)
has 2 simple roots, and hence 2 nodes, with the angle between them is 23—” SO
the label of the link between the 2 nodes is marked 3. The reflection group is
Dih; =~ &3, of order 6.

Other familiar groups also feature. For example, the full tetrahedral group 77
is the reflection group for the A3 root system. It is of order 24 and doubly covers
the corresponding rotation group A4 of order 12. The full octahedral group Oy
is that of Bs; it is of order 48, doubly covering the rotational octahedral group
S 4 of order 24. The full icosahedral group 7 is the reflection group for Hs; it
is of order 120 and double covers I ~ As of order 60. These are, as we recall,
the symmetry groups of the Platonic solids. We will discuss double covers in
detail later in Section 3.4.2.

ADE Root Systems: The higher-dimensional analogue of tetrahedral sym-
metry is a family called A, with a graph consisting of a string of nodes (simply-
laced). This” is the A in ADE. The generalisation of cubic/octahedral symme-
try are two families called B, and C,, that differ by their relative lengths, and
are thus not simply-laced, but are also connected to another called D,,. This is
simply-laced, and constitutes the D in ADE. The next are of course the 3 ex-
ceptional cases Eg, E7, and Eg, which are again simply-laced, and complete our
ADE set. There are another two exceptional root systems that are not simply-
laced, called F4 and G». These are all the crystallographic root systems, and
can thus generate lattices. This result is of vital importance, so we summarise
it as:

THEOREM 3.6 The crystallographic root systems are A, By, Cy, Dy, Es78, Fa
and Gy, of which A, D, Es 78 are simply-laced.

We note that the lengths of the legs in the ADE diagrams are n for A,
(2,2,n) for D,,, and (2,3, 3), (2,3,4) and (2,3, 5) for E4, E; and Ejg, respec-
tively. Note the similarities with, and see Section 4.1 for further details on the
connection with, the triples of rotational orders of the Platonic solids.

We remark that customarily, one calls the family

Eg, E7, Eg, Ds, Dy, A3, Ay, Ay

obtained by successive deletion of an appropriate single node, the E-series.
Hence, Ds, D4, A3 2, are sometimes denoted as Es4321. This is a special fam-
ily with many nice properties, and even shows up in so-called grand-unified
theories in physics (see, e.g., [24]).

9 Not to be confused with alternating groups!
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Figure 3.4 Classification of affine Coxeter groups and root systems.

E7, Es: The root system E7 consists of the vectors of Eg orthogonal to a
fixed root, and E4 consists of the vectors orthogonal to a pair of non-
orthogonal roots.
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There are also non-crystallographic root systems that continue the alphabet-
ical pattern (these are perhaps less familiar since they do not feature in Lie
theory). The symmetries of the regular n-gons are given by the root systems
I,(n) which are just the regular 2n-gons. For example, the root system generat-
ing 5-fold rotations is a regular decagon (see Figure 3.2b)). In this terminology,
itis also called H, in analogy with its 3D counterpart the icosahedral root sys-
tem Hs (which as a polyhedron is the icosidodecahedron in Figure 3.2¢)) and
its 4D analogue Hy (aka the 600-cell). These are all the root systems for fi-
nite Coxeter groups, also known as Euclidean reflection groups. This is also
reflected in the fact that the determinant of their Cartan matrices is positive,
which is called the spherical case. Just to clarify the notation straight off, we
have (in 2D)

>0 Spherical finite Coxeter group,
det(Cartan Matrix)y =0 Affine or Euclidean infinite Coxeter group,
<0 Hyperbolic infinite Coxeter group.
(3.8)

There are also Coxeter groups and root systems that are not finite and belong
to the Euclidean case, i.c., the gcometry of the plane. These are related to
tilings/lattices as mentioned above in Section 3.1.2.

Explicit Representation of the ADE Root Systems Often, for calculation, it
is useful to have an explicit list of the vectors in one of the ADE root systems.
These can be given as follows. In each case, {e1, s, ..., e,} is an orthonormal
basis for the space in which the root system lives.

A, Take r = n + 1; then the vectors
{{ei—ej: 1<i,j<r+j}

form a root system of type A,. Note that these vectors are all orthogo-
nal to the vector e} +e,+- - - +e¢,, and so they span a space of dimension
r—1=n.

D, Take r = n. The vectors

{ieiiéji 1<,j<n,i#+j)}

form aroot system of type D,,.
Es: Take r = 8, and the vectors of the Dg root system listed above together
with the vectors

{%(6181 + -+ €eg)i€,...,6 € {+1,—1},H§1 € = +1}

form aroot system of type Es.
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The classification problem is essentially a graph-theoretic one, which we will
further discuss in Section 3.3.

3D Root Systems: The Platonic symmetries (7, O, I) (rotational) can now be
written as (As, B3, H3) (reflection) in the language of root systems. Somewhat
less obvious is that one can also have root systems consisting of (orthogonal)
sums of “irreducible components” with the corresponding reflection groups be-
ing the direct product of the groups corresponding to the irreducible parts. For
example, there is thus an infinite family of A; X I;(n) groups and root systems
in 3D.!! We will show in Section 4.4 that, surprisingly, each 3D root system
determines a root system in 4D. The traditional point of view would be that the
lower-dimensional root systems can be obtained from the higher-dimensional
ones by ignoring a dimension. This bottom-up construction however shows
that these higher-dimensional cases can in fact be constructed from the lower-
dimensional ones. The set of 3D root systems thus encompasses three ex-
ceptional cases and an infinite family. We will argue in Section 4.6 that one
should perhaps also include the 2D root systems I»(n) in order to obtain a full
ADE set.

4D Root Systems: The set of root systems in 4D consists of the usual A4,
B4 and D4 as well as the exceptional crystallographic case F4 and the ex-
ceptional non-crystallographic root system Hy. In fact, Dy is also in some
sense exceptional, because in 4D the D4 diagram acquires an additional sym-
metry called triality (by permuting the three legs in the diagram, see Figure
4.2 in Section 4.6), which is related to the corresponding Lie group SO(8)."
These three thus combine to form a Trinity (Dq4, Fa, Hy) of exceptional ob-
jects in 4D — which Arnold had spotted somewhat randomly (see Section
4.4.2); but via the construction in Section 4.4 hinted at in the previous subsec-
tion, (Dg4, F4, Hy) can in fact be constructed from (As, Bs, H3). This connection
along with the link between (A4, Dg, Eg) and (H,, Hs, H4) hints that there are
some links crossing families and exceptional cases, as well as crystallographic

and non-crystallographic ones."*
11 Technically, one should distinguish between the direct sum of root systems Aj & I»(z) and the
Coxeter group it generates, which is the direct product of groups A; X I (n). However, since
we treat these fairly interchangeably anyway, we shall be forgiven such sloppy notation.

This triality property is actually of surprising interest in superstring theory, which is a theory
in 10 dimensions. SO(8) describes the symmetries of the 8 transverse dimensions. Triality
relates two spinor and one vector representation of SO(8), which allows to prove the
equivalence of the Green-Schwarz and Ramond-Neveu-Schwarz strings [29, 30].

One of these links is the close connection between 3D geometry, Spin(3), SU(2), the
quaternions and 4D (Section 3.4). All of this is we think best understood in terms of Clifford
algebras, which we will discuss in due course (see Section 3.4.4). We argued in the last section

12

13
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Affine Root Systems Figure 3.4 shows these so-called affine cases, which are
root lattices and understandably are connected with the crystallographic cases
(non-crystallographic analogues would densely fill space upon adding a trans-
lation operator). These “in-between” cases have Cartan matrix with vanishing
determinant. They can also be derived from the finite root systems via extend-
ing their root system via an affine root «, corresponding to adding an addi-
tional row and column in the Cartan matrix (so that the determinant is then
zero). This is called a Kac-Moody'® approach [28]. The resulting affine Cox-
eter groups are the Weyl groups occurring in the root lattices of Lie theory
and this approach is also connected with the translations/affinisation process in
Section 4.3.

Note that the affine root in each case can be written as a linear combination
of the simple roots, €.g., —ag = 2a; +3as +4as +5a4+6as +4as + 27+ 3ag for
Ej3 for some numbering of simple roots. Table 3.1 gives the integer coefficients
of the highest/affine root that also gives the affine extension. We will encounter
these again in a different guise in Sections 3.4.3, 4.3 and 4.5.

Type Coefficients a;

A, 1,1,...,1
B/C, 1,2,...,2
D, 1,2,...,2,1,1
Es 1,2,2,3,2,1
Lk, 2,2,3,4,3,2,1
Ky 2,3,4,6,5,4,3,2
Iy 2,3,4,2

G, 3,2

Table 3.1 The coefficients of expansion of the affine root ay in terms of the
simple roots.

Finally, there are the root systems with infinite Coxeter groups that have
Cartan matrices with negative determinant, where roots can become imaginary.
We will not be concerned with these, but the interested reader can refer to [20].

10° A similar (but limited) approach was used first in [25] and then in [26] to define extended but
finite structures with 5-fold symmetry that had some limited translational symmetry; a related
construction combined the affine ADE affine roots with a projection from (A4, Dg, Eg) to
(Hy, H3, Hy) (see Section 3.2.4) to achieve a similar, relaxed notion of an “affine extension”
for non-crystallographic groups [27]. We note that the D,, family can be extended in three
different ways in the Kac-Moody formalism and thus form three different lattices — however,
only one of them is simply-laced. So the (simply-laced) ADE diagrams have a unique
simply-laced affine version.
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Here, 7 is the golden ratio v = %(1 + V5) = 2cos 5. The fancy way of
saying this is that the coefficients of expansion live in the extended inte-
ger ring Z[t] = {a + 7b | a b € Z}, with o the Galois conjugate of 7 as
o= %(1 - V5) = 2cos Z Z (i.e., 7 and o are the two solutions to the
quadratic equation x> = x + 1).

This difference between crystallographic and non-crystallographic arises be-
cause some of these root systems are related to lattices. Lattices of course have
integrality conditions — they can be achieved by translating the correspond-
ing root system in integer steps along the symmetry axes such that the lattice
extends to infinity. Those lattices derivable from root systems are then called
root lattices. We will see the interplay with translations and the process of
affinisation again later in Section 4.3.

Conversely, for non-integer linear combinations such as the ones based on
the golden ratio above, there exists no associated lattice; hence they are non-
crystallographic. Unrestricted translations with Z[]-coefficients would densely
fill R? since Z[7] is dense in R. 7 is of course closely related to 5-fold sym-
metry (cf. the icosahedron). From the crystallographic restriction theorem in
2D, it is well known that 5-fold symmetry is incompatible with a lattice struc-
ture. In fact, only 2-, 3-, 4- and 6-fold symmetry is compatible with lattices, in
which case the inner products are half-integral.” These 2D lattices and the crys-
tallorgraphic restriction theorem are of course related to the plane tessellations
discussed in Section 3.1.2, themselves related to the affine ADE diagrams.

However, non-crystallographic root systems still define interesting reflec-
tion groups, even if they do not have an associated Lie algebra (which we
will introduce later). In particular for icosahedral symmetry, this is the right
approach — however, historically this Lie-centric approach has led to various
connections being overlooked over decades by neglecting the importance of
the non-crystallographic groups [21, 22].

Cartan Matrix: Since root systems are concerned with the relative orienta-
tions (and perhaps lengths) of the root vectors, finding a rotation-invariant way
of capturing the essence of this configuration is useful. This is of course given
by the inner products between simple roots:

DEFINITION 3.3 (Cartan matrix) ‘The Cartan matrix of a set of simple roots
a; € A C @ is defined as the matrix

(a;-ay)
(aj a;)

7 We will see later in Section 3.5 that in Lie algebra structure theory one arrives at a root lattice
— associated root systems are therefore always crystallographic in Lie theory.

Ay i=2—





index-62_1.png
3.2 Root Systems and Polyhedral Groups 47

eroup. This reflection group is in fact a Coxeter group, since the reflections s;
satisfy the following defining relations [17-20]:

DEFINITION 3.2 (Coxeter group) A Coxeter group C(s;) is a group gener-
ated by a set of involutory (i.e., square to identity) generators s;, s; € S subject
to relations of the form (s;s;)™7 = I with m;; = m; > 2 fori # j. In other
words,

Cls) o= (s sy = 1), myj = m { i?z i i j
Remark: We now link our foregoing discussion together by noting that root
systems can also be thought of as polyhedra, with the vectors pointing to the
vertices. This is exemplified in Figure 3.2¢, where the 3D polyhedron known
as the icosidodecahedron corresponds to the 3D root system generating icosa-
hedral symmetry, which we shall call Hs. It is defined by vertices lying on the
2-fold axes of icosahedral symmetry. (Vertices lying on the 5-fold axes give the
icosahedron, whilst vertices on the 3-fold axes give the dodecahedron.) This
icosidodecahedron is not Platonic, as it consists of triangles and pentagons,
but Archimedean, and also has the icosahedral group as its symmetries.

Simple Roots: A subset A of @, called simple roots a1, .. .,q, is sufficient
to express every element of ® via lincar combinations with coefficients of the
same sign (which can be chosen by convention). This same sign condition
allows one to define an ordering on the roots, with the highest root being the
one with the highest total sum of coefficients. These simple roots are in a one-
to-one correspondence with the simple reflections which generate the Coxeter
group above.
The simple roots also allow us to distinguish two types of root systems:

(i) In a crystallographic root system, these linear combinations are Z-linear
combinations. For example, in Figure 3.2a, the root system ® = (3 =
A»), the simple roots are a; and a», which in R? can be written explicitly
as the vectors a1 = e; and a» = cos(za—”)el + sin(%”)ez. The other roots are

a1, —a and L(aq t Clz).

(ii) For a non-crystallographic root system, one needs to go beyond integer
coefficients in expanding an arbitrary root in terms of the simple ones.
Typically, one needs to work in certain extended integer rings. For ex-
ample, in Figure 3.2b, for the root system @ = 5L(5) = H,, we have
the simple roots @1 = e; and @y = cos(Z)e; + sin(£)es, and the other
roots are a1 + Tay, Ta] + a3, and Ta; + Tay, together with their negatives.
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In Lie theory, into which we shall delve in Section 3.5, again there is an
additional constraint which ties the angle to the relative lengths, so that in
Dynkin diagrams the length denotes the angle, whilst here the angle is denoted
via the label. These two types of diagrams are of course closely related, at least
for crystallographic root systems. By an abuse of notation it is also easy to use
the names for the root system, reflection group, graph, Lie algebra and Lie
eroup fairly inter-changeably. In Lie algebra theory simply-laced means that
all simple roots have the same lengths. For root systems, it largely means that
the diagram has no labels and thus that all the links are just a single line — there
are only the implicit labels of 2 and 3, indicating that simple roots are either
orthogonal or at 120 degrees.

3.2.2 Classification of Root Systems

Now that we have a concise way of illustrating root systems in diagrammatical
form, we can list the different types. This gets us to the heart of the problem
and the underlying theme of the book: classification patterns.

Without much further ado, we have the following classification theorem.

THEOREM 3.5 There are 12 types of root systems ®©, with corresponding
reflection group W, as follows:

Type || L4

A, nn+1) (n+ 1)!
B/C, 20’ 2"n!

D, |2n(n-1) 27~ 1p

Es 72 27345

E7 126 2193457

Es 240 12096 - 240? (3.7

Fy 48 148

G, 12 12

H, 10 10

Hi, 30 120

H, 120 1207 = 14400
I(n) 2n 2n

The corresponding Coxeter—Dynkin diagrams are drawn in Figure 3.3. The
subscripts of the names give the rank, i.e., the number of simple roots /nodes.
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For ADE cases, as we will shortly see, the roots are all of the same length
(‘simply-laced’) such that the Cartan matrix is essentially the scalar products
between simple roots and is thus symmetric. For different lengths the Cartan
matrix acquires asymmetry by differential scaling by the lengths of the simple
roots.

Note that we will be working with two different normalisations: first, roots
of unit length a@* = 1, which is convenient in the Clifford algebra framework,
and o’ = 2, which is standard in the Lie theory framework. We will discuss
both concepts soon. Note that, in particular in the Lie theory context, it can be
convenient to define the coroot a” of a root vector a as @’ = 2a/(«a - @). The
normalisation with the factor of 2 used in Lie theory then simplifies various
formulas. The basis dual to the simple roots is called the weights «. The Cartan
matrix essentially gives the expansion of the roots in terms of the weights «; =
> Ajjw; (and vice versa for its inverse). The coefficients of the highestroot with
respect to the bases of simple (co)roots are called the (dual) Coxeter labels,
respectively.

Coxeter-Dynkin Diagrams: A graphical representation of the geometric
content of a root system is given by Coxeter—Dynkin diagrams, according to
the following rule:

e draw one node for cach simple root;

e orthogonal roots (i.e., (aile;) = 0) are not connected;
e roots at 5 have a simple link;

o other angles Z have a link with a label m.

We will discuss graphs soon in Section 3.3. We give an important definition:

DEFINITION 3.4 A root system (and the corresponding Coxeter—Dynkin
diagram) is called simply-laced if it consists only of simple links (there are no
labels on them). That is, all roots are at 90° or 120° with each other.

For example, the root system Hsi, in Figure 3.2, has one link labelled by 5
(via the above relation T = 2 cos %), as does its four-dimensional analogue Hj.
This is of course related to the 5-fold symmetry. Thus, the Coxeter—Dynkin
diagram for H3 looks like

Hs: 5 (3.6)

Thus, H3 is not simply-laced.
On the other hand, 1,(3) is a special case where the label is » = 3 (and thus
suppressed) and the simple roots are at an angle 26—” In fact, I,(3) is simply A;.
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The proof is of a graph-theoretic nature. It classifies graphs of positive type
and uses the result that subgraphs of graphs of positive type are positive defi-
nite. We will see several simpler examples of this type of proof in Section 3.3
on graphs and we refer the interested reader to Section 2.7 in [23] for details

of the proof.®

4
F;, —0—0—©

6 5
G2. ® HQ._.

n 5
Lin) &——® H, 6——©

5
H &—&—0—0

Figure 3.3 Classification of finite Coxeter groups and root systems.

We immediately see the emergence of the diagrams from Figure 1 at the
start of the book. These correspond to the A, D and E-type root systems. The

8 An argument by which the non-ADE crystallographic root systems are essentially built from
the ADE root systems is contained in Section 5.2.
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number theory, combinatorics and ADE-ology, connected to other exceptional
mathematical objects.

Remark: Whilst the classification of finite simple groups is not in any obvi-
ous ADE pattern, it was an old speculation of McKay whether the largest three
of the Sporadics (q.v. recent introduction in [55]), viz.,

(Monster, Baby Monster, Fischer’s Group) 5.1

might furnish a trinity that relates to (Eg, E7, Es). We will expound upon this
connection shortly.

5.1.1 Moonshine

To give an idea of how extraordinary the sporadic groups are, we begin with a
brief recapitulation of Monstrous Moonshine, a correspondence between two
seemingly utterly unrelated subjects:

(i) Finite group theory: Of the sporadic family of 26 finite simple groups, the
largest is the so-called Monster group M, of order

M| = 2%.3%0.5%.75.112.13%.17-19-23-29-31-41-47-59-71 ~ 10°*. (5.2)

It is remarkable that there should exist an outlying finite group of such
astronomical size with no normal subgroups. Though large in size, there
are only 194 conjugacy classes and irreducible representations. The first
non-trivial irrep is of dimension 196883, being in the list

{1, 196883, 21296876, 842609326, 18538750076, ...} . (5.3)

(ii) Number theory and modular forms: One of the central objects in number
theory is an analytic object dating back at least to Klein, called the j-
invariant. This is the “only” meromorphic function defined on the upper-
half plane invariant under the full modular group I := S L(2; Z); by “only”
we mean that all invariant functions are rational functions in j(z). There-
fore the modular action of T on the upper half complex plane H fixes
the field C(j) of rational functions of j. Other than a simple pole at ico,
Jj(z) is the only holomorphic function invariant under I' once we fix the
normalisation

j(exp(?)) =0, jO=1728, jy2)=j@,yel. (54

Writing the nome ¢ := exp(ziz), we obtain the famous Fourier expansion
of j(g) as
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Lie groups. Again, roughly, as integers are composed (via unique factorisa-
tion) from primes, Lie algebras (via structure theorems), from simple algebras,
so are finite groups (via Jordan—Hélder composition) made from simple groups
as building blocks. More precisely, a finite simple group is one which contains
no non-trivial normal subgroup. Importantly, the composition series (chain of
normal subgroups) of any finite group is unique up to permutations and iso-
morphism.

As is perhaps always the case, problems over the discrete are much harder:
the classification of simple Lie algebras/groups followed quickly from that of
the root diagrams, resulting from an Egyptian fraction type of Diophantine
inequality. The classification of finite simple groups is much more difficult: it
started with Galois and lasted until the recent volume of Gorenstein, spanning
two centuries and many tens of thousands of pages of proof [71, 72]. We have

THEOREM 5.1 A finite simple group is one of the following:

e a cyclic group C, of prime order;

o an alternating group Wy,>s;

o the Lie groups defined over finite fields, and

e 26 exceptional cases called the Sporadics, including various Mathieu, Con-
way and Fischer groups, the Monster and Baby Monster groups, as well as
others.

Remark: The first family is easy to understand: cyclic groups of prime order,
by Lagrange’s theorem, have no non-trivial subgroups at all.

The simplicity of the second family is what allowed Galois theory to prove
the absence of finite radical solutions to polynomials of degree more than 4.

The third family is really a family of families: consider all our simple Lie
eroups from Section 3.5. Instead of having them defined over the complex
numbers, consider them over finite number fields. For example, SL.(2; C) is a
Lie group which is the space of 2 x 2 complex matrices with unit determinant.
If, instead, we consider SL(2;F,), with entries over the finite field of 2 ele-
ments, say + 1, then the result is a finite group of size 6; in fact SL(2; F,) = S5.
Similarly, we have that S1.(2; F3) = 27, the binary tetrahedral group.

The simple groups of Lie type are divided up in various ways: for example,
into classical groups (linear, symplectic, orthogonal, unitary) and exceptional
groups (associated with the exceptional Lie algebras); or into Chevalley groups
and twisted groups. See Carter [73] for further discussion of these groups.

Finally, the sporadics are completely mysterious. They are typically of enor-
mous size, as we will soon see. There is much mathematics yet to be discov-
ered, as these sporadics seem to be lying at the intersection between algebra,
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1
i) = p + 744 + 196884g + 21493760¢> + 864299970¢° + --- . (5.5)

Now, the pole at z = ico (i.¢., for g = 0) is explicit and all the coeffi-
cients are positive integers. In the ensuing we will often make use of the
normalised form where the constant 744 has been set to O; this is habitu-
ally denoted as jig; the subscript will become clear soon. Furthermore, we
could divide by 1728 to ensure ramification only at 0, 1 and co. To clarify
our convention, we adhere to the following

1
jarithmetic(q) = J(C]) = 5 + 744 + 1968846] + 21493760612 t-,

. 1
Janatyeic(q) = ﬁJ(Q),
Jm(q) = jlg) —744. (5.6)

The j-invariant is a special case of a Hauptmodul, or principal modu-
Ius. For a genus zero subgroup @ C I where the quotient ®\H is a Rie-
mann sphere, its modular functions, i.¢., the field of functions invariant un-
der @, is generated by a single function, much like the aforementioned case
of the full modular group I' = PS L(2, Z) where the j-invariant generates
C(j). For higher genera, two or more functions are needed to generate the
invariants, and there is not as nice a notion of a unique canonical choice.

Another McKay Correspondence
The initial observation by the last author, which started the subject of Moon-
shine, was that

196884 = 196883 + 1, (5.7)

where the left-hand side is the first term of the Fourier expansion of jy in (5.6).
This is so outlandish — that modular forms should relate to finite groups —
it was deemed “moonshine” by Conway. Yet, a quick check of the next few
coefficients of jp, all of which can be written in simple sums of the form
(5.7), led Conway and Norton to make a set of precise conjectures in [74], and
Borcherds’ Fields-Medal-winning proof [75].!

1 The proof of the Monstrous Moonshine conjectures in terms of physics comes from
compactifying chiral bosonic string theory on the 24-dimensional quotient torus of R?* by the
Leech lattice Az, (Which we will see more of later in this section) and orbifolded by a
two-element reflection group, i.e., R24 /A1 pecn/(Z.)27). The vertex operator algebra describing
the resulting 2D CFT (the Monster vertex operator algebra) has the Monster as its
automorphism group, as does its degree-2 piece, the Griess algebra, which is a commutative
but non-associative algebra on a real vector space of dimension 196884. Borcherds applied the
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The preceding chapters have introduced the reader to a variety of cases where
ADE meta-patterns arise, as well as provided the underlying reason for some
of the correspondences between them. However, they touch but the surface
of ADE-ology! This persistent trio — two infinite families and a triplet of ex-
ceptionals — emerges and still continues to emerge across the mathematical
landscape.

In this last chapter, we will give the reader a glimpse of some of the more
advanced topics, from finite group theory to geometry to physics, to represen-
tation theory, to number theory, etc., wherein we will encounter our familiar
ADE friends. For the beginning students, this familiar theme will inevitably
appear in unfamiliar territory, so we will unavoidably be more cursory in our
presentation compared to the pedagogical efforts of the previous chapters. Nev-
ertheless, we hope that a perusal might inspire them to further investigate this
vast subject. The different topics in this section are largely independent from
ong another and can thus be perused at leisure. In particular, the section on
Moonshine, as intriguing as it is, can be freely skipped, and the subsections
are mostly only loosely connected.

5.1 Monstrous Connections

We now come to an advanced correspondence that is perhaps the least under-
stood and most curious. Here, we do not seem to have a full ADE story yet and
even for the trinity of exceptionals the connections are mysterious [55]. Nev-
ertheless, the consequences are far-reaching enough that we open the present
chapter with it.

First, we recall some results from the classification of finite simple groups.
One can think of this as the discrete analogue of the classification of simple

122
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There thus appears to be a web of connections between the three ADE sets of
root systems that we first discussed in Section 3.2, with pairwise correspon-
dences, and perhaps a central object connecting them all. This looks rather
like the D4 diagram in Figure 4.2. Two things are worth mentioning: there is
still tension about the Platonic assignment I,(n) and which A,, they should cor-
respond to via the McKay correspondence, versus the convincing assignment
via the diagrams. Secondly, this suggestive link between root systems and ADE
diagram legs is intuitive, but a rather more concrete connection would be desir-
able. Could perhaps some strange choice of inner product akin to the “reduced
inner product” in terms of Z[7] integers map all the roots in the Platonic case
to the simple roots for the ADE cases? This appears to work at least for H3
going to Eg [21, 68-70], but it is not obvious whether this can be extended to
the remaining cases.

So despite progress using ADE-ology, there is still plenty to be puzzled
about! We hope that readers will be inspired to make some progress in novel
directions. Some open questions and advanced topics are contained in the fol-
lowing, much more advanced, section. We touch on some more ADE sets in
advanced topics in mathematics as well as tantalising hints that there are deep
connections waiting to be uncovered. We hope that this piques the readers’
interest and defer to the literature for many details. Here we want to give a
flavour of what the topics are about, to show a big picture of how they relate
to each other and to ADE, and to arouse curiosity in our readers to investigate
some of these open questions further.

Exercises

4.1 Find the orders n of the n-fold rotational symmetries generated by the
root systems (I;(n), A; X I(n), A3, B3, H3). Draw Dynkin diagrams with
legs of lengths of those rotational orders. Which diagrams do you get
this way? What are their Coxeter numbers? What is the number of roots
in the original root systems (I,(n), A, X I(n), As, B3, H3)?

4.2 By using the definitions, explicitly show that successive reflections in
two parallel planes amount to a translation s?f (sgv) = v + ag. Think
about why this might be rather more obvious.

4.3 Calculate the adjacency matrix for the tensor product of the binary tetra-
hedral group from Section 4.5, explicitly making the McKay connection
with the E¢ diagram.

4.4  Consider the 3D root systems. What is the order of the Coxeter groups
they generate, the order of their rotational subgroups and the order of the
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