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PREFACE
, .

Investigations published within the last fifteen years have greatly
deepened our knowledge of groups and have given wide scope to group-
theoretic methods. As a result, what were isolated and separate insights
before, now begin to fit into a unified, if not yet final, pattern. I have set
myself the task of making this pattern apparent to the reader, and of
showing him, as well, in theVgroup-theoretic methods, a useful tool for
the solution of mathematical and physical problems.

It was a course by E. Artin, given in Hamburg during the Winter
Semester of 1933 and the Spring Semester of 1934, which started me on
an intensive study of group theory. In this course, the problems of the
theory of finite groups were transformed into problems of general mathe-
matical interest. While any question concerning a single object [e.g.,
finite group] may be answered in a finite number of steps, it is the goal
of research to divide the infinity of objects under investigation into
classes of types with similar structure.

The idea of O. Holder for solving this problem was later made a
general principle of investigation in algebra by E. Nother. We are refer-
ring to the consistent application of the concept of homomorphic mapping.
With such mappings one views the objects, so to speak, through the
wrong end of a telescope. These mappings, applied to finite groups, give
rise to the concepts of normal subgroup and of factor group. Repeated
application of the process of diminution yields the composition series,
whose factor groups are the finite simple groups. These are, accordingly,
the bricks of which every finite group is built. How to build is indicated—
in principle at least—by Schreier’s extension theory. The Jordan-Holder-
Schreier theorem tells us that the type and the number of bricks is inde-
pendent of the diminution process. The determination of all finite simple
groups is still the main unsolved problem.

After an exposition of the fundamental concepts of group theory in
' Chapter I, the program calls for a detailed investigation of the concept
of homomorphic mapping, which is carried out in Chapter 11. Next,

- Chapter III takes up the question of how groups are put together from
their simple components. According to a conjecture of Artin, insight
into the nature of simple groups must depend on further research on
p-groups. The elements of the theory of p-groups are expounded in

V



vi Preface

Chapter IV. Finally, Chapter V describes a method by which solvable
factor groups may be split off from a finite group.

For the concepts and methods presented in Chapter II, particularly
those in §7, one may also consult v. d. Waerden, Madame Algebra, I
(Berlin 1937). [English translation: Modem Algebra, New York, 1949].
The first part of Chapter III follows a. paper by Fitting, while the proof
of the basis theorem for abelian groups, and Schreier’s extension theory,
are developed on the basis of a course by Artin. The presentation of the
theory of p-groups makes use of a paper by P. Hall. The section on
monomial representations and transfers into a subgroup has also been
worked out on the basis of a course by Artin. In addition one should
consult the bibliography at the end of the book.

Many of the proofs in the text are shorter and—I hope—more trans-
parent than the usual, older, ones. The proof of the Jordan-Holder-
Schreier theorem, as well as the proofs in Chapter IV, §§ 1 and 6, owe
their final form to suggestions of E. Witt.

I am grateful to Messrs. Brandt, Fitting, Koethe, Magnus, Speiser,
Threlfall and v. d. Waerden for their valuable suggestions in reading the
manuscript. I also wish to thank Messrs. Hannink and Koluschnin for
their help.

The group-theoretic concepts taken up in this book are developed
from the beginning. The knowledge required for the examples and appli-
cations corresponds to the contents of, say, the book by Schreier and
Sperner, Analytische Geometric and Algebra, Part I (Leipzig, 1935)
[English translation: Introduction to Modern Algebra. and Matrix
Theory, Chelsea Publishing Company, New York, 1951]. A historical
introduction to group theory may be found in the book by Speiser,
Theo'm'e der Gmppen mm endliohe'r Ordnung (Berlin, 1937).

I would suggest to the beginner that he familiarize himself first with
Chapters I and 11, Chapter III, §§ 1, 3, 4, 6, and 7, and Chapter IV,
§§ 1 and 3, and also with the corresponding exercises. Then the program
outlined in this preface will become clear to him.

HANS ZAsamUs



PREFACE TO THE SECOND EDITION

The revision made in this work consists almost entirely of additions
to the material of the first edition. In particular, there have been added in
Chapters I and II some remarks and exercises concerning semi-groups,
and in Chapter II an introduction to the theory of lattices. The remainder
of the new material is to be found in Appendixes A—G, each of which is
closely related to one of the chapters of the book.

Since the appearance of the first edition of this work. lattice theory
has been developed, by the combined efforts of 0. Ore, A. Kurosh, J. von
Neumann, G. Birkhoif, and others, into an independent discipline of
modern mathematics. As a consequence, attention has been drawn to
certain aspects of abstract group theory, in particular, by H. Wielandt's
work on the lattice formed by the subnormal subgroups of a finite group.
An account of the connections between lattice theory and group theory,
which I consider promising for further investigation, has accordingly
been added (see Appendix B).

Appendix C is an introduction to the theory of products and groups
with generators and defining relations ; the latter is one of the most power-
ful tools for the construction of groups, which is the main theme of
Chapter III.

Many advanced exercises have been supplied illustrating both lattice-
theoretioal ideas and the extension of group-theoretical concepts to multi-
plicative domains (see Appendixes A, D, E, and F).

I am grateful to Professor C. Williams-Ayoub, Professor D. G. Hig-
man, Professor B. Noonan, and to the editor for their valuable sugges-
tions in reading the manuscript.

Finally, I wish to express my appreciation of the encouragement and
assistance given me both by the Summer Research Institute of the Cana-
dian Mathematical Congress at Kingston and by the Institute for
Advanced Study at Princeton.

Hans ZASSENHAUS
MCGILL UNIVERSITY

July, 1956
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I. ELEMENTS OF GROUP THEORY

§ 1. The Axioms of Group Theory
DEFINITION: A group is a set in which an operation called multiplica—

tion is defined under which there corresponds to each ordered pair at, y of
elements of the set a unique third element 2 of the set. 2 is called the
product of the factors a: and y , written 2 = aw . For this multiplication
we have

I. The associative law: «(56) = (ab)c.
II. The existence of a left identity c with the property ea = a for all

elements a of the group.
III. The soloability of the equation am = e for all elements a of the

group.

The associative law states that a product of three factors is deter-
mined solely by the order of its factors, its value being independent of
the insertion of parentheses.

We assert: A product of arbitrarily many factors is determined
solely by the order of its factors.

In order to prove this, let 1:. be a number greater than three and
assume the statement true for products of fewer than n factors. We
write, for every 1» < n, a product of 1» factors aha” ..., a... —in
that order—as P = “1' a, -. . ,. a, and have thus designated, unam-
biguously, an element of the group.

Now let P be a product of the n factors an an . . ., a,I . After all
of the parentheses have been removed except the last two pairs, P can
be decomposed into two factors

P‘=al-a,- . . .-a.

and P,=a_+1-...-a., V

with 0 < m < n . We shall show that P is equal to the particular
product al - (or . . .-a,.) and so we may assume m> l . Then

P= P,P,=(a1-...-a..)(um+1'~- ..a.)
= (“)(“a' . . -‘ “on” (ann‘ - ° “ a.)
= a1((a,- . . .- an) (II—+1“ - . - - an»
=u1(a,~ . . .-a,.) _



2 . 1. Elements of Group Theory

A non-empty system of elements in which multiplication is defined
and is associative is called a semi-group.

For example the natural numbers form a semi-group under ordinary
multiplication or addition as the operation.

The rational integers (positive, negative, and zero) form an additive
group and a multiplicative semi-group. The rational numbers diiferent
from zero form a multiplicative group. All rational numbers form an
additive group. ‘

We assert that in a group every left unit a is also a right unit, (i.e.,
ae=a holds for all group elements a.) In order‘to prove this, we
solve za= e and gz= e. Then

(3/ z)a = ea = a
= y(za) = ya = y(e¢) = (ye): = ac.

Similarly, ye = y , hence y = u, aw: = em = e.
We call one of the solutions of the equation sm= e the inverse

element of a and denote it by a" . Thus
uu—I = «"41 = e.

If za=b , then on right multiplication by a" , it follows that
to” = (emu-1 = flan-1): me = 3_

Conversely bu" - a = b . r11; = be = b . Thus the equation 10 = b
has one and only one solution, a: = bu-I . Similarly it follows that the
equation ay = b has one and only one solution, y = a-lb .

Multiplication in a group has a unique inverse.
The element e is called the identity or unit element of the group.

It is uniquely determined as the solution of either of the equations a z = a
or ya=a . Similarly the inverse a“ of the element a is uniquely
determined as the solution of the equation em = e or ay = e.

The product of 7; equal factors a is denoted by 0". Furthermore,
if we set a°= e, a1 = a and tr»: (43-1)» then the two power rules

at . an ==a"+~,
(1‘)" a an a,

are ”valid for arbitrary integral exponentsu, m, as can be shown by
induction.

Axioms II. and III. are not symmetric; they can be replaced by the
two symmetric axioms:

II. a. A yrwp is non-empty.
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III. a. Multiplication has an inverse, £45., the equations

xa = b

and a y = b
are solvable for all pairs of’élcments a, b of the group.

Obviously II. a. is an immediate consequence of II., and III. :1. follows
from I.-III. If, conversely, 1., II. a., III. a. are assumed, then we can find
an element a in the given set and solve the equations ea a: a, ay = b .
From this it follows \that

- eb=c(ay)=(ea)y=ag==b
for all elements I) . ‘

Thus II. is valid. III. is a consequence of III. a.
A group which consists of a finite number of elements is called a

finite group. The number of its elements is called its order. The order
of an infinite group is defined to be zero.

In every group the cancellation laws hold:
III. b. a: = ay implies z = 3!.
III. e. em = ya implies a: = y.

THEOREM 1: A finite semi-group in which the cancellation laws hold
is a group.

In order to prove this, let (1,, 0,, . . ., a. be the finite number of
elements and let a be a particular element. From III. b. it follows that
the n elements cal, aa,, . . ., an. are all distinct and so ay=b is
solvable for every pair a. b in the semi-group. The solvsbility of co = b
follows similarly from the other cancellation law.

An abstract group is completely known if each of its elements is
represented by a symbol and the product of any two symbols in any
given order is exhibited.

The multiplication rule is given conveniently by a square table, in
which the products in a row have the same left factor and the products
in a column have the same right factor.

The multiplication tables of groups having at most three elements
are the following:

Z, Z.
c e a

e e a so
06¢



4 I. Elements of Group Theory

The different multiplication tables of a group can be transformed

into one another by row interchanges and column interchanges.

The existence of unique inverses is equivalent to the fact that each

group element occurs exactly once in every row and column.

In order to exhibit‘ the associative law we agree to put the unit

element of the group in the upper left corner of the square table. If we

call the row starting with a , the a -row, and the column headed by b

the b -column, then we find the product of d by b at the intersection

of the a -row and b -column. The initial elements of each row and

column may thus be omitted. '
A table, constructed as above, is called normal, if in addition every

element of the main diagonal is the identity element of the group. For

example, the normal multiplication tables for groups of four and five

elements are as follows:

Z. D‘ Z.
eubc eubc eab‘cd
veab accb deabc
been been cdeab
abce cbae bodeu

abode

The element on, at the intersection of i-th row and the 1: -th column
is uuaai , so that the rectangle rule

ailakl = “it

holds. This may be seen from the following section of the table:

The rectangle rule is equivalent to the associative law.
The problem of abstract group theory is to examine all multiplication

tables in which Axioms I.-III. are satisfied.

§ 2. Permutation Groups
For finite groups, the problem stated at the close of the last section

can be solved by trial. For example, it can easily be established that the

p ‘3lggandt, Uber cine Verallgemeinerung des Gruppenbegrifis,M_a¢h. Amt. 96 (1927)
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only multiplication tables for groups whose order is at most five are
those which we have given previously. We can see, however, even from
these first examples, that the direct verification of the associative law
is time-consuming.

We must look about for more serviceable realizations of abstract
groups. Naturally we require that the multiplication table be determined
easily from the realization. An example of a domain in which arbitrary
abstract groups can be realized is the group of permutations of a set of
objects.

We denote single-valued mappings of a given set an onto itself by
lower case Greek letters, and elements of the set itself by lower case
Roman letters. Let an: be the image of 2 under the mapping 7! . Any
two single-valued mappings n, 9 can be combined into a third single-
valued mapping n9 according to the rule (#2)” = Me 1') . The associ-
ative law is valid for this relation, since

(Mean-1‘ = "((20)” = Mew?» = (We) (“5) = ((719)0’”.
The identity mapping 1 , defined by 1 z = z , is the unit element of

this multiplicative set of mappings.
The single-mlued mppings of a set onto itself form a, semi-amp

with unit element.
A om-to-zme mapping of a. given set onto itself is called a. permutation.
A permutation is a singlewalued mapping a: , for which mt = a is

solvable for every 4 and for which an: = uy implies z = g . Therefore
nan = a is uniquely solvable for every o, and the solution is designated
by n"u. n(n"a)=a, for every «1. Therefore mrl=_

Similarly n-‘(na)—— a, and therefore 7: ‘n: 1. Conversely, if the
single-valued mapping 7: has an inverse mapping 7:“, defined by
”3'1 = 7r 1;; = l , then u is a permutation, since the equation as: = a
has the solution it“s and ux=ny implies n“n:¢= n"ny and
therefore a: = y .

The inverse of the permutation u is the permutation n"; and if
n, e are two permutations, then the two-sided (i.e., right and left)
inverse of n9 is 9- 1n-1 . We conclude that the totality of permutations
'of the objects of a set form a group.

In order to see at a glance the effect of a single-valued mapping a:
'we write it

( s, y, ...) (functional notation).
in, xy,
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Here x, y, . . . run through the elements of the given set in any order.
Under every element is placed its image element. A shorter functional
notation for a: is (:2). Multiplication is indicated by

(42:) (use) = (9(:a))' ’

fl is a permutation, then, if and only if every element of ilk occurs
exactly once in the lower row of the parenthesis symbol indicated above.

n=( ’5 9’ “)=( z ). which indicates the mappingz—nt (2) .Then
1121,39,... ar‘=(:f’,;{’:::)=(n:).

Groups whose elements are permutations of a given set and are also
multiplied like the permutations are called permutation groups.

THEOREM 2: Every group can be represented as a. permutation group
(Cayley). ‘

Proof: We take the permuted objects tube the elements of the group.

The mapping 7:. = ( IM) is a permutation since az=b has a unique

solution a: . From the associative law it follows that the corresponding
permutations multiply like the group elements. Since me = a, the corres-
pondence n.<-—->a« is one-to-one. The parenthesis notation for a. is derived
from the multiplication table of the group by writing the a—row under
the e-row. This permutation group is called the (left) regular permuta-
tion group of the given abstract group.

The group of all permutatim of a finite set of n things is denoted
by 6,, and is called the symmetrical group on 1| objects. The permuted
objects may be numbered from I to n , and we may think not of the
permuted objects themselves but merely of their numbers. The latter
are permuted just as the objects to which they correspond. Every per-
mutation may be written uniquely as (3", i” a). where 5,, i,, . . ., i,
run through the n integers l, 2, . . ., n in a definite order. We shall
refer to these 7; consecutive integers hereafter as the ciphers of the
permutation. Since there are n! permutations of n elements, 6, has
the order n].

‘ Editor's note: Since these permutations are mappings applied as operators from
the left it follows that in the product on the permutation a is followed by the
gel-mutation g. This is contrary to the order used by such authors as Burnside,

peiser, and Dubreil.



§ 2. Permutation Groups '1

The permutations of 1; letters can be written still more simply in
cycle notation.

A permutation n is called d-cycle if n permutes cyclically a certain
set of d letters 51, 6,, . . ”15,:

’m'..= 6”,, m‘.= i, (m=l, 2, . . ., a- 1)
and if 9: leaves every other letter fixed. For example

(12342 1 a 4 ) is a 2-cycle (transposition) and ( 1 2 f i ) is a 3-cycle .2 3

We may then denote the d -cycle by (4'1, in . . ., it).However the same
(1 '-cycle has d different cycle notations, one for each different initial
symbol.

Every permutation of 'n letters can be written as the product of
diaioint cycles (€.e., cycles having no letter in common).

12345
53421

rally unique up to the order of factors, as regards the set of elements in
any cycle.

In order to prove the above, let a be a permutation of in letters
1, 2, . . ., n . Among the n+ 1 letters 1, n1, . . ., ml certainly two
are equal. Let M1 = 3‘1 with i > k g 0 be the first equation of this
sort. If It: > 0 ,‘ then we could conclude that 1‘“ l = M4 l . Therefore
1;: o and z,=(l, n1, ..., «"11) is an i-cycle. Now we con-
struct a cycle 2, containing a letter not occurring in z, . Continue this
process. 2, must be disjoint from 2, and since finally all the letters are
used, a is a product of disjoint cycles.

(1) represents uniquely the identical permutation ;. If the l-cycles
are deleted from the set of other permutations in 6.. , then the cycle
notation remains unambiguous, e.g.,

; i 2:2)= <12) <34) (6) = (12) (34).
Multiplication of permutations in cycle notation can easily be carried

out. E.g., to calculate(123) (45) (234) , proceed as follows: The cycle
, farthest to the right containing 1 indicates 1—)2 . The cycle
farthest to the right containing 2 indicates 2+3 , the one farthest to

‘ the right containing 3, but to the left of the one just used, gives 3 —-> 1.
Hence (12) is one cycle of the product. Continuing to work from right
to left,‘ 3—» 4—» 5, 5—»4, 4—) 2 —> 3 , giving (864). Hence

For example ( ) = (15) (234), This decomposition is natu-

‘ Editor’s Note: In Burnside, Speiser, et 31., the procedure would be to start from
the left and work to the right.
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(123) (45) (234) = (12) (354).
The simplest non-identical permutations are the transpositions.

Every cycle of 11 letters is a product of» — 1 transpositions

(12), (23), . . ., (n— l. n).
is every interchange of 1: letters can be arrived at by interchange of

neighboring letters.
This follows from

(1) (i,i+k)=(£+k—l,i+lc)...(i+l,i+2).
(i,i+l)(i+l,i+2)...(i+k—l,i+lc)

and
(2) (i1, 6., . . ., in) =‘(€,, 6,) (i,, i,) . .. (6.“, 6,).

DEFINITION: A permutation of n > 1 letters is called even or odd
according to whether the number

s,' = 17%;“ (here 1] indicates ordinary product.)
— I

i<k

is equal to+lo'r—l .‘
If n and Q are two permutations in6., then

_ 9nh—em‘_ gale—9M (k—ei_t_ -E
”on— —‘_“k—- " 32—97" k—T‘ ’ o 1'

i<h c<r

Thus all the even permutations form a group. It is called the
alternating permutation group of n letters and is denoted by Qt. . The
transposition (7‘, 7‘ + l) is an odd permutation as can immediately be seen.
A permutation is even or odd according to whether it is the product of
an even or odd number of transpositions.

From (1) and (2) it follows that an 1:: -cycle is even or odd according
to whether m is odd or even. An arbitrary permutation is even or odd
according to whether the number of cycles with an even number of
members in its decomposition is even or odd.

To every even permutation at there corresponds an odd permutation
(12):: , and this correspondence is one-to—one, i.e., there are as many even
as odd permutations.

The alternating permutation group on 1:. letters thus has order in! .

‘ For each ordered pair of digits i < It just one of the two differences I: — i, i— It
appears in the numerator. The occurrence of i — k is called an inversion in It. 5,, is
the product of as many factors — 1 as there are inversions, and n is even or odd
according to the number of inversions in n. The number of inversions and hence the
value of 5,. will not change if a permutation Q is applied to each digit in numerator
and denominator.
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§3. Investigation of Axioms

If the e-row is made equal to the e-column by means of appropriate
row and column interchanges in the multiplication tables of §1, then
for these special cases the tables are symmetric about the main diagonal.
In a group Whose order is less than 6 the equation ab = be is valid.

We call a group abelian (or commutative) if the commutative law

IV. ab = be holds.

In an abeliam, group a. product of u factors is uniquely determined
but” factors, irrespective of order and insertion of parentheses.

We must show that ‘ “1‘“: , A . ~11. = a" . a" . “I3. , where
(‘1’: :1) is a permutation. Since every interchange of n factors

can be effected by the interchange of neighboring factors, we merely
have to prove that

“1‘“: . . . -u,;-a.+,.. .-a,=ul-a.. ..- q-a‘. . ”an

This follows from the associative and commutative laws.
In general, groups are non-commutative, e.g., 6, has a multiplication

table which is not symmetric:

(123) =
(132) =

(12) = e
(13) = .1
(23) =I

The independence of axiom IV. from the group axioms I.-III. is shown
by the above example. Similarly we show that the axioms I.-III. are
independent of one another.

1. III. does not follow from 1., II. and the solvability of a: = e. e.g.,

ee’

9.ee
e’e R

2. There are multiplicative domains in which 11., III.a., IV. are
valid but I. is not, e.g.,
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3 a b c d I

I
e

‘1 wehave
a
4’ (ab)b=l
b a(bb)=a.

§ 4. Subgroup:

DEFINITION: A subset 11 of a given group (6 is called a subgroup
if the elements of 11 form a group with the multiplication defined for (i).

(53 and e are trivial subgroups of (ii. A subgroup different from (B is
called a proper subgroup. A subgroup different from (b and e is called
a non-trivial subgroup. A proper subgroup 11 is called a largest (maxi-
mal) subgroup if there is no subgroup of (55 containing 11 and different
from 11 and (ll. The subgroup 11 is called a smallest (minimal) subgroup
if e is the largest proper subgroup of ll .

DEFINITION: Two elements a and b are called right congruent under
11 if a=bU where U <11.“ Thus two elements are called right

congruent if they difl'er by a factor on the right which. is in 11 . We
denote the right congruence of a. to b by a E but!) . This symbol, 5 , has
the following three properties:

1. a sa(sincea=ae, e6 11);
2. a 5b implies baa (a=bU implies b=aU");
3.a Eb,b so implies a Ec(a=bUl,b=cU.implies 11:60.11,

where (Lille [1).

A right congruence may be multiplied on the right by a factor from
11 and by any factor on the left. Thus from o 2-- bmr) it follows that
no a :ebalr) and conversely. Also either side of a right congruence
may be multiplied on the right by an element of 11 .

All the elements congruent to an element a form the left coset"
belonging to a. Every element of the group belongs to one and only one
left cose’t. Since the mapping U—>uU is one-one, there are as many
elements in each left coset as there are in ill. The number of different
left cosets is called the index of 11 in (‘5, and is denoted by (9: 11.

‘ U Q n is read: The element U belongs to the set ll. ‘
' The terms residue class, coast and reminder chm no Iynonymoul. (El)
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DEFINITION: A system of elements which contains exactly one element
from each left coset is called a system of right representatives.

To each representative system of the cosets of (9) there corresponds
a mapping 0 —> a, whiclpmaps each element G of (55 onto its repre-
sentative G . A representative function of the left cosets of (ii is char-
acterized as a single-valued function G -—> 0 defined on (it with the three
properties

L§=6
2. 6-16 6 11
3. (Tfi = 6 for all U belonging to 11 .

Furthermore the rule W = 170' is valid. Such a mapping will be called
a right representative function of Q} with respect to u , written (55 (117).

Let [ad be a system of right representatives of (5 with respect to 11
and {bk} a system of right representatives of 11 with respect to the sub—

group 11 of s. We will show that [agbgl is then a system of right repre-
sentatives of (9 with respect to 58 : '

From a‘b. E a.b...($r)
it follows that “(bl E Gib-(11"),
whence a, a a,(llr) . Hence 9': 1-
Therefore a‘b,‘ E a,b,($r),
whence 12,, a b,,(58r). Hence I: = m.
If 1]. belongs to (S), then a = (1,0 has a solution U 6 u, and U=:lz,.K - V has
a solution V 6 23 . Hence a E a.bg($r), Q.E.D. We therefore have:

If 0+0 is a representative function @(llr) amt U—->L7 a repre-
sentative function 11(381') , then G -—> Usa 5'10 is a representative
function

(“3?)-

_ We see, then, that the formula 65: iB= (@:11)(11: 3) holds for
indices. If G! is finite, then‘ 6 : e = G}: l is the order of G. and so the

. following relation holds:
. ®:l=(@:11)(u:l).

We state this relation in the form—-

"WW mm Wr)=W
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(i.e., the order of any subgroup divides the order of the group.)

We call two elements a and b left congruent with respect to 11 if
a = Ub with U 6 11 , and we write a a ball) . The three rules men-
tioned above are also valid for the left congruence. Cancellation and
multiplication on the right of a left congruence preserves the congru-
ence. Either side of a left congruence may be altered on the left only
by an element in 11 . The definitions of right coset and system of left
representatives are analagous to those of left coset and system of right
representatives. .

A left residue (representative) function is characterized by the three
properties. 1. (7 = fi.

2. 06-1 e u
3. (76 = a

for all U Q 11.
From the right congruence a E M117) follows the left congruence

a-1—=- b-l(ul) and conversely. Therefore if {41,-} is a system of left
representatives, then {in-1] is a system of right representatives.

A group has just as many right residue classes as left residue classes
with respect to a subgroup. Moreover,

THEOREM 3: If the index of a group with respect to a subgroup is
finite, then the right and left cosets have a common system of repre-
sentatiues.

If 11 is finite, then r right residue classes contain at most 7‘ left
residue classes. The same is true if only (9): 11 is finite , as follows from
a. remark on p.41.

We shall prove the more general theorem:

THEOREM 4: If a set all is subdivided into n disjoint classes in two
ways and if any r classes of the first subdivision contain at most r classes
of the second subdivision, then the two subdivisions have a common
system of representatives.

The first to prove Theorem 4 (in the language of graph theory) was
D. Konig (Uber Graphen und ihre Anwemlungen auf Determimnten-
theorie und Mengenlehre, Math. Ann., vol. '77 (1916), pp. 458-465).
Frobenius claimed the theorem for matrix theory whereas, van der
Waerden, 0. Sperner, P. Hall, and W. Mask claimed it for set theory.
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Eventually it was treated by H. Weyl, Halmos, and P. and H. Vaugham
as the solution of a marriage problem (Amer. J. Math. vol. 72 (1950),
pp. 214-215).

Proof: Let in: 2911—— 2913. be the two decompositions. The incidence
matrix A: (an) , where a;= 0 if 2!. and 29., are distinct, am—— 1 other-
wise, is normal'm the sense that A 15 a quadratic matrix with its coeffi-
cients equal to 1 or 0, so that for every submatrix consisting entirely of
0’s (zero-submatrix) the total number of rows and columns does not
exceed the degree of A. We have to prove that a normal (n X n) ~matrix

= (am) can be rearranged (by application of a suitable row permuta-
tion as well as a suitable column permutation) so that on = a“ = . . . =
a,“ = 1.

This is clear for n = 1. Apply induction on 11. If n > 1 we wish to
show that A can be rearranged so that for some 1' between 1 and 11—1
both the top left (7‘ X 1‘) -minor and the bottom right (n— r) X (n — r) -

_ minor are normal. Then, by the induction hypothesis, A can be rearranged
so that a.n = . .. =a.,.,= 1; moreovera,+,,.+.= . . . = a... = 1.

Indeed, if there is a 'r X (n— r) -zero-submatrix then A can be re-
arranged in such a way that a”, = 0 if 1 g i g r < k g 1». Now, if the
top left (7' X 1')-minor were not normal, then, after further rearrange-
ment of A, we would have ”:0 for 1 gigsgkgn and some 3
between 1 and r— 1, contradicting the normality of A. Hence the top
left (1‘ X 1')-minor of A is normal. Similarly it follows that the bottom
(71, — r) X (n—r)-minor of A is normal. If, however, there is no
'r X (n —— r)-zero—submatrix of A, then every (n— 1) X (n -— 1)-sub-
matrix is normal, and we simply rearrange A so that a.“ = 1.

A Remark on Congruenoe Relations

A congruence relation R is defined in a set if for two elements a, b of
a. is congruent to b: a 5 b or R(a, b)

a is non-congruent to b: a .—=- b or ~ R(a, b).1
A normal congruence satisfies the following three requirements:

1. (Reflexitivity) Every element is congruent to itself.
2. (symmetry) The sides of a congruence may be interchanged:

«Eb implies b —:—a .

* ~ means not.
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3. (Transitivity) a E b, b us 0 impliesa .=_ c.

For example, the ordinary equality relation in the set is a normal
congruence relation.

Exercise: To a normal congruence relation corresponds a decomposi-
tion of the given set into disjoint classes in accordance with the rule:

Exactly those elements of the set which are congruent to a are put
into the classilir Two classes are regarded as equal if they are the same
subset of the given set. Two classes having any element in common are
equal. ' ..

Exercise: If the set ER has a decomposition 9)? fig“. into disjoint
non-empty subsets 9h, then this decomposition is the class decomposi-
tion which corresponds to the following normal congruence relation:

a. is congruent to b if a and b lie in the same subset of the decomposi-
tion.

a is not congruent to b if a and I) do not lie in same subset of the
decomposition. '

A subset 6 of a given set 93! is called a residue system relative to a
normal congruence relation, if (5 contains exactly one element from each
class, this element being called the representative of the class.

We obtain the residue system by choosing an element from each
class and forming the subset 6 of 5m consisting of precisely these chosen
elements. Then there corresponds to every residue system 6 a repre-
sentative function which associates an i of (5 to every element a in SR
according to the rule: 5 is the element of 6 congruent to 0..

Exercise: A single-valued function on a given setim , which maps
a, uni, is a representative function if and only if E = 6.

Here, given the representative function, the congruence relation is
defined by the rule:

a is congruent to b, if E = 5;
a. is non-congruent to b, if E =1= 3.

Exercise: If the left cancellation rule: ab 5 ac implies in s 0, holds
for a normal congruence relation in a group (5; then the relation is a
right congruence with respect to the subgroup II. which consists of all
elements congruent to e.

If the right cancellation rule: bu 2cm implies ba 6 , holds, then
the normal congruence is a left congruence with respect to the subgroup
11 which consists of all the elements congruent to e.
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§ 5. Cyclic Groups
A group is called cyclic if it can be generated by one of its elements

through multiplication and the taking of inverses (i.e., the group consists
precisely of the set of all powers of the element a, positive, negative and
zero ).

The group (9 generated by a is denoted by (a). Every element of G
is a power of a.

We wish to determine the subgroups 11 of a cyclic group 6). If 11 is
different from (a), then 11 contains a power of a with an exponent
different from zero. Since, if a" lies in 11 ,a' " does also, we can assume
that for some m> 0 , 1" lies in u . Let d be the smallest of these
natural numbers m. Then a, a, a’, . . ., a"‘ must be mutually non-
congruent with respect to 11 ; therefore (9:11 g d . Every rational
integer m can be put in the form in = 911 + r where the quotient q is a
rational integer and the remainder r is a non-negative integer less than at.
The element a" in (9 has the form a’~ (110'. therefore aMEa' and
65:11 5 d. From the two inequalities it follows that (9: 11 = d and that
c, a, a‘, . . . , a"‘ is a system of representatives of (B with respect to 11 .
11 consists of all powers of a‘.

Every subgroup of a cyclic group is cyclic. The index of a subgroup
different from e is finite, and for every divisor d > 0 of (51 :1, there is
only the one subgroup (11") of index d.

We shall see later that this last property characterizes the cyclic
groups.

If G has an order n different from zero, then two of the powers
11" = c, a, . . ., a” are equal. From a': a' it follows that a"' = e ; thus
a power of a. with positive exponent lies in the subgroup e. Since (3: c = n,
we have (a") = e and (5) consists of the n elements a, a, a', . . ., w“.

n is the smallest positive number for which a’I = e . If a' = c then x
is divisible by n.

DEFINITION: In an arbitrary group, the order of the cyclic subgroup
generated by the element a is called the order of the element a. The order
of an element is therefore either zero or the smallest positive number
for which a. = e .

The order of a group element is a divisor of the order of the group.
For a finite group of order N we have as a consequence the analog

of the Fermat theorem,for groups:
aN=c.
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How can the order of a permutation in 6,. be read off from its
decomposition into cycles?

If 3:: (£1, £5, . . ., 2“) isad—cycle, then #:1. If 0 < y < d ,then
Mi, = i, +~ =t= £1 , , therefore a' =l= _l_. The order of a d-cycle is d. Now let
a = z, - z2 . . . . . 2* be the cycle representation of 7t, where z‘ is a drcycle.
If n"= _1_ then z,‘= 1 ; thus d. is a divisor of d. The least common
multiple d’ of all the d. is a divisor of d. Since conversely z," = _l_ and
therefore a" = l, we have:

The order of a permutation of 11. letters is equalto the least common
multiple of the orders of cycles in its cycle representation.

§6. Finite Rotation Groups

As an example of the meaning of the previous concepts, let us examine
the finite rotation groups.

The rotations of cartesian three-dimensional space about the fixed
point 0 have the following properties:

1. Every rotation about 0 permutes the points of the unit sphere R
with center 0 and is uniquely determined by its effect on the points of
the surface of the unit sphere.

2. Two rotations carried out consecutively produce a rotation.
If u and 1 are two rotations about 0, then at is the rotation which

transforms the point P into the point a(1:P)v .
3. A rotation either leaves all points on R fixed or it leaves exactly

two points fixed.
In the latter case, the two fixed points are called the poles of the

rotation. The rotation which leaves all points fixed, is denoted by 1.
4. A rotation angle «p, is associated with every rotation a- 91, is

uniquely determined to within addition of an integral multiple of 2:: .
Two rotations a, 1 with two common fixed points satisfy tr,” E In, + ¢r(2n)’

We wish to know which multiplication tables represent finite multi-
plicative domains (9) of rotations.

Since (ii consists of a finite number of permutations, (9 is a finite
group. The unit element of (9) is _1_. Let the number N of rotations in (6
be greater than 1.

We say two points are conjugate under (9 if there is a rotation in (95
which sends one of the two points into the other. The finite number of
poles of rotations in (‘5 fall into classes of conjugate poles; let us call
them 951: ‘15:, ~ - ., ‘13::-

All the rotations in (Si which have the same pole P, together with},
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form a subgroup 8 . We call 9 the subgroup belonging to P.
The p poles conjugate to P have the form alP, 0,1’, . . ., a,P with

at e (3 . If a 6 (it then «P = a,P is solvable, i.e.,

”(-1. 01’ = LP = P. ar‘a e g, 0 E 049")
Thus all the rotations in (9 fall into 12 left cosets with respect to g and
these are determined by their effect on P. g is one of these complexes and
contains a = N[p elements. P is called n-tuple pole in (5.

If 9 belongs to P, we determine the group belonging to 1P.
If «I is such that UltP = 1P , it follows that 1-1::e = P ; therefore

a = t"a,1 6 gand a, = 10:“. If aP= P , then rut—1(1P) = 1P .
Therefore the group 191-! belongs to 1’1" . In that account we also say:
tar‘ is conjugate to a .

We determine the number of poles of rotations in (ii. There are
exactly 2(N—1), since there are precisely N71 non-identity rotations in
(‘5. 0n the other hand there are exactly 11‘ = N[1), rotations in (B which
leave a pole of the i-th class fixed. Hence a totality of 11.0», — 1) non-
identical rotations leave some pole of the i-th class fixed.

H
Therefore 2N — 2 = Zp.(n.-— I),

I

w' u1.e., 2(1 — l/N) = 2(1 — 1/21.).
1

From the further conditionsN g nf g 2 it follows that 2 g H g 3 .
Furthermore

I. if H = 2, n, = n, = N arbitrary > 1.
II. ifH=3, 2=nI gu, gm, 1:, $3:

nl=ng= 2, n,=N/2,
n1: 2, n,= n3=3, N= 12,
n,= 2, n,=3, n,=4, N=24,
15:2, n,=3, n,=5, N=60.

I. H=2: All rotations #1 have the same poles. Let W, be the
smallest of all the positive rotation angles corresponding to rotations
in (6). If t is any rotation in (9) there exists a rational integer m such
that "up” g «p, < (m + l):p,, . Since or: = — 4a,, 4p"... = my», ,we have
‘0 g wl,_,..,'< o, . Therefore wa—m, = 0 and t = 0'” because of prop-
erty 4 of rotations.

(9) is a cyclic group of order N generated by a , where 1’" = 2n/N,
. and is designated by ZN .

II.a. H = 3, m = n, = 2, 1a,: N/2.
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SB. consists of two poles P, Q, and therefore a rotation in (ii either
will leave both poles fixed or will interchange the poles; thus 3; = go. (9
decomposes into 9 and Ta ; the square of any rotation o in (5, which
does not lie in g, is 1 , since it leaves the fixed points of a fixed, and
also leaves P and Q fixed.

From r1= (ru)‘= 1 for all 0' in 9, it follows that ro= 6-11.
Therefore .

wl - to, = a," 110, = a,-‘a,.

Since 9 is cyclic, by!., the multiplication table of G is uniquely deter-
mined by its order. The table on page 9 shows 0 for N=6. (3 is called a
dihedral group and is denoted by D, .

ILb. n1= 2, n.=n.= 3, N= 12.
The eleven rotations =i= J. permute the four triple poles of the second

(and third) class in 3-cycles and double transpositions. Thus (9 is the
alternating permutation group on the four triple poles of one of the
latter two classes. (5 is called the tetrahedral group. '

II.c. n1=2, n,=3, n.=4, N=24.

The eight triple poles fall into four pairs of poles, such that a rota-
tion in (9} either has both poles of a pair as fixed points or else has neither.
A rotation a which takes each of the four pole pairs into itself has the
identity as its square. If 0 =1: 1, then a interchanges the two poles in
each pair and since, for every 1 in (h, 101-1 has the same property,
aror"=1. If, however, 1 is a rotation of order 3, then or inter-
changes the poles of 1 and consequently orcr=1 . But this would
giver"l = 1, 1‘ = 1, a contradiction, and so a must be 1 and (ii is the
symmetric permutation group of its four pair of triple poles. 0) is called
the octahedral group.

1141. 111:2, fl‘=3, n,=5, N=30.

The 30 poles fall into 15 pairs of double poles, such that a rotation in
65 leaves neither or both of the poles of each pair fixed. Let (PQ) be one
of these pairs and let a be a rotation =l= 1 in (B with poles P, Q.

There exists in (6) a rotation 1 which maps P onto Q. var-1 leaves
the point Q fixed; therefore since Q is a double pole,

rat" = a, to = or, Q 4: to = rue = 070»
Since 10 is a pole of a , it follows that‘lQ = P. If conversely g is a
rotation in (9 which leaves (PQ) fixed, then either 9 or 91-1 leaves
each of the points P, 0 fixed. 0f the elements of (9) only 1, a, 1, u leave
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the pole-pair (PQ) fixed. These four rotations are exactly those rotations
in (B which commute witha. The square of a rotation in 0 which leaves
(PQ) fixedhas more than two fixed points and therefore is 1. From
this we conclude: If a polefpair (PQ) remains fixed under a rotation
in G, then the three rotatio'ns + 1. which leave (PQ) fixed, leave the pole-
pairs of each of them fixed. In this way the 30 double poles fall into five
sextuples of poles which are permuted by (9. By their effect upon a sex-
tuple, the 60 rotations of (9 fall into five complexes, each consisting of
twelve rotations. All the rotations which leave a sextuple fixed form a
subgroup of order 12 which has double and triple poles only; therefore
the subgroup is the tetrahedral group. This tetrahedral group is generated
by its elements of order 3. If a rotation of order 3 leaves each of the five
sextuples of poles fixed, then all the rotations in (t of order 3 have
this property, since they are all conjugate to one another under (9.
Then all the rotations in the tetrahedral group which belong to a sextuple
leave every sextuple fixed. A rotation of order 2 does not have this
property. Therefore the 59 rotations a; l in (Si permute the five pole
sextuples in either a 3-cycle, a 5—cycle, or a double transposition. (9 is the
alternating permutation group on its five sextuples of double poles. (ii is
called the icosahedral group.

The names of the last four types are related to the regular polyhedra
whose vertices are poles of the third class. Geometrically it can be seen
that (9 consists of all the rotations of space which carry the corresponding
regular polyhedron into itself. Conversely, from the existence of the
regular polyhedra we can deduce the existence of the rotation groups
named after them.

In cases b) — d), the poles of the second class are the vertices of the
dual regular polyhedra: tetrahedron, hexahedron (cube), dodecahedron.
If the poles of third (second) class are at the vertices of the regular
polyhedron, then the poles of second (third) class lie on the lines from O
to the midpoints of the faces.

The double poles of the first class lie on the lines from 0 to the mid-
points of the edges. The five sextuples of double poles of the icosahedral

group are similar to the five vertex sextuples of the five octahedra
inscribed in the icosahedron.

§ 7. Calculus of Complexes
In order to know the structure of a given group (55, we must investigate

its subsets.
We call any subset of a semi-group (9 a complex. Let the empty subset

be denoted by 0.
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The set-theoretic relations of complexes are expressed by means of
the symbols =, S, C, A, V. +, — . The equality of two com-
plexes is expressed by St, = 5%, ie., 91 and 3, contain the same elements.
The three well—known rules are valid for this equality relation.

9; S 3‘, means that the complex 91 is contained in the complex 8,,
i.e., every element in 91, lies in 9,. Equivalent to this is fl,_> 35'1.e..,

R,contains 3,. We have the rules:
a) R S R
b) If SE S R), and 9,S 9, then R; S 9,.
The equality of two complexes I?“ 5!, is equivalent to: 31 S R.

and fl,_< R1. _
If the complex it. 1s a proper subset of 9, , we denote this condition

by R C 9‘, , ie.., fi‘l lies in 5?, but there is an element in R, which is
not in 3?; . The following two rules are valid:

a) 3? <1: 5? .
b) 91(9, , R, C 5?, imply Q C 9,.
The totality of all elements which lie simultaneously in n given com-

plexes 9,, 5%,, . . ., fin is called the intersection of the 91,- It is denoted
by fi‘l/Nflgflflflknfifi‘n .

The following rules are valid for the intersection:
I? /\ fl = R,

3‘: A Rg= R. A 91 (commutative law)
(5%, A 9,) A .11,=11, A (.9, A 9,) (associative law)

(mflmfl...f\$?.)/\(R.H/\.../\R.+,)=R1/\R,f\“JUL”.
.The inequality 91 S 9?, is equivalent to R. /\ 9. = 31- R; < R. is

equivalent to fit /\ R}: 91 and 91 a; R,
If r- g game“ (:1 A ms (at A as)
The totality of all elements that lie either in R, or in R, . . . or in 59,, is

called the sum of 58,, m, . . ., SB, . It is denoted by R, V SP, V . . . V R.
The above four rules are valid if A is replaced by V . The relation
31 S 5?, is equivalent With 31 V R. = 9.. St. ( fl, is equivalent with
31 V R, = R, and 8?, =9: 9,. If 5 S9,, then l1 V f, S RI V 9,.
The relation between sum and intersection is distributive:

31mm, V R.) = (:1, A :1.) v (51, A .91.),
m V (:1, /\ £3) = (SP, V 9,) A (5?, V R.)-
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The sum of pairwise disjoint complexes 91, 9,, . . ., 3.. is denoted
by 91+ R.+---+R. -

The rules for the symbol V remain valid if + is substituted for V
everywhere and it is assigned that the sets on the left connected by
the plus symbol are disjoint. The second distributive law is an exception.

If 31 is contained in 9., then the difference set, denoted by R.— R! ,
consists of those elements of nhich are not in 91 . It follows that:
fl,= fl; +(R.— 8%,),and fi,— 5!, is uniquely determined by this equation.

Beside these set—theoretic operations we also introduce the product
of n complexes Rn 9., . - . , 5?. i 91' .9,- . . . - R. is the set of all products
‘1' 1-,- .. .- 2., where 1‘6 R‘ and n is a positive integer. We have:

9103.3.) = (9.395%, = 91919: (the associative law).
The combination of product with sum or intersection satisfies

910?. /\ 9a) S 9:9: /\ 919.,
R, (R, V 9,) = 91 5?, V 9.3,.

If h gel, then {mg 919..
In a group ($5 we define the inverse complex of a non-empty complex

as the complex consisting of all the inverses of the elements of S! . It is
denoted by R" .

99‘122,but fiR"= e if and only if 9 consists of exactly
one element. Furthermore:

UH)" = fl!
(”1 V fill—l = 91—1 V 9‘",

(9: A $33.)“ = 91" /\ fig“,
(91 ‘ 90—1 = as“ ' 1—1:

and if tg R , then [-1 g 9-1.

Necessary and sufficient conditions that a complex 11 be a subgroup,
are:

11 $ 0,
1111 gu,

11‘ l g 11.

The latter two conditions can be replaced by

1111“ g 11,

for then e g 11, and so it follows that it" _<_ 11. Taking inverses in this
inequality, we get 11g 11'1 ; therefore 11= 11", 1111 S11.
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The intersection of two subgroups is itself a subgroup. The product
of two subgroups is a subgroup when the two factors can be interchanged.

If a non-empty complex 1] contains only a finite number of elements,
then the condition 1mg 11 is necessary and sufficient for 11 to be a
subgroup, since the cancellation laws hold in 11 .

Let a be anon-empty complex. Let RI = RV R". Then 9," = fl,
and 5%, \j 3‘“ V 81,. . is a subgroup of (9 which lies in every subgroup
which contains 9. The subgroup is called the subgroup generated by R
andis denoted by {R}. We set (0} = c.

Then the following rules hold:

Isms: s {so A to).
save.) ={um v Is.) }-

If tthen {f} g {SP} ;furthermore {9“} = {51‘}.
The following useful rule of the calculus of subgroups can be proven.

If usuamlbgfitflhe'n

unubA$= (1m 23) -(11/\b)-
Pmon: It is immediate that u A no A $ > (u A B) - (11 A b). More-

over-,let :c 6 11 A no A B . Thenzc is ofthe formuv where u 6 u, v 6 1).
Since a: 6 11, it follows that u e 11. Since a: 6 28, It 6 58. Consequently
a: is in (u A 28) - (11 A n), whence the rule follows.

If we set 2; = (A) in the rule, we obtain:
If ugu and his arbitrary then u- (11Ab)=11Auh.

We consider an ordered ascending chain of subgroups of a group,
i.e, an ordered set of subgroups for which LI C it implies 11 g $.

The sum of all u in this subgroup chain, which has an arbitrary
cardinal number of members, is itself a subgroup which we denoted by ’1;

If a complex 3‘ has no element in common with any member of the
chain, then the intersection of i8 and R is empty.

We prove the following existence theorem on maximal subgroups.
THEOREM 5: If n is an arbitrary complex in o and 11 is a subgroup

disjoint from S? , then among the subgroups which contain 11 and are
disjoint from R , there exists a "animal one 28. Thus fit is defined as a
subgroup of (6 such that:

3. {$.1]/\3=0 implies :68.
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We consider the elements of (9) as well ordered: a < v,< v, . . .. . We
define an ascending chain of subgroups 11. $11.. - - - by means of trans-
finite induction: 11. = 11. Assume that the subgroup 11, has already
been defined for all 7 < to land that it has been shown that 11,91”

‘ for v$p<w and that 11,f\9=0. Then let 11‘. be the union 2',
of all mfor 1<w if [Ewan] A 84:0, but let 11.= [£_,w} if
[2,, m] /\ S! = 0. Since 2, is a subgroup, 11, is also a subgroup and
11, g 11., for v S 0:. Furthermore 2‘. A R = o by the construction
of E“, therefore 11,, f\ R = 0.

The union 58 of all the ll. is the maximal subgroup the existence
of which was to be proven.

§ 8. The Concept of Normal Subgroup

What condition must a subgroup 11 of a group (i) satisfy in order
that left congruency shall be equivalent to right congruency'!

From an s a(11r) Where u 6 11 it should follow that

m. a awn),
and therefore our! E call).

If, conversely, auu—l E 9011),

then an E a

for both left and right congruency.
We come upon the normality condition

nun-1g 1!.

We arrive at this same condition if we ask when congruences can be
multiplied. Then it should follow from a a call) and u :- call) that:
an a 11(111) and this implies aua—lgu. If conversely mus—Igu
for all a: in (B, then we can drop the l, r-symbols from the congruences
and it follows from

a a b
c E d,

that an: E be
b6 E bd,

and therefore as —=— M.

DEFINITION: A subgroup 92 of G) for which zszz-l g 9: holds for
all x in ($1 is called a normal subgroup.
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Left congruency is equivalent to right congruency if both are with
respect to the same normal subgroup. Congruences with respect to a
normal subgroup may be multiplied together.

From zmrlgm and :6"n ER , it follows that

92 = zx"5Jlrz-1g 3921:",
and therefore 33923" = in,

wt = We.
A normal subgroup commutes with every complex..

If conversely a subgroup commutes with every complex, then it is a
normal subgroup, since 2:11 = 11:: implies 2113-1 = u.

The product of minor-ml subgroup and a, subgroup 11 is a subgroup.

DEFINITION: A group with no non-trivial normal subgroups is said
to be simple. Any other group is called composite.

A group without a non-trivial subgroup is simple. Moreover,

THEOREM 6: A group with no non-trivial subgroups is cyclic of prime '
order, or consists of merely the unit element e. '

Proof: If (9 =9: e , then there is an element a =G= e in (B. By hypothesis
(9} = (a). If (55 were infinite then (a) 4: (a') * e, and consequently (9 is
finite. If p is a prime dividing (6:1 then (a) :4: (a’) and therefore a’ = e:
and (9): 1 = p.

The converse was seen earlier.
A congruence relation in a multiplicative domain is said to be multi-

plicative if a a b, c a :1 implies as E bd.
Example: In the multiplicative group of positive real numbers the

relation:
0. is congruent to b, if a g b,

a is not congruent to b, if a < b,
is a multiplicative congruence relation.

Exercise: A multiplicative normal congruence relation in a group
is the congruence relation of the group of elements with respect to the
normal subgroup consisting of all the elements congruent to e.

§ 9. Normalizer, Class Equation
The following investigation shows the meaning of the concepts of

subgroup and of right congruence.
Let 5.3 be a group of permutations of the objects-of a given set SIR.
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DEFINITION: Two objects in the set Eli are said to be conjugate under
the permutation group $ (SB-conjugate) if there is a permutation in 58
which maps one of the two objects onto the other.

The relation “a is conjugate to b" fulfills our three requirements:
. 1. a is ill-conjugate to itself since the identity permutation inie maps

a on itself.
2. If a is Ell-conjugate to b, then there. is a permutation in ‘3 which

maps a onto b. The permutation which is the inverse of the latter lies
- likewise in E and maps b onto a. Thus b is conjugate to a.

3. If b=na, e=9b, then on as well as n, 9 lies in EB , and
arm = ob = e ; therefore a is $ ponjugate to c.

Under the action of a permutation group a set splits into disjoint
classes of ‘3 -conjugate elements.

We call a class of iii—conjugate objects of a set SR a system of transi-
ti'vity for the permutation group $. The system of transitivity in which
a. lies consists of all no with or € 25.

How many objects lie in a system of transitivity? The answer is
given by THEOREM 7: All the permutations of a permutation group $
which leave an object a of the permuted set 3m fixedjorm the subgroup 55.
of EB belonging to a. All the objects SB -conjugate to a can be found as
images of a, each once, under the permutations of a right representative
system of $8 with respect to$.. Therefore the number of objects which
are Eli-conjugate to a is equal to the index of EB. in 76.

Proof: Let 58, be the set of permutations in ‘28 which leave a fixed.
l belongs toil)... If 7! belongs to$u then u" is in 53 andn"a = n“(na) = a,
and therefore it" also belongs to 96.. If 9 and n are in 13. then on
is in 2'6 and gna = 9(rm) = oa= a; therefore on is also in 43..

SS. is a subgroup of ‘B I
If the permutations 9 and n in 5.13 have the same effect on a then

they are right congruent with respect to $. since na=9a implies
Q"nu = a, e"n 6 EB“ e E flak?) , and conversely. If, then, n—N‘r

. is a right representative function of ‘3 with respect to ‘13., then every
conjugate ml of a is equal to ‘ia and no = Ea implies fl = §= 2': = E ,
as was to be shown.

DEFINITION: We say that two subsets of the set 7m are conjugate
under the permutation group YB if there is a permutation in ’13 which
maps one subset onto the other.

Since 233150 permutes the subsets of Elk, the above statements remain
.valid if “object" is replaced by “subse ”.
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However, we denote by film the subgroup of permutations in $ which
map a subset m of an onto itself, whereas EB“, will denote the subgroup
of all permutations in as which leave each element of m fixed.

We now take the set of all elements of a group G) as an example of
a permuted set.

For every element x in (ll, we define the “z-tmnsformtion" as the
single-valued mapping ("a”) . an; r1 is called the x-transform of a.
The c—transformations of is form a permutation group, since(m:_,)=(:)
is the identity permutation 1:

(1) . (3.1-.)(y,';-.)= (”“1””), and in particular

<2) (“Q-H("az)= (Z)=l
The group of transformations of 6 is denoted by J. or simply by J .
DEFINITION: Two complexes in (91 are said to'be cmjugote (under 6)

if one complex is the transform of the other: 5!, = zfllz'l, or equiva-
lently, 9:31 = 5?, 2:.

From equations (1), (2) we immediately see that in 65, all elements
2: whose corresponding transformations lie in a given subgroup of J form
a subgroup of Q. We can therefore define, in accordance with Theorem 7:

The normalizerr N. of the complex it is the subgroup consisting of
all elements an of G which transform a into itself : $924 = R, or
equivalently xi! = 92:.

If 2:1, 1,, . . . is a representative system of G with respect to N3,
then 1,32,“, 1,18%“, . . . are the complexes conjugate to R , each
occurring exactly once; and conversely. Thus

The number of complexes conjugate to a, given complex is equal to
the index of its mrmalizer.

The group 6) falls into classes of conjugate elements relative to the
transformations in J, giving the direct decompositioni§5=61+ (S. + . . .
The number of classes of conjugate elements of a group is called the
curse-member of the group. The direct decomposition

@=€1+Eg+---+¢,
of the group (3 into classes of conjugate elements corresponds to the
equation

(3) 65:1: h. + h,+ + h.» (class equation)
where h‘ is the number of elements in E. . - ’

DEFINITION: All the elements of a group 65 which transform each
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element of G into itself, i.e., those which commute with every element
of 65, form a subgroup called the center 3(6)) of (it. 3 is obviously the
intersection of all the normalizers of elements in (it.

It follows from the definition that the center is an abelian normal
subgroup. The center is just‘tliat domain of all elements which are trans-

‘ formed into themselves by every element in 6}. Therefore we may write
the class-equation as follows:

(4) (91:1 =9:l +21...
hs>1

It is important in the above to note that the summation is performed
over some group indioes different from 1.

The subgroups which are transformed into themselves by every ele-
ment in G) are precisely the normal subgroups of (l).

The normalizer of an arbitrary subgroup 11 of (9) is the (uniquely
determined) maximal subgroup containing 11 as normal subgroup.

We Wish to determine the classes of conjugate elements in the sym-
metric and alternating permutation groups of n letters.

Let n and 9 be two permutations in 6,. ; then gne“(gz) = emu,
and therefore 9719-1: 3;), i.e.: The Q -trcnsform of n originates
from n by replacing the letter a: by 9:: in the functional symbol for n.
The some also holds for the cycle symbol.

Two permutations are conjugate under 6,, if and only if they have
cycle decompositions with like groupings.

Let n be a product of a1 l-cycles, a, Z—cycles, . . . .a. n-cycles.
Then the number of permutations that commute with n is just as large
as the number of formally different ways that n can be written as a
product of first 1,;1 1-cycles, then a. 2-cycles, and finally on n-cycles, and
this is «.1! 1‘- - (1,! 2". . . 11,! 15%. Consequently the class (5,, of elements

91!
m

Now let u > I, n, = (l2)n(l2)-1. Every permutation in an is con-
jugate either to n or at, underYI.” the alternating group. Therefore (5,",

I decomposes into two classes under%, each with an equal number of
elements, or it does not decompose. The latter takes place if and only
if It commutes with an odd permutation. This last is equivalent to the
condition: There is an a“ > 0 or an 11““ > 1.

§10. A Theorem of Frohenius

The following theorem is not yet fitted into a wider context in a
- satisfactory way.

conjugate to a under 6,, contains permutations.
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THEOREM or FROBENIUS: The number-of solutions of r” = c, where
0 belongs to a fixed class 6 of h elements conjugate under a, finite group
(it of order N, is divisible by the greatest common divisor of hn and N.

Proof: The complex consisting of those elements in (0) whose rL-th
powers lie in the complex 5! is denoted by 9h. .. . Let Ag," be the number
«of elements in 91s,. . If N=1, then the theorem is true. Now let N > 1
and let the theorem-be proven for groups whose order is less than N.
If n=1, then As... = h . Therefore the statement is true. Now let u > 1
and let the statement be proven for all smaller 7L. (We are using induction
twice.) Since the elements in 6 are conjugate under (‘5, A3,. = h - AM.
?IM lies in the normalizer Na of c. If h > 1, then, applying the

induction hypothesis to N, , we find‘ that (n, ITS/Ac,” and therefore

(1m, N)/A¢,,,.
Nowlet h= 1.If n=n,n,, (75,471,): 1, nun. 4: l andif$D= 915,”.

then %_..= ”Wm By the induction hypothesis (1L.,N) is a divisor of
A9,], and therefore also a divisor of Au... Similarly it follows that
(m, N) is a divisor of Ag. and since u, is relatively prime to m, we have
(n, N) as divisor of A5,”.

It can now be assumed that n: p“ is the a-th power of a prime
number p with a > 0. If p divides the order 9 of c, then an element x
in film has the order n . 9. Then exactly 1:, elements of 91,,” lie in (at),
and all these 1L elements generate the same subgroup, namely (an) . The
number of elements in 21,,” is consequently divisible by 1L.

Finally we may assume that n is relatively prime to the order of the
center element 0. All the elements of the center whose order is prime
to r, form a. subgroup g of G of order 9 prime to 'n.‘ Since every element
in g is an ri-th power’, the equation a. = 6,1“ is solvable in 8 for every
pair of elements 0‘, c, , and since 9 lies in the center of G, we have
A..." = At“... It now follows from the class equation that

N=§Ag.+g-A._..
S g '

In the above, N and all the A3,. with E g g are divisible by (In! N).
Therefore 9 - Ag, is divisible by (n, N). Since (9, n) = 1, we have

(7‘: NVAmn Q'E‘D'

* Since the index of N. equals h. (E11)
“ See Exercises 2, 3 at the end of the Chapter.
‘ See Exercise 3 at the end of the Chapter.
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Exercises
1. The complex of all n-th powers of elements of a complex R in a group is

denoted by I? E . The complex of all elements in R whose n-th power is equal to a is
denoted by t! a .

We have _ /‘
fiL= R, 2:1 = 9“, Sim =(R!)!, 32 ARE =9‘(!'!).

2. If a commutes with b then
(61))“ = «”17“

and the order of ab is a divisor of the least common multiple of the orders of a and b.
3.. If the rational integer 1!. is relatively prime to the order of 6 then W") = fl.
(Exercises 4-6 in Burnside.) ‘
4. In a group Cl if the equation

(ab)" = a'b"
holds for every pair a, b of group elements, then 6 l and G ,t are subgroups of 0 .

Then, moreover, U : O " = G I : I.
(Hint: The elements of 3 whose n-th power is a. fixed element of 8 form a (right)

coset of Q) with respect to U ,. .)
6 I-l commutes elementwise with 5 " . (Young.)

5. If 11 and B are finite subgroups of the group 0, then 118 contains exactly
(11 : l) (28 : 1)
(ll /\ 3 : l)

6. If the index of the normal subgroup R of a finite group O} is relatively prime
to the order n of 9% , then 9? contains every subgroup of 6) whose order is a divisor
of 1;. (Use Exercise 6.)

'7. The alternating permutation group of n> 2 letters can be generated by
(128), (124), . . . , (121:).

'8. A well known puzzle requires that 15 numbered stones on a board divided
into 16 squares be moved horizontally and vertically until we obtain the situation
of Fig. 1, p. 30.

We may assume that in the initial position the lower right corner of the board is
vacant, so that the initial position can be described uniquely, with the use of Fig. 1,
by a permutation of the fifteen letters. It is to be shown that Fig. 1 is attainable
precisely when the permutation for the initial position is even. (Generalization?)

9. If 92 is a normal subgroup of the finite group ll! , then a normal multiplication
table of 0 can be constructed so that it is possible to divide the table into squares
having the following properties:

1). Each square contains the same number of compartments. (The number of
squares is (Q! :92 .

2). The rows of each square are the same to within the order of elements.
3). ThsVsquare in the upper left corner contains exactly the elements of 72

(Example, Fig. 2).
What sort of elements are in a square?
Conversely if it is possible to divide a normal multiplication table of 6 into squares,

such that 1., 2. hold and e is in the upper left corner of a square, then it is to be
- shown that we have a division into squares with respect to a normal subgroup.

elements.
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What divisions of 0 occur if we omit the condition that the multiplication table
be normal?

1 2 3 4 an be
5 6 7 8 no ob

9101112 be ea
131415 f” “‘

Fig.1. Fig.2

10. If g} is a set of complexes of a given group with the properties:
1). Every element in G is in at least one o! the complexes of E .
2). No complex in E is a proper subset of any other complex of fi.
3). The “ ‘aftwo in fiis ' ’innthird ‘ offiflhenfi
is the set of coeets of 6, with respect to a normal subgroup, and t} is a group.
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Additional Exercises

11. Let ll, 2‘ be two subgroups of finite index in the group 0. Denote by man:
the number of right cosets modulo 11 in I!” and by ”RS the number of left cosets
modulo 1‘ in 11%. Show that

a) no:n=1\n:u=s:(ufi '2).
b) @zmfl S)=(@:fl) (ne:s)=(uo:u) (0:8)§(@:11)(Gi:$).
c) It 6:11 and (9:8 are coprime then QI:(11/\S)=(Qi:lt)(®z8).

12. Let at, an, . . . , a. be n elements, not necessarily distinct, of a group of order 1:.
Show that there exist integers p and q, 1 g 72 § q g n, such that man. . . . o.=e.
(Maseru)

18. Let (.3) be a group and let R be a complex consisting of the elements ohm, . . . 10a
of Q! such that 3‘ does not contain 2. Consider the 71‘ (not necessarily distinct)
elements of m of the form mo, and prove that at most n(n— 1)/2 of these products
are themselves in R. (Hint: One has 11.6,": at as often as ma, =flk.)

Seek the best estimate for the number of elements in w—e depending only on 'n.
(Muser.)

14. Decomposition with respect to a. double module.

a) For any two subgroups 11 and B of a group G a normal congruence relation
is defined by the rule: a; 17 (mod 11, 8) if b=uao with u e u, o 6 ill.

b) For a given representative system a4, a,, . . . modulo :1, 5!! there is the decom-
position Qi: E n a. 8 of G into residue classes with respect to the double module
11, S. The residue class Rodi consists of E: (B A af‘lla.) right cosets of Q} modulo
II or of u: (I! A 114811.“) left cosets of 18 modulo 2‘.

. c) Is it possible to interpret the left congruence modulo a given subgroup 11 as a
congruence with respect to a suitable double module'.’ Is there a. similar possibility
for right congruence? What is the congruence with respect to a double module '2, R
if it is a normal subgroup of I»?

15. A set Q! is called a praupm'd if for certain ordered pairs 'of elements a, b of U
the product ab is uniquely defined in Q in such a way that

I. u(be) = (ab)c
in the sense that whenever one side of the equation can be formed in o, the other side
can also be formed, and both sides are equal,

11. with any two elements a, b of G! there can be associated at least one element at
such that both or and ab are defined in 6,

III. if a, b have a common left multiplier a; such that both am and 2b are defined,
then the equation ay= b can be solved, and if c, d have a common right multiplier,
then the equation ua: b can be solved.

Trivial example: Let E be a system of sets with the same cardinality. The set
13(2) of all one-to-one correspondences between any two (not necessarily difierent)
sets in 2 is a groupoid, if the one~t4rone mapping 1: of S. onto S. and the one-to-one
mapping p of S, onto S. are combined to form the mapping up if, and only if S.=S;
where the product up is defined according to the rule (mow: 2:02;) for a: 6 S. which
first occurred in § 2.
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We may interpret a groupoid Q) as a semi-group with special properties by doing
the following:

(1) Introduce a new symbol n.
(2) Extend the given multiplication in o, enlarged by n, by defining ab=n

whenever ab is not defined in 01 and an=na=nn=n for any element a in G.

16. Using the definition of a groupoid Q! as given in the preceding exercise
prove that:

a) For each element a there exists a left unit a. and a right unit .6 such that
s.a_— a—._ a.s .

b) If a, b have a common left multiplier then a left unit‘of a is a left unit of b.
Show that e..e. is defined, and hence e.e.=e..

c) For each left unit e. of a there is an inverse a"’ satisfying as ‘= 0..
Deduce from the equations

e.’ = e.c.' = (aa—‘) c.’ = a(a—‘e.’)
a“o.’ =a"

which are valid for any left unit 9.'of a that there"1s only one left unit of a. Similarly,
show there is only one right unit of a.

d) a“a= .9, e._1=.e, ,_io =3..
e) There is only one inverse of a.
f) (a"‘)_‘=a.
11) (Uniqueness of division.) if ay = b, then 1] = a“b . If an = d, then u = do“.
h) (ab) —‘ = b“a“‘.
i) Those elements having a given unit a as their left and right unit form a

group 6..

(Estonian 17-21 inclusive extend the concepts of §4.)

17. Any congruence relation It generates a normal congruence relation R“ as fol-
lows: R" (a, b) is true if and only if there is a chain of elements a: an 114, . . . , 11.: b
such that for any two consecutive elements a. , a. . 1 at least one of the three statements

ai=au 1, Km" a. .1), R011», 11.)
is true. R“ is called the ancestral relation of R.

Example: The relation “b is child of a" generates the relation “0 and d have a
common ancestor.”

18. Show that: -
a) By symmetrization of the binary relation R on a set gm one obtains the sym-

metric relation R‘ defined by: ak’ b if and only if 111% b or b R a, such that every
symmetric relation implying 1?. also implies R‘;

b) By forming the ancestral relation of R one obtains the transitive relation R“
defined by: aR” b if and only if there is a finite chain: a=au, flu Ran, a. R Ga. . . .,
an... R am, a, = b (n > 0) such that every transitive relation implying 1‘? also implies
R“ (note that the ancestral relation of ‘a is parent of b’ is ‘a .is ancestor of b') ;
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c) The ancestral relation of ‘a symmetric relation is symmetric, but the symmetri-
zation of a transitive relation need not be'transitive;
. d) By normalization of R one obtains the normal relation Rn defined by: oR" b
if and only if there is a finite chain (1:11... as. Re.” . or flat =a«.u.,a.u.: or Ham R
an t . = ca” 1 (i: 0, 1, 2, . . . , 71,41; 1: > 0), 0“ = 1:, such that every normal relation
implying It also implies R",

e) If R is reflexive and symmetric, then R": Rd.

19. A multiplicative domain is a set Q} in which a multiplication is uniquely
defined. For any subset 8 of (S) we define the right congruence modulo 3 as the
ancestral relation of the relation in sale for a {(1), k 6 8. Similarly, we define
left congruence modulo 3 as the ancestral relation generated from as kn. for
a e (B, k e R. '

With these definitions we can introduce left cosets, right representative systems,
right cosets, left representative systems modulo 9.

Both left and right congruence modulo the empty set coincide with the equality
relation in 05.

If (5 has a unit element 6 and if e is in St, then the right coset t1 represented by
e is closed under multiplication and coincides with the left coset represented by c
modulo 3. ll is the smallest subset of 01 containing 9? and closed under multiplication.

If G is a semigroup then right (left) congruence modulo 9 coincides with right
(left) congruence modulo 1!.

Give examples in which the number of left cosets is difl'erent from the number
of right cosets modulo R.

20. If n is a subgroup of the semigroup 0!; then right (left) congruence modulo
11, as defined in the preceding exercise, has the same meaning as in groups. Each
coset contains as many elements as It.

21. If (31 is a group, then fight (left) congruence modulo a subset 8 coincides
with the same relation modulo the smallest subgroup of 0) containing St.

(Exercises 22-28 extend the concepts of §8.)

22. Every subgroup of an abelian semigroup is normal.

23. The ancestral relation of a multiplicative and reflexive congruence relation
is a multiplicative normal congruence relation.

24. Let (1} be a multiplicative domain with a subset 3. The ancestral relation
of the relation “a E b if and only if there is a factorization of both a and b with
the same number of factors, and with the same distribution of brackets such that
corresponding factors are either right congruent modulo 5? or left congruent modulo
.9" is a normal multiplicative congruence ielation NM (R).

If R is empty, then NM (3) coincides with the equality relation.
‘It is always true that all elements of R belong to the same residue class 8‘

modulo NM (9). Show that NM (8) coincides with NM (9*) and that 8' is closed
under multiplication
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25. A normal divisor of the multiplicative domain (5! may be defined as a non-
empty subset 9!, closed under multiplication, such that a product in m of several
elements of 01 remains in 91 after any one of its futon has been multiplied from
the left or the right by an element of W.

Show that any normal divisor 9! of (M is a residue class (called the unit residue
class) of the multiplicative normal congruence relation NM (9?) generated by the
rule on E no; a for all a 6 GI, 14 e 9}, and, conversely, show that the subset R‘
constructed at the end of the preceding exercise is {normal divisor of Q5. (E.Lyapin) .

26. If there is a unit residue class 92, as defined in the preceding exercise, for a
certain multiplicative normal congruence relation R, then 9! is a normal divisor of G
and the other residue classes with respect to R are obtained by uniting some of
the residue classes re NM (9!), i.e. R is somewhat of a blurring of NM (9!).

27. (U is a normal divisor of 0!. What is NMUE)!

28. In a group, the notion of the normal divisor as defined in 26. coincides with
the notion of normal subgroup.



II. THE CONCEPT OF HOMOMORPHY AND
GROUPS WITH OPERATORS

§ 1. Homomorphisms

1. The Concept of Homomorphy.
Let (5 and (93* be sets in which a multiplication is uniquely defined

(multiplicative domains).
DEFINITION: A single valued mapping of the elements in 65 onto a

certain subset of (6* is called a hommnorphy, if the product of two
elements is mapped onto the product of the image elements.

Example: The mapping, defined on page 8, of 6,. into the group
consisting of i l is a homomorphy.

If the image of a; is denoted by uzthen u must satisfy the functional
equation:

0(zy) = uz - ay .

The homomorphy is said to be a homomorphic impping or a homo-
morphism if every element of (3* is an image element. 6" is said to be
homomorphic to (55. We denote this by: (9~(9“.

A homomorphy is a mapping into (0* while a homomorphism is a
mapping onto (10*.

Example: From Chapter I. § 6 we see that the mapping of the group
of surface rotations of a regular tetrahedron into 6. is a homomorphy,
but onto SI. the mapping is a homomorphism.

Under every homomorphy the set 3 of image elements is homo-
morphic to (Q. —r

The relation of homomorphy is transitive. If z—>az is a homo—
morphy of E into 19‘ and z‘-—>n‘ a homomorphy of (5" into [3",
then the product of 1 by a is defined by means of the equation:

fax = 1012:) .

. n1 is a single-valued mapping of the elements of 65 onto a certain subset
of G".

Since.
(ra)(:eg) = 1(o'(xg)) = 1(az - 0y) = 1012:) - day) = we: . toy,

in is a homomorphy of (9 into (9“. We have the following rule for
calculation with homomorphies:

35
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If u and 9-: are defined, then 9(1-0) and(e‘r)o are also defined and

NW) = (Ma = 9N-
The defining equation ((17):: = o(r 3) shows that on: can be written

instead of (or): without misunderstanding. Thus the homomorphv

relation is transitive.
From (tr-KW, (9*~(£i“ it follows that (it r-J GS".
The hamomorphy relation is reflexive. That is, the identity map-

ping 1. of (3, defined by 1.x = 1, has (9 as its set of images.
If we speak of the product of two homomorphies, then it will be

assumed at the same time that it is definable in terms of the above
relations.

In this sense
alw=a and lua=o.

The image of the complex 5% in 6 under the homomorphy o is de-
noted byafi . If this a multiplicative subdomain,thenfiis mapped homo-
morphically onto at? by a . '

We say a induces a homomorphy of R into 61*.
The homomorphie image of a group 11 in G is a group:
If 11 is a subgroup of (9, then it follows from as. y 6 11 that any 611;

therefore as - ay = a(xy) 6 all; (on: ~ try) a z = M; (cg-oz.) = urge).
Furthermore ex: use, ae-az=az.a¢=cz; therefore a'e

is the unit element of all. We have u(zrl) = we . 9(r1) = M and

therefore ate-i) is the inverse of cm: . Therefore all is a group.
If E is a subgroup of the image domain (3, then the set of all the

elements of Q5 whose image is in E forms a subgroup 11 of 8, and

11 == 011.
Every element in ii is of the form can fore: in 11; if z, y éu, then

06W)- ”: - cry Efi. 2y 611. ow“) - (03)“ 65, r1 €11.
2. The Isomorrphv Concept.
If a group o is mapped onto the group 6 homomorphically, then

multiplication in Eparallels that in 8. However, we consider two groups
as the same in abstract group theory only if their tables differ merely
in notation.order of rows and columns: Homomorphic groups are not
always equivalent in the abstract sense. If, for example, the group (3
contains more than one element, then there is a homomorphism of (it
which maps every element of 8 onto the unit element, but the tables
of G and s have a different number of rows.
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Those homomorphic mappings under which the table of the group is
preserved are called isomorphic mappings . That the homomorphic map-
ping is one-one is necessary and sufficient for the latter.

DEFINITION: A homomoyahy a of the multiplicative domain (6 into
. the multiplicative domain 0)“ is called an isomorphy, if (9 is mapped

onto the set G} of image elements in a one-one manner, i.e., if as: = ay
implies z = 3/.

An isomorphy which is 3. also homomorphic mapping is called an
‘ isomorphic mapping (isomorphism). (t) is isomorphic to (75 under every
isomorphy. .

.Ewample: The group of rotations of an equilateral triangle is iso-
morphic to 6,; the group of rotations of a regular tetrahedron is
isomorphic to 9L(§ 6 of the previous chapter).

'The existence of an isomorphic mapping of 0} onto (3 is denoted
by Giza

The three well-known rules hold for isomorphism:
1) The identity isomorphism maps 0} onto itself.
2) If Gl=@, (52(7), then 05:63 since 1111:1113, implies rx=ry

and z—— y.
3) If (526, then every element :11 in E can be written uniquely in

the form y= oz. rig: a: now defines an isomorphic mapping of
6 onto (9): Let y1= 03:1, 3],: oz: ; then

”MU/1%) ‘ ”—107“: 01g): 0' 107651550): 1132: ‘7' yl' 0—1112.
Moreover, the mapping a“ is one-one, since a is one—one. Therefore

it follows from (3:5 that 6:69. Calculation with inverse mappings
satisfies the following rules:

If the equation to = la is solvable for a homomorphy a, then a is
an isomorphy, since as: = ay implies 1am = ray and therefore a: = y.

An isomorphic mapping can also be defined as a homomorphy for
which to = in and up = 10. are solvable. Then for all g 6 of“: y = 0-9;]
and therefore (9* =6. Moreover ‘t = 9 = a".

3. Factor Group. Isomorphy Theorems.
Under what circumstances is it possible to read off the multiplication

table of a homomorphic image of a given group (ti from the multiplica-
tion table of G) itself?

We have first the following theorem:
‘1f m is a normal subgroup of (5, then there is a homomorphism a of (55

under which the set of elements of (S) mapped onto ae is precisely 92 .
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We set on = a272,
Then a(ab) = ab$t= a(b9l)§lt= a9! - b92= aa ~ ob.

From the above we realize that the set of cosets of (5 with respect to a
normal subgroup of 65 form a group homomorphic to (5. The group of
residue classes of a group (i) with respect to a. normal subgroup 92 is
called a factor group and is denoted by (9/5.?! . The order of a factor group
is equal to (6: 2’2. The unit element of the‘ factor group is the normal
subgroup 9!.

If, conversely, the left cosets, formed with respect to a subgroup,
form a group under the usual complex multiplication, then the subgroup
is a normal subgroup, as we saw previously.

FIRST ISOMORHISM THEOREM: Under a homomorphism 0 of a given
group (9 onto a group 6, all the elements of 6 which are mapped onto
the unit element of 6 form a normal subgroup (E of (Ev, called the kernel
of a. The factor group of G! with respect to G is isomorphic to U.

Proof: All the elements of £5 which are mapped on the unit element 'e'
of 6! under a form a. subgroup G.

a(a(§)= aa gives a one-valued mapping .
flag - 66) = 0(ablE) = 0(ab) = no - ab = aloe) - 0&5).

Fromo(a@) = 5(6) = ae it follows that on = ae ; and therefore

aé@,a6=@.

:16 ~ be = abG,
G is a normal subgroup, and from the isomorphism it follows that the
homomorphic image of (9 has the same table as the factor group (5/ (E.
Therefore the question of the multiplication tables of homomorphic
images will be resolved if we can give all the normal subgroups of the
original group. (See Exercises 9, 10 at the end of Chap. 1.)

SECOND ISOMORPHISM THEOREM: If 11 is a subgroup amd 92 is a
normal subgroup of the group 61, then the intersectionll /\ SR is a normal
subgroup of 11 and

11/11 /\ 92 = 1192M.
The isomorphism is obtained by means of the mapping:

U(11/\§ll)—> U(11/\§lt)~91= U92.
Proof : The homomorphism a —> mill of (5 onto 65/ ya is again denoted

by e . Then 11 ~ 011. Under the mapping of 11 onto all , precisely the
elements of 11A 9? map onto 2; therefore 11 r\ it is a normal subgroup

Therefore
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of u , and ll/llA $2011. If we replace u by 1192 then the same
argument shows that 1191/922011. The theorem follows from both
isomorphisms.

If .6 is a normal subgroup of the group 6, then for every homo-
morphism a the group = v.9 is a normal subgroup of [5: 0G since
a: -6(ae)~1 = case-1) = as) = 5. If, conversely, 5 is a normal
subgroup of G, then all the elements of (9 whose image is in 5 form
a normal subgroup .5 of (55, since

. 6(xbx")= a(¢)§(0t)"=5.
and therefore s-l g 5. Information on the relation between factor
groups is given by the

THIRD ISOMORPHISM THEOREM: Let a be a homomorphic mapping
of (ll onto 6. Let G be the normal subgroup composed of the elements of 03
which map onto the unit element of 3; let 5 be a normal subgroup of
6, let 5 be the group of elements in (9 whose image falls in 5 .

Then .i) is a normal subgroup of (Yr, and

we = 63/5 = (WE/W.
Proof: We have GIVE and U~l§/§ Under the second homomor-

phism exactly the elements of 6 map onto the identity coset 6 .
Under the first homomorphism precisely the elements of .5 map onto 5 .
Therefore (Mm = 6/5. If we set U: 6/6, then 6/9 = (WE/WE.

§ 2. Representation of Groups by Means of Permutation
We want to find the homomorphisms of given abstract groups

onto permutation groups.
DEFINITION: A single-valued mapping z—bn. of the elements a:

of a group 6) onto the permutations 7‘. of a) letters is called a repre-
sentation of (9 (as a permutation group) of degree a if

"or = “I ' “1'
All permutations n, form a group 53, the representation group.
A representation is said to be faithful if the homomorphy induced

by the representation is an isomorphy.
Two representations A, A' by means of letters from fill; , EDI,

respectively, are said to be equivalent if there is a 1-1 mapping a —> a
of the letters of SIRl onto those of 27!, such that (n,u)’ = n,’a' for all z;
in short if the representations are the same except for the naming of
the letters.

If the permuted letters form a system of transitivity under SB, then

I
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the permutation group $ and the representation of (i) by 56 are called
transitive, otherwise they are called intransitive.

If I is a system of transitivity of SB , then n,’ = (a‘ ’) ,where t e if,

is a permutation of letters in I, and the mapping r—Mr,’ gives a
transitive representation 4,; of (9. The representation group belonging
to A, is called a transitive component of the original representation.

Since, clearly, every representation can be constructed from the
transitive sub-representations, it is sufficient to investigate the transitive
representations of a given group (it). '

Let a transitive representation A of degree to of the group (6 be
given. We choose a letter a and consider two elements of 65 to be in the
same class if the corresponding permutations have the same effect on the
letter a. With the help of this decomposition into classes, a normal con-
gruence relation is definable. Moreover, x E y implies m.“ = ma, which
implies nun = n,n,a = n,n,a = nna, and thus 1:: a zy ; therefore
we have a right congruence with respect to the subgroup a; which con-
sists of all elements of (ii whose corresponding permutation leaves the
letter a fixed. If we call the left ooset consisting of all elements at for
which aka: b, R,,then

_ _ Rgig—B,” oralso “'_(y1:

The subgroups (3a, (55,, . . .form a family of conjugate subgroups of (3,
since 3:11.24: @n r The same family of conjugate subgroups belongs
to all equivalent transitive representations of (3.

Conversely we assert. If 11 is a subgroup of (ii and (ii: 313.- is the
decomposition of (35 into left cosets with respect to 11 , then th‘e mapping

Rz —> n. = (zI;
is a transitive representation of degree on of (9 as a permutation group
of left cosets.

In fact 2:12, is also a coset; moreover

R R R
”"= (31132): (213‘) (git): n'7'”

and n, = (g) = 1 ; therefore the n. are permutations and the mapping
a: —> n. is a homomorphy. Transitivity follows from the remark that
for every index pair i, k the equation :tRi = R, is solvable. The transi-
tive representation just found is called the representation belonging
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to ll . Equivalent representations belong to conjugate subgroups and to
them only.

The degree of the representation belonging to u is equal to the index
of u in 6!.

Under the representation belonging to 11, exactly those elements
in the intersection ill of all the subgroups conjugate to 1.1 are mapped
onto ; . Consequently the representation group is isomorphic to (ii/SR
and the representation is faithful only when 92-= e.

We denote the corresponding representation group by (on and the
image of a subset S? of G by R".

If the subgroup 11 is of finite index in 0, then the representation
group is finite, and conversely.

The left and right representative systems of 65 with respect to 11 go
into left and right representative systems of G“ with respect to
'111‘ and conversely; therefore Theorem 4 of Chap. 1. holds for infinite
groups (ii.

If we set 11 = e, we obtain the regular representation of (3 known
from Chap. 1., Theorem 2. The degree of the regular representation is
equal to the order of (9.

The representation group 6., is transitive and every permutation in
(3, either leaves every letter fixed, or leaves none fixed.

Permutation groups with the two preceding properties are called
re‘guw/r permutation groups. Regular permutation groups are their own
regular representations. Moreover, every transitive representation group
of an abelian group is regular (since every subgroup is a normal sub-
group.)

The permutations n of a regular permutation group have the prop-
erty that nla = a implies a! = ;.

Permutations with this last property are said to be reauhvr. A per-
mutation of a finite number of letters is regular if and, only if all its
cycles are of the same length.

A transitive permutation group consisting of regular permutations
only is a regular permutation group.

How does the representation of a group 6, properly between 11 and 6,
look in the transitive representation group 53:0“ 1

We decompose @= 205) and 5:~2Hfll into left cosets and
observe that the multiplication of left cosets of G (with respect to 11 )
.by any a: in 0 permutes them in bundles: Either the cosets of @(ur) in a
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complex Gfi are left there or they are mapped onto a complex Gm?
disjoint from it.

Therefore there is a decomposition of the aggregate 91! of the per-
muted objects into mutually disjoint systems 31, . . . , 3,,,each containing
8 elements and such that the permutations in $ permute the systems
3!, . . . , 3, and r>1, s>1.

We call the system 3,, . . . , 3, a family of (conjugate) systems
of imprimitivity.

If the letters permuted by a transitive permutation group 28 can be
decomposed into a family of systems of imprimitivity, then at is said to
be imprimitive. Otherwise SS is said to be primitive.

CorrespondinglyY the representation of (5) by ll is said to be primi-
tive or imprimitive according as the representation group 65“ is primitive
or imprimitive.

To a decomposition of the totality 9!? of permuted objects of a transi—
tive representation group is: @511 of the group G'into a family of systems
31. . . ., 3, of imprimitiyity, there belongs a group .9 properly between
(5 and 11 such that the left cosets of @(ur) in 3, form a left coset of (B
ioith respect to .9.

Let us suppose that the left cosetll of @(Hrfis in SuThen we say tWO
elements of (M are congruent if their corresponding permutations map 31
onto the same8,. This is a normal congruence relation. Furthermore it
follows from 7|: E 9 that an E 09, and therefore that we are consider-
ing a right congruence of (3) with respect to a group .9 which contains 11
in any case. From the definition of imprimitivity and transitivity of
$ it follows that .9 is a group properly between 11 and (5, thus the theorem
is proven.

The t, “' m," ‘ " Gju is m' "' if and only if 11 is a
maximal subgroup of (B. For example transitive representations of prime
order are primitive.

When is a letter system 3 a system of imprimitivity? As a criterion
for this we have: If 3 contains more than one, but not all, the permuted
letters and if as g 3 whenever a permutation n in as leaves a letter
of 3 in 3 , then 3 is a system of imprimitirity.

In any case the condition is necessary. If the condition is fulfilled,
then two letters a and b are called congruent if there is a permutation
n in $ which maps a and b intofi. The symmetry of the congruence is
clear. Since 58 is transitive, the congruence is reflexive. If, moreover,
nu, ab, 9b, 90 are contained in 3, then rug-{(912) e 3, and there-
fore by assumption (119")96 e 3, no 6 3, so that the congruence
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relation is also transitive. Consequently the totality of permuted letters
is decomposed into disjoint classes of congruent letters. Among these
letter systems we finda , since two elements in 3 are congruent and
if. on the Other hand, a £3, no, ab 6 3, then it follows that
3'10”!) 6 S, and therefore by assumption n"(7rb) 63, b 6 3.
Obviously the letter systems found in this way are conjugate under 23.
It follows from the assumption that 3 is a system of imprimitivity.

A letter system 3 of a finite number of letters is a system of imprinti-
tioitp if it contains more than one, but not all of the permuted letters,
and if for a fixed letter a,7 in 3 and all permutations n in ‘8, no, 6 3
implies 13g 3.

Proof: For every letter a in 5.}, there is a permutationoin B WhiCh
maps an onto a. It follows from the assumption that 93 g 3, and, since
3 is finite,e S = 3. If no 6 3 holds for a permutation n in B, then
as “o 6 3- 7'93 = 7:3 SSNOW we need merely apply the previous
criterion.

THEOREM 1: A normal subgroup 9t =l= l of a primitive permutation
group ‘3 is transitive.

Proof: Let s; be a system of transitivity of 9! having at least two
letters and let a, be a letter in I. If the permutation n in 1! leaves the

letter a,, in i, then for any permutation y in 9!, ”77;": (:3) lies
in 9! and therefore whenever no“ lies in I, nou‘lies in S also. Since
92a,= S: , we have 71$Si. Since this conclusion holds for every
letter a, in i, t is either a system of imprimitivity of at, or i contains
all the letters. It follows from the assumptions that 92 is transitive.

As examples of primitive groups we have the multiply transitive
permutation groups.

DEFINITION: A permutation group $ is said to be lotuplv transitive
if the number of permuted letters is at least k and for any two (ordered)
k—tuples of letters (an . . . , at) and (12,, . . . , bk) there is a permutation
n in m which maps a1 onto 1)., a, onto b,, . . . , a. onto b3.

$ is called exactly lo—tuply transitive if $ is k—tuply but not k+1-tuply
transitive.

Every k—tuply transitive permutation group is transitive.
A perniutation group 3 is k-tuply transitive if for a fixed k-tuple

(1, . . . , k) and every Io-tuple (an . . . , a.) there is a permutation n in $
which maps 1 onto an, 2 onto a,, . . . , k onto as. Then for any other k—tuple

_ (b,, 1),, . . . , b»), there is a permutation g in as which maps 1 onto b,,
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2 onto b,, . . . , 1: onto bmand therefore on" maps a, onto 1)., a. onto
[1,, . . . , at onto bk.

For example, the symmetric permutation group is the only n—tuply
transitive permutation group of n letters.

An (nF1)-tuply transitive permutation group of n 2 2 letters is
also n-tuply transitive and therefore symmetric.

The alternating permutation group of n > 2 letters is exactly
(rt—2) -tuply transitive, for one of the two permutations

(l 2 ...n—2n—ln), (l 2 ...n—2n—ln)
“turn-“n4 “cu—I an alal'uuu-S “nan—I

is always even. .
A doubly transitive permutation group a; is also said to be multiply

transitive and is primitive. Since a permutation can be found in $5 which
leaves a letter a fixed but maps a letter b difierent from 41 onto any
letter *a, a lies in no system of imprimitivity.

A transitive permutation group it is k-tuply transitive with h > 1
if the subgroup 11,, of all permutations which leave a fixed perm/ates the
remining letters in a (Ia—1)-tuply transitive manner. There is a permu- V
tation n in SE which maps a. onto a, a permutation e which maps b1
onto a and a permutation a which leaves a fixed and maps no, onto
911‘, no, onto 9b,, . . ., 7m, onto 91),, . But then e-lan maps the
letter a. onto 12,, a2 onto b2, . . . , at onto b,.

There is a conjecture that any sextuply transitive permutation group
01' with degree (and, apart from a. finite number of exceptions, even any
quadruply transitive permutation group of n-th degree) contains the al-
temating permutation group of n-th degree.

The construction of all finite multiply transitive permutation groups
is an interesting but still unsolved problem.

§ 3. Operators and Operator Homomorphieo
DEFINITION: A homomorphy of a multiplicative domain into itself is

called an operator (or endomorphism).
If the image of a: is denoted by 2° , then an operator 6 is defined

as a single-valued mapping of (9 into itself with the properties

2:9 e (5, (zy)°= 2:9 - ya for all a, y 6 (E
and the product of two operators el and 9, is defined by the equation

,0- 9. = (3909..
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The identity mapping of (3 onto itself is an operator with the property
19 = 91 = 9

for all operators 9.
All operators of a multiplicative domain form a semi-group with a

‘ unit element.
A semi-group with unit element denoted by [9} is generated by

a complex .0 of operators by adjoining a unit element and forming all
possible products of elements of 9 . Every semi-group of operators which
contains 1 and 9 also contains the domain (9} of operators generated
by 9. .

DEFINITION: The multiplicative domains 3., (17:1, . . . have a common
operator domain .0 if

1) a multiplication is defined in 9 ,
2) to every element 9 in 9, there corresponds an operator 9 of 6.,
3) to the product 919. of two elements in .0, there corresponds

the product of the operators 91 and 9, in (9),».
In all the following considerations a fixed common operator domain

is assumed unless something else is explicitly stated.
DEFINITION: A homomorphy a of (6 into (93* is said to be an operator

homamorphy If a (1‘) = (”Ila

for all x in (B and for all operators 9 in the common operator domainfl .
I .This relation is transitive and reflexive.
If We talk of a homomorphy we shall, if nothing is said to the con-

trary, mean an operator homomorphy over .9 '. If other homomorphies
are also considered, then we shall explicitly give an operator domain
belonging to them. For example a l-homomorphy means an ordinary

' homomorphy.
DEFINITION: For a given operator domain, a multiplicative sub-

domain 11 of G) is said to be adraiasn'ble2 if for all 6 in Q: 119 g 11 .
Given two admissible multiplicative sub-domains, their intersection

and the multiplicative sub-domain generated by them are also admissible.
An operator in .0 maps an admissible subdomain onto an admissible

subdomain. Moreover, for an arbitrary complex 9, the multiplicative
subdomain [95' V 99' V... ] generated by the union of all 38‘ with
0‘ 6 9 forms an admissible subdomain which contains 3?. It is called

‘Also called an 12 homomorphism See JAconson, Theory of Rings (Amer. Math Soc.)
‘Alsa called an 52 subdomain, (Ed)
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the subdomain generated by 9 over .0 and is denoted by [ SE] 12- Every
admissible subdomain which contains St also contains (9] n .

We assume now that (H is a group.
Subgroups which are mapped into themselves by all operators of the

entire group, are said to be fully invariant subgroups.
The unit element and the entire group are fully invariant subgroups.
Au admissible subgroup is mapped homomorphieally onto an admis-

sible subgroup by an operator homomorphy.
This is because, for all a: in 11: (a z)9= 0(29) 6.011, since x9 611.

If 11 is an admissible subgroup of the image domin Bl, then all the
elements in (3 whose images lie in a form an admissible subgroup 11
of ($1 and ‘ fi = 011-

Every element in fl is of the form .12 with z in 11; from
a: 6 11, 9 6.0 it follows that

”61—19 (as: 8= was), mean.
In the following investigations it will be assumed that the subgroups

used are admissible, if another operator domain is not explicitly assigned
to the subgroup in question. For example a l-group is an ordinary sub-
group.

Let G} be a group with operator domain .0. Given a homomorphism
a of G) we Wish to consider the operator domain also as the operator
domain of 065 so that 0 becomes an operator homomorphism.

Then cote) = (“$9 for all 9 in Q . In order that this mapping
9 be single-valued in 06, the normal subgroup ‘E of all elements of (ii
which are mapped by 0 onto 03 must be admissible with respect to Q.

If conversely the normal subgroup (5 of all elements in the group a
which map onto ue under the homomorphism a is admissible with
respect to the operator domain .0, then we define the extension of .0
to ow by the condition

(112:)9 = a (2:9)

for all 9 in 9. Then 9 is an operator of 1165.
For it follows from as: = try that z = ay, where a e (15.
By assumption as e (g, ((7138: “28) = “as. ya) = 0(ye)_

Moreover, (a: - ay)9= (a(xy))9= o((zy)9) = 0(19. y9) = 0059) . ”(3,9)
= (17 w)°' (031)9-

.O is a common operator domain of ($5 andam since 9191= 9, in
9 over (6 implies (a 29-)9-= 0(z9I)9-= a-((z9-)9-) =_ «29-, and there-
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fore 6,: 91 9I in ad) . From the definition of .0 over «Git follows that
a is an operator homomorphism.

The operator domain .0 of G} is extended to the factor group of (5
with respect to the admissible normal subgroup 92 by the condition

(a ms = aegz

for all 6 in 9.
If we regard (a 92)‘ as a coset mod 9} we can delete the dash without

misunderstanding.
We apply the new concepts to a cyclic group @= (A). The homa-

morphic image of a cyclic group is cyclic.
From aA '* = (oA)"', it follows that 06 = (41A) and the above state-

ment is proven. Every subgroup of a cyclic group is admissible.
This is because A9 = A“, and therefore

(A ")9 = (Aa)~ = A' u g (A m).
Every cyclic group has us many operators as it has elements.
This follows from the fact that an operator 9 is uniquely determined

by its effect on A:

(A-)°= (.49)— = 4".
Conversely,the mapping (A ")9 = AM is an operator.

§ 4. 0n the Automorpllisms of a Group
DEFINITIONS: An isomorphy of a group with itself is called a

meromorphy.
An isomorphic mapping of a group onto itself is called an automorphic

mapping (automorphism).
An isomorphic mapping of a group onto a subgroup is called a,

meromorphic mapping (meromorphism) . The mapping is called a proper
meromorphism if the subgroup is a proper subgroup.

If a group G) has a proper metamorphism a , then G contains the
infinite and decreasing sequence of subgroups:

6>a®>o'@,

A finite group, therefore, has no proper metamorphism. Every oper-
-ator of the infinite cyclic group which is different from 0, i1 , is a
proper meromorphism.

The product of two proper meromorphisms is also a proper mero-
morphism.
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All the automorphisms of a. group 6} form a group.
The group of automorphisms of a group (5 without operators is

denoted by A“.
The group of automorphisms admissible over an operator domain .0

is denoted by (Auk; .

1. Inner Automorphisms.
The “ transformation" of the elements of a group (it by a fixed

element a; is an automorphism. First we have the simple but important
rule: out z—l . s-1= zabz" ; secondly, the transformations form
a group with the identity automorphism as unit element.

We call the automorphism (“it”) = ("x an inner automorphism

of the group. All the inner automorphisms of (6} form a group Jn-
We saw previously that the mapping 1 —> 1: defines a homomorphism

between G} and Jo . Precisely those elements in the center of (£5 are mapped
onto the identity automorphism, so that we have‘the isomorphy

(1) 6/3 : J¢_

The group of inner automorphisms is a normal subgroup of the group
of all automorphisms. This is because for every operator 9

(2) (“if = (”a-1“)” = 39'1" (19)“,
and therefore 95 = g9 ; and if 0 is an automorphism, then

(3) 929-1 = L9.
The factor group of AI over Jo is called the group of outer auto-
morphisms.

From formula (2) we see that:
An automorphism maps a series of complexes which are conjugate

under (5 onto a series of complexes which are again conjugate under G).
In particular, classes of conjugate elements go into classes of con-

jugate elements. But not every automorphism of a finite group which
maps every class of conjugate elements onto itself is an innerIauto-
morphism (see Ex 10, Appendix)

2. Complete groups.
A group is said to be complete if its center is e and every automorphism

is an inner automorphism.
THEOREM 2: The automorphism group of a simple non—obelion group

is complete.
Proof: Let u be simple but non-abelian. Since the center of (Si is a
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normal abelian subgroup, it must be e. Therefore (9 is isomorphic to the
group J of inner automorphisms. We may even identify (3 with J so that
in the full automorphism group A of (32aza-1= x“ for all a: in J, and
x‘—_ a: for all :1: implies at: 1. Therefore the center of A is Land the
only element'in A with which all the elements of J commute is 1.

An automorphism a of A onto itself maps .7 onto a normal subgroup
J" of A. J" is isomorphic to J and therefore simple. The intersection of
J and J" is a normal subgroup of J ,and therefore J = J" or J {\J" = 1-

‘But in the latter case J and J" commute elementwise, since
a eJ, ,3 6J' imply:

aria-1 er. fim"fl"é-”
afia-‘fl‘l eJAJ", apes—W" =

afi= flat.

Since J 4: l, we must have J = J". Consequently the mapping a: —> x”
for all x in J is a certain automorphism o" of .7. We want to prove that
the automorphism a of A is an inner automorphism and may, for this
purpose, replace a by the automorphism t = o '10 of A. Now 1' = z
for all x in J. Therefore, are“ = 1" 6 J implies tx'x(o:‘)—1 = (1')” =
and therefore a’=1x. Thus 1 is the identity automorphism of A,
Q.E.D.

Are there any simple non-abelian groups? Since every subgroup of
an abelian group is a normal subgroup, it follows that:

A simple abeliam group :1: e is cyclic of prime order.
Conversely a group of prime order is cyclic and simple.
Thus “simple and nmabelmu” is equivalent to “simple of composite

order.”
THEOREM 3: The alternating permutation group on five letters is

’ simple.
Proof 2 A normal subgroup of it; can be divided into classes of elements

conjugate under ‘1. among which 1 must occur, and its order divides the
order of ills. The classes of 915, as previously shown, are: (1) The identity
permutation, (2) The 15 double transpositions ,(3) The 20 3-cycles, (4)
and (5) 12 5-cycles each. But no sum of two or more integers from the
set 1, 15, 20, 12, 12 is a proper divisor of 60. Therefore 91; contains no
proper normal subgroup, as was to be proved.
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3. Characteristic Subgroups. Ceutralizers.
A subgroup of a group (‘5 which is mapped into itself by all auto-

morphisms of (6) is said to be a characteristic subgroup. at and e are
characteristic subgroups. The subgroups admissible under all inner auto-
morphisms are precisely the normal subgroups. Consequently, character-
istic subgroups are always normal subgroups.

The center of a group is a characteristic subgroup.
Proof: Since @" =6) for an automorphism on and zz=zz for all

2: implies that z‘z“ = 2%“ for all x, we have 2" in the center for
each 2 in the center.

The factor group over the center is likewise characteristic. We can
even form a series of characteristic subgroups, the ascending central
series, by defining recursively: 3.: e, 51= “m; if 3‘ has already
been defined as a characteristic subgroup, then int/3: will be the center
of 65/3,.

A group is said to be characteristically simple if it does not contain
any proper characteristic subgroup. The investigation of the structure
of the finite characteristically simple groups Will later be reduced
to the investigation of the structure of simple groups.

If 9[ is a group of automorphisms of the group (3, and Elk is a normal
subgroup admissible under 9i, then we can derive the structure of 2!
from the structure of certain groups of automorphisms of 8/9? and 9!
in the following way: All the automorphisms of 9! which leave the ele-
ments of 9} fixed form a normal subgroup S'l. of 9L All the automorphisms
of ?[ which leave the elements of (ii/91 fixed form a normal sugroup 9!,
of 91. By the first isomorphy theorem, ‘Il/‘H, is isomorphic to a group of
automorphisms of ‘R and fi/m is isomorphic to a group of automorphisms
of (5/9?- ?L /\ 9i, consists of all the automorphisms a in ft such that

1) r"= r for all r in 9},
2) aft-1 £92 for all a: in 6!.

See exercise 6 at the end of the chapter concerning this point.
Now we apply the first isomorphy theorem to the normalizer Nu

of a subgroup 11.

The mapping x—> (a UUTI) of the elements a in Na is a homo-

morphism onto a. group of automorphisms of 11.
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Consequently all the elements of G which commute with every element
of 11 form a subgroup Zn. Z‘1 is called the centralizer of II. The central-
izer of a subgroup is a, normal subgroup of its normalizer and the factor
group is isomorphic to a group of automorphism of the subgroup.

The centralizer of the whole group (6) is equal to its center.

4. The IF - subgroup.
An automorphism of the group (9} is uniquely determined by its effect

on the elements of a system of generators of (ii. In order to state this
circumstance more sharply, we introduce the following concept.

DEFINITION: The set (D of all the elements which may be deleted
from every system of generators of a non-trivial group is a subgroup,
the ¢- subgroup of (9:

1) Since 65 4: e, e is a member of {D7
2) If a: E a? and y 6 ¢,then it follows from Q} = leg, 9] that

(3 = (r, y, R] and therefore (5 = {$3} ; therefore (5 = {a} ; up also
belongs to 115,-

3) If 2:6 ¢ then it follows from @={r1, R} that @= (at, R}
and therefore 6 = {R} ; 2-1 also belongs to Q5.

The 4: -subgroup is a, choracterist’ic subgroup (since every automor-
phism maps a system of generators onto a system of generators), hence
also normal.

The (D -subgroup is the intersection of the whole group with all of its
maximal subgroups.

If i) is this intersection then we shall show 1) (15 g 9), in other
words: If as does not lie in the maximal subgroup 11 then it is not in d5
either. This is because [z,11] =6!!! 4:11. 2) sogo ; in other words: If r
does not lie in 45, then neither does it lie in every maximal subgroup

of (9’. If {2.R]=®+{R), then x is not in [5?]. By the theorem on

maximal subgroups‘, there is 3 largest possible subgroup 11 which con-
tains a but not x. 11 is moreover a maximal subgroup of (55, since any

larger subgroup would contain :c and 9 and therefore also the group

(I, 5?} =65.

If every proper subgroup can be embedded in a. maximal (proper)

subgroup, then we have the

‘ Theorem 5, Chap‘ 1.
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BASIS THEOREM: If a complex 3! together with d5 generates (B, then 3
alone generates (lj .

If [ R] 4= 6, then i 32) could be embedded in a maximal subgroup ll. .
But then '1’ would also lie in u . Therefore the group (ll generated by a
and ¢ would lie in 11, which is a contradiction.

Now let (it) be finite, A. the automorphism group of (i), 2‘ the
normal subgroup consisting of all automorphisms which leave every
coset of (B with respect to (D fixed. Then Ag: $ is isomorphic to a group
of automorphisms of (ll/db. The factor group (3/45 has a finite number of
generators RH . . . , Rd. Since, by the basis theorem, a representative
system 8., . . . , 8,, generates the whme group (ll, there are as many dif-
ferent systems conjugate to 5., . . . , 5., under El as there are elements
in ill. The (:15: l)‘ representative systems decompose, therefore, into a
certain number of classes of systems conjugate under 28, such that the
classes each contain 9:1 elements. Thus we obtain the divisibility
condition .

(4) (40:1) (¢:1Y~(Awo=l)-
5. Narmal and Central Operators.
An operator is said to be a normal operator if

anger-1 = (mu-I)"
for all as, y in (6, i.e.:

An operator is normal if it commutes with all the inner automor-
phisms.

Therefore a normal operator maps a normal subgroup onto a normal
subgroup.

If a is a normal automorphism,then m'yl'r“ = my" r1 or
r1 z" y" = y“x" x“

for all ac, y and, since @‘= (b, x“z" is in the center of (9, and con-
versely. An automorphism is normal if and only if it multiplies every
element of (ll by an element of the center.‘

The mapping 2: —-> z-‘z‘ is an operator— 1 + on, since

(131 “1+"= (HI)"(¢!I)"= r‘r‘fy"= r11":r‘r’= rl+'y‘1+".
An operator which maps every element of the group onto a center

element is said to be a central operator. Every central operator is normal.
6. The Halomorph of a Group.

‘ Because of this property a normal automorphism is also called a center auto-morphwm.



§4. 0n the Automorphisms of a Group 53

Is it possible to extend a given group (35 to a group .5 so that every
automorphism of (5} can be induced by a transformation by an element
in ‘6?

Let an be any group of automorphisms of GI, and consider the set .6
of permutations (3,2!) with m, y 6 o, a 6 3R.

gamete”)-
The permutations n, = (:10) form a group 8 of permutations in .6,

and by I, Theorem 2, the mapping y —> 7:. gives the regular representa-
tion of (Si. is therefore a regular permutation group which we may
identify with G). ,

The permutations C.) form a permutation group R in .fi isomorphic
to 912 and we identify ”with 9.12.
We can verify easily that

(5) (3') (vi) = (via) (:‘) ’

and consequently $=Ufi=fi8 is a group of permutations.
According to (5), transforming by (:‘) in .6 induces the automor-

phism a in t9.
, The permutation group just constructed is called the holomorph of

the automorphism group 912 over (9. The holomorph of the group of all
automorphisms over (3 is called simply the holomorph of Eli.

Now we wish to start, in the reverse order, with a transitive permu-
tation group G}, and we form the group .9 of all permutations that

‘ form (9 onto itself.
Which automorphisms of the abstract group can be induced by

transformation with elements of .9?
Let G). be the subgroup of all permutations in (55 which leave the

.letter ifixed. For a permutation n in .9 it follows that

nw‘r‘ g 6, newt-Wm) = m",

and therefore ”6‘7!" S 631‘ ,
likewise r16“ 7: g 6.

(Eu S nan-1 ,
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therefore

"win—1': 6M .

Conversely, let a be an automorphism of (9 which maps ‘8, onto (5,.
We wish to show that there is a permutation n in 9 such that

arm" = a“ .

for all a: in G. In order to prove this we look for a permutation y in (ll
which maps i onto 1. (There are such, since (9 is transitive.) Then
631'"= Q31, and so without loss of generality we may replace ya by
anew a with ‘

61‘ = 61

Let R. be the left coset of (6 over (9. consisting of all permutations

which map 1 onto 12. The mapping (RR“) 1s a permutation (RI“) of the left
RI"cosetssince 6“:

(«11:39: R‘R.-=) (.31).
Then

and therefore mn' = z‘ni,

mm" = a".
We have as a result:
THEOREM 4: Let .9 be the group of all automorphisms, of a transitive

group (5) which permute the subgroups @(previously described and
belonging to the given transitive representation of (9). Then this group
.6 is precisely that induced by all transformations of (ll by the elements
of the normalizer of G} in the group of all permutations on the letters
of 61.

We determine which permutations u in .6 are elementwise com-
mutative with 0. Let n“! =1. By assumption nR.= R": and also
nR‘I a l ; therefore 1 = R‘nl. If we set R‘ = 2:6,, then it follows
that

9:611:41: “3,2" - 2731
= R‘ul = 1,

therefore (M.—— 205,14 S “1
Since m‘= l, we find through similar considerations that: Q), {Gin
and therefore ®‘= @1
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Conversely, let @i = coir: = 61 with z 6 RI. Since (55,z=x®1 ,
. 3‘ . .the mapping (3“) Is a. permutation (112:) of the left cosets of (it

over 3,.
Since

(if: ‘ (1:?) = (1:2) (yR‘R‘) = (y::z)’

3: commutes with all the permutations in (it. The mapping :1: —-> 3‘1 gives
a homomorphy, between the normalizer of (B, in (9) and the group of all
permutations commuting elementwise with (thunder which @1 is mapped
onto3 .

If however n commutes with (9 elementwise, and 31 = 1, then
'M': nR‘l = R‘nl = RA =6,

and therefore 1: = 1.
We obtain as the result:
THEOREM 5: The centralizer of a transitive permutation group G} in

the group of all permutations is isomorphic to the factor group N016:
of the normalizer NC. in (it of a subgroup (B; which belongs to the
transitive representation of 0). It consists wholly ofregular permutations.

As a special case we obtain the THEOREM 0F JORDAN: The centralizer
of a group ($1 in its holomorph consists of the permutations

9' = (a: at") = (11:5!) ’
which form a regular permutation group isomorphic to 0.

Moreover it follows that the center of a primitive permutation group
is l, or the group consists of the powers of a cycle whose length is a prime.

A transitive permutation group .9 which contains a regular normal
subgroup (i) is, by what has just been proven, the holomorph of the

' group so: of all permutations in .9 which leave a letter fixed over the
group (h.

Thus the holomorph of a group (it is primitive if and only if the group
is characteristically simple‘, since a system of imprimitivity which con-
tains e consists of the elements of a non-trivial characteristic subgroup
of 0.

THEOREM 6: If the holomorph of a finite group is doubly transitive,
then (3 is abelian and there is a prime integer p such that the p-th pow-
er af every element in (it is equal to e.

‘ i.e., has no proper characteristic subgroups.
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Proof : It follows from the hypothesis that the automorphisms of (ti
permute transitively all the elements =k e of (9). Therefore all the ele—

ments =l= e of (ti have the same order p. SinceGj 4: e , there are elements

of prime order in (9} and therefore p is a prime. Moreover all the normal-

izers of elements 4: e in (it have the same order 671. Thus there are

h elements in each class of conjugate elements=i= e in (6. If there are
7+1 classes it follows that

(341: l = rh + l.

011 the other hand h is a divisor of (5:1; therefore 71 = l, i.e., (i5 is
abelian, Q.E.D. —

THEOREM 7: If the holomorph of a group (5) consisting of more than
three elements is tn’ply transitive, them (9 is abelilm and the square of
every element is e.

Proof 2 It follows from the hypothesis that the automorphisms of ($5
permute the elements =l= e in (B in a doubly transitive manner. If,for ,
an a: in (Hakka :c=‘#e,then there is an automorphism which maps 1 onto
x“ but leaves av“ fixed. But then (:c‘)‘ = z‘ and therefore 1' = e. If, how-
ever, z‘Hze, x"=e,then by hypothesis there is an element 11 in G}
which does not lie in (x) and we can find an automorphism of G) which
maps 9:” onto 1/ but leaves a: fixed. But then 2‘: g which is a contradic-
tion. Consequently for all a: in (B, x“: e,i e.,z=:r1.From this it follows
that 29—= rig/d—— (yz)-1_- gm. Therefore G) is abelian, Q E.D.

If the holomorph .6 of a group (9 1s quadruply transitive, then (9) must
consist of exactly four elements:

By the previous theorem the square of every element in (B is equal
to 9. Moreover (it contains at least four elements e, rt, 11, any. If there were
a fifth element 2 in G} then an automorphism could be found which leaves
a: and 1/ fixed but maps any onto 2 and this is a contradiction, which
establishes the above . There does, in fact, exist a group of four
elements whose holomorph is quadruply transitive. In the symmetric
permutation group of four letters, the three double transpositions
(12) (84), (18) (24), (14) (23) together with 1 form a regular normal
subgroup 73‘ of four elements, as is easily seen. (*4 is called the Klein
Four Group.)
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§ 5. Normal Chains and Normal Series
Let 6! be a group with operators.
A normal chain of length r is a chain of (r+1) subgroups:

@=@t2®12@22"‘2@y= 1»
which begins with G) and terminates with e, and is such that every mem-
ber of the chain is a normal subgroup of the preceding member. The
factor groups Gil/65..” (" = 0,1, 2, . . ., r — l) are called the factors
of the chain.

A normal chain in which successive members are different is said
to be a normal chain without repetitions.

A normal chain is said to be a refinement of a given normal chain if
the members of the given chain are among the members of the new chain.

THEOREM 8 (Jordan - Holder - Schreier) : Two gi’ven normal chains
can be refined so that the series of factors of the two new chains are
identical up to order and isomorphism.

In order to carry out the proof, we ask not only if a refinement process
can be found, but still more, namely :

Are there convenient methods for constructing the refinement?
Let the two given chains be 2

V@= (55.2 6120522 - - -2G.=¢
and @='9o2512$22"‘2@n=¢~

The following example shows that in general at least s—l groups
must be inserted between adjacent members of the first chain and
similarly that at least 7—1 groups must be inserted between adjacent
members of the second chain. '

Let pm (i:1, 2, . . . , r; £221, 2, . . . , s) be 1'.s distinct prime numbers.
Let (ibe the cyclic group of order n = Hp“, Then set

(,2
I I

dr-‘HPu: elf—‘11?!»1-1 (-1

I and (SJ,= (3; let (3, be the subgroup of order #d” (i=1, . . . , r) ;

similarly let $.= (a and let .9: be the subgroup of order

n/Hep (k; 1,2, .. ., .9). By inserting 3—1 groups and 1—1 between

theladjacent members of the first and second chain respectively, both
given chains can be refined so that the orders of the new factors run
through all the primes 10”.. Since there is only one group of a given prime
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order, the resulting refinements are isomorphic. 0n the other hand iso-
morphic refinements between (85.. and (8, (or fin. and in.) can not contain
a factor whose order is divisible by two primes, since only common factor
groups of order p“. or 1 can lie between (9H, . . . , ($5, (and .95.." . . . , $2).
The intersection of two admissible subgroups and the product of an
admissible normal subgroup with an admissible subgroup are again
admissible subgroups, Consequently, multiplication of an intersection
lying in Gm with the normal subgroup‘G‘ yields a group between
G“ and 0‘. In what follows, it will be shown that the intercalation
of the 3—1 groups ‘

gnu: @('(Gc-1/\51) (l-l.2,.....—1)

between (9.. and (ligand of the r—l groups

5!.t=@r(5u—1/\ 6.) «i=1.=.....r-n
between .9“ and bku‘efines the given chains isomorphically.

0.,. and .9”, are defined for i= 1, 2, . . . , r—l; 19:1, 2, . . . , 3—1 by
the above formulae. Moreover set

a", = @l—l) '90.» = fill—1i 34,: = 64, 5mg: 5» .
If it is shown that (9,”. is a normal subgroup of 61‘,“ (k=1, 2, . . . , s) ,

then the 65., ‘. form a refinement of 0.. Correspondingly for the
.6“ k. If it is shown that

“gr—n 6i-I,k in] g'_
0...; _ 5", (l—l,£,...,:) ’

then the refinements are isomorphic. The desired results are given by
the following theorem concerning four groups :

If a subgroup n is a. normal subgroup of the subgroup ll of G, and
the subgroup n is a normal subgroup of the subgroup 23 of G}, then
u(11 /\ n) is a. normal subgroup of u(11/\ 38) , and b($/\ u) is onormal
subgroup of ”(8 A 11) mnd

"(11A 8): b(lE/\11)_
Mum) warn) ,

Proof: By the second isomorphism theorem an 8 is a normal sub-
group of 11 /\ 2t and

fine.8_ name),
u/\ I:

Since a A 2; is a normal subgroup of 11 /\ 2?. so is I: /\ 11 , and therefore
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(11A 58) (nA 11) is also a normal subgroup of 11A $ . Under the
above isomorphy, (u A film» /\ 11) is mapped onto “(an 2;) (b A 11)
= u (n /\ 11). Therefore by the third isomorphy theorem u(u/\ b)
is a normal subgroup of u(11 /\ m , and

11/13 aammo
(uABml/UI) “(ll/\u)

Since the hypotheses are symmetric, it follows likewise that MS /\ u)
is a normal subgroup of b(8 /\ 11) and that

11 A B = n (B /\ 11)
("ABXVHID "(B/W) '

from which we obtain the desired isomorphy.
The method of proof can be made more

411w) meaningful by means of a diagram which
shows the position of the groups occurring

“(11“, in the proof. In order to do this let a line
between two groups, one of which is above

Mm”) the other, mean that the group at the upper
end contains the group at the lower end

.. of the line.1
M8 The given method of refinement, applied

for a second time , gives no new refinement
of the first refinement. Nevertheless it
may refine isomorphic chains still further.

Example: Let (ll be cyclic of order 12. Let (6. be the subgroup of order 6,
.fi), the one of order2. Q‘l,— .9.— e. Then

6,. I = 9n 5:. 1 = @1-
A refinement is said to be a proper refinement if a new subgroup of Cl)
actually occurs in the new chain.

A normal chain is said to be a normal series if it has no proper
refinements.

If G) has a normal series then by the theorem of Jordan - H61der -
Schreier it follows that every normal chain can be refined so as to give
a normal series. The series of factors in different normal series is iden-
tical up to sequence and isomorphy.

I The existence of a normal series is assured if the Double chain condi-
tion of group theory holds:

‘ Often called a Hoses diagram.
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1. Minimal condition: In every decreasing sequence of subgroups
11.1 2 11, 2 . . . there is an index after which all the members are equal.

Equivalent to this is :
1. a) In every set of subgroups there is a subgroup which contains

no other subgroup of the set.
2. Maximal condition: In every increasing sequence of groups

111 S 11. g 11. g . . . there is an index after which all the members are
equal.

2. a) In every set of subgroups there is a subgroup which is con-
tained in no other subgroup of the set. '

From the maximal condition it follows that (0) contains a largest
normal subgroup (‘5. or is equal to e, that (6. contains a largest normal
subgroup (6|2 or is equal to (2, etc. It follows from the minimal condition
that this sequence terminates at c after a finite number of steps. The
normal chain thus obtained is a normal series.

If, conversely, every admissible subgroup is a normal subgroup of (it,
then the double chain theorem follows from the existence of a normal
series.

The normal series in group theory have received different names,
depending on the underlying domain of operators :

1. Composition Series: Every member of the chain

®=wo2@12"‘2@r-12@r=9

which is different from (9} is a maximal normal subgroup of the previous
member.

2. Principal Series: Every member of the chain different from (6)
is a normal subgroup of (‘15, maximal in the set of all proper subgroups
of the preceding member.

3. Characteristic Series: Every member of the chain different from
(5 is a characteristic subgroup of (ti, maximal in the set of proper sub-
groups of the preceding member.

As an example we shall determine the structure of the symmetric and
the alternating permutation groups.

The following theorem is useful when investigating the simplicity
of a group.

THEOREM 9: A transitive and primitive permutation group (6 which
contains no proper regular normal subgroups, and in which the subgroup
of all permutations which leave a letter fixed is simple, must itself be
simple.
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Proof : By Theorem 1 of this chapter, any normal subgroup ‘Jl other
than 1 , of the primitive permutation group (B is transitive. Let (G, be
the group of all permutations of (it which leave the letter 1 fixed. Since
3} is assumed not to be regular, the intersection 92. of ‘Jl with the group
(51 is distinct from 1 . According to the 2nd isomorphy theorem 9}. is a
normal subgroup of (95., and inasmuch as e}, is simple by hypothesis, we
musthave 921= 05.. Since‘kis transitive,

i3"— 9&6, = 9291, = 9!,
as was to be proved.

THEOREM 10:‘ The alternating permutation group of n 4: 4 letters
is simple.

Proof: $1., 21,, ii; are of orders 1, 1, 3, and are therefore simple. By
Theorem 3, :‘ls is simple. Now assume that we know that 9i.-. is simple
and n>5. Then Ell. is quadruply transitive, therefore primitive, and
according to the remark followingTheorem 7 91,. contains no regular
normal subgroups.

The subgroup of all permutations in 91,. which leave the letter n fixed
permutes the remaining letters 1, . . . , n—l as a“ does, and thus is
simple by the induction assumption. By the preceding theorem 9L, itself
is‘simple, as was to be shown.

THEOREM 11: If n =l= 4, n > 2, then the symmetrio permutation
group 6,, has exactly the (me composition series

6. > 9L > ¢-'
Proof: If n > 2, then (5. is doubly transitive and therefore primi-

tive; consequently a proper normal subgroup 92 of 6‘ is transitive. By the
second isomorphy theorem 91A 2!, is a normal subgroup of ‘21.; more-
over 92: ERA ”11/2. while the transitivity of 9! implies 93A it. =l= 1.
If moreover n 4: 4, then because of the previously proven simplicity of ‘11,.

91A91.=9I.,
and therefore 92 = 2L, as was to be shown.

By the same method of proof, it follows that for a proper normal
subgroup 92 of EM, the intersection 9h= film 9!. is a normal subgroup
=l= 1 of 8",. Since ‘ll. is doubly transitive, 9!. is transitive. Therefore the
order of ‘1}, is divisible by 4. Either 9!. contains 3-cycles so that
9i.=?li, or in, consists of double transpositions and 1. 9i. actually con-

’ With the help of Exercise 9 at the end of the chapter, the reader can develop the
usual proof of Theorem 10.

’ Naturally this is also the principal series, indeed the characteristic series.
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tains the transitive normal subgroup I?! which consists of the three
double transpositions and 1. The subgroup 6, of all permutations which
leave the letter 4 fixed can be taken as a representative system of 6.
over 51}, and so we finally obtain: Every composition series of 6‘ begins
With 6] > at > 3v

Since the abelian group 8. contains three proper subgroups, 5‘ has
three different compositions series. '

Close inspection of the proof of the Jordan-Hblder-Schreier theorem
shows that its validity in a given group depends‘more on the relation
between the subgroups of the group than on the behavior of the indi-
vidual elements. This observation lead Oystein Ore‘ to consider problems
of this type from an abstract point of view, and for this purpose he
defined a new algebraic system which he called a structure. In more
recent times the theory of structures has been developed into a new
branch of mathematics.

To begin with, we define a partially ordered set (meet) an a set S
in which a binary relation is defined between certain of' its elements;
this may be denoted by

ugb orby b2a

or, in case it should be necessary to indicate the poset to which a. and b
belong, by

agb and b2a,
s s

respectively. This relation is required to be subject to the conditions
of reflexivity and transitivity:

(1) ago.
(2) if «Sb and bgc then age.

Example: The set 2(5) consisting of all subsets of a given set S is
a poset when we define the binary relation as set-theoretical inclusion.

Every subset T of a poset S is a poset if we take as its binary rela-
tion the one induced by the binary relation of S. We call two elements
a, b of a poset S equivalent, if cg b and b go. This equivalence is
normal. Furthermore it satisfies the law of substitution:

If a is equivalent to a,’ and b equivalent to b’ then from a C b it followsthat a’ g b'. _
1Many result: and problems have been anticipated by Dedekind.
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Therefore we are able to define uniquely the relation between the
classes of equivalent elements of S by the following rule:

3gb if and only if ogb,,4 .
. where 5 denotes the class of all elements of S equivalent to the element

x of S.
It follows that the classes of equivalent elements_of a partially

ordered set S themselves form a partially ordered set S satisfying the
additional rule:

trig? (twig; then i=5.
Usually in dealing with partially ordered sets we assume that equiv-

alence amounts to equality. This certainly holds for the posets 2(S)
formed by all the subsets of a set S. At any rate, the fundamental con-
cepts remain invariant if equivalent elements are substituted.

Let us observe that reflexivity and transitivity are self-dual concepts
inasmuch as a poset S is carried over into another poset S“ if we intro-
duce the new relation

ag b if and only if azb.
S' S

S‘ is called the dual poset of S. The dual poset of S“ is S. For any con-
cept employing the symbol S we obtain the dual concept by employing
the symbol 2 instead.

The principle of duality states that every theorem concerning posets
remains true if the symbols g , 2 are interchanged and every derived
concept is replaced by the corresponding dual concept.

1. H ,L' and ”*4" "‘
A one-to-one correspondence between two posets that preserves the

binary relation in both directions is called an isomorphism between the
two posets. Naturally, the fundamental concepts of the theory of struc-

' tures are so chosen that they remain invariant under isomorphisms.
We define more generally: A single-valued mapping q of the ele-

ments of a poset S onto a certain subset of a poset S, is called a homo-
morphy if from a g b in S it always follows that on. g zrb in S, and if
from 9:0g‘q in S, it always follows that there exist two elements a, b
of S such that (pa = 926 and «pb = (lid and a S b. This defines a homo-
morphic mapping or a hammorphism of the poset S onto the poset (rs
consisting of all the images ¢a(a.sS).
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The most important poset for the theory of groups is the poset S (0)
formed by all the subgroups of a group S, where g is taken as set-
theoretical inclusion. We observe that a homomorphism of a group G)
onto another group .5 induces a homomorphism of 5(6) onto SW).

Every homomorphy q: of a poset S gives rise to a normal congruence
relation R9: in S defined by:

a: 1) (Rip)

if and only if qua = ob. This congruence relation is isotonic: If a. C b.
b’g c and b's b(R9>) then there are elements a’, c’ in S satisfying
a.’ a 0, (R90), c’ —=— c (Rm) and a’ _<_ c’. For any isotonic normal congru-
ence relation R in S, denote by MR) the residue class represented by a
modulo R. These classes themselves form a poset S/R in which the
binary relation is defined by:

(3) MR) g b (R)

if and only if there are elements a”, b’ in S satisfying a! E a, (R),
b’ E b (R) and a’ g b’.

The mapping a, —> a(R) defines a homomorphism between S and S/R
which we may call the natural homomorphism between S and S/R. For
a homomorphism (p of S we find that the mapping a,(R¢p) —> (pa defines
an isomorphism between the posets S/c and (p3 which we may call
the natural isomorphism between S/q and 99S. Also, ip induces the
natural homomorphism between S and S/Rq7. Two homomorphisms,
say (p mapping poset S into poset SI and I}! mapping poset S, into poset S,
may be multiplied if and only if WS, is part of S. The rule of multiplica-
tion is given by

(4) 0p= MW) (aeS.)

and (PW turns out to be a homomorphism of S, into S..
This multiplication is associative. A left identity for the homomor-

phisms into a poset S is given by the identity 15 of S. This also acts as
right identity for all homomorphisms of the poset S into another poset.

A homomorphism «p of the poset S onto the poset gas is an isomor-
phism if and only if it is one-to—one. In this case the inverse mapping
<12“ of qps onto S characterized by

?’_“l’= 1s

is an isomorphism between as and S. Its inverse is q: itself:
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W" = 1 W-
If there exists an isomorphism between two posets then the posets are
called isomorphic. If there isgiven a number of isomorphic posets, then
all the isomorphisms between any two of them form a groupoid under
multiplication, with the identity mappings of the members of the
system acting as units.

The isomorphisms of a poset with itself are called the automorphism
of the poset. They form a group under multiplication. Isomorphic posets
have isomorphic groups of automorphisms. A single-valued mapping 1;:
of the poset S onto the poset (p5 will be said to be an anti-hmmorphism
if q: induces a homomorphism between the poset S and the dual poset
of (rs. Two single-valued mappings (7,, I]: which are either anti-
homomorphisms (denote by a) or homomorphisms (denote by h) are
multiplied according to the same rule as was given for the multiplica-
tion of homomorphisms, and the outcome is either a homomorphism
or an anti-homomorphism as given by the following “multiplication
table" of a and h:

a h
a h a
h a h

A o'ne-to-one anti-homomorphism is called anti-isomorphism. E.g., the
one-to-one correspondence by which an element a, of a poset S corres-
ponds to itself in the dual poset S" defined in the introduction is an
anti-isomorphism.

((12)) ((23)) ((31)) 9!.

\/
(1)

An anti-isomorphism of a poset S with itself is an anti-automorphism.
A poset S which admits an anti-automorphism is called self-dual. In this
case all the automorphisms and anti-automorphisms of 5' together form
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a group containing the group of automorphisms of S as normal sub-
group of index 2. An example of a self-dual poset is provided by S (63) ,
the Hasse diagram of which is exhibited just above. The automorphism
group of 5(a) is isomorphic to 6.. There are 24 anti-automorphisms
one of which may be obtained by simply interchanging <5; and (1) , leav-
ing the other subgroups invariant. Only six of the automorphisms of
S(6,) are induced by the six automorphisms of the group 6,, which is
the largest number possible because 91., as the only non-trivial normal
subgroup, is necessarily invariant under all automorphisms of the group.

The correspondence between any automorphism a of a group G} and
the automorphism a, induced by a on 5(6) = S provides a homomor-
phism between the group A. of all automorphisms of G and a subgroup
Ag’a of the group Aim of all automorphisms of SW». The kernel of
this homomorphism consists of all automorphisms of c; that map every
subgroup of G) onto itself (not necessarily elementwise).

2. Meet and join.

Let S be a poset. We describe sets formed by some elements of S by
taking a non-empty index set A and assigning to each a in A an element a,
of S. We define: The element a; of S is the meet of the elements a. (MA)
if and only if :r g a. for all a in A and if from 11g a. for all a in A
it always follows that 1/ g x. We write x: (L a... We also write

fl.‘

aa=a,/\a2/\ . .. no... if the index set is finite.
It may happen that the meet does not exist. 10.9., if no inclusions other

than the trivial ones a g a, hold in S, then it is impossible to form the
meet of two or more different elements. But if the meet does exist then
it is uniquely determined up to equivalence: If at: = 0.4 am, 11 = (7A a.

I 6 EE

then as g a. and yga. for all a in A and thus a: g y, y g 2;. Hence we are
allowed to deal with D a. as with an element of S.

a o: A

We always have:

(5) fl a.=a if a..=a,for all asA.
asA

(6) a A b = b if b g a, and conversely.
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Furthermore,

(7a) Q a,g n b, if out; b, for MA,
ueA GSA

(7b) '0 a, n4
«:3 ‘2 GEA a“

for a subset B of A provided both sides of the inequality canbe formed.
(7b) turns into an equality if each element a... that is removed also occurs
among the remaining elements, i.e. if asA -——B, a, = a.fl for some flab.
Finally, we have

8 Q b = Q a,“
( ) fi :8 a a6 .4

where B denotes a second set of indices and to each ,3 of B there corres-
ponds a subset A, of A such that b, = n a, can be formed and A is

a:

the union of all subsets As! provided at leagt one of the two sides of
(8) can be formed.

The previous rules imply the rules

(9) uAa=u

(10) anb=bna

(11) a/\ (bf\c)=(a/\b) Ac

provided all but one of the meets involved can be formed.
In the poset S, = 2(S) of all subsets of a set S the meet coincides with

the set-theoretical intersection. This remains true for the poset S (G)
of all subgroups of a group Q}. But, for a poset S. formed from certain
subsets of a set S, we may by no means infer that meet and intersection
coincide. The reason is simply that the intersection of certain subsets
a. of S (aeA) belonging to S, may not belong to S2. E.g., Let S be the
set of all real numbers, and let S2 be the set of all open intervals
— s < a: < e (s > 0) together with the empty subset. The meet of these

' intervals taken in S, will be the empty subset, but the intersection will be
the origin.

More generally, let SE be a subposet of the poset S1 and assume that
Q a,“ exists (ms, for aeA). Then Q a. may not exist at all, or it

rh‘al; exist and be different from Q a? We only can infer the rule
3:4

(12) G) a. = L59 u
' a e A a. 2 as 52

for a s A
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The dual operation of meet is called join. The element x of the
poset S is called the join of the elements a. of S (asA) if for all a in A,
Mg x and if, for all yes satisfying a," gy for all a in A, mg 11. We
write a: = UAa'“ The same considerations as for the meet hold for

as

the join if we replace the symbol f\ by the symbol v .
Meet and join are interdependent in the following way. If for the

subset U of all elements a of S satisfying a“ S u for all a of A the meet
0 u can be formed. then we have

us ‘

(13) n u = U 41,.
Similarly an; I! for all “A “A

(14) U 1‘ = (‘1 a.
"a2" fox-all “A «(A

if one of the two sides can be formed. In fact, since a... fin for all as U it
follows that a. S r} u and this holds for all a in A. But if a. g b for

u: U ,
all a in A, then we have beU, (1n b, and hence (13).

14‘

A poset in which the meet and the join can always be formed, is called
complete. E.g., the poset E (S) of all subsets of a given set S is complete.
If the sum of all elements of a poset can be formed then the result will
be an all element characterized as an element including every other
element of the poset. If there is an all element and if the meet always
can be formed, then from (13) it follows that the join always can be
formed, and hence the poset is complete. This happens, for example, for
the poset 5(3) of all subgroups of a group G in which (5 is all element
and in which the intersection always can be formed. The join of any
number of subgroups coincides with the intersection of all subgroups
of «3 containing each subgroup of the given system of subgroups. Hence
the join coincides with the subgroup generated by all the subgroups of
the given system.

If the meet of all elements of a poset exists, then it is called null
element of S. It is characterized up to equivalence as an element of S
included in every element of S . 1

If there should not beanull element of S then we enlarge S artificially
by the addition of an element m subject to the inequalities m g a for all
MS and m g m. The enlarged set is a poset with null element m. Simi-
larly, we may add an all element if there is none.

3. Lattices.
A lattice or a structure is a set L with two binary operations A

and V such that for any two elements a, b there' are always uniquely
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deiined elements a. A b, a V b in L. The operations are called meet and
yam respectively and are subject to the rules

(15) (idempotency)
a) a /\ a. = a
b) a, U a = a

t (16) (commutativity)
- _ a) anb=bna

b) avb=bva

(17) (associativity)
a) a/\(b/\c)=(a/\b)/\c
b) av(bvc)=(avb)v0

(18) a) aA(aVb)=a

13) av (aAb) =a.

For example, a poset S in which equivalence amounts to equality
and in which the meet and the join of any two elements can always be
formed, is a lattice. According to (6) and the dual rule, we have

(19) ugh if and only if aflb=a,

(20) (1gb if and only if avb=b.

Conversely, in an arbitrary lattice we may define a binary relation by
(19). From (16a) followsag a. Ifag b, b g c,thena,/\ b=a, b/\c=
b,a/\c= (aAb) /\c=a,/\ (bAc) =anb=a so thatogc. If
agb,bga, then aAb=a,bAa=b,u=a/\b=bl\a=b.

Hence a lattice determines a poset in which equivalence amounts
to equality. Furthermore we have (a. A b) A a = (b A a) /\ a =

_b/'\ (aha) =b/\a,=a./\b, hence anbgu; similarly a/\b_<_ b. If
x<a,xg b, then xna=z,xf\b=az,a: /\(a/\b) = (ma) /\b=
x /\ b = 14:, so that x g a/\ 12. Hence a A b coincides with the meet of
a. and b formed in the poset L. Using (18) we prove the equivalence of
(19) with ~(20). By dual arguments it follows now that av 11 coincides
with the join of a, 17 formed in the poset L.

We have found that lattices may be defined as posets in which equiv-
alence amounts to equality and in which the meet and join of any two

.elements always can be formed.
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From the definition it follows that the concept of a lattice is a self-
dual concept.

A subset of a lattice is called a sublattice if it is closed under both
lattice operations. A sublattice is itself a lattice.

Trivially, L is a sublattice of L. For any pair of elements a, b of L
satisfying bg a there, is defined the factor lattice a/b consisting of all
elements 2 of L which satisfy b Sac g a (“it is between b and a"). This
is a sublattice of L. Another sublattice of L is the lattice L/a of all ele-
ments at of L which satisfy a g a; the dual notion a/0 is defined to be the
sublattice consisting of all elements a: of L satisfying mg a. In case
there is an element M, it follows that M/a=L/a. If there is a null
element m then we have a/m = a/O.

A complete poset in which equivalence amounts to equality is a lat-
tice. Not every lattice is complete—e.g, the lattice consisting of all
open non-empty intervals containing the origin on the real axis is
not complete. However every finite lattice is complete. More generally,
a lattice satisfying the maximal condition that in every non-empty sub-
set of the lattice there is an element which is not included in any other
element of the subset, is a complete lattice provided that there is an all
element and a null element. In fact, for any subset U of the lattice the
set V of all elements of the lattice included in every element of U will
not be empty; hence it contains an element a not included by any other
element of V. But the join of a, and any other element of V also belongs
to V and so includes a; hence it must coincide with 11,. Thus a includes
every element of V, so that a is the meet of the elements of U.

4. Projections and antiprojections.
For any lattice L and any element a of L there is defined a homo-

morphism qz. of the poset L onto the poset a/O by the rule

a: -—> (paw = a A x,'

This homomorphism may be called the projection of L with respect to
a or onto a/O. In fact, we even have

(21a) (p.03 /\ 11) = (PM A Wall,
as follows from (17a) and (18a).

The dual concept is the antimojection of L with respect to the ele-
ment a of L which is defined as the homomorphic mapping a" given by

x—><p¢x=a\/x
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of the poset L onto the poset L/a. This homomorphism preserves the
Join operation

(21b) . WM! 1/) = «w v W.

as follows from (17b) and (18b).
The projection (11. induces in any factor lattice b/c a homomorphism

of b/c into (a. A b) / (a. A a) such that ¢¢b= aA b, qz.c= uA c. But we
can by no means infer that 924 maps b/c onto (a A b)/(a, A c).

E.g., in 5(6.) let a= ((123), (12)) , b = 6., c= ((1234)).
There is exactly one subgroup a: between a and b other than c and b
itselfviz. a: = ((1234), (24)) but we haveaA b =a, aA c = 41 A1 =
m= (1) ; hence the subgroup 11:: ((128)) of 41/1» is not in «p. (b/c).
The six subgroups involved form a sublattice whose Hasae diagram is
given below. (Hexagon lattice.)

Generally we have m

(22) w.z= tp.(tp.z\/ c) if c g 4:,
because

«magic, WM) 0 gm 0:3,
WWWV ") S “DI-”g “ A W‘s '1 A (W: v c)=<p.(%z v 6).

Hence a necessary and sufficient condition that «p. induce an isomorphism
' of b/c into «1/0 is that x=qz.:c Vc whenever cgwgb, or

(23) W‘qm = a: for all elements :5 of b /c.

This condition guarantees that q). induces an isomorphism between b/c
and some subset of (a A b) / (a, /\ c) , but it still may happen that there
are elements in (a A b)/(a A c) not belonging to ¢.(b/c) as is the
case for the pentagon which one obtains from the last figure by omitting

_ x, and which looks as follows:
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\m/ 1/

If 97. induces an isomorphismmof b/c into a/O then‘its inverse is induced
by (11" according to (28). Hence in order to be sure that (p, induces an
isomorphism between b/c and (a A b) / (a A c) we have to amplify (23)
by —

(24) WW=V forallyin(a/\b)/(a/\c).

6

DEFINITION: The factor lattice b/c is projective with the factor lattice
d/e if (12., induces an isomorphism of b/c onto (1/2 or what is equivalent, if
(p‘ induces an isomorphism of 11/3 onto b/c.

This relation between b/c and d/e is described properly by the
formulas:

(25) c=b, ond==e

and the identities

(26) ((c)Ad)Uc=(c)/\(cvd)'
(27) ((yfld)Vc)/\d= (ll/\d)\/(0/\d)

for 311:: and y of L.

The relation is reflexive: (p. induces the identity isomorphism
between b /o and b/ c.

The relation is transitive: If We is projective with 11/13 and d/e pro-
jective with f/g,then we have f g d, and hence from the associative law

971% = W-

It follows that (p, induces an isomorphism between b/c and f/g, viz., the
product of the isomorphism induced by (p, between d/e and f[g and the
isomorphism induced by In between 12/0 and d/e.
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Moreover if b /c is projective with d/e and if also b/c is projective with
f/y such that f S 41, then tile is projective with f/g. (Cancellation Law).

Proof: (pd induces an isomorphism 5a between b/c and d/e, (p, induces
in isomorpEsm E, between b/c and fly. Since fg d, we find that qr, =
7%. where E7 denotes the homomorphism induced by 977, on d/e. It follows
that 97, is an isomorphism between 11/ e and f/g.

By duality we find: If b/c is projective with fly and if d/e is pro-
jective with fig and if in addition the inequality 0 2 9 holds, then We
is projective with (He.

Finally, let us notice the rule of inclusion: If b /c is projective with tile
and if c g c’ g b’_<_ b, then b’lc’ is projective with (b’/\ d) / (c’/\ (1). And
the dual rule: If'b/c is projective with «1/2 and if e g e' g d’g d, then
(d’/\ c) / (e’/\ c) is projective with d’/e’.

The first of the two rules follows from the fact that W induces an
isomorphism between b’/c’ and (b’/\ d) / (c’Ad) which according to the
associative law also is induced by my, a. The dual rule follows by duality.

An important application of these concepts can be made to the lattice
S (G!) of all subgroups of a given group 6. First, (9 is the all element of
S(@), (1) the null element of 5(6). Second, if $8, (S 6 S65), cg 58, then
6/58 will be the lattice formed by all subgroups of (5 between (5 and 28. If

’ (6: is a normal subgroup of 2!, then for brevity we introduce the notation

C<123

for this relation between G and 26.

If ‘5 <1 3 and if for a certain subgroup H of El it holds that (9!, (S) = 2‘
then it follows from the second isomorphy theorem that there is the
isomorphism rpm”between 19/6 and I I‘\ fi/El A (t defined by the formula

' (28) “M(as) =a: A c)

for all a, of El, which may be called the projection. of 9/6 onto
1A sa/sm G. The group-theoretical isomorphism 1pm” induces an
isomorphism between the corresponding lattices $8 [6 and (Qt/\Ri) / (MA 6!)
and from (28) it becomes clear that the group-theoretical projection
induces a lattice-theoretical projection.
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5. The Dedekind elements of a. lattice.
A. Kurosh has generalized the concept of normality to all lattices

by making the following definition:
The element 6 of the lattice L is called a Dedekind element of L if

and only if for each element a the mapping 92., induces an isomorphism
of (ave) [a onto a/ (one). This amounts to the identities (26) and (27)
for all a, a), y of L. 01', using the terminology introduced by 0. Ore:
(aVc) /c is projective with u/ (uAc) for all elements a of L. We write
6 K L if c is a Dedekind element of L. Furthermore, we write 0 K b if c
is a Dedekind element of the lattice b/0. It is convenient to call the rela-
tion c K b Kurosh invariance.

We have seen in the last section that the relation 6 <1 2! between two
subgroups of a group 6 implies the Kurosh invariance (5 K ill. But the
converse is not true in general, as may be seen from S (6,) where every
element is Kurosh invariant but not every element is normal.

Kurosh invariance has the following five properties proved by
Kurosh:

I. cKc.

II. Ic L,thenc KacorallaofL.

Proof: For xeL we find that (c) [c is projective with x/ (who),
and this holds a, fortim-i if ze (av c) /0

Applying II to b/O we find

Us. If e K bthen c K ((a/\b) V0) for 311:: ofL.

III. If c K L it follows that an c K a.

Proof: If a’s 11/0, then

a‘ _C_ a,af\c _(_(a’v(a/\c))/\c g(av(a/\o))f\0=G/\0,
(a’V (ct/\c))l'\c=a/\c,

hence, since 0 K L, ((a’v(a/\c))\/c) /o is projective with

(a'V(a/\c))/(a/\c).
But

(a’V (a Ao)) V c=a!V((¢/'\c)Vc) = a’V c;
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hence (a’vc) la is projective with (a’v(a/\c))/(a/\c). We also have
that (a'Vc) /c is projective with a’/ (a’A c). Observing that a.’/\ a:
a! /\ (a/‘\ c) and using the cancellation rule proved at the end of the last
section,we find that (a’ vhf/V) ) / (ans) is projective with

a// (a’/\ (GAG) ) .

Applying III to b/0 we find

1119.. If cK b, then c/\a K bAaforallaofL.

IV. If e K L and if a: KL/c, then a; K L. Conversely, if c S a: and

x K L, then x K L/c.

Applying IV to b/0 we find

IVa. Ifa K bandifc;a:§_b,thenx K bifandonlyifz K b/c.

V. 1ft:l K L,c2 K L,then rave, K L.
Applying V to b/0 we find:

Va. Ifc, K b, c. K b, thenc.Vc.K (1.

Proof: Let a: K L/c, asL. It follows that (tn/(ave) ) /a: 1s projective
with (ave) / (a: {\(avc)). Furthermore, from c K L it follows that
(av c) /c 1s projective with a/ (one), hence (aVc) / (1A (auc)) is pro—
jective with a/ (affix/Have)». Observing that

rv(a\/c)=(zvc) Va=mva,

an(xn(avc))=(a/\(a vc))1\x=a/\x

V we find that (xva) /a: is projective with (ave) / (xA (aVc)) and
(c) / (x {\(avc) ) is projective with a/ (aAz) . From the transitivity
of the ‘projective’ relation it follows that (xVa) /x is projective with

- a,/ (dz/\ac) . Since this holds for all a of L it follows that x K L. Conversely
if x K L, then for c g a, it follows that (xVa) la: is projective with
d/ (Mm); hence we have x K L/c.

Let c1 g 2:. Since 0, K L, it follows that (0AM) /02 is projective with
:t/ (cg/\x): Hence (02V$)/(02V91) is projective with x/ ( (02V01)/\ :5).
Since 01; x, it follows that 02 V 9: == Cg V(€1 Van) = (01 V as) V 9:. Hence
(an/anus) / (clvcg) is projective with an/ (a: /\(c1\/c,) ). Hence

. a; V c, K L/cl. From IV it follows that c1 Va, K L.
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Finally we observe that Kurosh-invariance is not a self-dual concept,
which may be seen from the pentagon (p. 72). We have a K b, '11 If b,
but there is an anti-automorphism interchanging a. and y.

6. The Jordan-Holder-Schreier Theorem for lattices.

As minimum requirements of any concept of normality in a lattice
we lay down the following rules:

1) Between certain pairs of elements 0, b of the lattice L there is
defined a relation: 0 is normal with respect to (or: under) b. We write
0 N b.

2) If c N b, then 0 K b and hence in particular a g b.
3) c No.
4) Ic b, ML, then one Naflb.
5) IcaVa,yNa.thenc\/yNcVa:
6) Ifcl,02 Nb,thenc1\/c,N b.

From 4) follows:

4a) If cN b, cgn, then c Nx.

These rules are satisfied by Kurosh-invariance

Proof of 5) : From 1113. follows a. /\ c Ka. From Va follows
11V (aAc) Ka. From IVa it follows that g V (aflc) K a/(aAc).
Applying the isomorphism induced by y!‘ we find that yV c K (aVc) /c.
From IVa it follows that 1/ Va K «iv 0. They are also satisfied by the
concept of ‘normal subgroup’ in the lattice of all subgroups of a given
group. We proceed to prove the Jordan-Holder-Schreier Theorem for
lattices. First we prove the

LEMMA 0N FOUR ELEMENTS: If u N U, o N V, then we have

uV(v/\U) Nuv(V/\U)

w (uAV) N vv(U/'\V)
and

(29) (uV(V/\U))/(uU(V/\U)) z (vV(U/\V))/(vv(u/\V))
In fact, we have:
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unVNUflV,v/\UNU/\V fromrule4),

(uAV)V(v/'\U) NUAV from rule 6),

uNuV (UAV) from rule 4a),

uVWAU) NuV(U/\V) from rule 5),

(uV(U/\V) [u is projective with (UAV)/(ul\(U/\V)) from rule 2).

Observing that

uv((u/\ V) V(v/\U))=u v(u/\V) V(o/\ U)=uv(v/\ U)

and

uA(U/\V)=(u/\ U)/\ V=u/\Vg(u/\V)V (on U)

we conclude that also

(“UNI/“7) ) / (u V(U/\1))) is projective with
(UAV) / ( (unV) V(11/\U))

Hence it follows that

(“V (UAV) )/(uV(U/\1I)) z (UAV) / ( (uAV) V (ii/VD)
and from arguments of symmetry

(”V (V/\U) )/(’U \j(u/\V)) 2 (ll/\V) / ( (“AWV (”AUD-
Since the right-hand sides coincide, comparison of the left-hand sides
gives us (29).

In a lattice L with all element M and null element m and with a
normality relation 8. normal chain of length r is a chain of r + 1 elements

M=avN «N41,...Na,=m.

The factor lattices 114/0, H; are called the factors of the chain. If success-
sive numbers are different, then the normal chain is said to be a normal
chain without repetitions. A normal chain is said to be a refinement
of a given normal chain if the members of the given chain are among
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the members of the new chain. Now Theorem 8 can be reformulated
as follows: Two given normal chains of a lattice with normality rela-
tions and extreme elements can be refined so that the series of factors
of the two new chains are identical up to order and isomorphisms.

The proof is carried out as before by basing it on the lemma. The
applications to the situations in groups gives us back Theorem 8.

§ 6. Commutator Groups and Commentator Forms

We saw on page 9 that there are groups in which the commutative
law ab=ba does not hold. If we wish nevertheless to calculate in an
arbitrary group (.5) incommutative fashion we must create a multiplica-
tive normal congruence relation between its elements for which the
condition
(1) ab E ba

holds. By page 22 the congruence relation sought is the congruence in G)
with respect to a normal subgroup @Cconsisting of all elements which
are to be congruent to e . From the proposed congruence, we conclude,
upon multiplication by the congruence (ba)-1 5 (ba)“, that all
elements ab(ba)“1 must be in (5!

DEFINITION: The element ab a-lb-1 is called the commutator of
the elements a, b and is denoted by (a, b).

According to the defining equation,

(2) ob: (a, b) ba
the commutator indicates the deviation from the commutative law.

The subgroup generated by all the commutators is called the com-
mutator subgroup of (9, and is denoted by D (9} or by (3’.

If we actually wish to calculate commutatively in (9, then we must
look upon two elements as congruent if their quotient lies in the com-
mutator group. However if we do this, we calculate"In an abelian manner,
since from (2) it follows that

ab =ba (D651)
and from ash, c ad it follows that

aasbc =c'b =db =bd(DQll).
The commutator group is the smallest normal subgroup with an

abelian factor group.



§ 6. Commutator Groups and Commutator Forms 79

The commutator group is invariant under every operator of the
given group, since

(3) (a, b)9 = (ob a" b—D? = a9 b9 (a9)-|(b9)-1 .. (a9, (,9),
and therefore 6’9 lies in 6’.

We now define higher commutator groups (“higher derivatives")
recursively, setting

Doo= o
olo= Do= or,
D’@=D@’= 0',

Dual: our-Io).

It is clear that the r-th commutator group D1» is a fully invariant
subgroup of (it and that the successive factor groups of the normal
subgroup chain

(5,: 0°62 6’: D‘62D'Gi . . .2D’Gfi
are abelian.

For a subgroup 11 of (S5 it follows from the definition of the com—
mutator group that Du C D06

and by induction D' 11 SD' (l! .
For the factor group over a normal subgroup 92 we have

I" (95/93) = (D' (3) Ell/2R.
The usefulness of these concepts is obvious from the following
DEFINITION: A group (9 is said to be solvable, if the series of higher

commutator groups terminates with e.
To a solvable group Q5 =1: e there corresponds a uniquely defined

. number k such that Dig = e, Di-lw 4: 2. Since in the normal chain,
69 D D165 > D'@ D ' ‘ - D Dl'Q) = 2 just k abelian factor groups differ-
ent from e appear, we say that the group (9 is k~step metabelian.

The group consisting of only the unity element is said to be 0-step
metabolian. The 1-step metabolian groups are exactly the abelian
groups 4: e.

It follows immediately from our remarks above that every subgroup
_ and every factor group of a k-step metabolian group is itself at most

k-step metabelian.
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If the group (9} has a normal chain

65= 6302 @12®.2-~2 G’Jx= e
which has only abelian factor groups 63.1%“ . then (it is at most k-step
metabelian since ergo“ because (film is abelian,and it follows by
induction that D'LllS (5),, D“@= 9.

Since the higher derivatives are fully invariant in 6, and the
subgroups and factor groups of an abelian group are themselves abelian,
it follows from the Jordan - Holder - Schreier theorem that the factor
groups of a normal series of a solvable group are abelian.

Since an abelian group is simple if and only if it is of prime order,
it follows that: ‘

A solvable group has a composition series if and only if it is finite.
A finite group is solvable if and only if its composition factors are cyclic
of prime order.

The following rules hold for calculation with commutators :

(4) (a, b) = c
is equivalent to ab = ha,
and in particular, We have

(48.) (e, a) = (a, e) = 2
(4b) (a, a) = e.
(5) (41,12) (b, a) = e,
(6) «bad = b“ = (a, b)b,

(a, b) = “1—3 = bo—l’

W) mm=owmo
(5) (a, ho) = (a, b) (o, c)’.
If the commutator group lies in the center, then rules (7) and (8) can
be simplified to

(7a) (ab, 1:) = (o, c) (b, 1:)
(8a) (a, be) = (a, b) (a, c),

in particular

w) ww=mm=mm
From this we can derive the useful power rule :
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For (a, b) in the center of the group,

(10) (ab)" = (b,a) §'('"‘"a'b"

Proof: For n= 0 the rule is trivially true. Now let u > o and
assume we have already proven

(«by-I = (b, a) gym—1“...) WV".

Now (ab)~ = (abyI-l . a 1,

6""1 If” a b = aD-l (b't-I, a) a bun
= ao-I(b’a)o—iabu by (9)

= (b, a)-1 an bu, since (b, a) is in the center
and therefore (a b)- a (b, a) {(H) (0-!) (1,, urn-14p- b“,

from which the rule follows for positive n. For negative exponents the
rule follows from the equations

(65)" = (6" 11")", a'b" = (a', b‘)b"a"
= (a, b)"b"a" = (b, a)"'b'a".

The mutual commutator grown (11, 2?) of two complexes 11 and 93 0f
given group (9 is the subgroup generated by all the commutators (U, V)
where U 6 11, V E B} 11 commutes with B elementwise if and only
if (11. %) = e..

From (5) we have

(11) (11, 1;) = (29. 11)-

If 11 and E are normal subgroups of (6 then it follows from (3) and
(6) that (11, B) is a normal subgroup of (5 and is contained in HA 8 .
Then by (7) and (8) , for an arbitrary complex 9 :

(12) (ml, ’3) = (11, 15) (R. ’3),
(13) (11, 3’3) = (11. 9) (11, 19)-

Let R, and 92 be two complexes, 11,, 11I the subgroups generated by
them.

THEOREM 12: The normal subgroup 2)! of (‘5 generated by (3,, a!) is
equal to thanorml subgroup 9}. of (‘5 generated by (11,, 1!.) .

Proof: In any case ‘Jl is contained in 9%,. We must show/that

‘ If confusion with the commutator is to be feared then we write ((11, 8)) .
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9}=e implies 2R,=e‘. In fact, then 9., 8, commute elementwise and from
(4), (7), (8) it follows that 111 , u‘commute elementwise, as was to
be shown.

It is useful to introduce higher commutators,e.g.,
(14) (a, b, c) = (a, (b, o))
(15) (a,,a,,...,a.)=(a.,(a.,....a.))
(16) (a) b; 0, d) = «B, b), (or d» ‘

Rules (7) and (8) can now bewritten

(7b) (ab, c) = (a, b, b) (b, o) (a, 0)
(3b) ‘ (a, be) = (o. b) (b, a, o) (a, c).

In order to understand these multiple commutators completely we
define recursively a “linear expression of weight w and type 3”, in symbols
9:1, 2:2, . . . , x... The linear expression of weight 1 in x is the symbol
a; itself. let this correspond to type 0. As a separating symbol of the
first type we use a coma; for the second type, a semi-colon; for the
third type, a triple point 3 ; and in general for the 8th type the symbol (a)
is used. Now let in > 1 and assume that all the linear expressions of
weight <w are defined, and let a type correspond to each of them.
Then we define expressions (I1 (0) I.) as linear expressions of weight w
and of type a > 0 where fI is of weight w. in 2,, 33,, . . ., z.“ and of
type 3., and f2 is of weight w2 in {Cs-l“, 1,1", . . ., 2.1+ ,1 and of type
3,, such that w = w; + 10,, a = Max (.91 + l, 3,). The weight is there-
fore simply the number of symbols in the "linear expression” and the
type is equal to the highest type of separation symbol.

If f (c . . . , mu.) is a linear expression of weight w and type 8, then
for arbitrary elements G., . . . , G.” in the group (‘5 we define :
f (G,, . . . , G”) is a commutator of weight w and type 3 in the G‘. More-
over for arbitrary subgroups 11,, 11., ~ . -~ 11.. we define: [(111, 11,, . . ., 11.)
is a commutator form of weight w and of type 8 in the 11,.

In the successive construction of corresponding linear expressions
the separation symbols are to indicate commutator formation. E.g.,

D 6 = (Q), @5) is of weightZ and type 1,
D’ g = (Qt GA; 05, (it) is of weight 4 and type 2,
IN, = (D'-1 o (r) Dr-lo) is of weight 2 and type r

in the components (9}, (9, . . . , 0.

'We calculate in the factor group 6/92!
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If the complexes 3,, . . . , 3., are transformed into themselves by every
element in G, then every commutator form formed from them is a normal
subgroup of G}, since from (3) it follows, by induction on the weight w.
that for each operator 6 of 6:, .
(3a.) (I(G.,G., ...,G.))9=/(GIO,G,9, ...,G.,9).

If the subgroup generated by the complex 8; is equal to the normal
subgroup 9h of G then we actually have :

THEOREM 13: The commutator form f (93,, 92,, . . . ,m.) is equal to
the subgroup 9} of 0, 8! being generated by all the elements f (N., . . . , N.)
with m. in $1..

Proof: For w = l the theorem is clear. Let :0 > 1 and assume that
the theorem is proven for commutator forms of lower weight.

f = (f1@f2), where the weights w., w2 of f;, f2 are lower than w.
By the induction hypothesis,

M93133” ’93..) is generated by all MN“ ,N__),
is (man. 911...“, .. . , ) is generated by all I,(N.,_+1, . . . ,N.) .

Now the statement of the theorem follows from Theorem 12. From the
previous definitions and the last theorem the following “substitution
principle” follows immediately:

‘If My], 3],, , y.) is a linear expression of weight w and if
a.- (1‘1”, 0, . . . , 2"?) (i=1, 2, . . . , w) are linear expressions of weight
10., then f(%, 97,, . . . , (pm) is a linear expression 9 of weight w=w1+w,+
. . . +w_in I?)- . . . ,zfi’,...,z‘,’:’ '. For normal subgroups

92$"(v=1,2...wi;i=1,2...m)

ofagroup G, we have

new) =10!!!“ 901.- .. m.
. where Mi= 9M ", 32:2) .

In a group at with abelian commutator group @‘we have the following
important rule :

(1,7) . (a. b, a) (b. c. a) (c, a. b) = e.
which we derive in the following way:

‘The type of the separating symbols in [my have to be raised by the substi-
tutlon.
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c(a, b)c—‘ = (a, b)“ = (c, a, b) (a, b)
= one“ - cbc" - (obo-l - coo-1)-1
: (o, «1):: . (o, b)b - ((c, b)b (c, a)a)’1
= (c, a) (a, c, b) (a, b)ub ((c, b) (b, c, a) (o, a)ba)-‘.

(178») (c. a. b) (a, b) = (a, a) (a. o, b) (c. b) (a, b) (6, a)“(b. 6, a)“ (c. b)".
Since (9' is abelian we have ~

(0. a, b) = (a, e, b) (b, o, a)",
and moreover by (8) (It: ¢) = G = (a, b: 0) (a, G, b);
and therefore finally we have (17). Now we can prove the following
important theorem. ,

THEOREM 14: In a, group (3 with the three normal subgroups 3. 13. 0:,
each of the three normal subgroups (ill, $. 6). (53, C, 21), (E, a, 98) is
contained in the product of the two others.

Proof: We may assume that (91, El, 6)‘ (fl 6,1!) = e, and must then
prove that (E, 521, SE) = a. By Theorem 13,(€, a, 98) is generated by all
(e, a, b) where a 6 91!, b 6 l8, 0 6 6, so that we must prove (a, a, b) = e .
In any case (it, 38, G) = (8, (g, m) = a, and therefore also (9!, 6, EB) = e.
In formula (172) we may insert (a, c, b) = (b, c, a) = e , so that
(18) (v, a, b) (a. b) = (0: a) (0. b) (a. b) (6» a)“ (6. '1)“.
Since at is a normal subgroup, (91, 56) g 2!, and therefore,
(El, 98; SB, 6) = e and (W, 6; 98, E) = e. Since 56 isanormal subgroup,
(in, mg $8, (fl, %;6, 2!) = e. The factors on the right of (18) may
be permuted so that we finally obtain (4:, a, b) = z .

§ 7. 0n the Groups of an Algebra
In this paragraph we give a short survey of the groups occurring in

an algebra and of groups with operators.

1. Modules.
A commutative group in which the symbol of combination is written

as the (+) symbol, is called amodule
Consequently, the sum of two summamls a. and b is denoted by «+17.

The following laws must then be valid for this addition:
1. (1+ (b+c) = (a+b) +0.

11. There is a null element 0 with the property 0+a=a for all a.
111. The equation x+a=b is solvable for all pairs «1, b.
IV. a+ b = b+a.



§ 7. 0n the Groups of an Algebra 55

Al we saw earlier, it follows from this that in a sum of a finite
number of summands the order and parenthesizing can be changed arbi-
trarily, Without altering the value of the sum.

A sum consisting of the wsummands a,h . ... , a, is written
a,+a,+ . . . +11... or 241‘.

1
Addition has a unique inverse, i.e., the equation x+a=b has exactly

one solution for each pair a, b. By the commutative law, the equation
a+xéb is equivalent to z+a=b. Zero has the property: 0+a=a,
a+0=a and it is uniquely defined by any of these equations. The solu-
tion of x+a=0 is denoted by -a and is uniquely determined. We have

a + — a =—a+u,=0
and therefore ' —(—a,) =a
The difl‘e’rence (1+ (—b) of a and b will be denoted by a —b.

The sum of n equal summands a is denoted by n a. 0a, is defined as
0 and (—n) a is defined as —(n. (1,).

Then we have rules analogous to the power rules:

(1) n (a+b) =n u+n b ,
(2) (n+m) a=n a+m a, ,
(3) (n m) a,=n (m n),

_ for all rational integers n, m. Consequently the mapping ru—p n a is an
operator n of the module such that the rules for calculation

(4) mn=n+m
(5) mat m
are valid. 1 leaves each element fixed; 9 maps each element onto 0.

For example, the rational integers 0, j: l, j: 2, . . . form a module
0. o is additively generated by l and is therefore cyclic; moreover a
is infinite.

By I § 5, the submodules of o are exactly the modules (n), consisting
‘ of all multiples m n of the non-negative rational integer. 1|

~ Two numbers are said to be congruent mod (n) if their difference
is in (n) and therefore divisible by n. The number of residue classes of
o. with respect to (n) is n if n > 0. They form a module Mn), the factor-
module of o with respect to (n).

For an arbitrary module 9)}, all the rational integers m for which
m=9 form a submodule of o, the smlled exponential module of 912.
The non-negative rational integer generating the exponential module is
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called the characteristic of the module. For example, the factor-module
D/(n) is of characteristic n.

The sum m,+m. of two submodules mum. of 9J2 consists of all sums
a, + a, with a‘ e mi. It is a submodule.

The sum of the two submodules (n) and (m) of o is generated by
the greatest common divisor (g. c. d.) (n, m) of n and m. The intersection
of (n) and (m) is generated by the least common multiple of n and m
(1. c. m.) From the second isomorphy theorem it follows that

n. M: (n, m). (l. c. m. (n, m) ).
The maximal submodules of o are exactly the submodules generated by
the prime natural numbers.

2. Rings.
DEFINITION: A ring is a module in which besides addition, a multi-

plication of elements is defined such that

1. a (b 0) =01, b) c (associative law)
2. a (b+c) =0, b+a 0 (left distributive law)

(b+c) a=b a+c a (right distributive law).

Thus a ring is an abelian group in which a right and a left operator
is associated with each element.

In particular,

a. 0:0. a=0, a. ~b2—a. bz—(a. b).

DEFINITION: The admissible subgroups of a ring are said to be ideals.
A right ideal is a submodule in which go is contained in the sub-

module if g is in the submodule; similarly a left ideal is a submodule
which contains a). if it contains 2.,where a in each case runs through all
the elements of the ring (5.

A submodule which is at the same time a right and left ideal is said
to be a two-sided ideal.

As the product 1mm, of two submodules 1111.111, of a ring 6 we
define the set of all finite sums

albl+albl+ ""l'arbr ,
where a‘ 6 m,, b, 6 m” r arbitrary.

7 With this definition, m, In, first becomes a submodule of G.
The sum, intersection and product of two ideals of the same sort are

also ideals of this same sort.
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The residue classes (cosets) over a right— (left—) ideal have 6 as a
right— (left—) domain of operators. The residue classes with respect to a
two-sided ideal form a ring, the factor-ring,where the residue class Run
is defined as the product of the residue classes Ru and R».

The ring f is said to be homomhic to the ring 6 if there is a single-
valued mapping a of 6 on f such thata(a + b) = no + ab, o(ob)-¢m. a];
If the mapping is one-one, then i is said to be isomorphic to 6.

Here the first isomorphy theorem reads:
A ring I hamomwphic to the ring e is isomwphic to the residue

class ring of 6 with respect to the two-sided ideal consisting of all the
elements of 6 which are mapped onto 0 by the homomorphic mapping
of 6 onto 1' .

An example of a ring is the operator domain of a module a». An
operator 9 of Elk is a single-valued mapping of fill into itself such that
9(o + b) = 9a + 9b. The product of two operators is defined by
(9‘0,)o=91(9,a) which we encountered previously; on the other hand
the sum is defined by (9,+ 9,)o a 9,4: + 6,a . One can easily show that
the operators of 913 form a ring with the unit element 1.

8. Division Rings,‘ Commutative Rings, and Fields.
DEFINITION: A- ring in which the elements different from zero form

a multiplicative group is said to be a division ring.
This would follow from the additional conditions:
3. There are at least two different elements;
4. The equations a.x=b and y.o=b are solvable if o4=0.(If a=#:0,

b4=0, then the equations ac=o and bx=e are solvable and give abs:
we:a 4:0,therefore ab=l=0. Thus the non-zero elements form a semi—group
which is actually a group because of 4.)

A ring is said to be a commutative ring if the commutative law for
multiplication holds 1n it.

A commutative ring which is at the same time a division ring is called
a field.

. For example all the rational numbers, as well as the domain of all
real numbers, form a field.

- DEFINITION :The center of a ring is the (commutative) ring of all
elements which commute with every element of the ring.

The center of a division ring is a field.

i ‘ Also called skew fields, s-flelds, non—commutative fields, etc.
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In a commutative ring with unit element, the residue class ring with
respect to an ideal is a field if and only if the ideal is maimal.

For example, the set of all the rational integers form a commutative
ring 0. Every submodule of o is also an ideal of o. The residue class
ring of o with respect to the ideal (n) is a field if and only if n is a prime.
Therefore for every prime p we obtain a field k, of p elements.

In an arbitrary division ring K, all the‘elements obtainable from 1
by combinations of the four operations form a sub-field k, the prime field
of K. Either none of the sums 1, 1+1, 1+1+1, . . I is equal to zero in K,

- in which case Is is isomorphic to the field of rational numbers, or a sum
1+1+ . . . +1’is equal to zero, in which case It is isomorphic to a field 1:,
of 17 elements.

The characteristic of a division ring is equal to the characteristic of
its prime field and is therefore zero or a natural prime, since from n a=0,
a=t=0 it follows that n=0.

4. s-Modules.
DEFINITION: A module with a ring 6, as operator domain is said to

be an 6-module.
We define in greater detail:
The module 9», given a ring 5, is said to be a leftS—mdide if a multi-

plication of elements as in 5 with elements a in 9} is uniquely defined so ‘
that

I. sue 9H,
2 a(u+v)=txu+aw,
3. (a+fi)u=au+flu
4 (afl)u=a(flu).

We also speak of an @module in the case where 6 is only a semi-group
in which case requirement 3. becomes meaningless.

9!! is said to be a proper G-module if 5. 6902:2112; 6. «93:0, ”*0,
imply at =- 0. ‘

If G contains a unit element 1, then condition 5. is equivalent to con-
dition 5a): 1.92:918. Ea) is equivalent to 5b) : 1.u=u for all u.

If 6 is a division ring, then condition asuflices to make 9]} a proper
S-module: for from “912:0 and a: =i= 0 we would have 60:9}! = 0, and
since Ga = 6, then 6511!:0.

The concept of a right E-module is defined similarly, the module
being multiplied on the right.
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An (ii-module ilk is said to be a finite G-modnle if all can be generated
over 6 by a finite number of its elements, and therefore if there are a
finite number of elements 14‘, . . . , u. in 9» such that every element in ilk
is of the form

u=anui+owa+ ---+a.u.
with an 6 (‘5 .

Examples of C J ‘ are ther- -" ‘ ' fi-vector " ' con-
sisting of all ordered n-tuples (a1, a“, . . ., ox.) (vectors) with components
a in. (5, among which only a finite number are different from zero} and
with the calculation rules

(«may.ooya.)+(finfia,.nxfi..)=(ai+finax+fin--u¢.+fl.)

Forum” - . 'io‘n)=(“an““n - ~ wane).

If 6 contains a unit element 1, then the n—dimensionalé—vector module
over 6 is generated by the n unit vectors

u; = (0, . . ., 0, l, 0,. . ., 0) (i=1,2.....n).

The n. are then called a basis of the 6—module.
In an arbitrary G—module 9!}, the expression alul + a.“ + . . . + at“,

is called a linear combination of the 14.. The elements u.,u,, . . . , n, are said
- to be linearly independent if

'1. who (i=1, . . . , r)
2- ome+a.u.+~ - -+oz,.u,=0 implies a.u,=o,o‘= 1,2,. . ,,r.

Now we generalize the definition of basis. A system ill of elements
uh uh . . ., u. is said to be an G-basis system if each element of M is of
the form u = “nu" + - - - + agree" and every finite set of elements
in, u,” . . . , 14,, is linearly independent (v; < v, < - . . < v,).

If a module 9J2 over a division ring K has a finite basis, then it is a
‘ vector module.2

Since KQR=2UL W3 is a proper K-module. If, moreover, u“ m, . . . , 11," is
the basis, then it follows from can. + can, + - - - +a.u.= 0 that
am, = 0. If we were to have 0“ =1: 0 then ar‘cnu‘) = In‘ = u‘ = o .
Therefore we must have a. = 0 (i = l, 2, . . ., n) . Every element of ill!
can be represented in only one way as 111111 + can, + . . . + «.14, .

‘ The number n can be any ordinal number whatsoever.
' More precisely: is operator-isomorphic to an 6-veetor module-
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THEOREM 15: For any division ring K, every proper K-module ”to
has a basis.

Proof: With the help of transfinite induction we shall give a method of
construction only. The reader can carry out the proof himself without
difficulty.

We first pick a system of generators on 11,, . . ., o, of 9!? over K,
for example, SR itself, for which we can assume that 0; ¢ 0 and that the
indices 1, 2, . . . ,wsre well ordered. Let 972’, be the K—module of all linear
combinations of the elements 91: ”a. - . n V," We wish to define a basis
system 38‘ of EMF. In order to do this. let 2!, be the set consisting of vi
alone. Moreover let v > 1 and let 8‘ be defined for all I‘ < v . let 2',
be the union of all 5&8” with [4 < y, and let m, be the K—modulemnion of
all 2112" with [a < 7. One can show easily that 2', is a K-basis for m,. Now
we define: in, = 2, if u, e m, but$,=the union of 2‘, and v, if 11, fig 111,.

Then fl, is the desired basis system.
It is shown in the theory of linear algebra that for a division ring K

the dimension of a finite K-vector module 5)! is uniquely determined (also
see Chap. III. § 2). '

The dimension of 93! over K is denoted by [Xvi/K] or simply by [an] .
The dimension of a K—module in 9!} is at most equal to the dimension

of Ni. If the dimension of 9k is finite then a K-module in W? is identical
with am if and only if their dimensions are equal. Consequently, then,the
double chain theorem holds in $02 over the operator domain K.

If k is a division subring in K, then K can be conceived of as a proper
left k-module. The dimension of K over I: is called the degree of K over In.
If K is a finite k—module, then K is said to be a finite extension of k.

In this case, the elements of K can be represented uniquely in the form
9=11u.+1.u.+~-l.u,

where 1‘ E I; and u,, uz, . . . , u" is a basis of K over k. If It contains q ele-
ments, then K contains q" elements.

5. Semi-modules, semi-rings, quasi-rings, e-In'nys, algebras.
Many concepts defined for modules can be extended to additive semi-

groups. For example, a sum of an as, . . . , a", in this order, is written
I

as a“ + at2 + . . . + an or 2" as. A zero element of an additive semi-group.-
a is defined to be an element 0 satisfying 0 + x = a: + 0 tor all x of 0.
There is at most one zero element, since 0 + 0': 0 = 0’ for any two
zero elements 0, 0'. If there is an element 1 such that 'o, + at = as + a, = 0
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then x is called the negative of a, and it is denoted by —a. If a, has a
negative, then for any element b the two equations a + z = b, y + a. = b
are uniquely solvable, the solutions being a: = (—a) + b, y = b + (— a) ,
which is abbreviated as x =,.— a, + b, y = b —— a. For any natural

. number n, the sum of n equal summands a, is denoted by mt. For natural
numbers the rules (2) , (3) are satisfied. If there is a zero element then
we define-0a = 0. If a is an additive group, then for negative integers
—n we define (— n)a = — (no), which is abbreviated as —-nu. The
rules (2), (3) remain valid for all rational integers.

A normal divisor of an additive semi-group u is defined as an additive
sub-semigroup B of a which has the property that for men, afien, x35,

a,(+ a: + «eel: if and only if a. + aqeb,
a, + xeb if and only if {1485,
a: + the!) if and only if azsb.

This definition is in agreement with the one given in Exercise 25 at the
end of Chap. I. The congruence modulo 5 is the normal additive con-
gruence relation generated from

a+bEa, b+aEa for ma, beb.

» The congruence modulo a normal divisor is additive in the sense that
for a‘ E a": (modulo Ii), bI 5 b2 (modulo 5) we have a1 + b, Ea, + b:
(modulo 5). The residue classes modulo a normal divisor are added
according to the rule: 3 + bza + b, where 5 denotes the residue
class modulo 5 that is represented by the element x of n.

The residue classes of a modulo the normal divisor 5 form an additive
semi-group which is called the factor semi-group of a over I) and is
denoted by n/fi. The mapping a.—> i establishes a. homomorphism of :1
onto a/fi. called the natural homomorphism of :1 onto u/II. The elements

.of [1 form a residue class i which is the zero element of a/b.
Fora homomorphism 9 of the additive semi-group n onto the addi-

ti've semi-grouper: having a zero element, all those elements of u mapped
onto the zero element of 9:: form a normal divisor up of a which is caged
the kernel of 9. The homomorphism 9 induces the homomorphism 80f
a/E onto 9n defined by5ii=9a having as as its kernel. If n/ug is an
additive group, then 5 is an isomorphism and the First Isomorphism
_Theorem
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11/119 :2 9a
applies.

DEFINITION: An additive abelian semi-group is called a semi-module.
A semi-module is called a halfmodule if it can be embedded into a module.

The natural numbers, for example, form a halfmodule. The rule (1)
for natural numbersas multipliers holds true in semi-modules.

DEFINITION: An additive sub—semigroup of an additive semigroup n
is a non-empty subset 6 of n which is closed under addition. I: is itself
an additive semi-group. It is called a sub-semimodule if it is commutative.

DEFINITION: An element 3 of the additive semi-group n is called a
subtmheml, if

(1) s+a=a+s for all can
(2) from s+a=s + b it follows that a=b._

Exercise 1: All subtrahends of a form a sub-semimodule S (u) satis-
fying the cancellation laws of addition, provided there is at least one
subtrahend in u.

Exercise 2: All elements of 0 together with the formal differences
a—s (aea,seS(a)) and the symbol 0 form an additive semi-group
6(a) (diference semi-group) containing 1: as additive sub-semigroup
if equality is defined as follows:

a=b as in n; a=b—s if a+s=b; “1—8|=a:‘—32 if
ax+sg=a2+s.; 0:41, 1:0 if a is zero element of n and if
addition is defined as follows:

a+bas in n; (b—s)+a=(b+a)=s;w+ (b—s)=(a+ 10—8;
(“—3) + (b—t)=(a+b)—(s+t);s—s=0, 0+a=a+0=a;
0+ (12—8): (b—s)+0=b—s;0+0=0.

Exercise 3: The subtrahends of 6(a) form a module S601) which
coincides with 65(n). Prove also that the formal differences a—s
occurring in the construction of 6(a) are actual differences between
a and s as defined above.

Exercise 4: d (a) is a module if and only if n is a semi-module satisfy-
ing the cancellation laws of addition. This Is the case if and only if n
is a halfmodule.
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DEFINITION: A semi-module for which a multiplication is uniquely
defined is called a semi-ring if the distributive laws

a(b-+ c) =ab + ac

(b +c)a,=ba+ca,
are satisfied.

A sub-semimodule of a semi-ring closed under multiplication is called
a sub-semifing. A sub—semiring is itself a semi-ring.

Exercise 5: The operators of a semi-module a form a semi-ring
0(a) . Here an operator of a is a unique mapping 9 of a into a satisfying
9(a+ b) =9a +9b. The addition and multiplication of two operators
9,,9. of a is defined as usual by the rules

(9, +9.) (1 =9.“ +62a, Oxeza =91(9,a).

The following three exercises show that we may interpret semi-
rings as a special case of semi-modules with operators.

Exercise 6: For a semi-ring 6 the mapping

a:
15—) a. =9”)(s)

of the elements a. of 6 onto the left multiplications as well as the mapping

2
0—) at =(“)(s)

of the elements of 6 onto the right multiplications establishes homo-
morphic mappings of the semi-module 6 onto the sub-semimodule 51,
and G, of 0(6) respectively.

Exercise 7: To each homomorphic mapping «1—) a, of a semi-module
6 into the operator-semi-ring 0(6) of 6 there belongs one semi-ring
defined over the semi-module 6 as follows:

ab=a.(b) for «.86, beE.

The associative case is treated in
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Exercise 8: The associative law of multiplication in a semi-ring E
is equivalent to each of the following three statements:

1. The correspondence a —> 11, maps the semi-ring 6 homomorphically ‘
onto a sub-semiring 6, of 0(6) such that a,+ b,=(a+ b),, a.b.=(a,b) ;.

2. The correspondence a —> a, maps the semi-ring 6 homomorphically :
onto a sub-semiring 6,: of O (C) such that a, + b,= ( a + b) ,, a, b,= (ab) r

8. The two sub-semimodules 5, and e, of O (6) are elementwise
permutable, i e., a,b,= 12,11, for use, bee.

DEFINITION: The normal divisors of the semi-module formed by
the elements of a semi-ring under addition which are invariant under
6;, 6,, 6; US, are called, respectively, left ideals, right ideals, and two—
sided ideals of 6.

It is clear that the sum and the intersection of two ideals of one kind
is itself an ideal of the same kind. The factor' semi-module E/li of 5
over a two-sided ideal [1 becomes a semi-ring with the introduction of
the multiplication 5.5 =7c—b, where 5 denotes the residue class modulo 5
represented by the element x of 6. The residue class 3 consisting of the
elements of I; is the zero element, and multiplication by zero always
yields zero. The natural homomorphism of 5 onto G/ll also pre-
serves multiplication. Conversely, for a homomorphic mapping 9 of ’5
onto a semi-ringee having a zero element such that multiplication by
zero yields zero, the kernel 69 of 0 is a two-sided ideal. 9 induces a
homomorphism 6 of the semi-ring 8/69 onto the semi-ring 06 mapping
only the residue class (59 onto the zero element of 06. If 6/59 is a
module, then 0 is an isomorphism and 6/59 —"—’ OE. .

For any two sub-semimodules m., m, of the semi-ring C5 the set of
products magnum) is not necessarily closed under addition. It is cus-
tomary to denote by man, the set of all expressions

2'; 2,4“ (z,,em., w..em.; 1' any natural number),

that is, the smallest sub-semimodule of (5 containing all products when
with 2mm“ xaemz.

Exercise 9: If the subtrahends of a semi-ring e form a two-sided
ideal 3(5) of s, then the difference semi-module becomes a semi—ring
(dife'rme semi-ring) if multiplication is defined as follows:
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ab as in 5, a(b—s)=ab—as, (b—sM

=ba—bs, (ll—8) (b—t)= (ab + st)—(at + 8b).

This is the only possibility fir’ extending the multiplication so that a (e)
’ becomes a semi-ring.

DEFINITION: A ham-tug is a semi-ring which is sub-semiring of a
ring. The natural numbers, for example, form a halfring.

Exercise 10: Show that a semi-ring is a halfring if and only if it is
associative and satisfies the cancellation laws of addition. In other words,
the axioms defining a halfring are obtained from the ring axioms by
weakening it through the replacement of existence of subtraction by
the cancellation law of addition.

DEFINITION: A quasi-ring is a semi-ring which under addition is a
module. In other words, the axioms of a quasi-ring are obtained from
the ring axioms by omitting the associative law of multiplication.

A subxsemiring of a quasi-ring closed under subtraction is called a.
sub’r't'ng. Each subring of a quasi-ring is a quasi-ring. E.g., we obtain
a commutative quasi-ring J (ill) from a ring 9} according to the new
multiplication rule a.“ b = ab + be. This ring is called the Jordan ring
belonging to 9!.

The Die-ring L (91) belonging to 9? is obtained by replacing the rule of
multiplication given in 9! by the Lie-multiplication

aob =ab — be (a, be!!!)

The Lie product of a and b can be interpreted as a measure of the
non—commutativity of a and b in terms of the ring 9! since

(lob = 0

is equivalent to the statement

ab = ba.

Besides the axioms of a quasi-ring the following axioms are satisfied
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by the Lie multiplication:

(6) aoa=0

(7) (Jacobi identity) a0(boc) + bo(coa) + co(ao b) = 0,

which follow from obvious computations“
Generalizing this remark we obtain the following definition.

DEFINITION: A Lie-Irina is a quasi—ring in which multiplication satis-
fies the rules (6), (7), where it is customary to denote the product of
a, b by (1017.1

Each subring of a Lie-ring is a Lie-ring. From the distributive laws
and from (6) follows the anti-commutative law of multiplication

(6a) boa = — a0 b

as follows:

b°a=boa+aoa+ bOb—(a + b)0(a.+ b)=
boa—(Mb + bou.)=—a0b.

Conversely, if in a quasi-ring the anticommutative law holds and if
from a: + a: = 0 it always follows that a: = 0, then (6) holds, i.e.,

aoa =—a.oa,

uoa + mm = 0,

aoa=0.

From the anticommutative law it follows that each ideal of a Lie-ring
is two-sided. Any factor ring is itself a Lie—ring. Also

(8) mlom: = mom,

for any two submodules m, m, of a Lie-ring L. From the Jacobi identity
we derive

‘ Formerly written also as [11, b], (a, b). 01' (ab).
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(9) mi°(mx°’ms) ; m2°(’mx°’ma) + m:°(mi°m2)

for any three submodules M4, Mg, m, of L. From (8), (9) for m, = L,
and mm m, ideals of L, we 6btain

L°(m10m:) g m30(m,0L) + m,O(L0m,) S mgom, + whom, gmzoml,

which means that the product of any two ideals of a Lie-ring is itself
an ideal.

In the last part of this section we discuss briefly rings and quasi-
rings over coefficient rings .l

DEFINITION: Let SIR be a semi-ring. An operator 9 of Elk considered
as a semi-module is called a left scalar if (9a) b = 9(ab) . In other-"words,

(9“): = 9'04- “ .

From this definition it follows that all the left scalars form an associatiye
semi-ring. Similarly, the right scalars, i.e., the members 1;: of 00112) satis-
fying a(wb)= 1y(ab) , i.e., (wb), = bra/1 for all be‘m, form an associative
semi-ring. The intersection of the two semi-rings just defined is an
associative semi-ring whose elements we will call scalars. These are the
mappings x ——> on: of Sm into itself satisfying

Mm +y)=¢z + w

¢(w)=(¢x)a=x(w).

Each left scalarel commutes with each right 86318192 for 9’29)! since

910295132) =91(92(xi¢2) =91(¢1(92$2) ) =91911» 9212

=92( (9131)x9)=91(91($11'2) ) =9191 (911152).

This fact explains why one usually only defines the notion of an s-ring
for commutative rings of coefiicients. However a generalization of the
narrower concept is possible by using the concept of left and right
scalars as follows.
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DEFINITION: Let 6 be an associative semi-ring. The semi-ring ER is
called an 6—semi-ring if for each element A of 6 and each element a. of SIR
there are defined unique products 1a and all also in 211: such that

1) A(a+b)=la+lb,(a+b)1=a1+b}.

2) (l+p)a=la+,ua, a(i+p)=a1+ap

s) (1/4)a=1(,ua), («mew/l)
4) 2(ab)=(fi.a)b, (ab)1=a(b1), (ai)b=a(1b)

5) (1a)y=l(a#)

The @- semi-ring an is called proper if

6) 6932 = 812 = 57:5 .

For example, if 6 is a sub-semiring of the associative semi—ring SR, then
the multiplication of the elements of an by elements of 5 as defined in am
itself defines an as an 6-semi-ring. To give an illustration, the linear
transformations of an (is-module 9R, 6 being an arbitrary ring, are de-
fined as operators of 9)} which are permutable with the elements of E as
applied to it». In other words, a linear transformation is a mapping
90f 9]! into a]! satisfying

0(u + v) =9u +91), 90111) =11(9u) for 14, 11:92, 1.56.

The linear transformations of the 6-module SIR form a ring L(9Jt, 6).
If G is a commutative ring and if 9]! is a proper B-module then L (912, 6)
becomes an G-ring if the product of a linear transformation 9 and an

element J. of e is defined as the linear transformation 19:9). = (M1610)

of M. In fact, since 9)) is a proper e-nwdule and since 6 is commutative,

it follows that the mapping A -»(&)pravides an isomorphism between 6

and a subrlng of Mm, e) which may take the place of e in defining
L(9Jl, E) as an E-ring.

We remark that 6) is equivalent to

(is) 1a=a=al for as!!!
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if G contains a unit element 1. For a commutative ring 6 of coefficients
the concept of a quasi-ring over the c’oeflicient ring 6 is ordinarily de-
fined as a quasi-ring a]: which is an 6-module subject to the further
conditions / :

4a) 1(ab) =(1a)b = cab) for 137; a, bum,

6a) ’ end
However, this becomes a symmetric S-quasi-ring in the more general
sense defined above by the definition

7) ’ 1a: all

where 7) simply expresses the symmetry.

DEFINITION: Let 6 be a ring with a unit element and let an be an
5-quasi-ring. A subset 28 of Elk is called a basis of an over 6 if

a) 1b=b1 for R6, be”
b) We have for am,

a: 21.12
be)?

where only a finite number at ibb+0 and a is the sum of
this finite number of elements. Such a sum is called a linear
combination of the basis elements. Since such sums are finite,
we can multiply one of them by a scalar and add two of them
term by term.

c) A basis is linearly independent in the strict sense: A linear
combination vanishes if and only if each coefficient vanishes.

It follows that for any two basis elements 2:, 1/ there are equations

(8) ‘ W=k237.,q,nb

. with uniquely determined “combination constants" 7.,“ which are con-
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tained in 6 and are such that for every fixed pair of basis elements x, 11
all but a finite number of the combination constants vanishes. Further-
more, because of the distributive laws, the laws 4), and the condition a),
the multiplication rule in an is given as

g a = E . b(9) £523" 93 33913”! “Ba-fir? ,v.b

and the rule 4) finds its expression in

(10)
- 1 7...,» = m,» l

i.e., the multiplication constants belong to the center of the coefficient ring.
Conversely, if a set of elements 7,,“ of 6 satisfying the previous

conditions is given, then an E-quasi-ring 2m with the given set 25 as basis
can be constructed as the set of all formal linear combinations

2 anb
MB

of the elements of $ over the coefficient ring (5, where all but a finite
number of the coeflicients a, vanish. The set SR of all those formal linear
combinations is subject to the rules

“23a =5?m if and only if au=fln for 176%,

11 E b + 2 b = 2( ) bsBab zap" 5.301” + Nb

(12) 12a.b=2 (1a.)b, (Ea..b)1=2(a,,2)bbeB bdi us its

and (9). We may consider each element a: of 23 as an element of an
after identification of x with that linear combination of the elements
of $ which bears the coeflicient 1 in front of a: and zero elsewhere. After
this identification each formal linear combination is the actual linear
combination of the elements of 2‘ with the same set of coefficients, and
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$ turns out to be a basis of 93. The é-quasi-ring 5!! is associative, if and
only if the associativity relations

13 E . . . =2 ,( ) “87.173714; “37.14.711.50

are true for all quadruples x, y, z, u. The E-quasi-ring a]! is a Lie-ring
if and only if

(14) 75:,» = 0: 71m! + 75-,» = 0

(15) LEB(71JJ71..,D + 71.50“,» + 71,),u7a,y,|) l= 0.

for x, y, z, 1452!.

For example, let 9)]! be the C-Vector module with the basis
elements x"=1, :c'=x, 20-, x3, . . . and with the rule of combination
2:" - 2" = zfl+M.The ring defined by this is called the polynomial domain of
one variable :6 over (5 and is denoted by e [1:]. Every element of CM]
is uniquely of the form

(16) I‘I)=m'r+a-_lxu—1+._.+%'

with a; 6 G and a, $ 0, if n>0. The number n is called the degree of
the polynomial f(:c) if f(a:) 4:0.

The G-matrix rings are other examples of E rings.

Let an be the n-dimensional left vector module with basis 14., ug, . . . , n".
We wish to find all the operators 0 of 9)! which map 93 into itself operator-
homomorphically with respect to C Accordingly we define. A linear

- transformation a of SR is a single-valued mapping u —> no of 5)} into
itself such that

(17) (u+v)a=ua+va,

‘08) ' (om)d=a(uo).

Therefore we have
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(l9) WU=Gufi+finux+“‘+“inuu
I

and for u =§7~cuu
I fi

(20) a=21(§ 0‘53)“.-

Conversely, every system of elements a“ (i, k=1, 2, . . . , n) in 6
defines a linear transformation of fill uniquely by.means of the above
formulae.

We order the n’ elements a” in a square configuration

“‘11 0‘1: - - - “1o
aunt“ . . . a“

A = = (We)

“yuan - - - “an
and call this configuration the matrix of n-th degree associated with a .

According to the earlier definitions and statements, the linear trans-
formations of SR form a ring...

If "ia=20‘a"h (kl-2p...»
3:1
I

“6"= auh (i=l.2,..e,u)
i=1

then we defined
I

(21) “307+7)=uta+ufl=giwu+flnhth
i H I I

(22) w(01)= (usah = {gmmh iguanwa) =3; (Exam) 14..
Accordingly we define the sum and product of the matrices

= (an): B = (fin) i
A + B = (“a + fin) !

A B = {gate-flu) .

All the matrices of the wth degree with eoeflicients in the ring 6 with
unit element farm a ring M. isomorphic to the ring of all linear trans-
formations of the n—dimensional (Ea-vector module.

Mn is said to be a matrix ring of n—th degree over 5. M. is an 6-ring.
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The basis elements are 11’ matrix unifies e“. (i, k=1, 2, . . . , n) , Where
em is the matrix which has a 1 at the intersection of the i-th column and
k-th row, and otherwise all zeros. The multiplication rules of the matrix
unities are ,. .

(23) other; = 6.9:"
(i.k.r.l=l.2,....n;lh.—{a “ *'if #4:: ' l l 0

The unit element of M" is the identity matrix E: ( ~ . )
‘ o ' 1

The zero element is the matrix of all zeros.
If the ring 6 of matrix coefficients is commutative, then one usually

applies the linear transformation a of the vector module so: on the left,
so that a is a single-valued mapping of 9}} into itself for which

1- Ulu + v) = on + av,
2. (1(am) = «on.

Moreover we set, diffen'ng from (19) above,
.

(24% Ouz=§auun (t-i.2....,n)

but define the associated matrix again as

A.= (an)~
Since 6 is now a commutative ring, the mapping a -> A, is again an

isomorphism between the ring of linear transformations of ‘1)! and the
matrix ring M...

DEFINITION: A quasi—ring over a field as coefficient ring is called an
algebra. An algebra always has a basis over its coefficient field. An
associative algebra is an algebra satisfying the associative law of multi-
plication. An example is the semi—group ring of a given semi-group over
a field k. As a basis of the Io-ring, we take the elements of the given

, semi-group, and as multiplication rule we take the multiplication table
of the given semi-group.

An algebra which is a Lieoring, is called a Lie-algebra. The Lie-ring
belonging to an associative algebra, for example, is a Lie-algebra. An
algebra with a finite number of basis elements over its coefficient field
is called finite dimensional or simply finite. A finite associative algebra
also is called a hyperco'mplex system. For example, the group ring of a

A given finite group over a field is a hypercomplex system. Another ex-
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ample is provided by the finite eactensions of a given field of reference k.
The extensions of k are defined simply as the fields containing 1: as sub-
field. They are finite if and only if they contain a finite basis over 11:.

6. Galois Fields.
A field with a finite number of elements is called a Galois field.

The number of elements of the prime field k contained"m a Galois field
K"1s finite, and'is therefore a natural prime p Since K contains only a finite
number of elements, K'is a finite extension of k. The number of elements
in a Galois field is thus a prime power p". The exponent n is equal to the
degree of K over the prime field consisting of p elements.

In order to investigate the multiplicative group of a Galois field, we
need the

LEMMA: A finite group must be cyclic if, for every natural number n,
it has at most n elements whose n—th power is e.‘

Proof : Let (3 have the order N ; let 8 be the cyclic group with order N.
An element in 0 generates a cyclic subgroup 11 whose order (I is a divisor
of N. It was shown earlier that 3 contains exactly one cyclic subgroup it
of order d. The d-th power of each of the d elements of 11 is 6; therefore
by hypothesis 11 contains all the elements of (95 whose d-th power is e.
Since 11 and Shave the same structure, (55 contains at most as many
elements of order d as 8 does. This holds for every divisor of N. Since
a :1 = 8 :1, G and 3 contain the same number of elements of order 41. 8
contains an element of order N and therefore (‘5 contains one also, Q.E.D.

In a field, according to a familiar theorem, the equation a:"=1 has at
most n different solutions. Therefore by the preceding lemma, the multi-
plicative group of any finite field is cyclic.

The multiplicative group of a Galois field is cyclic.
In the proof of the following theorem some acquaintance with cyclo-

tomic polynomials is assumed.
THEOREM 16: A finite division ring is a field.2
Witt’s Proof: Let K be a division ring with a finite number of ele-

ments. If k is a division ring contained in K then K is a finite Ic-module,
and by 4. the number of elements of K is a power of the number of
elements of lo.

‘ Equivalently: For each given index, or for each given order, there is only one
lubgroupM

' J. MWadderburn, A theorem on finite algebras, Trans. Amer. Math. Soc.,Vol. 65, p.849.
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The center of K is (as was shown earlier) a field; say it has (1 ele-
ments. Then K consists of q" different elements. All the elements of K
which commute with an element a. form a division ring k,” which contains
the center of K. Therefore k). contains q" elements, where d is a positive

. divisor of n. We decompose the multiplicative group of K into classes of
conjugate elements and obtain as the class equation

r—l=(q—1)+ 2‘ LI:-
I: d 9‘

°<d<n

g: i and the number q"_1 are divisible by w.(q)

Where WWI) is the ”4570 CYCIOtOmic polynomial. Therefore ((—1 is also
Nu)

divisible by 9:. (q) . If n>1, then in the decomposition 9!.(q) = 1](q __ g),
1

Each summand

Where the g" are the primitive n—th roots of unity, each factor is greater
than q— 1 in absolute value, and therefore «p.(q) is also greater than
q ~ 1 in absolute value. Therefore n: 1 and K is identical with its center,
as was to be shown.

7. Near-Rings and Near-Fields.
We wish to add the operators of a given group (B and investigate the

rules of combination which will obtain.
Single-valued mappings (5') of a group into itself are added in the

following way: '
2'”? = 27‘ - 19.

In general this addition is not commutative. All the single-valued map-
pings of (9 into itself form an additive group. Moreover we know that
they form a multiplicative semi-group.

In the domain IL, of all single-valued mappings of G into itself, we
also have the right distributive law

(7r+ e)u=m1+ 90,
which can be verified immediately. The left distributive law holds for
all n and g in II“I if and only if q is an operator belonging to @5.

Under what conditions is the sum of two operators an operator?

When, therefore, is
a mode, ____ £6.+6. . germ.

_ for two operators 9,, 9, 'l
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Since by definition
(5!!)9‘H" = ($11)“ (za)“ = t" y“z" y".

we have x9: . yo. = 1,9. . we.

as a necessary and sufficient condition.
DEFINITION: Two operators 9., e, are said to be additive if G"

commutes with (5"- elementwise. '
The sum of two operators is an operator if and only if the summands

are additive. For additive operators 9‘, 9,,addition is commutative:
9, + 9, = 9, + 9,, as is immediately seen. The sum of 11 operators is
certainly additive if the summands are pairwise additive. The sum of
pairwise additive operators is independent of order or parenthesizing.

It is precisely the center operators that are additive with respect to
any operator. (If 9 is additive with respect to l , then 9:9 is in the center
of (B). Two automorphisms are additive if and only if (9 is abelian.

In the domain 11. with operators of (E as multipliers, almost all the
ring axioms are fulfilled. We call such a domain a near-ring.

The axioms which must be fulfilled in a (left-)near-ring are:
I. A near-ring F is an additive group, not necessarily commutative.

II. There is a multiplier domain 9]? in F, such that for every element
[4 in ’m and a in F the product pa is defined uniquely as an element in F.
The following rules hold:

(HIM = [4 (p’a) (by e I)

”(a+fl)=/m+/4fl war»
The near-fields are special near-rings. A near-field is a neanring whose

multiplier domain forms a group. If 1 is the identity element of 91!, then
we should have 1 - a = a for all “6 F, and we should have the cancel-
lation law:

I“ = Met, a =5: 0
implies [4 = ,u’. ‘

The multiplicative group 9!! of a near-field F is mapped isomorphically
onto a group of automorphisms of the additive groups of F by the map-
ping '14—) (F2) . Because of the cancellation law we have a group of
regular automorphisms.I

‘ An automorphism is said to be regular if it permute- regularly the group element-difierent from the identity. A revalua- automorphism m 'entirely of regular automorphisms. E p I. I (roup consulting
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If conversely a regular automorphism group 9]! of a group G}, which
contains at least two elements, is given, then we consider (5 as an additive
group, find a non-zero element, denote it by 1, and introduce the notation
,u = [4(1) for all [u in Wt. Since All}? is regular, the notation is single-valued.

, Now we define multiplication by the statement pa = M“) for all p in
M. Then we have found a near-field F with the additive group G and the
multiplicative group 9)}.

The holomorph of i0! over G is the group of all permutations ( a )
- 1* +1“-of elements of F.

This permutation group can be formed for every near-field F and is
denoted by 93,. ‘3, is transitive and each permutation in 9, either leaves
all of the elements of F fixed or leaves at most one element of F fixed. In
order to prove the last property we must show that

fl+t= 0‘, fi+pa’=a'. at +04
implies 'u = 1, p = 0. In fact

a—a’ zlurx—[ra’=lu(a——a’),

and since a -u’ 4: o,we find ,4 = 1, Since [3+5 = a, we have fl = 0.

The permutations (51“) form a regular normal subgroup of 3,

isomorphic to the additive group of F.
If conversely the permutation group 213 contains a regular normal

subgroup 6i and each permutation leaves either all or at most one letter
fixed, then we can consider the group 13 as a holomorph of a certain
automorphism group 91: over (31 because of a remark in § 4, 6. Because of
the second assumption, in is a group of regular automorphisms. Conse-
quently we can construct a near-field F with additive group G and with
ER as multiplier group, so that $ = 23,.

' A near-ring in which every element is a multiplier is said to be a
complete mar-ring or in accordance with a suggestion of Mr. Wieland

_a stem. For example,the previously constructed near-ring IT. is a right
stem.

' A near-field is said to be a complete near-field if the group of multi-
pliers consists of all non-zero elements. For example every division ring
is a complete near field.

The determination of all the types of complete near-fields which
contain a finite number of elements, is an interesting problem which will
_be solved later.



108 II. Homomorphies and Groups with Operators

Exercises

1. We have lost the first row and first column of a group table. Show that the
associated abstract group is still uniquely determined by the incomplete table.

2a. All rational integers a, for which X‘=e for all elements X of a group 6, form
a module—the exponential module.

2b. The ., ive ' ‘ integer “ the ex, ' ' module is called
the exponent. The exponent is the least common ‘multiple of the orders of all the
elements of 6).

8. The exponent is the smallest natural number a. such that X“ =e for all X, if
there are any rational integers different from zero with this property.

The exponent is a divisor of the group order. The exponent of a cyclic group is
equal to its order. Is the converse true for finite groups?

A finite abelian group whose exponent is equal to its order, is cyclic, More
generally, show that in a finite abelian group every divisor of the exponent occurs
as the order of an element.

Hint: Prove and use the fact that the product of two elements which have rela-
tively prime orders and which commute has an order equal to the product of the
orders of the factors.

4. The exponent of a subgroup is a divisor of the exponent of the whole group.
The same holds true for a homomorphic image of 0 ; in particular, the exponent of a
factor group is a divisor of the exponent of C.

5. The greatest common divisor of all rational integers n with the property X‘=s
impliesX”"‘=e, is called the p—exponent (p is a natural prime). Set up and prove
statements analogous to those made in Exercises 2 - 4.

6. An automorphism o: of a group G which leaves both the normal subgroup 92
and the factor group an: elementwise fixed multiplies each element in 6 by an
element of the center a of 91. Its order is a divisor of the exponent of 3. All such
automorphisms a form an abelian group.

7. A finite group has a non-zero central operator precisely when the order of the
factor commutator group and the order of the center have a common prime factor.
(Use Exercise 3 of Chap. 1).

8. A normal subgroup of a finite group contains every subgroup whose order is
relatively prime to the index of the normal subgroup.

9. Prove the simplicity of a. for n>4 by the following method.
a) If the permutation it moves (does not leave fixed) more than 8 letters, then

there is a three-cycle a, such that one-la" leaves more letters fixed than
a but is not the identity permutation.

b) In any normal subgroup of it. which is different from 1 there is a three-cycle.
c) Apply Exercise 7 ofChapter I (following v.d. Waerden, Modern Algebra I.)



III. THE STRUCTURE AND CONSTRUCTION OF
COMPOSITE GROUPS

§],.. Direct Products

By the second isomorphy theorem in a group (5 which is the product
of two normal subgroups 9}, and 922, the factor groups are isomorphic
to the factor groups of the 9}. with respect to their intersection i); that is,

(MR1 = m, Gfiflh= m.
We ask to what extent the structure of @lfl) is uniquely determined

by the structures of 9E,/S) and 924%.
To do this we can and will assume that G is the product of the two

normal subgroups 92. and 92, with e as their intersection:

6:9!19“: 9¢xfl9h=a
THEOREM 1. Every element in (9) can be represented as the product

of an element from 9}. and one from 922 in (me and only one way.
The multiplication rule is

(“1“!) ' (bibs) = (“151) ' (315:):
where 04,12. are in 9}...

Proof: Since 8=9t..93,, every element in (9 is of the form aw),2 with
a. in 92..

From c1,,a,,=b,b2 with b. in 52;, it follows that

' Val-1a, = 11,11,“ = d.
Since 9!; /\ 9?: = ¢.

' d=¢, b1=ull bi=flp

Next, alafildag" == a,(a.a1“a,-l) 6 m1
= (arasai‘l‘us-l 6 9t, 1

because in. and 9!, are normal subgroups, and therefore it follows from
931A 5R,= e that a1.a,,=a2.a,,. It follows from this that we have the
multiplication rule, as was to be proved.

‘ Conversely we now form a group (B with given normal subgroups
9?, and 9?; by defining it as follows: (35 consists of all ordered pairs (11,, a;)
'with a. inmu

We define multiplication by

(“1, as) ' (b1: b:) = (“151: albt)‘
109
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We immediately verify the validity of the group axioms. The identity
element is e= (en 82).

The mappings 411 —> (a,, 9:) and a, —> (an a.) are, respectively,
isomorphisms of $2. and m with nonnal subgroups it. and 9!; of 6 and

$33, = (5.4721 nfi. = e.
The group «I just constructed is called the direct product of the groups

9!; and 92,; in symbols: '
G = 931 X 9%..

We restate the previous theorem as follows:
If G} is the product of the normal subgroups 9}, and 9}, with inter-

section SD, then the factor group 6/” is the direct product of the factor
groups fill/S and 92,”).

As the direct product of three groups .9” i=1, 2, 3, we define

51 X 5: X $a=(5i X 5-) X 9:-
It it obvious that there is a simple isomorphism between

(61 X 6:) X @a and 91 X ($1 X $0;
and likewise between

6, X 5: and Q, x 6,.
Accordingly $1 x 5. X ~ - - x (a, is uniquely defined as the direct

product of the .77. in any order and with any parenthesizing; and indeed
we may define 6: 5‘ x 9, x - - - x 5. as the set of all ordered
n-tuples an: (ex, . . . , x") of elements at. in .6; with the multiplication rule

(11’ 1's: - - u 1-) ' (91: 9|: - - -- 9n) = (”1311) min - - u 1.9-)-
After we have identified an with the element (eh . . . , em, an, em, . . . ,

e”), o becomes the direct product of its normal subgroups Q.
Necessary and sufficient conditions that a group (9) with normal sub-

groups .61, . . . , . ,. be the direct product of these normal subgroups, are:

1' G=fia~6r~~©u
2. ©‘A(51,...,§,_l, $‘+,,...,6_)=c (i-l.2....,n).

Condition 2. can be replaced by .
2s. @Afiufl, $‘+,,...,$,)=e «-i.2.....n—-1)

or
2b. The representation ¢ = 01‘%' . . . .c. with e. in 5‘, of the

identity element of ($5 is unique.
We say that the x,» are the .9. components of an‘ element a: of (9. The
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mapping x—sz, is an operator H, of (6. HI is said to be the i-th
decomposition operator of a} = 5, x 5, x - . . x 9,. The H. are addi-
tive operators and z- z"- - 2:"- . . . . . 3,11. ; hence

Hi+HfF'”+H-=l
Moreover H. H..=9 if i4=k and H.‘=H,.

If, conversely, we are given additive operators [-1, with the properties,, .
2H, = l , H4 HE=Q for i:l=k, then they are associated with the direct
l

decomposition
65=@"'><@'-x-ux@3-.

H‘ is a normal operator over 0 since for all bing“, a in 6, we have
59:53”:n and therefore for all a in G, a"4=a'u"‘= 11"“ .
The order of a direct product is equal to the product of the orders of its
factors, as the component representation shows.

The center, the commutator group and the comutator form of a direct
product are the direct products of the centers, the commutator groups
and the commutator forms of the factors, respectively.

If (h is decomposed into the direct product of characteristic factors,
then the automorphism group of (t is the direct product of the auto-
morphism groups of the factors.

Every group is the direct product of the identity element and itself.
A group which has only this direct decomposition is said to be directly
indecomposable.

Direct products occur in the investigation of factors of a principal
series of a given group. These factors are simple over a certain auto-
morphism domain, and therefore are characteristically simple.

THEOREM 2: If the group (9+e is characteristically simple and the
double chain law holds for normal subgroups, then it is the direct product
of (merely) simple groups which are isomorphic to each other,

Proof: Since the minimal chain law holds, there is a minimal normal
subgroup 9} in G}. The automorphisms a of (£5 map 2)} onto the minimal
normal subgroups 9? of 6!. all isomorphic to 2)}. We wish to form the
largest possible direct product of these. By the maximal chain law, there
is certainly a largest direct product ER= 9!“ x W‘ x - - - X32". If
m were not equal to G), then by hypothesis 912 would not be‘ mapped into
itself under all automorphisms of (it; therefore there is an automorphism

. a of 65 such that 91' does not lie in 1'}. However we would then have
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9:" n all = c, since 91- is a smallest normal subgroup of (5, and there-
fore ill“ x 91"- x - - - x it” is greater than 9)}. Consequently

®=WI x it"x ---x in".
The factors of this direct decomposition are the minimal normal sub-

groups of (ii and therefore simple, as can easily be seen.
Remark: Every factor of a principal series (or of a characteristic

series) of a finite solvable group is the direct product of cyclic groups
of equal prime order.

§2. Theorems on Direct Products‘

The following theorems also hold for groups with an operator
domain .0.

From the first isomorphism theorem we derive:
THEOREM 3: If a homomorphism of a, group Ganto a multiplicative

system .6 induces an isomorphism with .5 of a normal subgroup 91, of (ii,
then (B is the direct product of the normal subgroup ill, of (M, consisting
of all elements of (ii which map onto é,with the normal subgroup 51th

Proof: From the hypothesis, 9!, 9!, = (A5, 921 /\ 92, = c.
THEOREM 4: If a is a, homomorphism of the group G which is dif-

ferent from e, onto the normal subgroup (75 of the indecomposable group
.6, 1 a homomorphy of .5 onto 3, 1'17 «GS-isomorphism, then a is a,
(9.9-isomorphism and 1: anfiS—isomorphism.

Proof: One can show easily that o is a Gib-isomorphy and that r is a
Efi-isomorphy. Since 16 = ram = 3,1 is a 63-isomorphism. Since 6 =# e,
a is a normal subgroup of .6 that is distinct from 2. From the indecompos~
ability of .6 it follows, by Theorem 3, that 5:.9, and therefore a is a
dip-isomorphism and 1: is anfiS-isomorphism, Q.E.D.

If to is an operator of (53, then all the elements of (3 for which of = e
form a normal subgroup n" of (9. All the elements of (B for which 2"" = e
is solvable likewise form a normal subgroup of 0, which is denoted by
92,, . ER” .is the union of all n... m is a meromorphism of (ii/ER“, and
every normal subgroup of G for which a, induces a meromorphism
in its factor group, contains .93., .

If the minimal chain condition holds in 6), then a) is actually an
automorphism of (ii/9t” . It follows from this that Q} = 920, ' 6“” for
all m. If the maximal chain condition also holds in (5), then the chain

’ Following Fitting, Math. Zeitschr. :9 (193‘); one will fipd further bibliographic-1
material there.
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um, n_., n.,., . . . terminates, and 9!. = nu, is solvable. The intersection
of G" with 94‘.“ is e, since an element a: of this intersection satisfies the
equation x" = e and is of the form 3 = 3"" but y‘”" = 3"" = 5
implies ym' = z: e. If, conversely, o) = mm . 11. where 11 is a sub.
group of (El with the properties 92,, All = e, 11‘” g 11, then m induces
a meromorphism of 11, and from the minimal chain condition of (5/93,,
it follows that 11" = 11, and therefore 11 = W" ~—- WWII“ = L35“. We
specialize to the case for which the operator domain .0 of (55 contains the
inner automorphisms of @l whenever it contains w, and we thus obtain

THEOREM 5.‘ With a normal operator in of a group in which the
double chain theorem for normal subgroups is fulfilled is associated a
direct decomposition Q) = 91“, x Q)“. The second factor of the decom-
position is uniquely determined by having 82,, as the first factor.

Hereafter we shall assume that the double chain condition for the
normal subgroups holds in G5 .

THEOREM 6: If the sum of additive normal operators of a directly
indecomposable G is an automorphism, then the same is true of one of
the summa/mls.

Proof: We can assume immediately that the sum contains only two
summands.

If m, + a), = w is an automorphism then ”"001 + w-‘m, = l, and if
we prove the theorem for this sum, it follows for the other. Therefore
let m1 + m,= 1 be the sum of additive normal operators w, and m..
From m1 = m,(w, + 42),) = (w1 + my», it follows that m,w,=w,ml.
If we had both m1” = Q and m " = Q, then

2.

.1 = (w; + mg)" =§cln».‘m."-‘ = 9

Le, 03:12. In this case the theorem is trivial. If (Hm then for at least one
of the two operators on, let us say 0),, every power is different from
zero. From Theorem 5 and the indecomposability of (9, it follows that

' 92.,I=e. a), is a meromorphism, and, because of the minimal chain
condition for normal subgroups, it is an automorphism, Q.E.D.

DEFINITION: A direct decomposition of a group into directly inde-
composable factors not equal to e is said to be a Remak decomposition.
If the group is directly indecomposable, then it is itself the only factor
of its Remak decomposition.

‘ This is known as Fittings Lemma. (See Jacobson, Theory of Rings.) (Ed_)
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THEOREM 7: a) Every group (satisfying the double chain condition
for normal subgroups) has a Remain decomposition.

b) If @=oxxo.><mxt.
and~ ®=31x3,x'~x3,

are two Remak decompositions with decomposition operators H,, H2, . . . ,
H” and J‘, J,, . . . , 1",, respectively, then n=m, and the 3, can be renum-
bered so that

m = .1111, + J.H, + - . .+ 1.3.;
is a normal automorphism of (6 which maps the $decomposition onto
the 8-decomposition. -

c) For the appropriate ordering of the 3, we have the exchange
equations

®=31 XS; X~- XS. xom xom x-~- XS.-
Proof: a) Among all the decompositions (3: $, X .62 X . . . X 3:3,.

with indecomposable factors 5., .92 . . ., {in—1 different from e, $5,. 7E e, and
11. any natural number, choose one with minimal $3... Among all the decom-
positions $. = ‘2! X 28 having 9K aé e, choose one with minimal 9L It fol-
lows that 5X is indecomposable and not equal to e, 25 C .6": hence $8 = e,
.5, = SI ; and hence we have obtained a Remak decomposition.

b) We remark that the additivity of two operators in, and to, im-
plies the additivity of cork and m, , and of J“,l and m, . Therefore

M II

gEt=Hl '§J2=H1.

and, by Theorem 6, at least one of the operators H.Jk induces an auto-
morphism in 6..

'The' Jk can be re-indexed so that it is [1,], that induces an automor-
phism 111.6,. By Theorem 4, II induces an Qflrisomorphism. By the
remark made above, I

“‘1 = “’1”: +g2‘H6 ‘

is a normal operator. An equation 9:" = 2 implies e = :cu'“I = zul'm",
and since H.J, induces an automorphism of .6” we have s" = 5. But
then x" ._. zom- r-lu' = 11- . z”- z”- = e, and therefore

I" = G. I = G.

The normal operator on is a meromorphism, and by the double chain
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condition it is, in fact, an automorphism of (9 which maps the .9-decom-
position onto the Remak decomposition

®=31><b.xo.X-~XQ..
If n21, then the theorem is now complete. We apply induction with

- respect to n and assume n>1. (3/31 has 9, x .6. x x 5;. as well as
3. x S. x x 3,, as representative groups. Since the b“ 3,, for
«>1, remain indecomposable in 6/31, by the induction hypothesis 4n=m ,

fl

. and the 3,. with i>0, can be reindexed so that E=2LH‘ transforms
the (Cw-decomposition of (81/31 into the 3—decomposition. Here Rand .7.
are the decomposition operators in @lslzfi,x©.x x 6,. V and

n

o/s,=3. x 3.x «; x 3,. respectively. From this it follows that 2.7.19.

maps the decomposition 5, x 5, x . ~ - x 5,, isomorphically onto the de-

composition 8, X 3', x - . - x 3,, , and hence w =22'.1411, is the normal

automorphism of (h which was sought. 1
c) Moreover it also follows from the induction hypothesis that, after

appropriate reindexing of the 3. for i>1,

Sex 3. X--- x Slxomx x i).
is a representative system of (65 over 3,. Therefore the exchange equations

(6: 31X 3|m SA X ©s+1><mx©n~
follow.

THEOREM 8: If 04 = 51 x $3,, then a homomorphism a of $1 onto
‘92 is normal‘ if and only if .5," is in the center of (‘5.

Proof: 1. Let 0‘ be normal, a 6 6,, b 6 9,. Then a": a": a". a"
is in the center of .69 and therefore of (ii.

2. Let b,” is in the center of $1,. Then it follows that for all b in
.5“ a"= a". If b is in 6., then a"-b"= Iran“. Therefore (a')"== a",
a"‘= a”= (a,")°= a", and therefore a is normal in (6.

From Theorem 8, with the notation of Theorem 7, there follows:

THEOREM 9: A non-abelian factor of the fi-decomposition is normally
isomorphic in (9 to one and only one factor of the S-decomposition.

Proof i If S71 is normally isomorphic toSnsh then it is also normally
isomorphic to $2, and by Theorem 8,5), is then abelian.

‘Themspping u of 6, onto 3. is said to be normal in C if afl=dfl for all

n 6 6» b 6 0 -
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THEOREM 10: The Remak decomposition is uniquely determined if
and only if all of its factors are invariant under normal operators of (3.

Proof: We need only prove the second part of the statement. There-
fore, let a) be a normal operator of (B which does not transform the
factor .9, of the Remak decomposition @= 9, x 6. x - - . x .5. into
itself. to is the sum of the normal operators in” = H‘m By Theo-
rem 8 the operators on. with s are central operators.

If, for all i>1, m,1 = Q, then we would have

51” = '61:,“ = 512”" = (it“s in.
and therefore there would be an i>l, say i=2, such that mu 4: 0_ . Since
the operator can is central, n: ”n+1 is an operator. It does not
map .9. into itself.

Since w,,‘ = 9, then

(”u + 1"(—a’u+l)=ly (—m11+;)’(war+l)= l:
and therefore 7: is an automorphism of (it. :1 maps the original Remak
decomposition onto a diflerent Remak decomposition

@=©,"xb,x~-x.§). ; Q.E.D.

THEOREM 11: If 6 = b, X Q” then .9. is invariant under normal
operators of (ii if and only if there exists no ©,@.-honwmorphy normal in
6} other than the trivial one: 391—» 2.

Proof: 1. Let m be a non—trivial normal bun-homomorphism. Then
(DH, is a normal operator of (B which does not map .9, onto itself.

2. If a is a normal operator of (9 which does not map .9; onto itself,
then 11,5 induces a non-trivial normal .6“ rhomomorphy, QED.

By Theorem 8, a normal @ufiz-homomorphy is characterized by an
abelian factor group of .6, and a subgroup of the center of .6, isomorphic
to it.

From the previous theorems we derive
THEOREM 12: The Remak decomposition Q) = 5, x b, x - - - x 6,,

is uniquely determined if and only if an abelian factor group of @is iso-
morphic to no subgroup of the center of .9», itHc, difierent from e.

THEOREM 13 (Speiser) : A group whose factor commutator group or
center is of order 1 has exactly one Remak decomposition.

THEOREM 14: The Remak decomposition of a finite group

(”=91 X©.X'-'X©.

is uniquely determined if and only if the order of the factor commutator
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group of each of its factors is relatively prime to the order of the center
of each of its other factors.

Proof: By Theorem 8 and Theorem 11 the condition is sufficient. If,
however, the prime number p divides .6, :5,’ and 5%,) : 1 then it follows
from the basis theorem for abelian groups (which is proven in § 4) that

» .6, has a normal subgroup of index p, and that M91) contains a sub-
group of order 11. Since the factor group and the subgroup are isomorphic,
there is a non-trivial normal .fimfin-homomorphy; by Theorem 11 and
Theorem 10 the Remak decomposition'of (B is therefore not uniquely
determined.

§ 3. Abelian Groups

Let P be a ring with unity element and let I be a finite P-module. Thus
there are a finite number of elements 11,, 1),, . . . , 1),. in 9! such that every
element 1) in i is of the form.

0=mm+am+---+a.v. ,
with the a. in P. Let 9J2. be the P—vector module (14., . . . , u..) .

The mapping

aiu1+a.u.+-~~+a.u. —> «101+ a.vg+-~+a.v.
is an operator homomorphy of Elk. onto 9i, and the abelian group 9L with
the operator domain P is completely determined by the P-module 9! con-
sisting of all vectors which are mapped onto the zero element of fl:

21 = ”tn/91.
With every system of generators R” R2, . . . , R", of 9! over P we

associate the matrix A. whose row vectors are precisely the vectors R4.
A matrix A" = (flu) is characterized by the properties

I

1- Egan 7’: = 0 ((-l.l....).

2. if 2b.v.=o,
' then b, = 2a“ z‘ is solvable in P where the summation is over only

a finite number of 1'.
Since each row of A, corresponds to a relation valid in 9!, we say

that A, is a relation matrix belonging to 9!.
Conversely the row vectors of a matrix A with n columns generate a

P-module ER in 9J2” such thatAis arelation matrix belonging to Elm/SR .

When do two relation matrices belong to the same finite P-module 9!?
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We say that two matrices with coefficients in P are equivalent if they
are relation matrices of the same finite P—module a.

This equivalence has the three familiar properties.
A rule which uniquely assigns to each matrix an equivalent matrix

is called an elementary transformation.
We want to find the simplest elementary transformations which by

repeated application will transform any two equivalent matrices into
one-another.

The zero vector can be adjoined to the generators of 9? :
N": The elementary transformation N., adjoins a row of zeros to the

matrix A:
' 0, . 0

A = (an)—> am. . 'saln)‘

NJ : Delete the first row if at least two rows occur and if the first row
is a series of zeros. -

The generator R‘ may be replaced by R. +aR, where 1':k
T1,: The elementary transformation Ta, replaces the i-th row of

(am) by (an + can, an + ““11: . . .. “in + can). where iti-
We have T3, T3,, A = 7",? A.

T: By repeated application of TC; an arbitrary linear combination
of the other rows can be added to the i—th row.

Moreover we can obtain, by composition of the T5,. :
(i 4: 7‘) V" ,; Exchanges the i—th with the j-th row and changes the

sign in the j—th row:

V.-_,A = Tu 77.1: TM 4-
N : By applying N.I and T an arbitrary linear combination of rows

can be adjoined to a matrix.
Mm: Moreover by repeated application of T5, and No, No’, the i-th

row of A can be multiplied by a unit 5 of P:

Mt. A = N; Tits}: hm TzaiNoA.
MI. _, V“ , exchanges the i-th and j-th rows.

If we adjoin o.=a_u,+a,o,+...+a.v. to the generators on ...,v.
then we obtain a single new relation:

v.— M;— aavn—m— a.v.= 0-
S: The elementary transformation S adjoins to the matrix A= ((19,)
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1
0the row (1,—ul, —-a,,..., —a,,) and the column (0):

. l ““1, ..-. —a. (bordering
4» 0 an: “m "'a a" ofamatrix).

an,
5’: Changes to an unbordered matrix if the first column is of the

form (8) .

R" ,: Exchange of the i-th with the j-th generator of ‘II induces an
exchange of the i-th with the j—th column in A.

From the elementary transformations found up to now we can form
(I: =§= j) 8,: 1.: Adds the j—th column multiplied by a to the k-th column:
Let S denote bordering with the vector which has 1 at the zero-th, —1

at the j-th and a at the k-th place, and has zeros elsewhere. In SA the
first row is multiplied by a“ and added to the (i+1)-st row, (i=1, 2, . . . ).
After this the first and (j + 1)-st columns are interchanged, the first line
is multiplied by —1 and, finally, the border removed.

THEOREM 15: By repeated application of the elementary transforma-
tions

N... N.'. m, s, 3', 12a . ,
a matrix can be transformed into any matrix equivalent to it.

Proof: Let the matrices A, B be equivalent. Then there is a finite
P—module 91 with two systems of generators

31.5.. - ~ ”5.
and T1. Tn . ~ u Ts”

- such that A is the relation matrix of the S. and B is the relation matrix
of the T..
‘ After n' applications of S, A goes into a relation matrix belonging to
the system of generators T,, T,, . . ., T.’ , 31,8” . . . , 8.. After n appli-
cations of S and repeated application of R,, k, 8 goes into a relation matrix
belonging to T., T2, . . . , To, S" Sn, - - . , 5.-

Since the inverse of every transformation in the set of the six types
. of elementary transformations is also in the set,we need only carry out
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the proof for S.=T,, n=n’. By repeated application of N, A goes into the

matrix (3) and B goes into the matrix (g) . The new matrices can be

obtained from each other by row permutations and thus the theorem is
proven.

Are there easily calculated invariants under elementary transforma-
tion?

DEFINITION: The ideal generated by all the (n .— r)-rowed subdeter-
minants of a matrix A with n columns is called the r-th elementary ideal
(5.01). From the expansion theorem for determinants it follows that

5r(A)_<.®r_1(A)- We set E5, (A)= @.+I(A)= . . . = P. (in, El, is called
the sequence of elementary ideals of A.

THEOREM 17: The sequence of elementary ideals is invariant under
elementary transformation.

By Theorem 15, it suffices to show the equality of the sequence of ele-
mentary ideals in the four cases

a)B=N.A, b)B=T,.f,A, c)B=SA, d)B=B‘_.A.
In case a): except for the elements of 6,01), GAB) contains only

determinants with a zero row, and therefore GAB) = 5,94).

In case b), the subdeterminants of B in which the i—th row takes no
part have the same value as the corresponding subdeterminants in A.
The same holds true, by the properties of determinants, for the subdeter-
minants in which both the i-th and the Io-th rows take part.

Let D6)", 5", - . -E.,,_,) be a subdeterminant in which the row vec-
tors b.“ b.“ . . ., b. are Involved among them Ba= 0: + no., while the
index 16 does not occur among the 1!, Then

Davin...»' H.)=D(E.,,a'.,,... "_)+oD(E.,,.. ,é.,... a,_ )-
From this we conclude €,(B) g (54:1). Since conversely/'4: Tr,“, B,

it follows that @(A)g6,(B), therefore E,(B)= QM).

In case c), 65, (B) = 6,94).
In case d), 6,.(3) = QM).

A matrix is said to be a diagonal matrix if all the elements not on the
principal diagonal are zero. Then a relation matrix A can be transformed
into a diagonal matrix
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(did...
,. . d7

by means of elementary transformations precisely when 9! is operator
isomorphic to the direct sum of residue class rings

‘ P/(d.)+P/(d,)+... +P/(dr).
The diagonal matrix A is in elementary divisor form if the diagonal
elements form a chain of divisors such that d,/d,/d,,/ . . . /dr and d,
is not a unit of P. Making use of the elementary divisor form, we may
write the sequence of elementary ideals as follows:

c.(A)=(d,d....d.)....,e._i(A)=(dl), aw>= em (A)=---=P-
If the d, are not zero or divisors of zero, then A is equivalent to a

second elementary divisor form with the diagonal elements d,',d,’, . . . , d,’
if and only if r=s and (41,) = (d!), i.e., if and only if the diagonal
elements in the same place differ only by a unit of P.

§ 4. Basis Theorem for Abelian Groups

THEOREM 17: A cyclic group (ii whose order N is the product of pair-
wise relatively prime numbers n,, m, . . . , nr, can be decomposed in one and
only one way into a. direct product of cyclic groups of orders n,, n,, . . . , m.

Proof: The uniqueness is clear since in a cyclic group only one sub-
group exists having a given order.

We set m, = a]; and seek the i-th decomposition operator. By hypothe-

sis the congruence 3mm 5 1 (mod n,) is solvable. We define the operator
H. by means of the condition: a"-‘ = u‘t'fl for all a. in (3. We obtain directly
the equations:

EH, = l, H.H.= o (a 4: k), H, = 11..

Therefore (3 = @5- )< (53- X . . . X @Hr. Since n.H‘=0 and ($5 is
cyclic, the order of 65" is a divisor of n,, and so, because of the order
relation, (55" has the order n,, Q.E.D.

THEOREM 18: An dbelidn group #e with a. finite number of generators
is the direct product of cyclic groups having prime power order or having

- order zero. The multiplicity of each basis order is uniquely determined.
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Proof : In order to prove the first part of the theorem, it suffices by
Theorem 17 to prove decomposability into cyclic factors. Our operator ring
P is the ring of integers, and our aim is to put the relation matrix A
belonging to the abelian group ll into diagonal form by means of ele-
mentary transformations.

We apply the following reductions:
1. If A is the zero matrix, then A is already in diagonal form.
If A=l=0, then among those integers a”. which are different from zero

there is one which is smallest in absolute value. By'appropriate row and
column interchange we may take an to be this number.

a) lfau=i=0, k>1, then afl=qan+r where q and r belong to P and
0 § r < [“11 I

Multiplying the first column by q and subtracting it from the k-th
column we obtain b.,. = a.‘.—qa.. = 1' which is smaller than a“ in absolute
value. ~ _

b) If a,,=i=0, 1'>1, an=qa..+7', where q and r belong to P,
0 g r < l a“ I, then subtract :1 times the first row from i-th row.

After a finite number of reductions of type La) or I.b) , we find that
all the elements of the first row and first column are divisible by on.

If A has n columns, then after at most (n—l) reductions by La) we
find that the first row is of the form (an, 0, . . ., 0) . The first column
remains unchanged by this reduction, and we may now replace it by

an

( o ). (Here reduction I.b) may have to be applied infinitely often).

The unbordered matrix which is obtained from A by deleting the
first row and first column has only 11—] columns. We apply the reduction
process described above to it; here the bordered matrix is transformed
without changing the first row and column. After at most 1» such reduc-
tions A goes into diagonal form.

In order to prove the uniqueness we assume that S., 5:, . . . , 5,, is a
basis of it =2: e such that S., St, . . . , S, are of prime power order, and
that the remaining basis elements are of order zero.

Let S., S2, . . . , S. be all the basis elements whose order is a power of
the natural prime 19, so that S, is of order p»: with 0 < n, g 1.: . . . g n, .
All elements of ‘1! whose order is a power of 17 form a subgroup 6,. with
S., 5,, . . . , s. as basis (pl-211‘s, 32¢”, = 0 implies a‘ = o, if
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1‘ >8) . The relation matrix of 5, with respect to this system of generators
'1’" p“

has the elementary divisor form - , ,
(f ‘ n

1’"
By § 3 the numbers in the diagonal are uniquely determined to within

sign. _
The n, are uniquely determined.
3., Si, . . . , Sr generate the subgroup 11 of all elements with positive

order in 9!. The factor group 91/11 has Sm, . . . , S” as basis with the basis
orders 0, 0, . . . , 0. Since the associated relation matrix, being a null
matrix, is in the elementary divisor form, the number n-Ir is uniquely
determined, 03.3.11,

§ 5. The Order Idea]

The following investigations are closely related to § 3.
DEFINITION: The first member in the sequence of elementary ideals

of a matrix A is said to be the order ideal D‘ of A. The order ideal is
generated by all the subdeterminants of greatest order of A.

The order ideal is invariant under elementary transformations.
It follows from the basis theorem that the order ideal of an ordinary

g abelian group with a finite number of generators is generated by the
group order (where P is the ring of rational integers).

THEOREM 19 (Analogous to the Fermat Theorem of group theory) :
For all operators D of the order ideal DA and all elements 1) in N,

Dv=0.

Praof: It suffices to assume that D is an n—rowed subdeterminant of a
' relation matrix A with n columns, and that 1) is one of the corresponding

generators in of at. After appropriate renumbering of the rows of A, let
_D=|a,u,| (i, k=-l, . . . , n).

Then "
‘gl'au 9: = 0 ,

and therefore ..

l I lgaulln vr=0 (k=l,2...n),

where A‘ ,, is the algebraic oomplement of a,» in D. After summation over
these 7» equations, we get
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I fl

2( auAn)'7u=o-E-l l-l

As is well known,the inner sum has the value duD, and therefore

Dm=0, Q.E.D.

§ 6. Extension Theory

The extension problem posed and solved by Otto Schreier reads:
Given two abstract groups 93 and i}, find all groups (6 which contain

‘Jl as a normal subgroup, such that

(1) 65/92 a 3.
First we shall investigate the groups (9) which contain 9} as a normal

subgroup with factor group isomorphic to 3. The elements in ‘5 are
designated by l, a, 1 ‘

There is a decomposition 6’ =23”, of (65 into cosets with respect
we

to ‘JR such that 9:8,,- ERS,= 918“, and therefore
(2) 8,8,: 0 S Oméfl.my 01’

Since 9? is a normal subgroup of (9), for the elements E, A, B, C, . . .
in ‘Ji:

(3) SA rid—1:113" 69!.

(4) (ABW = A‘“B‘".
(5) (A51)sa =A-9u3: = A°a.¢3u¢___ “Suva",

(a) sls,= OMS“ hence 31= 01.):
(7) A31 = 11%,
(s) 145,135],= ABS'CMS".

From the associative law in (9 it follows that

(8,3,)So= (0o,vsa¢)sp= ofl'fcflfiesdif
= 543.5,) = 3,0 .8 — 0" o s1.9 re- nq 0,“ ace,

and from this follow the associati'm'ty relations

(9) 0 C' =OS“G41.: «.9 no me -
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Conversely, let single-valued mappings S, of ‘R onto itself be given
and let a system of elements 0, i in 9! be given also, so that

I. (A B)’v = 4‘0 35¢ , / .
II. (11")8" = Asvs' = (A8“) cm = Acting-11’ A51 ___ A01, 1’

III. 0,,"0 = 011.0«2.9 4mg-

A system of elements 0“ which occurs in a solution of these three
equations is said to be a factor system in ‘R belonging to fix

A group will be constructed which contains 9! as a normal subgroup
and whose factor group is isomorphic to 3- such that the multiplication
of the representatives of (.65 over ‘Jl follows rule (8).

Let (Q be the set of all symbols A8, with A in ‘Jl; A8,, = BS, if
and only if A = B, a' = r. We define multiplication in (‘5 by

113,135,: ABS"G,',S".
In (‘5 the associative law is valid:

(AS,‘BS,)-Ose= AB‘vc S . as”11,: n

= ABS"0,',05"0 s".9 are

= ABsmc.,.-9u0 0 s11,: ”'10 '1'

= ABS”0‘7"S'CS" c s (by 11. and 111.)1.9 are are

= A (308*0,,e)‘"0 s (by I.)"We are

= Asa- BOS'C'I'QSW

= A8,. (BIS,- 0'89).

If we set 0= 1' = l in III. then
01,10“ = 0:10 014 , 01.1 = ‘31 , therefore

(10) 0:..= 0m.

If on the other hand we set 1 = 9 = l in 111, then

00.10”]! = off; 00,], : therefore

'(11) 0,',=0;’f1.
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5 = 0:118 is left identity of is, since, I

_ 0e- Ase= a,“ mom/s“= 439.
As solution of XS,- 38‘: e,

that is, of xylem: 01—;
i { at = 1, '

we find X= 030:1?" "
v=r‘.

(fl is a group.
We set A=A0;“Sl.

-- — — — - s
Then AB:A01,:'81'Bal,:si=Acl,i(B01.: l‘01.!“91

=ABO;:Sl= 4—3 -

Now I= e implies A = 1.

Therefore A—>A' is an isomorphic mapping of YR onto a subgroup

ATE =AO;:Sl.lS,=A0"0 .9 =45, by (10),
N 1,1 1,1! «I

57,. §,= 180-118": 0,_,s"= 6“. gm

g" AT: ISUACEISI= 48’03‘0. 15a= A8931:
=fin§p

therefore A—‘a= A1".
‘3! is a normal subgroup of (it with the 5, as a system of representa—

tives, the 5'“ as factor system, and the E, as automorphisms, and
the mapping 4—,} is an operator isomorphism between 272 and 5.
Thus the problem stated above is completely solved.

Let (S and (F be two extensions of 9! which belong to the same factor
system 0.“. and the same automorphism set S, . The elements in (6} are
uniquely of the form A SW those in (if uniquely of the form Ag." where
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As, 38 =A3‘ao, .MS
As, BS =AB‘”C' sa. I 01'

Then the identity automo1phjsm of 9} can be extended, by means of the
mapping Alix—>115, to an isomorphism between G) and (ii. We say
more briefly. G and are ‘Ji-isomorphic.

From these investigations we conclude:
THEOREM 20: To each extension (9) of a normal subgroup ‘Jl with

given factor group fi there belongs a factor system and a set of auto-
morphisms of ‘R such that conditions I. II, III are fulfilled.

Conversely, to a. given factor system and a given set of automorphisms
of ‘12. which fulfill I, II, III, there belongs an extension of ‘12, unique to
within isomorphy over 9}.

If instead of choosing S as a representative of S 9: we choose
T, = AaS, with A, in 9!, then the automorphism S of Si'15 replaced
by A,S, =T, and a” is replaced by A,Af”0,,,A;:,since

T,T= A,s,A s:_—A,A? o,,s,,=A,Afvc,,,A;:T
The converse is clear.
DEFINXTION: Two factor systems (8., 0,”), (Ta, Du") are said to

be equivalent if there are elements A, such that

AT“ =A‘u‘s" for all A g 5R
= A,Af" o, A: ,

We then write (T,, D“) ~ (3,, 0m)-
For this equivalence the three rules are valid.
Two factor systems with sets of automorphisms induce extensions

which are isomorphic over ‘Jl and for which the coset R, maps onto the
coset I?" , if and only if the factor systems are equivalent.

There always exists at least one factor system, namely that belonging
to the direct product 3X ‘Jl:

011,: = 1 ’

A” = A.
A factor system is equivalent to (T,, 1) if and only if

= A.Af'0.,.A::
'is solvable.
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An equivalent condition is: In some associated extension, a. subgroup
can be found which is a system of representatives with respect to 92.

Then G) decomposes into a product of 3 and 9! where 3A9} = e.
Therefore we say that a factor system equivalent to (T,, l) is a retract-
ing factor system.

If the given normal subgroup 92 of (it is abelian, then the automor-
phism A—pA‘" is independent of the particular choice of the repre-
sentative 5,, and therefore we simply set A3! = A".

Three necessary and sufficient conditions in terms of (u, 0,_,) are
then

I. (A B)“ = 4’3",
11. (A‘)' = A", A‘ = A .

III. 0., ".9 = awn“.
The factor systems belonging to the same group (a, r, . . .) of auto-

morphisms of in form a group (0“). The number of non-equivalent
factor systems is equal to the index

(0,,» =(A.,AZA::).
The number of different retracting factor systems is equal to the

index
(A) 2 (6,), where d,d:= d".

If 9! is of order m and 3 is of order n, then the last index is equal to
was): 1).

§ 7. Extensions with Cyclic Factor Group
Let the factor group of (9 over the normal subgroup 92 be isomorphic

to the cyclic group :3 = (a).
Let S be a representative of the coset associated with a .
If %:1=0, then 1, Si‘fli’, . . . is a system of representatives of (9

over 9} and 0,4, ”l = 1 .
If E :1=n>0 then 1, S, S’, , 8-" is a system of representatives of (‘1

over in. Then S" = N is an element in 9! for which N5 = N holds. Moreover
A"=AN for all A in 9} and

, l, i+k<nC,«_,c={N’ £+kgu (D§(,k<n).

Conversely if 3 :1 = 0,and A —> A5 is any automorphism of 9}, then
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we set 0,4‘ ,1: = 1 and see that one and only one extension group (9 of 9!
exists such that (91/92: (S92)=‘[6 and SAS“=AS for all A in 9!.

If fizl=n>0 and A» A" is a single—valued mapping of 9} onto
itself with the properties , . Is. (A B)” = A”B",

Ila. A"" = A", N 69!,
1118.. N" = N, then there exists one and only one extension group (5

of 92 such that 6/9! = (892): ‘(y and SAS"=A’ for all A in in, Sc=N.
Proof: In order to see that (3 exists, We set

1 . i + k < n
0""°"= { N’ 1‘ 5+kgn

Then I and II hold.
The validity of 111 means, since N” = N, that certain identities with

the factors 1, N are fulfilled, no matter what the structure of 2]}. Now
since the infinite cyclic group (S) is a cyclic extension of index n over
(S‘), and N=S" generates an infinite cyclic group, the identities are
valid in all groups.

Since G} is uniquely determined by $2, a and N, we denote 6 by
(9t, a, N) .

When is (9?, a, N) isomorphic to (92, o‘, N") over 9!?
We can assume that the two groups are identical, and then 8,. = A s;

where 0 < 7 go: and (7,»): l:

(05‘, D<s).

N" = (Agni: A1+u'+...+¢v(u-I)N,I

Conversely if 2:" = 24" for all a: in N, where (v, n) = 1, and if
N" = A”"'+"' +"""'” N', then (9}, u', N') is a cyclic extension of
index n of N, which is isomorphic to (m, a, N) over in.

Example: Let in be a finite cyclic group with order m. If m: (A),
then N=Af and A“ =A'. (5 is uniquely described by the four numbers

. n, m, t, r. IIa. implies WEI (m), and conversely. IIIa. implies rtaflm),
and conversely. We obtain:

THEOREM 21 (Holder) : A group'w of finite order nm with cyclic
normal subgroup (A) and with cyclic factor group (B (A)) of finite
order 'n has the two generators A, B with the defining relations:

A» :2, Ba =45 BAB-l =Ar,
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and with the numerical conditions

a) 0 < n, m.
b) r- a 1 (m),
u) t(r — 1) E 0(m).

Conversely if the numerical conditions are fulfilled, then a group
with the previously given properties is defined by the three relations.
For fixed n and m the replacement of r, t by

r’=r', (v, n) = l,

f“=vt‘+(1+rV+riv+...+,4n—n.)

leads to w-isomorphic extensions.

§ 8. Extensions with Abelinn Factor Group _

Let the factor group of the group (5 over the norm] subgroup Ell be
isomorphic to the direct product

3 = ((1,) x (0,)» . .x(o',.).

of cyclic groups (m) of orders m. Let (S. 93) be oosets associated with
0,, The following relations hold in E:

S‘ASI‘=A“€9E if A 69:,
8? =Aie an,

S‘sxsF‘SiEAmém-

For the mappings A—pA“ of 9} onto itself the rules

(A B)“ = A"B“,
A“ =A“,

445653 = 41:.»t

hold.
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Moreover A", An,:= l, n. g 0, and if n,=0 then A(=1.

Af‘= 5311‘s": 5.3m“: (8‘8“8'. ‘ ‘E
= (Aa,xsk)"'= Ad. “SEA,k5; )S:Au - - -
=A,'.Aff.. .Az'ii'A‘

SAN-Sc" =Affx
= (8.8.8?) - ($8.8?) (awe-5" (amt—W“
= 4:35: ' Ants: ' (Ans-g)“ ' (41,1504

= A...A‘.",*x- sksxsrsr‘. A5: 4.7:
= AfikAfflAkflAi—Fl'Ai—fb

Now conversely let a group 9! be given which contains the elements
A“ A" , (i, k = l, 2, . . ., r; i #= k) and let single valued mappings
A .._, A”: of 92 onto itself be defined with the following properties:

1. (A B)-‘-= A's‘ B",
2. A3:‘=A“( if n.>o), Aft—H43,
2a.. n‘g‘o, and if n‘=0, then A,= I,

3. A‘i‘t = A‘u‘t“ (i > 1;),
3a. A‘ .41“: 1 (i>k),
41524:?” +"*"A. (if n.>0, £4; 1:),
5.115542145315111”: 11,75: 1 (¢< k< l).

THEOREM 22: The group G with generators [(14 < N), S‘, 8,, . . ., S,
and with the defining relatzons

a.) A—B= AB,

b) SIAAS"= A ‘,

0) 82 =11:

d) $5.575: = In: (‘ > k)

contains the normal subgroup 9? of all A such that the factor group is the
direct product of the cyclic groups (Salt) of order m and the ma/ppi/ng

A—yZ is an isomorphism of 9} onto '9}.
Proof: If 1: 1 then the theorem follows from '97 6. Let r>1 and assume

_ that the theorem has been proven when there are only 7—1 generators S.- .
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Let @be the group generated by A— and S" . . . , ,_1which satisfy
conditions 1. to 5. and relations a) to d) where the indices 1', k, I run
from 1 to r—l.

We define 35' = 11", 85' = INS, a-n.x.....r—x).
Conditions 1., 3., 3a. and 4. with i=r, 5. with l=r merely state that

the mapping S, just defined can be extended (uniquely) to an operator
S, of (91.

The conditions A" = Ag”, Af' = A" state, by § 6, that the relations

b) 8.13:1 = I",
c) 31" = A} «
d) S.S«S.“Sr‘ = Z... (s < 7)

define a cyclic extension (65 of index n,. over (9..
By the induction hypothesis, A +1 is an isomorphism of 92 onto 97.

It follows from b) that 9} is a normal subgroup of (it. It follows from d)
that (9/9.? is abelian and is generated by 8,97, 51%, . . ., 8,9}.

'

NOW HSI‘E l (i)
1

implies S? s 1((51),

therefore 'r E 0 (M),
'—l

hence ”S? E 1 (9-2), and the induction hypothesis applied to (‘5. gives
1

7‘ E 0 (n) (i-1.l....,!—l).
(fi/fi is the direct product of the cyclic groups (S. 55) with orders m (i=1,
2, . . . , r) , Q.E.D. If the normal subgroup E)! is abelian then the conditions
can be stated more simply:

1. (A B)”‘ = A" B" ,
2. 4’1" = A,
2a.. 1:. g 0, and if n. = 0,then 4‘ = 1:
3. AW” =A'k'i’

3“: Auden“ l (d <k).
4. Azg-l = Agak+43+...+.:g—1 ( if n, > 0‘ i * B),

5. 42?;‘Azfi‘ngr‘ = 1 (a < k < l)
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and the relations
b) S‘A s? = A“,
0) St" = An
d) StSkSi—lsi‘l = ‘93 ’(0'<b).

§ 9. Splitting Groups

Definition: A group ('7) which contains the extension 03 of 92b), l['ywith
the system of representatives S is said to be a splitting group of is over
9!, if a has a normal subgroup '5!, containing 9!,with S as system of
representatives, such that (5 splits over 5!.

THEOREM 23 (Artin) . Every group with abelian normal subgroup Eli
has a splitting group.

Proof: We set AI=0,_‘}, but let (4,) be the infinite cyclic group
generated by the new element Ag, if a 4: 1, Let F! be the direct product
of ‘5! with the (A5), (a :1: 1). Then an operator 8,, of i is defined by

Af"= AZ‘A..0;1 ' "+11

and 1s = (N . 1114':v = N‘« . 11015')".

The same formula holds for A's”, since

Af"= (01‘,l=)“" 0;l= A3‘4.0:.§-
The factor system 0“ and the mapping 8, satisfy conditions I and III.
Now 11 must be verified.
As‘ = A0“ holds for all A in $3 ;

_ c
AIS' = A;‘A, 0:: = 01,14: 013“ 14"”,

and therefore W51 = W“ for all W in m.
“505“: (A—l A", 0:1,)8"- (45")4 44:3 (05:, —1

= (A; A..c;‘.)"A:‘A,.ec:,‘.e Gin-2 g,¢A;:A"e0;1(,(Offq)_l
= (A;:Aa.9)°v-'ou..(avenger; (A::A,.,c:.,e)"m (by 111.!)
= 4:11,: 8,”.

Since II is valid in 9! it holds also in 5!. Therefore there exists an
extension group G of i! with the elements 8, as system of representa-

- tives, the GM as factor system, and the S, as automorphisms of $5.
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This extension naturally contains the extension (5} of ER with the factor
group 3 and system of representatives 3,. 5 is a splitting group of
9 since 5 1

5 = AGAI.00,1 at}

‘If we take 5 as the free product (which will be defined later) of fl with the
infinite cyclic groups (4,) then it follows in exactly the same way thnt every group
has a Iplitting group.



IV. SYLOW p-GROUPS AND p-GROUPS

§ 1. The Sylow Theorems
In a finite group (9 of order N, the order of every subgroup is a divisor

of N. On the other hand there need not be a subgroup with order d for
every divisor d of N. For example, in the tetrahedral group, as one can
see easily, there is no subgroup of order 6. We shall now prove, how-
ever, that for every power 1)" of a prime dividing N there is a subgroup
with the order 1)".

DEFINITION: A group is said to be a 12-n11 if the order of each of
its elements is a power of the prime 17.

We determine the largest possible p-groups in the finite group 6.
DEFINITION: A subgroup of (S is said to be a Sylow p-group, if its

order is equal to the greatest power of the natural prime p dividing N.
For example, the four group is a Sylow 2-group of the tetrahedral

group. A Sylow p-group of (5 is denoted by S, or by $. The normalizer
of 5,, in (5 is denoted by N, , the center of S, by 2,.

THEOREM 1. For every natural prime 1), every finite group contains a
_ Sylow p-grtmp.

Proof: If the order N of (B is 1, then the theorem is clear. Now let
N> 1 and assume the theorem proven for groups of order smaller than N.

If in the center 3 of (5 there is an element a of order mp, then the

factor group (9/ (aw) is of order g and contains by the induction assump-

tion a Sylow p-group W01“) of order p“, where % is not divis-
' ible by 1:.

28 is of order p" and therefore is a Sylow p~group of 8.
Now let there be no element of order divisible by p in the center a

' of G). If the order of a were divisible by p, then the factor group of 5
with respect to a cyclic normal subgroup (o) 4: 1 is of order divisible
by :0. But then by the induction hypothesis 5/(a) would contain a Sylow
p-group 4:1, and therefore would contain elements b(o) of order divis-
ible by 12. Then the order of b in a would be divisible by 12. Therefore the
order of a is not divisible by p. Ifpthen e is the Sylow p-group sought.
If p/N then it follows from the class equation

N=(5:l)+2h‘
A(>i

135
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and from p 7(321), p/N, that at least one It.) 1 is not divisible by p.
G) contains a normalizer N. of index h. > 1 and therefore N. contains, by
the induction hypothesis, 3 Sylow p-group 56. Since 72 r 1.“ SE is also a
Sylow p-group of G.

COROLLARY: For every prime divisor p of the order of a finite group
there is an element of order p (Cauchy).

The order and exponent of a finite group have the same prime divisors.
It is a p-group if and only if its order is a power of p.
THEOREM 2: If is is a Sylow p-group of G and 9} a normal subgroup

of (9, then flat]: is a Sylow p—group of 9!; WV?! is a Sylow p-aroup
of (3/9}. "

Proof :l A subgroup u of (it is a Sylow p—group if and only if
1. The order of 11 is a power of 1) (written: pp) ,
2. The index of u is prime to 1) (written: prime).

6 Now we may construct the diagram to” the left and,
[Mm observe first that $9258 is prime to p, and 53:92 /\ ’15

$92 is a p-power. From the second isomorphism theorem it
“\k follows that $39} :92 is a p—power, and ER : ER A 519

i is prime to p, from which the theorem follows.
it a? If a Sylow p-g‘roup a3 is a normal subgroup of G
\ [Pp then it is the only Sylow p—group, since for every other

92ASB Sylow p-group 1*, it follows that $5.28 is of p—power
I“, order, but (32$.$ is prime to wand therefore $3.26:
1 $6 = $1. Consequently a Sylow p-group S, of a finite

group 63 is the only Sylow p-group of its normalizer N,.

THEOREM 3: All Sylow p—grnups of a finite group (51 are conjugate
under (ll. Their number when divided by 1) leaves a remainder 1.

Proof: Let the Sylow p-groups of (B be $=1§n . . . , EB...
Under the mapping a: —> (zgrl)

automorphisms, SE is represented as a permutation group. Since con-
jugate subgroups have the same order, the YB. are transformed into each
other by ‘13, so that we obtain a representation A of $13 as a permutation
group of degree r. By a remark above, SB transforms only EB, and no
other 58. into itself. Consequently there is only one system of transitivity
of first degree. The other systems of transitivity of A have a degree > 1
which is a divisor of ‘15 :1 and which, therefore, is a p-power. Consequently
r E 1 (p) . ‘

SB transforms the s 2 (B :N, Sylow p-groups conjugate to $13 under 6)
‘ Accordingto a communication from E. Witt.

of 6} onto the group of inner
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among themselves, and as above it follows that 82 1(p). If there were
another system of conjugate Sylow p-groups, then its members would be
transformed into each other by SS in systems of transitivity whose
degree would be. divisible by, p. The system would therefore contain a
number 8,, divisible by p, of Sylow p-groups; on the other hand we con-
clude for s“ just as we did for s, that s. a 1 (p) . Consequently all Sylow
p-groups are conjugate to EB, Q.E.D.

THEOREM 4: Every p—group u in (9 is contained in a Sylow p-group.
Proof: We replace 1! by 11 in the proof of the previous theorem. Let

the transformed objects again be E, . . . , $6,. The degree of a system of
transitivity of A is either 1 or a p—power. Since r E 1(1)), there is cer-
tainly a system of transitivity of degree 1. Therefore there is a ‘8. which
is transformed into itself by all the elements of 11. Since 1.1213i is a
p-group which contains 23., we have 1123;: 1%, 11g ‘13,, Q.E.D.

THEOREM 5: Every subgroup 11 of 0) which contains the mmalizer
N, of a Sylow p—group 3,, is its own normalizer.

Proof: We must show that zll :r‘ gu implies
a: E 11 .

In any case S, and $8,304 are Sylow p-groups of ll, and by Theorem 3
there is a U in 11 such that U23, x‘lU-l= 8,;
therefore Ur 6 N, S 11,

therefore I 6 11. Q.E.D.

THEOREM 6: If the p—group 11 contained in the finite group G is not
a Sylow p-group,then the normalizer IV“ of 11 is larger than 11 .

Proof: If I? r (3 :Nu then the theorem is clear; if, however
@a=pr, then 11 transforms the pr subgroups conjugate to 11
in systems of transitivity whose degrees are 1 or numbers divisible
by 13. Since 11 is transformed into itself, there are at least 1) subgroups
‘111 = 11, 11,, , . ., 11,, conjugate to 11 which are transformed into them-

. selves by u . Consequently N11. is greater than 11,, and therefore N11
is greater than 11, Q.E.D.

' COROLLARIES:
1. Every maximal subgroup of a p-group is a normal subgroup;

therefore it is of index p.
2. If a p—group is simple then it is of order p.
3. The composition factors of a p—group are of order p and therefore

_ every p-group is solvable.
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§2. Theorem on Sylow p-Groups

Information on the intersection of diiferent Sylow p—groups is given
by

THEOREM '1: In the normelizer of a, maximal‘ intersection 5) of two
difierent Sylow p-groups of G} we have:

1. Every Sylow p-group of N, contains $17")?e
2. The number of Sylow p—groups of N, is greater than 2L
3. The intersection of two distinct Sylow 13-groups of N, is equal

to i)
4. Every Sylow p-group of N” is the intersection of N” with

exactly one Sylow p-group of (S.
5. The intersection of N” with a Sylow p-group of G which conp

twins 9 is a Sylow p-group of N, .
6. The normalizcr of a Sylow p—group of N, in N” is equal to the

intersection of N” with the normalizer of a Sylow p-group of mwhich
contains $0

Proof: SD is in a Sylow p—group SB of G and by hypothesis :D 4: SB. V
Therefore by Theorem 6 : fl) 4: p = N, /\ $ . p is a p-gtoup in N9.
thus by Theorem 4 it lies in a Sylow p-group 5 of [Vt-By Theorem 4, I)
lies in a Sylow p-group E of (9). Since am? contains 4; and thus is larger
than 5)) , 213 = 1 Therefore 9 = q; A N, = 5 is a Sylow p-group of N, ,
and the $6 in p = ‘B A N” is uniquely determined by p‘. Since every
p—group in N” is in a Sylow p-group of G,the intersection of twodistinct
Sylow p-groups of Ng is equal to S) . Since 3) is the intersection oftwo
different Sylow p-groups of (.55, N, contains several Sylow p—groups.
p = *3 A N” is a normal subgroup of n, = N, A N”. If we have

3 l) 1'" = P ,
for an a: in N”, then it follows that h g 1:53 r1, and therefore by 4.,
$=z$rh ng, 16%, consequently n,=N./\N, is the
normalizer of p in N”, Q.E.D.

As an application of this theorem, we shall show that every group I5
of order p”q is solvable (p, q are two distinct primes).

If a Sylow p-group $ is a normal subgroup, then @/B is cyclic and
by Theorem 6, Corollary 3, $6 is solvable. Hence (3 is solvable. Now sup-
pose SB is not a normal subgroup of (5; then 6 : N, = q, NI = $8.

‘ If n is the intersection of two Sylowp-groups and no group containing a properly
is contained'in the intersection of any two Sylow p-groupl, o is called n nominal
intersection of two Sylow p-groups.
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If the intersection of any two different Sylow p—groups is 1, then
there are 1 +q. (12'I —1) elements of p-power order, and therefore there
is at most one subgroup with order q. Consequently a Sylow q-group i3
is a normal subgroup of (9, and (SJ/D is isomorphic to it Since (55/9 and

, D are solvable, o is also solvable. Finally let S) be a maximal inter-
section of different Sylow p-groups greater than 1. The number of Sylow
p-groups of No is > 1, is not divisible by p, is a divisor of on and
therefore is equal to q. Also it follows from the previous theorem that
E lies in q different Sylow p-groups of (9. Therefore ED is the intersection
of all the Sylow p-groups of (3. SD is a normal subgroup of G, and the
factor group @IED has as the maximal intersection of different Sylow
p-groups the element 1. By what has already been proven, (ll/fl) is solv-
able. Moreover the p-group S) is solvable. Consequently (9 is solvable,
Q.E.D.

For many applications the following theorem is useful:
THEOREM 8 (Burnside) : If the p-group I; in the finite group (B is a

normal subgroup of one Sylow p—group but is not a normal subgroup of
another Sylow p-group, then there is a number r, relatively prime to p,
of subgroups but)” . . J), (r > 1) conjugate to I; which are all normal
subgroups of 5,) = I), 1);. . .1), but which are not all normal subgroups of
the same Sylow p-group of (6, so that the normalizer of .6 transforms the
I)i transitively among themselves.

Proof: Among the Sylow p—groups which contain I) as a non—normal
subgroup, Q is chosen so that the intersection 9) of D with the normalizer
Nb of I; is as large as possible. Let I): 1),, 5,, . . ., i), be the subgroups
conjugate to I) in the normalizer N, of fl). Along with i) , all the 1),.
are also normal subgroups of ‘D. The normalizer Nb of g) = I" 1),. .. l),
containsN”. Let Eh, I),, ..., l),,..., I), be all the groups conjugate to l)
in N‘ . Along with I) , all the I); are normal subgroups of 9. ED is
contained in a Sylow p-group p‘ of N” /\ Nr Since 9) is not a Sylow
p-group of (3, while, by hypothesis, a Sylow p—group of Ni is also a Sylow

' p-group of (9, then 49‘ is larger than $0. p* is in a Sylow p-group S of
N6 A N», 5 is in a Sylow p group p of N6 , and p in a Sylow p—group
ill of G). Since the intersection of a? with N‘ contains 41" , and therefore
is larger than SD , then by the construction of ‘D the Sylow p-group as of (ii
is contained in N5, and therefore a fortiori p is contained in NI; .

Since 3) contains the Sylow p-g'roup f) of N. A Nb, we have p = 3,
Since therefore a Sylow p-group of No A N. is already a Sylow p-group

.of N , r= N,:N° /\ N; is relatively prime to p. If all the m were
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normal subgroups of the same Sylow p-group of

/SB (5, then the latter would be contained in N6' But
/ ' \ then the groups 1),. conjugate to each other in NI)

would be normal subgroups in all the Sylow p-

/N° groups of N6' Then I, would be a normal sub-
: ‘ l group of the Sylow p—group q* of the intersection

NW of N” with D . But q“ is larger than a), and this
\ contradicts the definition of SD as the intersection

q’ of D with Nb ; therefore the I), are not all normal
/ subgroups of the same Sylow p-group of Q}, Q.E.D.

91= I) I). I) The positional relationships of the subgroups of
x . \' - ' ' ' “o constructed in this proof can be seen from the

‘9 I’I-mr‘lr diagram on the left.

§ 3. 0n p-Groups

1. Nilpotent Groups.
Fundamental for the theory of p—groups is the following statement:
THEOREM 9 . The center of a, p—group different from e is itself difi'erent

from e.

Proof: From the class equation for a group of order pc> 1:

r”= a: 1 +22»;
{>0

where the summands p‘ run through indices > 1 of certain normalizers.
Therefore 3: l is divisible by p, and consequently 1, 4: e.

COROLLARY: The (n+ 1)-th member of the ascending central series
of a group 0) of order p" is equal to the whole group.

The members of the ascending central series are defined as the normal
subgroups 3. of (55 such that 3., = e, gifllg‘ is the center of (WM . Now
either a. = Q) or, as just proven, am is larger than 3,, and therefore
certainly 3,. = @5.

By refinement of the ascending central series of a p—group we obtain
a principal series in which every factor is of order 12. It follows from
the Jordan - Holder - Schreier theorem that:

Every principal series of o p-group has steps of prime order.
The index of the center of c nonrabelian p—group is divisible by p’.

This follows from the useful lemma : If a, normal subgroup 92 of a group 65
is contained in the center and has a. cyclic factor group, then 6 is obelian.
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Since (3/9} is generated by a coset A92, all the elements of (5 are of the
form A‘Z where Z is in the center.
Therefore

A‘Z - A*Z' = AW‘ZZ' = A*Z’ - A‘Z

’ and a is abelian.
If we apply the result found above to a p-group in which

©=au#a._1=l=e. then: p‘/®:3._n and since (WM, is abelian, it
follows that:

The factor commutator group of a non-abelian p-group has an order
divisible by p“.

A group of order p or p2 is abelian. In a non—abelian group of order p”,
the center and the commutator group are identical and are of order p.

DEFINITION : A group Gt is said to be nilpotentl if the ascending central
series contains the whole group as a member, i.e., if

9=h<31<3z<-"<3o= @-
The uniquely determined number c is called, following Hall, the class

of the group. Therefore “nilpotent of class 1” is the same as “abelian
* e.”

THEOREM 10: In a nilpotent group of class a it is possible to ascend
to the whole group from any subgroup by forming normalizers at most

. c times.
Proof: Let (S) be nilpotent of class c; let It be a subgroup. Certainly

to is contained in u . If 3, is already contained in 11 , then by the defini-
tion of 3;“, it follows that a”, is contained in the normalizer of it.
By at most 0 repetitions of this procedure we obtain the result.

COROLLARY: Every maximal subgroup of a nilpotent group is a normal
‘ subgroup and therefore is of prime index.

Therefore in a p-group G) the intersection of all the normal subgroups
of index p is equal to the @-subgroup defined earlier. The factor group

- 61/45 is an abelian group of exponent p. By its order p4 the important
invariant d = (1(0) is defined. The significance of d is made clear by the
following BURNSIDE BASIS THEOREM: From every system of generators
of G exactly d can be selected so that these alone generate (5). By the
general basis theorem this theorem need only be proven for (Bi/s0 .

‘ This name is used because for finite continuous groups the associated Lie ring of
infinitesimal transformations is nilpotent precisely when the ascending central series
‘terminates with the full group.
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2. Elementary Abelm Groups.
An abelian group I with prime exponent p is called an elementary abeliau wow.

I! 1 is of order pd then it is possible to generate I by d elements: Let S: be an
element * e in U ; let S. be an element in a not in (8.) ; let S. be an element of K
not in [SnSd ; let Sybe an element in a and not in mus" . . .. Sgt-1} and
[31. 5.. . . ., 84:] = I. Then (8,) Is of prime order 11 so that we must have

(8‘) A [8,,8” . . ..S‘_‘) é— o
It follows from this that

{s.,s......5.} = (s..s......s._,) x‘oo
a= (80x (s.) x x (st).

and since it : l = p‘, , we see that d = «if Therefore a finite elementary abelian group
is the direct product of a finite number of cyclic groups of prime order. Conversely
a direct product of a finite number of cyclic groups (SI), (5,), . . . , (3,) of order p
is an elementary abelian group. The elements S., S,, . . . , S, in the direct product
representation are said to be a basis of a . The above method of construction shows
that every generating system of 9! contains a basis. Therefore 11 is the minimal
number of generators. Consequently every system of d generators is a basis of Q1.
The number of basis systems of I can be calculated easily:

In the above construction there are pd‘l possibilities for 8.; after choosing S1,
there are pd-p possibilities for S, and so forth, so that we obtain the number
(p‘ — l) (p‘ -—p) - . . .- (pd—1f“) as the number of basis systems of 2!. If
51, SI, . . . , S. is a fixed basis and T., T:, . A . , T‘ is an arbitrary basis then the mapping

s,"-s.'-, . . A, sit» T," ,"-, . {1'
defines an automorphism of H and conversely. Therefore it follows that:

The number 0/ automorphisms of an elementary aboliau group of order pd is equal
ta(p‘—1)(p‘~—p)-...-(p‘—p‘“). Ifweset

ha= (r—l)<r~l—1)-...-(p—1),
then the number is equal to pin“"h. From the general basis theorem in II, § 4,
it follows that:

The number of automorphisms of a p—group of order p" (n>0) and d generators
isudioisorof

WWW W-r)(r‘—r)-----(r‘ ~r‘")~
Remark: The highest power of p which divides this number is pallKI-IH—i) , and

since 0< d g n. this number is a divisor of pQMI-l), as can easily be seen.
Therefore the number of automorphisms of an arbitrary group of order p” is a
divisor of the number of automorphisms of the elementary abelian group of order p”.

For later theorems it is important to obtain several formulae about the number
WM of subgroups of order p“ in the elementary abelian group of order pd. Let
0 < o; g d. Every subgroup of order p' is elementary.

If s,,s., . . .,S.. are the first as elements of a basis of the whole group, then
these on elements are a basis of a subgroup of order p". Conversely, as we have seen
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previously, every basis of a subgroup of order p" csn be extended to s basis of the
whole group. Since the elements 8,, 8‘, l, 5,, can be chosen in

(p‘— 1) (if—9% . --(r‘—r"")
different ways, and every subgroyp of order 9" has (pF— 1) ..... (P'— 1"")
dlfierent basis systems, then

_(p¢_1).....(,4.. M) I:0’ ”-“rG—ewpu—Ififitmm'“
where k. = 1. From this the reader can derive the recursion formuh

(2) Wa+1.a=9’d.a +P‘H-‘9’am—i
for 0<a§d ,where 9's.o=l= k . Ifweset w"‘=0 forntlonollntegers
a which are larger than 11 or smaller than 0, then the formula is valid generally.
From this formula we derive the congruence

(3) Wm, .. a w... um") «21)
and the polynomial identity

1 l
(4) [lib—12"“=02‘(—l)'p§'("_1)w...8‘_'. -

by induction. If we set a = 1, then

(6) 0= 1 —w.,. +pw.,.+---+ (— 1)“r*““"-
An abelian group of order p“ can be decomposed, by the basis theorem, into the

direct product of cyclic groups of orders p'l, p", , . ., p'r . Here the exponents
m, up . . . , n, are determined uniquely to within order. Therefore we say: The group
is of type (pH, f1, . . ., ff). If we order the n, by size so tbntpioccurs a, time: u
the order of a basis element, then we say: The group is of type

fln'l+¢.'3+"' +nI-n. “

Here the non-negative integers q are bound only by the relation 2“".= n .
I

3. Finite Nilpotent Groups.
The direct product of a finite number of nilpotent groups is nilpotent,

as is easily seen. For example, the direct product of a finite number of
p-groups is nilpotent. The following converse is important:

THEOREM 11: Every finite nilpotent group is the direct product of

its Sylow groups.
Proof: The normalizer of a Sylow group is its own normalizer by

Theorem 5, and therefore, by Theorem 10, it is equal to the whole group ;
. consequently every Sylow group is a normal subgroup.
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Let p,, p,, . . . , p, be the various prime divisors of the group order,
and assume we have already shown that

S,.:S’,,- . . ..S,i=S,, X 3,. x x :5," t‘ <r.

Then the normal subgroups 8,, - Sh - . . . - Sp, and 8,,-+1 have rela-
tively prime orders so that their intersection is e; and therefore

S’I'Syl‘. . "Sh.“ =S,. x 5’. x‘--- x 8"“.
But from the equation 8,, - 18,,- . . . -S,, = 8,, x 8,, x . ~ - x Sp, if f01-
lows, by comparing the orders, that the whole group is the direct product
of its Sylow groups.

THEOREM 12: The @-subgroup of a nilpotent group contains the
commutator group.

Proof: As we saw earlier, the é -subgroup is equal to the intersection
of the whole group with its maximal subgroups. By the Corollary to
Theorem 10, every maximal subgroup of a nilpotent group is a normal
subgroup of prime index, and therefore every maximal subgroup of a
nilpotent group contains the commutator group. Consequently the é-
subgroup of a nilpotent group contains the commutator group.

Remark: We have further that ¢(®)/®’ =- @(w/(lj’), which can be
derived from the definition of the (15 —subgroup as the intersection of the
whole group with its maximal subgroups.

For finite groups we have the converse:
THEOREM 13 (Wieland) : If the @—subgroup of a finite group con-

tains the commutator group, then the group is nilpotent.
Proof: As in the proof of Theorem 11 it suffices to prove that every

Sylow group is a normal subgroup. If the normalizer of a Sylow group
were not the whole group, then it would be contained in a maximal sub-
group which on the one hand would contain the lb-subgroup and there—
fore the commutator group; and on the other hand, by Theorem 5, must
be its own normalizer. Since this is not possible, every Sylow group must
be a normal subgroup of the whole group. 4

THEOREM 14 (Hall) : If the normal subgroup it is not contained in 3;,
but is contained ina‘H, then the following is a normal subgroup chain
without repetitions: 9? ) 9'3 /\ is > 9? A a“; > . . . > e.

Proof: We have (Q). 9059: A ((55, magic /\ 34- Since 2!! is not
contained in 3; , ((6), 91) is not contained in 5H, and therefore 92 A 3; is
not contained in 9! A 3H. We apply the same argument to'éll A 3; , etc.,
Q.E.D.
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4. Maximal abelian normal subgroups.
It is natural to consider the maximal abelian normal subgroups as well as the

maximal abelian factor group. In general abelian normal subgroups which are con-
tained in no other ahelian normal-subgroup are neither uniquely determined not

, isomorphic to each other, as is easily seen in the example of the dihedral group of
eight elements. The center seems to be more appropriate as a counterpart of the
factor commutator group, as we already have seen in the theorems on direct products.

In any case, there is, in every group whose elements 3:41., (14, . . . , are well ordered,
a maximal abelian normal subgroup. We can construct an abelian normal subgroup
1., for any index co in the following way: 2!, = o ; let B", be the union of all I,
with 7 < w ; let 1,, be equal to the normal subgroup generated by $8.. and on, if
this normal subgroup is abelian. Otherwise let it." = 3.... The union of all the a,"
is a maximal abelian normal subgroup.

A maximal abelitm nmmul subgrmm 9! of o nilpottmt group is its
own centralize'r.

Proof: The centralizer Z. is a normal subgroup of 0. If Z; contained 1
properly, then by Theorem 14, a center element X 1 in 1‘]! would be contained in
6/91 ‘ so that the subgroup generated by X and I would be larger than I. But since
this subgroup containing $1 would also be an abelian noimal subgroup, we must
have Z“ = 91 .

If m and 2! are of orders 1)" and 11'", respectively then the index 12"" is a divisor
of the number of automorphisms of a, whereupon, by Part 2, it follows that

pr-m/zzém-v.
(6) 2n g m(m + l).

5. The automorphism group of Z”.
We wish to determine the automorphism group of the cyclic group 2N for N > 1.

For this purpose we consider Z” as the residue class module (quotient module) a (N)
of the additive group of integers with respect to the submodule of integers divisible

by N. The operators of ZN are given by the multiplications 5 2 (:2) by the rational

integers t; I; and 5 are equal if and only if gand I. are congruent mod N. _t is an
automorphism if and only if t is relatively prime to N. The number ¢(N) of auto-
morphisms of z” is equal to the number of residue classes (cosets) mod N which

- contain numbers relatively prime to N (prime residue classes).

The automorphism group of ZN (cyclic group of order N) is isomorphic to the
group of prime residue classes mod N. If N is the product of relatively prime numbers
ml, m, then ZN is the direct product of two characteristic cyclic groups of orders m,, m.
For the automorphism group we have the corresponding situation; in particular

MN) = Mano-a).

_ ’Here we must anticipate the result of § 5 which is trivial for p-groups; namely,

that every factor group 01' a nilpoint group is itself nilpotent.
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If N is the n-th power of a prime p then a residue class is prime if and only if it
consists of numbers relatively prime to p; the number of these residue classes is
p" —p‘". If N s “Infill. , , , .prfir is the prime power decomposition, then

(7) ¢(N)=Ii¢(74“)=Ii(Pc~—P£~—l)=N'I'I(I_%‘)'
I 1 r

The residue class ring n(p) is a field and therefore, by II, § 7, the automorphism
group of Z, is cyclic of order p—l. A rational number 9 whose order mod p is p—l is
said to be a primitive congruence root mod p. g has an order which is divisible by p—1
mod p"; say therefore, it has the order (p — 1) ~ p’. The order of g, = g" is then
equal to 11-1, mod p0. I! a = l + hr, then it follows from the binomial theorem

that u’ E 1 + ppm“ +E§flPPIIWI)' Therefore a 5 law) implies
that a' E lW“). However if m > 1 or if p is odd then a $ 1 (p'H'l) implies that
vs; 101"“). If p is odd, then 1 +1; is of order r’mod p”, (l + p) .g. is of
order (p — l) - phi. If p=2, then 1 + 2' is of orderW'mod 2» (n>2), Since —1 is
congruent to no power of 5 mod 4, there are, mod 2", theW‘difierer-lt prime residue
classes :1;- 5' (0 g 7 < 2""). As a result we obtain:

If n < 3 or p is odd, then the endomorphism group of Z, is cyclic of
order (p — l)pn-l. The automorphism group of Z,- , for n > 2, is
abelian of type(2'- 1,2)with the associated basis automorphisms é and —l.

6. p-Groups with only (me Subgroup of Order p.
A non-cyclic abelian group 0f exponent p“ contains at least two difsrsnt sub-

groups of order p.
Proof: Let A be an element of order p» and let 8 not be a power of A. Then the

order p! of 8 mod (A) is greater than 1, but at musty. We have

B"=A", B'F=A"""=s, r=s-p', (B-A“)"=e.

Therefore (BA")”" and 4"“ generate two different subgroups of order 1).
We wish to find non-abelian groups of order p" which contain only

one subgroup of order p.
An example is the quaternion group. By the theorem of Holder it is

defined by the relations A‘ = l, BAB"= A”, B' = A' as a. group
of order 8 with generators A and B. Its eight elements are ’called
quaternions; they are

l, A, A', A'

B, A B, A'B, .08.
If instead we write

.L—L—i
LL—L—t
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and set
-(-l)=l. -(—i)=i, —(—i)=i, —(—l)=l.

then we have the following calculations] rules:
l-z=z-l=s,—l-w=z-—l=—z, (-1)I—_—1,
i‘=i'= _—__1, ii=—ii=‘: j!=-—ti=i,
li=—il=i.

From this we conclude that there is only one subgroup of order 2 and
exactly three subgroups of order 4. The center is equal to the commutator
group which is equal to (—1).

The generalized quaterm'on group is defined by the relations

(8) 41"“ = 1, BAR-1 = A-x, B' = A!“ 0.»)
as a group generated by A, B, and of order 2", by the Holder Theorem.
Since

(BAT = BA'B-l- B‘- A' = A-'B'A' = 3',
this group contains only one subgroup of order 2. The elements A.
and B generate a quateruion group.

The relations above can be written more elegantly in the form

(9) A’""=B‘= (AB)! .
~ The new relations follow from those above.

From the new relations, however, it follows that

BAB‘I = A'I(AB)' B"= A"

BA""B"=A"""=BB‘B“= 8‘ =4-"‘
Ala-1 = l .

and therefore the old relations lollow.
If A’ is of orderr'lfi’ of order 4, and if A’ and B’ generate the whole group, then

A’I"" = B" = (413,), = A'D—I'

Therefore all the cslculstional rules which are valid for power products of A and 8
also remain valid for the corresponding power products of A’ and 8'.

Since A' and B’ generate the whole group, (A') is a normal subgroup of index 2.
and every element can be written uniquely in the form

A"B'F (0 g i < 2"“, 0§u<2)-

Therefore the mapping A'Bl‘ —>A"'B’F is an automorphism of the group. The
number of all the automorphisms is equal to the number of pairs A’, B'. It follows
by simple enumeration that:
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The quutmilm group has exactly 24 automorphisms. The generalized quotarnion
group of order 2" has axoctlyZ""cutomorphisms for n > 3.

In the automorphism group A of the quaternion group, the inner automorphisms
form an abelian normal subgroup J of order 4. An automorphism which commutes
with all the inner automorphisms is itself an inner automorphism. Since it changes
each generator by a factor in the center, there are at most 2.2 such automorphisms.

A group A having order 24, and containing a. normal subgroup J of order 4 which
is its own centralizer, must be isomorphic to 6. . ‘

This is because a central element of A must be in J, and an element of order 8
must transform the three elements * c in J in a cyclic manner. Then, since according
to the results of Sylow there are elements of order 8, the center is e, and there is no
normal subgroup of order 3. From these results also, the index in A of the normalizer
N: of a Sylow 3-group is g. A transitive representation of A in 4 letters is associated
with N.. The representation is faithful since the intersection of all S—normalizers
contains only center elements with orders 1 or 2 and therefore is 6. Since A consists
of 24 elements, A is isomorphic to 6‘.

The automorphism group of the quate'rru'on group is isomorphic to the symmetric
permutation group of [our let! em.

The quote'rnion group is the only p—group which contains two difi’erent
cyclic subgroups of index 10 but only one subgroup of order 1).

Proof:‘ Let g be of order p" and let it contain two different cyclic subgroups 1!,
and III of index p. 111 and 11, are different normal subgroups of index p, and therefore
their intersection S) is of index p’. Moreover 1) is in the center and contains the
commutator group. It follows for any two elements 2-, y that are and yr are in m , and
that (y. z)’ = (g'. z) = 2. (aw = (y. who-"wt

If p is odd, then (zy)’ = z’g’, and therefore the operation of raising to power 1:
is a homomorphy. Since the group of p—th powers is contained in ED, by the first iso-
morphism theorem the elements whose p-th power is e form a subgroup whose order
is at least p'. There are at least two difl’erent subgroups of order p in this subgroup.

If p = 2, then (”)4 = (y, z)‘ z‘y‘ = z‘g‘. Now we conclude just as above that
either-S = l and 11,, 11, are two different subgroups of order 2,01‘ there are two
subgroups u, =l= uI of order 4 by the first isomorphism theorem. We may assume
that uI is in 11,. If u, is difl’erent from ll, , then u, is in E and 11,. IL. is an abelian
group of order 8. Since it contains two different subgroups of index 2, it is not cyclic,
and therefore it also contains two different subgroups of order 2. If, in conclusion,
It,-_ 11,, then the whole group is of order 8. Let 11,: (A) and ll.= (B). If there
is only one subgroup of order 2 then B'_— (A By: AI, and therefore the group is
the quaternion group.

THEOREM 15: A p-group which contains only one subgroup of order p
is either cyclic or a generalized quaternion group.

Proof: Let a be of order p" and let it contain only one subgroup of order p. First

' In accordance with a communication from Herr Manes, «Hamburg.
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let p be odd. If n=0, 1, then the theorem is clearly true. We now apply induction to n.
Every subgroup of index 11 is cyclic by the induction hypothesis, and therefore

by what was proven previously there is only one subgroup of index p in 6, and
therefore 05 itself is cyclic.‘

Now let 10:2 and let u be’i 'msximal abelian normal subgroup. ‘21 is cyclic
and its own centralizer. Therefore 6/21 is isomorphic to a group of automorphisms
of u . We shall show that only one automorphism of order 2 can occur, namely,
the operation of a raising the elements of l to the power —1. Since this automor-
phism is not the square of any other automorphism of K, it follows that IE : fl is
either 1 or 2. If we set i= (A) and assume that B$c(![), B‘sem)’ then
as a preliminary BAR“ must be shown to be equal to A“. In fact, we want to show
further that the group generated by A and Bis a generalized quaternion group with
relations (8) and (9). Then the theorem will be proven.

Since 8 cannot commute with all the elements of A, (8') *A, and there is a
subgroup 91, of El, which contains (3‘) as a subgroup of index 2. The group
%(8) contains the two different cyclic subgroups K1 and (B) of index 2; and
therefore it is, as was previously shownY the quaternion group. If A is of order 2'"

then: 85:4!”“. We also conclude (AB)'= AW". Therefore A and B
generate the generalized quaternion group of order 2"”.

THEOREM 16: A group of order p" is cyclic if it contains only one
subgroup of order p'" (where 1 < m < n).

Proof: There is a subgroup 11 of order pm. ll is contained in a subgroup u, of
order 11"“ and is the only subgroup of index p in Ll, . Therefore it, is cyclic
and consequently 11 is cyclic. Since every subgroup of order p or p“ is contained

‘ in a. subgroup of order p1", and since the only subgroup of order pm is cyclic, there
is only one subgroup of order p and one of order 12‘. Since the generalized quaternion
group contains some subgroups of order 4, we conclude from the previous theorem
that the whole group is cyclic.

If in a p—group, every subgroup of order p‘~‘ is cyclic, then there is only
one subgroup of order p, and conversely.

If there were two different subgroups of order p then we can assume that one of
them is contained in the center. But then the product of the two subgroups is a
non-cyclic group of order 12’. Conversely, in a non-cyclic group of order 12’ there are
certainly two difl’erent subgroups of order p. Now one can easily prove:

THEOREM 17: A group of order p" in which every subgroup of order p'“
is cyclic, where 1 < m < n, is cyclic except in the case p = 2, m = 2 in which
case the group can also be a generalized quoternion group.

7. p-Groups with a Cyclic Normal Subgroup of Index p.

We shall determine all the p—groups which contain a cyclic normal subgroup of
index 1). This problem will now be solved for non-abelian p—groups, which contain
some subgroups of order p. If a is of order p', then in 6 there is an element A

‘ This last by the basis theorem.
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of order WI and an element B of order p which is not a power of A. A and B

generate fiend the subgroup (A) of index p is a normal subgroup. Therefore

An""=39=1, BAB-‘=A’,
r$l(p""), rvEupn-I).

If for odd p the element B is replaced by an appropriate power, then we can take
1- = 1 + pvt-I .

If p: 2, n: 3, then we must have re — 1(4). If 12:2, n>3, then there are
three possibilities for r,

r2 —1, 1 +2'", —1 +2""(2"").
The number r is not altered mod2'I-‘if B is replaced by BA“;

If r E l + 2"“, then the commutator subgroup is of order 2; in the other
two cases it is of order 2"”.

If E — 1, then (BA')‘ = (BA'B—‘)B'A' = A—'B'A' = l, and there-
fore there is only one cyclic subgroup of index 2. Thus r is uniquely determined by
the group. As a result we obtain:

The groups (55 of order p" which contain, an element A oforder 11"", are
of the following types:

a) Gabelian:
H g l I Z, : B": l
n g 2 11 AW": 1, B»: 1, AB: BA;

b) (B uon-abeliau, :0 add:
u g 3 In Ar“: 1, B’: 1, BAR-1: A1+v"“;

c) (9 uou—abeliau, p = 2:
n g 3 III generalized quaterniou group:

A2“: 1, B‘= 11"", RAB-1: A-1
1. g 3 IV dihedral group D,.:

A’": l, B‘: 1, BAB—1=A'l
n g 4 V A'“"= l, B'= 1, BAB-1= 41"”2,
rig 4 VI 14"": l, B: 1, RAB-1= A-1+"'".

Groups of difiererst type are not isomorphic. From Ho'lder’s theorem it
follows that all types exist. For n: 3, V will coincide with IV, and VI
with 11.

Now it is simple to give all groups of order p'. We must now investigate among
such all those in which the p-th power of every element is e. A group in which all
squares are equal to e is abelisn since

:e= at“, thus 29: (:oy)”= y-‘r' = yet.
If the group is non-abelian and p is odd, then it is generated by two elements
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A and B such that the relations
A’ = B’ = (A, B)’: 1,A(A, B): (A, BM, B(A, B) = (A. B)B

hold. By [11, Theorem 21, these relations define a non-abolinn group with generators
A, B and order p‘, in which, for pay two elements at, y, we have:

(=u)’ = (a. yfl’"“’z’y’ = «M'-
Thus the p-th power of every element is equal to e. As a result we obtain:

There are, for every prime number p, five types of groups of order p‘, namely
the three abelian types:

I. Z" : B" = 1.
II. A"=1,B’=I,AB=BA.

VII. AD=B’=C’=1,AB=BA,A0=OA, BO=OB ,
and two non-abelian types, which are, for p=2z III, the quaternion group and IV,
the dihedral group, and for odd p the types

In. Av= 1. B'= 1. BAB"=A‘+’,
IV. A’ = v= (A. B)’: 1. A(A. B)= (A, ms. B(A- B) = (A. B)B.

Exercises

1. If a p—grnup contains a cyclic normal subgroup of index p, then every sub-
group difl‘erent from a has the same property.

2. For odd p, the following properties hold for abelian groups of type (11. If“)
and for non-abelisn groups of order [1" having a cyclic subgroup of index p, where
m is a number greater than zero and less than n:

a) The number of subgroups of order pm is 1 + p in both cases.
b) The number of cyclic subgroups of order p“ is, in both cases, 1+p or p

according to whether m=1 or m) 1.
c) The number of elements whose pit-th power=e is p.“ in both cases.
d) In both groups, every subgroup whose order is divisible by p’ is a normal

subgroup. Therefore for m > 1 there are equally many normal subgroups of order p".
e) The number of automorphisms is 11"(p-l).
3. The two types of non-abelisn groups of order p‘ can be defined by the relations
III. A! = B’ = (A. B).
IV. A’=B’=(A,A,B)=(B,B.A)=l

for all p by an appropriate choice of generators A, B.
- 4. If s 2-group contains a cyclic subgroup of index 2 and is neither sbelian of

type (2, 2) nor the quaternion group, then the number of its automorphisms is a
power of 2.

5. In a finite group, the index 01 the normalizer over the oentrslizer of a Sylow
p-group with d generators is s divisor of k" If the order of the group is divisible
neither by the third power of its smallest prime factor p, nor by 12, then every Sylow

_p-group is in the center of its normalizer.
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6. In an abeliun p-group G with the exponent pm, the characteristic chains

@DW‘)@">---)QS’”=¢
and 0:8,m>5,m-1)~-)6,)¢

give rise to a characteristic series though the refinement process which was given

in the proof of the Jordan-Holder-Schreier Theoiem. There is only this one char-

sctetistic series. (Here of denotes the group of the pV-th powers and 6,,

denotes the group of all elements whose p'-th power is e.)

'7. Theorem 2 in § 1 admits the following co1:olla.1ies If ‘3 is a SyloW p—group.
in G, N«3 1ts normslizer, $1 a normal subgroup of Q} then

:1) N45 921% is the normalize: of the Sylow p-group £691]?! of 0/92:
b) NB is contained in the normalizer No of the Sylow p—group p = ‘8 /\ 91

of ill ;
c) N”: = 6; therefore by the Second Isomorphism Theorem

Iva/N;l /\ $2 as GM.
(Hint for a): If :o‘lWiz“ = $91. then by Theorem 3: 23133:": v ‘31!“ is

solvable forvin 92, therefore 7'13 6 N9; (for c): for every I in a , 51) a" =vpv“
is solvable for r in 9!. )

With the help of C)“; should be shown that the di -suhgroup of a finite @0111) is
nilpotent.

§ 4-. On the Enumeration Theorems of the Theory of vroups

In the study of finite groups the question arises naturally as to the
number of elements or subgroups with some given property. The results
obtained in connection with this question do not lie very deep.

The following systematic derivation of the enumeration theorems
in p-groups is due to P. Hall.

THEOREM 18 (Counting Principle) : Let (‘5 be a finite p-group. an,
denotes any subgroup of index p' which contains 115(6)). Let (Q) be a
set of complexes such that each complex .6 in (Q) is contained in at
least one subgroup of index 2). Let Man.) he the number of complexes
of (9) which are contained in ER. . Then

non.)—2n(m.)+p2n(wz.)—p'2n(w+--- ‘
(“1) (9h) (91;)

+ (— 1)" r*"“'“’ 5)“ (211.) + ~ ~ ' + (— 1)‘ 22W” new = o.

where the summation (“2'“) is extended over the «pg... subgroups am. of (9).

Proof: We shall show that the number of times that an element a
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in (R) is “counted” with the appropriate sign on the left of the equation
above is equal to zero.

The intersection of all m. which contain 9, contains 115(6), and
therefore is an 211%.. By hypothesis 8 is contained in an so}, and there-
fore e > 0. The number of all Sm.’s which contain 9 is equal to the

number of all 37!. ’s which contain Silvie, Vow Therefore the number
of times that R is “counted" is

;_¢9" +P9’e.i"p‘%.3+"‘
+ (—1)-pi"'-”<p... + .. . +(_1)eph(e-u.

But this number is zero, by § 3, Formula 5, Q.E.D.

THEOREM 19: The number of subgroups of fixed order p’"(0 g m g u)
of o, p-group (ii of order 1)" [cores 1 as a remainder when divided by 1).

Proof: If n = 0, then the theorem is clear. Now let u > 0 and assume
that the theorem is proven for p~groups whose order is less than p".
If m=n then the theorem is trivial. Let m<u. For Theorem 19, let
(3) denote the set of all subgroups of (ii of order 11'”. Then:

"(w E Q» (m) (p),
. and by the induction hypothesis

”(2131) E l (P);

moreover the number of all SIR, is '1’:- ,_l, and therefore by § 3 congruent
to 1 mod 12, so that

Mime) E 1(1?)
follows, Q.E.D.

THEOREM 20 (Kulakofi): In a, non-cyclic p-group of odd order p",
'the number of subgroups of order p'"(0 < m < u) is congruent to 1 + p
modulo p".

In the non-cyclic group of order 12’ there are p+1 subgroups of
'order 11. We apply induction on 71. and assume u > 2.

The number of all 9J3, is (Pa. 1-1. and therefore, since d > 1, is con-
gruent to -1+p mod 11’. Let m< n-l, (9) be the set of all subgroups of
order p'“. By the Counting Principle it follows that

”(50%) iguana-PZMWJ-
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By Theorem 19
”(M1): 1(9)

and by § 3, 2., the number of all 91!; (namely 'Pa. (—2 ) is congruent to
1 mod 11. Consequently

”(93.) 5%” (W1) — 70")

For the non-cyclicfliunwll) a l + p(p*)by the induction hypothesis,
As was shown, the number of all an, is congruent to‘l + p (p‘) . If there is
no cyclic subgroup of index 12 in (3], then

guano a a + p)'—p(modr) a 1 + p(modp‘).

If 6) contains a cyclic subgroup of index 10, then the theorem follows
from the solution of Exercise 2a at the end of § 3.

THEOREM 21 (Miller): In a, non-cyclic group of odd'order p", the
number of cyclic subgroups of order p" (1 <m< n) is divisible by 1).

Proof: If (ii contains a cyclic subgroup of index 17, then the theorem
follows from the solution of Exercise 2b at the end of § 3. To continue,
let every subgroup of index 1; in (i) be non-cyclic, m< n—1 and assume
the proof has been carried out already for smaller n. Let (9) be the set
of cyclic subgroups of order 9’". We find the congruence:

"(WUEZMWIHPL
By the induction hypothesis each of the numbers nail) is divisible by
p , and therefore the desired number ”(9120) is also.

THEOREM 22 (Hall) : The number of subgroups of index 12" in
(‘1 (0 g a g d) is congruent to 91., a(modp“' +1)J‘he number of those sub-
groups which do not contain aim) is consequently divisible by p“‘+‘ .

Proof: If (1 = n, then the number in question is already known to be
Wm Let n> 1 and let the theorem be proved for smaller n. If u = 0,
then the theorem is clearly true. Let a > 0, then n(21)2,) is equal. to the
number of all subgroups of index 124—9 in 513%,. Therefore "(m/i) = 0 if
[1 > a ; but otherwise by the induction hypothesis

"($311) E 9mm). I—fl (P‘mfl """H‘l .
Since damp) g d — p and therefore by § 3

”ML“! 2 W-P. "—F (pH—F)-(¢-fli+l),

we have hang) a ”4,”, (pi—0+1). .
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The Counting Principle now gives the congruence

n (mo) 5 WJJ ¢a-x,a-1 — P9’d,2W-n.n—t + - --
,. . + (_ 1)"1P‘}“(°"”‘h..?a—a,o(P‘"+’)-

But by the Counting Principle, the right side of the congruence is
exactly the number of subgroups of index If in an elementary abelian
group of order pd, so that

“(m)5¢a,-(I’“+‘) , 0.2.1).
Exercise (Kulakoff): In a non-cyclic p-group of odd order p”, the

number of solutions of 2"" = e(0<m<n) is divisible by 20W-
Ezercise: The number of normal subgroups of order p" in a group

of order p”(0 < m < n) is congruent to 1 (mod 11).
If p is odd, 1<m, and (g is non-cyclic then, more precisely, the

number is congruent to 1 + 9 (mod 12‘).

§ 5. 0n the Descending Central Series

P. Hall has generalized the concept of a terminating ascending
central series by defining:

A chain of normal subgroups of G!

(1) @=%g%;%;~-;R+n=¢
‘ is called a central chain if 9h/9im is contained in the center of (bl/Eli.“

(i=1,2,...,r).
If the ascending central series (See 11 § 4, 3.) terminates, then it is

a central chain. The following definition is still more useful: A chain
ofsubgroups @5=9h292,2-n292,+1=e

is said to be a central chain if the mutual commutator group (o, 91.)
is contained in Wm (i=1, . . . , 1'). Since for every x. in *Jh, z in G):
zziz'wi“ E swim), and thus certainly max" 6 92,, it follows that

' 92. is a normal subgroup of (it and that 9mm,“ is contained in the center
of 6/92.... The converse is clear. in". is contained into; if it has
already been shown that 92”,“ is in 3. where i<r, then

. (65: mr—i) S yarn-I S in

and therefore 92,... S 3“,, . Hence

(2) mar-4S3: ("M-gm")-

‘Consequently a, = @5.
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If a group has a central chain, then it is nilpotent and the length of
every central chain is at least equal to the class of the group.

Now it is natural to define the descending central series for an-
arbitrary group (55 as 3, 2 8, 2 8., . . ., where 8,((§5) = &= (5,

82(0)) = 8:: (or, 0) = (55" . . n 8mm» = 8..” = ((3. 8n)
If (ll has a central chain (1) then it follows .by induction that:

34 m1, 8,; 9B,, . . ., 3m; 92,“, and therefore 8”, = e. Incon-
versely, the descending central series is equal to 'e from the (r + 1)-th
place on, then G} = 8,2 8,12 m2 3,+1 =.e isva central chain. If c is
the class of (5), then .. r g c, 3‘ S 3‘+14: and therefore 8. =l= e, H = e.

In a nibpotent group, the class c can be found from the relation:

(3) @=31>8s>~~>8m=e
By Chapter II, § 6, 8‘ is a commutator form of (3 of weight‘ 1' and

of degree 1 and is generated by the higher commutators (0,, G2, . . ._, 6‘)
where G, 6 65. Therefore 3; is a fully invariant subgroup of G}.

For every subgroup 11 of (5 it follows that

8:01) g 84(95)-
H 9! is a normal subgroup of (‘5, then

8c(06/9l) = mom/'92.
It follows from this that :
Every subgroup and every factor group of a nilpotent group is itself

nilpotent, and the class of the subgroup or factor group is at most equal
to the class of the whole group. ’

We wish to state something about the positional relationships, and
the mutual commutator groups, of members of the descending central
series and of an arbitrary central chain.

If 92,292,292, . . . is a sequence of subgroups of an arbitrary
group 61, so that (65, 272,) g 92,“ (7' = l, 2, . . .), it follows, immediately
that 9h is a normal subgroup of G. If moreover 8;; 92,, then it follows
by induction that 8“; S 9!"; (k=0, 1, 2, . . . ). In nilpoten‘tgroups
of class 0 we can conclude from this that:

(4) 3‘ is not contained in 3,_, (since otherwise we would have
8a=e)-

‘ 3‘ is also called the i-th Roidcmeistar commutator group.
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Now we claim that in the general case

(5) (8h 92,) g 92“,.
We carry out the proof by induction on 1‘. By hypothesis

(8n 93;) = ((3, 9b) g 92m
Let i> 1 and assume we have already proven that (8H, 9h) g 92mm
for all Is.

Then by 11. Theorem 14:

(8t: 93,) = (93!: 3c) = (931: (3: 8‘4»

= (921, Q}, 8a—1)S(@s 81—1, at!» (81—1: 921, 6)

and by the induction hypothesis:

(Qt 8c—1,9l1)=(@, (Si—12921)); (9}, 92m-» ; 91m
(SI-1r ml! 6) = (st—n (g: ml»; (st—n 92M) £92“!-

Therefore (8., 91,) g 92“,.
.If we set

92,=‘8,, 9L=8.,..., ill,=8,,...

. then V

(6) (8n SASS»:-
We can now show by induction on the weight that:

An arbitrary commutator form f(@) of weight w is contained in8,.

This is true if w = 1. Now let w > 1, and assume that the statement
is already known to be true for commutator forms with weight less
than w. We have HG) = (13(5), f,((9)) where the f; are commutator
forms of weight wi such that w =w, +w,. By the induction hypothesis

, it follows that /1(@) g 3.1, /.((5)) g 8"; thus

“(ills (8-,, 8-.)S8~.+..= 8..-
In particular it follows that

('7) ' 8&8. (twgsuw).
(8) D‘ Q! g 8,; (Qt).
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A nilpotent group of class a is always k-step metabelt'an, where k
satisfies the inequality

(9) 2FI g e

Moreover if we set 34 = 3_. = .. . = e, then in general

(10) . (8:: 01) S 31-h~
In particular, 3, commutes with 3; elementwise.

THEOREM 23 (Hall) : If the non-abelian normal subgroup W of the
p-group (ii is contained in 3‘ , then its center is of order at least 19‘, in
itself is at least of order pm, its factor commutator group is at least
of order p‘“. ‘

Proof: Since 3‘ commutes with 8f elementwise, in is not contained
in 3‘. in r\ a; is in the center of 9} and, by Theorem 14, is at least of
order 11", so that a fortiori the center of ‘Jl is of order divisible by 17".
Since 2:792:36”, the order of 92 is divisible'by 11"”. Since 92 is not
sbelian, we can find in the normal subgroup W of [14 a normal subgroup
92, of (3 with Sh of index 1) under 92’. Ell/ill. is a non-abelian normal sub- '
group of (3/92, and so we conclude as above that 9! :m. is divisible by 19‘”.
Consequently 92/9? has an order divisible by pm, Q.E.D.

Now if in a p—group of order p”, D‘@ D D‘ +1 Q5 D e, thenD‘ G g 8.:
and therefore as was just shown, D‘Qj : D‘+1@ ; 19"”. If (53 is now
(k + 1) -—step metabelian, then

ha

11. ; 1+2(2«+ 1)=2t+k.
o

The order of a (k + 1) —step metabel‘ian p—gronp is divisible by 32"“ .
Remark: Under the hypothesis of Theorem 28 it can be shown by the same methods

that the factor groups of the ascending and descending central series of the
normal subgroup n have an order divisible by pi, with the possible exception of the
last factors difierent from 1. The proo! is left to the reader.

Exercises
1. In a finite group 08 the intersection of all the normsl subgroups whose lsctor

group is an abelisn p—groupis celled the p—cmmutator group of 6 and is denoted
by @‘(m .

Prove: The p-fuctor commutator group 0/0‘ (p) is an sbelisn p-group. Moreover,
the commutator group of Q! is the intersection of the pcommutator groups, and the
factor commutator group is isomorphic to the direct product of the p-fsetor com-
mutator groups. Moreover, WWW) = 8,18, /\ Q”.
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2. For an arbitrary group a , the class may be defined by the following property:
Let the class be equal to c, if 8.4., is a proper subgroup 8. and 8“,; = 8s+l = ' ' '
Let the class be equal to zero, if the group coincides with its commutator group.‘ Let
the class he infinite if 3“,, is a proper subgroup of 8, for all i.

For nilpotent groups the two definitions of class coincide.
Prove: If the class a is finite then 8“,. is the intersection of all normal subgroups

with nilpotent factor group, and the factor group U/S“. is also nilpotent. Hence
we shall call the factor group 6/3”. the maximal nilpomt factor group. Its class
is c. The class of every factor group is at most a.

If the class is infinite, then there are factor groups of any given class.
8. In finite groups of class 0 we can obtain 8“, in the following way:
For every prime number p we form the intersection $D,(¢) of all normal sub-

groups of p-power index.
Prove: 2, itself is of p—power index. Hence we shall call the factor group MD,

the maximal p-factor group of w .
Prove: 8": is the intersection of all 9,. and the maximal nilpotent factor group

is isomorphic to the direct product of the maximal p-factor groups over all prime
divisors of the group order.

4. If p6 is divisible by the exponent of the maximal p—faotor group of the finite
group 0 (see Exercise 3), then the subgroup generated by all pd-th powers is equal
to Q,. Therefore 9), is a fully invariant subgroup of 6. Moreover, prove that

$450: (6)) = 9;. (g)-

5. a) An obelisn group with a finite number of generators is finite if and only if
the factor group over its Q-subgroup is finite.

b) A nilpotent group with a finite number of generators is finite if and only if the
factor group over its iii-subgroup is finite. [Use a) and apply induction to the length
of the descending central series!]

6. In a nilpotent group all the demerits of finite order form a fully invariant sub-
group. (Use Exercise 5.)

'7. 1:) (Hilton.) In a nilpotent group any two elements with relatively prime
orders commute.

(Hint: Show that the commutator of the two elements is in members of the
descending central series with arbitrarily great subscript.)

b) Two elements with p—power order generate a p—group.
c) Prove the following generalization of Theorem 11: A nilpotent group in which

every element is of finite order is the direct product of nilpotent groups in which every
element is of prime power order.

§ 6. Hamiltonian Groups

In an abelian group every subgroup is a normal subgroup. What other
groups also have this property?

DEFINITION: A non-abelian group in which every subgroup is a

’ These groups are also said to be perfect amps.
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normal subgroup is said to be a Hamiltonian group. For example, the
quaternion group is a Hamiltonian group.

THEOREM : A Hamiltonian group is the direct product of a quaternion
group with an abelion group in which every element is of odd order and
an abelian group of exponent 2, and conversely.

Proof: In a Hamiltonian group .9 there are two elements A, B which
do not commute with each other. Since ('A) and (B) are normal sub-
groups of .6, the commutator-G: (A, B) = ABA‘IB‘ of A and B is con-
tained in the intersection of (A) and (B), and therefore in the center
of the subgroup D= (A, B} generated by A and B.

The commutator group D’ of D is generated bye and is a proper
subgroup of (A) and likewise of (B). Since (G) =l= e, C = A' = B‘ where
r, s 1: 0. By Chapter 11 § 6, (A, B)I = (A, B'),and therefore 0': 9. Con-
sequently A and B have finite orders m and n respectively.We choose
A and B so that m and n are minimal. Then it follows for a prime divisor
p of m that ' ~

(AP, B) = e and therefore CP = (A, B)? = (AP, B) = e.

Similarly it follows for a prime divisor p of n that C!’ = e. The orders
of A, B are consequently powers of the some natural prime 11; they are
divisible by 202 since (0) is a proper subgroup of both (A) and (B),
while AP, 31' are contained in the center of D.

If, say 11": 0', B”: 011, Where v, p are not divisible by p, then
we replace A by A”, B by B', and we may assume that

A“: B'°= (A, B) = 0 =F e-

where a g b > 0 .
By chapter 11 § 6, in D we have the relation

(WY= (x. WW“) mf-
Now A, A"._.B also generate D , and therefore B,= A-""’B

must be of order at least equal to that of B. From this we conclude:Bl, = cf—I+1.$ A_,a—-b+1 B’

Bf=0"'%,
p=2, a=b=l.

Therefore 0 is a quaternion group with the relations A‘=B‘=
ABA‘B‘I = C, C’ = e.‘

‘ Instead of this process one can apply Theme-16 of § 3 to the group D l
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We wish to show that x”: is generated by D and the group 28 of all
elements of .5 which commute with every element of Q .

If the element X does not commute with A, then XAX‘“ = Ad and there-
fore BX commutes with A. if, now , BX does not commute with B,
then ABX commutes with B. Consequently S) = Mt.

Every element X in B is of finite order, since BX does not commute
with A, and therefore BX is of finite order. But B is of order 4 and
commutes with X, therefore X is of finite order. Now, if X4 = e,X e 8,
then (A, BX) =l= e, (A, BX) = Az =B‘. Since (320‘ =e, we have (A, BX)
= (BX)’=B‘X2 and therefore X9=e.

In £1! there is no element of order 4 and thus certainly no quaternion
group. But since every subgroup in it is a normal subgroup, a; is abelian.
29 is the direct product of the subgroup 11 of all elements of odd order,
and the subgroup (B, of all elements whose square is e. C is contained in
(51. Among all the subgroups of (‘5. which do not containC there is 8.
largest G. For every element X in (9. not contained in (3 , 0 must be
contained in {(55, X]. Since X2 = e, we have [(55, X) :(9 = 2 and likewise
[@,0):G=2, and thereforeflt’nX): {6,0} ; it follows that
l (5}, C} = (it, and moreover @A (0): 6; therefore

B= 11x® X(C).
Since DA $8: (0), we have D/\(11><®)= e, and moreover
D - (11XQ5)= .9; therefore .9: DXIIXGJ.

Conversely a group with this structure is Hamiltonian. For E} is not
abelian. We have yet to show that every cyclic subgroup (QUG) is a
normal subgroup. Since D is the only non-abelian factor of the decom-
position we only need show that the transform of QUG by A or B is in
(QUG).

Now A(QUG)A" = Q‘UG where i is either 1 or 3. The order of U
is an odd number d. Therefore the congruences r 26 (4), r: 1(a)
can be solved,and G' = G, AQUGA‘l = (QUG)', Q.E.D.

§ 7. Applications of Extension Theory

_ Let GI be an extension of the normal subgroup 2)} with the factor
8101111 3- _

We say a factor system (0”) is an abelian factor system if all the
'0”, , cominute with each other.

THEOREM 24: The ($:1)-th power of 1m abelia/n factor system is u.
retracting‘ factor system.

‘ See end of § 6, Chapter III.
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Proof: Let (76 :1) = n > 0. We set a, = 110” and form the product
9

over 9 of all the equations 0‘... 0...“, = 0':
Then it follows that 03,, = a: an {1;}, Q.E.D.
THEOREM 25 (Schur) : If the order n of the finite factor group 8 is

relatively prime to the order m of the finite normal subgroup 9!, then the
extension (9 splits over 9!. .

Proof: We need only show that (6) contains a subgroup of order n.
If m: 1, this is clear. Let m> 1 and assume the statement proven

when the order of the normal subgroup is less than m. For a prime divisor
p of m, every Sylow p-group S, of (t) is contained in ‘Ji. Since there are
as many Sylow p-groups in ‘Jl as in G, N,: 9?. A N, = n. Now N, /\ ill/S,
is a normal subgroup of N,/S,, with index n. By the induction hypothesis
there is a subgroup .{w/S, of order n in N,/S,. S,/z,, is a normal sub-
group of .Cw/z, of index n,where z, is the center of S, and is different from
e. By the induction hypothesis there is a subgroup 11/1, of order n in
5/2,. Let 0“, be a factor system of 11 over 2,. Since the order z of
z, is relatively prime to n, we can solve the congruence ”1115 1 (z) and
for the factor system 0”, , of 11 over 2, we find that it is the n.-th power
of the factor system 0;, t which is retracting by Theorem 24. There-
fore 0,“, itself splits over 2,, Le. 11 contains a subgroup of order n, Q.E.D.

In what follows, let 3 be a finite group of order n.

THEOREM 26: If anag= a" and the a, commute with one another,
then the equation a: = 6“" is solvable, i.e. the mapping 8"7 —> a: So can
be accomplished by transformation with an element 6 in 9}.

Proof: Form the product over all equations with fixed a:

a: 1'1“: =Ha" = II“!-. i
We set 6 = [1a, and have as = .5, am.

It has beef: conjectured that the following theorem is true in general.
THEOREM 27: If the order n of the finite factor group 3 is relatively

prime to the order m of the finite normal subgroup 9!, then two repre-
sentative groups of (55 over 9% are conjugate in 0. We shall prove the
theorem when one of the following additional conditions holds:

1. ER is abelian.
2. St is solvable.
3. {'y is solvable.

coma»
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One of the groups 9!, '[G is of odd order, and since it is conjectured
that groups of odd order are solvable, it is also expected that the above
theorem is true. E. Witt reduced the theorem to the case when 92 is simple
and the centralizer of 9} in (t is c. It is believed that the group of outer

g automorphisms of a finite simple group is solvable, so that we can con-
jecture the truth of Theorem 27 on this basis also.

Proof of 1: If 11 = [8,] is a representative group and B = {an 5,].
a second one, then we have the equations

«1,111 = a".

By Theorem 26, a: = 61-’(o 6 3) is solvable. Since by hypothesis the
congruence n - n‘ 5 1(92: 1) is solvable, a, = a: M = (owl-V, Q.E.D.

Proof of 2: If 9! is abelian, then the theorem is true by 1; let 9t be
k-step metabelian and assume the theorem has already been proven for
94(3)!) = e. . Further, let II and B be two representative groups of
‘53 over 2)}. We apply 1 to (ii/92’ and find that $9? = (11m with z E 9!
is solvable i.e., 23"‘93’ = 1192'. Since D‘"(9¢') = a, then by applying
the induction hypothesis to 119?, it follows that 3'” = 11' is also solvable
for y E 9! and therefore 8: 11", with zy e 9?, Q.E.D.

Proof of 3: Let a principal series of (ti/92 be of length l, and let 11, S
be two representative groups of (9 over 92. Let u be a minimal normal
subgroup of 11 ; since 11 is solvable, u is a p-group. u is isomorphic to
b = 2'9 A u?! where b is a normal subgroup of 58 .

If I: 1, then u: 11, o = 13. Then 11 and I; are Sylow p-groups of
(9, therefore conjugate in (ii. Let l> l, and assume that the theorem has
been proven for smaller I. By the induction hypothesis there is an x in
1192 = am, such that b = 11'. We set $1: 8'“ and find that 11, KEN...
Since the principal series of 11/11 is of length 1-1, it follows by the induc-
tion hypothesis applied to NJ“ that there is a y e N“, such that $I= 11',
and therefore fi = 11", Q.E.D.

Exercises
In a finite solvable group, certain generalized Sylow theorem are valid (Hall):
1. For every decomposition N=n.m of the group order into a product of rela-

tively prime factors, there is a subgroup of order m and index n.
2. Let n and m be chosen as in Exercise 1. All subgroups whose order is a divisor

‘of 1» lie in a subgroup of order m.
8. Let m be as in Exercise 1. All subgroups of order m are conjugate. The

normalizer of a subgroup of order m is its own normalizer.
(Proofs of 1 — 3 by induction on the length of the principal series and by use of

' Theorems 25, 27.)
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§ 1. Monomial Representation and Transfers into a Subgroup

We wish to represent the elements of a group (B as permutations on
a set whose objects admit multiplication by the elements of a second
group ~6- .

DEFINlTION: A set ilk of elements u, v, . . . . is called an (5, i5)-system
if for every pair u, G (or H, u) the product uG (or Hat) is defined
uniquely as an element of HR, and if moreover for all u in 20!:

(1) “(003 = (“0)0',
(HH’)u = Huh),

(2) ue. = eon = u,

(3) H(uG) = (Hu)G.

By (1),the correspondence 0—) m; = («g—1) gives a representation

of Q in single-valued mappings of SR onto itself. Since at, = (:2) = l, the

no form a group A0 of permutations of 91!. We shall assume in addition
that A. is transitive.

Example: Let u be a subgroup of Q, n a normal subgroup of 11.
Then the right cosets of 6 over 11 form a (ll, @)— system for which A.
is transitive.

We shall show that all (.5, (in-systems with transitive A6 are of the
type described in the preceding example.

First of all, it follows from (1) and (2) that the correspondence

H+E=(Huu)

is a representation of 3 in permutations of the elements of fit. All these
permutations H form a group 5 and

(4) W= 33’.
We now define i as an operator on I by the equation:

(5) Eu = Hu

164
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This definition is unambiguous and now M is also an (5, 6) -system.
Because of (4) and (5) the questions about (5, @)-systems are equiva-
lent to the questions about (.9, @)-systems; and so We shall assume that
.6 is equal to .5, i.e., ,. A
(6) Hu=u for all u implies H=¢V If Hua=u., then

H(q) = (Huo)G = q
for all G; therefore because of the transitivity of 4.:

Ha = u

for all u, and so H = ‘0'

(7) Every H is indeed determined completely by the way it operates
on only one element of 932.

Let 1/... be a fixed element of ER. All the elements of G} which leave un
fixed form a subgroup n. We now investigate the complex 11 consisting
of all the elements U of (5 for which the equation mU = um is solvable
with some U" 6 Q.

Because of the transitivity of A. and because of (7) , it follows that
, the mapping

, U—> U“
is a single-valued mapping of 11 onto all of .9. If U and V are contained
inu , then

MUV) = ("ovly = U‘voV = ”‘7‘"...
and hence UV 6 11, (U7)‘ = U‘V‘.

The mapping of U onto U’ maps 11 homomorphically onto .9. Precisely
the elements of n are mapped onto 9°. Since 11 and .fi are groups, 11

' is a group also. u is a normal subgroup of 11, and we may, and in fact
shall, consider .6 simply as the group of cosets of 11 over It .

_ The mapping
(8) 14,0 = 110
is single-valued, for from

14.0 = «'0’

it follows that 15.00” = '11,, GG’-1 ; u,

116 = uG’,
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and conversely.
Moreover

(q)G' = mew) = 1100' = (uG)G’ = E6- 0',

U'u°G= uoU§= uUG= Uu0= Ufi= U‘fi.

Therefore, according to (8),the given (©,‘G)-system a): with transitive
A. can be identified with the set of right cosets of s over a subgroup u,
where u is a normal subgroup of a subgroup l1 'and the factor group
11/11 is isomorphic to .9.

Let G —> 6' be a representative function belonging to the decomposition
a

Q} = 2110‘ . If we put u‘ = ua‘,then every coset from in has the unique
form 1

u = U'm .

Accordingly
(9) “‘0 = Ufiauiq.

Here the permutation (:9) is determined by the equation

(10) 110:0 = 11010 .
Moreover

an 03,, = mafia“ = mean},
f0r ”30““): Uzaum=uUSaGTG=uGgG=mG .

It is obvious that through (9) a matrix Ma having (0 rows and w
columns can be associated with each element G of G:

(12) Mo = (660.! U330)-
That is, M0 is a matrix with the element are in the i-th row and iG-th
column and with zeros elsewhere M0 is a permutation of the u. with
factors from 11’ (= 6) - From (1) and (3) it now follows that
(13) Mg~Mw=M09’9
where the product of two matrices is computed in the usual manner.
We call the representation (12) of (9) in square matrices of degree 0)
with coefficients zero, or from the group 11',the monom'ial representation
with to members.

In going over to another system of representatives of right cosets of
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«a over 11 we change to a new “basis" 1)., 12,, . . . , v. of 9)! which is con-
nected to the old one by equations of the form
(14) ”c = 173““ ,

. / '
where a") is a permutation of the numbers 1, 2 . . . a) . If we put down

as transformation matrix

T = (dual-’3).

where U.‘ stands at the intersection of the i-th row with the ri-th column
and there are zeros everywhere else, then the representationwith in
members belonging to the 1/. and with matrices M; is given by
(15) M6 = TMgT“.
If we put 11 = e, then we obtain the most general monomial representa-
tion of til over 11 :

(16) e —» Mo“ = (on... Uta)’
from which the representations with arbitrary normal subgroup of 11
can be obtained by replacing the elements by their cosets.

If #8 is a subgroup of 11 , let 11 =2B U. be a right coset decomposi-
1

tion of 11 over fi . Then (5 =22; 0,0, is a right coset decomposition
u

r of El over it , and from equations (10) and (12) it follows that:

(17) Mg arises from the matrix 1113 upon the replacement of each ele-
ment U from 11 by the matrix mg. belonging to the representation of
11; over it and by replacing each 0 by a v—rowed matrix of zeros.

If we replace the normal subgroup u by the commutator group 11’
of 11, then there corresponds a representation of (ii in matrices whose
coefficients are from an abelian group. Through the construction of
determinants we arrive at a new representation. We define:

The transfer of the element X from the group it into the subgroup ll
' is the coset V¢-u(X) of 11 over its commutator group 11. If 11 is of
finite index n and has the system of left representatives'Gn G... . . . , G.
with the representation function G a? then we define

(18) »Va»u(X) = 11" IIIGJG‘s—X".
THEOREM 1: The transfer is independent of the choice of the system

of representatives.
Proof: V(X) is (to within sign) the determinant of the representa-
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tion matrix q , having coefficients from 11/11' or else 0. By transforming
to a new system of left representatives we simply transform Mx by a
fixed matrix T. This does not alter the value of the determinant.

THEOREM 2: The transfer of G to 11 is a, homomorphy of (3 into
11/11’.

Proof: This follows from (13) upon construction of determinants.

The transfer V...“ induces an isomorphy between an abelian factor
group of G! and 11/11’. Hence V¢-u(@’) = 11’. The subgroup of any con-
sisting of all the cosets V...“ (6}) is called the transferred group of G!
to 1.1.

THEOREM 8: For}; subgroup B of 11 with finite index it follows that:

V¢+B(X) = VII+E(V¢->n(xl) -

Proof: This follows from (17) upon construction of determinants
two times. -

Remark: If G is a group with given automorphism domain, then the
transferred group is an admissible group, for when l5 is a system of
left representatives of (3 over 11 , then so is 63" ( a an automorphism
of 65) provided 11 is admissible. In particular the transferred group of a
transfer into a normal subgroup is itself normal.

In order to compute the transfer of a given element X, it is useful to

choose a particular system of representatives. The permutation (“13%)

of the right cosets of 6 over 11 decomposes into 1- cycles. From the i—th
cycle we choose a representative 11TH and the cycle may be written
(117", uT‘X , . ..,11Tit-l). Then for the system of representatives
T‘,T,X,...,T‘Xli-l (i=1, 2, . . . , r):

f

(19) I'M (X) = ll’lIfl-X" Trl.
1

where f. is the length of the i-th cycle, and hence is a divisor of the order
of X. Moreover .

f

(20) 327‘ = (i! :11.

Exercise: Prove the three theorems on transfers by direct calculation,
on the basis of (18) and the rules about representative functions.
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§ 2. The Theorems of Burnside and Griin
LEMMA: If two complexes 8,2 in a Sylow p-group 1; of the finite

group (3 are normal in ES and conjugate under @, then they are also con-
jugate under the normalizer/N of 1;.

Proof: The hypothesis says $ is in the normalizer N. of a and in
the normalizer N9 of 9, and that

2——— T3!"1 = RT
is solvable with T in G.

From $ g s! and from N2 = N: it follows that: ‘13" g N”. Since ‘3
and 337 are Sylow p-groups of Q! in NE , they are also Sylow p-groups of
N2 , consequently SE = $57 with S in ”3 is solvable by the third Sylow
theorem .

Consequently ST is in N; and 357 = 25 = 9,911.1).
THEOREM 4 (Burnside) : If the Sylow p—gronp 15 of a finite group (5

is in the center of its normalizer, then (3 contains a normal subgroup
with 1i as system of representatives.

Proof: The hypothesis implies that $13 is abelian, so that its commu-
tator subgroup is e. We transfer (9} into a; and obtain a normal subgroup
fit of all elements which are transferred to e, and a transfer group
V(Gi) g as. If we show that V03) =‘B, then V03) =2B, hence m$=@,
and EB A St = e, and the theorem is proven.

‘ For an element X in as, by § 1, (19)

V (X) = 17mm Tr‘
for certain T. where 2/;-— 6:913 and every factor of the product is

contained in 2’6. But the elements XII, T4Xfi Tr1 , conjugate under 6!,
are normal in the abelian Sylow p-group Y6; therefore by the lemma they
are conjugate under N”. Therefore by hypothesis they are equal to one
another, so that

V(x)=j]xn=x¢:w _
1

Since G! :as is relatively prime to the order of the Sylow group 1%, we have
VGB) = is, which proves the theorem.

It follows immediately from the Burnside theorem that the order of a
finite simple group of composite order is divisible by the cube of its
smallest prime factor, or by 12. (See IV, § 3, Exercise 5).

' ' 2 is called normalin$,if Mz—‘=Rforallzin *3.
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With the transfer of a finite group 6’ into a Sylow p-group $ we
associate the normal subgroup (5. which consists of all the elements of (3
which are transferred to the commutator subgroup W of R (Si/(51, is iso-
morphic to the transfer of (ii in $, and therefore is an abelian p-group.
By Chapter IV it follows from this that (9} = 230), and therefore by the
second isomorphy theorem, we. a: iii/‘3 A @, .

Can the p-group ‘B, = EEAG. also be characterized from within? ‘B, is
defined from above as the group of those elements of ‘8 whose transfers
in 13 are in $2 The elements of 13AM are among these elements. In par-
ticular, in w. we have the intersection of SB with the commutator group
No of the normalizer N. of $,and the groups film 33'", where T 605.
Our question is now answered by the FIRST THEOREM 0!" GBfiN
(THEOREM 5) : On transferring a. finite group (9) into a Sylaw p—group in,
the transferred group is isomorphic to the factor group of ‘8 over the
normal subgroup

($AN6)'Tg$/\$"-

Proof: We set V...(X)=VX, and SB,=(SB/\N§)-II$BA$’T , and
re a

then since $2913, and I’m/53': 13/26, we must prove that $3, = $,.

Assume that $2 4: B. and then let X be an element of minimal order
which is infillbut not in B2. We shall be led to a contradiction by showing
that VX 45 13’, and in fact that VX $5 $,.

We anticipate the essential argument by remarking that Xi'Té SB ,
t > 0 implies X” e 215,, since ”UT: VT. vxi. VT-I: my: :3: ;
and therefore X!" is in 1%; and since it is of lower order than X, it is
in 26,.

Under the representation Y—> ($33.) of (9 in permutations of

the right coselxof (9 over is, we also obtain a representation of $, and the
right cosets of G} over ‘13 decompose under B into systems 3:. of transitivity
having p“ right cosets. Under multiplication on the right by' X, the
cosets from 1‘: z are permuted in certain p"'-member cycles. We look
for a coset iBT from S which belongs to a cycle of minimal length p0; then
all p‘ cosets from S: are of the form ‘BTP with P in EB.

1. T q; N!,i.e., p‘ > 1. Then the cosets of a p'kmember cycle are:
filTP, EBTPX, . . ., 26 TPxfl-l, Where m, naturally, depends on P,
and ‘13 TPXW= 53 TP . If one chooses TPXi as coset representative, then
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the product of associated transfer factors satisfies

TPX (TPX)-l - TPX‘(TPX')-‘ . . . TPX"'(7'P)-I = 1""6 EB,
and it follows from our determination of T that [4 g m. X'”" 6 SB ;therefore X’“ I" . X'fl’=’((X"")"-1)1'= (P, X")" 6 ‘13’1' and by the

' construction of $2:
xwrpa X’”T($').

The product of all transfer factors which belong to the right cosets in
BT93, is congruent to Xi‘1'($,), and therefore, by the remark at the
beginning of the proof, is contained in $2.

2.T€N,. Then $TX=$XT-T=$T=$T$. The cor-
responding transfer factor is XT. Since X's X(N§), it follows that:

X” a X (‘38.)
by the construction of $2.

1. and 2. together imply the congruence

VX a imam),
and since Nu : fit is relatively prime to p, we obtain the contradiction
VX4228” Q.E.D.

COROLLARY to the First Theorem of Griin:
K The normal subgroup (9, consisting of all the elements of (9) trans-

ferred to ‘8’ is the p-commutator group (W(p) of (5}, i.e., the group trans-
ferred into a Sylow p—group is isomorphic to the p-factor commutator
group.‘

Proof: Since 6/61. is an abelian p-group, (W09) is in (5),. Moreover,
by what was shown in the previous proof, 13,: 21! no,g amen On the
other hand, 6’ is in (M, ; therefore is /\ (9' is in B. ; therefore $13, = SE A @C
By Chapter IV, (worm = SIS/SB /\ (W. From this we conclude

(59/6112) = 33/5153 (55/05,, 6:61p) = 0510111, (55; = 0511))-
DEFINITION: A finite group is said to be p-normal if the center of

one of its Sylow p-groups is the center of every Sylow p-group in which
it is contained.

' For example, a finite group with abelian Sylow p-groups is p-normal.

SECOND THEOREM or GsflN (THEOREM 6): If the finite group 01 is

_ ' See the definitions in IV, 5 5, Exercise 1.
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p-uormal, then the factor commutator group of (9} is isomorphic to the
p—factor commutator group of the normalizer of a. p-center.

Proof : Let i be the center of the Sylow p—group SB; let ‘8, be the
intersection of (W with EB; let 282 be the intersection of ‘B with the com-
mutator group N.’ of the normalizer N' of 3 . By Chapter IV we know
that (El/@119): Sit/‘13,, N,/N.’(p) = 23/23,. Since SE, is contained in 28,,
we have to prove that ‘13, is equal to Bf. By the first Griin theorem

$1= (‘BANfl ‘HSBASB'T, and therefore we must show:1 e a .
(a) $AN§§$,, (b) EB /\ avg 28, for all T in G}.

(a) follows from N, g NI, Ni; _<_ N,’.
For the proof of” (b) we put $ = 213 f\$"' and find that g N9,

37' g N9, since 31' is the center of YET. 3 is in a Sylow p-group q of
N”, 31' is in a Sylow p—group p of N5; and by the second Sylow theorem
there is an S in N5, such that p”: q ; therefore 6'" is contained in q ,
q is contained in a Sylow p—group D of (it, and since by hypothesis GS is
p—normal, both ,3 and i5!“ are equal to the center of D, and therefore
equal to each other. ST is contained in N3, and SD = W= 53‘ /\ ‘3’",
a) g 513W g 1w, so finally so g ‘13 A N,’ = $3,, on».

COROLLARY TO THE SECOND THEOREM 0F GRfiN: The transfer of a
p—normal group into the Sylow p-group $8 is equal to the transfer
VNI+B(N,) of the normalizer N: of the center 3 of 23 into the Sylow
p-EI‘OUP ‘3 of N...

This is true since by Theorem 3 on transfers, V¢+a(®) is contained
in V”...g(N,) , and by what has just been proven, these are isomorphic.

In order to obtain results‘about the case where every Sylow p-group
is abelian, we prove the

LEMMA: If the index of the finite group 61 over the abelian normal
subgroup 91 is relatively prime to the order of $1, then

QI = (a /\ W) x (91 /\ 3(6)) and Vc+u(@) = 521 l'\ 3(6).

Proof : Let 611 be the normal subgroup of all elements which are trans-
ferred onto e by VO-ru= V . Then (6:6, is a divisor of 9i:1; therefore,
applying the hypothesis, (3. :1 is divisible by (9) 1%; consequently G = (9.9L
i.e., V6} = Vii.

For an element X in a,

7x =e=xm. [Ixr—xa xmamo').
1'“) MI)

Weshow firstthat u=(ar\oy)xvu. Infact,’ ano'nvst=e,
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since from X691, VXQfiAQ' . it follows that X¢=‘Ee(SI/\®’),
and by hypothesis we conclude that X E can /\ 6') ; but then VX = e.
Moreover (in A Ql’) - Vii! = SI, since (8! A (51')- V9! contains all the
(lilt)-th powers of elements in 91, and by hypothesis these form all
of 21.

Now we shall show that W = it A 5(6), from which, together with
what has already been proved, our assertion follows.

Generally speaking, according to the explicit definition of transfer,
we have for an element T of the normalizer of the group at to which (5
is transferred, V(TXT—‘)= T-VX-T“. Also we have V(TXT—1)=
VT'VX-VT—‘=VX, because the transfer is a homomorphism into an
abelian group. Hence VX belongs to the center of N4/QI’. For an element
X in a ((3) A a the transfer is XVI, and by hypothesis, the transfer
into 3(@) /\ fa induces an automorphism; consequentlyflm /\ 2!: V6
=V9I, Q.E.D.

THEOREM 7: If a Sylow p—group SE of the finite group 6! is abelian,
then the transfer of (5 into 1; maps the p—factor commutator group of (9
isomorphicalby onto the intersection of the Sylow p~group with the center
of its normalizer.

Proof: Since 3, (58) = 28, Q} is p-normal; therefore by the corollary to
the second Griin theorem, V.,;(@) = lawman) and by our lemma

. Vuwm) = 30%) n ‘B-
FROBENIUS’ THEOREM (THEOREM 8) : If the order N of a finite group

G is relatively prime to

k.= (11"—1)(r""— 1)‘ - - ~- (r— 1),
where p“ is the order of a Sylow p-group, then the miml p-factor
group1 of 65 is isomorphic to every Sylow p-group of (9.

Proof: If n = 0, the theorem is clearly true. Let n > 0 and assume the
theorem proven for groups whose Sylow p-groups are of order less than p".

If 6} is not p-normal, then, by Chapter IV, Theorem 8, there are in ($5 a
p-group ‘2) 4: e and an element X such that transforming ‘1‘, with X induces
an automorphism of order q > 1 relatively prime to p. By Chapter IV, q is a
divisor of has» even a divisor of k,I since dflD) é 7»- Since 011 the other
hand q is a divisor of N, q, by hypothesis, must be equal to 1; therefore
6! is p-normal.

If *1; is abelian, then EB is in the center of its normalizer since trans-
forming 28 with an element in NE induces an automorphism whose order

‘ Definition see IV, § 5, Exercise 3.
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is a divisor of both him and N, and therefore is equal to one. Now the
assertion follows from Burnside’s theorem.

If the center 3 of the Sylow p-group its is different from 513, then a =l= e ,
and therefore the induction hypothesis is applicable to N1/6~ This shows
that Nihas, ap—factor group different from e; that the same is true for 0}
follows from the second Grim theorem. The maximal p-factor group
film, is now diiferent from e. If p still divides 2D,: 1, then the induction
hypothesis would lead to the contradiction $.68, (0’)) =l= SD,(®) . There-
fore }; is relatively prime to ED,:1, and this means that every Sylow
p-group of (3 forms a system of representatives of (9) over ED, , Q.E.D.

COROLLARIES: 1. .The order of a finite simple group of even composite
order is divisible by 12, 16 or 56.

2. From the proof of the theorem it follows that the number k" of
the theorem may be replaced by It, , which is at most as large as k,"
where p” is the order of the maximal abelian factor group of exponent 1)
among all those which are factor groups of p—groups in (9.

3. If a Sylow p-group of ($5 contains a cyclic subgroup of index 1),
and N is relatively prime to pg—l, then the p-factor group of (9} is iso-
morphic to a Sylow p-group. For, by Chapter IV, § 3, Exercise 1, D g 2.

Exercise: A simple finite group whose order is odd and smaller than
1000 is of prime order.

§ 3. Groups whose Sylow Groups are all Cyclic
THEOREM 9: In the series of higher commutator groups (0’26’2 . . .

of a given group 0, two successive factor groups are cyclic only if the
latter one is equal to e.

Proof: It can be assumed that (EV/(9” is cyclic, (9” is generated by
A,and 65’": c. It will be shown that (5)” = e.

The normalizer of (9” is ($5. The factor group of 05 over the centralizer
NA of (5)” is isomorphic to a group of automorphisms of (A), and there-
fore is abelian. (9’ is in NA, and since the factor group of 05’ over the
normal subgroup (9” in the center of (55’ is cyclic, (W is abelian, and there-
fore Gl" =e, Q.E.D.

We make the following definition: A group is said to be metucych‘c
if its commutator group and its factor commutator group are cyclic.

As a consequence of Theorem 9, it no longer makes sense to talk of
8-step metacyclic groups. A cyclic group is metacyclic.
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THEOREM 10: If every Sylow group of a finite group (B is cyclic, then
G} is solvable.

Proof: If G) is a p-group then the theorem is clearly true. Let the
number r of different prime factors of G! :1 be greater than 1, and assume
that the theorem has been proven for all groups whose order is divisible
by at most r—l different primes. Let p be the smallest prime factor of
G! :1. Since a Sylow p-group is cyclic, the index of its normalizer over its
centralizer is a divisor of p—l; therefore by the construction of p, there
is a Sylow p-group in the center of its normalizer. By Burnside‘s
theorem ,0) contains a normal subgroup 9! with the Sylow p-group as a
system of representatives; and we can apply the induction hypothesis
to m. This shows that 9! is solvable, and therefore (9 is solvable, Q.E.D.

THEOREM 11: A finite group of order N containing only cyclic Sylow
groups is metacyclic and, has two generators A, B with the defining
relations:

a) A"I = e, B" = 9, BAR“ = A7, and the conditions

b) 0 < m, run: N,

_ c) ((r-l).n, m) = 1,

d) r'I E 1(m),a,nd conversely.

Proof: The conditions imposed on (it also hold for every subgroup
and every factor group of a subgroup. If (6 is abelian, then (9 is cyclic.
It follows from Theorem 9 that (9} is metacyclic in any case. Let A be a
generating element of the commutator group G”, of order m. Let 30’ be
a generating coset of the factor commutator group,of order n. Then
BAB‘l = A', B"AB* = A"=A, and therefore r” a l (m). Every com-
mutator is a power of BAB‘A"l = A“, and therefore (r-1, m) = 1. Since
3” is a power of A which commutes with B, we have R“ = e. If a prime p

n n
were to divide n and m, then {B7, A7} would be a non-cyclic subgroup

' of order p” and this contradicts the hypothesis; and therefore (n, m) = 1.

Conversely, let (M be a group with generators A and ‘B which satisfy
the defining relations a) and conditions b), c), d). By Holder’s theorem
in Chapter III, (5) is of order nm. Since (r—l, m) =1, (W: (A). Since
(n, m) = 1 and the order N of (65 is nm, then for every Sylow group, there

is one conjugate to it in (A) or in (B). Therefore every Sylow group

of 6} is cyclic, Q.E.D.
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§ 4. The Principal Ideal Theorem

First we shall present some considerations about operator domains
of abelian groups in pursuance of Chapter III. §§ 3 and 5.

Let {E be a group of automorphisms U —> U" of the abelian group 11
with a finite number of generators. All operators 25.," , with rational

U

integral coefficients co, only a finite number of which are different from
zero, form an operator ring 9 with a unit element - Let 8'0 be a
normal subgroup of ii and let a —-> 4'7 be a representation function of ’1}
over 30. Now what does calculation mod 3‘. (Le, the replacement of a
by It ) mean in Q ‘1 Certain elements in 11 are identified; thus

U“ a 0'", if a E 04%.)-
Instead of calculating in 11 , we must now calculate in the factor

group of 11 over a subgroup 110., where no must contain at least all
0"“ for a 2 013-0). But all U”-"’ with a E a’fio) generate a sub-
group l],I of 11 which is admissible with respect to .0 . The automorphisms
a induce automorphisms 71 of 11/11,,and the operator ring {2 goes over
into an operator ring 5 of 11/11,.

The order ideal of 11/11" over .6 is obtained from the order ideal of
11 over .0 by replacing v by T1 everywhere.

In order to construct the group transferred into the normal sub-
group 11 , it suffices to calculate in the factor group over 11’, since 11’
is a normal subgroup of (9; thus we assume that 11’ = e.

Let (55/11 be isomorphic to the abstract group%={ l,a, 1, . . .}and let
(so, 0“) be a factor system of (it over 11:

sass = can 411‘

Every element S in (9 is uniquely of the form S = US' with U 6 11;
therefore, using the earlier notation, we form

VH1 (U) =11s,,vs,,U“=flsuvsz;1 = E",

Vow-(5.) = US$3.19." = HSVSJJ.‘ = 110...:
U 0 0

so that Vo-nds) = fly-110"..-

Let 0) be the splitting group (constructed as in Chap. 111, § 9) of (3
over the abelian normal subgroup 11; the new normal subgroup 1—1 is
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the direct product of 11 with the infinite cyclic groups (Au), .1 =4: 1, and
(1) A: = A;‘A..0:.‘.-

For 5 over fi . there is-t-a retractingfactor system (T,,1), where
T,= 11,5". Therefore

V¢»u(3) = Va..fi(8) = fir“.”1 = v"

(2) Vc»u(®)gfi5".

THEOREM 12 (PRINCIPAL IDEAL THEOREM)‘: The tramfer of a group
with a finitefactor commutator group into its commutator group is equal
to the second commutator group provided the second factor commutator
group has a finite number of generators.

As before we can assume in the proof that (8” = e. Then it remains
to show that V,_..,(@) = c.

The following example shows that the assumption about ~G’ is
necessary:

Let H be the group of all numbers c‘“' with rational r,vand let
®= (mi) be the extension over 11 of index 2 defined by

.il= end: _ l

. “uni—1: run .
Then @5’ = 11 and 6)” = e but

VC—HI’G) = “ 1 4= 5-
Instead of the principal ideal theorem, we prove the following slight

generalization :
Under the same assumptions, the (11:9?) -th power of the transfer

of every element G in (55 into an abelian group 11 lying between (9 and (‘5'
is equal to e: i.e., (Vg»u(@5))"“"= c.

We set @5111 =n, il:®’ = d; n and d are different from zero; 11 is
an abelian normal subgroup of (9. Let E, (T) and 1.1 have the same meaning
as previously. By (2) it then suffices to prove

171‘;“= e

The automorphisms corresponding to a generate an operator ring
.0 of E, which consists of all 9 = 20,0 with integral rational ”a' fi. n

has an order ideal over 9, since (5’ has a finite number of generators,

’The Principal Ideal Theorem of class field theory states that every ideal of an
algebraic number field is a principal ideal in the absolute class field. The principal
"ideal theorem can be stated group—theoretically as Theorem 12.



178 ‘ V. Transfers into a Subgroup

11 is finite over (W, and E has a finite number of generators A, over 11 ,
so that 13 has a finite number of generators, hence a finite number of
generators over .0 .

If we now show that d -2a generates the order ideal of ii over .0 ,

then the theorem is proven. Now let 9=2°fl be in the Q-order

ideal of 17L. Then taking note of (1) we have:

2 = A.°= Air" =11(A:)" 2 1147mm (11)
E HAf-tfiar-I (11).

Since the Av form a basis for- fi/ll , we must have °a= and for all
or #= 1, hence e,,= cl for all a , whence 9 = 61 -20. Consequently, the
order ideal of E over .0 is a principal idea] which is generated by c - 207~ .
with an integral rational c g 0. ‘

If we replace a by 1, then, as was pointed out at the beginning of '
the paragraph, we are calculating in the group W‘; for since (3 is
generated by the Uand the T, , Q" is generated by all the elements
fiTafi-lTfl-‘= 71-" , i.e. 1—11-‘1 = 6'. Here 9 goes over into the ring
9,, of rational integers. The 9,, order ideal of m’ is obtained from the
.Q-order ideal of 1—1 by the same substitution; on the other hand, by
Chap. III, § 5, it is generated by the group order fi: (3’ . Therefore

fi:@’=c.(1+ 1+...+ 1):“.
In order to show that c = d, we prove the isomorphism

W07: o/o',
from which it follows that _

cn= 11:37: 65 :®'= dn,

6 = d .
Since 63’ is a normal subgroup of each of the four groups, We may

set @’=e for the proof of the isomorphy. Since ME’= fi'-" , ufi is
generated by 11 and the A‘ , and moreover 311"”= e , it now follows by
(1) that

5'= [41“) = l4.cu..4;‘24.l~
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Therefore we can choose the elements Aav as representatives of 17/76' .
By (1)

anAUA.= AMC'IA:—" E Ana'f': (6')
/

The abelian group (9 consists of the elements 80-1 U with the calculational
rule

5:18;! = 5.10;:-

The correspondence A,U—>S;1U therefore gives an isomorphism
between 11/6 and (5, Q.E.D.

COROLLARY or THE PRINCIPAL IDEAL THEOREM : In a 2-step metabelian
group with a finite number of generators and cyclic factor commutator
group of order n, every element whose ooset generates the factor com-
mutator group is of order 1».

Proof: If S is the element described in the above statement, then
@/(9’ = (561') and therefore the powers 1, S, . . . , 8’” are a system of
representatives of (‘5 over (9’. Consequently

’I—l

Vcww) =IZSvsW-1= 8",

while on the other hand V“, (S) = e.





APPENDIX A

FURTHER EXERCISES FOR'CHAP. II

(For 10 and 11 consult Exx. l5 and 16 at the end of Chap. I.)
10. Let g be an abstract group with elements a“ . . ., ml, . . . . Let Xbe a system of

groups such that for each member 9' of 2' there is a given an isomorphism im’) between
a and 3’. Show that the set of all one-tonne correspondences 0(3’, 3”, a) between any
g' and any g” which map the element 119’): of 9’ onto the element i(g")az of g"
is a groupoid 6(2), {1).

11. Let 6 be a groupoid. For any two units a. e’ linked by a: show that ex = :c = we'.
Furthermore, show that the mapping of «1 onto (Flax is an isomorphism between g. and
“.1. Let 2' be the system of the groups g.. 9.1, . . . attached to the units a, e’. . . . of
(55. Let u be an abstract group mapped by isomorphisms i(c), i(e'), . . . onto 9., g,” . . .
Show that 6 is isomorphic to 6(2, 9).

12. Every L yuiaul h of a ' ' " ' A ‘ 2m into L multi-
plicative domain defines on fill the normal multiplicative congruence relation: aR(h)b
if and only if ha = hb. Conversely, if R is a normal multiplicative congruence relation

' on 7.02, then the residue classes form a multiplicative domain 912/1? according to the
rule ofmultiplication d5 = 11—5 , where 5 denotes the residue class modulo R represented
by the element a: of fill. The mapping h that maps :c onto 5 is a. homomorphism (natural
homomorphism.) of 9]". onto ill/R which induces on an the congruence relation R in
the sense defined above. If j is another homomorphism of in inducing the normal
multiplicative congruence relationR: RU) on 21!,thenj induces the isomorphism
between 932/120) andjmll) which maps 5 ontojz.

13. Show that the ‘ ' oftwo , of _ ' ' ' ' _, ofa ' ' permu-
tationgroupisitselfasystemof “'",, ‘ ’the' ' '
more than one letter.

14. (G. E. Wall.) In the ring 1, consisting of the eight residue classes of the rational
integers modulo 8 show that the mappings (2, oz + b) that map the element 2 of I.

' onto the element a: + b (a odd; a, b contained in I.) form a group 6 of order 32.
Show that the mapping of (z, as + b) onto (2, a: + (b + (a‘— 1)]2)) is an outer
automorphism of 6 that maps each element of 6 onto a conjugate element under 6.

15. If a normal subgroup of a group 6 and its factor group both are solvable, then
6 in solvable.

' 16. The product of a solvable normal subgroup of a group 6 and a solvable sub-
group of 6 is a solvable subgroup of 6. (Use Ex. l5.)

17. The radical 11(6) of a group 6'Is defined as a solvable normal subgroup of 6
which Is not contained in a larger ‘ ‘ ‘ normal ‘ , ‘ of 6 l ' '
normal subgroup). Show that there'is at most one radical of 6 and that it is a characte-
ristic .If the is ' ’ for the ‘ ‘~‘ normal sub-
groups oi“=6, then 6 has a radical. (Use Ex. is.)

18 m7 Zulenhllu, Theory of Grain»
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18. If the group 6! has a radical 12(6)), then the radical of each normal subgroup
92 of a} is equal to the intersection of 92 and the radical of G. If 92 is solvable. then
RUE/92) = END/92; in particular R(@/R(@I)) = lawn/RUE).

19. Each Ic-step metabelian subgroup of a group a] is contained in a maximal Ic-step
metabeljsn subgroup of 6, i. e., a k-ste'p metabelian subgroup not contained in a
larger k-step metabelisn subgroup.

20. Ifthere are maximal solvable subgroups of a group (.5, then the radical of 6 is
the intersection of the maximal solvable subgroups.

21. If, for a fixed k, every solvable subgroup ofa group is at most k--step metabelian,
thenevery ‘ a. ris ’ r “audwhas
a radical.

22. Show that for any homomorphism h of a group G! onto a group 5 we have
h((a, 12)) = (ha, lit) for atb contained in G and that h(D'(G§)) = D'(h (em for r = 0, 1,
2, . . .

23. Let G be a. semi-group with unit element.
a) The element a is called a 16/! divisor (right divisor) of the element b of G if there

is an equation I) = as: (b = ya), where a: and 3/ respectively occur in G. Show that this
relation is reflexive and transitive.

b) Two elements are called lei! equivalent (right cquivdlenl) if each is I- left divisor
(right divisor) of the other. Show the normality of this relation. Show that equivalent
elements can be substituted in one-sided divisor relations.

c) Ifa is a left divisor of b, then an is a left divisor ofcb. Ifa is a right divisor of b.
then ad is a right divisor of but.

d) We say a divides b if there are equations

a = “o = “mam “i = “0121“” = “nan: “I =¢n¢rau =¢uaui - - u
b = “7+1 = a,fi:,.._,a",

where all factors belong to 6. Show that the relation a divides b is reflexive and tran-
sitive. If a is a left divisor or a right divisor of b, then a divides b. If a divides b and
a' divides b’, then aa’ divides bb’.

e) We say a is equivalent to b if a divides b and b divides a. Show that this equi-
valence relation is normal. Show that equivalent elements can be substituted in
divisor relations.

1') Interpret each of the three relations: a is left divisor of b, a is right divisor of b,
a divides b, as ordering relations defining a poset 6. Give for a subset a of G the defini-
tions of g. c. (greatest common) left divisor, g. c. right divisor, g. c. divisor of e cor-
responding to the meet in multiplicative terms. Also, give the definitions of l. c. (least

Ilet't 1.e.right ".‘ l.c. "' of: fitothejoin
in multiplicative terms.

g) An element is called a unit if it is both a left divisor and a. right divisor of i.
The units form a subgroup 11(6) of ('6.

h) TheelementnofGiscalledaseroelementofGifnx=xn=nforevery
element 2 of G. Show that the divisors of n form a sub-semigroup. Show that there is
at most one zero element.

i) The element e is called an WM ifee = e and ifs is not a zero element. An
idempotent is a left divisor (right divisor) of the element a if and only if it is a left
unit (right unit) of a.

r
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j) lithere is no idempotent other than I, then each divisor of l is a unit and all
the divisors of 1 form a normal divisor 11(6) of 6. Moreover, if 6 is commutative,
then congruence modulo 11 coincides with equivalence as defined under o) for every
pair of non-divisors of zero.

k) If 6 is commutative, then mlemnt is a divisor of 1 if and only if it is a unit.
24. A sub-semigroup of a group is called a hat/group. Show the following:
a) A finite halfgroup is characterized as a finite semi-group for which the cancellation

laws of multiplication are satisfied.
b) An abolish is h ' ase .ethe

tative and the cancellation laws of multiplication (see is 7, Ex. 4 and also Ex. 25).
e) (0. Ore.)Ifa ,. r G ' the " ’ laws of ‘ ' ‘ ' andalso

the rule a6= Go for each is contained in 6, then it is a halfgroup. (Hml. Form
the quotient group of (5 consisting of the {m1 quotients all: (a, b any two elements
in G) where «1/1; = old if there are elements e, I such that so = lb, so = Id, and where
11/!) ~ old = 2/] means that there is an element 41 such that a/b = sly, c/d = g/I; show
that the mapping of it onto the quotient ao/a gives an isomorphism of 6 into the
quotient group.)

d) n I i M I‘cev.) Any “-5 r 5 ‘ in . .. - to the ..

laws of ‘A' certain ' 1 “ ’ ” ' givenbythe“ "
A finite system P of o vertioes, e edges, and I faces'is called an abstract Euclidean poly-
hednm if 1. every edge is incident with precisely two venices and with precisely two
faces, 2. a vertex is incident with a face if and only if there are precisely two edges
incident with both of them, 3. the edges 9,, e" . . . , a, which are incident with a given
vertex (face) form a cycle such that with suitable renumbering e; and e,H are incident
with the same face (vertex), where n isgroater than 1 and a,” = e“ 4. u +/ = s + 2.
The subset of P formed by an edge e and the face F incident with e is celled the
F-si‘de of a. The subset of P formed by the vertex V incident with the faeeF is called

‘ the angle at V on the F-side of a, b where a, b are the two edges incident with both P
and I". Assign to each angle and to each side an element of 5 such that the relations
ma = yb are satisfied, where at, y are assigned to the two sides of an edge 9, say to
the F-side and to the G-side, and a, b are assigned toIthe angles formed atJa vertex
incident with s end F, G r ‘ ‘_,. The ’ , flute P
states that any one of the finitely many relations rm = yb explained above is a conse-
quence of all the others. (Hint: Apply induction on v; emalgemste adjacent feces.)

e)I.fa '., r ‘E the " ' lawsof "" ' andthepoly-
hsdrsl conditions given under d), then it is a halfgroup (see A.Mal’cev, On the embed-
ding of associative systems in groups. Mat. Sbornik, Vol. 6 (4B) (1939). pp.
331—336; J. Lambek, The immeru‘bt'lity of a semi-group into a group, Canadian
Journal of Math, Vol. 3 (1951), pp. 34—43).

f) There are semi-groups satisfying any given finite subsystem of the polyhedinl
conditions given under d) and also the cancellation laws of multiplication which are
not halfgroups (see A. Mal‘cev, 0n the embedding a! associative systems in groups II,
Mat. Sbornik, Vol. 8 (50) (um), pp. 251—264).

'25. An element :1 of a multiplicative semi-group 6 is called a dcmvm'nam if
e)dm=xdforanyzcontai.nsdi.n G,b)dz=dyimpliesz=y.

8.) Assuming denominators exist, show that they form an abelian halfgroup 11(6)
(see 5 '1, Ex. 1).
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b) Show that the elements of G, and the formal quotients o/d where a is contained
in G and d is contained in d(6), together with the symbol 1, form a multiplicative
semi-group 0(6) (called the quotient rend-group of G) by introducing the rules:
e=b inQ(G) ifu=b in G, a=b/difad=b,b/d=oifb=ad,o/d=a'/d’ if
ad’ =de’,1=aifoisunitelementof6,a=l if! =a,d/d= 1, l =d/d;abas
in 6, I: ~ 12/41 = (ab)/d, b/d . o = (ba)/d, a/d . a’ld’ = (oa’)/(dd’), ls =e1 =e, 1 - e/d
=a/d-1 =a/d, l-l=l.

o) Show that 6 is a subsemigroup o(6). (As regards b) and c), compare 57,
Ex. 2.)

(I) Show that the denominators of 0(6) form an abelien group dQ(6) with l as
unit element and that 119(6): 011(6) (see 5'], Ex. 3).

e) Show that 9(6): 6 if and only “11(6) Is a group (see 9 7, Ex. 4).
f) Let E be a a o 6, where the

elements of 11(6) generate a subgroup of 5: whose unit element is the unit element
of 2:. Show that there is one and only one homomorphism of 0(6) into 51‘, leaving
every element of 6 invariant, namely the isomorphism which maps 11 onto a, old onto
ad-‘. and 1 onto the unity element of I.

26. a)Letean ' ‘ semi-ring.‘ thatthe "" '
belonging to G contains denominators. Prove that the quotient semi-group of the
multiplicative semi group belonging to 6 forms an associative semi-ring 0(6) if the
addition is defined as follows: a + b as in e, a + (w) = (ad + b)/d, (b/d) + o =
(b + du)/d, (II/d) + (a’Id’) = (“'3’ + u'd)/(dd’).

b) The semi-ring 0(6) is called the quotient semi-ring. Show that it contains 6
as sub--semiring

c) If 6'is a ring, show thatQ(6) is aring. 0(6) iscalled the qualiemmg of (5.
d) Let x be an ' ' semi--ring Gas ' , where the ele-

ments of (1(6) generate a multiplicative group in 2 whose unit element is also the unit
element of 3:. Show that there is one and only one homomorphism of the quotient
semi-ring 0(6) into S: leaving every ‘ of G ' namely the A ‘
that maps 0 onto a and e/d onto ad“.

2'7. A subring of a field'is called a hall field. Show that a ring is a half field if and
only if the ' " is ‘ and ifa ' ‘ only if at least
one of the factors vanishes. The quotient ring of a hralf field'is a field, whioh is called
the quotient field of the half field. A half field with unit element'is called an integral
domain or domain of integrity. Give examples.

28. A multiplicative domain in is called ordered if there is a binary relation (1 > b
on an, called the ordering rehab» on as, such that l. a is not greater than a, 2. if
11 >11, b >o,thene >e,3. ifeisneithsrequaltobnorgreaterthanb,thenb >6,
4. if a > b, then as > ab and ac > be. Show the following:

a) The “ ’ ‘ 4 ' ill ' the " ' laws of multi-
plieation.

17) From a > b. c > d it follows that ac > bd.
o) The binary relation ‘o 2 b ifb is not greater than a’ is both reflexive and transitive.

Furthermore, between any two elements a, b of fill one of the two relations a 2 b,
bzn holds. Ifa2b,b 20thenu=b. Ifazbnrzdthenaczbd.

d) For an ordered group 0] which is not 1, the elements > 1 form a semi-group b
with the following properties: 1. Ifa, b are contained in $ and a is not a left divisor
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ofb then either a = b or b is 3 left divisor ofa; 2. (1% = 611 for every element a of 5;
3. a is not left divisor of a; 4. the cancellation laws of multiplication are satisfied in b.

e) A semi-group 6 with the properties l.-4. mentioned under 6.) can be embedded
into an ordered group so that 5 consists of all the elements > I. The ordering of the
embedding group is uniquely deterznined (use Ex. 24 0)).

29. A quasi-ring 6 having 3 binary ordering relation is called an ordered quasi-
”M if its elements under addition form an ordered module and if the elements > 0
(called the positive ' , form an ‘ ’ a 3. under ‘ ' ‘ ' Show
that

s) for each element a one, and only one, of the three relations a > 0, a = 0, — a > 0
is true;

b)ifthe funetionsignaisdefinedtobe 1, 0,—leooordingasa (0,11 = (1—0 > 0.
respectively, then sign (ab) = sign a « sign b;

e) ifthe absolute value la} ofa is defined as a or —u according as a 2 0 or — a > 0,
respectively, then the absolute value also is a multiplicative function: [0 ~ b] = |a| - |b|;
moreover, the triangle inequality la + b| g |a| + |b| holds;

d) the two inequalities a > b, c > (1 imply the inequality ac + bd > ad + be;
e) the ordering of an ordered ring can be extended to an ordering of its quotient

ring as follows: a > b/c if «10' > be, u/b > c if ab > cb‘, a/b >o/d if ubd‘ > cdb';
I) that there is only one possible way to extend the ordering of an ordered ring to

on ordering of the quotient field.
30. A semiq'ing G having a binary ordering relation is called ordered if its elements

under addition form an ordered semi-module and if, further, from a > b, n > d it
follows that me + bd > be + ad. Show that

a) the ordering of 6 can be extended to an ordering of the difierence ring 41(6) by
introducing the rules: a>b—e if a+c >b, a—b >0 if a >e+b, a—b >
e—-d if a+d>c+b, u>0 if a+a>a, 0>a if a>u+a, u—b>0 if
a > b;

b) there is only one possible way of extending the given ordering of G to an order-
ing of the difference ring.

31. Show that the positive elements of an ordered quasi-ring Q form a sub-semiring
P having the property that for any element a + 0 one and only one of the two ele-
ments a, — a belongs to P If, conversely, Q is a quasi-ring with a sub--semiring P
thethssthe ' ' ' " ‘inther. thenQis " "
by the ordering relation. aw> b if u — b belongs to P.

32. Define recursively the powers of e semi-ring 6:
G‘= g gi=gg en=g sn—i+gagu—a+...+g~-ig

. end show that they form two-sided ideals satisfying the rule (5“ 6'" g 6”". If
G is associative, then 6“ 6" = 6””. If G is e Lie-ring, then 6"“ = @o (5" = @‘o 6
(here the convention regarding the definition of 1mm, as a sub-semirnodule if m,, m,
are sub-semimodules is to be used).

33. Show that the subsets of a given set S form a commutative ring 3(8) if addition
and multiplieet-ion of the two subsets a, b of S are defined as follows: a + b is the

. ofthe' ' ,ofaandb ' ‘ totheunionofamdb;a-bisthe
intersection ofa and b. Show that this ring satisfies the lows of a Boolean ring, namely,
the laws of a commutative ring and the laws: an: = n, a + a = 0.
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34.A ‘ aofa ' " ' 4 ’ flintothe ‘ " ‘ ill
is called an anti-Mif Macy) =Ia(y)a(x) Show that

a) " ‘ ' and K L" in a way analogous to that
indicated for lattices in §5;

b) for a group' the mapping that maps each element onto its inverse is an anti-
automorphism;

e) the put»... and the " of a
form a group in which the automorphisms form a normal subgroup of index 1
or 2;

d) every multiplicative domain ill is anti-isomorphic to its dual domain 932“”,
which is defined to be the multiplicative domain that arises from 911! if multiplication
is redefined by taking as the new product of the factors a and b, in this order, the old
product be;

e) a multiplicative domain is isomorphic with its dual if and only if it has an anti-
automorphism;

f) every group is isomorphic with its dual;
5) the preceding statements remain true for semi-rings if an anti-homomorphism

ofa semi-ting 6intoasemi-ring!isdefinedtobeamappingaofemtoisatisfying
the conditions: May) = u(y)a(:c), «(w + y) = 6(1) + My);

h) every ‘ ‘ a ‘ ’ .56 and an associa-
tive semi-ring I induces the anti-homomorphism between the matrix rings M. (G)
and M, (3:) which maps the matrix (fin) onto the matrix (11mm);

i)if6isa 'veand ‘ ' .,,thenthe ‘ ‘
the matrix (fin) and its transpose (flu), which we denote by (puff, gives an anti-
automorphism of M. (C)

35. A derivation of a quasi-ring Q is defined to be a mapping (1 of Q into Q satisfying
the following rules of formal diflerentiation: 1(4) + b) = (1(2) + (1(1)), d(ab) = d(a)b
+ ad (b). Show that the derivations of 0 form a aubring D(Q) of the Lie-ring belonging
to the operator ring of the additive group of Q. Assign to any element a of L the
mapping a of L into L that maps :1: onto am, and show that the quasi-ring L is a Lie-
ring if and only if the left multiplication a is a derivation mapping a onto 0. Show that
the derivations a of a Lie-ring L associated with the elements a ofL (firmer derivations)
form an ideal I (L) of the Lie-ring D(L) of all derivations of L.

36. Let G be a ring with unit element. The 6-module ER is said to he torsion-[res
if for each denominator d of G the equation day: = 0 implies a: = 0. Show that the
elements of a torsion free G-module and the formal quotients u/d, where u belongs
to 92 and d is a denominator of 6, form a torsion-free module over the quotient
ring 0(6) of 6 which contains SR as submodule, ifwe define: u = v as in 2)}, a = v/d
ifdu =u,u/d=uifdu =v,u/d=u'/d’ifud’ =u'd;u+vasin 9)},u+ (old) =
(v/d) + u = («a + m/d. (u/d) + («I/4') = (ud' + u'dudd'. flu as in an; Fwd) = (30W.(Ii/d)“ = (aw/d. (fl/dHu/d’) = (aw/add

The Q(G)-module just defined is called the quotient module of 8)! over 6. Show
that the quotient module is generated over 0 (6) by its submoduls SR and thus may
be denoted by Q(G)9J2. Every homomorphism over 6 of in into a Q(G)-module 92
can be extended in one and only one way to a homomorphism over Q (5) of the Q (6)-
module 0(6)!!! into the (Na-modulo S2. viz., the mapping that maps u/d onto
d"h(u).

. . . _. .
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37. Let 6 be a ring with unit element. An G-submodule m of an 6-mudule m is
called prirm'tiuz in m if the G-factor module all/m is torsion free. Show that

a) all elements with torsion in $2, i. e., the elements of fill that are annihilated by
some denominator of 6, form a primitive €~submodule $(M) of 932;

b) the torsion aulmwdule tam/defined under a.) is the smallest primitive Emb-
module of 912;

o) the intersection of any system of primitive 6—submodules is a primitive G-sub-
module, and hence for every subset m of 6 there is precisely one smallest primitive
G-submodule 111' containing m;

d) if the subset m occurring in o) is an Gsubmodule, then the G-faotot module
m’Im is the torsion module of film.

38. Let G be a ring with unit element and let 9!! be a torsion-free G-quasi-ring in
which du 2 ml for all denominators d of 6 and all elements u of 92. Show that the
quotient module Q (6) 3}! defined in Ex. 36 becomes a Q(G)-qussi-ring if the following
rules of multiplication are introduced:

uv as in 5m, u - (v/dl = (uv)/d, (”mu = (uu)/d, (u/d)(u’ld’> = (wt/(W)
(note that we set: ufi as in ill,u(B/d) = (um/d, (u/dm = (um/d, (u/d) (fi/d’) = (um/(dd').

Show that the Q(G)-q\msi-ring just defined contains 3’! as an G-subring and that
there is no other way to extend the rules of operation from 9)! to Q(G)W¢ so as to
embed the G-ring 3!! into an Q(G)-quasi—ring. Thus 0(6) 2112 can rightly be celled the
Q((€)-quat€ent ring of the G-quasi-ring SR.

39. Let G be a commutative ring with unit element and let a): be an e-quitsi-ring
without torsion. Prove that all linear transformations of the 6—module am that are
derivations of the quasi-ring El]! form an G-Lie-ring 14(9)}, 6) without torsion such
that “@1493. 6) == 140(5)”, 0(6))-



APPENDIX B

STRUCTURE THEORY AND DIRECT PRODUCTS

In this appendix, the lattice-theoretical discussion of the ideas of group
theory that was begun in Chap. II, §5 will be continued. It was noted
earlier that in a poset formed by subsets of a set the meet operation is not
always set-theoretical intersection and the join operation is not always
set-theoretical union. In order to emphasize in the ensuing discussions
the more abstract role of meet and join, we employ the symbol M for meet
and J for join. Thus, we write uM b for the meet of the lattice elements
a, b and (1.112 for their join.

1. Projectivitics

The isomorphisms occurring in the lemma on four elements are explicitly
defined as products of a projection with an anti-projection. They depend
on the way in which the four elements are embedded into the given lattice.

Two factor lattices all: and old are projectively related if there is a chain
of factor lattices

in “/17 = ail/bu: “1/171, - ~ u “In/ban = ”M
connecting all) and 6/11 such that

a) bNa, c, biNai (i = 0, 1, 2, . . ., 2n) and
b) elm/b,”+1 is projective with tin/b“ and also with unfllbufl for i = l,

2, . . . , n — 1.

According to Ex. 18 of Chap. I, ‘projectively related’ is the normalized
relation of ‘projective.’ Hence the factor lattices of the given lattice L
are distributed among families of projecticely related factor lattices in such
a way that each factor lattice belongs to one and only one family.

Each chain (1) linking a/b and c/d carries with it the specified isomorphism
mapping a/b onto old which is induced by the projection of ao/ba onto «11 lb;
followed by the anti-projection ofa1 [b1 onto a,/bg , etc., ending with the anti-
projection of «1,,,._1/b,,,_l onto (tn/b... . We call this isomorphism a projectivity
of all) onto c/d. Since we can reverse a chain and since we can piece to-
gether two chains that have the same factor lattices at the ends at which

158
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they are amalgamated, it is clear that all the projectivities linking various
members of a familyF form a a I "‘ The unit ' ‘ are the" "‘y
automorphisms of the members of F. All the projectivities between a
factor lattice (1/12 and itself form’a'group which may be denoted by PP(a/b). If
c/b and 6/11 are projectively related, then PP(a/b) is isomorphic to PP(c/d).

Referring to the lattice 3((3) of all subgroups of a group @5, we may
observe that every automorphism a of o induces an automorphism E;
ofS ((55). The correspondence that maps a onto a? is a homomorphism between
the full group A“ of automorphisms of 65 and a subgroup PA“ of the
group of automorphism of S(@).

We indicate by the prefixed letter the transition from any group I of
automorphisms of (s3 to the group Pf, of automorphisms of 8(6) induced
by the automorphisms in x. All the automorphisms in I inducing the
identity automorphism of S (6) form a normal subgroup E), of 33 such that
P! is isomorphic with 3/2,.

' We have already seen that there is the specified isomorphism dim 18,6 of
$I‘E onto fil/Ql fl (5, in case $I6,’ is projective with fl/QI n (E, and further-
more We have seen that 115%,“; induces the projection between the factor
lattices EB/(E and ‘ll/QI n02. Hence for every chain 8/6 = 32/050, fill/(El,
. . ., 98”]n = SHE linking the two factor lattices %/(E and $I® of the
same family of projectively related factor groups in (3 there is the specified
isomorphism

. . . -I
ln. Bin—i. “rn—i @191: 93:- Ki @130. 91- ‘1

between the factor group 58/6 and se/c, which may be termed a projectivity
between the factor group 93/05 and 93/6. Each projectivity between the
factor groups induces the corresponding projectivity between the related
factor lattices.

Again, it is clear that all the projectivities between any two members
of a family of factor groups in a group form a groupoid. All the projecti-
vities between a factor group iB/fi and itself form a group of automorphisms
P($/Q') of 58/6. We find that there is a homomorphism between P($/@)
and PP($/(E) with its kernel P($l0$)p consisting of all the projectivities
between iB/E and itself that leave invariant every subgroup of BIG.

All these considerations remain true if applied to a sublattice of :S'(@l),
e. g., to the sublattice formed by all subgroups of G that are admissible
with respect to a certain operator domain.

. At the end of this chapter we will find an interesting example of projecti-
vities between certain factor groups in an abelian group which exhibits
the relationship to fundamental notions of projective geometry.
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2. Modular and submodular lattices

DEFINITION: A lattice in which each element is a Dedekind element is
called a modular lattice. All normal subgroups of a group, for example,
form a modular lattice. The modular property amounts to the two identities

(2) ((d)Mc)Jd=(d)M(c)

(3) ((dMy)Jc)Md=(dM.y)J(eMd)
for any four elements a, d, x, y of the lattice under consideration. Hence
the identities are called the modular hm. Since (3) is the dual of (2), it
follows that modularity is a self-dual property. The identities (2) and (3)
are not independent. Using only (2) we find

((dMy)Jc)Md =dM(cJ(dMy)) = ((dMy)Jd)M(cJ(dMy))
= (((dMy) Jd)Mc)J(dMy) = (n)J(dMy) = (d) J(c).

Every sublattice of a modular lattice is modular. The Dedekind elements
of an arbitrary lattice do not necessarily form -a sublattice of the given

lattice (of. the diagram). Since the join
of two Dedekind elements is always a
Dedekind element, it follows that in a
finite lattice the pcset formed by the
Dedekind elements is a lattice. But, as
the diagram shows, this lattice need
not be a sublattice of the given lattice.
(Doubly encircled elements are Dede«
kind elements.)

If the Dedekind elements of a lattice form a sublattice, then they form
a modular lattice. This is because the modular law holds as an identity
for the sublattiee of the Dedekind elements.

DEFINITION: In a lattice L with normality relation, the element a is
called aubuomuzl if it can be connected with L by a normal chain of finite
length. We denote this relation by a N N L and it means that there is a normal
chain aNalNa,N - ' - Na._,NL between a and L of finite length .3.

More generally, we write aN Nb if there is a normal chain of finite length
a, say aNaINaIN . . ' Na, :1: connecting a with b, where b may either
be an element of L or b = L. We say ‘a is subnormal under b’. In case
Kurosh invariance is the normality relation we speak of mbinvariance and
aubinvariam elements.

As a measure of the degree to which the subnormality cN Nb deviates
from normality we introduce the number m(b, c), which is defined as the
minimum of the lengths of all normal chains connecting a and b.
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We have m(b,c) =0 if and only if c :12; m(c,b) =1 if and only if
c and a 4:1); m(c, b) > 1 ifand only icNb and c is not normal in b.
For example, the subgroups of a group that occur in normal chains offinite
length connecting e and the full group, are the eubmmal subgroups of the
81'0“P-

Conoeming subnormality we have the following simple facts:
THEOREM15:1faiasubmmlinthelafliceLandifbiawbmrmalunder

a, thenbiseubnormalinL. Also
' m(b, L) g m(b, a) + m(a, L).

Proof: Let aNNL, bNNa; then there are normal chains bNbl.N ' ' -
mm) = a, aNalNa,N - ~ - Nam“, = L; piecing together the two
normal chains, we obtain a normal chain of length m(b, a) + m(a, L)
connecting b with L.

THEOREM 16: If a is autumnal in L, than if a in any element ofL, aMc
is eubnomuzl under a and

m(aMo, a) g m(c, L).
Proof: There is a normal chain cqN - ‘ - Nam,“ =L, From Rule 4

for normality it follows that (aMc)N(aMc,)N ' ' - N(aMc_(., L,_1)Na.
By application of Theorems 15 and 16 we Obtain
THEOREM 17:IfbothuandbaresubuonnulinLJhenaMbicaLsowbnormul

in L and we have the inequality
. m(aMb, L) gm(a, L) +m(b, L).

Furthermore, there holds
THEOREM 18: If 6 g a, bNNL, then bNNa and

1n(b, a) g m(b, L).

COROLLARY: [/6 S u’ g a, bNNa, thenbNNu’,

m(b, a’) S m(b, a).

From Theorem 17 it follows that the poset of the subnormal elements
of a finite lattice is a lattice; but this lattice need not be a sublattioe of
the given lattice; the diagram below furnishes a counter-example, if normal-
ity is taken as Kurosh invariance. Both a and b are subinvariant, but
‘a J b is not subinvariant.

Even though we cannot always conclude from aN NL, b N NL that
(a J b)N NL, at least we have in this direction

THEOREM 19:1fuNL, bNNL,the1o(a J b)NNL and m(aJ b, L) gm(b, L).
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Proof: From Rule 5 ofnormality it follows that there is the normal chain

(a J b)N(a J bl)N(a J b,)N - ‘ ‘ N(a J bm(s,I.)—1)NL

connecting a d b with L if there is given the normal chain bNbl.N - - '
muJA-l NL between b and L.

Many normality relations—for example, the normality relation between
the subgroups of a group—are complete with respect to the meet operation,

that is, for any set S of elements
of L that are normal in a given
element a of L, the meet of the
elements inAS' always exists and is
normal in «1. Assuming complete-
ness of the normality relation as
well as the lattice-theoretical com-
pleteness ofL, we define the lower
normal series from L to a given

element as follows: Let 80011, L) be the all element of L. Assuming that
8,,(11, L) is already defined as an element of L containing a, define S,+1(a, L)
as the meet of all the elements of L that are normal in 18,01, L) and
contain a. For a limit number v define S,(a, L) as the meet of all elements
S,(u, L) with n < 1:. Thus, for any ordinal number n the element S,(a, L)
of L is so defined that Sn(a, L) is the all element of L, Hairdo, L) NS,(a, L),
a g S, (a, L) and S,(a., L) = qS, (a,L) for every limit number 1:. If T,
is another decreasing well-ordered normal chain with the same properties,
then we prove by transfinite induction that S, (a, L) _<_, T, for all ordinal
numbers (7!. There is a first ordinal number m(a, L) for which 8,“, L,
= Sm,“ L)+1< It follows that the decreasing well ordered normal chain
S, (a, L) (0 g a g m(a, L)) is properly decreasing and that m(a, L) is
the minimal length of any well—ordered properly decreasing normal chain
from L to Swan-

The element a is subnormal if and only ifm(a, L) is finite and SM,“ 1,,(a, L)
= a, and in this case m(a, L) is indeed equal to the minimal length of
a normal chain from a to L as is implied by the notation.

At any rate, the meet ofall subnormal elements ofL containing a coincides
with 8,,(a, L), where (0 denotes the first infinite ordinal number.

If m(a, L) is finite, then the 'subnormal hull’ d = Sm(,,,;,(a, L) of a is
subnormal, and it is characterimd as the smallest subnormal element of L
containing a.

Any lattice automorphism 9 that preserves the normality relation maps
S,(a,, L) onto 8,0341, L). Hence m(a, L) = m(6a, L), and 5(7) = 0(6).
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Taming our attention to the subgroup lattice 8(6) of a group GS, we
may raise the question of to what extent the subinvariance of a subgroup u
is determined by the structure of a given normal subgroup 92 and its factor
group 65/9?- w

If there is a. normal chain 11 = muuluum ' ' - N11, = G, then we
can form the normal chains

1152/92 N 11,92]?! N ~ ' - N “fit/92 = 65/92
and

HM?» = (110M?!) N(111M92) N - - - N(11,M92) =9}.
Moreover we have

(11, 11.M93) S 114-1M92 for i: 1, 2, . . ., 7‘,
since plainly (11, ER) S 98, (II, 11;) S Ila—1-

Conversely, assume that there are normal chains HER/ER NE N ' ~ ' NE:
= 65/512 in 6/53 and HMSR = ifiuNZBIN-u N28, =92 in 9‘! such that (11, 28.)
is contained in 28H for i z 1, 2, . . ., s; then we have the normal chain

11N(11, ESQNOI, 28,)N - ~ - N(11, 1‘13.) =1192N $81M - - - N 98,=@3,
wh ere fl is the subgroup of 65 formed by the cosets iii—i.

We apply this remark to the case that Q} is the holomorph of a group a
of automorphism of an abelian group all. It follows that a subgroup II
of M is subinvariant in G! if and only if

I. u is subinvariant in 2!;
'2. Thereis a finite numberasuch that for anys automorphismsn,, n,, . . .,

n, of SD? contained in 91 we have the equation

(m—ar-D ‘ ‘ ' (m—l) = Q.‘
In Ex. 23 of Appendix D an example will be constructed in which there

are two subgroups of 91 both subinveriant in @l but in which the subgroup
generated by them is not subinvariant in 6. Thus in general the subinvariant
subgroups of a group do not form a subhttice of 8(6).

. Dnmmorx: A lattice is called aubmnnal if every element of the lattice
is subnormal.

- If the poset of all subnormal elements of a lattice with normality relation
forms a sublattice, then this sublattice is subnormal. This is because the
concept of. normality is based on certain identities that remain valid in
any sublattice. For groups, the following theorem holds.

‘ This means in ring-theoretic terms that the operator ring of fill genomted by
91—; is nilpotent.
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THEOREM 20: If the suhnormal subgroups of a group (B satisfy the maximal
comiitton, then they form a complete sublattice of the lattice of all subgroups of @5.

Proof: Since we already know that the intersection of two subnormal
subgroups of G5 is subnormal and since the maximal condition is satisfied
by the subuorrnal subgroups of (5, it suffices to prove that the join of finitely
many subnormal subgroups of @i is subnormal. In other words, we have
to prove that the subgroup generated by finitely many subnormal sub-
groups 111, 11,, .. ., u, of (E satisfying the inequalities

m(u;,@)gnfori=l,2,...,'s

is subnormal. This is obvious if n = 0, 1 or if s = 1. Apply induction on n
and on 3. Assume n > 1, 8 > 1. By the induction hypothesis concerning
s, the subgroup 8 generated by the s —— 1 subnormal subgroups 11,, 11,, . . .,
u, satisfying mm“ 6) S n for i = 2, 3, . . ., s — l, is a subnormal sub-
group of («3.

Furthermore, there is a normal chain IIINSB'IN583N ' ~ -.N 58,. = 65 of
length 11, between 11I and ‘5. Since $3,,_1 is a normal subgroup of 6, the sub—
normal subgroups of 38..-, are subnormal in (S and therefore satisfy the
maximal condition. For finitely many conjugate subgroups 11:1, 11?, . . .,
11? of 111 we find, by application to SBnfl of the induction hypothesis
on n, that each of these subgroups is subnormal under 8‘4, because
n— 1 2 mail, 98,.-1) = "411:“, $1,) = malf‘, RH). Since $,._1 is
normal in @5, it follows that the subgroup of (B that is generated by
a finite number of conjugates of 11, is subnormal under @5. From the maximal
condition it follows that any system of conjugate subgroups of 11, generates
a subnormal subgroup of (<55. For example, the subgroup 1111 of (it generated
by all the subgroups of 581 = (111, it) = (111, 11,, . . ., 11,) that are con-
jugate to 111 under $1, is subnormal under 65. Of course, 111 is contained in
11“, 1111 is a normal subgroup of $1, and $1 is generated by u,, and $.
Hence each term ofthe lower normal series 11,, = SMNSMAN - - - NS‘, = 6
(where S‘ = 5'i Q5) and m = mm“, (5)) is also invariant under trans-
formation by elements of B. Hence S,N (SH. 23). From )8 N N 6 it follows
that 913 N N (SH, fi). By Theorem 19 it follows that (8‘, E5) N N (8‘4, it);
hence

it; = (5..., $)NN(S__1, B)NN - - - NN(S¢, $) = 65, $1M Nw,
Q. n. D.

COROLLARY : 1/21, 98 are two mtg-roam of @i for which there arewrrvposition
series from (ii to Q! and B respectively, the» there is also a composition series
from (SJ to (2!, EB).
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This theorem, due to Wielandt, can be proved by using the methods of the
preceding proof. If S is a. system of subnormal subgroups of the group ©
such that the maximal condition holds for the subnormal subgroups of 6‘
between @5 and one of the members of S, then the union of the members of

. S is a subnormal subgroup of Q}.
If 9t, >3 are two subnormal subgroups of a group G} for which there is a,

composition series from G} to $1 and 58 respectively, then by the preceding
corollary, (91, 98) is subnormal under (5, and hence there is a composition
series
(4) 91=9IoNfl1N"'N9L=(fi,$>
and a composition series

(5) , §B=$0N§81N~~N$.=(%[,?8).

More generally, let $[, $ be two subgroups of 65 such that composition series
(4) and (5) respectively exists. After elimination of repetitions in the normal
chains
(6) (umemwmemmmemu-meme)=50,
(7) (ammuomelmwmaoN-unorms.)=su,
we obtain composition series (6’), (7’) from 91M 26 to $6 and in respectively.
We wonder how the composition series (6’), (7’) derived from (4), (5) respec-
tively can be related to the composition series (4), (5).

We call a composition factor group 9mm”, of (4) abundant if filiM $3 =
91‘41M58. Similarly, a composition factor group $8,/SB,-_, of (5) is called
abundant if 91M 58, = SllM $;_1. We ask how the abundant factor groups
in (4), (5) respectively are related to the non-abundant factor groups in (4),
(5) respectively.

THEOREM 21: If SE, 98 are two subgroups of a grow with the property that
there is a composition series (4) from 91 to (2!, SB) and a composition series (5)
from .58 to ($1, fi), then
a) the non-abundant factor grows of (4) are one-to-one proiective with a

' composition series (6’) from SIM b to 58, _
b) the abundant [actor grows of (4) characterized by 91(M58 = SLIHMSB are

abelian,
0) every abundant factor growp in (4) is proieotivelg related with a coniagate

of a non-abundant factor group in (4),
d) the abundant factor groups in (4) and in (5) are one-to—one proiectively

related 1442 to their order.
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Proof: a) The factor group QI‘IQIHI is non-abundant if and only if WM Q3
is difi‘ercnt from SLAM a In this case, because of the simplicity of fib/QIH
we find that filt/‘ZIH is isomorphic to (QLM SB)/($[HM 96).

d) The abundant factor groups in (4) and in (5) are one-to-one pro-
jectively related up to order, because of the Jordan-Holder-Theorem.

b) and c) If r g 1 or o S 1, no abundant factor groups occur, and there
is nothing to prove. Now letr > 1, a > 1. We apply induction onn = r + .9.
Assume that the statement in question is true when the value of r + a
is smaller than 11.. Since 91 S mr—l 3" ($1, $> we have (in, $) = (91,-“ 58)
which, by the Second Isomorphism Theorem, implies that (91, 58)/%[,_1
is isomorphic with $/(QI,_1M$). Hence QI/QI,_l is not abundant. By the
Corollary to Theorem 20, the subgroup (fl, fl,_,M 98) is subnormal in
(ill, 56), and since QIN N61, ElHM SB)N NYIHN (91, 28) there exists a
composition series from M to (9!, $) via (91, 91,_1M $8) and 2L4. From the
Jordan-Holder Theorem we deduce that it suffices to prove the theorem
only for this composition series instead of (4). There is no loss of generality
in taking this new series to be (4); hence for some index i with 0 g j g r— 1,
91, = (91, QIFXM l3) it follows that 91,_,M$ S QIiM 53 S 91._1M 58 and
hence 911M$ = 9I,_1M$. From the Jordan-Holder Theorem, the length
of a composition series from fl,_lM$ to 51f, is 1 + s -— (r—j) S 3. Since
the composition series fil = 910N9l1 ~ ~ ‘ Mill, is of length 7' < r, we can apply
the induction hypothesis to 2K, $1,_1MSB. It follows that the abundant
factor groups between fl and a, are abelian and are projectively related
with conjugates of non»abundant factor groups between 91 and $1,.

Similarly, we can apply the induction hypothesis to the pair $1,, 56
provided EIFIMSB =l=9IM§8; then SI, #:fil, and the induction hypothesis
yields that the abundant factor groups between 91, and ($1, 58) are abelian
and are projectively related with conjugates of non-abundant factor groups
between 91, and (91, 98). Both statements together yield the theorem.

It now remains to consider the case that fl,_1M§B = SIMS. We may
_ assume, similarly, without loss of generality that there is a term 58. in

(5) with 8,, = (91M$._1, $3). Then SlikM?! = SFIMYL Hence if $4-1M“
=l= fiMQI, k > 0, and the theorem follows when the induction hypothesis
is applied to ‘JIM 53.-“ $6 and to 9!, $,,.

Finally, we consider the case that 3H,-1ME = i’IM$._‘ = QIMSB.
From the Second Isomorphism Theorem it follows that YI,_1M$ is a

normal subgroup of $ and QIM$,_1 is a normal subgroup of VI. Hence
SlMlB is normal both in SI and in S8 and therefore is normal in (91, 58).
We may therefore carry out the remainder of the proof in the factor group
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(ii, $)/(9[M56) instead cfin 65. Let us, then, assume QIMS = l, (9!, B)
= Q}, 91,-1Mfi = 91M58._1 = 1.

Let 5,)? be the normal subgroup of 65 generated by the conjugates of ill.
Then, in view of ill g 2b-, and' “1-1" 65, we conclude that St is contained
in 91,_,. Therefore 92M$ g 9!,_,M$ = 1, K,_,$ =SR$ = (-5, QIH/m
is isomorphic to 1, so that 9L4 =92.

$1 is simple, since 21/1 is isomorphic to 6/58,_,. Hence the length of any
composition series from 212 = 91,4 to 1 is 1 + r — 1 = r. The same applies
to $8 .and to RA, so that a = r, n = 2r. Thus the induction hypothesis
is applicable to any pair of snbnormal subgroups of 9}.

Set 521—0 = fl. We define if, recursively. If E is already defined as a
subgroup of (3 generated by certain conjugates of it under @5, then by
Theorem 20, the subgroup W4 is certainly subnormal in (5, and therefore
either 51E = 92 or fiH is not normal in c. In the first case, set E = 92.
In the second case, there is a normal series WENSINQIN ' ' ' N6, = 65
from E to @5 such that E; is not normal in 6,. Therefore there is a con-
jugate of K under (5, which is not contained in 9E. There must also he
a conjugate of 91 under C5,, say I“ such that 2‘ is not contained in 91;.
Since W is contained in G, and (51 is normal under (53,, it follows that x,
is contained in 6,. We set E; = (K, 35‘). It follows that QENW‘, QI—H
=i=fp Since 1Q, a conjugate of a, is subnormal under (5, and since also
ill—H is subnormal under (5, it follows that fiM x‘ is subnormal under (91.

. But in view of the fact that fig, being conjugate to ‘21, is simple and that
furthermore it" is not contained in 2:, it follows that 91—HMx, = 1.
Hence E/m is projective with the conjugate E; of fill. It follows that there
is the composition series INQTONENEN ~ ‘ ~ NQI—H = $12 = 91,4 from
1 to 9L1 each composition factor of which is projectively related with some
conjugate of 91. Each composition factor of the composition series 1 N 91 N MIN

- N$(,_1 from 1 to 2L_,_, also is projectively related, by the Jordan-
‘ Holder Theorem to some conjugate of 91. Similarly, we see that each compo-

sition factor of the composition series 36 N 531M - . - N %,_l is projectively
related to a conjugate of i6. Thus c) is proved.

In order to prove b) let us assume that X is not abelian. By the induction
hypothesis applied to any two simple non-abelian subnormal subgroups
£1, 35, of 92, it follows that there are no abundant composition factor groups
between If and (£4, £1). Hence a is normal in (35‘, L), and either 2.- = (if;
or (In £,)]£{ is projective with LII; and since, similarly, 35,- is normal in
(El, 1%,), it follows that (32.1, 35,) is the direct product of L and L. This
remains true if we set in = fit. It follows that 9L4 is the direct product

_of In, El, . . ., 3,4. Since this is a direct product of nomabelian simple
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groups, it follows1 that every normal subgroup of £4 is a direct product
of some of the 2‘s Similarly, flip! = ,_, = 2)., X 591 X D, X - ' ' X 2),,
where the g), are non-abelian simple groups and 9., = 58. Since 38,._1/
(91,-1M $,_1) is isomorphic with (ES/‘21,.l and @lfil,_, is isomorphic with %,
it follows, in view of r > 1, that QI,_,M$8,_1 =0: 1. Hence 91,-1M?3._1 is a
direct product of some f’s as well as of some 53’s and it is bound to happen
at least once that 35‘ = 9,. The normalizer of 3; thus contains both 91,-)
and 38,4 and therefore (if also. But it is impossible for a conjugate of W to be
normal in 6, because 91 itself is not normal in 65. Hence every composition
factor between Sit and 91,_, is abelian. This completes the proofof the theorem.

3. Direct decompositions of lattices

We assume in this subsection that the lattices that occur are complete
and hence have an all element A and a null element Z. Furthermore, in
each lattice a normality relation is defined satisfying the conditions given
in Chap. II, §5. The normality relation of a lattice induces a normality
relation on each sublattice. '

DEFINITION: The lattice L is the direct join of the subset B of L ifz 1. the
all element of L is the join of the subset B of L, 2. for any subset X of B
the meet of the join of X and of the join of the complementary subset
B—X is the null element of L.

If L is the direct join of a subset B, then as many null elements may be
added to B or eliminated from B as one desires. Elimination of all the null
elements from a subset of which L is direct join, leads to a proper direct
join. If L is the proper direct join of B, then the elements of B are all diffe-
rent one from another (this follows from property 2.) and also difi‘erent
from the null element of L.

Trivially, L is the direct join of the subset consisting of the single element
A. The lattice L is called indecompoeable if there is no other proper direct
join representation. If the subset B of L is the union of the system S of
mutually disjoint subsets X of B, then L is the direct join of B if and only
if the join of all the joins over X is direct and is equal to A. We say that the
decomposition of L as join of B is obtained by refinement from the decompo-
sition of L as join over joins of the subsets X ranging over 8.

DEFINITION: A direct join representation of L over the subset B is
called normal if the join over any subset of B is normal. The terms normal
proper direct join, normally indecomposable, and normal refinement are formed

IForan' ‘ ’ proof,see“‘ ’ 4ofthis ' r
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as above by making use only of normal decompositions. In the sequel
we assume all decompositions to be normal, and thus we may omit the
adjective normal in connection with decompositions and derived terms.

Let L be the direct join of B. For any subset K of B we define the de-
composition operator

ox = V’Jx ‘Pflbx’ ’
that is,

61(a) = (aJ(J(B-—X)) M (JX) for u of L.

The element 61(11) is called the X-component of a.
It has the properties

(8) 5A1 J3/) = "«(91) J 61(11):
(9) 61(A)NA; if xNy then 61(1) Ndx(y),

(10) d,(a) = a, k,(a) = Z, 6,01 = a ifand only ifa g JX

(where A(B) is the empty subset of B),

(11) film) J6y(a) = 61“,“), 61(a)M6Y(a)=Z,

for any two disjoint subsets X, Y of B.
For the converse, see Ex. 5 at the end of Appendix D.
Proof:

JAWJY) = WJxWJy J(J(B —X)))
= ¢;x(xJ(J(B—X)) J(!IJ(J(B-X))
= ¢Jx(xJ(J(B—X))) JIPJx(3IJ(J(J(B—X)))
= 01(1) do: (1/).

because A/J(B—X) is projective with JX/(JX)M(J(B—X)), that is,
with dX/Z.

Next we consider three elements a, 9:, y satisfying 1 NA, 1/ NA, (1 g a: J y,
and we prove the identity

- (12) ((aJy)Mx)J((aJx)My)=(a'c)M(uJy).

Since an is normal in A it follows that x is normal in x J y and that (a: J y)/z
is projective with y/(xM y), and hence ((a J x) M 1/) J a: = a J 2:. Furthermore
(a Jac)My $01 Jz)M(a Jy) S a Jr. Since 1/ is normal in A it follows that
yM(n) is projective with aa/(xMy) and that

((aJylM") J((aJa:)My) = ((aJw)M(aJ!/)Mx) “(a-”W!”
= (aJx)M(aJy).
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From (12) it follows that for any element a’ of L we hove

((a'Jy)M¢)J((GJ¢)M1/)2(((¢'M(1Jy))dy)Mx)J(((fl'M(wJ:/))J%)My)
=a’M(n),

yielding
(13) ((a’Jy)Ma:)J((a’Jw)My) ~211’M(:A:.Jy).

For three normal elements 3:, y, z of L satisfying as xdydz, we set
a’ = ad: and find that

(14) ((aJs)M:e) J(aJa:Jz) 2(a)M(n).

Now let a: be the'10in- of the subset X of B, let y be the'Join of the subset
Y of B, let z be the join of the complement of the union of X and Y with
respect to B, and furthermore, let X and Y be disjoint. Then a: Jy dz =
A 2 (1; hence 6x01) d(a) 2 ox"(a). Under the same assumption we
have -

5,5,0») = (Ma) Js)Mz = (s)Ma: = (J(B—X))M(JX) =
Ifa S JX,thendx(a) = (a J(J(B—— X))M(JX) = a, becauseA/J(B—X)
is projective with JX/Z.

DEFINITION: A unique mapping q) of a lattice L into itself is called a
normal operator if

1- Wadi!) = w(x)dsv(y).
2- rNy implies ¢(1)N¢(y).
3. INA implies q:(x)NA,
4. W induces an isomorphic mapping of the factor lattice of A over a certain

normal element L, of L onto the factor lattice MA) [(p (Z). We note that
99(2) = ML.)-
This usage of the term normal operator is justified by the fact that the

normal operators of a group induce normal operators of the corresponding
subgroup lattice.

Every anti-projection (17‘ defined by a normal element 2 of L is a normal
operator. I

The latter statement is proved as follows. We have

WWI!!!) = zJ(n) = (N1) MN?!) = 'P’W) WWW)-
If mNy, then (s)N(s). If xNA, then (s)NA. The anti-projection
q: induces an isomorphic mapping of A]: onto A/z, where z = qflZ).
Thus L,.-— z.
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Ordinarily, the decomposition operators of a direct decomposition of L
are not normal operators, except for the trivial operators 1 and 9, which
map an element a ofL onto a and Z respectively. This is because an element
normal in the join of some subset of B need not be normal in L.

However, if the normal elements of L form a sublattice of L, then each
decomposition operator is normal.

Proof: Let L be the direct join over the subset B, let X be a subset of B,
andletabenormalinL. ThenJ(B—X)NA, (aJ(J(B—X))NA, JXNA,
and hence ((m J(J(B-— X)))M(JX) NA, 61.01) NA.

Referring to normal operators 1]) in general the equation Max) = My)
implies
(PW-1L.) =‘P(1) JML.) =¢(’I) JMZ) =1P(1 JZ) =W(x)= 911(11): WUJLJ
because of 1., xJL, = yJL, because of 4. Hence xJL, is characterized
as the maximal element having the image qa(x) under c. In particular, L,
is characterized as the maximal element having the image 97(Z) under oz.
In view of 4., the element L, of L may be called the kernel of the normal
operator on.

The product of two normal operators is a normal operator.
Proof: Let «p, p be two normal operators of L. Then we have

Wwdy) = WWW-1.11)) = WWW) J'P(y)) = (w(v(r))J(¢(w(y)) =
= WW) JWW).

‘ If xNy, then 1p(z)Nw(y), pv(x)qq:(y). If xNA, then w(a:)NA, WMI) NA.
There is precisely one solution z of the equation vp(z) = (1/) (A) JL,) dw(Z)
satisfying L, g 2 g A. Since ¢(A)NA, ZNA, L,NA it follows that
(w(A)ML,)Ngu(A), qp(Z)NA, w(z)N'p(A). Since the isomorphism induced
by 1p between A /L, and 1p(A)/V)(Z) is supposed to preserve the normality
relation in both directions, it follows that zNA. Furthermore, it follows

. that 1;: induces an isomorphism of 11/: onto

'P(A)/v(z) = 'I’lA)/('P(A)MLy) JV(Z) = V(A)/'P(A)M(L. JW(Z))-
Since L,NA, p(Z)NA, it follows that L, Jqp(Z)NA, and hence the anti-

‘ projection by L,Jw(Z) induces an isomorphism of MA) [111(2) onto
(L, Jv(A))/(L, J1p(Z)). Since ¢p(Z) 1s contained 1n w(z), it follows that the
anti-projection by L, induces the same mapping of up(A)/qp(z) as the anti-
projection by L, JMZ). Since ap induces an isomorphism of AIL, onto
¢(A)/1p (Z), it follows that (p induces an isomorphism of (L, do: (A) )/(L, J NZ)

onto ML JMID/ML J W(Z)) = W(A)/W(Z) From the equation #42) =
(cp(A)JL, J)yp(Z) we conclude that any induces an isomorphism of 11/:
onto (prp(A)/qup(Z) Hence mo is a normal operator with 2 as its kernel.
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The following theorems on direct joins presuppose that the normal
elements of the given lattice form a sublattice; consequently any decompo-
sition operator is normal. Since we shall be concerned only with normal
elements, we may as well speak only of the modular sublattice formed by
the normal elements of any given lattice. In addition, the double chain
condition will be required. For convenience, a modular lattice satisfying
the double chain theorem, will be designated as an MD-lattice.

Fm-rmo’s LEMMA FDR Lsmcns: Let L be an AID-lattice. With a, normal
operator a) mapping Z onto Z there is associated a, direct decomposition

A = L_,.Jw"(A),

where n is a natural number satisfying the condition L”, = 14...“.
COROLLARY: 1/ in addition L is directly indeoompoaable, then either to

is an automphism of L or a)" is the Q-opemtor.
Proof: The equation (0"(Lw) = Z implies 10’“ (L,) = w(w’(Lm,) = w(Z)

= Z, and hence L», S L0,“. Applying the maximal condition to the
increasing sequence Ln, Lam L0,, . . . of normal elements of L, we find
an exponent n such that L“... = ”+1. Fori > 1, the equation w"+‘(L_,.+() ’
= Z implies

w“+‘(w‘—‘(L..w)) = Z. w"1(L.w) S Luau-n w‘_1(L..m) S Lam)
Z = '1’" (”fl—1 (I'm-44)) = ““1“(Law)’ Laa’H-‘S Laue—- r Law: Lm’H-l = Lm'H'l= '
Furthermore, since to" is normal, there is a solution 2 of the equation
to" (z) = w"(A).MLm. satisfying the condition L”, g 2. We have

w" (z) s L”... w‘"(z) = m“(w"(z)) = Z, 2 g L.,.., z 3 Ln”,
1 = L“, «2"(2) =Z, m"(A)MLu. = Z.

Finally, since L”. is normal in A, it follows that the anti-projection by
L“. induces an isomorphism of w"(A)/Z onto (Law"(A))L/,,.. Since
co" induces an isomorphism of A/Lm. onto w'(A)/Z, it follows that a)"
induces an isomorphism of (Lu, J w"(A))/L,,,.. onto m”(L,,., Jw" (11)) [Z
= w‘"(A)/Z. Hence to“ induces an isomorphism of w" (A)/Z onto w'"(A)/Z‘.
But since L satisfies the double chain condition for normal elements, the
same is true for the factor lattice L/LM and for the isomorphic images
w"(A)/Z = w’"(A)/Z. Also, an element normal in w'”(A) is normal in L
and hence normal in (MA. Since w'"(A) is normal in w" (A) and since the
principal series of w'"(A) have the same length as the principal series of
w"(A), it follows that (o"'(A) = ou"(A). Consequently, w"(Lm,.Jw"(A.))
= w‘"(A) = w"(A), L,.Jw»(A) = A, Q. n. n.
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In lattice theory, Theorem 6 of § 2 becomes the following
LEMMA 0N NORMAL OPERATORS: If 0,, 11,, . . ., 0,, a)“ 111,, . . ., w, are

finitely many normal operators of 11 directly indecomposable MD-lat'tice L
mamping Z onto Z such that ’ ’

a, = 1,1 o, = 0),, wlalwm 2 ale 2 a,
m,aJa,a 2 o,o, . . ., w,_,u.Jo,a 2 a,_1a,

then at least one of the operators m1, w,, . . ., w, is an automorphism of L.
Proof: This is clear if r =1. Let r >1. Ifi <r, and if the operator

to. is not an automorphism, then, by Fitting’s Lemm and because of the
indecompcssbility ofL, we have mfA = Z for some n. We have the equation

WW?" (4)) = Z,
which implies

d‘+1mr’1(A) 2 ‘03“(11). ws(wt“‘(A)Jm+1w?“(A))2 w?"(A) ,
w:(wr"(4)) = w?“(A) S 0«+1wi'“(A)S (n+1 w?"(A),

U¢+1w?"(A) 2109"“), 0mm“) 210414), 0m(A) 24. (now) =14-
Hence there is, at any rate, an index i for which w,(A) = A. Since :21,

induces an isomorphism between AIL," and a),(A)/Z =A/Z, it follows
from the double chain condition that L.’ = Z. Hence a); is an automorphism
of L, o. n. D.

DEFINITION: A proper direct decomposition of a. lattice into finitely many
directly indecomposehle components is said to be a. Remalc decomposition.
If the lattice is indecompossble, then it is itself the only component of its
Remak decomposition. Theorem 7 of §2 becomes, with minor changes,
the following theorem.

THEOREM or 011m: Every LID-lattice has a Rama]: decomposition with
component: H1, [1,, .. ., H... If there is another Remak dewmpoaition of
the some lattice L with components J1, J., ..., J”, then the number of
components m of one Bemalc decomposition coincides with the number of

. components 71 of the other. Moreover the components J; can be so numbered
that we have the exchange decompositions of L with its Remalc components

' J1, 1,, Hm, 11..., 1-1,. (h: l,2,...,n—l).
Einolly there is a normal operator of L inducing an isomorphiam o/ H‘IZ
onto J./Z (i = l, 2, . . ., n).

‘ The notation o, for l is introduced merely in order to have uniformity of
notation in the proof.
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Proof: The existence of a Remak decomposition follows as in the proof
of Theorem 7, using the minimal condition only. Now consider the decompo-
sition operators 92,: :pmipfll, (1),: WW”! where H; is the join of all the
1],, with k 4:4; and J, the'Join of all the J,E with k 4:1”. Furthermore let
a, be the normal operator which is obtained by first applying the anti-
projection by the join of J,, J,, . . ., JH followed by the projection into
the join of J“ Jm, .. ., J," (i = 2, 3, . . .,‘ m— 1). Since w,(a) Ja,+,(a)
2 a,(a) for i = 1, 2, . . ., m— 1, and for any a of L, we have for a gH,
the relation ‘

9710734“) J “(+100) = W1 MW) J (ham ((1) 2 9’1 0‘01);
moreover m," = 0..., 97111)”, = w, a," and hence by application of the previous
lemma, at least one of the normal operators o, cu,b induces an automorphism
of H1/Z.

The Jk can be so numbered that 91, w, induces an automorphism of 11, /Z.
From H1: (11, m, (H,) = (p, (A) and from the normality of (p, we deduce
that A =: a), (H1) “11% .From the modular law we deduce that J1AMJ1
=(wl (H,)ML,1)MJ,. Since w, induces a homomorphism of Hl/Z onto ,
a), (H1)/Z, it follows that there is a. solution z of the equation w,(z)
= m, (1-1,)ML,l which satisfies the relation 2 g [1,. Since (plw1(z)
(p100, (H) ML“) = Z andcpl a), induces an automorphism of H1 , it follows that

2 =2, 2 = «111(2) = m,(H,)ML Jl = w,(H,)J(L,lMJ,).
But since J1 is indeoomposable, we conclude that J1 = w1(H1}. Furthermore,
if r S y S H1 and 101(1) = 001(11), then $110M) = enmity). I = y, and
hence on, induces an automorphism of Hl/Z onto Jl/Z. Since m,(H,) = Jl
= w, (A), it follows that .71 JL,I = A. Lastly,

¢1w1(H,ML,l) = qz,(J,MLu) = Z, JlML" :2.

Thus L is the direct Join ofJ,, 11,, IL, . . ., H,I .
Applying the same construction to H,’in this exchange decomposition,

the J,, with Ic > 1 can be redndexed so that there'Is a normal operator of L
inducing an isomorphism between HE and J,, such that all of the other
exchange decompositions obtain. A natural consequence will be the equation
a = m. Thus the Theorem of Ore is fully proved.

91’

4. Complemented lattices

In a vector module over a field F each F-submodule and each factor
module over an F-submodule has a. dimension given by the number of
basis elements over F. Generalizing this concept, we make the following
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definition. A real-valued function d(a/b) defined on all factor lattices 41/12
of a given lattice L is called a dimension function on L if
(13) d(a/b) is a/non-negative real number,
(14) d(a/b) + d(b/c) = d(a/c) (whence d(a/a) = 0),
(15) d(a/b) = d(c/d) if a/b is projective with c/d.
There is always the trivial dimension function which vanishes on all the
factor lattices of L.

In'a lattice with normality relation for any three elements a, b, c of L,
the statement aNb implies d(b/a) 2d((ad(c))/a) =d((c)/(cMa)).
Furthermore, if a is subnormal in a J b, then for any two elements

(16) d((a)/a) 2d(b/(aMb>).
This is because there is a normal chain a = aoNulN - - Na, = on”: pro-
jecting into the normal chain aMb = a..MbN(a1Mb)N - ’ - N(a,Mb) = b,
so that d(a.+,/a,) 2 d(ag+,Mb/aiMb). By adding up these inequalities we
obtain (14). In a modular lattice we have, instead of (16), the equality
(17) d((a)/a) =d(b/(aMb))

for any two elements a, I); this is a consequence of the fact that (a)/a
is projective with b/(aMb). Conversely, if in a lattice (17) holds for any two
elements a, b and if d(z/y) implies a: = y, then the lattice is modular.
In fact, if (13), (14), (15), and (17) is applied to three elements a, b, c which
are-in the pentagon relation aMc g b g a g 12.11), then we obtain

adb = We, aMb = 0M0, d((a)/c) + d(6/10 =d((adb)/b) = d(ll/(“M“)
=d(a/(aMc)) =d<<aJc)/c) =d((a)/o, d(c/b) =0, 6 =c.

Condition (15) says that a dimension function is constant on all the
members of a family of projectively related factor lattices, so that a dimen-
sion function may be interpreted as a non-negative real-valued function
on the set F (L) of all families of projectively related factor lattices, sub-
ject to the additional condition

(148») “I; + Ix) = w.) + 40:),
where we define the sum of two families [1, f, as the family represented by
a/c whenever it is possible to represent II by u/b, I, by b [c for suitable a, b, c
of L. Of course, this definition may not be unique. If L satisfies the double
chain condition, then any dimension function is uniquely determined by
its values on the simple families represented by factor lattices a/b for which
b is maximal under a and difi'erent from 4. Usually there are defining
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relations between the values taken at the simple families because of the
fact that an arbitrary family may be represented in various ways as a sum
of simple families. Geometrically speaking, we may represent the dimension
functions as the points of a convex cone from the origin in the affine space
over the simple families of L. However, if L is a submodular lattice satis-
fying the double chain condition, the Jordan-Holder Theorem holds, which
says that any composition series of L has the same length n and that the
n simple factor lattices corresponding to any composition series of L re-
present the same system ofsimple families. Hence in this case any assignment
of non—negative real numbers to the simple families can be extended to a
dimension function.

The normal dimension function on a submodular Lattice with double
chain condition is obtained by assigning the value 1 to each simple family.
The normal dimension ofA [Z is equal to n, being the length of a composition
series of L. We also say that L is an n—dimenaional lattice.

DEFINITION: A lattice is called complemented if, for every three elements
a, b, c of the lattice satisfying a S b so, there is a complement b' of b
in the lattice relative to 6/41 such that b J b’ = c, b’ = a.

A modular lattice L having a maximal element A and a minimal element
Z is complemented if and only if for each element 1: ofL there is a complement
12’ such that b J b’ = A, b’ =Z. In fact, if a, b, c are three elements
of L satisfying a S b S c, then

bJ(aJ(b’Mc)) =(bJa)J(b’Mc) =bJ(b’Mc) =(b’)Mc=AMa =0,
bM(aJ(b’Mc)) =aJ(b’Mc)) =aJ((b’)Mc) =aJ(ZMc) =aJZ :11,

so that ad (b’ Me) is a complement ofb relative to clot. For example, the normal
subgrms 0/ a grow (5 which is generated by its smallest normal subgroups =i= 1
form a complemented modular lattice. Moreover, every normal subgroupSlt =l= 1 of
Gite thedirectprmbuct afsomo/theamallestnarmal subgroups =|=l of (5.

Proof: First of all, we extend the notion of direct product, which pre-
viously was defined only for direct products of finitely many factors, to
direct products of infinitely many factors, as follows: The group (5 is
called the direct product of its subgroups 5,)? running over a finite or’ infinite
set B 0/ normal subgroups of (if if in the subgroup lattice of Q3 the group G
is the direct join over B.

This definition coincides with the definition in § 1 in the case of a finite
set B.

For any direct decomposition of a group 65 into the subgroups belonging
to a certain set B and for any subset X ofB we have the direct decomposition
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Q5 = I X2), where I is generated by all subgroups belonging to X and 2)
is generated by all the subgroups belonging to B, but not to X. The de-
composition operator or of the given direct decomposition of @5 with
respect to R is defined as themapping that maps any element g of 6} onto
the element (92))M I of E. It is a normal operator of a mapping 6 onto
It and inducing the decomposition operator 6, in the subgroup lattice of (E.

A set of necessary and suflicient conditions that a given subset B of
subgroups of (55 lead to a decomposition as a direct product over B is the
following:

1. The group G is generated by the subgroups belonging to B.
2. Each subgroup in B is normal; or: any conjugate of any one member

93 of B under another member of B is contained in 9t.
3. The intersection of any one member of B with the subgroups generated

by the remainder of B always is 1.

If B is an ordered set, then condition 3. may be replaced by the weaker
condition that the intersection of any one member 92 of B with the subgroup

‘dbythe ‘ op- J‘U‘Risl.
Now let us assume that the group @i is generated by the set S of all the

smallest normal subgroups =3: l of (53. Well order S so that there is a last
element ,3. Let 9[ be a given normal subgroup of (ll and, for each element 92
of S, form the subgroup 92’ of 6 generated by 9! and by all the members
of S preceding 92. It follows that 8’8 2 @5. Let B be the subset of all the
members 92 of S for which m is not contained in 91’. We conclude, for these
members, that 9lM92’ is properly contained in 92. Since 92 is a smallest
normal subgroup =t= 1 of @5 and since 9? is normal in 6, it follows that 92 MW
= 1 ; hence 9392’ is the direct product of 9B and of 92’.

For any members 92 of 8 let 92” be the subgroup of (5! generated by 9t
and by all members 2) of B preceding 92. If it happens that 91" is sometimes
not the same as 92’, then let 921 be the first element of S satisfying 92'; =|= 93;.
Hence for all members 92 of S preceding 92, we will have 92" = 9?. Obviously
we have 92; contained in 92;. Moreover, if 921 is a limit element in the well
ordering of S, then 92’ is the union of the 92' with 92 preceding 92,; similarly,
92" is the union of the 92” with 92 preceding 9!]. Thus 9? would be equal
to 921’, which is a contradiction. Since for the first element 92,, of G we have
92' = fl: 92", it follows that 92, precedes 92, If 92'is the immediate prede-
'cessor of 92, in the well ordering of S then we find that 9!; = 92’2”. Either
9? belongs to B—and then 92: = 92”9l = 92’92 = 921—01' 92 does not belong
to B—and then 92 is contained in 93’, 92; = 9253 2 ER' = W" = 92:. At

_ any rate, we end up with the contradiction that 92; and 92: coincide.

a
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Consequently, 92’ = 512" for all 92 ofS; in particular, 6 = 3’3 = 8”8 =
fl X 53, where $ is the direct product of all the subgroups belonging to B.
Thus the normal subgroups of (3 form a complemented modular lattice.

Maintaining the notation, we find in a similar way a direct decomposition
of G! into $ and the direct product over the members ofsome other subset A
of 8. Since the mapping a SIQS onto IBM QI maps @5/$ isomorphically
onto $1, it follows that the decomposition of (3/58 into the direct product
over the smallest normal subgroups =l= 1 of the form 8 $8 #6, with 2) running
over A, is mapped onto a decomposition of 2! into the direct product of the
smallest normal subgroups =|= 1 of the form ($32))MQI.

In the proof just completed, we have used the following property of
groups: If T is a well-Ordered set of normal subgroups of a group 65 generat-
ing 63 such that the intersection of any member 3 of T with the subgroup
generated by all the members of T which precede x is 1, then (35 is the direct
product over T. This follows from the more general property: If 11 is an
increasing set of subgroups of the group 65 and if it is an arbitrary subgroup
of G, then the intersection of 58 with the union of the members of 11 is
equal to the union of the intersections of the members of 11 with 13. Genera-
lizing this to lattices, we obtain the

BASIS THEOREM or LATTICE rumour: If in a complete modular lattice L
the all element A is the ioin of the minimal elementsdiflcrentfrom the zero element
Z and if for any increasing subset U of L the meet of an arbitrary element 1)
of L with the 70in a] U 16 equal to the 70in o/ the elementsq with u running
over U I " 1'" ) thenLie I' ‘1 and moreover every
element of L is the direct ioin of some minimal elements difi‘erent from Z.

For groups, we also have the converse: If the modular lattice formed
by the normal subgroups of a group G! in complemented, then 61 is generated
by its smallest normal subgroups diflerent from 1.

Proof: Let u be the subgroup generated by the smallest normal sub-
groups difierent from 1 of 65. If 2! is not (53 then, according to the Maximal
Theorem of group theory, there is a maximal normal subgroup SR of 05
which contains 91 and is not (3. By assumption, there is a direct decompo-
sition of @i into 5)? and another normal subgroup SR difierent from 1. Since
9» is isomorphic to @/92, it follows from the maximal property of 2)? that
SUE is a smallest normal subgroup difi‘erent from 1 of Qi; thus SR is contained
in $1 and is therefore also contained in in, contrary to the construction of
am. It follows that 91 = Q}, Q. n. 1).

DEFINITION: In slatticeL we have unique omnplementation if for any three
elements a, b, c of Lthe equationsa = aJc, aMb =-aMc implyb = c.
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In other words, there is at most one complement of a: relative to 31/2
whenever z s x g y.

DEFINITION: A lattice is called distributive if it satisfies the distributive
law for lattice operations " '

(18) aM(c) = (aMb)J(aMc) for any a, b, c of L.

The modular law is a special case of the distributive law, namely the
case for which in (18) a 2 b and therefore the simpler form

(18a) aM(c) =bJ(aMc)
obtains.

The distributive law ’ " the ' of ‘ ‘ “ since
from ad!) =aJo, aMb =aMo we deduce

u' = (aJ(c))M(c) = (uM(c))J(c).
From the modular law we deduce, furthermore,

a’Mb = (aJ(c))M(c)Mb = (aJ(c))Mb = (aMb)J(c)
= (aMc) J(c) ——_ a’Mc.

From the distributive law we deduce

a’ = a'mbac) = (u’Mb) J(a’Mc) = a’Mb = a’Mo.
Finally,

a’ = (aJ(bMa))M(bJa) = (uM(c)) 4(c),
b = a’Jb = (aM(bJe)) J(c) Jb = (aM(bJ a)) db

= (a)M(bJa) = (aJc)M(c) =c.
Conversely, the uniqueness of oomplementation in a. lattice L implies

the modular law,L L ‘oontaina, ‘ a “ “‘ Moreover,
we demonstrate the distributive law (18) as follows.

Let a, b, c be any three elements of L; then by the modular law,

u = (aM(c))J(c) = (aJ(c))M(c)

end csusc,

(bM(c))J(uMc)Ju = (bM(c)) Ju = (bJu)M(cJu)

' = (oM(udb))J(uMb)Ju.
By duality,

(b J(uMc))M(c)Mu = (cJ(uMb))M(uJb)Mu.
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By the modular law, we obtain

(bM(c))J(uMc) = (bd(uMc))M(c),
(cM(u J b)) J(uMb) == (0 J(uMb))M(uJ b).

From the uniqueness of eomplementetion it follows that

(bM(u J 6))J(1IMO) = (cMWJ b)) J(uMb).

(19)

Furthermore,

(bM(c)) J(uMc) J(oM(uJ 12)) J(uMb) = (bM(uJ 0)) J(cM(uJ 11))

(20a) =((bM(c))Jc)M(uJb) = (c)M(c)M(uJb)
_ =(bJu)M(cJu) =(bM(c))J(uMo) Ju.

By duality,

(bJ(uMc))M(uJc)M(cJ(uMb))M(uJ b) = (uMb)J(uMc)
;(bd(uMc))M(c)Mu.

Applying the uniqueness of complementetiou to (203,, b) and (19), it follows
that

(20b)

(bJ(uMc))M(udc) = u = (cJ(uMb))M(c),

u = (uMb) J(uMc) = ((aJ(c))Mb) J((aJ(c))Mc)
= (aMb)J(aMc)J(bMo),

uM(bJo)M(c) = uMc = (uMc) J(aMc)
= ((aMb)J(aMn))M(c);

(18) now follows from the uniqueness of oomplementation.
Since the uniqueness of eomplementetion is a. self-duel property, the same

is true for the distributive law. In other words, (18) is equivalent to

(188) aJ(c) = (a)M(aJc) for a, b, c in L.

It is not difficult to show that all elements 2 of a. lattice L that satisfy
the distributive rules

xM(b do) = (s) J(¢Mc), zJ(bM o) = (:1: Jb)M (1J0), .
bM(c) = (b) J(c), bJ(:cMc) = (b .mwb dc)

for all pairs of elements b, c of L form a. distributive sublettioe D(L) of
L which coincides with L if and only if L is distributive. Moreover, if L
is complemented, then D(L) is also complemented.

In order to prove the last statement, let I) be an element of D(L), and
let u, v be two elements of L for which bMu = bMv, bJu = bJu; then
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u = uJ(bMu) = uJ(bMv) = (uJb)M(uJo) = (v)M(vJu) = 11. Hence
for every element 6 of D(L) there is only one complement relative to any
factor lattice c/a containing 1). Let a, b, c in D(L), and let a g b g 0. Since
L is complemented, there is mlement b’ in L for which b J b’ = c, bM b’ = a.
It follows that for any two elements e, y

bJ((b’Mx)J(b’My)) = (b’Mx)JbJ(b’My)
= ((bJb’)M(b))J((b’)M(b)) _—. (aM(s))J(cM(b))

. = cM((s)J(b)) = (b’)M(bJ(n)) = bJ(b’M(n)),
bM((b’M:c) J(b’My)) = (b’Mrc)J(b’Mg/) = (aMz)J(aMy)

=aM(n)=(b’)M(xJ_1/)=bM(b’M(n)).

Since there is only one complement of b relative to the factor lattice
(b J((b’M:c)J(b’My)))/(bM((b’Mz)J(b'My))), we find (b’Mz)J(b’My) =
b’M(z Jy). By duality, (b’ Jx)M(b' Jy) = b’ J(zMy). Moreover,

bJ(zM(b’ m) = (b)M(b’Jy) = (b)M(c/)
= ((c)M(c))M(s) = (cJ(zMy))M(bJa:) = (cM(bJ:c))M(xMy)
= ((s)M(b’))J(a:M_I/) = (bJ(:c’)) J(:¢My)
= NUIMb') J(xM!/)),

‘ bM(zM(b’Jy)) = zMgM(b’Jy) = xM((b’)J(bMy))
= zM(aJ(b)) = (oMz)J(zM(bMy)) = (bM(s’))J(bM(xMy))
=bM((s’)J(zMy)).
Since there is only one complement of b relative to (bJ(zM(b’-ly)))/

(bM(a:M (b’J y))), it follows that 2M (b’J y) = (b’) J(zMy) , and by
duality, 1: J(b’My) = (z Jb’) J(zMy). Hence b’ belongs to D(L), and this
shows that D(L) is complemented.

If L is a. complemented modular lattice with all element A and zero
element Z, then for every element ofD(L) there is precisely one complement
in L. Conversely, let a be an element of L with precisely one complement
a’ in L for which a Ja’ = A, aMa’ = Z. The investigation to follow will
show that a belongs to D(L).

For any a: of L we have (aM :2) J (2’ M I) g 2:; hence there is a complement
1/" of (aMz) J (a’Mm) relative to 1/2 such that (aMz) J(c'M:t) Jy = z,
((aMm) J(a’Mac))My :2. Hence

n=y, uMy=aMxMy=(aMz)M((aMa:)J(a’Mm))My=aMzMz=Z.
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There is a. complement z of (uJy)Ma’ relative to a’lZ such that
((ady)Ma’) dz = a’, (aJy)Ma’Mz =2. Hence

(aJy)Mz =2,
(1.1s = (ady))((aJy)Ma’)Jz = aJyJu’ = ydada’ = yJA = A,

aM(ydz) = aM(aJy)M(n) = aM(yJ((aJy)Mz)) = aM(yJZ)
= aMy = Z. ‘

Since there is only one complement of a in L, it follows that

g dz = a‘, y = a’MacMy = z’MwMyM((aM:c) J(z'Mz)) =u’MzMZ = Z,

x: (aMz)J(a’M:z).

By duality we obtain a: = (a)M(a’Jx).

If a: = uJu’, 14341, 14’ sa’, then
aMa: = aM(uJu’) = uJ(aMu') = ud(uMu’Mu’) = «.12 = u,

and similarly s’Ma: = 1". Hence if a: = 2:1 ‘11,, then

a: = (aMm,)J(a’Mx1)J(aMz,)J(a’Mz,)

= ((flsl4(as))J((II'M901J(II’M1:)),
«M: = (al) J(aMa:,), a’Ma: = (a’l) J(a’M:t,).

Moreover, if a: = z,Mx,, then we have

aMm = aMx,Mz, = (ml)M(aMx,), a’Ma: = (a’Mz‘)M(a'MI,).

The last statements suggest the following definition.

DEFINITION: The vector sum oftwo lattices Ll , L, is the lattice D U(L1, L.)
consisting of all the ordered pairs (9:1, 2,) with the component 1‘ in Li,
subject to the rules of operation

(In 1:) “111a 111:) = (“'1 Jyl, 1’: Jya)
(“’12 a’l)M(!In 9:) = (lII’ lyI)‘

It is clear that L = DU(L1, L.) is also a lattice. Moreover, D(L) consists
of all the pairs (1,, 1,) with 1‘ contained in D(L‘) such that D(L) =
DU(D(L1,), D(Lnll-

If L is a complemented modular lattice with all element A and zero
element Z, then for every element a of L with unique complement a’ in L
it was shown above that there is an isomorphism between L and D U(a/Z,
a’/Z), namely, the isomorphism that maps the element x of L onto the pair
(zMx, a’Mx). Hence both a and a’ belong to D(L).
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Dnr'm'rrroN: A lattice is called irreducible if it is not isomorphic to the
vector sum of two lattices of more than one element each. An irreducible
finite-dimensional complemented modular lattice is called a projective
gemroetry.l / -

The minimal elements =Q=Z of a projective geometry are called the points.
In the scale of dimensionality the points are followed by the lines, planes,
3-hyperp1anes, etc. An example of a projective geometry is provided by
the n-dimensional lattice F(n— LF) formed by the F-suhmodules of an
n-dimensional vector module over a division ring F. There is precisely
one 1-dimensiona1 projective geometry that consists only of the all element
and the zero element. The only projective geometries of dimension 2 are,
9 being any ordinal greater than 1, the lattices F(l, q) consisting of q + 3
elements an, al, . . ., a”, subject to the composition rules:

(i) come; = a",
(ii) 11,, dd; = (1;,

(Iii) “HIM“; = an
(iv) “1+! J “a = “n+2:
(v) if0 <97 < 7' <q + 2, then aiMa, = no, nude, =a,+,.

A projective geometry that is isomorphic to a factor lattice of a projective
geometry of dimension greater than 3 is called Desmgucan. I‘(1L,F), for
example, is Desarguean. It is a fundamental theorem of projective geometry
that every Desarguean projective geometry is isomorphic to a I‘m, F)
where, in case n is greater than 1, the division ring F is uniquely determined
up to isomorphism. Also, every projective geometry of more than 3 dimen-
sions is Desarguean. There are non—Desarguean 3-dimensional geometries.
But even the finite ones cannot be completely classified yet.

_ ‘ We define the vector sum of an arbitrary set S of lattices as the lattice
D U(S) consisting of all functions f defined on S for which f(L) is contained
inL for each memberL ofS and/Jg(L) = [(L) Jg(L), fMg(L) = f(L)Mg(L).

_ The operation DU is associative and commutative in the widest possible
sense. It coincides with the previously defined operation in the case of a
set of two lattices.

Each of the following is a property that is satisfied by a vector sum if
and only if~ it is satisfied by each vector summand: That of being comple-

‘wNotethatthe ‘ “ is‘ ' ’iromthe'“' ‘ "di-
mansion by subtracting 1. In what follows only the lattice-theoretical dimension is
mentioned.
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mented, distributivity, modularity, that of having an all element or a zero
element, and completeness.

An isomorphism of a lattice L onto a vector sum is called a vector decompo-
sition of L. If L has a maximal and a minimal element, a vector decompo-
sition ofL leads to a direct decomposition of D(L) into the elements of D (L)
which are mapped onto those vectors that have all but one of its components
zero, the remaining component being the - all element. Conversely, any
representation of a lattice L as the direct join of finitely many elements
of D(L) is derived from a vector decomposition.

A Remalc vector decomposition is a vector decomposition into irreducible
components each consisting of at least two elements. If L has an all element
and a zero element, then there is at most one Remak vector decomposition.
It corresponds to the Remak decomposition of D(L). Every finite-dimen—
sional complemented modular lattice has a Remak vector decomposition
into projective geometries.

If the modular lattice formed by the normal subgroups of a group G
is complemented and distributive, then the subgroup lattice of G is the
Remak vector sum of the lattices 92/1 with 92 running over the smallest
normal subgroups different from 1 of 6. The lattice formed by the normal
subgroups of such a group is isomorphic to the subset lattice of the set of
all smallest normal subgroups dilferent from 1.

A set of necessary and sufficient conditions that the lattice of the normal
subgroups of a group 65 be complemented and distributive, is the following;

1. The group (51 is generated by its smallest normal subgroups difl'erent
from 1.

2. A smallest normal subgroup different from 1 either is non-abelian,
or is abelian and non-isomorphic to any other smallest normal subgroup
difi'erent from 1 of 65.

A particular case is that ofthe semi-simple groups, which are defined as the
groups that have a decomposition into the direct product of non-abelian
simple groups. They are characterized by the extreme rigidity of the struc-
ture formed by the normal subgroups, viz., by the property that in any
semi-simple group and in any direct product of semi-simple groups there
is for any normal subgroup precisely one complementary normal subgroup.
A simple group is semi-simple if and only if it is non-abelian. The direct
product of semi~simple groups is semi-simple.

For any complete lattice L we define the Fram'ni element @(L) of L
to be the meet of A and of all the maximal elements of L that are difl‘erent
from A. The Frattini element in the subgroup lattice of a group coincides



Complemented lattices 215

with the Frattini subgroup of the given group. The Ftattini element of
a complete lattice L is the join of all elements a: of L with the property that
n = A always implies y = A.

The descending Frattini seriee'is recursively defined as

(150(L) = A, @,(L) = 45(L), .. ., d5,,(L) = ¢(¢"_,(L)/Z), ...
It follows that

¢(¢u—1(L)/¢n(ll)) = '1’»(L)-
The dual concept is the ascending Frattim' series: 1D" (L) = Z, a)! (L) = the

join o and ofall minimal elements =|=Z, . . . , d5"(L) = ¢1(A/!13""(L) ), . . . .
If L is a modular lattice, then the Frattini series is called a Loewy series.
From the modularity it follows that 451 (a/b) S (¢,(L)Ma) J b, ¢1(a/b) 2
(¢‘ (L) Ja)Mb. If L is of finite dimension, then all three statements 'fi, (L)
= Z’, @1 (L) = A’, and 'L is complemented’ are equivalent, as follows
from the basis theorem.

For a complete modular lattice L we define a Loewy chain of length r
asachainA = an 2 a1 2a, 2 - - - 2a, =Zinwhiehallthefaemrlattices
amt”, are complemented. It follows that

(21) (ML) S at, ¢‘(L) 2 ar—i-

The Luewy series become Loewy chains by elimination of repetitions,
provided both A and Z are members of the given Loewy series. From (21)

_ there follows the
THEOREM on Lonwy: For a complete modular lattice, the two statements

A = d’oUI) > 451(13) > > 451(1') =Z.
A = W(L) > div-1w) > --- > (150(L) = z

are equivalent; that is, if the descending Loewy series without repetitions is a
Loewy chain then the ascending Loewy series without repetition: is also a
Loewy chain, and vice versa. Moreover

(22) (PAL) S 45""(11) ,
- and there/ore l = 1’.

.Example: The descending Loewy series without repetitions of a group G!
with a composition series is defined as the characteristic chain

(23) . (E =Ao(@$)>/1:(@i)> ' ">114(@5)= 1.

where A1035) is the intersection of all the maximal normal subgroups =|= GS
of @f, and A,+,(e) = A1 (A46) ). Since the intersection of all the sub-
groups of a. normal subgroup in of (‘5 that are conjugate to a maximal normal
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subgroup of 92 under 6 is a normal subgroup of 65 maximal under $2, it
follows that Ac+1 (61) can also be defined as the intersection of all the normal
subgroups of (5 that are maximal under {1,-(6).

Similarly, the ascending Loewy series without repetitions of (8 is defined
as the characteristic chain

(23) Q =A"(®) >A"'1(@) > ~.-~ >A°(@) = l,
where A1(@) is the subgroup generated by all the smallest normal sub-
groups =|= 1 of @l, and A‘+1(®)/A‘(65) =A1(®/A‘(@)). As a. consequence
of Loewy’s Theorem, we note the equality A = 1’ of the length of the two
characteristic chains (22) and (23) and the relation

(24) 114(3) Sli"‘(@5)
between its members.



APPENDIX 0

FREE PRODUCTS AND GROUPS GIVEN BY A SET OF
GENERATORS AND A SYSTEM OF DEFINING RELATIONS

An Introduction to §§ 3—9 of Chap. III

Let us consider the subgroups of a, given group (3. It may happen that
some of them, say I)“ 1),, . . ., 1),, generate the full group. We are interested
in knowing to what extent the structure of 6 is determined by the structure
of the generating subgroups I)“ I)“ . . . , 1),. With this in mind, we make the
following definition:

A semi-group G with a unit element 15 is called a. product over the system
H of semi-groups with unit element if for each semigroup I; contained in
H there is given a homomorphism ”I: of i) into 6 such that anon) = 16
and G is generated by all the images 115(k) with [3 running over H and h
running over the elements of the semi-group I) of H.

A homomorphic mapping 8 of one product over H, say @, onto another
‘suoh product, say @, is called a honwnwrph/im over H if 9a,,(h) = Eb(h)
for any element h of the semi-group I) running over H. Here, of course,

_ 6“ denotes the homomorphism corresponding to ”b in the definition of g
use product over H. It is clear that there can be at most one homomorphism
over H between any two given products over H, since every element x
of 6 can be written as

a: = 05,011)’ chat.) - - - aha») ,

where h, belongs to the semi-group I" of H for i = 1, 2, . . ., 1, and thus

6(91) = 9(oh(h1)- ‘ ‘ duh») = 9%,("0 ' 905,02) ' ' ' Odin-(hr)

= 5m(h1)'59.(ha) ' ' ’ 5M7»)-
The relation ‘homomorph over H’ is reflexive and transitive, but

not symmetric. In fact, the identity mapping provides an isomorphism
over H for any product over H. If 9, is a homomorphism overH of the pro-
duct 61 onto the product 6, over H and if 0, is a homomorphism overH
of the product 6. onto the product 6, over H, then 0.01 is a homomorphism
over H of 61 onto 6,. The group of one element together with the set of

“I t of each ‘ f h of each L I) of H onto the unit element
provides the trivial product over H. For every product over H we obtain

3]."
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a homomorphism over H onto the trivial product over H by mapping each
element onto the unity element. But there is no converse homomorphism
over H unless both products over H are trivial. More generally, two products
over H are mutually homomorphic over H if and only if they are iso-
morphic over H in one direction.

DEFINITION: A product over H is called a free product over H if it can
be mapped homomorphically over H onto 'any product over H.

It is immediate that two free products over H are isomorphic over H.
There always is a free product over H. As a first step in constructing a free
product over H, we denote by 28(H) the system of all 'words’ over H, i. 9.
all expressions h1 h, - - - h, —denoted for brevity by W—where the length r
ranges over all the natural numbers and the letters In of the word W denote
any element of any semi-group b; belonging to H. Furthermore, we denote
by Z the empty word, which has no letters and which, by definition, is the
only word of length 0. Two words are called equal if they are of equal length
and if 001- I " 5 letters " ‘ equal ‘ ' ‘ of equal ' eoups.
This notion of equality has the usual three properties.

Two words W1, W, are multiplied by juxtaposition, e. g., for
W1 = hlh, - ~ - M, W, = hfllh,“ - - ~ 11,.H we define the product by
Wl WI = hlh.‘ ' ' h,+,; in particular, Z W = WZ = W for any word W.

It is important to note that the product of a word of length r and a
word of length a is uniquely defined as a word of length r + a.

From the definition it is clear that the associative law of multiplication '
holds. Thus the words over H form a semi-group 28(H), with the empty
word as unit element.

In a word W = 11,11, - ' - h" it may happen
1. in case In = 1),“ that the product h’ of the two elements h‘, h”, is

defined within the semi-group I)“ or
2. that I» = 1,,“
In the first case, we replace the two letters concerned by h’; in the second

case, we simply omit 1hr Either process will be called a reduction, and we
will write

00.861: W=.-~-h‘hm~-—>W’=-~h’~-,
0M92..W=... 1m..._,W'=......,

where the dots always refer to unaltered letters.
The reverse process we will call an anti-reduction. Both processes are

referred to as elementary lransformatiam. Writing W —> W’ if the word W'
is obtained by a reduction from the word W, we establish a binary relation
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in the set 22MB) of words over H. The normalized relation is the congruence
relation between words, defined as follows:

{I W E W’

, if there is a chain of words W = W0, W1, . . ., W, = W' such that for
each index 12 = 0,1,2, . . ., e— 1 either W, = W.+1 or W, —> Wm or
W.“ —> W.. This congruence relation is normal and multiplicative. In
fact, the normality follows from the definition as normalized relation (see
Chap: I, Ex. 17). The ‘ "‘ -i----lawof “L" "---follows by. x ‘ ‘-
application of the following statement:

If W—>W’, then WIW’—>W1W' and WW,—>W’W1,

which can be verified directly without any difficulty,
We denote the class of words congruent to the word W by |W|. The

factor semi—group ‘5- of SINH) over the normal multiplicative relation
defined above (for its definition, see Chap. II, Ex. 12) formed by the classes
of congruent words that are multiplied by multiplication of the represent»
tives, is a product over H. The correspondence of the element h of the
member E) of H with the class |h| represented by the one-letter word It,
in fact, defines a homomorphism of the semi-group 1) into 3, since for
hh' = h" in I) it follows that hh’ —> h" in Q33(H) and hence |hh'| = |h”|,
IhI - Ih’] = |h"|. Furthermore, for each word W = hlh, ' - - h, of positive
length we have ]W| = |h,| . |h,| ~ |h3| . ' - |h,|. Finally, the empty word Z

‘ is congruent to each of the words In, i) being any member of H, so that
]Z| = llbl' Hence the totality of the homomorphic images of f) in H gene-
rates 5}.

The product 5} over H is free. To see this, let the semi-group G with unit
element he an arbitrary product over H for which the given homomorphism
of each semi-group I) contained in H into 6 is ”11' Note that chub) = 1%.
Furthermore, the semi-group G is generated by the sub-semigroups 53(1)) ,

' with I) a member of H. Let us construct the homomorphism 6 of E} onto 6
over H which maps the class lhlh, ' - - h,| onto ah(h1)o'h(h,) - - - ”MM and

‘ |Z| onto 16. This mapping is unique, since if
---h.h‘+l-H—>'-'h’---,

then
. . . “Aha,"mmm) . . . _.= . . . (may) . . .

and if
...1m..._,... ...

then
"'Ut¢(1§4)"'="' ....
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The preservation of multiplication ‘follows from considering two words
W1 =15};| - - 4;, and W, = h”.1 - - - hm. 'We have

9071) = ‘Ih(hi)%,'(hs) ' ‘ ‘ 03,0»):

907:) = ab~1(hr+l-)afir+f(hr+l) ‘ ' " “a";(hwa):
9(lW1HWnI) = 9(IW‘W,» =.qh(h1) . . . 0"“0'“)

=9llW1|)9(lWil), 0.111.».

‘We denote the free product over H, as constructed in the preceding, by

. m
or, more briefly, by

3
H H.

If H consists of finitely many semi-groups I)“ 1)., . . ., I)“ then we also
write I)1th.: - ‘ ' all), for the free product. It is independent of the order of
the factors, and it is associative.

For many applications it is necessary to solve the word problem for a given
product, that is, to determine a. general procedure by which it can be
decided in a finite number N of computational steps whether two given
words W1, W, interpreted as elements of the product are equal. This is
understood to imply that the number N be not greater than a certain
recursive function that depends only on the length of WI and W.; we
speak in that case of an efleoh’ve solution of the word problem.

It has been shown that an effective solution of the word problem does
not always exist. However, in free products we can solve it quite easily.
For the most elegant solution, see Ex. 1, Appendix D. A method of solution
that lends itself to other applications will now be given.

We call a word irreducible ifno reduction can be made. Since any reduction
diminishes the length by 1, it follows that every word of length r can be
reduced to an irreducible word by at most 9‘ reductions.

LEMMA: 1/ W——> W], W —> W” Wl =0: W,, then there is a word WI
such that Wl—>W., W.—>W,. .

Proof: 9,) Ifnounit ‘ ‘ are " ‘ * J thenwe"-" , "twocases.
1. =H-h‘h4“'~h,h,+,--~;

W—>W1=---Jb’---h,h,+l”-;

W—>W.=~--h"h.+,~-~h”---.
Set W,=---h’--'h"-»-'.
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2- W = ‘ ’ ’hthuihiu ‘ ’ ';
W—>W1=---h’h‘+,---;
W—>W,’=’H‘h.h"~u

Thus the semi--groups i)“ 1"“, b”, coincide, and within I); the equations
h‘h“,l = h’ hmhm—— h", h’h”—-— h hold. Set W, = ~ - - - -

b) In the event that unit elements are to be eliminated, we have
1.. W="‘7‘aha+n”'la,"';

W—’W1=“'hl"'15,"‘i

W—>W,=~-'h.h4+,~'.

SetW,—' h’

2 W =” 1171 1h: ’
“71:. ..... 1". .’
W,= 1w ......

Set WI: ......... ‘

Note that there is no loss of generality in considering the particular
orders we have selected and that in each case WI -> W" W, —> W,.

On the basis of the preceding observations, let us investigate the problem
of reduction in general.

To every binary relation a -> b in a set 8 there belongs a poset, where
a 2 b signifies thefactthatthereis achaina = 0,, an . . ., a, = b oflength
r201inkingaandbsuchthateither (i)r=0anda=b or (ii)r>0
and a0 —>al, a1 9a., . . ., a,_l —>a,..

That the 2 relation is reflexive and transitive is immediate. Also, if
a -> b, then a 2 b. The two relations coincide if and only if the relation
—> is itself reflexive and transitive.

. An element a: of a 2 poset is called minimal if a: 2 y implies y 2 2:.
Any element equivalent to a minimal element is itself minimal.

- An element of a set :5 is called irreducible with respect to a given binary
relation 11 —-> b if it is minimal in the corresponding poset.
.Achainofelementsa =ao, a” . . .,a, =bofSleadingfi‘omatobsuch

that b is irreducible and either r =0 and a :1; or r >0, ao —>a1, . . .,
a,_1 —>a, is called a complete reduction of a to its result 6. The element a
is called completely reducible if there is a complete reduction of a. Every
irreducible element, for example, is completely reducible.
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As another example, in our special case of the set of all words over a
system of semi-groups with unit element, every word is completely reducible.
A word is irreducible if and only if it has no unit letter and adjacent letters
belong to diiferent semi-groups.

A set with reduction is defined as a set S with a binary relation a —> b,
where: .

l. The poset belonging to the relation —> satisfies the minimal condition:
In any monotonic decreasing sequence al 2 41, 2a., 2 - . - there is an
index n for which all members a," an“, (1”,, . . . of the sequence from the
n—th member on are equivalent;

2. (Birkhofi‘ condition.) If a —> b, a —> c, then there is an element d such
thatb 2d, a 2:1.

For example, the set of all words over a system of semi-groups with
unit element in which the —> relation is defined as above is a set with reduc-
tion.

For such sets we have the
Menu: on REDUCTION: Every element is completely reducible, and the

result of a complete reduction is uniquely determined up to equivalence.
Proof of the Principle 0] Reduction: Owing to the minimal condition for

each element a, there is an irreducible element 17 satisfying a 2 b which
can be obtained by a complete reduction from a.

It is convenient to write a > b in place of 'a 2 b but not b 2 a.’ This
relation is transitive, but not reflexive.

We form the subset S’ of S which consists of all the elements 11 of S
having the property that p 2 z, p 2 y in 8 implies the existence of an
element 2 of S satisfying a: 2 z, y 2 2. All irreducible elements of S, for
example, belong to S’. If x, y are the results of two complete reductions
of the element 1» of S’, then it follows that there is an element 2 in S satisfying
a: 2 z, y 2 z, and since both an and y are irreducible, we find that z is
equivalent to z, 2 equivalent to y, and thus 2: equivalent to 2. Hence for
each element of S’ the result of a complete reduction is uniquely deter-
mined up to equivalence. We now wish to show that the difi'erence set
S — S’ is empty.

If a is in S but not in S’, then there are two elements 1:, y of S such that
a 2 x, a 2 y, and for any element 2 of S satisfying a: 2 2 we never have
y 2 2. Since y 2 y, it follows that x 2 y cannot hold. Hence a: 2 (1 cannot
hold, and thus a > :0. Similarly, a > 31. There are chains a = a.I —>al —>
—,--' —>a,.=:t, a=b,—>b,—>~--—>b,=y and indices i, 7' satisfying
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0 st < r, 0 g 1' < asuch that (i) anal, . . .,a.areequivalent, but a, > a,+1
(ii) ha, 1),, . . ., b, are equivalent, but b, > b,+1. Hence a > and, a > 1),“.
Using the Birkhofi' condition, we deduce from a, —> am, a, equivalent
to b,, and b, —> b,+1 the existence of an element 2 of S satisfying a,“ 2 z,
b,+1 2 1. Let E be the result of a complete reduction of z, and similarly let
5; and g be the result of a complete reduction of x and g respectively.
Since a,“ 2 an, it follows that 5 also is the result of a complete reduction
of any Similarly, we deduce from am 2 2 that E is the result of a complete
reduction of am.

Now, either am does not belong to S', in which case we set a’ = am,
or a“, belongs to 8‘, in which ease the elements 5:, i, being the results of
complete reductions of am, must be equivalent. From a; 2 5;, :2 equivalent
to 5 we have :2: 2 5, and hence y 2 i does not hold. Using the same argu-
ment applied to y, b,+1 instead of x, am, we come to the conclusion that
b,+x does not belong to S’. In this case we set a’ = bfll.

At any rate, for every element a of 8 not belonging to 5’ there is a
successor a’ satisfying a > a’ and not belonging to 5’. Since repetition of
this construction leads to a strictly monotonically decreasing sequence,
we find a contradiction with the minimal condition; and hence every
element of S belongs to 8’, Q. E. D.

For a partial converse of the principle of reduction see Ex. 2 of Appen—
dix D.

‘ Conomr To run rmcmm or uncommon: The normalized relation of
the relation —> on a set with reduction is the relation:

“a .=_ b if the complete reduction 0/ a, b leads to equivalent reaulta.’

Proof: Hash, thentherearefirllreductionsa =ao—>a1 —>- -- -—>a,,
b = be —> bl —> - - - —> b, such that a,, b, are equivalent irreducible elements.
Hence there isa chain a, an,“ —>-~~ —>a. = b,. But froma —>a, —>' - -
—> a“ b —> b1 —> - - - —> Iz,_1 ->a, it follows that a, b satisfy the normalized
relation of the relation —>. Conversely, ifa, b satisfy the normalized relation of
the relation —>, then there is a chain a = a0, a1, . . ., a, = b such that either
a, = a“, or a. —>a;+1 or a,+1 —>a, for i = 0, l, 2, . . .,r— 1. At any rate,
complete reduction of a, and a.“ leads to equivalent results. Hence complete
reduction of a and b also leads to equivalent results.

Applying these concepts and conclusions to the relation —> previously
studied, we find that poset equivalence of two words is the same as their
equality and that, fm-thermore, the words form a set with reduction.
The reduction principle yields: Each word over a system H 0/ semi-groups
with unit element is congruent to the uniquely determined result of any complete
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reduction 0/ the given word The free product over H may be formed by taking
the set 0/ all irreducible words in which the mmbimztian of two irreducible
wordetaathirdlu '“wordie “"bg,‘ ‘,"' ,‘" ’by
complete reduction

It quite often happens that a product over H is required to satisfy a
systemiRof “ L‘eenthel, '5' ‘oftheform

(1) Mb: hr — 2mm: ' ' 'h.
where h; is contained in a member 1); of H and i runs from 1 to s. We call
a semi-group G a product over H defined by the system in ofdzfim'ng relatiomif:

1. 6 is a product over [-1, i. e., to each member I) ofH there is assigned a
homomorphism on of}; into 6, mapping 1,, onto 15, such that G is generated
by the sub-semigroups 0,0), with I) running over H,

2. each relation (1) holds in G, i. e., in 6 there hold all of the equations

(2) Us,(hi)°'u,(hi) ' ' ' 03,05) = “NAM-u) ’ ' ' UM": ;

3. 6 is homomorphic over H with every product over H having the
properties 1 and 2.

A product over H defined by 9i can be constructed as follows. Two words
are called comment modulo 9! if one word can be obtained from the other
word by a combination of

l. a finite number of elementary transformations,
2. afinite number ofreplaoements of Wlhlh, - - - h,W, by Will,“ ' ' - h.W,

or of Wlh,“ - ' - h,W, by tl ' ' ~ h, W,, in accordance with the relations
(1) comprising in.

This congruence relation is normal and multiplicative, and hence the
residue classes form a semi-group 28 (H) [9%. Denoting by WWI) the residue
class represented by the word W, we find that the correspondence between
h and 0,7(h) = h(§R) defines a homomorphism of the element h of the member
I) of H onto a sub~semigtoup ban) 01' ENE”!!! such that 5&0”) = 2(91)
is the unit element of 28(H) I91 and such that for each relation (1) we have

0§1(hi)%,(hsl ‘ ' ' ”mihr) = hike ' ' ' hri-R) —
= h7+1 ' ' ' h-(R) = demand ' ' ' an.(h.)‘

Hence Sum/9t is a product over H satisfying the relations comprising m.
Now let 6 be another product over H satisfying the relations comprising

SR; that is, the mapping of any word W onto W defines a homomorphism
of $801) onto 6 for which W1= W. whenever W1'is congruent to W.
modulo iii. From this definition, which'is equivalent to the statement that (‘5
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is a. product over H satisfying the relations ill, it follows that the mapping
of WOR) onto W defines a homomorphism over H of mum/m onto ('5. This
shows that 9!!! (H)/ SR is a. product over H defined by m. It is clear that any
two products over H defined’b'y 9B are isomorphic over H.

Let us study some examples.
1. ER is empty. Then 18(H)/9t is the free product over H.
2. 9! consists of relations of the type h = h’, with h, h’ contained in

the some member I) of H.
The subset illx7 of all relations in ER pertainingto one memberb ofH defines

a. factor semi-group 17mg of i). We now show that the free product (if of
all factor semi-groups I) A)?“ is a product over H defined by 91. For (1. contained
in the member I); of H (i = 1, 2, . . ., t) the correspondence between
a; (mmmmby - - - mall“) and cm, - - ‘ E. defines a. homomorphism of 6
over H onto each product 6 over H defined by 9i, and certainly all the
relations in 9! are satisfied in G.

3. 9! consists of all relations
hh" = h’h

with h, h’ belonging to difi'erent members of H. Often the permutsbflity
of my two elements 2, y of a. multiplicative domain expressed by the equa—
tion my = ya: is also denoted by x<—> y. Thus in our case we have the de-
fining relations
(4) h <—> h’
for any pair of elements belonging to difi'erent members of H. The pro-
duct over H defined by elementwise permutebility of difi‘erent factors is

called the direct product over H and is denoted by in I) or, more con-

oisely, by I] H. The direct product can be constructed by taking the
semi-group G of all functions f defined on H with the properties

84) [(b) is an element of I);
1’) “5) = 1., for all but a. finite number of members of H;

_ 0) M6) = KENNY!)-
It is easy to verify that G is a. semi-group and that the correspondence
between the element 1» of the member I) of H and the function LI on H
‘which assumes the value It on I), but the value 1V on all members [)' of H
other than I), defines a. homomorphism of I) onto a sub-semigroup f) of 6
such that 6 appears as a product over H satisfying s11 relations in SR.

. 0n the other hand, given any word W, we can form its bmpmnt by
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taking the product in I) of all the letters of W belonging to I). If no letter
belonging to I) occurs, then the b-component is defined to be It . The b-compo-
nent remains unchanged under all elementary transformations and all substi-
tutions derived from one of the relations in ER. Also, after imposing an order on
H, each word over H is congruent modulo 9! to the word made up from
the b-components different from the unit element, with the b’s concerned
following in the same order as they occur in the ordering imposed on H.
We may call the word thus constructed the direct normal form of the given
word. It is uniquely determined by the given word: Two words are con-
gruent modulo in if and only if they have the same direct normal form,
that is, if they coincide in each component. Of course, all but a finite number
of the bvcomponentsr are equal to 16' There are no other restrictions.
The IJ-component of a product of two words is equal to the product of the
h-wmponents of the factors. Hence there is the homomorphic mapping
of 65 onto QB (H)/§R over H which maps the function / onto the residue class
characterized by having its h-component equal to /(l)), with h'running over
H. This shows that C5 is a direct product over ('5. We verify easily that the
new definition of the direct product coincides with the one given in §1
in the case of a finite number of direct factors.

4. If every member of H is a group, then every product over H is a group.
The inverse element of hlh, - - - h, is the element h;1 - - - 11,4151. The word
W" = h71h731 - - - hf! is called the inverse word ofthe word W = hlh. - - - hr.
The inverse word of the empty word is the empty word. It holds true that
(W’1)—l = W, (W, W.)" = W;1W;1. By elementary transformations the
word W W'1 can be carried over into the empty word, for any given word W.

The product over H, a system of groups, defined by a. system ofrelations at

can be obtained as the factor group of the free productfi = I?H over the
normal subgroup 920R) generated by all quotients (5)

(5) huh: ' ‘ ’ hrha—ir hat—1 ‘ ' ' high

derived from (1). The elements of this normal subgroup are often called
the consequence relations of 9%. This name is chosen because, as a consequence
of (1), in any product over H in which all of the relations (1) hold, all
of the consequence relations become 1. A consequence relation may be
characterized as an element ofthe free product is over H which is of the form
W112:l Wf‘ WIR? Wil- ' ' W,1i”,"W;x with to either 1 or —-1, R, one of
the quotients (5) derived from (1), and Wi an arbitrary element of 3: But
since elementary transformations do change the appearance of the elements
ofF, even though they do not change the elements themselves, it is often
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extremely difficult to recognize a given element of F as a consequence
relation of a given system of defining relations.

5. If each member of H is an infinite cyclic group, say the group I)
generated by the element ob, then the free product over H is called the free
group with generators x5. Its elements can be uniquely represented by
expressions aug'zh .. '12: (a, =l=0, I), a member of H where I), 1s dilferent
froml)‘+1ifi<r;i=l,,.2 ..;,r r=0,,,12 ..),andtheproductof

. two such expressions is formed by juxtaposition and the subsequent cancelling
of adjacent factors as often as possible, e. g.

mglzl'll.x;: xii—:1 =‘hxia’rla" ”Kilia'xgixh =21:n =Z'
6. The group G given by generators 81, 8,, ..., 8, and defining relations

R,(8,, 8,, . . ., 8,) = 1 (1': 1,2, . . .,r) is obtained as the factor group of
the free group with the generators 81, 8,, . . ., 8, over the normal subgroup
generated by the 1‘ elements 1?,(81 , 8,, . . . , 8,) . A correspondence between
the generators of @5 and some elements 8;, 8;, . . ., 8; of another group 3
which maps 8‘ onto 8;, can be extended to a homomorphism of Q} onto 3
if and only if R,(81, 8;, . . ., 8;) = l for i = 1, 2, . . .,r

The problem of determining a method whereby it can be elfectively
recognized whether a. group @5 generated by finitely many generators
81, 8,, . . ., 8, satisfying the finitely many defining relations

(6) R,(S,,S,,...,s,)=1 (i=l,2,...,r)
is isomorphic to another group l) generated by the finitely many elements
U1, [1,, . . . , U. and satisfying the finitely many defining relations

(7) Tia/11 Ul1“') Uu)=1

is called the isomorphism problem.
A necessary and sufficient condition that @l he isomorphic to .6 is the

, existence ofsome words W1;W,, . . ., W.i.1181,8,,. . .,8,and X1, X". . .,
X. in U,, U“ . . ., U“ suchthatthewords

T,(W,(s,,...,s,),..., W481, ...,s,)) (i=1,2,...,:)
I and the words ‘

SIIX1(W1(Sn-'Sl):"1IW(Sh~- , 5-)) (i =1 2 3)
are consequence relations of the relations (6) In the special case 8 = u,
8‘ = U, (i = 1, 2,. . .,a) and W.=8,, X,= 0,, we call (6) and (7)
equivalent systems of defining relations if each relation of one system is a
consequence relation of the other system, i. e., if they define isomorphic

_ groups with the same set of generators.
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For free groups the isomorphism problem is easily solved. Two free groups
with the same number of generators are isomorphic. Furthermore, for a
free group @i of a generators SI, 8,, . . ., S. the index of the subgroup
by all squares is 2', the representatives of the cosets being the elements
8:18;“ - ~ - S:- with (11 either 0 or 1 for i: l, 2, . . .,s. For isomorphic
groups the index over the subgroup generated by the squares must be the
same; hence if @i is isomorphic with a free group of u generators, then
2' = 2" if a is finite, and a = u if: is infinite. At any rate, a = u.

7. The factor commutator group of a group 6! generated by the elements
SI , Sh . . ., S, with the defining relations (6) is obtained by including among
the defining relations the additional relations

(8) Sn» 8,, i. e., 8(S,S;IS;1 = 1 (1 Si < k gr).
Proof: Denote by 8‘. the free group generated by 81, 8,, . . ., 8,, and let

9? be the normal subgroup formed by the consequence relations of (6);
then @3 is isomorphic to 3, [9}; hence @lDQi is isomorphic to (33/9?) ID (ES-J92)
= (fi./92)/(D%,92/92); and hence @lDw is also isomorphic to the factor V
group of 3, over the normal subgroup 92 - DEE, consisting of the conse-
quence relations of (6) and (8).

We may find an equivalent system of defining relations for @ID@ by
permuting the order of the letters in each relation so that the letters are
ordered lexicographioally; let the group Q5“, for example, be generated by
A1, A“ . . ., A“.1 subject to the defining relations

111:1, 4:1, A;=1, A:_,=1.
(9) (AIIAI)I = 1, (A,A,)’ = l, . . ., (AfiqAfifl)a = 1,

rig—>11. if 1gi<k—1 <n—l.
Then (EL/D65” is generated by A1, A1,, . . ., A...n subject to the defining
relations

41:43: =A:_-,=1,
(10) AM! = 1, . . -. ALML: = 1.

A.<—>A. if is; <1: <n,

which are equivalent to

(11) A,=A,=---=A,_,,A'1=1.
Hence the generators A,, A” . . ., 11..., can be eliminated, and @,,/D Q},
is “byA,, ‘; ‘tothe‘n'g “' Al=l,givingt§,.:D@,.=52.
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8. To give another example ofthe reduction principle, let H be the system
of the 15—1 infinite cyclic groups (All), (A.), . . ., (A._1). Define a re-
duction R in %(H) as follows:

"'A?AP"'R"‘12;”"',
...A,n+l...R...A‘... hymns“),
...A’n...R ...... ’

---A,A.~-.R---A‘A,,~- if lsi<k—1 <n—l,
-'-A.+,A‘A,+1-‘-R~'A,A.+1A,~~ if isi <n—1.

We easily prove that 28(11) is a set with reduction R. In the corresponding
poset, equivalence is equality. For example, if

W = ' ' ' AIHAHIAlAn-i ' ‘ ' RW! = ' ' ‘ AiHAIAHl ‘ ' '
and

W = ’ ’ ' Ai+1Ac+1AtAi+1 ' ' ‘ RW: = ‘ ' ' Al+1AlAi+lAl ’ ' ' ’

thenwebave
WlR-HA‘Am-H,-W,R'~vA‘A.+1A,;A.---Ill-“Airing--.

For every word (1111, - - ‘ a, that is irreducible with respect to R, each section
ma,“ ' ' - a, is also irreducible with respect to R. The letter A.._, occurs at
most once. If it occurs, then the section beginning with An—l and terminating
with a, is one ofthe words AMl , A”_,An_,, An_,A,,_,A,,_,, . . . , A,_1A,._, ' - -
A1. Conversely, if A,_1 does not occur in the given R-irreduoible word,
then any of the above n —— l expressions may be affixed to the given word
to give another irreducible word. By induction on n, the number of
R-irreducible words turns outto be 1 . 2 - . . . ' u = n !. The normalized relation
of the relation R is normal and multiplicative. The corresponding factor
group is the group (31,. occurring in 7. It has the order n!.

Since the mapping of A‘ onto the transposition (i, i + 1) of the n digits
1, 2, ..., n, which is defined for i = l, 2,. . ., n — 1, preserves the defining
relations of @i,” it follows that the mapping can be extended to a homo-
morphism of (3,, onto 6,. But since the order of @i, is finite and coincides

I with the order of the symmetric permutation group of n digits 6", it follows
that (5,. is isomorphic with 6,” where we made use of the fact that the
transpositions (l, 2), (2, 3), . . ., (n— 1, n) generate 6». Moreover a set
qfdefining relations for the generators A. = (i, i + 1) (i = 1, 2, . . ., n — 1)
is given by (9).



APPENDIX D

FURTHER EXERCISES FOR CHAP. III

1. (Van der Waerden, Artin.) Let H be a. systei-n of semi-groups with unit element.
Let I (H) be the set of all irreducible words over H, i. e. the set of all expressions
u,a,- -o,., where a, is an element of the member i), ofH difi'erent fromthe unit element
of E)‘ for ‘3 =1, 2, . . ., r, where I), is different from its neighbor b,“ {ort' = 1, 2, . . .,
r — l, and where r ranges over 0 and all the natural numbers. Assign to each element
h of a member i) of H a unique mapping li of I (H) into itself defined as follows

haiaimavi-fh4=lirb+bi
alas---nvifb=bi.hui=ai=l=liinbMaia "'“v)— a,a,---a,ifh=1§

aa--'a.ifb=bnhai=li,inli.
Showthet '

”by =’_b_l|'ifhandh'belongtothesamememberl)efH;

b)lh=li
(diam. - - - a, and b,b,---b, both belongto 1(H), then theequationfifi- ~ -u_,.

=lbéi"‘b implieer=5, o,=b. for 4’: 1,2,... ,r;
d) by“ ‘ all ' ' ‘ ’ of the ' b defined above,a

free product over H is obtained. Each element of this free product is equal to one
and only one mapping of the formfig- ~ ~41“ where am, ~ ~ -a, is an element of
1(a).

2. Let S be a set with a binary relation such that the corresponding poset satisfies
the minimal condition. If the result of a complete reduction of any given element a
is uniquely determined up to equivalence, then the Birkhofi' condition is satisfied.

3. (Von Neumann.) Show that for any game with full information between two
partners A and B there exists a strategy. To elucidate this statement note that such
a game consists essentially of a set S of possible positions, where the term ‘position’
denotes a set of data concerning the board, pieces, etc., and concerning which of the
two players is to move, together with a binary relation 0 -> b indicating that the player
who is to move from position a may move to position b. There are at most three types
of irreducible positions. a draw, A wine, B wins. There is a starting position c.1319 gems
consists in a. finite chain e=a.->a,—>a,—>~~—>o,=c of moves linking the
starting _ ‘ ' with an‘ ’ K ‘ c. It'is that no infinite sequence
an —>a, —>a,->a.-> - - - exists. An A-strategy'is a list ofrelationsa—bb, where it
runs over all the positions obtainable from c from which A is to move. such that
if A. plays in conformity with the list, B never wins. A B-strategy is defined
similarly.

_ 4. Let H be a system of groups one of which is 3. To every member i) of H there
may be assigned an isomorphism 0;, of a into I) such that}. 7—- in! together with a
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left representative system 5 of I) modulo 03(9) such that 7. = K and 155-1 is contained in
03(3) {or each element It oft). let the binary relation R bedefined on EU!) as follows:

......th
ifh.h',h"belongtothesameme11iberbofflandifhh’ :1.” in 1,, ,
..... lotRhfi

if h, h‘ belong to different members I) and I)’ of H respectively and if
h’ + 5', h" a: h030§}(b'h"‘) in l)’,

h ................ Rogl(hIi-1)fi ......
if h belongs to a. member I) ofH other than 3. Prove that R defines SINK) as s set
with reduction and that the correspondingnormalized relation is normal and multi-
plicative and defines a. product over II. This product is called the product over
H with identified (or amalgamated) subgroup g. Solve the word problem {or this
product.

5. (L. E. Dickson.) Denote by GL (1:, K) (which stands for 'general linear group of
degree 71 over K') the group formed by all the units (or: non-singular matrices; or:
regular matrices) of the ring of matrices of degree 1. over the division ring K.

a) Prove that GL(n, K) is generated by the We»; mom'm T3 = I, + lea,
wherei =+= k and l is an element of K, and by the special diagonal metric» D.(zx) =
II. + (a —- m“, where o: is an element ofK different from 0, where I, = (6“,) is the
unit matrix of degree n, and where a" = (64, 6...), for r, a running independently over
1, 2, . . ., n are the n' basic matrix units. (Hint: Apply induction on 1:, using the
feet that the subgroup u of all matrices (an) satisfying a” = 1, on“ = on“ = 0 for
i > 1 is isomorphic to GL(n —— 1, K)).

b) Prove that the defining relations of GLO», K) with respect to thegenemtcrs
given in a) are obtained as follows:

(1) 1M5 = 1"”,
(2) T3911“, ifi=r, orifk=a, orifi.k,r,lnredistinct,

(a) Danna?) = Dam.
(4) D,(a)<—>D,(p) if i + k,

(a) newline)“ = m“. 1M») Mme-i = if“.
(e) iH<j, i<k,j+kthen

a) ”#517: = T512?“
mmmm=mm
a) mm = m“*"‘"‘D‘u + zu)T$;‘“""‘D,u—u(1+ m-u) it 1+ 1,. + o,
d) THEFT} = 171““1fi1'é‘w‘“ if 1 4- 0.
e) mrg“'r,‘. = r‘}*"1',‘,1§“ a: 1 +0.
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(HM: Show that the elements mm - - . T: form a right representative system
modulo 11 [for the definition see a)] of the subgroup B which is generated by 11 and the
elements TL. Show that the elements

I’M-Wild: ' ‘ ’ T1:

with )5; + 0 and the elements

we - - watered?“ rat
with y. + 0 for i = 2, 3, . . ., is form a right representative system of GL(n. K) over
$3; apply induction on n). ‘

c) The commutator group of GL(n, K) is generated by the elements DAafla'W")
and T5. It is often denoted by SL(n, K) (which stands for ‘special linear group of
degree 1» over K’). The factor commutator group of GLO», K) is isomorphicwith the
factor commutator group of the multiplicative group of K.

d) Develop determinant theory. Show that 814», K) coincides with the group of
all matrices of degree u ever K with determinant unity and that it is generated by

the elements Ta ifn>1.

6. Let 902 be a vector module with basis an up . . ., u. over the field F. Show that
the projectivities of the F-subrnodule m, of i]! with the basis «I, «1,, . . . , u, (0 < j < n)
in an coincide with the group of all regular linear transformations of 111,, where 93%
is to be interpreted as an additive group with operators. Furthermore, two factor
F-modules formed within 91% are projectively related in m if and only if they have the
same dimension over F. (Him: Use the preceding exercise.)

7. Let B be a subset of the complete lattice L with normality relation. If there is
assigned to each subset X of B a unique mapping a, of L into L such that

a) 61(A) is equal to the join ofX and is normal in L,
b) the mapping (34“) corresponding to the empty subset of B maps each element

of L onto the zero element Z of L,
c) for any two elements 2:, y of L, 614ml y) = 61(z)d(y).
d) 61(n)ddy(a) 2 61,140) for any a ofL and any pair of subsets X, Y of B,
e) alarm) = 61(a) Mafia) :2 for any a of L and any pair of disjoint subsets

X, Y of B,
then L is the direct join of B and the 6; are the decomposition operators.

8. Let B be a subset of the lattice 5(6) formed by the subgroups of the group 0!.
Show that 8(6) is the direct join of B if and only if Q! is the direct product of the
subgroups in B.

9. Let u, 11, h, 3 be four normal subgroups ofa group G such that u S 11,-!) S B
and 11/11 is projectively related with ill/t in the modular lattice of the normal sub-
groups of o.

a) Show that every projectivity of 11/“ onto 96/!) maps (6, 11)u/u onto (65, inn/u
and “WMMfl/u onto “GS/will 38/».

b) A factor group 11/11 is called cent/ml if (Ql, 11) is contained in u. Show that every
factor group formed between subgroups of the center or between subgroups of 6)
containing the commutator group is central. Prove that the central factor groups in
a principal series of G are uniquely determined up to order endprojectivity.
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c) If 5 = 923, X fi, x x B, is a Remak decomposition of the finite group G,
if b. denotes the modular lattice of the normal subgroups of B“ and if B denotes the
system of the lattices bl, bl. . . ., b,, then the modular lattice of the normal subgroups
of 05 is isomorphic to DU(B) (for the definition, see 53, Subsection 4) if and only
if the order of each central principal factor group of B, is prime to the order of any
central principal factor group of 58. for 0' + k.

10. An element 1: of the modular lattice L is called join-irreducible if it is not the
join of two elements different from b. A join representation A = lbld - ~ - Jb,
of length r of the all element A of L is called irreducible if each constituent b, is ioin
irreducible and if each complement e” which is defined as the join of all I), with
j ¢ i, is different from A for i = 1,2, . . .,r.

a) Show that for every join repremntation the mapping 6, = “W" of L into L
is a. normal operator and that d,(a) J 6,(a)J - - - J6,(a) 2 a.

b) Tinouu or Konosx: If A = bulb“! ~ ~ - Jb, = Jbidbhl - ~ - db; are two
irreducible join representations of A, then r = a; and after suitable numeration of
6,, c,, . . ., 0., there are the irreducible join representations A = b;Jb;J - - -
Jb'plHJ - - - db, for I: = l, 2, . . ., r—- L (Hint: Use ideas from the proof of Ore‘s
Theorem.)

0) State the dual of Kurosh’s Theorem.
11. In a. distributive lattice L, the factor latthee b/u, d/c are projectively related

if and only if M” = 1).] c, aMd = c. In particular, all is projectively related with
b/Z if and only if a = b, where Z denotes the more element of L.

12. Let L be a distributive lattice, and let F'(L) be the system of all families of
projectively related-factor lattices of L.

s.) Prove that for any two families II, I, represented by b/a and d/o respectively,
the family I‘M], represea by (bMd)/(aMd)J(c) is uniquely determined and
that IM/ = I. lt = AM,“ (AMA) Ml: = f1M(fIM,I)'

b) With the some notation as in a), define f = In”. in case the families f, 1,, f,
can be represented by factor lattices bio, c/a, b/d, respectively, where a g d S c S b.
Show that I J] = f. and that I = MONA) is equivalent to I = (Adm-1f.- Further-
more, if] = [1.11" then [Mg = (t)J(/,Mg) for any family a.

(3)5110" that if! =lnllxd Jf.mdiff’ =InJInJ - ~ - l. “defined?“ 80m
permutation P of 1, 2, . . ., n, then] = I'. (Him: Use Ex. 11.)

13. With the same notation as in Ex. 12, construct a lattice L’ consisting of all
formal unions J ([1, in . . ., I,) of finitely many families, r being any natural number.
The formal union MA. I” . . ., I,) is odledequalto the formal union Ja 9:. . . ., y.)
if and only if there are equations

h=IuJIa-HJI‘., (i=l,2,...,r)
ind

w=nnJgnJ--'JU:., U=1.2.---.a)

bitch that the 1,]: coincide with the min up to order and multiplicity. Define the
lattice operations as follows:

ill/11’s: - - 'i’f)JJUI+IY - - film) = Jill! - ' Him)

nil/pin - - -u/7)MJ(91-9|: . - u II.) = JUIMglrilMglt . ~ uMMJ-
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a) Show that L' is a distributive complemented lattice.
b) Assuming that L has a zero element Z show that the mapping of the element a

of L onto the family represented by 0/2 is an isomorphism of L onto a sublattice of L'.

14. Let L be e. distributive complemented lattice with zero element Z. A non-
empty subset S ofL may be called a point ifZ does not belong to S and if the following
conditions hold:

s.) Sis closed under the meet operation;
b) If a: and y are any two elements of L for which the"Join a: J y belongs to S but

a: does not, then y belongs to S.
c) If 2: belongs to S and 3] belongs to L, then 9a.] y belongs to S.

We say that the point S is 'on' the element a of L if a belongs to the subset S of L.
Show that the correspondence between the elements a of L and the set of all points
belonging to a is an isomorphism of L onto a sublattice of the lattice formed by the
subsets of the set of all points in L, taking union and intersection as lattice operations.

Exx. 11—14 give a proof of the
menus or 810111: Every distributive lambs is isomorphic with a sublaui'cc a]

thelauicc/orwwdbyaueubcekolaccmu'nm,Wreaum'onandinmmfionuslam'co
operations.

(Him [or the solution a] 14: The main difficulty is the construction of a point S
on an element a 4: Z. Well-order the elements of L, taking a as first element. Define
S, as the set of all elements y of L satisfying y 2 a. Define S, for elements other than
a by transfinite induction. Assume S, already defined for all elements a: preceding b
in the Well ordering of L. Let S; be the union of all subsets S, already defined. If, for
some 11 contained in S; , we have D My = Z, then let S. = 3;. If, however, I) My d: Z
for all elements y contained in S;, then let S. be the set of all elements (b .12) My
with y contained in 8;, 1 contained inL. Define S to be the union ofallsubsets S,
of L with b running over L.)

154 Show that a Boolean ring (for the definition, see Ex. 83 at the end of Chap. 11)
becomes a complemented distributive lattice if we define a Mb = 012,a = a + b
+ ab. Show that, ‘,, ' ‘ " ' latticeL‘ a“
ring ifwe define GM!) to be ab and a+ b to be the complement of aMb in a/Z.

16. (Wielandt.) Show that in afinite group the subgroup generated by two subnormel
subgroup 11,, 11, with mutually prime orders is a. direct product of 11,, 11,. (Apply
Theorem 21.)

17. Show that the descending Loewy series of the lattice formed by the normal
subgroups of a finite group coincides with the descending Loewy series of the lsttioe
formed by the subnormnl subgroups.

18. (Wielendt.) A group with precisely one maximal proper normal subgroup is
called mic-headed. Show that, in finite groups,

a) A one-heeded group coincides with its commutator group if and only if the factor
group over its maximal normal subgroup is not abelinn;

b) If m is a one-headed subnormal subgroup of a finite group and B an arbitrary
subnormal subgroup, then at least one of the following is true. Yl is contained in 38,
or D‘ll is a proper subgroup of ‘11, or D1! coincides with I and is normal'in the sub-
group generoted by it and 58. (Apply Theorem 21.)
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19. (\Vielnndt.) Let (B be a group with a composition series. The r subuormal sub-
groups 11,, 11,, . . ., 11, difl'erent from 1 determine a Wielandt decomposition of o if

1. 65 is generated by 11,, 1],, . . ., 11,;
2. For any system of suhnonyl subgroups K of 11¢(o' = l, 2, . . ., r), the group

generated by B). 13., - - q 13, coincides with 0} ifand only if 13, = 11‘.
Show that
a) Any Wislandt constituent 11. is one-hemed, and the intersection of u, with the first

member of the descending Loewy series is the maximal proper normal subgroup of 11,;
b) The factor group of Q! over the first member (me) has the Renal: decomposition

9/111 = uIAI/Alx ' ‘ ‘ X urAi/Aii
c) Conversely, for any Remak decomposition GM, = 11, x T1. X - ' - X i, there is

s Wielandt decomposition o = (11,, 11., . . ., 11,) such that 11. = ”(Al/Al;
d)Ifinc)theRernak 11,is ‘-" thenll‘is ‘. ‘ ‘ '

and normal in 61. (Apply Theorem 21.)
20. Let Wu and 16/» be two non-abelian composition faster groups of a group as

with a composition series which are projectively related in the lattice formed by the
subnormal subgroups of Q}. Show that both factor groups areprojective with (11 M 13 )/
(u M 18H11 Mb). Hence either they are identical or they cannot belong to the same
composition series of 65. (Him: Show that 1. there is a chain 11/11 = Ila/u”, 111/111, . . ..
um/u- = 18/» such that 11i is subnormnl in Q}, n, is normal in 11, and either (i) 1,1H is
normal in 11;, (ii) 11411;, is simple and 4: 1, and (iii) 11. = 11,411,, or (i’) 11‘ is normal

, in 1191, (ii') “4.1/11: is simple and *1, and (iii’) {1,4 = u,_,u, (i = l, 2, . . .,m),
2. in case 11(_1 is normal in 11., 11”, is normal in m, and 11,+1 is not 11,_,, then we can
replace the factor group lulu, by the factor group 01:.) M 11,+,)/(u,_, M “#1)-

21. Using the preceding exercise, show that in the lattice of all subnormal subgroups
. of a group with composition series, every projectivity of a. semi-simple factor group

between two subnormal subgroups of the given group is the identity automorphism.
22. Every infinite semi-group with one generator is isomorphic to the additive

semi-group cf the natural numbers. Each finite semi-group generated by one element
is defined by one relation, viz., ax“ = a”+'4, where N and d are natural numbers
such that d is smaller than N. The semi-group defined by such a relation consists
of the N elements a, a‘, . . ., a” with the rule of multiplication a‘a’ = "‘*”, where
1 S 7(2) = z —— q(:v)d S N < r(z) + d. There is just one idempotent. The multiples

‘ of this idempotent form a subgroup of order 4!.
23. Associate with sachpair ofsequsncesu = (an, an . . ., 11,), b = (1)., bl. . . ., b,)

of integers for which OStz.<uI <--~ <u,, 0sb.<b, <~~~ <b,, a basis
-‘ ‘u(u,b)ofe " ”overthe ' 'integerring(r=0,l,2,...).Define

u("i"): "’(W) = Sign" ~ signn'- u(a. b)
for anypermutationsn ofa," an . . ., a, and n’ of bu, b,, . . ., b, that map 0 onto 0
in case a, = 0 or b.I = 0. For all other pairs of sequences of non-negative integers
set u(a, b) =0. Define the linear operators in, y, of 911 for i = l, 2, . . . by setting

me. b) = (1 —signu.)u((i,a,, . . numb)
W401: 5) = (1 -lisn MW!» (5- br- - - .. Dal—"((0,011--nanIII-)Abnbn-mbnii).
.where u(a, 11) runs over the basis of ER. Extend the mapping.
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Show that
a.) ”M: = gut/s = 5930‘: = 1/30!» = 0» “fin = 01:31: WW: = 0n: m. where

0n: = 11!]: ~ 112554;
b)cnc.¢”...c" +0forr=1,2,...;
e) The group in generated by the automorphisms l + x‘ = «4, end 1 + y! = 11‘

(0' = 1, 2, . . .) of 502 is not subinvsrisnt in the holomerph o of $1 over all, but the sub-
groups 11 = (141, «4,, . . n), E = (01. 9., . . .) era‘subinvsrisnt in 6 and generate 91.

24. Two suhinvsriant subgroups I, 58 of a group as generate e subinvsrisnt sub-
group if mm, 65) S 2.

(Exercises 25—31 are due to Prof. J. Lembek and Dr. J. Riguet.)
25. Let 2‘ be a. system of sets 511. SB, . . . . We consider the binary relations “R55 on )1

which are defined for any ordered pair of members ‘1, $8 of 22' as a subset ”Rm of the
set 511 x 38 of all ordered pairs «1 x 11 formed from an element a of it end an element
b of SB. Thus, 91121301 x b) means that a X (2 belongs to IWRBI-

Show that
e) The binary relations on 2‘ form a poeet if we define “B” S 389 to mean

luRoi S Iwgsl;
b) The multiplication that is defined by

some '65» = 111'»
where 5T5, (a x d) means the existence ofan elementboffln ¢such that “RB (a x b)
and 58“?) x d) is uniquely defined and associative;

o) The identity ’11“ that is defined by

“1101 x b)

ifsndonlyifa =bsndubelongsto$£setisflesthenfle

9x1: - :11?!) = «Rs ~ 2312):
d) ,The oorwerse relation BR; of “R” that is defined by

3133(1) x a) if and only if "R” (a X b)
is uniquely defined and satisfies the rules

(R—)— = R, (1m)— = S-R-, a]; = ”I“;
e) The symmetry of the relation 1R3, i. e., the equation ”R” = ”Ra is slreedy

implied by the inequality BR; S “Re;
f) The mneik‘ofly of R, i. e., the inequality R - R 5 B, and the symmetry of R

imply the equation R - R = R.
26. If we think of KR» as e many-valued mapping of a part of B into ‘11, i. e.,

if R(a x b) means that b is mapped onto a,

R - R" S “1.; means thet‘R is onto,
12- ~ R 2 all, means that R is universally defined1
.R - R— S ‘1; means that R is single-valued,
12-42331” means that R is one to one. '
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27. The congruence relation “R“ on it is equal to a normal congruence relation on
a subset of m if and only if it is symmetric and transitive. The subset in question coin-
cides with 91 if and only if “I; g R (reflectivity of R).

28. The binary relation 911R” z; B is called regular if RR'R = R. Show that
a) Regularity is already implied by the inequality 1313‘}? g R;
b) If R is regular, then R ‘ R" is equal to a normal congruence relation S on a subset

”S” of it and R— . R is equal to a normal congruence relation T on a subset H T” of
SE (use 27.);

c) There is, moreover, the natural one-to-one correspondence between “SH/S
. and H TH/T that maps the S-residue class represented by a onto the T~residue class

represented by b, where “R301 x b).
29. Let 2 be a system of groups having their unit element in common. The relation

“RE is called a morphism ifthe set filial is a subgroup of M x 58.
Show that
a) a relation R = "R9 is a morphism if and only if

RUE X 1n):
R(a x b) implies R(a—1 x 12-1),

R(a x b) and R(c x d) imply R((ao) x (12(1));
b)ThemorphismsofEforma ‘ ' " ' '9 3 ' ' ellthe"

“In (91 in 2‘), and the morphism “R“ is a multiplicative norms] congruence on a sub-
, group “R“ of 51! if and only if “Ru is symmetric and transitive. In this case B is equal

to the congruence relation of HR“ modulo the normal subgroup formed by the ele-
ments of ‘11 that are R-congruent to the unit element of 21. The corresponding sub-
faotor group is uniquely determined by R and may be denoted by E;

d) Every morphism is regular, and the oneAt0<one correspondence occurring in
28c) is an isomorphism.

30. (Goursat-Lambek.) For any subgroup u of 9! x B the subgroup ills; = 11 ('N M
is normal in the Ql-component 11'; = 11% fl 9! and 5955 = 11 n 58 is normalinthe
SB-component um = 11 98 A Ii of 11 and are such that the mapping a that maps the
residue class £19291 onto the residue class 11923; (Where a X b belongs to 11) is an iso-
morphism between Ila/92;; and 113/925 (use 28. and 29.).

Conversely, if 9?“ <1 1191 5 9f, 92;; <1 11:, g )B and if a is a given isomorphism be-
‘tween Ila/Stu and 113/921,, then the set 11 of all the elements a X b of 11:1 X 11” for
which 0019231) = b91233 is a subgroup of Q! X S such that 11m, 92m, 113, gig, a are
related to u as was defined above (apply 29a) ).

31. Prove the Lemma on Four Groups in Chap. II, § 5 by application of 28 c) and 29a),
' d) to the morphism R - S, where R and S are the binary relations on the group 6

defined by the subfactorgroups u/u, 98/», respectively. Note that the isomorphism
between BSR = u(u n B)/u(llr\ b) and w = 1:08 A 10/0013 n 11) obtained
according to 28 c) is the same as the one obtained in the previous proof.
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FURTHER EXERCISES FOR CHAP. IV, §5 '

B. (Fitting) Using (12) and (13) of Chap. II,‘§ 6, prove that the inequality

84m 76) S (91 f‘ 81.1(56))(3l(91) n 844(8)) - ' ~ <3._.w> fl 38)
holds for any two normal subgroups VI and B of a. group, and hence that the product
of two nilpotent normal subgroups is nilpotent.

9. (Schenlnnan.) The element 9 of the group 6} is called weakly central if, after a
finite L of ' the .1 ‘ of an ‘ ' y z of 6 onto the
commutator (g, :c) = works-1 for any particular element x of 6) always leads to
the identity.

Show that
a) If g'belongs to a nilpotent normal subgroup, then g is weakly control;
b) If for a prime p every element of p-power order ofa finite group is weakly central,

then the intersection of two different p»Sylow subgroups is always the identity.
(Apply induction on the order of 6, and use Theorem 7 of Chap. IV.)

a) If in a finite group the intersection of the p-Sylow subgroup S with any different
p-Sylow ‘u r is the ‘ ' ‘ J, then the of an ‘ of S and an
arbitrary element a of 63 is in the normalizer of S if and only if 1: belongs to the nor-
malizer of S ;

d) If in a finite group the elements of p-power order are weakly central, then they
form a. normal subgroup;

e) A finite group is nilpotent if and only if every element is weakly central.
10. (Sehenkman.) The m'lmdical of an arbitmy group 6 consists of all elements

1] of 6 with the property that for any weakly central element x of 6, ya: and g—‘z
are also weakly central. (For the definition of weakly central, see the preceding
exercise.) Show that

a) The nilradical is a characteristic subgroup of Q];
b) If M is an ebelian normal subgroup of the group @5, a an element of the centralizer

of i1, 1 an element of Q5, and a an element of 91, then (gm, 0.) = (:c, a);
e) Every ", normal Lu , $2 of 6 ‘ ' a. to the " “‘ 10f (E. (Apply

induction on the class of 9?, and use b). )
d) The nflmdical of a finite group is its maximal normal nilpotent subgroup. (Apply

9) and 10c). )
e)The " " 'ofe‘= " a. r ' ‘allt'n ' than n L l

subgroup of the full group.
11. Let 5J2 be a. normal subgroup of the group as, and let 11, B be two subgroups

of @ satisfying
unfl=fln§h 11m=$9h “SSS.

Showthat
“=36.

236
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12. a) A group satisfies the maximal condition for subgroups if and only if every
subgroup of the group is finitely generated.

1)) If a. group satisfies the maximal condition for subgroups. then so does every
subgroup and every factor group“

:3) If both a normal subgroup 91 and the factor group of the group 04 over 9? satisfy
the maximal condition for subgroups. then 01 does so also. (Use ll.)

13. a) Every cyclic group and every finite group satisfies the maximal condition
for subgroups.

b) If there exists a normal chain

0=¥R.I>9l,>9¢.>--->92,=l
of a. group 65 such that each factor group $492,“ either is finite or infinitely cyclic,
then 65 satisfies the maximal condition for subgroups. (Use 139.) and l2c).)

o) A finitely generated abelian group always satisfies the maximal condition for
subgroups.

14. a.) If the group 6 is generated by the complex R and if c is nilpotent of class
c + 1, then the subgroup 11‘ generated by all higher commutators (K,7 K“ . . ., K,)
of weight 1' in the components K1, Kp . . ., Kt each of which runs independently
over l‘l‘, coincides with 84%). (Clearly 1!, S 8((5). (9, 11;) S 11“,. Since 11‘ E .8403)
E a (65) it follows that (4», 115-1) = ((5%). 11,-1) S 11°. By induction, (65, 11;) S 11.“;
heme “.2 8.46%)

b) If the group 6 is finitely generated and nilpotent, then all members of the
descending central series are finitely generated. (Use a).)

c) (Jennlngs.) If the group 03 is finitely generated and nilpotent, then it satisfies the
maximal condition for subgroups. (Use 14b), 130), and 120).)

15. Let P be a group property. A group 65 is said to be a local P-group if every
finitely generated subgroup of 6 has the property P. Show that

a) Every subgroup of a local P-group is a local P-group;
b) Every local P—subgroup of a group 0} can be embedded into a maximal local

P-subgroup of G}.
16. a) Let R, 9 be two non-empty complexes of a group 6; let 11 = ((R, 53), 2);

let i5 be the smallest normal submup of 11 containing (9!, 9); and lot 18 be the
smallest normal subgroup of (5?. 1!) that contains (3, 8). Show that

(3, 9) <1 (8. 9, S!)
and hence that .

B E 18 S (2?, R).
Show that '

(N, 3) <1 (3. 8). (13. 8) <1 (I, Q).

b) If it is a finite subset of a locally nilpotent normal subgroup I of 61 and if S! is
a finite subset of a locally nilpotent normal subgroup $8 of G, then the subgroups
11, E, 23 defined under a) are finitely generated and nilpotent. (Use 140).) Moreover
as, St). (E; c), and (it. B) are nilpotent. (Use Ex. 3.)

c.) (Hirsch) Any two locally nilpotent normal subgroups of a group generate a
locally nilpotent normal subgroup. (Use 16b).)

(1). Every group contains one and only one maximal normal locally nilpotent sub-
- group, which may be called its Hirsch radical.
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a) Show that the Hirsch radical of a group is contained in the nilradical defined in
EX.10.

f) The Hirsch radical of a finite group (more.generally, of a group satisfying the
for a I is its ' normal subgroup.

l7. s.) The " Nu ofa ’ ' locally ": Lg .- LI ofa group 65
is its own normalizer. (Apply 16c).)

h) (Plotkin.) A group 65 in which every proper subgroup is properly contained
in its normalizer is locally nilpotsnt. (Him: According to a) every maximal locally
nilpotent subgroup of u is contained in the Hirsch radical of G3. Now apply 15b).)

18. For any set L and any ring 0 the ring M (o, L) of row-finite matrices over L
with coefficients in o is defined as the set of all formal sums (lat) = XXI-near, where
to each pair of elements 1', k of L we have assigned a 'matrix unit' a", and where the
coefficients A", that belong to s are such that for any fixed row index a” all but a finite
number of the coefficients 2‘. vanish. Define addition, multiplication, and multi-
plication by scalars according to the rides:

Elias» + zz/‘rk‘a = stilt: + fluids:
2271‘”). ‘ Elana“, = Eziflui‘nlfik

1v lilac“ = L'L‘Uqgem

Exists“ ~ A = Ell‘klc".

a) Prove that M (o, L) is an o-ring. If 0 contains a unit element, then the matrix
I = [linen is the unit element of M (o, L), and the mapping of 1. onto 11 provides an
s-isomorphism of o into M(o, L).

b) For any subset S of L the subut M(o, S, L) of all matrices (1“) of M(o, L)
such that I.“ vanishes whenever 1' or It does not belong to S is an n-subring of M (o, L)
that is o-iscrnorphic to M (o, S).

c) If L is a poset, then the set T(o, L) of all triangular matrices (in) which are
characterized as row-finite matrices for which I.“ = 0 if i is not contained in la, is
an o-subring of M(o, L).

(1) Show that all matrices (I...) of M(o, L) with all but a finite number of columns
vanishing and with the property that I.“ =l= 0 implies that 0‘ is properly contained in
k form a left ideal N (o, L) of T(o, L). Moreover, for every element A of N (o, L) there
is an exponent n for which A' = 0.

e) If 0 contains a unit element, then all the matrices I + A. (A e N(o, L)) form a
group I + N(u, L). (Use the identity (l—A)(1 + A + A’ + - - - + AP!) =
(I - A")-)

f) The group I + N(s, L) is locally nilpotent.
g) If there are arbitrary long chains

€.<€,<i.---<i,, €,+,$£,forj=0,l,...,l—l
in the poset L, then the group I + N(s. L) is not nilpotent. (LetL be for example, the
ordered set of all natural numbers.) If the length of properly increasing chains is
bounded, then I + N (s, L) is nilpotent.

h) For asub‘poset S ofL, thesot ofmatrices I+N(s,L)r\ M(s,S, L) is asub-
group of I + N (o, L) isomorphic to I + N (s, S). This subgroup'is its own normalizer
iuI+N(o,L)ifany‘ ofLis r ' ’inan‘ ofSandif
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all ‘ oaotL‘ ' toSuro 1‘ (For l‘ letLbethe ‘ ’
set of all natural numbers, and let S be the subset of all elements 4: l )

19. A group every element of which is of finite order )8 called periodic. lhow that
a) Every subgroup and every factor group 015 a periodic group is periodic;
b) If a normal subgroup SR of 15 group 0| as well as the factor group (5/9! )3 periodic,

then G! is periodic;
c) If 92 is a normal periodic subgroup and if u is a periodicsubgroup ofths group

El, then 1192 is a periodic subgroup of-fi;
d) In every group 6! there is precisely one maximal normal periodic subgroup 512(0)

called the torsion eubyrowp of-Ql;
e) If the normal subgroup 92 of 9. group is periodic; then $(C/9l) =' two/m.
‘20. A group is celled torsiomfrcc if it contains no element offinite order other then 1.

Show that
a) Every free group is torsion-free;
b)Every ‘ ,ofa‘ ' " groupis‘ ' "
o) If the factor group of the group 63 over the normal subgroup R'is torsion-free,

then in contains the torsion subgroup SUM) defined in 18d);
d) If both 9! and 6/91 are torsion-free, then 6) is torsion-free;
a) In a. locally nilpoteut group my two periodic subgroups generate aperiodic

subgroup (use Ex. 6);
f) Every periodic subgroup of a locally nilpotent group is contained In its torsion

subgroup (use 19e));
g) The factor group of a locally nilpotent group over its torsion subpoup 1s torsion-

free (use 193), 1811));
h) If the center of a. group istorsion-free, then its second center is also torsion-free

(use (9), Chap. II, §6); hence it follows by induction that all the members of the
ascending central series are torsion—free;

i) Afinitely generated abolish group is torsion-tree if and only if it is a free ebelian
group;

j) (Jennings) A finitely generated nilpoteut group a is torsion-free if and only if
there is a finite chain of normal subgroups of G

5=ms>mi>9ls>‘“>mr= 1

such that the factor groups 924%.” are infinite cyclic for i = 0, I, . . .,r— 1. (Use
14c, 20h, 20i.)

£1.Agroup @isoelledsgrmlpoffiwitemlzifthersiseflnitenormslchsin

g=m025l129h2"‘2m1=11
for which each factor group 9:492.“ either is periodic or infinite cyclic. Show that

a.) The number 1' = 7165) of infinite cyclic factor groups Elk/9},“ is independent
of the choice of the normal chain by which it is determined (apply Schreier's
Refinement Theorem); hence we have obtained 5 group invariant which may be
called the rank of the group;

b) Every subgroup and every factor group of a. group of rank r is of finite rank
not greater then r;

c) Ifthe normal subpoup-fl ofugroup 6 is ofrunkrondif 6/9“s rank r’,
"then @.is of rank r+r’;
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d) For a. group G of finite rank, 116) = 116/316»;
e) The rank of 9. group of finite rank is characterized as the maximum number of

independent elements, where we call the elements A, , A” . . ., A, of a. group indepen-
dent if A; (i = 1, 2. . . ., n) is of infinite order modulo the smallest normal subgroup
9(;_, of (Al, 4,, . . ., A.) mmining the elements A], A” . . ., fir—p

22. (MaoLainlJ Prove that.
a) For any two subgroups 91, B of a group, (11, fl) is always normal in (a, 23);
b) If $8 is contained in (m, 16) and if (it, B) is hilpownt, then B = 1;
c) If B is finitely generated and contained in (it, B) and is not 1, then (9!, B)

contains a finitely generated subgroup that is not nilpotent;
d) A minimal normal subgroup of e looelly nilpotent group always belongs to the

center of the group.
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FURTHER EXERCISES FOR CHAP. IV, §l

4- (" )Letus " the ' an ' mofthe abelian
group ER with the factor group (E and the extension 6, contained in 03, of ‘3? with a
subgroup u of finite index n in G. We assume that 5 splits over 92. Using a right
representative system i} of (‘2 over 11 we can decompose 6 into the coasts SW92,
where q runs over i} and u runs over 1!, such that S" = 3,8. , S“; = S‘s“. 8.5"
= c.,,,.s.,, S,NS;1 = N‘ for :c, y in E, N in 92; moreover, the cum are in 9!.

Show that
a) (9“ = 3.5“ for a: in G, u in 11;
1:00,”, = 0.3,, for w, y in E. u in 11;
c) The element 0, obtained by forming the product over all 0“,, with 9 running

over 3 is independent of the choice of the representative system if (where o is a. fixed
element of (if);

d) 0:“. = 050.2}: for a, r in if;
e) If the mapping of N onto N" is an automorphism of 5?, then an extension G)

of m with the factor group G splits if and only if the extension of ER with the factor
group 11 contained in (M splits over 92;

f) An extension (53 of a finite ebelisn group 9} with a finite factor group G splits
over 9?. if and only if the extension of SR contained in 6!, with each Sylow subgroup
of Q s.s factor group, splits over 92;

g) Assuming 0,], = l for a, 1 in (E and T, being a second representative system of
Q} over in that satisfies the condition T, T, = T", T“ = S. for a', 1 in G, u in 1!, we have

To = has" bu. = 17.5.." bu =1. b... = b." b: = 5”:
where b, denotes a certain element of 92 depending on o', and 6 is the product of the
elements b, with 9 running over 3;

h) Under the assumption that the extension 01 over 92 splits and that the mapping
ofNontoNflisan mof92,two , ‘ ‘ ‘ Epifioffi
over 9% are conjugate under G} if and only if the representative subgroups E, A 5,
if, n 6 of 5 over 92 obtained by restricting E to 11 are conjugate under Q};

i) Two representative subgroups of a splitting extension (55 of a finite abelisn group
' 92 with a finite factor group (E are conjugate over (5 if and only if the representative

subgroups obtained by restricting [if to any of the Sylow subgroups are conjugate
under Q5. The condition that every Sylow subgroup of G splits over its intersection
with 92 is equivalent to this condition.

. 5. (Example showing that Gaschiitz’ Theorem does not hold if the normal subgroup
is not abelian.) Let 6,. be the multiplicative group formed by the 2 x 2.mstrices
of determinant 1 with its entries in GF(3‘) for which a suitable non-vanishing scalar
multiple with its entries in GF(3) exists. Let 6}. he the normal subgroup consisting
of 3:1, and of the six matrices that have their entries in GE(3) and that have sum

Ml
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zero over the main diagonal. Let 8,. be the 2-Sylow subgroup of G“ which is generated

by 65. and by the matrix (i) _(:.) , where 6‘ = — 1; let G}, be the 3-Sylow subgroup

generated by the matrix (3 i); let 6...“, 61“,, end 6!”, 6” be the groups of

all 4x 4-metriues of the form A'OB), with A, B contained in an, @e 6., and(o
"m, respectively; and lef- Ql, be the normal subgroup of 6“... consisting of I. and —I‘.
Then the group G = Emu/61. does not split over its normal subgroup m = Gin/Q5”
whereas both a. 2-Sylow subgroup and a. 3-Sylow subgroup of 65/92 correspond to
splitting extensions of ER, vim, Gum/65. and 65” 65M/ 65, respectively.

6. The Ifi-subgroup of a finite group 6 does not contain a. Sylow subgroup 4a 1
of 6. (Hint: Apply Ex. 7 of Chap. IV 53, and Theorem 25.)



APPENDIX G

A THEOREM OF WIELANDT
An addendum to Chap. IV

In Chap. II, §4 we saw that a finite group 65 having 1 as center is iso-
morphic to the group of inner automorphisms of (55. Also, for an element a
of the automorphism group (~31 of 65 we have age—1 = :g‘, where :3 denotes
the inner automorphism corresponding to the element x of QL Hence an
equation aga“ : 5 implies that refit—1 is contained in the center of (a
and hence that x“ is equal to 2:. By identifying each element x of @5 with
the corresponding inner automorphism, we may consider (:3 = (Sn as a
normal subgroup of (31 such that the oentralizer of Q50 in @1 is 1.

Since ($1 is again finite and has center 1, we may continue with the con-
struction by extending (E1 to the automorphism group 65, of (:51, etc. We
obtain a sequence of finite groups

(1) Ql=®o<t®1<1®,<1w,
called the automorphism tower of @5, each member of which is contained as
a normal subgroup in the succeeding subgroup and has eentralizer 1. We
may raise the question, Is the sequence of the groups in (1) strictly in«
creasing? Or is one of the groups (‘5.- isomorphic with its group of auto-
morphisms? In the second case we say that the automorphism tower is
of finite height. In this case (Bi = 05‘“ = - . - is a complete group, and we
will have succeeded in embedding the given group with center 1 subnormally
in a complete finite group with center 1.

The solution to this problem was found by Wielamlt and gave rise to
interesting theorems of a general nature concerning the subnormal sub-
groups of a group, which we will now consider.

DEMNITION: A property P of groups is called normally persistent if
- 1. Every group isomorphic to a group with property Palso has property P;

2. In a given group the subgroup generated by a system of normal sub-
groups having property P also has property P.

Examples of normally persistent properties are
1. the property of being a p-group,
2. the property of being semi—simple,
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3. Local finiteness: Finitely many elements of 6 always generate a finite
subgroup.1

4. Local nilpotenoy (see Exx. 15, 16c), Appendix E),
6. Periodicity (see Ex. 190), Appendix E).

If, in the statement of condition 2., the word ’normal’ is replaced by
'subnormal’, a property P satisfying 1 and 2. is called calmer-molly persistent.

It'is immediate that subnormal persistence implies normal persistence.
Conversely,

THEOREM 28: Normal persistence implies .mbnormal persistence.

Proof: For hrevity‘we call a group having the normally persistent pro—
perty P a P—group. Let B be a set of subnormal P‘subgroups of the group
6. We want to prove that the subgroup 6 generated by all the subgroups
belonging to B is a P-subgroup of Qi.

First of all, let us assume that the function mix, (5) defined on B and
indicating the minimal length of a normal chain from 92 to @5, is bounded
by a number n. We apply induction on u. If n = 0, then every member
of B coincides with (3, and hence Qt = 6 is a P-group. If n = 1, then every
member of B is a normal P-subgroup of (-9. Because of the normal persis-
tence the subgroup 6 generated by its own normal P-subgroups is also
a P-subgroup of 6. Now let 7:, > 1, and assume that the statement is true
in the case that m(f£, (525) < n for all members i of B. For any member
I of B there exists a normal chain 2 = $0 <£1 <5. <~ - - <1 35,. = g
from x to @5 of length n. Taking any conjugate 5‘ of I (t in 65) we have the
normal chain 35‘ = f, <1 1'} < I; <1 ' -- <1 ILA = .4 of length n—~ 1 from
2' to in“. All conjugates of 3': under .6 are isomorphic to EE and hence are
P-subgroups, and furthermore we have m(2-E‘, find) < n. By the induction
hypothesis, the subgroup 2 generated by the co_njugates of I under 6
is a normal P--subgroup of 6. All normal subgroups I generat_e a P-subgroup
.6 of 6. Since 6 is a subgroup of 6, it follows that 6: 6.

l It has to be proved that two locally finite normal subgroups Bl, . 9!, of a group Q5
generate a locally finite normal subgroup. Let x” 2,, . . . , 2:, be finitely many elements
of 52, 92,. Then at. = y‘zi, where y; is an element of 92,, z. an element of Em, and the
subgroup 11 generated by 1., z,, . . ., z, is finite. The finitely many conjugates of the
elements y, under 11 are in $2, and hence all together generate a finite subgroup m
of G} which is normal in the subgroup 18 of 6} generated by B and 11; hence SIB = 58 L1
is generated by 311, 11,, . . ., y,, :1, 1., . . ., z.., so that the index of 22 over B is equal.
to the index of 11 over the intersection of 11 and 28. Thus is is finite. The subgroup
generated by a", 3,, . . ., 3-,, being a subgroup of QB, is finite:
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Since for any subnormal P—subgroup X of @l the minimal length of a
normal chain from any conjugate of I to G is the same, it follows from the
preceding that any subgroup generated by some conjugates of i is a P-
subgroup. ’ 4

For any system B of subnormal P-subgroups of («if the normal subgroup
E of Q generated by the conjugates under S) of each member 33 of B is a
P-subgroup; hence we see as above that the members of B generate a
P-subgroup S of OJ, Q.E.D.

The smallest normal subgroup of a group (51 containing a given subgroup
11 is the subgroup generated by all the conjugates of 11. Applying Theorem
28, we obtain Corollary 1.

COROLLARY 1: The normal subgroup generated by the conjugates of a sub-
normal subgroup having the normally persistent property P is a subgroup with
property P.

Theorem 28, applied to Examples 1. and 2., gives Corollaries 2 and 3,
respectively.

COROLLARY 2: Any number of subnormal p-subgroups o] a group generate
a p-subgroup. In particular, the normal subgroup generated by the conjugates
of a subnormal p—eubgroup is a p-s'ubgroup.

COROLLARY 3: Any number 0/ subnormal semi-simple subgroups of a
group generate a semi-simple subgroup. In particular, the normal subgroup

' generated by the conjugates of a subnormal semi-simple subgroup is semi-
simple.

Theorem 28 can be extended in the case of a group Q} subnormally
embedded in another finite group fi if there is known an ascending chain

(2) 1=$o<1981<198.<1---<158,=®

- of normal subgroups extending [mm 1 to @i such that SEN/8‘ is either
a pen-group or a semi-simple group.

THEOREM 29: With proper choice of the chain (2) the subgroups b, of S)
' generated by the subgroups conjugate to fit; under 5 together with .6 form an
ascending chain 1 = 6., <1 .6, < 6. <1 - ' ' <1 lb, 4 6 of normal subgroups
of .6 such that

.1. filgdfilfi and bmlb‘ are either pad-groups and there is a normal sub-
group u”; of (B with a jug-factor group; or 584+1/$, and gym/g). are serm-
simple groups, in which case we set um = @5 ; in any case

(3) (”Ms 5:44) 5 $l+1$fi
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2. The intersection of 6‘ and @i is 58. for i = 0, 1,. . ., 1-
Proof: If (55 = 1, then set 9., = 1. If 6 =0: 1, then 6 contains a smallest

normal subgroup different from 1 which is either an abelian group of prime
exponent p1 or a semi—simple group. In the former case, let ill, be the
maximal normal p,-subgroup of (SJ. In the latter, let £1 be the maximal
semi-simple normal subgroup of @i. In any case, in view of Corollaries 2 and
3 to Theorem 28, S131 is uniquely determined. Similarly, form 98./$, in
65/81, etc. Continuing this construction, we obtain a chain (2). For the
corresponding .91 the factor group @H/Q. is the normal subgroup of .‘b/b‘
generated by the subnormal subgroup $mfinlbp

Since the factor group fihflfig/fi is isomorphic to the factor group of
3.1“ over the intersection of En“ and .6. , it follows from Corollaries 2 and 3
of Theorem 28 that either $81“ Iit; and ©,+,/©( are both l-groups or they
are both semi-simple. We claim that 23; = (5 M $.. This is obvious for
i = 0. Assume that bi n @i = 58;. We observe that .5,“ r'\ @i/Qi; is iso-
morphic to a factor group of Sufi/bi and hence is a pita-group in the first
case and is semi-simple in the second case. Since in both cases $91 is
contained in the intersection of fin“ and (3, we conclude from the maximal
property of it“, that bi“ n @i = 98;“.

In order to prove (3), let us observe that there is a normal chain
(3:650 <®l<©l <l-'-<l@,=.©.14et@fi =b‘(@lnbi+l)! ”that-64
is properly contained in Qt“, = 5,91%“ and Q5“, <16“ 4 - - - <1 G!“ = fim.
Let g“ be the set of all elements 1 of 6 satisfying the condition (as, 5m)
9 64,. For an element a: of g” and an element h of b”, we find that
(x, h-l) = w is contained in 6”. By induction on n, we find that (2?, h“)
= ww' - "10"“. Since 2:, as an element of G}, is also an element of (b,_,, we
find that :wwaa-mw—l already belongs to 6451—1“ 5m): which is the
same as 65‘, 1—1; hence the two elements to and 10"" are congruent modulo
(3;, H, and thus the element (1", 1H) = um)" - - - ufi“ is congruent
to w“. It follows that (x'm'i-H, h-l) is contained in @‘ ,_, for 11-1 an
arbitrary element of Sm; therefore z'" “tH belongs to g. ,_ Hence
x6" “‘1” ,being equal to (2"! “id—0%“ “9H belongs to g‘ ,-., etc. Lastly
2:"? “‘0 belongs to 9“,. Since, as follows from the preceding, gm contains
all the powers of each of its elements, and since 61”: 6“,"Is a divisor of
{3m 2 .5“ it follows that x°‘+“°‘ belongs to g“, for all 1: contained in the set
Ga. Ga. being the same as Q}.

When inn/98¢ is *1 flan-group, let @lum be the maximal p.+,-factor
group of (ii; then um is generated by all the prfl-th powers of the elements
of Q], with n large. Since in addition bud/b, is a {ml-group, it follows
that u;+1 is contained'in Q“, and hence (3) holds.
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If, on the other hand, 5mm: is semi-simple, then by the results of
AppendixesB and C,1the group («5 @,/.91 ,being 'subnormal in 6m. , is normal in
(«B @m/bi- Hence (@5, am) is contained in 6‘“ A (36‘. But by the modular
hwy: bi-Hn ($51) = (5“: A’w)@c = ”ii-16h and thus ((5. $1“) is con-
tained in 58”l 0.12.1).

THEOREM 30: II together with the assumptions of Theorem 29 we have the
centralizer of @3 in .b equal to i, then the order of b is bounded by a constant
depending only on 6.

Proof: In the case that Bm/iBi is a gnu-group, we have for any element
a: of G '

(Z(u,+1) A 544.1)” = Z (1174.)) A 5&1 = 201;“) A 5:“;
hence

(4) (Z(u,+1)n 5H1) lludn) A buflw-
Let p be a pm-Sylow subgroup of @i. It is contained in n. p‘H-Sylow

subgroup $8 of (Z (um) n Symmi. The intersection of 5613) with Z(um) A
em belongs to Zluu-i) n 203) and hence to zwm) n 20») =Z(ut+il3)
= Z(6). But by assumption, the eentralizer of @i in g) is 1; hence

(5) 3013) A Zlnt+1)A 3M1 = 1-
Because of (4), we find that

(6) EB A z(ut+i) A $114 is normal in $-
From (5), (6) and from the theorems on p-groups proved in Chap. IV, 5 2,
we conclude that

$ A Z(ud+1)A but = 1.

Hence 1)”; does not divide the order of Z(um) n 6,“. A fortiori, pm
does not divide the index of Z(u‘+,) r\ 6,“ over Z(ug+1) A fir; this index,

I We have to show that a group 6 generated by s subnormsl semi-simple group
it end a subnormol group 58 contains 58 as a normal subgroup. By Corollary 3 of
Theorem 28, the normal subgroup I of it generated by the conjugates of *1! under 05

- is semi-simple. Let ii = 2)., <1 56, < - - - < B, = E be a. norms] chain of minimsl
length 1 extending from SE to it. Since Bk, n i is normal in i and a is semi-simple,
it follows that there is one and only one subgroup ml of E for which i is the direct
product of til and B._, n W. T " ’ ofthis J r ' ' with on ‘
a: of 3.4 yields a direct decomposition of if into the direct product of u: and 58._, n
Wt; hence 91(1' '= 9t, ; and hence ill is norms] in 0:. and t! is the direct product of 91, and
B._,_. If a > 1, then we conclude in a. similar way that mm A W is the direct product
of ll” n Fl and some subgroup SK“ so that $54 is the direct product of 91, and SB”,
6 is the direct product of it“ Bi, and 56.4, and hence 18.4 is normal in G, which

.contradicts the minimal property of 5. Hence a g l, and 23 is normal in 6.
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because of the Second Isomorphism Theorem, is equal to the index of
(2mm) M 3m) .6, over @, which is a divisor of 69:1 $3., a power of
Pc+1~ Therefore Z (um) n gym is equal to Zuni“) n 6‘, so that

(7) Mum) F‘ San is wnta-ined in 6‘-
According to (3), each element x of .6“, determines the function (x, y) of
y, an element of 11H 1: with values in" @‘Eim. There are at most
($1$i+11)“'+l ‘ such functions. We have (x, y): (3’, y) for all y of um
if and only if wyx-‘—— x’ ya:'4, i. 0., x is right congruent to x modulo
Mum); hence

@«44 : (20‘1“) ’\ $e+1)S($a$‘+131)"‘“”-

From (7) it follows that

$1.111 bl S @Hi 1 (ZN-H1) fl $i+l)'

Noting that b‘%g+lzbg=$g+lz(bfn in“) and that ontas $1 58;“: 1
= (bf$i+l : blli$¢5 1): we find that

(8) '9‘“ 3 1 £($i+lz$i)w+l:l(‘blz1)md“:l)+l'

0n the other hand, when 93HI/38; is semi-simple, we set in“ = 65.
Thus (3) is again satisfied. According to our assumption concerning Q},
the centralizer of “in is 1; hence (7) is also satisfied. From (3) and (7) we
conclude, as before, that the inequality (8) holds. Finally, we have to note ’
that Z(@i) = 1 implies Z (3,) 1, and hence 5:1 is a divisor of the order
of the automorphism group of @p Consequently, a very rough estimate is

(9) $=1S(6r:1)!
Set

Mo = 1,

MM»: = (find 5 $i)“‘*“1Mi"‘+“”“ f0! i = 0, . . .,r— l,

M == (11,)1.
Then (8) and (9) together yield

5:1 3M, Q.E.D.

THEOREM 31 (Wielsndt): The automorphism tower of a finite group (ii
with center 1 is of finite height.

Proof: Let (51:03., < @, <I @i, <1 be the automorphism tower of
(ii. The center of each member is 1. In order to apply Theorem 30, we must
prove that the centralizer of G m w,'is l.
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In fact, we can show that the oentralizer of 6, in M, is 1 if y‘ > i.‘ This
has already been shown in the case j—i = 1. We complete the proof by
induction on Io = 7' — i. Assume that the assertion is true for 7‘ —i
=k21, and let j—i=k+ 1. Then the oentmlizer of 6‘ in ©,_, is 1.
The normalizer of 6‘ in ®,_, is (5“,. For, 6‘“ belongs to the normal-
ize: of (Eh in (51,-“ and if a is one of the elements of this normalizer, then
the transformation by a defines an automorphism 6 of 6;; hence d is ob-
tained by transformation of G}. with an element a’ of the automorphism
group @“X, and a-‘a’ belongs to the centralize: of (‘25; in (EH; i. e.,
a-‘a’ = 1, a = u’, and a is contained in (55,“. An element b of the cen-
tralizer of @iin @i, transforms the normalizer of (Edn 6%-, into the normal-
izer of @i = @i in @L, = 05,4; i. e., (552’+1 = 65.“. Consequently, (2 belongs
to the normalizer of 65;“ in Q, which, by the induction hypothesis and
by the subsequent statement concerning the normalizer, is equal to 0}“...
For an element x of 6“, and an element y of (‘5‘ we have: byb—1 = y,
zyrl is contained in 6;, and bath—1 is contained in @im; therefore

1311—1 = y‘ = by"b-1 =bxb—1byb4bz'1b'1 = y‘el;

and therefore a: = z”. The element (1 belongs to the oentralizer of 65‘“ in
05“,, and hence b = 1.

1 This short ‘ nuiun is in ' with o ' ‘ from D. G.
Higman.
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FURTHER EXERCISES FOR CHAP. V, §l

Exercise: For an oddprimep let. (1 =0, l, —1 when a§0,whena=m‘$0

is solvable, and when a s z‘ is not soluble modulo 1), respectively. Show that

s.) (%) a «2%! (mod11);

b) If 2* 0 (mod p), then (i = (—1)““’, where [4(a) denotes the number of
solutions of the congruence on E —y(p) satisfying 0 < x, y S 9+1 ;

f“) (“) (")c) — = — ——- . ~
1’ P P .

(Hint: Compute the transfer from the multiplicative group 6 of the pn‘me residue
classes modulo 1) to the subgroup 11 of j: 1 (mod p) in 3) according to (19) and in b) by

taking 1, 2, . . ., pT-—1 (mod p) 8.! representative system.)



FREQUENTLY USED SYMBOLS

o Gnour (p. 1)
11 Summon (p. 10)
Q : ll INDEX of Q} with respect to H = number of left (right) ooeete (p. 10)
fl - COMPLEX = subset of I group (p. 19)
a“ Complex transformed by x=eet of all acKr‘ (p. 26)
Na Nonnumun of 3%: group of all a: which tmnsform 3 into itself (p. 26)
Zn Clmnumznn of !=group of all 3 which are pemutable with every

element of R (p. 50)
92 Norma Summon: subgroup which is transformed into itself by all

elements (p. 23)
G5]?! FAcron Gnovr of 0} over ill= group of eosete of G by 92 (p. 38)
5 Damn or @= group of All elements commuting with every element of (M

(P- 27)
Ju Group of all Imam Ammonmsus (transformations) of G! (p. 48)
Am Group of all Amomonrnxeus of o (p. 48)
All Group of OUTER Ammonrmsus of 65 (p. 48)
at A subgroup of @= intersection of 6 with its maximal subgroups (p. 49)
(a.b) = alm—‘lv—1 Comm'rA'ron of a with b (p. 18)

‘ (0-b,0)= (MM) (p. 81)
(ll. 8) mutual Common-Aron Gnour: group of all (U, V) (p. 91)
®'=Dw= (6, G!) Caurm'rAron 6mm of G (p. 67)

6/6' FAMOR Comm'rnon Guam: (p. 67)
D6 =D(D"‘ @) dim! Dnrvnm of G (p. 79)
k degree of Mmumun group 6, so that D‘"@+D‘t¥= e (p. 79)
6: 812 8,2 8. . . . Dmsonu‘onm 0mm“ Sums (p. 155) so that
8.= (6.81.,) is the i-th Reiderneieter eommutntor group
(i=3, g3, 95, . . . ascending central series (p. 50) so that

4 a, is the i-th center of 1!}, hence M544 is the center of 65/3,_,
a Class of the nilpotent group 0}, hence 3,_,+3.= 01 and 8.4: 3.“ -= e
S; is 9. Snow p-Gnour of 0} (p. 135)
N, Normalizer of S, (p. 135)
2, Center of S, (p. 135)
dm!) The minimal number of independent generators of 0 (p. 141)
k.=(¢—1) (pH—1) . - . (p—l) (p.142)
6’ (p) peommutetor group = intersection of oll normal subgroup: with nbalian

~ p—footor group (p. 158)
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(ll/GNP)

Frequently used Symbols

pfactor commutator group = maximal sbelian p—faotor group (p. 158)
Intersections of all normal subgroups with index a power of p (p. 159)
Maximal p-factor group (p. 159)
3‘ € 6 means: a: is an element oI
NC 05 means: 11 is a proper subgroup of (5
“Vi? is the sum ofthe sets ll and E
11/\ fl is the intersections of 11 end 3'
ln} (@211) means: 11 is a. subgroup of Q4
11<® (GD 11) means: 11 is e normal subgroup of 0
ll < < 65 (61> l> ll) means: 11 is e subnormel subgroup of (El
or (it, B) denotes the subgroup generated by the two subgroups II, B of
9' 8‘0“? ”
a X 513 denotes the direct product of the groups i. 38
I‘m denotes the free product of the groups a, E
a s b (b 2a or aCb) means: the poset element a is contained in the poset
element b
a<bmeans= asb, but not bza; also denoted by: a>b'
uKb means: the lattice element a is Kurosh-invsriant in the lattice ele- ,
meat 1)
GM!) means: a is normal in b
aNNb means: a is subnotmsl in b
a.) b denotes the join ofa and b
«Mb denotes the meet of a and b
denotes the moor lattice of a over I:
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modular Lattice, 190
modular law, 190, 233



Index

module, 84
double, 31
exponential, 85, 108
factor, 85
finite, 89 ”’
proper, 88
quotient, 186
6-, 88
smni-, 92 ‘
sub-, 85
vector, 89

monomial representation, 166
morphism, 287
multiplication, 1, a, 4, 94, 95, 96, 125, 240
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non-trivial, 10
normal, 23
proper, 10

subinvsriant, 190
sublattice, 70
submodule, 86, 86
subnormal element, 190
subnormal hull, 192
subnormal lattice, 193
subnormal subgroup, 1911!., 245i.
subnormally persistent, 246
subring, 95
sub-smigroup, 92
.sub-semimodule, 92
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system of transitivity, 25
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ofysesdanenhrypufltflegmleleuaflommvewrpmdu,

Immune-n William,hnuMnuschmm-e OvatO-ppmdicahihliopaphy 495m).
“X855. 65984-4Pa.313.95

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The
Phyfludfiechemiedmmkliufimhnonfivemofimhuie

transition meals and their compounds. Problems. 1980 edition. 582171).“ x 9".
660214 Pa. $16.95

BOUNDARY VALUE PROBLEMS OF HEAT CONDUCHONI, M. Nee-ll
Ou‘sik. of modern 'methods of
Iolving problems in heat conduction and diflirsion. Numerous example- nnd prob
lems. Selemd .Appendwu. 505» 5% x 8!. 65990-9 5 $12.95
A SHORT HISTORY OF CHEMISTRY (3rd edition), LR. Parfington. Claraic
aquarium explores origins afmmahdalchemy, earlymedruiWild:nature of

11!!!!d of mnu'e theory.m
428m). fixfl‘fi. (AvailnhleinUNS only) 65977-1 PLSHM

AHISTORY OFASTRONOMY, APannekoeLWell-balanoed, carefullyrmoned
mldycoveramchtopiuul’tolemsictheory,workof Kepler,N
Eddhrgton'rnmlworkonmm mum-MW 521m) 53x“.

65994—1 Pa. $12.95

PRINCIPLES OF METEOROIDGICAL ANALYSIS, Walter-J. Sender. Highly
classic review:We hydraulics,

miicrtability,wrioussnalysa(scllar,Momisobumimimpw,‘ more).F
intermediate meteorology student. 454m). 6" x 9* 65979-8 PI. $14.95
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RELATIV'ITY THERMODYNAMICS AND COSMOIDGY, Rich-I'd C.
'IhlinnnJandmnrksuidyexlendsfliermudynsmiumspea‘nLgeneml ielnivilyulso, . Io . .
5‘0ipp. 5% x s». 653358 h $1395
APPUEDANALYSISComeBnIIMMCIIIicwmkon-mlyismddeflpnf

for solmionuf Algebnic eque-
mmrmmmfimmmmmss .5'AxBii.

65656- 15.31395

INTRODUCTION TO ANAIXSIS, Mnxwell Roml'dn. Ummnlly deanlzceul
blecuverlgeafietdnory, ildnmberqnmmetkmminnnufimcims,
Riemann integration, multiple inteylli, more. Wide range of prubls-i.
Undergraduate leveL Bibliography 254p]: 5* x 8%. 650384} Pa. $8.95

INTRODUCTION TO QUANTUM MECHANICS with Applicatiuns to
Chemistry, IinmPuflingtEBriditlsonJJr.MW byNoliel
Prlze winner applie- ' Ind phyn'ul
NmamuhblumdfigumenhmoeiiemChapmrbibflographmA
Index. 468“) 5“ x 8%. 64871-0 PI. $12.95

ASYMP'IO'I'IC EXPANSIONS OF INTFBRAIS. Norman Bleisiein h Richard A.
Hindelrnnn. Beulnnodncinntotoimpurhntieldwnhapplimiuminuvuietyohcl—
mificdiidpfimNewpmfimProhhngD‘ngimLllu. Sibling-[phylum
448m). 5" x 8%. 65082-0 PI. $12.95

MATHEMATICS APPLIED '10 CONTINUUM MWICS, Ice A. Segel.
Analynel models of fluid flow and solid “minim.For science
Ind engineu'ing rmdents. snapp. 5!; x xx. 653694 Pa. $1495

EIEMENTSOPREALANALYSISDWHASPWMMWFM-
mummmbammmmmdsmmhFonrier
sefiegmnnliniore. Over500 exertlsel. 352”. 51x8“. 6538541531195

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.
Nobellnurelledismqinnmmdieary,uncetnimy,mvememechmicnwotkof

Cmn em] fix601137h$635

INTRODUCTORY REAL ANALYSIS, AN. Knlnwgmv, S.V. Fonin. 'l‘rlnslnhed
byRidinrdASflvumdf—mnninedmvenlypwediniodmimmredmdfunc-
imnl Indyn‘i. Some 350 pmblemi 4031)]: 5“ x 8%. 612260 PI. $10.95

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Clnrlel SJuhne. Ind be G. Peder-Ian Unusually VII-led problems,
deniled of
momennmmoleculsrspecnummymiedngmeringtlieory,niore.280piuhlemsplui 139
inpplemmhry eaten-ha. 430“). 6! x 9%. 65236-X PI. $13.95
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ASYMI’IUI'IC METHODS IN ANALYSIS, N.G. de Bniijn. An lnexpenlive, oom-
preheniive guide to asymptntic methods-the pianeeringwowok that teaches
explaining worked examples in detail. Index. 224pp. 5* x Bit. 64221-6 Pa. $7.95

OFI‘ICAL RESONANCE AND TWGIEVEL ATOMS, L. Allen andj H. Eberly.
behind optical

resonancephenomennSSillusti-ationel’refme. Index256pp. 5:21s
655334153835

COMPLEX VARIABLES, Francis]. Emlyn. Unusual approach, delaying com-
plexslgebradflharmnnicfunaiunabavebeenmalyaedfromreslvanableview-
point. Includes problems with answers. 364"). 5" x 8". 61388—7 Pa. $9.95

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Heizberg. One of
heat introductions; elpeciallyfor sped-lin in other fields. Treatment is physical
rudier than mathematical. 80 illustrations 257pp. 5" x 8‘11. 6015-3 PI. $7.95

APPLIED COMPLEX VARIABLESJohn W. Demnm. Stepby-rtep coverage of
fundamentals of analytic fiuiction theory—plus lucid exposition of live important
applications: Potential Theory; Ordinary Dttfetenfliil Worn; Fourier Transforms;
Iaplace'lhnsfarms; AsympmfieExpmfimGGfisumswEx stchapterenends.
512pp. 5'1. x 8%. 64670<X Pu. 312.95

ULTRASONIC ABSORI’I'ION: An Introduction to the Theory of Sound
Absorption and Dispersion in Gases, Iaquids and Solids, AB. Bhatia. Standard ref-
erence in the field provides a clear, systematically organized introductory review of
{undamental concepts for advanced grlduate rtudents, research workers. Numerous
diagrams. Bibliography. “Opp. 5% x 8%. 64917-2 Pa $11.95

UNBOUNDED LINEAR OPERATORS: Theory and Applications, Seymour
Goldberg. Classic presents syrtematic treatment of the theory of unbounded linear
operatonlnnormedlinearspaoeswidiapplicafionstn difl‘erenfialequationi.
Bibliop'lphy. 199m). 5% x at. 648306 Pa $7.95

LIGHT SCATTERING BY SMALL PARTICLES, H.C. van de Hulst. Compre-
hensive treatment including full range of useful approximation methods for

. in . ' ' and 44‘“ ' 470pp.5ixsi.
64228-3 Pa $12.95

CONFORMAL MAPPING 0N RmMANN SURFACES. Harvey Colin. Lucid,
lnsightfulbook presentaidealcoverageofmhjeaalitexercireimakebookperfect
for self-study. 55 figures. 352pp. 5" x 8%. 64025-6 Pa. $11.95

OPI'ICKS, Sir Isaac Newton. Newton’s own elcpei'tmenh with spectroscopy, colors,
lenses, reflection, refraction, an, in language the layman an follow. Foreword by-
Alhert Elnltein. 532pp. 5“ x 8%. 60205-2 Pa. $l2.95

GENERALIZED INTEGRALTRANSFORMATIONS, All. Zenianian. Graduate—
kvdmdyofrecmtgmenlhflmiofthehplaoeMeflimHankeLKWeienm
oonvoluflonmdoflierrhnplemaformaflonnBibfingi-aphy320pp.5ix8&

65375-7 Pa. $8.95
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THE ELM'ROMAGNETIC FIELD, Alth-duwm.Shdumomprehenslve under
graduate text cover: hula oteleatlcend III-gum fielde, [mild- up to e
netlc theory Alla related lupin, including relativity. Over 900 problem: 768pp.
5% x 8%. 65660-8 PI. $18.95

FOURIERSERIES, GeorglP. Tolstov WWWASWMAM-
Iblelddiflnnmlhelilenmremthenhjecgmovmgdelrly fiomrnlziectmrllbject
andflleoremlodlearem.107probleml,mwm336pp 5%x8163317v9h3995

THEORY OF ELECTROMAGNETIC WAVE PROPAGATION, Charla Hench
Graham-level disarm the Maxwell field equinox, ndletionfi-o

wlreentenmtheDapplerefiectmdmote. xfli+244pp. 51x85. “WP-.3635

DISTRIBUTION THEORY AND TRANSFORM ANALYSIS: An Introduction to
whh‘ AJ-I. Provides.hula of dim-l-

huflnn lheory,‘ " " ' "‘ ' andLlplwe '
Foblemr. 394w 5! x 85; 65479-6 P; $11.95

THE PHYSICS OF WAVES, William C Elmore Ind ek A Heuld. Unique
overviewofcle—inlwrwe Awnfimopfimelemvmnmfic
Idelludluroomtenorforlelf—mdy. Problema477pp fix“,

64926-IPL31335

CAIEULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
might and pro»

mhwsundemandingofnpechliaedhookgremrchpapm Sln'lableforadvnneed
undzryldune/y'lrlunlermdenuuprimuy, supplementuylext. 352pp. 3x3.

64356-7 PI. 95

A TREATISE ON EIECI'RICITY AND MAGNETISM, James Clerk Maxwell.
Imparmmfmmd-fionworkofmnkmphymhrinymfimlformMnxweflktheo—
ryolelecuvmagnefimmdrigmmlyderiveehn genealeqmnnlna.flieldtheory
1,084”). 51x85. 60636—8, 60637-615" Two-vol. ret$25.90

AN INTRODUCTION TO THE CAICULUS OF VARIATIONS, Charlel Fox.
Grahame-level text cover: verialimof an integral.‘ problems, leanuoperimemul
Wipedllrdlfivuyupprmdmlfimmoremore.Referenoe 2 5" 8".

. 79PP~6549;0PL3835

HYDRDDYNAMIC AND HYDROMAGNETIC STABILITY, S. Chmdruekher,
hiddmmhfipnflmeW-Bmudpohmdeumohhemeoryof
lonhilltiee coming convecfion. 704pp. 5% x 8%. 64071-X Pa. $14.95

CAIEULUS 0F VARIATIONS, Robert Wheel: introduction covering
inaperimetric Iheoryofelnfid ,qlmmrmlnechmiu, eledmnaiaeu
WIW32M.BXE£ ty 63069>ZPL$935

DYNAMICS OF FLUIDS IN PfiOUS MEDIAoh Bell’- Fot Idvmanced un-
dent: rig-01ml weter hydrology mechmiulnd phyllu, drllnege irriglflon
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NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
HammingiClassicteinmreuesfreqfrequencyepprnachinmeragenfdgmilbmgpoly-
nomial Faun
mph. Revised and enlarged 2nd edition. 721pp. 5" x 8% 65241—6 Pa. $15.95

THEORETICAL SOLID STATE PHYSICS; Vol 1: Meet lattices in
MFquilibrium; Vol. II: Non-Equilibrium Ind Disorder, William ones and Norman H.

armMnnnmenial reference work wven fundamental rydtzff equginlziridlui:
s of effect e solids, nan—equilibrium es, ecu

Emma P GIVEN-“Ill ProblemsPrefwePrefice.Di-gnmspmpe?ndex Bibliography.
'1t of 1,301pp. EA'A x 8%. TWO volumes. Vol. I: 65015-4 Pa. $16.95

Vol. II. 65016-2 Pa. $16.95

OPTIMIZATION THEORY WITH APPLICATIONS, Donald A. Pierre. Broad
spectrumappmadihiimpomntw.Chsrhddiearynfmimmamdmudmncll-
udmofvuflaflmgsimplechniqneendlineupmgnmingmHMany b-
lens, examplel 640”). 5%x8'L 65205-XPL31695

THE CONTINUUM: A Critical Examinmion of III: .mdan'ml of Andylis,
HermannWeyl.Clusicof20fl1—cenmryfimmdaflmalmeurcbdedswitbfliecon-
cepmal problem poled by the continuum. l56pp. 55 x Bil. 67982-9 Pl. $6.95

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. M classic
esnysbygreatGermmmathem-ficim: andmtbeoryofirniinmlnumbersundan
hunsfiniienumbersandproperfiesofmralnumben 1l5pp. 5'ix8'é.

21010-3 Pa. 3595

THE FUNCTIONS OF MATHEMATICAL PHYSICS, Hurry HoclmadtrlL dlD.r. .lru ..
Hill‘s equation, much more. Blblingrspliy. Index. 322pp. 5“ x 8%. 65214—9 Pa. $9.95

NUMBER THEORY AND l'IS HISTORY, Oyiein Ore. Unusually dear, ameni-
ble' covers , prim: much
more. Bibliography. 380pp. 5% x 8%. 65620-9 PI. $10.95

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lennon.
Graduauhvdwvmgeofcahflmofvuiafimequafiomofmofimrdafivisfic
mechmicgm intimatpeusive paperw edition of classic nulise. Index.
Bibliography, ilflpp. 5" x 8%. 650674 PI. $12.95

MATHEMATICAL TABLES AND FORMULAS, Robert D Carmichael and
EdwinKSmifliJagsmhmgfinegunynmklgfimcflmpawenuootgmdpro-
clls, _ "Ind‘r"" ' 'Ind‘ 269”.“ x35.

60111-0h;6.95

THEORETICAL PHYSICS, Georgjool, will: In M. Freeman. Ola-i: overview
nova-lessen thermodynamics, quanunn-
mmchmiqnudeuphydmofinmpiafunpsperbmkedifimicdfl+885pp
fix 8!. 65227-0 Pa. 521.95



CAHLOG 0FDOVER BOOKS

ORDINARY DIFFERENTIAL}I EQUATIONS, Morn: finenbaum Ind Herrym
rurvey ,difletenfid

madam-flu, engineering,“ .Thmugh InefyulnfBibliagnphy. Index. supp newx as; 6494M P; 513.95
STATISTICAL MECHANICS: Principlel' end Applications. Thu-2:1!I 1. Hill.

texl‘wwn
dreary, Imperfect”, Wnfimcfiongmore. 448pp. S‘lxflli.

653904) Pa. $11.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY' An
DwidASinchaMmudanmmmUnureq‘ufimrublmy

drearyfmmmnmuuaudmnmmnmnlqmm IMpp. 5ix 8‘5.
6382“ PI. 56.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quinlan: Theory,
GeorgeGmaalddewelrlbleinnodnctimminfluenfieldlearyof-ergymd

ofDiru’l mii—puru‘del, Bohr‘l model nfthe mm,
much more. 12 plelel. Numerous drawings 240p!» 5'Iax8’6. 24895XPI. $7.95

THEORY OF MATRICES, Sun 1%t Outstanding cm covering rink, nmu'ingu—
hritymdinvmesinoonnecfimwithdzedevehpnentofmonlmlmmlunder
mmdequlvalenoe, Indwidwuttheinlervenfimofdelerminenh. Include:
exercise. 237pp. 5“ x 8%. 66810X Pa. 58.95

GREAT EXPERIMENTS IN PHYSICS: I‘m-ml Account: from Galileo in
Einnehyedited MamH.Shnmm.25mrjaldiloovetielzNewmn’llewrof
mofiomChnnk’llmdyofthewmomflunon ehmamegneficmmm
Original mum clearly mama. 370pp 5% x 8%. 25346-5 P; $10.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E.C. chmmym and D112 W. Thou. Expand-la of pal-fill dif-

equnimnr lied in common problnnr m engineeringand ephyriul sci-
encel.WWW mm 416”). 5% x 8%. 65251-3 Pa. $11.95

5111mm cum HANDBOOK, Robert Bumhmjr. “0.9mguide
Al Mm bywnnel

MomAndramede '
VulpecuhinVol. 3. Hundred: offllulinu'onl. lndexinVol. 3. 2,.000pp 61x91

23567 X, 23568—8, 23673-0 Pm, Three-voL set 344.85

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Reviled by E. Winlmn
Grundrneler. Over IOOunumnlmnmdemonmngcoldfire,durtexplollml,
much more. Text expllim lciendfic principle: Ind Ml lefelypremu'om.
I28”. 5" x 8". 67623-5 Pa. 35-95

AMATEUR ASTRONOMER’S HANDBOOKJJI. Sflgwick. T-Tuu. compre-
hendve of mirrun, lemel, nwunu'up, re also drivel,
mi‘mmwmwm. 139 um 576911.55 x at (Avail-Hem
U.S. only) “034-7 Pl. $Il35
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SPESIALFUNCI‘IONSNN. cedev. WbymnhlnrdSilva-mmfimm
Rimmuufingmoreimpornmrpedfl nppliutiomtn ipedfle
problemofphydnundeng'neefingaafignmaospp. 5Ix816062HPL$995

OBSERVATIONAL ASTRONOMY FOR AMATEURS, JB. Sidgwick. Mine of
areful dmfor ohm-ion of mmmplmeu, meroidgmrone,meteon,
Mnmaupp.5‘ix816. (Av-flableaHS

24033-9 PI. 33.95

mm EQUATIONS, F.G. 'Ii'icomi. Airman-live, well-written men! of

Fredlmlm Equations, mud: more. Advanced nndergldufle to
Exau'sel. Bibiiogrlphy. zaspp. 51s x35. 6432:“ Pa. $895
POPULAR LECI'URES 0N MATHEMATICAL IDGIC, HIDWWI“ Nomd Dog'-
dm'I lucid trelonent ofhmonml developmennuet dreary, model,'heory recurfion
theory and mnen-uefiviim, prooftheory more. 3 appendixes. Bibliogtphy. 1981 edi—
timix+283pp. anal 676324153895

MODERN NONLINEAR mUATIONS, non-s L. Suzy. Emphuim primed
wllrflonofprohlems;oova1|eventypuofequaliona.'. Iweleomecon
totheezdxtinglitenonenfl—MallIa490pp. fix“. 64232-t1395

FUNDAMEMAIS 0F ASTRODYNAMICS, Roger Bate et ll. Modern upproldl
developedbyUS. AirForoeAmdemy. Denyeduafintwune Problemaexer—
duel. Numerou- mum-loom. 455m). 9‘ x 8!. 60061-0 PI. $10.95

INTRODUCTION TO LINEAR AIGEBRA AND DIFFERENTIAL EQUA-
HONajohnWDemmEmeflentwmwmmmphxnumbergdemminmh,
mfllomrmdhaaeghphoemifomamnchmore.Exerdsuwithlohfim
Undergldnate level. 416”). 5“ x 8%. 65191~6 PI. $11.95

INOOMPRESSIBLE AERODYNAMICS, edited by Brynn Thwlnea. Coven theo-
reflcdmdexpeflmenmlnennnentofthelmiformflowofairmdvhoourfliddrpm

Ierofnillmdthree—dimemionflwing; mmyothutopic.654
flxflli. 65465-61’131695

INTRODUCI'ION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Eimep-
tionallyclelr 1 of r . will: pey-
dmlog. ‘ 34...,“ ' ova-250 " m260pp.5"x8l

65084-7PL3895

IAMINARBOUNDARYMYERSeditedhyL RolenheaiEngineer-ingclulic
oovenmdybonndny hymmtwu-andthreedimennondflowflimmadybmmd

-Iryllyen,lhhility, oblervaflonnltedlniqliegmluiimmempJfi Bl.
65646-2PL31895

LECTURES ON CIASSICAL DIFFERENTIAL GEOMETRY Second Edition,
:23.5““W““W“mm” “M “‘“m 1......equw'nnr, geometry on I Inrfloe, conformal
Problanl. 240m). 5! x 8'5. Wm”HP-3g;
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Gaggim 0F COMPLEX NUMBERS, Hun Sch
wi pnisedbookon Myficgeomflryofcixdu,ammMoebim Wu,
mdtwo—dimeuflomlnmWWW 551x“ 63830-8PL3895

MECHANICSJJ‘. DenH-mg. Adudcinuoductorymmrefiulur Hundred:
Ipplimfionlmddaignpmblflmflhnninmfimdmmhhof MW

mmmmmaedpmblmlsm 5“l 6075441531195

1OPOIDGY.JohnG.akinglndGnilS.Yaung,Superbm&ye-rwnneindlr
Iinltopologywicbpoloydficumdfilncflongpoint—utkypolngymm.udlmme
Examplulnd probkmmmb whylndumpp. fix“. 656764531095

SmNGTHOFMATEmJHDmMMdGHWtOfMW
d)“(mommbendingem.Idvanmd)plul Multilingual-in; methods,
Ippliuflou350m323pp,5‘£x8'l. 60755—015. $9.95
ELEMENTARY CONCEPIS 0F 10P010GY.Paul Almandmfi‘. Elam inm-
idvelpptolchm ingyfiomna—thmflctopolngym Bettigwupn;hawconoepu
afmpohgym mmflphymfifimflpp. fix“.

60747-t3.95
ADVANCED STRENGTH 0F MATERIAIS,J.P. Den Hines. Supetbly wrim
Idvuwed next mven mniun, mlingdkks, mamhrmemminman, madam
Many problem: and Inlwen. 388pp. 5% x 8!. 65407-9 Pa. $10.95
COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Cludc
levelinuoducfianwtheoryofoampunbflity,mnnynfmedmuthwryofm
rant function]. New prefioe and appendix. 288pp. 5" x 8‘5. 61471 9 PB. 38.95

GENERAL CHEMISTRY, Linus Pulling. Revised 3rd ediflan of alaninfiruyear
mabyNobelhme-te Ammicmdmdpaflummqummmech-dqm

992”. fi x 8!. ' 656223 P- $19.95
AN INTRODUCI'ION 'IO MATRICES, SE13 ANDWGROUPS FOR SCIENCE
STUDEM’S, G. Stephen-pa. Mandible lamps. and
mm mug-gm mmderyadmm mumof phylia, chemist-y, Ind
mg‘neermg. lam. 164pp. 5" x 8!. 65077-4 Pu. $7.95

THE HISTORICAL BACKGROUND OF CHEMISTRY, 1-1m M.open-m.
' I

mmofchmlcdhxlvm260pp. nxsi. 610536118895

THE PHIIDSOPHY OF MATHEMATICS: An Inbodumry Buy, Stephan

. Two ' .,
Im‘kx. 198m. 5" x 8". 25048r2 PI. $8.95

THE DEV'EIDPMENT OF MODERN CHEMISI'RY, AltonJ We. Authorita-
flve hiltnry of chemistry from laden! Gteek Myto inmwadnn.
Coven nujor chemim and their dimovedel. 209 Ilium-Idem. 14 tabla.
WW.Appaulioa. 851pp. 5% x 8!. 64235-6 PI. $13.95
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CATALYSIS IN CHEMISTRY AND ENZYMOIDGY, William P. Jean-h.
Exupflmnlly dearwveflgeofmechnnimufm emlyligfomuinaqnwumlndon,
carbonyl- mdacylyoupmmgpncficdldntfimm. 864w'654m381995

PROBABILITY: An Introduction, Samuel Goldberg. Weigh-ll: text cghvcfl let
dieory.problbilitytbeoryforfinitenmplelpaou,binnminl mm: mm
360 probleml. 325115;a 322m.) 5% x 8" 55252 1 P. $1095
LIGHTNING, Martin A. Unun. Revised,I updated edition of classic work on the
phyaiu of Ipec»
mpy, thunder, more. Review: recent mulch. llihliogrnphyt.i4Indicel. 320pp.
5“ x 8%. 5754 PI. $8.95

PROBABILITY THEORY: A Condse Conne, YA.W.IHighly readable, Iclf-
Of‘m events.

triala, etc. 'lhnxlntiun by Richard Silvernun. “app. 5" x 8%. 63544—9 PI. $7.95

AN INTRODUCTION TO HAMIIIIONIAN OI’I'ICS, H. A. Buduiahl Detailed
account of the' theory in a opfin‘.
Manyclumofapn‘ml definedintennsoftbexymmm-iatbeypouen.
Pmblemnwithdemiledwnn'mlWOeditimxv+360pp. 53:18!

67597-1 11 $10.95
STATISTICS MANUAL Elwin L Crow, etal. Comprehensive, practical collection
ufcluaiulandmodemmeflmdzprepuedhyUs. Naval OrdnnnoeTeitStadan.
Streu on use. Basic: of autistic assumed. 288m 5% x 8'5. 60599-X Pa. $7.95

DICI'IONARY/OUTLINE OF BASIC SfATlSTICS,John E. Freund and Frank].
Willinml.Aclmrconciudicfionnryofover1,000mliniultamsandnnuutlineof
Imim‘cd formula: covering probability, nonparametric um, much more. 208pp.
5" x 8‘14. 66796-0 PI. $7.95

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROLWIlterA. Sbewlurt. lmpmmtmnaqldmngnlationofwflablegm of
Maximum] mmhievequnlitymnnulininduuy, aginllungotherm
192m). 5" x 8%. 65232-7 Pa. $7.95

METHODS OF THERMODYNAMICS, How-rd Rain. Outstanding text focuses
on physical technique ol‘ Wymmin, lypinlproblem umofnnunderstanding.
Indligifificanceandnseofdmrmodyn-micpotemial. lBGSedifiomflaspp. 5‘lx8‘t.

69445 a PI. $8.95
SPATISTICAL ADJUSTMENT OF DATA, W. Edward: Deming. Introduction to,
mpuofmfilfimmfifinglmlqnarellnhufimwndmom witbwtpul-
menacnnditiomoonniningpuammfim whdmfllppjggfl

64685-8 .95

TENSOR CAICULUS, J1. Synge and A. Sdlild. Widely med introductory text
cover! rpm:- and mambo-u: apex-lion: in Riananninn lpwe,nonnon-Riemanninn
mi, etc. 324m 5% x at 63612-7 PI. $9.95
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ggAILIgLGsING MATHEMATICAL PROBLEMS WITH ELEMENTARY

LUI‘I A.M. Yngiam‘lfndLM. Ynglom. Ovulmch-Hmyngproblemaan
pmblbility theory, combinmrhl mflyfigpoinh mwpology, canvex poly-
gonnmuny othermpiuSohfioaofWfixBl'lwo—vol.

Vol. I: 65536-9 P: $7.95
Vol II: 65537-7 PI. $7.95

FIFTY Cmufigcmc PROBLEMS IN PROBABIUTY WITH SOLUTIONS,
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