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Foreword 

I am delighted and privileged to write this foreword to Sid Morris’s engaging book 
“Calculating chance: card and casino games”. Sid and I were both students at the 
University of Queensland in the 1960s and have kept contact ever since through our 
common mathematical interests and links with the Australian Mathematical Society. 
Sid is an immensely successful author of scholarly mathematics texts, and now 
“Calculating chance” offers entertaining and informative reading for everyone. The 
book is immediately engaging. It is both personal and scholarly. At every stage Sid 
will give you the historical context, or the wider impact on society—and sometimes 
a very personal perspective. For example, did you know about the role that correct 
statistical thinking played in saving the lives of many airmen during World War 
II? In “Calculating chance” you will likely find every game of chance you’ve ever 
heard of in the book. You will discover its origins, you will meet the key people 
involved in its development, and Sid will explain how the game works and what are 
the chances of winning. And just when you think it is all for fun, you will be shown 
that the same mathematics explains how over 10,000 monogenic human diseases are 
passed down through families. Sid gives the clearest explanation I have ever read of 
the mathematics behind the Monty Hall Problem—a famous and confusing problem 
about a talk show program where you, the contestant, might win a car if out of three 
“doors” you choose the right door with a car behind it. After making your choice, the 
talk show host, who knows where the car is, opens a door that you did not choose, 
and the car is not behind it. So, either you chose correctly, or the car is behind the 
other door which the host did not open. The host offers you a chance to change your 
choice of door. What should you do? How does this opportunity change your chance 
of winning? Sid explains very clearly what is going on. Then, in the same part of the 
book you will find a fascinating mathematical analysis of the reliability of PCR tests 
for viral infection. It is the same kind of mathematics, and Sid’s explanations lead 
on to discussions of different statistical approaches: Kolmogorov versus Bayes. So, 
you will find all you ever wanted, or needed, to know about games of chance – how 
the betting works, who benefits (always “the house”), and always there is the crucial 
role of mathematics to help you understand. It’s fun to read, and there are problems
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to challenge you. The book is beautifully presented and illustrated: a “must-have” 
for your coffee table if you can bear to stop reading and put it down. Happy reading! 

Emeritus Professor of Mathematics Cheryl E Praeger AC FAA 
University of Western Australia



Preface 

This book is not written for any existing probability course as I wanted to decide 
which topics to include, and in what order, and in how much detail the material 
should be presented. 

The following people should find this book interesting, entertaining, and/or useful: 
• Students studying probability 
• Those planning to study probability, 
• Teachers of probability, 
• Those interested in card games, casino games, or any games of chance 

I assume a minimal background knowledge in mathematics and probability. The 
presentation is both gentle and rigorous. So I take the time to introduce and discuss 
necessary background material. 

Many books separate probability into discrete distributions and continuous dis-
tributions. In so doing, they often gloss over an understanding of infinite set theory. 
I prefer dividing probability into two sections, not two, as I subdivide discrete distri-
butions into finite and countably infinite. In this book we focus on finite probability 
spaces. This works very well as many of our examples are from card games and 
casino games which are examined using finite probability spaces. 

While this book is about finite probability spaces, the material on permutations 
and combinations leads naturally into Stirling’s formula for approximating . n!. To do  
justice to this and to prepare the reader for future study of continuous distributions, 
I present the relevant calculus material. This does not assume you have studied 
calculus previously. So, even if you have a thorough understanding of permutations 
and combinations, you will find something new to you in this chapter. 

Many courses and books on probability theory start with considering a bag of 
n red balls and m black balls, and then discuss putting your hand into the bag and 
drawing out, say, three balls and discussing the probability of your having drawn out 
two red balls and one black ball. In my opinion, this misses the point. Probability is 
a practical subject. The problems that need to be solved in real life are problems in 
words. So I make no apology for my examples being rather wordy.

ix



x Preface

As I said, the aim is to present the material rigorously. Therefore at an early stage 
we state axioms for a probability space. To do this we need to introduce .σ-algebras, 
and this is indeed what we do in the very first section. While this material may be 
new to you, it is not difficult. 

I have gone to some considerable effort to provide a very detailed index. So if 
you do not know or cannot remember what something means do not hesitate to look 
it up in the index at the back. 

This book is prepared using LATEX. I have put in a substantial number of hyperlinks 
which are useful when reading the book on a computer, tablet, or phone. 
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Introduction 

Misuse of Statistics 

We have all heard of Florence Nightingale (1820–1910). 
However, few realize that she provides an extraordinary 
example of the power of statistics. She was appalled 
by the unsanitary conditions she experienced in British 
army hospitals during the Crimean war. She collected 
and analysed data on these conditions and presented her 
findings to Parliament. According to [3], mortality in the 
Scutari-Crimean Hospital half a year after she arrived 
had remarkably dropped from 42.7 to 2.2%. Florence 
Nightingale had the advantage of being both a subject 
expert, in nursing, and a statistician. 

Unfortunately in most cases the person reporting experimental results is either a 
subject expert with little or no understanding of statistics or a statistics expert with 
little or no understanding of the subject. This often results in misuse of statistics. The 
authors of [18] give the following definition of Misuse of Statistics: Using numbers 
in such a manner that—either by intent, or through ignorance or carelessness—the 
conclusions are unjustified or incorrect. For discussion and examples, see [18, 13, 
10, 17].

xiii
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Interpretation of Data: Bullet Holes 

Correct interpretation of data is very important but it 
is not necessarily easy. 

Abraham Wald (1902–1950), a Hungarian Jewish 
mathematician, worked on decision theory and econo-
metrics. He did his PhD at the University of Vienna, 
graduating in 1931. Even though he was brilliant, he 
was unable to win a university position in Austria 
due to discrimination against Jews. When Germany 
annexed Austria in 1938, he accepted an invitation 
to migrate to the USA. During World War II, many 
US planes returned from missions with bullet hole 
damage. The military decided that certain areas of the 
planes needed to be strengthened and chose somewhat 
naturally those areas with the most bullet holes. 

Abraham Wald was part of the Statistical Research 
Group at Columbia University. He applied the theory 
of Survival Bias which is the error of concentrating 
on the things that made it through the selection pro-
cess and overlooking those that did not. Wald noted 
that the military considered only the aircraft that sur-
vived their mission. Planes that had been shot down 
were not available for assessment. The bullet holes in 
the returning aircraft, then, represented areas where a 
bomber could take damage and still fly well enough to return safely to base. 

Thus Wald proposed that the military reinforce instead the areas where returning 
aircraft did not have bullet holes, since they were the areas that, if hit, would cause 
the plane to be lost. Wald deduced that it was the engines which were particularly 
vulnerable: if these were hit the plane went down and didn’t return to base. The 
military listened and armoured the engine not the wings and tail. 

We see the value of stepping back and thinking. 

Gambling 

One of the first mathematicians who studied probability was Gerolamo Cardano 
(1501–1576). He used his understanding of probability in gambling and wrote a 
book called Book on Games of Chance. 

There is no doubt that games of chance provide a rich environment in which to 
study probability. This book presents a myriad of examples on permutations and 
combinations using various games. 

Today gambling (including sports gambling) is a giant industry. In Australia, 
for example, on average, each person (adult and child) expends $1,000 per year
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gambling. This is a staggering amount. Unfortunately, many people become addicted 
to gambling, which too often results in their losing not only all the money and 
possessions they own but also their family and friends and sometimes they are jailed 
as they steal or conduct fraud to support their addiction. 

I wish to make it abundantly clear that this book does not teach you strategies to 
gamble successfully. 

For a history of gambling in (what is now) the United States see [2]. 
If you need help with a gambling addiction, you may care to contact 

http://www.gamblersanonymous.org 

History of Probability 

The reader should be aware that probability is a subject which developed over 
hundreds of years. This book makes no attempt to do justice to that history. While 
we try to include a few biographical details of key players, the interested reader is 
directed to [1, 4, 5, 8, 9, 12, 18]. 

Vanderbilt University Library Collection of Books on Card 
Games and Gaming 

According to Nancy Dwyer writing on the Vanderbilt University site “The Library 
has acquired The George Clulow collection, one of the greatest collections of books 
about card games, games of chance, playing cards, and chess in the world. This 
collection, owned since 1903 by the U.S. Playing Card Co., complements the library’s 
Parkhurst and Jane Wood Bridge Collection of Books and Periodicals and has the 
additional connection to the university in the fact that Vanderbilt’s former chairman 
of the Board of Trust, Harold Stirling Vanderbilt (1884–1970), was the inventor of 
contract bridge. . . . .

Included in the collection are books and manuscripts from the 15th to 20th century 
dealing with the economics, mathematics and social consequences of gaming, as well 
as the legal ramifications, the art of playing card design, theological diatribes, literary 
treatments and the mysteries and science of games of chance. 

Along with nearly every edition of Hoyle’s Game of Whist and plenty of strategy 
books on poker, bridge, patience, quadrille, skat, and various Italian, French, German 
and English games, come first editions of literary works in which gaming or gambling 
play a part, such as Alexander Pope’s The Rape of the Lock (1st edition), Swift’s 
The Gambler (1777), and Thackeray’s Orphan of Pimilco (1876). 

The collection has been called “one of the most complete and scholarly that has 
ever been gathered together” (Hargrave 1930).”

http://www.gamblersanonymous.org
http://www.gamblersanonymous.org
http://www.gamblersanonymous.org
http://www.gamblersanonymous.org
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Solutions to Exercises 

There are many exercises in this book. Only by working through a good number of 
exercises will you master the course. I have not provided solutions to the exercises, 
and I have no intention of doing so. It is my opinion that there are enough worked 
examples and proofs within the text itself, that it is not necessary to provide answers 
to exercises—indeed it is probably undesirable to do so. 

Harder exercises are indicated by an *. 
However, if you really feel the need to see worked solutions, then look at the 

book [7] which has one thousand exercises in probability with their solutions. and 
the book [11] which has nearly 800 problems with comprehensive solutions. 

The book Problems in Probability [14] by my colleague Professor Terry Mills 
teaches a substantial amount of probability through presenting problems in proba-
bility. And he provides solutions to all of the problems. He says that many of the 
problems tend to be quite long verging on small research projects. 

Software 

I first taught computer programming 50 years ago and probability and statistics 45 
years ago. At all times since there has been argument about which software languages 
and packages are best to use. I served as Chair of the Professors of Computers Science 
and Heads of Departments of Computer Science in Australia for two years and saw 
the religious fervour with which these were debated by experts. So I know that 
there is little likelihood that there will be universal agreement. Today there are very 
powerful and expensive statistics software packages and there are programming 
languages which have millions of users and advocates. In this book I have chosen to 
use R and WolframAlpha. These are free and powerful. I do not suggest that these 
are the best choices, but rather that they have served my purposes very well. 

I have made no attempt to teach the reader to use the software package R. 
However, I include a significant number of examples in R to allow the reader to 
improve their knowledge. Early in the book little expertise in R is required in order 
to understand the examples. As the book proceeds, the examples become a little 
more complicated, particularly as regards drawing graphs. I am not aiming at the 
cleverest or most elegant solution to drawing the graphs, but rather ways that the 
reader can learn to use. A very useful book on drawing graphs in R is [13]. (The 
Lillis book can be purchased from the usual booksellers or it can be subscribed to 
at https://www.packtpub.com/product/r-graph-essentials/9781783554553, currently 
for $5 for 5 months. I am not associated with this book in any way.)

https://www.packtpub.com/product/r-graph-essentials/9781783554553
https://www.packtpub.com/product/r-graph-essentials/9781783554553
https://www.packtpub.com/product/r-graph-essentials/9781783554553
https://www.packtpub.com/product/r-graph-essentials/9781783554553
https://www.packtpub.com/product/r-graph-essentials/9781783554553
https://www.packtpub.com/product/r-graph-essentials/9781783554553
https://www.packtpub.com/product/r-graph-essentials/9781783554553
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Thanks to Wikipedia 

I must acknowledge that in many places I have drawn on information in Wikipedia, 
https://www.wikipedia.org/. In particular, Wikipedia made my job very much easier 
by identifying which images are in the Public Domain. I say thank you to Wikipedia. 
And I encourage all readers to consider making a financial contribution to Wikipedia 
as I have done. It is a very valuable resource. 

Genesis of Calculating Chance: Card and Casino Games 

In December 2019 I attended the Australian Mathematical Society Annual Meeting in 
Canberra. While there, I had a discussion with Dr Loretta Bartolini, then Mathematics 
Editor of the publisher Springer Nature about a second edition of my book Abstract 
Algebra and Famous Impossibilities, which has since appeared [15]. We strayed in 
our conversation into talking about books on probability theory. Soon after that, I 
decided to write a book on probability. The COVID-19 pandemic in 2020 caused me 
to focus my efforts on writing such a book which, in due course, became this book. 
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Chapter 1 
Finite Probability Spaces and Examples 

Abstract 

In this first chapter probability theory is placed on a firm foundation. Then a variety of 
interesting and entertaining examples are introduced and investigated. These include 
French and American roulette; dice games such as craps, hazard, chuck-a-luck, 
crown and anchor, and sic-bo; and card games such as blackjack, macao, baccarat, 
and solitaire. Beyond the realms of card and casino games, topics ranging from the 
Martingale betting system and the Fibonacci betting system, setting winnings and 
losses bounds, the “optimum” strategy for blackjack, the gamblers’ fallacy, inherited 
diseases, monopoly, weather forecasting, chaos theory, horseracing odds, elections, 
your intuition, and paradoxes are examined. While we should expect that in each and 
every casino game the house has a statistical advantage, in this chapter we shed light 
on which games offer players a good chance. 

1.1 Introduction and σ-Algebras 

David Hilbert (1862–1943), arguably the pre-eminent mathemati-
cian of his time, wanted to place probability theory on a firm 
foundation. 

Just as vector space theory, Euclidean geometry, group theory, 
topology, and graph theory each begin with a set of axioms, he 
sought a set of axioms as a starting point for probability theory. 

At the second International Congress of Mathematicians, held 
in Paris in 1900, Hilbert posed 23 questions which were to be 
influential on research in the twentieth century. His sixth problem 
included the task of providing a set of axioms for probability 
theory. 

It was solved in 1933 by the outstanding Russian mathe-
matician Andrej Nikolajewitsch Kolmogorov (1903–1987), who 
made significant contributions to our understanding of classical 
mechanics, computational complexity, information theory, logic, 
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topology, as well as probability theory. He also solved Hilbert’s 
13th problem [19]. 

In this chapter we present his axioms for probability spaces. 
First we record some notation. 

Notation. 
(i) the set of all natural numbers {1, 2,  . . . , n,  . . .  } is denoted by N; 
(ii) the set of all integers is denoted by Z; 
(iii) the set { p 

q ; p, q ∈ Z, q ≠ 0} of all rational numbers is denoted by Q; 
(iv) the set of all real numbers is denoted by R; 
(v) the set of all complex numbers is denoted by C; 
(vi) the set R \ Q of all irrational real numbers is denoted by P; 
(vii) the set of all real numbers x satisfying a ≤ x ≤ b, for  a, b ∈ R with a ≤ b, is  

denoted by [a, b] 
(viii) the set of all real numbers x satisfying a < x < b, for  a, b ∈ R with a < b, is  

denoted by (a, b); 
(ix) the set of all real numbers x satisfying x ≥ a, for  a ∈ R, is denoted by [a,∞); 
(x) the set of all real numbers x satisfying x ≤ a, for  a ∈ R, is denoted by 

(−∞, a]. 
While the reader is no doubt keen to get on with discussing probability itself, 

we proceed methodically. The first step is to ensure that any gaps in knowledge are 
filled. 

In this section we define what we mean by a σ-algebra on a set  X . We shall see 
that a σ-algebra is defined to be a set of subsets of X having four simple properties. 
To describe these properties, we will need to be familiar with properties of the union 
and intersection of a finite or infinite number of sets and how these behave with 
respect to taking complements. 
Definition 1.1 if S is a subset of a set E , then the complement of S in E , denoted by 
E \ S or S', is the set of all members of E which are not in S; that is, E \ S = S' = 
{x : x ∈ E, x ∉ S}. 

Example 1.1 The complement of Q in R is P and the complement of (0, 1) in R is 
(−∞, 0] ∪ [1, ∞).
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Definition 1.2 If I is any finite or infinite index set and each Si, i ∈ I, is a subset of 
a set  E , then

⋃

i∈I 
Si denotes the subset of E which consists of all x ∈ E which belong 

to at least one of the Si . 
Similarly,

⋂

i∈I 
Si is the subset of E which consists of those x ∈ E such that x ∈ Si , 

for all i ∈ I. 
If I = N = {1, 2,  . . . , n,  . . . }, then we write

⋃

i∈I 
Si as 

∞⋃

i=1 
Si and

⋂

i∈I 
Si as 

∞⋂

i=1 
Si . 

Example 1.2 The complement of Z in R is given by 

. R \ Z =
∞⋃

n=0
(n, n + 1)

⋃ ∞⋃

n=0
(−n − 1,−n).

To work comfortably with complements, one needs to be aware 
of De Morgan’s Laws, proved by the English mathematician Au-
gustus De Morgan (1806–1871). 

If A and B are subsets of a set X , then 

(i) X \ (A ∩ B) = (X \ A) ∪ (X \ B); and 
(ii) X \ (A ∪ B) = (X \ A) ∩ (X \ B). 

More generally, we have: 
If I is any finite or infinite set and Si , i ∈ I, are subsets of a set X , then 

(a) X \
⎛ ⋂

i∈I 
Si
⎞
=

⋃

i∈I 
(X \ Si); and 

(b) X \
⎛ ⋃

i∈I 
Si
⎞
=

⋂

i∈I 
(X \ Si). 

We shall prove (a) and leave the proof of (b) as an exercise. 
Proof of (a). 

To prove two sets J and K are equal, we show that if x is in J, then x is in K , 
and if x ∈ K , then x ∈ J. 

Assume x ∈ X \
⎛ ⋂

i∈I 
Si
⎞

=⇒ x ∈ X and x ∉
⋂

i∈I 
Si 

=⇒ x ∈ X and there is an i1 ∈ I such that x ∉ Si1 
=⇒ x ∈ X \ Si1 
=⇒ x ∈

⋃

i∈I 
(X \ Si). 

Conversely, assume x ∈
⋃

i∈I 
(X \ Si) 

=⇒ there is an i2 ∈ I such that x ∈ X \ Si2 

=⇒ since X \
⎛ ⋂

i∈I 
Si
⎞
⊇ X \ Si2 , we have that  x ∈ X \

⎛ ⋂

i∈I 
Si
⎞
. 

So we have proved (a). ⨅⨆
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Definition 1.3 Let X and Y be sets and f a mapping of X into Y . If  S is a subset of 
Y , then the inverse image of the set S is the subset of X consiting of all those x such 
that f (x) ∈  Y and is denoted by f −1(S); that is, f −1(S) = {x ∈ X : f (x) ∈  S}. 

•! Attention 

If X and Y are sets, then a function f : X → Y is said to have an inverse function 
g : Y → X if f (g(y)) = y, for all y ∈ Y and g( f (x) = x), for all x ∈ X . For  
f : X → Y to have an inverse function it is necessary and sufficient that f is one-
to-one and onto. 
Recall that f is one-to-one (also known as injective) if for  any  x1 ∈ X and x2 ∈ X 
with f (x1) = f (x2), then x1 = x2. Also recall f is said to be onto (also known as 
surjective) if for each y ∈ Y , there is at least one x ∈ X such that f (x) = y. 
So we observe that f1 : R → R given by f1(x) = |x | is not a one-to one function and 
so has no inverse function. Similarly f2 : R → R given by f2(x) = x4 is not onto 
and so has no inverse function. The function f3 : R → R given by f3(x) = sin x is 
neither one-to-one nor onto and so has no inverse function. 
Unfortunately when f : X → Y is one-to-one and onto and does therefore have an 
inverse function g : Y → X , some books write this inverse function g as f −1. This 
is misleading. 

By Definition 1.3, if  f : X → Y is any function from X into Y , the inverse 
image f −1(S) of each subset S of Y exists and is a subset of X . 
By contrast the function f has an inverse function g : Y → X if and only if it 
is one-to-one and onto. 

Example 1.3 

(i) Let (i) f1 : R → R be given by f1(x) = |x |, for all x ∈ R. Then 

. f −1
1 ([1, 2]) = [−2,−1]∪[1, 2] and f −1

1 ({2}) = {−2, 2} and f −1
1 ([−1,∞)) = R;

(ii) Let f2 : R → R be given by f (x) = x4, for all x ∈ R. Then 

. f −1
2 ({81}) = {−3, 3} and f −1

2 (R) = R and f −1
2 ([−1, 1]) = [−1, 1];

(iii) Let f3 : R → R be given by f3(x) = sin x, for all x ∈ R. Then 

. f −1
3 (R) = R and f −1

3 ([−10, 10]) = R and f −1
3 ([−1, 1]) = R.

Greek Alphabet. It is helpful to know a few Greek letters and their names. 

(i) sigma: lower case σ; upper case Σ; 
(ii) gamma: lower case γ; upper case Γ; 
(iii) delta: lower case δ; upper case Δ;
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(iv) phi: lower case φ; upper case Φ; 
(iv) omega: lower case ω; upper case Ω; 
(v) psi: lower case ψ; upper case Ψ; 
(vi) eta: η; 
(vii) mu: μ; 
(viii) epsilon: ε; 
(ix) xi: ξ . 

There is a mathematical symbol borrowed from the Danish alphabet, namely, ∅, 
which denotes the empty set, and is not to be confused with the Greek letter φ. 

Notation. For a finite set S, we denote by |S | the number of elements of S. 

Definition 1.4 Let Ω be any set and Σ a set of subsets of Ω. Then Σ is said to be a 
σ-algebra on Ω if it satisfies the following four conditions: 

(i) Ω ∈ Σ; 
(ii) if the subset S of Ω is in Σ, then its complement S' = Ω \ S ∈ Σ; 
(iii) if S1, S2,  . . . ,  Sn,  . . .  are in Σ, then 

∞⋂

n=1 
Sn ∈ Σ; 

(iv) if S1, S2,  . . . ,  Sn,  . . .  are in Σ, then 
∞⋃

n=1 
Sn ∈ Σ. 

Proposition 1.1 If Σ is a σ-algebra on a set  Ω, then 

(i) ∅ ∈  Σ; 
(ii) if S1, S2,  . . . ,  Sn ∈ Σ, then S1 ∩ S2 ∩ · · · ∩  Sn ∈ Σ; 
(iii) if S1, S2,  . . . ,  Sn ∈ Σ, then S1 ∪ S2 ∪ · · · ∪  Sn ∈ Σ; 
(iv) If S ∈ Σ and A ∈ Σ with A ⊂ S, then S \ A ∈ Σ. 

Proof. Exercise. ⨅⨆

Example 1.4 

(i) Let Ω be any set. The set P(Ω) of all subsets of Ω (known as the power set of 
Ω) is a  σ-algebra on Ω. The power set of a set Ω is often denoted by 2Ω. 

(ii) Let Ω be any set and Σ0 = {Ω, ∅}. Then Σ0 is a σ-algebra on Ω. This  
σ-algebra, Σ0, is called the trivial σ-algebra on Ω. 

(iii) Let Ω be the set N and Σ be the set of all subsets of N containing only even 
integers. Then Σ is not a σ-algebra on N since, for example, the set {2, 4, 8} 
is in Σ but its complement is not in Σ. 

(iv) Let Ω be the set R and Σ consist of all finite subsets of R. Then Σ is not a 
σ-algebra on R since, for example, all singleton sets {n}, for  n ∈ N, are  in  Σ 
but their union

⋃∞ 
n=1{n} = N is not in Σ. So condition (iv) is not satisfied. 

(v) Let Ω be the set {1, 2, 3, 4} and Σ consist of {1}, {1, 3}, {2, 3, 4}, {2, 4}, ∅, 
and {1, 2, 3, 4}. Then Σ is not a σ-algebra on Ω as {1} ∪ {2, 4} is not in Σ and 
so condition (iii) is not satisfied.
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The next proposition tells us that property (iv) in Definition 1.4 is redundant; that 
is, it is already implied by the other three properties. 

Proposition 1.2 Let Ω be any set and Σ a set of subsets of Ω. Then Σ is a σ-algebra 
if it satisfies the following three conditions: 

(i) Ω ∈ Σ; 
(ii) if the subset S of Ω is in Σ, then its complement S' = X \ S ∈ Σ; 
(iii) if S1, S2,  . . . ,  Sn,  . . .  are in Σ, then 

∞⋂

n=1 
Sn ∈ Σ. 

Proof. Exercise. ⨅⨆

Proposition 1.3 Let X and Y be any sets, f : X → Y any function, and let Σ be a 
σ-algebra on Y . Define the set Λ of subsets of X as follows: 

S ∈ Λ if and only if S = f −1(E), where E ∈ Σ. 
Then Λ is a σ-algebra on X . 
(In other words, the inverse image of a σ-algebra is a σ-algebra.) 

Proof. Exercise. ⨅⨆

Problems 

The great scholar and teacher, Rabbi Adin Steinsaltz (1937–2020), asked a 
young teacher “Would you eat a sandwich after I had chewed it?” Of course 
not replied the teacher. 
With this in mind, I do not want to give you problems that I have already 
chewed on and given you solutions. I want you to chew on them afresh. 

1.1 Prove Proposition 1.1. [Hint. Given S1, S2,  . . .  Sn, for  some  n ∈ N, put Sm = ∅ 
for every m ∈ N with m ≥ n + 1.] 

1.2 Let Ω be any set and Σ a set of subsets of Ω which has the property that for 
all S1, S2 with S1 ∈ Σ and S2 ∈ Σ, we have  S1 ∪ S2 ∈ Σ. Prove using mathematical 
induction that Σ satisfies property (iii) of Proposition 1.1. 

1.3 Prove Proposition 1.2 

1.4 Prove  (b) of De Morgan’s laws.  

1.5 Prove Proposition 1.3. 

1.6 LetΩ be a set and let Σ1 and Σ2 be σ-algebras on the setΩ. Define Σ3 as follows: 
. for a subset S of Ω, S ∈ Σ3 ⇐⇒ S ∈ Σ1 and S ∈ Σ2.

Prove that Σ3 is a σ-algebra on Ω. 
Thus the intersection of any two σ-algebras on Ω is a σ-algebra on Ω.
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1.7 LetΩ = {1, 2, 3}. Find  σ-algebras Σ1 and Σ2 on Ω such that Σ3 is not aσ-algebra 
on Ω, where 

. for a subset S of Ω, S ∈ Σ3 ⇐⇒ S ∈ Σ1 or S ∈ Σ2.

So the union of two σ-algebras is not necessarily a σ-algebra. 

1.8 Let Σ be a σ-algebra on the set R. Prove the following: 

(i) If for each a ∈ R and b ∈ R with a ≤ b, the open interval (a, b) ∈  Σ, then 
each of the intervals [c, d], [c, d), (c,∞), (−∞, d), [c,∞), (−∞, d] is in Σ. 
[Hint: The closed interval [0, 1] can be expressed as an infinite intersection 
of open intervals as follows: [0, 1] = 

∞⋂

n=1 
(− 1 

n, 1 + 1 
n ).] 

(ii) If for each a ∈ R and b ∈ R with a ≤ b, the closed interval [a, b] ∈  Σ, then 
each of the intervals [c, d], [c, d), (c,∞), (−∞, d), [c,∞), (−∞, d] is in Σ. 

(iii) If for each a ∈ R and b ∈ R with a ≤ b, the interval [a, b) ∈  Σ, then each of 
the intervals [c, d], [c, d), (c,∞), (−∞, d), [c,∞), (−∞, d] is in Σ. 

(iv) If for each a ∈ R, (a, ∞) ∈ Σ, then (c, d] ∈ R for all c, d ∈ R. 
[Hint: Use Definition 1.4(ii).] 

(v) If for each a, b ∈ Q, [a, b] ∈  Σ, then (c, d) ∈  Σ, for all c, d ∈ R. 

1.9 Let Σ be a σ-algebra on Z such that {n} ∈  Σ, for every n ∈ Z. Prove that every 
subset S of Z is in Σ. 

1.10 Let Σ be a σ-algebra on R such that for every a ∈ R, the singleton set {a} ∈  Σ. 
Prove that Z ∈ Σ and every subset of Z is in Σ. 
(It can also be proved that both Q and P are in Σ, once one knows that Q is a countable 
set.) 

1.11 Let Ω be a non-empty set and T a set of subsets of Ω. Then T is said to be a 
topology on Ω if it satisfies the four conditions (a)–(d): 

(a) Ω ∈ T ; 
(b) ∅ ∈  T ; 
(c) for each n ∈ N, S1 ∈ T, S2 ∈ T,  . . . ,  Sn ∈ T implies S1 ∩ S2 ∩ · · · ∩  Sn ∈ T ; 
(d) if I is any set and each Si ∈ T , for i ∈ I, then

⋃
i∈I Si ∈ T . 

Prove the following: 

(i) if Ω is a finite set and Σ is a σ-algebra on X , then Σ is also a topology on Ω; 
(ii) if Ω = {1, 2, 3, 4}, then there is a topology T on X such that T is not a 
σ-algebra on Ω; 

If t is a topology on a non-empty set Ω, the smallest σ-algebra Σ on Ω such that 
Σ ⊃ t is called the Borel σ-algebra. The members of a Borel σ-algebra are called 
Borel sets. Borel sets are named after the French mathematician Félix Édouard 
Justin Émile Borel (1871–1956). Borel sets play an important role in the area of 
mathematics called measure theory [1, 5, 16, 24]
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1.2 The Event Space and the Probability Space 

In this section we formally define the notion of probability 
space and give several examples using familiar games. 
The first book about games of chance Liber de ludo aleae 
(Book on Games of Chance), was written by the Italian math-
ematician and physician Gerolamo Cardano (1501–1576) in 
the 1560s, but not published until the seventeenth century. In 
fact Cardano supported himself through medical school on 
winnings from gambling using his understanding of probabil-
ity. 

Definition 1.5 Let Ω be a (finite or infinite) set, Σ a σ-algebra on the set Ω, and 
I = {1, 2,  . . . , n} for some n ∈ N or I = N. A  probability measure or a probability 
distribution P is a function from Σ to the closed unit interval [0, 1] with the following 
properties: 

(i) P(∅) = 0; 
(ii) P(Ω) = 1; 
(iii) if sets Si ∈ Σ, for  i ∈ I, are such that Si ∩ Sj = ∅, for each i, j ∈ I with i ≠ j, 

then 
. P
⎛⋃

i∈I
Si
⎞
=
⎲

i∈I
P(Si).

In this context, the set Ω is said to be the sample space and the set Σ is said to be the 
event space. The triple (Ω, Σ, P) is said to be a probability space. If  A ∈ Σ, then the 
number P(A) ∈ [0, 1] is said to be the probability of the event A (or the probability 
that A occurs). 

For clarity, we observe that in Definition 1.5 

• P(S1 ∪ S2 ∪ · · · ∪ Sn) = P(S1) + P(S2) + · · ·  + P(Sn) 
• P

⎛ ∞⋃

i=1 
Si
⎞
= 

∞∑

i=1 
P(Si). 

Notation. If A, B ∈ Σ, then A∩ B is denoted by AB. If  A1,  . . . ,  An ∈ Σ, for  n ∈ N, 
then A1 ∩ A2 · · · ∩  An is denoted by A1A2 . . .  An. If  A1,  . . . ,  An · · ·  ∈  Σ, for  n ∈ N, 
then

⋂∞ 
n=1 An = A1 ∩ A2 · · · ∩  An . . .  is denoted by A1A2 . . .  An . . .. 

Definition 1.6 Let Ω be any set, I any index set and Si , i ∈ I, subsets of Ω. The sets  
Si , i ∈ I, are said to be pairwise disjoint if for each i, j ∈ I with i ≠ j, Si ∩ Sj = ∅. 
If Ω is a sample space, Σ an event space on Ω, and Si ∈ Σ, for  i ∈ I, then the events 
Si are said to be mutually exclusive if for each i, j ∈ I, i ≠ j, Si ∩ Sj = ∅. 

Before looking at some simple examples, we observe a useful proposition for 
some finite sample spaces.
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Proposition 1.4 LetΩ = {ω1, ω2,  . . . ,  ωn}, for some n ∈ N, be a finite sample space, 
the event space Σ = 2Ω, and P a probability measure. If 

. P({ω1}) = P({ω2}) = · · · = P({ωn}),

then for each set A ∈ Σ, P(A) = |A | n . 

Proof. Exercise. ⨅⨆

Example 1.5 I have a coin with a head (H) on one side and a tail (H) on the other 
side. 
(On a 2020 Australian 20 cent coin, the head side is that of Queen Elizabeth II and 
the tail side is actually a platypus, a uniquely Australian animal.) 

I throw the coin up, and it lands with either the head facing up or the tail facing up. 
The sample space Ω = {H,T}. 
For the event space, Σ, I choose the power set. 
So Σ = {∅, {H,T}, {H}, {T}}. 
The coin is said to be fair coin for a probability measure P if P({H}) = P({T}) = 1 

2 , 
so heads and tails are equally likely. 
Using Proposition 1.4, we therefore have, for each A ∈ Σ, P(A) = |A | 2 , since n = 2; 
that is, 
P(∅) = 0, P({H,T}) = 1, P({H}) = 1 

2 , and P({T}) = 1 
2 . 

Fair Die
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Example 1.6 I have a die with six sides. 

We note that the plural of die is dice . 

Each of the six sides has 1, 2, 3, 4, 5, or 6 dots with no two sides having the same 
number of dots. I throw the die in the air, and it lands with one side up. I am interested 
in knowing whether the side that is up has an even number of dots. 
The sample space Ω is {1, 2, 3, 4, 5, 6}. For the event space, I choose the power set. 
So Σ = P({1, 2, 3, 4, 5, 6}). Thus Σ has 26 = 64 members. 
The die is said to be a fair die for probability measure P if 
P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1 

6 . 
So for each A ∈ Σ, again using Proposition 1.4, 

. P(A) = |A|
|Ω| =

|A|
6
.

I want the number of dots on the side facing up to be an even number; that is, 2,4, or 
6. Thus, I seek P({2, 4, 6}). 
So P({2, 4, 6}) = 3 

6 = 1 
2 . 

Casinos generally offer several different games of 
chance such as baccarat, blackjack, roulette, craps, pon-
toon, poker, slot machines, etc. With each game, there 
is a chance of winning and a bigger chance of losing. 
You may want to choose a game where your chances 
of winning are best. To do this, the notion of expected 
value is introduced. This concept was first defined ex-
plicitly in 1814 in a publication by the French polymath 
Pierre-Simon Laplace (1749–1827) (known to many as 
the inventor of the Laplace transform [9]). You may 
think of expected value as a kind of weighted average. 
(Of course there is dispute about who first came up with 
the notion of expected value—see [15].) 

Random Variable, Expected Value, and Variance 

Definition 1.7 Let (Ω, Σ, P) be a probability space. Further, let Ω be a finite set 
{ω1, ω2,  . . . ,  ωn} and Σ be the power set 2Ω of Ω. 
A function X : Ω → R is said to be a random variable. 
So X has a finite number of possible values X(ω1), X(ω2),  . . . ,  X(ωn), and these 
occur with probability P({ω1}), P({ω2}),  . . . ,  P({ωn}), respectively. 
The expected value of X (also known as the expectation of X) is denoted E[X] and 
is defined by
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. μ = E[X] =
n⎲

i=1
X(ωi)P({ωi}).

The variance of X is denoted by Var(X) and defined by 

. Var(X) = E |(X − μ)2 | = E |X2 | − (E |X |)2.

The standard deviation of X is denoted by σ and defined to be
√ 

Var(X), the square 
root of the variance. 

Remark 1.1 The definitions of random variable and expected value in Definition 1.7 
are specifically for the case that the sample space Ω is finite and the event space Σ is 
its power set 2Ω. 

Example 1.7 In Example 1.5 of tossing a coin, we define a random variable X : 
{H,T} →  R by X(T) = 5 and X(H) = 6, then the expected value is given by 
E[X] = 5 × 1 

2 + 6 × 1 
2 = 5.5. 

[Using the software package R: 5 ∗ 1/2 + 6 ∗ 1/2] 

Example 1.8 In Example 1.6 of throwing a die, we define the random variable 
X : {1, 2, 3, 4, 5, 6} →  R by X(1) = 1, X(2) = 2,  . . . ,  X(6) = 6. 

So the expected value μ = E[X] = 
6∑

i=1 
(i × 1 

6 ) = 1 
6 + 2 

6 + · · · + 6 
6 = 3.5. 

To calculate the variance and standard deviation, observe that X2 has the values 
1, 4, 9, 16, 25, 36. 

So we see that E[X2] = 1 
6 (1 + 4 + 9 + 16 + 25 + 36) = 91 

6 
. 

Var(X) = E[X2] − (E[X])2 = 91 
6 

− 49 
4 
= 35 

12 
= 2.916 . . . .  

The standard deviation σ =
√ 

Var(X) =
/

35 
12 
= 1.707 . . . . 

We can check our calculation using R. Caution must be used as there is a difference 
between sample variance and variance. R uses var to calculate sample variance 
whereas we are calculating variance. 

y<- c(1,2,3,4,5,6) 
mean(y) 
f1<-function(x) { 
z<- (mean(y^2)- (mean(y))^2) 
return(z) } #f1 is the variance 
f1(z) 
sqrt(f1(z)) # this is the standard deviation
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In statistics it is very important to distinguish between the population and a sample 
of the population. The population consists of all members. A sample is a part of the 
population which allows us to make inferences about the population as a whole. The 
sample size may be quite small compared to the population size. 

The variance and standard deviation in Definition 1.7 are the population variance 
and the population standard deviation. The  sample variance and sample standard 
deviation are used to estimate the population variance and the population standard 
deviation. 

. The population variance as we have seen is given by σ2 =

n∑

i=1
(xi − μ)2

n
.

. The sample variance is defined by s2 =

n∑

i=1

(
xi − mean{x1, x2, . . . , xn}

)2

n − 1
.

In 1918 the English statistician and geneticist Sir Ronald 
Aylmer Fisher (1890–1962) introduced the notion of variance. 
Fisher became Professor of Genetics at Cambridge University 
in 1943 and was knighted in 1952. He was described by Dan-
ish statistician Anders Hjorth Hald (1913–2007) in [14] as “a  
genius who almost single-handedly created the foundations 
for modern statistical science” and by the American statisti-
cian Bradley Efron (born 1938) in [11] as “the single most 
important figure in twentieth century statistics”. 

Fisher was a prominent opponent of Bayesian statistics but in 1950 was the first 
to use the term “Bayesian”. 

Unfortunately Fisher is also remembered as having controversial views on race as 
indicated by his being founding Chairman in 1911 of the University of Cambridge 
Eugenics Society. Fisher held a favourable view of eugenics even after World War 
II. Fisher wrote about the Nazi party that it “sincerely wished to benefit the German 
racial stock, especially by the elimination of manifest defectives” and that he would 
give “his support to such a movement”. Such a statement today would be regarded 
as racist. 

Definition 1.8 Let (Ω, Σ, P) be a probability space and X : Ω → R and Y : Ω → R 
random variables. If 

. P(X = x,Y = y) = P(X = x) · P(Y = y), for all x, y ∈ R

then X and Y are said to be  independent random variables. 

Example 1.9 In Greek mythology we learn of Achilles whose mother held him by 
his heel and dipped him in the river Styx. As a result Achilles became invulnerable
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except for the part of his heel by which his mother had held him. This is the proverbial 
“Achilles heel”. 

For the purposes of this example, we shall assume that there are 65 archers who 
each aim a deadly arrow at Achilles heel and that these arrows are independent 
random variables with a probability of hitting their target of 1 

100 . Is it more likely  
that Achilles will be fatally wounded than not? 

Our intuition might tell us that if each arrow has a 1% chance of hitting his 
heel, then 65 arrows have more than 50% chance of hitting his heel. However, 
we are dealing with independent random variables. So if one arrow has a 
probability of 99 

100 of not hitting his heel, then by Definition 1.8 two arrows 

have probability
⎛

99 
100

⎞2 
of not hitting his heel. So we obtain the calculation 

below which shows the answer to our question is no. 

The probability that he will not be fatally wounded is, by Definition 1.8, 

. 

⎛
99
100

⎞65
= 0.5203405 . . . .

Monopoly: Going to Jail and Getting Out of Jail 

Example 1.10 The game of MonopolyTM is probably the most popular board game in 
history having sold hundreds of millions and being available in dozens of languages.
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Its history can be traced back to 1903 when the poet, author, engineer, comedian, 
actress, and feminist Elizabeth J. Magie Phillips (née Magie) (1866–1948) invented 
and patented in 1904 the board game she called The Landlord’s Game. She intended 
it to be an educational tool to show how wrong it was for ownership of land to be 
concentrated in monopolies. She patented the game again in 1923. 

Monopoly is not a game of pure chance but rather a game of chance and strategy. 
However, one aspect is pure chance. In Monopoly you roll two dice. If you roll 
a double, you roll the dice again. If you roll a double again, you roll the dice a 
third time. If this third time you also roll a double, you Go to Jail. Rolling the 
dice three times are three independent events.So the probability of three doubles is 
( 1 

6 )
3 = 0.004626296 . . . .  So the probability of going to jail by this method is very 

low. 
Let us now turn to Getting Out of Jail. This can be achieved by rolling a double on 

any one of three rolls of the dice. We shall calculate the probability of NOT rolling 
a double on any of the three rolls of the dice. As these are independent events, the 
probability is ( 5 

6 )
3. So the probability of rolling a double on at least one of the three 

rolls of the dice is 1− ( 5 
6 )

3 = 0.421296 . . . .  So the probability of Getting Out of Jail 
by this method is not too bad. 

Definition 1.9 Let (Ω, Σ, P) be a probability space and X : Ω → R and Y : Ω → R 
random variables. If E[X ·Y ] = E]X) ·E[Y ], then X andY are said to be uncorrelated 
random variables. 

We note that uncorrelated does not imply independent. 
We note that for X any random variable and a any (constant) real number: 

(i) Var(X) ≥  0; 
(ii) Var(X) = 0 ⇐⇒ there exists an a ∈ R such that P(X = a) = 1; 
(iii) Var(X + a) = Var(X); 
(iv) Var(aX) = a2 Var(X). 

Irénée-Jules Bienaymé (1796–1878) was a French statisti-
cian. In 1853 he discovered what has become known as the 
Bienaymé formula which says that if X1, X2,  . . . ,  Xn are inde-
pendent random variables (or even uncorrelated random vari-
ables) then 

. Var

⎛
n⎲

i=1
Xi

⎞

=

n⎲

i=1
Var(Xi).

Gambler’s Fallacy 

Before we leave the topic of independent random variables, we should mention what 
is known as gamblers’ fallacy. Many gamblers tend to believe that past events can
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influence future events, even when they are independent. For example, if I throw a 
fair coin and three consecutive times it lands on heads, then they believe that it is 
more likely to land on tails on the next throw. If it is indeed a fair coin, then it has a 
50% chance of landing on tails and a 50% chance of landing on heads next time. This 
misunderstanding is called gambler’s fallacy. In my example, it is pretty harmless, 
but in a high-stakes bet in a casino, it is not harmless. 

Playing Cards 

Example 1.11 I have a deck of playing cards. There are 52 cards in the deck: 
ace,2,3,4,5,6,7,8,9,10,jack,queen,king in each of the four suits: spades, hearts, dia-
monds, and clubs as pictured below. For brevity we refer to them as 

AS, 2S,3S,4S,5S,6S,7S,8S,9S,10S,JS,QS,KS 
AH, 2H,3H,4H,5H,6H,7H,8H,9H,10H,JH,QH,KH 
AD, 2D,3D,4D,5D,6D,7D,8D,9D,10D,JD,QD,KD 
AC, 2C,3C,4C,5C,6C,7C,8C,9C,10C,JC,QC,KC 

I select one card at random from the deck. 
I am interested in whether that card is an ace. 
The sample space Ω has 52 members. 
I choose the event space Σ to be the power set 2Ω. So  Σ has 252 members. 
By saying that I choose a card at random, I mean that the probability measure P is 
such that for each ω ∈ Ω, P({ω}) = 1 

52 . 
So by Proposition 1.4, for any event E ∈ Σ, P(E) = |E | 

52 . 
For E = {AS, AH, AD, AC}, then P(E) = 4 

52 = 1 
13 . 

The probability of selecting an ace at random is therefore 1 
13 .
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Tarot Playing Cards 

In the English-speaking world when one hears of Tarot cards one immediately thinks 
of the occult, fortune-telling, cartomancy. However, tarot cards have been used in 
European countries such as Italy, France, Germany, and Austria since the fifteenth 
century for playing card games. Tarot cards were introduced about 1420 for the 
purpose of playing card games, and indeed it was in these games that two notions, 
fundamental to the game of bridge, first appeared, namely, that of trumps and bidding. 
For a detailed history and description of the many games played with tarot cards, see 
[10]. Tarot card games are played with a 78 card deck having four ordinary suits and 
an additional suit of trumps. 

There is dispute about the origin of tarot cards as used for occult purposes. A 
protestant pastor Antoine Court de Gébelin (1725–1725) asserted that tarot was a 
repository of ancient wisdom dating back thousands of years. The British philosopher
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Michael Dummett (1925–2011) scoffed at such a history of tarot. The author of this 
book does not wish to enter this controversy. We shall focus only on tarot cards as 
used in playing games. 

Roulette 
Example 1.12 Wikipedia describes the casino game of roulette as follows: “Roulette 
is a casino game named after the French word meaning little wheel. In the game, 
players may choose to place bets on either a single number, various groupings of 
numbers, the colours red or black, whether the number is odd or even, or if the 
numbers are high (19–36) or low (1–18). 
To determine the winning number, a croupier spins a wheel in one direction, then 
spins a ball in the opposite direction around a tilted circular track running around the 
outer edge of the wheel. The ball eventually loses momentum, passes through an area 
of deflectors, and falls onto the wheel and into one of 37 (single zero French/European 
style roulette) or 38 (double zero American style roulette) coloured and numbered 
pockets on the wheel. The winnings are then paid to anyone who has placed a 
successful bet”. 

The sample space Ω for this French 
roulette wheel is {0, 1, 2,  . . . , 36}. 
We shall put the event space Σ as the power 
set, 2Ω, of the sample space. Then Σ has 237 

members. 
We shall assume that the roulette wheel is 
fair, which means that 

. P({ω}) = 1
37
, for each ω ∈ Ω.

Again by Proposition 1.4, if  A ∈ Σ, then 
P(A) = |A | 37 . 

A variety of bets is allowed. We mention some. 
Bet $1 on a single number. 
Let the bet be on the number ω. Then P({ω}) = 1 

37 . If the ball lands in the pocket 
numbered ω, then the player generally wins $36. If the ball lands on any of the other 
36 numbers, the player loses the $1. So the player has probability of 1 

37 of a payout 
of $36 and a probability of 36 

37 of a payout of $0. We call the payout X1. Then X1 is 
a function from {0, 1, 2,  . . . , 36} to R with X1(ω) = 36 and X(x) = 0 for  x ≠ ω. Of  
course X1 is a random variable. So the expected value E[X1] of the payout in dollars 
is 

. 

36⎲

i=0
X1(i) ×

1
37
=

⎛

36 × 1
37

⎞

+ 36
⎛

0 × 1
37

⎞

=
36
37
.

So the player can expect a loss of $ 1 
37 on each $1 bet; that is about a 2.7% loss.
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An alternative to a bet on a single number is a bet on red or black, that is, a bet 
that the ball lands in the pocket of one of the 18 red numbers or one of the 18 black 
numbers. 

On the French roulette wheel, there is also one green pocket labelled 0. 
If the player bets $1 on red, we see that P(red) = 18 

37 . Generally if the ball lands 
on red, the player receives $2, and if it lands on black or green, the player loses the 
$1. 
So the payout random variable X2 : {0, 1, 2,  . . . , 36} →  R with 

. X2(any number in a red pocket) = 2, and

. X2(any number in a black or green pocket) = 0.

So the expected value E[X2] of the payout is (2 × 18 
37 ) + (0 × 19 

37 ) = 36 
37 . 

The player can expect a loss of $ 1 
37 on each $1 bet, that is, again about a 2.7% loss. 

Note the expected loss on this bet is exactly the same as a bet on a single number. 

Similarly, the player can bet low or high, that is, bet, that the ball will land 
in the pocket of one of the low numbers 1, 2,  . . . ,  18 or one of the high numbers 
19, 20,  . . . , 36. 

We see that, as in the last case, the probability that the ball lands on a low number 
(or a high number) is 18 

37 . For a winning bet the player generally receives $2. So once 
again the player can expect to get back from the $1 bet $36 

37 . So the expected loss is 
the same as previously. 

The last case we shall look at is a bet on four numbers that meet at one corner, 
such as 10, 11, 13, 14. 

The probability that the ball lands on one of these four numbers is 4 
37 and the 

payout is generally $9. And a similar analysis shows that the expected loss is the 
same as for the previously considered bets. 

Before discussing the American roulette wheel, we mention one difference some-
times between the French roulette and the European roulette as regards the inclusion 
in the French case of the La Partage rule. With the La Partage rule, if the ball lands 
on zero, then the player receives half of an even-money bet such as red/black or 
odd/even back without any winnings. Not always do casinos offer the La Partage rule 
even for French roulette. 

We conclude by looking at the American roulette wheel. In contrast with the 
French or European roulette wheel which has 18 numbers in red pockets, 18 numbers 
in black pockets, and one number 0 in a green pocket, the more common American 
roulette wheel has 18 numbers in red pockets, 18 numbers in black pockets, plus 0 
in a green pocket and double zero 00 in a green pocket. This changes the odds in the 
favour of the house (i.e. the casino). Then P({x}) = 1 

38 . Generally the payout for a 
single bet on the number ω is $36. So the expected loss on a $1 bet is $( 36 

38 −1) = $ 1 
19 

or about 5.3% of the bet.
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Before continuing on casino games, let us have a change of pace and consider 
health related examples. 

Autosomal Recessive Diseases 

Before presenting the next example, I record the fact that I have no medical 
qualifications. When I discuss a medical topic, you should understand that my 
purpose is to look at it from the perspective of probability theory. If you want 
to know medical facts, then this book is not the place to look. The presentation 
is my understanding as a non-medically qualified person. 

Example 1.13 According to the World Health Organization (WHO): Monogenic 
diseases result from modifications in a single gene occurring in all cells of the body. 
Though relatively rare, they affect millions of people worldwide. Scientists currently 
estimate that over 10,000 human diseases are known to be monogenic. Pure genetic 
diseases are caused by a single error in a single gene in the human DNA. The 
single-gene diseases can be classified into three categories: dominant, recessive, and 
X-linked. 
All human beings have two copies of each gene– one copy on each side of the 
chromosome pair. Recessive diseases are monogenic disorders that occur due to 
damages in both copies. Monogenic diseases are responsible for a heavy loss of life. 
About 1% of all babies in the world have a single gene disease at birth. 

As examples we mention three autosomal recessive diseases listed by the World 
Health Organization. (Autosomal means the gene in question is one of the 22 pairs 
(44 in all) of non-sex genes.) 

(i) Sickle-cell anaemia (SCA): sickle-cell anaemia is a blood-related disorder that 
affects the haemoglobin molecule and causes the entire blood cell to change 
shape under stressed conditions. In sickle-cell anaemia, the haemoglobin 
molecule is defective. Normal red blood cells live about 120 days in the 
bloodstream, but sickled red cells die after about 10–20 days. Because they 
cannot be replaced fast enough, the blood is chronically short of red blood 
cells, leading to a condition commonly referred to as anaemia. The disease 
occurs in about 1 in every 500 African-American births and 1 in every 
1,000–1,400 Hispanic-American births. About 2 million Americans, or 1 in 
12 African Americans, carry the sickle cell gene. 

(ii) Cystic fibrosis (CF): cystic fibrosis is a genetic disorder that affects the respi-
ratory, digestive, and reproductive systems involving the production of abnor-
mally thick mucus linings in the lungs and can lead to fatal lung infections. 
The disease can also result in various obstructions of the pancreas, hindering 
digestion. In the USA the incidence of CF is reported to be 1 in every 3,500 
births.
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(iii) Tay-Sachs disease (TSD): Tay-Sachs disease is a fatal genetic disorder, named 
after the British ophthalmologist Warren Tay (1843–1927) and the American 
neurologist Bernard Sachs (1858–1954), in which harmful quantities of a 
fatty substance called Ganglioside GM2 accumulate in the nerve cells in the 
brain. The frequency of the condition is much higher in Ashkenazi Jews of 
Eastern European origin than in others. Approximately 1 in every 27 Jews in 
the USA is a carrier of the TSD gene. Amongst Jews of Sephardic origin and 
in the general, non-Jewish population, the carrier rate is about 1 in 250. The 
carrier rate amongst Irish Americans is about one in 50. 

Autosomal recessive 

In autosomal recessive inheritance, both copies of 
the gene in each cell have mutations. The parents of 
an individual with an autosomal recessive condition 
each carry at least one copy of the mutated gene, but 
they typically do not show signs and symptoms of the 
condition. Autosomal recessive disorders are typically 
not seen in every generation of an affected family. 

Let us now look at these from the perspective of 
probability theory. We see that a person may have 
zero, one, or two copies of the mutated genes. If they 
have two copies of the mutated gene, then they have 
the disease. If they have one copy of the mutated gene, 
they are a carrier. 

(a) If the person has exactly one copy of the mutated gene, then they do not have 
the disease, but are a carrier. A child of theirs can have the disease or can be 
a carrier or not be a carrier. 

(b) If the person has zero copies of the mutated gene, then they do not have the 
disease and are not a carrier. A child of theirs cannot have the disease but can 
be a carrier. 

(c) If the person has two copies of the mutated gene, then they have the disease 
and a child of theirs will either have the disease or be a carrier. 

Let us consider the case where each parent does not have the autosomal recessive 
disease but is a carrier. Then each has a mutated gene (MG) and a non-mutated gene 
(NG). For convenience we shall write the gene inherited from the father first and 
[MG NG] or [NG MG]. 
The sample space Ω for the child’s two relevant genes: 

. Ω = {[MG MG], [MG NG], [NG MG], [NG NG]}.

We let Σ = 2Ω be the event space. 
If we regard which of the two genes MG and NG the child receives from the father 
as equally probable and which of the two genes MG and NG the child receives from 
the mother as equally probable, then we have the probability space (Ω, 2Ω , P) where 
(for the child)
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. P([MG MG]) = P([MG NG]) = P([{NG MG]) = P([NG NG]) = 1
4
.

The child has the autosomal recessive disease only in the case [MG MG], and this 
has probability 1 

4 . The child is a carrier of the autosomal recessive disease in the 
cases [MG {NG] and [NG MG] and P({[MG NG], [NG MG]}) = 1 

4 + 1 
4 = 1 

2 . 

Sic Bo 

Sic Bo, also known as Tai Sai and Dai Siu, originated in China. It is a casino game, 
played with three dice, probably introduced into the USA by Chinese immigrants. 
Wherever there is a significant Chinese community, it is likely that local casinos 
offer Sic Bo. In this game, three dice are rolled and players win or lose on the result 
of that one roll of the three dice. 

As indicated by the above table layout, there is a variety of possible bets. However 
we shall focus on some simple examples. 

Players place their bets. Then the dealer picks up a small chest containing the 
three dice which they shake and then open and reveal one number on each of the 
three dice. 

The first bet we consider is called SMALL, that is, the sum of the three numbers 
showing on the dice is 4,5,6,7,8,9,or 10 with the exception that the numbers are not 
equal. 

It is easy to see that each of the possible sums of the numbers showing on the 
three dice can usually be obtained in more than one way. In all there are 216 different 
ways. The table below, constructed by writing down all the possibilities, indicates 
the number of different ways each number can be obtained.
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Sum Number of ways 

3 1 
4 3 
5 6 
6 10 
7 15 
8 21 
9 25 
10 27 
11 27 
12 25 
13 21 
14 15 
15 10 
16 6 
17 3 
18 1 

So the number of dice throws which result in a SMALL which is not a triple is 
.3 + 6 + (10 − 1) + 15 + 21 + (25 − 1) + 27 = 105. So the probability of a SMALL is 
.105/216 = 0.486111 . . . . 

Typically the casino will offer odds 1:1 on a SMALL. 

If the odds of an event are .a : b for some positive real numbers a and b, then 
the probability of that event that it corresponds to is 

. 
1

a
b + 1

=
b

a + b
.

So odds of .1 : 1 correspond to a probability of . 0.5. Odds of .30 : 1 correspond 
to a probability of .0.032258 . . . . 
Now odds of .30 : 1 mean if you bet $1 and you win, then you receive $30 plus 
you get back your $1 bet back. 
If the odds are .1 : 1 and you win, then you receive $1 plus your bet of $1 back. 

So the casino is offering odds of .1 : 1 corresponding to a probability of . 0.5
on a SMALL. So in the long-term the percentage profit to the casino is . (0.5 −
0.486111 . . . )/(0.5) or about 2.78%. 

The second bet we consider is BIG, that is, the sum of the numbers is 
11,12,13,14,15,16,17 with the exception that the numbers are not equal. 

The arithmetic for BIG is exactly the same as for SMALL. The profit for the 
casino is the same as for SMALL.
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The casino will typically offer odds of .30 : 1 for a triple. There are 6 triples of the 
216 possibilities. So the probability of a triple is .

6
216 = 0.02777 . . . . We have seen 

that the odds .30 : 1 are equivalent to a probability of .0.032258 . . . . So the casino 
percentage profit in the long term is . (0.032258 · · · − 0.02777 . . . )/0.032258 . . .
which is about .13.9%. 

Of course there are many other ways to bet on the outcome of rolling the three 
dice. 

Sometimes casinos make the environment more exciting for players by having all 
winning bets on the table light up immediately the dice have been rolled. 

Martingale Betting System 

We have probably all seen it. When somebody loses a bet, they say “double 
or nothing”. 

The Martingale betting system is that of following each losing bet by dou-
bling it. The idea is that by repeatedly doubling the bet, eventually you will 
break even. There are some difficulties with this system. 

A gambler does not have infinite funds and so may run out of money to 
double their losing bet before they win, also they may run out of time to gamble 
(e.g. the casino may close), or there may be a limit on the size of bets allowed 
(e.g. by the casino). 

There is another serious shortcoming of the Martingale system. 
You are guaranteed to at least break even only if you stop betting once you 

have won or have broken even. Most gamblers cannot so easily stop! 

Fibonacci Betting System 

The Fibonacci numbers, [26], were first described over 2,000 years ago in Sanskrit 
poetry. However they are named after the Italian mathematician Leonardo of Pisa 
(about 1,170–about 1,250), who is better known as Fibonacci, who introduced these 
numbers in his 1,202 book Liber Abaci. This sequence of numbers is 0, 1, 1, 2, 3, 5, 
8, 13, 21, 34, 55, 89, 144, . . . . , where each number after the second is the sum of the 
previous two numbers. 

We shall focus on the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . . . 
The Fibonacci betting system, [25], is best applied in games with a chance of 

winning close to 50%. 
The idea is simple: each time you lose a bet, move one number up the Fibonacci 

sequence. Each time you win, move two numbers down the Fibonacci sequence. 
Let us show this with a simple example: 
We start with a bet of $5 and we lose. So we now have a loss of $5 and our next 

bet is .$5 × 2 = $10.
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We lose and so we now have a loss of $15 and our next bet is .$5 × 3 = $15. 
We lose and so we now have a loss of $30 and our next bet is .$5 × 5 = $25. 
We lose and so we now have a loss of $55 and our next bet is .$5 × 8 = $40. 
We lose and so we now have a loss of $95 and our next bet is .$5 × 13 = $65. 
We win and so we now have a loss of $30 and our next bet is $.5 × 5 = $25. 
We win and so we now have a loss of $5 and our next bet is $.5 × 2 = $10. 
So when we lose, we increase the amount we bet, but not by as much as we would 

in the Martingale betting system. Unfortunately, there is no obvious point to stop 
betting in the Fibonacci betting system. 

Also, and most importantly, neither the Martingale betting system nor the 
Fibonacci betting system does anything to remove the statistical advantage 
that the House may have. 

Setting Winnings and Losses Bounds 

It is a very smart idea, in advance of any day of betting, to decide 

(1) I will stop betting if my winnings total x dollars; 
(2) I will stop betting if my losses total y dollars. 

And then stick very firmly to what you have decided. 

Let us again have a change of pace and consider a very different problem. 

Waiting Time for a Bus 

Remark 1.2 Many people regard probability as a hard subject. What, in fact, is 
the case is that our intuition often misleads us. We shall see this again and again 
throughout this book. Here is an example from [28]. 

Ken walks to the bus stop every day after 6am and before 7am and takes the first 
bus irrespective of whether it is going north or south. The north-bound buses and 
the south-bound buses run equally often, every 5 minutes. If Ken ignores the bus 
timetable and simply goes to the bus stop when he is ready, what is the probability 
that he will take the north-bound bus? 

Most people would say that the probability is about 1 
2 . That is what our intuition 

tells us. But like a good lawyer, we should ask for “further and better particulars”.
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Table 1.1 Bus timetable 

North bound 6.00am 6.05am 6.10am 6.15am • • •  

South bound 6.04am 6.09am 6.14am 6.19am • • •  

If Ken arrives at the bus stop in the intervals (6.00am, 6.04am], (6.05, 6.09], 
(6.10, 6.14], (6.15, 6.19], (6.20, 6.24], (6.25, 6.29] he will take the South Bound 
bus. If he arrives in the intervals (6.04, 6.05], (6.09, 6.10], (6.14, 6.15], (6.19, 6.20], 
(6.24, 6.25], (6.29,7.00], he will take the north-bound bus. Clearly he has a 4 times 
greater chance of catching the south-bound bus than the north-bound bus. So our 
intuition was incorrect. 

Hazard 

We shall next consider games played with two dice. Just as in Sic Bo, it is easy to see 
that if we roll the two dice, then each of the possible sums of the numbers showing 
on the two dice can usually be obtained in more than one way. In all there are 36. The 
table below, constructed by writing down all the possibilities, indicates the number 
of different ways each number can be obtained. 

Sum Number of ways Probability 

2 1 1/36 
3 2 2/36 
4 3 3/36 
5 4 4/36 
6 5 5/36 
7 6 6/36 
8 5 5/36 
9 4 4/36 
10 3 3/36 
11 2 2/36 
12 1 1/36 

Clearly 7 is the easiest number to roll, while 1 and 12 are the hardest numbers to roll.
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We shall consider two such games: first the very 
old and somewhat complicated game of Hazard [30] 
and then its modern derivative casino game, Craps. 
Hazard is an early English game played with two dice; 
it was mentioned in The Canterbury Tales by Geof-
frey Chaucer (1340s–1400). In the play Richard III of 
William Shakespeare (1564–1616), Richard III in his 
famous “My kingdom for a horse” speech in Act V 
says: “I have set my life upon a cast, And I will stand 
the hazard of the die”. 
Writing in 1674, Charles Cotton (1630–1687), in his 
book The Compleat Gamester, remarks: 

“Hazard is the most bewitching game that is played on the Dice; for when 
a man begins to play he knows not when to leave off; . . . . and having once 
accustomed himself to play at Hazard, he hardly, ever after, minds anything 
else”. 

As one might expect, there are various versions of the rules of this ancient game. 
It is played with two dice by any number of people. One player, called the shooter, 
begins the game. The shooter declares the “target” called the main which is any of 
the numbers 5, 6, 7, 8, or 9. (Contrast this with the game Craps where the main is 
always 7.) Now the other players place a bet on whether the shooter will win or lose. 
Then the shooter rolls the two dice. 

Roll result 
Main 2 or 3 Main 11 12 

5 or 9 Lose Win Lose Lose 
6 or 8 Lose Win Lose Win 

7 Lose Win Win Lose 

The probability that the shooter who chooses the main of 7 wins at the first roll of 
the dice equals .6/36 + 2/36 = 8/36 = 0.222 . . . . The probability that this shooter 
loses on the first roll of the dice is .4/36 = 0.111 . . . . So the probability that this 
shooter will need to roll a second time is . 1 − 8/36 − 4/36 = 24/36 = 0.666 . . . .

The probability that the shooter who chooses the main of 5 or 9 wins at the first 
roll of the dice equals .4/36 = 0.111 . . . The probability that this shooter loses on 
the first roll of the dice is .6/36 = 0.1666 . . . . So the probability that this shooter will 
need to roll a second time is .1 − 4/36 − 6/36 = 26/36 = 0.7222 . . . .
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The probability that the shooter who chooses the main of 6 or 8 wins at the first 
roll of the dice equals .5/36 + 1/36 = 0.1666 . . . . The probability that this shooter 
loses on the first roll of the dice is .5/36 = 0.1388 . . . . So the probability that this 
shooter will need to roll a second time is . 1 − 6/36 − 5/36 = 25/36 = 0.6944 . . . .

We see that it usually happens that the shooter will have to roll the dice at least a 
second time. 

If the shooter rolls neither the main nor 2, 3, 11, or 12, the number that is rolled is 
called the chance. At this point things flip-flop, so to speak. Now the shooter wants 
to roll anything other than the main, because if the shooter rolls the main they lose. 
And if the shooter rolls the chance they win. So the shooter continues to roll the dice 
until they roll the main and lose or the chance and win. 

Finally we mention that the British etymologist Michael Quinion (born 1943) 
suggested that the English phrase at sixes and sevens which describes a state of 
confusion comes from the game of hazard and was used again by Geoffrey Chaucer 
in his Troilus and Criseyde. Quinion thinks that originally it referred to fives and 
sixes which were less good choices of the “main” than seven in the game of hazard. 

Hazard reached its peak in the seventeenth and eighteenth centuries. In the nine-
teenth century the rules of hazard were simplified and the game of craps was born 
which is very popular to today, especially in casinos in America. 

Craps 

Many of us will have seen the James Bond classic 1971 movie Diamonds are Forever 
starring Sean Connery in which he visits a Las Vegas casino and plays craps.
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While the Craps Table Layout seems complicated and there are a variety of 
possible bets, we have seen that craps is a simplified version of the game of hazard 
which we have already described. But for completeness we shall give a simple 
description of the game of craps. We note that there are many books describing the 
game of craps, including [4, 8, 17, 20, 30]. 

The shooter rolls two dice. If the total of the faces showing of the two dice rolled 
is 7 or 11, which is called a natural, then the shooter wins the amount bet. Anyone 
betting with the shooter, called a pass bettor, also wins the same amount. Anyone 
betting against the shooter, called a don’t pass bettor, loses the same amount. If a 
total of 2, 3, or 12 occurs on this first roll, it is called craps, then the pass bettors 
lose and the don’t pass bettors win. If the total of the first roll is any of the remaining 
numbers 4, 5, 6, 8, 9, 10, then this number becomes the pass bettor’s point. The  
shooter then continues to roll the dice. If the point is rolled before the 7, the shooter 
and pass bettors win. Of course if the 7 comes up before the point, then the shooter 
and the pass bettors lose. 

We digress to describe the casino staff. The Boxman watches the pile of chips and 
settles any disputes. The Stickman who directs the dice towards the shooter and calls 
out the result of each throw of the dice and reminds everyone of the point number. 
There are usually two dealers who stand either side of the Boxman who convert cash 
to chips and place players’ bets on the table. Often there are five dice from which 
the shooter chooses two. And to roll the dice, the shooter must throw the dice hard 
enough to bounce off the side of the table to ensure randomness. 

We have seen in the analysis of the game of hazard that the probability of the 
shooter throwing a 7 or 11 and winning immediately is 2/9 and the probability that 
they throw a 2 or 3 or 11 or 12 and lose immediately is 1/9. So there is a probability 
of 1/3 that the game ends after one throw. 

There is a probability of 2/3 that they throw any other number, and this number 
then becomes the point. 

Now everything depends on whether the shooter throws the point before they 
throw a 7. The probability of throwing a 7 is 1/6. But the probability of throwing the 
point depends on what the point actually equals. The probability may be as low as 
1/36 if the point is 2 or 12 or as high as 5/36 if it is 6 or 8. 

So the shooter has the probability of losing on the second throw with probability 
1/6 and winning with probability between 1/36 and 5/36. 

In principle the game could continue forever with the shooter continuing to throw 
neither the point nor the 7. However it is not difficult to show that typically the game 
ends after 3 or 4 throws. (See [4, p. 108].) 

You might ask what is the probability that the shooter, and hence any pass line 
bettor, will win. You have all the data required to do the calculation, but it is tedious. 
Bollman [4, p. 108] shows the probability is about 0.4929. So the casino which 
usually pays even money odds of 1:1 has the edge of 1.41%, which is quite low 
compared, for example, to what we saw for roulette. 

As we mentioned earlier, there are a variety of possible bets. One can bet that a 
specific number will be rolled before the number 7 or a field bet that the next number
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rolled will be a 2, 3, 4, 9, 10, 11 or, 12. There are yo bets that the next number rolled 
will be a 3—a risky bet with a high payout. These are but a few examples. 

Chuck-a-Luck; Crown and Anchor 

Chuck-a-Luck also known as bird cage or sweat rag is played with three dice and 
can be regarded as a variant of sic bo and grand hazard. It is essentially the same as 
the Vietnamese game Bau cua ca cop, the Chinese game of Hoo Hey How, and the 
Cambodian game of Klah Klok. 

Chuck-a-Luck is also the same as the game which originated in the eighteenth 
century called Crown and Anchor played by sailors in the British navy. The dice 
in Crown and Anchor, rather than having numbers, are marked with the symbols: 
crown, anchor, diamond, spade, club, and heart. 

A similar game called Langur Burja is played in Nepal. The game Crown and 
Anchor [22] is mentioned in a 2007 episode set in 1943 about illegal gambling called 
Casualties of War of the magnificent British World War II detective TV series Foyle’s 
War. 

Chuck-a-Luck is played in the 1974 James Bond movie The Man with the Golden 
Gun starring Roger Moore and referred to in the 1941 Abbott and Costello movie 
Hold that Ghost. 

The game Chuck-a-Luck is described in [20]. Usually there are three large dice 
in a wire cage. The three dice are rolled once. The bettor places a bet, say of $1 on a 
particular number, for example, the number 6. If the three dice show 6-2-6 then the 
bettor receives $2 plus his wager of $1 back. Similarly if 1-5-6 are rolled then the 
bettor would receive $1 plus his wager of $1. So the game seems fair and easy for 
anyone to understand. 

However, if one thinks through the probabilities, then one sees that there are 
216 = 63 possible results of rolling the three dice. The number of ways of rolling, 
for example, two 6s and winning $2 is 6-x-6, x-6-6, and 6-6-x where x in each case 
can have any one of 5 values. So two 6s can occur in 15 different ways of the total of 
216. So the probability of throwing 2 6s is 15/216. The number of ways of rolling 
three 6s is 1 and so has probability 1/216. The number of ways of rolling one 6 
is 75 and so has probability 75/216. So the probability of rolling at least one 6 is 
(15 + 1 + 75)/216 = 91/216. 

So if the bettor rolls precisely one 6, which he does with probability 75/216, 
he wins $1. So if the bettor rolls precisely two 6s, which he does with probability 
15/216, he wins $2. So if the bettor rolls precisely three 6s, which he does with
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probability 1/216, he wins $3. Of course if the better rolls zero 6s, which he does 
with probability 125/216, he loses $1. So the overall situation is 

. 
75
216

· 1 +
15
216

· 2 +
1

216
· 3 − 125

216
· 1; t

that is, $17/216 = 7.87 cents, that is, a loss of about 7.87%. The same applies for 
the number 1, 2, 3, 4, and 5. So the shooter stands to lose 7.87%. This is a large 
percentage compared to the games we have previously discussed. 

Blackjack 

Example 1.14 The card games blackjack, pontoon, and twenty-one are for 3–10 
players and are descended from the Vingt-Un game of the seventeenth century played 
in Spain. It spread to Germany, France, and Britain and became known as pontoon. 
When it spread to the USA in the nineteenth century, it became known as blackjack, 
and this is the most well-known of these games, especially in the context of casino 
games. Of course the rules and terminology used in blackjack games varies from 
casino to casino throughout the world. Our aim is definitely not to encourage you 
to play blackjack. Though of all casino games, blackjack probably offers the players 
the chance to lose the least; that is, the house advantage is less than it is for other
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games—usually between 0.5 and 1%. There are many books discussing blackjack 
including [4, 8, 17, 20, 29]. 

For our discussion, the game is played by the Dealer and two or more Players. 
The Players play against the Dealer, not against each other. Each Player is dealt two 
cards, face up and the Dealer is dealt one card. The game is played with one 52 
card deck. (In most casinos, the game is played with 2, 4, 6, 8, or more decks.) Each 
card has a value. The cards 2, 3,  . . . , 10 are assigned the value on their face, namely, 
2, 3,  . . . , 10. Jack, queen, and king have the value 10. The value of the ace is either 
1 (called hard) or 11 (called soft), chosen by the Player (and can be changed by the 
Player during the game). 

For ease of our discussion, we shall assume the Dealer is female and the Players 
are male. 

The aim of the game is to get the sum of the values of your cards as close to 21 as 
possible, but not strictly greater than 21, and to have the value greater than that of the 
Dealer. Players are permitted to draw additional cards to get closer to 21, but if they 
exceed 21 they lose whatever money they bet on that hand. When each Player has 
either exceeded 21 or wishes to be dealt no extra card, the Dealer is dealt a second 
card and if the value of the Dealer’s hand is strictly less than 17, she will be dealt an 
extra card. An individual Player wins if he has cards of value 21 or has the value of 
his cards not strictly greater than 21 but strictly greater than that of the Dealer. 

Once the cards have been dealt, the Player has four options: 

1. Stand. The Player chooses not to receive any more cards. 
2. Hit. The Player chooses to receive another card. The Player can choose to keep 

hitting until he stops or goes Bust; that is, goes over 21. 
3. Double. The Player doubles his bet and gets dealt one more card. 
4. Split. If the Player has two cards of the same value he can choose to split the 

cards, for example, if he has a 10 and a king. He doubles his stake (bet) as he has 
2 hands and each hand receives a second card. (In the picture of the Blackjack 
table on the previous page, Player 1 has Split his hand as he had two cards of 
value 8.) 

If the Dealer’s card is an ace, there is an option to take insurance. This is in case 
the Dealer will have a Natural. 

A Natural is an ace and a card of value 10 such as a 10 or jack, queen, or king 
(and thereby a total of 21). If a Player has a Natural, the Dealer immediately pays 
the player one and a half times the amount of his bet. 

You might ask what is the probability of being dealt a Natural? 

We shall assume there is just one Player and one deck of cards. The number 
of aces is 4, and the number of cards of value 10 is 16. So the probability of a 
natural is 4/52 · 16/51 + 16/52 · 4/51 = 0.48 . . .  (as the Ace or card of value
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10 may be drawn first), that is, about 1/21. Of course the probability changes 
significantly if an ace, for example, has already been dealt. 

So at each stage the Player has to decide whether he wishes to be hit (i.e. dealt 
an extra card) in order to get closer to 21 but not exceed 21. Our interest is in how 
a Player should decide whether to ask to be dealt an extra card. For this he uses 
probability. 

(In practice, what card the Dealer has must not be ignored—for example, if it 
is a 2, and the Player has cards of value 12 or more, then Stand may be the 
best option.) But let us consider a simplification of the game, where the Player 
ignores the card that the Dealer has, so we get some feeling for what is going 
on. We shall consider the case that there is only one Player plus the Dealer 
and that the casino is playing this game of blackjack with only one deck of 52 
cards. 

First let us assume that the Player has been dealt two cards—a 6 and an 
8—and so the total value of his hand is 14 and the Dealer’s visible card is an 
8. Now the Player must decide whether to be dealt another card. The Player 
knows that the Dealer will not stop until she reaches at least 17 and the Player 
knows his hand of 14 is not enough to beat 17. He decides to be dealt another 
card if there is a probability <0.5 that the value of his hand will go over 21. 
We know that if the next card dealt is an 8, 9, 10, jack, queen, or king, then the 
total value of his hand will be >21. In the whole deck there are 24 such cards. 
In his hand there is one card of this value. And the Dealer has an 8. So there 
are currently 22 such cards in the deck. The number of cards remaining in the 
deck is 52− 3 = 49. So the probability of the total value of his hand exceeding 
21 is 22 

49<0.5, and so he decides to ask to be dealt an extra card. 

This time let us assume the Player has four aces, three 2s and one 4 for a 
total value of 14, as before, and the Dealer has an 8 as before. We know that 
if the next card dealt is an 8, 9, 10, jack, queen, or king, then the total value 
of his hand will be >21. In the whole deck there are 24 such cards. He has no 
such cards and the Dealer has one. So there remain 23 such cards in the deck. 
The number of cards remaining in the deck is 52 − 9 = 43. So the probability 
of the total value of his hand exceeding 21 if dealt another card is 23 

43 > 0.5 
and so he decides not to ask to be dealt another card. 

So we see from the above two cases that: 
having the total value of his hand of 14 does not tell the Player whether to take 
another card or not. 

Deciding whether you will go bust if you are dealt an extra card is not 
simply a question of counting the total value of your hand.
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Now let us assume that the Player first two cards have a total value of 15 and 
the Dealer has any card. We shall consider what is the probability of the Player 
going bust if he is dealt another card. 

We know that if the next card dealt is a 7, 8, 9, 10, jack, queen, or king, then 
the total value of the Player’s hand will be >21. There are 28 such cards in the 
single deck. As the Player’s cards have total value 15, he can have at most one 
of these cards, and the Dealer might have one of these cards—so there at least 
26 such cards in the deck. 

As the Player has at least 2 cards and the Dealer has one card, there are 
at most 49 cards still in the deck. So if the Player is dealt an extra card, the 
probability the total value of his hand exceeding 21 is > 26 

49 > 0.5. 
So if the Player’s cards are of total value 15, and he is dealt one more 

card the probability of his busting is greater than 0.5. This is the case if the 
Player has cards of total value 16 or 17 or 18 or 19 or 20. HOWEVER, this 
calculation assumes that the player does not take Option 4 above and Split! 

We emphasize that we are focussing only on whether the Player taking an extra 
card has probability >0.5 of his going bust. But recall that the aim of the game 
is not only to avoid going bust, but to end up with a hand of value greater than 
that of the Dealer. 

In our previous discussion above, we were able to discover that if there is only 
one Player plus the Dealer, then the Player has a probability >0.5 of going bust if he 
asks for extra card when the total value of his hand is 15 or more. We also saw that if 
his hand has total value of 14, then whether he goes bust with an extra card depends 
on precisely which cards are in his hand. Having obtained the flavour of what results 
to expect, let us look at a slightly more realistic problem. 

This time we have 5 Players, one of whom is Ted. Each Player has been dealt 
2 cards and Ted looks at the value of his cards and finds the total value is 16. 
Ted needs to decide if he will ask to be dealt an extra card. He knows that if 
the next card dealt to him is a 6, 7, 8, 9, 10, jack, queen, or king, then the total 
value of his hand will be >21. There are 32 such cards in the 52 card deck. 
He knows that each Player including himself could have a maximum of 2 such 
cards, that is 10 in all. The Dealer might have another one. So no matter what 
cards have actually been dealt, there must be at least 21 of these “big” cards 
remaining in the deck. Altogether 11 cards have been dealt, and so there are 41 
cards remaining in the deck. So the probability that the extra card to be dealt 
will take the total value of his hand to >21 is 21 

41>0.5. So if he is dealt an extra 
card, the probability of his going bust is >0.5.
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We can tease a little more out of the above analysis. Let us assume that 
each of the Players has been dealt at least two cards and Ted’s cards have total 
value of 16 or 17 or 18 or 19 or 20. Let us assume that the total number of 
so-called “big” cards (that is 6, 7, 8, 9, 10, Jack, Queen, and King) that have 
been dealt to the Players and the Dealer is not more than 11 (as in the previous 
paragraph). So the number of “big” cards remaining in the deck is >21. The 
number of cards left in the deck <41. Then the probability that the extra card 
to be dealt will take the total value of Ted’s hand to >21 is > 21 

41 > 0.5. So the 
probability that Ted will bust if he takes an extra card is >0.5. 

Optimum Strategy and Basic Strategy for Blackjack 

In 1956 four mathematicians, Baldwin et al. [2] published what they called The 
Optimum Strategy in Blackjack. They addressed the specific problem of when to 
Stand and when to Hit. They did not address any other problems related to blackjack. 
This careful mathematical analysis opened the floodgates for others to come up 
with strategies for playing blackjack. If you want to see a basic strategy, see [4, 
p248]—such a strategy should allow you to lose your money slowly. 

I made very clear at the beginning of this book that it is not my intention 
to provide strategies for winning at any of the games discussed in the book, 
including Blackjack. 

The House Advantage 

We have not made clear yet why the House (i.e. the casino) has an advantage. 
Consider what happens. The Dealer deals herself one card and the Player two cards. 
Next the Player decides whether to Stand, Hit, etc. At some point, the Player either 
Busts or Stands. If the Player Busts then the Dealer takes the Player’s bet irrespective 
of whether the Dealer would have Bust with her second card. So the fact that the 
Player has the opportunity of busting first gives the Dealer the advantage! In a 
perfectly fair game, if the Player and Dealer both bust, then the Player would lose 
nothing, but this is not what happens. In essence this forces the Player to be extra 
careful not to Bust, thereby giving the Dealer a better chance of having a higher 
value of cards. For further discussion of this, see [29, p. 325]
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Billionaire Gambling 

Bill Benter was regarded as a math whiz and was a billionaire gambler from Philadel-
phia, Pennsylvania. He tried his hand at blackjack and then in the 1980s turned to 
horse racing, particularly in Hong Kong. He developed a complex mathematical 
algorithm that could predict the probability of each horse in a race winning and 
using it he was very successful. His algorithm also told him the optimal amount to 
bet. He was so successful that the Jockey Club tried to ban him from betting, but 
he was able to fight them off in court. He retired from horse racing betting in 2001. 
The algorithm that Benter used did not guarantee that he won, but did mean that 
over time he won more than he lost. And he was rich enough not to worry about his 
losses, if in due course he would have profits. Few of us are in that category! 

Horseracing Odds 

Remark 1.3 Next we briefly explain horse racing odds [31]. 
Pictured below is the most famous horse in Australian history, the New Zealand 
born Australian trained Phar Lap, winning the most famous race in Australia, The 
Melbourne Cup in 1930. Also pictured is a rare triple dead heat in a 1952 harness 
race at Freehold Raceway in New Jersey, the oldest racetrack in the USA. 

People place a bet on a particular horse in a particular race. Bets are often placed 
with a person called a bookie (short for bookmaker), a professional who facilitates 
gambling on most sporting events. 

Let us look at the odds for a recent horse race:



36 1 Finite Probability Spaces and Examples

Horse Odds Horse Odds 
1 51:1 6 11:5 
2 81:1 7 101:1 
3 17:2 8 51:1 
4 22:5 9 23:5 
5 22:5 

This says that if you place a bet of $1 with the bookie on horse number 1 and it 
wins, then you receive $51 plus your original bet of $1, that is, $52 in all. Similarly if 

you bet $1 on horse number 5 and it wins, then you receive $
⎛
1 
5 
× 22

⎞

+ 1 = $5.40. 

How do odds relate to probabilities? 
Converting odds to probabilities: if the odds are a : b, for some positive real 

numbers a and b, then the probability it corresponds to 1 
a 
b 
+ 1 
= b 

a + b 
. So the  

probabilities for the above race are 

Horse Odds Probability Horse Odds Probability 
1 51:1 1 

52 6 11:5 5 
16 

2 81:1 1 
82 7 101:1 1 

102 

3 17:2 2 
19 8 51:1 1 

52 

4 22:5 5 
27 9 23:5 5 

28 

5 22:5 5 
27 

But we know the sum of all the probabilities should equal 1. Here, however, the 
sum is 1.027 . . . . Why? This represents the built-in profit of the bookie of about 
2.7%. 

Once again we have seen that if you gamble by placing a bet on a horse, over 
time you should expect to lose money. After all, you are providing the bookie’s 
income! 

We conclude this remark by showing that if the sum of the probabilities were 
strictly less than one, then it is possible to bet a certain amount on each horse and 
come out with a profit—which is why you will never find the sum of a bookie’s 
probabilities less than one. 

Let there be n horses in the race, and the odds are a1 : b1, a2 : b2,  . . . , an : bn. So  
the corresponding probabilities are p1 = b1 

a1+b1 
, p2 = b2 

a2+b2 
,  . . . ,  pn = bn 

an+bn 
. Let us 

place a bet of x1 on horse 1, x2 on horse 2, . . . , xn on horse n, where we are yet to  
determine the best values of the xi .
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The table below shows the Odds, Probabilities, Bets, and “Return”—the amount 
received if that horse wins plus the amount bet on that horse. If xi is bet on horse i, 
and it wins then you receive (xi× ai 

bi
)+ xi = xi( ai 

bi 
+1) = xi( ai+bi 

bi 
). Let  X be the total 

amount bet, that is, X = x1 + x2 + · · ·  + xn. Let  Gi be the profit (or gain) on the bets 
on that race, that is, if horse i wins, then Gi = xi pi 

− X . Define P = p1 + p2 + · · ·  + pn. 

Horse Odds Probability Bet Return 

1 a1 : b1 p1 = b1 
a1 + b1 

x1 x1

⎛
a1 + b1 

b1

⎞

= x1 
p1 

2 a2 : b2 p2 = b2 
a2 + b2 

x2 x2

⎛
a2 + b2 

b2

⎞

= x2 
p2 

... 
... 

... 
... 

... 

n an : bn pn = bn 
an + bn 

xn xn

⎛
an + bn 

bn

⎞

= xn 
pn 

Now it is up to us to choose the values of x1, x2,  . . . ,  xn. We shall choose 
x2, x3,  . . . ,  xn (but not x1) such that 

. 
x1
p1
=

x2
p2
= · · · = xn

pn
.

This means that G1 = G2 = · · ·  = Gn. So we write G = G1 = G2 = · · ·  = Gn. 
But we have G = xi 

pi 
− X , and so G + X = xi 

pi 
, which implies pi = xi 

G + X 
. 

As P = p1 + p2 + · · · + pn and X = x1 + x2 + · · ·  + xn, we have  

. P =
x1 + x2 + . . . xn

G + X
=

X
G + X

.

Thus G = X 
P 

− X = X
⎛

1 
P 
− 1

⎞

. Hence G > 0 if and only if P < 1. 

This says that you can make a profit by betting appropriately on every horse if and 
only if p1+p2+· · ·+pn < 1. And if the bets are chosen such that x1 

p1 
= x2 

p2 
= · · · = xn 

pn 
, 

then the profit is the same irrespective of which horse wins. 

Macao 

Macao, [21], is a card game dating back to at least the eighteenth century and appar-
ently was popular with soldiers in the Austro-Hungarian Empire in the nineteenth 
century. It is regarded by some as a precursor of the popular casino game of Baccarat. 

Each player is dealt a card by the banker and additional cards may be bought. The 
2, 3, 4, 5, 6, 7, 8, 9 cards count as their face value, 10, jack, queen, and king count 
as 0, while ace counts as 1. The aim of the game is to get as close to nine points as 
possible.
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If a player’s first card is a 9, this is called a grosser Schlag and wins double unless 
the banker has the same, in which case the banker collects a double stake from each 
player except this player. Now 8 as a first card is called a kleiner Schlag. 

Whoever goes bust is called verkauft, that is, ends up with more than nine points 
immediately loses their stake. If the banker goes bust, all players win. We shall not 
consider the game of Macao further as it became illegal. 

We shall see that Macao has some similarity to Baccarat and some differences. 

Baccarat 

The casino game of Baccarat appears in several James Bond books and movies. 
There are three main varieties of Baccarat, namely, Chemin de Fer (a French 

version popular in Europe and Latin America), Punto Banco (developed in Havana 
in the 1940s and is the most popular variety in American casinos today), and à Deux 
Tableux. (Some stories suggest that while Napoleon was sacking Europe two forms 
of Baccarat were in vogue; one a banking game called Baccarat en Banque (Baccarat 
Deux Tableaux) the other Baccarat Chemin de Fer, a non-banking version. Chemin 
de Fer is a French phrase meaning railway, or literally iron path.)
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In Ian Fleming’s 1958 novel Dr No, adapted for film by the British movie produc-
tion company Eon Productions in 1962, Scottish-born actor Sean Connery as James 
Bond, is playing Baccarat Chemin de Fer. 

There are many books describing the game of Baccarat, some including its history. 
We mention [4, 8, 17, 21]. 

For our purposes, Baccarat is a very simple game to understand. It is a card game 
played by two hands: the Player and the Banker. The game’s objective is to predict 
which hand will win or whether there will be a tie. 

As usual it is played with one or more standard packs of 52 cards. Up to eight 
packs is common. The bettors can bet on the Player or the Banker or a tie. Once the 
bets are placed, two cards are dealt face-up to both the Player and the Banker. 

The cards 2, 3, 4, 5, 6, 7, 8, 9 have point value equal to their face number. 10s, 
jack, queen, and king have point value 0. Ace has point value 1. 

The point value of the Player’s hand and of the Banker’s hand is the sum of the 
point values mod 10 of their respective hands. So if, for example, the Player has a 6 
and a 5, then that hand has a point value of (6 + 5 − 10 =)1. 

If the Player’s hand or the Banker’s hand has a point value of 8 or 9 then this is 
called a natural and no further cards are dealt. 

If neither hand has a natural, a third card may be drawn according to predetermined 
rules. (To the newcomer these may seem complicated, but in practice they are 
straightforward or at least algorithmic.) 

The bettors do not need to remember these rules. 

• The Player stands if the Player’s hand has a point value of 6 or 7; 
• the Player draws a card if the Player’s hand has a point value of 0, 1, 2, 3, 4, 

or 5; 
• the Banker stands if the Banker’s hand has a point value of 7; 
• if the Banker’s hand has a point value of 0, 1, 2, 3, 4, 4, 5, or 6 the Banker 

may draw a third card according to the following circumstances: 
• if the Player does not draw a third card, the Banker draws if their hand has a 

point value of 0, 1, 2, 3, 4, or 5 and stands if their hand has a point value of 6 
or 7; 

• if the Player draws a third card, then the Banker may draw a third card based 
on the following conditions: 

• the Banker draws if the Banker’s hand has a point value of 2 or less; 
• if the Banker’s hand has a point value of 3 and the player’s third card is not 

an 8, the Banker draws; 
• the Banker draws if the Banker’s hand has a point value of 4 and the Player’s 

third card is 2, 3, 4, 5, 6, or 7;  
• the Banker draws if the Banker’s hand has a point value of 5 and the Player’s 

third card is 4, 5, 6, or 7; 
• the Banker draws if the Banker’s draws if the Banker’s hand has a point value 

of 6 and the Player’s third card is either 6 or 7.
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After this has been completed, the hand with the highest point value wins. 
If the Player’s hand wins, the bettors who bet on the Player are paid out at odds 

of 1:1. 
If the Banker’s hand wins, then those who bet on the Banker pay a 5% commission 

to the House on their even money winnings. 
If it is a tie, then those who bet on a tie are paid out at odds of 8:1. 

An analysis of the betting, shows that the Player bet has a House edge of 1.24%. 
The Banker bet has a House edge of 1.06%. The worst bet is the tie bet, which 
has a House edge of 14.4%, which is terrible. 

Of course some casinos offer various other betting possibilities such as where the 
first cards dealt to the Banker are a pair, etc. 

Ballot Box Problem 

Next we present a rather surprising observation 
known as the Ballot Box Problem. The Ballot Box 
Problem was first published [32] in 1878 by William 
Allen Whitworth (1840–1905) who was an English 
mathematician and a priest in the Church of England. 
While an undergraduate, he became the founding ed-
itor in chief of the “Messenger of Mathematics” and 
continued as editor until 1880. His most important 
mathematical publication is the book Choice and 
Chance: An elementary treatise on permutations, 
combinations and probability, [33], (first published 
in 1867 and expanded in later editions). He intro-
duced the now commonly used notation E[X] for the 
expected value of a random variable X
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The Ballot Box Problem was rediscovered in 
1887 by Joseph Louis François Bertrand (1822– 
1900) who was a French mathematician who 
worked in differential geometry, economics, num-
ber theory, probability, and thermodynamics. The 
Ballot Box Problem is (unfortunately) referred to 
as Bertrand’s ballot theorem. Bertrand was a Pro-
fessor at the École Polytechnique and Collège de 
France. He was a member of the Paris Academy 
of Sciences and was its permanent secretary for 
26 years. By the age of 17, he had two bachelor’s 
degrees and a PhD. In 1907 he published the book 
[3]. 

Bertrand’s paper outlined a proof using a recursion relation but remarked that it 
seems probable that it could be proved by a more direct method. Such a proof was 
given by Désiré André (1840–1917) who was a French mathematician and a student 
of Charles Hermite (1822–1901) and Bertrand. A variation of André’s method is 
known as André’s reflection method, although André did not use reflections. 

Theorem 1.1 [Ballot Box Theorem] In an election where candidate A receives 
p votes and candidate B receives q votes with p > q, the probability that A will be 
strictly ahead of B throughout the count is p − q 

p + q 
. 

Proof. Observe firstly that for A to be strictly ahead of B throughout the count, there 
cannot be any point in the count where there is a tie. 
Case 1: The first vote goes to B. Then the count must reach a tie at some point as A 
eventually wins. Observe that the probability that the sequence of votes begins with 
a B is  q 

p + q 
. 

Case 2: The first vote goes to A and at some point in the count reaches a tie. Reflect 
the votes up to the tie, that is, change every A to B and every B to an A up to 
and including when the count reaches a tie. This reflection gives a new sequence 
which begins with a B and in due course reaches a tie. So there is a one-to-one 
correspondence between the sequences which begin with a B and the sequences 
which begin with an A and reach a tie. So the probability that the sequence of votes 
begins with an A and reaches a tie is also q 

p + q 
. 

Thus the probability that the count reaches a tie is q 
p + q 

+ q 
p + q 

= 2q 
p + q 

. 

But the probability that A always leads in the count equals 1− the probability that 
the counting reaches has a tie, that is, 1 − 2q 

p + q 
= p − q 

p + q 
. ⨅⨆
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Remark 1.4 Let us consider for a moment what the Ballot Box Theorem tells us. If 
A wins strictly less than 75% of the vote, then there is a probability of greater than 
0.5 that B will lead in the voting at some point in the count. In other words, if A does 
not receive strictly more than 3 times the number of votes that B receives, then there 
is a probability of greater than 0.5 that B will lead in the voting at some point in the 
count. Many, perhaps most, people would be surprised by this. 

[In the 1969 Australian Federal election at one point the count showed that the 
Coalition had won 47 seats and the Labor party had won 62 seats—a huge margin. 
In fact, at the end of the counting, the Coalition won the election.] 

Weather Forecasting and Chaos Theory 
Today when I read the weather forecast for 
tomorrow no doubt it will predict the temper-
ature range and a probability of rain. What 
exactly is meant by this probability? When 
it says there is an 80% chance of rain in my 
city, does it mean that 80% of my city will 
experience rain and the other 20% of the city 
will not? Of course it does not mean this! 
When did forecasting of the weather begin 
to include probabilities? It is difficult to be 
precise, but certainly a key figure was the 
Australian astronomer William Ernest Cooke 
(1863–1947). (See [7].) 

To understand today’s forecasting we need to look briefly into chaos theory. 
(It would be folly to try to give a definitive history of chaos, a term used in the 
book of Genesis in the Bible and Hun-Tun (translated as chaos) in Taoism ([13]), 
a philosophical tradition dating back 2,200 years in China to the Han Dynasty. 
Here we focus on the twentieth century. The interested reader may care to read my 
introductory chaos theory material in [18, Appendix 3].) 

Jules Henri Poincaré (1854–1912), one of France’s 
greatest mathematicians, is acknowledged as one of 
the founders of a number of fields of mathematics 
including modern nonlinear dynamics, ergodic theory, 
and topology. His work laid the foundations for chaos 
theory. He stated in his 1903 book, [23], If we knew 
exactly the laws of nature and the situation of the 
universe at its initial moment, we could predict exactly 
the situation of that same universe at a succeeding 
moment.
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But even if it were the case that the natural laws had no longer any secret for us, we 
could still only know the initial situation approximately. If that enabled us to predict 
the succeeding situation with the same approximation, that is all we require, and 
we should say that the phenomenon had been predicted, that it is governed by laws. 
But it is not always so; it may happen that small differences in the initial conditions 
produce very great ones in the final phenomena. A small error in the former will 
produce an enormous error in the latter. Prediction becomes impossible. What 
Poincaré described quite precisely has subsequently become known colloquially as 
the butterfly effect, an essential feature of chaos. 

In 1952 Collier’s magazine published a short story called “A Sound of Thunder” 
by the renowned author, Ray Bradbury (1920–2012). In the story, http://www.lasalle. 
edu/~didio/courses/hon462/hon462_assets/sound_of_thunder.htm 
a party of rich businessmen use time travel to journey 
back to a prehistoric era and go on a safari to hunt 
dinosaurs. However, one of the hunters accidentally 
kills a prehistoric butterfly, and this innocuous event 
dramatically changes the future world that they left. 
This was perhaps the incentive for a meteorologist’s 
presentation in 1973 to the American Association for 
the Advancement of Science in Washington, D.C. be-
ing given the name “Predictability: Does the flap of a 
butterfly’s wings in Brazil set off a tornado in Texas?” 

On April 16, 2008, MIT News published “Edward Lorenz, father of chaos theory 
and butterfly effect, dies at 90”. I quote from that announcement: “Edward Lorenz, 
an MIT meteorologist who tried to explain why it is so hard to make good weather 
forecasts and wound up unleashing a scientific revolution called chaos theory, died 
April 16 of cancer at his home in Cambridge. He was 90. 

A professor at MIT, Lorenz was the first to recognize what is now called chaotic 
behaviour in the mathematical modelling of weather systems. In the early 1960s, 
Lorenz realized that small differences in a dynamic system such as the atmosphere– 
or a model of the atmosphere–could trigger vast and often unsuspected results. 

These observations ultimately led him to formulate what became known as the 
butterfly effect–a term that grew out of an academic paper he presented in 1972 
entitled: ‘Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a 
Tornado in Texas?’ 

Lorenz’s early insights marked the beginning of a new field of study that impacted 
not just the field of mathematics but virtually every branch of science–biological, 
physical and social. In meteorology, it led to the conclusion that it may be funda-
mentally impossible to predict weather beyond two or three weeks with a reasonable 
degree of accuracy. 

Some scientists have since asserted that the twentieth century will be remembered 
for three scientific revolutions–relativity, quantum mechanics and chaos.”
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Edward Norton Lorenz (1917–2008) discovered sensitivity to initial conditions 
by accident. He was running on a computer a mathematical model to predict the 
weather. Having run a particular sequence, he decided to replicate it. He re-entered 
the number from his printout, taken part-way through the sequence, and let it run. 
What he found was that the new results were radically different from his first results. 
Because his printout rounded to three decimal places, he had entered the number 
0.506 rather than the six digit number 0.506127. Even so, he would have expected 
that the resulting sequence would differ only slightly from the original run. Since 
repeated experimentation proved otherwise, Lorenz concluded that the slightest dif-
ference in initial conditions made a dramatic difference to the outcome. So prediction 
was in fact impossible. Sensitivity to initial conditions, or the butterfly effect, had 
been demonstrated to be not just of theoretical importance but in fact of practical 
importance in meteorology. It was a serious limitation to predicting the weather—at 
least with that model. 

So we see that while we can measure the weather conditions all over the world 
approximately, we cannot measure the precise values. And we now know that even the 
tiniest amount of approximation can impact the prediction dramatically. This issue 
cannot be made to go away by better and better accuracy of the measurements. So 
what is to be done? The answer is what has become known as ensemble forecasting. 
Ensemble forecasting is a form of Monte Carlo analysis. (Monte Carlo methods are 
a class of computational algorithms that rely on repeated random sampling to obtain 
numerical results.) The notion is to use an averaging of a number of simulations to 
address the sensitivity to initial conditions. 

Let me use the description provided by “The Met Office”, which is the national 
meteorological service for the United Kingdom. “To forecast the weather we first 
gather observations from around the world to measure what the atmosphere is do-
ing. We use these observations to set up a computer simulation of the atmosphere 
that represents what is happening right now. The model then calculates how the 
atmosphere will evolve over the coming days. Unfortunately, due to chaos, small 
unknowns in our observed atmosphere can grow rapidly to give large uncertainties 
in the forecast. 

Over the last 15 years, the Met Office has de-
veloped sophisticated techniques to understand these 
uncertainties, called ensemble forecasts. This means 
we run our simulations many times instead of just 
once, from very slightly different starting conditions. 
The range of different outcomes gives us a measure 
of how confident or uncertain we should be in the 
overall forecast. On some occasions the uncertainty 
is quite small and we can be confident—other times 
much less so. This can help decision makers manage 
the risks associated with the weather.”



1.2 The Event Space and the Probability Space 45

To oversimplify this dramatically, we might say if 8 of 10 simulations indicate 
rainfall of over 1cm, the chance of rain exceeding 1cm could be estimated to be 80%. 
Of course the Met Office uses analysis that is more sophisticated than this. 

Simpson’s Paradox 

This paradox is often used in the teaching of mathematical statistics to illustrate 
the care we need to take when interpreting data and to avoid jumping to 
conclusions. 

Edward H. Simpson (1922–2019) described this phenomenon in a paper in 1951 
but the statisticians Karl Pearson (1857–1936), Alice Lee (1858–1939), and Lesley 
Bramley-Moore (1831–1918) in 1899 and George Udny Yule (1871–1951) in 1903 
had already mentioned similar effects. 

On June 10, 1898, Alice Lee marched into the all-male Anatomical Society 
meeting at Trinity College in Dublin and pulled out a measuring instrument. She then 
began to measure the size of all 35 consenting society members’ heads. She ranked 
their skulls from largest to smallest to discover that some of the most well-regarded 
intellects turned out to possess rather small skulls. In due course Alice Lee became 
a PhD student of the esteemed statistician Karl Pearson. In her PhD dissertation 
she did a study of male and female intellectual difference. Until then experts had 
asserted that intellectual capability was related to cranial size. As a result, women 
had inferior intellectual capability. Lee provided the most sophisticated criticism of 
cranium science to date. Within a decade of publishing her findings in 1900, the 
field of craniology—and with it, the days of measuring skulls to interpret biological 
human difference—would be no more. This applied both to sex and race. 

George Udny Yule was a British statistician, particularly known for the Yule– 
Simon distribution (or Yule distribution) is a discrete probability distribution named 
after Udny Yule and Herbert A. Simon. Simon originally called it the Yule distribu-
tion. 

The name Simpson’s paradox was introduced, in [6], by the Canadian statistician 
Colin Ross Blyth (1922–2019) in 1972. 

In probability and statistics, the Yule–Simon distribution is a discrete probability 
distribution named after Udny Yule and Herbert A. Simon. Simon originally called 
it the Yule distribution. Herbert Alexander Simon (1916–2001) was an American 
economist and political scientist whose main research interest was in decision-
making. He received the Nobel Prize in Economics in 1978. 

Edward Hugh Simpson was introduced to mathematical statistics as a cryptanalyst 
at Bletchley Park (1942–45). He wrote the paper “The Interpretation of Interaction 
in Contingency Tables” while a postgraduate student at the University of Cambridge 
in 1946 with Maurice Stevenson Bartlett (1910–2002) as his tutor and published 
it in the Journal of the Royal Statistical Society in 1951 at Bartlett’s request be-
cause Bartlett wanted to refer to it. Maurice Stevenson Bartlett (1910–2002) was an
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English statistician who is known for work in statistical inference and multivariate 
analysis. Simpson’s paper considered what is now known as the Yule-Simpson effect 
or Simpson’s paradox or the amalgamation paradox or the reversal paradox. 

Blyth [6] demonstrated the paradox in the following way. 
There is a new treatment N and a standard treatment S for a serious complaint. 

Patients are in two groups A and B, according to their residence is local or in Chicago. 
If the patient survives with a treatment, they are said to alive A and if not they are 
said to be dead D. The table below is a record of treatment results. 

Chicago patients Local patients Total patients 
Standard New Standard New Standard New 

Dead 950 9,000 5,000 5 5,950 9,005 
Alive 50(5%) 1,000(10%) 5,000(50%) 95(95%) 5,050(46%) 1,095(11%) 

(i) For Chicago patients, 5% of the patients survive (alive) with the standard 
treatment, while only 10% of patients survive with the new treatment. So the 
new treatment is clearly better for the Chicago patients. 

(ii) For the Local patients, 50% of the patients survive (alive) with the standard 
treatment, while 95% of patients survive with the new treatment. So we see 
the new treatment is clearly better for the local patients. 

But surprisingly, for the total patient population, 46% survive with the standard 
treatment, while only 11% survive with the new treatment. So the standard treatment 
is very much better. 

In the literature there are many such examples. The moral is as follows: as 
the Hollywood writer, director Jerry Belson (1938–2006) observed Never 
ASSUME, because when you ASSUME, you make an ASS of U and ME. 

Note that if the number of patients in each of the two groups—local and Chicago— 
had been equal, then the paradox would not have occurred. However, this is not really 
a solution as in “real life” the numbers may not be equal. But we now notice that the 
number in each group is a variable, the impact of which we did not take account. This 
variable is called an extraneous variable and here is, in fact a confounding variable 
in that it clearly impacts on the result of the experiment. 

Statisticians need to be aware of this paradox and design their experiments and 
analyses with great care so as not to obtain spurious results. This is not the place to 
say more about this very important topic.
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Problems 

Klondike Solitaire 

1.12 Solitaire, also known as Patience, is a game played usually by one player. There 
are many varieties of the game. The most common variety is Klondike Solitaire. The  
rules can be found at https://en.m.wikipedia.org/wiki/Klondike_(Solitaire) and a 
video explaining the game can be watched on https://youtu.be/gHZc5O-e0dA 

This game uses all 52 cards of the standard pack. 
The cards in ascending order are ace, 2, 3, 4, 5, 6, 
7, 8, 9, 10, jack, queen, and king and each black 
card (spades or clubs) in this list can be placed 
on the red card (diamonds or hearts) next on this 
list and vice versa for red on black. Initially the 
cards are laid out in seven columns with the first 
column having one card, the second two cards, 
. . . , the 7th column has seven cards. 

At the beginning only the top card in each column is face up. There are four 
foundation piles, one for each of the suits: spades, clubs, diamonds, and hearts. 
During the game, these foundation piles are filled, each starting with an ace, then a 
2, . . . , king. At the start there are 1 + 2 + · · ·  + 7 = 28 cards used in the columns, 
leaving 24 cards remaining in the stack. The picture above shows the situation when 
the game has been played for a few turns. Next the third card from the top of stack is 
turned face up to see if it can be put on one of the columns or on a foundation pile 
(e.g. a 3 of spades would be placed on the 4 of hearts; an ace of diamonds would 
be placed on the empty foundation pile; a 3 of clubs would be placed on the clubs 
foundation pile). If it cannot, then the card is considered not useful. Is the probability 
that this card is useful at this point in the game above greater than 1 

3? 

1.13 Gaucher’s disease (GD) is another example of an autosomal recessive inher-
itance disease of the type described in Example 1.13. The disease is caused by a 
recessive mutation in the GBA gene located on chromosome 1 and is named after 
the French physician Philippe Charles Ernest Gaucher (1854–1918). About 1% of 
people in the USA are carriers. It is much more common amongst Ashkenazi Jews. 
If a man who has Gaucher’s disease has a child with a woman who does not have 
Gaucher’s disease and is also not a carrier, what is the probability of each of the 
following: (a) the child has Gaucher’s disease; (b) the child is a carrier of Gaucher’s 
disease; (c) the child does not have Gaucher’s disease and is not a carrier? 

1.14 Darlene is calculating the probability she has Gaucher’s disease (see previous 
problem) or is a carrier. She knows that none of her four grandparents have Gaucher’s 
disease and that precisely n of them are a carrier of one Gaucher’s disease gene, where 
n ∈ {0, 1, 2, 3, 4}. Calculate the probability that she (a) has Gaucher’s disease or (b) 
is a carrier of a Gaucher’s disease gene if (i) n = 0, (ii) n = 1, (iii) n = 2, (iv) n = 3, 
(v) n = 4.
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1.15 Prove Proposition 1.4. 

1.16 I have two fair coins. If I throw both coins in the air and then observe after they 
land the side that is facing up on both coins. What is the probability that the result 
will be (a) both coins land heads up; (b) both coins land tails up; (c) both coins land 
with the same side up? 

1.17 I throw two fair dice in the air and after they land observe the number of 
dots on the side facing up on each die. What is the probability that the sum of 
these two numbers is a prime number? (Recall the definition that a positive integer 
m ∈ {1, 2,  . . . , n,  . . . } is a prime number if there are precisely two positive integers 
which divide m exactly, namely, 1 and m. So 2, 3, 5, 7, 11,  . . .  are prime numbers 
while 1, 4, 6, 8, 9, 10, 12,  . . .  are not prime numbers.) 

1.18 Let Ω be a sample space and Σ be an event space on Ω. Let  A, B,C ∈ Σ. Noting 
that, for example, AB' is an expression of the fact that A occurs but B does not occur, 
write expressions for each of the following: 

(i) A, B, and C occur; 
(ii) only B occurs; 
(iii) A and C occur but B does not occur; 
(iv) precisely two of A, B, and C occur; 
(v) at least one of A, B, and C occur; 
(vi) none of A, B, C occurs. 

1.19 Let Σ be an event space. Prove the following. 

(i) if A, B,C ∈ Σ, then 

.P(A∪ B ∪C) = P(A)+ P(B)+ P(C) − P(AB) − P(AC) − P(BC)+ P(ABC).
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(ii) If A1, A2,  . . . ,  An ∈ Σ, then 

. P

⎛
n⋃

i=1
Ai

⎞

= S1 − S2 + S3 − · · · + (−1)n+1Sn , where

. S1 =

n⎲

i=1
P(Ai), S2 =

⎲

i< j≤n
P(Ai ∩ Aj),

. S3 =
⎲

i< j<k≤n
P(Ai ∩ Aj ∩ Ak), . . . , Sn = P

⎛
n⋂

i=1
Ai

⎞

.

Note that P( 
n⋃

i=1 
Ai) is the probability that at least one of the events 

A1, A2,  . . . ,  An occur. 
1.20 In the game of French roulette as described in Example 1.12, we saw that there 
is a variety of common betting options. In these options the player generally bets not 
on one number but rather a set of numbers. 

(i) We consider a simple example where the player bets on n ∈ N numbers on 
the wheel. The payout for a win on a bet of $1 on n numbers is $36 

n . What is 
the probability of this being a winning bet and what is the expected loss? 

(ii) Often the player makes a combination bet. For example, they may bet $a1 on 
a certain set of n1 numbers, $a2 on another set of n2 numbers,  . . . ,  and  $ak 
on a set of nk numbers, for some a1, a2,  . . . , ak ∈ N and n1, n2,  . . . , nk ∈ N. 

The payout for such a combination bet is $ 
k∑

i=1 

36 ai 
ni 

. What is the probability 

of this being a winning bet and what is the expected loss? 
1.21 Again in the game of French roulette as discussed in the previous problem, we 
shall consider combination bets. 

(i) One combination bet is called a Zero bet, as the player bets on the numbers 
close to 0 on the wheel, namely, the set A = {12, 35, 3, 26, 0, 32, 15} of 7 
numbers. The player bets a total of $4 as follows: $1 on the pair {0, 3}, $1 on  
the pair {12, 15}, $1 on the pair {32, 35} and $1, on the number {26}. Using  
(i) and (ii) of the previous problem, show that the payout if the ball stops in 
the set A of 7 numbers is $90, and calculate the probability of this being a 
winning bet and the expected loss? 

(ii) Another combination bet is the Voisins du Zero bet. Here the player bets 
on the 17 numbers lying on the wheel between 22 and 25, including 22 and 
25. This is the set B = {22, 18, 29, 7, 28, 12, 35, 3, 26, 0, 32, 15, 19, 4, 21, 2, 25}. 
The player bets a total of $9 as follows: $2 on the three numbers {0, 2, 3}, $1  
on the pair {4, 7}, $1 on the pair {12, 15}, $1 on the pair {18, 21}, $1 on the  
pair {19, 22}, $2 on the  {25, 26, 28, 29} corner, and $1 on the pair {32, 35}. 
Using (i) (ii) of the previous problem, show that the payout for a winning 
Voisins bet is $132, and calculate the probability of this being a winning bet 
and the expected loss.
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1.22 Consider a horse race with the odds as indicated in the table below. Verify that 
it is possible to bet on every horse in the race in such a way that you make a profit 
irrespective of which horse wins. Further, verify that your profit will be in excess of 
20% of the total amount bet on all the horses. 

Horse Odds Horse Odds 
1 60:1 6 6:1 
2 90:1 7 100:1 
3 10:1 8 50:1 
4 5:1 9 7:1 
5 3:1 

1.23 In the game of Baccarat, the Player stands if they have a hand with point value 
of 6 or 7. Assuming they are playing with one deck of cards, how many different 
hands have a point value of 6 or 7. Deduce from this the probability of the Player 
having a hand of point value 6 or 7. 
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• Jean Baptiste-Siméon Chardin. Public Domain. 
• William Ernest Cooke. Public Domain. 
• Francis Harry Compton Crick. This file was published in a Public Library of 

Science journal. Their website states that the content of all PLOS journals is 
published under the Creative Commons Attribution 4.0 license (or its previous 
version depending on the publication date), unless indicated otherwise. 
https://commons.wikimedia.org/wiki/File:Francis_Crick_crop 

• Abraham De Moivre. Public Domain. 
• Augustus De Morgan. Public Domain. 
• Charles John Huffam Dickens. Public Domain. 
• DNA  −→ DNA. his file is licensed under the Creative Commons Attribution-

Share Alike 3.0 Unported license. 
https://commons.wikimedia.org/wiki/File:Eukaryote_DNA-en.svg 

• Double Helix: Double stranded DNA with coloured bases. This file is licensed 
under the Creative Commons Attribution-Share Alike 4.0 International license. 
https://commons.wikimedia.org/wiki/File:Double_stranded_DNA_with 
_coloured_bases.png 
https://commons.wikimedia.org/wiki/File:Dreidel_001.jpg 

• Ancient Russian Enamel Zolotnik Dreidel. Creative Commons Attribution-
Share Alike 4.0 International license 
https://commons.wikimedia.org/wiki/File:Russian_Dreidel_(1).jpg 

• Paul Erdös playing Go, November 1979. Copyright held by Sidney A. Morris. 
• Euchered lithograph 1884 from the Library of Congress. Public Domain. 
• Sir Ronald Aylmer Fisher. Public Domain. 
• Fragment of Papyrus from Euclid’s Elements. Public Domain. 
• French Roulette Wheel. Creative Commons Attribution-Share Alike 4.0 Interna-

tional License. https://commons.wikimedia.org/wiki/File:Roulette_casino.jpg 
• Rosalind Elsie Franklin. This file is licensed under the Creative Commons 

Attribution-Share Alike 4.0 International license. 
https://commons.wikimedia.org/wiki/File:Rosalind_Franklin.jpg 

• Martin Gardner. This file is licensed under the Creative Commons Attribution-
Share Alike 2.0 Germany license. 
https://en.wikipedia.org/wiki/Martin_Gardner#/media/File:Martin_Gardner. 
jpeg 

• Johann Carl Friedrich Gauss. Public Domain. 
• Ralph William Gosper Jr. Creative Commons Attribution 2.0 Generic license. 

https://commons.wikimedia.org/wiki/File:Bill_Gosper_2006.jpg 
• Friedrich Robert Helmert. Public Domain. 
• David Hilbert. Public Domain. 
• Cristiaan Huygens. Public Domain. 
• Influenza virus. Public Domain. 
• Dmitri Iosifovich Ivanovsky. Public Domain. This work is in the public domain 
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Act for Book IV of the Civil Code of the Russian Federation). 
https://en.wikipedia.org/wiki/File:Ivanovsky.jpg 

• Andrej Nikolajewitsch Kolmogorov. Copyright MFO. 
https://opc.mfo.de/detail?photoID=7493 

• Pierre-Simon Laplace. Public Domain. 
• Johannes Friedrich Miescher. Public Domain 
• de Montmort’s book. Public Domain 
• Kary Banks Mullis. Public Domain. 

https://commons.wikimedia.org/wiki/File:Kary_Mullis.jpg 
• Nicole Oresme. Public Domain. 
• Blaise Pascal. Permission is granted to copy, distribute and/or modify this doc-

ument under the terms of the GNU Free Documentation License. 
https://commons.wikimedia.org/wiki/File:Blaise_Pascal_Versailles.JPG 

• Louis Pasteur. Public Domain. 
• Karl Pearson. Public Domain. Public Domain. 
• Phar Lap. Public Domain. 
• Edgar Allan Poe. Public Domain. 
• George Pólya. This file is licensed under the Creative Commons Attribution 2.0 

Generic license. 
https://commons.wikimedia.org/wiki/File:George_P%C3%B3lya_ca_1973.jpg 

• Jules Henri Poincaré. Public Domain. 
• Principia Mathematica. Photograph, Andrew Dunn, 5 November 2004. 

http://www.andrewdunnphoto.com/ Creative Commons Attribution-Share Alike 
2.0 Generic license. 

• Typhoon Haiyan approaching the Philippines on November 7, 2013. Public Do-
main 
https://en.wikipedia.org/wiki/Storm#/media/File:Haiyan_2013-11-07_ 0420Z. 
jpg 

• Richard Edler von Mises. This work is free and may be used by anyone for any 
purpose. Konrad Jacobs, Erlangen—https://opc.mfo.de/detail?photo_id=2896 

• James Dewey Watson. Public Domain. 
• Women’s Whist Club Congress Drawing. Public Domain. 
• 1 
ζ(x) Graph. Graph produced using WolframAlpha. 

• Sic Bo Table. Public Domain. 
• Lizzie Maggie. Public Domain. 
• The Landlord’s Game. This file is licensed under the Creative Commons Attribu-

tion 2.5 Generic license. https://commons.wikimedia.org/wiki/File:Landlords_ 
Game_board_based_on_1924_patent.png 

• 1897 Illustration of Baccarat. Public Domain. 
• Craps Table Layout. Permission is granted to copy, distribute and/or modify this 

document under the terms of the GNU Free Documentation License, Version 
1.2 or any later version published by the Free Software Foundation; with no 
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of 
the license is included in the section entitled GNU Free Documentation License. 
https://commons.wikimedia.org/wiki/File:Craps.svg
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Chapter 2 
Permutations and Combinations 

Abstract 

In this second chapter, we introduce permutations and combinations and selection 
with and without replacement. Then we examine the games of bridge, poker, crib-
bage, euchre, rummy, dreidels, and the Australian game two-up. We emphasize the 
importance of bluffing in poker and the central role of bidding in bridge. A member 
of the rummy family is the game mahjong, which is played today by hundreds of 
millions of women, men, and children throughout the world. We spend quite some 
time making it easy for the reader with no knowledge of Chinese to understand 
the game. American mahjong, known as mah jongg, is introduced, and its role in 
modern American culture is referred to. Voltaire discovers a serious flaw in French 
lotto and becomes a millionaire. We mention the famous Dead Man’s Poker Hand 
of Wild Bill Hickok; the £1,000 challenge to all takers in the game of Whist of the 
Earl of Yarborough in the 1800s (equivalent today to more than US$100,000); the 
seventeenth century Dice Problem of Samuel Pepys answered by his Royal Society 
colleague Sir Isaac Newton; the well-known, but surprising, birthday paradox; and 
even combination locks, lotto, powerball, bingo, and ChatGPT summarizing the 
rules of cribbage. 

2.1 Permutations and Combinations 

You probably have learned about permutations and combinations at high school. But 
do not be afraid if you cannot recall everything you learnt as I shall cover it afresh. 
In this section there are only a few things to learn and be sure you know: 

(i) what is a permutation; 
(ii) what is a combination; 
(iii) the difference between permutations and combinations; 
(iv) selection/sampling with replacement; 
(v) selection/sampling without replacement; 
(vi) how to evaluate the permutation . Pn

r ; 
(vii) how to evaluate the combination . 

(n
r

)
; 
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(viii) the relationship between . Pn
r and . 

(n
r

)
. 

Definition 2.1 Let S be any finite or infinite set. A permutation of the set S is a 
one-to-one mapping of S onto itself. 

Example 2.1 Consider the following examples: 

(i) Let . f : N→ N be given by . f (x) = 2x, for all .x ∈ N. Then f is a one-to-one 
function, but is not onto, since there is no .x ∈ N such that . f (x) = 1 ∈ N. So  
f is not a permutation of . N. 

(ii) Let . f : R→ R be given by . f (x) = |x |, for all .x ∈ R. Then f is not onto and 
is not one-to-one. So f is not a permutation of . R. 

(iii) Let . f : R → R be given by . f (x) = −x, for all .x ∈ R. Then f is both 
one-to-one and onto. So f is a permutation of . R. 

(iv) Let . f : {1, 2, . . . , 10} → {1, 2, . . . , 10} be given by . f (1) = 10, f (2) =
9, . . . , f (10) = 1; that is, . f (n) = 11 − n, for .n ∈ {1, 2, . . . , 10}. Clearly f is 
one-to-one and onto, and so is a permutation. 

(v) Let i be a fixed number in . N and .S = {a1, a2, . . . , an, . . . }. Further let f 
be the mapping of S into itself given by . f (ai) = ai+1, . f (ai+1) = ai and 
. f (x) = x, otherwise. Then f is a permutation of S and is called a two-cycle, 
and written .(i, i + 1). More generally, if .k ∈ N and f maps . ai to . ai+1, . ai+1
to . ai+2,  . . . .ai+k−1 to . ai+k , .ai+k to . ai , and each other x in S to x, then f is 
a permutation of S called a k-cycle and is written .(i (i + 1) . . . (i + k)). For  
example, (123) is a three-cycle mapping . a1 to . a2, . a2 to . a3, and . a3 to . a1. 

Remark 2.1 We see that a permutation of a set S is simply a rearrangement of the 
members of the set S, and any rearrangement of the members of S is a permutation 
of S. 

Definition 2.2 If . S1, . S2, and . S3 are sets, . f1 : S1 → S2 is a function, and . f2 : S2 → S3
is a function, then their composition . f2 ◦ f1 is defined to be the function from . S1 to 
. S3 given by . f2 ◦ f1(x) = f2( f1(x)), for .x ∈ S1. 

Proposition 2.1 Let S be any set and . f1, f2, f3 any permutations of the set S. 

(i) . f1 ◦ f2 is a permutation of S; 
(ii) . f1 ◦ ( f2 ◦ f3) = ( f1 ◦ f2) ◦ f3 (associativity); 
(iii) if . f0(x) = x, for all .x ∈ S, then . f0 is a permutation of S and is called the 

identity permutation (existence of identity); 
(iv) there exists a permutation . f← of S such that . f1 ◦ f←1 = f←1 ◦ f1 = f0. The 

permutation . f←1 is called the inverse permutation (existence of inverse). 

Proof. Exercise. ⨅⨆

Remark 2.2 can be ignored if you have not previously studied abstract algebra or 
group theory. It is not needed in our study of probability.
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Remark 2.2 We saw in Proposition 2.1 that the set G of all permutations of a given 
set S has a binary operation . ◦ acting on any two permutations such that G with this 
binary operation has the propertiy that . f1 ◦ f2 ∈ G, whenever . f1, f2 ∈ G, that . ◦ is an 
associative operation, that G has an identity, and each member of G has an inverse. 
If you have studied abstract algebra or group theory, you will recognize that this tells 
us that G is a group with the group operation being . ◦. G is called a permutation 
group. We note further that . ◦ is not a commutative operation; for example, consider 
the set .{1, 2, 3, 4}, . f1 is the cycle .(123) and . f2 is the cycle .(2, 4), then . f1 ◦ f2 ≠ f2 ◦ f1, 
since .(24)(123) = (2,431) ≠ (123)(24). So  G is not a so-called abelian group, that 
is, G is not a commutative group. 

Proposition 2.2 If S is a finite set with .n ∈ N members, then there are . n! distinct 
permutations of the set S. 
Proof. Let .S = {a1, a2, . . . , an} and . f : S → S a permutation. Observe that . f (a1)
equals one of .a1, a2, . . . , an. So there are  n different possibilities for . f (a1). As  f is 
one-to-one and onto, there then are .n − 1 different possibilities for . f (a2). And . n − 2
possibilities for . f (a3) and so on. So altogether there are . n × (n − 1) × · · · × 1 = n!
different possibilities for f . ⨅⨆

Remark 2.3 It is very important that we understand set theory notation. When 
we say that .S = {a1, a2, . . . , an} is a set, we mean 

(i) the set S has n distinct members, that is, .ai ≠ aj , for . i, j ∈ {1, 2, . . . , n}
and . i ≠ j; and 

(ii) the order .a1, a2, . . . , an is immaterial. For example, 

. {a1, a2, . . . , an} = {an, an−1, . . . , a1} = {a2, a3, a1, a4, a5, a6, . . . , an}.

So while Proposition 2.2 tells us that the set S has . n! permutations, all of these 
. n! sets are equal as sets. 

2.2 Card Games 

There seems no more appropriate way to begin the section on card games than with 
a quote from Oscar Fingal O’Fflahertie Wills Wilde (1854–1900). 

One should always play fairly when one has the winning cards. 
Oscar Wilde
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The 52-Card Deck 

The Cloisters set of 52 cards that constitutes the only known complete deck of 
illuminated ordinary playing cards (as opposed to tarot cards) from the fifteenth 
century is owned by the Metropolitan Museum of Art in New York. It is thought 
that it was manufactured in the 1470s. The cards are hand drawn with highlights 
of gold and silver in the technique of the time used for illuminated manuscripts. 
There are four suits, each consisting of a king, queen, knave, and ten pip cards. The 
suit symbols, based on equipment associated with the hunt, are hunting horns, dog 
collars, hound tethers, and game nooses. There are no jokers. 

The Standard 52-Card Deck 

We saw in Example 1.11 the standard 52-card deck of cards, which is the French-
English design, most commonly used, especially in the English-speaking world. 
Manufacturing these cards in England began in the sixteenth century. By the nine-
teenth century, the English pattern had spread throughout the world. Some decks 
have bar code markings to facilitate sorting by machines. The standard deck uses 
black for spades and clubs and red for hearts and diamonds. However some decks 
use four colours.
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The Origin of the Sandwich 

It is suggested that John Montagu (1718–1792), 
fourth Earl of Sandwich, an eighteenth-century En-
glish aristocrat while playing a game of the card 
game cribbage did not want to interrupt his game 
to eat a meal. So he ordered his valet to bring him 
salt beef between two pieces of toasted bread. This 
allowed him to continue playing while eating with-
out getting his hands and the cards greasy from 
eating meat with his bare hands. The dish grew 
in popularity in London, and the name of Lord 
Sandwich became associated with it. Of course 
throughout history, all sorts of food had been put 
inside wraps, especially in the Middle East and In-
dia. In the Jewish Passover tradition, the so-called 
Hillel sandwich dates back 2,000 years. 

Cribbage, Noddy, and Costly Colours 

We begin our discussion with one of the oldest card games 
played with the 52 card deck, namely, the game of noddy. It  
is referred to in the Oxford English Dictionary of 1589. It 
can be thought of as a precursor of the game of cribbage. 
While noddy means fool or simpleton, here it refers to 
knave—a person of humble birth or position. It was played 
with the ace being the low card (rather than the high card or 
as a choice of either high or low as occurred in later games). 
As this game appears to be extinct, we shall not discuss 
it further. A probable descendant of noddy is the English 
game of Costly Colours which by 1850 was described as 
obsolete. The interested reader may consult [22, 29].
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Sir John Suckling: Inventor of Cribbage 

Sir John Suckling (1609–1641) was an English poet 
who is credited with having invented the card game 
cribbage. He based cribbage on the game noddy. He 
is said to have sent numerous packs of marked play-
ing cards to aristocratic houses in England and then 
travelled around playing Cribbage with them. Appar-
ently he won about 20,000 pounds, the equivalent of 
US$6 million today. He had anything but a dull life: 
he assisted King Charles 1 in the first Scottish war, 
raising a troop of a hundred men at very considerable 
personal cost and acquitted himself well as a soldier. 
He was elected to Parliament but fled to France when 
found guilty of high treason because of an attempt to 
restore the power of the King over Parliament. He later 
eloped to Spain where he fell into the hands of the 
Inquisition. Finally he committed suicide by poison in 
Paris for fear of poverty. See [1]. 

Muggins in the English Language 

Perhaps you have referred to yourself as a muggins when you did something foolish 
or volunteered for some role or job unnecessarily. In English the term means “a 
foolish and gullible person (often used humorously to refer to oneself)”. Few would 
know that it comes from the game of Cribbage. If a Cribbage player fails to claim 
their full score on any turn, their opponent may call out “Muggins” and peg any 
points overlooked by the player. 

Cribbage in Literature, Movies, TV, and Video Games 

The game of  cribbage was immortalized in the 1840 novel The Old Curiosity Shop 
written by Charles John Huffam Dickens (1812–1870). It is also mentioned in the 
following two centuries in the 1973 movie The Sting with Paul Newman and Robert 
Redford playing cribbage; in a scene in the popular TV series M*A*S*H (1972– 
1983) in which the smug and arrogant doctor Major Charles Emerson Winchester 
III is playing Cribbage; and in the 2010 video game Red Dead Redemption.
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Self-Proclaimed Cribbage Capital of the World: Nelson, Montana 

The earliest rules for cribbage were published in England in 1662. Cribbage was 
popular amongst prospectors in the American West and the small mining town of 
Nelson in the state of Montana still has a sign asserting that it is the cribbage capital 
of the world. Cribbage was also popular with submariners. 

Cribbage Game Rules as Explained by ChatGPT 

As an experiment I asked ChatGPT to summarize the rules of Cribbage. I let  
readers judge how well this is done. 

Cribbage is a card game that involves two players, 
a standard 52-card deck, and a distinctive scoring board. 
Here are the basic rules: 

### Objective: 
The goal is to be the first player to score 121 points, 
usually tracked on a cribbage board. 

### Setup: 
1. Each player cuts the deck to determine who deals first. 
The player with the lower card deals. 
2. The dealer shuffles and deals six cards to each player. 
3. Each player selects two cards to place face down into 
the crib, forming a four-card hand for the dealer to 
score later. 

### Play:
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1. The non-dealer cuts the remaining deck, and the 
dealer reveals the top card of the bottom portion, 
called the "starter" or "cut" card. If this card is a 
Jack, the dealer scores two points ("his heels"). 

2. Players take turns playing one card at a time, 
announcing the running total of card values. Face cards 
are worth 10 points, Aces are worth 1 point, and all 
other cards are worth their face value. 

3. The goal is to create specific combinations:
- **15:** Making the running total exactly 15 scores 
2 points.
- **31:** Making the running total exactly 31 scores 
2 points.
- **Pairs:** Playing a card that makes a pair (same 
rank as the previous card) scores 2 points.
- **Runs:** Playing cards that form a run (sequence 
of three or more consecutive cards) scores points 
equal to the number of cards in the run.

- **Flush:** Playing four cards of the same suit in a 
row scores 4 points. 

4. If a player cannot play a card without exceeding 31, 
they say "go," and the other player continues until they 
also cannot play. The last player to play a card scores 
1 point ("go"), or 2 points if they make 31 exactly. 

5. After all cards are played, players score their hands. 

### Scoring Hands: 
1. Players score their hands and the crib, counting 
combinations of cards:
- **15:** Each combination of cards that adds up to 
15 scores 2 points.
- **Pairs:** Each pair of cards of the same rank scores 
2 points.
- **Runs:** Sequences of three or more consecutive 
cards score points 

### Scoring Hands (continued):
- **Flush:** If all four cards in the player’s hand are 
of the same suit, it scores 4 points. If the starter 
card is also of the same suit, it scores 5 points. 
In the crib, the flush must include the starter 
card to count and scores 5 points.

- **Nobs:** If a player has a Jack of the same suit 
as the starter card, it scores 1 point ("one for his 
nobs").
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### Example of Scoring a Hand: 
Let’s say a player’s hand consists of the 5S, 5C, 6D, and 
7H, with a 
starter card of 8D:
- 15s: 5S + 5C + 5 combinations = 6 points (three 
different 15s)
- Pairs: 5S + 5C = 2 points
- Runs: 5S, 6D, 7H = 3 points
- Total: 11 points 

### Scoring the Crib: 
After both players have scored their hands, the dealer 
scores the crib 
using the same combinations as above. The dealer 
scores both the 
non-dealer’s hand and the crib, but the non-dealer 
only scores their hand. 

### Winning the Game: 
The game continues with players alternating the deal 
until one player 
reaches 121 points. If a player reaches 121 points 
during the play or 
scoring of hands, the game ends immediately. 

### Additional Rules: 
1. **Muggins (optional):** If playing with muggins, 
players can claim 
points that their opponent missed during scoring. 
2. **Skunks:** Winning by 30 or more points 
(e.g., scoring 121 points to your opponent’s 90 or 
less) is called a "skunk" 
and is sometimes counted as a double win. 

### Summary:
- **Dealing and discarding:** Players receive 
six cards and discard two to the crib.
- **Play phase:** Players alternate playing cards 
to reach specific totals 
(15, 31) or combinations (pairs, runs).
- **Scoring phase:** Each player scores their hand, 
followed by the 
dealer scoring the crib.
- **Winning:** The first player to reach 121 points
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wins the game. 

Feel free to ask if you have any more specific 
questions or need further clarification on any 
of these rules! 

The reader who is not satisfied with this ChatGPT summary of the rules for 
cribbage is welcome to consult [20–22, 25]. 

I mention that cribbage can be played by two to six players, whereas the description 
above is clearly for six players. 

If one wants to know what is the perfect hand in cribbage 

In Cribbage, the perfect hand is worth 29 points. 
This rare hand consists of: 
[5Hearts,5Spades,5Clubs,5Diamonds,JackHearts]

- Three fives (5S, 5C, 5D)
- One five of the same suit as the starter card (5H)
- The jack of the same suit as the starter card (JH) 

The points are calculated as follows:
- Fifteen counts: Four different combinations of two 
cards that make 15, and each five with the starter 
5H = 8 points

- Pairs: Six pairs of fives = 12 points
- Four-of-a-kind: All four fives = 4 points
- Nobs: The jack of the same suit as the starter 
card = 1 point 

Total = 29 points. 

I leave as an exercise for you to show that the probability of a perfect hand in a 
2-person Cribbage game is 1 

216,580 
= 0.000004617 . . . . 

In a three-person cribbage game, each person is dealt only five cards and discards 
only one in the crib. I leave as an exercise for you to show that the probability of a 
perfect 29 point hand in a 3-person cribbage game is 1 

649,740 
= 00000153908 . . . .



2.2 Card Games 65

Poker 
According to [29] in 1973, poker was by far the most popular card game throughout 
the world measured both by the amount of money that changes hands daily and 
by the number of players. He goes on to say that while 30 years earlier Poker 
was almost exclusively a man’s game, by the 1970s more women than men played 
mainly because so many new poker variations had sprung up over the previous 20 
years. Scarne says that the earliest reference to Poker he found was in the writings 
of Jonathan Harrington Green (1813–1887) [8] who is best known as a reformed 
American gambler who campaigned against illegal gambling and was responsible 
for some antigambling laws. 

Today Poker is played with a standard deck of 52 cards. Each player is initially 
dealt five cards. We shall see that in a game of poker, I am dealt five cards one 
at a time. As a player I am interested only in what five cards I receive, not in 
the order that I receive the five cards. So while there are .5! = 120 different 
orders that I can be dealt those cards, as far as I am concerned, they are all the 
same. 

We shall discuss various poker hands in due course, but we need to cover some 
basic material first. 

Combination Lock 

Example 2.2 Let us consider the following five-digit combination lock. 

To open this lock, you set each of the five 
dials to the correct number between 0 and 9, 
so obtaining a number between 0 = 00000 and 
99,999. Thus there are 100,000 choices. Clearly 
the correct order of these five numbers is essen-
tial. Here the order of the numbers does matter. 

Selection with and Without Replacement 

Definition 2.3 Let S be a set. An element a is said to be selected from S if a ∈ S. 
Let k ∈ N. Then the elements ai , i = 1, 2,  . . . ,  k, are said to be selected without 
replacement or a sample without replacement from S if a1 is selected from S and 
each ai , for  i = 2,  . . . ,  k, is selected from the set S \ {a1, a2,  . . . ,  ai−1}. 
The elements ai , i = 1, 2,  . . . ,  k, are said to be selected with replacement or a sample
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with replacement from S if each ai , for  i = 1, 2,  . . . ,  k, is selected from the set S. 
(In a sample with replacement, the same element may appear more than once.) 

Example 2.3 Let us begin with a pack of 52 cards as in Example 1.11 and assume 
that we are dealt five cards as in a common version of the game poker. Then this is 
an example of selection without replacement, so the five cards must be distinct. If 
Alex is playing this game, then the card Alex receives first could be any one of the 
52 cards, her second card can be any one of the remaining 51 cards, her third card 
can be any of the remaining 50 cards, her fourth card can be any of the remaining 
49 cards, and her fifth card can be any of the remaining 48 cards. So the number of 
these ordered five card hands is 52 × 51 × 50 × 49 × 48 = 52! 

47! = 311,875,200. But 
this does not tell us the number of possible hands Alex can be dealt. This is because 
the order that Alex receives her five cards is of no consequence: for example, if she 
is dealt AH,2H, 3H, 4H, 5H, or 2H,AH,3H,4H,5H, then she has the same five cards. 
By Proposition 2.2 there are 5!=120 different orderings (permutations) of these five 
cards. So the number of distinct five card hands is 52! 

(47!)(5!) = 2,598,960. 

Using the R language 
factorial(52)/(factorial(47)*factorial(5)) 

Proposition 2.3 Let the set S have n elements, for n ∈ N, and let k ∈ N with k ≤ n. 
Consider samples from S consisting of precisely k elements. 

(i) There are nk distinct samples, if each is a sample with replacement from S. 
(ii) There are n(n − 1)(n − 2) . . .  (n − k + 1) = n! 

(n−k)! distinct samples, if each is 
a sample without replacement from S. 

Proof. When sampling without replacement, each of the k elements can be chosen 
in n ways. Thus (i) is true. 

When sampling without replacement, the first element can be chosen in n ways, 
the second element can be chosen in n − 1 ways, and so on yielding that (ii) is 
true. ⨅⨆

Definition 2.4 Let n, k ∈ N, with k ≤ n, and let S be a set which has n members. 
Then Pn 

k denotes the number of ways that an ordered collection a1, a2,  . . . , ak can be 
selected without replacement from S. 
A combination is a selection without replacement of k elements from the set S, 
where the order of selection is unimportant. Further, the number

(n 
k

)
, called n choose 

k, denotes the number of combinations obtained by choosing k elements from the 
set S or equivalently the number of ways of choosing k distinct elements from S or 
equivalently the number of subsets {a1, a2,  . . . , ak } of S. 
By convention

(n 
0
)

is defined to be equal to 1.
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Using the method in Example 2.3, we can easily prove the following general 
result. 

Proposition 2.4 Let k, n ∈ N with k ≤ n. Then 

(i) Pn 
k = n! 

(n−k)! ; 
(ii)

(n 
k

)
= n! 

(n−k)!k! ; and 
(iii) Pn 

k = k!
(n 
k

)
. 

Proof. Exercise. ⨅⨆

So the number of ways of selecting k items from n items without replacement

(i) when the order is important is Pn 
k = n! 

(n−k)! , and 
(ii) when the order is irrelevant is

(n 
k

)
= n! 

(n−k)!k! . 

Example 2.4 We saw in Example 2.3 there are 52! 
(47!)(5!) = 2,598,960 distinct five card 

poker hands. We shall assume that the game is fair, so that the probability of being 
dealt any one card is equal to the probability of any other card. 

What, then, is the probability of be-
ing dealt four aces amongst the five 
cards? So 4 of the 5 cards must be 
AH,AD,AC,AS, and the other card can 
be any of the remaining 48 cards. So 
the number of combinations of 5 cards 
which have 4 aces is 48. As the game is 
fair, the probability of this occurring is 

. 
48 × (47!)(5!)

52!
=

(48!)(5!)
52!

=
1

13 × 17 × 5 × 49
= 0.00001846 . . . .

Example 2.5 In Example 2.4 we calculated the probability of being dealt four aces 
amongst our five cards. What is the probability if instead of four aces we insisted on 
“four of a kind”, that is, four aces or four kings or four jacks or four 2s or four 3s 
. . .  four 10s. We saw the number of combinations of 5 cards which include 4 aces is 
48. This is also true if four aces is replaced by four kings or four queens . . .  four 2s. 
So the number of combinations with four of a kind is 13 × 48. So the probability of 
being dealt four of a kind is 

.13 ×
⎛

1
13 × 17 × 5 × 49

⎞

=
1

17 × 5 × 49
= 0.0002400 . . . .
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Example 2.6 In some sense we calculated the probability of being dealt four aces 
and being dealt four of a kind from first principles in the previous examples. Let us 
do it now using

(n 
k

)
. First, let us calculate the probability of being dealt four aces in a 

fair game. Note that the deck of 52 cards has 4 suits: spades(S), clubs(C), hearts(H), 
diamonds(D), and 13 of each suit, A,K,Q,J,10,9,. . .  ,2. Now four cards of those dealt 
are aces, and these four cards can be chosen in only one way. For the fifth card, we 
choose any of the four suits, so that is

(4 
1
)
. For the value of the card, it is any of the 

13 cards except the ace, so it is
(12 

1
)
. So the total number of combinations for being 

dealt four aces is
(4 
1
)
×
(12 

1
)
= 4 × 12 = 48. As before the probability is then this 

number divided by the total number of distinct five card hands, that is, 

. 
48 × (47!)(5!)

52!
=

5!
52 × 51 × 50 × 49

=
1

13 × 17 × 5 × 49
= 0.00001846 . . . .

Next let us look at the number of combinations of five card hands which have four 
of a kind. This time the 4 of a kind can be any of the 13 values, that is,

(13 
1
)
= 13. 

The 5th card can be any of the remaining 12 values and any of the 4 suits, that is(12 
1
)
×
(4 
1
)
= 48. So the total number of combinations with 4 of a kind is 13 × 48. 

Thus the probability of being dealt four of a kind in a fair game is 

. 13 ×
⎛

1
13 × 17 × 5 × 49

⎞

=
1

17 × 5 × 49
= 0.0002400 . . . .

Example 2.7 Again let us consider a fair game of five-card poker. We evaluate the 
probability that the five cards we are dealt, ignoring the suits, have five different face 
values. The face values can be chosen in

(13 
5
)

ways. Each of the cards can be any 
one the four suits. So the total number of combinations is 45 ×

(13 
5
)
. The probability 

of this happening is the number of combinations divided by the total number of five 
card hands which is

(52 
5
)
, that is, the probability is 

. 
45 ×

(13
5
)

2,598,960
= 0.5070 . . .

We evaluated the above using the software package R: 

(4^5*choose(13,5))/choose(52,5)
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Example 2.8 Consider a fair game of five-card poker. We evaluate the probability 
of the five cards we are dealt being a full house, that is, three cards of one value and 
two cards of another value but equal value to each other. 

First examine the three cards of a kind. 
There are 13 different values, so the number 
of ways of choosing the value is

(13 
1
)
. Now  

there are four suits, and the three cards are 
therefore of three suits, giving the number 
of combinations of these as

(4 
3
)
. So the to-

tal number of combinations of three cards of 
equal value is

(13 
1
)
×
(4 
3
)
= 52. 

We also need a pair of a different value. This pair can be any of 12 values, so 
there are

(12 
1
)

combinations. The suits are any two of the four possible suits, that is, 
we have

(4 
2
)

combinations. So in all we have
(12 

1
)
×
(4 
2
)
= 72 combinations of the 

pair. So altogether the number of combinations of the five cards for a full house is 
52 × 72 = 3,744. 

We know previously that the total number of 5 card hands is 2,598,960. So the 
probability of a full house in our fair game is 

. 
3,744

2,598,960
= 0.001440 . . . .

Example 2.9 Consider a fair game of five-card poker. We evaluate the probability of 
the five cards we are dealt being a flush, that is, all five cards are from the same suit. 
(In the special case that the five cards have the values ace, king, queen, jack, and 10, 
the flush is called a royal flush.) 

All the cards must be of the same suit, and 
there are four possible suits. There are 13 differ-
ent values, and we are dealt 5 cards, so the total 
number of 5-card flushes is

(13 
5
)
×
(4 
1
)
= 5,148. 

The total number of 5 card hands is 2,598,960. 
So we see that the probability of being dealt a 
flush is 

.
5,148

2,598,960
= 0.001980 . . . .
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Example 2.10 Consider a fair game of five-card poker. We evaluate the probability 
of the five cards we are dealt being a straight, that is, the values of the five cards are 
consecutive numbers, and they can be of any suits. (In the special case that the five 
cards are of the same suit, the straight is called a straight flush.) 

We note that in a straight the lowest value 
card can be ace, 2, 3, 4, 5, 6, 7, 8, 9, or 10. 
Note also that {ace, 2, 3, 4, 5} and {10, 
jack, queen, king, ace} are both straights. 

There is no straight which has as its 
lowest value card a jack, queen, or king. 
Now once we know the lowest value 
card in a straight, we know the values 
of the higher value cards in the straight. 
What we do not know is the suits of 
each of these cards. For each card in the 
straight, there are four possible suits. So 
for each of ace,2,3,4,5,6,7,8,9,10, there 
are 45 straights which have that value card 
as its lowest. 

Thus there are 10×45 = 10,240 different straights. Altogether there are 2,598,960 
possible hands. So the probability of your hand being a straight in a fair game is 

. 
10,240

2,598,960
= 0.003940 . . . .

We see, therefore, from Example 2.9, that there is a higher probability of a straight 
than a flush. Indeed the probability of a straight is almost twice that of the probability 
of a flush. 

Bluffing in Poker 

To quote Judi James in her book Poker Face: Mastering Body Language to Bluff, 
Read Tells, and Win, [12], “Winning at poker is like winning at life. To play well you 
need more than a lucky hand. That exciting extra dimension is all about people skills; 
having the ability to read your opponent’s body language and block their attempts to 
read yours”. Of course this is the source of the term poker face in English idiom. I 
recommend reading [12] to learn how to bluff well in poker. 

I also recommend consulting the book [32] which deals not only with bluffing 
but playing poker competitively, in general. 

Finally I mention the substantial book Decide to Play Great Poker: A Strategy 
Guide to No-Limit Texas Hold’Em, [7], by Annie Duke and John Vorhaus.
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Bridge 

Example 2.11 The card game whist, [20], introduced in the eighteenth century is 
a descendent of the sixteenth-century game trump. In 1742 Edmond Hoyle (1672– 
1769) published the book, [10], which became a standard text on the game until 1862 
when Henry Jones, writing under the pseudonym of Cavendish, published [14]. In 
fact the phrase “according to Hoyle” came to mean playing by the rules. 
During the 1890s a variant of the game known as bridge whist appeared and it 
evolved into contract bridge. For a discussion of contract bridge and probability, see 
[19]. Whist is an example of a trick-taking game, that is, one where players take 
turns playing cards, and the highest card played in each round wins what is known 
as the trick.The goal is to win more tricks than others. this family of games includes 
contract bridge, euchre, and five hundred. 

Below is a drawing by Marguerite Martyn (1878–1948) for the St. Louis Post-
Dispatch of a session of the Women’s Whist Club Congress in St. Louis, Missouri.
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Charles Anderson Worsley Anderson-
Pelham, second Earl of Yarborough (1809– 
1862), gave his name to a specific hand of 
cards in whist and contract bridge which is 
known as a Yarborough. In the game of whist, 
he would offer to give any player £1,000 (the 
equivalent in 2020 of over £100,000 or over 
$100,000) if during the evening they were 
dealt a hand that contained no card higher 
than a 9. All he asked was that the player 
pledged him £1 before each deal. Let us look 
at the probability of him losing. 

Bridge, today, is one of the most popular card games in the world. Whist and 
contract bridge are played by four players in two competing partnerships with partners 
usually sitting opposite each other around a table. One pack of 52 cards is used and 
each player is dealt 13 cards. In bridge, one pair is referred to as North and South, 
while the other is West and East. The game begins with an auction, the details of 
which are not relevant to our study. Players may not see their partner’s hand during 
the auction. The dealer begins the auction and can make the first bid. Each player 
in turn may then pass or make a bid—a contract. The bid specifies the level of their 
contract, which must be higher than any previous bid including their partner’s and 
may specify the trump suit or no trump (no denomination). The term “higher” means 
the value of the card is higher or the suit is regarded as higher, where the suits have 
the following order from low to high: clubs, diamonds, hearts, spades, and no trump. 

So firstly, let us look at the probability of one player’s hand of 13 cards being a 
Yarborough. The number of hands which are a Yarborough is the number of hands 
using only cards from 2, 3, 4, 5, 6, 7, 8, 9. There are 32 such cards and 13 cards 
are selected from these 32. So the number of Yarborough hands is

(32 
13
)
. The total 

number of bridge or whist hands is
(52 
13
)
= 635,013,559,600 (over 635 billion hands). 

So the probability of a Yarborough is
(32 
13
)
/
(52 
13
)
. To calculate the odds we evaluate 

. 

⎛
52
13

⎞

/
⎛
32
13

⎞

= 1,828.042.

We used the software package R: 
choose(52,13)/choose(32,13) 

So the correct odds are >1,827:1. We now know that the 2nd Earl of Yarborough 
was on a good deal since he offered odds of only 1000:1. 

Let us now look at the probability of more common bridge hands. There are four 
suits, and so a bridge hand could have, for example, 4-4-3-2 suits, that is, four cards 
in each of two suits, three cards in a third suit, and two cards (a doubleton) in the
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fourth suit. Let us evaluate the probability of this 4-4-3-2 hand by calculating the 
number of such hands. Note that 4-4-3-2 does not specify which suits have 4,3, or 
2 cards. If we specify which suit has the doubleton and which suit has three cards, 
then we know the other two suits have four cards. The suit having the doubleton can 
be chosen in four ways, and the suit having three cards can then be chosen in three 
ways. So the total number of hands of the type 4-4-3-2 is(13 

4
)
×
(13 

4
)
×
(13 

3
)
×
(13 

2
)
× 4 × 3. 

The probability of a 4-4-3-2 hand is therefore this number divided by
(52 
13
)
. This is  

calculated using the software package R and equals 0.2155. . . . 
This is, in fact, the highest probability of all possible hands. 
Similarly we can calculate the probability of each of the other 39 hands: 

5-3-3-2, 5-4-3-1, 5-4-2,2, . . . , 12-1-0-0, 13-0-0-0. 
For example, the probability of 13-0-0-0 is 4/

(52 
13
)
= 0.000000000006299 . . . . 

We might ask what is the probability that one player and her/his partner both have 
4-4-3-2 hands. This is left as an exercise. 

Bidding in Bridge 

To quote Andrew Robson and Oliver Segal in their book Partnership Bidding at 
Bridge: The Contested Auction, [27], “What makes bridge interesting to you? Why 
does it engage you sufficiently that you are reading a book about the game? Of course 
bridge offers an endless mental challenge—but then so does chess, backgammon, or 
crossword puzzles for that matter, no; you probably play bridge for much the same 
reason that we do– because it is essentially and uniquely a partnership game. . . . .
Bridge is a game at which two people should combine rather than add their efforts. 
. . . . it is clearly in the auction (the bidding stage) where most of the opportunities lie 
to exploit partnership skills”. Robson and Segal say that their book [27] is written so 
that life will be easier for your partners. 

One of the best books for beginners to bridge is Crisfield’s book Bridge for 
Everyone, [5]. It is very gentle and holds your hand as you learn bridge basics, 
scoring, bidding, and playing. 

The book Basic Bridge: The Guide to Good ACOL Bidding & Play, [16], by Ron 
Klinger can also be read by the beginner. It focusses however on bidding. It says 
“A bidding system is like a language—it is a means of communicating with your 
partner. However the language of bridge allows only 15 legal words: one, two, three, 
four, five, six, seven, no-trumps, spades, hearts, diamonds, clubs, double, redouble, 
and pass (no-bid). . . . . With this restricted language you try to convey to your partner 
your thirteen cards . . . . ” of a possible billion possibilities. “Basic Bridge is based on 
the ACOL system, one of the most popular systems in the world. it is the easiest to 
learn and is the most natural of all bidding systems”. 

The book Insights on Bridge: Moments in Bidding, Book 1, [17], by Mike 
Lawrence provides over 100 examples of bridge hands and how bidding might 
proceed.
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Euchre 

Euchre (or eucre) was regarded as the national card game 
of the United States in the late nineteenth century. Ac-
cording to [34] “During the reign of Napoleon in Eu-
rope, Euchre was modernized and brought to America 
in the French controlled New Orleans. From Louisiana 
the game travelled up the path of the Mississippi River 
into the northern states where it gained considerable 
popularity”. It is a trick-taking card game played to this 
day in Australia, Canada, New Zealand, the UK, and the 
USA. There are many variants of the game of euchre. 
For details on how to play euchre, see [2–4, 29]. 

Euchre was responsible for introducing the joker into 
the modern deck of cards. Typically euchre is played by 
4 players, and each is dealt 5 cards from a 25-card deck 
consisting of ace,king, queen, jack, 10, 9 in each suit 
plus one Joker. Having decided on a trump suit—let us 
say it is spades, the cards rank downwards: 

1. Joker 
2. Jack of spades 
3. Jack of clubs (the jack in the other black suit) 
4. Ace-king-queen-10-9 of spades (in that order) 
5. Ace-king-queen-jack-10-9 of other suits (except 

jack of clubs which already appears above). 

Example 2.12 In the game of euchre, as described above, what is the probability of 
being dealt two Jacks of the same colour and three other cards (not the Joker) of the 
same suit as the first Jack you were dealt. (While the euchre hands do not depend 
on the order the cards were dealt, we can nevertheless observe that order and so 
referring to the first jack dealt makes sense.) 
Firstly we observe that the total number of different euchre hands is

(25 
5
)
= 53,130. 

As there are four jacks, there are four ways of choosing the first Jack and then only 
one way of choosing the second jack of the same colour. So there are 4× 1 = 4 ways  
of choosing the two jacks of the same colour. The other three cards are then chosen 
from ace, king,queen,10,9, and they must all be of the suit as the first jack dealt. 
So of these five cards, we are dealt three. There are

(5 
3
)
= 10 ways this can occur. 

So the number of ways we can be dealt a hand as described is 4 × 10 = 40. So the 
probability of being dealt such a hand is 

.40/53,130 = 0.0007528 . . . .
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Example 2.13 If in the game of euchre, as above, spades is the trump suit, what is 
the probability of being dealt the highest possible scoring hand? 
The best hand is obviously joker, jack of spades, jack of clubs, ace of spades, and 
king of spades. There is only one such hand. So the probability of this is 

. 1/53,130 = 0.00001882 . . . .

Rummy 

Example 2.14 Rummy evolved from a Spanish game called conquian and appeared 
in southwest USA in the 1850s. There are a hundred or more games in the rummy 
family. In the 1930s and 1940s, rummy, [21], was the most popular card game in the 
USA until its offsprings gin rummy and canasta [20] became more popular. There 
are many variants of the game of Rummy which can be played by two to six people. 
We shall focus on basic rummy with 4 players, where each player is dealt 7 cards 
from a standard 52-card deck, with the cards ranking from 2 (low) to ace (high). 
(Some variants have a 54-card deck which includes 2 jokers, and each joker is a wild 
card which can be used instead of any other card.) All rummy games are concerned 
with Melds, that is, a combination of sequences (or Runs of 3 or more cards in the 
same suit and/or Sets (or Books) of 3 or 4 of a kind as in the pictures below.
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Players pick up and discard a card when it is their turn. Melds are placed face up on 
the table. The player who successfully melds all her/his cards before everyone else 
is the winner, scoring points based on the value of the cards held in the hands of the 
other players. 

Now let us look at some of the probabilities.There are 52 cards, and each player 
is dealt 7 cards. So the total number of different rummy hands is

(52 
7
)
= 133,784,560. 

Now consider being dealt four of a kind. Each suit has 13 cards, so the total 
number of 4 of a kind is 13. The other 3 cards in the hand can be any of the other 
48 cards. So there are

(48 
3
)
= 17,296 ways of choosing those 3 cards. Thus the 

probability of being dealt 4 of a kind is 

. 
13 × 17,296
133,784,560

= 0.001680 . . . .

We leave as an exercise calculation of the probability of being dealt (i) three or 
four of a kind (ii) a sequence of at least four cards (iii) a sequence of at least three 
cards (iv) a hand which consists of a four card run and a three card set. 

There are many books on rummy. A useful one is Trev Tobin’s How Do I Play 
Rummy: The Ultimate Guide to Learn How to Play, Master and Win Rummy, Instruc-
tions, Rules, and Strategies to Excel at Playing Rummy, [31]. This book, available 
in Kindle and paperback, also includes how to play gin rummy. 

2.3 Mahjong 

The game mahjong (or mah jongg) is a tile-based game 
belonging to the rummy family. It was probably devel-
oped during the Qing dynasty (1644–1911) in China 
(although some argue that it dates back 2,600 years 
to Confucius) and has spread throughout the world 
since the early twentieth century. According to [35], 
mahjong was so popular in the 1920s that people often 
paid for teachers and for real-time practice, and it was 
common for husbands to teach wives and for adults to teach children. There is anec-
dotal evidence suggesting participation can prevent mental deterioration associated 
with old age.
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There are variants of mahjong such as Hong Kong 
Mahjong, Harbin Mahjong, Tianjin Mahjong (which has 
seven jokers), Japanese Mahjong, American Mahjong 
(Mah Jongg), Rummikub (Israel Mahjong), Vietnamese 
Mahjong, and Pussers Bones played by sailors in the 
Royal Australian Navy (pusser is slang for a purser or 
a ship’s supply officer), which are played with differing 
tiles and a differing number of tiles. There is also a re-
lated one person game of Mahjong Solitaire (Shanghai 
Solitaire) and a Three Player Mahjong. The earliest 
surviving mahjong sets date to the 1870s. For a discus-
sion of different versions of the game of mahjong, see 
[26]. There is no definitive statement on the number of 
mahjong players throughout the world, but it is probably in the hundreds of millions 
and likely at least as many women as men. 

Old Mahjong Tiles Set displayed in the Tianyi Pavilion Museum 

We describe a Mahjong game played with 144 tiles with Chinese characters and 
symbols. Each player begins by receiving 13 tiles. In turn players draw and discard 
tiles until they complete a winning hand using a 14th tile drawn to form four melds 
(or sets) and a pair (eye). 

The 144 tiles are: 

1. 4 identical sets of 9 tiles of dot-style tiles = 36 dot-style tiles; 
2. 4 identical sets of 9 tiles of bamboo-style tiles = 36 bamboo-style tiles; 
3. 4 identical sets of 9 tiles of character-style tiles = 36 character-style tiles; 
4. 4 identical sets of East, South, West, and East wind honor tiles = 16 wind 

honor tiles;
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5. 4 identical sets of centre, fortune, and blank arrow tiles = 12 arrow tiles; 
6. Spring, Autumn, Winter, and Summer tiles = 4-season tiles; 
7. Plum, orchid, chrysanthemum, and bamboo tiles = 4 flower tiles. 

Melds in mahjong correspond to melds in rummy. Melds are sets of tiles in a 
player’s hand consisting of: 

(i) a Pong, which is three identical tiles, or 
(ii) a kong, which is four identical tiles, or 
(iii) a Chow, which is three tiles of the same suit in numerical order, or 
(iv) Eyes (or an it pair), which are two identical tiles and are an essential part of 

a 14-tile winning hand. 

As examples of these, we have as follows. 

Each of the four players is seated in a designated area; tiles are turned face down 
and moved around by all players to shuffle them. Then each player forms a row of 
18 tiles, 2 tiles high and face down in front of himself or herself. There are various 
rituals which we shall not elaborate on here. (See [18].) Each player has a hand of 
13 tiles. Throughout the game tiles are taken and discarded. 

If a player draws a flower or season tile, it is placed to the side and not part of the 
13-tile hand (but if that player wins, she/he may earn bonus points for these), and a 
replacement tile is drawn before their discard. 

Whenever a kong is formed, the player must draw an extra tile and then discard a 
tile. The fourth piece of a kong is not considered as one of the 13-tile hand.
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The number of points the player with the winning hand receives depends very 
roughly on the probability of that hand occurring. 

The total number of 14-tile hands (which must exclude all flowers and seasons 
and all kongs) is (

(136 
14
)
)—the number of hands which include a kong. There are 34 

possible kongs (nine from dots, nine from bamboo, nine from characters, four from 
winds, and three from arrows). The number of 14-tile hands which exclude all flowers 
and seasons but include one or more kongs is (

(132 
10
)
)×34 = 1.06099959705168∗1016. 

So the total number of legal 14-tile hands is 

. 1018 × 4.239 . . . , a gigantic number.

[However, we note that there are identical tiles, so this gigantic number of hands 
includes many identical hands. Each tile in a legal 14-tile hand is one of 4 identical 
tiles. So the total number of legal 14-tile hands no two of which are identical is ≥ 
the total number of legal 14-tile hands divided by 414, which equals 

. 1010 × 1.579 . . . , which is still a gigantic number.]

A winning hand consists of 14 tiles (13 tiles in the hand plus one tile that is picked 
up.) Such a hand must have four melds and one pair, for example, four pongs and 
one eyes. The number of possible pongs is

(4 
3
)
× 36 = 144. The number of hands 

with four pongs is 

. 

⎛⎛
4
3

⎞

× 36
⎞

×
⎛⎛

4
3

⎞

× 35
⎞

×
⎛⎛

4
3

⎞

× 34
⎞

×
⎛⎛

4
3

⎞

× 33
⎞

= 361,912,320.

The eyes can come from any of 34 sets of 4 tiles other than the tiles identical to those 
in the 4 pongs, i.e., there are

(4 
2
)
× 30 = 180. So the total number of winning hands 

with four pongs and one eyes is 

. 361,912,320 × 180 = 1010 × 6.514 . . . .

So the probability of winning with four pongs and eyes is 

. (1010 × 6.514 . . . )/(1018 × 4.239 . . . ) = 10−8 × 1.536 . . . .

In the exercises you will calculate the probability of winning with some other hands. 

Learning Mahjong and Its Role in Modern American Culture 

One on the least expensive books for learning Mahjong is Garcia Jack’s Book 
Mahjong for Beginners, [11], available in paperback and on Kindle and only 41 
pages. A more comprehensive book also available on Kindle is Larry Kistler’s Play 
Smarter and Win More Mahjong: Logic, Strategy and Tactics, [15].
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The most fascinating recent book on Mahjong is by Annelise Heinz, Mahjong: 
A Chinese Game and the Making of Modern American Culture, [9]. A review of 
this book says “Bold, ambitious, and stunningly detailed . . . . Heinz methodically 
describes the entwined transpacific history of the game, its many different players 
(Chinese, white women, Jewish American mothers, Airforce wives, Japanese Amer-
icans, and Chinese Americans), and its production, marketing, and consumerism in 
China and the United States, the game’s cultural evolutions, its cross-over appeal, 
and importantly, the significance that the game had on the formations of race, gender, 
ethnicity, and national belonging . . . . Mahjong is both the star and the setting of a 
compelling study of American modernity”. Heinz also reveals the ways in which 
women leveraged a game to gain access to respectable leisure. The result was the 
forging of friendships that lasted decades and the creation of organizations that raised 
funds for the war effort and philanthropy. No other game has signified both belonging 
and standing apart in American culture. 

American Mahjong or Mah Jongg 

American mahjong, known as mah jongg, is a vari-
ant of Mahjong introduced by Joseph Park Babcock 
(1893–1949) who decided to increase the interest in 
America in the game by making it easier for Americans 
to understand. So he produced new simpler rules that 
became standard for the American game in 1935. Now 
national tournaments are played using these rules. The 
total number of tiles in Mah Jongg is 152. As well as 
those pictured at the right there are dot tiles, bamboos, 
craks, windows, dragons, flowers, and jokers. 

Elaine Sandberg’s book, A Beginner’s Guide to 
American Mah Jongg: How to Play The Game & Win, 
[28], is available in paperback and Kindle. See also [6]. 

2.4 Lotto 

Example 2.15 Throughout the world, there are many lotteries whose names include 
the word “lotto”. For our discussion, let us assume that to win a share of the first 
prize, you must select six numbers that are the same as the ones drawn randomly 
without replacement from a pool of, say, 40 numbers. The number of distinct 6 
numbers chosen from 40 numbers is

(40 
6
)
= 3,838,380. So any one choice of 6 

numbers has a probability of 1/3,838,380 = 10−7 × 2.605 . . . . So your chances of 
winning the lotto game is, as everyone knows, incredibly small.
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Let us assume that to win a share of second prize, you must select six numbers, five 
of which are amongst the six numbers drawn randomly without replacement from a 
pool of, say, 40 numbers.

(6 
5
)

is the number of ways of choosing the 5 numbers from 
the 6 winning numbers. Then there are 6−5 numbers of the 6 numbers you chose 
which are from the 40 − 6 = 34 losing numbers, and there are

( 34 
6−5

)
ways of doing 

so. The probability of winning a share of second prize is 

. 

(6
5
)
×
( 34
6−5

)

(40
6
) = 0.00005314 . . . .

More generally we can consider the following. Our lottery has N numbered balls 
and the player chooses n of these numbers. Let us see what the probability is that k 
of the players chosen numbers are amongst the K winning numbers drawn without 
replacement from the N numbers. The above argument shows the probability is 

. 

(K
k

)
×
(N−K
n−k

)

(N
n

) .

What we have described is quite simply the hypergeometric distribution. 
Let us now consider a variation of lotto known internationally as powerball. For  

our discussion, let us assume that to share in the first prize, you must select six 
numbers that are the same as the ones drawn randomly without replacement from a 
pool of, say, 40 numbers, and you must also choose one extra number which is the 
same as the “powerball” which is a number drawn randomly from a different pool of, 
say, 20 numbers. As we saw previously the probability of choosing the six numbers 
correctly equals 1/3,838,380. The probability of choosing the powerball correctly is 
1/20. So the probability of choosing the six numbers correctly and the powerball 
correctly equals 1/3,838,380 × 1/20 = 10−8 × 1.302 . . . . 

2.5 Voltaire Discovers a Flaw in French Lotto and Becomes a 
Millionaire 

François-Marie Arouet (1694–1778), [23], was a prolific French writer, philosopher, 
writer, and advocate for freedom of speech and separation of church and state. 
Following his incarceration at the Bastille in 1718, he adopted the nom de plume M. 
de Voltaire by which he is well-known today. In 1729 the French government started 
running a lottery on bonds it owned, in an attempt to promote the purchase of these 
bonds. Only bond holders could buy tickets in this lottery, and the price was pegged 
to the value of the bond. Winners would get the face value of the bond as well as a 
half-million-livre jackpot. Voltaire and his mathematician friend Charles Marie de 
La Condamine (1701–1774) recognized a serious flaw in the design of this lottery.
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If you owned a bond worth a very small amount, you could buy the lotto tickets 
extremely cheaply, yet your lotto ticket had just as much of a chance of winning as 
someone who owned a bond for 100,000 livres and had to buy their ticket for 100 
livres. Voltaire, de la Condamine, and 11 compatriots formed a syndicate, and by 
June 1730, all had made a sizeable amount. By this process Voltaire himself amassed 
a profit the equivalent today of over US$12 million, which he then invested wisely 
and became a rich man. For a colourful version of this story, see [24]: “The Château 
de Ferney became Voltaire’s home for the rest of his life, offering him a secure base 
from which to conduct his long and resolute campaigns against church and state. The 
house had been expensive to build and was expensive to run. Accordingly, he began 
to invest successfully in silk production and watch manufacture. Other monies were 
invested more conventionally, for example, in the provision of loans to asset-rich but 
cash-poor aristocrats who needed to fund their lifestyle”. 

2.6 Bingo 

The history of the popular game of bingo begins in the 
sixteenth century with the Italian lottery Il Gioco del 
Lotto d’Italia. The game spread to France from Italy and 
was known as Le Lotto, played by the French aristoc-
racy. The game is thought to have spread to England 
in the eighteenth century. Players mark off numbers on 
a ticket as they are randomly called out by a caller in 
order to achieve a winning combination. The similar 
Tombola was used in nineteenth century Germany as an 
educational tool to teach children multiplication tables 
and spelling and one can still find Tombola used in the 
context of a Montessori Educational game. 

Bingo, previously known in the UK as housey-housey, became increasingly pop-
ular following the Betting and Gaming Act 1960 with purpose-built bingo halls. 
Bingo played in the UK (90-ball bingo) is slightly different from bingo played in the 
USA (75-ball bingo), as the tickets and the calling are slightly different.
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Problems 

Dead Man’s Hand in Poker 

James Butler Hickok (1837–1876), well-known known 
as “Wild Bill” Hickok, [33], was a folk hero of the 
American Wild West and was a soldier, scout, lawman, 
gambler,and gunfighter. While playing poker in 1876, 
he was shot and killed by an unsuccessful gambler, 
who walked up behind him and shouted, “Damn you! 
Take that” before shooting him in the back of the head 
at point-blank range. The hand of cards which Hickok 
supposedly held at the time of his death has become 
known as the dead man’s hand: ace of spades, ace of 
clubs, 8 of spades, and 8 of clubs (i.e. two black pairs), 
plus one other card. 

2.1 In a fair game of poker using a standard deck of 52 cards, what is the probability 
of being dealt a “dead man’s hand”? 

2.2 Assume you are dealt a “dead man’s hand”, where the fifth card is a 2 of spades. 
If you discard the 2 of spades and are dealt another card, now what is the probability 
that you will have a full house by having 3 aces or three 8s)? 

2.3 Assume you are dealt a “dead man’s hand”, where the fifth card is a 5 of spades. 
If you discard all but the 2 aces and are dealt three other cards, what is the probability 
that you will have four aces? 

2.4 Compare the probabilities of being dealt a hand with at least three kings in (a) 
poker, (b) bridge, (c) euchre, and (d) rummy. 

2.5 In the game of rummy as described, calculate the probability of being dealt a 
hand with a sequence of length at least three. 

2.6 In the game of rummy, calculate the probability of being dealt a hand which 
consists of both a four-card run and a three-card Set? 

2.7 In a variant of the game of rummy described in there is a 54-card deck which 
is the standard 52 cards plus 2 jokers. Now each joker can behave like any card. 
So 5 of clubs-joker-7 of clubs is an acceptable run and queen of hearts-queen of 
spades-joker is an acceptable set. What is the probability in this version of rummy 
of being dealt (i) a four-card run or (ii) a four-card set?
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2.8 There is a variant of lotto (not powerball). In this variant the player selects 6 
numbers, but there are 8 numbers drawn without replacement from a pool of 40 
numbers, with the last 2 of these drawn numbers called supplementary numbers. To 
win a share of first prize, the 6 numbers the player chooses need to be the same as the 
first 6 numbers of the 8. To win a share of second prize, 5 of the 6 numbers chosen by 
the player must be the same as 5 of the 6 numbers drawn, and the 6th number chosen 
by the player needs to be one of the two supplementary numbers. Check whether the 
probability of winning a share of second prize is greater than 10−7. 

Dice Problem of Samuel Pepys 

Shortly we shall mention a probability problem that Samuel Pepys asked Sir Isaac 
Newton in a letter dated November 22, 1693. 

Samuel Pepys F.R.S. (1633–1703) was a President of the Royal Society (the oldest 
continuously existing scientific academy in the world), an administrator of the Navy 
of England, and a Member of English Parliament, who is most famous for the diary 
he kept for a decade while still a young man. His diary, kept from 1660 until 1669, is 
one of the most important sources for eyewitness accounts of great events including 
the Great Plague of London, the Second Dutch War, and the Great Fire of London. 
Robert Latham (1912–1995), editor of the definitive edition of the diary, remarks 
concerning the Plague and Fire: “His descriptions of both–agonisingly vivid–achieve 
their effect by being something more than superlative reporting; they are written with 
compassion. As always with Pepys it is people, not literary effects, that matter”.
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Sir Isaac Newton F.R.S. (1642–1726) was an English mathematician, physicist, 
theologian, astronomer, Master of the Royal Mint, a President of the Royal Society 
and a Member of Parliament, and one of the most influential scientists of all time. 
His book Principia Mathematica established classical mechanics. Newton also made 
contributions to optics and shares credit with Gottfried Wilhelm Leibniz (1646– 
1716) for developing calculus. He built the first reflecting telescope and described a 
theory of colour using the fact that a prism separates white light into the colours of 
the visible spectrum. He made the first theoretical calculation of the speed of sound, 
introduced the notion of a Newtonian fluid, contributed to the study of power series, 
and produced a method for approximating the roots of a function. 

The letter referred to above from Pepys to Newton posed the following problem 
(which I have rephrased in modern language): 

(A) Six fair dice are tossed and at least one ace appears. (The number 1 on a die 
is called an ace. 

(B) Twelve fair dice are tossed and at least two aces appear. 
(C) Eighteen fair dice are tossed and at least three aces appear. 

[Pepys implicitly assumed the dice throws were independent.] 
Which of the three has the biggest probability of success? Pepys thought that the 
correct answer is (C). Newton responded that the correct answer is (A) but gave 
no verification. When questioned further, Newton gave a simple logical argument 
which, according to [30], is faulty. Eventually Newton calculated the probabilities 
(at least for (A) and (B)) to show that (A) has the bigger probability and argued that 
by logic both of (A) and (B) have greater probability than (C). Newton’s calculation 
is correct. 

2.9 Verify that the probabilities of (A), (B), and (C) are, respectively, .0.6651 . . . , 
.0.6186 . . . , and .0.5973 . . . . 
[Hint for (A): Probability that six tossed fair dice produce at least one ace . = 1. −
Probability that six tossed dice produce no aces.]
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2.10 In the game of bridge, what is the probability that a player has either a 5-3-3-2 
hand or a 5-4-3-1 hand? 

2.11 In the game of bridge we showed that the probability that a player has a 4-4-3-2 
hand is 0.2155. . . . . What is the probability that player A and her partner both have 
4-4-3-2 hands? 

2.12 In the game of bridge, what is the probability that all 4 of the players have 
4-4-3-2 hands? 

Dreidels 

The Jewish festival of Chanukah celebrates the success of the Maccabean revolt 
against the Helenistic King Antiochus IV Epiphanes about 2,200 years ago, capturing 
Jerusalem and rededicating the Second Temple. On the eighth day of festival, Jews 
light candles, eat foods fried in oil, and usually play with a dreidel. The dreidel is a 
four-sided spinning top, with a Hebrew letter on each side. Traditionally the letters 
were ,(nun) נ   ,(gimmel) ג  and ,(hay) ה   which stands for the Hebrew words ,(shin) ש 
transliterated as nes gadol haya sham which means a great miracle happened there. 
Since the Jewish people returned to Israel, the Israeli dreidel has changed the letters 
on the dreidel to ,נ   ,ג  ,ה   to represent nes gadol haya po, a great miracle ,(pey) פ  
happened here. 

The word Dreidel is in the Yiddish language and is derived from the verb dreyen 
meaning to turn. According to Jewish tradition, the dreidel dates back to the rule of 
King Antiochus IV Epiphanes when studying the Torah (Hebrew Bible) was illegal. 
The Jews studied the Torah and, when the Seleucids approached, hid the Torah and 
pretended to be engrossed in playing the dreidel game. 

How is the dreidel game played? Each player puts one game piece, such as a 
penny, or a raisin, or chocolate gelt (chocolate money) into the centre pot. Then each 
player spins the dreidel once and sees which side is facing upwards after it stops. If
נ   faces up, the player gets nothing; if ג   faces up, the player gets everything; if ה   faces 
up, the player gets half of the pieces (rounding upwards if necessary) in the pot; if  ש 
or פ   faces up, the player puts one of their own pieces in the pot. If a player runs out 
of pieces, they exit the game. If at any stage the pot is empty, the game ends.
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The rules for the dreidel game are simi-
lar to the ancient four-sided teetotum game 
which typically have A, D, N, and T on the 
four sides. A teetotum is a form of gambling 
spinning top. It usually has four or six sides 
with a letter or number on each side. There 
are references to teetotum in the literature, for 
example, in the story by Lewis Carroll (the 
mathematician, Charles Lutwidge Dodgson 
(1832–1898) “Through the looking Glass”, 
Alice provokes the White Queen to ask “Are 
you a child, or a teetotum”. It is also referred 
to in Charles Dickens (1812–1870) “Our Mu-
tual Friend” and in the 1845 work of Edgar 
Allan Poe (1809–1849), The System of Doc-
tor Tarr and Professor Fether. 

In the pictures below, we see an ancient 
Russian dreidel, a modern dreidel, a por-
tion of the 1560 painting of Pieter Breugel 
the Elder (1526–1569) “Children’s Games”, 
and 1735 painting of Jean Baptiste-Siméon 
Chardin (1699–1779), now in the Louvre, 
“Boy with a Spinning Top or Child with a 
Teetotum”. It is curious that in Volume XXV 
of the Journal of the Anthropological Institute 
of Great Britain and Ireland in 1896, there is 
an article By R. Etheridge Jr. called “The 
Game of Teetotum as practised by certain of 
the Queensland Aborigines” and a photo of 
teetotums of the (Australian) Aborigines. 

2.13 In the game of dreidels described above, 
there are four players, so that the game begins with four pieces in the pot. What is 
the probability that the game ends after exactly (i) one spin of the dreidel; (ii) two 
spins of the dreidel; (iii) three spins of the dreidel; (iv) four spins of the dreidel?
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Two-Up 

In the photo above, we see two 
original 1915 Australian pennies in a 
kip (wooden bat) from which they are 
tossed in the game  of  two-up. In Aus-
tralia, with few exceptions, it is illegal to 
play (and gamble on) the game of two-
up except on ANZAC Day. ANZAC Day 
is April 25 and was initially a public hol-
iday to honour the members of the Aus-
tralian and New Zealand Army Corps 
(ANZAC) who served in the 1915 Gal-
lipoli Campaign, their first engagement 
in World War I (1914–1918). Today 
ANZAC Day honours all those who 
served in World War I and in subsequent 
wars. 

Settling disputes by tossing a coin has a history going back to the ancient Romans 
who called it navia aut caput which translates as ship or head as some coins had a 
ship on one side and the head of the emperor on the other side. In England this was 
referred to as cross and pile. Even today in cricket, tennis, and soccer, which side 
“starts” (bats, serves, or kicks off) is determined by the toss of a coin. The game of 
two-up was probably brought from England to Australia by convicts, as a variant of 
the cross and pile, a coin-tossing gambling game played with a single coin. (Between 
1788 and 1868, about 162,000 convicts were forcibly transported from Britain and 
Ireland to penal colonies in Australia.) Two-up was played extensively by Australian 
soldiers during World War I. The game became a regular part of ANZAC Day 
activities throughout Australia by returned soldiers. Today as well as being played 
on ANZAC Day, it is played in some casinos throughout the year. 

Using the kip, a player, known as the spinner, tosses the two pennies in the air. If 
both land with heads up, it is called as heads. If both land with tails up, it is called 
as tails. If one coin lands with a head up and the other with a tail up, it is called as 
odds.
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For our purposes, the spinner places a bet on heads and another player places an 
equal bet on tails. The rules are if the spinner tosses heads, they win the bet; if the 
spinner tosses tails, they lose the bet and the role of spinner; if the spinner tosses 
odds, they throw again except if the spinner throws odds five consecutive times, then 
the spinner and the other player betting lose their bets and the role of spinner. The 
money that has been bet goes to the boxer—the person managing the game. 

2.14 In the game of two-up as described above, evaluate the probability 

(i) that the spinner wins on their first toss; 
(ii) that the spinner wins on their second toss; 
(iii) that the spinner loses on their third toss; 
(iv) that the boxer wins on the fifth toss; 

2.15 In the game of mahjong, calculate the probability of having a 14-tile hand 
consisting of no seasons, no flowers, no pongs, no kongs, no cows, and no eyes. 

2.16 In the game of mahjong, calculate the probability of having a 14-tile hand 
consisting of only honor tiles. (Observe that there are 7 × 4 = 28 honor tiles.) 

2.17 In the game of mahjong, calculate the probability of a hand consisting of 

(i) four chows plus eyes; 
(ii) three pongs, one chow plus eyes; 
(iii) two pongs, two chows plus eyes. 

Birthday Problem 

It is not entirely clear who first mentioned the birthday problem, but it is likely that 
it was Richard Edler von Mises (1883–1953) who was an Austrian Jewish scientist 
and mathematician who worked on solid mechanics, fluid mechanics, aerodynamics, 
aeronautics, statistics, and probability theory. The birthday problem is sometimes 
called the birthday paradox. The  birthday attack is a type of cryptographic attack 
that exploits the mathematics behind this problem. 

2.18 The birthday problem states that in a random group of 23 people, the probability 
that at least two people have the same birthday is greater than 0.5. 

(i) Verify that this is true. (Recall that there are 365 or 366 days in each year.) 
(ii) Verify that if the group has 100 people, rather than 23, the probability that 2 

people in the group will have the same birthday is greater than 0.9999. 

2.19 Find the probability of a 28 point hand in 

(a) a two-person cribbage game; 
(b) a three-person cribbage game.
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• Joker. Public Domain. 
• Playing Conquian in New Orleans. Public Domain 
• Mah Jongg. Public Domain. 
• Old Mahjong Tile Set displayed in the Tianyi Pavilion Museum. Licensed un-
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Chapter 3 
Conditional Probability 

Abstract 

This third chapter on conditional probability begins with a dramatic example. We 
have a virus test which is extremely good in that if someone has the virus, then there 
is a 99% chance the test comes back positive and if the person does not have the 
virus, there is a 99% chance the test comes back negative. 

Nevertheless when a population of one million people is tested where 1,000 
people actually have the virus, if an individual tests positive, there is only a 10% 
chance he/she has the virus! So we test all the people who tested positive a second 
time, and then those who test positive a second time have a 90% chance of having 
the virus. Conditional probability helps us understand why this is so. We meet 
Kolmogorov’s definition of conditional probability and the important Bayes theorem. 
We see the Bertrand box problem and the intriguing Monty Hall problem and the 
related three prisoners problem of Martin Gardner. If we have a 45% chance of living 
to age 85, what is our chance of living to 85 if we have already reached the age of 
75? We introduce Bayesian theory and mention John Maynard Keynes “treatise on 
probability”. 

3.1 Conditional Probability 

Intellectual Honesty 
Our first example will be testing for a virus. This is very topical. And it is quite easy 
to discuss the probability issues. But in my opinion, it is intellectually dishonest to 
discuss virus testing when you have no idea what a virus really is and what a test 
might involve. Therefore, I have decided to describe in outline what a virus is and 
what testing involves. Of course this is done at a superficial level, but it is enough 
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to get the flavour. The interested reader can easily follow up on these topics. For 
example, see [12–14, 17]. 

Viruses 
A virus is the smallest type of parasite, ranging in size from 0.02. μm to 1. μm. (The 
. μm is a unit of length known as a micrometre or a micron and is defined to be 
.1 × 10−6 m, i.e. one millionth of a metre or one thousandth of a millimetre or 
about 0.000039inches.) Viruses infect all life forms, from animals and plants to 
microorganisms, including bacteria. Indeed viruses can only replicate within the 
cells of animals, plants, and bacteria and therefore are regarded as parasites. A viral 
particle contains a nucleic acid (RNA or DNA) core surrounded by a protein coat 
and often enzymes. Viruses are classified according to whether the nucleic acid is 
single or double stranded, whether a viral envelope is present and how they replicate. 

Louis Pasteur (1822–1895) was a French biologist, mi-
crobiologist, and chemist known for discoveries of the prin-
ciples of vaccination and pasteurization and is remembered 
for his breakthroughs in the prevention of diseases. He cre-
ated the first vaccines for rabies and anthrax. However, he 
was unable to find a causative agent for rabies and speculated 
about a pathogen too small to be detected by microscopes. 

Charles Chamberland (1851–1908) was a French micro-
biologist who worked with Louis Pasteur. In 1884 Cham-
berland developed a type of filtration known today as the 
Chamberland filter or the Chamberland-Pasteur filter, a de-
vice with a filter that had pores that were smaller than bac-
teria, thus making it possible to pass a solution containing 
bacteria through the filter and having the bacteria completely 
removed from the solution.
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Dmitri Iosifovich Ivanovsky (1864–1920) was a Russian botanist, the discoverer 
of viruses, and one of the founders of the subject of virology. In 1892 he used 
the Chamberland-Pasteur filter to study what is now known as the tobacco mosaic 
virus: crushed leaf extracts from infected tobacco plants remained infectious even 
after filtration to remove bacteria. In 1898, the Dutch microbiologist and botanist 
Martinus Beijerinck (1851–1931) repeated Ivanovsky’s experiments and became 
convinced that the filtered solution contained a new form of infectious agent. He 
observed that the agent multiplied only in cells that were dividing. He is credited 
with the conceptual discovery of viruses. Pictured above is the influenza virus (or 
flu virus) magnified 100,000 times. The tobacco mosaic virus was the first to be 
crystallized and its structure could, therefore, be elucidated. Rosalind Elsie Franklin 
(1920–1958), an English chemist and X-ray crystallographer, discovered the full 
structure of the virus in 1955 on the basis of her X-ray crystallographic pictures. 
Since then, thousands (of millions) of virus types have been described. 

Cells, Chromosomes, and DNA 
A cell is the basic building block of all living things. Your body is made of about 
30 trillion = .3× 1013 cells. Inside your body there are hundreds of different kinds of 
cells, each doing a different job. For example, red blood cells carry the oxygen you 
breathe around your body. Chromosomes are thread-like structures located inside 
the nucleus of cells. Each chromosome is made of protein and a single molecule 
of tightly wound DNA. So a chromosome is about 4 cm long, which is a very big 
molecule. Passed from parents to offspring, DNA contains the specific instructions 
that make each type of living creature unique. Tight packing allows the DNA to 
fit inside a tiny cell. There are 23 pairs of chromosomes in a cell. Nucleic acids 
are the main information-carrying molecules of the cell, and they determine the 
inherited characteristics of every living thing. The two main classes of nucleic acids 
are DNA and RNA. Deoxyribonucleic acid (DNA) is a molecule composed of two 
polynucleotide chains that coil around each other to form a double helix carrying 
genetic instructions for the development, functioning, growth, and reproduction of all 
known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic
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acids. Both strands of double-stranded DNA store the same biological information. 
This information is replicated if and when the two strands separate. 

The Swiss physician and biologist Johannes Friedrich Miescher (1844–1895) in 
1869 discovered a microscopic substance in the pus of discarded surgical bandages 
and so became the first scientist to isolate nucleic acid. Rosalind Franklin (1920– 
1958) is best known for her work on the X-ray diffraction images of DNA, particularly 
Photo 51, which, unbeknown to her, led to the discovery of the DNA double helix 
for which Francis Crick and James Watson shared the Nobel Prize in 1962. Franklin 
was not eligible in 1962 as Nobel prizes are not awarded posthumously. 

In the April 25, 1953, issue of the journal Nature, the Watson-Crick article, [15], 
was published proposing the double-helix structure of DNA. This was accompanied 
in the same issue by other articles providing evidence supporting it. They said about 
the proposed structure “It has not escaped our notice that the specific pairing we 
have postulated immediately suggests a possible copying mechanism for the genetic 
material”. 

James Dewey Watson (born April 6, 1928) is an American molecular biologist, 
geneticist, and zoologist. He shared with Francis Harry Compton Crick (1916–2004), 
a British molecular biologist, biophysicist, and neuroscientist, the Nobel Prize for 
the double-helix structure of the DNA molecule. Watson wrote an entertaining and 
informative book, [16] about this discovery. There is also a YouTube video, https:// 
youtu.be/RvdxGDJogtA, of Watson describing the discovery and more. The role of 
Rosalind Elsie Franklin is discussed in Watson’s book and in the article, https:// 
www.nature.com/articles/nature01399, in the journal Nature.
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Polymerase Chain Reaction (PCR) 

Kary Banks Mullis (1944–2019) was an American biochemist 
who won the Nobel Prize in Chemistry in 1983 for his inven-
tion of the polymerase chain reaction (PCR) technique. The New 
York Times described this technique as “highly original and sig-
nificant, virtually dividing biology into the two epochs of before 
PCR and after PCR”. His technique has become a central one in 
biochemistry and molecular biology. 

Enzymes are molecules (typically proteins) that significantly speed up the rate 
of chemical reactions that take place within cells. Polymers are a class of natural 
or synthetic substances composed of very large molecules that are multiples of 
simpler chemical units. A polymerase is an enzyme that synthesizes long chains of 
polymers or nucleic acids. Polymerase chain reaction (PCR) is a quick easy widely 
used method to make millions to billions of copies of a specific DNA sample within 
hours, allowing scientists to take a very small sample of DNA and amplify it to a 
large enough amount to study in detail. It is fundamental to much of genetic testing 
including identification of infectious agents. PCR is regarded as the “gold standard” 
in molecular diagnostics. The “gold standard” refers to the highest quality of a 
specific practice, product, or technology. PCR technology can be performed in hours 
to minutes compared to traditional methods such as culture, which is labour-intensive 
and can take days to produce a result. 

In the case of COVID-19 testing, PCR can detect the genetic information (RNA) 
of the novel coronavirus, even if the virus is present in extremely small amounts. 

Virus Testing 

We now present an example which is extremely important in understanding 
conditional probability. 
Many people, even medical experts, jump to the wrong conclusion when deal-
ing with conditional probabilities. 
We shall present other examples which demonstrate how badly our intuition 
fails. 

Example 3.1 Assume that we live in a country with a population of one million. 
To test for a dangerous virus, a PCR test is used. Assume also that a total of one 
thousand people in the country are infected with that virus. 

There is a swab test for the virus and
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(i) if someone tested has the virus, then the test comes back positive 99% of the 
time—this is called the sensitivity of the test. Also 

(ii) if the person tested does not have the virus, then the test comes back negative 
99% of the time—this is called the specificity of the test. 

So it is a very effective test. 
Now if Tom lives in that country and gets a test and it comes back positive, what 

is the probability he has the virus? Very high? You would think so. Let’s analyse it. 

(1) If all one million people are tested, then the one thousand people who are 
infected can expect 99% positive test results—that is, 990 positive test results. 
(And there are ten people who have the virus who test negative. These are 
called false negative.) 

(2) Of the 999,000 who are not infected with the virus, 1% will test positive—that 
is, 9,990 will test positive. These are called false positive. 

So altogether there are 9,990 + 990 = 10,980 positive test results. But 9,990 = 
over 90% of all positive test results are from people who do not have the virus. So 
astonishingly 

if Tom gets a positive test result with this very effective test, there is nevertheless 
over 90% chance he does not have the virus. 

(This is why, widespread testing of asymptomatic people is not a good idea.) 
So what can we do? We thought we had a beautiful test, and it got it so wrong. 

The problem lies in misunderstanding conditional probability. 
But is there a remedy for this virus testing? Yes! 
Give a second test to everyone who has tested positive. 
After the first test, we have 10,980 people who have tested positive, of whom 990 

have the virus and 9,990 do not have the virus. 

(a) When we test the 990 who have the virus, 99% will test positive, that is, 980 
test positive. (Unfortunately, there are ten false-negative tests.) 

(b) Of the 9,990 who do not have the virus, 1% will test positive, that is, about 
100 test positive. These are false positives 

So altogether 980 + 100 = 1,080 test positive a second time of whom 980 have the 
virus. 

So if Tom tested positive the first time, was tested a second time, and again tested 
positive, the probability he is infected with the virus is 980 

1,080 
, that is, about 91% 

chance he has the virus. 
So testing a second time all those with a positive first test improves the validity 

of the test result from 10 to 91%. 

Remark 3.1 From the perspective of probability theory, we need to notice that there 
is a very great difference between the two events: 

(i) let X be the event that a person tests positive, if they have the virus, and 
(ii) let Y be the event that the person has the virus, if they test positive.
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You may well ask how are the probability of event X occurring and the probability 
of event Y occurring are related. This will become clear in this section. For the time 
being, it suffices that you see the difference. 

Remark 3.2 Example 3.1 applies not only to COVID-19 virus testing. It also applies 
to varying extents to other tests, for example, to mammograms (used to test for 
breast cancer), tests for HIV—human immunodeficiency virus—tests for influenza, 
troponin tests (for heart attacks), and serum myoglobin tests (for injury to the heart 
muscle). 

Kolmogorov’s Definition of Conditional Probability 

Let us begin by recalling the definitions of .σ-algebra, sample space, event space, 
and probability space and state a key proposition. 

Definition 3.1 Let . Ω be any set and . Σ a set of subsets of . Ω. Then . Σ is said to be a 
.σ-algebra on . Ω if it satisfies the following four conditions: 

(i) .Ω ∈ Σ; 
(ii) if the subset S of . Ω is in . Σ, then its complement .S' = Ω \ S ∈ Σ; 
(iii) if .S1, S2, . . . , Sn ∈ Σ, for  some .n ∈ N, then .S1 ∪ S2 ∪ · · · ∪ Sn ∈ Σ; 
(iv) if .S1, S2, . . . , Sn, . . . are in . Σ, then .

∞⋃

n=1
Sn ∈ Σ. 

Definition 3.2 Let . Ω be a (finite or infinite) set, . Σ a .σ-algebra on the set . Ω, and 
.I = {1, 2, . . . , n} for some .n ∈ N or .I = N. A  probability measure or a probability 
distribution, P, is a function from . Σ to the closed unit interval .[0, 1]with the following 
properties: 

(i) .P(∅) = 0; 
(ii) .P(Ω) = 1; 
(iii) if sets .Si ∈ Σ, for . i ∈ I, are such that .Si ∩ Sj = ∅, for each .i, j ∈ I with . i ≠ j, 

then 
. P
⎛⋃

i∈I
Si
⎞
=
⎲

i∈I
P(Si).

In this context, the set . Ω is said to be the sample space and the set . Σ is said to be the 
event space. The triple .(Ω, Σ, P) is said to be a probability space. If .A ∈ Σ, then the 
number .P(A) .∈ [0, 1] is said to be the probability of the event . A (or the probability 
that . A occurs). 

Proposition 3.1 Let . Ω be any sample space, . Σ an event space, and .(Ω, Σ, P) a 
probability space.
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(i) If .S ∈ Σ, then . P(S') = P(Ω \ S) = 1 − P(S).
(ii) If .A, B ∈ Σ and .A ⊂ B, then .P(A) ≤ P(B). 
(iii) If .A, B ∈ Σ, then .E = B \ (A ∩ B) ∈ Σ, the events A and E are mutually 

exclusive, and .A∪ B = A∪ E and hence . P(A∪ B) = P(A) + P(B) − P(AB).
(iv) Let .Si ∈ Σ, for .i ∈ N or .i ∈ {1, 2, . . . , n} for .n ∈ N. Then 

. P
⎛⋃

i∈I
Si
⎞
≤
⎲

i∈I
P(Si),

with equality holding if the events . Si , . i ∈ I, are mutually exclusive. 

Proof. Exercise. ⨅⨆

Theorem 3.1 Let .(Ω, Σ, P) be a probability space and .A ∈ Σ an event such that 

.P(A) ≠ 0. The function .PA : Σ → [0, 1], defined by .PA(B) =
P(B ∩ A)
P(A) , for all 

.B ∈ Σ, is a probability measure. 

Proof. We have to verify that . PA satisfies conditions (i), (ii), and (iii) of Defini-
tion 3.2. Firstly note that as . Σ is a .σ-algebra, .A, B ∈ Σ implies that .B ∩ A ∈ Σ, and 
so . PA does indeed map . Σ into . R. By Proposition 3.1(ii), .P(B ∩ A) ≤ P(A) and so 

.PA(B) =
P(B ∩ A)
P(A) ∈ [0, 1]; that is, condition (i) of Definition 3.2 is indeed satisfied. 

Secondly observe that .PA(Ω) = P(Ω∩A)
P(A) =

P(A)
P(A) = 1, and so (ii) of Definition 3.2 is 

satisfied. 
Thirdly, let sets .Si ∈ Σ, for . i ∈ I, be such that .Si ∩ Sj = ∅, for each .i, j ∈ I with . i ≠ j. 
Then as .(Si ∩ A) ∩ (Sj ∩ A) = ∅, for . i ≠ j, using Definition 3.2 (iii) for P, 

. PA

⎛⋃

i∈I
Si

⎞

=

P

⎛
( ⋃

i∈I
Si
)
∩ A

⎞

P(A) =

P

⎛
⋃

i∈I
(Si ∩ A)

⎞

P(A) =

∑

i∈I
P(Si ∩ A)

P(A)

=
⎲

i∈I

P(Si ∩ A)
P(A) =

⎲

i∈I
PA(Si) , as required.

⨅⨆

We now state Kolmogorov’s definition of conditional probability. 

Definition 3.3 Let .(Ω, Σ, P) be a probability space and A and B events in . Σ such 
that .P(A) > 0. The conditional probability of B given A (or probability of . B given A 

is denoted .P(B | A) and equals .
P(B ∩ A)
P(A) . 

Remark 3.3 By Theorem 3.1 conditional probability is indeed a probability measure.
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Bayes’ Theorem 

The most important result on conditional probability is known as Bayes’ Theorem. 
It is named after the English statistician, philosopher, and Presbyterian minister 
Thomas Bayes (1701–1761) who formulated a specific case of the theorem. 

Theorem 3.2 [Bayes’ Theorem] Let .(Ω, Σ, P) be a probability space and A and 
B events in . Σ such that .P(A) > 0 and .P(B) > 0. Then 

. P(A | B) = P(B | A)P(A)
P(B) .

Proof. By Definition 3.3, .P(B|A) = P(B∩A)
P(A) and so .P(B ∩ A) = P(B | A)P(A). 

Similarly .P(A ∩ B) = P(A | B)P(B). So .P(| |A)P(A) = P(A | B)P(B). This proves 
the Theorem. ⨅⨆

Example 3.2 Let us look again at Example 3.1, but this time we shall use the 
terminology of conditional probability. Let .Ω = {A, B,C,D}, where 
. A = the person has the virus, .A' = the person does not have the virus, 
. C = the person test positive, .C ' = the person tests negative. 

Now . Σ is the power set .P(Ω) which consists of all 16 subsets of . Ω. We note that 
we are told that none of .P(A), P(A'), P(C), P(C ') equal zero (since some people have 
the virus and some don’t and some test positive and others don’t). So we can use 
conditional probabilities as in Definition 3.3. We are given that 

(i) if the person has the virus, then they test positive; that is, .P(C | A) = 0.99; 
(ii) if the person does not have the virus, then they test negative; that is, . P(C ' |

A') = 0.99; 
(iii) 1,000 people out of 1,000,000 people have the virus; that is, .P(A) = 0.001. 
(iv) .P(A') = 1 − P(A) = 1 − 0.001 = 0.999: 
(v) .P(C | A') = 1 − P(C '|A') = 1 − 0.99 = 0.01; 
(v) . P(C) = P(C | A).P(A)+P(C | A').P(A') = (0.99×0.001)+ (0.01×0.999) =

0.01098

Now we want to know what is the probability that the person has the virus if they 
test positive, that is, we want to know . P(A | C).

By Theorem 3.2, 

. P(A | C) = P(| |A) × P(A)
P(C) =

0.99 × 0.001
0.01098

= 0.09016 . . . .
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Bertrand’s Box Problem 

The French mathematician Joseph Louis François Bertrand (1822–1900), who 
was a member of the Paris Academy of Sciences and its permanent secretary for 
26 years, worked in number theory, differential geometry, probability theory, eco-
nomics, and thermodynamics. In 1845 he conjectured that there is at least one prime 
number between n and 2n − 2, for every 3 < n ∈ N. This was proved to be true by 
Pafnuty Lvovich Chebyshev (1821–1894) who was a Russian mathematician and is 
considered to be the founding father of Russian mathematics. This theorem is now 
known as Bertrand’s postulate. It provides a different proof that there are an infinite 
number of prime numbers than the well-known proof of Euclid. 

In 1849 Bertrand was the first to define real numbers using what is now called 
a Dedekind cut. Julius Wilhelm Richard Dedekind (1831–1916) was a German 
mathematician who made important contributions to abstract algebra, the axiomatic 
foundation for the natural numbers, algebraic number theory, and the definition of 
the real numbers. 

Bertrand’s box problem, known in the literature as Bertrand’s Box Paradox, is  
a problem first posed by Joseph Bertrand in his 1889 work [2]. It is referred to as 
a paradox as the seemingly obvious answer to the problem is false and historically 
took mathematicians quite some time to accept the correct answer. 

The problem is easily stated: There are three boxes: 
1. a box containing two gold coins, 
2. a box containing two silver coins, and 
3. a box containing one gold coin and one silver coin. 

After choosing a box at random, a coin is drawn from that box, and it is a gold coin. 
The problem asks: what is the probability that the other coin in that box is a gold 
coin? It seems that the probability is 1 

2 since it is equally probable that the box is (i) 
the box with two gold coins or (ii) the box with one gold coin and one silver coin. 
(Obviously it cannot be the box with two silver coins.) The probability is not 1 

2 as 
the statement that the two boxes are equally likely is false. The correct answer we 
shall see is 2 

3 . 

Example 3.3 We shall consider Bertrand’s box problem as described above. We shall 
label the box with two gold coins GG, the box with one gold coin and one silver coin
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as GS, and the box with two silver coins as SS. Each gold coin is labelled G, and 
each silver coin is labelled S. Now we shall examine this problem carefully using 
probability measure notation and solve it easily (and correctly) using conditional 
probabilities. 

Consider the probability space(Ω, Σ, P) where 

(i) the sample space Ω = {GG,GS, SS} × {G, S}, with the interpretation that the 
first coordinate represents the box chosen at random and the second coordinate 
represents the coin drawn from the chosen box. So the sample space has six 
members but two of them have probability 0, namely, (GG,S) and (SS,G). 

(ii) the event space is the power set P(Ω) of 25 = 32 subsets, 

where GG is choosing the box with two gold coins, etc., G is choosing a gold coin, 
and S is choosing a silver coin, so that, in particular: 

(a) P(GG) = P(GS) = P(SS) = 1 
3 , and 

(b) P(G) = P(S) = 1 
2 , since there are 3 gold coins and 3 silver coins. 

This problem asks us to evaluate P(GG | G). We shall apply Theorem 3.2 which 
will require us to know P(G | GG), which equals 1. 

. P(GG |G) = P(G |GG) · P(GG)
P(G) =

1 · 1
3

1
2
=

2
3
.

This example clearly demonstrates how using conditional probabilities makes even 
this controversial problem easy. 

Monty Hall Problem  

We shall now consider a famous problem which is very similar to Bertrand’s box 
problem. It is known as the Monty Hall problem. 

The Monty Hall problem is based on the American television game show “Let’s 
Make a Deal” and named after its original host, Monty Hall. Monty Hall (1921– 
2017) was born as Monte Halparin to Orthodox Jewish parents. Let’s Make a Deal 
aired at various times and on various networks from 1968 until 1991. The Monty Hall 
problem was originally posed (and solved) in a letter by the American University 
of Berkeley statistician Steve Selvin (born 1941) to The American Statistician in 
1975. (The American Statistician is a quarterly peer-reviewed scientific journal, 
established in 1947, covering statistics and published on behalf of the American 
Statistical Association.) 

Parade is an American nationwide Sunday newspaper magazine, distributed in 
over 700 newspapers in the USA, and has a circulation of 32 million. Marilyn vos 
Savant (born in 1946), who was listed as having the highest recorded intelligence 
quotient (IQ) in the Guinness Book of Records, has a column in Parade called “Ask
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Marilyn” where she solves puzzles and answers questions on various subjects. In 
1990 a reader’s letter quoted in her column: 

“Suppose you’re on a game show, and you’re given the choice of three doors: 
Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and 
the host, who knows what’s behind the doors, opens another door, say No. 3, which 
has a goat. He then says to you, ‘Do you want to pick door No. 2?’ Is it to your 
advantage to switch your choice?” 

Vos Savant’s response was that the contestant should switch to the other door, as 
she would have a 2/3 chance of winning the car, while if she stayed with door 1, her 
initial choice, she would have only a 1/3 chance. 

Let us be clear, the host knows which door the car is behind. 
Many readers of her column refused to believe switching is beneficial, despite her 

explanation. After the problem appeared in Parade, about 10,000 readers, including 
a large number of academics, wrote to the magazine, most of them claiming vos 
Savant was wrong. These included letters from the Deputy Director of the Center 
for Defense Information and a Research Mathematical Statistician from the National 
Institutes of Health—which contended that she was entirely incompetent. There is 
no doubt that sexism and misogyny were ingredients in some of the criticisms. Even 
when given explanations, simulations, and formal mathematical proofs, many people 
still do not accept that switching is the best strategy. 

Intuition tells us that there are two doors remaining, and they are equally likely 
to have the car hidden behind. But this problem is counterintuitive. 

Example 3.4 Consider the probability space .(Ω, Σ, P) where 

(i) the sample space .Ω = {D1,D2,D3} × {H2,H3}, with the interpretation that 
the first coordinate represents the door chosen at random and the second 
coordinate represents the item behind the chosen door, where . D1 is door 1 
has the car, . D2 door 2 has the car, . D3 is door 3 has the car, . H2 is host opens 
door 2, and . H3 is host opens door 3. 

(ii) the event space is the power set .P(Ω) of .25 = 32 subsets, 

where, in particular, .P(D1) = P(D2) = P(D3) = 1
3 . 

We note that if the car is behind door 1, then the host can open door 2 or door 3. 

. So we see that P(D1 ∩ H2) =
1
3
× 1

2
=

1
6
= P(D1 ∩ H3)

We also note that if the car is behind door 2, then the host must open door 3, and 
if the car is behind door 3, the host must open door 2. 

. So we see that P(D2 ∩ H3) =
1
3
× 1 =

1
3
= P(D3 ∩ H2).

In fact, we are told the host opened door . D3. Let us evaluate .P(H3). We know 

.P(H3) = P(H3 ∩ D1) + P(H3 ∩ D2) + P(H3 ∩ D3) =
1
6
+

1
3
+ 0 =

1
2
.
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By Definition 3.3, . P(D1 | H3) =
P(D1 ∩ H3)

P(H3)
=

1
6
1
2
=

1
3
.

And .P(D2 | H3) =
P(D2 ∩ H3)

P(H3)
=

1
3
1
2
=

2
3

. 

So if the contestant stays with door 1, then they have a probability of only 1/3 
of winning the car, but if they change to door 2, they have a probability of 2/3 of 
winning the car. So Marilyn vos Savant was correct. 

Life Expectancy 

Example 3.5 In Australia 75% of males live to age 75 or more and 47% of males live 
to age 85 or more. If a male person has reached the age of 75, what is the probability 
that he will live to age 85? 

Consider the probability space (Ω, Σ, P), where Ω = {En : n ∈ N}, where En is 
that a male lives to at least age n and Σ is the power set P(Ω). P(En) is the probability 
that a male lives to at least age n. We are asked to evaluate P(E85 | E75). Now, by  
Theorem 3.2, 

. P(E85 | E75) =
P(E75 |E85) × P(E85)

P(E75)
=

1 × 0.47
0.75

= 0.6266 . . .

So we see that the probability of a male who has lived to 75 living to at least 85 has 
increased by over 37% compared with the probability at birth of living to 85. 

Remark 3.4 These days when life span is increasing it is likely that we will live for 
a longer period in retirement. Estimating whether our savings are sufficient to live 
reasonably in retirement requires us to estimate to what age we might expect to live. 
To do so, it is necessary to use conditional probabilities. The probability we seek is 
the conditional probability of living to a certain age if we know that we have lived 
to retirement age. 

Bayesian Theory 

We have presented probability theory from the viewpoint of Kolmogorov’s ax-
ioms. There is an alternative, the Bayesian theory approach. Discussing Bayesian 
theory—Bayesian probability and Bayesian inference—would require a very sub-
stantial detour. So I will say just a few words which in no way do justice to this 
serious topic. I refer the interested reader to [1, 4, 7–9]. 

To approach Bayesian theory, it would be best if you suddenly forgot everything 
you know or think you know about probability. Bayesian theory is about uncertainty. 

To explain what I am hinting at, I will tell you an anecdote.
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In the early 1980s, I was in Ohio to do research with a colleague in Cleveland 
and to present a paper at a conference in Toledo. En route several colleagues and I 
visited an observatory with a sizeable telescope. We went into the building so as to 
look through the telescope. The first thing that happened was that our guide opened 
the two halves of the roof of the building. This seemed quite natural as we wanted 
to look at the sky. Then the walls of the building turned so the telescope could look 
in the right direction. Then the floor of the building we were standing on was moved 
upwards. At this point I wondered what in fact was fixed—not the roof, not the walls, 
and not the floor! It was unnerving. Approaching Bayesian theory should give you 
that same feeling. 

The Italian probabilist, statistician, and actuary Bruno de Finetti (1906–1985) 
would say there is no such thing as probability and independent events is a mean-
ingless concept. 

These statements cause you to gasp as you have no firm foundation on which to 
rest, just like me in the observatory. 

I started my discussion in Example 3.1 on conditional probability and virus testing 
with a city of one million people in which 1,000 people had the virus. The truth is 
that we can never know how many people have the virus. 

Rather we can take a sample of the people and see how many in the sample have 
the virus. So we may have had an estimate of how many people have the virus before 
we sampled and then we modify our estimate on the basis of sampling. 

In Bayesian theory, the conditional probability notion in Definition 3.3 takes on 
a different meaning. .P(A) may be our a priori estimate of the proportion that have 
the virus, and .P(A | C) is our posterior estimate in light of the sampling event C. 
Everything is an estimate! 

Hopefully, I have said enough to whet your appetite to read very much more 
on this topic. I conclude by saying that some statisticians totally oppose Bayesian 
theory; others think it is absolutely the right approach. 

John Maynard Keynes and Probability 

In the previous section, I hoped to have whet your ap-
petite about Bayesian probability. 

Most of us have heard of John Maynard Keynes 
(1883–1946) who, according to Wikipedia, was an “En-
glish economist and philosopher whose ideas fundamen-
tally changed the theory and practice of macroeconomics 
and the economic policies of governments”. But few 
know that he wrote a deep thesis [6] called A Treatise on 
Probability.
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It is not possible to describe here in a few words what he understood by prob-
ability but it was much more than a number and much more related to logic. As 
explained in 2021 by Professor Jochen Runde, Professor of Economics & Organisa-
tion at Cambridge Judge Business School a century after the publication of Keynes 
work, “Keynes was proposing a novel and highly distinctive theory of probability 
of his own. In terms of this theory, probability is interpreted as a measure of the 
strength of a partial logical relation, what Keynes called the probability relation, 
between a hypothesis and the available evidence relevant to that hypothesis. A key 
feature of the theory is that probability relations are not generally capable of nu-
merical measurement”. William Peden in [11] also in 2021 wrote “In A Treatise on 
Probability, John Maynard Keynes (1921) provided the first systematic, subtle and 
self-conscious theory of what philosophers now call ‘logical probability”’. 

Problems 

3.1 Consider Example 3.1. Assume Tom gets a positive first test. Evaluate the 
probability that Tom has the virus after that first test and the probability of him 
having the virus after a positive second test if, instead of 1,000 people in the country 
having the virus: 

(i) 10,000 people in the country have the virus; or 
(ii) 100,000 people in the country have the virus. 

3.2 Prove Proposition 3.1. 

3.3 In Australia 92% of females live to age 65 or more and 41% of females live to 
age 90 or more. If a female has reached the age of 65, what is the probability that 
she will live to age 90? 

3.4 Consider the Monty Hall problem discussed above. As stated previously, the 
host knows which door has the car behind it and chose to open a door that does not, 
namely, door 3. How do the calculations change if the host does not know which 
door the car is behind, so he chooses randomly between door 2 and door 3, chooses 
door 3, and the car is not behind it?
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Martin Gardner’s Three Prisoners Problem 

Martin Gardner (1914–2010) was an American pop-
ular mathematics and popular science writer, with 
a special interest in the writings of Lewis Carroll. 
His work The Annotated Alice sold over a million 
copies. “The Three Prisoners problem” appeared in 
1959 in his column “Mathematical Games” in Sci-
entific American. 

3.5 Three prisoners, A, B, and C are in separate cells and sentenced to death. The 
prison governor has selected one of them at random to be pardoned. The warden 
knows which one is pardoned, but is not allowed to tell. Prisoner A begs the warden 
to let him know the identity of one of the two who are going to be executed. “If B is 
to be pardoned, give me C’s name. If C is to be pardoned, give me B’s name. And if 
I’m to be pardoned, secretly flip a coin to decide whether to name B or C”. 

The warden tells A that B is to be executed. Prisoner A is pleased because he 
believes that his probability of surviving has gone up from 1/3 to 1/2, as it is now 
between him and C. Prisoner A secretly tells C the news, who reasons that A’s chance 
of being pardoned is unchanged at 1/3, but he is pleased because his own chance has 
gone up to 2/3. Which prisoner is correct? 
[Hint. This problem is equivalent to the Monty Hall problem.] 

Many problems in probability theory can be easily 
converted into problems about urns containing different 
numbers of balls of a variety of colours. We can represent 
contagious diseases, vehicles, atoms, etc. as coloured 
balls in an urn. 

One of the first to consider an urn problem was Jacob 
Bernoulli (1654–1705) in his book on combinatorics and 
probability called “Ars Conjectandi”. The problem con-
cerned an urn containing a number of different coloured 
pebbles. Having randomly drawn several pebbles from 
the urn, the task was to estimate the proportion of each 
coloured ball in the urn. Jacob Bernoulli was one of the 
mathematicians in the Bernoulli family and supported 
Gottfried Wilhelm Leibniz in the Leibniz-Newton cal-
culus controversy. 

We are familiar with problems concerning urns con-
taining red and green balls. The urn is shaken thoroughly, 
and then, without looking, you put in your hand and draw 
out a ball and note the colour of the ball. In examples 
of selection with replacement, the ball that was drawn 
is returned to the urn before another ball is drawn out. 
In examples of selection without replacement, the ball 
is not returned before the next ball is drawn.
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However, these are but two of a large variety of urn problems. A good reference for 
such problems is [5]. The authors observe, in particular, that many important proba-
bility distributions arise naturally in this context including the binomial distribution, 
the hypergeometric distribution, the normal distribution, the Poisson distribution, 
and the gamma distribution. 

A special kind of urn problem, now known 
as Pólya’s Urn, was introduced in 1923 in [3]. 
However, the idea appeared around 1906 in the 
work of Markov. The primary reference for this 
topic is [10]. 

George Pólya (1887–1985) was a Hungar-
ian mathematician who made significant con-
tributions to combinatorics, number theory, and 
probability theory. Andrey Andreyevich Markov 
(1856–1922) was a Russian statistician, whose 
best known work is what has become known as 
Markov chains and Markov processes. 

The Pólya urn introduced in [3] was to model 
communicable diseases. The urn contained balls 
of two colours. At each step, we shake the urn 
thoroughly, and a ball is sampled randomly. Each 
ball is equally likely to be selected. Each time a 
ball was drawn, its color is noted, then it is re-
turned to the urn, and another ball of the same 
colour is also put in the urn. This is, in a sense, 
the exact opposite of sampling without replace-
ment. You might say that the “rich get richer”. 
For example, the more green balls in the urn, 
the greater is the probability of drawing a green 
ball which causes an additional green ball to be 
put in the urn. In contrast with selection without 
replacement, in a Pólya urn the balls in the urn 
are never exhausted. One can ask many questions 
about the balls in a Pólya urn after drawing a ball n times. 

Of course the Pólya urn described above can easily be generalized. 
One extension is to have an urn containing balls of up to k different colours. A 

ball is drawn from the urn. The colour of the ball is observed. Then C balls of that 
colour are returned. C is a constant, and, in principle, it can be any integer, positive, 
negative, or zero. Then we could ask how many balls of each colour are in the urn 
after the nth step of withdrawing a ball. An extra level of complexity can be added 
by replacing the constant C with a quantity that varies. For example, each time a ball 
is drawn, we throw a die, and the number that appears determines how many balls 
are put in the urn.
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3.6 Consider the following Pólya urn. Initially there are r red balls and g green balls 
in the urn. Each time a coloured ball is drawn, that ball is returned, and an additional 
ball of that colour is placed in the urn. Let Bn be the event that the nth ball drawn is 
green and let Gn be the number of green balls drawn after n draws. 

(i) Prove, using mathematical induction that P(Bn) = g 
g + r 

. 
[Hint. First verify this for n = 1. Next assume it is true for n = k. Use  
P(Bk+1) = P(Bk+1 | B1).P(B1) + P(Bk+1 | B'

1).P(B
'
1), where B'

1 is the 
complement of B1, that is, the first ball drawn is red.] 

(ii) If r = g = 1, verify that P(Gn = m) =
( n 
m

)
⎛
1 
2

⎞n 
. 
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Chapter 4 
Stirling’s Approximation Formula 
and Improvements 

Abstract 

Stirling’s approximation formula for n!, the gamma function as an extension of the 
factorial to the complex numbers, improvements of Stirling’s approximation up to the 
twenty-first century, the Gaussian integral, limits, sequences, series, infinite products, 
infinite integrals, Taylor series, the standard normal distribution, the gamma distri-
bution, the exponential distribution, the chi-square distribution, evaluating zeta(2), 
male births, carefree couples, and the probability that two randomly chosen natural 
numbers are coprime. 

4.1 Stirling’s Approximation Formula 

In Chap. 2 we saw the importance of permutations 
and combinations to probability theory. In both of 
these, we saw that . n! was central. But how big 
is . n! and how fast does it grow as n grows? We 
know that .log n grows slowly compared with n and 
n grows slower than . n2, . n3, . . . , and each of these 
grows slower than . en. Where does . n! fit on this 
list? Since .n! = n.(n − 1).(n − 2). . . . .2.1, we see  
.n! < nn and clearly as n grows, . n! gets bigger than 
. n2, . n3, . . . .
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Stirling’s approximation formula gives a good 
approximation of n! when n is large, but, as we see 
in the next diagram and table, even when n is small. 
It was named after the Scottish mathematician 
James Stirling (1692–1770). The French mathe-
matician Abraham de Moivre FRS (1667–1754) 
proved that n! can be approximated by cnn+ 1 

2 e−n, 
for some constant c, where he gave an approxi-
mation for c. About 1730 Stirling showed that the 
constant c is

√
2π. De Moivre was analysing games 

of chance, and in that context, he needed a good ap-
proximation for

(2n 
n

)
for large n. We saw in Sect. 1.3 

that Cardano wrote the first book about games of 
chance. Another early book on this topic was “The 
Doctrine of Chances” and it was published in 1718 
by de Moivre. 

To understand Stirling’s approximation, we 
need to discuss concepts which you may have met 
in first year calculus. However, I shall not assume 
you know this material, so do not be afraid. These 
topics are: 

• convergence of sequences; 
• infinite series; and 
• infinite or improper integrals.
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We also meet the beautiful and very useful topic of Taylor series. 

We plotted the above graph using the software package R and exported it to 
jpg format: 
f1<-function(x) { 
y<- (exp(-x)*x^x*sqrt(x*2*pi)) 
return(y) } 
value<-c(2,3,4,5,6) 
f2<-c(2,6,24,120,720) 
plot(value,f2, pch=20, ylab="", xlab="x", 
main="Stirling’s Approximation Formula") 
legend("topleft", legend=c("exp(-x)*x^x*sqrt(x*2*pi)", 
"n!"), , fill=c("red","black")) 
curve(f1(x), xlim=c(0,6), ylim=c(0,1000), col="red", 
lwd=1, add=TRUE)
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n n! Stirling’s approx. % error  
2 2 1.919004 4.05 
5 120 118.0192 1.65 
10 3,628,800 3,598,696 0.83 
20 2.432902×1018 2.422787×1018 0.42 
50 3.041409×1064 3.036345×1064 0.17 
100 9.332622×10157 9.324848×10157 0.08 

We calculated the entries in the table above using the software package R: 
f3<-function(x) { 
y<- (100*(factorial(x)-f1(x)))/factorial(x) 
return(y) } 

We see from the diagram and the table that for small n, the Stirling approximation 
is quite close to n!, and for larger n the approximation is very good. 

4.2 Sequences and Limits 

Now we introduce the notion of convergence of a sequence of numbers. The idea 
is quite simple: a sequence .x1, x2, . . . , xn, . . . converges to a number a if as n gets 
bigger, . xn gets closer and closer to a. Indeed the . xn get arbitrarily close to a; for  
example, we can find an integer, . N0.1, such for all .n > N0.1, .|xn − a| < 0.1. We can 
also find an integer .N0.01, such for all .n > N0.01, .|xn − a| < 0.01. And we can also 
find an integer .N0.001, such for all .n > N0.001, .|xn − a| < 0.001, etc. Rather than keep 
writing smaller and smaller numbers 0,1, 0.01, 0.001,. . . we introduce a number . ϵ
which we can choose to be as small as we wish. This is expressed formally in our 
next definition. 

Definition 4.1 If .x1, x2, . . . , xn, . . . is a sequence of real numbers and .a ∈ R, then 
the sequence is said to converge to . a, denoted by .xn → a or . lim

n→∞
xn = a, if for each 

positive real number . ϵ , there exists an .N ∈ N such that .|xn − a| < ϵ for all .n > N . 
The sequence .x1, x2, . . . , xn, . . . is said to be a convergent sequence. 
A sequence which is not convergent is said to diverge or be a divergent sequence. 
(Some, but not all of the divergent sequences, will be defined to have their limit equal 
to . ∞ or . −∞.)
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If for each positive integer M there is a positive integer N such that .xn > M , for all 
.n > N , then we write . lim

n→∞
xn = ∞. 

If for each positive integer M there is a positive integer N such that .xn < −M , for  
all .n > N , then we write . lim

n→∞
xn = −∞. 

As an extension of the notion of the limit of a sequence introduced in Defini-
tion 4.1, we present: 
Definition 4.2 Let .A ∈ R, S a subset of . R, and g a function from S to . R. 

(i) If for each positive real number . ϵ , there exists an .N ∈ R such that for all 
.x > N , .|g(x) − A| < ϵ , then . lim

x→∞
g(x) is defined to be equal to A. 

(ii) If for each positive real number M there exists a positive integer N such that 
.g(x) > M for all .x > N , then we write . lim

x→∞
g(x) = ∞. 

(iii) If for each positive real number M there exists a positive integer N such that 
.g(x) < −M for all .x > N , then we write . lim

x→∞
g(x) = −∞. 

(iv) If g is such that none of (i), (ii), and (iii) occurs, then . lim
x→∞

g(x) is said not to 
exist. 

Example 4.1 
(i) .1, 1

2,
1
3, . . . ,

1
n, · · · → 0. 

(ii) .+1,−1,+1,−1,+1,−1, . . . is a divergent sequence. 
(iii) .+1,− 1

2,+
1
3, . . . , (−1)n 1

n, · · · → 0. 
(iv) . sin(1), sin(2)

2 , . . . ,
sin(n)
n , · · · → 0.

(v) .1.e−1, 2e−2, . . . , ne−n, · · · → 0. [Hint: .n < 2n =⇒ ne−n ≤
⎛

2
e

⎞n
, for .n ∈ N.] 

(vi) .1.e−1, 2ke−2, . . . , nke−n, · · · → 0, for any .k ∈ N. 
(vii) Let . f (x) = x sin x. Then . lim

x→∞
f (x) does not exist. 

(viii) Let . f (x) = xe−x . Then . lim
x→∞

f (x) = 0. 
(ix) The sequence .1, 1

2, 1,
1
3, . . . , 1,

1
n, . . . is divergent. 

(x) If .an = −n, for .n ∈ N, then . lim
x→∞

an = −∞. 
(xi) Let .a1, a2, . . . , an, . . . be a sequence of real numbers with the property that 

.0 ≤ an+1 < an < 1, for all .n ∈ N. Then . lim
n→∞

an exists. (This is left as an 
exercise.) 

L’Hôpital’s Rule 

Limits are not always easy to determine by inspection. The following theorem 
provides a very useful tool in some cases. It is known as L’Hôpital’s rule. 

L’Hôpital’s rule is named after the French mathematician Guillaume de L’Hôpital 
(1661–1704) as it first appeared in print in 1696 in the book he wrote which was
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the first textbook on differential calculus. However much of the material reported on 
in that book, including L’Hôpital’s rule, came from material provided by the Swiss 
mathematician Johann Bernoulli (1667–1748)—in exchange for an annual payment 
of 300 Francs, Bernoulli would inform L’Hôpital of his latest mathematical discov-
eries, withholding them from correspondence with others. (L’Hôpital acknowledged 
his debt to Leibniz and the Bernoulli brothers, "especially the younger one" (Jo-
hann).) 

Theorem 4.1 [L’Hôpital’s Rule, [5, 27]] 
(i) Let f and g be functions from an interval .(a, b) to . R, where .a, b ∈ R with 

.a < b, such that the derivatives . f '(x) and .g'(x) exist for each .x ∈ (a, b). 
Further let . lim

x→c
f (x) and . lim

x→c
g(x) exist for some .c ∈ (a, b) and let both limits 

be equal to 0, and finally let .g'(x) ≠ 0 for each .x ∈ (a, b). 
If . lim

x→c

f '(x)
g'(x) exists and equals L, then . lim

x→c

f (x)
g(x) exists and equals L. 

(ii) Let . f and g be functions from .(a,∞) to . R, where .a ∈ R such that . f '(x) and 
.g'(x) exist for all .x ∈ (a,∞) and .g'(x) ≠ 0 for all .x ∈ (a,∞). 
Let . lim

x→∞
f (x) = lim

x→∞
g(x) = 0 or lim

x→∞
f (x) = lim

x→∞
g(x) = ∞ or 

. lim
x→∞

f (x) = lim
x→∞

g(x) = −∞. 

If . lim
x→∞

f '(x)
g'(x) = L, then . lim

x→∞

f (x)
g(x) exists and equals L. 

Example 4.2 

(i) . lim
x→0

sin x
100x

= lim
x→0

cos x
100

=
1

100
. 

(ii) . lim
x→0

x
tan x

= lim
x→0

1
sec2x

= 1. 

(iii) . lim
x→∞

x
ex
= lim

x→∞

1
ex
= 0.
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Asymptotic 

Definition 4.3 Let x1, x2,  . . . ,  xn,  . . .  and y1, y2,  . . . ,  yn,  . . .  be two sequences of real 
numbers. If all yn ≠ 0, and the sequence x1 

y1 
, x2 
y2 
,  . . . ,  xn 

yn 
,  . . .  converges to 1, that is 

lim
n→∞ 

xn 
yn 
= 1, then the two sequences are said to be asymptotic and this is denoted by 

xn ∼ yn. 
More generally, if f and g are functions from the interval (a,∞) to R, for  a ∈ R, 
such that lim

x→∞ 
f (x) 
g(x) = 1, then f (x) is said to be asymptotic to g(x) and this is denoted 

by f (x) ∼  g(x). 

Example 4.3 Let xn = n + 1 
n and let yn = n − 1 

n , for all n ∈ N. Both of the 
sequences x1, x2,  . . . ,  xn,  . . .  and y1, y2,  . . . ,  yn,  . . .  are divergent. However the se-
quence x1 

y1 
, x2 
y2 
,  . . . ,  xn 

yn 
,  . . .  converges to 1. So xn ∼ yn. 

4.3 Series 

Having discussed convergent sequences, now let us look at the notion of convergent 
series. Historically it was thought to be impossible that the sum of an infinite 
number of numbers could be finite. It was only in the seventeen. th century that it was 
recognized that this can happen. But first one has to frame the problem correctly. 

We know what a finite sum is: 

. Sn =
n⎲

i=1
ai = a1 + a2 + · · · + an.

But what does .
∞∑

i=1
ai mean?. The answer is “nothing” yet. We have to give it a 

meaning, that is, we have to define it. 

Definition 4.4 Let .a1, a2, . . . , an . . . be real numbers and define the number . Sn =
n∑

i=1
ai = a1 + a2 + · · · + an. If . lim

n→∞
Sn exists and equals l, then the sum of the infinite 

series .
∞∑

i=1
ai is defined to be the number .l = lim

n→∞
Sn. Such an infinite series is called 

a convergent series. 
The series .

∞∑

i=1
ai is said to be absolutely convergent if the series .

∞∑

i=1
|ai | converges. 

Example 4.4 It is not always easy to see immediately whether a series converges. 

(i) The series .
∞∑

i=1

1
2n =

1
2 +

1
22 + · · · + 1

2n + . . . converges and equals 1. It is also 

absolutely convergent.
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(ii) The series .
∞∑

i=1

(−1)n
2n = − 1

2+
1
22+· · ·+ (−1)n

2n +. . . is clearly absolutely convergent. 

(iii) The series .
∞∑

i=1

1
n = 1+ 1

2 +
1
3 + · · ·+

1
n + . . . does not converge. This is far from 

obvious. The series is known as the harmonic series. That it diverges was 
first proved by the philosopher-mathematician Nicole Oresme ((about)1320– 
1382). 
To see why this series diverges, we note the following: 
.
1
3 >

1
4 ; .

1
5 >

1
8 ; .

1
6 >

1
8 ; .

1
7 >

1
8 etc. 

So .1 + 1
2 +

⎛
1
3 +

1
4

⎞
+
⎛

1
5 +

1
6 +

1
7 +

1
8

⎞
+ · · · > 1 + 1

2 +
1
2 +

1
2 + . . . . 

As the series on the right does not converge, clearly the harmonic series on 
the left does not converge. 

(iv) The series .
∞∑

i=1
(−1)n 1

n = −1+ 1
2 −

1
3 + · · ·+ (−1)n 1

n + . . . converges but by (iii) 

is not absolutely convergent. (This follows from Leibniz’s rule, [5, Theorem 
10.14], which says that the alternating sequence .

∞∑

n=1
(−1)n−1an converges if 

(i) .an+1 < an, for all .n ∈ N and (ii) . lim
n→∞

an = 0. (Gottfried Wilhelm (von) 
Leibniz (1646–1716) was a prominent German polymath.) 

4.4 Infinite Integrals 

We now turn to infinite integrals (sometimes referred to as improper integrals). 
While we are familiar with integrals like .

∫ b

a
f (x) dx for any .a, b ∈ R with .a < b, we  

wish to assign a meaning to each of .
∫ ∞
a

f (x) dx, .
∫ b

−∞ f (x) dx, and .
∫ ∞
−∞ f (x) dx. We  

need to do this now so we can introduce the . Γ function.
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Definition 4.5 Let .a ∈ R and f a function from .(a,∞) to . R. Let .g(x) =
∫ x

a
f (y) dy. 

If .g(x) exists for all .x > a and . lim
x→∞

g(x) exists and equals .A ∈ R, then .

∞∫

a

f (y) dy is 

said to converge and is defined to be equal to A. 

We now define the other two infinite integrals. 

Definition 4.6 Let .a ∈ R and f a function from .(−∞, a) to . R. Let .g(x) =
∫ a

−x f (y) dy. 

If .g(x) exists for all .−x < a and . lim
x→∞

g(x) exists and equals .A ∈ R, then . 

a∫

−∞
f (y) dy

is said to converge and is defined to be equal to A. 

Definition 4.7 Let f be a function from .(−∞,∞) to . R. If .

∞∫

0
f (x) dx and . 

0∫

−∞
f (x) dx

converge, then .

∞∫

−∞
f (y) dy is said to converge and is defined to be equal to . 

0∫

−∞
f (x) dx+

∞∫

0
f (x) dx. 

The following theorem is called the Comparison Test for Infinite Integrals and is 
[5, Theorem 10.24]. 

Theorem 4.2 Let .a ∈ R and let .g(x) be a function such that .
∞∫

a

g(x) dx converges. 

If . f : [a,∞) → R is a function such that .

b∫

a

f (x) dx exists for each .b ≥ a and . 0 ≤

f (x) ≤ g(x), for .x ∈ [a,∞), then .

∞∫

a

f (x) dx converges and .

∞∫

a

f (x) dx ≤
∞∫

a

g(x) dx. 

(The integral .

∞∫

a

g(x) dx is said to dominate the integral .

∞∫

a

f (x) dx.) 

Example 4.5 

(i) We show here that .

∞∫

1
e−x

2
dx converges. 

Putting .g(x) = e−x we see that .
∫
e−x dx = −e−x and so .

∞∫

1
e−x dx converges. 

Put . f (x) = e−x
2 . Then .1 ≤ f (x) ≤ g(x), for all .x ∈ [1,∞). So by Theorem 4.2, 

.

∞∫

1
e−x

2
dx exists. 

This shows the beauty of Theorem 4.2 in that we could show that . 

∞∫

1
e−x

2
dx

converges even though we couldn’t evaluate easily the indefinite integral 
.
∫
e−x

2
dx. We did it by comparing it with .

∫
e−x dx which we could evaluate.
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(ii) We can easily generalize (i) to show that, for any positive real number k, 

.

∞∫

0
e−kx

2
dx converges. To see this put .y =

√
kx so that . dydx =

√
k and hence 

.

∞∫

0
e−kx

2
dx = 1√

k

∞∫

0
e−y

2
dy. And we know that the right-hand side converges. 

So the left hand side exists too. 

(iii) Noting that .
∞∫

−∞
e−kx

2
dx =

∞∫

0
e−kx

2
dx +

0∫

−∞
e−kx

2
dx = 2

∞∫

0
e−kx

2
dx, which  

converges by (ii). 

Trigonometry 

Remark 4.1 At high school trigonometry was one of my favourite topics in mathe-
matics. However, not everyone feels the same. So I will include a few pieces of basic 
information that we may need. 

(i) tan x = sin x 
cos x 

; 
(ii) sin2 x + cos2 x = 1; 
(iii) sec x = 1 

cos x ; 
(iv) csc x = 1 

sin x ; 
(v) tan2 x + 1 = sec2x; 
(vi) y = sin x ⇐⇒ x = arcsin x; 
(vii) y = cos x ⇐⇒ x = arccos x; 
(viii) y = tan x ⇐⇒ x = arctan x; 
(ix) sin 0 = 0, sin π 

4 = 
√

2 
2 , sin  π 

2 = 1, −1 ≤ sin x ≤ 1, for all x ∈ R; 
(x) cos 0 = 1, cos π 

4 = 
√

2 
2 , cos π 

2 = 0, −1 ≤ cos x ≤ 1, for all x ∈ R; 
(xi) tan 0 = 0, tan π 

4 = 1; 
(xii) y = ex ⇐⇒ dy 

dx = y and y = 0 when x = 1; 

(xiii) sinh x = e
x − e−x 

2 
; 

(xiv) cosh x = e
x + e−x 

2 
; 

(xv) tanh x = e
x − e−x 

ex + e−x
; 

(xvi) d(sinh x) 
dx 

= cosh x. 

(xvii) d(cosh x) 
dx 

= sinh x. 
(xviii) y = ln x ⇐⇒ x = ey . (Note that ln x is defined to be loge x.) 

(xix) d(ln x) 
dx 

= 1 
x 

. 

(xx) d(x
n) 

dx 
= nxn−1, for  n ∈ N.
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−∞
e−x

2
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(xxi) 
∫ 
xn dx = x

n+1 

n + 1 
+ C, for  C ∈ R and n ∈ N. 

(xxii) 
∫ 1 

x 
dx = ln x + C, for  C ∈ R. 

4.5 Evaluating the Gaussian Integral 
∞∫ 

−∞ 
e−x

2 
dx  

Before proceeding to discuss another method to show 
certain infinite integrals exist, let us look further at 
Example 4.5 and actually evaluate the infinite inte-

gral .
∞∫

−∞
e−x

2
dx. This is known as the Gaussian in-

tegral and is named after the German mathematician 
Johann Carl Friedrich Gauss (1777–1855) who pub-
lished this integral in 1809. It is also known as the 
Euler-Poisson integral after the Swiss polymath Leon-
hard Euler (1707–1783) and the French mathematician, 
engineer, and physicist Siméon Denis Poisson (1781– 
1840). The evaluation of the Gaussian integral below 
was by the French polymath Pierre-Simon, marquis de 
Laplace (1749–1827). 

On the Eiffel Tower, 72 names of French scientists, 
engineers, and mathematicians are engraved in recog-
nition of their contributions. Poisson is one of these. 

There are many methods for evaluating the Gaussian 
integral. The most widely known proof is due to Pois-
son and uses polar co-ordinates and a double integral. 
The proof we present here, due to Laplace, also uses a 
different change of variable and depends only on single 
variable calculus. 

Theorem 4.3 Let a, b ∈ R, a > 0. Then 

. 

∞∫

−∞

e−a(x+b)
2
dx =

/
π

a
.

In particular 
∞∫ 

−∞ 
e−x

2 
dx = 

√
π and 

∞∫ 

−∞ 
e−πx

2 
dx = 1.
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Proof. It suffices to evaluate 
∞∫ 

−∞ 
e−x

2 
dx, as the general result then follows from the 

change of variable y = 
√
a(x + b) and observing that dx 

dy = 1√
a
. 

Put I = 
∞∫ 

0 
e−x

2 
dx, so that 

. I2 =
⎛
|

⎩

∞∫

0

e−x
2
dx

⎞
|

⎭

⎛
|

⎩

∞∫

0

e−y
2
dy

⎞
|

⎭

=

∫ ∞

0

⎛∫ ∞

0
e−(x

2+y2) dx

⎞

dy.

Put x = yt, so that dx 
dt = y. So  

. I2 =

∫ ∞

0

⎛∫ ∞

0
e−y

2(t+1)y dt

⎞

dy =
∫ ∞

0

⎛∫ ∞

0
ye−y

2(t2+1) dy

⎞

dt .

Noting that 
∞∫ 

0 
ye−a

2 
dy = 1 

2b for any b > 0, we see that 

. I2 =

∫ ∞

0

1
2(t2 + 1)

dt = lim
s→∞

∫ s

0

1
2(t2 + 1)

dt

=
1
2

lim
s→∞

∫ t=s

t=0

1
tan2 z + 1

sec2 z dz , where t = tan z and
dt
dz
= sec2 z

=
1
2

lim
s→∞

∫ t=s

t=0

1
sec2 z

sec2 z dz =
1
2

lim
s→∞

∫ t=s

t=0
1 dz =

1
2

lim
s→∞

[arctan t]s0

=
1
2

⎛ π
2

⎞
, as lim

s→∞
arctan s =

π

2
.

So I = 
∞∫ 

0 
e−x

2 
dx = 

√
π 

2 and thus 
∞∫ 

−∞ 
e−x

2 
dx = 

√
π. ⨅⨆

4.6 The Standard Normal Distribution 

Remark 4.2 In Theorem 4.3 we proved that 
∞∫ 

−∞ 
e−πx

2 
dx = 1. This fact is of consid-

erable interest in statistics. It expresses the fact that the standard normal distribution 

is ψ(x) = e
−x2 

√
π 

, that is, a Gaussian Distribution with mean μ = 0 and standard 

deviation σ = 1. The graph of this distribution, usually referred to as bell-shaped, 
is below.
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This graph was plotted using the software package R and exported to jpg 
format. 
x=seq(-4,4,length=400) 
y=dnorm(x) 
plot(x,y,type="l",lwd=1, col="gray", cex.lab=2.0, 
cex.axis=2.0, cex.main=2.5, 
cex.lab=2.5, ylab="", main="Standard Normal Distribution", 
las = 1) 
x=seq(-3,3,length=400) 
y=dnorm(x) 
polygon(c(-4,x,4),c(0,y,0),col="gray") 
It is interesting to note that the R software package can be used to obtain 

easily that the (shaded) area under the curve between x = −3 and x = 3 is  
0.9973 . . . .  
pnorm(3,mean=0,sd=1)-pnorm(-3,mean=0,sd=1) 

This result is statistics says that 

virtually all numbers drawn from the standard normal distribution 
lie within three standard deviations of the mean. 

Limit Comparison Test for Infinite Integrals 

The following theorem is called the Limit Comparison Test for Infinite Integrals and 
is [5, Theorem 10.25]. 

Theorem 4.4 Let .a ∈ R and . f , g : [a,∞) → R functions such that . f (x) ≥ 0 and 

.g(x) ≥ 0 for each .x ≥ a. Further, for each real number .b ≥ a, let  .
b∫

a

f (x) dx
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and .
b∫

a

g(x) dx both exist. If .limx→∞
f (x)
g(x) = c , where c ≠ 0 , then .

∞∫

a

f (x) dx and 

.

∞∫

a

g(x) dx both converge or both diverge. 

The problem of extending the factorial from the positive 
integers to a wider class of numbers was first investigated 
by the Swiss mathematician Daniel Bernoulli (1700–1782) 
and the German mathematician Christian Goldbach (1690– 
1764) in the 1720s. In 1729 Leonhard Euler succeeded and 
in 1730 he proved that for x any positive real number, . Γ(x) =
∞∫

0
tx−1et dt, where .Γ(n) = (n − 1)!, for any positive integer 

n. (This is true for complex numbers with positive real part.) 
The name gamma function is due to Adrien-Marie Legendre (1752–1833). 
In 1774 Pierre-Simon Laplace noticed that Stirling’s formula for . n! has a gen-

eralization to the gamma function, namely, that for x a positive real number, 
.Γ(x + 1) ∼

√
2πx

⎛ x
e

⎞x
. 

4.7 The Gamma Function 

Definition 4.8 For y a positive real number, define 

. Γ(y) =
∞∫

0

xy−1e−x dx.

The function Γ is called the gamma function. 

Proposition 4.1 For every positive real number y, the gamma function Γ(y) =
∞∫ 

0 
xy−1e−x dx converges. 

Proof. In preparation for using the limit comparison test Theorem 4.4, let  f (x) = 

xy−1e−x and g(x) = x−2. Noting that 
∞∫ 

1 
x−2 dx converges and lim

x→∞ 

f (x) 
g(x) = 

lim
x→∞ 

xy−1e−x 

x−2 converges, 
∞∫ 

1 
xy−1e−x dx converges. Obviously 

1∫ 

0 
xy−1e−x dx is finite. 

So Γ(y) = 
∞∫ 

0 
xy−1e−x dx converges. ⨅⨆
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Example 4.6 As another example of the use of the limit comparison test Theorem 4.4, 

let f (x) = x3 e−x
2/6 and g(x) = x−3. Noting that 

∞∫ 

1 
x−3 dx converges and lim

x→∞ 

f (x) 
g(x) = 

lim
x→∞ 

x6 e−x
2/6 converges, 

∞∫ 

1 
x3 e−x

2/6 dx converges. So 
∞∫ 

0 
x3 e−x

2/6 dx converges. 

[We shall use this result in the proof of Stirling’s approximation formula.] 

Integration by Parts 

Remark 4.3 In 1715, the mathematician Brook Taylor (1685–1731) whom we shall 
discuss shortly, published a very useful integration “trick” familiar to first year 
calculus students called integration by parts. It is an immediate consequence of 
the following result on differentiating products: If f (x) and g(x) are differentiable 
functions, that is, they have a derivative for all x ∈ [a, b], for  a, b ∈ R with a ≤ b, 
then 

. 
d( f (x)g(x))

dx
=

d( f (x))
dx

g(x) + f (x)d(g(x))
dx

;

. that is, ( f (x) g(x))' = f '(x) g(x) + f (x) g'(x).

The corresponding result for integrals, which is easily derived from this says, for 
a, b ∈ R with a ≤ b: 

. 

∫ b

a

f (x) g'(x) dx = [ f (b) g(b) − f (a) g(a)] −
∫ b

a

f '(x) g(x) dx.

Example 4.7 Using integration by parts with f (x) = xy and g'(x) = e−x dx, we  
obtain 

. 

b∫

0

xye−x dx = [−bye−b + 0ye0] +
∫ b

0
yxy−1e−x

= −bye−b + y

∫ b

0
xy−1e−x dx

If we let b → ∞, we obtain Γ(y + 1) = y Γ(y). 
Example 4.8 Let us use integration by parts to evaluate the integral we showed 
converged in Example 4.6. 

. I =
∫ ∞

0
x3 e−x

2/6 dx = lim
b→∞

∫ b

0
x3 e−x

2/6 dx.

Put z = x2/6, so that dz = x 
3 dx. So
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. Ib =
∫ b

0
x3 e−x

2/6 dx =
∫ x=b

x=0
(6z) x e−z 3

x
dz = 18

∫ z=b2/6

z=0
z e−z dz

= 18

⎛ ⎾

−b2

6
e−b

2/6 − 0
⏋

−
∫ b2/6

0
(−e−z dz

⎞

by Remark 4.3 

= 18
⎛

−b2 

6 
e−b

2/6 − e−b2/6 + 1
⎞

Thus I = lim 
b→∞ 

Ib = 18. 

Proposition 4.2 
(i) Γ(1) = 1; 
(ii) Γ(y + 1) = y Γ(y); 
(iii) Γ(n + 1) = n Γ(n), for all n ∈ N; 
(iv) Γ(n + 1) = n!, for all n ∈ N. 

Proof. Using Example 4.8 and mathematical induction, this result is easily proved. 
The details are left as an exercise. ⨅⨆

4.8 The Gamma Distribution 

Remark 4.4 The gamma function leads us to mention the gamma distribution. It is  
a two-parameter family of continuous probability distributions. The two parameters 
are the shape parameter which we denote by k and the scale parameter which we 
denote by θ. It is defined by 

. For k, θ ∈ R with k, θ > 0, f (x) = θ
k xk−1 e−θx

Γ(k) , where x > 0 , x ∈ R.

The Danish mathematician and engineer Agner Krarup Erlang (1878–1929) in-
vented the subjects of traffic engineering and queueing theory and in this context 
used the Erlang Distribution, which is the special case of the gamma distribution
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for which the shape parameter k is a positive integer. The German mathematician 
Friedrich Robert Helmert (1843–1917) discovered the χ2-Distribution, which is the 
special case of the gamma distribution with the scale parameter θ = 2 in 1875/6. The 
English mathematician Karl Pearson (1857–1936) rediscovered the χ2-Distribution 
in 1900. The χ2 test is one of the most used techniques for hypothesis techniques. 
The special case of the gamma distribution with the shape parameter k = 1 is the  
Exponential Distribution. 

This graph was plotted using the software package R and exported to jpg 
format. 

# R program to plot gamma distribution 
# Specify x-values for gamma function 
x_dgamma <- seq(0, 500, by = 0.04) 
# Apply dgamma function 

y_dgamma <- dgamma(x_dgamma, shape = 0.5, scale=1) 

plot(y_dgamma, type="l", col="#009999", lwd=2, xlab="x", 
ylab="", 
las=1,xlim=c(0,400), ylim=c(0,0.4), cex.lab=1.4, 
cex.axis=1.4,
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cex.main=1.6) 
par(new=TRUE) 

y_dgamma <- dgamma(x_dgamma, shape = 2, scale=2) 

plot(y_dgamma, type="l", col="blue", lwd=2, xlab="x", 
ylab="", 
las=1,xlim=c(0,400), ylim=c(0,0.4), cex.lab=1.4, 
cex.axis=1.4, 
cex.main=1.6) 

par(new=TRUE) 

y_dgamma <- dgamma(x_dgamma, shape = 3, scale=1) 

plot(y_dgamma, type="l",col="red", lwd=2, xlab="x", 
ylab="", 
las=1,xlim=c(0,400), ylim=c(0,0.4), 
cex.lab=1.4, 
cex.axis=1.4, 
cex.main=1.6) 

par(new=TRUE) 

y_dgamma <- dgamma(x_dgamma, shape = 1, scale=2) 

plot(y_dgamma, type="l", col="black", lwd=2, xlab="x", 
ylab="", 
main="The Gamma Distribution", las=1,xlim=c(0,400), 
ylim=c(0,0.4), cex.lab=1.4, 
cex.axis=1.4,cex.main=1.6) 

par(new=TRUE) 

y_dgamma <- dgamma(x_dgamma, shape = 7.5, scale=1) 

plot(y_dgamma, type="l", col="green", lwd=2, xlab="x", 
ylab="", 
main="The Gamma Distribution", las=1,xlim=c(0,400), 
ylim=c(0,0.4), 
cex.lab=1.4, 

cex.axis=1.4,cex.main=1.6) 

par(new=TRUE) 

y_dgamma <- dgamma(x_dgamma, shape = 9, scale=0.5)
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plot(y_dgamma, type="l", col="purple", lwd=2, xlab="x", 
ylab="", 
main="The Gamma Distribution", las=1,xlim=c(0,400), 
ylim=c(0,0.4), 
cex.lab=1.4, 
cex.axis=1.4,cex.main=1.6) 

x1 = expression(paste("k=2, scale=2, " , chi^2, 
"-Distribution")) 

legend("topright", legend=c("k=0.5, scale=1", 
"k=1, scale=2, Exponential Distribution", 
"k=3, scale=1, Erlang Distribution", 
x1, 
"k=7.5, scale=1.0", 
"k=9, scale=0.5 "), fill=c("#009999", "black","red", 
blue", "green","purple")) 

Taylor Series 

We now discuss Taylor Series, introduced in 
1715 by the English mathematician Brook 
Taylor. These series were used extensively by 
Colin Maclaurin (1698–1746) in the special 
case of the centre being zero. 

While these series are very widely used in 
applied mathematics, physics, and engineer-
ing, many books and papers are a bit careless 
about their use. The fact is that the Taylor se-
ries of a function does not always converge, 
and even when it does converge, it does not 
necessarily converge to the function. (See [5, 
§11.13, Exercise 24].) 

We state below Theorems 4.5, 4.6, and 
Proposition 4.3. These will suffice for most 
applications, and they are certainly adequate 
for our purposes.
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Differentiable Functions 

You will recall that a function which has a derivative is called differentiable. A  
functions which can be differentiated over and over again as many times as you like 
is called infinitely differentiable (or smooth). We know many infinitely differentiable 
functions, for example, all polynomials, and functions f such as given by . f (x) =
sin x, . f (x) = cos x, and . f (x) = ex , and . f (x) = e−x . Of course the function f defined 
by . f (x) = |x | is not differentiable at .x = 0. 

Definition 4.9 Let .a ∈ R, r a positive real number and f a function from the open 
interval .(a− r, a+ r) to . R. If  f is infinitely differentiable on the interval .(a− r, a+ r), 
then the Taylor series generated by . f on the interval .(a − r, a + r) is defined to be 

. 

∞⎲

k=0

f (k)(a)
k!

(x − a)k .

If .a = 0, then this series is said to be the Maclaurin series generated by . f . 

Theorem 4.5 [5, Theorem 11.11] Let .a ∈ R, r a positive real number, and f a 
function from the open interval .(a− r, a+ r) to . R. Assume that there exists a positive 
real number A such that .| f (n)(x)| ≤ An, for all .n ∈ N and every .x ∈ (a − r, a + r). 
Then, for every .x ∈ (a − r, a + r), the Taylor series generated by f equals . f (x). 

Another theorem of this type was proved by 
the Russian mathematician Sergei Natanovich 
Bernstein (1880–1968). 

Unlike the previous theorem which requires 
the . nth derivative . f (n) not to grow too fast, here it 
suffices that all of its derivatives are non-negative 
on a closed interval . [0, r]. 

Theorem 4.6 [Bernstein’s Theorem, [5, Theorem 11.12]] Let r be a positive 
real number and f a function from .[0, r] to . R. If . f (x) ≥ 0 and . f (n)(x) ≥ 0, for all 

.n ∈ N and .x ∈ [0, r], then the Taylor series .
∞∑

k=0

f (k)(0)
k!

xk converges and equals 

. f (x), for all .x ∈ [0, r]. 

The following simple proposition is useful. 

Proposition 4.3 Let . f1 be a function from . R to . R and . f2 a function from .[0,∞) to . R. If  
for each positive real number r , the Taylor series for . f1 equals . f1 for .x ∈ (a−r, a+r), 
then the Taylor series for . f1 equals . f1 for all .x ∈ R. 

Also if for each .r ∈ (0,∞), the Maclaurin series for . f2 equals . f2 for .x ∈ [0, r], 
then the Maclaurin series for . f2 equals . f2 for all .x ∈ [0,∞).



4.9 Proofs from The Book 133

With a little care, Corollary 4.1can be easily deduced from Theorem 4.5, Theo-
rem 4.6, and Proposition 4.3. 

Corollary 4.1 [2] 

(i) .sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · + (−1)n−1 x(2n−1)

(2n − 1)! + . . . , for .x ∈ R. 

(ii) .cos(x) = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · + (−1)n x

(2n)

(2n)! + . . . , for .x ∈ R. 

(iii) .ex = 1 + x +
x2

2!
+ · · · + xn

n!
+ . . . [. =⇒ ex = lim

x→∞
(1 + (1/x))x] for .x ∈ R. 

(iv) .e−x = 1 − x +
x2

2!
+ · · · + (−1)n

n!
+ . . . , & .e−x

2
=

∞∑

n=0

(−1)nx2n

n!
, .∀x ∈ R. 

(v) .ln(1 + x) =
∞∑

n=1
(−1)n+1 xn

n
, for .|x | < 1. [Recall . ln is defined to be . loge.] 

(vi) . 1
1 − x

=
∞∑

n=0
xn, for .|x | < 1. 

Proof. 

. f (x) = sin(x) =⇒ f '(x) = cos(x) =⇒ f 2(x) = − sin(x) =⇒ f (3)(x) = − cos(x)
=⇒ f (4)(x) = sin(x) =⇒ f (5)(x) = cos(x) =⇒ f 6(x) = − sin(x) . . . .

So . f 2n−1(x) = (−1)n−1 cos(x) and . f (2n)(x) = (−1)n sin(x). 
Thus . f (2n)(0) = 0 and . f 2n−1(0) = (−1)(n−1). Observe that .| sin(x)| ≤ 1 and 

.| cos(x)| ≤ 1 for all .x ∈ R. 
The remainder of the proof is left as an exercise. ⨅⨆

4.9 Proofs from The Book 

There are often many proofs of the same the-
orem. Some proofs are described as simple 
proofs, others as informative proofs, and yet 
others as elementary proofs. An informative 
proof is one which helps you understand the 
theorem. A simple proof is one which is usu-
ally short, but depends on some other results, 
sometimes powerful results, which you may 
or may not know. An elementary proof is one 
which uses the minimum background knowl-
edge. The Hungarian Jewish mathematician 
Paul Erdös (1913–1996) described perfect 
proofs as “Proofs from The Book” [4] dis-
cusses such proofs.
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4.10 Laplace Extension of Stirling’s Formula 

Theorem 4.7 [Laplace’s Extension of Stirling’s Formula] 
For x a positive real number, Γ(x + 1) ∼ (xx/ex)

√
2πx; 

that is, lim
x→∞ 

Γ(x + 1) 
(xx/ex)

√
2πx 

= 1. 

In particular, for n a positive integer, n! ∼ (nn/en)
√

2πn; 
that is, lim

n→∞ 

n! 
(nn/en)

√
2πn 
= 1. 

Proof. Let x, t ∈ R, t, x > 0. Further, let f (x) = xte−x and A = {x : |x− t | ≥  t 2 }. Let  
gA be the characteristic function of A; that is, gA(x) = 1, for x ∈ A and gA(x) = 0, 
otherwise. Then 

. Γ(t + 1) =
∫ ∞

0
f (x) dx =

∫ 3t
2

t
2

f (x) dx +
∫ ∞

0
gA(x) f (x) dx (4.10.1)

. Observe that: x ∈ A =⇒ 1 ≤ 4(x − t)2

t2
; (4.10.2)

.Γ(z + 1) = zΓ(z), for all z ∈ R, z > 0 : (4.10.3)
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. Γ(t + 2) = (t + 1)Γ(t + 1); (4.10.4)

. Γ(t + 3) = (t + 2)(t + 1)Γ(t + 1). (4.10.5)

. 

|
|
|
|
|
1 − 1
Γ(t + 1)

∫ 3t
2

t
2

xte−x dx

|
|
|
|
|

=

|
|
|
|1 − 1
Γ(t + 1)

⎛

Γ(t + 1) −
∫ ∞

0
gA(x)xte−x dx

⎞||
|
|

≤
|
|
|
|1 − 1
Γ(t + 1)

⎛

Γ(t + 1) −
∫ ∞

0

4(x − t)2

t2
xte−x dx

⎞||
|
|

=

|
|
|
|

4
t2Γ(t + 1)

∫ ∞

0
(x2 + t2 − 2xt)xte−x dx

|
|
|
|

=

|
|
|
|

4
t2Γ(t + 1)

⎛∫ ∞

0
x2xte−x dx +

∫ ∞

0
t2xte−x dx −

∫ ∞

0
2xtxte−x dx

⎞||
|
|

=

|
|
|
|

4
t2Γ(t + 1)

(Γ(t + 3) + t2Γ(t + 1) − 2tΓ(t + 2))
|
|
|
|

=

|
|
|
|

4
t2Γ(t + 1)

((t + 2)(t + 1)Γ(t + 1) + t2Γ(t + 1) − 2t(t + 1)Γ(t + 1))
|
|
|
|

=
4
t2
(t2 + 3t + 2 + t2 − 2t2 − 2t) = 4

t2
(t + 2).

. Therefore lim
t→∞

1
Γ(t + 1)

∫ 3t
2

t
2

xte−x dx = 1. (4.10.6)

Make the change of variables x = y
√
t + t and define ht (y) =

⎛
1 + y√

t

⎞ t 
e−y

√
t . 

. So x =
t
2

⇐⇒ y = −
√
t

2
and x =

3t
2

⇐⇒ y =

√
t

2
.

(4.10.7)

.Now
∫ √

t
2

−
√
t

2

ht (y) dy =
∫ √

t
2

−
√
t

2

⎛

1 +
y
√
t

⎞ t
e−y

√
t dy

=

∫ 3t
2

t
2

⎛

1 +
x − t
√
t
√
t

⎞ t
e
−
⎛
x−t√

t

⎞√
t 1
√
t
dx =

et

tt
√
t

∫ 3t
2

t
2

xte−x dx.
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. By (4.10.6) and (4.10.7) this implies lim
t→∞

tt
√
t

Γ(t + 1) et

∫ √
t

2

−
√
t

2

ht (y) dy = 1.

(4.10.8)

.By Corollary 4.1 (v), ln(1 + x) = 
∞⎲

n=1 
(−1)n+1 x

n 

n 
, for |x | < 1 

2 
. (4.10.9) 

So by (4.10.9) and Corollary 4.1(vi), for z ∈ R with |z | < 1 
2 

, 

. 

|
|
|
|ln(1 + z) − z +

1
2
z2
|
|
|
|

≤
∞⎲

n=3

|z |n
n

≤
∞⎲

n=3

|z |n
3
=

|z |3
3

∞⎲

n=3
|z |n−3 =

|z |3
3

1
1 − |z | ≤

2
3
|z |3. (4.10.10) 

By Corollary 4.1 (iii), for all u, v  ∈ R 

. |eu − ev | = ev |eu−v − 1| = ev
|
|
|
|
|

∞⎲

n=1

u − v)n
n!

|
|
|
|
|

≤ ev |u − v |
∞⎲

n=1

|u − v |n−1

n!
≤ ev |u − v |e |u−v | (4.10.11) 

. In (4.10.10) put z =
y
√
t

to obtain
|
|
|
|ln

⎛

1 +
y
√
t

⎞

− y
√
t
+

y2

2t

|
|
|
| ≤

2|y |3

3 t 3
2
. (4.10.12)

. Put u = ln ht (y) = ln
⎛⎛

1 +
y
√
t

⎞ t
e−y

√
t

⎞

= t(ln(1 + z) − z). (4.10.13)

Put v = − y2 

2 = − tz2 

2 . Then for |z | < 1 
2 ⇐⇒ |y | < 

√
t 

2 , we have
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. 

|
|
|
|ht (y) − e−

y2
2

|
|
|
| =

|
|
|
|e
t(ln(1+z)−z) − e−

t z2
2

|
|
|
| , by (4.10.13)

≤ e−
t z2

2

|
|
|
|t(ln(1 + z) − z) + tz2

2

|
|
|
| e

|t(ln(1+z)−z)+ t z2
2 | , by (4.10.11)

≤ e−
y2
2
t2|y |3

3t 3
2

e

⎛
2t |y |3

3t3/2

⎞

, by (4.10.12)

≤ |y |3
√
t

2
3
e
y2(−1/2+ 2t y

3t3/2
)

<
|y |3
√
t

2
3
e
y2(−1/2+ 2t

√
t

2.3.t3/2
)
, as y <

√
t

2

<
|y |3
√
t
e

−y2
6 (4.10.14) 

Therefore, by (4.10.14), 

. 

|
|
|
|
|
|

∫ √
t

2

−
√
t

2

ht (y) dy −
∫ ∞

−∞
e−y

2/2 dy

|
|
|
|
|
|
≤ 1

√
t

∫ √
t

2

−
√
t

2

|y |3e−y2/6 dy +
∫

|y |>
√
t/2

e−y
2/2 dy

But the first integral on the right-hand side is finite by Example 4.8 and so the limit 
as t → ∞  of the first term on the right-hand side is zero. The limit as t → ∞  of the 

second integral is zero as 
∞∫ 

−∞ 
e−y

2/2 dy is finite by Theorem 4.3. Therefore 

. lim
t→∞

∫ √
t

2

−
√
t

2

ht (y) dy =
∫ ∞

−∞
e−y

2/2 dy =
√

2π , by Theorem 4.3 

Combining this with (4.10.8), we have 

. lim
t→∞

Γ(t + 1)et
√

2πt(t+1/2)
= 1.

This completes the proof of the theorem, with the proof in fact yielding the result 
not only for n!, but in fact for the Γ function. ⨅⨆
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4.11 Improvements on Stirling’s Formula 

Stirling’s approximation of . n!, proved about 1730, is 
surprisingly good and very useful outside statistics and 
pure mathematics. 

There have been hundreds of published papers pro-
viding alternative proofs of Stirling’s approximation 
or improving upon his approximation. 

The English mathematician William Burnside 
(1852–1927) is known mostly as an early researcher 
in the theory of finite groups, but in his latter years, 
he turned to probability and wrote what was probably 
the first textbook in English on probability. It was pub-
lished posthumously. As well, [7], published in 1917, 
gives a modest improvement on Stirling’s approxima-
tion. 

The first printed book on probability, published 
in 1657, was by the Dutch physicist, mathematician, 
astronomer, and inventor Christiaan Huygens (1629– 
1695). Huygens invented the pendulum clock and dis-
covered Saturn’s moon Titus. His book was directed 
towards games of chance.) 

A significant improvement on Stirling’s approxi-
mation and Burnside’s approximation was made by 
the American mathematician and programmer Ralph 
William Gosper Jr. (born 1943) in 1978 in [11]. He 
also made significant contributions to computational 
mathematics, the MIT Maclisp system, and the pow-
erful computer algebra package Macsyma. 

A major advance was made by the extraordinary 
Indian mathematician Srinivasa Ramanujan (1887– 
1920) in the last year of his life. [24, p.339] made 
the claim that 

. Γ(x + 1) =
√
π
⎛ x
e

⎞x ⎛

8x3 + 4x2 + x +
θx
30

⎞ 1
6

,

where .θx → 1 as .x → ∞ and .
3
10 < θx < 1 and gave 

numerical evidence for it. Ramanujan’s approximation 
was substantially better than those that preceded it 
and those which were discovered in the subsequent 80 
years.
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Since the year 2,000 there have been 
several papers extending Stirling’s for-
mula and improving on Gosper’s result. 
In a web post in 2002, Robert H. Wind-
schitl, [26], gave an elegant and good 
asymptotic approximation of n!, namely 
that 

. Γ(x + 1) ∼
√

2πx
⎛ x
e

⎞x ⎛

x sinh
⎛
1
x

⎞⎞ x
2

.

In 2010 the Hungarian mathematician 
Gergő Nemes (born 1988) gave an 
asymptotic approximation which is al-
most as good as Windschitl’s but better 
than all the others at that time. It was 
that 

. Γ(x+1) ∼
√

2πx
⎛ x
e

⎞x
⎛

1 +
1

12x2 − 1
10

⎞x

.

An asymptotic formula of a different style, which is much better than Gosper’s, 
was published in 2011 by the Romanian mathematician Cristinel Mortici, [17, 18]. 
It was 

. Γ(x + 1) ∼
√

2π x
⎛
x
e
+

1
12 e x

⎞x
.

Pierre-Simon Laplace discovered what is now known as the Stirling series for the 
Gamma function. 

. Γ(x + 1) ∼ e−x xx+
1
2
√

2π
⎛

1+
1

12x
+

1
288x2 − 139

51,840x3 − 571
2,488,320x4 +

∞⎲

n=5

an
bnxn

⎞

,

where the real numbers an and bn are explicitly calculated in [20]. As stated in [19], 
“the performance deteriorates as the number of terms is increased beyond a certain 
value”. 

In 2016 Chao-Ping Chen [9] produced an asymptotic approximation which was 
the best known at that time. It is 

.Γ(x + 1) ∼
√

2πx
⎛ x
e

⎞x
⎛

1 +
1

12x3 + 24
7 x − 1

2

⎞x2+ 53
210

.
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Ramanujan’s approximation, as men-
tioned above, is substantially better than all 
those which were published in the subsequent 
80 years. For example, when n equals one 
million, the percentage error of Ramanujan’s 
approximation is one million million times 
better than Gosper’s. 

In 2013 the Australian mathematician 
Michael Hirschhorn (born 1947) and the 
Costa Rican mathematician Mark B. Villar-
ino in [13] proved the correctness of Ramanu-
jan’s claim above for positive integers. 

They showed that Ramanujan’s θn satisfies for each positive integer n: 

. 1 − 11
8n
+

79
112n2 < θn < 1 − 11

8n
+

79
112n2 +

20
33n3 .

Although they did not explicitly say it, it is clear from their work that 

. Γ(x + 1) ∼
√
π
⎛ x
e

⎞x
⎛

8x3 + 4x2 + x +
1 − 11

8x +
79

112x2

30

⎞ 1
6

,

at least for positive integers. 

In [16] I produced tables showing how good each of the approximations is for 
n = 2 to  n = 1 million. Below we shall present just one table from which the flavour 
can be seen. 

In [16] I observed that once we know that Stirling’s formula is asymptotic to 
Γ(x + 1), we can easily deduce that each of the other mentioned approximations also 
is asymptotic to Γ(x + 1). 

Theorem 4.8 Let f be a function from an interval (a, ∞) to R, where a ∈ R, a > 0. 
If lim

x→∞ 
f (x) = 1, then Γ(x + 1) ∼

√
2π x

(
x 
e

)x 
. f (x). 

Proof. This is an obvious consequence of Laplace’s extension of Stirling’s formula 
Theorem 4.7. ⨅⨆

Example 4.9 Γ(x + 1) ∼  
√

2π x
(
x 
e

)x 
. f (x), where f (x) = 1 − 100x−7. However,  

while 
√

2π x
(
x 
e

)x 
.(1 − 100 

x7 ) is asymptotic to Γ(x + 1), it does not say it is a good 
approximation. How good each approximation is is demonstrated in the table below. 

The following corollary follows immediately from Theorem 4.8. It shows that 
all of the asymptotic approximations we mentioned above are indeed asymptotic 
to Γ(x + 1). This is interesting because it avoids a large amount of complicated
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error estimate analysis and also because a couple of these approximations were only 
proved when x is a positive integer, whereas we get the results for all positive real 
numbers x. 

Corollary 4.2 For x a positive real number: 

(i) Burnside: Γ(x + 1) ∼
√

2π
⎛
x + 1/2 

e

⎞x+1/2 
; 

(ii) Gosper: Γ(x + 1) ∼
√
π
⎛ x 
e

⎞x
/

2x + 1 
3 

; 

(iii) Mortici: Γ(x + 1) ∼
√

2π x
⎛
x 
e 
+ 1 

12 e x

⎞x 
; 

(iv) Ramanujan: Γ(x + 1) ∼
√
π
⎛ x 
e

⎞x ⎛

8x3 + 4x2 + x + 1 
30

⎞ 1 
6 

; 

(v) Laplace (n): Fix  n ∈ N. For  ai, bi ∈ N, 

. Γ(x + 1) ∼ e−x xx+
1
2
√

2π
⎛

1 +
1

12x
+

1
288x2 +

n⎲

i=3

ai
bi xi

⎞

;

(vi) Nemes: Γ(x + 1) ∼
√

2πx
⎛ x 
e

⎞x
⎛

1 + 1 
12x2 − 1 

10

⎞x 

. 

(vii) Windschitl: Γ(x + 1) ∼
√

2πx
(
x 
e

)x
⎛
x sinh

⎛
1 
x

⎞⎞ x 
2 . 

(viii) Hirschhorn and Villarino : 

Γ(x + 1) ∼
√
π
⎛ x 
e

⎞x
⎛

8x3 + 4x2 + x + 
1 − 11 

8x + 79 
112x2 

30

⎞ 1 
6 

. 

(ix) Chen: Γ(x + 1) ∼
√

2πx
⎛ x 
e

⎞x
⎛

1 + 1 
12x3 + 24 

7 x − 1 
2

⎞x2+ 53 
210 

. 

Proof. In each case it is sufficient to determine the function f in Theorem 4.8 and 
observe that lim

x→∞ 
f (x) = 1. 

(i) Use f (x) =
⎛

1 + 1 
2x

⎞x ⎛
|
|

⎩

1 + 1 
2x 
e

⎞
|
|

⎭

1 
2 

. 

(ii) Use f (x) =
/

1 + 1 
6x 

. 

(iii) Use f (x) =
⎛

1 + 1 
12x2

⎞x 
. 

(iv) Use f (x) =
⎛

1 + 1 
2x 
+ 1 

8x2 + 1 
240x3

⎞ 1 
6 
.
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(v) Use f (x) =
⎛

1 + 1 
12x 
+ 1 

288x2 + 
n∑

i=3 

ai 
bi xi

⎞

. 

(vi) Use f (x) =
⎛

1 + 1 
12x2 − 1 

10

⎞x 

. 

(vii) Use f (x) =
⎛
x sinh

⎛
1 
x

⎞⎞ x 
2 . 

(viii) Use f (x) =
⎛

1 + 1 
2x 
+ 1 

8x2 + 
1 − 11 

8x + 79 
112x2 

240x3

⎞ 1 
6 

. 

(ix) Use f (x) =
⎛

1 + 1 
12x3 + 24 

7 x − 1 
2

⎞x2+ 53 
210 

.

⨅⨆

Each of the approximations gets further and further from n! as  n tends to infinity. 
So the quality of the approximations is best judged by considering the percentage 
error, that is, 

. 100 × |approximation − n!|
n!

.

In the table S = Stirling, B = Burnside, G = Gosper, M = Mortici, R = Ramanujan, 
and HV = Hirschhorn and Villarino 

n n! S %error  B %error  G %error  M %error  R % error  HV%error 

2 2 4.0 1.7 1.3×10−1 1×10−2 3.3×10−3 1.6×10−4 

5 1.2×102 1.7 7.6×10−1 2.5×10−2 5.7×10−4 1.2×10−4 1.5×10−6 

10 3.6×106 8.3×10−1 4.0×10−1 6.6×10−3 7.0×10−5 8.6×10−6 3.0×10−8 

20 2.4×1018 4.2×10−1 2.0×10−1 1.7×10−3 8.7×10−6 5.7×10−7 5.2×10−10 

50 3.0×1064 1.7×10−1 8.3×10−2 2.7×10−4 5.6×10−7 1.5×10−8 2.3×10−12 

100 9.3×10157 8.3×10−1 4.1×10−2 6.9×10−5 6.9×10−8 9.5 × 10−10 3.6×10−14 

103 4.0×102,567 8.3×10−3 4.2×10−3 6.9×10−7 6.9×10−11 9.5×10−14 3.7×10−20 

104 2.8×1035,659 8.3×10−4 4.2×10−4 6.9×10−9 6.9×10−14 9.5×10−18 3.7×10−26 

106 8.3×105,565,708 8.3×10−6 4.2×10−6 6.9×10−13 6.9×10−20 9.5×10−26 3.7×10−38 

We calculated the entries in all but the final three rows in the table above 
using the software package R. The final three rows were calculated using the 
Wolfram|Alpha software package. 

Corollary 4.3 For x a positive real number, Γ(x + 1 
2 ) ∼

√
2πxxe−x . 

Proof. Laplace’s extension of Stirling’s formula Theorem 4.7,
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.Γ

⎛

x +
1
2

⎞

= Γ

⎛⎛

x − 1
2

⎞

+ 1
⎞

∼
⎛

x − 1
2

⎞x− 1
2

e−(x−
1
2 )

/

2π
⎛

x − 1
2

⎞

=

⎛

x − 1
2

⎞x
e−x

√
e
√

2π

= xx
⎛

1 − 1
2x

⎞x
e−x

√
e
√

2π

= xx e−x
√

2π
⎛⎛

1 − 1
2x

⎞x √
e

⎞

∼ xx e−x
√

2π , as lim
x→∞

⎛⎛

1 − 1
2x

⎞x √
e

⎞

= 1.

⨅⨆

4.12 Male Births 

You should recall that we mentioned that De Moivre started the topic of approxi-
mating . n! because he was looking at games of chance where it became necessary to 
approximate . 

(2n
n

)
for large values of n. Let us consider now an example which deals 

with such an estimate. 

Example 4.10 Assume that in a particular country there were exactly one million 
births in 2020. Also assume that the probability that a baby is born biologically male 
is 0.5. What is the probability in 2020 that there will be exactly 500,000 babies born 
which are biologically male? And use Stirling’s formula to approximate this number. 
Clearly the probability is .

(1,000,000
500,000

)
( 1

2 )
1,000,000. These numbers are too big for a 

calculator. So let us use Stirling formula which says that .n! ∼ (nn/en)
√

2πn. So  

. 

⎛
2n
n

⎞

=
(2n)!
n!.n!

∼
(2n)2n
e2n

√
2π.2n

nn

en

√
2πn. nn

en

√
2πn
=

22n
√
π
√
n

. Thus
⎛
2n
n

⎞

.2−2n ∼ 1
√
π.n
.

. So
⎛
1,000,000
500,000

⎞

.2−1,000,000 ∼ 1
√
π.500,000

= 0.00079788 . . . .

We observe firstly, that Stirling’s formula avoided having to calculate .1,000,000!, 
and .(500,000!)2. Secondly we note that the probability that exactly half of those born 
were biologically male is very small. Finally I mention that the actual value is indeed 
.0.00079788 . . . .
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4.13 The Basel Problem: Evaluating ζ(2) = 
∞∑
n=1 

1 
n2 

Shortly we shall evaluate the probability that two randomly chosen natural numbers 
are coprime, that is, their least common divisor is 1. To answer this, one must first 
solve the Basel problem which of independent interest in mathematics. 

The Basel problem was posed by Pietro Men-
goli in 1650. Pietro Mengoli (1626–1686) was 
an Italian mathematician. In 1650 he studied 
the alternating harmonic series and proved that 
.1 − 1

2
+

1
3
− · · · + (−1)n+1 1

n
+ · · · = ln 2. This 

can be verified today by (careful) evaluation of the 
Taylor Series of .ln(1 + x). 

In 1650, he also posed the problem of evaluating 
the convergent series . 

∞∑

n=1

1
n2 .

Despite attempts by the leading mathematicians of the time, this problem remained 
unsolved for 80 years. In 1734 Leonhard Euler (1707–1783) announced that he 
had solved the problem. As Euler was born in Basel in Switzerland, the problem 
became known as the Basel problem. Euler presented his elegant solution to the 
St. Petersburg Academy of Sciences in 1735. His solution brought him immediate 
fame, partly because of his youth. Euler’s proof in fact relied on an extension of the 
fundamental theorem of algebra so that he could express .sin x as a particular infinite 
product, a fact which had not been rigorously proved at that time. In 1741 Euler was 

able to give a rigorous proof that . 
∞∑

n=1

1
n2 =

π2

6
.

Euler generalized this to study the . ζ function defined by 

. ζ(s) =
∞⎲

n=1

1
ns
,

for .s ∈ R. In 1859 Bernhard Riemann took up Euler’s ideas in his paper [25] and 
extended the zeta function to complex numbers s, proved its basic properties, and 
discussed between . ζ(s) and the distribution of the prime numbers. The zeta function 
is known today as the Riemann zeta function. 

In his 1859 paper Riemann conjectured that the Riemann 
zeta function has its zeros only at the negative even integers 
and complex numbers with real part 1/2. 
This conjecture has remained unproved for 160 years and is 
regarded as one of the most important unsolved problems in 
mathematics.
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It is one of the million-dollar millennium prize problems. 
It is of great interest because it would imply significant 
results about the distribution of prime numbers. 

Georg Friedrich Bernhard Riemann (1826– 
1866) was a German mathematician who 
made contributions to analysis, number the-
ory, and differential geometry. To undergrad-
uates he is known for the rigorous formula-
tion of the integral, the Riemann integral. His  
contributions to complex analysis include the 
introduction of Riemann surfaces. His famous 
1859 paper on the prime-counting function is 
regarded as one of the most influential papers 
in analytic number theory.
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After that digression to put the Basel problem into context, let us proceed to an 
exposition of the solution. As we said before, there are often many proofs of the same 
theorem. Some proofs are described as simple proofs, others as informative proofs, 
and yet others as elementary proofs. An informative proof is one which helps you 
understand the theorem. A simple proof is one which is usually short, but depends 
on some other results, sometimes powerful results, which you may or may not know. 
An elementary proof is one which uses the minimum background knowledge. The 
shortest proof I have seen on Basel’s problem is [15] which claims to be a one 
sentence proof. Another short proof is in [6]. The exposition here is that of [10] as I  
regard it as being more informative and is indeed elementary. 

Before we begin the proof itself, let us prove a simple fact, namely, that 

. x ∈ [0, π
2
] =⇒ 2

π
x ≤ sin x,

which is evident from the graph (but that is not a proof). 

Proof. Note that .sin(0) = 0 and .sin( π2 ) = 1. So  x and .
π
2 sin x are equal at .x = 0 and 

.x =
π

2
. Put . f (x) = sin x

x
, for .0 < x ≤ π

2 . 

Then the derivative . f '(x) = g(x)
x2 , where .g(x) = x cos x − sin x.
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So .g'(x) = −x sin x ≤ 0, for all .x ∈ (0, π2 ]. 
Thus g is a decreasing function, for all .x ∈ (0, π2 ]. 
Hence .g(x) ≤ 0, for all .x ∈ [0, π2 ]. So . f '(x) ≤ 0 for all .x ∈ (0, π2 ]. 
This implies that f is a decreasing function for .x ∈ (0, π2 ], which in turn says that 

.
π

2
· sin x

x
is a decreasing function, for all .x ∈ (0, π2 ]. 

But .
π

2
· sin x

x
= 1 for .x = π

2 . 

Hence .
π

2
· sin x

x
≥ 1, for all .x ∈ (0, π2 ], which proves the proposition. ⨅⨆

The graph appearing above was created using the R software. 
f1<-function(x) { 
y<- (sin(x)) 
return(y) } 

value<-c(0,pi/2) 
f2<-c(0,1) 
plot(value,f2, pch=20, ylab="", xlab="") 
fill=c("red","black") 
title(main= expression(paste(sin(x), " and 2x/",pi)), 
col.main="blue",cex.main=1.8) 

f3<-function(x) { 
y<- (2*x/pi) 
return(y) 

} 
curve(f1(x), xlim=c(0,pi/2), ylim=c(0,2), col="red", 
lwd=2, add=TRUE) 
curve(f3(x), xlim=c(0,pi/2), ylim=c(0,2), col="black", 
lwd=2, add=TRUE) 
legend(0,0.97, legend=c(expression(paste(f[1](x), 
" = sin(x)")), 
expression(paste(f[2](x)," = 2x/",pi))), ,cex=1.6, 
fill=c("red","black")) 
abline(v = pi/2, lty=5, lwd=2, col="blue") 
abline(h = 1, lty=5, lwd=2,col="blue") 
text(1.4,0.5,expression(paste("y = ",pi,"/2")),cex=1.5) 

Theorem 4.9 .ζ(2) =
∞∑

k=1

1
k2 =

π2

6
.
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Proof. Define .An =

π
2∫

0
(cos x)2n dx and .Bn =

π
2∫

0
x2(cos x)2n dx, for .n ∈ Z, .n ≥ 0. 

We shall prove that 

. 0 ≤ π
2

6
−

n⎲

k=1

1
k2 = 2

Bn

An
≤ π2

4(n + 1) . (4.13.1)

If we let .n → ∞, (4.13.1) implies the statement in the theorem. So we proceed to 
prove (4.13.1). We use integration by parts and .sin2 x = 1 − cos2 x. 

. An =

∫ π
2

0
cos x cos2n−1 x dx

=(2n − 1)
∫ π

2

0
sin2 x cos2(n−1) x dx (4.13.2) 

=(2n − 1) 
∫ π 

2 

0 
(1 − cos2 x) cos2(n−1) x dx  

=(2n − 1)(An−1 − An). (4.13.3) 

Easy manipulation of (4.13.2) and (4.13.3) shows that 

. 

∫ π
2

0
sin2 x cos2(n−1) x dx =

An

2n − 1
=

An−1
2n
. (4.13..4)

Next we express . An in terms of . Bn. We do so by integrating by parts twice. Using 
it once, we obtain 

. An =

∫ π
2

0
1 × cos2n x dx = 2n

∫ π
2

0
x sin x cos2n−1 x dx.

Using it a second time, we obtain 

. An = −n
∫ π

2

0
x2

⎛
cos x cos2n−1 x − (2n − 1) sin2 x cos2n−2 x

⎞
dx

= −nBn + n(2n − 1)
∫ π

2

0
x2(1 − cos2 x) cos2(n−1) dx

= −nBn + n(2n − 1)(Bn−1 − Bn).
So An = n(2n − 1)Bn−1 − 2n2Bn. (4.13.5) 

Dividing (4.13.5) by .n2An and using (4) we obtain 

.
1
n2 =

(2n − 1)Bn−1
nAn

− 2Bn

An
=

2Bn−1
An−1

− 2Bn

An
.
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As this is true for all integers .n ≥ 1, we can sum both sides to get for all . n ≥ 1

. 

n⎲

k=1

1
k2 =

n⎲

k=1

⎛
2Bk−1
Ak−1

− 2Bk

Ak

⎞

=
2B0
A0

− 2Bn

An
, by noting the intermediate terms in the summation cancel.

As .A0 =

π
2∫

0
1 dx =

π

2
and .B0 =

π

2∫

0
x2dx =

π3

24
, we see that .

2B0
A0
=
π2

6
. 

. Thus we have for all n ≥ 1,
n⎲

k=1

1
k2 =

π2

6
− 2Bn

An
. (4.13.6)

. 

. Now we have Bn =

π
2∫

0

x2(cos x)2n dx

≤
⎛ π
2

⎞2
π
2∫

0

sin2 x cos2n x dx

=
π2

4
· An

2(n + 1) by replacing n by n + 1 in (4.13.4). (4.13.7) 

(4.13.6) and (4.13.7) then yield the required result (4.13.1) ⨅⨆

4.14 Probability that Two Randomly Chosen Natural Numbers 
Are Coprime 

While the idea of this problem is very easily understood, the verification that the 
problem is meaningful is not trivial as one must explain what one means by two 
randomly chosen natural numbers and show that this is indeed possible. An equivalent 
formulation of the problem is as follows: what is the probability that a fraction with 
randomly selected numerator and denominator from the set of natural numbers is 
irreducible, that is, the numerator and denominator have no common factor . > 1. 
Who first stated this problem is not definitely known, but it probably dates from 
about 200–250 years ago. For a history of the problem, from a Russian perspective 
at least, see [1]. In the literature there are a number of solutions to this problem, none 
of which could be described as easy. A standard proof can be found as [12, Theorem 
332]. The proof presented here is elementary. It is based on Theorem 4.9 and [28].
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Definition 4.10 If .a, b, c, n, p ∈ Z, then c is said to be a divisor of n if there exists 
an .m ∈ N such that .n = mc. The number p is said to be a prime number if it has 
precisely 2 divisors which are positive integers. A positive integer which is not a 
prime number and is strictly greater than 1 is said to be a composite number. The  
number c is said to be the greatest common divisor of a and b if c is a divisor of a and 
b and no number greater than c is a divisor of both a and b. The greatest common 
divisor of a and b is written .(a, b). The numbers a and b are said to be coprime (or 
relatively prime or mutually prime) if .(a, b) = 1. 

Example 4.11 The numbers .2, 3, 5, 7, 11, 13, 17, 19 . . . are prime numbers, while 
.2, 4, 6, 8, 9, 10, 12, . . . are not prime numbers. 1 is not a prime number as it has 
only 1 divisor which is a positive integer. Clearly 7 and 13 are coprime, as are 14 
and 39. We see that if either (or both) of a and b are prime numbers, then a and b 
are coprime. On the other hand, a and b coprime does not imply either a or b are 
prime numbers. 

Existence of an Infinite Number of Prime Numbers 

It is known that there is an infinite number of prime numbers. The first known proof 
of this fact is attributed to Euclid who was an influential Greek mathematician who 
lived in Alexandria about 2,300 years ago. Several alternative proofs are presented 
in [4]. 

Euclid is regarded as the father of geometry. His work Elements developed geom-
etry from a set of axioms. (His geometry is now called Euclidean geometry.) This 
book was used to teach mathematics until about 130 years ago. Pictured above is 
a photo of a statue of Euclid by the English sculptor Joseph Durham (1814–1877) 
and is located in the Oxford University Museum of Natural History. The fragment
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of papyrus also pictured above has a diagram which accompanies Proposition 5 of 
Book II of the Elements. The fragment is dated at about 1900 years ago. It was 
discovered by the English Egyptologist Bernard Pyne Grenfell (1869–1926) and 
the English Papyrologist Arthur Surridge Hunt (1871–1934) at Oxyrhynchus (later 
known as Al-Bahnasa), a city in Middle Egypt located about 160 km south-southwest 
of Cairo. 

We next present Euclid’s proof that the number of prime numbers is infinite. 

Proof by Contradiction Begins with Suppose 

The proof is done by a method known as proof by contradiction. We begin by 
supposing that what we would like to prove is false. We continue until we reach a 
conclusion which we know is untrue. So we have a contradiction. Therefore what 
we supposed must be false. 

So that you know I am using this proof by contradiction method of proof, I will 
always begin with suppose. I shall not use the word suppose in any other context. 
Instead I will probably use the word assume. 

From the definition of prime number, every positive integer . >1 is either a 
prime number or is divisible by a prime number. 

Theorem 4.10 There is an infinite number of prime numbers. 

Proof. Suppose that there is only a finite number of prime numbers .p1, p2, . . . , pn, 
where .n ∈ N. 

Consider the positive integer .N = p1.p2. . . . pn + 1. This number is bigger than 
each of .p1, p2, . . . , pn. So it cannot be a prime number, as by supposition these are 
the only prime numbers. But N must be divisible by a prime number. 

But if you divide the number .N = p1.p2. . . . pn + 1 by any of .p1, p2, . . . , pn, there 
is a remainder of 1. So N is not a prime number and is not divisible by a prime 
number and it is strictly bigger than 1. This is a contradiction. So our supposition 
was false, and there must exist an infinite number of prime numbers. ⨅⨆

Infinite Products 

Definition 4.11 If x1, x2,  . . . ,  xn ∈ R, for  n ∈ N, then 
n∏

i=1 
xi is defined to be equal to 

the product x1.x2. . . .  xn. Further, the infinite product 
∞∏

i=1 
xi is defined to be lim

n→∞ 

n∏

i=1 
xi , 

if that limit exists.
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Proposition 4.4 Let p1, p2,  . . .  pn,  . . .  be the prime numbers in ascending order. 

Then 
∞∏

n=1

⎛

1 − 1 
pn2

⎞

exists; that is, lim
n→∞ 

n∏

i=1

⎛

1 − 1 
pi2

⎞

exists. 

Proof. Consider an = 
n∏

i=1

⎛

1 − 1 
pi2

⎞

. Observe that an is the product of n terms
⎛

1 − 1 
pi2

⎞

, each of which is positive and strictly less than 1. This implies that 

lim
n→∞

an exists. ⨅⨆

Shortly we will actually evaluate this product. 

Theorem 4.11 ζ(2) = 
∞∑

n=1 

1 
n2 = 

∞∏

k=1 

1 

1 − 1 
p2 
k 

, where p1, p2,  . . . ,  pk,  . . .  are the prime 

numbers in ascending order. 

Proof. 

.

∞∏

k=1

1

1 − 1
p2
k

=
⎛
|

⎩

1

1 − 1
p1

2
⎞
|

⎭

⎛
|

⎩

1

1 − 1
p2

2
⎞
|

⎭

. . .
⎛
|

⎩

1

1 − 1
pk

2
⎞
|

⎭

. . .

=

⎛

1 +
1
p2

1
+

1
p4

1
+ · · · + 1

p2k
1
+ . . .

⎞

×
⎛

1 +
1
p2

2
+

1
p4

2
+ · · · + 1

p2k
2
+ . . .

⎞

. . .

= 1 +
⎲

i≥1

1
p2
i

+
⎲

j≥i≥1

1
p2
i p

2
j

+
⎲

k≥ j≥i≥1

1
p2
i p

2
j p

2
k

+ . . .

= 1 +
1
22 +

1
32 + . . .

1
n2 + . . .

=

∞⎲

n=1

1
n2 = ζ(2).

⨅⨆
The Corollary below follows immediately from Theorem 4.11 and the Basel 

Theorem 4.9. 

Corollary 4.4 1 
ζ(2) = 6 

π 
= 

∞∏

n=1

⎛

1 − 1 
p2 
n

⎞

.
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Definition 4.12 If a is any positive real number, then [a] is said to be the integer 
part of a and is defined to be the largest integer such that [a] ≤  a. 

Example 4.12 [n] = n for any positive integer while [3.6] = 3. 

Lemma 4.1 Let N be any positive integer. Then 

. 1 +
1
2
+

1
3
+ · · · + 1

N
< 2

√
N .

Proof. 

. 1 +
1
2
+

1
3
+ · · · + 1

N

=

⎛

1 +
1
2
+

1
3
+ · · · + 1

[
√
N]

⎞

+

⎛
1

[
√
N] + 1

+
1

[
√
N] + 2

+ · · · + 1
N

⎞

.

The first parenthesis consists of [
√
N] terms each of which is ≤ 1. Therefore its value 

is ≤ [
√
N] ≤  

√
N . 

The second parenthesis has N − [
√
N] terms all < 1√

N 
terms. Therefore is value 

is < (N−[
√
N ])√

N 
< N√

N 
= 
√
N . 

So the sum of the two parentheses is < 2
√
N , which proves the Lemma. ⨅⨆

Lemma 4.2 Let N be any positive integer and m any positive integer strictly greater 
than 1. Then 

. 
1

(N + 1)2
+

1
(N + 2)2

+
1

(N + 3)2
+ · · · + 1

(Nm)2
<

1
N
.

Proof. 

.
1

(N + 1)2
+

1
(N + 2)2

+
1

(N + 3)2
+ · · · + 1

(Nm)2

<
1

N(N + 1) +
1

(N + 1)(N + 2) +
1

(N + 2)(N + 3) + · · · +
1

(Nm − 1)Nm

=

⎛
1
N

− 1
N + 1

⎞

+

⎛
1

N + 1
− 1

N + 2

⎞

+ · · · +
⎛

1
Nm − 1

− 1
Nm

⎞

=
1
N

− 1
Nm
<

1
N
.

⨅⨆
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Lemma 4.3 Let N be any positive integer and m a positive integer strictly greater 
than 1. Then 

. 

⎛⎛
N
2

⎞2
−
⎾
N
2

⏋2
⎞

+

⎛⎛
N
3

⎞2
−
⎾
N
3

⏋2
⎞

+ · · · +
⎛⎛

N
Nm

⎞2
−
⎾
N
Nm

⏋2
⎞

< N2
⎛

2
N

⎛

1 +
1
2
+ · · · + 1

N

⎞

+
1

(N + 1)2
+

1
(N + 2)2

+ · · · + 1
(Nm)2

⎞

(4.14.1) 

Proof. Let r ∈ N. If  r > N , then N 
r 
< 1 and so 

. r > N =⇒
⎾
N
r

⏋

= 0. (4.14.2)

If r ≤ N , we note that 

. 

⎾
N
r

⏋

>
N
r
− 1

and that both sides of this inequality are ≥0. So we can square both sides of the 
inequality to obtain 

. 

⎾
N
r

⏋2
>

⎛
N
r

⎞2
− 2

⎛
N
r

⎞

+ 1

and so 

. r ≤ N =⇒
⎛
N
r

⎞2
−
⎾
N
r

⏋2
< 2

⎛
N
r

⎞

− 1 < 2
⎛
N
r

⎞

. (4.14.3)

Applying (4.14.2) and (4.14.3) to the left hand side of (4.14.1) yields 

.

⎛⎛
N
2

⎞2
−
⎾
N
2

⏋2
⎞

+

⎛⎛
N
3

⎞2
−
⎾
N
3

⏋2
⎞

+ · · · +
⎛⎛

N
Nm

⎞2
−
⎾
N
Nm

⏋2
⎞

<
2N
1
+

2N
2
+ · · · + 2N

N
+

⎛
N

N + 1

⎞2
+

⎛
N

N + 2

⎞2
+ · · · +

⎛
N
Nm

⎞2

= N2
⎛

2
N

⎛

1 +
1
2
+ · · · + 1

N

⎞

+
1

(N + 1)2
+

1
(N + 2)2

+ · · · + 1
(Nm)2

⎞

⨅⨆
Lemma 4.4 Let N be any positive integer and m a positive integer strictly greater 
than 1. Put 

. am =

⎛⎛
N
2

⎞2
−
⎾
N
2

⏋2
⎞

+

⎛⎛
N
3

⎞2
−
⎾
N
3

⏋2
⎞

+ · · · +
⎛⎛

N
Nm

⎞2
−
⎾
N
Nm

⏋2
⎞

and bm = 1 
N2 am. Then lim

N→∞
bm = 0.
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Proof. By Lemmas 4.3, 4.2, and 4.1 bm < 4
√
N 
+ 1 
N 

, from which the Lemma follows.

⨅⨆
Lemma 4.5 Let N be any positive integer and consider all the prime numbers 
p1, p2,  . . . ,  pm ≤ N , so that 2 = p1 < p2 < · · ·  < pm. Put  

. cN =

⎛
N
p1

⎞2
−
⎾
N
p1

⏋2
+ · · · +

⎛
N
pm

⎞2
−
⎾
N
pm

⏋2

+

⎛
N

p1p2

⎞2
−
⎾

N
p1p2

⏋2
+ · · · +

⎛
N

p1p2 . . . pm

⎞2
−
⎾

N
p1p2 . . . pm

⏋2

and dN = 1 
N2 cN . Then lim

N→∞
dN = 0. 

Proof. Observing that every term in cN also appears as a term in am in Lemma 4.4, 
it follows that dN ≤ bm. Further, as dN ≥ 0, Lemma 4.4 implies that lim

N→∞
dN = 0.

⨅⨆

As a corollary to Lemma 4.5, we have as follows. 
Lemma 4.6 Let N be any positive integer and consider all the prime numbers 
p1, p2,  . . . ,  pm ≤ N , so that 2 = p1 < p2 < · · ·  < pm. Put  

. eN =

⎛
N
p1

⎞2
+ · · · +

⎛
N
pm

⎞2
+

⎛
N

p1p2

⎞2
+ · · · +

⎛
N

p1p2 . . . pm

⎞2

and 

. fN =

⎾
N
p1

⏋2
+ · · · +

⎾
N
pm

⏋2
+

⎾
N

p1p2

⏋2
+ · · · +

⎾
N

p1p2 . . . pm

⏋2
.

If lim
N→∞ 

eN 

N2 exists and equals s ∈ R, then lim
N→∞ 

fN 

N2 exists and equals s. 

Lemma 4.7 If fN is defined as in Lemma 4.6, lim
N→∞ 

fN 

N2 exists. 

Proof. It is readily seen that eN 

N2 = 1 −
⎛

1 − 1 
p2 

1

⎞ ⎛

1 − 1 
p2 

2

⎞

. . .

⎛

1 − 1 
p2 
m

⎞

. 

As N increases, the number of factors in the product increases and each factor is 
<1. So as N increases, eN 

N2 decreases but remains ≥ 0. This implies that lim
N→∞ 

eN 

N2 

exists. Then by Lemma 4.3, lim
N→∞ 

fN 

N2 exists. ⨅⨆

As observed previously, we have as follows. 
Lemma 4.8 With the same notation as in Lemma 4.6, 

eN 

N2 = 1 −
⎛

1 − 1 
p2 

1

⎞ ⎛

1 − 1 
p2 

2

⎞

. . .

⎛

1 − 1 
p2 
m

⎞

.
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4.15 Principle of Inclusion and Exclusion 

Remark 4.5 We saw previously that for finite sets A, B,C, 

. |A ∪ B ∪ C = |A| + |B| + |C | − |A ∩ B| − |A ∩ C | − |B ∩ C | + |A ∩ B ∩ C |

where |S | denotes the number of elements in any set S. This geralizes to n finite sets 
in what is known as the Principle of Inclusion and Exclusion as follows: 
If A1, A2,  . . . ,  An are finite sets for any n ∈ N, then 

. 

|
|
|
|
|

n⋃

i=1
Ai

|
|
|
|
|
=

n⎲

i=1
|Ai | −

⎲

1≤i< j≤n
|Ai ∩ Aj | +

⎲

1≤i< j<k≤n
|Ai ∩ Aj ∩ Ak |−

. . . + (−1)n−1 |A1 ∩ A2 ∩ · · · ∩ An |.

Finally we address directly the problem of the probability that two natural numbers 
chosen at random have what probability of being coprime. 

As we said earlier, we have to say what we mean by saying that two natural 
numbers chosen at random have a certain probability of being coprime. The next 
proposition is key to clarifying this matter. 

Proposition 4.5 Let N be a positive integer and let a, b be chosen at random (with 
replacement) from the finite set {1, 2,  . . . ,  N}. Let  sN be the probability that these 
randomly chosen integers are coprime. Then lim

N→∞ 
sN = s exists and equals 

. lim
N→∞

⎛

1 − fN
N2

⎞

= lim
N→∞

⎛
1 − eN

N2

⎞
=

∞∏

n=1

⎛

1 − 1
p2
n

⎞

,

where fN and eN is as in Lemma 4.6 and p1, p2,  . . . ,  pn,  . . .  is the set of all prime 
numbers in ascending order. 

Proof. Firstly let us make clear what we mean by chosen at random here means. It 
means that the probability of choosing any of the integers between 1 and N is 1 

N . As  
is obvious, this could not work as a definition if instead of the finite set {1, 2,  . . . ,  N} 
we chose the infinite set N. We wish to determine the probability that the randomly 
chosen a, b ∈ {1, 2,  . . . ,  N} are coprime. 

a and b are coprime ⇐⇒ no prime number p divides both a and b. 
So a and b are not coprime ⇐⇒ p1 or p2 or . . .  pm divide both a and b, 

where p1, p2,  . . . ,  pm is the set of all primes satisfying p1 < p2 <  . . .  pm ≤ N . 
Let Ai be the set of ordered pairs of integers between 1 and N which are divisible 

by pi .Then A1 ∪ A2 ∪ · · · ∪  An is the set of all ordered pairs (a, b) which are divisible 
by one or more of the pi; that is it is the set of ordered pairs (a, b) such that a and b 
are not coprime. 

We shall be applying the principle of inclusion and exclusion. First, |Ai | is the 
number of ordered pairs (a, b) which are divisible by pi . The number of multiples
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of pi between 1 and N is
⎾
N 
pi

⏋

. So  |Ai | =
⎾
N 
pi

⏋2 
. Next, we see that Ai ∩ Aj is the 

set of ordered pairs (a, b) such that a and b are multiples of pi and pj ; that is, they 

are multiples of pipj . Since there are
⎾

N 
pipj

⏋

such multiples, |Ai ∩ Aj | =
⎾

N 
pipj

⏋2 
. 

Similarly |Ai ∩ Aj ∩ Ak | =
⎾

N 
pipjpk

⏋2 
and so on. Thus by the principle of inclusion 

and exclusion, the number of ordered pairs (a, b) where a and b are not coprime is 
equal to fN of Lemma 4.6. The total number of ordered pairs (a, b) such that a and 
b are between 1 and N is N2. So the probability sN that an ordered pair (a,b) is 

coprime is N
2 − fN 

N2 = 1− fN 

N2 . By Lemma 4.7 lim
N→∞ 

fN 

N2 exists, and so lim
N→∞

sN = s 
exists. The proposition follows then from Lemma 4.8. ⨅⨆

Definition 4.13 The probability that two natural numbers a and b chosen randomly 
are coprime is defined to be s in Proposition 4.5 

Theorem 4.12 The probability that two natural numbers a and b chosen randomly 
are coprime equals 1 

ζ(2) = 6 
π2 = 0.6079 . . . . 

Proof. The theorem follows immediately from Corollary 4.4, Proposition 4.5, and 
Definition 4.13. ⨅⨆

Remark 4.6 There are proofs of Theorem 4.12 in the literature which seem to be 
much shorter and simpler than the one presented here or the one in [12]. For example 
[3] is a lovely short note which purports to prove this result. Now the paper is lovely 
in that it does suggest nicely what the probability should be. However, like various 
other proofs in the literature, it is not rigorous. For a rigorous version of the approach 
in [3], see [23]. 

Remark 4.7 [12, Theorem 333] proves an allied result to Theorem 4.12, namely, 
that the probability that a natural number is quadratfrei is also 6 

π2 , where a natural 
number is said to be quadratfrei if it is not divisible by the square of any prime 
number. 

It is natural to ask what is the probability pn that n > 2 randomly chosen 
natural numbers are coprime. This is shown to be 1 

ζ(n) ; see  [21, 22]. We note 

that p3 = 1 
ζ(3) = 0.8319 . . . , p4 = 0.9239 . . .  , p10 = 0.9990 . . .  and lim

n→∞ 
pn = 

lim
n→∞ 

1 
ζ(n) = 1. More general results appeared in the PhD thesis of my Australian 

colleague Bob Buttsworth and in his publication [8]. 
1 
ζ(x)
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Carefree Couples 

It may seem curious that the probability that two randomly chosen natural numbers 
are coprime is . 

6
π2 which is equal to the probability that a natural number is quadrat-

frei. We might ask what is the probability that two randomly chosen natural numbers 
are both quadratfrei and coprime. Our first guess might be that the probability is 
.

1
ζ(2) .

1
ζ(2) .

1
ζ(2) = 0.2246 . . . . However, in [14] such  a and b are said to be strongly 

carefree couples, and Moree proves that the probability a and b are strongly carefree 
is .0.2867 . . . . 

Problems 

4.1 Using the software package R, evaluate Stirling’s approximation of 40! and 
evaluate the % error. 

4.2 Consider the following sequences and say which are divergent, which have limit 
∞ or limit −∞, which are convergent, and if convergent what is their limit. 

(i) 1, 0, 1, 0, 1, 0,  . . . 1, 0 . . . . 
(ii) 21, 22, 23,  . . .  2n . . .  .
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(iii) a1, a2, a3,  . . . ,  an ,  . . . , where a < 1. 
(iv) 1 + (−1)n, where n = 1, 2, 3,  . . .  
(v) 1 + (−1)n 

n 
. where n = 1, 2, 3,  . . .  . 

4.3 Using L’Hopital’s rule, evaluate each of the following limits: 

(i) lim
x→∞ 

ln x 
x 

. (Recall d(ln x) 
dx 

= 1 
x 

.) 

(ii) lim
x→∞ 

x ln x 
ex . (Use L’Hopital’s rule twice.) 

(iii) Using mathematical induction, prove that lim
x→∞

e−x xn = 0, for n ∈ N. 
(iv) Deduce from (iii) that for any real number a, lim

x→∞
e−x xa = 0. 

4.4 Let h1, h2, h3 be functions from (a,∞ to R \ {0}, where a ∈ R. If lim
x→∞ 

h1(x) = 1, 
lim
x→∞ 

h2(x) = 1, and lim
x→∞ 

h3(x) = ∞, show that h3(x)h1(x) ∼  h3(x)h2(x). 

4.5 Using Problem 4.4 show that if f (x) = 3x2+2x+100 and g(x) = 3x2−1,000x− 
100, then f (x) ∼  g(x). 

4.6 Verify that if f (x) = ex + x2 − 100 and g(x) = ex − 1,000x5, then f (x) ∼  g(x). 
(You may assume that if f (x) is any polynomial, then f (x) ≠ 0 for  x > a, for  some  

a ∈ R, and lim
x→∞ 

f (x) 
ex = 0.) 

4.7 Verify that if f and g are two functions from R to R such that g(x) = f (x)(1− x3) 
and lim

x→∞ 
f (x) = ∞, then f (x) ∼  g(x). 

4.8 Using the Comparison Test for Infinite Integrals Theorem 4.2 and Prob-
lem 4.3(iv), prove that 

∫ ∞ 
1 e−x xa dx converges for each real number a. 

[Hint: Note 
∫ ∞ 
1 x−2 dx converges.] 

4.9 Verify the statements in Corollary 4.1 (ii)–(iv). 

4.10 Previously we saw that using the software package R, we could prove that the 
area under the standard normal distribution curve between x = −3 and x = 3 is  
0.9973 . . . . What is the area under the curve (i) between x = −2 and x = 2 and (ii) 
between x = −4 and x = 4? 

4.11 Prove the statements in Proposition 4.2
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4.12 Prove the statement in Example 4.1(xi). [Hint. Consider the greatest lower 
bound of the sequence.] 

Ernest William Barnes (1874–1953) was an En-
glish mathematician and scientist who left mathe-
matics and in 1924 became Bishop of Birmingham. 
While at Cambridge University, he was assigned the 
task of being the tutor of Srinivasan Ramanujan. 
We have seen that Ramanujan proved a much better 
asymptotic formula for n!, Interestingly Barnes dis-
covered an asymptotic formula for Γ(x + 1 

2 ) which is 
not well-known. For suitable cn, dn ∈ R, 

. Γ

⎛

x +
1
2

⎞

∼
√

2πxxe−x exp
⎛

− 1
24x
+

7
2,880x3 − 31

40,320x5 + · · · +
cn

dnxn

⎞

.

4.13 Using Corollary 4.3, verify the above asymptotic formula for 

. Γ

⎛

x +
1
4

⎞

∼
√

2πxxe−x
⎛

x − 3
4

⎞− 1
4

.

De Montmort’s Matching Problem 

As the last problem in this book, we shall discuss 
the de Montmort matching problem which was 
proposed in 1708 by the French mathematician 
Pierre Remond de Montmort (1678–1719). 

He was elected a Fellow of the Royal Society 
in 1715 and became a member of the French 
Academy of Sciences in 1716. 

He introduced the notion of a derangement, 
which is a permutation of the elements of a set, 
such that no element appears in its original posi-
tion; that is a permutation with no fixed point. 

He is also known for his book on probability 
and games of chance, “Essay d’analyse sur les 
jeux de hazard” and for naming Pascal’s triangle 
after Blaise Pascal (1623–1662), a French math-
ematician, physicist, inventor, and philosopher. 

4.14 An absent-minded professor (no names mentioned) wrote n letters and sealed 
then in n envelopes without writing the addresses on the envelopes. Having forgotten



4.16 Credit for Images 161

which letter he put in which envelope, he wrote the n addresses on the envelopes 
randomly. 

(i) What is the probability pn that at least one of the letters is addressed correctly? 
(It is surprising to note that for n > 2, pn is between 0.6 and 2 

3 .) 

(ii) Prove that lim
n→∞ 

pn = 1 − 1 
e 

. 
[Hint: Show firstly the probability that the ith envelope has the correct letter 
in it is 1 

n . Next show that the probability that the ith and the jth envelopes 

have the right letter in them is 1 
n(n − 1) .] 
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