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PREFACE

P
Investigations published within the last fifteen years have greatly
deepened our knowledge of groups and have given wide scope to group-
theoretic methods. As a result, what were isolated and separate insights
before, now begin to fit into a unified, if not yet final, pattern. I have set
myself the task of making this pattern apparent to the reader, and of
showing him, as well, in the group-theoretic methods, a useful tool for
the solution of mathematical and physical problems.

It was a course by E. Artin, given in Hamburg during the Winter
Semester of 1933 and the Spring Semester of 1934, which started me on
an intensive study of group theory. In this course, the problems of the
theory of finite groups were transformed into problems of general mathe-
matical interest. While any question concerning a single object [e.g.,
finite group] may be answered in a finite number of steps, it is the goal
of research to divide the infinity of objects under investigation into
classes of types with similar structure.

The idea of O. Hélder for solving this problem was later made a
general principle of investigation in algebra by E. Nother. We are refer-
ring to the consistent application of the concept of homomorphic mapping.
With such mappings one views the objects, so to speak, through the
wrong end of a telescope. These mappings, applied to finite groups, give
rise to the concepts of normal subgroup and of factor group. Repeated
application of the process of diminution yields the composition series,
whose factor groups are the finite simple groups. These are, accordingly,
the bricks of which every finite group is built. How to build is indicated—
in principle at least—by Schreier’s extension theory. The Jordan-Hélder-
Schreier theorem tells us that the type and the number of bricks is inde-
pendent of the diminution process. The determination of all finite simple
groups is still the main unsolved problem.

After an exposition of the fundamental concepts of group theory in

* Chapter I, the program calls for a detailed investigation of the concept
of homomorphic mapping, which is carried out in Chapter II. Next,
. Chapter III takes up the question of how groups are put together from
their simple components. According to a conjecture of Artin, insight
into the nature of simple groups must depend on further research on
p-groups. The elements of the theory of p-groups are expounded in

v



vi Preface

Chapter IV. Finally, Chapter V describes a method by which solvable
factor groups may be split off from a finite group.

For the concepts and methods presented in Chapter II, particularly
those in § 7, one may also consult v. d. Waerden, Moderne Algebra 1
(Berlin 1937). [English translation: Modern Algebra, New York, 1949].
The first part of Chapter III follows a paper by Fitting, while the proof
of the basis theorem for abelian groups, and Schreier’s extension theory,
are developed on the basis of a course by Artin. The presentation of the
theory of p-groups makes use of a paper by P. Hall. The section on
monomial representations and transfers into a subgroup has also been
worked out on the basis of a course by Artin. In addition one should
consult the bibliography at the end of the book.

Many of the proofs in the text are shorter and—I hope—more trans-
parent than the usual, older, ones. The proof of the Jordan-Holder-
Schreier theorem, as well as the proofs in Chapter IV, §§ 1 and 6, owe
their final form to suggestions of E. Witt.

I am grateful to Messrs. Brandt, Fitting, Koethe, Magnus, Speiser,
Threlfall and v. d. Waerden for their valuable suggestions in reading the
manuscript. I also wish to thank Messrs. Hannink and Koluschnin for
their help.

The group-theoretic concepts taken up in this book are developed
from the beginning. The knowledge required for the examples and appli-
cations corresponds to the contents of, say, the book by Schreier and
Sperner, Analytische Geometrie und Algebra, Part I (Leipzig, 1935)
[English translation: Introduction to Modern Algebra and Matriz
Theory, Chelsea Publishing Company, New York, 1951]. A historical
introduction to group theory may be found in the book by Speiser,
Theorie der Gruppen von endlicher Ordnung (Berlin, 1937).

I would suggest to the beginner that he familiarize himself first with
Chapters I and II, Chapter III, §§ 1, 3, 4, 6, and 7, and Chapter 1V,
§8 1 and 3, and also with the corresponding exercises. Then the program
outlined in this preface will become clear to him.

HANS ZASSENHAUS



PREFACE TO THE SECOND EDITION

.

The revision made in this work consists almost entirely of additions
to the material of the first edition. In particular, there have been added in
Chapters I and II some remarks and exercises concerning semi-groups,
and in Chapter II an introduction to the theory of lattices. The remainder
of the new material is to be found in Appendixes A-G, each of which is
closely related to one of the chapters of the book.

Since the appearance of the first edition of this work, lattice theory
has been developed, by the combined efforts of O. Ore, A. Kurosh, J. von
Neumann, G. Birkhoff, and others, into an independent discipline of
modern mathematics. As a consequence, attention has been drawn to
certain aspects of abstract group theory, in particular, by H. Wielandt’s
work on the lattice formed by the subnormal subgroups of a finite group.
An account of the connections between lattice theory and group theory,
which I consider promising for further investigation, has accordingly
been added (see Appendix B).

Appendix C is an introduction to the theory of products and groups
with generators and defining relations ; the latter is one of the most power-
ful tools for the construction of groups, which is the main theme of
Chapter III.

Many advanced exercises have been supplied illustrating both lattice-
theoretical ideas and the extension of group-theoretical concepts to multi-
plicative domains (see Appendixes A, D, E, and F).

I am grateful to Professor C. Williams-Ayoub, Professor D. G. Hig-
man, Professor B. Noonan, and to the editor for their valuable sugges-
tions in reading the manuscript.

Finally, I wish to express my appreciation of the encouragement and
assistance given me both by the Summer Research Institute of the Cana-
dian Mathematical Congress at Kingston and by the Institute for
Advanced Study at Princeton.

HANS ZASSENHAUS

McGILL UNIVERSITY

July, 1956
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L. ELEMENTS OF GROUP THEORY

§ 1. The Axioms of Group Theory
DEFINITION : A group is a set in which an operation called multiplica-
tion is defined under which there corresponds to each ordered pair z, y of
elements of the set a unique third element z of the set. z is called the
product of the factors = and y, written z= zy . For this multiplication
we have

I. The associative law: a(bc)= (ab)c.
II. The existence of a left identity e with the property ea = a for all
elements a of the group.

III. The solvability of the equation xa = e for all elements a of the
group.

The associative law states that a product of three factors is deter-
mined solely by the order of its factors, its value being independent of
the insertion of parentheses.

We assert: A product of arbitrarily many factors is determined
solely by the order of its factors.

In order to prove this, let n be a number greater than three and
assume the statement true for products of fewer than = factors. We
write, for every m < n, a product of m factors a,,a,,...,a, —in
that order—as P=aq,-a,-....a, and have thus designated, unam-
biguously, an element of the group.

Now let P be a product of the n factors a,,a,, ..., a, . After all
of the parentheses have been removed except the last two pairs, P can
be decomposed into two factors

Pi=ay 05 ... Gy
and Py=Gp iy n,
with 0 <m < n . We shall show that P is equal to the particular
product @, -(as-...-a,) and so we may assume m > 1. Then
P=P,Py=(a; ... Gp) @ms1-- - On)
= (al(a2 e @y) @prt -t Ga)
=a,(@g+ - - -* Gn) @ sr® - - - Bn))

=a,(@y .- -+ ) .



2 : I. Elements of Group Theory

A non-empty system of elements in which multiplication is defined
and is associative is called a semi-group.

For example the natural numbers form a semi-group under ordinary
multiplication or addition as the operation.

The rational integers (positive, negative, and zero) form an additive
group and a multiplicative semi-group. The rational numbers different
from zero form a multiplicative group. All rational numbers form an
additive group. ’

We assert that in a group every left unit e is also a right unit, (i.e.,
ae=a holds for all group elements a.) In order to prove this, we
solve za=e and yz = e. Then

(yz)a=eca=a
= y(za) = ye=y(ee) = (ye)e = ae.

Similarly, ye=y , hence y=gq, az=2a=c.
We call one of the solutions of the equation za =e the inverse
element of a and denote it by a-*. Thus

ag"'=a-la=e.

If za="5 , then on right xﬂultiplication by a-?, it follows that
ba~1= (za)a~'= z(aa~!) = ze = z.

Conversely ba-'-a=b-.a"la=be=>b. Thus the equation za=15
has one and only one solution, # = ba-1 . Similarly it follows that the
equation gy =b has one and only one solution, y =g-15 .

Multiplication in a group has a unique inverse.

The element e is called the identity or unit element of the group.
It is uniquely determined as the solution of either of the equations az =a
or ya=a . Similarly the inverse ¢! of the element a is uniquely
determined as the solution of the equation za =e¢ or ay=e.

The product of 7 equal factors & is denoted by a». Furthermore,
if we set a®=¢,al=a and g-"= (g-1)» then the two power rules

a”-gm=qgn+m
(@)™ =gnm

are valid for arbitrary integral exponentsn, m, as can be shown by
induction.

Axioms II. and III. are not symmetric; they can be replaced by the
two symmetric axioms:

11 a. A group is non-empty.
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IIL. a. Multiplication has an inverse, i.e., the equations

za=>b
and ay=>%
are solvable for all pairs of clements a, b of the group.

Obviously II. a. is an immediate consequence of II., and III. a. follows
from L-IIL. If, conversely, I., IL. a., I1L. a. are assumed, then we can find
an element @ in the given set and solve the equations eq = g, ay=>b.
From this it follows .that

eb=c(ay) = (ea)y=ay=>
for all elements b .

Thus II. is valid. III. is a consequence of IIL a.

A group which consists of a finite number of elements is called a
finite group. The number of its elements is called its order. The order
of an infinite group is defined to be zero.

In every group the cancellation laws hold:

IIL. b. ax =ay implies z=y.

IIL c. xa = ya implies z=y.

THEOREM 1: A finite semi-group in which the cancellation laws hold
18 @ group.

In order to prove this, let a,, a,,...,a, be the finite number of
elements and let @ be a particular element. From III b. it follows that
the n elements aa,, aa,,...,aa, are all distinct and so ay=1>0 is
solvable for every pair a, b in the semi-group. The solvability of za=1>5
follows similarly from the other cancellation law.

An abstract group is completely known if each of its elements is
represented by a symbol and the product of any two symbols in any
given order is exhibited.

The multiplication rule is given conveniently by a square table, in
which the products in a row have the same left factor and the products
in a column have the same right factor.

The multiplication tables of groups having at most three elements
are the following:

Z, z, Z,
e e a e ad
ele elea e|lea b
ala e ala b e
b|b e a



4 1. Elements of Group Theory

The different multiplication tables of a group can be transformed
into one another by row interchanges and column interchanges.

The existence of unique inverses is equivalent to the fact that each
group element occurs exactly once in every row and column.

In order to exhibit' the associative law we agree to put the unit
element of the group in the upper left corner of the square table. If we
call the row starting with a , the @ -row, and the column headed by b
the b -column, then we find the product of a by b at the intersection
of the @ -row and b -column. The initial elements of each row and
column may thus be omitted. '

A table, constructed as above, is called normal, if in addition every
element of the main diagonal is the identity element of the group. For
example, the normal multiplication tables for groups of four and five
elements are as follows:

Z, D, Zy
eabc e abc eab cd
cealbd a ecb deabdec
bcea bcea cdeatdb
abc e cbace bcdea

abcde

The element aq; at the intersection of i-th row and the k -th column
is @, agf , so that the rectangle rule
Qigliy = G4y

holds. This may be seen from the following section of the table:

The rectangle rule is equivalent to the associative law.
The problem of abstract group theory is to examine all multiplication
tables in which Axioms L.-III. are satisfied.

§ 2. Permutation Groups
For finite groups, the problem stated at the close of the last section
can be solved by trial. For example, it can easily be established that the

. ‘3lg§‘andt, Uber eine Verall inerung des Gr b x‘f.fs,Math Ann. 96 (1927)
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only multiplication tables for groups whose order is at most five are
those which we have given previously. We can see, however, even from
these first examples, that the direct verification of the associative law
is time-consuming.

We must look about for more serviceable realizations of abstract
groups. Naturally we require that the multiplication table be determined
easily from the realization. An example of a domain in which arbitrary
abstract groups can be realized is the group of permutations of a set of
objects.

We denote single-valued mappings of a given set I onto itself by
lower case Greek letters, and elements of the set itself by lower case
Roman letters. Let #z be the image of z under the mapping = . Any
two single-valued mappings =z, o can be combined into a third single-
valued mapping me according to the rule (mg)z = n(ex) . The associ-
ative law is valid for this relation, since

(2@e))z = n((@0)z) = n(e(67) = (we) (67) = ((m)a)=.

The identity mapping 1, defined by 1 z= z, is the unit element of
this multiplicative set of mappings.

The single-valued mappings of a set onto itself form a semi-group
with unit element.

A one-to-one mapping of a given set onto itself is called a permutation.

A permutation is a single-valued mapping =, for which nz=a is
solvable for every a and for which nz = ny implies z =y . Therefore
zx = a is uniquely solvable for every a , and the solution is designated
by n~'a . m(n~'a)=a,for every a.Therefore mn-1=1.

Similarly z-!(za)=a, and therefore n#~'z= 1. Conversely, if the
single-valued mapping = has an inverse mapping z=~!, defined by
an-l=a'z=1 ,then z is a permutation, since the equation zz=a
has the solution #~'a and #z=azny implies =z ‘az=a"zny and
therefore z=y .

The inverse of the permutation z is the permutation #~*; and if
7, @ are two permutations, then the two-sided (i.e., right and left)
inverse of mp is g~'a-? . We conclude that the totality of permutations
‘of the objects of a set form a group.
In order to see at a glance the effect of a single-valued mapping =
‘we write it
( z, y, ) (functional notation).
RELy RY,y oo
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Here 2, y, ... runthrough the elements of the given set in any order.
Under every element is placed its image element. A shorter functional
notation for x is (,, z)- Multiplication is indicated by

(:x) (:x) = (g(:z))' *

# is a permutation, then, if and only if every element of M occurs
exactly once in the lower row of the parenthesis symbol indicated above.

Ty Yy ee- z c . N .
. =( ) = (’w), which indicates the mapping z -7 (2) .Then

Ly AYs oo
o (nz, ny, ) — (n:v)‘
z, Yy --- x
Groups whose elements are permutations of a given set and are also

multiplied like the permutations are called permutation groups.

THEOREM 2: Every group can be repr ted as a permutation group
(Cayley). :
Proof: We take the permuted objects to.be the elements of the group.

The mapping =, = (:z) is a permutation since az=">b has a unique

solution z . From the associative law it follows that the corresponding
permutations multiply like the group elements. Since z,e = @, the corres-
pondence 7, <—> @ is one-to-one. The parenthesis notation for z, is derived
from the multiplication table of the group by writing the a-row under
the e-row. This permutation group is called the (left) regular permuta-
tion group of the given abstract group.

The group of all permutations of a finite set of n things is denoted
by ©, and is called the symmetrical group on n objects. The permuted
objects may be numbered from 1 to » , and we may think not of the
permuted objects themselves but merely of their numbers. The latter
are permuted just as the objects to which they correspond. Every per-
mutation may be written uniquely as (:", z’, :), where iy, 1y, ..., 3,
run through the » integers 1,2,...,n in a definite order. We shail
refer to these #» consecutive integers hereafter as the ciphers of the
permutation. Since there are »! permutations of » elements, &, has
the order n!.

* Editor’s note: Since these permutations are mappings applied as operators from
the left it follows that in the product ex the permutation = is followed by the
permutation ¢. This is contrary to the order used by such authors as Burnside,
Speiser, and Dubreil.
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The permutations of n letters can be written still more simply in
cycle notation.
A permutation z is called 4 -cycleif x permutes cyclically a certain
set of d letters by, %y, ..., %4 ¢
-~ . . . .
iy = miy, Rig=1% (m=12,...,d—1)
and if n leaves every other letter fixed. For example

1234y 3 o, 1234\ isa3-
(2134) is a 2-cycle (transposition) and (2314) is a 3-cycle .

We may then denote the d -cycle by (3, ¢y, . . ., i;).However the same
d -cycle has d different cycle notations, one for each different initial
symbol.

Every permutation of n letters can be written as the product of

disjoint cycles (i.e., cycles having no letter in common).
12345
53421
rally unique up to the order of factors, as regards the set of elements in
any cycle.

In order to prove the above, let z be a permutation of = letters
1,2,...,n . Among the n 4 1 letters 1, =l,...,a"1 certainly two
are equal. Let #fl==x*1 with <>k =0 be the first equation of this
sort. If k> 0, then we could conclude that #*~11=z*-11 , Therefore
k=0 and z;=(1,nl,...,af-11) is an i-cycle. Now we con-
struct a cycle z, containing a letter not occurring in z, . Continue this
process. 2z, must be disjoint from 2z, and since finally all the letters are
used, = is a product of disjoint cycles.

(1) represents uniquely the identical permutation 1. If the 1-cycles
are deleted from the set of other permutations in &, , then the cycle
notation remains unambiguous, e.g.,

(33358 ) = (12) (34) (5) = (12) (39).

Multiplication of permutations in cycle notation can easily be carried
out. E.g., to calculate(123) (45) (234), proceed as follows: The cycle
. farthest to the right containing 1 indicates 1—2. The cycle
farthest to the right containing 2 indicates 2—»3, the one farthest to
_the right containing 3, but to the left of the one just used, gives 3 —1.
Hence (12) is one cycle of the product. Continuing to work from right

to left,* 3—»4—5, 6—4,4—>2—3, giving(354). Hence

For example ( ) = (15) (234). This decomposition is natu-

* Editor’s Note: In Burnside, Speiser, et al., the procedure would be to start from
the left and work to the right.
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(123) (45) (234) = (12) (354).
The simplest non-identical permutations are the transpositions.
Every cycle of n letters is a product of n — 1 transpositions
(12), (238), ..., (n — 1, n),
i.e. every interchange of n letters can be arrived at by interchange of
neighboring letters.
This follows from
1) @Gi+k=0EC+k—1Li+k)...(0+1,7+2)
Gi+1)(E+1,7+2)...6+k—11+k)
and
(@) (i, 90, + + or i) = (Ba, 5) (P2s B3) - - (im-1s ¥m)-
DEFINITION: A permutation of n> 1 letters is called even or odd
according to whether the number

&= n";‘_::" (here n indicates ordinary product.)
i<k
is equal to+1or —1 .1
If # and ¢ are two permutations in®,, then

onk—ont onk—oni ek— ot
Son= F—i ek—ei F—s - fe'far
i<k i<k i<k

Thus all the even permutations form a group. It is called the
alternating permutation group of n letters and is denoted by U, . The
transposition (j, j + 1) is an odd permutation as can immediately be seen.
A permutation is even or odd according to whether it is the product of
an even or odd number of transpositions.

From (1) and (2) it follows that an m -cycle is even or odd according
to whether m is odd or even. An arbitrary permutation is even or odd
according to whether the number of cycles with an even number of
members in its decomposition is even or odd.

To every even permutation z there corresponds an odd permutation
(12) =, and this correspondence is one-to-one, i.e., there are as many even
as odd permutations.

The alternating permutation group on n letters thus has order }n!.

* For each ordered pair of digits i < k just one of the two differences k —i, i —k
appears in the numerator. The occurrence of i — k is called an inversion in x. &,is
the product of as many factors — 1 as there are inversions, and x is even or odd
according to the number of inversions in . The number of inversions and hence the

value of &, will not change if a permutation g is applied to each digit in numerator
and denominator.
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§ 3. Investigation of Axioms

If the e-row is made equal to the e-column by means of appropriate
row and column interchanges in the multiplication tables of §1, then
for these special cases the fables are symmetric about the main diagonal.
In a group whose order is less than 6 the equation ab=ba is valid.

We call a group abelian (or commutative) if the commutative law

IV. ab=ba holds.

In an abelian group a product of m factors is uniquely determined
by its factors, irrespective of order and insertion of parentheses.
We must show that a-a,
(t.l’ Z’ ::) is a permutation. Since every interchange of 7 factors
A A
can be effected by the interchange of neighboring factors, we merely
have to prove that

By Qgov o Qo Biyy e "B =0y Gy ...~

-8, =a; -a;, ... a, , Where

Giy1°G; ... 0g
This follows from the associative and commutative laws.

In general, groups are non-commutative, e.g., ©; has a multiplication
table which is not symmetric:

(123)

(132)

(12)

(13)

(23)

The independence of axiom IV. from the group axioms L-III is shown

by the above example. Similarly we show that the axioms I-III. are
independent of one another.

1. III does not follow from I, II. and the solvability of az = ¢, e.g.,

2. There are multiplicative domains in which II, IILa., IV. are
valid but I. is not, e.g.,
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eabcdlf
eleabdbecdlf
af{a bcdif e
blbcefad we have
clecdf ebdba
d|d fabec (ab)b=1f
flfedachd a(dd)=a.

§ 4. Subgroups

DEFINITION: A subset 1l of a given group @ is called a subgroup
if the elements of 11 form a group with the multiplication defined for 6.

® and e are trivial subgroups of . A subgroup different from @ is
called a proper subgroup. A subgroup different from & and e is called
a non-trivial subgroup. A proper subgroup 1 is called a largest (maxi-
mal) subgroup if there is no subgroup of ® containing 11 and different
from U and @. The subgroup U is called a smallest (minimal) subgroup
if e is the largest proper subgroup of 1.

DEFINITION : Two elements a and b are called right congruent under
N if a=bU where Uec Uy Thus two elements are called right
congruent if they differ by a factor on the right which is in 1. We
denote the right congruence of ato bby & =b(llr) . This symbol, =, has
the following three properties:

1. a =a (since a = ae, e € U);

2.a =0 implies b=a (a=>bU implies b =aU-1);

38.a =bb=c implies @ =c¢(a=>bU,,b=cU,implies a=cU,U,
where U,U, € U1).

A right congruence may be multiplied on the right by a factor from
U and by any factor on the left. Thus from @ = b(ll7) it follows that
za = zb(llr) and conversely. Also either side of a right congruence
may be multiplied on the right by an element of 1.

All the elements congruent to an element a form the left coset*
belonging to a. Every element of the group belongs to one and only one
left coset. Since the mapping U — aU is one-one, there are as many
elements in each left coset as there are in 1. The number of different
left cosets is called the indexz of 1 in 4, and is denoted by ®: 11.

*U €U is read: The element U belongs to the set Ul. .
* The terms residue class, coset and 7 inder class are synony . (Ed.)
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DEFINITION : A system of elements which contains exactly one element
from each left coset is called a system of right representatives.

To each representative system of the cosets of (& there corresponds
a mapping @ — @, which.maps each element G of (& onto its repre-
sentative G . A representative function of the left cosets of (4 is char-
acterized as a single-valued function @ — @ defined on § with the three
properties

1.G=06

2.G¢€n

3.GU =G for all U belonging to 11 .
Furthermore the rule HG = HE is valid. Such a mapping will be called
a right representative function of @ with respect to 1, written @ (11r).

Let {a;} be a system of right representatives of & with respect to Ul
and {b,} a system of right representatives of U with respect to the sub-
group U of B. We will show that {@;b;} is then a system of right repre-
sentatives of & with respect to B : ’

From a;b, = a;b,(Br)
it follows that a;by = a;b,(U7),
whence a, = a,(ll7) . Hence i =1.
Therefore a,b;, = a;b,,(Br),
whence b, =b,,(B8r). Hence k=m.
If @ belongs to (&, then ¢ = a,U has a solution U € U, and U=b, -V has
a solution V € B . Hence a = a;b:(Br), QED. We therefore have:

If @—> G is a representative function ®(Ur) and U—U a repre-

sentative function U(Br) , then G — G =08 -G 1s a representative
function
@(Br).

We see, then, that the formula @: 8= (®:U)(1:B) holds for
indices. If @ is finite, then ®:e= ®:1 is the order of ®, and so the

following relation holds:
@:1=(@:1)U:1)

We state this relation in the form—

— Number of elements in group
Number of cosets © (llr) = Number of elements in subgroup
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(i.e., the order of any subgroup divides the order of the group.)

We call two elements @ and b left congruent with respect to 1 if
a=Ub with U<l ,and we write a= b(11l) . The three rules men-
tioned above are also valid for the left congruence. Cancellation and
multiplication on the right of a left congruence preserves the congru-
ence. Either side of a left congruence may be altered on the left only
by an element in U . The definitions of right coset and system of left
representatives are analagous to those of left coset and system of right
representatives.

A left residue (representative) function is characterlzed by the three
properties:

QD
QI 1
L @A

w o -

6
U =G

Q

forallU €U.

From the right congruence @="5(Ur) follows the left congruence
a-'=b-1(l) and conversely. Therefore if {a;} is a system of left
representatives, then {a,~1} is a system of right representatives.

A group has just as many right residue classes as left residue classes
with respect to a subgroup. Moreover,

THEOREM 3: If the index of a group with respect to a subgroup is
finite, then the right and left cosets have a common system of repre-
sentatives.

If 1 is finite, then » right residue classes contain at most r left
residue classes. The same is true if only 6: 11 is finite , as follows from
a remark on p.41.

We shall prove the more general theorem:

THEOREM 4: If a set M is subdivided into n disjoint classes in two
ways and if any r classes of the first subdivision contain at most r classes
of the second subdivision, then the two subdivisions have a common
system of representatives.

The first to prove Theorem 4 (in the language of graph theory) was
D. Kénig (Uber Graphen und ihre A d auf Determinanten-
theorie und Mengenlehre, Math. Ann., vol. 77 (1916), pp. 453-465).
Frobenius claimed the theorem for matrix theory whereas, van der
Waerden, O. Sperner, P. Hall, and W. Maak claimed it for set theory.
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Eventually it was treated by H. Weyl, Halmos, and P. and H. Vaugham
as the solution of a marriage problem (Amer. J. Math. vol. 72 (1950),
pp. 214-215).

Proof: Let M = I, — 3B, be the two decompositions. The incidence
matrix A = (ay), where a; = 0 if 9, and %, are distinct, ay = 1 other-
wise, is normal in the sense that 4 is a quadratic matrix with its coeffi-
cients equal to 1 or 0, so that for every submatrix consisting entirely of
0’s (zero-submatrix) the total number of rows and columns does not
exceed the degree of A. We have to prove that a normal (n X n)-matrix
A = (ax) can be rearranged (by application of a suitable row permuta-
tion as well as a suitable column permutation) so that a,; =@, =... =
Gy = 1.

This is clear for n —=1. Apply induction on n. If n > 1 we wish to
show that A can be rearranged so that for some » between 1 and n—1
both the top left (» X r)-minor and the bottom right (n —7) X (n —17)-

_ minor are normal. Then, by the induction hypothesis, A can be rearranged
so that a;, = ... =@, = 1; moreovera, ;1,41 = ... == 1.

Indeed, if there is a r X (n — r)-zero-submatrix then A can be re-
arranged in such a way that a;, =0if 1 <¢ =7 < k =n. Now, if the
top left (» X r)-minor were not normal, then, after further rearrange-
ment of A, we would have a; =0 for 1 =1 =<s=k=n and some s
between 1 and » — 1, contradicting the normality of A. Hence the top
left (r X r)-minor of A is normal. Similarly it follows that the bottom
(n—7) X(n—r)-minor of A is normal. If, however, there is no
7 X (n — r)-zero-submatrix of A, then every (n—1)X(n—1)-sub-
matrix is normal, and we simply rearrange A so that a,, = 1.

A Remark on Congruence Relations

A congruence relation R is defined in a set if for two elements a, b of
a is congruent to b: a=> or R(a, b)
a is non-congruent to b: a=>b or ~ R(a, b).!
A normal congruence satisfies the following three requirements:
1. (Reflexitivity) Every element is congruent to itself.
2. (Symmetry) The sides of a congruence may be interchanged:
a = b implies b =a .

! ~ means not.
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8. (Transitivity) e =0, b = ¢ impliesa =c.
For example, the ordinary equality relation in the set is a normal
congruence relation.

Exercise: To a normal congruence relation corresponds a decomposi-
tion of the given set into disjoint classes in accordance with the rule:

Exactly those elements of the set which are congruent to a are put
into the classR,. Two classes are regarded as equal if they are the same
subset of the given set. Two classes having any element in common are
equal. .

w
Ezercise: If the set M has a decomposition M =‘21' R, into disjoint

non-empty subsets R:, then this decomposition is the class decomposi-

tion which corresponds to the following normal congruence relation:

a is congruent to b if @ and b lie in the same subset of the decomposi-
tion.

a is not congruent to b if ¢ and b do not lie in same subset of the
decomposition. :

A subset & of a given set M is called a residue system relative to a
normal congruence relation, if & contains exactly one element from each
class, this element being called the representative of the class.

We obtain the residue system by choosing an element from each
class and forming the subset & of M consisting of precisely these chosen
elements. Then there corresponds to every residue system © a repre-
sentative function which associates an @ of & to every element a in MM
according to the rule: @is the element of & congruent to a.

Exercise: A single-valued function on a given set M, which maps
a ona, is a representative function if and only if @ =a.

Here, given the representative function, the congruence relation is
defined by the rule:

a is congruent to b, if @ = b;
a is non-congruent to b, if @ = b.

Exercise: If the left cancellation rule: ab=ac implies b =¢, holds
for a normal congruence relation in a group ®, then the relation is a
right congruence with respect to the subgroup W which consists of all
elements congruent to e.

If the right cancellation rule: ba=ca implies b=c , holds, then
the normal congruence is a left congruence with respect to the subgroup
U which consists of all the elements congruent to e.
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§ 5. Cyeclic Groups

A group is called cyclic if it can be generated by one of its elements
through multiplication and the taking of inverses (i.e., the group consists
precisely of the set of all powers of the element a, positive, negative and
Zero ).

The group @ generated by a is denoted by (a). Every element of &
is a power of a.

We wish to determine the subgroups  of a cyclic group ®. If 1 is
different from (e), then 11 contains a power of ¢ with an exponent
different from zero. Since, if a™ lies in 11 ,a- ™ does also, we can assume
that for somem > 0, a™ lies in 1 . Let d be the smallest of these
natural numbers m. Then e, a,a? ..., a~! must be mutually non-
congruent with respect to U ; therefore $:U>=d . Every rational
integer- m can be put in the form m = gd + r where the quotient ¢ is a
rational integer and the remainder 7 is a non-negative integer less than d.
The element a™ in & has the form a' - (a8)% therefore a™=a" and
®:11 <d. From the two inequalities it follows that : U =d and that
e, a,ad ..., a%-1 isa system of representatives of ® with respect to 1.
U consists of all powers of a?.

Every subgroup of a cyclic group is cyclic. The index of a subgroup
different from e is finite, and for every divisor d > 0 of ®:1, there is
only the one subgroup (a?¢) of index d.

We shall see later that this last property characterizes the cyclic
groups.

If @ has an order n different from zero, then two of the powers
a°=e,a,...,a* areequal. From a* = a* it follows that a"~*=¢ ; thus
a power of ¢ with positive exponent lies in the subgroup e. Since §: e = n,
we have (a") = e and & consists of the n elements e, a,a?, ..., a1

7 is the smallest positive number for which a" =e . If gz=e thenz
is divisible by n.

DEFINITION : In an arbitrary group, the order of the cyclic subgroup
generated by the element a is called the order of the element a. The order
of an element is therefore either zero or the smallest positive number
for which g =e.

The order of a group element is a divisor of the order of the group.

For a finite group of order N we have .as a consequence the analog
of the Fermat theorem,for groups:

=e.
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How can the order of a permutation in &, be read off from its
decomposition into eycles?

If 7= (3,1, ...,135) isad-cycle then ##=1.1If 0 <y <d,then
iy, =1,,, =1,, ,therefore z¥ + 1. The order of a d-cycle is d. Now let
T =12-2,-....z, bethecyclerepresentation of =, where z, isa d.-cycle.
If m¢=1 then z9=1] ; thus d; is a divisor of d. The least common
multiple d’ of all the d; is a divisor of d. Since conversely z2 =1 and
therefore #? = 1, we have:

The order of a permutation of n letters is equal to the least common
multiple of the orders of cycles in its cycle representation.

§ 6. Finite Rotation Groups

As an example of the meaning of the previous concepts, let us examine
the finite rotation groups.

The rotations of cartesian three-dimensional space about the fixed
point O have the following properties: .

1. Every rotation about O permutes the points of the unit sphere &
with center O and is uniquely determined by its effect on the points of
the surface of the unit sphere.

2. Two rotations carried out consecutively produce a rotation.

If ¢ and 7 are two rotations about O, then o7 is the rotation which
transforms the point P into the point o(z P) .

3. A rotation either leaves all points on & fixed or it leaves exactly
two points fixed.

In the latter case, the two fixed points are called the poles of the
rotation. The rotation which leaves all points fixed, is denoted by 1.

4. A rotation angle ¢, is associated with every rotation o. @, is
uniquely determined to within addition of an integral multiple of 27z .
Two rotations ¢, T with two common fixed points satisfy ¢,, = ¢, + @, (27).

We wish to know which multiplication tables represent finite multi-
plicative domains  of rotations.

Since (& consists of a finite number of permutations, & is a finite
group. The unit element of (& is 1. Let the number N of rotations in ¢
be greater than 1.

We say two points are conjugate under & if there is a rotation in &
which sends one of the two points into the other. The finite number of
poles of rotations in  fall into classes of conjugate poles; let us call
them Bi, Be, - -, Py

All the rotations in & which have the same pole P, together with 1,
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form a subgroupg. We call g the subgroup belonging to P.
The p poles conjugate to P have the form o, P, 0,P, ..., 0,P with
o, € 8. If 0 € @ then oP =g, P issolvable, ie.,
o1 oP=1P=P, 0, 'c &g o=o0:(gr)
Thus all the rotations in @& fall into p left cosets with respect to g and
these are determined by their effect on P. g is one of these complexes and
contains n = N/p elements. P is called n-tuple pole in 6.

If g belongs to P, we determine the group belonging to ¢ P.

If o, is such that ¢,z P = = P, it follows that t-10,7P = P ; therefore
=1"l0y7 € gand o0, =707"l. If oP=P ,then ror'(zrP)=<P.
Therefore the group rgr-1 belongs to TP . In that account we also say:

tov-1lis conjugate to o.

We determine the number of poles of rotations in . There are
exactly 2(N-1), since there are precisely N-1 non-identity rotations in
. On the other hand there are exactly n, = N/p; rotations in & which
leave a pole of the i-th class fixed. Hence a totality of p;(»; —1) non-
identical rotations leave some pole of the i-th class fixed.

H
Therefore 2N —2=3p,(n;— 1),
1
. H
ie., 2(1 —1/N) = 3(1 — 1/n,).
1

From the further conditionsN ==, = 2it followsthat2 < H <3.
Furthermore
I if H =2, n, = n,= N arbitrary >1.
II. if H=3, 2=mn, <n, <n,, n, < 3:
ny=mny,=2, ny=N/2,
ny =2 n,=n;=3, N=12,
Ny =2 n,=3, ng=4, N=24,
Ny =2, n,=3, ng=>5, N=60.

I. H=2: All rotations =1 have the same poles. Let ®s be the
smallest of all the positive rotation angles corresponding to rotations
in . If 7 is any rotation in ( there exists a rational integer m such
that me, < ¢, <(m+ 1)g, . Since g1 = — @, P,m» =me, ,we have
0 <@, m, <@, Therefore @,-m,=0 and T=0¢™ because of prop-
erty 4 of rotations.

% is a cyclic group of order N generated by o , where ¢, = 2a/N,
. and is designated by Z, .

ILa. H=3, ny=mn,=2, ng= N/J2.
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s consists of two poles P, Q, and therefore a rotation in ® either
will leave both poles fixed or will interchange the poles; thusgp = gg. ¢
decomposes into g and vg ; the square of any rotation ¢ in ®, which
does not lie in g, is 1, since it leaves the fixed points of o fixed, and
also leaves P and Q fixed.

From +*=(ro)*=1 for all ¢ in g, it follows that o =01z
Therefore .
70,70y = 0,71 170, = 0,720,

Since g is cyclic, byL, the multiplication table of @ is uniquely deter-
mined by its order. The table on page 9 shows @ for N=6. @ is called a
dihedral group and is denoted by Dy .

ILb. ny=2, ng=ny3=3, N=12.

The eleven rotations = 1 permute the four triple poles of the second
(and third) class in 3-cycles and double transpositions. Thus @ is the
alternating permutation group on the four triple poles Qf one of the
latter two classes. @ is called the tetrahedral group.

e ny,=2 n,=3, ng=4, N=24.

The eight triple poles fall into four pairs of poles, such that a rota-
tion in @ either has both poles of a pair as fixed points or else has neither.
A rotation ¢ which takes each of the four pole pairs into itself has the
identity as its square. If ¢ & 1, then o interchanges the two poles in
each pair and since, for every r in ®, ror-! has the same property,
oror-'=1. If, however, v is a rotation of order 3, then oz inter-
changes the poles of v and consequently ¢roz=1 . But this would
giver~!=7, v?= 1, a contradiction, and so ¢ must be 1 and ® is the
symmetric permutation group of its four pair of triple poles. & is called
the octahedral group.

IId 7,=2, ny=3, ny=5, N=60.

The 30 poles fall into 15 pairs of double poles, such that a rotation in
® leaves neither or both of the poles of each pair fixed. Let (PQ) be one
of these pairs and let o be a rotation 1 in ® with poles P, Q.

There exists in @ a rotation = which maps P onto Q. zot-! leaves
the point Q fixed; therefore since Q is a double pole,

101" '=0,710=07,Q +1Q=10Q = 07Q.
Since @ is a pole of ¢, it follows thatz@ = P. If conversely o is a
rotation in @ which leaves (PQ) fixed, then either g or gz-! leaves
each of the points P, Q fixed. Of the elements of G only 1,0,7, 07 leave
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the pole-pair (PQ) fixed. These four rotations are exactly those rotations
in @ which commute witho. The square of a rotation in & which leaves
(PQ) fixed has more than two fixed points and therefore is 1. From
this we conclude: If a pole-pair (PQ) remains fixed under a rotation
in @, then the three rotations = 1, which leave (PQ) fixed, leave the pole-
pairs of each of them fixed. In this way the 30 double poles fall into five
sextuples of poles which are permuted by . By their effect upon a sex-
tuple, the 60 rotations of & fall into five complexes, each consisting of
twelve rotations. All the rotations which leave a sextuple fixed form a
subgroup of order 12 which has double and triple poles only; therefore
the subgroup is the tetrahedral group. This tetrahedral group is generated
by its elements of order 3. If a rotation of order 3 leaves each of the five
sextuples of poles fixed, then all the rotations in @ of order 3 have
this property, since they are all conjugate to one another under @.
Then all the rotations in the tetrahedral group which belong to a sextuple
leave every sextuple fixed. A rotation of order 2 does not have this
property. Therefore the 59 rotations = 1 in ¢ permute the five pole
sextuples in either a 3-cycle, a 5-cycle, or a double transposition. @ is the
alternating permutation group on its five sextuples of double poles. § is
called the icosahedral group.

The names of the last four types are related to the regular polyhedra
whose vertices are poles of the third class. Geometrically it can be seen
that @ consists of all the rotations of space which carry the corresponding
regular polyhedron into itself. Conversely, from the existence of the
regular polyhedra we can deduce the existence of the rotation groups
named after them.

In cases b) — d), the poles of the second class are the vertices of the
dual regular polyhedra: tetrahedron, hexahedron (cube), dodecahedron.
If the poles of third (second) class are at the vertices of the regular
polyhedron, then the poles of second (third) class lie on the lines from O
to the midpoints of the faces.

The double poles of the first class lie on the lines from O to the mid-
points of the edges. The five sextuples of double poles of the icosahedral

.group are similar to the five vertex sextuples of the five octahedra
inscribed in the icosahedron.
§ 7. Calculus of Complexes

In order to know the structure of a given group (§, we must investigate
its subsets.

We call any subset of a semi-group ® a complex. Let the empty subset
be denoted by 0.
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The set-theoretic relations of complexes are expressed by means of
the symbols =, G Ny +, — o The equality of two com-
plexes is expressed by ®, = &, i.e., ® and &, contain the same elements.
The three well-known rules are valid for this equality relation.

®, < &, means that the complex &, is contained in the complex 5,
i.e., every element in &, lies in ®. Equivalent to this is £ > &, ie.,
f,contains &,. We have the rules: '

a)® I ®

b) If LR, and R, <R, then & T K.

The equality of two complexes ®;, , is equivalent to: & C &
and f; C®. .

If the complex &) is a proper subset of &, we denote this condition
by & C &, , ie, ® lies in & but there is an element in &, which is
notin ®;.The following two rules are valid:

a) 8 .

b) &R, , K 8 imply & < K.

The totality of all elements which lie simultaneously in » given com-
plexes R, ®;,..., 8 is called the intersection of the ®;. It is denoted
by £NABNAKN...NER, .

The following rules are valid for the intersection:

fNL=1,
®NR=0HNER, (commutative law)
NN K=, N (RN Ry) (associative law)
NN NARIN(Rasa N oo N Ruen) = RN RN N Ry
- The inequality & C ®, is equivalent to £ N\ &, = &,. R, is
equivalent to N @, = @, and R + ;.

If 1, C @, then (5N E) < (R, N Ry).

The totality of all elements that lie either in &, or in f...orinQ®, is
called the sum of R, ®,,..., R, .Itisdenotedby & VR V...US, .
The above four rules are valid if N\ is replaced by \. The relation
® R isequivalent with & VR =8,. @, C &, is equivalent with
K{VR =9, and ® +&,. If f, R, then HVEI® VK,

The relation between sum and intersection is distributive :

/N(RV R) = (RN V(N ),
KV (RN R) = (R, V R) N (R, V ).
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The sum of pairwise disjoint complexes 8, ®;,..., 8, is denoted
by R+ R+ 4R -

The rules for the symbol \/ remain valid if + is substituted for \/
everywhere and it is assthed that the sets on the left connected by
the plus symbol are disjoint. The second distributive law is an exception.

If ®, is contained in ;, then the difference set, denoted by £,— &
consists of those elements of &which are not in & . It follows that:

R = & +(f:— &)),and K, — &, is uniquely determined by this equation.

Beside these set-theoretic operations we also introduce the product
of n complexes ®; 8as -+, & K- K- ...- &, is the set of all products
Zye Tye...- T,, Where z;€ &, and n is a positive integer. We have:

R (R f:) = (R, R,) Ry = £, ], ], (the associative law).

The combination of product with sum or intersection satisfies

(RN R) SRR N R Ry,
R(RV Ry) = R, 0,V R, K.

If £, C &, then 15, C R .

In a group & we define the inverse complex of a non-empty complex
as the complex consisting of all the inverses of the elements of & . It is
denoted by & .

KR De,but RR-'=e if and only if R consists of exactly
one element. Furthermore:
&Y 1=8
(R, V R) =1V ;74
(R N\ Ry) 1= RN R,
(R - R) =01 - &7,
and if ¥R, then -1 Q-1

Necessary and sufficient conditions that a complex U be a subgroup,

are:

1

un=+o,
uucuy,
u-rcu
The latter two conditions can be replaced by
uun-1quy,

for then e C U, and so it follows that U-* C U. Taking inverses in this
inequality, we get 1 C 11-1 ; therefore U= “ g, un cu
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The intersection of two subgroups is itself a subgroup. The product
of two subgroups is a subgroup when the two factors can be interchanged.

7{ a non-empty complex 1l contains only a finite number of elements,
then the condition 1M1 C 1 is necessary and sufficient for N to be a
subgroup, since the cancellation laws hold in 11 .

Let § be a non-empty complex. Let ®;,= 8\ & Then £7=§
and R,V K2V K3 ... isa subgroup of @ which lies in every subgroup
which contains ® . The subgroup is called the subgmup generated by £
and is denoted by {R®). We set {0) =e.

Then the following rules hold:

{(RNK) /)N (K],
1RV ) ={{2)V (%)}

If tC Rthen () C{®) ; furthermore {£'}=(&}.
The following useful rule of the calculus of subgroups can be proven.
If uCUand v B, then

UNnusNB=@uNnB)-UND).

PROOF: It is immediate that UNnuv N\ 8D (uN B) - (U N\ b). More-
overlet z<UNuvb N\ L .Thenzisof theformuv where u<u, v .
Since z € 1, it follows that » € 11. Since z € B, « < B. Consequently
zisin (uNB)- (W Nb), whence the rule follows.

If we set B = @ in the rule, we obtain:

If uC 11 and bis arbitrary then u- (N D) =UANuv.

We consider an ordered ascending chain of subgroups of a group,
i.e, an ordered set of subgroups for which 1 C % implies U < B.

The sum of all U in this subgroup chain, which has an arbitrary
cardinal number of members, is itself a subgroup which we denoted by 8

If a complex £ has no element in common with any member of the
chain, then the intersection of ¥ and & is empty.

We prove the following existence theorem on maximal subgroups.

THEOREM 5: If ® is an arbitrary complex in @ and U is a subgroup
disjoint from &, then among the subgroups which contain U and are
disjoint from & , there exists a maximal one B. Thus B is defined as a
subgroup of & such that:

1. uds,

2. BNR=0.

3. {B,2)\N®=0 implies z<R.
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We consider the elements of & as well ordered: e <#,<7;.... . We
define an ascending chain of subgroups 4. CW,, ... by means of trans-
finite induction: U,=11. Assume that the subgroup 1, has already
been defined for all » < _and that it has been shown that U, C1l,
for vSp<o and that U, AR =0. Then let 1, be the union Z,
of all U, for »<w if (Z,,0} \R+0, but let U =(Z,, o) if
(Z,, @) \NR=0. Since X, is a subgroup, 1, is also a subgroup and
u,<u, for»<w. Furthermore X, N®=0 by the construction
of X,  therefore U,N®=0.

The union B of all the U, is the maximal subgroup the existence
of which was to be proven.

§ 8. The Concept of Normal Subgroup

What condition must a subgroup U of a group ® satisfy in order
that left congruency shall be equivalent to right congruency?
From au=a(llr) where u &l it should follow that

au = a(lll),
and therefore aua-! = e(lll).
If, conversely, aua~! =e(lUl),
then au =a

for both left and right congruency.
We come upon the normality condition

alle-1C 1.

We arrive at this same condition if we ask when congruences can be
multiplied. Then it should follow from a=a(lll) and u =e(lll) that:
au =a(ll) and this implies alla-* CU. If conversely zUz-'CU
for all z in &, then we can drop the I, r-symbols from the congruences
and it follows from

a=b

c=d,

that ac =be
be = bd,
ahd therefore ac = bd.

DEFINITION : A subgroup R of & for which zRz-1C N holds for
all x in @ is called @ normal subgroup.
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Left congruency is equivalent to right congruency if both are with
respect to the same normal subgroup. Congruences with respect to a
normal subgroup may be multiplied together.

From zRz-'CN  and =Nz N, it follows that

N =2z Nex- ! xNa-?,
and therefore aRNaz-1=N,
zN=Na.
A normal subgroup commutes with every complex. .

If conversely a subgroup commutes with every complex, then it is a
normal subgroup, since zll= Uz implies zUz-*=1U.

The product of a normal subgroup and a subgroup U is a subgroup.

DEFINITION: A group with no non-trivial normal subgroups is said
to be simple. Any other group is called composite.

A group without a non-trivial subgroup is simple. Moreover,

THEOREM 6: A group with no non-trivial subgroups is cyclic of prime
order, or consists of merely the unit element e.

Proof: If =+ e, then there is an element @ =+ e in (. By hypothesis
® = (a). If & were infinite then (a) + (a?) #e¢, and consequently @ is
finite. If p is a prime dividing & :1then (a) #+ (¢®?) and therefore a?=e-
and G:1=p.

The converse was seen earlier.

A congruence relation in a multiplicative domain is said to be multi-
plicative if a=b, c=d implies ac=bd.

Ezample: In the multiplicative group of positive real numbers the
relation:

a is congruent to b, if a=b,
a is not congruent to b, if a <5,
is a multiplicative congruence relation.

Exercise: A multiplicative normal congruence relation in a group
is the congruence relation of the group of elements with respect to the
normal subgroup consisting of all the elements congruent to e.

§ 9. Normalizer, Class Eq
The following investigation shows the meaning of the concepts of
subgroup and of right congruence.
Let B be a group of permutations of the objects-of a given set M.
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DEFINITION : Two objects in the set M are said to be conjugate under
the permutation group P (P-conjugate) if there is a permutation in P
which maps one of the two objects onto the other.

The relation “a is conjugjate to b” fulfills our three requirements:

1. ais B-conjugate to itself since the identity permutation in maps
a on itself.

2. If a is P-conjugate to b, then there is a permutation in P which
maps a onto b. The permutation which is the inverse of the latter lies
likewise in P and maps b onto a. Thus b is conjugate to a.

3. If b=na, c=¢b, then ez as well as =, ¢ lies in P, and

ona = pb=c ; therefore a is P -conjugate to c.

Under the action of a permutation group a set splits into disjoint
classes of B -conjugate elements.

We call a class of P-conjugate objects of a set M a system of transi-
tivity for the permutation group . The system of transitivity in which
a lies consists of all za with € P.

How many objects lie in a system of transitivity? The answer is
given by THEOREM 7: All the permutations of a permutation group B
which leave an object a of the permuted set M fixed,form the subgroup Ps
of P belonging to a. All the objects B -conjugate to a can be found as
images of a, each once, under the permutations of a right representative
system of P with respect toB,. Therefore the number of objects which
are P -conjugate to a is equal to the index of B, in B.

Proof: Let B, be the set of permutations in P which leave a fixed.
1 belongs toB,. If & belongs to%,, then #~* isin P andz-'a = 7~ (za) = a,
and therefore m~! also belongs to®.. If ¢ and = are in %, then ez
is in P and gna =g(na) =pa=a; therefore ez is also in B,.

%, is a subgroup of P .

If the permutations ¢ and z in P have the same effect on a then
they are right congruent with respect to P, since za =ga implies
olma=a, p-'n€ P, 0 =7(Pur), and conversely. If, then, n—=
is a right representative function of P with respect to P,, then every
conjugate ma of a is equal to %a and Za = ga implies X=F=7=7 ,
as was to be shown.

DEFINITION : We say that two subsets of the set M are conjugate
under the permutation group P if there is a permutation in P which
maps one subset onto the other.

Since Palso permutes the subsets of M, the above statements remain
.valid if “object” is replaced by “subset”.
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However, we denote by Py, the subgroup of permutations in $ which
map a subset m of M onto itself, whereas %, will denote the subgroup
of all permutations in ® which leave each element of m fixed.

We now take the set of all elements of a group ® as an example of
a permuted set.

For every element z in ®, we define the “z-transformation” as the

single-valued mapping ( xaz-! is called the z-transform of a.

a
zuz—) :
The a-transformations of  form a permutation group, smce(“:_,)=(z)
is the identity permutation 1:

& ) (zaaz‘!) (ya(;—l) = (, v a& y)_,), and in particular

@ (sam) (o) = () =1.

The group of transformations of @ is denoted by Jg or simply by J .

DEFINITION : Two complexes in ® are said to'be conjugate (under &)
if one complex is the transform of the other: 8,=z®,z-1, or equiva-
lently, z ®, = ®,2.

From equations (1), (2) we immediately see that in @, all elements
z whose corresponding transformations lie in a given subgroup of J form
a subgroup of ®. We can therefore define, in accordance with Theorem 7:

The normalizer N, of the complex & is the subgroup consisting of
all elements z of @ which transform & into itself: zfz-1=Q, or
equivalently z® = Rz.

If z,, 7, ... is a representative system of @ with respect to N,,
then =z,Rz,-, z,®x,71,... are the complexes conjugate to ® , each
occurring exactly once; and conversely. Thus

The number of complexes conjugate to a given complex is equal to
the index of its normalizer.

The group @ falls into classes of conjugate elements relative to the
transformations in J, giving the direct decomposition =€, + €, +
The number of classes of conjugate elements of a group is called the
class-number of the group. The direct decomposition

G=6+6C+---+6,
of the group @ into classes of conjugate elements corresponds to the
equation
(3) G:1=hth+...+h (class equation)
where 4, is the number of elements in G,.
DEFINITION: All the elements of a group ® which transform each
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element of @ into itself, i.e., those which commute with every element
of @, form a subgroup called the center 3(®) of @. 3 is obviously the
intersection of all the normalizers of elements in .

It follows from the definition that the center is an abelian normal
subgroup. The center is justthat domain of all elements which are trans-
formed into themselves by every element in ®. Therefore we may write
the class-equation as follows:

4) G:1=3:14+3h.
N1

It is important in the above to note that the summation is performed
over some group indices different from 1.

The subgroups which are transformed into themselves by every ele-
ment in @ are precisely the normal subgroups of G.

The normalizer of an arbitrary subgroup U of @& is the (uniquely
determined) maximal subgroup containing I as normal subgroup.

We wish to determine the classes of conjugate elements in the sym-
metric and alternating permutation groups of = letters.

Let # and ¢ be two permutations in &, ; then onp~'(¢oz) = onz,

- z

and therefore gmo-1= (‘;z

, ie.: The g -transform of = originales

from = by replacing the letter x by ez in the functional symbol for =.
The same also holds for the cycle symbol.

Two permutations are conjugate under &, if and only if they have
cycle decompositions with like groupings.

Let = be a product of a, 1-cycles, a, 2-cycles, . . . , a, n-cycles.
Then the number of permutations that commute with z is just as large
as the number of formally different ways that @ can be written as a
product of first @, 1-cycles, then @, 2-cycles, and finally a, n-cycles, and
this is a@,! 1% . a,! 2%. .. g,! nes, Consequently the class €, of elements

n!
a'1%. . . a,ni

Now let n > 1, &) = (12)=(12)-1. Every permutation in ¢ is con-
jugate either to = or =, under ¥, the alternating group. Therefore €,
decomposes into two classes under ¥, , each with an equal number of
elements, or it does not decompose. The latter takes place if and only
if ® commutes with an odd permutation. This last is equivalent to the
condition: There is an a,; > 0 or an as;,, > 1.

§ 10. A Theorem of Frobenius

The following theorem is not yet fitted into a wider context in a
- satisfactory way.

conjugate to # under &, contains permutations.
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THEOREM OF FROBENIUS: The number of solutions of z*= ¢, where
¢ belongs to a fixed class € of k elements conjugate under a finite group
®& of order N,is divisible by the greatest common divisor of hn and N.

Proof: The complex consisting of those elements in ¢ whose n-th
powers lie in the complex & is denoted by ¥a, , «Let 4g , be the number
of elements in g, » . If N=1, then the theorem is true. Now let N >1
and let the theorem be proven for groups whose order is less than N.
If n=1, then 4g,, = & . Therefore the statement is true. Now let » > 1
and let the statement be proven for all smaller n. (We are using induction
twice) Since the elements in € are conjugate under ®, Ag,a="5h- 4. q.
%, lies in the normalizer N, of ¢. If & >1, then, applying the
induction hypothesis to N, , we find* that (n, %)/A,,.., and therefore
(kn, N)/Ag,,.

Nowlet A= 1.If n=1mm,, (0, n)=1, ny,ny =1 andif D= Ug,,,
then %g,, = Ap . By the induction hypothesis (n,,N) is a divisor of
Ag,a, and therefore also a divisor of Ag,n. Similarly it follows that
(m, N) is a divisor of Ag,s and since 7, is relatively prime to n,, we have
(n, N) as divisor of Ag,n-

It can now be assumed that n= p°® is the a-th power of a prime
number p with @ > 0. If p divides the order ¢ of ¢, then an element x
in %,,, has the order - ¢. Then exactly n elements of ., lie in (x),
and all these n elements generate the same subgroup, namely (z). The
number of elements in ¥, , is consequently divisible by n.

Finally we may assume that n is relatively prime to the order of the
center element ¢. All the elements of the center whose order is prime
to n form a subgroup § of @ of order g prime to #.Since every element
in g is an n-th power?, the equation ¢, = ¢,2" is solvable in g for every
pair of elements ¢;,c, , and since g lies in the center of ®, we have
A ,n=A4,,.- It now follows from the class equation that

N= ZAK,A +g'Ac,n-
e
In the above, N and all the 4g,, with € { g are divisible by (=, N).
Therefore g- Ag,, is divisible by (n, N). Since (g,n)= 1, we have
(n, N)/A oyns Q.ED.

* Since the index of N, equals h. (Ed.)
* See Exercises 2, 3 at the end of the Chapter.
* See Exercise 3 at the end of the Chapter.
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Exercises

1. The complex of all n-th powers of elements of a complex R in a group is
denoted by 8 . The complex of all elements in ® whose n-th power is equal to e is
denoted by & ,, .

We have -
fL=0 221 =07, G127 = (22)7, R, N8y =N o,
2. If @ commutes with b then B N T
(ab)* = and"

and the order of ab is a divisor of the least common multiple of the orders of @ and b.
8. If the rational integer = is relatively prime to the order of @ then ™ = @.
(Exercises 4-6 in Burnside.)

4. In a group @ if the equation
(ab)* = anb"

holds for every pair a, b of group elements, then @ * and @, are subgroups of @ .
Then, moreover, @: 8" =@, : 1.

(Hint: The elements of @ whose n-th power is a fixed element of @ form a (right)
coset of ® with respect to & , .)
@ n~1 commutes elementwise with ® ™. (Young.)

5. If I and B are finite subgroups of the group @, then 1B contains exactly
(U:1)(B:1)
uNg:1)

6. If the index of the normal subgroup R of a finite group @ is relatively prime
to the order n of %, then M contains every subgroup of ® whose order is a divisor

of n. (Use Exercise 5.)

elements.

7. The alternating permutation group of n> 2 letters can be generated by
(123), (124),..., (12n),

8. A well known puzzle requires that 15 numbered stones on a board divided
into 16 squares be moved horizontally and vertically until we obtain the situation
of Fig. 1, p. 30,

‘We may assume that in the initial position the lower right corner of the board is
vacant, so that the initial position can be described uniquely, with the use of Fig. 1,
by a permutation of the fifteen letters. It is to be shown that Fig. 1 is attainable
precisely when the permutation for the initial position is even. (Generalization?)

9. If R is a normal subgroup of the finite group @, then a normal multiplication
table of @ can be constructed so that it is possible to divide the table into squares
having the following properties:

1). Each square contains the same number of compartments. (The number of
squares is (&:% )"

2). The rows of each square are the same to within the order of elements.

3). The square in the upper left corner contains exactly the elements of R
(Example, Fig. 2).

What sort of elements are in a square?

Conversely if it is possible to divide a normal multiplication table of @ into squares,
such that 1., 2. hold and e is in the upper left corner of a square, then it is to be

. shown that we have a division into squares with respect to a normal subgroup.
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What divisions of @ occur if we omit the dition that the multiplication table
be normal?
11234 eal|b c
slel7]s ae |c b
9 [10|11]12 belea
13[14]15 cbje
Fig. 2

Fig. 1.

10. If § is a set of complexes of a given group with the properties:

1). Every element in ® is in at least one of the complexes of § .

2). No complex in § is a proper subset of any other complex of .

3). The product of two complexes in § is contained in a third complex of § , then &
is the set of cosets of &, with respect to a normal subgroup, and § is a group.



Additional Exercises 31

Additional Exercises

11. Let 1t, ® be two subgroups of finite index in the group ®. Denote by #3:1
the number of right cosets modulo 1 in #%¥ and by U ¥: R the number of left cosets
modulo ¥ in t¥. Show that

a) NB:M=U:U=:(UA ).

b) ®: (N B)=(G:1) (UB:B)=(NB: 1) (B:8) =< (&:11) (G:B).

c) If B:8 and ®:B are coprime then ®: (N N\ B) = (G:1) (G:B).

12. Leta:, a:,...,a. ben elements, not necessarily distinct, of a group of order n.
Show that there exist integers p and ¢, 1 =p = ¢ ==, such that a,a,4:...a,=e.
(Moser.)

13. Let ® be a group and let & be a 1 isting of the el [ 29 P
of & such that ® does not contain e. Consider the n* (not necessarily distinct)
elements of @ of the form a.a; and prove that at most n(n — 1) /2 of these products

are themselves in ®. (Hint: One has axa; "= a: as often as aia; = ax.)
Seek the best estimate for the number of el in ¥ —8d ding only on n.
(Moser.)

14. Decomposition with respect to a double module.

a) For any two subgroups It and B of a group ® a normal congruence relation
is defined by the rule: a=b (mod U, B) if b=uav withu € U, v € B.

b) For a given representative system ai, @., ... modulo 11, B there is the decom-
position 8= I MNa.B of @ into residue classes with respect to the double module
N, ®. The residue class Ha:® consists of B: (B N a.~*Na:) right cosets of @ modulo
Nor of U: (M N aiBai™?) left cosets of @ modulo B.

+ ¢) Isit possible to interpret the left congruence modulo a given subgroup 1t as a
congruence with respect to a suitable double module? Is there a similar possibility
for right congruence? What is the congruence with respect to a double module %, R
if M is a normal subgroup of &?

15. A set ® is called a groupoid if for certain ordered pairs of elements a, b of &
the product ab is uniquely defined in @ in such a way that

I a(be) = (ab)e
in the sense that whenever one side of the equation can be formed in &, the other side
can also be formed, and both sides are equal,

II. with any two elements a, b of @ there can be associated at least one element =
such that both ax and zb are defined in @,

III. if @, b have a common left multiplier 2 such that both za and xb are defined,
then the equation ay = b can be solved, and if ¢, d have a common right multiplier,
then the equation ua =" can be solved.

Trivial example: Let = be a system of sets with the same cardinality. The set
®(Z) of all one-to-one correspondences between any two (not necessarily different)
sets in = is a groupoid, if the one-to-one mapping = of S: onto S: and the one-to-one
mapping p of Si onto S, are combined to form the mapping np if, and only if S,
where the product np is defined according to the rule (xp)2 = x(px) for z & S: which

first occurred in § 2.

Si
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‘We may interpret a groupoid ® as a semi-group with special properties by doing
the following:

(1) Introduce a new symbol n.

(2) Extend the given multiplication in ®, enlarged by =, by defining ab=n
whenever ab is not defined in ® and an=na=nn=n for any element a in ®.

16. Using the definition of a groupoid ® as given in the preceding exercise
prove that:

a) For each element a there exists a left unit’ e. and a right unit .e such that
€l =a=a.e.

by If a, b have a common left multiplier then a left unitof a is a left unit of b.
Show that e.e. is defined, and hence €se.=¢éa.

¢) For each left unit e. of a there is an inverse a ™ satisfying aa
Deduce from the equations

‘=e¢a.

e =esed’ = (aa"') e =a(a"'ed)
a'es =a?

which are valid for any left unit e.’ of a that there is only one left unit of a. Similarly,
show there is only one right unit of a.

d) e 'a=.e, €,—1=ud€, ,—1€=¢a.

e) There is only one inverse of a.

f) (a7 '=a.

g) (Uniqueness of division.) If ay=>5,theny=a"'b. Ifuc=d, thenu=dc ™"

h) (adb)'=b"ta".

i) Those elements having a given unit e as their left and right unit form a
group @..

(Exercises 17-21 inclusive extend the concepts of §4.)

17. Any congruence relation R generates a normal congruence relation R* as fol-
lows: R*(a, b) is true if and only if there is a chain of elementsa —=a1, az,...,a8.=b
such that for any two consecutive elements a., a(, . at least one of the three statements

ai=ai.s, R(ay,ai.), R(ai.a,an)
is true. R* is called the ancestral relation of R.

Example: The relation “b is child of a” generates the relation “c and d have a
common ancestor.”

18. Show that:

a) By symmetrization of the binary relation R on a set 9)} one obtains the sym-
metric relation R* defined by: ¢ R°b if and only if a Rb or b R a, such that every
symmetric relation implying R also implies R*;

b) By forming the ancestral relation of R one obtains the transitive relation R®
defined by: a R?b if and only if there is a finite chain: a=a, @o Ry, &: R as,. ..,
@n -y R an, an="> (n > 0) such that every transitive relation implying R also implies
R? (note that the ancestral relation of ‘a is parent of b’ is ‘a .is ancestor of b’);
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c) The ancestral relation of a symmetric relation is symmetrie, but the symmetri-
zation of a transitive relation need not be transitive;

d) By normalization of R one obtains the normal relation R defined by: aR"b
if and only if there is a finite chain @ = a, @s( R @24 1 OF @t = Goss 1, Gaar OF Gary: R
Gv:=au+1 (1=0,1,2,...,n<1; n>0), 0:n=>b, such that every normal relation
implying R also implies R,

e) If R is reflexive and symmetric, then R"= Ra,

19. A multiplicative domain is a set ® in which a multiplication is uniquely
defined. For any subset & of ¢ we define the right congruence modulo & as the
ancestral relation of the relation @ =ak for « €, k € &. Similarly, we define
left congruence modulo & as the ancestral relation generated from a = ka for
ag®, ket

With these definitions we can introduce left cosets, right representative systems,
right cosets, left representative systems modulo &.

Both left and right congruence modulo the empty set coincide with the equality
relation in 6.

If ® has a unit element e and if e is in &, then the right coset Ul represented by
e is closed under multiplication and coincides with the left coset represented by e
modulo &. 1 is the smallest subset of 3 containing & and closed under multiplication.

If @ is a semigroup then right (left) congruence modulo & coincides with right
(left) congruence modulo .

Give examples in which the number of left cosets is different from the number
of right cosets modulo &.

20. If 1t is a subgroup of the semigroup ®. then right (left) congruence modulo
11, as defined in the preceding exercise, has the same meaning as in groups. Each
coset contains as many elements as 1.

21. If ® is a group, then right (left) congruence modulo a subset & coincides
with the same relation modulo the smallest subgroup of ¢ containing &.

(Exercises 22-28 extend the concepts of §8.)

22. Every subgroup of an abelian semigroup is normal.

23. The ancestral relation of a multiplicative and reflexive congruence relation
is a multiplicative normal congruence relation.

24. Let G be a multiplicative domain with a subset &. The ancestral relation
of the relation “a = b if and only if there is a factorization of both a and b with
the same number of factors, and with the same distribution of brackets such that
corresponding factors are either right congruent modulo & or left congruent modulo
.R” is a normal multiplicative congruence relation NM (&).

If & is empty, then NM () coincides with the equality relation.

It is always true that all elements of & belong to the same residue class ®*
modulo NM(R). Show that NM(8) coincides with NM (®*) and that ®* is closed
under multiplication.
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25. A normal divisor of the multiplicative domain ¢ may be defined as a non-
empty subset M, closed under multiplication, such that a product in R of several
elements of ¢ remains in R after any one of its factors has been multiplied from
the left or the right by an element of RN.

Show that any normal divisor R of ® is a residue class (called the unit residue
class) of the multiplicative normal congruence relation NM (R) generated by the
rule au =ua=a for all e € @, u €N, and, conversely, show that the subset &*
constructed at the end of the preceding exercise is a.normal divisor of . (E.Lyapin).

26. If there is a unit residue class R, as defined in the preceding exercise, for a
certain multiplicative normal congruence relation R, then R js a normal divisor of &
and the other residue classes with respect to R are obtained by uniting some of
the residue classes re NM (R), i.e. R is somewhat of a blurring of NM (R).

27. & is a normal divisor of . What is NM(®)?

28. In a group, the notion of the normal divisor as defined in 25. coincides with
the notion of normal subgroup.



II. THE CONCEPT OF HOMOMORPHY AND
GROUPS WITH OPERATORS

§ 1. Homomorphisms

1. The Concept of Homomorphy.

Let & and &* be sets in which a multiplication is uniquely defined
(multiplicative domains).

DEFINITION: A single valued mapping of the elements in & onto a
certain subset of &* is called a homomorphy, if the product of two
elements is mapped onto the product of the image elements.

Ezample: The mapping, defined on page 8, of . into the group
consisting of 4 1 is a homomorphy.

If the image of « is denoted by oz then ¢ must satisfy the functional
equation:

o(zy)=o0x-0Y .

The homomorphy is said to be a homomorphic mapping or a homo-
morphism if every element of B* is an image element. * is said to be
homomorphic to 8. We denote this by: G~G*.

A homomorphy is a mapping into $* while a homomorphism is a
mapping onto G*.

Example: From Chapter 1. § 6 we see that the mapping of the group
of surface rotations of a regular tetrahedron into &, is a homomorphy,
but onto %, the mapping is a homomorphism.

Under every homomorphy the set @ of image elements is homo-
morphic to ®.

The relation of homomorphy is transitive. If z— oz is a homo-
morphy of ® into 8* and z*-—>rz* a homomorphy of G* into @**,
then the product of 7 by ¢ is defined by means of the equation:

tox=1(07) .
7o is a single-valued mapping of the elements of ® onto a certain subset
of @**.

Since.

(ro)(zy) = t(o(xy) = t(02 - 0y) = T(02) - T(0y) = T0%Z - T0Y,
7o is a homomorphy of @ into B**. We have the following rule for
calculation with homomorphies:

35



36 1I. Homomorphies and Groups with Operators

If vo and gt are defined, then g(ro) and (e7)a are also defined and

o(ro) = (e7)o =g7o.

The defining equation (o7)z = o(rz) shows that 67z can be written
instead of (67)z without misunderstanding.  Thus the homomorphy
relation is transitive.

From ~®*, G*~@** it follows that @ ~ G**.

The homomorphy relation is reflexive. That is, the identity map-
ping lg of G, defined by lgz =z, has @ as its set of images.

If we speak of the product of two homomorphies, then it will be
assumed at the same time that it is definable in terms of the above
relations.

In this sense

olg =0 and lgo=o.
The image of the complex ® in ® under the homomorphy ¢ is de-
noted by o® . If Ris a multiplicative subdomain,then®is mapped homo-
morphically onto ¢® by o .

We say o induces a homomorphy of & into G*.

The homomorphic image of a group U in ® is a group:

If U is a subgroup of @, then it follows from z, y € Uthat zy €U,
therefore oz-oy=a(zy) €oll; (02-0y) 0z2=0% (0y-02)=0(yY2).

Furthermore ez = xe =z, ce- oz =02-0e =02; therefore oe
is the unit element of o¢ll. We have o(zz!)=oz.0(z})=0e and
therefore o(z-!) is the inverse of oz . Therefore oll is a group.

If U is a subgroup of the image domain ®, then the set of all the
elements of  whose image is in U forms a subgroup 1 of G, and

=0l

Every element in T is of the form ¢z forz in U;if z,y €1, then
ogy)=oz-0y €N, zy €U, oz =(oa) €M, z1€U.

2. The Isomorphy Concept.

If a group @ is mapped onto the group B homomorphically, then
multiplication in @ parallels that in ®. However, we consider two groups
as the same in abstract group theory only if their tables differ merely
in notation,order of rows and columns: Homomorphic groups are not
always equivalent in the abstract sense. If, for example, the group ®
contains more than one element, then there is a homomorphism of @
which maps every element of ® onto the unit element, but the tables
of @ and ¢ have a different number of rows.
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Those homomorphic mappings under which the table of the group is
preserved are called isomorphic mappings . That the homomorphic map-
ping is one-one is necessary and sufficient for the latter.

DEFINITION : A homomoxrphy o of the multiplicative domain @ into
the multiplicative domain ®* is called an isomorphy, if & is mapped
onto the set B of image elements in a one-one manner, ie., if cx=0y
implies z = y.

An isomorphy which is a also homomorphic mapping is called an
isomorphic mapping (isomorphism). ® is isomorphic to ® under every
isomorphy.

Exzample: The group of rotations of an equilateral triangle is iso-
morphic to & ; the group of rotations of a regular tetrahedron is
isomorphic to %,(§ 6 of the previous chapter).

" The existence of an isomorphic mapping of ®& onto & is denoted
by 6=8.

The three well-known rules hold for isomorphism:

1) The identity isomorphism maps @ onto itself.

2) If 8=, =6, then §=6, since o1z =gry implies rz=1y
and z=y.

3) If =30, then every element y in ® can be written uniquely in
the form y =o2. o~'y =z now defines an isomorphic mapping of
® onto ®: Let y, =0z, y,= oz, ; then

oYy, Y2) =07 (0%, - 07y) = 00 (2, %,) = 2,2, = 0" 1y, - 071y,

Moreover, the mapping o~! is one-one, since ¢ is one-one. Therefore
it follows from =@ that §=@. Calculation with inverse mappings
satisfies the following rules:

If the equation o= 1y is solvable for a homomorphy o, then ¢ is
an isomorphy, since oz = oy implies Tox = roy and therefore z=y.

An isomorphic mapping can aiso be defined as a homomorphy for
which 7o = 15 and og = 14, are solvable. Then for all y € ®*:y= ooy
and therefore @*=@. Moreover T=p=o0"1

3. Factor Group. Isomorphy Theorems.

Under what circumstances is it possible to read off the multiplication
table of a homomorphic image of a given group ¢ from the multiplica-
tion table of (& itself?

We have first the following theorem:

If R is a normal subgroup of &, then there is @ homomorphism @ of &

under which the set of elements of & mapped onto oe is precisely N .



38 II. Homomorphies and Groups with Operators

We set ca=aM,

Then o(ad) =abNR=a@MN=aN-dN=o0ca-ob.

From the above we realize that the set of cosets of & with respect to a
normal subgroup of ® form a group homomorphic to . The group of
residue classes of a group ® with respect to a normal subgroup % is
called a factor group and is denoted by ®/% . The order of a factor group
is equal to @: N. The unit element of the factor group is the normal
subgroup RN.

If, conversely, the left cosets, formed with respect to a subgroup,
form a group under the usual complex multiplication, then the subgroup
is a normal subgroup, as we saw previously.

FIRST ISOMORHISM THEOREM : Under a homomorphism o of a given
group @ onto a group B, all the elements of G which are mapped onto
the unit element of ® form a normal subgroup € of ®, called th,e_ kernel
of o. The factor group of ® with respect to € is isomorphic to §.

Proof : All the elements of @ which are mapped on the unit element &
of ® under o form a subgroup €.

o(a€) = oa gives a one-valued mapping .

0 (a€ - b€) = 0(abC) = o(ab) = 0a - 0b = 0(aC) - a(bC).

Fromo(a€) = o(€) = ge it follows that da = ce ; and therefore

ac@ aC=E6.

a€ - b€ = abG,
€ is a normal subgroup, and from the isomorphism it follows that the
homomorphic image of ¢ has the same table as the factor group &/ .
Therefore the question of the multiplication tables of homomorphic
images will be resolved if we can give all the normal subgroups of the
original group. (See Exercises 9, 10 at the end of Chap. I.)

SECOND ISOMORPHISM THEOREM: If U is a subgroup and R is a
normal subgroup of the group ®, then the intersection U N\ N is a normal
subgroup of U and

UWUNR=UR/R.
The isomorphism is obtained by means of the mapping:
TUNR)—>TUNR)-R=URN.

Proof : The homomorphism @ —a® of ® onto /N is again denoted
by ¢ . Then U ~oll. Under the mapping of 11 onto oll, precisely the
elements of U N\ N map onto e; therefore 1 A\ N is a normal subgroup

Therefore
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of U, and WUN R=0cl. If we replace I by UN then the same
argument shows that UR/N =oll. The theorem follows from both
isomorphisms.

If § is a normal subg};oup of the group @, then for every homo-
morphism ¢ the group 5 = 09 is a normal subgroup of §= ¢® since
0z -Hloa)l=o(zHr ) =0H=5. If, conversely, § is 8 normal
subgroup of @, then all the elements of & whose image is in $ form
a normal subgroup § of ®, since

a(zHz) = o (2)Ploz) =,
and therefore z92-' C §.  Information on the relation between factor
groups is given by the

THIRD ISOMORPHISM THEOREM: Let o be a homomorphic mapping
of ® onto ®. Let G be the normal subgroup composed of the elements of &
which map onto the unit element of B; let § be a normal subgroup of
G, let D be the group of elements in @ whose image falls in § .

Then D is a normal subgroup of ®, and

©/9 = B/H = ©/C/9/C.

Proof: We have $~@ and B~8/H. Under the second homomor-
phism exactly the elements of § map onto the identity coset 9.
Under the first homomorphism precisely the elements of § map onto § .
Therefore ®/9 = /9. If we set T=G/€, then /9 = G/E/H/C.

§ 2. Representation of Groups by Means of Permutations

We want to find the homomorphisms of given abstract groups
onto permutation groups.

DEFINITION: A single-valued mapping #— 7, of the elements z
of a group @& onto the permutations 7 of w letters is called a repre-
sentation of & (as a permutation group) of degree a if

Ty = Tlp * Ty

All permutations n, form a group P, the representation group.

A representation is said to be faithful if the homomorphy induced

by the representation is an isomorphy.
" Two representations 4, 4’ by means of letters from I, , M,
respectively, are said to be equivalent if there is a 1-1 mapping a —a
aof the letters of I}, onto those of M, such that (z.a) = =,’'a’ for all z;
in short if the representations are the same except for the naming of
the letters.

If the permuted letters form a system of transitivity under 9, then
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the permutation group P and the representation of G by P are called
transitive, otherwise they are called intransitive.

If € is a system of transitivity of B, then =’ = (“‘ ‘) ,where t < E,

is a permutation of letters in ¥, and the mapping z-—x,’ gives a
transitive representation 4y of (. The representation group belonging
to Ay is called a transitive component of }he original representation.

Since, clearly, every representation can be constructed from the
transitive sub-representations, it is sufficient to investigate the transitive
representations of a given group 6. :

Let a transitive representation 4 of degree w of the group ¢ be
given. We choose a letter a and consider two elements of & to be in the
same class if the corresponding permutations have the same effect on the
letter a. With the help of this decomposition into classes, a normal con-
gruence relation is definable. Moreover, z = y implies.7.a = n,a, Which
implies =#,,6 = ®,7,0 = m,m,0 =7, ,a, and thus zz=zy ; therefore
we have a right congruence with respect to the subgroup ®, which con-
sists of all elements of & whose corresponding permutation leaves the
letter a fixed. If we call the left coset consisting of all elements z for
which =,a =08, R,then

yR,= R,’, oralso =, = (;i; .

The subgroups ®,, G, . . . form a family of conjugate subgroups of &,
since zU,z-1= @3” +- The same family of conjugate subgroups belongs
to all equivalent transitive representations of G.

Conversely we assert: If I is a subgroup of & and G= Z R, is the
decomposition of @ into left cosets with respect to W , then the mapping

R;
R R‘)
is a transitive representation of degree @ of @ as a permutation group
of left cosets.

In fact z R, is also a coset; moreover

Tay = (zf;i) = (zljé‘) (y}.?l‘?,) =TTy
and =, = (g:) = 1;therefore the =, are permutations and the mapping

Z—- 7, is a homomorphy. Transitivity follows from the remark that
for every index pair i, k the equation R, = R, is solvable. The transi-
tive representation just found is called the representation belonging
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to U. Equivalent representations belong to conjugate subgroups and to
them only.

The degree of the representation belonging to U is equal to the index
of I in @. —~

Under the representation belonging to Ul , exactly those elements
in the intersection R of all the subgroups conjugate to 1 are mapped
onto 1 . Consequently the representation group is isomorphic to ®/%
and the representation is faithful only when RN =e.

We denote the corresponding representation group by ®, and the
image of a subset € of @ by ®,.

If the subgroup U is of finite index in ®, then the representation
group is finite, and conversely.

The left and right representative systems of ® with respect to 11 go
into left and right representative systems of ¢, with respect to
1, and conversely; therefore Theorem 4 of Chap. L. holds for infinite
groups ®.

If we set 1l = e, we obtain the regular representation of & known
from Chap. I., Theorem 2. The degree of the regular representation is
equal to the order of @.

The representation group ®, is transitive and every permutation in
@®, either leaves every letter fixed, or leaves none fixed.

Permutation groups with the two preceding properties are called
regular permutation groups. Regular permutation groups are their own
regular representations. Moreover, every transitive representation group
of an abelian group is regular (since every subgroup is a normal sub-
group.)

The permutations = of a regular permutation group have the prop-
erty that a‘a=a implies znf=1.

Permutations with this last property are said to be regular. A per-
mutation of a finite number of letters is regular if and only if all its
cycles are of the same length.

A transitive permutation group consisting of regular permutations
only is a regular permutation group.

How does the representation of a group $, properly between U and 6,
look in the transitive representation group $=6, ?

- " r 3

We decompose © =§G"© and § =,‘§' H,U1 into left cosets and

observe that the multiplication of left cosets of ® (with respect to 1)
by any z in @ permutes them in bundles: Either the cosets of ®(llr) ina
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complex G,9 are left there or they are mapped onto a complex G.$
disjoint from it.

Therefore there is & decomposition of the aggregate M of the per-
muted objects into mutually disjoint systems Ju, . . ., Sr.each containing
8 elements and such that the permutations in R permute the systems
Sy ev s S and r>1,8>1.

We call the system S, . . ., 8, a family of (conjugate) systems
of imprimitivity.

If the letters permuted by a transitive permutation group R can be
decomposed into a family of systems of imprimitivity, then R is said to
be imprimitive. Otherwise P is said to be primitive.

Correspondingly, the representation of & by Il is said to be primi-
tive or imprimitive according as the representation group @, is primitive
or imprimitive.

To a decomposition of the totality M of permuted objects of a transi-
tive representation group R= @, of the group ©into a family of systems
S .- Qe of imprimitivity, there belongs a group $ properly between
& and W such that the left cosets of ®(Ur) in F form a left coset of &
with respect to $.

Let us suppose that the left cosetll of & (117)is in 1. Then we say two
elements of @ are congruent if their corresponding permutations map $,
onto the same J;. This is a normal congruence relation. Furthermore it
follows from z = g that om = oo, and therefore that we are consider-
ing a right congruence of & with respect to a group $ which contains 11
in any case. From the definition of imprimitivity and transitivity of
R it follows that § is a group properly between 11 and @, thus the theorem
is proven.

The transitive representation @y is primitive if and only if U is a
mazximal subgroup of ®. For example transitive representations of prime
order are primitive.

When is a letter system § a system of imprimitivity? As a criterion
for this we have: If § contains more than one, but not all, the permuted
letters and if #J L § whenever o permutation x in B leaves a letter
of § inJ,then is a system of imprimitivity.

In any case the condition is necessary. If the condition is fulfilled,
then two letters a and b are called congruent if there is a permutation
7 in B which maps a and b into . The symmetry of the congruence is
clear. Since R is transitive, the congruence is reflexive. If, moreover,
na, nb, pb, gc are contained in §, then mp-1(pb) €F, and there-
fore by assumption (mg-1)ec €F, ac €3, so that the congruence
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relation is also transitive. Consequently the totality of permuted letters
is decomposed into disjoint classes of congruent letters. Among these
letter systems we find§, since two elements in R are congruent and
if, on the other hand, a €%, =na, xb &g, then it follows that
n~l(na) €F, and therefore by assumption al(=zb)€F, bES.
Obviously the letter systems found in this way are conjugate under B.
It follows from the assumption that § is a system of imprimitivity.

A letter system S of a finite number of letters is a system of imprimi-
tivity if it contains more than one, but not all of the permuted letters,
and if for a fixed letter a, in § and all permutations = in R, ma, € §
implies nJ C G-

Proof: For every letter a in J, there is a permutationgin ® which
maps g, onto a. It follows from the assumption that o3 C §, and, since
Jis finite,eJ=9. If nma< § holds for a permutation = in §, then
wea, € J, neJ = 2F C §.Now we need merely  apply the previous
criterion.

THEOREM 1: A normal subgroup N + 1 of a primitive permutation
group B is transitive.

Proof: Let  be a system of transitivity of R having at least two
letters and let @, be a letter in €. If the permutation = in P leaves the

letter @, in ¥, then for any permutation v in %, nm—1=( ”,":) lies
Vi

in N and therefore whenever %, lies in E, ava,lies in § also. Since
RNa,= T, we have T .  Since this conclusion holds for every
letter @, in , E is either a system of imprimitivity of §, or T contains
all the letters. It follows from the assumptions that R is transitive.

As examples of primitive groups we have the multiply transitive
permutation groups.

DEFINITION : A permutation group P is said to be k-tuply transitive
if the number of permuted letters is at least k and for any two (ordered)
k-tuples of letters (a,,...,a;) and (b, ..., by) there is a permutation
& in R which maps a, onto b,, a, onto b, . . ., a; onto b;.

P is called exactly k-tuply transitive if  is £-tuply but not k-+1-tuply
transitive.

Every k-tuply transitive permutation group is transitive.

A permutation group P is k-tuply transitive if for a fixed k-tuple
(1,..., k) and every k-tuple (a,, ..., a;) there is a permutation = in
which maps 1 onto a,, 2 onto @, . . . , k onto a;. Then for any other k-tuple

(b, bay . . ., by), there is a permutation ¢ in P which maps 1 onto b,,
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2 onto b,, . . ., k onto by,and therefore ¢z~! maps a, onto b,, a, onto
b, . . ., a; onto by.

For example, the symmetric permutation group is the only n-tuply
transitive permutation group of n letters.

An (n-1)-tuply transitive permutation group of = > 2 letters is
also n-tuply transitive and therefore symmetric.

The alternating permutation group of = > 2 letters is exactly
(n~2) -tuply transitive, for one of the two permutations

(l 2 ...n—2n—ln)’ ( 12...n—2 n—ln)
G103 Gp_y Gp_y G, @18y . .-Gy Gp Gy,
is always even. .

A doubly transitive permutation group P is also said to be multiply
transitive and is primitive. Since a permutation can be found in ® which
leaves a letter a fixed but maps a letter b different from a onto any
letter =a, a lies in no system of imprimitivity.

A transitive permutation group R is k-tuply transitive with k > 1
if the subgroup U, of all permutations which leave a fixed permutes the
remaining letters in a (k-1)-tuply transitive manner. There is a permu-
tation 7 in P which maps a, onto @, a permutation ¢ which maps b,
onto @ and a permutation ¢ which leaves a fixed and maps =a, onto
oby, mayonto gbs, ..., =a, onto pb, . But then g-l¢x maps the
letter a, onto b,, a. onto b., . . ., a; onto b.

There is a conjecture that any sextuply transitive permutation group
of n-th degree (and, apart from a finite number of exceptions, even any
quadruply transitive permutation group of n-th degree ) containstheal-
ternating permutation group of n-th degree.

The construction of all finite multiply transitive permutation groups
is an interesting but still unsolved problem.

§ 3. Operators and Operator Homomorphies

DEFINITION : A homomorphy of a multiplicative domain into itself is
called an operator (or endomorphism).

If the image of z is denoted by z®, then an operator @ is defined
as a single-valued mapping of ® into itself with the properties

°€®, (zy)°=2%-y° forall z,yc®
and the product of two operators 6, and 6, is defined by the equation
286 — (2818,
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The identity mapping of & onto itself is an operator with the property
10=01=06

for all operators ©.

All operators of a multiplicative domain form a semi-group with a
unit element.

A semi-group with unit element denoted by {2} is generated by
a complex Q of operators by adjoining a unit element and forming all
possible products of elements of 2 . Every semi-group of operators which
contains 1 and Q also contains the domain {2} of operators generated
by Q.

DEFINITION : The multiplicative domains ®,, ®,, . . . have a common
operator domain Q if

1) o multiplication is defined in Q

2) to every element O in Q, there corresponds an operator @ of ®;,

3) to the product 0,0, of two elements in Q, there corresponds
the product of the operators @, and 6, in 6.

In all the following considerations a fixed common operator domain
is assumed unless something else is explicitly stated.

DEFINITION : A homomorphy ¢ of & into $* is said to be an operator
homomorphy if (@) = (02)°

for all z in G and for all operators @ in the common operator domain Q .

This relation is transitive and reflexive.

If we talk of a homomorphy we shall, if nothing is said to the con-
trary, mean an operator homomorphy over 2 '. If other homomorphies
are also considered, then we shall explicitly give an operator domain
belonging to them. For example a 1-homomorphy means an ordinary
homomorphy.

DEFINITION: For a given operator domain, a multiplicative sub-
domain U of @ is said to be admissible? if for all @ in Q: U°CU.

Given two admissible multiplicative sub-domains, their intersection
and the multiplicative sub-domain generated by them are also admissible.

An operator in Q maps an admissible subdomain onto an admissible
subdomain. Moreover, for an arbitrary complex &, the multiplicative
subdomain' { 8% \/ 8% ...} generated by the union of all % with
9, ¢ Q forms an admissible subdomain which contains . It is called

1 Also called an £ -homomorphism. See JACOBSON, Theory of Rings (Amer. Math Soc.)
?Also called an £ -subdomain.
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the subdomain generated by & over Q and is denoted by {8},. Every
admissible subdomain which contains & also contains {8} .

We assume now that @ is a group.

Subgroups which are mapped into themselves by all operators of the
entire group, are said to be fully invariant subgroups.

The unit element and the entire group are fully invariant subgroups.

An admissible subgroup is mapped hom rphically onto an admis-
sible subgroup by an operator homomorphy.

This is because, for all z in U: (02)? = o(29) €.0ll, since z® €.

If Tt is an admissible subgroup of the image domain @, then all the
elements in @& whose images lie in T form an admissible subgroup U
of ® and : T=cl

Every element in T is of the form ¢z with z inU; from
z€,0€Q it follows that

ez €ND (02)9=0(29), 2z° €.

In the following investigations it will be assumed that the subgroups
used are admissible, if another operator domain is not explicitly assigned
to the subgroup in question. For example a 1-group is an ordinary sub-
group.

Let @ be a group with operator domain 2. Given a homomorphism
o of @ we wish to consider the operator domain also as the operator
domain of ¢@® so that ¢ becomes an operator homomorphism.

Then o(z® = (c2)® for all @ in Q. In order that this mapping
© be single-valued in ¢@®, the normal subgroup € of all elements of ¢
which are mapped by ¢ onto ce must be admissible with respect to Q.

If conversely the normal subgroup § of all elements in the group 6
which map onto oe under the homomorphism ¢ is admissible with
respect to the operator domain £, then we define the extension of 2
too® by the condition

(02)® = o (2°)

for all ® in Q. Then @ is an operator of ¢@.
For it follows from ¢z =0y thatz=ay, where a €.
By assumption a® €€, (02)9=0a(2°) = o(a®- y9) = a(y9).
Moreover, (62 - 09)® = (0(x))® = o ((zy)®) = 0(29+ ¥®) = ¢ (2®) - o (y?)
= (02)9 (0y)°.
Qis a common operator domain of (§ ando® since 6,0,=06, in
2 over & implies (0298 = ¢ (29)% = ¢ ((29)9) = g 2%, and there-
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fore ©,= 6,0, in 0®. From the definition of 2 over o® it follows that
o is an operator homomorphism.
The operator domain  of  is extended to the factor group of &
with respect to the admissible normal subgroup % by the condition
(@R =a®n
for all @ in Q.
If we regard (aR)® as a coset mod % we can delete the dash without
misunderstanding.
We apply the new concepts to a cyclic group G= (A). The homo-
‘morphic image of a cyclic group is cyclic.
From o¢Am™=(cd)™, it follows that ¢® = (0 4) and the above state-
ment is proven. Every subgroup of a cyclic group is admissible.
This is because 4® = 4%, and therefore
(Au)9= (A@)m=Almg (A"‘).
Every cyclic group has as many operators as it has elements.
This follows from the fact that an operator @ is uniquely determined
by its effect on A:
(4™ = (46)m = A,
Conversely,the mapping (4m)® = 4=t is an operator.

§ 4. On the Automorphisms of a Group

DEFINITIONS: An isomorphy of a group with itself is called a
‘meromorphy.

An isomorphic mapping of a group onto itself is called an automorphic
mapping (automorphism).

An isomorphic mapping of a group onto a subgroup is called a
‘meromorphic mapping (meromorphism). The mapping is called a proper
meromorphism if the subgroup is a proper subgroup.

If a group ® has a proper meromorphism ¢ , then @ contains the
infinite and decreasing sequence of subgroups:

B>c@>aG,...
A finite group, therefore, has no proper meromorphism. Every oper-
-ator of the infinite cyclic group which is different fromo0, +1, is a
proper meromorphism.

The product of two proper meromorphisms is also a proper mero-

morphism.
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All the automorphisms of a group ® form a group.

The group of automorphisms of a group ¢ without operators is
denoted by Ag.

The group of automorphisms admissible over an operator domain £
is denoted by (4g)p -

1. Inner Automorphisms.

The “transformation” of the elements of a group ® by a fixed
element z is an automorphism. First we have the simple but important
rule: zaz-!.-zbz-'= zabax-1; secondly, the transformations form
a group with the identity automorphism as unit element.

We call the automorphism (z:z_,) = (:z) an inner automorphism
of the group. All the inner automorphisms of ¢ form a group Jg.

We saw previously that the mapping z — z defines 2 homomorphism
between @ and Jg. Precisely those elements in the center of ¢ are mapped

onto the identity automorphism, so that we have the isomorphy
(1) By =Jsg,

The group of inner automorphisms is a normal subgroup of the group
of all automorphisms. This is because for every operator @

2) (a2)® = (zax1)® = 29a® (29)-1,
and therefore @z =296 ; and if @ is an automorphism, then
(3) 0z6-1 = z0.

The factor group of Ay over Jg Is called the group of outer auto-
morphisms.

From formula (2) we see that:

An automorphism maps a series of complexes which are conjugate
under @ onto a series of complexes which are again conjugate under .

In particular, classes of conjugate elements go into classes of con-
jugate elements. But not every automorphism of a finite group which
maps every class of conjugate elements onto itself is an inner auto-
morphism (see Ex. 10, Appendix),

2. Complete groups.

A group is said to be complete if its center is ¢ and every automorphism
is an inner automorphism.

THEOREM 2: The automorphism group of a simple non-abelian group
is complete.

Proof: Let ® be simple but non-abelian. Since the center of @ is a
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normal abelian subgroup, it must be e. Therefore @ is isomorphic to the
group J of inner automorphisms. We may even identify ® with J so that
in the full automorphism group A of G: «xx-!= 2* for all z in J. , and
2*=z for all z implies a«=1. Therefore the center of A is 1,and the
only element in A with which all the elements of J commute, is 1.
An automorphism ¢ of A4 onto itself maps J onto a normal subgroup
J? of A. J° is isomorphic to J and therefore simple. The intersection of
J and J° is a normal subgroupof J ,and therefore J =J° or J N J* = 1.
But in the latter case J and J° commute elementwise, since
acd, pcJ°imply:

apatc o, Baipred,
xfa-1fteJ NI, afa-1pt=1,
apf = po.

Since J = 1, we must have J = J°. Consequently the mapping z— z°
for all z in J is a certain automorphism o' of J. We want to prove that
the automorphism o of A is an inner automorphism and may, for this
purpose, replace ¢ by the automorphism 7= ¢'-1¢ of A. Now z° =2z
for all z in J. Therefore, axx-1 = 2* € J implies &*z(x*)~1 = (2°)* = o,
and therefore a*=o«. Thus 7 is the identity automorphism of A4,
Q.E.D.

Are there any simple non-abelian groups? Since every subgroup of
an abelian group is a normal subgroup, it follows that:

A simple abelian group = e is cyclic of prime order.

Conversely a group of prime order is cyclic and simple.

Thus “simple and non-abelian” is equivalent to “simple of composite
order.”

THEOREM 3: The alternating permutation group on five letters is
stmple.

Proof : A normal subgroup of 9(; can be divided into classes of elements
conjugate under ¥, among which 1 must occur, and its order divides the
order of ;. The classes of ¥, as previously shown, are: (1) The identity
permutation, (2) The 15 double transpositions,(3) The 20 3-cycles, (4)
and (5) 12 5-cycles each. But no sum of two or more integers from the
set 1,15, 20,12, 12 is a proper divisor of 60. Therefore U, contains no
proper normal subgroup, as was to be proved.
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3. Characteristic Subgroups. Centralizers.

A subgroup of a group ® which is mapped into itself by all auto-
morphisms of  is said to be a characteristic subgroup. ® and e are
characteristic subgroups. The subgroups admissible under all inner auto-
morphisms are precisely the normal subgroups. Consequently, character-
istic subgroups are always normal subgroups.

The center of a group is a characteristic subgroup.

Proof: Since * =@ for an automorphism « and zz=2zz for all
2 implies that 22*=22* for all x, we have 2* in the center for
each z in the center.

The factor group over the center is likewise characteristic. We can
even form a series of characteristic subgroups, the ascending central
series, by defining recursively: 3,=e, 3 =3(®); if 3 has already
been defined as a characteristic subgroup, then 3;,,/3; will be the center
of ®/3.

A group is said to be characteristically simple if it does not contain
any proper characteristic subgroup. The investigation of the structure
of the finite characteristically simple groups will later be reduced
to the investigation of the structure of simple groups.

If % is a group of automorphisms of the group ®, and N is a normal
subgroup admissible under 9, then we can derive the structure of %
from the structure of certain groups of automorphisms of &/ and N
in the following way: All the automorphisms of 9% which leave the ele-
ments of N fixed form a normal subgroup %A, of A. All the automorphisms
of % which leave the elements of /% fixed form a normal sugroup %,
of 9. By the first isomorphy theorem, %A/, is isomorphic to a group of
automorphisms of % and /. is isomorphic to a group of automorphisms
of G/N. A, N N, consists of all the automorphisms « in A such that

1) »=v» for all » in ¢
2) z*z-1c N forall x in G.

See exercise 6 at the end of the chapter concerning this point.

Now we apply the first isomorphy theorem to the normalizer Ny
of a subgroup 1.

The mapping z— (z U[::-l) of the elements  in N, is a homo-

morphism onto a group of automorphisms of 1.
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Consequently all the elements of 8 which commute with every element
of U form a subgroup Zy. Z, is called the centralizer of W. The central-
izer of a subgroup is a normal subgroup of its normalizer and the factor
group is isomorphic to a group of automorphisms of the subgroup.

The centralizer of the whole group @ is equal to its center.

4. The @ - subgroup.

An automorphism of the group @ is uniquely determined by its effect
on the elements of a system of generators of (. In order to state this
circumstance more sharply, we introduce the following concept.

DEFINITION: The set @ of all the elements which may be deleted
from every system of generators of a non-trivial group is a subgroup,
the @- subgroup of ¢:

1) Since ® = e, e is a member of P;

2) If # € @ and y € P,then it follows from & = {zy, &} that
®={z,y, 8 and therefore ® ={y,®)}; therefore @ =(8}; xy also
belongs to &;

3) If z &€ @ then it follows from @ = {21, 8} that &= {z, ®)
and therefore @ = {®} ; 2~ also belongs to ®.

The @ -subgroup is a characteristic subgroup (since every automor-
phism maps a system of generators onto a system of generators), hence
also normal.

The @ -subgroup is the intersection of the whole group with all of its
maximal subgroups.

If 9 is this intersection then we shall show 1) @< D, in other
words: If x does not lie in the maximal subgroup 1 then it is not in @
either. This is because {z,U}=@+U. 2) DLP ;in other words: If =
does not lie in @, then neither does it lie in every maximal subgroup
of . If {#,8)=®=+{®), then z is not in {&). By the theorem on
maximal subgroups', there is a largest possible subgroup 1l which con-
tains & but not z. Il is moreover a maximal subgroup of @, since any
larger subgroup would contain z and & and therefore also the group

(z, ®)=6.

If every proper subgroup can be embedded in a maximal (proper)
subgroup, then we have the

* Theorem 5, Chap. L.
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BasIS THEOREM : If a complex & together with @ generates G, then &
alone generates G .

If {®) + ©, then {®) could be embedded in a maximal subgroup Ul .
But then @ would also lie in U . Therefore the group @& generated by &
and @ would lie in U, which is a contradiction.

Now let ® be finite, Ag the automorphism group of ®, % the
normal subgroup consisting of all automorphisms which leave every
coset of G with respect to @ fixed. Then 4g: B is isomorphic to a group
of automorphisms of &/®. The factor group ®/® has a finite number of

generators R,, . . ., R, Since, by the basis theorem, a representative
system S,, . .., S, generates the whoie group ®, there are as many dif-
ferent systems conjugate to S;, ..., S, under B as there are elements

in 8. The (@:1)% representative systems decompose, therefore, into a
certain number of classes of systems conjugate under %, such that the
classes each contain B:1 elements. Thus we obtain the divisibility
condition :
@ (Ag:1) (@:1)(dge:]).

5. Normal and Central Operators.

An operator is said to be a normal operator if

2yoet = (aya-1)°

for allz,yin G, i.e.:
An operator is normal if it commutes with all the inner automor-
phisms.
Therefore a normal operator maps a normal subgroup onto a normal
subgroup.
If & is a normal automorphism,then z*y*z—==zy<x? or
zlze Y= yexlze

for all z, y and, since &*= @, z~'2* is in the center of %, and con-
versely. An automorphism is normal if and only if it multiplies every
element of ¢ by an element of the center.’

The mapping z —» z-12° is an operator— 1 + «, since

(@y)i*e= (zy) Tt (zy) = yralary" = o laty Tyt = ariteyite,

An operator which maps every element of the group onto a center
element is said to be a central operator. Every central operator is normal.

6. The Holomorph of a Group.

* Because of this property a normal automorphism is also called a center auto-
morphism.



§ 4. On the Automorphisms of a Group 53

Is it possible to extend a given group @ to a group § so that every
automorphism of ® can be induced by a transformation by an element
in?

Let M be any group of automorphisms of ®, and consider the set §
of permutations ( y:.) with z,y€®, a € M.

-2

The permutations n, = (;z) form a group @ of permutations in §,
and by I, Theorem 2, the mapping y — m, gives the regular representa-
tion of ®. B is therefore a regular permutation group which we may
identify with @.

The permutations ( :u) form a permutation group M in § isomorphic
to M and we identify M with M.

We can verify easily that

z z z x
® (1") (yz) = (y‘z) (z“)’
and consequently §=FM=ME is a group of permutations.

According to (5), transforming by (:,) in § induces the automor-
phism « in @.

The permutation group just constructed is called the holomorph of
the automorphism group M over ®. The holomorph of the group of all
automorphisms over 6 is called simply the kolomorph of &.

Now we wish to start, in the reverse order, with a transitive permu-
tation group ®, and we form the group $ of all permutations that
form @ onto itself.

Which automorphisms of the abstract group can be induced by
transformation with elements of §?

Let ®; be the subgroup of all permutations in @ which leave the
letter i fixed. For a permutation z in § it follows that

2@t C @, a®n(ni) = ni,
and therefore 2@ C @iy
likewise 1@ C @,

Gas < @t
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therefore

Q= Gy

Conversely, let &« be an automorphism of ¢ which maps ¢, onto .
We wish to show that there is a permutation 7 in § such that
nEn-l=2° .
for all z in ®. In order to prove this we look for a permutation y in @
which maps ¢ onto 1. (There are such, since @ is transitive.) Then
®“= @,, and so without loss of generality we may replace ya by
anew a with -
G,*= @51
Let R; be the left coset of & over &, consisting of all permutations

which map 1 onto 7. The mapping (Rf) is a permutation ( R‘) of the left
. . Ry R,
cosets since &," = @,.

Then R R, R
i ) — i ) — 4
((z Ri)“) - (a:“R‘“) (z“ R,,) ’
and therefore nzt = 2"xn1,
nxn= 2"
Wehave as a result:
THEOREM 4: Let § be the group of all aut hisms, of a tr it

group ® which permute the subgroups ®; (previously described and
belonging to the given tramsitive representation of ®).Then this group
9 is precisely that induced by all transformations of & by the elements
of  the normalizer of & in the group of all permutations on the letters
of G.

We determine which permutations #x in § are elementwise com-
mutative with @. Let z-'1=4. By assumption zR,= R,z and also
7R =1 ;therefore 1= R;xl. If we set R, = x@®,, then it follows
that

2@zl =@z z2nl
=Rrl=1,

therefore G =20,271C G,.
Since m#i=1, we find through similar considerations that: &, L @,
and therefore ®; = @,.
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Conversely, let ©;=z®,2-'=@, with z< R,. Since §,z=z0, ,
R,

the mapping (R“z ) is a permutation ( II;‘) of the left cosets of @&
over @,. *
Since -

(gﬁ;- . (AI:;) = (1:;) (y%,—) = (ygiz)'

 commutes with all the permutations in ¢. The mapping z — z-! gives
a homomorphy, between the normalizer of @, in & and the group of all
permutations commuting elementwise with @,under which @, is mapped
ontol.

If however n commutes with (& elementwise, and z1 = 1, then

ni=nR;1=Rnl=R,1=1,
and therefore » = 1.

We obtain as the result :

THEOREM 5: The centralizer of a transitive permutation group ® in
the group of all permutations is isomorphic to the factor group Ng /G,
of the normalizer Nc. in & of a subgroup Gy which belongs to the
transitive representation of ®. It consists wholly of regular permutations.

As a special case we obtain the THEOREM OF JORDAN : The centralizer
of a group ® in its holomorph consists of the permutations

o= (ag) = (1ar)-

which form a regular permutation group isomorphic to .

Moreover it follows that the center of a primitive permutation group
is 1, or the group consists of the powers of a cycle whose length is a prime.

A transitive permutation group $ which contains a regular normal
subgroup ® is, by what has just been proven, the holomorph of the
group M of all permutations in $ which leave a letter fixed over the
group G.

Thus the holomorph of a group @ is primitive if and only if the group
is characteristically simple’, since a system of imprimitivity which con-
tains e consists of the elements of a non-trivial characteristic subgroup
of @.

THEOREM 6: If the holomorph of a finite group is doubly transitive,
then ® is abelian and there is a prime integer p such that the p-th pow-
er of every elementin @ is equaltoe.

i.e., has no proper characteristic subgroups.
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Proof : It follows from the hypothesis that the automorphisms of &
permute transitively all the elements = e of . Therefore all the ele-
ments =+ e of (& have the same order p. Since® = e, there are elements
of prime order in & and therefore p is a prime. Moreover all the normal-

izers of elements + e in (& have the same order %—! Thus there are

h elements in each class of conjugate elements¥ e in ¢. If there are
r+1 classes it follows that

®:1=rh+1

On the other hand & is a divisor of ®:1; therefore A=1, ie, @ is
abelian, Q.E.D.

THEOREM 7: If the holomorph of a group ® consisting of more than
three elements is triply transitive, then ® is abelian and the square of
every element is e.

Proof : It follows from the hypothesis that the automorphisms of &
permute the elements == e in ® in a doubly transitive manner. If,for
an z in Gha*=*e, x*+e,then there is an automorphism which maps x onto
2* but leaves z* fixed. But then (22)® = 2® and therefore 2®=e. If, how-
ever, x*¥e, x'=e,then by hypothesis there is an element y in @
which does not lie in () and we can find an automorphism of ¢ which
maps «* onto y but leaves z fixed. But then 22 =y which is a contradic-
tion. Consequently for all z in @, z*=e,i.e.,z =z~ From this it follows
that 2y = 2-1y-1= (yx)~* = yz. Therefore @ is abelian, Q.E.D.

If the holomorph $ of a group & is quadruply transitive, then ¢ must
consist of exactly four elements:

By the previous theorem the square of every element in @ is equal
to e. Moreover @ contains at least four elements e, z, ¥, zy. If there were
a fifth element z in & then an automorphism could be found which leaves
z and y fixed but maps zy onto z and this is a contradiction, which
establishes the above . There does, in fact, exist a group of four
elements whose holomorph is quadruply transitive. In the symmetric
permutation group of four letters, the three double transpositions
(12) (34), (13) (24), (14) (23) together with 1 form a regular normal
subgroup g, of four elements, as is easily seen. (%, is called the Klein
Four Group.)
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§ 5. Normal Chains and Normal Series
Let @ be a group with operators.
A normal chain of length r is a chain of (r+1) subgroups:
6=0626,26,>---26,=1,

which begins with & and terminates with e, and is such that every mem-
ber of the chain is a normal subgroup of the preceding member. The
factor groups @@, (1=0,1,2,...,r—1) are called the factors
of the chain.

A normal chain in which successive members are different is said
to be a normal chain without repetitions.

A normal chain is said to be a refinement of a given normal chain if
the members of the given chain are among the members of the new chain.

THEOREM 8 (Jordan - Holder - Schreier) : Two given normal chains
can be refined so that the series of factors of the two mew chains are
identical up to order and isomorphism.

In order to carry out the proof, we ask not only if a refinement process
can be found, but still more, namely :

Are there convenient methods for constructing the refinement?

Let the two given chains be :

B=0262>6,>---28,=¢

and B=929292-2>0=c

The following example shows that in general at least s—1 groups
must be inserted between adjacent members of the first chain and
similarly that at least r—1 groups must be inserted between adjacent
members of the second chain.

Let py (i=1,2,...,7; k=1,2,...,s) ber.s distinct prime numbers.
Let @ be the cyclic group of order 7 = J/p,,. Thenset

ik

. ’
di=Ilpu, Cu=ﬂpu,
=1 i=1

and @,= @; let @ be the subgroup of order n/]jd' (G=1...,7);
s'imi}‘arly let =@ and let . be the lsubgroup of order
n/ 11 e, (k=1,2,...,9) By inserting s-1 groups and -1 between
the'adjacent members of the first and second chain respectively, both

given chains can be refined so that the orders of the new factors run
through all the primes p;,. Since there is only one group of a given prime



58 II. Homomorphies and Groups with Operators

order, the resulting refinements are isomorphic. On the other hand iso-
morphic refinements between ®;., and ®; (or ;- and $,) can not contain
a factor whose order is divisible by two primes,since only common factor
groups of order p;. or 1 can lie between ®,, ..., &; (and Hiwy ..., i)
The intersection of two admissible subgroups and the product of an
admissible normal subgroup with an admissible subgroup are again
admissible subgroups. Consequently, multiplication of an intersection
lying in ®;., with the normal subgroup @®; yields a group between
@2 and @, In what follows, it will be shown that the intercalation
of the s-1 groups .

Gy, x = G- (@iy N\ i) k=1,2,...,5-1)
between ;. and ¢,and of the r—1 groups

D6, 6= Dr- (DN ®) (=1,2...,-1)
between $,., and §,,refines the given chains isomorphically.
@, and §.; are defined fori=1,2,...,r-1;k=1,2,...,s-1by
the above formulae. Moreover set
Bio=0_1, HDo,x=H-15 G,,=6;, Hre= s .
If it is shown that @; ;. is a normal subgroup of i, (£=1,2,...,5),

then the ®;,, form a refinement of @, Correspondingly for the
i, 1. If it is shown that

Q’i,k—n-@s—x,k i=1,2,...,¢
ik Dir (»-1,:,..4,.):

then the refinements are isomorphic. The desired results are given by
the following theorem concerning four groups :

If a subgroup u is a normal subgroup of the subgroup U of ®, and
the subgroup v is a normal subgroup of the subgroup B of ®, then
uWNv) isanormal subgroup of w(U N B),and v(BNY) isanormal
subgroup of 5(B NU) ;and

BUNB)__v(BNU),
w(UAD) ~ (BN

Proof: By the second isomorphism theorem u N\ 8 is a normal sub-
groupof 1 N B and

UNB_n(UND)
uN8 u

Since u N\ B is a normal subgroup of U N B, so is U, and therefore
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unB) (vAl) is also a normal subgroup of U\ LB . Under the
above isomorphy, (un B)(v N\ U) is mapped onto  u(uN V) (b N\ U)
=u(vbn\ ). Therefore by the third isomorphy theorem u( N o)
is a normal subgroup of u(ll N B), and

UIAR  _a@N®)
GABEAT — w@AY)

Since the hypotheses are symmetric, it follows likewise that (8 u)
is a normal subgroup of b(B N 1) and that

uNns _a@®@Nnw
GABEAD — 0(BAW
from which we obtain the desired isomorphy.

The method of proof can be made more
a(2ng) meaningful by means of a diagram which
shows the position of the groups occurring
a(ity) in the proof. In order to do this let a line

between two groups, one of which is above
B ) the other, mean that the group at the upper
end contains the group at the lower end
‘ul of theline.!
ang The given method of refinement, applied
for a second time, gives no new refinement
of the first refinement. Nevertheless it
may refine isomorphic chains still further.
Example: Let & be cyclic of order 12. Let (8, be the subgroup of order 6,
9, the one of order 2. 8,=9$.=e. Then

@:, 1= @1: @1. 1= @51'
A refinement is said to be a proper refinement if a new subgroup of &
actually occurs in the new chain.

A normal chain is said to be a normal series if it has no proper
refinements.

If @ has a normal series then by the theorem of Jordan - Holder -
Schreier it follows that every normal chain can be refined so as to give
a normal series. The series of factors in different normal series is iden-
tical up to sequence and isomorphy.

" The existence of a normal series is assured if the Double chain condi-
tion of group theory holds:

* Often called a Hasse diagram.
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1. Minimal condition: In every decreasing sequence of subgroups

U, DU, >... thereis an index after which all the members are equal.
Equivalent to thisis:

1.a) In every set of subgroups there is a subgroup which contains
no other subgroup of the set.

2. Mazximal condition: In every increasing sequence of groups
N, WU ... there is an index after which all the members are
equal.

2.a) In every set of subgroups there is a subgroup which is con-
tained in no other subgroup of the set. '

From the maximal condition it follows that (§ contains a largest
normal subgroup @, or is equal to ¢, that (¥, contains a largest normal
subgroup (4. or is equal to e, etc. It follows from the minimal condition
that this sequence terminates at ¢ after a finite number of steps. The
normal chain thus obtained is a normal series.

If, conversely, every admissible subgroup is a normal subgroup of (¢,
then the double chain theorem follows from the existence of a normal
series.

The normal series in group theory have received different names,
depending on the underlying domain of operators:

1. Composition Series: Every member of the chain

®=@o2©12"’2®r-12@5r=3
which is different from  is a maximal normal subgroup of the previous
member.

2. Principal Series: Every member of the chain different from
is a normal subgroup of (4, maximal in the set of all proper subgroups
of the preceding member.

3. Characteristic Series: Every member of the chain different from
@ is a characteristic subgroup of (8, maximal in the set of proper sub-
groups of the preceding member.

As an example we shall determine the structure of the symmet'm' and
the alternating permutation groups.

The following theorem is useful when investigating the simplicity
of a group.

THEOREM 9: A transitive and primitive permutation group & which
contains no proper regular normal subgroups, and in which the subgroup
of all permutations which leave a letter fixed is simple, must itself be
stmple.
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Proof : By Theorem 1 of this chapter, any normal subgroup % other
than 1, of the primitive permutation group @ is transitive. Let @, be
the group of all permutations of (% which leave the letter 1 fixed. Since
% is assumed not to be regular, the intersection N, of M with the group
@, is distinct from 1 . According to the 2nd isomorphy theorem %, is a
normal subgroup of ,, and inasmuch as @, is simple by hypothesis, we
musthave R, = @, . Since N is transitive,

G=NG, =N, =N,
as was to be proved.

THEOREM 10:' The alternating permutation group of n+ 4 letters
s simple.

Proof: ¥, U, A; are of orders 1, 1, 3, and are therefore simple. By
Theorem 8, %; is simple. Now assume that we know that 9,_, is simple
and n>5. Then ¥, is quadruply transitive, therefore primitive, and
according to the remark following Theorem 7, 9, contains no regular
normal subgroups.

The subgroup of all permutations in %, which leave the letter = fixed
permutes the remaining letters 1, ..., n—1 as N, does, and thus is
simple by the induction assumption. By the preceding theorem 9, itself
is simple, as was to be shown.

THEOREM 11: If n 44, n > 2, then the symmetric permutation
group ©, has exactly the one composition series

. G D>UDet

Proof: If m > 2, then &, is doubly transitive and therefore primi-
tive; consequently a proper normal subgroup % of &, is transitive. By the
second isomorphy theorem RN\, is a normal subgroup of ¥, more-
over R: NN\ A, 2, while the transitivity of % implies RN\ A, =+ 1.
If moreover n < 4, then because of the previously proven simplicity of %,

RAL, =,

and therefore N = %U,, as was to be shown.

By the same method of proof, it follows that for a proper normal
subgroup N of 9, the intersection ;=N N A, is a normal subgroup
% 1 of ,. Since Y, is doubly transitive, 2, is transitive. Therefore the
order of W, is divisible by 4. Either %, contains 3-cycles so that
‘)é.—-‘%, or N, consists of double transpositions and 1. ¥, actually con-

* With the help of Exercise 9 at the end of the chapter, the reader can develop the
usual proof of Theorem 10.

* Naturally this is also the principal series, indeed the characteristic series.
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tains the transitive normal subgroup B, which consists of the three
double transpositions and 1. The subgroup &, of all permutations which
leave the letter 4 fixed can be taken as a representative system of &,
over B, and so we finally obtain: Every composition series of &, begins
with &g > Ay D By

Since the abelian group B, contains three proper subgroups, &, has
three different compositions series. :

Close inspection of the proof of the Jordan-Holder-Schreier theorem
shows that its validity in a given group depends more on the relation
between the subgroups of the group than on the behavior of the indi-
vidual elements. This observation lead Oystein Ore? to consider problems
of this type from an abstract point of view, and for this purpose he
defined a new algebraic system which he called a structure. In more
recent times the theory of structures has been developed into a new
branch of mathematics.

To begin with, we define a partially ordered set (poset) as a set S
in which a binary relation is defined between certain of its elements;
this may be denoted by

alb or by bDa

or, in case it should be necessary to indicate the poset to which a and b
belong, by

alb and b2a,
S S

respectively. This relation is required to be subject to the conditions
of reflexivity and transitivity:

1) ala
(2) if alb and blec then a Ce.

Ezample: The set =(S) consisting of all subsets of a given set S is
a poset when we define the binary relation as set-theoretical inclusion.

Every subset T of a poset S is a poset if we take as its binary rela-
tion the one induced by the binary relation of S. We call two elements
a, b of a poset S equivalent, if a < band bCa. This equivalence is
normal. Furthermore it satisfies the law of substitution:

If a is equivalent to a’ and b equivalent to b’ then from a < bit follows
that o’ C ¥,

*Many results and problems have been anticipated by Dedekind.
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Therefore we are able to define uniquely the relation between the
classes of equivalent elements of S by the following rule:

a D if and only if o b,

where 7 denotes the class of all elements of S equivalent to the element
z of S.

It follows that the classes of equivalent elements of a partially
ordered set S themselves form a partially ordered set S satisfying the
additional rule:

If oD and D o then a=b.

Usually in dealing with partially ordered sets we assume that equiv-
alence amounts to equality. This certainly holds for the posets =(S)
formed by all the subsets of a set S. At any rate, the fundamental con-
cepts remain invariant if equivalent elements are substituted.

Let us observe that reflexivity and transitivity are self-dual concepts
inasmuch as a poset S is carried over into another poset S* if we intro-
duce the new relation

al b if and only if a Db.
s* s

S* is called the dual poset of S. The dual poset of S* is S. For any con-
cept employing the symbol C we obtain the dual concept by employing
the symbol > instead.

The principle of duality states that every theorem concerning posets
remains true if the symbols C, > are interchanged and every derived
concept is replaced by the corresponding dual concept.

1. Homomorphisms and anti-homomorphisms.

A one-to-one correspondence between two posets that preserves the
binary relation in both directions is called an isomorphism between the
two posets. Naturally, the fundamental concepts of the theory of strue-
tures are so chosen that they remain invariant under isomorphisms.

We define more generally: A single-valued mapping ¢ of the ele-
ments of a poset S onto a certain subset of a poset S, is called a homo-
morphy if from a C b in S it always follows that ¢a C ¢:b in S, and if
from ¢gc C ¢d in S, it always follows that there exist two elements a, b
of S such that ga = gc and ¢b=¢.d and @ C b. This defines a homo-
morphic mapping or a homomorphism of the poset S onto the poset ¢S
consisting of all the images ¢ga(aeS).
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The most important poset for the theory of groups is the poset S(®)
formed by all the subgroups of a group ®, where C is taken as set-
theoretical inclusion. We observe that a homomorphism of a group G
onto another group $ induces a homomorphism of S(®) onto S(§).

Every homomorphy ¢ of a poset S gives rise to a normal congruence
relation Ry in S defined by:

a=>b (Ry)

if and only if pa — @b. This congruence relation is isotonic: If a Cb,
v’ C ¢ and b’ =b(Ryp) then there are elements a’, ¢’ in S satisfying
¢’ =a(Rg), ¢ =c(Rep) and ¢’ C ¢’. For any isotonic normal congru-
ence relation R in S, .denote by a(R) the residue class represented by a
modulo R. These classes themselves form a poset S/R in which the
binary relation is defined by:

(3) a(R) S b(R)

if and only if there are elements a’,b’ in S satisfying o’ =a (R),
b =b(R) and o/ b

The mapping a — a(R) defines a homomorphism between S and S/R
which we may call the natural homomorphism between S and S/R. For
a homomorphism ¢ of S we find that the mapping a(R¢) — ¢a defines
an isomorphism between the posets S/R¢ and ¢S which we may call
the natural isomorphism between S/Rep and ¢S. Also, ¢ induces the
natural homomorphism between S and S/R¢. Two homomorphisms,
say @ mapping poset S into poset S, and y mapping poset S, into poset S,
may be multiplied if and only if ¢S, is part of S. The rule of multiplica-
tion is given by

(4) (py)e =g (ya) (aeSs,)

and ¢y turns out to be a homomorphism of S; into S,.

This multiplication is associative. A left identity for the homomor-
phisms into a poset S is given by the identity 15 of S. This also acts as
right identity for all homomorphisms of the poset S into another poset.

A homomorphism ¢ of the poset S onto the poset ¢S is an isomor-
phism if and only if it is one-to-one. In this case the inverse mapping
¢~ of @S onto S characterized by

plp=14

is an isomorphism between ¢S and S. Its inverse is ¢ itself:
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pot=1g;s.

If there exists an isomorphism between two posets then the posets are
called isomorphic. If there is given a number of isomorphic posets, then
all the isomorphisms between any two of them form a groupoid under
multiplication, with the identity mappings of the members of the
system acting as units.

The isomorphisms of a poset with itself are called the automorphisms
of the poset. They form a group under multiplication. Isomorphic posets
have isomorphic groups of automorphisms. A single-valued mapping ¢
of the poset S onto the poset ¢S will be said to be an anti-homomorphism
if @ induces a homomorphism between the poset S and the dual poset
of ¢S. Two single-valued mappings ¢, y which are either anti-
homomorphisms (denote by a) or homomorphisms (denote by h) are
multiplied according to the same rule as was given for the multiplica-
tion of homomorphisms, and the outcome is either a homomorphism
or an anti-homomorphism as given by the following “multiplication
table” of a and h:

a h
a h a
h a h

A one-to-one anti-homomorphism is called anti-isomorphism. E.g., the
one-to-one correspondence by which an element o of a poset S corres-
ponds to itself in the dual poset S* defined in the introduction is an
anti-isomorphism.

[N

((12)) ((23)) (3) %

@

An anti-isomorphism of a poset S with itself is an anti-automorphism.
A poset S which admits an anti-automorphism is called self-dual. In this
-case all the automorphisms and anti-automorphisms of S together form
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a group containing the group of automorphisms of S as normal sub-
group of index 2. An example of a self-dual poset is provided by S(&;),
the Hasse diagram of which is exhibited just above. The automorphism
group of S(&;) is isomorphic to &,. There are 24 anti-automorphisms
one of which may be obtained by simply interchanging &; and (1), leav-
ing the other subgroups invariant. Only six of the automorphisms of
S(8;) are induced by the six automorphisms of the group &;, which is
the largest number possible because %;, as the only non-trivial normal
subgroup, is necessarily invariant under all automorphisms of the group.

The correspondence between any automorphism a of a group G and
the automorphism ag induced by a on S(®) = S provides a homomor-
phism between the group Ag of all automorphisms of ® and a subgroup
Ag,s of the group A4(g) of all automorphisms of S(@). The kernel of
this homomorphism consists of all automorphisms of ® that map every
subgroup of ® onto itself (not necessarily elementwise).

2. Meet and join.

Let S be a poset. We describe sets formed by some elements of S by
taking a non-empty index set A and assigning to each a in 4 an element a,
of S. We define: The element z of S is the meet of the elements a, (aeA)
if and only if  C a, for all « in A and if from y C a, for all a in 4

it always follows that y Cz. We write 2= () a.. We also write
ae€

T=a:N\a /N ... N\ a, if the index set is finite.

It may happen that the meet does not exist. E.g., if no inclusions other
than the trivial ones ¢ C @ hold in S, then it is impossible to form the
meet of two or more different elements. But if the meet does exist then
it is uniquely determined up to equivalence: If x = (1 a,y= N a.

aed ned
then « C a, and yCa, for all a in A and thus # C v, y C «. Hence we are
allowed to deal with (1 @, as with an element of S.
aecAd

We always have:

(5) N a,=a  if a,=a for all acA.
aed

(6) anNb=> if b @, and conversely.
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Furthermore,
(7a) M a< N b, if a, < b, for aed,
aed aed
(7b) N a> N a
aeB T aed

for a subset B of A provided both sides of the inequality can be formed.
(7b) turns into an equality if each element a, that is removed also occurs
among the remaining elements, i.e. if aeA — B, a, = ag for some feb.
Finally, we have

(8) N b

=N
BeB £ ae

A%,

where B denotes a second set of indices and to each § of B there corres-
ponds a subset 4, of A such that bs = () a, can be formed and A is

ae
the union of all subsets A,, provided at leaﬂst one of the two sides of
(8) can be formed.

The previous rules imply the rules

9) aNa=a
(10) aNb=>bNa
(11) aN (bN¢e) = (aNb) Ne¢

provided all but one of the meets involved can be formed.

Inthe poset S; = =(S) of all subsets of a set S the meet coincides with
the set-theoretical intersection. This remains true for the poset S(®)
of all subgroups of a group . But, for a poset S, formed from certain
subsets of a set S, we may by no means infer that meet and intersection
coincide. The reason is simply that the intersection of certain subsets
a, of S (acA) belonging to S, may not belong to S.. E.g., Let S be the
set of all real numbers, and let S, be the set of all open intervals
— & < x < & (& > 0) together with the empty subset. The meet of these
intervals taken in S, will be the empty subset, but the intersection will be
the origin.

More generally, let S, be a subposet of the poset S; and assume that

@ a, exists (a,eS; for aeA). Then @1 a, may not exist at all, or it
2

‘acd : . acd 3
may exist and be different from @2 .. We only can infer the rule
aed
12) ) e =10 u
. aed aq 2 ues,
foraed
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The dual operation of meet is called join. The element z of the
poset S is called the join of the elements a, of S (aeA) if for all a in 4,
a, < z and if, for all yeS satisfying a, Cy for all a in 4,2l y. We
write z = UAa,,. The same considerations as for the meet hold for

a€

the join if we replace the symbol N by the symbol V.
Meet and join are .interdependent in the following way. If for the
subset U of all elements « of S satisfying a, C u for all a of A the meet
M u can be formed, then we have

ue .
(18) n = U @
Similarly 4,C u forall aed wed
(14) U u = N Qa
2D u forall aed aed

if one of the two sides can be formed. In fact, since a, C u for all ueU it
follows that @, C (0 u and this holds for all a in A. But if a, < b for

uel .
all a in A, then we have beU, (1 w < b, and hence (13).

Ue

A poset in which the meet and the join can always be formed, is called
complete. E.g., the poset =(S) of all subsets of a given set S is complete.
If the sum of all elements of a poset can be formed then the result will
be an all element characterized as an element including every other
element of the poset. If there is an all element and if the meet always
can be formed, then from (18) it follows that the join always can be
formed, and hence the poset is complete. This happens, for example, for
the poset S(®) of all subgroups of a group ® in which @ is all element
and in which the intersection always can be formed. The join of any
number of subgroups coincides with the intersection of all subgroups
of @ containing each subgroup of the given system of subgroups. Hence
the join coincides with the subgroup generated by all the subgroups of
the given system.

If the meet of all elements of a poset exists, then it is called null
element of S. It is characterized up to equivalence as an element of S
included in every element of S. )

If there should not beanull element of S then we enlarge S artificially
by the addition of an element m subject to the inequalities m C a for all
aeS and m C m. The enlarged set is a poset with null element m. Simi-
larly, we may add an all element if there is none.

3. Lattices.

A lattice or a structure is a set L with two binary operations N
and \/ such that for any two elements a, b there are always uniquely
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c}eﬁned elements ¢ N\b, a\/ b in L. The operations are called meet and
Jjoin respectively and are subject to the rules
(15) (idempotency)

a) aNa=a

b) aVa=a

(16) (commutativity)
a) aNb=bNa
b) ayb=bya
(17) (associativity)
a) anN(bNec)=(aNnb) Ne
b) av((yc)=(avud) e
(18) a) aN(ayb) =a
b) a\J (aNb) =a.

For example, a poset S in which equivalence amounts to equality
and in which the meet and the join of any two elements can always be
formed, is a lattice. According to (6) and the dual rule, we have

(19) alb if and only if aNb=a,
(20) alb if and only if a\yb=»>b.

Conversely, in an arbitrary lattice we may define a binary relation by
(19). From (16a) followsa Ca. Ifa < b,b C¢,thenaNb=a,bNec=
b,aNnc= (aNnb)Ne=aN (bN¢) =anb=a so thatalec. If
a<lb,bla, then aNb=a,bNa=>b,a—=anb=>bNa=>.

Hence a lattice determines a poset in which equivalence amounts
to equality. Furthermore we have (aNbd) Ne= (bNa)Na=
bN(aNa)=bNa=aNb, hence aNb< a; similarly anN b b. If
zCa,zCh, then zNa=z,2Nb=2z,2 \N(aNb) = (zNa) Nb=
zN\b=uz, so that t CaN b. Hence a/\ b coincides with the meet of
e and b formed in the poset L. Using (18) we prove the equivalence of
(19) with (20). By dual arguments it follows now that a\/ b coincides
with the join of a, b formed in the poset L.

We have found that lattices may be defined as posets in which equiv-
alence amounts to equality and in which the meet and join of any two

. elements always can be formed.
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From the definition it follows that the concept of a lattice is a self-
dual concept.

A subset of a lattice is called a sublattice if it is closed under both
lattice operations. A sublattice is itself a lattice.

Trivially, L is a sublattice of L. For any pair of elements a, b of L
satisfying b C a there is defined the factor lattice a/b consisting of all
elements z of L which satisfy b < 2 Ca (“z is between b and o). This
is a sublattice of L. Another sublattice of L is the lattice L/a of all ele-
ments x of L which satisfy @ C z; the dual notion /0 is defined to be the
sublattice consisting of all elements x of L satisfying # < a. In case
there is an element M, it follows that M/a = L/a. If there is a null
element m then we have a/m = a/0.

A complete poset in which equivalence amounts to equality is a lat-
tice. Not every lattice is complete—e.g, the lattice consisting of all
open non-empty intervals containing the origin on the real axis is
not complete. However every finite lattice is complete. More generally,
a lattice satisfying the maximal condition that in every non-empty sub-
set of the lattice there is an element which is not included in any other
element of the subset, is a complete lattice provided that there is an all
element and a null element. In fact, for any subset U of the lattice the
set V of all elements of the lattice included in every element of U will
not be empty; hence it contains an element a not included by any other
element of V. But the join of a and any other element of V also belongs
to V and so includes a; hence it must coincide with a. Thus e includes
every element of V, so that a is the meet of the elements of U.

4. Projections and antiprojections.
For any lattice L and any element a of L there is defined a homo-
morphism ¢, of the poset L onto the poset a/0 by the rule
> @r=aNzx;
This homomorphism may be called the projection of L with respect to
a or onto a/0. In fact, we even have
(21a) (N Y) = @z N @y,

as follows from (17a) and (18a).
The dual concept is the antiprojection of L with respect to the ele-
ment a of L which is defined as the homomorphic mapping ¢¢ given by

roer=a\Jzx
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of the poset L onto the poset L/a. This homomorphism preserves the
join operation

(21b) (2 ¥) =gz 0oy,

as follows from (17b) and (18b).

The projection g, induces in any factor lattice b/c a homomorphism
of b/cinto (@ N\ b)/(a N ¢) such that @b=aN b, p.c=aN c. But we
can by no means infer that ¢, maps b/conto (a N\ b)/(a Ne).

Eg, in S(&,) let a= {(128), (12)} ,b=G,, c— ((1234)).
There is exactly one subgroup x between ¢ and b other than ¢ and b
itself viz.z = {(1234), (24)} butwehavea N\ b= ag,aNc=aNz=

== (1) ; hence the subgroup y = ((123)) of a/m is not in . (b/c).
The six subgroups involved form a sublattice whose Hasse diagram is
given below. (Hexagon lattice.)

oa
c o\/ Yy
Generally we have "
(22) P =ga(@az\/¢)  if ¢z,

because
2 <2, poz\VeclzVVe=xz,
@a(@az\V€) C @z Ca N @z C @ N (@t \J €) =pa(paz \J €).

Hence a necessary and sufficient condition that ¢, induce an isomorphism
of b/c into a/0 is that z = @z \/ ¢ whenever ¢ Cz b, or
(23) PP =12 for all elements x of b/c.

This condition guarantees that ¢, induces an isomorphism between b/c
and some subset of (& N b) /(@ N ¢), but it still may happen that there
are elements in (a N b)/(a N ¢) not belonging to @.(b/c) as is the
case for the pentagon which one obtains from the last figure by omitting
., and which looks as follows:
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If g, induces an isomorphism of b/c into ¢/0 then its inverse is induced

by ¢ according to (23). Hence in order to be sure that ¢, induces an

isomorphism between b/c and (a N b) /(@ N ¢) we have to amplify (23)
by R

(24) PaPY =Y forally in (a \b)/(a Ne).

DEFINITION : The factor lattice b/c is projective with the factor lattice
d/e if @, induces an isomorphism of b/c onto d/e or what is equivalent, if
¢ induces an isomorphism of d/e onto b/c.

This relation between b/c and d/e is described properly by the
formulas:

(25) c\Jd=b, ocNd=e

and the identities

(26) ((eve)Nd)Ve= (z\e) N (c\Ud)
27 (yNd) veyNd= (yNd) v (cNd)
for all z and y of L.

The relation is reflexive: ¢, induces the identity isomorphism
between b/cand b/c.

The relation is transitive: If b/¢ is projective with d/e and d/e pro-
jective with f/g,then we have f C d,and hence from the associative law

PrPa = @s.

It follows that ¢, induces an isomorphism between b/c and f/g, viz., the
product of the isomorphism induced by ¢, between d/e and f/g and the
isomorphism induced by ¢, between b/c and d/e.
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Moreover if b/c is projective with d/e and if also b/c is projective with
f/g such that f < d, then d/e is projective with f/g. (Cancellation Law).

Proof: ¢4 induces an isomorphism @, between b/c and d/e, ¢, induces
an isomorpll_ism ¢r between b/c and f/g. Since f C d, we find that ¢, =
FrFa Where ¢; denotes the homomorphism induced by &; on d/e. It follows
that @, is an isomorphism between d/e and f/g.

By duality we find: If b/c is projective with f/g and if d/e is pro-
jective with f/g and if in addition the inequality ¢ 2 e holds, then b/c
is projective with d/e.

Finally, let us notice the rule of inclusion: If b/¢ is projective with d/e
and if ¢ C ¢ C b’ C b, then b’/¢’ is projective with (b’ d) /(¢/N\d). And
the dual rule: If ‘b/c is projective with d/e and if e C e’ C d’C d,then
(d'Nc)/(e'Ne) is projective with d’/e’.

The first of the two rules follows from the fact that ¢, induces an
isomorphism between b’/¢’ and (b'N\d) /(c’N\d) which according to the
associative law also is induced by ¢.ns. The dual rule follows by duality.

An important application of these concepts can be made to the lattice
S (@) of all subgroups of a given group ®. First, @ is the all element of
S(®), (1) the null element of S(®). Second, if B, € ¢ S(®), €< B, then
/B will be the lattice formed by all subgroups of € between € and 8. If

* € is a normal subgroup of B, then for brevity we introduce the notation

C<B

for this relation between € and 8.

If € < B and if for a certain subgroup % of @ it holds that {%, €} =%
then it follows from the second isomorphy theorem that there is the
isomorphism ¢, ,, . between /€ and A N B/A N € defined by the formula

(28) Pane (06) =a(AN6)

for all ¢ of %A, which may be called the projection of B/€ onto
AN B/ANGE. The group-theoretical isomorphism @y g induces an
isomorphism between the corresponding lattices 8/C and (ANB) / (ANE)
and from (28) it becomes clear that the group-theoretical projection
induces a lattice-theoretical projection.
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5. The Dedekind elements of a lattice.

A. Kurosh has generalized the concept of normality to all lattices
by making the following definition:

The element ¢ of the lattice L is called a Dedekind element of L if
and only if for each element a the mapping ¢, induces an isomorphism
of (a\sc) /contoa/(aNc). This amounts to the identities (26) and (27)
for all @, z, ¥ of L. Or, using the terminology introduced by O. Ore:
(a\Jc) [c is projective with a/(aNc) for all elements a of L. We write
¢ K L if ¢ is a Dedekind element of L. Furthermore, we write ¢ K b if ¢
is a Dedekind element of the lattice b/0. It is convenient to call the rela-
tion ¢ K b Kurosh invariance.

‘We have seen in the last section that the relation € <t 8 between two
subgroups of a group ® implies the Kurosh invariance € K 8. But the
converse is not true in general, as may be seen from S(&;) where every
element is Kurosh invariant but not every element is normal.

Kurosh invariance has the following five propertiés proved by
Kurosh:

L cKe.
II. If ¢cK L, thene Ka\Jc for all @ of L.

Proof: For zeL we find that (z\/c)/c is projective with z/(zNe¢),
and this holds a fortiori if ze(a\/c) /0

Applying II to /0 we find
ITa. If cK bthenc K ((aNb) \Ue) forallaof L.
III. If ¢ K L it follows that a N\ ¢ K a.

Proof: If ’e¢ a/0, then

o Ca,aNec C(@v@ne))Ne Clav(@ne))Ne=anNe,
(/v (aN¢)) Ne=a Ne,

hence, since ¢ K L, ((a’\/(aNe))\Je)/c is projective with

(@’ (ane))/(anc).
But
@'V (@aNe)) Ve=au((ane)Ue) =dVUc;
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hence (a’\/¢) /¢ is projective with (a’\/(ance))/(aNc). We also have
that (a’\Jc)/c is projective with a’/(a’N\c). Observing that &’ N\e¢=
@ N (aN¢) and using the cancellation rule proved at the end of the last
section,we find that (a’\/(¢7\¢))/(aNc) is projective with

a/(a’N\(anc)).

Applying III to b/0 we find

IIla. If ¢K b,then¢cNa KbANaforallaof L.

IV. If ¢K L and if ¢ KL/¢, then z K L. Conversely, if ¢ Cz and
K L,thenz K L/c.

Applying IV to b/0 we find

IVa. If cK bandif cC 2 b, thenz K bif and only if 2 K b/ec.

V. Ife, KL,e, KL, thene;\ve. K L.

Applying Vto b/0 we find :

Va. If¢; Kb, ¢, K b, thene,\V e, K b.

Proof: Let z K L/c, acL.1t follows that (z\/(a\Jc) ) /z is projective
with (a\e) /(z N(a\ye)). Furthermore, from ¢ K L it follows that
(a\Jc) /¢ is projective with a/ (aN¢), hence (a\/c) / (2N (a\yc)) is pro-
Jjective with a/ (e N(zN(a\Jc))). Observing that

zV(@ve)=(xVve)ve=2z\Va,
en(@n(@ue)=(@N(@ve)) Nz=aNnz

we find that (xz\/a)/z is projective with (a\ve)/(xN (a\ve)) and
(a\Je) | (x N(a\ye)) is projective with a/ (aNz). From the transitivity
of the ‘projective’ relation it follows that (z\/a)/x is projective with

- a/(aNz). Since this holds for all a of L it follows that # K L. Conversely
if 2 K L, then for ¢ Ca it follows that (x\/a)/x is projective with
a/(zNa);hence we have zK L/c.

Let ¢, C «. Since ¢, K L, it follows that (c.\/x) /¢, is projective with
z/(e2Nz). Hence (c;\Jz) [ (¢2\Je1) is projective with z/((co\ve))N z).
Since ¢, C #, it follows that ¢2 \J = ¢, \J (61 V&) = (1 \J ¢3) \J 2. Hence
((ervez)\uz)/(ei\yec2) is projective with z/(xN(e;\Jecz)). Hence

_¢1\JCc: K L/e;. From IV it follows that ¢;\Jes K L.
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Finally we observe that Kurosh-invariance is not a self-dual concept,
which may be seen from the pentagon (p. 72). We havea K b, ¥ lﬁ b,
but there is an anti-automorphism interchanging e and .

6. The Jordan-Hélder-Schreier Theorem for lattices.

As minimum requirements of any concept of normality in a lattice
we lay down the following rules:

1) Between certain pairs of elements ¢, b of the lattice L there is
deflned a relation: ¢ is normal with respect to (or: under) b. We write
¢Nb.

2) If ¢ N b, then ¢ K b and hence in particular ¢ C b.
3) e¢Ne.

4) If ¢cN b,aeLl,thenanec NaNbd.

5) If eNa\Ve,yNa,thenc\Uy Nc\/a.'

6) If ey ND,co Nb,thene,\Jea N b.

From 4) follows:
4a) If eNb, c 2 b, then ¢ Nz.
These rules are satisfied by Kurosh-invariance

Proof of 5): From IIla follows a/Nc¢ Ka. From Va follows
y\ (@Nc) Ka. From IVa it follows that y \J (a/N\c) K e/ (aNe).
Applying the isomorphism induced by y< we find that y\/ ¢ K (a\Jc) /c.
From IVa it follows that y \V¢ K a\/c. They are also satisfied by the
concept of ‘normal subgroup’ in the lattice of all subgroups of a given
group. We proceed to prove the Jordan-Holder-Schreier Theorem for
lattices. First we prove the

LEMMA ON FOUR ELEMENTS: If w N U, v NV, then we have

u\J (WNU) Nuy (VNTU)

vV @NV)NYU(UNT)
and

(29) @A) [ (u\V (VATD)) = (0 J(UNV)) [ (v\J(wNV))

In fact, we have:
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uNV NUNV, vyNUNUNV from rule 4),
(wNV)V (wNU) NUNV  from rule 6),
uNu\v (TNV) from rule 4a),
u\J(vNU) Nuv (UNYV) from rule 5),
(u\J(UNV) [u is projective with (UNV) [(uN(UNV)) from rule 2).

Observing that
uJ(uNV)V@@ND))=uv@anV)VU@@NU)=uyv (@NDT)
and

uNUNV)=@wNU)NV=unV@NV)V (vN U)

we conclude that also
(w\J(UNV)) /[ (u\J(UNw)) is projective with
wnv) /[ ((unV) V(vNU))

Hence it follows that

wy (UNV)) [ (@ (UND)) = (UNV) [ ((wNV)V (vNT))
and from arguments of symmetry

(U (VAD)) [ (v U (uNnYV)) = (UNV) [ ((uNTV)V (vNT)).
Since the right-hand sides coincide, comparison of the left-hand sides
gives us (29).

In a lattice L with all element M and null element m and with a
normality relation a normal chain of length r is a chain of » + 1 elements

M=aN a Na,...N a=m.

The factor lattices @;/a ;4; are called the factors of the chain. If success-
sive numbers are different, then the normal chain is said to be a normal
chain without repetitions. A normal chain is said to be a refinement
of a given normal chain if the members of the given chain are among
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the members of the new chain. Now Theorem 8 can be reformulated
as follows: Two given normal chains of a lattice with normality rela-
tions and extreme elements can be refined so that the series of factors
of the two new chains are identical up to order and isomorphisms.

The proof is carried out as before by basing it on the lemma. The
applications to the situations in groups gives us back Theorem 8.

§ 6. Commutator Groups and Commutator Forms

We saw on page 9 that there are groups in which the commutative
law ab=ba does not hold. If we wish nevertheless to calculate in an
arbitrary group ® in commutative fashion we must create a multiplica-
tive normal congruence relation between its elements for which the
condition
1) ab =ba
holds. By page 22 the congruence relation sougl{t is the congruence in G
with respect to a normal subgroup ®),consisting of all elements which
are to be congruent to ¢. From the proposed congruence, we conclude,
upon multiplication by the congruence (ba)-! = (ba)-}, that all
elements ab(ba)-! must bein G’

DEFINITION: The element aba-15-1 is called the commutator of
the elements a, b and is denoted by (a, b).

According to the defining equation,
2) ab= (a,b) ba
the commutator indicates the deviation from the commutative law.

The subgroup generated by all the commutators is called the com-
‘mutator subgroup of @, and is denoted by D @ or by G".

If we actually wish to calculate commutatively in @, then we must
look upon two elements as congruent if their quotient lies in the com-
mutator group. However if we do this, we calculate in an abelian manner,
since from (2) it follows that

ab =ba (D)
andfrom a=b, ¢c =d itfollowsthat
ac =bc =cb =db =bd (DGI).

The commutator group is the smallest normal subgroup with an
abelian factor group.
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The commutator group is invariant under every operator of the
given group, since

(3) (2, )° = (@ba™15-)8 = a® 58 (a8) (58)-1 = (a8, 1),
and therefore @€ lies in @'.
We now define higher commutator groups (“higher derivatives”)
recursively, setting
DG =0
D'G=DG=6,
D:G=D@® = @",

D'®= D(Dr-1®).

It is clear that the r-th commutator group D'® is a fully invariant
subgroup of ® and that the successive factor groups of the normal
subgroup chain

G=DG2 & =D'G2D*®...2 D'
are abelian.

For a subgroup U of @& it follows from the definition of the com-
mutator group that pu<ne

and by induction DrulDe.
For the factor group over a normal subgroup R we have
D (§/R) = (D"®) RN

The usefulness of these concepts is obvious from the following

DEFINITION : A group § is said to be solvable, if the series of higher
commutator groups terminates with e.

To a solvable group & = e there corresponds a uniquely defined
number k such that D¥*@ =e¢, D*-1@=e. Sinceinthe normal chain,
GOD'GDOD*ED - - - D D@ =-e justk abelian factor groups differ-
ent from e appear, we say that the group ® is k-step metabelian.

The group consisting of only the unity element is said to be 0-step
metabelian. The 1-step metabelian groups are exactly the abelian
groups = e.

It follows immediately from our remarks above that every subgroup

_and every factor group of a k-step metabelian group is itself at most
k-step metabelian.
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If the group & has a normal chain
GB= 220,22 -2, =c¢
which has only abelian factor groups ®,/®,,, ,then @ is at most k-step
metabelian since @ C @®,, because ®&/®, is abelian,and it follows by
induction that Dr® < ©,, D*® = e.

Since the higher derivatives are fully invariant in &, and the
subgroups and factor groups of an abelian group are themselves abelian,
it follows from the Jordan - Holder - Schreier theorem that the factor
groups of a normal series of a solvable group are abelian.

Since an abelian group is simple if and only if it is of prime order,
it follows that:

A solvable group has a composition series if and only if it is finite.
A finite group is solvable if and only if its composition factors are cyclic
of prime order.

The following rules hold for calculation with commutators:

(4) (@, b)=e

is equivalent to ab=ba,

and in particular, we have

(4a) (e, a)=(a, e)=e

(4b) (@, a)=e.

(3) (a,b) (b,a) =e,

(6) aba~1=b%= (g, b)b,
(@, b) = at-» = po-1,

(7) (ab, ¢) = (b, ¢)° (a, ¢)

(8) (a, be) = (g, b) (a, ).

If the commutator group lies in the center, then rules (7) and (8) can
be simplified to

(7a) (ad, ) = (a, c) (b, ¢)

(8a) (@, be) = (a, b) (a, c),

in particular

) (@ )= (3, ¢ = (a, o)™

From this we can derive the useful power rule:
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For (a, b) in the center of the group,
(10) (ab)" = (b, a) in(n-1)gnpn

Proof: For n=10 the rule is trivially true. Now let » > ¢ and
assume we have already proven

(ad)*1 = (b, a) D (n-2) gn-1pn-1,

Now (@b)* = (ab)~1.ad
anr-1pn-1 ab = a1 (bn-]l ll) abr
= q™1 (b, a)"-lab" by 9)

= (b,a)*1a"b", since (b, ) isin the center
and therefore (ab)" = (b,a) (-1 (-2 (b, g)1gnbm,
from which the rule follows for positive n. For negative exponents the
rule follows from the equations
(ad)=*= (b-2a-?)", a"b" = (a~, b")b"a"
= (@, b)"'b"a" = (b, a)~"" b"an.

The mutual commutator group (1, B) of two complexes 11 and B of
given group @ is the subgroup generated by all the commutators (U, V)
where Ucll, V€ 8! U1 commutes with 8 elementwise if and only
if (U, B)=e..

From (5) we have

(1) 1, B) = (B, ).

If 1 and B are normal subgroups of & then it follows from (3) and
(6) that (1, B) is a normal subgroup of & and is contained in U N B.
Then by (7) and (8), for an arbitrary complex & :

(12) (8U, B) = (1, B) (!, B),
(13) (1, 88) = (1, &) (1, B).

Let & and ®. be two complexes, 1,, U, the subgroups generated by
them.

THEOREM 12: The normal subgroup N of & generated by (&, K:) s
equal to the normal subgroup N, of @ generated by (U,, U,) .

Proof: In any case %t is contained in %,. We must show’that

*If confusion with the commutator is to be feared then we write {(UU, 8)}.
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RN =e implies N,=e¢". In fact, then ®,, & commute elementwise and from
(4), (7), (8) it follows that 11, , 1, commute elementwise, as was to
be shown.

It is useful to introduce higher commutators,e.g.,

(14) (a,b,¢) = (a,,¢)

(15) (@ysGa5 - - 8p) = (G1,(@g, - - -, 8g))

(16) (a,b;¢,d) = (@,b),(c,d)) .
Rules (7) and (8) can now be written

(7b) (ab, ¢) = (a, b, ¢) (b, ¢) (a, ¢)

(8b) (a, be) = (a. b) (b, @, ¢) (g, €).

In order to understand these multiple commutators completely we
define recursively a “linear expression of weight w and type s”, in symbols
&1, Xz . . . , Ty The linear expression of weight 1 in z is the symbol
« itself. Let this correspond to type 0. As a separating symbol of the
first type we use a comma; for the second typeé, a semi-colon; for the
third type, a triple point : ; and in general for the sth type the symbol ®
is used. Now let w > 1 and assume that all the linear expressions of
weight < w are defined, and let a type correspond to each of them.
Then we define expressions (f, @ f;) as linear expressions of weight w
and of types > 0 where f, is of weight w, in 2, 2,, ..., 2,, and of
type sy, and f, is of weight w. In Zw 41, Tuas - -, Zusw, and of type
82, such that w=w; + w,, s = Max (s, + 1, s,). The weight is there-
fore simply the number of symbols in the “linear expression” and the
type is equal to the highest type of separation symbol.

If f (2,,...,,) is a linear expression of weight w and type s, then
for arbitrary elements G,, ..., G, in the group & we define :

f (G, ..., Gy) is a commutator of weight w and type s in the G,. More-
over for arbitrary subgroups U, Us, .. .. U, wedefine: f(1i;, U, ..., U,)
is a commutator form of weight w and of type sinthe U,.

In the successive construction of corresponding linear expressions

the separation symbols are to indicate commutator formation. E.g.,

D@ = (@, ®) isof weight2 and type1,
D*® = (0, ®; ® @) isof weight4and type?2,
D'@=(D-'® ® D-1®) is of weight 2" and type »
in the components &, @, . . ., ®.

* We calculate in the factor group &/R!
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If the complexes &, . . ., &, are transformed into themselves by every
element in @, then every commutator form formed from them is a normal
subgroup of @, since from (3) it follows, by induction on the weight w,
that for each operator @ of &:

0.
(3a) (f(G1,Gy, ..., Gu0)® =1(G1%,6°, ...,G,0).

If the subgroup generated by the complex ; is equal to the normal
subgroup R; of @ then we actually have:

THEOREM 13: The commutator form f (R, Ny . . . ,Ny) is equal to
the subgroup M of ®, N being generated by all the elements f (N, ..., Ny)
with R in K.

Proof: For w=1 the theorem is clear. Let w > 1 and assume that
the theorem is proven for commutator forms of lower weight.

f= (f1@f.), where the weights w,, w. of f;, f. are lower than w.

By the induction hypothesis,
i, Ry, ..., N is generated by all f(Ny,...,N,),
faQtot1s M2, ..., My) is generated by all fy(Nu,415 -+ Nu)+
Now the statement of the theorem follows from Theorem 12. From the
previous definitions and the last theorem the following ‘“substitution
principle” follows immediately :

If  f(y, Y2 ---» Ya) is a linear expression of weight w and if
(@, 2, ... ,2l)  (6=L2,...,0) are linear expressions of weight
wy, then f(@y, @s....,9,) iSa linear expression g of weight w=w,+w,+
e twgin P2, z{:’.) 1, For normal subgroups

ROp=1,2...w;i=1,2...0)
of a group ®, we have
g(R,9) =f(Ty, My... M),
where ;= g, (R, ..., NY) .

In a group @ with abelian commutator group &’ we have the following
important rule:

(17) R (a,b,¢)(b,c,a)(c,a,b)=e,
which we derive in the following way :

*The type of the separating symbolsin fmay have to be raised by the substi-
tution.



84 II. Homomorphies and Groups with Operators

c(a, b)e~1 = (a, by = (¢, a, ) (a, b)
=cac-1-cbc 1. (cbe1-cac i)t
= (c,a)a - (¢, b)b - ((c, )b (¢, a)a)~*
= (c, a) (a, ¢, b) (c, B)ab ((c, ) (b, ¢, a) (¢, a)ba)~*.
(17a) (c, a, b) (a, b) = (¢, a) (a, ¢, b) (c, b) (@, B) (¢, @)~ (b, ¢, a)~* (c, b)-1.
Since @’ is abelian we have

(¢, a,b) = (a, ¢, b) (D, ¢, @)1,
and moreover by (8) (a,€)=e=(a,b,¢)(a,c,b),
and therefore finally wehave (17). Now we can prove the following
important theorem. .

THEOREM 14: In a group ® with the three normal subgroups %, B, €,
each of the three normal subgroups (%, B,€), (B,E€, N), (€, A, B) is
contained in the product of the two others.

Proof : We may assume that (%, B, €)-(B, €, A) = ¢, and must then
prove that (€, %, 8)=e. By Theorem 13, (€, %, B) is generated by all
(c, @, b) where a €U, b€ B, c €@, so that we must prove (¢,a,b)=e .
In any case (%, B, €)= (B, 6, A)=e, and thereforealso (U, €, B) =e.
In formula (17a) we may insert(a,c,b)= (b,¢c,a)=e, S0 that
(18) (¢, a, b) (a, B) = (¢, @) (c, b) (a, B) (¢, @)~ (c, )2,

Since 9 is a normal subgroup, (¥, B) C %, and therefore,

(U, B; B,6)=e and (U €; B, E)=e. Since B is a normal subgroup,
(U, B) < B, (Y, B; €, A) =e. The factors on the right of (18) may
be permuted so that we finally obtain (c,a,b)=ce.

§ 7. On the Groups of an Algebra
In this paragraph we give a short survey of the groups occurring in
an algebra and of groups with operators.
1. Modules.
A commutative group in which the symbol of combination is written
as the (+) symbol, is called a module.
Consequently, the sum of two summands a and b is denoted by a-+b.
The following laws must then be valid for this addition:
I a+(b+ec)= (a+b)+e.
II. There is a null element 0 with the property 0+a=a for all a.
III. The equation xz+a=> is solvable for all pairs a, b.
IV. a+b=b+a.
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As we saw earlier, it follows from this that in a sum of a finite
number of summands the order and parenthesizing can be changed arbi-
trarily, without altering the value of the sum.

A sum consisting of the »-summands a,, . W1 O is written

Gtat .. taor Sa,.
1

Addition has a unique inverse, i.e., the equation z+a=b has exactly
one solution for each pair a, b. By the commutative law, the equation
a+z=b is equivalent to z-+a=b. Zero has the property: 0+a=a,
a+0=gq and it is uniquely defined by any of these equations. The solu-
tion of x+a=0 is denoted by —a and is uniquely determined. We have

¢+ —a=-at+a=0
and therefore - —(-¢)=a
The difference a+ (-b) of a and b will be denoted by a —b.

The sum of n equal summands a is denoted by 7 a. Oa is defined as
0 and (-n) a is defined as —(n a).

Then we have rules analogous to the power rules:

(1) n (a+b)=na+nb,
(2) (n+m) a=nat+ma ,
(3) (nm) a=n (ma),

. for all rational integers n, m. Consequently the mapping (@ — 7 a is an
operator n of the module such that the rules for calculation

) ntm=n+m
(5) nm=nm

are valid. 1 leaves each element fixed ; 0 maps each element onto 0.

For example, the rational integers 0, + 1, + 2, ... form a module
0. o is additively generated by 1 and is therefore cyclic; moreover o
is infinite.

By 1§ 5, the submodules of o are exactly the modules (), consisting
of all multiples m n of the non-negative rational integer , n.

- Two numbers are said to be congruent mod (n) if their difference
is in (n) and therefore divisible by n. The number of residue classes of
0. with respect to (n) isnif » > 0. They form a module o(n), the factor-
module of o with respect to (n).

For an arbitrary module 9, all the rational integers m for which
m=0 form a submodule of 0, the so-called exponential module of .
‘The non-negative rational integer generating the exponential module is
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called the characteristic of the module. For example, the factor-module
o/(n) 1is of characteristic n.

The sum My+m, of two submodules My, m; of M consists of all sums
a;+a, with @; € m;. It is a submodule.

The sum of the two submodules (n) and (m) of p is generated by
the greatest common divisor (g.c.d.) (n, m) of n and m. The intersection
of (n) and (m) is generated by the least common multiple of n and m
(. . m.) From the second isomorphy theorem it follows that

n.m=(n,m). (I.c. m. (n, m) )
The maximal submodules of 0 are exactly the submodules generated by
the prime natural numbers.

2. Rings.

DEFINITION : A ring is a module in which besides addition, a multi-
plication of elements is defined such that

1. a (bc)=(ab) ¢ (associative law)

2. a (b+c¢)=a b+a ¢ (left distributive law)

(b+e¢) a=b atc a (right distributive law).

Thus a ring is an abelian group in which a right and a left operator
is associated with each element.

In particular,

a. 0=0.a=0, a. -b=-a. b=-(a. b).

DEFINITION : The admissible subgroups of a ring are said to be ideals.

A right ideal is a submodule in which ga is contained in the sub-
module if p is in the submodule; similarly a left ideal is a submodule
which contains a2 if it contains 4, where @ in each case runs through all
the elements of the ring €.

A submodule which is at the same time a right and left ideal is said
to be a two-sided ideal.
As the product mym, of two submodules my;,m,; of a ring & we
define the set of all finite sums
ab; + agby + - -+ +a,b,
where o, €m,, b, cm,, r arbitrary.
With this definition, m, m, first becomes a submodule of &.

The sum, intersection and product of two ideals of the same sort are
also ideals of this same sort.
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The residue classes (cosets) over a right— (left-) ideal have & as a
right- (left-) domain of operators. The residue classes with respect to a
two-sided ideal form a ring, the factor-ring,where the residue class R,,
is defined as the product of the residue classes R, and R,.

The ring { is said to be homomorphic to the ring & if there is a single-
valued mapping ¢ of Gon | suchthato(a + b) = ca + ob, o(ab)=ca-cb.
If the mapping is one-one, then | is said to be isomorphic to &.

Here the first isomorphy theorem reads:

A ring | homomorphic to the ring & is isomorphic to the residue
class ring of & with respect to the t ided ideal isting of all the
elements of & which are mapped onto 0 by the homomorphic mapping
of & onto f.

An example of a ring is the operator domain of a module M. An
operator @ of M is a single-valued mapping of M into itself such that
Oa+b)= Oa + O. The product of two operators is defined by
(0,0,)a=6,(0,a) which we encountered previously; on the other hand
the sum is defined by (6,+6,)a = 6,a + O,a . One can easily show that
the operators of M form a ring with the unit element 1.

8. Division Rings,' Commutative Rings, and Fields.

DEFINITION : A ring in which the elements different from zero form
a multiplicative group is said to be a division ring.

This would follow from the additional conditions:

3. There are at least two different elements;

4. The equations a.z=b and y.a=b are solvable if a#0.(If a#0,
b+0, then the equations ae=a and bz=e are solvable and give abz=
ae=a +0,therefore ab+0. Thus the non-zero elements form a semi-group
which is actually a group because of 4.)

A ring is said to be a commutative ring if the commutative law for
multiplication holds in it.

A commutative ring which is at the same time a division ring is called
a field.

For example all the rational numbers, as well as the domain of all
real numbers, form a field.

. DEFINITION :The center of a ring is the (commutative) ring of all
elements which commute with every element of the ring.

The center of a division ring is a field.

"1 Also called skew fields, s-fields, non-commutative fields, etc.
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In a commutative ring with unit element, the residue class ring with
respect to an tdeal is a field if and only if the ideal is mazimal.

For example, the set of all the rational integers form a commutative
ring o. Every submodule of o is also an ideal of o. The residue class
ring of o with respect to the ideal (n) is a field if and only if = is a prime.
Therefore for every prime p we obtain a field k, of p elements.

In an arbitrary division ring K,all the elements obtainable from 1
by combinations of the four operations form a sub-field k, the prime field
of K. Either none of the sums 1, 1+1, 1+1+1, .. [ is equal to zero in K,

- in which case k is isomorphic to the field of rational numbers, or a sum
1+1+ ... +1is equal to zero, in which case k is isomorphic to a field %,
of p elements.

The characteristic of a division ring is equal to the characteristic of
its prime field and is therefore zero or a natural prime, since from n a=0,
a#0 it follows that n=0.

4. &-Modules.

DEFINITION : A module with a ring &, as operator domain is said to
be an &-module.

We define in greater detail:

The module IR, given a ring &, is said to be a left &-module if a multi-
plication of elements « in & with elements « in M is uniquely defined so
that

1. au & M,

2 a(u+v) =ou+av,
3. (x+B)u = au + pu
4.

(xB)u = a(Bu).

We also speak of an @-module in the case where & is only a semi-group
in which case requirement 3. becomes meaningless.

M is said to be a proper G-module if 5. SM=MW; 6. «M=0, M0,
imply «=0.

If & contains a unit element 1, then condition 5. is equivalent to con-
dition 5a): 1.M=M. 5a) is equivalent to 5b) : 1.u=u for all u.

If & is a division ring, then condition 5. suffices to make 9 a proper
&-module: for fromx =0 and « + 0 we would have SaxM =0, and
since G« = @, then GM=0.

The concept of a right G-module is defined, similarly, the module
being multiplied on the right.
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An @-module M is said to be a finite S-module if M can be generated
over & by a finite number of its elements, and therefore if there are a
finite number of elements u,, . . ., u, in M such that every element in M
is of the form

.
U= 03Uy + Oty + - ¢ ¢+ KUy

withe, € &.
Examples of €-modules are the n-dimensional &-vector module con-
sisting of all ordered n-tuples (x;,a, - . ., x,) (vectors) with components

& in &, among which only a finite number are different from zero} and
with the calculation rules

(s gy -« s 0n) + (Bys Bas -« oo Ba) = (1 + By s + Bas - - ., a + Br)
o, gy s ) = (0, 0 < 000).

If & contains a unit element 1, then the n-dimensional @-vector module
over & is generated by the n unit vectors

u;=(0,...,0,1,0,...,0) (=1,2,...,m.

The u, are then called a basis of the -module.

In an arbitrary @-module 9%, the expression oy, + oty + - - - + &, u,
is called a linear combination of the u;. The elements u,,u., . . . , u, are said
to be linearly independent if

1. w#0 (i=1,...,7)

2. Uy + oqUy + - - -+ o, =0 implies ou;=0,1=1,2,...,7.
Now we generalize the definitionof basis. A system B of elements
Uy, Uy, ..., %, issaid to be an S-basis system if each element of M is of
the form w=a,u, +---+a, 1, and every finite set of elements
%, %, .., %, islinearly independent (<r<--: <)

If a module M over a division ring K has a finite basis, then it is a
vector module.?

Since KM=9M, M is a proper K-module. If, moreover, u,, Us, . . ., Uy is
the basis, then it follows from oqyu, + agus + -+ + axau, =0 that
oau;=0. If we were to have «; % 0 then oy~ (ou,) = lu;=u, =0 -
Therefore we must have o;=0(:=1,2,...,n) . Every element of MM
can be represented in only one way as oyu; + apty + « - - + XUy -

* The number # can be any ordinal number whatsoever.
? More precisely: is operator-isomorphic to an &-vector module.
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THEOREM 15: For any division ring K, every proper K-module M+0
has a basis.

Proof : With the help of transfinite induction we shall give a method of
construction only. The reader can carry out the proof himself without
difficulty.

We first pick a system of generators v, v, ...,9, of M over K,
for example, 9 itself, for which we can assume that v; &= 0 and that the
indices 1, 2, . . . ,@are well ordered. Let Sm,‘ be the K-module of all linear
combinations of the elements %, 7%, -..,%,. We wish to define a basis
system §B“ of I, . In order to do this, let 8, be the set consisting of »;
alone. Moreover let » > 1 and let 8, be defined for all u <» . Let Z,
be the union of all B, with z <, and let m, be the K-module:union of
all M, with 4 <». One can show easily that Z, is a K-basis for m,. Now
wedefine: 8, =2, ifv, € m,butB,=theunionof X, and v,if v, ¢ m,.

Then %, is the desired basis system.

It is shown in the theory of linear algebra that for a division ring K
the dimension of a finite K-vector module M is uniquely determined (also
see Chap. IIL § 2).

The dimension of 9 over K is denoted by [M/K] or simply by [I].

The dimension of a K-module in 9 is at most equal to the dimension
of M. If the dimension of M is finite then a K-module in M is identical
with 9 if and only if their dimensions are equal. Consequently, then,the
double chain theorem holds in M over the operator domain K.

If k is a division subring in K, then K can be conceived of as a proper
left k-module. The dimension of K over k is called the degree of K over k.
If K is a finite k-module, then K is said to be a finite extension of k.

In this case, the elements of K can be represented uniquely in the form

0=k + huy+ - - - A,u,

where 4, € k and w,, u,, . .., u, is a basis of K over k. If k contains q ele-
ments, then K contains ¢" elements.

5. Semi-modules, semi-rings, quasi-rings, &-rings, algebras.
Many concepts defined for modules can be extended to additive semi-
groups. For example, a sum of a,, a.,...,a,, in this order, is written
n
asa,ta,+...+a,or 2: a;. A zero element of an additive semi-group
Fe

a is defined to be an element 0 satisfying 0 + 2 =z + 0 for all z of a.
There is at most one zero element, since 0 + 0’'=0=0" for any two
zero elements 0, 0’. If there is an element z such thate + s =2 + a =10
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then z is called the negative of a, and it is denoted by — a. If @ has a
negative, then for any element b the two equationsa + 2 =5, y +a=1»>
are uniquely solvable, the solutions being 2 = (—a) + b, y—b + (—a),
which is abbreviated as + = -—a + b, y = b — a. For any natural
number 7, the sum of » equal summands a is denoted by na. For natural
numbers the rules (2), (8) are satisfied. If there is a zero element then
we define-0a = 0. If a is an additive group, then for negative integers
—n we define (— n)a = — (na), which is abbreviated as — na. The
rules (2), (3) remain valid for all rational integers.

A normal divisor of an additive semi-group a is defined as an additive
sub-semigroup b of a which has the property that for a,ea, a.ea, z€b,

a, + 2 + a.eb if and only if a, + a.eb,
a, + zeb if and only if a,€b,
x + a.eb if and only if a.eb.

This definition is in agreement with the one given in Exercise 25 at the
end of Chap. I. The congruence modulo b is the normal additive con-
gruence relation generated from

a+b=a, b+a=a for aea, beb.

. The congruence modulo a normal divisor is additive in the sense that
for @, =a. (modulo b), b, = b, (modulo b) we have a, + b, =a, + b.
(modulo b). The residue classes modulo a normal divisor are added
according to the rule: @+ b==a + b, where z denotes the residue
class modulo b that is represented by the element z of a.

The residue classes of a modulo the normal divisor b form an additive
semi-group which is called the factor semi-group of a over b and is
denoted by a/6. The mapping a — @ establishes a homomorphism of a
onto a/b called the natural homomorphism of a onto a/6. The elements
of b form a residue class b which is the zero element of a/5.

For a homomorphism @ of the additive semi-group a onto the addi-
tive semi-group @a having a zero el t, all those el ts of a mapped
onto the zero element of @a form a normal divisor ag of a which is called
the kernel of @. The homomorphism @ induces the homomorphism 6 of
/b onto Oa defined by &a —0Oa having ag as its kernel. If a/ng is an
additive group, then @ is an isomorphism and the First Isomorphism
Theorem
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a/ag = Oa
applies.
DEFINITION : An additive abelian semi-group is called a semi-module.
A semi-module is called a halfmodule if it can be embedded into a module.
The natural numbers, for example, form a halfmodule. The rule (1)
for natural numbers as multipliers holds true in semi-modules.

DEFINITION : An additive sub-semigroup of an additive semigroup a
is a non-empty subset b of a which is closed under addition. b is itself
an additive semi-group. It is called a sub-semimodule if it is commutative.

DEFINITION: An element s of the additive semi-group a is called a
subtrahend, if

1) s+a=a+s for all aea
(2) from s +a=s+ b it follows that a =b.

Exercise 1: All subtrahends of a form a sub-semimodule S (a) satis-
fying the cancellation laws of addition, provided there is at least one
subtrahend in a.

Exercise 2: All elements of a together with the formal differences
a—s (aea,seS(a)) and the symbol 0 form an additive semi-group
8(a) (difference semi-group) containing a as additive sub-semigroup
if equality is defined as follows:

ea=2>b as in a; a=b—s if a+5s=0b; a,—s —a,—s, if
@+ s, =a + 8; 0=a, a=0 if a is zero element of a and if
addition is defined as follows:

at+basing; (b—s)+a=(b+a)=s;a+ (b—s)=(a+b)—s;
(@—s) +(b—t)=(a+b) —(s+t);s—s=0,0+a=a+0—aqa;
0+ (b—s)=(b—s) +0=b—s;0+0=0.

Ezercise 3: The subtrahends of é(a) form a module Sé(a) which
coincides with 6S(a). Prove also that the formal differences a — s
occurring in the construction of é(a) are actual differences between
a and s as defined above.

Ezercise 4: d(a) is a module if and only if a is a semi-module satisfy-
ing the cancellation laws of addition. This is the case if and only if a
is a halfmodule.
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DEFINITION: A semi-module for which a multiplication is uniquely
defined is called a semi-ring if the distributive laws

a(b+c)=ab+ac
(b+ec)a=ba+ca
are satisfied.

A sub-semimodule of a semi-ring closed under multiplication is called
a sub-semiring. A sub-semiring is itself a semi-ring.

Ezxercise 5: The operators of a semi-module a form a semi-ring
O(a). Here an operator of a is a unique mapping @ of a into a satisfying
©(a + b) =0Oa +60b. The addition and multiplication of two operators
61,6: of a is defined as usual by the rules

61 +0:)a =60 +6.a, 6,60.0=6,(0.0a).

The following three exercises show that we may interpret semi-
rings as a special case of semi-modules with operators.

Ezercise 6: For a semi-ring & the mapping
z
a—aq =(a z Wze®)
of the elements e of & onto the left multiplications as well as the mapping
z
e o =(, ) (ze®)

of the elements of & onto the right multiplications establishes homo-
morphic mappings of the semi-module & onto the sub-semimodule &;,
and &, of O(&) respectively.

Ezxercise T: To each homomorphic mapping a— a, of a semi-module
@ into the operator-semi-ring O(&) of & there belongs one semi-ring
defined over the semi-module & as follows:

ab=a,(b) for ae®, beB.

The associative case is treated in



94 II. Homomorphies and Groups with Operators

Exercise 8: The associative law of multiplication in a semi-ring &
is equivalent to each of the following three statements:

1. The correspondence a — @, maps the semi-ring & homomorphically .

onto a sub-semiring &, of 0(&) such that a,+b=(a+b):, a;b,=(ab)..

2. The correspondence @ — @, maps the semi-ring & homomorphically
onto a sub-semiring &, of O (&) such that a, + b,=(a+b),, a,b,=(ab).

3. The two sub-semimodules & and &, of O(G) are elementwise |

permutable, i.e., a;b,=b,q, for ae®, beS.

DEFINITION: The normal divisors of the semi-module formed by
the elements of a semi-ring under addition which are invariant under
&, &,, U, are called, respectively, left ideals, right ideals, and two-
sided ideals of &.

It is clear that the sum and the intersection of two ideals of one kind
is itself an ideal of the same kind. The factor semi-module &/b of &
over a two-sided ideal b becomes a semi-ring with the introduction of
the multiplication ab = ab, where z denotes the residue class medulo b
represented by the element z of &. The residue class b consisting of the
elements of b is the zero element, and multiplication by zero always
yields zero. The natural homomorphism of € onto €/b also pre-
serves multiplication. Conversely, for a homomorphic mapping @ of €
onto a semi-ring ©G having a zero element such that multiplication by
zero yields zero, the kernel @¢ of @ is a two-sided ideal. @ induces a
homomorphism @ of the semi-ring /&g onto the semi-ring ©€ mapping
only the residue class g onto the zero element of 8. If &/Gp is a
module, then @ is an isomorphism and €/€e¢ == OE.

For any two sub-semimodules m,, m, of the semi-ring & the set of
products x,z,(z;em;) is not necessarily closed under addition. It is cus-
tomary to denote by m,m, the set of all expressions

2" xu&u (Tuem,, Tem.; v any natural number),
that is, the smallest sub-semimodule of & containing all products x,z,
with z,em,, z.em..

Exercise 9: If the subtrahends of a semi-ring & form a two-sided
ideal S(&) of &, then the difference semi-module becomes a semi-ring
(difference semi-ring) if multiplication is defined as follows:
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ab as in &, a(b—s)=ab—as, (b—3s)a
=ba—bs, (a—3) (b—1t)={(ab + st)— (at + sb).

This is the only possibility for extending the multiplication so that §(&)
becomes a semi-ring.

DEFINITION: A halfring is a semi-ring which is sub-semiring of a
ring. The natural numbers, for example, form a halfring.

Ezercise 10: Show that a semi-ring is a halfring if and only if it is
associative and satisfies the cancellation laws of addition. In other words,
the axioms defining a halfring are obtained from the ring axioms by
weakening it through the replacement of existence of subtraction by
the cancellation law of addition.

DEFINITION: A quasi-ring is a semi-ring which under addition is a
module. In other words, the axioms of a quasi-ring are obtained from
the ring axioms by omitting the associative law of multiplication.

A sub-semiring of a quasi-ring closed under subtraction is called a
subring. Each subring of a quasi-ring is a quasi-ring. E.g., we obtain
a commutative quasi-ring J(R) from a ring R according to the new
multiplication rule a*b=ab + ba. This ring is called the Jordan ring
belonging to R.

The Lie-ring L (%) belonging to % is obtained by replacing the rule of
multiplication given in % by the Lie-multiplication

aob=ab—ba (a,beR)

The Lie product of a and b can be interpreted as a measure of the
non-commutativity of @ and b in terms of the ring R since

aob=10
is equivalent to the statement
ab=ba.

Besides the axioms of a quasi-ring the following axioms are satisfied
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by the Lie multiplication:

(6) aca =10
(7) (Jacobi identity) ao(boc) + bo(coa) + co(aoc b) =0,
which follow from obvious computations.

Generalizing this remark we obtain the following definition.

DEFINITION : A Lie-ring is a quasi-ring in which multiplication satis-
fies the rules (6), (7), where it is customary to denote the product of
a,b by aob.?

Each subring of a Lie-ring is a Lie-ring. From the distributive laws
and from (6) follows the anti-commutative law of multiplication

(6a) boa = —aocb
as follows:

boa=boa +aoa + bob—(a +b)o(a+b)=
boa — (aodb + boa) = —aob.

Conversely, if in a quasi-ring the anticommutative law holds and if
from z + # =0 it always follows that x = 0, then (6) holds, i.e.,

aoa = —aoa,
aoa + aoa =20,

aca=0.

From the anticommutative law it follows that each ideal of a Lie-ring
is two-sided. Any factor ring is itself a Lie-ring. Also

8) M1OMy = M2OM,y

for any two submodules m, m. of a Lie-ring L. From the Jacobi identity
we derive

! Formerly written also as [a, b], (a,b), or (ab).
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(9) myo(mz0ma) C m,o0 (msom,) + mso (m,0m,)

for any three submodules m,, m,, m, of L. From (8), (9) for m,=1L,
and m,, m, ideals of L, we 6btain

Lo(m,om;) < myo(myoL) + myo(Lom,) C myom; + maom, C myoms,

which means that the product of any two ideals of a Lie-ring is itself
an ideal.

In the last part of this section we discuss briefly rings and quasi-
rings over coefficient rings.

DEFINITION: Let M be a semi-ring. An operator ® of M considered
as a semi-module is called a left scalar if (@a)b =6(ab). In other words,
N\

(@a), = @-a,.

From this definition it follows that all the left scalars form an associative
semi-ring. Similarly, the right scalars, i.e., the members y of O (M) satis-
fying a (yb)=vy(abd), i.e., (b), = b,y for all beM, form an associative
semi-ring. The intersection of the two semi-rings just defined is an
associative semi-ring whose elements we will call scalars. These are the
mappings ¢ — ez of M into itself satisfying

gz +y) =9z + oy
o(2y) = (p2)y =2 (9Y).

Each left scalar @; commutes with each right scalar @, for MM since

0160 (%1 %2) =61 (02(21%5) =01 (2, (0:2%:) ) =0, %:. O222
=0:((0121) ¥2) =0, (0: (2:22) ) =06, (2, 2:) .

This fact explains why one usually only defines the notion of an &-ring
for commutative rings of coefficients. However a generalization of the
narrower concept is possible by using the concept of left and right
scalars as follows.
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DEFINITION: Let & be an associative semi-ring. The semi-ring I is
called an @-semi-ring if for each element 1 of & and each element a of I
there are defined unique products 1e and a2 also in M such that

1) Ma+b)=1a+ b, (a+b)i=ai+ bl
2) (A+wua=2la+pa, a(l+upu)=al+ap
8) (Aw)a=1(pa), (ad)p=a(in)

4) A(ab) = (1a)b, (ab)i=ua(b2), (al)b=ua(ib)
5) (Aa)p=i(ap)

The &- semi-ring 932 is called proper if
6) SBM=M=MS.

For example, if & is a sub-semiring of the associative semi-ring I, then
the multiplication of the el ts of M by el ts of & as defined in M
itself defines M as an S-semi-ring. To give an illustration, the linear
transformations of an &-module M, & being an arbitrary ring, are de-
fined as operators of M which are permutable with the elements of & as
applied to M. In other words, a linear transformation is a mapping
@of M into M satisfying

O(u + v) =0u +0v, O(Au) = i(Ou) for u,veM, 1eS.

The linear transformations of the &-module M form a ring L(M, €).
If @ is a commutative ring and if M is a proper &-module then L (M, &)
becomes an G-ring if the product of a linear transformation @ and an

element 7 of & is defined as the linear transformation 10 =01=(; (z )
of M. In fact, since M is a proper &€-module and since & is commutative,
it follows that the mapping 4 —( Aifl)provides an isomorphism between &

and a subring of L(M, €) which may take the place of € in defining
L(M, &) as an &-ring.
We remark that 6) is equivalent to

6a) la=a=ual for aeM
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if & contains a unit element 1. For a commutative ring & of coefficients
the concept of a quasi-ring over the coefficient ring & is ordinarily de-
fined as a quasi-ring M} which is an &-module subject to the further
conditions —~

4a) A(ab) = (1a)b = a(4b) for iey; a,beMM,
6a) eM—1m.

However, this becomes a symmetric G-quasi-ring in the more general
sense defined above by the definition

) ' la=al

where 7) simply expresses the symmetry.

DEFINITION: Let & be a ring with a unit element and let I be an
B-quasi-ring. A subset B of M is called a basis of M over & if

a) Ab=>1 for 1e®, beB
b) We have for aeM,
a=231,b
beB

where only a finite number of 1,040 and a is the sum of
this finite number of elements. Such a sum is called a linear
combination of the basis elements. Since such sums are finite,
we can multiply one of them by a scalar and add two of them
term by term.

¢) A basis is linearly independent in the strict sense: A linear
combination vanishes if and only if each coefficient vanishes.

It follows that for any two basis elements z, y there are equations

® W= 70,050

. with uniquely determined “combination constants” y,,,, which are con-
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tained in & and are such that for every fixed pair of basis elements z, y
all but a finite number of the combination constants vanishes. Further-
more, because of the distributive laws, the laws 4), and the condition a),
the multiplication rule in M is given as

9) KEButmyeEBﬂyy = Z0ePy7eub

and the rule 4) finds its expression in
(10) . 1 Ya.y,p = V0,0 a
i.e., the multiplication constants belong to the center of the coefficient ring.
Conversely, if a set of elements y,,,, of & satisfying the previous

conditions is given, then an &-quasi-ring M with the given set B as basis
can be constructed as the set of all formal linear combinations

3z arb

beB
of the elements of B over the coefficient ring &, where all but a finite

number of the coefficients a, vanish. The set M of all those formal linear
combinations is subject to the rules

lEBabb=b¢EBﬂbb if and only if a, =g, for beB,

(11) Tab+ Shb=72 (a,+ )b
beB beB beB
(12) 1Zab=3 (lay)b, (Zab)i =2 (ay4) b
beB beB beB beB

and (9). We may consider each element x of % as an element of MM
after identification of z with that linear combination of the elements
of B which bears the coefficient 1 in front of 2 and zero elsewhere. After
this identification each formal linear combination is the actual linear
combination of the elements of 8 with the same set of coefficients, and
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B turns out to be a basis of M. The -quasi-ring M is associative, if and
only if the associativity relations

(13) hsEBy"mryb's'“ =ZEB7'z.b.u7v,s,n

are true for all quadruples «, y, z, . The S-quasi-ring M is a Lie-ring
if and only if

(14) Ye,z0 = 0, Ya,4,0 + Yy,2,0 = 0

(15) bEB(w.m;'y..,a + Yu,b,uVz,2,0 + }'l,b,uya,v,b) =0.
€.

for x,y, 2z, ueB.

For example, let M be the S-vector module with the basis
elements z°=1, xz'=z, 2%, z, ... and with the rule of combination
" - g™ = gn+m The ring defined by this is called the polynomial domain of
one variable z over € and is denoted by € [x]. Every element of &[x]
is uniquely of the form

(16) f(@) =oanam +op 2™ 1+ - - -+ gy

with «; € © and &, =% 0, if n>>0. The number = is called the degree of
the polynomial f(x) if f(x) 0.

The &-matrix rings are other examples of & rings.

Let M be the n-dimensional left vector module with basis ., us, . .. , %p.
We wish to find all the operators ¢ of M which map M into itself operator
homomorphically with respect to &. Accordingly we define: A linear
transformation o of M is a single-valued mapping % —>uog of M into
itself such that

(17) (w+v)o=1uc+vg,
(18) - (xu)o = &x(ua).

Therefore we have
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(19) YO = Oy Uy + Cygthyg + o0 Fynlp
n
and for “=?M‘n
" on
(20) “”=2(21i0‘ik)“k~
k=1 i=1
Conversely, every system of elements «,; (i, k=1,2,...,n) in &

defines a linear transformation of M uniquely by.means of the above
formulae.

We order the n? elements «;; in a square configuration

gy Kyg -+ - Kpn
gy Ggg « « + Gigp
A= T =)
Xp1%ng -e - Xnn )
and call this configuration the matriz of n-th degree associated with o .

According to the earlier definitions and statements, the linear trans-
formations of ¢ form a ring.
»

1t U0 = ol G=1,2..,m
a1
"

0T = > Pixle, (=1,2,...,m)
=1

then we defined
(21) % (0 + 7) = w0+ wT =b2;(0‘ik+ﬂu)’“k)

(22) % (07) = (y0) T = (2;“«»’“»)7 = Z“n (% 7) =k2‘ (Z“Hﬂ'k) Uy -
ve= r=1 =1»=1
Accordingly we define the sum and product of the matrices
A= (0), B= () :
A+ B=(aa+Bu) ,

AB= (%"xirﬂrk) .

All the matrices of the n-th degree with coefficients in the ring & with
unit element form a ring M, isomorphic to the ring of all linear trans-
formations of the n-dimensional S-vector module.

M, is said to be a matrix ring of n-th degree over &. M, is an &-ring.
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The basis elements are n® matriz unities e, (i, k=1,2,...,n), where
eq is the matrix which has a 1 at the intersection of the 4-th column and
k-th row, and otherwise all zeros. The multiplication rules of the matrix
unities are -

(23) €y = O,
(i.t,r.:=l,2.“.,n;dl-,--{;‘ :; :;:) 1 o

The unit element of M, is the identity matrix E= ( .. )

0 1
The zero element is the matrix of all zeros.

If the ring & of matrix coefficients is commutative, then one usually
applies the linear transformation ¢ of the vector module 9 on the left,
so that o is a single-valued mapping of 9 into itself for which

L o(u+v)=ou+ ov,
2. o(xu) = axou.
Moreover we set, differing from (19) above,

i
(24) U= D op s, @&=12...,m
1

but define the associated matrix again as
A, = (x2)-

Since & is now a commutative ring, the mapping ¢ — 4, is again an
isomorphism between the ring of linear transformations of 9 and the
matrix ring M,.

DEFINITION: A quasi-ring over a field as coefficient ring is called an
algebra. An algebra always has a basis over its coefficient field. An
associative algebra is an algebra satisfying the associative law of multi-
plication. An example is the semi-group ring of a given semi-group over
a field k. As a basis of the k-ring, we take the elements of the given
semi-group, and as multiplication rule we take the multiplication table
of the given semi-group.

An algebra which is a Lie-ring, is called a Lie-algebra. The Lie-ring
belonging to an associative algebra, for example, is a Lie-algebra. An
algebra with a finite number of basis elements over its coefficient field
is called finite dimensional or simply finite. A finite associative algebra
also is called a hypercomplex system. For example, the group ring of a

. given finite group over a field is a hypercomplex system. Another ex-
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ample is provided by the finite extensions of a given field of reference k.
The extensions of k are defined simply as the fields containing k as sub-
field. They are finite if and only if they contain a finite basis over k.

6. Galois Fields.

A field with a finite number of elements is called a Galois field.

The number of elements of the prime field & contained in a Galois field
K is finite, and is therefore a natural prime p. Since K contains only a finite
number of elements, K is a finite extension of k. The number of elements
in a Galois field is thus a prime power p*. The exponent n is equal to the
degree of K over the prime field consisting of p elements.

In order to investigate the multiplicative group of a Galois field, we
need the

LEMMA : A finite group must be cyclic if, for every natural number n,
it has at most n elements whose n-th power is e.*

Proof : Let 8 have the order N; let 8 be the cyclic group with order N.
An element in & generates a cyclic subgroup U whose order d is a divisor
of N. It was shown earlier that 3 contains exactly one cyclic subgroup 8
of order d. The d-th power of each of the d elements of 1 is e; therefore
by hypothesis I contains all the elements of & whose d-th power is e.
Since I and B have the same structure, ® contains at most as many
elements of order d as 3 does. This holds for every divisor of N. Since
®:1= 3:1,® and 3 contain the same number of elements of order d. 8
contains an element of order N and therefore ¢ contains one also, Q.E.D.

In a field, according to a familiar theorem, the equation z"=1 has at
most n different solutions. Therefore by the preceding lemma, the multi-
plicative group of any finite field is cyclic.

The multiplicative group of a Galots field is cyclic.

In the proof of the following theorem some acquaintance with cyeclo-
tomic polynomials is assumed.

THEOREM 16: A finite division ring is a field’

Witt’s Proof: Let K be a division ring with a finite number of ele-
ments. If k is a division ring contained in K then K is a finite z-module,
and by 4. the number of elements of K is a power of the number of
elements of k.

! Equivalently: For each given index, or for each given order, there is only one
subgroup,

*J. H. M. Wedderburn, A theorem on finite algebras, Trans. Amer. Math. Soc.,
Vol. 6, p. 349.
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The center of K is (as was shown earlier) a field; say it has q ele-
ments. Then K consists of ¢ different elements. All the elements of K
which commute with an element @ form a division ring k,, which contains
the center of K. Therefore k, contains g elements, where d is a positive
divisor of #n. We decompose the multiplicative group of K into classes of
conjugate elements and obtain as the class equation

r—l=@g-1n+ 3 L=1
e din

A1

0o<d<n
g:} and the number g"—1 are divisible by ®a(2)
where ¢n(z) is the n-th cyclotomic polynomial. Therefore ¢-1 is also

Each summand

@(n)
divisible by @, (g) . If n>>1, then in the decomposition ¢a(q)= [/ (g —¢,),
1

where the ¢; are the primitive n-th roots of unity, each factor is greater
than ¢ — 1 in absolute value, and therefore gn(q) is also greater than
g—1 inabsolute value. Therefore n=1 and K is identical with its center,
as was to be shown.

7. Near-Rings and Near-Fields.

We wish to add the operators of a given group ¢ and investigate the
rules of combination which will obtain.
Single-valued mappings (:,) of a group into itself are added in the
following way:

e = ™. 20,

In general this addition is not commutative. All the single-valued map-
pings of ® into itself form an additive group. Moreover we know that
they form a multiplicative semi-group.
In the domain ITg of all single-valued mappings of @ into itself, we
also have the right distributive law
(r+ 0)o =m0+ o,
which can be verified immediately. The left distributive law holds for
all 7 and ¢ in Il if and only if ¢ is an operator belonging to @.
Under what conditions is the sum of two operators an operator?
When, therefore, is
(xy)9,+e. = 26:+6, ., Y&+ 6

. for two operators 6,, 6, ?
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Since by definition
(29)9:+6 = (29)%: (x9)% = 2% y% 20y,

we have 2% . YO = y6i. z6:

as a necessary and sufficient condition.

DEFINITION : Two operators ©,, @, are said to be additive if ©%
commutes with @% elementwise. ’

The sum of two operators is an operator if and only if the summands
are additive. For additive operators @,, @, , addition is commutative:
0,4+ 0,=6,+ 6,, asisimmediately seen. The sum of » operators is
certainly additive if the summands are pairwise additive. The sum of
pairwise additive operators is independent of order or parenthesizing.

It is precisely the center operators that are additive with respect to
any operator. (If @ is additive with respect to 1 , then 29 is in the center
of ®). Two automorphisms are additive if and only if ® is abelian.

In the domain 7, with operators of ® as multipliers, almost all the
ring axioms are fulfilled. We call such a domain a near-ring.

The axioms which must be fulfilled in a (left-) near-ring are:

I. A near-ring F is an additive group, not necessarily commutative.

II. There is a multiplier domain M in F, such that for every element
# inMand « in F the product p« is defined uniquely as an element in F.
The following rules hold :

(pp')o = p(u'®) o’ €

plx+pB)=px+ up (@, pEP).

The near-fields are special near-rings. A nearfield is a near-ring whose
multiplier domain forms a group. If 1 is the identity element of M, then
we should have 1-a =« for all ac F, and we should have the cancel-
lation law:

poe=p's, o %0
implies p=y. .

The multiplicative group M of a near-field F is mapped isomorphically

onto a group of automorphisms of the additive groups of F by the map-

ping u— (:a) . Because of the cancellation lav: we have a group of
regular automorphisms.!
* An automorphism is said to be regular if it permutes regularly the group elements

different from the identity. A regular automorphism group is a isti
entirely of regular automorphisms. P group Eroup consisting
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If conversely a regular automorphism group M of a group ®, which
contains at least two elements, is given, then we consider 6 as an additive
group, find a non-zero element, denote it by 1, and introduce the notation
p=p(1) forall x in 9. Singe I is regular, the notation is single-valued.
Now we define multiplication by the statement pa=u(x) for all » in
M. Then we have found a near-field F with the additive group ® and the
multiplicative group M. .

The holomorph of M over @ is the group of all permutations (ﬂ—: )
of elements of F. “e

This permutation group can be formed for every near-field F' and is
denoted by B+ By is transitive and each permutation in B either leaves
all of the elements of F fixed or leaves at most one element of F fixed. In
order to prove the last property we must show that

Btura=a Btus'=o, a o,

implies u=1, #=0. In fact
&= o= po—pa’ = p(x— ),
and since « —a’ % 0, we find x = 1. Since g4 &« = «, we have B=0.

The permutations ( ﬁ:a) form a regular normal subgroup of B
isomorphic to the additive group of F.

If conversely the permutation group P contains a regular normal
subgroup ® and each permutation leaves either all or at most one letter
fixed, then we can consider the group P as a holomorph of a certain
automorphism group 9 over @ because of a remark in § 4, 6. Because of
the second assumption, M is a group of regular automorphisms. Conse-
quently we can construct a near-field F' with additive group ® and with
M as multiplier group, so that P = P,.

A near-ring in which every element is a multiplier is said to be a
complete mear-ring or in accordance with a suggestion of Mr. Wieland
a stem. For example,the previously constructed near-ring Ty is a right
stem.

A near-field is said to be a complete near-field if the group of multi-
pliers consists of all non-zero elements. For example every division ring
is a complete near field.

The determination of all the types of complete near-fields which
contain a finite number of elements, is an interesting problem which will
be solved later.
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Exerclses

1. We have lost the first row and first column of a group table. Show that the
associated abstract group is still uniquely determined by the incomplete table.

2a. All rational integers a, for which X% =e for all elements X of a group @&, form
a module—the exponential module.

2b. The non-negative rational integer generating the exponential module is called
the exponent. The exponent is the least common ‘multiple of the orders of all the
elements of @.

3. The exponent is the smallest natural number a such that X% =e for all X, if
there are any rational integers different from zero with this property.

The exponent is a divisor of the group order. The exponent of a cyclic group is
equal to its order. Is the converse true for finite groups?

A finite abelian group whose exponent is equal to its order, is cyclic, More
generally, show that in a finite abelian group every divisor of the exponent occurs
as the order of an element.

Hint: Prove and use the fact that the product of two elements which have rela-
tively prime orders and which commute has an order équal to the product of the
orders of the factors.

4. The exponent of a subgroup is a divisor of the exponent of the whole group.
The same holds true for a homomorphic image of @ ; in particular, the exponent of a
factor group is a divisor of the exponent of @.

5. The greatest common divisor of all rational integers » with the property X»=e
implies X?™=e, is called the p-exponent (p is a natural prime). Set up and prove
statements analogous to those made inExercises 2 - 4.

6. An automorphism « of a group ® which leaves both the normal subgroup %
and the factor group @/N elementwise fixed multiplies each element in @ by an
element of the center 3 of M. Its order is a divisor of the exponent of 3. All such
automorphisms & form an abelian group.

7. A finite group has a non-zero central operator precisely when the order of the
factor commutator group and the order of the center have a common prime factor.
(Use Exercise 3 of Chap. 1).

8. A normal subgroup of a finite group contains every subgroup whose order is
relatively prime to the index of the normal subgroup.

9. Prove the simplicity of ¥, for n>>4 by the following method.

a) If the permutation @ moves (does not leave fixed) more than 3 letters, then
there is a three-cycle g, such that enp int leaves more letters fixed than
# but is not the identity permutation.

b) Inany normal subgroup of ¥, which is different from 1 there is a three-cycle.

c) Apply Exercise 7 of Chapter I (following v.d. Waerden, Modern Algebra I.)



III. THE STRUCTURE AND CONSTRUCTION OF
COMPOSITE GROUPS

§ 1. Direct Products

By the second isomorphy theorem in a group ® which is the product
of two normal subgroups %, and R, the factor groups are isomorphic
to the factor groups of the %; with respect to their intersection D; that is,

G/ = /D, GRe=NyYD.

We ask to what extent the structure of @/9 is uniquely determined
by the structures of /9 and Ry/D.

To do this we can and will assume that @ is the product of the two
normal subgroups R, and N, with e as their intersection:

G=N, MNNy=e.

THEOREM 1. Ewvery element in 6 can be represented as the product
of an element from R, and one from N, in one and only one way.

The multiplication rule is

(@,8,) - (b1],) = (a,0,) - (a2b,),

where a;,b; are in N

Proof: Since @=%",.N,, every element in @ is of the form a,.a, with
a; in N,

From a,a,=b,b, with b; in R, it follows that

b,~la; = ba,"' =d.
Since N Ry =e,
d=e, by=a,, by=a,.
Next, 10,0, 1,7 =8, (@0, %0, ) €Ry
= (810,08, MVa, 1 ER,

because R, and N, are normal subgroups,and therefore it follows from
RN Ry=e that a,.a,=a..a,. It follows from this that we have the
multiplication rule, as was to be proved.

Conversely we now form a group & with given normal subgroups
9, and N, by defining it as follows: @ consists of all ordered pairs (a,, a.)
‘with a; in .

We define multiplication by

(a1, @,) - (b, ba) = (ay};, a5dy).
109
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We immediately verify the validity of the group axioms. The identity
element is e= (e, €.).

The mappings a; — (@;,€) and a,— (e, a,)_ are, !;espectively,
isomorphisms of R, and N, with normal subgroups R, and N, of @ and

5219-2: =6; 9_31 /\ﬁg =e.

The group @ just constructed is called the direct product of the groups

R, and N.; in symbols: X
G=N, x N,.

We restate the previous theorem as follows:

If & is the product of the normal subgroups R, and N, with inter-
section D, then the factor group @D is the direct product of the factor
groups Ry/D and NyD.

As the direct product of three groups $;, i=1, 2, 3, we define

D1 X 2 X D3= (D1 X D1) X Ds-
It it obvious that there is a simple isomorphism between
(D1 X ) x §; and H; X (H2 x 9s),
and likewise between
H1 X9, and 9. x §,.

Accordingly 91 X 93 X -+ x 9, is uniquely defined as the direct
product of the §; in any order and with any parenthesizing; and indeed
we may define =9, x §, X --- X .  as the set of all ordered
n-tuples 2= (2,, . . ., ,) of elements z; in $; with the multiplication rule

(T2, T3y - oy Za) - (Y15 Y25 - - -5 Yu) = (T1Y1, T2Yas - - o> TalYa)-
After we have identified z; with the element (e, ..., €., 2, €41y - - -,
e,), ® becomes the direct product of its normal subgroups ..
Necessary and sufficient conditions that a group & with normal sub-
groups $, . . ., 9, be the direct product of these normal subgroups, are:

L =91 Ds-- .- Do
2. QN (D15 -5 Hiss Div1r-- D) =¢ G=12,...,n).
Condition 2. can be replaced by
2a. DiN(Dis1r Dives-- s Da)=¢ G=1,2,...,n=1
or
2b. The representation e —=e,-e,-...-¢, Wwith e in §, of the

identity element of ® is unique.
We say that the z; are the $; components of an_element z of ®. The



§ 1. Direct Products 111

mapping z-» z, is an operator H; of ®. H; is said to be the i-th
decomposition operator of =9, X Pa X - -+ X 9.. The H; are addi-
tive operators and = ze= zf:. 2zH:. . zHx ; hence

Hy4 Byt 4 Hy=]
Moreover H; H;=0 if i%k and H?=H.,.
If, conversely, we are given additive operators H, with the properties
"
SH;=1 , H; H,=0 for i#Fk, then they are associated with the direct
1

decomposition
@ =0Hx @BHix... x (1

H, is a normal operator over ® since for all bin®%, x in @, we have
b® = b*Hi — b= and therefore for all a in G, a*F=q?"Hi— gHiz |
The order of a direct product is equal to the product of the orders of its
factors, as the component representation shows.

The center, the commutator group and the comutator form of a direct
product are the direct products of the centers, the commutator groups
and the commutator forms of the factors, respectively.

If @ is decomposed into the direct product of characteristic factors,
then the automorphism group of @ is the direct product of the auto-
morphism groups of the factors.

Every group is the direct product of the identity element and itself.
A group which has only this direct decomposition is said to be directly
indecomposable.

Direct products occur in the investigation of factors of a principal
series of a given group. These factors are simple over a certain auto-
morphism domain, and therefore are characteristically simple.

THEOREM 2: If the group G+e is characteristically simple and the
double chain law holds for normal subgroups, then it is the direct product
of (merely) simple groups which are isomorphic to each other,

Proof : Since the minimal chain law holds, there is a minimal normal
subgroup ¢ in @. The automorphisms & of ¢ map R onto the minimal
normal subgroups N* of @, all isomorphic to N. We wish to form the
largest possible direct product of these. By the maximal chain law, there
is certainly a largest direct product M=RN" X N= x ... x.Ner, If
IR were not equal to @, then by hypothesis 9 would not be mapped into
itself under all automorphisms of 6 ; therefore there is an automorphism
. & of ® such that M* does not lie in M. However we would then have



112 III. Structure and Construction of Composite Groups

NeNM=e, since N is a smallest normal subgroup of @, and there-
fore MN* x N x --- X N is greater than M. Consequently
@G =Nu x N x .- X N
The factors of this direct decomposition are the minimal normal sub-
groups of @ and therefore simple, as can easily be seen.
Remark: Every factor of a principal series (or of a characteristic

series) of a finite solvable group is the direct product of cyclic groups
of equal prime order.

§ 2. Theorems on Direct Products’

The following theorems also hold for groups with an operator
domain Q.

From the first isomorphism theorem we derive:

THEOREM 3: If a homomorphism of a group ® onto a multiplicative
system § induces an isomorphism with § of a normal subgroup 9. of G,
then © is the direct product of the normal subgroup %, of &,consisting
of all elements of ® which map onto &with the normal subgroup R».

Proof: From the hypothesis, %, R, =&, f, \ R, =e.

THEOREM 4: If ¢ is a homomorphism of the group ®& which is dif-
ferent from e, onto the normal subgroup ® of the indecomposable group
9, T a homomorphy of $ onto §, v a ®J-isomorphism, then o is a
G H-isomorphism and v an D J-isomorphism.

Proof : One can show easily that ¢ is a B$H-isomorphy and thatz isa
®S-isomorphy. Since 18 = v ® = §,7is a §-isomorphism. Since @ e,
@ is a normal subgroup of $thatis distinct from e. From the indecompos-
ability of § it follows, by Theorem 3, that =9, and therefore ¢ is a
@H-isomorphism and 7 is an HF-isomorphism, Q.E.D.

If » is an operator of ®, then all the elements of ® for which z*=e
form a normal subgroup n, of ®. All the elements of & for which z*" =¢
is solvable likewise form a normal subgroup of ®, which is denoted by
®,. RN, isthe union of all N m. o is a meromorphism of /N, and
every normal subgroup of & for which @ induces a meromorphism
in its factor group, contains %, .

If the minimal chain condition holds in @, then o is actually an
automorphism of /R, . It follows from this that @ =R, - @™ for
all m. If the maximal chain condition also holds in ®, then the chain

* Following Fitting, Math. Zeitschr. 39 (1934); one will find further bibliographical
material there.
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My, M Myss - . terminates, and R, = n,. is solvable. The intersection
of @ with R, is e, since an element  of this intersection satisfies the
equation 2*"=e and is of the form z=gy*" but y*"=2""=g¢
implies y*"=2z=e¢ If, cgnversely, @=R, U, where U is a sub-
group of @ with the properties R, NU=¢, U* U, then w induces
a meromorphism of 11, and from the minimal chain condition of ®/%,,

it follows that U”=1, and therefore U =1""= N*"°" = *". We
specialize to the case for which the operator domain @ of ® contains the
inner automorphisms of ® whenever it contains », and we thus obtain

THEOREM 5.) With a normal operator o of a group in which the
double chain theorem for normal subgroups is fulfilled is associated a
direct decomposition &= R, x @*". The second factor of the decom-
position is uniquely determined by having R, as the first factor.

Hereafter we shall assume that the double chain condition for the
normal subgroups holds in @& .

THEOREM 6: If the sum of additive normal operators of a directly
ind ble ® is an aut phi then the same is true of one of

the summands.

Proof: We can assume immediately that the sum contains only two
summands.

If w,+ w,= o is an automorphism then w—'w, + w~lw, =1, and if
we prove the theorem for this sum, it follows for the other. Therefore
let @, + w; =1 be the sum of additive normal operators w; and w,.
From o, = o,(0;, + @) = (0; + wg)w; it follows that w,w,=w,w,;.
If we had both w,»=0 and w,*= 0, then

2n

1= (0,4 wp)*" =20‘w1‘w,"""= 0
0

i.e.,, @=e. In this case the theorem is trivial. If G%e then for at least one
of the two operators w;, let us say w,, every power is different from
zero. From Theorem 5 and the indecomposability of ®, it follows that
R, =e. w, is a meromorphism, and, because of the minimal chain
condition for normal subgroups, it is an automorphism, Q.E.D.

DEFINITION: A direct decomposition of a group into directly inde-
composable factors not equal to e is said to be a Remak decomposition.
If the group is directly indecomposable, then it is itself the only factor
of its Remak decomposition.

1 This is known as Fittings Lemma. (See Jacobson, Theory of Rings.) (Ed.)
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THEOREM T: a) Ewvery group (satisfying the double chain condition
for normal subgroups) has a Remak decomposition.

b) If G=9, X D2 X -+- X Ha
and - B=3 X X+ X I
are two Remak d positions with d position operators H,, H., . . .,

H,and Jy, Jo . .., ., respectively, then n=m, and the J; can be renum-
bered so that
wo=JH +J,H,+ -+ JHy

18 a normal automorphism of & which maps the H-decomposition onto
the J-decomposition. -

c) For the appropriate ordering of the §; we have the exchange
equations

B=3 X Jp X+ X Jne X Dis X%knx"' X Da.

Proof: a) Among all the decompositions & = X §: X ... X §u
with indecomposable factors $., §. . . ., Yu—. different from e, . 5= ¢, and
n any natural number, choose one with minimal §,. Among all the decom-
positions &, =% X B having A 5 ¢, choose one with minimal %. It fol-
lows that 9 is indecomposable and not equalto e, 8 < §,; hence B=e,
$. = U; and hence we have obtained 2 Remak decomposition.

b) We remark that the additivity of two operators w, and w, im-
plies the additivity of @,J; and @, ,and of J,e, and o, .Therefore

?HlezHl “ZJk=H1,

and, by Theorem 6, at least one of the operators H,J, induces an auto-
morphism in 9,.

The J; can be re-indexed so that it is H,J, that induces an automor-
phism in §,. By Theorem 4, J, induces an §,3,-isomorphism. By the
remark made above, -
w,=J, H,+ JH,

2

is a normal operator. An equation  =e implies e = z¥i® — FHJH,
and since H,J, induces an automorphism of ©,, we have z% —¢. But
then 2% = a8 ... g=ls — g8, gBs ... 28x — ¢ and therefore
IH' =e X=e€.
The normal operator , is a meromorphism, and by the double chain
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condition it is, in fact, an automorphism of ¢ which maps the §-decom-
position onto the Remak decomposition
G=3 XD X Hy X+ X Du.

If =1, then the theorem is now complete. We apply induction with
respect to n and assume n>1, ®/3; has Dy X §s X -+ X 9, as well as
J X Ja X+ xJ, as representative groups. Since the §,, J,, for
i>1, remain indecomposable in /3, by the induction hypothesis n=m ,

~ and the § with >0, can be reindexed so that @ =_>J, H, transforms

the §-decomposition of ®/3; into the $-decomposition. Here H, and 7,
are the decomposition operators in G/ =D X D3 X -+ X D and
n

®/3=3axJpX xS, respectively. From this it follows that S, H,
maps the decomposition ;X 3 X +-+ x §, isomorphically onto 2‘che de-
composition JyX Jyx---xF,, and hence w= 22' J.H,is the normal
automorphism of ¢ which was sought. '

¢) Moreover it also follows from the induction hypothesis that, after
appropriate reindexing of the § for i>1,

e X Fa X oo X Ja X Daga X - X D
is a representative system of @ over §;. Therefore the exchange equations
B=FnXJpX "X JnXOra Xor- X D

follow.

THEOREM 8: If ® =9, X 9., then a homomorphism o of $. onto
$. is normal® if and only if £,° is in the center of ®.

Proof: 1. Let ¢ be normal, a € §,, b €9,. Then @’ =g"*=aq°. a°
is in the center of $. and therefore of .

2.Let §,°is in the center of .. Then it follows that for all b in
De: @*7=gq, If b is in §,, then a°.b"=10"-a" Therefore (a*)”= a“,
a"® = a° = (a") = a*°, and therefore ¢ is normal in G.

From Theorem 8, with the notation of Theorem 7, there follows:

THEOREM 9: A non-abelian factor of the H-decomposition is normally
isomorphic in @ to one and only one factor of the J-decomposition.

Proof  If §, is normally isomorphic to1»Js, then it is also normally
isomorphic to $:, and by Theorem 8,$, is then abelian.

! The mapping o of §, onto §, is said to be normal in @ if abr=a"* for all

eEH, bEG.
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THEOREM 10: The Remak decomposition is uniquely determined if
and only if all of its factors are invariant under normal operators of ®.

Proof : We need only prove the second part of the statement. There-
fore, let @ be a normal operator of  which does not transform the
factor §, of the Remak decomposition &= 9, x H; X -+ x H, into
itself. o is the sum of the normal operators ;= H,wH,. By Theo-
rem 8 the operators w;; with i¥k are central operators.

If, for all i>1, ®,, =0, then we would have

7= 9,5t = ;71 = 9, < 1,
and therefore there would be an i>1, say i=2, such that @,, % 0. Since
the operator ,, iscentral, z: = w,,+1 is an operator. It does not
map 9, into itself.

Since w,,®=0, then

(w31 + 1) - (—wgy + 1) =1, (_“’:1+_1_) c(wa+1)=1,
and therefore =z is an automorphism of #. =z maps the original Remak
decomposition onto a different Remak decomposition
G=9" XD X -+ XD Q.E.D.

THEOREM 11: If @& =9, X 9s, then 9, is invariant under normal
operators of @ if and only if there exists no $:9.-homomorphy normal in
@ other than the trivial one: D1—>-e¢.

Proof: 1. Let o be a non-trivial normal $,$.-homomorphism. Then
wH, isanormal operator of & which does not map §, onto itself.

2. If @ is a normal operator of ¢ which does not map §, onto itself,
then H,& induces a non-trivial normal §,9.-homomorphy, Q.E.D.

By Theorem 8, a normal $,$.-homomorphy is characterized by an
abelian factor group of $, and a subgroup of the center of §, isomorphic
to it.

From the previous theorems we derive

THEOREM 12: The Remak decomposition &= 9; X H; X -+ X 9,
is uniquely determined if and only if an abelian factor group of $, is iso-
morphic to no subgroup of the center of i, i¥k, different from e.

THEOREM 13 (Speiser) : A group whose factor commutator group or
center is of order 1 has exactly one Remak decomposition.

THEOREM 14: The Remak decomposition of a finite group

B=9 X DX X9

is uniquely determined if and only if the order of the factor commutator
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group of each of its factors is relatively prime to the order of the center
of each of its other factors.

Proof: By Theorem 8 and Theorem 11 the condition is sufficient. If,
however, the prime number p divides §,:9," and 3(9,): 1 then it follows
from the basis theorem for abelian groups (which is proven in § 4) that

- §: has a normal subgroup of index p, and that 3($,) contains a sub-
group of order p. Since the factor group and the subgroup are isomorphic,
there is a non-trivial normal §,9.-homomorphy; by Theorem 11 and
Theorem 10 the Remak decomposition of @ is therefore not uniquely
determined.

§ 3. Abelian Groups

Let P be a ring with unity element and let % be a finite P-module. Thus
there are a finite number of elements v,, v,, . . ., v, in % such that every
element v in ¥ is of the form.

V=00 + GV +- -+ Qu¥yp
with the a; in P. Let 9k, be the p-vector module (%, . .., %) «
The mapping
Gty + Gty e Gty > U+ Gyt Gats
is an operator homomorphy of 9, onto %, and the abelian group % with

the operator domain P is completely determined by the P-module % con-
sisting of all vectors which are mapped onto the zero element of A:

A= M,/R.
With every system of generators R, R, . .., R, of R over P we

associate the matrix Ay whose row vectors are precisely the vectors R:.
A matrix Ag = (a;,) is characterized by the properties

n
L Sag =0 G=12,..),
)
2. if Sbv=0,

then b,= Sa,,; is solvable in P where the summation is over only
$

a finite number of i.

Since each row of Ay corresponds to a relation valid in %, we say
that Ag is a relation matriz belonging to .

Conversely the row vectors of a matrix A with » columns generate a
p-module % in 9, such that A is arelation matrix belonging to M./R .

When do two relation matrices belong to the same finite P-module %?
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We say that two matrices with coefficients in P are equivalent if they
are relation matrices of the same finite P-module .

This equivalence has the three familiar properties.

A rule which uniquely assigns to each matrix an equivalent matrix
is called an elementary transformation.

We want to find the simplest elementary transformations which by
repeated application will transform any two equivalent matrices into
one-another.

The zero vector can be adjoined to the generators of R :

N,: The elementary transformation N, adjoins a row of zeros to the
matrix A4:

0, ,0
A = (an) > (“uv- . w‘hn)-

N.: Delete the first row if at least two rows occur and if the first row
is a series of zeros. -

The generator R; may be replaced by R;-+ aR; where i#j:

T% ;: The elementary transformation 7 ; replaces the i-th row of
(aw) by (@i + @y, @3+ aay, ..., a;n+aay,), wherei¥j.
We have T8, TE; A=TEP A,

T: By repeated application of 77 ; an arbitrary linear combination
of the other rows can be added to the i-th row.

Moreover we can obtain, by composition of the T¢; :

(t=74) V,;: Exchanges the i-th with the jth row and changes the
sign in the j-th rows
Vii A=Ty; T;i T ; A.
N: By applying N, and T an arbitrary linear combination of rows
can be adjoined to a matrix.

M;.: Moreover by repeated application of T &;and N, N/, the i-th
row of A can be multiplied by a unit ¢ of P:

My 4= No Ty Viers Tiiea Nod.
M;, _yV;, ;exchanges the i-th and j-th rows.

If we adjoin v,= a0+ ayv3++--+ a,va  to the generators v, ..., v,
then we obtain a single new relation:

U— Oy — Gy — -+ - — Gp¥y = 0.

S: The elementary transformation S adjoins te the matrix A= (ay)
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1
(1)
the row (1,—a,, —a,,..., —a,) and the column (0) :
. \ 3
l—a, ..., —Gn (bordering
A—> |0 ay, ty, ..., 6. of a matrix).
[

s Changes to an unbordered matrix if the first column is of the

"1
[
form(o) .

Ri’ s+ Exchange of the i-th with the j-th generator of % induces an
exchange of the i-th with the j-th column in A.

From the elementary transformations found up to now we can form

(k +4)S2,;: Addsthe j-th column multiplied by  to the k-th column:

Let S denote bordering with the vector which has 1 at the zero-th, -1
at the j-th and e at the k-th place, and has zeros elsewhere. In SA the
first row is multiplied by a;; and added to the (i+1)-st row, (:=1,2,...).
After this the first and (j+ 1)-st columns are interchanged, the first line
is multiplied by -1 and, finally, the border removed.

THEOREM 15: By repeated application of the elementary transforma-
tions

Noy Ny, P24, 8,8, Ry v,

a matriz can be transformed into any matriz equivalent to it.

Proof: Let the matrices A, B be equivalent. Then there is a finite
P-module A with two systems of generators

81,8y, ...,8,
and Tx;Tp---: Ta’;

such that A is the relation matrix of the S; and B is the relation matrix
of the T
© Aftern’ applications of S, A goes into a relation matrix belonging to
the system of generators Ty, T,,...,Tw,81,8s,...,8,. After n appli-
cations of S and repeated application of B, ;, B goes into a relation matrix
belonging to Ty, Ty .. ., Ty S1, Szy o+« , She

Since the inverse of every transformation in the set of the six types
. of elementary transformations is also in the set,we need only carry out
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the proof for S;=T,, n=n'. By repeated application of N, A goes into the
A
B

obtained from each other by row permutations and thus the theorem is
proven.

matrix (f) and B goes into the matrix ( ) . The new matrices can be

Are there easily calculated invariants under elementary transforma-
tion?

DEFINITION : The ideal generated by all the (n — 7)-rowed subdeter-
minants of a matrix A with n columns is called the r-th elementary ideal
G,(A). From the expansion theorem for determinants it follows that
G, (4)<E,_,(4). Weset 6, (4)=GC,11(A)=...=P. G, G, is called
the sequence of elementary ideals of A.

THEOREM 17: The sequence of elementary ideals is invariant under
elementary transformation.

By Theorem 15, it suffices to show the equality of the sequence of ele-
mentary ideals in the four cases

a)B=N,4, b)B=TFf 4, ¢ B=84, d)B=R,,4

In case a): except for the elements of €,(4), €,(B) contains only
determinants with a zero row, and therefore &,(B)= E,(4).

In case b), the subdeterminants of B in which the i-th row takes no
part have the same value as the corresponding subdeterminants in A.
The same holds true, by the properties of determinants, for the subdeter-
minants in which both the i-th and the k-th rows take part.

Let D(b,,, b,,s - - -» ‘_Jv,,_,) be a subdeterminant in which the row vec-
tors b,, by, . . ., b, _areinvolved, among them b; = a;+aax, while the
index k does not occur among the »;. Then

Do By - By )= D@y Ty - o5 By )+ D@y oy By oo )

From this we conclude €,(B) L €,(4). Since converselyd — 7T} B,
it follows that G,(4) C G,(B), therefore G, (B)= G, (4).

Incasec), €, (B) =G, (4).
In case d), G, (B) = G. (4).
A matrix is said to be a diagonal matriz if all the elements not on the

principal diagonal are zero. Then a relation matrix A can be transformed
into a diagonal matrix
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(dld’
.

by means of elementary transformations precisely when 9 is operator
isomorphic to the direct sum of residue class rings

) P/(d,) +P/(ds) + ... +P/(d,).
The diagonal matrix A is in elementary divisor form if the diagonal
elements form a chain of divisors such that d,/d./d,/ . .. /d. and d,

is not a unit of p. Making use of the elementary divisor form, we may
write the sequence of elementary ideals as follows:

€o(4) = (dyd,...d,),...,6,_,(d)=(d), E(4)= C,,, (4)=...=P.

If the d; are not zero or divisors of zero, then A is equivalent to a
second elementary divisor form with the diagonal elements d,’,d./, . .., d,
if and only if r=s and (d;) =(d)), i.e., if and only if the diagonal
elements in the same place differ only by a unit of P.

§ 4. Basis Theorem for Abelian Groups

THEOREM 17: A cyclic group & whose order N is the product of pair-
wise relatively prime numbers n,, n., . . ., n,, can be decomposed in one and
only one way into a direct product of cyclic groups of orders ni, n,, . .., n,.

Proof : The uniqueness is clear since in a cyclic group only one sub-
group exists having a given order.

Weset m; = % and seek the i-th decomposition operator. By hypothe-

i
sis the congruence 2;m;= 1 (mod n,) issolvable. We define the operator
H, by means of the condition: g = g%™ for all a in . We obtain directly
the equations:

SH,=1, H,H,=0(+k), H}=H,

Therefore & = @& x @Fx ... x GFr. Since n,H;=0and @ is
cyclic, the order of @% is a divisor of =, and so, because of the order
relation, ®% has the order n;, Q.E.D.

THEOREM 18: An abelian group +e with a finite number of generators
is the direct product of cyclic groups having prime power order or having

- order zero. The multiplicity of each basis order is uniquely determined.
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Proof : In order to prove the first part of the theorem, it suffices by
Theorem 17 to prove decomposability into cyclic factors. Our operator ring
P is the ring of integers, and our aim is to put the relation matrix 4
belonging to the abelian group ¥ into diagonal form by means of ele-
mentary transformations.

We apply the following reductions:

1. If A is the zero matrix, then A is already in diagonal form.

If A+0, then among those integers a;, which are different from zero
there is one which is smallest in absolute value. By appropriate row and
column interchange we may take a,, to be this number.

a) Ife,+0, £>1, then aiz=qa,,+7 where ¢ and r belong to P and

0=r<layl.

Multiplying the first column by ¢ and subtracting it from the k-th
column we obtain b, = a,,— qa,, = r which is smaller than a,, in absolute
value. .

b) If a,#F0, i>1, a;=qa,,+7r, where q and r belong to P,

0 <7 < |ay |, then subtract ¢ times the first row from i-th row.

After a finite number of reductions of type L.a) or L.b), we find that
all the elements of the first row and first column are divisible by a,,.

If A has n columns, then after at most (n-1) reductions by I.a) we
find that the first row is of the form (a,,, 0, ..., 0) . The first column
remains unchanged by this reduction, and we may now replace it by

Gy
(o ) (Here reduction 1.Lb) may have to be applied infinitely often).

The unbordered matrix which is obtained from A by deleting the
first rew and first column has only n-1 columns. We apply the reduction
process described above to it; here the bordered matrix is transformed
without changing the first row and column. After at most n such reduc-
tions A goes into diagonal form.

In order to prove the uniqueness we assume that S,, S, . .., S, is a
basis of A e such that S, S,, . . ., S, are of prime power order, and
that the remaining basis elements are of order zero.

Let S,, Ss, ..., S, be all the basis elements whose order is a power of
the natural prime p, so that S, is of order pm with 0 <n, < Ngeee <y,
All elements of % whose order is a power of » form a subgroup S, with
81, 8 ..., S,as basis (p*- 30,8 = Jp*a,8,=0 implies g, — ¢, if
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i>s). The relation matrix of &, with respect to this system of generators
'pﬂl
has the elementary divisor form ( o~ . )
B ° pm

By § 3 the numbers in the diagonal are uniquely determined to within
sign.
The n; are uniquely determined.

S, Ss, ..., S, generate the subgroup Ul of all elements with positive
order in 9. The factor group %/U has S,4,, ..., S, as basis with the basis
orders 0, 0, . . ., 0. Since the associated relation matrix, being a null

matrix, is in the elementary divisor form, the number n—r is uniquely
determined, Q.E.D.

§ 5. The Order Ideal

The following investigations are closely related to § 3.

DEFINITION : The first member in the sequence of elementary ideals
of a matrix A is said to be the order ideal O, of A. The order ideal is
generated by all the subdeterminants of greatest order of A.

The order ideal is invariant under elementary transformations.

It follows from the basis theorem that the order ideal of an ordinary
abelian group with a finite number of generators is generated by the
group order (where P is the ring of rational integers).

THEOREM 19 (Analogous to the Fermat Theorem of group theory) :

For all operators D of the order ideal D4 and all elements v in ¥,

Dv=0.

Proof : It suffices to assume that D is an n-rowed subdeterminant of a
relation matrix A with n columns, and that v is one of the corresponding
generators v; of 9. After appropriate renumbering of the rows of 4, let
D=|ag| (i, k=1,...,n).

Then n

2 =0,

k=1
and therefore »
» ’ kz:uu:Au vu=0 *=12...m),

where 4, ,is the algebraic complement of a;, in D. After summation over
these n equations, we get



124 III. Structure and Construction of Composite Groups

n n
P ( lauAu) %=0.

k=1 \i=

As is well known,the inner sum has the value &,D, and therefore

Dv,=0, Q.E.D.

§ 6. Extension Theory
The extension problem posed and solved by Qtto Schreier reads:

Given two abstract groups W and §, find all groups @& which contain
N as a normal subgroup, such that

(1) G/ = F.

First we shall investigate the groups & which contain %! as a normal
subgroup with factor group isomorphic to %. The elements in % are
designated by 1, o, 7 . .

There is a decomposition & =%"E§RS, of @ into cosets with respect

h
to W such that NS,- NS, =NS,,,

@ 8,8,=0C,. 8. Co €R.

Since N is a normal subgroup of &, for the elements E, A, B, C, . . .
in N:

and therefore

3) 8,48 1=A4% R,

) (4B)% = 4% B,

(5) (A57)S0 — 4505 — 4C0,2 5z — (4507) 0,7,
(6) 8,8, = Cl,xsn hence 8;= Cl,l’

) A% = 4%,

(8) AS,.BS,= AB%C, S,,.

From the associative law in ¢ it follows that
(8,8)8,=(C,,8,)8,=C,.C,. 8.,
=8,(8,8)=8,C,,8,=C=C, .8

070 e o,z 0eg>

and from this follow the associativity relations

a1 o1,

So
) C0iCoge= 030, .,



§ 6. Extension Theory 125

Conversely, let single-valued mappings S, of % onto itself be given
and let a system of elements C,. in M be given also, so that

L (4B)%=4%B%,
IL  (A5)% = 4%5: — (457) % = fCosSor g8 _ A1,
L c,,c,, .= Cf,"eC

a1 0t o,10"

A system of elements C, ., which occurs in a solution of these three
equations is said to be a factor system in N belonging to ¥.

A group will be constructed which contains %t as a normal subgroup
and whose factor group is isomorphic to § such that the multiplication
of the representatives of 8 over % follows rule (8).

Let (& be the set of all symbols 48, with A in%; A48,=BS, if
and only if 4 =B, ¢ =7. We define multiplication in ¢ by

AS,-BS,= AB%C, S,

o,z ez

In ¢ the associative law is valid:

(48,-B8,)-CS,= AB%C, 8, CS,

0t az

=A4B%¢, 0%C,, 8

07,0 aze

= AB% (% %:¢_C 8

a1 ar,e are

= 4B%C%%CinC, . 8,,, (by 1L and II1.)
=A4(BC*C, )% C, 8., (by 1)
=48,.BC%C, 8,

= A8, (BS,-C8,).
If we set o=7=1 in III, then
€,,C,,=C1C, ., C  =C%1, therefore

1,17 1,¢ Le 'Le’ Ty,

(10) Cx,e = 01,1 .

If on the other hand we set 7 =g =1 in II then
A C C = Cf”x C, . therefore

01”01

(11) Cn,1=0;g:11‘
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=C4 8, is left identity of @, since
— (O-14%, —
e. AS(,—- Cr1a™ 1C'WS“_ 48, .
As solution of X8,-BS,=e,
that is, of { XB‘?u = C-
we find X = 1 C_ B
o=11
® is a group. .
We set A=AC;_IISI.
B - —; — 1)8;
Then AB=ACS,- BC’I:Sl—AC’ LBO)E-C, .8,
=ABC[}S, -
Now A=e implies A=1.

Therefore A—» 4 is an isomorphic mapping of % onto a subgroup
% of ©.
Set S =18 . Then

4.8,=AC}8,-18,= AC]\C, 8,= 48, by (10),
8,-8,=18,.18,= c,.8,.,=C, .8,
Su"‘f Ac;llsl A% Cx_i c, 1Sa=AsaSa
=ﬂ.§,,
therefore A5 = 4%,

3 is a normal subgroup of ( with the :§, as a system of representa-
tives, the Z‘M as factor system, and the §, as automorphisms, and
the mapping A4-»A is an operator isomorphism between R and R.
Thus the problem stated above is completely solved.

Let @ and @ be two extensions of % which belong to the same factor
system C, . and the same automorphism set S, . The elements in ( are
uniquely of the form 4.8, those in ® uniquely of the form A§,, where
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48, BS‘=ABS" Cu,lsﬂv
A§,BS‘,=ABS”C §

Then the identity automorphism of % can be extended, by means of the
mapping 48, —>AS to an isomorphism between & and ®. We say
more briefly: ¢ and & are N- isomorphic.

From these investigations we conclude:

THEOREM 20: To each extension ® of a mormal subgroup N with
given factor group § there belongs a factor system and a set of auto-
morphisms of M such that conditions 1, I1, III are fulfilled.

Conversely,to a given factor system and a given set of automorphisms
of M, which fulfill I, I, 111, there belongs an extension of N, unique to
within isomorphy over N.

If instead of choosing S, as a representative of S R we choose
T,=4,8, with 4, in%, then the automorphlsm 8, of RN is replaced
by 4,8,=T, and C,. is replaced by 4,45 °C,, ,A,,,,smce

T.T,=A4,8,4, s =4,47C, 8, =A4,4%C, AT,
The converse is clear.
DEFINITION: Two factor systems (8,,C, ), (T,,D,, ) are said to
be equivalent if there are elements 4, such that
ATo=A4%% forall AR

D, =4,47C, 4 |

We then write (T,, D, )~ (8,.C, ).

For this equivalence the three rules are valid.

Two factor systems with sets of automorphisms induce extensions
which are isomorphic over % and for which the coset R, maps onto the
coset I-B; , if and only if the factor systems are equivalent.

There always exists at least one factor system, namely that belonging
to the direct product § X% :

On,c =1,
A5 =A.
A factor system is equivalent to (7, 1) if and only if
1=A,43C, 47}
"is solvable.
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An equivalent condition is: In some associated extension, a subgroup
can be found which is a system of representatives with respect to R.

Then ® decomposes into a product of § and R where FNR=e.
Therefore we say that a factor system equivalent to (7',, 1) is a retract-
ing factor system.

If the given normal subgroup % of ® is abelian, then the automor-
phism A4 4% is independent ?f the particular choice of the repre-
sentative S, and therefore we simply set 4% — 4°.

Three necessary and sufficient conditions in terms of (o, C,,) are
then

L (4B =A"F’,
1I. (Ai)u - A'", Al =4.
IIL Cy,.Car g = C%,oCo v

The factor systems belonging to the same group (o, 7,...) of auto-
morphisms of % form a group (C,,). The number of non-equivalent
factor systems is equal to the index

(€., : (4, 4743).

The number of different retracting factor systems is equal to the
index
(4,):(8,), where §,6]=34,,.

If % is of order m and § is of order =, then the last index is equal to
m*[((8,) : 1).

§ 7. Extensions with Cyclic Factor Group

Let the factor group of ® over the normal subgroup % be isomorphic
to the cyclic group § = (o).

Let S be a representative of the coset associated with o .

If §:1=0, then 1, 8¥18%2 . is a system of representatives of G
overRand Cyu x=1.

If §:1=n>0then 1, S, S? ..., 8*-1is a system of representatives of G
over . Then S»= N is an element in R for which NS = N holds. Moreover
A" = AN for all A in % and

Y, itk<n
Cot gt = { N, itkzn 0si, k<n).

Conversely if §:1=0,and A — AS is any automorphism of R, then
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weset Oy =1 and see that one and only one extension group & of %
exists such that @/%= (SR)=F and SAS'=A4S for all A in N.

If §:1=n>0 and A —» A° is a single-valued mapping of N onto

itself with the properties _ .Ia. (4B)’= 4°B°,
Ia. A" =47, Nc %,

IITa. N’ = N,then there exists one and only one extension group ®
of % such that /N = (SN)=F and SAS*=4° for all 4 in R, S"=N.

Proof: In order to see that (& exists, we set

am{ b T

Then I and II hold.

The validity of III means, since N°= N, that certain identities with
the factors 1, N are fulfilled, no matter what the structure of %. Now
since the infinite cyclic group (S) is a cyclic extension of index n over
(S"), and N=S" generates an infinite cyclic group, the identities are
valid in all groups.

Since @ is uniquely determined by R, ¢ and N, we denote @ by
(R, 0,N) .

When is (®, ¢, N) isomorphic to (%, o*, N*) over R?

We can assume that the two groups are identical, and then §,,=4 s
where 0 <» <n and (v,n)=1:

O=5, k<.

N*=(4 S:)"= A”"'*‘"‘*“"("_HN',

Conversely if z°"= 249" for all z in N, where (»,n)=1, and if
N*= g1+ ++@D N*  then (R, o*, N*) is a cyclic extension of
index n of N, which is isomorphic to (R, ¢, N) over R.

Ezample: Let % be a finite cyclic group with order m. If = (4),
then N=At and A° =A’. ® is uniquely described by the four numbers

- m, m, t, r. I1a. implies 7"=1(m), and conversely.IIIa. implies rt=%(m),
:_md conversely. We obtain:

THEOREM 21 (Holder): A group ® of finite order m m with cyclic
normal subgroup (A) and with cyclic factor group (B (A)) of finite
order n has the two generators A, B with the defining relations:

Am =e, Bt =At, BAB- = 4r,
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and with the numerical conditions

a) 0<mn,m.

b) m = 1(m),

c) ¢r —1)=0(m).

Conversely if the numerical conditions are fulfilled, then a group
with the previously given properties is defined by the three relations.
For fixed » and m the replacement of 7, ¢t by

*=7, v,0)=1,
t*=vt4 (141" + 72" 4 ... 4 D)

leads to N-isomorphic extensions.

§ 8. Extensions with Abelian Factor Group

Let the factor group of the group G over the normal subgroup % be
isomorphic to the direct product

T = (01) X (02)x. . . x(0,)+

of cyclic groups (o,) of orders n;. Let (S; ) be cosets associated with
0:. The following relations hold in &:

8, A8 =A% if Aen,
Sy=4,€n,
8,8, 878; =4, , €.
For the mappings 4 — 4% of % onto itself the rules
(4B)% = 4% B%,
A5 _ 44,
ASiSE . 440,158

hold.
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Moreover A4; , 4x,s =1, 7, =0, and if n,=0 then 4,=1,

AF = 8,4, 87 = 8,8 87" = (8,88 )™
= (Ac,ksk):‘ = A 1 (Sedi 1 8: ) St 4k - .-
=4, 4% ... 4% 4,
8,4y, 87 = 4%,
= (8:8,87") - (8,8,8:™) (8,887 (8,8,87)
= Ai,k‘gk N Ai,lsl N (Aﬁ.k‘gk)_l : (A“,S,)_l
= A, AT 88,878 AT AL
= A AT A, AT AT
Now conversely let a group % be given which contains the elements

AL A G E=1,2,...,7; i +k) and let single valued mappings
A — ASi of N onto itself be defined with the following properties:

1. (4 B)S = A5 BS,
2. A 4% (i n;>0), AS—A4,,
2a.m;, =20, andif =n;=0, then 4,=1,
3. A%k — A4S (1> k),
3a. 4, 4 i=1 (i>k),
4 AS = ASEETAL GE me>0, i),
5. AP DAL AL AR AN =1 i<k <]).
THEOREM 22: The group ® with generators A (A€ N), 8y, 8,,...,8,
and with the defining relations

a) AB = AB,
b) 8, A8 = 4%,
c) 8= Zn

d) 8,8, 871 8; = Z&,k (t>k)
contains the normal subgroup % of all A such that the factor group is the
direct product of the cyclic groups (S) of order n; and the mapping
A—>»A is an isomorphism of N onto M.

Proof : If r=1 then the theorem follows from § 6. Let »>1 and assume
_ that the theorem has been proven when there are only 7-1 generators S;.
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Let @, be the group generated by A and S, ..., 8, which satisfy
conditions 1. to 5. and relations a) to d) where the indices 7, k, [ run
from 1 to r-1.

We define A% = A%, 85— 4,8, E=1,2,...,7—1).

Conditions 1., 3., 3a. and 4. with i=7, 5. with l=r merely state that
the mapping S, just defined can be extended (uniquely) to an operator
S, of @,.

The conditions A4r = ASF, A5 — A, state, by § 6, that the relations

b) 8, A8 = 4%,

o) 8y =4,

4 8,8,87°87 =4, (i<r)
define a cyclic extension ( of index n, over §,.

By the induction hypothesis, A—> A {san isomorphism of N onto N.
1t follows from b) that % is a normal subgroup of . It follows from d)
that ®/X is abelian and is generated by 8,%, S,&, ..., S,%.

T
Now IIs¢=1®)
1
implies 87 =1(®,),
therefore v =0(n,),

r—1
hence [JJS?¥=1®), and the induction hypothesis applied to ®, gives
1

%, =0(n) G=1,2,...,r~1).

©/M is the direct product of the cyclic groups (S; %) with orders n; (i=1,
2, ..., 1), QED. If the normal subgroup % is abelian then the conditions
can be stated more simply :

1. (A B)% = A" B%,

2. 4% =4,

2a. 7,20, andif =n;=0,then 4,=1,

3. A%% _ A%,

3a. A Ap =1 (1<¥k),

N -
4 AFT AT G w0, i k),
5 AT AN AT =1 (i<k<))
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and the relations
b) S; A 87 = A%,
c) 8= 4,,
d) 88,878 = 4;, /(i<k).

§ 9. Splitting Groups

Definition: A group  which contains the extension & of by Fwith
the system of representatives §, issaid to be a splitting group of ® over
9, if ® has a normal subgroup 55 contammg N,with §, as system of
representatives, such that & splits over 3.

THEOREM 23 (Artin) : Every group with abelian normal subgroup %
has a splitting group.

Proof: We set 4,=C,}, butlet (4,) be the infinite cyclic group
generated by the new element 4, if ¢ + 1, Let & be the direct product
of % with the (4,), (¢ = 1). Then an operator 8, of % is defined by

ASi = A;IA,,,C;}, Ce+D
and N%= (N . [IA',"')SU = N%. [](4%)™.
The same formula holds for 43, since
AP = (O =01 = 474,053

The factor system C, , and the mapping 8, satisfy conditions I and III.
Now II must be verified.

A= A%1  holds forall 4 in R
A= 47'4,071=C, 4,00 = A7,
and therefore Nt = N°.1 for all ¥ in .
(439% = (47" A, €)% = (A7) Az (027
= (47" Ao s 07 A7 A, 03 o (O3 /=0 e 471 A O f(CF)
= (472 A02)°%7C6,2(C,: Cor, ) = (451452, Car, )% (by TILY)
" — A%0,75ax
- e

Since II is valid in % it holds also in %. Therefore there exists an
extension group ® of W with the elements S, as system of representa-
- tives, the C,, as factor system, and the S, as automorphisms of x.
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This extension naturally contains the extension & of % with the factor
group § and system of representatives S,. @ is a splitting group of

@ since s .
e=A4,4;°C, .45}

*1If we take @ as the free product (which will be defined later) of @ with the
infinite cyclic groups (4,) then it follows in exactly the same way that every group
has a splitting group.



IV. SYLOW p-GROUPS AND p-GROUPS

§ 1. The Sylow Theorems

In a finite group @ of order N, the order of every subgroup is a divisor
of N. On the other hand there need not be a subgroup with order d for
every divisor d of N. For example, in the tetrahedral group, as one can
see easily, there is no subgroup of order 6. We shall now prove, how-
ever, that for every power pe of a prime dividing N there is a subgroup
with the order pe.

DEFINITION: A group is said to be a p-group if the order of each of
its elements is a power of the prime p.

We determine the largest possible p-groups in the finite group @.

DEFINITION: A subgroup of @ is said to be a Sylow p-group, if its
order is equal to the greatest power of the natural prime p dividing N.

For example, the four group is a Sylow 2-group of the tetrahedral
group. A Sylow p-group of @ is denoted by S, or by . The normalizer
of S, in @ is denoted by N, , the center of S, by z,.

THEOREM 1. For every natural prime p, every finite group contains a
Sylow p-group.

Proof : If the order N of @ is 1, then the theorem is clear. Now let
N>1 and assume the theorem proven for groups of order smaller than N.

If in the center 3 of @ there is an element a of order m.p, then the

factor group ®/ (a™) is of order g and contains by the induction assump-

tion a Sylow p-group $/(a”) of order p™, where % is not divis-
ible by p.

B is of order p" and therefore is a Sylow p-group of @.

Now let there be no element of order divisible by p in the center 3
of ®&. If the order of 3 were divisible by p, then the factor group of 3
with respect to a cyclic normal subgroup (a)# 1 is of order divisible
by p. But then by the induction hypothesis 3/(a) would contain a Sylow
p-group # 1, and therefore would contain elements b(a) of order divis-
ible by p. Then the order of b in 3 would be divisible by p. Therefore the
order of 3 is not divisible by p. If p*N then e is the Sylow p-group sought.
If p/N then it follows from the class equation

N=@G:1)+ h
h>1

135
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and from p t(3:1), p/N, that at least one h;> 1 is not divisible by ».
® contains a normalizer N; of index k; > 1 and therefore N; contains, by
the induction hypothesis, a Sylow p-group . Since p r4,, B is also a
Sylow p-group of ®.

COROLLARY : For every prime divisor p of the order of a finite group
there is an element of order p (Cauchy).

The order and exponent of a finite group have the same prime divisors.

1t is a p-group if and only if its order is a power of p.

THEOREM 2: If B is a Sylow p-group of ® and N a normal subgroup
of G, then RNYP is a Sylow p-group of N; BN/N is a Sylow p-group
of G/%N. -

Proof :* A subgroup U of @ is a Sylow p-group if and only if

1. The order of U isa power of p (written: pp),

2. The index of I is prime to p (written: _p'rime).

(6] Now we may construct the diagram to the left and,
‘ peime observe first that RN :R is prime to p, and PRN R
o0 is a p-power. From the second isomorphism theorem it
0% follows that ®N:N is a p-power, and RN:NNP

, N is prime to p, from which the theorem follows.
" P If a Sylow p-group P is a normal subgroup of &
\ f V24 then it is the only Sylow p-group, since for every other
RNP Sylow p-group R, it follows that $,R is of p-power
’pp order, but ®:R,R is prime to p;and therefore R, R =
1 B =%P,. Consequently a Sylow p-group S, of a finite

group @ is the only Sylow p-group of its normalizer N,.

THEOREM 3: All Sylow p-groups of a finite group ® are conjugate
under ®. Their number when divided by p leaves a remainder 1.
Proof : Let the Sylow p-groups of  be R=%,, ..., B,.

@ ) of @ onto the group of inner

zTaz?
automorphisms,  is represented as a permutation group. Since con-
jugate subgroups have the same order, the R; are transformed into each
other by %, so that we obtain a representation 4 of P as a permutation
group of degree ». By a remark above, R transforms only §, and no
other %; into itself. Consequently there is only one system of transitivity
of first degree. The other systems of transitivity of 4 have a degree >1
which is a divisor of :1 and which, therefore, is a p-power. Consequently
r=1(p). ’

P transforms the s = ®:N, Sylow p-groups conjugate to R under &

* According to a communication from E., Witt.

Under the mapping 2 — (
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among themselves, and as above it follows that s = 1(p). If there were
another system of conjugate Sylow p-groups, then its members would be
transformed into each other by ® in systems of transitivity whose
degree would be divisible by. p. The system would therefore contain a
number s,, divisible by p, of Sylow p-groups; on the other hand we con-
clude for s,, just as we did for s, that s, = 1 (p). Consequently all Sylow
p-groups are conjugate to R, Q.E.D.

THEOREM 4: Ewvery p-group U in & is contained in a Sylow p-group.

Proof: We replace B by 11 in the proof of the previous theorem. Let
the transformed objects again be B, . . . , ®,. The degree of a system of
transitivity of 4 is either 1 or a p-power. Since r =1(p), there is cer-
tainly a system of transitivity of degree 1. Therefore there is a ®; which
is transformed into itself by all the elements of U. Since U%P, is a
p-group which contains %, we have UP,=P,, U P,, QED.

THEOREM 5: Every subgroup U of ® which contains the normalizer
N, of a Sylow p-group S,, is its own normalizer.

Proof: We must show that zUz-! C 11 implies

z€U.

In any case S, and xS,z are Sylow p-groups of 11, and by Theorem 3
thereisa U in U such that Uz §8,2-1U-'= 8§, ;
therefore UzeN,CU,

therefore zc i, QE.D.

THEOREM 6: If the p-group U contained in the finite group ® is not
a Sylow p-group,then the normalizer Ny of W is larger than U .

Proof: If pr@®:N, then the theorem is clear; if, however
®:Ny=pr, then U transforms the pr subgroups conjugate to U
in systems of transitivity whose degrees are 1 or numbers divisible
by p. Since 11 is transformed into itself, there are at least p subgroups
U, =1,1,,...,1, -conjugateto Il which are transformed into them-
selves by 11 . Consequemly N, is greater than 1,, and therefore Ny
is greater than 11, Q.E.D.

COROLLARIES :

1. Every maximal subgroup of a p-group is a normal subgroup;
therefore it is of index p.

2. If a p-group is simple then it is of order p.

3. The composition factors of a p-group are of order p and therefore

. every p-group is solvable.
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§2. Theorems on Sylow p-Groups

Information on the intersection of different Sylow p-groups is given
by

THEOREM 7: In the normalizer of a imal* intersection D of two
different Sylow p-groups of  we have:

1. Every Sylow p-group of Ng contains Dproperly.

2. The number of Sylow p-groups of Ng 1is greater than 1.

8. The intersection of two distinct Sylow p- yroups of Ny is equal
to D.

4. Every Sylow p-group of Ng 1is the intersection of Ny with
exactly one Sylow p-group of G.

5. The intersection of No with a Sylow p-group of ® which con-
tains D is a Sylow p-group of Ng .

6. The normalizer of a Sylow p-group of Ng in Ny is equal to the
intersection of Ny with the normalizer of a Sylow p-gwmp of @which
contains D.

Proof: ® is in a Sylow p-group B of ® and by hypothesis D + P.
Therefore by Theorem 6 : D+Ep=NgN\ P .pisapgroupin Ny,
thus by Theorem 4 it lies in a Sylow p-group p of Ny By Theorem 4, b
lies in a Sylow p-group P of . Since BNP contains p and thus is larger
than ®, B = §. Therefore p=P N Ny=p isaSylow pgroupof Ng,
and the B in p= P N Ny is uniquely determined by p. Since every
p-group in Ng isin a Sylow p-group of ®,the intersection of twodistinct
Sylow p-groups of Ng is equal to D . Since D is the intersection of two
different Sylow p-groups of ®, Ng contains several Sylow p-groups.
p=P N Ny is a normal subgroup of =n,= Ng N\ Ng. If we have

zprl=p,
for an z in Ng, then it follows that p C zP =2, and therefore by 4.,
P=2Pz!, 2 Ny, z€ny, consequently n,= Ng N\ Ng is the

normalizer of p in Ng, QED.

As an application of this theorem, we shall show that every group @
of order p*q is solvable (p, q are two distinct primes).

If a Sylow p-group P is a normal subgroup, then @/$ is cyclic and
by Theorem 6, Corollary 3, P is solvable. Hence @ is solvable. Now sup-
pose P is not a normal subgroup of ®; then @: Ng=g, Ng=P.

*If 9 is the intersection of two Sylow p-groups and no group containing 9 properly
is contained in the intersection of any two Sylow P-groups, D is called a mazimal
intersection of two Sylow p-groups.



§ 2. Theorems on Sylow p-Groups 139

If the intersection of any two different Sylow p-groups is 1, then
there are 1+ ¢.(p"-1) elements of p-power order, and therefore there
is at most one subgroup with order g. Consequently a Sylow g-group £
is a normal subgroup of ®, and /O is isomorphic to . Since /D and
£ are solvable,  is also solvable. Finally let § be a maximal inter-
section of different Sylow p-groups greater than 1. The number of Sylow
p-groups of Ng is >1, is not divisible by p, is a divisor of p"q and
therefore is equal to q. Also it follows from the previous theorem that
D lies in ¢ different Sylow p-groups of ®. Therefore D is the intersection
of all the Sylow p-groups of ®. ® is a normal subgroup of ®, and the
factor group &/ has as the maximal intersection of different Sylow
p-groups the element 1. By what has already been proven, &/® is solv-
able. Moreover the p-group D is solvable. Consequently @ is solvable,
Q.E.D.

For many applications the following theorem is useful:

THEOREM 8 (Burnside) : If the p-group Y in the finite group & is a
normal subgroup of one Sylow p-group but is not a normal subgroup of
another Sylow p-group, then there is a number r, relatively prime to p,
of subgroups ¥9,,B,,...,0,(r > 1) conjugate to § which are all normal
subgroups of ©=10,8,...5, but which are not all normal subgroups of
the same Sylow p-group of &, so that the normalizer of § transforms the
by tramsitively among themselves.

Proof : Among the Sylow p-groups which contain § as a non-normal
subgroup, £ is chosen so that the intersection D of £ with the normalizer
Ny of B is as large as possible. Let §h= B, by, ..., b, be the subgroups
conjugate to § in the normalizer Ny of D. Along with §, all the I,
are also normal subgroups of D. The normalizer Ng of =19, b,... b,
contains Ng. Let §, B,,..., b,,..., §, be all the groups conjugate to §
in Ng. Along with §j , all the 0); are normal subgroups of . D is
contained in a Sylow p-group p* of Ng N\ Ny. Since D is not a Sylow
p-group of ®, while, by hypothesis, a Sylow p-group of N isalso a Sylow
p-group of @, then p* is larger than . p*isina Sylow p-group p of
NeN Ny, p isinaSylowp group p of Ng ,and p ina Sylow p-group
P of ®. Since the intersection of P with Ny contains p* , and therefore
is larger than 9, then by the construction of P the Sylow p-group R of &
is contained in Ny, and therefore a fortiori p is contained in Ny .

Since p contains the Sylow p-group p of Ng N\ Ny, wehave p=3.
Since therefore a Sylow p-group of Ng N\ Ny is already a Sylow p-group

.of Ng, r=DNg:NyN\ Ny is relatively prime to p. If all the p, were



140 IV. Sylow p-Groups and p-Groups

normal subgroups of the same Sylow p-group of

— ¢ @, then the latter would be contained in Ng. But

Ny / ‘ \ then the groups §; conjugate to each other in Ng

would be normal subgroups in all the Sylow p-

/ No groups of Ng. Then § would be a normal sub-

l group of the Sylow p-group q* of the intersection

Ny of N, with O . But q* is larger than 9, and this

\ contradicts the definition of D as the intersection

~ 9* of Q with Ny; therefore the J§, are not all normal

ED/ subgroups of the same Sylow p-group of @, Q.E.D.

I_ B The positional relationships of the subgroups of

/b -7 @ constructed in this proof can be seen from the
b \1’/““’ b, diagram on the left.

§ 3. On p-Groups
1. Nilpotent Groups. ’ .
Fundamental for the theory of p-groups is the following statement:
THEOREM 9: The center of a p-group different from e is itself different
from e.

Proof: From the class equation for a group of order p»>1:
=514+ 3,
i>0

where the summands p¢ run through indices > 1 of certain normalizers.
Therefore 3:1 is divisible by p, and consequently 3 = e.

COROLLARY : The (n+ 1)th member of the ascending central series
of a group ® of order p» is equal to the whole group.

The members of the ascending central series are defined as the normal
subgroups 3 of (& such that 3,=e, 3;,,/3 is the center of /3 . Now
either 3, = @& or, as just proven, 3.1 is larger than 3,, and therefore
certainly 3. = @.

By refinement of the ascending central series of a p-group we obtain
a principal series in which every factor is of order p. It follows from
the Jordan - Holder - Schreier theorem that:

Every principal series of a p-group has steps of prime order.

The index of the center of a mon-abelian p-group is divisible by p*.
This follows from the useful lemma: If a normal subgroup N of a group ®
s contained in the center and has a cyclic factor group, then @ is abelian.
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Since ®/R is generated by a coset AR, all the elements of G are of the
form AiZ where Z is in the center.
Therefore

AZ A7 = A+FZ T = AT . AiZ

and @ is abelian.

If we apply the result found above to a p-group in which
®=4+Ft-a1+e, then: p2®:3.,, and since @fj,_, is abelian, it
follows that:

The factor commutator group of a non-abelian p-group has an order
divisible by p*.

A group of order p or p* is abelian. In a non-abelian group of order p®,
the center and the commutator group are identical and are of order P.

DEFINITION : A group G is said to be nilpotent* if the ascending central
series contains the whole group as a member, i.., if

e=pCHnTpl -C3=0.

The uniquely determined number ¢ is called, following Hall, the class
of the group. Therefore “nilpotent of class 1” is the same as “abelian
+en

THEOREM 10: In a nilpotent group of class ¢ it is possible to ascend
to the whole group from any subgroup by forming normalizers at most

. ctimes.

Proof : Let @ be nilpotent of class ¢; let 11 be a subgroup. Certainly
% is contained in U . If 3; is already contained in U, then by the defini-
tion of i1, it follows that 3, is contained in the normalizer of 1.
By at most ¢ repetitions of this procedure we obtain the result.

COROLLARY : Every maximal subgroup of a nilpotent group is a normal
subgroup and therefore is of prime index.

Therefore in a p-group ® the intersection of all the normal subgroups
of index p is equal to the @-subgroup defined earlier. The factor group
@/® is an abelian group of exponent p. By its order p¢ the important
invariant d = d(®) is defined. The significance of d is made clear by the
following BURNSIDE BASIS THEOREM : From every system of generators
of ® exactly d can be selected so that these alone generate ®. By the
general basis theorem this theorem need only be proven for &/ .

* This name is used because for finite continuous groups the associated Lie ring of
infinitesimal transformations is nilpotent precisely when the ascending central series
‘terminates with the full group.
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2. Elementary Abelian Groups.

An abelian group 9 with prime exponent p is called an elementary abelian group.
If 9 is of order pd then it is possible to generate ¥ by d elements: Let S: be an
element ¥ ¢ in U ; let S: be an element in U not in (S:); let Ss be an element of A
not in {8, S,} ; let Sy be an element in 9 and not in {8y, Sy, - - -» Sa—1} and
[ . Sy} = U. Then (8,) is of prime order p so that we must have

SN {8180 Sea) =
It follows from this that
(80 Sey -« Si} = (S0 Sas v o Sica) X (S)
A= (Sy) X (1) X *++ X (Sg2)»

and since %:1 = pd, ,weseethatd= d! Therefore a finite elementary abelian group
is the direct product of a finite number of cyclic groups of prime order. Conversely
a direct product of a finite number of cyclic groups (S:), (S:), ..., (S3) of order »
is an elementary abelian group. The elements Sy, S, . . . , Sz in the direct product
representation are said to be a basis of % . The above method of construction shows
that every generating system of 9 contains a basis. Therefore d is the minimal
number of generators. Consequently every system of d generators is a basis of .
The number of basis systems of 9 can be calculated easily:

In the above construction there are pd-1 possibilities for S;; after choosing S,,
there are pd-p possibilities for S, and so forth, so that we obtain the number
@ —1) (@ —p)-.... (p* —p+) as the number of basis systems of . If
84, 8y . .., 8, is a fixed basis and T, T, . . . , Ty is an arbitrary basis then the mapping

8,718,%, ., 8 — T, Ty, ..., TS
defines an automorphism of ¥ and conversely. Therefore it follows that:

The number of automorphisms of an elementary abelian group of order pé is equal

to (p? — 1) (p* —p)-.... (p® —p% 1) o If we set

k= (@*—1) @**—1-...-@—1),
then the number is equal to  p#d(@-1k,, From the general basis theorem in II, § 4,
it follows that:

The number of automorphisms of a p-group of order p» (n>0) and d generators
s a dwvisor of

PO (@R —p) (@ — ). (F — P,

Remark: The highest power of p which divides this number is pid(am~1-a) , and
since 0 < d < n, this number is a divisor of pinr(n-1) as can easily be seen.
Therefore the number of automorphisms of an arbitrary group of order p» is a
divisor of the number of automorphisms of the elementary abelian group of order p».

For later theorems it is important to obtain several formulae about the number
@d,a of subgroups of order p* in the elementary abelian group of order pd. Let

0< «<d. Everysubgroup of order p¢ is elementary.

If 8,8, ...,8; are the first « elements of a basis of the whole group, then
these & elements are a basis of a subgroup of order p*. Conversely, as we have seen
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previously, every basis of a subgroup of order p® can be extended to a basis of the
whole group. Since the elements S, Sy, ..., S, can be chosen in

=)@ —p)-... @ —p*Y)
different ways, and every subgroup of order »* has ®*—1)-.... @E*—p*Y)
different basis systems, then

m P oV EREEL st il B PR
" 1) (@ —p"T) kg, B

where k, = 1. From this the reader can derive the recursion formula

@ Part,a=Pa,a TP 00 0y

for 0<<ax<d ,where g; (=1= k—f%' . If weset g¢; ,=0 for rational integers

'a
o« which are larger than d or smaller than 0, then the formula is valid generally.
From this formula we derive the congruence

@®) Pati,a=0a,, @) Gz
and the polynomial identity
a4 d
@ H(z__pv—l) =2(__ l)apga(a-t)%,' 24—
v=1 0

by induction, If we set x =1, then
® 0=1—gg;+ppget-+(—iptd@.

An abelian group of order p» can be decomposed, by the basis theorem, into the
direct product of cyclic groups of orders p™, p™, ..., p* . Here the exponents
My, My, . . ., N, are determined uniquely to within order. Therefore we say: The group
is of type (p™, p™, . .., p™r). If we order the n; by size so that pfoccurs g, times as
the order of a basis element, then we say: The group is of type

aGel4a-24-... + a,-n.

n
Here the non-negative integers ¢; are bound only by the relation g, i =1 .
1

3. Finite Nilpotent Groups.

The direct product of a finite number of nilpotent groups is nilpotent,
as is easily seen. For example, the direct product of a finite number of
p-groups is nilpotent. The following converse is important:

THEOREM 11: Every finite nilpotent group is the direct product of
its Sylow groups.
Proof : The normalizer of a Sylow group is its own normalizer by
Theorem 5, and therefore, by Theorem 10, it is equal to the whole group;
. consequently every Sylow group is a normal subgroup.
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Let i, s - . ., Dr be the various prime divisors of the group order,
and assume we have already shown that
8p.8p,- ...+ 8p; =8p, X Sp, X +-+ X 8p;, 1 <1,

Then the normal subgroups Sp,-Sp,-...-8x and Sp,, have rela-
tively prime orders so that their intersection is e; and therefore

8p,+ 8p,+ -+ o+ 8pyyy =8p, X Sp, X'+ o+ X Spyyy-
But from the equation 8y, - Sp,- . . . -Sp, = Sp, X Sp, X - x Sp, it fol-
lows, by comparing the orders, that the whole group is the direct product
of its Sylow groups.

THEOREM 12: The @-subgroup of a nilpotent group contains the
commutator group.

Proof : As we saw earlier, the @ -subgroup is equal to the intersection
of the whole group with its maximal subgroups. By the Corollary to
Theorem 10, every maximal subgroup of a nilpotent group is a normal
subgroup of prime index, and therefore every maximal subgroup of a
nilpotent group contains the commutator group. Consequently the @&-
subgroup of a nilpotent group contains the commutator group.

Remark: We have further that @(®)/®’ = &(®/®’), which can be
derived from the definition of the @ -subgroup as the intersection of the
whole group with its maximal subgroups.

For finite groups we have the converse:

THEOREM 13 (Wieland) : If the ®-subgroup of a finite group con-
tains the commutator group, then the group is nmilpotent.

Proof : As in the proof of Theorem 11 it suffices to prove that every
Sylow group is a normal subgroup. If the normalizer of a Sylow group
were not the whole group, then it would be contained in a maximal sub-
group which on the one hand would contain the @-subgroup and there-
fore the commutator group; and on the other hand, by Theorem 5, must
be its own normalizer. Since this is not possible, every Sylow group must
be a normal subgroup of the whole group. .

THEOREM 14 (Hall) : If the normal subgroup R is not contained in 3;,

but is contained ing,,,, then the following is a normal subgroup chain
without repetitions: RORN3 DO RN i1 D+ De.

Proof: We have (@, R) RN (G, ) SR 3. Since N is not
contained in 3;, (®, N) is not contained in 3,_,, and therefore NN #: is
not contained in NN 3:_1- We apply the same argument toR N 3 , ete.,
Q.E.D.
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4. Maximal abelian normal subgroups.

It is natural to consider the maximal abelian normal subgroups as well as the
maximal abelian factor group. In general abelian normal subgroups which are con-
tained in no other abelian normal- subgroup are neither uniquely determined nor
isomorphic to each other, as is easily seen in the example of the dihedral group of
eight elements. The center seems to be more appropriate as a counterpart of the
factor commutator group, as we already have seen in the theorems on direct products.

In any case, there is, in every group whose elements e=a,, @, . . . , are well ordered,
a maximal abelian normal subgroup. We can construct an abelian normal subgroup
%, for any index w in the following way: , = e;let B, be the union of all ¥,
with v < @ ;let %, be equal to the normal subgroup generated by B, and e, if
this normal subgroup is abelian. Otherwise let ¥, = B,. The union of all the 9%,
is a maximal abelian normal subgroup.

A mazimal abelian normal subgroup N of a nilpotent group is its
own centralizer.

Proof: The centralizer Zg is a normal subgroup of ®. If Zy contained %
properly, then by Theorem 14, a center element X % in Zg/¥ would be contained in
@/ * so that the subgroup generated by X and % would be larger than %. But since
this subgroup containing ¥ would also be an abelian normal subgroup, we must
have Zy = 9 .

If @ and ¥ are of orders p» and p™, respectively then the index p*~™ is a divisor
of the number of automorphisms of ¥, whereupon, by Part 2, it follows that

pr-mipimim—1),
(6) 2n < m(m + 1).

5. The automorphism group of Zy.

‘We wish to determine the automorphism group of the cyclic group Zy for N> 1.
For this purpose we consider Zy as the residue class module (quotient module) o(N)
of the additive group of integers with respect to the submodule of integers divisible

by N. The operators of Zy are given by the multiplications ¢ = (:;) by the rational

integers t; & and & are equal if and only if ¢ and ¢ are congruent mod N. t isan
autamorphis‘m if and only if t is relatively prime to N. The number ¢(N) of auto-
morphisms of Zy is equal to the number of residue classes (cosets) mod N which
contain numbers relatively prime to N (prime residue classes).

The automorphism group of Zy (cyclic group of order N) is isomorphic to the
group of prime residue classes mod N. If N is the product of relatively prime numbers
‘M, Mo, then Zy is the direct product of two characteristic cyclic groups of orders M, Ma.
For the automorphism group we have the corresponding situation; in particular

@(N) = ¢ (m)p(m,).

. *Here we must anticipate the result of § 5 which is trivial for p-groups; namely,
that every factor group of a nilpoint group is itself nilpotent.
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If N is the n-th power of a prime p then a residue class is prime if and only if it
consists of numbers relatively prime to p; the number of these residue classes is
p*—p"t. If N=gpmpM.....p" is the prime power decomposition, then

@ @) =]i¢(p"") =]i(p¢"‘—p:"'“)=N']'I(l——%‘)-
1 1 1

The residue class ring o(p) is a field and therefore, by II, § 7, the automorphism
group of Z, is cyclic of order p-1. A rational number g whose order mod p is p-1 is
said to be a primitive congruence root mod p. g has an order which is divisible by p-1
mod p#; say therefore, it has the order (p — 1)+ p”.  The order of g, = g?" is then
equal to p-1, mod p=. If @ =1+ kp™, then it follows from the binomial theorem
that a?=1 4 kpm+? +@ k2 prm(pmts), Therefore a = 1(p™) implies
that a? = 1(p™*!). Howeverif m>1orif pisoddthen a3 1(p™+!) implies that
a? £ 1(pm+). If p is odd, then 1+ p is of order p"~mod pny, (1 + p).g: is of
order (p —1)-p"1 If p=2, then 1+ 2’ is of order2"3mod 2» (n>2). Since -1 is
congruent to no power of 5 mod 4, there are, mod 2#, the 2" 1different prime residue
classes 4 6" (0 < v < 2°%). As a result we obtain:

If m <3 or p is odd, then the automorphism group of Zg is cyclic of
order (p — 1)pr-1. The automorphism group of Zey , for n>2, is
abelian of type(2"-22)with the associated basis automorphisms 5 and -1.

6. p-Groups with only one Subgroup of Order p.

A non-cyclic abelian group of exponent pr contains at least two different sub-
groups of order p.

Proof: Let A be an element of order p» and let B not be a power of A. Then the
order p* of Bmod (A) is greater than 1, but at most p®. We have

BY = AT, B"= A" "=¢ r=35-p" (B-A~%)P =e.
Therefore (BA-#"~! and A?®~' generate two different subgroups of order P.

We wish to find non-abelian groups of order p» which contain only
one subgroup of order p.

An example is the quaternion group. By the theorem of Hélder it is
defined by the relations A4%=1, BAB-1=A4-!, B2=4* as a group
of order 8 with generators A and B. Its eight elements are called
quaternions; they are

1,4, 4 4
B, AB, A*B, A*B.

If instead we write
Li,—1,—1i

bh—i—t
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and set
—(=D=1 — (=) =i — (==} —(—h=1,

then we have the following calculational rules:

lez=z.1=2, —l.z=z.—1=—z, (—1)2=1,
B=p=0=—1, ij=—ji=1 jI=—ti=i
ti=—il=j.

From this we conclude that there is only one subgroup of order 2 and
exactly three subgroups of order 4. The center is equal to the commutator
group which is equal to (—1).

The generalized quaternion group is defined by the relations

(8) A4"'=1, BAB-1=4-1, Br=A4""" *>2

as a group generated by A, B, and of order 27, by the Hélder Theorem.
Since

n—1

(BA")*=BA"B-1.B*. A’ = A-"B*4" = B,
this group contains only one subgroup of order 2. The elements 42
and B generate a quaternion group.

The relations above can be written more elegantly in the form
[6)) A" T'=Br—(4B) .
- The new relations follow from those above.
From the new relations, however, it follows that
BAB ‘=AY AB)}B t=A"!
BA B 1=A"""'=BBB =B =A"""
Ao 1,
and therefore the old relations follow.
If A’ is of order 27—1,B’ of order 4, and if A’ and B’ generate the whole group, then
A= B — (4B = AT
Therefore all the calculational rules which are valid for power products of A and B
also remain valid for the corresponding power products of A’ and B’

Since A’ and B’ generate the whole group, (A’) is a normal subgroup of index 2,
and every element can be written uniquely in the form

ATBr0<vy< 21,05 p<?).
Therefore the mapping A*B* — A’*B’¢ is an automorphism of the group. The
number of all the automorphisms is equal to the number of pairs A’, B’. It follows
by simple enumeration that:
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The quaternion group has exactly 24 automorphisms. The generalized quaternion
group of order 2» has exactly 23n—2utomorphisms for n > 3.

In the automorphism group A of the quaternion group, the inner automorphisms
form an abelian normal subgroup J of order 4. An automorphism which commutes
with all the inner automorphisms is itself an inner automorphism. Since it changes
each generator by a factor in the center, there are at most 2.2 such automorphisms.

A group A having order 24, and containing a normal subgroup J of order 4 which
is its own centralizer, must be isomorphic to €, .

This is because a central element of A must be in J, and an element of order 3
must transform the three elements ¥ ¢ in J in a cyclic manner. Then, since according
to the results of Sylow there are elements of order 3, the center is e, and there is no
normal subgroup of order 3. From these results also, the index in A of the normalizer
N of a Sylow 3-group is 4. A transitive representation of A in 4 letters is associated
with Ni. The representation is faithful since the intersection of all 3-normalizers
contains only center elements with orders 1 or 2 and therefore is e. Since A consists
of 24 elements, A is isomorphic to S, .

The automorphism group of the quaternion group is 1somo’rphw to the symmetric
permutation group of four lett ers.

The quaternion group is the only p-group which contains two different
cyclic subgroups of index p but only one subgroup of order p.

Proof:" Let @ be of order p and let it contain two different cyclic subgroups 1,
and U, of index p. U; and 1, are different normal subgroups of index p, and therefore
their intersection D is of index p’. Moreover D is in the center and contains the
commutator group. It follows for any two elements x, y that x# and y# are in 9, and
that @ 2 = (47, &)= e, (zy)* = (3, D)t P-DVz2yp.

If p is odd, then (zy)? = zPy®, and therefore the operation of raisingto power p
is 2 homomorphy. Since the group of p-th powers is contained in 9, by the first iso-
morphism theorem the elements whose p-th power is e form a subgroup whose order
is at least p*. There are at least two different subgroups of order p in this subgroup.

If p=2,then (zy)*= (y, z)* z'y* = 2z*y*. Now we conclude just as above that
either D =1 and U,, U, are two different subgroups of order 2,0r there are two
subgroups u; = U, of order 4 by the first isomorphism theorem. We may assume
that u, isin U, If u, is different from U, , then u, isin ® and u,. u, is an abelian
group of order 8. Since it contains two different subgroups of index 2, it is not cyclie,
and therefore it also contains two different subgroups of order 2. If, in conclusion,
4 = U,, then the whole group is of order 8. Let U, = (4) and U, = (B). -If there
is only one subgroup of order 2 then B*= (4 B)* = A*, and therefore the group is
the quaternion group.

THEOREM 15: A p-group which contains only one subgroup of order p
is either cyclic or a generalized quaternion group.

Proof: Let @ be of order p» and let it contain only one subgroup of order p. First

*In accordance with a communication from Herr Maass, ‘Hamburg.
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let p be odd. If n=0, 1, then the theorem is clearly true. We now apply induction to n.

Every subgroup of index p is cyclic by the induction hypothesis, and therefore
by what was proven previously there is only one subgroup of index p in @, and
therefore @ itself is eyclic.”

Now let p=2 and let 9 be“a maximal abelian normal subgroup. ¥ is eyclic
and its own centralizer. Therefore /% is isomorphic to a group of automorphisms
of 9. We shall show that only one automorphism of order 2 can occur, namely,
the operation of a raising the elements of 9 to the power -1. Since this automor-
phism is not the square of any other automorphism of %, it follows that ®: % is
either 1 or 2. If we set % = (4) and assume that B e(¥), B*= e(¥)y then
as a preliminary BAB™ must be shown to be equal to A™ In fact, we want to show
further that the group generated by A and Bis a generalized quaternion group with
relations (8) and (9). Then the theorem will be proven.

Since B cannot commute with all the elements of A, (B?) ¥ 4, and there is a
subgroup 9, of U which contains (B®) as a subgroup of index 2. The group
9, (B) contains the two different cyclic subgroups % and (B) of index 2; and
therefore it is, as was previously shown, the quaternion group. If A is of order 2m
then: B1= 4™"'! We also conclude (4B)*= 4™ ' Therefore A and B

generate the generalized quaternion group of order 2m+1,

THEOREM 16: A group of order p" is cyclic if it contains only one
subgroup of order p" (where 1< m < n).

Proof: There is a subgroup 1 of order pm. 1 is contained in a subgroup U, of
order p™+! and is the only subgroup of index p in 1 . Therefore 1, is cyclic
and consequently 11 is cyclic. Since every subgroup of order p or p* is contained

* in a subgroup of order p™, and since the only subgroup of order pm is cyclic, there
is only one subgroup of order p and one of order p°. Since the generalized quaternion
group contains some subgroups of order 4, we conclude from the previous theorem
that the whole group is cyelic.

If in a p-group, every subgroup of order p* is cyclic, then there is only
one subgroup of order p, and conversely.

If there were two different subgroups of order p then we can assume that one of
them is contained in the center. But then the product of the two subgroups is a
non-cyclic group of order p*. Conversely, in a non-cyclic group of order p* there are
certainly two different subgroups of order p. Now one can easily prove:

THEOREM 17: A group of order p" in which every subgroup of order p™
is.cyclic, where 1 < m < m, is cyclic except in the case p =2, m = 2 in which
case the group can also be a generalized quaternion group.

7. p-Groups with a Cyclic Normal Subgroup of Index p.

We shall determine all the p-groups which contain a cyclic normal subgroup of
index p. This problem will now be solved for non-abelian p-groups, which contain
some subgroups of order p. If @ is of order pn, then in @ there is an element A

*This last by the basis theorem.
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of order p"~1and an element B of order p which is not a power of A. A and B
generate @, and the subgroup (A) of index p is a normal subgroup. Therefore

A*""'=pBr—=1, BAB1=A",

TP, P=16"Y.
If for odd p the element B is replaced by an appropriate power, then we can take
r=14pms .
If p=2, n=23, then we must have r= —1(4). If p=2, n>>3, then there are

three possibilities for r,

—1, 14202, —1 4 27—2(271),
The number 7 is not altered mod2r—1if B is replaced by BAK

If r=1+4 2% 2 then the commutator subgroup is of order 2; in the other
two cases it is of order 2n—1.

If = —1, then (BA")?=(BA"B ')B*A”’= A""B*A”’=1, and there-
fore there is only one cyclic subgroup of index 2. Thus 7 is uniquely determined by
the group. As a result we obtain:

The groups & of order p" which contain an element A of -order p*, are
of the following types:
a) & abelian:
n=2l I  Zu:B"=1
n=2 II A" '=1, B*=1, AB= BA;
b) ®& non-abelian, p odd:
n=3 III A" =1, B*=1, BAB-1=A+""%
¢) @ non-abelian, p=2:
n=38 III generalized quaternion group:
A= 1, B*= A% BAB-'=A4-!
n=3 IV  dihedral group Dp:
A*'=1, B:=1, BAB-'=4"!
n24 V A®'=1, Bi=1, BAB-1= A1+
n=4 VI A" '=1, B=1, BAB-1=A4-1+""%
Groups of differert type are not isomorphic. From Hélder’s theorem it
follows that all types exist. For n =3, V will coincide with IV, and VI
with II.

Now it is simple to give all groups of order p’. We must now investigate among
such all those in which the p-th power of every element is e. A group in which all
squares are equal to e is abelian since

z = 2" thus 2y = (zy) '=y lz~! = yz.

If the group is non-abelian and p is odd, then it is generated by two elements
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A and B such that the relations
A? = B = (4, B =1,A(4, B)=(4, B)A, B(4,B)= (4, B)B
hold. By III, Theorem 21, these relations define a non-abelian group with generators
A, B and order p, in which, for any two elements z, y, we have:
(@Y = (@, yy120-Dapys = 29 y2.
Thus the p-th power of every element is equal to e. As a result we obtain:
There are,for every prime number p, five types of groups of order p°, namely
the three abelian types:
L Zy:BP=1,
II. A" =1, B>=1, AB= BA,
VII. A?=B*=C?=1, AB= BA, AC=CA, BC=0B ,

and two mon-abelian types, which are, for p=23 III, the quaternion group and IV,
the dihedral group, and for odd p the types

II. A%=1, BP=1, BAB = A",
IV. A= DB*=(4,BP=1, A(4, B)= (4, B)4, B(4. B)= (4, B)B.

Exercises
1. If a p-group contains a cyclic normal subgroup of index p, then every sub-
group different from e has the same property.

2. For odd p, the following properties hold for abelian groups of type (p, "%)
and for non-abelian groups of order pr having a cyclic subgroup of index p, where
m is a number greater than zero and less than n:

a) The number of subgroups of order pm is 1 + p in both cases.

b) The number of cyclic subgroups of order pm is, in both cases, 1+p or p
according to whether m—1 or m > 1.

¢) The number of elements whose p”-th power—e is p™+? in both cases.

d) In both groups, every subgroup whose order is divisible by p* is a normal
subgroup. Therefore for m > 1 there are equally many normal subgroups of order pm.

e) The number of automorphisms is p*(p-1).

8. The two types of non-abelian groups of order p* can be defined by the relations

IIL A? = B*= (4, B),

Iv. A*=B?= (4,A,B)= (B,B,4)=1

for all p by an appropriate choice of generators A, B.

- 4. If a 2-group contains a cyclic subgroup of index 2 and is neither abelian of
type (2, 2) nor the quaternion group, then the number of its automorphisms is a
power of 2.

5. In a finite group, the index of the normalizer over the centralizer of a Sylow
p-group with d generators is a divisor of kg, If the order of the group is divisible
neither by the third power of its smallest prime factor p, nor by 12, then every Sylow
_p-group is in the center of its normalizer.
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6. In an abelian p-group ® with the exponent pm, the characteristic chains
@>@p>gr'>...>gn’"=e

and B=0,mnD8m-1>-:-D8,>¢
give rise to a characteristic series through the refinement process which was given
in the proof of the Jordan-Holder-Schreier Theorem. There is only this one char-
acteristic series. (Here ®?” denotes the group of the p'-th powers and @,
denotes the group of all elements whose p*-th power is e.)

7. Theorem 2 in § 1 admits the following corollaries: If P is a Sylow p-group.
in @, Ngits normalizer, % a normal subgroup of ©.then

a) Ng®M is the normalizer of the Sylow p-group P R/N of G/;

b) Ng is contained in the normalizer N, of the Sylow p-group p =P NN
of M ;

c) NyR=@; therefore by the Second Isomorphism Theorem

NNy N\ R =GN

(Hint for a): If PNz 1=PLN, then by Theorem 3: Pz '=»Pr' is
solvable forvin R, therefore v~z éN(B; (for ¢): for every x in@, spri=rhy?
is solvable for v in RN.)

With the help of ¢)it should be shown that the © -subgroup of a finite group is
nilpotent.

§ 4. On the Enumeration Theorems of the Theory of p-Groups

In the study of finite groups the question arises naturally as to the
number of elements or subgroups with some given property. The results
obtained in connection with this question do not lie very deep.

The following systematic derivation of the enumeration theorems
in p-groups is due to P. Hall.

THEOREM 18 (Counting Principle) : Let (& be a finite p-group. M,
denotes any subgroup of index p* which contains @(®). Let (R) be a
set of complexes such that each complex & in () is contained in at
least one subgroup of index p. Let n(M,) be the number of complexes
of () which are contained in M, . Then

"(ﬂ)?o)—2"(9)21)“‘1’2"(%2)—?’2”(%) + .-
@) @) o)

+ (=1 p%a(ax—l) %’)n(?ﬁ,) e (— l)" p‘}‘(‘_" n(My) =0,
(M)

where the summation ﬂ% is extended over the gs,« subgroups I, of .
a

Proof: We shall show that the number of times that an element &
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in (R) is “counted” with the appropriate sign on the left of the equation
above is equal to zero.

The intersection of all M, which contain &, contains &(®), and
therefore is an 9720. By hypothesis & is contained in an M, and there-
fore @ > 0. The number of all M,’s which contain & is equal to the
‘number of all ;M,’s which contain ém(,,i.e., ®,a- Therefore the number
of times that & is “counted” is

1—@p1+ PP —P@gs+--+
F (=1 pteeg, e (= 1) pheleD,

But this number is zero, by § 3, Formula 5, Q.E.D.

THEOREM 19: The number of subgroups of fixed order p»(0 < m < n)
of a p-group ® of order pr leaves 1 as a remainder when divided by p.

Proof : If n=0, then the theorem is clear. Now let » > 0 and assume
that the theorem is proven for p-groups whose order is less than p=.
If m =n then the theorem is trivial. Let m <n. For Theorem 19, let
(R) denote the set of all subgroups of ¢ of order pm. Then:

(M) E%ﬂ (M) (p),
and by the induction hypothesis
n (M) = 1(p);
moreover the number of all M, is ¢4 4_,, and therefore by § 3 congruent
to 1 mod p, so that
n(Mo) = 1(p)
follows, Q.E.D.
THEOREM 20 (Kulakoff) : In a non-cyclic p-group of odd order p*,

the number of subgroups of order p”(0<m <m) is congruent to 1+p
modulo p*.

In the non-cyclic group of order p® there are p+1 subgroups of
order p. We apply induction on n and assume n > 2.

The number of all M, is @4, 4-1, and therefore, since d >1, is con-
gruent to-1+p mod p*. Let m <n-1, (®) be the set of all subgroups of
order p™. By the Counting Principle it follows that

n (M) = ;” ) — p S (Jy).
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By Theorem 19
n (M) = 1(p)

and by § 38, 2., the number of all 3, (namely @s,4-2) is congruent to
1 mod p. Consequently

n () = Sn () — p ().

For the non-cyclic®, ,n (I,) = 1 + p(p?)by the induction hypothesis.
As was shown, the number of all 1%, is congruent to'l + p (p?). If there is
no cyclic subgroup of index p in @, then

Sn() = (1+p)r—p(modp) =1+ p(modp).

If G contains a cyclic subgroup of index p, then the theorem follows
from the solution of Exercise 2a at the end of § 3.

THEOREM 21 (Miller) : In a mon-cyclic group of odd order p*, the
number of cyclic subgroups of order pm (1< m<mn) is divisible by p.

Proof: If & contains a cyclic subgroup of index p, then the theorem
follows from the solution of Exercise 2b at the end of § 3. To continue,
let every subgroup of index p in @ be non-cyclic, m < n-1 and assume
the proof has been carried out already for smaller n. Let (&) be the set
of cyclic subgroups of order p». We find the congruence:

n(imo)Eg”(%)(P)-
By the induction hypothesis each of the numbers = (I¢;) is divisible by
p , and therefore the desired number =(IR,) is also.

THEOREM 22 (Hall) : The number of subgroups of index p* in
® (0 <« < d)is congruent to @4, «(modp®-=+1).The number of those sub-
groups which do not contain @ (®) is consequently divisible by pé-a+1.

Proof : If d =n, then the number in question is already known to be
¢4,o- Let n>1 and let the theorem be proved for smaller n. If « =0,
then the theorem is clearly true. Let « > 0, then n(?))l,) is equal to the
number of all subgroups of index p*-# in M,. Therefore n(Mg) =0 if
B> o ; but otherwise by the induction hypothesis

7 (M) = Py, a—p (P T ~(e=P+1),
Since d(My) = d — § and therefore by § 3

Pag), a~p = Pa—p,a—p (PO-A=@=A+1),
we have n(Mg) = @a—p,a—p (P2~ +1).
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The Counting Principle now gives the congruence
n (M) = Pa,1 Pa—1,a—1 — P Pd,2Pa—2,a—2+
- + (= l)a—l?"h(a—”¢l,c'Pi—a,ﬂ(?d_'”d)'
But by the Counting Principle, the right side of the congruence is
exactly the number of subgroups of index p* in an elementary abelian
group of order p¢, so that
7 (M) = ¢a, s (PP-2+7) QED.

Ezxercise (Kulakoff) : In a non-cyclic p~group of odd order p, the
number of solutions of z*™ =e(0 <m <n) is divisible by p»+.

Exercise: The number of normal subgroups of order p” in a group
of order p"(0 <m < n) is congruent to 1 (mod p).

If p is odd, 1<m, and @ is non-cyclic then, more precisely, the
number is congruent to 1+ (mod p?).

§ 5. On the Descending Central Series

P. Hall has generalized the concept of a terminating ascending
central series by defining:

A chain of normal subgroups of &
(1) B=T22MmOR 2 2N =¢

. is called a central chain if N;/N:y. is contained in the center of G/Ni,.

(i=1,2,...,7).

If the ascending central series (See II § 4, 3.) terminates, then it is
a central chain. The following definition is still more useful: A chain

of subgroups
ETOUPS G DM D DMy, =

is said to be a central chain if the mutual commutator group (&, %;)
is contained in R, (i=1, ..., r). Since for every z; in %;, z in G:
zx;x 12,71 = e(RN;,,), and thus certainly zz,2-' € RN, it follows that
-9, is a normal subgroup of & and that R;/N;,. is contained in the center
of ®/MN... The converse is clear. R,,, is contained in'3; if it has
already been shown that R,,,_, is in 3 where i<r, then

. (8, R, S Rraami S 8o
and therefore R,_.;< 3.1 . Hence
(2) Nra1-e S e (i=0,1,2,...,7.
‘Consequently 3, = ®.
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If a group has a central chain, then it is nilpotent and the length of
every central chain is at least equal to the class of the group.

Now it is natural to define the descending central series for an
arbitrary group G as 3, 2 8 2 Bs, - .., where Bi(®) =38,=6,

Be(®)=8:=(0, )=, ..., Brs1(®) = Bns1 = (G, 8a)
If ® has a central chain (1) then it follows by induction that:

Bl M Bl T Brn S R and therefore 8,,,=e. If, con-
versely, the descending central series is equal to ‘e from the (r+1)-th
place on, then ®=3,28,2+++2 B,.1=¢ isa central chain. If ¢ is
the class of ®, then r>¢, 8; 30+1-+» 2nd therefore 8. +e Bea=e.

In a nilpotent group, the class ¢ can be found from the relation:

®3) B=8:>8>-D>8cn=¢

By Chapter 1I, § 6, 3, is a commutator form of ® of weight' i and
of degree 1 and is generated by the higher commutators (G,, G, - . ., Gi)
where @, € . Therefore 8 is a fully invariant subgroup of @.

For every subgroup U of ® it follows that

8:(1) < B:(®).

If M is a normal subgroup of @, then

B:(B/R) = B«(B)R/N.

It follows from this that:

Every subgroup and every factor group of a nilpotent group is itself
nilpotent, and the class of the subgroup or factor group is at most equal
to the class of the whole group.

We wish to state something about the positional relationships, and
the mutual commutator groups, of members of the descending central
series and of an arbitrary central chain.

If 222N ... is a sequence of subgroups of an arbitrary
group @, so that (&, R) L Ny,a (G=1,2,...), it follows immediately
that R; is a normal subgroup of @. If moreover 8; L %, then it follows
by induction that Bivx S Ryux (=0, 1, 2, ... ). In nilpotent groups
of class ¢ we can conclude from this that:

(4) 8. is not contained in 3,_, (since otherwise we would have

Bo=e).

' B, is also called the i-th Reidemeister commutator g;'oup.
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Now we claim that in the general case
(5) (8(’ ml)g ml’+l'
We carry out the proof by induction on 4. By hypothesis
(81, ) = (8, Ry) Ny

Let i>1 and assume we have already proven that (81, %) < Riyaoy
for all k.

Then by II. Theorem 14:

(86» 921) =(R;,8)= (mn (®, 8.‘-1))
=, 6,8:0) (8, 8i1, By)- (Bicas Ry, ©)

and by the induction hypothesis:
(&, 8{—1» 5’2,) = (@, (3(—1; 92,)) ; (®, mi+l—l) gmm
(8(-1’ mn @) = (3{-1: (®, 92,)) ; (8(-1) m:u) ;mﬂi'
Therefore (86, 1)) < Ny

If we set

=81 M=3e..., Hy=3,,...

. then

(6) (84s Bi) S Bess-

We can now show by induction on the weight that:

An arbitrary commutator form f(®) of weight w is contained in 3.

This is true if w = 1. Now let w > 1, and assume that the statement
is already known to be true for commutator forms with weight less
than w. We have f(®) =(f.(6), f.(®)) where the f; are commutator
forms of weight w; such that w = w, + w,. By the induction hypothesis
it follows that  £,(®) L B,,, /:(®) < 8,5 thus

H(®) < (Buy» Buo) £ Butia, = Bo-
In particular it follows that

@) ' 8¢(8x (8) < Bix(®).
(8) D@ L B (G).
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A nilpotent group of class ¢ is always k-step metabelian, where k
satisfies the inequality

(9) %-1<e
Moreover if we set 3_,=3_,=---=¢, then in general

(10) B3 < 5i-s‘_

In particular, 8, commutes with 3; elementwise.

THEOREM 23 (Hall) : If the non-abelian normal subgroup R of the
p-group ® is contained in 8, , then its center is of order at least p’, N
itself is at least of order p'*?, its factor commutator group is at least
of order pi+t. -

Proof: Since 3 commutes with 3, elementwise, % is not contained
in 3. RN % is in the center of N and, by Theorem 14, is at least of
order pi, so that a fortiori the center of R is of order divisible by p'.
Since p%RN:3(N), the order of N is divisible by pi+2. Since N is not
abelian, we can find in the normal subgroup %’ of & a normal subgroup
RN, of @ with N, of index p under N’. N/N, is a non-abelian normal sub-
group of /N, and so we conclude as above that R :R, is divisible by pi*2.
Consequently %/R’ has an order divisible by pi+!, Q.E.D.

Now if in a p-group of order p*, D!® D D‘+1@ De, thenD*® L B
and therefore as was just shown, D!®: Di+1@ = p¥+1.  If @ is now
(k + 1) —step metabelian, then

k-1
n=1l4+ 324+ 1)=2+k.
0

The order of a (k+ 1) —step metabelian p-group is divisible by p*+ .

Remark: Under the hypothesis of Theorem 23 it can be shown by the same methods
that the factor groups of the ascending and descending central series of the
normal subgroup % have an order divisible by pi, with the possible exception of the
last factors different from 1. The proof is left to the reader.

Exercises

1. In a finite group ® the intersection of all the normal subgroups whose factor
group is an abelian p-groupis called the p-commutator group of @ and is denoted
by &'(p) -

Prove: The p-factor commutator group &|®’ (p) is an abelian p-group. Moreover,
the commutator group of @ is the int tion of the p- groups, and the
factor commutator group is isomorphic to the direct product of the p-factor com-
mutator groups. Moreover, 8/®’ (p) = S,/S, N\ &'
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2. For an arbitrary group @, the class may be defined by the following property:
Let the class be equal to ¢, if 8¢.1 is a proper subgroup 8, and 841 = Bcya ="+
Let the class be equal to zero, if the group coincides with its group.’ Let
the class be infinite if §,,, is a proper subgroup of 3, for all .

For nilpotent groups the two définitions of class coincide.

Prove: If the class c is finite then 3., is the intersection of all normal subgroups
with nilpotent factor group, and the factor group ®/8,, is also nilpotent. Hence
we shall call the factor group ®/8,,, the maximal nilpotent factor group. Its class
is ¢. The class of every factor group is at most c.

If the class is infinite, then there are factor groups of any given class.

3. In finite groups of class ¢ we can obtain §,,, in the following way:
For every prime number p we form the intersection D,(®) of all normal sub-
groups of p-power index.

Prove: D, itself is of p-power index. Hence we shall call the factor group /D,
the mazimal p-factor group of @ .

Prove: Bt is the intersection of all D, and the maximal nilpotent factor group
is isomorphic to the direct product of the maximal p-factor groups over all prime
divisors of the group order.

4. If pe is divisible by the exponent of the maximal p-factor group of the finite
group ® (see Exercise 3),then the subgroup generated by all pe-th powers is equal
to D,. Therefore D, isa fully invariant subgroup of @®. Moreover, prove that

D, (D,(®)) = D, (@)

5. a) An abelian group with a finite number of generators is finite if and only if
the factor group over its ®-subgroup is finite.

b) A nilpotent group with a finite number of generators is finite if and only if the
factor group over its ®-subgroup is finite. [Use a) and apply induction to the length
of the descending central series!]

6. In a nilpotent group all the elements of finite order form a fully invariant sub-
group. (Use Exercise 5.)

7. a) (Hilton.) In a nilpotent group any two elements with relatively prime
orders commute.

(Hint: Show that the commutator of the two elements is in members of the
descending central series with arbitrarily great subscript.)

b) Two el with p-p order te a p-group.

¢) Prove the following generalization of Theorem 11: A nilpotent group in which
every element is of finite order is the direct product of nilpotent groups in which every
element is of prime power order.

§ 6. Hamiltonian Groups

In an abelian group every subgroup is a normal subgroup. What other
groups also have this property?
DEFINITION: A non-abelian group in which every subgroup is a

* These groups are also said to be perfect groups.
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normal subgroup is said to be a Hamiltonian group. For example, the
quaternion group is a Hamiltonian group.

THEOREM : A Hamiltonian group is the direct product of a quaternion
group with an abelian group in which every element is of odd order and
an abelian group of exp t 2, and conversely.

Proof : In a Hamiltonian group § there are two elements A, B which
do not commute with each other. Since (4) and (B) are normal sub-
groups of §, the commutator C= (4, B) = ABA-'B= of A and B is con-
tained in the intersection of (A4) and (B), and therefore in the center
of the subgroup Q= {4, B} generated by A and B.

The commutator group £’ of £ is generated by € and is a proper
subgroup of (A) and likewise of (B). Since (C) ¥ ¢, C = A = Bs where
r, 8+ 0. By Chapter II § 6, (4, B)s= (4, B*),and therefore Cs=e. Con-
sequently A and B have finite orders m and n respectively.We choose
A and B so that m and n are minimal. Then it follows for a prime divisor
p of m that : .

(A?, B) = e and therefore C? = (A, B)? = (A?,B) =e.

Similarly it follows for a prime divisor p of n that C? = e. The orders
of A, B are consequently powers of the same natural prime p; they are
divisible by p* since (C) is a proper subgroup of both (4) and (B),
while A?, B? are contained in the center of £.

If, say A**= C”, B»*= C«, where », 4 are not divisible by p, then
we replace A by 4«, B by B, and we may assume that

A?"= B?*= (4,B)=C +e-

wherea >b>0.
By chapter II § 6, in © we have the relation
(zyP = (z, y)~12>-D goyp,
Now A, A-**°B also generate £, and therefore B,=A4-*"B

must be of order at least equal to that of B. From this we conclude:
B = C,c—bn.!‘—T‘A_,a—bﬂ B?

BY — o 5,
p=2, a=>b=1.
Therefore £ is a quaternion group with the relations A*=B>=
ABA-B*=C,C*=e}

* Instead of this process one can apply Theorem 15 of § 3 to the group O !
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We wish to show that § is generated by Q and the group $ of all
elements of § which commute with every element of O .

If the element X does not commute with 4, then XAX= = A~ and there-
fore BX commutes with A. If, now , BX does not commute with B,
then ABX commutes with B. Consequently = 0%.

Every element X in $ is of finite order, since BX does not commute
with A, and therefore BX is of finite order. But B is of order 4 and
commutes with X, therefore X is of finite order. Now, if X*=¢,X € B,
then (A4, BX) #e¢, (A, BX) = A*=B. Since (BX)*=-¢, we have (4, BX)
= (BX)*=B*X* and therefore X*=e.

In B there is no element of order 4 and thus certainly no quaternion
group. But since every subgroup in B is a normal subgroup, % is abelian.
LB is the direct product of the subgroup U of all elements of odd order,
and the subgroup ®, of all elements whose square is e. C is contained in
®,. Among all the subgroups of ¢, which do not contain C there is a
largest . For every element X in @, not contained in &, C must be
contained in {®, X}. Since X*=e¢, we have {®, X} :0 =2 and likewise

{8,C):6=2, and therefore{®, X} = {®,C) ; it follows that
{®, C} =®, and moreover @ N (C) = e; therefore
B=UxGx(C).

Since £\ 8= (C), we have QN (Ux®)=e, and moreover
- (Ux®)=9H; therefore D= DxUxE.

Conversely a group with this structure is Hamiltonian. For £ is not
abelian. We have yet to show that every cyclic subgroup (QUG) is a
normal subgroup. Since £ is the only non-abelian factor of the decom-
position we only need show that the transform of QUG by A or B is in
(QUG).

Now A(QUG)A™ = QUG where i is either 1 or 3. The order of U
is an odd number d. Therefore the congruences r =1(4), r=1(d)
can be solved,and G* =G, AQUGA™ = (QUG)’, QED.

§ 7. Applications of E ion Theory

P

Let @ be an extension of the normal subgroup % with the factor
group §.

We say a factor system (C, ) is an abelian factor system if all the
'C, , commute with each other.

THEOREM 24: The (§:1)-th power of an abelian factor system is a
retracting* factor system.

* See end of § 6, Chapter III.
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Proof: Let (§:1) =n>0. Weset a,= IICM‘ and form the product

over g of all the equations Ci,;Coe, o= C7 o Co,ry

Then it follows that C7 , = a? a, a;+, QED.

THEOREM 25 (Schur) : If the order n of the finite factor group § is
relatively prime to the order m of the finite normal subgroup R, then the
extension & splits over M. R

Proof: We need only show that (§ contains a subgroup of order n.

If m =1, this is clear. Let m >1 and assume the statement proven
when the order of the normal subgroup is less than m. For a prime divisor
p of m, every Sylow p-group S, of ¢ is contained in N. Since there are
as many Sylow p-groups in % asin @, N,: RN\ N,==. Now N, \ /S,
is a normal subgroup of N,/S, with index n. By the induction hypothesis
there is a subgroup $/S, of order » in N,/S,. S,/z, is a normal sub-
group of $/z, of index n,where z, is the center of S, and is different from
e. By the induction hypothesis there is a subgroup 1l/z, of order = in
9/2,. Let C, . be a factor system of 1 over z,. Since the order z of
2, is relatively prime to n, we can solve the congruence nn=1(z) and
for the factor system C, ., of U over z, we find that it is the n,-th power
of the factor system ca which is retracting by Theorem 24. There-
fore C, . itself splits over z,, i.e. U contains a subgroup of order 7, Q.E.D.

In what follows, let & be a finite group of order n.

THEOREM 26: If a,a?=a,, and the a, commute with one another,
then the equation aj} = 6'~" is solvable, i.e. the mapping S, — a8, can
be accomplished by transformation with an element & in N.

Proof: Form the product over all equations with fixed o:

ay ]’]a:' = Ila;. = []o..
We set 6= J[a, and have a?é° =4, Q.ED.

It has been conjectured that the following theorem is true in general.

THEOREM 27: If the order n of the finite factor group § is relatively
prime to the order m of the finite normal subgroup RN, then two repre-

sentative groups of & over N are conjugate in ®. We shall prove the
theorem when one of the following additional conditions holds:

1. R is abelian.
2. N is solvable.
3. & is solvable.
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One of the groups %, § is of odd order, and since it is conjectured
that groups of odd order are solvable, it is also expected that the above
theorem is true. E. Witt reduced the theorem to the case when % is simple
and the centralizer of % in G) is e. It is believed that the group of outer
automorphisms of a finite s:mp]e group is solvable, so that we can con-
jecture the truth of Theorem 27 on this basis also.

Proof of 1: If U = {8,} isa representative groupand %B= {a,8,)
a second one, then we have the equations

o _
@,a] = a,,.

By Theorem 26, a?= 6'~"(c £ g) is solvable. Since by hypothesis the
congruence n-n, = 1(N:1) is solvable, g, =a? ™= (6")1-°, QED.
Proof of 2: If % is abelian, then the theorem is true by 1; let % be
k-step metabelian and assume the theorem has already been proven for
Dk-1(N) =e. . Further, let I and B be two representative groups of
G over N. We apply 1 to B/9’ and find that N’ = (UN')* withz € N
is solvable i.e,, B="'9% = UN. Since D*—*(N') = e, then by applying
the induction hypothesis to U, it follows that 8="' = U is also solvable
for y € N and therefore B=U*Y, with zy & N, Q.ED.

Proof of 3: Let a principal series of /9 be of length I, and let U1, 8
be two representative groups of & over %. Let u be a minimal normal
subgroup of U ; since U is solvable, u is a p-group. u is isomorphic to
b=V NuN where b is a normal subgroup of B.

If 1=1, then u=1U, p=B. Then II and B are Sylow p-groups of
@, therefore conjugate in (4. Let > 1, and assume that the theorem has
been proven for smaller I. By the induction hypothesis there is an z in
uR = bR, suchthat b= us. Weset B,= B! and find that U, B, CN,.
Since the principal series of W/u is of length I-1, it follows by the induc-
tion hypothesis applied to N /u that thereisa y € N,, such that B,= 1,
and therefore $ = Uz¥, Q.E.D.

Exercises

In a finite solvable group, certain generalized Sylow theorems are valid (Hall):
. 1. For every decomposition N=n.m of the group order into a product of rela-
tively prime factors, there is a subgroup of order m and index =.

2. Let n and m be chosen as in Exercise 1. All subgroups whose order is a divisor
of m lie in a subgroup of order m.

3. Let m be as in Exercise 1. All subgroups of order m are conjugate. The
normalizer of a subgroup of order m is its own normalizer.

(Proofs of 1-3 by induction on the length of the principal series and by use of

* Theorems 25, 27.)



V. TRANSFERS INTO A SUBGROUP

§ 1. Monomial Representations and Transfers into a Subgroup

We wish to represent the elements of a group ® as permutations on
a set whose objects admit multiplication by the elements of a secend
group 9. .

DEFINITION : A set M of elements w, v, . . .. is called an (9, ®)-system
if for every pair u, G (or H, u) the product uG (or Hu) is defined
uniquely as an element of M}, and if moreover for all » in M:

(1) u(GG) = (@&,
(HH')u = H(H'u),

(2) Uey = gl = U,

(3) H(uG) = (Hu)G.

By (1),the correspondence G — ng = (“ é‘_l) gives a representation

of @ in single-valued mappings of M onto itself. Since 7, = (:e) =1, the

mg form a group dg of permutations of M. We shall assume in addition
that Ag is transitive.

Example: Let 1 be a subgroup of &, u a normal subgroup of 11.
Then the right cosets of ® over u form a (I, ®)-system for which 44
is transitive.

We shall show that all (§, ®)-systems with transitive A4y are of the
type described in the preceding example.

First of all, it follows from (1) and (2) that the correspondence

H—>17=(H““)

is a representation of § in permutations of the elements of M. All these
permutations H form a group §, and

“) HET =HA.
We now define H as an operator on by the equation:
(5) Hu=Hu

164
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This definition is unambiguous and now M is also an (§, ©)-system.
Because of (4) and (5) the questions about (§, ®)-systems are equiva-
lent to the questions about ($, ®)-systems; and so we shall assume that
$isequalto §, i.e., -

(6) Hu=wu for all » implies H=e5. If Hu,=u, then
H(uG) = (Huo) G = u.G
for all G; therefore because of the transitivity of Ag:
Hu=u
for all 4, and so H = e,

(7) Every H is indeed determined completely by the way it operates
on only one element of M.

Let u, be a fixed element of M. All the elements of ® which leave u,
fixed form a subgroup u. We now investigate the complex U consisting
of all the elements U of & for which the equation u,U = U*u, is solvable
with some U* € 9.

Because of the transitivity of Ay and because of (7), it follows that
the mapping

U—>U*
is a single-valued mapping of 11 onto all of §. If U and V are contained
inll, then

U (UV) = (i U)V = U*u,V = U*V*u,
and hence UV, (UV)*= U*V*

The mapping of U onto U* maps 1 homomorphically onto $. Precisely
the elements of u are mapped onto e;. Since u and § are groups, 11
is a group also. u is a normal subgroup of U, and we may, and in fact
shall, consider $ simply as the group of cosets of U over u.

The mapping
®) %G = u@
is single-valued, for from

%G = u, &

it follows that U GF 1 = uy, GF 1 1,
u@ =u,



166 V. Transfers into a Subgroup

and conversely.
Moreover

O F = 1,(G0) = uG@¢ = (uA) G =uG - &,
TFuG= 2 UG =uUG = UuG = Uu,G = U*%,G.

Therefore, according to (8),the given (§, ®)-system M with transitive
Ag can be identified with the set of right cosets of & over a subgroup u,
where u is a normal subgroup of a subgroup U ‘and the factor group
U/u is isomorphic to $.
Let G —» @ be a representative function belonging to the decomposition
@

® = Su@, . If we put 4, = uG,, then every coset from I has the unique
form !

u=U*uy.

Accordingly
(9) w,G = Ulguic-

Here the permutation (:G) is determined by the equation
(10) UGG =UGi .
Moreover
(1) Uf, = GOGE" = 666,
for Utouig= Ukgu@G =u UGG =u6,6G = u,G .

It is obvious that through (9) a matrix M, having  rows and w
columns can be associated with each element G of ®:
(12) Mg = (8i6,: Ute).
That is, Mg is a matrix with the element U#¢ in the i-th row and iG-th
column and with zeros elsewhere M, is a permutation of the w with
factors from U* (= @) . From (1) and (8) it now follows that
(13) Mg- Mg = Mgg,
where the product of two matrices is computed in the usual manner.
We call the representation (12) of @ in square matrices of degree w
with coefficients zero, or from the group 11* the monomial representation
with o members.

In going over to another system of representatives of right cosets of
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@ over U we change to a new “basis” vy, vy, . . ., v, of M which is con-
nected to the old one by equations of the form
(14) v =Uruy ,
. -
where (;'.) is a permutation of the numbers 1,2... w. If we put down

as transformation matrix
T = (84,2 U*),

where U;* stands at the intersection of the i-th row with the zs-th column
and there are zeros everywhere else,then the representationwith o
members belonging to the v; and with matrices M is given by

(15) M§=TMsT-

If we put u =e, then we obtain the most general monomial representa-
tion of ® over U :

(16) G — MG = (46, Us0)

from which the representations with arbitrary normal subgroup of U
can be obtained by replacing the elements by their cosets.

If B isasubgroupof ,let U= 2 BU, be aright coset decomposi-
tion of 1 over B . Then @ = 2‘% U,G‘ is a right coset decomposition
. of @ over B, and from equatxons (10) and (12) it follows that:

(17) M arises from the matrix #3 upon the replacement of each ele-
ment U from U by the matrix mf.belonging to the representation of
U: over B and by replacing each 0 by a »-rowed matrix of zeros.

If we replace the normal subgroup u by the commutator group U’
of U, then there corresponds a representation of & in matrices whose
coefficients are from an abelian group. Through the construction of
determinants we arrive at a new representation. We define:

The transfer of the element X from the group & into the subgroup U
is the coset Vg-yu(X)of U over its commutator group U. If U is of
finite index % and has the system of left representatives G,, G, . . ., G.
with the representation functjon G —» @ then we define

(18) -Vaau(X)=u’-11]'GaX@.-_X".

THEOREM 1: The transfer is independent of the choice of the system
of representatives.

Proof: V(X) is (to within sign) the determinant of the representa-
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tion matrix MY, having coefficients from U/’ or else 0. By transforming
to a new system of left representatives we simply transform M, by a
fixed matrix 7. This does not alter the value of the determinant.

THEOREM 2: The transfer of ® to U is ¢ homomorphy of @ into
uw.

Proof: This follows from (13) upon construction of determinants.

The transfer V., y induces an isomorphy between an abelian factor
group of ® and 1/1'. Hence Vg_.u(®’) =1, The subgroup of 11/1l’ con-
sisting of all the cosets Vg,u(®) is called the transferred group of ®
toll.

THEOREM 3: Fora subgroup B of U with finite index it follows that:

Voss(X) =Vusg(VosuX)).

Proof: This follows from (17) upon construction of determinants
two times.

Remark: If @ is a group with given automorphism domain, then the
transferred group is an admissible group, for when @& is a system of
left representatives of ® over 11, then so is &° ( ¢ an automorphism
of @) provided U is admissible. In particular the transferred group of a
transfer into a normal subgroup is itself normal.

In order to compute the transfer of a given element X, it is useful to

choose a particular system of representatives. The permutation (ulg;)

of the right cosets of @ over 11 decomposes into r cycles. From the i-th
cycle we choose a representative 17, and the cycle may be written
ur,ur.Xx,...uT.Xn-). Then for the system of representatives
T, T.X,...,T, X (i=1,2,...,7):

(19) Voou(X)=W J]T: X T,
1

where f; is the length of the i-th cycle, and hence is a divisor of the order
of X. Moreover

(20) %'7‘: ®:1

Ewercise: Prove the three theorems on transfers by direct calculation,
on the basis of (18) and the rules about representative functions.
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§ 2. The Theorems of Burnside and Griin

LEMMA: If two complexes &, 8 in a Sylow p-group P of the finite
group @ are normal’in P and conjugate under ®, then they are also con-
jugate under the normalizer”. NB of .

Proof: The hypothesis says P is in the normalizer Ny of & and in
the normalizer N, of €, and that

L=T/T=QT
is solvable with T in @.

From P C @ and from Ngy= N7 it follows that: 7 C N, Since
and 7T are Sylow p-groups of @ in N o » they are also Sylow p-groups of
Ny, consequently $ =BT with S in N, is solvable by the third Sylow
theorem.

Consequently ST is in Ny and 57 = 85 = £,Q.E.D.

THEOREM 4 (Burnside) : If the Sylow p-group B of a finite group ©
is in the center of its mormalizer, then ® contains a normal subgroup
with P as system of representatives.

Proof : The hypothesis implies that P is abelian, so that its commu-
tator subgroup is e. We transfer ¢ into B and obtain a normal subgroup
N of all elements which are transferred to e, and a transfer group
V(®) L B. If we show that V() =%, then V(G) =B, hence RP =6,

and R N N =e¢, and the theorem is proven.
" Foranelement X in g, by § 1, (19)
’

V(X)= Hfof‘ Tt
1
v
for certain T, where f,= ®:%P , and every factor of the product is
1

contained in . But the elements X%, T, X% T~ , conjugate under G,
are normal in the abelian Sylow p-group ; therefore by the lemma they
are conjugate under Ng. Therefore by hypothesis they are equal to one
another, so that

V(X)=J]Xx%=X%% ,
1

Since ©:% is relatively prime to the order of the Sylow group B, we have
V (B) =P, which proves the theorem.

It follows immediately from the Burnside theorem that the order of a
finite simple group of posite order is divisible by the cube of its
smallest prime factor, or by 12. (See IV, § 3, Exercise 5).

* * @ is called normal in B, if xRz~ 1=® for all z in P.
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With the transfer of a finite group ® into a Sylow p-group B we
associate the normal subgroup ®, which consists of all the elements of &
which are transferred to the commutator subgroup %’ of 8. /@, is iso-
morphic to the transfer of & in %, and therefore is an abelian p-group.
By Chapter 1V it follows from this that 8 = f®, and therefore by the
second isomorphy theorem, &/@, = B/PBN G,.

Can the p-group P, = PN, also be characterized from within? R, is
defined from above as the group of those elements of R whose transfers
in P are in P’. The elements of fNG’ are among these elements. In par-
ticular, in P, we have the intersection of B with the commutator group
Ny of the normalizer N, of %,and the groups BN PB'T, where T €.
Our question is now answered by the FIRST THEOREM OF GRUN
(THEOREM 5) : On transferring a finite group & into a Sylow p-group B,
the transferred group is isomorphic to the factor group of B over the
normal subgroup

(BN [TBN ™.

Proof: We set Vg,g(X)=VX, and P,=(PN\Ng)- [IBNP7T, and
TES®
then since B.C B, and VE/P'= PB/P, we must prove that B, =R,.

Assume that R, + B, and then let X be an element of minimal order
which is in%; but not in .. We shall be led to a contradiction by showing
that VX & 9, and in fact that VX & ..

We anticipate the essential argument by remarking that X»*7< § ,
t>0 implies X#'TE€ §,, since  VX!T=VT.VX*'.VT1=VX!=9";
and therefore X#'7T is in %,; and since it is of lower order than X, it is

in B,.
Under the representation ¥ — (‘BE g_,} of & in permutations of

the right cosetsof @ over %, we also obtain a representation of §, and the
right cosets of @ over B decompose under R into systems g; of transitivity
having pt right cosets. Under multiplication on the right by X, the
cosets from ;=% are permuted in certain p"-member cycles. We look
for a coset BT from T which belongs to a cycle of minimal length p*; then
all p* cosets from ¥ are of the form PTP with P in P.

1. T &N, ‘,,i.e., p* > 1. Then the cosets of a p"-member cycle are:

PTP, PTPX, ..., BTPX?™1, where m, naturally, depends on P,
and PTPX*"= PTP.]If one chooses TPX: as coset representative, then
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the product of associated transfer factors satisfies

TPX(TPX)'. TPX*(TPX* ... TPX*"(TP)'= X»"TPC §,
and it follows from our determination of T that u<m, Xs"T<p ;
therefore Xs"7P. X-s"7_{(X>")P-1)T— (P, X?")TC ¥'T  andby the
construction of §,:

X"TP = X" T (§,).
The product of all transfer factors which belong to the right cosets in
BT, is congruent to X#'7(%p,), and therefore, by the remark at the
beginning of the proof, is contained in ..

2.T<Nyg. Then PTX=PXT.T=RT=9PTH. The cor-
responding transfer factor is X7. Since X7= X (Ng), it follows that:

XT= X(%B,)
by the construction of ..
1. and 2. together imply the congruence
VX = X"%(B,),
and since Ng: P is relatively prime to p, we obtain the contradiction
VX&ER,, QED.

COROLLARY to the First Theorem of Griin:

. The normal subgroup ®, consisting of all the elements of ¢ trans-
ferred to P’ is the p-commutator group &’ (p) of @, i.e., the group trans-
ferred into a Sylow p-group is isomorphic to the p-factor commutator
group.*

Proof: Since ¢/®, is an abelian p-group, &’ (p) is in (,. Moreover,
by what was shown in the previous proof, P,=PNEG, CPNG". Onthe
other hand, @' is in ®, ; therefore f N &' is in R, ; therefore P, = PN &".
By Chapter IV, &/®'(p) = B/P N . From this we conclude

/&' (p) = P/Pr=6/6,, 8:'(p)=0:6;, G,=0().

DEFINITION : A finite group is said to be p-normal if the center of
one of its Sylow p-groups is the center of every Sylow p-group in which
it is contained.

- For example, a finite group with abelian Sylow p-groups is p-normal.

SECOND THEOREM OF GRUN (THEOREM 6) : If the finite group & is

. *See the definitions in IV, § 5, ise 1.
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p-normal, then the factor commutator group of & is isomorphic to the
p-factor commutator group of the normalizer of a p-center.

Proof: Let 3 be the center of the Sylow p-group ®; let R, be the
intersection of &’ with R; let R, be the intersection of R with the com-
mutator group Ny of the normalizer N, of 3. By Chapter IV we know
that ®/®'(p) = B/Py, NNy (p) = P/P,. Since P. is contained in P,,
we have to prove that R. is equal to .. By the first Griin theorem

Pi=(BNNg)- [IBNPT,  and therefore we must show:
Tes .

(a) BANgR,, (b)) PNAPRTIP, for all T in G.

(a) follows from Ny C N,, Ng N

For the proof of (b) we put = RNPT and find that 3 Ny,
3T < Ng, since 37 is the center of B7. 3 is in a Sylow p-group q of
Ny, 37isinaSylow p-group p of Ny and by the second Sylow theorem
there is an S in Ng such that pS= q ; therefore 357 is containedin q,
q is contained in a Sylow p-group £ of (&, and since by hypothesis § is
p-normal, both 3 and 357 are equal to the center of ), and therefore
equal to each other. ST is contained in Ny, and D = DS= PSN\ P57,
DIPSTINY, sofinally DIPNAN/=P,;, QED.

COROLLARY TO THE SECOND THEOREM OF GRUN: The transfer of a
p-normal group into the Sylow p-group P is equal to the transfer
V”a"“(Na) of the normalizer N, of the center 3 of P into the Sylow
p-group B of N,.

This is true since by Theorem 3 on transfers, Vg»>5(®) is contained
in Vy,»u(N,), and by what has just been proven, these are isomorphic.

In order to obtain results about the case where every Sylow p-group
is abelian, we prove the

LEMMA: If the index of the finite group ® over the abelian normal
subgroup ¥ is relatively prime to the order of ¥, then

A=ANG)Xx AN3@) and Ve,u(®) =AN 3(®).

Proof : Let @, be the normal subgroup of all elements which are trans-
ferred onto e by Vg,u="V . Then ®:@, is a divisor of %:1; therefore,
applying the hypothesis, @, :1 is divisible by & :%; consequently & = @,,
ie, V=V

For an element X in 9,

VX =JIXT= X0:%. [IX7T-1= XS 9@N).
)

T

We show first that A= (ANG@)x VA. Infact, ANGFNVA=ce,
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since from X €%, VX E€ANG' , it follows that X% U= (ANG),
and by hypothesis we conclude that X =e@ N @'’) ; but then VX =e.
Moreover (AN@)-VA=U, since (ANG)-VA contains all the
(®:%)-th powers of elements in %, and by hypothesis these form all
of A.

Now we shall show that V9 =9 N\ 3(®), from which, together with
what has already been proved, our assertion follows.

Generally speaking, according to the explicit definition of transfer,
we have for an element T of the normalizer of the group % to which @
is transferred, V(TXT-*)= T-VX-T-'. Also we have V(TXT-)=
VI-VX-VT-*= VX, because the transfer is a homomorphism into an
abelian group. Hence VX belongs to the center of N,/%’. For an element
Xin 3(®) N A the transfer is X6:% and by hypothesis, the transfer
into 3(®) N\¥ induces an automorphism; consequently 3(®) N\ A= V@
=V¥, Q.ED.

THEOREM T: If a Sylow p-group P of the finite group ® is abelian,
then the transfer of ® into B maps the p-factor commutator group of &
isomorphically onto the intersection of the Sylow p-group with the center
of its normalizer.

Proof: Since 3 (®) =B, © is p-normal; therefore by the corollary to
the second Griin theorem, Vg, 3(®) = Vyg>3(Ng) and by our lemma
. Vag>s(g) = §(g) N .

FROBENIUS’ THEOREM (THEOREM 8) : If the order N of a finite group
@ is relatively prime to

k=@ =1 (@ —1.....(p—1),

where p* is the order of a Sylow p-group, then the maximal p-factor
group* of ® is isomorphic to every Sylow p-group of .

Proof : If n =0, the theorem is clearly true. Let n» > 0 and assume the
theorem proven for groups whose Sylow p-groups are of order less than p».

If ¢ is not p-normal, then, by Chapter IV, Theorem 8, there are in § a
p-group D # ¢ and an element X such that transforming ® with X induces
an automorphism of order ¢ > 1 relatively prime to p. By Chapter IV, gisa
divisor of k> €ven a divisor of k, since d(D) < n. Since on the other
hand ¢ is a divisor of N, g, by hypothesis, must be equal to 1; therefore
@® is p-normal.

If P is abelian, then R is in the center of its normalizer since trans-
forming  with an element in N, induces an automorphism whose order

* Definition see IV, § 5, Exercise 3.
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is a divisor of both k;, and N, and therefore is equal to one. Now the
assertion follows from Burnside’s theorem.

If the center 3 of the Sylow p-group  is different from B, then 3 +e,
and therefore the induction hypothesis is applicable to N,/3. This shows
that Nhasa p-factor group different from e; that the same is true for @
follows from the second Griin theorem. The maximal p-factor group
®/D, is now different from e. If p still divides D, : 1, then the induction
hypothesis would lead to the contradiction D,(D, ®)) + D,(®). There-
fore p is relatively prime to ®,:1, and this means that every Sylow
p-group of ® forms a system of representatives of @& over D, , Q.E.D.

COROLLARIES : 1. .The order of a finite simple group of even composite
order is divisible by 12, 16 or 56.

2. From the proof of the theorem it follows that the number k, of
the theorem may be replaced by &, , which is at most as large as k,,
where p? is the order of the maximal abelian factor group of exponent p
among all those which are factor groups of p-groups in .

3. If a Sylow p-group of & contains a cyclic subgroup of index p,
and N is relatively prime to p*-1, then the p-factor group of @ is iso-
morphic to a Sylow p-group. For, by Chapter IV, § 8, Exercise 1, D < 2.

Ezxercise: A simple finite group whose order is odd and smaller than
1000 is of prime order.

§ 3. Groups whose Sylow Groups are all Cyclic

THEOREM 9: In the series of higher commutator groups &' 26" ...
of a given group ®, two successive factor groups are cyclic only if the
latter one is equal to e.

Proof: It can be assumed that &'/@” is cyclic,®” is generated by
A,and @"'= e. It will be shown that §” = e.

The normalizer of @” is . The factor group of @& over the centralizer
N, of " is isomorphic to a group of automorphisms of (A4), and there-
fore is abelian. @’ is in &N ,, and since the factor group of ®’ over the
normal subgroup ®” in the center of ¢ is cyclic, (' is abelian, and there-
fore @” =e, Q.E.D.

We make the following definition: A group is said to be metacyclic
if its commutator group and its factor commutator group are cyclic.

As a consequence of Theorem 9, it no longer makes sense to talk of
3-step metacyclic groups. A cyclic group is metacyclic.



§ 8. Groups whose Sylow Groups are all Cyclic 175

THEOREM 10: If every Sylow group of a finite group ® is cyclic, then
@ is solvable.

Proof: If @ is a p-group then the theorem is clearly true. Let the
number r of different prime factors of ®:1 be greater than 1, and assume
that the theorem has been proven for all groups whose order is divisible
by at most -1 different primes. Let p be the smallest prime factor of
@:1. Since a Sylow p-group is cyclic, the index of its normalizer over its
centralizer is a divisor of p-1; therefore by the construction of p, there
is a Sylow p-group in the center of its normalizer. By Burnside’s
theorem @ contains a normal subgroup % with the Sylow p-group as a
system of representatives; and we can apply the induction hypothesis
to N. This shows that N is solvable, and therefore & is solvable, Q.E.D.

THEOREM 11: A finite group of order N containing only cyclic Sylow
groups is metacyclic and has two generators A, B with the defining
relations:

a) Am=e, B*=e, BAB" = A’,and the conditions
b) 0<m, mn=N,

¢) ((r-1)em,m) =1,

d) r=1(m),and conversely.

Proof: The conditions imposed on ® also hold for every subgroup
and every factor group of a subgroup. If @ is abelian, then @ is cyclic.
It follows from Theorem 9 that & is metacyclic in any case. Let A be a
generating el t of the cc tator group @, of order m. Let B®’ be
a generating coset of the factor commutator group,of order n. Then
BAB- = Ar, B*"AB»= A™=A, and therefore r* =1 (m). Every com-
mutator is a power of BAB<A™ = A=, and therefore (r-1, m) = 1. Since
B is a power of A which commutes with B, we have B*=e. If a prime p

n o om
were to divide n and m, then {BF, A7} would be a non-cyclic subgroup
of order p* and this contradicts the hypothesis; and therefore (n,m) =1.

Conversely, let & be a group with generators A and B which satisfy
the defining relations a) and conditions b), ¢), d). By Hélder’s theorem
in Chapter III, ® is of order nm. Since (r-1, m) =1, & = (A). Since
(n, m) =1 and the order N of @ is nm, then for every Sylow group, there
is one conjugate to it in (A4) or in (B). Therefore every Sylow group
of @ is cyclic, Q.E.D.
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§ 4. The Principal Ideal Theorem

First we shall present some considerations about operator domains
of abelian groups in pursuance of Chapter III. §§ 3 and 5.
Let § be a group of automorphisms U — U° of the abelian group 1
with a finite number of generators. All operators ¢,0 , with rational
;

integral coefficients ¢,, only a finite number of which are different from
zero, form an operator ring Q with a unit element - Let J be a
normal subgroup of & and let ¢ — & be a representation function of %
over §,. Now what does calculation mod §. (i.e., the replacement of o

by o) mean in © ? Certain elements in 11 are identified; thus
U= U", if o= d(Fo)-

Instead of calculating in 11 , we must now calculate in the factor
group of U over a subgroup 1I,, where U, must contain at least all
U7 for ¢ = o'(§,). But all U~" with ¢ = o’(§,) generate a sub-
group 1, of U which is admissible with respect to £2. The automorphisms
o induce automorphisms g of 11/11,, and the operator ring Q goes over
into an operator ring @ of whu,.

The order ideal of WU, over @ is obtained from the order ideal of
U over Q by replacing ¢ by & everywhere.

In order to construct the group transferred into the normal sub-
group U, it suffices to calculate in the factor group over U’, since U’
is a normal subgroup of ¢ ; thus we assume that ' =e.

Let ®/1 be isomorphic to the abstract group§={1,0, 7, . ..}and let
(8,5 C,.,) be a factor system of § over U:

8,8,=C,,.8,..

Every element S in @ is uniquely of the form S=US, with U € Ul;
therefore, using the earlier notation, we form

Vo-u(U)=II8,U8,U* = []8,US; = U,
Ve-u(8)=118,8,8,8," = IT8,8.8;! = II¢C,.,
so that Ve-u(S) = U?G‘Hon.r-

Let @ be the splitting group (constructed as in Chap. I1I, § 9) of &
over the abelian normal subgroup 1; the new normal subgroup U is
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the direct product of U with the infinite cyclic groups (4,), o + 1,and
1) A= A;14,,072

ar 7ozt

For & over I there is:a retracting factor system (7',,1), where
T,=A,8,. Therefore

Vosu(S) = Vg.u(S) = UF. []1 = T#°
2) Vou(®) < 17"

THEOREM 12 (PRINCIPAL IDEAL THEOREM)': The transfer of a group
with a finite factor commutator group into its commutator group is equal
to the d tator group provided the second factor commutator
group has a finite number of generators.

As before we can assume in the proof that #” = e. Then it remains
to show that V_ 4 (6) =e.

The following example shows that the assumption about @' is
necessary:
Let U be the group of all numbers e**¥ with rational »,.and let

®&={11,i} be the extension over Il of index 2 defined by
P=eri=—1

je2miri<l 2xir
Then & = 11 and G” =e but e = ’
Voow(j)=—1+e

Instead of the principal ideal theorem, we prove the following slight
generalization :

Under the same assumptions, the (11:@’)-th power of the transfer
of every element G in & into an abelian group U lying between & and &’
is equal to e: ie., (Veou (@)% =e.

We set §:11=n, U:® =d; n and d are different from zero; U is
an abelian normal subgroup of ®. Let §,  and i have the same meaning
as previously. By (2) it then suffices to prove

W=
The automorphisms corresponding to o generate an operator ring
 of T, which consists of all @ = 3'c,0 with integral rational ¢,. T
. @
has an order ideal over 2, since ¢’ has a finite number of generators,
* The Principal Ideal Theorem of class field theory states that every ideal of an

algebraic number field is a principal ideal in the absolute class field. The principal
‘ideal theorem can be stated group-theoretically as Theorem 12.
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11 is finite over &, and T has a finite number of generators A4 over U,
so that 1l has a finite number of generators, hence a finite number of
generators over 2.

If we now show that d- 3o generates the order ideal of 1l over 2,

then the theorem is prover:. Now let ©@= Jc,o be in the £-order
— . o
ideal of U. Then taking note of (1) we have:

e=A,°= 45%° = H(A oo = ﬂA—wAwr )
= HA”—c,,+t...—| (u).

Since the 4, form a basis for- W1, we must have ¢,=¢,,-1 for all

o1, hence ¢,=¢, for all ¢, whence @ =¢,- 0. Consequently, the

order ideal of 11 over Q is a principal ideal which fs generated by ¢ - Sa
- a

with an integral rational ¢ = 0.

If we replace o by 1, then, as was pointed out at the beginning of
the paragraph, we are calculating in the group U/@’; for since @ is
generated by the Tand the T,, @ is generated by all the elements
17 T, U~1T 1_Q1-o ,ie. MW°=@. Here Q goes over into the ring
2, of ratlonal mtegers The , order ideal of fI/@’ is obtained from the
Q-order ideal of 1 by the same substitution; on the other hand, by
Chap. II1, § 5, it is generated by the group order 1 : &’. Therefore

T =c-Q+1+--+1)=cn.
In order to show that ¢ =d, we prove the isomorphism
/8 =~ ¢/@,
from which it follows that _ _
cn=U:F=06:0=dn,
c=d.

Since @ is a normal subgroup of each of the four groups, we may
set @ =e for the proof of the isomorphy. Since )& = -+, 31 is
generated by 11 and the 4, and moreover 3U1'-?= e, it now follows by
(1) that

={4=°}={4,C, 4;}4,}.

i3 ﬂyf ot
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Therefore we can choose the elements 4, U as representatives of /@’ .
By (1) -
4,4,=4,C A= 4,01 @)
‘ot

The abelian group @ consists of the elements §;-1 U with the calculational
rule

8;181=8;1C;1.
The correspondence A4,U —S;1U therefore gives an isomorphism
between I/& and ©, Q.E.D.

COROLLARY OF THE PRINCIPAL IDEAL THEOREM : In a 2-step metabelian
group with a finite number of generators and cyclic factor commutator
group of order n, every element whose coset generates the factor com-
mutator group is of order n.

Proof: If S is the element described in the above statement, then
®/@ = (S®’) and therefore the powers 1, S, . .., S* are a system of
representatives of ¢ over ¢’. Consequently

n—1
Vo (S) =IIngs,W-1= 8,

while on the other hand V_ 4 (S) =e.






APPENDIX A

FURTHER EXERCISES FOR CHAP. II

(For 10 and 11 consult Exx. 15 and 16 at the end of Chap. I.)

10. Let g be an abstract group with elements a,, . .., @, . . .. Let X be a system of
groups such that for each member g’ of Z there is a given an isomorphism 4(g’) between
g and g’. Show that the set of all one-to-one correspondences ¢(g’, g, a) between any
¢’ and any g”" which map the element i(g’)« of g’ onto the element i(g”)az of g”
is a groupoid @(Z, g).

11. Let @ be a groupoid. For any two units e, ¢’ linked by  show that ez = z = z¢’.
Furthermore, show that the mapping of @ onto z~1az is an isomorphism between g, and
g.r- Let Z be the system of the groups g,, g, . .. attached to the unitse, ¢, . .. of
@. Let g be an abstract group mapped by isomorphisms i (e), i(¢’), . . . onto g,, gs, . . .
Show that § is isomorphic to §(Z, g).

12. Every h phism kb of a multipli domain 9 into another multi-
plicative domain defines on I the normal multiplicative congruence relation: a R (k)b
if and only if ha = hb. Conversely, if R is a normal multiplicative congruence

on M, then the residue classes form a multiplicative domain /R according to the
rule of multiplication @ = ab, where Z denotes the residue class modulo R represented
by the element  of M. The mapping k that maps x onto Z is & homomorphism (natural
homomorphism) of M onto M/R which induces on M the congruence relation R in
the sense deﬁned above. If j is another homomorphism of M inducing the normal

lation R = R(j) on M, then j induces the isomorphism
betwoen M/R(5) and (M) which maps Z onto jz.
13. Show that the i ion of two of imprimitivity of a transitive permu-

tation group is itself a system of imprimitivity provided the intersection contains
more than one letter.

14. (G. E. Wall.) In the ring I, consisting of the eight residue classes of the rational
integers modulo 8 show that the mappings (z, az 4 b) that map the element z of I
onto the element az -+ b (@ odd; a, b contained in I;) form a group @ of order 32.
Show that the mapping of (z, az + b) onto (2, az + (b 4 (a®? —1)/2)) is an outer
automorphism of @ that maps each element of & onto a conjugate element under ®.

15. If a normal subgroup of a group & and its factor group both are solvable, then
@ is solvable.

" 16. The product of a solvable normal subgroup of & group @ and a solvable sub-
group of @ is a solvable subgroup of @. (Use Ex. 15.)

. 17. The radical R(®) of a group @ is defined as a solvable normal subgroup of &
which is not contained in a larger solvable normal subgroup of & (maximal solvable
normal subgroup). Show that there is at most one radical of @ and that it is a characte-
ristic subgroup. If the maximal dition is satisfied for the solvable normal sub-
groups of @, then @ has a radical. (Use Ex. 16.)

13 7207 Zassenhaus, Theory of Groups
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18. If the group ® has a radical R(®), then the radical of each normal subgroup
N of © is equal to the intersection of N and the radical of ®. If N is solvable, then
R(®/N) = B(®)/N; in particular R(G/R(6)) = R(G)/R(E).

19. Each k-step metabelian subgroup of a group @ is contamed in a maximal k-step
metabelian subgroup of @, i.e., a k-step tabeli p not ined in a
larger k-step metabelian subgroup.

20. If there are maximal solvable subgroups of a group @, then the radical of @ is
the i ion of the imal solvable subgroups.

21. If, for a fixed k, every solvable subgroup of & group is at most k-step metabelian,
then every solvable subgroup is contained in a maximal solvable subgroup, and  has
a radical.

22. Show that for any homomorphism k of a group ® onto a group  we have
h((a, b)) = (ka, hb) for a, b contained in & and that k(D" (®)) = D" (kh(@®))forr =0, 1,

23. Let & be a semi-group with unit element.

a) The element a is called a left divisor (right divisor) of the element b of & if there
is an equation b = az (b = ya), where z and y respectively occur in &. Show that this
relation is reflexive and transitive.

b) Two elements are called left equivalent (right aquwalmt) if each is a left divisor
(right divisor) of the other. Show the normality of this relation. Show that equivalent
elements can be substituted in one-sided divisor relations.

¢) If a is a left divisor of b, then ca is a left divisor of ¢b. If a is a right divisor of b,
then ad is a right divisor of bd.

d) We say a divides b if there are equations

G = Gy = Ay Bgg, @y = G T10gp = Gy Gyy, Gg = Gy TGy = Qg Gy, -« s
b =0y = @p TpyyOpg,
‘where all factors belong to &. Show that the relation a divides b is reflexive and tran-
sitive. If a is & left divisor or a right divisor of b, then a divides b. If a divides b and
a’ divides b’, then aa’ divides bb’.

e) We say a is equivalent to b if a divides b and b divides a. Show that this equi-
valence relation is normal. Show that equivalent el
divisor relations.

f) Interpret each of the three relations: a is left divisor of b, a is right divisor of b,
a divides b, as ordering relations defining a poset &. Give for a subset s of & the defini-
tions of g. c. (greatest common) left divisor, g. c. right divisor, g. c. divisor of s cor-
responding to the meet in multiplicative terms. Also, give the definitions of 1. c. (least

) left multiple, 1. ¢. right multiple, 1. c. multiple of & ponding to the join
in multiplicative terms.

8) An element is called a wunit if it is both a left divisor and a right (hvxsor of 1.
The units form a subgroup (&) of &.

h) The element n of & is called a zero element of & if nz = zn = n for every
element z of €. Show that the divisors of n form a sub-semigroup. Show that there is
at most one zero element.

i) The element e is called an idempotent if ee = e and if e is not a zero element. An
idempotent is & left divisor (right divisor) of the element a if and only if it is a left
unit (right unit) of a.

+ 3

can be i in
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j) If there is no idempotent other than 1, then each divisor of 1 is & unit and all
the divisors of 1 form a normal divisor (&) of &. M y if G is
then congruence modulo 1i coincides with equivalence as defined under e) for every
pair of non-divisors of zero.

k)If Gis ive, then an-el is a divisor of 1 if and only if it is & unit.

24. A sub-semigroup of a group is called a halfgroup. Show the following:

a) A finite halfgroup is ch ized as a finite i-group for which the cancellation
laws of multiplication are satisfied.

b) An abelian halfgroup is ch ized as a i-group satisfying the commu-
tative and the llation laws of multiplication (see § 7, Ex. 4 and also Ex. 25).

¢) (0. Ore.) If a semi-group & satisfies the llation laws of multiplication and also

the rule a @ = ©a for each a contained in &, then it is a hn.]fg'roup (Hint: Form
the quotient group of & consisting of the formal quotients a/b (a, b any two elements
in @) where a/b = c/d if there are elements e, f such that ea = fb, ec = fd, and where
afb - c/d = e/f means that there is an element g such that a/b = e/g, ¢/d = g/f; show
that the mapping of a onto the quotient aa/a gives an isomorphism of & into the
quotient group.)

d) (Lambek Mal’cev.) Any hslfg‘roup 9 sati in addition to the 11
laws of ion, certain polyhed: ditions given by the following construction:
A finite system P of v vertlces, e edges, and f faces is called an abstract Euclidean poly-
hedron if 1. every edge is incident with precisely two vertices and with precisely two
faces, 2. a vertex is incident with a face if and only if there are precisely two edges
incident with both of them, 3. the edges e, e, . . ., e, which are incident with a given
vertex (face) form & cycle such that with suitable renumbering e; and e;,, are incident
with the same face (vertex), where n is greater than 1 and e,,; = ¢,, 4. v+ f =e 4 2.
The subset of P formed by an edge ¢ and the face F incident with e is called the
F-side of e. The subset of P formed by the vertex V incident with the face F is called

* the angle at V on the F-side of a, b where a, b are the two edges incident with both P
and F. Assign to each angle and to each side an element of § such that the relations
xa = yb are satisfied, where z, y are assigned to the two sides of an edge e, say to
the F-side and to the G-side, and a, b are assigned to the angles formed at a vertex
incident with e and F, @ respectively. The polyhedral condition corresponding to P
states that any one of the finitely many relations za = yb explained above is & conse-
quence of all the others. (Hint: Apply induction on v; amalgamate adjacent faces.)

e) If a i-group sati the llation laws of iplication and the poly-
hedral conditions given under d), then it is a halfgroup (see A Mal’cev, On the embed-
ding of associative systems in groups. Mat. Sbornik, Vol. 6 (48) (1939), pp.
331—336; J. Lambek, The 1 ility of a i-growp into a group, Canadian
Journal of Math., Vol. 3 (1951), pp. 34—43).

f) There are semi-groups satisfying any given finite subsystem of the polyhedral
conditions given under d) and also the llation laws of i ion which are
not halfgroups (see A.Mal’cev, On the embedding of associative symma in groups II,
Mat. Sbornik, Vol. 8 (50) (1940), pp. 251—264).

'25. An elen d of a ltiplicative semi-group & is called a denominator if
a) dz = xd for any z contained in &, b) dz = dy implies z = y.

a) Assuming denominators exist, show that they form an abelian halfgroup d(©)
(see §7, Ex. 1).
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b) Show that the elements of &, and the formal quotients a/d where a is contained
in © and d is contained in d(@), together with the symbol 1, form a multiplicative
semi-group Q(€) (called the quotient semi-group of &) by introducing the rules:
a=»5inQ(G)ifa=>5in & a=>b/dif ad =b, bj/d =a if b =ad, a/d =da’[d" if
ad’ =da’, 1 = a if a is unit element of &, a =1if 1 =@, d/d =1, 1 = d/d; ab as
in ©, a-b/d = (ab)/d, bjd - a = (ba)/d, a/d - a'|d = (aa)/(dd), la =al=a, 1-a]d
—a/d-1=a/d, 1-1=

c) Show that & is a sub-semigroup of @ (&). _(As regards b) and ¢), compare § 7,
Ex.2.)

d) Show that the denominators of Q(®) form an abelian group dQ(®©) with 1 as
unit element and that dQ (@) = Qd(S) (see § 7, Ex. 3).

e) Show that Q(C) =6 lf and only if d(S) is & group (see §7, Ex 4).

f) Let T be a multipli a sub group &, where the
elements of d(©) generate a subgroup of < whose unit element is the unit element
of ¥. Show that there is one and only one homomorphism of @ (@) into ¥ leaving
every element of & invariant, namely the isomorphism which maps a onto a, a/d onto
ad-1, and 1 onto the unity element of Z.

26. a) Let © be an iative semi-ring. A that the multiplicati i-group
belongi: to (=] ins d inators. Prove that the quotient semi-group of the

ipli i bel to & forms an associative semi-ring Q (&) if the
addltlon is defined as follows. a4+ b asin &, a+ (b/d) = (ad + b)/d, (b/d) + a =
&+ dayid, (afd) + (@[d') = (ad’ + @' d)/(dd).

b) The semi-ring Q(S) is called the quotient semi-ring. Show that it contains &
as sub-semiring.

¢) If & is a ring, show that Q (&) is a ring. Q(G) is called the quotwnt ring of &.

d) Let T be an associative semi-ring G as ing, where the ele-
ments of d (&) generate a multiplicative group in T whose unit element is also the unit
element of ¥. Show that there is one and only one h phism of the quoti;
semi-ring @ (&) into T leaving every element of & invariant, namely the isomorphism
that maps a onto a and a/d onto ad-1.

27. A subrmg of a ﬁeld is called a half field. Show that a ring is a half field if and
only if the p ive and if a product vanishes only if at least
one of the factors vamshes The quotient ring of & half field is a field, which is called
the quotient field of the half field. A half field with unit element is called an integral
domain or domain of integrity. Give examples.

28. A multiplicative domain I is called ordered if there is a binary relation @ > b
on 9, called the ordering relation on M, such that 1. a is not greater than a, 2. if
a >b,b > ¢, then a > ¢, 3. if a is neither equal to b nor greater than b, then b > a,

4. if a > b, then ca > ¢b and ac > be. Show the following:

a) The ordered ltiplicative domain I satisfies the lation laws of multi-
plication.

b) From a > b, ¢ > d it follows that ac > bd.

c) The bmary relation ‘e > bif bis not greater than a’ is both reflexive and transitive.
Furtk any two el a, b of M one of the two relations a = b,
b>a holds. Ifa > b, b >athena =b.Ifa >b, ¢c > d then ac > bd.

d) For an ordered group @& which is not 1, the elements > 1 form a semi-group 9
with the following properties: 1. If a, b are contained in § and a is not a left divisor
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of b then either @ = b or b is a left divisor of @; 2. a § = sa for every element a of §;
3. a is not left divisor of a; 4. the llation laws of multiplication are satisfied in 9.

©) A semi-group § with the properties 1.-4. mentioned under d) can be embedded
into an ordered group so that § consists of all the elements > 1. The ordering of the
embedding group is uniquely determined (use Ex. 24 c)).

29. A quasi-ring € having a binary ordering relation is called an ordered quasi-
ring if its elements under addition form an ordered module and if the elements > 0
(called the positive el ) form an ordered semi-group under multiplication. Show
that

a) for each element a one, and only one, of the three relationsa > 0,a = 0,—a >0
is true;

b) if the function signa is defined to be 1, 0, —1 accordingasa < 0,a@ = 0,—a > 0,
respectively, then sign (ab) = signa - sign b;

c) if the absolute value |a] of a is defined as a or —a according asa > 0 or—a > 0,

pectively, then the absolute value also is a multiplicative function: |a - b| = |a] - ||
moreover, the triangle inequality |a 4- b| < |a| 4 |b| holds;

d) the two inequalities @ > b, ¢ > d imply the inequality ac + bd > ad + be;

e) the ordering of an ordered ring can be extended to an ordering of its quotient
ring as follows: a > b/c if ac? > be, a/b > ¢ if ab > ¢b?, a/b > c/d if abd? > cdb?;

f) that there is only one possible way to extend the ordering of an ordered ring to
an ordering of the quotient field.

30. A semi-ring & having a binary ordering relation is called ordered if its elements
under addition form an ordered i-module and if, further, from @ > b, ¢ >d it
follows that ac + bd > bc + ad. Show that

a) the ordering of & can be extended to an ordering of the difference ring d(€) by
introducing the rules: a >b—c if a+¢>b, a—b>cif a>c+b, a—b>
c—difatd>c+b a>0ifata>a 0>aifa>a+a a—b>0if
a>b;

b) there is only one possible way of extending the given ordering of & to an order-
ing of the difference ring.

31. Show that the positive elements of an ordered quasi-ring @ form a sub-semiring
P having the property that for any element a + 0 one and only one of the two ele-
ments a, — a belongs to P. If, conversely, @ is a quasi-ring with a sub-semiring P
that has the algebraic property outlined in the previous statement, then @ is ordered
by the ordering relation: a > b if a — b belongs to P.

32. Define recursively the powers of a semi-ring &:

G =6, ©&'=88, & =GCi4 &G tt -+ E1G

and show that they form two-sided ideals satisfying the rule &"&™ g Gnim, If
@ is associative, then @r@m = @n+m. If Gisa Lie-ring, then 8"+ = €0 =68"06
(here the regarding the definition of m, m, as a sub-semimodule if m,, m,
are sub-semimodules is to be used).
33. Show that the subsets of a given set S form a commutative ring B (S) if addition
and multiplication of the two subsets a, b of S are defined as follows: a + b is the
pl of the i ion of a and b relative to the union of a and b; a - b is the
intersection of @ and b. Show that this ring satisfies the laws of a Boolean ring, namely,
the laws of a commutative ring and the laws: aa =a, a +a = 0.
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34. A mapping a of a multiplicative domain 9 into the multiplicative domain %
is called an anti- homomorphnm if a(zy) = a(y)a(x) Show that
a)h phisms and anti-h T bine in a way analogous to that

indicated for lattices in § 5;

b) for a group, the mapping that maps each element onto its inverse is an anti-
automorphism;

c) the phisms and the anti phisms of & multiplicative
form a group in which the automorphisms form & normal subgroup of index 1
or 2;

d) every multiplicative domain 9 is anti-isomorphic to its dual domain M-V,
which is defined to be the multiplicative domain that arises from 9 if multiplication
is redefined by taking as the new product of the factors a and b, in this order, the old
product ba;

e) a multiplicative domain is isomorphic with its dual if and only if it has an anti-
automorphism;

f) every group is isomorphic with its dual;

g) the preceding statements remain true for semi-rings if an anti-homomorphism
of a semi-ring & into a semi-ring ¥ is defined to be a mapping a of € into T satisfying
the conditions: a(ry) = a(y)a(z), a(z+ y) = a(z) +-a(y);

h) every anti-k phism a b ive semi-ring & and an associa-
tive semi-ring ¥ induces the anti-h the matrix rings M, (&)
and M, (Z) which maps the matrix (8;,) onto the matrix (a(B));

i) if & is a commutative and associative semi-ring, then the correspondence between
the matrix (B;) and its transpose (f), which we denote by (8)7, gives an anti-
automorphism of M, (€).

35. A derivation of 8 quasi-ring Q is defined to be a mapping d of Q into Q satisfying
the following rules of formal differentiation: d(a + b) = d(a) + d(b), d(abd) = d(a)d
+ ad(b). Show that the derivations of @ form a subring D(Q) of the Lie-ring belonging
to the operator ring of the additive group of Q. Assign to any element a of L the
mapping a of L into L that maps z onto ax, and show that the quasi-ring L is a Lie-
ring if and only if the left multiplication a is a derivation mapping a onto 0. Show that
the derivations a of a Lie-ring L associated with the elements @ of L (inner derivations)
form an ideal I(L) of the Lie-ring D(L) of all derivations of L.

36. Let © be a ring with unit element. The &-module 9% is said to be torsicn-free
if for each d i d of & the equation dx = 0 implies z = 0. Show that the
elements of a torsion free ©-module and the formal quotients u/d, where  belongs
to M and d is & denominator of &, form a torsion-free module over the quotient
ring Q(©) of & which contains M as submodule, if we define: u = v as in M, a = v/d
ifdu=v,v/d =uifdu =v, u/d =w'/d’ if ud’ =w'd; u+ vasin M, u+ (v/d) =
(v/d) + v = (ud 4 vV/d, (u/d) + (/@) = (ud’ 4 ' d)/dd’, Bu as in M; f(v/d) = (Bv)/d,
(Bld)u = (Bu)[d, (B]d) (u/d') = (Bu)/dd".

The Q(€)-module just defined is called the quotient module of M over S. Show
that the quotient module is generated over @ (&) by its submodule 9 and thus may
be denoted by @ (@) M. Every homomorphism over & of M into a Q(S)-module N
can be extended in one and only one way to a homomorphism over Q (&) of the Q(S)-
module Q(©)M into the Q(S)-module RN, viz., the mapping that maps u/d onto
d-1h(w).

4
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37. Let © be a ring with unit element. An G-submodule m of an &-module M is
called primitive in M if the S-factor module M/m is torsion free. Show that

a) all elements with torsion in R, i. e., the elements of I that are annihilated by
some denominator of &, form a primitive &-submodule T (M) of M;

b) the torsion submodule T (M) defined under a) is the smallest primitive &-sub-
module of M;

¢) the intersection of any system of primitive &-submodules is a primitive &-sub-
module, and hence for every subset m of & there is precisely one smallest primitive
©-submodule m’ containing m;

d) if the subset m occurring in ¢) is an ©-submodule, then the &-factor module
m’/m is the torsion module of M/m.

38. Let © be a ring with unit element and let 9 be a torsion-free S-quasi-ring in
which du = ud for all denominators d of & and all elements u of M. Show that the
quotient module Q (&) M defined in Ex. 36 b a Q(®©)-quasi-ring if the following
rules of multiplication are introduced:

uv as in M, u - (v/d) = (wv)/d, (v/d)u = (vu)/d, (u/d)(w'[/d'} = (uw)/(dd)

(note that we set: uf as in M, u (B/d) = (uB)/d, (u/d) B = (up)/d, (u/d) (B/d’) = (up)/(dd’).

Show that the @(©)-quasi-ring just defined contains I as an &-subring and that
there is no other way to extend the rules of operation from 9% to Q (&) so as to
embed the &-ring M into an Q (&)-quasi-ring. Thus @ (&) M can rightly be called the
Q(€)-quotient ring of the &-quasi-ring M.

39. Let © be a commutative ring with unit element and let 3 be an &-quasi-ring
without torsion. Prove that all linear transformations of the &-module M that are
derivations of the quasi-ring M form an &-Lie-ring L(M, &) without torsion such

that Q(€)L(M, €) = L(Q(S)M, Q(€))-




APPENDIX B

STRUCTURE THEORY AND DIRECT PRODUCTS

In this appendix, the lattice-theoretical discussion of the ideas of group
theory that was begun in Chap.II, §5 will be continued. It was noted
earlier that in a poset formed by subsets of a set the meet operation is not
always set-theoretical intersection and the join operation is not always
set-theoretical union. In order to emphasize in the ensuing discussions
the more abstract role of meet and join, we employ the symbol M for meet
and J for join. Thus, we write aM b for the meet of the lattice elements
a, b and aJd b for their join.

1. Projectivities

The isomorphisms occurring in the lemma on four elements are explicitly
defined as products of a projection with an anti-projection. They depend
on the way in which the four elements are embedded into the given lattice.

Two factor lattices a/b and c/d are projectively related if there is a chain
of factor lattices
(1) alb = ay[by, a1/by, - .., Ganfbs, =c/d
connecting a/b and c/d such that

a) bNa, dNc, b;Na; (1=0,1,2,...,22) and

b) @gi41/ba:41 is projective with a,;/b,; and also with a,;,4/by;4, fori =1,
2, ..., n—1.

According to Ex. 18 of Chap. I, ‘projectively related’ is the normalized
relation of ‘projective.” Hence the factor lattices of the given lattice L
are distributed among families of projectively related factor laitices in such
a way that each factor lattice belongs to one and only one family.

Each chain (1) linking a /b and c/d carries with it the specified isomorphism
mapping a/b onto ¢/d which is induced by the projection of a,/b, onto a,/b;
followed by the anti-projection of a, /b, onto a,/b,, etc., ending with the anti-
projection of @y,_; /by, ONtO @y, /by, . We call this isomorphism a projectivity
of a/b onto c/d. Since we can reverse a chain and since we can piece to-
gether two chains that have the same factor lattices at the ends at which

188
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they are amalgamated, it is clear that all the projectivities linking various
members of a family F form a groupoid. The unit elements are the identity
automorphisms of the members of F. All the projectivities between a
factor lattice a /b and itself fornra group which may be denoted by PP(a/b). If
alb and c/d are projectively related, then PP (a/b) is isomorphic to PP(c/d).

Referring to the lattice S(®) of all subgroups of a group &, we may
observe that every automorphism « of & induces an automorphism x
of §(®). The correspondence that maps « onto & is a homomorphism between
the full group 4y of automorphisms of ® and a subgroup PAg of the
group of automorphisms of S ().

We indicate by the prefixed letter the transition from any group X of
automorphisms of @ to the group PX of automorphisms of S(®) induced
by the automorphisms in X. All the automorphisms in X inducing the
identity automorphism of §(@®) form a normal subgroup X, of X such that
P¥X is isomorphic with X/Xp.

We have already seen that there is the specified isomorphism @y g ¢ of
B/€ onto A/A N € in case B/C is projective with /A N €, and further-
more we have seen that @y y ¢ induces the projection between the factor
lattices B/C and A/A N €. Hence for every chain B/€ = B,/C,, B,/C,,
...y B3,/€,, = D/E linking the two factor lattices B/€ and D/E of the
same family of projectively related factor groups in @ there is the specified
isomorphism

.. 1
(pB:». Ban-1,C2n1 ‘DB., 81,61 'pmo, 8,6

between the factor group B/€ and D/E, which may be termed a projectivity
between the factor group B/€ and D/E. Each projectivity between the
factor groups induces the corresponding projectivity between the related
factor lattices.

Again, it is clear that all the projectivities b any two bers
of a family of factor groups in a group form a groupoid. All the projecti-
vities between a factor group B/€ and itself form a group of automorphisms
P(B/C) of B/C. We find that there is a homomorphism between P(B/€)
and PP(%8/C) with its kernel P(B/E), consisting of all the projectivities
between B/€ and itself that leave invariant every subgroup of B/C.

All these considerations remain true if applied to a sublattice of S(@),
e. g., to the sublattice formed by all subgroups of & that are admissible
with respect to a certain operator domain.

At the end of this chapter we will find an interesting example of projecti-
vities between certain factor groups in an abelian group which exhibits
the relationship to fundamental notions of projective geometry.
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2. Modular and submodular lattices

DErFINITION: A lattice in which each element is a Dedekind element is
called a modular lattice. All normal subgroups of a group, for example,
form a modular lattice. The modular property amounts to the two identities

(&) (@Jdx)Me)Jd = (dJ2)M(cJd)
(3) ((@My) Je)Md = (dMy) J(cMd)
for any four elements ¢, d, z, y of the lattice under consideration. Hence
the identities are called the modular law. Since (3) is the dual of (2), it
follows that modularity is a self-dual property. The identities (2) and (3)
are not independent. Using only (2) we find
((@My)Jo)Md = dM(c J(EMy)) = ((dMy) Jd)M(c J(dMy))

= ((@My) Jd)Mc) J(@My) = (dMc) J(@My) = (yMd) J(cMd).

Every sublattice of a modular lattice is modular. The Dedekind elements

of an arbitrary lattice do not necessarily form -a sublattice of the given
lattice (cf. the diagram). Since the join
of two Dedekind elements is always a
Dedekind element, it follows that in a
finite lattice the poset formed by the
Dedekind elements is a lattice. But, as
the diagram shows, this lattice need
not be a sublattice of the given lattice.
(Doubly encircled elements are Dede-
kind elements.)

If the Dedekind elements of a lattice form a sublattice, then they form
a modular lattice. This is because the modular law holds as an identity
for the sublattice of the Dedekind elements.

DEFINITION: In a lattice L with normality relation, the element a is
called subnormal if it can be connected with L by a normal chain of finite
length. We denote this relation by a N N L and it means that there is a normal
chain aNa;NayN - - - Na,_; NL between a and L of finite length s.

More generally, we write a NNb if there is a normal chain of finite length
s, say aNa;Na;N - -+ Na, = b connecting a with b, where b may either
be an element of L or b = L. We say ‘a is subnormal under . In case
Kurosh invariance is the normality relation we speak of subinvariance and
subinvariant elements.

As a measure of the degree to which the subnormality cNNb deviates
from normality we introduce the number m (b, ¢), which is defined as the
minimum of the lengths of all normal chains connecting ¢ and b.
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We have m (b, c) =0 if and only if ¢ = b; m(c, b) = 1 if and only if
¢Nb and ¢ #=b; m(c, b) > 1 if and only if cNNb and ¢ is not normal in b.
For example, the subgroups of a group that occur in normal chains of finite
length connecting e and the full group, are the subnormal subgroups of the
group.

Concerning subnormality we have the following simple facts:

THEOREM 15: If a is subnormal in the lattice L and if b is subnormal under
a, then b is subnormal in L. Also

m (b, L) < m(b, a) + m(a, L).

Proof: Let aNNL, bNNa; then there are normal chains bNb,No;N - - -
Nbm, =@, aNa;NagN - - Nam, 1y = L; piecing together the two
normal chains, we obtain a normal chain of length m(b, a) + m(a, L)
connecting b with L.

THEOREM 16: If ¢ is subnormal in L, then if a is any element of L, aMc
18 subnormal under a and

m(aMc, a) < m(c, L).

Proof: There is a normal chain ¢N¢;NcyN -+ - Nep(e, zy = L, From Rule 4
for normality it follows that (aMc)N(@Mcy)N -+ N(@Mcm s, 1)—,) Na.

By application of Theorems 15 and 16 we obtain

THEOREM 17: If both a and b are subnormal in L, then aMb is also subnormal
in L and we have the inequality

m(aMb, L) < m(a, L) + m(d, L).

Furthermore, there holds

THEOREM 18: If b < a, bNNL, then bNNa and

m(b, a) < m(b, L).
COROLLARY: If b < o’ < a,bNNa, then bNNa’,
m(b,a’) < m(b,a).

From Theorem 17 it follows that the poset of the subnormal elements
of a finite lattice is a lattice; but this lattice need not be a sublattice of
the given lattice; the diagram below furnishes a counter-example, if normal-
ity is taken as Kurosh invariance. Both ¢ and b are subinvariant, but
adJ b is not subinvariant.

Even though we cannot always conclude from aNNL, bNNL that
(@Jb)NNL, at least we have in this direction

THEOREM 19: IfaNL,bNNL, then (¢ Jb)NNL and m(a d b, L) <m(b, L).
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Proof: From Rule 5 of normality it follows that there is the normal chain
(@Jb)N(@Jbd)N(@Jb)N -« - N(@Jbmes,2-1)NL

connecting @ d b with L if there is given the normal chain 5Nb;Nb;N - - -
Nb,. (5, z)-1 NL between b and L.

Many normality relations—for example, the normality relation between
the subgroups of a group—are complete with respect to the meet operation,
that is, for any set S of elements
of L that are normal in a given
element a of L, the meet of the
elements in § always exists and is
normal in a. Assuming complete-
ness of the normality relation as
well as the lattice-theoretical com-
pleteness of L, we define the lower
normal series from L to a given
element as follows: Let S,(a, L) be the all element of L. Assuming that
8, (a, L) is already defined as an element of L containing a, define S,,,(a, L)
as the meet of all the elements of L that are normal in S,(a, L) and
contain a. For a limit number » define S, (a, L) as the meet of all elements
8, (a, L) with # <. Thus, for any ordinal number = the element S_(a, L)
of L is so defined that Sy(a, L) is the all element of L, S, ,,(a, L)NS,(a, L),
a < 8,(a, L) and S,(a, L) = M,,8,(a,L) for every limit number ». If T',
is another decreasing well-ordered normal chain with the same properties,
then we prove by transfinite induction that S, (a, L) << T, for all ordinal
numbers 7. There is a first ordinal number m(a, L) for which Sy (4,1,
= Sm,+1- It follows that the decreasing well ordered normal chain
8, (a, L) (0 <z <m(a, L)) is properly decreasing and that m(a, L) is
the minimal length of any well-ordered properly decreasing normal chain
from L to Spm,z)-

The element a is subnormal if and only if m (a, L) is finite and S, a, z, (@, L)
= a, and in this case m(a, L) is indeed equal to the minimal length of
a normal chain from @ to L as is implied by the notation.

At any rate, the meet of all subnormal elements of L containing a coincides
with 8, (a, L), where w denotes the first infinite ordinal number.

If m(a, L) is finite, then the ‘subnormal hull’ & = 8,,,z (a, L) of a is
subnormal, and it is characterized as the smallest subnormal element of L
containing a.

Any lattice automorphism 6 that preserves the normality relation maps
8, (a, L) onto 8, (0a, L). Hence m(a, L) = m(6a, L), and 6(a) = 6(@).
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Turning our attention to the subgroup lattice S(®) of a group &, we
may raise the question of to what extent the subinvariance of a subgroup 11
is determined by the structure of a given normal subgroup % and its factor
group G/N. —-

If there is a normal chain U = U,NU,NU,N--- NI, = @, then we
can form the normal chains

UR/NRNURN/RN--- NUR/N = G/N
and
UMR = (U,MR)NQUMRN--- NULMR) =N,
Moreover we have
M, UMR) < U,_ MR fori=1,2,...,7,
since plainly (11, %) <N, (1, U) < U,,.

Conversely, assume that there are normal chains U/ NB,N--- NZ,
= @/Nin /N and UMN = WNW,N--- NBW, =N in N such that (11, BW,)
is contained in BW;_, fori =1,2,...,s; then we have the normal chain

UNQL WHINQL B)N - -« NQL B,) =UNRNB,N---NB, =6,
wh ere B, is the subgroup of @ formed by the cosets ;.

We apply this remark to the case that & is the holomorph of a group %
of automorphisms of an abelian group M. It follows that a subgroup 11
of 9 is subinvariant in @ if and only if

1. 11 is subinvariant in U;

2. Thereis a finite number s such that for any s automorphisms x, , 5, . . .,

7, of M contained in A we have the equation
(m—1@— 1) (m,—1) =01

In Ex. 23 of Appendix D an example will be constructed in which there
are two subgroups of % both subinvariant in & but in which the subgroup
generated by them is not subinvariant in @. Thus in general the subinvariant
subgroups of a group do not form a sublattice of S(&).

DrrFINITION: A lattice is called subnormal if every element of the lattice
is subnormal.

- If the poset of all subnormal elements of a lattice with normality relation

forms a sublattice, then this sublattice is subnormal. This is because the
concept of normality is based on certain identities that remain valid in
any sublattice. For groups, the following theorem holds.

1 This means in ring-theoretic terms that the operator ring of R generated by
9(—1 is nilpotent.
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THEOREM 20: If the subnormal subgroups of a group ® satisfy the maximal
condition, then they form a complete sublattice of the lattice of all subgroups of &.

Proof: Since we already know that the intersection of two subnormal
subgroups of @ is subnormal and since the maximal condition is satisfied
by the subnormal subgroups of @, it suffices to prove that the join of finitely
many subnormal subgroups of @ is subnormal. In other words, we have
to prove that the subgroup generated by finitely many subnormal sub-
groups U;, U,, ..., U, of @ satisfying the inequalities

mW;,®) <nfori=12...s

is subnormal. This is obvious if » = 0, 1 or if s = 1. Apply induction on n
and on s. Assume n > 1, s > 1. By the induction hypothesis concerning
s, the subgroup B generated by the s — 1 subnormal subgroups U,, Us, . . .,
U, satisfying m(U1;, ) <n for i =2,3,...,8—1, is a subnormal sub-
group of @.

Furthermore, there is a normal chain U;NB;NB;N---NB, =& of
length n between 11, and @. Since B,_, is a normal subgroup of &, the sub-
normal subgroups of %B,_, are subnormal in & and therefore satisfy the
maximal condition. For finitely many conjugate subgroups Ug*, uf, ...,
U of U, we find, by application to %B,_, of the induction hypothesis
on n, that each of these subgroups is subnormal under B,_,, because
n—1>ml,;, B,,) = mU¥, B, =mUy, B, ,). Since B, is
normal in @, it follows that the subgroup of @& that is generated by
a finite number of conjugates of 11, is subnormal under ®. From the maximal
condition it follows that any system of conjugate subgroups of U1, generates
a subnormal subgroup of &. For example, the subgroup U,, of & generated
by all the subgroups of B; = (;, 8) = (U;, U,, ..., U,) that are con-
jugate to U, under %,, is subnormal under @&. Of course, 11, is contained in
U,;, U, is a normal subgroup of B,, and B, is generated by 1,, and B.
Hence each term of the lower normal series II;; = S,NS,_;N--- N§; =@
(where 8; = 8;(ll;,, ®) and m = m(ll,,, ®)) is also invariant under trans-
formation by elements of 8. Hence S;N {S;_;, 8). From 8 NN & it follows
that BNN(S,_;, B). By Theorem 19 it follows that {S;, B)NN{S;_;, B);
hence

By = (S, BYNNS,;, BYNN -+ - NN(S,, B) =@, BNNG,
Q. E.D.

CoROLLARY : If %, B are two subgroups of @& for which there arecomposition
series from ® to A and B respectively, then there is also a composition series
from & to (N, B).
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This theorem, due to Wielandt, can be proved by using the methods of the
preceding proof. If S is a system of subnormal subgroups of the group &
such that the maximal condition holds for the subnormal subgroups of &
between & and one of the members of 8, then the union of the members of
8 is a subnormal subgroup of &.

If %A, B are two subnormal subgroups of a group @& for which there is a
composition series from & to A and B respectively, then by the preceding
corollary, (¥, B) is subnormal under @, and hence there is a composition
series

(4) A =AU NAN---NU = (A, B)
and a composition series
(5) . B =BNB;N---NB, =¥, B).

More generally, let %, B be two subgroups of & such that composition series
(4) and (5) respectively exists. After elimination of repetitions in the normal
chains

(6) (AMB)NQMB)NA:MB)N---NUMB) =B,

(7) AMB)NAMB,)NAMB)IN---N@AMB,) =%,

we obtain composition series (6’), (7') from %M B to B and % respectively.
We wonder how the composition series (6), (7°) derived from (4), (5) respec-
tively can be related to the composition series (4), (5).

We call a composition factor group %,/%;,, of (4) abundant if AMB =
A,-,M®DB. Similarly, a composition factor group %B;/%8;_, of (5) is called
abundant if AMB; = AMB;_,;. We ask how the abundant factor groups
in (4), (5) respectively are related to the non-abundant factor groups in (4),
(5) respectively.

THEOREM 21: If A, B are two subgroups of a group with the property that
there is a composition series (4) from U to (A, B) and a composition series (5)
from B to (N, B), then
a) the mon-abundant factor groups of (4) are one-to-one projective with a

composition series (6") from AM DB to B,

b) the abundant factor groups of (4) characterized by U;MB = A, ;M B are
abelian,
¢) every abundant factor group in (4) is projectively related with a conjugate

of a non-abundant factor group in (4),

d) the abundant factor groups in (4) and in (5) are one-to-one projectively
related wp to their order.
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Proof: a) The factor group ;/%;,, is non-abundant if and only if A,M B
is different from %, _,M 9. In this case, because of the simplicity of %,/%;_,
we find that ;/%,_, is isomorphic to (¥;M B)/(¥;_,M B).

d) The abundant factor groups in (4) and in (5) are one-to-one pro-
jectively related up to order, because of the Jordan-Holder-Theorem.

b) and ¢) If r < 1 or 8 < 1, no abundant factor groups occur, and there
is nothing to prove. Now let r > 1, s > 1. We apply inductiononn = r + s.
Assume that the statement in question is true when the value of 7 4 s
is smaller than n. Since A < UA,_; << <N, B) we have (A, B) = (A,_,, B)
which, by the Second Isomorphism Theorem, implies that (¥, B)/¥,_,
is isomorphic with B/(%,_,MB). Hence A/%,_, is not abundant. By the
Corollary to Theorem 20, the subgroup (%, %,_,M®B) is subnormal in
(¥, B), and since ANNA, A,_MBYNNA,_,N(U, B) there exists a
composition series from A to (A, B) via (A, A,_;MB) and A, _;. From the
Jordan-Hélder Theorem we deduce that it suffices to prove the theorem
only for this composition series instead of (4). There is no loss of generality
in taking this new series to be (4); hence for some index j with0 < j <r—1,
A = (A, A, MB) it follows that U, MB<AMB <UA_,MB and
hence A,MB =A,_,MB. From the Jordan-Hélder Theorem, the length
of a composition series from A,_,M®B to A; is 1 4 s — (r — j) < s. Since
the composition series A = A N, - - - N, is of length j < 7, we can apply
the induction hypothesis to %, %,_;MB. It follows that the abundant
factor groups between A and 2; are abelian and are projectively related
with conjugates of non-abundant factor groups between % and ;.

Similarly, we can apply the induction hypothesis to the pair %A;, 8
provided A, ,MB ==AMB; then U; &= U, and the induction hypothesis
yields that the abundant factor groups between %; and (2, B) are abelian
and are projectively related with conjugates of non-abundant factor groups
between U; and (2, B). Both statements together yield the theorem.

It now remains to consider the case that %,_,M®B = AMB. We may
~ assume, similarly, without loss of generality that there is a term B, in

(5) with 8, = (AMB,_,, B). Then B,MA = B,_,MA. Hence if B,_,MA
+ BMY, k > 0, and the theorem follows when the induction hypothesis
is applied to AMB,_,, B and to A, B,.

Finally, we consider the case that %, ,M®B = AMB,_; = AMB.

From the Second Isomorphism Theorem it follows that 2,_,M DB is a
normal subgroup of % and AMB,_, is a normal subgroup of . Hence
AM B is normal both in 9 and in B and therefore is normal in (%A, B).
‘We may therefore carry out the remainder of the proof in the factor group
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<Y, B)/(AMB) instead of in . Let us, then, assume AMB = 1, (U, B)
=@, A ,MB =AMS,_, = 1.

Let % be the normal subgroup of @& generated by the conjugates of 9.
Then, in view of A < A,_, ard A,_,NG, we conclude that 0 is contained
in %A_,. Therefore NMB < A,_MB =1, %_B=NB =6, A, /N
is isomorphic to 1, so that A,_, = N.

9 is simple, since /1 is isomorphic to ©/%B,_,. Hence the length of any
composition series from % = %,_, to 1is 1 + 7 — 1 = 7. The same applies
to B .and to B,_;, so that s =r, n = 2r. Thus the induction hypothesis
is applicable to any pair of subnormal subgroups of 9.

Set I, = A. We define A, recursively. If A,_, is already defined as a
subgroup of & generated by certain conjugates of % under @&, then by
Theorem 20, the subgroup I, is certainly subnormal in @, and therefore
either A, ; = N or A,_, is not normal in @. In the first case, set I, = N.
In the second case, there is a normal series ¥, NG,NC,N--- NC; = &
from %, to & such that A,_, is not normal in €,. Therefore there is a con-
jugate of A, under €, which is not contained in ;. There must also be
a conjugate of % under §,, say X;, such that ¥, is not contained in ;.
Since 9 is contained in €, and €, is normal under §,, it follows that X,
is contained in €;. We set ;; = (A;;, ;). It follows that A, N;, A,
=+ 9[;. Since %;, a conjugate of ¥, is subnormal under @&, and since also
A,_, is subnormal under @, it follows that %;_; M %, is subnormal under .
. But in view of the fact that ¥, being conjugate to %, is simple and that
furthermore %; is not contained in ¥ ;, it follows that A, MX; = 1.
Hence ¥;/¥;_, is projective with the conjugate X, of U. It follows that there
is the composition series 1N NINUN-- NA,, =N = 9A,_, from

1 to ,_, each composition factor of which is projectively related with some
conjugate of %. Each composition factor of the composition series 1 NN ;N

*N¥,_, from 1 to 9,_,, also is projectively related, by the Jordan-
Holder Theorem to some conjugate of U. Similarly, we see that each compo-
sition factor of the composition series BNB;N - - - NB,_; is projectively
related to a conjugate of B. Thus c) is proved.

In order to prove b) let us assume that % is not abelian. By the induction
hypothesis applied to any two simple non-abelian subnormal subgroups
%;, X, of N, it follows that there are no abundant composition factor groups
between X; and (¥;, X,). Hence ¥, is normal in (¥;, %,), and either X; = X;
or (%, X,)/%, is projective with ¥,/1; and since, similarly, %; is normal in
(%:; %;), it follows that (%;, ¥,) is the direct product of X; and X;. This
remains true if we set X, = . It follows that ,_; is the direct product

of X4, %,, ..., %,_;. Since this is a direct product of non-abelian simple
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groups, it follows! that every normal subgroup of %,_; is a direct product
of some of the X/s. Similarly, B, ; = B,_; = Do X D1 X D2 X - ** XD,
where the 9); are non-abelian simple groups and 9, = B. Since B,_,/
(A,_;MB,_,) is isomorphic with ®/%,_, and &/%,_, is isomorphic with B,
it follows, in view of r > 1, that %,_,M®B,_; == 1. Hence %, _;MB,_, is a
direct product of some %’s as well as of some )’s and it is bound to happen
at least once that X; = 9);. The normalizer of ¥; thus contains both %,_,
and B,_, and therefore § also. But it is impossible for a conjugate of A to be
normal in &, because U itself is not normal in @. Hence every composition
factor between 2 and %,_, is abelian. This completes the proof of the theorem.

3. Direct decompositions of lattices

We assume in this subsection that the lattices that occur are complete
and hence have an all element 4 and a null element Z. Furthermore, in
each lattice a normality relation is defined satisfying the conditions given
in Chap. II, § 5. The normality relation of a lattice induces a normality
relation on each sublattice.

DErINITION: The lattice L is the direct join of the subset B of L if: 1. the
all element of L is the join of the subset B of L, 2. for any subset X of B
the meet of the join of X and of the join of the complementary subset
B — X is the null element of L.

If L is the direct join of a subset B, then as many null elements may be
added to B or eliminated from B as one desires. Elimination of all the null
elements from a subset of which L is direct join, leads to a proper direct
join. If L is the proper direct join of B, then the elements of B are all diffe-
rent one from another (this follows from property 2.) and also different
from the null element of L.

Trivially, L is the direct join of the subset consisting of the single element
A. The lattice L is called indecomposable if there is no other proper direct
join representation. If the subset B of L is the union of the system S of
mutually disjoint subsets X of B, then L is the direct join of B if and only
if the join of all the joins over X is direct and is equal to A. We say that the
decomposition of L as join of B is obtained by refinement from the decompo-
sition of L as join over joins of the subsets X ranging over 8.

DEerFINITION: A direct join representation of L over the subset B is
called normal if the join over any subset of B is normal. The terms normal
proper direct join, normally indecomposable, and normal refinement are formed

depend proof, see Si

! For an i

4 of this chapter.
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as above by making use only of normal decompositions. In the sequel
we assume all decompositions to be normal, and thus we may omit the
adjective normal in connection with decompositions and derived terms.
Let L be the direct join of B. For any subset X of B we define the de-
composition operator
61 = ¢JX w‘ilB—X) )
that is,
dx(a) = (aJ(J(B— X))M (JX) for a of L.
The element é,(a) is called the X-component of a.
It has the properties
(8) Oy (zdy) = 0x(2) J0x(y),
9) Sx(A)NA; if xNy then dz(z) N (y),
(10)  dp(a) =a, d,p(@) =2, dya=a ifandonlyife < JX
(where A (B) is the empty subset of B),
(11) Ox(a) Jdp(a) = 8xyy(a), 6x(@)Mdy(a) =2Z,
for any two disjoint subsets X, ¥ of B.
For the converse, see Ex. 5 at the end of Appendix D.
Proof :
0x(2Jy) = @ x(xdy J(J(B—X)))
= g,2(@J(J(B—X))J(yJ(J(B—X))
=g,z (@J(J(B—X)))dg,x(y J(J(J(B—X)))
= 0z (2) Jox(y),
because 4/J (B — X) is projective with J X/(JX)M(J(B — X)), that is,
with JX/Z.
Next we consider three elements a, z, y satisfying N4, yN4, e < zdy,
and we prove the identity
(12) ((@ady)Mz)d((adz)My) = (aJ2)M(a Jy).
Since « is normal in 4 it follows that  is normal in z J y and that (2 Jy)/x
is projective with y/(zMy), and hence ((z Jz)My) J # = a J x. Furthermore
(@dz)My < (e Jz)M(a Jy) < a Jz. Since y is normal in 4 it follows that
yM(y J ) is projective with z/(*My) and that
((@dy)Mz) J((aJz)My) = ((a J2)M(a Jy)M2) J((a Jz)My)
=(adx)M(ady).
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From (12) it follows that for any element a’ of L we have

(@' dy)Ma) J((a J2)My) = (((¢'M(z Jy)) Jy)M=) I (((@'M(z Jy)) J2) M)
=a'M(zJy),

yielding

(13) ((@’ dy)Mz) d((a’ Jx)My) .Za'M(:tJy)‘

For three normal elements z, y, z of L satisfying a < xJydJz, we set

o’ = adz and find that .

(14) ((@dydz)Mz) J(adz dz) = (adz)M(zdy).

Now let z be the join-of the subset X of B, let y be the join of the subset
Y of B, let z be the join of the complement of the union of X and ¥ with
respect to B, and furthermore, let X and Y be disjoint. Then 2Jy Jz =
A >a; hence dz(a)Jddy(a) > dgyy(a). Under the same assumption we
have .

8z 0y(a) = (0p(a) Jy dz)Mz = (y Jo)Mz = (J(B— X))M(JX) = Z.

Ifa < JX,thendx(a) = (a J(J(B— X))M(JX) = a, because 4/J(B—X)
is projective with J X/Z.

DEFINITION: A unique mapping ¢ of a lattice L into itself is called a
normal operator if

L ?(zdy) = 9(x) Jo(y),
2. zNy implies ¢ ()N (y),
3. zNA implies ¢(z)N4,

4. @ induces an isomorphic mapping of the factor lattice of 4 over a certain
normal element L, of L onto the factor lattice ¢ (4)/p(Z). We note that
?(Z) = @(Ly)-

This usage of the term normal operator is justified by the fact that the
normal operators of a group induce normal operators of the corresponding
subgroup lattice.

Every anti-projection ¢* defined by a normal element z of L is a normal
operator.

The latter statement is proved as follows. We have

F*(zdy) =zd(xdy) = (2d2) I (2dy) = ¢*(2) J¢*(y).

If 2Ny, then (2 Jx)N(zJy). If N4, then (z Jz)NA. The anti-projection
@* induces an isomorphic mapping of A/z onto A[z, where z = ¢*(Z).
Thus L, = 2.
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Ordinarily, the decomposition operators of a direct decomposition of L
are not normal operators, except for the trivial operators 1 and 0, which
map an element a of L onto @ and Z respectively. This is because an element
normal in the join of some subset of B need not be normal in L.

However, if the normal elements of L form a sublattice of L, then each
decomposition operator is normal.

Proof: Let L be the direct join over the subset B, let X be a subset of B,
and let a be normalin L. Then J (B — X)N4, (e J(J(B— X))N4, J XNA4,
and hence ((zdJ(J(B—X)))M(JX)NA, dz(a)NA.

Referring to normal operators ¢ in general the equation ¢(x) = ¢(y)
implies
P(@dL,) =g () Jo(Ly) =¢(2) Jp(Z) = ¢(x J2) =9 (2) = @(y) = p(y I Ly)
because of 1., x JL, = y J L, because of 4. Hence x J L, is characterized
as the maximal element having the image ¢(2) under ¢. In particular, L,
is characterized as the maximal element having the image ¢(Z) under ¢.
In view of 4., the element L, of L may be called the kernel of the normal
operator .

The product of two normal operators is a normal operator.

Proof: Let g,  be two normal operators of L. Then we have

py(zdy) = ele(zdy)) = ol (@) Jv(¥) = (Plr() @ H) =

=op() doy(y).

* If Ny, then y(z) Ny (y), e () Nop (). If N A, then p(x) N4, gy (x)NA4.
There is precisely one solution z of the equation y(2) = (y(4) JL,) Jy(Z)
satisfying L, <z << A. Since y(4)NA4, ZNA4, L,NA it follows that
(p(A)ML,)Ny(4), p(Z)NA, p(2)Ny(4). Since the isomorphism induced
by v between A/L, and y(4)/y(Z) is supposed to preserve the normality
relation in both directions, it follows that zNA. Furthermore, it follows
that y induces an isomorphism of 4/z onto

p(A)p2) = p(A)/(p(A)ML,) Jp(Z) = p(4) [y (AM(L, Ip(2)).
Since L,NA4, p(Z)N4, it follows that L, Jy(Z)N4, and hence the anti-

-projection by L,Jy(Z) induces an isomorphism of y(4)/p(z) onto
(Ly dp(A4))/(L, Jp(Z)). Since y(Z) is contained in y(2), it follows that the
anti-projection by L, induces the same mapping of y(4)/y(z) as the anti-
projection by L, Jy(Z). Since ¢ induces an isomorphism of 4/L, onto
@(4)/p(2), it follows that ¢ induces an isomorphism of (L, Jy(A4))/(L,Jy(Z)
onto ¢(L, Jy(4)/(L, Jp(Z)) = py(4)/py(Z). From the equation y(z) =
(¥(4)JL,J)yp(Z) we conclude that ey induces an isomorphism of 4/[z
onto gy(4)/py(Z). Hence gy is a normal operator with z as its kernel.
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The following theorems on direct joins presuppose that the normal
elements of the given lattice form a sublattice; consequently any decompo-
sition operator is normal. Since we shall be concerned only with normal
elements, we may as well speak only of the modular sublattice formed by
the normal elements of any given lattice. In addition, the double chain
condition will be required. For convenience, a modular lattice satisfying
the double chain theorem, will be designated as an M D-lattice.

Frrrine’s LEMMA FOR LATTICES: Let L be an M D-lattice. With a normal
operator w mapping Z onto Z there is wated a direct di b

A =L, Jdo"(4),
where n 1is a natural number satisfying the condition L n = L nyy.

COROLLARY : If in addition L is directly indecomposable, then either »
18 an automorphism of L or w is the 0-operator.

Proof: The equation o/(L,,) = Z implies w*1(L,,) = o (w/(L,,) = w(Z)
=2, and hence L,;<L,,,. Applying the maximal condition to the
increasing sequence L,, L., L,;, ... of normal elements of L, we find
an exponent n such that L,, = L_.,,. For i > 1, the equation w"*¢(L,..:)
= Z implies

@™ (0N (Lynsd)) = 2, 0" (Lyngs) < Lynay 0N (Lynis) < Lo,
Z = o™ N (Lyny)) = 0" (Lyns)y Lynss < Lynyicas Lyn=Lignss=Lynya=+-.

Furthermore, since w” is normal, there is a solution z of the equation
" (2) = w"(A) M L, satisfying the condition L, <z. We have

o"(2) < L5, @*(2) = 0"(0™(2)) =2, 2<Lgm, 2<L,,
z2=0L,., o"(2)=24, o"(A)ML,, =

w

Finally, since L, is normal in 4, it follows that the anti-projection by
L, induces an isomorphism of w"(4)/Z onto (L,.J o"(4))L/[,.. Since
o" induces an isomorphism of 4/L,. onto w"(4)/Z, it follows that o
induces an isomorphism of (L,.Jw"(4))/L,. onto w"(L,.Jw"(4))/Z
= w*"(4)/Z. Hence w" induces an isomorphism of w"(4)/Z onto " (4) |Z.
But since L satisfies the double chain condition for normal elements, the
same is true for the factor lattice L/L,, and for the isomorphic images
w"(4)|Z = w**(4)/Z. Also, an element normal in w?"(4) is normal in L
and hence normal in w"A. Since w?*"(4) is normal in w"(4) and since the
principal series of w?"(4) have the same length as the principal series of
w"(4), it follows that w?7(4) = w"(4). Consequently, o™ (L,nd w"(4))
= w*"(4) = w*(4), L,ndo"(4) = 4, Q. E. D.
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In lattice theory, Theorem 6 of § 2 becomes the following

LEMMA ON NORMAL OPERATORS: If 0y, 0y, ..., 0,, ®;, @y, ..., o, are
finitely many normal operators of a directly indecomposable M D-lattice L
mapping Z onto Z such that =

=1 o =w, o6Jwe>00a=a,
wgad 030 > 050, ..., o, aJoa>0,_a,
then at least one of the operators w,, w,, ..., w, is an automorphism of L.

Proof: This is clear if r = 1. Let r > 1. If i <, and if the operator
w, is not an automorphism, then, by Fitting’s Lemma and because of the
indecomposability of L, we have w74 = Z for some n. We have the equation

wi(wf(4)) =Z,
which implies
TP (4) = 07(4), wi(0f?(4)J oy, 0r72(4)) =02 (4),
w(0f~(4)) = 0 (4) < o 0} H4) < 03y 0772 (4),
61 072 (A) = 0P 2(4), ..., 0iy0i(4) > w;(4), 06:,(4) >4, 0,,(4) =A.

Hence there is, at any rate, an index j for which w;(4) = 4. Since w;
induces an isomorphism between 4/L,, and w;(4)/Z = A[Z, it follows
from the double chain condition that L,,; = Z. Hence , is an automorphism
of L, Q. E. D.

DEFINITION : A proper direct decomposition of a lattice into finitely many
directly indecomposable components is said to be a Remak decomposition.
If the lattice is indecomposable, then it is itself the only component of its
Remak decomposition. Theorem 7 of §2 becomes, with minor changes,
the following theorem.

THEOREM OF ORE: Every M D-lattice has a Remak decomposition with
components H,, H,, ..., H,. If there is ther Remak d position of
the same lattice L with components Jy, Jy, ..., Jn, then the number of
components m of one Remak decomposition coincides with the number of
components n of the other. Moreover the components J; can be so numbered
that we have the exchange decompositions of L with its Remak components

Jy, oo i, Hiyy, Hypg, ., Hy (k=1,2,...,0n—1).

Finally there is a normal operator of L inducing an isomorphism of H;|Z
onto Ji|Z (1 =1,2,...,m).

1 The notation o, for 1 is introduced merely in order to have uniformity of
notation in the proof.
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Proof: The existence of a Remak decomposition follows as in the proof
of Theorem 7, using the minimal condition only. Now consider the decompo-
sition operators ¢; = ¢, ¢%i, w; = ,,¢’;, where H; is the join of all the
H, with k& %14 and J the join of all the J, with k& = j. Furthermore let
o; be the normal operator which is obtained by first applying the anti-
projection by the join of J,, J,, ..., J;_, followed by the projection into
the join of J;, Jiyg, -y I (6 =2,8,...; m—1). Since w;(a)Jo;,(a)
>o4(a) fori =1,2,..., m—1, and for any a of L, we have for a < H,
the relation .

@1(wi(a) Joi14(a)) = pr0:(@) d 91011 (@) = 10:(a);
IMOTeOVEr W,y = Oy, PrW, = @10, and hence by application of the previous
lemma, at least one of the normal operators ¢, @, induces an automorphism
of H,|Z.

The J, can be so numbered that ¢, », induces an automorphism of H,/Z.
From H, = ¢, @;(H,) = ¢,(4) and from the normality of ¢, we deduce
that 4 == w,(H,) J L,,. From the modular law we deduce that J, = AMJ,
= (@, (H;)ML,)MJ,. Since o, induces a homomorphism of H,/Z onto
w,(H,)/Z, it follows that there is a solution z of the equation w,(z)
= w;(H)ML, which satisfies the relation z < H,. Since g¢,w,;(2)
@1(w,(H)ML, ) = Zand ¢, , induces an automorphism of H,, it follows that

2 =2, Z=w,) = HIML,, J,= o, (H)J(L,MJ).

But since J, is indecomposable, we conclude that J, = w, (H,). Furthermore,
if 2 <y<H, and (%) = w,(y), then g w;(2) = gy 01(y), * =y, and
hence w, induces an automorphism of H,/Z onto J,/Z. Since w,(H,) = J,
= w,(4), it follows that J, J L, = A. Lastly,

@10 (HML,) = ¢:(JIML,) =Z, J ML, =Z.
Thus L is the direct join of J,, H,, Hy, ..., H,.

Applying the same construction to H, in this exchange decomposition,
the J;, with & > 1 can be re-indexed so that there is a normal operator of L
inducing an isomorphism between H, and J, such that all of the other
exchange decompositions obtain. A natural consequence will be the equation
n = m. Thus the Theorem of Ore is fully proved.

2%

4. Complemented lattices

In a vector module over a field F' each F-submodule and each factor
module over an F-submodule has a dimension given by the number of
basis elements over F. Generalizing this concept, we make the following
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definition. A real-valued function d(a/b) defined on all factor lattices alb
of a given lattice L is called a dimension function on L if

(13) d(afb) is a non-negative real number,

(14) d(a/b) + d(b/c) = d(ajc) (whence d(aja) = 0),

(15) d(a[b) = d(c/d) if a/b is projective with ¢/d.

There is always the trivial di ion function which ishes on all the

factor lattices of L.

In a lattice with normality relation for any three elements a, b, ¢ of L,
the statement aNb implies d(b/a) >d((a J(bMc))/a) = d((cMb)/(cMa)).
Furthermore, if @ is subnormal in a J b, then for any two elements
(16) d((aJdb)ja) >d(b/(aMb)).

This is because there is a normal chain @ = agNa,N- - Na, = aJb pro-
jecting into the normal chain aMb = a,MbN(a;Mb)N - - - N(a,Mbd) = b,
so that d(a.,;/a;) > d(a;,,Mb/a;Mb). By adding up these inequalities we
obtain (14). In a modular lattice we have, instead of (16), the equality
(17) d((adbd)/a) = d(b/(aMb))

for any two elements a, b; this is a consequence of the fact that (aJb)/a
is projective with b/(@aMb). Conversely, if in a lattice (17) holds for any two
elements a, b and if d(z/y) implies = y, then the lattice is modular.
In fact, if (13), (14), (15), and (17) is applied to three elements a, b, ¢ which
are in the pentagon relation aMec < b < ¢ << adJb, then we obtain

adb=ade, aMb=aMe, d((adb)fe) +d(c/b) =d((adb)/b) =d(a/@@MP))
= d(a/(aMe)) =d((ado)e) = d((@db)fe, d(c/b)=0, b=c.

Condition (15) says that a dimension function is constant on all the
members of a family of projectively related factor lattices, so that a dimen-
sion function may be interpreted as a non-negative real-valued function
on the set F (L) of all families of projectively related factor lattices, sub-
ject to the additional condition

(142) d(f + fo) = d(f) + d(fa),

where we define the sum of two families f,, f as the family represented by
a/c whenever it is possible to represent f, by a/b, f, by b/c for suitable a, b, ¢
of L. Of course, this definition may not be unique. If L satisfies the double
chain condition, then any dimension function is uniquely determined by
its values on the simple families repr ted by factor lattices a/b for which
b is maximal under o and different from a. Usually there are defining
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relations between the values taken at the simple families because of the
fact that an arbitrary family may be represented in various ways as a sum
of simple families. Geometrically speaking, we may represent the dimension
functions as the points of a convex cone from the origin in the affine space
over the simple families of L. However, if L is a submodular lattice satis-
fying the double chain condition, the Jordan-Holder Theorem holds, which
says that any composition series of L has the same length » and that the
n simple factor lattices corresponding to any composition series of L re-
present the same system of simple families. Hence in this case any assignment
of non-negative real numbers to the simple families can be extended to a
dimension function.

The normal dimension function on a submodular lattice with double
chain condition is obtained by assigning the value 1 to each simple family.
The normal dimension of 4 /Z is equal to n, being the length of a composition
series of L. We also say that L is an n-dimensional lattice.

DEFINITION: A lattice is called complemented if, for every three elements
a, b, ¢ of the lattice satisfying a << b < ¢, there is a complement b of b
in the lattice relative to c/a such that bJ b =c¢, bMY’ =a.

A modular lattice L having a maximal element 4 and a minimal element
Z is complemented if and only if for each element b of L there is a complement
b’ such that bJ b = A4, bBMb’ = Z. In fact, if a, b, ¢ are three elements
of L satisfying « < b < ¢, then

bJd(ad(d'Mc)) = (bJda)d(b'Mc) =bJ (B’ Mc) = (bJb')Mc = AMc =c,
bM(aJd (' Mc)) =ad(d'Mc)) =a J((bMb')Mc) =a J(ZMc) =a JZ =a,

so that aJ(b’Mc)is a complement of b relative to c/a. For example, the normal
subgroups of a group @& which is generated by its smallest normal subgroups = 1
form a complemented modular lattice. Moreover, every noimal subgroup ¥ =1 of
@® is the direct product of some of the smallest normal subgroups # 1 of ®.

Proof: First of all, we extend the notion of direct product, which pre-
viously was defined only for direct products of finitely many factors, to
direct products of infinitely many factors, as follows: The group & is
called the direct product of its subgroups M running over a finite or infinite
set B of normal subgroups of & if in the subgroup lattice of & the group &
is the direct join over B.

This definition coincides with the definition in § 1 in the case of a finite
set B.

For any direct decomposition of a group & into the subgroups belonging
to a certain set B and for any subset X of B we have the direct decomposition
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© = XX, where ¥ is generated by all subgroups belonging to X and 9)
is generated by all the subgroups belonging to B, but not to X. The de-
composition operator d; of the given direct decomposition of ¢ with
respect to X is defined as the-mapping that maps any element g of & onto
the element (¢9)MZX of X. It is a normal operator of & mapping & onto
¥ and inducing the decomposition operator dy in the subgroup lattice of ®.

A set of necessary and sufficient conditions that a given subset B of
subgroups of @ lead to a decomposition as a direct product over B is the
following:

1. The group @ is generated by the subgroups belonging to B.

2. Each subgroup in B is normal; or: any conjugate of any one member
N of B under another member of B is contained in R.

3. The intersection of any one member of B with the subgroups generated
by the remainder of B always is 1.

If B is an ordered set, then condition 3. may be replaced by the weaker
condition that the intersection of any one member R of B with the subgroup
generated by the members of B preceding 9 is 1.

Now let us assume that the group & is generated by the set S of all the
smallest normal subgroups == 1 of @. Well order S so that there is a last
element 8. Let % be a given normal subgroup of & and, for each element
of 8, form the subgroup N’ of @ generated by % and by all the members
of 8 preceding M. It follows that 3’8 = @. Let B be the subset of all the
members N of S for which N is not contained in N’. We conclude, for these
members, that RMN’ is properly contained in N. Since N is a smallest
normal subgroup == 1 of & and since %’ is normal in @, it follows that RMR’
= 1; hence NN’ is the direct product of N and of N’.

For any members % of S let R be the subgroup of & generated by A
and by all members ) of B preceding R. If it happens that " is sometimes
not the same as 9’, then let %, be the first element of S satisfying R; =+ N;.
Hence for all members 9 of S preceding N, we will have N = N’. Obviously
we have R, contained in 92;. Moreover, if %, is a limit element in the well
ordering of 8, then 9, is the union of the %’ with % preceding %, ; similarly,
My is the union of the RN with N preceding N,. Thus N; would be equal
to N7, which is a contradiction. Since for the first element ?lo of & we have
N, = A =Ny, it follows that N, precedes N, . If N is the immediate prede-
'cessor of N, in the well ordering of S then we find that %; = R'N. Either
% belongs to B—and then %} = N"N = N'N = N;—or N does not belong
to B—and then % is contained in N, N; =RN'N =N" =N" =N]. At
_ any rate, we end up with the contradiction that %; and R; coincide.
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Consequently, ' = R for all % of S; in particular, § = 8’8 = 3”3 =
9 X B, where B is the direct product of all the subgroups belonging to B.
Thus the normal subgroups of & form a complemented modular lattice.

Maintaining the notation, we find in a similar way a direct decomposition
of @ into B and the direct product over the members of some other subset 4
of 8. Since the mapping 2%B/B onto 2BMA maps &/B isomorphically
onto ¥, it follows that the decomposition of &/® into the direct product
over the smallest normal subgroups == 1 of the form §) 8/%, with §) running
over A, is mapped onto a decomposition of % into the direct product of the
smallest normal subgroups ==1 of the form (BY)MA.

In the proof just completed, we have used the following property of
groups: If 7' is a well-6rdered set of normal subgroups of a group & generat-
ing @ such that the intersection of any member X of 7' with the subgroup
generated by all the members of 7' which precede X is 1, then § is the direct
product over 7. This follows from the more general property: If 1 is an
increasing set of subgroups of the group & and if % is an arbitrary subgroup
of @, then the intersection of 8 with the union of the members of U is
equal to the union of the intersections of the members of 11 with 8. Genera-
lizing this to lattices, we obtain the

BASIS THEOREM OF LATTICE THEORY: If in a complete modular lattice L
the all element A is the join of the minimal elements different from the zero element
Z and if for any increasing subset U of L the meet of an arbitrary element v
of L with the j 70an of Uis equal to the join of the elements uMv with u running
over U (conti dition), then L is Pl ted, and moreover every
clement of L is the direct join of some minimal elements different from Z.

For groups, we also have the converse: If the modular lattice formed
by the normal subgroups of a group © is complemented, then & is generated
by its smallest normal subgroups different from 1.

Proof: Let % be the subgroup generated by the smallest normal sub-
groups different from 1 of . If ¥ is not & then, according to the Maximal
Theorem of group theory, there is a maximal normal subgroup % of @&
which contains % and is not ¢. By assumption, there is a direct decompo-
sition of & into N and another normal subgroup M different from 1. Since
M is isomorphic to &/N, it follows from the maximal property of % that
9% is & smallest normal subgroup different from 1 of @&; thus M is contained
in 9 and is therefore also contained in 9, contrary to the construction of
M. It follows that A = @, Q. E. D.

DzrintTION : In 8 lattice L we have unique complementation if for any three
elements a, b, ¢ of L the equations aJb = a Jc, aMb = aMc imply b =c.
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In other words, there is at most one complement of z relative to y/z
whenever z << z < .

DEerFINITION: A lattice is called distributive if it satisfies the distributive
law for lattice operations -~

(18) aM(bJc) = (aMb) J(aMc) for any a, b, ¢ of L.

The modular law is a special case of the distributive law, namely the
case for which in (18) @ > b and therefore the simpler form

(18a) aM(bJc) = bd(aMc)
obtains.

The distributive law implies the uniqueness of complementation, since
from adb =adc, aMb = aMc we deduce

a’ = (ad(dMc))M@B Jc) = (aM(bJ¢c)) J(BMc).
From the modular law we deduce, furthermore,

a’Mb = (a J(bMc))M (D Jc)Mb = (a J (bMc))Mb = (aMb) J (BMc)
= (aMc) J (bM¢) = a’Mec.

From the distributive law we deduce

a =a'M(®Jc) = (a’Mb) J(a’'Mc) = a’Mb = a’Mec.

Finally,
a = (@d(BMc))M(bJc) = (aM(bJc)) J(BMc),
b =a’'db = (aM(bJdc)) J(BMc) Jb = (aM(b dc)) Jb
=(@adb)M(bdJc) = (adc)M(bJc) =c.
Conversely, the uniq of compl tation in a lattice L implies

the modular law, because L cannot contain a pentagon sublattice. Moreover,
we demonstrate the distributive law (18) as follows.
Let a, b, ¢ be any three elements of L; then by the modular law,
u = (aM(®Jc)) J(dMc) = (a J(BMc))M (b Jc)
and bMc < uw <bdec,
(dM(u J¢)) J (wMc) Ju = (BM(u d¢)) Ju = (b Ju)M(c Ju)
' = (cM(z J b)) J (uMb) Ju.
By duality,
(b J(@Me))M(ud e)Mu = (¢ J (uMb))M(u J b)Mu.
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By the modular law, we obtain
®dM(udc)) d(mMc) = (b J(zMc))M(z d ),

9 (cM(u J)) d (M) = (c J (uMB))M(w J B).
From the uniq of pl tation it follows that
BM( Jde)) d(uMe) = (M (w J b)) J (uMB).
Furthermore,
(BM(uJ 6)) J(@Mo) J (cM( J b)) J(uMb) = (BM (2 d ¢)) J (cM(u J b))
(208) — (M J6) SOMIb) = (bJ ) M(ud ) M(u J b)
—(BJuM(cdu) = BM( Jc)) d (M) Ju.
By duality,
o) ¢ IEMIM(I IMEI M) M 98) = (41D J(uMo)

= (0 J(=Mc))M(ud c)Mu.

Applying the uniqueness of complementation to (20a, b) and (19), it follows
that
B J@Me))M(ude) =u = (cJ(uMb))M(u dc),

% = (uMb) J (uMc) = ((aJ (BMc))Mb) J((a J (BMc))Me)

= (aMb) J (@Mc) J (BMo),
aM(® Jo)M(BMc) = aMbMe = (@MbMc) J (aMbMc)
= ((eMb) J(@Mc))M (BMc);

(18) now follows from the uniqueness of complementation.
Since the uniq of compl tation is a self-dual property, the same
is true for the distributive law. In other words, (18) is equivalent to

(18a) aJ(bMc) = (@ Jb)M(a Jc) for a, b, ¢ in L.
It is not difficult to show that all elements z of a lattice L that satisfy
the distributive rules
ZM(b Jc) = (zMb) J(zMc), zJ(BMc) = (zJd)M(zd¢),
bM(z dc) = (bM2)J(BMc),  bJ(xzMc) = (bJz)M(bJc)

for all pairs of elements b, ¢ of L form a distributive sublattice D(L) of
L which coincides with L if and only if L is distributive. Moreover, if L
is complemented, then D(L) is also complemented.

In order to prove the last statement, let b be an element of D (L), and
let u, v be two elements of L for which bMw = b Mv, bJu = b Jv; then
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= uJ(®Mu) =« J(BMv) = (u JB)M(x Jv) = (v Jb)M(v Ju) = v. Hence
for every element b of D(L) there is only one complement relative to any
factor lattice c/a containing b. Let a, b, ¢ in D(L), and let @ < b < ¢. Since
L is compl ted, there is an-el t " in L for which b Jb* = ¢, bMb’ = a.
It follows that for any two elements x, Yy

bJ((0'Ma)J(B'My)) = (B’'M2)JbJ (' My)
= ((bJV)M(BJI2))J((BID)MBIY)) = (cM(bJz)) I (cM(b Jy))
=cM((bJd2)J(bJy)) = (BJIb)MBJI(zdy)) =bJ(B'M(zJy)),
OM((O'M2) J(B'My)) = (BMb'Mz) J(BMd'My) = (aMz) J (aMy)
=aM(zdy) = BMV)M(zJy) =bM((B'M(zJy)).
Since there is only one complement of b relative to the factor lattice
(BJ((B'Mz) J(B'MY)))/(BM((>'M2) J(b'My))), we find (B’'Mz)J(>’'My) =
b’M(z Jy). By duality, (b’ Jz)M (b’ Jy) = b’ J(xMy). Moreover,
bJ(zM(b’' Jy)) = (b J2)M(BJb' Jy) = (bJz)M(cJy)
= ((cdz)M(cJy))M(d Jz) = (cJ(zMy))M(b Jx) = (cM(b J))M(zMy)
= ((bJ2)M(BJb)) J(zMy) = (bJ(zM]")) J(zMy)
=bJ((zM¥) J(zMy)),

BM(zM (B’ Jy)) = sMgM (D’ Jy) = =M ((BMb') J (BMy))
= zM(a J(BMb)) = (@M =) J (=M (BMy)) = (BM(zMb’)) J (BM(zMy))
= bM((zMb)d (&My)).

Since there is only one complement of b relative to (bJ(zM(d'dy)))/
OM (M’ Jy))), it follows that zM(d’'Jy) = (xMb’) J(zMy), and by
duality, 2 J(0’'My) = (2 Jb') J(zMy). Hence b’ belongs to D(L), and this
shows that D(L) is complemented.

If L is a complemented modular lattice with all element 4 and zero
element Z, then for every element of D (L) there is precisely one complement
in L. Conversely, let @ be an element of L with precisely one complement
a’ in L for which aJa’ = 4, aMa’ = Z. The investigation to follow will
show that a belongs to D(L).

For any z of L we have (aMz) J (z"M ) < x; hence there is a complement
y of (aMz)J(a’'Mz) relative to z/Z such that (aMz)J(a’Mz)dy = =,
((eMz) J(e’'Mz))My = Z. Hence

My =y, aMy=aMaMy = (aMz)M((aMzx) J(@’'M2))My =aMxMz=2Z.
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There is a complement z of (aJy)Ma’ relative to a’/Z such that
((edy)Ma’)dz =a’, (aJy)Ma’'Mz = Z. Hence
(@ady)Mz = Z,

adydz=(ady))((ady)Ma)dz =adyda’ =ydada’ =yJdd =4,
aM(y Jz) = aM(a Jy)M(y Jz) = aM(y J((a Jy)Mz)) = aM(y JZ)

=aMy =Z. '

Since there is only one complement of a in L, it follows that
ydz=a’, y=aMzMy =2MzMyM((aMz)J(z'M2)) =a’'M2MZ =Z,

= (aMw)J(a'M:t).
By duality we obtain z = (e Jz)M(a’J 7).

If x =udv, u<a, w <a’, then

aMz = aM@Jv') = v d(@Mw’) = ud(@Ma’'Mu') =udZ = u,
and similarly $’'Mz = «’. Hence if z = x, Jz,, then
z = (aMx;) J(a’'Mz,) J (@M x,) J (2’ Mzy)
= ((eM=,) J(@Mz3)) J((@'Mz, J (¢’ M2y)),
aMz = (aMz,) J(@Mzy), a’Mz = (a’'Mz,) J(e'Mz,).
Moreover, if £ = z,;Mz,, then we have
aMz = aMz; Mz, = (aMz;)M(@Mz,), a’'Mz = (¢’'Mz;)M(a’'Mz,).
The last statements suggest the following definition.

DEFINITION : The vector sum of two lattices L, , L, is the lattice D U (L, L,)
consisting of all the ordered pairs (z,, #;) with the component z; in L,
subject to the rules of operation

(@1, Z3) d (Y15 ¥a) = (%1 d Y1, T2 JYs)
(%1, 2)M(y1, ¥2) = (2, Mz, 2, My,).

It is clear that L = DU(L,, L,) is also a lattice. Moreover, D(L) consists
of all the pairs (z,,x,) with z; contained in D(L;) such that D(L) =
DU(D(Ly,), D(Ly))-

If L is a complemented modular lattice with all element 4 and zero
element Z, then for every element a of L with unique complement a’ in L
it was shown above that there is an isomorphism between L and DU (a/Z,
o’ [Z), namely, the isomorphism that maps the element = of L onto the pair
(2Mz, a’Mz). Hence both a and a’ belong to D(L).
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DerinrTIoN: A lattice is called irreducible if it is not isomorphic to the
vector sum of two lattices of more than one element each. An irreducible
finite-dimensional complemented modular lattice is called a projective
geometry.t -~

The minimal elements == Z of a projective geometry are called the points.
In the scale of dimensionality the points are followed by the lines, planes,
3-hyperplanes, etc. An example of a projective geometry is provided by
the n-dimensional lattice I'(n — 1, F) formed by the F-submodules of an
n-dimensional vector module over a division ring F. There is precisely
one 1-dimensional projective geometry that consists only of the all element
and the zero element. The only projective geometries of dimension 2 are,
¢ being any ordinal greater than 1, the lattices I'(1, ) consisting of ¢ + 3

elements a,, @y, . . ., @4, subject to the composition rules:
@) 4 Ma; = a,,
(i) ada; = a;,
(idi) ag2Ma; = ay,
(iv) G2 d@; = Qgys,

(v)if0 <@ <j <gq+ 2, then a;Ma; = ay, a;Ja; = ag,,.

A projective geometry that is isomorphic to a factor lattice of a projective
geometry of dimension greater than 3 is called Desarguean. I'(n, F), for
example, is Desarguean. It is a fundamental theorem of projective geometry
that every Desarguean projective geometry is isomorphic to a I'(n, F)
where, in case n is greater than 1, the division ring F is uniquely determined
up to isomorphism. Also, every projective geometry of more than 3 dimen-
sions is Desarguean. There are non-Desarguean 3-dimensional geometries.
But even the finite ones cannot be completely classified yet.

We define the vector sum of an arbitrary set S of lattices as the lattice
DU (8) consisting of all functions f defined on S for which f(L) is contained
in L for each member L of S and f Jg(L) = f(L) Jg(L), fMg(L) = f(L)Mg(L).
The operation DU is associative and commutative in the widest possible
sense. It coincides with the previously defined operation in the case of a
set of two lattices.

Each of the following is a property that is satisfied by a vector sum if
and only if- it is satisfied by each vector summand: That of being comple-

1-Note that the g ical di ion is obtained from the lattice-theoretical di-
mension by subtracting 1. In what follows only the lattice-theoretical dimension is
mentioned.
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mented, distributivity, modularity, that of having an all element or a zero
1 t, and complet:

An isomorphism of a lattice L onto a vector sum is called a vector decompo-
sition of L. If L has a maximal and a minimal element, a vector decompo-
sition of L leads to a direct decomposition of D (L) into the elements of D (L)
which are mapped onto those vectors that have all but one of its components
zero, the remaining component being the-all element. Conversely, any
representation of a lattice L as the direct join of finitely many elements
of D(L) is derived from a vector decomposition.

A Remak vector decomposition is a vector decomposition into irreducible
components each consisting of at least two elements. If L has an all element
and a zero element, then there is at most one Remak vector decomposition.
It corresponds to the Remak decomposition of D(L). Every finite-dimen-
sional complemented modular lattice has a Remak vector decomposition
into projective geometries.

If the modular lattice formed by the normal subgroups of a group @
is complemented and distributive, then the subgroup lattice of @& is the
Remak vector sum of the lattices /1 with % running over the smallest
normal subgroups different from 1 of @&. The lattice formed by the normal
subgroups of such a group is isomorphic to the subset lattice of the set of
all smallest normal subgroups different from 1.

A set of necessary and sufficient conditions that the lattice of the normal
subgroups of a group & be complemented and distributive, is the following:

1. The group © is generated by its smallest normal subgroups different
from 1.

2. A smallest normal subgroup different from 1 either is non-abelian,
or is abelian and non-isomorphic to any other smallest normal subgroup
different from 1 of §.

A particular case is that of the semi-simple groups, which are defined as the
groups that have a decomposition into the direct product of non-abelian
simple groups. They are characterized by the extreme rigidity of the struc-
ture formed by the normal subgroups, viz., by the property that in any
semi-simple group and in any direct product of semi-simple groups there
is for any normal subgroup precisely one complementary normal subgroup.
A simple group is semi-simple if and only if it is non-abelian. The direct
product of i-simple groups is i-simple.

For any complete lattice L we define the Frattini element ®(L) of L
to be the meet of A and of all the maximal elements of L that are different
from A. The Frattini element in the subgroup lattice of a group coincides
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with the Frattini subgroup of the given group. The Frattini element of
a complete lattice L is the join of all elements z of L with the property that
xJy = A always implies y = 4.
The descending Frattini series is recursively defined as
Dy(L) = A, (L) =D(L), ..., D,(L) =PP,_,(L)2), ....
It follows that
D(Pny (L) [P0 (L)) = Do (L).

The dual concept is the ascending Frattini series: ®°(L) = Z, D' (L) = the
join of Z and of all minimal elements % Z, ..., ®"(L) = ®(4/P"-1(L)), ....
If L is a modular lattice, then the Frattini series is called a Loewy series.
From the modularity it follows that @, (a/b) < (P,(L)Ma)Jb, P (a/b) >
(P1(L) Ja)Mb. If L is of finite dimension, then all three statements ‘®, (L)
=2, ‘P (L) = A’, and ‘L is complemented’ are equivalent, as follows
from the basis theorem.

For a complete modular lattice L we define a Loewy chain of length r

asachain 4 = a, > a;, > a, > - -+ > a, = Z in which all the factor lattices
a;[a;,, are complemented. It follows that
(21) Oi(L) < a;, PUL) =a,;.

The Loewy series become Loewy chains by elimination of repetitions,
provided both 4 and Z are members of the given Loewy series. From (21)
. there follows the

TaeOREM OF LOEWY: For a complete modular lattice, the two statements

A =y(L) > D (L) > -+ >D(L)=1Z,
A=Y L)>P (L) > .- >D(L)=Z
are equivalent ; that is, if the descending Loewy series without repetitions is a
Loewy chain then the ascending Loewy series without repetitions is also a
Loewy chain, and vice versa. Moreover
(22) D, (L) < o¥-1(L),
and therefore A = X'.
Example: The descending Loewy series without repetitions of a group &
with a composition series is defined as the characteristic chain
(23) - G =4,(8) >4,(8) > >4,(8) =1,

where A, (®) is the intersection of all the maximal normal subgroups = &
of ®, and A;,,(®) =4,(4;(®)). Since the intersection of all the sub-
groups of a normal subgroup 9 of & that are conjugate to a maximal normal
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subgroup of % under @ is a normal subgroup of & maximal under %, it
follows that A4,,, (@) can also be defined as the intersection of all the normal
subgroups of @ that are maximal under 4,(®).

Similarly, the ascending Loewy series without repetitions of @ is defined
as the characteristic chain

(23) @ =AY (@) > A1 (@) > .- >A%E) =1,

where A'(®) is the subgroup generated by all the smallest normal sub-
groups =1 of @, and A+1(§)/4(B) = A (G/4*(®)). As a consequence
of Loewy’s Theorem, we note the equality 2 = 1’ of the length of the two
characteristic chains (22) and (23) and the relation

(24) 4:(8) <A4(®)
between its members.



APPENDIX C

-

FREE PRODUCTS AND GROUPS GIVEN BY A SET OF
GENERATORS AND A SYSTEM OF DEFINING RELATIONS
An Introduction to §§ 3—9 of Chap. 111

Let us consider the subgroups of a given group &. It may happen that
some of them, say 0, B, . . ., B, generate the full group. We are interested
in knowing to what extent the structure of @ is determined by the structure
of the generating subgroups §,, 9, . . ., §,. With this in mind, we make the
following definition:

A semi-group & with a unit element 14 is called a product over the system
H of semi-groups with unit element if for each semigroup ) contained in
H there is given a homomorphism gy of §) into & such that oq(1g) = 1g
and @ is generated by all the images o;(h) with §) running over H and %
running over the elements of the semi-group § of H.

A homomorphic mapping & of one product over H, say &, onto another

“such product, say &, is called a homomorphism over H if Oay(h) = Gy(h)
for any element % of the semi-group f) running over H. Here, of course,
. 8 denotes the homomorphism corresponding to oy in the definition of ©
as-a product over H. It is clear that there can be at most one homomorphism
over H between any two given products over H, since every element z
of & can be written as
x = oy, (by) * 05, (ha) * - * 05, (Br),
where h, belongs to the semi-group Y); of H for i =1, 2,...,r, and thus
O(z) = 9(‘7[’,("1) ooy () = @%l(hx) . Qa‘,ﬂ(h,) e @ah,(hr)
= ab,(hl)'ﬁb.(hz) e 5;!'(71,,).

The relation ‘homomorph over H’ is reflexive and transitive, but
not symmetric. In fact, the identity mapping provides an isomorphism
over H for any product over H. If 6, is a homomorphism over H of the pro-
duct &, onto the product &, over H and if 0, is a homomorphism over H
of the product &, onto the product G;over H, then 6,0, is a homomorphism
over H of &, onto &;. The group of one element together with the set of

ppings of each el t h of each ber §) of H onto the unit element
provides the trivial product over H. For every product over H we obtain

217
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a homomorphism over H onto the trivial product over H by mapping each
element onto the unity element. But there is no converse homomorphism
over H unless both products over H are trivial. More generally, two products
over H are mutually homomorphic over H if and only if they are iso-
morphic over H in one direction.

DEFINITION: A product over H is called a free product over H if it can
be mapped homomorphically over H onto any product over H.

It is immediate that two free products over H are isomorphic over H.
There always is a free product over H. As a first step in constructing a free
product over H, we denote by 2B (H) the system of all “words’ over H, i. e.
all expressions k,h, « - - h, —denoted for brevity by W—where the length »
ranges over all the natural numbers and the letters 4, of the word W denote
any element of any semi-group Y); belonging to H. Furthermore, we denote
by Z the empty word, which has no letters and which, by definition, is the
only word of length 0. Two words are called equal if they are of equal length
and if corresponding letters denote equal elements of equal semi-groups.
This notion of equality has the usual three properties.

Two words W,, W, are multiplied by juxtaposition, e. g., for
Wy="hbhy-- by, Wo=hrpihpiy--+ h, we define the product by
W,Wy=hhy- -+ h,.; in particular, ZW = WZ = W for any word W.

It is important to note that the product of a word of length r and a
word of length s is uniquely defined as a word of length » + s.

From the definition it is clear that the associative law of multiplication
holds. Thus the words over H form a semi-group %8 (H), with the empty
word as unit element.

In a word W = hyhy- - - b,, it may happen

1. in case f); = B;,, that the product A’ of the two elements k;, k., is
defined within the semi-group ¥),, or

2. that b, = 1,.

In the first case, we replace the two letters concerned by 4’; in the second
case, we simply omit 1. Either process will be called a reduction, and we
will write

Casel: W=+ Ry - —>W = k-,

Case2: W=-+ Ly oo+ W =-nne-- ,
where the dots always refer to unaltered letters.

The reverse process we will call an anti-reduction. Both processes are
referred to as el tary transformati Writing W — W’ if the word W’
is obtained by a reduction from the word W, we establish a binary relation
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in the set 2 (H) of words over H. The normalized relation is the congruence
relation between words, defined as follows:

. wW=w
if there is a chain of words W = W,, W,, ..., W, = W’ such that for
each index i =0,1,2,..., s—1 either W, = W,,; or W, > W,,, or
Wiy — W;. This congruence relation is normal and multiplicative. In
fact, the normality follows from the definition as normalized relation (see
Chap. I, Ex. 17). The substitution law of multiplication follows by repeated
application of the following statement:

If W—> W, then W,W—> W,W and WW, - W W,,

which can be verified directly without any difficulty.

We denote the class of words congruent to the word W by |W|. The
factor semi-group & of W(H) over the normal multiplicative relation
defined above (for its definition, see Chap. II, Ex. 12) formed by the classes
of congruent words that are multiplied by multiplication of the representa-
tives, is a product over H. The correspondence of the element % of the
member §) of H with the class |h| represented by the one-letter word #,
in fact, defines a homomorphism of the semi-group § into &, since for
hh = k" in § it follows that Ak’ — k" in W(H) and hence |kh'| = ||,
|k| - |W| = |#"|. Furthermore, for each word W = h;h, - - - h, of positive
length we have |W| = |h,| - |hy|* |hg| - - - |h,|. Finally, the empty word Z
- is congruent to each of the words 1¢, §) being any member of H, so that
|Z| = |15]. Hence the totality of the homomorphic images of § in H gene-
rates .

The product § over H is free. To see this, let the semi-group & with unit
element be an arbitrary product over H for which the given homomorphism
of each semi-group ) contained in H into & is oy. Note that oq(1g) = 1.
Furthermore, the semi-group & is generated by the sub-semigroups o (),
with §) a member of H. Let us construct the homomorphism 6 of § onto &
over H which maps the class |k h, - - - k,| onto oy (h;) g, (hs) - - - 0, () and
|Z| onto 1. This mapping is unique, since if

R % TR SRR

then
: ”n‘(hi)%ﬂ,l(htﬂ) seem=ce oy (B) e
and if
SRS
then

cee g (L) = e
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The preservation of multiplication follows from considering two words
Wy =hhy-h, and Wy =h, " h,,. We have

O(W,) = %,(hl) %,(ha) o %,(hr),
O(W,) = ‘7(,,+,(hr+1) Ug,+;(hr+:) cee “n,“»("frﬂ) s
O(|Wi||W,) = O(|W, W) =°'1,,(h1) T Ug,+,(hr+.)
= O(|W,|)O(|W,]), Q. E. D

We denote the free product over H, as constructed in the preceding, by

*
I
. peh
or, more briefly, by

*

IIH.
If H consists of finitely many semi-groups §,, By, ..., §,, then we also
write §1*Bgx - « - ), for the free product. It is independent of the order of
the factors, and it is associative.

For many applications it is necessary to solve the word problem for a given
product, that is, to determine a general procedure by which it can be
decided in a finite number N of computational steps whether two given
words W,, W, interpreted as elements of the product are equal. This is
understood to imply that the number N be not greater than a certain
recursive function that depends only on the length of W, and W,; we
speak in that case of an effective solution of the word problem.

It has been shown that an effective solution of the word problem does
not always exist. However, in free products we can solve it quite easily.
For the most elegant solution, see Ex. 1, Appendix D. A method of solution
that lends itself to other applications will now be given.

We call a word irreducible if no reduction can be made. Since any reduction
diminishes the length by 1, it follows that every word of length r can be
reduced to an irreducible word by at most r reductions.

Lemma: If W —>W,, W —>W,, W, &=W,, then there is a word W,
such that Wy — Wy, Wy — W,.

Proof: a) If no unit elements are eliminated, then we distinguish two cases.

1. W= bl hshyyy-e;
W Wy= k- hhyy s
W Wy="- hhyy- b

Set Wy=":++h' -+ h" -,
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2. W= hhiphisg- -
WosW,= Rhyy
Wo>Wy=---hh"---

Thus the semi-groups ¥;, §;,,, §;,, coincide, and within I)( the equatlons
hihiyy =W, hipihig = k', KR’ =h hold. Set Wy =+--h-

b) In the event that unit elements are to be eliminated, we have

1. W= hhyy 1y

W_’Wl="'h,"'1[),"';
W—>W,=--hhyy -
Set Wy="---h"---.
2 W= 1y, Ly, ’
Wy=reeeenr 1,00
Wy = T oeeeee
Set Ws mm ecescsana .

Note that there is no loss of generality in considering the particular
orders we have selected and that in each case W, —> Wy, W, — W,.

On the basis of the preceding observations, let us investigate the problem
of reduction in general.

To every binary relation @ — b in a set S there belongs a poset, where
a > b signifies the fact that there is a chain a = a,, a,, . . ., @, = b of length
7 >0 linking ¢ and b such that either (i) r =0 and @ = b or (ii) r > 0
and @y —>ay, @, —>dg, ..., Gy —> Q.

That the > relation is reflexive and transitive is immediate. Also, if
a — b, then @ > b. The two relations coincide if and only if the relation
— is itself reflexive and transitive.

An element z of a > poset is called minimal if z >y implies y > z.
Any element equivalent to a minimal el t is itself minimal

- An element of a set § is called irreducible with respect to a given binary
relation @ — b if it is minimal in the corresponding poset.

. A chain of elements a = a,, @, . . ., a, = b of § leading from a to b such
that b is irreducible and either r =0 and a =b or r >0, @y >a,, ...,
a,_y —>a, is called a complete reduction of a to its result b. The element a
is called completely reducible if there is a complete reduction of a. Every

Jucible el s, for ple, is pletely reducibl

Arr
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As another example, in our special case of the set of all words over a
system of semi-groups with unit element, every word is completely reducible.
A word is irreducible if and only if it has no unit letter and adjacent letters
belong to different semi-groups.

A set with reduction is defined as a set S with a binary relation a — b,
where:

1. The poset belonging to the relation — sat]sﬁes the minimal condition:
In any monotonic decreasing sequence a, >a, >a; > - -- there is an
index n for which all members a,, @n.y, @n.3, - - - of the sequence from the
n-th member on are equivalent;

2. (Birkhoff condition.) If @ — b, @ — ¢, then there is an element d such
that b >d, c >d.

For example, the set of all words over a system of semi-groups with
unit element in which the — relation is defined as above is a set with reduc-
tion. ’

For such sets we have the

PriNcIPLE oF REDUCTION: Every el t is letely red , and the
result of a complete reduction is uniquely determmed up to equwalence

Proof of the Principle of Reduction: Owing to the minimal condition for
each element a, there is an irreducible element b satisfying a > b which
can be obtained by a complete reduction from a.

It is convenient to write @ > b in place of ‘@ > b but not b > @.” This
relation is transitive, but not reflexive.

We form the subset S’ of § which consists of all the elements p of §
having the property that p >z, p > y in 8 implies the existence of an
element z of § satisfying x >2, y > z. All irreducible elements of S, for
example, belong to §’. If x, y are the results of two complete reductions
of the element p of §’, then it follows that there is an element z in S satisfying
z >z, y >z, and since both z and y are irreducible, we find that z is
equivalent to z, z equivalent to y, and thus = equivalent to z. Hence for
each element of S’ the result of a complete reduction is uniquely deter-
mined up to equivalence. We now wish to show that the difference set
8 — 8’ is empty.

If @ is in 8 but not in §’, then there are two elements z, y of S such that
a >, a >y, and for any element z of § satisfying « > 2z we never have
y > 2. Since y > y, it follows that > y cannot hold. Hence > a cannot
hold, and thus @ > . Similarly, @ > y. There are chains a = a, - a, -
>t >a, =2, a =by>b >+ >b, =y and indices i, j satisfying
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0 <t <7,0<j <ssuchthat (i) a,,q,, .. ., aareequivalent, but a; > a,,,
(ii) by, by, .. ., b; are equivalent, but b; > b,,,. Hence a > a,,;, a > b,,,.
Using the Birkhoff condition, we deduce from a; —a,,,, a; equivalent
to b;, and b; — b;,, the existence of an element z of § satisfying a,,, >z,
b;41 = 2. Let z be the result of a complete reduction of z, and similarly let
z and § be the result of a complete reduction of = and y respectively.
Since a;,, > z, it follows that z also is the result of a complete reduction
of a;,;. Similarly, we deduce from a,,, > z that z is the result of a complete
reduction of a,,,.

Now, either a,,, does not belong to §’, in which case we set ¢’ = a,,,,
or a;,; belongs to §’, in which case the elements z, z, being the results of
complete reductions of a;,,, must be equivalent. From = > %, Z equivalent
to z we have 2 >z, and hence y > z does not hold. Using the same argu-
ment applied to y, b,,, instead of z, a;,,, we come to the conclusion that
b,,, does not belong to §’. In this case we set a’ = b;,,.

At any rate, for every element a of S not belonging to S’ there is a
successor a’ satisfying @ > a’ and not belonging to §’. Since repetition of
this construction leads to a strictly monotonically decreasing sequence,
we find a contradiction with the minimal condition; and hence every
element of § belongs to &', Q. E. p.

For a partial converse of the principle of reduction see Ex. 2 of Appen-
dix D.

COROLLARY TO THE PRINCIPLE OF REDUCTION: T'he normalized relation of
the relation — on a set with reduction is the relation:

‘a = b if the complete reduction of a, b leads to equivalent results.’

Proof: If a = b, then there are full reductions ¢ = ay +a, >+ —>a,,
b =by —b; -+ + — b, such that a,, b, are equivalent irreducible elements.
Hence there is a chain a, -~ a,,; >+ —>a; =b,. But froma >a, > -
—>a;, b—>by -+ —>b,_; —>a, it follows that a, b satisfy the normalized
relation of the relation —. Conversely, if a, b satisfy the normalized relation of
the relation —, then there is a chain @ = a,, a,, . . ., @, = b such that either
@; = @441 OF @; —> @iy OF Gy —0a; for i =0,1,2,...,7r— 1. At any rate,
complete reduction of @, and a;., leads to equivalent results. Hence complete
reduction of a and b also leads to equivalent results.

Applying these concepts and conclusions to the relation — previously
-studied, we find that poset equivalence of two words is the same as their
equality and that, furthermore, the words form a set with reduction.
The reduction principle yields: Each word over a system H of semi-groups
with unit element is congruent to the uniquely determined result of any complete
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reduction of the given word. The free product over H may be /ormed by takmg
the set of all irreducible words in which the bination of two irred:
words to a third irreducible word is obtained by juxtaposition followed
complete reduction.

It quite often happens that a product over H is required to satisfy a

system R of relations bet the g ting el ts of the form
(1) hyhy - by = heyibeist b,
where k; is contained in a member ¥); of H and 7 runs from 1 to s. We call
a semi-group © a product over H defined by the system R of defining relationsif:
1. @ is a product over H, i. e., to each member §) of H there is assigned a
homomorphism oy of §) into &, mapping 1, onto 1¢, such that & is generated
by the sub-semigroups oy (f), with §) running over H,
2. each relation (1) holds in &, i. e., in & there hold all of the equations
(2) U[;,(hl)o'n,(ha) o Ui,,(hr) = C’(;,“(hru) th 0':7,(".)?
3. © is homomorphic over H with every product over H having the
properties 1 and 2.

A product over H defined by R can be constructed as follows. Two words
are called congruent modulo R if one word can be obtained from the other
word by a combination of

by

1. a finite number of elementary transformations,

2. afinite number of replacements of Wk kg« + b, Wy by Wik, * + - h, W,
or of Wik, * bWy by Wihy « - - b, W,, in accordance with the relations
(1) comprising R.

This congruence relation is normal and multiplicative, and hence the
residue classes form a semi-group %8 (H)/R. Denoting by W (R) the residue
class represented by the word W, we find that the correspondence between
h and oy (h) = h(R) defines a homomorphism of the element 4 of the member
b of H onto a sub-semigroup (%) of W(H)/R such that oy(1,) = Z(R)
is the unit element of W (H)/R and such that for each relation (1) we have

Ug,(hx) Og (hg) - -+ U(,,(hr) =lyhy - b (B) -
=heyyc hy(B) = Uﬁ,*,(hrﬂ) e ”l,,(hl)-
Hence 2B (H)/% is a product over H satisfying the relations comprising ®.
Now let & be another product over H satisfying the relations comprising
R; that is, the mapping of any word W onto W defines a homomorphism

of W(H) onto & for which W, = W, whenever W, is congruent to W,
modulo R. From this definition, which is equivalent to the statement that &



C. Free Products; Groups given by Génerators and Defining Relations 225

is a product over H satisfying the relations %, it follows that the mapping
of W(R) onto W defines a homomorphism over H of % (H)/® onto &. This
shows that 28 (H)/R is a product over H defined by R. It is clear that any
two products over H defined’by R are isomorphic over H.

Let us study some examples.

1. % is empty. Then W(H)/R is the free product over H.

2. R consists of relations of the type h = &', with &, b’ contained in
the same member § of H.

The subset R; of all relations in  pertaining to one ber §) of H defi
a factor semi-group /Ry of h. We now show that the free product @& of
all factor semi-groups §) /Ry is a product over H defined by f. For a, contained
in the member Y); of H (i =1,2,...,¢) the correspondence between
a;(Ry,)aa(Ry,) * - - a,(Ry,) and G,@, - - - @, defines a homomorphism of &
over H onto each product & over H defined by R, and certainly all the
relations in R are satisfied in .

3. R consists of all relations
hb =h'h

with %, &’ belonging to different members of H. Often the permutability
of any two elements z, y of a multiplicative domain expressed by the equa-
tion zy = y= is also denoted by z <> y. Thus in our case we have the de-
fining relations

(4) h<>h

for any pair of elements belonging to different members of H. The pro-
duct over H defined by elementwise permutability of different factors is

x
called the direct product over H and is denoted by [] § or, more con-

X heH
cisely, by J] H. The direct product can be constructed by taking the
semi-group & of all functions f defined on H with the properties

a) f(9) is an element of §;
b) f(§) = 14 for all but a finite number of members of H;

c) fg(9) = f(9)9(H)-
1t is easy to verify that & is a semi-group and that the correspondence
between the element % of the member ¥ of H and the function % on H
which assumes the value % on B, but the value 1, on all members §)’ of H
other than ¥, defines & homomorphism of ) onto a sub-semigroup § of &
such that & appears as a product over H satisfying all relations in %.
. On the other hand, given any word W, we can form its §)-component by
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taking the product in fj of all the letters of W belonging to §). If no letter
belonging to §j occurs, then the §)-component is defined to be 1. The §-compo-
nent remains unchanged under all elementary transformations and all substi-
tutions derived from one of the relationsin . Also, after imposing an order on
H, each word over H is congruent modulo R to the word made up from
the h-components different from the unit element, with the §’s concerned
following in the same order as they occur in the ordering imposed on H.
We may call the word thus constructed the direct normal form of the given
word. It is uniquely determined by the given word: Two words are con-
gruent modulo R if and only if they have the same direct normal form,
that is, if they coincide in each component. Of course, all but a finite number
of the h-components- are equal to 1;. There are no other restrictions.
The §-component of a product of two words is equal to the product of the
h-components of the factors. Hence there is the homomorphic mapping
of © onto W (H)/R over H which maps the function f onto the residue class
characterized by having its j-component equal to f(f)), with §) running over
H. This shows that & is a direct product over &. We verify easily that the
new definition of the direct product coincides with the one given in §1
in the case of a finite number of direct factors.

4. If every member of H is a group, then every product over H is a group.
The inverse element of %k, - - - &, is the element k;!- - - k3 kyl. The word
W-1 = h;th;Y - - - hilis called the inverse word of the word W = hyhy -« - k.
The inverse word of the empty word is the empty word. It holds true that
(W-)-1 =W, (W,W,;)"! = W3 Wil. By elementary transformations the
word W W-1 can be carried over into the empty word, for any given word W.

The product over H, a system of groups, defined by a system of relations

*
can be obtained as the factor group of the free product§ = JT H over the
normal subgroup N (N) generated by all quotients (5)

(5) [CUPRRRY N % SRR

derived from (1). The elements of this normal subgroup are often called
the consequence relations of R. This name is chosen because, as a consequence
of (1), in any product over H in which all of the relations (1) hold, all
of the consequence relations become 1. A consequence relation may be
characterized as an element of the free product § over H which is of the form
W RPUWilW,R2 W3t - - - W,R¥W;! with a; either 1 or —1, R, one of
the quotients (5) derived from (1), and W, an arbitrary element of §. But
since elementary transformations do change the appearance of the elements
of F, even though they do not change the elements themselves, it is often
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extremely difficult to recognize a given element of F as a consequence
relation of a given system of defining relations.

5. If each member of H is an infinite cyclic group, say the group f
generated by the element x;, then the free product over H is called the free
group with genemtors x[, Its elements can be uniquely represented by
expressions zgtxgl -« zgr (a; 0, ); a member of H where 0, is ditferent
from §;, ifi<r; i=1,2,...,7; r=0,1,2,...), and the product of
two such expressions is formed by juxtaposition and the subsequent cancelling
of adjacent factors as often as possible, e. g.

Ty Ty Tha Tay = B W Ty Ty Ty Ty T, = Ty %5, =2+

6. The group @ given by generators S,, S,, ..., S, and defining relations
Ri(8:,8;,...,8)y=1(=1,2,...,r) is obtained as the factor group of
the free group with the generators §,, S,, . . ., 8, over the normal subgroup
generated by the r elements R,(S,, S,, . .., S,). A correspondence between
the generators of & and some elements 87, S;, . . ., S; of another group &
which maps 8; onto S;, can be extended to a homomorphism of & onto
if and only if R,(87, 83, ..., S;)=1fori=1,2,...,r

The problem of determining a method whereby it can be effectively
recognized whether a group © generated by finitely many generators

8,, 8s, ..., 8, satisfying the finitely many defining relations

(6) Ri(8:,8:,...,8)=1 (1=12,...,7)

is isomorphic to another group f) generated by the finitely many elements
U,, U,, ..., U, and satisfying the finitely many defining relations

7) Ty(Uy, Uy, ..., U) =1

is called the isomorphism problem.

A necessary and sufficient condition that ® be isomorphic to § is the
existence of some words W,, W,, ..., W,in8;,8,,...,S8,and X;, X,,...,
X,inU,, U,, ..., U, such that the words

Ty (Wi(Sys -+ 385 eevs WulS1y .., 8)) (=1,2,...,0)
and the words ’
SPAX,(Wi(Sys -+ 38y ooy WulSy,...,8) (E=1,2,...,9)

are consequence relations of the relations (6). In the special case s = u,

8;=U;, (i=1,2,...,8) and W;=8;, X; =U;, we call (6) and (7)

equivalent systems of defining relations if each relation of one system is a

consequence relation of the other system, i.e., if they define isomorphic
. groups with the same set of generators.
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For free groups the isomorphism problem is easily solved. Two free groups
with the same number of generators are isomorphic. Furthermore, for a
free group @ of s generators Sy, S,, ..., S, the index of the subgroup
by all squares is 2%, the representatives of the cosets being the elements
81832+« - 8¢ with a; either 0 or 1 for ¢ =1,2,...,s. For isomorphic
groups the index over the subgroup generated by the squares must be the
same; hence if & is isomorphic with a free group of u generators, then
2 = 2* if s is finite, and s = u if ¢ is infinite. At any rate, s = u.

7. The factor commutator group of a group & generated by the elements
8;,8,, . .., 8, with the defining relations (6) is obtained by including among
the defining relations the additional relations
(8) 8;e> 8y, ive, 8887185 =1 (1<i<k<s).

Proof: Denote by , the free group generated by S, S,, ..., S,, and let
N be the normal subgroup formed by the consequence relations of (6);
then @ is isomorphic to §, /9 ; hence /D @ is isomorphic to (F,/N) /D (F,/N)
= (Fs/MN)/(DFsN[N); and hence B/DG is also isomorphic to the factor
group of &, over the normal subgroup RN - D, consisting of the conse-
quence relations of (6) and (8).

We may find an equivalent system of defining relations for /D& by
permuting the order of the letters in each relation so that the letters are
ordered lexicographically; let the group @,, for example, be generated by
A,, 4,, ..., A, subject to the defining relations

A} =1, A3 =1, 43 =1, ..., A2 =1,
(9) (A1 d)* = 1, (44, =1, ..., (Apgdp)® =1,
A4 if l<i<bk—1<n—1.

Then ©,/D®, is generated by 4,, 4,, ..., 4,,, subject to the defining
relations

A =Af= ... =43, —1,
(10) AAf=1, .., A48, =1,

Ao A if 1 <i <k <m,
which are equivalent to
(11) Ay=4,=--- =4,,, 4i=1.

Hence the generators 4,, 4;, ..., 4, can be eliminated, and @, /DG,
is generated by 4,, subject to the defining relation A} = 1, giving &, : D@,
=2. .
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8. To give another example of the reduction principle, let # be the system
of the » — 1 infinite cyclic groups (4,), (4,), ..., (4,-;). Define a re-
duction R in W (H) as follows:

cApAp - R Apim. ..

“A3n1...R...A4,--- in case n =0,

CAm. .
cA 4o R A4, f1I<i<k—1<n—1,
cAigA; Ay R A A LA i I<i<n—1.

We easily prove that % (H) is a set with reduction R. In the corresponding
poset, equivalence is equality. For example, if

W=... AinAiﬂAtAtﬂ - RW,= ... A}y Al -

and
W= A Ayl  RWy= - A A A4, -

then we have
W,R- +A;Ayyy -+, WoR- - A Ay AjAyo R A Ay .

For every word a,a, - - - a, that is irreducible with respect to R, each section
@;a;,, * * - a; is also irreducible with respect to R. The letter 4,_; occurs at
most once. If it occurs, then the section beginning with 4,,_, and terminating
with a,is one of the words 4,_;, 4, 1A, 3, Ap_14n 240 5, s Ap 1 Apg -+
A,. Conversely, if 4,_, does not occur in the given R-irreducible word,
then any of the above n — 1 expressions may be affixed to the given word
to give another irreducible word. By induction on 7, the number of
R-irreducible words turns out tobe 1-2-. ..+ n = n!. The normalized relation
of the relation R is normal and multiplicative. The corresponding factor
group is the group @, occurring in 7. It has the order n!.
Since the mapping of 4; onto the transposition (i, ¢ + 1) of the » digits
1, 2, ..., n, which is defined for i = 1, 2, ..., n — 1, preserves the defining
relations of §,, it follows that the mapping can be extended to a homo-
morphism of &, onto &,. But since the order of @, is finite and coincides
" with the order of the symmetric permutation group of z digits &,, it follows
that @, is isomorphic with &,, where we made use of the fact that the
transpositions (1, 2), (2, 3), ..., (n — 1, n) generate &,. Moreover a set
of defining relations for the generators 4; = (i,¢ + 1) (1 = 1,2,...,n—1)
is given by (9).



APPENDIX D

FURTHER EXERCISES FOR CHAP. III

1. (Van der Waerden, Artin.) Let H be a systein of semi-groups with unit element.
Let I(H) be the set of all irreducible words over H, i.e. the set of all expressions
a,a, - - - a,, where a; is an el of the ber B; of H di from the unit element
of h, for ¢ = 1, 2, ..., r, where |, is different from its neighbor §;,, fori =1,2,...,
r — 1, and where r ranges over 0 and all the natural numbers. Assign to each element
h of & member §j of H a unique mapping h of I (H) into itself defined as follows

hayay---a, if b + 15, § + 0,
ajay---a, if § =, ha; =a; +15in §

blaaa) =4 O

ay:--a, if h =9, hay =15 in §.
Show that )
a) b b’ = hh' if h and &’ belong to the same member §) of H;
b) 1y = 1;

c) i?a,a, « - a, and byb, - - - b, both belong to I(H), then the equation a,a, - -
=b,b;- b, implies r =5, a, =b;fori=1,2,...,7;

d) by forming all possible prod ppi of the mappi b defined above, a
free prod over H is obtained. Each el of this free product is equal to one
and only one mapping of the forma,a, - - - a,, where a,a; - - - @, is an element of
I(H).

2. Let S be a set with a binary relation such that the corresponding poset satisfies
the mmmml condltmn If the result of a complete reduction of any given element a
is uniquely d ined up to equival , then the Birkhoff dition is

3. (von Neumann.) Show that for any game with full information between two
partners A and B there exists a strategy. To elucidate this statement note that such
a game consists essentially of a set S of possible positions, where the term “position’
denotes a set of data concerning the board, pieces, etc., and concerning which of the
two players is to move, together with a binary relation @ — b indicating that the player
‘who is to move from position a may move to position b. There are at most three types
of irreducible positions: a draw, 4 wins, B wins. There is a starting position s. The game

consists in a finite chain s = m, >G> >0 =0 of moves linking the
starting position with an irred P c. It is d that no infinite sequence
@y > a; = @y > a;— - - - exists. An A-strategy is a list of relations a — b, where a

runs over all the positions obtainable from s from which 4 is to move, such that
if A plays in conformity with the list, B never wins. A B-strategy is defined
similarly.

4. Let H be a system of groups one of which is g. To every member §) of H there
may be assigned an isomorphism 64 of g into §) such that 6; = 14, together with a

230
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left representative system ki of § modulo 0 (g) such that b = % and hk~1is contained in
05 (g) for each element & of §). Let the binary relation R be defined on % (H) as follows:

...... VCSNS SO R
if h, I, K belong to the same member § of H and if hh' = A" in f,
...... PR USRS ¥ NSRS - SUNDNS 77 N

if h, b’ belong to different members | and §’ of H respectively and if
K £, b =h6y6} (W'R'-Y) in ¥,
B Rog*(hE DR ......

if h belongs to a member §) of H other than g. Prove that R defines B (H) as a set
with reduction and that the corresponding normalized relation is normal and multi-
plicative and deﬁnes a product over H. This product is called the product over
H with identified (or bgroup g. Solve the word problem for this
product.

5. (L. E. Dickson.) Denote by GL(n, K) (which stands for ‘general linear group of
degree n over K’) the group formed by all the units (or: non-singular matrices; or:
regular matrices) of the ring of matrices of degree n over the division ring K.

a) Prove that GL(n, K) is generated by the translation mairices T?g =1I,+ Aey,
where ¢ % k and 1 is an element of K, and by the special diagonal matrices D;(x) =
I, + (x — 1)ey, where « is an element of K different from 0, where I, = (4;;) is the
unit matrix of degree n, and where e,, = (J; 8s,), for 7, 8 running independently over
1, 2, ..., n are the n? basic matrix units. (Hint: Apply induction on n, using the
fact that the subgroup U of all matrices (x;) satisfying o = 1, &, = &, = 0 for
¢ > 1 is isomorphic to GL(n — 1, K)).

b) Prove that the defining relations of GL(n, K) with respect to the generators
given in a) are obtained as follows:

(1) ThTh = TH",

2) The>Tl ifi=r, orif k=8, orif ik, ¢ are distinet,
@) D,(x)D,(B) = Di(a),

) Dy(a)<>D,(B) if ik,

() Dy(@) ThDi(@) = Ti#, Dy(@)ThDyl) =TH ',

(6) ifi<j, i<k, j+Fkthen

8) T T4 Ty = THTE

b) THTHTE = THTH

o) ThTh = T 7 Dyt 4 aw) T+ D, (1 —p (L + A 2) i€ 1+ 2 +0,
@ T Th = T ThTE T it 2w,

o) THTH 'Th = T7 ThTE* it 2 4 0.
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(Hint: Show that the elements T33 T4 - - - T5" form a right representative system
modulo 11 [for the definition see a)] of the subgroup 8 which is g d by 1 and the
elements T:,. Show that the elements

D, (B)TRTS - .- Th

with B; & 0 and the elements
_yo1
T T T T TR

with p; % 0 for ¢ = 2, 3, ..., n form a right representative system of GL(n, K) over
%2 ; apply induction on n). .

¢) The commutator group of GL(n, K) is generated by the elements D, (xfa~*$~")
and T:._. It is often denoted by SL(n, K) (which stands for ‘special linear group of
degree n over K’). The factor commutator group of GL(n, K) is isomorphic with the
factor commutator group of the multiplicative group of K.

d) Develop determinant theory. Show that SL(n, K) coincides with the group of
all matrices of degree n over K with determinant unity and that it is generated by
the elements T if n> 1. )

8. Let M be a vector module with basis u,, u,, . . ., %, over the field F. Show that
the projectivities of the F-suk dule m, of M with the basis u,, u,, . . ., % (0 <j <n)
in M coincide with the group of all regular linear transformations of m;, where M
is to be interpreted as an additive group with operators. Furthermore, two factor
F-modules formed within I are projectively related in 3 if and only if they have the
same dimension over F. (Hint: Use the preceding exercise.)

7. Let B be a subset of the complete lattice L with normality relation. If there is
assigned to each subset X of B a unique mapping éx of L into L such that

a) dx(A4) is equal to the join of X and is normal in L,

b) the ing d4(m) ponding to the empty subset of B maps each element
of L onto the zero element Z of L,

c¢) for any two elements z, y of L, dx(zdy) = dx(x)d dx(¥),

d) éx(a)J 8y (a) = 6x gy (a) for any a of L and any pair of subsets X, Y of B,

e) 6xdy(a) = dx(a) Méy(a) =Z for any a of L and any pair of disjoint subsets
X,Y of B,
then L is the direct join of B and the dx are the decomposition operators.

8. Let B be a subset of the lattice S(@®) formed by the subgroups of the group §.
Show that S(®) is the direct join of B if and only if @ is the direct product of the
subgroups in B.

9. Let u, U, v, B be four normal subgroups of a group @ such that u < U, < B
and U/u is projectively related with B/v in the modular lattice of the normal sub-
groups of §.

a) Show that every projectivity of U/u onto B/v maps (&, U)u/u onto (&, B)v/v
and 3(®/u) M G/u onto 3(&/v) M B/vp.

b) A factor group 1l/u is called central if (@, 11) is contained in u. Show that every
factor group formed between subgroups of the center or between subgroups of ®
containing the commutator group is central. Prove that the central factor groups in
a principal series of @ are uniquely determined up to order and. projectivity.
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c) If @ = B, X B, X -- X B, is a Remak decomposition of the finite group @,
if b; denotes the modular la.ttlce of the normal subgroups of B;, and if B denotes the
system of the lattices by, by, . . ., b,, then the modular lattice of the normal subgroups
of @ is isomorphic to DU(B) (fer the definiti see §3, Sub ion 4) if and only
if the order of each central principal factor group of %, is prime to the order of any
central principal factor group of B, for ¢ + k.

10. An element b of the modular lattice L is called join-irreducible if it is not the
join of two elements different from b. A join representation 4 = b,;db,J - - - Jb,
of length  of the all element 4 of L is called irreducible if each i b, is join
irreducible and if each complement ¢;, which is defined as the join of all b, with
J %1, is different from 4 for ¢ =1,2,...,7.

a) Show that for every join repreeenbation the mapping J; = ¢»,¢° of L into L
is & normal operator and that 8, (a) J 6,(a)d - Jé (a) > a.

b) THEOREM oF KurosH: If 4 —b,Jb, < Jb, = Jbydbyd - - - Jb, are two
ible join i of A, then r = g; and after smt&ble numeration of
€1y Cay vy Cpy there are the irreducible join r =bydbyd

dbedbeyd---Jdbfork =1,2,...,r— 1. (Hint: Use ideas from the proof of 0re s
Theorem.)

c) State the dual of Kurosh’s Theorem.

11. In a distributive lattice L, the factor lattices b/a, d/c are projectively related
if and only if add = bJ ¢, aMd = bMc. In particular, a/Z is projectively related with
b/Z if and only if @ = b, where Z denotes the zero element of L.

12. Let L be a distributive lattice, and let F (L) be the system of all families of
projectively related factor lattices of L.

a) Prove that for any two families f,, f, represented by b/a and d/c respectively,
the family f,Mf; represented by (bMd)/(aMd)J (bMc) is uniquely determined and
that fMf = {, LiMf = fiMfi, (AMf) Mfs = fiM(/Mfs).

b) With the same notation as in a), define f = f, Jf, in case the families f, f,, f,
can be represented by factor lattices bja, c/a, b/d, respectively, where a < d < ¢ <b.
Show that fJf = f, and that f = f,J(f,dfs) is equivalent to f = (f,Jf;)Jfs. Further-
more, if f = f,J f;, then fMg = (f;Mg) J (;Mg) for any family g.

c) Show that if f =f,dfyd -+ Jfs andif /' =fp1dfpgd - - - Jfpy, is defined for some
permutation P of 1, 2, ..., n, then f = f'. (Hint: Use Ex. 11.)

13. With the same notation as in Ex. 12, construct a lattice L’ consisting of all
formal unions J (f;, f» - - ., f,) of finitely many families,  being any natural number.
The formal union d (f, fs» - . ., f,) is called equal to the formal union J(g;, s - - -» gs)
if and only if there are equations

l‘=/ll",ﬂ‘l"'dlﬂn‘ E=12...,7)
and
g5 = gndgnd - IGm, G=12...,98
such that the fif'# coincide with the g,’s up to order and multiplicity. Define the
lattice operations as follows:
St fas e os F) I Urgas o o fopd) = dlf1s o o5 fraa)
(fis fas o oo FY MU (G1s Gs - - - 8) = J(AMgy, Mgy, - - -, [ Mg).
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8) Show that L’ is a distributive complemented lattice.
b) Assuming that L has a zero element Z show that the mapping of the element a
of L onto the family represented by a/Z is an isomorphism of L onto & sublattice of L'.

14. Let L be a distributive complemented lattice with zero element Z. A non-
empty subset S of L may be called a point if Z does not belong to S and if the following
conditions hold:

a) § is closed under the meet operation;

b) If z and y are any two elements of L for whlch the join z J y belongs to S but
z does not, then y belongs to S.

¢) If z belongs to S and y belongs to L, then xJy belongs to S.

We say that the point S is on the element a of L if a belongs to the subset S of L.
Show that the corresp the el a of L and the set of all points
belonging to a is an isomorphism of L onto a sublattice of the lattice formed by the
subsets of the set of all points in L, taking union and i ion as lattice op

Exx. 11—14 give a proof of the

THEOREM OF STONE: Every distributive lattice is isomorphic with a sublattice of
the lattice formed by all subsets of a certain set, taking union and intersection as lattice
operations.

(Hént for the solution of 14: The main difficulty is the construction of a point S
on an el a # Z. Well-order the el of L, taking a as first element. Define
S, as the set of all elements y of L satisfying y > a. Define S, for elements other than
a by A S, already defined for a,ll elements z preceding b
in the well ordering of L. Let S, be the union of all subsets S, already defined. If, for
some y contained in S, , we have b My = Z, then let S, = S; . If, however, b My + Z
for all elements y contained in S;, then let S, be the set of all elements (bJz) My
with y contained in S;, z contained in L. Define S to be the union of all subsets S,
of L with b running over L.)

15. Show tha,t a Boolean rmg (for the definition, see Ex. 33 at the end of Chap. II)
b ik ve latcnce if we define a Mb = ab, adb =a+ b
+ ab. Show that, ly distributive lattice L b a Bool
ring if we define aMb to be ab and a + b to be the complement of aMb in aJb/Z.

16. (Wielandt.) Show that in a finite group the sub p d by two sub 1

subgroup U, U, with mutually prime orders is a direct product of U, U,. (Apply
Theorem 21.)

17. Show that the descending Loewy series of the lattice formed by the normal
subgroups of a finite group coincides with the di ding Loewy series of the lattice
formed by the subnormal subgroups.

18. (Wielandt.) A group with precisely one meximal proper normal subgroup is
called one-headed. Show that, in finite groups,

a) A one-headed group coincides with its group if and only if the factor
group over its maximal normal subgroup is not abelian;
b)IfAisa headed sub 1 group of a finite group and B an arbitrary

subnormal subgroup, then at least one of the following is true: % is contained in %8,
or DY is a proper subgroup of %, or D% coincides with % and is normal in the sub-
group generated by % and 8. (Apply Theorem 21.)
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19. (Wielandt.) Let ® be a group with a composition series. The  subnormal sub-
groups U;, U, ..., U, different from 1 determine a Wielandt decomposition of & if

1. @ is generated by W, U,, ..., U,;

2. For any system of subnormgl subgroups %, of W;(i =1, 2,...,7), the group
generated by B,, B, ..., B, coincides with @ if and only if B, =

Show that

a) Any Wielandt i 1; is one-headed, and the int ion of U; with the first
member of the descending Loewy series is the maximal proper normal subgroup of 11;;

b) The factor group of  over the first member 4, (®) has the Remak decomposition

G4, = WA,/4; x - x W A4,/4;;

u;.

c) Conversely, for any Remak decomposition ®/4, = U, x U, X - - - % 1i, there is
a Wielandt decomposition © = (U, U, . - ., U,) such that T = WAy/4,;
d) If in ¢) the Remak T, is belian, then 1, is uniquely determined

and normal in @. (Apply Theorem 21.)

20. Let U/u and B/v be two non-abelian composition factor groups of a group &
‘with a composition series which are projectively related in the lattice formed by the
subnormal subgroups of . Show that both factor groups are projective with (UM 8)/
(1M B) (11 Mp). Hence either they are identical or they cannot belong to the same
composition series of ®. (Hint: Show that 1. there is a chain W/u = Up/u,, Wy/uy, .. .,
U/t = B/v such that U, is subnormal in @, u, is normal in U; and either (i) U,_, is
normal in U, (ii) U,/U;_, is simple and #1, and (iii) U; = U,_, u,, or (i) 1, is normal
in Uy, (ii') W,,/1, is simple and +1, and (iii’) W,y =,y U; (6 = 1,2,...,m),
2. in case U,_, is normal in 1, 11;,, is normal in 11;, and W,,, is not 1;_;, then we can
replace the factor group 1,/u; by the factor group (1, ; MU, ,)/(u;_; Mu,,,).

21. Using the preceding exercise, show that in the lattice of all subnormal subgroups
- of a group with compnsmon series, every projectivity of a semi-simple factor group

b two sub bgroups of the given group is the identity automorphism.

22. Every infinite semi-group with one generator is isomorphic to the additive
semi-group of the natural numbers. Each finite semi-group generated by one element
is defined by one relation, viz., a¥+! = g¥+1-4, where N and d are natural numbers
such that d is smaller than N. The semi-group defined by such a relation consists

of the N elements a, a?, . . ., a¥ with the rule of multiplication a’a’ = a"'**, where
1 <r(x) = 2—g(x)d < N < r(z) + d. There is just one idempotent. The multiples
of this idemp form a subgroup of order d.

23. Associate with each pair of sequences a = (ay, @y, - . -, @), b = (b, by, - . ., by)
of integers for which 0 <@g, <a, <::-<4@a,, 0<by<b <:--<b,, & basis
- el w(a, b) of a module M over the rational integer ring (r = 0, 1, 2, . . .). Define

wu(n(a), #' (b)) = sign x - sign a’- u(a, b)
for any permutations n of a,, @y, ..., @, and 7’ of by, by, ..., b, that map 0 onto 0

in case @y = 0 or b, = 0. For all other pairs of seq: of gativ

set u(a, b) = 0. Define the linear operators z;, y; of M for ¢ = 1,2, ... by setting
z,u(a, b) = (1 —sign ag)u((i, ay, - . -» ), b)

you(a, b) = (1 —sign by)ee(a, (6 by« ., b)) — (0,64, . . ., @r; Ga), (bos by - by, 9)),

‘where u(a, b) runs over the basis of . Extend the mapping.
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Show that

8) %y = YilYr = TiCix = YrCix = 0, TiCy = Cix®j, YjCix = CixY;, Where
Cik = TilYp— YuTis

b) €11CapCag++ < Cop £ 0 forr =1,2,...3

c) The group A ted by the hi 14+ 2z, =u;and 1+ y; = o;
(=1, 2,...)of M is not subinvariant in the holomorph @ of A over M, but the sub-
groups W = (u;, %, .. ) B = (v;, v, ...) are subi jant in @ and A

24, Two subinvariant subgroups %, B of a group & generate a subinvariant sub-
group if m(%, ©) < 2.

(Exercises 25—31 are due to Prof. J. Lambek and Dr. J. Riguet.)

25. Let X be a system of sets %, B, .... We consider the binary relations g Ry on X'
which are defined for any ordered pair of members %, B of X as a subset [y Rg]| of the
set % X B of all ordered pairs a X b formed from an element a of % and an element
b of B. Thus, yRy(a X b) means that a X b belongs to |yRsy|.

Show that

a) The binary relations on X form & poset if we define yRy < gSp to mean
laBg| < |6Sol;

b) The multiplication that is defined by

uBg - eSo =uls

where yT'p (@ X d) means the existence of an element b of B M € such that o Ry (@ X b)
and gSp(b X d) is uniquely defined and associative;
¢) The identity yly that is defined by

alufa X b)
if and only if @ = b and a belongs to ¥ satisfies the rule
alu - uRy = uRsy - 3ly;
d) The converse relation gRy of yRy that is defined by
gRyu(d x a) if and only if yRg(a X b)
is uniquely defined and satisfies the rules
(B7)- =R, (RS)" =8-R-, oly =yoly;

e) The symmetry of the relation yRg, i.e., the equation yRy = yRy is already
implied by the inequality gRy < yRg;
f) The transitivity of R, i.e., the inequality R - R < R, and the symmetry of R
imply the equation R - R = R.
26. If we think of yRy as a many-valued mapping of & part of B into ¥, i. e.,
if R(a X b) means that b is mapped onto a,
R - R~ < gly means that R is onto,
R~ - R > ply means that R is universally defined,
R - B~ < yly means that R is single-valued,
B~ R < ply means that R is one to one.
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27. The congruence relation y Ry on % is equal to a normal congruence relation on
& subset of % if and only if it is symmetric and transitive. The subset in question coin-
cides with 9 if and only if yly < R (reflezivity of R).

28. The binary relation yRg = R is called regular if RR-R = R. Show that

a) Regularity is already implied by the inequality RR-R < R;

b) If R is regular, then R - R~ is equal to a normal congruence relation S on a subset
[IS|| of % and R- - R is equal to a normal congruence relation T' on a subset || 7|| of
B (use 27.);

¢) There is, moreover, the natural one-to-one correspondence between 118[1/8
and || T||/T that maps the S-residue class represented by a onto the T-residue class
represented by b, where qRg(a X b).

29. Let Z be a system of groups having their unit element in common. The relation
yRp is called a morphism if the set |oqRg| is & subgroup of % x B.

Show that

a) a relation R = yRg is a morphism if and only if

R(ly X 1p),
R(a X b) implies R(a™! x b-1),
R(a x b) and R(c x d) imply R((ac) X (bd));

b) The morphisms of X form a ive semi-group ining all the id
oly (¥ in X), and the morphism g Ry is a multiplicative normal congruence on a sub-
group || R|| of % if and only if Ry is symmetric and transitive. In this case R is equal
to the congruence relation of || R|| modulo the normal subgroup formed by the ele-
ments of 9 that are R-congruent to the unit el of 9. The corresponding sub-
factor group is uniquely determined by R and may be denoted by R;

d) Every morphism is regular, and the one-to-one correspondence occurring in
28c¢) is an isomorphism.

30. (Goursat-Lambek.) For any subgroup Il of % X 9B the subgroup Ry = UM U
is normal in the %-component Uy = UB M A and Ny = U N\ B is normal in the
B-component Uy = U B N\ B of U and are such that the mapping o that maps the
residue class aRNy onto the residue class b Ny (where a X b belongs to 1) is an iso-
morphism between Uy/RNy and Ug/Ny (use 28. and 29.).

Conversely, if Rty < Uy < U, Ny < Uy < B and if ¢ is a given isomorphism be-
tween Uy /Ny and Uy/Nyp, then the set 1 of all the elements a X b of Uy x Ug for
which o(aNy) = bRy is a subgroup of A x B such that Uy, Ny, Uy, Ny, o are
related to U as was defined above (apply 29a)).

31. Prove the Lemma on Four Groups in Chap. II, § 5 by application of 28¢) and 29a),
d) to the morphism R - S, where R and § are the binary relations on the group &
defined by the subfactorgroups U/u, B/v, respectively. Note that the isomorphism
between RSRE = u(ll N B)/u(l N v) and SRS =0(B N U)/o(B M u) obtained
according to 28c) is the same as the one obtained in the previous proof.
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FURTHER EXERCISES FOR CHAP. 1V, §5

8. (Fitting.) Using (12) and (13) of Chap. II, § 6, prove that the inequality
Bi(AB) < (AN Biea(B))(Ba(U) N Bia(B)) -+ - (Beea (W) N B)

holds for any two normal subgroups A and 8 of a group, and hence that the product
of two nilpotent normal subgroups is nilpotent.

9. (Schenkman.) The _element g of the group ® is called weakly central if, after a
finite ber of app i the mapping of an arbitrary element = of @ onto the
commutator (g, ) = gag-'z-! for any particular element z of @ always leads to
the identity.

Show that

a) If g'belongs to a nilpotent normal subgroup, then g is weakly central;

b) If for a prime p every element of p-power order of a finite group is weakly central,
then the intersection of two different p-Sylow subgroups is always the identity.
(Apply induction on the order of @, and use Theorem 7 of Chap. IV.)

c¢) If in a finite group the intersection of the p-Sylow subgroup S with any different
p-Sylow subgroup is the identity, then the or of an el of S and an
arbitrary element a of @ is in the normalizer of S if and only if a belongs to the nor-
malizer of §;

d) If in a finite group the elements of p-power order are weakly central, then they
form a normal subgroup;

e) A finite group is nilpotent if and only if every element is weakly central.

10. (Schenkman.) The nilradical of an arbitrary group & consists of all elements
g of & with the property that for any weakly central element z of &, g and gz
are also weakly central. (For the definition of weakly central, see the preceding
exercise.) Show that

a) The nilradical is a characteristic subgroup of §&;

b) If A is an abelian normal subgroup of the group @, g an element of the centralizer
of %, z an element of ©, and a an element of ¥, then (gz, a) = (=, a);

¢) Every nilpotent normal subgroup % of & belongs to the nilradical of @. (Apply
induction on the class of %, and use b).)

d) The nilradical of & finite group is its maximal normal nilpotent subgroup (Apply
9) and 10¢).)

e) The nilradical of a finite group ists of all the el that asubnormal
subgroup of the full group.

11. Let ® be a normal subgroup of the group ®, and let 11, B be two subgroups
of @ satisfying
UNAR=VNAN, UN =8N, U<DB.
Show that
u==s.

238
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12. a) A group satisfies the maximal condition for subgroups if and only if every
subgroup of the group is finitely generated

b) If a group sati the for subgroups, then so does every
subgroup and every factor group. -

c¢) If both a normal subgroup % and the factor group of the group & over % satisfy
the maximal condition for subgroups, then ® does so also. (Use 11.)

13. a) Every cyclic group and every finite group satisfies the maximal condition
for subgroups.

b) If there exists a normal chain

G=RD>H>RD>--- >R =1

of a group @ such that each factor group R,/RN;,, either is finite or infinitely cyclic,
then @ satisfies the maximal condition for subgroups. (Use 13a) and 12c¢).)

c) A finitely generated abelian group always satisfies the maximal condition for
subgroups.

14. a) If the group @ is generated by the complex & and if @ is nilpotent of class
¢ -+ 1, then the subgroup 1I; generated by all higher commutators (K,, K,, ..., K;)
of weight 7 in the components K, K,, ..., K; each of which runs independently
over &, coincides with 3,(®). (Clearly U; S 3:(®), (®, 1I;) S U,,,.Since U, = 3 (&)
< 3 (®) it follows that (&, 1t,_;) = ((&), U,_,) < U,. By induction, (&, II;) S U,;
hence U;2 B:(®).)

b) If the group ® is finitely d and nilp , then all bers of the
descending central series are finitely generated. (Use a).)
¢) (Jennings.) If the group  is finitely d and nilp t, then it satisfies the

maximal condition for subgroups. (Use 14b), 13c), and 12¢c).)

15. Let P be a group property. A group @ is said to be a local P-group if every
finitely generated subgroup of ® has the property P. Show that

a) Every subgroup of a local P-group is a local P-group;

b) Every local P-subgroup of a group ¢ can be embedded into a maximal local
P-subgroup of §.

16. a) Let &, & be two non-empty complexes of a group ; let 1 = ((&, 2), 8);
let B be the 11 normal subgroup of U ining (®, 8); and let W be the
smallest normal subgroup of (®, £) that contains (®, £). Show that

(B, &) (B, &, 2

and hence that
VS BWc (B, R
Show that .
(B, ) < (R, 2), (B, ) A(R, 8).

b) If & is a finite subset of a locally nilpotent normal subgroup % of @ and if 8 is
a finite subset of a locally nilpotent normal subgroup B of @, then the subgroups
U, B, W defined under a) are finitely generated and nilpotent. (Use 14c).) Moreover
(B, £), (B, &), and (R, 8) are nilpotent. (Use Ex. 8.)
¢) (Hirsch.) Any two locally nilpotent normal subgroups of a group generate &
locally nilpotent normal subgroup. (Use 16b).)
d). Every group contains one and only one maximal normal locally nilpotent sub-
. group, which may be called its Hirsch radical.
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e) Show that the Hirsch radical of a group is contained in the nilradical defined in
Ex. 10.
f) The Hirsch radical of a finite group (mox‘e generally, of a group satisfying the

maximal condition for subgroups) is its i I normal subgroup

17. a) The normelizer Ny of & maximal locally nilpotent subgroup U of a group &
is its own normalizer. (Apply 16¢).)

b) (Plotkin.) A group @ in which every proper p is properly
in its normalizer is locally nilpotent. (Hint¢: According to a) every maximal locally
nilpotent subgroup of § is contained in the Hirsch radical of &. Now apply 15b).)

18. For any set L and any ring o the ring M (o, L) of row-finite matrices over L
with coefficients in o is defined as the set of all formal sums (4;;) = Z X 4;e;;, where
to each pair of elements ¢, k of L we have assigned a ‘matrix unit’ e;, and where the
coefficients 1, that belong to o are such that for any fixed row index < all but a finite
number of the coefficients 1, vanish. Define addition, multiplication, and multi-
plication by scalars according to the rules:

ZZhgen + ZZpiren = ZZ (A + par)ear
ZZ e+ ZZpire = 22(%‘14:#&)8:3

b ZZApeq = EZMAnen
EZgen- A =ZZAg ey,

a) Prove that M (o, L) is an o-ring. If o contains a unit element, then the matrix
I = ZXJ;eq is the unit element of M (o, L), and the mapping of 4 onto AI provides an
o-isomorphism of o into M (o, L).

b) For any subset S of L the subset M (o, S, L) of all matrices () of M (o, L)
such that 1, vanishes whenever ¢ or k does not belong to S is an o-subring of M (o, L)
that is o-isomorphic to M (o, S).

c) If L is a poset, then the set 7'(o, L) of all triangular matrices (4,,) which are
characterized as row-finite matrices for which 1, = 0 if ¢ is not contained in k, is
an o-subring of M (o, L).

d) Show that all matrices (4;) of M (o, L) with all but a finite number of columns
vanishing and with the property that A, = 0 implies that ¢ is properly contained in
k form a left ideal N (0, L) of T (v, L). Moreover, for every element A4 of N (o, L) there
is an exponent n for which 4™ = 0.

e) If o ins & unit el then all the ices I + A (4 € N(o, L)) form a
group I+ N(o, L). (Use the identity (I —A)(I+ A+ A2+ ... 4 A"1) =
(I—A4n).)

f) The group I 4 N (o, L) is locally nilpotent.

g) If there are arbitrary long chains

Wiy Ty g G4y forj =0,1,...,0—1
in the poset L, then the group I + N (o, L) is not nilp (Let L be for ple, the
ordered set of all natural numbers.) If the length of properly increasing chains is
bounded, then I + N (o, L) is nilpotent.

h) For a subposet S of L, the set of matrices I + N (o, L) N M (9,8, L)isa sub<
group of I + N (o, L) isomorphic to I + N (o, S). This sub p is its own
in I 4+ N(o, L) if any element of L is properly contained in &n element of S and if
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all elements of L not belonging to S are equivalent. (For ple, let L be the ordered
set of all natural numbers, and let S be the subset of all elements + 1.)

19. A group every element of which is of finite order is called periodic. Show that

a). Every subgroup and every factor group of. & periodic group is periodic;

b) If a normal subgroup % of P group § as well as the factor group @&/% is periodic,
then @ is periodic;

c) If N is a normal periodic subgroup and if U is a periodic-subgroup of the group
@, then URN is a periodic subgroup of [CH

d) In every group @ there is preci; one imal normal periodic suk p T(®)
called the torsion subgroup of (5.‘,

e) If the normal subgroup ¢ of & group is periodic, then T(G/N) = T(G)/N.

20. A group is called torsion:free if it ins no el of finite order other than 1.
Show that

a) Every free group is torsion-free;

b) Every subgroup of a torsion-free group is torsion-free;

¢) If the factor group of the group @ over the normal subgroup % is torsion-free,
then R ins the torsion subgroup T (®) defined in 18d);

d) If both % and ®/R are torsmn-free, then @ is corsxon free;

e) In a locally nilpotent group any two p
subgroup (use Ex. 6);

f) Every periodic subgroup of a locally nilpotent group is contained in its torsion
subgroup (use 19e));

g) The factor group of a locally nilpotent group over its torsion subgroup is torsion-
free (use 19a), 18b));

h) If the center of a group is torsion-free, then its second center is also torsion-free
(use (9), Chap. II, § 6); hence it follows by induction that all the bers of the
ascending central series are torsion-free;

i) A finitely generated abelian group is torsion-free if and only if it is a free abelian
group;

j) (Jennings.) A finitely d nil group @ is torsion-free if and only if
there is a finite chain of normal subgroups of @

=R DOMHON>: - DR =1
such that the factor groups ,/%,,, are infinite cyclic for s =0, 1,...,7 —1. (Use
14c, 20h, 20i.)

21. A group © is called a group of finite rank if there is a finite normal chain

=R =2\ =>N=>--- 2N =1,

for which each factor group ,/%,,, either is periodic or infinite cyclio. Show that

a) The number r = 7(®) of infinite cyclic factor groups R,/N;,, is independent
‘of the choice of the normal chain by which it is determined (apply Schreier’s
Refinement Theorem); hence we have obtained a group invariant which may be
called the rank of the group;

b) Every subgroup and every factor group of a group of rank r is of finite rank
not greater than r;

¢) If the normal subgroup % of a group @ is of rank 7 and if @/R is of rank 7,
then @ is of rank r + #';

a.
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d) For a group & of finite rank, r(®) = r(@!/f{(@)),

e) The rank of a group of finite rank is ch d as the i ber of
independent clements, where we call the elements 4,, 4,, . . ., 4, of a group indepen-
dent if 4, (1 = 1,2, ..., n) is of infinite order modulo the smallest normal subgroup
A,;_, of (4,, 4,, ..., 4;) containing the elements 4,, 4,, ..., 4, ;.

22. (MacLain.) Prove that

a) For any two subgroups %, B of a group, (%, B) is always normal in (%, B);

b) If B is contained in (%, B) and if (¥, B) is hilpotent, then B = 1;

c) If B is finitely generated and contained in (%, B) and is not 1, then (¥, B)
contains a finitely generated subgroup that is not nilpotent;

d) A minimal normal subgroup of a locally nilpotent group always belongs to the
center of the group.




APPENDIX F

FURTHER EXERCISES FOR CHAP. IV, §1

4. (Gaschiitz.) Let us ider the relation bet an extension @ of the abelian
group N with the factor group € and the extension 9, contained in @, of R with a
subgroup U of finite index n in €. We assume that § splits over %. Using a right
representative system § of € over Il we can decompose & into the cosets Spul,
where ¢ runs over § and u runs over U, such that S,y = S,Sy, Suw = S“S' , 8.8,
= COg,yS2y, S: NS;! = N* for , y in €, N in %; moreover, the C,,, are in N.

Show that

a) Sy = 8,8, for x in €, w in U;

b)C,,—C,,uforz,ym(E,umll

¢) The el ay d by fc the prod over all C, , with ¢ running
over § is independent of the choice of the representative system § (where o is a fixed
element of (E),

d) 05, = ala,a;t for 0,7 in G;

e) If the mapping of N onto N* is an automorphism of %, then an extension
of R with the factor group € splits if and only if the extension of % with the factor
group 1 contained in @ splits over %;

f) An extension @ of & finite abelian group R with a finite factor group € splits
over R if and only if the extension of % contained in ®, with each Sylow subgroup
of € as factor group, splits over R;

g) Assumiiig C;,; = 1 for o, 7 in € and T, being & second representative system of
@& over N that satisfies the condition T, T’y = T,,, T\, =S, for 6, zin €, u in U1, we have

Ty = bgSqgs bgr = bgbey, b, =1, by, = b,, b3 = &,

where b, d a certain el of M depending on g, and ¢ is the product of the
elements b, with ¢ running over §;
h) Under the ption that the ion & over N splits and that the mapping

of N onto N is an automorphism of %, two representative subgroups €,, €, of &
over M are conjugate under & if and only if the representative subgroups €, M 9,

M § of  over N obtained by restricting € to U are conjugate under @;

i) Two representative subgroups of a splitting extension @ of a finite abelian group
N with a finite factor group € are conjugate over @ if and only if the representative
subgroups obtained by restricting € to any of the Sylow subgroups are conjugate
under &. The condition that every Sylow subgroup of @& splits over its intersection
with 9 is equivalent to this condition.

. 5. (Example showing that Gaschiitz” Theorem does not hold if the normal subgroup
is not abelian.) Let ®, be the multiplicative group formed by the 2 X 2-matrices
of determinant 1 with its entries in GF (32) for which a suitable non-vanishing scalar
multiple with its entries in GF (3) exists. Let & be the normal subgroup consisting
of +1, and of the six matrices that have their entries in GF(3) and that have sum
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zero over the main diagonal. Let G4 be the 2-Sylow subgroup of &, which is generated
by ®; and by the matrix (:) _?) , where 12 = — 1; let @; be the 3-Sylow subgroup

generated by the matrix (; i), lot @y5.45) .16, and g, @33 be the groups of

all 4 X 4-matrices of the form :;1 ‘1)?), with 4, B contained in @, @, @, and

“@,, respectively; and let ®, be the normal subgroup of §, s consisting of I, and —1I,.
Then the group & = @4 4/, does not split over its normal subgroup N = @ 4/ G,,
whereas both a 2-Sylow subgroup and a 3-Sylow subgroup of ®/% correspond to
splitting extensions of N, viz., G4 16/ G, and G, 3 G, o/ ®, respectively.

6. The @-subgroup of a finite group @ does not contain a Sylow subgroup = 1
of @. (Hint: Apply Ex. 7 of Chap. IV § 3, and Theorem 25.)



APPENDIX G

A THEOREM OF WIELANDT
An addendum to Chap. IV

In Chap. II, § 4 we saw that a finite group @ having 1 as center is iso-
morphic to the group of inner automorphisms of . Also, for an element
of the automorphism group @, of & we have aza~! = 2%, where z denotes
the inner automorphism corresponding to the element x of &. Hence an
equation aza~! = z implies that z°z~! is contained in the center of &
and hence that x° is equal to x. By identifying each element = of ¢ with
the corresponding inner automorphism, we may consider ® = ®, as a
normal subgroup of ®, such that the centralizer of &, in @, is 1.

Since @, is again finite and has center 1, we may continue with the con-
struction by extending @, to the automorphism group ®, of ,, etc. We
obtain a sequence of finite groups

(1) =096, <8<,

called the automorphism tower of ®, each member of which is contained as
a normal subgroup in the succeeding subgroup and has centralizer 1. We
may raise the question, Is the sequence of the groups in (1) strictly in-
creasing? Or is one of the groups &; isomorphic with its group of auto-
morphisms? In the second case we say that the automorphism tower is
of finite height. In this case @, = ®,,, = - - - is a complete group, and we
will have succeeded in embedding the given group with center 1 subnormally
in a complete finite group with center 1.

The solution to this problem was found by Wielandt and gave rise to
interesting theorems of a general nature concerning the subnormal sub-
groups of a group, which we will now consider.

DrrFINITION: A property P of groups is called normally persistent if

1. Every group isomorphic to a group with property Palso has property P;

2. In a given group the subgroup generated by a system of normal sub-
groups having property P also has property P.

Examples of normally persistent properties are

1. the property of being a p-group,

2. the property of being semi-simple,
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3. Local finiteness: Finitely many elements of ¢ always generate a finite
subgroup. !

4. Local nilpotency (see Exx. 15,16¢), Appendix E),

5. Periodicity (see Ex. 19¢), Appendix E).

If, in the statement of condition 2., the word ‘normal’ is replaced by
“subnormal’, a property P satisfying 1. and 2.is called subnormally persistent.

It is immediate that subnormal persistence implies normal persistence.
Conversely, '

THEOREM 28: Normal persistence implies subnormal persistence.

Proof: For brevity ‘we call a group having the normally persistent pro-
perty P a P-group. Let B be a set of subnormal P-subgroups of the group
@. We want to prove that the subgroup § generated by all the subgroups
belonging to B is a P-subgroup of .

First of all, let us assume that the function m (¥, &) defined on B and
indicating the minimal length of a normal chain from % to &, is bounded
by a number n. We apply induction on #n. If n = 0, then every member
of B coincides with @&, and hence & = § is a P-group. If n = 1, then every
member of B is a normal P-subgroup of ®. Because of the normal persis-
tence the subgroup § generated by its own normal P-subgroups is also
a P-subgroup of . Now let » > 1, and that the t is true
in the case that m (¥, ) <n for all members X of B. For any member
%X of B there exists a normal chain X = %X, <%, <%, <--- <%, =6
from X to @ of length n. Taking any conjugate X of X (¢ in &) we have the
normal chain ¥* =X) <% <% <--- <1 X4, = ¥,_, of length n—1 from
%! to X,_,. All conjugates of X under § are isomorphic to X and hence are
P-gubgroups, and furthermore we have m(¥¢, ¥,_,) <n. By the induction
hypothesis, the subgroup X generated by the conjugates of X under
is a normal P-subgroup of §. All normal subgroups X generate a P-subgroup
9 of §. Since § is a subgroup of , it follows that § = P.

11t has to be proved that two locally finite normal subgroups %,, %, of a group &
generate a locally finite normal subgroup. Let ,, Z;, . . ., Z, be finitely many elements
of RN, N,. Then z; = y,z,, where y; is an element of N,, z; an element of N, and the
subgroup 11 generated by z,, 2, . . ., z is finite. The finitely many conjugates of the
elements y; under U are in N, and hence all together generate a finite subgroup ¥
of @ which is normal in the subgroup % of & generated by B and 11; hence B = B U
is generated by ¥y, Ys, - - -, ¥Yrs 215 % - - -5 2, 80 that the index of B over B is equal
to the index of Ul over the intersection of 1l and . Thus % is finite. The subgroup
generated by «,, @,, ..., &,, being a subgroup of %, is finite."
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Since for any subnormal P-subgroup ¥ of @ the minimal length of a
normal chain from any conjugate of X to & is the same, it follows from the
preceding that any subgroup generated by some conjugates of ¥ is a P-
subgroup. -

For any system B of subnormal P-subgroups of ¢ the normal subgroup
Z of § generated by the conjugates under § of each member X of B is a
P-subgroup; hence we see as above that the members of B generate a
P-subgroup $ of @, Q. E.D.

The smallest normal subgroup of a group & containing a given subgroup
1 is the subgroup generated by all the conjugates of U. Applying Theorem
28, we obtain Corollary 1.

COROLLARY 1: The normal subgroup generated by the conjugates of a sub-
normal subgroup having the normally persistent property P is a subgroup with
property P.

Theorem 28, applied to Examples 1. and 2., gives Corollaries 2 and 3,
respectively.

COROLLARY 2: Any number of subnormal p-subgroups of a group generate
a p-subgroup. In particular, the normal subgrowp generated by the conjugates
of a subnormal p-subgroup is a p-subgroup.

CoRrOLLARY 3: Any number of subnormal semi-simple subgroups of a
group generate o semi-simple subgroup. In particular, the normal subgroup

- generated by the conjugates of a subnormal semi-simple subgroup is semi-
simple.

Theorem 28 can be extended in the case of a group @& subnormally
embedded in another finite group § if there is known an ascending chain

2) 1=B,<B, B, <q---<1B, =6

of normal subgroups extending from 1 to @& such that %B,,,/%; is either
a p;,,-group or a semi-simple group.

THEOREM 29: With proper choice of the chain (2) the subgroups 9; of D
generated by the subgroups conjugate to B; under § together with  form an
ascending chain 1 = 9, <1 H; <D <1+ <19, 19 of normal subgroups
of § such that

1. By1/B; and D11/ are either p;. -groups and there is a normal sub-
group U,y of ® with a p;y-factor group; or B;,1|B; and 9;,1/9: are semi-
simple groups, in which case we set u;,, = & in any case

(3) (Uir1, Dina) € Binais



248 G. A Theorem of Wielandt

2. The intersection of H; and & is B; for i =0,1,...,r.

Proof: If @ = 1, then set §, = 1. If & =1, then @ contains a smallest
normal subgroup different from 1 which is either an abelian group of prime
exponent p, or a semi-simple group. In the former case, let B, be the
maximal normal p,-subgroup of &. In the latter, let B, be the maximal
semi-simple normal subgroup of ®. In any case, in view of Corollaries 2 and
3 to Theorem 28, %, is uniquely determined. Similarly, form B,/%B, in
@/%B,, etc. Continuing this construction, we obtain a chain (2). For the
corresponding ; the factor group §,,,/9; is the normal subgroup of $/9;
generated by the subnormal subgroup B,.;9:/9:.

Since the factor group B;,;9,/9; is isomorphic to the factor group of
B,,, over the intersection of B,,, and 9;, it follows from Corollaries 2 and 3
of Theorem 28 that either 8;,,/B; and §,,,/9; are both p;,,-groups or they
are both semi-simple. We claim that 8; = & N §,. This is obvious for
i = 0. Assume that §; N @ = B;. We observe that H.,; N ©/B; is iso-
morphic to a factor group of 9,,,/9. and hence is a p;,,-group in the first
case and is semi-simple in the second case. Since in both cases %,,, is
contained in the intersection of §,,, and &, we conclude from the maximal
property of %, that 9., " & = B,,,.

In order to prove (3), let us observe that there is a normal chain
B=0,<6, <96, I I, = 9. Let B;; = 9:(&; N Din1), 80 that H;
is properly contained in ®;, = §,;%B,,; and @,y <IG;; - -+ < Gy = Diyyq-
Let g,; be the set of all elements x of @ satisfying the condition (z, D.4,)
< @,;. For an element z of g;; and an element % of §;,, we find that
(%, h~!) = w is contained in @,;. By induction on =, we find that (2", k1)
=ww*--- w*"". Since z, as an element of @, is also an element of §;_,, we
find that zmwz-mw-1 already belongs to ©:(®,;_; N 9;;1), which is the
same as @, ;_,; hence the two elements w and w*™ are congruent modulo
®;,;-1, and thus the element (2, A1) = ww®---w*"" is congruent
to wn. It follows that (x®4®ii1, b-1) is contained in @, ;_, for A-* an
arbitrary element of §,,,; therefore z®#:®.:-1 belongs to g, ;. Hence
z%4: %52, being equal to (2% %,+1)%1:8411 belongs to g, 5y, ete. Lastly
2%5:®0 belongs to g,,. Since, as follows from the preceding, gy, contains
all the powers of each of its elements, and since ®,;: ®,, is a divisor of
D14t 9, it follows that 294+1:% belongs to gy, for all « contained in the set
Gis» 8is being the same as ©.

When %,,,/®; is a p,,,-group, let @/u,,, be the maximal p,,,-factor
group of ©; then u,,, is generated by all the p7,,-th powers of the elements
of @, with n large. Since in addition ,,,/9; is & p;,,-group, it follows
that 1,4, is contained in g, and hence (3) holds. .
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If, on the other hand, ,,,/9; is semi-simple, then by the results of
AppendixesBand C,!the group ® 9,/9,, being subnormalin 9/9:,isnormalin
G 9:11/9:. Hence (G, 9,,,) is contained in §;,, N & 9:. But by the modular
1aw, 2N (B9) = ($i11 V) H: = B,,,9;, and thus (&, $144) is con-
tained in B,,,9,;, Q. E.D.

THEOREM 30: If together with the ptions of Theorem 29 we have the
ceniralizer of ® in § equal to 1, then the order of § is bounded by a constant
depending only on .

Proof: In the case that %B;,,/%, is a p,,,-group, we have for any element

zof @
(Z(41) N 9is1)® = Z(uFa) N %1 = Z(Mi30) N Duvas

hence
(4) (Z (i) Dis1) <UZWisy) N i1 G

Let p be a p;,,-Sylow subgroup of @. It is contained in a p,,,-Sylow
subgroup P of (Z(u;,1) N P141) @. The intersection of 3(PB) with Z (u,,,) N
$i41 belongs to Z(u;4,) N Z(P) and hence to Z(u;.,) N Z(p) = Z(uis1p)
=Z(®). But by assumption, the centralizer of  in § is 1; hence

(5) F(B) N Z(Uip1) N Disn =1.
Because of (4), we find that
(6) BN Z (1) N iy is normal in P.

From (5), (6) and from the theorems on p-groups proved in Chap. IV, § 2,
we conclude that

BNZW) N ia = 1.
Hence p;,; does not divide the order of Z(u;,;) ™ 9.,,. A fortiori, p,,,
does not divide the index of Z(t;,;) N 941 OVer Z(u;,,) N 9;; this index,

1 We have to show that a group € d by a sub 1 i-simple group
% and a sub 1 group B tains B as a normal subgroup. By Corollary 3 of
Theorem 28, the normal subgroup % of € 1 by the conj of 9 under €

is semi-simple. Let B = B, < B, <--+ < B, = € be & normal chain of minimal
length s extending from B to €. Since B,_, N U is normal in % and ¥ is semi-simple,
it follows that there is one and only one subgroup %, of % for which ¥ is the direct
product of %, and B,_; N A. T ion of this d position with an el

x of B,_, yields a direct decomposition of ¥ into the direct product of %,* and B, ; N
9; hence 9,° = 91;; and hence ¥, is normal in €, and € is the direct product of %, and
$8,_;. If 8 > 1, then we conclude in & similar way that 9B,_, ~ ¥ is the direct product
of B, , N A and some subgroup %,, so that B,_, is the direct product of %, and B,_,,
€ is the direct product of %,;, %, and B,_,, and hence B, , is normal in €, which
.contradicts the minimal property of s. Hence 8 < 1, and B is normal in €.
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because of the Second Isomorphism Theorem, is equal to the index of
(Z(Wes1) N Dia) Oi over 9i, which is a divisor of 9iyq: i, & power of
Pis1- Therefore Z(u;,,) N 9,y is equal to Z(u;,,) N 9y, s0 that

(7) Z(4:44) N iy is contained in P,.

According to (3), each element z of §,,, determines the function (2, ) of
y, an element of u,,,, with values in’ §,%;,,. There are at most
(9:B,,,: 1)"+2:2 such functions. We have (z, y) = (2, y) for all y of u,,,
if and only if zyaz-! = 2’ya’-}, i. e., x is right congruent to 2’ modulo
Z(u;4,); hence
Dear 1 (B Wesn) N Digr) < (Vg 1 1)L,
From (7) it follows that
Dis10 9 < Diva 1 (Z(Uina) N Din)-

Noting that §;%B;.,:9: = B.1:(H: B;4,) and that one has §,B;,,: 1
== (9:Bi41: $4)(Hi: 1), we find that

(8) il << (B : %i)l'“l:l(‘bi : l)“‘"“m“~

On the other hand, when %,,,/%8,; is semi-simple, we set u;,; = @.
Thus (3) is again satisfied. According to our assumption concerning &,
the centralizer of u;,; is 1; hence (7) is also satisfied. From (3) and (7) we
conclude, as before, that the inequality (8) holds. Finally, we have to note
that Z(®) = 1 implies Z(9,) = 1, and hence § : 1 is a divisor of the order
of the automorphism group of §,. Consequently, a very rough estimate is

9 H:1 < (H: )
Set
M, =1,
My = By s V)t I Y@V +1 for §=0,...,r—1,
M ==(M,)!.

Then (8) and (9) together yield
$:1<M, Q= p.
TueoreM 31 (Wielandt): The automorphism tower of a finite group
with center 1 is of finite height.

Proof: Let @ = @, < ®, <@, <1--- be the automorphism tower of
. The center of each member is 1. In order to apply Theorem 30, we must
prove that the centralizer of ® in @, is 1.
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In fact, we can show that the centralizer of ®; in §; is 1 if j > 4.1 This
has already been shown in the case j— ¢ = 1. We complete the proof by
induction on k =j—i. As/sqme that the assertion is true for j —14
=k>1, and let j—i =1Fk 4 1. Then the centralizer of @, in @,_, is 1.
The normalizer of @&, in @;_, is §,,,. For, §,,, belongs to the normal-
izer of ®; in @;_,, and if a is one of the elements of this normalizer, then
the transformation by @ defines an automorphism @ of ®;; hence & is ob-
tained by transformation of @&; with an element a’ of the automorphism
group @,,,, and a~'a’ belongs to the centralizer of ®; in §,_; i.e.,
ala’ =1, a=a’, and ¢ is contained in @,,,. An element b of the cen-
tralizer of ®,in @, transforms the normalizer of ®;in @;_, into the normal-
izer of @? = @; in @2, = @,_,; i. e., &2, = ©,,,;. Consequently, b belongs
to the normalizer of ,,, in ®; which, by the induction hypothesis and
by the subsequent statement concerning the normalizer, is equal to &,,,.
For an element z of @,,; and an element y of ®; we have: byb~! =y,
zyaz~! is contained in ;, and baxb-! is contained in @,,,; therefore

zyxl=y* = by*b~! =babbybbx b = Y

and therefore x = z?. The element b belongs to the centralizer of ®,;,, in
@49, and hence b= 1.

1 This short d ration is in with a cc ication from D. G.

Higman.




APPENDIX H
FURTHER EXERCISES FOR CHAP. V, §1

Ezxercise: For an odd prime p let 1) =0,1, —1 when a =0, whena=22%=0

is solvable, and when a = z? is not solvable modulo p, reépectively. Show that

a) (%) = agé} (mod p);

b) If a %= 0 (mod p), then (—;—) = (—1)*, where pu(a) deno'/es the number of

solutions of the congruence ax = —y(p) satisfying 0 < z, y g
-GG
e) [(—)=(=]=)-
P p/\p
(Hint: Compute the fer from the multiplicative group & of the prime residue

classes modulo p to the subgroup Ul of 4 1 (mod p) in &) accerding to (19) and in b) by
taking 1, 2, ..., ?T_l (mod p) as representative system.)



FREQUENTLY USED SYMBOLS

(€3 Group (p. 1)
u Suscroue (p. 10)
[CA INDEX of @ with respect to 1l = number of left (right) cosets (p. 10)
f ComPLEX = subset of & group (p. 19)
= Complex transformed by & =set of all zKz-! (p. 25)
Nga NorMaLIZER of & =group of all z which transform  into itself (p. 26)
Za CENTRALIZER of ® =group of all z which are permutable with every
element of & (p. 50)
" NORMAL SUBGROUP=subgroup which is f d into itself by all
elements (p. 23)
G/N FacTor GrouP of & over N =group of cosets of & by % (p. 38)
) CENTER OF @ = group of all elements commuting with every element of ¢
(p. 27)
Jo Group of all INNER AUTOMC ( fi i of @ (p. 48)
As Group of all AuToMORPHISMS of & (p. 48)
AlJ Group of OUTER AUTOMORPHISMS of & (p. 48)
[ A subgroup of =i ion of & with its maximal subgroups (p. 49)
(a,b)=aba1b* CoMMUTATOR of a with b (p. 18)
T (@b,0) = (a,(b,c) (p. 81)
(,B) mutual CommuTATOR GROUP = group of all (U, V) (p. 81)
&'=DG=(6,6) CommMUTATOR GROUP of @ (p. 67)
@/’ Facror CoMMUTATOR GROUP (p. 67)
DiG=D(D"1@) 3-TH DERIVATIVE of & (p. 79)
k degree of METABELIAN group ®, so that D*-1@ = D*@ =e (p. 79)
®=38,28,28;... DESCENDING CENTRAL SERIES (p. 155) 80 that
8:=(8,8:) is the i-th Reidemeister commutator group
e=3C#C%.-- ascending central series (p. 50) so that
3¢ is the i-th center of &, hence 3,/3,_, is the center of ®/3;_;
c Class of the nilpotent group &, hence 3., +3.= & and 8.+ Beqa=¢
S, is a SyLow p-Grour of & (p. 135)
N, Normalizer of S, (p. 135)
2, Center of S, (p. 135)
d(®) The minimal number of independent of @ (p. 141)
Ey=(p*—1) (p*1—1) ... (p—1) (p. 142)
group = inte; ion of all normal subgroups with abelian

&' (p) P
. p-factor group (p. 168)
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G/&'(p)
T,
®/2,

AnN>INm®

Frequently used Symbols

p-factor group = imal abelian p-factor group (p. 158)
Intersections of all normal subgroups with index a power of p (p. 159)
Maximal p-factor group (p. 159)

x € @ means: z is an element of &

U & means: 1l is a proper subgroup of ¢

11\/ 8 is the sum of the sets 1l and B8

NN\ R is the intersections of 11 and B’

N C G (B2 1) means: 11 is a subgroup of ¢

N <@ (> U) means: 1 is a normal subgroup of

N < <@ (B> > 1) means: 1l is a subnormal subgroup of &

or (l1,B) denotes the subgroup generated by the two subgroups 1I, B of
agroup ~

U x B denotes the direct product of the groups %,8

A* B denotes the free product of the groups %, B

a<b (b=a or aCb) means: the poset element a is contained in the poset
element b

a<bmeans: a<b, but not b=>a; also denoted by: a>b’

aKb means: the lattice clement @ is Kurosh-invariant in the lattice ele-
ment b

aNb means: @ is normal in b

aNNb means: a is subnormal in b
aJ b denotes the join of a and b
aMb denotes the meet of @ and b
denotes the factor lattice of a over b
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Burnside basis theorem, 141
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cancellation law, 3, 73, 106
center automorphism, 52
center, of group, 26f., 27

of ring, 87
central, weakly, 238
central chain, 155
central factor group, 232
centralizer, 51
central operator, 52
central series, ascending, 50

descending, 157ff.
chain, 22, 23, 57, 77, 155, 215

central, 155

factor of, 77

Loewy, 215

normal, 57, 77

refinement of, 77
characteristically simple group, 50
characteristic of module, 86
characteristic series, 60, 152
characteristic subgroup, 50f.
class, of arbitrary group, 159

of conjugate elements, 26

of nilpotent group, 141

residue, 10, 87

unit residue, 33

of words, 219
class equation, 26
combination constant, 99
commutative, 9, 69
commutative law, 9, 20
commutative ring, 87
commutator, 78

higher, 82
commutator form, 82, 156, 157
commutator group, 78ff.

higher, 79, 174

mutual, 81

p-, 158

Reidemeister, 156
complement, 206
complemented lattice, 206
complementation, 208ff.
complete group, 48

Index

complete lattice, 68
complete near-field, 107
complete near-ring, 107
complete poset, 68
complex, 19ff.

normal, 169
component, 89, 199, 225
component representation, 110
composite group, 24, 109ff.
composition factors, all cyclic, 80
composition series, 60

of p-group, 137
congruence, 10, 12, 13f., 24, 64, 85, 91

multiplicative, 24

normal, 13, 32, 64

of words, 219, 224
congruence root, 146
conjugate, 16, 17, 25, 26
consequence relation, 226
coset, 10 .
counting principle, 152
cyclic group, 15
cyclic notation, 7

DECOMPOSITION, direct, 111, 198fF.
Remak, 113, 203
vector, 214
Wielandt, 235
decomposition operator, 111, 199
Dedekind element, 74, 190
degree, of finite extension, 90
of polynomial, 101
of representation, 39
denominator, 183
derivation of quasi-ring, 186
inner, 186
derivative of group, 78f.
Desarguean projective geometry, 213
descending central series, 155ff.
diagram, Hasse, 59
difference, 85
difference semi-group, 92
difference semi-ring, 94
difference set, 21
differentiation, formal, 186
dihedral group, 18
dimension, 213
of vector module, 89, 90
dimension function on lattices, 205
direct decomposition of lattice, 198-204
direct join, 198, 232
direct normal form, 226



direct product, 109ff., 206, 225
direct sum of modules, 121
directly indecomposable, 111
distributive law, 20, 21, 86, 105
distributive lattice, 209fF., 233f. ~ ~
division ring, 87
divisor, greatest common, 86, 91, 182
normal, 33
domain, dual, 186
of integrity, 184
multiplicative, 9, 33, 184
double chain condition, 59, 113
double module, 32
double transposition, 56
dual, 63, self-, 63, 656
dual domain, 186

ELEMENTARY abelian group, 142f.
elementary divisor, 121
elementary ideal, 120
elementary transformation, 118, 218
endomorphism, 44
enumeration theorems, 152ff.
quival , of factor 127
of defining relations, 227
of matrices, 118
in poset, 62
of representations, 39
in semi-group, 182
in set with reduction, 223
even permutation, 8
exchange equation, 114
exponent of group, 108
exponential module, 85, 108
extension, 46, 104, 126f.
finite, 90, 104
extension theory, 124ff., 161ff.

FAcToR, 1, 57, 717, 80
composition, 80
of normal chain, 57, 77
factor group, 38, 195fF., 232
central, 232
‘maximal nilpotent, 159
factor lattice, 70
factor module, 85
factor ring, 87
factor semi-group, 91
factor system, 125
abelian, 161
equivalence of, 127
retracting, 128, 161
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faithful representation of group, 39
field, 87, 88, 104

finite, locally, 246

finite algebra, 103

finite extension, 90, 104
finite group, 3

finite G-module, 89

finite nilpotent group, 143f.
finite rotation group, 16
Fitting’s lemma, 113

four elements, lemma on, 76
four group, 56

Frattini, 214, 215

Frobenius’ theorem, 28

free group, 227

free product, 218

fully invariant subgroup, 46
functional notation, 5

GaLors field, 104f.

game, 230

generator, free group with, 227

greatest common divisor, 86

group, 1 (see also: abelian, abundant,
complete, etc.)

of an algebra, 84ff.

groupoid, 31, 181

Griin’s theorem, 170

(9, @)-system, 164

half field, 184

halfgroup, 183

halfmodule, 92

halfring, 95

Hamiltonian group, 160

Hasse diagram, 59

hexagon lattice, 71

Hirsch radical, 239f.

holomorph of group, 53fF., 107

homomorphic mapping, 35, 63, 87

homomorphism, 35ff., 63, 64, 91, 217

homomorphy, 35, 63

hull, subnormal, 192

hypercomplex system, 103

ICOSAHEDRAL group, 19
ideal, 86, 94
elementary, 120
order, 123
idempotent, 69, 182
identity, 1, 2, 7, 103
imprimitive, 42, 181
incidence matrix, 13
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inclusion, rule of, 73
indecomposable, directly, 111
indecomposable lattice, 198
independence, linear, 89
independence of group axioms, 9
index, 10
inner automorphism, 48
inner derivation, 186
integral domain, 184
intersection, of complexes, 20

of Sylow p-groups, 138
intransitive, 40
invariance, Kurosh, 74
inverse, 2, 3, 5, 21, 85
inversion, 8 -
irreducible, join-, 233

under binary operation, 221
irreducible lattice, 213
isomorphism, 37, 63, 64, 65, 87, 127, 227
isomorphism problem, 227
isomorphism theorem, 38, 39
isomorphy, 37f.
isotonic, 64

JAcoBI identity, 96

join, 68, 69, 198, 232
Jjoin-irreducible, 238
Jordan ring, 95

Jordan theorem, 55, 57, 76

KERNEL, 66, 91
Klein four group, 56
Kurosh invariance, 74

LATTICE, 68, 69
complemented, 206
complete, 68
decomposition of, 198ff.
distributive, 209ff., 233f.
factor, 70
irreducible, 213
MD-, 202
modular, 190
n-dimensional, 206
sub-, 70
subnormal, 193

least common multiple, 86

left coset, 10

left congruence, 12

left distributive law, 86

left divisor, 182

left equivalent, 182

Index

left ideal, 86, 94
left identity, 1
left representative function, 12
left representative system, 12
left residue class, 12
left scalar, 97
letter, 6
Lie algebra, 103
Lie multiplication, 95
Lie-ring, 95, 96
linear combination, 89, 99, 100
linear expression, 82
linear group, general, 231
special, 232
linear transformation, 98, 101, 103
matrix of, 102, 103
local finiteness, 246
local P-group, 239
locally nilpotent group, 239f., 241, 242,
246 .

Loewy series, 215
lower normal series, 192

MAPFING, 4, 35, 36, 37, 47, 63
matrix, 13, 102, 231

normal, 115

bordering of, 118

diagonal, 120

equivalent, 118

incidence, 13

relation, 117
matrix ring, 102
matrix unity, 103
maximal condition, 60, 70, 239
maximal nilpotent factor group, 159
maximal normal subgroup, 145
maximal p-factor group, 159
maximal subgroup, 10
maximal submodule, 86
maximum theorem, 22
m(b, c), 190
MD-lattice, 202
meet, 66, 69
meromorphism, 47
meromorphy, 47
metabelian group, k-step, 79
metacyclic group, 174
minimal condition, 60
minimal element in poset, 221
minimal subgroup, 10
modular lattice, 190
modular law, 190, 233
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module, 84
double, 31
exponential, 85, 108
factor, 85
finite, 89 -
proper, 88
quotient, 186
©-, 88
semi-, 92
sub-, 85
vector, 89
monomial representation, 166
morphism, 237
multiplication, 1, 3, 4, 94, 95, 96, 125, 240
inversion of, 2
multiplicative congruence relation, 24
multiplicative domain, 9, 33
admissible, 45
ordered, 184
multiply transitive group, 43, 44
mutual commutator group, 81

NATURAL homomorphism, 64, 91, 181
natural isomorphism, 64
near-field, 106, 107

complete, 107
near-ring, 106fF.

complete, 107
negative, 91
nilpotent group, 141, 143f., 159
nilradical, 238
non-commutative field, 87
non-trivial subgroup, 10, 24
normal chain, 57

minimum length of, 190
normal complex, 169
normal congruence, 13
normal direct join, 198
normal divisor, 33, 91
normal form, direct, 226
normal group, 23

- 171
normal mapping, 115
normal matrix, 13
normal multiplication table, 4, 29
normal operator, 52, 200
normal series, 59, 60

lower, 192
normal subgroup, 23

maximal abelian, 145

* normalizer, 26, 27

normally persistent, 245f.

263
null element, 68

OCTAHEDRAL group, 18
odd permutation, 8
one-headed group, 234f.
operator, 44

additive, 106

central, 52

on cyclic groups, 47

decomposition, 111, 199

extension of, 46

normal, 52, 200

product of two, 44

sum of two, 106
operator domain, common, 45
operator homomorphy, 45
order, of group, 3

of element, 15

of permutation, 16
order ideal, 123f., 176
ordered group, ring, etc., 184, 185
ordering, of quasi-group, etc., 184, 185
outer automorphism, 181

PARENTHESIZATION, 9, 85
partially ordered set, 62
p-commutator group, 158
pentagon lattice, 71
perfect group, 159
periodic group, 241, 246
permutation, 5, 27

even, 8

order of, 16
regular, 41
permutation group, 4ff., 6, 40ff.
alternating, 8
imprimitive, 181
intransitive, 40
primitive, 42
regular, 6
symmetric, 6
transitive, 40
multiply, 43
persistent, normally, 245f.
subnormally, 246
p-factor commutator group, 158
p-factor group, maximal, 159
p-group, 135
P-group, 246
p-normal group, 171
point, 2183, 234
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pole, 16ff.
polyhedral conditions, 183
polyhedral group, 19
polyhedron, abstract, 183
polynomial domain, 101
poset, 62
complete, 68
dual, 63
positive element, 185
power, of complex, 29
of semi-ring, 185
power rules, 2, 80f.
prime field, 88
prime residue class, 145 _
primitive congruence root, 146
primitive representation, 42
primitive submodule, 187
principal ideal theorem, 177ff.
principal series, of group, 60
of p-group, 140
product, 1, 2, 21, 86, 94, 95, 96, 98, 102,
106, 110, 125, 217, 218, 224, 231
of complexes, 21
direct, 110, 206, 225
free, 218, 220
of matrix, 102
in near-ring, 106
over semi-groups, 217
defined by relations, 224
with amalgamated subgroups, 231
in semi-ring, 94
projection, 70, 73
projective, 72
projectively related, 188, 189
projective geometry, 218
projectivity, 188, 189, 232
proper G-module, 88
proper subgroup, 10

QUASI-RING, 95, 99, 185
ordered, 185

quaternion group, 146, 147, 170
generalized, 147

quotient field, 184

quotient group, 183

quotient module, 186

quotient ring, 184, 187

quotient semi-group, 184

quotient semi-ring, 184

RapICAL, 181, 182, 239
rank, 241f.

Index

rectangle rule, 4

reduction, 218, 221, 222

reduction principle, 222, 225fF.

refinement, 57, 77, 188, 198
proper, 59

reflexivity of congruence, 13

Reidemeister group, 156

regular, 6, 41, 237

relation matrix, 117

remainder class, 10

Remak decomposition, 113, 203, 214

ion (in p ions), 39, 40,

repr
110
degree of, 39
equivalent, 39
faithful, 39
imprimitive, 42
intransitive, 40
monomial, 166
primitive, 42
regular, 41
transitive, 40
representative, 11, 14
common system of, 12
residue class, 10, 87
prime, 145
unit, 33
residue system, 14
retracting factor system, 128
right congruence, 10
right coset, 10
right distributive law, 86
right divisor, 182
right equivalent, 182
right ideal, 86, 94
right representative function, 11
right scalar, 97
right unit, 2
ring, 86f. (see also, quasi-, etc.)
of linear transformations, 102
Boolean, 185, 234
rotation group, 16ff.

SCALAR, 97
self-dual, 63, 65
semi-group, 1, 90ff., 226, 235
difference, 92
factor, 91
semi-module, 92
semi-ring, 93
associative, '93f.
difference, 94



ordered, 185
proper, 98
-, 98
semi-simple group, 214, 235
series, 50, 60
ascending central, 50, 140, 155fF.
characteristic, 60, 152
composition, 60, 137
Frattini, 215
Loewy, 215, 234
normal, 59, 192
principal, 60
simple group, 24, 50, 111
skew field, 87
€-module, 88, 89
solvable group, 79, 162f., 181
splitting group, 133
©-quasi-ring, 99, 101
&-ring, 97
©-semi-ring, 98
stem, 107
structure, 62, 68
subdomain, 45, 46
subgroup, 10ff., 46, 50, 51
admissible, 46
characteristie, 50
fully invariant, 46
generated by complex, 22
maximal, 22
non-trivial, 10
normal, 23
proper, 10
subinvariant, 190
sublattice, 7¢
submodule, 85, 86
subnormal element, 190
subnormal hull, 192
subnormal lattice, 193
subnormal subgroup, 191ff., 245ff.
subnormally persistent, 246
subring, 95
sub-semigroup, 92
sub-semimodule, 92
sub-semiring, 93
substitution principle, 83
-subtrahend, 92
sum, of complexes, 20
direct, 121

Index

of matrices, 102

in module, 84

of operators, 105

of several modules, 86

vector, 212, 213
Sylow p-group, 135

maximal intersection of, 138
symmetric permutation group, 6

composition series of, 61
symmetry of congruence, 13
system of representatives, 11
system of transitivity, 25

TABLE, multiplication, 3, 4, 65
tetrahedral group, 18
three-cycle, 7
torsion free, 186, 241
torsion subgroup, 241
torsion submodule, 187
transfer, 167, 252
transferred group, 168
transformation, 26

elementary, 118, 218

linear, 98, 101, 103
transitive, 40

multiply, 43, 44
transitivity of congruence, 14
transitivity system, 25
translation matrix, 231
transposition, 7
two-sided ideal, 86, 94
type, 82, 143

Unir, 1, 89, 182

'VECTOR, 89

vector decomposition, 214
vector sum, 212, 213, 233
vector S-module, 89

WEAKLY CENTRAL element, 238
weight, of commutator, 82
Wielandt decomposition, 235
word, 218fF.

inverse, 226

irreducible, 220
word problem, 220, 229, 230

ZERO element, 90, 91, 103, 182
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QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, VV Ngmyukn
i Sovie

and V.V. Step Classic graduate-1 ‘textbytwo
cians covers classical differential as well as topologi oy and
ergodic theory. Bibliographies. 523pp 5% x 8%. . 659542 Pa. 514 95

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of marices and its appln:auons to systems of
linear equations and related topics such as d ig an
equations. Numerous exercises. 432pp. 5% x 8%. 66014-1 Pa. $10.95

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of quali and i followed
by specific applications worked out in mathematical detail. Preface. Index. 655pp.
5% x 8%, 65969-0 Pa. $14.95

ATOMIC PHYSICS (8th edition), Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8%. 65984-4 Pa. $13.95

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The
Physics of the Chemical Bond, Walter A. Harrison. Innovative text offers basic
understanding of the electronic structure of covalent and ionic solids, simple metals,
transition metals and their compounds. Problems. 1980 edition. 582pp. 6% x 9%.
66021-4 Pa. $16.95

BOUNDARY VALUE PROBLEMS OF HEAT CONDUCTION, M. Necati
Ozisik. S of modern mathematical methods of
solving problems in heat conduction and diffusion. Numerous examples and prob-

lems. Selected references. Appendices. 505pp. 5% x 8%. 65990-9 Pa. $12.95

A SHORT HISTORY OF CHEMISTRY (3rd edition), ].R. Partington. Classic
exposition explores origins of chemistry, alchemy, early medical chemistry, nature of
atmosphere, theory of valency, laws and structure of atomic theory, much more.
428pp. 5% x 8%. (Available in U.S. only) 65977-1 Pa. $11.95

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-bal d, carefully d

study covers such topics as Ptolemaic theory, work of Copernicus, Kepler, Newton,

Eddington’s work on stars, much more. Ilustrated. References. 521pp. 5% x 84%.
65994-1 Pa. $12.95

PRINCIPLES OF METEOROLOGICAL ANALYSIS Walt:r_] Sluuer nghly
respected, abundantly illustrated classic reviews
static stability, various analyses (scalar, cross-section, uobanc, isentropic, mme) For
intermediate meteorology students. 454pp. 6% x 9%. 65979-8 Pa. $14.95
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RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C.
Tolnnn I.Andx}lark stndy exlends thermodynalmcs to specn.l, geneml relanvnty;

501pp. 5% x 8%. 65383-8 Pa. $l3 95

APPLIED ANALYSIS Cornelius Lanczos. Classic work on am.lym and design of
finite ing solution of analy Algebraic equa-
tions, uutrkes, hnrmomc analysis, quadrature methods, ‘much more. 559pp. 5% x 8%.

65656-X Pa. $13.95

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessi-
ble coverage of set theory, real number system, metric spaces, continuous functions,
R:ema.nn integration, multiple integrals, more. Wide range of problems.

duate level. Bibliography. 254pp. 5% x 8%. 65038-3 Pa. $8.95

INTRODUCTION TO QUANTUM MECHANICS With Applications to
Chemmry Linus Pauling & E Bright lemn,jr Classic undergraduate text by Nohel

Prize winner applies qu hemical and physical p

Numerous tables and ﬁgum enhance the text. Chapter bibliographies. Appendxces.
Index. 468pp. 5% x 8%. 64871-0 Pa. $12.95
ASY'MI’IUI'IC EXPAN. SIONS OF lNTEGRA.lS Norman Bleistein & Richard A.
H: p with ions in a variety of sci-
entific di:dplmu New preﬁu'e Problems. Dmgmm Tables. Bibliography. Index.
448pp. 5% x 8%. 65082-0 Pa. $12.95

MATHEMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel
Ann.lynes models of fluid flow and solid deformation. For upper-level math, science
and engineering students. 608pp. 5% x 8%. 65369-2 Pa. $14.95

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers funda-
mental concepts, real number sy:um, int sets, functions of a real variable, Fourier
series, much more. Over 500 exercises. 352pp 5% x 84%. 65385-4 Pa. $11.95

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8%.

60113-7 Pa. $6.95
INTRODUCTORY REAL ANALYSIS, A.N. Kol S.V. Fomin. lated
by Richard A. Silverman. Self-contained, evenly paced introduction to real and func-
tional analysis. Some 350 problems. 403pp. 5% x 8%. 61226-0 Pa. $10.95

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed sol\mom in coverage of quantum mechanics, wave mechanics, angular
ing theory, more. 280 problems plus 139
supplementary exercises. 430pp. 6% x 94%. 65236-X Pa. $13.95
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ASYMPTOTIC METHODS IN ANALYSIS, N.G. de Bruijn. An inexpensive, com-
prehensive guide to asymptotic methods—the pioneering work that teaches by
explaining worked examples in detail. Index. 224pp. 5% x 8%.  64221-6 Pa. $7.95

OPTICAL RESONANCE AND TWO-LEVEL A’IOMS L. Allen and J. H. Eberly.
behind

Clear, P to basic all optical
pt 53 il ions. Preface. Index. 256pp. 5% x 8%,
65533-4 Pa. $8.95

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying com-
plex algebra till harmonic functions have been analyzed from real variable view-
point. Includes problems with answers. 364pp. 5% x 8%. 61388-7 Pa. $9.95

A’IOMIC SPECI'RA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best for ialist in other fields. Treatment is physical
rather than mathematical. 80 illustrations. 257pp. 5% x 8%. 60115-3 Pa. $7.95

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
fundamentals of analytic function theory—plus lucid exposition of five important
applications: Potential Theory; Ordinary Differential Equations; Fourier Transforms;
Laplace Transfc Asymptotic Expansi 66 figures. Exercises at chapter ends.
512pp. 5% x 8%4. 64670-X Pa. $12.95

ULTRASONIC ABSORPTION: An Introduction to the Theory of Sound
Absorpuon and Dispersion in Gases, hqmds and Sohds AB Bhana Standard ref-

erence in the field provides a clear, y review of
fundamental concepts for advanced graduate students, research workers. Numerous
diagrams. Bibliography. 440pp. 5% x 8%. 64917-2 Pa. $11.95

UNBOUNDED LINEAR OPERATORS: Theory and Applications, Seymour

Goldberg. Classic presents systematic treatment. of the lheory of unhounded lmear
erators in normed linear spaces with app to

Bibliography. 199pp. 5% x 8%. 64830-3 Pa. $7.95

LIGHT SCATTERING BY SMALL PARTICLES, H.C. van de Hulst. Compre-
hensive treatment including full range of useful appro:umauon methods for
hers in chemistry, and 470pp. 5% x 8%
64228-3 Pa. $12.95

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid,
insightful book presents ideal coverage of subject. 334 exercises make book perfect

for self-study. 55 figures. 352pp. 5% x 8%. 64025-6 Pa. 511.95
OP’I’ICKS S‘II' Isaac Newton. Newum 's own experiments with spectroscopy, colors,
lenses, ,in 1 ge the layman can follow. Foreword by
Albert Einstein. 532pp. 5% x 8% 60205-2 Pa. $12.95

GENERALIZED INTEGRAL TRANSFORMATIONS, A H. Zemanian. Graduate-

level study of recent generalizations of the Laplace, Mellin, Hankel, K. Weierstrass,

convolution and other simple transformations. Bibliography. 320pp. 5% x 8%.
653757 Pa. $8.95
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THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of«electnc and magnetic fields, builds up to electmmag
netic theary Also related topics, includi y. Over 900 p

768pp.
5% x 8 65660—81’:. $18.95

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8%. 63317-9 Pa. $9.95

THEORY OF ELECTROMAGNETIC WAVE PROPAGATION, Charles Herach
Papas. Graduate-level study discusses the Maxwell field equations, radiation from
wire antennas, the Doppler effect and more. xiii + 244pp. 5% x 8%. 65678-0 Pa. $6.95

DISTRIBUTION THEORY AN D TRANSFORM ANALYSIS: An Introduction to

with A AH. Z ian. Provides basics of distri-
bution theory, describes generalized Fourier and Laplace transformations. Numerous
problems. 384pp. 5% x 8%. 65479-6 Pa. $11.95

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Hea.ld Unique
overview of classical wave theory. A optics, el ion, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%.

64926-1 Pa. $13.95

CAIEULUS OF VARIATIONS W'ITH APPLICATIONS George M. Ewing.
it and pro-
motes undenhndmg of speunllzed books, reseuch papers. Smtable for advanced
und

uate/graduate students as primary, supplementary text. 352pp. 5% x 8%.
64856-7 Pa. $9.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell’s theo-

1y of electromagnetism and rigorously derives his general equations of field theory.
1,084pp. 5% x 8%. 60636-8, 60637-6 Pa., Two-vol. set $25.90
AN INTRODUCI'[ON TO THE CALCULUS OF VARIATIONS, Charles Fox.
te-level text covers vari of an integral, uopenmetncal prohlems, least

action, special rel; pproximations, more. Refe 279pp. 5% x 8%.
65499-0 Pa. $8.95

HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8%. 64071-X Pa. $14.95

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises thtougilo\lt. 326pp. 5% x 8%. 63069-2 Pa. $9.95

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced stu-

dents of gronnd water hydrology, soil mechanics and physics, drainage and irrigation

ng and more. 335 ill with answers. 784pp. 6% x 9%.
65675-6 Pa. $19.95

ngine
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NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS Richard
Hamming. Clunc text messes q pF age of alg poly-
nomial i 1 ion, other
topics. Revised and en]zu'ged 2nd edition. 721pp 5% x 8%. " 65241-6 Pa. $15.95

THEORETICA.L SOLID STATE PHYSICS, Vol. 1: Perfect Lattices in
i Vol. II -Equilibrium and Dlsorder, William Jones and Norman H.
Mard: fe work covers fund; 1 theory o? n‘nlddu
ies of erfect crystalline solids, non-equilibrium properties, def ects -
?rzﬁ syxte?ms Appendices. Problems. Ptglace Diagrams. Index. Bibliography.
Total of 1,301pp. 5% x 8%. Two volumes. Vol. I: 65015-4 Pa. $16.95
Vol. IT: 65016-2 Pa. $16.95

OPTIMIZATION THEORY WITH APPLICATIONS, Donald A. Pierre. Broad
spectrum approach to lmpomnl topic. Classical theory afxmmma and maxima, cal-
culus of ique and linear progr e. Man;

y prob-
lems, examples. 640pp 5% x 8% 65205~Xh. $16.95

THE CONTINUUM: A Critical Examination of the Foundation of.Analysis,
Hermann Weyl. Classic of 20th-century foundational research deals with the con-
ceptual problem posed by the continuum. 156pp. 5% x 8%. 67982-9 Pa. $6.95

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. Two classic
essays by great German mathematician: on the theory of irrational numbers; and on
transfinite numbers and properties of natural numbers. 115pp. 5% x 8%.

21010-3 Pa. $5.95

THE FUNCTIONS OF MATHEMATICAL PHYSICS, Harry Hochstadt.
C hensi h 1 pol ials. b s funchi

i g ol 5 F r
Hill's equation, much more. Bibliography. Index. 322pp. 5% x 8%. 65214-9 Pa. $9.95

NUMBER THEORY AND ITS HISTORY, Oystem Ore Unuma.l]y clear, accessi-
ble i

i prim
more. B)blmg’nphy 330pp S o 65620.0 Pa. $10.05

THE VARIATIONAL PRINCIPLES OF MECHANICS, Comelius Lanczos.
Graduate level coverage of calculus of i of motion, rel.

mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. 650677 Pa. $12.95

MATHEMATICAL TABLES AND FORMULAS, Robert D. Carmichael and
Edwin R. Snu'.h Iagnnthms, smes, tangents, trig f\l.l:l:tlm!x, Ppowers, roots, recipro-
cals, I and hyp formulas and th 269pp. 5% x 8%.

60111-0 Pa. $6.95

P

THEORETICAL PHYSICS Georgjoos, with Ira M. l“reeman Clasnc overview
covers essential math, theory, th quan-
tum mechanics, nuclear physics, other topics. First paperback edition. xxiii + 885pp.
5% x 8%. 652270 Pa. $21.95




CATALOG OF DOVER BOOKS
ORDINARY DIF'FERENTIAL EQ'UATIONS Mums Tenenba\lm and Han'y
Pollard. E: surve for

ey
mathematics, engineering, science. Thomugh nmlym of theorems. Di:
Blbhogra.phy Index. 818pp. 5% x 8%. 64940-7 Pa. 18.95

STATISTICAL MECHANICS Pnnmples and Apphcltlcnu, Ten'ell L. Hill
dard text covers fund
theory, imperfect gases, distribution functions, more. 448pp. 5% x 8%.
65390-0 Pa. $11.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An
Introduction, David A. Sanchez. Brief, modern treatment. Linear equation, stability
theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 8%.

63828-6 Pa. $6.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, I theory of energy and
matter. Careful explanations of Dirac’s anti- pa.rucles, Bohr’s model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X Pa. $7.95

THEORY OF MATRICES, Sa.m Perlis. Oummdmg text covenng rank, nonsingu-

larity and inverses in with the of | matrices under
the relation of equivalence, and without the intervention of determinants. Includes
exercises. 237pp. 5% x 8%. 66810-X Pa. $8.95

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton’s laws of
motion, Chadwick’s study of the neutron, Hertz on electromagnetic waves, more.
Original accounts clearly annotated. 370pp. 5% x 8%. 25346-5 Pa. $10.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E.C. Zachmanoglou md Dale W. Thoe. Essentials of partial dif-
ferential applied to and the physical sci-
ences. Problems and answers. 416pp. 5% x 84, 65251-3 Pa. $11.95

BURNHAM'S CELESTIAL HANDBOOK, Robert Bumham  Jr. Thomgh guide
to the stars beyond our solar system. by constel-
lation: Andromeda to Cetus in Vol. l Chamaeleon to Onon in Vol 2; md Pavo to
Vulpecula in Vol. 3. Hundreds of illustrations. Index in VL. 3. 2, ,000pp. 6% x 9%.
23567-X, 23568-8, 23673-0 Pa., Three-vol. set $44.85

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions,
much more. Text explains scientific principles and stresses safety precautions.
128pp. 5% x 8%. 67628-5 Pa. $5.95

AMATEUR ASTRONOMER'S HANDBOOK, J.B. Sidgwick. Timeless, compre-
henxiw coverage of telescopes, mirrors, lenses, mountings, telescope drives,

p pes, more. 189 ilk ons. 576pp. 5% x 84. (Available in
U.S. only) 24034-7 Pa. $11.95
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SPECIAL FUNCTIONS, N.N. Lebedev. Tram]ated by Richard Silverman. Famous
Russian work treating more i with to specific
problems of physics and engu:eenng 38 figures. 308pp. 5% x 8% 60624-4 Pa. $9.95

OBSERVATIONAL ASTRONOMY FOR AMATEURS, ].B. Sidgwick. Mine of

useful data for observation of sun, moon, planets, asteroids, aurorae, meteors,
comets, variables, binaries, etc. 39 illustrations. 384pp. 5% x 8%. (Available in U.S.
only) 24033-9 Pa. $8.95

INTEGRAL EQUATIONS, F.G. Tricomi. Authorif 11-writt of
extremely useful mathematical tool with wide -pphr.anons Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level
Exercises. Bibliography. 238pp. 5% x 8%. 64828-1 Pa. $8.95

POPULAR LECTURES ON MATHEMAT[CAL LOGIC, Hao Wang. Noted logi-
cian’s lucid of hi set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 edi-
tion. ix + 283pp. 5% x 8%. 67632-3 Pa. $8.95

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. “. . . a welcome contribution
to the existing literature....”~Math Reviews. 490pp. 5% x 8%. 64232-1 Pa. $13.95

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
developed by U.S. Air Force Academy. Designed as a first course. Problems, exer-
cises. Numerous illustrations. 455pp. 5% x 8%. 60061-0 Pa. $10.95

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, demmants,
orthonormal bases, Laplace fi much more. E with

Undergraduate level. 416pp. 5% x 8%. 65191-6 Pa. $11.95

INCOMPRESSIBLE AERODYNAMICS, edited by Bryan Thwaites. Covers theo-
reuul and expenmemxl treatment of the umform flow of air and viscous fluids past

1 aerofoils and three-di ional wings; many other topics. 654;
5% x 8%. 65465-6 Pa. $16." 95
INTRODUCTION TO DIFFERENCE EQUATIONS Samuel Goldberg Excep-
tionally clear of i wi PSy-
ology, ics. Many ill ples; over 250 probl 260pp 5% x 8%.
650847 Pa. $8.95

LAMINAR BOUNDARY LAYERS, edited by L. Rosenhead. Engineering classic
covers steady boundary layers in two- and three- dimensional flow, unsteady bound-
+ ary layers, stability, observational techniques, much more. 708pp. 5% x 8%.
65646-2 Pa. $18 95

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY, Second Edition,
Dirk J. Struik. Excellent brief introduction covers curves, theory of surfaces, funda-
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