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Preface

If we look back to the 1950s–1980s, AI (Artificial Intelligence) has progressed much slowly with different emphases ranging from game-playing programs, representation and search, automated reasoning, common sense reasoning to expert systems, 

etc. The renewed interest in neural networks in the 1980s and rapid progress in

neuron network-based machine learning and deep learning have led AI to its cur-

rently explosive growth with great impacts on the society as a whole. We refer

current AI as modern AI. Modern AI is now everywhere beyond technology area

to finance, law, and many others with mostly positive and some negative effects on human civilization. Examples of negative impacts can include deepfakes in speech and vision by using generative AI. It is important to be vigilant on the reliable and responsible use of modern AI. The positive impacts of modern AI can shape a

new way of life and should be much emphasized. It should be noted that modern

AI’s recognition and vision capabilities are built on the long-term development of pattern recognition and computer vision. For example, intensive feature extraction work in pattern recognition and edge and contour detection work in computer vision have been employed in modern AI. The self-driving car is a good example of the

use of greatly improved computer vision and pattern recognition capabilities. We believe the traditional work on pattern recognition and computer vision continues to be important and is covered in several chapters along with deep learning-based chapters reflecting the use of modern AI in pattern recognition and computer vision. 

It is important to note that modern AI through deep learning has a remarkable

ability to improve the classification accuracy in complex recognition tasks such as with a large number of pattern classes from different sources. In “Deep learning for hyperspectral image classification: an overview”, by S. Li  et al. ,  IEEE Trans. 

 on Geoscience and Remote Sensing, Vol. 57, No. 9, September 2019, the authors demonstrated that the deep feature fusion network (DFFN) can achieve 99.67%

correct classification for Salinas dataset with 9 classes in remote sensing, which is much better than the 88.13% correct classification by support vector machine. In computer vision, diffusion models represent a recent emerging topic as it applies to a wide variety of generative modeling tasks. See, e.g., “Diffusion models in vision: a survey”, by F. Croitoru  et al. ,  IEEE PAMI Transactions, Vol. 45, No. 9, November 2023. It is also noted that deep learning that requires processing a large number of training data consumes an enormously high amount of electrical power. Though

modern AI relies heavily on deep learning, deep learning certainly is not the last vii
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step in the “Steps toward AI”. In fact, many current AI researchers have placed

emphasis among other things on continued learning of how the human brain works

even at the toddler level. So, we have yet to see a lot of new development in modern AI. It will be useful to make good use of every level of AI evolution. We believe the future of pattern recognition and computer vision is bright in the new AI era. 

In reviewing the series of Handbook of Pattern Recognition and Computer

Vision, Vols. 1–6 (1993, 1999, 2005, 2010, 2015, 2020), I have noted that neural network pattern recognition was presented in each volume and deep learning was

covered by five chapters in Vol. 6. The theoretical work and fundamental concepts in pattern recognition and computer vision have remained largely the same over

the years. In place of the Handbook series, this volume has emphasized on the

effects of modern AI development, especially deep learning on pattern recognition, and computer vision. This book consists of two parts: Part 1 on theory and applications covers more traditional topics in pattern recognition and computer vision with particular applications in remote sensing and medicine. Part 2 on emerging deep

learning and AI applications presents some latest deep learning topics in pattern recognition and computer vision. 

Chapter 1.1 by Prof. M. Flasiński is on “Interpreted graphs- a formal tool for

syntactic pattern recognition: Properties and applications”. The approach is based on the assumption that graphs are used in syntactic pattern recognition not just as a formal mathematical structure but as a representation of objects, structures, phenomena, etc. As a consequence, based on the Tarski (semantic) model theory, 

the interpreted graphs are constructed and introduced in this chapter. Interpreted graphs are applied to scene analysis, recognition of objects in vague images, process monitoring and control, CAD/CAM integration, etc. The readers are referred to the excellent textbook by Prof. Flasiński, Syntactic Pattern Recognition, World Scientific 2019, for fundamentals on syntactic pattern recognition. Since the passing of Prof. K. S. Fu in 1985, I have noted a decrease in publications on syntactic pattern recognition, and I hope Prof. Flasiński’s publications can inspire future graduate students to work on this area. Chapter 1.2 by M. Vahed  et al.  is on “2D and 3D

detection of counterfeit coins”. With the advancement in technology, the quality of counterfeit coins is also improving, which makes it challenging to distinguish genuine coins from counterfeit ones. In recent coin detection investigations, the Concordia University (CENPARMI) team has developed numerous unique ways for identifying

counterfeit coins. They progress from two-dimensional to three-dimensional image processing for coin recognition, capturing height and depth rather than color levels. 

This chapter also provides an excellent review of research activities on this topic. For many years, the CENPARMI team, under the capable leadership of Prof. Suen, has

dealt with real solutions to pattern recognition problems, such as handwriting recognition and many others. The readers may be interested in their previous chapter on computer recognition and evaluation of coins in Vol. 5 of the Handbook. Chapter

1.3 by F. Zhou  et al.  is on “A survey of RGB-D-based semantic segmentation”. It
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involves leveraging both color (RGB) and depth (D) information accurately to segment objects in a scene. RGB-D sensors provide synchronized color and depth mea-

surements of the scene, which offer complementary information. Various techniques, including the use of deep convolutional neural networks, to address the challenges of RGB-D semantic segmentation are reviewed. Applications to semantic segmentation of medical images involving retinal vessels, coronary arteries, and multi-model vascular scenarios are presented, where accurate tissue and organ delineation can significantly impact diagnostic and outcomes. 

Chapter 1.4 by E. Pasetto  et al.  is on “Quantum computing for remote sensing image analysis”. Quantum computing has gained enormous importance recently. 

The chapter offers an overview of the basic theoretical notions of quantum computing and quantum machine learning with two main quantum computational models, 

i.e., gate-based and adiabatic quantum computation. A selection of relevant quantum algorithms for remote sensing image analysis is provided. Quantum computing

is the computing of the future. While AI deep learning relies on extensive computing, the quantum machine learning and feature extraction presented in this chapter are very significant. Readers with interest in remote sensing are strongly encouraged to read the outstanding chapter by G. Cavallaro, J. Alti Benediktsson  et al.  on

“Proven approaches of using innovative high-performance computing architectures

in remote sensing”, in Signal and Image Processing for Remote Sensing, 3rd edi-

tion, CRC Press, June 2024. Chapter 1.5 by Prof. K. Huang  et al.  is on “Hopfield neural network for seismic velocity picking”, Velocity picking is to pick a series of peaks in the seismic time–velocity semblance image and is an important step of the seismic reflection method typically used to investigate and interpret the underlying geological formation. One candidate peak point is associated with one neuron in

the Hopfield neural network. A Lyapunov objective function (energy) is formulated considering the total semblance value of picked points and constraints on the number of picked points, interval velocity, and velocity slope. Using the gradient descent method, the neuron weights are changed until the Lyapunov function reaches the

minimum. Having known Prof Huang for over 40 years, I like to personally congratulate him for his lifetime research achievements on pattern recognition and neural networks in geophysical exploration using seismic and well-logging data. On another note, we are all pleased that the Hopfield neural network has been recognized in the Nobel Physics Prize of 2024 awarded to John Hopfield and George Hinton who are

among the pioneers of modern AI. 

Chapter 1.6 by W. Prummel  et al.  is on “Graph neural networks for moving objects detection in videos”. A full review is presented of recent advances on the use of graph neural networks applied to moving object detection in video taken by a static camera. The experiments reported on the large-scale CDnet2014 dataset

show the gap in performances obtained by the supervised deep neural network

methods in this field. Suggested future research directions include investigation of the adequacy of deep belief neural networks, deep restricted kernel neural networks, 

x
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probabilistic neural networks, and fuzzy neural networks in the case of static cameras as well as moving cameras. Chapter 1.7 by Dr. M. Trombini  et al.  is on “Graph signal processing and Markovian modeling for unsupervised SAR image segmentation”. The segmentation problem is expressed in a Bayesian framework in terms

of probabilistic Markov random field graphical modeling. An energy function is

defined based on parametric models and minimized by the alpha-beta swap algo-

rithm yielding the final goal-segmentation based on the maximum as  a posteriori decision rule. The proposed method is applied to agricultural field segmentation in SAR imagery. Chapter 1.8 by Dr. A. Ziemann  et al.  is entitled “New methods for new space: multi-sensor change detection in remote sensing imagery”. The chapter provides background on remote sensing data and the problem of change detection. 

It presents cutting-edge approaches to handle change detection in multi-sensor data. 

Future research areas are identified including digital twins and reinforcement learning. Digital twins represent a technological opportunity to unify known assets of a real-world system into a dynamic virtual representation. Incorporation of multiple disparate spectral measurements using digital twins, for example, can be an effective tool for forest monitoring and management and modeling dynamic urban environment. In the formulation of reinforcement learning, an agent learns by exploring and interacting with an environment in such a manner that actions taken provide a reward feedback to the agent. Reinforcement learning can be used to train sensors or sensor systems to autonomously perform tasks in highly variable or uncertain

conditions. The challenges of using reinforcement learning in remote sensing are also discussed. 

Chapter 1.9 by Prof. A. Levada is on “Differential geometry in graph-based data

analysis for pattern recognition”. Graph-based data analysis is a research field that allows us to understand the shape and structure of data, regardless of the metric or scale used to measure it. Differential geometry can be a powerful tool for metric learning, clustering, and classification in graph-based data analysis. By learning a hidden structure of the data and a more appropriate metric, it is possible to improve the separation between classes. This is an area that deep learning has not addressed. 

Two graph-based models are presented for multivariate data: the curvature-based

k-nearest neighbors graph and the weighted curvature graphs based on tangent

spaces variation. Chapter 1.10 by Prof. Kuan Huang  et al.  is on “Reliable multi-layer segmentation of BUS (breast ultrasound) images”. The BUS images have the

advantages of no radiation, low cost, and portable but of poor quality. A trustworthy Spatial and Channel-wise Fuzzy Uncertainty Reduction Network (SCFURNet)

is designed for BUS image semantic segmentation and classifying small tumors. 

The proposed method achieves the best available results by reducing the influence of uncertain channels in feature maps. The fuzzy entropy of memberships can measure the uncertain degree of pixels and channels effectively. The chapter clearly demonstrates that with preprocessing, a powerful deep learning neural network can work well with some difficult medical images. 
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Chapter 1.11 by D. Liu  et al.  is on “Digital twin in healthcare and medical fields, a review”. The chapter examines the mutifaceted applications of digital twins, focusing on their integration within healthcare. The use of Large Language Models (LLMs) in the health domain is explored, which offers immense potential to improve patient care through advanced data analysis, predictive modeling, and personalized treatment plans. Furthermore, the use of diffusion models in healthcare, particularly for data generation purpose, is analyzed. Diffusion models that contribute to creating robust and diverse datasets are crucial for training more accurate and reliable AI systems in medicine. Chapter 1.12 by Prof. U. Qidwai  et al.  is on “PCA and binary particle swarm optimization (BPSO) in ANFIS for rule-based reduction for

low-dimensional data”. To address the challenges with both fuzzy rule-based sys-

tem and deep learning, one approach is to integrate rule-based systems with other machine learning methods. An example is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which combines the transparency of fuzzy rule-based systems with

the adaptability of neural networks. An issue is the exponential growth in the rule count. The chapter proposes the use of PCA and BPSO for rule reduction while

enhancing decision-making precision, a critical aspect of rule-based systems. Despite its strengths, the model’s efficacy diminishes with datasets having a large number of features. Chapter 1.13 by C. Lin  et al.  is on “LinAlign: X-ray image alignment before and after hip arthroplasty” and presents a LinAlignment algorithm, which

can successfully align images on non-rigid bodies with partial differences by applying stricter alignment to our interested part. It is suitable for comparing the position of bones during hip replacement surgery, allowing orthopedic surgeons to make sure that implants have been installed correctly. 

Part 2 begins with Chapter 2.1 by Prof. B. Shen on “Deep learning in hierarchi-

cal models and feature representation”, which aims to study relevant aspects of deep network structure, architectures, learning mechanisms, and feature representation from scale datasets. Examples are given on CNN models for DeepFace and remote

sensing image classification tasks. Chapter 2.2 by A. Ndigande  et al.  is on “Performance comparison of recent advances in query based video instance segmentation”. 

Video instance segmentation (VIS) task comprises precise detection, segmentation, and association of object instances in multiple video frames. The chapter is focused on evaluating the performance of VIS on parameterized instance queries in scenarios including occlusions, rapid object motion, and appearance changes. Deep learning methods can be useful in associating the instances across multiple frames and bridging the gaps in such tasks. Chapter 2.3 by Prof. B. Brklijac  et al.  is on “Application of information geometry driven deep learning”. The evolving field of information geometry offers well-defined concepts that can be applied to the learning process and thus leverages on information present in the data samples. Besides the usual cross-entropy function, commonly used by many supervised learning models, there

are many other information distances that can be utilized as effective regularization terms. The chapter deals with matrix-based distances and their application in the

xii
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proposed feature map regularization of CycleCAN DNN models for image-to-image

domain translation tasks. 

Chapter 2.4 by A. Sikdar  et al.  is on “Efficient deep learning for key challenges in person re-identification”. The chapter begins by exploring advancements in scale-invariant architectures that improve feature extraction across different scales. Additionally, the chapter introduces a lightweight solution for partial and occluded re-ID

using a projective dictionary learning framework, optimized through knowledge distillation from a high-performing deep network. The proposed methods have been

rigorously evaluated across several benchmark databases and have applications in large-scale surveillance and security settings. Chapter 2.5 by S. Giancola  et al.  is on “Deep learning for action spotting in association football videos”. The chapter traces the history of action spotting in sports, from the creation of the task back in 2018 to the role it plays today in research and the sports industry. The authors introduce their SoccerNet which has the largest datasets and explored the deep learning methods in the task of action sporting. Specifically, they examined both feature-based approaches, which rely on pre-trained backbones, and end-to-end methods

that optimize the entire architecture for the task. The evaluation metrics are also introduced. Chapter 2.6 by M. Panda  et al.  is on “Local changes from a video scene: an end-to-end encoder-decoder type deep neural network architecture with feature pooling”. An end-to-end deep learning framework is developed for background subtraction (BS). Initially, a VGG-19 deep neural architecture encoder is used with a transfer learning strategy-induced feature-pooling module capable of extracting multi-scale objects at different scales. Further, a BS scheme is developed where a ResNet-50 deep neural network with an FPM (feature pooling module) block learns

to project from image to feature space efficiently. The decoder framework contains several transposed convolution layers that efficiently project feature space in learning image space. The proposed scheme is evaluated with three widely recognized

video databases. 

Chapter 2.7 by S. Minaee  et al.  is on “Image segmentation using deep learning”. 

The broad success of deep learning has prompted the development of new image

segmentation approaches leveraging deep learning models. A comprehensive review

is provided of efforts in semantic and instance segmentation. The chapter covers the recent literature on deep learning-based image segmentation, including more

than 100 such segmentation methods proposed to date. It provides a comprehensive review with insights into key aspects of these methods. The final chapter by P. Chan et al.  is on “ChatGPT vs Google search on drones”. A comparison is between ChatGPT, as part of modern AI, and Google Search regarding a drone, on different types of drones, drones equipped with cameras, and drones for military uses. There are clearly advantages and disadvantages on the capabilities of both. Is ChatGPT

search worth it or not at the end? It depends on how accurate the researchers want their search to be. The authors suggest that AI is here to stay and can facilitate researchers’ lives as the field continues to mature with time. 
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I like to express my great appreciation to all chapter authors of this book, who are leading experts in the field. From their excellent presentations, one can easily draw the conclusion that both pattern recognition and computer vision are profoundly influenced by the development of modern AI, while some traditional work

like syntactic pattern recognition, Bayesian classification, etc. remains active. Unlike journal publication that publishes mainly original research work, this book covers both tutorial materials and research results. I like to thank Prof. T. Bouwmans for his help in securing Chapters 2.4, 2.5, and 2.6 for this book. Since this volume is a continuation of the Handbook series on pattern recognition and computer vision, Vols. 1–6, I like to express my deep gratitude to authors who have contributed

two or more chapters in the series as well as one chapter to the current volume

including Prof. C. Suen, Prof. K. Y. Huang, Prof. J. A. Benediktsson, Prof. S. Ozer, Prof. P. Rosin, Prof. T. Bouwmans, Prof. G. Moser, and Prof. H. D. Cheng. Finally, my special thanks go to my wife Wanda for her understanding during this long

process of book preparation. 

C. H. Chen

 November 2024
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Chapter 1.1

Interpreted Graphs —

A Formal Tool for Syntactic Pattern Recognition:

Properties and Applications

Mariusz Flasiński

 IT Systems Department, Jagiellonian University, 

 ul. prof. St. Lojasiewicza 4, Cracow 30-348, Poland

 mariusz flasinski@uj.edu.pl

A model based on interpreted graphs for syntactic pattern recognition is presented in this chapter. Its basic concepts and definitions are introduced. The formal

properties of interpreted graphs are summarized. The applications of interpreted graphs for syntactic pattern recognition are presented. 

1. Introduction

Syntactic pattern recognition, 1–6 SPR, is one of the basic approaches to pattern recognition. (Other approaches include the decision-theoretic approach, the structural approach, and the neural network-based one.) Representing a set of patterns as a formal language generated by a grammar and constructing a syntax analyzer

(parser) for the grammar which recognizes the patterns is the main idea of the

approach. Three kinds of formal languages can be used for this purpose: string

languages, tree languages, or graph languages. Although graph languages are the

strongest representation/descriptive formalism, 4, 6 they are not used often in syntactic pattern recognition. It results mainly from the intractability of both the graph isomorphism problem and the subgraph isomorphism problem. (The hard membership problem, i.e., PSPACE-complete or NP-complete, for basic classes of graph

grammars/languages is the other main cause of this situation.) In the area of syntactic pattern recognition, a model based on the so-called  interpreted graphs  and parsing for  ETPL( k)/ ETPR( k) graph grammars, which addresses the intractability of (sub)graph isomorphism, is developed since the 1980s. This model has been used successfully in such various real-world applications such as scene analysis,7–9

recognition of objects in vague images, 10, 11 software allocation in distributed systems,12 CAD/CAM integration,13 sign language recognition,14 and reasoning in semantic networks. 15 Some formal characteristics of the model have been presented in Refs. 16–18 and the model is to be extended to both the dynamic programming 3

[image: Image 9]
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 M. Flasiński

of a grammar19 and the efficient multi-derivational parsing20 in the nearest future. 

The comprehensive and holistic overview of the model, including the novel results of the research into the model, is presented in this chapter. 

The methodological considerations on graph algorithms and the issue of the use

of graph-based models in syntactic pattern recognition are presented in the fol-

lowing section. The main concepts concerning interpreted graphs and their formal characterization are included in Section 3. The computational and power properties concerning interpreted graphs are discussed in Section 4, whereas the selected applications are presented in Section 5. The last section contains concluding remarks. 

2. Methodological Motivation

Syntactic pattern recognition has been successfully used in many applications, 

including shape analysis, medical image/signal analysis, speech recognition and

natural language processing, scene analysis, analysis of visual events and activities, structure analysis in bioinformatics, chemistry and geology, signal analysis for process monitoring and control, pattern recognition for CAD/CAM, and seismology. 

(The survey of syntactic pattern recognition applications in Ref. 6 contains ca 1000

sources published since the 1960s.) From the methodological point of view, SPR

methods can be based on string grammars (see, e.g., Refs. 19–25), tree grammars (see, e.g., Refs. 26–31), and graph grammars (see, e.g., Refs. 9, 13, 14, 32–35). 

Although graphs are the strongest representation/description formalism (i.e., 

the stronger one than string and tree formalisms), their applications in both structural and syntactic pattern recognition are limited for computational complexity reasons. As we have mentioned in Introduction, pattern recognition in the syntactic approach is performed with the help of algorithms of syntax analysis (parsing) of (structural) patterns. In structural pattern recognition, it is performed with the help of pattern matching algorithms. In case of graph structures, it means that

structural pattern recognition (graph matching) comes down to the graph isomor-

phism problem, which in general is in the class NP. 36 Although intensive research into developing efficient algorithms for the problem has been led since the 1970s, only exponential time (or “quasi”-polynomial or polynomial for special cases of the problem) graph isomorphism algorithms have been developed till now. 37–41

In syntactic pattern recognition, the situation is not any better than in the

structural one. First of all, let us remind when the use of syntactic pattern recognition methods is more advantageous than the use of the structural ones. Three

premises determining the choice of syntactic pattern recognition have been identified in Ref. 6. a A multiple reusability of structural subpatterns is the first premise. If a (huge) learning set consisting of reference patterns can be composed of a (relatively) small number of substructures, then a pattern parsing technique is more efficient a These premises are discussed in detail in Ref. 6. 
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computationally than the pattern matching one. A hierarchy-oriented multi-level

nature of the recognition process is the second premise. If one would like to identify meaningful substructures that can be used for describing patterns in terms of their multi-level syntactical characterization, then the use of generative grammars and the corresponding syntax analyzers is recommended. A requirement of structure-based  interpretation  of objects (systems, phenomena, processes, etc.) represented by structural patterns is the third premise which determines the choice of the syntactic approach. Such an interpretation can be performed, e.g., to identify behavioral characteristics, understand phenomena and processes, and predict modes of behaving

or functional properties. For complex structural objects that such an interpretation can be made by inferring their global properties from the characteristics of their substructures, the use of generative grammars and the corresponding formal automata seems to be the most effective technique. 

Now, we can discuss the issue of the use of graph grammars and graph parsers in

syntactic pattern recognition. (An exhaustive discussion of this issue is contained in Ref. 6. ) Although graph grammars are the strongest generative formalism of formal language theory which has been used for the synthesis of structural patterns (e.g., in computer graphics and image processing)3, 42–44 since the 1970s, only a few graph grammar parsers have been constructed and applied in syntactic pattern recognition over the course of this time. 6, 9, 32–34, 45–47 This is because the membership problem for graph languages is a hard membership problem, i.e., PSPACE-complete or NP-complete for standard classes of graph grammars/languages, which has been shown

by the studies conducted in the 1980s. 48–51 Before we discuss the reason for that, let us describe the membership problem formally. 

In the theory of graph languages, the  membership problem  is the following decision problem: Given a graph language  L (treated as a set) and a graph  g, decide whether  g  belongs to  L. (That is,  g ∈ L?) Since in this theory we assume that  L

is defined (generated) by a graph grammar  G, i.e.,  L =  L( G), we can ask whether g ∈ L( G). In the theory of formal languages, automata (in practice, parsers, which are their algorithmic counterparts) are used to decide whether some language element (string, tree, or graph) belongs to a language generated by a given grammar. 

Therefore, we can reformulate the membership problem in the following more prac-

tical way. Let  L  be a class of graph languages. Define a class of graph automata (parsers)  A  such that for any language  L ∈ L  there exists an automaton  A ∈ A which accepts  L,  L =  L( A), and  A  decides for any graph  g  whether  g ∈ L( A). 

There are two fundamental causes of the intractability of the membership prob-

lem for graph languages which are now summarized briefly.b The first cause is related to the nature of a graph structure, which is unordered in general. (For two remaining structures used in syntactic pattern recognition, that is strings or trees, we have linear ordering or partial ordering, correspondingly.) Let us remind that the main idea of any parsing scheme consists in analyzing a structure in order

bThe problem is discussed in a more detailed way in Ref. 6. 
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to determine consecutive substructures, called here  handles, and matching them against structures predefined in the parser control table. If we have any kind of ordering whatsoever, we can determine succeeding handles. Since the lack of any

ordering of a graph structure, this means to look for a subgraph (a handle) of a parsed graph that is isomorphic to one of graph structures predefined in the (graph) parser. Thus, we are dealing with the subgraph isomorphism problem, which can

be described formally as follows. 

Let  gA = ( VA, EA),  gB = ( VB, EB) ,  and  gC = ( VC, EC) be graphs. An isomorphism from  gA  onto  gB  is a bijective function  f  from  VA  onto  VB  such that EB =  {{f ( v) , f ( w) } :  {v, w} ∈ EA}. 

We say that  g

 ∼

 A  is  isomorphic to gB  and denote this with  gA =  gB. 

A graph  gC  is a (full)  subgraph of gB  iff  VC ⊆ VB  and  EC =  {{v, w} ∈ EB: v, w ∈ VC}. 

The  subgraph isomorphism problem  is a decision problem defined in the following way. 

Let  gX = ( VX , EX ) and  gY = ( VY , EY ) be graphs. Is there a subgraph g 0

 ∼

 X = ( V  0

 X , E 0

 X ) of  gX  such that  g 0 X =  gY ? 

In 1971, Cook showed in his groundbreaking paper52 that the subgraph isomorphism is NP-complete by a reduction from the 3-SAT problem. Since then, a few

approximation and heuristic algorithms have been proposed. An algorithm proposed by Ullmann in Ref. 53 (and its update54), which uses backtracking, is exponential in general. A linear time algorithm for subgraph isomorphism for a special case of planar graphs was published by Eppstein in Ref. 55. Cordella, Foggia, Sansone, and Vento proposed in Ref. 56 an algorithm, called VF2, whose computational complexity is reduced in relation to the Ullmann algorithm. VF2 uses a state search representation and a set of feasibility rules for pruning a search tree and checking the consistency of partial solutions. Its more efficient version, called VF3, was published in Ref. 57. Two methods, namely Iterated Labeling Filtering (ILF) and Local All Different (LAD), based on the constraint programming paradigm and using the

efficient filtering techniquesc were defined in Refs. 58 and 59, respectively (LAD

algorithm was then improved in Refs. 60, 61. ) Within the tree search approach, the RI/RI-DS algorithm, which is based on a pattern graph topology and uses very simple rules that reduces a search space significantly, was proposed in Refs. 62, 63. The Glasgow Subgraph Solver, presented, e.g., in Refs. 64, 65, combines the constraint programming approach with search and inference techniques. The very efficient version of the algorithm, which uses filtering based on clique-finding, was published in Ref. 66. 

The second fundamental cause of the intractability of the membership problem

for graph languages is related to the form of a graph grammar production, which

c Filtering means here labeling each node in relation to other nodes of the graph and defining partial ordering on the labels for tree pruning. 
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contains, apart from the left-hand side graph and the right-hand side graph, the formalism describing the embedding mechanism. This mechanism specifies how to

embed the right-hand side graph in a graph transformed during a derivation step. 

Since the embedding mechanism operates at the border between the left- and right-hand sides of the production and their context, we do not have here the  context freeness  property (i.e., the order-independence property which guarantees that a reordering of the derivation steps does not influence the result of the complete derivation). This property, related to the  finite Church–Rosser, fCR,  property (non-overlapping steps can be done in any order), has to be guaranteed in order to

obtain an efficient parsing algorithm. It can be made by restricting the power of the embedding mechanism. This fundamental problem is out of the scope of this

chapter and it is discussed, together with a solution proposed, in Ref. 6. 

In order to summarize our methodological considerations, let us come back to

the first cause of the intractability of the membership problem for graph languages, i.e., the issue of looking for a handle subgraph in a parsed graph that is isomorphic to one of graph structures predefined in a graph parser, i.e., the subgraph isomorphism problem. The classic methods mentioned above, which have been developed

to handle this problem, solve it as it is formulated within the area of graph theory. 

Within a research, which has been led into graph-grammar-based syntactic pat-

tern recognition since the 1980s, 7, 8 the novel approach to handle this problem has been proposed. The observation that graphs used in syntactic pattern recognition are not just formal (mathematical) structures but are used to represent objects, structures, phenomena, etc. is the fundamental assumption of this approach. As a consequence of this observation, based on the Tarski (semantic) model theory, the so-called  interpreted graphs, which are ordered linearly, are constructed within a description/representation scheme. This way the (sub)graph isomorphism problem

can be reduced to the string matching problem. The concept of interpreted graphs is introduced in the following section. 

3. Interpreted Graphs: Concept and Construction

Formal definitions of interpreted graphs, indexed edge-unambiguous ( IE) graphs and reversely indexed edge-unambiguous ( rIE) graphs are introduced and discussed in the first subsection, whereas a generic scheme of the construction of  IE  and  rIE

graphs is presented in the second subsection. 

3.1.  Concept and definitions

As we have mentioned above, the observation that graphs are used in syntactic pattern recognition as (structural) patterns for the representing of (complex) objects, systems, phenomena, etc.d is the first assumption of our approach. (Actually, a set dThat is a pattern is a formal representation/description of an object/system/phenomenon, etc. 
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of such patterns is treated as a formal graph language  L  in syntactic pattern recognition.) In other words, an object/system/phenomenon, etc. can be treated as an

interpretation of a (formal) graph pattern. We have an analogical situation in the Tarski (semantic) model theory, in which we have a language  L, a structure  S  with a domain  D, and we define an interpretation function  I  that maps symbols of  L

to elements of  D. As we see further on, we use a relation between a graph pattern and an entity it represents in order to make use of a model space for determining the linear ordering and then transfer this ordering to a space of patterns. Let us formalize our considerations. 

Without loss of generality, we consider directed node- and edge-labeled graphs. 

Let us introduce them as in Ref. 67. 

Definition 1. A directed node- and edge-labeled graph, the  EDG  graph, over Σ

and Γ is a quintuple

 h = ( V, E,  Σ ,  Γ , φ) , 

where  V  is a finite, non-empty set of nodes, Σ is a finite, non-empty set of node labels, Γ is a finite, non-empty set of edge labels,  E  is a set of edges of the form ( v, γ, w), in which  v, w ∈ V, γ ∈  Γ, and  φ :  V →  Σ is a node-labeling function. 

The family of the  EDG  graphs over Σ  and  Γ is denoted by  EDG Σ ,  Γ. 

Now, we extend the notion of the  EDG  graph to interpreted EDG graph as

in Refs. 6, 17. Let us introduce the definition of a relational structure which is a structure represented by an  EDG  graph. 

Definition 2. Let  U  be a finite set of individual entities called a universe,  NU  be a set of their names, and  AU  be a set of their attributes. 

Let each entity  uk, k = 1 , . . . , K  of  U  be represented by its name  nku ∈ NU  and the set of its attributes  aku ∈  2 AU . 

Let  R ⊂  2 U×U  be a set of binary relations such that for a pair of entities at most one relation is established,  NR  be a set of their names,  AR  be a set of their attributes, and  R =  {( nr, ar) :  nr ∈ NR, ar ∈  2 AR}. 

A relational structure is a sextuple S = ( U, R, NU , NR, AU , AR). 

Now, we introduce the interpretation of an  EDG  graph over a relational

structure. 

Definition 3. Let  h = ( V, E,  Σ ,  Γ , φ) be an  EDG  graph over Σ and Γ, S =

( U, R, NU , NR, AU , AR) be a relational structure, Σ  ⊂ NU ,  Γ  ⊂ NR. An interpretation  I  of the graph  h  over the structure S is a pair

 I = (S , F) , 

where  F = ( F 1 , F 2) is the  denotation function  defined in the following way:

–  F 1 assigns an entity  u ∈ U  having a name  a ∈ NU  to each graph node  v ∈

 V, φ( v) =  a, a ∈  Σ. 
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(a)

(b)

(c)

Fig. 1. (a) An exemplary interpretation  I, (b) a relational structure and (c) the corresponding interpreted graph. 

–  F 2 assigns a pair of entities ( u, u)  ∈ r, r ∈ R  to each graph edge ( v, γ, w)  ∈

 E, v, w ∈ V, γ ∈  Γ such that  F 1( v) =  u,  F 1( w) =  u  and  r  has the name  γ. 

Finally, we define an interpreted  EDG  graph. 

Definition 4. Let  h  be an  EDG  graph over Σ and Γ, S be a relational structure, and  I  be the interpretation of  h  over S defined as in the definition of interpretation. 

An interpreted  EDG  graph is a triple  hI = (S , h, I). 

For example, let a set of individual entities  U  and a set of spatial (2D) relations R  be given, as it is shown in Fig. 1(a). We can define a set of node labels Σ which represent these entities and a set of edge labels Γ which represent these relations, together with the interpretation  I  as it is depicted in Fig. 1(a). Now, a relational structure which is shown in Fig. 1(b) is represented by an interpreted graph shown in Fig. 1(c). 
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In practical applications of syntactic pattern recognition, we use attributed  EDG

graphs in order to represent entities and relations of a relational structure in a more precise way. Let us introduce the following definition. 

Definition 5. Let  A  be a set of node attributes and  B  be a set of edge attributes. 

An attributed directed node- and edge-labeled graph,  a-EDG  graph, over Σ and Γ

is a septuple

 h = ( V, E,  Σ ,  Γ , φ, α, β) , 

where  V ,  E, Σ, Γ,  φ  are defined as in Definition 1,  α :  V →  2 A  is a function which associates a set of node attributes with each node,  β = ( βw) w∈ Γ is a tuple of functions  βw :  Ew →  2 B  associating a set of edge attributes with each  w-labeled edge, for each  w ∈  Γ. 

In order to define an interpreted  a-EDG  graph, one has to extend the denotation function  F  in the interpretation  I  to associate the attributes of entities/relations of a relational structure with the proper node/edge attributes of an  a-EDG  graph. 

In our approach, given a structure S (in an application area) and the corresponding interpreted graph  hI , we are able to define a graph  g  which has the following two properties6, 9:

 •  The representation of S by  g  is unique and unambiguous. 

 • g  is totally ordered, i.e., the nodes of  g  are indexed in an unambiguous way and (in case of directed graphs) the direction of edges of  g  is defined in an unambiguous way. 

There are two general parsing strategies in compiler design theory: top-down parsing and bottom-up parsing. In our model, both kinds of parsers have been developed, 

i.e., top-down parsers of  ETPL( k) graph languages7–9 and bottom-up parsers of ETPR( k) graph languages. 6, 17, 18 For graphs belonging to these languages, various indexing schemes should be used. Therefore, we introduce two types of graphs:  IE

graphs which are parsed by top-down  ETPL( k) parsers and  rIE  graphs which are parsed by bottom-up  ETPR( k) parsers. 

Definition 6. Let  hI = (S , h, I) be an interpreted  EDG  graph over Σ and Γ. An indexed edge-unambiguous graph,  IE  graph, over Σ and Γ defined on the basis of the graph  hI  is an  EDG  graph  g = ( V, E,  Σ ,  Γ , φ) which is isomorphic to  h  up to the direction of the edges, such that the following conditions are fulfilled:

1.  g  contains a directed spanning tree  t  such that the nodes of  t  have been indexed due to the Level Order Tree Traversal (LOTT). 

2. The nodes of  g  are indexed in the same way as the nodes of  t. 

3. Every edge in  g  is directed from the node having a smaller index to the node having a greater index. 

[image: Image 14]
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(a)

(b)

Fig. 2. (a) Example of an  IE  graph. (b) An  rIE  graph. 

(Let us recall that LOTT means that for each node, first, the node is visited and then its child nodes are put into the FIFO queue. This type of a tree traversal is also known as the Breadth First Search (BFS) scheme.)

The family of all the  IE  graphs over Σ and Γ is denoted by  IE Σ ,  Γ. 

An exemplary  IE  graph  h 1 is shown in Fig. 2(a). The edges of the spanning tree t  are thickened. 

Now, we define  rIE  graphs. 

Definition 7. Let  hI = (S , h, I) be an interpreted  EDG  graph over Σ and Γ. A reversely indexed edge-unambiguous graph,  rIE  graph, over Σ and Γ defined on the basis of the graph  hI  is an  EDG  graph  g = ( V, E,  Σ ,  Γ , φ) which is isomorphic to  H

up to the direction of the edges, such that the following conditions are fulfilled: 1.  g  contains a directed spanning tree  t  such that the nodes of  t  have been indexed due to the Reverse Level Order Tree Traversal (RLOTT). 

2. The nodes of  g  are indexed in the same way as the nodes of  t. 

3. Every edge in  g  is directed from the node having a smaller index to the node having a greater index. 

(The RLOTT scheme is analogous to the LOTT (BFS) scheme, however it uses a

LIFO queue (i.e., a stack) instead of a FIFO queue.)

The family of all the  rIE  graphs over Σ and Γ is denoted by  rIE Σ ,  Γ. 

An exemplary  rIE  graph  h 2 is shown in Fig. 2(b). 

3.2.  Generation of (r)IE graphs

As we have mentioned in a previous subsection, an  (r)IE  graph is constructed on the basis of a structure considered in an application domain and the corresponding

[image: Image 15]
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interpreted  a-EDG  graph. The requirement of the possibility of (total) ordering of the entities of this structure is the only essential postulate which is required in our model. This means that the relation of a total order should be pre-defined based on the properties of the entities, i.e., on the basis of their names (categories) and their attributes (sometimes also on the basis of the properties of the relations in the structure). The defining of such a total order relation depends, thus, on the specificity of an application area, and our forty years of experience in the use of the model in syntactic pattern recognitione shows that it is not difficult in practice. 

The examples of some applications, which especially focus on the generation of  (r)IE

graphs, are presented in Section 5. 

The generic scheme of the construction of an  (r)IE  graph consists of the following main two steps. In the first step, the so-called  S-entity, which is the minimal entity in the set of structure entities (in the sense of the pre-specified total order), is identified and indexed with 1. 9 Then, its neighboring entities (i.e., in the sense of being adjacent in the structure) are indexed on the basis of the ordering relation. 

Then, the structure is explored either according to LOTT scheme in case of  IE

graphs (see Definition 6) or according to RLOTT scheme in case of  rIE  graphs (see Definition 7) and the succeeding entities are indexed on the basis of the ordering relation. At the end of this step, the indices of the entities are transferred to the corresponding nodes of the  (r)IE  graph. 

In the second step, having the graph nodes uniquely indexed, the  (r)IE  graph edges are defined on the basis of the entities’ inter-relations. For the set of edge labels Γ, the following property is assumed: There exists the edge label  γ− 1  ∈  Γ for each label  γ ∈  Γ such that the edges connecting nodes  v, w ∈ V :  e = ( v, γ, w)  ∈ E

and  e− 1 = ( w, γ− 1 , v)  ∈ E  describe the same relation between the entities. The edges  e  and  e− 1 are called semantically equivalent. This assumption is not restrictive in practice. However, if for a relation  rel  no semantic “opposite counterpart” exists, we use the following formal trick in our model: We simply define

the opposite edge label  rel− 1, that is, the label  rel  marked by  − 1. Based on this property, we define the edge-unambiguous graph in such a way that every

edge is directed from the node with a smaller index to the node with a greater

index. 

Let us note that the  (r)IE  graph constructed according to this scheme represents the structure in an unambiguous way, and this graph is totally (linearly) ordered since its nodes are indexed according to the total order (pre-specified) and the direction of its edges is fixed in an unambiguous way. For such a linearly ordered (r)IE  graph, we introduce the (unambiguous) Fu-Shi string representation, 33 called a characteristic description. 

e The model was used, e.g., for scene analysis, recognition of objects in vague images, software allocation in distributed systems, process monitoring and control, CAD/CAM integration, manufacturing quality control, mesh refinement (finite element method, FEM) in CAE systems, sign language recognition, reasoning in semantic networks, and structure analysis in medicine. 
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Definition 8. Let  vk ∈ V  be the node of an  (r)IE  graph  g = ( V, E,  Σ ,  Γ , φ). 

A characteristic description of  vk  is the quadruple

( a, r, ( e 1  . . . er) , ( i 1  . . . ir)), where  a  is the label of the node  vk, i.e.,  φ( vk) =  a,  r  is the out degree of  vk (the out degree of the node designates the number of edges going out from this

node), ( i 1  . . . ir) is the string of node indices to which edges going out from  vk  come (in increasing order), and ( e 1  . . . er) is the string of edge labels ordered in such a way that the edge having the label  ex  comes into the node having the index  ix. 

Now, we can define the characteristic description of an  (r)IE  graph. 

Definition 9. Let  g = ( V, E,  Σ ,  Γ , φ) be an  (r)IE  graph, where  V =  {v 1 , . . . , vn}  is the set of nodes indexed such that  vi  is indexed with  i  and  I( i) , i = 1 , . . . , n  is the characteristic description of the node  vi. 

The string  I(1)  . . . I( n) is called the characteristic description of the graph  g. 

For example, the characteristic description of the  IE  graph  h 1 shown in Fig. 2(a) is defined in the following way:
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4. Interpreted Graphs: Formal Properties

Computational properties of models based on interpreted/ IE/ rIE  graphs are presented in the first subsection, whereas power properties of  ETPL( k) and  ETPR( k) graph grammars which generate the sets of  IE  and  rIE  graphs, respectively, are discussed in the second subsection. 

4.1.  Computational properties

 ETPL( k) and  ETPR( k) graph grammars, which generate the sets of  IE  and  rIE

graphs, are subclasses of the class of Node Label Controlled,  NLC, graph grammars67 which is a standard class in the theory of graph grammars.  NLC  graph grammars are also one of the most popular graph grammar classes used in syntactic pattern recognition.6 Since we consider edge-labeled ( e) and directed ( d) graphs in this chapter, we present these classic grammars for this kind of graphs. Let us introduce the definition of  edNLC  graph grammars. 67

Definition 10. An edge-labeled directed Node Label Controlled,  edNLC, graph grammar is a quintuple

 G = (Σ ,  Δ ,  Γ , P, Z) , 
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where Σ is a  finite, non-empty set of node labels, Δ  ⊆  Σ is a  set of terminal node labels, Γ is a  finite, non-empty set of edge labels, and  P  is a  finite set of productions  of the form ( l, D, C), in which  l ∈  Σ \ Δ , D ∈ EDG Σ ,  Γ , C : Γ  × { in ,  out } −→

2Σ × Σ × Γ ×{ in ,  out }  is the  embedding transformation  and  Z ∈ EDG Σ ,  Γ is the  starting graph  called the  axiom. 

Now, we introduce definitions of  ETPL( k) and  ETPR( k) grammars in a similar way as in Ref. 15. 

Definition 11. Let  G = (Σ ,  Δ ,  Γ , P, Z) be an  edNLC  graph grammar.  G  is called a  TLPO ( rTLPO) graph grammar iff it fulfills the following conditions: (1) The graphs  Z  and  D  of the right sides of all the productions are  IE ( rIE) graphs. 

(2) For each graph of the right-hand side  D, the directed spanning tree  T  is of at most two levels ( D  is the two-level graph) and a node indexed with 1 is labeled with a terminal symbol. 

(3) Each graph belonging to a leftmost (rightmost) derivation in  G  is an  IE ( rIE) graph. 

(4) For each derivational step, a production is applied to a node with the least (greatest) index. 

(5) Node indices do not change during a derivation. 

A derivation fulfilling conditions (4) and (5) is called a regular leftmost (rightmost) derivation. 

The next definition recalls to the idea that has been applied for the well-known top-down parsable string  LL( k) grammars68, 69 and bottom-up parsable string  LR( k) grammars.70 In both cases, we require an unambiguity of a production choice during a leftmost (rightmost) derivation, which makes a parsing algorithm efficient. We require an analogous property for  ETPL( k) ( ETPR( k)) grammars, respectively. 

First, let us consider  ETPL( k) grammars. For  LL( k) grammars, such an unambiguity concerns the  k-length prefix of a word. 68, 69 In case of  ETPL( k) grammars, it concerns an  IE  subgraph containing a node  v  having an index determining a place of a production application and its  k  successors at the second level. Such an  IE  subgraph is called a  k-successors handle. Thus, we require that for every derivational step in a graph grammar  G, we can choose a production in an unambiguous way on the basis of the analysis of a  k-successor handle, which is called the  property of an unambiguous choice of a production with respect to the k-successor handle. 

Definition 12. Let  G  be a  TLPO  graph grammar.  G  is called a  PL( k) graph grammar iff  G  has the property of an unambiguous choice of a production with respect to the  k-successor handle in a regular leftmost derivation. 

Now, let us consider  ETPR( k) grammars. For  LR( k) grammars, the unambiguity means that during a rightmost derivation one can identify a (string) handle and

choose a production in an unambiguous way by looking at most  k  symbols beyond
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the handle.70 In case of  ETPR( k) grammars, it means that during every derivational step we can identify a (graph) handle and choose a production in an unambiguous

way given a two-level  k-successor  rIE  graph beyond the handle, which is called the  property of both the identification of a handle and an unambiguous choice of a production given a two-level k-successor rIE graph beyond the handle. 

Definition 13. Let  G  be an  rTLPO  graph grammar.  G  is called a  PR( k) graph grammar iff  G  has the property of both the identification of a handle and an unambiguous choice of a production given a two-level  k-successor  rIE  graph beyond the handle in a regular rightmost derivation. 

The final definition forbids the embedding transformation to delete the edges

that have been already accepted. 

Definition 14. Let  G  be a  PL( k) ( PR( k)) graph grammar.  G  is called an  ETPL( k) ( ETPR( k)) graph grammar, iff the following condition is fulfilled. If ( v, λ, w), where φ( v)  ∈  Δ, is an edge of an  IE ( rIE) graph  H  belonging to a certain regular leftmost (rightmost) derivation, then this edge is preserved by all the embedding transformations applied in succeeding steps of the derivation. 

Although, as we have mentioned in Section 2, the membership problem for graph

languages is a hard membership problem (PSPACE-complete or NP-complete for

standard classes of graph grammars/languages), the parsing for  ETPL( k) /ETPR( k) graph grammars can be performed in polynomial time. 

Let us present the following theorem. 9

Theorem 1.  The running time of the parsing algorithm for ETPL( k)  graph grammar is O( n 2) , where n is the number of graph nodes. 

Proof. The proof of the theorem is presented in Ref. 9. 

The following theorem is presented in Refs. 6, 17. 

Theorem 2.  The running time of the parsing algorithm for ETPR( k)  graph grammar is O( n 2) , where n is the number of graph nodes. 

Proof. The proof of the theorem is presented in Ref. 17. 

The model of interpreted/ IE/ rIE  graphs allows us to reduce the computational complexity in case of the subgraph isomorphism problem. Let us formulate the

following proposition. 

Proposition 1.  The subgraph isomorphism problem for ( r) IE graphs reduces to the string-matching ( string-searching)  problem. 

Proof. Any ( r) IE  graph is represented unambiguously by a characteristic description which actually is a string representation. Thus, the ( r) IE  subgraph isomorphism
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problem reduces to the looking for a place where a (shorter) characteristic description (substring) representing an ( r) IE  subgraph  gY  appears in a (larger) characteristic description (string) representing an ( r) IE  graph  gX, which as a matter of fact is the string-matching (string-searching) problem. 

From the Proposition 1 it follows that the subgraph isomorphism problem for

( r) IE  graphs can be solved in polynomial time. For example, we can formulate the following corollary for the Rabin–Karp algorithm. 71

Corollary 1.  The subgraph isomorphism problem for ( r) IE graphs can be solved by the Rabin–Karp algorithm in O( k 2 k 2

1 2 )  the worst-case running time, where k 1  is the

 number of nodes of an ( r) IE subgraph gY that we look in a graph gX for and k 2  is the number of nodes of the ( r) IE graph gX. 

Proof. The worst-case running time of the Rabin–Karp algorithm is  O( mn), where n  is the text length,  m  is the pattern length. Any  k-node ( r) IE  graph  g  is represented unambiguously by a characteristic description which is a string consisting of at most 2 k +  k( k −  1) elements. 

Of course, in case of ( r) IE  graphs, the running time efficiency for the graph isomorphism problem is even better. 

4.2.  Power properties

Not only is the model of interpreted/ IE/ rIE  graphs and  ETPL( k)/ ETPR( k) grammars efficient computationally but also of a big descriptive/representation power. 

In order to present the power properties, let us introduce the following denotations. 

Let  X  denote a class of graph grammars. Then,  L( X) denotes a set of graph languages such that there exists an  X  grammar  G  and  L =  L( G). 

Additionally, we say that a language  L  is  ETPL( k) ( ETPR( k)) if there exists an  ETPL( k) ( ETPR( k)) grammar  G  such that  L =  L( G). 

First, we show the power properties of  ETPL( k) grammars generating  IE

graphs. 16

To show that languages generated by  ETPL( k) grammars are still within the class of the (classic)  edNLC  languages, we have to compare generative properties that are intrinsic for both classes. Therefore, we introduce an ordered version of

“pure”  edNLC  grammars, denoted  edNLCo, in the analogous way, as it has been made for comparing a generative power of directed and undirected versions of  NLC

grammars in Ref. 67.  edNLCo  grammars16 operate on  IE  graphs and generate graphs according to a regular leftmost derivation introduced in a previous subsection. Now, we can introduce the following theorem. 16

Theorem 3.  For any k ≥  0 , 

 L( ET P L( k))  ⊆\ L( edNLCo) . 
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Proof. The proof of the theorem is presented in Ref. 16. 

Now, we present the important property of  ETPL( k) grammars showing that increasing the parameter  k  we strengthen the generative power of these grammars essentially. 16

Theorem 4.  For a given k ≥  0 , 

 L( ET P L( k))  ⊆\ L( ETPL( k + 1)) . 

Proof. The proof of the theorem is presented in Ref. 16. 

In the theory of graph grammars, a variety of grammars of the  NLC  type has been defined, e.g., boundary  NLC  grammars, apex  NLC  grammars, linear  NLC

grammars, and regular  NLC  grammars. The boundary  NLC  subclass is a kind of a formal benchmark for any  NLC  grammars with a polynomial membership problem since it is the least-restrictive one, i.e., it generates the largest class of languages. 72

In order to compare this class with  ETPL( k) grammars, we introduce the following definition. 

Definition 15. Let  G = (Σ ,  Δ ,  Γ , P, Z) be an  edN LCo  graph grammar. A grammar G = (Σ ,  Δ ,  Γ , P, Z) is called a boundary  edN LCo  grammar, denoted  B- edN LCo, if for every production ( l, D, C):

if ( v, λ, w)  ∈ ED,  then  φD( v)  ∈  Δ or  φD( w)  ∈  Δ . 

The following two theorems show that  ETPL( k) grammars are neither weaker nor stronger (if a generative power is concerned) than  B-edNLC  grammars. 16 Thus, ETPL( k) is a very strong subclass of  edNLC  grammars. 

Theorem 5.  There exists

 L ∈ L( ET P L( k))

 such that

 L ∈ L( B-edN LCo) . 

Proof. The proof of the theorem is presented in Ref. 16. 

Theorem 6.  There exists

 L ∈ L( B-edN LCo)

 such that

 L ∈ L( ET P L( k)) . 

Proof. The proof of the theorem is presented in Ref. 16. 
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Now, we characterize the power properties of  ETPR( k) grammars generating rIE  graphs. 18 Analogously as for  ETPL( k) grammars, first, we show that languages generated by  ETPR( k) grammars are still within the class of the  edNLC  languages. 

This time, an “ordered” grammar  edNLCor ( or  means  ordered reversely) operates on  rIE  graphs and generates graphs according to a regular rightmost derivation. 18

Let us introduce the following theorem. 18

Theorem 7.  For any k ≥  0 , 

 L( ET P R( k))  ⊆\ L( edNLCor) . 

Proof. The proof of the theorem is presented in Ref. 18. 

Analogously as for  ETPL( k) grammars, we show that by increasing the parameter  k, we strengthen the generative power of  ETPR( k) grammars essentially.18

Theorem 8.  For a given k ≥  0 , 

 L( ET P R( k))  ⊆\ L( ET PR( k + 1)) . 

Proof. The proof of the theorem is presented in Ref. 18. 

The insufficient descriptive/representation power of  ETPL( k) grammars for solving certain real-world application problems in the area of syntactic pattern recognition was the original motivation for conducting research into bottom-up parsable subclass of  edNLC  grammars, which resulted in the defining of  ETPR( k) grammars. 

The following two theorems18 show, however, that both parsable classes are incomparable if generative power is concerned, i.e., any of them is stronger or weaker than the other. From an application point of view, both classes are needed because they complement each other. 

Theorem 9.  There exists

 L ∈ L( ETPR(1))

 such that for any k ≥  0

 L ∈ L( ET P L( k)) . 

Proof. The proof of the theorem is presented in Ref. 18. 

Theorem 10.  There exists

 L ∈ L( ET P L(1))

 such that for any k ≥  0

 L ∈ L( ET P R( k)) . 

Proof. The proof of the theorem is presented in Ref. 18. 

Let us summarize our considerations with a diagram shown in Fig. 3. (A symbol

    means here the incomparability of classes.)
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Fig. 3. The relations among the subclasses of  edNLC  languages. 

5. Applications of Interpreted Graphs

As we have mentioned in Introduction, interpreted graphs have been used for pattern analysis and recognition in many real-world application areas, including scene analysis, 7–9 recognition of objects in vague images, 10, 11 software allocation in distributed systems, 12 process monitoring and control, CAD/CAM integration, 13 manufacturing quality control, mesh refinement (finite element method, FEM) in CAE systems, sign language recognition, 14 reasoning in semantic networks, 15 and structure analysis in medicine. In this section, we present the general ideas of the applications of interpreted graphs/ IE  graphs for

 •  analysis of combinations of objects (scene analysis), 

 •  analysis of natural objects (sign language recognition), and

 •  analysis of artifactual objects (CAD solids interpretation). 

Interpreted graphs were defined originally for scene analysis in the late 1980s.7–9

Let us consider the generation of the IE graph for an exemplary scene shown in

Fig. 4(a). In the first step, entities (objects) of the scene are identified, the S-entity having the spatial coordinates ( xs, ys, zs) such that  xs = min k∈{ 1 ,...n}{xk}, where x 1 , x 2 , . . . xn  are  x-coordinates of all the  n  entities identified,f then we order the remaining entities according to this  minimum rule (see Fig. 4(b)). In the second step, the relational structure is constructed according to the following rule. First, the neighboring entities of the S-entity are connected with it, then for the entity indexed with 2, its neighboring entities are connected with it, etc., as shown in f If this is not a strict minimum, then we use the  y-coordinates to determine the S-entity; ultimately, we use the  z-coordinates. 

[image: Image 67]
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(a)

(b)

(c)

(d)

Fig. 4. (a) An exemplary scene, (b) the identification of entities, (c) the construction of the corresponding structure, and (d) the  IE  graph representing the scene.6, 7, 9

Fig. 4(c). In the third step, the  IE  graph is generated on the basis of the relational structure according to the rules presented in Section 3.2. Node labels, e.g.,  c ( car), p ( pedestrian), and  v ( van), are used to identify categories of entities, whereas edge labels, e.g.,  r ( right),  b ( behind),  bl ( behind-left), and  br ( behind-right), represent (discrete) spatial relations, as it is depicted in Fig. 4(d). Scenes represented with IE  graphs are analyzed and interpreted with the help of  ETPL( k) parser. 6, 7, 9

In the first decade of the 21st century, a model of the recognition of hand pos-

tures based on interpreted graphs was developed as part of a project aimed at

the constructing of the system for Polish Sign Language, PSL, interpretation.14

Let us consider the main phases of the construction of the IE graph for an exem-

plary PSL sign (K) shown in Fig. 5(a). During the first phase (see Fig. 5(b)) the following steps are performed. First, a polygon which approximates (roughly) the hand contour is defined. Second, the centroid of the polygon (marked with a black square in Fig. 5(b)) is determined as the S-entity. The upper corners of the polygon (marked with black dots in Fig. 5(b)) correspond to the remaining entities of the relational structure. Third, the angles at the corners are measured and they are approximated to the discretized 11-element set of angles  {αa, αb, . . . , αi}. During the second phase, shown in Fig. 5(c), the corresponding structure is constructed. 

The S-entity is labeled with  s  and any other entity is labeled with  x, x ∈ {a, b, . . . , i}, if the angle at the corner corresponding to this entity is  αx. During the third phase, 
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(a)

(b)

(c)

(d)

Fig. 5. (a) An exemplary PSL sign, (b) the identification of characteristic points, (c) the construction of the corresponding structure, and (d) the  IE  graph representing the sign.14

the  IE  graph is generated on the basis of the structure according to the rules presented in Section 3.2. The nodes inherit labels from the corresponding entities. For the labeling of the edges, the 25-element set of edge labels which represent spatial (2D) relations between determined pairs of the entities (the upper corners of the polygon) is used, as it is depicted in Fig. 5(d). PSL signs represented with  IE  graphs are recognized with the help of the  ETPL( k) parser. 14

CAD/CAM integration was one of the most challenging problems in the area

of computer science applications for engineering design and manufacturing in the 1980s and 1990s. A CAD/CAM integration model based on interpreted graphs and

 ETPL( k) parsing was developed in the 1990s. 13 The integration was achieved in this model by the use of the same  ETPL( k) graph grammar for the representation/simulation of both a solid modeling process (CAD) and the corresponding

manufacturing process (CAM). A definition of such  IE  graph representations that allow for the intelligent interpretation of designed/manufactured solids was the main
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(a)

(b)

(c)

(d)

Fig. 6. (a) An exemplary solid, (b) the identification of solid features, (c) the construction of the corresponding structure, and (d) the  IE  graph representing the solid. 13

issue of the project. In order to present the main idea of the constructing of a solid IE  graph representation, we consider the following example. Let us consider a solid shown in Fig. 6(a). In our approach, we assume that the feature-based solid modeling approach is used, which means that we provide a designer with a set of prespec-ified high-level entities, called here  feature primitives (e.g., slot, hole, and round). 

A solid is modeled by “embedding” feature primitives in a  basic constructive solid (e.g., rectangular cuboid). Thus, our solid is modeled by “embedding” two blind

slots ( BS) and four holes ( H) in a rectangular cuboid ( RC), as shown in Fig. 6(b). 

Then, the corresponding structure is constructed in the following way (see Fig. 

6(c)). The S-entity represents the basic constructive solid (here,  RC). The remaining entities of the structure represent feature primitives. All the feature entities are connected with the S-entity. If two primitive features interact (e.g., any hole is additionally embedded in a blind slot), then they are also connected in the structure. 

If the mutual position of two features is important (e.g., the pairs of holes), then these features are also connected.g Finally, the  IE  graph representation is generated. 

g The complete set of rules is presented in Ref. 13. 
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The nodes inherit labels from the corresponding entities. In order to define edge labels, the elements which define the basic constructive solid should be indexed. 

In case of the rectangular cuboid, its faces are such elements. They are indexed as shown in Fig. 6(c). Now, the edges from  RC  to any  H  are labeled with  5  since all the holes are embedded in  Face 5  of  RC. The edge from  RC  to  BS  indexed with  3

is labeled with  4.5  since this blind slot is somehow embedded in both  Face 4  and Face 5  of  RC. (The complete set of rules of edge labeling is presented in Ref. 13. ) The  IE  graph- and  ETPL( k)-parser-based interpreter allows one to infer a hierarchy of non-primitive features, like complex features, combined features, etc. which are important from the point of view of manufacturing processes. 13

6. Concluding Remarks

A holistic research programme which consists of the following three generic models

 •  the representation model based on interpreted ( IE/ rIE) graphs, 

 •  the graph-based pattern analysis model based on efficient parsing for ETPL( k)/ ETPR( k) graph grammars, and

 •  the string-based pattern analysis model based on efficient parsing for  DPLL( k) (string) grammars

has been developed in the area of syntactic pattern recognition since the 1980s. 

Its theoretical foundations6, 7, 16, 18, 19 have been established and the variety of IT

systems for real-world application has been constructed on its basis. 7–15, 17, 19, 20

The holistic overview of the representation model based on interpreted graphs, 

including novel results, has been presented in this chapter. The computational

efficiency and the ease of use of the model in various application areas are the main advantage. As we have shown in this chapter, the model could be used effectively in structural pattern recognition as well. The grammar dynamic program-

ming paradigm, 6, 19 which increases the descriptive power of grammars even more, and the multi-derivational parsing paradigm, 20 which allows us to recognize distorted/vague/fuzzy patterns effectively, have been used in the (string)  DPLL( k) grammar model. The results of the research into the extension of the interpreted graph model that would allow us to enhance the  ETPL( k)/ ETPR( k) graph grammar model by the use of these two advantageous paradigms will be the subject of

further publications. 
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Detecting counterfeit coins is important as it preserves the stability of a country’s economy, protects coin collectors, and maintains the integrity of transactions. 

Traditional methods to detect counterfeits relied on physical attributes such as weight, diameter, and metal composition, which are challenged when counterfeit

coins closely resemble genuine coins. Machine learning and computer vision meth-

ods are based on design and do not depend on physical attributes to discriminate counterfeit coins. However, challenges exist due to the small size of coins, high quality of counterfeiting, and limited images of counterfeit coins. Researchers

at Concordia University’s CENPARMI lab have pursued work in this area by

investigating 2D and 3D image process methods and machine learning designs to

enhance the performance accuracy for identifying counterfeiting methods. Fur-

ther, the limited size of datasets available to coin creators and image datasets, particularly for ancient coins, underscores the need for more research on detection methods with limited datasets for more interesting coins like rare coins and antique coins. 

1. Introduction

Coins are generally used in our life, such as retail kiosks, supermarket self-checkout machines, arcade gaming machines, launderette washing machines, car parking

meters, automatic fare collection machines, public transport ticket machines, vending machines, and candies.1 Coins can be used for a long time with less depreciation than paper currency and can be used for extended periods. People enjoy collecting coins because they not only usually have artistic value but also valuable antique coins. 

Detecting and eliminating counterfeit coins has several benefits, such as pro-

moting economic stability, building trust in the currency, protecting collectors, supporting law enforcement, and maintaining market integrity. 2 The primary idea behind coin detection is to compare the physical attributes of a coin to the accepted 29

[image: Image 72]
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(a)

(b)

(c)

(d)

Fig. 1. (a) Samples of Canadian Coins year 1996. (b) Samples of Danish Coins year 1990. 

(c) Samples of Chinese Coins — Memento year 1927. (d) Samples of Chinese Coins — China-Year3

1911-G-One-Dollar-Color. All images were captured by Keyence scanner in the CENPARMI lab. 

standards for legitimate coins. After assessing the coin’s weight, diameter, thickness, metal composition, and magnetism, the coin acceptor sends an appropriate electrical signal through its output connection. 3 Several researchers have invested significant effort into coin identification and counterfeit coin detection. 1, 4–9

The primary motivation for switching from physical features to machine learn-

ing and computer vision approaches to detect counterfeits is due to the same physical attributes and metal types in coins from different countries. A metal item

that precisely matches the weight, size, and type of metal can confuse the system, which is the primary disadvantage of the two systems based on physical characteristics. Therefore, by concentrating on design elements, errors can be removed, and a stronger categorization system can be produced. Computer-designed automated solutions are less expensive, more methodical, and able to be implemented

remotely without the need for human interaction.10 Figure 1(a) shows the samples of Canadian Coins year 1996 and (b) shows the samples of Danish Coins year

1990. Figure 1(c) shows the samples of Chinese Coins — Memento year 1927 and (d) shows the samples of Chinese Coins — China-Year3 1911-G-One-Dollar-Color. 

All images are captured with Keyence scanner at the CENPARMI lab. 

2. Challenges

Counterfeit coin detection, a key component of digital imagery and numismatics, 

is essential to many areas of economic and historical study. Various automatic fake machine detectors are used in coin detection as an initial device for assessing a distinct component of the coin’s features. 11 However, these technologies cannot

 2D and 3D Detection of Counterfeit Coins

31

distinguish the difference between counterfeit and genuine coins when their physical features are identical. The scientific field has been overflowing with studies on image-based techniques for detecting counterfeit coins in recent years. 5, 12

The widespread use of object identification technology has been driven by quick

advancements in digital image processing, pattern recognition, machine vision, and machine learning. Even with these developments, it is surprisingly difficult to create a system that can accurately identify a specific coin because most coins have a similar appearance. Neural networks are mostly used in coin identification techniques to extract different picture characteristics and categorize the feature vectors using classifiers. 13

2.1.  Size of the coins

The challenges in distinguishing between genuine and counterfeit coins are wors-

ened by their tiny size, as most coins are similar in size. This intrinsic property makes it difficult for people to detect microscopic differences in minute characteristics that serve as differentiating qualities between genuine and counterfeit coins. 

In this situation, experts play a critical role, depending on their tactile senses to distinguish minute distinctions in surface, edges, letters, size, and texture — a skill set beyond the common person’s grasp. Furthermore, the lack of special instruments to help in recognizing these discrepancies adds to the difficulty of differentiating real from counterfeit coins. As a result, expertise in coin authenticity validation remains crucial, especially in the absence of accurate sizing technologies. 

2.2.  High quality of counterfeit coins

When counterfeit coins are meticulously constructed to closely resemble the qualities of genuine coins, traditional identification techniques encounter major challenges. 

Well-made counterfeits frequently mimic real coins’ weight, appearance, and even tactile features, making it difficult for people and even automated systems to distinguish the tiny variations. Counterfeiters’ sophisticated skills contribute to the seamless absorption of these reproductions into circulation, aggravating the difficulties of correct detection. Given these issues, there is a growing need for stronger security measures, innovative technology, and professional expertise to properly identify and struggle with the rise of well-produced counterfeit coins in circulation. 

2.3.  Coin images

Establishing a dataset of counterfeit and genuine coin images posed challenges, 

primarily centered around the search for a proper scanner. Due to the reflecting nature of the metallic, bright coin surfaces, as well as their small size, necessitated the use of a specific instrument for image scanning. This task proved to be inherently challenging due to the characteristics of coins. To address this, careful consideration of the scanning environment became imperative to minimize light reflections and

ensure optimal results. Creating an environment to reduce glare emerged as a critical
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aspect in overcoming the challenges of scanning coins, contributing to the successful compilation of a comprehensive dataset for further analysis and research. 

2.4.  Lack of fake coin images

In the world of coin collecting, distinguishing genuine from counterfeit coins can be challenging. Some counterfeit coins are easily identified, while others are expertly crafted to mimic the real thing. The possession of counterfeit coins is strictly pro-hibited by the government, and legal consequences await those found in possession of them. The government does not release images of fake coins due to security concerns, making it challenging for researchers to conduct meaningful investigations. 

This lack of data in existing literature presents a significant obstacle, particularly in the realm of counterfeit coins. 

In recent coin detection investigations, the Concordia University (CENPARMI)

lab in Montreal, Quebec, has developed numerous unique ways for identifying counterfeit coins. They progressed from two-dimensional to three-dimensional image

processing for coin recognition, 6, 14 capturing height and depth rather than color levels. The authors of Ref. 15 focused their research on coin weights and employed an autoencoder to identify coins. It has been studied how to identify fake anomalous coins using an autoencoder. 

Large datasets are necessary for most machine learning algorithms for effective

training and performance. However, there is a notable lack of images, especially for ancient coins, which makes developing robust models for coin recognition difficult. 16

As a result, coming up with a technique to reliably detect counterfeit coins in a small dataset is not only technologically necessary but also extremely useful. In the case of rare and antique coins, when image resources are few and counterfeiting is a serious concern, this would be extremely helpful for identification and categorization, and this remains an open area of research. 

3. Coin Detection

In recent years, numerous research papers have been prepared to assess the differences between counterfeit and genuine coins. There have been several papers for

counterfeit coin detection based on image processing techniques and classification algorithms that utilized several different approaches like Hough transform, Gabor filter, Heuristics, and artificial neural networks. The distinction between counterfeit and non-counterfeit coins is an important task. However, it can be challenging for those who are new to the field along with rare or damaged coins. Even computer-based methods may face difficulties. This is due to practical and inherent issues. 17

A mature recognition system typically consists of four main components: image capturing, pre-processing, feature extraction, and classification. Some research studies also include a verification phase. 18–20
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CENPARMI students at Concordia University in Montreal have developed sev-

eral methods for detecting counterfeit coins. For example, the authors of Ref. 5 proposed a method for isolating individual letters and numbers on coins to study their features separately. Once the segmentation of letters was completed, four attributes were extracted from them, including letter width, smoothness, height, and width. 

Additionally, two characteristics between adjacent letters were investigated, such as relative distance and relative angle. The authors conducted experimental tests on two groups of coins to demonstrate the effectiveness of these features. To accomplish this, the authors analyzed the lettering, images, and texture of coin faces to identify potential fake features. To separate the letters and digits from the image background and extract their features, they applied a novel shape feature, and a distinct region feature called the Maximally Stable Extremal Region (MSER) for

texture analysis. 

After capturing an image of a coin, the next step is segmentation. This involves separating the image into two parts: the background and the foreground. The

background is usually a dark area that does not contain any useful information. 

To extract the foreground from the background, the image is detected and seg-

mented using a technique called Hough transform. This is the most used technique for this purpose:

 •  The steps of the Hough transform method are as follows:

1. Obtain a binary edge image. 

2. Specify the sub-divisions in  x-y-r  plane. 

3. Examine the counts of accumulator cells for high pixel concentration. 

4. Search for the local maxima cells. 

After Segmentation, it is necessary to binarize it. All letters and digits are distributed in a circle in the center of the coin. To separate the letters, it is better to limit the image of the coin to the size of the ring, which contains only the letters. 

In this project, they evaluated 16 coins. Eight coins are from the year 1990, and the others are from the year 1996. The project posed several challenges, including detecting subtle patterns that differentiate similar objects. This is particularly difficult in pattern recognition applications where there are many similarities and differences between classes. The size of the coin was another challenge. Counterfeit coins are often indistinguishable from genuine ones based on size alone. Even visual inspections may not reveal fine details in texture and design, and there are no direct measurement tools for these features. Different forging techniques also create unique challenges. Fake coins do not have uniform features that differentiate them from genuine coins. However, counterfeit coins from the same source tend to share similar characteristics, whereas those from various sources do not. 

Finally, the development of advanced counterfeiting technologies and the lack

of expert knowledge make it more difficult to distinguish between counterfeit and genuine coins. 
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The method proposed in Ref. 14 worked with a 3D approach. Most current methods for detecting fake coins are based on 2D images, which only provide statistical information about length and width and lose important characteristics like height and depth. Therefore, 3D techniques have become more popular in recognition, 

biometrics, security, and image processing. In this paper, the authors suggested a 3D method to detect and analyze the coin surface and extract important features. 

They introduced the Precipice Border Detection Algorithm (PBDA), which is not

considered in previous methods. The authors extracted effective features based on the depth and height of a coin. For detecting the border of the coins, they used the fuzzy C-Means algorithm. 6, 17

The major parts of this paper are as follows:

 •  Creating six height-map image datasets. 

 •  Suggesting a 3D Precipice Boundary Detection Algorithm (PBDA), instead of the normal edge detection in 2D methods that can detect the precipice border of

the coin’s surface and be used for the technique of feature extraction. 

 •  Degraded images do not require image enhancement or restoration. 

 •  Binned Borders in Spherical Coordinates (BBSC), considering the direction of the precipice borders as well as their approximate areas. It means analyzing different parts of precipice borders that are normally folded or curved. To describe more, they used a triangulating method and fuzzy clustering. The height images of coins are triangulated, and then by extracting several useful features from the triangles, they create a matrix that includes all triangle samples. 

The author of Ref. 18 aims to enhance the detection of counterfeit coins by utilizing deep learning techniques. They used a generative adversarial network to generate fake coins for training purposes. To make the height-map images compatible with

pre-trained networks, they proposed representing relief maps with three channels: Steep, Moderate, and Gentle slopes (SMG). This generated a new channel for height-map images that can be utilized to train the pre-trained network. To increase the accuracy of the system, they proposed a hybrid method that combines fine-tuning

pre-trained deep neural networks with a rejection option. The system delivered

impressive results in coin classification. Additionally, the method can be utilized to detect coins that have not been previously seen by the model, whether they are genuine or counterfeit. 

The authors of Ref. 11 proposed a technique for recognizing counterfeit 2-Euro coins that utilizes an optical mouse to take images. By comparing these images with a set of reference coins, the researchers were able to successfully identify counterfeit coins. The authors noted that the use of an optical mouse has many benefits, including its small size, affordability, and user-friendliness, which do not require specialized expertise. Nevertheless, it should be noted that the optical mouse only captures a portion of the coin’s image, which may impact the accuracy rate and

lead to misclassification. 
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The authors in Ref. 15 propose a method for detecting counterfeit coins based on image content and evaluate the effectiveness of different descriptors, such as SIFT, SURF, and MSER. The study used the CENPARMI Danish coin dataset for experimentation and preprocessing was done to create counterfeit coins with slight shape differences from the original coins. The paper also faced some challenges during the research, such as the complexity of processing color images and the need to convert RGB coin images to grayscale for certain steps. They proposed an autoencoding-based anomaly method that eliminates the need for fake data in training counterfeit coin detection models. An autoencoder was trained to find anomalies in the coin

images. The trained autoencoder compares the newly produced image with the basic image. 

Coins can be photographed in different conditions; different contrasts, lighting, and backgrounds are important factors that may significantly interfere with coin recognition. Deep learning models, which require a fixed (and relatively small) size of the input image, may lose significant features of the coin easily due to the resizing of the image done incorrectly by an unskilled person. Therefore, it is important to locate the coin and remove its background before feeding the image to the coin

recognition model. 19

The authors of Ref. 1 proposed a method for detecting counterfeit coins using image-based techniques. The approach uses the dissimilarity space to represent the images of coins. This space is constructed by comparing the image with a set of

prototypes. Local key points on each coin image are detected and described to

measure the dissimilarity between the two images. Matched key points between the two images are identified based on the characteristics of the coin, enabling efficient detection. A post-processing procedure is used to eliminate mismatched key points. 

The proposed method uses only genuine coins for one-class learning, making it

effective for fake coin detection. Extensive experiments have been conducted to

evaluate the proposed approach on various datasets, demonstrating its validity and effectiveness. The paper also compares the clustering-based prototype selection with the random selection method and the RBF kernel with the linear kernel for one-class SVM. Additionally, experiments with different values of RBF kernel width and training error rate are presented. 

In Ref. 20, the RGB images were first converted to grayscale, as grayscale images contain more information than black-and-white images. Subsequently, the

images were segmented using Hough transform to separate the foreground from the

background. Then, some preprocessing was done to eliminate any redundant infor-

mation. The author uses the SIFT algorithm with a four-stage filtering process. 

Scale-space extrema detection stage obtains the location and scale of the object. 

In the key point localization stage, any key point that has a low contrast from

the extracted key points is removed. Orientation assignment stage considers the

local image properties, assigns consistent orientation to key points, and repre-

sents each key point relative to it, making it rotationally invariant. Then in the key point stage, the algorithm creates key point descriptors using local gradient
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data, which are rotated and weighted by a Gaussian to align with the key point’s orientation. 

The author utilized a pattern recognition approach to identify the authenticity of coins based on their wear and tear over time. However, they experienced multiple challenges while performing this procedure. For instance, some coins were small, which made it hard to accurately distinguish between authentic coins and counterfeit coins. Furthermore, inconsistent counterfeit coin designs created additional difficulties, as different manufacturers apply different methods to create counterfeits. 

Furthermore, the quality of counterfeit coins and the advancement in counterfeit technologies are increasing every day, making it harder to identify them. Lastly, due to government restrictions, there is insufficient data available on fake coins, which makes research in this area more challenging for researchers. 

4. Classification

The classification of coins is a major endeavor in numismatics. Coin classification has implications for historical research, coin grading, and automated coin sort-ing. Classical approaches to coin classification relied on human inspection and the knowledge of expert numismatists. While new approaches allow for a degree of

automation in coin classification using computer vision and machine learning, there has been substantial progress in the field through advances in machine learning

and deep learning. Especially, the use of Siamese networks has developed as effective approaches for finer visual recognition applications in computer vision where limited data exists. 

Siamese networks, first introduced in Ref. 21, are a neural network design that is developed for matching similar or dissimilar image pairs based on a unique architecture that utilizes two identical networks with shared weights. Their effectiveness is due to their application in metric learning, which is especially beneficial in classifying coins that only have small differences for coin classification tasks. 21

An increasingly promising approach to coin classification involves the utilization of Siamese neural networks. Siamese neural networks represent a type of deep learning architecture that is well suited for tasks centered on image similarity and comparison. 22 Siamese networks are characterized by a specialized architecture that enables them to acquire a representation of the input data that is sensitive to the intrinsic features of the images, as opposed to solely their superficial characteristics. This characteristic makes them well suited for tasks such as coin classification, where the subtle distinctions between different types of coins pose a challenge for traditional classifiers. 23

Guo  et al. 24 employed Siamese networks in the classification of ancient coins, achieving high accuracy through the focused analysis of distinctive features in coin images. Their method involved establishing a feature embedding space to optimize
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the distances between similar and dissimilar coin images. Furthermore, research by Lorente  et al. 25 provides additional evidence of the efficacy of Siamese networks in coin classification. Collectively, these studies highlight the capability of Siamese networks to achieve high levels of accuracy in coin classification, even when facing challenging conditions such as low-resolution or noisy input images. The capacity of Siamese networks to discern subtle differences in coin images provides them

particularly suitable for this task, ensuring reliable classification across a diverse array of coin types and conditions. 

The authors of Ref. 26 proposed the topic of Few-Shot Learning (FSL) algorithms applied to plant leaf classification using deep learning with small datasets. 

Through comparison with classical fine-tuning transfer learning, the paper established that FSL outperforms traditional methods when dealing with small training sets. To achieve this, the study employed the Inception V3 network, which is finetuned in the source domain to gain a better understanding of general plant leaf

characteristics. This understanding is then carried over to the target domain to learn new leaf types from only a few images. The plant leaf image classification algorithm’s architecture involves a general-purpose CNN image classification network that is fine-tuned to extract leaf image features or image embeddings. Following this, an SVM classifier was trained to identify differences between the feature mappings for various plant leaf classes. 

The authors in Ref. 27 delved into the implementation of deep learning to classify plant leaves and emphasized the importance of a substantial number of samples for supervised training. The proposed approach employed the Siamese network framework, utilizing a parallel two-way convolutional neural network with weight sharing to extract features from distinct images. By training the network with a loss function, it learned a metric space where similar leaf samples are clustered together while dissimilar ones are separated. Through experimentation, the results demonstrate remarkable classification accuracy despite the limited number of supervised samples. The process involved extracting features from two distinct images utilizing a parallel two-way convolutional neural network with weight sharing. 

5. Conclusion

With the advancement in technology, the quality of counterfeit coins is also improving, which makes it challenging to distinguish genuine coins from counterfeit coins and there is still a need for improvement with these types of systems. For example, 3D modeling, and reconstruction techniques can provide useful insight into these studies. Available datasets for counterfeit coins are limited, especially for rare coins, with limited data available for genuine coins to train the classifiers. Accordingly, it is necessary to develop systems that can use smaller datasets for counterfeit coin detection. 
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This chapter focuses on semantic segmentation of RGB-D images. RGB-D-based

semantic segmentation is a research area that has gained significant attention

in the computer vision community. It involves leveraging both color (RGB) and

depth (D) information to accurately segment objects in a scene. RGB-D sensors, 

such as Microsoft’s Kinect or Intel’s RealSense, provide synchronized color and

depth measurements of the scene, which offer complementary information. Color

provides high-level visual cues, while depth provides detailed geometric infor-

mation. By fusing both modalities, RGB-D-based semantic segmentation algo-

rithms can achieve more robust and accurate results than from either modal-

ity alone. In this chapter, we give a survey about the task of RGB-D-based

semantic segmentation. We first review the background of this task. Next, we

summarize a taxonomy of scene RGB-D semantic segmentation methods, includ-

ing historical background, RGB-based semantic segmentation methods, the three

main fusion approaches (namely early fusion, middle fusion, and late fusion), 

and the current attention-based methods and multi-modal methods. We also

present several semantic segmentation methods applied to RGB-D-based medi-

cal images, including applications involving retinal vessels, coronary arteries, and multi-modal vascular scenarios, as well as unsupervised learning for segmentation based on reconstruction and unsupervised clustering methods. Additionally, 

we review relevant datasets, evaluation metrics, and experimental results of these methods. Finally, we discuss the limitations in this field and propose some possible directions for future research. 
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1. Introduction

Most tasks in computer vision analyze captured images/frames to make decisions

or perform tasks, such as automatic surveillance, robotic applications, autonomous driving, content-driven retrieval, object detection, inference, and instance segmentation. Semantic segmentation can provide per-pixel understanding of the input

image. In this chapter, we briefly introduce some existing methods, datasets, evaluation metrics, research challenges, and pain points related to RGB-D semantic

segmentation, in order to provide a convenient reference for researchers who are interested in this field. 

Semantic segmentation is a fundamental task in various intelligent applications, such as scene understanding, 1 video analysis, 2 and clothing retrieval. 3 Its purpose is to assign class labels to some or all of the pixels in the input image. However, this task is challenging due to the presence of varying illumination and cluttered background. Fortunately, the development of commercial depth cameras such as

Kinect and PrimeSense has made it possible to capture high-quality, synchronized RGB, and depth images. 4 The RGB data provides valuable information such as color and texture, while the depth modality data offers pure shape and geometry

information that remains unaffected by lighting and reflectance. By combining these two complementary modalities, we can significantly enhance the performance of

semantic segmentation. In a word, the integration of synchronized RGB and depth

images from commercial depth cameras presents a unique opportunity to overcome

the challenges associated with semantic segmentation, ultimately improving the

accuracy and efficiency of various intelligent applications. 

In recent years, various techniques have been proposed to address the challenges of RGB-D semantic segmentation, including patch-wise models, 5 R-CNN schemes, 6
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and fully convolutional networks (FCN)7 that extract multi-scale feature representations and global contextual information. Moreover, different approaches have been proposed for RGB-D fusion, such as early fusion,5 middle fusion,6 and late fusion (also called score map fusion), 7 which aim to leverage the complementary information of RGB and depth modalities for improved segmentation accuracy. In this

context, this chapter aims to review recent advances in RGB-D semantic segmen-

tation, with a focus on the challenges and solutions. The goal of this task is to take an RGB and depth pair of images and output a segmentation map (after argmax), 

where each item in each dimension of the map contains the probability of belonging to the class label represented as an integer (also called score map). 

Furthermore, many researchers are currently exploring the conversion of RGB-D

images into point cloud data for recognition and segmentation in the point cloud space. This chapter focuses on general-purpose semantic segmentation from RGB-D

images and provides a comprehensive overview of the latest developments in this

field. We first review traditional approaches and then conduct an in-depth investigation of deep learning-based methods. We hope that this work provides valuable

insights for researchers in the field of RGB-D semantic segmentation. 

Contribution: In this survey, we systematically introduce recent advances in RGBD semantic segmentation methods. We start by reviewing the history of the tasks, datasets, and performance measures. This survey groups existing methods from a

technical perspective. 

Scope: This survey covers two main streams including RGB-D semantic segmentation on normal scenes and RGB-D semantic segmentation on medical images. 

Although there are many preprints or published works, we only include the most

representative works. 

Organization: The rest of this chapter is organized as follows. Figure 1 gives the overall structure of this chapter. Some recent taxonomy of RGB-D semantic

segmentation and representative methods are explained in Section 2 and Section 3. 

The existing datasets are described in Section 4. In Section 5, the evaluation metrics and experimental results of the existing methods on available datasets are analyzed. 

Future work and discussions are presented in Section 6. Finally, Section 7 provides concluding remarks. 

2. Taxonomy of Scene RGB-D Semantic Segmentation

There have been several previous surveys on RGB-D tasks. 8–10 According to our research, the most recent survey on RGB-D semantic segmentation was published

in 2022, 10 and it only covers the semantic segmentation of scenes. In recent years, there have been numerous outstanding works in this field, especially in the medical field. This chapter aims to complement the existing surveys by providing additional valuable information. 
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In this section, an overall overview of CNN-based methods is presented, along

with an explanation of existing approaches. In addition to RGB-D methods, some

proposed RGB semantic segmentation methods have also reported their results

on available RGB-D datasets but used only the RGB channel. This section also

overviews the papers that analyzed the performance of these methods on available RGB-D datasets. 

Historical review: The success of Convolutional Neural Networks (CNNs) can be attributed to their ability to automatically learn hierarchical representations from raw input data, eliminating the need for handcrafted features. By leveraging backpropagation and gradient-based optimization, CNNs adjust their parameters

during training to optimize their ability to discriminate between different classes or objects. This end-to-end learning process enables CNNs to capture intricate and abstract patterns in the data, leading to remarkable performance across various

visual recognition tasks. Several pioneering works have significantly contributed to the development and advancement of CNNs. By increasing the computational

power of computers and the availability of large-scale datasets (like ImageNet11), considerable improvements in results are achieved. Based on these datasets, many successful works have been proposed. 

Most of these outstanding network architectures are primarily designed for image classification tasks and involve multiple feature down-sampling layers. As a result, the dimensionality of the final features used for classification is significantly reduced, often by a factor of 16 or even 32 compared to the input image dimensions. However, these features provide limited assistance in image segmentation. The loss of localization information in these architectures leads to coarse segmentation, which is not the primary objective of dense labeling. Therefore, addressing this issue requires finding ways to adapt these validated and mature algorithmic structures for segmentation. 

During the dense prediction process, label estimation is performed for all pixels in the image, resulting in an output that has the same size as the input. However, to adapt these models for semantic segmentation tasks, several modifications to the architectures are necessary, as they were originally designed for image classification purposes. FCNs (fully convolutional neural networks)7 emerged and introduced a significant change to the network by allowing them to take input images of any size and produce an output of the same size as the input, enabling end-to-end training. 

As a result, CNN models became suitable for semantic segmentation tasks. 

RGB-based semantic segmentation: As FCN defines a dense pixel classifica-

tion problem, it gives a new framework to approach this task. Due to the rapid

upsurge in deep learning, there are several surveys on this task. 12 Based on these surveys, the current work of this task could be roughly divided into the following aspects: encoder–decoder methods, 13 larger-kernel methods, 14 multi-scale pooling methods, 15 multi-scale feature-fusion methods, 16 non-local modeling methods, 17

efficient modeling methods,18 boundary modeling methods,19 transformer methods, 20, 21 and recently SAM large-scale methods. 22 How to apply these excellent
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Fig. 2. 

Illustration of the three different fusion modules. 

RGB-based methods to the RGB-D domain is a problem that many research works

on RGB-D focus on. The simplest way is to extend the RGB method to RGB-D

through fusion directly. The specific fusion methods are as follows. 

Early fusion: This is when fusion is applied before entering the network. 5 It transforms raw data into an intermediate form, which simply concatenates the input

of two complementary modalities, RGB and depth, together as four-channel or

six-channel (in some work, the depth is encoded to three-channel data, such as

HHA (horizontal disparity, height above ground, and angle with gravity) input), as shown in Fig. 2(a). However, due to the different data distributions and acquisition methods of RGB and depth modalities, forcefully fusing them together and then

extracting features using a network could lead to cross-interference and result in suboptimal feature representations. 

Middle fusion: The second approach is when fusion takes place inside the network. 6 This kind of fusion leverages the two modalities, RGB and depth, as two independent inputs and extracts different modality feature representations, as shown in Fig. 2(b). Then, it combines the features that distinguish each modality to produce a new representation that is more expressive than the separate representations from which it arose. This could achieve good results compared to using a single representation individually. Many works adopt this fusion way. 23–25 Although middle
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fusion can provide better feature representation, RGB features and depth features differ in their representational capacity and meaning. How to effectively and elegantly combine them together is an area of focus in many research works. Zhou

 et al. 26 utilized a scale-aware module to weight the contribution of each modality, and Jiao  et al.  27 adopted a geometry-aware propagation block to combine the features together. 

Late fusion: Finally, late fusion (also called score map fusion)7 is a merging strategy, which utilizes RGB and depth as two separate inputs to learn two different

models and obtain two different score maps, as shown in Fig. 2(c). It combines the decisions of each classifier to produce new decisions that are more precise and reliable. Then, the two score maps are fused together by equal weights. 7 Indeed, this equal way simply recovers scores from the softmax layers of the networks and then applies manually designed rules for the fusion of the scores. Although this fusion way is demonstrated to be better than the above two methods, it lacks the ability to model the different contributions of each modality. How to efficiently and elegantly integrate RGB and depth together is an urgent consideration in many research

works. Zhou  et al. 26 proposed a modality-aware module to effectively combine RGB

and depth networks based on the contributions of the two modalities. Cheng  et al. 28

proposed a gated fusion module to effectively combine RGB and depth for semantic segmentation. 

Attention-based methods: Recently, the attention mechanism has been pro-

posed to model and capture long-range dependencies, and it has become an integral part of many successful works. Reference 29 proposes a self-attention mechanism to capture long-range dependencies of inputs and achieves state-of-the-art performance in machine translation. The attention mechanism has not only been used

in the Natural Language Processing (NLP) field but also been utilized in the computer vision field. Zhang  et al. 30 utilized the self-attention scheme to obtain better performance on the task of image generation. Hu  et al.  31 adopted an attention mechanism in object recognition to boost performance. Zhou  et al. 32 proposed the Motion-Attentive Transition (MAT) module comprised of a soft attention unit and

an attention transition unit to learn more specific and useful feature representation. 

Multi-modal

methods: Recently, large-scale language models that have

undergone pre-training on vast web datasets are transforming the field of natural language processing (NLP) by exhibiting remarkable zero-shot and few-shot generalization capabilities.33 These foundational models34 possess the ability to extend their understanding to tasks and data distributions that were not encountered during their training phase. To achieve this, prompt engineering techniques are often employed, involving the use of carefully crafted text prompts to elicit appropriate textual responses from the language model for a given task. When these models are trained at scale using abundant web-based text corpora, their zero-shot and few-shot performance can be surprisingly comparable to, and in some cases even match, 
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that of fine-tuned models.35 Empirical observations indicate that this performance trend further improves with larger model sizes, increased dataset sizes, and greater computational resources dedicated to training.35 These large-scale models not only have a significant impact on language modeling but also find valuable applications in visual tasks. They demonstrate promising effectiveness in addressing various visual problems. There are some works that try to use it in the task of semantic segmentation, such as the segment anything model (SAM)22 which has demonstrated its effectiveness in many tasks. The work built a very large segmentation dataset with over 1 billion masks on 11M licensed and privacy-respecting images, and then based on this dataset, the segmented model is designed and trained to be promptable so that this trained model can transfer zero-shot to new image tasks. 

However, when segmenting RGB images, the SAM model has a strong emphasis

on using texture information while paying less attention to geometry and spatial information. To address this issue, Cen  et al. 36 proposed the SAD (Segment Any RGB-D) model to extract geometry and spatial information from RGB-D images. 

3. Taxonomy of Medical RGB-D Semantic Segmentation

In the field of medical imaging, the extraction of vascular features has a wide range of applications from the RGB-D view. Medical RGB-D data combines medical color

information with depth information, providing more detailed 3D representations of vascular structures, thereby improving the accuracy and effectiveness of vascular analysis. For example, in retinal vascular imaging, RGB-D combines color and depth data to more precisely detect and analyze retinal diseases. In coronary artery imaging, RGB-D enables the creation of detailed 3D models to assess arterial sclerosis and blood flow restrictions. Additionally, multi-modal vascular imaging integrates data from various imaging techniques, enhanced by RGB-D data to provide comprehensive 3D visualizations. From the perspective of the role of vascular feature extraction, they can be classified as enhancement of vascular structure, segmentation of blood vessels, classification of blood vessels, and other applications. The following explains the application scenarios from these two classification perspectives. 

Retinal vessel application scenario: Retinal vessels maintain the metabolism of tissue structure. Once the blood vessels cannot complete the main function, problems such as retinal edema and blood leakage will occur, which will affect retinal imaging and transparency. Since retinal vessels reflect the degree of blood supply, they can be associated with cardiovascular diseases. In 2018, Google used the Attention feature of deep learning models37 to highlight blood pressure, and accurately deduced relevant factors such as patient age and smoking status through eye images. 

Based on these factors, the risk of major cerebrovascular diseases in patients was predicted. Recently, the Singapore Eye Research Institute38 extracted vascular features through a convolutional neural network, automatically measured the diameter of retinal vessels, and verified the correlation between retinal vessel diameter and
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cardiovascular events. Inspired by these studies, in 2023, Lee  et al.  39 further studied retinal images and structured multi-modal data, and predicted cardiovascular disease events by fusing image and structured data features. This study analyzes the key area positions in retinal images and the key features of structured data through the feature extraction and fusion of data, in order to determine the risk factors for cardiovascular disease. Similarly, Chang  et al.  demonstrated that retinal vascular images can be used for atherosclerosis with saliency feature maps. 40 Based on the extraction of vascular features,41 a graph convolutional network is constructed to predict coronary events between gender and age stages. Barriada and Masip42

summarized that retinal vessel characteristics can be used for detecting arrhythmia, aortic disease, coronary artery disease, heart failure, and other diseases affecting the structure or behavior of the heart and vascular systems based on the impact on the heart and vascular system structure or behavior in cardiovascular diseases. RGBD imaging enhances retinal vessel analysis by combining color information with

depth information, allowing for more detailed 3D visualization of retinal structures. 

This advanced imaging technique provides additional spatial context, improving

the accuracy of diagnosing retinal and cardiovascular conditions. Recently, Transformer networks have been introduced to retinal vessel segmentation, exemplified by LiViT-Net, 43 a lightweight transformer network designed specifically for this task. 

LiViT-Net improves local representation using parallel convolutions and mitigates biases through a novel loss mechanism. Extensively tested on various datasets, it demonstrates robustness and computational efficiency, holding promise for advancing medical image analysis. CoVi-Net44 introduces novel modules for retinal vessel segmentation with the LGFA (local and global feature aggregation) architecture and BWF (bidirectional weighted feature fusion) module that mitigates vascular discontinuity and enhances adaptive feature fusion. G2ViT45 proposes a novel approach for retinal vessel and coronary angiography segmentation by integrating Convolutional Neural Networks (CNNs), Graph Neural Networks (GNNs), and Vision

Transformers. Specifically, it employs a graph neural network-guided vision transformer module to capture the entire graphical structure of blood vessels, along with a multi-scale edge feature attention module and a multi-level feature fusion module to enhance feature extraction and preserve critical information. The integration of RGB-D data in these methodologies allows for enhanced visualization and analysis, leveraging depth information to improve the accuracy of segmentation and feature extraction in retinal vessel imaging. 

Coronary artery application scenario: Coronary angiography (CAG) is the

“gold standard” for diagnosing coronary artery disease and determining whether

percutaneous coronary intervention (PCI) or coronary artery bypass grafting

(CABG) is necessary, and is widely used in the clinical diagnosis of coronary heart disease. 46 CAG involves percutaneously puncturing a peripheral artery and advancing a catheter to the opening of the coronary artery at the root of the aorta, injecting a certain amount of contrast agent with a high specific gravity, and then imaging
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the coronary artery blood vessels from different angles under X-ray irradiation.47

Coronary angiography images provide images of coronary anatomical structure, 

revealing the degree and distribution of coronary artery dilation, stenosis, obstruction, and collateral circulation formation, providing precise diagnostic evidence for the diagnosis of coronary heart disease, the selection of treatment plans, and the verification of postoperative efficacy. 48 RGB-D imaging enhances traditional CAG by combining color information with depth information, allowing for more detailed 3D

visualization of coronary arteries. This advanced imaging technique provides additional spatial context, improving the accuracy of diagnosing coronary conditions. 

Recently, AI-QCA49 was developed utilizing three deep-learning models trained on an extensive dataset of angiographic images to accurately delineate lumen boundaries. This method integrates automated quantification with refined matching and iterative updates to ensure precise diameter calculation and trend line adjustments. 

The integration of RGB-D data in this context allows for enhanced visualization

and analysis of coronary vessels. Additionally, the TV-TRPCA foreground extrac-

tion method50 separates high-visibility vessel layers for foreground extraction and vessel segmentation, benefiting from the depth information provided by RGB-D

imaging to improve the clarity and accuracy of the segmented vessels. 

Multi-modal vascular application scenario: Multi-modal imaging expresses

the same or similar structure with multiple modalities and is widely used in the field of medical imaging. RGB-D imaging enhances multi-modal vascular imaging

by combining color and depth information, providing a more comprehensive view of the vascular structure and improving the accuracy of feature extraction. As contrast agents of multi-modal vascular images are injected into the vascular structure to enhance the vascular structure, the role of multi-modal imaging is mainly to enhance the vascular structure and highlight vascular features to a certain extent. In addition, the differences between the different modalities of the blood vessels are mainly reflected in the background structure, and the enhanced modality images often have better background structure, while there are more methods to enhance the background of the images. In recent years, research on multi-modal vascular images has gradually increased, such as extracting vascular features from the enhanced modality by using morphological operations and providing vascular pseudo-labels51 for training; Abtahi  et al.  studied feature fusion of two modalities52 at the model prediction end to enhance vascular features. The integration of RGB-D data allows

for enhanced visualization of vascular structures, leveraging depth information to improve the accuracy of feature extraction and modality transformation. Kamran

 et al.  used generative adversarial models53 to study the transformation of fundus modality to angiography enhanced modality, thereby enhancing the structural

strength of the blood vessels and strengthening the vascular features. Hu  et al. 54

treated the smallest eigenvalue of the Hessian feature as a vector field, finding that different modalities of blood vessels have a common vector field. They extracted vascular features from this vector field structure through a transformer network55
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improving the model’s domain adaptation to different modalities. Similarly, Peng et al.  decomposed OCT and OCTA images’ features into modal features and vascular features through feature decomposition and allowed the model to migrate

from one OCT modality to another OCTA modality using this method. By utiliz-

ing RGB-D imaging, the model can achieve better domain adaptation and feature

migration, as the depth information provides an additional layer of detail that is consistent across different imaging modalities. 

In the field of medical image processing, the U-net model56 was the first convolutional neural network structure to have a significant impact. This network was introduced by Olaf  et al.  for cell image segmentation and features a symmetric structure of encoder and decoder. Recent advancements have seen the incorporation of RGB-D data into the U-Net model, significantly enhancing the segmentation of medical images by leveraging both color and depth information. The encoder

structure commonly employs convolution and pooling operations to extract image

features layer by layer. Meanwhile, the decoder restores these features using deconvolution, ultimately producing the image segmentation map. By integrating depth

information from RGB-D images, the encoder can extract more comprehensive fea-

tures, thereby improving segmentation accuracy for 3D structures in medical images. 

Additionally, to avoid feature loss, a feature fusion mechanism across layers is used from the encoder to the decoder. The feature fusion mechanism also integrates depth information, ensuring that the spatial context provided by RGB-D data is preserved throughout the segmentation process. 

In terms of network design, researchers have developed different network struc-

tures to extract image features. For example, Wang  et al. 57 designed a convolutional attention mechanism module to fuse cross-layer features and deconvolution features, improving the performance of retinal vessel segmentation, as shown in Fig. 3(a). 

The integration of RGB-D data can further enhance this approach by providing

depth information, which aids in the precise segmentation of complex retinal structures. Zhou  et al. 58 designed the U-net++ network model, which fuses different semantic multi-scale features, to address the feature fusion of cross-layer features. 

Inspired by the residual structure of the ResNet network, Xiao  et al. 59 replaced each sub-module of U-net with forms of residual and dense connections, designing the Res-UNet network and verifying its effectiveness in the retinal vessel segmentation task. Incorporating RGB-D information can enhance the Res-UNet network

by adding depth data, which improves the model’s ability to capture 3D structural features in retinal vessels. Similarly, Ibtehaz and Rahman60 replaced the traditional convolutional modules in U-Net with multi-scale residual structures to fully utilize different structures of feature maps and enhance medical image segmentation capabilities. Zhuang61 designed the LadderNet network consisting of multiple U-Nets, inspired by the ResNet network. LadderNet has multiple encoder-decoder branches

and skip connections between each adjacent decoder and decoder branch in each

layer. Through multiple information flow paths, it adequately fuses different image

[image: Image 439]
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(a)

(b)

(c)

Fig. 3. 

Illustration of the three main vascular frameworks. 

features of different structures. The LadderNet network can benefit from RGB-D

data, as the additional depth information allows for more comprehensive fusion of image features across multiple encoder–decoder branches. Isensee  et al.  62 designed a large network by integrating three relatively simple U-Nets, finely designing data preprocessing, optimization functions, and image block inference methods, and verifying the effectiveness of the model in various medical image segmentation tasks, such as liver, cells, and lungs, from the perspective of model generalization. Integrating RGB-D data into these large network designs can improve the segmentation accuracy for various medical images, as the depth information provides additional context for distinguishing between different tissue structures. 

On the optimization side, researchers have introduced different learning methods such as generative adversarial learning and contrastive learning to enhance network performance, as shown in Figs. 3(b) and 3(c). For example, Son  et al. 63 introduced generative adversarial learning into the task of retinal vessel segmentation. Specifically, this study first uses a generative network  G  to learn the mapping relationship between the RGB retinal image  x  and the labeled vessel  y :  G :  x → y. By incorporating RGB-D data, the generative network  G  can leverage both color and depth information to improve the accuracy of the mapping relationship, resulting in more

[image: Image 440]
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precise retinal vessel segmentation. Then, the discriminator network  D  discriminates or classifies  { 0,1 }  the generated predicted segmentation image and the labeled vessel, where 0 and 1 represent the fake and real vessel images classified by the discriminator, respectively. In the model optimization process, the corresponding vessel segmentation image is mainly generated through optimizing the following mathematical formula:

 L GAN( G, D) =  Ex,y∼ p data( x,y)[log  D( x, y)] +  Ex∼ p data( x)[log (1  − D( x, G( x)))] , (1)

where  P data(x) denotes the distribution of data  x. The use of RGB-D data in the discriminator network  D  enables it to better distinguish between real and fake vessel images by utilizing the additional depth information, which enhances the overall performance of the generative adversarial learning process. Similarly, Kamran  et al.  64

designed two-scale generators and discriminators to extract features and discriminate rough and fine structures in segmented vessels more finely. Incorporating RGBD data into this approach allows the generators and discriminators to leverage

depth information, improving the discrimination between rough and fine structures in segmented vessels. Recently, Kar  et al. 65 used a multi-scale residual network as a generator to extract features from different scale vessel structures and trained a visualization transformer structure as a discriminator. The integration of RGBD data enables the multi-scale residual network and visualization transformer to utilize depth information, enhancing the extraction and discrimination of vessel structures at different scales. Through multi-scale contrastive learning, more fine vessel structures were extracted. Contrastive learning often constructs positive and negative samples of different modalities or views for feature comparison. By using RGB-D data, contrastive learning can construct more informative positive and negative samples that include depth variations, further enhancing feature comparison and extraction. Specifically, it promotes the model to further extract and mine features by making the feature between the anchor and positive sample close and the feature between the anchor and negative sample far apart. Taking the commonly

used infoNCE loss function66 as an example, its optimized objective function is as follows:





 L

exp ( f ( x)  · f ( x+))

 N =  −E  log

 N− 1

 . 

(2)

exp ( f ( x)  · f ( x+)) +

 j=1 exp ( f ( x)  · f ( x−))

In this loss function,  f  denotes the encoder network for feature extraction. 

 N  represents the number of samples, and  x,  x+, and  x−  represent the anchor, positive, and negative samples, respectively. Through this loss function, the model can pull the feature of the anchor toward the positive sample while pushing it away from the negative sample, thereby improving the feature extraction ability of the model. 

The inclusion of RGB-D data in the feature extraction process ensures that the

encoder network captures both color and depth information, leading to improved

performance in distinguishing between positive and negative samples. 
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In recent years, various research groups have introduced contrastive learning

into medical image processing to improve the ability of image feature extraction. 

The inclusion of RGB-D data in contrastive learning frameworks can enhance

the extraction of both color and depth features, providing a more comprehen-

sive representation of medical images. For example, Hu  et al.  67 used supervised contrastive learning by pulling together the embedded features of images with

the same label and pushing away the embedded features of images with differ-

ent labels. They adopted two methods, downsampling and feature patches, to

improve the efficiency of feature contrast calculation. Incorporating RGB-D data allows the model to leverage depth information, improving the efficiency and accuracy of feature contrast calculations. Chaitanya  et al. 68 pre-trained their model using feature contrastive learning, designed to extract global and local features by applying different transformations to the same image, to improve their model’s

feature extraction ability and then used it to improve downstream segmenta-

tion tasks. Using RGB-D images, the feature contrastive learning can capture

both surface and structural features, enhancing the model’s ability to extract

detailed image characteristics. Zhao  et al. 69 extracted features from polyp images based on both image pixels and image blocks. They treated the features of the

same position as positive samples, and those of different positions as negative

samples, constructing a contrastive learning method to enhance the model’s rep-

resentation of image features. Tan  et al.  70 focused on the retinal vessel segmentation task. They built high-confidence and low-confidence areas for the blood

vessel and background based on the vessel label, and used the cosine loss func-

tion to pull together the features of the high- and low-confidence regions to

improve the model’s ability to extract fine blood vessel features with low con-

trast. The use of RGB-D data in retinal vessel segmentation helps in distinguishing between high- and low-confidence regions more effectively by utilizing depth information to improve contrast and detail extraction. ConKeD, 71 a novel deep learning approach for retinal image registration, utilizes a multi-positive multi-negative contrastive learning strategy to learn descriptors from limited training data. Combined with domain-specific keypoints, such as blood vessel bifurcations and crossovers detected by a deep neural network, ConKeD outperforms traditional methods, offering reduced preprocessing and improved efficiency. By inte-

grating RGB-D data, ConKeD can further improve the accuracy of retinal image

registration, leveraging depth information to refine the detection of keypoints like blood vessel bifurcations and crossovers. By using two-level causal contrastive learning, TL-CCL72 is introduced for multi-label ocular disease diagnosis using fundus images, featuring a causal intervention module to capture causal representations at the feature level, alongside a masked entropy regularizer to enhance discrimination of causal features at the discrimination level in the retinal fundus. TL-CCL benefits from RGB-D data by capturing depth variations alongside color features, enhancing the causal representation and discrimination capabilities for multi-label ocular disease diagnosis. 
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(a)

(b)

(c)

Fig. 4. 

Illustration of unsupervised vessel segmentation framework. 

Compared to supervised deep learning, unsupervised deep learning refers to

neural network training without using RGB-D data labels. Since unsupervised

learning does not utilize label information, it presents a greater challenge. The following summarizes the main deep learning techniques for unsupervised image

segmentation. 

Unsupervised learning based on reconstruction generates image segmen-

tation results by reconstructing the original image, as shown in Fig. 4(a). 

Incorporating RGB-D data into unsupervised learning frameworks enhances

reconstruction-based segmentation by leveraging both color and depth information, providing more detailed spatial context. For example, Chen  et al. 73 first inferred a binary image of the foreground and background from the original image, then

generate a foreground image from the foreground binary image, and finally jointly reconstruct the original image from the foreground image and background binary

image. Similarly, Xia and Kulis use two U-Net frameworks for RGB-D image seg-

mentation and reconstruction. Using RGB-D images allows the U-Net frameworks

to capture and reconstruct 3D structural features more accurately, improving the segmentation results for complex images. To encourage the network to generate better segmentation results, the traditional unsupervised graph cut loss function74 is introduced into neural network training. Gur  et al.  also introduced the idea of active contours75 from traditional algorithms into three-dimensional blood vessel analysis during the reconstruction process of the input image to detect the edge structure of blood vessels and ultimately achieve blood vessel segmentation effect. The addition
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of depth feature information from RGB-D data helps in detecting the edge structure of blood vessels more precisely, leading to more accurate vessel segmentation. 

Unsupervised clustering methods are similar to traditional  k-means methods that cluster image features to enable the model to produce image segmentation

results in the form of several clusters, as shown in Fig. 4(b). The inclusion of RGB-D

data enhances unsupervised clustering methods by providing depth information, 

which helps in clustering features more accurately, leading to better segmentation results. For example, the early DeepCluster76 method uses the standard clustering algorithm  k-means to iteratively group features and uses the result as pseudo-labels to update the network weights. Lin  et al. 77 clustered the original and depth images, using a maximum mutual information loss function to constrain the features of both. This approach extracts rotation-invariant image features from different view images. Incorporating RGB-D images allows the model to leverage depth

variations, improving the extraction of rotation-invariant features and enhancing the clustering process. Ke  et al.  78 regarded image unsupervised segmentation as a similar clustering problem, specifically by co-segmenting the spatial consistency of groups of images, reinforcing the consistency of feature semantics. Kim  et al.  79

used a convolutional neural network to excessively cluster input images, took the maximum value predicted in the channel direction as pseudo-labels, and provided

supervised information for training the network. The use of RGB-D data in convo-

lutional neural networks enables the model to consider depth information, providing more accurate pseudo-labels and improving the overall training process. Recently, a novel multi-modal feature mutual learning framework80 was introduced for retinal vessel segmentation, incorporating both local and global mutual learning to capture both 2D and 3D information. The framework facilitates collaborative learning between 3D and 2D models, resulting in improved segmentation performance surpassing previous deep-learning methods. The integration of RGB-D data into the

multi-modal feature mutual learning framework allows for capturing both color and depth features, resulting in more precise segmentation of retinal vessels and better performance compared to previous methods. 

In addition to the above two categories of methods, some methods in the litera-

ture preprocess images in various ways and use generative adversarial networks to learn the semantic features of images. By incorporating RGB-D data, these methods can leverage depth information to enhance the learning of semantic features, providing more detailed and accurate segmentation results. For example, in Ref. 81, the original image is reversed, and the synthesized label generated by the image before and after reversal is used as pseudo-supervised information to produce image segmentation results through a generative adversarial model. Harb and Knöbelreiter81

used maximum mutual information between the local features of the image and

the semantic segmentation to encourage the network to learn the semantic features of the image, as shown in Fig. 4(c). The inclusion of RGB-D images allows the model to capture depth variations, improving the mutual information between local
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features and semantic segmentation, and leading to better learning of image semantics. A novel adversarial multi-task learning approach82 is introduced for translat-ing color fundus images to fundus fluorescein angiography, featuring a region-level adversarial loss to measure differences between arbitrarily shaped corresponding regions and a multi-task network architecture tailored for high-resolution images. 

Integrating RGB-D data into the adversarial multi-task learning approach enhances the translation of color fundus images to fundus fluorescein angiography by utilizing depth information for more accurate region-level adversarial loss measurements. 

To address the need for high-quality FFA images for retinopathy diagnosis without patient side effects, the study introduces an unsupervised image synthesis framework based on dual contrastive learning. This framework synthesizes FFA images

from unpaired CF images by inferring effective mappings, aiming to overcome the

issue of generating blurred pathological features typically observed in conventional approaches due to cycle-consistency. 83 The use of RGB-D data in the dual contrastive learning framework improves the synthesis of FFA images by incorporating depth information, which helps in generating more realistic and detailed pathological features, addressing the limitations of conventional approaches. 

4. Datasets

4.1.  Datasets of RGB-D semantic segmentation

One of the key factors contributing to the significant success achieved in RGB-D

semantic segmentation tasks is the availability of large-scale datasets. However, manually constructing datasets for semantic segmentation tasks is a time-consuming and labor-intensive process. Early datasets consisted of a small number of RGB

and depth images, covering a restricted range of views, and exhibited long-tail

distribution in terms of the total number of pixels per class label. As a result, these datasets were imbalanced in terms of object distribution. Conventional deep learning methods struggle to achieve satisfactory training results on small datasets, making dataset construction and augmentation a primary source of inspiration for many current research efforts. In the following sections, we conduct a comprehensive survey of existing RGB-D semantic segmentation datasets and provide a concise

description and also some examples from the dataset, as shown in Table 1. Datasets are the foundation of semantic segmentation tasks. Semantic segmentation datasets typically contain multiple different image or video frames, with each image or video frame representing a semantic segmentation task. These datasets are captured using various specifications of depth cameras, and algorithms are used to generate and correct depth information, followed by manual annotation of the datasets. 

SUN RGB-D: A dataset constructed with various popular sensors for different kinds of devices (Intel RealSense 3D Camera for tablets, Asus Xtion LIVE PRO for laptops, and Microsoft Kinect v1 and v2 for desktop) at a similar scale as PASCAL

VOC, contains altogether 10,335 images with dense annotations. It has 146,617
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Table 1. 

Summary of RGB-D datasets for semantic segmentation. 

Dataset

Resolution

Description

SUN RGB-D

–

10,355 images of 37 object categories. 

SceneNet RGB-D

320  ×  240

5M images of 13 object categories. 

NYU Depth V1

640  ×  480

2,347 images of 13 object categories. 

NYU Depth V2

640  ×  480

1,449 images of 40 (can be more) object categories. 

Stanford 2D-3D-Semantic

1080  ×  1080

70,496 images of 13 object categories. 

Matterport3D

1280  ×  1024

194,400 images of 13 object categories. 

2D polygons and 64,595 3D bounding boxes in 37 object categories for semantic

segmentation tasks. Nearby frames are used to denoise and fill in missing depth. 

SceneNet RGB-D: A large-scale synthetic dataset which contains 5M RGB 320

 ×  240 images from 16K room configurations for training and 300K images from 1K different configurations for validation and test, as well as their 2D and 3D

annotations are provided. It has 13 object categories for semantic segmentation

tasks and can be useful for generate pre-training weights. 

NYU Depth V1: This is the first dataset constructed in 2011 and consists of video sequences filmed with both RGB and Depth cameras in a variety of indoor scenes. 

It has 64 different indoor scenes and 2,347 densely labeled frames in 13 categories; all the pixels are labeled to one of the determined categories. 108,617 unlabeled frames are also provided. 

NYU Depth V2: This is a dataset which is comprised of video sequences captured by Microsoft Kinect and contains 1,449 densely labeled pairs of aligned RGB and

depth images. It has 464 new scenes which are shot from 3 different cities. 407,024

new unlabeled frames are also provided. It also provides an instance number for

every labeled object. 

Stanford 2D-3D-Semantic: This is a dataset with a large number of panoramic real scenes, as well as textures, geometry, surface normals, and semantics. 70,496

RGB images with 1080  ×  1080 resolution captured with a Matterport camera are provided, along with dense semantic annotation in 2D and 3D. It projects the 3D

semantics from the mesh model onto 2D images, and has 13 object classes for

semantic segmentation tasks. 

Matterport 3D: This is a large-scale dataset that includes 10,800 panoramic views from 194,400 RGB-D images of 90 building scale scenes, captured with three color and three depth cameras pointing slightly up, horizontal, and slightly down. It

provides dense annotations with surface reconstruction, camera pose, as well as 2D

and 3D semantic segmentation of 50,811 object instances in 40 object classes. 
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Table 2. 

Summary of RGB-D medical datasets for semantic segmentation. 

Dataset

Resolution

Description

DRVIE

565  ×  584

20 fundus images with a 45 ◦  FOV. 

STARE

700  ×  605

20 fundus images with a 35 ◦  FOV. 

CHASEDB1

999  ×  960

28 images with 30 ◦  FOV from both the left and right eyes. 

HRF

3,304  ×  2,336

45 images and is organized as 15 subsets. 

Fig. 5. 

RGB-D images from the vessel segmentation task. 

4.2.  Datasets for medical RGB-D semantic segmentation

To comprehensively evaluate vessel models on retinal vessel segmentation, we

select four publicly available RGB-D retinal datasets including DRVIE, STARE, 

CHASEDB1, and HRF. These datasets include both color and depth information, 

which enhance the accuracy and detail of retinal vessel segmentation by providing additional spatial context. We provide a concise description and also some examples from the dataset, as shown in Table 2 and Fig. 5, respectively. The inclusion of depth data in these datasets allows for more precise evaluation of the vessel models, as the 3D structural information helps in distinguishing and segmenting complex

retinal features. 

DRIVE Fundus Retinal dataset: The DRIVE dataset consists of a training set and a test set, each of which has 20 fundus images (each 565  ×  584 pixels) with a 45 ◦  field of view (FOV). The vessel segmentation ground truths of all images were labeled by two trained human observers, and the labels from the first observer were used for model evaluation. It should be noted that in our evaluation experiment, we use the training set to train the model and the test set for evaluation. The

RGB-D version of the DRIVE dataset includes depth information, which enhances

the segmentation process by providing additional spatial context to the retinal

images. 

STARE Fundus Retinal dataset: The STARE dataset includes 20 fundus images (each 700  ×  605 pixels) with a 35 ◦  FOV. This dataset is also manually annotated by two experts. We select the masks of the first observer as the ground truth. The RGB-D data in the STARE dataset allows for more precise vessel segmentation by

incorporating RGB cues, improving the model’s accuracy in detecting and delineating blood vessels. 

CHASEDB1 Dataset contains 28 images with 30 ◦  FOV from both the left and right eyes. Each image has a size of 999  ×  960 with vessel label. Incorporating
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RGB-D data into the CHASEDB1 dataset provides depth information that helps

in accurately segmenting the vessel structures by leveraging 3D spatial details. 

HRF Dataset: The HRF dataset is a dataset for retinal vessel segmentation, which comprises 45 images and is organized as 15 subsets. Each subset contains

healthy fundus image, diabetic image, and glaucoma image. The image size is 3,304

 ×  2,336 with vessel label. The HRF dataset, with its RGB-D images, includes depth information that facilitates better segmentation of retinal vessels, especially in differentiating between healthy, diabetic, and glaucoma-affected retinas. 

5. Evaluation Metrics and Experimental Results

In this section, we present the evaluation metrics and then provide experimental results for representative RGB-D semantic segmentation methods. 

5.1.  Metrics

It is crucial to measure the performance of these methods. However, in semantic

segmentation tasks, where the segmented regions are not uniformly shaped, pixel-

level analysis becomes necessary. Before defining the measurements, let us first look at the definitions of TP, FP, and FN:

 • True Positive (TP): This refers to the pixels that are correctly classified as positive (belonging to the target class). 

 • False Positive (FP): This represents the pixels that are incorrectly classified as positive (predicted as belonging to the target class, but actually not). 

 • False Negative (FN): This indicates the pixels that are incorrectly classified as negative (predicted as not belonging to the target class, but actually they do). 

These definitions are fundamental for evaluating the performance of semantic segmentation methods. IoU is another measurement that is often used in this task. 

We can obtain the measurement of IoU as follows and give the visualization of IoU

as shown in Fig. 6:

TP

IoU =

 . 

(3)

TP + FP + FN

For simplicity and more accuracy, following the method,7 performance in many methods is quantitatively measured by pixel accuracy (Acc), mean intersection over union (mIoU), mean pixel accuracy of different categories (mAcc), and frequency

weighted IoU (f.w. IoU), which are widely used in the task of semantic segmentation. 

To be concrete, let  nij  be the number of pixels. The pixels are misclassified as  j  class which with the ground truth  i  category.  ti  is the number of pixels which belong to the  i  category, where  ti =

 j nij , and the total number of the pixels in the dataset

is  t. The above four metrics are defined as follows:



 •  pixel accuracy =

 nii

 i t , 



 •  mean intersection over union = 1

 nii



 C

 i t

, 

 i+

 j nji−nii
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FP

TP

FN

(a) Image

(b) Ground Truth Mask

(c) IoU

(d) IoU Visualization

Fig. 6. 

Visualization of IoU. Best viewed in color. 

Table 3. 

Performance on SUN RGB-D dataset for semantic segmentation. PixAcc

denotes pixel accuracy, mAcc denotes mean pixel accuracy, and mIoU means mean

intersection over union. 

Methods

RGB or RGB-D

PixAcc

mAcc

mIoU

Presented at

UCTNet84

RGB-D

–

–

51 .  2

ECCV’22

TransD85

RGB-D

83.2

64.1

51 .  9

CVIU’22

PDCNet86

RGB-D

83.3

–

49 .  6

arXiv’23

LF87

RGB-D

–

–

48 .  17

arXiv’23

TCANet88

RGB-D

82.5

61.7

48 .  9

CIS’24

EFDCNet89

RGB-D

–

–

49 .  2

IVC’24

GoPT90

RGB-D

85.5

64.6

52 .  3

AAAI’24



 •  mean pixel accuracy = 1

 nii

 C

 i t , 

 i



 •  frequency weighted IoU = 1

 tinii



 t

 i t

. 

 i+

 j nji−nii

Pixel accuracy is also called global accuracy, which gives the rate of the correct prediction. Mean intersection over union measures the average of the intersection over the union ratio between the predicted labels and the ground-truth labels. Mean pixel accuracy gives the average of per-class accuracy of the testing samples. Frequency weighted IoU provides the weighted version of intersection over union. 

5.2.  Experimental results

In this section, we give the performance of the above four (or three of them)

measurements of recent state-of-the-art methods on some popular datasets. 

Measurements on SUN RGB-D and NYU Depth V2: In this section, we

present the performance of some of our work on the SUN RGB-D dataset and NYU

V2 dataset, as detailed in Tables 3 and 4, respectively. From the table, we can see that recent papers mainly focus on transformers. However, we believe that as the segment anything approach develops, there will be more and more methods based

on it. 
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Table 4. 

Performance on NYU V2 dataset for semantic segmentation. PixAcc denotes pixel

accuracy, mAcc denotes mean pixel accuracy, mIoU means mean intersection over union, and f.w. IOU denotes weighted version of intersection over union. 

Methods

RGB or RGB-D PixAcc mAcc mIoU f.w.IOU

Presented at

MTF91

RGB-D

79.0

66.9

54.2

–

CVPR’22

SAMD26

RGB-D

74.4

67.2

52.3

61.9

Neurocomputing’22

UCTNet84

RGB-D

–

–

57.6

–

ECCV’22

TransD-Fusion85

RGB-D

78.5

69.4

55.5

66.3

CVIU’22

PDCNet86

RGB-D

78.4

–

53.5

–

arXiv’23

TCANet88

RGB-D

–

–

50.2

–

CIS’24

EFDCNet89

RGB-D

–

–

50.2

–

IVC’24

GoPT90

RGB-D

80.1

67.4

54.3

–

AAAI’24

Table 5. 

The ranking on DRIVE dataset for RGB-D vessel

segmentation. Acc denotes pixel accuracy. 

Methods

Rank

Acc

Category

Presented at

Khanal92

9

0 .  9551

FOV

FCS’20

Yan93

10

0 .  9542

FOV

TBE’18

sun94

11

0 .  954

FOV

MIA’21

Liskowski95

12

0 .  9535

FOV

TMI’16

Ngo96

13

0 .  9533

FOV

EL’17

Dasgupta97

14

0 .  9533

FOV

ISBI’17

Li98

15

0 .  9527

FOV

TMI’16

Measurements on fundus vessel RGB-D dataset: In this section, we present

the performance of different vessel models on the DRIVE RGB-D dataset, as

detailed in Table 5. The inclusion of depth information in the DRIVE RGB-D

dataset provides additional spatial context that enhances the segmentation accu-

racy of vessel models. From the table, the use of RGB-D data has shown to sig-

nificantly improve the performance of vessel segmentation models, indicating that incorporating depth information is a valuable advancement in medical imaging. 

6. Discussions and Future Work

There are many limitations in the existing RGB-D semantic segmentation methods. 

To overcome these inadequacies, we think the following are key areas for further improvement and advancement in the future work of RGB-D semantic segmentation:

Enhancing model performance: Despite significant progress, there is still room for improvement in the accuracy and robustness of RGB-D semantic segmentation

models. Future work aims to develop more advanced network architectures, incor-

porating attention mechanisms, contextual information, and multi-scale features to capture fine-grained details and improve overall performance. 
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Data augmentation and synthesis: As RGB-D datasets are often limited in size and diversity, data augmentation techniques play a crucial role in improving model generalization. Future research will focus on developing effective data augmentation strategies, including depth augmentation, geometric transformations, and incorporating synthetic data to enhance model training and performance. 

Domain adaptation and transfer learning: Generalizing RGB-D semantic seg-

mentation models to new environments and domains remains a challenge. Future

work will focus on domain adaptation techniques, including unsupervised domain

adaptation and transfer learning, to improve model adaptability and performance

on unseen datasets or real-world scenarios. 

Real-time and efficient inference: Real-time performance is crucial for practical applications of RGB-D semantic segmentation. Future research will aim to develop lightweight and efficient models that can achieve real-time or near-real-time inference on resource-constrained devices, enabling faster and more responsive segmentation in various real-world scenarios. 

Overall, the future of RGB-D semantic segmentation lies in developing more

accurate, robust, and efficient models that can generalize well across diverse environments and modalities, enabling a wide range of applications in computer vision and beyond. 

7. Conclusion

Semantic segmentation plays a crucial role in computer vision tasks. In this chapter, we provide a brief overview of current RGB-D semantic segmentation methods, datasets, and benchmarks from two domains: indoor scenes and medical images. 

While there has been a significant focus on RGB semantic segmentation in the

field, the emergence of commercial depth cameras such as Kinect and PrimeSense

has made it easier to capture high-quality, synchronized RGB, and depth images. 

Consequently, numerous approaches have attempted to extend existing RGB seg-

mentation networks by incorporating early, middle, or late fusion techniques to

leverage the RGB-D data. Specifically, these methods aim to design dual-branch

networks that exploit both RGB and depth modalities. In this chapter, we review

the performance of deep convolutional neural networks on this task and discuss the existing challenges and potential future directions. Additionally, we highlight the critical role of semantic segmentation in medical imaging, where accurate tissue and organ delineation can significantly impact diagnostic and treatment outcomes. 
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uantum computing is a research field that aims at developing computational

models that leverage quantum phenomena. The growing interest in the field of

machine learning as well as the recent development of available quantum hard-

are has motivated researchers to combine the two research areas, giving rise to

he interdisciplinary field of quantum machine learning. This chapter offers an

verview of the basic theoretical notions of quantum computing and quantum

machine learning as well as how it can be applied in image processing use-cases. 

pecific attention is given to  hybrid quantum-classical  models, which combine he capabilities of quantum and classical computing. Some example applications

mploying both gate-based quantum computing and quantum annealing to real

mage processing tasks within the field of remote sensing are also illustrated and iscussed. 

ntroduction

ent years, significant advances in quantum technologies have shown immense

tial to revolutionize fields, such as geosciences and Remote Sensing (RS). 1, 2

ng these, Quantum Computing (QC) likely has the longest timeline, as its devel-

nt has been slower and is less mature compared to quantum communications

uantum sensing. 3 However, quantum computing, which aims to use quantum ms for computation, holds immense economic potential and societal impact. 

first quantum computational models were proposed in the early 1980s.4, 5
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algorithm,7 Shor’s factoring algorithm,8 and the Harrow–Hassidim–Lloyd (HHL) algorithm for solving linear systems of equations9 were introduced, showing unprecedented capabilities. Recently, the study of applying QC to Machine Learning (ML) and Deep Learning (DL) has gained traction, leading to the interdisciplinary field of Quantum Machine Learning (QML). 10–13 Of particular interest are hybrid quantum-classical models, which combine classical and quantum computation. These models

could offer more efficient processing, reducing time-to-solution for complex computational problems in geosciences and RS, particularly for Earth Observation (EO) applications in QML and optimization. As these innovations develop, they promise to significantly improve environmental monitoring, climate modeling, and other

geospatial applications, potentially transforming the field. This chapter provides an overview of quantum algorithms for image analysis, focusing on QML models

and practical applications to RS use cases, considering both gate-based quantum

computing and Quantum Annealing (QA). 

This chapter is structured as follows: Section 2 describes the gate-based model for quantum computation. Section 3 provides an overview of two important gate-based QML methods: Quantum Neural Network (QNN) and Quantum Kernel (QK). 

Section 4 introduces QA, a method belonging to adiabatic quantum computation. 

Finally, some example applications of gate-based QML and QA taken from the RS

domain are shown in Sections 5 and 6, respectively. 

2. Gate-Based Quantum Computing

The gate-based or circuit model of quantum computation is a QC paradigm analo-

gous to the classical circuit model. A classical computer executes logic gate operations that modify the state of the system that is described by a string of bits. In a similar way, a quantum computer performs  quantum gate  operations to modify the quantum state  of the system. In this section, we provide a mathematical description of the quantum circuits and the operations that can be performed. 

2.1.  The qubit

The basic unit of computation of the gate-based model of quantum computation is


the quantum bit or  qubit, which can be thought as a quantum computing equivalent of the classical bit. However, whereas the classical bit can only exist in two possible states, the qubit can exist in any superposition of states. From a mathematical

point of view, a qubit is described as an element of a two-dimensional Hilbert space over the field of complex numbers. In the context of quantum computing, vectors

of Hilbert spaces representing quantum states are often written using the so-called Dirac’s bra-ket notation: The elements of the Hilbert space, called  kets, are written using the graphical notation  | , whereas the elements of the associated dual vector space, referred to as  bras, are indicated with the notation   |. The inner product
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between two vectors  |φ  and  |ψ  can be represented as  φ|ψ, where  φ|  is the linear map associated to  |φ  that maps the vector  |ψ  to the field of complex number. 

By choosing a valid basis  |φ 0 , |φ 1   of the two-dimensional Hilbert space, a vector

 |ψ  can be represented as

 |ψ =  α |φ 0  +  β |φ 1 , 

(1)

 α, β ∈  C ,  with  |α| 2 +  |β| 2 = 1 . 

If the basis is also orthonormal, the dot product between two vectors  |ψ 1  =  α |φ 0 +

 β |φ 1   and  |ψ 2  =  γ |φ 0  +  δ |φ 1   can be easily evaluated by considering the products of the basis coefficients with the corresponding complex conjugate ones:

 ψ 1 |ψ 2  =  α∗γ +  β∗δ. 

(2)

The most common based used for representing qubits is the computational basis





1

0

with elements  | 0  :=

and  | 1  :=

. 

0

1

Once a orthonormal basis has been chosen, a qubit is completely defined by

knowing the values of the four degrees of freedom corresponding to the two complex coefficients of the vector space basis. Vectors representing quantum states, however, must be normalized, so it is possible to determine the amplitude of one of the

two complex coefficients when the amplitude of the other is known. Moreover, two quantum states that differ only by a global phase factor are not distinguishable through a measurement process. Therefore, the meaningful information from the

phase of the coefficients is the difference between the two phase values. 

A qubit  |ψ  can therefore by represented using two parameters  θ  and  ϕ  as





 |

 θ

 θ

 ψ = cos

 | 0  +  eiϕ sin

 | 1 

(3)

2

2

with 0  ≤ θ ≤ π,  0  ≤ ϕ <  2 π. 

A commonly used visual representation of a qubit state is the  Bloch sphere, in which a qubit is represented as a point on a unit sphere with coordinates  θ  and  ϕ. 

An example of such a visualization is provided in Fig. 1. 

2.2.  Qubit operations

In the circuit model, the operations that can be applied to qubit states over the Hilbert space  H  are the set unitary operators, i.e., operators for which  U U † =

 U †U =  I  holds true. The unitarity of the quantum circuit operations ensures that the norm of the statevector is preserved during the computation. Moreover, the unitary property of quantum gate operations makes quantum computation reversible, 

since for each quantum operation  U  that can be applied, the inverse operation, corresponding to its adjoint, is also a valid unitary operator. 
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Fig. 1. Graphical representation of a qubit as a point on the Bloch sphere. A qubit state is defined by the parameters  θ  and  ϕ, which are used to represent the spherical coordinates of a point on the Bloch sphere. 

A set of quantum gates of particular importance in the context of QC is the set

of Pauli operators, whose representation in the computational basis is





0 1

 X =

 , 

(4)

1 0





0  −i

 Y =

 , 

(5)

 i

0





1

0

 Z =

 . 

(6)

0  − 1

Through the exponentiation of the Pauli matrices  X,  Y ,  Z,  it is possible to obtain the Pauli rotation gates that rotate the state of a qubit on the Bloch sphere of a chosen angle  θ  along the  x,  y,  and  z  axis, respectively. Their matrix representation in the computational basis is therefore given by





cos( θ)

 −i sin( θ)

 R

 X

 X ( θ) =  e−i θ 2

= cos( θ) I − i sin( θ) X =

 , 

(7)

 −i sin( θ)

cos( θ)





cos( θ)  − sin( θ)

 R

 Y

 Y ( θ) =  e−i θ 2

= cos( θ) I − i sin( θ) Y =

 , 

(8)

sin( θ)

cos( θ)





 e−i θ 2

0

 R

 Z

 Z ( θ) =  e−i θ 2

= cos( θ) I − i sin( θ) Z =

 . 

(9)

0

 ei θ 2
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A qubit operation that often appears in quantum algorithms is the Hadamard

gate, whose computational basis representation is





1

1

1

 H :=  √

 . 

(10)

2 1  − 1

The Hadamard gate maps the state  | 0   to the state  |+  = 1

 √ ( | 0  +  | 1 ) and the

2

state  | 1   to the state  |− = 1

 √ ( | 0  − | 1 ). 

2

2.3.  Multi-qubit states

The quantum state of a system with multiple qubits is described by the tensor

product of the Hilbert spaces of the single qubits that make up the system. For

example, a two-qubits system is associated with the vector space C2  ⊗  C2 = C4. 

The computational basis states of the composite system are obtained from the tensor product of the computational basis states of the single qubit systems. For instance, in the 2-qubit system, the computational basis states are

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

1

0

0

0

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

0

1

0

0

 |

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

00  := ⎢

 |

 |

 |

⎣ ⎥ 01  := ⎢ ⎥ 10  := ⎢ ⎥ 11  := ⎢ ⎥

0⎦

⎣0⎦

⎣1⎦

⎣0⎦  . 

(11)

0

0

0

1

A 2-qubit system can then be represented with respect to the computational

basis as

 α | 00  +  β | 01  +  γ | 10  +  δ | 11 

(12)

with  α, β, γ, δ ∈  C and  |α| 2 +  |β| 2 +  |γ| 2 +  |δ| 2 = 1 . 

A multi-qubit state that can be expressed as a tensor product between elements

of its subspaces is called  separable state, whereas a state that cannot be represented in such a way is called  entangled state. 

2.4.  Gate operations on multi-qubit systems

In similar way to the single-qubit case gate, operations on multi-qubit systems are represented as unitary operations on elements of the composite Hilbert space. One of the most important 2-qubit gates is the controlled-NOT (CNOT) gate, whose

matrix formula in computational basis is

⎡

⎤

1 0 0 0

⎢

⎢

⎥

0 1 0 0

⎢

⎥

⎣

⎥

0 0 0 1⎦  . 

(13)

0 0 1 0

The CNOT applies an operation on the second qubit ( target qubit ) depending on the state of the first qubit ( control qubit ): If the control is in state 0, it applies
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an identity to the target, whereas if the control is in state 1, it applies a NOT

operation. Another important 2-qubit gate in the context of QML is the RZZ gate

which has a computational basis matrix representation given by

⎡

⎤

 e−i θ 2

0

0

0

⎢

⎢

⎥

0

 ei θ 2

0

0 ⎥

 RZZ( θ) = ⎢

⎢

⎥

⎥

(14)

⎣ 0

0

 ei θ 2

0 ⎦

0

0

0

 e−i θ 2  . 

It can be showed that arbitrary single qubit gates and CNOT gates are universal, i.e., it is possible to decompose any quantum circuit acting on an arbitrary number of qubits as single qubit operations and 2-qubits CNOT gates. 14

2.5.  Measurements

The measurement procedure is the process through which it is possible to extract information from a quantum state. A measurement is described by an  Observable, which is mathematically defined as an Hermitian operator. An observable  O  has an eigendecomposition given by



 O =

 λPλ

(15)

 λ

with  Pλ  being the projector onto the eigenspace of  O  with eigenvalue  λ. When performing a measurement, the possible results are given by the set of eigenvalues λ  and the probability  p( λ) of observing a specific result  λ  after performing the measurement process on quantum state  |ψ  is

 p( λ) =  ψ| Pλ |ψ . 

(16)

In QML, one is often interested in the expectation value  Oψ  of a measurement process defined by an observable  O  with respect to a quantum state  |ψ. By using the measurement probability definition of Eq. (16), it is possible to see that14



 Oψ =

 λp( λ)

(17)

 λ



=

 λ ψ| Pλ |ψ

(18)

 λ  

=  ψ|

 λPλ |ψ =  ψ| O |ψ . 

(19)

 λ

When using real quantum hardware, the expectation value must be estimated

through a sampling procedure by performing multiple measurement operations. The

estimation of the expectation value is then usually obtained by taking the sample mean of the measurement outcomes. 
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3. Gate-Based Quantum Machine Learning

Gate-based QC is employed in QML mainly by making use of Parametrized Quan-

tum Circuit (PQC), which are quantum circuits that apply a set of operations on

the quantum state that depend on a set of parameters. In such a setting, data are usually embedded in a quantum state through  angle encoding10 which makes use of PQC parameterized by the feature values of the datapoint to be encoded. This

procedure requires a number of qubits equal to the number of features of the datapoints in the dataset. Other data encoding strategies have also been proposed such as the  amplitude encoding  and  basis encoding. 10 The main applications of PQC in QML use-cases are QNN and QK. In this section, an overview of the theory of QNN

and QK is provided. 

3.1.  Quantum neural networks

A QNN is a type of QML algorithm that works by encoding input feature data

point x  ∈  R n  in a corresponding quantum state  |φ(x)   by using a PQC which is parameterized over the feature values of x as well as some trainable parameters  θ:

 |φ(x)  =  U(x , θ)  | 0 n. 

(20)

A common implementation of the circuit  U(x , θ) consists of the sequential application of  L  alternating encoding layers  S(x) and variational layers  Ul( θ): L



 U(x , θ) :=

 Ul( θ) Sl(x) . 

(21)

 l=1

The layers  Sl(x), also referred to as  quantum feature maps, depend only on the values of the feature vectors x. Among the most popular quantum feature maps is the ZZFeature map, whose structure is shown in Fig. 2. Such a feature map is a specific instance of a more generic class of feature maps introduced by Havlicek et al.  in 2018, 15 which are conjectured to be hard to simulate classically. 

The circuits  U ( θ), often referred to as  ansatz  circuits, are PQC whose parameters  θ  are optimized in the training phase of the model with respect to the optimization of a suitable loss function. A popular example of ansatz in QML is the

so-called RealAmplitudes ansatz which consists of a series of parametrized RY gates and CNOT gates. An illustration of the circuit scheme of the Real amplitude ansatz is provided in Fig. 3. 

The output function  fθ(x) of a QNN circuit  U(x , θ) is the expectation value of a chosen observable  M  with respect to the state obtained by applying the QNN

circuit  U(x , θ) to the initial state  | 0 n: fθ(x) :=   0 n| U†(x , θ) M U(x , θ)  | 0 n. 

(22)

It is possible to obtain multiple outputs from a QNN by using a corresponding

number of observables. The gradients of the function  fθ(x) with respect to the
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Fig. 2. Example of ZZFeaturemap with four qubits. The feature map begins by first applying a Hadamard gate to all the qubits followed by a rotation gate parameterized by the values of the feature vector components. Afterward, a sequence of RZZ operations is applied to a set of qubit pairs. The parameter of the RZZ gate applied to qubits  i  and  j  is equal to 2( π − xi)( π − xj), where xi  and  xj  are the  i th and  j th entries of the feature vector to be encoded, respectively. Here, a RZZ gate is applied to qubits i,i+1 for  i ∈ { 0 , . . . , n −  2 }  but other choices for the qubits pairs are possible. The image was generated with the qiskit16 library for Python. 

Fig. 3. Example of real amplitudes ansatz with 4 qubits. The structure of the circuit consists of the sequential application of parameterized RY gates and CNOT gates. The set of qubit pairs to which the CNOT gates are applied can be chosen freely. Here the choice is the same used by the ZZFeaturemap of Fig. 2 in which neighbouring qubits are paired. The image was generated using the qiskit16 library for Python. 

parameters  θ  are often obtained through the so-called parameter shift rule.17 For many circuit architectures used in QML, it can be shown that the calculation of the gradients of a function  f (x , θ) of the type (22) with respect to the parameter  θi ∈ θ

is equal to a linear combination of the same function with the same parameters

except for a shift in the values of the parameters  θi. 

QNNs are often combined with classical neural networks giving rise to hybrid

quantum-classical neural networks, i.e., neural network models that employ both

classical layers and layers using PQC. These models are usually optimized through backpropagation. Several quantum computing libraries such as Qiskit16 and Pennylane18 offer some integration capabilities with popular classical deep learning libraries such as Pytorch19 and Tensorflow20 to enable the design of such hybrid quantum-classical models. 
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3.2.  Quantum kernel methods

The term quantum kernel refers to a class of QML algorithms aimed at implementing a kernel function through the application of quantum computing. Before describing the theory of the implementation of quantum kernels through the usage of gate-based quantum computing, a brief overview of the theory of kernels is provided. 

Definition. Kernel function: Let  X  be the input space of data points and  φ( ·) : X − > H  be a nonlinear mapping from  X  to a transformed feature space  H  in which a inner product  ·, ·  is defined. A kernel function  k( ·, ·) is a symmetric function defined over  X × X  such that  k(x , x ) =  φ(x) , φ(x ) . 

The kernel function enables the calculation of the inner product between two

transformed feature vectors without explicitly knowing the transformed vectors

themselves. It is possible to show that every valid feature mapping  φ( ·) implicitly defines an associated kernel function. Moreover, every valid kernel function defines implicitly a corresponding feature mapping such that the value of the kernel function on two given inputs corresponds to the inner products of the transformed vectors corresponding to such inputs. For a kernel to be valid, it must satisfy the following property, which is referred to as Mercer’s condition:

Definition. Mercer’s condition: Let  K( x, y) be a real symmetric function. The Mercer’s condition is satisfied if for every square-integrable function  g( x): g( x) K( x, y) g( y) dxdy ≥  0 . 

(23)

In the context of kernel methods, given a dataset with  N  data point  {x i, i =

1 , . . . , N },  it is defined as  Gram  matrix, the  N ×N  matrix storing the kernel function evaluations between pairs of sample. Due to the properties of kernels it can be shown that such matrix is symmetric and positive semi-definite. 

One of the major strengths of kernel methods comes from the representer

theorem that states that the minimizer of a regularized empirical risk func-

tional that is defined over a reproducing kernel Hilbert space can be expressed

as linear combination of kernel function evaluations over the the training data

points. 21

3.3.  Quantum kernel implementation

A quantum kernel method aims at constructing the Gram matrix over the train-

ing dataset by defining a kernel function with the usage of gate-based QC. To

do so, input data information is first encoded into a corresponding quantum state through the usage of a quantum feature map, such as those explained in Section 3.1. 
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To an input feature vector, x i  is therefore associated with the quantum state  |φ(x i) 

through the encoding:





 |φ(x



 i)  :=  U (x i) 0 ⊗n , 

(24)

with  U(x i) being a suitable feature map circuit. Some kernels might use an encoding circuit that is also dependent on additional parameters. The evaluation of the kernel function between two data points x m  and x n  is carried out by evaluating the modulo squared of the dot product between the encoded quantum states:

 k(x m, x n) :=  | φ(x m) |φ(x n)  | 2 . 

(25)

This kernel implementation is often referred to as  fidelity quantum kernel, due to the fact that the quantity on the right-hand side of Eq. (25) is called fidelity of quantum states. This choice for the kernel function ensures that the fidelity quantum kernel constitutes a valid kernel function. 22 In practice, however, the Gram matrix of the quantum kernel might not be strictly positive semi-definite due to the sampling noise that occurs when estimating the kernel values. In Refs. 23, 24, several regularization techniques were proposed to bring the estimated Gram matrix closer to its ideal

outcome. 

3.4.  Quantum kernel function estimation

Since the value of  φ(x m) |φ(x n)   cannot be accessed directly, it is necessary to estimate it through a sampling procedure. The most common way to estimate the

fidelity quantum kernel between two input feature vectors x m  and x n  is to construct the circuit  U†(x m) U(x n), apply it to the initial state  | 0 n, and then perform several measurements operations in the computational basis on all qubits. From Eq. (25), it can be seen that

 | φ(x m) |φ(x n)  | 2 =  |  0 n| U†(x m) U(x n)  | 0 n | 2 , (26)

and therefore the fidelity  | φ(x m) |φ(x n)  | 2 is equal to the probability of observing the state  | 0 n  when performing a computational basis measurement on the state U†(x m) U(x n)  | 0 n, which is obtained by the application of the quantum circuit U†(x m) U(x n) to the state  | 0 n. Such a probability is thus estimated by counting the frequency of the measurements that yielded the  | 0 n  state. The fidelity can also be measured through other procedures, such as the SWAP test25, 26 and the Hadamard test. 27

4. Quantum Annealing

QA is an heuristic to the Adiabatic Quantum Computing (AQC)28 model, which is another paradigm of quantum computing that can be considered as an “analog” 

version of the circuit model.10, 29 AQC has be shown to be equivalent to the circuit model up to polynomial time overhead. 10
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In QA, the quantum system is set to the ground state of an initial Hamiltonian

 Hi, whose ground state is known and easy to prepare. The system is slowly evolved for a total annealing time  Ta  by adding a contribution of a target Hamiltonian Hp, whose ground state encodes the solution of the optimization problem to be solved, and by reducing the contribution of the initial Hamiltonian  Hi. The resulting Hamiltonian is then given by

 H( t) =  A( t) Hi +  B( t) Hp, (27)

where  A( t) is a monotonically decreasing function such that  A ( t = 0) = 1

and  A ( t =  Ta) = 0 and  B( t) is a monotonically increasing function such that B( t = 0) = 0 and  B( t =  Ta) = 1. QA is often used to solve Quadratic Unconstrained Binary Optimization (QUBO) problems, i.e., discrete unconstrained opti-

mization problems in which the cost function is quadratic and the variables take values over the binary set  { 0 ,  1 }. The general form of a QUBO problem with  N

binary variables is

 N

 N



 N



 f (x) =

 Qijxixj +

 Qiixi

(28)

 i=1  j= i+1

 i=1

with  xi ∈ { 0 ,  1 }, 

where  Q  is an  N × N  upper-triangular matrix that stores the coefficients of the associated QUBO problem. The linear coefficient for variable  xi  is stored in the matrix element  Qii, whereas the entries  {Qij| j > i}  define the quadratic coefficients related to the variables  xi  and  xj. The first commercial quantum annealer was launched on the market by the company D-Wave. The Quantum Processing Unit

(QPU) topology of the currently available quantum annealers does not provide an

all-to-all connectivity, so it is often necessary to  embed  the desired QUBO problem in the QPU graph topology. This is done by representing an abstract variable in

the QUBO problem with a  chain, i.e., a set of connected qubits in the hardware topology. This embedding operation is called  minor embedding.30

5. Example Applications of Gate-Based Quantum Computing

In this section, some examples of applications of both QNN and QK methods to

RS image processing use-cases are shown and described. 

5.1.  Examples of QNN applications

5.1.1.  Hybrid QNNs for image classification tasks

QNNs have been applied in conjunction with classical neural networks to create

hybrid quantum-classical models. In the context of RS, a hybrid model combining

a classical Convolutional Neural Network (CNN) and a QNN was used to perform

image processing tasks. 31–33 An example of the architecture of a hybrid quantum-classical neural network for classification is depicted in Fig. 4. 

[image: Image 490]
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Fig. 4. Architecture of the hybrid quantum-classical neural network used in the work of Sebastianelli  et al.  31 The hybrid network uses a CNN derived from LeNet architecture34 to extract features that are used as input features for the QNN. The outputs of the QNN are then fed to a feed-forward fully connected neural network that produces as output a probability distribution over the classes. 31

5.1.2.  Quanvolutional neural networks for image processing

An emerging model within the context of QML is the quanvolutional neural network, which was conceived as gate-based QC implementation of the classical convolutional neural network. 35 While the classical CNN constructs the convolution filter with element-wise matrix multiplication, the quanvolutional neural network constructs a PQC by encoding the values of the pixels in the image patch. The output of the filter on a given patch is then a collection of expectation values with respect to a set of observables according to Eq. (22). A scheme of a quanvolutional neural network implementation that was employed for RS image analysis is depicted in Fig. 5. 

5.2.  Examples of quantum kernels applications

Within the field of Earth observation, QK methods have been employed to imple-

ment a binary classification algorithm to detect clouds in RS images. 37 The obtained quantum kernel was then used in conjunction with a Support Vector Machine

(SVM)38, 39 for binary classification. The quantum kernel uses an embedding of the type  U (x , θ) which depends on both the feature vector x and a set of variational parameters  θ  which are optimized using Kernel Target Alignment (KTA). 40

Such a technique aims at optimizing a parameterized kernel  K( θ) by minimizing a distance metric between its Gram matrix over the training dataset  G( θ) with the Gram matrix ˆ

 G  obtained by an ideal kernel, which is defined as

ˆ

 Gij =  yiyj, 

(29)
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Fig. 5. Representation of a 2  ×  2 quanvolutional layer used for image classification tasks. The pixel values of the image patch are used as input parameters for a QNN circuit whose outputs are used to construct the feature map learned by the quanvolutional filter.36

where  yi, yj ∈ {− 1 , +1 }  indicate the binary labels of samples x i  and x j, respectively. 

The similarity metric chosen is the matrix alignment  A  defined as

 

 A

 X, Y F

( X, Y ) = 

 , 

(30)

 X, XF Y, Y F

where  X, Y F = Tr {XT Y }  is the Frobenius inner product. The optimal kernel parameters ˆ

 θ  are then chosen by minimizing the kernel alignment with respect to the ideal Gram matrix:

ˆ

 θ = arg max  A( G( θ) ,  ˆ

 G) . 

(31)

 θ

6. Example Applications of Quantum Annealing

When applying QA to image processing and computer vision use-cases, one of the

key ideas is finding an optimization problem of interest and cast it as a QUBO in order to sample solutions with a quantum annealer. In this section, an overview

of possible applications of QA to image processing and analysis use-cases are

illustrated. 
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6.1.  Support vector machines optimized with quantum annealing

The training phase of an SVM for classification amounts to the optimization of the following function with respect to the variables  α =  {α 1 , . . . , αN }: N



 N

 N



˜

 L( α) =

 αn −  1

 αnαmynymk(x n, x m)

(32)

2

 n=1

 n=1  m=1

subject to the constraints:

 αn ≥  0  n = 1 , . . . , N, 

(33)

 N

 αnyn = 0 , 

(34)

 n=1

where  {(x i, yi) , i = 1 , . . . , N }  are elements of the training dataset  X  and k is a generic kernel function. 

In order to solve the problem with QA, it is necessary to reformulate it as a

QUBO. The main issues to address are that the original problem stated in Eq. (32)

has continuous variables and that it is also subject to constraints. To reformulate the problem in a suitable QUBO form, the following steps are taken:

 •  Each original problem variable  αn  is discretized by using  K  binary variables  ai according to the formula:

 K



 αn =

 BiaKn+ i, 

(35)

 i=0

where  B  is a hyperparameter whose value can be chosen freely. The total number of binary variables of the resulting QUBO problem is then  KN . A higher value of  K  will therefore provide a finer encoding at the expense of a higher number of problem variables. 

 •  The constraint of Eq. (34) is enforced implicitly by adding a squared penalty 2

term (

 n αnyn) to the original cost function. Due to the encoding defined in

Eq. (35) the constraint of Eq. (33) is always satisfied since it is not possible for an encoded variable to take a negative value. 

After applying the variable discretization step and the penalty addition step, the cost function to be minimized takes the following form41:

 N− 1

 K− 1



 L =

 anK+ i ˜

 QnK+ i,mK+ jamK+ j

(36)

 n,m=0  i,j=0

with ˜

 Q  being a  KN × KN  matrix defined as

˜

1

 QnK+ i,mK+ j =  Bi+ jynym( k(x n, x m) +  ξ)  − δnmδijBi. 

(37)

2
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The QUBO problem matrix  Q  can then be obtained from ˜

 Q  with

⎧

⎪

⎪ ˜

⎪ Q

⎨  ij  if  i =  j

 Qij =

˜

⎪ Qij + ˜

 Qji  if  i ≤ j. 

(38)

⎪

⎪

⎩0 if  i ≥ j

When running a problem with a real device, several solutions are usually sampled and then the final solution is obtained by averaging them. 41, 42

6.2.  Multi-class SVM implemented with quantum annealing

The original formulation of SVM described in Section 6.1 can only solve binary classification problems. To extend the SVM to a multi-class setting, two ways are possible. The multi-step approach achieves multi-class classification by employing an ensemble of binary SVM, whereas the single step approach defines a new formulation of the SVM that is intrinsically multi-class. In Ref. 42, a single step SVM based on the Crammer–Stinger43 implementation was cast as a QUBO and solved on a quantum annealer for conducting image classification tasks. As for the original SVM, the training phase of the Crammer–Singer SVM amounts to the optimization

of a quadratic programming problem. Given a training dataset  X =  {(x n, yn) , n = 1 , . . . , N }, with x n  being the input feature vector and  yn  its corresponding label from a set of  C  possible classes, the training cost function is given by N− 1

 C− 1

 N− 1  C− 1

1







 L(T) =

 k(x n , x n )

 τn

 δcy τnc

2

1

2

1 c τn 2  c +  −β

 n

 n 1 ,n 2=0

 c=0

 n=0  c=0

subject to the constraints

 C− 1

 τnc = 0  ∀n, 

(39)

 c=0

 τnc ≤  0  ∀n, ∀c =  yn, 

(40)

with T =  {τnc, n = 0 , . . . , N −  1 , c = 0 , . . . , C −  1 }  being the set of NC problem variables and  β  a regularization hyperparameter. The QUBO problem formulation for the Crammer–Singer SVM follows a similar procedure to the classical SVM

that consists of a variable discretization step and a penalty terms addition step for constraints enforcement. In the encoding process, each original problem variable  τnc is encoded into a set of  B  QUBO binary variables. To do so, for each variable  τnc, an intermediate variable is defined as a function of  B  QUBO variables  {anCB+ cB+ b|

 b = 0 , . . . , B −  1 }  as

 B− 1



 σnc =

2 banCB+ cB+ b. 

(41)

 b=0

[image: Image 497]

[image: Image 498]

[image: Image 499]

[image: Image 500]

[image: Image 501]

84

 E. Pasetto et al. 

 { 00 }

 { 01 }

 { 10 }
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 σnc
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2

3
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0

1

Fig. 6. Example of CS-SVM variables encoding with  B = 2.42

The variables  σnc  therefore take integer values in the range  { 0 ,  2 B −  1 }. The original problem variables  τnc  are derived from  σnc  through the following formula: 2

 τnc =  − 1 +

 σnc, 

(42)

2 B −  1

thus ensuring that the encoded  τnc  lie in the interval [ − 1 , +1] and that the interval is uniformly sampled. An example of encoding with  B = 2 is depicted in Fig. 6. 

The  τnc  encoding with respect to the QUBO variables is

 B− 1

2



 τnc =  − 1 +

2 banCB+ cB+ b. 

(43)

2 B −  1  b=0

The problem constraints are enforced implicitly by adding squared penalty terms

to the cost function in a similar way to what is done with the binary SVM. For the constraints of Eq. (39), the following  N  penalty terms are defined: C− 1



2

 P  1

 n =

 τnc

 . 

(44)

 c=0

For the second set of constraints, NC penalty terms  P  2

 nc  are defined as

 P  2

 nc = (1  − δcy τ

 n nc) . 

(45)

The global penalty term  P  is then obtained by summing with same weight all the penalty terms related to the two constraints:

 N− 1



 N− 1

 C− 1



 P =

 P  1

 n +

 P  2

 nc. 

(46)

 n=0

 n=0  c=0

The resulting final QUBO problem formulation then amounts to the minimiza-

tion of the cost function defined as

 N− 1



 C− 1



 B− 1



 E =

 an

˜

 Q

 a

 , 

1  CB+ c 1 B+ b 1

 n 1 CB+ c 1 B+ b 1 ,n 2 CB+ c 2 B+ b 2  n 2 CB+ c 2 B+ b 2

 n 1 ,n 2=0  c 1 ,c 2=0  b 1 ,b 2=0

(47)

where ˜

 Q  is an  N CB × N CB  matrix defined as

˜

 Qn 1 CB+ c 1 B+ b 1 ,n 2 CB+ c 2 B+ b 2 



2 b 1+1



=  δn

 δ

 δ

 −

 k(x

 , x

( β +  μ)  −  2 Cμ +  μ

1 ,n 2

 c 1 ,c 2  b 1 ,b 2

 n

 i)  − δc

2 B −  1

1

1 ,yn 1

 i

2 b 1+ b 2+1

2 b 1+ b 2+2

+  δc

 , x

) +  δ

1 ,c 2

 n

 n

(2 B −  1)2  k(x n 1

2

1  ,n 2 (2 B −  1)2  μ. 

(48)
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As for the binary SVM, the QUBO problem matrix  Q  is obtained through the application of Eq. (38). 

6.3.  Feature selection with quantum annealing

Hyperspectral image is a type of RS data image that possess many spectral features, sometimes in the order of hundreds. It is therefore a task of interest in the context of EO to find a way to determine the most informative features among the different spectral bands in order to extract meaningful information from data. In Ref. 44, 

QA has been employed to optimize a feature selection problem in the context of

hyperspectral images. 

To do so, a feature selection algorithm based on Mutual Information (MI) is

reformulated as a QUBO and solved with a D-Wave quantum annealer. The mutual

information is a quantity defined in the context of information theory that gives a measure of how much two random variables are mutually independent. The mutual

information of two discrete random variables  X ∈ X  and  Y ∈ Y  is obtained as PXY ( x, y)

 I( X, Y ) =

 PXY ( x, y)log

 . 

(49)

 P

 x∈X y∈Y

 X ( x) PY ( y)

In Ref. 44, the MI  I( Xi, ys) between spectral band  Xi  and class  ys  and the conditional MI  I( Xi, ys|Xj) are calculated by estimating the probabilities through the observation of some statistics on the training dataset. The original optimization problem then amounts to finding the set of spectral bands  Xi  such that the following expression is maximized:

⎡

⎤





max ⎣

 I( Xi;  ys) +

 I( Xi;  ys|Xj)⎦ . 

(50)

 Xi

 Xi

 Xi,Xj

The optimization problem in Eq. (50) can be written as

max x T ˜

 Qx , 

(51)

x

with x = ( x 1 , . . . , xn) T ∈ { 0 ,  1 }n, with ˜

Q being defined as

⎧

⎨ I( Xi;  ys) if  i =  i, 

˜

Q ij = ⎩

(52)

 I( Xi;  ys|Xj) if  i =  j, 

where the binary variable  xi  indicates whether the band  Xi  is chosen in the band’s subset. The optimization problem in Eq. (51) can then be cast as a minimization one by multiplying the matrix  Q  by  − 1 and then minimized with respect to the QUBO

variables. The corresponding QUBO matrix  Q  can be obtained from ˜

 Q  through

(38). To constrain the model to select a specified number of spectral bands  k, which n

corresponds to the constraint

 i=1  xi =  k  being satisfied, a squared penalty term

is added to the cost function. 
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6.4.  QBoost classifier on D-wave

AdaBoost45 is a well-known algorithm in ML aimed at building an optimal binary classifier from multiple weighted predictions of weak classifiers. The global strong binary classifier  H(x) is then obtained from a weighted sum of weak binary classifiers hi(x):





 N



 C(x) = sign

 wihi(x)  , wi ∈ [0 ,  1] , 

(53)

 s=1

where  N  is the number of weak classifiers. In the context of QML, an implementation of Adaboost with QA called Qboost46, 47 has been proposed. To reformulate the optimization problem as a QUBO, the weights  wi  are replaced by a binary expansion of them.46 In QBoost, the optimal weight values w ∗ =  {w∗ 1 , . . . , w∗S}  are found through the minimization of the following squared loss function:









 S



 N



w ∗ = arg min

 wihi(x s)  − ys +  λ||w || 0  , (54)

w

 s=1

 i=1

where x s  and  ys  are the training samples and their corresponding labels, respectively, and  λ  is an hyperparameter that controls the influence of the regularization term. For a single-bit weight encoding, it can be shown that Eq. (54) amounts to the optimization problem:

arg min w T ˜

 Qw , 

(55)

w

with ˜

 Q  being defined as ⎧⎨  S

 S

+  λ −  2

˜

 N 2

 s=1  hi(x s) ys

if  i =  j, 

 Qij = ⎩

(56)

 S

 s=1  hi(x s) hj (x s)

if  i =  j. 

To cast the problem as QUBO as defined in Eq. (28), the QUBO matrix  Q  is obtained from ˜

 Q  with the application of Eq. (38). 

6.5.  Quantum annealing as a post processing tool in

 image classification

In the field of pattern recognition and ML, Markov Random Field (MRF) has been

widely applied to model the spatial interactions between pixels in an image. 48, 49

In the context of RS images, a post-processing tool modeling Ising-like spatial interactions was implemented on a quantum annealer. 50

The proposed algorithm was used as a post-processing step to a create a clas-

sification framework employing both spectral and spatial information. The post-

processing tool takes as input the pixel class probabilities obtained previously by a classical algorithm. Specifically, each class  c  and each pixel  i  in the image are assigned a probability  Pi( c) of that pixel belonging to the given class. Then, the
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image is divided into non-overlapping patches of pixels and for each of them and for each class  c,  a QUBO problem is defined as

⎧

⎨ −α log( 1

 P

 Q

 i( c)  −  1)

if  i =  j, 

 ij = ⎩

(57)

 −β  if  i < j, 

where  α  and  β  are hyperparameters of the algorithm that respectively control the influence of the linear and the quadratic term. Moreover, another hyperparameter  ξ

is used for clipping the values of the linear terms  α log( 1

 Pi( c)  −  1) in the range [ −ξ, ξ]. 

The quantum annealer is then used to get  K  samples  s[ k], and for each pixel  i  in

 

the considered patch, a new value for the probability of the class  c Pi ( c) is obtained with

 K

[ k]

 

 P

 k=1  δ( si ,  1)

 i ( c) =

 . 

(58)

 K

Finally, for each pixel, a prediction  yi  is made with the formula

⎧

⎪

⎨arg max P i( c) if  ∃iP i( c)  ≥  0 , 

 c∈C

 yi = ⎪

(59)

⎩arg max Pi( c) otherwise. 

 c∈C

7. Conclusions

In this chapter, we presented the two main quantum computational models, i.e., 

gate-based and adiabatic quantum computation, along with a selection of relevant quantum algorithms for image analysis and applications in the RS domain. The

provided examples show that the QC formalism is compatible with the computa-

tional needs of real use-cases. Current quantum hardware poses a limitation on the performance of QC. Nevertheless, the rapid development of quantum hardware can

increase the scale at which quantum algorithms can reliably operate, unlocking the potential of substantial advantages. 
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Chapter 1.5

Hopfield Neural Network for Seismic Velocity Picking

Kou-Yuan Huang and Jia-Rong Yang

 Department of Computer Science, 

 National Yang Ming Chiao Tung University, 

 Hsinchu, 30010, Taiwan

The Hopfield neural network (HNN) is adopted for seismic velocity picking in

the time–velocity semblance image. One candidate peak point on the semblance

image is associated with one neuron in HNN. A Lyapunov function (energy)

is generated from the velocity-picking problem. It includes the total semblance

values of picked points and constraints on the number of picked points, interval velocity, and velocity slope. Using gradient descent method, we change one neuron to decrease the Lyapunov function and derive the equation of motion. Each neuron is updated until no change and the corresponding Lyapunov function can reach

the minimum. The linking of the converged network nodes is the best polyline

in velocity picking. We have experiments on simulated and Nankai real seismic

data. Both of the picking results are good and close to the human-picking results. 

The best picking results are used for the normal move-out (NMO) correction

and trace stacking. The stacking results show that the signals are enhanced. The results of velocity picking by the HNN method can improve further seismic data

processing and interpretation. In the comparison with the optimization methods

of simulated annealing (SA) and genetic algorithm (GA), the HNN has the least

CPU time. 

1. Introduction

Seismic reflection is a method to investigate underlying geological formation by analyzing the reflection signals. 1 Velocity picking was an important step of seismic reflection method. It was to pick a series of peaks in the seismic time–velocity semblance image. 1–5 Conventionally, it was analyzed by geophysical experts. The picked points were linked as a polyline representing velocity at each depth. However, the conventional method was time-consuming. Due to such drawbacks, the

automatic method is needed in velocity picking. Some automatic methods were

performed on seismic velocity picking. 6–9 In 1974, Beitzel and Davis6 used the minimum spanning tree (MST) method to do the velocity picking. This method must

manually choose a skeleton from the results of MST as the final solution. In 1992, 91
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Schmidt and Hadsell7 applied the multi-layer perceptron (MLP) in velocity picking. 

They must use another MLP model that was trained by the human-picking result to

validate the polylines. In 1994, Fish and Kasuma8 also used MLP in velocity picking. They used a human-picking result as a guide function. The MLP was trained

until it could approximate the expert picking result. The drawback of the two MLP

methods was that the MLP ought to use the human-picking result for validation. In 2002, Beveridge  et al. 9 defined an objective function that includes inverse energy of picked points and a constraint on average turning angle, and they used a steepest descent method to find the polyline for each common midpoint (CMP) gather. 10

Compared with the above methods, the method used by Beveridge  et al.  could find the polyline without human involvement. However, the drawback of this method

was that the constraint of interval velocity was not taken into consideration, which might result in an ineligible solution. In 2012 and 2013, Huang  et al. 11, 12 used the simulated annealing (SA) and genetic algorithm (GA) for velocity picking, but the methods were in random process, and the computation and iteration steps were

complex and not efficient. 

In 1985, Hopfield proposed a recurrent model called Hopfield neural network

(HNN). 13–19 It had continuous and discrete cases of the neuron state. It could solve the optimization problems. For example, it could solve the minimum distance of traveling salesman problem.15 For seismic applications, it was ever applied to seismic pattern recognition and seismic horizon picking. 20–22

Here we adopt the discrete case of the HNN method to solve the seismic velocity

picking. We define the seismic velocity picking on a seismic semblance image to an optimization problem. The HNN can get the best velocity-picking result. In the

experiments, we use 22 CMP gathers of the simulated seismic data and 15 CMP

gathers of Nankai real seismic data. 4, 23 Then, we use HNN to find the best polyline of each CMP gather. We compare the picking result of HNN with that of human

for performance evaluation. Finally, we use the best polyline by HNN method to do the normal move-out (NMO) correction and trace stacking1–5 to verify the result of velocity picking. The result of velocity picking can improve the further seismic data processing and interpretation. 

2. Seismic Velocity Picking

2.1.  Preprocessing for peak points

In a seismic semblance image, the value is a normalized coherence measure (energy) of the traces between 0 and 1. 1–5 We use a 5-by-5 window to find the largest value and get the peak points. The semblance value of a point is compared with its

neighbors. The point is a peak point if it has the largest semblance value. We move the window from left to right and top to bottom to find the peak points. Then, we
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Fig. 1. Example of seismic velocity picking in semblance image. (a) Peak points. (b) Picked points and linked polyline. 

Table 1. Eight points and picking result. 

A

B

C

D

E

F

G

H

1

0

1

1

0

0

1

1

Polyline: A  →  C  →  D  →  G  →  H

choose the top  Q  points with higher semblance values as the candidate peak points. 

The candidate peak points are arranged with time first and then velocity. 

2.2.  Seismic velocity picking and example

Seismic velocity picking is to pick some peak points from seismic semblance image of time and velocity and get the best time–velocity polyline. Here,  K  points are picked from  Q  peak points as the seismic velocity-picking result and linked as a polyline by HNN. There are  Q  neurons in HNN. One candidate peak point on the semblance image is associated with one neuron in HNN. The example is shown in Fig. 1. It has eight peak points. The peaks in time–velocity seismic semblance images are ordered in a sequence with time first and then velocity. Table 1 shows the eight points. Eight peak points are ordered in A, B,  . . . ,  and H. The point with earlier time links to the point with later time, and they become a polyline. There are many possibilities in polylines. For example, in Fig. 1, A  →  C  →  D  →  G  →  H is a possible solution for velocity picking. There are eight neurons in HNN. The value of a picked point in the neuron of HNN is 1, otherwise 0. The state is [1 0 1 1 0 0 1 1]. We connect
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the picked point with neuron value 1 as the picking result. Usually, the velocity is increased in a deeper layer. 

3. Steps of Seismic Velocity Picking by Hopfield Neural Network

The model of HNN was proposed by Hopfield. 13–19 It was implemented by the analog electric circuit and applied to solve the minimum distance of traveling salesman problem.15 In 1987, Lippmann described the discrete case HNN to the recognition of printed letters. 24 Here, we use the discrete case of HNN to the optimization of seismic velocity picking. 

HNN is a recurrent neural network. The discrete case of HNN is shown in Fig. 2. 

The value of each neuron  xi  is 0 or 1. Every two neurons have the connection weight, wij, except itself. The external inputs can be set to 0 if there are no external inputs. Every neuron receives the inputs from others, passes through the hard-limiter activation function,  fh, and then sends the output to other neurons. The next state of each neuron, or equation of motion, is as follows:

⎛

⎞

 n



 xi( t + 1) =  fh ⎝

 wijxj( t)⎠  , 

 i = 1 , . . . , n. 

(1)

 j=1

Once the weights  wij  are known and the initial state of the network  xj( t) is set, each neuron is updated according to Eq. (1). The procedure is repeated until the network has no change and converges to a steady state. The determination of the

connection weight  wij  depends on the application. For pattern recognition, we can get it from the outer product of the training patterns. 24 For optimization problem, we can get it from the derivation of the Lyapunov function (energy) according to the real problem. 15
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Fig. 2. Discrete Hopfield neural network. 
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Start

Input a time-velocity semblance image

Preprocessing: Get candidate peak points

Define Lyapunov function of HNN

Derive the equation of motion

Find the best t-v pairs by HNN

Normal move-out correction

Trace stacking

Stop

Fig. 3. Steps of seismic velocity picking by Hopfield neural network. 

The HNN can solve the optimization problem in the minimum distance of trav-

eling salesman problem, 15 so we adopt HNN to find the best seismic velocity picking. The steps of velocity picking by HNN are shown in Fig. 3. First, we get the peak points on seismic time–velocity semblance image by peak detection. Then, we choose several points with higher semblance values as the candidate peak points. 

One candidate peak point on the semblance image is associated with one neuron

in HNN. The neuron state is 1 or 0. 1 represents that the peak point is selected as a picked point in a polyline. Next, we generate a Lyapunov function,  E, from the problem of the seismic velocity picking. By the gradient descent method, changing one neuron will change the value of the Lyapunov function such that it will decrease. 

From the energy difference Δ E  and Δ E ≤  0, we can derive the equation of motion. 

Using it, each neuron is updated until no change that is a converged stable state. 

The corresponding Lyapunov function can reach the minimum. Linking the neu-

rons with value 1 in the converged network forms the best polyline that is the best velocity-picking result. 

4. Hopfield Neural Network for Seismic Velocity Picking

4.1.  Lyapunov function in seismic velocity picking

Since our goal is choosing a polyline with the largest total semblance value of picked points, we set up the Lyapunov function (energy) to reach the minimum that can
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maximize the total semblance value of picked points but subject to the constraints on the number of picked points, interval velocity, and velocity slope to remove the ineligible solution. There are  Q  peak points. And there are  Q  neurons in the discrete case HNN. One candidate peak point on the semblance image is associated with one neuron in HNN. There are  K  points that are picked from  Q  peaks. We use a vector x = [ x 1 , x 2 , . . . , xQ] T  to represent the state of all neurons in the HNN. Each element xi  in x represents a candidate point and has a value of 1 or 0. The length of x is

 |x | =  Q. After changing neurons and converging in HNN, the  K-picked points with neuron value 1 are linked as the best polyline. The Lyapunov function of the state x in the HNN is set up as follows:

 E(x) =  −αpEp(x) +  α npts E npts(x) +  α vi E vi(x) +  α vs E vs(x) Q



 Q



2

=  −αp

 xip( xi) +  α npts

 xi − K

 i=1

 i=1



+  αvs

 xixj ppb( xi, xj)csvs( xi, xj) , 

(2)

 i j,j>i

where parameters  αp,  α npts,  α vi, and  α vs are positive. 

The first term in Eq. (2) is the total value of picked points of x: Q



 Ep(x) =

 xip( xi) , 

(3)

 i=1

where  xi  is the  i th neuron value, 0 or 1, and  p( xi) is the semblance value of the  i th peak point. 

The second term in Eq. (2) is the constraint on the total number of  K-picked points:





 Q



2

 E npts(x) =

 xi − K

 , 

(4)

 i=1

where  K  is the predefined number of picked points and  K ≤ Q. 

The third term in Eq. (2) is the constraint of interval velocity. It removes the ineligible polyline that violates the range of interval velocity. We sum up the total violation times of interval velocity in x. It is defined as follows:



 E vi(x) =

 xixj ppb( xi, xj)csvi( xixj) , 

(5)

 i j,j>i

where ppb( xi, xj) is used to check whether there is no any picked point between (ppb)  xi  and  xj. If  xi = 1 and  xj = 1, they may be two adjacent points. We must check whether there is any picked point between  xi  and  xj. If yes, then  xi  and  xj are two adjacent points. And we use csvi( xi, xj) to check whether  xi  and  xj  violate interval velocity constraints. If yes, the interval velocity of two adjacent points is
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out of range. Therefore, Eq. (5) is used to sum up the total violation times of the interval velocity constraint of any two adjacent picked points in x. 

For the calculation of ppb( xi, xj), it is defined as follows:



ppb( xi, xj) =

(1  − xl) = (1  − xi+1)  × (1  − xi+2)  × · · · × (1  − xj− 1) . 

(6)

 i<l<j

ppb( xi, xj) = 1 when there is no any picked point between  xi  and  xj. When  xi and  xj  are two adjacent picked points, their values are 1 and  xi, xj ppb( xi, xj) =

1  ∗  1  ∗  1 = 1. Otherwise,  xi, xj ppb( xi, xj) is 0. 

The interval velocity of Dix’s equation1, 25 is used in the constraint of the Lyapunov function. We calculate the interval velocity of  xi  and  xj, vi x

, and check

 i,xj

whether it violates the interval velocity constraint, csvi( xi, xj), or not. The vi xi,xj and csvi( xi, xj) are expressed as follows:



vi x

=

( t

 ∗ V  2  − t ∗ V  2 ) /( t − t ) , 

(7)

 i,xj

 xj

 s,xj

 xi

 s,xi

 xj

 xi

where  xi  and  xj  are two candidate points,  tx  and  t are their two-way zero offset

 i

 xj

time, and  Vs,x  and  V

are their stacking velocities. 

 i

 s,xj

0 ,  VImin  ≤  vi x ≤  VImax

csvi( x

 i,xj

 i, xj ) =

(8)

1 , 

otherwise , 

where VImin and VImax are the preset ranges for minimum and maximum eligible

interval velocities. 

The fourth term in Eq. (2) is the constraint of velocity slope. It removes the ineligible polyline that violates the range of velocity slope. We sum up the total violation times of the velocity slope of every two adjacent picked points in the vector x.  E vs(x) is defined as follows:



 E vs(x) =

 xi, xj ppb( xi, xj)csvs( xi, xj) , 

(9)

 i j,j>i

where ppb( xi, xj) is used to check whether there is no any point picked between xi  and  xj, and csvs( xi, xj) is used to check whether  xi  and  xj  violate the velocity slope constraint or not. 

We calculate the velocity slope of  xi  and  xj, vs x

, and check whether it violates

 i,xj

the velocity slope constraint, csvs( xi, xj), or not. The vs x

and csvs( x

 i,xj

 i, xj ) are

expressed as follows:

vs x

= ( V

 − V

) /( t

 − t ) , 

(10)

 i,xj

 s,xj

 s,xi

 xj

 xi

where  xi  and  xj  are two candidate points,  tx  and  t are their two-way zero offset

 i

 xj

time, and  Vs,x  and  V

are their stacking velocities. 

 i

 s,xj

0 , V S min  ≤ vsx ≤ VS

 i,xj

max

csvs( xi, xj) =

(11)

1 , 

otherwise , 
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where VSmin and VSmax are the preset ranges for minimum and maximum eligible

velocity slopes. 

4.2.  Analysis of Lyapunov function for seismic velocity

 picking in HNN

Equation (4) in the second term of Eq. (2) can be expanded as follows: Q



2





 E npts(x) =

 xi − K

=

 xi, xj −  2 K

 xi +  K 2 . 

(12)

 i=1

 i

 j

 i

We remove the constant term,  K 2. According to Eq. (2), the new Lyapunov function is  E(x) =  E(x)  − K 2. The meaning of minimum of  E(x) and  E(x) is the same. We separate the off-diagonal and diagonal elements on the above

 i

 j xi, xj





of Eq. (12). Meanwhile, 

 i

 j,j>i xi, xj =

 i

 j,j<i xi, xj . Since  xi  is 0 or 1, 





 i( xi)2 =

 i xi, Eq. (2) is arranged as follows:



 E(x) =  E(x)  − K 2 = 2 α npts

 xi, xj

 i j,j>i



+

 xi, xj ppb( xi, xj) ( α vicsvi( xi, xj) +  α vscsvs( xi, xj)) i j,j>i



+

 xi ( −αpp( xi)  − α npts(2 K −  1)) . 

(13)

 i

We decompose (13) and consider the energy difference Δ E  after updating a neuron xn( t) from  t  to  t+1. In order to decrease  E, i.e., Δ E ≤  0, we can derive the equation of motion. 

We consider all the connections from neuron  xi  to neuron  xj, where  i < j  in a network. Then, we extract the network connections affected by  xn  and decompose the network connections into five parts. Figure 4 shows an example. We have a network with five neurons. The network connection can be decomposed into five

parts when we consider the neurons affected by  xn, where  n = 3. Figure 5 shows the upper diagonal matrix representation of decomposition on network connection. 

The five parts are A, B, C, D, and E. Since  i < j, we use an upper diagonal matrix to represent each part. 

For the first term and the second term in Eq. (13), we can decompose them into five parts. The five parts are presented by an upper diagonal matrix as in Fig. 5. 

Meanwhile, according to the definition of ppb( xi, xj) in Eq. (6), ppb( xi, xj) can be rewritten as follows. It can be used in Eq. (13):



ppb( xi, xj) =

(1  − xl)

 i<l<j





= (1  − xn)

(1  − xl)

(1  − xl)

∵  i < n < j. 

 i<l<n

 n<l<j

= (1  − xn)ppb( xi, xn)ppb( xn, xj)

(14)
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+ 
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+ 
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 j
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C :  i <  n,  j >  n

D :  i <  n,  j <  n

+ 
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4

5
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 xj

E :  i >  n,  j >  n

Fig. 4. Illustration of decomposition on network connection. 

Fig. 5. Upper diagonal matrix representation of decomposition on network connection. 

For the third term in Eq. (13), we consider two cases which are  i =  n  and  i =  n. 

Thus,  E(x) in Eq. (13) can be derived as follows: E(x) = 2 α npts

 xixn + 2 α npts

 xnxj + 2 α npts

 xi, xj

 i<n

 j>n

 i<n j>n





+ 2 α npts

 xi, xj + 2 α npts

 xi, xj

 i<n j>i,j<n

 i>n j>i,j>n



+

 xixn ppb( xi, xn)( α vicsvi( xi, xn) +  α vscsvs( xi, xn)) i<n



+

 xnxj ppb( xn, xj)( α vicsvi( xn, xj) +  α vscsvs( xn, xj)) j>n
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+ (1  − xn)

 xi, xj ppb( xi, xn)ppb( xn, xj)( α vicsvi( xi, xj)) i<n j>n  

+  α vscsvs( xi, xj) +

 xixj ppb( xi, xj)( α vicsvi( xi, xj)

 i<n j>i,j<n



+ α vscsvs( xi, xj)) +

 xi, xj ppb( xi, xj)( α vicsvi( xi, xj)

 i>n j>i,j>n

+ α vscsvs( xi, xj)) +  xn( −αpp( xn)  − α npts(2 K −  1))



+

 xi( −αpp( xi)  − α npts(2 K −  1)) . 

(15)

 i= n

4.3.  Equation of motion in HNN for seismic velocity picking

By the gradient descent method, according to Eq. (15), we can calculate the new network energy (Lyapunov function) at  t+1,  E(x( t+1)), after updating the neuron  xn  from  xn( t) to  xn( t + 1). Then, we calculate the energy difference Δ E =

 E(x( t+1)) −E(x( t)). The value of each neuron is 0 or 1. Δ xn =  xn( t + 1)  − xn( t). 

We can derive

Δ E =  E(x( t + 1))  − E(x( t)) =  −Δ xng( xn( t)) , (16)

where







 g( xn( t)) =  − 2 α npts

 xi −  2 α npts

 xj −

 xi ppb( xi, xn( t))( αvi csvi( xi, xn( t)) i<n

 j>n

 i<n



+  αvs csvs( xi, xn( t)))  −

 xj ppb( xn( t) , xj)( αvi csvi( xn( t) , xj) j>n



+  αvs csvs( xn( t) , xj)) +

 xi, xj ppb( xi, xn( t))ppb( xn( t) , xj) i<n j>n

 × ( αvi csvi( xi, xj) +  αvs csvs( xi, xj))  − ( −αpp( xn( t))  − α npts(2 K −  1)) . 

(17)

In order to decrease  E, i.e., Δ E ≤  0 in Eq. (16), we can get the equation of motion as follows:

1 ,  if  g( xn( t))  ≥  0

 xn( t + 1) =  fh( g( xn( t))) =

(18)

0 ,  if  g( xn( t))  <  0 , 

where  fh () is a hard-limiter function. 

Using Eqs. (16) and (18), we have discussions as follows: (1) If  g( xn( t))  >  0, then from Eq. (18), the output of neuron  xn( t+1) is 1, and Δ xn ≥  0 (the neuron  xn  is from 1 to 1 or from 0 to 1), therefore, from Eq. (16), Δ E ≤  0. 
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(2) If  g( xn( t))  <  0, then from Eq. (18), the output of neuron  xn( t+1) is 0, and Δ xn ≤  0 (the neuron  xn  is from 1 to 0 or from 0 to 0), therefore, from Eq. (16), Δ E ≤  0. 

From the above discussions, we can use the equation of motion (17) and (18) to update the network and Δ E  is always non-positive.  E(x( t)) is a decreasing function when the neurons are updated. 

4.4.  Algorithm of HNN for seismic velocity picking

Using the equation of motion in Eqs. (17) and (18), the algorithm of HNN with asynchronous updating for seismic velocity picking is proposed as follows:

Algorithm 1. HNN with asynchronous updating for seismic velocity picking. 

Input: A seismic semblance image and  Q  candidate peak points. Set x = [ x 1, x 2 , . . . , xQ] T  in HNN. Each  xi  is associated with one peak point. The value of  xi  is 0 or 1. Set  K  as the number of picked points from  Q  points. 

Output: Vector x = [ x 1,  x 2 , . . . , xQ] T  with the lowest Lyapunov function value as the optimal picking result. Linking  xi  with value 1 as a polyline. 

Step 1: Initialization. 

1. Set up a random initial state of network x = [ x 1,  x 2, ...,  xQ] T  in HNN. 

2. Set  t = 0. 

Step 2: Update neurons. 

1. Set  n = 1. 

2. Calculate  g( xn( t)) in Eq. (17), where  xn( t) is the  n th neuron state value at time  t. 

Use the equation of motion in Eq. (18),  xn( t + 1) =  fh( g( xn( t)), to update neuron  xn  at  t+1. 

3.  n =  n+1, go to 2, until  n =  Q. 

4.  t =  t+1, 

Step 3: Repeat step and check termination. 

Go to Step 2 to update each neuron until the network is stable, i.e., all

neurons have no change. The neurons with value 1 are the velocity-picking

result. Link  xi  with value 1 as a polyline. 

4.5.  Performance evaluation

On a semblance image, we get the polyline from the result of the velocity picking by the HNN. In order to evaluate the performance, we compare the polyline by the HNN with that by human. By linear interpolation, we can get the velocities at two polylines at each time sample. Then, we calculate the average absolute difference of

[image: Image 516]

[image: Image 517]
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velocity,  V diff . 

 N

1 

 V diff =

 |V HNN( t)  − V human( t) |, 

(19)

 N t=1

where  N  is the number of calculated time samples and  V HNN ( t) and  V human( t) are the interpolated velocity values by the HNN and human. 

5. Experiments on Simulated Seismic Data

5.1.  Generation of the simulated seismic data

We use Seismic Un* x3–5 to generate a geological model with 20 layers. The model is shown in Fig. 6. It has a bright spot structure that is the gas and oil sand zones. 1 The eleventh, twelfth, thirteenth, and fourteenth layers are shale, gas-sand, oil-sand, and water-sand layers. Each layer has its interval velocity. We simulate the seismic data acquisition on the ground. For one shot, the receivers are two-side split spread, as shown in Fig. 7. For each shot, there are 60 receivers. And we can get the one-shot seismogram. We move the shot and receivers at the same time along

the ground and get the other seismogram. And there are 40 one-shot seismograms. 

The information of the simulated seismic data is shown in Table 2. The spacing of each shot is 50 m. The spacing of each receiver is 50 m. The shot location ranges from location 2.5 km to 4.45 km. The receiver location ranges from location 1.025

km to 5.925 km. Figure 8 shows the seismogram of shot 1. It has 60 traces and 1,500 samples per trace with a sampling interval of 0.004 s and a total of 6 s. 

Receiver locaon range 

Shot locaon range 
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Fig. 6. Simulated 20-layer geological model. 
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Source 

:Receiver

Fig. 7. Two-side split spread of source and receivers. 

Table 2. Information of simulated seismic data at a 20-layer model. 

Time length (s)

Shot seismogram

Traces per shot

Total traces

Offset range of

number

seismogram

one shot (m)

6

40

60

2400

 − 1475  ∼  1475

Number of time

CMP gather number Total CMP gathers Sampling interval (s)

samples

1  ∼  138

138

0.004

1500

Fig. 8. Seismogram of shot 1 at simulated 20-layer model. 

We collect those traces with the same reflection point beneath the ground to

become a common depth point (CDP) gather, also called a common mid-point

(CMP) gather.1, 10 Figure 9 shows the selected traces of a CMP gather from seismograms based on a common depth reflection point. The horizontal axis represents

[image: Image 524]
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:Shot 

:Receiver 

:CMP 

Fig. 9. Selected traces of a CMP gather from seismograms. 

the locations. The vertical axis has no space meaning. They are all at horizontal axis. It represents that shots and receivers are along the horizontal line at different locations. In order to avoid overlapping in the horizontal axis, we plot them down-ward for explanation. Figure 10 shows the corresponding shots and receivers on one CMP gather. Figure 11 shows the CMP gather 70. 

To find the correct velocities for NMO correction, we generate the semblance

image from the CMP gather2 and perform velocity picking. Each pixel in a seismic semblance image is the coherence measure (energy) of all corrected traces in the CMP gather at a certain time and velocity. 

Since the shots are moving. Each CMP gather has a different folding trace

number as shown in Fig. 12. The maximum folding trace number is 30. There are 22 maximum fold CMP gathers. They are from CMP gather 59 to CMP gather

80. The distance between two traces is 100 m. A higher folding trace number can

improve the signal-to-noise ratio after trace stacking. Therefore, we choose the 22

maximum fold CMP gathers for experiments. 

We generate the semblance images of the 22 CMP gathers. The information on

the semblance image at the simulated 20-layer model is shown in Table 3. Figure 13

shows the semblance image of CMP gather 70. After the generation of the semblance image, we do velocity picking by the HNN method. Since the first seismic event

occurs at approximately 0.4 s, we do velocity picking between 0.4 s and 6 s. 

[image: Image 525]
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Fig. 10. Corresponding shots and receivers on one CMP gather. 

Fig. 11. CMP gather 70 at simulated 20-layer model. 

The result of velocity picking on the semblance image is used to find the correct time–velocity points and linked as a polyline for the NMO correction and trace

stacking. Figure 14 shows the illustration of NMO correction on traces of CMP

gather. The purpose of NMO correction is to correct the offset difference of the reflection signal to the vertical reflection. Stacking those corrected traces to become one trace can enhance the signal-to-noise ratio. 

5.2.  Window size for local peak detection and candidate peak point

 number Q

Before doing velocity picking, local peak detection is used to find the peak points in the semblance image. When doing local peak detection, we use a window to

[image: Image 526]
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Fig. 12. Folding trace number of each CMP gather at simulated 20-layer model. 

Table 3. Information of seismic semblance image at a simulated 20-layer model. 

Sampling

Number of

Sampling

Time

interval

time

Velocity

interval of

Number of

length (s) of time (s)

sample

range (m/s) velocity (m/s) velocity sample

6

0.02

300

1000  ∼  7000

25

240

Fig. 13. Semblance image of CMP gather 70. 

decide whether a point is a peak point or not. If the window size is too small, there are too many peak points. In contrast, if the window size is too large, there are few peak points. Therefore, we use a window size of 5-by-5. Besides, we only keep the peak points with certain higher semblance values, so we set the candidate peak

[image: Image 531]
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NMO

Fig. 14. Illustration of NMO correction on traces of CMP gather. 

Fig. 15. 50 candidate peak points ( Q = 50) on semblance image of CMP gather 70. 

point number  Q  to 50. Figure 15 shows the 50 selected candidate peak points on the semblance image of CMP gather 70. 

5.3.  Constant and parameter setting for the Lyapunov objective

 function

In Eq. (13), the setting of the number of picked points, parameters in the Lyapunov objective function, and constants VImin, VImax, VSmin, and VSmax are described in the following. 

5.3.1.  Setting of number of picked points K

Since there is a bright spot structure in Fig. 6, the layer number varies. For the semblance image of each gather, we pick  K  points on it. Table 4 shows the number of picked points  K on each CMP gather from 59 to 80. 

[image: Image 532]

[image: Image 533]
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[image: Image 535]
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Table 4. Number of picked points on each CMP gather from 59 to 80. 

CMP number

59

60

61

62

63

64

65

66

67

68

69

70

Number of picked points

18

17

17

18

17

19

19

20

18

18

19

20

CMP number

71

72

73

74

75

76

77

78

79

80

Number of picked points

19

18

17

19

18

18

19

18

20

18

5.3.2.  Setting of parameters in the Lyapunov objective function

The setting of parameters  αp,  α npts,  α vi, and  α vs in Eq. (13) is 1. We set them with equal weighting. 

5.3.3.  Settings of  VImin ,  VImax ,  VSmin , and  VSmax  and feasible regions for the two constraints

(a) Ranges of VI and VS

The settings of VImin, VImax, VSmin, and VSmax have an influence on the pick-

ing result. We use the settings VImin =1,000, VImax =7,000, VSmin =  − 100, and VSmax = 1,000. 

(b) Feasible regions for the interval velocity and velocity slope constraints

According to the interval velocity (7) and its constraint (8), and the velocity slope

(10) and its constraint (11), we draw the feasible regions of the two constraints at one point. Figures 16(a) and 16(b) show the feasible regions of two constraints at one point on the semblance image of CMP gather 70, respectively. In Figs. 16(a) and

16(b), the circled point is located at (2.16 s, 2300 m/s). We use the circled point as  xi and other pixels as  xj. For each  xj, we calculate the corresponding interval velocity with the circled point according to their time and stacking velocity coordinates by Eq. (7). Then, we check the violation of the interval velocity constraint by Eq. (8). If it violates the interval velocity constraint,  xj  is marked as a yellow point, otherwise a white point. Finally, these pixels constitute two regions which are either yellow or white as shown in Fig. 16(a). Similarly, we obtain the feasible region of velocity slope constraint by using the same method. We calculate the velocity slope by Eq. 

(10) and check the violation of the velocity slope constraint by Eq. (11). The feasible region of the velocity slope constraint is shown in Fig. 16(b). 

Therefore, in Figs. 16(a) and 16(b), if the circled point links to the point in the yellow region, it violates the constraint. In contrast, if the circled point links to the point in the white region, it does not violate the constraint. On the other hand, if we change the circled point to the other candidate peak points, we can obtain the other feasible regions. 

After the settings of feasible regions for the two constraints, we record the values of csvi( xi, xj) for violating the interval velocity constraint and csvs( xi, xj) for

[image: Image 537]

[image: Image 538]
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(a)

(b)

Fig. 16. Feasible regions at one point on semblance image of CMP gather 70. (a) Feasible region of interval velocity (white part) and (b) feasible region of velocity slope (white part). 

violating the velocity slope constraint of any two of all picked points to calculate the Lyapunov function in Eq. (13). 

5.4.  Picking result by human

Since there are 20 geological layers in the simulation, we manually pick 20 points to form a polyline on the semblance image of CMP gather 70. The human-picking

result is shown in Fig. 17. 

[image: Image 539]
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Fig. 17. Human-picking result on semblance image of CMP gather 70. 

5.5.  Experimental results of velocity picking on simulated seismic

 data by HNN

We use the equation of motion in Eqs. (17) and (18) to do velocity picking by HNN. 

We do seismic velocity picking on each CMP gather with 2000 experiments. For

each experiment, we calculate the  V diff by Eq. (19). After 2000 experiments, we calculate the mean and standard deviation of  V diff . We use the setting of a number of picked points  K  in Table 4 and do velocity picking on the CMP gathers. 

We just show the seismic velocity picking on CMP gather 70 with 2000 exper-

iments by HNN. The mean and standard deviation of  V diff of the velocity-picking results are 90.5 m/s and 47.96 respectively. We show the best result of 2000 experiments on CMP gather 70. Figure 18 shows the energy versus iteration. The network converges to a stable state after 453 iterations. 

The velocity-picking result by human is shown in Fig. 19 with the red-cross symbol and line. The best velocity-picking result by the HNN is also shown in

Fig. 19 with the black dots and line. It is close to the human-picking result. Figures 20(a), 20(b), and 20(c) show the CMP gather 70, the result of NMO correction, and the stacked trace. The stacked trace is good. The signal is enhanced. After fin-ishing one gather, we handle the 22 CMP gathers by HNN. Figure 21 shows the seismogram of 22 stacked traces from 22 CMP gathers after NMO correction and

stacking. 

[image: Image 540]
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Fig. 18. Energy versus iteration at the best result by HNN on CMP gather 70. 

Fig. 19. Best velocity-picking result by HNN on CMP gather 70. 

[image: Image 542]
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(a)

(b)

(c)

Fig. 20. NMO correction and stacking result of CMP gather 70 by HNN using best experimental result. (a) CMP gather 70, (b) NMO correction, and (c) stacked trace. 

[image: Image 545]
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Fig. 21. Seismogram of 22 stacked traces from 22 CMP gathers after NMO correction and stacking. 

6. Experiments on Real Seismic Data

6.1.  Real seismic data acquisition and data processing at Nankai

We apply the HNN method to real seismic data at Nankai. 4 Nankai is near the coast of Japan over the Nankai trough where the Philippine plate is subducting beneath Eurasia. The data were collected by the University of Texas, the University of Tulsa, and the University of Tokyo. 4, 23 In the seismic data acquisition, they used end-on spread to acquire the marine seismic data. The receiver was just at one side of the shot. The spacing of each shot is 33.33 m. In each shot, the spacing of each receiver is also 33.33 m. Then, the shot and receivers are moved at the same time and get the other seismogram. Figure 22 shows the seismogram of shot 1750 of Nankai data. 

It has 69 traces and 2,750 samples per trace with a sampling interval of 0.004 s and a total of 11 s. 

We collect those traces with the same reflection point to become a CMP gather. 

In the generation of semblance image from CMP gather, the range of stacking

velocity is from 1000 m/s to 7000 m/s and the velocity sampling interval is 25 m/s. 

6.2.  Experimental results on Nankai real data

The HNN method is applied to the real seismic semblance image. The semblance

images are generated from 15 CMP gathers: CMP 933, 958, 983, 1008, 1033, 1058, 

1083, 1108, 1133, 1158, 1183, 1208, 1233, 1258, and 1283. They have a high folding

[image: Image 546]

[image: Image 547]
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Fig. 22. Seismogram of shot 1750 at Nankai. 

Fig. 23. CMP gather 1233. 

trace number at CMP gather that can enhance the signal-to-noise ratio. Figure 23

shows the CMP gather 1233. Figure 24 shows its semblance image. 

On the semblance image of each CMP gather, we have the number of human-

picked points. 4, 23 We use it as the number of picked points  K  in HNN. For example, for CMP gather 1233,  K =3. The number of selected peaks is  Q =50. We select 3

peaks from 50 candidate peaks as the solution. 

[image: Image 548]
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Fig. 24. Semblance image, human picking, and best velocity-picking results by HNN on CMP

gather 1233. 

Fig. 25. Energy versus iteration of best result by HNN on CMP gather 1233. 

Since it is the marine seismic data, it has constant velocity in the water layer. 

There is no seismic event between 0 and 5.5 s. We just do velocity picking between 5.5 and 11 s in the semblance image. We get the mean of  V diff calculated from the velocity-picking results on each CMP gather by the HNN and human. The smallest

mean of  V diff among the semblance image of 15 CMP gathers is CMP gather 1233. 

 Q =50,  K =3. We show the best experiment result in 2000 experiments on CMP

gather 1233. Figure 25 shows the energy versus iteration of the best result. The

[image: Image 550]

[image: Image 551]
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(a)

(b)

Fig. 26. NMO correction and stacking result of CMP gather 1233 by HNN using best picking result. (a) NMO correction and (b) stacked trace. 

network converges to a stable state after 94 iterations. The best velocity-picking result by the HNN is shown in Fig. 24 with the black dots and line. The velocity-picking result by human is also shown in Fig. 24 with the red-cross symbol and line. 

We can compare the picking results with human picking and the HNN by Eq. (19). 

The gather after NMO correction and the stacking result using the best velocity-

picking result on CMP gather 1233 are shown in Figs. 26(a) and 26(b), respectively. 

In Fig. 26(b), the stacked signal is enhanced. 
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Table 5. Mean of CPU time on CMP gather

70 at simulation with 2000 experiments by

three methods. 

SA

GA

HNN

Mean of CPU time (s)

1.76

3.46

0.07

Table 6. Mean of CPU time on CMP gather

1233 at Nankai with 2000 experiments by three

methods. 

SA

GA

HNN

Mean of CPU time (s)

3.04

2.97

0.02

7. Comparison on Mean of CPU Time by Three Methods

We ever used the SA and GA of the optimization methods on the semblance images

at simulation and at Nankai with 2000 experiments, respectively. 11, 12 That can compare with HNN. The computer we used is ACER VERITON M670 with 6 GB

RAM, and the programming language is MATLAB 7.12.0 (R2011a). Table 5 shows the mean of CPU time on CMP gather 70 at simulation with 2000 experiments

by three methods. Table 6 shows the mean of CPU time on CMP gather 1233 at Nankai with 2000 experiments by three methods. The HNN has the shortest CPU

time in simulation and real data experiments. 

8. Conclusion and Discussion

Velocity picking is an important step for seismic data processing. It picks several points to form a polyline in a semblance image and that can represent the time and velocity relation in geologic layers. Conventionally, the geophysicists did it, but it was time-consuming. 

The HNN is adopted for velocity picking in the time–velocity semblance image. 

One candidate peak point on the semblance image is associated with one neuron in HNN. We generate a Lyapunov objective function (energy) that is related to the

seismic velocity-picking problem. It includes the total semblance value of picked points, and constraints on the number of picked points, interval velocity, and velocity slope. Using gradient descent method, we change one neuron to decrease the

Lyapunov function and derive the equation of motion. According to the equation of motion, each neuron in the HNN is updated until no change and the corresponding

Lyapunov function can reach the minimum. The linking of the converged network

neurons represents the best polyline in velocity picking. 

We have experiments on simulated and real seismic data. We have 22 common

midpoint (CMP) gathers of simulated seismic data and 15 CMP gathers of real
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seismic data at Nankai. We evaluate the performance by comparing the mean dif-

ference between the picking result of the HNN method and that of human. The

experiments show that the picking results are good and close to the human-picking results. The best picking results by HNN are further used to do NMO correction

and trace stacking. The stacking results show that the signals are enhanced. The results of velocity picking by HNN method can improve further seismic data processing and interpretation. In the comparison with the optimization methods of SA and GA, the HNN has the least CPU time. 

In the minimum of the Lyapunov function in Eq. (2), the parameters can be tested by the experiments as the solving minimum distance of traveling salesman

problem in Ref. 15. 

We can expand HNN to the generalized Cellular neural network (CNN). 26, 27

But the structure of the neighboring neurons of each neuron and their relations

must be considered. The derivation of the equation of motion will be more complex. 

And the calculation of CNN will be more complex too. 
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Chapter 1.6

Graph Neural Networks for Moving Objects Detection in Videos
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Deep learning has been widely applied for the detection of moving objects from

static cameras. Recently, many methods using graph neural networks for back-

ground subtraction have been reported with very promising performance. This

chapter provides a survey of different graph neural for moving object detection. 

First, a comparison of the transductive and inductive architectures of each method is provided, followed by a discussion of the specific application requirements, such as spatio-temporal and real-time constraints. After analyzing the strategies of

each method and showing their limitations, a comparative evaluation of the large-scale CDnet2014 dataset is provided. Finally, we conclude with some potential

future research directions. 

1. Introduction

Moving objects detection is an essential process in several applications to track and recognize the moving objects in various challenging scenes like in video surface surveillance, 1 bio-diversity surveillance, 2–4 maritime surveillance, 5, 6 ocean surveil-

lance,7 underwater surveillance,10, 11 optical motion capture,12 and multimedia.13

These various scenes present different challenges, such as illumination variations and dynamic backgrounds. 14, 15 In addition, algorithms require to be incremental and real time. 16, 17 To handle these various challenges, different machine learning models have been used for moving object detection and can be classified into two main categories. First, representation learning (also known as dimensionality reduction and subspace learning) is composed of regular subspace learning methods, 18–20

robust subspace learning methods,18, 19 and dynamic subspace learning approach methods. 24–26 In these model-based methods, the observed data are considered as inlier data, outlier data, or missing data. Second, neural network learning methods are composed of conventional neural networks, 27–29 Support Vector Machines 121
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(SVM),30–32 and deep neural networks.33–35 In these data-based approaches, data are viewed as learning entities that can be well labeled or noisy labeled. Deep learning methods based on Deep Neural Networks (DNNs) with Convolutional Neural

Networks (CNNs also called ConvNets) have the ability to alleviate the disadvan-

tages of parameter setting inherent in conventional neural networks. Although CNNs have existed for a long time, their application to computer vision was limited for a long period due to the lack of large training datasets, the size of the considered networks, as well as the computation power. One of the first breakthroughs in moving object detection was made by Braham and Van Droogenbroeck. 36 Since this research, along with the progress of storage devices and GPUs computation power, even larger and deeper networks became trainable. Thus, Convolutional Neural

Networks (CNNs), 37–39 Generative Adversarial Networks (GANs), 40–42 Transformers Networks, 43, 44 Graph Convolutional Neural Networks (Graph CNNs), 45 and Graph Neural Networks (GNNs)46–50 have been applied with success in moving object detection. Although these methods have demonstrated strong performance on large-scale datasets, as the quality of data improves, these models become increasingly complex and computationally intensive, even with fast algorithms,51 few-shot learning methods, 52 and specialized architectures. 53 The reader can refer to surveys in the field for more details. 54–57 In this chapter, we focus on transductive

GNN46–49 and inductive GNN50 approaches as they require less labeled data and are the most practicable among the deep learning-based methods. The rest of this chapter is organized as follows: A short overview of moving object detection models based on deep neural networks is given in Section 2. Transductive GNN and inductive GNN approaches are presented in Section 3 and Section 4, respectively. A comparative evaluation of the large-scale CDnet 2014 dataset is given in Section 5. 

Finally, conclusions are given in Section 6. 

2. Moving Object Detection

Moving objects detection can be done as labeling task with pixels classified as background or foreground by comparing the background image with the current image. 

MOD is an important technique in computer vision before recognition and track-

ing. 58 MOD can be divided into three main groups: mathematical models, machine learning models, and signal processing models. Statistic, 59 fuzzy, 60 and Dempster–

Shäfer61 methods allow us to deal with imprecision, uncertainty, and incompleteness in the data, which appear due to different challenges and because of the quality of the sensor. Regarding robust representation learning models, unsupervised techniques seek for low-rank structure in the data and attempt to be robust to out-

liers in matrix62–66 or tensor representations. 67–71 Deep learning models seek to be able to face all the challenges by learning all the situations72–74 and are more efficient than methods based on traditional hand-crafted features75 and feature selection schemes. 76 Signal processing models make an estimation of the background
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based on the temporal distribution of the pixels in image frames.77–79 In practice, deep learning-based methods are dominating the performance on the CDnet

2014 datasets with six models: (1) FgSegNet M80 and its variants FgSegNet S81

and FgSegNet V2, 82 (2) BSGAN86 and its variant BSPVGAN, 88 and (3) Cascaded CNNs89 for supervised approaches. However, background subtraction is a classification task and can be solved successfully with DNNs. But their performance

decreases dramatically in unseen scenes being scenes specific. Moreover, they require a big amount of labeled not always available in several applications. In this context, graph signal processing approaches47–49 provide a good compromise between performance and are more practicable in unseen scenarios. Based on this fact, several GNN-based methods have been developed in literature and they can be classified

as follows:

 •  Transductive approaches do not adhere to a strict separation of training and testing phases; rather, they integrate both labeled and unlabeled data simultaneously. 

Notable transductive learning algorithms include graph-based methods, such as

Label Propagation, 93 self-training techniques, and semi-supervised approaches like Generative Adversarial Networks (GANs). 94 As illustrated in Fig. 1, in a transductive learning scenario, one single graph is built from the entire dataset, and the graph vertices are then subdivided into training, testing, and validation sets. 

 •  Inductive approaches distinctly separate the training and testing sets, as opposed to transductive learning methods. This approach has been widely applied in tasks, such as image classification, object detection, and semantic segmentation. Notable algorithms for inductive learning in computer vision include Convolutional Neural Networks (CNNs), 95 Support Vector Machines (SVMs), 30–32 and decision trees. 96

By learning from labeled examples, inductive learning enables models to general-

ize effectively to new instances, making it a foundational approach in computer

vision research. Figure 1 also illustrates an inductive scenario in which multiple graphs are constructed instead of a single, comprehensive graph. This approach

eliminates the necessity for rebuilding the entire graph and retraining the model when a new video is incorporated into the dataset, thereby enhancing its suitability for real-world deployments. 

3. Transductive GraphMOS: Graph Moving Object Segmentation

This section presents the GraphMOS method proposed in 2020 by Giraldo  et al. 46

This method introduces a novel approach to moving object segmentation using

graph-based techniques, which addresses various challenges in the field. Graphs

are a powerful data representation that model complex data and express intrinsic relationships between different data entities. As demonstrated by Shuman  et al.  97

and Sandryhaila  et al. , 98 the concept of graph signal processing (GSP) extends

[image: Image 562]
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Fig. 1. 

Transductive versus. inductive learning for moving object detection. 

 Source: Image from Prummel  et al.  50

classical signal processing to graphs, enabling graph filtering operations on nodes. 

One of the principal motivations behind GraphMOS is the utilization of graph signal processing (GSP) for the reconstruction of graph signals from labeled samples. The GraphMOS method makes the following contributions:

 •  GraphMOS is the first work applying graph signal sampling and reconstruction techniques to the field of MOS and video object segmentation (VOS). However, 

for the sake of brevity, we limit our discussion to the MOS application. 

 •  The theoretical advances are as follows: The paper makes two significant theoretical contributions — (1) It provides an upper bound on the sample complexity

necessary for semi-supervised learning under certain prior conditions and (2) two bounds for the condition number of a perturbed matrix are established. 

 •  GraphMOS is subjected to a comprehensive evaluation process, with its performance being benchmarked against state-of-the-art methods on four widely used

MOS datasets. The study presents a comparative analysis of the algorithms’

applicability to both static and moving camera sequences. 

GraphMOS enhances the accuracy and efficiency of moving object segmentation in

video sequences by classifying each pixel region as a static or moving object through a semi-supervised graph signal reconstruction approach. The algorithm comprises

several steps: segmentation, background initialization, feature extraction, graph construction, graph signal attribution, graph signal sampling, and a semi-supervised learning recovery method. Figure 2 illustrates the framework of the GraphMOS

algorithm, which includes the reconstruction of graph signals. The algorithm begins with background initialization and superpixel segmentation. In this context, each superpixel is considered a node in a graph, and the characteristics of each node are derived from motion, intensity, texture, and deep features. Ground truth data is used to determine whether a node represents a moving object (indicated by green

[image: Image 563]
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Fig. 2. 

The diagram showcases the pipeline of the GraphMOS algorithm. 

 Source: Image from Giraldo  et al.  46

(a)

(b)

(c)

(d)

Fig. 3. 

Results of semantic, instance, and superpixel segmentation using DeepLab,104 Mask R-

CNN,100 and SLIC99 are shown for the fall sequence from the CDNet2014 dataset. The green cars in (b), the differently colored instances in (c), and the uniform regions in (d) correspond to the graph’s nodes. 

 Source: Image from Giraldo  et al.  46

nodes) or a static object (indicated by blue nodes). The black nodes denote images within the dataset that remain unlabeled. Ultimately, a subset of nodes is chosen for labeling, and the semi-supervised algorithm proceeds to reconstruct the labels for all nodes in the graph. These steps are detailed as follows:

 • Segmentation: Superpixel segmentation is performed using the Simple Linear Iterative Clustering (SLIC)99 method, with a fixed number of superpixel regions per image. Instance segmentation utilizes Mask Region Convolutional Neural Network (Mask R-CNN). 100 Other methods such as Cascade Mask R-CNN, 101 Residual Networks (ResNet), 102 and ResNeSt103 are also explored. 

[image: Image 565]

126

 W. Prummel et al. 

Figure 3 shows the segmentation outcomes of the DeepLab,104 Mask R-CNN, and SLIC methodologies on a video frame from the dynamic background category of

the CDNet2014 dataset. The superpixel and instance segmentation approaches are

predominantly employed by GraphMOS, as semantic segmentation methods lack

the capacity to delineate the precise location of specific instances (such as the cars shown in Fig. 3). Consequently, when relying on semantic segmentation, GraphMOS

is unable to distinguish between parked cars in the background and moving cars in the foreground. 

 • Background initialization and feature extraction: The temporal median filter is employed in background subtraction to initialize the background image for each video sequence. Following the segmentation process, the specific features for each pixel region are extracted in order to construct the feature vector. The deep VGG105 features, optical flow, texture, and intensity histogram features are integrated into a unified representation. The aforementioned features are extracted

for the current frame, the preceding frame, the difference between the two frames, and the background image. This enables, for example, the identification of objects that have ceased to move. The process of background initialization and feature

extraction is illustrated in Fig. 4. 

Figure 4 shows the process for extracting features from each segmented region when using Mask R-CNN for segmentation.  Itv, It− 1

 v

represent the gray-scale cropped

images of respectively the current and the previous frame for a given node v. The background crop is named  Bv. Define  Pv  as the set of indices that correspond to the v-th segmented region. The optical flow vectors  vtx( Pv) and  vty( Pv) represent the horizontal and vertical components, respectively, for the current frame within the Fig. 4. 

The graph nodes are represented using Mask R-CNN. Each mask in the image corre-

sponds to a node, characterized by intensity, optical flow, texture, and deep features. 

 Source: Image from Giraldo  et al.  46
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region specified by  Pv. The Lucas–Kanade method106 is used to calculate the optical flow. Texture representation is derived from Local Binary Patterns (LBP)107 in Itv, It− 1

 v

 , Bv, and  |Itv − Bv|. Intensity histograms are computed for  Itv( Pv),  It− 1

 v

( Pv), 

 Bv( Pv) ,  and  |Itv( Pv)  − Bv( Pv) |. Orientation and magnitude vectors from the optical flow vectors  vtx( Pv) and  vty( Pv) are used to calculate histograms and descriptive statistics, such as minimum, maximum, mean, standard deviation, mean absolute

deviation, and range. Deep features of each segmented region are then extracted

using a pre-trained VGG-m model to capture features from the fifth convolutional layer, followed by principal component analysis to reduce dimensionality. The representation of node  v  is formed by concatenating optical flow, intensity, texture, and deep features into an M-dimensional vector  xv. 

 • Graph construction: The segmented pixel regions correspond to graph nodes, with edges representing the Euclidean distance between node embeddings. Mathematically, a graph  G ∈ ( V, E) is defined by a set of nodes  v =  { 1 , . . . , N } ∈ V

and a set of edges  {( i, j) } ∈ E. An undirected, weighted graph is constructed using the  k -Nearest Neighbor ( k -NN) algorithm. The weight between connected vertices is calculated using the formula





2

 wij = exp  − ( d( i, j))

 , 

 σ 2

where  d( i, j) =  ||xi − xj|| 2 and  σ  is the standard deviation calculated as follows: 1



 σ =  |

 d( i, j) . 

 E| +  N ( i,j) ∈E

The adjacency matrix  W  is formed, with  W ( i, j) =  wij. 

 • Graph signal: A graph signal  y ∈  R N×Q  is assigned to each node, where  Q =

2 represents the classes: moving object [0 ,  1] and static object [1 ,  0]. Unknown nodes are labeled during the graph signal reconstruction step. A graph signal

 y  is considered bandlimited if there is a positive integer  ρ =  { 1 ,  2 , . . . , N −  1 }

such that its Graph Fourier Transform (GFT) satisfies ˆ

 y( i) = 0 , ∀ i > ρ. The

smallest  ρ  fulfilling this condition is termed the bandwidth of  y. Based on these frequency definitions, Pesenson108 described the space of all  ω-bandlimited signals as PW ω( G) = span( Uρ :  λρ ≤ ω), where  Uρ  are the first  ρ  eigenvectors of  L. This space is known as the Paley–Wiener (PW) space of  G. Therefore, a graph signal y  has a cutoff frequency  ω  and bandwidth  ρ  if  y ∈  PW ω( G) . 

 • Graph sampling: Graph signal sampling is defined by a subset of nodes S ⊂ V, S =  {s 1 , . . . , sm}, and  ρ  denotes the number of sampled nodes. In semi-supervised learning, the number of sampled nodes must be equal to or greater

than  ρ  to achieve perfect classification, with  ρ  being the bandwidth of the graph signal. The same principle applies to the regression of graph signals if it is assumed that the node labels lie within the Paley–Wiener space of the graph,  y ∈  PW ω( G). 

Therefore, to achieve perfect reconstruction, the number of sampled nodes also

needs to be  ρ. For more information, refer to Section 3.6 in Ref. 46. 
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 • Semi-supervised learning reconstruction: Two methods are proposed for the semi-supervised learning step: minimization of the Sobolev norm and minimization of the Total Variation (TV) method. The following definition is provided to clarify these approaches:

Theorem 1 (Chen’s theorem109).  M is a binary decimation matrix whose entries are given by M = [ δs 1 , . . . , δsm] T , and δv is the N-dimensional Kronecker column-vector centered at v. Let M satisfy rank ( M Uρ) =  ρ. For all y ∈  PW ω( G) , perfect recovery, i.e., y =  ΦMy, is achieved by choosing

 Φ =  UρV

 with V M Uρ, a ρ × ρ identity matrix. Chen’s theorem109  asserts that the reconstruction of a graph signal y from its samples is feasible when y belongs to  PW ω( G) , provided that the number of samples meets or exceeds ρ. The reconstruction process employs the interpolation operator  Φ . In the context of semi-supervised learning, this theorem applies to a graph signal Y pertaining to a classification task. Y is represented as an N × Q matrix, where N denotes the number of nodes and Q signifies the number of classes. Each row of Y indicates a class label using a Kronecker delta vector. Corollary 2 from Section  3 .  6  in Ref. 46  is connected to Theorem  1

 (Chen’s theorem) through the notion of sample complexity in semi-supervised learning, which is intricately linked to the conditions necessary for achieving perfect signal reconstruction. The number of samples Ns required for semi-supervised learning is bounded by the maximum bandwidth among all graph signals associated with the classes, as articulated in the corollary. Formally, this relationship can be expressed as follows:

 Ns ≤ {ρ 1 , . . . , ρQ}. 

 The bandwidth ρi corresponds to the ith class signal. Essentially, for achieving perfect reconstruction and effective learning, the sample complexity must be at least equal to the maximum bandwidth ρ among all class signals. The semi-supervised learning algorithm based on the Sobolev norm is defined using the following equation: Let ε ≥  0  be a fixed parameter and β >  0 , 

argmin z =  z

 q

 qβ,ε  s .  t  M zq =  yq( S)  →

argmin z zT

 q q ( L +  εI ) β zq

s .  t

 M zq − yq( S) = 0 . 

 The goal is to determine the optimal value of zq for all  1  ≤ q ≤ Q, where Q denotes the total number of classes. The Sobolev term is expressed through the matrix equation ( L +  εI) . Here, L represents the Laplacian matrix and I denotes the identity matrix. The graph signal yq( S)  depends on q samples, where S denotes a subset of nodes. The matrix M serves as a sampling matrix. It’s worth noting that adaptations of Sobolev norms to graphs were introduced by Bakry 110  and Pesenson. 108  In the context of semi-supervised learning on graphs, Giraldo et al. also
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 employed the Total Variation (TV) minimization to enhance signal smoothness and segmentation. The total variation of a graph signal y is defined as follows:



  y TV =

 w( i, j) y( j)  − y( i)  1 . 

 i∈V j∈Ni

 In the context where V represents the set of nodes, Ni denotes the neighbors of node i, and w( i, j)  are the edge weights between nodes i and j:  The minimization of yTV promotes signals that are piecewise constant and helps maintain

 discontinuities, which is essential for tasks such as clustering and segmentation. 

 The objective function is defined as follows:

argmin z z

 q

 qTV

s .  t

 M zq =  yq( S) , q = 1 , . . . , Q. 

 The reconstructed signal for the qth class, denoted as  zq , is determined based on the observed values yq( S)  at sampled nodes S, using the measurement operator M. 

 To handle the non-differentiable nature of ·TV, a primal-dual optimization method is employed. This method utilizes the incidence matrix P, which is defined as

 W( e) if  i = min {i,j}

 P ( e, i) =



 , 

and

0

otherwise

 − W ( e) if  i = min {i, j}

 to represent yTV as Py 1 . 

4. Inductive GraphIMOS

In this section, the approach named GraphIMOS (Graph-based Inductive Moving

Object Segmentation)50 is presented. GraphIMOS makes the following contributions to the field of MOS:

 •  GraphIMOS50 introduces an inductive graph-based framework, which represents a significant advancement in the practical application of graph-based methods in video surveillance. 

 •  A Graph Convolutional Network (GCN) architecture was developed with a specific focus on its suitability for MOS. GraphIMOS is distinguished as the inaugural inductive learning methodology employing graphs for MOS. 

The workflow is shown in Fig. 5. In this approach, each video instance is represented as a node within a graph framework. To construct these graphs, a Mask

Region Convolutional Neural Network (Mask R-CNN)100 featuring a ResNet- 50

backbone and a Feature Pyramid Network (FPN) was employed. The nodes were

characterized using optical flow, intensity, and texture features. As an alternative to constructing a single, extensive graph,  ρ +  α k -Nearest Neighbors ( k -NN) graphs were generated, each comprising a distinct number of nodes. For the training and validation graphs,  ρ  was set to 3 and they were fed into the proposed Graph Neural
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Network (GNN) model for training and hyperparameter tuning. In the inductive

learning scenario, it is essential that the nodes and edges in the test data do not overlap with those in the training data. To evaluate the effectiveness of the approach, an in-depth analysis was conducted on a single graph instance  α = 1, constructed from previously unseen videos. GraphIMOS underwent comprehensive testing on

the challenging CDnet 2014 dataset, 111 where competitive performance was demonstrated compared to existing inductive methods. 

4.1.  GraphIMOS: An overview

The GraphIMOS architecture is shown in Fig. 5 and comprises the following steps: instance segmentation, graph construction, and the implementation of a Graph

Convolutional Network (GCN):

 • Instance segmentation and node labeling: The Mask R-CNN100 with the ResNet- 50  backbone is employed to identify regions, utilizing a  k -NN technique to construct graphs. The feature representation framework proposed by Giraldo

 et al. 46 is adopted, wherein the outputs from Mask R-CNN serve as nodes in the constructed graphs. The aforementioned nodes are represented by means of

a concatenation of all extracted features, which results in a high-dimensional

vector ( 930 -dimensional) that serves as a unique descriptor for each instance. To assign labels to the detected instances, each node in the graph is associated with a graph signal represented by  y ∈  R. Two different labels can be assigned to the detected instances: moving or static objects. Here,  N  corresponds to the number of detected instances. Each row of the graph signal matrix  Y ∈  R N×Q  contains a one-hot encoded vector that corresponds to the class label of the object in the segmented region. Specifically,  Q = 2 is the number of classes, thus  1  is used to denote moving objects, while  0  represents static objects. 

 • Graph mini-batch construction: The proposed framework represents a significant departure from previous graph-based moving object segmentation (MOS)

methods, as it employs an inductive architectural approach. In contrast to

approaches like GraphMOS, 46 where the entire graph must be rebuilt for each newly added video in the dataset, necessitating the re-solving of the optimization problem and complicating real-world deployment, our approach avoids this by

generating  ρ +  α  separate graphs, each with a different number of nodes. This methodology guarantees that the data within the  ρ  training-validation graphs remain unconnected. To construct a comprehensive graph that includes multiple distinct subgraphs, the adjacency matrices are organized in a block-diagonal fashion as follows:

⎡

⎤

 A 1 0 −

0

⎢

⎢

⎥

0

 · · ·

 | ⎥

( A) = ⎢

⎣  |

⎥

0 ⎦  . 

0

 − 0  Aρ
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Fig. 5. 

Pipeline of the graph inductive moving object segmentation algorithm via graph neural network learning. 

 Source: Image from Prummel  et al.  50

In this context, the following definitions are applicable: A represents the adjacency matrix in the mini-batch,  ρ  denotes the number of training and validation graphs, and  α  represents the testing graphs, as depicted in Fig. 5. The adjacency matrices are stored efficiently using a sparse representation that only records

non-zero entries, thus avoiding extra memory overhead. Furthermore, node and

target features are seamlessly integrated into the node dimension through simple concatenation. 

 • Implementation of the GCN model: The model has been constructed with two GCNConv layers, as described by Ref. 117: multiple ReLU activation layers and three linear layers. To mitigate the issue of overfitting and enhance

the model’s ability to generalize to unseen videos, five dropout layers and four PairNorm batch normalization layers were incorporated into the model. 118 These techniques also contribute to the stability of the training process and prevent

over-smoothing. PairNorm is especially advantageous for facilitating more effec-

tive model convergence. The primary objective is to learn meaningful represen-

tations of the graph structure and node features for the purpose of classifying

objects as either static or moving. The final layer of our model employs a log

softmax function, which is defined as follows:





1



log softmax = log

exp( xi)  , 

where  s =

exp( xi) . 

 s

 s

The proposed GCN-based architecture is implemented using the PyTorch Geo-

metric library. 119 The  k -NN graphs are constructed with  k =40 neighbors. To prevent overfitting, dropout is applied with a coefficient of  0.5. Stochastic gradient descent (SGD) is employed for optimization, with a momentum of  0.9, a learning rate of  0.01, and a weight decay of 5  ×  10 − 4. The model is trained for a maximum of  500  epochs. The architecture comprises five hidden layers, and the
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negative log likelihood loss function is employed for training and evaluation of the GCN-based model. 

4.2.  Experimental setup for GraphIMOS

The efficacy of GraphIMOS is assessed in comparison to a number of contempo-

rary algorithms utilizing the extensive CDnet 2014 dataset. 111 In order to establish an inductive framework, multiple graphs were constructed by dividing the data

into four sequences. As illustrated in Table 1, the four sequences are designated as S1, S2, S3, and S4. Consequently, four experiments are conducted to compute the

F-measure for the entire dataset. These sequences have been selected in order to facilitate the evaluation of unseen videos, in accordance with the approach outlined in Ref. 120. For each sequence, the results are calculated and a graph is constructed for that sequence. The four graphs are designated as G1, G2, G3, and G4. In each experimental trial, two graphs are employed for the purposes of training and evaluation with regard to GraphIMOS, while a third graph is utilized for the testing phase. 

In order to assess the algorithm’s performance on unseen videos, each experiment employs a distinct graph for testing purposes. 

5. Experimental Results

To have a fair comparison, we present the results obtained on the publicly available CDnet 2014111 dataset. The dataset contains 22 additional camera-captured videos providing 5 different categories, compared to CDnet 2012. Those additional videos are used to incorporate some challenges that were not addressed in the 2012 dataset. 

The categories are listed as follows: baseline, dynamic backgrounds, camera jitter, shadows, intermittent object motion, thermal, bad weather, low frame rate, night videos, PTZ, and turbulence. In CDnet 2014, the ground truths of only the first

half of every video in the five new categories are made publicly available for testing, other than CDnet 2012 which publishes the ground truth of all video frames. 

However, the evaluation is reported for all frames. The F-measures obtained by

transductive and inductive GNNs algorithms are compared with the F-measures of

other representative deep learning algorithms over the complete evaluation dataset. 

In addition, we indicate if algorithms fall in the following categories: pixel-wise algorithms, spatial-wise algorithms, and temporal-wise algorithms. On the other hand, UCSD contains 18 videos mainly composed of moving camera sequences, with 30

up to 246 frames each sequence. Table 1 groups the different F-measures which come either from the corresponding papers, or the CDnet 2014 website. In the same way, Tables 2 and 3 show some visual results obtained using GraphMOD-Net, 45

GraphMOS46 and GraphIMOS. 50
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Table 1. 

F-measure metric over the categories of the CDnet 2014, namely Baseline (BSL), Dynamic background (DBG), Camera jitter (CJT), Intermittent Motion Object (IOM), Shadows (SHD), Thermal (THM), Bad Weather (BDW), Low Frame Rate (LFR), Night Videos (NVD), PTZ, and Turbulence (TBL). 

Average

Algorithms (Authors)

BSL

DBG

CJT

IOM

SHD

THM

BDW

LFR

NVD

PTZ

TBL

F-Measure

 Gr

Transductive

 aph

Multi-scale/cascaded

CNNs

 Ne

FgSegNet-M

0.9973

0.9958

0.9954

0.9951

0.9937

0.9921

0.9845

0.8786

0.9655

0.9843

0.9648

0.9770

 ur

( Spatial-wise)70

 al

FgSegNet-S ( Spatial-wise)81

0.9977

0.9958

0.9957

0.9940

0.9927

0.9937

0.9897

0.8972

0.9713

0.9879

0.9681

0.9804

 Ne

FgSegNet-V2

0.9978

0.9951

0.9938

0.9961

0.9955

0.9938

0.9904

0.9336

0.9739

0.9862

0.9727

0.9847

 twor

( Spatial-wise)82

 k

Transductive 3D CNNs

 sf

3D CNN ( Temporal-wise)83

0.9691

0.9614

0.9396

0.9698

0.9706

0.9830

0.9509

0.8862

0.8565

0.8987

0.8823

0.9507

 or

3D Atrous CNN

0.9897

0.9789

0.9645

0.9637

0.9813

0.9833

0.9609

0.8994

0.9489

0.8582

0.9488

0.9615

 Mov

( Spatial/Temporal-wise)84

 i

FC3D

0.9941

0.9775

0.9651

0.8779

0.9881

0.9902

0.9699

0.8575

0.9595

0.9240

0.9729

0.9524

 ng

( Spatial/Temporal-wise)85

 Ob

MFC3D

0.9950

0.9780

0.9744

0.8835

0.9893

0.9924

0.9703

0.9233

0.9696

0.9287

0.9773

0.9619

 jec

( Spatial/Temporal-wise)85

 ts

Transductive GANs

 De

BScGAN ( Pixel-wise)86

0.9930

0.9784

0.9770

0.9623

0.9828

0.9612

0.9796

0.9918

0.9661

N/A

0.9712

0.9763

 tec

BGAN ( Pixel-wise)87

0.9814

0.9763

0.9828

0.9366

0.9849

0.9064

0.9465

0.8472

0.8965

0.9194

0.9118

0.9339

 tio

BPVGAN ( Pixel-wise)88

0.9837

0.9849

0.9893

0.9366

0.9927

0.9764

0.9644

0.8508

0.9001

0.9486

0.9310

0.9501

 n

Transductive Graph

 in

Neural Networks

 Vi

GraphMOS46

0.9398

0.7334

0.7005

0.3607

0.9653

0.7292

0.8294

0.5538

0.7599

0.7302


 deo

GraphMOD-Net

0.9550

0.8510

0.7200

0.5540

0.9420

0.6820

0.8390

0.5210

0.7700

0.7593

 s

(Original)45

Inductive CNNs/Graph

Neural Networks

FgSegNet (Modified)60

0.5641

0.2067

0.2845

0.3325

0.3809

0.3584

0.2789

0.2115

0.1400

0.3061

GraphMOD-Net

0.6474

0.6254

0.4926

0.5243

0.6587

0.5484

0.6268

0.5337

0.5899

0.5831

133

(Modified)45

GraphIMOS50

0.7003

0.5868

0.6700

0.5284

0.6807

0.6453

0.6377

0.5478

0,5932

0.6211
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Sequences

Training

Validation

Testing

S2,S3,S1,S4 (Exp1)

 G 2,  G 3

 G 1

 G 4

S1,S3,S4,S2 (Exp2)

 G 1,  G 3

 G 4

 G 2

S2,S3,S4,S1 (Exp3)

 G 2,  G 3

 G 4

 G 1

S1,S2,S4,S3 (Exp4)

 G 1,  G 2

 G 4

 G 3

5.1.  Qualitative results

GraphMOS46 has been demonstrated to consistently produce optimal visual results, as illustrated in Table 2. In comparison to GraphMOD-Net, 45 it has been shown to outperform the sequence featuring adverse weather conditions with wet snow. It is noteworthy that for the bird sequences from UCSD, 114 which features dynamic background variations such as rippling water surfaces, both GraphMOS and GraphMOD-

Net are capable of effectively addressing these challenges. Table 3 illustrates the visual results of GraphIMOS on the CDnet 2014 dataset. The results demonstrate

that GraphIMOS outperforms GraphMOD-Net (modified) in the context of inter-

mittent object motion, as evidenced by its superior performance in the tram stop sequence, and in the context of shadow detection, as evidenced by its superior performance in the cubicle scene. The results of the segmentation are markedly superior for GraphIMOS. 

5.2.  Quantitative results

The assessment of a number of algorithms for MOS has provided some intrigu-

ing insights across a range of categories. The results in Table 1 suggest that transductive multi-scale/cascaded CNNs may offer a promising approach. Among

the models tested, FgSegNet-V2 (spatial-wise)82 showed a promising performance, achieving an average F-measure of 98%. Additionally, both FgSegNet-M (spatial-

wise)70 and FgSegNet-S (spatial-wise)81 yielded promising results, with average F-measures of 97.7% and 98%, respectively. These results suggest that multiscale and cascaded approaches may be effective for MOS tasks. The results sug-

gest that transductive 3D CNNs may have potential for temporal modeling, with

the 3D CNN (temporal-wise)83 achieving an average F-measure of 95%. The 3D Atrous CNN (Spatial/Temporal-wise)84 showed a slight improvement with an average F-Measure of 96.15%, while the FC3D (Spatial/Temporal-wise)85 and MFC3D (Spatial/Temporal-wise)85 also demonstrated promising results, with average F-Measures of 95.24% and 96.19%, respectively. It seems that the MFC3D

(Spatial/Temporal-wise) method may offer the most promising results among the

transductive 3D CNNs. It appears to perform particularly well on baseline (99.5%), camera jitter (97.44%), and shadow (98.93%). It is worth noting that the model
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Table 2. 

Visual results of transductive-based methods on CDnet 2014 and UCSD datasets. 

From left to right: Original images, Ground-Truth images, GraphMOD-Net,45 and GraphMOS.46

GraphMOD-Net

Categories

Original

Ground Truth

(Modified)45

GraphMOS46

B-Weather

WetSnow

(in000500)

Baseline

TramCrossroad

(in001873)

Birds

(frame 4)

Table 3. 

Visual results of inductive-based methods on CDnet 2014 dataset. From left to right: Original images, Ground-Truth images, GraphMOD-Net,45 and GraphIMOS.50

Categories

Original

Ground Truth GraphMOD-Net45

GraphIMOS50

Baseline

Pedestrians

(in000424)

I-O

Motion

Tramstop

(in002395)

Shadow

Cubicle

(in005774)

performs particularly well on the thermal, bad weather, low frame rate, night

videos, PTZ, and turbulence datasets, with average F-Measures of 99.24%, 97.03%, 96.96%, 97.73%, 92.87%, and 92.33%, respectively. In the dynamic background

challenge, the MFC3D (Spatial/Temporal-wise) model achieved a slightly lower

result than the 3D Atrous CNN (Spatial/Temporal-wise) model, with a difference of only 0.09%. In the IntermittentObjectMotion challenge, the model’s performance
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was not as strong as that of the other transductive 3D CNN models. Transduc-

tive GANs also demonstrated promising results, with BScGAN (Pixel-wise)86 and BGAN (Pixel-wise)87 achieving average F-Measures of 97.63% and 93.39%, respectively, and BPVGAN (Pixel-wise)88 performing well with an average F-Measure of 95.01%. In comparison, transductive graph neural networks did not perform

as well as CNN-based approaches. It might be suggested that GraphMOS and

GraphMOD-Net (Original) could benefit from further improvement, with average

F-Measures of 0.7302 and 0.7593, respectively, indicating room for enhancement

in graph-based transductive learning for MOS. Nevertheless, GraphMOD-Net, in

contrast to GraphMOS, uses a GCN model for solving the GraphMOS graph signal

reconstruction problem in a semi-supervised manner. Although GraphMOS already

demonstrated interesting results, GraphMOD-Net outperforms GraphMOS on base-

line (95.5%), dynamic background (85.1%), camera jitter (72%), intermittent object motion (55.4%), bad weather (83.9%), and PTZ (77%). This demonstrates that the

GCN model enhances the results of GraphMOS. As anticipated, inductive convolu-

tional neural networks (CNNs) and graph neural networks (GNNs) demonstrated

inferior performance compared to their transductive counterparts. This is attributed to the inherent challenges associated with inductive learning, particularly in terms of generalization to unseen data. The modified FgSegNet exhibited markedly inferior performance, with an average F-Measure of 0.3061. The modified GraphMOD-Net

model demonstrated an improvement in performance with an average F-Measure of

0.5831. It is noteworthy that GraphIMOS achieved the highest average F-Measure

among inductive methods, at 0.6211. This demonstrates its effectiveness in handling unseen video sequences and indicates its potential for real-world applications. 

6. Discussions

The GraphMOS method46 presents an effective approach to MOS that is grounded in the principles of graph signal processing. The algorithmic pipeline comprises the following stages: segmentation, background initialization, feature extraction, graph construction, and semi-supervised learning techniques inspired by graph signal reconstruction theory. Experimental evaluations on four public MOS datasets

consistently demonstrate superior performance compared to current state-of-the-

art methods. This study proposes several avenues for future research, including

the extension of graph signal concepts to fuzzy representations for objects, the application of these concepts to bounding boxes in multi-object tracking, and

the exploration of inductive learning for real-time MOS and VOS. Nevertheless, 

the transductive learning approach inherent to GraphMOS presents a significant

challenge in terms of real-world deployment. The construction of a single graph

from the entire dataset entails a considerable computational burden when integrating new videos. This limitation highlights the necessity for innovation. The next section presents a novel graph-based inductive moving object segmentation algorithm. 

This novel approach integrates deep learning with graph-based techniques, thereby
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enhancing the generalization capability of inductive learning methods for real-world deployment. The objective is to address the current limitations of graph-based MOS

methods and enhance their practical applicability. As expected, conventional deep learning and transductive graph-based methods obtained better F-Measures than

the inductive method GraphIMOS, but their performance decreased dramatically

with their inductive version in the case of unseen scenes. 

7. Conclusion and Perspectives

In this chapter, we have presented a full review of recent advances in the use of graph neural networks applied to moving object detection in a video taken by a static camera. The experiments reported on the large-scale CDnet 2014 dataset show the gap in performance obtained by the supervised deep neural network methods in this field. 

Although applying graph neural networks for moving object detection has received significant attention in the last two years since the paper of Giraldo  et al., 46 there are many unsolved important issues. Researchers need to answer the question: What is the best suitable type of graph neural network and its corresponding architecture for background initialization, background subtraction, and deep learned features in the presence of complex backgrounds? Several authors avoid experiments on the “PTZ” 

category, and when the F-Measure is provided, the score is not always very high. 

Thus, it seems that the current graph neural networks tested meet problems in the case of moving cameras. In the field of moving object detection, only conventional transductive and inductive GNNs have been employed. Thus, future directions may

investigate the adequacy of deep belief neural networks, deep restricted kernel neural networks, 90 probabilistic neural networks, 91 and fuzzy neural networks92 in the case of static cameras as well as moving cameras. 
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In the context of Synthetic Aperture Radar (SAR) imagery, image segmentation

is frequently used aimed at facilitating image analysis and understanding. Here, an ensemble of graph signal processing and Markovian modeling is deployed for

deriving a unsupervised SAR image segmentation method. A graph, together

with a random grid of source elements, is defined on top of the input image. 

From each source satisfying a goal-driven predicate, called seed, a propagation

algorithm assigns a cost to each pixel on the basis of similarity and topological connectivity, measuring the degree of association with the reference seed. Then, the set of most significant regions is automatically extracted and used to estimate a statistical model for each region. Finally, the segmentation problem is expressed, in a Bayesian framework, in terms of probabilistic Markov Random Field (MRF)

graphical modeling. An  ad hoc  energy function is defined based on the parametric models, a seed-specific spatial feature, a background-specific potential, and the local-contextual information. Such energy function is minimized through graph

cuts, and more specifically the alpha-beta swap algorithm, yielding to the final goal-driven segmentation based on the maximum a posteriori (MAP) decision

rule. The proposed method does not require deep  a priori  knowledge (e.g., labeled datasets), as it only requires the choice of a goal-driven predicate and a suited parametric model for the data. 

1. Introduction

The process of partitioning digital images into homogeneous areas, which possibly correspond to meaningful regions of interest (ROIs) in the scene, is called image segmentation. According to the classical definition, 1 the segmentation result is the partition of an image into disjoint, non-empty, and connected subregions, for which 145
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some predicate of homogeneity is satisfied. In addition, the same predicate of homogeneity must not be valid for the union of any such subregions. 

When referring to particular application domain, e.g., remote sensing, image

segmentation can be equipped with an operative purpose such as the detection of

meaningful image regions. 

Among the state-of-the-art segmentation techniques, parametric modeling offers

many advantages in terms of usability, as it can be unsupervised and do not require a large amount of data. In this approach, the segmentation problem is often formulated in terms of a Bayesian probabilistic graphical model. 2 The Bayesian statistical framework allows for exploiting data and prior distributions3 and aims at linking image segmentation with ROI detection and fostering weakly supervised or interactive approaches. 

Following the dissertation in Ref. 4, the method here presented is the combination of the parametric framework with a graph-based formulation. Indeed, 

graph-based approaches have been widely used in the signal processing context, 5

for instance, in image processing, based on the one-to-one correspondence between the pixels and the nodes of the graphs. 

Aimed at bridging the gap between numerical and semantic segmentation, here

the definition of image segmentation is equipped with a  goal-oriented  component, which is included in the predicate of homogeneity that the desired segments are

meant to satisfy. 

From the operational point of view, three phases can be identified. They combine the mapping of the images into a weighted graph with the definition of a Bayesian probabilistic graphical framework. 

First of all, the numerical/homogeneity and topological/connectivity properties

of the nodes are computed. Here, the predicate of homogeneity is defined, aimed

at integrating the application-specific and user-defined goal into the segmentation process. However, actual segmentation is not performed at this step. Conversely, the set of the most significant regions of interest is automatically identified on the basis of their homogeneity and geometric properties so that a probabilistic model can

be fitted on them. The parameters of the probabilistic model are then estimated. 

Only the type of data under analysis is needed to be known, as it affects the choice for the parametric model to be fitted on the data. Eventually, a Markov random

field (MRF) model6, 7 is defined together with a suitable energy function, whose minimization yields the segmentation. 

It is worth spending some words on the goal-oriented characteristic proposed

here. Instead of determining the entire image partitioning, the homogeneity predicate, which is conditioned by the application domain, permits splitting the image into ROIs and background (i.e., reject regions). Furthermore, in conventional graph-based methods, the graph cut and the cost calculation are closely related, producing the end result. In contrast, an intermediate statistical approach is used in the three phases suggested here to isolate the cost computation used for locating ROI samples from the final MRF formulation connected with the graph cut. Consequently, the
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goal-related, topological, and statistical aspects of the input images are captured by the graph-based technique that is described, which tackles the numerical, syntactic, and contextual phases. 

The experimental results achieved by the proposed method are analyzed in the

context of remote sensing imagery. Synthetic aperture radar (SAR) images acquired by COSMO-SkyMed satellite mission are described. The proposed method is proven

to be effective in such framework, regardless of the possible issues that typically affect the considered types of image data, e.g., speckle in the radar imagery. 8

This chapter is organized as follows. A summary of the suggested methodologi-

cal framework along with the novel definition of goal-driven image segmentation

are presented in Section 2. Specifically, the graph construction process is covered in Section 2.1, the parametric models and parameter estimation strategies are explained in Section 2.2, and the Markovian framework and energy minimization approach are presented in Section 2.3. In conclusion, the experimental analysis is presented in Section 3, along with details regarding the performances attained by the suggested approach and comparisons with the most advanced solutions. 

2. The Method

The region segmentation of an image  X  into disjoint non-empty subregions X 1 , . . . , XM  has to satisfy the following requirements:

 M

(i)

 j=1  Xj =  X, 

(ii)  Xj  is connected for each  j = 1 , . . . , M , 

(iii)  P( Xj) = true for each  j = 1 , . . . , M , 

(iv)  P( Xj ∪ Xk) = false for each  j =  k, 

where  P  is a predicate of homogeneity. Aimed at extracting ROIs that are interesting for some application, one may take into consideration a goal-driven definition of image segmentation, in order to focus this traditional definition with specific attention on the goal to be achieved. Here, rather than looking for an image partition, the objective is splitting the image  X  into a finite set of disjoint ROIs and a background M

 c

 B =

 j=1  Xj

, where ( ·) c  denotes the complementary set. Therefore, each ROI has to satisfy the following requirements:

 M

(i)

 j=1  Xj =  X \ B, 

(ii)  Xj  is connected for each  j = 1 , . . . , M , 

(iii)  P( Xj) = true for each  j = 1 , . . . , M , 

(iv)  P( Xj ∪ Xk) = false for each  j =  k, 

(v)  P( B) = false, 

where  P  is a goal-driven predicate of homogeneity, while the background  B  does not satisfy the homogeneity predicate. It is worth mentioning that here  P  encompasses
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the information related to the topological, morphological, and statistical properties of data and depends on the user-defined goal to be achieved. 

Following such a novel definition, let  X =  {xi}, i ∈ I  be the input two-dimensional scalar-valued image defined over the pixel lattice  I ⊂  Z2. The resulting output would be a label image  L =  {li}, i ∈ I, defined over the same (pixel) lattice, whose pixels are associated with labels identifying a particular element, i.e.,  li ∈  Λ, with Λ =  { 0 ,  1 ,  2 , ..., M }  and  M  being the number of different elements, i.e., of the different ROIs, and the label  li = 0 standing for a background pixel. 

The idea behind the method is to create an output map that is consistent with

identifying the ROIs that are relevant to the application by combining weighted

graphs, parametric density modeling, and Markov random fields. This allows for

the utilization of the input image’s topological and statistical properties. 

A random grid is used to choose the initial finite set of seeds  S 0 to be placed in the image. Then, in accordance with the method’s goal-driven philosophy, those seeds are filtered using the previously stated predicate. In particular, for every seed s ∈ S 0, a small circular patch ˜

 Xs  is surrounded by  P , and  s  is kept if and only if

 P ( ˜

 Xs) = true. The subset  S ⊂ S 0 of the initial set of seeds chosen in accordance with P  is indicated as  S =  {sn}, n = 1 ,  2 , . . . , N  in the following. In the tests conducted in this study, for instance, such a predicate is based on the local statistics of the pixels around each seed (i.e., the set of pixels ˜

 Xs): the suggested seed is retained

when the criterion is positively satisfied. 

It is worth underlining that the user defines the predicate, which specifies the objective that directs the segmentation process and reflects their area of expertise. 

Although the concept may be more generic, in the situation shown here, such a

predicate is based on the local statistics of the seeds. Specifically, it is easy to let the user define the predicate in an arbitrary way: for instance, by choosing some of the seeds directly, by manually discarding some of the seeds that the random

sampling suggested, or by giving the system a small training set that will be used to automatically learn the predicate’s previously mentioned thresholds. 

Then, the propagation algorithm in Ref. 9 is used to compute a set of cost functions  F =  {F sn}, sn ∈ S, each associated with one of the seeds. Each cost function is defined over the whole image such that  F sn :  I →  R. 

In this way, a set of samples  Xsn ⊂ X, defining a region associated with the particular seed  sn, is extracted from the image based on each cost function  F sn ( n = 1 ,  2 , . . . , N ). Conversely, the complementary region (i.e., the set of image pixels not assigned to any set of samples  Xsn ) is defined as the initial background B 0 =  X \ {∪N

 n=1 Xsn }. 

Eventually, a set of parametric models, each one associated with each seed

 sn ∈ S, is estimated using the samples collected in the regions  Xsn. 

The segmentation problem is then formulated in a Bayesian probabilistic graph-

ical framework by defining a Markov random field (MRF) model. Accordingly, the

maximum  a posteriori (MAP) decision rule is formulated as the minimization of a suitable energy function. 6 The energy function is composed of two terms: a unary
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term  Di( ·) and a pairwise term  V ( ·) (see Eq. (1)). The unary pixel-wise contribution is related to (i) the parametric model associated with the set of samples corresponding to each seed, (ii) a background-specific potential associated with the set of samples in the initial background  B 0, and (iii) a spatial feature related to the distance, in the image lattice, between the location of a given pixel and the location of each seed. Conversely, the pairwise contribution brings about local-contextual information. Indeed, the energy function is defined as





 U ( L|X) =

 Di( xi|li) +  β

 V ( li, lj) , 

(1)

 i∈I

 i∼j

where  i ∼ j  denotes pixels  i  and  j  being neighbors according to a first-order neighborhood system,  i, j ∈ I. 

To conclude, the resulting final map  L  is composed by the extracted ROIs  Xj ( j = 1 ,  2 , . . . , M ) and the background  B. 

2.1.  Cost computation

The baseline for the proposed approach is described9 and is based on the computation of a set of cost functions  F =  {F sn}, each associated with a specific seed sn ∈ S. 

For simplicity and ease of notation, this section outlines the process of computing costs for a specific seed  s, with the understanding that extending it to multiple seeds is straightforward and merely involves replicating the process for each seed. 

An evenly spaced grid is defined onto the pixel lattice, with each grid vertex

randomly shifted in both the vertical and horizontal directions, following a uniform distribution. These shifted vertices represent the selected seeds. 

Let the image  X  be mapped into a non-empty, fully connected, undirected, and vertex-weighted graph  G = ( I, E) ,  where  I  is the set of vertices representing the pixels in the image and  E ⊆ {( i, j)  ∈ I × I | i =  j}  is the set of edges. The goal of this section is thus to describe the computation of  F s( i) , ∀i ∈ I, s ∈ S. 

For each couple of nodes  i  and  j, let  w  be a difference function such that w :  I × I →  R , w( i, j) =  |xi − xj|, 

(2)

where  xi  is the intensity of pixel  i ∈ I, and  A  and  B  are the minimum and maximum admissible differences. An example is given by [0 ,  255] in the case of 8-bit gray level images. The function in Eq. (2) represents the difference between each pair of vertices  i  and  j. The higher the value of  w( i, j), the more different the two nodes are in terms of gray level. 

By fixing a specific node  s  in the graph, the seed, each point in the image, and thus each node in the graph, can be associated with a value representing its dissimilarity with respect to  s. Indeed, it is possible to compute the difference function with respect to the seed according to  ws( i) =  w( i, s)  ∀i ∈ I. The proposed cost computation process is based on the computation of  ws( i) for each node in the graph and according to a flooding scheme. 10
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Initially, all nodes except the seed are marked as  unvisited, with the seed having a cost of zero. A set  T , starting with only the seed node, is established to track visited nodes. The flooding process commences from the seed and extends to connected

neighbors (utilizing a 4-connected neighborhood model). Among these neighbors, 

the one offering the lowest  ws  value is selected and included in  T . Consequently, the cost function value linked with the current node is calculated. This process continues iteratively until the set of visited nodes  T  encompasses the entire node set  I. 

Regarding the computation of the cost function, each iteration considers two

nodes: (i) the currently evaluated node  i  and (ii) its parent node  i−, which is the node that, following the flooding scheme, led to  i. Specifically, if the weight  ws( i) associated with  i  concerning the seed surpasses the cost of  i−, then  i’s cost is set to ws( i). Otherwise,  i  inherits the cost value from  ws( i−). This approach ensures that the cost function never decreases with the flooding scheme:

⎧

⎨ ws( i)

if  ws( i)  > F s( i−) , 

 F s( i) = ⎩

(3)

 F s( i−)

if  ws( i)  ≤ F s( i−) . 

Leveraging on such propagation algorithm, a cost value is assigned to all nodes

and the process defines an optimal path from the seed to each vertex. 

2.2.  Parameter estimation

This section is focused on the estimation of the models for the probability density function (pdf) of the samples in each set of samples  Xsn ( n = 1 ,  2 , . . . , N ). Similarly as before, the dissertation here is referred to a generic random variable  Z  and a set  Z =  {zi}qi=1 of independent and identically distributed (i.i.d.) samples drawn from  Z. 

The case of images affected by a multiplicative noise-like component is addressed. 

This is a situation that intrinsically occurs when active radar or sonar instruments are used because of the speckle phenomenon. A variety of parametric models have

been introduced in the literature, including Gamma, Weibull, log-normal, K, sym-

metric  α-stable,  G 0, generalized Gaussian–Rayleigh, Fisher, and generalized Gamma distributions.11–15

Leveraging the homogeneity and low-granularity of the regions identified by the

previous phase of the proposed methodology, the Gamma distribution has been

considered here. Such a distribution is a well-known model for the statistics of homogeneous non-textured regions of image data affected by multiplicative speckle, as, for example, in radar imagery,8 sonar systems,16 and ultrasound imagery,17 and whose PDF is positive-valued ( z ∈  R+):

 L





1

 L

 pZ( z) =

 zL− 1 exp

 −Lz , 

(4)

Γ( L)

 u

 u

where  u  is the mean of the distribution and  L  is its shape parameter ( L, u >  0). 
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Parameter estimation is performed via the Method of Log-Cumulants (MoLC), 

which is a technique developed in the SAR literature for distributions of positive-valued data characterized by multiplicative components (such as the aforementioned speckle). MoLC estimation follows a principle similar to the well-known Method of Moments (MoM), which makes use of the Laplace transform (in terms of moment

generating function) to define relations between the moments and the parameters

of the underlying distribution. In the case of MoLC, the Mellin transform is used to relate the parameters of the distribution to its logarithmic cumulants. In the application to several of the aforementioned distributions, MoLC has led to advantages over MoM in terms of lower estimation variance and over maximum likelihood in

terms of easier analytical or numerical solution. 18

In particular, if  Z  is a positive-valued random variable, the first- and second-order log-cumulants  κ 1 and  κ 2 can be proven equivalent to the logarithmic mean and variance of the distribution of  Z:

 κ 1 = E { ln  Z}, 

(5)

 κ 2 = E {[ln  Z − κ 1]2 }. 

Leveraging on the use of the Mellin transform and on the definition of the

Gamma distribution (see Eq. (4)), these logarithmic cumulants can be related to their parameters [ u, L] through the following MoLC equations19:

⎧

⎨ κ 1 = Ψ(0 , L)  −  ln  u −  ln  L, 

⎩

(6)

 κ 2 = Ψ(1 , L) , 

where Ψ(0 , L) is the digamma function (i.e., the logarithmic derivative of the Gamma function) and Ψ(1 , ·) is the first order polygamma function (i.e., the derivative of Ψ(0 , L)). 20

Given the i.i.d. samples in  Z, the sample estimates of  κ 1 and  κ 2 can be obtained as

 q

1 

ˆ

 κ 1 =

ln  zi, 

 q i=1

(7)

 q

1 

ˆ

 κ 2 =

[ln  zi −  ˆ

 κ 1]2 . 

 q i=1

Then, substituting the sample estimates into Eq. (6), it is possible to write the MoLC equations for the Gamma distribution relating the MoLC estimated

parameters ˆ

 u  and ˆ

 L  to ˆ

 κ 1 and ˆ κ 2:

⎧

⎨ˆ κ 1 = Ψ(0 ,  ˆ L)  −  ln ˆ u −  ln ˆ L, 

⎩

(8)

ˆ

 κ 2 = Ψ(1 ,  ˆ

 L) , 

ˆ

 L  is first obtained by numerically solving the second equation via the Newton–

Raphson method, 21 and then ˆ

 u  is retrieved from the first equation by substituting ˆ

 L. 
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The former solution step is numerically simple thanks to the strict monotonicity of Ψ(1 , ·). 

2.3.  Minimization and graph cut

In the proposed method, the energy function in Eq. (1) is composed of a unary term and a pairwise term. The unary pixelwise term  Di( xi|li) is defined differently in case it refers to the seed-specific labels (i.e.,  li = 1 , . . . , N ) or to the background  B 0

(i.e.,  li = 0). In the former case, it is related to the seed-specific parametric models and to a term measuring the distance between the considered pixel  xi  and the seeds. 

Conversely, in the latter case, it is related to a piecewise constant background-specific potential. The pairwise potential is defined as the Potts model. 6 Indeed, the two terms are as follows:

⎧

⎪

⎪

⎨ di( x|n)  n = 1 ,  2 , . . . , N

 Di( x|n) = ⎪ c 1

 n = 0 , i ∈ B 0

⎪

⎩

(9)

 c 2

 n = 0 , i ∈ I − B 0 , 

 V ( n, m) = 1  − δ( n, m) , 

where  δ( v, w) represents the Kronecker delta, whose value is 1 if and only if  v  equals w, and zero otherwise,  di( x|n) is the seed-specific potential, and  c 1 and  c 2 are the values of the piecewise constant background-specific potential. 

Concerning the seed-specific potential, let ˆ

 p( ·|sn) be the PDF estimate obtained

as described in the previous section from the set of samples  Xsn ( n = 1 ,  2 , . . . , N ) and according to either a Gaussian or a Gamma model. Then, the potential can be

written as

 di( x|n) =  −  ln ˆ

 p( x|sn)  − γ[Δ( i, sn)] − 1 , 

(10)

where Δ( a, b) is the Euclidean distance between pixel locations  a  and  b  in the image plane ( a, b ∈ I) and  γ  is a positive coefficient balancing the two contributions. 

Concerning the piecewise-constant background potential, the two values  c 1 and c 2 are automatically chosen according to the  p-th and (1  − p)-th percentiles of the distribution of the seed-specific potentials  di( x|n). The rationale is to balance the background-specific and the seed-specific potentials so as to favor the goal-driven result while also not censoring any possible outcome in the output label map  Y . 

Both the parameters  γ (Eq. (10)) and  β (Eq. (1)) are determined via a trial-and-error procedure. 

There is a number of techniques for the minimization of a Markovian energy

function, like the one defined in Eq. (1). Here the graph cut approach is used, which is based on the reformulation of the energy minimization problem as a max-flow/min-cut problem over a suitable graph. In the case of binary labeling, graph
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cut approaches are also proven to converge, in polynomial time, to the global minimum. In the case of more than two labels,  ad hoc  techniques have been formulated. 

Here, the chosen technique is the alpha-beta swap technique, which reformulates the problem as a sequence of binary sub-problems and, for each sub-problem, a global energy minimum is reached through the max-flow/min-cut formulation. Convergence to a local minimum with strong optimality properties is guaranteed in this

case.22

3. Experimental Results

For the Experimental phase, three SAR intensity images were considered. They

were acquired by COSMO-SkyMed in the HH polarization and depict rural areas in

the northern Italy. The image sizes are 361  ×  671, 504  ×  458, and 619  ×  417 pixels, respectively; all of them are at a spatial resolution of 5m. 

Concerning the first images, the visible agricultural fields were mainly of three types, corresponding to the lower, higher, and intermediate values of the backscattering coefficient and do not exhibit appreciable texture. The proposed segmentation method was applied with the purpose of segmenting the two types of fields

corresponding to brighter and darker areas (i.e., higher and lower backscattering). 

In this case, two kinds of  hg  conditions were deployed to consider the seeds in both the bright and dark regions. In particular, 

 hg( Xn) = true  ⇐⇒  E {xi} ∈ ( m SAR , M SAR)  ∧  Var {xi} ∈ (0 , v SAR)

 ∀( i, xi)  ∈ ˜

 Xs , 

 n

where  m SAR,  M SAR, and  v SAR are thresholds that can be set either directly by the user or automatically. Here, the former strategy has been adopted. In the

case of bright fields, the parameters have been chosen according to  m SAR = 140, M SAR = 220,  v SAR = 35. Conversely, in case of dark fields, the parameters have been chosen according to  m SAR = 0 , M SAR = 120 , v SAR = 25. 

Then, the pdf adopted for  hs  is a Gamma distribution, while the MRF-related parameters have been set equal to the previous case. 

The proposed method was compared with a state-of-the-art approach for SAR

image segmentation,23 which will be hereinafter referred to as RSLC (i.e., region smoothing and label correction), and with classical segmentation methods. 6, 9, 24, 25

However, the results of such methods are not as effective as the proposed and the RSLC methods despite the SRAD-based pre-processing step aimed at reducing the

impact of the speckle noise. Moreover, the resulting segmentation maps did not

include all the fields, with some of them being fused into regions associated to the background and some being merged into a single region. Nevertheless, a performance
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Table 1. 

Performance comparison on the three available SAR datasets. For each method, the number of identified fields and the average dice score computed on such fields are reported. The three dataset correspond to the images shown in Figs. 1–3. 

Dataset

Proposed

Graph-based9

Classic MRF6

Fields

9

6

3

Case 1

DICE

0.910

0.548

0.816

Fields

14

7

4

Case 2

DICE

0.879

0.424

0.421

Fields

6

6

6

Case 3

DICE

0.787

0.203

0.663

Dataset

Active contours24

ISF25

RSLC23

Fields

4

6

9

Case 1

DICE

0.600

0.501

0.785

Fields

3

5

14

Case 2

DICE

0.320

0.517

0.734

Fields

5

4

6

Case 3

DICE

0.340

0.357

0.782

indicator has been computed also in the case of such methods by averaging the dice scores obtained on the fields that were correctly identified and not considering the ones that were merged or not detected at all. Table 1 reports a summary of such analysis and indicates, for each method, the number of fields being identified and the average dice score on such fields. In the following, the thorough analysis of the performances, with details on the single fields and on the resulting segmentation maps, will take into consideration the best performing methods, being the proposed one and the RSLC. 

Figures 1–3 show the original images, the available and manually annotated ground truth data, and the segmentation results obtained via the two aforementioned cases in the considered trials. In addition, Tables 2–4 summarize the performance of the methods by showing the dice score. It is worth mentioning that

when referring to RSLC, the ROIs included in the ground truth have been manu-

ally selected in the final segmentation map (i.e., by merging oversegmented areas) to enable a quantitative comparison. This emphasizes once more the novelty of

the proposed method to provide a goal-driven result, which is not possible by the compared solution. 

The use of the MRF model allowed achieving spatial regularization in the seg-

mentation map. Indeed, the polygonal shapes of the fields are preserved, despite the speckle8 that may lead to errors in identifying the borders. 
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(a)

(b)

(c)

(d)

Fig. 1. 

Agricultural field segmentation in SAR imagery, Case 1. Original image, ground truth with corresponding enumeration, the result obtained via the proposed method, and via the RSLC

method23 (for interpretation of the references to color in this figure legend, the reader is referred to the web version of this chapter). (a) Data. (b) Ground truth. (c) Proposed method. (d) RSLC. 
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(a)

(b)

(c)

(d)

Fig. 2. 

Agricultural field segmentation in SAR imagery, Case 2. Original image, ground truth with corresponding enumeration, the result obtained via the proposed method, and via the RSLC

method23 (for interpretation of the references to color in this figure legend, the reader is referred to the web version of this chapter). (a) Data. (b) Ground truth. (c) Proposed method. (d) RSLC. 

(a)

(b)

(c)

(d)

Fig. 3. 

Agricultural field segmentation in SAR imagery, Case 3. Original image, ground truth with corresponding enumeration, the result obtained via the proposed method, and via the RSLC

method23 (for interpretation of the references to color in this figure legend, the reader is referred to the web version of this chapter). (a) Data. (b) Ground truth. (c) Proposed method. (d) RSLC. 
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Table 2. 

DICE score comparison. SAR experiment

involving the image reported in Fig. 1 (Case 1). 

Proposed method

RSLC23

Field 1

0.925

0.862

Field 2

0.922

0.818

Field 3

0.921

0.586

Field 4

0.902

0.921

Field 5

0.901

0.894

Field 6

0.898

0.386

Field 7

0.903

0.944

Field 8

0.913

0.837

Field 9

0.906

0.819

Total

0.910

0.785

Table 3. 

DICE score comparison. SAR experiment

involving the image reported in Fig. 2 (Case 2). 

Proposed method

RSLC23

Field 1

0.881

0.901

Field 2

0.931

0.712

Field 3

0.893

0.674

Field 4

0.928

0.924

Field 5

0.757

0

Field 6

0.840

0.869

Field 7

0.923

0.907

Field 8

0.952

0.940

Field 9

0.819

0.866

Field 10

0.852

0.742

Field 11 ∗

0.871

0.645

Field 12 ∗

0.765

0.335

Field 13

0.969

0.907

Field 14

0.923

0.853

Total

0.879

0.734

 Note:  ∗ When referring to the RSLC method,23 fields 11 and 12 are merged. 

4. Conclusion

This chapter introduces a novel approach to unsupervised image segmentation with a focus on user-defined goals. The method presented here partitions input images into homogeneous regions of interest and a background area, driven by the user’s specified objectives. By integrating weighted graphs, parametric density modeling, and Markov random field techniques, this approach has demonstrated effectiveness in segmenting remote-sensing SAR imagery. 

Comparison with existing state-of-the-art solutions served as benchmarks, high-

lighting the capability of the proposed method to leverage user-defined goals and
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Table 4. 

DICE score comparison. SAR experiment

involving the image reported in Fig. 3 (Case 3). 

Proposed method

RSLC23

Field 1

0.916

0.890

Field 2

0.892

0.865

Field 3

0.576

0.715

Field 4

0.887

0.787

Field 5

0.825

0.814

Field 6

0.629

0.622

Total

0.787

0.782

generate accurate segmentation maps distinguishing objects of interest from the

background. Notably, the comparison involved manually post-processing results

obtained from these existing methods, as the conventional segmentation scenar-

ios typically do not address the specific goal-driven separation of regions of interest from the background. 
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The amount and variety of satellite imagery are expanding rapidly. With space-

borne imaging becoming increasingly accessible, there has been an exponential

rise in the availability of satellite data. This surge is driving a broad diver-

sity of imaging modalities, such as multispectral imagery (MSI), hyperspectral

imagery (HSI), and synthetic aperture radar (SAR), alongside variations in sensor design within these modalities, like visible-near infrared (VNIR) versus shortwave infrared (SWIR) multispectral imaging. While it might seem that more imagery

automatically translates to more information and better temporal analysis, tra-

ditional change detection methods face challenges scaling to this complexity —

they assume data come from identical sensors with consistent channels. And

while this was a sensible assumption for many years, this emerging landscape

requires new methods capable of integrating data from both single-sensor and

multi-sensor sources. This chapter provides background on remote sensing data, 

details the problem of change detection, presents cutting-edge approaches to handling change detection in multi-sensor data, and identifies future research areas including digital twins and reinforcement learning. 

 ... real anomalous changes are objects in a scene, not pixels on a screen. 

— James Theiler1

1. Introduction

The ability of remote sensing imagery to distinguish between materials naturally raises the following questions: If we have one or more images of a particular scene, what has changed? More importantly, which of those changes are of interest? For

instance, one analyst might focus on seasonal variations, such as vegetation becoming drier from summer to autumn. Another analyst might not be concerned with

seasonal changes but could be interested in the construction of a new building during that same period. 2–7 Both scenarios result in genuine signal changes, posing the following challenge: How can we translate the subjective and application-specific idea 161
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of an “interesting change” into an objective mathematical framework for analyzing remote sensing images? 

Traditionally, change detection algorithms have assumed that images are cap-

tured by the same sensor, ensuring consistent channels across images. This is especially important for techniques that rely on difference images, as both input images must be in the same domain. However, with the growing accessibility of airborne

and spaceborne remote sensing, the variety of sensors and imaging modalities is

rapidly increasing. 8 More flexible, sensor-agnostic approaches to change detection are needed in order to fully exploit this new wealth of temporal imagery. These

approaches will allow analysts to continuously utilize available imagery over an area without waiting for the same sensor to revisit the scene — revolutionizing

earth observation capabilities. 

The multi-sensor domain introduces several challenges, including the following:

Gaussian assumptions may no longer hold, data measurements can be misaligned

across signal dimensions, and varying collection geometries and spatial resolutions can make georegistration (pixel-to-pixel alignment) difficult or even impossible. 

This chapter explores emerging efforts to address these challenges by applying computer vision techniques to the multi-sensor space. Topics include joint-distribution multi-sensor anomalous change detection, derived multi-sensor feature layers, forward modeling for synthetic data generation, using neural radiance fields to create dynamic 3D backgrounds, digital twin generation, and reinforcement learning

for tailored change detection algorithms. As we move beyond traditional Gaussian assumptions, this evolving field offers significant opportunities for new research directions. 

2. Background on Remote Sensing and Change Detection

This section provides an overview of common remote sensing modalities, or sen-

sor types, and motivates the importance of change detection (and, in particular, anomalous change detection) in remote sensing data. 

2.1.  Overview of remote sensing modalities

In spectral remote sensing, scenes are captured across multiple wavelengths, spanning anywhere from ultraviolet to infrared. Multispectral imagery (MSI) typically contains tens of discrete bands, while hyperspectral imagery (HSI) can capture

hundreds of narrow, contiguous bands, depending on the sensor’s design. Imaging

beyond visible wavelengths allows for the distinction of materials that may look similar to the naked eye but are spectrally different, for example, distinguishing a green car from surrounding green foliage. This capability is essential for remote material identification and other analysis purposes. 9, 10

Synthetic aperture radar (SAR) offers a fundamentally different type of infor-

mation, capturing detailed structural data about surfaces by sending pulses of radio
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waves to “illuminate” a scene. SAR is unaffected by cloud cover or ambient light and can be used for interferometry (InSAR), where two SAR images are compared

to detect surface changes, such as subsidence, that occur between sensor passes. 

This is crucial for applications like monitoring land deformation. 11

In addition to varying in sensor design, these systems — when placed on space-

borne platforms — also typically vary in spatial resolution (i.e., the spatial foot-print of a pixel on the ground) and temporal resolution (i.e., revisit rate, or how long it takes for the same satellite to image the same region twice). These are

all factors to consider when seeking to draw information from multiple imaging

systems. 

2.2.  Importance of anomalous change detection and key concepts

Change detection in remote sensing imagery is critical because it enables the monitoring of dynamic environmental, urban, and ecological processes over time. It

helps in identifying shifts such as land use changes, deforestation, urban expansion, and the effects of natural disasters, providing valuable information for decision-making in resource management, planning, and disaster response. In addition, it

supports early warning systems for environmental degradation and aids in assessing the impact of policy interventions or natural phenomena on a region. 12

Although change detection might seem like an inclusive category, not all changes are created equal; when developing algorithms for change detection, a crucial first step is to distinguish between widespread, pervasive differences and rare, anomalous changes. Anomalous change detection (ACD), which is rooted in anomaly detection

principles, aims to identify changes that deviate from how most of the scene has changed. 13–17 This approach draws from the classic anomaly detection framework, which characterizes what is “typical” in the data and then highlights deviations from expected or common patterns. By applying these concepts to remote sensing, ACD

helps identify changes that stand out from the general evolution of the scene, that is, changes that are rare or unusual. Examples of pervasive changes include large-scale flooding and agricultural vegetation growth, whereas examples of anomalous changes include infrastructure damage and unsanctioned construction. 

This chapter focuses on anomalous change detection because it presents more

complex challenges, requiring advanced techniques to identify subtle, unexpected changes that are sometimes overlooked by general change detection methods. 

3. Traditional Same-Sensor Anomalous Change Detection Methods

Traditional methods for anomalous change detection typically require that the input images are captured by the same sensor, an assumption that was reasonable for

many years. Airborne and, in particular, spaceborne systems were costly, and those that were deployed were purposefully designed with consistent sensor parameters, as seen in the Landsat Continuity Mission. 18
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Same-sensor anomalous change detection also offers advantages: It enables more

robust physics-based exploitation than what can be accomplished with images cap-

tured via fundamentally different sensor types. However, when same-sensor data

is unavailable, multi-sensor data can serve as a valuable and timely alternative to bridge the gap. This section outlines traditional approaches for anomalous change detection, as well as limitations in extending them to the multi-sensor regime. 

3.1.  Classical anomalous change detection approaches

A straightforward approach to identifying differences between two images is to

subtract them and examine the pixels where the resulting differences are large or otherwise notable. Many traditional change detection techniques, such as Change

Vector Analysis, 19–22 rely on this principle by analyzing the vector-valued differences at each pixel. However, this method can be significantly affected by environmental factors, including atmospheric conditions, solar illumination, view angle, and sensor characteristics, which can vary between acquisitions. 

Transformation-based anomalous change detection aims to equalize the images

in such a way that widespread differences are suppressed while preserving or

enhancing significant changes. This can be achieved through either a physics-based approach23, 24 or a data-driven approach.25–28 A prime example of a data-driven method is the chronochrome algorithm developed by Schaum and Stocker, 25 which provides a simple yet effective means of detecting anomalous changes. 

In this method, consider two spatially corresponding pixels from images taken

at different times, where their spectra are represented by vectors x and y. A transformation matrix  L, often referred to as a “predictor”, is derived to make ˆ

y =  Lx

closely approximate y for most pixels. The matrix  L  is chosen to minimize the average of  |y  − Lx | 2 across the image. As a result, the vector difference y  − Lx is small for most pixels, but for pixels exhibiting anomalous changes, this difference will be larger. The anomalousness score is then computed as the Mahalanobis magnitude

of the vector difference. 

This transformation provides a data-driven equalization by making  Lx closely resemble y. Importantly,  L  does not need to be square, so the algorithm works even when the number of bands in the two images differs. Various extensions of

the chronochrome algorithm have been developed, including adaptations for target detection, where changes are used to model the target-free background at a given

pixel.29, 30

3.2.  Limitations for multi-sensor data

As noted in Section 3.1, some traditional methods can be confounded by environmental factors like atmospheric conditions and solar illumination. These challenges become even more pronounced when the images are captured by different sensors, 

potentially with different spectral ranges or measurement types. In cases where the
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number of bands differs between images, direct subtraction is not only impractical but mathematically impossible. 

Even for traditional methods that do not rely on direct subtraction, applying

them to multi-sensor data introduces additional challenges, such as registration (pixel-to-pixel alignment) and radiometric correction (reversing the effects of signal propagation). Multi-sensor systems often have different spatial resolutions and, at the very least, different pixel centers, making registration particularly difficult. 

Achieving pixel-to-pixel alignment typically requires downsampling or upsampling to match the images’ perceived resolutions. Likewise, traditional radiometric normalization techniques may not be applicable when dealing with data from different sensors. 

This is not to suggest that purpose-built multi-sensor methods would not face

these same challenges. They would but can be designed to either accommodate or

be resilient to them, allowing for more effective handling of multi-sensor data. 

4. Data

A natural extension of these challenges is the need for robust machine learning

models, which are increasingly employed to overcome the limitations of traditional methods — both in same-sensor data and, moving forward, in multi-sensor data. 

Machine learning methods have the strong advantage of being able to make use of

real-world examples as well as more complicated physics-based models, which are

often overly simplified when deriving statistical detectors. 31 However, the development and training of robust, reliable machine learning models depend strongly on the availability of large, relevant datasets. Typically, as the number of learnable parameters in a machine learning model or the dimensionality of the data (e.g., 

number of pixels or spectral channels) grows, the more data hungry the method

becomes. This is primarily due to the curse of dimensionality and the non-intuitive behavior of higher-dimensionality data.32 A further challenge in designing algorithms specifically for detecting rare signals (e.g., anomalous changes) in remote sensing data is exactly the following: They are rare, and so there are inherently few examples of those signals. 

For example, datasets used for classification tasks must be accurately and con-

sistently annotated to ensure that models learn the data features relevant to the classification objective. While unsupervised learning methods such as clustering or dimensionality reduction by definition do not require explicit labels or annotations for training guidance, the number of data samples does determine to what

extent the algorithm is able to uncover internal patterns or insights. Additionally, reinforcement learning (RL) often demands significantly larger datasets than other approaches to thoroughly explore the data state space, which may necessitate substantial data augmentation or an environment in which to simulate data sampling. 

However, for tasks like learning directly from human annotations, RL can still be

166

 A. Ziemann & Z. Hampel-Arias

effective even with smaller datasets. In the following, we discuss various data sources relevant for training machine learning systems in the context of change detection. 

4.1.  Data from the real world

The ideal data for any algorithm development and, of course, actionable analysis, is from real-world sensor measurements. These capture observables with rich internal structures and correlations, which arise from both the measurement process itself (such as environmental conditions and sensor physics) and the inherent variability of the objects being observed. However, in the context of anomalous change detection, there are challenges with using real-world data. In particular, a significant issue is the absence of explicit labels. For instance, in remote sensing, the widely used Indian Pines hyperspectral dataset33 was originally collected in 1992, but classification labels were not made available until it was released as a validated dataset in 2015, underscoring the substantial effort required to create useful data products for the community. Similarly, the Viareggio 2013 Trial dataset, 34 specifically developed for hyperspectral change detection, demanded extensive data collection and processing to provide precise change labels. While highly useful, this benchmark airborne dataset has small misalignments in image registration, which can significantly affect traditional pixel-level change detection algorithms. 1

4.2.  Simulated data

One way to address the challenge of limited, well-labeled, and well-registered data for analyzing small signals is through the use of simulated data. In a simulated environment, the user can control all variables, providing exact, precise reference data. This typically involves employing modeling techniques designed to replicate or approximate the signal or spatial characteristics (or both) of real-world remote sensing data. The output from such a model is a generated data instance that can be processed through analysis algorithms in order to evaluate their efficacy. This approach is especially valuable for generating examples of rare signals. 

There are two main paths toward remote sensing data simulation and approx-

imation: (1) forward modeling through physics engines and (2) the simulation of

pixel-level distributions. 

4.2.1.  Forward models

One of the foremost such physics models is the Digital Imaging and Remote Sensing Image Generation (DIRSIG)35 software. The DIRSIG model comprises a suite of tools to simulate radiometrically accurate remote sensing imagery in a wide range of spectral regions, including for MSI, HSI, and SAR. By employing a series of

sub-models, the physics engine of DIRSIG simulates the propagation of light from source (such as the Sun or Moon), through known atmospheric attenuation effects

and reflective or absorptive surfaces, to a user-defined sensor. The software permits

[image: Image 657]
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Fig. 1. DIRSIG35 simulation of a low-earth orbiting panchromatic framing array system viewing a 3D scene of the Port of Tacoma.36

a large range of image fidelity and can be used to build “digital twins” of scenes; these can then be used to generate a variety of simulated images across the electro-magnetic spectrum. One example of a “digital twin” generated scene is shown in

Fig. 1. 

4.2.2.  Data-driven synthetic data

Another approach to simulating remote sensing imagery is through data-driven synthetic generators. Unlike forward modeling, which approximates the physics of light propagation, data-driven synthetic models are built by replicating the distributions of observed data. These models learn to mimic correlations found in real imagery, such as pixels representing a commercial airplane being likely to appear near airport tarmac. 37, 38 A notable example of a hybrid approach using both DIRSIG “digital twin” simulations and machine learning models is Rendered.ai, which used DIRSIG

to simulate Planet Lab’s Tanager HSI collections prior to launch. 39 While promising, the main challenge with synthetic data is ensuring it faithfully represents real data distributions.40 The domain gap between synthetic and real data often leads to models that perform well on synthetic data but generalize poorly to real-world scenarios, making it essential to carefully interpret results when using synthetic data. 

5. Machine Learning for Detecting Multi-Sensor Changes

As discussed throughout this textbook, machine learning has a multitude of applications and sometimes even definitions. For clarity, and (admittedly) potential redundancy, we define what we mean by “machine learning” in this context. This section

[image: Image 658]
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then presents initial and promising efforts in using machine learning for multi-

sensor anomalous change detection, including using data-driven joint distributions and computer vision derived features. 

5.1.  Relevant background

Here, machine learning broadly describes a wide class of statistical algorithms that can learn directly from data, identify nonlinear relationships in that data without prior knowledge, generalize to unseen data instances, and learn to perform tasks without explicitly encoded instructions. Despite that wide scope, machine learning applications typically fall into three main categories: supervised learning, unsupervised learning, and reinforcement learning, as illustrated in Fig. 2. 

In remote sensing, the choice of machine learning methodology depends on the

specific problem at hand. Given the advent of requisite hardware responsible for accelerating machine learning development over the past decade, we primarily discuss the implementation of deep learning methods involving multi-layer neural networks and their variants. That said, traditional techniques such as support vector machines, decision trees, and regression models have been applied to remote sensing data for much longer. 41–44

There exist a plethora of examples for applying methods from the first two

machine learning branches to remote sensing data (i.e., supervised and unsupervised learning). While a fully comprehensive, exhaustive exposé is beyond the scope of this Fig. 2. Broad mapping of machine learning branches and applicability.45

[image: Image 659]
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chapter, we do cover a subset of some representative examples. Land cover categorization for agriculture and land use, 46, 47 sea ice classification, 48–50 image segmentation, 51–56 and target detection and analysis57–60 are well-studied and common classification applications. Regression-type tasks in remote sensing include crop yield forecasting and prediction,61–64 and estimating geological deformations.11, 65, 66 The amount of data required for a supervised learning problem often depends on the

scope, including the number of classes and channels in the dataset; regardless of the amount of data, supervised learning requires meticulous adherence to data that has been properly labeled. If a machine learning model lacks a sufficient number of learnable parameters or the dataset is relatively small, even a few poorly labeled examples in the training or testing data can lead to suboptimal modeling and distort key performance metrics. 67

Unsupervised learning methods are also data-intensive, as they rely on process-

ing large amounts of unlabeled or unstructured data to discover underlying nonlinear relationships. Nonetheless, they have been applied to various remote sensing applications. Imagery super-resolution68–71 presents an application of generative networks, 72 in which a model is trained to impute spatial-spectral values for imagery upon which the model has not been trained explicitly. 73, 74 Clustering methods can be used for estimating biodiversity in imagery,75 for channel reduction76 as a type of nonlinear principal component analysis, and for unsupervised pixel segmentation. 77

Additionally, methods such as autoencoders can be used for dimensionality reduc-

tion and feature representation (see Fig. 3) with further utility in interpretability and explainability methods78 (see Fig. 4). 

In addition to the aforementioned challenges related to data quality and quan-

tity for training and testing machine learning models, further limitations arise when scaling both supervised and unsupervised algorithms to multi- and hyperspectral

data, as well as SAR data. Indeed, much of the success in applying machine learning to remote sensing has only focused on single-channel (e.g., panchromatic) or three-channel (e.g., RGB) imagery. In these cases, the limited number of image chan-

nels allows for the direct implementation of models, such as Inception, 79 VGG, 80

YOLO, 81 and their variants. These models have previously demonstrated varying degrees of success in the broader machine learning and computer vision fields, 

(a)

(b)

(c)

Fig. 3. (a) Block diagram illustrating autoencoding structure via dimensionality reduction in a latent representation space with (b) an example spectral reconstruction showing original and reconstructed spectra in whitened radiance space as a function of wavelength and (c) the resulting radiance reconstruction error distribution of the trained autoencoder. 78

[image: Image 660]
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Fig. 4. Pertinent positives (top row) and pertinent negatives (bottom row) for examples of (a) gas ( Butyl Acetate), (b) solid ( Phyllosilicate), and (c) vegetative ( Ponderosa Pine) example spectra guided by an autoencoder.78

 New Methods for New Space

171

where labeled three-channel natural imagery is abundant. Applications to higher-

dimensional remote sensing imagery are often overstated, and typically those models are only applied to a three-channel subset of the imagery. 

Although it is possible for existing architectures to be adapted to handle more

input channels, increasing the number of channels exacerbates the curse of dimensionality, making it significantly harder to extract meaningful insights from the data. 

For the third machine learning branch, reinforcement learning, the remote sensing literature is relatively sparse. In Section 6.3, we explore its potential in the context of multi-sensor anomalous change detection. 

5.2.  Multi-sensor anomalous change detection

As airborne and spaceborne remote sensing becomes more accessible, and the diversity of sensor designs and modalities expands rapidly, 8 the need for methods capable of detecting changes across different sensor types is increasingly recognized.82

Approaches to date have generally followed one of two paths: (1) a two-step process that first uses deep learning or classification techniques to map disparate images into a common feature space, and then detects changes within that space83–86 or (2) signal interpolation to align channels, which is limited to optical sensors and not applicable to cross-modality data.87 While these methods address some of the challenges of multi-sensor change detection, they rely heavily on large amounts of training data and/or extensive  a priori  knowledge, making them difficult to scale. 

Recent work in the literature has instead focused on developing a flexible, sensor-agnostic approach called multi-sensor anomalous change detection (MSACD), 88, 89

which builds on previous efforts in same-sensor change detection. 90 This research has developed a new processing chain to adapt the method by Theiler  et al. 90 to multi-sensor imagery. MSACD represents a significant advancement over existing

techniques because it neither requires signal-domain resampling nor relies on training data. It uses data-driven distributions, however, putting it into the category of machine learning. 

The potential impact of this type of approach is substantial, as it enables

higher-frequency surveillance by allowing near-continuous analysis of imagery from any imaging sensor covering a specific area, without waiting for the same sensor to revisit. This flexibility is particularly valuable when responding to unexpected events, where retroactively re-tasking sensors is impossible. In such cases, the most temporally relevant imagery will almost certainly come from different sensors, and MSACD allows for the effective use of this diverse data. 

5.2.1.  Theory: Hyperbolic anomalous change detection

As discussed in Section 3.1, many traditional anomalous change detection approaches are based on difference images. In contrast, the unique distribution-based approach introduced in Ref. 90, Hyperbolic Anomalous Change Detection

[image: Image 661]
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(HACD), avoids direct subtraction. Instead, it begins with the joint distribution P (x , y), which represents a typical pair of co-registered pixels x and y from the two images being analyzed. 

While it is possible to treat anomalies as instances where  P (x , y) is small, this would identify both straight anomalies as well as anomalous changes. To focus

specifically on unusual  changes, the method introduces a non-uniform “background distribution” defined as  Q(x , y) =  P (x) P (y), where P (x) =

 P (x , y)dy , 

(1)



 P (y) =

 P (x , y)dx . 

(2)

Here,  Q(x , y) represents “normal” points that exhibit anomalous changes, while P (x , y) describes normal points with normal changes since the latter is based on the statistics of the data itself. The core idea behind this distribution-based method is to examine the ratio of these two likelihoods:

 P (normal points exhibiting anomalous changes)

 P (x) P (y)  . 

 P

=

(3)

(normal points exhibiting normal changes)

 P (x , y)

As a practical matter, taking the logarithm — which is just a monotonic rescaling of the values — is useful, giving

 P

 A


(x) P (y)

(x , y) = log  P

(4)

(x , y)

= log  P (x) + log  P (y)  −  log  P (x , y) . 

(5)

This functional form allows for anomalousness to be interpreted as a measure of

mutual information between the pixels x and y. Notably, when the distribution is Gaussian, the contours of constant anomalousness — marking the boundary

between normal and anomalous — take a hyperbolic shape. This gives rise to the

name hyperbolic anomalous change detection. While this section emphasizes HACD, 

there are other variations, such as EC-HACD, which uses elliptically contoured distributions,91 as well as other approaches that leverage parametric,92 kernelized,93

spatio-spectral, 94 and temporal95, 96 distributions. 

In Theiler’s formulation of HACD, local co-registration adjustment (LCRA) is

also applied to enhance robustness against potential misregistration issues.97, 98

5.2.2.  MSACD: A multi-sensor extension of HACD

Since HACD compares pixel distributions rather than performing channel-by-

channel comparisons, it is inherently sensor-agnostic and only requires the two

images to be sampled within the same spatial domain. This leads to a natural

extension to multi-sensor imagery, which is referred to as Multi-Sensor Anomalous Change Detection (MSACD).88, 89, 99 Figure 5 provides a conceptual overview of the MSACD methodology, showing how the joint-distribution framework enables

[image: Image 664]
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Fig. 5. Conceptual overview of the MSACD Methodology from Ref. 89, where the joint-distribution framework accommodates multi-sensor imagery by not requiring the dimensions of the two input images ( dx and  dy) to be equal. 

the use of imagery from different sensors. We follow this with an example result in Fig. 6, which is applied to a pair of spaceborne images from the Landsat 8 and Sentinel-2 satellites, respectively. Although both are MSI systems, they have different sensor designs: different numbers of spectral channels, some different imaged wavelengths, and different spatial resolutions. In particular, Landsat 8 has 11 spectral channels, spanning 0.435–12.51  µm, and is typically rendered to 30 m spatial resolution.18 In contrast, each Sentinel-2 system has 12 spectral channels, spanning 0.421–2.312  µm, and is typically rendered to 10 m spatial resolution. 100 They are also on different satellite platforms, which can sometimes result in near-concurrent imaging; in fact, the images taken in Fig. 6 were captured only  12 min apart. This makes for a very interesting test case, as this is a cadence that can only be enabled by making use of imagery from different spaceborne platforms. 

In Fig. 6, we see a red-green-blue streak in the Sentinel-2 image, which is also detected by the MSACD algorithm. Interestingly, this likely corresponds to an airplane: There is a very small timing offset in when each of the Sentinel-2 spectral channels are captured, which means that fast-moving objects will appear in each

channel at a slight spatial offset. Although spatial upsampling was required here (i.e., mapping each 30 m  ×  30 m Landsat 8 pixel to nine identical 10 m  ×  10 m pixels), absolutely no signal resampling was required — this is a significant advance in multi-sensor analysis and just scratches the surface of what might be possible. 

[image: Image 665]
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Fig. 6. Example of applying the MSACD algorithm to multi-sensor data. These images were captured over the construction site of the SoFi Stadium in Inglewood, California, and were taken 12 min apart — a temporal difference that can only be enabled by multi-sensor data. On the right, we see that MSACD suppresses most of the complex background (white, gray) and detects the streak (black) that likely results from an airplane moving through the second image. 

5.3.  Incorporating computer vision features

The joint-distribution framework in MSACD uses mutual information as a key mea-

sure, where higher mutual information between two images results in a “tighter” 

distribution, making it easier to identify deviations (i.e., anomalous changes) from that distribution. MSACD’s flexibility in handling images with varying numbers of channels naturally leads to a potential research direction: augmenting images with additional engineered features to increase overall mutual information. Studies in Ref. 101 explored this for the simpler case of same-sensor imagery, but attempting to optimize the feature selection quickly became a significant combinatorics problem. That study examined traditional features, such as Local Binary Patterns102 and Haralick features, 103 and also introduced two new types — neighborhood similarity and Fourier-based features. These are relatively straightforward methods, leaving room for more advanced neural network engineered features, like those presented in Ref. 104. Since this is a newer research area, this section aims to highlight the problem and inspire new approaches to feature incorporation, focusing on augmenting

the imagery rather than replacing it. 

6. Future Directions in Multi-Sensor Change Detection

This section highlights opportunities for future research directions. 
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6.1.  Digital twins

Digital twins105 represent a technological opportunity to unify known assets of a real-world system into a dynamic virtual representation. Their utility stretches beyond a limited-use case simulated environment, in which only one or a few variables relevant to an analysis may be tested. Instead, digital twins provide multidisciplinary modeling capabilities to simulate complex behaviors spanning numerous observational technologies and have found application in various domains, such as structural health monitoring using event-based cameras, 106 agriculture, 107 manufacturing, 105, 108 and medicine. 109, 110

Importantly for remote sensing, digital twin technology permits simulation of

multiple data streams at various temporal, spectral, and spatial resolutions and facilitates the development of data workflows that effectively consolidate them for performing multiple analyses. For example, incorporation of multiple disparate spectral measurements using digital twins can be an effective tool for forest monitoring and management111, 112 and modeling dynamic urban environments. 113, 114 We discuss further opportunities using digital twins with 3D scene understanding for change detection in the following section. 

6.2.  3D scene understanding

One machine learning technology that benefits directly from digital twins is deep learning-based 3D scene understanding. While traditional photogrammetry relies on range imaging (e.g., structure from motion115) and statistical techniques (both standard and machine learning) to fuse 2D imagery116–119 for estimating 3D structures, more recent modeling methods like Neural Radiance Fields (NeRF)120 and Gaussian splatting121 learn implicit and explicit representations, respectively, of complex 3D scenes. These techniques, which also extend to spatio-temporal scenes, 122, 123

have achieved state-of-the-art results in novel view synthesis. 

The foundational component of NeRF models uses a fully connected neural

network that provides a continuous volumetric function (Fig. 7) from which novel perspectives, outside of the scene imagery used for training, can be generated to high fidelity. Thus, by implicitly representing a scene without explicitly defining its geometry, NeRF-type models compute on-the-fly queries of the radiance field

at any point and perspective. An example of such an NeRF rendering is shown in

Fig. 8. Gaussian splatting is a technique that does represent a scene via an explicit representation of its geometry with multi-dimensional Gaussian functions; however, that representation is itself learned via the same optimization approach as training a neural network model. The resulting differentiable model comprises a set of means and covariances whose values and locations have been learned based on the scene’s training data imagery. 

As with many modeling methods, there are trade-offs with each of these

approaches. While both NeRF and Gaussian splatting result in similarly fast
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(a)

(b)

(c)

(d)

Fig. 7. Overview of the NeRF representation and rendering process.120 Sampling of (a) location and viewing angles along camera rays are fed into a fully connected neural network which outputs (b) color and volume density, which are then used to (c) render composite values into an image using (d) optimization of the residual between synthesized and ground truth imagery. 

Fig. 8. Illustration of the volumetric rendering technique used in NeRF120 to synthesize novel perspectives of a scene that were not present in the original training dataset. 

inference speeds for rendering imagery, NeRF models tend to require much longer

training times but result in smaller number of parameters than Gaussian splatting models, which tend to optimize faster but may result in a larger disk space foot-print. Application of these families of models to remote sensing is nascent, with examples using limited numbers of spectral channels for large-scale 3D scene reconstruction, 124 night-time drone125 and satellite photogrammetry, 126, 127 and even spaceborne target modeling.128

As mentioned in Section 5, these demonstrations of 3D scene understanding methods for remote sensing data primarily use imagery with a limited number

of signal channels. While some methods, such as Spec-NeRF, 129 have successfully extended NeRF to multispectral data, the current paucity of real-world MSI and

HSI data for training models limits the ability to study NeRF and Gaussian splatting performance in the wild. However, the landscape of data availability is quickly changing, opening the door to new opportunities. And in the meantime, this presents an opportunity to combine some of the previously mentioned simulation tools with these 3D machine learning methods. For instance, by creating a digital twin of a physical scene in DIRSIG, one could generate simulated perspectives across any

sensing modality for which the scene’s materials have known response functions. 

These generated perspectives could then be used to train a standard NeRF model

with one or three relevant spectral channels, or a Spec-NeRF model using multiple

[image: Image 668]
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channels. The trained models could serve as supplementary analysis tools for monitoring anomalous changes in real-world facilities or geological features, with the added benefit of being updated as new real-world measurements become available. 

Alternatively, these models could be applied in pseudo-imputation tasks, such as predicting expected (though modeled) perspectives that are otherwise occluded

by clouds, buildings, or other physical obstructions, potentially enhancing change detection by providing alternative viewpoints. 

6.3.  Reinforcement learning

One machine learning paradigm that could enhance multi-sensor change detec-

tion is reinforcement learning (RL), also known as adaptive or dynamic

programming. 130, 131 This approach can be used to train sensors or sensor systems to autonomously perform predefined tasks in highly variable or uncertain

conditions. 

6.3.1.  Background

Reinforcement learning has found applicability in domains such as systems control and robotics, where the problem is modeled as a Markov decision process (MDP, 

in which the current state of the environment is fully known) or a partially observable MDP (wherein only uncertain observations of the state are possible). Some

example successful implementations include RL for object tracking in remote sensing imagery, 132, 133 autonomous power grid control, 134 and road network applications.135–138 In these formulations, an agent learns by exploring and interacting with an environment in such a manner that actions taken provide a reward feedback to

the agent, as generally illustrated in Fig. 9. By maximizing the cumulative rewards, the agent learns a policy-defining optimal behavior. 

The main challenges in applying fully RL solutions to remote sensing are ade-

quately exploring the state space and defining the reward function to achieve desired Fig. 9. Agent-environment interaction and reward feedback mechanism modeled in the RL

paradigm. 131 At each time step,  t, an agent conducts an action  at  which then changes the state of the environment  st+1, providing an updated reward  rt+1 from which the agent learns. 
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Fig. 10. Diagram showing workflow of the RLSNAKE135 algorithm for adaptive road network detection. Starting on the left, an initial statistical segmentation algorithm provides a set of seed road pixel nodes and accompanying segments, which are then further refined using RLSNAKE, which has been trained to autonomously and adaptively connect the segments. 

agent behavior. Sampling the state space requires extensive interaction with simulated or real environments, often resulting in low sampling efficiency. This inefficiency is further compounded by the need to balance exploiting current knowledge with exploring unsampled regions. Defining the reward function is critical, as it directs the agent’s decisions. Feedback, whether positive or negative, helps refine actions, but long-term cumulative rewards over many actions ultimately shape the agent’s strategy. As a result, training RL agents demands significant data and

computing resources. And in remote sensing, fully autonomous RL systems face

additional obstacles, such as the curse of dimensionality from high-dimensional

spectral-spatial data and, notably, limited available data. Despite these challenges, there are promising future opportunities for RL to enhance change detection. 

6.3.2.  RL for multi-sensor earth observation

In one such case, RL may be applied to support semi-continuous remote sensing

observations. This could involve an RL agent that prioritizes which sensor or set of sensors should capture follow-up observations for a specific scene and objective (e.g., expected pixel changes in MSI with potential SAR correlations). The sensors may

have different modalities and multiple, competing objectives, which could constrain observational resources. For example, in monitoring a geographic area requiring

near-continuous observation, a constellation of remote sensing systems would be

adaptively assigned tasks based on changing conditions (e.g., day vs. night, cloud cover, competing tasks, or sensor malfunctions). Optimization might focus on minimizing observational uncertainties while balancing energy or cost constraints of tasking the satellites. This RL tasking agent could be initially trained and tested in astrodynamics simulations using open-source tools, like Basilisk, 139 Orekit, 140

or STK, 141 and sensor observations simulated with DIRSIG. 35 After training on exhaustive or limited observational scenarios, the agent could be refined using live data, offering decision-making support to human operators. 
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6.3.3.  RL for augmenting workflows

Another potential application of RL in anomalous change detection is learning from human annotations, potentially even learning in tandem with the human analysis

workflow. A relevant example in the literature is the RLSNAKE135 road network detection method shown in Fig. 10, which augments traditional statistical road segmentation with RL methods to connect road segments. Similarly, for change

detection, an RL agent could be trained based on human expertise in selecting

anomalously changed pixels. For instance, the agent’s pixel selections could be

compared to outputs from the MSACD joint-distribution set and human expert

selections. The human analyst would then assess the agent’s selections, providing feedback in the form of reward scores to guide the RL system. Over time, the agent would learn which types of anomalous changes the human deems important, gradually identifying the sub-distribution of pixels within the joint ACD set that are of interest. This process would help develop a human-in-the-loop, semi-autonomous MSACD system, where the RL agent supports the analyst by offering initial guidance based on learned expertise, without making final decisions, and continuing to refine its understanding of expert analysis. 

7. Conclusion

In this chapter, we explored the rapidly evolving landscape of remote sensing

imagery and subsequently, remote sensing change detection — highlighting both

traditional and emerging methodologies. From the challenges of multi-sensor data integration to the promising initial results of MSACD to the potential of machine learning techniques like reinforcement learning and NeRF, we have examined how

advancements in technology and modeling are reshaping the field. Simulated data

and digital twins offer new avenues for augmenting real-world datasets, while RL

agents and human-in-the-loop systems present promising solutions for enhancing

autonomous change detection. As remote sensing continues to expand in scope and

complexity, these tools will play a crucial role in addressing the challenges of analyzing high-dimensional, multi-modal data, paving the way for more accurate and

efficient monitoring of our environment. 
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In this chapter, we discuss how differential geometry can be a powerful mathe-

matical tool for metric learning, clustering, and classification in graph-based data analysis. The notion of curvature plays a remarkable role in shape analysis as

it has been shown that high curvature points concentrate geometric information. 

Based on this principle, our goal is to incorporate curvature into high-dimensional data analysis for pattern recognition purposes. In order to do so, we present two graph-based models from multivariate data: kk-NNG (curvature based k-nearest

neighbors graph) and k-TSV graphs (weighted curvature graphs based on tan-

gent spaces variation). Then, we share some ideas on how these models can be

incorporated by pattern recognition algorithms for unsupervised metric learning

and data clustering. 

1. Introduction

In pattern recognition, it is fundamental to understand the shape and structure of data because this information can directly influence the choice of our model, the data preprocessing, and the algorithms that will be employed in data analysis. Graph-based data analysis is a research field that allows us to understand the shape and structure of data, regardless of the metric or scale used to measure it. It is especially useful for analyzing large datasets, such as those found in biology, finance, social networks, and other areas. Through graph-based data analysis, it is possible to

identify patterns, clusters, and relationships between pieces of data that may not be obvious with other types of techniques. Furthermore, it is capable of handling high-dimensional and noisy data, making it a robust and versatile technique for

analyzing complex datasets. 

Multivariate datasets are, in general, composed of a large number of features. If the effects of an increase in the number of samples are beneficial for the learning process, the effects of an arbitrary increase in the number of features, on the other hand, can be quite negative, especially in pattern classification tasks.1 To a large extent, the main cause of such negative effects stems from the complex geometry of 189
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high-dimensional spaces. The scenario is actually more complicated than it seems at first glance, since the intrinsic geometric structure of high-dimensional datasets corresponds to a low-dimensional Riemannian manifold immersed in an ambient

space. 2 In this context, graph-based and topological data analysis is relevant to machine learning for several reasons,3–7 among which we can mention the following:

 • Complex pattern detection: It can detect complex, nonlinear patterns in datasets that may be difficult to detect with other analysis techniques. This is particularly useful in machine learning problems involving high-dimensional data and nonlinear interactions. 8

 • Dimensionality reduction: It can help reduce the dimensionality of data, which can be very useful in problems involving datasets with a high number of features (mitigating the curse of dimensionality). 9

 • Improved generalization: It can help improve the generalization of machine learning models, allowing them to be more robust to variations in training data, including the presence of noise and/or outliers. 10

 • Data compression: It can help identify relevant features in data, allowing machine learning models to focus on fundamental features and ignore irrelevant

information (data compression). 11

 • Interpretability: It can help increase the interpretability of machine learning models by allowing users to understand what and how data characteristics contribute to model decisions.12

 • Exploring new application domains: It can be used in a variety of application domains, including medicine, chemistry, finance, and geosciences, enabling the

development of new computational tools that contribute to the advancement of

science in general. 13

In addition to all the aspects mentioned before, one of the main limitations

of traditional methods for analyzing and classifying multivariate data is related to the weak discriminating power of the Euclidean metric. It can be shown that

as the number of features  m  increases, the contrast provided by the Euclidean distance decreases significantly.14 Geometrically speaking, making a very simplistic analogy, the use of the Euclidean metric to calculate the distance between two

samples belonging to a manifold would be equivalent to considering that the Earth is flat. In this context, differential geometry-based metrics try to overcome this limitation, finding specific and more appropriate distance functions for each specific dataset. A class of computational methods that is very relevant to this problem is formed by manifold learning techniques. 15 Manifold learning is deeply connected with unsupervised metric learning, in the sense that in addition to being able to learn a more compact and relevant representation for the observed data, they also learn a distance function that geometrically is more suitable to represent a measure of similarity between pairs of objects belonging to this collection. 16 Therefore, the combination of graph-based methods and differential geometry can help scientists, 
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engineers, and statisticians discover the hidden shape of data prior to exploratory data analysis and pattern classification problems. 

2. Elementary Differential Geometry

Differential geometry is a branch of mathematics that deals with the study of curved spaces and the intrinsic geometric properties associated with them. It provides a formal framework for understanding and analyzing the shapes, structures, and properties of spaces that can be curved, such as surfaces and manifolds. 17, 18

One fundamental concept in differential geometry is the notion of a manifold. A

manifold is a topological space that is locally Euclidean, meaning that it looks like Euclidean space when examined up close. Manifolds can be of various dimensions, 

such as surfaces in three-dimensional space or higher-dimensional spaces that cannot be easily visualized. Differential geometry provides tools to define smooth functions, vector fields, and other structures on these manifolds. 19

Tangent spaces play a crucial role in differential geometry. At each point on a

manifold, the tangent space represents the set of all possible directions or velocities in which one can move from that point. Differential geometry defines tangent vectors as derivations on the space of smooth functions, capturing the concept of direction and rate of change. Curvature is another central concept in differential geometry. 

Curvature measures how much a manifold deviates from being flat, just as the

curvature of a surface like a sphere differs from that of a plane. The curvature of a manifold is described using mathematical objects known as tensors, which quantify how the space curves in different directions. 17, 18

Definition 1 (Manifold). A manifold is a topological space  M  that satisfies the following two properties:

(1) Hausdorff space: For any two distinct points  p, q ∈ M , there exists open neighborhoods  U  and  V  of  p  and  q, such that  U ∩ V =  ∅. 

(2) Locally Euclidean property: For every point  p ∈ M , there exists an open neighborhood of  p  and a homeomorphism  φ :  U → V , from  U  onto an open subset  V  of Euclidean space  Rn. In other words, there is a continuous and bijective function  φ  with a continuous inverse  φ− 1 that establishes a one-to-one mapping between points in  U  and points in  V  while preserving the topology. 

The concept of a manifold encompasses a wide range of geometric structures, 

including smooth surfaces, higher-dimensional spaces, and spaces with more intricate topological features. The locally Euclidean property allows us to study the manifold by focusing on small regions that resemble Euclidean space, while the

Hausdorff property ensures that the manifold has enough separation between points to enable meaningful analysis. 

The tangent space is a key idea in the calculus of the  Rn, which can be applicable to any manifold. As lines are the basic curves and planes are the simplest surfaces, 
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it stands to reason that simple planes can be used to approximate more complex

surfaces. 

Definition 2 (Tangent space). Given a point  p  on a manifold  M , the tangent space  TpM  at that point is defined as the set of all tangent vectors at  p. 

Tangent vectors in the tangent space  TpM  can be intuitively thought of as the directions in which one can move from the point  p  on the manifold  M . These tangent vectors capture the local behavior of the manifold near  p  and provide a way to understand how functions and curves change as they move through  p. Furthermore, the tangent space  TpM  is a vector space itself. This means that tangent vectors can be added together and scaled by real numbers, preserving the vector space structure. 

The dimension of the tangent space  TpM  is equal to the dimension of the manifold M , and it is often used to define the concept of differentiability and gradients on the manifold. 

In terms of geometry, a surface occupant must first determine the distance

between two points and the angle formed by two tangent space vectors. The straight line connecting the locations in  Rn  will frequently not be included in the manifold, therefore, this distance is different from that calculated by someone who lives in the ambient space. The metric tensor of  M (first fundamental form) is the mathematical construct that makes it possible to compute lengths, angles, and areas on the manifold. In order to introduce this concept, we first consider the simplest case, in which the manifold is a two-dimensional surface. 

Definition 3 (Metric tensor: First fundamental form). Let  p  be an arbitrary point of a surface  M . The first fundamental form of  M  at  p  associate to tangent vectors  

 w, 

 z ∈ TpM  the scalar:

 w, zp,M =  w · z. 

(1)

In other words, the first fundamental form allows us to compute dot products in

the tangent plane. 

Let  x( u, v) define a local parameterization of a surface  M . Then, an arbitrary tangent vector to  M  at  p  can be uniquely defined as a linear combination of  

 xu  and

 

 xv, given by the derivative of  x( u, v) with respect to  u  and  v, respectively. Then, we can write

 

 w =  λ 1 xu +  λ 2 xv, 

(2)

 

 z =  μ 1 xu +  μ 2 xv, 

(3)

and the inner product becomes

 w, zp,M = ( λ 1 xu +  λ 2 xv)  · ( μ 1 xu +  μ 2 xv) (4)

=  λ 1 μ 1 E + ( λ 1 μ 2 +  λ 2 μ 1) F +  λ 2 μ 2 G, where

 E =  

 xu · xu

 F =  

 xu · xv

 G =  

 xv · xv. 

(5)
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The coefficients of the metric tensor (first fundamental form) of the surface

are the functions  E,  F , and  G. This structure is significant because it makes it possible to calculate the arc lengths of surface curves and the areas of surface regions. Moreover, the coefficients of the first fundamental form can be used to represent an infinitesimal displacement in the surface  ds  as follows:

 ds 2 =  Edu 2 + 2 F dudv +  Gdv 2 . 

(6)

The first fundamental form is frequently expressed in the metric tensor notation in numerous applications:





 E F

 w, zp,M =  wT

 

 z, 

(7)

 G

where  F = 0 implies in orthogonal coordinate systems. Note that if  E =  G = 1 and F = 0, the space is Euclidean. In this chapter, we denote the metric tensor by I (first fundamental form). It is straightforward to generalize the first fundamental form to high-dimensional manifolds by using the metric tensor notation. Considering a n  dimensional manifold  M , the metric tensor is represented by a symmetric matrix with  n × n  coefficients. 

The metric tensor is concerned with the investigation of the intrinsic properties of a manifold  M . However, a number of extrinsic characteristics, such as the mean curvature and the Gaussian curvature, are important for the thorough characterisa-tion of  M . In conclusion, we need to measure the rate of change of the unit normal vector at a point  p  in order to determine how a surface is curving there. The second fundamental form of a surface (shape tensor) is responsible for encoding this information. 17, 18

Definition 4 (Second fundamental form). Let  x( u, v) be a local parameteri-sation of a surface  M  with standard unit normal  

 N . As the local coordinates ( u, v)

change to ( u + Δ u, v + Δ v) ,  the surface moves away from the tangent plane by the distance  d  defined by

 d = ( x( u + Δ u, v + Δ v)  − x( u, v))  · 

 N . 

(8)

Figure 1 illustrates this concept for a regular surface. We can express the difference  x( u + Δ u, v + Δ v)  − x( u, v) using a Taylor expansion: 1

 xu Δ u +  xv Δ v + ( xuu(Δ u)2 + 2 xuv Δ u Δ v +  xvv(Δ v)2) +  r(Δ u,  Δ v) , (9)

2

where the function  r  becomes infinitesimally small when (Δ u)2+(Δ v)2 (infinitesimal displacement) is close to zero. The vectors  xu  and  xv  belong to the tangent plane and therefore they are both orthogonal to the normal vector  

 n, which leads to

1

 d =

( L(Δ u)2 + 2 M  Δ u Δ v +  N (Δ v)2) , (10)

2

where

 L =  xuu · n M =  xuv · n N =  xvv · n. 

(11)
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Fig. 1. The notion of curvature is related to how fast the surface escapes the tangent plane. 

 Source: Fred the Oyster, CC BY-SA 4.0. https://commons.wikimedia.org/w/index.php?curid=35

126757. 

By making Δ u →  0 and Δ v →  0, the obtained expression becomes

 Ldu 2 + 2 M dudv +  N dv 2 , 

(12)

which is, by definition, the second fundamental form of the surface, denoted by II and expressed as a second-order tensor:



II

 L M

=

 . 

(13)

 M N

To compute the surface curvatures, the expressions for the second fundamen-

tal form and for the differential of the Gauss map in a coordinate system must

be obtained. This may be accomplished computationally by defining the shape

operator.17, 18 It is also simple to generalize the second fundamental form to high-dimensional manifolds: In an  n-dimensional manifold  M , the second fundamental form is represented by a symmetric matrix with  n × n  coefficients. 

Definition 5 (Shape operator). The shape operator of a surface  M  with first fundamental form I and second fundamental form II is given by





 − 1

 L

 M

 E F

 P =  −(II)(I) − 1 =  −

 . 

(14)

 M

 N

 F

 G

The shape operator encodes relevant information about the curvature of sur-

faces, being a powerful mathematical tool for geometric analysis. It is an important mathematical tool for geometric analysis since it encodes information about the curvature of manifolds. From the shape operator, we can obtain the Gaussian, mean, 
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and principal curvatures of the manifold  M  as the determinant, the trace, and the eigenvalues of  P , respectively. 17, 18

3. kk-NNG: Curvature-Based Nearest Neighbors Graph

For the purpose of the machine learning methods described in this chapter, a computational method to calculate the local curvature at each vertex of the graph

obtained from samples of multivariate datasets is presented in the following. 

Let  X =  {x 1 , x 2 , . . . , xn}, with  xi ∈ Rm, the data matrix, where each column represents a sample. Then, we can construct a graph from the k-nearest neighbors of each sample ( k-nearest neighbor graph), abbreviated as k-NNG. In the k-NNG

graph, any two vertices  p  and  q  are connected by an edge, if the distance between  p and  q  is between the  k th smallest distances from  p  to others all other objects. 20 It can be shown that k-NNGs obey a separator theorem: They can be partitioned into

two subgraphs of at most  n( d + 1) /( d + 2) vertices each by removing  O( k 1 /dn 1 − 1 /d) points.21 Figure 2 illustrates an example of a k-NNG graph generated from an artificially generated dataset. 

At an initial stage, the Euclidean distance is adopted to compute the nearest

neighbors of each sample  

 xi. Denoting by  ηi  the neighborhood system of  xi, a patch Pi  is defined as the set  {xi ∪ ηi}. Note that the number of elements of  Pi  is  K + 1, for  i = 1 ,  2 , . . . , n. In matrix notation, a patch  Pi  is given by

⎡

⎤

 xi(1)

 xi 1(1)  . . . xik(1)

⎢

⎢  x

⎥

⎢  i(2)  xi 1(2)  . . . xik(2) ⎥

⎢ . 

. 

⎥

. 

. 

⎥

 P

. 

. 

. 

. 

 i = [ 

 xi, xi 1 , xi 2 , . . . , xik] = ⎢

. 

⎢ . 

. 

. 

⎥

 . 

(15)

⎢

⎥

⎥

⎣ .. 

. 

. 

. 

.. 

 . . . 

.. 

⎦

 xi( m)  xi 1( m)  . . . xik( m)  m×( k+1) Fig. 2. k-NNG built from an moon shaped artificial dataset. 
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The basic idea consists in approximating the first fundamental form of the data

manifold at the point  

 xi  as the inverse of the local covariance matrix that is com-

puted from the samples of the patch  Pi. The intuition for the idea of using Σ − 1

is a metric tensor, which is based on the fact that a metric tensor is just a fancy formal name for a matrix that warps the space in the definition of the Mahalanobis distance in metric learning methods, 16, 22 that is, directly affects the way we compute angles and distances in transformed space.23 A discrete approximation for the metric tensor at  

 xi  is given by the inverse of the local covariance matrix Σ i:

1



Σ i =  E[( xj − xi)( xj − xi) T ] =  |

( 

 xj − xi)( xj − xi) T , 

(16)

 Ni| xj∈Ni

where  

 xi ≈ μi, which is the mean vector estimated from  Ni. Hence, our approximation consists in setting the first fundamental form at a given point  

 xi  as I i ≈  Σ − 1

 i

for every sample in the dataset. 

In order to compute a discrete approximation for the second fundamental form, 

we compute the Hessian matrix, which is composed by the second-order derivatives. 

Our approach is based on the strategy adopted by the manifold learning algorithm known as Hessian eigenmaps. 24

Basically, to build our estimator for the second fundamental form in a point  

 xi, 

we first consider the case of  m = 2, which means that the intrinsic dimension of the manifold  M  is two. Let  Xi  be the matrix composed by the following columns: Xi = [1 , U 1 , U 2 , U  2 , U  2 , ( U

1

2

1  × U 2)] , 

(17)

where  Ui  denotes the  i th eigenvector of the local covariance matrix, obtained from the samples belonging to the the neighborhood  Ni. Here, the mathematical operation  Ui × Uj  denotes the point-wise product between the vectors  Ui  and  Uj. 

For the general case of  m >  2, we must create a matrix with 1 +  m +  m( m + 1) / 2

columns, where the first column consists of a vector of 1 s, the next  m  columns are the eigenvectors of the local covariance matrix, and the remaining  m( m + 1) / 2

columns are the squared eigenvectors and the several cross-point-wise products

between the eigenvectors. For instance, if we have  m = 3, the matrix  Xi  is Xi = [1 , U 1 , U 2 , U 3 , U  2 , U  2 , U  2 , 1

2

3 ( U 1  × U 2) , ( U 1  × U 3) , ( U 2  × U 3)] . 

(18)

The main problem with the matrix  Xi  is that, although it stores all information regarding the second fundamental form, its columns are not orthogonal. A way to

overcome this problem is to apply the Gram–Schmidt orthogonalization method to

obtain the matrix ˜

 Xi  with orthogonal columns. We define the matrix  Hi, given by

the last  m( m + 1) / 2 columns of  Xi  transposed, as ( Hi) r,l = ( ˜

 Xi) l,  1+ m+ r. 

(19)

Finally, to make our Hessian estimator a squared  m × m  matrix, we compute the local second fundamental form at  

 xi, denoted by  Hi  as

 Hi =  HiHTi . 

(20)
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Hence, we assume that II i ≈ Hi. Note that both estimators for the first and second fundamental forms, I and II, are  m × m  matrices. Given the above, we can compute an approximation to the shape operator in each point  

 xi  from the dataset

as the matrix  Pi:

 Pi =  − II i(I i) − 1 =  −Hi Σ i. 

(21)

Therefore, the determinant and trace of  Pi  provides an approximation to the Gaussian and mean curvatures at the point  

 xi, that is, we can assign a curvature

for each sample (vertex of the KNN graph). Algorithm 1 shows an algorithm for curvature estimation based on the eigenvalues of the shape operator. 

A simple computational experiment with the computation of the shape operator-

based curvatures in an artificial 2D dataset reveals that points of high curvature are related to boundaries and low-density regions, as Fig. 3 illustrates. 

In order to visualize the curvatures of samples in high-dimensional data, Fig. 4

shows a 2D plot obtained by LDA (Linear Discriminant Analysis) for the digits’

dataset. This dataset has 1797 samples of dimension 64 divided in 10 classes. The computations of the curvatures were done in the original 64D input space and the dimensionality reduction was performed only for visualization purposes. Note that there is a concentration of higher curvature points in boundaries and regions where clusters overlap. 

Algorithm 1 Shape operator based curvatures

function Shape-Operator-Curvatures( X, k)

//  X: the  n × m  data matrix (each row is a sample)

//  k: the number of neighbors in the kNN-graph

 A ←  kNN-graph( X, k)

   Builds the kNN-graph

for  i ←  1;  i < n;  i + + do

 neighbors ← N ( xi)

   Neighborhood of sample  

 xi

Σ i ←  cov-matrix(neighbors)

   Local covariance matrix

 U ← eigenvectors(Σ i)

   Eigenvectors = columns of U

Compute the matrix  Xi  with 1 +  m +  m( m + 1) / 2 columns Compute the matrix  Hi: the last  m( m + 1) / 2 columns of  Xi ˆ

 Hi ←  Gram–Schmidt( Hi)

   Gram–Schmidt orthogonalization

 Hi ←  ˆ

 Hi  ˆ

 HT

 i

   Second fundamental form

 Si ← −Hi Σ i

   Shape operator

 Ki ← det( Si)

   Curvature at point  

 xi

end for

return  K

   Vector of curvatures

end function

Overall, preliminary studies with kk-NNG graphs indicate that differential geom-

etry and graph-based analysis provide a robust framework for the solution of challenging problems in machine learning and pattern recognition, such as (1) outlier

[image: Image 679]
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Fig. 3. A 2D artificial dataset and the heatmap of curvatures. In the heatmap (right), red indicates high curvature and blue indicates low curvature. 

detection, as high curvature points tend to be located in boundaries, (2) random sampling for k-NN classification, as samples that are close to the boundaries are the most informative ones, and (3) adaptive k-NN classification, as instead of considering a fixed value of k for all points in the dataset (neighborhood size), we can define its value locally through the analysis of the curvatures (higher curvature means smaller k since the tangent space is less adherent to the data manifold). 

4. k-TSV: Weighted Graphs Based on Tangent Spaces Variation

In some pattern recognition algorithms, it may be necessary to weight the edges of the k-NNG graph with some distance measure. In this case, the basis of the proposed k-TSV graph model for metric learning is to incorporate information about the local

[image: Image 680]
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Fig. 4. A 2D scatter plot of the digits dataset. In the heatmap (right), red indicates high curvature and blue indicates low curvature. 

curvature of the edges of the k-NNG graph. First, a brief discussion is presented on the main concepts of differential geometry of curves, 17, 25, 26 which provide a justification for choosing curvature as a measure of similarity between neighboring samples. The main motivation for defining k-TSV graphs is that shortest paths in graphs are discrete approximations to geodesic curves on manifolds. When moving

along a curve, the Frenet trihedron, composed of the tangent, normal, and binor-

mal vectors, defines an orthonormal basis that adapts to the curve at each point, encoding relevant information about its shape. Therefore, the idea of the proposed methodology consists of analyzing the local curvature at each edge of the graph and the higher its value, the more the edge will be bent, making the cost of crossing it higher. 
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4.1.  Differential geometry of curves

Let  

 α( t) = ( x( t) , y( t) , z( t)) with  

 α : [ a, b]  → R 3 be an arbitrary parametric curve. To

characterize a parametric curve without the use of extrinsic variables, it is necessary to define concepts of differential geometry of curves. In a formal way, this can be done through the definition of the Frenet trihedron, an adaptive orthogonal basis composed of the tangent, normal, and binormal vectors, which adjusts to each point of the curve as we move along it. 

Definition 6. The tangent vector of a parametric curve  

 α( t) is given by

 

 α( t) = ( x( t) , y( t) , z( t)) , (22)

where  f ( t) is the first derivative of  f ( t) w.r.t. to  t. 

An important measure related to parametric curves is the arc length. Figure 5

illustrates how the arc length between  t =  r  and  t =  s  can be approximated by the norm of the vector  

 s, which is the difference between  

 α( r) and  

 α( s). If the number of

subdivisions of the interval [ r, s] is increased, the more accurate the approximation will be:

 s



 s( t)  ≈

( x( t + Δ t)  − x( t))2 + ( y( t + Δ t)  − y( t))2 + ( z( t + Δ t)  − z( t))2 . 

 t= r

(23)

Figure 5 shows an illustration of the approximate arc length of a parametric curve. 

Fig. 5. The arc length calculation can be approximated by the norm of the difference vector (hypotenuse of a right triangle). 
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Note that it is possible to rewrite  s( t) as



 s













 x( t + Δ t)  − x( t) 2

 y( t + Δ t)  − y( t) 2

 z( t + Δ t)  − z( t) 2

 s( t)  ≈

+

+

Δ t. 

Δ t

Δ t

Δ t

 t= r

(24)

And by the definition of the derivative of a function, we have

 f ( t + Δ t)  − f ( t)

 f ( t) = lim

 . 

(25)

Δ t→ 0

Δ t

Thus, in the limiting case, when Δ t →  0, the approximation becomes exact: b 

 s( t) =

 x( t)2 +  y( t)2 +  z( t)2 dt

 a



(26)

 b 

 b

=

 

 α( t) T 

 α( t) dt =

 α( t) dt, 

 a

 a

where the integrand  

 α( t)   is the norm of the tangent vector at  t. 

In several applications, it is more natural to parameterize the curve by arc

length. The idea is to have a 1  −  1 mapping between time (t) and space (s) so that b

instead of having  t ∈ [ a, b], we have  s ∈ [0 , L], where  L =  a α( t) dt. In physical terms, parameterization by arc length is equivalent to moving along the curve with a constant speed equal to 1, that is, 

 

 α( t)

 

 α( s) =  α( t)  =  T( t) . 

(27)

Basically, in mathematical terms, the idea with parameterization by arc length

is to have the normal and tangent fields normalized, that is, their vectors have unit norm. 

Theorem 1.  The normal vector, which is the second derivative of 

 α( t) , is orthog-

 onal to the tangent vector. 

Note that  

 α( s)  2 = 1 ,  which leads to

 x( s)2 +  y( s)2 +  z( s)2 = 1 . 

(28)

Differentiating w.r.t.  s  in both sides and dividing the result by 2, we have x( s) x( s) +  y( s) y( s) +  z( s) z( s) = 0 , (29)

which finally leads to

 

 α( s) T 

 α( s) = 0 . 

(30)

Knowing that  

 α( s) =  

 T ( t), we have  

 α( s) =  

 T ( t), which shows that the normal

field is in fact the variation of the tangent field. To normalize the normal vector, we define

 

 

 T ( t)

 

 α( s)

 N ( t) =

=

 T( t) 

 α( s) . 

(31)
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Definition 7. The curvature of  

 α( s) at the point  s ∈ [0 , L] is the rate of change of the unit tangent vector at this point, given by

 K( s) =  

 α( s)  =   

 T ( t) . 

(32)

To express the curvature in terms of known quantities, first note that

 

 α( t)

 

 α( s) =  α( t) 

(33)

which leads to

 

 α( t) =  

 α( t) 

 α( s) . 

(34)

By the definition of arc length, we know that

 b

 s =

 α( t) dt

(35)

 a

so that, by invoking the fundamental theorem of calculus, 

 ds =  α( t) . 

(36)

 dt

Plugging Eq. (36) into Eq. (34), 

 ds

 

 α( t) =

 

 α( s) . 

(37)

 dt

Differentiating both sides of the previous equation w.r.t.  t, by the product rule, we have

2

 d 2 s

 ds d

 ds

 d 2 s

 ds

 

 α( t) =

 

 α( s) +

 

 α( s)

=

 

 α( s) +

 

 α( s) . 

(38)

 dt 2

 dt ds

 dt

 dt 2

 dt

At this point, we compute the cross product with respect to  

 α( t) on both sides:







 d 2 s

 ds  2

 

 α( t)  × 

 α( t) =  

 α( t)  ×

 

 α( s) +

 

 α( s)  . 

(39)

 dt 2

 dt

As the vectors  

 α( s) and  

 α( t) are parallel, that is, they point to the same

direction, the cross product between them is zero, which results in

2

 ds

 

 α( t)  × 

 α( t) =

[ 

 α( t)  × 

 α( s)]  . 

(40)

 dt

From Eq. (36), we can write

 

 α( t)  × 

 α( t) =  

 α( t)  2 [ 

 α( t)  × 

 α( s)]  . 

(41)

Applying the norm on both sides leads to

 α( t)  × α( t)  =  α( t)  2 α( t) α( s)   sin( θ) , (42)
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where  θ  is the angle between  

 α( t) and  

 α( s). As we know, the tangent and normal

vectors are orthogonal, which finally leads to the expression for the computation of the curvature at  s, denoted by  K( s):

 α( t)  × α( t) 

 K( s) =  

 α( s)  =

 

 . 

(43)

 

 α( t)  3

Next, we discuss how the curvature  K( s) plays an important role in the study of variations in the tangent field, which in graph-based data analysis can be represented by the tangent space at a given point in a manifold  M . 

4.2.  The Frenet–Serret equations

Let  

 B( t) =

 

 T ( t)  × 

 N ( t) be the unit binormal vector. The set of vectors

 {T( t) , 

 N ( t) , 

 B( t) }  defines an orthonormal basis at each point  t ∈ [ a, b]. This set is known as the Frenet trihedron, a mobile and adaptive reference frame that fits the parametric curve  

 α( t). The main idea of the Frenet–Serret equations is to express the rate of change of the Frenet trihedron in terms of itself. 27, 28

4.2.1.  Variation of the tangent field

The question we want to answer here is as follows: What makes the tangent vector change from a point  t  to another neighboring point  t? Remember that

 

 T ( t) =   

 T ( t)  

 N ( t) =  K( t)  

 N ( t)

(44)

showing that the variation in the tangent field is expressed only in terms of the normal field, through the curvature  K( t). Therefore, to understand how the tangent vectors move along the curve, it is necessary to analyze the curvature at each point. 

4.2.2.  Variation of the binormal field

We can expand  

 B( t) in the components of the Frenet trihedron as

 

 B( t) =  c 

 

 

1 T ( t) +  c 2 N ( t) +  c 3 B( t) . 

(45)

As the norm of the binormal vector is unitary, we have  

 B( t) T 

 B( t) = 1. Differ-

entiating w.r.t  t  leads to

 

 B( t) T 

 B( t) +  

 B( t) T 

 B( t) = 0

(46)

which implies that

2  

 B( t) T 

 B( t) = 0

(47)

showing that  

 B( t) is orthogonal to  

 B( t) and therefore  c 3 = 0. Knowing that

 

 B( t) T 

 T ( t) = 0, differentiating not sides w.r.t.  t, we have

 

 B( t) T 

 T ( t) +  

 B( t) T 

 T ( t) = 0 . 

(48)
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But  

 T ( t) =  K( t)  

 N ( t), which leads to

 

 B( t) T 

 T ( t) +  K( t)  

 B( t) T 

 N ( t) = 0 . 

(49)

As  

 B( t) T 

 N ( t) = 0, we finally get

 

 B( t) T 

 T ( t) = 0

(50)

showing that  c 1 = 0. Hence, as  

 B( t)  ⊥ 

 T ( t) and  

 B( t)  ⊥ 

 N ( t), we have that  

 B( t)

is parallel to the normal vector  

 N ( t):

 

 B( t) =  c 

2 N ( t) , 

(51)

where, by convention,  c 2 =  −τ ( t) is the negative of the curve’s torsion, which measures how fast the curve leaves the plane defined by the vectors  

 T ( t) and  

 N ( t). 

4.2.3.  Variation of the normal field

In a similar way, we want to express  

 N ( t) in terms of the components of the Frenet

trihedron:

 

 N ( t) =  c 

 

 

1 T ( t) +  c 2 N ( t) +  c 3 B( t) . 

(52)

First, note that   

 N ( t)  = 1, so that differentiating w.r.t  t  we have  

 N ( t) T 

 N ( t) =

0, which leads to  c 2 = 0. We also know that  

 N ( t) T 

 T ( t) = 0 and differentiating w.r.t

 t  yields

 

 N ( t) T 

 T ( t) +  

 N ( t) T 

 T ( t) = 0 , 

(53)

 

 N ( t) T 

 T ( t) +  K( t)  

 N ( t) T 

 N ( t) = 0 , 

(54)

 

 N ( t) T 

 T ( t) =  −K( t) . 

(55)

The projection of the variation of the normal vector into the tangent vector is the negative of the curvature, which implies  c 1 =  −K( t). Recall that  

 N ( t) T 

 B( t) = 0, 

so differentiating w.r.t  t  leads to

 

 N ( t) T 

 B( t) +  

 N ( t) T 

 B( t) = 0 , 

(56)

 

 N ( t) T 

 B( t)  − τ ( t)  

 N ( t) T 

 N ( t) = 0 , 

(57)

 

 N ( t) T 

 B( t) =  τ ( t) . 

(58)

The projection of the variation of the normal vector in the binormal vector is

the torsion, which means  c 3 =  τ ( t). Therefore, the Frenet–Serret equations can be expressed as

 

 T ( t) =  K( t)  

 N ( t) , 

(59)

 

 N ( t) =  −K( t)  

 T ( t) +  τ ( t)  

 B( t) , 

(60)

 

 B( t) =  −τ ( t)  

 N ( t) . 

(61)

In summary, these equations state the following:
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 •  The variation of the tangent field is expressed only in terms of the curvature  K( t). 

 •  The variation of the normal field is expressed in terms of the negative of the curvature  −K( t) and of the torsion  τ ( t). 

 •  The variation of the binormal field is expressed only in terms of the negative of the torsion  −τ ( t). 

The importance of these equations is that in the study and analysis of the shape of parametric curves immersed in an ambient space, if we know the curvature  K( t) and the torsion  τ ( t) for every point  t ∈ [ a, b], then we have a complete intrinsic characterization of  

 α( t). 

5. Curvature-Based Isometric Feature Mapping

The ISOMAP algorithm ( Isometric Feature Mapping) was one of the pioneering methods for learning manifolds used for dimensionality reduction. The authors proposed an approach that combines the characteristics of Principal Component Anal-

ysis (PCA) and  Multi-dimensional Scaling (MDS)29, 30 — computational efficiency, global optimality, and asymptotic convergence guarantees — with the flexibility

of learning a wide class of nonlinear manifolds. 31 The basic idea of the ISOMAP

algorithm consists of first constructing a k-NNG graph from the samples to approximate the manifold, computing the shortest paths between each pair of vertices of the graph, and then, with the approximate geodesic distances, finding a map for a Euclidean space  Rd  that preserves these distances. For this reason, such methods are used to perform unsupervised metric learning. Figure 6 illustrates the difference between the representations found by PCA and ISOMAP in a nonlinear case. The

ISOMAP algorithm is capable of learning a distance function that is much better

suited to the dataset in question. 

Fig. 6. Linear subspace obtained by PCA versus the subspace obtained by the ISOMAP algorithm. In ISOMAP, distances are preserved, while in PCA, this is not the case. The projection of data into the PCA subspace causes a series of overlaps between samples that are distant in the input space. 
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The hypothesis of the ISOMAP algorithm is that shortest paths in graphs are

good approximations to the true geodesic distances in the manifold. It can be shown that, under certain regularity conditions, the following result is valid. 32

Theorem 2 (Asymptotic Convergence Theorem).  Given λ 1 , λ 2 , μ >  0 , then, for a sufficiently large number of samples 

 x 1 , x 2 , . . . , xn ∈ Rm, the following

 inequality

(1  − λ 1) dM ( xi, xj)  ≤ dG( xi, xj)  ≤ (1 +  λ 2) dM ( xi, xj) (62)

 is satisfied with probability (1  − μ) , where dG( xi, xj)  is the distance of the approximation of the shortest paths in the graph and dM ( xi, xj)  is the real geodesic distance in the manifold. 

This result shows that the lengths of the shortest paths in the graph converge

to the real geodesic distances. The ISOMAP algorithm can be divided into three

main steps:

(1) From the input data  

 x 1 , x 2 , . . . , xn ∈ Rm, build an undirected proximity graph using the k-NN rule or the  -ball33 rule. 

(2) Compute the point-to-point distance matrix  D  using  n  runs of the Dijkstra’s algorithm or one run of the Floyd–Warshall algorithm. 34

(3) Estimate the new coordinates of points in a Euclidean subspace  Rd  by preserving the distances from the  Multidimensional Scaling (MDS) method. 

Note that shortest paths in graphs are discrete approximations to geodesic curves on manifolds. The idea of the k-ISOMAP method consists of using the orthonormal

basis that defines the tangent space at a given point of the manifold as a reference for extracting geometric information. As the variation of the tangent field is expressed only in terms of the curvature  K( t), the proposal consists of quantifying how the tangent space varies along a geodesic curve, which in the graph is approximated by a minimum path, to construct a intrinsic distance function to be used in weighting the edges of the graph. 35 It is exactly at this point that graphs defined in terms of local curvatures come into play, that is, the k-TSV graph model. 

Let  X =  {x 1 , x 2 , . . . , xn}, with  xi ∈ Rm, be the matrix of data. The first step in the proposed method consists of constructing the k-graph from  X. At this initial stage, the Euclidean distance is adopted to compute the nearest neighbors of each sample  

 xi. Denoting by  ηi  the neighborhood system of  xi, a patch  Pi  is defined as the set  {xi ∪ηi}. Note that the number of elements of  Pi  is  K + 1, for  i = 1 ,  2 , . . . , n. 

To approximate the tangent space in  

 xi, the PCA subspace is constructed, which

defines an orthonormal basis: (1) First, the covariance matrix of the samples of  Pi is computed, denoted by Σ i. (2) Then, the covariance matrix Σ i  is decomposed into its eigenvalues and eigenvectors:

Σ i =  UiQiU T

 i , 

(63)

 Differential Geometry in Graph-Based Data Analysis for Pattern Recognition 207

where  Ui = [ ui 1 , ui 2 , . . . , uim] is an  m × m  matrix in which each column represents a eigenvector and  Qi  a diagonal  m × m  matrix with the eigenvalues of Σ i. Note that the columns of  Ui  generate the tangent space in  xi. The objective is to quantify the variation in the tangent space as we traverse the edges of the graph. In this project, an approach is used to estimate the principal curvatures in a tangent space through finite difference approximation. 

The definition of curvature is the rate of variation of the tangent vector along the curve, that is, 

 K( t) =   

 T ( t) . 

(64)

So, the simplest and most direct way to approximate it is using a simple finite

difference scheme. Let  P =  vav 1 v 2  . . . vb  be the minimum path between the samples

 

 xa  and  xb  in the k-NNG graph and let  Pi  be the patch referring to the  i th sample in the path  P . By calculating the covariance matrices Σ i  and Σ j  for the sample ( vi, vj) of the k-NNG graph, one can find the tangent spaces in  xi  and  xj. Let Ui = [ ui 1 , ui 2 , . . . , uim] and  Uj = [ uj 1 , uj 2 , . . . , ujm] be the orthogonal bases that define the respective tangent spaces. Then, a naive approximation for the principal curvatures (since there are  m  tangent vectors) along the edge ( vi, vj) is given by K( l)

 ij =  

 uil − ujl  for  l = 1 ,  2 , . . . , m. 

(65)

Thus,  

 Kij  is the vector of tangent curvatures. The proposal consists of replacing the Euclidean (extrinsic) distance between  

 xi  and  xj  by the norm of the tangent

curvature vector, that is,   

 Kij, as the weight of the edge ( vi, vj), thus generat-

ing the k-graph. The curvature-based ISOMAP is the result of the application of

the ISOMAP algorithm in the k-graph built from the data matrix. Computational

experiments revealed that, in several datasets, the curvature-based ISOMAP out-

performed regular ISOMAP as an unsupervised metric learning method prior to

classification tasks. 35

6. Graph-Based Clustering

The problem data clustering consists of grouping a set of data objects into clusters according to their characteristics or similarities. The goal is to form homogeneous groups, where objects within the same group are more similar to each other than to objects in other groups. It is an unsupervised learning method. The k-means algorithm is a data clustering method widely used in machine learning. The objective is to partition a set of data into  K  distinct clusters, where each group represents the set of objects that are most similar to each other. 36

K-means works iteratively: In the first step,  k  centroids (centers) are randomly initialized. Then, each sample is assigned to the group whose centroid is closest. 

After that, each group’s centroid is updated to reflect the average of all objects assigned to it. These two steps are repeated until there are no more changes in the object assignment or the maximum number of iterations is reached. 
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The importance of the k-means algorithm in pattern recognition lies in its ability to find groups in large sets of unlabeled data, allowing patterns or relationships to be discovered without the need for prior knowledge of the labels or categories of the data. This is particularly useful in exploratory data analysis. Furthermore, the k-means algorithm is computationally efficient (linear in the number of samples) and relatively easy to understand and implement, which makes it a useful tool for a wide range of data analysis applications. 

Although the k-means algorithm is widely used and effective for many data

analysis applications, it also has some limitations. Some of its limitations include the following:

(1) Sensitivity to initial values: The performance of the k-means algorithm can be strongly affected by the initial values chosen for the centroids. Poor initialization can lead to suboptimal solutions or an excessive number of iterations to reach a satisfactory solution. 37

(2) Dependence on the number of clusters: The number of clusters to be

created must be specified before running the algorithm. This number is usually

determined empirically or through statistical methods, but it can be difficult to choose an optimal value, especially when there is no prior knowledge about the

structure of the38 data. 

(3) Sensitivity to outliers: The k-means algorithm can be sensitive to atypical values (outliers) in the data since the assignment of objects to groups is based on the distance of the objects to the centroids. Outliers can distort the location of centroids and result in poorly defined groups. 39–41

(4) Restriction on the shape of the clusters: The k-means algorithm assumes that the clusters have spherical shapes and similar sizes. This can be a limitation for datasets with clusters of irregular shapes or very different sizes. 39, 42, 43

(5) Limitations in high-dimensional datasets: The k-means algorithm may

face difficulties in high-dimensional datasets since the distance between objects may become less discriminative in high dimensions and the geometry of clusters

may become more complex. 39, 44

As a way to mitigate these negative effects, graph-based versions of the k-means algorithm can be proposed in order to replace the Euclidean distances by geodesic distances computed from the kk-NNG or k-graph induced from the dataset. With

this approach, it is possible to capture the shape of the data, that is, to reduce the restriction of circularly symmetric groupings imposed by the Euclidean distance. Furthermore, as in the definition of the graph, only the calculation of local Euclidean distances is used, that is, between neighboring points, the phenomenon of empty space45 and the phenomenon of concentration46, 47 tend to be attenuated, since the set formed by a sample and its neighbors can be well represented by an approximately linear patch. Moreover, according to the properties of the kk-NNG
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model, it is possible to select the initial centers as samples with low curvature, which are often located in the middle portion of the clusters. 

Still in the context of data clustering, other graph-based methods have been

successfully applied to overcome these limitations. For instance, after a graph is learned from data, algorithms to build a minimum spanning tree (MST), which

is a structure that connects all data points with the lowest possible cost, can be employed.48 Once the minimum spanning tree is constructed, it can be used to form clusters of data. This can be done in several ways, such as removing edges from the tree to separate groups of connected vertices, as shown by Figure 7. An example of a clustering algorithm based on a minimum spanning tree is the Kruskal algorithm, which is used to construct the minimum spanning tree. Other examples include

Prim’s algorithm and Boruvka’s34 algorithm. 

Similarly, as a way to increase the robustness to outliers of clustering algorithms based on minimum spanning trees, the incorporation of the differential geometric graph-based models kk-NNG and k-TSV graphs into the problem of data clustering

can be done in a quite straightforward manner. The development of the k-MST

(curvature-based MST clustering) clustering method can make the weights of the

edges less sensitive to interference from noise and outliers. The intuition is that the curvature calculation involves patches of the graph and not just single points. 

Thus, the destructive capacity of an outlier present in the patches in question ends up being diluted by the presence of other neighboring samples. 

Fig. 7. Removing three edges from the MST provides four connected components, which represent data groupings (clusters). 


 Source: Gagolewski  et al.  48
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7. Conclusions and Final Remarks

Pattern recognition is a subfield of computer science and engineering that stud-

ies how machines can learn from data and past experiences in order to extract

information and classify objects into categories. This area has been receiving great attention in several fields of science, as it allows the development of models that are capable of analyzing and interpreting complex data, identifying patterns, making predictions, and making decisions based on information. Furthermore, pattern recognition has proven to be an important tool for discovering new knowledge and formulating new hypotheses in various areas of science. By analyzing small/large sets of data, it is possible to identify correlations and patterns that previously went unnoted, which can lead to new discoveries and scientific and technological advances. 

Within this context, methods for metric learning via dimensionality reduction

are techniques that seek to learn a more appropriate metric or distance for data in a high-dimensional space. These methods are important because data are often not well represented in the original space, which can negatively affect the performance of classification and clustering algorithms. In many cases, choosing an inappropriate metric can lead to a degradation of model performance, as the data may be poorly represented in the input space (high dimensionality). On the other hand, by learning a more appropriate metric, it is possible to improve the separation between classes, the identification of patterns and the generalization of models. Hence, this chapter discussed recent trends and solutions to overcome some limitations of general pattern recognition algorithms, based on the union between differential geometry and graph-based data analysis. 

Recently, deep learning has been considered by many professionals and

researchers as the state of the art in learning features from high-dimensional data and classification. A requirement for this type of learning to work properly is to have a very large number of samples to adjust the thousands of parameters existing in deep neural networks, which is not always viable from a practical point of view. The algorithms discussed in this chapter, on the other hand, are capable of learning discriminating features from smaller datasets, producing good results even when the number of samples is quite limited. Furthermore, in addition to learning a more compact and meaningful representation for the observed dataset, these methods also learn a distance function that is geometrically more suitable for representing a measure of similarity between a pair of objects in the collection. In other words, by learning the hidden structure, we generally gain a more powerful metric. 

Therefore, it does not seem reasonable to assume that deep learning will eventually replace all pattern recognition tools. Furthermore, most deep learning models work with the supervised learning paradigm since they are generalizations of multi-layer perceptrons, which is not always possible in pattern recognition tasks. 

Finally, we expect that the topics and discussions presented in this chapter

contribute to the progress of pattern recognition and machine learning, by allowing
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researchers to develop novel computational tools for data analysis and classification, and also by supporting the advance of science and technology in general. 
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Medical image semantic segmentation is essential in computer-aided diagnosis

systems. It can separate tissues and lesions in the image and provide valuable

information to radiologists and doctors. The breast ultrasound (BUS) images have advantages: no radiation, low cost, portable, etc. However, there are two unfavorable characteristics: (1) The dataset size is often negligible due to the difficulty in obtaining the ground truths and (2) BUS images are usually of poor quality. 

Trustworthy BUS image segmentation is urgent in breast cancer computer-aided

diagnosis systems, especially for fully understanding the BUS images and seg-

menting the breast anatomy, which supports breast cancer risk assessment. The

main challenge for this task is uncertainty in both pixels and channels of the

BUS images. This chapter proposes a Spatial and Channel-wise Fuzzy Uncer-

tainty Reduction Network (SCFURNet) for BUS image semantic segmentation. 

The proposed architecture can reduce the uncertainty in the original segmentation frameworks. We apply the proposed method to four datasets: (1) a five-category

BUS image dataset with 325 images and (2) three BUS image datasets with only

tumor category (1830 images in total). The proposed approach compares state-of-

the-art methods such as U-Net with VGG-16, ResNet-50/ResNet-101, Deeplab, 

FCN-8s, PSPNet, U-Net with information extension, attention U-Net, and U-Net

with the self-attention mechanism. It achieves 2.03%, 1.84%, and 2.88% improve-

ments in the Jaccard index on three public BUS datasets, 6.72% improvement in

the tumor category, and 4.32 % improvement in the overall performance on the

five-category dataset compared with that of the original U-shape network with

ResNet-101 since it can handle the uncertainty effectively and efficiently. 
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1. Introduction

Medical imaging plays a crucial role in the early detection and diagnosis of diseases. A reliable computer-aided diagnosis (CAD) system is designed to support

doctors and radiologists in making diagnostic decisions. Recent CAD systems have shown the capability to accurately diagnose breast cancer from breast ultrasound images by classifying tumors as benign or malignant, 67, 68 or by using BI-RADS categories for more precise classification. 69–71 However, to improve diagnostic accuracy, research indicates that the shape of the tumor is paramount. Image segmentation

is a critical step in a CAD system, as it identifies lesions and separates them from the background. Numerous studies have utilized multi-task learning to train both segmentation and classification models, achieving better classification results. 72, 73

Therefore, the accuracy of segmentation directly impacts the trustworthiness of the CAD system. Image segmentation has been applied to computed tomography (CT)

imaging for lung and nasopharyngeal cancer, 1, 2 magnetic resonance (MR) imaging for breast, musculoskeletal, and brain,3, 4 chest and dental X-ray imaging,5, 6 and ultrasound imaging. 7 Before the advance of the deep convolutional neural network, medical image segmentation methods were based on classic machine learning and

computer vision methods, such as watershed-based method, 1 thresholding method, 8

clustering method, 9 active contour model, 10 and Markov model. 11

Compared with CT, MR, and X-ray imaging, ultrasound imaging is harmless, 

low-cost, and potable. Breast ultrasound (BUS) imaging is one of the most impor-

tant modalities for breast cancer early detection.12, 13 However, BUS images are usually in low contrast and poor quality and have inherent speckle noise and shadows. 14 Developing computer-aided diagnosis systems for breast ultrasound images is critical, especially for breast anatomy segmentation (multi-category BUS semantic segmentation). The location relation between breast tissues and the tumor can provide meaningful context information in breast cancer diagnosis (shown in Fig. 1). For example, the tumor region (red) is much more likely located in the mammary layer (yellow) than in other layers. The breast anatomy can also provide vital information for breast density calculation, which has a high correlation with cancer risk. 15

More research is needed in multi-category BUS semantic segmentation because most BUS image datasets only contain ground truths for tumors. In Ref. 16, U-Net was applied to BUS image segmentation with three categories: tumor, mammary layer, 

and background. The location relation between the mammary layer and the cancer

was employed to refine the segmentation results. An encoder–decoder network with deep boundary regularized constraint and adaptive domain transfer was proposed17

to segment four layers in BUS images. In Ref. 18, a deep learning method based on a self-attention mechanism was proposed for breast anatomy layer segmentation. 

Although there are some segmentation networks for BUS images19–22 that increase the performance of BUS image segmentation, there are three main challenges in breast ultrasound (BUS) image segmentation: (1) The edges of the

lesion area in BUS images are generally blurred (as shown in Fig. 1(a)). (2) The
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(a)

(b)

Fig. 1. 

Breast anatomy: (a) BUS image; (b) ground truth; green: fat layer, yellow: mammary layer, blue: muscle layer, red: tumor, and black: background. 

background regions in BUS images contain similar intensity to the lesion area. 

(3) The boundaries of different breast tissue layers are hard to classify, which is a disadvantage for the segmentation of breast tissues. Those challenges include uncertainty in BUS images. Meanwhile, deep learning algorithms also contain uncer-

tainty. In Refs. 23 and 24, it shows epistemic and aleatoric uncertainty in deep learning architecture and medical images. The entropy24 and hierarchical resolution segmentation23 are used to estimate the uncertainty. 23 Attention mechanisms in convolutional neural networks demonstrate that different pixels and channels

in a feature map contain different degrees of importance when making the final

classification decision. They can provide context information to generate novel features and present noise in the original feature map. Attention mechanisms can also reduce the random uncertainty in deep learning methods in pixels and channels of the convolutional features by spatial and channel-wise attention mechanisms. 25, 26

The uncertainty in the pixels and channels measures the difficulty in classifying the pixels and channels into different categories. However, attention mechanisms cannot handle the non-random/statistical uncertainty. Fuzzy logic methods27, 28

handle non-random uncertainty in many classic machine learning and deep learning algorithms. 

To increase the accuracy of BUS image segmentation in CAD systems and take

advantage of both attention mechanisms and fuzzy logic, two novel fuzzy attention mechanisms, the spatial-wise and channel-wise fuzzy blocks, are added to the classic U-shape network with a ResNet-101 network structure and the Spatial and Channel-wise Fuzzy Uncertainty Reduction Network (SCFURNet) is proposed to reduce

uncertainty and noise in BUS images and to conduct the semantic segmentation. 

The significant contributions of this research are as follows:

 •  The proposed spatial-wise fuzzy blocks (SFBs) are applied to measure and reduce the spatial uncertainties (spatial dimension) in convolutional feature maps, and the proposed channel-wise fuzzy blocks (CFBs) are proposed to handle the

channel uncertainties (channel dimension) in convolutional feature maps. 
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 •  A novel membership function in deep learning is designed. Membership functions in fuzzy blocks are defined by a 1  ×  1 convolutional operator with a Sigmoid activation function to increase the nonlinearity of the membership function. 

 •  A novel fuzzy logic uncertainty measurement method is proposed. Fuzzy21–29

calculated by the memberships of different categories are utilized to measure the uncertainties for pixels and channels. Uncertain pixels and channels have higher fuzzy entropies (details are discussed in Section 3). 

This chapter is organized as follows: We briefly review the related works in

Section 2. Section 3 introduces the proposed spatial and channel-wise fuzzy uncertainty reduction method. Section 4 shows the semantic segmentation results on

four datasets and compares the proposed and state-of-the-art techniques. Discus-

sions based on experimental results are presented in Section 5. The conclusions are in Section 6. 

2. Related Works

2.1.  BUS image segmentation

Classic machine learning and computer vision approaches have been applied to BUS

image segmentation and classification. 32, 33 A gray-level thresholding method was proposed to find the regions of interest (ROIs) of tumors, and the area-growing

method was employed for tumor segmentation on ROIs.8 A method based on  k -

means clustering34 was reported. The classic  k -means clustering was enhanced by Ant Colony Optimization (ACO) in initializing cluster centroid, and a regularization term was added to the  k -means clustering function to increase the stability of the clustering method. The non-deep learning methods apply classic machine learning

algorithms and computer vision methods to BUS image segmentation. The perfor-

mances depend on datasets and the manually extracted features, such as texture, 

gray-level intensity, and frequency features. 

Deep convolutional neural network-based approaches have recently been widely

used in image semantic segmentation. Semantic segmentation approaches are fre-

quently based on deep convolutional neural networks because they can learn fea-

tures automatically. Such a characteristic avoids selecting features manually and sometimes reduces the noise effect. There is also research in BUS image semantic segmentation using deep learning. Deep learning-based semantic segmentation of

BUS images can provide a better understanding of BUS images and the category

information of each pixel, which is essential in trustworthy CAD systems. How-

ever, most of the BUS image semantic segmentation methods only focus on the

tumor and background areas. In Ref. 35, a fully convolutional network (FCN)36

was utilized for tumor segmentation in BUS images. Three networks were used

and compared with LeNet,37 U-Net,38 and a pre-trained FCN with AlexNet.39 A stacked denoising auto-encoder (SDAE) was employed to diagnose breast ultrasound
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lesions and lung CT nodules.40 In Ref. 41, a deep-learning approach was designed for small tumors. Different sizes of convolutional kernels were employed for convolutional blocks to detect tumors. Multi-category BUS semantic segmentation is

essential for breast cancer diagnosis. Wu  et al.  presented a novel deep network, BUSSeg, which incorporates both within- and cross-image long-range dependency

modeling to enhance automated lesion segmentation in breast ultrasound images. 78

This method introduces a Cross-image Dependency Module (CDM) and a parallel

bi-encoder architecture (PBA) to capture rich contextual information and improve segmentation accuracy, demonstrating superior performance on two public breast

ultrasound datasets compared to state-of-the-art methods. 

As transformer-based methods have developed, they have become increasingly

capable of capturing long-distance information compared to convolution-based

methods, leading to more widespread use of vision transformers. In Ref. 74, He  et al. 

introduced a combination of convolutional neural networks (CNNs) and Transform-

ers to enhance breast ultrasound image segmentation. Their approach includes a

Transformer Encoder Block (TEBlock) for capturing global contextual information

and a Spatial-wise Cross Attention (SCA) module to reduce semantic discrepancies between the encoder and decoder. Additionally, a novel dual-branch segmentation

algorithm that combines CNN and transformer architectures is proposed in Ref. 75. 

This method features a Boundary Guided Module (BGM) and a Selective Feature

Enhancement Module (SFEM) to improve boundary detection and feature enhance-

ment, along with a Long-Short Range Attention Interaction Fusion (LSIF) module

for effective feature fusion. 

The experimental results show that deep learning methods achieve good BUS

image semantic segmentation results. However, deep learning methods require a significant number of training samples. Moreover, most previous deep learning methods do not consider the non-random uncertainty inside deep learning architectures. 

2.2.  Attention mechanisms

The attention mechanism in convolutional neural networks is popularly used42 to reduce noise and uncertainty. It assigns the weights to pixels or channels of feature maps to express the importance. In Ref. 43, a spatial-wise attention gate was proposed in the decoder of U-Net. The encoder and decoder information were combined to calculate a weight tensor before concatenating the encoder feature map

and the decoder information. The weight tensor is multiplied by the encoder-feature map. The attention coefficients were more significant in the target areas than those in the background, and the results were better than those of the original U-Net. 

In Ref. 44, Hu  et al. proposed a channel-wise attention mechanism: Squeeze-and-Excitation Networks (SE-Nets). A convolutional operator transformed the feature

map in each convolutional block. Then, in each channel, a global average pooling was performed to calculate the mean value of each channel. The results were used as the channel weight values in the original feature map. The SE block in SE-Nets was
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applied to network architectures such as VGG-16 and ResNet-101 and improved. 

In Ref. 45, both spatial-wise and channel-wise attention mechanisms were applied to the image caption. The network structure followed VGG-1946 and ResNet-152. 47

In each convolutional block, the weights of spatial-wise attention were based on the original feature map and last-sentence context information. The mean value for each channel of the original feature map and last sentence context information was used to calculate the channel-wise attention weights. Another spatial and channel-wise attention FCN48 was proposed for crowd counting. The network structure followed VGG-1646 architecture. The spatial-wise and channel-wise attention weights were computed by the original feature map in the same convolutional block. The original feature map was inputted to three 1  ×  1 convolutional kernels in the spatial-wise attention. Then, reshaping and transposing operators were applied to the outputs of the 1  ×  1 convolutional kernels to obtain three new features. Only one 1  ×  1 convolutional kernel was utilized for channel-wise attention weights. Then, it was reshaped and transposed to three different sizes. The attention weights were computed by

multiplying and adding three features of various sizes. 

Attention mechanisms have been used to improve breast ultrasound image seg-

mentation. Lyu  et al.  introduced an enhanced Pyramid Attention Network (PAN) for breast ultrasound image segmentation.76 Their model utilizes a multi-scale feature extraction module with depth-wise separable convolution and a Spatial and

Channel Attention (SCA) module to enhance boundary detection and feature fusion, achieving superior segmentation performance compared to traditional and current

deep learning methods. Additionally, Ref. 77 proposes a fully convolutional network incorporating hybrid convolutions and a multi-scale attention gate to enhance medical ultrasound image segmentation. This network shows improved performance

on both breast and thyroid ultrasound datasets, achieving higher Intersection over Union (IoU) and F1 scores compared to other state-of-the-art segmentation models. 

2.3.  Fuzzy logic in deep learning

The attention mechanism can reduce uncertainty and noise in convolutional feature maps; however, uncertainties are not caused by randomness only and cannot be handled well by statistics, probabilities, and attention mechanisms. Fuzzy logic has been utilized to handle the uncertainties successfully in image processing. A fuzzy clustering method, fuzzy c-means clustering, 49 was applied to image segmentation. The fuzzy clustering method achieved better performance than the non-fuzzy version. A fuzzy contrast enhancement method50 was proposed. The maximum entropy principle was utilized to map the image from the feature domain to the fuzzy domain. A fuzzy cellular automata framework51 was proposed to handle the uncertainty in BUS

images. The cellular automata results were transformed into the fuzzy domain, and a majority voting strategy was utilized. Two kinds of texture features were involved in removing speckle noise and inhomogeneous echoes. In Ref. 52, an adaptive fuzzy neural network was proposed. A trainable Gaussian membership function mapped

[image: Image 712]
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Fig. 2. 

The proposed network structure. 

input samples into the fuzzy domain. Huang  et al. 53 proposed a fuzzy logic-based FCN for multi-layer BUS image segmentation and a conditional random field-based

method for post-processing. However, the fuzzy logic operator was only applied to the input image and the first convolutional feature. Also, this method only solved uncertainty in the pixel dimension. 

3. Methods

3.1.  Overview

Figure 2 illustrates the entire network structure for the proposed SCFURNet. The proposed SCFURNet is based on a U-shaped network that contains an encoder

branch for feature extraction and a decoder branch for segmentation. The encoder network contains five convolutional blocks, and the decoder network contains five deconvolutional blocks. SCFURNet consists of a U-shaped network and two novel

components: (1) the spatial-wise fuzzy block (SFB) and (2) the channel-wise fuzzy block (CFB). We add five SFBs and five CFBs to the five convolutional blocks in the encoder network. The output for each convolutional block is processed by an SFB

and a CFB sequentially and then inputted to the next convolutional block. This

process indicates that the SFBs and the CFBs reduce the uncertainty of convolu-

tional features from five convolutional blocks. Convolutional blocks in VGG-1646

and ResNet-10147 network structures are utilized as the encoders in the proposed network for comparison. Two different kinds of convolutional blocks in VGG-16

and ResNet-101 are used as the encoder network to compare the performance of

different convolutional blocks and show the proposed SFB and CFB’s effectiveness in different convolutional blocks. The SFB and the CFB are explained in detail in Sections 3.2 and 3.3, respectively. 

3.2.  Spatial-wise fuzzy block

An SFB is utilized to calculate the uncertainty of each pixel and reduce the uncertainty in each convolutional feature map. The SFB has three major components:

fuzzification, uncertainty representation, and uncertainty reduction. The flowchart of the SFB is shown in Fig. 3. 

[image: Image 713]
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Fig. 3. 

Spatial-wise fuzzy block. 

3.2.1.  Fuzzification

Each input node from the original feature map is mapped to the fuzzy domain by

a membership function:

 μi =  f ( xi) , 

(1)

where  f ( ·) represents the membership function,  xi  represents the input node  i (here, it is a pixel in the input feature map  X ∈ RH×W× Ch,  H,  W , and Ch represent the height, width, and number of channels of the feature map, respectively), and  μ

represents the memberships of the input node, where  C  is the number of categories. 

In some, 50, 52  f ( ·) was an S-shape, Sigmoid, or Gaussian function. 

In this research, the original features are transformed into a fuzzy domain by

the trainable Sigmoid membership function:

1

 μir =

 , 

(2)

1 + exp ( αirxi +  βir)

where  xi ∈ R Ch is the  i th pixel in the input feature map.  αir ∈ R Ch and  βir ∈ R  are two trainable parameters for the trainable Sigmoid function, and  μir ∈ R  represents the membership in the  r th category. 

The Sigmoid membership function can be performed by a 1  ×  1 convolutional operation. In this research, two 1 × 1 convolutional layers are used as the membership function:

 μ = Conv 1  ×  1(Conv 1  ×  1( X)) , 

(3)

where  μ ∈ RH×W×C  represents the spatial membership map for input feature map X  and Conv1 × 1 represents the tow-dimensional (2D) 1 × 1 convolutional layer; both convolutional layers contain  C  kernels. Here, two-layer 1  ×  1 convolution is utilized, enabling the membership to fit different categories.  μi ∈ μ = [ μi 1 , μi 2 , . . . , μiC ] is defined as the membership vector of pixel  i  in  X. The outputs are normalized by the softmax function. 

3.2.2.  Uncertainty representation

Fuzzy logic is used to handle uncertainty. The memberships express the degrees to which the pixel belongs to the categories and can measure uncertainty. There is an observation for uncertain pixels: It is hard to assign to a category if a pixel contains

[image: Image 715]

[image: Image 716]

 Reliable Multi-layer Segmentation of Breast Ultrasound (BUS) Images

223

similar memberships of different categories. Fuzzy entropy is utilized to reflect such observation, i.e., an uncertain pixel is defined as a pixel with high fuzzy entropy (close to 1), and a certain pixel is defined as a pixel with low fuzzy entropy (close to 0). 

For membership vector  μi, the fuzzy entropy is defined as follows54:

 −

 C

1



 H( μi) =

 ×

 μir  log  μir, 

(4)

log  C

 r=1

where  C  represents the category number and  μir  represents the membership of category  r. If the memberships for all categories are the same  μir = 1 C , the entropy is the highest ( H( μi)). It is hard to assign a category when the memberships for all categories are the same. 

In the SFB, the memberships are utilized to calculate the fuzzy entropy as

Eq. (5):

 ui =  H( μi) , 

(5)

where  ui  is the uncertainty degree of pixel  i, which is in [0, 1]. 0 represents low uncertainty, and 1 represents high uncertainty. Every pixel in the input feature map contains the corresponding uncertainty degree. The uncertainty degrees for all pixels consist of the uncertainty map. The uncertainty map has the same size as

the input feature map. 

3.2.3.  Uncertainty reduction

If the uncertainty degree  ui  is close to 1, the feature for pixel  i  generated in the convolutional block is uncertain. If the uncertain degree  ui  is close to 0, the feature for pixel  i  obtained in the convolutional block is useful for the final decision. The features of uncertain pixels should reduce weight in the novel feature map. The

features will replace the uncertain pixels to reduce the uncertainty. 

Shown in Fig. 3, the uncertainty map ( u ∈ RH×W ), which consists of uncertainty degrees ( ui) in Eq. (5), is utilized as the weight in the combination of the input feature map and a novel feature map; 1  − u  represents the certainty map: X = (Conv 2 D( X)  ⊗ u)  ⊕ ( X ⊗ (1  − u)) , (6)

where  X ∈ RH×W× Ch represents the refined feature map after reducing uncertainty; Conv2 D  represents a 2 D  3  ×  3 convolutional layer with Ch kernels, stride =



1 and padding = 1; 

represents the pixel-wise multiplication between  u  or 1  − u



and each channel of Conv2 D ( X) or  X, and

represents the pixel-wise summation

of matrices. This uncertainty reduction operator indicates that if  u  is close to 0, i.e., X  has low uncertainty, the weights of original features remain high. If  u  is close to 1, i.e.,  X  has high uncertainty, the weights of the original features are reduced and should be replaced. Therefore, a novel feature is extracted by a 3  ×  3 convolutional layer. The refined feature map  X  is passed to the next operator. 

[image: Image 717]
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Fig. 4. 

Channel-wise fuzzy block. 

In this section, a novel fuzzification method is utilized to transform the original convolutional feature maps into the fuzzy domain. Then, uncertainty is computed

using fuzzy entropy. New convolutional features and original features are combined to reduce the uncertainties. 

3.3.  Channel-wise fuzzy block

After reducing the uncertainty in pixels, the uncertainty in channels is processed by the proposed CFBs. Motivated by the channel-wise attention mechanisms44, 45 and fuzzy logic, the CFB utilizes fuzzy entropy to measure the degree of uncertainty of the channels of feature maps. An uncertain channel has higher fuzzy entropy (close to 1). There are also three major components in the CFB: fuzzification, uncertainty representation, and uncertainty reduction (Fig. 4). 

3.3.1.  Fuzzification

Let  X∈ RH×W× Ch be the input feature map.  H  and  W  represent the height and width of the feature map, respectively, and Ch is the number of channels. 

To calculate the uncertainty degree of each channel, it first transforms the input

[image: Image 718]
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feature map into the fuzzy domain in the channel dimension. It reshapes  X  to V ∈ RHW× Ch = [ v 1 , v 2 , . . . , v Ch], where  vj ∈ RHW  is the feature vector of channel  j. For each  vj, a trainable Sigmoid membership function is utilized to transfer feature vector  vj  to the fuzzy domain:

1

 πjr =

 , 

(7)

1 + exp ( αjrvi +  βjr)

where  πjr ∈ R  represents the membership of category  r  for channel  j;  αjr ∈ RHW

and  βjr ∈ R  are parameters of channel  j. The membership also uses two 1  ×  1

convolutional layers with  C  kernels. To process  V  using a 2D convolutional layer, V ∈ RHW× Ch is reshaped to  V ∈ R 1 × Ch ×HW  before convolutional operators. Then, the convolutional operators are applied:

 π = Conv 1  ×  1( Conv 1  ×  1( V )) , 

(8)

where  π ∈ R 1 × Ch ×C  represents the channel membership map for the input feature map  X  and  C  represents the number of categories. Then,  π ∈ R 1 × Ch ×C

is reshaped to  π ∈ R Ch ×C.  For each channel, there is a membership vector πj ∈ π = [ πj 1 , πj 2 , . . . , πjC ]. 

3.3.2.  Uncertainty representation

After obtaining the memberships, the fuzzy entropy is computed:

 −

 C

1



 hj =

 ×

 πjr log πjr, 

(9)

log C

 r=1

where  hj ∈ R  represents the fuzzy entropy of channel  j,  which measures the uncertainty degree of channel  j. Finally, the uncertainty degrees  hj  of all channels in the feature map consist of the uncertainty vector  h ∈ R Ch = [ h 1 , h 2 , . . . , h Ch]. 

3.3.3.  Uncertainty reduction

Similar to the SFB, the uncertainty vector  h  is utilized as the weight vector for combining the input feature map and a novel feature map. The novel feature map is generated by a 3  ×  3 convolutional operator. Each element in  h  is the weight value of the corresponding channel:

 X Ch = (Conv2 D( X)   h)  ⊕ ( X  (1  − h))  , (10)

where  X Ch  ∈ RH×W× Ch is the feature map after applying the CFB;    represents the multiplication between the  j th channel of the feature map and the corresponding scalar  hj, where  j = 1 , . . . ,  Ch. The channel-wise uncertainty reduction operator indicates if  h  is close to 0, the corresponding channels in the input feature map have low uncertainties, and these channels should contain high weights. If  h  is close to 1, i.e., the corresponding channels have high uncertainties. The weights of these channels are reduced, and the input feature should be replaced by a new feature. 
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3.4.  Loss function

The loss function for the proposed SCFURNet can be expressed as the summation

of cross-entropy and fuzzy entropies from spatial and channel fuzzy blocks:

 L =  LC +  LS +  L Ch , 

(11)

where  LC  is the classic cross-entropy loss function.  LS  is computed by the fuzzy entropy ( ui) in the SFBs in Eq. (5). Since the SFBs are applied to five convolutional blocks, there are five fuzzy entropy maps from the five convolutional blocks, and LS  is defined by the summation of fuzzy entropy maps:



 LS =

 uli, 

(12)

 l

 i

where  i  represents the pixel index and  l  represents the index of convolutional blocks. 

 L Ch is computed by the fuzzy entropy ( hj  in Eq. (9)) in CFBs: L Ch =

 hli, 

(13)

 l

 j

where  j  represents the channel index. 

The loss terms  L Ch and  LS  are the uncertainty degrees in five spatial and channel-wise fuzzy blocks. Adding these two loss terms can simultaneously minimize the classification loss and uncertainty in pixel and channel dimensions to obtain less uncertainty feature maps. The error propagates using a standard back-propagation algorithm. 55

4. Experimental Results

4.1.  Datasets

To show the effectiveness of the proposed network in BUS image semantic seg-

mentation, two kinds of experiments are designed: (1) multi-object (multi-layer) semantic segmentation and (2) binary semantic segmentation (tumor and background). The multi-object semantic segmentation is performed on a dataset hav-

ing 325 BUS images. The dataset is collected by the Second Affiliated Hospital

of Harbin Medical University and the First Affiliated Hospital of Harbin Medical University. An experienced radiologist from the First Affiliated Hospital of Harbin Medical University delineates the boundaries of the four breast layers and tumors. 

The privacy of the patient is well protected. The pixel-wise ground truths for five categories, fat layer, mammary layer, muscle layer, tumor, and background, are

generated according to the manually delineated boundaries. In the multi-object

semantic segmentation task, the proposed method is compared with state-of-the-

art deep learning segmentation methods, such as U-Net with VGG-16, 46 U-Net with ResNet-50/ResNet-101, 47 Deeplab, 56 FCN-8s, 36 PSPNet, 57 and U-Net with information extension. 16 We also compare the proposed methods with some spatial and channel-wise attention modules, such as attention U-Net,43 SE-Net,44 and self-attention mechanism. 58
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Table 1. 

Dataset properties. 

Image Number

Ground Truths

Dataset 135

163

Tumor/Background

Dataset 260

780

Tumor/Background

Dataset 359

562

Tumor/Background

Multi-layer Dataset

325

Fat/Mammary/Muscle/Tumor/Background

The binary semantic segmentation is performed on three public BUS image

datasets.35, 59, 60 Dataset35 contains 163 BUS images, including 109 benign samples and 54 malignant samples. Dataset60 contains 780 BUS images, including 437

benign, 210 malignant, and 133 no tumor images. Reference 59 is a BUS image benchmark with 562 images and lists five non-deep learning methods10, 61–64 for BUS image segmentation. In this task, state-of-the-art semantic segmentation network structures are also applied for comparison. Also, five traditional tumor segmentation methods10, 61–64 are utilized for comparison. The summary of the four datasets used in the experiments is listed in Table 1. 

4.2.  Experiment details

4.2.1.  Preprocessing and augmentation

Due to the number limitation of samples, the training samples are augmented by

horizontal flip, horizontal shift, vertical shift, rotation, zooming, and shear mapping. 

The input images are all gray-level images, and intensities are mapped into [ − 1, 1] by x

127 .  5  − 1, 65 where  x  represents the original intensity. No other augmentation methods are used except U-Net with information extension. 16 In Ref. 16, the input images are first preprocessed by histogram equalization. Then, images are transformed into the wavelet domain. New three-channel images with grey-level intensity in the first channel, wavelet approximation coefficients in the second channel, and wavelet detail coefficients in the third channel are utilized for training the original U-Net with the ResNet-101 network. 

4.2.2.  Experiment environment

None of the networks in this section are pre-trained using other datasets. The network weights are initialized randomly. The input image is resized to 128  ×  128. The batch size is 12. The optimizing method is the stochastic gradient descent (SGD) method, with a learning rate of 0.001 and momentum of 0.99. The training epoch

number is 80. All the comparison networks and the proposed method are trained

using a computer with Ubuntu 18.04 system, Intel (R) Xeon (R) CPU E5-2620

2.10GHz, and 8 NVIDIA GeForce 1080 graphics cards, and each one has 8 Giga-

byte memory. The implementation uses PyTorch 1.6.0. 
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4.3.  Metrics

Binary semantic segmentation tasks utilize metrics in Ref. 59 to evaluate performance. There are five area metrics: true positive ratio (TPR), false positive ratio (FPR), Jaccard index (JI), Dice’s coefficient (DSC), and area error ratio (AER). 

The area metrics are defined in the following equation:

TPR =  |Ar ∩ Am|/|Am|

FPR =  |Ar ∪ Am − Am|/|Am|

JI =  |Ar ∩ Am|/|Ar ∪ Am|

(14)

DSC = 2 |Ar ∩ Am|/|Ar| +  |Am|

AER = ( |Ar ∪ Am| − |Ar ∩ Am|) /|Am|

where  Ar  is the set of pixels generated by the proposed method or existing methods and  Am  is the set of pixels in the ground truths. 

In the multi-object semantic segmentation task, intersection over union (IoU, 

also known as the Jaccard index in the binary task) is a typical metric in semantic segmentation and is chosen as the metric here. It is computed by

IoU =  |Ar ∩ Am|/|Ar ∪ Am|

(15)

where  Ar  and  Am  are the sets of pixels generated by the algorithms and ground truths, respectively. Mean IoU ( m IoU =

IoU /C  represents the number of cate-

gories) over five categories to evaluate the overall performance. 

4.4.  Multi-object semantic segmentation of BUS images

In this section, we discuss the performance of SCFURNet on the multi-layer dataset. 

We first present the segmentation results of SCFURNet with different numbers

of fuzzy blocks (SFBs and CFBs), next explain the ablation study for the pro-

posed fuzzy blocks, then visualize uncertainty maps obtained by fuzzy blocks, and finally discuss the quantitative semantic segmentation results of SCFURNet and

all compared methods. The dataset with 325 BUS images is utilized, each contain-

ing pixel-wise ground truths of five categories. Ten-fold validation is also utilized. 

The proposed SFBs and CFBs are applied to U-Net with VGG-16/ResNet-101 as

the encoder. The training and validation loss curve is shown in Fig. 5. The loss is calculated based on the average of 10-fold validation. 

4.4.1.  Segmentation performance and the number of fuzzy blocks

In this section, we discuss the relation between the number of fuzzy blocks used in the network and the performance of the segmentation. The U-Net with ResNet101 is utilized in this research. The proposed SFB and the CFB are applied to the encoder of the U-Net with ResNet-101. The ResNet-101 contains five convolutional blocks; therefore, we use five fuzzy blocks as the maximum number to conduct
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Fig. 5. 

Training and validation loss curves for multi-object semantic segmentation of BUS

images. 

experiments for comparison. In the first experiment, no fuzzy block is applied to the U-Net with ResNet-101. The proposed spatial and channel-wise fuzzy blocks

are applied to the first convolutional block in the second experiment. We continue adding the spatial and channel-wise fuzzy blocks to the second, third, fourth, and fifth convolutional blocks and keeping the fuzzy blocks in the previous convolutional blocks. 

Figure 6 shows IoU results vs. the number of convolutional blocks. When we apply the spatial and channel-wise fuzzy blocks to all five convolutional blocks, the proposed network achieves the best performance on both the tumor category and

the overall performance. 

In order to show the increasing performance in Fig. 6 is caused by the fuzzy

blocks in deeper convolutional blocks or the combination of the former fuzzy blocks and the newly added fuzzy blocks, another experiment is conducted. In this experiment, the fuzzy blocks are added to the five convolutional blocks of ResNet-101

individually. For example, the fuzzy blocks are added to the second convolutional block of ResNet-101; there is no fuzzy block in convolutional blocks 1, 3–5. The experiment results in Fig. 7 show a slight increase in performance when applying fuzzy blocks to convolutional blocks 1–5; however, the performance cannot outperform the performance of using fuzzy blocks in five convolutional blocks together. 

When we only add a fuzzy block to the fourth convolutional block, the IoU for the tumor is the highest, which is 77.56%; however, when we add fuzzy blocks to all

five convolutional blocks, the IoU for the tumor is 82.40%. Therefore, the following

[image: Image 725]
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Fig. 6. 

The relation between the number of fuzzy blocks and the segmentation performance. 

Block number = 1: the fuzzy blocks are applied to the first convolutional block; block number = 2: the fuzzy blocks are applied to the first and second convolutional blocks together; block number =

3: the fuzzy blocks are applied to the convolutional blocks 1, 2, and 3; block number = 4: the fuzzy blocks are applied to the convolutional blocks 1, 2, 3, and 4; block number = 5: the fuzzy blocks are applied to the convolutional blocks 1, 2, 3, 4, and 5. The reason for the maximum number of blocks being five is given in Section 4.4.1. 

Fig. 7. 

The relation between the number of fuzzy blocks and the segmentation performance. 

The fuzzy blocks are applied to the convolutional blocks individually. Block number = 1: the fuzzy blocks are applied to the first convolutional block; block number = 2: the fuzzy blocks are applied to the second convolutional block; block number = 3: the fuzzy blocks are applied to the third convolutional block; block number = 4: the fuzzy blocks are applied to the fourth convolutional block; block number = 5: the fuzzy blocks are applied to the fifth convolutional block. 

experiments apply the spatial and channel-wise fuzzy blocks to five convolutional blocks. 

4.4.2.  Ablation study for fuzzy blocks

We employed the SFB and the CFB in five convolutional blocks to reduce the

uncertainty in the feature maps. To verify the performance of each fuzzy block, we conduct experiments with different settings in Table 2. 
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Table 2. 

Ablation study on multi-object dataset. 

Encoder

SFB

CFB

Tumor IoU

Mean IoU

VGG-16

74.66%

75.13%

 √

VGG-16

76.60%

77.54%

 √

VGG-16

75.63%

78.81%

 √

 √

VGG-16

78.34%

79.36%

ResNet-101

75.68%

77.35%

 √

ResNet-101

79.12%

78.67%

 √

ResNet-101

80.43%

80.12%

 √

 √

ResNet-101

82.40%

81.67%

 Notes: SFB: Spatial-wise Fuzzy Block, CFB: Channel-wise

Fuzzy Block. Bold numbers are the corresponding best results. 

Checkmarks denote the SFB or CFB added to the baselines. 

As shown in Table 2, it compares two convolutional structures: VGG-16 and ResNet-101. Meanwhile, it adopts the SFB and the CFB individually in each network. Compared with the U-Net with VGG-16, employing the SFB brings a 1.94%

increase in tumor IoU and 2.41% in mean IoU. Meanwhile, employing the CFB in

U-Net with VGG-16 outperforms the baseline by 0.97% in tumor IoU and 3.68% in

mean IoU. When the two fuzzy blocks are used together to the U-Net with VGG-

16, the performance further improved to 78.34% in tumor IoU and 79.36% in mean

IoU. When changing the convolutional structure to ResNet-101, the performance

of using two fuzzy blocks together becomes 82.40% in tumor IoU and 81.67% in

mean IoU. Here, we show the tumor segmentation results and overall performance

because tumors are the most important objects in BUS image segmentation. The

experiment results show that each fuzzy block can reduce uncertainty in the feature maps and increase the performance of tumor segmentation. 

The effectiveness of the proposed channel and spatial-wise fuzzy blocks can be

shown in Figs. 8 and 9, respectively. The most common misclassification is the

tumor area and the background area because both areas contain low intensities. 

The misclassification patches are marked by red rectangles in Figs. 8 and 9. They are correctly classified when applied individually to the SFB or CFB. 

4.4.3.  Visualization of fuzzy blocks

In this part, the uncertainty maps obtained by the SFB and selected channels in the processed feature maps are visualized for a better understanding of the proposed SFB and the CFB. 

The SFB is utilized to measure the degree of uncertainty of pixels in the input

feature map and reduce the effect of the uncertain pixels. Therefore, the uncertainty map generated in the SFB can show the uncertain pixels and corresponding uncertainty degrees (refer to Fig. 10). For example, the areas marked by red rectangles are the background and tumor areas in the first row. They have similar intensities. 
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In the uncertainty map, these areas are highly uncertain. The original U-Net misclassifies the background area; however, the proposed method can correct it (shown in columns 5 and 6). In the second and third rows, the tumor areas are also marked as uncertain areas, i.e., the original U-Net cannot handle these areas. The heatmaps indicate that the proposed SFB can find the uncertain areas of the input feature maps and measure the degree of uncertainty of the pixels. 

For CFB, it is hard to give a comprehensible visualization of the uncertainty map directly because each channel of the input feature map only contains an uncertainty value. Instead, we show some processed channels to see whether they highlight clear semantic areas. In Fig. 10, we display the 39th and 21st channels of each feature map after employing a CFB. We can see that in the 21st channel of the feature map, the highlighted areas are in the mammary layers. The 39th channel of the feature map highlights the area of the tumor. However, some areas in other categories contain high response in the 39th channel of the feature maps as well (such as the muscle layer in the first and third rows and the fat layer in the second row). These results indicate that the proposed fuzzy blocks can help generate feature maps with clear semantic information. 

4.4.4.  Semantic segmentation results

Figure 11 illustrates the segmentation results of SCFURNet and nine compared methods for four representative BUS images in the multi-object datasets. Figure 11(b) shows the pixel-wise ground truths: The green areas are fat layers, the yellow areas are mammary layers, the blue areas are muscle layers, the red areas are tumors, and the black areas are background areas. 

The results in Fig. 11(i) are obtained when the input images are the three-channel images with gray-level intensity in the first channel, wavelet approximation coefficients in the second channel, and wavelet detail coefficients in the third channel and the network structure is the U-shape network with ResNet-101. The results in Fig. 11(f) are obtained when the images are the original gray-level images, and the network structure is the same as the network used in Fig. 11(i). Comparing Figs. 

11(i) and 11(f), the tumor segmentation results in Fig. 11(i2,i4) are better than those in Fig. 11(f2,f4). However, the results in Fig. 11(i1,i3) are not improved. The experiment results of using the wavelet feature in the input layer prove that involving the wavelet feature cannot handle some misclassification, such as the background area and tumor area, because they contain similar feature values in both the wavelet domain and space domain. 

The proposed method generates new convolutional features. New convolutional

feature maps and original convolutional feature maps are combined using uncer-

tainty degrees as the weights in pixels and channels. It reduces the effect of uncertain pixels and uncertain channels. This mechanism overcomes the drawback in

Fig. 11(i). For example, in Fig. 11(f3), the original U-Net with ResNet-101 can segment the tumor. In Fig. 11(i3), when adding wavelet features, the segmentation
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Fig. 8. 

Segmentation results of U-Net with ResNet-101 and CFB on multi-object dataset. Green: fat layer, yellow: mammary layer, blue: muscle layer, red: tumor, and black: background. The red rectangles represent the mis-segmented regions by the baseline module. 

Fig. 9. 

Segmentation results of U-Net with ResNet-101 and SFB on multi-object dataset. Green: fat layer, yellow: mammary layer, blue: muscle layer, red: tumor, and black: background. The red rectangles represent the mis-segmented regions by the baseline module. 

results of tumors and the mammary layer become worse. Other network structures

also do not handle these images well. The quantitative results of Fig. 11 show that the proposed method improves the second-best method significantly by 2.45%, 3.38%, and 14.36% for the mIoU for Fig. 11(a1–a3). The overall mIoU only improves by 0.53% for Fig. 11(a4); however, the proposed method improves the second-best method by 11.71% for tumor IoU. The performances are shown in Table 3. Bold

numbers represent the corresponding best results. The IoU increases by 6.72% in

tumor segmentation compared with that of the original U-Net with ResNet-101. It

achieves a 7.52% improvement in IoU in tumor segmentation compared with that of

the U-Net with ResNet-101 and wavelet transform. The proposed method achieves

[image: Image 732]
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Fig. 10. 

Results of fuzzy blocks on the multi-object dataset. For each row, we show an input image and an uncertainty map from the SFB; red represents a high value and blue represents a low value in the heatmap. We also provide two channel maps from the outputs of the CFB, the results of the original U-Net and the proposed method, and the ground truths. Green: fat layer, yellow: mammary layer, blue: muscle layer, red: tumor, and black: background. The red rectangles represent the mis-segmented regions by the baseline module or tumor regions. 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 11. 

Multi-object semantic segmentation of BUS images: (a) original images, (b) ground truths, (c) results of ResNet-101 + self-attention mechanism, (d) results of attention U-Net, (e) results of ResNet-50, (f) results of ResNet-101, (g) results of Deeplab, (h) results of PSPNet, (i) results of U-Net with wavelet transform, (j) results of FCN-8s, (k) results of SE-Net (ResNet-101), and (l) results of the proposed method. 

4.32% and 4.05% improvements in overall mIoU compared with that of the U-Net

with gray-level intensity and wavelet transform, respectively. The proposed method achieves the best performance in tumor segmentation and the best overall performance among all methods. The overall performance indicates that the proposed

method can handle misclassification caused by similar feature values of different layers because the proposed method can reduce the weights of the similar features of different layers and add novel features. 

4.5.  Semantic segmentation on three public two-category datasets

We also conduct experiments on three two-category public datasets to evaluate the performance of SCFURNet on the binary segmentation (tumor and background)

task. 
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Table 3. 

Results of multi-object semantic segmentation. 

Fat

Mammary

Muscle

Background

Tumor

Mean

ResNet-50

82 .  58

73 .  98

73 .  08

77 .  23

76 .  34

76 .  64

ResNet-101

82 .  5

74 .  41

75 .  69

77 .  47

75 .  68

77 .  35

FCN-8s

82 .  57

75 .  47

75 .  53

78 .  59

74 .  42

77 .  32

PSPNet

82 .  07

74 .  4

74 .  49

77 .  36

74 .  75

76 .  61

Deeplab

78 .  91

68 .  71

67 .  33

73 .  94

69 .  04

71 .  58

Attention U-Net

83 .  99

77 .  61

75 .  69

77 .  99

76 .  26

78 .  31

SE-Net

80 .  91

75 .  21

71 .  23

76 .  57

75 .  9

75 .  96

Self-attention

82 .  53

76 .  23

75 .  91

80 .  29

78 .  81

78 .  75

Reference 16

84 .  05

75 .  92

74 .  89

78 .  35

74 .  88

77 .  62

Proposed

84.72

79.84

77.39

83.98

82.4

81.67

 Notes: Evaluation Metric is IoU (%). Bold numbers are the best results. 
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Fig. 12. 

Segmentation results using public dataset: (a) original images, (b) ground truths, (c) results of ResNet-101 with self-attention mechanism, (d) results of a SE-Net (ResNet-101), (e) results of attention U-Net, (f) results of ResNet-50, (g) results of ResNet-101, (h) results of Deeplab, (i) results of PSPNet, (j) results of U-Net with wavelet transform, (k) results of FCN-8s, and (l) results of proposed method. 

4.5.1.  Overall performance on three public datasets

The proposed SFB and CFB are applied to a U-Net with ResNet-101 network

because it achieves better results than U-Net with VGG-16 in Section 4.4.2. All other compared deep networks, such as ResNet-50, ResNet-101, and FCN-8s, are trained

to segment tumors in these three datasets. Due to the limited number of samples

(the total number of samples for three datasets is only 1505), 10-fold validation is utilized: (1) each of the three datasets is divided into 10 groups randomly, (2) pick 9 groups of each dataset as the training set and the rest 1 group as the testing set, and (3) the final evaluation metrics are calculated by the average of 10 experiments. 

Figure 12 shows the segmentation results using the three two-category datasets. 35, 59, 60 Figure 12(a) shows the original images, and (b) shows the ground truths. For Fig. 12(a1) containing a narrow and long tumor, most methods (e1, f1, 
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g1, i1, and j1) fail to segment the tumor; h1 mistakenly segments a wrong tumor

region; c1 and d1 segment the tumor region with small JI values of 41.65% and 17.61

%, respectively; the proposed method l1 achieves the highest JI value of 55.19%. For Fig. 12(a2), most methods (e2, f2, g2, h2, i2, j2, and k2) fail to segment the tumor or mistakenly segment a wrong tumor region since their JI values are less than 26%. 

For three methods (c2, d2, and l2) correctly segment the tumor region, the proposed method (l1) achieves the highest JI value of 88.38%, which significantly outperforms c2 (44.28%) and d2 (35.01%). For Fig. 12(a3) containing an irregular tumor, the

proposed method (l3) achieves the highest TPR, JI, DSC, and the lowest AER val-

ues. Specifically, it outperforms the second-best method by 2.78%, 15.41 %, 8.55%, and 35.02% for TPR, JI, DSC, and AER, respectively. All methods achieve good

segmentation results for Fig. 12(a4) containing a big tumor. The proposed method (l3) achieves the highest TPR, JI, and DSC values of 97.57%, 93.17%, and 96.47%, and the lowest FPR and AER values of 4.72% and 7.15%. For Fig. 12(a5), containing an irregular tumor with unclear contour, the proposed method (l3) achieves the best segmentation results with the highest JI of 84.86%, the highest DSC of 91.81%, and the lowest AER of 17.30%. 

Table 4 summarizes the segmentation results of SCFURNet, nine deep learning methods, and five classic machine learning methods in terms of five measures on

the dataset. 59 Five non-deep learning methods10, 61–64 are also involved in the comparison using this dataset. Results in Table 4 show the following: (1) Deep learning methods obtain improvements compared with traditional BUS image segmentation

methods listed in Ref. 59; (2) some famous deep learning architectures, such as Table 4. 

Results of two-class semantic segmentation on dataset. 59

TPR

FPR

JI

DSC

AER

Semi-Automatic Methods

Reference 10

0.82

0.13

0.73

0.84

0.31

Reference 64

0.84

0.07

0.79

0.88

0.23

Fully-Automatic Methods

Reference 61

0.81

0.16

0.72

0.83

0.36

Reference 62

0.81

1.06

0.60

0.70

1.25

Reference 63

0.67

0.18

0.61

0.71

0.51

Deeplab

0.89

0.11

0.82

0.89

0.22

ResNet50

0.92

0.08

0.86

0.92

0.16

ResNet101

0.92

0.10

0.85

0.91

0.18

FCN8s

0.94

0.10

0.86

0.92

0.16

PSPNet

0.93

0.09

0.86

0.92

0.16

Attention U-Net

0.92

0.09

0.85

0.91

0.17

SE-Net

0.92

0.10

0.85

0.91

0.18

Self-attention

0.91

0.07

0.86

0.92

0.15

Reference 16

0.92

0.09

0.86

0.92

0.16

Proposed

0.94

0.06

0.88

0.93

0.14

 Note: Bold numbers are the best results. 
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Table 5. 

Results of two-class semantic segmentation on datasets.35, 60

TPR

FPR

JI

DSC

AER

Dataset35

Deeplab

63.68%

36.06%

52.93%

61.91%

72.38%

ResNet50

81.29%

36.58%

68.70%

76.94%

55.29%

ResNet101

83.58%

34.40%

71.43%

79.45%

50.82%

FCN8s

82.72%

41.14%

67.50%

76.87%

58.42%

PSPNet

81.08%

40.42%

69.77%

78.24%

59.34%

Attention-UNet

83.58%

34.40%

71.43%

79.45%

50.82%

Self-attention

82.58%

26.39%

73.83%

81.37%

33.81%

SE-Net

79.23%

36.75%

70.90%

79.10%

35.12%

Reference 16

81.19%

31.63%

71.48%

80.21%

48.44%

Proposed

84.70%

44.69%

73.27%

81.08%

59.99%

Dataset60

Deeplab

59.88%

39.39%

49.65%

59.39%

79.52%

ResNet50

78.45%

49.39%

67.09%

76.36%

68.94%

ResNet101

79.40%

46.02%

69.26%

77.90%

66.62%

FCN8s

74.23%

46.69%

63.16%

73.03%

72.63%

PSPNet

77.11%

46.65%

65.21%

74.75%

69.54%

Attention-UNet

77.52%

38.67%

67.81%

76.77%

60.92%

Self-attention

79.02%

29.30%

71.49%

78.46%

55.50%

SE-Net

78.40%

38.95%

68.30%

77.24%

60.55%

Reference 16

78.07%

42.37%

68.43%

76.96%

64.30%

Proposed

79.86%

22.01%

72.14%

80.51%

42.15%

 Note: Bold numbers are the best results. 

Deeplab and PSPNet, do not obtain improvements for dataset59 and the possible reason is the limited number of the samples; and (3) the proposed method achieves the best results since it can solve the small target problems and uncertainties in the boundary areas. 

Table 5 summarizes the segmentation results of SCFURNet and nine peer deep learning methods on Dataset35 and Dataset. 60 The proposed method achieves the best results among all evaluation metrics compared with state-of-the-art deep learning methods on three public datasets except the FPR and AER on Dataset.35 The self-attention mechanism in ResNet-101 obtains lower FPR and AER on Dataset. 35

Lower FPR and AER indicate that non-local context information provided by the

self-attention mechanism can help reduce segmentation errors. However, the pro-

posed method achieves the best overall performance by reducing uncertainty in

pixels and channels. The proposed method achieves 2.03%, 1.84%, and 2.88% in

the Jaccard index on three public BUS datasets compared with that of the original U-shape network with ResNet-101, respectively. 

4.5.2.  Small tumor segmentation

In this section, we show the effectiveness of the proposed method on small tumor segmentation. Small tumors are hard to segment due to their small size, low intensity, and tumor-like regions in BUS images. Figure 13(a1) contains a very small tumor. The proposed method (l1) achieves the highest TPR, JI, and DSC values of

[image: Image 744]

238

 K. Huang et al. 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 13. 

Small tumor segmentation: (a) original images; (b) ground truths; (c) results of ResNet101 with self-attention mechanism; (d) results of a SE-Net (ResNet-101); (e) results of attention U-Net; (f) results of ResNet-50; (g) results of ResNet-101; (h) results of Deeplab; (i) results of PSPNet; (j) results of U-Net with wavelet transform; and (k) results of FCN-8s; (l) results of proposed method. 

92.78 %, 81.82%, and 90.00%, and the lowest AER value of 20.62%. It improves the second-best method by 1.12%, 1.78%, 0.98%, and 0.54% in terms of TP, JI, DSC, 

and AER, respectively. Figure 13(a2) contains a small tumor close to a tumor-like region. Most existing methods mistakenly classify the tumor-like region. The proposed method (l1) achieves the highest JI and DSC values of 85.11% and 91.95%, 

and the lowest AER value of 16.91%. It improves the second-best method by 5.16%, 2.78%, and 14.64% in terms of JI, DSC, and AER, respectively. Figure 13(a3) contains a small tumor located in a low-intensity region, making it hard to distinguish from the background. The proposed method (l1) achieves the highest JI and DSC

values of 70.63% and 82.79%, and the lowest AER values of 39.50%. It improves the second-best method by 9.75%, 5.71 %, and 17.16% in terms of JI, DSC, and AER, 

respectively. The small tumor contains similar feature values with noise patches or background patches. However, the proposed method achieves the best results in

small tumor images; therefore, it can achieve the best overall performance on all datasets. 

5. Discussion

5.1.  Comparison with previous studies and potential usefulness

We propose a novel SCFURNet with SFBs and CFBs to reduce the uncertainty

in convolutional feature maps. The proposed method can perform an anatomy seg-

mentation on BUS images. The proposed network generally has four significant

advantages over previous BUS image segmentation methods. 

First, the proposed SFBs and CFBs are individual blocks that do not depend on

network structures. They can be easily integrated into different network structures, such as VGG-16 and ResNet. Most other attention mechanisms are designed with

new network structures or have limitations when applied to other networks. Second, as shown in Table 2, the proposed SFBs and CFBs can be used with different

networks, and removing either block will lead to worse performance on BUS image

segmentation. That is because the SFBs and CFBs can both find the fuzzy regions
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and channels in the feature maps and reduce their weights, as shown in Fig. 10. 

Third, our SFBs and CFBs can also be used in the semantic segmentation of other

datasets besides BUS images. Fourth, in Section 4.5.2, we prove that the proposed SFBs and CFBs can help detect small tumor regions. Small tumors and low-intensity background regions have high uncertainty degrees (Fig. 10). We focus on those uncertain regions and refine their feature maps to get better segmentation results. 

Potential usefulness: The proposed SCFURNet can be applied to build trustworthy ultrasound image CAD systems from a clinical perspective. The proposed

method can split the BUS images into breast layer structures. It is helpful in clinical applications to diagnose benign and malignant tumors in BUS images. We also

explain that the attention mechanism is based on fuzzy logic and uncertainty while existing attention methods are based on statistics and probability. 

5.2.  Limitations

While the proposed SCFURNet can measure the uncertainty and refine convolu-

tional feature maps to get better segmentation results, there are some limitations. 

First, the proposed method is based on other supervised deep learning networks, 

which means we still need to use pixel-wise ground truths to train the SCFURNet to classify five classes on BUS images. The labor cost of generating pixel-wise ground truths is high. Second, the evaluation of the proposed method is limited. Since we only have a limited number of samples for training and validation, we use the 10-fold cross-validation method in the experiment section. There is no independent

test set, which means our experiment results might overfit specific datasets, and the generalizability of the proposed method is untested. 

6. Conclusions

In this chapter, we design a trustworthy SCFURNet for BUS image semantic seg-

mentation. SCFURNet consists of two kinds of fuzzy blocks: spatial-wise fuzzy

blocks (SFBs) and channel-wise fuzzy blocks. The proposed method can segment

five breast layer structures of BUS images. The proposed SCFURNet achieves

2.03%, 1.84%, and 2.88% improvements in the Jaccard index using three public

BUS datasets compared with that of the original U-shape network with ResNet-

101. SCFURNet also improves the original U-shape network with ResNet-101 by

6.72% for tumor IoU and 4.32% for mean IoU in the five-category BUS dataset. 

SCFURNet achieves the best results for the following reasons: (1) The proposed

spatial and channel-wise fuzzy blocks can locate uncertain pixels and uncertain

channels in feature maps and can reduce the influence of uncertain pixels and channels. (2) By reducing the uncertainty in feature maps, some patches having similar features to those of tumor areas can be classified correctly, especially for small tumors. (3) The fuzzy entropy of memberships can measure the uncertainty degree

of pixels and channels accurately. The experimental results validate the following
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claims: (1) There is uncertainty and noise in BUS images, especially for small tumors and background areas; (2) the proposed method can reflect the uncertain pixels and uncertain channels and generate better feature maps; and (3) the proposed method can solve small target problem. 

In the future, we plan to explore novel methods to extract certain features that directly have low fuzzy entropy compared with convolutional operators. We also

plan to develop different uncertainty representation methods and compare them

with fuzzy entropy. Another research direction is designing a weakly supervised

method to reduce the labor cost in ground truth generation. Finally, we extend the proposed network to other image segmentation datasets with more training samples, such as the nuclei image classification and segmentation dataset, PanNuke. 66
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Digital Twin (DT) has rapidly evolved from industrial applications to pivotal

roles in diverse sectors, notably in healthcare. This survey paper explored the

multifaceted applications of digital twins, focusing on their integration within healthcare, data fusion techniques, and broader implications for smart cities and the industrial metaverse. It synthesizes findings from recent studies to highlight the technological advancements, methodological approaches, and DT implementation challenges. Special attention is given to the generative adversarial network models for multi-fidelity data fusion, the architecture of digital twins, and the pressing concerns of security and privacy in digital twin applications. This review also discusses the prospective enhancements and innovations that could address

current limitations and expand the utility of digital twins across various domains. 

1. Introduction

The advent of  digital twin  technology — virtual replicas of physical entities — has ushered in a new era of innovation across various sectors, most notably in healthcare. 1–7 Originating from manufacturing and industrial processes, digital twins are dynamic virtual models that mirror the real-time status, conditions, and behaviors of their physical counterparts by leveraging data collected through sensors, IoT devices, and advanced analytics. This synergy between the physical and digital realms enables unprecedented capabilities in system monitoring, simulation, and

predictive analysis. 

In the healthcare domain, digital twins hold the promise of revolutionizing

patient care through personalized treatment simulations, predictive diagnostics, and 247
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optimized operational efficiencies.8–11 By creating individualized digital representations of patients, healthcare providers can simulate disease progression, tailor interventions, and enhance clinical decision-making, thereby improving patient outcomes and experiences. Additionally, digital twins can optimize hospital management by modeling workflows, resource allocation, and emergency response strategies within smart healthcare systems. In order to provide a more comprehensive overview, a conceptual framework of digital twin technology in healthcare is illustrated in Figure 1. 

However, the implementation of digital twins in healthcare presents significant

challenges which include the following:

 • Data integration and quality: Aggregating and harmonizing vast amounts of heterogeneous data from multiple sources (e.g., electronic health records, medi-

cal imaging, and wearable devices) requires robust data fusion techniques and

standards. 

 • Model fidelity and validation: Ensuring that digital twins accurately represent complex biological systems necessitates high-fidelity models and rigorous validation against clinical outcomes. 

 • Security and privacy: Protecting sensitive patient data is paramount, necessitating stringent cybersecurity measures and compliance with privacy regulations. 

 • Computational complexity: Real-time simulation and analysis of detailed physiological models demand significant computational resources and efficient

algorithms. 

Given the growing interest and rapid developments in this field, there is a pressing need for a comprehensive survey that systematically reviews the current state Fig. 1. The framework of digital twin in healthcare. 
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of digital twin technologies in healthcare. This paper aims to consolidate existing knowledge, outline core technologies and applications, and identify the major challenges and future research directions. 

The contributions of this survey are as follows:

 •  examining the foundational technologies that enable digital twins in healthcare, including data collection, data augmentation, and data fusion; 

 •  presenting current applications of digital twins in healthcare, and highlighting case studies in personalized medicine, medical device development, and healthcare management; 

 •  analyzing the technical and ethical challenges associated with digital twins implementation in healthcare and providing potential solutions. 

2. Background and Theoretical Foundations of Digital Twins in

Healthcare

Digital twins in healthcare are precise virtual models of patients or physiological systems that are continuously updated with real-time data to mirror the current state of the physical counterpart. 12 They enable simulation, analysis, and optimization of patient-specific conditions, facilitating personalized medicine and proactive healthcare interventions. The theoretical foundations of digital twins encompass various advanced technologies and methodologies, which we explore in this section. 

2.1.  Cloud computing and edge computing

Cloud computing provides the scalable infrastructure essential for storing and

processing the vast amounts of data generated in healthcare. 13 It enables the deployment of complex digital twin models that require substantial computational resources and supports collaboration across different healthcare providers by offering centralized data access. 14 Cloud platforms facilitate the integration of heterogeneous data sources, such as electronic health records, imaging data, and genomic information, into cohesive digital twin models.15

Edge computing complements cloud services by bringing computation closer to

data sources, reducing latency, and improving response times.16 In healthcare, edge computing is particularly valuable for processing data from the Internet of Medical Things (IoMT) devices, such as wearable sensors and implantable devices, allowing for real-time monitoring and analysis. By processing data at the edge, sensitive patient information can be kept local, enhancing privacy and security. 17 The synergy of cloud and edge computing enables digital twins to operate efficiently, providing timely insights and supporting decision-making in critical care situations. 18

2.2.  Data augmentation with advanced generative models

Data augmentation is crucial in healthcare due to the limited availability and

imbalance of medical datasets. Advanced generative models like Generative
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Adversarial Networks (GANs)19 and diffusion models20 have revolutionized data augmentation by generating high-quality synthetic data that preserves the statistical properties of real data. 

GANs have been employed to create realistic medical images, such as MRI and

CT scans, which enhance the training of machine learning models within digital

twins. 21 For instance, Frid-Adar  et al.  used GANs to augment liver lesion datasets, improving classification performance. 21 Diffusion models, a newer class of generative models, have demonstrated superior capabilities in producing high-fidelity images and handling complex data distributions. 22 Song  et al.  applied diffusion models to medical imaging, achieving state-of-the-art results in image synthesis tasks.23

By augmenting datasets with synthetic data from these models, digital twins

can achieve better generalization and predictive performance, especially in rare disease scenarios where data scarcity is a significant challenge. 24 This enhancement is critical for developing robust digital twin models capable of accurate simulations and predictions in diverse patient populations. 

2.3.  Advanced AI models in digital twins

The integration of advanced AI models enhances the capabilities of digital twins in healthcare. Large Language Models (LLMs), such as GPT-3,25 have shown remarkable proficiency in understanding and generating human-like text. In healthcare, LLMs can process unstructured data from clinical notes, research articles, and

patient communications, enriching the digital twin’s knowledge base. This integration enables more comprehensive patient modeling, including aspects like medical history and patient-reported outcomes. 

Vision-language models that combine visual and textual data facilitate a holistic understanding of multi-modal patient data. 26 For example, models like VilBERT

have been used to interpret medical images alongside corresponding textual reports, enhancing diagnostic accuracy. Diffusion models extend beyond data augmentation; they are applied in predictive modeling within digital twins, capturing complex temporal dynamics in patient data and improving the accuracy of disease progression simulations.27

The incorporation of these advanced AI models allows digital twins to handle

diverse data types and deliver nuanced insights into patient health. By leveraging the strengths of LLMs, diffusion models, and vision-language models, digital twins can provide personalized recommendations and support clinical decision-making

with greater precision. 28

2.4.  Explainable and trustworthy AI in digital twin for healthcare

In healthcare, the interpretability of AI models is essential for clinical acceptance and trust.29 Explainable AI (XAI) techniques enable practitioners to understand the decision-making processes of digital twin models, which is critical for diagnosing
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conditions and prescribing treatments.30 Methods such as attention mechanisms,31

feature importance analyses, and model-agnostic explanations like LIME32 help elucidate model predictions. 

Trustworthy AI also encompasses robustness, fairness, and compliance with eth-

ical standards. 33 Ensuring that digital twins provide unbiased and reliable recommendations is crucial, especially when models might inadvertently perpetuate

existing biases in healthcare data. 34 Incorporating explainability into digital twin frameworks enhances their utility in clinical settings and supports informed decision-making by healthcare professionals. 35 Moreover, transparent models facilitate regulatory approval processes by providing evidence of safety and efficacy.36

2.5.  Federated learning and privacy-preserving techniques for digi-

 tal twin in healthcare

Privacy concerns are paramount when handling sensitive medical data. Federated

learning offers a solution by enabling models to be trained across multiple decentralized devices or servers holding local data samples without exchanging the data itself. 37 This approach preserves patient privacy while allowing for collaborative model development, enhancing the performance of digital twins with data from

diverse populations. 38

Techniques such as differential privacy39 and secure multiparty computation further enhance data security in federated learning environments. 40 Li  et al.  proposed privacy-preserving federated learning methods specifically tailored for healthcare applications, addressing issues like data heterogeneity and communication efficiency. 41 By integrating these privacy-preserving methods, digital twins can benefit from comprehensive datasets across institutions, improving model accuracy and

generalizability without compromising patient confidentiality. 42

2.6.  Internet of medical things and wearable technology

The IoMT and wearable devices play a crucial role in providing real-time data

for digital twins. 43 Sensors and devices that monitor vital signs, activity levels, and other health metrics feed continuous data into digital twin models, enabling dynamic simulations and timely interventions. 44 For example, wearable ECG monitors can detect arrhythmias in real time, allowing digital twins to update cardiac models and predict potential cardiac events. 

Advancements in wearable technology have improved data accuracy and patient

comfort, leading to increased adoption. 45 The integration of IoMT data with digital twins enhances personalized healthcare by allowing for proactive monitoring and tailored treatment plans. 46 This integration is particularly valuable in managing chronic diseases, where continuous monitoring can significantly impact patient outcomes. 47 Additionally, during pandemics like COVID-19, remote monitoring via
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IoMT devices has been instrumental in reducing hospital visits and mitigating infection risks. 48

3. Applications of Digital Twins in Healthcare

Digital twin technology offers personalized insights and predictive modeling in

healthcare. It is used to predict health outcomes, manage chronic diseases like

type 2 diabetes, improve cardiovascular care, and guide cancer immunotherapy. 

Recent advancements also include using large language models for health prediction via wearable sensors and diffusion models for generating synthetic data, enhancing both research and clinical decision-making. The application of digital twins is also emerging in disease outbreak management, providing dynamic simulations for better public health responses. A summary of these diverse applications is illustrated in Figure 2. 

3.1.  Digital twins in personalized healthcare

In a groundbreaking clinical trial, the study by Faruqui  et al. 49 demonstrated the practical utility of digital twins in managing Type 2 Diabetes (T2D) through personalized healthcare interventions. This study forms a crucial part of the literature exploring the adoption of digital twins within healthcare to enhance personalized medicine and improve health outcomes, from the following three major aspects:

 Data integration and predictive modeling: The research utilized a unique dataset compiled from participants’ daily health logs, which included weight, dietary intake, and glucose levels. These data points were integrated into a predictive digital

twin model developed through a transfer-learning-based Artificial Neural Net-

work (ANN). This model was further enhanced with an online nurse-in-the-loop

Fig. 2. Applications of digital twin in healthcare. 
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predictive control (ONLC) system, providing real-time, AI-generated lifestyle

recommendations. 

 Predictive digital twin implementation: The digital twin model employed a particle swarm optimization algorithm to fine-tune personalized feedback for lifestyle changes aimed at optimal glucose and weight management. This approach not only

personalized the intervention but also allowed the model to adapt dynamically to each participant’s unique health trajectory. 

 Enhanced predictive performance: The intervention group, receiving daily AI-driven feedback, exhibited significant improvement in diet and exercise adherence, resulting in notable weight loss and stabilized glucose levels. The study reported an over 80%

prediction accuracy by the digital twin in managing T2D, underscoring the potential of digital twins in enhancing patient engagement and adherence to recommended

lifestyle modifications. 

This study exemplifies how digital twins, combined with real-time data and AI, 

can significantly contribute to the field of personalized healthcare, particularly in chronic disease management. Further research with larger cohorts and extended

durations is recommended to validate and scale these findings. 

Another use of digital twins to predict diet responses involves the integration of various clinical data into a comprehensive and interconnected model. This model

can mechanistically explain and integrate data from multiple clinical studies, and accurately predict new independent data, including from new studies. Specifically, the digital twin can predict non-measured variables such as hepatic glycogen and gluconeogenesis in response to fasting and different diets. Moreover, the digital twin technology can adapt to an individual’s sex, weight, height, and historical data on metabolite dynamics, thereby providing personalized insights into diet

responses. 

In the study by Silfvergren  et al. , 50 a novel mathematical model was developed that describes the mechanisms regulating diet response and fasting metabolic fluxes, including organ–organ crosstalk and intracellular liver processes. This model was used to predict metabolic responses to various diets and fasting schedules, demonstrating its ability to predict responses accurately and integrate data from diverse sources. The tool also allows for offline digital twin technology, enabling personalized predictions based on demographic data and historical metabolic data. 

Digital twin technology provides a powerful approach to addressing the current

lack of consensus on the optimal diet and fasting schemes by integrating disparate datasets into a cohesive model. This approach can also potentially enhance patient compliance with prescribed diets by providing personalized predictions and visualizations, thereby increasing patient motivation to follow dietary recommendations. 

The integration of smart wearable devices in cardiovascular care has become

increasingly prevalent. Wearables like smartwatches, ECG patches, and fitness

bands are equipped with sensors capable of measuring various cardiovascular met-

rics, such as heart rate (HR), heart rate variability (HRV), and blood pressure. These
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devices can help in the early diagnosis of cardiovascular conditions, such as arrhythmias and hypertension. Wearables use technologies such as photoplethysmography

(PPG) and electrocardiography (ECG) to provide continuous or as-needed monitor-

ing. Some devices can even track arrhythmias, including atrial fibrillation (AF), and provide alerts for potential heart rhythm abnormalities. Several studies have highlighted the accuracy of these devices, though challenges related to data accuracy, patient privacy, and the ability to distinguish actionable data from noise remain.51

Wearable technology also plays a significant role in lifestyle interventions for cardiovascular disease prevention. Devices track physical activity, helping patients monitor their health and encouraging active lifestyles, which is critical for managing cardiovascular risk factors. For example, using activity trackers to promote physical activity has been shown to reduce all-cause mortality and improve cardiovascular health. 51

In the paper from Gareth  et al. , 52 wearable technology has revolutionized cardiovascular health monitoring by providing real-time data on heart rate, blood pressure, and physical activity. Devices like smartwatches and fitness trackers now integrate advanced sensors such as photoplethysmography (PPG) and electrocardiography

(ECG) to detect conditions like atrial fibrillation (AF) and hypertension. Continuous data collection allows for early intervention, especially in managing arrhythmias and heart failure. Tools like the Apple Watch have demonstrated the ability to identify AF with high accuracy. Additionally, technologies like remote dielectric sensing (ReDS) are used to monitor heart failure, reducing hospital readmissions. 52

This growing field is set to enhance personalized care by continuously adapting

treatment plans based on real-time metrics, though challenges in device validation and regulatory oversight remain critical. 52

3.2.  Integrating large language models into digital twins for

 health prediction

The integration of Large Language Models (LLMs) into digital twin frame-

works offers significant potential for advancing health prediction and personalized medicine. LLMs, such as GPT-3 and GPT-4, have demonstrated remarkable abilities in understanding and generating human-like text, processing vast amounts of unstructured data, and extracting meaningful insights from clinical narratives. 25

By incorporating LLMs into digital twins, healthcare providers can enhance the

interpretation of patient data, leading to more accurate simulations of individual health status and predictions of disease progression. 

LLMs can process electronic health records (EHRs), medical literature, and

patient-reported information to enrich the data inputs for digital twins. 53 For example, they can extract relevant clinical features from physician notes, lab reports, and imaging descriptions, which are often unstructured and challenging to analyze with traditional methods. These enriched data enable digital twins to create more comprehensive and dynamic models of patients, improving the precision of health

predictions and treatment simulations. 
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A notable example is the TWIN-GPT approach proposed by Wang  et al.  54

TWIN-GPT leverages LLMs to create personalized digital twins for patients in clinical trials. By employing a novel prompt-tuning method, it generates and updates patient digital twins based on their electronic health records (EHRs), capturing individual patient characteristics with high fidelity. This personalized modeling allows for more accurate predictions of clinical trial outcomes, even in data-scarce situations, thereby enhancing patient safety and expediting the development of new

treatments. 

3.3.  Enhancing digital twins for predicting cancer immunotherapy

 efficacy with AI

The integration of artificial intelligence (AI) into oncology has shown significant promise in enhancing the prediction of immunotherapy outcomes for cancer patients. 

While the studies by Xie  et al. 55 and others do not explicitly mention digital twins, their findings can be effectively incorporated into the digital twin framework. By embedding AI models into digital twins of cancer patients, we can simulate individual responses to immunotherapy, thus optimizing treatment plans and advancing

personalized medicine. 

 AI in predicting immunotherapy outcomes: In a groundbreaking study, Xie  et al. 55

explored using AI to predict immunotherapy efficacy in cancer treatment. Integrating such AI systems into digital twins allows for the simulation of patient-specific responses to treatments like immune checkpoint inhibitors (ICIs). This integration facilitates more tailored therapeutic strategies within the digital twin before clinical application, enhancing the potential for successful outcomes. 

 Deep learning in histopathological image analysis: Coudray  et al.  56 demonstrated the potential of deep learning algorithms in classifying non-–small cell lung cancer subtypes and predicting genetic mutations directly from histopathology images. 

Incorporating these deep learning models into digital twins enhances the twin’s

ability to accurately represent tumor characteristics, which is critical for determining immunotherapy eligibility and predicting treatment responses within the virtual

environment. 

 Predicting cancer origins with AI pathology: Lu  et al. 57 expanded the application of AI by developing a model capable of predicting the tissue of origin for cancers of unknown primary using histopathological images. Embedding this capability into

digital twins aids in accurately simulating the patient’s cancer profile, essential for selecting appropriate immunotherapeutic strategies. This alignment with the digital twin framework enhances the precision of virtual patient models. 

 Immune signature analysis for therapy response: Jiang  et al. 58 focused on the immune microenvironment by identifying signatures of T cell dysfunction and exclusion that predict patient response to immunotherapy. Integrating such immune

signature analyses into digital twins enables more precise modeling of the tumor
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microenvironment. This enhancement improves the digital twin’s ability to forecast immunotherapy outcomes based on the functional state of immune cells, leading to better-informed treatment decisions. 

 Convergence of AI and high-performance medicine: Topol36 discussed the broader implications of AI in transforming medicine, emphasizing its potential to enhance diagnostic accuracy and personalized treatment plans. Applying these insights, the integration of AI into digital twins offers a powerful approach to processing complex datasets and simulating patient-specific outcomes. This convergence enables improved prediction models for immunotherapy efficacy within the digital twin

framework, ultimately leading to better patient outcomes and resource optimization. 

By connecting these AI advancements to the digital twin framework, we can

enhance the ability of digital twins to predict cancer immunotherapy responses. 

This integration supports the development of more effective cancer treatment strategies, emphasizing the role of digital twins as a transformative tool in personalized oncology. 

3.4.  Digital twins in disease outbreak management

The concept of digital twins has emerged as a groundbreaking approach in man-

aging disease outbreaks, offering dynamic and personalized simulations of disease progression within individual patients. This technology has gained particular significance during viral pandemics such as COVID-19, where physiological responses to infection can vary widely among individuals.59

Digital twins integrate a multitude of data sources — including patient-specific clinical data, genomic information, real-time physiological measurements, and environmental factors — to create comprehensive virtual representations of patients. 60

This integration allows healthcare professionals to simulate disease progression, predict outcomes, and optimize treatment protocols tailored to each patient’s unique characteristics. 61

Initial applications of medical digital twins have demonstrated promise in man-

aging chronic conditions and optimizing surgical procedures. In diabetes manage-

ment, digital twin models have been developed to simulate individual glucose-insulin dynamics, aiding in personalized insulin therapy and dietary recommendations. 

In cardiology, cardiac digital twins are utilized to plan and optimize heart surgeries by predicting patient-specific responses to different surgical interventions.60

Corral-Acero  et al. 60 developed a comprehensive digital twin of the human heart capable of simulating electrical and mechanical functions, which can help select optimal treatments for conditions like arrhythmias and heart failure. 

During the COVID-19 pandemic, digital twin technology has been applied to

model the spread of the virus and predict healthcare demands. 62 Chang  et al. 62

employed digital twins to simulate pandemic scenarios, enabling policymakers to

evaluate the impact of interventions, such as social distancing, vaccination strategies, and resource allocation. 
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Despite their potential benefits, several challenges hinder the widespread adop-

tion of digital twins in outbreak management. A significant hurdle is the complexity of accurately modeling viral infections and immune responses, which requires a detailed understanding of biological processes that can vary greatly between individuals. Developing high-fidelity models demands extensive data on patient physiology, genetics, and environmental factors, which may not always be readily available or standardized. 

The integration of massive, heterogeneous datasets necessitates advanced com-

putational infrastructure and robust data governance frameworks. 63 Ensuring data quality, interoperability, and security is critical, especially when handling sensitive health information. Privacy concerns and regulatory compliance, such as adherence to the General Data Protection Regulation (GDPR) and the Health Insur-

ance Portability and Accountability Act (HIPAA), add layers of complexity to data management. 64

Furthermore, digital twin models must be continuously updated with the latest

medical research and real-time patient data to remain accurate and relevant. 61 This requires ongoing interdisciplinary collaboration among clinicians, data scientists, and engineers, as well as rigorous validation processes to establish clinical credibility and acceptance.59 The lack of standardized methodologies and validation protocols can hinder the integration of digital twins into routine clinical practice. 

Looking ahead, the development of digital twins for disease management holds

significant potential to transform public health responses to epidemics and pan-

demics. Advances in computational power, data analytics, and machine learning

algorithms are expected to enhance the fidelity and scalability of digital twin models. Integrating artificial intelligence can facilitate the analysis of complex datasets, uncovering patterns and predictive markers that may not be apparent through traditional methods

Collaborative efforts across disciplines, including bioinformatics, epidemiology, clinical medicine, and data science, are essential to overcome existing challenges. 

Establishing standardized protocols for data sharing, model development, and validation can accelerate the adoption of digital twins in healthcare. Initiatives such as open-source platforms and international consortia may foster innovation and

ensure that digital twin technology evolves in a way that is accessible and beneficial to global health. 59

Moreover, policy support and investment in digital infrastructure are crucial to realize the full potential of digital twins. 65 By integrating digital twin technology into public health strategies, it is possible to enhance preparedness and responsiveness to future health crises, ultimately improving patient outcomes and reducing the societal impact of infectious diseases. 

3.5.  XR, AR, and VR for digital twin in healthcare

Extended Reality (XR), encompassing Augmented Reality (AR) and Virtual Real-

ity (VR), has become increasingly significant in enhancing digital twin applications
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in healthcare. The integration of XR technologies with digital twin models allows for immersive visualization and interactive simulations, facilitating advancements in various healthcare domains. 66 Surgeons are leveraging VR combined with patient-specific digital twins for preoperative planning and rehearsal of complex pro-

cedures,66 aiding in understanding intricate anatomical structures and potential surgical challenges, potentially reducing intraoperative risks. For example, AR can overlay digital twin data onto the surgical field during operations, providing real-time guidance and enhancing precision. 67 XR technologies have also revolutionized medical education by providing students and trainees with interactive experiences using digital twins. Engaging with accurate, three-dimensional representations of human anatomy and physiological processes enhances understanding without the

need for cadavers or live patients, 68 improving knowledge retention and practical skills in a safe, controlled environment. 69

In rehabilitation medicine, VR applications enable patients to interact with their digital twins through simulated exercises and environments, 70 increasing motivation and adherence to therapy regimens, as patients receive immediate feedback and can visually track their progress. AR technologies assist in physical therapy by overlay-ing exercise instructions and performance metrics onto the patient’s field of view, facilitating correct movement execution and accelerating recovery.71 Furthermore, the integration of XR technologies with digital twins enhances remote consultations by allowing clinicians to collaboratively visualize and manipulate patient data in shared virtual spaces, 72 improving diagnostic accuracy and treatment planning, especially when in-person consultations are challenging. Clinicians can interact with detailed patient models, discuss findings, and make informed decisions without geographical constraints. 73 The fusion of XR, AR, and VR with digital twin technology in healthcare presents significant opportunities for improving clinical outcomes, enhancing medical education, and increasing patient engagement. However, challenges such as high implementation costs, technical limitations, and the need for specialized equipment must be addressed to fully integrate these technologies into routine clinical practice. 74

3.6.  Stable diffusion technique in healthcare

Digital twin technology can greatly improve patient care by using real-time data integration, advanced analytics, and personalized insights. 75 This technology allows healthcare providers to collect and analyze extensive patient data from various

sources, including electronic health records (EHRs), medical devices, wearables, and genetic profiles. 76 Diffusion models, particularly denoising diffusion probabilistic models (DDPMs), have shown significant potential in various generative tasks across domains, such as imaging and audio synthesis. He  et al. 77 deployed MedDiff, an accelerated denoising diffusion model in healthcare to generate synthetic electronic health records (EHRs), which holds promise for addressing both data availability and privacy concerns. The healthcare industry, constrained by the need for privacy
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and the availability of vast amounts of data, can benefit from these models as

they provide a way to generate high-quality, diverse synthetic data without the

complexities associated with traditional generative adversarial networks (GANs). 

The introduction of models like MedDiff represents a pioneering step in leverag-

ing diffusion-based techniques for EHR synthesis. MedDiff, a class of DDPM, has

been tailored for the healthcare domain to generate discrete EHRs while ensur-

ing that the synthetic data preserve the statistical properties of real patient data. 

This capability is crucial for training robust predictive models and for conducting research that requires extensive data without compromising patient privacy. 

Moreover, diffusion models like MedDiff offer advantages such as ease of training and the ability to generate data quickly compared to other generative models. These models employ a reverse diffusion process that begins with noise and gradually

denoises it to produce data samples. This process not only ensures the generation of diverse and realistic samples but also mitigates the risk of mode collapse — a common issue in GANs. 

In summary, stable diffusion models stand out as a powerful tool for synthetic

data generation in healthcare, providing a scalable solution that could potentially transform how data are utilized for clinical research and decision-making. 

4. Challenges and Future Directions

Digital twins in healthcare face significant challenges, including ethical, privacy, and security concerns, as well as technical and operational hurdles. Key issues involve real-time data processing, data integration, and scalability. Ethical concerns around AI bias, patient consent, and data privacy are critical, while AI model transparency and fairness remain major challenges. Future directions include improving AI fairness, enhancing real-time data integration, and incorporating Vision-Language

Models (VLMs) to advance diagnostics and personalized care. 

4.1.  Ethical, privacy, and security issues

The expansion of digital twin technology from industrial applications to personal health monitoring and management raises significant ethical issues, particularly concerning privacy, autonomy, and the potential for manipulation of personal data. 78

 Privacy and data security: The primary ethical concern highlighted is the management of highly sensitive personal health data. As digital twins can potentially store comprehensive details about an individual’s physical and mental health, ensuring the privacy and security of these data is paramount. There is a risk of unauthorized access and data breaches, which could lead to misuse of personal information. There is a concern that increased dependency on technology for health management may

diminish a person’s ability to make independent health decisions. The ethical challenge lies in balancing technological assistance with personal autonomy to ensure that digital twins support rather than undermine patient empowerment. Another
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critical ethical issue is the potential for biases built into the algorithms that drive digital twins. These biases could lead to discriminatory practices in healthcare delivery and outcomes, affecting marginalized groups disproportionately. It is crucial to develop digital twins using diverse datasets and ensure they are tested for biases regularly. With the complex nature of data collection and usage by digital twins, ensuring that individuals fully understand how their data will be used is a challenge. Informed consent processes must be robust and transparent, providing clear information on the extent of data collection, its use, and the rights of individuals to control their data. 78

The use of digital twins in healthcare brings about numerous ethical, privacy, 

and security concerns due to the highly sensitive nature of patient data and the complexity of the technology. Data privacy is a central issue, as digital twins collect and analyze detailed personal health data, including genetic information, lifestyle factors, and real-time physiological parameters. This raises concerns about who

owns the data and how it can be used. The potential for data breaches or misuse

is significant, as unauthorized access could lead to discrimination, such as higher insurance premiums or employment denial. 79, 80

Furthermore, the accuracy and inclusivity of the data used to create digital

twins are crucial. If the data aren’t representative of diverse populations, it may exacerbate healthcare inequalities. For example, a digital twin model that doesn’t account for differences in racial or socioeconomic backgrounds could lead to biased predictions and treatments, disproportionately affecting marginalized groups. 80, 81

Ethical concerns also arise in the control and consent mechanisms. Patients

might not fully understand how their digital twin is being used, and ongoing consent is challenging to manage when models are continuously updated with new data. 

This creates a need for transparent communication between healthcare providers

and patients regarding the uses and potential risks of digital twin technology. 82, 83

Additionally, security risks are heightened as digital twins are connected to various devices and cloud infrastructures, making them vulnerable to cyberattacks. 

Ensuring robust encryption, data anonymization, and continuous monitoring is

essential to safeguarding patient data. 79, 82

4.2.  Data collection challenges for digital twin in healthcare

Digital twins in healthcare face several challenges, particularly in integrating diverse data sources, ensuring data quality, and addressing privacy and security concerns. 

The complexity of combining various data types, such as EHRs, imaging, and

wearable data, can hinder accurate model building. Additionally, incomplete or inaccurate data can negatively affect outcomes, while strict regulations require robust protection of sensitive health information. 

 Data heterogeneity: The development of digital twins in healthcare requires the integration of a wide array of data types, including electronic health records (EHRs), medical imaging, genomic sequences, wearable sensor data, and patient-reported
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outcomes.84 Each data type adheres to different formats and standards, complicating the data integration process. 85 For instance, EHRs may use HL7 or FHIR

standards, imaging data are often in DICOM format, and genomic data might be

in FASTQ or VCF formats. Harmonizing these heterogeneous datasets demands

advanced data processing and normalization techniques, 86 as well as interoperability frameworks to facilitate seamless data exchange. Additionally, data silos within and across healthcare organizations hinder the comprehensive data aggregation necessary for accurate digital twin modeling.87

 Data quality and completeness: High-quality, comprehensive data are essential for building reliable digital twin models. However, healthcare data frequently suffers from missing values, inaccuracies, and inconsistencies due to human error, 

diverse data entry protocols, and equipment malfunctions. 88 Incomplete or erro-neous data can lead to flawed models that produce unreliable or even harmful

recommendations. 89 Addressing these issues requires extensive data cleaning, validation, and standardization efforts,90 which are time-consuming and resource-intensive. Advanced techniques like machine learning-based data imputation are

being explored to mitigate missing data problems, 91 but they are not foolproof. 

 Privacy and security concerns: Utilizing patient data for digital twins raises significant privacy and security challenges. Healthcare data are highly sensitive and protected under regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the General Data Protection Regulation

(GDPR) in the EU. Ensuring compliance requires robust data anonymization, 

encryption, and access control mechanisms. The risk of data breaches compromises patient confidentiality and can erode trust in digital twin technologies. Moreover, ethical considerations around data ownership and consent add another layer of

complexity. 92

4.3.  Challenges in using ML/AI methods for digital twin in

 healthcare

Key challenges include interpretability, generalizability, and bias. AI models often lack transparency, hindering clinical trust. Models may not generalize well across diverse populations, and biases in training data can lead to unfair outcomes, requiring fairness-focused algorithms and validation across varied datasets. 

 Model interpretability: AI models, particularly deep learning algorithms, are often criticized for their lack of transparency, functioning as “black boxes” with opaque decision-making processes. 93 In healthcare, interpretability is crucial for clinical acceptance, as practitioners need to understand and trust the model’s recommendations before integrating them into patient care. 94 Although methods for explainable AI (XAI) are being developed to address this issue, 95 they are not yet mature enough to fully resolve the interpretability challenge, and integrating them into clinical workflows remains limited. 96
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 Generalizability: AI models trained on specific datasets may not perform well when applied to different populations or clinical settings due to variations in patient demographics, genetics, and healthcare practices. 97 This lack of generalizability limits the utility of digital twins across diverse patient groups. 98 Ensuring models are robust and generalizable requires extensive validation across multiple datasets and settings, which is often hindered by data access limitations and variations in data quality.99

 Bias and fairness: Training AI models on historical healthcare data can perpetuate existing biases, leading to unfair or suboptimal treatment recommendations for certain patient groups. 100 For example, minority populations may be underrepresented in the data, causing models to perform poorly for these groups.101 Addressing bias requires careful data curation and the development of algorithms that promote fairness and equity. 102 Techniques such as bias detection and mitigation are active areas of research but are not yet standard practice.103

4.4.  Technical and operational challenges in digital twin in

 healthcare

Key challenges include real-time data processing, system integration, and scalability. 

Processing large, real-time data requires robust infrastructures, while integrating with legacy healthcare systems faces interoperability issues. Scaling to accommodate vast patient data without compromising performance remains a hurdle, with cloud

solutions offering potential but raising security concerns. 

 Real-time data processing: For digital twins to be effective in clinical decision-making, they must process data in real time or near real-time to provide timely

insights. Achieving this level of responsiveness requires high-performance com-

puting infrastructures capable of handling large data volumes with low latency. 

The integration of streaming data from various sources, such as wearable devices and monitoring equipment, adds complexity.104 Ensuring data accuracy and consistency in real-time environments is also technically demanding. 105

 Integration with existing systems: Healthcare institutions often rely on legacy IT

systems not designed for interoperability. Integrating digital twin solutions with existing EHRs and clinical systems poses significant technical challenges, including compatibility issues and the need for standardized data exchange formats. 

Standards like HL7 Fast Healthcare Interoperability Resources (FHIR) aim to facilitate interoperability but are not universally adopted.106 Overcoming these bar-riers requires significant investment in IT infrastructure and collaboration among stakeholders.107

 Scalability: Developing digital twin solutions that can scale to accommodate large patient populations and complex simulations without compromising performance is

a significant hurdle. 108 Scalability involves data storage and processing capabilities, 

[image: Image 753]
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as well as the ability to update models with new data.109 While cloud and edge computing offer potential solutions, 110 they introduce additional concerns related to data security, latency, and regulatory compliance. Efficient algorithms and distributed computing architectures are needed to handle the computational load. 

4.5.  Future direction for digital twins

Medical vision-language models (VLMs) an example of which is shown in Figure 3

combine computer vision (CV) and natural language processing (NLP) to analyze

visual and textual medical data. 111 Recent advancements in VLMs have shown significant potential in the medical domain, particularly in enhancing Visual Question Answering (VQA) systems. This section reviews two notable works that have contributed to this field. 

Bazi  et al. 112 introduced a VLM specifically designed for VQA in medical imagery. Their model employs a transformer-based architecture that integrates

vision and language modalities to answer clinical questions posed with medical

images. The approach utilizes a Vision Transformer (ViT) to extract visual features from medical images and a textual encoder transformer to embed the questions. 

Fig. 3. Visual question answering (VQA) working process in medical fields. 
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These representations are fused and processed by a multi-modal decoder that generates the answers. The model was tested on two datasets, VQA-RAD and PathVQA, 

demonstrating significant accuracy in both closed and open-ended questions. This study highlights the transformative potential of transformer models in improving the capabilities of VQA systems in the medical field, suggesting that these models could become sophisticated tools for medical diagnostics. 

Luo  et al.  113 introduced FairCLIP, an approach designed to address fairness in vision-language models for medical applications. The researchers presented the Harvard-FairVLMed dataset, the first fair vision-language medical dataset, which includes detailed demographic attributes, ground-truth labels, and clinical notes. 

This dataset was used to conduct a comprehensive fairness analysis of two widely used VL models: CLIP and BLIP2. The study revealed significant biases in these

models, with certain demographic groups being favored in the predictions. To mitigate these biases, FairCLIP employs an optimal-transport-based approach that

aligns the overall sample distribution with the distributions of specific demographic groups. The results showed that FairCLIP achieved a favorable trade-off between

performance and fairness, highlighting its potential for developing ethically aware and clinically effective machine learning models in healthcare. 

These advancements in vision-language models indicate a promising direction

for the integration of digital twins in healthcare. By incorporating sophisticated VLMs, digital twins could provide more accurate and contextually relevant insights, significantly enhancing patient care and clinical decision-making. 

5. Conclusion

In this chapter, we have conducted a comprehensive survey of digital twins in healthcare, beginning with this transformative technology’s background and foundational concepts. We explored various application scenarios, notably the burgeoning use

of Large Language Models (LLMs) in the healthcare domain. These models, which

have gained significant attention recently, offer immense potential to improve patient care through advanced data analysis, predictive modeling, and personalized treatment plans. 

Furthermore, we analyzed the current utilization of diffusion models in health-

care, particularly for data generation purposes. Diffusion models contribute to creating robust and diverse datasets, which are crucial for training more accurate and reliable AI systems in medicine. We also discussed the prospective use of VLMs in healthcare, envisioning how they could enhance the interpretation of complex medical images and facilitate better communication between clinicians and AI systems. 

Despite the promising advancements, there are several challenges that need to be addressed to fully harness the potential of these technologies in digital twins. Issues such as data heterogeneity, data quality and completeness, privacy and security concerns, model interpretability, and scalability remain significant hurdles. Addressing
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these challenges requires continued interdisciplinary collaboration among data scientists, healthcare professionals, and regulatory bodies. 

As technology advances, integrating sophisticated AI models like LLMs, diffu-

sion models, and vision-language models with digital twin technology holds great promise. The future of healthcare could be significantly transformed by these innovations, leading to more accurate diagnoses, personalized treatments, and improved patient outcomes globally. 
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Fuzzy rule-based systems excel in interpreting data, especially in low-dimensional scenarios. In contrast, deep learning, while effective in areas like image and speech recognition, struggles with sparse, unstructured, or low-dimensional data due

to extensive parameter requirements and overfitting risks. Rule-based systems, 

rooted in fuzzy logic, provide transparency in decision-making, offering clear

rationales for each rule. This interpretability is crucial in fields like healthcare and finance. However, these systems face challenges when dealing with complex and high-dimensional data. To address these challenges, one approach is

to integrate rule-based systems with other machine-learning methods. An exam-

ple is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which combines

the transparency of fuzzy rule-based systems with the adaptability of neural

networks. However, traditional ANFIS has limitations, particularly when using

grid partitioning for rule generation. An issue is exponential growth in the rule count as problem dimensionality increases despite its simple implementation. This research introduces an innovative model for strategic rule reduction to address

the challenges of rule-based systems, especially ANFIS with grid partitioning. 

The model incorporates Principal Component Analysis (PCA) on the normal-

ized firing strengths, transforming them into linearly uncorrelated components. 

These components are selectively optimized and evaluated using Binary Parti-

cle Swarm Optimization (BPSO), resulting in a significant rule reduction that

enhances decision-making precision, a critical aspect of rule-based systems. Additionally, a custom parameter update mechanism fine-tunes specific ANFIS layers

by dynamically adjusting BPSO parameters, thereby avoiding potential issues

related to local minima. These enhancements have been validated on standard

datasets from UCI respiratory and keel, covering classification and regression

tasks, as well as a real-world ischemic stroke dataset, highlighting the adaptability and practicality of our model. The results from our model demonstrated a

marked decrease in the number of generated rules and training duration while

maintaining a high level of accuracy. 
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1. Introduction

Fuzzy modeling is a descriptive language that a fuzzy logic system uses to rep-

resent real-world operations. These models can express expert knowledge through

fuzzy if-then rules without requiring a detailed qualitative analysis. As a result, the ambiguity and uncertainty systems can be represented more transparently, enabling a thorough comprehension of the system’s operation. 1 Fuzzy rule-based systems are particularly adept at interpreting data in scenarios with fewer variables but complex relationships. In contrast, deep learning is renowned for its success in processing high-dimensional data, such as images, videos, and speech in different applications, 2–6 where it leverages vast amounts of data to uncover intricate patterns. 

However, deep learning techniques often face challenges when dealing with sparse, unstructured, or low-dimensional datasets due to their high parameter demands

and susceptibility to overfitting. These challenges highlight the advantages of fuzzy modeling in providing clear and interpretable rules for systems characterized by uncertainty and ambiguity. In 1965, Lotfi Zadeh introduced fuzzy logic as a mathematical tool to deal with uncertainty by using what is called  membership functions, such that the linguistic words like heavy, tall, low, etc., which cannot be categorized precisely in terms of “0” or “1”; instead, it is possible to express them in degrees of belonging to a specific category. There are two popular types of fuzzy inference techniques: the Mamdani, which Mamdani and Assilian founded, 7 and the Sugeno or Takagi–Sugeno–Kang or (TSK) fuzzy inference technique, which Sugeno pioneered. 8

The key distinction between the two approaches is the outcome of fuzzy rules. TSK

fuzzy inference systems use linear functions of input variables as rule consequents, whereas Mamdani fuzzy systems use fuzzy sets as rule consequents. 9 One of the successful fuzzy inference techniques that can deal with highly complex, nonlinear systems is the Adaptive Neuro-Fuzzy Inference System (ANFIS). The typical way

to write a single fuzzy rule in ANFIS based on the form of TSK inference for two inputs  x 1 and  x 2 is

IF  x 1 is  A 1 AND  x 2 is  A 2 THEN y = f( x 1 , x 2), where  A 1 and  A 2 are the fuzzy sets for the input variables  x 1 and  x 2, y  is the output, and AND is a logical AND gate. 10

ANFIS offers advantages but also faces specific challenges. 11 These challenges associated with ANFIS are interconnected, creating a complex landscape for its

application. The need for expert knowledge and rule-based development is closely tied to rule-based complexity since managing and maintaining a complex rule base becomes more challenging and time-consuming. The complexity of the rule base also impacts subjectivity and interpretability, as the intricate rules may lead to inconsistencies and subjective interpretations, making it harder to ensure transparency. 

Furthermore, integrating ANFIS with other computational techniques presents challenges, particularly when dealing with a complex rule base and issues of subjectivity. 

Scalability and efficiency concerns are magnified when the rule base becomes more complex, especially in large-scale problems where resource management becomes
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crucial. Finally, efficient data-driven learning in ANFIS is essential to address the challenges of overfitting and model complexity, which are closely related to the complexity of the rule base. These challenges collectively highlight the intricate nature of ANFIS and the need for careful consideration and expertise in its application. 12, 13

From the challenges delineated earlier, we can distill these complexities into three primary focal points, which we intend to concentrate on within the context of this research study:

1. Curse of dimensionality: Many insignificant redundant rules are generated as

part of the existing automated procedures. 

2. Interpretability accuracy trade-off. 

3. High computational cost. 

Addressing these challenges in ANFIS requires domain expertise, careful rule-based development, thoughtful integration with other techniques, and considerations for scalability and interpretability. Additionally, advances in machine learning techniques, methodologies, and domain-specific knowledge can contribute to overcom-

ing these challenges and enhancing the effectiveness of ANFIS in various real-world applications. The goal of this study is to develop a model that addresses the previously mentioned drawbacks and makes a balance between the trade-off problem of

interpretability and accuracy. We aim to develop a real-time and practical model that can be evaluated on real datasets effectively. 

2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a powerful estimating model that may be used with various machine

learning methods in addition to neuro-fuzzy systems. Despite being well liked by academics, ANFIS has drawbacks, such as the curse of dimensionality and computing expense, that prevent it from being applied to situations with massive inputs. 

There is a lot of potential for improvement, even though several techniques have been put forth in the literature to address these flaws. 14 ANFIS structure mainly consists of two main parts: the antecedent or input part and the consequent or the results part. These two sections form the fuzzy rules and the network’s final shape. 

The parameters of each section are updated during the training process based on

hybrid optimization technique.10 The entire network of ANFIS consists of five layers, as shown in Fig. 1. The antecedent part of its network includes layers 1 − 3, while the consequent part includes the rest. 

The first layer is the fuzzification layer, where the membership degrees for each input are calculated in the following formulas where L refers to the layer associated with its order and  O  is the output of the layer, where, the first number refers to the layer order and the second number refers to the input order:

L1–L2

01 =  μ ( x

=  μ

( x

1

 Ai

1); 012

 Bi

2) , 

(1)
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Fig. 1. 

Layered model of ANFIS architecture. 

where  μA ( x

( x

 i

1) and  μBi

2) are the membership functions of each input. The

nodes of this layer are adaptive (in square shape), which means that its param-

eters are updated in a backward path using the gradient descent algorithm. 

The membership functions can take different forms depending on the dataset

and the process. The Gaussian and generalized bell-shaped membership func-

tions are the most popular types.15, 16 The second and third layers are the rule and normalization, respectively. Both have fixed nodes (circle shape). The rul-ing layer calculates the firing strength of each rule by multiplying the mem-

bership values of the previous layer for a combination of inputs as Eq. (2) or by taking the minimum value of them (the  t-norm). The third layer normalizes these firing strengths  w  using the min-max normalization technique, as shown in Eq. (3):

L2–L3:

02 ,j =  wj =  μA ( x

( x

 i

1)  ∗ μBi

2) , 

(2)

L3–L4:

 wj

0



3 ,j = ¯

 wj =

 . 

(3)

 j wj

The fourth layer is the beginning of the consequent part, known as the defuzzi-

fication layer, see Eq. (4), representing the weighted values of the rules using a first-order polynomial equation of consequent parameters multiplied by the normalized firing strengths. This layer consists of adaptive nodes whose parameters (the consequent parameters) are updated in the forward path using the least square error technique:
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L4–L5:

04 ,j = ¯

 wJ fj = ¯

 wJ ( pjx 1 +  qjx 2 +  r 1) . 

(4)

Here,  pj, qj, r 1 are the consequent parameters of each rule  j, which are equal to

⎡ ⎤

 p

⎢

⎣ ⎥

 q⎦ = ( n inputs + 1)  × j, 

(5)

 r

where  n inputs is the number of inputs. 17 These two types of updates of ANFIS

parameters are known as the two-pass hybrid learning algorithm. Finally, the fifth layer is the output layer, which is the summation of all the outputs of layer four: L5:



05 =

¯

 wJ fj. 

(6)

 j

The nodes of each layer are connected to the next layer by directed links. Therefore, to produce the output for a single node, each node performs a particular function on its incoming signals. 18

3. Related Work

As we mentioned earlier, there is a trade-off problem with ANFIS related to its

interpretability and accuracy. The ability of fuzzy models to describe their systems’ patterns is called interpretability. Some studies concurred that the model structure, the number of input variables, the number of fuzzy rules, the number of linguistic words, and the form of the fuzzy sets are all aspects of interpretability. 

Since they affect the system’s complexity and time consumption. The definition of accuracy relates to the fuzzy model’s ability to describe the system being modeled accurately. 19 Numerous attempts have addressed ANFIS issues by enhancing either its interpretability or accuracy, or both using optimization techniques. We have explored the literature and discovered that researchers have pursued two main avenues to resolve these problems, which we elaborate on in the subsequent subsections. 

3.1.  Issues with ANFIS training and overfitting

The training of ANFIS architecture constitutes an optimization process to find

the best values for its antecedent and consequent parameters. Commonly used

derivative-based learning algorithms for this purpose include the Levenberg Mar-

quardt (LM), 20 backpropagation (BP), 21 Kalman filter (KF), 22 and gradient descent (GD) algorithms. 23 These, however, carry the potential risk of local minimum
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problems due to the chain rule, and calculating the gradient at each step can be challenging. Additionally, the effectiveness of these algorithms heavily depends on the initial values, and the convergence of the parameters can be relatively slow. Recently, several ANFIS studies have substituted these learning algorithms with evolution

optimization or metaheuristic optimization algorithms, including the Genetic Algorithm (GA), 24 Differential Evolution (DE), 25 Artificial Bee Colony (ABC), 26 and Particle Swarm Optimization (PSO).27

In Ref. 28, the researchers proposed a combination of particle swarm optimization and genetic algorithm. Although PSO is known for its robustness and fast

solving of nonlinear problems, its quickness could lead to local optimum solution space convergence. To tackle this problem, the researchers merged the GA algorithm with PSO to develop ANFIS-PSOGA for optimal premise parameters. 

In Ref. 29, a more specific and interpretable fuzzy model (ANFIS-BAT) was proposed for predicting dust concentration in both cold and warm months across

semi-arid regions of Iran. The researchers employed the bat algorithm for fine-tuning the premise and consequent parameters of the ANFIS network to minimize the cost

function in the learning process. Another training algorithm, BWOA-ANFIS, 30 was proposed to replace the gradient descent in traditional ANFIS. The authors of this study applied the association rules learning technique (ARLT) and then tuned the premise and consequent parameters by utilizing the Black Widow Optimization

Algorithm (BWOA). In the study of Ref. 31, the authors introduced an ANFIS-FA methodology. This system utilized ANFIS combined with subtractive clustering

(SC). This model’s unique aspect was using a firefly optimization technique (FA) to improve the optimization of all SC parameters. These parameters, which included

the range of influence, squash ratio, accept ratio, and reject ratio, were explicitly optimized to enhance the system’s ability to classify and diagnose skin cancer at its early stages. 

In Ref. 32, both the premise and consequent parameters were optimized using the artificial bee colony (ABC) optimization algorithm to enhance the precision

of ANFIS in classifying Malaysian SMEs. The ABC algorithm was employed to

update these parameters in forward and backward passes instead of the tradi-

tional hybrid learning algorithms in conventional ANFIS. Although this tech-

nique demonstrated high accuracy, the ABC requires a more efficient exploration

strategy. 

3.2.  Issues with ANFIS interpretability and complexity

To enhance the interpretability of ANFIS, researchers have attempted to optimize the rule base using various techniques, such as reducing the number of features using feature selection techniques or eliminating redundant rules using different pruning methods. 
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The process of reducing the number of input variables leads to a lesser number of system parameters and, thus, a reduced number of generated rules. Consequently, 

this results in a more interpretable model and a less complex ANFIS structure. 

Several techniques are available for the feature selection, including traditional techniques or filter methods that depend on distance measurement and redundancy

features. 33, 34 Other strategies known as wrapper methods utilize evolutionary algorithms to evaluate the best-selected features, such as binary particle swarm optimization (BPSO), ant colony optimization (ACO), and GA. A classifier is used as an objective function to calculate the minimum error of each subset. In Ref. 35, 

a feature selection based on a genetic algorithm was proposed as the main con-

tribution to simplifying ANFIS complexity to reach high performance by reducing

the feature vector in the concrete production industry. In the study of Ref. 36, the accuracy of ANFIS was significantly improved while maintaining a less complicated architecture through feature selection. They utilized Principal Component Analysis (PCA) to classify brain tumor MRI images. The efficiency of their technique was

demonstrated through the generation of fewer fuzzy rules and an improvement in

system accuracy. This was achieved by integrating image segmentation with thresholding techniques and increasing the number of iterations. Another similar approach is dividing the input variables based on information granules such as fuzzy sets and then using the Apriori algorithm to create an initial rule base that efficiently derives high-quality, interpretable rules from vast datasets. These rules were concurrently selected and tuned to improve the model’s performance, as seen in Ref. 37, and a similar idea is in Ref. 38. 

Optimizing the rule base based on rule growing and pruning techniques has

been implemented to minimize the rule base while maximizing accuracy. The rule

base is a crucial part of any fuzzy inference system (FIS), and the quality of its results hinges on the efficacy of these rules. Not all generated rules are essential or contribute significantly to improving accuracy. Many of them are inefficient and can be pruned to reduce the complexity of the FIS system. 19, 39

Several techniques have been proposed for rule-based optimization. One such

technique is  clustering, as in Ref. 40, where various clustering techniques (one partitional and two other hierarchical strategies) have been proposed to synthesize ANFIS. They addressed the issue of membership function overlap by considering

the input space. After the clustering process, a min-max classifier is used to refine the membership function definitions. This process generates a limited number of rules while ensuring coverage of the entire input space. In Ref. 41, a different clustering technique was adopted to expedite training time, prune irrelevant rules, and enhance the accuracy of classifying motor imagery tasks for controlling light-emitting diodes. 

Their methodology involved splitting the dataset into two clusters using the  k-means clustering algorithm and triggering rules based on each cluster. The Jaya algorithm was combined with ANFIS to determine each group’s optimal number of
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features, subsequently informing the rules’ triggering. Another clustering technique was used in Ref. 42 to improve the interpretability of grid partitioning ANFIS. This technique proposed  K-Means clustering-based Extreme Learning ANFIS (KMELANFIS) for regression purposes. The input space was clustered, and the clustering centers were used to initialize the membership function parameters. The membership functions were reduced using a similarity index method between adjacent ones. 

Finally, an extreme learning machine (ELM) was used to compute the consequent

parameters. However, this technique is limited when applied to a low-dimensional dataset. 

Another approach to rules pruning is to use  thresholding techniques, as seen in Refs. 19, 43, where the elimination of non-essential rules was achieved by employing a threshold set by an expert. All rules with firing strengths below this threshold were discarded. However, these methodologies, reliant on human experts for threshold determination, faced challenges. Especially in cases where expert opinions conflicted based on data types or specific application requirements, choosing the correct threshold value proved problematic. Moreover, choosing to prune rules based on a pre-selected threshold could risk removing some significant rules, negatively impacting the system’s accuracy. One possible solution is to use an adaptive threshold, as in Ref. 44, where the authors used a new threshold-based fitness function that is adaptive. As outlined in Ref. 45, an enhanced ANFIS technique leverages a probability trajectory and a  k-nearest neighbor-based clustering ensemble to refine its rules. 

This approach empirically establishes a threshold to select the optimal number of clusters, which can confine this method to a specific dataset type. 

A solution to the rules explosion problem, Patch Learning (PL), was presented in Ref. 46. Despite its effectiveness, this technique may increase the number of patches, leading to heightened system complexity. 

In Ref. 47, a unique solution was proposed. The authors designed a three-layer ANFIS architecture for healthy infant sleep classification, utilizing a simple rule-elimination process to balance interpretability and accuracy. They modified the

third layer of ANFIS to correspond with the five classes in the fifth layer of conventional ANFIS. Each node in the third layer performed a weighted sum operation of the incoming rules’ firing strengths, later altered by the sigmoid function. Consequently, any rule with a normalized average contribution lower than an empirically chosen 7% threshold was pruned due to its insignificant contribution to the classification. Moreover, they further streamlined the rules by merging those sharing the same output class and only differing in the fuzzy concept linked with one pattern. A similar rule combination and feature selection methodology were employed in Ref. 48, where the researchers employed the CFBLS model, which uses a single TSK fuzzy system, streamlining rule interpretation. The input space in CFBLS is

uniformly partitioned, typically into 2, 4, or 6 parts, for better data coverage. They adopted a random selection method for features and rules to counter the “rule

explosion” arising from numerous features, using a rule-combination matrix and a

“don’t care” matrix. Parameters were optimized through a ten-fold cross-validation
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coupled with a grid search. After conducting experiments 30 times per dataset, their approach aimed to harmonize accuracy and complexity in fuzzy learning systems. 

In Ref. 49, rule optimization was achieved by minimizing the node count, which correlates with the number of generated rules. The authors used a “rule-drop” 

technique that randomly activated and deactivated nodes in the fuzzification layer during each training step. The choice of nodes was based on probability values that served as a hyperparameter to retain a neuron within the network. Some techniques, like the one in Ref. 50, bypass the pruning phase and directly learn the first set of rules from the entire training set. This direct learning from data allows for the rule’s antecedents to be learned, and if the rule has no antecedent, a default rule is generated. As a result, there is a set of rules for each class. 

Some other techniques restrict the number of generated rules, which is close

to the thresholding approach, such as in Ref. 51 where the authors proposed a rule reduction technique for regression purposes by using the least-squares method with fractional Tikhonov regularization, and the number of rules restricted to the number of fuzzy terms for each variable resulting in a simplified rule base that efficiently manages high-dimensional inputs while maintaining accuracy. Another

type of thresholding attempts in Ref. 52, where the authors used a search tree for rules generation to list all possible fuzzy item sets of a class, with attributes having an order, and utilizing support thresholds to limit rule expansions; then the candidate Rule Prescreening for subgroup discovery has been conducted to

select the most interesting rules by weighting patterns to ensure diverse rule coverage; and finally the genetic post-processing for rule selection and parameter

tuning. 

Apart from these techniques, there are several other proposed solutions to

improve the interpretability of ANFIS, such as similarity analysis, 1 frequent pattern mining, 53 and equalization of fuzzy rules with the membership functions51 that also managed to achieve a degree of an interpretable framework. In the existing literature, several notable voids have been identified in the context of optimizing ANFIS

models:

 • Feature Selection and Rule Generation Trade-off: Prior research has focused on feature selection techniques to improve ANFIS performance. However, a critical concern is the trade-off between reducing features and maintaining effective rule generation. When reducing features, the number of rules generated might

decrease, potentially leading to the exclusion of crucial rules and impacting accuracy. This study takes a distinct approach by using a complete set of features

to generate a comprehensive rule set, aiming to balance interpretability and

accuracy. 

 • Limitations of Clustering Techniques in ANFIS Pruning: While clustering techniques have shown promise in ANFIS rule pruning, there are still open questions

regarding their limitations, especially hierarchical clustering. Issues like sensitivity to data point ordering, scalability concerns, and imbalanced cluster generation
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need careful consideration. This research introduces grid partitioning as an alternative to hierarchical clustering by uniformly partitioning the relevant domain to address these drawbacks and enhance the ANFIS rule pruning quality. 

 • Subjectivity and Challenges in Thresholding Techniques: Existing literature often relies on subjective expert opinions to select threshold values for ANFIS rule pruning, raising concerns about applicability across diverse data types and domains. 

This gap highlights the need for objective thresholding techniques that determine optimal pruning thresholds based on data characteristics. The study introduces

Binary Particle Swarm Optimization (BPSO) to address this subjectivity concern, 

enhancing the precision and adaptability of thresholding techniques in ANFIS

optimization. 

 • Firing Strengths as an Automatic Rule Pruning Metric: The literature indicates that utilizing firing strengths for rule pruning in ANFIS has been relatively under-explored. Firing strengths within ANFIS offer insights into the significance of

individual rules. There is an opportunity to develop techniques that leverage

firing strengths as an automatic rule-pruning metric, potentially improving the

interpretability and accuracy of ANFIS models. 

4. Methodology

This section explains our proposed model by explaining each part embedded in the ANFIS architecture and its function. 

4.1.  Principal component analysis (PCA)

PCA is a prominent data science and machine learning technique for dimension-

ality reduction. 54 It aims to simplify complex datasets by transforming them into a lower-dimensional space while preserving essential information. 55 PCA identifies principal components, linear combinations of original features designed to capture the highest data variance, and is orthogonal to ensure variables’ uncorrelation. It streamlines datasets by discarding less significant components, offering advantages, such as more manageable data visualization, alleviating challenges associated with high-dimensional data, and mitigating the curse of dimensionality. 56 Moreover, PCA is an effective noise-reduction tool by eliminating irrelevant features, resulting in a more focused and informative dataset, ultimately enhancing the performance of

machine learning algorithms.57

Let’s denote the dataset as  X  with  N  data points,  D  features, and  y  be the labels. The goal is to reduce the dimensionality from  D  to  K ( K < D) using PCA. 56 Then, after ignoring the labels:  D = [ X, y] , X new =  X, the following steps are followed58:

First, Calculate the average for each dimension across the entire dataset: Assuming  A  is a matrix with  n  rows (data points) and  d  columns (features or dimensions), 
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the mean vector  μ  is

 n

1  

 μj =

 aij

for  j = 1 ,  2 , . . . , d, 

(7)

 n i=1

where  aij  is the element in the  i th row and  j th column of A and  μj  is the mean of the  j th column (or  j th feature). The mean vector  μ  is then  μ = [ μ 1 , μ 2 , . . . , μd]. 

Hence, the covariance between two variables  X  and  Y  is given by n ( Xi − μX)( Yi − μY )

Cov( X, Y ) =

 i=1

 . 

(8)

 n

For the dataset matrix A with  d  features, the covariance matrix Σ is of size  d × d. 

Each entry Σ ij  in this matrix represents the covariance between the  i th and  j th features:

Σ = Cov(A) . 

(9)

Later, the eigenvectors and their corresponding eigenvalues have to be determined: Given matrix A, the eigenvalues  λ  and eigenvectors v satisfy Av =  λv . 

(10)

The eigenvalues are the solutions to the characteristic equation:

det(A  − λI) = 0 . 

(11)

I is an identity matrix. Then, select  k  eigenvectors with the highest eigenvalues to form a  d × k-dimensional matrix W: Let  λ 1 , λ 2,  . . .  be the sorted eigenvalues in decreasing order. The corresponding eigenvectors are v1 , v2,  . . .  The matrix W is formed by taking the first  k  eigenvectors: W = [v1 ,  v2 , . . . , v k]. After that, mapping the samples to the newly defined subspace: Given the data matrix X and the eigenvector matrix W, the transformed data Y in the new subspace is given by Y = XW T . 

(12)

4.2.  Binary particle swarm optimization technique (BPSO)

The BPSO technique is a discrete version of the original particle swarm optimization algorithm proposed by Kennedy and Eberhart in 1997. 59 Its concept is the same as inspired by the physical movement of a fish school or bird flock when trying

to get food, find partners, or avoid attackers. 60 Like PSO, in BPSO, each particle represents a possible solution, and a population is a group of particles. Each particle has two parameters, the velocity  v  and the position  x, and each parameter involves the personal best ( P best) and global best ( G best) solutions in their update. 61 For each particle in BPSO, the velocity  v  is updated as the following equation: vi,d( t + 1) =  w.vi,d( t) +  c 1rand1( P best  − xi,d( t)) +  c 2rand2( G best  − xi,d( t)) . (13)

[image: Image 760]
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 i  is an identifier for individual particles within a swarm, with  N  particles in total. 

Each particle has  D  dimensions, represented by the index  d, which allows us to specify each dimension uniquely,  vi,d  is the velocity of particle  i, xi,d  is the particle’s position,  w  refers to the inertia weight, and  c 1 and  c 2 denote the personal and social learning factors, respectively. Random values between 0 and 1 (from a uniform distribution) are represented by rand1 and rand2, and  t  is the number of iterations. The swarm’s best global and personal positions are denoted by  G best and P best, respectively. Then, this velocity is converted into the probability value using a Sigmoid function as shown in the following:

1

Sig( vi,d( t + 1)) =

(14)

1 + exp −vi,d( t+1)

The position will be updated as the following equation:

1 ,  if rand3  <  Sig( vi,d( t+1))

 xi,d( t + 1) =

 . 

(15)

0 , 

otherwise

rand3 is a random number of uniform distributions within the range [0,1]. As each iteration unfolds,  P best and  G best are updated to transfer the particle exhibiting the minimum fitness function into the following iterations.  P best and  G best are updated according to the Eqs. (16) and (17), respectively: xi( t +1) , if F( xi( t +1))  < F( P best ,i( t)) P best ,i( t + 1) =

 , 

(16)

 P best ,i( t) ,  otherwise

 P best ,i( t +1) , if F( P best ,i( t +1))  < F( G best( t)) G best ,i( t + 1) =

 , 

(17)

 G best ,i( t) , 

otherwise

where  F (.) is the objective function. 61, 62 Even though numerous feature selection algorithms have been put forth, most are plagued by either high comput-

ing costs brought on by a wide search space or issues with a standstill in the

local optima. Therefore, to handle feature selection problems, an effective global search approach is required. 60 Meta-heuristic algorithms are considered successful candidates to achieve this goal. Among the available techniques of this type, BPSO is one of the most extensively employed due to its simple implementation, fast convergence, and low computation cost. 61 In Ref. 63,  P best-guide binary particle swarm optimization (PBPSO) was proposed for selecting the optimal set

of EMG features to improve classification performance where it reduces up to

90% of the features keeping the high accuracy. Another study is Ref. 60, where BPSO for feature selection was examined to predict the class of knee angle. 

In their study, the BPSO reduced the features to 30% of the total group to

achieve an accuracy of 90%. BPSO was also used to select the best set among

features extracted by several deep learning models applied on histopathological
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images in Ref. 62 to predict oral cavity squamous cell carcinoma at a low cost. 

In Ref. 64, a new co-evolution binary particle swarm optimization technique was applied for classification purposes on ten UCI learning respiratory dataset benchmarks as a feature selection technique. They compared their technique with other feature selection methods and approved its effectiveness and ability to be applied for various applications in engineering. 

4.3.  ANFIS-PCA-BPSO based rules reduction

Inspired by the influential role of PCA and its incorporation with ANFIS for feature reduction, as demonstrated in previous studies such as in Refs. 57, 65, 66, 

and the effectiveness of using BPSO as a features selection technique, as mentioned in the previous subsection. We attempt to integrate the PCA in this scenario of our methodology by allowing the firing strengths to undergo additional reduction. These firing strengths within ANFIS indicate the impact of inputs on the outputs, encapsulating the significance of the rules. Consequently, these firing strengths are crucial in compensating for internal features. Subsequently, the obtained components were optimized using the Binary Particle Swarm Optimization Technique. This particular optimization technique was utilized for selecting the optimal components of the rules, aiming to minimize the error based on the designated objective function in the context of classification or regression tasks. Figure 2 shows the block diagram of the proposed model. 

To explain how each part of our methodology contributes to the results as seen

later in this paper, the following subsections are explaining this in detail. 

Fig. 2. 

The architecture of the proposed ANFIS-PCA-BPSO, showing the addition of the two stages of PCA and BPSO between layers 3 and 4. 
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4.3.1.  ANFIS-PCA for reducing normalized firing strengths

Considering the ANFIS training process, then mathematically, let’s denote the

matrix of normalized firing strengths as

MAT N

 ∈  R N×M, 

 fs

where  N  is the number of samples and  M  is the number of rules:

⎡

⎤

 N f s 1

 N f s 2

 N f sm− 1  N f sm

⎢

1

1

1

1

⎢

⎥

⎢ Nfs 1  Nfs 2  · · · Nfsm− 1  Nfsm⎥

2

2

2

2 ⎥

MAT N

= ⎢

⎥  . 

 fs

⎢

. 

. 

⎣

. 

⎥

. 

 · · ·

.. 

⎦

 N f s 1 n Nfs 2 n · · · Nfsm− 1

 n

 N f sm

 n

BPSO will generate another matrix considered a switch to select the rules. It

can be represented in the discrete form of ones and zeros; let’s define this matrix as (keys)

keys  ∈ { 0 ,  1 }M×D, 

where  D  is the number of features and  M  is equal to the number of rules. Key matrix is shown in the following:

⎡

⎤

11

02

0 d− 1

1 d

⎢ 1

1

1

1

⎢

⎥

⎢ 01 12  · · ·  1 d− 1 1 d ⎥

2

2

2

2 ⎥

keys = ⎢

⎢

. 

. 

⎥

⎥  . 

⎣

.. 

 · · ·

.. 

⎦

11 m  02 m · · ·  1 d− 1

 m

0 dm

Let

 f : R N×M → { 0 ,  1 }M×D

be a function that maps the normalized firing strengths to the BPSO-generated

keys. Then, the integration can be defined as

MATresult =  f (MAT N ) . 

(18)

 fs

The resultant matrix from the product of the two matrices can be denoted as

MATresult = MAT N   keys , 

(19)

 fs

where    represents element-wise multiplication (Hadamard product). This product represents a set of candidate rules to proceed to the following layers for evaluation of size  M × D:

⎡

⎤

 N f s 1

02

0 d− 1

 N f sd

⎢

1

1

1

1⎥



⎢

⎢ 01

 N f s 2

 · · · Nfsd− 1  Nfsd⎥

2

2

2

2⎥

MAT N  keys = ⎢

⎥  . 

 fs

⎢

. 

. 

⎥

⎣

.. 

 · · ·

.. 

⎦

 N f s 1 m

02 m

 · · · Nfsd− 1

 m

0 dm
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Drawing on our understanding and insights gained from the literature, it has been observed that both Binary Particle Swarm Optimization (BPSO) and its continuous

version, Particle Swarm Optimization (PSO), predominantly employ the  K-nearest neighbors (KNN) algorithm as a classifier during the feature selection process. Our proposed model has integrated BPSO as an embedded technique within the ANFIS

classifier structure. In this approach, the selected components of the normalized firing strengths are treated as input features to the BPSO algorithm, generating a matrix comprising candidate rules. This integration enables the joint optimization of feature selection and rule generation within the ANFIS framework. Selecting the number of PCA components is based on the rule variance. It is usually 95% of the total components to retrieve the most significant amount of the data, and only a few will be removed. Algorithm 1 shows how to call the PCA-BPSO during the

ANFIS training. 

4.3.2.  BPSO parameters’ update for preserving model performance

Regarding the BPSO parameters, the inertia weight, and the acceleration param-

eters, the adaptive approach of updating their values provides better adaptabil-

ity, potentially improving performance by dynamically balancing exploration and

exploitation. This flexibility can be particularly beneficial across varied problem landscapes.67, 68

Regarding the inertia weight. There are many inertia updating techniques, such

as Random,69 adaptive,70 linear,71 sigmoid,72 chaotic,73 oscillating,74 logarithmic,75

and exponential. 76 For updating the acceleration coefficients, there are also several techniques inspired mainly by the updating techniques of the inertia weight. Based on Ref. 67, the linear decreasing updating type achieved the minimum error among the rest of the techniques. In our proposed model, due to the integration of BPSO

within the ANFIS architecture, targeting the minimum error to find the best set of rules is our goal. For this reason, we have applied the technique proposed in Ref. 

67 (see Eq. (20)), such as Ref. 77, 78:

 w( t) =  w max  − ( w max  − w min)  × t . 

(20)

 T

The values of  w max and  w min are 0.9 and 0.4, respectively. 79 This updating was conducted by linearly updating the acceleration coefficients80, 81 based on the swarm performance change in each iteration:

 t

 c 1 = ( c 1 max  − c 1 min)

+  c

 T

1 min , 

(21)

 t

 c 2 = ( c 2 max  − c 2 min)

+  c

 T

2 min , 

(22)

where  t  denotes the current iteration and  T  the maximum number of admissible iterations. The maximum and minimum values for  c 1 are 2.5 and 0.5, respectively. 

 c 2 has the opposite: Its maximum value is 0.5, and its minimum value is 2.5. 80
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Algorithm 1:ANFIS-PCA-BPSO

Data: Input datasets

Result: Achieving the target, Classification, or Regression

Initialization:

 •  Generate the initial FIS till layer 3 (Normalized firing strengths ( Nfs)). 

 •  Calculate the number of components based on the explained variance

threshold. 

 •  Perform PCA on firing strengths to reduce dimensionality to  D reduced equal to the number of components. 

 •  Pass  D reduced to BPSO-based Feature Selection Algorithm. 

Optimization Loop: while  not converged do

for  each particle i = 1  to N do

for  each dimension j = 1  to Dreduced do

 •  Update the velocity of particle  i  in dimension  j  using BPSO equations

 •  Convert the updated velocity to Probability

 •  Update the position of particle  i  in dimension  j  based on the probability

 •  Evaluate the fitness of the new position of particle  i

 •  Update personal best position  P best and global best

position  G best if necessary

end

end

end

Finalization:

 •  Report the final FIS with the minimum error for testing. 

 •  Evaluate the best FIS on the test dataset. 

 •  Repeat for N folds and take the average performance. 

5. Experimental Setup

In this section, we present the setup of our experiments, such as the dataset used and the evaluation metrics. 

5.1.  Dataset

To assess the performance of our model, we conducted training and evaluation on

a set of eight classification benchmarks and four regression benchmarks sourced

from UCI machine learning respiratory datasets (available at https://archive.ics. 

uci.edu/ml/index.php) and keel dataset (available at https://sci2s.ugr.es/keel/

datasets.php). These datasets encompass a diverse range of classification and regression tasks, with the number of features varying from 2 to 8. Table 1 provides a
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Table 1. 

Detailed characteristics and description of the standard dataset used in the model. 

Data title

Abbreviation #Features #Classes #Instances

Task

Iris

IRS

4

3

150

Classification

Teaching Assistant

TAE

5

3

151

Classification

Evaluation

Phenome

PHO

5

2

5,404

Classification

Banana

BAN

2

2

5300

Classification

Haberman

HAB

3

2

306

Classification

NewThyroid

THY

5

3

215

Classification

Balance

BAL

4

3

625

Classification

Monk2

MOK

6

2

432

Classification

Servo

SER

4

–

167

Regression

Airfoil Noise

AIR

4

–

1503

Regression

Istanbul Stock Ex-change

IST

8

–

536

Regression

Tecator

TEC

4


–

6000

Regression

detailed description of the selected datasets, including information on the number of features, samples, and classes. 

5.2.  Evaluation metrics

This section elucidates the evaluation metrics adopted for gauging our models’

performance. We elaborate on the evaluation metrics employed to gauge the performance of our models, particularly in classification tasks. Primarily, we utilize Accuracy, capturing the ratio of correctly predicted instances. This metric is inherently categorical, aligning with the discrete nature of classification outcomes. Accuracy quantifies the proportion of correctly predicted instances to the total instances, providing a straightforward and intuitive measure of a model’s performance. Expressed as a percentage, it offers a clear snapshot of how often the model makes the correct predictions. 82 The mathematical equation for accuracy is shown in Eq. (23): TP + TN

Accuracy =

 . 

(23)

TP + TN + FP + FN

Additionally, we incorporate Precision, Recall, and  F  1-Score to provide a more nuanced assessment. Precision, defined as the ratio of correctly predicted positive observations to the total predicted positives, is crucial in contexts where the cost of false positives is significant; its mathematical equation is represented in Eq. (24). On the other hand, Recall, or Sensitivity, measures the ratio of correctly predicted positive observations to all actual positives, vital in scenarios where missing a positive instance is particularly consequential, as can be shown mathematically in Eq. (25). 

Lastly, the  F  1-Score, which harmonizes Precision and Recall, is pivotal in balancing the two, especially in imbalanced datasets. This metric is the harmonic mean of Precision and Recall, offering a single metric that encapsulates both aspects. Its
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mathematical equation is shown in Eq. (26)83:

TP

Precision =

 , 

(24)

TP + FP

TP

Recall =

 , 

(25)

TP + FN

 F  1score = 2  ×  Precision  ×  Recall  , 

(26)

Precision + Recall

where TP (True Positives) indicates the correct presence of an attribute in the data, TN (True Negatives) indicates the correct absence of an attribute in the data, FP

(False Positives) indicates the wrong presence of an attribute in the data, and FN

(False Negatives) indicates the wrong absence of an attribute in the data. 

While other metrics are available for classification evaluation, we predominantly opt for Accuracy, especially to compare fairly with other rules-based reduction techniques. Many models in the literature report their performance in terms of accuracy, making it a  de facto  standard for comparison. In this light, our decision to prioritize accuracy ensures that our results remain directly comparable and consistent with prevalent practices in the field. 

In contrast, regression tasks predict continuous values, necessitating metrics that measure the deviation of predicted values from the actual ones. Thus, we employ

the Mean Square Error (MSE), a popular technique used to evaluate model per-

formance by calculating the average of the squares of the difference between each model output and its desired output, the Root Mean Square Error (RMSE), which

authorizes large number deviations and punishes significant errors, providing higher weight than MSE. We also considered the Mean Absolute Error (MAE) as an evaluation metric. MAE calculates the average absolute difference between each model output and its desired output. Finally, the Cosine distance evaluation metric is also included. This calculates the pairwise separation between two observations or vectors, representing, in our case, the predicted and actual output. Additionally, we considered the number of optimized rules generated by our model and the estimated training time as essential factors in the evaluation process. 82 The mathematical equations for each of these metrics are provided in Eqs. (27)–(31): 1   n

MSE =

(ˆ

 yi − yi)2 , 

(27)

 n

 i=1

1   n

RMSE =

(ˆ

 yi − yi)2 , 

(28)

 n

 i=1

1   n

MAE =

 | ˆ yi − yi|, 

(29)

 n

 i=1

Cos Distance = 1  −  Cosine Similarity , 

(30)
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ˆ

 yi · yi

Cosine Similarity =  

 , 

(31)

ˆ

 yi 2  · yi 2

where  n  is the number of samples,  yi  is the actual value of the target variable for the i th sample, and ˆ

 yi  is the predicted value of the target variable for the  i th sample. 

Furthermore, we discuss the number of generated rules and computational time as

indicators of model efficiency and scalability. These metrics, rooted in the distinct characteristics of classification and regression, provide a holistic perspective on our models’ efficacy. 

6. Results

The datasets used in our experiments were split into 80% for training and 20% for testing using fivefold cross-validation to mitigate overfitting iterating for 100 epochs, and the averages were computed for all evaluation metrics. The membership function type employed was a generalized bell shape. All experiments were conducted on a

device with the following specifications: Intel(R) Core(i7) CPU @ 2.70GHz, 12.0 GB

of RAM, running 64-bit Windows operating system connected in a home network. 

6.1.  Comparing with baseline model

The first experiment is represented by applying our proposed model, indicated by Fig. 3 by applying the PCA as the first stage on the firing strengths. Then, we optimize with further selection using the BPSO. The datasets were preprocessed by Fig. 3. 

Experimental set up with the proposed architecture of ANFIS-BPSO. 
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splitting into training and testing, normalizing the feature values, and indicating the input and output variables. All the parameters set for this experiment are

represented by the number of iterations, which is set to 100 iterations; the swarm size is equal to the number of generated rules, and the BPSO parameters,  c 1 , c 2 , w, are automatically generated based on swarm performance as explained earlier. 

The model performance is compared concerning the baseline model, the standard

(conventional ANFIS) in terms of the accuracy and the number of generated rules, and the training time for the dataset related to the classification purposes and in terms of MSE, MAE, RMSE, and CosDistance for the dataset related to the

regression purposes. Table 2 shows the results achieved by our proposed model in terms of Accuracy, number of rules, and training time, while Table 3 shows the results of the precision, recall, and  F  1-score for the classification task, using the standard dataset. Table 4 represents the model’s performance for the regression dataset compared with the baseline model. 

Table 2. 

Classification performance comparison of our proposed model across dif-

ferent datasets concerning the baseline model, where Ts Acc is the testing accuracy, 

#rules is the number of generated rules, and Tr time is the training time. 

Data

Evaluation Metrics

Model

ANFIS

ANFIS-PCA-BPSO

IRS

Ts Acc ( ±  Std)

0.953( ±  0.018)

0.960 ( ± 0.027)

#rules ( ±  Std)

81

2( ± 1.22)

Tr time(sec)( ±  Std)

3.53e+03( ±  6.65e+03)

13.12( ± 0.75)

TAE

Ts Acc ( ±  Std)

0.583( ± 0.097)

0.542( ±  0.072)

#rules ( ±  Std)

32

1.8( ± 1.3)

Tr time(sec)( ±  Std)

90.7496 ( ±  10.7209)

2.54( ± 0.34)

PHO

Ts Acc ( ±  Std)

0.847( ±0.0042)

0.845( ±  0.0045)

#rules ( ±  Std)

32

4( ± 1)

Tr time(sec)( ±  Std)

2.08e+03( ±  4.15e+03)

7.6( ± 0.547)

BAN

Ts Acc( ±  Std)

0.883( ±  0.0221)

0.891( ± 0.008)

#rules( ±  Std)

9

2.2( ± 1.303)

Tr time(sec)( ±  Std)

336.40( ±  27.13)

7.835( ± 1.213)

HAB

Ts Acc( ±  Std)

0.703( ±  0.0995)

0.745( ± 0.0744)

#rules( ±  Std)

27

3.4( ± 1.3416)

Tr time(sec)( ±  Std)

114.005( ±  5.12)

4.9( ± 0.6922)

THY

Ts Acc( ±  Std)

0.930( ± 0.023)

0.923( ±  0.0208)

#rules( ±  Std)

32

2.6( ± 1.34)

Tr time(sec)( ±  Std)

133.095( ±  25.98)

1.8( ± 0.447)

BAL

Ts Acc ( ±  Std)

0.886( ± 0.0203)

0.860( ±  0.0126)

#rules( ±  Std)

16

3.2( ± 1.3)

Tr time(sec)( ±  Std)

94.501( ±  10.006)

4.32( ± 1.58)

MOK

Ts Acc( ±  Std)

0.991( ±  0.0097)

1( ± 0.0)

#rules( ±  Std)

64

4( ± 0.0)

Tr time(sec)( ±  Std)

3.17e+03 (2.882e+3)

49.62( ± 7.76)
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Table 3. 

Classification performance comparison of various models on dif-

ferent datasets concerning the baseline model, in terms of other evaluation

metrics. 

Data

Evaluation Metrics

ANFIS

ANFIS-PCA-BPSO

IRS

Precision

0.9622( ±  0.0418)

0.9549( ±  0.0494)

Recall

0.9600( ±  0.043)

0.9544( ±  0.0568)

F1-score

0.9595( ±  0.043)

0.9523( ±  0.0545)

TAE

Precision

0.5822( ±  0.1203)

0.5739( ±  0.0977)

Recall

0.5696( ±  0.1155)

0.5571( ±  0.086)

F1-score

0.5624( ±  0.118)

0.5534( ±  0.084)

PHO

Precision

0.8826( ±  0.0139)

0.8861( ±  0.0136)

Recall

0.9005( ±  0.0090)

0.8861( ±  0.0125)

F1-score

0.8914( ±  0.0055)

0.8860( ±  0.0084)

BAN

Precision

0.9242( ±  0.0532)

0.8645( ±  0.0893)

Recall

0.8267( ±  0.1508)

0.8931( ±  0.0806)

F1-score

0.8624( ±  0.0700)

0.8723( ±  0.0285)

HAB

Precision

0.7515( ±  0.0237)

0.7343( ±  0.0410)

Recall

0.9022( ±  0.0334)

0.9822( ±  0.0100)

F1-score

0.8197( ±  0.0225)

0.8399( ±  0.0270)

THY

Precision

0.9372( ±  0.0311)

0.9205( ±  0.059)

Recall

0.8495( ±  0.069)

0.8415( ±  0.0660)

F1-score

0.8748( ±  0.052)

0.8690( ±  0.0625)

BAL

Precision

0.6038( ±  0.008)

0.6355( ±  0.0103)

Recall

0.6389( ±  0.019)

0.6815( ±  0.0166)

F1-score

0.6209( ±  0.0135)

0.6557( ±  0.0129)

Mok

Precision

0.9903( ±  0.0134)

1( ±  0.0)

Recall

0.9655( ±  0.0328)

1( ±  0.0)

F1-score

0.9774( ±  0.0170)

1( ±  0.0)

6.2.  Comparing with state-of-the-art

To check the validity of our model, we compared it with several state-of-the-art rule-based reduction techniques. For classification, we compared four techniques aimed to reduce the number of generated rules; they are CFBLS,48 D-MOFARC,37

FARC-HD, 52 and PAES-RGT; 38 all these techniques are described Section 3.2. We selected only the common dataset (focusing on the low-dimensional dataset with up to eight features) to present in this study, and these studies evaluated their models mainly based on accuracy and number of generated rules, which we show in Tables 5

and 6, respectively. The symbol / means this reference did not use this dataset. 

For regression, we found two main techniques focused on rules-reduction

for regression purposes: ANFIS-T,51 and R-KMELANFIS42 with two attempts (Euclidean and Cosine), also described in Section 3.2. We also selected only the common datasets for our work (focusing on low-dimensional datasets with up to

eight features). These studies attempt to evaluate and compare their models using the RMSE and the number of generated rules. Table 7 shows the comparative results of our proposed model compared with these two techniques in terms of RMSE and

the number of generated rules. 
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Table 4. 

Regression performance comparison of the proposed model across dif-

ferent datasets against the baseline model (Cos refers to Cosine Distance). 

Data

Evaluation Metrics

Model

ANFIS

ANFIS-PCA-BPSO

SER

MSE( ±  Std)

0.0126( ± 0.004)

0.0468( ±  0.075)

MAE( ±  Std)

0.0821( ±  0.008)

0.0723( ± 0.041)

RMSE( ±  Std)

0.1112( ± 0.0185)

0.1703( ±  0.149)

Cos( ±  Std)

0.0746( ± 0.0255)

0.1440( ±  0.175)

#rules( ±  Std)

16

2.4( ± 1.14)

Time( ±  Std)

25.530( ±  2.398)

0.886( ± 0.121)

AIR

MSE( ±  Std)

0.0122( ±  3.82e-04)

0.0092( ± 0.0013)

MAE( ±  Std)

0.0851( ±  0.001)

0.0720( ± 0.00471)

RMSE( ±  Std)

0.1108( ±  0.0017)

0.0950( ± 0.006)

Cos( ±  Std)

0.0170( ±  5.21e-04)

0.0129( ± 0.0022)

#rules( ±  Std)

32

2.2( ± 0.4472)

Time( ±  Std)

2.81e+03( ±  4.27e+03)

23.44( ± 3.578)

IST

MSE( ±  Std)

0.0033( ± 8.047e-04)

0.0033( ± 7.666e-04)

MAE( ±  Std)

0.0431( ±  0.0061)

0.0429( ± 0.005)

RMSE( ±  Std)

0.0567( ± 0.0071)

0.0568( ±  0.006)

Cos( ±  Std)

0.0072( ± 0.0017)

0.0072( ± 0.001)

#rules( ±  Std)

256

2.2( ± 1.09)

Time( ±  Std)

4.901e+03(4.297e+03)

277.161 ( ± 12.8)

TEC

MSE( ±  Std)

3.90e-04( ± 3.07e-05)

4.73e-04( ±  1.37e-04)

MAE( ±  Std)

0.0087( ±  2.47e-04)

0.0085( ± 8.13e-04)

RMSE( ±  Std)

0.0197( ± 7.70e-04)

0.0216( ±  0.0031)

Cos( ±  Std)

0.0018( ± 1.706e-04)

0.0022( ±  6.11e-04)

#rules( ±  Std)

16

3.2( ± 1.64)

Time( ±  Std)

2.83e+03( ±  4.43e+03)

15.03( ± 3.8)

Table 5. 

Classification accuracy comparison of the proposed model across different datasets against state-of-the-art techniques. 

Model

Data

CFBLS48

D-MOFARC37 FARC-HD52 PAES-RGT38 ANFIS-PCA-BPSO

IRS

0.9822

0.96

0.953

0.9507

0.96 ( ±  0.027)

( ± 0.003)

( ±  0.0419)

TAE

0.6406

0.59( ±  0.1179)

0.59

0.5618

0.57( ±  0.0609)

( ± 0.0092)

PHO

/

0.835

0.824

0.8061

0.845( ± 0.0045)

BAN

/

0.89

0.855

0.6277

0.891( ± 0.008)

HAB

0.7354

0.6940

0.735

0.7426

0.7448

( ±  0.066)

( ±  0.0506)

( ± 0.0744)

THY

0.9508

0.9550

0.941

0.9426

0.917 ( ±  0.0596)

( ±  0.007)

( ± 0.0455)

BAL

0.9066

0.8560

0.912

/

0.86( ±  0.0126)

( ±  0.003)

( ±  0.0326)

MOK

0.9066

/

/

1

1( ± 0.0)

( ±  0.014)
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Table 6. 

Comparison of the number of rules in the proposed model across various classification benchmarks against state-of-the-art techniques. 

Model

Data CFBLS48 D-MOFARC37 FARC-HD52 PAES-RGT38 ANFIS-PCA-BPSO

IRS

5.0

5.6

4.4

19.9

2( ± 1.22)

TAE

16.3

20.2

19.9

22.5

12.4( ± 3.78)

PHO

/

9.3

17.2

28.4

6.6( ± 1.67)

BAN

/

8.7

12.9

46.9

2.6( ± 0.8944)

HAB

2

9.2

5.7

17

3.4( ±  1.3416)

THY

10

9.5

4.9

18.5

4.4( ± 2.5)

BAL

9.2

19.8

18.8

/

3.2( ± 1.3)

MOK

5.9

/

/

13.7

4( ± 0.0)

Table 7. 

Regression performance comparison on benchmark datasets with state-of-the-art

techniques (where # R  denotes the number of rules). 

Evaluation

Euclidean-R-

Cosine-R-

ANFIS-PCA-

Data

Metrics

KMELANFIS42 KMELANFIS42 ANFIS-T51

BPSO

SER

RMSE

0.3237

0.3992

0.1775

0.1703

( ±  Std)

( ±  0.0554)

( ±  0.0832)

( ±  0.0198)

( ± 0.149)

#R

6

9

3

2.4( ± 1.14)

AIR

RMSE

3.1799

3.6996

4.9726

0.095( ± 0.006)

( ±  Std)

( ±  0.143)

( ±  0.141)

( ±  0.5354)

#R

38

30

4

2.2( ± 0.447)

IST

RMSE

0.012

0.012

0.00482

0.0568( ±  0.006)

( ±  Std)

( ±  0.00071)

( ±  0.00071)

( ±0.00049)

#R

2

2

4

2.2 ( ±  1.09)

TEC

RMSE

0.3854

0.3945

0.3351

0.0216

( ±  Std)

( ±  0.020)

( ±  0.014)

( ±  0.00487)

( ± 0.0031)

#R

6

9

3

3.2 ( ±  1.64)

7. Discussion

Compared with the baseline model, our proposed model, ANFIS-PCA-BPSO, man-

ifested two salient advancements: a marked reduction in training time and rule

generation, pivotal metrics in model efficiency, and computational expenditure. An empirical observation, as per Table 2, indicates that reducing the number of generated rules and training time across all datasets is beneficial in mitigating the computational and temporal overheads often associated with machine learning model

training. 

ANFIS-PCA-BPSO consistently outperformed in reducing the number of gen-

erated rules and training time across various datasets. Integrating PCA and BPSO

within the ANFIS architecture is pivotal. PCA is renowned for transforming original variables into a new set of uncorrelated variables (principal components), which
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retain most of the data’s variance. Thus, our approach of utilizing PCA for dimensionality reduction in conjunction with BPSO for rule optimization mitigates the issue of excessive rule generation in fuzzy inference systems and ensures that the most significant rules, in terms of data variance, are retained, thereby preserving predictive integrity. 

However, it is imperative to address an observed trade-off. While our model sig-

nificantly reduces rule generation and computational time, a nuanced decrease in accuracy exists in certain datasets, such as TAE, PHO, THY, and BAL. This phenomenon is emblematic of the well-established bias-variance trade-off in machine learning, where a reduction in model complexity (via rule reduction, in this context) can occasionally induce an increase in bias and a slight diminution in model accuracy. Nevertheless, it is critical to note that this minor attenuation in accuracy is often deemed acceptable in light of the substantial computational and temporal savings, which are particularly significant in real-time and large-scale applications. 

These outcomes have been double-approved by the precision, recall, and  F  1score shown in Table 3, where for most datasets, our proposed model tends to have similar performance across all three metrics, which suggests that it is neither overly biased toward precision or recall. It can be specifically noted that the ANFIS model generally shows a higher precision across most datasets compared to the proposed model, which might suggest that it is better at predicting positive instances. However, this does not always translate to the highest  F  1 score, which is a more balanced metric considering both precision and recall. Including PCA does not consistently improve or worsen the performance across all datasets. For instance, in the BAN or HAB dataset, the inclusion of PCA slightly decreases precision but increases recall. 

This might indicate that PCA is helping the model to generalize better but at the cost of incorrectly classifying some negative instances as positive. 

Moreover, despite this, ANFIS outperformed traditional ANFIS for the rest of

the datasets after integrating PCA, underscoring a notable distinction. This can be attributed to our approach of transforming all generated rules, both redundant and significant, and subsequently discarding the least essential ones, which ensures the preservation of significant rules within the initial PCA components, thereby often achieving higher accuracy. 

Figure 4 visually represents the accuracy, training time, and number of rules among the classification benchmarks for the proposed model and the baseline. 

Regression benchmark datasets further elucidate the significant reduction in training time and rule generation by the ANFIS-PCA-BPSO model. While a slight reduc-

tion in some evaluation metrics was observed for certain datasets, such as the MSE, RMSE, and Cos for the SER and TEC datasets, it is acknowledged as an acceptable degradation given the concurrent reduction in computational complexity and

training time. Notably, with the AIR dataset, all the evaluation metrics of our proposed model outperformed the traditional ANFIS, and all of them except the RMSE

outperformed the traditional ANFIS for the IST dataset. 

[image: Image 816]
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Fig. 4. 

Comparative evaluation of ANFIS and ANFIS-PCA-BPSO models on various classifica-

tion datasets. 

Figure 5 represents the relationship between our proposed model and the traditional ANFIS across these regression benchmarks for all evaluation metrics. Pitted against state-of-the-art rule-based reduction techniques, our models demonstrated competitive, if not superior, performance on several fronts. Some methods, specifically CFBLS and DMOFARC, occasionally did better than our model in being

[image: Image 817]
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Fig. 5. 

Comparative evaluation of ANFIS and ANFIS-PCA-BPSO models on various regression

datasets. 

Fig. 6. 

A detailed analysis of algorithm performance: Examining rule count and accuracy against state-of-the-art techniques for the classification benchmarks. 

accurate. However, when creating rules efficiently, they were still not as good as our model. Regarding training time, an absence of explicit documentation in their respective publications precluded a comparative analysis in this dimension, thereby introducing an element of analytical opacity. 

[image: Image 819]
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Fig. 7. 

A detailed analysis of algorithm performance: Examining rule count and RMSE against state-of-the-art techniques for the regression benchmarks. 

Table 5 highlights that ANFIS-PCA-BPSO not only achieved pinnacle accuracy for half of the datasets (4 out of 8) but also minimized rule generation for a com-manding majority (7 out of 8), as shown in Table 6. Even when traversing datasets where accuracy was not paramount, the performance remained close to alternate

models. A deliberate omission of training time from this comparative analysis was necessitated due to the extraction of results for alternative techniques directly from respective publications, wherein training time data remained undisclosed. 

Figure 6 provides a comparative canvas, presenting a visual comparison between our propounded model and the state-of-the-art techniques, articulating accuracy

and rule generation metrics, and providing a bifocal lens through which model

performance can be appraised. 

Concerning regression-oriented datasets, as illustrated in Table 7, our proposed model eclipsed 3 out of 4 of the datasets in terms of the RMSE evaluation metric when compared with alternate techniques. The arena of rule generation presented

a more intricate landscape, with ANFIS-PCA-BPSO securing a competitive stance

for half of the datasets (2 out of 4). Figure 7 visually elucidates the performance panorama of our proposed model relative to selected state-of-the-art techniques

across regression benchmarks, crafting a comprehensive comparative tableau. 

[image: Image 820]
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8. Real-World Application

The ischemic Stroke dataset has been used in Refs. 84–86, and it is not publicly available. It consists of 204 records with 11 characteristics, approved based on the neurol-ogist’s opinion. This dataset comprises patient information gathered from a pooled Decompressive Hemicraniectomy database, the components of which were received

from three referral centers in three distinct countries, namely Qatar, the United Arab Emirates, and Pakistan. Only patients with three brain computed tomography (CT) scans and signs of acute ischemia were considered. These specifics include the patient’s age, whether they have diabetes, whether they had Hemicraniectomy, their hypertension status, whether they have Dyslipidemia, blood pressure readings, INFARCT VOLUME 1 and 2, and the First infarction growth rate per hour. All

these features are described in detail in Table 8 with their meanings, range of values, the  P  value, and correlation coefficient with our target, the second infarction growth rate (IGR II). Regarding this dataset, the aim is to predict the Infraction Growth Rate II (IGR II). It is usually calculated after two CT scan rounds, which is time-consuming and cost-effective, and finding an AI model that can predict this important factor after only one CT scan round has the benefit of speeding up the process of diagnosis and saving costs. It represents a regression task, so its evaluation is done based on regression evaluation metrics using a generalized bell-shaped membership function type. We calculated this dataset’s  P -value and correlation coefficient between each feature and our target (the IGR II). This calculation helped us choose the most significant features that impact the prediction of the IGR II. 

The final set of features selected for our model is (DYSLIP, UNCAL, TEMPORAL, 

INVOL1, and Growthrate 1). For all these features, their  p-value is very close to its threshold of 0.05 and the highest correlation coefficient of absolute 0.1. Regarding the ‘DYSLIPIDEMIA’ feature, based on a study in 2022,87 this feature is a significant risk factor for coronary heart disease, but its impact on ischemic stroke is still under discovery, so having  P -value very close to the threshold of  P -values motivated us to add this feature to the set of selected features. Those features that need normalization were normalized in the range of 0,1 to unify the range of their values. We excluded INVOL2 (Infarct Volume 2) because this feature can be extracted after

the second CT scan round, which is not considered for our study. In addition to the evaluation metrics mentioned earlier for the regression tasks, we added the  p-value and the Pearson correlation coefficient between the predicted output and the actual label for medical accuracy purposes for evaluating the real dataset. 

This dataset has been split into 80% training and 20% testing and by using

fivefold cross-validation with 150 epochs of training as shown in Table 9 which presented four evaluation metrics (MSE, MAE, RMSE, and CosDistance), statistical

analysis ( p-value and person correlation), as well as the number of generated rules and the training time. This experiment on the real dataset was conducted using

the  gbell  type of membership function of value being 2, which is commonly used, 
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Table 8. 

A detail characteristics and description of the real datasets (the Ischemic Stroke dataset). 

Correlation with

Feature

Description

Values

 P value

IGR2

AGE

Age of the patient

in years

0 .  8058

 − 0 .  0187

SBP

Systolic blood pressure

mmHg

0 .  9253

0 .  0071

DBP

Diastolic blood pressure

mmHg

0 .  6222

0 .  0374

HTN

Hypertension diagnosis

0 Absent, 

 − 0 .  9350

0 .  0062

1 Present

DM

Diabetes Mellitus

0 Absent, 

 − 0 .  3811

0 .  0664

1 Present

DYSLIP

Dyslipidemia

0 Absent, 

 − 0 .  1750

 − 0 .  1027

1 Present

UNCAL

Uncal Herniation

0 Absent, 

 − 0 .  0312

0 .  1625

1 Present

TEMPORAL

Temporal Lobe Involved

0 Absent, 

 − 0 .  0105

0 .  1926

1 Present

INFVOL1

Infarct Volume 1

CM3

0 .  0100

 − 0 .  1936

INFVOL2

Infarct Volume 2

CM3

6.3804e–09

0 .  4202

Growthrate 1

1st infarction growth rate/hr

CM3/hr

2.1920e–33

0 .  7525

Table 9. 

Average regression evaluation metrics for our proposed model

concerning the baseline model on the real dataset using generalized bell

membership function. 

Model

Metrics

ANFIS

ANFIS-PCA-BPSO

MSE ( ±  Std)

0.0153( ± 0.007)

0.0202 ( ±  0.013)

MAE ( ±  Std)

0.0813( ± 0.016)

0.0837 ( ±  0.021)

RMSE ( ±  Std)

0.1207( ± 0.031)

0.1361 ( ±  0.045)

Cos ( ±  Std)

0.1293( ± 0.06)

0.1607 ( ±  0.071)

 p-value

0.00019

0.00007

Correlation

0.68279

0.6501

#rules ( ±  Std)

32

2.4( ± 1.14)

Time ( ±  Std)

256.50 ( ±  20.9)

9.4( ± 1.09)

and we selected this type as we noted good results while using it with the classification benchmarks. A discerning observation reveals that our proposed model, the ANFIS-PCA-BPSO, surpassed the baseline regarding training time and rule generation, achieving a notable enhancement in computational efficiency and model simplicity. While a subtle discrepancy is observed concerning the remaining evaluation metrics, it is deemed acceptable given the significant reduction in computational complexity and training time. It is paramount in practical, real-world applications where computational resources may be limited or real-time predictions are

requisite. 

[image: Image 831]
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Interestingly, the  p-value for ANFIS-PCA-BPSO was significantly lower than the baseline, thereby indicating a robust statistical significance in its predictions and underscoring a high correlation between the predicted IGR II and the baseline, as corroborated by the Pearson correlation coefficient. This implies that ANFIS-PCA-BPSO retains predictive accuracy despite rule and time reductions and provides

statistically significant and highly correlated predictions, reaffirming its viability as a predictive model in practical applications. Figure 8 visualizes the performance of our proposed model and the baseline regarding the mentioned evaluation metrics. 

As discussed in Section 8, this dataset is not publicly accessible. This restriction prevents us from making a direct comparison with other works. Nevertheless, a comparison was made with two techniques: the approach proposed by Ref. 85, and this is for two primary reasons. First, their research objective is aligned with ours, focusing on the prediction of IGRII. Second, they utilized a dataset similar to ours. 

It is also compared with our primary model ANFIS-BPSO86 using the generalized bell shape membership function. As shown in Table 9, the performance of our proposed model was not as efficient as the traditional model despite the closeness in their values. As an attempt to improve the proposed model performance, increasing the number of membership function can be useful as more rules will be generated, however, without any guarantee about their significance. For this reason, during the comparison with the other techniques, we repeated our experiment when the

membership function was 3, and Table 10 provides the comparative results considering Root Mean Square Error and Cosine distance, as these were the only evaluation metrics shared between our study and Refs. 85, 86. It can be seen that our proposed Fig. 8. 

Comparative evaluation of ANFIS and ANFIS-PCA-BPSO on a real dataset using mul-

tiple evaluation metrics. 
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Table 10. 

Detailed comparison of results between our proposed model, the baseline

model, and other studies used the same real dataset. 

Model

Description

RMSE

CosDistance

Ref. 85

without PCA

0.439

0.616

Ref. 85

with PCA

0.196

0.464

ANFIS(mf=3)

using highly correlated features

0.1266

0.1293

ANFIS-BPSO(mf=3)86

using highly correlated features

0.1439

0.1328

ANFIS-PCA-BPSO(mf=3)

using highly correlated features

0.1186

0.1261

model and the baseline showcased commendable performance in RMSE and Cosine

distance when operating on features exhibiting high correlation with the target IGR

II. A nuanced distinction emerges, with conventional ANFIS registering the lowest RMSE of 0.1186 for ANFIS-PCA-BPSO, compared to 0.1439 for ANFIS-BPSO.86

This subtle differentiation illuminates that despite the larger number of generated rules when the membership function has increased, the ANFIS-BPSO86 may exhibit marginal performance fluctuations due to the stochastic nature of rule selection, as contrasted with our PCA-integrated model, which transmutes all rules into a combination, thereby aggregating the most potent rules within the initial  N  components based on data variability, and the irrelevant components of insignificant rules have been removed. This rule reduction, however, is articulated within a framework of substantially diminished training time, approximately bisected, and a constricted rule generation volume, particularly when contrasted with traditional ANFIS, which indicates that not always increasing the number of rules will lead to high performance and may these generated rules include a large number of redundant rules

which definitely affect the overall model performance. 

The exploration in Ref. 85, which leveraged PCA for feature reduction, may not invariably generate a comprehensive set of pivotal rules despite its proximate performance to our models. Furthermore, their strategy may incorporate redundant features, potentially attenuating overall model performance. By electing the most salient features and identifying up to five significant features predicated on the p-value and correlation coefficient, we ensured the generation of essential rules for target prediction. Integration with PCA and BPSO further assured rule number

reduction while enhancing performance. 

9. Conclusion

In the presented study, the proposed model ANFIS-PCA-BPSO is explored as a

solution to the challenge of excessive rule generation in fuzzy inference systems, specifically within classification and regression tasks. This model not only exhibited competitive accuracy but also efficiently addressed rule proliferation, standing out even when compared to other state-of-the-art rule reduction techniques. While certain models occasionally surpassed ANFIS-PCA-BPSO in terms of accuracy, 
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the significant reduction in rule generation underscores its potential to alleviate computational complexities. The research incorporated strategies like binary particle swarm optimization (BPSO) and principal component analysis (PCA) into

the ANFIS framework to prune and optimize the rule set strategically. Despite its strengths, the model’s efficacy diminishes with datasets having a large number of features. Overall, these advancements promise a balance between transparency, adaptability, and computational efficiency in rule-based systems, with potential future applications spanning various domains. 
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In this chapter, we propose LinAlign8: a computer vision algorithm for aligning X-ray images before and after surgery, providing a system for surgeons to compare images before and after surgery more efficiently and replace manually aligning

procedure. LinAlign allows only align specific areas when aligning images and

solves the problem that linear transformation cannot be performed on non-rigid

objects. Therefore, it is suitable for comparing the position of bones during hip replacement surgery, allowing orthopedic surgeons to make sure that implants

have been installed correctly. 

In our experiment, we took the X-ray images of the pelvis as our experimental

data: Each set of images contains the X-ray photographs of the same patient taken at different times. We experiment with different methods. By comparing similar

features between images and calculating the displacement of these feature points, the images can be aligned. 

We evaluate the performance of the algorithm by the error of pre-defined

landmarks after alignment. These landmarks are anatomically important features

of the skeletal system. The goal of our experiment is to minimize the distance of landmarks between image pairs. We take the mean square error of these landmark

distances as the performance metric of our algorithm. 

1. Introduction

In orthopedic surgery, surgeons will take an X-ray image and compare it with the image taken before surgery to ensure the surgery is accurate. We aim to develop a system to align these images. When surgeons need to compare the current image

with the image taken before surgery, our system can align the previous one with the current one automatically. Therefore, they no longer need to print the hardcopy of radiographs and compare them manually. 

Our research focuses on the radiograph taken from Total Hip Arthroplasty

(THA), which is a surgical procedure where the hip joint is replaced by a prosthetic 311
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Fig. 1. 

An X-ray image showing a left hip has been replaced with prosthetic implant due to advanced femoral head collapse.12

Fig. 2. 

The components of prosthetic implant for total hip replacement.11

implant. Figure 1 shows the radiographs taken before and after THA, and Figure 2

shows the components of the implant used in THA. 

Total hip arthroplasty is a major surgery that carries certain risks. This includes infection, dislocation, limb length inequality, fracture, etc. Dislocation is the most common complication in this surgery (see Figure 3). For example, the ball coming out of the socket. It may be caused by misalignment of the prosthetic implant and hip joint, which can be reduced by ensuring the location of them is correct during the surgery. Our system is designed to reduce these risks. 

[image: Image 838]
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Fig. 3. 

The dislocation of the femoral head.2

2. Related Work

2.1.  Feature matching

Feature matching in computer vision is the process of identifying and comparing the same or similar features in two or more images. Often, the matching result contains several wrong correspondences, which can easily affect our application. To prevent the effect of outlying data, a noise removal phase such as RANSAC (RANdom

SAmple Consensus)6 is usually applied at the end. With this process, the noisy matching can be almost removed. 

Depending on the approach, feature matching methods can be categorized into

two types: detector-based feature matching and detector-free feature matching. 

Detector-based methods require a feature detector to extract and describe local

features, and then match these feature points. As for detector-free methods, they remove the feature detector phase and directly produce dense descriptors or dense feature matches instead. 

Feature matching can be used in various computer vision tasks, such as image

registration, object recognition, Simultaneous Localization And Mapping (SLAM), 

and Structure-from-Motion (SfM). 

2.2.  Homography estimation

Homography estimation is a computer vision task that finds a mathematical rela-

tionship (i.e., a homography matrix) between multiple images taken from different perspectives. The homography matrix estimation is based on corresponding points

between two images and can be computed mathematically, such as direct linear

transformation and normalized direct linear transform. Homography estimation can
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be used in computer vision tasks, such as image alignment, image stitching, image mosaicing, and object recognition. 

2.3.  Semantic segmentation

Semantic segmentation is a computer vision task assigning the semantic label to

each pixel in the image. The goal is to categorize each pixel in the image into

one of several predefined classes. The result of semantic segmentation is a dense prediction, where every pixel in the image is assigned a color-coded class label. 

Semantic segmentation is a crucial task for various applications such as self-driving cars which can make the decisions informed by its fine-grained prediction of the environment. 

Recently, deep neural networks have achieved successful performance in seman-

tic segmentation, such as Fully Convolutional Networks (FCN), 8 SegNet, 1 U-Net, 13

DeepLab, 3 and so on. The networks take an image as input and output a corresponding segmentation mask where each pixel is assigned a class label. 

2.4.  Image alignment

Image alignment is the process of matching and adjusting the relative positions of images to align them with each other. By the matching of common features between multiple images, we can align the images so that the same feature in different images corresponds to the same real-world location. 

There are two common methods for image alignment: feature point-based align-

ment and optical flow alignment. Feature point-based alignment aims to align the feature point correspondences in multiple images by calculating the global transformation matrices between them. Since it is a linear transformation, it can only perform the translation, rotation, and scaling on a rigid body. In other words, the motion in images is restricted to be globally uniform. As for optical flow alignment, it aligns images by remapping with dense correspondences. Since it is a one-to-one correspondence between pixels, images can be aligned accordingly, but its result is often unstable. 

3. Methodology

We propose LinAlign for aligning X-ray images before and after surgery. Since the pose in X-ray images may be different and cannot be aligned linearly, we propose a new strategy to compute homography to deal with this issue. 

For an X-ray image pair, we first perform the feature matching to compute

the point correspondences between both images. Simultaneously, we compute the

probability map of the pelvis with a semantic segmentation model, which results in images with pixel-wise class prediction. Then, we assign the weight to each point correspondence with the product of class confidence on both images and perform

[image: Image 839]

 LinAlign

315

Fig. 4. 

The pipeline of LinAlign algorithm.8

the homography estimation using weighted normalized Direct Linear Transform

(DLT) on these correspondences. Finally, we align both images with perspective

transformation. Figure 4 shows the pipeline of LinAlign algorithm. 

3.1.  Feature matching

We use LoFTR15 to match the feature points from two images. LoFTR predicts thousands of dense point correspondences, and it works even in low-texture areas. 

These correspondences are accurate and robust, so they give us good information

for image alignment. 

Our LoFTR model was pre-trained on MegaDepth7 dataset, which contains a large amount of outdoor scene images collected from the Internet with depth map

annotations. LoFTR learns how to match the dense features directly, so it can be easily adapted to other domains, even if the scene is very different from training datasets. Thus, it achieves good performance in our application. 

After feature matching, some outlying correspondences may exist. Since our goal

is to align the images, these outlying data can seriously affect our results, even with only a small number of outliers. To prevent this effect, we apply a noise removal phase using RANSAC at the end. Thus, we can select the good matchings that

are helpful to align the images. Figure 5 shows the feature-matching prediction of LoFTR tested on our data. Applying the RANSAC can remove the correspondences

that are outlying to the linear transform. 

3.2.  Pelvis segmentation

In our application, we aim to compare the location of the hip joint before and after surgery. Since the human body is non-rigid, it may have pose difference and cannot align the whole body with linear transformation. However, in this application, we only need to align the pelvis part well, which is the rigid part. Therefore, in this

[image: Image 840]
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(a)

(b)

(c)

Fig. 5. 

The feature matching results with LoFTR.15 (a) Original image pair. (b) Matching result. 

(c) Matching result with outlier removal using RANSAC. 

procedure, we segment the pelvis part from images, and use it to improve the

alignment. 

We segment the pelvis part with U-Net++, 17 which is an improved version of U-Net. 13 We use X-ray images of the pelvis to train our model, with 191 images as training data and 33 images as validation data. Pixels in each image are labeled with two classes, where label 0 is the background and label 1 is the pelvis. 

The model outputs a probability map with the size ( N, H, W ), where  N  is the number of classes and  H  and  W  are the height and width of the input image. 

Each pixel represents the class prediction. We take the probability prediction of the pelvis as our result to support our image alignment. Figure 6 shows the probability map prediction on our dataset using our U-Net++ model. The pelvis area can be

segmented perfectly and so is helpful to our algorithm. 

3.3.  Weighted normalized DLT

We propose a new method to estimate homography from point correspondences:

weighted normalized DLT (Direct Linear Transform). Since the goal of our algorithm is to compare two images taken before and after surgery, it would be more suitable for comparison if we align the pelvis area better. Therefore, we modify the previous homography estimation methods to fit our requirements. 

Our method is done by assigning the weight to each correspondence while com-

puting the normalized DLT. Therefore, the correspondence with higher weight can

be more likely to be aligned. 

[image: Image 843]
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(a)

(b)

Fig. 6. 

The probability map prediction result of our data. 

3.3.1.  DLT

Assume that we are given  N  correspondence key point pairs, where the point correspondences are  {( ui, vi) , ( ui, vi) |i = 1 , . . . , N},  λi  is a point-dependent scale factor, we have
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Then, we find the homography matrix  H  by replacing the equation with matrix form:
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Since the Degree of Freedom (DoF) for perspective transformation is 8, we need

at least 4 correspondences to find the non-trivial solution to this equation. We thus solve the least-squared-error solution:

min  Ah 2 , s.t. h 2 = 1 . 

 h

The solution is equivalent to

 Ah 2

 hT AT Ah

argmin

=

 . 

 h

 h 2

 h 2

According to the principle of Rayleigh quotient, the solution of  h  is the eigenvector corresponding to the smallest eigenvalue of matrix  AT A. Thus, the solution can be obtained by performing the Singular Value Decomposition (SVD) on  A, so we get  A =  U Σ V T , where the singular values in  Σ  are arranged in descending order. 

The solution is then the last column of  V . 

3.3.2.  Normalized DLT

There is a shortcoming in DLT. When we compute the linear transform, the  x, y coordinate on the image is typically much larger than  z  coordinate since  z  is always equal to 1. The different order of coordinates results in an ill-conditioning number of matrix  A  and numerically unstable solutions. To get more stable results, we can normalize every point before direct linear transformation. Assume  T , T   are the transformation matrices that normalize the points ( ui, vi) , ( ui, vi) respectively:
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where  s  is the standard deviation of coordinate and  mx,  my  are the mean of  x-axis and  y-axis. After performing the direct linear transformation on normalized correspondence point, we get 

 H. The transformation matrix between ( ui, vi) and ( ui, vi) will be  H =  T − 1 

 HT . Thus, 
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3.3.3.  Weighted normalized DLT

In previous methods, point correspondences have the same weight during the homography estimation. However, in our application, we want our interested area (i.e., pelvis area) more likely to be aligned, so we can compare the images better. 
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Weighted Normalized DLT is done by modifying the equation of Normalized DLT. 

We re-weight the rows in  A, so we get
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We solve  A 

 h = 0 in the same approach as we described in Section 3.3.1, we get H. Then, we denormalize it to get the homography matrix  H =  T − 1 

 HT . Thus, 

we have
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3.4.  Image alignment

We align the images using perspective transformation. For given point correspon-

dences and the probability map of the pelvis area determined by the segmentation model, we tried two methods to compute the homography matrix. 

Let  P  1

 c ,  P  2

 c  be the probability map prediction of class  c  from the semantic segmentation model and

 M =  {( ui, vi) , ( ui, vi) |i = 1 , . . . , N}

be our keypoint correspondences. In Method 1, we filter the keypoints with the label prediction and compute the normalized DLT with the keypoints within the pelvis

area only. Take





( ui, vi) , ( ui, vi) |P  1 pelvis( ui, vi)  ≥  0 .  5 and  P  2 pelvis( ui, vi)  ≥  0 .  5

to compute normalized DLT; as for Method 2, we assign the weight with the prod-

uct of the confidence score of the pelvis from both images to compute weighted

normalized DLT, i.e.,  wi =  P  1

( u

( u

pelvis

 i, vi)  × P  2

pelvis

 i, vi). Testing these methods on

our datasets and comparing them with the normalized DLT method, we finally take

Method 2 because it has better performance. 

[image: Image 847]
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(a)

(b)

Fig. 7. 

The visualization of our aligning results. (a) The overlapping image. (b) The color difference map (CDM). 

3.5.  Result visualization

In order to make surgeons easier to compare the images using alignment result, we visualize the alignment using Color Difference Map (CDM), implemented based on

YCbCr color space, where Y is the luminance, and Cb and Cr are the blue-difference and red-difference chroma components. 

Assume that  I 1 , I 2 is our image pair, where  I 2 is our target image. These images are grayscale images. We align  I 1 with  I 2, so we get a transformed image  I . The 1

CDM is determined by assigning overlapping image to Y and color difference to Cr and Cb, i.e., Y = ( I +  I

) / 2; Cb = ( I

) / 2 in Fig. 7. 

1

2) / 2; Cr = ( I 2  − I  1

2  − I  1

4. Experimental Results

4.1.  Datasets

We experiment with a dataset of pelvis radiographs which contains 224 radiographs collected from 49 patients. 

In our application, we require semantic segmentation dataset for model train-

ing and pelvic landmarks dataset for performance evaluation. We create these by

labeling our first dataset with a pelvis mask and landmark point set. To test the repeatability, we experiment with our algorithm on both datasets. Figure 8 shows a part of our segmentation dataset. Figure 9 shows the definition of landmarks. 

4.2.  Feature matching experiment

Feature matching is a crucial step in our application. To improve our alignment, we experiment with three feature-matching methods: SIFT, 10 SuperPoint5 + SuperGlue, 14 and LoFTR. 15

We evaluate the alignment performance using Mean Radial Error (MRE). Given

keypoint correspondences  {( u 1 i, v 1 i) , ( u 2 i, v 2 i) |i = 1 , . . . , N}  as our ground truth, where ( u 1 i, v 1 i) , ( u 2 i, v 2 i) are the pre-defined landmarks on both images. For every

[image: Image 848]
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Fig. 8. 

Samples of our segmentation dataset containing pelvis radiographs and the mask annotations. Some of them are taken after THA surgery. 

(a)

(b)

Fig. 9. 

Definition of the landmarks. (a) Normal. (b) With implants. 

keypoint pair, calculate the distance between ( u 1 i, v 1 i)   and ( u 2 i, v 2 i), where ( u 1 i, v 1 i) 

is the projection of ( u 1 i, v 1 i). Thus, the error is defined to be N

1  



 M RE =

( u 1

 . 

 N

 i , v 1 i)  − ( u 2 i, v 2 i) 2

 i=1

We perform the homography test on our landmark dataset by estimating the

homography using RANSAC. 6 LoFTR gets the best result finally, so we select LoFTR in our LinAlign algorithm. Table 1 shows the homography estimation results. 

4.3.  Semantic segmentation experiment

We experiment with four state-of-the-art semantic segmentation models: U-Net,13

U-Net++, 17 DeepLabV3+, 4 and PSPNet, 16 tested on our segmentation dataset. 
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Table 1. 

Homography estimation results. 

Methods

SIFT

SP+SG

LoFTR

MRE  ↓

0.134639

0.015056

0.014456

 Note:  ↓: The lower, the better. 

Table 2. 

Semantic segmentation test on our validation set. 

Model

U-Net

U-Net++

DeepLabv3+

PSPNet

IoU Score  ↑

0.9233

0.9314

0.9246

0.7236

 Note:  ↑: The higher, the better. 

Fig. 10. 

Segmentation results on validation set. 8

These models are trained in the same conditions. They trained with 64 epochs, 

supervised with pixel-wise cross-entropy loss, and the data augmentation strategies are random horizontal flip, random shift-scale rotation, random brightness contrast, and random resized crop. We take the IoU (Intersection over Union) score of pelvis area as our performance, where

 TP

 IoU =

 . 

 TP +  FP +  FN

Table 2 shows the IoU score on our validation data. U-Net++ is the best model in our experiment. Figure 10 shows the segmentation results on validation set for these models with their ground truth. 
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Table 3. 

Image alignment testing results. 

Method

Normalized DLT

Filtered

Re-weighted

MRE  ↓

0.014470

0.014165

0.013985

 Note:  ↓ : The lower, the better. 

(a)

(b)

(c)

(d)

(e)

Fig. 11. 

Alignment result 1. (a) Original image pair. (b) Matching result. (c) Matches within pelvis area. (d) Alignment results with landmarks. (e) CDM. (The MRE are 0.013362, 0.012644, and 0.012767, respectively. )8

[image: Image 865]

[image: Image 866]

[image: Image 867]

324

 C.-W. Lin et al. 

(a)

(b)

(c)

(d)

(e)

Fig. 12. 

Alignment result 2. (a) Original image pair. (b) Matching result. (c) Matches within pelvis area. (d) Alignment results with landmarks. (e) CDM. (The MRE are 0.01024, 0.009574, and 0.009485, respectively. )8

4.4.  Image alignment experiment

We experiment with both proposed methods in Section 3.3 and normalized DLT

on our landmarks dataset to compare the performance, using MRE of landmarks

as our evaluation protocol. Tested with i7-9770 and RTX 2080ti, the inference time for an image pair is 2.23 seconds. Table 3 shows the MRE scores of these methods. Figures 11–15 show the experimental results. In (d), red points are landmarks
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(a)

(b)

(c)

(d)

(e)

Fig. 13. 

Alignment result 3. (a) Original image pair. (b) Matching result. (c) Matches within pelvis area. (d) Alignment results with landmarks. (e) CDM. (The MRE are 0.011629, 0.009012, and 0.008951, respectively. )8

on the transformed image, and blue points are landmarks on the target image. 

Extensive experiments show that our algorithm can align most of the images

well. However, due to the complexity of the 3D structure of the pelvis, it is difficult to handle the view difference, but we still can align the joint part as well as possible. 

[image: Image 871]
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(a)

(b)

(c)

(d)

(e)

Fig. 14. 

Alignment result 4. (a) Original image pair. (b) Matching result. (c) Matches within pelvis area. (d) Alignment results with landmarks. (e) CDM. (The MRE are 0.011314, 0.011278, and 0.011282, respectively. )8

5. Conclusion

We propose the LinAlign algorithm, which combines the results of semantic seg-

mentation with homography estimation by weights assignment. LinAlign can suc-

cessfully align the images of non-rigid bodies with partial differences by applying stricter alignment to our interested part. Tested on our dataset, our method has better performance compared with other alignment algorithms. 

We also visualize the alignment results in CDM, which can obviously show

the difference between two images. With this algorithm, surgeons can ensure the

[image: Image 874]
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(a)

(b)

(c)

(d)

(e)

Fig. 15. 

Failure alignment result. (a) Original image pair. (b) Matching result. (c) Matches within pelvis area. (d) Alignment results with landmarks. (e) CDM. (The MRE are 0.034356, 0.032245, and 0.03253, respectively. )8

location of implants is correct during the surgery and can prevent risks such as dislocation after the surgery. 
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Deep learning has received lots of interest and witnessed many efforts and

advances over the past two decades. It evolves into a new era since its widespread application successes such as in the areas of speech recognition and computer vision. Compared to many other previous analytical models and statis-

tical structures, deep learning aims to employ much larger hierarchical models, 

well-interleaved convolution, nonlinear rectification and pooling operations, back propagation learning strategies and algorithms, and use many parameters to generalize abstract relationships and even knowledge learned from large datasets. 

These architectural-layered abstractions and representations map complex fea-

tures in high-dimensional space to composite structural parameters, weights, and vectors. They form a feature representation pipeline and also reflect somehow the instinct workflows of human-like intelligence. Its applications are broad with large impacts. This chapter aims to study relevant aspects of deep network structures, architectures, learning mechanisms, and selected applications in various areas. 

1. Introduction

The last decade has witnessed huge interest and attention to machine learning

and intelligence in general from traditional pattern recognition and computer

vision tasks such as face recognition and verification and speech recognition, to more complex feature representation and abstraction, and even knowledge mining. By employing a structural multi-layered large parametric architecture, deep learning has received significant breakthroughs and huge deployment successes

and its hierarchical architectures have gained application popularity across many areas. It provokes continuous ongoing efforts and more advances are happening in many domains. Real-world object detection and recognition is such an important

area, with wide applications in smart traffic, commercial and financial intelligence, autonomous driving, drone and robotics, and city management. 

Starting from the preliminary statistical models, to more complex multi-layer

neural nets, then to currently well-fledged deep learning models, the development of deep learning comes with a long way and a curved roadmap. Initially, conventional 331
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pattern recognition or machine learning approaches usually employ statistical models, which are employed to describe and deal with rather simple and straight

delineating problems, and combine various hypotheses or assumptions, distribution or density priors, and  a posteriori  in consideration. For instance, typical binary two-way decision or detection problems of transmitted signals polluted by noises, interruptions, or other contamination, and detection of existing or missing patterns such as faces fit these approaches quite well. Slightly more complex three-way even M-ary problems belong to these categories too since the solution spaces could be bi-sectional dissected as long as their multiple binary decision boundaries are linear or near linear. For example, various linear and low-order nonlinear models are usually employed such as Gaussian models or their mixtures. Support vector machines are another example. These statistical methods are strong analytical models and

approaches oriented, with distribution estimation and associated likelihood max-

imization in target. These approaches are relatively straight and direct methods and are not complex to construct the analytical models and perform the detection and decision of low-order boundaries. Essentially, they form a simple composition with one, two, or several stages and layers. But it comes with certain prices of limited modeling capabilities, possible mismatch of hypothetical statistical models, and even degraded or far below optimal performance. 

It can be traced back to very early ages more than 50 years ago when simple

structured architectures emerged to model various decision problems or nonlinear delineating functions ranging from signal processing, communications, and statistics, to other application areas. Examples include text, handwriting, or fingerprint recognition. Commensurate with the studied problems in hand, these models gradually expand to larger structures at the next levels. However, their capabilities and performances are still dependent on well-defined or constrained cases and are not always effective in coping with more complex problems. 

The ideas behind deep learning originate from historical explorations. Following most historical advances, it continues the evolution and migration of structured approaches from conventional small, several-layered structured pyramid approaches into more complex architectures with more layers, more hierarchies, and more computes. By well-crafted designs, each layer carries out different functions and roles, ranging from linear operations, convolutions, filtering, and transforms to nonlinear functions, rectifications, and pooling. Deep networks and their architectures with various structures have flourished since their inception, like deep convolution neural networks (DCNN) and recurrent convolution neural networks (RCNN). 

Usually, the convolution and operation kernels and their sizes are carefully

selected to perform the necessary feature extraction and form compact pipelining representations at these respective layers but also well bridge between the nearby stages. Eventually, these layer-by-layer architectures overall form deep hierarchical models from coarse to fine levels gradually to abstract and represent complex features, relational concepts, or knowledge in an aggregate approach. Therefore, structural compositions of parametric representations of these kinds are able to learn
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very complex nonlinear delineating functions in high-dimensional feature spaces. 

Successful applications of deep learning methods and models in audio and speech, face recognition, and general visual object recognition have achieved a lot of breakthroughs. We have seen the application fields of deep learning keep growing, for example, image and video analysis and retrieval, scene and language understanding, automatic driving, and human-like robotics  et al. 

We can say that the conventional statistical and multi-layer structured architectures are generally small models no matter which kinds of analytical and statistical approaches are employed. On the other side, deep learning architectures are big

large-scale models, with differences in deep hierarchical structures, and automatic adaptations of large parameter sets through backward propagation learning techniques instead of the cumbersome hand-crafted and designed processes. 

Features of all signals and patterns have temporal, spatial, frequency, and statistical regularities and invariances, no matter how big their varieties are. For example, low-order temporal and spatial features include correlation and periodicity between signals. These can be analyzed in terms of differentials, polynomials, and frequency spectrum. Edges and shapes are low-order spatial features too. Textures are slightly more complex spatial features with well-defined regularities and varieties. Their descriptions can be represented by low-order descriptors. More complex descriptors like SIFT (scale-invariant feature transform) are used for densely sampled images. 

Feature description and representation are non-trivial and intricate for complex signals and patterns. For example, most visual objects contain various edges and spatial patterns as the most descriptive features. Nevertheless, some edges cannot be represented in closed forms and functions, especially for non-rigid objects and shapes, as both their pixel widths and variances are changing, and their lengths, locations, and orientations are not fixed. 

Feature discrimination is about how to form both effective and efficient feature descriptors and enable effective and efficient classification. Various feature descriptors have already been proposed and applied to lots of signal and pattern recog-

nition problems. For example, descriptors of local and regional visual cues include histograms and local binary patterns (LBP). Equipped to deal with different tasks, varying classification and recognition models and engines tend to extract or learn low-level, intermediate, and high-level abstractions representing highly nonlinear complex functions and knowledge. Low-level features of the raw data, images, video, and audio signals such as edges, voxels, textures, or spatial patterns can be represented by aggregating local descriptors. However, low-level visual features hardly grasp the semantic content and knowledge and their descriptions based on fixed rigid similarity/distance functions are far from optimal. Figure 1 illustrates the general feature extraction concept for some visual objects represented in two-dimensional space. 

Learning machines are expected to learn features. Learning features automati-

cally have been the central question for many detection and classification tasks in pattern recognition, computer vision, and artificial intelligence and have gained a

[image: Image 878]
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Fig. 1. Features extracted from a deep network, visualized in a two-dimensional space. 

lot of attention. Deep learning models aim to automate abstract representations

and semantic knowledge from the raw data. Lots of research and efforts have been carried out. Raw signals, patterns, and objects of most kinds are rarely well representative in terms of low-order descriptors and hold many varieties. For example, handwritten digits or characters by different persons at even different times hardly conform to any sets of templates or predefined models, and their scales and numbers could be very large if not mentioned. Another example is that visual objects are very easy for human even children to recognize but pretty hard for machines, if not easy. Their categories and varieties are from modest to huge. And their shapes and sizes and even orientations change a lot too. Their features in the raw forms are not well structured and organized. Therefore, the essence of learning is how to represent the underlying unstructured features with respect to various categories of objects in well-structured and organized ways. Deep learning takes this approach and tends to build hierarchical network architectures which abstract and map raw and superficial features of any kind to structural feature representations internally. 

The performance and advantages of deep learning have already been successfully

proved by many applications. It contains several aspects as follows. First, theoretical studies explain that there are no general enough analytical solution spaces for complex pattern recognition problems, and some of them are even ill problems with no fixed matching representations. Second, raw patterns and features need no longer to be hand-plucked and crafted in deep learning networks. Many patterns and signals can be abstracted and represented by multiple sets of features and form hierarchical compositions in multiple scales and resolutions. Third, the complexity of deep
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learning networks can be scaled rather easily based on the intrinsic of problems and the scope of solution spaces. For example, edges and shapes are representative of some objects. By employing stochastic gradient descent (SGD)-based learning

strategies, deep learning models and network architectures would start from the

initial training stages, adapt and update their parameters and weights, and finally settle for no more changes. Since their parameters and layer-by-layer connections are huge, so are their distributed representation power and classification and recognition performance. 2

This chapter is organized as follows. Section 2 surveys general deep learning architecture and evolution. Section 3 discusses the deep learning mechanisms in supervised and unsupervised methods. Convolution neural networks (CNN) and

variants are studied in Section 4. Selected applications and emerging frontiers are presented and discussed in Section 5. Section 6 gives implementation and consideration in framework, hardware, and systems. Finally, conclusion and summary are

given and future trends and considerations are discussed in Section 7. 

2. Learning in Supervised and Unsupervised Approaches

The concept of learning originates from human intelligence and knowledge. Learn-

ing in human-like intelligence is about studying the previous sufficient examples and being able to memorize, analyze, and generalize the underlying common characteristics or features, which are very representative or even reconstructive of the original samples. The internal working mechanisms of human beings have been continuously

studied and lots of efforts are still ongoing. Compared to human learning, briefly speaking, machine learning is about how a parametric machine adapts to given

studying patterns or samples and is able to adjust and change its internal parameters or weights in certain manners through learning, and eventually, the parameter space is able to classify individual patterns or their categories in parametric hyperspheres. For example, we want machines to have the capability to automatically

recognize and classify regular audio and visual patterns, such as from textures and shapes to structures and objects. It should be able to discover and extract the representative commons even if some are intricate. Therefore, feature representation should be more invariant, and it is desirable to have small intra-class scatter and big inter-class separation as intra-class diversity and inter-class similarity still remain issues. Metric regularization terms are reported to be used in enforcing D-CNN

models to learn more discriminative feature representations. 

Raw input signals and patterns have many variances. For instance, scales and

orientations for handwritten digits and words vary a lot, brightness and contrast for visual signals and images change significantly, and different human faces contain large variations in illumination, poses, projection angles, and ages. Therefore, feature representation invariance is critical and requires normalization. Normalization is supposed to make signals and patterns peer-to-peer comparable with respect to their similarities and differences in means and variances. It makes feature vectors
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unwrapped with respect to their feature spaces therefore maximizing their discrimination Euclidean distances. For conventional approaches, preprocessing is usually taken to deal with such different kinds of large variations. In deep networks, batch normalization operations are introduced to perform this function and role so that combining preprocessing on the inputs and batch normalization at each following stage lets stochastic estimation and learning updates converge to truly feature modes. 

Like human learning, machine learning is usually classified into three general categories, supervised learning, unsupervised learning, and hybrid learning. Studying from examples is like learning supervised by human teachers, therefore called supervised learning. In supervised learning, usually both positives and negatives need to be presented separately with their respective category labels, and the trained models are supposed to learn from both of them. In exact words, their internal parameters or weights will go through rounds of adaptations and eventually settle to statics whose values, weights, and connections represent and reflect the feature characteristics of given positives and negatives. At this stage, models are trained completely by supervised learning. 

In order to perform this, certain target criteria or functions have to be well

selected. No matter which kinds of problems to study and select which kinds of

models or methods, these object criteria or functions are supposed to be optimized in certain ways. Most commonly used methods are smallest total errors in mean

squared error, and they are called loss functions as well in some situations. For this respect, it is likelihood maximum essentially for mostly common distribution cases which could be generally modeled by Gaussians, particularly for a large number of training samples and datasets. The learning algorithms therefore employ descending strategies to adapt the parameter weights by the amount of adjusting vectors to the parametric or weight plateau eventually. SGD base approaches are the most frequently used procedure, which takes the steepest normal vectors across the tangent of high-dimensional boundaries or surfaces in feature spaces. During the learning stage, training errors are propagated layer by layer in the chained SGD metrics back to the early stages, therefore after many iterations of such kind of operations, the parameter weights settle to no changes and the target error or loss functions achieve the optimal for deep structural networks in an aggregate manner. 

Both supervised and unsupervised approaches may experience local minima, 

overfitting, overtraining, and stagnation during learning. In the context of deep learning networks, large and usually noisy datasets and varying patterns lead to very complex feature mode searching in high-dimensional feature vector spaces. 

Descent curves could be trapped in local minima instead of global optimal or near-optimal, and lots of research and discussion have already been carried out on this. 

However, the nice thing is that local minima are not frequently encountered in

deep networks both theoretically and empirically since running stochastic gradi-

ent updates for one or several training samples successfully can actually cancel
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out changing variances in the training process and achieve approximate maximum

likelihood feature mode estimation. 2,3 Therefore, most nonlinear loss functions can be approximately regarded as concave functions and stochastic-based deep learning can successfully lead to the unique minimum and overcome these issues in this perspective. Overfitting and overtraining are other serious problems in some cases, and various approaches and strategies have been proposed including regularized and constrained adaptation during learning.4

Supervised learning classifier is supposed to perform the assignment of training examples with respect to their labels. Label assignment automatically performed

by machines is liken by human experts. This process requires prior information

and knowledge about the problems at hand, and training is increasingly needed

for increasing complexity. We expect that positives are always true positives, and negatives are always true negatives according to the ground truth for ideal cases. If not ideal, label assignment would always see false positives and negatives, whereas it involves assignment losses, generalization errors, and performance degradation for machine classifiers. 

The issues of feature description and representation and classification are interleaved in that better descriptors could drastically simplify the design and computation complexity of classifiers. Simple and straight classifiers are linear or close to linear functions, which are suitable for simple patterns, especially low-order signals and feature spaces. Their structures and architectures are not complicated in essence. After supervised learning, deep network classifiers at later stages which are still nonlinear classifiers in high dimensions are able to perform classification at much abstract feature spaces, compared to low-level feature spaces at initial and early stages of deep architecture workflows. 

Supervised learning algorithms such as CNNs and Recurrent Neural Networks

(RNNs) require significant amounts of training and labeled data. However, unsu-

pervised learning uses only unlabeled data to train deep networks, reducing the

requirement for labeled samples significantly and, therefore, is very suitable for many problems, whereas unlabeled data are abundant and labeled data are scarce. Unsupervised learning holds some similarities to human learning in that there is no need for teachers and labeled examples. In this category, there are no labeled training positives and negatives provided for learning machines. They usually take different approaches and mechanisms to address problems from the supervised learning models. Research on unsupervised learning is very active and methods including autoencoders, restricted Boltzmann machines (RBMs), deep belief networks (DBNs), 

and generative adversarial Networks (GANs) have been investigated extensively in medical image analysis and classification, for example. 

Supervised learning combined with SGD is performed by a procedure called

backpropagation. In this scheme, gradients of objective functions are computed and SGD selects the shortest and steepest normal vectors which are derivatives of high-dimensional representation feature spaces. Then, this procedure backpropagates

[image: Image 879]
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(a)

(b)

(c)

(d)

Fig. 2. Multi-layer neural networks and backpropagation.5

gradients in the chain layer by layer iteratively, and eventually, the gradients with respect to each layer are calculated and associated respectful weights are updated. 

The principle and workflow of backpropagation is described in Fig. 2. 2

3. Deep Learning Architecture and Evolution

The past several decades have seen many research, application, and implementa-

tion efforts in the broad areas of analytical modeling, statistical pattern recognition, and beyond. Deep learning paradigms aim to use multi-layer hierarchical computing architectures, which consist of vectorized input, multiple hidden layers, and output. 

Therefore, the mapping from the input to output is abstracted and defined by this network architecture and could be quite complex, in order to represent the underlying features implicitly with network-wise weights and bias instead of formulated parameters for analytical models. 

Each node of the deep network is composed of multiple weights and a nonlinear

activation function. The roles of hidden layers aim to perform nonlinear transformation on the feature maps of the previous layers into linearly separable feature spaces in high dimensions. During past decades, neural nets used smooth nonlinear functions, such as sigmoid logistic  g( z) = 1 /(1 + exp( −z) and hyperbolic tangent g( z = tan  h( z) = (exp( z)  −  exp( −z)) /(exp( z) + exp( −z)), but they generally involve more computations. Lots of research has been conducted on their selections and the
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nonlinear modeling and pooling capabilities vary slightly and computational com-

plexities are different and so their performances and impacts. 

Most recently, hidden units and nodes equipped with nonlinear activation func-

tion ReLU (rectified linear unit)  g( z) = max(0 , z) instead of logistic or tanh functions have been used and they typically learn much faster through multiple layers of deep networks and therefore support more efficient supervised training. Many

studies have shown that it outperforms sigmoid logistic or tanh functions mainly due to its appealing property of piece-wise linearity, better performance and generalization for deep neural networks, more regularized sparse representation, and much simpler computational complexity. Worth noting is that its derivative is a

simple and straightforward step function; thus, it enables quite efficient computes for gradient-like operations and learning updates. 

Let’s consider a deep network consisting of multi-layer cascades, as illustrated in Fig. 3. In this network, each of  n th layer can be represented by a nonlinear function  xn =  fn( θn, xn− 1) itself, where  xn− 1 and  xn  are the input and output vector, respectively, its initial input vector  x 0 with the designated pattern  Sp, and θ =  { θ n} =  {Wn, Bn},  0  ≤ n ≤ N  is the multi-layer parameter vector ensemble consisting of weight ensemble  W =  {Wn},  0  ≤ n ≤ N,  and bias ensemble  B =

 {Bn},  0  ≤ n ≤ N. No matter what kind of the actual network architecture and structure it is, its global loss function  E(θ) must be differentiable with respect to θ n  layer by layer for a learning network capable of converging to a plateau. 

When derived from a global loss function in feedforward direction, errors could be backward propagated and calculated as follows2:

 ∂E

 ∂f

 ∂E

=

( xn− 1 ,  θ n)

 , 

(1)

 ∂xn− 1

 ∂x

 ∂xn

 ∂E

 ∂f

 ∂E

=

 , 

(2)

 ∂ θ n

 ∂ θ ( xn− 1 ,  θ n)  ∂xn

where  ∂f

 ∂x ( xn− 1 ,  θ n) and  ∂f

 ∂ θ ( xn− 1 ,  θ n) are the Jacobians of  f ( x,  θ) with respect to the input vector  x  and parameter vector θ evaluated at the point ( xn− 1 ,  θ n) within the combined hypersphere, respectively. Therefore, deep network parameters Fig. 3. Multi-layer neural network.3
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of layer weights and biases  {Wn, Bn}  are updated according to the stochastic gradient descent method as follows:

 Wn− 1 =  Wn −  μ  ∂J , n = 1 , . . . , N, 

(3)

 ∂Wn

 Bn− 1 =  Bn −  μ  ∂J , n = 1 , . . . , N. 

(4)

 ∂Bn

The final output layer of the deep network calculates and assigns the distribution label as softmax classifier, 6 which can be written as a log-likelihood function: Y = exp( BN +  WN xN ) /

exp( BN +  WN xN ) . 

(5)

Then, the softmax loss function  L ( Y, yi) =  − log P ( Y =  yi/ x0) =  − log Y  calculates the negative conditional log-likelihood, which is interpreted as Y is assigned to label  yi  with respect to the input signal vector  x 0 and pattern  Sp. 6 It aims to make sure that the probability distributions of the outputs are always normalized within uniform distribution, i.e.,  yi>  0 and

 i yi= 1. 

4. Convolution Neural Networks and Variants

Convolution is a very important and frequently used computation in signal and

information processing. Essentially, it is performing a wrapped correlation between signals in time or space so that their characteristic temporal, spatial, and geometric relations could be discovered and explored through convolution. For example, various filtering is performed by convolution with different kernels for audio signals temporally or visual images spatially. 

Since the exploration introduction of convolution into layered hierarchical net-

works during the 2000s, its powerful signal processing and filtering capabilities have emerged and they are further exploited and fused with various multi-layer architectures and learning strategies. Practically, deep convolution neural networks (DCNN) may consist of multiple stages, and each stage consists of three layers of convolution filtering, nonlinear rectification, and pooling. Filtering aims to perform temporal and spatial correlation, statistical averaging, subsampling, feature extraction, reduction, and representation with respect to the low-order coarse levels of the input signals and their patterns at earlier stages. The same convolution layer representing the same feature map shares the same kernel, while different convolution layers usually employ different kernels to represent different features, and neighboring layers are inter-fully connected. 

The operations at early stages involving the filter kernel and biases  {Ki, Bi}  in deep networks are actually the generalized linear convolution with corresponding equivalent impulse response  hl, and the output feature vector at the  l th convolution layer is computed as follows:

 yi =  xi ⊗ hi =  Bi +  Kixi. 

(6)
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This convolutional filtering is supposed to extract a certain feature map and

representation from the input vector with some embedded and implicit patterns  Sp with respect to the filter kernel at this convolution layer. Then, it is passed through a nonlinear rectification activation function  g( yi) = max(0 , yi), which is usually followed by some feature vector space normalization and Gaussian weighting with

subtractive and divisions implementation-wise. After combining early convolutions, later nonlinear and max pooling operations, we can see that the filter kernel  Ki  with its equivalent impulse response  hl =  {hli},  0  ≤ l ≤ L −  1 ,  0  ≤ i ≤ M −  1 at the  lth layer plays a significant role in the derivative computes of the global target error or loss function. Kernels are closely related to local low-dimensional feature description and representation in both their basis vectors and cardinalities. Therefore, its selection has a large impact on the hierarchical learning updates and iterative finetuning extraction of embedded and implicit patterns and regularities. However, the nice properties of convolution neural networks are that they are composed of multiple convolution stages with different feature maps by different filtering kernels, followed by composite nonlinear operations and max pooling, and efficient SGD

learning schemes for large-scale datasets. Therefore, they are not quite dependent on limited sets of local feature descriptors represented by kernel vectors and are quite different from multi-level pyramid approaches which usually require a significant amount of computation and cost. Detailed study on kernels and their selection is beyond the scope of this chapter. 

Based on the above observations, the consecutive computations of multiple con-

volutional stages are supposed to generate net effects of only keeping or focusing on positive responses and neglecting all negatives, and enforce local competition between adjacent features in a feature map, and between features at the same spatial location. 7 Therefore, by cascading multiple convolution stages with a composite of varying filter kernels, nonlinear activation functions, and learning update strategies, CNNs emphasize large and obvious feature and pattern regularities and achieve aggregated feature representation mapping and abstraction. 

Therefore, deep learning networks act as various kinds of feature representation and learning pipelines that discover multiple levels of representation, with higher-level features representing more abstract aspects of the data. 6 Discriminating feature extraction and representation increasingly from coarse and low levels to finer and higher levels is realized and achieved by hierarchical multi-stage networks employing very powerful gradient-based deep learning strategies and stacked multiple layers of alternative convolution, nonlinear ReLU activation, and max-pooling operations. 

Similar to human intelligence and prior knowledge, detection, classification, and recognition pipelines of deep networks can generally extract a set of robust features and organize the discriminative information from the data and images. For

this reason, they do not contain labor-intensive hand-crafted feature representation procedures from raw data and therefore avoid the weakness of many traditional

approaches. Figure 4 illustrates an example of convolutional network architecture
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Fig. 4. An example of convolutional network architecture and feature map representation.5

Fig. 5. Visualization of multi-layered features in a fully trained ImageNet CNN model.8

Fig. 6. Feature comparison between two well-trained ImageNet CNN models.8

as a feature map representation pipeline. Figure 5 visualizes multi-layered features in a fully trained ImageNet CNN model and Fig. 6 demonstrates increasing feature comparison and classification discrimination with respect to ascending layers between two well-trained ImageNet CNN models.8
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5. Selected Applications and Emerging Frontiers and Efforts

Deep hierarchical learning networks have found massive successful applications

across many areas since their revival of interest around the 2000s and more advances are happening up to the present. They include audio and speech processing, information retrieval and understanding, image and video analytics, object recognition, and computer vision. Particularly, significant progress has been made in recent years by applying deep models to image, video, and scene understanding and natural language modeling from the feature perspectives of visual cues and audio patterns. 

As mentioned above, deep hierarchical networks are not just a simple extension

and scaling of conventional, low-order, small-scale simple models. Nonetheless, they represent feature composition and aggregation in a much bigger, deeper, and larger structural modeling approach and architecture. Conventional feature representation methods like LBP, HOG (histogram of oriented gradients), and SIFT aim to extract the low-order features from visual images but neglect or lack the capabilities to well describe middle or high-level features and relations. Additionally, these features are mostly handmade and largely subject to feature regularity and constraints. On the contrary, deep models themselves as feature representation means do not rely on hand-engineered features but rather learn the feature hierarchy instead. Due

to these characteristics, deep models have become a very promising and effective feature representation paradigm. 

The very first application we select to discuss is deep convolution networks

which have been successfully applied for real-world object recognition on ImageNet datasets. They consist of over 15 million high-resolution images with over 20000

categories overall9 and various researchers and groups have used and selected different sample sizes and categories for experimental training, validation, and testing, respectively. It is reported in the literature that some well-designed ImageNet CNNs have achieved significant performance improvement over many other previous

techniques. 8,10

A deep CNN architecture and their working mechanism and scheme for

ImageNet benchmark contest are described in Fig. 7 and the literature. 10 According to the literature, their models are trained using the SGD learning update rule, particularly with a momentum variable term and an ensemble average

 ∂F

 ∂W

of the

 n

gradient over the  ith  batch  Di  of the derivative of the objective with respect to  w, evaluated at  wi. 10 This ImageNet CNN is composed of eight layers of parameters whose first five are convolutional and the remaining three are fully connected. 10

In comparison, another deep CNN architecture is reported and their working

mechanism and scheme for ImageNet benchmark contest are depicted in Fig. 8 and the literature. 8 This ImageNet CNN is still composed of eight layers of parameters whose first five are convolutional and the remaining three are fully connected. 8
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Fig. 7. ImageNet CNN architecture.10

Fig. 8. Architecture of the 8-layer CNN model.8

Visualization of multi-layered features in a fully trained ImageNet CNN model and feature comparison between two well-trained ImageNet CNN models are illustrated

in Figs. 5 and 6 respectively mentioned previously. These results clearly demonstrate the advantages of using deep architectures to learn increasingly complex features from the convolution layers to higher layers. 

Research activities and efforts including applying R-CNN and YOLO models to

multiple datasets have also been carried out to address various detection and classification problems. Having been proposed with recurrent connections for a long time, R-CNN models have shown strong capabilities in sequential data prediction and

regression, speech processing, language modeling, dynamic system identification, and neighborhood-based regional approaches. From these perspectives, backpropagation training and learning through time steps are usually employed. Another

deep convolution network of real-world object detector we intend to mention is the YOLO model. They are fully convolution neural networks in global contexts without focusing on regional local proposals, compared to R-CNN. The latest versions of YOLO models include more advanced features and can achieve better classification and recognition performances. 

In recent years, deep CNN models have been successfully applied to face recog-

nition. Variant CNN networks and architectures have already been reported to

achieve top face recognition rates on face recognition in unconstrained environments (FRUE) benchmark Labeled Faces in the Wild (LFW) datasets. Most previous traditional face representation methods use low-level hand-crafted features, but their performance using hand-crafted features degrades dramatically in unconstrained
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Fig. 9. DeepFace architecture pipeline.11

face images with complex and large intra-personal variations, such as pose, illumination, expression, and occlusion. Unlike the traditional hand-crafted features, deep CNN models can learn high-level abstract face features which are invariant to pose, illumination, expression, and image quality, more robust to complex intra-personal variations, and avoid hand-engineering face features and descriptors. 

Figure 9 shows an example DeepFace CNN model developed by Facebook to learn feature representation from large-scale faces in a hierarchical architecture composed of eight layers, where the first three layers are conventional convolution-pooling-convolution layers and the subsequent three layers are locally connected, followed by two fully connected layers. 11 Pooling layers can make learned features more robust to local transformations, and 3D face alignment is used for face images by an affine transformation before they are fed into CNNs. 

In recent years, huge amounts of remote and aerial sensing images and rich geo-

physical data become available due to the popularity of unmanned flying devices

and vehicles, and they have provoked wide applications and very active research

interests. Among them, image and scene classification is very important to understand high-resolution remote and aerial sensing imagery and aims to automatically detect, recognize, and label visual contents and cues, objects, and scenes in images with specific semantic categories. 

More recently, numerous efforts have been carried out for these tasks and appli-

cations, and deep learning models such as CNNs are attracting more attention to

automatically learn features from the raw input data by using deep-architecture

neural networks, such as CNNs and autoencoders. Studies and results have shown

that deep learning networks significantly improve the performance of remote and

aerial sensing image classification. 12,13 Feature representations learned by deep CNN

models such as AlexNet, CaffeNet, VGGNet, and GoogLeNet have been employed

for high-level feature learning and representation and they have shown much better overall accuracy, performance, and lower standard deviations in a more consistent way by large margins about 20% on various selected large-scale datasets. 13 They are very successful in extracting powerful image feature representations and are more discriminative than hand-crafted low-level features, such as color, texture, and spectral features. 

Deep networks use hierarchical structures and gradient-based backpropagation

learning on generic high-level spatial features to extract and represent more semantic
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Fig. 10. D-CNN model for remote sensing image classification.12

information, more abstract meanings, and knowledge from remote sensing images

and aerial scenes, and aggregate mid-level feature representations through pyra-

mid combinations of low-level local features to abstract more spatial relations and information. Instead, hand-crafted low-level local descriptors and features such as LBP, HOG, SIFT, and GIST mainly describe geometric and structural, texture, 

and spectral information for local and regional patches but are difficult to extract and represent the rich semantic information contained in remote sensing images

with major limitations and constraints. In comparison to traditional handcrafted feature-based methods requiring quite extensive domain knowledge, engineering

skills, and labor burdens, deep feature learning-based approaches have the advantage of directly extracting features and generating feature representations from raw data via deep neural network architectures. This modeling approach is very powerful and can achieve close-to-optimal performance for high-dimensional feature

representation and fitting of nonlinear functionals, surfaces and hyperspheres, and decision boundaries, without the inherent limitations of low and mid-level feature modeling and representation approaches. Figure 10 illustrates a D-CNN model with metric regularization and feature representation pipeline for remote sensing image classification. Interested researchers and readers can refer to relevant literature for further study. 

In addition, deep learning has also found a lot of success in diverse application areas of speech recognition, text information retrieval, natural language processing and modeling, etc. Speech and audio signals involve inherent sequential data inputs and patterns, and traditional techniques deal with sequential data prediction problems by constructing explicit parametric language models (LMs) to perform feature extraction and representation. On the contrary, deep learning neural network-based language models are crucial for successful applications of speech recognition for estimating the parameters in LMs implicitly with significant advantages.4 Many deep network architectures have been already proposed including recurrent neural networks to model sequential data in statistical language processing and have shown solid performance, besides using feed-forward neural networks with fixed

length context. 5,14
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6. Implementations and Considerations in Hardware and Systems

Although deep learning has achieved lots of progress and advances, the design of complex deep architecture, convolution kernel selection, learning and target function optimization algorithms, and ultra-large or huge hyper-parameters still need hard work and their manageability is not trivial. Extremely deep multi-layer networks consisting of multiple convolution layers and stages are challenging for training and optimization. Additionally, fast deployments for their successful applications usually require well-trained and prepared off-the-shelf models and frameworks. Efficient computations and easy adaptability in applications and edge devices also need to be considered as well. 

In recent years, a lot of research and development efforts have been happen-

ing and some well-prepared and packed frameworks have been introduced. Several

frameworks including Caffe, Theano, TensorFlow, YOLO, and Torch are developed

for machine learning applications and they have respective features and advantages for deployment and scientific computation. They are designed and built with the

mindsets of fast prototyping and development, referencing and modifiable models, computational efficiency, friendly software bindings, good packaging, hardware, and system compatibility. Most of them contain well-defined and reference models and can be used and modified easily. Deep networks can be implemented using these

common frameworks and trained end-to-end by SGD with backpropagation with

computations carried on multiple CPUs, CPU and clusters, for various detection and classification, localization, and segmentation tasks using ImageNet, COCO, CIFAR

datasets, etc. Proper techniques of scale, translation and aspect ratio augmentation, and orientation flipping can be implemented for training and pre-processing. 

In addition, smart learning strategies can be employed to select and adapt proper learning rates, weight decay ratios, and momentum at respective training stages. 

For example, Caffe is one of the most used and high-performance neural network

frameworks and open-source packages and has been mainly employed for speech pro-

cessing, computer vision, image classification, and object recognition through deep convolutional architectures for fast feature learning. It is composed of many pre-trained reference models and prototypes including successful deep learning architectures, such as the high-performance AlexNet ImageNet models. It can specify

and train neural networks on multi-core CPUs and GPUs, use a declarative pro-

gramming model, and support easy composition of models from multiple layers. 

By well-designed modularity, clean separation of representation and implementa-

tion, and well-managed large-scale data storage and organization, it can be easily modified and flexibly extended to suit various practical problems with high performances. 1 Figures 11 and 12 show an MNIST digit classification and R-CNN image classification using Caffe networks, respectively. 1

TensorFlow is another machine learning framework using dataflow graphs to

represent computation, shared states, and the operations on the contrary. With
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Fig. 11. An MNIST digit classification example of a Caffe network.1

Fig. 12. The R-CNN pipeline that uses Caffe for object detection.1

unified and flexible data workflows, it has found many successful applications in image classification and language modeling. Unlike Caffe, Theano, and TensorFlow, Torch is a powerful programming model and enables applications to select execution order and memory utilization to optimize the performance with flexibility. However, Torch doesn’t have the benefits of a dataflow graph on a small scale. 

Object detection plays a pivotal role in wide areas of artificial intelligence and computer vision, including monitoring, surveillance, autonomous vehicles, image

recognition, sensing, automation, and robotics operations. Compared to many other state-of-the-art detection systems such as deformable part models (DPM) using sliding window and region proposal-based Fast R-CNN techniques, YOLO (You Only

Look Once) is a suite of powerful object detection models developed by Ultralytics and has been widely used in object detection applications in recent years to automate detecting, identifying, and localization of various objects in vision with better accuracy and real-time detection performance of accuracy, speed, and network size. 

YOLO employs a unified model and a regression approach for object detection to

examine the entire image and spatially separate bounding boxes and has optimized its architecture, data augmentation strategies, training methodologies, and loss computation techniques end-to-end with a less likely prediction of false positives on the background. This unified neural network model computes bounding boxes and associated class probabilities directly from full images in the whole detection pipeline, and implicitly encodes global contextual information about classes as well as their appearance, during training and test time. It is extremely fast and can process

images in real time at 45 frames per second. A light version of the network, Fast
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Fig. 13. A network architecture of YOLO has 24 convolutional layers followed by 2 fully connected layers.15

YOLO, can process images over 150 frames per second with good performance. 

Figure 13 illustrates the architecture and pipeline of YOLO models. 

Moreover, the implementation and deployment of deep learning networks on dif-

ferent modalities and edge devices need careful engineering and considerable domain knowledge in practical applications and scenarios. Data centers with more advanced computing powers are more suitable for larger deep models and edges require much lighter models and smaller memory on the contrary. The number of deep model

layers and their connections could drastically vary and so their modeling and computing capabilities. 

7. Conclusion and Future Trends

Deep learning has a long evolving history from the early age till the present and has become a very active and important research topic in the latest AI era. It has deep roots in handwritten character recognition, speech recognition, image classification, and computer vision. The essence of deep learning neural networks aims to discover, build, and learn deep hierarchies of effective features or representations for any machine learning and classification tasks. A lot of novel deep network models have been proposed in the most recent decade and have seen very broad and

successful applications across wide areas. It is important to well understand the structural hierarchical architectures, internal schemes, and learning mechanisms of deep networks to design and optimize learning parameters in deep networks and

pipelines. 

Deep learning in hierarchical network models and feature representation has

demonstrated both theoretically solid foundations and successful practical applications with significant advantages and performance up to the present. We have

seen that deep learning has achieved essential learning and intelligence capabilities
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through building, extracting, and representing deep hierarchies of features automatically. By combining and exploiting large hierarchical models of well-interleaved convolution, nonlinear rectification, and pooling operations, gradient-based backpropagation learning strategies and algorithms, and using huge hyper-parameters in millions or ultra-large parameters over hundreds of millions, deep learning networks are capable of achieving simultaneous segmentation and recognition and reported

to have comparable generalized feature representation and recognition performance like human beings. This is in sharp comparison to the traditional pattern classification and recognition approaches and models which usually employ more hand-

designed priors or heuristics and rely on more rigid assumptions for underlying

probability distributions. 2

Many advances have been carried out and deep network structures and archi-

tectures, compositions, and internals have evolved and migrated a lot through wide joint efforts between research, academics, and across industries. However, there still exist a lot of challenges for deep learning in general. First, deep networks are more and less large hierarchical composite model approaches and feature extractors. Second, their successful applications rely heavily on the multi-stage network structures and stacked layers of various linear and nonlinear operations, which are drastically different from conventional approaches. There exist occasions when a deep model is well trained, but the semantics of their internal parameter values and connection weights are not well manifested and evident. Generally, they need a lot of training and finetuning for supervised networks. Once trained, there is no single deep network model that can be successfully applied to all recognition and application areas and sometimes they are hardly adjustable and scalable to extend to

other problems. In practice, situations might also happen when well-labeled training samples are scarce and DCNNs need to be pre-trained by supervised learning. 

In recent years, more real-time object detectors of network models have been

deployed to support a wide range of applications and scenarios from the edge

to the cloud. The computing devices for real-time object detection particularly

edge devices need to speed up multi-layer convolutions and nonlinear operations to extract features, reduce features in downsampling resolution (size of input image), and perform depth-wise convolutions (number of layer) in width (number of channel) at multiple stages (number of feature pyramid), therefore efficient network architectures have become necessary and very appealing. For performance, how to

achieve good and efficient feature representation and reduction is an open and active research area. In this regard, we need to better understand how to devise pyramid network architectures of hierarchical and alternating convolutional layers and form scalable pipelines to extract features from the images and reduce the feature spaces from preceding layers, then use fully connected layers to compute the output class probabilities and bounding box coordinates. 

Finding and representing well-discriminative invariant features efficiently could potentially reduce the model complexity of deep learning structures. Several

general approaches have been proposed to design efficient network architectures. 
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For example, model scaling and network architecture search (NAS) are active

research areas to enable the exploration of efficient model construction and design. 16

Model scaling methods tend to scale up or down an already designed model and

make it fit in different computing devices. 16 They usually use different scaling factors to achieve a good trade-off for the amount of network parameters, computation, inference speed, and accuracy. NAS is another commonly used method. However, 

it requires an exhaustive search for suitable model scaling factors in search space thus incurring very expensive computation and leading to disadvantages. Important research topics also include model re-parameterization, adding feature regularization and constraints, dynamic label assignment for network training and object

detection, and using fewer convolution layers and fewer filters in fast neural network models for fast object detection training and testing. 

Constructing and training deep architectures is usually labor-intensive and heavy with respect to large datasets and computational complexity, and a lot of domain knowledge, expertise, and experience are required. Lacking of good training in

labeled samples and correct label assignment for training datasets is a laborious task itself. It is highly desirable that deep machine learning would develop and thrive to more advanced levels of autonomous learning with some self-generative

capabilities and evolution. Parallelization to improve performance is also crucial to its successful applications. 

In this chapter, we have reviewed and studied relevant aspects of deep network

structures, architectures, learning mechanisms, and selected applications in various areas. Our eventual goal is to build and construct fully automatic computing machines learning implicit feature representation rather than hand-crafting explicit features and pruning representation structures. It is increasingly recognized that network structures and architectures and their large composite numbers of large

parameters and various computing and operations are essential to wide ranges of

classification and recognition problems and tasks. Lots of research and development activities are still going on and many advances in wide areas are happening at

present. 

Many research results and evaluations have demonstrated that very deep net-

works can achieve solid performance for large-scale classification and recognition problems. The representation depth of network architectures and stacked multi-layers of alternating convolution, nonlinear ReLU activation, and max-pooling

operations are important for classification accuracy, and it is shown that neural network models generalize well to a wide range of tasks and benchmark datasets. 

For future development and more considerations, many exciting questions still

remain open, such as how computing models and learning networks generalize

highly selective and complicated invariant feature representation of inner classes in a self-generative manner and still achieve good enough classification discrimination between categories. 

352

 B. Shen

References

1. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,  et al.  Caffe: Convolutional architecture for fast feature embedding. In  ACM, 2014. 

2. Y. Lecun and L. Bottou. Gradient-based learning applied to document recognition. 

 Proceedings of the IEEE, 86(11), 2278–2324, 1998. 

3. Y. Bengio. Learning deep architectures for AI.  Foundations & Trends in Machine Learning, 2(1), 1–127, 2009. 

4. L. Deng and D. Yu. Deep learning methods and applications.  Foundations and Trends in Signal Processing, 7(3–4), 197–387, 2014. 

5. Y. Lecun, Y. Bengio, and G. Hinton. Deep learning.  Nature, 521(7553), 436–444, 2015. 

6. Y. Bengio. Deep learning of representations: looking forward. In  Proceedings of the First International Conference on Statistical Language and Speech Processing. 

Springer, Berlin, 2013. 

7. Y. Lecun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applica-

tions in vision. In  Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010. 

8. M. D. Zeiler. Hierarchical convolutional deep learning in computer vision. PhD thesis, New York University, 2014. 

9. Q. V. Le, M. Ranzato, and R. Monga,  et al.  Building high-level features using large scale unsupervised learning. In  IEEE International Conference on Acoustics,  Speech and Signal Processing, 2013. 

10. A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In  Advances in Neural Information Processing Systems, Vol. 25(2), 2012. 

11. Y. Taigman, Y. Ming, and M. Ranzato. DeepFace: Closing the gap to human-level performance in face verification. In  IEEE Conference on Computer Vision & Pattern Recognition, 2014. 

12. G. Cheng, C. Yang, and X. Yao,  et al.  When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs.  IEEE

 Transactions on Geoscience and Remote Sensing, 56(5), 2811–2821, 2018. 

13. G. S. Xia,  et al.  AID: A benchmark data set for performance evaluation of aerial scene classification.  IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3965–3981, 2017. 

14. Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic language model. 

 Journal of Machine Learning Research, 3, 1137–1155, 2003. 

15. J. Redmon, S. Divvala, and R. Girshick,  et al.  You only look once: Unified, real-time object detection. In  Computer Vision & Pattern Recognition. IEEE, 2016. 

16. C. Y. Wang, A. Bochkovskiy, and H. Liao. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 2022. arXiv e-prints. 

[image: Image 902]

© 2025 World Scientific Publishing Company

https://doi.org/10.1142/9789819807154 0015

Chapter 2.2

Performance Comparison of Recent Advances in

Query-Based Video Instance Segmentation

Alain P. Ndigande ∗  and Sedat Ozer †

 ∗OzerLab, Department of Computer Science, 

 Ozyegin University, Istanbul, Turkiye

 †California State Polytechnic University, Pomona, CA, USA

Recently, there have been multiple algorithms proposed for Video Instance Seg-

mentation (VIS) and in this chapter, we first summarize recently proposed VIS

algorithms including CTVIS, 1 IDOL, 2 GenVis, 3 MinVIS, 4 and Dvis5; then we compare their performances on multiple video instance segmentation datasets. In

particular, our experiments are carried out on YouTube-VIS 20196 and OVIS7

datasets with a focus on evaluating the performance of VIS methods on param-

eterized instance queries in scenarios including occlusions, rapid object motion, and appearance changes. Our preliminary experimental results provide valuable

insight into the strengths and limitations of transformer-based online VIS models for developing or using novel VIS algorithms. 

1. Introduction

Video instance segmentation (VIS) is an active research area and an essential task for video analysis in computer vision. The VIS task comprises precise detection, segmentation, and association of object instances in multiple video frames. The VIS

task is usually categorized into two cases where the first case takes the advantage of the whole video (offline), and the other case considers only the current frame (online). The offline methods usually perform better than the online methods, but they are not practical in many scenarios where speed and computation power are

constrains. Transformer-based architectures have shown promising performance in

many VIS applications. Query-based segmentation models gained significant attraction for their ability to better model spatio-temporal dependencies which is essential in both segmenting and associating objects across multiple frames in video analysis. 

VIS is a fundamental and evolving area of computer vision research. VIS

requires the simultaneous detection, segmentation, and temporal association of

object instances across video frames, 6,8–12 as shown in Fig. 1. Regardless of the impressive and almost saturated performance in image-based instance segmentation models, 13–18 VIS has proven to be a challenging task due to the dynamic 353
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Fig. 1. 

VIS comprises the simultaneous instance segmentation and temporal association of object instances across all the video frames. 

nature of video data, where objects may go through rapid motion changes, occlu-

sion, and appearance changes. The task was first formalized with the introduction of MaskTrack R-CNN, 6 which extended the widely adopted Mask R-CNN19 model to the video domain by introducing a tracking head that linked objects’ instances across frames. MaskTrack R-CNN relied on separate segmentation and association

modules which limited its ability to efficiently model long-term dependencies across frames. 

VIS approaches can be summarized under two main categories where the first

category includes approaches using detection and tracking separately, and the second category includes end-to-end approaches. End-to-end approaches typically consider the whole video as input, therefore they are more suitable for offline techniques. 

VIS is closely related to the Multi-Object Tracking and Segmentation (MOTS) challenge, 20 where the goal is also to track and segment multiple objects across video frames. Both tasks share the requirement of maintaining object identities over time while accurately segmenting each instance. 

As VIS approaches continue to evolve, the recent research efforts shifted toward designing more integrated approaches which could address both segmentation and

association simultaneously. Effective association is highly dependent on the accurate representation of instances. This led to utilizing transformer-based architectures, which have revolutionized various computer vision tasks because of their ability to
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model relationships through self-attention mechanisms. The seminal work “Atten-

tion Is All You Need” 21 introduced the transformer model in the context of natural language processing, but its core principles were soon adopted for vision tasks, inspiring the new directions in VIS tasks. 

Deformable Detection Transformer (DETR)22 was pioneering advancement that used transformers for object detection in images with queries. Vision tasks are quite challenging as ingested data may often be in complex modalities23,24 and diverse in nature with various applications and different domains. 25–27 The video instance segmentation transformer (VisTR)28 extended the transformer architecture to the video domain, using queries to directly predict object instances and their associations across frames. VisTR28 set a new benchmark by showing the effectiveness of transformer-based approaches in capturing spatio-temporal dependencies and

extending it to segmentation and association (VIS). Most state-of-the-art (S.O.T.A) transformer-based VIS methods, including VisTR, 28 are offline. Full video sequences (or clips) are used to optimize instance association. While these approaches yield higher accuracy when compared to their online counterparts, they are not practical for real-time use-cases due to their higher computational and memory requirements. 

To train such offline methods, massive GPUs and extended time are needed as videos are processed in full. Online methods, on the other hand, operate on a frame-by-frame basis, which is more practical and reduces the training time significantly. The need for efficient online VIS models has motivated further research which yielded more optimized query-based methods for faster, lightweight implementations. 

In this work, we focus on studying the performance of query-based video instance segmentation in online frameworks, by analyzing how the query parameterization

affects the predicted mask quality and consistent instance associations across frames. 

Our experiments were carried out on YouTube-VIS 2019 and OVIS datasets. 

2. Related Work

VIS is the task of detecting, segmenting, and tracking object instances across a sequence of video frames. In VIS, the goal is to generate pixel-precise instance masks for each object in every frame and to track the identity of those instances across frames. VIS methods can be divided into two major categories: online and

offline video instance segmentation. 

2.1.  Online video instance segmentation

Online VIS methods detect and segment instance objects in a frame-by-frame man-

ner and associate these instances across time. Online models are typically built on image-level segmentation models, such as Mask R-CNN. 19 Unlike object detection, which only provides bounding boxes, VIS requires detailed masks for each object

and tracks this over time. Motivated by recent transformer-based image detection and segmentation models, 29–32 a number of query-based online methods have been
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proposed. These methods tackle the VIS task by taking advantage of consistent

instance query embeddings and associating corresponding instance queries from

frame to frame. 

Most query-based methods presented1,3–5 extend on Masked-attention Mask Transformer (Mask2Former16) architecture to the video domain. Mask2Former consists of a backbone feature extractor, 31,33 a pixel decoder, and a transformer decoder.21 The backbone feature extractor is usually a pre-trained ResNet or Swin transformer to extract image features before further processing through the network. Pixel decoder builds richer feature maps for mask prediction. FPN34 is used in MaskFormer35 processes and combines feature maps from different scales, resulting in improved mask quality, and allows capturing instances of different sizes. 

Following DETR, 29 instance masks can be encoded with a  C-dimensional object queries. Transformer decoder then takes image features and processes object queries. 

Mask2Former uses masked attention in the transformer decoder which attends to

local features instead of cross-attention used in standard transformer decoder leading to faster convergence and reduced computation load. 

Online models have the inherent advantage of handling long video sequences

and ongoing videos. 6, 36–40 In their work entitled in defense of online models, 2

Wu  et al.  demonstrated that the performance gap between online and offline methods is caused by error-prone association mechanisms between frames caused by similar appearance among different instances in the feature space. Thus, they proposed a contrastive learning-based online method that learns more discriminative instance embeddings for association and benefits from history information by introducing a memory bank for stability. 

In another work, Heo  et al.  discussed that the discrepancy between training and inference is the main limitation in VIS methods. They proposed a generalized framework3 that introduced a memory and a label assignment mechanism that enhanced the relationships between separate frames. MinVIS4 highlighted the vital role of embeddings in instances of association between multiple frames. 

Using Mask2Former, 16 they suggested that a strong query-based image instance segmentation model inherently produces distinctive enough instance queries and

demonstrated competitive performance without video-based training or introduc-

ing additional contrastive loss functions. In DVIS, Zhang  et al.  5 discussed that online vis methods underperform due to the under utilization of temporal information. They proposed a strategy that divides VIS into independent subtasks:

segmentation, tracking, and refinement. In their subsequent work DVIS-DAQ, 41

they discussed addressing disappearing and reappearing instances by introducing

dynamic anchor queries. Ying  et al. 1 studied a method of aligning training and inference in terms of choosing contrastive items for contrastive loss by performing momentum embedding averaging42 and using the memory bank and adding noise to the embeddings when updating the memory bank to simulate tracking failure scenarios during inference time. 1 This extension leads to reliable comparison between
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instance embeddings and stable representation of historical embeddings that allow better modeling of challenges such as occlusion, deformations, and re-identifications. 

2.2.  Offline video instance segmentation

Video instance segmentation has been advanced by offline models.28,43–47 Offline VIS methods segment and classify all video frames simultaneously and make

instance associations in a single step. Often, as long videos would not fit in memory for processing, many methods split the video into several segments and perform

VIS at clip level. 3, 46 Semi-online methods usually require a heuristic mechanism to connect instances between adjacent clips. 

The video instance segmentation transformer (VisTR)28 extended the DETR29

architecture to the video domain, using queries to directly predict object instances and their associations between frames in an end-to-end fashion. VisTR28 set a new benchmark by showing the effectiveness of transformer-based approaches in capturing spatio-temporal dependencies and extending it to segmentation and association (VIS). Motivated mainly by the computational requirements posed by VisTR, 

numerous follow-up studies extended VisTR keeping the paradigm of taking video as input and outputting masks with their trajectories in an end-to-end fashion. IFC46

proposed an inter-frame communication transformer that uses memory tokens to

convey information between frames, significantly reducing memory and computa-

tional requirements. The features for each frame are enriched and correlated with other frames, thus exchanging information. SeqFormer48 uses a stand-alone instance query to capture the temporal sequence of instances across video frames. Each

frame is processed independently, and mask sequences are dynamically predicted

without tracking branches. TeViT49 introduced the messenger mechanism for the early temporal and spatio-temporal query interaction to align video instances and queries efficiently modeling temporal information at the frame level and at the

instance level. In Stem-seg, 44 Athar  et al.  modeled spatio-temporal embeddings, for instance, segmentation in whole videos using 3D CNN architecture. Based on

the hypothesis that object-oriented information constraints clues for understanding the entire sequence, VITA50 uses object tokens instead of dense spatio-temporal features. VITA uses builds on transformer-based image segmentation model and

object tokens are distilled from object-specific context. 

In this chapter, we focus on exploring recent query-based online video instance

segmentation methods. Specifically, we supplement this by studying the perfor-

mance change for different S.O.T.A methods when query parameterization is varied. 

3. Background

3.1.  Video instance segmentation

VIS is the task of segmenting and tracking object instances simultaneously in a

sequence of video frames. In VIS, the goal is to generate pixel-precise instance

[image: Image 904]
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Fig. 2. 

Query-based detection and instance segmentation architectures usually follow the method proposed in DETR architecture. Object embeddings as queries are used for detection and segmentation. Classification, segmentation, and optional detection heads take these object queries as inputs for the final predictions. 

masks for each object in every frame and to track the identity (ID) of those instances across frames. The length of videos and even different challenging factors such as occlusion, deformation, and rapid motion changes must be addressed accurately by a successful VIS model. Unlike object detection, which only provides bounding boxes, VIS provides detailed segmentation masks for each object instance of interest:

X =  {X t}Tt

X

=1

 t ∈  R W ×H×C . 

(1)

Given a video with a set of  T  frames of R W×H×C  where  W  is the width,  H  is the height, and  C  is the number of channels (e.g.,  C = 3 for color images), and X t represents a frame at time index  t. The goal is to identify and segment the instances of objects of interests and track those instances over time. 

For each frame at time step  t, the model outputs a binary mask for each object instance  j  in the frame  t  denoted by

M t,j ∈ { 0 ,  1 }W×H, 

where each binary pixel value in the mask M t,j( x, y) indicates whether the pixel ( x, y) belongs to the  j th instance or not. 

The model outputs a label  lj ∈ { 1 , . . . , K}, where  K  is the total number of existing instance categories present in the dataset (e.g.,  K = 40 in YouTube-VIS

and  K = 25 in OVIS dataset). 

Additionally, a tracking ID  τj  is assigned to each instance where they appear for the first time, and then, that ID needs to be associated with the existing object instances in the following frames to ensure the temporal consistency. Thus, the

model’s complete output Y t  for frame  t  is a set of instance masks, their corresponding classes, and their tracking ids as follows:

Y t =  {(M t,j, lj, τj) }Nt

 j

 , 

(2)

=1

where  Nt  is the total number of instances in frame  t. 

The objective during training is then to minimize a loss function between the

ground truth (GT) and predicted outputs for each frame. Let all the ground-truth information for frame  t  be denoted as

YGT

 t

=  {(MGT

 t,j , l GT

 j

 , τ  GT

 j

) }N GT

 t

 j

 . 

(3)

=1
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The loss function is typically composed of a term defining the mask loss, a term defining the classification loss, and a term defining the tracking (association) loss. 

Next, we define each of those terms as used in our experiments. 

Mask loss  L mask: Mask loss measures pixel-wise mismatches between the predicted mask M t,j  and the ground-truth mask MGT

 t,j . In traditional bounding-box-based

detection tasks, the loss would be computed based on a form of intersection over union (IOU) between the ground-truth boxes and the predicted boxes. For instance segmentation, the finer details are captured by evaluating pixel-wise discrepancy. 

That can be done by using Binary cross-entropy (BCE)51,52 loss or dice loss. 

BCE( y,  ˆ

 y) =  − [ y  log(ˆ

 y) + (1  − y) log(1  −  ˆ

 y)]  , 

(4)

where  y ∈ { 0 ,  1 }  is the true label and ˆ

 y ∈ [0 ,  1] is the predicted probability of the

positive class. With that information, mask loss is defined as follow:

 T

 Nt



 L mask =

BCE(M t,j, MGT

 t,j ) . 

(5)

 t=1  j=1

Classification loss  L class: Classification loss compares the predicted object label (class)  lj  to the ground-truth label  l GT

 j

. This is typically computed via the cross-

entropy (7) loss:

 T

 Nt



 L class =

CE( lj, l GT

 j

) , 

(6)

 t=1  j=1

where CE is defined as follows:



CE( p, q) =  −

 p( xi) log  q( xi) , 

(7)

 i

with  p( xi) being the true probability of class  i  and  q( xi) the predicted probability of class  i. 

Association loss  L assoc: Association loss is the term to measure the correctness of the association of the instances across frames. This loss function ensures that the predicted association ID  τj  matches the ground truth ID  τ GT

 j

, enforcing tem-

poral consistency. In many query-based video instance segmentation pipelines, the matching is done based on the learned instance embeddings. To have discriminative embeddings for dissimilar instances, other loss terms, e.g., contrastive loss functions, are also utilized (we will discuss contrastive learning later in this chapter). 

The total loss  L total for the video instance segmentation model, then, becomes the weighted linear sum of the above-listed three losses as follows:

 L total =  λ mask L mask +  λ class L class +  λ assoc L assoc , (8)
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where  λ mask , λ class , λ assoc are hyperparameters, each controlling the contribution of its corresponding loss term in the total loss, respectively. 

3.2.  Attention mechanism for VIS

Transformer architecture has been adopted for many image recognition tasks (classification, 53–58 including detection, 29, 59,60 segmentation, 61–63 and video instance segmentation28, 64). Vision Transformers (ViT) are generalized transformer architectures for image-based tasks. Unlike traditional CNNs which rely on convolutional layers, ViTs use the transformer architecture21 and show competitive performance. 

The transformer architecture, introduced by Vaswani  et al. , 21 has revolutionized the fields of both NLP and computer vision through the use of a self-attention mechanism, which enables the model to weigh the importance of each token relative to others, allowing it to capture dependencies across different parts of the inputs depending on the context. Transformer models could consist of encoder

and/or decoder structures, depending on the task. 65–67 Encoder-only models are primarily used to understand and extract contextual information from the input

sequences. 68 Decoder-only models are typically used for generative tasks where the model needs to produce a sequence. 69 Encoder–decoder models for tasks that require transforming one sequence into another, such as machine translation, summariza-tion, and sequence-to-sequence. 70 The encoder, which contains a stack of layers with multi-head self-attention mechanisms and feedforward neural networks as its main components, is responsible for processing the input sequence. The decoder

could additionally consist of a masked multi-head self-attention mechanism which prevents positions from attending to subsequent positions and is typically used in generating the output sequence. 

Transformers developed for image-based datasets can be used in complex

video analysis tasks, such as video instance segmentation, which often contain

complex scenes with multiple areas of interest by capturing both spatial and

temporal long-range dependencies within frames. For VIS, a video sequence is

usually passed through a pre-trained backbone31,33 to extract features which are then passed to the transformer for instance embeddings. These embeddings must

have descriptive instance features across frames for a successful association of instances. 

3.3.  Contrastive learning

In query-based video instance segmentation methods, the discriminative capability of instance embeddings is crucial for accurate association of instances across video frames. The accuracy of the task of associating the same object in consecutive frames relies heavily on being able to distinguish between instances, even in the presence of challenges, such as occlusions, variations in appearance, and background noise. Contrastive learning has shown success in discriminative representation learning. 42, 71, 72
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Fig. 3. 

In contrastive learning, a set of examples, anchor, positive, and negative, is used to minimize the distance between the similar examples while pushing away the distance between dissimilar examples. Often, a memory bank is utilized to store already seen instances and is updated as new instances appear in following frames. The memory bank is further updated in a timely manner to contain the most recent instance embeddings. During training, predicted instance embeddings are first matched to the ground-truth instances with Hungarian matching, and from there, the contrastive items are chosen for contrastive loss. During inference, the valid predicted instance embeddings are added to the memory bank. 

As such, the same technique can be employed to enhance the discriminative instance embeddings. 

For a video sequence of frames X =  {X t}Tt , the model outputs instance embed-

=1

dings E t =  {e t,i}Nt

 i

, where  N

=1

 t  is the total number of instances in frame  t  and

e t,i ∈  R d  represents the  d-dimensional embedding of the  i th instance in frame  t. 

Let (e t,i, e t,i) be the embeddings of the same instance  i  in frames  t  and  t. Since this is a positive pair, their embeddings should also be similar to each other. Let (e t,i, e t,j) be the embeddings of different instances  i  and  j. In this case, negative pairs should have dissimilar embeddings. 

The contrastive loss is applied on positive and negative pairs of embeddings. 

In the context of VIS, an anchor object is chosen and an embedding is considered positive, if that embedding represents the same anchor instance in the next frame, and the other instances are all considered negative embeddings. 1 In recent studies, such as IDOL,2 positive and negative examples are dynamically chosen from a reference frame through an optimal transport mechanism. 73 Ying  et al. 1 reported that only taking contrastive items from a reference frame was insufficient. As such, they proposed a new mechanism that takes advantage of the memory to capture

history for richer contrastive samples. When adding and updating the memory bank, Ying  et al.  also proposed adding noise when updating the memory bank. In general, the contrastive loss can be formulated as follows:

exp(sim(e t,i, e t,i) /τ)

 L contrast(e t,i) =  −  log  N

 , 

(9)

 t

 j

exp(sim(e

=1

 t,i, e t,j ) /τ )
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where (e t,i , e t,i) form a positive pair (same instance in different frames) and (e t,i , e t,j) with  j =  i  form negative pairs (different instances). sim(e t,i, e t,j) is the similarity measure between two instance embeddings (e.g., cosine similarity

measure):

e t,i · e t,j

sim(e t,i, e t,j) =  e t,ie t,j. 

The goal is to learn instance embeddings such that embeddings for the same instance across frames are close in the embedding space, while embeddings for different

instances (or negative pairs) are far apart. 

3.4.  Instance association

Some video instance segmentation methods heavily rely on cues such as semantic

consistency, spatial correlation, and detection confidence for instance associations between frames. Other methods rely on predicted masks and metrics, such as IOU, 

for associations. This is intuitive; however, the use of masks and bounding box is error-prone in long videos and in challenging scenes with lots of disappearance and reappearances. In query-based VIS, using object queries for instance associations is preferred as the learned instance embeddings encode instances in a more appropriate discriminative way. IDOL2 uses a temporally weighted SoftMax score and a memory bank-based association strategy. The object queries are temporally weighted before computing the similarity measure with the predicted instances. Instance assignment is performed on the basis of the similarity score. 

4. Experiments

Our main goal in this section is to analyze the performance of online video instance segmentation (VIS) frameworks under different object query parameterizations. The contribution of each approach can be better understood by evaluating how different query parameterization strategies impact their segmentation accuracy, temporal

consistency, and computational efficiency. In this section, our methodology follows the same pipeline formed of four main steps: (1) S.O.T.A VIS model selection, 

(2) dataset preparation, (3) obtaining the experimental results and analysis, and (4) performance evaluation. 

4.1.  Model selection

S.O.T.A VIS models are selected for experimentation and evaluation. With consid-

erations of both computational resources and time, transformer-based online architectures are selected. The criterion for selecting models was the availability of their codebases, relevancy, recency, popularity, support for datasets of interest, and repro-ducibility of the reported metrics. The selected models were all implemented using PyTorch and are trained or fine-tuned on both VIS datasets. DVIS5 proposed a
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decoupled VIS framework that incorporates memory for history. In a more recent

DVIS-DAQ41 iteration, as a 2024 follow-up work, they introduced dynamic anchor queries (DAQ) to shorten the transition gap between anchor and target queries. 

We use DVIS in our experiments, as it fits all our criterion for model selection. 

IDOL2 proposes using an additional contrastive head to enforce distinctive query embeddings. IDOL uses optimal transport to select positive and negative examples that need contrastive loss. MinVis4 offers S.O.T.A performance without video-based architectures by only using object query embeddings. GenVis3 introduces a novel target label assignment and memory in instance associations in an attempt

to improve performance in long videos and challenging scenes. Finally, CTVIS1

proposes a new method of selecting positive and negative items for the contrastive loss. As a summary, in our experiments, we picked to study DVIS, IDOL, MinVis, 

GenVis, and CTVIS algorithms. 

4.2.  Datasets

The experiments are conducted on two benchmark datasets that represent a range

of scenarios for the VIS task. YouTube-VIS 20196 includes videos with 40 object categories and it has relatively less challenging scenes and shorter sequences. YouTube-VIS 2019 was the pioneering challenge for video instance segmentation. It consists of 2238 training, 302 validation, and 343 test video clips. Occluded Video Instance Segmentation (OVIS) dataset7 came to be in 2022 and focuses on scenarios with heavy occlusions, making it ideal for testing the models’ ability to maintain consistent instance associations despite partial or complete occlusions. OVIS7 has 25 object categories and is more challenging in comparison to the YouTube-VIS dataset. OVIS

has 607, 140, and 154 training, validation, and test videos, respectively. It has much longer videos and contains scenes with more occlusions disappearance and reappearance rates. Both datasets are pre-processed to ensure consistent input formats, making the comparisons justified as models will see the same data. 

4.3.  Implementation details

The impact of the association of the query-based instance is studied by systematically varying the instance embeddings’ count in the selected models. Specifically, studying what effect changing the total number of queries processed per frame will have on the performance of VIS models. 

Strategies for associating instance queries across the frames are kept the same, as the model’s reported native association strategy allowing us to better weigh the contribution introduced in each work. Models are forced to have similar configurations in terms of dataset splits, queries, detections per frame, etc. as much as possible. Models are trained and tested on the same datasets, with particular attention given to how changes in query parameterization affect the ability to accurately segment and associate instances. 
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All experiments were carried out on an SLURM cluster with multiple nodes, each

equipped with different CPU, memory, and GPU configurations. Overall, the cluster has the following configurations: 2  × (20 CPUs, 122GB memory, 2 A6000 GPUs), 2  × (24 CPUs, 24GB memory, 2 RTX 3090 GPUs), 2  × (16 CPUs, 60GB memory, and 1 RTX 3090 GPU), and 1  × (16 CPUs, 45GB memory, 1 P6000 GPU). The

GPU requirements for each model determined the distribution of training between

nodes. The duration of training varied according to the model and configuration, ranging from 4 to 18 hours. 

Generally, the choice of the used backbone as a feature extractor for segmenta-

tion is usually ResNet-(50 or 101)33 and hierarchical vision transformer using shifted windows (swin-transformer) backbone. 31 Due to the computational requirements, we constrained the experiments to using ResNet-50 as the backbone feature extractor for all methods. All models were initialized with their respective pre-trained weights (specifically, coco pre-trained segmentation weights) for the backbone. 

4.4.  Performance evaluation

Both YouTube-VIS 2019 and OVIS datasets have open challenge evaluation servers

that we take advantage of to test the performance of our selected models on their respective validation sets. The annotations for development sets are unavailable to the public, making the evaluation transparent for all models. Each model configuration is evaluated using VIS metrics: Average Precision (AP) and Average Recall (AR), where AP and AR are aggregated over different IOU thresholds. AP measures

how well a model can detect and segment instances across various Intersection over Union (IoU) thresholds. In the context of VIS, AP is extended to video sequences, where the goal is to correctly identify and segment instances over time. 6 AP is computed as the area under precision-recall curve at a specific IOU threshold. Precision measures the ratio of true positives (TP) over all positive detections (true and false positives). Recall is the measure of how correctly the model can detect and segment instances at various IOU thresholds. Recall is the ratio of true positives to both true positives and missed detections (FN). In the context of VIS, all are averaged across the multiple frames. The results are compared across different model configurations to identify the key factors that increase or decrease the performance of query-based instance association in both offline and online VIS settings. AP is averaged across multiple IoU thresholds (e.g., [0 .  50 ,  0 .  55 ,  0 .  60, . . . , 0.95]) and is usually referred to as mAP (mean AP). In Table 1, we report mean AP, AP50, AP75, and average recall (AR1 and AR10) for max detections 1 and 10, respectively. 

4.5.  Results

The length of videos and even different challenging factors, such as occlusions, deformations, and rapid motion changes, increase the complexity of the problem

and must be addressed properly by a successful VIS model. Several methods use
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Table 1. 

A comparison of different video instance segmentation models based on their per-

formance as the number of queries per image is varied. The evaluation is conducted on both the YouTube-VIS 2019 and OVIS validation sets. Results are grouped by query count for each method, providing insights into how the number of queries affects model accuracy and efficiency across different datasets. 

YouTube-VIS 2019

OVIS

Qc

Method Backbone

AP

AP50 AP75 AR1 AR10

AP AP50 AP75 AR1 AR10

Q32

CTVIS

R50

0 .  486

0.704  0.518

0.480

0.586 0.242 0.425

0.240 0.140 0.328

DVIS

R50

0.493 0.736 0.530 0.467 0.574 0.117 0.257 0.086 0.070 0.147

GenVis

R50

0 .  341

0.505

0.370

0.391

0.457

0.145

0.304

0.134 0.097 0.209

MinVis

R50

0 .  491

0.726

0.539

0.464

0.557

0.234

0.437

0.222 0.125 0.281

IDOL

R50

0 .  452

0.683

0.483

0.455

0.561

–

–

–

–

–

Q64

CTVIS

R50

0 .  481

 0.715

0.505

0.480

0.589

0.193

0.371

0.184 0.114 0.284

DVIS

R50

0.493 0.726 0.527 0.470 0.570 0.101 0.229 0.080 0.065 0.132

GenVis

R50

0 .  355

0.521

0.384

0.402

0.481

0.161

0.325

0.142 0.096 0.220

MinVis

R50

0 .  483

0.710

0.536

0.470

0.554 0.258 0.481

0.255 0.141 0.295

IDOL

R50

0 .  465

0.705

0.509

0.458

0.565

0.171

0.342

0.156 0.107 0.302

Q100

CTVIS

R50

 0.490

0.712

0.511  0.500

0.617

0.203

0.394

0.185 0.126 0.306

DVIS

R50


 0.500

0.730

0.537

0.470

0.583

0.050

0.086

0.054 0.032 0.065

GenVis

R50

0 .  349

0.526

0.386

0.394

0.466

0.153

0.319

0.134 0.102 0.215

MinVis

R50

0 .  473

0.710

0.504

0.453

0.560

0.251

0.470

0.240 0.143 0.295

IDOL

R50

0 .  478

0.716

0.528

0.458

0.563 0.255 0.475

0.249 0.141 0.369

Q300

CTVIS

R50

0 .  464

0.678

0.514

0.481

0.590

0.172

0.333

0.162 0.118 0.272

DVIS

R50

0.498 0.720 0.547 0.475 0.591 0.303 0.569 0.286 0.148 0.362

GenVis

R50

0 .  339

0.503

0.365

0.384

0.460

0.167

0.329

0.151 0.110 0.236

MinVis

R50

0 .  480

0.705

0.521

0.462

0.568

0.267

0.494

0.249 0.142 0.309

IDOL

R50

0 .  468

0.697

0.508

0.474

0.577

0.273

0.478

0.282 0.146 0.372

convolutional-based architectures to segment object instance in frames and later use heuristics to associate these instances based on clues, such as mask overlapping ratios (IOU) and appearance similarity. Hand-designed heuristics may fail

in challenging scenarios, such as occlusions and rapid changes in motion and

appearance. 

The results shown in Table 1 suggest that as the complexity of the frames increases, the performance is more likely to vary as the count of object queries changes. CTVIS performs the best when the object queries’ count is  Qc = 100

yielding  AP = 0 .  490 on YouTube-VIS 2019 and  Qc = 32 on OVIS dataset with AP = 0 .  242. DVIS has the best performance at  Qc = 32 with  AP = 0 .  493 and Qc = 300 with  AP = 0 .  303 for YouTube-VIS and OVIS, respectively. GenVis has the best performance at  Qc = 64 with  AP = 0 .  355 and  Qc = 300 with  AP = 0 .  167. 

MinVis has  AP = 0 .  491 and  AP = 0 .  267 for  Qc = 32 and  Qc = 300 on YouTube-VIS and OVIS, respectively. IDOL has  AP = 0 .  478 and  AP = 0 .  273 at  Qc = 100

and  Qc = 300. Taking both average precision and average recall into account, there is slightly an increase in performance as the object queries count increases. 

On average, all methods show less variance on YouTube-VIS 2019 in comparison

to OVIS dataset. OVIS dataset has more challenging scenes and sequences have

occlusions and instances disappear and reappear more often. All methods are using
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CTVIS

GenVis

VISD

MinVis

IDOL

Fig. 4. 

Qualitative results: Video instance segmentations obtained on a video clip from the YouTube-VIS dataset are visualized. Each row represents the results obtained by CTVIS, GenVis, DVIS, MinVis, and IDOL, respectively, while each column shows different instance masks and instance IDs obtained at the time steps  t 1 , t 30 , t 60 , t 90, respectively. 

CTVIS

GenVis

VISD

MinVis

IDOL

Fig. 5. 

Qualitative results: Video instance segmentation results obtained on a selected video clip from the OVIS dataset are visualized. Each row represents the results obtained by CTVIS, GenVis, DVIS, MinVis, and IDOL, respectively, while each column shows the segmentation results (where each segmentation color for each algorithm represents the same ID over time), in different time steps  t 1 , t 15 , t 30 , t 45, respectively. 
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their respective pre-trained weights, but there is an obvious performance drop on OVIS dataset which can be attributed to the elevated complexity in sequences. 

We evaluated five distinct methods, IDOL, GenVIS, MinVIS, DVIS, and CTVIS, 

by analyzing their performance over a series of time steps selected from OVIS

dataset. Figure 4 shows sample qualitative results from the YouTube-VIS dataset and Fig. 5 shows sample qualitative results from the OVIS dataset. The qualitative analysis is organized such that each row shows results obtained by a specific VIS

method, while the columns correspond to frames at different time steps. 

5. Conclusion

Video instance segmentation (VIS) is an important task today, with applications

in different areas including autonomous driving, surveillance, video editing, augmented reality, target recognition and tracking, medicinal imaging, and diagnosis. 

Segmenting, identifying, and tracking instances simultaneously over time is a challenging task. The discrimination of instances in the embedding space plays a vital role in associating the instances across multiple frames. In this regard, various deep learning-based methods, specifically recently proposed query-based techniques have shown promising performance on VIS applications. The transformer (query)-based

methods typically report S.O.T.A results by performing better at capturing the

dependencies in the same frame, and intra-frame through the attention mechanism. 

Changing the number of queries may reflect on the overall performance of the model with a possible computational gain. In this regard, in this chapter, our main objective was to study the video instance segmentation task by answering the question of what effect the query count has on the VIS performance and what the potential gains would be. While doing so, we chose S.O.T.A VIS methods and run them on

two VIS challenges, YouTube-Vis and OVIS, which cover different levels of complexity in scenes. Our preliminary results indicate that there is a correlation between the expected instance count in the frame and the query count for those algorithms on those VIS datasets. 
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Deep learning has emerged as the dominant modeling technique in the field

of pattern recognition and computer vision in the last decade. Its rise has

been followed by unprecedented performance breakthroughs in various appli-

cation domains, including image-to-image domain translation and other types

of domain transfer tasks. Alongside neural network architectures and different

training heuristics, design and choice of adequate learning objectives became

crucial for successful learning of complex nonlinear dependencies, described by

overparameterized models in quest for high learning capacity. The evolving field of information geometry offers well-defined concepts that can be applied to learning process and thus leverage on relevant information present in the data samples. 

Besides the usual cross-entropy function, commonly used by many supervised

learning models, there are also many other types of information distances that

could be utilized as effective regularization terms in learning process. Starting from the Fisher information matrix and its significance in achieving efficient statistical estimates, we revive the applications of different information geometry concepts in computer vision and present one novel application involving the concept of feature map regularization. We hope that this short overview stimulates

further interest on the interplay between deep learning and information geometry in the future. 

1. Introduction

Design of complex deep learning models1,2 has brought significant advances in solving many real-world computer vision tasks. This includes various type of inverse problems in imaging, 3,4 object detection, 5 tracking, 6 segmentation, 7,8 style adaptation, 9 and image-to-image domain translation. 10,11 Besides the constant need for 373
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efficiency improvements in terms of memory and processing requirements during the training phase, there have also been many independent research directions toward effective learning strategies12 and objectives. 13 One of such attempts also includes considerations of different types of information distances as appropriate regularization terms for minimizing decision risks and improving model generalization. 

Due to their natural property to model different sources of uncertainties that are always present in the training data, introduction of such constraints can be especially useful in the case of unbalanced dataset and varying quality of observations. 

Since the information distances describe discrepancies between the contents of different information sources, they are also at the core of the main principle of pattern recognition, 14 which aims at decision risk minimization through choices made on the principle of minimum discriminative information between incoming samples and learned model distribution. 15

Deep learning and information geometry16,17 have been the subject of vast research interests in recent period. Although many of the supervised deep learning approaches rely on the cross-entropy, 18 i.e., the Kullback–Leibler (KL) divergence, 19 as the usual part of the learning objective, 13 there have not been many applications of other types of information distances in the learning process. It is mostly due to the difficulty of introducing such terms in the objective during the training phase. In contrast to the cross-entropy term that usually forces outputs of the neural network toward the desired one-hot discrete distribution,2 adding other types of information distances as additional regularization terms can be difficult due to the need to define necessary statistics that will correspond to the specific task requirements. In addition, such regularization terms usually come with higher computational as well as memory complexities in the case of gradient backpropagation. Nevertheless, possibility to aggregate information contained in the network elements during the learning process and use constraints based on such statistics to drive the optimization outcome toward desired behaviour is one of the tempting research directions. 

In the past, information distances have been applied in various pattern recog-

nition problems, 20,21 including clustering, 22,23 or applications in shape retrieval. 24

Similarly, such distances have been extensively used in classical computer vision, as appropriate tools for solving complex image matching, tracking or retrieval tasks,25

based on generic statistical descriptors, e.g., Refs. 26,27. Thus, it can be said that their applications are naturally related to the types of problems where effective distance computations between complex entities are required. On the other hand, 

dominant deep learning model architectures in the recent period have been convo-

lutional neural networks (CNNs)28 and vision transformers (VTs), 29 which are also extensively used as effective hierarchical feature extraction backbones in adversarial training setups like generative adversarial networks (GANs).30 For such systems,31

it is of utmost importance to robustly learn complex probability distributions, 

which makes them very appealing for applications of various types of informa-

tion distances. 32 Similarly to classical clustering problems, 33 training of GANs has
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explorative nature and aims for implicitly identifying modes of complex high dimensional data distributions. Thus, besides the data space exploration and learning of characteristic data centroids, as natural and straightforward applications of complex distance functions, information distances also play a crucial role in driving the deep learning process. It is especially in cases of unsupervised learning, like in image-to-image translation problems, 34 where unpaired sets of image data from two different image domains or data modalities10 are usually used to learn complex mappings from one image domain to another. 35 In such systems, utilizing conditional GAN models that allow generation of data conditioned on specific input, i.e., effectively learning conditional probability distributions, the introduction of proper information distances can play a crucial role in successful model performance. 

In the following, we provide a brief overview of certain aspects of information

geometry and their relation to some problems of pattern recognition and com-

puter vision. In Section 2, we discuss the concept of Fisher information matrix and efficient estimation aimed at uncertainty minimization, followed by exposition of certain information distances and their derivations. In Section 3, we briefly review applications of Fisher vectors and covariance descriptors’ matching, as classical applications of information geometry in computer vision. Finally, in Section 4, we provide an example of deep learning image-to-image translation driven by feature map regularization using information distances. 

2. Information Geometry

By combining concepts from differential geometry with probability and statistics, information geometry36,37 has opened a broad field for studying different scientific disciplines under a common mathematical framework. As pointed out in Ref. 38, by considering parametric families of probability distributions as points on statistical manifolds, it brought geometrical interpretation into the design of statistical models and information sciences. Such structures are characterized by metric distances that define shortest paths or geodesics between any two points corresponding to

two unique probability distributions in the considered parametric family or population space. 39 More formally, the statistical distance  D  between two distributions is defined by integrating the infinitesimal element lengths  ds  along the shortest path θ( t) connecting the two distributions with parameters  θ

40

1 and  θ 2

:





1

 T

 D( pθ

( ∇θ)  G( θ) ∇θ dt. 

(1)

1( x) , pθ 2( x)) =

min

 θ( t)

0

 θ(0)= θ 1 ,θ(1)= θ 2

Quadratic differential form in Eq. (1) is characterized by positive definite matrix G( θ) that defines the Riemannian metric in the space of probability distributions and is equivalent to Fisher information matrix  I( θ). Such geodesic distance is also called Rao’s distance between two distributions on a statistical manifold and can take different forms depending on the type of parameterization. It can be shown39

[image: Image 955]

[image: Image 956]

[image: Image 957]

[image: Image 958]

[image: Image 959]

[image: Image 960]

[image: Image 961]

[image: Image 962]

376

 B. Brkljač & M. Janev

that computing Mahalanobis distances corresponds to special cases of computing

inner products in specific tangent planes of the Fisher–Rao statistical manifolds. 

Rao manifolds are also particularly suitable due to metric properties of the geodesic distance, which satisfies the triangle inequality and symmetry. On the other hand, there are also other types of distance functions, induced by other geometries, in which geodesics are not defined anymore as shortest path lengths but as curves

that ensure parallel transport of vectors,39 like in the so-called Amari–Chentsov statistical manifolds. Although such distance functions, like many information theoretic divergences, do not satisfy the symmetry property, the notion of information theoretic projections can still be present, 41 allowing definition and minimization of different types of  f -divergences. 38 An alternative way of measuring distance between two probability distributions is also using the theory of optimal transport, which is based on the earth mover’s distance, i.e., Wasserstein distance. 32

2.1.  Fisher information and uncertainty minimization

In order to illustrate the general principle of how information distances like Eq. (1)

utilize collected information about unknown quantities, we consider the structure of Fisher information matrix  I( θ) and how it inherently reflects uncertainty minimization during the learning, i.e., model training process. Let us consider the simplest case of parametric conditional probability density function (pdf)  p( x|θ) =  pθ( x) that describes distribution of observations or features  x ∈  R d  depending on unknown scalar parameter  θ, i.e., likelihood that parameter should have assigned value based on observations. 42 Then, the expected value of the likelihood slope, the so-called score function, can be defined as









E

 ∂  ln  p( x|θ)

 ∂  ln  p( x|θ)

 ∂p( x|θ)

 p

=

 p( x|θ) dx =

 dx = 0 , 

(2)

 θ

 ∂θ

 ∂θ

 ∂θ

assuming regularity conditions that allow interchange of the order of integration and differentiation and the fact that

 p( x|θ) dx = 1. Since expectation is computed

by integration over  x, it also holds that for any function  ξ( θ):









 ∂  ln  p( x|θ)

 ∂  ln  p( x|θ)

 ξ( θ) E p

= E

 ξ( θ)

= 0 , 

(3)

 θ

 p

 ∂θ

 θ

 ∂θ

including the function  ξ  that represents the expectation of an estimator ˆ

 θ  depending

on observations or training samples  x:



E p [ˆ θ] =

ˆ

 θ p( x|θ) dx =  ξ( θ) . 

(4)

 θ

After differentiating Eq. (4) with respect to  θ, and taking into account Eq. (3) and relation ( ∂  ln  pθ( x) /∂θ) pθ( x) =  ∂pθ( x) /∂θ, it follows that





 ∂ξ( θ)

 ∂  ln  pθ( x)

 ∂  ln  pθ( x)

=

ˆ

 θ

 pθ( x) dx −  0 =

(ˆ

 θ − ξ( θ))

 pθ( x) dx. 

(5)

 ∂θ

 ∂θ

 ∂θ
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By considering the right-hand side of Eq. (5) as the inner product between the first two factors in the integrand, from Cauchy–Schwarz inequality, it follows that













 ∂ξ( θ) 2

2

2

 ≤

ˆ

 ∂  ln  pθ( x)

 θ − ξ( θ)

 pθ( x) dx

 pθ( x) dx. 

(6)

 ∂θ

 ∂θ

Since the first expectation in Eq. (6) is the variance of ˆ

 θ, the Cramér–Rao40 lower

bound on variance of estimation of pdf’s deterministic parameter  θ  is given by σ 2  ≥

( ∂ξ( θ) /∂θ)2





ˆ

 θ

 . 

(7)

E p ( ∂  ln  p

 θ

 θ( x) /∂θ)2

If there exists linear relation between the integrands in Eq. (6), i.e., the scaling term c( θ) independent of observations  x:

 ∂  ln  pθ( x) /∂θ =  c( θ)(ˆ

 θ − ξ( θ)) , 

(8)

then equality in Eqs. (6) and (7) holds, and the minimum variance bound estimator or an efficient estimator ˆ

 θ  with variance  σ 2 = ( ∂ξ( θ) /∂θ)  /c( θ) is obtained. If Eq. (8)

ˆ

 θ

would be equal to 0, it would correspond to the maximum likelihood (ML) estimate of  θ, which is always the case when en efficient ˆ

 θ  is also unbiased, i.e., E p [ˆ

 θ] =

 θ

 ξ( θ) =  θ +  b( θ), where the bias term is  b( θ) = 0. Thus, the Cramér–Rao lower bound for unbiased estimator variance becomes









 σ 2  ≥  E − 1

 ∂ 2

 , 

ˆ

( ∂  ln  p

=  −  E − 1

ln  p

(9)

 θ

 p

 θ( x) /∂θ)2

 θ( x) /∂θ 2

 θ

 pθ

where an identity based on differentiating Eq. (2) with respect to  θ  is used.a Since uncertainty level is inversely proportional to variance, quantity corresponding to expectations in Eq. (9) is also known as Fisher information: I( θ) =  − E p

 ∂ 2ln  p

 . 

(10)

 θ

 θ( x) /∂θ 2

It can be interpreted as a measure of how much information about training

parameter on average bring observations, i.e., how the curvature of the log-likelihood function corresponds to the quality of the estimate ˆ

 θ. The higher the curvature, the

lower the uncertainty and ˆ

 θ  brings more information about real  θ. It is also known

as the variance of the score (likelihood sensitivity) since under adopted assumptions, according to Eq. (2), score expectation is zero. Thus, it describes the sharpness of the log-likelihood around maximum likelihood estimate. In case of more complex

distributions, generalization is provided by Fisher information matrix:









 ∂  ln  pθ( x)

 ∂ 2ln  pθ( x)

[ I( θ)] ij ≡ Iij( θ) = E p

 · ∂  ln  pθ( x) =  − E

 . 

(11)

 θ

 p

 ∂θi

 ∂θj

 θ

 ∂θi∂θj









a

 ∂  ln  p( x|θ)

 ∂ 2 ln  p( x|θ)

 ∂  ln  p( x|θ)

 ∂p( x|θ)

Identity:  ∂

 ∂θ

 ∂θ

 p( x|θ) dx = E p

+

 dx = 0. 

 θ

 ∂θ 2

 ∂θ

 ∂θ



 ∂  ln  p( x|θ)  p( x|θ)

 ∂θ
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As pointed out by Eq. (1), Rao’s information distance is defined by integrating quadratic forms characterized by Fisher information matrices along the geodesic. 

Thus, the cross-entropy  H( p, q) between two close distributions  p  and  q  from the same population space of  D-dimensional parameters  θ  and  θ +  dθ, respectively, can be approximated by corresponding Fisher information matrix  Iij( θ). Namely, the non-negative KL divergence of  pθ  from  qθ+ dθ =  pθ +  dpθ  is given by p( x)

 D KL( pq) 

 p( x) ln

 dx =

 pθ( x) ln  pθ( x) dx −

 pθ( x) ln  pθ

 q( x)

+ dθ( x) dx, 

(12)

where  D KL( pq) =  H( p, q)  − H( p), and  H( p) is the entropy of  p. Using the second-order Taylor approximation and denoting  dp

 ∂p

 θ  by

 θ

 k ∂θ δθk, the second term in

 k

Eq. (11), representing  H( p, q), can be written as





 −

 pθ( x) ln [ pθ(1 +  dpθ/pθ)] ( x) dx =  H( p)  −

 pθ( x) ln [1 +  dpθ/pθ] ( x) dx











 dpθ

 dpθ  2

=  H( p)  −

 pθ( x)

 −  1

+  O( dp 3

( x) dx

 p

 θ)

 θ

2

 pθ





 ≈

1

 ∂pθ( x)

 H( p)  −

 δθk

 pθ( x)

 dx

 p

 ∂θ

 k

 θ( x)

 k











 −

1

 ∂pθ( x)

1

 ∂pθ( x)

 δθiδθj

 pθ( x)

 dx

 p

 ∂θ

 p

 ∂θ

 i

 j

 θ( x)

 i

 θ( x)

 j











 ∂  ln  p



 θ( x)

 ∂  ln  pθ( x)  ∂  ln  pθ( x)

=  H( p)  −

 δθk E p

 −

 δθ

 . 

 θ

 iδθj  E p

 ∂θ

 θ

 ∂θ

 ∂θ

 k

 k

 i

 j

 i

 j

(13)

From there, assuming regularity conditions, based on Eq. (2) and identity in Eq. 

(11), it follows that for two close distributions, their KL divergence directly depends on corresponding Fisher information matrix:







 ∂  ln  p



 θ( x)  ∂  ln  pθ( x)

 D KL( pq)  ≈

 δθiδθj E p

=

 δθ

 θ

 iδθj Iij ( θ) . 

 ∂θ

 ∂θ

(14)

 i

 j

 i

 j

 i

 j

The presented result indicates that the KL divergence, as the mostly used

information distance in training of deep neural networks (DNNs), is fundamen-

tally related to learning problem and uncertainty minimization in model parameter estimation. 

In the original paper, 19  D KL( pq) was denoted as  I(1 : 2) and interpreted as the generalization of the logarithmic measure of information proposed in Ref. 43 for the case of continuous distributions, while under the term divergence was considered its symmetrized version, i.e.,  I 1:2( x) +  I 2:1( x), originally proposed in Ref. 44, as one of the possible invariants that describe discrepancy between two laws of chances. 
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It should be mentioned that for successful recognition and achieving minimal

decision risk, it is important to have not only ideal estimation or learning of corresponding distributions that describe different categories but also the good way in which the choice and design of features that describe those categories is made. This can be best seen on the example of risk definition, where the final or average cost of decisions made by the recognition system  R  directly depends on the shape of the distribution of features  x, on the basis of which the constructed decision rule  F

that defines the appropriate boundaries and decision regions in the observed feature space is made:



 R =

 R [  F( x) |x ]  p( x) dx. 

(15)

Therefore, the ultimate goal of recognition system design is to reduce the con-

ditional risk  R [  F( x) |x ], not necessarily in the case of each individual  x, but above all in those situations that are expected to occur most often in the future operation of the system, while in the rare cases, it is primarily necessary to ensure that the appropriate outcome of the system’s behavior does not have catastrophic consequences. 

2.2.  Information distances

Generally, it can be said that the KL divergence presented in Eq. (12) is the most commonly used information distance, in the cases when its analytical or numerical computation is feasible. Therefore, additional simplifying assumption is usually made. Thus, the KL divergence  D KL( NANB) between two  d-dimensional Gaussian distributions with covariances  A  and  B, and means  μA, μB, is given by 1

det Σ B





 T

 D KL =

ln

 − d + tr Σ − 1

+ ( μB − μA) Σ − 1

 , 

(16)

2

det Σ

 B  Σ A

 B ( μB − μA)

 A

where the following matrix identity has been applied:









E

 T

 T

 p

( x − μ

Σ − 1

= ( μ

Σ − 1

Σ − 1

 , 

(17)

 A

 B )

 B ( x − μB )

 A − μB)

 B ( μA − μB) + tr

 B  Σ A

and Gaussian distribution is defined by 



1

 T

 p( x) =

 − 1

 d/

exp

( x − μ) Σ − 1( x − μ)  . 

(18)

(2 π) 2 | Σ | 1 / 2

2

However, in order to achieve symmetry, the symmetrized KL divergence, 19 also known as Jeffrey’s matrix divergence, is often used:

1





 J ( A, B)  ≡ D KL ( A, B) =

tr Σ − 1

 . 

(19)

2

 A  Σ B + Σ − 1

 B  Σ A −  2 I

It is obtained as the sum of  D KL( NANB) and  D KL( NBNA) and has been repeatedly proposed in the literature in the context of various applications. 45 The basic property of the symmetrized version is that it does not include the calculation of the logarithm of the determinant, nor the eigenvalues or logarithms of the matrix, 
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but can require the inversion of the corresponding covariance matrices, which can sometimes be close to singular. In Eq. (19), it is assumed that Gaussians differ only in the shape of corresponding covariances but have the same means:  μA =  μB. 

Although being symmetric,  D KL( A, B) still does not satisfy the triangle inequality and thus is not a metric. 

In the case of distributions characterized by the space of  d-dimensional symmetric positive definite (SPD) matrices, Sym++

 d , like the previously discussed covari-

ances, metric information distances can be obtained by considering characteristics of the corresponding Riemannian manifold. 46 Although spectral characteristics of the matrices define their structure and affect their distances, eigenvalues of  A  and B  are not sufficient alone. Instead, eigenvalues  λi( A, B) of the matrix  A−  12  BA−  12 , which correspond to the solutions of the generalized eigenvalue problem, i.e., characteristic equation  |λA − B) | = 0, are used to define Riemannian metric between two matrices  A  and  B  as



1

 d



2

 d( A, B) =

log2  λi( A, B)

 , 

(20)

 i=1

equivalent to





1



2







 d( A, B) = tr log2  A−  12  B A−  12

= log  A−  12  B A−  12   , 

(21)

 F

where log denotes matrix logarithm, which for non-defective matrix  H  corresponds to logarithm of its eigenvalues Λ after similarity transform R − 1HR, i.e., ln H = R ln ΛR − 1. Geodesic distance in the form of presented Riemannian metric is derived47 by moving along the geodesic through tangent spaces on the manifold of SPD matrices48 and can be used as in Refs. 49, 50. 

In addition to Eq. (21), the log-Euclidean metric, proposed by Ref. 51, has been also used as a similarity measure on Sym++

 d :







1

2

2

 d( A, B) =    log  A −  log  B F = tr log  A −  log  B

 . 

(22)

Practical advantage of the log-Euclidean metric in comparison to the one in

Eq. (20) is reflected in the separation of matrices when calculating distances, by avoiding the calculation of general eigenvalues of the observed matrices. It enables the calculation of logarithms of individual matrices before the calculation of the distance itself, which results in Euclidean computations in the domain of matrix algorithms. 51 Just calculating the logarithm of the matrix is a computationally demanding operation, which is one of the general disadvantages of these methods. 

It can be shown that distance in Eq. (22) represents a lower bound on Eq. (20), while the upper bound corresponds to symmetrized KL divergence in Eq. (19). 

In addition to previously presented symmetric measures between SPD matrices, 

there are also other symmetric information distances derived from the family of

divergences designated as Bregman divergences. The name comes from the distance

function of points in vector space that was defined as part of the optimization

procedure proposed in Ref. 52. 
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2.3.  Bregman matrix divergences, symmetrizations, and extensions

In most cases, these information distances are not metrics but can be generalized to the space of SPD matrices and in some cases, after symmetrization and additional extensions, can be used as metric. 

If  ϕ : R d →  R is the differentiable function over a convex set, the Bregman vector divergence is defined as the error of approximation of  ϕ( x) using the first-order Taylor expansion of the function  ϕ  in point  y:





 Dϕ( x, y) =  ϕ( x)  − ϕ( y) + ( x − y) T ∇ϕ( y)  . 

(23)





If the scalar product between matrices  A  and  B  is defined as  A, B = tr  AT B , and the gradient of the scalar function of the matrix as  ∇ϕ( A), Bregman matrix divergence can be defined as





 T

 Dϕ( A, B) =  ϕ( A)  − ϕ( B)  −  tr ( A − B)  ∇ϕ( B)  , (24)

which leads to different divergences, depending on the choice of function  ϕ. Thus, by choosing the square of the Frobenius or Euclidean matrix norm as the corresponding convex function  ϕ( ·) =   ·  2 F , calculation of the gradient in Eq. (24) leads to the completion of the square of a binomial in Eq. (24) and results in the corresponding matrix divergence given by

 DF ( A, B) =  A − B 2 F . 

(25)

Similarly, it can be shown that the square of the Euclidean metric is also sym-

metric but vector Bregman divergence. 

When the convex function  ϕ  of the vector  x = ( x 1 , . . . , xd) T  in Eq. (23) is defined as  ϕ( x) =

 i ( xi  ln  xi − xi), which corresponds to the expression for unnormalized negative entropy of discrete distribution, after computing the gradient  ∇ϕ( y), i.e., partial derivatives  ∂ϕ( y) /∂yi = ln  yi, and arranging expressions, Bregman vec-d

tor divergence in Eq. (23) becomes  Dϕ( x, y) =

 i

 x

 − x

. If the

=1

 i  ln  xi

 y

 i +  yi

 i

vector  x  would be normalized such that ˜

 x  defines discrete probability distribu-

 d

tion, i.e., that ˜

 x  belongs to the simplex R d, 

 i

˜

 x

=1

 i = 1, convex function  ϕ(˜

 x)

would represent the negative entropy of discrete distribution ˜

 x. As a result, it

shows that after normalization of the vectors  x  and  y, Bregman vector divergence Dϕ  actually becomes KL divergence between discrete distributions ˜

 x  and ˜

 y, i.e., 



 Dϕ(˜

 x, ˜

 y) =

 i ˜

 xi  ln(˜

 xi/˜

 yi) =  D KL(˜

 x  ˜

 y). It also indicates that the relative entropy

in Eq. (12) essentially is a type of Bregman divergence generated by the negative of the Shannon entropy function defined in Ref. 43. 

Mahalanobis distance20 is also a type of Bregman vector divergence, derived from  ϕ( x) =  xT  Σ − 1 x. In Ref. 22, it was shown that iterative algorithms based on K-means and different types of distances can be analyzed under the general

model of vector quantization based on Bregman vector divergences. That is, their solutions correspond to a more general optimization problem that minimizes the

objective function in the form of the expected value of the Bregman divergence. 
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The minimum value of the described objective function is denoted as the Bregman

information of the random variable, a concept defined in Ref. 22, and measures the minimum expected cost of representing a set of samples of the random variable by the chosen prototype or centroid, provided that the cost of quantization, i.e., representation distortion, is measured by the adopted Bregman divergence. Analogously, the centroid of a set of SPD matrices can be also sought as the point corresponding to the minimum Bregman information, e.g., like in the case of a set of covariance matrices originating from the same population space of normal distributions. 

Starting from the convex function  ϕ  which defines the unnormalized negative entropy of the eigenvalues of a symmetric matrix  A,  ϕ( A) =

 i ( λi  ln  λi − λi), 

the matrix version of the previously presented Bregman vector divergence  Dϕ(˜

 x, ˜

 y)

that corresponded to the KL divergence of discrete distributions can be derived. 

Since  ϕ( A) = tr ( A  ln  A − A), which follows from the definition of the logarithm of symmetric matrix, ln  A =  Q  ln Λ QT , where  Q Λ QT  denotes diagonal quadratic form decomposition consisting of orthogonal matrix  Q  and diagonal ln Λ with elements that are logarithms of eigenvalues of  A, i.e., tr (A) = tr QΛQT = tr ΛQQT =







tr (Λ) =

 λ

Q (Λ ln Λ  −  Λ) QT =  ϕ(A); the

i

i, such that tr (A ln A  −  A) = tr

corresponding Bregman matrix divergence for SPD matrices  A  and  B  is given by D N ( A, B) = tr  A  ln  A − A  ln  B − A +  B . 

(26)

The presented directed distance between covariances of normal distributions is also known as Neumann’s divergence. 53 Since adopted convex  ϕ( A) in Eq. (26) has a similar form with entropy, the presented distance is also known as the quantum

relative entropy. 

When the convex  ϕ  is replaced by the sum of logarithms of the eigenvalues of a d

matrix,  ϕ( A) =  −

 i

ln  λ

=1

 i =  −  ln det  A =  − tr ln  A, which is also known as Burg’s entropy of eigenvalues, 54 Bregman matrix divergence better known as the LogDet or Burg’s divergence is obtained: 







 D B ( A, B) = tr  AB− 1  −  ln det  AB− 1  − d. 

(27)

It is derived by the definition from Eq. (24), where the second term in Eq. (27)

corresponds to the sum of the first two terms in Eq. (24), while the remaining terms in Eq. (27) are obtained based on the property of symmetric matrices that AT =  A  and matrix identity:  ∂ϕ( A) /∂Aij =  A− 1  ji. LogDet divergence directly reflects the spectral composition of SPD matrices, as can be seen when Eq. (27) is rewritten using spectral decomposition of  A  and  B, i.e.,  Q Λ QT  and  V  Ψ V T , with eigenvectors  qi  and  ψi, respectively:

 d

 d



 d

 λ



 i 

2

 λi

 D B ( A, B) =

 qT

 −

ln

 − d. 

(28)

 ψ

 i vj

 ψ

 i

 j

 i

=1  i=1

 i=1

Scalar product in Eq. (27) indicates that LogDet divergence depends on the angles between eigenvectors of SPD matrices, and the ratios between their eigenvalues. 

Vector variant of the LogDet divergence is the Itakura–Saito distance, 55 which
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by analogy with Eq. (27) can be derived for two vectors  p  and  q  in R d  simplex, d

by starting from the expression for Burg’s entropy:  ϕ( q) =  −

 i

ln  q

=1

 i.53 The

fact that the same functional form of the convex function  ϕ  generates vector and matrix divergences of the same type had been used in Ref. 55 to propose new information distances, by modification and generalization of parameterized versions of Burg’s LogDet divergence, which are also known as alpha-beta and gamma LogDet

divergences. 

By taking into account that the trace of the product of matrices is invariant to cyclic permutations, and that the determinant of the product is the same as the

product of determinants, it follows that the expression for Burg’s LogDet divergence D B ( A, B) in Eq. (27) is equivalent to KL divergence  D KL( NANB) between two normal distributions with the same mean values in Eq. (16). The same type of equivalence also holds for the symmetrized Jeffrey’s  D KL ( A, B) in Eq. (19), which can be obtained by symmetrizing corresponding LogDet divergence:

 d 



1

1

1 

1

 J ( A, B) =

 D

 D

 υi −  ln  υi − d +

+ ln  υi − d

2

B ( A, B) + 2 B ( B, A) = 2

 υ

 i

 i

=1

(29)

 d 



1 

1

1





1





=

 υi +

 − d = tr  AB− 1 + tr  BA− 1  − d, 

2

 υ

2

2

 i

 i

=1

where  υi  are the eigenvalues of the product  AB− 1. This type of equivalence had been also studied in Ref. 56. 

Finally, the last example of symmetrization of LogDet divergence is shown based

on Jensen–Shannon (JS) divergence. 57 The name JS comes from the connection between Jensen inequality and the concept of Bregman information in the case of

Shannon entropy. Namely, Bregman information  Iϕ ( X) of a random variable  X

represented by discrete distribution  p  on the set of  n  points  xi ∈  R d  is defined as the expected Bregman divergence between given set of points and their centroid:





 n



 Iϕ ( X) = min E p Dϕ ( X, c) = min

 pi Dϕ ( xi, c) . 

(30)

 c

 c

 i=1

In an ideal case when  p  is known, the solution  c∗  does not depend on the type n

of divergence and is given by  c∗ = E p [ X] =

 i

 p

=1  i xi, however, in practice, the

choice of distance determines the type of optimization problem and solution. The value of  Iϕ ( X) always depends on the type of distance, and when interpreted as an average distance of a set of  n  probability distributions from the average distribution c, then it is also known under a more general term information radius.58 Thus, if the directed Rényi divergence of the order alpha59 is used instead of the presented Bregman divergence, or computing the average is defined in a more general way, 

e.g., like using Kolmogorov–Nagumo mean in Ref. 59 instead of arithmetic mean or by using  f -divergences in Ref. 60, then different variations on the definition of information radius are possible, leading to different generalizations and solutions of the corresponding optimization problem. It should be mentioned that Rényi divergence
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of the first order reduces to KL divergence61 and in a similar way is related to the Rényi entropy as the KL divergence is related to Shannon entropy. In the following, we show how the concept of information radius is embedded into the definition of JS divergence and its extensions through the fact that it measures information distance between the average distribution and remaining distribution(s) in a mixture or a set. 

Let us consider the definition of Bregman vector divergence in Eq. (23) in the case when  y  is equal to the centroid E [ x] of a set of points  xi  in simplex R d. For convex function  ϕ,  it holds that E  ϕ ( X)  − ϕ  E  X

 ≥  0, and since expectation





is linear, it also holds that E   X −  E [ X]  , ∇ϕ (E [ X])  = 0. From there, it follows that 











E  ϕ ( X)  − ϕ  E  X = E  ϕ ( X)  − ϕ  E  X −  X −  E [ X]  , ∇ϕ (E [ X])   , (31)

where it is clear that the right-hand side corresponds to the expectation of the Bregman divergence in Eq. (23). Thus, in the given case, the expectation of Eq. (23)







can be also interpreted as the difference between E  ϕ ( X) and  ϕ  E  X , where the choice of  ϕ  is determining or inducing the specific type of Bregman divergence. 

If  ϕ  would be the Shannon entropy function  H, from the described difference, we would directly get the generalization of the symmetrized JS divergence given by

 M



 D JS ( r 1 , . . . , rM ) =  H ( s)  −

 πj H ( rj) , 

(32)

 j=1

which measures the average information distance between each of the  M  components or distributions  r 1 , . . . , rM  in the probability mixture from the mixture or the M

 M

average  s =

 j

 π

 π

=1

 j rj , 

 j=1  j = 1. It comes from the fact that the mixture is

by definition an average of the components, i.e., distributions, while the negative entropy is an expectation and a strictly convex function. In the case of only two distributions  p  and  q, symmetric  D JS reduces to the sum of two KL divergences D KL ( p ( p +  q)  / 2) and  D KL ( q ( p +  q)  / 2) defined by d



 pi

 K JS ( p, q) =

 pi  ln

=  D

1

KL ( p  ( p +  q)  / 2) . 

(33)

 p

 q

 i

 i + 1  i

=1

2

2

Since we are more interested in matrix divergences, extensions of  D JS for two matrices  A  and  B  can be obtained directly from Eqs. (32) and (33). By considering multivariate normal distribution  NA  and  NB  with the same mean values and covariances  A  and  B, for which we have already established equivalence of KL divergence D KL ( A, B) in Eq. (19) with Burg’s or LogDet divergence  D B ( A, B) in Eq. (27), it follows that the symmetric Jensen–Bregman LogDet divergence, 25 which is also known as the Stein divergence, is given by









1

 A +  B

1

 A +  B

 S ( A, B)  ≡ D JBL ( p, q) =

 D

 A, 

+

 D

 B, 

 . 

(34)

2

B

2

2

B

2
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Symmetric  D JBL indeed is an information radius of a set of equally probable normal distributions since the sum of  NA  and  NB  under given conditions is also Gaussian with covariance ( A +  B) / 2. In Refs. 62, 63, it has been shown that  D JBL is also a metric. Rewritten in the same form as Eq. (27), it is given by the expression A +  B

det  A+ B

 S ( A, B) = ln det

 −  1 ln det ( AB) = ln

2



 . 

(35)

2

2

det ( A) det ( B)

Applications of some of presented information distances in guiding the process

of deep learning are discussed in Section 4. 

3. Fisher Vectors and Covariance Descriptors

Before going into the example of learning hierarchical feature representations using information geometry driven deep learning, we briefly look back at the feature engineering methods in computer vision that had significantly relied on the introduced concepts of information geometry. 

Visual search and image classification had been the main areas of application

of statistical image descriptors in the past. Histogram-based methods had continuously evolved from the initial bag of words (BoW) models, 64 over VLAD, 65 toward Fisher vector-based image representations66 and their combinations with CNNs67

and kernel-based methods.68 An extensive overview of different research directions and their development can be found in Ref. 69. The main idea was that the characterization of different images or image regions can be performed by extracting sufficient statistics or aggregate information about the underlying processes that generate observed image data. In the beginning, it was focused only on the original image pixels, while the later evolved into extracting statistics of image features at different levels of image abstraction. Two types of image descriptors that were particularly popular in the context of information distances were Fisher vector-based image representations70 and region covariance descriptors. 27

Let us consider a set  X  of  N  multi-dimensional vectors or image descriptors xi ∈  R d  extracted from some local region or segment in the scene by sampling the original image, its filtered copies obtained at the output of a filter bank, or any other multi-dimensional feature map generated in some nonlinear way, e.g., by DNN, from the original image or input signal. Depending on the approach, the cardinality of  X

can vary significantly, which brought into practice the vector quantization methods like BoW in Ref. 64 and later on Fisher vectors, as efficient approaches to produce the finite length description of each image or a region from which the sampling of xi  was performed. Similarly, covariance descriptors, as the second-order statistics, were an alternative way of aggregating arbitrary number of vector samples from

the region in multi-dimensional feature map into a finite length description of the content. 
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Although the codebook learning71 was usually performed offline, i.e., with less stringent computational requirements, the idea of using complex information distances as efficient distortion measures in vector quantization or overcomplete dictionary learning started to appear much later, 72,73 when descriptors in the form of region covariances74 were more common. Thus, formulation of the corresponding dictionary learning problem over the space of SPD matrices or covariances

was usually done by using the matrix Bregman divergences like Burg’s or LogDet

divergence,72,75 while efficient matching without dictionary learning or covariance descriptor coding was performed by using Stein divergence. 25 Logical extension of covariance coding methods76 was the introduction of appropriate kernel functions or reproducing kernel Hilbert spaces based on matrix information distances, 77 which brought additional modeling capabilities. A very good overview of kernel methods on finite-dimensional covariance matrices as well as infinite-dimensional covariance operators in computer vision can be found in Ref. 78. 

Fisher vector encoding methods aggregate local image descriptors  xi  by replacing the set  X  with scores of parameters that were used to fit a mixture model onto observations  xi. By computing the sensitivity of the estimated parametric log-likelihood for each parameter using  N  samples  xi, i.e., by computing the score function through gradient computation, the set  X  is replaced by the corresponding Fisher vector with dimension equal to the number parameters in the mixture

(dimension of the gradient). Using quadratic form based on the inverse of the Fisher information matrix  I( θ), Eq. (11), it is possible to define Fisher kernel, i.e., data dependant nonlinear distance between two sets of local image descriptors. Some

recent examples of Fisher kernel encoding include Refs. 79,80 and encoding of CNN

feature maps in Ref. 67. 

4. Feature Map Regularization and Deep Learning

As have been shown in the previous sections, when it comes to applications of information distances in learning problems, they can be used in different roles depending on the type of problem and computational requirements. The methods range from

designing complex learning objectives that are targeting structured image descriptors like region covariances, e.g., solving the determinant maximization problem or inducing the distance dependant kernel mappings, and all the way to model

deployment stage, where they can be directly applied as corresponding distance or matching functions for incoming input queries. Besides the above mentioned, they can also be applied as additional regularization terms in order to direct model optimization and enforce specific learning objectives. In the following, we discuss one of such examples81 in deep learning scenario corresponding to image-to-image domain translation problems based on CycleGAN10 approach. 
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4.1.  Image-to-image domain translation

Domain translation considers vision tasks in which the goal is to generate images with certain visual appearance that is characteristic for the target image domain  Y

based on an input or query image from the original input domain  X  but, at the same time, preserve the original information content. Model training can be performed in a supervised manner, when sets of task-specific image pairs are available, e.g., like in Fig. 1 where the goal is to produce the result resembling semantic segmentation of the input image, or Fig. 2 where the map based on an input satellite image should be generated. However, it is also possible to design translation in an unsupervised (a) domain X

(b) domain Y

Fig. 1. An example of paired image samples from two different domains in CityScapes dataset.82

(a) domain X

(b) domain Y

Fig. 2. An example of paired image samples from two different domains in Aerial2Map dataset. 35
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manner, where unpaired image samples from both domains are used to train image

generators operating in both translation directions. 

Some examples of fully supervised methods include pix2pix, 35,83 and different variants of models described in Refs. 30, 31 that are based on conditional generative adversarial networks (GANs). On the other hand, unsupervised approaches usually

explore the spaces of input and target domain distributions in order to identify generative models capable of performing meaningful translation that would correspond to the ideal case of paired image samples. An obvious advantage of unsupervised

methods is that they do not require labeled datasets, which can be hard to have

in certain cases, e.g., like in the case of deraining where the synthetic data are usually used instead. 84 The most notable examples of unsupervised image translation methods include CycleGAN, 10 where the novel cycle-consistency loss idea was introduced for the first time, SimGAN, 85 CoGAN, 86 DiscoGAN, 87 etc. 

Similar concepts also appear in neural style transfer, 9, 88 but these types of methods usually approach the problem of domain adaptation in a slightly different manner. During model deployment, it is assumed that besides the main query image as the input, there is also available an additional image from the target domain that guides the style transfer. Also, there are types of methods like those in Ref. 88 that perform this operation on the fly, without using a pre-trained model. 

4.2.  CycleGAN based approach

In an adversarial framework, 30 discriminator network  D  and generator network  G

compete in order to learn underlying data distributions. Thus, GAN implementing

 G  describes the true data distribution  p( x) and learns to confuse  D, while  D  is trying to discard synthetic samples from  G  while sampling latent variable  z  with distribution  p( z). The goal is to achieve minimax solution of the following problem: min max E x∼p

 G

 D

( x) ln[ D( x)] + E z∼p( z) ln[(1  − D( G( z)))] . 

(36)

Let us denote the original or “left” domain as  X  and the target or “right” domain as  Y . According to Ref. 10, the cycle consistency loss enforces consistency in the outputs of two GANs that implement translation mappings, one generator per each

of two opposite directions:  L :  X → Y  and  M :  Y → X. Since there are no paired image data (unsupervised setting), the main idea is that the learned mappings

should be consistent and as much as possible close to bijections, i.e.,  M ( L( x))  ≈ x and  L( M ( y))  ≈ y, where  M  and  L  are implemented by generators  GX→Y  and GY →X, respectively, while the discriminators are implemented by networks  DX

and  DY . It follows that the corresponding adversarial loss functions are L adv( GX→Y , DY ) = E pY ( y)[ln  DY ( y)] + E pX( x)[ln(1  − DY ( GX→Y ( x)))] , (37)

 L adv( GY →X, DX) = E pX( x)[ln  DX( x)] + E pY ( y)[ln(1  − DX( GY →X( y)))] , 
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and the cycle consistency loss  L cyc( GX→Y , GY →X) in CycleGAN models10 is L cyc = E pX( x)[ GY →X( GX→Y ( x))  − x] + E pY ( y)[ GX→Y ( GY →X( y))  − y] . 

(38)

Denote with  λ cyc the significance of  L cyc, the overall optimization objective of image translation methods based on CycleGAN,  L CycleGAN( GX→Y , GY →X, DX, DY ) is L adv( GX→Y , DY ) +  L adv( GY →X, DX) +  λ cyc L cyc( GX→Y , GY →X) . 

(39)

4.3.  The shape of Gaussians and feature maps’ sampling

In order to allow the introduction of additional regularization terms in Eq. (39) that would reflect the information distance between distributions of features carrying the same information about the image content, an appropriate structure for the aggregation of information from DNN feature maps is necessary. For this purpose, a type of region covariance descriptor74 is utilized. Having in mind that covariance matrices determine the shape of multivariate Gaussians, measuring similarity between

information contained in sampled feature maps will correspond to comparing the

shape of Gaussians (SoG). 89

Since multivariate normal distributions are also characterized by their mean

values, while the Bregman matrix divergences presented in Section 2.3 correspond to the case when two Gaussians have the same means, in comparing the information content between layers of two networks, we rely on the SoG type of transform

proposed in Refs. 90, 91, i.e., Gaussian embedding (GE) that replaces each Gaussian with SPD matrix  P  defined by





Σ +  μμT μ

 f =  N ( x;  μ,  Σ)  → P =  | Σ |−  1

 d+1

 , 

(40)

 μT

1

where  N ( x;  μ,  Σ) denotes the  d-dimensional multivariate Gaussian distribution with centroid  μ  and covariance Σ, while  | · |  denotes the matrix determinant. 

4.4.  CycleGAN regularization

In Fig. 3 are shown the elements of the proposed regularization of the CycleGAN

objective in Eq. (39). It illustrates the forming of region covariance descriptors based on Eq. (40) from  d-dimensional feature maps. In the upper part of the figure are shown feature maps that are the result of processing in the encoder part of

the generator network  GX→Y  that is operating on the input samples ˆ

 x  from the

image domain  X. Similarly, in the lower part of Fig. 3, the process is repeated for the decoder part of the generator network  GY →X  operating on the samples ˆ

 y

from the domain  Y . Note that ˆ

 y =  GX→Y (ˆ

 x) in Fig. 3 indicates that the input ˆ

 x

and the output  GY →X(ˆ

 y) should be very close. Thus, the main idea of the proposed

regularization is that the corresponding feature maps in the encoder and the decoder parts of the shown generator networks should carry the same information content, 
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Fig. 3. Illustration of the proposed regularization of deep learning objective in CycleGAN based on minimization of information distances between distributions of feature maps in the encoder and the decoder parts of neural networks implementing forward and backward mappings in two image-to-image translation domains  X  and  Y . 

i.e., should have probability distributions of  d-dimensional features that are close in terms of introduced information distances. 

According to Fig. 3, in the given case when the generator networks  GX→Y  and GY →X  form function composition, each training sample ˆ

 x  produces  d-dimensional

feature maps in both networks, i.e., two region covariances for which an information distance is estimated. Thus, the information distance between distributions of features in the depicted layers of two generator networks (shown as the expectation term on the right-hand side of illustration) is averaged over all training samples ˆ

 x. 

It reflects the difference in the shape of Gaussians estimated from the features that should carry the same level of abstraction about the input image. In the forward direction,  GX→Y  feature maps are sampled at some depth of the encoder part of the network, while in the backward direction  GY →X, i.e., from “right” to “left”, feature maps are sampled from the layer at the appropriate depth in the decoder

network. 

Such a regularization term,  L fmcyc, is then used to better align the learning objective Eq. (39) with the goal of reproducing the same information content in images

[image: Image 1040]
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with different visual appearances, i.e., belonging to two different image domains. 

Thus, by enforcing similarity between image features of two generators operating in different image domains, there is possibility to improve the learning objective and domain translation using unpaired image data. 

More formally, let us consider the case when the sample ˆ

 x ∈ X  is propagated

through one full cycle of forward and backward mapping in the CycleGAN model. 

Denote the first and the last feature map tensors in the GAN network generator

 GX→Y  by  F ( f) ,  ˆ x

 X→Y ∈  R m( f) ×n( f) ×d  and  F ( l) ,  ˆ x X→Y ∈  R m( l) ×n( l) ×d, respectively. Similarly, denote the first and the last feature map tensors in the GAN network generator

 GY →X  by  F ( f) ,  ˆ y

 Y →X ∈  R m( f) ×n( f) ×d  and  F ( l) ,  ˆ

 y

 Y →X ∈  R m( l) ×n( l) ×d, respectively, when the sample ˆ

 y ∈ Y  is propagated through one full cycle of the CycleGAN mappings, i.e., in the opposite direction from ˆ

 x ∈ X. Also note that in the general case of different

DNN architectures, spatial size of the corresponding feature maps, i.e., the value of  m( f) in  GX→Y , can be different from  m( l) in  GY →X. Similar also holds for  n( f) and  n( l), where  f  and  n  denote indices of the specific layers in each DNN, while  m and  n  are functions returning size of the first two dimensions (height and width) of feature maps. The only constraint will be that the third dimension of the described feature map tensors should be the same, denoted by  d, as illustrated in Fig. 3. It is a necessary condition in order to have covariance descriptors of the same size, i.e., Gaussians from the same population space. For simplicity, we also assume that the internal architecture of both generators  GX→Y  and  GY →X  in Fig. 3 is the same. 

Defined feature map tensors have different values for each propagated training

sample. Let us reformat the  F ( q) ,  ˆ x

 X→Y  and  F ( q) ,  ˆ

 y

 Y →X ,  q ∈ {f, l}  into matrices:









 X→Y

 X→Y, 

 X→Y, 

 F ( q) ,  ˆ x

( q) ,  ˆ

 x

( q) ,  ˆ

 x

( q) ,  ˆ

 x

 X→Y,vct =  f

 f

 , . . .   f

 , 

(41)

1 ,  1

1 ,  2

 m( q) ,n( q)









 Y →X, 

 Y →X, 

 Y →X, 

 F ( q) ,  ˆ

 y

( q) ,  ˆ

 y

( q) ,  ˆ

 y

( q) ,  ˆ

 y

 Y →X,vct =  f

 f

 , . . .   f

 , 

(42)

1 ,  1

1 ,  2

 m( q) ,n( q)

 X→Y, 

 Y →X, 

with column vectors:  f

( q) ,  ˆ

 x

( q) ,  ˆ

 y

 i,j

 , fi,j

 ∈  R d, where  i ∈ { 1 ..m( q) },  j ∈

 { 1 ..n( q) }, and  q ∈ {f, l}. The procedure described by Eqs. (41) and (42) is illustrated in upper and lower parts of Fig. 3. 

If ML estimates of  d-dimensional covariances Σ( q) ,  ˆ x X→Y  and Σ( q) ,  ˆ

 y

 Y →X ,  q ∈ {f, l}  in

Fig. 3 are made from the column vectors of  F ( q) ,  ˆ x X→Y, 

and  F ( q) ,  ˆ

 y

,  q ∈ {f, l}, 

vct

 Y →X,  vct

respectively, their sample statistics are

 m( q)  n( q)

1

 X→Y, 

 X→Y, 

Σ( q) ,  ˆ x

( q) ,  ˆ

 x

( q) ,  ˆ

 x

 X→Y =

( f

 m( q) n( q)

 i,j

 − μ( q) ,  ˆ x

 X→Y )( fi,j

 − μ( q) ,  ˆ x

 X→Y ) T , 

 i=1  j=1

 m( q)  n( q)

1

 Y →X, 

 Y →X, 

Σ( q) ,  ˆ

 y

( q) ,  ˆ

 y

( q) ,  ˆ

 y

 Y →X =

( f

 m( q) n( q)

 i,j

 − μ( q) ,  ˆ y

 Y →X )( fi,j

 − μ( q) ,  ˆ y

 Y →X ) T , (43)

 i=1  j=1
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while the corresponding means are

 m( q)  n( q)

1

 X→Y, 

 μ( q) ,  ˆ x

( q) ,  ˆ

 x

 X→Y =

 f

 m( q) n( q)

 i,j

 , 

 i=1  j=1

 m( q)  n( q)

1

 Y →X, 

 μ( q) ,  ˆ

 y

( q) ,  ˆ

 y

 Y →X =

 f

 m( q) n( q)

 i,j

 . 

(44)

 i=1  j=1

Note that the number of samples depends on the feature maps’ spatial size and

also that each of the above statistics is computed for each of the training samples ˆ

 x ∈ X  and ˆ

 y ∈ Y , where  q ∈ {f, l}. By using presented notation, the novel feature map-based cycle consistency objective term can be defined as







 L fmcyc( GX→Y , GY →X) =  Ex∼p

 d

 f ( f) ,x

 X ( x)

inf

 X→Y , f ( l) ,GX→Y ( x)

 Y →X







(45)

+  Ey∼p

 d

 f ( f) ,y

 , 

 Y ( y)

inf

 Y →X , f ( l) ,GY →X( y)

 X→Y

where  d inf denotes some of the previously presented information distances. By including regularization term  L fmcyc from Eq. (45) into overall optimization objective in Eq. (39), feature map regularized CycleGAN can be defined as L FMRCycleGAN( GX→Y , GY →X, DX, DY ) =  L adv( GX→Y , DY ) +  L adv( GY →X, DX)

+  λ cyc L cyc( GX→Y , GY →X ) +  λ fmcyc L fmcyc( GX→Y , GY →X) , (46)

where  λ fmcyc  >  0 is considered fixed. Information distances  d inf can include   1

metric  dl =   Σ

, symmetric KL divergence  d

1

1  −  Σ2 l 1

KLsym defined in Eq. (19), 

or log-Euclidean distance  dle  defined in Eq. (22). Also note that the covariance matrices on which  d inf operate are ( d + 1) dimensional, due to Gaussian embedding introduced in Eq. (40). 

More details regarding described regularization procedure and results can be

found in Ref. 81. 

5. Conclusions

Applications of information geometry in the design of deep learning models are still an emerging field of research that has potential to influence design principles of pattern recognition and computer vision models in the future. We have reviewed

some of the well-known properties and interconnections of information distances, putting the emphasis on their generality and capability to robustly measure difference or similarity in information content of different entities. The main focus was on matrix-based distances and their application in the proposed feature map regularization of CycleGAN DNN models for image-to-image domain translation tasks. 

We hope that the manuscript encourages further interest into these timely topics. 
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This work presents specially designed, computationally efficient deep learn-

ing techniques for addressing some key challenges in the area of person re-

identification (re-ID). In particular, we focus on scale variations and occlusions, two critical issues that frequently make re-ID tasks, and in a broader sense the problem of real-world surveillance, an extremely challenging goal. This chapter

begins by exploring advancements in scale-invariant architectures, such as scale-invariant residual networks and a novel batch-adaptive triplet loss function. These innovations aim to improve feature extraction across different scales and enhance the discriminative power of learned embeddings. Additionally, this chapter introduces a lightweight solution for partial and occluded re-ID using a projective

dictionary learning framework, optimized through knowledge distillation from

high-performing deep networks. This approach effectively handles incomplete vis-

ibility by focusing on regions, which are not occluded, and leveraging a unary-

binary dictionary learning model for improved matching accuracy. The proposed

methods are rigorously evaluated across several benchmark datasets, demonstrat-

ing superior performance in handling both scale variations and occlusions while

maintaining computational efficiency. The solutions presented in this chapter, 

when comprehensively tested against state-of-the-art competitors on a number of

publicly available datasets, clearly reveal their efficacy. These solutions offer practical advancements for re-ID systems, with applications in large-scale surveillance and security settings. 

1. Introduction

Person re-identification (re-ID) is a pivotal task in video surveillance, focusing on matching individuals across non-overlapping camera views based on their appearance, typically labeled as probe and gallery.1,2 This task is challenging due to the variability in a person’s appearance caused by differences in pose, lighting, and viewpoint, which can significantly alter how the same individual appears across multiple 399
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camera feeds. Accurate person re-ID is essential for maintaining security and situ-ational awareness in environments like airports, shopping malls, and other public spaces under surveillance. Re-ID challenges are rooted in classical data association methods like the joint probabilistic data association filter3 but have evolved significantly with the advent of modern deep learning techniques.4,5 While deep learning has led to substantial performance gains, it often requires large, well-annotated datasets, which are labor-intensive and costly to acquire.6 As a result, there is a growing trend toward reducing the level of supervision required in training re-ID

models, while maintaining or improving their effectiveness. 7 The complexity of re-ID is further exacerbated by issues, such as scale variations, occlusions, and partial visibility. 6,8 Scale variations may arise due to inaccurate localization within bounding boxes or differences in the physical distance of individuals from the cameras, complicating the feature extraction process for traditional convolutional neural networks (CNNs). Similarly, occlusions — where a person is partially obstructed by

other objects or individuals — and partial visibility, due to suboptimal camera

angles, introduce additional challenges. These factors not only obscure critical features but also increase intra-class variance, making it difficult to distinguish between different individuals. To overcome these challenges, re-ID systems must focus on the most informative visible regions to enable reliable identification despite incomplete data. Given the dynamic and complex nature of environments where re-ID is

deployed, there is a pressing need to develop robust models that can perform effectively with limited supervision. Traditional methods, which rely on fully labeled data for each camera view, are being increasingly supplemented or replaced by innovative approaches designed to handle the variability and uncertainty of real-world video surveillance scenarios. 

The solution pipeline of existing re-ID methodologies traditionally focuses on

two critical areas: generating robust feature descriptors1,5 and developing effective metric learning techniques. 9–11 Feature descriptors play a vital role in capturing distinctive characteristics of individuals across different camera views, while metric learning quantifies the similarity between these descriptors, ensuring accurate matching across images. However, these foundational techniques often struggle with scale variations — a significant challenge that affects the accuracy of matching individuals across diverse camera perspectives. To address the limitations caused by scale variations, researchers12,13 have explored methods that involve learning transformations to represent differences between camera views. This requires learning both the features that represent objects and the transformation metrics between

cameras, which must be repeated for each camera pair. Although these classical

approaches are effective, they are not scalable in large camera networks, leading to the development of alternative strategies that aim to learn global representations for entire camera networks. 14,15 However, this global approach can be problematic when there are significant variations in observations across different cameras. 

The introduction of deep metric learning, coupled with powerful backbone feature
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Fig. 1. 

(a) Market-1501 and CUHK03 datasets for scale variation re-ID. (b) Challenges in partial and occluded re-ID, highlighting non-pedestrian occlusion (NPO) and non-target pedestrians (NTP). (a) Example images from person bounding boxes showing variations in scales. (b) Examples illustrating the challenges of Occluded re-ID for both non-pedestrian occlusion (NPO) and non-target pedestrians (NTP). 

extractors like ResNet-5016 and GoogleNet, 17 has advanced feature representation by enabling the extraction of more robust features with fewer parameters. Additionally, the development of triplet loss functions18 has enhanced the discriminative power of these features. Nevertheless, even sophisticated methods like batch-hard triplet loss remain vulnerable to outliers. 8 Apart from the two critical areas of feature descriptor generation and metric learning, re-ID methods can generally be divided into holistic re-ID and partial/occluded re-ID. Holistic approaches typically utilize full-body appearance features to learn discriminative representations that handle variations in pose, lighting, and appearance, performing effectively in controlled environments. However, these methods often underperform in real-world scenarios where occlusions or partial visibility are common. To address these challenges, specialized techniques have been proposed. For instance, Zheng  et al. 19

introduced a dictionary learning-based ambiguity-sensitive matching classifier that adapts to matching different visible body parts. Additionally, He  et al. 20 proposed an alignment-free deep spatial feature reconstruction method using sparse coding, while Gao  et al. 21 developed a pose-guided visible part matching approach that utilizes pose-guided attentions to enhance discriminative features for partially visible subjects. Despite these advancements, many of these methods still rely heavily on external tools and manual interventions, such as cropping, which can introduce biases and increase computational overhead. Furthermore, occlusion-handling methods continue to face challenges, particularly when dealing with non-target pedestrians, leading to part confusion and impacting the overall accuracy of re-ID systems. 6

The ongoing development in this field focuses on refining these techniques to create more robust, scalable, and efficient solutions that can meet the evolving demands of real-world surveillance environments. 

In this chapter, we delve into two innovative solutions that address critical challenges in re-ID. Our contributions are specifically designed to enhance the effectiveness of re-ID systems in dealing with scale variation8 and occlusion issues, 6 which are prevalent in real-world surveillance scenarios. First, we explore advancements in dealing with scale variations through the introduction of scale-invariant residual architectures and a batch-adaptive triplet loss function. Our scale-invariant residual
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architectures are designed to demonstrate superior gradient activation compared to traditional residual networks. 8 This enhancement ensures that our models are less sensitive to the scale at which a person appears in the camera feeds, thus improving the consistency of feature extraction across different scales. Additionally, the batch-adaptive triplet loss function enhances the mining capabilities within a Siamese network configuration. This development optimizes the selection of positive and

negative samples during training, thereby improving the robustness and discrimi-

native power of the feature embeddings. Next, we address the challenges associated with partial and occluded re-ID scenarios through our patch-based lightweight dictionary learning (DL) framework. This framework focuses on semantically similar

parts of the visible regions, minimizing the impact of occlusions and enhancing the identification process in environments where individuals are not fully visible. By leveraging knowledge distillation from high-performing deep models, such as the

omni-scale network (OSNet), 22 our approach transfers robust features to a more computationally efficient dictionary model. This method strikes an optimal balance between performance and computational efficiency, effectively handling variations in scale, occlusions, and partial visibility. Together, these solutions significantly advance the field of person re-identification by addressing some of the most pressing challenges, ensuring improved performance across various datasets, and paving the way for more robust, accurate, and efficient re-ID systems in real-world surveillance and security applications. Through these novel contributions, this chapter aims to provide practical solutions that substantially advance the state of the art in person re-identification technology. 

2. Related Works

This section explores the key advancements in re-ID from four main perspectives: (1) the shift from classical methods to deep learning for feature extraction, (2) deep metric learning for better embedding space representation, effectively separating similar and dissimilar individuals, (3) holistic re-ID approaches that utilize full-body features, and (4) partial and occluded re-ID techniques that address challenges with incomplete visibility. These approaches showcase the evolution of strategies to overcome the complexities of real-world re-ID scenarios. 

2.1.  Evolution of deep learning in re-ID

Early re-ID methods were primarily based on hand-crafted features, 1, 9 but these approaches struggled in complex environments with variations in pose, lighting, 

and viewpoint. With the success of Convolutional Neural Networks (CNNs) in

image classification, deep learning has become a central part of re-ID solutions. 2, 23

However, the performance of these models is often constrained by the limited

availability of large, labeled training datasets. Deep learning-based re-ID models
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frequently adopt a Siamese network architecture, where identical sub-networks compare images and return similarity scores. These can operate in either a pair-wise configuration, 23,24 distinguishing between similar and dissimilar individuals, or in a triplet configuration, 2, 25 learning a distance metric to separate similar from dissimilar pairs. Transfer learning, where pre-trained models like ResNet-5016 and GoogleNet17 are fine-tuned for re-ID, has proven highly effective. These models often outperform those trained from scratch, though they can limit further architectural exploration and generalization due to dataset size. Performance improvements are typically achieved through data augmentation, post-processing, or more complex model designs. 5, 25 For example, Ristani  et al. 26 applied through correlation techniques to enhance multi-camera re-ID performance, and Li  et al. 4 proposed the Harmonious Attention Network (HA-CNN), which uses separate loss functions for

local and global regions to enhance performance. Similarly, Varior  et al. 5 introduced gated SCNN, incorporating a gating function for person matching. Wang  et al. , 27

fused multi-stage network information to improve feature extraction in resource-

limited settings. Recently, fine-grained visual representation learning28 has been adopted to distinguish between similar-looking individuals based on local attributes, such as clothing or accessories, alongside global features. Models focusing on part selection29 and object attention30 have improved performance by targeting relevant body regions. While these approaches have achieved state-of-the-art results, they often involve complex training processes and depend on extensive pre- and

post-processing, which detracts from the practical application of deep learning in re-ID. 

2.2.  Deep metric learning in re-ID

Deep metric learning in person re-ID operates on the output feature space, com-

monly referred to as feature embeddings. These embeddings capture the distinct

characteristics of individuals, and the goal is to learn a distance metric that can effectively separate similar and dissimilar individuals in this embedding space. One popular approach to achieving this is through the use of the triplet loss function. 11,18

Triplet loss compares the embeddings of three image sets: an anchor, a positive

(same person), and a negative (different person). However, applying triplet loss naively often leads to suboptimal learning, as many triplets trivially satisfy the objective and contribute little to improving the model.18 To address this, Hermans et al. 11 introduced the Batch Hard (BH) triplet loss, which focuses only on the hardest positive and hardest negative samples within each batch, leading to better feature embeddings. Despite its effectiveness, BH triplet loss is sensitive to outliers and noisy annotations. Several works, including those by Ristani  et al. 26 and Liu  et al. , 25 have used the standard triplet loss, 18 while others11,27 have applied the BH

strategy. Li  et al. 31 further refined this by proposing squeeze loss, a modified version
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of BH triplet loss that encourages compact cluster formation, addressing some of the challenges associated with outliers. 

2.3.  Holistic re-ID approaches

Holistic re-ID approaches focus on full-body appearance matching, achieving state-of-the-art performance without specifically addressing occlusion. These methods

include hand-crafted features, 32,33 metric learning, 8, 34 deep learning, 35,36 part-based strategies,37 and patch-based approaches.38 For example, Xu  et al.  36 proposed a label correction strategy to handle noisy annotations, using cross-entropy and weighted triplet loss for more meaningful feature embeddings. However, this

method risks overfitting when dealing with complex noisy data. Kalayeh  et al. 38

leveraged human parsing methods to extract multiple part features, improving localization even with severe pose variations, though it struggles with heavily occluded individuals. Attention-based models35,39 have been developed to focus on human regions and extract discriminative features. For instance, Zhao  et al. 39 used region masks combined with feature maps to isolate part-specific features, improving

matching accuracy. However, this model faces difficulties generalizing to occluded scenarios where important body parts are missing. Similarly, Li  et al. 35 introduced the Hard Regional Attention CNN (HA-CNN) to localize body parts using bounding

boxes, offering advantages in joint learning of attention and feature representation. 

Nevertheless, HA-CNN struggles with images where person alignment is arbitrary

with significantly large pose variations. While these holistic methods perform well in controlled settings, their applicability is limited in crowded environments where occlusion is common, reducing their effectiveness in real-world scenarios. 

2.4.  Partial and occluded re-ID approaches

Re-ID methods designed to handle occlusions and partial visibility can be broadly categorized into three groups: (a) fixed location-based methods, 40,41 (b) external tool-based methods,42 and (c) attention-based methods.39,43 Fixed location-based approaches divide the image or feature map into fixed strips for matching. For example, Sun  et al. 41 split spatial feature maps into six uniform horizontal strips. While computationally efficient, these methods overlook the impact of occluded regions, limiting their accuracy. External tool-based methods depend on human part detection38 or pose estimation42 to facilitate re-ID. Their performance relies on the precise detection and localization of body parts or poses, which increases computational costs. These methods often fail in crowded environments, where non-target pedestrians (NTP) can cause part confusion, further degrading performance. Attention-

based models43,44 offer a more robust solution by assigning greater importance to relevant body parts during feature extraction. For instance, Gong  et al.  43 utilized Batch Attention DropBlock (BA-DropBlock) to focus on salient areas without
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requiring additional supervision. However, without explicit part supervision, these models may struggle in cases where there is minimal semantic distinction between the target and the background, or in NTP-heavy scenarios. Quality-aware Part

Models (QPMs)44 address occlusion challenges more effectively, but they may overlook non-human elements such as backpacks or personal belongings, which could be useful for identification. While attention-based methods generally improve performance in occluded re-ID, they come with increased computational costs. 

3. Proposed Solutions for Addressing Scale Variation and Occlusion

In this section, we present our proposed solutions to address scale variation and occluded/partial person re-ID. We introduce two scale-invariant triplet Siamese

models: SI-TriNet, a modification of the pre-trained ResNet-50 architecture, and SISR-32, a shallower ResNet-32 network where standard convolution is replaced

with our proposed scale-invariant convolution. Our scale-invariant approach integrates seamlessly into existing deep learning frameworks without requiring changes to the network architecture, while delivering robust improvements in handling scale variations. To enhance learning, we propose batch adaptive triplet loss, which adaptively weights positive samples, prioritizing the hardest ones and improving feature embeddings and re-ID accuracy. For partial and occluded re-ID, we propose the

Unary-Binary Dictionary Learning(UBDL) model, enhanced by knowledge distilla-

tion. This approach incorporates a novel objective function for learning projective dictionaries45 across multiple views and introduces a knowledge similarity matrix. 

The matrix enables efficient knowledge transfer from a deep teacher model to a

non-deep student model, allowing the UBDL model to better handle partial occlu-

sions. This adaptability distinguishes our approach from other methods, and our

pipeline demonstrates superior performance in complex re-ID tasks, outperforming state-of-the-art models. 

3.1.  Scale-invariant batch-adaptive residual learning

In Convolutional Neural Networks (CNNs), feature descriptors (filter kernels) are effective at detecting relevant patterns, regardless of their spatial locations. However, this ability is not guaranteed when working with objects at different scales. 

To improve recognition tasks in deep architectures, it is essential to design feature detectors that can respond to patterns across multiple scales. Such a network is known as a scale-invariant convolutional neural network (SI-ConvNet). 46 In a standard convolution operation, the output feature maps are generated by convolving

an input image or feature map  x  with local feature detectors, which are trainable filters (kernels) parameterized by weights  W . The convolved output map  f  is then passed through a nonlinear activation function  σ, with a bias term  b ∈  R, as follows: f =  σ(( W · x) +  b) . 

(1)

[image: Image 1049]
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To achieve scale invariance, instead of learning separate kernels for different spatial extents, we apply spatial transformations to the input  x  to create a multi-resolution pyramid. This transformed input is convolved using the same filter weights and

then re-scaled back to its original dimensions. The re-scaling step ensures that the feature map responses across different resolutions are aligned. Finally, a max-pooling operation is performed over the re-scaled feature maps at corresponding

pixel positions to obtain a scale-invariant (SI) representation.46

Let  T  represent the set of spatial transformations (e.g., bilinear interpolation) applied to the input  x. For  n  such transformations,  T  can be represented as

 {T 1 , T 2 , . . . , Tn}. The scale-invariant feature map  f SI is then computed as follows: ˆ

 zi = ( W · Ti( x)) +  b, 

(2a)

 zi =  T − 1

 i

(ˆ

 zi) , 

(2b)





 f SI =  σ



max

[ zi]  . 

(2c)

 i∈{ 1 ,...,n}

Here, ˆ

 zi  is the convolution of weights  W  with the  i th spatial transformation of input x ( Ti( x)), with each having spatial dimensions  hi × wi  and feature depth  m. The element-wise maximum operation, denoted as 

max( ·), selects the maximum activa-

tion across scales. After inverse transformation, the final output  f SI is computed by taking the maximum activation at each spatial location, achieving scale invariance without requiring additional parameters. 

(a)

(b)

Fig. 2. 

Comparisons between (a) convolution layer and (b) scale-invariant convolution layer. 46

The black box denoted by  x  is input feature map in both (a) and (b). In (b), several pyramid maps of  x  are constructed (only 3 is shown). Each of these maps is convolved with same kernel filters (W) followed by re-scaling back to original dimension of  x. Final convolution map is constructed by max-pooling at corresponding pixel location over all re-scaled maps. 
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3.1.1.  Scale-invariant residual networks

Residual Networks (ResNets)16 have demonstrated superior performance with fewer layers compared to traditional CNNs. Each ResNet architecture consists of stacks of “residual units”, as illustrated in Fig. 3. These residual units come in two forms: (a) baseline residual units and (b) bottleneck residual units. 16 A residual unit can be mathematically expressed as

y l =  h(x l) +  F(x l, Wl) , (3a)

x l+1 =  σ(y l) , 

(3b)

where x l  and x l+1 are the input and output of the  l th residual unit, respectively, and  F(x l, Wl) is the residual function, where  σ  represents the ReLU activation function. 47 When  h(x l) = x l, this leads to an identity mapping that connects the input to the output of the residual function, as shown in Fig. 3. Simplifying further by ignoring the activation function, the relationship between x l  and x l+1 can be expressed as

x l+1 = x l +  F(x l, Wl) . 

(4)

During backpropagation, the derivative of x l+1 with respect to x l  is calculated as

 ∂x l+1

 ∂F(x l, Wl)

= 1 +

 . 

(5)

 ∂x l

 ∂x l

The baseline residual block (see Fig. 3) contains two convolution layers, with the corresponding kernel filters parameterized by weight matrices w l,  1 and w l,  2. The residual function  F(x l, Wl) can then be written as

 F(x l, Wl) =  Wl  x l

= w l,  2  (w l,  1  x l)

(6)

= W l,  2  · W l,  1  · xl, 

(a)

(b)

Fig. 3. 

Two types of residual units introduced by He  et al.  16 (a) Baseline residual unit and (b) bottleneck residual unit with  F(x l) representing two and three stacked convolution layers, respectively. 

[image: Image 1053]
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where W l,  1 and W l,  2 are the Toeplitz forms of weight matrices w l,  1 and w l,  2 respectively and  

 xl  is the vectorized form of x l. Here,  denotes convolution which can now be represented as matrix-vector multiplication W l,  1  ·xl = w l,  1  x l. Combining Eqs. (5) and (6), the gradient  ∂x l+1 /∂x l  can be computed as

 ∂x l+1 = I + W l,  2  · W l,  1 . 

(7)

 ∂x l

The output of any deeper unit  L  can be expressed as

 L− 1



x L = x l +

 F(x i, Wi) . 

(8)

 i= l

It is well known that, without proper adjustments, the gradient in deep networks can either vanish or explode. If the identity mapping in Eq. (5) is replaced by a scaling factor  λl, the gradient reaching the shallower units will depend on this factor, leading to either vanishing or exploding gradients. 8 By incorporating scale-invariant convolution operations in the residual units (Fig. 4), our proposed architecture mitigates these issues, achieving robustness to scale variation without the gradient problems commonly encountered in deep networks. 

3.1.2.  Batch-adaptive triplet loss

Weinberger and Saul10 initially proposed metric learning for k-nearest neighbor classification using the “Large Margin Nearest Neighbor (LMNN)” loss. However, 

LMNN struggles with handling fixed targeted neighbors, which led to the develop-

ment of more effective deep metric learning methods. One such approach, proposed by FaceNet, 18 introduced the triplet loss, which proved to be more suitable for deep metric learning tasks. Given an arbitrary triplet consisting of an anchor ( ga), a positive sample ( gp) from the same class, and a negative sample ( gn) from a different Fig. 4. 

The proposed SI residual unit where normal convolution operation of baseline residual unit (Fig. 4(a)) is replaced by SI convolution. 
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class, the triplet loss ensures that the distance between the anchor and the positive sample ( Da,p) is smaller than the distance between the anchor and the negative sample ( Da,n), with a margin  α:

 Da,p +  α < Da,n, 

(9)

where  α  represents the margin of separation between positive and negative pairs. 

However, in the early stages of training, this criterion is often trivially satisfied, leading to poor learning of the model. To address this, Hermans11 introduced Batch Hard (BH) triplet loss, which focuses only on the hardest positive (i.e., the farthest positive sample) and the hardest negative (i.e., the closest negative sample) within a batch. The BH triplet loss is defined as

⎡

⎤

 C

 S



 L

⎢

⎥

BH =

⎣ α +

max

 Da,p −

min

 Da,n⎦  , 

(10)

 p∈{ 1 ,··· ,S}

 n/

 ∈{ 1 ,··· ,S}

 c=1  a=1

 c

 c

 p= a

+

where [ ·]+ is the hinge loss function, stopping the correction for already satisfied triplets. Here,  S  represents the sample set for each of the  C  person identities. By mining hard triplets during training, the model becomes more discriminative, resulting in faster convergence and better overall performance. However, while BH triplet loss enhances learning, it can be sensitive to outliers and occasionally fails to detect normal associations. To mitigate this, we propose an  adaptive weighting strategy to improve learning. In this approach, positive samples are weighted according to their “hardness”, i.e., their similarity to the anchor. Instead of equally weighting all positives or only focusing on the hardest, we assign weights based on the distance between the anchor and each positive sample. The hardest positive (farthest from the anchor) receives the highest weight, while the easiest positive (nearest to the anchor) receives the least weight. The weighting is computed as follows:





 e( Da,p−Da,p,  easy) − 1

 e( Da,p,  hard −Da,p,  easy) − 1

 wa,p = 



 , 

(11)

 e( Da,p−Da,p,  easy) − 1

 p∈{ 1 ,··· ,S}c

 e( Da,p,  hard −Da,p,  easy) − 1

 p= a

where  Da,p,  hard is the farthest positive from the anchor and  Da,p,  easy is the nearest positive. These weights are generated dynamically during training, and the positives are weighted based on their distance from the anchor. The main advantage of this re-weighting technique is that once a sample has been moved closer to the anchor in the embedding space, it receives a smaller weight in subsequent updates. This strategy, termed  Batch-Adaptive (BA) Triplet Loss, dynamically adjusts the importance of positive samples during each training step, ensuring that the model focuses on the most challenging samples without ignoring others. The Batch Adaptive (BA) triplet

[image: Image 1058]
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loss function is defined as

⎡

⎤

 C

 S

⎢



⎥

 L

⎢

1

⎥

BA =

⎢

⎣ α +

( wa,p · Da,p)  −

min

 Da,n⎥

(12)

 S −  1

 n/

 ∈{ 1 ,··· ,S}

⎦

 c=1  a=1

 p∈{ 1 ,··· ,S}

 c

 c

 p= a

+

where  C  and  S  have the same definitions as in the BH triplet loss. This approach ensures that the learning process becomes more robust, minimizing the impact of

outliers and improving the overall feature embedding. 

3.2.  Lightweight learning for partial and occluded re-identification

In this section, we first explain the role of projective dictionary learning and how deep knowledge distillation enhances the dictionary learning process. This is followed by the formulation of an objective function for Unary-Binary Dictionary

Learning (UBDL) and the integration of a simple decision-level score fusion. An

overview of the proposed pipeline is shown in Fig. 5. In our approach, let x ik ∈  R d× 1

represent the feature vector of dimension  d  for the  k th person from the  i th view, where  k ∈ { 1 ,  2 , . . . , n}  and  i ∈ { 1 ,  2 }. The overall training set for the  i th view is represented as the matrix X i = [x i 1 , x i 2 , . . . , x in], where X i ∈  R d×n. Our primary goal is to learn a dictionary that can produce consistent encoding for individuals undergoing partial occlusion across multiple views. To achieve this, we utilize projective dictionary learning, 45 which enables the model to generate more expressive Fig. 5. 

An illustrative overview of our proposed unary binary approach learned through knowledge distillation. 
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and discriminative sparse representations compared to traditional dictionary learning (DL). Conventional DL involves learning a synthesis dictionary D  ∈  R d×m  to represent a sample set X using a sparse matrix Z  ∈  R m×n, such that X  ≈ DZ. 

However, this approach involves costly  l 1-norm operations. In contrast, projective dictionary learning uses an analysis dictionary P  ∈  R m×d, where  m  d, to generate analytical codes A  ∈  R m×n, such that A = PX and X  ≈ DA. Here,  m denotes the dimension of the projected subspace. Thus, the analysis dictionary (P) and synthesis dictionary (D) are learned jointly through a framework inspired by

 {P ∗, D ∗} = argmin   X  − DPX   2 F +Ψ(D , P , X) , (13)

P , D

where Ψ(D , P , X) is a discriminative function that enforces constraints to mitigate misalignment. To further optimize the learning process and prevent overfitting, we introduce knowledge distillation via a Teacher–Student framework. 48 In this setup, OSNet22 acts as the teacher model. OSNet is first pre-trained on a dataset and is then used to transfer its knowledge into the student model, which in our case is the dictionaries. OSNet excels at fusing relevant features from multiple scales through an adaptive aggregation mechanism, allowing for more refined feature extraction. 22

The deep feature embeddings from OSNet are then used to construct a knowledge

similarity matrix K. This matrix dynamically assigns higher weights to differences in patch features extracted from similar individuals across different views, after encoding with the analysis dictionary P. By incorporating these weighted feature differences, the dictionaries learned achieve better alignment with OSNet, improving the performance of partial and occluded person re-identification. 

3.2.1.  Formulation of UBDL objectives

Our primary objective is to learn a robust representation that can efficiently identify individuals even when they are partially occluded across different views. Extracting a single global representation can introduce ambiguities due to occluded regions or background interference, while relying solely on patch-based representations may ignore the global structure of a pedestrian. 37 To address this, we combine features from both horizontal and vertical patches. Specifically, we adopt two strategies: (i) we learn a common dictionary set  {D H, P H }  in the horizontal direction by combining features from both views (unary dictionary learning) and (ii) we learn two separate dictionary sets  {D Vi , P Vi }  in the vertical direction for each view  i =  { 1 ,  2 }

(binary dictionary learning). Since occlusion primarily affects the vertical direction, we assign distinct (binary) dictionaries for each view in the vertical direction, whereas in the horizontal direction, we use a shared (unary) dictionary across both views. In this approach, horizontal and vertical patch features are concatenated to construct each representation for both unary and binary dictionary learning

(UBDL). The objective function for unary dictionary learning, based on the general
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form of Eq. (13), is defined as

min   X1  − D HP H X1   2

P , D

 F +   X2  − D H P H X2   2 F

+  λ

(14)

 H  (P H X1  − P H X2)K   2 F

s .  t . d H

 k  22

 ≤  1 , 

where d H

 k  represents the columns of the dictionary D H  normalized to unit norm, preventing trivial solutions, where D H → ∞  and P H X  →  0. The matrix K is a knowledge similarity matrix defined as

⎡

⎤

 e−f11 −f21  2

0

 . . . 

0

⎢

⎢

⎥

. 

⎢

⎥

0

 e−f

. 

12  −f22  2

. 

⎥

K = ⎢

⎢

⎥  . 

(15)

⎢

. 

. 

⎥

⎣

. 

⎥

. 

. . 

0

⎦

0

 · · ·

 e−f1 N −f1 N  2

In the above equation,  fik  represents the deep feature embedding of person  i  from the  k th view, extracted using the OSNet teacher model. The similarity matrix K

captures the similarity between probe and gallery samples based on these deep

feature embeddings. The closer the probe-gallery pair, the higher the diagonal value (close to 1), which encourages the projection matrix P H  to map such pairs closer in the analytical space. Fixing K to the identity matrix (I n×n) would reduce the objective to standard dictionary learning without knowledge distillation. 

In binary dictionary learning, we consider all possible combinations of vertical patches between the two views when constructing the feature sets X1 and X2. The objective function for binary dictionary learning is

min   X1  − D V

P , D

1 P V

1 X1   2 F +   X2  − D V

2 P V

2 X2   2 F

+  λ

(16)

 V  (P V

1 X1  − P V

2 X2)W12   2 F

s .  t . d V 1 k  22  ≤  1 , d V 2 k  22  ≤  1 . 

 

 

In this case, W12

=

Ω K, where Ω

=

diag( ω 1 , . . . , ωn) and Ω

=

diag( φ( ω 1) , . . . , φ( ωn)), with  φ( z) = 1 /(1 +  z 2). This function ensures that closer vertical patches (in terms of feature distance) are weighted more heavily. The weight matrix W12 adapts dynamically based on the similarity of the projected patch features, ensuring that the most similar vertical patches are weighted closer to 1, while dissimilar pairs are down-weighted. This formulation allows the model to capture the global and local structures of a person across different views while remaining robust to occlusion. The weighted matrices ensure that the dictionary learning process prioritizes patches that contribute most to accurate re-identification. 

[image: Image 1060]
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3.2.2.  Fusion and matching strategy

To perform re-ID matching, we calculate similarity scores between probe and gallery images. The scores are computed separately from the unary and binary matching

processes and, following the approach of Li  et al. , 37 are then fused to derive the final matching score. 

Unary matching score: We begin by computing sparse codes for the horizontal features of the images. Sparse codes are obtained by solving the following equation using the Orthogonal Matching Pursuit (OMP)49 algorithm:

z = arg min x  − D H

z

 ζ z  2 . 

(17)

In this equation, z represents the sparse code for the horizontal feature x, and D H

 ζ

is the learned dictionary subset selected via the support set  ζ. This support set indicates the dictionary elements (atoms) contributing to the sparse representation of the signal. More details on computing sparse representation using OMP can be

found in the work of Donoho  et al. 49 Next, we compute the cosine similarity between corresponding horizontal components ( h ∈ {h 1 , h 2 , . . . , hH}) of a probe image  p  and a gallery image  g:

z p · z g

 Sh( p, g) =  ||z p|| ||z g||. 

(18)

The overall similarity score between probe  p  and gallery  g  is obtained by summing up the individual component-wise similarity scores:



 SH( p, g) =

 Sh( p, g) . 

(19)

 h

Binary matching score: For binary matching, each vertical component of the probe image  p  and the gallery image  g  is encoded using two separately learned dictionaries (D V

1 and D V

2 ) via the OMP algorithm, following a similar process as the unary

approach. After encoding, cosine similarity scores are computed for all pair-wise combinations of the vertical components of the probe ( p ∈ {p 1 , p 2 , . . . , pk, . . . , pV }) and gallery ( g ∈ {g 1 , g 2 , . . . , gV }). We determine the vertical components between the probe and gallery images that exhibit the highest similarity in their sparse encodings by identifying the minimal distance:

ˆ

 Sv( p, g) = arg min  Sv( p, g) , 

(20)

 g

where  Sv( p, g) is computed similarly to Eq. (18). The overall vertical matching score is given by



 SV ( p, g) =

ˆ

 Sv( p, g) . 

(21)

 v

Finally, we combine the unary and binary matching scores ( SH( p, g) , SV ( p, g)) over all gallery samples  n  using a simple fusion strategy:

S( p, g) =  SH( p, g) +  γ · SV ( p, g) , 

(22)
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where S is the overall matching score and  γ  is a user-defined trade-off parameter. 

Changes in camera viewpoints often cause shifts in body parts, primarily along the vertical axis due to changes in the person’s orientation. The proposed similarity score ˆ

 Sv( p, g) is robust in identifying visible regions while disregarding occluded parts, thereby improving the matching accuracy. Our goal is to determine the vertical gallery patch that has the least distance to each corresponding vertical probe patch. However, shifts are typically negligible along the horizontal axis, meaning the horizontal score computation ( Sh) remains unaffected. The matching scores are computed based on the sparse codes learned from the dictionaries D( ·) rather than the dense analytical code A (discussed in Section 3.2), as the latter yields weaker matching scores for misaligned patches. Designing a lightweight neural network with knowledge distillation (KD) risks overfitting, especially when the data available for distillation are insufficient. Our approach effectively integrates KD into the dictionary learning objectives to handle partial and occluded re-ID. 

4. Experimental Analysis

In this section, we evaluate the effectiveness of the proposed methods through extensive experiments conducted on five widely used datasets. Two datasets are utilized to assess our scale-invariant approach, while the remaining three are employed to evaluate our solution for partial and occluded person re-identification. 

4.1.  Datasets and evaluation metrics

We have selected two widely adopted and publicly available datasets, namely

Market-150150 and CUHK03, 2 to evaluate the scale-invariant approach. Both datasets exhibit significant scale variations, as shown in Fig. 1(a). The Market-1501 dataset consists of 32,668 bounding box images of 1,501 individuals, captured across 6 different camera views, including one low-resolution camera. The dataset is split into 751 identities for training and 750 identities for testing, with 12,936 and 19,732 samples, respectively. We conducted both single-query (SQ) and multi-query (MQ) evaluations50 on this dataset. The CUHK03 dataset contains 1,467 identities captured using 6 cameras with significant scale variations and misalignments. It provides both human-annotated and auto-detected bounding boxes. For our experiments, the dataset is partitioned into 867 identities for training and 600 for testing. Evaluations are conducted on both the manually annotated and automatically

detected samples. The number of identities with varying scales is 224 (14.92%) in Market-1501 and 815 (55.56%) in CUHK03. Table 1 provides the detailed statistics for both datasets. 

For partial and occluded person re-identification, we utilize three bench-

mark datasets: Occluded-REID (O-REID), 51 Partial-REID (P-REID), 19

and Partial-iLIDS (P-iLIDS).20 The O-REID dataset contains 2,000 images from 200 individuals, with 5 full-body and 5 occluded samples per person. The P-REID

[image: Image 1061]

[image: Image 1062]

[image: Image 1063]

[image: Image 1064]

 Efficient Deep Learning for Key Challenges in Person Re-identification

415

Table 1. 

Statistics of Market-1501 and CUHK03 datasets. 

#Identities

#Bounding

#Distractors

#Varying Scales

Dataset

(IDs)

Boxes (BBs)

(BBs)

(IDs/%)

Market-150150

1501

32,668

2973 + 500K

224 (14.92%)

CUHK032

1476

14,097

0

815 (55.56%)

dataset comprises 600 images from 60 individuals, captured on a university cam-

pus, with 5 full-body and 5 occluded images for each person. The P-iLIDS dataset contains 238 images from 119 individuals, captured in an airport environment with frequent occlusions from pedestrians and luggage. In both P-REID and P-iLIDS

datasets, the probe set consists of occluded images, while the gallery set includes holistic images. All images are normalized to a standard resolution, following the procedure, 37 before processing. 

We evaluate performance using two widely adopted measures: (a) Cumula-

tive Matching Characteristic (CMC) and (b) mean Average Precision

(mAP). 50 The CMC metric captures the percentage of true matches appearing within the top  k  ranks for all queries. As re-ID is a ranking problem, the rank- k recognition rates are commonly reported in recent works. For each query, the area under the precision–recall curve is reflected by the average precision (AP), with the mean AP (mAP) calculated across all queries. Ideally, the AP is 1 when all true

matches appear at the top of the ranking list. 

4.2.  Implementation and training details

Our scale-invariant solution is implemented using the Keras API with TensorFlow

as the backend. For training the SISR-32 model, we use the original input size of 128  ×  64. In contrast, for the pre-trained SI-TriNet model, we upscale the image size to 256  ×  128 to align with the input dimensions of the ImageNet classification dataset. 16 The final embedding dimension is set to 512 for both networks. For scale-invariant convolution, the scale factor follows the form 1 .  26 x.46 To limit computational costs, we use three scales (1 .  26[ − 1:1]). The batch size for both models is set to 72, with 18 persons ( C = 18) and 4 samples per person ( S = 4) in each pass of the stochastic gradient updates. The Adam optimizer is employed with an

initial learning rate of 3  ×  10 − 4, and the momentum is set to the default values described in Ref. 11. The models are trained for 18,000 updates, with the learning t−t 0

rate decaying by a factor of 0 .  001  t 1 −t 0

starting at  t 0 = 12 , 000.11 The margin  α

for the triplet loss function is set to 0.2. 11 As indicated in Section 3.1, each sub-network in SI-TriNet modifies ResNet-50 by replacing standard convolutions with

scale-invariant ones. Additionally, the global average pooling and softmax layers are replaced with a scale-invariant convolution layer, reducing the filter depth to 512 for the final embedding. Overall, SI-TriNet contains 24.64M parameters. To explore the impact of scale-invariant learning on smaller networks, we designed Scale-Invariant
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Siamese ResNet-32 (SISR-32) by stacking several scale-invariant residual units. Each SI residual unit contains two SI convolution kernels of size 3 × 3. Five such units form a residual block with a fixed kernel depth  nl, and three such blocks are cascaded with increasing filter depth from  n 1 = 16 to  n 3 = 64. The final feature embedding is obtained by adding an average pooling layer (kernel size 8  ×  8) followed by a flat-tening layer. SISR-32 is a lightweight network with a depth of 32 and only 0.47M

parameters. 

For the partial and occluded re-ID solution, we first computed representative feature vectors for each person image by combining features from dense grid patches. 37

Each image was divided into patches of size 10  ×  10 with a grid step of 5. For each patch, we computed a 32-bin color histogram and a 128-dimensional scale-invariant feature transform (SIFT) feature for each LAB channel. To enhance robustness, we also computed color histograms from down-sampled versions of the patches (factors 0.75 and 0.5). The concatenated color histograms and SIFT features result in a patch dimension of 672, which is then normalized to unit length. For constructing vertical and horizontal features, these patch features are concatenated in their respective directions (see Fig. 6). A 512-dimensional deep feature embedding is extracted from OSNet’s fully connected layer as described in Section 3.2.1. We only used a pre-trained OSNet model (available at https://kaiyangzhou.github.io/deep-

person-reid/MODEL ZOO) fine-tuned on specific partial/occluded re-ID datasets for knowledge distillation, following Ref. 22. During evaluation, we used the learned dictionary for person matching, with OSNet serving solely as an auxiliary teacher model to guide the dictionary learning process via knowledge distillation. In the UBDL objective function (Eqs. (14) and (16)), we set the parameters  αH,  αV ,  λH, and  λV . The values of  αH  and  αV , which result from the convex formulation of the projective dictionary pair objectives, were set to 0.05. 45 The values of  λH  and  λV

Fig. 6. 

Similarity scores for patch features in horizontal (in orange) and vertical (in blue) direction for some NPO and NTP cases. Similarities between corresponding and pairwise locations are computed for horizontal and vertical direction, respectively. The highlighted regions and scores are best matches. 
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Table 2. 

Performance comparisons on Detected (Detec.) and Annotated (Anno.) settings of

CUHK03 dataset, and Single Query (Single Q.) and Multi Query (Multi Q.) settings of Market-1501 dataset. Results are mAP and Rank1 (R@1) accuracy, with best values in bold. 

CUHK03

Market-1501

Detec. 

Anno. 

Single Q. 

Multi Q. 

Methods

mAP

R@1

mAP

Ra@1

mAP

R@1

mAP

R@1

KISSME9

 −

11 .  7

 −

 −

12 .  27

46 .  72

 −

 −

LOMO + Null Space1

 −

54 .  70

 −

62 .  55

29 .  87

55 .  43

46 .  03

71 .  56

CAN25

 −

69 .  2

 −

77 .  6

35 .  9

60 .  3

47 .  9

72 .  1

TriNet11

 −

 −

 −

 −

69 .  14

84 .  92

76 .  42

90 .  53

Gated SCNN5

51 .  25

61 .  8

 −

 −

39 .  55

65 .  88

48 .  45

76 .  04

JLML24

 −

80 .  6

 −

83 .  2

64 .  4

83 .  9

74 .  5

89 .  7

LuNet11

 −

 −

 −

 −

60 .  71

81 .  38

69 .  07

87 .  11

DML23

 −

 −

 −

 −

68 .  83

87 .  73

77 .  14

91 .  66

MTMCT26

 −

 −

 −

 −

75 .  67

89 .  46

 −

 −

HA-CNN4

38 .  6

41 .  7

41 .  0

44 .  4

75 .  7

91 .  2

82 .  8

93 .  8

DaRe(R)27

51 .  3

55 .  1

53 .  7

58 .  1

69 .  3

86 .  4

 −

 −

DaRe(De)27

50 .  1

54 .  3

52 .  2

56 .  4

69 .  9

86 .  0

 −

 −

DaRe(R)+RE27

58 .  1

61 .  6

60 .  2

64 .  5

74 .  2

88 .  5

 −

 −

DaRe(De)+RE27

59 .  0

63 .  3

61 .  6

66 .  1

76.0

89 .  0

 −

 −

T-net2

 −

64 .  51

 −

 −

50 .  71

84 .  26

 −

 −

MT-net2

 −

79 .  34

 −

 −

62 .  98

81 .  59

 −

 −

Pose53

71 .  32

78 .  22

 −

 −

69 .  25

87 .  33

 −

 −

SISR-32 (ours)

57 .  13

73 .  51

61 .  29

74 .  91

51 .  37

88 .  19

77 .  32

93 .  40

SI-TriNet (ours)

74.39

86.37

76.61

87.32

70 .  01

96.05

88.08

97

were set to 0.005. 37 Additionally, the user-defined parameter  γ (Eq. (22)) balancing the trade-off between unary and binary matching scores was set to 0.6 based on

experimental findings. 

4.3.  Analysis on Market-1501 dataset

The performance of our proposed models, SI-TriNet and SISR-32, was evaluated

on the Market-1501 dataset and compared against three baseline methods —

KISSME, 9 LOMO + Null Space, 1 and IDE + ML52 — as well as ten state-of-the-art methods, including CAN, 25 Gated SCNN, 5 JLML, 24 TriNet and LuNet, 11

Support Neighbor Loss, 31 DML, 23 HA-CNN, 4 MTMCT, 26 DaRe, 27 and MT-net and T-net. 2 Among these methods, two baseline approaches and nine state-of-the-art approaches reported performance on single-query (SQ) evaluation, while one baseline52 and four recent methods reported multi-query (MQ) evaluation (see Table 2). 

Some methods11, 52 also applied re-ranking strategies to enhance their performance (see Table 3). 

Of the two proposed models, SI-TriNet consistently outperforms all state-of-the-

art methods, while SISR-32 delivers competitive performance, comparable to several recent approaches. Specifically, SI-TriNet achieves the highest rank-1 accuracy of
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Table 3. 

Performance comparisons on Detected (Detec.) and Annotated (Anno.) settings of

CUHK03 dataset, and Single Query (Single Q.) and Multi Query (Multi Q.) settings of Market-1501 dataset with re-ranking. Results are reported as mAP and Rank1 (R@1) accuracy. Best results are in bold. 

CUHK03

Market-1501

Detec. 

Anno. 

Single Q. 

Multi Q. 

Methods

mAP

R@1

mAP

R@1

mAP

R@1

mAP

R@1

TriNet11

 −

 −

 −

 −

81 .  07

86 .  67

87 .  18

91 .  75

LuNet11

 −

 −

 −

 −

75 .  62

84 .  59

82 .  61

89 .  31

IDE + ML52

 −

 −

 −

 −

63 .  63

77 .  11

 −

 −

JLML24

 −

 −

 −

 −

72 .  9

88 .  8

 −

 −

SN Loss31

 −

 −

 −

 −

86 .  16

89 .  90

90 .  27

93 .  68

DaRe(R)27

63 .  6

62 .  8

66 .  7

66 .  0

82 .  0

88 .  3

 −

 −

DaRe(R) + RE27

71 .  2

69 .  8

73 .  7

72 .  9

85 .  9

90 .  8

 −

 −

DaRe(De)27

61 .  6

60 .  2

64 .  1

63 .  4

82 .  2

88 .  6


 −

 −

DaRe(De) + RE27

71 .  6

70 .  6

74 .  7

73 .  8

86.7

90 .  9

 −

 −

SI-TriNet (ours)

81.43

94.29

84.33

96.37

82 .  85

97.38

90.81

98

96.05% on the single-query evaluation, surpassing methods like HA-CNN (91.2%), 

MTMCT (89.46%), and DaRe (highest variant at 89%). Additionally, it maintains

a solid mAP of 70.01%. In the multi-query evaluation, SI-TriNet achieves the highest rank-1 accuracy of 97% and mAP of 88.08%, outperforming all other methods. 

Our SISR-32 model also performs well, achieving a rank-1 accuracy of 88.19% and

an mAP of 51.37%, significantly outperforming baseline methods such as KISSME

(rank-1 accuracy 46.72% and mAP 12.27%) and LOMO + Null Space (rank-1 accu-

racy 55.43% and mAP 29.87%). The use of a re-ranking strategy further boosted SI-TriNet’s performance, increasing its rank-1 accuracy to 97.38% and mAP to 82.85%

on the single-query evaluation. In the multi-query evaluation, SI-TriNet maintained its top position, achieving a rank-1 accuracy of 98% and an mAP of 90.81%, making it the highest-performing model among all re-ranked methods. These results are summarized in Table 3. 

4.4.  Analysis on CUHK03 dataset

Our models also demonstrated excellent performance on the CUHK03 dataset. The

SI-TriNet model achieved mAP values of 74.39% on the detected set and 76.61%

on the annotated set, outperforming the best-performing variants of the popular

DaRe method27 by margins of 15.39% and 15.01%, respectively. Additionally, SI-TriNet surpassed other recent methods2, 24 by a considerable margin. The use of a re-ranking strategy further enhanced SI-TriNet’s performance, boosting the mAP

by an additional 7.04% on the detected set and 7.72% on the annotated set. Despite its relatively smaller number of parameters, the SISR-32 model also delivered competitive performance on the CUHK03 dataset. 
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4.5.  Analysis on occluded Re-ID dataset

Our evaluation on the Occluded Re-ID (O-ReID) dataset, as shown in Table 4, 

demonstrates exceptional performance compared to several recent methods, includ-

ing DSR,20 feature pyramid reconstruction (FPR),54 PVPM,21 high-order re-ID

(HOReID), 55 PAT, 56 ViT Baseline, 57 TransReID, 57 FED, 58 body part-based re-ID

(BPBreID),59 and region generation and assessment (RGANet).60 Incorporating knowledge distillation into the dictionary learning process significantly enhances performance. Our model achieves the highest Rank-1 accuracy of 89.3% and the

highest mAP of 80.6%, surpassing the closest competitor, RGANet, by 2.9% in

Rank-1 and 0.6% in mAP. Even without knowledge distillation, our approach

remains competitive, trailing RGANet by only 1.8% in mAP. Notably, our method

outperforms TransReID, a transformer-based framework, by 19.1% in Rank-1 accu-

racy and 13.3% in mAP, highlighting the robustness and effectiveness of our

approach, even against transformer-based methods. 

4.6.  Analysis on partial Re-ID datasets

Table 5 presents the performance comparison of our UBDL approach against several methods, including AMC + sliding window matching (SWM), 19 DSR, 20 deep spatial pyramid feature collaborative reconstruction (DCR), 61 spatial transformer network-based re-ID (STNReID), 62 VPM, 63 HOReID, 55 QPM, 44 and RGANet60 on the P-REID and P-iLIDS datasets. On the P-REID dataset, our UBDL approach

performs exceptionally well, achieving a Rank-1 score of 79.3% with knowledge distillation, positioning it among the top performers. Additionally, we report a strong Rank-3 result of 89.4%, surpassing several competing methods. While RGANet

achieves the highest Rank-1 and Rank-3 scores of 87.2% and 93.5%, respectively, our Table 4. 

Performance of mAP and Rank1 (R@1) on

Occluded REID (O-REID) datasets. Best values are in

bold. 

Method

mAP

R@1

DSR20

62.8

72.8

FPR54

68.0

78.3

PVPM21

61.2

70.4

HOReID55

70.2

80.3

PAT56

72.1

81.6

ViT Baseline57

76.7

81.2

TransReID57

67.3

70.2

FED58

79.3

86.3

BPBreID59

75.2

82.9

RGANet60

80.0

86.4

UBDL

78.2

87.5

UBDL + KD

80.6

89.3
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Table 5. 

Performance of Rank1 (R@1) and Rank3

(R@3) on Partial reID datasets (P-iLIDS, P-REID). 

Best values are in bold. 

P-iLIDS

P-REID

Method

R@1

R@3

R@1

R@3

AMC + SWM19

37.3

46.0

21.0

32.8

DSR20

50.7

70.0

58.8

67.2

DCR61

52.0

67.5

60.5

69.7

STNReID62

66.7

80.3

54.6

71.3

VPM63

67.7

81.9

65.5

74.8

HOReID55

85.3

91.0

72.6

86.4

QPM44

81.7

88.0

77.3

85.7

RGANet60

77.0

87.6

87.2

93.5

UBDL

84.4

90.5

78.02

87.3

UBDL + KD

85.7

91.3

79.3

89.4

approach remains highly competitive in this dataset. On the P-iLIDS dataset, our approach maintains a leading position, achieving the highest Rank-1 score of 85.7%, demonstrating its robustness and effectiveness. In comparison, RGANet records a

Rank-1 score of 77.0% and a Rank-3 score of 87.6%, but our method surpasses it

with a Rank-3 score of 91.3%, clearly highlighting its superior ability to handle complex partial re-ID scenarios. Overall, these results confirm that our method excels in both partial re-ID datasets, consistently achieving strong Rank-1 and Rank-3

scores, further solidifying its effectiveness in addressing challenging re-ID tasks. 

4.7.  Overall analysis

From the experiments and results (see Fig. 7), it is evident that our scale-invariant (SI) network consistently outperforms other methods when datasets contain significant scale variations. Both the CUHK03 and Market-1501 datasets exhibit consid-

erable scale differences, with CUHK03 showing more prominent variations between

the probe and gallery sets (see Table 1). This is why our models deliver higher performance in CUHK03, particularly in terms of mean Average Precision (mAP), 

as reflected in Tables 2 and 3. In comparison, our approach lags slightly behind DaRe(De) + RE, 27 specifically due to their use of Random Erasing (RE) data augmentation, which boosts their performance. Without RE, their best-performing

model, DaRe(De), achieved an mAP of 69.9% on Market-1501, which is marginally

lower than our model’s mAP of 70.01%. To highlight the impact of scale invari-

ance, we deliberately avoided any augmentation techniques in our training process. 

In contrast to comparing methods, our lightweight yet highly effective approach

for occluded and partial re-ID stands out. While methods like DSR and FPR

rely on complex convolutional networks and reconstruction techniques to handle

occlusions, our approach simplifies the process. Unlike transformer-based meth-

ods like TransReID, which prioritize co-located positions and neglect occluded
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 Efficient Deep Learning for Key Challenges in Person Re-identification

421

Fig. 7. 

Comparing retrieved samples by Trinet11 and Our SI-Trinet. Most datasets are retrieved at the beginning of the rank list for all the cases. 

regions, our solution remains robust, effectively prioritizing unoccluded parts even in misaligned images. Additionally, our method handles Non-Pedestrian Occlusions (NPO) and Non-Target Pedestrians (NTP) by explicitly identifying and leveraging

unoccluded misaligned parts, thereby improving matching scores. Unlike BPBreID, 

which depends on explicit body part annotations, our approach is versatile and

does not require specific body part annotations. Instead, we rely on knowledge distillation to guide the learning process, making our solution more adaptable. When compared to other techniques like AMC + SWM and DSR, which employ combination strategies, our method integrates both horizontal and vertical patch features to enhance global context. Furthermore, while DCR utilizes information from various spatial resolutions, which may introduce noise, our model focuses on learning granular patch-based dictionaries for accurate matching of unoccluded regions. In contrast to QPM, which assigns quality scores to body parts based on annotations, our approach operates without such constraints, providing a more flexible solution. 

In summary, our lightweight yet powerful solution excels in handling occlusions and partial re-ID, making it particularly suitable for real-world scenarios. Our results show modest but meaningful improvements over existing state-of-the-art techniques. 
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Notably, our dictionaries contain fewer than 105 parameters, which is significantly lower than ResNet-18’s 11.2 million parameters, 8 highlighting the efficiency of our approach. 

5. Conclusion and Future Direction

This chapter presents an efficient deep learning approach to key challenges in person re-ID task, particularly addressing scale variations and occlusions. By integrating scale-invariant residual networks and a batch-adaptive triplet loss function, the proposed methods enhance feature extraction and improve performance across

varied scales. A lightweight projective dictionary learning framework, optimized with knowledge distillation, further improves re-ID in partial and occluded scenarios by focusing on unoccluded regions. Experimental results show the proposed models outperform state-of-the-art methods, offering both robust performance and computational efficiency for real-world surveillance applications. Future research can explore advanced knowledge distillation techniques64 to improve lightweight models’ generalizability65 and efficiency. Reducing reliance on labeled datasets through unsupervised or semi-supervised learning, and incorporating transformer-based architectures,66 presents exciting opportunities. Additionally, developing more robust strategies for handling complex occlusions, such as non-pedestrian or dynamic scene elements, could enhance re-ID accuracy in cluttered or crowded

environments. 
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The task of  action spotting  consists in both identifying actions and precisely localizing them in time with a single timestamp in long, untrimmed video streams. 

Automatically extracting those actions is crucial for many sports applications, 

including sports analytics to produce extended statistics on game actions, coaching to provide support to video analysts, or fan engagement to automatically

overlay content in the broadcast when specific actions occur. However, before

2018, no large-scale datasets for action spotting in sports were publicly available, which impeded benchmarking action spotting methods. In response, our team

built the largest dataset and the most comprehensive benchmarks for sports video understanding, under the umbrella of  SoccerNet. Particularly, our dataset contains a subset specifically dedicated to action spotting, called  SoccerNet action spotting, containing more than 550 complete broadcast games annotated with almost all types of actions that can occur in a football game. This dataset is

tailored to develop methods for automatic spotting of actions of interest, including deep learning approaches, by providing a large amount of manually anno-

tated actions. To engage with the scientific community, the SoccerNet initiative organizes yearly challenges, during which participants from all around the world compete to achieve state-of-the-art performances. Thanks to our dataset and challenges, more than 60 methods were developed or published over the past five years, improving on the first baselines and making action spotting a viable option for

the sports industry. This chapter traces the history of action spotting in sports, from the creation of the task back in 2018 to the role it plays today in research and the sports industry. 

1. Introduction

Sports video understanding has become an increasingly active research field1–3 as the sports industry continues to grow into a major global entertainment sector. 

In 2023, the global sports market generated over 160$ billion in annual revenue

for sports equipment alone, while the betting part peaked at 242$ billion. 4 Furthermore, new sectors such as eSport also open the potential for the market to
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grow even more in the coming years.5 Particularly, the rapid expansion in the volume of sports TV broadcasts has contributed to this demand, with the number of

hours broadcasted in the United States alone growing more than fourfold between

2002 and 2017. 6 This surge in content has created a pressing need for automated analysis tools, as the manual review of video footage is both time-consuming and labor-intensive. Among various sports, football stands out as one of the most universally followed, with thousands of professional matches and millions of amateur games played annually. However, its dynamic and complex nature presents significant challenges for automatic analysis since much of the fine-grained understanding lies in subtle details. In response to these challenges, the scientific community has made remarkable strides over the past decade, tackling tasks such as player tracking7,8 for individual performance evaluation, camera shot selection, 9 and dense video captioning10 for enhancing broadcast production, and camera calibration11,12 for extracting physical metrics like speed and distance. 

Action spotting focuses on identifying specific actions and precisely localizing them within long, untrimmed video streams using a single timestamp, marking the

exact moment an action occurs,9,13–15 as illustrated in Fig. 1. This approach contrasts with traditional temporal video understanding, 16 where actions are defined by a start and end time. In sports, however, these boundaries can often be ambiguous. 

For instance, determining when a goal “starts” and “ends” is blurry.  Does a goal begin with a pass or the shot itself ? Does it end with the ball hitting the net or after the kick-off ?  To address these ambiguities, Giancola  et al.  13 introduced the novel task of action spotting in sports through the first version of the SoccerNet dataset. 

In this task, actions are annotated based on official football rules defined by the IFAB Laws of the Game, 17 such as the goal being marked at the precise moment the ball crosses the line or a free-kick occurring when the player strikes the ball. 

This focus on precise localization differs from temporal activity localization, where defining the exact boundaries of activities is less critical. 16 Action spotting opens up a new area of research with a focus on precisely localizing actions, especially given the challenge of overlapping actions that may occur simultaneously. However, this task also brings inherent difficulties, including the sparsity of annotations since most moments in a match lack notable actions, and the discontinuities between

adjacent frames that may be visually similar while representing different actions. 

Fig. 1. 

Action spotting in football videos. The task of  action spotting  consists in both identifying actions and precisely localizing them in time with a single timestamp in long, untrimmed video streams. 
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In sports, action spotting offers significant value across multiple verticals. First, it plays a crucial role in  team strategy analysis, by identifying key moments such as scoring opportunities, including corners or free kicks. This enables video analysts to efficiently extract and review historical data, gaining insights into how teams perform under specific circumstances. Second, action spotting contributes to  fairer refereeing, especially by localizing and characterizing potential foul moments. This provides referees and VAR officials with evidence to ensure consistency and fairness throughout matches. 18,19 Third, action spotting  enhances broadcasting experiences, allowing broadcasters to personalize highlights based on a viewer’s interests or time constraints20,21 by automatically retrieving the actions of interest, or simply identifying the most salient moments. Fourth, it benefits  player scouting, enabling teams to identify specific talents, such as a player skilled at scoring from headers during corner kicks. Automatically analyzing thousands of games therefore helps discover players with specialized abilities for particular sequences of actions. Lastly, sports medical analysis  benefits from spotting actions that could impact player health, such as headers. 22 By examining historical data, long-term effects of these actions can be evaluated. Likewise, action spotting can also help coaches and medical staff in real time by identifying potential health risks for players during games due to repeated dangerous actions. 

Deep learning has demonstrated impressive performance across a wide range of

tasks, from image classification to video understanding.23–26 However, these methods typically require large amounts of annotated data to train. To meet these data demands, deep learning models often rely on generic learning algorithms27 trained on publicly available datasets28,29 or fine-tuned algorithms trained on smaller, task-specific football datasets. 30 Before the introduction of SoccerNet, 13 most datasets related to association football were either small, scattered, or private, making it difficult to fairly compare different methods and slowing the progress of scientific research in the field. Furthermore, many publicly available datasets suffered from size limitations, restricting their ability to generalize across different games. 31,32

The football research community, therefore, faced a pressing need for large-scale, publicly accessible datasets to address these challenges. 33–37 Nevertheless, creating such datasets is both time-consuming and expensive, as annotating large amounts

of video data requires significant resources. 

In response to the need for large-scale, publicly accessible datasets in sports

video understanding, Giancola  et al.  13 introduced SoccerNet in 2018. The goal was to create an open-source dataset for reproducible research and benchmarking in

football video analysis. The original dataset comprised 500 full broadcast football matches, totaling over 764 hours of footage from the six major European leagues: Serie A, La Liga, Premier League, Ligue 1, Bundesliga, and Champions League, 

spanning from 2014 to 2017. With this dataset, Giancola  et al.  introduced the novel task of action spotting, focusing on the temporal localization of three key football actions: goals, cards, and substitutions. Over the years, SoccerNet has continuously expanded both in scope and content. SoccerNet-v2, presented by Deliège  et al. 9
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significantly increased the number of annotations and action classes, growing to include 110 ,  458 actions across 17 classes, such as penalties, clearances, and ball out of play. The dataset also introduced annotations for camera shot changes, replay segments, and more, leading to new tasks like camera shot segmentation, boundary detection, and replay grounding. 

The first SoccerNet challenge, organized in 2021, focused on action spotting and replay grounding, starting the dataset’s interest in the sports community. In 2022, SoccerNet-v311 and SoccerNet-Tracking7 were introduced, adding spatial annotations for players, the ball, and field elements across multiple views, alongside tasks such as pitch localization, camera calibration, player re-identification, and long-term multi-object tracking. In 2023, SoccerNet continued to expand with the addition of SoccerNet-Captions10 for dense video captioning, SoccerNet-MVFouls18 for multi-view foul recognition, and SoccerNet-BallActionSpotting38 which identified first 2, then 12 different ball-related actions, such as passes, drives, and headers. 

By 2024, further developments included SoccerNet-Depth39 for monocular depth estimation, SoccerNet-XFoul19 for multi-modal question-answer triplets about refereeing decisions, and SoccerNet-GSR8 as the first open-source dataset for game state reconstruction. 

Thanks to our dataset and challenges, more than 60 methods have been devel-

oped or published over the past five years for action spotting alone, improving on the initial baselines by Giancola  et al.  13 and Cioppa  et al.  40 and making action spotting a viable option for the sports industry. To improve accessibility of action spotting for researchers and practitioners, we also published an open-source library called OSL-Action Spotting41 that gathers several action spotting dataloaders, methods, and evaluation functions, under a common framework. 

The remainder of this chapter is organized as follows. In Section 2, we mathematically formalize the task of action spotting. Section 3 provides a detailed description of the SoccerNet action spotting datasets, explaining their evolution and the different versions dedicated to action spotting. Section 4 presents the various methods developed for action spotting, highlighting key approaches and advancements

over the years. In Section 5, we discuss the evaluation protocols and metrics used to assess the performance of action spotting methods. Section 6 offers a comprehensive benchmark, comparing the performance of state-of-the-art methods on the

SoccerNet datasets. Finally, in Section 7, we conclude the chapter by summarizing the key findings for action spotting in both research and industry. 

2. Action Spotting: Definition of the Task

Action spotting is defined as the task of identifying and precisely localizing actions in time, i.e., with a single timestamp, in long, untrimmed video streams. Given a set of  N  untrimmed videos  V =  {v 1 , v 2 , . . . , vn, . . . , vN }, the objective is to extract the set of all actions  An =  {an, an, . . . , an

1

2

 k , . . . , an

 An }  for each video  n, where  An

is the total number of actions of interest in video  n. All actions  an k  are defined by
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two features: (1) a class  c  and (2) a timestamp  t, indicating respectively the type of action and the exact moment the action happens in the video. Each class  c  is chosen among a set  C  of size  C, corresponding to all possible classes of interest, while the timestamp is bounded by  t ∈ [0 , L], typically expressed in milliseconds. From a practical perspective, the videos are generally represented as a succession of frames vn =  {in, in, . . . , in

1

2

 j , . . . , in

 Jn }, where  J n  is the number of frames in video  n. This process discretizes the possible values of the timestamps of each action following: j =   tT + 1  + 1, with  T  being the time between two frames,  j ∈ { 1 ,  2 , . . . , Jn}, and 2

 x + 1   being the  round( x) function. 

2

3. SoccerNet: Large-Scale Datasets for Action Spotting

Recently, the evolution of sports video analysis has demanded large-scale, richly annotated datasets to fuel research and enable the development of robust data-driven models. Recognizing the lack of such resources, we introduced comprehensive datasets dedicated to action spotting in football videos. Since its inception, SoccerNet has become a cornerstone dataset for sports video understanding, growing in

both scale and complexity over multiple iterations. Table 1 provides a summary of the datasets released for action spotting under the SoccerNet umbrella. 

3.1.  SoccerNet action spotting (v1): The foundation

The original release of SoccerNet action spotting (v1), introduced by Gian-

cola  et al. 13 in 2018, was a pioneering dataset in the field of sports video analysis. 

The dataset contained 500 full broadcast football matches, totaling 764 hours of footage sourced from major European leagues like Serie A, Premier League, La Liga, Bundesliga, Ligue 1, and the UEFA Champions League. SoccerNet action spotting

(v1) primarily focused on three main action classes for the task of action spotting: Goals,  Cards, and  Substitutions. Each of these actions was annotated with a timestamp marking the moment the action occurred with a 1-second precision. Different from traditional temporal activity localization tasks, 16 the actions are localized with a single timestamp. The simplicity of this approach allowed researchers to get their hands on developing methods for spotting actions in football games, laying the

groundwork for more complex future developments. 

Table 1. 

List of Action Spotting datasets published under the SoccerNet umbrella. 

SoccerNet Dataset

Year

# classes

# games

# annot. 

SoccerNet action spotting (v1)13

2018

3

500

6 ,  637

SoccerNet action spotting (v2)9

2021

17

500+50

110 ,  458

SoccerNet ball action spotting (2023)38

2023

2

7+2

11 ,  041

SoccerNet ball action spotting (2024)42

2024

12

7+2

11 ,  041
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SoccerNet action spotting (v1) became a cornerstone dataset and benchmark in

the domain of sports video analysis, enabling the comparison of various methods

under standardized conditions. The dataset also provided pre-extracted features

from the video frames, based on ResNET, 43 C3D, 44 and I3D, 45 to ease computational demands, which was crucial at the time due to hardware limitations. 

3.2.  SoccerNet action spotting (v2): Increasing class diversity

Building on the success of SoccerNet action spotting (v1), SoccerNet action spotting (v2) was introduced by Deliège  et al. 9 in 2021. This version significantly expanded the dataset, both in terms of action classes and annotation complexity. Specifically, SoccerNet action spotting (v2) includes annotations for 17 different action classes: Penalty, Kickoff, Goal, Substitution, Offside, Shot on target, Shot off target, Clearance, Ball out of play, Throw-in, Foul, Indirect free-kick, Direct free-kick, Corner, Yellow card, Red card,  and  Yellow to red card. 

The total number of annotated actions grew to 110 ,  458 across the dataset, now annotated with 1-frame precision, offering a more comprehensive representation of football events. In addition to increasing the variety of actions, SoccerNet action spotting (v2) introduced new tasks, such as  replay grounding, which consists in localizing the live action shown in a replay clip in a long untrimmed broadcast, and  camera shot segmentation, which consists in temporally segmenting the different camera shots during a broadcast. These additions opened up new avenues for

research in other areas, such as broadcast production, automatic video summarization, and foul analysis. 18,19, 46

This dataset also served in the first SoccerNet action spotting challenge in 2021, pushing the research community to develop state-of-the-art models and benchmark

their methods for sports video analysis. Through this challenge, SoccerNet action spotting (v2) became a pivotal tool for advancing temporal spotting tasks in complex, real-world football scenarios. 

3.3.  SoccerNet ball action spotting (2023): Toward more precise

 localization

In 2023, SoccerNet introduced the Ball Action Spotting task. 38 Unlike the broader action spotting task, which targets major game-changing events such as goals or

cards, ball action spotting requires models to precisely localize frequent interactions with the ball, offering a finer granularity of analysis. This task added a significant layer of complexity, as it required models to detect not just prominent actions, but also subtle and rapid ball exchanges that are critical to the game. 

The ball action spotting task was introduced during the SoccerNet challenges

202338 and only focuses on 2 key actions:  pass,  defined as the moment the ball leaves the feet of a player, who is passing the ball, and  drive, defined as the moment the ball is received in the feet of another player, who is maintaining the control
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of the ball while moving through the field. Though these actions are frequent and subtle compared to more prominent events like goals or fouls, they are essential for understanding team strategies, game dynamics, and individual player performance. 

The SoccerNet ball action spotting dataset comprises 7 full games from the

English football league with a total of 11 ,  041 annotated timestamps, providing data for training and validation. Additionally, 2 extra games were held out as a separate evaluation set for the SoccerNet challenges 2023. This challenge pushed the research community to develop models capable of handling the increased temporal precision required for spotting ball actions, laying the groundwork for the future expansion of the task to incorporate more complex and diverse ball-related actions. 

3.4.  SoccerNet ball action spotting (2024): Precise localization of

 fine-grained actions

In 2024, the ball action spotting task was further expanded to introduce more

granular ball-related events, moving from just two action classes (pass and drive) to a more comprehensive set of 12 different ball-centric actions:  Pass, Drive, Header, High Pass, Out, Cross, Throw In, Shot, Ball Player Block, Player Successful Tackle, Free Kick,  and  Goal. This extension significantly increases the task’s complexity, providing researchers with an opportunity to develop models that can handle a

wider range of interactions between players and the ball while maintaining precise temporal localization. 

This expansion to 12 classes in SoccerNet ball action spotting (2024) reflects a growing emphasis on ball interactions throughout a match, with each action class capturing specific, frequent events that are useful for understanding the flow of the game. The task highlights the diversity of ball interactions and underscores the necessity of precise temporal localization. Additionally, the 2024 version of the SoccerNet challenge introduces new difficulties, such as distinguishing between similar events like passes, high passes, or crosses. This requires a fine-grained understanding of both the visual and contextual aspects of the game, setting higher standards for model performance, and pushing for advancements in temporal detection and

sequence modeling within sports video analysis. 

The SoccerNet ball action spotting (2024) dataset is composed of the same 7

games used in the 2023 version, and the same 11 ,  041 annotated timestamps, but now extended with the 12 classes instead of 2. Similarly, the challenge set comprises 2 extra games that are withheld for benchmarking and challenge purposes. 

3.5.  Summary

SoccerNet has evolved into the largest and most comprehensive dataset for action spotting, enabling the sports video analysis community to develop and benchmark

action spotting models. Over multiple iterations, it has expanded from basic action
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localization to fine-grained ball action spotting, driving innovation in precise temporal localization and contextual understanding of actions in association football videos. The continued growth of the SoccerNet challenges ensures that research

in this field has continuously advanced each year, addressing increasingly complex aspects of sports video analysis. 

4. Action Spotting Methods

Formally, an action spotting method  M  is defined as a function that maps a video vn  to a set 

 An =  {

 an, 

 an, . . . , 

 an

 }  of 

 An  predicted actions, following  M :

1

2

 k , . . . , 

 an

 An

 vn → 

 An. Each predicted action 

 an

 k  is a triplet composed of a predicted action

class 

 c ∈ C, a timestamp 

 t ∈ [0 , L], alongside an optional confidence score 

 s ∈ [0 ,  1]

with a default value of 1. Due to the discrete nature of videos, some methods

will predict the timestamp in terms of frame number rather than milliseconds, 

following 

 j ∈ { 1 ,  2 , . . . , Jn}. Nevertheless, for evaluation purposes, the prediction is transformed back in millisecond following: 

 t = (

 j −  1)  × T , with  T  being the time

between two frames. 

Typical action spotting methods consist of three primary components: the back-

bone  B, the neck  N , and the head  H, as illustrated in Fig. 2. We detail the role of each component hereafter. The  backbone  serves as the core component for feature extraction. Given a video  vn  composed of frames  {in, in, . . . , in 1

2

 j , . . . , in

 Jn }, 

the backbone processes each frame and extracts a set of features  Fn =

 {fn, fn, . . . , fn

1

2

 j , . . . , f n

 Jn }, following  B :  vn → F n. These features form the foundation of the action spotting representation, capturing the essential visual information from the video. Following the backbone, the  neck  acts as an intermediary layer that refines and transforms the raw features  Fn  into a more discriminative form Fn  for

action spotting and adapts the feature sizes to accommodate the input format of

the head following  N :  Fn → 

 Fn. These refined features 

 Fn  are then passed to

the head. The  head  is the final stage of the algorithm, responsible for action identification and temporal localization. It uses the refined features 

 Fn  to identify and

localize the actions 

 An  following  H : 

 Fn → 

 An. Together, these components form a

Fig. 2. 

Generic action spotting method pipeline. A backbone  B  processes the videos  V  to extract features  F , refined by the neck  N  into action spotting discriminating features F  before being fed

into an action spotting head  H  that produces action spotting predictions A, each composed of a

timestamp 

 t, a class  c, and a confidence score  s. 
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complete action spotting method  M =  H ◦ N ◦ B, where ( g ◦ f )( x) denotes the composition  g( f ( x)). Some action spotting methods later apply some post-processing on the action set, such as Non-Maxima Suppression (NMS) to remove redundant

predictions. 

The action spotting methods developed in the last few years can be broadly

categorized into  feature-based  and  end-to-end  approaches. In  feature-based  methods, the backbone  B  consists of pre-trained features extractor from commonly used classification networks like ResNet, 43 trained on large datasets such as ImageNet.28

In this case, only the neck  N  and head  H  components are trained for the action spotting task. This approach is computationally efficient, but the action spotting performance is highly dependent on the quality of the pre-extracted features for discriminating actions. In contrast,  end-to-end methods  train the entire architecture, including the backbone  B, neck  N , and head  H, directly on the action spotting task. These methods often provide better performance since the backbone features are optimized for spotting actions on sports videos. However, they generally require significantly larger amounts of data and computational resources to be trained compared to feature-based methods. 

In the following, we first describe several historical  feature-based methods  that utilize pre-trained backbones such as ResNet43 to extract visual features before training task-specific neck and head components for action spotting. Following this, we explore more recent  end-to-end methods, which jointly aim to optimize the backbone, neck, and head components. Through this progression, we illustrate the evolution of methods proposed for action spotting. 

4.1.  Feature-based methods

NetVLAD: Learnable pooling layers.13

The NetVLAD method was introduced as the baseline for the action spot-

ting task in SoccerNet-v1,13 leveraging the popular NetVLAD47 layer originally designed for image retrieval. NetVLAD is particularly effective for summarizing

large amounts of visual data into compact representations, which made it a suitable choice for the SoccerNet action spotting (v1) dataset, where the task was to identify key moments such as goals, cards, and substitutions within long, untrimmed video sequences. The NetVLAD approach can be described as a feature-based method, 

where the backbone is pre-trained on large image datasets, and the focus is placed on summarizing video frames into discriminative representations for action spotting. 

In NetVLAD, the backbone consists of pre-extracted visual features from a

ResNet model, 43 which was trained on the ImageNet dataset. 28 Instead of training the backbone on football videos directly, the features are extracted frame-by-frame from the input video. This approach significantly reduces computational overhead, as it avoids the need for feature extraction during training and testing. The features are eventually reduced in dimension through Principal Component Analysis
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(PCA) and then fed into the NetVLAD module, which acts as the neck of the

model, aggregating the extracted frame-level features into a fixed-length representation. Instead of focusing on exact temporal localization, NetVLAD aggregates

temporal information over a sampled window of video frames. The process involves (i) extracting a temporal video clip from the untrimmed video in a sliding window fashion, (ii) assigning each frame-level feature to a set of learnable cluster centers, (iii) computing the residual between each feature and its assigned center, and (iv) summing up these residuals to produce a compact, video clip-level representation. 

This process condenses the temporal information from a candidate video clip into a fixed-dimensional vector, which aggregates the temporally local receptive field. 

The head focuses solely on action classification. Once the feature representation pooled from a video clip is obtained, the head applies a multi-class classification layer to determine whether any of the predefined action classes (e.g., goal, card, and substitution) occurs within the clip. Since the model samples video clips from the untrimmed video in a sliding window fashion, it classifies each window without directly predicting the exact timestamp of the actions. Instead, the method outputs whether a particular action occurs within the sampled window. To manage the untrimmed and lengthy nature of football videos, NetVLAD applies a sliding window approach, producing an  actionness score  in time, i.e., how likely the window represents an action of a certain class. In practice, the video is divided into overlapping temporal windows, and the model classifies each window independently. 

After classification, Non-Maxima Suppression (NMS) is used over the actionness

score in time to refine the predictions by eliminating redundant detections across the overlapping windows. This ensures that only the most confident predictions are retained, reducing false positives and providing a cleaner set of action predictions. 

The NetVLAD method served as an important baseline for the first version of

SoccerNet. While it does not explicitly perform explicit temporal localization, it provided a practical and efficient framework for action spotting following a classification approach within a sliding window, demonstrating that pre-extracted features combined with temporal pooling could identify key moments in football matches to some extent. Its simplicity and computational efficiency made it a popular choice for early research, though it left room for the development of more advanced methods that could explicitly handle temporal localization and end-to-end training. 

NetVLAD++: Temporally aware pooling. 48

NetVLAD++ was introduced as an improvement over the original NetVLAD

method for action spotting, addressing a key limitation: the lack of temporal awareness regarding the context surrounding the actions in football broadcasts.48 In NetVLAD, all frames in a video clip are treated equally, without distinguishing

the context before or after an action. However, for many football events, the preceding and succeeding moments can provide different contextual cues for identifying actions. For instance, spotting a goal from a shot is ambiguous until the succeeding context is revealed. NetVLAD++ introduces a more sophisticated pooling strategy

 Deep Learning for Action Spotting in Association Football Videos 437

by learning separate clusters for the frames before and after the action, effectively making the model aware of temporal dynamics. 

Like its predecessor, NetVLAD++ utilizes pre-extracted frame-level features

from a ResNet encoder trained on the ImageNet dataset. The features are extracted from each frame of the video, serving as the raw input to the NetVLAD++ module. This keeps the model computationally efficient by focusing on feature aggregation rather than training a new backbone from scratch. The primary innovation in NetVLAD++ lies in its temporally aware pooling mechanism. Rather than pooling

features uniformly across the video clip, NetVLAD++ splits the candidate video

clip from the sliding window into two parts: (i) the frames leading up to the action and (ii) the frames following the action. For each of these regions, NetVLAD++

learns separate NetVLAD clusters, allowing the model to capture the different types of information conveyed in each temporal segment. This separation helps the model focus on the action’s immediate surroundings, which are often indicative of its occurrence. Following our goal example, the buildup (context before) and aftermath

(context after) provide different information that complements the action itself. 

The NetVLAD++ layer thus pools features in a temporally aware manner, creating

separate, discriminative representations for the context before and after the action. 

This improvement allows the model to be more sensitive to the nuances of football events that often rely on contextual buildup or consequences. Once the temporally aware features are pooled, the head of the model performs the same action classification along sliding windows with the Non-Maxima Suppression (NMS), refining

the action spots. 

The addition of temporally aware feature pooling in NetVLAD++ significantly

improves the performance of action spotting, particularly in cases where the context plays a crucial role in recognizing actions. By learning separate clusters for the pre-action and post-action frames, NetVLAD++ surpasses the performances of the

original NetVLAD in detecting actions. This refinement paved the way for more

advanced temporal modeling techniques and remains an influential approach in

sports video understanding. 

CALF: A context-aware loss function for action spotting. 40

The CALF (Context-Aware Loss Function) method, developed by Cioppa

 et al. 40 introduces a novel approach for action spotting by focusing on the temporal context around actions. The two main contributions are (1) the direct regression of the timestamp value rather than classifying each video chunk followed by a NMS post-processing as previously done in NetVLAD and (2) the introduction

of a context-aware loss function, which weights differently the loss associated to the frames surrounding a ground-truth action during training. The method considers overlapping two-minutes video clips rather than ingesting the whole untrimmed video. 

For the backbone, CALF uses frozen pre-trained feature extractors, like ResNet, 

to process each video frame and reduce the input dimensionality. These extractors, 
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originally trained on large datasets such as ImageNet, output a set of features that encapsulate the visual information about each frame. Since the backbone is frozen, the features are extracted once and then stored as matrices with two dimensions: time and number of features. Following NetVLAD, the feature dimension is reduced through Principal Component Analysis (PCA) by a factor of four. The neck component in CALF is implemented as a trainable temporal convolutional neural network (CNN) that processes the features extracted by the backbone. This temporal CNN

consists of multi-scale convolutions that operate across time and feature dimensions. 

The purpose of this component is to fine-tune the raw spatial features by incorporating temporal dependencies across frames. In CALF, the head is composed of two modules. The first module is a segmentation head that predicts an actionness score for each frame, similar to NetVLAD. The segmentation head is guided during training by the context-aware loss function, which assigns a weight to the cross-entropy loss of each frame depending on the closest ground-truth action location. Specifically, if a frame is located just after an action, CALF assumes that there are still enough visual cues that the action occurred for the segmentation head to predict an action, with a smaller weight the further the frame is from the action. Just before the action, it is unsure whether the action will occur or not, so the weight is set to zero, letting the segmentation module decide freely whether to predict an action. 

Finally, the further away from the action, the more the segmentation head should predict that no action occurred. This loss therefore alleviates the issue of two similar consecutive frames needing to predict different actions. The predictions of the segmentation module are then concatenated with the neck features and passed to

the second module: the spotting head. This head is composed of classical convolutions and max pooling operations to reduce dimensionality and format the output

following a YOLO-like49 encoding. Specifically, each video clip may predict a finite set of actions with a confidence score, a regressed timestamp representing the relative location of the action within the video clip, and the action class through a softmax activation. The ground-truth and predicted actions are associated through an iterative one-to-one matching algorithm. Successively, a mean squared error loss is operated on the confidence scores and timestamps, and a binary cross-entropy on the class. 

This method significantly improved upon NetVLAD on the first action spotting

task of SoccerNet and the context-aware loss function has been successfully applied on top of other temporal activity localization models such as BSN50 trained on the ActivityNet16 dataset. The context-aware loss also allows for the discovery of actions that are similar to actions of interest, such as goal tentative thanks to the allowed doubt introduced before the action occurs. 

Baidu features and transformers51

Zhou  et al. 51 proposed a novel approach for the two-stage framework of action spotting, integrating fine-tuned backbones with transformer-based temporal detection necks and heads. Unlike previous methods like NetVLAD++ and CALF, which
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used generic ResNet features, this method fine-tunes multiple action recognition models specifically for football videos, ensuring improved performance in detecting key moments with greater precision. 

The backbone  B  is a mixture of model between the encoders TPN, 52 GTA, 53

VTN,54 irCSN,55 and I3D-Slow,56 fine-tuned on 5-second snippets from the SoccerNet action spotting (v2) dataset, capturing the 17 classes of football events. This fine-tuning tailors the feature extractors to football dynamics, improving performance in detecting key actions. These features, extracted from a stack of frames rather than individual frames, are concatenated to provide richer inputs for temporal detection. For the neck  N , this method uses a transformer encoder consisting of three encoding layers with sine and cosine positional encodings. Each layer has four heads and a hidden dimension of 64. The transformer processes the combined features from the backbone, learning temporal dependencies between frames. 

This allows the model to capture subtle yet important contextual information for action spotting. The head  H  of the model focuses on action classification by directly predicting the 18 action class probabilities from the transformer-encoded features (17+ background). To refine the output, the method applies hyperparameter tuning, including adjustments to batch size, learning rate, feature dimension size, and the Non-Maxima Suppression (NMS) window size, ensuring that the model selects

the most relevant predictions. 

This method achieved the best performance in the first SoccerNet challenge in

2021, based on the SoccerNet action spotting (v2) dataset, excelling in both action spotting and replay grounding. Its combination of fine-tuned feature extraction

and transformer-based temporal modelling raised the standard for action spotting, particularly in handling football’s video manifold distribution. It demonstrated that combining deep attention mechanisms with domain-specific features improves action spotting in sports videos. 

Dense detection anchors: Precise action spotting in soccer videos. 57

The method presented by Soares  et al. 57 won the SoccerNet challenge 2022, based on the SoccerNet action spotting (v2) dataset. They introduce a novel

approach to action spotting by focusing on precise localization of actions in football videos using dense detection anchors. This method significantly improves the temporal precision of action spotting compared to previous techniques by generating numerous temporal anchors and refining predictions through dense detection. 

As with previous methods, dense detection anchors relies on pre-extracted fea-

tures from a backbone network  B, either the ResNet43 trained on ImageNet or Zhou  et al. 51 features fine-tuned on SoccerNet. These frame-level features provide the input for the detection process. The core innovation of this method lies in the dense temporal anchoring strategy. The video is divided into a set of overlapping temporal segments, and within each segment, the method generates dense temporal anchors at regular intervals. These anchors serve as candidates for potential actions. By densely covering the timeline, the model ensures that no significant
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action is missed, even in the occurrence of several actions within short durations. 

For each anchor, features are extracted from the pre-extracted frame-level representations, and the model evaluates whether an action occurs within that temporal window. The neck component applies temporal convolutions to refine the anchor

features and enhance their ability to discriminate actions across time. Once the anchor features are refined, the head of the model performs two tasks: (i) action classification: for each anchor, the model predicts the likelihood of an action occurring. The classification head outputs the predicted class for the action (e.g., goal, card, substitution). (ii) temporal regression: in addition to classification, the model also refines the temporal localization of the action by regressing the precise timestamp relative to the anchor. This enables the model to predict the exact moment

when the action happens rather than simply classifying a broad temporal window. 

The dense anchoring and regression mechanisms ensure high temporal precision, 

improving the performances of action localization. 

The method uses a multi-task loss function that combines classification and

regression objectives. The classification loss penalizes incorrect action predictions while encouraging precise temporal localization, ensuring that the model identifies the correct action and pinpoints the exact moment it occurs, minimizing temporal ambiguity. After processing all dense detection anchors, Non-Maxima Suppression

(NMS) is applied to remove redundant predictions. 

The Dense Detection Anchors method was the top performer in the SoccerNet

challenge 2022, significantly improving temporal precision in action spotting. Its high performance in handling complex football actions established it as a state-of-the-art technique for action spotting in sports video analysis. 

4.2.  End-to-end methods

E2E-Spot: Spotting temporally precise, fine-grained events in video. 58

Hong  et al.  58 introduced the first end-to-end model specifically designed for the action spotting task, named  E2E-Spot. This method brings several novel contributions to the field, particularly in its ability to reason both globally and locally about actions within a video. One of the key innovations of E2E-Spot is its compact architecture, which allows it to be trained on large temporal windows even with limited GPU memory. Despite its compactness, the method demonstrated impressive performance, securing second place in the SoccerNet challenge 2022 on Action Spotting.59

Unlike many of the earlier methods discussed in Section 4.1, which relied on pre-trained and frozen backbones, the backbone of E2E-Spot is fully trainable in an end-to-end manner. The authors explored several lightweight backbone architectures, including ResNet43 (18 and 50), RegNet-Y60 (200MF and 800MF), and ConvNeXt. 61 Another significant improvement in their approach was the integration of temporal information directly within the backbone. This was achieved by
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incorporating Temporal Shift Module (TSM)62 or Gate-Shift Module (GSM),63

which allow the model to capture temporal dynamics across frames. By fine-tuning the backbone specifically for the action spotting task, E2E-Spot gains a significant advantage over methods that rely on backbones trained on unrelated datasets. 

The neck of the E2E-Spot model is designed to perform long-term temporal rea-

soning, providing a global understanding of the video sequence. To achieve this, the authors experimented with several architectures for this module, including Gated Recurrent Unit (GRU),64 deeper GRU, Multi-Scale Temporal Convolutional Network (MS-TCN), 65 and ASFormer. 66 These architectures help the model aggregate information over long sequences, capturing the context necessary to accurately identify and localize actions within the video. 

Finally, the head of E2E-Spot is simply a dense frame prediction. For every

input frame, the model generates a corresponding output feature and a per-frame

prediction. During training, a simple cross-entropy loss is applied to each frame’s prediction using a one-hot encoding of the ground-truth action class, along with an extra class for background frames. This straightforward approach ensures that the model is directly optimized for frame-level accuracy. The results demonstrate that direct, end-to-end training of a simple and compact model like E2E-Spot can serve as a surprisingly strong end-to-end baseline for action spotting. 

Gray-scale image stacking and transfer learning to cope with limited

data.67

Ruslan Baikulov’s method, which emerged as the winner of the SoccerNet ball

action spotting (2023) challenge,67 showcases several innovative approaches tailored to the specific challenges of detecting ball-related actions. One of the key features of this method is the use of stacked gray-scale images. In this approach, three

consecutive frames are first converted from RGB to gray scale and then concatenated to form a new three-channel image. This transformation allows the model to focus on motion cues rather than color information, which is particularly advantageous for detecting subtle ball-related events where motion is a critical indicator. 

The backbone of Baikulov’s method employs a 2D convolutional encoder, 

EfficientNetV2-B0, 68 to extract per-frame features. These features are then passed to the neck, which uses a 3D convolutional encoder to merge temporal information across consecutive frames, effectively capturing motion dynamics. The merged features are concatenated along the temporal dimension and pooled using Generalized Mean (GeM) pooling to condense the information. Finally, the head consists of a

simple linear classifier that predicts the presence and types of ball-related actions based on the refined features of the neck. 

Given the limited amount of data available in the ball action spotting chal-

lenge, Baikulov’s method leverages transfer learning to maximize performance. 

The 2D convolutional encoder is initialized with pre-trained weights from Ima-

geNet, 28 while the 3D convolutional encoder and the linear classifier are trained
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from scratch. Initially, the model is trained on short sequences of 15 frames to manage computational complexity and memory constraints. The model is first pre-trained on the larger and more diverse SoccerNet action spotting (v2) dataset, which contains more videos and annotations, though with different action classes. After this initial training, transfer learning is applied by fine-tuning the model on the specific SoccerNet ball action spotting (2023) dataset. Finally, to further enhance performance, the model undergoes fine-tuning on longer sequences of 33 frames, 

with the 2D backbone frozen to prevent overfitting and to allow the model to focus on longer temporal dynamics. 

T-DEED: Temporal-discriminability enhancer encoder–decoder for pre-

cise event spotting in sports videos.69

T-DEED, the winning method of the SoccerNet ball action spotting (2024) chal-

lenge,42 introduced by Artur Xarles  et al. ,69 tackles several key challenges in action spotting, including improving the discriminability of frame representations, achieving high temporal resolution, and capturing information across multiple temporal scales to handle diverse action dynamics. This method represents a significant architectural advancement over previous approaches. 

The backbone of T-DEED is designed to process fixed-length video clips and is

built on a 2D RegNetY60 architecture, augmented with Gate-Shift-Fuse70 (GSF) modules. This backbone therefore produces spatio-temporal per-frame representations. The neck component of T-DEED consists of a temporally discriminant

encoder–decoder architecture, which leverages Scalable-Granularity Perception71

(SGP) layers. The authors also include skip connections to preserve information

from the initial layers. Additionally, the authors introduce a novel SGP-Mixer layer that accommodates inputs with distinct temporal scales. Finally, the refined features from the neck are passed to a classical action spotting classification head. 57,58, 72 This head includes both a classification and displacement head, responsible for predicting the presence of actions and their precise temporal locations within the clip. 

The combined architecture of T-DEED, with its focus on multi-scale temporal

processing and enhanced frame-level discriminability, marks a significant improvement over previous architectures in the domain of precise action spotting. 

5. Evaluation and Metrics

An action spotting method  M  predicts a set of actions 

 An  for each video  n. To

evaluate the performance of  M, the set of predicted actions needs to be compared to the set of ground-truth actions for that video  An. An oracle method would therefore satisfy the following condition: 

 An =  An, ∀n ∈ { 1 , . . . , N}. Giancola  et al. 13

proposed a first metric, called the average-mean Average Precision ( a- mAP ) which is inspired by classical object detection metrics in PASCAL VOC73 as well as temporal activity localization metrics from the ActivityNet16 challenges. This metric
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and some of its variants are still used nowadays to evaluate action spotting methods, including the SoccerNet challenges. The remaining of this section details the procedure to compute the  a- mAP  and its variants. 

The first step consists in associating elements from the set of predicted actions An  one-to-one to the set of ground-truth actions  An  for each video  n  of the evaluation dataset. To do so, Giancola  et al. 13 proposed an iterative one-to-one matching algorithm. Since the predicted action set contains confidence scores 

 s  associated with

each action, they should be considered in the evaluation procedure. The  a- mAP

evaluates a parametric family of action spotting models, depending on a chosen

confidence score threshold  τ , which is a similar paradigm to what is typically done in the evaluation of object detection models. Therefore, one matching per considered threshold  τ  is first performed. Following the practice of Everingham  et al. , 73

200 threshold values equally spaced between [0 ,  1[ are chosen. For each threshold  τ , a single ground-truth action  an

 k  may be matched with one predicted action 

 an

 k  only

if three conditions are met: (1) The confidence score of that prediction is greater or equal than the threshold, i.e., 

 s > τ , (2) they belong to the same class, i.e., 

 c =  c, and (3) the prediction falls within a  δ  time tolerance around the ground-truth action, i.e.,  |

 t − t| ≤  0 .  5  × δ. If the ground-truth action has several associated predictions, only the prediction with the highest confidence is matched with that ground-truth action. The pair of matched ( an

 k , 

 an

 k ) is then removed from the pool of

available predicted/ground-truth actions and placed in a set of true-positive pairs T Pcδ,τ. If no predictions respect the conditions, the ground-truth action  ank  is placed in a set of false negative ground-truth action  FN cδ,τ . The matching algorithm is then performed on the next ground-truth action until all ground-truth actions are either placed in the  T Pcδ,τ  or the  FN cδ,τ  sets. All remaining unmatched predictions an

 k

are placed in a set of false positive predicted actions  FPcδ,τ . 

For each class  c  and time interval  δ, a set of Precision–Recall points  PRcδ  is constructed by computing the precision and recall value for each  τ  following:



 |T Pc

 |T Pc





 PRc

 δ,τ |

 δ,τ |



 δ =

 |T Pc

 τ ∈ { 0 ,  0 .  005 ,  0 .  01 , . . .,  0 .  995 } . 

 δ,τ | +  |F Pcδ,τ | , |T Pcδ,τ | +  |F N cδ,τ |

The set of precision-recall points are then summarized in the Average-Precision

( AP ) metric following the 11-point approximation proposed in the PASCAL VOC

challenge. 73 Specifically, this metric computes an approximation of the area under the precision-recall curve following:

10





1 

 AP c

 δ =

max

 p

with

Φ( r) =

( p, r)  ∈ PRc

 . 

11

 δ|r ≥ r

( p,r) ∈ Φ( r)

10

 r=0

Afterward, the  AP c

 δ  are averaged across all classes into the mean-Average Precision

( mAP @ δ) metric following:

 C

1 

 mAP @ δ =

 AP c

 C

 δ . 

 c=1
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This  mAP @ δ  provides an evaluation of how an action spotting method identifies and localizes actions given a specific time tolerance  δ  around the ground-truth actions. 

The smaller the time tolerance, the more precise an action spotting method needs to be. This metric has proven particularly useful in the ball action spotting benchmarks and for ranking methods in the challenges, as actions related to the ball are very localized in time and therefore need to be precisely predicted. Hence, the  mAP @1 is used to rank ball action spotting methods, meaning that actions need to be localized around the ground-truth actions within a 1-second tolerance. 

Finally, Giancola  et al. 13 proposed to summarize the  mAP @ δ  over a set of δ  values into a single metric by computing an approximation of the area under the ( δ, mAP @ δ) curve. To do so, they rely on a trapezoid integral approximation considering Δ time intervals equally spaced between  δl  and  δh  time tolerances. 

They define this new metric as the Average-mean Average Precision ( a- mAP ). The general formula to compute the  a- mAP  is given by

Δ

1   mAP @( δl + ( d −  1)  × δh−δl ) +  mAP @( δl +  d × δh−δl ) a- mAP =

Δ

Δ

 . 

Δ

2

 d=1

The first metric introduced by Giancola  et al. ,13 later called the loose Average-mean Average Precision ( a- mAP loose), considered Δ = 11 time intervals of 5 s between tight time tolerances ( δl = 5 s) to loose ones ( δh = 60 s). A second stricter variant was later proposed during the SoccerNet action spotting 2022 and 2023

challenges38 considering tighter time tolerances with Δ = 4 time intervals of 1 second linearly spaced between  δl = 1 and  δh = 5 second time tolerances, called the  a- mAP tight. Let us note that for counting applications, the  a- mAP loose or the mAP @ ∞  are sufficient as predicting the moment when the actions occur is not useful, while for video analysis of specific actions, the  a- mAP tight or the  mAP @1 would be preferred, depending on the time tolerance required for the downstream application. As a final remark, SoccerNet-v29 introduced the concept of visible versus unshown actions, which correspond to actions that are respectively clearly visible on the broadcast or that happened but were not shown, e.g., due to a replay or

showing a different angle. The metrics described above can therefore be defined for each set separately, for analysis purposes. This is interesting to analyze whether methods can understand the rules of the game and still detect unshown actions

based on context alone. 

6. Benchmark across Four Datasets: Summarizing Six Years of

Research

Since the creation of SoccerNet in 2018, numerous methods have been proposed

to tackle the action spotting task, reflecting the evolution of both the dataset and the technological landscape of artificial intelligence. Initially, most methods were feature-based, leveraging the pre-extracted features provided by the SoccerNet action spotting (v1) dataset, 13 which focused on three classes of actions. At that
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Table 2. 

SoccerNet action spotting (v1)13 leaderboard for three classes: goal, card, and substitution. The methods are ranked according to the test set  a- mAP loose metric. The a- AP loose for each class is also displayed when available. 

Test Set

 a- APloose

Methods

 a- mAPloose

Goal

Card

Substitution

Nakazawa  et al.  74

81.6

87.1

63.3

94.3

RMSNet75a

75.1

/

/

/

Si  et al.  76

66.8

/

/

/

Karimi  et al.  77

64.9

/

/

/

Mahaseni  et al.  78

63.3

/

/

/

CALF13b

62.5

/

/

/

Vats  et al.  79

60.1

/

/

/

Rongved  et al.  80

56.3

75.1

40.1

50.21

AudioVid81

56.0

/

/

/

NetVLAD13c

49.7

/

/

/

Rongved  et al.  82

32.0

/

/

/

 Notes: ahttps://github.com/aimagelab/RMSNet Soccer

bhttps://github.com/SoccerNet/sn-spotting/tree/main/Benchmarks/CALF

chttps://github.com/SoccerNet/sn-spotting/tree/main/Benchmarks/Pooling. 

time, end-to-end training on video data was challenging due to limitations in GPU

VRAM memory and processing speed. As a result, the early methods focused on

refining the neck and head components of the pipeline while relying on pre-extracted features from pre-trained backbones like ResNet. The original NetVLAD13 method set a baseline, but there was a significant gap until the CALF40 method introduced a context-aware loss function that substantially improved performance. Although

several methods attempted to close this gap, it was not until newer architectures, such as attention mechanisms, 74 multi-scene encoders, 76 and metric learning, 77 were introduced a year later that better performances were achieved. Table 2 presents the results of these methods on the original action spotting (3 classes) benchmark. 

The release of SoccerNet action spotting (v2), 9 which expanded the task to 17 classes, marked a significant step forward and laid the foundation for the first SoccerNet challenge on Action Spotting in 2021. This task provided the research

community with a more challenging setup, leading to the development of new tech-

niques. The first major performance boost came from Zhou  et al. , 51 who fine-tuned pre-trained features on football data through a frame classification task. In the following year’s challenge,59 the evaluation metric was tightened from  a- mAP loose to  a- mAP tight, requiring methods to focus on precise temporal localization. This led to significant breakthroughs, including the first end-to-end method proposed by Hong. 58 However, a feature-based method by Soares  et al. 57 still emerged vic-torious, utilizing dense detection anchors to refine spotting predictions. The 2023

edition of the SoccerNet challenges38 saw several methods surpass the 70% mark in  a- mAP tight, with the winning entry employing a hybrid architecture that fused
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Table 3. 

SoccerNet action spotting (v2) leaderboard for 17 actions. The methods are ranked according to the challenge set  a- mAP tight.  Main considers all actions,  visible  only visible actions, and  unshown  unshown actions in the broadcast. 

Test Set

Challenge Set

 a- mAPtight

 a- mAPloose

 a- mAPtight

 a- mAPloose

Methods

main

visible

unshown

main

visible

unshown

main

visible

unshown

main

visible

unshown

MEDet

/

/

/

/

/

/

71.31

76.29

54.09

78.56

81.67

69.13

mt player

/

/

/

/

/

/

71.10

77.22

58.50

78.79

82.02

77.62

ASTRA72a

/

/

/

/

/

/

70.10

75.00

57.98

79.21

81.69

75.36

HCMUS-PK83b

62.49

69.04

30.42

73.98

80.09

45.05

69.38

75.50

53.31

76.15

80.08

66.62

team ws action

/

/

/

/

/

/

69.17

75.18

59.12

76.95

80.39

75.92

 S

COMEDIAN84c

73.1

/

/

/

/

/

68.38

74.79

47.68

73.98

78.57

61.75

 .Gi

Soares  et al.  57d

65.07

71.24

36.62

78.59

83.89

54.15

68.33

73.22

60.88

78.06

80.58

78.32

 an

DVP

/

/

/

/

/

/

66.95

74.68

53.81

73.61

79.15

67.38

 c

E2E-Spot58e

/

/

/

/

/

/

66.73

74.84

53.21

73.62

79.16

67.42

 ola

AS&RG

/

/

/

/

/

/

64.88

70.31

53.03

72.83

76.08

72.35

 et

MSAction

/

/

/

/

/

/

62.26

67.48

45.04

69.86

73.81

59.15

 al. 

Faster-TAD85

61.10

25.50

54.09

/

/

/

/

/

/

/

/

/

Rkrystal

60.94

67.49

30.97

76.07

81.54

48.64

61.84

67.39

48.71

74.75

78.29

69.02

arturxe

57.28

63.57

29.04

72.13

77.11

45.62

60.56

65.75

53.00

71.72

75.15

69.91

cihe

60.51

66.17

31.91

75.33

80.20

46.74

59.97

64.51

53.80

72.95

76.29

71.95

SpotFormer86

60.9

48.6

31.0

81.5

48.6

31.9

/

/

/

/

/

/

STE-v287

58.29

63.13

30.60

71.58

75.36

46.99

58.71

63.70

51.86

70.49

73.46

70.11

intro- and inter

/

/

/

/

/

/

53.30

58.48

47.30

66.59

68.75

67.09

memory

/

/

/

/

/

/

52.89

57.82

49.85

68.00

70.58

69.20

Zhu  et al.  88f

/

/

/

/

/

/

52.04

60.18

32.06

60.86

66.64

48.46

JAMY2 (AF GRU)

/

/

/

/

/

/

51.97

58.05

44.29

63.12

65.98

61.66

tyru (GRU CALF)

/

/

/

/

/

/

51.38

57.50

41.82

62.88

66.30

56.57

Zhou  et al.  51g

47.05

53.33

25.63

73.77

79.28

47.84

49.56

54.42

45.42

74.84

78.58

71.52
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JAMY (LocPoint)

/

/

/

/

/

/

45.83

49.68

45.71

61.80

64.23

63.48

zqing

53.63

56.11

44.47

76.08

78.10

67.99

45.76

50.37

45.41

66.13

68.09

70.06

 De

SIT

/

/

/

/

/

/

21.60

26.55

16.83

29.92

34.92

25.22

 ep

test YYQ

/

/

/

/

/

/

12.73

14.13

11.21

54.21

58.75

48.55

 L

ABCS

/

/

/

/

/

/

12.22

13.55

13.80

57.16

62.25

50.25

 ear

Visual Analysis of

/

/

/

/

/

/

/

/

/

64.73

67.96

50.14

 ning

Humans

RMS-Net75h

/

/

/

63.49

68.88

38.02

/

/

/

60.92

64.09

56.61

 for

MA-VLAD89

/

/

/

62.5

67.1

39.6

/

/

/

/

/

/

 A

Shi  et al.  76

/

/

/

55.2

/

/

/

/

/

/

/

/

 ctio

IdealCat

/

/

/

/

/

/

/

/

/

54.24

57.50

56.54

 n

NetVLAD++48i

/

/

/

53.40

59.41

34.97

/

/

52.54

57.12

46.15

 Sp

straw

/

/

/

49.79

56.35

31.14

/

/

/

51.65

57.03

45.33

 otting

CALF+PlayerLoc90j

/

/

/

46.8

/

/

/

/

/

/

/

/

CALF40k

/

/

/

41.61

43.54

28.88

/

/

/

42.22

43.51

37.91

 in

AudioVid81

/

/

/

39.9

/

/

/

/

/

/

/

/

 A

NetVLAD13l

/

/

/

31.37

34.30

23.27

/

/

/

30.74
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transformer and CNN-based encoders. The performances of these methods are sum-

marized in Table 3. 

In 2023, we introduced the first edition of the SoccerNet ball action spotting challenge, 38 focusing on two classes: passes and drives. This new task presented three key challenges: the need to detect fast and subtle actions with minimal visual cues, the density of actions leading to difficulties in distinguishing between closely occurring actions, and the limited amount of training data available, which encouraged the use of semi-supervised, self-supervised, and transfer learning techniques. Participants in this challenge explored various strategies, including pre-training on action spotting videos and fine-tuning on ball action data, utilizing stacked sequences of gray-scale images in the RGB channels, employing focal loss for label expansion, and model ensembling to combine different network variants. The results of these methods are detailed in Table 4. 

In 2024, the complexity of the ball action spotting task42 was increased by expanding the number of classes from 2 to 12. This expansion required more granular categorization of actions, such as differentiating between various types of passes. 

Participants employed several advanced techniques to tackle this challenge. Similarly to 2023, key strategies included the use of gray-scale images to simplify visual processing, the integration of 2D and 3D convolutional networks to capture both

spatial and temporal features, and the application of transfer learning from related domains to enhance model training. The winning team, T-DEED,69 introduced an innovative approach using a 2D backbone with Gate-Shift Fuse (GSF) modules for generating per-frame representations with local spatiotemporal informa-

tion. Their method also included a temporally discriminant encoder–decoder that

refined per-frame tokens, increasing their discriminability within sequences while maintaining high temporal resolution. To address the issue of limited data, they trained their model on both SoccerNet ball action spotting (2024) and the original SoccerNet action spotting (v2) datasets simultaneously, using a multi-task training approach with dual prediction heads. The results of these methods are presented in Table 5. 

Overall, the challenges organized around SoccerNet have attracted significant

attention and fostered the development of innovative methods that have applica-

tions beyond sports video analysis. Notably, some winning methods, such as E2E-

Spot by Hong  et al. , 58 Dense Detection Anchors by Soares  et al. , 57 and T-DEED by Xarles  et al. ,69 have shown strong performance on other datasets, demonstrating that advancements made for sports can contribute to breakthroughs in more generic video understanding. This underscores the relevance of the SoccerNet dataset, 

benchmark, and challenges to the broader research community. By providing open-

source data and organizing these challenges, SoccerNet has successfully built a large community of researchers dedicated to advancing the field of video understanding. 
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Ball Action Spotting (2023) leaderboard for 2 classes. The methods are ranked according to the challenge set  mAP @1. 
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Table 5. 

Ball Action Spotting (2024) leaderboard for 12 classes. The methods are ranked according to the challenge set  mAP @1. 
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7. Conclusion

In this chapter, we provided a comprehensive overview of the task of  action spotting, structured around three key pillars: datasets, methods, and evaluation metrics. 

We began by tracing the evolution of action spotting, highlighting the important role of the SoccerNet datasets in initiating extensive research in this domain. The introduction of these large-scale datasets, completed with detailed annotations, has been crucial in driving forward the field by providing a solid foundation for the development of innovative approaches. 

Next, we explored how deep learning methods progressively approached the task

of action spotting, discussing the general architecture and then describing specific methods published in the literature. Specifically, we examined both feature-based approaches, which rely on pre-trained backbones, and end-to-end methods that

optimize the entire model architecture for the task. These methods have introduced significant advancements, each contributing unique insights and techniques that

have pushed the state of the art in action spotting. 

We also detailed the evaluation metrics, which are essential for assessing the

performance of action spotting methods, emphasizing the importance of precise

temporal localization and the challenges it presents. Following this, we presented a retrospective analysis of six years of research, showcasing a thorough benchmark of methods developed in response to the four SoccerNet action spotting datasets

showcased in open challenges. These challenges have been a driving force in the

field, encouraging researchers to continuously improve upon the state of the art. 

Overall, this chapter serves as a timestamped summary of the history of the

SoccerNet action spotting datasets and challenges, cataloging over 60 methods that have been developed or published, many of which include publicly available code to facilitate further research. SoccerNet underscores the profound impact that open-source data, methods, and benchmarks have on advancing the field of video under-

standing, particularly in the context of sports. 
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In the field of computer vision tasks, substantial importance lies in moving object detection. Background subtraction (BS) is a frequently used scheme for identifying objects in motion in video scenes. However, the BS technique’s efficacy is dependent on background modeling. As a result, background modeling is effective in dealing with a variety of issues, such as variation in illumination, dynamic background, and poor resolution. Therefore, in this work, we have developed end-to-end deep learning frameworks for BS. Initially, we proposed a VGG-19 deep

neural architecture encoder with a transfer learning (TL) strategy-induced fea-

ture pooling module (FPM) capable of extracting multi-scale objects at different scales. The proposed decoder framework contains several transposed convolution

layers that efficiently project feature space to image space. Further, we have developed a BS scheme where a ResNet-50 deep neural network (DNN) with an FPM

block learns to project from image to feature space efficiently. The proposed

decoder framework contains stacked convolutional layers that can separate the

foreground and background pixels effectively for the target frame. The efficacy of the designed techniques is validated by comparing the outcomes obtained by the

VGG-19-based network against 17 existing techniques and the results achieved

by the ResNet-50-based network against 28 state-of-the-art (SOTA) schemes. 

1. Introduction

Visual surveillance is a prominent area of interest in several sectors for applications, such as behavior monitoring, data gathering, activity planning, civil structure design, influencing, managing, and so on. The widespread availability of low-cost 461
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vision sensors triggered an industrial process in surveillance software. For monitoring and security purposes, video surveillance is regarded as an enterprise-grade solution for several sectors worldwide. Visual surveillance consists of two significant steps: foreground separation and tracking. On the contrary, an effective monitoring system’s fundamental task is to detect changes in the video scenes. Moving object detection from challenging video scenes has been a difficult task for several decades and is one of the diligent research topics in a visual monitoring system. The technique of detecting moving objects can be viewed as separating the foreground and the background of video scenes. Thus, the said process is viewed as a binary classification task in which the pixels that belong to the static background are removed while pixels that belong to the foreground are retained. Detecting local changes in a video scene has many applications including surveillance of traffic, 1 object tracking, 2 detection of vehicles, 3 visual surveillance, 4 interaction between humans and machines, 4 etc. 

Among the different foreground segmentation techniques, BS5 is one of the most popular and frequently referenced techniques for surveillance applications. 

BS is a two-step pixel labeling task that consists of background modeling and foreground separation. The background construction influences the accuracy of moving object detection in a BS approach. Various BS techniques5, 6 have been designed by researchers around the world over the past few decades. However, background

modeling is difficult since an image frame is generally affected by adverse weather conditions, illumination variation, noise, low contrast, inadequate texture, camera jitter, poor resolution, and so on. Therefore, the resilience of a background subtraction technique is determined by its ability to address all of the aforementioned issues. However, SOTA techniques work effectively only for certain categories and fail in others. Furthermore, the performance of these traditional techniques is dependent on hand-crafted features. This gives rise to concerns regarding the development of more efficient and resilient techniques for detecting moving objects. Deep learning frameworks have been instrumental in advancing computer vision applications

over the years. Also, for moving object detection, deep neural networks (DNNs)7

are extensively used recently, as they can retain low, mid, and high levels features. 

Deep neural architecture can benefit from a TL mechanism as well. However, vari-

ous flaws in the deep neural architecture design for local change detection have been revealed. The use of DNNs in visual surveillance increases the system’s complexity. 

It is observed that the intricacy of the model increases as the depth of the layers grows. It has also been noted that training the DNN demands a greater number

of sample frames. Furthermore, with present methodologies, finding an end-to-end architecture for local change detection is uncommon. 

In this research, we have designed encoder–decoder-based DNN architectures

integrated with a TL mechanism for detecting local changes. Initially, we designed an end-to-end VGG-19 DNN with a feature pooling module (FPM) that extracted

and learned features at various layers. As an encoder, we used a VGG-19 framework where the first three block weights are freeze, and the fourth block weights are

[image: Image 1145]
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learned by utilizing a TL mechanism. For complex video sequences, the proposed

FPM module can retain multi-scale objects. In addition, the proposed decoder

network includes stacked transposed convolutional layers capable of distinguishing between background and foreground pixels effectively in the input RGB image. 

Then, we use a threshold to produce frames with binary segmented labels. To

improve feature representation, the residual connections are heeded by global average pooling (GAP), which drives fine-scale components from the encoder architec-

ture to the decoder framework. Further, we have designed an end-to-end ResNet-50

deep neural model-induced FPM block where the first two blocks of the ResNet-

50 are freeze, while the third block is trained to adapt to the input video scenes. 

The details attained from the ResNet-50 network are then fed into the FPM block, which extracts features at various scales. The designed decoder network contains stacked convolutional layers where the retained features are predicted to foreground probability map at the pixel level. This map is then thresholded to yield images with binary segmentation labels. Furthermore, the utilization of skip connections, coupled with the GAP layer, serves to propagate fine-scale information from the

encoder architecture to the decoder architecture, thereby enhancing the presentation of features. 

The efficacy of the developed schemes is corroborated by evaluating it on three

benchmark databases  changedetection.net,a  Star, 8 and  Wall flower 9 each with various challenging videos: camera jitter, shadow, low resolution, poor texture, low contrast, camouflage, low frame rate, abrupt and gradual variations in illumination, etc. 

The developed techniques’ outcomes are validated qualitatively and quantitatively by comparing them to the outcomes of competitive SOTA schemes. We validate the

proposed VGG-19-based local change detection model’s effectiveness by compar-

ing its results to seventeen existing SOTA approaches. Furthermore, the proposed ResNet-50-based moving object detection technique is confirmed by comparing its

findings to the results of 28 SOTA techniques. It is found that the developed techniques outperform the existing SOTA methods in terms of efficiency. Furthermore, the proposed techniques are tested for the unseen video scenario and shown to be more accurate. 

The subsequent sections of the work are structured in the following manner. 

Section 2 explains literature on background subtraction. The proposed BS techniques are discussed in Section 3. Section 4 shows experimental findings as well as discussions about the work. The conclusions are carried out in Section 5. 

2. State-of-the-Art Techniques

The BS algorithm has garnered significant attention and research within the field of computer vision, primarily for its application in detecting moving objects. 

Throughout the years, several researchers have attempted to develop consistent

a http://changedetection.net/. 

464

 M. K. Panda et al. 

background subtraction algorithms that have progressed much beyond the conven-

tional approaches that employed a background architecture particular to the video sequences. We have classified the local change detection strategies into three groups based on the literature: statistical-based techniques, machine learning-based techniques, and deep learning-based techniques. 

2.1.  Statistical-based techniques

2.1.1.  Parametric-based techniques

For the previous two decades, the most popular and traditional strategies for detecting local changes have been parametric-based BS techniques. In a parametric-

dependent BS method, the background is generated by determining the variables

of the pixel disbursement employing statistical metrics. In Ref. 10, an effective BS

method is developed, where the pixels in different frames of the video are modeled using Gaussian distribution. The values of pixels in the desired frame are mapped with the average and variance of the Gaussian issuance to identify changes in the images. Stauffer and Grimson11 proposed a resilient BS technique for depicting the multi-static background in an image by designing the scene’s background with a

mixture of Gaussian probability density functions. However, various solitary points such as holes and pores are identified in the findings of the aforementioned BS

method. Therefore, in Ref. 12, a BS method is proposed wherein the spatial and temporal pixel distribution is characterized by a Gaussian distribution within the framework of Wronskian. The said technique has been found to generate reduced

misclassification in the outcomes of change detection. Also, Rout  et al. 13 devised a BS algorithm specifically designed for underwater image sequences, incorporating a combination of Gaussian processes within the framework of Wronskian. Furthermore, Ref. 14 proposed a moving object detection technique scheme in which the Dirichlet process Gaussian mixture framework is utilized to determine the background parameters. On the other hand, the parametric-dependent foreground sepa-

ration techniques are computationally complex and may be unable to provide better performance in real-time tasks. 

2.1.2.  Non-parametric-based techniques

It can be seen that the parametric-based BS approaches required a significant

amount of time for the background construction. In this regard, a BS method15

is developed in which the kernel-based density estimation process is employed to find the variables for the background architecture. A BS technique in which the

background is constructed by a codebook construction strategy. 16 Here, the background is developed by depicting every pixel with a codebook, which is an excellent approach for video scenes with a dynamic background. It is noted that the nonparametric BS algorithms outlined above have a significant computational expense and rarely contain the image’s spatio-contextual data which is essential for moving
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object detection. As a consequence, these approaches may fail to deal with the significant uncertainty in image sequences. In Ref. 17, a foreground segmentation scheme is designed where multi-valued details are retained from the local region of a video frame and are used to design a non-parametric background model. To identify each pixel in the desired image that relates to the moving object or background, a majority voting approach is used. In Ref. 18, a background subtraction technique is proposed in which spatio-temporal binary components with color details in images are employed to detect moving objects in challenging video scenes. Sajid and Cheung19

proposed a multi-modal foreground separation technique in which numerous back-

ground models are employed to generate the static background of the image. Using mega-pixel-based spatial denoising to pixel-level probability estimations, the objects in the desired frame are detected. Lee  et al. 20 developed a moving object detection architecture in which the resemblances between foreground regions and false positives are investigated to enhance the BS accuracy and decrease the false positive rates caused by a non-static background. It may be noted that the non-parametric local change detection schemes are based on pixel value perception, and just a few parameters are used for moving object detection. Nonetheless, these methods are

ill-suited for real-time applications due to their computational complexity. 

2.2.  Machine learning-based techniques

In recent years, there has been an increasing trend in the popularity of machine learning-based approaches for detecting local changes within video scenes. In Ref. 21, 

binary principal component analysis (BRPCA) is utilized for local change detection. 

Although BRPCA is excellent for BS, the outcomes of the said scheme contain iso-

lated points and noisy pixels. Within this circumstance, Cao  et al. 22 developed a BS scheme that uses tensor-dependant robust principal component analysis (RPCA)

to separate video frames into foreground and background with the spatio-temporal property. To minimize the complexity of computation even further, in Ref. 23, a subspace learning-based moving object detection approach is proposed, wherein the foreground within a video frame is represented using a Gaussian mixture, and the model for each frame is regularized based on the background/foreground details

acquired from previous frames. The developed architecture can be expressed as a

compact probabilistic maximal a posterior probability model that can be fixed using the expectation-maximization technique. Also, Wu and Lu24 designed an adaptive pixel-block-based foreground separation technique in which background low-rank

property and foreground sparsity can be differentiated more easily. Further, Bianco et al. 25 developed a BS technique in which genetic programming is utilized to automatically select the finest existing BS schemes and incorporate them in a variety of ways to improve the BS results. The above study shows that due to static variation in the image frames, they may have multi-valued the background pixels, resulting in substantial uncertainty. It can be challenging to deal with video scenes with substantial uncertainty. 
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It can be seen that the fuzzy set-theoretic technique is capable of handling high uncertainty in the video scene. 26 In this context, Maddalena and Petrosino  et al. 27

developed a BS technique based on self-organization-based neural networks, 28 in which the fuzzy model is utilized to design the spatial consistency of the target frames. In Ref. 29, a BS scheme is proposed in which the weighted sampling strategy permits inconsistent weighting to obtain improved outcomes. It may be observed

from the above discussion that most current SOTA algorithms fail to retain details in-depth from complex video scenes. Also, the existing cutting-edge algorithms fail to produce better results in many databases as these techniques are used in handcrafted details. 

2.3.  Deep learning-based techniques

Over the years, many DNNs for background development and subtraction have

been developed by researchers all over the world which provide better performances against SOTA techniques as DNNs are capable of extracting diverse details at various scales from the image frames.7, 30 Braham and Droogenbroeck31 proposed a BS

technique where spatial details of the video scenes are learned using a convolutional neural network (CNN). In, Ref. 32 a BS technique is proposed where a fully semantic background framework is utilized for motion detection in the video scenes. However, these said techniques are scene specific. In this context, Babae  et al. 33 designed a local change detection model where Flux Tensor6 and SuBSENSE18 algorithm’s output are integrated to develop the background model. Also, in Ref. 34, a local change detection algorithm dependent on a multi-scale CNN is devised. It takes numerous scales of video images as input and incorporates the outcomes to predict foreground probability. Further, Nguyen  et al. 35 presented a local change detection algorithm in which a sample-based background architecture with the retained feature and color details is used to detect moving objects. However, the aforementioned techniques are computationally expensive. Also, it may be noted that these said schemes are not end-to-end DNN. 

In this context, various studies are developed by researchers all around the world. 

In Ref. 36, an end-to-end CNN for local changes is provided, in which a 3D atrous CNN is employed to retain features in-depth and preserve the reliance between video images utilizing a long short-term memory framework. This method prevents the use of the patch-wise training procedure, which minimizes the network’s computational complexity. In Ref. 37, a local change detection technique is proposed in which an encoder–decoder model is utilized to extract multi-scale features at various levels and project these features into a high-resolution output frame. Tezcan  et al.  38 developed a local change detection method in which a fully convolutional network detects local changes in a video scene using a current image and two background frames

with their semantic segmentation maps. Also, Lim  et al. 39 developed a BS algorithm where an end-to-end CNN with an FPM block is utilized to capture the multi-scale objects at various scales. Recently, a generative adversarial network (GAN) is also utilized for local change detection. In Ref. 40, a BS technique is proposed where the
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Bayesian GAN and the median filtering strategies are used to segment each pixel of the video frames as foreground/background. Parallel vision theory is further adapted to enhance the segmented results. Also, conditional GAN41 which consists of the generator and the discriminator is used for the foreground segmentation. 

From the above literature, various shortcomings in the DNN design for local

change detection have been identified. The use of DNNs in visual surveillance

increases the system’s complexity. Observations reveal that as the depth of the

layers increases, the model’s complexity also escalates. It has also been highlighted that training the DNN demands a higher number of sample frames. Further, with

current methodologies, it is uncommon to find an end-to-end DNN for change detection in image sequences. Again, the efficiency of the DNN-based SOTA algorithms

is reduced for unseen video arrangement. 

3. The Proposed Techniques

Here, we have developed two resilient end-to-end DNN-based architectures for BS

in complex video scenarios. Initially, we proposed a VGG-19 DNN encoder-induced

feature pooling module that retains features at various levels. Here, we have proposed a decoder framework that contains a stacked transposed convolution layer

that projects feature space to image-frame space effectively. The visual illustration of the designed technique is presented in Fig. 1. Further, we have used an altered ResNet-50 DNN to design an encoder. The ResNet-50 network integrates with an

FPM block to attain multi-scale objects at different levels. The decoder networks utilize stacked convolutional layers to proficiently categorize both the objects in motion and background pixels within the target image. The visual representation

of the developed technique is presented in Fig. 2. 

3.1.  End-to-end VGG-19-based background subtraction technique

3.1.1.  Encoder network

In computer vision tasks, the DNN’s depth layers are significant. The features

retained at the in-depth layer of the deep neural network contain semantic information but are unable to drag small-scale features from a video sequence. As a result, Encoder
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Fig. 1. 

Schematic illustration of the proposed BS technique using VGG-19. 
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Fig. 2. 

Schematic illustration of the proposed BS scheme using ResNet-50. 

if the network depth exceeds the limit, the efficiency of the background construction degrades rapidly. To solve this, the proposed technique used the initial four blocks of the VGG-19 architecture42 for an encoder. The VGG-19 DNN is made up of five blocks, each of which includes convolutional layers and a rectified linear unit (ReLU). The weights of the first three blocks of the VGG-19 DNN are

freeze and the TL strategy is used to learn the weights of the fourth block of the VGG-19 architecture using the  changedetection.net  dataset. Transfer learning (TL) is a process of transferring knowledge from one domain to another. The developed technique employs the TL mechanism to explore new tasks that rely on previously

obtained tasks by the VGG-19 network. Furthermore, it improves the model’s accu-

racy and speed while training on lesser samples. In addition, the 4th block of the VGG-19 architecture is optimized by applying dropout regularization42 at the rate of 0 .  5 after each convolutional layer. Additionally, the max-pooling layer among the 3rd and 4th blocks is eliminated to improve the utilization of in-depth features at multiple levels with enriched spatial resolution. The low-level details of the encoder network are retained at the end of both the 1st and 2nd blocks. These low-level

details are transferred to the decoder framework via residual connections, pursued by the GAP layer to enhance feature articulation. The introduction of a GAP layer enhances the model’s efficiency, making it more resistant to spatial translations of small-scale details. 

3.1.2.  Feature pooling module

To effectively preserve objects at different scales from challenging video scenes, this work presents a feature pooling module (FPM) among the encoder and decoder

networks presented in Fig. 3. The max-pooling layer is hybridized in the FPM module with 64 1  ×  1 filter size convolutional layer, 64 3  ×  3 filter size convolutional layer, and atrous convolutional layers with different dilation rates of 4, 8, and 16, respectively. The proposed FPM block uses atrous convolutional layers with a 64, 3  ×  3 filter size. The max-polling layer can retain the maximum information  Fa for taking window size 2  ×  2 from the encoder outcome  F . The outcomes of the
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Fig. 3. 

Graphical demonstration of the developed multi-scale feature pooling module. 

convolutional layer and various atrous convolutional layers of the FPM block, which are represented as  Fb,  Fc,  Fd, and  Fe, can anticipate sparse and dense feature space from the high-dimensional feature space  F . Then,  Fa,  Fb,  Fc,  Fd, and  Fe  features are concatenated along the channels and processed through contrast normalization (also known as instance normalization) followed by a spatial dropout layer with

a rate of 0.25 to produce the FPM block output of 320 feature maps. Observa-

tions indicate that the designed model demonstrates improved performance with

the utilization of contrast normalization instead of batch normalization. Additionally, including a spatial dropout layer effectively preserves spatial information while reducing redundant information. 

3.1.3.  Decoder network

Spatial details from the video scene are important for moving object detection. 

The defeat of spatial details may result in numerous isolated regions appearing as false/missed alarms on the foreground map. To decrease spatial information loss, we developed a robust decoder network in the proposed scheme utilizing transposed convolutional layers (Tconv). The designed decoder architecture comprises

six blocks. The details at various scales from the FPM module are provided to the decoder architecture’s 1st block, which consists of two 1  ×  1 and 3  ×  3 transposed convolutional layers that generate 512 features. The decoder network’s 2nd block is an identical arrangement as the 1st block in which the 3  ×  3 Tconv layer is replaced by a 5  ×  5 Tconv layer with stride  s = 2, resulting in 256 features. The outcome of the aforementioned block is obeyed by the instance normalization (IN) layer and the ReLU function is fused with low-level details retained at the end of the 2nd block of the encoder network. These fused feature maps are sent to the 3rd block, which is analogous to the 1st block that gives 128 feature maps. The outcome of

the 3rd block is given to the decoder’s 4th block which contains a 5  ×  5 Tconv layer with  s = 2. The results of the said block with IN layer and ReLU function are
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fused with low-level details extracted from the end of the encoder’s 1st block. The decoder network’s 5th block comprises a 3  ×  3 Tconv layer, obeyed by IN layer and ReLU function, which project the fused feature details into 64 features for better representation. The decoder network’s 6th block has a 1  ×  1 Tconv layer, followed by a sigmoid function and a threshold value of 0 .  9, which effectively categorizes the background and foreground pixels for the target frame. To avoid overfitting, we used  L 2 regularization in the decoder framework weights. 

3.2.  End-to-end ResNet-50-based background subtraction technique

3.2.1.  Encoder network

In this work, the encoder employed a pre-trained ResNet-50 DNN. The ResNet-50

network43 is based on a residual learning framework and is commonly utilized in computer vision applications. Here, we attempted to use the ResNet-50 network’s

capabilities for local change detection. The ResNet-50 DNN is composed of five

blocks where each block contains convolutional layers, batch normalization (BN)

layers, and a ReLU function. Using convolutional kernels, the ResNet-50 network’s convolutional layers can retain spatial data from input images. In the DNN, BN44

layers are used, which increases training speed and learning performance. The usage of ReLU in the network improves its speed and efficiency. We experimented with

numerous CNN architectural variants in this work and found the ResNet-50 network to be robust and efficient. 

In the designed algorithm, we used a altered version of the deep Resnet-50 net-

work which includes the three initial blocks. The first two blocks have the same weights as the ResNet-50 architecture, while the third block’s weights are learned using a TL strategy. To make better use of in-depth multi-layer details with higher spatial resolution, we eliminate the max-pooling layer among the first two blocks. 

In addition, we eliminate the fourth and fifth blocks of the ResNet-152 frame-

work to improve the proposed scheme’s usage of high spatial resolution and high-

frequency features. The small-scale details are retained at the beginning and end of the encoder’s 1st block using 3  ×  3 convolution layers with 64 and 128 filters, respectively. These small-scale details are transferred toward the decoder architecture via residual connections, pursued by the GAP layer, which improves feature

representation. 

3.2.2.  Feature pooling module

To effectively preserve objects at different scales from challenging video scenes, this work presents a feature pooling module (FPM) among the encoder and decoder

networks presented in Fig. 3. The max-pooling layer is hybridized in the FPM

module with 64 1  ×  1 filter size convolutional layer, 64 3  ×  3 filter size convolutional layer, and atrous convolutional layers with different dilation rates of 4, 8, and 16, respectively. The proposed FPM block uses atrous convolutional layers with
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a 64 3  ×  3 filter size. The max-polling layer can retain the maximum information Fa  for taking window size 2  ×  2 from the encoder outcome  F . The outcomes of the convolutional layer and various atrous convolutional layers of the FPM block, which are represented as  Fb,  Fc,  Fd, and  Fe, can anticipate sparse and dense feature space from the high-dimensional feature space  F . Then,  Fa,  Fb,  Fc,  Fd, and Fe  features are concatenated along the channels and processed through contrast normalization (also known as instance normalization) followed by a spatial dropout layer with a rate of 0.25 to produce the FPM block output of 320 feature maps. 

Observations indicate that the designed model demonstrates improved performance

with the utilization of contrast normalization instead of batch normalization. Additionally, including a spatial dropout layer effectively preserves spatial information while reducing redundant information. 

3.2.3.  Decoder network

Spatial details of the complex image are essential for effective moving object detection. Therefore, the developed decoder network comprises a stack of convolutional layers in the proposed model that preserve spatial information efficiently. The initial convolutional layer consists of 64 filters with a 3  ×  3 size, projecting the 320

feature maps obtained from the FPM block into 64 feature maps. These features

are succeeded by the IN layer and the ReLU function is fused with the fine-scale details retained at the end of the 1st block of the encoder, followed by the GAP

layer. Using the GAP layer in the decoder architecture increases the efficiency of the developed model. Afterward, the fused features are Up-sampled and passed through the convolutional layer contains 64 filters with a 3  ×  3 size followed by the IN layer and ReLU function to generate the 64 feature maps. Again these feature maps are

fused with the fine-scale features extracted at the beginning of the 1st block of the encoder, followed by the GAP layer. The fused features are Up-sampled and projected into 128 feature maps by employing a convolutional layer consisting of 128

filters with a 3  ×  3 size. It is found that these features improve the appearance of the object and background pixels while enhancing the performance of the developed architecture. Eventually, a convolutional layer contains one filter with a 1  ×  1 size followed by a sigmoid function that accurately projects the feature space into image space. A threshold value of 0.9 provides the mask effectively for the corresponding RGB input image. It is found that the threshold value of 0.9 provides better accuracy for challenging video scenes. 

4. Experimental Results Analysis

The developed models are run on a Windows 10 operating system with 16 GB

RAM with Python programming. The proposed works are trained and tested over

the  NVIDIA  Tesla  T4  GPU given by the Google Co-laboratory. The proposed algorithms are implemented by utilizing the  TensorFlow  backend with the  Keras
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library. The efficacy of the developed models is validated on the challenging datasets: changedetection.net,b  Star, 8 and  Wall flower . 9 The efficiency of the developed end-to-end VGG-19 dependant BS algorithm is corroborated by resembling its results

with the outcomes acquired by seventeen SOTA techniques using subjective and

objective analysis. Further, the effectiveness of the proposed end-to-end ResNet-50

dependant BS scheme is validated against 28 SOTA techniques using subjective and objective analysis. 

4.1.  Parameter settings and training details

The proposed models are trained from end-to-end using a  NVIDIA  Tesla  T4  GPU

system with a batch size of 1. The lower batch size can have a special regularization effect and help the models to converge more quickly. The trained models utilize

frames with  n  pixels each and comprise  N = 200 frames. Furthermore, we train the model using the binary cross-entropy loss (BCEL) function. The said function compares each pixel’s actual and predicted class labels and is given as

 n



BCEL =  −  1

[ xp log(ˆ

 xp) + (1  − xp)log(1  −  ˆ

 xp)] , 

(1)

 n p=1

where  xp ∈ { 0 ,  1 }  is the pixel’s actual label and ˆ

 xp  is the pixel’s predicted label. 

To train the proposed VGG-19 dependant BS algorithm, we employed the

 RMSProp  optimizer, specifying  ρ  as 0 .  9 and    as 1 e −  08. Comparatively speaking to other traditional optimizers, this offers a faster convergence rate. We have configured the initial learning rate as 0.0001. The learning rate is subsequently scaled down by 10 if, after five consecutive epochs, the validation loss does not reduce. 

To train the model, we preserved a maximum of 100 epochs. Nevertheless, if the

validation loss showed no improvement over 10 successive epochs, we implemented

an early-stopping strategy. Feeding the training frames to the model in a sequential manner may result in biased weight learning. This issue occurs because successive frames have a strong correlation with one another. As a result, we randomly select the training frames to train the model initially. These frames are split into 10% for validation and 90% for training. To solve the issue of imbalanced data classification during model training, we provide the foreground class with more weights and the background class with fewer weights. Further, to train the proposed ResNet-50

dependant BS algorithm, we have used the similar arrangement discussed above. 

However, in the said work, we have used 20% of the samples for validation and 80%

for training. Also, to train the model, we fix to a maximum of 200 epochs, and

an early stopping strategy is used if the validation loss does not go down for 15

consecutive epochs. Further, the learning rate is subsequently scaled down by 10 if, after 7 consecutive epochs, the validation loss does not reduce. 

bhttp://changedetection.net/. 
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4.2.  Subjective analysis of results

We conducted a visual analysis of the VGG-19-dependent BS algorithm proposed

in the study using multiple testing sequences taken from  changedetection.net, as illustrated in Fig. 4. Each of the input frames and their corresponding ground-truth images are showcased in Figs. 4(a) and 4(b). Figure 4(c) indicates the outcomes achieved by the DeepBS33 technique where the presence of imbalanced pixel values in various video images results in the loss of several edge pixels. Consequently, the DeepBS scheme generates a substantial number of alarms being missed in the detected results. Figure 4(d) depicts the results acquired by the BSPVGAN40

method in which numerous false alarms occur in the detected outcomes. The change detection findings acquired by the WisenetMD20 method are illustrated in Fig. 4(e), 

where a few features of the objects are missing in the desired frame. Figure 4(f) describes the BSUVNet2.045 scheme’s outcomes in which the pixels corresponding to the background are determined as the pixels belonging to the foreground. From Fig. 4(g), it is found that the findings acquired by the developed VGG-19-based (a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4. 

Local change detection for several images: (a) Input image, (b) ground-truth frame, outcomes attained by BS scheme dependent on (c) DeepBS, (d) BSPVGAN, (e) WisenetMD, (f) BSUVNet2.0, and (g) proposed VGG-19 with FPM architecture. 

[image: Image 1155]

[image: Image 1156]

[image: Image 1157]

[image: Image 1158]

[image: Image 1159]

[image: Image 1160]

[image: Image 1161]

[image: Image 1162]

[image: Image 1163]

[image: Image 1164]

474

 M. K. Panda et al. 

technique can address the complex scene efficiently and generate outcomes with

fewer noisy pixels as compared to the SOTA methods. 

Likewise, we have visually demonstrated the developed ResNet-50-based DNN

technique in this study by utilizing multiple testing sequences taken from  changedetection.net, as shown in Fig. 5. The developed algorithm’s effectiveness is confirmed by evaluating it against WisenetMD, 20 BSPVGAN, 40 DeepBS, 33 SemanticBGS, 32

BSUV-Net,38 Cascade CNN,34 FgSegNet S FPM,46 and FgSegNet v239 SOTA techniques. All the considered input images are depicted in Fig. 5(a). The detected outcomes achieved by the WisenetMD20 scheme are showcased in Fig. 5(b) where many foreground pixels are detected as background pixels. Figure 5(c) depicts the detected results acquired by the DeepBS33 technique in which many pores and holes are observed. The change detection outcomes obtained by the BSUV-Net38 method are depicted in Fig. 5(d) which produces over-segmentation outcomes as many false alarms appeared in the video sequence. The outcomes attained by the SemanticBGS32 technique are presented in Fig. 5(e). We can see that the SemanticBGS

scheme fails to distinguish small differences in gray values and so misses numerous parts of the moving objects. The frames in Fig. 5(f) indicate the outcomes acquired by the Cascade CNN34 algorithm in which false alarms are observed. Figure 5(g) demonstrates the BSPVGAN40 technique’s segmented outcomes, where numerous object pixels are determined as background. FgSegNet S FPM46 and FgSegNet v239

segmented findings are portrayed in Figs. 5(h) and 5(i), where numerous object portions are lost and these methods are unable to work adequately. The proposed

technique produces results that retain the accurate moving object shape, as seen in Fig. 5(j). Also, from Fig. 5(j), it is found that the designed model detects the (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 5. 

Local change detection for several images: (a) Input image, outcomes achieved by BS

technique dependent on (b) WisenetMD, (c) DeepBS, (d) BSUV-Net, (e) SemanticBGS, (f) Cascade CNN, (g) BSPVGAN, (h) FgSegNet S FPM, (i) FgSegNet v2, and (j) proposed ResNet-50

with FPM framework. 
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changes for the challenging scenes with fewer pores and holes. As a result, the outputs produced by the proposed technique, as shown in Fig. 5(j), confirm our findings by outperforming the other SOTA schemes on the considered sequences. 

4.3.  Objective analysis of results

We measure the efficacy of the developed approaches by employing the subsequent

metrics: average precision (Avg.Pr), average recall (Avg.Re), average percentage of the wrong classification (Avg.PWC), average F-measure (Avg.Fm), 47 and average similarity measure.28 The objective is to improve Avg.Fm, Avg.Pr, and Avg.Re while reducing the Avg.PWC. 

In the initial stage of our quantitative analysis, we have used the  changedetection.net  dataset. The dataset is composed of 11 distinct video scene categories and comprises a total of 53 image sequences, all exhibiting a diverse range of challenging conditions: non-static background, shadow, poor resolution, low contrast, adverse weather conditions, noise, low-frame rate, and ghosting artifacts, etc. The proposed VGG-19-based BS technique’s performance is evaluated on  changedetection.net  dataset by comparing it to the performance of eleven existing SOTA DNNs and six non-deep learning SOTA techniques. The eleven cutting-edge deep

learning models are (DeepBS, 33 BSPVGAN, 40 WisenetMD, 20 Cascade CNN, 34

IUTIS-5, 25 BSUV-Net, 38 SemanticBGS, 32 BSUV-Net 2.0, 45 BMN-BSN, 48 MU-Net2, 49 and DeepSphere50) and six SOTA non-deep learning techniques are (KDE, 15

GMM, 11 PAWCS, 51 SuBSENSE, 18 Fuzzy Mode, 47 and Possibilistic Fuzzy52). We have employed Avg.Pr, Avg.Re, and Avg.Fm to validate the efficiency of the developed model against SOTA techniques. From Table 1, it is noted that the designed Table 1. 

Comparison with all the video scenes of  changede-

 tection.net. 

Algorithms

Avg.Pr

Avg.Re

Avg.Fm

KDE15

0.5811

0.7375

0.5688

GMM11

0.6025

0.6846

0.5707

PAWCS51

0.7857

0.7718

0.7403

SuBSENSE18

0.7509

0.8124

0.7408

Fuzzy Mode47

0.8912

0.8672

0.8792

Possibilistic Fuzzy52

0.9322

0.8929

0.9121

DeepBS33

0.8332

0.7545

0.7458

BSPVGAN40

0.9472

0.9544

0.9501

WisenetMD20

0.7668

0.8179

0.7535

Cascade CNN34

0.8997

0.9506

0.9209

IUTIS-525

0.8087

0.7849

0.7717

BSUV-Net38

0.8113

0.8203

0.7868

SemanticBGS32

0.8305

0.7890

0.7892


BSUV-Net 2.045

0.9011

0.8136

0.8387

BMN-BSN48

0.7032

0.8250

0.7188

MU-Net249

0.9407

0.9454

0.9369

DeepSphere50

0.9512

0.7795

0.9158

VGG-19 (Proposed)

0.9696

0.9612

0.9643
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Table 2. 

Comparison against other DNN-based methods with all the video

scenes of  changedetection.net. 

Algorithms

Avg.Pr

Avg.Re

Avg.PWC

Avg.Fm

WisenetMD20

0.7668

0.8179

1.6136

0.7535

DeepBS33

0.8332

0.7545

1.9920

0.7458

BSUV-Net38

0.8113

0.8203

1.1402

0.7868

SemanticBGS32

0.8305

0.7890

1.0722

0.7892

IUTIS-525

0.8087

0.7849

1.1986

0.7717

Cascade CNN34

0.8997

0.9506

0.4052

0.9209

MsEDNet37

0.8903

0.9076

0.3832

0.8988

BSPVGAN40

0.9472

0.9544

0.2272

0.9501

FgSegNet S FPM46

0.9751

0.9896

0.0461

0.9804

FgSegNet v239

0.9823

0.9891

0.0402

0.9847

BSUV-net+SemanticBGS53

0.8320

0.8180

1.1330

0.7990

FR-CNN54

0.9350

0.9349

0.3427

0.9356

ResNet-50 (Proposed)

0.9886

0.9844

0.0446

0.9865

model surpasses the 17 existing deep learning and non-deep learning architec-

tures in terms of the considered measures. Similarly, the efficiency of the proposed ResNet-50-based DNN on  changedetection.net  dataset is corroborated against 12

SOTA deep learning techniques including WisenetMD, 20 DeepBS, 33 BSUV-Net, 38

SemanticBGS, 32 IUTIS-5, 25 Cascade CNN, 34 MsEDNet, 37 BSPVGAN, 40 FgSegNet S FPM,46 FgSegNet v2,39 BSUV-net+SemanticBGS,53 and FR-CNN54 using Avg.Pr, Avg.Re, Avg.PWC, and Avg.Fm quantitative measures. Table 2 demonstrates that the developed technique yields higher Avg.Pr and Avg.Fm values on

the  changedetection.net  dataset. Nonetheless, concerning the Avg.Re and Avg.PWC

metrics, the outcomes of the proposed scheme closely resemble those achieved

by the FgSegNet S FPM and FgSegNet v2 techniques. The proposed ResNet-

50-based technique’s efficacy is also assessed against eleven non-deep learning-

dependant SOTA techniques: GMM,11 KDE,15 SOBS-CF,27 ViBe,55 DPGMM,14

SuBSENSE, 18 RPCA, 22 feature bags, 17 Multimode background, 19 WeSamBE, 29

and Fuzzy Mode.47 As shown in Table 3, we utilized the Avg.Fm quantitative measure to analyze image sequences from six different videos in the  changedetection.net database. From Table 3, it can be noted that in terms of the Avg.Fm, the proposed model outperforms the 11 existing non-deep learning architectures. 

In the subsequent phase of the experiment, we utilize the  Star  database, which is also referred to as the  I2R  database, to evaluate the effectiveness of the proposed ResNet-50-based BS technique. This dataset contains eight different image

sequences collected in both outdoor and indoor environments with a variety of

challenges such as video noise, non-static background, variation in illumination, shadow, and bootstrapping concerns. This dataset provides segmented ground-truth images for video frames that have been manually annotated. The devel-

oped technique is quantitatively evaluated using the average similarity measure
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Table 3. 

Comparison against other non-DNN-based methods with all the video

scenes of  changedetection.net  using Avg.Fm. (In the context of this table, BL, DB, CJ, OM, Sh, and Th are employed to represent the image sequences corresponding

to Baseline, Dynamic background, Camera Jitter, Object Motion, Shadow, and

Thermal, respectively.). 

Algorithms

BL

DB

CJ

OM

Sh

Th

GMM11

0.825

0.633

0.5970

0.520

0.737

0.662

KDE15

0.909

0.596

0.572

0.409

0.803

0.742

SOBS-CF27

0.873

0.309

0.745

0.534

0.664

0.873

ViBe55

0.870

0.565

0.600

0.507

0.803

0.665

DPGMM14

0.929

0.814

0.748

0.542

0.813

0.813

SuBSENSE18

0.950

0.818

0.815

0.657

0.899

0.817

RPCA22

0.677

0.684

0.547

0.672

0.729

0.565

feature bags17

0.943

0.837

0.818

0.643

0.820

0.822

Multimode background19

0.932

0.621

0.836

0.823

0.838

0.910

WeSamBE29

0.936

0.790

0.780

0.724

0.914

0.813

Fuzzy Mode47

0.968

0.861

0.873

0.729

0.947

0.901

ResNet-50 (Proposed)

0.997

0.995

0.988

0.995

0.996

0.992

Table 4. 

Average similarity measure for  Star  dataset. (The abbreviations CS, FN, CN, LO, SN, AI, BS, and ES correspond to the video sequences Campus, Fountain, Curtain, Lobby, Station, Airport, Bootstrap, and Escalator, respectively, in this table.)

Algorithms

CS

FN

CN

LO

SN

AI

BS

ES

GMM11

0.076

0.685

0.758

0.652

0.536

0.334

0.384

0.139

Video plane8

0.160

0.100

0.184

0.155

0.521

0.114

0.308

0.129

Self-organizing28

0.696

0.655

0.818

0.649

0.668

0.594

0.602

0.577

DPGMM14

0.788

0.742

0.841

0.667

0.673

0.568

0.650

0.552

feature bags17

0.801

0.767

0.896

0.887

0.667

0.601

0.624

0.561

FgSegNet S FPM46

0.725

0.772

0.919

0.759

0.664

0.722

0.754

0.643

FgSegNet v239

0.834

0.861

0.949

0.848

0.730

0.722

0.840

0.735

ResNet-50 (Proposed)

0.999

0.996

0.997

0.997

0.991

0.992

0.992

0.992

on the  Star  database against seven SOTA techniques: GMM, 11 Video plane, 8 Self-organizing,28 DPGMM,14 feature bags,17 FgSegNet S FPM,46 and FgSegNet v2.39

Table 4 highlights the findings of the proposed scheme and SOTA techniques. It can be found that the proposed scheme clearly surpasses other SOTA techniques

in terms of its accuracy in detecting objects. The  Wall flower  database is the final database we used for our experiment. This database includes indoor and outdoor

videos acquired by a CCD camera and utilized to validate several moving object

detection techniques. The  Wall flower  database contains 6 video categories and nearly ∼ 16 ,  158 video frames, including challenging scenarios: dynamic background, variations in illumination, and camouflage. We confirm the efficiency of the proposed ResNet-50-based technique by conducting a comparative assessment against

nine established SOTA methods: GMM, 11 ViBe,55 Codebook,16 Fuzzy mode,47

BRPCA, 21 DeepBS, 33 MsEDNet, 37 FgSegNet S FPM, 46 and FgSegNet v2. 39
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We used the Avg.Fm measure to assess the efficacy of the proposed technique for

the quantitative assessment. Table 5 illustrates that the developed algorithm excels in terms of Avg.Fm when compared to all other SOTA techniques. 

4.4.  Ablation study

In this section, we have performed an ablation analysis of the proposed techniques to gauge how diverse elements influence the overall performance of the BS system. In the early stages of our experiment, we endeavored to substitute the pro-

posed architectures with VGG-16 and GoogLenet in the initial segment. Table 6

provides the corresponding findings. It can be shown that the average F-measure

values acquired by VGG-16 and GoogLenet are significantly lower than the pro-

posed schemes. In addition, we conducted an ablation analysis on the utilization of FPM in the developed schemes. We presented the Avg.Pr, Avg.Re, Avg.PWC, 

Table 5. 

Avg.Fm within the  Wall flower  dataset. (The image sequences are denoted by BS, CF, LS, MO, TD, and WT, representing Bootstrap, Camouflage, Light switch, Move object, Time of day, and Waving tree, respectively.)

Algorithms

BS

CF

LS

MO

TD

WT

GMM11

0.6054

0.8524

0.1189

0.4001

0.8363

0.5626

ViBe55

0.5433

0.9006

0.1888

0.3967

0.7271

0.5513

Codebook16

0.4727

0.9418

0.6135

0.5132

0.9301

0.6943

Fuzzy mode47

0.7920

0.9478

0.7842

0.8967

0.9515

0.7806

BRPCA21

0.8278

0.8764

0.4489

0.8929

0.8929

0.5867

DeepBS33

0.7479

0.9857

0.6114

0.6583

0.5494

0.9546

MsEDNet37

0.8754

0.9493

0.8625

0.8778

0.5703

0.8196

FgSegNet S FPM46

0.8415

0.9849

0.8548

0.9195

0.8879

0.9790

FgSegNet v239

0.8792

0.9924

0.9541

0.9399

0.9030

0.9868

ResNet-50 (Proposed)

0.9839

0.9949

0.9742

0.9892

0.9891

0.9941

Table 6. 

Ablation analysis on Avg.Fm of the proposed schemes on  changedetection.net  with various existing DNNs. 

Category

VGG-16 GoogLeNet VGG-19 (Proposed) ResNet-50 (Proposed)

BadWeather

0.9594

0.8557

0.9905

0.9888

Baseline

0.8949

0.7961

0.9981

0.9977

CameraJitter

0.9422

0.8864

0.9970

0.9878

DynamicBg

0.7356

0.6588

0.9962

0.9947

Intermittent

0.7538

0.6488

0.9926

0.9952

Object Motion

LowFramerate

0.6175

0.5947

0.7480

0.9575

NightVideos

0.7526

0.6003

0.9852

0.9796

PTZ

0.7816

0.7136

0.9924

0.9831

Shadow

0.9084

0.8049

0.9971

0.9962

Thermal

0.8546

0.7725

0.9954

0.9922

Turbulence

0.9207

0.7637

0.9148

0.9787

Overall

0.8292

0.7360

0.9643

0.9865

[image: Image 1204]

[image: Image 1205]

[image: Image 1206]

[image: Image 1207]

[image: Image 1208]

[image: Image 1209]

 Local Change Detection From Video Scene

479

Table 7. 

Ablation analysis of the designed techniques with and without the

inclusion of an FPM. 

Techniques

Avg.Pr

Avg.Re

Avg.PWC

Avg.Fm

Proposed VGG-19

0.9434

0.8759

0.2758

0.9073

scheme without FPM

Proposed VGG-19

0.9696

0.9612

0.0463

0.9643

scheme with FPM

Proposed ResNet-50

0.9646

0.8825

0.2648

0.9217

scheme without FPM

Proposed ResNet-50

0.9886

0.9844

0.0446

0.9865

scheme with FPM

Table 8. 

Ablation analysis on Avg.Fm of the developed VGG-19 scheme on  changedetec-

 tion.net  dataset considering various training samples. 

50 frames

100 frames

200 frames

250 frames

Training time

Training time

Training time

Training time

(per epoch):

(per epoch):

(per epoch):

(per epoch):

Category

9 s

13 s

22 s

32 s

BadWeather

0.9743

0.9812

0.9905

0.9921

Baseline

0.9835

0.9895

0.9981

0.9988

Camera Jitter

0.9681

0.9713

0.9970

0.9982

Dynamic

0.9700

0.9812

0.9962

0.9973

Background

Intermittent

0.9697

0.9899

0.9926

0.9950

Object Motion

Low Framerate

0.7321

0.7365

0.7480

0.7512

Night Videos

0.9153

0.9345

0.9852

0.9892

PTZ

0.9424

0.9632

0.9924

0.9975

Shadow

0.9812

0.9871

0.9971

0.9983

Thermal

0.9697

0.9767

0.9954

0.9970

Turbulence

0.8421

0.8943

0.9148

0.9200

Overall

0.9317

0.9459

0.9643

0.9668

and Avg.Fm measures on the  changedetection.net  dataset with and without the FPM module in Table 7. It is apparent that incorporating the FPM block into the proposed schemes significantly enhances the performance. We provided an ablation study of the proposed models trained with different training samples. Tables 8 and 9

show the ablation study on the  changedetection.net  dataset with average F-measure as a quantitative assessment measure and training frames of 50, 100, 200, and 250. 

Tables 8 and 9 portray that the proposed models, trained with 200 samples, achieve a desirable level of accuracy while requiring a reduced training time. Consequently, we opted to utilize a training set comprising 200 samples from the  changedetection.net  dataset in our work. Furthermore, we have provided the average duration of each epoch as it varies with the number of training frames in the top column of Tables 8 and 9. 
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Table 9. 

Ablation analysis on Avg.Fm of the designed ResNet-50 scheme on  changedetec-

 tion.net  dataset considering various training samples. 

50 frames

100 frames

200 frames

250 frames

Training time

Training time

Training time

Training time

(per epoch):

(per epoch):

(per epoch):

(per epoch):

Category

6 s

10 s

19 s

30 s

BadWeather

0.9640

0.9745

0.9888

0.9892

Baseline

0.9895

0.9934

0.9977

0.9981

Camera Jitter

0.9738

0.9839

0.9878

0.9890

Dynamic

0.9671

0.9840

0.9947

0.9951

Background

Intermittent

0.9697

0.9793

0.9952

0.9965

Object Motion

Low Framerate

0.7548

0.7454

0.9575

0.9600

Night Videos

0.9053

0.9441

0.9796

0.9800

PTZ

0.9524

0.9752

0.9831

0.9899

Shadow

0.9813

0.9816

0.9962

0.9969

Thermal

0.9597

0.9774

0.9922

0.9933

Turbulence

0.9246

0.9591

0.9787

0.9812

Overall

0.9402

0.9543

0.9865

0.9881

Table 10. 

Evaluation of the developed VGG-19 approach in unseen setup on  changedetec-

 tion.net  dataset against different schemes using Avg.Fm. (Within this table, BL corresponds to blizzard (from BadWeather), PE represents pedestrian (from Baseline), SW stands for sidewalk (from Camera Jitter), BO signifies boats (from Dynamic Background), PA denotes parking (from Intermittent Object Motion), TP is for turnpike05fps (from Low Framerate), TS represents tramstation (from Night Videos), BS stands for busstation (from Shadow), CO corresponds to corridor (from Thermal), and T1 represents turbulence1 (from Turbulence)). 

Techniques

BL

PE

SW

BO

PA

TP

TS

BS

CO

T1

SuBSENSE18

0.85

0.95

0.81

0.69

0.48

0.85

0.86

0.86

0.91

0.79

PAWCS51

0.66

0.95

0.74

0.88

0.21

0.91

0.86

0.86

0.65

0.68

IUTIS-525

0.80

0.97

0.81

0.75

0.65

0.89

0.87

0.87

0.90

0.63

BSUV-Net38

0.82

0.97

0.69

0.89

0.91

0.91

0.80

0.94

0.83

0.66

SemanticBGS32

0.84

0.98

0.85

0.98

0.69

0.88

0.92

0.92

0.82

0.30

VGG-19 (Proposed)

0.87

0.93

0.89

0.91

0.92

0.72

0.93

0.85

0.92

0.82

4.5.  Unseen video setup

In an unseen configuration, the training and testing sets consist of distinct sets of videos, featuring different background and foreground details. To partition these videos into training and testing sets, we employed the leave-one-video-out (LOVO) approach. During the LOVO process, we assessed each category separately. For

instance, in the case of the ‘BadWeather’ category, which comprises four videos, three were designated for model training while one is reserved for testing. We applied this same methodology to train the model for other categories within the  changedetection.net  dataset. Tables 10 and 11 reveal that, in comparison to SOTA techniques, the proposed schemes deliver satisfactory accuracy within the unseen setup. 
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Table 11. 

Evaluation of the developed ResNet-50 approach in unseen setup on  changedetection.net  dataset against different schemes using Avg.Fm. (Within this table, BL corresponds to blizzard (from BadWeather), PE represents pedestrian (from Baseline), SW stands for sidewalk (from Camera Jitter), BO signifies boats (from Dynamic Background), PA denotes parking (from Intermittent Object Motion), TP is for turnpike05fps (from Low Framerate), TS represents tramstation (from Night Videos), BS stands for busstation (from Shadow), CO corresponds to corridor (from Thermal), and T1 represents turbulence1 (from Turbulence)). 

Techniques

BL

PE

SW

BO

PA

TP

TS

BS

CO

T1

FgSegNet S FPM46

0.74

0.65

0.12

0.42

0.17

0.57

0.41

0.52

0.74

0.17

FgSegNet M46

0.55

0.72

0.11

0.69

0.05

0.22

0.39

0.60

0.31

0.16

FgSegNet v239

0.70

0.33

0.22

0.62

0.52

0.74

0.43

0.53

0.77

0.12

ResNet-50 (Proposed)

0.80

0.75

0.45

0.81

0.70

0.79

0.77

0.62

0.89

0.52

4.6.  Discussion with future work

In this work, we have proposed two supervised models that only use a few input-

ground truth pairings to learn. These models segment using multi-scale features and do not use temporal information. These models excel at detecting and segmenting

objects under various challenging circumstances. Using four different performance evaluation measures, we assessed our models on three distinct benchmark databases: changedetection.net,  Star, and  Wall flower. Our models outperform numerous SOTA BS approaches while also being more precise. In the proposed schemes, we applied RMSProp  as the optimizer and employed binary cross-entropy as the designated loss function. The encoder networks with TL mechanism in the proposed techniques are

capable of keeping features at various levels. The developed techniques’ weights are learned by a TL process, which improves the performance of the developed models. 

In the proposed approaches, the FPM module preserves the features of objects of

varying sizes. The proposed decoder designs effectively project the feature maps into a pixel-level foreground probability map. Binary class labels for the background and foreground are acquired by employing a threshold of 0.9. The stated threshold value is consistent across all testing datasets. The developed models are trained using 200 images from each category of the  changedetection.net  dataset. Additionally, we employed the  Star  and  Wall flower  datasets to train the proposed ResNet-50

model, utilizing 10 sample frames (with an 80% training and 20% validation split) and subsequently tested it on the entire set of frames. Tables 1-5 show the outcomes of the proposed approaches on these databases. It is noted that the designed schemes attain higher accuracy against the SOTA techniques. 

In Table 12, we compare the execution time of the proposed VGG-19 scheme with the most widely used SOTA techniques, which were evaluated on the  changedetection.net  database. The proposed approach achieves a processing time of 22 frames per second, significantly outpacing the majority of current SOTA methods. Further, Table 13 provides the execution time details for the developed ResNet-50 approach, including the average time required for training one epoch and testing the DNN

model in frames per second (fps). Table 13 demonstrates that the proposed scheme
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Table 12. 

Execution time of various techniques on

 changedetection.net. 

Computation time

Approaches

frames per second (FPS)

DeepBS33

10

BSPVGAN40

5

WisenetMD20

12

BSUV-Net38

6

SemanticBGS32

7

VGG-19 (Proposed)

22

Table 13. 

The time for computation (in seconds) needed by both VGG-16 and the proposed

ResNet-50 scheme. 

VGG-16

ResNet-50(Proposed)

Training

Training

Database

Image size

(per epoch)

Testing

(per epoch)

Testing

 changedetection.net

240  ×  320

27

0.0263

19

0.025

480  ×  720

95

0.1

79

0.1

 Star

160  ×  120

2

0.018

2

0.016

 Wall flower

160  ×  180

2

0.018

2

0.016

can effectively cater to a wide array of real-time applications. In comparison to the VGG-16 architecture, the proposed scheme takes less time. The primary reason behind this is the utilization of the ResNet-50 encoder with skip connections in the proposed scheme. 

In this work, we have estimated the developed VGG-19 scheme against 17 exist-

ing techniques and the proposed ResNet-50 scheme against 28 SOTA techniques

that involve both non-deep learning and deep learning BS algorithms. To perform

a comparison between the proposed schemes and SOTA techniques, as indicated in

Tables 1–3, we have compiled the results of the SOTA schemes from the  changedetection.net  database. This database is known for benchmarking various BS techniques, each optimized with specific parameters. The outcomes displayed in Tables 4–5 were derived from an evaluation conducted by applying existing techniques to both the Star  and  Wall flower  datasets. The culmination of these experiments implies that the proposed BS techniques demonstrate a notable efficiency in achieving more

accurate detection of local changes within a wide range of complex scenes. Nev-

ertheless, the proposed techniques do not seem to perform effectively in the case of video sequences captured during nighttime or in scenes characterized by poor

illumination or underwater conditions. Moreover, the proposed methods exhibit

a tendency to generate numerous false alarms in scenarios characterized by non-

uniform lighting conditions. In the future, we intend to delve into the design of methods that incorporate deep learning networks with fuzzy set theory for feature
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extraction in complex environmental scenarios. Furthermore, our research interests extend to investigating the principles of spiking neural networks for detecting moving objects in underwater video analysis. While the proposed model demonstrates

proficiency in identifying and segmenting objects, especially those with shadows, we recognize the potential for enhancing nighttime video capture. 

5. Conclusions

This research addresses the task of identifying moving objects in video scenes

through the utilization of an end-to-end encoder–decoder deep learning architec-

ture. In the initial phases, we employed a pre-trained VGG-19 DNN as the encoder to extract features at various levels. The combination of TL mechanisms and the

fine-tuning strategy within the encoder network enhances the model’s resilience

and efficiency. The feature polling module (FPM) among the encoder and decoder

framework is capable of extracting dense and sparse features. Moreover, we have

developed a decoder network consisting of multiple transposed convolutional layers, enabling accurate predictions for classifying each pixel within the frame as either part of the moving object or background. Again, we propose a BS technique that

employs a novel encoder–decoder-based deep learning design based on an ResNet-

50 network and an FPM module. We employed a pre-trained ResNet-50 network

to produce feature maps from input images processed through an FPM architec-

ture. The encoder network, incorporating the FPM module, has the capability to

preserve multi-scale details extracted from video scenes. Finally, we employed a decoder network containing stacked convolutional layers to learn a mapping from

feature level to pixel level. The algorithms we put forward generate a probability mask for foreground segmentation based on the input RGB image. These networks, 

which are trained on a limited amount of training data, exhibit enhanced accuracy. 

We evaluated the proposed BS techniques across three widely recognized video

databases:  changedetection.net,  Star, and  Wallflower. To verify our outcomes, we measured the effectiveness of the developed VGG-19 scheme against 17 SOTA techniques and the designed ResNet-50 scheme against 28 SOTA techniques. We assessed the proposed scheme’s performance using a combination of visual and quantitative evaluation measures, which included both subjective and objective analysis, confirming the robustness of our findings. 
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Image segmentation is a key task in computer vision and image processing with

important applications such as scene understanding, medical image analysis, 

robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. 

Against this backdrop, the broad success of Deep Learning (DL) has prompted the

development of new image segmentation approaches leveraging DL models. We

provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder–decoder architectures, multi-scale and pyramid-based approaches, recurrent networks, visual attention models, and generative

models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models and discuss promising research

directions. 

1. Introduction

Image segmentation has been a fundamental problem in computer vision since the

early days of the field. 1 An essential component of many visual understanding systems, it involves partitioning images (or video frames) into multiple segments and objects2 and plays a central role in a broad range of applications, 3 including medical image analysis (e.g., tumor boundary extraction and tissue volume measure-

ment), autonomous vehicles (e.g., navigable surface and pedestrian detection), video surveillance, and augmented reality. 

Image segmentation can be formulated as the problem of classifying pixels

with semantic labels (semantic segmentation), or partitioning of individual objects (instance segmentation), or both (panoptic segmentation). Semantic segmentation
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performs pixel-level labeling with a set of object categories (e.g., human, car, tree, and sky) for all image pixels; thus, it is generally a more demanding undertaking than whole-image classification, which predicts a single label for the entire image. 

Instance segmentation extends the scope of semantic segmentation by detecting and delineating each object of interest in the image (e.g., individual people). 

Numerous image segmentation algorithms have been developed in the literature, 

from the earliest methods, such as thresholding, 4 histogram-based bundling, region-growing,5 k-means clustering,6 watershed methods,7 to more advanced algorithms such as active contours, 8 graph cuts, 9 conditional and Markov random fields, 10 and sparsity-based11, 12 methods. In recent years, however, deep learning (DL) models have yielded a new generation of image segmentation models with remarkable

performance improvements, often achieving the highest accuracy rates on popular

benchmarks. This has caused a paradigm shift in the field. 

1.1.  Overview

This chapter is a shortened and slightly revised version of our 2022 survey article.13

It covers the recent literature in deep-learning-based image segmentation, including more than 100 such segmentation methods proposed to date. It provides a comprehensive review with insights into key aspects of these methods. The target literature is organized into the following categories:

(1) fully convolutional networks, 

(2) convolutional models with graphical models, 

(3) encoder–decoder-based models, 

(4) multi-scale and pyramid network-based models, 

(5) R-CNN-based models (for instance, segmentation), 

(6) dilated convolutional models and DeepLab family, 

(7) recurrent neural network-based models, 

(8) attention-based models, 

(9) generative models and adversarial training, 

(10) convolutional models with active contour models. 

Within this taxonomy, 

 •  we provide a comprehensive review and analysis of deep-learning-based image segmentation algorithms, 

 •  we discuss several challenges and future research directions for deep-learning-based image segmentation. 

The remainder of this chapter is organized as follows: Section 2 reviews the most significant state-of-the-art deep learning-based segmentation models. Figure 1 provides a timeline since 2014 of some of the most representative such models that, among others, are reviewed in the section. Section 3 discusses the main challenges and research opportunities of the deep learning-based segmentation paradigm. 

[image: Image 1232]
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Fig. 1. Timeline of representative DL-based image segmentation algorithms. Orange, green, and yellow blocks indicate semantic, instance, and panoptic segmentation algorithms, respectively. 

2. DL-Based Image Segmentation Models

This section comprises a survey of numerous learning-based segmentation methods, grouped into 10 categories based on their model architectures. Several architectural features are common among many of these methods, such as encoders and

decoders, skip-connections, multi-scale architectures, and more recently the use of dilated convolutions. It is convenient to group models based on their architectural contributions over prior models. 

2.1.  Fully convolutional models

Long  et al. 14 proposed Fully Convolutional Networks (FCNs), a milestone in DL-based semantic image segmentation models. An FCN includes only convolutional layers, which enables it to output a segmentation map whose size is the same as that of the input image. To handle arbitrarily sized images, the authors modified existing CNN architectures, such as VGG16 and GoogLeNet, by removing all fully

connected layers such that the model outputs a spatial segmentation map instead

of classification scores. 

Through the use of skip connections in which feature maps from the final layers

of the model are up-sampled and fused with feature maps of earlier layers, the

model combines semantic information (from deep, coarse layers) and appearance

information (from shallow, fine layers) in order to produce accurate and detailed segmentations. Tested on PASCAL VOC, NYUDv2, and SIFT Flow, the model

achieved state-of-the-art segmentation performance. 

FCNs have been applied to a variety of segmentation problems, such as brain

tumor segmentation, 15 instance-aware semantic segmentation, 16 skin lesion segmentation, 17 and iris segmentation. 18 While demonstrating that DNNs can be trained to perform semantic segmentation in an end-to-end manner on variable-sized images, 

the conventional FCN model has some limitations — it is too computationally

expensive for real-time inference, it does not account for global context information
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in an efficient manner, and it is not easily generalizable to 3D images. Several researchers have attempted to overcome some of the limitations of the FCN. For

example, Liu  et al. 19 proposed ParseNet, which adds global context to FCNs by using the average feature for a layer to augment the features at each location. The feature map for a layer is pooled over the whole image, resulting in a context vector. 

The context vector is normalized and unpooled to produce new feature maps of the same size as the initial ones, which are then concatenated, which amounts to an

FCN whose convolutional layers are replaced by the described module. 

2.2.  CNNs with graphical models

As discussed, the FCN ignores potentially useful scene-level semantic context. To exploit more context, several approaches incorporate into DL architectures probabilistic graphical models, such as Conditional Random Fields (CRFs) and Markov

Random Fields (MRFs). 

Due to the invariance properties that make CNNs good for high-level tasks such

as classification, responses from the later layers of deep CNNs are not sufficiently well localized for accurate object segmentation. To address this drawback, Chen

 et al. 20 proposed a semantic segmentation algorithm that combines CNNs and fully connected CRFs. They showed that their model can localize segment boundaries

with higher accuracy than was possible with previous methods. 

Schwing and Urtasun21 proposed a fully connected deep structured network for image segmentation. They jointly trained CNNs and fully connected CRFs for

semantic image segmentation, and achieved encouraging results on the challenging PASCAL VOC 2012 dataset. Zheng  et al. 22 proposed a similar semantic segmentation approach. In related work, Lin  et al. 23 proposed an efficient semantic segmentation model based on contextual deep CRFs. They explored “patch-patch” context

(between image regions) and “patch-background” context to improve semantic seg-

mentation through the use of contextual information. 

Liu  et al. 24 proposed a semantic segmentation algorithm that incorporates rich information into MRFs, including high-order relations and a mixture of label contexts. Unlike previous efforts that optimized MRFs using iterative algorithms, they proposed a CNN model, namely a Parsing Network, which enables deterministic

end-to-end computation in one pass. 

2.3.  Encoder–decoder based models

Most of the popular DL-based segmentation models use some kind of encoder–

decoder architecture. We group these models into two categories: those for general image segmentation and those for medical image segmentation. 

2.3.1.  General image segmentation

Noh  et al.  25 introduced semantic segmentation based on deconvolution (a.k.a. 

transposed convolution). Their model, DeConvNet, consists of two parts: an encoder
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using convolutional layers adopted from the VGG 16-layer network and a multi-

layer deconvolutional network that inputs the feature vector and generates a map of pixel-accurate class probabilities. The latter comprises deconvolution and unpooling layers, which identify pixel-wise class labels and predict segmentation masks. 

Badrinarayanan  et al.  26 proposed SegNet, a fully convolutional encoder–decoder architecture for image segmentation. Similar to the deconvolution network, the core trainable segmentation engine of SegNet consists of an encoder network, which is topologically identical to the 13 convolutional layers of the VGG16 network, and a corresponding decoder network followed by a pixel-wise classification layer. The main novelty of SegNet is in the way the decoder upsamples its lower-resolution

input feature map(s), specifically using pooling indices computed in the max-pooling step of the corresponding encoder to perform nonlinear up-sampling. 

A limitation of encoder–decoder-based models is the loss of fine-grained image

information, due to the loss of resolution through the encoding process. HRNet27

addresses this shortcoming. Other than recovering high-resolution representations as is done in DeConvNet, SegNet, and other models, HRNet maintains high-resolution representations through the encoding process by connecting the high-

to-low resolution convolution streams in parallel and repeatedly exchanging the

information across resolutions. There are four stages: the 1st stage consists of high-resolution convolutions, while the 2nd/3rd/4th stage repeats 2-resolution/3-resolution/4-resolution blocks. Several recent semantic segmentation models use

HRNet as a backbone. 

Several other works adopt transposed convolutions or encoder–decoders for

image segmentation, such as Stacked Deconvolutional Network (SDN), 28 Linknet, 29

W-Net, 30 and locality-sensitive deconvolution networks for RGB-D segmentation. 31

2.3.2.  Medical and biomedical image segmentation

Several models inspired by FCNs and encoder–decoder networks were initially developed for medical/biomedical image segmentation but are now also being used out-

side the medical domain. 

Ronneberger  et al. 32 proposed the U-Net for efficiently segmenting biological microscopy images. The U-Net architecture comprises two parts: a contracting path to capture context and a symmetric expanding path that enables precise localization. The U-Net training strategy relies on the use of data augmentation to learn effectively from very few annotated images. It was trained on 30 transmitted light microscopy images, and it won the ISBI cell tracking challenge 2015 by a large

margin. 

Various extensions of U-Net have been developed for different kinds of images

and problem domains; for example, Zhou  et al. 33 developed a nested U-Net architecture, Zhang  et al. 34 developed a road segmentation algorithm based on U-Net, and Cicek  et al. 35 proposed a U-Net architecture for 3D images. 

V-Net, proposed by Milletari  et al.  36 for 3D medical image segmentation, is another well-known FCN-based model. The authors introduced a new loss function
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based on the Dice coefficient, enabling the model to deal with situations in which there is a strong imbalance between the number of voxels in the foreground and

background. The network was trained end-to-end on MRI images of the prostate

and learns to predict segmentation for the whole volume at once. Some of the other relevant works on medical image segmentation includes Progressive Dense V-Net37

for automatic segmentation of pulmonary lobes from chest CT images and the 3D-

CNN encoder for lesion segmentation.38

2.4.  Multi-scale and pyramid network-based models

Multi-scale analysis, a well established idea in image processing, has been deployed in various neural network architectures. One of the most prominent models of this sort is the Feature Pyramid Network (FPN) proposed by Lin  et al. , 39 which was developed for object detection but was also applied to segmentation. The inherent multi-scale, pyramidal hierarchy of deep CNNs was used to construct feature

pyramids with marginal extra cost. To merge low- and high-resolution features, the FPN is composed of a bottom-up pathway, a top-down pathway, and lateral connections. The concatenated feature maps are then processed by a 3  ×  3 convolution to produce the output of each stage. Finally, each stage of the top-down pathway generates a prediction to detect an object. For image segmentation, the authors use two multi-layer perceptrons (MLPs) to generate the masks. 

Zhao  et al.  40 developed the Pyramid Scene Parsing Network (PSPN), a multiscale network to better learn the global context representation of a scene. Multiple patterns are extracted from the input image using a residual network (ResNet) as a feature extractor, with a dilated network. These feature maps are then fed into a pyramid pooling module to distinguish patterns of different scales. They are pooled at four different scales, each one corresponding to a pyramid level, and processed by a 1  ×  1 convolutional layer to reduce their dimensions. The outputs of the pyramid levels are up-sampled and concatenated with the initial feature maps to capture

both local and global context information. Finally, a convolutional layer is used to generate the pixel-wise predictions. 

Ghiasi and Fowlkes41 developed a multi-resolution reconstruction architecture based on a Laplacian pyramid that uses skip connections from higher resolution

feature maps and multiplicative gating to successively refine segment boundaries reconstructed from lower-resolution maps. They showed that while the apparent

spatial resolution of convolutional feature maps is low, the high-dimensional feature representation contains significant sub-pixel localization information. 

Other models use multi-scale analysis for segmentation, among them are

Dynamic Multi-scale Filters Network (DM-Net), 42 Context Contrasted Network and gated multi-scale aggregation (CCN), 43 Adaptive Pyramid Context Network (APC-Net),44 Multi-Scale Context Intertwining (MSCI),45 and salient object segmentation. 46
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2.5.  R-CNN-based models

The Regional CNN (R-CNN) and its extensions have proven successful in object

detection applications. In particular, the Faster R-CNN47 architecture uses a region proposal network (RPN) that proposes bounding box candidates. The RPN extracts

a Region of Interest (RoI), and an RoIPool layer computes features from these proposals to infer the bounding box coordinates and class of the object. Some extensions of R-CNN have been used to address the instance segmentation problem; i.e., the

task of simultaneously performing object detection and semantic segmentation. 

He  et al. 48 proposed Mask R-CNN, which outperformed previous benchmarks on many COCO object instance segmentation challenges, efficiently detecting objects in an image while simultaneously generating a high-quality segmentation mask for each instance. Essentially, it is a Faster R-CNN with three output branches: The first computes the bounding box coordinates, the second computes the associated

classes, and the third computes the binary mask to segment the object. The Mask

R-CNN loss function combines the losses of the bounding box coordinates, the

predicted class, and the segmentation mask and trains all of them jointly. 

The Path Aggregation Network (PANet) proposed by Liu  et al.  49 is based on the Mask R-CNN and FPN models. The feature extractor of the network uses an FPN

backbone with a new augmented bottom-up pathway improving the propagation

of lower-layer features. Each stage of this third pathway takes as input the feature maps of the previous stage and processes them with a 3  ×  3 convolutional layer. A lateral connection adds the output to the same-stage feature maps of the top-down pathway and these feed the next stage. 

Dai  et al. 50 developed a multi-task network for instance-aware semantic segmentation that consists of three networks for differentiating instances, estimating masks, and categorizing objects. These networks form a cascaded structure and

are designed to share their convolutional features. Hu  et al. 51 proposed a new partially supervised training paradigm together with a novel weight transfer function, which enables training instance segmentation models on a large set of categories, all of which have box annotations, but only a small fraction of which have mask

annotations. 

Chen  et al. 52 developed an instance segmentation model, MaskLab, by refining object detection with semantic and direction features based on Faster R-CNN. 

This model produces three outputs: box detection, semantic segmentation logits for pixel-wise classification, and direction prediction logits for predicting each pixel’s direction toward its instance center. Building on the Faster R-CNN object detector, the predicted boxes provide accurate localization of object instances. Within each region of interest, MaskLab performs foreground/background segmentation by

combining semantic and direction prediction. 

Tensormask, proposed by Chen  et al. , 53 is based on dense sliding window instance segmentation. The authors treat dense instance segmentation as a prediction task over 4D tensors and present a general framework that enables novel
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operators on 4D tensors. They demonstrate that the tensor approach yields large

gains over baselines, with results comparable to Mask R-CNN. 

Other instance segmentation models have been developed based on R-CNN, such

as those developed for mask proposals, including R-FCN, 54 DeepMask, 55 PolarMask,56 boundary-aware instance segmentation,57 and CenterMask.58 Another promising approach is to tackle the instance segmentation problem by learning

grouping cues for bottom-up segmentation, such as deep watershed transform,59

real-time instance segmentation, 60 and semantic instance segmentation via deep metric learning. 61

2.6.  Dilated convolutional models

Dilated (a.k.a. “atrous”) convolution introduces to convolutional layers another parameter: the dilation rate. For example, a 3  ×  3 kernel with a dilation rate of 2 will have the same size receptive field as a 5  ×  5 kernel while using only 9 parameters, thus enlarging the receptive field with no increase in computational cost. 

Dilated convolutions have been popular in the field of real-time segmentation, 

and many recent publications report the use of this technique. Some of the most

important include the DeepLab family, 62 multi-scale context aggregation, 63 Dense Upsampling Convolution and Hybrid Dilated Convolution (DUC-HDC), 64 densely connected Atrous Spatial Pyramid Pooling (DenseASPP),65 and the Efficient Network (ENet). 66

DeepLabv120 and DeepLabv2,62 developed by Chen  et al. , are among the most popular image segmentation models. The latter has three key features: First is the use of dilated convolution to address the decreasing resolution in the network caused by max-pooling and striding. Second is Atrous Spatial Pyramid Pooling (ASPP), 

which probes an incoming convolutional feature layer with filters at multiple sampling rates, thus capturing objects as well as multi-scale image context to robustly segment objects at multiple scales. Third is improved localization of object boundaries by combining methods from deep CNNs, such as fully convolutional VGG-16 or ResNet 101, and probabilistic graphical models, specifically fully connected CRFs. 

Subsequently, Chen  et al. 67 proposed DeepLabv3, which combines cascaded and parallel modules of dilated convolutions. The parallel convolution modules are grouped in the ASPP. A 1  ×  1 convolution and batch normalization are added in the ASPP. All the outputs are concatenated and processed by another 1  ×  1 convolution to create the final output with logits for each pixel. Next, Chen  et al. 68

released Deeplabv3+, which uses an encoder–decoder architecture including dilated separable convolution composed of a depth-wise convolution (spatial convolution

for each channel of the input) and point-wise convolution (1  ×  1 convolution with the depth-wise convolution as input). They used the DeepLabv3 framework as the

encoder. The most relevant model has a modified Xception backbone with more
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layers, dilated depth-wise separable convolutions instead of max pooling and batch normalization. 

2.7.  RNN-based models

While CNNs are a natural fit for computer vision problems, they are not the only possibility. RNNs are useful in modeling the short/long-term dependencies among

pixels to (potentially) improve the estimation of the segmentation map. Using

RNNs, pixels may be linked together and processed sequentially to model global

contexts and improve semantic segmentation. However, the natural 2D structure of images poses a challenge. 

Visin  et al. 69 proposed an RNN-based model for semantic segmentation called ReSeg. This model is mainly based on ReNet, 70 which was developed for image classification. Each ReNet layer is composed of four RNNs that sweep the image

horizontally and vertically in both directions, encoding patches/activations, and providing relevant global information. To perform image segmentation with the

ReSeg model, ReNet layers are stacked atop pre-trained VGG-16 convolutional lay-

ers, which extract generic local features, and are then followed by up-sampling layers to recover the original image resolution in the final predictions. 

Byeon  et al. 71 performed per-pixel segmentation and classification of images of natural scenes using 2D LSTM networks, which learn textures and the complex

spatial dependencies of labels in a single model that carries out classification, segmentation, and context integration. 

Liang  et al. 72 proposed a semantic segmentation model based on a graph-LSTM

network in which convolutional layers are augmented by graph-LSTM layers built

on super-pixel maps, which provide a more global structural context. These layers generalize the LSTM for uniform, array-structured data (i.e., row, grid, or diagonal LSTMs) to non-uniform, graph-structured data, where arbitrary-shaped superpixels are semantically consistent nodes and the adjacency relations between superpixels correspond to edges, thus forming an undirected graph. 

Xiang and Fox73 proposed Data Associated Recurrent Neural Networks (DA-RNNs) for joint 3D scene mapping and semantic labeling. DA-RNNs use a new

recurrent neural network architecture for semantic labeling on RGB-D videos. The output of the network is integrated with mapping techniques such as KinectFusion in order to inject semantic information into the reconstructed 3D scene. 

Hu  et al. 74 developed a semantic segmentation algorithm that combines a CNN

to encode the image and an LSTM to encode its linguistic description. To produce pixel-wise image segmentations from language inputs, they propose an end-to-end

trainable recurrent and convolutional model that jointly learns to process visual and linguistic information. This differs from traditional semantic segmentation over a predefined set of semantic classes; i.e., the phrase “two men sitting on the right
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bench” requires segmenting only the two people on the right bench and no others

sitting on another bench or standing. 

A drawback of RNN-based models is that they will generally be slower than their

CNN counterparts as their sequential nature is not amenable to parallelization. 

2.8.  Attention-based models

Attention mechanisms have been persistently explored in computer vision over the years, and it is not surprising to find publications that apply them to semantic segmentation. 

Chen  et al. 75 proposed an attention mechanism that learns to softly weight multiscale features at each pixel location. They adapt a powerful semantic segmentation model and jointly train it with multi-scale images and the attention model. The

attention mechanism enables the model to assess the importance of features at

different positions and scales, and it outperforms average and max pooling. 

Unlike approaches in which convolutional classifiers are trained to learn the representative semantic features of labeled objects, Huang  et al. 76 proposed a Reverse Attention Network (RAN) architecture for semantic segmentation that also applies reverse attention mechanisms, thereby training the model to capture the opposite concept — features that are not associated with a target class. The RAN network

performs the direct and reverse-attention learning processes simultaneously. 

Li  et al.  77 developed a Pyramid Attention Network for semantic segmentation, which exploits global contextual information for semantic segmentation. Eschewing complicated dilated convolutions and decoder networks, they combined attention

mechanisms and spatial pyramids to extract precise dense features for pixel labeling. Fu  et al. 78 proposed a dual attention network for scene segmentation that can capture rich contextual dependencies based on the self-attention mechanism. Specifically, they append two types of attention modules on top of a dilated FCN that

models the semantic inter-dependencies in spatial and channel dimensions, respectively. The position attention module selectively aggregates the features at each position via weighted sums. 

Other applications of attention mechanisms to semantic segmentation include

OCNet, 79 which employs an object context pooling inspired by self-attention mechanism, ResNeSt: Split-Attention Networks,80 Height-driven Attention Networks,81

Expectation-Maximization Attention (EMANet), 82 Criss-Cross Attention Network

(CCNet),83 end-to-end instance segmentation with recurrent attention,84 a point-wise spatial attention network for scene parsing, 85 and Discriminative Feature Network (DFN). 86

2.9.  Generative models and adversarial training

GANs have been applied to a wide range of tasks in computer vision, not excluding image segmentation. 
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Luc  et al.  87 proposed an adversarial training approach for semantic segmentation in which they trained a convolutional semantic segmentation network, along with

an adversarial network that discriminates between ground-truth segmentation maps and those generated by the segmentation network. They showed that the adversarial training approach yields improved accuracy on the Stanford Background and

PASCAL VOC 2012 datasets. 

Souly  et al. 88 proposed semi-weakly supervised semantic segmentation using GANs. Their model consists of a generator network providing extra training examples to a multi-class classifier, acting as a discriminator in the GAN framework, that assigns a sample a label from the possible label classes or marks it as a fake sample (extra class). 

Hung  et al. 89 developed a framework for semi-supervised semantic segmentation using an adversarial network. They designed an FCN discriminator to differentiate the predicted probability maps from the ground-truth segmentation distribution, 

considering the spatial resolution. The loss function of this model has three terms: cross-entropy loss on the segmentation ground truth, adversarial loss of the discriminator network, and semi-supervised loss based on the confidence map output of the discriminator. 

Xue  et al. 90 proposed an adversarial network with multi-scale L1 Loss for medical image segmentation. They used an FCN as the segmentor to generate segmentation

label maps and proposed a novel adversarial critic network with a multi-scale L1

loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. 

Other approaches based on adversarial training include cell image segmentation

using GANs91 and segmentation and generation of the invisible parts of objects. 92

2.10.  CNN models with active contour models

The exploration of synergies between FCNs and Active Contour Models (ACMs)8

has recently attracted research interest. 

One approach is to formulate new loss functions that are inspired by ACM prin-

ciples. For example, inspired by the global energy formulation of Chan and Vese,93

Chen  et al. 94 proposed a supervised loss layer that incorporated area and size information of the predicted masks during training of an FCN and tackled the problem

of ventricle segmentation in cardiac MRI. Similarly, Gur  et al. 95 presented an unsupervised loss function based on morphological active contours without edges96 for microvascular image segmentation. 

A different approach initially sought to utilize the ACM merely as a post-

processor of the output of an FCN and several efforts attempted modest co-learning by pre-training the FCN. One example of an ACM post-processor for the task of

semantic segmentation of natural images is the work by Le  et al. 97 in which level-set ACMs are implemented as RNNs. Deep Active Contours by Rupprecht  et al.  98 are another example. For medical image segmentation, Hatamizadeh  et al. 99 proposed
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an integrated Deep Active Lesion Segmentation (DALS) model that trains the FCN

backbone to predict the parameter functions of a novel, locally parameterized level-set energy functional. In another relevant effort, Marcos  et al.  100 proposed Deep Structured Active Contours (DSAC), which combine ACMs and pre-trained FCNs

in a structured prediction framework for building instance segmentation (albeit with manual initialization) in aerial images. For the same application, Cheng  et al. 101

proposed the Deep Active Ray Network (DarNet), which is similar to DSAC but

with a different explicit ACM formulation based on polar coordinates to prevent

contour self-intersection. 

A truly end-to-end backpropagation trainable, fully integrated FCN-ACM com-

bination was recently introduced by Hatamizadeh  et al. , 102 dubbed Trainable Deep Active Contours (TDAC). Going beyond their earlier work, 99 they implemented the locally parameterized level-set ACM in the form of additional convolutional layers following the layers of the backbone FCN, exploiting TensorFlow’s automatic differentiation mechanism to backpropagate training error gradients throughout the

entire DCAC framework. The fully automated model requires no intervention either during training or segmentation, can naturally segment multiple instances of objects of interest, and deal with arbitrary object shape including sharp corners. 

2.11.  Other models

Other popular DL architectures for image segmentation include the following:

Context Encoding Network (EncNet)103 uses a basic feature extractor and feeds the feature maps into a context encoding module. RefineNet104 is a multi-path refinement network that explicitly exploits all the information available along the down-sampling process to enable high-resolution prediction using long-range residual connections. Seednet105 introduced an automatic seed generation technique with deep reinforcement learning that learns to solve the interactive segmentation problem. Object-Contextual Representation (OCR)27 learns object regions and the relation between each pixel and each object region, augmenting the

representation pixels with the object-contextual representation. Additional mod-

els and methods include BoxSup, 106 Graph Convolutional Networks (GCN), 107

Wide ResNet, 108 Exfuse109 (enhancing low-level and high-level features fusion), Feedforward-Net, 110 saliency-aware models for geodesic video segmentation, 111 Dual Image Segmentation (DIS), 112 FoveaNet113 (perspective-aware scene parsing), Ladder DenseNet,114 Bilateral Segmentation Network (BiSeNet),115 Semantic Prediction Guidance for Scene Parsing (SPGNet), 116 gated shape CNNs, 117 Adaptive Context Network (AC-Net), 118 Dynamic-Structured Semantic Propagation Network (DSSPN), 119 Symbolic Graph Reasoning (SGR), 120 CascadeNet, 121 Scale-Adaptive Convolutions (SAC), 122 Unified Perceptual parsing Network (UperNet), 123 segmentation by re-training and self-training,124 densely connected neural architecture search, 125 hierarchical multi-scale attention, 126 Efficient RGB-D Semantic
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Segmentation (ESA-Net),127 Iterative Pyramid Contexts,128 and Learning Dynamic Routing for Semantic Segmentation. 129

Panoptic segmentation130 is growing in popularity. Efforts in this direction include Panoptic Feature Pyramid Network (PFPN), 131 attention-guided network for panoptic segmentation, 132 seamless scene segmentation, 133 panoptic Deeplab, 134

unified panoptic segmentation network, 135 and efficient panoptic segmentation. 136

3. Challenges and Opportunities

We have surveyed image segmentation algorithms based on deep learning models, 

which have achieved impressive performance in various image segmentation tasks

and benchmarks, grouped into architectural categories, such as CNN and FCN, 

RNN, R-CNN, dilated CNN, attention-based models, generative and adversarial

models, among others. Without a doubt, image segmentation has benefited greatly

from deep learning, but several challenges lie ahead. We next discuss some of the promising research directions that we believe will help in further advancing image segmentation algorithms. 

3.1.  More challenging datasets

Several large-scale image datasets have been created for semantic segmentation

and instance segmentation. However, there remains a need for more challenging

datasets, as well as datasets of different kinds of images. For still images, datasets with a large number of objects and overlapping objects would be very valuable. 

This can enable the training of models that handle dense object scenarios better, as well as large overlaps among objects as is common in real-world scenarios. With the rising popularity of 3D image segmentation, especially in medical image analysis, there is also a strong need for large-scale annotated 3D image datasets, which are more difficult to create than their lower-dimensional counterparts. 

3.2.  Combining DL and earlier segmentation models

There is now broad agreement that the performance of DL-based segmentation

algorithms is plateauing, especially in certain application domains, such as medical image analysis. To advance to the next level of performance, we must further explore the combination of CNN-based image segmentation models with prominent

“classical” model-based image segmentation methods. The integration of CNNs with graphical models has been studied, but their integration with active contours, graph cuts, and other segmentation models is fairly recent and deserves further work. 

3.3.  Interpretable deep models

While DL-based models have achieved promising performance on challenging bench-

marks, there remain open questions about these models. For example, what exactly
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are deep models learning? How should we interpret the features learned by these

models? What is a minimal neural architecture that can achieve a certain seg-

mentation accuracy on a given dataset? Although some techniques are available to visualize the learned convolutional kernels of these models, a comprehensive study of the underlying behavior/dynamics of these models is lacking. A better understanding of the theoretical aspects of these models can enable the development of better models curated toward various segmentation scenarios. 

3.4.  Weakly supervised and unsupervised learning

Weakly supervised (a.k.a. few shot) learning137 and unsupervised learning138 are becoming very active research areas. These techniques promise to be specially valuable for image segmentation, as collecting pixel-accurately labeled training images is problematic in many application domains, particularly so in medical image analysis. 

The transfer learning approach is to train a generic image segmentation model on a large set of labeled samples (perhaps from a public benchmark) and then fine-tune that model on a few samples from some specific target application. Self-supervised learning is another promising direction that is attracting much attraction in various fields. With the help of self-supervised learning, many details in images can be captured in order to train segmentation models with far fewer training samples. 

Models based on reinforcement learning could also be another potential future direction, as they have scarcely received attention for image segmentation. For example, MOREL139 introduced a deep reinforcement learning approach for moving object segmentation in videos. 

3.5.  Real-time models for various applications

In many applications, accuracy is the most important factor; however, there are

applications in which it is also critical to have segmentation models that can run in near real-time, or at common camera frame rates (at least 25 frames per second). This is useful for computer vision systems that are, for example, deployed in autonomous vehicles. Most of the current models are far from this frame rate; e.g., FCN-8 takes roughly 100 ms to process a low-resolution image. Models based on

dilated convolution help increase the speed of segmentation models to some extent, but there is still plenty of room for improvement. 

3.6.  Memory efficient models

Many modern segmentation models require a significant amount of memory even

during the inference stage. So far, much effort has been directed toward improving the accuracy of such models, but in order to fit them into specific devices, such as mobile phones, the networks must be simplified. This can be done either by using simpler models, or by using model compression techniques, or even by training a
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complex model and using knowledge distillation techniques to compress it into a

smaller, memory efficient network that mimics the complex model. 

3.7.  Applications

DL-based segmentation methods have been successfully applied to satellite images in remote sensing, 140 such as to support urban planning141 and precision agriculture. 142 Images collected by airborne platforms143 and drones144 have also been segmented using DL-based segmentation methods in order to address important

environmental problems including ones related to climate change. The main chal-

lenges of the remote sensing domain stem from the typically formidable size of the imagery (often collected by imaging spectrometers with hundreds or even thousands of spectral bands) and the limited ground-truth information necessary to evaluate the accuracy of the segmentation algorithms. Similarly, DL-based segmentation techniques in the evaluation of construction materials145 face challenges related to the massive volume of the related image data and the limited reference information for validation purposes. Last but not least, an important application field for DL-based segmentation has been biomedical imaging. 146 Here, an opportunity is to design standardized image databases useful in evaluating new infectious diseases and tracking pandemics.147
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Chapter 2.8

ChatGPT vs. Google Search on Drones

Hoi Kei Phoebe Chan and Ching Yee Suen

 Centre for Pattern Recognition and Machine Intelligence Concordia University, Montreal, Quebec H3G 1M8, Canada

Drones, known as unmanned aerial vehicles or UAVs, have numerous uses from

being served as toys by children and adults alike to being employed as a tool in various fields like agriculture and warfare. Since drones are deemed as aircraft by Transport Canada5 and by Federal Aviation Administration in the United States, 2 they are governed by strict regulations from legal requirements to penalties for the pilots for inappropriate usage. In this chapter, several questions will be asked such as what is written on Google Search4 (1) regarding drones, (2) on different types of drones, (3) drones equipped with cameras, and (4) drones for

military uses. All these questions will be explored through ChatGPT’s server10 as well to see how Artificial Intelligence (AI) compares to human research abilities using Google Search. 

1. Google Search on Drones

If one types the word ‘drones’ into Google Search, there would be many adver-

tisements containing sponsored links for potential drone purchases from various

websites and reviews on the best drones currently available in the market. There are no YouTube videos promoted, as seen in Fig. 1. 

Fig. 1. The word ‘drones’ on Google Search. 

511

[image: Image 1235]

[image: Image 1236]

512

 H. K. P. Chan & C. Y. Suen

When one scrolls down, websites of firms producing drones would be available, 

and an article on the subject by Wikipedia and top stories on the latest news

concerning drone uses around the world would appear, as seen in Fig. 2. 

Fig. 2. More on Google Search on the word ‘drone’. 

Unless one is specifically looking for regulations on drone use, there are no

indications of them at the bottom of the first page, as seen in Fig. 3. 

Fig. 3. End of page for Google Search on the word ‘drone’. 
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2. ChatGPT on Drones

The author asked the question ‘What is a drone?’ to ChatGPT on July 11, 2023, 

around 11:00 am. It produced an error on both tries, as seen in Fig. 4. 

Fig. 4. Error on ChatGPT. 

Later in the day, ChatGPT finally worked and provided an answer through

Figs. 5 and 6:

Fig. 5. Part 1 of drones’ definition generated by ChatGPT. 
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514

 H. K. P. Chan & C. Y. Suen

Fig. 6. Part 2 of drones’ definition generated by ChatGPT. 

3. Google on Drone Components

When one searches ‘structure on different types of drones’, a series of questions and answers appear from users at the top. The most comprehensive information comes

from an article on LinkedIn by a company called T-DRONES. The main components

that they listed are as follows: (1) aircraft frame that consists of the ‘center plate, moment arm, and foot frame’, (2) flight control “includes gyroscope, accelerometer, geomagnetic induction flight control, air pressure sensor, ultrasonic sensor, optical flow sensor, GPS module and control circuit composition”, (3) propulsion system

contains “motor, electronic speed controller, propeller and battery”, (4) remote control and remote signal receiver serve to communicate with the UAV through

the transmitter and receiver, and (5) gimbal system affects how stable is the aerial video picture. 12 However, it has no illustrations so there is a need to go elsewhere to find an image illustrating the drone components. 

The authors are aware the following images are older in nature, but they ran

into a few websites that looked suspicious during the search which asked them to click on bizarre links. Therefore, the images are chosen based on their sources and it is important for all researchers to remain alert to not run into potential security problems while conducting research. 
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Fig. 7. Drone components.11

Figure 7 came up when looking for a “diagram of different types of drones”. 

Fig. 8. Drone survival guide.1
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If one is interested in going in-depth on parts and their descriptions, there is a PowerPoint from George Mason University’s The Volgenau School of Information

and Technology and Engineering on Components of a Quadcopter. 3

Interestingly enough, searching ‘construction on different types of drones’ will give one what kinds of drones are used in the field of construction. This suggests Google Search system has other interpretations of humans’ word choice and word

order. 

4. Google on Different Types of Drones, for Fun, 

Delivering Goods, etc. 

When asked about the different types of drones, Google Search shows images of

different types of drones along with websites explaining the differences, as illustrated in Fig. 9. However, it gives similar results to the word ‘drone’ when prompted with

‘drones for fun’. 

Fig. 9. Google Search on type of drones. 

When it comes to ‘drones for delivering goods’, Fig. 10 shows more sponsored advertisements on the types of drones that can be bought for deliveries and a business offering their service has been approved by Transport Canada. 
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Fig. 10. Google Search on drones for delivering goods. 

When one scrolls down, there is a definition of ‘delivery drone’ on Wikipedia

along with news articles, a blog post, and a mention of businesses in the delivery drone industry. 

Fig. 11. Section of page 1 on delivery drone. 
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5. ChatGPT on Different Types of Drones, for Fun, 

Delivering Goods, etc. 

Figures 12–15 are screenshots that were generated by ChatGPT on different types

of drones. They gave a pretty good summary on all types of drones including what they are. 

Fig. 12. Different types of drones generated by ChatGPT 1. 

Fig. 13. Different types of drones generated by ChatGPT 2. 

Fig. 14. Different types of drones generated by ChatGPT 3. 
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Fig. 15. Different types of drones generated by ChatGPT 4. 

6. Google on Drones Equipped with Cameras

When one searches the words ‘drones equipped with camera’ in Google, it is once

again littered with sponsored links, drone reviews, and buying guides, as shown in Fig. 16. 

Fig. 16. Google Search on ‘drones equipped with camera’. 

While some news on drones by major media providers may hide behind a pay-

wall, UAV Coach provides a good article on the best drones equipped with camera. 14

It has an extensive list providing interesting information with specifications on the listed drones for prospective buyers including their uses like filmmaking and public safety. 
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K&F Concept has an article called “Do All Drones Have Cameras” which dis-

cusses camera-equipped drones and those without due to their uses like agriculture and racing. 9

7. ChatGPT on Drones Equipped with Cameras

When asked about ‘drones equipped with cameras’, ChatGPT gave good summaries

on the different types of drones with cameras available and their respective uses, as seen in Figs. 17–20. 

Fig. 17. ChatGPT answers on ‘drones with cameras’ 1. 

Fig. 18. ChatGPT answers on ‘drones with cameras’ 2. 

[image: Image 1252]

[image: Image 1253]

 ChatGPT vs. Google Search on Drones

521

Fig. 19. ChatGPT answers on ‘drones with cameras’ 3. 

Fig. 20. ChatGPT answers on ‘drones with cameras’ 4. 

8. Google on Military Drones

When one searches the words ‘military drones’ on Google, it starts off with

Wikipedia’s definition of unmanned combat aerial vehicle also known as UCAV. 

Then, there would be suggestions on what other people search for relating to the topic and images of military drones. 

[image: Image 1254]
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Fig. 21. Google Search on military drones. 

A recent article on Reuter mentions how India’s government bars military drone

makers from using Chinese parts due to security purposes. 8 Quite a few websites also mention Chinese exported UAVs have an electric geofence to ensure its exported

drones do not create trouble for national security.13

The Imperial War Museum in the United Kingdom has an article with images

on the history of drones and their use in warfare. 6 The organization also hosts an interview with Chris Wood on drones in modern conflict which is available on

YouTube. 7

9. ChatGPT on Military Drones

The author got an error on the military drone question on ChatGPT, as seen in

Fig. 22:

Fig. 22. ChatGPT error on military drones. 

[image: Image 1256]

[image: Image 1257]

 ChatGPT vs. Google Search on Drones

523

On the second attempt, there was a slightly better response, but it feels like

something is still missing as it said “key points” in the text:

Fig. 23. ChatGPT’s entry on military drones. 

On October 15, 2023, the authors decided to investigate whether ChatGPT has

a more complete response regarding military drones. This time, the response was

much more in-depth, as seen in Figs. 24–27. 

Fig. 24. ChatGPT’s entry on military drones on October 15, 2023 1. 
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Fig. 25. ChatGPT’s entry on military drones on October 15, 2023 2. 

Fig. 26. ChatGPT’s entry on military drones on October 15, 2023 3. 

Fig. 27. ChatGPT’s entry on military drones on October 15, 2023 4. 

[image: Image 1261]

 ChatGPT vs. Google Search on Drones

525

10. Conclusion

This research has demonstrated that ChatGPT’s use of artificial intelligence is the

“winner” as human researchers are overwhelmed by numerous sponsored advertise-

ments and have very little to work with through Google Search unless one browses through numerous pages and takes time to weed out all the conflicting information. 

Paywalls from certain media companies are becoming a detriment to gain access

to recent news. Word choice by the researcher will also determine the information that comes back from the search in both Google and ChatGPT programs. In terms

of accuracy, human researchers and ChatGPT may not have access to all informa-

tion available on the topic given there is a lot of sensitive information surrounding the different militaries and their drones. However, human researchers may be given special permission through security clearances so they may have access to data that are not available to the public for machines to learn. 

However, there are some disadvantages for a researcher to use ChatGPT. First, 

there is a need to be an expert on the topic or else one must spend time fact-checking as the program may give inaccurate information, as illustrated in the warning of Fig. 28. Second, it may not be worth the time to deal with countless glitches, especially when there are sign-in issues, or the program is unable to generate a response for whatever reason as seen in various screenshots provided for the purpose of this chapter. Most of the information generated by ChatGPT looks accurate

according to the authors’ limited knowledge, but the authors would need to spend a lot of time fact checking the different statements to ensure their validity. 

Fig. 28. Warning on inaccurate information from ChatGPT. 
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Is ChatGPT worth it or not in the end? It depends on how accurate the

researchers want their research to be. If one decides to trust information from

ChatGPT blindly and completely, it is relatively straightforward. For the skep-

tics, it is probably easier to fact-check after generating information from ChatGPT

than conduct research from scratch, hence suggesting that AI is here to stay and can facilitate researchers’ lives as the field continues to mature with time. 
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